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Introduction
The main objective of this text is to present the most basic and

fundamental aspects of the isotopic Lie-Santilli theory, more commonly
known as Lie-Santilli isotheory or simply isotheory, for short. In what fol-
lows, we we will refer to it indiscriminately in any one of these three
forms. In addition, we will use the term conventional to refer to the
mathematical and physical concepts customarily used.

To achieve this goal, we will construct isotopic liftings of the basic
mathematical structures in a general way and then arrive at the iso-
topic generalization of Lie algebras.

The origins of this isotheory date back to 1978, as the result of an
essay by the mathematical physicist of Italian origin, Ruggero Maria
Santilli (see [98]).

Santilli studied in this work and in many others later (see the bib-
liography at the end of this text) the way to generalize the classi-
cal mathematical theories and especially its applications in other sci-
ences, in particular physics and engineering. He achieves this through
a mathematical lifting of the unit element on which the theory in ques-
tion is based. Through such a lifting, one obtains a new theory, which
is characterized by having the same properties as the initial theory,
even though the new unit on which this theory is based satisfies more
general conditions than the units of the initial theory.

To perform this process, Santilli uses a particular lifting: isotopies. By
means of them, he starts generalizing, in the first place, the basic math-
ematical structures, namely, groups, rings, and fields, thus building the
first mathematical isostructures. Later and by another type of general-
ization, but always using isotopies, Santilli builds isodual isostructures
and pseudoisostructures.

In the mid-nineties of last century, Santilli laid the foundations of
an isotopic generalization which will involve a definite advance in his
work: the differential isocalculus. With this new tool, Santilli was able to
make new generalizations, now in the field of mathematical analysis:
isofunctions, isoderivatives, etc.
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This enabled him, in turn, to advance greatly in the development
of some physical applications. In particular, one of the aims of Santilli
was to apply conventional Lie theory to practical results in quantum
mechanics, dynamics, and many other fields of physics, passing from
studying canonical, local, and integro-differential systems to others,
the most general possible, which were non-canonical, non-local, and
non-integro-differential.

Our personal contribution to this text, which shows the different
mathematical isostructures, as well as how to construct them using
liftings through isotopies, has been to incorporate a large number of
examples; to systematize and order the entire knowledge of a single
isostructure, usually rather scattered in the literature (most of them
due to Santilli himself, while there are others of different authors); to
unify the different notations in which these results appear in the lit-
erature so far; to give new demonstrations of some of them (in some
cases, they did not even exist, and the facts are taken for granted) and
ultimately, to bring some original results, allowing us to provide this
isotheory a proper mathematical foundation, all of which, in our opin-
ion, contributes to improve, especially from the point of view of cur-
rent mathematics, existing knowledge of the same.

To this end, special emphasis is put on the importance not only
of the isotopic lifting of the unit element on which any mathemati-
cal structure is based, but also on the isotopic lifting of all operations
defined in them. In this way, it incorporates a series of results that gen-
eralize part of those already existing in the literature, because it not
only works with regular fields in physics (real, complex, quaternions,
and octonions), but also considers sets of elements and operations that
they associate, which are the most general possible.

The content of this text is structured in five chapters. Chapter 1
shows the definitions and most important properties of the well-
known algebraic structures, whose subsequent lifting will result in the
emergence of isostructures. While these definitions and properties are
already known, we believe that its exposé is essential for facilitating
a proper understanding of the foundations of the isotheory. Special
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emphasis is placed on the foundations of the structures of algebra, in
general, and Lie algebra in particular, since the lifting of the latter will
lead to the isostructure called the Lie isotopic isoalgebra.

Chapter 2 of this text gives some biographical notes on the scien-
tific work of the two mathematicians who have contributed, the first
indirectly, and the second directly, to the birth of the isotheory: Marius
Sophus Lie and the already frequently cited Ruggero Maria Santilli.

Chapters 3, 4, and 5 are primarily dedicated to the study of the Lie-
Santilli isotheory. Chapter 3 begins with the definition of the concept
of isotopy. However, as the sense of this concept is too general for what
is intended, we will restrict ourselves to the case of the Santilli isotopy,
which will be a basic tool for the development of the Lie-Santilli isothe-
ory. The basic definitions of the elements and tools that will be used in
the rest of the work are also introduced: isounit, isotopic element, etc.

Generalization, step by step, of the basic mathematical structures
is then performed. To do this, in the first place, shows how elements
of any mathematical structure are generalized isotopically, taking for
example the elements of any field K, we then study the isostructures,
which are gaining increasingly greater complexity in their construc-
tion. In this chapter the isogroups, isorings, and isofields are studied in
particular.

Chapter 4 continues the study of the Lie-Santilli isotheory, perform-
ing the isotopic lifting of more complex algebraic structures than those
seen before. Thus, isovector spaces and metric isovector spaces are studied,
followed by isomodules. In addition, considering it of great interest, be-
cause of the important consequences that are derived from them, we
also felt it appropriate to include a section dedicated to the study of
isotransformations from isovector spaces.

Finally, Chapter 5 will consider the isotopic lifting of a new struc-
ture: algebras. The first section looks at isoalgebras and their associated
substructures: isosubalgebras. The second section treats the particular
case of the Lie-Santilli algebras, and, to finish the study, some types
of Lie isotopic isoalgebras, including isosimples, isosemisimples, isosolv-
ables, isonilpotents, and isofiliforms.
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Also, in all these chapters, copious examples, almost entirely origi-
nal, which we understand are fundamental to a proper understanding
of the isotheory, are included, since they have shaped it.

The final part of the text includes an extensive bibliography which,
apart from those texts directly referenced therein, almost all them cor-
responding to the higher mathematical content of the isotheory, also
includes others (suggested at the behest of the Institute for Basic Re-
search itself) relating to the various physical applications deriving
from the same, which in our opinion helps the interested reader have
a better global understanding of the contents and importance of this
isotheory in the current development of the sciences in general, and of
mathematics and physics in particular.

We wish finally to put on record the thanks to our respective fami-
lies for the support they have given us all the time, as well as professors
R. M. Santilli and G. F. Weiss, of the Institute for Basic Research (IBR)
in Florida (USA), for the help they have provided for the drafting of
this work from the beginning.



Chapter 1

Preliminaries

In order to facilitate a proper understanding of this text, this chapter
presents the definitions and more important properties of all those al-
gebraic structures to be lifted, giving rise to the corresponding isostruc-
tures of the Lie-Santilli isotheory.

In the first section and in different subsections, we review, within
the algebraic structures that we could call elementary, the concepts of
group, ring, and field, as well as their most important properties.

In the second section, we review, as more general algebraic struc-
tures, vector spaces and modules, also indicating their most important
properties.

The third section will have special emphasis on the definition and
most important properties of algebras, in particular of Lie algebras.

139
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1.1 Elementary algebraic structures

1.1.1 Groups

We recall that a group is an algebraic structure consisting of a pair
(G, ◦), where G is a set of elements {α, β, γ, . . .} and ◦ is a binary oper-
ation on G satisfying the following properties, ∀α, β, γ ∈ G:

1. Associative: (α ◦ β) ◦ γ = α ◦ (β ◦ γ).
2. Existence of the Elemental Unit: ∃I ∈ G such that α ◦ I = I ◦ α = α.
3. Existence of the Inverse Element: Given α ∈ G, ∃α−I ∈ G such that
α ◦ α−I = α−I ◦ α = I .

If in addition ◦ is commutative, i.e., it satisfies α ◦ β = β ◦ α for all
α, β ∈ G, then G is called an Abelian group or commutative group.

Let (G, ◦) be a group. A set H is called a subgroup of G if the follow-
ing conditions are satisfied:

1. H ⊆ G.
2. The binary operation ◦ is closed over H , i.e., α◦β ∈ H , for all α, β ∈
H .

3. (H, ◦) has a group structure.

Let (G, ◦) and (G′, •) be any two groups. A function f : G → G′ is
called the group homomorphism if f(α ◦ β) = f(α) • f(β), ∀α, β ∈ G.

If f is bijective, it is called the group isomorphism. If G = G′, f is
called an endomorphism, and if it is also an isomorphism, it is called an
automorphism.

1.1.2 Rings

A ring is a triplet (A, ◦, •), where A is a set of elements {α, β, γ, . . .},
equipped with two binary operations, ◦ and •, on A satisfying
∀α, β, γ ∈ A the following properties:
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1. (A, ◦) is an Abelian group.
2. Associativity of •: (α • β) • γ = α • (β • γ).
3. Existence of the elementary unit of •: ∃e ∈ A such that α•e = e•α =

α.
4. Left and right distributivity:
α • (β ◦ γ) = (α • β) ◦ (α • γ)
(α ◦ β) • γ = (α • γ) ◦ (β • γ).

If in addition the commutative property of • is satisfied, i.e., if α•β =

β • α, ∀α, β ∈ A, then A is called an Abelian or commutative ring.
Let (A, ◦, •) be any ring. The set B is called a subring of A if:

1. B is closed for laws ◦ and •, also satisfying the conditions of asso-
ciativity of • and distributivity over both operations.

2. (B, ◦) is a subgroup of (A, ◦).
3. e ∈ B.

Let (A, ◦, •) and (A′,+,×) be two rings with units e and e′ with
respect to operations • and ×, respectively. A function f : A → A′ is
called a ring homomorphism, if ∀α, β ∈ A, then:

1. f(α ◦ β) = f(α) + f(β).
2. f(α • β) = f(α)× f(β).
3. f(e) = e′.

In the particular case that f is bijective, it is called an isomorphism. If
A = A′, f is called an endomorphism, and in this case, if f is bijective, it
is then called an automorphism.

Among the subrings there are ones which possess special proper-
ties: the ideals.

Let (A, ◦, •) be a ring. The set = is called an ideal of A if:

1. (=, ◦) is a subgroup of (A, ◦).
2. = • A ⊆ = and A • = ⊆ =, i.e., x • α ∈ = and α • x ∈ =, ∀x ∈ = and
∀α ∈ A.

Let (A, ◦, •) be any ring and= an ideal ofA. J ⊆ = is called a subideal
of = if (J, ◦, •) has the structure of an ideal of A.
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The concept of an ideal of a ring allows you to establish at the same
time the concept of a quotient ring, as follows: Let (A, ◦, •) be a ring
and = its ideal. We call a quotient ring that which is associated with A
and = for the quotient set A/=, endowed with operations + and ×,
and satisfying that

1. (α+ =) + (β + =) = (α ◦ β) + =, ∀α, β ∈ A.
2. (α+ =)× (β + =) = (α • β) + =, ∀α, β ∈ A.

1.1.3 Fields

We call a field with an associative product that which has an algebraic
structure consisting of a triplet (K,+,×) (which henceforth and for
reasons of the subsequent lifting to which it is going to be subjected
we will denote byK(a,+,×)), whereK is a set of elements {a, b, c, . . .}
(which are usually called numbers), equipped with two binary opera-
tions, + and ×, over K satisfying the following properties:

1. Additive properties:

a. (K,+) is closed: a+ b ∈ K, ∀a, b ∈ K.
b. + is commutative: a+ b = b+ a, ∀a, b ∈ K.
c. + associative: (a+ b) + c = a+ (b+ c), ∀a, b, c ∈ K.
d. Neutral element for +: ∃S ∈ K such that a + S = S + a = a,
∀a ∈ K.

e. Inverse element for +: Given a ∈ K, ∃a−S ∈ K, such that a +

a−S = a−S + a = S.

2. Multiplicative properties:

a. (K,×) is closed: a× b ∈ K, ∀a, b ∈ K.
b. × is commutative: a× b = b× a ∀a, b ∈ K.
c. × is associative: (a× b)× c = a× (b× c), ∀a, b, c ∈ K.
d. Unit element for ×: ∃e ∈ K such that a× e = e× a = a, ∀a ∈ K.
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e. Inverse element for ×: Given a ∈ K, ∃a−e ∈ K, such that a ×
a−e = a−e × a = e.

3. Additive and multiplicative properties:

a. (K,+,×) is closed: a× (b+ c), (a+ b)× c ∈ K, ∀a, b, c ∈ K.
b. Distributivity of both operations: a × (b + c) = (a × b) + (a × c),

(a+ b)× c = (a× c) + (b× c), ∀a, b, c ∈ K.

In the particular case that the associative property of multiplication
is replaced by the following two (called alternation properties): a× (b×
b) = (a × b) × b and (a × a) × b = a × (a × b), ∀a, b, c ∈ K, the field
will said to be with an alternate product, rather than with an associative
product.

1.2 More general algebraic structures

1.2.1 Vector spaces

We call a vector space that which has over a field K(a,+,×) a triplet
(U, ◦, •), where U is a set of elements {X,Y, Z, . . .} (which are usually
called vectors, equipped with two binary operations, ◦ and •, on U sat-
isfying ∀a, b ∈ K,∀X,Y, Z ∈ U , the following properties:

1. (U, ◦, •) is closed, (U, ◦) being a group.
2. The 4 axioms of the external operations:

a. a • (b •X) = (a× b) •X .
b. a • (X ◦ Y ) = (a •X) ◦ (a • Y ).
c. (a+ b) •X = (a •X) ◦ (b •X).
d. e •X = X , e being the unit element associated with K.

Let (U, ◦, •) be a vector space over the the field K(a,+,×) and con-
sider n vectors e1, e2, . . . , en ∈ U . We say that the set β = {e1, . . . , en}
is a basis U (and thus, U is n-dimensional) if:
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1. β is a set of generators, i.e. ∀X ∈ U, ∃λ1,2 λ, . . . , λn ∈ K such that
X = (λ1 • e1) ◦ (λ2 • e2) ◦ . . . ◦ (λn • en).

2. β is a linearly independent system, i.e., given λ1, . . . ,
λn ∈ K such that (λ1 •e1)◦ (λ2 •e2)◦ . . .◦ (λn •en) = S (S is the unit
element associated with U with respect to ◦), then λ1 = λ2 = . . . =

λn = 0 (where 0 is the unit element associated with K with respect
to +).

Let (U, ◦, •) be a vector space over the field K(a,+,×). The set W is
called a vector subspace of U if W ⊆ U and (W, ◦, •) has the structure of
vector space on K(a,+,×).

With respect to functions between vector spaces, we recall that
if (U, ◦, •) and (U ′,4,5) are two vector spaces over the same field
K(a,+,×), a function f : U → U ′ is called a vector space homomorphism
if, ∀a ∈ K and ∀X,Y ∈ U , it satisfies:

1. f(X ◦ Y ) = f(X)4 f(Y ).
2. f(a •X) = a5 f(X).

If f is also bijective, it is called an isomorphism. If U = U ′, it is then
called an endomorphism or linear operator. In the latter case, if f is also
bijective, it is called an automorphism.

1.2.2 Modules

Let (A, ◦, •) be a ring. We call an A-module that which has a pair (M,+),

where M is a set of elements {m,n, . . .} endowed with a binary oper-
ation +, which is endowed in turn with an external product × on A,
given by × : A×M →M and satisfying that:

1. (M,+) is a group, with, in addition, a ×m ∈ M , for all a ∈ A and
m ∈M .

2. a× (b×m) = (a • b)×m, for all a, b ∈ A and ∀m ∈M .
3. a× (m+ n) = (a×m) + (a× n), for all a ∈ A and m,n ∈M .
4. (a ◦ b)×m = (a×m) + (b×m), for all a, b ∈ A and m ∈M .
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5. e × m = m, ∀m ∈ M , e being the unit element associated with A

with respect to the operation •.

The notion of submodule is analogous in its definition to the other
previous substructures: Let (A, ◦, •) be a ring and (M,+) a ring and let
(M,+) be an A-module, with external product × on K. The set N is
called a submodule of M if N ⊆ M and (N,+) has the structure of an
A-module with external product × on K.

The definitions of some functions between these structures, as well
as a definition of distance in vector spaces, will be presented below.

Let (A, ◦, •) be a ring and (M,+) and (M ′,4) two A-modules, with
respective external products × and5 on K. A function f :M →M ′ is
called a homomorphism of A-modules if for all a ∈ A and for all m,n ∈
M :

1. f(m+ n) = f(m)4 f(n).
2. f(a×m) = a5 f(m).

If f is also bijective, it is called an isomorphism. If M = M ′, then it
is called an endomorphism; in this latter case, if f is also bijective, it is
called an automorphism.

Let (U, ◦, •) be a vector space over a field K(a,+,×). A function
f : U × U → K is called a bilinear form if ∀a, b ∈ K and ∀X,Y, Z ∈ U :

1. f((a •X) ◦ (b • Y ), Z) = (a× f(X,Z)) + (b× f(Y,Z)).
2. f(X, (a • Y ) ◦ (b • Z)) = (a× f(X,Y )) + (b× f(X,Z)).

Let K(a,+,×) be a field endowed with an order ≤ and let 0 ∈ K be
the unit element of K with respect to the operation +. Let (U, ◦, •) be
a vector space on K. U is called a Hilbert vector space if it is equipped
with of a scalar product 〈., .〉 : U × U → K, satisfying ∀a, b ∈ K and
∀X,Y, Z ∈ U the following conditions:

1. 0 ≤ 〈X,X〉; 〈X,X〉 = 0⇔ X = 0.
2. 〈X,Y 〉 = 〈Y,X〉, a being the set of a in K, ∀a ∈ K.
3. 〈X, (a • Y ) ◦ (b • Z)〉 = (a× 〈X,Y 〉) + (b× 〈X,Z〉).
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Let (U, ◦, •) be a vector space (of elements X,Y, Z, . . .) over a field
K(a,+,×), endowed with an order ≤ and 0 ∈ K being the unit ele-
ment associated with K with respect to +. U is called a metric vector
space if it is equipped with a distance metric d, satisfying ∀X,Y, Z ∈ U
that:

1. 0 ≤ d(X,X) and d(X,Y ) = 0⇔ X = Y .
2. d(X,Y ) = d(Y,X).
3. Triangle inequality: d(X,Y ) ≤ d(X,Z) + d(Z, Y ).

If instead of the first condition we have the following:

0 ≤ d(X,Y ) and d(X,X) = 0,

then d is called a pseudometric distance and U is a pseudometric vector
space.

If β = {e1, . . . , en} is a basis of U and we consider the n2 numbers
dij = d(ei, ej), ∀i, j ∈ {1, . . . , n}, the matrix g ≡ (gij)i,j∈{1,...,n} ≡
(dij)i,j∈{1,...,n} is said to constitute a metric of the metric vector space
U if d is a distance metric, or that it constitutes a pseudometric of U if d is
a pseudometric distance. The said metric vector space is often denoted
by U(X, g,K).

1.3 Algebras

1.3.1 Algebras in general

LetK(a,+,×) be a field. We call an algebra onK that which is a quater-
nion (U, ◦, •, ·), where U is a set of elements {X,Y, Z, . . .} endowed
with two binary operations, ◦ and ·, and an external product • on K,
satisfying ∀a, b ∈ K and ∀X,Y, Z ∈ U, the following conditions:

1. (U, ◦, •) has a vector space structure on K(a,+,×).
2. (a •X) · Y = X · (a • Y ) = a • (X · Y ).
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3. a. X · (Y ◦ Z) = (X · Y ) ◦ (X · Z)
b. (X ◦ Y ) · Z = (X · Z) ◦ (Y · Z)

If the operation · is commutative, i.e. if ∀X,Y ∈ U , X · Y = Y · X
is satisfied, then U is called a commutative algebra. If the operation · is
associative, i.e. if ∀X,Y, Z ∈ U ,X ·(Y ·Z) = (X ·Y ) ·Z is satisfied, then
U is called an associative algebra. If ∀X,Y ∈ U , X · (Y · Y ) = (X · Y ) · Y
is satisfied and (X ·X) · Y = X · (X · Y ), then U is an alternate algebra.
Finally, if S ∈ U is the unit element of U with respect to the operation
◦, then U is a division algebra if ∀A,B ∈ U , with A 6= S, the equation
A ·X = B always has a solution.

The concept of subalgebra is defined analogously to that of the
other substructures already seen; thus, if (U, ◦, •, ·) is an algebra on
K(a,+,×), a set W is called a subalgebra of U if W ⊆ U and (W, ◦, •, ·)
has the structure of an algebra on K(a,+,×).

Finally, let (U, ◦, •, ·) and (U ′,4,5,�) be two algebras defined over
a field K(a,+,×). A function f : U → U ′ is called a homomorphism of
algebras if, ∀X,Y ∈ U :

1. f is a homomorphism of vector spaces restricted to the operations ◦
and •.

2. f(X · Y ) = f(X)� f(Y ).

Likewise, analogously to the previous homomorphisms are the con-
cepts of isomorphism, endomorphism, and automorphism defined for
algebras.

1.3.2 Lie algebras

Let (U, ◦, •, ·) be an algebra over a field K(a,+,×). U is called a Lie
algebra if ∀a, b ∈ K and ∀X,Y, Z ∈ U :

1. · is a bilinear operation, i.e.:

a. ((a •X) ◦ (b • Y )) · Z = (a • (X · Z)) ◦ (b • (Y · Z)).
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b. X · ((a • Y ) ◦ (b • Z)) = (a • (X · Y )) ◦ (b • (X · Z)).

2. · is anticommutative, i.e. X · Y = −(Y ·X).
3. Jacobi’s identity: ((X · Y ) ·Z) ◦ ((Y ·Z) ·X) ◦ ((Z ·X) · Y ) = S, where
S is the unit element of U with respect to ◦.

Let (U, ◦, •, ·) be an algebra over a field K(a,+,×). U is called a
admissible Lie algebra if the product commutator [., .] associated with
· is a Lie algebra, this product being defined according to: [X,Y ] =

(X · Y )− (Y ·X), for all X,Y ∈ U .
To facilitate the reading of the remainder of this section, in what

follows, we will agree that L ≡ (U, ◦, •, ·) will represent an algebra
over a field K(a,+,×).

The Lie algebra L will be called real or complex depending on what
the field K associated with it is. Also, the concepts of dimension and
basis of L are defined as those corresponding to the vector space un-
derlying L.

If {e1, . . . en} is a basis of L, then we have ei · ej =
∑
chi,j · eh, for

all 1 ≤ i, j ≤ n. By definition, the coefficients chi,j are called the struc-
ture constants or Maurer-Cartan constants of the algebra. These structure
constants define the algebra and satisfy the following two properties:

1. chi,j = −chj,i
2.
∑

(cri,jc
s
r,h ◦ crj,hcsr,i ◦ crh,icsr,j) = 0.

From both of these it can be deducted that the operation · is distribu-
tive and not associative.

The following results are easily proved:

1. If K is a field of characteristic zero, then X ·X =
−→
0 , for all X ∈ L,

where
−→
0 is the unit element of Lwith respect to ◦.

2. X · −→0 =
−→
0 ·X =

−→
0 , for all X ∈ L.

3. If the three vectors that form a Jacobi identity are equal or propor-
tional, each addend of this identity is zero.

Let L and L′ be two Lie algebras over the same field K. Φ : L →
L′ is called a homomorphism of Lie algebras if Φ is a linear function
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such that Φ(X · Y ) = Φ(X) · Φ(Y ), for all X,Y ∈ L. The kernel of the
homomorphism Φ is the set whole of the elements X of the algebra
such that Φ(X) =

−→
0 .

Let L be a Lie algebra. We call a Lie subalgebra of L all that is a vector
subspace W ⊂ L such that X ·Y ∈W , for all X,Y ∈W and = is called
an ideal of L if = is a subalgebra of L such that X · Y ∈ =, for all X ∈ =
and for all Y ∈ L (i.e., if =·L ⊂ =). It is proved that given a Lie algebra
L, both the set constituted by its unit element and the algebra itself are
ideals of itself. Likewise, they are both also ideals of the algebra as of
its center (i.e., the set of elements X ∈ L such that X · Y =

−→
0 , for all

Y ∈ L) as the kernel of any homomorphism from the algebra.
Given two Lie algebras L and L′, we call the set {S = X ◦X ′ | X ∈

L and X ′ ∈ L′} the sum of both; it is called a direct sum if L ∩ L′ =
{−→0 } = L · L′ is satisfied. The direct sum of algebras will be denoted
by L ⊕ L′, and it is proved that in a direct sum L′′ = L ⊕ L′ of Lie
algebras, every element X ∈ L′′ can be written uniquely as X = X1 ◦
X2, with X1 ∈ L and X2 ∈ L′. It is easy to see that both the sum and
the intersection and the the product (bracket) of ideals of a Lie algebra
are also ideals of the algebra.

If L is a Lie algebra, it is called a derived algebra of L and is repre-
sented by L · L, the set of elements of the form X · Y with X,Y ∈ L.

An ideal = of a Lie algebra L is called commutative if X · Y =
−→
0 , for

all X ∈ = and for all Y ∈ L. In turn, a Lie algebra is called commutative
if, considered as an ideal, it is commutative. From the two definitions
above, it follows immediately that a Lie algebra is commutative if and
only if its derived algebra is null.

There are several types of Lie algebras. A Lie algebra is simple if it
is not commutative and the unique ideals that it contains are trivial
ones, while it will be called semisimple if it does not contain non-trivial
commutative ideals. Obviously, any simple Lie algebra is semisimple.

It is easy to prove that any semisimple Lie algebra is a direct sum of
simple Lie algebras and that every semisimple Lie algebra L satisfies
that L · L = L.
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The classification of complex simple Lie algebras dates back to the
late 19th century (Killing, Cartan, etc.) and is as follows:

1. Lie algebras of the special linear set.
2. Odd orthogonal Lie algebras.
3. Simplectic Lie algebras.
4. Even orthogonal Lie algebras.
5. In addition, there are five simple algebras that are not contained in

any of these groups and that are referred to as exotic.

Other types of Lie algebras are solvable and nilpotent. The former are
defined in the following way: Let L be a Lie algebra. L is called solvable
if it satisfies that in the sequence

L1 = L, L2 = L · L, L3 = L2 · L2, . . . , Li = Li−1 · Li−1, . . .

(called the resolvability sequence), there is a natural number n such that
Ln = {−→0 }. The least of these numbers satisfying this condition is
called the resolvability index of the algebra.

Similarly, an ideal of the algebra is called solvable if, in forming the
corresponding resolvability sequence, there is an n ∈ N such that=n =

{−→0 }. In this regard, the following results are proved:

1. If L is a Lie algebra, then Li is an ideal of L and Li−1, for all i ∈ N.
2. Every subalgebra of a solvable Lie algebra is solvable.
3. The intersection, the sum, and product of solvable ideals of L are

also solvable ideals of L.

The consequence of this last result is that the sum of all solvable
ideals of a Lie algebra is also a solvable ideal of the algebra, which is
called the radical of L and is denoted by rad(L). In the particular case
of L being semisimple, rad(L) = {−→0 }.

With respect to the second type of Lie algebras mentioned above, a
Lie algebra L is called nilpotent if in the sequence

L1 = L, L2 = L · L, L3 = L2 · L, . . . ,Li = Li−1 · L, . . .
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(called the nilpotency sequence), there is a natural number n such that
Ln = {−→0 }. The least of these natural numbers satisfying this condition
is called index of nilpotency.

Analogous to what happened with solvable Lie algebras, an ideal
= of L is called nilpotent if in forming the sequence of nilpotency of =,
there exists an n ∈ N such that =n = {−→0 } and it is also satisfied that
the sum of two nilpotent ideals of a Lie algebra is another nilpotent
ideal and that every nilpotent subalgebra of a Lie algebra is nilpotent.
Moreover, every non-null nilpotent Lie algebra must have a non-null
center.

The sum of all the nilpotent ideals of Lie algebra L is called the nil
radical of L and is denoted by nil-rad(L). In this respect, it is proved
that the nil-radical of a (not necessarily nilpotent) Lie algebra is also
a nilpotent ideal of the algebra and that the nil-radical is contained in
the radical of the algebra.

A result that relates some of the concepts defined above is as fol-
lows: a complex Lie algebra is solvable if and only if its derived alge-
bra is nilpotent. We will make use of it when we consider the isotopic
lifting of Lie algebras.

Finally, we recall the definition and some properties of a particu-
larly important subset of nilpotent Lie algebras, which will also be dis-
cussed in the subsequent lifting that is carried out. They are the filiform
Lie algebras (obtained by Vegné in 1966). Their definition is as follows:
Let L be a nilpotent Lie algebra. L is called filiform if it satisfies that

dim L2 = n− 2 , . . . , dim Li = n− i, . . . , dim Ln = 0,

where dim L = n.
In all filiform Lie algebras, the existence of a basis {e1, . . . , en},

known as an adapted basis, is proved. It satisfies that

e1 ·e2 = 0, e1 ·eh = eh−1 (h = 3, . . . , n), e3 ·eh = 0 (h = 2, . . . , n).

Let L be a filiform Lie algebra. The invariants i and j of the algebra
(invariant in the sense of not relying on the adapted basis chosen in
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the algebra), are defined according to:

i = inf{k ∈ Z+ | ek · en 6=
−→
0 k > 1},

j = inf{ k ∈ Z+ | ek · ek+1 6=
−→
0 },

both invariants being related by the following inequalities:

4 ≤ i ≤ j < n ≤ 2 j − 2

and likewise also satisfying that all complex filiform Lie algebras are
defined with respect to a suitable basis, if the products eh · en for i ≤
h ≤ n− 1 or the products ek · ek+1 for j ≤ k < n are satisfied.



Chapter 2

HISTORICAL EVOLUTION OF
THE LIE AND LIE-SANTILLI
THEORIES

This chapter lists some biographical notes on the life and scientific
work of two distinguished mathematicians who with their contribu-
tions have contributed to a great development not only in mathemat-
ics, but also in other related sciences, primarily physics and engineer-
ing.

The first of them, perhaps not so well-known as he should be and
who, as a general rule, has not been given the importance which he
really deserves, is Marius Sophus Lie (Norfjordeid (Norway) 1842 -
Christiania (today Oslo) 1899), undoubtedly one of the greatest mathe-
maticians of the 19th century. He is notable not only for his mathemat-
ical discoveries, which gave rise to what is now known as Lie theory,
but also for their countless applications to physics and engineering,
which have made extraordinary progress in the further development
of these disciplines. It is said that the great Albert Einstein affirmed
that “without the discoveries of Lie, the Theory of Relativity would prob-

ably never have been born.”
The second of these authors, our contemporary, is Ruggero Maria

Santilli, an American mathematician of Italian origin who is devot-
ing his life to the study of a generalization of Lie theory, a generaliza-
tion which is currently known as Lie-Santilli theory, which tries to give
a satisfactory answer to certain questions of various types—physical,

153
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chemical, biological, astronomical, etc.—that today are not adequately
explained, neither in Lie theory itself nor in the current knowledge of
science.

2.1 Lie theory

In this section we will discuss some aspects of Lie theory: its origins, its
later development and some attempts at generalizing it, in particular
the generalizations of groups and of Lie algebras.

2.1.1 Origin of Lie theory

The theory of permutation groups of a finite set is developed and begins
to be used (by Serret, Kronecker, and Jordan, among others) around
1860. On the other hand, the theory of invariants, then in full develop-
ment, acquainted mathematicians with certain infinite sets of geomet-
ric transformations established by composition (linear or projective
transformations). However, it was not until 1868 when both theories
are unified, thanks to a work of Jordan on motion groups (closed sub-
groups of the group of displacements of the Euclidean space in three
dimensions) (see [45]).

In 1869, Felix Klein and Sophus Lie are admitted to the University
of Berlin. There, Lie conceived the notion of invariant in analysis and
differential geometry from the conservation of the differential equa-
tions by means of a continuous family of transformations. A year later,
both travel to Paris, where they developed together a work (see [55]) in
which they studied the connected commutative subgroups of the pro-
jective group of the plane, along with the geometric properties of their
orbits. In 1871 Klein would begin to be interested in non-Euclidean ge-
ometries and a first classification of all the known geometries, while
Lie (who already used the term transformation group) explicitly pre-
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sented the problem of the determination of all continuous or discon-
tinuous subgroups of Gl(n,C) ([62]).

Since 1872, Lie seems to abandon the theory of transformations
groups for the study of contact transformations, integration of first-
order partial differential equations, and relationships between these
two theories. In the course of his investigations, Lie became famil-
iar with the so-called Poisson brackets (expressions of type (f, g) =∑n
i=1

(
∂f
∂xi
· ∂g∂pi −

∂g
∂xi
· ∂f∂pi

)
, where f and g are two transformations

and xi and pi are the canonical coordinates in the cotangent space
T (Cn)) and also began to work with the brackets of differential op-

erators (brackets of type [X,Y ] = XY − Y X), which had already ap-
peared in the theory of Jacobi-Clebsch on complete systems of partial
differential equations of first order (a notion equivalent to the com-
pletely integrable systems of Frobenius). Lie then applies the theory
of Jacobi to the Poisson bracket, considering that these are associated
with differential operators of Jacobi brackets. Thus, Lie examines the
set of functions (uj)1≤j≤n, depending on the variables xi and pi, such
that the parentheses (uj , uk) be functions of uh, calling these groups

(which were considered already by Jacobi, implicitly).
In the fall of 1873, Lie continues his studies of transformation

groups. On the basis of a continuous group of transformations over
n variables, he shows that these transformations form a stable set by
composition (see [63]). On the other hand, he links the theory of con-
tinuous groups with his previous research on contact transformations
and differential equations. All of this begins to consolidate the new
theory of transformation groups.

In the following years, Lie continued this study, obtaining a certain
number of more specific results, among others: the determination of
transformation groups of straight lines in a plane, subgroups of small
codimension of projective groups, groups with at least six parameters,
etc. However, he does not abandon the theory of differential equations.
On the contrary, he thinks that the theory of transformation groups
should be an instrument for integrating differential equations, where
the transformation groups would play an analogous role to the Galois
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groups with an algebraic equation. These investigations lead him to in-
troduce certain sets of transformations with an infinite number of pa-
rameters, which he called continuous and infinite groups (today called
Lie pseudo-groups, to differentiate them from Banach-Lie groups).

With all of the above results, Lie already introduces what will
later be called Lie groups and algebras. However, given that his first
works were written in Norwegian and published in the reviews of the
Academy of Christiania, which had very little external dissemination,
his ideas were not well known at first.

From 1886 until 1898, however, Lie comes to occupy the post that
Klein leaves vacant at Leipzig, which will encourage the start of a great
diffusion of their works. This also contributed to having Engel as an as-
sistant associate, who worked with Lie on the ideas of the latter. This
permits the appearance of the treatise Teorie der transformationsgruppe
([67]), written by both between 1888 and 1893. It addresses transfor-
mation groups, the variable space, xi, and the the parameter space, aj ,
being vitally important. These variables and parameters were consid-
ered at first as belonging to the complex field, with which the compo-
sition of transformations sometimes presented serious difficulties, so
he had to establish the local point of view whenever it was necessary.
Both authors also treated in this text the mixed groups (groups with a
finite number of connected components).

In short, the general theory developed in this treatise constituted a
real dictionary on the properties of continuous and finite groups with
their infinitesimal transformations. Also, in addition, three fundamen-
tal theorems of Lie appeared, on which the theory of Lie groups is
based. These results are completed with the study of isomorphisms be-
tween groups. Thus, two transformation groups are said to be similar

if one could pass from one to another by an invertible coordinate trans-
formation over variables and an invertible coordinate transformation
over parameters. Lie proves that two groups are similar if using a vari-
able transform one can arrive at infinitesimal transformations from one
group to another. A necessary condition to make this so was that the
Lie algebras of these two groups be isomorphic. However this condi-
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tion was not sufficient, so that Lie had to devote a whole chapter of his
treatise to obtain additional conditions to ensure that the groups were
similar.

By analogy with the theory of permutation groups, Lie also intro-
duced in this treatise the notions of subgroup and distinguished sub-

group, proving that they corresponded to the subalgebras and ideals
of a Lie algebra, respectively. For these results, as for the three funda-
mental theorems, Lie used primarily the Jacobi-Clebsch theorem, which
gives the integrability of a differential system.

Notions of transitivity and primitivity, so important for permuta-
tion groups, are presented naturally for finite and continuous groups
of transformations, being also studied in detail in this treatise, as well
as the relationships between the subgroup stabilizers of a point and the
notion of homogeneous space. Finally, the treatise finishes with the in-
troduction of the notions of derived group and solvable group (called
an integrable group by Lie). This terminology, suggested by the the-
ory of differential equations, would remain in use until a later work of
Hermann Weyl, in 1934, who first introduced the term Lie algebra as
a substitute for infinitesimal algebra, which had been used until then
and which he himself introduced in 1925.

2.1.2 Further development of Lie theory

The period between 1888 and 1894 is marked by the work of Engel and
his student Umlauf and, above all, of Killing and E. Cartan. They all
arrived at a series of spectacular results regarding complex Lie alge-
bras.

Killing is an example of this advance in [54]. It had been Lie himself
who introduced (see vol. I, p. 270 of [67]) the notion of solvable Lie al-
gebras and who proved the theorem of reduction of linear Lie algebras
solvable to the triangular form (in the complex case). Killing noted that
in any Lie algebra there is a solvable ideal (today called the radical) and
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that the quotient of a Lie algebra by its radical has null radical. Killing
then called Lie algebras of null radical semi-simples and proved that
they are products of simple algebras (this had already been studied by
Lie (see vol. 3, p. 682 of [67]), who proved the simplicity of classic Lie
algebras).

In addition, although Lie had already studied something about the
subject (treating the subalgebras of Lie of dimension two that contain
a given element of a Lie algebra), Killing also introduced the character-
istic equation det(ad(x)− ω · 1) = 0 into Lie algebras and made use of
the roots of this equation for a semi-simple algebra to obtain the classi-
fication of the complex simple Lie algebras (later, Umlauf in 1891 will
classify nilpotent Lie algebras of dimension ≤ 6).

Killing also proved that an algebra derived from a solvable algebra
is of zero range, that is, that ad(x) is nilpotent for every element x of the
algebra. Soon after, Engel would prove that these algebras of zero rank
are solvable; Cartan, in turn, introduced in his thesis what we now call
the Killing form, establishing the two fundamental criteria that char-
acterize, by means of this form, solvable Lie algebras and semisimple
Lie algebras.

Killing also claimed that the algebra derived from a Lie algebra
is sum of a semi-simple algebras and its radical (which is nilpotent),
but his demonstration was incomplete. Subsequently, Cartan gave a
demonstration proving more generally that any Lie algebra is the sum
of its radical and a semi-simple subalgebra (t 1, p. 104 of [20]). How-
ever, it was Engel who, in an indisputable way, came to affirm the ex-
istence in any non-solvable Lie algebra of a simple Lie subalgebra of
dimension 3. It would be E. E. Levi who, in 1905 (see [61]), gave the
first demonstration of this result, although for the complex case. An-
other demonstration of this, now valid for the real case, was given by
Whitehead in 1936 (see [185]). This result would be completed later, in
1942, by A. Malcev through the uniqueness theorem of Levi sections.
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2.1.3 First generalizations of Lie algebras

The exponential function was the starting point to achieve the first gen-
eralizations of Lie algebras. Thus, the early studies are due to E. Study
and Engel. The latter, considering this function, gave examples of two
locally isomorphic groups, but from the global point of view they were
very different (see [26]).

In 1899 (see vol. 3, pp. 169-212 of [90]), Poincaré took up the study
of the exponential function, providing important results regarding the
adjoint group, attaining that a semi-simple element of a group G may
be the exponential of an infinite number of elements of the Lie alge-
bra g ≡ L(G), while a non-semi-simple element may not be an ex-
ponential. In the course of his investigations, Poincaré regarded the
associative algebra of differential operators of all orders generated by
the operators of a Lie algebra. He proves that if (xi)1≤i≤n is a basis for
the Lie algebra, this associated algebra (generated by the xi) has as its
basis certain functions symmetric to the xi (sums of non-commutative
monomials, deduced from a given monomial by all permutations of the
factors). The gist of his demonstration is its algebraic nature, which al-
lows one to obtain the structure of an enveloping algebra. Other similar
demonstrations would also be given by Birkhoff and Witt, in 1937.

Other researchers who also used the exponential function in their
research on Lie theory were Campbell in the biennium 1897-1898, Pas-
cal, Baker in 1905 (see [11]), Haussdorff in 1906 (see [31]), and finally
Dynkin in 1947 (see [24]), who took up again the question, generaliz-
ing all the previous results for Lie algebras of finite dimension over R,
C, or an ultrametric field.

Besides the foregoing, Hilbert posed a new theoretical development
in 1900. Previously, F. Schur (see [166]) had come to improve one of the
results of Lie, using functions of analytic character in the transforma-
tions that he handled. Schur demonstrated, then, that if functions used
were of the class C2, the groups that were obtained were holoedri-
cally isomorphic to an analytical group. Lie himself had already an-
nounced in [65], based on the geometry, that the hypotheses of ana-
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lyticity were not of a natural character. These findings led Hilbert to
wonder whether the same conclusion was possible under the hypoth-
esis that the functions would be continuous (this would be the fifth
problem posed by Hilbert in the Mathematical Congress of 1900). This
problem gave rise to numerous investigations, the most complete re-
sult being the theorem proved by A. Gleason, D. Montgomery, and L.
Zippin in 1955 (see [79]): Any locally compact topological group has an

open subgroup that is the projective limit of Lie groups, a result that
implies that any locally Euclidean group is a Lie group.

On the other hand, Lie raised in his theory the problem of determin-
ing the linear representations of minimal dimension of the simple Lie
algebras, solving it for the classical algebras. In his doctoral thesis, Car-
tan met this problem also for exceptional simple algebras. The point of
view of Cartan was to study the non-trivial extensions of Lie algebras
(from a simple Lie algebra and a (commutative) radical of minimal di-
mension). These methods would be generalized by him later for all
irreducible representations of the real or complex simple Lie algebras.

In addition, and as a result of his investigations about the integra-
tion of differential systems, Cartan introduced in 1904 (see vol. II, p.
371 of [20]) the Pfaff forms: ωk =

∑n
i=1 Ψki dai, subsequently called

Maurer-Cartan forms. With them, Cartan showed that he could de-
velop a theory of finite and continuous groups from the ωk, and estab-
lish the equivalence of this point of view with that of Lie. For Cartan,
however, the interest of this method was due above all to its being
adapted to infinite and continuous groups, thus generalizing the Lie
theory.

Two other problems already raised by Lie himself were the prob-
lem of the isomorphism of every Lie algebra with a linear Lie algebra
and the problem of complete reducibility of a linear representation of a
Lie algebra. Regarding the first of them, Lie believed in his affirmative
answer (see [64]), considering the adjoint representation. Ado was in
1935 (see [1]) the first who showed it properly.

Regarding the second problem, Study already worked on it, in
a geometric form, in an unpublished manuscript, although cited by
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Lie (see vol. 3, pp. 785-788 of [67]), demonstrating the verification
of this property for the linear representations of Lie algebras of
Sl(2,C),Sl(3,C) and Sl(4,C). In this regard, Lie himself and En-
gel had guessed a theorem of complete reducibility valid in Sl(n,C),
∀n ∈ N. Already in 1925 (see [183]) H. Weyl established the complete
reducibility of linear representations of semi-simple Lie algebras, us-
ing an argument of a global nature (which had already been used by
Cartan in irreducible representations, according to Weyl himself). But
it was not until 1935 when Casimir and Van der Waerden ([21]) ob-
tained an algebraic proof of the result. Other algebraic demonstrations
would be given by R. Brauer in 1936 (see [15]) and J. H. C. Whitehead
in 1937 (see [185]).

Most of the aforementioned works were limited to real or complex
Lie algebras which only corresponded with Lie groups in the usual
sense. The study of Lie algebras over a field other than R or C was
tackled by Nathan Jacobson in 1935 (see [36]), showing that most of
the classic findings remained valid for any field of zero characteristic.

A new branch in the theory of Lie algebras was opened in 1948 by
Chevalley and Eilenberg, who introduced the cohomology of Lie alge-
bras in terms of invariant differential forms. In 1951, Hochschild dis-
cussed the relationship between the cohomology of Lie groups and Lie
algebras. Later, Van Est (1953-1955) would do it.

Also in 1948, A. A. Albert developed the concept of the Lie-
admissible algebras, characterized by a product X · Y , such that the
associated commutator [X,Y ] = X · Y − Y · X is Lie. Albert demon-
strates that the algebra associated with a Lie algebra, by means of the
product commutator, is a Lie admissible algebra. In fact, he proves,
using the product commutator, that every associative algebra is a Lie
admissible algebra (see [2]).
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2.1.4 First generalisations of Lie groups

One of the avenues of research arising from the theory of Lie groups
is the study of global Lie groups. It was due to Hermann Weyl, who
was inspired in turn by two theories developed independently: the
theory of the linear representations of complex semi-simple Lie alge-

bras, due to Cartan, and theory of the linear representations of finite

groups, due to Frobenius and generalized to orthogonal groups by I.
Schur in 1924, using the idea of Hurwitz (1897) of replacing the oper-
ator defined on a finite group by an integration relative to an invari-
ant measure (see [34]). Schur used this procedure (see [167]) to show
the complete reducibility of representations of the orthogonal group
O(n) and the unitary group U(n), by constructing an invariant, pos-
itive, non-degenerate Hermitian form. He deduced, in addition, the
complete reducibility of holomorphic representations of O(n,C) and
Sl(n,C), establishing orthogonality relations for the characteristics of
O(n) and Sl(n,C), and determining the characteristics of O(n). Weyl
extended this method to semi-simple, complex Lie algebras in 1925
(see [183]). He showed that given a such algebra, it has a real com-

pact form, i.e. it comes, by extension of scalars R to C, from an alge-
bra over R whose adjoint group is compact. He also showed that the
fundamental group of the adjoint group is finite, since its covering is
compact. He deduced the complete reducibility of representations of
algebras of semi-simple, complex Lie algebras and determined all the
characteristics of these representations.

After the works of Weyl, Cartan adopted a global perspective in
his research on symmetric spaces and Lie groups, which would lay the
foundations of his 1930 exposition (see vol. I, pp. 1165-1225 [20]) of the
theory of continuous and finite groups, where he, in particular, found
the first demonstration of the global variant of the third fundamental
theorem of Lie (i.e., the existence of a Lie group over any given Lie
algebra). Cartan also showed that any closed subgroup of a real Lie
group is a Lie group, which generalizes a result of Von Neumann in
1927 on the closed subgroup of a linear group (see [82]). Neumann also
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showed that any continuous representation of a complex semisimple
group is real analytic.

Subsequently, Pontrjagin, in 1939, in his work on topological groups

(see [91]), distinguished the local and global characters of the theory
of Lie groups. In 1946, Chevalley developed a systematic discussion
of the analytic varieties and the exterior differential calculus (see [23]).
The infinitesimal transformations of Lie appeared as a vector field and
the algebra of a Lie group was identified as the space of fields of vectors

invariant to the left on that group.
Another generalization of Lie groups started in the year 1907 from

the works of Hensel (see [32]), who developed the p-adic functions
(as defined by the developments in the entire series) and the p-adic

Lie groups. Hensel discovered a local isomorphism between the addi-
tive and multiplicative groups of Qp (or more generally, of any com-
plete ultrametric field of characteristic zero). A. Weil in 1936 (see [180])
and E. Lutz the following year (see [71]), starting from p-adic ellip-

tic curves, deepened this subject. As an arithmetic function, it was the
construction of a local isomorphism of commutative group with an
additive group, based on the integration of an invariant differential
form. This method also applies to the Abelian varieties, as Chabauty
remarked shortly after in 1941 (see [22]), to demonstrate a particular
case of the Mordell conjecture. R. Hooke, pupil of Chevalley, estab-
lished in 1942, in his doctoral thesis, fundamental theorems about p-
adic Lie groups and algebras (see [33]). Later, in 1965, this work would
be developed in a more precise way by M. Lazard, in [60].

One last example of a generalization of Lie groups are the Lie-

Banach groups. Lie groups are treated of infinite dimension, in which,
from the local point of view, a neighborhood of zero is replaced within
a Euclidean space by a neighborhood of zero in a Banach space. This
was treated by Birkhoff in 1936 (see [13]), thus attaining to the notion
of a normed complete Lie algebra. By 1950, Dynkin would complete the
results of Birkhoff, although his results would remain local.

In addition to the previous works, a new study relates Lie algebras
with Lie groups. The origin of this new work is in 1932, the year in
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which P. Hall presents a study about a class of p-groups called regular,
on which he develops the subject of commutators and builds the de-

scending central series of a group (see [30]). Later, between the years
1935 and 1937, the work of Magnus [72] and Witt (see [186]) appears,
in which, together with those of Hall, the free Lie algebras are defined,
associated with free groups. Witt will show that the enveloping Lie al-
gebra of a free Lie algebra L is a free associative algebra, deducing,
then, the range of homogeneous components of L (Witt formulas). Fi-
nally, in 1950, M. Hall determines the basis of a free Lie algebra known
as the Hall’s basis, which already appeared implicitly in the works of
P. Hall and Magnus.

2.2 The Lie-Santilli isotheory

In this section we discuss, first of all, those problems which gave rise to
the emergence of this isotheory, followed by a treatment of the histori-
cal evolution of the same. Among the first we deal with the emerging
application of Lie theory in physics and the concepts of an admissible
algebra and universal enveloping Lie algebra.

2.2.1 Lie theory in physics

Lie theory, apart from its application in different branches of math-
ematics, also has numerous applications in the field of physics. Lie
groups were introduced into physics even before the development of
the theory of quanta, through representations by matrices of finite or
infinite dimensions. They were useful for the description of (locally)
symmetric and homogeneous pseudo-Riemann spaces, being used in
particular in geometric theories of gravitation. However, it was the
development of modern quantum theory, in the years 1925 and 1926,
which facilitated the explicit introduction into physics of Lie groups.
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In this theory, the physical observations appeared represented by Her-
mitian matrices, while the transformations were described by means
of their representations by unitary or anti-unitary matrices. The oper-
ators used (with respect to a law similar to the one of commutators:
X · Y − Y ·X) pertained to a Lie algebra of finite dimension, while the
transformations described by a finite number of continuous parame-
ters belong to a Lie group.

Other reasons that led to the introduction of Lie theory into physics
were the presence of exact kinematic symmetries or the use of dy-
namic models designed with a higher symmetry to that present in
the real world. These exact kinematic symmetries appear by the use
of a canonical formalism in classical mechanics and quantum theory.
Thus, Lie theory finds applications not only in elementary particle or
nuclear physics, but also in fields as diverse as: continuous mechan-
ics, solid state physics, cosmology, control theory, statistical physics,
astrophysics, superconductivity, computer modeling, and theoretical
biophysics, among others.

However, as we will see in subsequent pages of this text, the theory
of Lie seems unable to explain satisfactorily many other problems of
physics, which will lead to the emergence of many generalizations of
it that try to resolve these problems, one of the latter being, without
doubt, the most important: the Lie-Santilli isotheory.

2.2.2 Origin of the isotopy

In 1958 R. H. Bruck ([16]) pointed out that the notion of isotopy al-
ready existed in the early stages of set theory, where two Latin squares
are said to be isotopically related when their permutations coincide.
The word isotopic comes from the Greek words “Iσoσ Toπoσ,” which
means the same place. This term intends to point out that the two fig-
ures have the same configuration, the same topology. Now, given that
a Latin square could be considered as a multiplication table of a quasi-
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group, its isotopies are propagated to these latter. Later it would be
done for algebras and, more recently, for the majority of the branches
of mathematics. As an example, K. Mc. Crimmon would study in 1965
(see [73]) the isotopy of the Jordan algebras, while already in 1967 R.
M. Santilli himself would develop in [94] the isotopies of the associa-
tive universal enveloping algebra U for a fixed Lie algebra L, calling
them isoassociative enveloping algebras (Û ). Other more recent works
on isotopy can be seen in Tomber ([12]) in 1984 or in the monograph
of Lõhmus, Paal, and Sorgsepp in 1994 (see [68]).

The term of isotopy appears also in other sciences. Thus, for exam-
ple, in chemistry an isotopy is the condition of two or more simple
bodies which represent the same atomic structure and have identical
properties, although they disagree in atomic weight. Such elements are
called isotopes.

2.2.3 Lie admissible algebras

In the same work of 1967 previously cited (see [94]), Santilli intro-
duced and developed the new notion of a Lie admissible algebra,
resulting from studies of his thesis in theoretical physics at the Uni-
versity of Turin. The first notion of Lie admissibility was due to the
American mathematician A. A. Albert, who developed this concept
in 1948 (see [2]), referring to a non-associative algebra U , with ele-
ments {a, b, c, . . .}, and an (abstract) product a · b, such that its asso-
ciated commutative algebra U− (which is the same vector space U ,
although equipped with the product commutator [a, b]U = a · b− b · a)
is a Lie algebra. As such, the algebra U does not necessarily contain
a Lie algebra in its classification, thus being inapplicable for the con-
struction of the mathematical and physical results of Lie theory. In fact,
Albert began imposing that U should contain Jordan algebras as spe-
cial cases, directing his studies toward quasi-associative algebras of
product (a, b) = λ • a · b − (1 − λ) • b · a, where λ is a non-zero scalar



2.2 The Lie-Santilli isotheory 167

distinct from 1, taking into account that for λ = 1
2 and the product

a · b being associative, one obtains a Jordan commutative algebra, but
which does not admit a Lie algebra under any finite value of λ.

Santilli then proposes that the algebra U can admit Lie algebras in
its classification, i.e., that the product a·b admits as a particular case the
Lie product bracket: [a, b] = ab−ba. This new definition was presented
as a generalization of the flexible admissible Lie algebras, of product
(a, b) = λ • a · b − µ • b · a, with λ, µ, λ + µ non-zero scalars under
conditions in which [a, b]U = (a, b)− (b, a) = (λ+µ)• (a · b− b ·a) is the
Lie product bracket, such that the product (a, b) admits the Lie product
as a particular case. The last conditions amount to λ = µ and that the
product a · b is associative. Santilli also thus began the study of the so-
called q-deformations (studied later in the 1980s by a large number of
authors), which consist of considering the product (a, b) = a ·b−q•b ·a,
so, under the previous notations, λ = 1 and µ = q.

In 1969, Santilli would identify the first Lie admissible structure
in the classical dynamics of dissipative systems, which illustrated the
physical need for his new concept (see [95]).

Subsequently, in 1978, Santilli introduced in [97] and [98] the gen-
eralization of Lie admissible algebras by means of the product (a, b) =
a×R×b−b×S×a, where a×R,R×b, etc., are associative,R,S,R+S

being arbitrary, non-singular operators able to admit the scalars λ and
µ as particular cases. He then discovered that the associated commu-
tative algebra U− was not a conventional Lie algebra with the commu-
tator product a× b− b×a, but that it was characterized by the product
[a, b]U = (a, b) − (b, a) = a × T × b − b × T × a, where T = R + S. He
called this product Lie isotopic. All this led to the third definition of
Lie admissibility, today called Albert-Santilli Lie admissibility, which
refers to the non-associative algebras U admitting Lie-Santilli isoalge-
bras both in the associated commutator algebra U− as in algebras that
are in its classification. In these same works, Santilli identified a clas-
sical representation and an operator of the general Lie admissible al-
gebras, establishing the foundations of an admissible generalization of
Lie in analytical mechanics and quantum mechanics, as well as in their



168 CHAPTER 2. HISTORICAL EVOLUTION

corresponding applications. The particular isotopic case that appears
when one considers R = S = T = T † 6= 0 deserves special attention.

This notion of Lie admissibility of Albert-Santilli can be considered
as the birth of Lie-Santilli isotheory, and can be found in section 3
(particularly in subsection 3.7) of [98] and in section 4 (particularly
in the section 4.14) of [97]. In fact, Santilli recognized that the paren-
theses (a, b)U associated with the non-associative algebra U of product
(a, b) = a×R× b− b× S × a, can be identically rewritten as the com-
mutator product associated with the associative algebra Â, of product
a × R × b, [a, b]U = [a, b]Â. This last identity indicated the transition
of the studies within the context of non-associative algebras, given by
Santilli until 1978, to the genuine study of the generalization of Lie
theory given by Santilli since 1978, which is based on the lifting of the
associative enveloping algebras, by lifting the conventional product
a× b to the isotopic product a×̂b = a× T × b.

2.2.4 Universal enveloping Lie algebra

A Lie algebra L being fixed, its associative universal enveloping alge-
bra is conventionally defined as a pair (U, T ), where U is an associative
algebra and T is a homomorphism ofL in the commutative algebraU−

associated with U , satisfying that if U ′ is another associative algebra
and T ′ is a homomorphism of L in U ′−, then there is a unique homo-
morphism γ of U− in U ′− such that T ′ ≡ γ ◦ T , the following diagram
being commutative:

L
T→ U−

↘T ′
# ↓γ

U ′−

In physics, the concept of universal enveloping algebra has played
a very important role. It is used, for example, in the calculation of the
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magnitude of angular momentum or, as an algebraic structure, to rep-
resent time evolution.

Santilli proved in 1978 (see [99]) that the enveloping algebra of the
time evolution of Hamiltonian mechanics is not associative, so it was
not then directly compatible with Lie theory. In fact, Santilli shows that
Poisson brackets on an algebra of differentiable operators, L,

(X,Y ) =

n∑
i=1

(
∂X

∂ri
· ∂Y
∂pi
− ∂Y

∂ri
· ∂X
∂pi

)
,

coincide with the commutator product associated with the enveloping
algebra of product

X · Y =

n∑
i=1

∂X

∂ri
· ∂Y
∂pi

,

which is not associative. That is, the vector space of elements Xi (and
associated polynomials) over the field R of real numbers, endowed
with the previous product, is an algebra, since it satisfies the distribu-
tive laws to the left and right, and the scalar law. In addition, it is not
associative, as in general (X ·Y )·Z 6= X ·(Y ·Z). Then, since associative
and non-associative algebras are different, without a known function
that connects them, Santilli argues that the non-associative character
of the enveloping algebra does not permit the formulation of Hamilto-
nian mechanics according to the product given by the Poisson bracket.
So he looks for a dual generalization of Lie theory according to the
isotopic generalization (still based on associative enveloping algebras
and formulated by means of the most general associative product pos-
sible) and the (genotopic) generalization by means of the theory of Lie
admissible algebras (based on enveloping Lie admissible algebras that
are developed by means of the most general non-associative product
X · Y possible, whose associated commutator product, X · Y − Y ·X ,
is Lie).
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2.2.5 Other issues not resolved by Lie theory

The generalizations that we just saw were also demanded by other the-
oretical developments. For example, when in simplectic and contact ge-

ometry one achieves a transformation of the structure, the basis of the
theory is still able to be used, although there is a loss in the formulation
of the Lie theory. Thus, notions, properties, and theorems for the con-
ventional structure are not necessarily applicable to the most general
established structure. We just noted when the first of the generaliza-
tions, then, takes priority. This seeks to recover the compatibility of the
formulation with the simplectic and contact geometry, i.e., it seeks to
attain algebraic notions, properties, and theorems that are directly ap-
plicable to the most general representations possible. This generaliza-
tion also has an associative nature, as it passes from the usual product
X ·Y to the more general associative product X ∗Y possible. So, when
we can pass from a certain non-associative structure to one that has a
general associative character, then we can apply the theory that Santilli
was looking for.

Another new problem that leads to the search for a generalization
of Lie-Santilli theory appears when he passes directly to study the the-
ory of algebras and Lie groups, with a view to its immediate appli-
cations in physics. This theory, in its usual formulation, is established
from a linear, local-differential, and canonical (Hamiltonian potential)

point of view. It is here where Santilli truly encounters the problem
of applying this theory in various physical situations. An example of
this is when one tries to pass from questions of external dynamics in

the vacuum to questions of internal dynamics in a physical medium. In
the former case, the particles move in empty space (which is homoge-
neous and isotropic), with interactions at a distance that can be con-
sidered as points (such as a spaceship in a stationary orbit around the
Earth), with its consequent local-differential and canonical-potential
equations of motion. In the second case, the particles have extension
and are deformable, moving in an anisotropic and inhomogeneous
physical medium with contact interactions and interactions at a dis-
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tance (like a spaceship entering the Earth’s atmosphere). Their consis-
tent equations of motion then include ordinary differential terms for
the trajectory of the center of mass and more surface or volume in-
tegral terms that represent the correction, due to the shape and size
of the bodies, of the previous characterization. Thus, such equations
of motion are of non-linear, non-integral, and non-canonical-potential
type.

The non-equivalence between these two types of problems there-
fore lies essentially in the: (a) topological matter, given that conven-
tional topologies are not applicable to non-local conditions, (b) analytic
matter, given the loss of the Lagrangian of the first order, going from
a variationally self-adjoint system to another that is non-self-adjoint,
and (c) geometric matter, given the inability of conventional geome-
tries to characterize, for example, local changes in the speed of light.
These differences were already noticed by K. Schwarzschild in 1916, in
his two works [168] and [169].

From a geometrical point of view, gravitational collapse and other
interior gravitational problems cannot be considered as if they were
caused by specific point bodies, but the presence of a large num-
ber of hyper-dense particles is necessary (such as protons, neutrons,
and other particles) in conditions of mutual total mixture, as well as
the compression of a large number of them into a small region of
space. This implies the need for a new structure that is arbitrarily
non-linear (in coordinates and velocities), non local-integral (in vari-
ous quantities), and non-Hamiltonian (variationally non-self-adjoint).
Therefore, Lie theory is not applicable or valid in general for internal
dynamic problems. And although these problems sometimes tend to
simplify when treating them as exterior dynamical problems, it should
be noted that this is mathematically impossible; while the former are
local-differential and variationally self-adjoint, the latter are non-local-
differential and variationally non-self-adjoint.

This possible new generalized structure would also solve other
problems of great importance in fields as diverse as astrophysics, su-
perconductivity, theoretical biology, etc. So, a generalization of conven-
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tional Lie theory is sought, one which would also be directly applica-
ble to non-linear, non-integro-differential, and variationally non-self-
adjoint equations that characterize matter; i.e., one not based on ap-
proximations or transformations of the original theory. Also, a further
extension of this generalization using a consistent anti-automorphic
characterization above the classical-astrophysical level and the level
of the elementary constituents of matter would address the formula-
tion of the Lie theory, as well as the geometries and the underlying
mechanics, for the characterization of antimatter.

A final point to note is that the theory of Lie depends mainly on the
basic n-dimensional unit I = diag(1, 1, ..., 1), in all its aspects, such
as the enveloping algebras, Lie algebras, Lie groups, representation
theory, etc. Therefore, the generalization sought should begin with a
generalization of the aforementioned basic unit.

2.2.6 Origin of Lie-Santilli theory

To try to solve the problems that have just been indicated, Santilli pre-
sented in 1978, at Harvard University, a report (see [98]) in which he
first proposed a step-by-step generalization of the conventional formu-
lation of Lie theory, designed specifically for non-linear, non-integro-
differential, and non-canonical systems, giving rise to the so-called
Lie-Santilli isotheory. The main feature of this theory, which differen-
tiates it from other generalizations of Lie theory, was its isotopic char-
acter, in the sense of that at all times it preserves the original axioms of
the theory of Lie, through a series of isotopic liftings, known today as
Santilli isotopies. More specifically, the Santilli isotopies are today as-
sociated with functions that take any linear, local, and canonical struc-
ture into its non-linear, non-local, and non-canonical broader possible
forms, which are able to reconstruct linearity, locality, and canonicity
in certain generalized spaces within the coordinates fixed by an inertial
observer.
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In fact, this theory was nothing more than a special case of the more
general theory, today known as Lie-Santilli admissible theory or Lie-

Santilli genotopic theory, where the term genotopic (of Greek origin,
meaning that which induces a configuration) was introduced to denote
the characterization of the covering axioms in the Lie admissible the-
ory. In the genotopic theory, Santilli studied non-associative algebras
that contained Jordan algebras or Lie algebras, thus continuing the
studies that he began in 1967 regarding the new notion of the afore-
mentioned Lie admissible algebras.

Passing from the study of non-associative algebras to associative
ones, on which Santilli founded his generalization of Lie theory, he
based it on the lifting of the associative enveloping algebras and gen-
eralizing the productX×Y to the isotopic productX×̂Y = X×T ×Y ,
where T would have inverse element Î = T−I (I being unit of the con-
ventional theory), which would be called the isounit. This is where the
Santilli isotopy differed from others existing in the scientific literature,
that is, in being based on the (axioms-preserving) generalization of the
conventional unit I .

In this way, the Lie-Santilli isotheory was initially conceived as the
image of the conventional theory under the isotopic lifting of the usual
trivial unit I , to a new arbitrary unit Î , under the condition that the
isounit retain the original topological properties of I , to achieve the
conservation of the axioms of primitive theory. It would thus be the
basis for a further generalization of the usual concepts of conventional
Lie theory, such as universal enveloping algebras, the three fundamen-
tal theorems of Lie, the usual notion of Lie group, etc., in ways compat-
ible with a generalized unit Î , which would cease being linear, local,
and canonical (as is the usual unit of primitive Lie theory) to being
non-local, non-linear, and non-canonical.

In fact, this generalization of the starting unit was also in the afore-
mentioned genotopic theory. The construction of the Santilli genotopies

(which were a generalization of the Santilli isotopies) were based on
the new unit Î not necessarily being symmetric (Î 6= Ît), a topologi-
cal property that trivially possesses the usual unit I ; thus two different
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quantities resulted, depending on whether one considered the general-
ized unit on the left (<Î) or on the right (Î>), in the following manner:

< Î = Î , Î> = Ît, <Î = (Î>)t.

Finally, the quoted text [98] also included the property of the Lie-
Santilli isoalgebras (isotopic lifting of Lie algebras) to unify the com-
pact and non-compact simple Lie algebras of the same dimension, us-
ing a conservation of the basis of all of them, varying from each other
only in the element T that characterizes each isotopic lifting.

2.2.7 Further development of the Lie-Santilli

isotheory

Since its inception in 1978, the Lie-Santilli isotheory has evolved in
many aspects, both in its foundations and its subsequent applications.
We will then see what some of its fundamental advances have been so
far from that year until today.

Once Santilli fixed the fundamental idea of his new generalization
of Lie theory, he must begin to conduct such a generalization in all as-
pects of conventional Lie theory. In fact, he must begin with the study
of the basic elements on which his theory was based. Thus, during
a presentation delivered at the Differential Geometric Methods in Math-
ematical Physics Congress that took place in 1980, in Clausthal (Ger-
many), Santilli first presented the new numbers that appear in devel-
oping the isotopic generalization of the product a × b to the isotopic
product a×̂b. He treated isotopic numbers, which he also called isonum-

bers, whose construction was based on the lifting a→ â = a ∗ Î , where
Î was the new isounit established in the isotopy in question. Santilli
also presented at that conference the isotopic lifting of the usual fields
K(a,+,×) called isofields.

In that same year, 1980, Santilli studied in collaboration with C. N.
Ktorides and H. C. Myung (see [62]) the non-associative Lie admissi-
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ble generalization of universal enveloping algebras, which he had be-
gun to study already in 1978 (see [98]). Santilli himself would already
apply this generalization in simplectic geometry, in 1982 (see [109]).

In 1981 Santilli studied in [106] the isotopic lifting of an associa-
tive algebra starting from the Santilli isotopy, characterized by the
productX ·Y =W ∗X ∗W ∗Y ∗W , whereW 2 =W 6= 0,W being fixed.

In these first years of the 1980s, Santilli also recognized that conven-
tional, isotopic, and Lie admissible formulations could be applicable to
matter but not antimatter, due to the aforementioned anti-automorphic
character of the latter. Santilli then reexamined his isotopies and dis-
covered in the works [114] and [115] (written in 1983, but not pub-
lished until 1985, due to editorial problems) that, once one abandons
the element unit I , accepting as a new unit element Î , this latter unit
permits a natural way of acquiring negative values. This is achieved
by means of the function Î > 0 → Îd = −Î < 0, which was an anti-
automorphism he defined in [111], which he called an isodual function,
in the sense of being a dual form that necessarily requires the isotopic
generalization of the unit I . This function gave an anti-automorphic
image to any function based on Î , verifying that:(

Îd
)d

= −
(
Îd
)
= −

(
−Î
)
= Î .

Thus given, the isodual Lie-Santilli isotheory began, with which new
ways to solve problems related to antimatter seemed to be opened.
Thus new notions of space-time and internal symmetries to solve prob-
lems related to matter and its isodual, antimatter, would later ap-
pear. Among them, for example, the isorotational symmetries (which
emerged as the earliest examples that illustrated the Lie-Santilli isothe-
ory and that would be already studied in detail in 1993 [127] and 1994
[134], respectively). These isosymmetries have attained very impor-
tant implications, such as the first numerical representations of the
magnetic moment of the deuteron and the synthesis of the neutron
within new stars from protons and electrons only; the prediction of
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a new clean nuclear energy called Hadronic energy; the definition of
isodual ellipsoids with negative semiaxes; etc.

However, Santilli refrained from indicating in his works of 1983 the
applicability of the isodual theory in the characterization of antimat-
ter, given its profound implications in various fields, such as the pos-
sibility of stepping back in time or the prediction of the antigravity
of antiparticles. However, the emergence of the isodual isotheory en-
tailed a parallel to the isotheory study which appeared in 1978, which
on the other hand was strengthened. In fact, in [111], where the iso-
dual application appeared, Santilli also introduced the isotopic lifting
of vector and metric spaces, giving rise to the so-called vector isospaces

and metric isospaces.
As for the isodual isotheory, Santilli started defining the isotopic

isodual product or isodual isoproduct equal to what he already did
for the isotheory with the isoproduct ×̂. Thus, he defined the lifting
a× b→ a×̂db = a× T d × b = a× (−T )× b = −(a× T × b) = −(a×̂b),
where the element T was what determined a preset isotopy of isounit
Î = T−I , where I would be the conventional starting unit.

He defined the concept of an isodual number by lifting a→ ad = −a,
in addition to the concept of an isodual isonumber, using the isodual
isoproduct, ×̂d, beginning with lifting a → âd = a ∗ Îd = a ∗ (−Î) =

−(a ∗ Î) = −â, where a denotes the conjugate element a in the field
K to which it belongs. Thereby Santilli obtained in particular that if
one takes in the real numbers (of conventional unit I = 1) an isotopy
starting from the isounit Î = I = 1, then the corresponding isodual
isotopic lifting was achieved be taking Îd = −I = −1. In this way, the
actual numbers corresponding to the isounit Îd are obtained by lifting
a → ad = −a (coinciding with the isoreal isodual isonumbers, corre-
sponding to the same isounit as a = a, ∀a ∈ R). Thus, the negative isod-

ual numbers referred to the negative unit−1 are obtained, which made
them different from negative numbers referred to positive unit +1, in
the sense that given a real negative number −a, we will have that, re-
ferred to the isodual isounit, Îd = −1 is completely analogous to its
corresponding opposite positive real number, a, referred to the con-
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ventional positive unit I = +1. In this way, the change in sign under
isoduality would occur only in the projection of the isodual numbers
on the original usual field. With all of this, isodual numbers would
later reach an important application in the study of anti-particles in
physics, from research in the Dirac equations, which gave negative en-
ergy solutions.

The next step is the study of the isotopic isodual liftings of fields
K(a,+,×), giving rise to isodual isofields with isounit Îd = −Î . Later,
the isotopic isodual liftings of the rest of the mathematical structures
would appear at the same time that the corresponding isotopic liftings
of these were appearing. The latter gave rise to the formation of the
so-called mathematical isostructures, while the former gave rise to the
so-called isodual mathematical isostructures, the construction of which
was sought at all times to achieve the anti-automorphic character with
respect to the corresponding mathematical isostructures.

In 1988, in [116] and [117], Santilli presents a solution to the ques-
tion of the relationship between the dynamic interior and exterior
problems, through isogeometries built from the different degrees of
freedom granted to the conventional unit with which he is working,
beginning from an isotopy of the usual product. The problem for solv-
ing these issues was that the different constructed geometries encoun-
tered until then did not arise from a general, non-linear, and non-local-
differential point of view over anisotropic and non-homogeneous sys-
tems. Santilli propounds his theory as encompassing the former gen-
eral point of view. He would later develop it in [127] and [134], until
1996 when he applies the concept of isodifferential calculus to the con-
struction of the isogeometries, thus allowing a greater transparency of
the abstract unit of the latter, allowing at the same time a unified treat-
ment of interior and exterior dynamic problems.

Also in 1988 Santilli established in [118] the irreducibility of the
internal dynamic problems to external dynamic problems, through
the so-called no-reduction theorems, which forbade the reduction of
a macroscopic system with a monotonically decreasing angular mo-
mentum to a finite collection of elementary particles, each with a con-
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stant angular momentum. Subsequently, in 1994, Santilli would treat
these problems in the monograph [134]. As a result of these findings
and in view of the progress achieved, Santilli received some awards
in 1989. These include the nomination by the Academy of Sciences of
Estonia, as one of the best applied mathematicians of all times, thus
joining prestigious mathematicians such as Gauss, Hamilton, Cayley,
Lie, Frobenius, Poincaré, Cartan, and Riemann, among others. Santilli
was also the only member of Italian origin in this list.

Two years later, Santilli managed in 1991 to solve the problems that
had already been raised in 1983, on the implementation of his isodual
isotheory for the characterization of antimatter. This was done in the
monographs [122] and [123]. The equivalence between isoduality and
charge conjugation would be tested in 1994 (see [135]), while impor-
tant implications due to the isoduality would also be developed in the
same year (see [132] and [136]), in which he also published his first
monograph on isoduality (see [134]).

In 1992 J. V. Kadeisvili classified in [46] the isotopic lifting into five
classes, depending on the type of isounit used. He also studies for the
first time the notion of isocontinuity, proving that this concept can re-
duce to conventional continuity, given that the isomodules |̂f̂(X̂ )̂| of a
function f̂ on a fixed isospace would be given by the usual modulus
multiplied by the isounit Î , which is well-behaved: |̂f̂(X̂ )̂| = |f̂(X̂)|×Î .
Kadeisvili follows with an isotopic development of functional analy-
sis, under the name of functional isoanalysis.

In 1993 Santilli develops in detail in [129] a study on the isotopy and
its isodualities of Poincaré symmetry (which had already been studied
in 1983 (see [110])). He is also treats the isospinor covering.

On the other hand, he develops a study on the isotopic lifting of
number theory (see [128]). In it he recalls the construction of the ison-
umbers and their isoduals. He also treats the construction of pseu-
doisostructures through pseudoisotopies (which are based on the lift-
ing of the operation + to +̂, which was already treated by Santilli
in 1989 (see [120])). These pseudoisotopies are liftings that retain all
the axioms of the departing structure except for those relating to dis-
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tributivity, so it cannot be considered an authentic isotopy (and hence
the name Santilli adopted). He develops this study for real and com-
plex numbers and the quaternions and octonions. Santilli performs his
representation of the isotopic lifting of the latter (isoquaternions and
isooctonions, respectively) for the first time in terms of the isotopies
and isodualities of the Pauli matrices. He also studies the emergence
of new numbers of dimensions 3, 5, 6, and 7 for developing the classi-
fication of the isonormalized isoalgebras, and he indicates the general-
ization of the theory of numbers by using the genotopic lifting.

Finally, Santilli developed in that year, 1993, a monograph [127] on
the isotopic liftings of vector and metric spaces. He treats isoeuclidean

spaces, the isoeuclidean metric, and isoeuclidean and isominkowskian ge-

ometry. He also shows that the first of these isogeometries depends on
the class to which the isotopy pertains, under which the starting geom-
etry is lifted. Class I isoeuclidean geometry allows one to treat all the
conventional geometry of the same dimension and signature, in ad-
dition to all its possible isotopies. Those of Class III allow the unified
treatment of all previous geometries, regardless of their signature.

Also, Santilli defined the concept of geometric propulsion, by which
a point particle of mass moves from one point to another without the
application of force, but through the alteration of the underlying ge-
ometry. He achieved this by altering the units of space with which he
works, to show that any such space leaves the product (length)×(unit)
invariant. In this way, through a proper isotopy (i.e., by a suitable
change of unit), one can mathematically transform very large distances
into very small distances and vice versa.

Another subject matter of his study during that year consists of de-
veloping, as Kadeisvili already had, the notions of isotopies of con-
tinuity, limits, series, etc. Santilli would prove that series which are
conventionally divergent can be transformed by means of an isotopy
into convergent series. This property has important applications in the
reconstruction of perturbed convergent series for strong interactions,
which are conventionally divergent.
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In that same year, 1993, the Greek mathematicians D. Sourlas and G.
Tsagas wrote the first mathematical book on isotheory (see [175]). In
it these authors address the different existing mathematical isostruc-
tures and their immediate applications in physics. They also define
and develop the isostructure of isomanifolds, the isotopic generaliza-
tion of differentiable manifolds of differential geometry, which would
be identified for the first time in 1995, in [176]. Finally, they introduced
for the first time the concept of a topological isospace starting from an
isotopology. G. Tsagas would carry out a study in 1994 (see [173]) of
isoaffine connections and isoriemannian metrics over an isomanifold.

In 1994, Santilli develops a new representation of antimatter (see
[134]) starting at the classical level and reaching the operator level,
based on the isoduality function. He obtains that this representation
is equivalent to the conjugate of the charges. In particular, all charac-
teristics which are conventionally positive for matter come to be de-
fined negative for antimatter, including energy, time, curvature, etc.
However, as he had shown in [128], he had to take into account that
the positive characteristics referred to a positive unit are equivalent to
the negative characteristics referred to a negative unit. This elemental
property would have important implications, such as the prediction of
antigravity for elementary antiparticles.

Also in [134], Santilli develops his study of the theory of isorep-

resentation, which maintains the non-linear, non-local, and non-
canonical representations of Lie groups. He also detailed the inequiv-
alence existing between the interior and exterior dynamical problems.

In that same year of 1994, Santilli carried out a study (see [133])
on experimental verifications of the isotopies in nuclear physics, at the
same time as he carried out a development of the isotopies of the Dirac

equations, previously introduced by M. Nishioka in [83]. Santilli also
studied that year (see [154]) the deforming Q-operators of the isospinor

symmetry ŜUQ(2), an isotopic lifting spinor symmetry SU(2), test-
ing the isomorphism ŜUQ(2) ≈ SU(2) and building and classifying
the isorepresentations of ŜUQ(2). This work would be not yet pub-
lished until 1998, although the conventional q-deformations of the as-
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sociative algebras had already been studied previously, in 1993 (see
[70]). Basically, the conventional q-deformations of associative alge-
bras,AB → qAB, were reformulated in isotopic terms as qAB = A×̂B,
considering the isounit for Î = q−1, which allowed its generalization
and axiomatization into the most general integro-differential operator
T possible (which is therefore sometimes denoted by Q).

In 1995, Santilli develops together with A. O. E. Animalu a study
of the experimental verification of the isotopy in superconductivity,
based on models due to non-linear, non-local, and non-Hamiltonian
interactions, showing its ability to represent and to predict such mod-
els (see [4]).

In 1996, Tsagas carried out a study on the classification of the Lie-
Santilli algebras (see [174]). This paper examines the fundamental con-
cepts of the Lie algebras and explores the relationship between a Lie al-
gebra and a type of isoalgebra called the Lie-Santilli isoalgebra, which
consists of the isotopic generalization of a Lie algebra.

In that same year, Santilli introduces for the first time the concept of
a hyperstructure beginning with a unit of multiple values (see [143]).
The concept of a hyperstructure in general had already been intro-
duced by T. Vougiouklis in 1994 (see [179]). In that year of 1996, Santilli
studied, in collaboration with Vougiouklis himself, the hyperstructures

with units of singular values. This new concept of a hyperstructure with
a unit of multiple values came to be a generalization of the genotopic
structure (arising from a genotopy), which happened to be a special
case.

In hyperstructures the new units on the left and on the right are
given by a finite, ordered set as follows: {< Î} = {< Î1, < Î2, < Î3, ...},
{Î >} = {Î1 >, Î2 >, Î3 >, ...}, {< Î} = {Î >}t, where the last operation
refers to each element of the ordered sets.

In [145] Santilli examines the isotopic, axiom-preserving general-
ization of ordinary differential calculus, called isodifferential calculus,
which he already posed previously, implicitly in his works [127] and
[134] in 1993 and 1994, respectively. In fact, he gave the official pre-
sentation on it in December 1994 at the International Congress Work-
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shop on Differential Geometry and Lie algebras, held in the Department of
mathematics of the University of Aristotle in Thessaloniki (Greece).

This isodifferential calculus is based on the generalization of the ba-
sic unit with compatible generalizations of differential varieties, vector
spaces, and fields. With this new type of calculation, applied to the iso-
topic lifting of the Newton equations, Santilli opens up new possibili-
ties such as the representation of non-spherical and deformable parti-
cles, the admission of non-local-integral forces, and the ability to trans-
form non-Hamiltonian Newtonian systems in the given space into sys-
tems that are Hamiltonian in the corresponding isospaces.

Also with isodifferential calculus Santilli proves that analytical and
quantum mechanics can be isotopically lifted, and he constructs new
isotopies of simplectic and Riemannian geometries, being non-linear
(in coordinates and velocities), integro-differential, and not the first or-
der of Lagrange. In this way, these new geometries are useful for inter-
nal dynamic problems such as the geometrization of a locally varying
speed of light. Santilli also presents the existence of the corresponding
generalizations by genotopic and hyperstructural methods, as well as
their analogous isoduals.

In [145] Santilli also developed for first time the isotopies of the
Newtonian equations (calling them Newtonian isoequations) and the
rest of the fundamental equations of classical mechanics. In fact, he
studied the isotopies and anti-automorphic images under isoduality
of all the basic equations of Newtonian, quantum, and analytical me-
chanics. These new equations allow the representation of antimatter
at the Newtonian level for the first time in an anti-automorphic sense.
With all of this he develops isohamiltonian and isolangragian mechan-
ics. In fact, he also develops them from genotopic and hyperstructural
methods.

Finally, he treats the concept of isogeometries starting from the isod-
ifferential calculus. Thus he reformulated the isosimplectic geometry
(achieving direct universality for interior systems, i.e., the representa-
tion of all the interior systems, directly in the inertial frame fixed by the
observer). This isosimplectic geometry emerges as the underlying iso-
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geometry in isohamiltonian mechanics and Lie-Santilli isotheory. He
also develops the isoriemannian geometry, achieving applications in
the study of the local variation of the speed of light, gravitational the-
ory, geodesic theory, etc. It also results that the isoriemannian geom-
etry is a particular case with zero curvature of Riemannian geometry.
He finally mentions isodual isogeometries, genogeometries (genotopic
lifting of the geometries), and the hypergeometries (hyperstructural lift-
ing of the geometries).

In 1997 a work by Santilli appeared [152] which shows that all
non-uniform deformations (including the q-, k-, quantum, Lie iso-
topic, Lie admissible, and other deformations), although mathemati-
cally correct, have a series of problematic aspects of a physical charac-
ter when formulated on given conventional spaces over conventional
fields. These problems include the loss of the invariability of the ba-
sic units of spacetime, a loss of invariant numerical predictions, a loss
of the observed Hermiticity in time, etc. In this way he also shows
that the contemporary formulation of gravity is subject to similar prob-
lems, since Riemannian spaces are in fact non-canonical deformations
of Minkowskian spaces, thus having non-invariant spacetime units.
Santilli then constructed—based on the isotopies, genotopies, hyper-
structures, and their isoduals—a non-unitary one known as relativis-

tic hadronic mechanics, which saves the axiomatic inconsistencies of
relativistic quantum mechanics, retains the abstract axioms of special
relativity, and is a complement to the conventional mechanics apropos
the argument of Einstein-Podolski-Rosen. This theory is mainly given
by the following non-unitary transformations:

I → Î = UIU† A→ A′ = UAU†

B → B′ = UBU† AB → UABU† = A′T̂B′

where:
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UU† = Î 6= I T̂ = (UU†)−I

Î = T̂−I Î = Î†

T̂ = T̂ † U(AB −BA)U† = A′T̂B′ −B′T̂A′

With this new theory, Santilli opens new possibilities for study, due
even today to develop many related aspects, in the sense that all con-
cepts relating to isotopies, genotopies, and hyperstructures should be
generalized into a non-unitary form. Santilli himself has continued in-
vestigating this topic, developing these physical inconsistencies into
different quantum deformations (see [156] and [150]), as in other gen-
eralizing theories (as in [160]). On the other hand, these inconsisten-
cies have come to be of such importance to the isotheory that Santilli
himself has denoted them as catastrophic inconsistencies of the Lie-
Santilli isotheory.

Let us note to complete this historical introduction of the Lie-Santilli
theory that in recent years Santilli has directed his research to further
develop the various implications that this isotheory has in fields as
varied as: the use of isominkowskian geometry for the gravitational
treatment of matter and antimatter (see [149], [151], [153] and [154]),
together with an experimental verification in particle physics (see [5]),
an application of hadronic mechanics in the prediction and experi-
mental verification of new chemical species, called magnecules (distin-
guishing them from conventional molecules), which permitted the in-
dustrial application of his theory for new hadronic reactors, recycling
liquid waste to produce a combustible, clean, and inexpensive gas (see
[157]), an application of the isodual theory antimatter in the prediction
of antigravity (see [159]), and many other applications in other fields
that tested the strength of this theory and its definitive implementation
in modern science.



Chapter 3

LIE-SANTILLI ISOTHEORY:
ISOTOPIC STRUCTURES (I)

In this chapter and in the following, we will carry out the study of
the Lie-Santilli isotheory. It is convenient to indicate that most of the
concepts and properties that appear in them have been introduced
by Santilli himself and by some other authors who studied his work.
Our personal contribution to this text focuses on incorporating a large
number of examples to systematize all the knowledge related to the
same isostructure (with the need to unify the notation, having obtained
this knowledge from several authors on some occasions) and to pro-
vide new demonstrations of some of them, which, in our opinion, con-
tribute to shortening and improving—from the modern mathemati-
cal point of view, above all—what existed previously. In some cases
these demonstrations did not even exist, and the facts were given by
assumptions.

Then we begin this study with the definition of the concept of iso-
topy. As this new concept has a meaning too general for what is in-
tended, however, we restrict ourselves to the case of the Santilli isotopy,
which will be a basic tool for the development of this generalization
of the theory of Lie, known as isotheory or Lie-Santilli theory. Later, af-
ter introducing a few preliminary notions, we will achieve an isotopic
lifting of the basic mathematical structures, thus forming new isotopic
structures or isostructures.

185
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3.1 Isotopies

Definition 3.1.1 Given any mathematical structure, an isotopy or iso-
topic lifting of the same is defined as any lifting of it which could result in
a new mathematical structure, such that the same basic axioms which char-
acterize the primitive structure are satisfied. This new structure will be given
the name of isotopic structure or isostructure.

Note that this notion of isotopy encompasses a wide range of pos-
sible liftings. So, for example, we would have first the basic isotopy
of identity, which gives as resulting structure the starting structure.
So, if we have, for example, a field K(a,+,×) of elements {a, b, c, . . .}
and operators of the usual sum and product, + and ×, the same field
K(a,+,×) would be an isotopy of it, as trivially a mathematical struc-
ture that verifies the axioms which characterize the first structure is
obtained. In this way, the isotopic theory becomes a covering of the
usual theory, in the sense of being made of structurally more general
foundations that admit the conventional formulation as a trivial spe-
cial case.

The previous case is the simplest possible. We are interested in
studying other cases and seeing how we can obtain them. We will do
it, in the first place, from a theoretical point of view, and later we will
see examples of it.

We observe first that in any mathematical structure (be it a group,
field, vector space, etc.) there appear two mathematical objects that
constitute it: the elements which form it and the operations or laws which
relate these elements. Therefore, since any isotopy is a lifting of a math-
ematical structure, we will be able to form a classification of these ac-
cording to the object in question which is raised. Thus, we have three
types of non-trivial isotopies:

1. Isotopies of TYPE I. Only the elements of the mathematical struc-
ture are lifted.

2. Isotopies of TYPE II. Only the operations associated with the
mathematical structure are lifted, leaving its set of elements invari-
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ant (although each element itself can become another in the said
set).

3. Isotopies of TYPE III. Both the elements and laws associated with
the mathematical structure are lifted.

In all three cases one needs to take into account that to really have
an isotopy it is necessary that the axioms that determine the primi-
tive structure be preserved. This ensures that the type of structure is
the same, i.e., the isotopic lifting of a field is a field, a ring is a ring,
a group is a group, etc. Now, in these conditions there are naturally
some questions, such as: What progresses the implementation of an
isotopy? or What advantages does a new mathematical structure of the
same type that we already had attain through an isotopy? To answer
these and other similar questions, it must be observed that although an
isotopy preserves the type of mathematical structure, it generally need
not preserve the concepts, properties, and theorems that the conven-
tional structure developed. In this way, a isotopy becomes a general-
ization of the concepts of homomorphisms and homeomorphisms, in
the sense that we no longer need to restrict ourselves to the conditions
that they had to satisfy these, but we can use the most general possible
liftings.

We still have to resolve the question of how to obtain isotopies. As
seen, each isotopy will depend on the type of initial structure that we
have. Thus, in principle we cannot give a basic model that serves for
any given structure. Therefore, each isotopy must be “built” for each
specific case. This is also due to the definition of isotopy, since hav-
ing to keep axioms no longer serves for any lifting known of the given
structure. It is here where the problem of the construction of isotopies
lies; therefore, if we set the initial structure and know a lifting of it, we
have to check if it verifies all the axioms of the base structure. If not,
we will have to modify the lifting for axiomatic preservation. This last
procedure might be very costly because you have to do it according to
each of the axioms, carefully, so as not to alter any of them. With all of
this, once we have lifted the elements and laws associated with them,
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so that they will satisfy the axioms of this structure, we will have man-
aged to construct an isotopy. It also follows that an isotopy of a math-
ematical structure is not unique, since every “construction” is subject
to modifications that allow the obtaining of new, useful liftings.

However, the above ideas are still very general. When we impose
conditions on the isotopies, the true utility of these isotopies appears.
Santilli, in 1978 (see [98]), obtained one of the possible constraints that
can be made; when attending to physical problems and looking for a
generalization of Lie theory, he began to use a type of isotopy, later
called the Santilli isotopy, which satisfied the following:

Definition 3.1.2 The isotopies of a linear, local, and canonical structure
are called Santilli isotopies which will result in an isostructure in the most
general possible non-linear, non-local, and non-canonical forms and that are
able to reconstruct linearity, locality, and canonicity in certain generalized
spaces within the coordinates set by an inertial observer.

In that same work of 1978, Santilli gives a possible model for this
type of isotopy. This is in addition to a model that, with appropriate
modifications, will be valid for different types of mathematical struc-
tures. Fundamentally, these isotopies are based on a generalization of
the conventional unit and its usual properties. This generalization of
the unit, which Santilli will give the name of isounit, will be key to the
lifting of the elements of the conventional structure and in the lifting of
the associated laws. Obtaining such isounit is given in the following:

Definition 3.1.3 Let E be any linear, local, and canonical mathematical
structure defined over a set of elements C. Let V ⊇ C be a set equipped with
an operator ∗, with unit element I . The set V will be called the general set
of the isotopy. Let Î ∈ V be such that its inverse T = Î−I with respect to
the operation ∗ exists (where the superscript indicates the unit under which
the inverse is calculated, i.e., such that Î ∗ T = T ∗ Î = I). Î will then be
called the isotopic unit or isounit, and it will be the basic unit of the lifting
following from the structure E. The element T is called isotopic element.
Finally, the pair of elements Î and ∗ constitute the elements of the isotopy.
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In practice, given that the essential element of a Santilli isotopy is
the isounit Î , it is not usually indicated what the set V of the defini-
tion is, but rather, to establish the isotopy, it suffices to indicate the
operation ∗ and isounit Î (or isotopic element T ). We also see that the
operator ∗ need not appear in the structure E.

In the most general case possible, Î can possess a non-linear and
non-local dependence on time t of the coordinates x and their deriva-
tives of arbitrary order ẋ, ẍ, . . ., i.e., Î = Î(t, x, ẋ, ẍ, . . .). It could also
occur that Î depends on other local variables such as temperature, den-
sity of the medium, etc. In any case, given that the fundamental char-
acteristic of any isotopy is the preservation of axioms and given that
we want to establish an isotopy by means of the isounit Î , we will have
to impose that Î satisfies the topological properties of the usual unit I .
Thus, assuming that I is n-dimensional, Î , apart from having the same
dimension n, should be like I , not unique at all points, invertible (in
the region where the local values are considered), and Hermitian (i.e.,
symmetric and real-valued).

Note finally that in the definition we can establish that Î be an
isounit both to the right and left, depending on how we multiply. Two
similar theories could be established as well. However, given that we
are interested in Î satisfying the topological properties of the usual
unit, we will admit that Î is an isounit to the left and right.

Before seeing how we get the isostructures from the isounit Î , we
observe that in the case of Santilli isotopies, we are not interested in
isotopies of type I seen above, since the non-linear, non-local, and non-
canonical character sought is given in the operations. Thus, if these do
not vary we will not, achieve this characteristic. However, given that
Santilli isotopies are based on the isounit Î , J. V. Kadeisvili, in 1992 (see
[46]), already carried out the following classification of these Santilli
isotopies:

1. SANTILLI ISOTOPIES of CLASS I. The isounits are sufficiently
differentiable, bounded, non-degenerate at all points, Hermitian,
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and positive-definite. They are the Santilli isotopies properly so-
called.

2. SANTILLI ISOTOPIES of CLASS II. They are similar to class I iso-
topies, except that Î will be negative-definite.

3. SANTILLI ISOTOPIES of CLASS III. The isotopies are the union
of the two previous classes.

4. SANTILLI ISOTOPIES of CLASS IV. The isotopies are the union
of those of class III with those that have singular isounits.

5. SANTILLI ISOTOPIES of CLASS V. The isotopies are the union of
those of class IV with those that have isounits without any restric-
tion, which may depend on discontinuous functions, distributions,
etc.

It is important to note that this classification not only serves for iso-
topies, but for all the structures generated by them, i.e., for the isostruc-
tures. In our study, we will develop those of class I and II, sometimes
joining to them those of class III.

Next, it remains to be seen how to construct the Santilli isotopy be-
ginning with the isounit Î . For this we must see, for each structure in
particular, how to perform a lifting, both of the set of elements of the
structure and of the associated laws. This particularization will be re-
flected also in the initial conditions that the isounit Î and the operation
∗ must obey, conditions that will vary according to the structure that
we are studying.

In general, if C is the set of elements of any fixed structure, E, the
lifting what is carried out is, for each element X ∈ C, to associate
X̂ = X ∗ Î , where ∗ would correspond to the set V seen previously.
We again note that this operation need not be a law of the structure E.
However, for reasons of simplification and when there is no room for
confusion, we will not write it, resulting in the notation X̂ = XÎ . The
set then obtained, ĈÎ = {X̂ = XÎ : X ∈ C}, will be called an isotopic
set associated with C by means of the isounit Î . Also, when there are
no problems of interpretation, it will be notated simply by Ĉ.
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Let us also underline that, by convention, symbols with a hat̂will
indicate that what is represented corresponds to the plane of the iso-
topic lifting carried out. So we will see, for example, that the majority
of the usual operations can be isotopically raised in one way or an-
other. To prevent complications in notation, the sign̂will differentiate
the operations of the starting structure from those of the isostructure.

However, it is important to note that this way of attaining the iso-
topic lifting of the set C, although correct, is not the most appropriate,
because it leads to a series of mathematical inconsistencies identified
by Santilli himself at the beginning of his studies (see [99]) and re-
cently (see [145] and [161]). However, to begin the study of the Santilli
isotheory, one should start handling this special lifting.

Finally, although we have yet to study how to perform the lifting as-
sociated with the structureE, this aspect should be seen for each struc-
ture in particular. For this reason, let us go see in the following sections
in this and in the following chapters, separately, the set of isotopic lift-
ings of the most important mathematical structures that will lead, re-
spectively, to the following isostructures: isogroups, isorings, isofields,
vector isospaces, isomodules, metric vector isospaces, and isoalgebras.
As will be seen, the names of all of the above isostructures are formed
by adding the prefix iso- to the names of the usual structures. With this
procedure (common in other fields of the isotheory), it is to be noted
that we have seen the new structures are the same type as the previous
ones, because they retain the axioms that define them.

Finally, we point out that the definitions of the isostructures serve
for any isotopy in general, although we will apply them directly to the
Santilli isotopy. Therefore, given that there is no room for confusion,
we will designate by isotopy simply these latter, always remembering
that they are a restriction of the set of general isotopies.
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3.2 Isonumbers

Before beginning to study the first of the isostructures, we will ded-
icate a section to the formation of the isotopic set Ĉ, noted above, in
the case of the structure of fields. This will help us to begin to famil-
iarize ourselves with the new concepts, because it is the simplest case
possible.
Suppose then that we have any field K = K(a,+,×) of elements
{a, b, c, . . .}, with the usual associative operations + and ×, with addi-
tive unit 0 and multiplicative unit 1. Given that conventionally we call
the elements of a field numbers, we call the elements of the isostructure
that we want to construct isonumbers. With the notation of the previous
section, we would have in this case: E = K, C = {a, b, c, ...}, and the
associated operations would be + and ×. A more comprehensive de-
velopment, as well as the historical genesis of isonumbers, can see in
[128].

The isounit Î , which may or may not belong to K (remember that
Î ∈ V , where V ⊇ K, although we said that in practice it need not
indicate said set) and an operation ∗ having been fixed, we know, by
the model seen above, that the isotopic set associated with C by means
of the isounit Î is: Ĉ = {â = a ∗ Î = aÎ | a ∈ C}. The isotopic set is
the set of the isonumbers which corresponds to the isotopic lifting by
Î and ∗ of the field K.

Let us see below two examples of isonumbers originating from real
numbers, i.e., we will work with the structure of R(+,×), with the
usual sum and product. In the first example, we will take Î ∈ R, while
in the second Î /∈ R.

Example 3.2.1 With the previous notations, suppose that

V = C = R, ∗ ≡ ×, Î = 2.

We will have in this case that the isotopic set associated with R by means of
Î and ∗ will be the set R̂2 = {â = a× 2 = 2a : a ∈ R}. So, it turns out that
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R̂2 = R, thus the isotopic lifting of the set of initial elements rising gives us
the same set. �

Example 3.2.2 Suppose now that

V = C, ∗ ≡ • (the product in C), Î = i.

We will then get as the isotopic set R̂i = {â = a • i = ai : a ∈ R}. We thus
arrive at R̂i = Im(C). �

We note that in the second example it was enough to designate the
isounit Î = i and indicate what the operation ∗ to obtain the isotopic
set is, since it has not been necessary at any time to know what the
whole V was.

In general, as the operation ∗ is internal, when we want the isotopy
we seek not to change the set of all elements of the starting structure,
we assume that V = C. Otherwise, we will take V ⊃ C. That is why,
when we designate an isotopy just by an isounit Î ∈ C and operation
∗, we assume that V = C. If Î /∈ C, then V ⊃ C.

We see finally that, for the construction of the isotopic set, we made
no distinction regarding the characteristic of the field with which we
worked. Let us note also, as already noted previously, that to be able
make an isotopy, apart from the conditions imposed on the isounit Î ,
the isounit can also depend on time, the coordinates and their deriva-
tives, etc. This is important from the physical and analytical point of
view. However, to fix ideas, we will first start by assuming that Î is a
constant element.

3.3 Isogroups

We will start by giving the definition of an isogroup (it can be seen
more comprehensively in [98]) then indicating the method of con-
structing an isogroup from an isounit and fixed operation ∗. After fi-
nally showing some examples, the possibility arises of an isotopic lift-
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ing of some substructures related to groups and of functions that exist
between isogroups.

Definition 3.3.1 Let (G, ◦) be a group, ◦ being an internal associative
operator with unit element e. An isogroup Ĝ is an isotopy of G endowed
with a new internal operator ◦̂ such that the pair (Ĝ, ◦̂) satisfies the properties
of a group, i.e., that ∀α̂, β̂, γ̂ ∈ Ĝ, the following are satisfied:

1. Associativity: (α̂◦̂β̂)◦̂γ̂ = α̂◦̂(β̂◦̂γ̂).
2. Unit element (isounit): ∃Î ∈ Ĝ such that α̂◦̂Î = Î ◦̂α̂ = α̂.
3. Inverse element (isoinverse): Given α̂ ∈ Ĝ, there exists α̂−Î ∈ Ĝ such

that α̂◦̂α̂−Î = α̂−Î ◦̂α̂ = Î .

If, in addition, α̂◦̂β̂ = β̂◦̂α̂ for all α̂, β̂ ∈ Ĝ, then Ĝ is called an isoabelian
isogroup or isocommutative isogroup.

Let us first observe that this notion of isogroup, so defined, is gen-
eral; the unit element associated with ◦̂, which is called the isounit,
does not always correspond with the isounit which we made reference
to in the construction of a Santilli isotopy. However, when we carry
out such a construction, we seek to make it so that these two elements
coincide. We note that writing Î and not ê is not coincidental. This is
due that, if we follow the notations used so far, ê is the isotopic lift-
ing of the element e, but in general ê need not be a unit element of
the operation ◦̂. This is one of the fundamental reasons why concepts,
properties, and theorems developed by the starting structure are not
necessarily applicable to the new, more general structure.

Let us look at this last fact in the case of the construction of a Santilli
isotopy from a fixed isounit and operator ∗.

To do so, once we have the starting group (G, ◦), we consider the
isounit Î (not necessarily belonging to G) and define the operation ∗
with which we want to work. We already know the way to construct
the isotopic set associated with G by means of the isounit Î and opera-
tion ∗, as it has already been said that the method of construction seen
in the previous sections applies to any structure. Ĝ = {α̂ = α∗ Î = αÎ |
α ∈ G} then results.
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We will see next, for the first time in this text, how to lift operations
associated with the starting structure (in our case we only need to lift
the operator ◦). Depending on the case in which the isounit Î in ques-
tion is (that is, Î ∈ G or Î /∈ G), we can make use of as many operator
liftings as we can construct. However, we will start with a lifting that
will always work and will be fundamental in the theory, not only of
isogroups, but of the whole of isostructures in general.

This lifting is, in our particular case, in defining α̂◦̂β̂ = α̂ ∗ T ∗ β̂,
∀α̂, β̂ ∈ Ĝ, where T = Î−I is the given isotopic element in Defini-
tion 3.1.3. Taking into account then the definition of the isotopic set,
it turns out that α̂ = α ∗ Î and β̂ = β ∗ Î and therefore α̂◦̂β̂ =

(α ∗ Î) ∗ T ∗ (β ∗ Î).
Observing this last expression we realize the importance that the

condition of associativity would impose on the operation ∗, a condition
which is not required for the formation of Santilli isotopies in general.
However, when the operation that we want to lift by this procedure
has the property of associativity (as in the case which concerns us),
yes, we will have to impose that ∗ be associative, as we will see later.
Therefore, we assume now that ∗ is an associative law.

Then, assuming the condition of associativity of ∗, we finally get
that

α̂◦̂β̂ = α̂ ∗T ∗ β̂ = (α ∗ Î) ∗T ∗ (β ∗ Î) = α ∗ (Î ∗T ) ∗β ∗ Î = α ∗ I ∗β ∗ Î ,

where I is the unit element associated with ∗. Hence, α̂◦̂β̂ = (α ∗β)∗ Î .
The product resulting from this construction is called the isoproduct.

We already said that this model of constructing the isotopic lifting of
the operation ◦ associated with the groupG is not proper to isogroups,
and indeed we will continue to use it in the construction of the rest of
the isostructures. This is because the use of the isoproduct allows, after
appropriate restrictions on the isounit Î and the operation ∗, the correct
lifting of the structure of the corresponding starting isostructure. In the
case of isogroups, the condition that we are going to impose is that,
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with the usual notations, (G, ∗) be a group with unit element I ∈ G

(where I is the unit element with respect to ∗ in the general set V ).
We can demonstrate, then, that (Ĝ, ◦̂), as defined, is an isogroup,

seeing that ◦̂ is an internal operation and that it also verifies the three
conditions of Definition 3.3.1.

In fact, ∀α̂, β̂, γ̂ ∈ Ĝ, we see that

1. ◦̂ is an internal operation for Ĝ, since α̂◦̂β̂ = (α ∗β)∗ Î ∈ Ĝ, with α ∗
β ∈ G, ∗ being an internal operation on G by hypothesis (remember
that (G, ∗) is a group).

2. (α̂◦̂β̂)◦̂γ̂ = (α̂ ∗ T ∗ β̂) ∗ T ∗ γ̂ = α̂ ∗ T ∗ (β̂ ∗ T ∗ γ̂) = α̂◦̂(β̂◦̂γ̂). ((Note
that it is essential that ∗ is associative so ◦̂ also is.)

3. I ∗ Î = Î ∈ Ĝ, given that I ∈ G. Also, Î is the isounit we seek, as
α̂◦̂Î = α̂ ∗ T ∗ Î = α̂ ∗ (T ∗ Î) = α̂ = Î ◦̂α̂.

4. Given α̂ ∈ Ĝ, α̂ = α ∗ Î will be satisfied, with α ∈ G. So, for (G, ∗)
being a group with unit element I , α−I ∈ G exists, such that α ∗
α−I = α−I ∗ α = I . Thus, it suffices to take the element α̂−I =

α−I ∗ Î as the isoinverse of α̂ with respect to ◦̂, so then we obtain
that α̂◦̂α̂−I = α̂ ∗ T ∗ α̂−I = (α ∗ α−I) ∗ Î = I ∗ Î = Î = α̂−I ◦̂α̂. We
also observe that if α ∗ Î = β ∗ Î , then α = α ∗ Î ∗ T = β ∗ Î ∗ T = β.
Therefore, the isoinverse is well-defined.

5. In addition, if ∗ is commutative, (Ĝ, ◦̂) will be commutative, so
α̂◦̂β̂ = α̂ ∗ T ∗ β̂ = (α ∗ β) ∗ Î = (β ∗ α) ∗ Î = β̂◦̂α̂

Therefore, we have proved the following:

Proposition 3.3.2 Let (G, ◦) be an associative group and let Î and ∗ be
two isotopic elements in the conditions of Definition 3.1.3. If (G, ∗) has an as-
sociative group structure with unit element I ∈ G (I being the unit element of
∗ in the corresponding general set V ), then the isotopic lifting (Ĝ, ◦̂) achieved
by the procedure of the isoproduct has an isogroup structure. If (G, ∗) is also
commutative, then (Ĝ, ◦̂) is a commutative isogroup. 2

Let us next see some examples of isogroups:
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Example 3.3.3 Let us consider the group (R,+) of real numbers with a
binary operation given by the usual sum. A trivial isotopic lifting would be
given from the isounit Î = 0 and the operation ∗ ≡ + (obviously (R, ∗) =

(R,+) would be a group with unit element 0 ∈ R), with which we get the
pair (R̂0, +̂), where R̂0 = {â = a ∗ 0 = a + 0 = a | a ∈ R} = R. On
the other hand, with ∗ ≡ +, the unit element with respect to ∗ in R will be
I = 0 and so T = Î−I = Î−0 = 0−0 = 0. In this way, the isoproduct would
be defined according to

â+̂b̂ = â∗0∗b̂ = (a∗0)∗0∗(b∗0) = (a+0)+0+(b+0) = (a+b)+0 = â+ b = a+b.

So, we would have +̂ ≡ ∗ ≡ +. We should indicate, however, that although
we should properly speak of an isosum, we will keep the term isoproduct for
reasons that we will see in the following sections.

Therefore, the isotopy of (R,+), given by the isounit 0 and operation ∗ ≡
+, coincides with the trivial isotopy, i.e. the identity. This shows that the
construction that we are carrying out of a Santilli isotopy is correct because
if we do not vary the starting unit or the operation associated with the group,
it remains invariant after the isotopy. �

Example 3.3.4 Let us consider now—for the group (R∗,×), R∗ being
the set all real numbers except zero—the isotopy that emerges considering
Î = i as the isounit and using the product of complex numbers ∗ ≡ • as the
operator.

As seen above, we arrive at the isotopic set being R̂∗i = Im(C) \ {0}. We
will now study the isotopic lifting of the product ×. For this, as ∗ ≡ •, the
unit element with respect to ∗ will be I = 1. So, Î−I = Î−1 = i−1 = −i,
since i • (−i) = (−i) • i = 1.

Finally, the isoproduct is defined in the following way: â×̂b̂ = â∗(−i)∗b̂ =
(a ∗ i) ∗ (−i) ∗ (b ∗ i) = (a • i) • (−i) • (b • i) = (a • b) • i = â • b = â× b,
for all a, b ∈ R. �

We also observe that the isogroups obtained in the two examples
above are isocommutative, as the corresponding starting groups are
also, Proposition 3.3.2 then being applicable.
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Now, as a prelude to our development and in order to continue with
our intention of distinguishing the isotopic concepts from the usual
ones, let us give the following:

Definition 3.3.5 Given the isotopy (Ĝ, ◦̂) of a group (G, ◦), if there ex-

ists a minimal positive p such that

p times︷ ︸︸ ︷
â◦̂ . . . ◦̂â = Î (Î being the isounit of the

isogroup in question), we will say that the isogroup Ĝ has isocharacteristic
p. Otherwise, we will say that it has isocharacteristic zero.

Next, we will study possible liftings of substructures related to
groups, i.e., subgroups. To follow the construction that we have done,
we need to define an isosubgroup as the isotopy of a subgroup H of
a fixed group G. The problem arises from the moment in which we
want any isotopic lifting of a given structure to be a structure of the
same type. Thus, any isotopyH should have a subgroup structure and,
therefore, the isotopic lifting from H might not be independent of the
lifting of G. With all of this, the definition of isosubgroup would be as
follows:

Definition 3.3.6 Let (G, ◦) be an associative group and (Ĝ, ◦̂) be an as-
sociated isogroup. Let H be a subgroup of G. Ĥ is called an isosubgroup of
Ĝ if, being an isotopy of H , the pair (Ĥ, ◦̂) is a subgroup of Ĝ, i.e. if Ĥ ⊆ Ĝ,
◦̂ is a binary operation for Ĥ and (Ĥ, ◦̂) has the structure of a group.

We will now apply this previous definition to the method of con-
struction that we have been making, through an isounit and opera-
tion ∗. We suppose then that we have the associative group (G, ◦) and
isogroup (Ĝ, ◦̂), obtained by means of an isounit Î and a fixed opera-
tion ∗. Let H be a subgroup of G. Given that we wish that in the future
isosubgroup Ĥ the associated law be ◦̂ itself, if we follow the given
construction of the isoproduct, both the operation and the isounit un-
der which we make the isotopy have to be, respectively, ∗ and Î , since
otherwise we would not get the same operation ◦̂ in general. Here is
an example of this:
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Example 3.3.7 We will consider the group (Z,+) of the whole numbers
with the usual sum. Let us take, with the usual notations, ∗ ≡ +, Î = 2.
As (Z, ∗) = (Z,+) is a group with unit element 0 ∈ Z, we can achieve the
isotopy of the elements ∗ and Î . Then, Ẑ2 = {â = a∗2 = a+2 | a ∈ Z} = Z.
Therefore, as ∗ ≡ +, I = 0 will be the unit element with respect to ∗. So,
Î−I = Î−0 = 2−0 = −2 and we thus arrive at the isoproduct given by
â+̂b̂ = â ∗ (−2) ∗ b̂ = (a+ 2) ∗ (−2) ∗ (b+ 2) = a+ 2 + (−2) + b+ 2 =

a+ b+ 2 = (a+ b) ∗ 2 = â+ b, for all a, b ∈ Z. We have thus obtained the
isogroup (Ẑ2, +̂) arising from the additive group (Z,+).

We consider now the subgroup (P,+) of the even integers and zero. If we
make the isotopy relative to the same previous elements (which again can be
done, (P, ∗) = (P,+) being a group with unit element 0 ∈ P), we get on the
one hand the isotopic set P̂2 = {m̂ = m ∗ 2 = m+2 | m ∈ P} = P, and on
the other hand, we would arrive at the same isoproduct +̂.

We now show that (P̂2, +̂) is an isosubgroup of (Ẑ2, +̂), bearing in mind
that, of course, P̂2 is an isotopy of P ⊆ Z. We observe that

1. P̂2 ⊆ Ẑ2, as P̂ = P, Ẑ = Z and P ⊆ Z.
2. For all m,n ∈ P, m̂+̂n̂ = m+n+2 ∈ P is satisfied. So, +̂ is an internal

operation in P̂2.
3. The conditions of the group are also satisfied:

a. It inherits the associativity from (Ĝ, ◦̂).
b. The isounit Î = 2 (which is the unit element with respect to +̂) belongs

to P̂2 = P. Thus, Î = 0̂ = 0 + 2.
c. ∀m ∈ P, m−Î = −m ∈ P̂2, since m+̂(−m) = (m + (−m)) + 2 =

0 + 2 = 2 = Î = (−m)+̂m.

Therefore, it is demonstrated that (P̂2, +̂) is an isosubgroup of (Ẑ2, +̂). �

Note that some parts of the previous example can be suppressed.
For example, given that the operation ∗ and the isounit used are the
same in both isotopies, we will have that if H is a subset of a fixed
group (G, ◦), then Ĥ ⊆ Ĝ, with the usual notation, ĥ = h ∗ Î with
h ∈ H ⊆ G ⇒ h ∈ G ⇒ ĥ ∈ Ĝ. On the other hand, once it is
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proved that we can carry out the corresponding isotopy with the el-
ements that we used to construct Ĝ, to construct Ĥ , we will avoid
some more proofs. Recall that, according to Proposition 3.3.2, one of
the conditions that must be satisfied in order to construct the isotopy
is that the pair (H, ∗) be a group with the same unit element which V
had with respect to ∗, I , which in turn should coincide with the unit
element of (G, ∗) (since we already showed, of course, that one can
achieve the isotopy of the group G). Then—similarly to how we found
that (Ĝ, ◦̂) had group structure, by means of the isoproduct ◦̂ formed
from ∗—we have the fact that +̂ is a binary operation in P̂2 and con-
ditions (2) and (3) are held by construction. Finally, the associativity
condition (1) obviously holds, as ◦̂ is associative in (Ĝ, ◦̂), ∗ being as-
sociative by hypothesis.

All this is proved as follows:

Proposition 3.3.8 Let (G, ◦) be an associative group and let (Ĝ, ◦̂) be the
associated isogroup corresponding to the isotopy of elements Î and ∗. LetH be
a subgroup of G. Then if (H, ∗) has a group structure, with the unit element
the same as that of (G, ∗), the isotopic lifting (Ĥ, ◦̂) corresponding to the
isotopy of elements Î and ∗ is an isosubgroup of Ĝ. 2

Indeed, since the method of constructing isogroups already notes
this condition, we could simply indicate that, in the case of achieving
the corresponding the isotopy corresponding to Î and ∗, the isotopic
lifting (Ĥ, ◦̂) is already an isosubgroup of Ĝ. Therefore, the only prob-
lem that arises now is that this isotopy cannot be performed due to a
lack of initial conditions. Let us look at this situation in the following:

Example 3.3.9 Let us consider the group (Z/Z2,+) of the quotient set
Z/Z2 with the usual sum. We will now consider, with the usual notation,
Î = 1 + Z2 and the operation ∗ defined according to

(1 + Z2) ∗ (1 + Z2) = 1 + Z2 = (0 + Z2) ∗ (0 + Z2),

(1 + Z2) ∗ (0 + Z2) = (0 + Z2) ∗ (1 + Z2) = 0 + Z2.

Let us first prove that ∗, so defined, is an associative operation. For it,
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((1 + Z2) ∗ (1 + Z2)) ∗ (1 + Z2) = (1 + Z2) ∗ (1 + Z2) = 1 + Z2 =

(1 + Z2) ∗ (1 + Z2) = (1 + Z2) ∗ ((1 + Z2) ∗ (1 + Z2)),
((1 + Z2) ∗ (1 + Z2)) ∗ (0 + Z2) = (1 + Z2) ∗ (0 + Z2) = 0 + Z2 =

(1 + Z2) ∗ (0 + Z2) = (1 + Z2) ∗ ((1 + Z2) ∗ (0 + Z2)),
((1 + Z2) ∗ (0 + Z2)) ∗ (0 + Z2) = (0 + Z2) ∗ (0 + Z2) = 1 + Z2 =

(1 + Z2) ∗ (1 + Z2) = (1 + Z2) ∗ ((0 + Z2) ∗ (0 + Z2)),
((0 + Z2) ∗ (0 + Z2)) ∗ (0 + Z2) = (1 + Z2) ∗ (0 + Z2) = 0 + Z2 =

(0 + Z2) ∗ (1 + Z2) = (0 + Z2) ∗ ((0 + Z2) ∗ (0 + Z2)),

and the other possible cases would hold by commutativity. It results that
(Z/Z2, ∗) has group structure with unit element unit I = Î = 1 + Z2 ∈
Z/Z2.

In addition, achieving now the corresponding isotopy for Î and ∗, we obtain
as the isotopic set for Ẑ/Z21+Z2

= {0 + Z2, 1 + Z2} = Z/Z2.

In turn, as Î−I = (1 + Z2)
−(1+Z2) = 1+Z2, the corresponding isoprod-

uct +̂ will be given by

(0+Z2)+̂(0+Z2) = ((0+Z2)∗(1+Z2))∗(1+Z2)∗((0+Z2)∗(1+Z2)) =

((0+Z2) ∗ (0+Z2)) ∗ (1+Z2) = (1+Z2) ∗ (1+Z2) = ̂1 + Z2 = 1+Z2

(0 + Z2)+̂(1 + Z2) = ̂((0 + Z2) ∗ (1 + Z2)) = ̂0 + Z2 = 0 + Z2

(1 + Z2)+̂(1 + Z2) = ̂((1 + Z2) ∗ (1 + Z2)) = ̂1 + Z2 = 1 + Z2

So, +̂ ≡ ∗ and therefore (Ẑ/Z21+Z2
, +̂) = (Z/Z2, ∗) is a new isogroup.

On the other hand, let us consider the subgroup ({0 + Z2},+) of
(Z/Z2,+). We see that ({0 +Z2}, ∗) does not, however, have a group struc-
ture, as ∗ is not a binary operation for {0+Z2}, since (0+Z2) ∗ (0+Z2) =

1+Z2 /∈ {0+Z2}. Therefore, the conditions of Proposition 3.3.8 are not ver-
ified for an isosubgroup by applying the isotopy of elements Î = 1+Z2 and ∗,
because in the case where we constructed the isotopic set and the correspond-
ing isoproduct, the result we obtained would not have a group structure. We
should have, in fact, that ̂{0 + Z2}1+Z2

= {(0+Z2)∗(1+Z2)} = {0+Z2},
with (0 + Z2)+̂(0 + Z2) = ̂1 + Z2 = 1 + Z2 /∈ ̂{0 + Z2}1+Z2

. �
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It might be good now to pose a new question. Let us first give the
necessary conditions to pose it: Let (G, ◦) be an associative group of
unit element I and (Ĝ, ◦̂) the isogroup associated with the isotopy
of elements Î and ∗. We know that any isosubgroup Ĝ has subgroup
structure. We have also seen examples where subgroups of G may not
give rise to isosubgroups of Ĝ, using as isotopic elements both Î and
∗. We finally ask if any subset of Ĝ has isosubgroup structure (Ĝ, ◦̂),
that is, if it comes from the isotopic lifting of a subgroup of G. It has
certainly been clear that as a subgroup(Ĥ, ◦̂) de (Ĝ, ◦̂), the operation ◦̂
must be the same in both pairs, the elements of the corresponding iso-
topy must coincide. That is, if Ĥ is an isosubgroup, it must come from
an isotopy with the same elements as that which constructs Ĝ. There-
fore, the only possible subset of G that would give rise to the possible
isosubgroup would be H = {a ∈ G : â ∈ Ĥ} ⊆ G. However, the pair
(H, ◦) does need not be a subset of (G, ◦) in general, as we can see in
the following:

Example 3.3.10 Let us consider (Z/Z2,+) and the isogroup
(Ẑ/Z21+Z2

, ∗) given in the previous example. As unique subgroups of
both, we have the pairs ({0 + Z2},+) and ({1 + Z2}, ∗), respectively.

As seen, if with the previous notations we take Ĥ = ({1 + Z2}, ∗) as
subgroup of (Ẑ/Z21+Z2

, ∗), the only possible subset of Z/Z2 which could
give Ĥ an isosubgroup structure would be H = {1 + Z2}, then (1 + Z2) ∗
(1+Z2) = 1+Z2, Î = 1+Z2 being the isounit we use in such an example to
construct the isotopy. However, ({1 + Z2},+) is not a subset of (Z/Z2,+),
as, for example, + is not a binary operation for {1 + Z2}, where (1 + Z2) +

(1 + Z2) = 0 + Z2. �

We therefore see that with this example the question that we
raised is answered negatively, the problem of the relationship between
groups and isogroups finally being resolved.

We end this section giving definitions of the possible functions that
are established among isogroups:
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Definition 3.3.11 Let (Ĝ, ◦̂) and (Ĝ′, •̂) be two isogroups. A function f :

Ĝ → Ĝ′ is called an isogroup homomorphism if f(α̂◦̂β̂) = f(α̂)•̂f(β̂)
is satisfied for all α̂, β̂ ∈ Ĝ. If f is bijective, it is then called an isogroup
isomorphism. If Ĝ′ = Ĝ, f is called an endomorphism, and if, in addition,
f is isomorphic, then it is called an automorphism.

3.4 Isorings

For the study of this new isostructure, we will follow the same proce-
dure as in the case of isogroups. In the first subsection, we will study
isorings and isosubrings themselves. In the following two subsections
we will discuss isoideals and quotient isorings.

3.4.1 Isorings and Isosubrings

Definition 3.4.1 Let (A, ◦, •) be a ring with unit element e. Any isotopy
A equipped with two binary operations ◦̂ and •̂, the second with a unit el-
ement Î ∈ Â (isounit) not necessarily belonging to A, verifying the ring
axioms, is called an isoring Â. I.e., such that for every α̂, β̂, γ̂ ∈ Â, it satis-
fies:

1. (Â, ◦̂) is an Abelian group.
2. Associativity of •̂ : (α̂•̂β̂)•̂γ̂ = α̂•̂(β̂•̂γ̂).
3. Distributivity:

a. α̂•̂(β̂◦̂γ̂) = (α̂•̂β̂)◦̂(α̂•̂γ̂)
b. (α̂◦̂β̂)•̂γ̂ = (α̂•̂γ̂)◦̂(β̂•̂γ̂).

If in addition α̂•̂β̂ = β̂•̂α̂ is satisfied for all α̂, β̂ ∈ Â, Â is called isocom-
mutative.

We note that in the case of isorings there must exist two isounits:
one with respect to the operation ◦̂, which we designate by Ŝ, and the
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other with respect to •̂, which we have already denoted by Î . If we
focus on the case of Santilli isotopies, we have already seen that each
of these is determined by an isounit and operation ∗. Moreover, the
construction we made for isogroups would favor that the isounit of
the isotopy coincide with the isounit of the isogroup. However, here
are two isounits in the isostructure. Would the use of two different iso-
topies for the construction of an isoring be required, then? To answer
this question, we will set up in the first place an associative operation ∗
and an isounit which we call Î , since we will seek that, by construction,
it matches the isounit with respect to ◦̂, already cited above. Regard-
ing this isotopy, we already know explicitly to construct the isotopic
set associated with A, which shall be given by Â = {â = a ∗ Î | a ∈ A}.

Once the set of elements of the starting structure has been raised, we
must make the lifting of the associated operations, ◦ and •. Therefore,
we will begin isotopically lifting the second operation, •, by means
of the procedure for constructing the isoproduct, already seen in the
previous section. That is, if ∗ has as a unit for I and has T = Î−I , we
will have as the isoproduct •̂ for the operation defined as

â•̂b̂ = â ∗ T ∗ b̂ = (a ∗ b) ∗ Î , ∀â, b̂ ∈ Â.

In this way, just as we did for isogroups, we get that the operation •̂ is
associative for ∗ being associative. Moreover, imposing I ∈ A we have
that Î ∈ Â, the isounit being indicated in the above definition with
respect to •̂.

Lifting the operation ◦ would still be lacking. If we seek an analo-
gous procedure as the method for an isoproduct, we would need an
isounit Ŝ and operation ?, similar to Î and ∗. Now, given that the iso-
topic set of the future isoring is already constructed, the operation ?

should be such that the isotopic set formed starting from it matches
that which it already had. In addition, given that (Â, ◦̂) should be an
isogroup, we would have to check Ŝ ∈ Â, so that Ŝ should be of the
form Ŝ = s ∗ Î , with s ∈ A. For this reason, following the notation of
Definition 3.1.3, we will consider the general set V associated with the



3.4 Isorings 205

lifting of the operation ◦ the same as that used for the lifting of A and
•. On the other hand, if ? was an operation with unit element S, we
know that as conditions for an isotopy of a group it is necessary to im-
pose that (A, ?) be a group with S ∈ A. Also we will impose that ? be
associative and along with ∗ that it satisfies the distributive property
for Â, i.e., that ∀a, b, c ∈ A, it satisfies

1. (a ? b) ? c = a ? (b ? c).
2. a ∗ (b ? c) = (a ∗ b) ? (a ∗ c); (a ? b) ∗ c = (a ∗ c) ? (b ∗ c).

As a result, supposing that Ŝ−S = R̂ = r ∗ Î ∈ Â (with r ∈ A), we
would construct the isoproduct ◦̂ defining for all â, b̂ ∈ Â according to
â◦̂b̂ = â ? R̂ ? b̂ = (â ? R̂)? b̂ = ((a∗ Î)? (r ∗ Î))? b̂ = ((a?r)∗ Î)? (b∗ Î) =
(a?r?b)∗ Î that is trivially in Â, since a?r?b ∈ A, (A, ?) being a group.

Then, in a way analogous to the general case we saw, we would
arrive at, under these conditions, that (Â, ◦̂) is an isogroup, thus ver-
ifying the condition (1) of the above definition, so the only condition
that remains to check would be distributivity. However, as it will be
seen below, in general this condition is not met. Indeed, let there be
â, b̂, ĉ ∈ Â. Then: â•̂(̂b◦̂ĉ) = â•̂(̂b ? R̂ ? ĉ) = â•̂((b ? r ? c)∗ Î) = (a∗ (b ? r ?
c))∗ Î = ((a∗b)?(a∗r)?(a∗c))∗ Î 6= ((a∗b)?r?(a∗c))∗ Î = (â•̂b̂)◦̂(â•̂ĉ)
and similarly, nor is the distributive operation to the left in general sat-
isfied. It would be to the right when a ∗ r = r, ∀a ∈ A (to the left when
r ∗ a = r, respectively), ∀a ∈ A. In the case of a ∗ r = r = r ∗ a be-
ing satisfied, ∀a ∈ A, then, it would satisfy distributivity and therefore
we would have already constructed the isoring, which finally would
come from the isotopy of the principal elements Î and ∗ and from the
secondary elements Ŝ and ?.

We note that in the event that the isotopy could be constructed, as
∗ (the principal element of it) has been used to lift the operation •, the
constructed isoring received the name of isoring with respect to multipli-
cation, given that in practice ◦ ≡ + and • ≡ ×. Making an analogous
procedure, using ∗ to lift ◦, we arrive at an isoring with respect to the
sum. In fact, according to this criterion, from now on we will denote
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the isotopic lifting of the first operation ◦ the isosum, while the lifting
of the second we will continue calling the isoproduct.

On the other hand, although the final condition a ∗ r = r, ∀a ∈ A,
might not be fulfilled (and therefore will not satisfy distributivity), as
all other conditions are met, we will denote the lifting obtained by the
previous procedure pseudoisotopy or pseudoisotopic lifting. So we would
obtain in this way a new type of mathematical structure, generally
called a pseudoisostructure (see [128]). In this particular case, we would
obtain a pseudoisoring.

We also noticed that the procedure used can be simplified, taking
into account that the second binary operation of a ring need not verify
the condition of an inverse element, so we could also simplify this con-
dition in the case of ∗, if it is an isoring with respect to multiplication,
or in the case of ?, if it is an isoring with respect to the sum. The general
procedure will work for more particular structures as, for example, the
isofields that we will see in the next section.

All of the above suggests the following:

Proposition 3.4.2 Let (A, ◦, •) be a ring and let Î , Ŝ, ∗, and ? be elements
of an isotopy under the conditions of Definition 3.1.3, I and S being the re-
spective units of ∗ and ?. In these conditions, if (A, ?, ∗) has a ring structure
with respective units S, I ∈ A, then the isotopic lifting (Â, ◦̂, •̂) obtained by
the procedure of the isoproduct corresponding to the isotopy of the principal
elements Î and ∗ and secondary elements Ŝ and ? has an isoring structure
with respect to multiplication if a ∗ r = r = r ∗ a, ∀a ∈ A, r ∈ A being
such that R̂ = Ŝ−S = r ∗ Î . Analogously, if (A, ∗, ?) has a ring structure
with respective units I, S ∈ A, then the isotopic lifting by the construction of
the isoproduct, (Â, ◦̂, •̂), corresponding to the same previous isotopy, has an
isoring structure with respect to the sum, if a ? t = t = t ? a, ∀a ∈ A is met,
t ∈ A being such that t ∗ Î = T = Î−I . 2

Agreeing then with this definition, the answer to the question of
whether two isotopies were necessary for an isoring is negative, since
only one isotopy is necessary but with two principal elements Î and ∗,
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and two secondary elements Ŝ and ?, which will have to be explicitly
indicated anyways.

Let us see below some examples of isorings:

Example 3.4.3 Consider the ring (Z,+,×) of the integers with the usual
sum and product. Analogously to Example 3.3.3 we prove that the isotopy of
elements Î = 0 and ∗ ≡ + (of the unit element I = 0 = Î , and therefore
T = Î−I = 0−0 = 0 = 0 + 0 = 0 ∗ 0) isotopically raises the group (Z,+)

into (Ẑ, +̂) = (Z,+), such that this isotopy is equal to the identity.
Similarly, if we add the secondary isotopic elements Ŝ = 1 and ? ≡ ×

(although in this case they could also be considered as primary elements, given
that there would be no difference in the end result), we would get for the
isotopic lifting of the ring (Z,+,×) this same ring.

To prove this assertion, we observe firstly that the isotopic set constructed
by ? and Ŝ would be Ẑ1 = {â = a × 1 = a | a ∈ Z} = Z, which coincides
with that constructed from the previous elements Î = 0 and ∗ ≡ +. Now, it
would suffice to define the isoproduct originated by ? for the previous elements
Î = 0 and ∗ ≡ +. Now, as the element unit with respect to ? is S = 1 and
therefore Ŝ−S = 1−1 = 1, we deduce that â×̂b̂=â ? 1 ? b̂ = â × 1 × b̂ =

(a+0)×(1+0)×(b+0) = (a×1×b)+0 = ̂a× 1× b = â× b = a×b, for all
â, b̂ ∈ Ẑ0. Then ×̂ ≡ ×, thus finishing the demonstration, since (Z, ∗, ?) =
(Z,+,×) being a ring with respective units 0, 1 ∈ Z and satisfying a ?

0 = a × 0 = 0 = 0 × a = 0 ? a, ∀a ∈ Z, Proposition 3.4.2 ensures that
the isotopic lifting of the principal elements Î and ∗ and secondary elements
Ŝ and ? of the ring (Z,+,×) is an isoring. Thus we get a trivial isotopy
of the starting ring, which corroborates the fact that if any isotopic lifting
varies neither the starting operations nor the corresponding unit elements,
the departing structure does not change. �

Example 3.4.4 Let us consider again the ring (Z,+,×). Let us take the
operation ∗ ≡ × and isounit Î = −1 (T = Î−I = (−1)−1 = −1 = Î ,
given that the element unit with respect to ∗ is I = 1) and seek to construct
an isoring with respect to multiplication. As an isotopic set, it would then be
Ẑ−1 = {â = a× (−1) = −a : a ∈ Z} = Z.
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In turn, the isoproduct is defined as â×̂b̂ = â∗ (−1)∗ b̂ = (a∗ b)∗ (−1) =
(a× b) ∗ (−1) = â× b = −(a× b), for all â, b̂ ∈ Ẑ−1.

In general, we call the isotopy that arises from considering as isounit for
Î = −I the isodual isotopy. Santilli himself introduced this isotopy in [110],
[111], [114] and [115].

We now seek to raise the operation +, leaving it invariant. For this, it
would suffice to take Ŝ = 0 as the secondary isounit and ? as the operation
for + itself, such as it has been done in previous examples. So, given that the
unit element of ? would be S = 0, we would have that R̂ = Ŝ−S = 0−0 =

0 = 0 ∗ 1, with a ∗ 0 = a × 0 = 0 = 0 × a = 0 ∗ a, ∀a ∈ Z. In this way,
(Z, ?, ∗) = (Z,+,×) is a ring verifying the conditions of Proposition 3.4.2;
thus, the isotopic lifting (Z,+, ×̂) turns out to be an isoring with respect to
multiplication. �

Example 3.4.5 Continuing with the (Z,+,×) ring, we can study a case
not seen thus far. Here is an example in which the isounit Î is in the resulting
isotopic set, but the isotopic element T = Î−I is not. In our case, it suffices to
consider, for example, ∗ ≡ × and Î = 2. The isotopic set Ẑ2 = {â = a× 2 |
a ∈ Z} = P = Z2 would result. On the other hand, given that the unit
element with respect to ∗ is I = 1, then Î−I = 2−1 = 1

2 /∈ P, the isoproduct
being defined by: â×̂b̂ = â∗ 12 ∗b̂ = (a×2)× 1

2×(b×2) = (a×b)×2 = â× b,
for all â, b̂ ∈ Ẑ2.

In any case, if as in the previous example we want operation + to remain
invariant, we could only take as the secondary isounit Ŝ = 0 = 0∗2, as r = 0

is the unique element of Z such that a ∗ r = r = r ∗ a for all a ∈ Z, which is
a necessary condition to construct the isoring according to Proposition 3.4.2.
Therefore, completing our isotopy with the secondary elements Ŝ = 0 and ? ≡
+, we would get that (P,+, ×̂) is an isoring with respect to multiplication.
�

We finally note that if we want to obtain an isoring (with respect
to the sum) of the ring (Z,+,×), starting from ∗ ≡ + and ? ≡ ×, the
main isounit Î would necessarily be Î = 0, to ensure the designated
condition that a ? t = a× t = t = t× a = t ? a, ∀a ∈ Z, t ∈ Z being such
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that T = Î−I = t ∗ Î . In this way, the isoring (P,+, ×̂) above can also
be considered an isoring with respect to the sum.

We will then study the isotopies of substructures associated with
rings, i.e., the subrings. We give, in the first place, the definition of an
isosubring.

Definition 3.4.6 Let (A, ◦, •) be an isoring and (Â, ◦̂, •̂) an associated
isoring with unit element Î with respect to •̂. Le B be a subring of A. B̂ is
called an isosubring of Â if, being an isotopy of B, (B̂, ◦̂, •̂) is a subring of
Â, i.e., it satisfies:

1. (B̂, ◦̂, •̂) is closed, satisfying the conditions of associativity and distribu-
tivity.

2. (B̂, ◦̂) is an isosubgroup of (Â, ◦̂).
3. Î ∈ B̂.

We will then see if it is possible to apply the above definition to the
method of constructing the isotopy that we are carrying out. To do this,
we suppose we have the ring (A, ◦, •) and isoring (Â, ◦̂, •̂) obtained by
the isotopy of the principal elements Î and ∗ (of unit element I) and
secondary elements Ŝ and ? (of the unit element S), in the conditions
of Proposition 3.4.2. We will see it in the case of isorings with respect
to multiplication, being analogous in the case of the sum, with the ap-
propriate modifications.

As was the case for isosubgroups, since we want that in the fu-
ture isosubring B̂ the associated laws be the same as those of the ring
(Â, ◦̂, •̂), if we follow the construction given by the isoproduct, the
principal and secondary isotopic elements we should use for the lifting
of the subring B have to be exactly the same as those used for lifting
the ring A. Thus we obtain in particular that B̂ ⊆ Â, a necessary con-
dition for the structure of a subring. If in addition to imposing that
(B, ?, ∗) have a ring structure, we will obtain by construction the con-
dition (1) of Definition 3.4.6 (the distributivity condition is met, given
that we are in the conditions of Proposition 3.4.2, (B, ?, ∗) inherits from
(A, ?, ∗) the fact that a ∗ r = r = r ∗ a, ∀a ∈ B, where r is the element
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indicated in this proposition). On the other hand, imposing that I ∈ B,
we will get that Î = I ∗ Î ∈ B̂, obtaining condition (3). Finally, given
that that (B, ?) already has a group structure, (B, ?, ∗) being a ring, if
we impose in addition that S ∈ B, we will have Ŝ = S ? Ŝ ∈ B̂ (let us
recall that the secondary elements of an isotopy act in the same way as
the primary ones, except that they should produce the same isotopic
set the primary ones produce), thus Proposition 3.3.8 would ensure
that the condition (2) is also verified.

It would also be equivalent to impose that s ∈ B, in the case of
Ŝ = s∗ Î , because in the same way we would arrive at Ŝ ∈ B̂ and could
again apply Proposition 3.3.8. In fact, we observe that s ∈ B ⇔ S ∈ B,
then the following are satisfied:

1. s ∈ B ⇒ Ŝ = s ∗ Î ∈ B̂ ⇒ ∃a ∈ B such that a ? Ŝ = Ŝ. Now, if
R̂ = Ŝ−S , then a ? Ŝ ? R̂ = Ŝ ? R̂⇒ a ? S = S ⇒ a = S ⇒ S ∈ B.

2. S ∈ B ⇒ Ŝ = S ? Ŝ ∈ B̂ ⇒ ∃a ∈ B such that a ∗ Î = Ŝ. However,
we have that s∗ Î = Ŝ. Then, if T = Î−I , we have a∗ Î ∗T = Ŝ ∗T =

s ∗ Î ∗ T ⇒ a ∗ I = s ∗ I ⇒ a = s⇒ s ∈ B.

Note that this previous development in fact also applies to isorings.
With this we also arrive at that if we have that s ∈ B and S /∈ B, or
vice versa, the isotopy of elements Î , Ŝ, ∗, and ? is not possible, for the
operations ∗ and ? would not be compatible for the formation of the
same isotopic set. From all of this, the following results:

Proposition 3.4.7 Let (A, ◦, •) be a ring and (Â, ◦̂, •̂) the associated isor-
ing corresponding to the isotopy with principal elements Î and ∗ (of unit
element I), secondary elements Ŝ = s ∗ Î and ? (of unit element S), in the
conditions of Proposition 3.4.2. Let B be a subring of A. In these conditions,
if (B, ?, ∗) is a subring of (A, ?, ∗) with I ∈ B and S ∈ B (or, s ∈ B),
then the isotopic lifting (B̂, ◦̂, •̂), corresponding to the isotopy of the previous
elements themselves, is an isosubring of Â. 2

Here below is an example of an isosubring:
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Example 3.4.8 Let us consider the ring (Q,+,×) of the rational numbers
with the usual sum and product. Let us take the isounit Î = 2 and the op-
eration ∗ ≡ ×, the isotopic set Q̂2 = {â = a × 2 | a ∈ Q} = Q re-
sulting. As ∗ ≡ ×, the respective unit element ∗ has to be I = 1 ∈ Q,
thus Î−I = 2−1 = 1

2 , then obtaining the isoproduct defined according to
â×̂b̂ = â ∗ 1

2 ∗ b̂ = â ∗ b = â× b = (a× b)× 2, for all â, b̂ ∈ Q̂2.
If on the other hand we consider the elements of the secondary isotopies

Ŝ = 0 and ? ≡ + (with which s = S = 0), we get, in an analogous way to
how it was done in Example 3.4.5, that (Q̂2,+, ×̂) = (Q,+, ×̂) is an isoring.

We now consider the subring (Z,+,×) of (Q,+,×), of the integers, and
try to realize the isotopy of this subring, of the same elements as those used in
the construction of the isoring (Q,+, ×̂).

The isotopic set Ẑ2 = {â = a× 2 | a ∈ Z} = P would then result. There-
fore, as (Z, ?, ∗) = (Z,+,×) has ring structure (Q, ?, ∗) = (Q,+,×), with
the unit element with respect to ∗, I = 1 ∈ Z (the same as for (Q, ?, ∗)) and
s = S = 0 ∈ Z, we arrive by Proposition 3.4.7 at (Ẑ2,+, ×̂) = (P,+, ×̂)
being an isosubring of Q̂2.

In this way we observe, if we take into account Example 3.4.5, that
(P,+, ×̂) can give itself both an isoring and isosubring structure with re-
spect to the same designated isotopy. �

As was the case with the isogroups, we can also ask ourselves if
any subring gives rise to an isosubring under a particular isotopy or if
any subring of a given isoring has an isosubring structure. In the same
way as in the isosubgroups, the possible counter-examples should be
in those cases in which the conditions of Proposition 3.4.7 are not met.
However, except that we keep in mind some examples of more com-
plicated liftings than we have been using so far, to find such coun-
terexamples is quite complicated, because if, as we have almost always
done, we leave the starting operations practically invariant, their prop-
erties will remain conserved at all times. However, theoretically it is
possible to find counterexamples that give a negative answer to the
two questions posed. It would suffice, for example, in the conditions
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of Proposition 3.4.7, that we have a subring B of A such that S /∈ A or
I /∈ B.

Along the same lines, if we had a subring B̂ of the isoring Â, with
Ŝ ∈ B̂, such that S /∈ C for all C, subring of A;s then we could not pro-
vide an isosubring structure for B̂, since we could not find any subring
in A that gives B̂ itself as a result, after the corresponding isotopic lift-
ing. In this way, we can guess that in general not every subring can be
isotopically lifted to an isosubring using a fixed isotopy, nor can any
subring of an isoring have the structure of an isosubring by means of
the isotopy corresponding to said isoring.

Concerning the various functions that exist between isoring, we
have the following:

Definition 3.4.9 Let (Â, ◦̂, •̂) and (Â′, +̂, ×̂) be two isorings with isounits
and operations {Î , •̂} and {Î ′, ×̂}, respectively. A function f : Â → Â′

is called an isoring homomorphism if for all â, b̂ ∈ Â, the following are
satisfied:

1. f(â◦̂b̂) = f(â)+̂f (̂b),
2. f(â•̂b̂) = f(â)×̂f (̂b),
3. f(Î) = Î ′.

If f is bijective, it is called an isomorphism, and if Â = Â′, an endomor-
phism. In the latter case, if f is also bijective, it is called an automorphism.

In the next two subsections we will study, respectively, the basic no-
tions of two new isostructures related to isorings: isoideals and quo-
tient isorings.

3.4.2 Isoideals

Definition 3.4.10 Let (A, ◦, •) be a ring and (Â, ◦̂, •̂) an associated isor-
ing. Let = ⊆ A be an ideal of A. =̂ is called an isoideal of Â if, being an
isotopy of =, =̂ has the structure of an ideal with respect to (Â, ◦̂, •̂), i.e., if
the two following conditions are satisfied:
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1. (=̂, ◦̂) is an isosubgroup of Â.
2. =̂•̂Â ⊆ =̂, Â•̂=̂ ⊆ =̂, i.e., x̂•̂â and â•̂x̂ ∈ =̂, for all â ∈ Â and x̂ ∈ =̂.

We now consider the model of the isotopy that we are carrying out.
Suppose then that we have a ring (A, ◦, •) and isoring (Â, ◦̂, •̂) obtained
by the isotopy of principal elements Î and ∗ and secondary elements
Ŝ and ?. As we already did previously, we will prove only the case of
isorings with respect to multiplication, understanding that with regard
to the sum we would proceed similarly.

As in previous cases, if we have an ideal= ofA, we wish that the fu-
ture isoideal have the associated laws of (Â, ◦̂, •̂). To do so, if we follow
the construction of the isoproduct, we will take as primary and sec-
ondary isotopic elements exactly those that were needed for the con-
struction of the isoring (Â, ◦̂, •̂). In this way we will have that =̂ ⊆ Â,
since = ⊆ A.

If, in addition, we impose that = be an ideal of the ring (A, ?, ∗), we
see that the two conditions of the above definition are verified, since:

1. condition (1) holds without needing to apply Proposition 3.3.8.
2. if T is the associated isotopic element for the isotopy of isounit Î

and operation ∗, then x̂•̂â = x̂ ∗ T ∗ â = (x ∗ a) ∗ Î ∈ =̂, for all x̂ ∈ =̂
and â ∈ Â, since for = being the ideal of (A, ?, ∗), x ∗ a ∈ =.

Therefore, we finally arrive at that =̂ is an isoideal of Â, thus the
following has been proved:

Proposition 3.4.11 Let (A, ◦, •) be a ring and (Â, ◦̂, •̂) the associated
isoring corresponding to the isotopy of principal elements Î and ∗ and sec-
ondary elements Ŝ and ?, under the conditions of Proposition 3.4.2. Let =
be an ideal of (A, ◦, •). If = is an ideal of (A, ?, ∗), (=, ?) being a subset of
(A, ?), with the unit element being that of this latter, then the isotopic lifting
(=̂, ◦̂, •̂) corresponding to the isotopy of the items listed above is an isoideal of
Â. 2

Here below are some examples of isoideals:
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Example 3.4.12 Let us consider the ring (Z,+,×) and the isoring
(Z,+,×̂) associated with it from Example 3.4.4. Let us now take P = Z2 as
the ideal of (Z,+,×). Then, with the notation from the cited example, (P,+)

is a subgroup of (Z,+), with unit element 0 ∈ P, (P, ?, ∗) = (P,+,×) be-
ing the ideal of (Z,+,×). Proposition 3.4.11 then tells us that (P̂−1,+, ×̂)
is an isoideal of (Z,+, ×̂). However, as P̂1 = {â = a ∗ (−1) = a× (−1) =
−a : a ∈ P} = P, we have that (P̂−1,+, ×̂) = (P,+, ×̂) is the designated
ideal. �

Example 3.4.13 Let us now consider the ring (Z,+,×) and the associated
isoring (P,+, ×̂) given in Example 3.4.5. Taking again the ideal (P,+,×)
of (Z,+,×), we would have, with the notations of Example 3.4.5, that
(P, ?, ∗) = (P,+,×), which is, in turn, an ideal of (Z, ?, ∗) = (Z,+,×),
(P, ?) being a subgroup of (Z, ?) with the same unit element (in this case,
I = 0 ∈ P ∩ Z). In this way, Proposition 3.4.11 assures us that (P̂2,+, ×̂)
is an isoideal of Z. Now, P̂2 = {â = a ∗ 2 = a × 2 | a ∈ P} = Z4 and
therefore (P̂2,+, ×̂) = (Z4,+, ×̂) is the designated isoideal. �

We now define the concept of isosubideal.

Definition 3.4.14 Let (A, ◦, •) be a ring, (Â, ◦̂, •̂) an associated isoring,
and = an ideal of A, such that the corresponding isotopic lifting =̂ is an
isoideal. Let J be a subideal of =. Ĵ is called an isosubideal of =̂ if, being
an isotopy of J , (Ĵ , ◦̂, •̂) is a subideal of =̂ with respect to (Â, ◦̂, •̂), i.e., if it
is satisfied that

1. (Ĵ , ◦̂) is an isosubgroup of Â.
2. Ĵ •̂Â ⊆ Ĵ ⊆ =̂.

It is easily proved that with the usual construction of an isotopy by
means of an isounit and the method of construction of the isoproduct
we arrive, similarly to the case of ideals, at the following result:

Proposition 3.4.15 Let (A, ◦, •) be a ring and (Â, ◦̂, •̂) the associated
isoring corresponding to the isounit of the principal elements Î and ∗ and
secondary elements Ŝ and ?, in the conditions of Proposition 3.4.2. Let =
be an ideal of A such that the corresponding isotopic lifting, (=̂, ◦̂, •̂), be an
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isoideal of Â. Finally, let J be a subideal=. If (J, ?, ∗) is a subideal of (=, ?, ∗),
with the unit element of the group (=, ?) the same as that of (=, ∗), then the
corresponding isotopic lifting (Ĵ , ◦̂, •̂) is an isosubideal of =̂. 2

We observe that the usual construction allows that, given that J ⊆ =
(being its subgroup) and that the isotopic elements used are the same
as for the construction of =̂, Ĵ ⊆ =̂.

As an example of a subideal, we have the following:

Example 3.4.16 In Example 3.4.12 let us consider the subideal (Z6,+,×)
of (P,+,×). With the notation of said example, we have that (Z6, ?, ∗) =

(Z6,+,×) is a subideal of (P, ?, ∗) = (P,+,×), with the unit element of
(Z6, ?) the same as that of (P, ?) (in this case, S = 0 ∈ Z6 ∩ P). There-
fore, applying Proposition 3.4.15 we have that (Z6,+, ×̂) is an isosubideal of
(P,+, ×̂), with Ẑ6−1 = {â = a ∗ (−1) = a× (−1) = −a | a ∈ Z6} = Z6.
Therefore, (Z6,+, ×̂) is the designated isosubideal. �

Just as in the previous cases and given the particularity of the condi-
tions imposed in Proposition 3.4.15, we can guess that not all subideals
of a given ring can be isotopically lifted to an isosubideal using a fixed
isotopy, nor must all subideals of an isoring have an isosubideal struc-
ture. To answer these conjectures affirmatively would require the use
of more complicated liftings of the starting operations than those we
have been using. These, however, do not provide an important charac-
teristic for the development that we are realizing to give a basis of the
Lie-Santilli isotheory.

We end this section with a final subsection in which we will carry
out the study of quotient isorings. We will give the definition of this
new isostructure and the problems that arise will be raised in its con-
struction.
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3.4.3 Quotient isorings

Definition 3.4.17 Let (A, ◦, •) be a ring, = and ideal of A, and A/=
the quotient ring with usual structure (A/=,+,×). Â/= is called a quo-
tient isoring if, being an isotopy of A/=, (Â/=, +̂, ×̂) has the structure of
a quotient ring, i.e., if a ring (B,2,3) and an ideal J of B exist, such that
Â/= = B/J , +̂ and ×̂ being the usual operations of quotient rings arising
from 2 and 3.

Observe that the definition allows that in general the ring B and
its ideal J need not be isotopic liftings of the ring A and its ideal =,
allowing one to differentiate the concept of quotient isoring from the
quotient ring built from an isoring and its isoideal. In fact, theoreti-
cally we can give the case that either only B, or else just J , are isotopic
liftings of A or =, respectively. In this way, although all had quotient
ring structure, we would have to distinguish between the possible sets
B/J , Â/J , B/=̂, and Â/=̂.

Note also that if we study the method of constructing isotopies that
we are carrying out, such a distinction is more evident. Since we al-
ready studied isorings and isoideals, in the case of being able to con-
struct the quotient ring Â/=̂, we know that the isotopy used to obtain
Â and =̂ must have the same principal and secondary isotopic ele-
ments. Moreover, given that the isotopic lifting Â/= of the ring quo-
tient A/= would be done according to the model we already saw of
liftings of rings, the isotopy used will also consist of two principal and
two secondary elements. Certainly, given distinct characteristics of the
ringsA andA/=, the isotopic elements will not be the same in general,
because, in particular, the operations would be defined on different
sets. However, we could give the case in which Â/= = Â/=̂, although
in general they will not be equal. Here is an example of this:

Example 3.4.18 Let us consider the ring (Z,+,×) and its ideal
(Z3,+,×), with the usual sum and product. Realizing the isotopy of Ex-
ample 3.4.5, of principal elements Î = 2 and ∗ ≡ × and secondary elements
Ŝ = 0 and ? ≡ +, we obtain the isoring (P,+, ×̂) and its isoideal (Z6,+, ×̂)
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(keeping in mind that Ẑ32 = {â = a × 2 | a ∈ Z3} = Z6). We would
thus construct the quotient ring P/Z6 = {0+Z6, 2+Z6, 4+Z6}, with the
usual sum and product operations in quotient rings, arising from + and ×̂.
Denoting these also by + and ×̂, we may indicate the second explicitly, which
is given by:

1. (0 + Z6)×̂(a + Z6) = (0×̂a) + Z6 = ((0 × a) × 2) + Z6 = 0 + Z6 =

(a+ Z6)×̂(0 + Z6), for all a ∈ {0, 2, 4}.
2. (2+Z6)×̂(2+Z6) = (2×̂2)+Z6 = (2×2×2)+Z6 = 8+Z6 = 2+Z6

3. (2 + Z6)×̂(4 + Z6) = (2 × 4 × 2) + Z6 = 16 + Z6 = 4 + Z6 =

(4 + Z6)×̂(2 + Z6).
4. (4 + Z6)×̂(4 + Z6) = (4× 4× 2) + Z6 = 32 + Z6 = 2 + Z6.

So we arrive at, in particular, that the unit element of P/Z6 = Z2/Z6 =

Ẑ2/Ẑ32 is 2 + Z6.
Let us consider, on the other hand, the quotient ring Z/Z3, with the usual

operations in quotient rings, arising from the operations + and × of the ring
(Z,+,×), which we will denote ◦ and •. We now realize a lifting resem-
bling the previous one, with principal isotopic elements Î = 2 + Z3 and
∗ ≡ •, and secondary elements Ŝ = 0 + Z3 and ? ≡ ◦. Analogously to
the examples we have already seen, the final result of such an isotopy is the
isoring (Z/Z3, ◦, •̂), where the isoproduct •̂ is defined by:

1. (0 + Z3)•̂(a + Z3) = ((0 + Z3) × (a + Z3)) × (2 + Z3) = 0 + Z3 =

(a+ Z3)•̂(0 + Z3), for all a ∈ {0, 1, 2}.
2. (1 + Z3)•̂(1 + Z3) = ((1 + Z3)× (1 + Z3))× (2 + Z3) = 2 + Z3.
3. (1 + Z3)•̂(2 + Z3) = ((1 + Z3) × (2 + Z3)) × (2 + Z3) = 1 + Z3 =

(2 + Z3)•̂(1 + Z3).
4. (2 + Z3)•̂(2 + Z3) = ((2 + Z3)× (2 + Z3))× (2 + Z3) = 2 + Z3

In this way, the isoring obtained is a quotient isoring, as it was constructed
from the ring (Z,+, ×̂) and its ideal (Z3,+, ×̂), where + and ×̂ are the op-
erations cited from Example 3.4.5.

Finally, we note that despite the resemblance of the isotopy we used, we
arrived at that Ẑ/Z3 6= Ẑ/Ẑ3 (where we do not intentionally indicate the
isounits to which both sets are referred, to glimpse the difference between
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them), which shows the care that must be taken to distinguish between a quo-
tient isoring and a quotient isoring coming from an isoring and its isoideal.
�

3.5 Isofields

The next isostructure that we will study in this chapter comes from the
isotopic lifting of fields (see [121]). As we have done with the previous
isostructures, we will first give the definition of an isofield, followed by
the method of constructing them by means of the isoproduct and sev-
eral examples. Also, we indicate the most common operations between
the elements of the isofields, the isonumbers.

Definition 3.5.1 Let K = K(a,+,×) be a field of elements {a, b, . . .}
with associated product × (or alternate product, respectively, i.e., such that
a× (b× b) = (a× b)× b and (a× a)× b = a× (a× b), for all a, b ∈ K).
An isofield K̂ is an isotopy K equipped with two new operations +̂ and ×̂,
satisfying the field axioms, i.e.,

1. Axioms of addition:

a. (K̂, +̂) is closed, i.e., â+̂b̂ ∈ K̂, ∀â, b̂ ∈ K̂.
b. Commutativity: â+̂b̂ = b̂+̂â,∀â, b̂ ∈ K̂.
c. Associativity: (â+̂b̂)+̂ĉ = â+̂(̂b+̂ĉ),∀â, b̂, ĉ ∈ K̂.
d. Neutral element: ∃Ŝ ∈ K̂ such that â+̂Ŝ = Ŝ+̂â = â,∀â ∈ K̂.
e. Inverse element: Given â ∈ K̂, â−Ŝ ∈ K̂ exists such that â+̂â−Ŝ =

â−Ŝ+̂â = Ŝ.

2. Axioms of multiplication:

a. (K̂, ×̂) is closed, i.e., â×̂b̂ ∈ K̂,∀â, b̂ ∈ K̂.
b. Isocommutativity: â×̂b̂ = b̂×̂â,∀â, b̂ ∈ K̂.
c. Isoassociativity: (â×̂b̂)×̂ĉ = â×̂(̂b×̂ĉ),∀â, b̂, ĉ ∈ K̂.
d. (Isoalternancy, respectively): â×̂(̂b×̂b̂) = (â×̂b̂)×̂b̂,

(â×̂â)×̂b̂ = â×̂(â×̂b̂),∀â, b̂ ∈ K̂.
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e. Isounit: ∃Î ∈ K̂ such that â×̂Î = Î×̂â = â,∀â ∈ K̂.
f. Isoinverse: Given â ∈ K̂, â−Î ∈ K̂ exists such that â×̂â−Î =

â−Î×̂â = Î .

3. Axioms of addition and multiplication:

a. (K̂, +̂, ×̂) is closed: â×̂(̂b+̂ĉ), (â+̂b̂)×̂ĉ ∈ K̂,∀â, b̂, ĉ ∈ K̂.
b. Isodistributivity: â×̂(̂b+̂ĉ) = (â×̂b̂)+̂(â×̂ĉ),

(â+̂b̂)×̂ĉ = (â×̂ĉ)+̂(̂b×̂ĉ),∀â, b̂, ĉ ∈ K̂.

We finally note that the elements of the isofield K̂ are usually called isonum-
bers.

We will then apply the method of constructing isotopies by means
of an isounit and isoproduct to obtain isofields from a given field. Let
us therefore fix a field K = K(a,+,×) in the conditions of Defini-
tion 3.5.1. We must bear in mind that two isounits and two operations
should appear in this construction, in the conditions of Definition 3.1.3
(since, by the definition of an isofield, a neutral element Ŝ for the lifting
+̂ and an isounit Î for ×̂).

In addition, we must not lose sight that any field is no more than
a ring that satisfies the condition of the inverse element with respect
to the second operation, so the construction that we have of isorings
must be very similar to what we are seeking for isofields. In fact, if
we restrict ourselves to the conditions of Proposition 3.4.2, we would
get all the axioms mentioned in the above definition, except that of the
isoinverse.

On the other hand, if we are working with the alternancy axiom
instead of the associativity axiom, it would suffice to restrict, in turn,
the associativity of the operation ∗ (or ?, if we search for an isoring
with respect to the sum) to the degree of alternancy. Therefore from
now on we will assume that we are always working with the axiom
of associativity, given the analogous handling of alternancy. We will
also assume that in the use of Proposition 3.4.2 we will be managing
isorings with respect to multiplication, being analogous with respect
to the sum. Indeed, observing the analogy between the construction
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of isorings and isofields, we already noted that any isotopy of a field,
constructed using the model of the isoproduct, will consist, as in the
case of the isorings, of two principal isotopic elements, Î and ∗, and
two secondary ones, Ŝ and ?. Also, depending on whether ∗ ≡ × or if
∗ ≡ +, we will denote the isotopic lifting of the starting field the isofield
with respect to multiplication or with respect to the sum, respectively. Due
to expansion, we will carry out our construction seeking to obtain an
isofield only with respect to multiplication, given that the procedure
would be analogous for the sum.

To solve the problem raised by the isoinverse, it would suffice to im-
pose on Proposition 3.4.2 that the ring (A, ?, ∗) (in our case it would be
A = K) have the property of the inverse element for the second opera-
tion, i.e., it would suffice to impose that (A, ?, ∗) have a field structure.

With the notation of Proposition 3.4.2, to see that the isoinverse con-
dition is effectively verified, let us set an element â ∈ Â such that
â = a ∗ Î , with a ∈ A. Then, as (A, ?, ∗) would have a field structure,
a−I ∈ A, the inverse element of a with respect to ∗would exist, thus it
would suffice to take â−Î = â−I , since then â×̂â−I = (a ∗ a−I) ∗ Î =

I ∗ Î = Î = â−I×̂â. In this way, the existence of the isoinverse would be
verified, which was the missing axiom for obtaining the isofield with
respect to multiplication.

As a result we have demonstrated the following:

Proposition 3.5.2 Let K = K(a,+,×) be an associative field. Let Î , Ŝ, ∗
and ? be isotopic elements in the conditions of Definition 3.1.3, I and S being
the respective unit elements of ∗ and ?. In these conditions, if K(a, ?, ∗) has a
field structure with respective field elements S, I ∈ K, then the isotopic lifting
K̂(â, +̂, ×̂), realized by the previous procedure, corresponding to the isotopy
of principal elements Î and ∗ and secondary elements Ŝ and ?, has an isogroup
structure with respect to multiplication, provided that a ∗ r = r = r ∗ a,
∀a ∈ K, with r ∈ K such that R̂ = Ŝ−S = r ∗ Î .

Similarly, if K(a, ∗, ?) has a field structure with respective unit elements
I, S ∈ K, then the isotopic lifting by the construction of the isoproduct
K̂(â, +̂, ×̂), corresponding to the isotopy of the listed items above, has isofield



3.5 Isofields 221

structure with respect to the sum if a ? t = t = t ? a, ∀a ∈ K, is satisfied,
t ∈ K being such that t ∗ Î = T = Î−I . 2

Again, as in the case of isorings, if the final condition of a ∗ r = r =

r ∗ a or a ? t = t = t ? a, ∀a ∈ K is not fulfilled, then it does not satisfy
the distributivity axiom. However, as the rest of axioms are satisfied,
the resulting structure is given the name of pseudoisofield (see [128]).

Before seeing some examples of isofields, let us point out that the
conservation of the axioms of K allow that the isounit Î concerning
the operation ×̂ continues to satisfy the usual unit axioms of the oper-
ation× of the initial field (see [145]). Thus, for example, with the usual
notation, we have:

1. Î2 = Î×̂Î = (I ∗ I) ∗ Î = I ∗ Î = Î .

2. În =

n times︷ ︸︸ ︷
Î×̂ . . . ×̂Î = (

n times︷ ︸︸ ︷
I∗ . . . ∗I) ∗ Î = I ∗ Î = Î .

3. Î×̂Î−I = Î , since Î×̂Î = Î .

In addition, the isotopic lifting we are carrying out does not im-
ply a change in the numbers used in a determinate theory, since if
we multiply an isonumber n̂ by an amount Q, we have that n̂×̂Q =

(n ∗ Î) ∗ T ∗ Q = n ∗ Q (see [175]). On the other hand, all the usual
operations dependent on multiplication over K are generalized to K̂
in a unique way through the corresponding lifting (see [145]). Thus,
we have the following:

Definition 3.5.3 With the usual notation, for all â, b̂ ∈ K̂, the following
isooperations are defined:

1. Isoquotient: â/̂b̂ = â×̂b̂−Î = (a ∗ b−I) ∗ Î ∈ K̂.
2. Isosquare: â2̂ = â×̂â = (a ∗ a) ∗ Î ∈ K̂.
3. Isosquareroot: â

1̂
2 = b̂ ∈ K̂ ⇔ b̂2̂ = â.

4. Isonorm: |̂â̂| = ̂(a ∗ a) 1̂
2 ∈ K̂, where a represents the conjugate of a ∈ K

with respect to ∗.

However, in practice it is normal that ∗ ≡ ×. In these cases, the
lifting of the previous operations looks even clearer in the following:
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Definition 3.5.4 They are in practice defined as:

1. Isoquotient: â/̂b̂ = (a∗ b−I)∗ Î = (a× b−I)∗ Î = (a/b)∗ Î = â/b ∈ K̂.
2. Isosquare: â2̂ = (a ∗ a) ∗ Î = (a× a) ∗ Î = a2 ∗ Î = â2 ∈ K̂.

3. Isosquareroot: â
1̂
2 = a

1
2 ∗ Î = â

1
2 ∈ K̂, since â 1

2

2̂

= (a
1
2 )2 ∗ Î = a∗ Î =

â.

4. Isonorm: |̂â̂| = ̂(a ∗ a) 1̂
2
= (a× a) 1

2 ∗ Î = |a| ∗ Î = |̂a| ∈ K̂.

Note that it is clear, in addition, that all defined isooperations are
closed in K̂. Finally we will define the concept of isocharacteristic of
an isofield:

Definition 3.5.5 An isofield K̂(â, +̂, ×̂) is said to be of isocharacteristic

p if a minimal positive number p exists such that

p times︷ ︸︸ ︷
â×̂ . . . ×̂â = Î (Î being the

isounit of the isofield in question with respect to the operation ×̂). Otherwise
it is said to be of zero isocharacteristic.

Here below are some examples of isofields:

Example 3.5.6 In an analogous way to Example 3.4.3 we prove, by ap-
plying Proposition 3.5.2, that if we consider the field (R,+,×) of the real
numbers, with the usual sum and product, and take as principle elements of
the isotopy Î = 1 and ∗ ≡ × (with unit element I = 1 = Î ∈ R) and
as secondary elements Ŝ = 0 = 0 ∗ 1 and ? ≡ + (with the unit element
S = 0 = Ŝ ∈ R), then the isotopic lifting of (R,+,×), corresponding to
the isotopy of the aforementioned elements, is equivalent to the identity, leav-
ing invariant both the operations and the elements of the starting field. So,
(R̂, +̂, ×̂) = (R,+,×). �

Note that this example confirms again that if in an isotopic lifting of
a structure neither the starting operations nor its corresponding units
varies, the resulting isostructure coincides with the original structure.

Example 3.5.7 Let us consider the field (R,+,×) again. Let us now take
the principal isotopic elements Î = i and ∗ ≡ • (the product of complex num-
bers) and the secondary elements Ŝ = 0 and ? ≡ + (the sum of complex
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numbers). Then we have that (R, ?, ∗) = (R,+, •) = (R,+,×) is a field
with respective unit elements S = 0 and I = 1, both in R. As, in addition,
Ŝ−S = 0−0 = 0 = 0 ∗ 1 and a ∗ 0 = 0 = 0 ∗ a, ∀a ∈ R, Proposition 3.5.2
then assures us that the isotopic lifting corresponding to the isotopy of the
aforementioned elements is an isofield with respect to multiplication. The re-
sulting isotopic set would be R̂i = {â = a ∗ i = a • i | a ∈ R} = Im(C).
On the other hand, the isoproduct ×̂ would be defined according to: â×̂b̂ =

(a ∗ b) ∗ i = (a • b) • i = â • b = â× b, for all â, b̂ ∈ R̂i. Therefore,
(Im(C),+, ×̂) would be the indicated isofield. �

It is important to note that using this isotopy we have given Im(C)

a field structure, a structure that does not have the complex product
•, since, given z = z0 • i, ω = ω0 • i ∈ Im(C), we have that z • ω =

z0 • i • ω0 • i = z0 • ω0 • (−1) = −(z0 • ω0) /∈ Im(C). However, the new
isoproduct does give a field structure to Im(C), since ×̂ is an internal
operation due to, with the previous notation, our having that z×̂ω =

(z0 • i)×̂(ω0 • i) = (z0 • ω0) • i ∈ Im(C).
We end this section with a remark not yet considered. It is that

given a structure and an associated isostructure, if we consider that
we are working at the abstract level of the axioms (i.e., where we only
take into account the axioms which satisfy a particular mathemati-
cal object), the former structure and the isostructure can be consid-
ered equivalent, being associated with the same axioms (see [175]).
This will serve for any structure in general and can therefore can be
considered equivalent in the abstract level of the axioms, groups and
isogroups, rings and isorings, ideals and isoideals, etc. Also, in the case
of the fields and isofields, we can consider them equivalent in that ab-
stract axiomatic level.

The latter suggests that whole field can be obtained starting from
from one given, by means of a determinate isotopy or, at least, through
a series of successive isotopies. In fact, Santilli showed in 1991 that the
whole field of zero characteristic is the isotopic lifting of the field of real
numbers corresponding to a particular isotopy (see [121]). What hap-
pens, however, is that this isotopic lifting need not follow the model
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analyzed so far. Let us see, to finish this section, an example of what
was mentioned above for the particular case of the field C of the com-
plex numbers:

Example 3.5.8 Let us consider (R,+,×) and the isofields (R̂1,+,×) of
Example 3.5.6 and (R̂i,+, ×̂) of Example 3.5.7. It would suffice to reach an
isotopy of R that would give as a result C = R̂ = R̂1 ⊕ R̂i (where ⊕
denotes the usual direct sum), establishing as an isoproduct the usual product
associated with the direct sum. That is, taking into account that the generic
element of R̂ would be of the form z = α ⊕ β, with α ∈ R̂1 and β ∈ R̂i

(i.e., α ∈ R and β ∈ Im(C)), then, given z = α⊕ β, z′ = α′ ⊕ β′ ∈ R̂, we
would consider the isoproduct • : R̂× R̂→ R̂, such that (z, z′)→ z • z′ =
(α ⊕ β) • (α′ ⊕ β′) = (α × α′) ⊕ (β×̂β′) ∈ R̂1 × R̂i (and therefore •
is well-defined). In this way, the isounit associated with R̂ with respect to •
would be Î = 1 ⊕ i, since if z = α ⊕ β, then z • Î = (α ⊕ β) • (1 ⊕ i) =
(α× 1)⊕ (β×̂i) = α⊕ β = z = Î • z.

On the other hand, such as lifting the operator +, we would give the usual
associated sum for the direct sum. So, for the previous elements z and z′, it
would be ◦ : R̂× R̂→ R̂, such that (z, z′)→ z ◦ z′ = (α⊕β)◦ (α′⊕β′) =
(α + α′) ⊕ (β + β′) ∈ R̂1 × R̂i = R̂ (and therefore ◦ is well-defined). The
isounit of R̂ with respect to ◦would then be Ŝ = 0⊕0, since then, if z = α⊕β,
we would have z◦Ŝ = (α⊕β)◦(0⊕0) = (α+0)⊕(β+0) = α⊕β = z = Ŝ◦z.

Therefore, we arrive at being able to consider the field of complex numbers
as an isotopy of (R,+,×), taking C = R̂1⊕i and the operations ◦ and •
defined before. �



Chapter 4

LIE-SANTILLI ISOTHEORY:
ISOTOPIC STRUCTURES (II)

Chapter 4 continues the study of the Lie-Santilli isotheory, perform-
ing the isotopic lifting of more complex algebraic structures than those
seen before. Thus, vector isospaces and metric vector isospaces are studied,
followed by isomodules. In addition, considering it of great interest, by
the important consequences that are derived from them, we also felt it
appropriate to include a section dedicated to the study of isotransfor-
mations.

4.1 Vector isospaces

In the first subsection of this section, we look at the vector isospaces
and isosubspaces (see [77]). In the second section, we deal with the
metric vector isospaces (see [121] and [111]). In both sections, we follow
the same procedure as for the isostructures we already saw.

4.1.1 Vector isospaces and isosubspaces

225
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Definition 4.1.1 Let (U, ◦, •) be a vector space defined over a field K =

K(a,+,×). Let K̂ = K̂(â, +̂, ×̂) be an isofield associated withK. Û is called
a vector isospace on K̂ if, being an isotopy ofU equipped with two new oper-
ations ◦̂ and •̂, (Û , ◦̂, •̂) has a vector space structure over K̂, i.e., if ∀â, b̂ ∈ K̂
and ∀X̂, Ŷ ∈ Û , we verify that

1. (Û , ◦̂, •̂) is closed, (Û , ◦̂) being an isosubgroup;
2. the 4 axioms of the external operation:

a. â•̂(̂b•̂X̂) = (â×̂b̂)•̂X̂ .
b. â•̂(X̂ ◦̂Ŷ ) = (â•̂X̂)◦̂(â•̂Ŷ ).
c. (â+̂b̂)•̂X̂ = (â•̂X̂)◦̂(̂b•̂X̂).
d. Î •̂X̂ = X̂ ,

Î being the isounit associated with K̂ with respect to the operation ×̂.
The elements of the isospace Û are usually called isovectors.

Note that by the last axiom of the external operation, the element Î ,
which is the isounit associated with the isofield K̂ with respect to ×̂,
also becomes the isounit Û with respect to •̂. In addition, it is impor-
tant to note the presence of two distinct isotopies in the isotopic lifting
of a vector space. On the one hand, we would have the isotopy for ob-
taining the isofield K̂, while on the other hand it would be the isotopy
corresponding to the vector isospace Û , properly said.

On the other hand, if we now turn to study the model of construct-
ing isotopies that we are carrying out from an isounit and from the
isoproduct, we will notice a number of differences that appear with
respect to the cases already studied. To start, we cannot make a dis-
tinction between vector isospaces with respect to the sum or multipli-
cation, since we have already imposed one of the isounits that we must
use. Let us look at this more closely.

Suppose we have a vector space (U, ◦, •) defined over a field
K(a,+,×) and an isofield with respect to multiplication (with regard
to the sum, it would be analogous) associated with K, corresponding
to the isotopy of principal elements Î and ∗ (of unit element I) and
secondary elements Ŝ and ?. We seek to construct a structure (Û , ◦̂, •̂)
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satisfying the conditions of the previous definition. To do this we must
impose that the principal isounit be Î and that it must act in the lifting
of the operation • to obtain •̂. Moreover, given that we want to get two
new operations ◦̂ and •̂, we will complement the isounit Î with the el-
ements of primary and secondary isotopies, which are still common in
this type of lifting. Let us assume therefore that we have principal iso-
topic elements Î and 2, and secondary ones Ŝ′ and �, both pairs of the
compatible elements for the construction being of the same isotopic set
ÛÎ = {X̂ = X2Î | X ∈ U}, in the sense already seen for isorings.

However, it should be noted that in a vector space it makes no sense
to talk about the inverse element with respect to the second operation,
the latter being external. For this reason, if in a way analogous to the
cases already studied, it interested us impose that (U, �,2) have vector
space structure on K(a, ?, ∗) (which has a field structure according to
the condition imposed on Proposition 3.5.2 to obtain an isofield), it
would not make sense to talk about the inverse element of 2, nor for
both isotopic elements, in the sense of being the inverse of Î . What it
would indicate is that the general set V ′ associated with the isotopy
we are building was such that K ∪ U ⊆ V ′, as it would be necessary
to define 2 as an external operation to obtain that (U, �,2) be a vector
space overK(a, ?, ∗). Thus, the model of construction of the isoproduct
that has been done so far will not be valid to obtain the operation •̂.

To construct this last operation, we would impose that (U, ◦) were
a group with the same unit element as that of (V, ◦), V being the gen-
eral set associated with the isotopy in question. We denote the unit

element by S′. Thus, if if Ŝ′
−S′

= R̂′ = R′2Î , we would finally have
that ◦̂ would be defined as X̂ ◦̂Ŷ =X̂ � R̂′ � Ŷ , for all X̂, Ŷ ∈ Û . In this
way we would also have, by Proposition 3.3.2, that (Û , ◦̂) would be an
isogroup.

In terms of the operation •̂, despite not being able to define it as we
have been doing until now, we can, by construction, make it directly,
saying that â•̂X̂=(a2X)2Î = â2X , for all â ∈ K̂,∀X̂ ∈ Û .
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We should then impose that 2 have as unit element for I (unit ele-
ment of ∗), because then we would have Î •̂X̂ = (I2X)2Î = X2Î =

X̂ , for all X̂ ∈ Û , and it would already satisfy the last axiom (2.d) of
the external operation of the definition.

In addition, imposing, as already noted earlier, that (U, �,2) be a
vector space over K(a, ?, ∗), we will have that â•̂X̂ = (a2X)2Î ∈ Û ,
for all â ∈ K̂ and X̂ ∈ V̂ , as then a2X ∈ U . In this way, we will have
proved that (Û , ◦̂, •̂) is closed, and, as we have already seen, that (Û , ◦̂)
is an isogroup, we have also proved condition (1) of the definition.

In addition, the fact that (U, �,2) is a vector space overK(a, ?, ∗) im-
plies that 2 has I as its unit element, whereby we would have already
stated it before for obtaining Î as the isounit of •̂.

Condition (2.b) already complies with all the above, satisfying that
â•̂(̂b•̂X̂) = â•̂((b2X)2Î) = (a2(b2X))2Î = ((a ∗ b)2X)2Î =

â ∗ b•̂X̂ = (â×̂b̂)•̂X̂ , for all â, b̂ ∈ K̂ and X̂ ∈ Û .
To prove condition (2.c), it suffices to impose that â•̂R̂′ = R̂′, for

all â ∈ K̂, since then, given â ∈ K̂ and X̂, Ŷ ∈ Û , we would have
â•̂(X̂ ◦̂Ŷ ) = â•̂(X̂ � R̂′ � Ŷ ) = â•̂((X2Î) � (R′2Î) � (Y2Î)) = â•̂((X �
R′ � Y ))2Î) = (a2(X � R′ � Y ))2Î = ((a2X) � (a2R′) � (a2Y ))2Î =

(a2X2Î) � (a2R′2Î) � (a2Y2Î) = (â•̂X̂) � (â•̂R̂′) � (â•̂Ŷ ) = (â•̂X̂) �
R̂′ � (â•̂Ŷ ) = (â•̂X̂) � (â•̂Ŷ ).

Finally, so that the condition (2.d) is satisfied, we should impose
that if Ŝ−S = R̂ = R ∗ Î , then R̂•̂X̂ = R̂′, ∀X̂ ∈ Û , since then, given
â, b̂ ∈ K̂ and X̂ ∈ Û , we would have that (â+̂b̂)•̂X̂ = (â ? R̂ ? b̂)•̂X̂ =̂(a ? R ? b)•̂X̂ = ((a ? R ? b)2X)2Î = (a ? R ? b)2(X2Î) = (a2X2Î) �
(R2X2Î)� (b2X2Î) = (â•̂X̂)� (R̂•̂X̂)� (̂b•̂X̂) = (â•̂X̂)� R̂′ � (̂b•̂X̂) =

(â•̂X̂)◦̂(̂b•̂X̂).
Therefore, as a result of the foregoing, the following is now proved:

Proposition 4.1.2 Let (U, ◦, •) be a vector space defined over the field
K(a,+,×). Let K̂(â, +̂, ×̂) be the isofield with respect to multiplication as-
sociated with K, corresponding to the isotopy of principal elements Î and ∗
(of unit element I) and secondary elements Ŝ, and ? (of unit element S, with
Ŝ−S = R̂ = R ∗ Î), in the conditions of Proposition 3.5.2. Let 2 (of unit
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element I), Ŝ′, and � (of unit element S′, with Ŝ′
−S′

= R̂′ = R′2Î), be
elements of the isotopy that, together with Î , are in the conditions of Defini-
tion 3.1.3, the associated general set V ′ being such that K ∪U ⊆ V ′. In these
conditions, if (U, �,2) has a vector space structure over the field K(a, ?, ∗),
(U, �) being a group with unit element S′ ∈ U , â•̂R̂′ = R̂′, for all â ∈ K̂ and
R̂•̂X̂ = R̂′, for all X̂ ∈ Û , then the isotopic lifting (Û , ◦̂, •̂), corresponding
to the isotopy of principal elements Î and 2 and secondary elements Ŝ and �,
by means of the isoproduct procedure, has an isovector space structure over
K̂. 2

Let us see below some examples of vector isospaces:

Example 4.1.3 We will give an example of a vector isospace of the general
type, which is widely used as a model in practice.

Let (U, ◦, •) be a vector space over the field K(a,+,×) (of respective unit
elements 0, I ∈ K), of respective unit elements

−→
0 , I ∈ U , satisfying the

usual properties (as 0 • X =
−→
0 , ∀X ∈ U , a • −→0 =

−→
0 , ∀a ∈ K, 0−I

does not exist, etc). Let K̂(â, +̂, ×̂) = K̂(â,+, ×̂) be the isofield with respect
to multiplication associated with K, corresponding to the isotopy of principal
elements Î ∈ K and ∗ ≡ × (of unit element I) and secondary elements Ŝ = 0

and ? ≡ + (of unit element S = 0). We are going to isotopically lift the vector
space U utilizing as principal isotopic elements Î and 2 ≡ • (of unit element
I) and as secondary isotopic elements � ≡ ◦ and Ŝ′ =

−→
0 =

−→
0 • Î .

As Î ∈ K, we have that the associated isotopic set is U itself, i.e., ÛÎ =

{X̂ = X2Î = X • Î : X ∈ U} = U ; then if there is an element X ∈ U
such that X /∈ Û , taking X • T ∈ U , T = Î−I ∈ K (since Î ∈ K,
K(a, ?, ∗) = K(a,+,×) being a field, as we saw in the construction made in
Proposition 3.5.2), we would arrive at (X•T )•Î = X ∈ Û , which would be a
contradiction. In this way, the secondary elements � and Ŝ′ are well-selected,
that they also remain for U an associated isotopic set.

The operations ◦̂ and •̂ would be defined as follows:

1. X̂ ◦̂Ŷ = (X2Î) ◦ 0 ◦ (Y2Î) = (X2Î) ◦ (Y2Î) = (X • Î) ◦ (Y • Î) =
(X ◦ Y ) • Î = (X ◦ Y )2Î = X̂ ◦ Ŷ ⇒ ◦̂ ≡ ◦ for all X̂, Ŷ ∈ Û .

2. â•̂X̂ = (a ∗ Î)•̂(X2Î) = (a •X)2Î , for all â ∈ K̂ and for all X̂ ∈ Û .
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In addition we have that
3. (U, �,2) = (U, ◦, •) has a vector space structure defined over the field
K(a, ?, ∗) = K(a,+,×), (U, �) = (U, ◦) being a group with unit element
S′ =

−→
0 = Ŝ′ ∈ U .

4. As R̂′ = Ŝ′
−S′

=
−→
0 −
−→
0 =

−→
0 =

−→
0 2Î , for â ∈ K̂, we have that â•̂R̂′ =

(a2
−→
0 )2Î = (a • −→0 )2Î =

−→
0 2Î =

−→
0 = R̂′.

5. Also, as R̂ = Ŝ−S = 0−0 = 0 = 0× Î = 0̂, too, we have, for all X̂ ∈ Û ,
that 0̂•̂X̂ = (02X)2Î = (0 •X)2Î =

−→
0 2Î =

−→
0 = R̂′.

That is why we are able to apply Proposition 4.1.2, thus resulting in
(ÛÎ , ◦̂, •̂) = (U, ◦, •̂) being an isovector space over the field K̂(â, +̂, ×̂) =

K̂(â,+, ×̂). �

We will now see a concrete example of the previous model.

Example 4.1.4 Let (Mm×n(R),+, •) be a vector space of real matrices
of dimension m × n, with the usual sum and product of matrices over the
field (R,+,×) of real numbers with the usual sum and product. Let us con-
sider the isofield with respect to multiplication (R̂2,+, ×̂) associated with
(R,+,×), corresponding to the isotopy of principal elements Î = 2 and
∗ ≡ × and secondary elements Ŝ = 0 and ? ≡ +. Then, R̂2 = {â =

a × 2 | a ∈ R} = R, the isoproduct ×̂ remaining defined according to
â×̂b̂ = (a× b)× 2 = â× b, for all â, b̂ ∈ K̂. It can be observed, analogously
to the previous examples, that we can apply Proposition 3.5.2, then arriving
at (R̂2,+, ×̂) = (R,+, ×̂) effectively being an isofield.

We now consider the principal isotopic elements Î = 2 and 2 ≡ •
and the secondary ones Ŝ = 0 (the null matrix) and � ≡ +. Exam-
ple 4.1.3 then assures that the isotopic lifting ( ̂Mm×n(R), +̂, •̂) associated
with (Mm×n(R),+, •) is a vector isospace over the field (R,+, ×̂). Also, the
following are satisfied:

1. ̂Mm×n(R)2 = {Â = A • 2 | A ∈Mm×n(R)} =Mm×n(R).
2. +̂ ≡ +, as we already saw in Example 4.1.3.

Finally, the isoproduct •̂ would be defined as â•̂Â = (a • A) • 2, for all
â ∈ R̂2 and for all Â ∈ ̂Mm×n(R)2.

Therefore, (Mm×n(R),+, •̂) is the sought isovector space. �
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We will then study a some fundamental objects of all vector spaces:
their bases. All vector isospaces, to have a vector space structure, must
at least be associated with a basis. One might then ask about the con-
cept of an isobasis; i.e., we should ask, if given a basis of a vector space,
whether the isotopic lifting of the basis would be a basis of the corre-
sponding vector isospace. If so, the isotopic lifting of the basis is called
an isobasis. On the other hand, we can also ask ourselves if any basis of
a vector isospace has an isobasis structure.

To answer both questions, let us assume that we are in the con-
ditions of Proposition 4.1.2, while retaining all the notations used
there. Suppose also that we have the sets β = {e1, e2, . . . , en} and
β̂ = {ê1 = e12Î , ê2 = e22Î , . . . , ên = en2Î}. Then it interests us to
study under what conditions we have that if β is a basis of U , then β̂

is a basis of Û , and vice versa. We can do this as we have performed
similar studies, i.e., imposing conditions for the isotopic elements
involved in the lifting in question. Thus, what happens is that some
possible cases do not appear. For example, if we had that β is a basis
of U , β̂ is a basis of Û , and X = e1 + e2, with X̂ = ê3, in principle
we could not establish any relationship between the isotopic elements
involved to obtain other determined elements e1, e2, and ê3, then
most likely we would restrict the possibility of being able to perform
certain isotopic liftings of elements of U that otherwise could be done.
If, however, we wanted to propose a method of lifting under which
these two questions could be answered, the way of achieving it would
not be unique, precisely because a generic lifting need not keep any
relationship between the elements of the basis. In fact, this makes that,
despite being able to find isotopic models that satisfy the conservation
of bases, in general the answer to the two questions set forth before is
negative.

In particular, one such model would be what has been given in Ex-
ample 4.1.3, which is widely used in practice because of its property of
maintaining bases. To see it, we are going to start reducing the ques-
tion of conservation of bases to generator systems and linearly inde-
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pendent systems. So we assume, first of all, that β is a generator of U
and we want to see if β̂ is a generator system Û , under the conditions of
Example 4.1.3. For this purpose we take X̂ ∈ Û ; thenX ∈ U . However,
as β is a generator system of U , we can writeX = (λ1•e1)◦...◦(λn•en),
with λ1, ..., λn ∈ K. Then X̂ = X2Î = ((λ1 • e1) ◦ ... ◦ (λn • en))2Î .
Bearing in mind, then, that 2 ≡ • and ◦̂ ≡ ◦, Î ∈ K and the defi-
nition of the isoproduct •̂, given in the construction of the isovector
space, we will finally have that X̂ = ((λ1 • e1) ◦ . . . ◦ (λn • en)) • Î =

((λ1 • e1) • Î) ◦ . . . ◦ ((λn • en) • Î) = ((λ12e1)2Î)◦̂ . . . ◦̂((λn2en)2Î) =
(λ̂1•̂ê1)◦̂ . . . ◦̂(λ̂n•̂ên), with λ̂1, . . . , λ̂n ∈ K̂. As a consequence, β̂ is a
generator system of Û .

We now suppose that β is a linearly independent system in U , and
we are going to see if β̂ is one in Û , always under the conditions of
Example 4.1.3. We tak λ̂1, ..., λ̂n ∈ K̂, such that (λ̂1•̂ê1)◦̂ . . . ◦̂(λ̂n•̂ên) =−→
0 =

−→
0 • Î (which is the unit element of (Û , ◦̂) = (U, ◦)). We would

then have that: (λ̂1•̂ê1)◦̂ . . . ◦̂(λ̂n•̂ên) = ((λ1 • e1) ◦ . . . ◦ (λn • en))2Î =
−→
0 =

−→
0 2Î . However, with the conditions imposed in Example 4.1.3,

the only element of U that can be lifted to
−→
0 is

−→
0 , since if there exists

another distinct element X ∈ U , such that X2Î = X • Î =
−→
0 , it

should be Î = 0, which is not possible, since in lifting the field K

we took ∗ ≡ ×, zero not being invertible (a necessary condition so
that the isotopic element T = Î−I exists and to construct the isofield).
Therefore, we should maintain that (λ1 •e1)◦ . . .◦ (λn •en) =

−→
0 . Then,

applying that β is a linearly independent system, we would have that
λi = 0,∀i = 1, . . . , n. So, λ̂i = λi ∗ Î = λi × Î = 0× Î = 0 (which is the
unit element of K̂(â, +̂) = K(a,+)), ∀i ∈ {1, . . . , n}, thus arriving at β̂
being a linearly independent system in Û .

The consequence of all the above is as follows:

Proposition 4.1.5 Let us consider the vector and isovector systems β =

{e1, . . . , en} and β̂ = {ê1 = e12Î , . . . , ên = en2Î}. In the conditions of
Proposition 4.1.2 and following the isotopic model utilized in Example 4.1.3,
if β is a basis of U , then β̂ is an isobasis of Û . 2
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For seeing if any basis of an isovector space can have an isobasis
structure, we return to point out that this will depend on, at all times,
the isotopic model that we are using. In particular, we will see again
that the model of Example 4.1.3 gives an affirmative answer to this
question, even though the same answer, in general, may have a nega-
tive response, depending on the lifting used.

Let us then consider the conditions of Proposition 4.1.2 and the iso-
topic model of Example 4.1.3. Let us suppose we have the sets β and
β̂ indicated above. We are going to prove, in the first place, that if β̂
is a generator system of Û , then β is a generator system of U . For this
purpose, let us take X ∈ U ; then X̂ = X2Î ∈ Û . As β̂ is a generator
system of Û , we can write X̂ = (λ̂1•̂ê1)◦̂ . . . ◦̂(λ̂n•̂ên). Then, taking into
account the conditions imposed in Example 4.1.3, the following would
result: X̂ = ((λ1 •e1)◦ . . .◦ (λn •en))2Î , from where we would see that
X = (λ1•e1)◦. . .◦(λn•en), for, supposing that an element Y ∈ U exists,
with Y 6= X , such that X̂ = Ŷ , we would have that X2Î = Y2Î ⇒
X • Î = Y • Î ⇒ (X • Î)◦ (Y • Î)−

−→
0 =
−→
0 ⇒ (X • Î)◦ (Y −

−→
0 • Î) = −→0 ⇒

(X ◦ Y −
−→
0 ) • Î =

−→
0 =

−→
0 • Î ⇒ X ◦ Y −

−→
0 =

−→
0 ⇒ X = Y , which is

a contradiction to the fact that X 6= Y . Therefore, we would have then
obtained X as a combination of the elements e1, . . . , en, which shows
that β is a generator system of U .

Note that this feature of the isotopic model that we are considering,
satisfying X = Y if X̂ = Ŷ , is not a common property in isotopies.
Moreover, this characteristic is also one of the main reasons why the
answer to the question whether any basis of an isovector space has
isobasis structure is negative. Because if we have, as in the example
above, X̂ = ((λ1 • e1) ◦ . . . ◦ (λn • en))2Î ∈ Û , with Y = (λ1 • e1) ◦
. . . ◦ (λn • en) ∈ U , it need not be that X = Y , since, in fact, we can
find another, different combination of elements ei which represents X
or even that it need not have any. For this reason, it is convenient to
give the following:
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Definition 4.1.6 In the conditions of Definition 3.1.3, an isotopic lifting
of the structure E is called injective (or that it corresponds to an injective
isotopy) if it satisfies X = Y for all X,Y ∈ G such that X̂ = Ŷ .

Let us now suppose that β̂ is a linearly independent system in Û ,
and we are going to prove that β is also one in U , always under the
conditions of Example 4.1.3. We take for it λ1, . . . , λn ∈ K such that
(λ1 • e1) ◦ . . . ◦ (λn • en) =

−→
0 . Then, ((λ1 • e1) ◦ . . . ◦ (λn • en))2Î =

(λ̂1•̂ê1)◦̂ . . . ◦̂(λ̂n•̂ên) =
−̂→
0 =

−→
0 , and therefore we would have λ̂i =

0 = 0 × Î = 0 ∗ Î = 0 (the unit element of K̂(â, +̂) = K(a,+)), ∀i =
1, . . . , n, for β̂ being a basis of Û . However, the foregoing implies that
λi = 0, ∀i = 1, . . . , n, so if another element a ∈ K (distinct from 0)
exists, such that â = a ∗ Î = a× Î = 0, then it would have to be Î = 0,
which is impossible by what was already seen previously, that there
would be no isotopic element T = Î−I necessary for the construction
of the isofield K̂. Therefore, β is a linearly independent system.

All of the above proves the following:

Proposition 4.1.7 Under the conditions of Proposition 4.1.2 and follow-
ing the isotopic model used in Example 4.1.3, any basis of the isovector space
Û is an isobasis. 2

We will finalize this section by studying isotopic liftings of substruc-
tures associated with vector spaces: vector subspaces. So, we will fol-
low the usual procedure.

Definition 4.1.8 Let (U, ◦, •) be a vector space overK(a,+,×), (Û , ◦̂, •̂)
an isovector space associated with U over the field K̂(â, +̂, ×̂), and (W, ◦, •)
a vector subspace of U . Ŵ ⊆ Û is called an isovector substance of Û if,
being an isotopy of W , (Ŵ , ◦̂, •̂) is a vector subspace of Û , i.e., if (Ŵ , ◦̂, •̂)
has isovector space structure over K̂(â, +̂, ×̂) (given that we already have
Ŵ ⊆ Û ).

As it has been done so far in passing to the model of constructing an
isotopy by means of an isounit and isoproduct, as we want that the as-
sociated operations for the future isovector subspace to be the same as
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those associated with the starting isovector space, we will have to use
the same isotopic elements as those used to construct Û . Thus, we have
in particular that, with a vector subspaceW of the vector space (U, ◦, •)
over K(a,+,×) fixed and the associated isovector space (Û , ◦̂, •̂) over
K̂(â, +̂, ×̂), Ŵ ⊆ Û will result, carrying out the corresponding isotopic
lifting. Moreover, given that the other condition which (Û , ◦̂, •̂) must
satisfy to be an isovector subspace is that it have isovector space struc-
ture, all that will be needed to make it one is to adjust the conditions of
Proposition 4.1.2 for our set W , which in turn has vector space struc-
ture, being a vector subspace of U . We therefore have, similarly to the
above proposition, the following:

Proposition 4.1.9 Let (U, ◦, •) be a vector space defined over the field
K(a,+,×). Let (Û , ◦̂, •̂) be the isovector space over the isofield K̂(â, +̂, ×̂)
associated with U , corresponding to the isotopy of elements Î , Ŝ, Ŝ′, ∗, ?,2,
and � in the conditions of Proposition 4.1.2. Let (W, ◦, •) be a vector sub-
space of U . In these conditions, if (W, �,2) has vector subspace structure of
(U, �,2) over the field K(a, ?, ∗), (W, �) being a group with unit element
S′ ∈W , then the isotopic lifting (Ŵ , ◦̂, •̂) corresponding to the isotopy of el-
ements indicated previously has isovector subspace structure Û over the field
K̂(â, +̂, ×̂). 2

Note that it is not necessary to assume here the rest of the assump-
tions required in Proposition 4.1.2, since they are all satisfied by the
construction of Û (i.e., Ŵ inherits them from Û ).

We end this section with an example of an isovector subspace.

Example 4.1.10 We return to revisit the vector space (Mm×n(R),+, •)
of real matrices of dimension m× n, but now taken over the field of the ratio-
nals (Q,+,×), with the usual sum and product. We can then carry out the
isotopic lifting of this vector space corresponding to the isotopy of elements
exactly the same as in Example 4.1.4, thus we would then obtain the isovector
space (Mm×n(R),+, •̂) over the field (Q,+, ×̂), where the different isoprod-
ucts are defined similarly to the cited example.

Now let the vector subspace (Mm×n(Q),+, •) of Mm×n(R) be of the
rational matrices over the field (Q,+,×). Since then (with the notation of
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Example 4.1.4), (Mm×n(Q), �,2) = (Mm×n(Q),+, •) is a vector sub-
space of (Mm×n(R), �,2) = (Mm×n(R),+, •) over (Q, ?, ∗) = (Q,+,×),
(Mm×n(Q), �) = (Mm×n(Q),+) being a group with unit element S′ =
0 ∈ Mm×n(Q), we will have by Proposition 4.1.9 that the isotopic lifting
( ̂Mm×n(Q)2, +̂, •̂) corresponding to the isotopy of the previously cited ele-
ments is an isovector subspace of (Mm×n(R),+, •̂) over (Q,+, ×̂). We ver-
ify then, in a manner analogous to the previously seen examples, that the
vector subspace would be ( ̂Mm×n(Q)2, +̂, •̂) = (Mm×n(Q),+, •̂). �

We then move to the following subsection of this section, which will
equip the isovector spaces with an isometric, similarly to how we en-
dow conventional vector spaces with a metric.

4.1.2 Metric isovector spaces

We will continue our study with the isotopic lifting of metric vector
spaces (see [110]), which implies, in turn, the isotopic lifting of conven-
tional geometries, giving rise to the so-called isogeometries (see [127]).

To carry out this study we could follow the usual model so far,
which consists in giving a general definition of the isotopic lifting in
question and studying its possible construction. However, when we
begin to study the structure of a metric vector space, there are a num-
ber of concepts which do not allow such a generalized study. This hap-
pens, for example, when studying the notion of scalar product or dis-
tance, the concept of well-orderedness in a field also appearing, which
had not been necessary so far.

To solve these problems, we could impose conditions on the dif-
ferent structures with which we work, to obtain the desired results,
in a similar manner to what has been done so far. However, we must
not lose sight that the end goal of the study of metric vector spaces is
isometric vector spaces. These, like the rest of existing geometries, re-
quire a practical study, to which over-generalizations do not contribute
any important characteristic. In fact, in practice, the isogeometries that
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have been studied so far consist mostly of a generalization of the con-
ventional units of geometries which are isotopically lifted. It amounts
to seeing how the fact of changing the conventional unit to another
distinct one, albeit with identical topological properties, affects these
geometries.

Therefore, to avoid too abstract generalizations, we restrict our-
selves almost always in our study to the case of the metric isovector
spaces and to the isogeometries coming from of the isotopies that fol-
low the model given in Example 4.1.3. Under this model, the set of
concepts related to the metric isovector spaces have an easy adapta-
tion, as you will see throughout this section. Anyway, the definitions
of the various concepts that will appear will be in the broadest sense
possible.

We will start with the definitions of a number of basic concepts for
the construction of a metric isovector space. This is followed along the
lines of distinguishing isotopic notions from conventional ones, as it
has been done so far:

Definition 4.1.11 Let (Û , ◦̂, •̂) be an isovector space defined over an isofield
K̂(â, +̂, ×̂). We say that a function f : Û × Û → K̂ is an isobilinear form
if for all â, b̂ ∈ K̂ and for all X̂,Ŷ , Ẑ ∈ Û it satisfies the following conditions:

1. f((â•̂X̂)◦̂(̂b•̂Ŷ ), Ẑ) = (â×̂f(X̂, Ẑ))+̂(̂b×̂f(Ŷ , Ẑ)).
2. f(X̂, (â•̂Ŷ )◦̂(̂b•̂Ẑ)) = (â×̂f(X̂, Ŷ ))+̂(̂b×̂f(X̂, Ẑ)).

Note that this concept given in the previous definition is the iso-
topic equivalent of the bilinear forms in vector spaces, fulfilling, in fact,
the usual properties that these latter satisfy. So, for example, following
the notation of the above definition, if β = {ê1, ê2, . . . , ên} is a basis
of the isovector space Û , then the isobilinear form f would be deter-
mined by the n2 isonumbers of the form fi,j = f(êi, êj), with i, j ∈
{1, . . . , n}. This is because, given the isovectors X̂ =

∑n
i=1 x̂i•̂êi, Ŷ =∑n

j=1 ŷj •̂êj ∈ Û , with x̂i, ŷj ∈ K̂, we have
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f(X̂,Ŷ ) = f(

n∑
i=1

x̂i•̂êi,
n∑
j=1

ŷj •̂êj) =
n∑
i=1

x̂i•̂f(êi,
n∑
j=1

ŷj •̂êj) =

n∑
i=1

x̂i•̂(
n∑
j=1

ŷj •̂f(êi, êj)) =
n∑

i,j=1

(x̂i×̂ŷj)•̂f(êi, êj),

for all i, j ∈ {1, . . . , n}, where the symbol
∑

denotes the usual sum-
mation, although with respect ◦̂, a notation that we will continue using
later, with a similar meaning.

Let us see an example of a isobilinear form of great importance in
the study of metric isovector spaces: the isoscalar product. It is the anal-
ogous concept for isovector spaces of the conventional scalar product.

Definition 4.1.12 Let K̂(â, +̂, ×̂) be an isofield associated with
K(a,+,×), endowed with an order ≤, 0 ∈ K̂ being the unit element
of K̂ with respect to +̂, with the usual properties with respect to the order ≤.
Let (Û , ◦̂, •̂) be an isovector space over K̂(â, +̂, ×̂), associated with a Hilbert
vector space (U, ◦, •), with scalar product 〈., .〉, and with the element

−→
0 ∈ Û

as the unit element with respect to ◦̂. We say that Û is a Hilbert isovector
space if it is endowed with an isoscalar product, 〈̂., .〉 : Û × Û → K̂,
satisfying for all â, b̂ ∈ K̂ and for all X̂, Ŷ , Ẑ ∈ Û the following conditions:

1. 0 ≤ ̂〈X̂, X̂〉 ; ̂〈X̂, X̂〉 = 0⇔ X̂ =
−→
0 .

2. ̂〈X̂, Ŷ 〉 = ̂〈Ŷ , X̂〉, where â represents the conjugate of â in the isofield
K̂(â, +̂, ×̂), for all â ∈ K̂.

3. ̂〈X̂, (â•̂Ŷ )◦̂(̂b•̂Ẑ)〉 = (â×̂ ̂〈X̂, Ŷ 〉)+̂(̂b×̂ ̂〈X̂, Ẑ〉).
Note also that, as it is becoming usual in the isotopic level, we

must distinguish between (Û , ◦̂, •̂) as a Hilbert isovector space over
K̂(â, +̂, ×̂) (whose definition we just saw) and (Û , ◦̂, •̂) as a Hilbert vec-
tor space over K̂(â, +̂, ×̂), which, endowed with a scalar product 〈̂., .〉,
need not proceed from a Hilbert vector space (U, ◦, •) over K(a,+,×)
(although from the vector space U over K).

One might then find an isovector space over which we can define an
isoscalar product, but which however is not a Hilbert isovector space,
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because it does not come from the isotopic lifting of a Hilbert vector
space. Similarly, we can also give the case that the isotopic lifting of a
Hilbert vector space is an isovector space, but not a Hilbert one, since
we are unable to find an isoscalar product to give to said isovector
space.

Let us then look at an example of a Hilbert isovector space:

Example 4.1.13 Let (U, ◦, •) be a Hilbert space over (R,+,×), endowed
with the usual order≤, with respect to the scalar product 〈., .〉. Let us consider
an isotopy of the vector spaceU that follows the model given in Example 4.1.3.
We will then obtain an isovector space (Û , ◦̂, •̂) = (U, ◦, •̂) and an isofield
(R̂, +̂, ×̂) = (R,+, ×̂).

On this last, we can apply the usual order ≤ of real numbers, as what is
required in Definition 4.1.12. We will impose, in addition, that the principal
isounit used in such an isotopic lifting Î ∈ R be such that Î > 0.

Let us now consider the function 〈̂., .〉 : Û × Û → R̂ such that ̂〈X̂, Ŷ 〉
= 〈X,Y 〉 ∗ Î = 〈X,Y 〉 × Î given X̂, Ŷ ∈ Û . Then, we will verify that
(Û , ◦̂, •̂) = (U, ◦, •̂) is a Hilbert isovector space over R̂ = R, the conditions
of Definition 4.1.12 to be met for all â, b̂ ∈ K̂ and for all X̂, Ŷ , Ẑ ∈ Û . Indeed,
we have

1. ̂〈X̂, X̂〉 = 〈X,X〉 × Î ≥ 0, with Î > 0 and 〈X,X〉 ≥ 0, 〈., .〉 being a
scalar product of (U, ◦, •) over (R,+,×).
In addition, ̂〈X̂, X̂〉 = 0⇔ 〈X,X〉 × Î = 0⇔ 〈X,X〉 = 0 (since Î 6= 0

and we have in the field (R,+,×), endowed with the usual operations and
order)⇔ X =

−→
0 (〈., .〉 being a scalar product)⇔ X̂ =

−→
0 ∗ Î =

−→
0 × Î =

−→
0 .

2. ̂〈X̂, Ŷ 〉 = 〈X,Y 〉× Î = 〈Y,X〉× Î = (− ̂〈Y,X〉)× Î = −(〈Y,X〉× Î) =

− ̂〈Ŷ , X̂〉 = ̂〈Ŷ , X̂〉.
3. ̂〈X̂, (â•̂Ŷ )◦̂(̂b•̂Ẑ))〉 = ̂〈X̂, ((a • Y ) • Î) ◦ (b • Z) • Î)〉 =̂〈X̂, ̂(a • Y ) ◦ (b • Z)〉 = 〈X, (a • Y ) ◦ (b • Z)〉 × Î =

((a× 〈X,Y 〉) + (b× 〈X,Z〉))× Î = ((a× 〈X,Y 〉)× Î)+
((b× 〈X,Z〉)× Î) = (â×̂(〈X,Y 〉 × Î)) + (̂b×̂(〈X,Z〉 × Î)) =
(â×̂ ̂〈X̂, Ŷ 〉)+̂(̂b×̂ ̂〈X̂, Ẑ〉). �
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The following concept to adapt to the isotopic level will be that of
metric distance. We recall that any metric vector space is a vector space
endowed with a metric, which in turn is associated with a metric dis-
tance. Therefore, to obtain the structure of a metric isovector space, we
will also have to give the definition of metric isodistance.

To do so, as in a metric vector space, the metric distance can be
given with respect to the elements of a basis of the space, if β =

{e1, e2, . . . , en} is a basis of a metric vector space (U, ◦, •) over the field
K(a,+,×), the possible associated distance with U would be given as
a function d, represented by the n2 numbers di,j = d(ei, ej). In this way,
if we have two elements X =

∑n
i=1 xi • ei, Y =

∑n
j=1 yj • ej ∈ U , with

xi, yj ∈ K, we would have that d(X,Y ) =
∑n
i,j=1(xi × yj) • d(ei, ej).

Now we could consider an (n× n)-dimensional matrix of elements
of the n2 previous numbers (dij)i,j∈{1,...,n}, which is what defines the
metric associated with the distance d, which we symbolized by g. By
convention it in fact shows g ≡ (gij)i,j∈{1,...,n} = (di,j)i,j∈{1,...,n}. In
addition, taking into account the conditions that any metric distance
must satisfy, we have that the matrix g represents a metric if and only
if it is a regular, symmetric, and positive-definite matrix.

With these observations we are able to define the notion of metric
isovector space and study how to achieve its construction.

Definition 4.1.14 Let U(X, g,K) be a metric vector space (with elements
X , Y , Z, . . .) over a fieldK(a,+,×), with a metric g associated with a metric
distance d. We say that Û(X̂, ĝ, K̂) is a metric isovector space if, being an
isotopy of U , it is an isovector space over the isofield K̂(â, +̂, ×̂), endowed
with an order ≤ and 0 ∈ K̂ being its unit element with respect to +̂ (with
the usual properties with respect to the order ≤), with elements X̂, Ŷ , Ẑ, . . .
and endowed with a new isometric ĝ, that will be an isotopy of the metric g
satisfying the necessary properties to be a metric in Û ; i.e., that ĝ is associated
with a metric isodistance d̂, which being an isotopy of the metric distance d,
satisfies for all X̂, Ŷ , Ẑ ∈ Û the following conditions:

1. 0 ≤ d̂(X̂, Ŷ ) ; d̂(X̂, Ŷ ) = 0⇔ X̂ = Ŷ .
2. d̂(X̂, Ŷ ) = d̂(Ŷ , X̂).



4.1 Vector isospaces 241

3. Triangle inequality: d̂(X̂, Ŷ ) ≤ d̂(X̂, Ẑ)+̂d̂(Ẑ, Ŷ ).

Definition 4.1.15 If d, instead of being a metric distance, were a pseudo-
metric distance (so U(X, g,K) would be a pseudometric vector space), we say
that Û(X̂, ĝ, K̂) is a pseudometric isovector space if it satisfies the three
previous conditions except (1), satisfying instead the following:

(1′) 0 ≤ d̂(X̂, Ŷ ) ; d̂(X̂, X̂) = 0, for all X̂, Ŷ ∈ Û .

In this case, we call ĝ the isopseudometric and d̂ the pseudometric
isodistance.

Now let us look at an example of a metric isovector space.

Example 4.1.16 Let U(X, g,R) be a metric vector space associated with
the n-dimensional vector space (U, ◦, •) over the field (R,+,×), endowed
with the usual order ≤, with a metric g. Let us consider an isotopy of the
vector space U that follows the model given in Example 4.1.3, imposing in
addition that Î ∈ R be such that Î > 0. We would then obtain the isovector
space (Û , ◦̂, •̂) = (U, ◦, •̂) over the isofield (R̂, +̂, ×̂) = (R,+, ×̂). We can
then equip the isofield R̂ = R with the same, usual, previous order ≤.

Now we want to provide Û with a metric ĝ, which is an isotopic lifting of
the metric g. This possible metric ĝ is going to be associated with a matrix that
in turn will come from a metric isodistance d̂, under conditions similar to the
metric g and its metric distance d (following the general pattern seen before).
Now, we saw in the section on vector isospaces that the model of Example 4.1.3
takes bases to bases. Therefore, as the starting isovector space U is assumed to
be n-dimensional, the obtained isovector space Û will also be n-dimensional.
Then, the matrix representing the isometric ĝ shall be (n×n), like the matrix
representing the metric g. In addition, said matrix must have its elements in
the isofield R̂, which, following the notation of Example 4.1.3, are of the form
â = a ∗ Î = a× Î , with a ∈ R.

Then, if we want to obtain the isotopic lifting of the metric g following
the model that is given by an isounit and isoproduct, a possibility would be
given by multiplying each element (gi,j)i,j∈{1,...,n}, of the matrix that repre-
sents g, by the isounit Î that we had, with respect to the operation ∗ ≡ ×,



242 CHAPTER 4. LIE-SANTILLI ISOTHEORY (II)

which was also already fixed in lifting the field K. We would thus define
ĝ ≡ (ĝi,j)i,j∈{1,...,n} = (gi,j ∗ Î)i,j∈{1,...,n} = (gi,j × Î)i,j∈{1,...,n}.

To see then that ĝ so defined is in fact a metric, we should check that the
matrix that represents it is regular, symmetric, and positive-definite. How-
ever, the two last conditions are easily verified with the conditions imposed in
Example 4.1.3, taking into account, in addition, that Î > 0, since

1. ĝi,j = gi,j ∗ Î = gj,i ∗ Î = ĝj,i, for all i, j ∈ {1, . . . , n}.
2. ĝii = gi,i ∗ Î = gi,i × Î > 0 for all i = 1, . . . , n, with gi,i > 0 for all
i ∈ {1, . . . , n} (g being a metric and Î > 0).

We still need, then, to prove that the matrix (ĝi,j)i,j∈{1,...,n} is regular.
For this, we observe that the way of obtaining the new matrix, multiplying
each element of the old matrix by Î with respect to ∗ ≡ ×, is equivalent to
the usual product of said matrix by the matrix diag(Î , . . . , Î), which we will
denote by Ĥ . Since we also have not left the field R (with R̂ = R), we see that
the determinant of the matrix Ĥ coincides with Î . So det((ĝi,j)i,j∈{1,...,n}) =
det((gi,j)i,j∈{1,...,n})× det(diag(Î , . . . , Î)) = det((gi,j)i,j∈{1,...,n})× Î 6=
0, with Î > 0 by supposition and the matrix that g represents being regular.

We therefore arrive at that ĝ is effectively a metric, being also the isodis-
tance d̂, associated with the isometric ĝ, in the following way: d̂(X̂, Ŷ ) =

d(X,Y )× Î , for all X̂, Ŷ ∈ Û . �

Note that in the preceding example, the matrix Ĥ could be any ma-
trix in Mn×n(R), provided that the resulting matrix for representing ĝ
were regular, symmetric, and positive-definite. This is due to the fact
that the isotopic model given in Example 4.1.3 makes the isofield K̂

coincide with the starting field K. In this way, regardless what the ma-
trix Ĥ be, the elements of the matrix ĝi,j will always be in K̂, which is
the necessary condition that must be imposed.

We now return to the abstract level of the axioms in the subject that
concerns us. Remember that at that level all vector spaces and isovec-
tor spaces are equivalent, and we can pass (as in the case of isofields)
from one vector space to another by means of a certain isotopy. We
could ask then if this happens for metric isovector spaces. So that it be
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so, the only thing that would be needed would be to see that all metrics
and isometrics are equivalent in the isotopic level, i.e., that we can pass
from one to another by means of an isotopy. Now, as we have seen for
isofields, the possible isotopies to use for this purpose need not follow
the model of construction by an isounit and isoproduct, which is the
model that we have seen so far.

However, the proposal that Santilli gave in 1983 to respond to this
issue (see [110]) was to interpret any isometric ĝ as an isotopic lifting
of the Euclidean metric δ ≡ diag(1, . . . , 1), considering the matrix as-
sociated with ĝ as the isounit Î , in such a way that we obtained as a
result the lifting δ → δ ∗ Î = Î ≡ ĝ. Thus, if we adapt this proposal to
the model to which we are accustomed, we should impose that, with
the usual notations, the operation ∗ have as a unit I = δ. Let us see an
example of the above.

Example 4.1.17 Let us suppose that U(X, δ,R) is an n-dimensional met-
ric vector space (U, ◦, •) over the field (R,+,×), endowed with the usual
order ≤ and the Euclidean metric δ ≡ diag(1, . . . , 1).

Let us also suppose that we have an isovector space (Û , ◦̂, •̂) associated
with U , over an isofield (R̂, +̂, ×̂), corresponding to an isotopy that fol-
lows the model of Example 4.1.3, i.e. (Û , ◦̂, •̂) = (U, ◦, •̂) and (R̂, +̂, ×̂) =

(R,+, ×̂). Let us then consider that such an isovector space Û is endowed
with a metric ĝ ≡ (ĝi,j)i,j∈{1,...,n} and we are going to prove that such a
metric can be interpreted, in fact, as an isotopy of the Euclidean metric δ of
the metric vector space U , following the model proposed by Santilli in 1983.

To do this, because the matrix associated with ĝ has elements in R̂ = R,
we will consider, as the isounit for such a lifting to such a matrix and as
the necessary operation for the isotopy, the usual real (n × n)-dimensional
matrices that it has as unit element for the matrix diag(1, . . . , 1) (which is
associated with the Euclidean metric δ). It makes sense also to talk about the
matrix of ĝ as an isounit with respect to the indicated operation having an
inverse matrix, by being regular. Such an inverse matrix would correspond
to the isotopic element of the isotopy in question of the metric δ. This way, we
finally have the isotopic lifting sought:
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δ → δ · (ĝi,j)i,j∈{1,...,n} = (ĝi,j)i,j∈{1,...,n} ≡ ĝ

�

With this example, together with 4.1.16, the fact that the isotopic lift-
ing of the metric g of the metric vector space is not given uniquely is
also patent. A possible model for such an isotopy is given in each of
the two cited examples. In fact, if we did not have to look in Exam-
ple 4.1.17 for an isotopic lifting that forcibly lifts g to ĝ, we could pro-
vide the isospace Û with an isometric distinct from ĝ. It would suffice
to take the isotopic model seen in Example 4.1.16, multiply the matrix
associated with g by the matrix diag(Î , . . . , Î), where Î is the principal
isounit in the construction of the isovector space Û . We have already
even commented that we could multiply the matrix associated with g
by any Ĥ ∈ Mn×n(R), provided that the resulting matrix be regular,
symmetric, and positive-definite.

This observation tells us also that the isotopic model given in Exam-
ple 4.1.3 is of vital importance in the construction of metric isovector
spaces. In fact, we can get, by imposing new conditions, results of great
interest such as the following:

Proposition 4.1.18 Let (Û , ◦̂, •̂) be an isovector space defined over the
isofield (R̂, +̂, ×̂), associated with the n-dimensional vector space (U, ◦, •)
over the field (R,+,×), in the hypotheses of Proposition 4.1.2, following the
isotopic model of Example 4.1.3 and also imposing that the principal isounit
used, Î ∈ R, be such that Î > 0, where we make use of the usual order ≤
in R. Then we can endow Û with a metric if and only if Û has the structure
of a metric isovector space, i.e., if and only if the departing vector space U is
endowed with a metric g which can be lifted isotopically to an isometric ĝ in
Û .

Proof

It will be done by double inclusion:

1. ⇐
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It is straightforward, for if Û has metric isospace structure, it is be-
cause it is equipped with an isometric ĝ, which in turn satisfies the
conditions required to be a metric.

2. ⇒

Let us suppose that we can provide Û with a metric ĝ ≡
(ĝi,j)i,j∈{1,...,n}. We then need to prove that a metric g in U exists which
we can isotopically lift to the metric ĝ, thus converting this into an iso-
metric.

Therefore by the conditions imposed in Example 4.1.3, we know
that Û is an n-dimensional isovector space, since this type of isotopy
takes bases into bases, so the dimension of the vector space is pre-
served. We will have therefore that the matrix ĝ ≡ (ĝi,j)i,j∈{1,...,n} as-
sociated with ĝ will be (n × n)-dimensional, with elements in R̂ = R.
We can then construct the matrix (gi,j)i,j∈{1,...,n}, gi,j ∈ R being such
that gij ∗ Î = (gi,j)× Î = ĝi,j for all i, j ∈ {1, . . . , n}, i.e., such that they
are the real numbers that come from the n2 isonumbers that constitute
the matrix associated with ĝ.

We then see that the new constructed matrix is regular, symmetric,
and positive-definite; thus it will be a matrix associated with a metric
g of the vector space U , that we could isotopically lift to ĝ without
considering the model proposed in Example 4.1.16, of multiplying said
matrix by diag(Î , . . . , Î). For it, as Î ∈ R and ∗ ≡ ×, we have that
T = Î−I = Î−1 ∈ R, from where gi,j = ĝi,j ∗ T = ĝi,j × T , for all i, j ∈
{1, . . . , n}. Now, we prove that the matrix (gi,j)i,j∈{1,...,n} is regular,
symmetric, and positive-definite in a way totally analogous to what
we did in Example 4.1.16 with respect to the isometric indicated there,
given that T > 0 with Î > 0 being considered the usual order in R.
By it, the matrix (gi,j)i,j∈{1,...,n} is associated with a metric in U , which
completes the proof. 2

An immediate consequence of this result is that, under the required
hypotheses, an isovector space Û has a structure of a metric vector
space if and only if it has a metric isovector space structure, a result
that we do not generally have, due to what was already mentioned
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in various occasions: the isotopic notions present differences with the
conventional notions when we attempt to project the new theory onto
the old one.

We end this section with a few brief notes on isogeometry. We have
said that in the same way that conventional geometries appear after
studying metric spaces, isogeometries should appear when studying
the metric isospaces. It is said that the important aspect of isogeome-
tries is that they allow us to study how the usual notions of conven-
tional geometries vary when changing the usual units for other identi-
cal topological characteristics. An example of this is when we study the
isotopic lifting of a Euclidean spaceE(X, δ,R) over the field (R,+,×),
equipped with the Euclidean metric δ ≡ diag(1, . . . , 1). A decisive fea-
ture in such spaces is that if we concentrate on Euclidean axes, they
all have as basic unit the same element +1. On the other hand, an im-
portant aspect of Euclidean isospaces (also called isoeuclidean spaces or
Euclid-Santilli spaces, from which we obtain the isoeuclidean geometry) is
that they permit us to alter the units of conventional space, including
the axial units. Let us look at the following:

Example 4.1.19 In the case of the 3-dimensional Euclidean space
E(X, δ,R), the units for the three axes would be Ik = +1, for k = 1, 2, 3

(≈ OX , OY , and OZ axes).
Now consider a Euclidean isospace corresponding to a 3-dimensional iso-

topy of class I, that is, an isotopic lifting where the isounit Î is a (3 × 3)-
dimensional, Hermitian, and positive-definite matrix (see [145]). Due to this
last characteristic, Î can be diagonalized into the form Î = diag(n21, n22, n23),
with n1, n2, n3 ∈ R\{0}, thus obtaining as new isounits for the axes the ele-
ments Îk = n2k, for k = 1, 2, 3. This means that not only the original units are
lifted to arbitrary invertible values, but the units of different axes generally
have different values. �

These conditions allow for new applications. An example is the uni-
fication of all the possible ellipsoids
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X2 =
X2

1

n21
+
X2

2

n22
+
X2

3

n23
= r2 ∈ R

in the Euclidean space E(X, δ,R), in the so-called isospheres

X̂ 2̂ =

(
X2

1

n21
+
X2

2

n22
+
X2

3

n23

)
∗ Î = r2 ∗ Î ∈ R̂,

which are the spheres in the isospace Ê(X̂, δ̂, R̂) over the isofield R̂

(see [145]).
In fact, the deformation of the axial units of the sphere, Ik = +1, into

the new isounits Îk = n2k retains the perfect sphericity. On the other
hand, more advanced studies allow us to work with isotopies of class
III so we may obtain the unification of all compact and non-compact
conics. The use of class IV at the same time allows the inclusion of all
conics (see [145]).

Finally, we note that these generalizations also have very impor-
tant implications in physics. An example of this is that the changes in
units, seen above, allow us to transform very large distances (lengths)
into very small distances, and vice versa. Also, they have repercussions
on the generalization of conventional mechanics (Newtonian, analytic,
quantum, etc.) into new isotopic mechanics, just like in the classic
problems of interior and exterior dynamics. The interested reader can
see these themes in [145].

4.2 Isotransformations

Before proceeding with the study of new isostructures, we will dedi-
cate this section to the different applications that we can establish be-
tween vector isospaces. In it, not only will we indicate the usual appli-
cations that exist when considering isovector spaces as vector spaces,
as was already done for isogroups or isorings. We are going to go one
step further, defining isotransformations, which will be those transfor-
mations that come from a type of isotopic lifting of a transformation
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between vector spaces corresponding to the previous vector isospaces
(see [121]).

On the other hand, the fact that Santilli isotopies are some very use-
ful tools for the passage of a linear and local theory to another non-
linear and non-local one, which is closely related to the previous one,
will be apparent. We already said in Definition 3.1.2 that Santilli iso-
topies were those capable of lifting linear, local, and canonical struc-
tures, to non-linear, non-local and non-canonical forms, being able to
reconstruct the linearity, locality, and canonicity of certain general-
ized spaces of departure. Well, we will see that in the event that we
are working with vector spaces, the previous non-linearity and non-
locality occurs only when the new theory is projected onto the original
theory, since, in fact, the isotheory reconstructs the linearity and the lo-
cality in the constructed isovector space. With respect to the canonicity,
we would have a similar result, which Santilli began to develop from
the definition of an isocalculus (which is the isotopic lifting of conven-
tional calculus) in 1996 (see [145]), but that due to its extension will be
not treated in our study.

We therefore begin with the definition of functions between isovec-
tor spaces, considering them as vector spaces, and which together are
called transformations:

Definition 4.2.1 Let (Û , ◦̂, •̂) and (Û ′, 4̂, 5̂) be two isovector spaces
over an isofield K̂(â, +̂, ×̂). A function f : Û → Û ′ is called a homomor-
phism of isovector spaces if for any â ∈ K̂ and for all X̂, Ŷ ∈ Û ,

1. f(X̂ ◦̂Ŷ ) = f(X̂)4̂f(Ŷ )

2. f(â•̂X̂) = â5̂f(X̂)

are satisfied.
If f is bijective, it is called an isomorphism, and if Û = Û ′, an endo-

morphism. In this latter case, if in addition f is bijective, it is called an
automorphism.

We also call any endomorphism a linear operator. This particular type
of transformation has the property that when it occurs between con-
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ventional vector spaces, it is given univocally by the associative prod-
uct by an element a ∈ K, independent of local variables. So, if we have
the linear operator f : (U, ◦, •) → (U, ◦, •), where U is an isovector
space over a fieldK(a,+,×) and f is given by the element a ∈ K, then
f(X) = a •X for all X ∈ U .

In the case that the element a has a dependence on local variables x,
the transformation f will be called nonlinear. Then, a = a(x), leaving f
defined according to f(X) = a(x)•X for allX ∈ U . If this dependency
is of integral type, it is then said that f is a non-local transformation,
while we will call it local otherwise.

Then, in the same sense as we are considering the isovector spaces
as vector spaces, given the linear operator f : Û → Û , of Defini-
tion 4.2.1, we will have that f is given by an element â ∈ K̂, such
that f(X̂) = â•̂X̂ will be satisfied for all X̂ ∈ Û . We also speak of non-
linear or non-local transformations in the vector isospace Û in a way
analogous to what was seen previously for the vector space U .

We finally note that the form that the linear operators have permit
us to establish a relationship between a linear operator on a vector
space (U, ◦, •) over a fieldK(a,+,×) and a linear operator in an isovec-
tor space (Û , ◦̂, •̂) over K̂(â, +̂, ×̂) associated with U . Let us then sup-
pose, for example, that f : U → U is the first of these linear operators,
given by the element a ∈ K, i.e., such that f(X) = a •X for all X ∈ U .
We could then consider the lifting â ∈ K̂, corresponding to the ele-
ment a ∈ K, and thus take the linear operator on the isovector space
Û , which is given by the element â. Calling such a linear operator f̂ ,
it would result that f̂(X̂) = â•̂X̂ , for all X̂ ∈ Û . Then, f̂ is called an
isotransformation, arising from the isotopic lifting of a transformation
between vector spaces f and resulting in a transformation between
the corresponding vector isospaces. We also have the following:

Definition 4.2.2 An isotransformation f̂ given by an element â from an
injective isotopy is called isolinear or isolocal when the corresponding ele-
ment a representing the transformation f is linear or local, respectively. It is
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called non-isolinear or non-isolocal when said element a is non-linear or
non-local, respectively.

The fact of imposing in the above definition that the isotopy with
which we are working is injective is that otherwise there could be a
second element b ∈ K, with b 6= a, such that b̂ = â, b being non-linear
(non-local, respectively); thus, the isotransformation f̂ would be on the
one hand isolinear (isolocal, respectively), while on the other hand it
would be non-isolinear (non-isolocal, respectively), which would be a
contradiction. However, we could expand the prior definition to iso-
topies that do not allow the existence of such a non-linear (non-local,
respectively) element b, although they were not injective. However, to
avoid problems we will impose hereinafter that the injectivity condi-
tion in the isotopies be used. Thus, this definition allows us to distin-
guish the concepts of isolinearity and isolocality from the conventional
concepts of linearity and locality. We can in fact have that a certain
isotransformation f̂ be non-linear and non-local, the element â being
such, and instead be isolinear and isolocal, the corresponding element
a being such, just like any other possible combination of these con-
cepts. Nevertheless, the following result is verified:

Proposition 4.2.3 Let (U, ◦, •) be a vector space over K(a,+,×), f :

U → U being a transformation of linear operator type, given by the ele-
ment a ∈ K. Let (Û , ◦̂, •̂) be an isospace associated with U , over the field
K̂(â, +̂, ×̂), corresponding to an isotopy that is injective. Then f is a linear
(local, respectively) transformation if and only if the corresponding isotrans-
formation f̂ in Û , given by the element â ∈ K̂, is isolinear (isolocal, respec-
tively).

Proof

It suffices to take into account Definition 4.2.2, since then f̂ will be
isolinear (isolocal, respectively) if and only if the element a ∈ K is
linear (local, respectively), which is equivalent, in turn, to saying that
f is a linear (local, respectively) transformation. 2

Therefore the above results show us that we need to lift isotopically
the linear and local functions to maintain linearity and locality in the
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corresponding isospaces, and that the non-linearity and non-locality of
the isotheory only occurs when it is projected into the starting theory.
In our case we have such a projection when we seek to obtain the lin-
earity and locality of the transformation f̂ in the element â ∈ K̂ which
is given univocally (as is done in the conventional theory), rather than
in the element a ∈ K, as it has been done in Definition 4.2.2.

So, going back to the abstract level of the axioms (which we already
discussed in the section on isofields), it results that the vector spaces
and isovector spaces can be considered equivalent at that level; the
linear transformations between the first and the isolinear isotransfor-
mations between the second can also be considered equivalent, as well
as the local transformations and the isolocal isotransformations.

We will then study an example of the isotransformations, which will
consist in studying those isotransformations resulting from the Santilli
isotopy, a consequence of the construction given by an isounit and iso-
product:

Example 4.2.4 Let us suppose a vector space (U, ◦, •) defined over a field
K(a,+,×). Let f : U → U be the linear operator existing in U , given by a
fixed element a ∈ K. Now let (Û , ◦̂, •̂) be the isovector space over the isofield
K̂(â, +̂, ×̂), corresponding to the isotopy of elements Î , Ŝ, Ŝ′, ∗, ?,2, and �,
in the conditions of Proposition 4.1.2. We will then have that the lifting of the
element a ∈ K with respect to the previous isotopy is â = a ∗ Î ∈ K̂ and
that the linear operator existing in (Û , ◦̂, •̂), which is given by the element
â, is f̂ : Û → Û , such that f̂(X̂) = â•̂X̂=(a2X)2Î , for all X̂ ∈ Û . We
also already know, by the previous section, that the isoproduct •̂ is associative,
verifying the condition (2.a) of Definition 4.1.1, by construction. We should
therefore have that f̂ is effectively a linear operator, which comes from the iso-
topic lifting of the linear operator f , and therefore f̂ is an isotransformation.
�

Let us finally, to finish this section, see a particular result in this iso-
topic model which corroborates something already cited in the general
case (see [175]):
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Proposition 4.2.5 Let (U, ◦, •) be a vector space defined over the field
K(a,+,×) and f : U → U a non-linear (non-local, respectively) transfor-
mation given by the element a = a(x), where a(x) ∈ K for any local variable
x. Then, in these conditions, and under the adequate topological conditions, a
linear (local, respectively) transformation f̂ exists in an isospace Û associated
with U .

Proof

The topological conditions to find will be those that permit finding
a decomposition a = b ∗ T , with b ∈ K linear (local, respectively) and
where ∗ is the principal isotopic element from the isotopy that lifts to
the fieldK and has T as isotopic element. T will therefore be invertible,
Î = T−I (if I is the unit element with respect to ∗) being the principal
isounit that we use in our isotopic lifting.

Under an isotopy compatible with the previous elements, then â =

b̂ ∗ T = (b ∗ T ) ∗ Î = b ∗ T ∗ Î = b ∈ K̂ will be the isotopically lifted
element. So, the isotransformation f̂ , which would be defined in the
corresponding isovector space (Û , ◦̂, •̂), would be given by the previ-
ous element b ∈ K̂, being defined according to f(X̂) = b•̂X̂ , for all
X̂ ∈ Û . So, f̂ would thus be linear (local, respectively) for b; thus, we
have the desired result. 2

We finally note that the decomposition a = b∗T , realized in the pre-
vious demonstration, what is actually done is to go beyond the non-
linearity (non-locality, respectively) of the element a ∈ K to the iso-
topic element T . The problem that arises would be to find in each spe-
cific case the most favorable decomposition, imposing sufficient condi-
tions for this. For example, imposing it be invertible with respect to ∗,
then we would take T = b−I ∗ a, needing also to impose that a should
be invertible with respect to ∗, so that T would also be.

The following isostructure to study will be the isotopic lifting of
modules. To do this we will continue the normal development, begin-
ning with the definition of isomodules.
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4.3 Isomodules

Following a development in this section similar to that above, we
will study isomodules, isosubmodules, and functions between these
isostructures (see [103]).

Definition 4.3.1 Let (A, ◦, •) be a ring and (Â, ◦̂, •̂) and associated isor-
ing. Let (M,+) be an A-module with external product ×. We call an iso-Â-
module M̂ any isotopy of M equipped with a new internal operation +̂ and
a new external operation ×̂, satisfying the axioms of an Â-module, i.e., such
that

1. (M̂, +̂) is an isogroup, with â×̂m̂ ∈ M̂ , ∀â ∈ Â,∀m̂ ∈ M̂ .
2. Axioms of the external operation:

a. â×̂(̂b×̂m̂) = (â•̂b̂)×̂m̂, ∀â, b̂ ∈ Â,∀m̂ ∈ M̂ ,
b. â×̂(m̂+̂n̂) = (â×̂m̂)+̂(â×̂n̂), ∀â ∈ Â,∀m̂, n̂ ∈ M̂ ,
c. (â◦̂b̂)×̂m̂ = (â×̂m̂)+̂(̂b×̂m̂), ∀â, b̂ ∈ Â,∀m̂ ∈ M̂ ,
d. Î×̂m̂ = m̂, ∀m̂ ∈ M̂ ,

Î being the isounit associated with Â with respect to the operation •̂.

We observe first that, in the terms of the above definition, if A were
a field and Â an isofield associated with A, we would have that M
would have a vector space structure over A and M̂ would have an
isovector space structure associated with M , over Â. Therefore, here,
as in the case of conventional structures, an isomodule is no more than
a generalization of an isovector space.

Another example which is deducted from the conventional case is
as follows:

Example 4.3.2 Let = be an ideal of the ring A, =̂ being an isoideal of Â
associated with =. Given that = has an A-module structure for the inter-
nal multiplication of the ring A, •, it is obvious that =̂ has an iso-Â-module
structure for the internal multiplication •̂ of the isoring Â, since it is verified
that:
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1. (=̂, ◦̂) is an isogroup, =̂ being an isoideal of Â.
2. â•̂(̂b•̂m̂) = (â•̂b̂)•̂m̂, ∀â, b̂ ∈ Â,∀m̂ ∈ =̂.
3. â•̂(m̂◦̂n̂) = (â•̂m̂)◦̂(â•̂n̂), ∀â ∈ Â,∀m̂, n̂ ∈ M̂ .
4. (â◦̂b̂)•̂m̂ = (â•̂m̂)◦̂(̂b•̂m̂), ∀â, b̂ ∈ Â,∀m̂ ∈ M̂ .
5. Î •̂m̂ = m̂, ∀m̂ ∈ M̂ ; Î being the isounit associated with Â with respect to

multiplication •̂. �

We observe, however, that, despite A/= having an A-module struc-
ture for the usual multiplication by a scalar (A×A/= → A/=, such that
(a, b+=)→ (a • b)+=), we cannot go from this conventional example
to the case of isomodules, since in general Â/=̂ need not coincide with
the isotopic lifting of any quotient ring, as we saw in the section on
isorings. However, Â/=̂ does have an Â-module structure by means of
the usual product by an isoscalar, thus the usual differences between
concepts and conventional and isotopic properties appear again.

We now turn to consider the procedure for constructing isotopies
from an isounit and the isoproduct. Just as in the case of the isovector
spaces, such a construction must have some differences in the case of
isomodules with respect to the previous isostructures. In fact, since the
only difference between an isoring and an isofield is that we can talk
about an isoinverse with respect to the second operation, which does
not occur in the isorings, and given that this property does not inter-
vene directly in the construction of the isotopic lifting of a vector space
or module, the model of constructing both must be entirely analogous.
We would therefore arrive, similarly to Proposition 4.1.2 of isovector
spaces, at the following:

Proposition 4.3.3 Let (A, ◦, •) be a ring and (M,+) an A-module with
external product ×. Let (Â, ◦̂, •̂) be the isoring with respect to multiplication
associated with A, corresponding to the isotopy of principal elements Î and ∗
(of unit element I) and secondary elements Ŝ and ? (of unit element S, with
Ŝ−S = R̂ = R ∗ Î), in the conditions of Proposition 3.4.2. Let 2 (of unit

element I) be Ŝ′ and � (of unit element S′, with Ŝ′
−S′

= R̂′ = R′2Î) be iso-
topic elements that, together with Î , are in the conditions of Definition 3.1.3,
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the general associated set V ′ being such that A ∪ U ⊆ V ′. In the conditions,
if it is satisfied that

1. (M, �) has a module structure with respect to the ring (A, ?, ∗), with ex-
ternal product 2,

2. (M, �) has a group structure with unit element S′ ∈M ,
3. â×̂R̂′ = R̂′, ∀â ∈ K̂ and
4. R̂×̂m̂ = R̂′, for all m̂ ∈ M̂ ,

then the isotopic lifting (M̂, +̂) corresponding to the isotopy of principal ele-
ments Î and 2 and secondary elements Ŝ and �, by the isoproduct procedure,
is an iso-Â-module for the external product ×̂ (also constructed by the previ-
ous isotopy). 2

Noting that this proposition has its equivalent in the case that Â be
an isoring with respect to the sum, we obtain a similar result.

Now let us look at some examples of isomodules. We have already
mentioned at the beginning of this section that both isovector spaces
and isoideals can be given an isomodule structure. In fact, all of the ex-
amples we have seen of isovector spaces are valid examples of isomod-
ules. We will then see a particular case of an isoideal arising from an
isomodule, and we will generalize the isotopic model of Example 4.1.3
to the case of isomodules, giving a a concrete example of it:

Example 4.3.4 Let us consider the ring (Z,+,×) and the isoring
(P,+, ×̂) seen in Example 3.4.5 and the ideal (P,+,×) and the isoideal
(Z4,+, ×̂) of Example 3.4.13.

We know that in the conventional structure, the ideal (P,+,×) can be
equipped with Z-module structure, taking as an external product the second
operation ×. We see that, as we have said before, we can do the same with the
isoideal (Z4,+, ×̂), giving it an iso-P-module structure, with respect to the
external product ×̂. Therefore, we will check that the conditions of Proposi-
tion 4.3.3 are satisfied.

We will begin by adapting the notation used in Example 3.4.13 to that used
for the construction of an isomodule. We should thus have that the isotopic
elements used for the construction of the iso-P-module would be the principal
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elements Î = 2 and 2 ≡ ∗ ≡ × and the secondary elements Ŝ′ = 0 = Ŝ and
� ≡ ? ≡ + (of unit element S′ = 0 = S, the unit element with respect to
?, which is the law used in the construction of the isoring (Z,+, ×̂)). In this
way, the general set that we will use in the isotopy will be V ′ = Z = Z ∪P,
which is under the conditions imposed by Proposition 4.3.3.

Trivially, both the isotopic set and the operations associated with the iso-P-
module must be equal to the corresponding ones associated with the isoideal
(Z4,+, ×̂). We note that the operation ×̂ defined in Example 3.4.5 poses
no problems with the construction of the isoproduct given for an isomodule
(which is equivalent to the one given, in turn, to an isovector space), since it
would be â×̂b̂ = â ∗ 1

2 ∗ b̂ = â × 1
2 × b̂ = (a × b) × 2 = (a2b)22, for all

â ∈ P = Ẑ2 and for all b̂ ∈ Z4 = P̂2.
Finally, we see that the following are satisfied:

1. (P, �) = (P,+) has a module structure with respect to the ring (Z, ?, ∗)
= (Z,+,×), with external product 2 ≡ ∗ ≡ × (since it corresponds
precisely to the conventional way of equipping a determined ideal with a
module structure).

2. (P, �) = (P,+) has a group structure with respect to the unit element
S′ = 0 ∈ P.

3. As R̂′ = Ŝ′
−S′

= 0−0 = 0 = 0 × 2 = 02Î , we would have that:
â×̂R̂′ = (a×2)×̂(0×2) = (a×0)×2 = 0×2 = R̂′, for all â ∈ P = Ẑ2.

4. As R̂ = Ŝ′
−S′

= 0−0 = 0 = 0 × 2 = R̂′, we would have that R̂×̂m̂ =

(0× 2)×̂(m× 2) = (0×m)× 2 = 0× 2 = R̂′, for all m̂ ∈ Z4 = P̂2.

Then applying Proposition 4.3.3, we have that (P̂2, +̂) = (Z4,+) has an
iso-P-module structure with respect to the external product ×̂. In this way we
equip (Z4,+, ×̂) with a new structure because we remember that we already
endowed it with an isoideal structure with respect to the isotopy of the same
elements. �

We will now generalize to the case of isomodules given in Exam-
ple 4.1.3. We note that Example 4.3.4 is in fact a concrete case of such
a generalization, since the isoring (P,+, ×̂) associated with (Z,+,×)
corresponds to the isotopy of principal elements Î = 2 ∈ Z and ∗ ≡ ×
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(of unit element 1, the same as that of (Z,×)) and secondary elements
Ŝ = 0 and ? ≡ + (of unit element S = 0, the same as that of (Z,+));
thus, we would be facing an isotopy of the same conditions as the one
used for the lifting of the field K of Example 4.1.3. Regarding the iso-
topic elements used for obtaining the iso-P-module (Z4,+, ×̂), they
are also in the same conditions as those used for obtaining the isovec-
tor space Û of Example 4.1.3, for we would have as principal elements
to Î and 2 ≡ ×, which is the external product of the starting Z-module,
(P,+,×), which in turn is equivalent to the second operation • of the
vector space U of Example 4.1.3, and as secondary elements to Ŝ′ = Ŝ

and � ≡ + (which is equivalent to the first operation ◦ of the vector
space U ).

Regarding the conditions (equivalent to those of Proposition 4.1.2)
of Proposition 4.3.3, we have already seen in Example 4.3.4 that they
occur, so finally the isotopic model of Example 4.1.3 comes to have its
equivalent for isomodules.

However, a difference, compared to the model of Example 4.1.3
(which also occurs in Example 4.3.4), is that in general the isotopic set
corresponding to the lifting of an A-module M need not correspond
with it itself, unlike in the case in the above example, where Û = U

always. This is due to the fact that in a ring we cannot speak of an in-
verse element with respect to the second operation, thus it would not
be a demonstration similar to the one given in Example 4.1.3, of which
X ∈ U , then X = X • T • Î ∈ Û , if T = Î−I ∈ A, as in our case it can
be that T /∈ A.

We finally note that this specific case of Example 4.3.4 can be gener-
alized, not only to the rest of the ideals of a given ring, but to cases in
which the module of departure in question is under similar conditions.
Let us see an example of the latter:

Example 4.3.5 Let us consider the ring (Z,+,×) and the isoring
(P,+, ×̂) seen in Example 3.4.5. Let us take, moreover, the Z-module (Q,+)

of the rational numbers with the usual sum, with external product • (the usual
product of the rational numbers). Then, realizing the isotopy of principal el-
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ements Î = 2 and 2 ≡ • and secondary elements Ŝ = 0 and � ≡ + (sum
of rationals), we would arrive, in a manner analogous to Example 4.3.4, and
using Proposition 4.3.3, at the iso-P-module (Q,+, •̂), where the isoproduct
•̂ would be defined according to m̂•̂n̂ = (m • n) • 2 for all m̂, n̂ ∈ Q̂2 = Q.
�

We will now continue our study with the lifting of associated sub-
structures to modules: the submodules. We will give first the definition
of such liftings, which will be called isosubmodules:

Definition 4.3.6 Let (A, ◦, •) be a ring and (Â, ◦̂, •̂) an associated isor-
ing. Let (M,+) be an A-module with external product × and (M̂, +̂) an
iso-Â-module with external product ×̂ associated with M . Let N be a sub-
module of M . We say that N̂ ⊆ M̂ is an isosub-Â-module of M̂ if, being
an isotopy of N , it has a sub-Â-module structure of M̂ , i.e., if (N̂ , +̂) has an
iso-Â-module structure, with external product ×̂ (given that we already have
that N̂ ⊆ M̂ ).

We now turn to the model of constructing isotopies by means of an
isounit and the isoproduct, making sure the laws associated with the
future isosubmodule are the same as those of the starting isomodule.
We therefore need that isotopic elements be exactly the same as those
used to construct said isomodule. With this we will also obtain that
the resulting isotopic set of the lifting of the starting submodule is con-
tained in the one resulting from the lifting of the corresponding mod-
ule. We still need, however, to give such a set an isomodule structure.
For this purpose it would suffice to adapt the conditions of Proposi-
tion 4.3.3 to the starting submodule, which in turn has a module struc-
ture. We have thus, analogously to said proposition, the following:

Proposition 4.3.7 Let (A, ◦, •) be a ring and (M,+) an A-module with
external product ×. Let (Â, ◦̂, •̂) be an isoring associated with A and (M̂, +̂)

the iso-Â-module with external product ×̂, corresponding to the isotopy of
elements Î , Ŝ, Ŝ′, ∗, ?,2, and �, in the conditions of Proposition 4.3.3. Let N
be a submodule ofM . In these conditions, if (N, �) has a submodule structure
of (M, �), both with external product 2 with respect to the ring (A, ?, ∗),
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(N, �) being a group with unit element S′ ∈ N , then the isotopic lifting
(N̂ , +̂) coupled with the product ×̂ corresponding to the isotopy of the previ-
ously indicated elements has an isosub-Â-module structure. 2

Let us note that we do not have to assume here the rest of the hy-
potheses of Proposition 4.3.3, given that they hold by the construction
itself of M̂ , i.e., that N̂ inherits them from M̂ .

Let us see an example of an isosubmodule:

Example 4.3.8 Let us consider the ring (Z,+,×), the isoring (P,+, ×̂),
the Z-module (Q,+) with external product •, and the iso-P-module (Q,+)

with external product •̂, all given in Example 4.3.5. Let us also take the Z-
module (P,+) with external product× (which is also a submodule of Q) and
the iso-P-module (P,+) with external product ×̂ of Example 4.3.4. We will
then have that, with the notation of these examples, (P, �) = (P,+) has a
submodule structure of (Q, �) = (Q,+), both with external product 2 ≡ ×,
with respect to the ring (Z, ?, ∗) = (Z,+,×), (P, �) = (P,+) being a group
with unit element 0 ∈ P.

Then, by Proposition 4.3.7, the isotopic lifting (P,+) with external prod-
uct ×̂, corresponding to the isotopy of elements used for the rest of the desig-
nated isostructures, has an isosub-P-module structure. �

We will finish this section by giving the definition of the various
existing applications among isomodules:

Definition 4.3.9 Let (Â, ◦̂, •̂) be an isoring and let (M̂, +̂) and (M̂ ′, 4̂) be
two iso-Â-modules with respective external products ×̂ and 5̂. A function
f : M̂ → M̂ ′ is called a iso-Â -module homomorphism if, ∀â ∈ Â and
∀m̂, n̂ ∈ M̂ , it is satisfied that:

1. f(m̂+̂n̂) = f(m̂)4̂f(n̂).
2. f(â×̂m̂) = â5̂f(m̂).

In addition, as in the other applications already seen above, if f is bijective,
it is called an isomorphism; if M̂ = M̂ ′, an endomorphism. In the latter
case, if in addition f is bijective, it is called an automorphism.
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We finally note that, given the similarity already mentioned be-
tween vector spaces and modules, we can generalize to the case of
isomodules all the theory studied in the isotransformations section. It
would then be completely analogous to the previous theory, so every-
thing said about isotransformations between isovector spaces can also
be applied to the case of isotransformations of isomodules.



Chapter 5

LIE-SANTILLI ISOTHEORY:
ISOTOPIC STRUCTURES (III)

We are going to study in this chapter the isotopic lifting of a new struc-
ture: algebras. In the first section we will treat isoalgebras in general, ac-
cording to the procedure already used in previous chapters (see [98]).
The lifting of associated substructures (the isosubalgebras) will also be
studied. In the second section, we will study how to lift isotopically
a particular type of algebra, Lie algebras, giving rise to the Lie-Santilli
algebras, being then able to see the improvements Santilli isotheory in-
troduced in Lie theory. In a third section we will explore some types
of isotopic Lie isoalgebras, including isosimples, isosemisimples, isosolv-
ables, isonilpotents, and isofiliforms.

5.1 Isoalgebras

Definition 5.1.1 Let (U, ◦, •, ·) be an algebra with internal laws ◦ and ·
and with external product • over a field K(a,+,×). We call an isoalgebra
any isotopy Û of U equipped with two new internal laws ◦̂ and ·̂ and with an
external isoproduct •̂ over the isofield K̂(â, +̂, ×̂) satisfying the axioms of the
algebra, i.e., such that ∀â, b̂ ∈ K̂ and ∀X̂, Ŷ , Ẑ ∈ Û , they may satisfy:

1. (Û , ◦̂, •̂) has an isovector space structure defined over the isofield
K̂(â, +̂, ×̂).

261
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2. (â•̂X̂ )̂·Ŷ = X̂ ·̂(â•̂Ŷ ) = â•̂(X̂ ·̂Ŷ ).
3. X̂ ·̂(Ŷ ◦̂Ẑ) = (X̂ ·̂Ŷ )◦̂(X̂ ·̂Ẑ), and (X̂ ◦̂Ŷ )̂·Ẑ = (X̂ ·̂Ẑ)◦̂(Ŷ ·̂Ẑ).

In the case that the law ·̂ be commutative, i.e., if X̂ ·̂Ŷ = Ŷ ·̂X̂ , ∀X̂, Ŷ ∈ Û ,
we will say that Û is an isocommutative isoalgebra.

If ·̂ is associative, i.e., if X̂ ·̂(Ŷ ·̂Ẑ) = (X̂ ·̂Ŷ )̂·Ẑ for all X̂, Ŷ , Ẑ ∈ Û , we
will say that Û is an isoassociative isoalgebra.

If X̂ ·̂(Ŷ ·̂Ŷ ) = (X̂ ·̂Ŷ )̂·Ŷ and (X̂ ·̂X̂ )̂·Ŷ = X̂ ·̂(X̂ ·̂Ŷ ) for all X̂, Ŷ ∈
Û , Û will be called an isoalternate.

Finally, if Ŝ ∈ Û is the unit element of Û with respect to the law ◦̂, we will
say that Û is an isodivision isoalgebra if for all Â, B̂ ∈ Û , with Â 6= Ŝ, the
equation Â̂·X̂ = B̂ always has a solution.

Let us look at some observations regarding the previous definition.
To begin with, we note that, in a way analogous to the conventional
case, the isoalgebras are a special case of isovector spaces, for which
we define a second internal operation with the designated properties.
This second internal operation does not have a unit element, so in the
case of using the isotopic lifting with respect to an isounit and the iso-
product, the isounit which is used need not become an isounit of ·̂.

On the other hand, we also note that, again in a way analogous to
the conventional case, any isoassociative isoalgebra is an isoalternate
isoalgebra, but not vice versa in general, as the property of isoassocia-
tivity implies isoalternancy immediately, but not so in a reciprocal way.

We shall now proceed to the construction of isoalgebras by means of
the model taken from an isounit and the isoproduct. Due to the partic-
ular nature of the isovector space which the isoalgebras have, it results
that the construction of these, following the aforementioned model,
is entirely analogous to the construction of isovector spaces, with the
only exception that, in addition, we must carry out the isotopic lifting
of the second internal operation. Let us take into account for this pur-
pose what was already mentioned, that this operation need not have a
unit element nor even its corresponding isotopic lifting; consequently,
we cannot speak at all of the inverse element with respect to these
operations. For these reasons, when in an isoalgebra we speak of the
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main isounit used in its construction, this will refer to the isounit used
in the lifting of the isovector space (Û , ◦̂, •̂) (following the notations of
Definition 5.1.1). In this way, it is clear that when we seek the isotopic
lifting of an algebra (U, ◦, •, ·) over a field K(a,+,×), the first thing
that must be done is to raise isotopically the vector space (U, ◦, •) to an
isovector space (Û , ◦̂, •̂) over an isofield K̂(â, +̂, ×̂), thus resulting in
condition (1) of the definition. With this, assuming that they have been
used as principal isotopic elements for Î and 2, the isotopic set Û = ÛÎ
is also already fixed.

For all the above, even if we could make use of a new isounit and
a new law (provided they were compatible with the isotopic set Û al-
ready obtained), the most convenient way to perform the lifting of the
external product ·will be to define it directly with the isotopic elements
for what we already have. It would then suffice to define the product
·̂ according to: X̂ ·̂Ŷ = (X2Î )̂·(Y2Î) = (X · Y )2Î = X̂ · Y for all
X̂, Ŷ ∈ Û . Note that X̂ ·̂Ŷ ∈ Û , since for · being an internal operation,
X · Y ∈ U .

Now we should verify that Û with this new operation ·̂ satisfies the
rest of the required conditions in the definition for having an isoalge-
bra structure. However, as usual, we will have to impose some prop-
erty for the used elements to achieve these conditions. We are going to
prove that together with the conditions of Proposition 4.1.2, it suffices
to impose that (U, �,2, ·) also has an algebra structure over the field
K(a, ?, ∗) and that X̂ ·̂R̂′ = R̂′̂·X̂ = R̂′, for all X̂ ∈ Û .

Indeed, for all â ∈ K̂ and for all X̂, Ŷ , Ẑ ∈ Û , we have:

1. (â•̂X̂ )̂·Ŷ = ((a2X)2Î )̂·Ŷ = ((a2X) · Y )2Î = (X · (a2Y ))2Î =

X̂ ·̂(â•̂Ŷ ) = (a2(X · Y ))2Î = â•̂((X · Y )2Î) = â•̂(X̂ ·̂Ŷ ).
2. X̂ ·̂(Ŷ ◦̂Ẑ) = X̂ ·̂((Y �R′ �Z)2Î) = (X · (Y �R′ �Z))2Î = ((X ·Y )�

(X · R′) � (X · Z))2Î = ((X · Y )2Î) � ((X · R′)2Î) � ((X · Z)2Î) =
(X̂ ·̂Ŷ ) � (X̂ ·̂R̂′) � (X̂ ·̂Ẑ) = (X̂ ·̂Ŷ ) � R̂′ � (X̂ ·̂Ẑ) = (X̂ ·̂Ŷ )◦̂(X̂ ·̂Ẑ).
(·)(X̂ ◦̂Ŷ )̂·Ẑ = ((X �R′ �Y ) ·Z)2Î = ((X ·Z)� (R′ ·Z)� (Y ·Z))2Î =

(X̂ ·̂Ẑ) � (R̂′̂·Ẑ) � (Ŷ ·̂Ẑ) = (X̂ ·̂Ẑ) � R̂′ � (Ŷ ·̂Ẑ) = (X̂ ·̂Ẑ)◦̂(Ŷ ·̂Ẑ).
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We will also have that if U is a commutative algebra, Û will be an
isocommutative isoalgebra, since X̂ ·̂Ŷ = (X · Y )2Î = (Y · X)2Î =

Ŷ ·̂X̂ , for all X̂, Ŷ ∈ Û .
If U is associative, Û will be isoassociative, since X̂ ·̂(Ŷ ·̂Ẑ) = X̂ ·̂((Y ·

Z)2Î) = (X · (Y ·Z))2Î = ((X ·Y ) ·Z)2Î = ((X ·Y )2Î )̂·Ẑ = (X̂ ·̂Ŷ )̂·Ẑ,
for all X̂, Ŷ , Ẑ ∈ Û .

If U is alternate, Û will be isoalternate, since X̂ ·̂(Ŷ ·̂Ŷ ) = X̂ ·̂((Y ·
Y )2Î) = (X · (Y ·Y ))2Î = ((X ·Y ) ·Y )2Î = (X̂ ·̂Ŷ )̂·Ŷ and (X̂ ·̂X̂ )̂·Ŷ =

((X · X)2Î )̂·Ŷ = ((X · X) · Y )Î = (X · (X · Y ))2Î = X̂ ·̂(X̂ ·̂Ŷ ) are
satisfied for all X̂, Ŷ ∈ Û .

Finally, so that Û would be an isodivision isoalgebra, it will not be
enough just thatU be a division algebra; rather, it will also be necessary

to impose that Ŝ =
−̂→
0 ,
−→
0 being the unit element of U with respect to

the operation ◦. In this way, given Â, B̂ ∈ Û , with Â 6= −̂→0 , we have
that the equation Â̂·X̂ = B̂ always has a solution, since it would be
equivalent to (A ·X)2Î = B2Î , which would have a possible solution
for an element X ∈ U that satisfies A ·X = B, which we know exists,
U being a division algebra.

With all of the above we have shown the following results:

Proposition 5.1.2 Let (U, ◦, •, ·) be an algebra defined over K(a,+,×). Let
(Û , ◦̂, •̂) be an isovector space over the isofield K̂(â, +̂, ×̂), constructed in the
conditions of Proposition 4.1.2. If, in addition, it satisfies that (U, �,2, ·) has
an algebra structure over the field K(a, ?, ∗) and for all X̂ ∈ Û we have that
X̂ ·̂R̂′ = R̂′̂·X̂ = R̂′, then the isotopic lifting (Û , ◦̂, •̂, ·̂), corresponding to
the isotopy of principal elements Î and 2 and secondary elements Ŝ and �, by
means of the isoproduct procedure, has an isoalgebra structure over K̂. Also,
said lifting preserves the type of the initial algebra, i.e., if U is a commutative,
associative, or alternate algebra, then Û we be an isocommutative, isoassocia-

tive, or isoalternate isoalgebra, respectively. If, in addition, Ŝ =
−̂→
0 ,
−→
0 being

the unit element of U with respect to ◦, we have that if U is a division algebra,
then Û is an isodivision isoalgebra. 2
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Another important aspect for the isoalgebras is that of their bases.
Because of the particular nature of isoalgebras and isovector spaces, all
the theory regarding bases and isobases studied for the latter serves for
the new isostructure. In particular, we would thus have, since the iso-
topic model given in Example 4.1.3 is fully compatible for the case of
isoalgebras, that, in case of using such a model, the isotopy obtained
also possesses the property of preserving bases, in the sense of carry-
ing bases into bases, completely analogously to the case of isovector
spaces.

Making use of the bases of an isoalgebra, the isotopic concept of
norm (isonorm) and normed algebra also appears (see [128]):

Definition 5.1.3 Let (Û , ◦̂, •̂, ·̂) be an isoalgebra over the isofield K̂(â, +̂, ×̂)
in the conditions of Proposition 5.1.2. Let β = {ê1, . . . , ên} be a basis
of Û and let X̂ ∈ Û . If X =

∑n
i=1 x̂i×̂êi with regard to β, x̂i ∈ K̂

for all i ∈ {1, . . . , n}, we define the isonorm of X̂ in Û , according to:
|̂X̂ |̂ = (

∑n
i=1 xi × xi)

1/2 ∗ Î = (
∑n
i=1 x

2
i ) ∗ Î = |X| ∗ Î = |X̂| ∈ Û

Also, the isoalgebra Û will be called isonormed if for all X̂, Ŷ ∈ Û and for
all â ∈ K̂, the isonorm satisfies the two following conditions:

1. |̂X̂ ·̂Ŷ |̂ = |̂X̂ |̂×̂̂|Ŷ |̂ ∈ K̂.
2. |̂â•̂X̂ |̂ = |̂â̂|×̂̂|X̂ |̂, where |̂â̂| represents the isonorm of the element â cor-

responding to the isofield K̂.

If we are not working with an isotopy under the conditions of
Proposition 3.5.2, following the model of Example 4.1.3, we immedi-
ately see that if U is a normed algebra, then Û is an isonormed isoalge-
bra, since ∀â ∈ K̂; and, ∀X̂, Ŷ ∈ Û , we have

1. |̂X̂ ·̂Ŷ |̂ = |̂(X · Y )2Î |̂ = ̂|X · Y | = ̂|X| × |Y | = |̂X|×̂|̂Y |.
2. |̂â•̂X̂ |̂ = ̂|(a2X)2Î| = |̂â2X |̂ = |̂ ̂a •X |̂ = ̂|a •X| = ̂|a| × |X| =
|̂a|×̂|̂X| = |̂â̂|×̂̂|X̂ |̂.

Let us then look at some examples of all the above. In the first of
these, we are going to prove that we can provide the isoreal num-
bers with a 1-dimensional isocommutative, isoassociative (and there-
fore isoalternate), isodivision, and isonormed isoalgebra structure.
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Example 5.1.4 Let (R,+,×) be the field of real numbers with the usual
sum and product. Considering the product × as an external product over
R itself, we can give (R,+,×) a vector space structure over R itself. In
turn, considering the product × as a second internal operation, we can give
(R,+,×,×) an algebra structure over R itself, being, in addition, commuta-
tive, associative (and therefore alternate), of division, and normed, using the
conventional operations.

Realizing now the isotopy of the field (R,+,×) of principal elements Î ∈
R and ∗ ≡ × and secondary elements Ŝ = 0 and ? ≡ +, we would obtain
(R̂Î ,+, ×̂), where R̂Î = {a × Î | a ∈ R} = R, ×̂ being defined according
to: â×̂b̂ = (a× b)× Î , for all a, b ∈ R.

On the other hand, taking the elements 2 ≡ ×, Ŝ′ = 0, and � ≡ +, it
would result that (R, �,2,×) = (R,+,×,×) has an algebra structure over
(R, ?, ∗) = (R,+,×), (R, �,2) then having a vector space structure over
the same field, and (R, �) = (R,+) a group structure with unit element
S′ = 0, which coincides with the unit element of R with respect to ?. In this
way R̂ = Ŝ−0 = 0 = 0× Î = 0̂ = Ŝ′

−0
= R̂′. Also, for all â, X̂ ∈ R̂ = R

we have:

1. â×̂R̂′ = â×̂0̂ = (a× 0)× Î = 0× Î = R̂′.
2. R̂×̂â = 0̂×̂â = 0̂ = R̂.
3. X̂×̂R̂′ = X̂×̂0̂ = 0̂ = R̂′ = 0̂×̂X̂ = R̂′×̂X̂ .

Therefore, as we have the necessary hypotheses to be able to apply
Proposition 5.1.2, we arrive at that the isotopic lifting (R̂Î , +̂, ×̂, ×̂) =

(R,+, ×̂, ×̂), corresponding to the isotopy with the aforementioned elements,
has an isoalgebra structure over the isofield (R,+, ×̂). Also, given the char-
acteristics of the starting algebra (R,+,×,×), the obtained isoalgebra is iso-
commutative and isoassociative (and therefore isoalternate).

On the other hand, given that Ŝ = 0 = 0̂ (0 being the unit element of
R with respect to +) and that the algebra was a division one, the resulting
isoalgebra is also of isodivision.

Also, given that to obtain the vector isospace (R,+, ×̂) what has been done
is to follow the isotopic model of Example 4.1.3, we get that by the indicated



5.1 Isoalgebras 267

observation after Definition 5.1.3, and by the starting algebra being a normed
algebra, the isoalgebra (R,+, ×̂, ×̂) is isonormed.

Finally, as the isotopy utilized follows the model of Example 4.1.3, we also
have that our isotopic lifting retains bases and therefore dimensions, thus the
starting algebra R being 1-dimensional, the isoalgebra obtained will also be of
this dimension. Moreover, as a basis for the initial algebra would be β = {1}
and taking into account that 1̂ = 1 ∗ Î = 1× Î = Î , we would reach that an
isobasis associated with β would be β̂ = {Î}. �

Example 5.1.5 Let us consider the algebra (Mn×n(R),+, •, ·) defined
over the field (R,+,×) of the real (n × n)-dimensional matrices (with the
usual matrix sum and product, + and · and the usual product of a matrix
with a scalar •). Let us now consider the isovector space (Mn×n(R),+, •̂)
over the isofield (R,+, ×̂) given in Example 4.1.4, adapted to matrices of di-
mension (n×n), in place of (m×n). We will then have that, with the notation
of said example, (Mn×n(R), �,2, ·) = (Mn×n(R),+, •, ·) is an algebra over
the field (R, ?, ∗) = (R,+,×).

We now define the operation ·̂ according to: Â̂·B̂ = (A ·B)22 = (A ·B)•
2 ∈Mn×n(R), for all A,B ∈Mn×n(R).

Then, as R̂′ = Ŝ′
−S′

= 0−0 = 0 = 0 • 2 = 0̂ (the null (n × n)-
dimensional matrix), we would have that Â̂·R̂′ = Â̂·0̂ = (A · 0) • 2 =

0 • 2 = 0 = R̂′ = R̂′̂·Â, for all Â ∈ ̂Mn×n(R)2 =Mn×n(R).
Therefore, since we have the necessary conditions to be able to ap-

ply Proposition 5.1.2, it is evident that the isotopic lifting given by
( ̂Mn×n(R)2, +̂, •̂, ·̂) = (Mn×n(R),+, •̂, ·̂), corresponding to the isotopy
of elements previously indicated, is an isoalgebra defined over the isofield
(R̂2, +̂, ×̂) = (R,+, ×̂), which will also be isoassociative by the initial al-
gebra being associative. �

We will then study the isotopic lifting of substructures associated
with the algebras: the subalgebras. We will start by giving the defini-
tion of isosubalgebra:

Definition 5.1.6 Let (U, ◦, •, ·) be an algebra over K(a,+,×) and let
(Û , ◦̂, •̂, ·̂) be an isoalgebra associated with U , over the isofield K̂(â, +̂, ×̂).
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Let (W, ◦, •, ·) be a subalgebra of U . We say that Ŵ ⊆ Û is an isosubalge-
bra of Û if, being an isotopy of W , (Ŵ , ◦̂, •̂, ·̂) has a subalgebra structure of
Û , i.e., if (Ŵ , ◦̂, •̂, ·̂) has an isoalgebra structure over K̂(â, +̂, ×̂) (given that
we already have that Ŵ ⊆ Û ).

Let us now pass to the model constructing isotopies by means of
an isounit and the isoproduct, making sure that the laws associated
with the future isosubalgebra are the same as those associated with the
starting isoalgebra. We must therefore use the same isotopic elements
as those used to construct Û , thus arriving in particular at the isotopic
set associated with the subalgebra W being contained in the one cor-
responding to U . In turn, to get that (Ŵ , ◦̂, •̂, ·̂) has an isoalgebra struc-
ture, it simply suffices to adapt the conditions of Proposition 5.1.2 to
the set W , which in turn has an algebra structure, being a subalgebra
of U . We will thus have, analogously to the above proposition, the fol-
lowing:

Proposition 5.1.7 Let (U, ◦, •, ·) be an algebra defined over the field
K(a,+,×). Let (Û , ◦̂, •̂, ·̂) be an isoalgebra associated with U , over the
isofield K̂(â, +̂, ×̂), associated with U , corresponding to the isotopy of el-
ements Î , Ŝ, Ŝ′, ∗, ?,2, and �, in the conditions of Proposition 5.1.2. In
these conditions, if (W, �,2, ·) has a subalgebra structure of (U, �,2, ·) over
K(a, ?, ∗), (W, �) being a group with unit element S′ ∈ W , then the iso-
topic lifting (Ŵ , ◦̂, •̂, ·̂) corresponding to the isotopy of the aforementioned
elements,has isosubalgebra structure of Û over the isofield K̂(â, +̂, ×̂). 2

Note that it is not necessary to require in the previous proposition
the rest of the hypotheses that are called for in Proposition 5.1.2 be-
cause Ŵ would inherit them from Û .

Here below is an example of an isosubalgebra:

Example 5.1.8 Let us again consider the algebra (Mn×n(R),+, •, ·), now
over the field (Q,+,×), and perform the isotopic lifting of elements exactly
the same as those of Example 5.1.5. We will then obtain, in this way, the
isoalgebra (Mn×n(R),+, •̂, ·̂) over the isofield (Q,+, ×̂), where the different
isoproducts are defined similarly to those of said example.
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Let us now consider the subalgebra (Mn×n(Q),+, •, ·) of
Mn×n(R). With the notation of Example 5.1.5, (Mn×n(Q), �,2, ·) =

(Mn×n(Q),+, •, ·) is a subalgebra of (Mn×n(R), �,2, ·) =

(Mn×n(R),+, •, ·) over (Q, ?, ∗) = (Q,+,×), (Mn×n(Q), �) =

(Mn×n(Q),+) then being a group with unit element 0 ∈ Mn×n(Q)

(which is the unit element of (Mn×n(R), �) = (Mn×n(R),+),
which will be had by Proposition 5.1.7, that the isotopic lifting
( ̂Mn×n(Q)2, +̂, •̂, ·̂) = (Mn×n(Q),+, •̂, ·̂), corresponding to the isotopy of
the aforementioned elements, is an isosubalgebra of (Mn×n(R),+, •̂, ·̂) over
(Q,+, ×̂), with ̂Mn×n(Q)2 =Mn×n(Q). �

Analogously to the isostructures already considered above, we will
now continue this section with the definition of the various functions
existing between isoalgebras:

Definition 5.1.9 Let (Û , ◦̂, •̂, ·̂) and (Û ′, 4̂, 5̂, .̂) be two isoalgebras over
the same isofield K̂(â, +̂, ×̂). A function f : Û → Û ′ is called an isoalgebra
homomorphism if, ∀X̂, Ŷ ∈ Û , it is verified that:

1. f is a homomorphism of isovector spaces restricted to the operations ◦̂ and
•̂.

2. f(X̂ ·̂Ŷ ) = f(X̂)�̂f(Ŷ ).

The concepts of isomorphism, endomorphism, and automorphism are
defined completely analogously as in the case of the isostructures already con-
sidered above.

We will finish this section by mentioning an interesting result on the
existence of possible isonormed isoalgebras with the isomultiplicative
isounit in the isoreals (see [128]).

Historically, the four types of numbers that constitute associative
algebras of respective dimensions 1, 2, 4, and 8 (i.e., the real, complex,
quaternion, and octonion numbers, respectively) were obtained as the
only solutions of the following equation: (a21 + a22 + ... + a2n) × (b21 +

b22 + ... + b2n) = A2
1 + A2

2 + ... + A2
n, for a certain fixed n ∈ N, with

Ak =
∑n
r,s=1 ckrs × ar × bs, ∀k ∈ {1, . . . , n}, the elements ar, bs and
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ckrs belonging to a field K(a,+,×), with the usual operations + and
×. On the other hand, all possible normed algebras with multiplicative
unit in the real numbers are given by algebras of dimension 1 (real), 2
(complex), 4 (quaternions), and 8 (octonions).

Then, if we reformulate our problem under the usual isotopy given
by an isounit and the isoproduct, following the model of Exam-
ple 4.1.3, it would result that:

(â1
2̂+̂â2

2̂+̂ . . . +̂ân
2̂
)×̂(b̂1

2̂
+̂b̂2

2̂
+̂ . . . +̂b̂n

2̂
) = Â1

2̂
+̂Â2

2̂
+̂ . . . +̂Ân

2̂
,

with Âk =
∑n
r,s=1 ĉkrs×̂âr×̂b̂s, ∀k ∈ {1, . . . , n} and ar, bs, ckrs ∈

K̂(â, +̂, ×̂).
Utilizing the results that are deduced from Example 4.1.3, it results

that, if we use the principal isounit for Î ∈ K, the previous problem is
equivalent to:

((a21 + a22 + . . .+ a2n)× (b21 + b22 + . . .+ b2n))Î = (A2
1 +A2

2 + . . .+A2
n)Î ,

obtaining then as possible solutions of it those coming from the initial
problem, isotopically lifted. From this, the following is deduced (see
[128]):

Proposition 5.1.10 All the possible isonormed isoalgebras with isomulti-
plicative isounit over the isoreals are isoalgebras of dimension 1 (isoreals), 2
(isocomplex), 4 (isoquaternions), and 8 (isooctonions). 2

5.2 Lie Isotopic Isoalgebras

In this section we are going to study a particular type of isoalgebra
that will already allow us to introduce ourselves directly to the gener-
alization of Lie theory carried out by Santilli. We treat the Lie isotopic
isoalgebras (see [98]), the isotopic generalization of the so-called Lie al-
gebras, the basic elements of the conventional theory of Lie algebras.
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We will start with some prior definitions, pointing out that, an isoal-
gebra (Û , ◦̂, •̂, ·̂) given, we will denote by −X̂ ∈ Û the inverse element
X̂ in Û with respect to ◦̂, i.e., with respect to the element −X̂ = X̂−Ŝ ,
if Ŝ is the isounit of Û with respect to ◦̂. Similarly, −X ∈ U will denote
the inverse element of X in an algebra (U, ◦, •, ·) with respect to the
operation ◦.

Definition 5.2.1 Let (Û , ◦̂, •̂, ·) be an isoalgebra defined over an isofield
K̂(â, +̂, ×̂). Û is called Lie isotopic if it satisfies the Lie axioms; i.e., if for all
â, b̂ ∈ K̂ and for all X̂, Ŷ , Ẑ ∈ Û , the following are satisfied:

1. ·̂ is a bilinear operation, i.e.:

a. ((â•̂X̂)◦̂(̂b•̂Ŷ ))̂·Ẑ = (â•̂(X̂ ·̂Ẑ))◦̂(̂b•̂(Ŷ ·̂Ẑ)).
b. X̂ ·̂((â•̂Ŷ )◦̂(̂b•̂Ẑ)) = (â•̂(X̂ ·̂Ŷ ))◦̂(̂b•̂(X̂ ·̂Ẑ)).

2. ·̂ is anticommutative: X̂ ·̂Ŷ = −(Ŷ ·̂X̂).
3. Isotopic Jacobi identity (or Jacobi isoidentity):

((X̂ ·̂Ŷ )̂·Ẑ)◦̂((Ŷ ·̂Ẑ )̂·X̂)◦̂((Ẑ ·̂X̂ )̂·Ŷ ) = Ŝ where Ŝ is the isounit of
Û with respect to ◦̂.

Definition 5.2.2 An isoalgebra (Û , ◦̂, •̂, ·̂) over an isofield K̂(â, +̂, ×̂) is
called isoreal (isocomplex, respectively) depending on the isofield associ-
ated with it. Likewise, we call the dimension of a Lie isotopic isoalgebra Û
the dimension that Û has as an isovector space.

Definition 5.2.3 If {ê1, . . . , ên} is an isobasis of Û , with êî·êj =∑
ĉhij •̂êh, ∀ 1 ≤ i, j ≤ n, we call the coefficients ĉhij ∈ K̂ structure iso-

constants or Maurer-Cartan isoconstants of the isoalgebra.

Definition 5.2.4 An isoalgebra (Û , ◦̂, •̂, ·̂) over an isofield K̂(â, +̂, ×̂) is
called Lie isoadmissible if, with the commutator product [., .]Û associated
with ·̂ (defined according to: [X̂, Ŷ ]Û = (X̂ ·̂Ŷ )− (Ŷ ·̂X̂), for all X̂, Ŷ ∈ Û ),
Û is a Lie isotopic isoalgebra.

We will continue our study comparing concepts of Lie isotopic isoal-
gebras and Lie isoadmissible isoalgebras, defined above, with similar
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conventional concepts. If we study the construction of isotopies by
means of an isounit and the isoproduct, we observe that in general
there does not have to be an isotopic lifting of a Lie or a Lie admissible
algebra that is respectively a Lie isotopic algebra or a Lie isoadmissible
isoalgebra.

To see this, let us start by fixing an algebra (U, ◦, •, ·) defined over a
fieldK(a,+,×) and an isoalgebra (Û , ◦̂, •̂, ·̂) associated withU over the
isofield K̂(â, +̂, ×̂), under an isotopy of principal isounit Î . In general,
we will then have (−X)Î 6= −X̂ with X ∈ U , since the unit elements
and operations under which we take the corresponding inverse ele-
ment are distinct. In this way, although U is Lie, we have in general
that X̂ ·̂Ŷ = (X · Y )Î = (−(Y ·X))Î 6= −(Ŷ ·̂X̂), thus it does not verify
the necessary anticommutativity so that Û is a Lie isotopic isoalgebra.
The same drawback would present itself in the event that U were Lie
admissible, so when lifting to Û , it was a Lie isoadmissible isoalgebra.
We should therefore impose another condition in the isotopic lifting of
the algebra U , so we could keep the types of algebras above.

One possibility would consist in imposing that in the isotopic lifting
the operation ◦̂ is defined according to: X̂ ◦̂Ŷ = (X ◦ Y )Î = X̂ ◦ Y , for
allX,Y ∈ U . In this way, if

−→
0 ∈ U is the unit element of U with respect

to ◦, Ŝ =
−̂→
0 ∈ Û would be the unit element of Û with respect to ◦̂, since

given X ∈ U , we would have X̂ ◦̂−̂→0 = (X ◦ −→0 )Î = XÎ = X̂ =
−̂→
0 ◦̂X̂ .

So, we would therefore reach the sought result that given X ∈ U , then

(−X)Î = −X̂ , since X̂ ◦̂((−X)Î) = (X −X)Î =
−→
0 Î =

−̂→
0 .

Let us then prove that, in fact, the previous condition is sufficient
so that if U is a Lie algebra, then Û is a Lie isotopic isoalgebra. We will
check for this, that the conditions of Definition 5.2.1 are satisfied. To do
so, given â, b̂ ∈ K̂ and X̂, Ŷ , Ẑ ∈ Û , we have

1. ((â•̂X̂)◦̂(̂b•̂Ŷ ))̂·Ẑ = ((â•̂X̂ )̂·Ẑ)◦̂((̂b•̂Ŷ )̂·Ẑ) = (â•̂(X̂ ·̂Ẑ))◦̂(̂b•̂(Ŷ ·̂Ẑ)).
2. X̂ ·̂((â•̂Ŷ )◦̂(̂b•̂Ẑ)) = (X̂ ·̂(â•̂Ŷ ))◦̂(X̂ ·̂(̂b•̂Ẑ)) = (â•̂(X̂ ·̂Ŷ ))◦̂(̂b•̂(X̂ ·̂Ẑ)).
3. X̂ ·̂Ŷ = (X · Y )Î = (−(Y ·X))Î = −(Ŷ ·̂X̂).
4. ((X̂ ·̂Ŷ )̂·Ẑ)◦̂((Ŷ ·̂Ẑ )̂·X̂)◦̂((Ẑ ·̂X̂ )̂·Ŷ ) = ((X ·Y ) ·Z)◦ ((Y ·Z) ·X)◦ ((Z ·
X) · Y )))Î =

−→
0
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Similarly, maintaining the condition imposed before, if (U, ◦, •, ·) is
a Lie admissible algebra, (Û , ◦̂, •̂, ·̂) will be a Lie isoadmissible alge-
bra, for the commutator will be given by: [X̂, Ŷ ]Û = (X̂ ·̂Ŷ )− (Ŷ ·̂X̂) =

(X · Y − Y · X)Î = [X,Y ]U Î , for all X̂, Ŷ ∈ Û , [., .]U being the com-
mutator product U associated with ·. In this way, as (U, ◦, •, [., .]U )
would be a Lie algebra ((U, ◦, •, ·) being a Lie admissible algebra), we
would have that (Û , ◦̂, ·̂, [., .]Û ) would be a Lie isotopic isoalgebra, as
we would be in the same conditions of the situation that we have just
seen. Finally, we would have by definition that (Û , ◦̂, •̂, ·̂) would be a
Lie isoadmissible isoalgebra.

With all of the above we have shown the following:

Proposition 5.2.5 Under the conditions of Proposition 5.1.2 and the sup-
posed operation ◦̂ of the isoalgebra Û defined as X̂ ◦̂Ŷ = (X ◦ Y )2Î , for all
X,Y ∈ U , we have that if U is a Lie algebra (an Lie admissible algebra, re-
spectively), then Û is a Lie isotopic isoalgebra (a Lie isoadmissible isoalgebra,
respectively). 2

Therefore, from now on we will assume at all times that the con-
struction of Lie isotopic isoalgebras shall be done according to the
model of the previous proposition, because under this model we get
the usual properties of any Lie algebra, adapted to a Lie isotopic isoal-
gebra. Thus, we have:

Proposition 5.2.6 Let (Û , ◦̂, •̂, ·̂) be a Lie isotopic isoalgebra over an
isofield K̂, associated with a Lie algebra (U, ◦, •, ·). If K̂ is of null isochar-
acteristic, the following results are satisfied:

1. X̂ ·̂X̂ = Ŝ, for all X̂ ∈ Û , where Ŝ =
−̂→
0 is the unit element of Û with

respect to ◦̂.
2. X̂ ·̂Ŝ = Ŝ ·̂X̂ = Ŝ, for all X̂ ∈ Û .
3. If the three isovectors that form a Jacobi isoidentity are equal or propor-

tional, each addend of the isoidentity is null.
4. The structure isoconstants Û define the isoalgebra and satisfy:

a. ĉhij = −ĉhij .



274 CHAPTER 5. LIE-SANTILLI ISOTHEORY (III)

b.
∑

(ĉrij ĉ
s
rh+̂ĉ

r
jhĉ

s
ri+̂ĉ

r
hiĉ

s
rj) = 0̂, where 0̂ is the unit element of K̂ with

respect to +̂.

Proof

Given the anticommutativity of ·̂, we have that X̂ ·̂X̂ = −X̂ ·̂X̂ for
all X̂ ∈ Û , which implies condition (1), for K̂ being of null isocharac-
teristic.

Now let X̂ ∈ Û . Then, for U being a Lie algebra, X̂ ·̂Ŝ = (X · S)Î =

SÎ = Ŝ, which is condition (2).
To prove (3) let X̂, Ŷ , Ẑ ∈ Û be such that Ŷ = λ̂X̂ , Ẑ =

µ̂X̂ , with λ̂, µ̂ ∈ K̂. Let us consider the first addend of the Jacobi
isoidentity. Using the bilinearity of ·̂ and the previous results, we
have that ((X̂ ·̂Ŷ )̂·Ẑ) = ((X̂ ·̂(λ̂X̂))̂·(µ̂̂·X̂)) = (λ̂×̂µ̂)•̂((X̂ ·̂X̂ )̂·X̂) =

(λ̂×̂µ̂)•̂(Ŝ ·̂X̂) = (λ̂×̂µ̂)•̂Ŝ = Ŝ. For the rest of the addends of the Ja-
cobi isoidentity, the procedure is analogous.

To prove (4) we see in the first place that the structure isocon-
stants define the isoalgebra. For this, given X̂ =

∑
λ̂iêi, Ŷ =∑

µ̂j êj , two isovectors of Û , we have X̂ ·̂Ŷ =
∑

(λ̂i×̂µ̂j)•̂(êî·êj) =∑
((λ̂i×̂µ̂j)×̂ĉhij •̂êh.
In addition, these isoconstants satisfy:

1. êî·êj =
∑
ĉhij êh = −êj ·̂êi = −

∑
ĉhjiêh ⇒ ĉhij = −ĉhji, taking into ac-

count the uniqueness of writing in an isobasis of an isovector space.
2. According to the Jacobi isoidentity, we have that

Ŝ = ((êî·êj )̂·êh)◦̂((êj ·̂êh)̂·êi)◦̂((êĥ·êi)̂·êj) =

((
∑

ĉrij êr )̂·êh)◦̂((
∑

ĉrjhêr )̂·êi)◦̂((
∑

ĉrhiêr )̂·êj) =

(
∑

(ĉrij×̂ĉ
p
rh)•̂êp)◦̂(

∑
(ĉrjh×̂ĉ

p
ri)•̂êp)◦̂(

∑
(ĉrhi×̂ĉ

p
rj)•̂êp) =∑

((ĉrij×̂ĉ
p
rh)+̂(ĉrjh×̂ĉ

p
ri)+̂(ĉrhi×̂ĉ

p
rj))•̂êp,

which implies that (ĉrij×̂ĉ
p
rh)+̂(ĉrjh×̂ĉ

p
ri)+̂(ĉrhi×̂ĉ

p
rj) = 0̂, ∀p ∈

{1, . . . , n}, from which the result is deduced. 2
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Note that as an immediate consequence of this proposition, the op-
eration ·̂ is isodistributive and not isoassociative.

With respect to the issue of functions, the morphisms between Lie
isotopic isoalgebras and isosubalgebras of these as particular cases
of definitions 5.1.9 and 5.1.6, respectively, also appear. We will pause
some more at the concept of an isoideal of a Lie isotopic isoalgebra,
studying the properties that it must satisfy as an isotopic lifting of an
ideal of a Lie algebra and seeing some examples:

Definition 5.2.7 Let (Û , ◦̂, •̂, ·̂) be a Lie isotopic isoalgebra over the
isofield K̂(â, +̂, ×̂), associated with an algebra (U, ◦, •, ·) over the field
K(a,+,×). We say that =̂ is an isoideal of Û if, being the isotopic lifting
of an ideal = of U , it is an isosubalgebra of Û such that for all X̂ ∈ =̂,
X̂ ·̂Ŷ ∈ =̂, for all Ŷ ∈ Û , i.e., if =̂̂·Û ⊂ =̂.

Here below are some examples of isoideals:

Example 5.2.8 Any Lie isotopic isoalgebra û associated with a Lie algebra
U is an isoideal of itself, as Û ·̂Û ⊂ Û , Û being an isosubalgebra of Û and U
an ideal of U , trivially. �

Example 5.2.9 Under the conditions of Proposition 5.2.6, the set {Ŝ},
where Ŝ is the unit of a Lie isotopic isoalgebra (Û , ◦̂, •̂, ·̂) with respect to ◦̂, is
an isoideal of Û .

Indeed, in the first place, {Ŝ} is an isosubalgebra of Û , since as has been

seen, Ŝ =
−̂→
0 , so we have that ({Ŝ}, ◦̂, •̂, ·̂) is the isotopic lifting of the sub-

algebra (and ideal) ({−→0 }, ◦, •, ·) of the Lie algebra (U, ◦, •, ·) to which Û is
associated. As, in addition, ({Ŝ}, ◦̂, •̂, ·̂) is clearly a subalgebra of Û , we arrive
at it effectively being an isosubalgebra.

It remains now to see that {Ŝ}̂·Û ⊂ {Ŝ}, but it is evident by result (2) of
Proposition 5.2.6. With this, {Ŝ} being an isoideal of Û is demonstrated. �

We call the two previous ideals, {Ŝ} and Û , principal isoideals of the
isoalgebra Û .

Example 5.2.10 A third example of isoideals comes from the morphisms
between Lie isotopic isoalgebras. In the conventional theory of Lie algebras,



276 CHAPTER 5. LIE-SANTILLI ISOTHEORY (III)

we know that if Φ : U → U ′ is a morphism of Lie algebras, then the kernel of
the morphism is an ideal of U .

However, in general, if ϕ : Û → Û ′ is a morphism of Lie isotopic isoalge-
bras, ker ϕ does not have be an isoideal of Û (even if it will be an ideal of Û ,
considering the algebraic structure of the latter). This is because the condition
that is usual in these cases may fail, i.e., although ker ϕ is an ideal, it is not
necessarily the ideal of a determined Lie algebra.

Nevertheless, let us prove that, with the appropriate restrictions, we can
accomplish that ker ϕ be an isoideal. So, it suffices to restrict ourselves to
the conditions of Proposition 5.2.5. So, if we have two Lie isotopic isoalgebras,
(Û , ◦̂, •̂, ·̂) and (Û ′, 4̂, 5̂, �̂), associated with the Lie algebras (Û , ◦, •, ·) and
(U ′,4,5,�), respectively, and a Lie algebra morphism Φ : U → U ′, we will
then be able to define Φ̂ : Û → Û ′ according to: Φ̂(X̂) = Φ̂(X), for all

X̂ ∈ Û . Then, if Ŝ′ =
−̂→
0 ′ is the unit element of Û ′ with respect to 4̂, we

will have that Φ̂(X̂) = Ŝ′ ⇔ Φ̂(X) = Ŝ′ =
−̂→
0 ′ ⇔ X ∈ kerΦ ⇔ X̂ ∈

k̂erΦ. Therefore, under the conditions of Proposition 5.2.5, ker Φ̂ = k̂erΦ is
satisfied, and thus ker Φ̂ is an isotopy of an ideal of the Lie algebra U . As it
also has an ideal structure of Û , considering Φ̂ as a morphism between Lie
algebras, we arrive at ker Φ̂ being an isoideal of Û , as we wanted to prove. �

In order to see a fourth example of an isoideal of a Lie isotopic isoal-
gebra, we first give the following definition:

Definition 5.2.11 We call the center of a Lie isotopic isoalgebra (Û , ◦̂, •̂, ·̂)
the set of isovectors X̂ ∈ Û such that X̂ ·̂Ŷ = Ŝ for all Ŷ ∈ Û , where Ŝ is the
unit element of Û with respect to ◦̂. In what follows, the center will be denoted
by cen Û .

Example 5.2.12 We have that cen Û is an ideal of Û , considering this
latter with algebra structure. However, to make it an isoideal, it is necessary
that it be the isotopic lifting of an ideal of a determined Lie algebra.

However, the model we have been using so far, based on the hypotheses of
Proposition 5.2.5, will solve this problem again. Indeed, if (Û , ◦̂, •̂, ·̂) is an
isoalgebra associated with the Lie algebra (U, ◦, •, ·) under said hypotheses,
cen U being the center of the Lie algebra U , then X̂ ∈ cen Û ⇔ X̂ ·̂Ŷ =
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X̂ · Y = Ŝ =
−̂→
0 , for all Ŷ ∈ Û ⇔ X ·Y =

−→
0 , for all Y ∈ U ⇔ X ∈ cen U .

Therefore, cen Û = ̂cen U , from where it is deduced that cen Û is the isotopic
lifting of an ideal of a Lie algebra, which, in turn, implies that cen Û is an
isoideal of Û . �

We can collect all the previous examples into the following:

Proposition 5.2.13 Under the hypotheses of Proposition 5.2.5, if we have
an isoalgebra (Û , ◦̂, •̂, ·̂) associated with the Lie algebra (U, ◦, •, ·), then the
following sets: Û , {Ŝ}, and cen Û are isoideals of Û . Also, if Φ̂ : Û → Û ′

is a morphism of isoalgebras associated with a morphism Φ : U → U ′, of Lie
algebras, then ker Φ̂ is an isoideal of Û . 2

However, a more general result shall be given in the following:

Proposition 5.2.14 In the hypotheses of Proposition 5.1.7, given a Lie iso-
topic isoalgebra (Û , ◦̂, •̂, ·̂) associated with a Lie algebra (U, ◦, •, ·) and given
= an ideal of U , then the corresponding isotopic lifting =̂ is an isoideal of Û .

Proof

For = being an ideal of U , it will be in particular a subalgebra of U
and therefore, to verify the hypotheses of Proposition 5.1.7, we have
that =̂ is an isosubalgebra of Û . Also, by construction, given X̂ ∈ =̂,
we will have that X̂ ·̂Ŷ = X̂ · Y , for all Ŷ ∈ Û . Then X ∈ = and Y ∈ U ,
and for = being an ideal of U , we will have that X ·Y ∈ =, from where
X̂ ·̂Ŷ = X̂ · Y ∈ =̂, which is the condition that was missing in order
that =̂was an isoideal of Û , since X̂ was an arbitrary isovector of =̂. 2

Next, we will see how to get new isoideals from some givens. For
this purpose, we first give the following:

Definition 5.2.15 Let (Û1, ◦̂, •̂, ·̂) and (Û2, ◦̂, •̂, ·̂) be two Lie isotopic
isoalgebras. The sum of both is the set {X̂ = X̂1◦̂X̂2 | X̂1 ∈ Û1 and X̂2 ∈
Û2}.

We say that the sum is direct if Û1 ∩ Û2 = {Ŝ} and Û1̂·Û2 = Ŝ. The set
of isovectors of the direct sum will be denoted by Û1 ⊕ Û2.
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Note that the notation of a direct sum of Lie isotopic isoalgebras
is unique, for if X̂ ∈ Û1 ⊕ Û2 is such that X̂ = X̂1◦̂X̂2 = Ŷ1◦̂Ŷ2, with
X̂1, Ŷ1 ∈ Û1 and X̂2, Ŷ2 ∈ Û2, then X̂1−Ŷ1 = Ŷ2−X̂2, with X̂1−Ŷ1 ∈ Û1

and Ŷ2−X̂2 ∈ Û2. As Û1∩Û2 = {Ŝ}, they will be X̂1 = Ŷ1 and Ŷ2 = X̂2,
which shows that the notation is unique.

The following is also verified:

Proposition 5.2.16 Let (Û , ◦̂, •̂, ·̂) be a Lie isotopic isoalgebra. Given two
isoideals =̂1 and =̂2 of Û , it is verified that:

1. =̂1 ∩ =̂2 is an isoideal of Û .
2. Also, under the hypotheses of Proposition 5.2.5, it is verified that

a. =̂1◦̂=̂2 is an isoideal of Û .
b. =̂1̂·=̂2 is an isoideal of Û .

Proof

From conventional Lie theory, we know that giving Û a Lie algebra
structure and giving =̂1, =̂2 ideal structures of Û , then =̂1 ∩ =̂2, =̂1◦̂=̂2,
=̂1̂·=̂2 are ideals of Û .

It then remains to be seen that they are isotopic liftings of ideals of
a determined Lie algebra. Let us suppose, for this purpose, that =̂j is
the isotopic lifting of =j , an ideal of a Lie algebra U , which will be
associated with Û , for j = 1, 2. Let X̂ ∈ =̂1 ∩ =̂2. Then, X̂ ∈ =̂j (j =

1, 2)⇔ X ∈ =j(j = 1, 2)⇔ X ∈ =1 ∩=2. Therefore, =̂1 ∩ =̂2 = ̂=1 ∩ =2.
As we are also under the hypotheses of Proposition 5.2.5, we will have
that, on the one hand, =̂1◦̂=̂2 = ̂=1 ◦ =2 and on the other, =̂1̂·=̂2 =̂=1 · =2, from where it is proved that in all three cases we have isotopic
liftings, and therefore new isoideals are obtained. 2

Note that to prove the last condition, only the hypotheses of Propo-
sition 5.1.2 were necessary, since indeed Proposition 5.2.5 improves the
hypotheses regarding the operation ◦̂, while the first proposition im-
proves only ·̂.

We will end this section with the isotopic lifting of the algebras de-
rived from a Lie algebra (U, ◦, •, ·), that is, with the isotopic generaliza-
tion of the set U · U . As it is becoming customary, given a Lie isotopic
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isoalgebra, we can consider its Lie algebra structure, working with the
algebra Û ·̂Û , derived from Û . Now, restricting ourselves to the model
of construction of Proposition 5.1.2, considering that Û is the isotopic
lifting of the Lie algebra (U, ◦, •, ·), we will have that Û ·̂Û = Û · U , and
therefore the algebra derived from Û is, in turn, an isoalgebra, by be-
ing the isotopic lifting of an algebra (which is the algebra derived from
U ). We can then speak of the derived isoalgebra of Û . We will have, in
addition, that the isoalgebra derived from Û is an isoideal of Û , for it
is the isotopic lifting of the algebra derived from U , which, in turn, is
an ideal of U .

Moreover, it will also interest us to study, analogously to the con-
ventional case, when it is verified that Û ·̂Û = Ŝ. Thus, we give the
following in advance:

Definition 5.2.17 An isoideal =̂ of a Lie isotopic isoalgebra (Û , ◦̂, •̂, ·̂) is
isocommutative if X̂ ·̂Ŷ = Ŝ, for all X̂ ∈ =̂ and for all Ŷ ∈ Û . In turn, a
Lie isotopic isoalgebra is called isocommutative if, considered as an isoideal,
it is isocommutative.

The following results are verified:

Proposition 5.2.18 A Lie isotopic isoalgebra is isocommutative if and
only if its derived isoalgebra is null.

Proof

Let (Û , ◦̂, •̂, ·̂) be a Lie isotopic isoalgebra. Then Û is isocommutative
⇔ X̂ ·̂Ŷ = Ŝ, ∀X̂, Ŷ ∈ Û ⇔ Û ·̂Û = Ŝ. 2

Proposition 5.2.19 Under the hypotheses of Proposition 5.2.5, an isoal-
gebra (Û , ◦̂, •̂, ·̂) associated with a Lie algebra (U, ◦, •, ·) is isocommutative if
and only if U is commutative.

Proof

Under the conditions of Proposition 5.2.5, we know that given

X̂, Ŷ ∈ Û , then X̂ ·̂Ŷ = X̂ · Y = Ŝ =
−̂→
0 ⇔ X · Y =

−→
0 . Therefore,

as X̂, Ŷ are arbitrary isovectors in U , we have that Û is isocommuta-
tive⇔ U is commutative. 2
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5.3 Types of Lie isotopic isoalgebras

In this section we will give some examples of Lie isotopic isoalgebras.
We will begin studying the Lie-Santilli algebras (see [98] and [174]) and
continue with the study of certain Lie isotopic isoalgebras, including
the isosimple, isosemisimple, isosolvable, isonilpotent, and isofiliform.

5.3.1 Lie-Santilli Algebras

Definition 5.3.1 Let (Û , ◦̂, •̂, ·̂) be an isoassociative isoalgebra over an
isofield K̂(â, +̂, ×̂). The Lie-Santilli product bracket with respect to ·̂,
[., .]S , is the product Û associated with ·̂, i.e., the operation defined accord-
ing to: [X̂, Ŷ ]S = (X̂ ·̂Ŷ ) − (Ŷ ·̂X̂), for all X̂, Ŷ ∈ Û . The isoalgebra
(Û , ◦̂, •̂, [., .]S) is called the Lie-Santilli algebra.

We are next going to check that the name given in this definition
for the isoalgebra (Û , ◦̂, •̂, [., .]S) is not arbitrary. Therefore, we begin
observing that (Û , ◦̂, •̂) is a vector space over K̂(â, +̂, ×̂), for (Û , ◦̂, •̂, ·̂)
being an isoalgebra over said field. Also, for all â ∈ K̂ and X̂, Ŷ , Ẑ ∈ Û ,
we have

1. [â•̂X̂, Ŷ ]S = ((â•̂X̂ )̂·Ŷ ) − (Ŷ ·̂(â•̂X̂)) = (X̂ ·̂(â•̂Ŷ )) −
((â•̂Ŷ )̂·X̂) = [X̂, â•̂Ŷ ]S = (â•̂(X̂ ·̂Ŷ )) − (â•̂(Ŷ ·̂X̂)) =

â•̂((X̂ ·̂Ŷ )− (Ŷ ·̂X̂)) = â•̂[X̂, Ŷ ]S ,
2. [X̂, Ŷ ◦̂Ẑ]S = (X̂ ·̂(Ŷ ◦̂Ẑ)) − ((Ŷ ◦̂Ẑ )̂·X̂) = ((X̂ ·̂Ŷ )◦̂(X̂ ·̂Ẑ))−

((Ŷ ·̂X̂)◦̂(Ẑ ·̂X̂)) = (X̂ ·̂Ŷ )◦̂(X̂ ·̂Ẑ) − (Ŷ ·̂X̂) − (Ẑ ·̂X̂) = ((X̂ ·̂Ŷ ) −
(Ŷ ·̂X̂))◦̂((X̂ ·̂Ẑ)− (Ẑ ·̂X̂)) = [X̂, Ŷ ]S ◦̂[X̂, Ẑ]S ,

3. [X̂ ◦̂Ŷ , Ẑ]S = ((X̂ ◦̂Ŷ )̂·Ẑ) − (Ẑ ·̂(X̂ ◦̂Ŷ )) = ((X̂ ·̂Ẑ)◦̂(Ŷ ·̂Ẑ))−
((Ẑ ·̂X̂)◦̂(Ẑ ·̂Ŷ )) = (X̂ ·̂Ẑ)◦̂(Ŷ ·̂Ẑ) − (Ẑ ·̂X̂) − (Ẑ ·̂Ŷ ) = ((X̂ ·̂Ẑ) −
(Ẑ ·̂X̂))◦̂((Ŷ ·̂Ẑ)− (Ẑ ·̂Ŷ )) = [X̂, Ẑ]S ◦̂[Ŷ , Ẑ]S ,
and therefore (Û , ◦̂, •̂, [., .]S) is an algebra over K̂(â, +̂, ×̂). Also, it is
a Lie algebra, since for â, b̂ ∈ K̂ and X̂, Ŷ , Ẑ ∈ Û , the following are
satisfied:
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4. [(â•̂X̂)◦̂(̂b•̂Ŷ ), Ẑ]S = [â•̂X̂, Ẑ]S ◦̂[̂b•̂Ŷ , Ẑ]S =

(â•̂[X̂, Ẑ]S)◦̂(̂b•̂[Ŷ , Ẑ]S).
5. [X̂, (â•̂Ŷ )◦̂(̂b•̂Ẑ)]S = [X̂, â•̂Ŷ ]S ◦̂[X̂, b̂•̂Ẑ]S =

(â•̂[X̂, Ŷ ]S)◦̂(̂b•̂[X̂, Ẑ]S).
6. [X̂, Ŷ ]S = (X̂ ·̂Ŷ )− (Ŷ ·̂X̂) = −((Ŷ ·̂X̂)− (X̂ ·̂Ŷ )) = −[Ŷ , X̂]S .
7. Jacobi isoidentity:

[[X̂, Ŷ ]S , Ẑ]S ◦̂[[Ŷ , Ẑ]S , X̂]S ◦̂[[Ẑ, X̂]S , Ŷ ]S = [(X̂ ·̂Ŷ )− (Ŷ ·̂X̂), Ẑ]S ◦̂

[(Ŷ ·̂Ẑ)− (Ẑ ·̂Ŷ ), X̂]S ◦̂[(Ẑ ·̂X̂)− (X̂ ·̂Ẑ), Ŷ ]S = (((X̂ ·̂Ŷ )−

(Ŷ ·̂X̂))̂·Ẑ)− (Ẑ ·̂((X̂ ·̂Ŷ )− (Ŷ ·̂X̂)))◦̂(((Ŷ ·̂Ẑ)− (Ẑ ·̂Ŷ ))̂·X̂)−

(X̂ ·̂((Ŷ ·̂Ẑ)−(Ẑ ·̂Ŷ )))◦̂(((Ẑ ·̂X̂)−(X̂ ·̂Ẑ))̂·Ŷ )−(Ŷ ·̂((Ẑ ·̂X̂)−(X̂ ·̂Ẑ))) =

(X̂ ·̂Ŷ ·̂Ẑ)− (Ŷ ·̂X̂ ·̂Ẑ)− (Ẑ ·̂X̂ ·̂Ŷ )◦̂(Ẑ ·̂Ŷ ·̂X̂)◦̂(Ŷ ·̂Ẑ ·̂X̂)− (Ẑ ·̂Ŷ ·̂X̂)−

(X̂ ·̂Ŷ ·̂Ẑ)◦̂(X̂ ·̂Ẑ ·̂Ŷ )◦̂(Ẑ ·̂X̂ ·̂Ŷ )− (X̂ ·̂Ẑ ·̂Ŷ )− (Ŷ ·̂Ẑ ·̂X̂)◦̂(Ŷ ·̂X̂ ·̂Ẑ) = Ŝ,

Ŝ being the unit element of Û with respect to ◦̂).

However, what cannot in principle be ensured is that (Û , ◦̂, •̂, [., .]S)
is Lie isotopic, because we in fact do not know even if it is an isoal-
gebra, since for it [., .]S should be the isotopic lifting from the second
internal operation of an algebra U . However, this can be solved by re-
stricting ourselves to the conditions of Proposition 5.2.5 which in par-
ticular eliminated the problems relating to the inverse elements with
respect to the first operations of an algebra and an associated isoalge-
bra. Under such conditions, if [., .] represents the Lie product bracket
for · in the algebra U (defined according to: [X,Y ] = (X · Y )− (Y ·X),
for allX,Y ∈ U and therefore coinciding with the commutator product
associated with ·), we have that the Lie-Santilli product bracket is de-
fined according to: [X̂, Ŷ ]S = (X̂ ·̂Ŷ )−(Ŷ ·̂X̂) = ((X ·Y )−(Y ·X))2Î =

[X,Y ]2Î = ̂[X,Y ], for all X̂, Ŷ ∈ Û .
Therefore, we would have that the Lie-Santilli product bracket is

nothing more than the isotopic lifting by the model of the isoproduct
of the Lie product bracket. If it is imposed in addition that (U, ◦, •, ·) be
an associative algebra, we have, in a way analogous to the isotopic case



282 CHAPTER 5. LIE-SANTILLI ISOTHEORY (III)

which we have just seen, that (U, ◦, •, [., .]) is a Lie algebra. (Conven-
tionally,U equipped with this new internal operation is represented by
U− and it is called the commutator algebra of the associative algebra U .)
On the other hand, where U is a Lie admissible algebra, we also would
arrive, by the definition of Lie admissibility, at (U, ◦, •, [., .]) being a Lie
algebra.

Therefore, in either of the previous two cases, we would finally ar-
rive at (Û , ◦̂, •̂, [., .]S) being an isoalgebra on the isofield K̂(â, +̂, ×̂),
corresponding to the isotopic lifting of (U, ◦, •, [., .]) over the field
K(a,+,×), under an isotopy in the conditions of Proposition 5.2.5. As
the necessary conditions to be a Lie isotopic isoalgebra (verifying the
axioms of Definition 5.2.1 for being a Lie algebra) are satisfied, the fol-
lowing result is finally proved:

Proposition 5.3.2 Let (Û , ◦̂, •̂, ·̂) be an isoassociative isoalgebra over an
isofield K̂(â, +̂, ×̂), associated with an algebra (U, ◦, •, ·) defined over the
field K(a,+,×), under the conditions of Proposition 5.2.5. Then the Lie-
Santilli algebra (Û , ◦̂, •̂, [., .]S), corresponding to the previous isoalgebra, is a
Lie isotopic isoalgebra if the algebra U is either associative or Lie admissible.
In this case, the Lie-Santilli algebra will be an isotopic lifting associated with
the Lie algebra (U, ◦, •, [., .]). 2

Note also that under the conditions of Proposition 5.2.5, if U is a
commutative algebra and

−→
0 is the unit element of U with respect to ◦,

then the Lie-Santilli product bracket is constant and equal to
−̂→
0 , since,

for all X,Y ∈ U , we have that [X̂, Ŷ ]S = ((X · Y )− (Y ·X))2Î = ((X ·
Y )−(X ·Y ))2Î =

−→
0 2Î =

−̂→
0 . It is then also corroborated that Û would

be an isocommutative isoalgebra (as Proposition 5.1.2 indicates, whose
conditions we are under); then, for all X,Y ∈ U , we would have that

[X̂, Ŷ ]S =
−̂→
0 = ((Y ·X)−(Y ·X))2Î = ((Y ·X)−(X ·Y ))2Î = [Ŷ , X̂]S .

On the other hand, if under the conditions of Proposition 5.3.2 we
follow the isotopic model given in Example 4.1.3, it should be noted
that the isotopic lifting (Û , ◦̂, •̂, [., .]S) retains the structure constants
of the algebra (U, ◦, •, [., .]) (see [174]) in the following sense: as this
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isotopic model preserves the systems of generators, then it indeed pre-
serves the bases, if {Xk}k=1,...,n is a generator system of U ; then {X̂k =

Xk2Î}k=1,...,n will be a generator system of Û . Then, these two gener-
ators fixed, Xi, Xj ∈ U such that [Xi, Xj ] = (c1i,j •X1) ◦ . . . ◦ (cni,j •Xn)

with cki,j ∈ K for all k ∈ {1, . . . , n}, we have that [X̂i, X̂j ]S =

[Xi, Xj ]2Î = ((c1ij •X1)◦ . . .◦(cnij •Xn))2Î = (ĉ1ij •̂X̂1)◦̂ . . . ◦̂(ĉnij •̂X̂n) =̂(c1ij •X1) ◦ . . . ◦ (cnij •Xn). Therefore, if {cki,j}k=1,...,n are the structure
constants associated with the generators Xi and Xj of U , then the
structure isoconstants associated with the generators X̂i and X̂j of Û

are {ĉki,j = cki,j ∗ Î}k=1,...,n.
Let us next look at an example of a Lie-Santilli algebra:

Example 5.3.3 Let us consider the algebra (Mn×n(R),+, •, ·) defined
over the field (R,+,×) and the isoalgebra (Mn×n(R),+, •̂, ·̂) defined over
the isofield (R,+,×) given in Example 5.1.5. As the isotopy followed is the
one given in this example, which satisfies the hypotheses of Proposition 5.1.2,
the lifting +̂ ≡ + also being defined according to: Â+̂B̂ = (A+B)•2, for all
A,B ∈Mn×n(R), we find ourselves in the conditions of Proposition 5.2.5.

As, in addition, the algebra (Mn×n(R),+, •, ·) is associative, we have by
Proposition 5.1.2 that the isoalgebra (Mn×n(R),+, •̂, ·̂) is isoassociative, and
therefore (Mn×n(R),+, •̂, [., .]S) is a Lie-Santilli algebra, the Lie-Santilli
product bracket being defined according to: [Â, B̂]S = (Â̂·B̂) − (B̂ ·̂Â) =

((A ·B)− (B ·A)) • 2, for all A,B ∈Mn×n(R).
Also, by (Mn×n(R),+, •, ·) being associative, Proposition 5.3.2 ensures

that (Mn×n(R),+, •̂, [., .]S) is a Lie isotopic isoalgebra over (R,+, ×̂) (as-
sociated with the commutator algebra (Mn×n(R),+, •, [., .]), where [., .] de-
notes the Lie product bracket with respect to the operation ·). �
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5.3.2 Isosimple and Isosemisimple Lie Isotopic

Isoalgebras

We will next study the isotopic lifting of simple and semisimple Lie
algebras. Let us begin with some preliminary definitions:

Definition 5.3.4 A Lie isotopic isoalgebra Û is called isosimple if an iso-
topy of a Lie algebra is simple, it also satisfies that it is not isocommutative
and that the only isoideals that it contains are the trivial ones. Similarly, Û is
called isosemisimple if an isotopy of a Lie algebra being semisimple, it does
not contain non-trivial isocommutative isoideals.

From the definition above and given that any semisimple Lie al-
gebra is a simple Lie algebra, we will have that any isosemisimple
Lie isotopic isoalgebra is an isosimple Lie isotopic isoalgebra. In addi-
tion, we have that if (Û , ◦̂, •̂, ·̂) is an isosimple Lie isotopic isoalgebra,
then Û ·̂Û = Û ; then we have already seen that the derived isoalge-
bra is an isoideal of Û , which for it not being commutative, cannot be
Û ·̂Û = {Ŝ} and therefore, necessarily, Û ·̂Û = Û , this being the other
isoideal existing in Û .

The next step is to study when we can be assured that a Lie isotopic
isoalgebra of Lie is isosimple or isosemisimple, depending on the al-
gebra from which has been lifted. A first attempt would be to see what
happens in the conditions of Proposition 5.2.5.

Let us then suppose an isoalgebra (Û , ◦̂, •̂, ·̂) associated with a Lie
algebra (U, ◦, •, ·). If we assume that U is a simple Lie algebra, then U
is not commutative and the unique ideals that it contains are the trivial
ones. Now Proposition 5.2.19 says then that Û is not isocommutative.
Therefore, so that Û is isosimple, it suffices to see that the only isoideals
that it contains are the trivial ones. Now, if =̂ is an isoideal of Û , it
should be associated with, by definition, an ideal= or U , which should
be either {−→0 } or U itself, U being simple and these being the trivial
ideals.

Then, if = = {−→0 }, we have that =̂ = {−̂→0 } = {Ŝ}; and if = = U ,
then =̂ = Û , so the only isoideals of Û are also the trivial ones; thus
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we finally arrive at Û being an isosimple Lie isotopic isoalgebra. In ad-
dition, as the latter reasoning can be done similarly for isosemisimple
Lie isotopic isoalgebras, we deduce the following:

Proposition 5.3.5 In the conditions of Proposition 5.2.5, if (U, ◦, •, ·) is
a simple (semisimple, respectively) Lie algebra, then the isotopic lifting
(Û , ◦̂, •̂, ·̂) is an isosimple (isosemisimple, respectively) Lie isotopic isoalge-
bra. 2

Finally, we are going to prove that, equivalently to what happens in
conventional Lie theory, the following are satisfied:

Proposition 5.3.6

1. Under the conditions of Proposition 5.1.2, any isosemisimple Lie isotopic
isoalgebra (Û , ◦̂, •̂, ·̂) satisfies Û ·̂Û = Û .

2. Under the conditions of Proposition 5.2.5, any isosemisimple Lie isotopic
isoalgebra is a direct sum of isosimple Lie isotopic isoalgebras.

Proof

To prove (1), let us consider (Û , ◦̂, •̂, ·̂) an isosemisimple Lie iso-
topic isoalgebra, which is then associated with a semisimple Lie alge-
bra (U, ◦, •, ·). According to conventional Lie theory, we know that any
semisimple Lie algebra satisfies that its derived algebra coincides with
itself. Then, in our case, U · U = U . But then, given that we are in the
conditions of Proposition 5.1.2, we will have that Û ·̂Û = Û · U = Û ,
which demonstrates the result.

To prove (2), let (Û , ◦̂, •̂, ·̂) now be an isosemisimple Lie isotopic
isoalgebra, which will then be associated with a semisimple Lie al-
gebra (U, ◦, •, ·). Also by conventional Lie theory, we know that any
semisimple Lie algebra is a direct sum of simple Lie algebras. Let
us suppose in the first place that said semisimple algebra is a direct
sum of two simple Lie algebras. Then, U = U1 ⊕ U2 is satisfied, with
(U1, ◦, •, ·), (U2, ◦, •, ·) being two simple Lie algebras. We then see that
Û = Û1 ⊕ Û2, which would prove (2). To do this, let us take X̂ ∈ Û .
Then X ∈ U and we will be able to write X = X1 ◦X2, with X1 ∈ U1
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and X2 ∈ U2. As we are still in the conditions of Proposition 5.2.5, we
would have that X̂ = ̂X1 ◦X2 = X̂1◦̂X̂2, where X̂1 ∈ Û1 and X̂2 ∈ Û2.

As X̂ is an arbitrary isovector of Û and Û1 ∩ Û2 = ̂U1 ∩ U2 =
−̂→
0 = Ŝ

and Û1̂·Û2 = ̂U1 · U2 =
−̂→
0 = Ŝ, we will finally have that Û = Û1 ⊕ Û2,

which is what we sought, since Û1 and Û2 are isosimple Lie isotopic
isoalgebras by Proposition 5.3.5. In the event that the semisimple alge-
bra is a direct sum of more than two simple Lie algebras, the reasoning
would be analogous. 2

5.3.3 Irsolvable Lie isotopic isoalgebras

We will now see the isotopic lifting of the solvable Lie algebras.

Definition 5.3.7 A Lie isotopic isoalgebra (Û , ◦̂, •̂, ·̂) is called isosolv-
able if, an isotopy of a Lie algebra being solvable into a sequence

Û1 = Û , Û2 = Û ·̂Û , Û3 = Û2̂·Û2, . . . , Ûi = Ûi−1̂·Ûi−1, . . .

(called an isoresolvability succession), a number n exists such that Ûn =

{Ŝ}. The least of these numbers is called the isoresolvability index of the
isoalgebra.

This same definition is also valid in the case of the isoideals of the isoalge-
bra.

The following is satisfied:

Proposition 5.3.8 Under the conditions of Proposition 5.2.5, the isotopic
lifting (Û , ◦̂, •̂, ·̂) of a solvable Lie algebra (U, ◦, •, ·) is an isosolvable Lie iso-
topic isoalgebra.

Proof

It is evident, since by U being solvable, there exists an n ∈ N such

that Un =
−→
0 . But then, by construction, we have that Ûn = Ûn =

−̂→
0 =

Ŝ, which implies that Û is irsolvable, in particular as a Lie isotopic
isoalgebra which is in the conditions of Proposition 5.2.5. 2
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Isocommutative Lie isotopic isoalgebras constitute a simple exam-
ple of an isosolvable isoalgebra, as they satisfy by definition that
Û ·̂Û = Û2 = {Ŝ}. With it we also have that any non-null isocommuta-
tive isoalgebra has an index of isoresolvability 2, the trivial isoalgebra
{Ŝ} being 1.

We will now prove that, as it happens in the conventional theory of
Lie, the following results are satisfied:

Proposition 5.3.9 Let (Û , ◦̂, •̂, ·̂) be a Lie isotopic isoalgebra associated
with a Lie algebra (U, ◦, •, ·). Under the hypotheses of Proposition 5.1.2, the
following are satisfied:

1. Ûi is an isoideal of Û and of Ûi−1, for all i ∈ N.
2. If Û is isosolvable, U being solvable, then any isosubalgebra of Û is iso-

solvable.
3. The intersection and the product of two isosolvable isoideals of Û are iso-

solvable isoideals. In addition, under the assumptions of Proposition 5.2.5,
the sum of isosolvable isoideals will also be.

Proof

To prove (1), following the model of construction of Proposition 5.1.2,
we have that Û i = Ûi for all i ∈ N. Now, according to conventional
Lie theory, Ui is an ideal of U and of Ui−1. Therefore, using Proposi-
tion 5.2.14, we arrive at Ûi being an isoideal of Û and Ûi−1.
To prove (2), let Ŵ be an isosubalgebra of Û (that will then be associ-
ated with a subalgebra W of U ). Conventional Lie theory ensures that
W is solvable. Therefore, the reasoning used in the demonstration of
Proposition 5.3.8 leads us also to Ŵ being isosolvable, as we wanted
to prove. Note that this reasoning can be used even if we are not in the
hypotheses of Proposition 5.2.5, since what matters in our particular
case is the model of constructing the isoproduct ·̂.
To prove (3), Proposition 5.2.16 ensures that in all three proposed cases
they become new isoideals. It is sufficient therefore to use again the
reasoning used in the demonstration of Proposition 5.3.8 to deduce
that the three new isoideals are also isosolvable. 2
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Using this last result (3) we arrive at the sum of all the isosolvable
isoideals of Û being another isosolvable isoideal. This new isoideal is
called the isoradical of Û , thus distinguishing it from the radical of Û
which would be the sum of all the solvable ideals of Û . It is denoted by
isorad Û , so as not to confuse it with rad Û , and it will always contain
{Ŝ}, being a trivial isosolvable isoideal of any isoalgebra. Observe also
that, given that any isosolvable isoideal of Û is a solvable ideal of Û ,
we have that isorad Û ⊂ rad Û . Hence, if Û is isosolvable, then Û =

isorad Û = rad Û , for in particular Û would be solvable.
We will also need the following:

Proposition 5.3.10 Under the hypotheses of Proposition 5.2.6, if Û is an
isosemisimple Lie isotopic isoalgebra, then isorad Û = {Ŝ}.

Proof

In effect, by definition Û will be the isotopic lifting of a semisimple
Lie algebraU . Then, according to conventional Lie theory, we will have
that rad U = {−→0 }. But as {Ŝ} ⊂ isorad Û ⊂ ̂rad U , we finally arrive at
isorad Û = {Ŝ}. 2

5.3.4 Isofiliform and isonilpotent Lie isotopic

isoalgebras

We will finish this subsection, and with it this introduction to the Lie-
Santilli isotheory, by performing the isotopic lifting of nilpotent Lie
algebras and of a particular case, the filiform Lie algebras. We start
with the definition of isonilpotent isoalgebras.

Definition 5.3.11 A Lie isotopic isoalgebra (Û , ◦̂, •̂, ·̂) is called isonilpo-
tent if, being an isotopy of a nilpotent Lie algebra, in the sequence

Û1 = Û , Û2 = Û ·̂Û , Û3 = Û2 ·̂Û , . . . , Û i = Û i−1 ·̂Û , . . .
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(which is called the isonilpotency sequence), a natural number n exists
such that Ûn = {Ŝ}. The least of these natural numbers is called the
isonilpotency index of the isoalgebra.

This same definition is also valid in the case of the isoideals of the isoalge-
bra.

From this definition it follows immediately that any isonilpotent Lie
isotopic isoalgebra is isosolvable, so any nilpotent Lie algebra is solv-
able and, in addition, Ûi ⊂ Û i for all i ∈ N. It must also be evident that
any non-null isocommutative Lie isotopic isoalgebra is isonilpotent, of
isopotency index 2, 1 being the isopotency index of the isoalgebra {Ŝ}.

The following is also verified:

Proposition 5.3.12 Under the hypotheses of Proposition 5.2.5, the iso-
topic lifting (Û , ◦̂, •̂, ·̂) of a nilpotent Lie algebra (U, ◦, •, ·) is an isonilpotent
Lie isotopic isoalgebra.

Proof

The same Proposition 5.2.5 already guarantees that Û is a Lie iso-
topic isoalgebra. Then, as for U being nilpotent there exists an n ∈ N

such that Un = {−→0 } using the model of construction utilized in Propo-
sition 5.2.5 that is the usual one of the isoproduct, we will have that

Ûn = Ûn = {−̂→0 } = {Ŝ}; thus, we finally arrive at Û being isonilpo-
tent. 2

On the other hand, adapting the results of conventional Lie theory
to this new situation, we will prove the following:

Proposition 5.3.13 Let (Û , ◦̂, •̂, ·̂) be a Lie isotopic isoalgebra associated
with a Lie algebra (U, ◦, •, ·). It is then satisfied that:

1. Under the hypotheses of Proposition 5.2.5, the sum of two isonilpotent
isoideals of Û is another isonilpotent isoideal.

2. If, in addition, Û is isonilpotent, U being nilpotent, then

a. Under the hypotheses of Proposition 5.1.7, any isosubalgebra of Û is
isonilpotent.
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b. Under the hypotheses of Proposition 5.2.5, if Û is non-null isonilpotent,
its center is non-null.

Proof

To prove (1), we already have by Proposition 5.2.16 that the sum is
a new isoideal. The same reasoning of the demonstration of Proposi-
tion 5.3.12 also helps to ensure that this new isoideal is also isonilpo-
tent.
To prove (2.a), let Ŵ be an isosubalgebra of Û (which will be associ-
ated with a subalgebra W of U ). As for conventional Lie theory, W is
a nilpotent subalgebra of U and as the construction used is that of the
model of the isoproduct ·̂, we arrive, as seen in the demonstration of
Proposition 5.3.12, at the sought result.
To prove (2.b), let us suppose Û 6= {Ŝ}. Then it must be that U 6=
{−→0 }. One the one hand, conventional Lie theory ensures that cen U 6=

{−→0 }. On the other hand, we have that cen Û = ̂cen U and {−̂→0 } = {Ŝ}
by construction, and finally we are working on the basis of an isounit
that is invertible with respect to the operation ∗ (which are the isotopic
elements with which we have realized the isotopic lifting in question).
From all this we deduce that cen Û 6= {Ŝ}. 2

Analogously to the isosolvable case, using the previous result (1),
we arrive at the sum of all the isonilpotent isoideals of Û being another
isonilpotent isoideal, which we will denote the isonilradical of Û , to
distinguish it from the nil-radical of Û , the sum of its radical ideals.
We will represent it by isonil-rad Û , to distinguish it from nil-rad Û ,
satisfying, in addition, that isonil-rad Û ⊂ nil-rad Û ∩ isorad Û ⊂
nil-rad Û ⊂ rad Û .

On the other hand, we can relate an irsolvable Lie isotopic isoalge-
bra with its isoalgebra derived by means of the following:

Proposition 5.3.14 Under the assumptions of Proposition 5.2.5, an Lie
isotopic isoalgebra is isosolvable if and only if its derivative isoalgebra is
isonilpotent.

Proof
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Let Û be an isosolvable Lie isotopic isoalgebra, which will be associ-
ated with a solvable Lie algebra U . We know, by conventional Lie the-
ory, that this is equivalent to the algebra derived from U being nilpo-
tent. Then, Proposition 5.3.12 ensures that the isoalgebra derived from
Û is isonilpotent, to coincide by construction with the isotopic lifting
of the algebra derived from U , with Û ·̂Û = Û · U .

Then using this last equality, we have that if the isoalgebra derived
from Û is isonilpotent, the algebra derived from U , which is an iso-
topic lifting, should be nilpotent, whereby U should be solvable and
therefore, according to Proposition 5.3.8, Û will be isosolvable. 2

We will finish this chapter and thus this text by studying the isotopic
lifting of filiform Lie algebras and some notable observations:

Definition 5.3.15 An isonilpotent Lie isotopic isoalgebra (Û , ◦̂, •̂, ·̂) is called
isofiliform if, being an isotopy of a filiform Lie algebra, it satisfies that dim
Û2 = n− 2, . . . ,dim Û i = n− i, . . . ,dim Ûn = 0, with dim Û = n.

We note that any theory concerning a filiform Lie algebra U is
founded in terms of the basis of the algebra. Thus, departing from
a certain basis {e1, . . . , en} of U , preferably an adapted basis, we can
study the dimensions of U and some of the elements of the nilpotency
sequence, the invariants i and j of U and in general the rest of prop-
erties originating from the structure coefficients, which are in fact the
key elements in the study of filiform Lie algebras.

Now, in an isotopic lifting we have already seen that in general they
do not have to retain the elements of the departing basis nor its dimen-
sion. Therefore, the study of relations between an isofiliform isoalge-
bra and a filiform algebra, of which the first was obtained by isotopy,
cannot be made in the same way as has been done so far.

On the other hand, we know that if we follow the isotopic construc-
tion model of Example 4.1.3, the conservation of the departing basis
will be preserved, in the sense already seen at the time regarding the
conservation of the structure constants. The latter implies in particular
that filiform algebras of the same dimension cannot be isotopically re-
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lated by means of this model, but with different structure coefficients.
Therefore, if a filiform Lie algebra is fixed, we realize an isotopy conve-
niently following the model of Example 4.1.3, the isofiliform isoalgebra
that is reached will behave at all times in the same way as the initial
one, having its same properties.

It would be interesting to relate filiform algebras of different or
equal dimensions but with different structure coefficients. The latter
can, however, be achieved from the more general standpoint of isotopy
theory. It would suffice for this, given two filiform Lie algebras U and
U ′ of respective bases {e1, . . . , en} and {e′1, . . . , e′n}, to consider U ′ as
the isotopic lifted U , taking Û = U ′, with basis {ê1 = e′1, . . . , ên = e′n}.
This procedure would be an isotopy in the more broadly defined sense,
since it is both a mathematical lifting of an initial structure and a fil-
iform Lie algebra resulting in a new structure that verifies the same
axioms as the initial one; namely, we arrive at a new filiform Lie alge-
bra.

With this, a particular case of a topic already mentioned for other
structures would be demonstrated: that we can consider that at the
axiomatic level, all filiform Lie algebras of the same dimension can be
isotopically identified, with which we would have in particular that
isotopically there is only one type of isofiliform Lie isotopic isoalgebra
for every possible dimension.

Finally, this particular case of filiform Lie algebras is due to their
constituting the central motive of study of the research group in which
this text is presented. However, a more specific development of the
lifting of this type of algebra would be outside the framework that we
have raised at the beginning of our study, regarding the introduction
of Lie-Santilli isotheory. For this reason, what we have just seen are
patent improvements that the Lie-Santilli isotheory achieves and the
possibility of realizing these improvements more.
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substitutions linéaires, Bull. Phys. Math. Soc. Kazan vol. VII (1935), 3-43.

2. A. A. Albert, Trans. Amer. Math. Soc. 64, 552.
3. A. O. Animalu, Isosuperconductivity: A nonlocal-nonhamiltonian theory of

pairing in high Tc superconductivity, Hadronic J. 17 (1994), 349-428.
4. A. O. Animalu, R. M. Santilli, Nonlocal isotopic representation of the Cooper

Pair in superconductivity, Quantum Chemistry Symposium 29 (1995), 175-187.
5. Yu. Arestoov, R. M. Santilli, V. Solovianov, Evidence on the isominkowskian

character of the hadronic structure, Found. Phys. Letters 11 (1998), 483-493.
6. A. K. Aringazin, Lie-isotopic Finslerian lifting of the Lorentz group and

Blochintsev redeilike behaviour of the meson lifetime, Hadronic J. 12 (1989),
71-74.

7. A. K. Aringazin, A. Jannussis, D. F. Lopez, M. Nishioka and B. Veljanoski,
Santilli’s Lie-isotopic generalization of Galilei’s and Einstein’s Relativities,
[Kostarakis Publisher], Athens, 1991.

8. A. K. Aringazin and K.M. Aringazin, Universality of Santilli’s isomin-
skowskian geometry, Frontiers of Fundamental Physics, [M. Barone and F. Selleri
editors], Plenum, 1994.

9. R. A. K. Aringazin, D. A. khirukin and M. Santilli, Isotopic generalization of
the Legendre, Jacobi and Bessel Functions, Algebras, Groups and Geometries 12

(1995), 255-305.
10. R. Ashlander, Infinitesimal motions on Santilli-Sourlas-Tsagas isomanifolds,

Algebras, Groups and Geometries 15 (1998), 545-562.
11. H. F. Baker, Alternants and continuous groups, Proc. London Math. Soc.: III 2

(1905), 24-47.
12. K. Baltzer, Tomber’s Bibliography and Index in Nonassociative Algebras,

Hadronic Press, 1984.

293



294 References

13. G. Birkhoff, Continuous groups and linear spaces, Rec. Math. Moscow vol. I
(1936), 635-642.
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