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In a number of cases, specific physical conditions may cause the deformation of a given
metric into a functionally more complex form, with the consequent loss of the original Lie
symmetry. We present a general method for the construction of the symmetry of the new
metric which: (1) is based on a Lie-isotopic, step-by-step generalization of the conventional
Lie theory (enveloping associative algebra, Lie algebra, and Lie group); (2) is applicable to
an infinite family of different deformations of the original metric; and (3) admits the
original symmetry as a particular case. Moreover, the method has been conceived to permit
the explicit computation of the new symmetry via the knowledge only of the original
symmetry and of the new metric. Applications to the rotations and to-the Loreniz group are

presented in subsequent papers.

I. STATEMENT OF THE PROBLEM

As is well known, when absolute rigidity is re-
laxed to admit the deformations occurring in the
physical reality, perfectly spherical objects in
Euclidean spaces

riér=xx+yy+z2z=1, 2€ E@3), 1)
can be deformed into ellipsoids
r'gr =.xbix + yb2y + zb3zz =1 (2)

with the consequent manifest loss of the rotational
symmetry.

In this paper we shall attempt a general method
for the construction of a generalization of the origi-
nal symmetry which: (a) provides the form invari-

‘ance of all possible new metrics; (b) is achieved via

a generalization of the structure of the original
symmetry (unit, enveloping algebra, Lie algebra, Lie
group, composition law, etc.), while being isomor-
phic to the original symmetry; and (c) assures that
the original symrhetry is recovered identically
whenever the local physical conditions are such as
to recover the original metric.

The specific application to the generalization of
the group of rotations for the invariance of all
possible ellipsoidical deformations of the sphere will
be studied in the accompanying paper. The method
presented in this paper is, however, of sufficient
generality to permit its application to broader set-
tings, such as the possible generalization of the
Minkowski invariant due to the local functional
dependence of the speed of light when propagating

8

within material media. In subsequent papers we
shall therefore attempt a generalization of the
Lorentz group under conditions (a), (b), (c) above.
Specific applications to elementary-particle physics
are also contemplated. '

Our main tool is the notion of isoropy of the
theory of abstract algebras, but applied specifically
to the isotopic generalization of Lie’s theory. The
notion of algebraic isotopy is rather old and dates
back to the early stages of set theory. According to
R. H. Bruck! (p. 56), “the notion is so natural to
creep in unnoticed.” In the more recent specialized
literature on (nonassociative) algebras, the notion of
isotopy was applied to the case of the Jordan alge-
bras by K. McCrimmon® and others. Despite that,
the notion remained largely ignored in general trea-
tises in abstract algebras, as it is still today.

What is apparently the first application of the
isotopy to Lie algebras was presented in a memoir,
Jointly with the identification of the main lines of
the Lie-isotopic theory, that is, the Lie-isotopic gen-
eralization of the Poincaré-Birkhoff-Witt theorem;
of Lie’s first, second, and third theorems; of the
Baker—Campbell-Hausdorff theorem; etc.

The proposal of the Lie-isotopic theory was sub-
mitted as a particular case of the broader Lie-admis-
sible generalization of Lie’s theory (which for brevity
will not be considered in this paper).

Since that time (1978), the general lines of the
theory have been subjected to a systematic study by
mathematicians at the yearly Workshops*® and at
the Orléans International Conference.® For math-
ematical studies, we refer the interested reader to
the contributions by G. M. Benkart, D. J. Britten,
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Y. Ilamed, M. Ko6iv, J. Lohmus, H. C. Myung,
R. H. Oehmbke, S. Okubo, J. M. Osbomn, A. A.
Sagle, L. Sorgsepp, M. L. Tomber, G. P. Wene,
et al. (see the bibliography by M. L. Tomber ez al.”
and the subsequent Proceedings®®).

The contributions here referred to are devoted to
the Lie-admissible algebras, of which the Lie-iso-
topic ones are a particular case. For recent mathe-
matical contributions more specifically related to

" the Lie isotopy, we refer the reader to G. Benkart, J.
M. Osborn, and D. Britten,® H. C. Myung,® J. M.
Osborn,'® and A. A. Sagle.!! A review for physicists
of the state of the art of our knowledge in the
Lie-isotopic theory is provided in a monograph'?
(Chapter 6, in particuiar). ‘

The first physical application of the Lie-isotopic
theory was submitted jointly with the original pro-
posal® within the context of the problem of symme-
iries and conserved quantities. In fact, there exist
equivalence transformations of a Lagrangian (some-
time referred to as isotopic transformations**) in
which the original symmetries are generally lost
without evidently affecting the conserved quantities.
The symmetries of different but equivalent
Lagrangians (or Hamiltonians) which lead, via
Noether’s theorem, to the same conserved quantities
were then calied isotopically related symmetries.

This is the case, for instance, for the O(3) symme-
try of the Lagrangian -

L=3(&2+ 52+ 2%) — (x> + y2 + 22), (3)

and the O(2.1) symmetry of the equivalent
Lagrangian

L= (2= ) A k), @

- which both lead to the conservation of the angular
momentum, as pointed out by G. Marmo and E. J.
Saletan.! It was shown in Ref. 3 (pp. 287-290) that
the Lie-isotopic generalization of O(3) characterized
by the isotopic element g = diag(+1, —1, +1) leads
exactly to O(2.1):1n this sense O(2.1) can be inter-
preted as a Lie isotope of O(3). The notion of
isotopically related Lie symmetries was subse-
quently studied in detail in Ref. 14 and in other
papers.

It should be also recalled here that the under-
standing of the mechanism of isotopy in symmetries
and conservation laws stimulated the conception of
the Lie-isotopic generalization of Lie’s theory as
considered in this paper. In fact, the problem for
the Lagrangian (4) was' to reach a realization of the
Lorentz group in (2.1) dimensions whose generators

are those of the rotarion group (the latters being
precisely the conserved guantities which cannot be
altered by assumption). The achievement of a real-
ization of the Lorentz group O(2.1) with the angular
momentum components as generators evidenily
called for the abandonment of the simplest possible
Lie product AB — BA of current use and its gener-

alization into the form’
[A,B]*=A%B — B A= AgB — Bgd, (5)

where g is precisely the new metric of structure (4).

The isotopic relationship between O(2.1) and G(3)
will be inspected in more detail in paper II of this
series, and it will be extended to O(3.1) and O(4) in
Paper 111

The reader should be aware that we shall not look
for the most general possible Lie isotopy. In fact,
our objective is to illustrate the implications of Lie
products more general than the simplest possible
one, AB — BA, of current use in the mathematical
and physical literatore. For this purpose, the Lie-
isotopic product (5) is sufficient.

The reader might also be interested in knowing
that, besides the product (5), only the following
additional Lie-isotopic product is known at this
writing!®:

[4,Bl* =A+B—BxA
= WAWBW — WBWAW, (6)

where W is idempotent (W? = W). For brevity, the
formulation of Lie-isotopic symmetries in terms of
the alternative product above will not be considered
in these papers and will be left to the interested
reader.

Studies on the classification of all possible Lie-
isotopic formulations of the Lie product have been
conducted in Refs. 17,18. These studies were based

. on the generalization of enveloping associative alge-

bras into nonassociative, Lie-admissible forms called
genotopes, with evident considerable increase of the
degrees of freedom. Nevertheless, when the attached
Lie algebras are reformulated in terms of an equiv-
alent associative-isotopic form, only the forms (5)
and (6) emerge as possible or otherwise known until
now. Throughout our studies we shall only consider
associative-isotopic enveloping algebras, and leave
to the reader their reformulation in terms of nonas-
sociative genotopes.

In closing these introdunctory words, we should
stress that, despite the efforts conducted until now,
the Lie-isotopic generalization of the conventional
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realization of Lie’s theory is at its very beginming,
and much remains to be done.

II.  ELEMENTS OF THE LIE-ISOTOPIC
THEORY ON METRIC SPACES

For the purposes of this paper, we shall use the

term metric spaces for the n-dimensional topologi-
cal spaces M over the field F of real numbers R, or
complex numbers C or quaternions Q, equipped
with a nonsingular, sesquilinear, and Hermitian
composition (x, y), x, y € M, characterizing the
mapping

(x,9): M X M- F. _ (7)

Let e = (ey,...,e,) be a basis of M, and define
the metric tensor via the familiar rules

(ei7ej) = &ij- (8)

Then, the condition of nonsingularity is intended
to ensure the existence of the inverse

I=gt  g=(g,), 9

with the consequent characterization of covariant
and contravariant quantities

x; =g, x’, x'=1IVx,. (10)
The condition of sesquilinearity
(x,ay + Bz) = a(x, y) + B(x, z), (11a)
or |

(ax + By, z) =a(x,z) + B(y,z), (11b)

where the overbar represents complex conjugation
in [F, permit the realization of the composition

(x, ) = xTgy = x¥g, %/, (12)

where the dagger represents Hermitian conjugation
n M.

Finally, the condition of Hermiticity can be for-
mulated via the rules

(x,2) = (8™, y) = (gx, y), (13)

and it is introduced for reasons to be identified
below.

Additional conditions, such as the positive-
definite character of the metric, are not recommend-
able for a general view of the Lie-isotopic theory,
and they will not be considered at this time.

Whenever appropriate, metric spaces will be indi-
cated with the notation

M=M(n,g,F), F=R,C,Q. (14)
Some of the metric spaces we are admitting for
F =R are: the BEuclidean space E(3,8,R), & =
diag(+1, +1, +1); the Minkowski space M(3 +
1, g,R), g=diag(+1, +1, +1, —1); the Rieman-
nian space R(n, g(x),R), with g(x), x € M, being
symmetric and positive definite; the Finsler space
F(n, g(x, x), R), where g(x, x) =

5(8%f(x,x)/dx'dx”) is positive definite (for nonZ’

null %) and of rank n; and others with correspond-
ing spaces for the fields F of complex numbers and
quaternions. Thus, we shall assume that the metric
g is nonsingular, is Hermitian, and verifies the
needed continuity conditions (e.g., analyticity) in all
variables, and we write o,

detg = 0, gh=g, g=g(t,x,%,...).

(15)

As one can see, our definition of a metric is as
general as possible, and does not coincide with the
more restrictive definition conventionally used in
specific geometries, such as the symplectic or the
Riemannian ones. This situation is permitted by the
Lie-isotopic theory because it does not require re-
strictions' on g beyond those considered here. The
formalization of the metric and its restriction to
specific cases would then imply particularizations
(such as the removal of the dependence on the
velocities) which are not warranted or recommend-
able for a general study in Lie isotopy.

We consider now an m-parameter, continuous
Lie transformation group G(m) on M(n, g, F), i.e.,
a topological space G(m) equipped with a binary
mapping

¢:G(m) X G(m) = G(m) (16)

verifying the conditions for G(m) to be a topologi-
cal group, and an additional mapping

f:G(m)X M- M (17)

characterized by n analytic functions f(w;x) de-
pending on m parameters w and the local coordi-
nates x & M, which verify the conditions for G(m)
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to be a Lie transformation group (closure, associa-
tivity, identity, and inverse).

We shall furthermore assume that the group G(m)
acts linearly on M, i.e.,

x' =f(w;x)=A(w)x, (18)

under which the group conditions can be realized in
the form

A(0) = I, | (19a)
A(w)A(w’) = A(w”),

w’'=w+w’ (19b)

A(w) A(w= )= A(w ) A(w) = I,

wl=—w, (19¢)

where [ is the unit matrix in n dimensions.

Among the rather large number of aspects of the
theory of linear, continuous, m-parameter Lie
transformation groups, we now focus our attention
on the following ones.

(1) The universal enveloping associative algebra®
& of G(m), which we shall indicate with the sym-
bolic expression of the basis (see Ref. 19 for techni-
cal definitions)

&1, X, XX, X.X.X,,...,

r<s  rss<i
rys,te.=1,2,...,n, (20)

where I is now the n X n identity of &,
L IX,=XI=X,. o (21)

The X’s are the generators of G(m) in their funda-
mental (n X n) representation verifying the skew-
Hermiticity property

Xt=-x; ‘' (22)
the product X, X, is the conventional associative

product of matrices; and the attached Lie algebra is
given by the familiar rule

& :[P,P]ly,=PP — PP, “ (23)

where the P’s are polynomials in the X’s.

(2) The Lie group® G(m) of transformations on
M for the case of the action to the right as in Eq.
(19), which we shall write in the symbolic exponen-

tiated form for continuous transformations (see Ref.
20 for technical definitions)

G(m): A(w) = eXMeXvae. .. g Xutn
= k]’_IleXk_Wk (24)

and which will be reduced to the appropriate ex-
ponential form whenever we consider specific cases.
The corresponding action to the left,

Xt = x4t (w), ' (25)

can be characterized by the operation of Hermitian
conjugation, which we shall write in the symbolic
form

Glmy: Aw) = [ [ e (26)

and whose explicit form will be computed whenever
the reduced form of Eq. (24) is known (see, again,
the case of rotations in Paper II).

(3) The Lie algebra®® G(m) of G(m), char-
acterized by the closure rules ’

G(m) : [XM Xs]ﬁ‘: XrXs - Xer = Crtth'

(27)

The underlying methodology we shall tacitly imply
is the familiar one consisting of the Poincaré-
Birkhoff-Witt theorem for the characterization of
the basis (20); the Baker-Campbell-Housdorff theo-
rem for the composition of the exponentials (24)
and (26); Lie’s first, second, and third theorems for
the characterization of the closure rules (27); the
representation theory; etc.

The idea of the Lie-isotopic theory® is that of
generalizing the structure of the enveloping algebra
&, of the Lie group G(m), and of the Lie algebra
G(m) in such a way to preserve the Lie character of
the theory (in order to qualify for isotopy). The
generalization is done via the replacement of the
simplest possible associative Lie-admissible product
X, X, of the conventional theory into a form de-
noted by X, * X, which is still associative and Lie
admissible (i.e., its attached product X, * X, —
X, = X is Lie); nevertheless, it is given by the struc-
turally more general form

X+ X, = X, gX,. (28)
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It is evident that the generalization of the product
of & implies a step-by-step generalization of the
entire formulation of Lie’s theory, from the basis
(20) to the groups (24) and (26) to the algebra (27),
etc.

In this paper, we are specifically interested, not in
the Lie-isotopic theory per se, but in its formulation
for the action on a metric space. We therefore need
the generalization of the structure of the metric
space permitting a consistent action of the Lie-iso-
topic theory.

To outline these ideas, we shall first introduce a
notion of metric isotopy, that is, a generalization. of
a given metric space which preserves its metric
character. We shall then review the corresponding
Lie-isotopic theory. Finally, we shall apply the re-
sults to the case when the considered Lie and Lie-
isotopic groups constitute symmetries of the metric
and its isotope, respectively. This latter result will
be presented via a theorem on the symmetry proper-
ties of isotopy which is at the foundation of the next
paper on rotations, and of the subsequent one on
Lorentz transformations.

Consider the simplest possible metric spaces, the
Euclidean space E(n,d,F), F = R,C,Q, with com-
position law

(X, y) = xﬂaijxj~ (29)

Suppose that the metric 6 has to be modified into a
form of the generic type (15). The emerging gener-
alized space can be expressed via the notion of
metric 1sotopy as follows.

Let [=g™! be the inverse of the new metric
tensor cu:cording to (9). Following Refs. 15, we
introduce the isotopic lifting of the field

={N|N=NI, NeF =R,C,Q}. (30

As one can see, [ is still a field, which essentially
generalizes the conventional unit element 1 € F into
a matrix form [ e .

The composition of elements of the field with
elements of the metric space is now done according
to the redefinition of the product

N#x = Ngx = Nigx = Nx. (31)

Thus, the lifting IF of F essentially permits the use of
a generalized composition N+ x which, while being
characterized by the new metric g, preserves the old
values Nx. )

Next, we generalize the metric space E(n,3§,F)
into a form £ that accommodates the new metric g

under a mapping of the type

mE X E - E. (32)

- This implies that the generalized composition law

must have value in . A realization is given by the
form patterned along the isotopic lifting of the
Hilbert spaces of Ref. 15:

(x3y) = I(x, gv) = Ixtig, ;x/
= (x, g0) 1 = (gx, y)i (33)

We shall define as isotopic liftings of the Euclidean
space all possible spaces E(n, g,F) over the field
F=RkC 0, equipped with mappings (32) realized
via composmon (33), where g is the new metric
tensor.

It is evident that, by construction, all possible
metrics are isotopes of the Euclidean metric. This
includes the Minkowskian, Riemannian, Finslerian,
and other metrics.

Note that, strictly speaking, the metric spaces
M(n, g,F) cannot be considered as isotopes of
E(n,d,F), owing to the lack of lifting of the field.
Nevertheless, this technical point can be ignored in
practical applications owing to the identity NV * x =
Nx. While conceding the insufficiency of the techni-
cal rigor (see also below), we can then assume that
all possible metric spaces of n dimensions over the
field [F are isotopes of the Euclidean space E(n,§,F).

Note that, since [ is still a field, £ (n,g, IF) 1s also
a metric space in the sense indicated earlier.

It is evident that the original Lie group G(m)
cannot act consistently on the new space. In fact, to
begin, the action of the group on the space cannot
be formulated according to the old composition
(18), and must be modified into the form

x' =A(w)*x = A(w)gx (34)
[where the quantities 4 (w) will be identified shortly].
In turn, this implies that the old composition laws
(19) cannot be consistently preserved, and must be
generalized into the form

A(0) =1, (35a)
A(w) = A(w) = A(w + w"), (35b)
A(w)* A(=w) = A(—=w)* Ad(w) = I, (35c)

which are precisely the defining conditions of a
Lie-isotopic transformation group>'? G(m).
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The most important property of generalized laws
(35) is the replacement of the old unit I with the
new unit [ = g~'. Thus, the dominant feature of
the isotopy under consideration is the assumption
of the inverse / of the new metric g as the gen-
eralized identity of the group. Since the original
identity I can be interpreted as the inverse of the
metric § of the Euclidean space, when the original
group G(m) is a symmetry of §, we expect its
isotopic image G (m) to constitute a symmetry of g,
as we shall see. ’

To achieve this result, we need the following main

lines of the Lie-isotopic theory:

(1) Isotopic lifting of the universal enveloping as-
sociative algebra.® The Poincaré-Birkhoff-Witt the-
orem admits a consistent isotopic generalization
(Ref. 3, p. 353, and Ref. 12, p. 156), resulting in a
new basis, which we shall again write in the sym-
bolic form (see Ref. 12 for a more rigorous treat-
ment)

E: 1L X, X, X, X+ X,xX,,...,

r<s r<s<r

rys,t,...=1,2,... n, (36)

where the identity 7 is the same as that of the group
composition laws (35a), and the generators X, are
the same as those of & (in their fundamental repre-
sentation); the attached Lie algebra is now given by
the isotope

é:":[Pr?Ps]é%:Pr*Ps-Ps*Pr
def .
= PgP,~ PgP,=[B;P], (37)

and the algebra & is still “universal” and “envelop-
ing”—not, of course, with respect to the algebra
&~, but with respect to é~. We see in this way that
the generalized metric‘g enters into the very struc-
ture of the Lie product, Eq. (37), as expected,
because g~! is the identity of the group composi-
tion law.

(2) Isoropic lifting of the Lie group. The new
basis (36) permits the construction of the new group
elements A(w) via the so-called Isolopic exponentia-

For one-parameter actions to the right, this
ntiation is characterized by the old generator

) but now expanded in the new envelope
ng to the rule (Ref. 3, p. 334; Ref. 12, p. 171;

and Ref. 15, p. 1301)

GQ): A(w) =1+ %!(Xw,) + %(Xw)i
+%(Xw)§'+
=7+ —1«(Xw) + l(Xw)g(Xw)
1 2!

+ 2 (00) g tw) g (Xow) + -+

def
= eXv| = p X (38)

which, for clarity of computation, can be reex-
pressed via the following expansion in the old en-
velope (Ref. 15, Theorem 2.14, p. 1303):

G(1): A0w) = |1+ - (Xgn) + 2 (X Xew)

1 N

+ 35 (Xew) () () + - |1
— (e)(gwlg)j= eX*wj

= I(ev8¥|,) = fev* X, (39)

It is evident that the elements AA( w) so constructed
verify all the rules (35), and thus they constitute the
desired Lie-isotopic lifting of G(1). The generaliza-
tion to more than one dimension is permitted by the
Lie-isotopic generalization of the Campbell-Baker-
Hausdor(f theorem (Ref. 3, p. 335; Ref. 12, p. 172;
and Ref. 15, p. 1303),

2% % 6B = pv

v=a+B+i[alBl+ (e~ B)[asB]] + -,

(40)
under which we have the desired Lie-isotopic lifting
of the Lie transformation group (24), here written,
again, in symbolic form

é{m} - j(W) =N g Xowa y L g pEW,

7
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with the intent of computing the explicit, reduced
form in specific cases. The action of the Lie-isotopic
group to the left,

Xt = xts 4f(w), (42)
is given, for the one-parameter case, by the expan-

sion of the old generator X7 in the new envelope &,
according to the rule ’

GA(l):AN'(w)=IA+ilT(wXJr)-l~51'—(wX’L)j
1 3
il i
+3!(wX )
A
=I+ﬁ(WX)
+ 2 xty (wxt) + -
7 (wX ) g(w

— ewX’\,éj= éw)(T — é—wX, (43)

with reformulation in & given by

G(1): Af(w) = IA[l + —117(ng*)
+ Eli(ngT)(ngT) + .-

— 7 wgxt — Fowgxt
—I(e”g |a,,,,)-Ie X

= eX'enf = forwrx (44)

and m-parameter expression here symbolically writ-
ten

G(m): A1) = z(ﬂe}()r (45)

whose explicit form will be computed in specific
cases (see, again, the case of the isotopic rotations in
Paper II). It remains to prove that the operation of
Hermitian conjugation, as conventionally defined,
also acts consistently under isotopy in E (n, g, F).
The fact that this is not the case in general is now
known.'>> Nevertheless, the operation of Hermitic-
ity persists for the particular case under considera-
tion here, that for which the isotopic element of the
envelope coincides with that of the composition, as
is readily seen by using the property (13) and defini-

.32 RUGGERO MARIA SANTILLI 8

tion (33):
(X:Z*y) = I(X, gdgy)
- =1((gd)'x, gv) = I(Atgx, gy)
= [(At*x, y), (46)
for which
o (eng)T = owe' X" _ e_ng.‘;_;» (47)

(3) Isotopic lifting of the Lie algebra. This is
characterized by the isotopic generalization of Lie’s

first, second, and third theorems (Ref. 3, pp. .

331-334; Ref. 18, pp. 163-172) according to the
rules )

G(m):[X;X,]=X* X, — X,* X,

= X.8X, — X.gX,

Il

IA)rtx(x)* Xt’

~

I3
b,

DT, (48)

‘where the D’s are called structure functions. As was

the case for the expansion (38), the rules (48) can
also be reformulated in & according to either of the
following two expressions:

[X.X,] = X.gX, — X,gX,
= [X.g X.gli
=[X, X]g+ X[g, X]+X][X,¢]
= I[gx,, gx,]

=gl X, X,]+[X,, glx, +[g, X,] X

(49)

each one derivable from the other via the Jacobi
law.

The primary lines of the Lie-isotopic theory as
outlined above are sufficient for our objectives. We
shall therefore pass to the main task of this section,
that dealing with the problem of the symmetries of
arbitrary metrics (15).

Suppose that the original (conventional) Lie
transformation group G(m) is a symmetry group of
the composition (x, y) in E (n,8,F), or, equiv-
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alently, of the metric §, according to the familiar
conditions

xhxie ﬂ’b‘x’ = x%4%84x = x16x = xx, (50)
which can hold identically iff
AT UL gt 871, (51)
Le., ; ‘ |
AT =4t s (52a)
(Aot 3P (deb T & g i (520)

As is well known,? when the conditions (52) are
verified, we have the orthogonal groups O(n,R), the
unitary groups U(n,C), and others. When realiza-
tions of the continuous type (24) are considered, we
have the special orthogonal groups SO(n,R) or the
special unitary groups SU(n,C). In this latter case,
the determinant of the transformations is 1, and the
discrete transformations (e.g., inversions) are ex-
cluded. ; ~

We are interested in investigating the behavior of
the symmetry (50) under an isotopic lifting of the
Euclidean space E(n,$,F) and of the group G(m)

‘to a form characterized by an arbitrary metric (15).

ForAthis purpose, we recall that the composition law
of E(n, g,[F) is based on the term

xtex = xtge. : (53)

We therefore have a symmetry when the following
conditions are identically verified:

CxMaxt = xtw dte dsx = xtax, (54)

which can hold iff

Algd = dgdt = |, | (55a)

ie., iff ’ i
At = ff_:i: : (56a)
(det A)” = (detf)?, / (56b)

where the inverse is computed, of coufsc, with
respect to /. )

It is easy to see that, when the original transfor-

mations verify the conditions (50), their images
under lifting necessarily verify the new conditions
(54). In fact, for the case of continuous transforma-

tions, we have, from Egs. (41) and (44),
Al(w) = A(=w), (57)

Therefore, the conditions (55) are reduced to one of
the conditions for the very existence of a Lie-iso-

' topic group, Eq. (35¢c). ; :

The rules (55) can be expressed in a form particu-
larly suitable for practical applications. Redefine the
elements of G(m) according to the forms

A(w) = B(w)i, - B’(w) & /ﬁlexk*w*,
(58a)

: m T
A'(w) = IB(w), Bi(w)= (};Ilexk*wk) )
(58b)

Then, conditions (56) can be equivalently expressed
as

B'gB =g, .- (59a)
(det B)® =1, (59b)

which hold identically under the Lie-isotopic liftings
of continuous transformations owing to the identity

e,_Wngeng

=g — w(gXg — gXg)
+3w?(gXgXg — gXgXg) + - - -
=g. | (60)

For the case of discrete transformations, we intro-
duce the following Lie-isotopic lifting of inversions

Prx=(Plgx = Px = —x, ; (61)

Where, &2 is the conventional total inversion. The
preservation of the symmetry then results from
known expressions of the type

PgP=g,  (62)
whose validity is trivial.

We reach in this way our man result, which can
be formulated as follows.

Theorem 2.1. Let G(m) be aﬁ m-parameter Lie
symmetry group of the composition 218z of an
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n-dimensional Euclidean space E(n,8,F) over the
field F of real numbers R, of complex numbers C,
or of quaternions Q. Then the isotopic lifting G(m)
of G(m) characterized by a nonsingular, Hermitian,
and sufficiently smooth metric g in the local vari-
ables leaves invariant the generalized composition
zigz of the isotopic space E(n, g, F), F=Ff =
g™t ‘ g

The remaining papers of this series can be consid-
ered as dealing with applications of the above theo-
rem to specific cases of physical relevance.

Note that the explicit construction of the Lie-iso-
topic transformations (as well as of the entire the-
ory) can be done following the knowledge only of
the original symmetry and of the new metric.

‘We close this section with the indication that all
Lie algebras (27) admit the following trivial Lie
isotopy

G(m) : [XF:XJ] = Xr* XS o XT* Xr
= (XX, - X,x,)I = ck%,,
X=xi, xeG(m), (63)

with a self-evident isomotphism G(m) =~ G(m). The
above trivial isotopy should be excluded from the
content of Theorem 2.1 because it does not provide
the invariance of the generalized composition law.
This can be readily seen from the fact that the
exponentials (41) and (45), when realized for the
generators X,, coincide with the original exponen-
tials (except for the factorization of the new unit),
and no genuine lifting has actually occurred.

III. CONCLUDING REMARKS

A few comments are in order, not only to identify
better certain aspects that are relevant for the subse-
quent analysis, but also to indicate a number of

intriguing, open problems we cannot possibly in- .

vestigate here.

A rather frequent misrepresentation of the Lie-
isotopic theory is the expectation that the theory
will produce new Lie algebras. This evidently can-
not be the case, because all Lie algebras (over a field
of characteristic zero, the only ones considered. in
these papers) are known. The objective of the Lie-
isotopic theory is merely that of expressing known
Lie algebras in a structurally more general way (see

the comments in Sec. I in regard to our current lack

of knowledge of the most general possible Lie iso-

topy).
A further aspect deserving a comment is that a

given Lie algebra G(m) and its isotope G(m) are

not - necessarily isomorphic. This property was
studied in Ref. 14, where it was also shown that

_isotopic liftings do not preserve the compact or

noncompact character of the original algebra. Along
similar lines, one can easily see that the isotopic
liftings do not necessarily preserve the Abelian or
non-Abelian character of the dfiginal algebra. Even
the preservation of the semisimplicity or nonsemi-
simplicity and the notion of radical deserve specific

-studies (which will not be conducted at this time).
The reader may have noticed our reference to the

m-parameter character of C(m) (and our silence on
the dimensionality of the Lie-isotopic algebra). In
fact, under the assumed conditions on the metric,
the numbers of identities (51) and (585) coincide,
therefore implying the preservation of the number

-of independent parameters under lifting.
The corresponding situation for the dimensional-

ity of the underlying Lie-isotopic algebra is in need
of additional study. In fact, as one can see from rule
(49), the isotopic commutation rules (48) imply the
commutations of the old generators X, with the new
metric g which generally produces elements outside

the original envelope &. However, closure under
1isotopy is characterized by structure functions, and

this opens up the possibility of the preservation of
(at least) the finite-dimensional character of the
isotopic algebra.

A detailed study of this aspect is much needed for
the Lie-isotopic theory, although it is not essential
for the objectives of these papers, where the identity
of the number of parameters and that of generators
will be verified in cases of physical relevance.

Another aspect deserving a comment is the intrin-
sically nonlinear character of the Lie-isotopic trans-
formations, even though expressed via a formally
linear theory. In fact, the transformation laws are
formally linear, although in the isotopic sense

x' = A*x = Bx. : (64)

However, when the transformations are explicitly
written down, their intrinsic nonlinearity emerges

transparently, and we shall write

x' = Alwyx, &, )rx= B(w;x,%,...)x,

‘(65)‘

because the elements B are constructed via power-
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series expansions (38) in terms of the metric tensor
g, which is explicitly dependent on local coordi-
nates, their derivatives with respect to independent
parameters, and any other needed quantities:

B = exp[ Xg(x, %,...)w]. : (66)

As a matter of fact, one of the intriguing features of -

the Lie-isotopic lifting of Lie’s theory is the possibil-
ity of turning a conventionally nonlinear transfor-
mation theory into an isotopically linear one, with
evident computational advantages. :

As a further comment, the isotopic liftings of
Euclidean spaces considered in this paper are ex-
pected to be extendable in such a way to accom-
modate antisymmetric metrics and their symplectic
symmetry groups. In fact, liftings (39) and (45) are
possible also for antisymmetric metrics. The restric-
tion to Hermitian metrics has been introduced in
this paper for the compatibility condition (47), hav-

ing in mind quantum-mechanical applications’
based on the completion of the Euclidean spaces
into Hilbert spaces. .

As a final comment, we would like to indicate
‘that, under certain topological restrictions on the
new metric (to be identified in the subsequent
papers), all distinctions between the original sym-
metry and its isotopic image cease to exist at the
level of abstract, realization-free formulations of Lie
algebras. In fact, the envelope can be treated in
terms of an abstract associative product, say, ab,
and, as such, it admits different realizations in terms
of matrices, such as 4B, AgB, or WAWBW (W? =
W). A corresponding situation occurs at the level of

- Lie algebras, Lie groups, etc.

The Lie-isotopic theory is therefore essentially
concerned with generalized realizations of known,
abstract Lie structures. The understanding of this
property is important for the proper setting of the
isotopic liftings of space-time symmetries.
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