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In this paper we study a paradox of quantum mechanics called the
"paradox of Heisenberg’s uncertainties at the limit of gravitational
singularities"”, according to which at that limit, Heisenberg’s uncertainties
should recover classical determinism because gravitational singularities
verify classical determinism and so must all particles in their interior. The
paradox is resolved via the use of the recently introduced isotopes of
contemporary algebras, geometries and mechanics, essentially consisting
of the generalization of the trivial unit of contemporary relativistic
formulations, / = diag. (1, 1, 1), into the most general possible, integro-
differential units 7 (s, x, p, p, ¥, ¥', 0y, d'y,...) verifying the original
axioms of /. The decomposition of conventional Riemannian metrices
g(x)=T(x)m, where m is the Minkowski metric, and the lifting
I=1=[T(x)]"" then imply the generalized Heisenberg’s uncertainties

AxAp2 % |< [x f\p] >| =% [< (xTp - pTx) >| , called isouncertainties

which possess conventional expectation values for matter in ordinary
condition, yet recover classical determinism at the limit of gravitational
singularities for which 7— 0. The analysis therefore confirms the
celebrated argument by Einstein, Podolsky, Rosen et al on the lack of
terminal character of quantum mechanics.

i. Introduction

In this paper we study a paradox of quantum mechanics, here
called "paradox of Heisenberg's uncertainties at gravitational
singularities’” which can be expressed as follows. Consider an
astrophysical body (say, a large star) undergoing gravitational collapse.
Since the object is large even for macroscopic standards, its center of
mass (say, at the origin r = 0) must obey classical determinism, which
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evidently persists for gravitational collapse all the way to a singularity
atr =0.

Consider now elementary particles in the interior of such a
collapsing star. They are customarily assumed to verify conventional
quantum mechanics, thus including Heisenberg’s uncertainties. Now
during the collapsing phase we have no means to ascertain any
derivation owing to the interior conditions of the particles. However, at
the limit of gravitational collapse into a dimensionless singularity at
r=0, all interior particles must necessarily acquire classical
determinism which is not predicted by Heisenberg’s uncertainties.

In this paper we shall therefore study a generalization of the
quantum uncertainties which, while recovering the conventional form
for particles in vacuum, become generalized for particles in interior
conditions, while recovering classical determinism at the limit of
gravitational singularities. The analysis will be patterned much along
the historical argument by Einstein, Podolsky and Rosen (see, e.g. [1])
on the lack of completion of quantum mechanics.

On mathematical grounds, we now possess methods structurally
more general than those used in quantum mechanics, known under the
name of isowopies of contemporary algebras geometries and
mechanics™ | which are based on the axiom-preserving isotopy / =1
of the conventional trivial unit / = diag. (1, 1, 1, ..., 1) of contemporary
formulations into a quantity 7, called isounit, with the most general
possible nonlinear and nonlocal dependence on all variables and their
derivatives (including wavefunctions and their derivatives, as illus-
trated below).

On physical grounds, we know that Heisenberg’s uncertainties for
space coordinates x and momenta p.

[]

1 1 1
S — =— - =— 1.1
AxAp_2I<[x,P]>I 2|<(xp px) > | > (1.13

are valid for the arena of their original conception, that is, for a particle
in vacuum under action-at-a-distance interactions (also known as the
exterior dynamical problem).
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Nevertheless, when the same particle is immersed within
hyperdense hadronic matter, such as in the interior of nuclei, hadrons
or stars (conditions also known as the interior dynamical problem), we
have the emergence of nonlocal interactions due to the deep mutual
penetration and overlapping of wavepackets, as well as nonpotential-
nonhamiltonian effects due to motion of wavepackets within the
medium composed by other wavepackets, which render conventional
quantum mechanics and related uncertainties inapplicable (and not
violated) on numerous independent counts, such as topological,
analytic, algebraic, etc. (see [5, 6] for details).

These more general conditions are representative via the isotopies
of quantum mechanics known as hadronic mechanics®™®, and related
isotopy of the unit I = ?, resulting in the following isouncertainties™®

A
Ax Ap Z%I< [x .p] >I=%I< xTp-pTx)>, I=T"" (1.2

where the interior, nonlocal and nonhamiltonian effects are represented
precisely by the operator T (1, x,p,p, ¥, V', oy, oy, ..), called
isotopic element, and the product xTp — pTx is Lie-isotopic 22 that is,
it verifies Lie’s axioms, although it is less trivial than the simplest
possible product xp — px of conventional use.

Besides the treatment of nonlocal and nonlagrangian effects, the
same methods also permit a novel quantization of (conventional, local
and Lagrangian) theories of gravitation, rudimentarily submitted in [7]
under the name of isoquantization of gravity. It is based on the
decompdsition of a gravitational metric g (x) on a (3+1)-dimensional
Riemannian space into the form

g x)=T(x)n; (1.3)

here 1 is the Minkowski metric, = diag. (1, 1, 1, —1), and the lifting
the trivial unit / = diag. (1, 1, 1, 1) of conventional relativistic quantum
theories into the gravitational isounit 7= [T (x)]".

I=diag. (1, 1, 1, 1)=>?(x)=[T(x))]". (1.4)
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The novel approach therefore consists of achieving an operator
version of gravitation not via its Hamiltonian (which is identically null
for Einstein gravitation, as well known), but rather via the well defined
unit of the theory, thus avoiding the predictable problematic aspects of
a quantum theory whose classical limit has a null Hamiltonian.

’ . . . SOCY . [6,7
This results in the isotopies of relativistic quantum mechanics™®”

for the description of the conventional interior gravitational problem
whose uncertainties are also given by equations (1.2) where T=T (x) is
now the gravitational element of decomposition (1.3).

At the limit of gravitational collapse of a star all the way to a
singularity at x=0, as well known from the Schwartzchild’s line
elements, the space components of 7' (x) are identically null, thus
implying the regaining of classical determinism

AxApa,‘=o=>Limﬁ,%|<(x7p—pTx)>|=0. (1.5)

On epistemological grounds, the following hierarchy of physical
conditions and related uncertainties emerge from this study. First, we
have the exterior problem of point-like particles moving in vacuum for
which conventional quantum mechanics and related uncertainties (1.1)
were conceived and subsequently resulted to be valid according to an
overwhelming amount of experimental evidence.

Second, we have the interior conditions of extended
particles/wavepackets moving within hyperdense hadronic media in
which the consequential nonlocal and nonhamiltonian effects render
inapplicable conventional quantum mechanics and related uncertainties
(1.1) in favor of isouncertainties (1.2). This includes the operator
formulation of interior gravitational theories their conventional, local
and Lagrangian formulations.

Third, we have the limit interior case of a star collapsing all the
way to a singularity at x = 0, in which case all particles in its interior
must evidently have the same classical determinism as the collapsed
star itself. This latter case is manifestly not treatable by conventional
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quantum mechanics and related uncertainties (1.1), but is quantitatively
treatable as a limit of isotopic uncertainties (1.2).

The analysis of this paper therefore confirms the vision of de
Broglie, Einstein and others mentioned earlier, by offering rigorous
methods for a possible completion of quantum mechanics and the
identification of the related uncertainties for generalized physical
conditions beyond those of their original conception and established
applicability.

2. Isotopies of Classical Formulations

The isotopies of contemporary mathematical structures™ are

essentially given by axiom-preserving, nonlinear, nonlocal and
noncanonical realizations of any given structure.

Consider an n-dimensional manifold M (x, F) with local
coordinates x on a field F (hereinafter assumed of characteristic zero
and essentially restricted in this paper to the field of real numbers &
and complex numbers C). The basic isotopy is the lifting of the trivial
n-dimensional unit / = diag. (1, 1, ..., 1) of M (x, F) in to the most
general possible quantity 7 (t, x, x, X, ...) with an arbitrary , nonlinear
and nonlocal dependency on all possible variables and their derivatives
with respect to an invariant qualify s, which, to quality as an isounit or
isotope of 7, must preserve the original axioms of I‘za‘m, ie.,

A A
I=diag (1, Voo DSI=T (%%, X 00 (2.1a)
det/#0,7=1", I>0=detT#0, 7=1", I>0. (2.1b)

The isotopic lifting I = ?requires the corresponding isotopy of the
basic field F into the isofields™

A AN A A
F={n:n=nl}=>F={n:n=nl,ne F) (2.2a)

A A A
n1+n2=>n,+n2=(n,+n2)1, (2.2b)
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A
A A A A
nyny = ny *np=ny Tn2=(n1n2)1, (220)

=1 (3.2d)
where one can recognize the preservation of the conventional additive
unit 0 and related sum, and the generalization of the conventional
associative product ab of arbitrary quantities a,b into the
1soassociative form a * b = aTh, where the quantityAT, called isotopic
element, is fixed. Then, under the condition = 77", 7 is the correct left
and right unit of the theory

A A

I*a=ax*xI=aq. (2.3)

The generalizations of the basic unit and fields then imply, for
evident compatibility, a corresponding isotopy of (pseudo) metric
spaces S (x, g, 4) into the isospace™

S(rg, D=>S(t g2, 8=Te, a=al 1=171 @4)

We should recall that the basis of a metric (or pseudo-metric)
space is unchanged by isotopies (Proposition 3.1, p. 181). Note also
that each given conventional space admits an infinite number of
different, although geometrically equivalent isotopic images, evidently
because of the infinitely possible different isounits 7.

The isotopic generalization of the unit, fields and metric or psedo-
metric spaces then imply corresponding, compatible isotopes of Lie
theory (universal enveloging algebras, Lie algebras, Lie groups,
representation theory, etc.?**4 conventional geometries (symplectic,
affine and Riemannian geometriespb‘sl), as well as classical®® and
quantumm”q Hamiltonian mechanics. Regrettably, we cannot review
here these formulations for brevity, and must limit ourself to a review
of only the basic notions needed for the treatment of the uncertainty.
Nevertheless, a technical knowledge of the isotopic formulations is a
prerequisite for a true understanding of this paper.
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The first property of the isotopic formulations needed for the

isoquantization of gravity is given by the following
A A

A
Lemma 1 [3a] Under the conditions § =Tg, R=RI,I=T">0 (as
well as sufficient smoothness), all infinitely possible isospaces
A A . . oy
(x, ,A.’R) are locally isomorphic to the original space S (x, 8 F),
SR =S(xg R,

The most important isospaces for this analysis are given by the
isominkowskian spaces **®
A A

A AN A A -1
MM R.N=Tn,neMxn R, R=RI, =T, (2.5)

e ; 3a,8b
and the isoriemannian spaces™™ *"

R(x 2 R, §=Tg g R(x,8 R, R=&] P=1", (2.6

where M (x,m, A) and R (x, g, &) are the conventional Minkowski and
Riemannian spaces, respectively, over the reals 4 .

The above isospaces are naturally set to represent directly the
interior dynamical problems indicated in the introduction (i.e. motion
of extended-deformable particles within physical media). In fact,
owing to tf}\e arbitrariness of the isotopic element T (, x, x, X, ...), the
isometries ¢ =7g can represent the inhomogenuity (due to the local
variation of the density), anisotropy (due to an intrinsic angular
momentum of the medium considered ) and generally integral nature of
the system (due to motion of an extended object within a physical
medium, classically and quantum mechanically).

This paper is specifically devoted to the study of conventional
gravitational theories. We shall therefore ignore the latter
generalizations and approximate the interior gravitational problem as
being homogenous, isotropic and local-differential. The following
property has particular value for our analysis.

Lemma 2 [3a] A conventional (3+1)-dimensional Riemannian
space AR (x, 8, R) is locally isomorphic to the isominkowski space
M (x, M, R) under the factorizations and identifications
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A A A
R(x,g,R)=M(x,1n, R), (2.7a)

g)=T@MN, NneM@xn R, 1=TWn=g &), R~al I=1".
(2.7b)

Note that all conventional exterior gravitational theories including
Einstein’s gravitation, admit the factorization of the Riemannian metric
g (x) =T (x)n verifying the positive-definiteness condition 7 (x) >0
(because necessary to admit the local Minkowski topology). Therefore,
Lemma 2 holds for all possible Riemannian spaces. But, from Lemma
1, the isospaces are locally isomorphic to the original spaces. We
therefore have the chain of local isotopic isomorphisms, or
iso-isomorphisms

A A A
R(x, g, R)=~M(x,n, R) =M (x,n, R), (2.8)

namely, isomorphisms based on the isotopy of the unit.

In conclusion, Lemma 2 illustrates a central point of the analysis
of this paper, the fact that the geometric structure of the Minkowski
space persists under any functional generalization of its unit 1 =>?,
provided that 7>0. This permits the axiom-preserving embedding of
the isotopic gravitational element T (x) in the isounit of the space,
1= [T (x)]™', that is, the treatment of a genuinely curved space via the
Minkowski axioms .

This property can be seen in a number of other ways independent
from Lemma 2, such as the fact that the local topology of the
Minkowski space (say, the Zeeman topology) is not changed by the
generalization of the unit /= 7 (x), provided 7 (x)>0, because all
topologies are insensitive to the structure of their own units, once
positive-definite.

3. Isotopes of Operator Formulations

Analytic formulations on the isominkowski space M (6 ﬁ, R) can
be based on the following isovariational principle with subsidiary
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constraint’”’

§A=8ds[p*dc—Hds)=5 [ ds py N 5y~ H]=0 (3.12)

ds* = dx* ﬁuv dx’ = -1 (3.1b)

where H is a conventional relativistic Hamiltonian (although properly
writtten in isospace); the isotopic element 7 has the most general
possible dependence subject to the positive-definiteness condition
T'> 0; the integrand p #dx is a one-isoform of the isosymplectic
geomctry[ I and equation (3.1b) is the isotope of the conventional
relativistic subsidiary constraint.

As studied in [8b] at the Newtonian, relativistic and gravitational
levels, the transition from the conventional canonical variational
principle to the isotopic generalization essentially permits the transition
from the exterior to the interior problem, that is, the transition from
local and canonical equations (representing motion of a point-like
particle in vacuum) to their nonlocal and noncanonical generalizations
(representing motion of an extended particle within a physical
medium).

Principle (3.1) then yields an isotopic generalization of Hamilton’s
equations here ignored for brevity, as well as the following isotopic
Hamilton-Jacobi equations'

A A
aA 0A o OA

e —1 P —— .2
m +H=0, " s e 0. (3.2)

needed for the following analysis on isouncertainties.

The simplest way to construct the isotopes of conventional
relativistic quantum mechamcal formulations is via the so-called nazve
zsoquantzzatzonlg’ %8 Tt is based on the property that the action A on

(x,m 9{) is structurally more general than the conventional canonical
action A on M (x,m, %) and, as such, must be subjected to a mapping
more general than the conventional one A= -illogly>,
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A
I=diag. (1,1, 1, 1),n=1. Since the transition from A to A is an
isotopy, the same must hold for the latter mapping, yielding the
expression [loc. cit]

2 5 : t t
A=—=il(s,x,p,p,y, ', oy, 0y, ..) logly> (3.3)

A
where the isounit / is, in general, a4 x4, nowhere degenerate,
. . 101 A 90 ?_ N }\,
Hermitean matrix on (x, M, K) such that = (1) =(5) > 0.

Then under mapping (3.3), the iso-Hamiltonian-Jacobi equations
are mapped into the structures'™

def A ;

E{*|w>=(H—i%1ogny>)T|w>=i%lw> (3.4a)

_ © def A a; A D
Pu*ly >=(Pu+i1u(5x_vlog'\l’>)T|W >=“1u§"lf>
(3.4b)
ds*=de* Ny di’ =1, 7=~ (3.4¢)

where H and p are the effective Hamiltonian and linear momentum,
repectively, Note that H=H for isounits independent from the
invariant quantity s, while Py = py, for all theories in flat isospaces.

Along similar lines one can construct the isotopic lifting of other
relativistic formulations, e.g., one with variational principles based on

the measure &'x rather than ds, by reaching equivalent results.

The most salient aspect of operator equations (3.4) is that they
imply the generalization of the conventional, right modular, associative
action H |y > of an operator H on a state I'y > into the generalized
action H* |y >= HT |y > which is still to the right, modular and
associative, yet of isotopic type, thus confirming the achievement of a
consistent lifting of the axiomatic structure of quantum mechanics.

At a deeper inspection equations (3.4) result to be a particular
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form of the so-called isorelativistic hadronic mechanics'®, that is, the
isotopes of conventional relativistic quantum mechanics based on the
following main structures:

(1) the enveloping isoassociative operator algebra § with elements
A, B, ..., isotopic product

def
A*B=ATB, T>0 fixed (3.5)

and left and rightisounitf, f*A=A*?=A, VAe &

A
(I) the isofields of reals K= R? or complex numbers
C=CIl,I=T";and

A
(III) the isohilbert spaces # with states (a) | y|> and isoinner
product in

def A

H:(0ly)=(oITIy)le C (3.6)

A A
Note that é is still associative, C is still a field, and # is still
Hilbert. The isotopic character of hadronic versus quantum mechanics
is then established by the local isomorphisms

8t bnC o 3.7)

The preservation of the original axioms is then assured by the fact that
hadronic and quantum mechanics coincide at the abstract level,

because at that level all the following structures coincide
A

I=I,A*B=~AB,H*|y)=HIy) E=C (0lw)=(6ly) et.
(3.8)

Each and every aspect of conventional quantum mechanics admits
a  (mathematically)  consistent, axiom-preserving, isotopic
generalization. This is the case for all axioms and properties of
quantum mechanics, including all operators on a Hilbert space,
causality, superposition principle, etc. These results are so stringent
that, if a generalization of a given quantum mechanical law does not
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preserve the original abstract axioms, then, either that generalization is
not an isotopy, or the original law is not true axiom of the theory.

Regrettably, we are not in a positon to review relativistic hadronic
mechanics in the necessary details, and must limit ourselves to an
indication of only those aspects essential for the treatment of the
uncertainties of the structures.

The first property the reader should be aware of is that an operator
which is Hermitean in quantum mechanics remains Hermitean in
hadronic mechanics as defined above. Thus the notion of observability
is preserved in its entirety. The notion of unitary of an operator is
instead lifted into the isounitary law.

U*U?=U‘Q*U=? (3.9
while the isoexpectation values acquire the form

A A A
(A)=I({yl*A* |y )=I{yITATIy)
A A
=1'fde+TA Tye C,

(YITIy)=1 (3.10)

A
where the isounit / as a factor can be ignored for practical applications
because the isomultiplication of an isonumber ¢ = ¢ by any quantity Q
coincides with the conventional product, ¢ Q = cQ. For the isotopic
lifting of all other operations on a Hilbert space, including determinant,
trace, etc., we must refer the interested reader to'®

Heisenberg’s equations of motion are generalized into the
isoheisenberg equations in their infinitesimal form

i A=[A H=A*H-H*A=

=AT (s, %, %, X, y, y' oy, oy, ...)

H-HT (s,x, %, X%y, ¥, oyoy’, .)A  (@3.11)
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submitted in the original proposal to build hadronic mechanics®”,
where one can see the Lie-isotopic character of the brackets
[A :\H];,:ATH-HTA,LC., their preservation of the original Lie
axioms, although with a product less trivial than the simplest
conceivable form [A, H]: = AH — HA. The finite form of Equations
(3.11) is of the isounitary typem’]

y i 5 . o
A(t):eI&lHt*A(O)*eI& ltH:Ie”‘H*A(O)*e"”"I‘

(3.12)
where ¢ ¢(or e) is the isoexponentiation in the generalized iso envelope
(or the conventional exponentiation).

The axiom-preserving isotopies of all remaining aspects of
quantum mechanics then follow!®. Particularly intriguing is the
isotopic measure theory which is a conventional theory essentially
referring measures to a quantity other than the trivial unit 1%,

One should recall that equations (3.12) have been proved to be
"directly universal®, that s, capable of admitting as particular case all
possible, linear or nonlinear, local or nonlocal and Hamiltonian or
nonhamiltonian operator equations ("universality"), directly in the
frame of the observer ("direct universality").

Hadronic mechanics is therefore naturally set for the
representation of the most general known interior particle problems,
that is, the study of an ordinary particle when immerses within a
hadronic medium (the hyperdense hadronic matter existing in the
interior of nuclei hadrons and stars). In particular, said representation
occurs via a covering of conventional quantum mechanics. In fact,
hadronic mechanics recovers quantum mechanics identically whenever
the particle considered exits the hadronic medium and returns to move
in vacuum, in which case 7= /.

Needless to say, hadronic mechanics is at its first infancy and so
much remains to be done to reach a final appraisal of its physical
effectiveness, while its mathematical consistency is nowadays
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sufficiently established. A number of applications of hadronic
mechanics to specific cases, and their confrontation with available
experimental data have been conducted with sufficiently encouraging
results to warrant additional studies'®,

We are here referring to typical applications where nonlocal and
nonpotential internal effects are expected from deep mutual
overlapping of the wavepackets of particles, such as Bose-Einstein
correlation, quark confinement, behaviour of the meanlife of unstable
hadrons with speed, Cooper pairs in superconductivity, and other
applications reviewed in [6].

4. Isotopes of Heisenberg’s Uncertainties.

We are now sufficiently equigped to define the isouncertainty AA
of a quantity A via the expression'.

/\2_ A A_ A— 2?
(A4)"=(AA D) T(AA D) =(AA) (AA) I=(AA)

Iy TA- A Ty=[ v TU-4) TU-@A) Ty. @.1)

A A
where, AA = AA I 'is an isonumber while AA is an ordinary number; we
assume the isonormalization

(v lwy=(yITIy) =] or[dvy' Ty=1. @2

and set 2 = 1 hereon.

The isotopic generalizations of the familiar quantum mechanical
procedure to derive Heisenberg's uncertainties, including the use of the
isoschwartz inequality for two functionsfand g

Javigty«avigitzi[avFer? (4.3)
yield the following result for two operators A and B™

[(A4) » (AB)? = (MA D T(AA D) T (ABD T (AB D) = [(Ad) (AB)PT
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>17 [ dvy' ;
211[dvy' TA-(A)TB-(B) Tyl

z%?jde*T{(A-(A)),“(B-(B))}w|2+|%?jde*

TUA-(A) B~ (B Ty’

A
2121 vy T(A7B] rylt=12 [ TUBTYIPL (44

that is,

AAABz—21—|jdvT[Af‘B]T\p|=%|<[A,“B]>|. (4.5)

Consider now the case of the position r and momentur? p operator
in one dimension. Then, their isouncertainties are given by[ )

Ar Apzll (lrip) ). (4.6)

From equation (3.4b), the momentum operator has the realization

def 5 50

o Aol Ad
priv)=(+il(G logly)TIW==il=1y) @7
or or
thus yielding the isocommutation rules
A
r ' pl=rTp-pTr=il. (4.8)

The isouncertainties in one space dimension are then given by[ )

A A
Ardp 22t =21y 1= 2 [ary' TITYI=2, (49)
2 2 2 2
and we have proved the following:

Lemma 3 [8] For the nonsingular case of one space dimension,
the numerical value of the uncertainties




62 RUGGERO MARIA SANTILLI

Ar Ap Z%h (4.10)

remains invariant under isotopies (3.3) of the quantization mapping
with consequential isotopies (3.4b) of the momentum operator.

To put it differently, we can say that the numerical value %h of the

uncertainties is a true axiom of quantum mechanics in one space
dimension, precisely because invariant under isotopies.

The case in more than one dimension is different, with the
appearance of "hidden" degrees of isotopic freedom evidently absent in
quantum mechanics. Consider in this respect the interior problem of
any gravitational theory on a Riemannian space Ig\ (x, 8, R
reformulated into the equivalent isominkowski form on 7 ER R

Rtg R~MA R, ¢@=TwWn=h &=&1 1=7T@""
@11

As recalled in Section 1, the isotopic quantization of gravity
consists of the lifting of the trivial unit / = diag. (1, 1, 1, 1) of
conventional relativistic quantum theories on Minkowski space
M (x,m, ®) into isounit (1.4), that is

I=diag. (1, 1,1, )= 7= [T (] = By = (), g ) =T (9 .
(4.12)

Recall now the isoquantization of the linear momentum, equations
(3.4b), where p is the effective linear momentum operator. Then the,
Fundamental isocommutator rules are given by

G =, @.13)

namely, for all practical purposes related to uncertainties we can
assume in a curved isospace that p,, = p,, .




ISOTOPIC LIFTING OF HEISENBERG’S UNCERTAINTIES FOR ... 63

As a specific application to a gravitational model, let us consider
the familiar Schwartzchild’s line element

ds® = [r/(r — 2M)] dr* + ¥* d8* 4 * sin® 8 dO” — (1- 2M/r) df* .(4.14)
It is now best to consider the space components Ax and Ap separate
from the time one in orde: to avoid old problems, such as the lack of
operator character of iime. Then, in spherical polar coordinates, the
isotopic element 7" has the explicit diagonal form

1'=Diag. (T}, T3, T3 } = diag. {#/(r — 2M), #*, ¥ sin® 0}. (4.15)
Outside singularities, the isouncertainties are then given by

ad apez Ly =L [aey T
P25 (L) =51]dxy T Ty, (4.16)

with normalization

Jaxy' Ty=1. (4.17)

For the case of singularities, equations (4.16) cannot be directly
applied because one must reinspect the entire algebraic structure of the
theory which is at the foundation of quantization rule (3.4) from which
equations (4.16) follow. It is easy to see that at the Schwartzchild’s
horizon r = 2M, the isotopic element T diverges, that is, we have for all
the modular actions of operators on states, such as
H* |y )= oo, p* |y )= oo, etc., thus implying the following

Lemma 4 The isouncertainties of the space coordinates and
momenta at the Schwartzchild horizon of the gravitational collapse
diverge to infinity

Ax Ap IHZMZ%LimH,,IJ.dx\pTT(x Tp-pTx)Tyl=co,

(4.18)

We remain now with the problem of primary interest for this
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paper, which is that of gravitational collapse beyond the horizon all the
way to a geometric singularity at x = 0. It is easy to see from Equation
(4.15) that the isotopic element T becomes identically null at x =0,
This implies the null values of all modular actions of operators on
isostates, H * |y ) =0, p* |y ) =0, etc., resulting in the following

LEmmA 5 At the isotopic limit of gravitational collapse all the way
to a singularity at x=0 , the space coordinates and momenta
reacquire their full deterministic character, i.e.

Ax Ap l,=,02%LimT=o I de VW TxTp-pTx)Ty 1=0. (4.19)

Intriguingly, in a one-dimensional theory with isotopic element

T'=(r - 2M))/r the uncertainties on time ¢ and energy E behave in way
opposite to that of the space coordinates and momenta, i.e.

At AE |,y 20, (4.20a)

At AE |,yg = oo, (4.20b)

which rather intriguing geometric implications, particularly when
studied from the viewpoint of the isodual isospaces of [8b].

Needles to say, the preceding results should be considered in the
spirit in which they have been submitted, that of mainly
epistemological character, and should not be taken ad litteram. In fact,
we merely intended to study geometric limiting conditions in the
universe, without any claim that they actually exist. This is due to
several reasons, beginning with the known problematic aspects of
Einstein’s gravitation itself at the purely classical level “® and the
existence of theories (see, e.g. [11, 12]) which, even though admitting
gravitational collapse, do not permit the achievement of a true
singularity all the way to a dimensionless point at x = 0.

5. Concluding Remarks

This paper has been inspired by the historical doubts of Einstein,
Podolisky, Rosen, et al. (see review [1]) on the lack of terminal
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character of quantum mechanics. Far from aiming at the ultimate
resolution of the issue, the paper is essentially intended to present the
following main aspects.

(1) Bring to the attention of the scientific community the
distinction between the exterior problem in vacuum and the interior
problem within a physical medium which played an important role in
the early part of this century, but was subsequently abandoned (see,
e.g. the care Schwartzchild had in presenting, first, his historical
solution for the exterior problem in [13a] and, then, his little known
solution for the interior problem in the separate paper [13b]).

(2) Indicate that the isotopes of quantum mechanics characterized
by the lifting of the eigenvalue equation
Hly) = H=*|ly)=HT|y) provide a rigorous methods for the
study of interior problems at large (including interior gravitational
problems), where the deviation of the Hermitean operator 7' from the
unit 7 represents the physical differences between the interior and
exterior problem (including the differences between a curved and a flat
operator theory).

(3) Submit the simple epistemological observation that, at the limit
of gravitational collapse all the way to a singularity, the (space
component of the) isotopic element T becomes identically null, thus
permitting the regaining of classical determinism for the space
coordinates and momenta.

As a result, the isotopic methods permit explicit, quantitative
realizations of the vision of de Broglie, Einstein and others on the lack
of completion of quantum mechanics. Preliminary studies on the
isotopic treatment of the Einstein-Podolsky-Rosen argument, Bell’s
inequality and the theory of "hidden variables" were conducted in [14].
A more recent account along the same lines can be found in the
adjoining paper“s] .

REFERENCES

I. F. SELLERI, Quantum Paradoxes and Physical Reality (Kluwer Acad. Publ.,
Boston, MA; 1990).




66

10.
1.
12.

13.

14,

15.
16.

RUGGERO MARIA SANTILLI

R.M. SANTILLI, Hadronic J. 1, (1978) 228 and 574.
R.M. SANTILLI, Algebras, Groups and Geometries 8 (1991) 169 and 187.

D.S. SOURIAS AND G.T. TSAGAS, Mathematical Foundations of the Lie-Santilli
Theory, Ukraine Academy of Sciences, Kiev (1993).

R.M. SANTILLI, Hadronic J. Suppl. 4B, (1989).

R.M. SANTILLI, Elements of Hadronic Mechanics, Vol. 1 (1993), Vol. II (1994),
Ukraine Academy of Sciences, Kiev, No. 4.

R.M. SANTILLI, Hadronic J. Supp!. 4B, (1989)

R.M. SANTILLI, Isotopic Generalization of Galilei's and Einstein's Relativistic,
Vol I'and Vol. II (Hadronic Press, Tarpon Springs, FL; 1991).

A.O.E. ANIMALU AND R.M. SANTILLI, Contributed paper in Hadronic
Mechanics and Nonpotential Interactions, M. Mijatovic, Nova Science NY
(1990).

R.M. SANTILLI, Ann. Phys. 83, 108 (1974) .
G.F. WEIss, Vol. 51 of Inediti (Andromeda Publishing, Bologna, Italy; 1990).

A.A. LOGUNOV, "The basic principles for the relativistic theory of gravitation”,
Hadronic J. 15 (1992), in press.

D.F. Lorez, "Confirmation of Logounov's exterior relativity via Santilli’s
isoriemannian geometry", Hadronic J. 15 (1992) in press.

K. SWARTZCHILD, Sher. Akad. Wiss. 189 (1916) [13a] and ibidem 244 (1916)
[13b].

R.M. SANTILLI, Hadronic J. Suppl. 4B, 2 (1989).

J.D. KADEISVILI, contributed paper in Symmetry Principles in Physics, G.
POGASYA et al Editor, JINR, Dubua, Russia (1994).




