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In this paper we identify some of the most significant references on the inverse problem
of the calculus of variations for single integrals and initiate the study of the generaliza-
tion of the underlying methodology to classical field theories. We first classify Lorentz-
covariant tensorial field equations into nonlinear, quasi-linear, and semilinear forms,
and then jntroduce their systems of equations of variation and adjoint systems. The
necessary and sufficient conditions for the self-adjointness of class %2, regular, tensorial,
nonlinear, quasi-linear and semilinear forms are worked out. We study the Lagrange
equations, their system of equations of variations (Jacobi equations) and their adjoint
system by proving that, for class @* and regular Lagrangian densities, they are always
self-adjoint. We then introduce a concept of analytic represeatation which occurs when
the Lagrange equations coincide with the field equations up to equivalence transfor-
mations and refine the definition by particularizing it as direct or indirect and ordered
or nonordered. Some of the conventional cases of tensorial fields are considered and we
prove, in particular, that the conventional representation of the complex scalar field
in interaction with the electromagnetic field is of the ordered indirect type. For the
objective of identifying our program we recall the two classes of equivalence trans-
formations of the Lagrangian densities which are primarily used nowadays, namely,
the Lorentz (coordinate) transformations and the gauge transformations (transformations
of fields within a fixed coordinate system), and postulate the existence of a third class,
which we term isotopic transformations of the Lagrangian density and which consist of
equivalence transformations within a fixed coordinate system and gauge. We finally
outline the objectives of our program, which essentially consist of the identification of
the necessary and sufficient conditions for the existence of a Lagrangian in field theories
and their first application to the transformation theory within the framework of our
variational approach to self-adjointness.
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1. INTRODUCTION

The inverse problem of the caleulus of variations can be formulated as follows.
Given a family of oo®* paths yu(x), k =1, 2,..., n, solutions of the system of
ordinary second-order differential equations

F.’:(xs s yla }"”) =0,

(1.1)
¥ = dyfdx, y" = diyfdx?,
determine whether these paths can be identified with the totality of extremals of a
variational problem

i) = [ d 10390, (1.2)

A physical significance of this problem within the framework of Newtonian
mechanics is that its solution provides the means to ascertain whether, given a
system of Newton’s equations of motion in configuration space [

£y == Aki(ti q, 9) d; + Bk(ts &, g) = 0:

1.3
d = dgfdt, § = dqjdt?, )

a Lagrangian L(¢, ¢, §) for the analytic representation [2]
LL: = (d/dt)(aL/a(.ii'c - (aL/aqk) = A.’cig.;i + —Bi!: = 0’ k = I: 2:--': i (1-4)

exists and, in case of an affirmative answer, it provides the methodology for its
computation.

The present status of the investigations on this problem within the framework of
Newtonian mechanics is reviewed and somewhat expanded in a forthcoming mono-
graph by this author [3].

This problem for the case n = 1 was first solved by Darboux in 1894 [4], and
subsequently expanded to higher derivatives by Hirsch in 1898 [5] and Bohem in
1900 {6]. The case # > 1 has been studied by several authors, including Helmholtz
in 1887 [7], Mayer in 1896 [8], Konigsberger in 1901 [91, Hamel in 1903 [I0],
Kiirshack in 1906 [11], Davis in 19281929 {12}, and Douglas in 1941 [13].

These authors essentially introduced what are customarily called the conditions
of self-adjointness, namely, the (necessary and sufficient) conditions for the equa-
tions of variation of system (1.3) to coincide with the adjoint system. Then they
proved for the case of regular [14] systems that such conditions of self-adjointness
are sufficient for the existence of a Lagrangian for representation (1.4).
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The ultimate reason for such effectiveness of the condition of self-adjointness
rests on the fact that the Lagrange equations in regular class ¢* Lagrangians are
self-afjoint. This property was apparently established for the first time by Jacobi
in 1837 [15]. And indeed, the equations of variations of the Lagrange equations,
or, equivalently of the Euler equations of a variational problem, are customarily
called the Jacobi equation in the current literature in the Calculus of Variations
[16-23]. It is a matter of elementary calculations to see that the Jacobi equations,
under the assumed regularity and continuity conditions, coincide with the adjoint
system. This establishes the self-adjointness of the Ths of identifications (1.4).
Under a suitable characterization of the type of analytic representation they are
referred to [3], the conditions of self-adjointness of the equations of motion then
became the necessary and sufficient conditions for the existence of a Lagrangian.

Since the Douglas’ investigations of 1941, the inverse problem on the calculus
of variations has remained virtually ignored in both mathematical and physical
literature with very few exceptions known to this author, among them the study by
Dedecker of 1949-1950 {25] and Havas of 1957 [26]. This is rather regrettable
because the implications of the methodology which underlies the problem are
significant.

First of all, the conditions of self-adjoininess are insensitive as to whether the
acting forces are derivable from a potential or not. Therefore, starting from the
conventional structure of the Lagrangian for a conservative (unconstrained)
Newtonian interacting system

Lrot = Y Litee + Lint (1.5)
1
where LU, is the kinetic energy of the particle k and V' == — Ly is the potential

function, the methodology which underlies the inverse problem of the calculus of
variations gives the conditions for the existence of a Lagrangian also when the
forces are not derivable from a potential. In this case, however, an “additive”
interaction term Ly to the kinetic energy is insufficient by itself to represent the
motion. A structure of the Lagrangian capable of representing this broader class of
Newtonian systems is given by [3],

Lot = 2, Lgﬂ.l g;)ee + Lt » _ (1.6)
1

namely, it is characterized by (1 -+ 1) interaction terms, 7 multiplicative terms
L{¥ ., and one additive term L,y . Trivially, at the limit when all multiplicative
interaction terms reduce to unity, the generalized concept of Newtonian inter-
actions according to the Lagrangian (1.6) reduces to the conventional concept of

Lagrangian (1.5).
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This aspect, however, does not exhaust the significance of the conditions of self-
adjointness. For instance, within the framework of the transformation theory for
Newtonian systems, such conditions allow the identification of new types of
equivalence transformations of the Lagrangian. In essence, there exist infinite
varieties of systems of differential equations capable of representing the same path,
i.e., all admitting the same general solution. One family of such equivalent equa-
tions of motion can be characterized by

hrci(Aiflff + Bz‘) = Ai’ff 9.-: -} Bk* =0,
(1.
I = hult, g, 4), det(h;;) 5= 0.

The conditions of self-adjointness establish that for af/ elements of the family (1.7)
of equations of motion which are self-adjoint (but not necessarily identical), the
Lagrangian exists. Thus, if a given system admits the analytic representation (1.4)
and a self-adjoint equivalence transformation (1.7), then the new representation

(dIde)BL* 8¢ — @L¥jog) = Ay + By =0, k=121 (19

exists. The transition L — L* so constructed is an equivalence transformation of
the Lagrangian which cannot be derived either with a point transformation
Kt q, §)— L'{t, q', §') (because it occurs within a fixed coordinate system) or
with a Newtonian “gauge” transformation L — LT = L - G(t, g} (because the
Lagrange equations in L and L* do not coincide, unless the mapping is trivial).

As a consequence, the equivalence transformations L(f, ¢, §) — Lt q, 9)
constructed with the above use of the conditions of self-adjointness constitute a
third identifiable layer of the transformation theory in configuration space,
besides the conventional point and gauge transformations. Such transformations
I — L* have been termed by this author, for certain algebraic reasons, isotopic
transformations [3]. It should be indicated here that these transformations result
in being the extension to arbitrary (finite) dimension # of the equivalence frans-
formations of the Lagrangian considered by Currie and Saletan in 1966 [27] for
the case 1 = 1, without the methodology of the inverse problem of the calculus of
variations.

From the viewpoint of the generalized concept of Newtonian interactions
according to Lagrangian (1.6), the isotopic transformation essentially represent
the “degrees of freedom” of the (z -- 1) interaction terms within a fixed path.
Indeed, the transition L — L* can be written

T n
Lyot = ¥ LE L + Linga — Lior = ¥y, L LiRee - it (1.9)
1 1
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Needless to say, isotopic mappings (1.9) alse apply when the original Lagrangian
Lot has the conventional structure (1.5). This, however, implies the transition
from conventional to generalized Lagrangian structures for conservative Newtonian
systems, i.e.,

7 n
Lrot = 3 Litee + Ling— Ligt = ¥ L f%ee + Lizn - (1.10)
1 1
A trivial example for the one-dimensional harmonic oscillator # -+ x = 0 (m = 1;
k=1;x % 0; % 5 0} is given by [3]
Lrree = 34%

Loy = — b*
Structure (1.5): |~ = )
(1:3) { Lyot = Lpree + Lint = 3(8* — %)

Lty = kécost 4 xsint,
Liyn = —x?% cos 1,

Lrot = LingaLeree + Lt

Structure (1.6):
= 34 cos ¢ -} Ixa® sin ¢+ — x%% cos 1,

Isotopic Mapping:  Lgot — Lis; - (1.11)

This point is indicated to emphasize the fact that, within the framework of New-
tonian mechanics, the Lagrangian for the representation of conservative interacting
systems must not necessarily have the conventional structure (1.5) because equiv-
alent generalized structures (1.6) are also admissible. Therefore, the generalized
concept of Newtonian interactions according to Lagrangian (1.6) has a twofold
significance. First, it allows the representation of a broader class of Newtonian
interacting systems, and second it is significant for the transformation theory of
both noncenservative and conservative systems.

The significance of the conditions of self-adjointness for canonical formulations
of Newtonian systems [3] is even more intriguing than that for configuration space
formulations. Indeed, such conditions, besides providing the methodology for
the identification of a Hamiltonian without any prior knowledge of a Lagrangian,
possess relevant algebraic and geometrical meanings. Furthermore, the phase-
space image of the above indicated transformations L — L* can be expressed in
terms of an invertible Lie algebra axiom-preserving mapping of the Poisson
bracket [3] which, in the theory of abstract algebras is termed an “‘isotopic
mapping”’ of the product. This indicates the reason for the selected terminology.
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In these papers we shall initiate the identification of the generalization of the
methodology of the inverse problem of the calculus of variations to the case of
classical field theory and attempt a preliminary analysis of its possible significance.

Such a problem essentially corresponds to the inverse problem for the case of
multiple integrals. Apparently, this problem too has remained virtually ignored in
both the mathematical and physical literature. However, due to the vast number of
references which exist in the several branches of the calculus of variations, as well
as of field theory, this anthor makes f10 claim to originality.

2. NOTATION

We shall denote with x = {x*} = (x°, x1, x?, x%) generic points of the Minkowski
space My with metric tensor g#: g = gt == 15 g = O, psv; k=123
v =20,1,2,3. A generic point set in My will be denoted with R, . The closure
R, of R, is the union Ry 2R, , where 8R, is the boundary of R,. We shall say
that R, is a region when it is open and connected and it is a domain when it is
perfect, internally connected, and each of its points is a point of accumulation of
interior points. Then if R, 1s a region, R, is a domain.

We shall say that a set of (classical) fields Dx) = {p(¥)}, @ = 1, 2,..., i, defined
in a common region Ry is of class €™ in Ry and write @ e €7(Ry), m =0, 1, 2.,
0, when each component ¢, PoSSesses continuous (Holder) derivatives in all
coordinates x*, g = 0,1,2,3, up to and including the order m in every bounded
domain contained in R, . Partial derivatives of ¢,(x) with respect to x* will be
denoted with the symbols

il

2. o age _ 2,
?Sﬂ’u qs qba'l-l = qs qbu’uv = '-—"SS_— etc-;

ox» ’ gxn’ T gxe oxv’ @1
2.1
. a¢, . og® ) o*
b = aﬁu , PE aiu S A ﬁx“qs@ax”’ ot
X, = LY, X = gR,

‘Throughout this paper we shall only consider sets of fields D(x) == {pu(x)} which
can be partitioned into subsets Dy(x) = {a (}sees B (x) = {pa (O} @i =1,
Dy tii =12, 1+ 1 A -+ 4 r, = n, each one transforming covariantly
under a reducible or irreducible tensorial representation of the Poincaré group

@,(x) 24Ds B/ (x) = PLAHx — @) (2.2)

For instance, {0}, a=1,2,., 6, can represent the set constituted by the
electromagnetic potentials Afx)p=01,232 complex scalar field p(x) and its



360 RUGGERO MARIA SANTILLI

complex conjugate field §(x), i.e., {$q} = {4, ; @; §}. The case of spinorial fields
will be considered in a subsequent paper.

A set of functions F == {Fu(Xs, ¢% ¢% , $%a)} (@, ¢ = 1, 2,..., n) will be termed
of class @™ in a region R of the variables x,, ¢¢, ¢, , and ¢%,, when all of its
elements F, possess continuous partial derivatives with respect to all iis variables
up to and including the order m in every bounded domain contained in R. Here
the region R is the Kronecker product R, & Rye® Ryeiy @ Ryesy, - Partial deriva-
tives of F, with respect to the Minkowski coordinates will be denoted with

afy, __&*F,
o, F, = i ol 8,0,F, = Fre el etc.,

oF &F @3
i — ——-——-—a == e ..
ouF, v, 2,0,F, . o, ete.,

while for total derivatives we shall use the symbol

— c; Mwa__ (4 a cy a ?
duR& - taa"}_ ‘1‘!’ o 3950 + (rl" ol aqsc;ﬂ -+ 95 aan"é"ch;_Bys Fa

7 b g
= au c;m AL c:rx YR G:oc v _—_; Fa 3 2.4
j * <}S ELB * (;6 # 2 e dolas 3(}56’3.,, @4
duF — anc + ch:u: ___i_ + gbc:cz 4 1 [(H G F
@ = j ach ] a‘;)c:ﬂ ! ?S By a(ﬁg;ﬂy g [ )

and similarly for the case of total derivatives of higher order.

Throughout this paper, unless otherwise stated, we shall tacitly assume that all
considered functions Fu(x,, #°, $%,., ¢%,e) transform covariantly under the
Lorentz group. We shall, however, preserve for completeness a possible explicit
dependence on the coordinates.

3. FieLp EQUATIONS

We shall initially be concerned with (covariant) systems of # second-order partial
differential equations of the type

Fx,, ¢% &%, , ¢%a) =0, a=1,2,...,1, (3.1)

which are not necessarily linear in any of their variables x, , ¢°, $% . and @5
We shall often refer to Eqs. (3.1) as the nonlinear form of the field equations. For
reasons which will be self-evident later on, we shall only consider systerns (3.1)
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whose functions F, are of at least class €2 in a region Ry, of their variables. The
Junctional determinant of Eqs. (3.1) is given by

thae = dhap(Roe) = | 3Fu/3¢me = | du |, (3.2)

and its elements % are also defined in Ryy . The most significant possibilities
occur when the determinant dy is either identically null everywhere in Ry, OF is
not.

In the former (latter) case, by analogy with a terminology often used in the cor-
responding Newtonian cases [14], we shall say that system (3.1) is regufar (de-
generate). Notice that the regularity of a system does not exclude the existence of
isolated zeros of its functional determinant [28]. If the rank of the functional
matrix is zero, then system (3.1) reduces to a system of first-order partial differen-
tial equations. In this case we shall term system (3.1) torally degenerate. The
analysis of this paper will be restricted to systems (3.1} which are not only of at
least class %2 in a region Ry, of their variables, but also regular everywhere in it.
Such systems will be indicated with the symbol

(Fo)% R =0, (3.3)

As is well known, the Lagrange equations for continuous systems are always
linear in the second-order partial derivatives ¢%,, . Therefore, one of the most
significant subclasses of systems (3.1) can be written

Fa = :;(xa H 5603 qbc:u) qsb:uv + Ba(xuc ] 95cs (#c;rx) == 0:

(3.4)
a b, e=1,2,..,n myv, e =0,1,2,3.

Notice that the. system is not necessarily linear in x,, ¢¢, andfor ¢%,. We shail
refer to Bgs. (3.4) as the guasi-linear [29] form of the field equations.

The continuity properties of the functions F, can now be assumed in a region
Rqy of the variables x, , ¢*, and ¢, only. The functional determinant of Eqs. (3.4)
is now dop = | A [(Rov)-

A point of particular significance for our analysis is that the terms 4g of
Egs. (3.4) can always be assumed to be symmetrical in the (u, v) indices, i.e.,

Al = A (3.5)

This is due to the fact that these indices are contracted with the totally symmetric
derivatives ¢, = 3,8,¢® = ¢%,, . And indeed, if the terms A%} do mnot satisfy
such properties, they can always be written Al == 3(Aby + A%y — (4l — A
But the contraction of the antisymmetric parts with the symmetric terms ¢%,, is
null. Thus, properties (3.5) always hold up to redefinition.

Throughout our analysis we shall always assume properties (3.5).



362 RUGCGERQ MARIA SANTILLI

System (3.4) will be again termed regular (degenerate) in Ry, when determinant
| A% | is everywhere non-null (null) in R, . Similarly, we shall say that system (3.4)
Is totally degenerate when A4 = 0 for all values of the indices, in which case it
reduces to the generally nonlinear system of first-order equations B, = 0. Tn line
with assumptions (3.3) we shall consider only systems (3.4) which are of at least
class €% and regular in Rqy , i.e., systems of the type ’

(Aind”,, -+ BIER = 0. (3.6)

The almost totality of free or interacting tensorizal field equations nowadays con-
sidered constitutes the following subclass of Eqs. (3.4):

Fo= A"+ Bu = "0 — filxe, ¢ 4%) = 0,
¢ = Uda,
namely, it can be obtained from Eqs. (3.4) through the particularization
A =8 Qg™ Bu=—f. (3.8)

This is the case, for instance, fof the equations of the electromagnetic potential,
i.e., 4, = 0, or the complex scalar fields in interaction with the electromagnetic
- field; etc. Equations of type (3.7) are cailed, in the theory of partial differentiai
equations the canonical form [29] of system (3.4), and the transition from Egs. (3.4)
to (3.8) is called, the reduction of the general quasi-linear form to the canonical form.

This terminology is, however, confusing for our framework, particnlarly when
the Hamiltonian formulation is considered. We shall therefore refer to Egs. (3.7) as
the semilinear form of the equations of motion. The reader should, however, be
aware of the fact that what are customarily referred to as semilinear forms in the
theory of partial differential equations are expressions of the type

8™ baiuy — fulxa, ¢°, $75) = 0, (3.9)

namely, when the coefficients 4, = 8, @ g#(x,) of the quasi-linear form
depend on the coordinate x, only [29].

Nevertheless, equations of type (3.9) appear in a natural way when considering
field theory in curved spaces. As a matter of fact, Eqs. (3.7) can sometimes be
considered as the limit of Egs. (3.9) to the (flat) Minkowski space. It is in this sense
that we shall use the terminology “quasi-linear form” for Eqs. (3.7), too.

Notice that the reduction from the quasi-linear form to the semilinear form is
always possible for Ay = A, ® g*, | Am | 7 0. Indeed, in this case the inverse
matrix (d.,) = (47',) exists everywhere in Rq; . Then the implicit functions Ja
of Egs. (3.8) are given by '

(3.7

fo= —A7VB,. (3.10)
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Notice also that the hyperbolic character of the field equations under considera-
tion is transparently exhibited by the quasi- and semi-linear form. This character
will be tacitly assumed for all other types of considered field equations.

Our analysis of field equations in the semilinear form will be restricted to only
those systems which are of at least class % in a region Ry, of the variables x, , &,
and ¢, (this will later on correspond to Lagrangian densities which are of at least
class €% in Rg), and we shall write

(8"ba’u — f)¥ = 0. (3.11)

Notice that the condition of regularity is redundant for the semilinear form
because the functional determinant dy;, = | g* | is everywhere non-null. Therefore,
semilinear forms of the field equations are always everywhere regular.

Another type of field equation we shall consider can be written

8 ba'u + (%) %, + Bulx) 47 = 0, (3.12)

namely, it is linear in '¢°, ¢, , and ¢, . For this reason we shall refer to it as the
linear form of the field equations. Again, the minimal continuity properties will be
that alf terms of, and 3, are at least of class 4" in a region R,

4. EQUATIONS OF VARIATION

Consider the (# -~ 4)-dimensional region R,,., with points {¢*, x,}, a = 1, 2,..., n,
a=1{,1,2,3. The equations ¢° == ¢°(x) determine a hypersurface R, C R,.,.
We shall assume that ¢° e ¥%R,). Then ¢%, and ¢, exist and are continuous in
R, . We shall further assume that the matrix (¢°,) has rank » and, thus, R, has
dimension n.

As is customary in the calenlus of variations for multiple integrals [23] we now
consider an co'-parameter family of fields D(x, w) = {$(x, w)} with ¢° e T(R,),
where w is a free parameter such that | w| << e (or we O,) and (%, W)|yeg =
$°(x), This situation can be interpreted by saying that the hypersurface R, depends
on a free parameter, R, = R,(w), and the x’s can be regarded as Gaussian coor-
dinates on R,(w) [23]. Consider two neighboring hypersurfaces R.(w) and R,(0).
The variation of the fields in the transition from R,(0) to R,(w) at a fixed value of
the coordinates is given by

8¢ = wy(x), ¢ == (/6w » we O, . {4.1)

The functions %%(x) so defined will be termed the variations of the field $*(x).
Clearly such variations possess the same continuity properties of the fields. Under
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the assumptions ¢¢ e 2R, (w)) we can therefore extend the above procedure and
define the variations %, and %, through the equations

8o, = wp¥, , N, = (00%,100) ey
(4.2)

8‘#“1;9 = W%, Ny = (aq!’c;uv/aw)lwﬁﬂ .

Then, »%, € €1 and %%, € €0,

We shall term the family of all admissible variations of the fields $°(x) the set of
all variations 5°(x} which possess the same continuity properties of the ¢’s. The
above parametric method of the construction of the variations %°(x) is introduced
to simply indicate the possibility of constructing different elements of the family of
admissible variations and, as such, it should not be considered either exhaustive
or unique.

We are now equipped to introduce the first tool of central significance for our
analysis, namely, the system of equations of variation of a given set of (tensorial)
field equations.

Consider the nonlinear form

{Fa(xm » ‘?50: ‘#C:a s ?56:&8)]?"2'52 = O’ (4-3)

computed along an ool family of class %% fields #°(x, w). Then the system
in question can be introduced through the equations

Mo(Xe s 0% 0% s 1)
= (dFofdW)luo = au(x) 7° + Balxs) 7%, + ci(x) 9%, =0, (4.4)
\-vhere all terms
oy = (OFef0f" N umo > by = (BFofOd" Muy, i = (BFJ04%,)  (4.5)

now possess only a dependence on the coordinates x, because the functions F, are
computed along assigned fields ¢¢(x, w). For simplicity of notation we shall denote
the forms (4.4) with the symbol M ().

A comparative analysis of systems (4.3) and (4.4) indicates that the system of
equations of variation always constitutes a linear (homogeneous) system of partial
differential equations in %%, 4%, , and ¥ » itrespective of whether the original
system is linear or not.

The equations of variation for other forms of the field equations (Section 3) can
be constructed accordingly.
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5. ADIOINT SYSTEMS OF VARIATIONS

Consider the differential form M,(x) of variations (4.4) and let + be the family
of all admissible variations. A system M () with % & =, 7 % 7 is termed the adjoint
system of variations M,(7) when there exists a current density J*(x,’, 7 7%,,
7j¢; 4%,) such that

FoM () — ﬁaj-.’a(ﬁ) = a,J* (53.1)

for all admissible variations.

Apparently, condition (5.1) for the case of only one independent variable x = ¢
has been introduced for the first time by Lagrange [30]. We shall therefore term it
the Lagrange identity.

We shall term system 3 ,(7) a quasi-adjoint system of variations M,(») when the
following integral version of Eqs. (5.1) holds:

[ x o) — i) = [ doo) I (5:2)

The above expression is the Green formula of the theory of pariial differential
equations [29).

It is evident that conditions (5.1} and (5.2) are not equivalent. Indeed, one can
have (e.g., for nonlocal theories) systems J,(7) which do not satisfy the Lagrange
condition, but they are such that

7 Mo(n) — M (7) = 8,J* + D, (5.3)

where the additive density D is such that [31]
' | ax@re+ D)= [ do)m. (5.4)
Ry R,

In this case 47, is not the adjoint system of M, according to our definition. How-
ever, if Eqs. (5.3) and (5.4) hold with D = 0, then the system 3, is quasi-adjoint.
This paper’s analysis will be based on the use of the concept of adjoint systems
with related Lagrange identities, and therefore we shall devote only marginal
attention at this time to the concept of quasi-adjoint systems and related Green
identities.
To identitfy the structure of the adjoint system M, we now write

Mo = 7' 0a — 0,°Va) + 8,0.(7"5)]

+ 470" + F%ean™, — DA% 7). (5.5)
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Thus, an explicit form of the adjoint system is
My(#) = 7't — 870 + 82,077 cw), (5.6)
while the current density of the Lagrange identity is
T, ) = an” - Acim’, — [ 7" (5.7)

It is possible to prove that form (5.6) of the adjoint system is indeed unique under
the assnmed continuity and regularity conditions. Suppose that there are two
adjoints M, and M," and, therefore, two currents J* and J'# for the same system
M, . By subtracting the corresponding identities (5.1) and by integrating we reach
the equation

f dbx qo(W, — B,y = j do (X)(T* — J'#), (5.8)
R, AR,

But this expression must be independent of points in the interior of the (7. %)
space. This can be so iff ¥, = M', .

Notice that the quasi-adjoint system is not necessarily unique. This indicates
another reason for preferring the Lagrange over the Green identity.

6. CONDITIONS OF SELF-ADJOINTNESS

A system of differential forms M, is termed self-adjoint when it coincides with the
adjoint system M, for all admissible variations, i.e.,

My(n) = MJn) forallner 6.1)

The conditions of self-adjointness can be obtained by simply imposing the
identity between forms (4.4) and (5.6), i.e.,

agm® + Bt + i, = 105 — 8.(0"bhe) + 8,2.(0°cia)- (6.2}

In this way we reach the conditions which we term the conditions of self-adjoint-
ness of the equations of variation:

Cap = Chg = Cay = Chu » (6.3a)
Bay + bra = dycha -+ Buche = 28,¢ha (6.3b)

Uap ~ pa = avauc;‘; - aub:(t 2 (6‘30)
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where the last two identities of Eqgs. (6.3a) hold under the same redefinition as for
Egs. (3.5).

We must inspect the possible conservation of the current J* of the Lagrange
identity (5.1) under the condition of self-adjointness. The term 8,J%, in view of
Eqs. (5.7) can be written

0,7 = 'ain"s + clin”un +.(BD) 7" — (@A) 7']
b — @) 1’ — G 0]+ Aekn’ (69)

Suppose that one stndies the possible self-adjointness of the system of equations
M, = 0 rather than of the differential forms M, . Then the admissible variations #
and 1j are restricted to the solutions 7, and 4, of the system of equations of variation
and its adjoint system, respectively. By using Eqgs. {(4.4) we first write

aw}'u En:—ng == [ﬁg(_aab + aub:b - 8);8;1.0#;) .

Fr=ifg
+ (bl — B,k — Dchin) — o) Mo » - (6.5)

and by using the conditions of self-adjointness (6.3) we finally obtain the conserva-
tion law
O lymro = —(@raiit -+ DAY - i) 7" = 0. (6.6)

Fiw=ilg

As an alternative to definition (6.1) we can therefore say that a system of differ-
ential equations M, == 0 is termed self-adjoint when the current density J* of the
Lagrange identity (5.1) is conserved along the solutions of the system, i.e.,

a.u']u(ns ﬁ)lnaﬁ:wu == O (67)

Notice that definitions (6.1) and (6.7) are equivalent. Indeed, a/f conditions of
self-adjointness (6.3) enter into condition (6.7). Let us also recall that, under our
assumptions, Eqgs. (6.7) are the necessary and sufficient conditions for the surface
independence [32]

[3/80(0)3 | do,(x) I , i) = 0. (6.8)

e=0 R, ~space-like

Therefore, conservation law (6.8) is also equivalent to Eq. (6.7).

A system of field equations is termed self-adjoint when its system of equations of
variation is self-adjoint.

We shall now give the necessary and sufficient conditions of self-adjointness for
the various forms of field equations considered in Section 3.
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First of all, by using Eqs. (6.3) and (4.5) together with the uniqueness of the
adjoint system we have

TrEOREM 6.1. Necessary and sufficient condition for class €2, regular, nonlinear,
tensorial field equations

[Fule, 8% %%, 7)) 8 =0, a=12..7 (6.9)

to be self-adjoint in a region Ryp of their variables is that all the following condi-
tions ’

oF, o, _ OF. _ 0
B(ﬁb;w o 8¢u;vu B aqsb:yu. o a(,#“uw ’ (6“an‘)
OF, oF, _ , (_0F oF, \ ., OF
TV T 4, (g + a¢“;w) = 24w (6.106)
oF,  OF, _ oF, _ , R _ 1, 0F @R
5" adr d,d, EYC dy ig%, 2 d, ( B, Eresy )>
a, b=12..n pov=20,1,2,3 (6.10c)

are satisfied in every bounded domain in the interior of Ryur

Notice that conditions {6.10) imply second-order derivatives. This illustrates the
reason for our restriction to systems which are of at least class %=,

Equations (6.10) will be referred to here as the conditions of self-adjointness of
the nonlinear form of the field equations. When a// these conditions hold we shall
symbolically write

(FEeR = 0. (6.11)

When at least one of Eqs. (6.10) is violated we shall say that the nonlinear form
is non-self-adjoint and we shall write

(F)isk = 0. (6.12)

Notice that brackets of the type ( YEOR are a notation and not an operation.
Notice also that for the case under consideration, namely, (unconstrained) class
#* and regular field equations, to verify the self-adjointness it is sufficient to check
identities (6.1) or (6.7) or (6.8) for only one admissible variation or 1o show that
Eqgs. (6.10) hold as identities between functions. The reader should be aware of the
fact that for field theories with subsidiary constraints this framework is con-
siderably altered because the constraints generally impose restrictions on the
class of admissible variations [3]. This aspect, however, will not be considered at
this time.
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Let us note at this point that the nonlinear form of the field equations, even
though it is the most general form for the class of field equations under considera-
tion (i.e., of the second-order type), it ultimately possesses only a formal signifi-
cance for our program. This i1s due to the fact, as we shall see better in Section 7,
that the largest form of tensorial field equations which can be represented in terms
of the Lagrange equations is the quasi-linear form.

The conditions of self-adjointness for the quasi-linear form of the field equations
are therefore crucial for our program. It is a matter of simple calcufations, which
are given for the reader’s convenience in Appendix A, to prove

THEOREM 6.2. Necessary and sufficient conditions for class €2, regular, Lorentz-
covariant, tensorial, quasi-linear systems of field equations

[ s &% %) % + Blra, 95 §5JIFHR = 0, (6.13a)
w = A, (6.13b)
ay b e=1,2,.,H mv,a=0,12 3

to be self-adjoint in a region Ry, of their variables are that all the following conditions

o = Age = Agy, (6.14a)
m
ARG A AV = Ay, (6.14b)
mr I
‘ AT = A (6.14¢)
| S| | E—
B+ By = 2{0, + ¢% (8/ad")} A4, (6.14d)
By — Byo = 3o, + &°,(6/840HBS, — By (6.14e)

we == (BA5[047),  BJr = (0B./24"), etc,  (6.14f)

It

™3
vie R ey
‘r:b [ ab ¢ + abe sy (6I4g)
wwiasl K] [ZEH-H:]
Auzcrl = Aﬁ;zd _:_ A(rdcil s (614}1)
—

ab e d=1,2,..n w,a, B=0,1,23,

are verified in every bounded domain in the interior of Roy .
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Notice that the horizontal bars in Egs. (6.14) denote symmetrization of the
indicated indices as expressed by Egs. (6.14g) and (6.14h). The symbolic derivative
notation, as in Eqs. (6.14f) is here introduced for notational convenience. However,
for the sake of clarity, we shaill revert to the conventional notation whenever
possible. Notice that Eqs. (6.14) contain partial derivatives up to and including
the second order. This indicates the reason why our minimal continuity conditions
are that Eqgs. (6.13) be of class C2. Notice also that symmetry properties {6.13b)
hold under redefinition, as pointed out in Section 3.

We shall term Eqs. (6.14) the conditions of self-adjointness of the quasi-linear
form of field equations. Quasi-linear systems will be termed self-adjoint when a/l
conditions (6.14) hold, and we shall then symbolically write

(d%4%,, + BYER = 0. (6.15)

If at least one of conditions (6.14) is violated we shall term the system non-self-
adjoint and write

(554" + B)Gsk = 0. 6.16)

As indicated earlier, the almost totality of field equations considered nowadays
is of the semilinear rather than of the quasi-linear type. It is therefore useful for
our analysis to work out the conditions of self-adjointness specifically for the semi-
linear form.

1t is again a matter of simple calculations (given in Appendix B) to prove

THEOREM 6.3. Necessary and sufficient conditions for class €1, semilinear,
tensorial field equations

(8% ba'w — fulxe, % ¢ =0 (6.17)

to be self-adjoint in a region Rgy of their variables are that the system is linear in the
partial derivatives ¢°,, , i.e., it is of the type

[gqua;w - P:b(xo: ] (ﬁﬂ) ‘?Sb;u - Ga(xa > 966)]771 - 0: (6'18)

and all the conditions of self~adjointness

Py -+ phe = 0, {6.192).
(Bphn06°) + (8ph/09™) + (8pha/4") = O, (6.19b)
Bupln = (904/04") — (30 [247). (6.19¢)

ab,c=1,2,..,n p=20123,
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are everywhere satisfied in every bounded domain in the interior of the subregion
RY, of Ry with points (x, , $°).

Notice that conditions (6.19) imply only first-order partial derivatives and
therefore the minimal continuity condition is that the semilinear form be of class
%1!in R}, . Notice also that the derivatives of Eq. (6.19¢) are partial. Therefore,
if the terms p*, do not depend explicitly on the coordinates x, , Le., Egs. {6.18)
are of the type

8 Be'ur — PEAS) BV — 0ulte $N7 = 0, (6.20)
then the conditions of self-adjointness become
Py pha =0, (6.21a)
(Bpian/29%) -+ (Bp5e/2™) + (Bpeal24) = O, (6.21b)
(9cqfod?y — (Bey[0%) = O, {6.21¢)

abe=12.n w=0123

When conditions (6.19) hold, the semilinear form (6.18) can be further
specialized. Indeed, antisymmetry condition (6.19a) combined with the recursive
condition (6.19b) implies that the factor coefficients g, of the derivative terms ¢,
are the curl of some function, say I .*(x, , ¢, i.e.,

Pl > $°) = (@IFf24") — (81"[04°). (6.22)
Suppose also that the additive term o, admits the decomposition
Ga(xa s ‘ﬁc) = —m%a)?sa 4 Aa(xu 3 ‘}56)9 (623)

where the m’s are constants and there is no summation on the indices of the term
%, . Then Egs. (6.18) can be written in the form

(2 + nl%ﬂ)) QSG = (afaug;lb, Sbc) - anug);‘a, (#C)) qu;u + Au(xa: B ‘?56): (6-24)

which we term the conventional form of the field equations. Notice that conditions
(6.19) and (6.19b) are identically verified for this form and, as such, they can be
ignored.

We are now equipped to study the self-adjointness or non-self-adjointness of
some of the known cases of free or interacting tensorial fields.
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CoroLLARY 6.3A. The equations for fiee tensorial fields in the conventional
form

([0 + miy) da =0, a=1,2,.,n (6.25)

are always self-adjoint.

This is the case for instance, for the electromagnetic potential {¢,} = {4},
m, = 0, the real scalar field ¢ = ¢, the complex scalar field {¢,, $.} = {p, &},
M, = my , or the complex vector field {¢g} = [, J#l, m, = m,p = 0, 1,2, 3.

The “conventional” form of Egs. (6.25) must be stressed. Indeed, if such equa-
tions are written, for instance, in the “unconventional” form

(l/d’a)([:j?sa) + 777&) = 0 (6.26)

(no summation on repeated indices), then they are no longer self-adjoint. Indeed,
the transition from Egs. (6.25) to Eqgs. (6.26) is in actuality a transition from the
semilinear, to the guasi-linear form. Therefore, the condition of self-adjointness
{6.14) rather than (6.19) must now be used. By putting 4% = 8,, & g“/¢, and
B, = mj, , the only surviving condition originating from Egs. (6.14) is given by

2{8, + ¢° (804} A = 2[8($M) — ¢° )] = 0,

and it is clearly violated by the solutions ¢,(x) of the field equations (6.25).

Notice the insensitivity of the self-adjointness of Eqs. (6.25) for the behavior of
the fields under discrete transformations. Thus, Eqs. (6.25) for {¢.} = {», $} are
self-adjoint irrespective of whether the represented field is scalar or pseudoscalar.
Similarly for other cases. The case of internal symmetries or supersymmetries,
however, demands a specific treatment and it will not be considered at this time.

COROLLARY 6.3B. Necessary and sufficient condition for the equations of
interacting tensorial fields without derivative couplings in the conventional form

(00 + miy) ¢o = Aulx, 9, a=1,2,..n (6.27)
to be self-adjoint in a region Ry of points (x, ; ¢%) is that afl the following conditions
(6 1ed,) — (845 8% = O, ab=12.,n (6.28)

are verified in every bounded domain in the interior of Ry .

In particular, self-coupled models of the type

(L1 + m®) ¢ = A$), (6.29)
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where A{#) is any class %* function of its argument are always self-adjoint, This
is the case, for instance, of the ¢* theories with spontaneous breaking of the ¢«
— ¢ symmetry [33]

(O + m?) ¢ = (8E[o¢), B = (m*[2g%) + (g%/2) ¢". (6.30)
But, again, if the field equation is written in some “unconventional” form they
are not necessarily self-adjoint. '

Notice that the conditions of self-adjointness (6.28) are insensitive to a possible
explicit dependence of the /I terms in the coordinates.

COROLLARY 6.3C. Necessary and sufficient conditions for the equations of
interacting tensorial fields with derivative couplings in the conventional form

(O + m) $a = julxa, % %) (631)

to be self-adjoint in a region Rs;. of points (x,, §%, ¢%,) are that the j terms possess a
structure of the type

o [ - PR D g A 6

and all the following conditions

5 el al“‘,,u) _od, 8,
u( 3¢,b 5¢u - 356” 3qga

are verified in every bounded domain in the interior of the subregion Rg C Rsy with
points {x, , $°).

Thus, when derivative couplings ¢%, occur, some necessary (but not sufficient)
conditions to satisfy the requirement of self-adjointness are that they must occur
linearly and their factor term must be the curl of some functions I',*.

For instance, the field equations

(6.33)

(O + m® ¢ = iy,
(6.34)
(O -+ m*) ¢ = —ia",
for some constant four-vector «* are self-adjoint because there exist the functions

Ty = Iy = (if2) a(@ — @) (6.35)
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such that
i ol _— ar,e ar»
g = e — o —iagh = s % (6.36)

and Egs. (6.33) hold.
The reader should be aware of the fact that the conditions of self-adjointness
(6.14) for the quasi-linear form do not demand linearity of the derivative couplings.
A most important example of semilinear systems is constituted by the complex
scalar field in interaction with the electromagnetic field with the conventional form
of the field equations

[14, = iel(F,. + ied P ¢ — $@'s — fedup)],
([ + m®) p = e*d, 4p -+ 2ied p’, (6.37)
(O + m®) § = 24, A4*F — ied P, .
Tt is easy to see that this system is not self-adjoint, because conditions (6.33) are
generally violated despite the linearity of the derivative couplings (see also
Appendix C). This case of “self-adjointness breaking” will play a significant role in
our analysis.

Table I summarizes our findings.

We now briefly discuss a possible interplay between the quasi-linear and the
semilinear forms. Here a digression into Newton’s equations in configuration
space may be instructive. The Newtonian equivalent of the semilinear form (6.17)
is the system of second-order ordinary differential equations

g —filt @ =0, k=12, (6.38)

An example is given by the system of coupled, linearly damped, and forced oscilla-
tors

Gy -+ bt d; + anit) g — &{t) = 0. (6.39)

Similarly, the Newtonian equivalent of the quasi-linear form (6.13) is given by the
fundamental form of the equations of motion

Aki(t: q, Q) g.;i -+ -Bk(fs 4, 9) = 0: (640‘:1)
Api » B € €% | Ayl # 0. {6.40b)
A significant example is given by the broader system of coupled osciilators

el @i+ b s+ a() q; — &) =0,
! Cig I ?é 0.

(6.41)
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Clearly, system (6.41) is more general than system (6.29) in view of the accelera-
tion couplings which occur whenever ¢ = N8, N; = const.

However, system (6.41) can be reduced to a system of type (6.39) when it is
regular, ie., det (¢;)) 7 0. Indeed, we can trivially write the system equivalent to
(6.41),

gy 4 D'elt) 4: + a1y g — ght) = 0.
by = C%:ilbji ] @'y = Crrlli s (6.42)
g’k = C;}gj .

More generally, when the conditions of the implicit function theorem apply,
Egs. (6.40) can be reduced, at least locally, to Eqs. (6.38) with the implicit func-
tions given, trivially, by

fi = —AuB;. (6.43)

We can thus say that, under our continuity and regularity assumptions {6.40b),
forms (6.38) and (6.40) are equivalent in the sense that each of these forms can be
transformed into the other, and vice versa, through equivalence transforms.

As we have shown in [3], this equivalence of forms (6.38) and (6.40), even though
it is trivial within the framework of ordinary differential equations, is not trivial
for the problem of the existence of a Lagrangian, as well as for that of equivalent
Lagrangians. This is due to the fact that the transition from Egs. (6.38) to (6.40),
and vice versa, does not in general preserve the self-adjointness or non-self-
adjointness. Therefore, if a Lagrangian exists for one of these forms it does not
necessarily exist for the other. Furthermore, there may exist different (but
equivalent) self-adjoint forms, in which case there exist different Lagrangians all
representing the same system.

The corresponding situation in field theory is considerably (although not entirely)
equivalent to the above Wewtonian framework. First of all, one can always trans-
form the semilinear into a quasi-linear form through an equivalence mapping of
the type

(s 8% 98 — fullia s $5 $IHHEE
= Uales % $70 2% + Bulxa, $5, 478 = 0. (644)

This, in essence, corresponds to the introduction of “acceleration couplings”
similar in concept to those of system (6.41) in a way which preserves the equivalence
of the old and the new systems.

It is then a matter of simple inspection to see that if the original semilinear
system is self-adjoint (or non-self-adjoint), this is not necessarily the case for the
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equivalent quasi-linear form, and vice versa. This property will have significant
implications for our analysis.

The inverse transition (from a quasi-linear to a semilinear form), however, does
not appear to necessarily follow the Newtonian paitern. This is due to the fact
that the terms A% do not generally admit the factorization

a = Au &g, (6.45)

and therefore the inverse reduction of {6.44} is not in general trivial. For instance,
when n == 5 and {¢,} = {p, *}, where @ and * are scalar and vector fields,
respectively, one might conceive coupled equations of the type

Pt (O + mP) @ + &l 97 ¢l = 0,
gECP;a{‘JDu: 'JJV} q);uv + (D + mw) aﬁa = 0’

(4) = ((tﬁ“qo;ag““ + gl @) (0 )
“ (gap'e{ypt, D) (g)”

6.46
{4, B} = AB 4 B4, (6:46)

which reduce to free-field equations at the limit g; , g; — 0. In this case the (20 x
20) matrix (4%) does not admit factorization (6.45) and the reduction to a semi-
{inear form is not trivial.

Needless to say, system (6.46), although Lorentz covariant, is not “coupled”
according to currently used rules. Nevertheless, the example is significant to
illustrate that what we have termed the “quasi-linear form™ of the field equations
is not necessarily related in a trivial way to the conventional semilinear form and,
as such, it might constitute a true generalization of conceivable ways of coupling
tensorial fields.

As a final point we want to stress that this quasi-linear form /s not been con-
structed ad hoc. It simply constifutes the most general form of tensorial field
equations which can be represented in terms of Lagrange equations.

7. LAGRANGE EQUATIONS

We now consider the conventional Lagrange equations

LP) = d(02[9¢%,) — (0L (64} = 0, .
a=12.,n p=0123 (7.1)

where % = Z(x,, ¢°, ¢%,) is the Lagrangian density customarily defined in a
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region Ry g of its variables x, , ¢¢, and ¢%, . Equations (7.1) are the Euler equations
of the hyperbolic multiple integral variational problem [34]

ag) = [ d Lx, ¢ 65, (72
and they can be explicitly written

4 rZ. s 0.
s e b; b _ _
Ju(qs) = a‘#a;u aqsmu ¢‘ uy + a?sa;u 8«;5” Sb © + a¢a;u Bt 3(,15“ =0 (7.3)

by transparently exhibiting in this way their quasi-linear nature. When Egs. (7.1)
are linear, e.g., of the type

L) = g Paur + () 67 + Bulx) ' = 0, (7.4)
we shall write them in the customary form
L) = 0,0L(0¢%,) — (2L [e¢") = 0. ' (1.5)

The reader should, however, be aware that form (7.5) is in general erroncous for our
framework. We shall elaborate on this point later on in this section.

We shall say that Eqgs. (7.1) are regular (degenerate) when their functional
determinant (Hessian)

8,

dig = die(Reg) = o (7.6)

B ‘ 4
- atﬁa:u aqf,b:l_

is everywhere non-null (nuil) in a region Rig of its variables (x,, ¢, =) 351
We shall also say that Eqs. (7.1) are of class €™ when the Lagrangian density &
is of class @™*2, m =0, 1, 2,..., o0 in R, g, and vice versa.

We now restrict our analysis to Lagrange equations which are of at least class
%2 and regular in Rz, Le.,

[Zo($)]78 = 0. (7.7

A central aspect of the problem of the identification of the representational
capabilities of Eqs. (7.7) is the study of their variational properties. According to
the methodology of Section 4, suppose that Egs. (7.1) are computed along an ool-
parameter family @(x; w) = {¢¢(x; W)}, we O, of solutions which is of at least
class %* in R,(w). The equations of variation of Egs. (7.7) along this family are
given by

Q.(n) = [@LjdW)|ep = G (82[0n%,) — (32[89%) = 0,
a=1,2..,n p=01273, (7.8)
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where

Qa5 % 1%

— 1 82"‘(’? FN /14 _ 829‘2} H o aﬁg T b
- i (a(,{’a:u 3961);” 7?“ ull v “% 2 aqga;u aqsb 7?“ w7 + 3950 aqsb L )w=u. (79)

Equations (7.8) are customarily called in the calculus of variations the Jacobi
equations and we shall preserve this terminology for our field theoretical framework
t00. More explicitly, Eqgs. (7.8) can be written

2y = . (696"6‘?;5”% [ 3¢ffﬁ¢,, &
~ (oo e e

o= [du (3¢§2ﬁ¢b) - ajziﬁb] w=d g
[ (aé“?jféb:u) = - |

b

+ 8%, 8¢ - D¢ 9%, w:_u'q v

A
T B
+ [ 3(#1;” aq{)b:u ]w=-0 T aw » (710)
and they are the Buler equations of the “accessory minimum problem”
A = [ i Qo 77, 77 (7.11)

Notice that the value of the functional determinant of Egs. (7.1), when computed
along a family of solutions, coincides with the functional determinant of Egs. (7.8).
Therefore, when the Lagrange equations are regular, so are the Jacobi equations
{and vice versa). More generally, the properties

(2" =0 (7.12)

are a direct consequence of assumptions (7.7).

Equations (7.8) are strikingly similar in strocture to the Lagrange equations.
Nevertheless, Eqgs. (7.7) and (7.8) are not equivalent, namely, they admit different
families of solutions, unless Eqs. (7.7) are linear homogeneous, i.e., of type (7.4).
Indeed, the Jacobi equations of system (7.4) are

Qul) = 8 Ndr + clenX) 7" + Bar(x) 7" =0, (7.13)

and, trivially, the families of solutions of Egs. (7.4) and (7.13) coincide. In essence,
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the Lagrange equations are generally quasi-linear while the Jacobi equations are
always linear and, thus, these two systems are not necessarily equivalent.

The adjoint system of variations of the Lagrange equations, from definition (5.6},
Is given by

-Q-a(ﬁ) = ﬁb I:du (agbf.zfgqgﬂ) - a(f:“;qua ]w=0

—d {ﬁ" [du (aqsfjf:ﬁas,) T 696??:(?(#“ B '695225%;5“% ]w%o
+ dd [ (gpepp) ]
= 7)"" I:du (aq;“:;a;u) i ]w=0

!
i

- a(#b aqga
ave A oA
~h; —
1% [ (g, aqz»ﬂn.) S T D
RF
={/H - -
+ T (5 P ¢) (7.14)

The following theorem can now be trivially proved.

TueoreM 7.1. Class €% regular Lagrange equations for tensorial fields are
always self-adjoint in their region of definition.
Notice that the identity of the Jacobi equations (7.8) with the adjoint system
(7.14), i.e., _
(1) = Laln), (1.15)
reduces to the identities

(L Jogw, 84%) = (P L[og" 04,),
(2o 04%) = (2[4 04,
(@2 [oge, o4%) = (L [og" o),
(B[4, 24¥) = (BL2[og", 8g%,),

which are always satisfied in view of the assumed continuity properties of the
Lagrangian density.

Theorem 7.1 can be proved in several other ways. For instance, although it is
more laborious, one can prove the equations’ self-adjointness by showing that
all conditions (6.10) or (6.14) are verified for Eqgs. (7.7). This is left as an
exercise for the interested reader. For comments on this point see the end of this
section.

(7.16)
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Notice that the assumption & & €3(Ryg) is sufficient to establish the continuity
of the Jacobi equations but it is generally insufficient for the continuity of the
adjoint system in view of the fourth-order derivatives appearing in Egs. (7.14).

We must now inspect the structure of the conserved current density associated
with the Lagrange identity (5.1). From definition (5.7) and Eqs. (7.10) we can write

Jru(,r], T—I) — ﬁub:bnb + nutsc:znb:v . [av(ﬁacl’a‘; 1 nb
oaF o2 F aa2F
= ne e S B — i
K [dv (3¢a;v aqu:u) T B, o " 3q5b:u]w#" 7
. >F b — e b
+ 7 (5 b‘»,)wﬂﬂ v ;d" [ (5 @, 3 bmm K
" 0
o ~m( ¥ LR ) »
= 1) aqsa:u 3(}51; 3¢a 39!533;“ o Ui

+ ( 5930,8:?9;?50;?)1”“0 7, — 4%, (3¢“?ja§¢b;u)w=o 7
1 [b g agm) — * g ap ™ 47

The reader should be alerted that a proper symmetrization of the indices of the
above expressions is here tacitly assumed. We shall comment on this point later on
in this sectiom.

When the terms within brackets are computed along a solution of the Lagrange
equations and the current J* is restricted along the solutions of the Jacobi equa-
tions, we have 5 = 7 and Ju= 0, p=0,1,2,3.

It should be noted that Theorem 7.1 is a variational formulation of the known
property that the Lagrange operafor

%, = d(0/04%.) — (8]0 (7.18)

is self-adjoint in the conventional sense of the theory of linear operator [36]. This
also indicates the reason for preserving the term “gelf-adjointness” in our varia-
tional treatment. We would also like to indicate that, according to our best knowl-
edge at this time, the variational approach to self-adjointness appears to be more
effective than the operational approach for the problem of identifying the condi-
tions under which a Lagrangian exists in classical field theories, as we shall see
better in the subsequent papers. It is for this reason that we have preferred the
former over the latter approach.

A few comments on the structure of the Lagrange equations are in order. First
of all let us note that, as the reader can verify with a simple inspection, in the
currenily available textbooks in field theory the Lagrange equations are written
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with partial derivatives 8, , as in form (7.5), while in all textbooks in the calculus
of variations for multiple integrals such equations are written with fotal derivatives
d, , as in form (7.1) or (7.3). In the opinion of this author the former approach is
incorrect while the latter is correct. This is due to the fact that the proper handling
of the variational techniques which underlie the derivation of such equations from
an action principle demands the use of the total rather than partial derivatives.
Besides, if Egs. (7.5) were correct, then their Newtonian counterpart should be
given by the form

5 8Lt a D _ 2Lt 4, ©) _ _
e T ea —0, k=12mm (7.19)

which is known to be erroncous, while the correct form is that of Egs. (1.4).

The above remark, however, must be put in its proper perspective. Indeed, for
the vast majority of Lagrangian densities used nowadays, which are essentially
constituted by a kinetic term plus an additive term, as in the form

P = 1¢% Pt -+ B($), (7.20)

Eqs. (7.3) and (7.5) produce identical equations of motion, in which case they are
equivalent for all practical purposes. This, however, is no longer the case for more
general models, such as chiral Lagrangians of the type

& = 14260 b=+ B(@- .21

The analysis of these papers relates to Lagrangian densities which, besides
satisfying the assumed continuity, regularity, and Lorentz-invariance conditions,
have an arbitrary functional dependence in their arguments. As a result, the
proper form of the Lagrange equations is (7.1) or (7.3).

It should be indicated that these Lagrangians, in general, satisfy the properties

(@2legm,odn,) # (L] a¢e,0" ) (1.22)

without being in conflict with the continuity assumptions, ie.,
(@2|agw,08",) = (L] v, 0% ) (7.23)
This fact demands few comments in relation to our variational approach to
self-adjointness. Indeed, properties (7.22) are in apparent violation of the condi-

tions of self-adjointness (6.10a) or (6.14a). This apparent contradiction is, however,
easily resolved by recalling, from Section 3, that the terms P, DY, are
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contracted with the totally symmetric derivatives ¢, = ¢, . As a result, Eqs.
(7.3) can be equivalently written

1 oan4 Ry b7
7 — bi 1 b
aﬁ;(‘ﬁ) =3 (3(#:;“ 3(}3&:” + asba;v 3(;51);“) ¢’ w T a¢a:u ang ¢ u
o o
3w, o agr 0 (7.24)

in view of the identities

1 rY a2 N

3 (545“:;; 6, - 8g%, 3q5b:u) P = 0. (7.23)

OFf course the same symmetrization applies for the the Jacobi equations (7.10). The
conditions of self-adjointness (6.10a), i.e.,

0F, 0%, _ % _ %
i, - g%, B, T o¢%,,

are therefore identically verified for Eqs. (7.24) in view of the assumed continuity
conditions of the Lagrangian density.

Throughout these papers we shall tacitly assume that, whenever properties (7.22)
hold, the explicit form of the Lagrange equations is given by Egs. (7.24).

It might be of some significance to indicate the criterion we have followed in
deriving and presenting the conditions of self-adjointness (6.10). In essence, such
conditions were derived (by having in mind the structure of the Lagrange eguations)
first for the general case (7.22), and then the symmetry of those terms in the greek
indices was imposed. As a result, the first identities in the Ihs of Egs. {6.10), i.e.,

(7.26)

aF, _ OF
Y T (7.27a)
6F, aFy, oF, oF,
qub,u -+ aéa'u - dv(a(ﬁa’vu + aéa'm’), (7,27b)
———aFa jﬂ 1 l apﬂ' an
agt 4" 2 & ( 24", T Tage )s (7.27¢)

apply for the Lagrange equations in the form (7.3). The full set of conditions of
self-adjointness (6.10) must, however, be applied to the Lagrange equations in
their actual form (7.24).

This produces an alternative to our proof of Theorem 7.1, namely, that class
%2, regular Lagrange equations are self-adjoint.
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A further alternative proof of this crucial property can be achieved by using the
conditions of self-adjointness of the quasi-linear form, i.e., Egs. (6.14). In this case,
however, the use of the actual form (7.24) of the Lagrange equations is advisable.

8. ANALYTIC REPRESENTATIONS

The main objective of these papers is to assign a given (covariant, tensorial)
system of quasi-linear field equations and then study the conditions under which a
Lagrangian density capable of “representing” that system exists. For this objective
it is essential to clarify the concept of an “analytic representation,” namely, &
representation of the system in terms of the Lagrange cquations.

In principle, we can say that given a guasi-linear system of field equations
(A5Gt % 65 $% + Balra, 85 4177 =0, 8.1)

its “analytic representation” in terms of the Lagrange equations
[Z$Nsx" =0 (8.2)

exists when the general solutions [37] of systems (8.1) and (8.2) coincide. In
practice, however, ihe above definition can predictably be faced with severe
difficulties, e.g., when the equations are nonlinear or when they admit singular
solutions.

Tn order to circumvent these difficulties we shall say that Egs. (8.1)admit an analytic
representation in terms of Egs. (8.2) in a region Rig of points {x, , ¢*, $%) when
there exist n? functions A’ = 1."(xa $¢, $,) which are of at least class @* and
whose matrix (4.?) is everywhere regular in Ryg , such that

(ZAOER = A%, + BT =0, a=120m (8.3)

Alternatively, we can say that an analytic representation exists when the Lagrange
equations coincide with the field equations up to an equivalence transform, i.e.,

CLBDILR = (A%, + BT T =0, a=1 20 (8.4)

Clearly, definitions (8.3) and (8.4) are equivalent. Since both matrices (#,%) and
{ gb) are everywhere regular in Ry g by assumption, their inverses, say (F1) and
(g1.?), exist. When representation (8.3) exists for given & and k%, then represen-
tation (8.4) exists too, trivially, with g,* = A" and vice versa. Notice that we
exclude a dependence of the factor functions h, or g, on the second-order deriva-
tives, although we do assume a possible nontrivial dependence in (X, @F, %,).
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The first significant implication of definitions (8.3) and {8.4) is that, given a
(quasilinear, covariant, tensorial) system of field equations, the knowledge of only
one function, the Lagrangian density, is generally insufficient fo characterize an
analytic representation because (n® -+ 1)-functions are generally needed, i.e., the
Lagrangian density .¢ and * factor functions /.t or go°. This fact, which will have
an impact at several levels of our analysis, wiil be better elaborated later on.

The second implication of definitions (8.3) and (8.4) is that they indicate the
existence of the following generalized form of the Lagrange equations,

8a2(xe s $°5 H%0) [du w(x“gﬁ:’ 2% w(x“gﬁc’ q‘(’m"‘)] =0, (85

which originates from the lhs of Eqs. (8.4).
Equations (8.5) are significant for the following reasons:

(1) They can be formulated in a way consistent with the customary Lorentz
covariance for a suitable selection of the (#* + 1)-functions (g2, &)

(2) They contain the conventional equations, trivially, at the limit
(gub’ ,(f) - (Bab: "(2)'

(3) They are in general non-self-adjoint, as the reader can verify by inspection.
This removes the somewhat restrictive character of the conventional Lagrange
equations of being always seif-adjoint (Theorem 7.1) with a significant broadening
of the methodology for the representation of the field equations,

(4) They transparently exhibit the need of (7% -} 1)-functions for the charac-
terization of an analytic representation which is somewhat hidden in the conven-
tional approach.

(5) They are significant for the transformation theory of the Lagrangian, (as
we shall see better in the next section) because, under the assumption of regularity
of the matrix ( g.?) of the factor terms, they are simple equivalence transformations
of the conventional equations.

We plan to study Egs. (8.5) in more detail in a subsequent paper, with the intent
of exploring their derivation from variational principles. If this property can be
successfully established, then Eqs. (8.5) are bona fide analytic equations (as are the
conventional ones).

Another implication of definitions (8.3) and (8.4) is that they are sufficiently
general to justify the identification of some significant subcases. In turn, as we shall
see in a subsequent paper, the question whether the conditions of self-adjointness
are only sufficient or both necessary and sufficient, centrally depends on the
assumed type of analytic representation.
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As a first subdivision of definition (8.3) we shall say that an analytic represen-
tation is direct (indirect) when the matrix (h,?) of the factor functions reduces
(does not reduce) to the umnit matrix, i.e., when A2 == 8,201, 5 8.%).

The above distinction between “direct” and “‘indirect” representations will play
a significant role, particularly when complex fields are involved.

Consider, for simplicity, the case of linear field equations. Then, representation
(8.3), under the restriction of being direct, reads

ary B ' ez b a2y A4
8%, o4, P + 8%, P ¢ + 8%, ox+ BT

= guy¢a:uv + &"zbgbb:u 'JE“ ﬁabng = 0' (8'6)

Therefore, the Lagrange equations in the component $q , @ = fixed, must be iden-
tical with the field equation in the same component b . Tt is casy to see that this
framework is insufficient for the analytic representation of complex fields according
to the Lagrangian densities customarily used nowadays. Indeed, for these Lagran-
gians the Lagrange equations in one component, say ¢, , usually generate the field
equation in the complex conjugate component, say ¢, in which case direct
identification (8.6) does not hold.

A simple example may help to illustrate this concept. Consider, for simplicity,
the Lagrangian of a free complex scalar field

& = Fupt — mipp. 3.7

Then the Lagrange equaiions generate an “indirect” rather than a “‘direct”
representation because '

0,22 22N\ fo \[@+m)e
aqi.s; 5;‘ - =0. (8.8)
- 2N &

M aqa;“ a¢-) 10 (D + ”I) P

i

Clearly, this is a subcase of the more general definition (8.3) which oceurs when the
factor terms k,° simply represent a permutation of the indices. This remark should
not be construed to imply that a “direct” representation for the complex scalar
field does not exist. Indeed, a simple inspection indicates that the different
Lagrangian

P% = Yoo — miph) + c.c (8.9)
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does indeed produce the “direct” representation

px  agx .
“ T T hp (O + m® p
, 0Z* 2z = O+ 3 =0. (8.10)
S e

Notice that both Lagrangians .% and #* are Hermitian, and that on strict
grounds the Lagrangian #* alone is sufficient to characterize an analytic re-
presentation (8.10) while # is not. Indeed, representation (8.8) demands a
Lagrangian and four elements of the factor functions #,°.

It should be indicated that in ultimate analysis the question of whether a repre-
sentation is direct or indirect is immaterial because it merely relates to the assumed
form of the field equations. For instance, the equations in the complex scalar
field can be assigned in the reverse ordering. Then representation (8.8) becomes
direct and Egs. (8.10) become indirect. What is significant for the transformation
theory is the possible existence of both direct and indirect representations for a
given system. This point will be further elaborated in the next section.

The above differentiation of analytic representations into direct and in-
direct categories is insufficient for our analysis because it does not provide informa-
tion on the behavior of the equations of variation.

As we have learned from the analysis of Section 6, all free tensorial field equa-
tions in their conventional form are self-adjoint. However, when interacting fields
are considered, the systems can be either self-adjoint or non-self-adjoint. As we
shall see, an analytic representation may exist in each of these cases.

This indicates the need to complete definitions (8.3) and (8.4) in such a way as to
ensure the self-adjointness of the ths as dictated by Theorem 7.1 on the self-
adjointness of the Lagrange equations. :

We shall say that Egs. (8.1) admit an ordered (nonordered) analytic representa-
tion in a region Ry g of points (x, , ¢°, $%,) when the Ths and the rhs of identifica-
tions (8.3) or (8.4) coincide in a given ordering (without an ordering) of all the
values @ == 1, 2,..., n. More explicitly, the concept of ordered analytic representa-
tion demands that the systems of equations in the lhs and rhs of identifications (8.3)
and (8.4) are not only identical, but they coincide member by member for a given
ordering of the index 4, and we shall symbolically write

Ll d) = Fu(), a=1,2,., 1 (8.11)

On the contrary, the concept of nonordered analytic representations demands that
the systems of equations in the Ihs and the rhs of identifications (8.3) and (8.4) only
coincide without any reference as far as the ordering of such systems is concerned,
and we shall symbolically write

(Zld ={F(d)), ab=12,.,n (8.12)
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Since the r.h.s. of cases (8.11) and (8.12) coincide as systems by assumption, the
only possible difference which is admissible is a pernutation of the indices.

We now particularize the ordered and nonordered analytic representations as
either direct or indirect, depending respectively, on whether the factor functions
kb are trivial (b2 = 8.%) or not (k" == 8.

As we shall see, the concept of ordering has a rather significant impact in the
methodology which underlies all analytic representations.

Let us first remark in this respect that the term “ordered direct analytic represen-
tation” implies that each of the following three sets of identities (for class € and
regular systems)

“ﬁc(ﬁb) = Fa(‘#): (8133.)
Qa(n) = M(n), (8.13b)
QA = M (%), (8.136)

a=1,2,..n

holds in the assumed order. This is & consequence of Theorem 7.1. Indeed, since
the lhs of the analytic representation (i.c., the Lagrange equations) is self-adjoint,
the ths must be self-adjoint, too. But the equations of variations and the adjoint
systems are (under the assumed conditions) unique, so all the identifications (8.13)
hold.

Explicitly, such representation implies that a// the following conditions hold:
(a) The system of Lagrange equations in a given ordering coincides with the field
equations in the same ordering; (b) the Jacobi equations in the above ordering
coincide with the equations of variations of the field equations in the same ordering;
(¢) the adjoint system of the Jacobi equations coincides with the adjoint system of
the field equations in the same ordering.

A simple example of ordered direct analytic representations is given by Eqgs.
(8.10), which we now rewrite

(%= (B 10, rn

Similarly, the term “ordered indirect analytic representation” implies that gach
of the three sets of identities (again for class %* and regular systems)

ZLP) = hlFy(),
Q. = M),
B3 = M),

a=1,2,..,n,

(8.15)
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holds in a given ordering where the differential forms MZ% and ME® are now
computed for the equivalent systems rather than the original systems.

A simple example of an ordered indirect anaiytic representation is given by
Egs. (8.8), which we now rewrite
En 10 WO+ m) g
(3’;) =1(; 0)((5 - ) qs) (8.16)

Sa

This author was surprised that the above properties do not necessarily hold for
nonordered analytic representations. More specifically, if the ordering is ignored,
then the following case, for instance, is possible:

{LAP)} = (e FLAH)h,
(Qu)} = (M), (8.17)
(B} # (MESG)).

The external bracket indicates that the inciuded quantities are considered as
systems rather than term by term.

1t is essential to verify with an example that representations of type (8.17) do
exist. And indeed, the case of the complex scalar field in interaction with the electro-
magnetic field provides one of the most significant examples for both ordered and
nonordered analytic representations.

Consider the familiar gauge invariant Lagrangian density

@ = — '%Au;"Au:v + F i mztﬁtp
+ 24,4450 — le(Fp — @) A% (8.18)
Explicit calculations, which are given for the reader’s convenience in Appendix C,

prove that the ordered analytic representation produced by this Lagrangian is of
the type

gAu 100 _DAJJ: 4 ie[(‘f):u + IEAM(}_D) P @(ﬁp;u - ieAu(p)]

(_Q?W ) = [(0 0 1)( (O + m® — 24, 4%) p — 2ied* i, ) } )

% sa 010 (O + m? — e®4,4%) § + Zied @', NSAT SA
(8.19

namely, as shown in Section 6 (also see Table I), the field equations are non-self-
adjoint; nevertheless, when the ordering in which they are written is taken into
account, they admit a form which coincides member by member with the analytic
equations in the Lagrangian (8.18); as a consequence, they became self-adjoint.
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Now if the ordering is ignored, the Lagrangian (8.18) characterizes the non-
ordered analytic representation

—4, + el@. + ied,p) C — @lg*, — ied, @)
{ZuPsa = (O + m* — e, d%) ¢ — Zied"pl, . (8.20)
(O + m® — 24,4 § + 2ie AvGt, NSA

which has precisely the structure {8.17) (see Appendix C for more details).

The impact of the concept of ordering in the methodology of the analytic
representations is now self-evident. Indeed, if this concept is ignored, one might
arrive at the erroneous conclusion that the familiar field equations for the complex
scalar field in interaction with the clectromagnetic field, since they are non-self-
adjoint in the form (6.37), do not admit an analytic representation contrary to a
rather old and well-established knowledge in field theory.

The significance of the concept of ordering for our program can now be easily
anticipated. Indeed, since we are interested in the necessary and sufficient condi-
tions for the existence of a Lagrangian in field theory, the existence of structures of
type (8.17) clearly affects the nmecessity of such conditions. This point will be
elaborated in paper IL.

Ags a refinement of the above remarks, let us note that the term “ordered indirect
analytic representation” leaves full freedom on the ordering of the internal sum
with respect to the b index of the identification (8.3). In other words, the ordering
requirement refers only to the external index @ for the identification of the equiv-
alent system of field equations with the Lagrange equations member by member.
However, the sum with respect to the b index relative to the factor terms h is
unrestricted as far as the ordering is concerned. This remark is also significant;
indeed, it implies the existence of the following classification of the ordered indirect
analytic representations

(LD = (A% + B "l = O, (8.212)
LLAHET = [hd (AT + By CLREeR = 0, (3.210)

The above property is significant for the transformation theory, as we shall better
alaborate in the next section and in subsequent papers.

As a final point which further illustrates the significance of the concept of
ordering, let us remark that, if the ordering is ignored, the Lagrangian is not
uniquely defined independently of any of its possible equivalence transformations
(i.e., coordinate or gauge transformations). This point can be illustrated with the
simple case of the scalar free field. Indeed, if the ordering in which such eqnations
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are written is ignored, then there exist the fwo Lagrangians (8.7) and (8.9) which
produce the same system. Again this property has its own significance for the
transformation theory. :

0. THE PROBLEM OF EQUIVALENT ANALYTIC REPRESENTATIONS

It is well kiown that a Lagrangian density capable of representing quasi-linear
systems of field equations is not unique. The physical significance of the under-
lying ‘‘degree of freedom™ has become even more transparent in recent times,
particularly in the framework of the unified gauge theories [38]. In the opinion
and to the best knowledge of this author such “degrees of freedom™ of the
Lagrangian density have been only partially identified until now.

In this section we shall point out the possible existence of new types of
equivalence transformations of the Lagrangian density within a fixed coordinate
system which cannot be derived through gauge transforms. The methodology to
explicitly work out such transformations will be explored in subsequent papets.

The reader should be aware of the fact that the content of this section is mainly
conceptual and it should be considered of a conjectural nature. Furthermore, such
new types of equivalence transformations should not be construed as exhaustive
in the sense that, when combined with the known equivalence transformations,
they are not conceived as to produce a classification of all possible equivalence
transformations.

For the reader’s convenience, let us recall the equivalence iransformations of the
Lagrangian density used nowadays, which essentially are:

1. Those induced by transformations of the coordinates x — x'. This class
is dominated by the Lorentz transformations

x—x =AY x — a),
L T =7 (9.1)

1I. Those induced by transformations of the fields ¢,(x) — &' (x) within a
fixed coordinate system. This class is dominated by Abelian gauge transforms of
the first type [38],

‘ifa(x) - d’a'(x) - e#iesaqsa(x), - (9.2)
‘#’n(x) - G-Ettl(x) = e+iwa¢;a(x):

or by the non-Abelian gauge transforms of the first type,

ba(x) = b (x) = € (x), (9.3}
Fo(x) = Fa(x) = " b (%),
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or by the gauge transforms of the second type
Balx) = §u'(x) = €W (),
Ful3) = B (x) = D g (),
with the corresponding mapping of the Lagrangian density
L, , 47, ) — LT, , §, §05). ©.5)

When £ST = % we have a global or local gauge invariance depending on whether
the gauge transform is of the first or second type, respectively.

We now postulated the existence of a third class of equivalence transformations
of the Lagrangian density and in particular,

(9.4)

III. Those induced by transformations of the field equations within a fixed
coordingte system and gauge.

The underscored sentence explicitly means that those transformations should
occur independently of possible Lorentz and gauge transformations without
prohibiting the combined use of transformations of type I, II, and III.

The possible existence of transformations of type II1 is implicit in our definition
of “analytic representation.” Suppose that a quasi-linear system of tensorial field
equations

[A%4%,, -+ BT =0 (9.6)

is assigned in a given ordering, and suppose that a Lagrangian density .%(x, , ¢°,
¢%,) for its ordered direct representation

ZAP) = AGd"u -+ B =0 9.7)

exists. Buf, system (9.6} can be formulated in an infinite variety of equivalent
forms, e.g.,

AMGd %+ B = b (49", -+ By). (9.8)

Notice that all the above equivalent forms occur within a fixed coordinate system
and gauge by assumption. Suppose now that a new Lagrangian density #*(x, , ¢°,
&) for the (ordered) representation of at least one element of the class (9.8) exists
with nontriviail factor functions, i.e.,

,‘(fa*((’ﬁ) = A*::qsc:uv + Ba.* = 0- {9.9)
Then the systems of Lagrange equations in & and #* do not coincide, i.e.,

L = L, (9.10)
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at least for some values of the index a (unless /1, = 8,), but the mapping

L%y 5 F D7) = LHxe, D7 ¢ (9.11)

is an equivalence mapping because the Lagrange equations in % and Z£* are
equivalent by construction. Thus, equivalence transformations of type (9.11), when
they exist, must necessarily be of type IiI above.

A simple example is useful to illustrate this concept. Consider the conventional
Lagrangian (8.7) for the frec complex scalar field, i.e.,

P = @ p — m* Py, (9.12)

and suppose that the representation is direct,

@@= (g T :g 7)=o, (9.13)

i.e., the field equations are assumed in the ordering (@, ¢). But, as indicated in
Section 8, the same system can equivalently be represented by the new Lagrangian.

FHE '-13'(99:;;97;“ — mzq;,ﬂ) - c.c., . (9.14)

and the indirect representation

@ = ST =o ©.15)

The transition & — #* is an equivalence transformation of type III. Indeed, it
occurs within a fixed coordinate system x = x’ and gauge ¢o(x) = ¢,/ (x) by
construction.

As we shall see in subsequent papers, our variational approach is useful for the
methodology which underlies the construction of mappings (9.11) from a known
Lagrangian .%.

We shall term isotopic transformations of the Lagrange equations any transition
between equivalent ordered analytic representations within a fixed coordinate
system and gauge, i.e.,

24P = g* 1L (P (9.16)
This includes the transition from a direct to an indirect representation as a particular

case when either one of the matrices ( g, and ( g+ of the factor terms reduces to
the unit matrix. For instance, the mapping characterized by the transition from
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Lagrangians (9.12} to (9.14) can be written in terms of definition (.16} in one of

the equivalent two ways,
(@ =0 ...

@ P

[ ), =G0,

[
and thus, it constitutes a simple example of isotopic transformation of the Lagrange
equations. Other less trivial examples will be worked out in subsequent papers.

The corresponding transition

(9.17)

L — (5.18)

will be termed an isotopic transformation of the Lagrangian density.

We are now in a position to identify the major objectives of our program. Qur
initial objectives are to investigate the significance of the conditions of self-adjoint-
ness for the problem of the necessary and sufficient conditions for the existence of
ordered direct analytic representations of Lorentz-covariant tensorial field equa-
tions in the quasi-linear form; to identify a methodology for the construction of a
Lagrangian, when it exists, from the given field equations; and to explore the
significance of the underlying methodology for the structure of the Lagrangian
capable of representing interactions. The above aspects are considered in paper II.

Our subsequent objectives are to perform a variational analysis of the equivalence
transformations of quasi-linear fleld equations within a fixed coordinate systerm
and gauge; to extend the analysis of the problem of the existence of a Yagrangian
to the case of ordered indirect analytic representations; and to investigate some
methodological aspects which underly the generalized Lagrange equations of type
(8.5), with particular reference to their derivation from an action principle and
their use within the context of the analytic representations. These additional
problems are considered in paper II1.

We shall then attempt, in a subsequent paper, the use of the above methodology
within the context of the transformation theory, with particular reference to the
explicit construction of the isotopic transformations of the Lagrangian density. In
this respect let us remark that the rule (9.16), in view of the regularity of the factor
functions, can always be reduced to the form

L) = g A(P], (©.19)

where the Lagrangian of the rhs is known and the possible identification of the
Lagrangian of the lhs is requested for suitable factor terms g,>. Now, the rhs of
Egs. (9.19) can be considered as an ordinary quasi-linear system of field equations.
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Therefore, the knowledge of the necessary and sufficient conditions for the existence
of a Lagrangian are cruocial to ascertain the conditions under which the new
Lagrangian #* exists. The knowledge of a2 method to compute a Lagrangian will
then allow us to identity #£*, when it exists. Finally, the knowledge of the implica-
tions of this methodology for the problem of the structure of the Lagrangian
capable of representing interactions will allow us to stady some implications of the
isotopic transformations within the context, of the problem of interactions.

The extension of the above analysis to other frameworks, e.g., for spinorial or
degenerate field equations, is tentatively contemplated as a subsequent step.

APPENDIX A: ProoF oF THEOREM 6.2

We shall prove Theorem 6.2 by particularizing the conditions of self-adjointness
(6.10) for the quasi-linear form

Fy = [A%5(xe s ¢% 6% % + Bulra, 67 ¢%07 " =0, (A.1a)

a = A, (A.1b)

where property (A.ib) is extended to redefinitions A%, — A% = §(4% + A%
To simplify the computations, we introduce the notation

. oF e  OF, ) A
Fa'b = %‘%‘ 3 e (#b’ s Fa v = 3¢b‘u,, B etc. (AZJ
Then, conditions (6.10) become t
iy = Fj = FP, (A.3a)
Fly + Byl — 2R 6% — AR 6%, = 0, {A.3b)

- a:b + Fb;a + "1?( a;l;);n - Fb:‘;;c) gl’ﬂ:.u.
+ HFS — B 6% + HESY - KUY 6% =0, (A30)

where we have ignored a possible explicit dependence of the equations in x, .
The specialization of conditions (A.3) to system (A.1) can be written

Aw = Ajg = Ay, (A.4a)

(Aacs + Avg's — 24572 ¢%0 + [(Bd5 + B)'D) — 2diny) 6] = 0, (A.db)
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'1 1::::“; - li’l‘; ﬁ) ‘,‘5 ave TI%LE‘: : - %ﬁ; ::)) ¢d 369’56 [y
+ MBI — B A+ (A8, — Aps )¢5, + 248, — A )] $%,,
+ [3(B%, — By 6%, — (Bd'y — Bi'a)] = 0.  (Ado)

For such conditions to hold identically, it is necessary that the following sets of
conditions hold individually:

o = A = A, (A.52)
1
Aaes + Adrea = Avae s {(A.5b)
a b + -BD a Q(Aba c) qSC:v > (A5C)
(] [l
ave = Aioa, (A.5d)
ATV = Aer, (A.5e)
L L

]

/i

BIYE — BT + (Aeiye — AWED) % + 24, — AW7) =0, (A5
Biy — By'y — By — B'd') 67 =0, (A.5g)

where horizontal bars denote symmetrization of the indicated indices. Explicitly,
Egs. (A.5b), (A.5d), (ASe), and (A.5f) read

Aues + Avea = Apis + Avacs (A.5b")
Aavs + Avors + Auye = Apga + Apos + Avoas (A.5d7)
Aoy - ASgy 4 Ang 4 AR

A A e A AN

= A g Aiae 4 Aeg - Apaen
SR AN [ AR R [xdug B Lyl (A.5e")
HBoYe — Bywo) + HBJve — Bo

+ (A::Zg d A::gd) 45 + Z(Abc a - (tc b) = 0 (ASfI)
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We must now identify among Egs. (A.5) the set of all independent conditions of
self-adjointness for the quasi-linear form (A1)
Let us divide conditions (A.5) into three sets:

(1) Equations (A.5a), (A.50), and (A.5g), ie.,

Ay = Aye = A (A.62)
B.: 4 By = 2Apes) 75 (A.6b)
Ba:b - BD:a = '%(Baut::c - Bb“:i:c) ‘?Sc;u . (Aﬁc)

(2) Equations (A.5b), (A.5d), and (A.5e), which involve only derivatives of
the 4 terms, i.e.,

1
vorss vorin nyie
Auer + Apee = Avgs (A'Fa}
! s
e woesse
Ag'e = Aveas (A7b)
A M
@iy [ HTH
Andv'e = Apgae - (A7C)

(3) The remaining Eqs. (A.5D)

KBS — By + (e o — Au'ad $%, - Udpra — Auh) = 0. (A8)

. All conditions (A.5) of set | are clearly independent among themselves and with
respect to conditions (A.7) and (A.8). Therefore, they constitute a first independent
subset of the conditions of self-adjointness.

Among the conditions of set 2, Eqs. (A.7a) arc independent. To see this, it is
sufficient to show that they imply Egs. (A.7b). Indeed, by considering Eqgs. (A.7a)
in the two equivalent forms

A = A - Ave A+ Abde s (A.9a})
A = Ay 4 A+ Ao (A.9b)

and by subtracting, we obtain
A L e A Ay + Avae A o Ay — Ayea = 0, (A10)

which hold identically in view of Eqs. (A.6a), and, as such, are equivalent to
Egs. (A.7b). Conditions (A.7c) are also independent because they cannot be
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derived from conditions (A.7a). Indeed, by performing partial derivatives of

Eaqs. (A.7a) with respect to ¢%,, and by rearranging the indices, we can write
expressions of the type

B HTH | weeius B IV pe 8
+Aacbd = Aag i Avaca T+ Abacd,
voBin vo; Biis Briain Bajvin
+Aacsa = —Apcaat+ Avsca + Abacas
(A.11)

vaspsf '_ v uviaB ueriyi8
'"'“Abcad - “}"Am:bd - Aabcd - Aabad;

vasBie  grcfiu 2 HH Baiviu
_Abca.d = TAaccd - Aubcrl - Aabcnl:

and similarly for other terms. The above equations fail to reproduce Egs. (A.7c)
through any of their possible linear combinations. Notice, in particular, that if
we add up equations of type (A.11) we obtain a trivial identity, and not Egs. (A.7¢).

Conditions (A.7a) and (A.7c) are also independent with respect to the set of
conditions 1, i.e., Egs. {A.6). To prove that they are actually independent we must
now prove that they are so with respect to the combined set of conditions 1 and 3.

Let us first see whether conditions (A.8) can be derived from Eqs. (A.6). Clearly,
the only possibility is offered by using partial derivatives of Eqs. (A 6b) with respect
to derivatives of the fields, which can be written

+ 3B+ BIED — (duev) 5. — Audy = 0,
vi vau:

— MBI 4+ B+ (Ayea'd) 74+ Apra = 0, (A12)
+ B + BT — (Auy') 6% — duiy = 0,
— YBS b B + (i) ¢+ A = 0.

By summing up we obtain

HB.Ye + Bdy'e — Boas — By'ds

— (v + Augta — Ayen's — Avcad) $%% — 2dagh — i) = 0, (AI3)

which does not coincide with Eqs. (A.8). However, by subtracting Egs. (A.8) and
(A.13) we obtain the conditions

[y + Ay + Aus — dga — Aris — A¥al $% =0, (A1)

where we have used Egs. (A.6a). But Egs. (A.14) are not independent because they
can be obtained from Eqgs. (A.7b). As a consequence, Eqgs. (A.8) themselves are not
independent.
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The set of all independent conditions of self-adjointness for the quasi-linear form

is thus given by

ay v vi
Ao = Apy = Agp

mm
T vaip TR
Aacb -t Abca = Ahan:
M — I'_|
afiuy afljuv
Audbc = Abdac ]
[ [E—

By + Bya = Aduio) 70,

Ba:b - Bb;a = %(Bm;lf:;c - Bb;i:c) ?Sc;.u ]

(A.15a)
(A.15b)
(A.15¢)

(A.15d)
(A.15€)

and they coincide with Eqgs. (6.14) once the possible explicit dependence of Egs.
(A.1} in the coordinates x, is taken into account. Theorem 6.2 then follows from

the uniqueness of the adjoint.

APPENDIX B: Proor oF THEOREM 6.3

‘We shall prove Theorem 6.3 by using conditions of self-adjointness (6.10) for

the semilinear form
Fa, = [guuqsa:.uv _.fa(xa 3 ff"c, qSC:a)](ﬂ}l = 0.
Conditions (6.10a), i.e.,

oF, 2F,
3q5b;ﬂv - asﬁa:vu

are identically verified and can be ignored.
Conditions (6.10b) read

= Sab &R g = Stm ®gvu

aF, oF, _ o, afhy
a(}l)a:u -+ a(}‘sb;u ""' 3¢b;u =+ a?Sa:u - 0’

and constitute a first independent set of conditions.
Conditions (6.10c) become

o b )
+ 3 (o~ ) e

(B.1)

(B.2)

(B.3)

(B.4)
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and can hold identically iff the following two separate sets of conditions,

aﬁéb;u a(f)c;v 3¢a:u aqgc:y I

o O 1 o &) s &
7w =2t gl )

hold. The horizontal bar again denotes symmetrization of the indicated indices, as
in Appendix A.

Summarizing, the set of all independent conditions of self~adjointness of the semi-
linear form (B.1) is

(B.5)

8fu 1 afb ““0

o, T 3%, - (B.6a)
&fa & _
a?f)b:u 3(}56;;; - 3¢a;u 545“,, - O: (B6b)
of . dfy 1 L g O o afy
-5;;5" - “éj;" =3 & + ¢ 8° g( ot - D, ) (B.6¢)

Now, the combination of Egs. (B.6b) with partial derivatives of (B.6a) yields
expressions of the type

(8% Jod¥ 8de) = 0. (B.7)

Therefore, a necessary (but not sufficient) condition for the semilinear form (B.1) to
be self-adjoint is that it is linear in the derivatives ¢°, .
This demands that Eqs. (B.1) be of the form

g'w(}ga:uv _.fu = gup¢a:uv - Pt:b(xuc > 456) (f)b;u - gﬂ(xm s (1{)6) = 0. (B'S)
We must now specialize conditions (B.6) for Eqgs. (B.8). Conditions (B.6b) become
Pas + Poa = 0, (B.9)

and constitute a first independent set of conditions. Finally, Egs. (B.6c) become

(3Pﬁc __ _Opbe ) 5, + (aaa _ 3%)

o o TN
— I i I __1_ apﬁb . aP;:u_ o
= 5 2ulplh — P + 5 (o — ) 4% (B.10)
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and, by using conditions (B.3), can be written

Bpac @pas BPha 1o “ 8,  do,\
( aqsb + 6q5a - a¢c ) 95 " + (aupbu + ang' “““—"‘**—aqsa) = ). (B.l})

The above conditions can hold everywhere in the subregion Rf; of Ry, with points
(%ar¢°) iff each term within brackets individually vanishes. In this way we reach the
set of all independent conditions of self-adjointness of the semilinear form {B.8)

P:b + P;a. = 05

Opue % |, Oppa
o + s T e =0, (B.12)

ao‘a 60'1,
Oupar = Fr i ron

This completes the proof of Theorem 6.3.

APPENDIX C: PROOF OF REPRESENTATION (8.19)

Consider the system of field equations for a complex scalar field in interaction
with the electromagnetic field '

_gupAu:uv + fe[(?_J;m + feAa‘?":’) P — ?_7(99;u - feAu(P)]
(Fo) = ( 8 + mPp — A, dbp — ied, e — 2ied" i, ) =0, {(C1)
VP -+ PP — A A% - fed,mp + ed
and its indirect representation in terms of the Lagrange equations
L) = d(0£[2¢,) — (0L[8¢%) = 0 (C2)
in the Lagrangian density
= — Jg,Au:vAu:u + ﬁﬂ’“‘ —_ m2¢q3
+ ezAuAu‘:E(P '— ie(¢;u‘p - (taq);u) Ax, (C?’)
where we have ignored the Lorentz gauge 4, = 0.
We shall assume the ordering
{(ﬁa}:{A :A 9A29A.= s—}s
0 Ay 3: P @ (C4)

a = 1 2 3 4 5 6
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Then the analytic representation explicitly reads

4, 0 O /=[O, + iel@, + ied®) ¢ — F@h — ied)]
(Z) = (0 0 1)( (O + m® — e*d 4" — fed,w) ¢ — Zied'ph, ) =0
0 1 0 (] + m? — e*d,4" + ied, ) § -+ 2ied gt
(C.5)

Qur objective is to prove that the above representation is of the indirect type

[ga(‘#)}m = [hub(Fb)NSA]SA 3 (C-G)

which is precisely the case of Eqs. (8.19), or, more explicitly, that the field equations
in the form and ordering (C.1) are non-self-adjoint; neverthless, after the permuta-
tion induced by the factor of Eqgs. (C.5), they become self-adfoint.

Tn view of the rather elaborate but straightforward calculations involved, it is
here advisable to first work out the corresponding Newtonian limit {3]. This might
also provide some insight into the structure of the gauge invariant theories ‘which
will be useful for our analysis of paper IL.

Perform the limits

Ko —> t(()é = 0: 1: 2: 3): ‘P(X) - ml;'qu(t), ‘}_D(x) - ml"2qz(r)a
ig A, — bj2m = const(u =0, 1, 2.3, mt — 24, A" — Ifm = const, (C.7)
d, - (djd)(e = 0,1,2, 3).

Then Lagrangian (C.3) becames
P > L = migs -+ 3b(g1d2 — §1q2) — K@iz » (C.8)

namely, it recovers a known model for nonconservative Newtonian systems intro-
duced by Morse and Feshbach [35].
Consider the Newtonian equations of motion

Gy + by + kg, = 0,
o — bdy + kg, =0,

(C.9)

in the ordering (g, , g»). It is easy to see that the above equations are non-self-
adjoint. Indeed, the conditions of self-adjointness, which for this case are easily
derivable from Egs. (6.3), are o

Cap =~ Coa = 0,
br:b - bba = Zéab = O:
Aoy — pg == }.‘(bab — bba) =0, (C.10)
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and are clearly violated by Egs. (C.9). This can be seen more transparently by
writing such equations in the matrix form

b DE+6D+6 A
= Copfy b Doy - dmgy = 0, a,b=1,2 (C.11)

Thus, the violation occurs because of the b coefficients.
Consider now the above equations after a permutation of the mdices, i.e.,

@ ol D+ 6 _D+C A
ot SO 1% Il B[ R VAR T
= ' + Vads T @ wds = O, a,b=1,2. (C.12)

It is easy to see that the equations of motion in this new form become self-adjoint.
Indeed, afl conditions of self-adjointness {C.10) are satisfied by Egs. (C.12).

It is now a matter of simple inspection to see that the Morse-Feshbach
Lagrangian (C.8) induces an analytic representation of the equations of motion in
their self-adjoint form (C.12) rather than in their non-self-adjoint form (C.11), i.e.,

d oL oL L

P Pl 0 I\[dt b4+ kg

“@oh G _ ~0. (C13)
d &L L ) )

ERRY N AN AG I R N %
This is precisely an example of structures {C.6).

Notice that the transition from form (C.11) to form (C.12) corresponds in
practice to an inversion of the ordering. This indicates the significance of the
ordering within the context of the problem of the structure of analytic represen-
tations.

It should be indicated that the Newtonian limit of the derivative couplings of the
gauge equations (C.1) is constituted by nonconservative forces, namely, forces
which are not derivable from a potential function. Indeed, this is precisely the case
of the acting force of both Eqs. (C.11) and (C.12), with components F = (bg, , —
b4s). Despite that, a Lagrangian for the representation of this system does exist and
its existence can ultimately be related precisely to the inversion of the ordering of
the analytic representation (C.13). This feature, which directly extends to field
theories, is peculiar to all theories with gauge invariant terms of the type gp. We
shall came back to the above remarks in paper Il within the context of the problem
of the structure of the Lagrangian capable of representing interactions.
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We now study the field theoretical case of the representation (C.6) with
Lagrangian (C.3}. In this case the computations are considerably more involved,
although straightforward. In order to avoid possible misinterpretation of the
underlying concepts, the reader should keep in mind that, on conceptual grounds,
all the above indicated features of the Newtonian representation (C.13} directly
extend to the field theoretical case of the Lagrangian (C.3).

Due to the vital significance of Theorem 7.1 to our analysis, let us begin with
its verification for the case of Lagrangian (C.3).

The Jacobi equations (7.10} in the yariations

(84, , 5, 87} = w{nu, Mpr > WE O (C.14)

reduce in this case to

— agy ti 82"5’0 622 H
Qa(ﬂ) - a¢a;u 3¢b;p N v 'i_ (aqsa;v 89')*" - aqsa 8¢“‘,) ’-"]bv
rE BF
+ |4 (g aa )~ g g T (C.19)

and are given by

_'(D -+ 282‘?5?)) T -+ ie[(q"j;u -+ ZleA.u@) Mo — '%(‘P;u - 2‘9Au9’)]
- ie(@nm;u - (P%’u)
(O + m* — #4,4% -+ iedm ) g + 2ie(@* + ieA“®) 1,
- 2iedrng, + e,
(C] + m* — 4,4 — jedw ) n, — 2ie(g™ — ieA*e) 7,
. — 2iedvm, — fepn,’* J
(C.16)
where now all fields {4, , ¢, ¢} are assumed to be known solutions of Egs. (C.D.
System (C.9) in the variations {7, » M, » Mgt 15 significant per s, but we shall not
indulge in its analysis at this time.
The adjoint system of variations (7.14) can now be written

(-Q o) =

5 Py iRy 2
[ Tl b3 —
L0 = 7w atﬁb;, a‘i’mu -+ 9% ( aql,b 3(#‘;,, 3¢b;v Brf)“)
L e
"%_ nb [du (aqsb a¢a;u) a¢b a(ﬁa]‘ (C-l?)

But the Lagrangian (C.3) satisfies the continuity condition of Theorem 7.1,1e.,

> > &2y 24 kg bk

3%, 04, = BE, oge, 0 097, 0F = o age, 0 04" of = B e
(C.18)
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Then Egs. (C.15) and (C.17) coincide, i.e.,
Qi =30, a=12..8 (C.19)

Therefore, as expected {rom Theorem 7.1, the Lagrange equations in the gauge
invariant Lagrangian (C.3) are self-adjoint. This also proves the self-adjointness
of the Ihs of representation {C.6) in the Lagrangian (C.3).

To study the rhs of the same representation, let us begin by studying the varia-
tional properties of the equations of motion in the form (C.1). The system of
equations of variations is, from Egs. {(4.4),

b

aF, oF, aF,
Mm) = »@—qs—,, 7’ + "”a?bT ¥, A o AP (C.20)

and it coincides, up to the ordering of the same equations, with system (C.16). Now
the adjoint system, from Eq. (5.6), is given by

_ aF, - oF, oF,
2y Y ot — oy YISl Sy T
MR =9 B0 o, (n 8¢“;v) + dd, (7? aéa;w). (C.21)

An explicit calculation, which is summarized in Table I, then shows that this
system is nof self-adjoint. This proves the non-self-adjointness of the internal
system of the rhs of representation (C.6).

To complete the proof of the structure of the representation, we now repeat the
above analysis with Eqgs. (C.20} and (C.21) for the equivalent system

B, 0 Oy j—g A + iel@. + ledd) p — Pl — ied)]
(FR%) == (0 0 l)( gupt,, + mPp — €A, Akp — ied, e — 2ieA“<p;M\ = 0.
o 1 0\ gug, 4 mip — 2 AnG -+ iedig + Yedri,|
(C.22)

Explicit calculations then show that, as it is the case for the Newtonian limit (C. 12),
the above equivalent system is self-adjoint.

And indeed, the analytic representation induced by Lagrangian (C.3) produces
the field equations in their self-adjoint, rather than their non-self-adjoint
form, i.e.,

(2 Dsa = [FE(Plsa»  a= 12006 (C.23)

This completes the proof of the structure of representation (8.19).
It is significant for our subsequent use to point out that the case of the analytic
representation induced by the gauge invariant Lagrangian (C.3) consitutes an
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example of what we have termed “ordered indirect analytic representation,”
namely, a representation for which each of the three sets of identities

Ld) = F;U )
Q) = ng('r;), (C.24)
Qo) = M(n),

is verified (see Section 8). It is only when this is the case that the self-adjointness
of the rhs of structure (C.6) is guaranteed. In turn, this property, as we shall see in
paper II, is crucial for the problem of the necessary and sufficient conditions for
the existence of a Lagrangian.

As a final remark, let us notice that while in ultimate analysis the question
whether the representation is direct or indirect is immaterial (because it merely
depends on the assumed form of field equations) the ordering requirement is
crucial to guarantee the validity of all parts of Egs. {C.24).
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