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Abstract. In-this note, we study the nonlincar-nonlocal-noncanonical, axiom-preserving isotoples/Q-
operator deformations SUq(2) of the SU(2) spin-isospin symmetry. We prove the local isomor-

phism SUg(2) = SU(2), construct and classify the isorepresentations of §04(2), identify the
emerging generalizations of Pauli matrices, and show their lack of unitary equivalence to the con-
ventional representations. The theory is applied for the reconstruction of the exact SU(2)-isospin
symmelry in nuclear physics with equal p and n masses in isospaces. We also prove that Bell's
inequality and the von Ncumann theorem are inapplicable under isotopics, thus permitting the
isotopic completion/Q-operator deformation of quantum mechanics studied in this note which Is
considerably along the celebrated argument by Einstein, Podolsky and Rosen.
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1. Statement of the Problem

According to current knowledge (see, e.g., [1, 4]), the SU(2) spin or isospin
symmetry can solely characterize the familiar eigenvalues j(7 + 1) and m, j =
0)%’1"-'! m=j,j—1...,~4

In this note, we show that the isotopic generalization of SU(2), herein denoted
§00(2), while being locally isomorphic to SU(2), can characterize more general
eigenvalues of the type

= fAVFA+1], S f(A)m, (1.1

where j and m have conventional values and f(A) is a real valued, positive-
definite function of the determinant of the background metric A = Detg =
Det Q6 such that f(1) = 1.

For the two-dimensional case, the condition det g = 1 for g = diag(gi1, g22)
is realized by g1 = 92-*21 = X, This implies the preservation of the conventional
value % of the spin, but the appearance of a nontrivial generalization of Pauli's
matrices, herein called iso-Pauli matrices, with an explicit realization of the
*hidden variable® X in the structure of the spin % itself,
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1. Statement of the Problem

According to current knowledge (see, e.g., [1, 4]), the SU (2) spin or isospin
symmetry can solely characterize the familiar eigenvalues j(j + 1) and m, j =
0,4, 1,ccnme=gd—1,0.,=].

_In this note, we show that the isotopic generalization of SU(2), herein denoted
8Uq(2), while being locally isomorphic to SU(2), can characterize more general
eigenvalues of the type

F= (AP +1), B = f(A)m, (1.1)

where § and m have conventional values and f(A) is a real valued, positive-
definite function of the determinant of the background metric A = Detg =
Det Q6 such that f(1) = 1.

For the two-dimensional case, the condition det g = 1 for g = diag(gi1, g22)
is realized by gy = gﬁ‘ = A. This implies the preservation of the conventional
value % of the spin, but the appearance of a nontrivial generalization of Pauli's
matrices, herein called iso-Pauli matrices, with an explicit realization of the
‘hidden variable' X in the structure of the spin 4 itself.
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As a first application, we construct the isotopies of the conventional isospin
(see, e.g., [2, 6]), and show that the iso-Pauli matrices permit the reconstruction of
an exact SU(2)-isospin symmetry under electromagnetic and weak interactions
because protons and neutrons acquire equal masses in the undetlying isospace.

As a second application, we show that Bell’s inequality and the von Neumann
theorem (see, e.g., review [7]) are inapplicable under isotopies, thus permitting
the isotopic completion of quantum mechanics studied in this note, which is
considerably much along the lines of the celebrated Einstein-Podolski~Rosen
(EPR) argument,

It should be noted that, at the International Workshop on Symmetry Methods
in Physics held at the JINR in July 1993, Lopez [9] showed that the so-called
q-deformations (see, e.g., [17, 451) can be put in an axiomatic form precisely via
the isotopic (J-operator deformations studied in this note.

One isotopy of Pauli matrices was first presented by this author at the Third
International Wigner Symposium (held at Oxford University in Septemnber 1993,
[13]). In this note, we present, apparently for the first time, a systematic study and
classification of the fundamental (adjoint) isorepresentation of the Lle-xsotoplc
SUQ( ) algebra, their applications to the reconstruction of the exact isospin
symmetry as well as to the limitation of Bell's inequality and von Neumann’s
theorem. Additional applications to nuclear magnetic moments, particle physics
and other fields will be presented elsewhere.

2. Isotopies of SU(2) Symmetry

The understanding of this note requires a knowledge of the nonlinear-nonlocal-
noncanonical, axiom-preserving isotopies of the theory of numbers [11] and of
Lie's theory as reviewed in the article [8] in this issue and studied in detail in
the monographs [16, 18].

The fundamental notion is the isotopy of the unit of the theory considered [4,
6-14], in this case, the unit I = diag(l, 1) of SU(2), into a two-dimensional
matrix T whose elements have the most general possible dependence on complex
coordinates z, Z of the underlying carrier space of SU(2), their derivative with
respect to time of arbitrary order, the wave functions 1, 1! and their derivatives
also of arbitrary order, and any needed additional quantity, subject to the condition
of preserving the original axioms of I (smoothness, boundedness, nonsingularity,
Hermiticity and positive-definiteness, as a necessary condition for isotopy),

I =diag(1,1) > 0= I = I(t,2,% 2, 7,9t,00,801,...) > 0.  (2.1)

The isotopy of the unit then demands, for consistency, a corresponding, compat-
ible lifting of all associative products AB among generic QM quantities A, B,
into the isoproduct

AB = Ax Bi= AQB, @ fixed, (2.2)
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where the isotopic character of the lifting is established by the preservation of
associativity by the isoproduct, A+ (B C) = (A B) + C. ;

The assumption I= Q“’ then implies that T is the correct left and right unit
of the theory, T+A=AxI = A, in which case Q is called the isotopic element,
and T is called the isounit. Note the invariant appearance of g-deformations in
their Q-operator form at the very foundation of the theory, provided that they
are reformulated with respect to the new unit T=q"" (10, 11]).

The isotopies of the unit I = T and of the product AB =» A% B then imply
the necessary lifting of all mathematical structures of quantum mechanics (QM)
into those of a covering discipline called hadronic mechanics (HM) [16]. Here
we mention the lifting of the field of complex numbers C(e, +, %), with elements
¢, ordinary sum 4 and multiplication ¢ x ¢ = ¢c, into_the infinitely possible
isotopes Cg (G, +, %), with isocomplex numbers € ='C1I, conventional sum 4
and isomultiplication €| * & = £1Q¢; = (clcz)I Note for future use that, for an
arbitrary quantity 4, % A = cIQA = cA.

The isotopies of the unit, multiplication and fields then demand, for mathemat-
ical consistency, corresponding compatible isotopies of the basic carrier space,
the two-dimensional complex Euclidean space E(z,%, 6, C) with familiar metric
6 = diag(1,1) into the complex two-dimensional iso-Euclidean spaces intro-
duced in [15, 16]

E’Q(Zi—zi 3’ 6'): 2z = (zl;ZZ)y 3= RQi=g= diag(glthZ) =gt >0, (2.3a)
21 gi(t, 2,2, )z = Zign 2 + Fagnm, (2.3b)

where the assumed diagonalization of @ is always possible (although not neces-
sary) from its positive-definiteness.

The isotopic character (as well as novelty) of the generalization is established
by the fact that, under the jomt lifting of the metric § = § = Q6 = g and of
the field C = Co, T = @~!, all infinitely possible isospaces Eo(2,2,6,8) are
locally isomorphic to the original space E(z,7%,6,C) under the sole condmon
of positive-definiteness .of the isounit T [15]. In tumn, this evidently sets the
foundation for the local isomorphism of the corresponding symmetries,

Note that separation (2.3) is the most general possible nonlinear, nonlo-
cal and noncanonical generalization of the original separation z 1 z under the
sole condition of remaining positive-definite, i.e., of preserving the topology
sigé = sigé = (+,+). The symmetries of invariant (2.3) are then expected to
be nonlinear, nonlocal and noncanonical, as desired.

The preceding isotopies imply, for consistency, the isotopies of Hilbert spaces

H: (Yl¢) € C into the so-called iso-Hilbert space Hg with isoproduct and
:sonormaltzalton

D1d = @A e Co; (@1 =T. (2.4)

Then, operators which are Hermitian (observable) for QM rtemain Hermitian
(observable) for HM {16].
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The liftings of the Hilbert space require correspondmg isotopies of all oper-
ations in M [13, 14]. We here mention isounitarity O+0t =0t s = T
isoeigenvalue equations H lw) HQIY) = E + |[§) = E[{); isoexpectation
values {4} = (PIQAQID)/ (BIQIb); ete.

The lifting of the unit, base field and carrier space then require, for mathemat-
ical consistency, the lifting of the entire structure of Lie’s theory first submitted
in [10]. We are here referring to the isotopies of enveloping associative algebras £,
Lie algebras L, Lie groups G, representation theory, etc., today called Lie—Santilli
theory. Here we mention the iseassociative enveloping operator algebras §Q with
isoproduct (2.2), A * B = AQB; the Lic-isotopic algebras LQ with isoproduct

4, Blg, = [4, "Bl=AxB~BxA=AQB ~ BQA; (2.5)

the (connected) Lie-isotopic groups 6‘@ of isolinear isounitary transforms on
Eg(2,%,6,C)

7 =U(w)* z = T(w)Qz = H(w)Q(2,%,2,%,8,9t,...)2, (2.6)
U (w) = e‘if*w = T4 (i Xw) /1 + (i Xw) * (iXw)/2I + -

= {e’x 3, , (2.6b)
U(w) « O(w') = O(w') + T(w) = Tlw + ),
O (w) * T(~w) = T(0) =T, (2.6¢)

where the reformulation in terms of the conventional exponentiation has been

done for simplicity of calculations.

. The isounitary UQ(Z) symmetry is the most general possible, nonlinear, nonlo-
cal and noncanonical, simple, Lie-isotopic invariance group of separation (2.3b)

w:th realization in terms of isounitary operators on Hg

Tt =0t a0 =T=Q", | @
verifying isotopic laws (2.6). b (2) can be decomposed into the connected, special
isounitary symmetry SUq(Z) for

det(UQ) = +1, - (2.8)

plus a discrete part which is similar to that for O(3) [10] and is here ignored for
brevity.
The connected SUq(2) components admit the realization in terms of new

generators Jy, and the same parameters 8, € R(n,+, %) of SU(2) although
re-expressed in the isofield R(A, -+, *)

U= 1;[@2;1&*% = { IkIeiJ:uQ"'f}f, (2.9)

under the conditions (necessary for isounitarity)
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e(h@) =0, k=123 (2.10)

The isorepresentations of the isotopic algebras S Uq(Z) can be studied by
imposing that the isocommutation rules have the same structure constants of
SU(2), i.e., for the rules

(7, "3 = JiQJ; — [;QJ: = e @2.11)
with iso-Casimir
=5 Ty x i, 2.12)
k

The maximal isocommuting set is then given by J% and J3 as in the convention-
al case, These assumptions ensure the local isomorphism SU(2) ~ SU(2) by
construction. -

Let |b#) be the d-dimensional isobasis of SUg(2) with iso-orthogonality con-
ditions

@1+ [b) = GHQIBY) = 65, 4,5 =1,2,...,m (2.13)

By putting as in the conventional case Ju = J) & J, and by repeating the same
procedure as the familiar one [1], we have

Ty« [6f) = bflbf), T2« [B) = 0o} - D)D), (2.142)
d=1,2,..., k=12,....4d,
o= i,  bEY - 1) = bd(bd +1). (2.14b)

A consequence is that the dimensions of the isorepresentations of SUq(2)
remain the conventional ones, ie., they can be characterized by the familiar
expression n = 2j 4+ 1, j = 0,%, I,... as expected from the isomorphism
SUg(2) ~ SU(2). .

However, the explicit form of the matrix representations are different than the
conventional ones, as expressed by the rules

(F)ig = $a(BF * (T = Jp) # [65), (2.150)
(B = Si(bf|* (T- + Jy) « [69), (2.15b)
(T3} = (b1 % T+ [b9), (2.15¢)

under condition (2.10).

The isorepresentations of the desired dimension can then be constructed accord-
ingly. In the next section we shall compute the two-dimensional isorepresenta-
tions, while those of higher dimensions will be studied in a subsequent paper.

A new image of the conventional SU(2) symmetry is characterized by our
isotopic methods via the antiautomorphic map I = diag(1,1) = I% = —] called
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isoduality ({12, 16]), which provides a novel and mmgumg characterization of
antiparticles. The corresponding isodual isosymmetry SUQ(Z) will be studied in
a separate work.

In summary, our isotopic methods permit the identification of four physically
relevant isotopies and isodualities of SU(2) which, for the case of isospin, are
given by the broken conventional SU(2) for the usual treatment of p —n; the
exact isotopic .S'Uq( ) for the characterization of p — n (see next section); the
broken isodual SU®(2) symmetry for the characterization of the antiparticles 5—7
in isodual spaces; and the exact, isodual, isotopic SUQ(Z) for the characterization

" of antiparticles P — 7 in isodual isospace.

The reader may be interested in knowing that, when the positive- (or negative-)
definiteness of the isotopic element @ is relaxed, the isotopes ST (2) unifies all
three-dimensional simple Lie groups of Cartan classification over a complex field
(of characteristic zero). In fact, we have the compact isotopes SUq(2) = SU(2)
for g11 > 0, g2 > 0, and the noncompact isotopes SUQ( ) = SU(1,1) for
g > 0 and gy < 0 (see [8] for the corresponding unification of orthogonal
groups over the reals). In this note we consider only positive-definite isotopic
elements Q.

3. Isotopies of Pauli Matrices

Recall that the conventional Pauli matrices oy (see, e.g., [2, 6]) verify the rules
7i0j = i€i0k, 4, §, K = 1,2,3, In this section we identify and classify the
generalizations of these familiar matrices implied by the isoalgebta Sﬁq(z).

To have a guiding principle, we recall that ([8, 15]), in general, Lie-isotopic
algebras are the image of Lie algebras under nonunitary transformations. In
foct, under a transformation UUT = T # I, a Lie commutator among genetic
matrices A, B, acquires the Lie-isotopic form

U(AB ~ BA)Ut = A'QB' - B'QA’,
A'=UAUt, B =UBU}, Q=WUHN'=@Qt. @3.1)

We therefore expect a first class of fundamental (adjoint) isorepresentations,
here called regular adjoint isorepresentations, which are characterized by the
maps Jj, = —m, ~ Ji = UJUt, UUT # I with isotopic contributions that
are factorizable in the spectra, 4 ~ +1F(A), 3/4 — (3/4)f%(A), where
A =det@ and f(A) is a smooth nowhere-nuﬂ function such that f(1) =1,

_ An example is readily constructed via Equations (2.15) resulting in the fol-
lowing generalization of Pauli's matrices herc called regular iso-Pauli matrices

~ -4 0 _(]H) ~ o A=l 0 —-1:9“
) A 2(922 0 ) T =A"2 g 0 :

51 A~%(952 _8”>, 62

{

fl
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where A = det @ = gy1g22 > 0. The above isorepresentation verifies the isotopic
rules §1Q0; = z'A%eijkEk and, consequently, the following isocommutator rules
and generalized isoeigenvalues for f(A) = Al

1
[51,765] = 6:Qud; — §;QF: = 218G, (3.3a)
5y % [B7) = £AHRR), | (3.36)
g e[ =346, =12, (3.3¢)

which confirm the ‘regular’ character of the generalization here considered (that
is, the factorizability of the isotopic contribution in the spectrum of eigenvalues).
The isonormalized isobasis is then given by a trivial extension of the conventional
basis [B) = Q~1[b).

Recall that Pauli’s matrices are essentially unique in the sense that their trans-
formations under unitary equivalence do not yield significant changes in their
structure, ds well known ([1, 4]). The situation is different for the iso-Pauli
matrices, because isorepresentations are based on various degrees of freedom
which are absent in the conventional SU(2) theory, such as: (1) infinitely possi-
ble isotopic elements @; (2) formulation of the isoalgebra in terms of structure
functions [7, 9]; (3) use of an isotopic element for the iso-Hilbert space different
than that of the isoalgebra [13, 14]; and others,

In fact, we can identified a second class of isorepresentations, here called
irregular adjoint isorepresentations, in which the isotopic contributions is no
longer factorizable in the entirety of the spectra of eigenvalues, A first example
is given by the following irregular iso-Pauli matrices

- 0 1 o~ 0 ""?:
”"‘:(1 o)”’" 02=(+i 0)""2’

~ _ [ 922 0 AT
oy = ( 0 _‘g”> = Alay, (3.4)

which verify the isocommutation rules
[31,”‘35] = 22'5:’5, [33177\5] = 2":A6;$ [3’“"‘6” = ZiAfié, (3.5)

without evidently altering the local isomorphism $Uqg(2) ~ SU(2). The new
isoeigenvalue equations are given by

5 [0 = AR, 82« (B = A(A +2)[F), (3.6)

which confirm the ‘irregular’ character consideration (that is, the lack of factor-
izability of the isotopic contributions in the entirety of the spectrum of eigenval-
ues). Isorepresentation (3.4) also provide an illustration of Equations (1.1) with
the nontrivial lifting of the spin s = { — §= JA.
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The ‘degrees of freedom’ of isorepresentations are then illustrated via the
following second example of irregular Pauli matrices

!

-3 . 0 —igt

=0 m), g=|? M=

gu' 0 iyt 0
-1 0
AN 31
3 ( 0 __gzzl ' 3.7
with isocommutation rules and isoeigenvalues for Ji = L&/
[Al" Afz'] = iAj;” [‘]Zlv Ajﬂ = 1:'?],, ' ['}3,1 Aj:’] = ij72/) (383)
1 5 1/1

Ty =z, TlB =5 (5+0)), (3.8)

where, as one can see, the eigenvalue of the third component is conventional, but
that of the magnitude is generalized with a nonfactorizable isotopic contribution,

Intriguingly, the isorepresentations generally occurring in physical applica-
tions are the irregular ones ({15, 16]) because the generators represent physical
quantities and, as such, are not changed under isotopies [7-9]. Their embed-
ding in an isotopic algebra then generally implies the appearance of the structure
functions and irregular isorepresentations.

By no mean do the above two classes exhaust all possible, physically signifi-
cant isorepresentations. We therefore introduce a third class of isorepresentations
without any claim of completeness (in fact, we do not study here for brevity
the isorepresentations with different isotopic elements for the isoenvelopes and
iso-Hilbert space which characterize yet more general isorepresentations).

We here define as standard adjoint isorepresentations those occurring when
the spectra of eigenvalues are conventional, but the representations are nontrivial-
ly generalized, i.e., remain nonunitarily equivalent to the conventional representa-
tions. In fact, regular iso-Pauli matrices (3.2) admit the conventional eigenvalues -
1/2 and 3/4 for A = 1, This condition can be verified by putting gy = g{z' =M
We discover in this way the existence of the standard iso-Pauli matrices first
presented in [13]

- 0 g5 N 0 —~igp
o - s gy = G
: (gul Y : g 0 )

~1
In 0 3.9
( 0 -g.5'21)’ (3.9)

which admit all conventional structure constants and eigenvalues for J = 15y,

i

i

T3

3

~

(%, " Tj) = teijede,  Fax[B) =£i[B),  FE«[B) =3B (3.10)
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yet exhibit the ‘hidden functions’ gy in their structure.
Needless to say, isorepresentation (3.9) remains standard under the physically
significant condition
det@ = grigan =1,

which is realized for

g =gn=A#0,

where is a sufficiently smooth, real-valued and nowhere-null function of the local
variables. In this case, isoreptesentation (3.9) assumes the form used in physical
applications (see the next sections)

. 0 A N 0 —iA\
G=A 1 o) 2T -t o )0

= Ao
73 ( 0 - ) . @1
Similarly, irregular isorepresentations also become standard under condition

(3.9) and realization (3.10). We therefore have the following additional standard
iso-Pauli matrices

~l 0 sy 0 -1
"‘"“'(1 0)T% 2% 4 o0 )77

]

-1
2w (Ao f/\), (3.120)
! ; 4
-/} - 0 /\i o 0 -?:/\2
o (,\"% 0)’ U"(z‘x% 0 )
w]
& = (’\o _OA). (3.126)

Iso-Pauli matrices with generalized eigenvalues are useful for interior struc-
tural problems, i.e., the description of a neutron in the core of a neutron star or,
along the same lines, for a hadron constituent, As such, the applications of the
general case of the SUQ(Z isosymmetry is studied elsewhere [16],

When studying conventional particles, e.g., those of nuclear physics, the phys-
ically relevant subclass of SUqg(2) is the special one with conventional eigenval-
ues, which is studied in the next sections. The image &{; under isoduality, cailed
isodual Pauli matrices, will be studied elsewhere.

4. Application to Isospin

As is well known (see, e.g., [2, 6]), the conventional SU(2)-isospin symmetry
is broken by electromagnetic and weak interactions, One of the first applications
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of our isotopic/@-operator-deformation theory is to show that the SU(2)-isospin
symmetry can be reconstructed as exact at the isotopic level, namely, there exists
a realization of the underlying isospace EQ(z %,6,8) in which protons and
neutrons have the same mass, although the conventional values of mass are
recovered under isoexpectation values.

The main idea is that the SU(2)-isospin symmetry is broken when realized
via the simplest conceivable Lie product AB — BA. However, when the same
symumetry is realized via a lesser trivial product, such as our Lie-isotopic product
AQDB - BQA [7], it can be proved to be exact even under electromagnetic and
weak interactions. In this case, the elements of the @-matrix are constants and
acquires the meaning of average of these interactions,

The reader should be aware that this is an isofated occurrence, because it
represents a rather general capabilities of the Lie-isotopic theory. In fact, it is
referred to as the isotopic reconstruction of exact spacetime and internal symme-
tries when conventionally broken. For example, the rotational symmetry has been
reconstructed as exact for all infinitely possible ellipsoidical deformations of the
sphere; the Lorentz symmetry has been reconstructed as exact at the isotopic lev-
el for all possible sighature preserving deformations 7 = @n of the Minkowski
metric, etc, [15].

The reconstruction of the exact SUQ(Z) -isospin symmetry is so simple to
appear trivial, Consider a 2-component isostate

B(w) = ( 331%”% > @1

where 1,/7,,(:12) and {5,,(9:) are solutions of the isodirac equation [19] which trans-
forms isocovariantly under a standard isorepresentation of Pp(3.1) x SUq(2).
In this note we study only the SUq(Z) part without any iso-Minkowskian coor-
dinates, thus restricting our attention to the isonormalized isostates

o A~ " 0
lwﬂ> = ( O ) 1 "l/)n> == (Aé > )
(Dl QlPx) = 1, k=p,n, (4.2)

where Q = diag(A,A~"), T = Q! = diag(1~', A).

We then introduce the SUQ 2)-isospin with isorepresentation (3 |83 admitting
conventional eigenvalues 1/2 and 3/4, defined over the isospace Fg(2, %, 8, ©),
§=q6.

We now select such an isospace to admit the same masses for the proton and
the neutron, This is readily permitted by the ‘hidden variable’ A when selected
in such a way that

mpA~! = mpA,  ie, A =mp/my, = 099862, (4.3)
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The mass operator can then be defined by

it

M {l,\(m,, + mp) T+ %A-’(mp - m)ag}f

2
-1 O
()
and manifestly represents equal masses 7 = mpA~! = my\ in isospace.

The recovering of conventional masses in our physical space is readily achieved
via the isoeigenvalue expression on an arbitrary isostate

7 18) = MIalw) = ) = (g ) 1D “3)
ot, equivalently, via the isoexpectation values
(&p‘QﬁQ]'&p) = Mp,y ("Zn'QﬁQl'J;n) = M. ‘ (4.6)
Similatly, the charge opetator can be defined by
1 oo v _fex! 0
a= 56(I+03)"" ( 0 O)' 4.7)

Thus, the Sﬁq(z) charges on isospace are g, = eA~! and g, = 0. However, the
charges in our physical space are the conventional ones

(DolQaQlry) =€,  (0a]|QqQIn) = 0. (4.8)

The isodual Sﬁg (2)-isospin characterizing the antiparticle 5 and 7 will be
studied elsewhere, The entire theory of isospin and its application can then be
lifted in an isotopic form which remains exact under all interactions. This is
not a mere mathematical curiosity, because it carties a corresponding isotopy
of the nuclear force, e.g., via SUg(2)-isotopic exchange mechanism, essentially
representing the old legacy of a (generally small) nonlocal component in the
nuclear structure. These dynamical implications are studied elsewhere. -

5. Applications to Local Realism

The SUp(2) theory studied above is based on a structural generalization of QM
of nonlinear-nonlocal-non-Hamiltonian, although axiom-preserving type. How-
ever, in the so-called literature of local realism (see, e.g., [71) there exist certain
arguments, most notably Bell's inequality and von Neumann's theorem, prohibit-
ing a generalization of quantum mechanics,

This note would therefore not be completed without an inspection of these
issue and the proof that both Bell’s inequality and von Neumann's theorem are
inapplicable (and not ‘violated') under isotopies. This then sets the foundations
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for the isotopic completion of QM studied in this note. The study also serves as
an application of the SUg(2) symmetry to spin.

The lack of applicability of Bell's inequality and von Neumann's theorem
under regular and irregular isotopies is transparent from the alteration of the
spectra of eigenvalues and, as such, deserves no additional comment.

In the following we show that the above inapplicability persists not only for
standard isorepresentations (3.9) but also for the particular case of det@ = 1,
isorepresentations (3.11).

Consider two standard isoparticles with spin 5 z' ie., pamcles characterized by
standard iso-Pauli matrices (3.9). Even though their spin is the same, there is no
necessary reason to restrict their isotopic degrees of freedom ) to be the same
outside isospin treatments (e.g., because their density may be different). We can
therefore assume

Patticle 1: @ = diag(A\,A7!), A =detQ =1, spini, (5.1a)
Particle 2: Q' = diag(\,N'~™"), A’ =detQ’ =1, spin’} (5.1b)

Next, consider the composite system of the two isoparticles 1 and 2 which is
characterized by the isounit

Io=0 x b= QTol @ xQH~! 5.2)

To properly recompute the isotopies of Bell’s inequality (see, e.g., [13] for
the conventional case), it is necessary to identify the isonormalized basis [S, 2)s
that is, the basis of the total spin of the particles ! and 2 normalized to Tty

(81-2181-2) = (81-21Quot| 8 2) oot = Fror. (5.3)

A simple isotopy of the conventional case (see, e.g., [3], Sect, 17.9) then leads
10 the isobasis for the singlet state

sa-b{() (2)-()(5)) e

It is a tedious but instructive exercise for the interested reader to verify isonor-
malization condition (5.3) by constructing the adjoint of basis (5.4), by sandwich-
mg the quantity Ti = QX @', by contracting only quantities of the same particle,
ind then multiplying the scalar results of the two different particles.

Next, recall that the conventional scalar product o - a, whcre a is a three-
vector, has no mathematical or physical meaning in isospace ]"Q(z z,5, R) and
nust be replaced by the isoscalar product for isorepresentation (3.11)

aQa.:( ( o:  (0g = iay) ) T (5.5)

az + iay) —a,
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The tedious but straightforward repetition of the conventional procedure [7]
under isotopy then leads to the expression
(51-20(@ x @){( ) x (3' *b)}(Q x Q)I51-2)
= —agby — ayby — SOAN ™!+ A7) b, (5.6)

Consider now unit vectors a, b, @', b’ along the z-axis. Then the Bell's inequal-
ity under the conventional SU(2) symmetry [7]

Dgety = Max|P(a,b) — (a. V)| + |P(d,b) + P(d, V)] € 2, (5.7a)

P(a,b) = (S1-2|(o1 - @) % (07 - b)|S)-2) = ~a b (5.7b)
admits the following isotopic image under the covering SUQ(Z) symmetry

Dy < DEY = 0N 1+ AN ) Dy (5.8

But, the factor 4 (AN ="+ A~'X’) can be easily proved to admit values bigger
than one. This establishes the statement of Section 1, to the effect that Bell's
inequality is not universally valid, but holds, specifically, for the conventional,
linear, local and canonical realization of the SU(2) symmetry, The proof for
arbitrary orientations of the unit vectors follows the conventional one [3] and it
is here omitted for brevity,

Similarly, von Neumann theorem [7] is inapplicable under isotopies because
based on the uniqueness of the spectrum of eigenvalues of Hermitian operators.
In fact, isotopic theories establish that the same Hermitian operator H admits
an infinite variety of different spectra of eigenvalues, trivially, because of the
infinitely possible isotopic elements @, H * ) = HQW)} qua/)) [13].

Similar obstacles to the completion of QM into a covering theory are removed
under isotopies as shown elsewhere [16]. We here merely mention the reason why
HM is indeed a completion of QM much along the EPR argument [3]. Recall
that

DGEs = Maxla-b—a-b|+]a - b+a | =22 > 2. (5.9)

and that Dpey < DS, thus preventing the completion of quantum mechanics,

However, under isotopic liftings, one can assume a classical iso-Evclidean
space E(r, 5, R) (representing motion of extended objects within physical media
[11]) with isotopic scalar product

a*b=a'Qb = azg11bx + ay922by + a:g33bs. (5.10

Then, there always exists a realization of E(r,8,R) under which we have the

identity of the maximal operator and classical values, Dm'; = DC"‘“‘C“', as it is

the case for the orientation of the unnit vectors as above, and valueq

] .
g =gn=1, 033=§(’\’\'"'+A*'/\')=\/5~ G.11)
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A number of additional, intriguing completions of QM are provided by HM
along the EPR argument, such as the recovering of classical determinism for a
particle in the interior of a gravitational singularity and others [16].

In closing, it is hoped that systematic studies on the isorepresentations of Lie-
isotopic algebras, such as the isotopic O(3), 0(3.1), SL(2.8), P(3.1), ST(3),
etc., are conducted by interested colleagues because of their capabilities of novel
applications, that is, results beyond the capacity of the conventional Lie theory.
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