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Preface

The objective of this monograph is to present some methodological
foundations of theoretical mechanics that are recommendable to graduate
students prior to, or jointly with, the study of more advanced topics such
as statistical mechanics, thermodynamics, and elementary particle physics.

A program of this nature is inevitably centered on the methodological
foundations for Newtonian systems, with particular reference to the central
equations of our theories, that is, Lagrange’s and Hamilton’s ¢quations.
This program, realized through a study of the analytic representations in
terms of Lagrange’s and Hamilton’s equations of generally nonconservative
Newtonian systems (namely, systems with Newtonian forces not necessarily
. derivable from a potential function), falls within the context of the so-called
Inverse Problem, and consists of three major aspects:

1. The study of the necessary and sufficient conditions for the existence

of a Lagrangian or Hamiltonian representation of given equations of

motion with arbitrary forces;

The identification of the methods for the construction of a Lagrangian

or Hamiltonian from the given equations of motion; and

3, The analysis of the significance of the underlying methodology for
other aspects of Newtonian Mechanics, e.g., transformation theory,
symmetries, and first integrals for nonconservative Newtonian
systems.

2

This first volume is devoted to the foundations of the Inverse Problem,
with particular reference to aspects 1 and 2. The second volume deals
with some generalizations and applications of the Inverse Problem, with

xi



xil  Preface

particular reference to aspect 3, and the problem of the construction of
equivalent forms of the equations of motion that satisfy the conditions for
the existence of a Lagrangian or Hamiltonian representation.

I had several motivations for undertaking this task. The first motivation
came to me as a teacher. Indeed, the decision to study the analytic representa-
tions of systems with arbitrary Newtonian forces grew out of my uneasiness
in teaching a graduate course in classical mechanics in the conventional
manner. Typically, an articulated body of interrelated methodological
formulations (i.c., analytic, variational, algebraic, geometrical, etc.) is
presented ; but in the final analysis, in view of the lack of knowledge of the
methods for computing a Lagrangian for systems with more general
Newtonian forces, these formulations are nowadays applicable only to
systems with forces derivable from a potential function (basically, con-
servative systems). My uneasiness was ultimately due to the fact that,
strictly. speaking, conservative systems do not exist in our Newtonian
environment. As a result, the Lagrangian representation of conservative
Newtonian systems is, in general, only a crude approximation of physical
reality.

A few remarks are sufficient to illustrate this point. For instance, the
entire conventional theory of the Lagrangian representation in the space of
the generalized coordinates of conservative Newtonian systems subject to
holonomic constraints, is based on the often tacit assumption that the
constraints are frictionless. But in practice, holonomic constraints are
realized by mechanical means, e.g., hinges, rods, etc. Therefore, the presence
of frictional forces is inevitable whenever holonomic constraints occur and,
in turn, a Lagrangian representation that does not reflect this dissipative
nature can only be considered a first approximation of the systems considered.

Owing to the fundamental nature of the knowledge of a Lagrangian or
Hamiltonian, the above limitation of the conventional approach to
Newtonian Mechanics is present at virtually all levels of the theory. For
instance, the theory of canonical transformations for the one-dimensional
harmonic oscillator is well known. But the extension of this theory to the
more realistic case of the damped oscillator is not treated in currently
available textbooks, again because of the lack of methods for constructing a
Hamiltonian when damping forces are present. Similarly, the Hamilton-
Jacobi theory of the frictionless spinning top is well known, but its extension
to the system which actually occurs in our environment, namely, the spinning
top with damping torque, is unknown at this time to the best of my knowl-
edge. Therefore, the analysis presented in this monograph, the analytic
representations of nonconservative Newtonian systems, grew out of my
attempts to more closely represent Newtonian reality.

Other motivations for undertaking this task came to me as a theoretical
physicist. As we all know, the significance of Newtonian Mechanics goes
beyond the pragmatic aspect of merely studying Newtonian systems, because
its methodological foundations apply, apart from technical rather than
conceptual modifications, to several branches of physics, such as quantum
mechanics and elementary particle physics. As soon as I became aware of
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new methodological prospectives within the context of purely Newtonian
systems, I became intrigued by their possible significance for other branches
of physics.

Predictably, it will take a considerable amount of time and effort by
more than one researcher to ascertain the possible significance of the
Inverse Problem for non-Newtonian frameworks. Nevertheless, to stimulate
research along these lines, a few remarks are presented in the Introduction.

Owing to the lack of recent accounts of the Inverse Problem in both the
mathematical and the physical literature, one of the most time-consuming
parts of my program has been the identification of the prior state of the art.
Indeed, it was only after a laborious library search, which I conducted over a
three-year period by moving backward in time to the beginning of the past
century, that I came to realize that the methodological foundations of the
Inverse Problem were fully established in the mathematical literature by
the first part of this century within the context of the calculus of variations.
This was the result of the contributions of several authors, such as Jacobi
(1837), Helmholtz (1887), Darboux (18%1), Mayer (1896), Hirsh (1898),
Bohem (1900), Konisberger (1901), Hamel (1903), Kurshak (1906), and
others. The most comprehensive account of which I am aware is the thesis of
D. R. Davis in 1926 at the Department of Mathematics of the University of
Chicago, under the supervision of G. A. Bliss, subsequently expanded and
published in three articles in 1928, 1929, and 1931 (see References). Since
that time, regrettably, the problem remained largely ignored in both the
mathematical and physical literature, with only a few exceptions known to
me, which I shall indicate in the Introduction.

In this volume I present the results of my search in specialized mathemati-
cal and physical literature, and of my efforts on aspects such as the use of
the Converse of the Poincaré Lemma for the proof of the central theorem on
the necessary and sufficient conditions for the existence of a Lagrangian,
the methods for the construction of a Lagrangian from the given equations
of motion, the independent treatment of the Inverse Problem for phase space
formulations without the prior knowledge of a Lagrangian, and the alge-
braic or geometrical significance of the necessary and sufficient conditions
for the existence of a Hamiltonian. However, owing to the vast accumulation
of literature in classical mechanics, calculus of variations, and other
disciplines over the centuries, I make no claim to originality.

I make no claim to mathematical rigor, either. I concentrated my efforts
primarily on presenting and illustrating the basic concepts in as simple a
manner as possible. In essence, by specific intent, this volume should be
readable by first- or second-year graduate students without major diffi-
culties. In writing this monograph, I have also attempted to render it self-
sufficient—extensive reference study is needed only for certain complemen-
~ tary aspects, such as for certain problems of the theory of differential
equations or for certain geometrical interpretations, and a sound knowledge
of undergraduate mechanics is the only prerequisite.

I have also made an effort to adopt the most widely used notations and
symbols. When necessary, new notations are identified by footnotes.
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Equations are referred to by notation of the form (1.2.3a), where 1, 2, and
3a indicate the chapter, the section, and the equations therein, respectively.

The references are listed at the end of the volume in chronological and
then alphabetical order. My list of textbooks must be considered as purely
representative, though incompletely so, of contributions in theoretical
mechanics and related disciplines. However, for specialized topics not
treated in currently available textbooks, I have listed all the relevant ref-
erences of which I am aware.

Ruggéro Maria Santilli
January 3, 1978

Lyman Laboratory of Physics
Harvard University
Cambridge, Massachusetts
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Volume Organization

In the Introduction, I formulate the Inverse Problem of the calculus of
variations, point out its reduction to a Newtonian context, and indicate all
the relevant references on such problem of which I am aware.

In Chapter 1, 1 outline the rudiments of three disciplines, ordinary
differential equations, calculus of differential forms, and calculus of vari-
ations, which are prerequisites for the methodology of the Inverse Problem.

In Chapter 2, I introduce the central mathematical tool of the analysis,
the so-called variational approach to self-adjointness, and I specialize it to
the most important forms of Newtonian systems.

In Chapter 3, I work out the central objectives of this monograph, which
consist of the necessary and sufficient conditions for the existence of a
Lagrangian or, independently, a Hamiltonian, the methods for their com-
putation from given equations of motion, and an analysis of those Newtonian
forces that are‘admissible by a Lagrangian or Hamiltonian representation.

In Appendix A, I review those concepts of Newtonian Mechanics that
are useful for the analysis of the main text, to avoid excessive reference to
the emstmg literature.

The presentation is organized into a main text, a series of charts, a set of
examples, and problems. In the main text, I treat the essential concepts and
formulations of the approach, In the charts, I present those complementary
aspects which, even though not essential for the basic lines of the approach,
are valuable for a deeper insight, and I touch on topics of more advanced
nature for subsequent study by the interested reader. The examples are
intended to illustrate the basic concepts introduced in the text only. The
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problems.are intended to test the student’s understanding of the given
methodology and then his capability to work out specific applications.

The generalization of methodology of the Inverse Problem for the con-
struction of a Lagrangian or Hamiltonian representation of systems of
ordinary differential equations which, as given, violate the integrability
conditions, is treated in Santilli (1979).



Use Suggestions

This book can be used as a textbook for a one-term graduate course on the
Inverse Problem or on Nonconservative Newtonian Mechanics.

For the use of this book as a reference book for a section of a regular
graduate course in classical mechanics devoted to the Inverse Problem, the
instructor is recommended to work out a summary presentation of Chapters
2 and 3.

For graduate students in physics, I recommend first reading the main
text, verifying the illustrative examples, and working out the problems.
Subsequent study should then incorporate the charts and quoted references.
A prior inspection of the Appendix A might be recommendable.

For graduate students and instructors in mathematics, this book can be
complemented by currently available treatises on the calculus of variations,
optimal control theory, differential geometry, and other topics to formulate
the Inverse Problem in these disciplines.

Xix






Introduction

At present, there are several well-established and interrelated methodological
formulations for describing Newtonian systems with (local) forces derivable
from a potential, i.e.,,’! :

m i, — ft, 1, ) =0, k=12,....N, (I.1a)
oUu  doUu
fk = - ‘aF +‘aﬁ. (I.lb)

For instance, by simply emphasizing the most significant aspects under
consideration, we can distinguish among?

1. analytic formulations, e.g., Lagrange’s and Hamilton’s equations,
Hamilton-Jacobi theory, etc.?;

2. variational formulations, e.g., variational problems, variational prin-
ciples, etc.*;

3. algebraic formulations, e.g., infinitesimal and finite canonical trans-
formations, Lie algebras and Lie groups, symmetries and conservation
laws, etc.®; '

! For a review of basic concepts, see the Appendix.

? For each of the listed topics there exists a vast bibliography. We quote below only a few
representative references.

3 Whittaker (1904), Goldstein (1950), Pars (1965).

* Lanczos (1949), Rund (1966).

5 Saletan and Cromer (1971), Sudarshan and Mukunda (1974).
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4, geometric formulations, e.g., symplectic geometry, canonical structure,
etc.’;

5. statistical formulations, e.g., Liouville’s theorem, equilibrinm and
nonequilibrium statistical mechanics, etc.”;

6. thermodynamic formulations, e.g., irreversible processes, entropy, etc.?;

7. many-body formulations, ¢.g., stability of orbits, quadrature problems,
etc.”;

and so on.

In practice, a particular formulation is selected according to actual needs.
For instance, when dealing with a small number of particles, analytic
formulations may be used instead of, say, the statistical formulations. How-
ever, when dealing with a large number of particles, the opposite selection may
be preferable. ,

One reason for constructing such a variety of formulations is that a
sufficient depth in studying a given system is reached only when a sufficient
number of aspects are taken into consideration. Physical reality is polyhedric,
to say the least, in relation to our capability to represent it. Therefore, the
level of our knowledge depends on how many aspects are considered and how
deeply each of them is analyzed. This does not imply, however, that theoretical
formulations are compartmentalized. Actually, all the above-mentioned
formulations are so deeply interrelated that they form a single articulated
body of methodological tools. As a set, they could be called by a single name,
e.g., “the methodological formulations for Newtonian systems with (local)
forces derivable from a potential.”

This interrelationship is due to the fact that the various formulations are
centrally dependent, in either a direct or an indirect way, on the fundamental
analytic equations of the theory, namely, the conventional Lagrange’s
equations:

d 9Ly 0L,

i @ e O (1.22)
L, =T — U, r, i) (1.2b)
and Hamilton’s equations:
éH oH
ok tot R ot
r= apk H L al‘k H (133)
Hy = T(p) + UL, 1, p); (I.3b)

5 Jost {1964), Abraham and Marsden (1967), Guillemin and Sternberg (1977).
7 Gibbs (1948), Katz (1967).

8 Sommerfeld (1956), Tisza (1966).

? Wintner (1941), Khilmi (1961), Hagihara {1970).
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with their interconnecting Legendre transform:

5Lml

Pr = 61‘" 3 (143.)

Hlol = P i* — Lig- (I4b)

The assumption of Equations (1.3} implies a unique characterization of the
time evolution law in phase space:

A'.(l', p) = [A: Hlul]cl: (15)

where!?

04 0B 04 éB
(4, Bla = 532 = 55y (16)

are the Poisson brackets. Then, methodological tools such as canonical
transformations, Liouville’s theorem, etc. can be characterized in a sequential
manner.

An aspect of central methodological significance is that the algebraic
structure which underlies the above-mentioned formulations is a Lie algebra.
This is due to the fact that Poisson brackets (1.6) satisfy the Lie algebra
identities

[A: B]cl + [B! A]c[ = 0 (173)
and
[[A= B]c]: C]cl + [{Bs C]cls A]cl + [[Cs A]cl’ B]cl = 0' (I'7b)

As a matter of fact, the methodological significance of Lie algebras is so
prominent that the theory considered here can well be called the “ Lie algebra
approach to Newtonian systems.”

Methodological formulations 1-7 have a significance Wthh goes beyond.
the description of Newtonian systems (I.1). Indeed, they are the foundations
of virtually the entire current theoretical knowledge for the representation of
non-Newtonian systems, such as quantum mechanical and quantum field
theoretical systems.

For instance, in the transition from Newtonian to quantum mechanical
systems'' we have, in essence, the transition from functions in phase space
A, B, ... obeying the time evolution law (1.5} to a Hilbert space of Hermitian
operators A, B, ... satisfying the Heisenberg law:

A D) = = T4, Hoen (182)

A .
Hy = Hpgge '+ Hipy = —n Z < +U (1.8b)

K1 2my

10 The familiar convention on the sum of the repeated (Latin and Greek) indices, unless
otherwise stated, will tacitly used throughout our analysis.

U For the problem of quantization see, for instance, van Hove (1951}, Prosser (1964),
Kostant {1970), and Souriau (1970).
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Poisson bracket Equation (I.6) is then replaced by the algebraic product,
[A, Blym = AB — B4, (19)

with the interconnecting limiting procedure (for polynomial functions)

1
Iim —

lim 7, [A, Blym = [4, Bla. ' (1.10)
-0

The relevant aspect here is that the algebras characterized by brackets
(1.6) and (1.9) coincide as abstract algebras. Thus, the theory considered here
can also be calied the “Lie algebra approach to quantum mechanical systems.”

In the trapsition from Newtonian to classical continuous systems, the
methodology essentially demands a generalized form of the Lagrangian, ie.,
the Lagrangian density'*:

“‘c’ptot = gfree((igk: a,u (pk) + "ginl((pki au qok) (1'11)
k

k=12. N 0.0°=2%  4_0123.. xX=c x=r
# OxH

where %, represents the free systems and %, is an additive term which
couples the fields; the independent variables are now both the time and space
coordinates, and the fields ¢*(t, r) take the place of the coordinates r*(¢). The
basic analytic equations of the theory are now Lagrange’s equations for con-
tinuous systems: :

0L _ 0L _

"33 '-]Dk - aq’k =0; (Li2)
I
or Hamilton's equations for continuous systems:
do* 0 86°° 80°° (L132)
o om, Om  d(Vm) i
om, oM., 6% 200
b 5@;‘ =377t V vy - (L13b)

where the canonical momentum density 7, the Hamiltonian density #,,,
the energy-momentum density 6°°, and the functional derivative J are
defined by ‘

0L

= 1.14

™ aGete (L142)
] k

Hw = ﬂk_a%‘ - Z = Htree T+ H e (1.14b)

12 See, for instance, Goldstein (1950) and Roman (1969).
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: 0¥
By _ tot v Y g .
2] a(a ) ' g tots (I 140)
OH 0y
on, - om, (L14d)

and

OH o _ OH o1 _ _d_ . OH o1 (L14e)

So* T opt  dr a@eter)

Here, the relevant aspect is that the time evolution law is again law (1.5), ohly
written in the form

\ oA 0H 84 6H
_ _ 3 o U4 Ollyg
A =T[4, H,] J;d r(—&p,f on,  om, o ) (1.15a)

A= J' $ref, Hy = 'f Br o, (L15b)

Therefore, the underiying algebraic structure is still a Lie algebra.

In the transition froin classical to quantum field theory,!® there is essentially
a transition from the space of functions ¢*(t, r) to a space of oberator-valued
distributions. But, again, the algebraic structure of the theory remains a Lie
algebra. ,

A fundamental physical property common to ail systems represented by
structures (I.3b), (1.8b), and (I.14b), is that the acting Newtonian, guantum
mechanical, or guantum field theoretical forces (or couplings) are (local and)
derivable from a potential. A central contention of this monograph is that
these systems do not exhaust the physical reality. As a result, the study of the
methodological formulations for more general systems is needed.

For instance, the Newtonian systems of our everyday experience are not of
type (I.1) because their forces are generally not derivable from a potential.
This is the case, for instance, of the motion of particles with drag forces—
damped and forced oscﬂlators spinning tops with drag torques, etc. Indeed,
a more general (local) Newtonian system is characterized by a collection of
forces some of which are derivable from a potential and some riot, and we write

M — Bt 1, B — Fylt,r, F) = 0, (L16)

where the (%) forces are the collection of forces derivabie (not derivable)
from a potential, i.e.,

, oU  d U
fi, = — at + T (1.17a)
Flt, n 1) # — g—‘é 40U (L.17b)

dr &*

1% See, for instance, Streater and Wightman (1964).
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At a quantum mechanical level, the force responsible for the atomic
structure, the Coulomb force, is known to be derivable from a potential.'*
Thus, Hamiltonian (1.8b) produces a fully satisfactory representation of the
atomic phenomenology. The situation is somewhat different at the nuclear
level. The current representations of the nuclear forces as derivable from a
potential are known to produce an excellent agreement with the experimental
data. Neverthless, the nature of the nuclear forces is a problem which is still
open to a considerable extent at this time, while the study of nonconservative
nuclear processes has lately been increased. The situation is still more different
atthe level of the structure of the hadrons, i.e., the strongly interacting particles
such as mesons, nucleons, etc., where the need of forces more general than
the atomic and nuclear forces is conceivable, and its study is, in any case,
recommendable. '

At a quantum field theoretical level, structures of the Lagrangian densities
of type (I.11) are known to produce a physically effective representation of the
electromagnetic interactions. The same structure, once implemented within
the context of the so-called gauge theories, has also produced a physically
effective unification of the weak and electromagnetic interactions. Neverthe-
less, the problem of whether the same structure can also produce a physically
effective representation of the strong interactions is still open today.

These remarks are intended to indicate that the study of the methodological
formulations for systems with forces not necessarily derivable from a poten-
tial, besides its direct physical significance in Newtonian mechanics, might
prove to be significant for other branches of physics, too. In any case, a study
of this nature first demands the identification of the necessary methodology
within the arena of our best intuition—Newtonian Mechanics, In turn, as
indicated earlier, such methodology is centrally dependent on the assumed
analytic equations.

At this point, an alternative of major methodological implications occurs:

1. Use of the equations originally conceived by Lagrange and Hamilton,
i.e., those with external terms.

d aLl ] aLtOt g
P T a =4 118
dr ot* or* Pk (1.18a)
oH oH .
= = -+ S 1.18b
r apk ? k ar® + k ( 8 )
aL.,

P = (1.18c)

Hiy =M o Llot
F = Ftr, p) = FL1, 1) (L18d)

14 Notice that Equations {I.1) contain, as a particular case, the more general Lorentz lorce.
In this respect, see, for instance, Goldstein (1950).
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In essence, Lagrange'®*¢ and Hamilton!” were fully aware that the
Newtonian forces are generally not derivable from a potential.
Therefore, to avoid an excessive approximaltion of the physical reality,
they formulated their equations with external terms. Oddly, only since
the beginning of this century have Lagrange’s and Hamilton’sequations
been “truncated” with the removal of the external terms, by acquiring
the form of Equations (1.2) and (1.3), which is primarily used in the
current physical literature. Notice that for Equations (1.18b), the
Hamiltonian can characterize the total energy, ie., the sum of the
kinetic and potential energies of all forces admitting a potential
function8

H,=T+U, (1.19)

while all forces that do not admit a potential function are represented

by the external terms. The methodological implications of Equations

(1.18) are nontrivial. To illustrate this aspect, it is sufficient to note that

the time evolution law for Equations (1.18b) is now given by

04 dH, 0A OH, 04

or* dp, dp. o + ap T * (1.20)
while brackets (4, H) violate the Lie algebra laws, Equations (I.7).
By taking into account the central role of Lie algebras in physics, as
recalled earlier, this is an indication of deep methodological implica-
tions in the transition from systems with forces derivable from a
potential to systems with forces not derivable from a potential. This
approach to systems (I.16) is explored in Santilli (1978, Vols. I, IT, and
IIT). Here, let us only indicate that, when properly written, Equations
(1.18b) and (1.20) characterize an algebraic covering of Lie algebras
called Lie-admissible algebras.*® Predictably, this broader algebraic
character has implications at several levels of the theory, eg., the
underlying geometry is no longer of symplectic type but rather of a
broader type which has been called symplectic-admissible geometry
(Santilli, 1978, Vol. II).

2. Use of Lagrange’s and Hamilton’s equations without external terms, i.e.,

d OLF"  OLE’

A(I‘, p= (A, H)cl =

7 TR 0, (I.21a)

OHE . OHE"

=k __ tot - . Lol
= A o (L21b)

aLEn
P, = #‘, (1.21¢)
and .

HER = Py - % — LED. (1.21d)

!5 Lagrange (1788).

8 For historical notes see, for instance, Whittaker, (1904) and Pars (1965).

17 Hamilton (1834). For historical notes see also Whittaker (1904) and Pars (1965).

% Notice that here we are referring to the notion of total energy for a nonconservative system,
i.e., a system which does not conserve such energy by assumption. For a treatment of the case of
damped-oscillator systems see, for instance, Symon (1960).

1% Santilli (1968, 1969, 1970, 1978).
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In essence, systems with forces derivable from a potential can be
effectively treated with only one type of analyticequation,i.e., Equations
(I.2) or (1.3). The case of systems with forces not derivable from a
potential is different. In this latter instance, two types of equations
are admissible—those with and without external terms. However,
when Equations (1.21) are used for systems (1.16), the Lagrangian ot
Hamiltonian structure is not longer of type (1.2b) or (I.3b), respectively.
Instead, these functions must possess generalized structures which, as
we shall see in Section 3.7, can be written in the form?°

N
LEr =3 ) L& v DLEAF™) + Linult v, 1),

k=1 a=x,y,z

LEL = i), (1.22)

free

with a corresponding form for the Hamiltonian. The aspect of this
second alternative, which is relevant here, is that time evolution law
(1.5) is insensitive to the explicit functional dependence of the Hamil-
tonian. As a result, the analytic brackets of the approach are still
Poisson brackets (I.6) and the underlying algebraic structure is still a
Lie algebra. In conclusion, when the conventional Lagrange’s and
Hamilton’s equations can be used for the representation of non-
conservative systems (I.16), the methodological profile is basically that
for systems with forces derivable from a potential, in the sense that the
analytic equations, the time evolution law, the underlying algebraic
and geometrical structure, etc. remain formally unchanged. Neverthe-
less, the nonconservative nature of the represented systems is reflected

20 Notice that generalized Lagrangian (1.22): (a) demands the use of 3N + [ interaction terms,
3N multiplicative and one additive to the terms representing the free motion; (b) is a covering of
conventional structure (I.2b) in the sense that it is a nontrivial generalization capable of re-
producing structure (I.2b) at the limit when the multiplicative interaction terms reduce to unity
{i.e., all the acting forces are derivable from a potential); and (c) does not necessarily possess the
dimension of the energy. (1.22) will be studied further in Chapter 3. At this stage, the following
example may be useful to illustrate the concept under consideration. One of the simplest systems
with forces not derivable from a potential is the particle under a drag force which is linearly
dependent on the velocity. Assume that the motion is in one dimension. The equation of motion is
then given by

mF + yf = 0, F=0

As we shail see in Example 3.1, the above system admits a representation in terms of Lagrange’s
equations (1.21a) and (at least) the following two nontrivially different Lagrangians.

Lfe‘ln = Linl.ILfree + Linl.[l
., 2 _
LinlJ = e!ffm, eree = Jz'mr » Linl,]l =0

kgen __ T ¥ %k
Lm% = Linl.[Lfrcc + Linl.ll

2.7
L, = : In " Ltre, = 3mi2, Lig,u = —¥cr, ¢ = const,

Since the acting force f = —7# is not derivable from a potential, both Lagrangians contain an
essential term which multiplies the term for the free motion. In particular, Lagrangian LE" has
the dimension of energy, while Lagrangian L¥5*" has not. Notice also the differences involved
to recover the case /' = 0. For a study of the differences between these two Lagrangians from the
viewpoint of the transformation theory, see Santilli (1979).
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in a number of aspects. For instance, a necessary condition for Equa-
tions (I.21b) to represent nonconservative system (I.16) is that the
generalized Hamiltonian does not represent the total physical energy
[Equation (1.19)], because otherwise it would imply the absence of
forces not derivable from a potential. On equivalent grounds, one can
see that, under the same conditions, the canonical momentum P of pre-
scriptions (I.21c) does not represent the physical linear momentum
P = mi, or that the canonical angular momentum M,,, =1 x P does
not represent the physical angular momentum M =r x p, etc.

To summarize, a dual methodological profile appears to be conceivable for
systems with forces not derivable from a potential, as induced by the use of
analytic equations with external terms (alternative 1 above) or without
external terms (alternative 2 above)?! In the former case, the underlying
methodology is generalized but the fundamental quantities of the approach,
such as the Hamiltonian H,,, the momentum p, and the angular momentum
M =r x p, possess a direct physical significance. In the latter case, the op-
posite situation occurs, namely, the methodology is the conventional one,
while the indicated fundamental quantities of the approach lose their direct
physical significance. It is hoped that a judicious interplay between these two
complementary approaches to the same systems will be effective on methodo-
logical as well as physical grounds. On the former grounds, certain aspects
which are difficult to treat within the context of one approach could be more
manageable within the context of the other approach, and vice versa. On the
latter grounds, the two complementary approaches could be useful for the
identification of the physical significance of the algorithms at hand, which is
one of the most insidious aspects of the study of nonconservative systems,22

21 See chart A.9 (of the Appendix) for a dual formulation of Liouville’s Theorem.

22 One of the best examples to illustrate this aspect is given by the problem of the guantization
of forces not derivable from a potential which, despite initial efforts, is still an open question today.
Asis well known, in order to comply with the correspondence principle, the familiar quantization
rule

Linear momentum — -? v

must be applied to the canonical momentum [Equation (I.21¢)]. The comparison of the pre-
diction of the theory with the experimental data is then based on ¢xpectation values of the quan-
tum mechanical operator (h/i)¥V. Within the context of systems with forces derivable from a
potential, the approach is fully consistent on both mathematical and physical grounds. The
corresponding situation for the case of systems with forces not derivable from a potential appears
to be consistent on mathematical grounds. Nevertheless, its physical consistency demands a
specific study. Indeed, we are now dealing with the expectation values of the operator (/i)V,
whose Newtonian limit under the correspondence principle, Equations (1.21¢), is not represerita-
tive of the physical linear momentum, i.e., it is a mathematical quantity of the type

P=ycse ! Bi®, v, = const.

Clearly, until the problem of the identification of the quantum mechanical representative of the
physical linear momentum p = mi is not resolved, the physical consistency of the theory in
general, and the comparison of its prediction with the experimental data in particular, are in
question, Notice that the same problem also occurs for other dichotomies, e.g., the canonical
Hamiltonian-vs-total physical energy and the canonical angular momentum-vs-physical
angular momentum. For a study of these quantum mechanical aspects of nonconservative sys-
tems, see Santilli (1978, particularly Volume III).
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The reader should be aware that a rather sizable methodological gap
exists between systems (I.1) and (1.16), and that several conceptual, methodo-
fogical, and physical aspects which are fully established for systems (I.1) need
a reinspection for systems (1.16). To illustrate this situation, it is sufficient to
indicate that systems (I.16) are nonconservative by assumption and, thus,
they generally violate all Galilean conservation laws (for the energy, linear
momentum, angular momentum, and uniform motion of the center of mass).
Besides, the forces not derivable from a potential do not transform form-
invariantly, in general, under the Galilean transformations. As a result, the
problem of the applicable relativity demands a specific study [see Santilli
{1978), particularly Vol. IT].

This monograph is devoted to the following aspects of alternative 2.

(a) The necessary and sufficient conditions for the existence of a rep-
resentation of systems (I.16) in terms of conventional analytic
Equations (I1.21)

(b) The methods for the construction of a Lagrangian or Hamiltonian
from given equations of motion when their existence is ensured by the
integrability conditions

(c) The identification of the most general (local} Newtonian forces that
are admissible by Equations (I.21).

Other methodological aspects are studied in Santilli (1979).

The analysis will be conducted within the context of the so-called Inverse
Problem of the calculus of variations, which, for the case of single integral path
functionals, can be formulated as follows.

Given the totality of solutions y(x) = {y'(x), ..., Y"(x)} of a system of n
ordinary differential equations of order r,??

Fk(x’ y(O]’ y(l)’ ey y(r)) — 0, (1.23)

determine whether there exists a functional
A0 = [ dxL s,y ) (1.24)

which admits such solutions as extremals.

This problem is based on the study of the conditions under which there
exists a function L{x, y'¥, ¥V, ..., y¥~ 1) such that Euler’s equations®* of

23 That is, the nr-parameter family of solutions of Equations (1.23).
24 Enler (1736 and 1765). For historical notes see, for instance, Dugas {(1950).
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functional (1.24) coincide with system (I1.23), i.e.,

Y 1y dd! ;I;(,) Fy. : (1.25)

=9

To reformulate this problem within a Newtonian context, suppose that the
order r of Equations (1.23) is two, the independent variable x is the time ¢,
and the » dependent variables y*(x) are the generalized coordinates ¢*(z)
(see Appendix) or, in the absence of holonomic constraints, the n = 3N
Cartesian coordinates {g*(¢)} = {r(t)} in a given ordering. System (1.23) can
then be interpreted as a system of Newton’s equations of motion in configura-
tion space, i.c.,

Fk(t’ q, q: q) = 03

dq w dzq K
= —F = k=1,2,..., . 126
=Sh d=%3.  a=o), no(126)

The Inverse Problem then consists of studying the conditions under which
there exists a Lagrangian L(, g, §) such that Lagrange’s equations?® in L
coincide with system (1.23), i.e.,

d oL d 6. 0JL
by Ty =
Zo( ' ap di 8¢ ~ T dp og* + dg*

= F(t,q, 4, 4§ k=12...,n 1.27)

On physical grounds, the primary significance of the Inverse Problem
rests on the fact that the acting forces of Newtonian system (1.26) need not
necessarily be derivable from a potential. Therefore, the Inverse Probilem
allows one to study the Lagrangian representations of systems with arbitrary
(i.e., generally nonconservative but local) Newtonian forces,

This problem constitutes the central objective of this monograph. It
should be indicated in this respect that our analysis is restricted primarily to
the problem of the existence of a Lagrangian or, independently, a Hamiltonian,
and that the extremal aspect is ignored. For further study, the interested
reader may consult some of the readily avallable textbooks on the calculus of
variations.

In the rest of this Introduction we shall outline of the prior state of the art.
It should be stressed here that the following quotations must not be inter-
preted as historical notes, which are left to interested historians, but simply as
a report on my findings.

5 Throughout the course of our analysis we shall use the term “Lagrange’s equations™
rather than “Euler—Lagrange equations,” as often (although not universally) used, whenever
the function L is the Lagrangian of 2 Newtonian system.
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Apparerntly, the case n = 1, r = 2 was first solved by Darboux (1891) with
conventional techniques, because it consists of one partial differential
equation, i.e.,

doL oL_ L, L, PL IL
4 _PL. PL L e aid
G5 e o sgaqt aqa Tag et (2)

in one unknown, i.e., the function L. Under certain continuity and regularity
conditions, the theory of partial differential equations guarantees the existence
of a solution. Similar conclusions ¢an be reached for thé casen = land r > 2.

"The case # > 1, r = 2 is not trivial. This is due to the fact that in this case
the problem consists of r partial differential equations, ie.,

d oL BL " %L i+ 2L 4 2L éL
T 3 Ak Z aaad |~ aam T Ak
dt Bq aq" = \agF Bq aq dq ogtar - dq

= Fk(t', q: q: q): k = 1, 2, SR (X (1.29)

in only one unknown, ie., again the function L. As a result, the system is
overdetermined and a solution in this case does not necessarily exist despite
continuity and regularity assumptions. A similar situation occurs for n > 1
and r > 2.

The necessary and sufficient conditions for the existence of a solution L
of system (1.29) were appareiitly formulated for the first time by Helmholtz
(1887)*® on quite remarkable intuitional grounds. In essence, Helmholtz’s
starting point was the property of the self-adjointness of Lagrange’s equations,
i.c., their system of variational forms coincides with the adjoint system (see
Chapter 2 and following). This is a property which goes back to Jacobi
(1837).27 Without providing a rigorous proof, Helmholtz indicated that the
necessary and sufficient condition for the existence of a solution L of system
(1.28) is that the system F, = 0 be self-adjoint.

The problem was subsequently studied by several authors, including
Mayer (1896),2® Hirsch (1897 and 1898),2° Bohem (1900),%° Konisberger
(1901),3° Hamel (1903), Kurshak (1906), Davis (1928, 1929, and 1931),*!

26 Helmholtz did not consider an explicit dependence of the equations of motion on time.
~ Subsequent studies indicated that his findings were insensitive to such a dependence.

27 The equations of variations of Lagrange’s equations or, equivalently, of Euler’s equations
of a variational problem, are called Jacobi’s equations in the current literature of the caleulus of
variations. We shall use the same terminology for our Newtonian analysis. '

28 This author apparently attempted the first proof of sufficency. The proof of necessity is sell-
evident from the self-adiointness of Lagrange’s equations.

2% These authors apparently conducted the first studies for n > 1 and r > 2.

30 This is the first detailed and comprehensive account on the problem.

31 These references contain the best treatment of sufficiency known to me, and one of the
first studies of the indirect representations, namely, the representations of equivalent systems
rather than the original systems as given, These papers are an elabroation of Davis's thesis at the
Department of Mathematics of the University of Chicago in 1926 under the supervision of G. A.
Bliss. Oddly, there is no direct quotation in Davis’s papers of the previous crucial results by
Helmholtz and Mayer.
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de Donder (1935),*? and Rapoport (1938).3* These studies provided major
contributions toward the proof that Helmholtz’s condition, namely, the
condition of variational sell-adjointness for the system F, = 0, was indeed
both necessary and sufficient not only for the case n > 1 and r = 2, but also
for the general case of arbitrary (but finite) dimensionality and order of the
system. Neverthless, as we shall see, a number of technical aspects still
remained 0p'oen.

A somewhat different but rather laborious approach was subsequently
provided by Douglas (1941).3* The remaining and most recent studies on the
Inverse Problem knowh to me are those by Dedecker (1949 and 1950),35
Havas (1957),%¢ Klein (1962),3” Vainberg (1964),3® Edelen (1969),3° Tonti

32 See page 204 of de Donder. Rather unpredictably, this is one of the very few treatises in the
calculus of variations with a treatment of the Inverse Problem that I have been able to identify,
despite a laborious search.

33 This author apparently confronts, for the first time in a direct way, the problem of con-
structing a Lagranglan once its existence is ensuied by the conditions of seli-adjointness.

3 Rather than using the conditions of self-adjointness, this author uses the so-called Riquier
theory of partial differential equations for the case of a system with n == r = 2, by reducingittoa
completely integrable system.

** This anthor conducted a detailed analysis of a prolongation method previously introduced
by Bateman (1931).

*¢ In this reference, the case of indirect representations is studied tq a considerable extent, It
should be indicated here that this study has a central significance on practical grounds, because
Newton's equations of motion are generally non-self-adjoint. The problem of the existence of their
Lagrangian representatioh is then reduced to the problem of finding equivalent self-adjoiiit forms.
The article quoted here also constitutes one of the very few accounts on the Inverse Problem in
the physical literature known to me.

37 The memoir by this author which is quoted here constitutes, to the best of my knowledge,
the first comprehensive attempt at a geometrical interpretation of the integrability conditions for
the existence of a Lagrangian, as identified by Helmholtz (1887). The context is that of metric
differential geometry, with particular reference to certain applications of the theory of generalized
Finsler manifelds to analytlc mechanics via the use of the caleunlus of differential forms. The
significance of this memoir for the Inverse Problem is that it reduces the integrability COl’]dlthl‘lS
for the existence of a Lagrangian to primitive geometrical concepts,

3% The monograph by this author which is quoted here constitutes, to the best of my knowl-
edge, the first operational attémpt at the integrability conditions for the existence of an action
functional within the context of modern functional analysis. The generally nonlinear nature of the
considered operators is essentially rendered treatable with the conventional theory of linear
operators on function spaces via the use of the Frechet derivative. A significance of this mono-
graph for the Inverse Problem is that it provides a basis for the study of the relationship between
the variational and operational approaches to sell-adjointness.

*% The monograph by this author which is quoted here deals with the case of continuous
systems, Even though, in this reference, there is no explicit use of the conditions of self-adjointness,
the author reaches the rather remarkable result that a Lagrangian density for the representation
of linear integro-differential systems of second-order partial differential equations always exists.
In a subsequent monograph (Edelen, 1977), this author provides a detailed study of noncon-
servative nonholonomic systems in terms of the calculus of differential forms.
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(1968),* Horndeski (1974),*' Atherton and Homsey (1975),** Allcock
(1975),* and Santilli (1977a, b, and ¢).** '

The Inverse Problem can be studied today with a variety of modern and
sophisticated mathematical tools which (as emerges from the footnotes to
this Introduction) include the use of functional analysis, prolongation theory,
and differential geometry, to cite only a few. '

However, the emphasis of the analysis of this monograph is on physical
content as well as simplicity of presentation, rather than mathematical
completeness. Asa consequence, L haveselected what apparently is the simplest
but most effective mathematical approach to the integrability conditions for
the existence of a Lagrangian—the variational approach to self-adjointness,
with an economical use of its prerequisites, €.g., the existence theory of differ-
ential equations, the calculus of differential forms, and the caleulus of varia-
tions. Other approaches quoted in this Introduction will be outlined, for the
reader’s convenience, in the charts of Chapter 3 [as well as those of Santilli
{1979)].

4% yainberg’s study on the integrability conditions of the Inverse Problem (1964} was con-
siderably abstract, to the point of remaining either unknown or inaccessible to the broad audience
of applied mathematicians, Tonti’s merit is that of having recognized the significance of Vain-
berg’s studies by developing a reformulation of the operational approach to the Inverse Problem
of considerable practical applicability. A significance of the memoir quoted here is that the inte-
grability conditions for the existence of an action functional, as derived within the context of the
operational approach, coincide with those obtained via a variational approach, ie., they are in
both cases the conditions identified by Helmholtz {1887). This renders the two approaches
equivalent.

41 Tg the best of my knowledge, this author initiated the use in the Inverse Problem of the
cohomology theory and cochain complexes. A point which is significant for our analysis is that
the emerging integrability conditions for the existence of a Lagrangian again coincide with those
obtained with the variational approach to self-adjointness [Lovelock and Anderson (1976)
private communication)]. This indicates that the same integrability conditions can be expressed
in a varicty of different, but equivalent, mathematical languages. For further studies, see also
Horndeski (1975).

*2 These authors made significant contributions within the context of the operational ap-
proach to the Inverse Problem. The paper quoted here also contains a summary of previous
contributions along the same lines of study. )

4} This author considers the problem of the existence of an action functional within an alge-
braic-geometric setting consisting of the reduction of a Pfaffian lincar differential form on a
manifold to a locally Hamiltonian form via the use of certain properties of the Lagrange brackets.
This approach, which is equivalent to the variational approach to self-adjointness for vector
fields on manifold, is particularly significant, e.g., for the extension of the Inverse Problem to the
case of nonintegrable subsidiary constraints.

*4 In these papers [ studied the Inverse Problem in classical relativistic field theories and
initiated the study of the application of this problem to transformation theory. These papers are
based on a variational approach te self-adjointness complemented by the use of the calculus of
differential forms in general and the Converse of the Poincaré Lemma in particular, on account of
the known effectiveness of these latter mathematical tools in studying integrability conditions.
The Newtonian analysis of the Inverse Problem presented in this monograph closely follows the
field theoretical analysis presented in these papers.



CHAPTER 1

Elemental Mathematics

1.1 [Existence Theory for Implicit Functions, Solutions, and
Derivatives in the Parameters

In this section, we shall study some aspects of the theory of ordinary differ-
ential equations, which will later play a central role in several aspects of our
analysis.

The first objective of this section is to review the existence theorems for
implicit functions. Later, these theorems will be useful for the study of topics
such as the Legendre transform, the construction of equivalent forms of the
equations of motion, and others.

The second objective of this section is to recall the existence theorems for
solutions with or without initial conditions. These theorems are useful to
ascertain whether a given system of ordinary differential equations is con-
sistent and, thus, whether or not it represents a physically admissible motion.

As a third objective of this section, we shall outline the theorems for the
embedding ofa solution into a parametric family of solutions and the theorems
of the existence and continuity of the derivatives of such solutions in the
parameters, Later on, this third aspect will turn out to be useful for the char-
acterization of the necessary and sufficient conditions for the existence of a
Lagrangian, namely, the variational forms, their adjoint system, and, finally,
the conditions of variational self-adjointness.

15
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Consider a system of n second-order ordinary differential equations in the
generalized coordinates g*,' ie.,

Fi(tsqiq.7é)=Fi(t!qi:"'5q":q.i9"'7‘1"1‘?5""’@")=O!
i=1,2,...,n (1.1.1)

where

s dq . dq"
¢ = and §* = e (1.1.2)
are the first- and second-order time derivatives, respectively.

In general, we shall use ™ to denote the class of functions possessing
continuous partial derivatives of order 0, 1, 2, ..., m on a region R of their
variables. In particular, we shall say that the (real-valued) function F; of
Equations (1.1.1) are of class ¥™ in a region R**! of the (real-valued)
elements(t, g, 4, §) when they possess continuous partial derivatives up to and
including the order m everywhere in R***!, and we shall write

F,e @"(R¥*1), (1.1.3)

Notice that this property, when it holds, implies that partial derivatives up
to and including the order m exist, are continuous, and “commute,” e.g.,

ImF; g™ F,

. - =-— — i.14
(aqj)ml(aqk)mz (aqk)mz(aqj)ml ( )
m+m=m3=012..,m

When the functions F; are of class €° in R3"*1, they are continuous at all
points of (but their derivatives are not necessarily continuous in) R¥*!,

A point Py of R3*!is aset of 3n + 1 values (to, o, do, do)- A neighborhood
(P,), of P, is the totality of points P = (¥, ¢, 4, §) satisfying the inequalities

lt—tol <& lg—aqol<e ld—dol<e 14— dol <& (L1

A neighborhood of a given value t, of ¢ will be denoted by (t;).. The same
notation will also be used for other neighborhoods.

In general, the region of definition R for the functions we shall consider in
this volume will be a connected set. Unless otherwise stated, such a set will
be tacitly assumed to be open, e.g., t; < ¢ < t,. Qur “minimal” region will be
a point and its neighborhood.

In this chapter, we shall first consider the focal aspect of the existence theory
(for implicit functions, solutions, and derivatives with respect to parameters)
by restricting the values of ¢ to those lying in a neighborhood (t,), of a given
value t,. Then we shall touch on the problem of the global existence theory,

! This chapter is formulated for the reader’s convenience specifically in terms of generalized
coordinates. The results, however, trivially apply for differential equations Fi(x, y, ¥,y =0
in 3n + 1 arbitrary variables x and y*x), p*(x), y"5(x), y' = dyfdx, y" = dy'/dx, k = 1,2,...,m.
For a review of the concept of generalized coordinates, see the Appendix.
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that is, when ¢ can take all the values of an interval 7, < ¢ < t,. By writing
t€(ty, t,) we mean the totality of values of ¢ on the interval (t,, t,), including
the end times.

The matrix
oF, | OF,
aq-l t aqn
JF;
W = (5_;) = : (1.1.6)
1 oF, OF,
o4t 8y

is termed the functional matrix* of Equation (1.1.1). Since Equations (1.1.1)
are not necessarily linear in the accelerations, the elements 8F,/8§’ can, in
general, be functions of (¢, g, ¢, §), and we shall write, symbolically,

H = HRI, (1.1.7)
The determinant ‘
[#] = | #[(R>) (1.1.8)

is called the functional determinant of system (1.1.1) and it is, in general, also a
function of the 3n + 1 elements (¢, g, 4. §).

Definition 1.1.1. System (1.1.1) is called regular (degenerate)® when its
functional determinant (1.1.8) is everywhere non-null (null) in a region R3"*!
of points (2, g, 4, &}, with the possible exception of a (finite) number of isolated
points,

In nontechnical terms, we can say that two possibilities exist for deter-
minant (1.1.8). Either it is identically null as a function, in which case the
system is degenerate, or not, in which case the system is regular. The fact that
determinant (1.1.8) is not null as a function, however, does not exclude the
possible existence of isolated zeros, i.e., the solution of the equation | #| = 0.
This yields functional determinants which are null at their zeros, but not in the
neighborhood of the same zeros. Thus, according to Definition 1.1.1, the
systems are regular in this case. Alternatively, we can say that for a system to
be degenerate, its functional determinant must be null at a point of its variables
and in its neighborhood. For illustrations, see Examples 1.3 and 2.6.

2 This terminology has been derived from the calculus of variations. See, for instance, Bliss
(1946). Matrix (1.2.6) is also called the Jacobian matrix or, sometimes, the Hessian matrix when
related to Lagrange’s equations. :

* It should be mentioned that the above terminology of regular and degenerate systems does
not appear to be universally adopted and several different terms exist, such as standard and
nonstandard; and regular and singular. We believe that the term “singular™ is inappropriate for
our context because the singularities of a system of differential equations, e.g., of the type w' =
A(z)w, are customarily associated with the singularities of A(z) and ot with the properties of the
functional matrix of the system [see, for instance, Coddington and Levinson (1955, Section 4.2)].
Levi-Civita and Amaldi (1927, Vol. I, part 2) called a system normal when | 3#| # 0. Within the
context of the calculus of variations for single integrals, such a condition is equivalent to the
Legendre condition [see, for instance, G. A. Bliss (1946, page 23)]. The case of an infinite number
of nonisolated zeros is not considered for simplicity.
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A subcase of degeneracy is significant for our analysis. System (1.1.1) will
be called totally degenerate when each and every element of its functional
matrix is identically null. In this case, (1.1.1) reduces to a system of n first-
order ordinary differential equations.

In this book, we shall study the inverse problem for the case of systems
(1.1.1), which are regular. The extension of the results to totally degenerate
system is straightforward and will be indicated in the charts of Chapters 2 and
3. However, the extension of the methodology to the case of degenerate sys-
tems is considerably more delicate and will not be considered. For a better
identification of the arena of applicability (and nonapplicability) of the
analysis of this book, see the end of Section 2.1.

Theorem 1.1.1 (Local Existence of Implicit Functions).* Suppose the

Jollowing conditions hold.

(1) The functions Ft, q, §, ) are of class €™, m > 1, in a neighborhood
(Po). of @ point Py = (to, 4o, do, do),” i-e,

Fie€™"[(Po)eds m=1 (1.1.9)
(2) The functional determinant | # | is nonzero at Py, i.e.,
[#](Po) # 0. (1.1.10)
(3) The point P, satisfies all Equations (1.1.1), i.e.,
Fty, o, dy» do) = 0, i=12...,n (L.1.11)
Then there exists a unigue system
§=1qd (1.1.12}

such that

(@) the functions f* are single-valued and continuous in a neighborhood
(No) of No = (t0, 90> do)s i€
| J'e °[(No).), (1.1.13)
(b) the values (t, ¢, 4, ) € (Py). satisfy Equations (1.1.1), i.e,
Fit.a.4.)=0, (t.q.4 f)e(Po), (L1114

(¢c) there exists a constant & such that for each element (1, q,4)€
(Ny),, the set (t,q. ¢, f) is the only solution of Equation (1.1.1)
satisfying the inequalities

fl—8<g<fi+d (1.1.15)

4 See, for instance, Bliss (1946, Appendix A}, Rektorys (1969}, Loomis and Sternberg (1968).
For an alternative formulation, see Chart 1.1.

5 It should be stressed that the theorem holds under the weaker assumption that the functions
F; are continuous and possess continuous partial derivatives with respect to all g, ¢ and 4 in
(Py).. but not necessarily with respect to 1 € (£,), (Bliss, 1946). Other authors (e.g., Rektorys, 1969)
prefer continuity assumptions of the type of expresston (1.1.9). We have selected the latter type of
assumptions because the occurrence of the former in Newtonian mechanics is rather problematic
and we shall not encounter it in this book. .
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(d) at Py, the identities

do = f(to, do» do) (1.1.16)

hold, and

{e) in a sufficiently small neighborhood (Ny), of (tg, 4o, 4o), the
Sfunctions f(t, g, §) have continuous partial derivatives of as many
orders as are possessed by the functions F; in (Py),, i.e., '

STe 4" [(No).)- (1.1.17)

The functions ft, g, ) are customarily termed implicit functions. System
(1.1.12) will be termed the kinematical form in configuration space.®

Theorem 1.1.1 essentially indicates that if a solution Py = (14, g4, do do)
of Equations (1.1.1) is known and conditions (1) and (2) above are verified,
then P can be considered as part of a larger, continuous set of solutions.

In turn, it is possible to prove that when the conditions of Theorem 1.1.1
hold at each and every point of a region R3"*!, then the solutions P can be
considered as part of a larger set defined in the interior” of R¥*1,

In the following, if T is a set of values of time ¢, the notation T; indicates
the set of points t characterized by [t — fp] = 6 with at least one value
io € T, and similarly for the case of more variables.

Theorem 1.1.2 {Global Existence of Implicit Functions).? Let R* ! bea
set of points (t, q(t), 4(t), 4(t)) defined by a set of functions g*(t), §(t), and
g51), which are single-valued and continuous in a bounded and closed region
T of t space. Suppose that

(1) the functions F(t, q, q, §) are of class €™, m = 1, in a neighborhood
(R3n+ 1) ofR3n+ 1 e

F,e€"[(R™"),], (1.1.18)
(2) the functional determinant || is non-null everywhere in R*"*!, ie.,

|| (R?*1) # 0, (1.1.19)
(3) Equations (1.1.1) are identically verified in R*""1, i.e.,

F{R>*Yy =0, (1.1.20)

8 We must mention the fact that Equations {1.1.12) are customarily referred to as the canonical
Jorn: of system (1.1.1) [see for instance, Rectorys (1969, page 817)]. This terminology, however,
could be misleading in our context due to the fact that in mechanics the term “canonical” relates
to phase space formulations, while Equations (1.1.12) belong, by assumption, to configuration
space lormulations. The term kinematical form for Equations (1.1.12) has been suggested to me
by A. Shimony. The term normal form will be used for systems of first-order differential equations
in the form dy*/dx = f*(x, y) [see, for instance, Rektorys, (1969, page 818)].

7 This restriction avoids certain delicate aspects related to frontier points which are not
essential for our analysis. :

¥ See, for instance, Bliss (1946).
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Then there exists a bounded and closed region B***! < R®'*1 with points
(t, g, §) and neighborhoods

(BN, = {t,q, 4|t — tol < 5,19 — g0l € 614 — dol < 8}, (1.1.21)
(t0= qo» qO) € B2n+ 1»

and a unique system
g = it g, 9 (1.1.22)

such that the following holds.

a) The functions f* are single-valued and continuous in (B*"*1);, i.e
s

£1e€°[(B>1),]. (1.1.23)

(b} The points (t, q, 4, f) which they define in R®* " satisfy Equations
(L.1.1), ie, _

Flt,a,4, ) =0, (a4 NHe®R"), (1.1.24)

(¢ There exists a constant & such that for each (t, g, §) € (B*"* '), the set
[t g, 4. f(t, q, §)] is the only solution of Equations (1.1.1) satisfying the

inequalities
fi—e=i=<fi+e (1.1.25)
(@) At all points of B>, ' coiricide with f(t, g, §), L.e.,
i=fit,qd taqdeB>™ ! (1.1.26)

¢) In a sufficiently small neighborhood (B**1);, the functions f* have
y g
continuous partial derivatives of as many orders as are possessed by the
function F;in R®*! e,

fie g "[(B**h),]. . 137

In practice, r_egioh: (1.1.21) can often be reformulated in terms of two values
oftime, ¢, and ¢, in the interior of R*"* *. Then the implicit functions f(z, ¢, §),
when they exist, can be defined for all values t, g(t), 4(t), t €(t;, t5) in the
interior of R***1,

On practical grounds, when a given system (1.1.1) is assigned, it is often
advisable to first check whether the conditions of Theorem 1.1.1 or 1.1.2 are
verified. Indeed, when this is the case, the system can be transformed into the
equivalent form of Equations (1.1.12), which is particularly significant in view
of its unigueness guaranteed by the same Theorem 1.1.1.°

From a Newtonian viewpoint, the implicit functions are often proportmnal
to the acting forces. When this is the case, the anticipated restrictions on the
implicit functions for the existence of a Lagrangian are restrictions on the
acting forces (see Section 3.7).

¥ This uniqueness of Equations (1.1.12) should be compared with the nonuniqueness of
Equations {1.1.1) in the sense that there may exist different functions Fj such that the totality of
solutions of F;-= 0 and F; = 0 (when definable) coincide.
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The existence, uniqueness, and continuity theorems for solutions® are
generally formulated for systems of first-order ordinary differential equations.

Customarily, one introduces 2n variables, say a*, u = 1, 2, ..., 2n, defined
by

2 = g* p=12 el (1.1.28a)
pr pu=n+1,n+2,...,2n (1.1.28b)
and 2p functions, say 5*(t, a*), defined by
— yﬂ #=1’2""’n7
=R —
= {f“‘" p=n+1n+2,...,2n (1.129)

Then the system of 2» first-order equations in the normal form!!
@ —E"ta)=0 pu=12,...,2n (1.1.30)

isequivalent to system (1.1.12) and, thus, to system (1.1.1). We shall now study
the question of the existence, uniqueness, and continuity of solutions for
systems of type (1.1.30).

We must mention, for completeness, that prescriptions more general than
Equation (1.1.28) exist, are equally admlsSIble and are often advisable for our
context.’

Suppose, for instance, that » new variables y, and a set of prescriptions

G(t.g,4,y)=0 (1.1.31)

are assigned i such a way as to have a one-to-one mapping of points (¢, g, §)
of the region R*>"*! into points (1, ¢, ') of an “image™ region R?"*!. This
implies that the functions G; of Equatlon (1.1.31) satisfy Theorem 1.1.1, so
that the normal forms

§ =§a, ) (1.1.32)

exist and are unique, single-valued, and of class ¥'. The substitution of
Equation (1.1.32) into Equation (1.1.1) with the identifications

p_ )d"
@ =1 (1.1.33)

then yields a system of 2n first-order equations in the variables ¢*, which can
be reduced to a form of type (1.1.30) [but, in general, with functions =*
. different from those of Equations (1.1.29)].

We must stress the fact that, in the above approach, the variables (g, y) are
not necessarily canonically conjugate in the sense that Equations (1.1.30) are
not necessarily derivable from Hamilton’s equations.

10 See, for instance, Bliss (1946, Appendix A), Brauer and Nohel (1969, Chapter 3), Akhiezer
{1962, Section 1.9), and Rektorys (1969, Chapter 17). For a more advanced account see, for in-
stance, Coddington and Levinston (1955) and Friedrichs (1965). Alternative versions are also
given in the charts at the end of this chapter.

11 See footnote 6 on page 19 for this terminology.
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However, aiternatives (1.1.28) and (1.1.33) are patterned along the canoni-

cal approach. Indeed, when system (1.1.1) can be represented in terms of

Lagrange’s equations with a Lagrangian L(t, g, ), then prescrlptmns (1.1.31)
become

JL
_G. = L m——
I pl 64‘
and, in this case, the variables (a*) = (g, p) are indeed canonically conjugate.
In particular, when a Lagrangian for Equations (1.1.12) exists, then
prescriptions (1.1.34) may reduce to the form (1.1.28b), i.e.,

Gi=pi—¢=0 (1.1.35)

and in this case the variables (a“} = (g, p) are again canonically conjugate.

Therefore, our approach consists of constructing the not necessarily
canonical system'? of 2n first-order ordinary differential Equations (1.1.30),
which is equivalent to system (1.1.1). However this system is constructed in
such a way that when a Lagrangian (or a Hamiltonian) exists, the variables
a* can be embodied in a canonical structure®® without any formal modifica-
tion of the procedure.

We shall term Equations (1.1.30) the normal form of system (1.1.1). We shall
term Equations (1.1.30) the normal form in phase space only when the existence
of a canonical structure is either established or assumed.

By a solution (integral) of Equations (1.1.30), we mean a set of functions
a*(t) that are (at least) of class €' on (at least) a neighborhood (), of tp and
which, when substituted together with their derivatives in Equations (1.1.30),
all such equations are identically satisfied in (t5),.

By the general solution (general integral) of Equations (1.1.30), we mean the
system of functions

Yi=ni (1.1.34)

Cat = a'(t; ) (1.1.36)

depending on 2n constants ¢*, which are continuous together with (at least)
their (time) derivatives 4“(¢; ¢) on (at least) a neighborhood (to), of £o, and
which satisfy Equations (1.1.30) identically for all values of ¢ € (t,), and for
all values of ¢* in neighborhoods (c}§), of given values cj.

Let the modulus of ¢ be defined by the Euclidean norm

2n i2
mod a = Z (@ ] : (1.1.37)
Without proof, we quote the following theorem.

Theorem 1.1.3(Local Existence of a Solution Through Initial Conditions).
Suppose the following conditions are satisfied.

2 That is, a system of 2n first-order equations which is not necessarily representable in terms
of Hamilton's equations.

13 A geometrical definition of canonical (or symplectic) structure will be given later on in
Chart 2.3.
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(1) The functions B#(t, a) are single-valued and continuous in a neighbor-
hood I, of point I = (ty; cg).

(2) There exists a constant k such that for every pair of points {t, @),
(t, a’) eI, the Lipschitz condition

N k ,
|E(, @) — B, a)] < oz mede —a) - (1.1.38)

is verified. Then there exists in I, one and only one set of 2n functions
a"(t), which is the solution of Equations (1.1.30) in the interior of I, and
which satisfies the initial conditions

a'(ty) = ckb. (1.1.39)

The relationship between a solution a*(¢) and the initial conditions (1.1.39)
is made clearer by the following theorem.

Theorem 1.1.4 (Local Embedding of a Solution into a 2n-Parameter Family
of Solutions). If the functions X, a} satisfy conditions (1) and 2) of
Theorem 1.1.3, and if a*(z) is a solution of Equations (1.1.30) in I ¢ satisfying
the initial conditions (1.1.39), then at a value t € I, there exists one and only
one solution

a* = a't; ) (1.1.40)

of Equations (1.1.30) which passes through every point (t; c) € I,.
The functions a*(t; ¢} and &*(t; c) are continuous and satisfy Equations
(1.1.30) identically for all (t; c) e I,.

In essence, the above theorem establishes that when a solution is known
and conditions (1) and (2) of Theorem 1.1.3 are satisfied, then such a solution
can always be embedded in a family of solutions characterized by neighboring
initial points.

The reformulations of Theorems 1.1.3 and 1.1.4 in configuration space is
straightforward.

For instance, when prescriptions (1.1.28) are used, the solution a’(t; c)can
be explicitly written

g*(t; u, v) (1.141a)
H t: —
@(t; ) {q*‘"(t; u, 1) (1.1.41b)
with initial conditions
g tos ) =, G to; u, v) = ok, (1.1.42)

where ¢* and cf have been separated into the values (u, v) and (g, vy),
respectively.

When the more general prescriptions of type (1.1.33) are used, one can
arrive at equivalent results, usually through simple algebraic manipulations,
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The family (1.1.41a) of solutions depending on the 21 parameters (u, v) will
be referred to as an co 2" family of possible paths in configuration space, and will
be denoted by

T(zlj.'q] = {‘ﬂq = q(t’ i, U), te (to)as (M, U) € (uO: UO)E}' (1‘1'43)
The family (1.1.40) is then also an oo®" family of possible paths and will be

denoted by
£, = {a*]a* = a(t; O), 1€ (o)., * & (e} (1.1.44)

When the family 3", is restricted to satisfy all 2n initial conditions, we shall
call it the actual path. -

The existence and uniqueness Theorem 1.1.3 is of local character, that is,
it deals with solutions in a neighborhood I, of the point I' = (¢,; co)-

We shall now briefly consider the question of the global existence of a
solution, e.g., when joining two distinct points.

Consider a region R2"*! of points (¢, @) such that all points of the closed
box

B2l = {(t, a)||t - to| < KO, |a* — af| < K"} (1.1.45)

for (o, ¢,) € B2+ 1 and for suitably chosen constants K°® and K* lies entirely
in the interior of R2"*?,

Examples of open boxes are the “entire space” —o0 <, a* < +00, the
“half space” 0 < t < +00,0 < a* < +00, or the “infinite strips” —o0 <
t < 400, —|K| < a* < + K|, where K is a number. Examples of closed
boxes can be constructed in a similar way.

All considered paths a*(¢) for, say, t € (t,, t,), are such that all admissible
elements (¢, a) are in the interior of R*"* ™.

The following existence theorem holds.

Theorem 1.1.5 (Global Existence of a Solution Through Initial Conditions).
Let

(1) E* and d5*/da’ be continuous in the closed box B**1 ie., Equation
(1.1.45), for some positive constants K°® and K*,
(2) the bounds
8B (t, a)
da’

|E4(t, a)| < M, <M (1.1.46)

be everywhere verified in B!, and
(3) o be the smaller of the numbers K® and K*/M. Then the sequence of
successive approximations

ab(t) = b,

a(t) = ¢ + j dt 24T, ai(t)].
_ fo (1.1.47)

) f
() = cb + f dt EMt, a ()]
To
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converges (uniformiy) in the interval |t — ty| < o to a unigue solution**
a(t) of Equations (1.1.30), which satisfies the intial conditions

a(to) = cb. (1.1.48)

Notice that the assumptions of continuity of =* and 8=E*/8a* in B!
assure the fulfillment of the Lipschitz conditions (1.1.38) (however, the inverse
statement is not generally true; namely, a function which satisfies the Lipschitz
condition need not be of class €*).

In essence, assumptions (1), (2), and (3) of Theorem 1.1.5 guarantee that the
initial value problem

at = 5, a), =12 ...,2n

1.1.4
a(to) = o4 (14

is equivalent to that of finding continuous functions a*(t) defined in some
interval containing t,, that are the solution of the integral equations of Volterra

type,
T
mm=%+fm3@@ (1.1.50)
fo

Then, such assumptions guaraniee the. uniform convergence of sequence
(1.1.47). '

The uniqueness of the solution can be proved under weaker continuity
conditions than those of Theorem 1.1.5. But such refined results are not
needed for our analysis. Besides, a single set of conditions which guarantees
both the existence and the uniqueness of the solutions of Equations (1.1.30) is
advantageous from a practical viewpoint.

Embedding Theorem 1.1.4 can also be formulated at large:

Theorem 1.1.6 (Global Embedding of a Solution into a 2n-Parameter
Family of Solutions). Suppose that the initial value problem{(1.1.49) admits a
solution a®(t) for all t in an interval (t,, t,) containing ty. If in some neighbor-
hood (R*"% 1), of (1, a(t)) for t €(ty, t,) all functions Z* are of class €, then
a¥(t) can be embedded in an co*" family ¥2", of solutions a*(t; c) for all values
of ¢* in a neighborhood (c}), of c§, only one element of which satisfies the
initial conditions.

It shouid be noted that the above theorem is often formulated by demanding
that the functions Z* are continuous and satisfy the Lipschitz condition
~ (1.1.38) for some Lipschitz constant K.

The formulation of Theorem 1.1.6 is based on the fact that in our analysis
of Newtonian systems we shall not encounter functions Z* which satisfy the
Lipschitz condition but are not of class %*, or which are of class " in a* but
not in ¢

14 Here a “solution” is a set of functions a*(t) such that a#(t) satisfies Equations (1.1.30)
identically in the considered box for all t with |t — ty] < &.
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To properly deal with the equations of variations of system (1.1.1) (to be
introduced in Chapter 2) we finally need the existence theorem of the partial
derivatives with respect to parameters of a solution of Equations (1.1.49).

Theorem 1.1.7 (Global Existence of the Derivatives with Respect to Param-
eters).'®  Suppose that the initial value problem (1.1.49) admits an co?-
parameter family of solutions a*(t; ¢) for all t in an interval (t,, {,) containing
to and all ¢* in a neighborhood (c4), of ¢ If all functions E* are of class €™,
m > 1, in a neighborhood (R*** 1), of the solution (t, a(t)), t €(ty, t5), then
a*(t; ¢) possess continuous partial derivatives up to and including the order
m with respect to all parameters c* in (ch), at all times t€(ty, t;).

In the following, for convenience of notation, we shall refer to all theorems
quoted in this section as the existence theorems or existence theory.

It should be mentioned that our analysis of Newtonian systems can es-
sentially be conducted on the basis of Theorem 1.1.2 on the global existence,
uniqueness, and coatinuity of the implicit functions, Theorem 1.1.6 on the
global existence, uniqueness, and continuity of a solution through initial
conditions, and Theorem 1.1.7 on the global existence and continuity of the
derivatives with respect to the parameters.

For the reader’s convenience, we give in Charts 1.1, 1.2, and 1.3 a simplified
version of the above theorems and outline their application to Newtonian
systems.

1.2 Calculus of Differential Forms, Poincaré Lemma, and Its
Converse

The problem of the existence of a Lagrangian can be reduced, as we shall see in
Chapter 3, to the study of the integrability conditions for a certain system of
partial differential equations.

One ofthe most effective mathematical tools for the study of the integrability
conditions is the calculus of differential forms in general and the so-called
Converse of the Poincaré Lemma in particular.

In this section, we review some basic aspects of the calculus of differential
forms specialized, for the reader’s convenience, to the case where the local
coordinates are the generalized coordinates ¢'. 1t should be indicated from the-
outset that all the formulations considered in this section also apply to the
case where the local coordinates are the generalized velocities ¢ or, for that
matter, any set of (independent) variables.

Our review closely follows the presentation by Lovelock and Rund (1975).
Due to the elementary nature of our analysis, the interested reader is urged to
study this reference (or some other reference' ®) for an in-depth treatment of the
subject.

15 Gee, for instance, Akhiezer (1962, Section 1-8).
16 See for instance, Flanders (1963).
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Let M" be a differentiable manifold!? with local coordinates ¢',i = I,
2,..., n. A generic tensor on M” with r contravariant and s covariant indices
is customarily written T 7'}~ and termed a tensor of type (v, s). In particular,
a scalar is a {0, 0)-tensor, a covariant vector is a (0, 1)-tensor, a contravariant
vector is a (1, 0)-tensor, etc.

The contraction of an infinitesimal displacement dq', i.e., a (1, 0)-tensor,
with a (0, 1)-tensor A{qg), ‘

AN = A(q)dq', (1.2.1)

is termed a 1-form (or Pfaffian forms).'® The addition of 1-forms is carried out
according to the conventional rule, e.g.,

AD 4 BY = A, dg' + B, dg' = (4; + B)) ddq'. (12.2)

The multiplication of 1-forms, however, demands a new operation, called the
exterior product and often denoted by the symbol A, which preserves the
distributive law of ordinary multiplication but obeys the anticommutative
rather than the commutative law according to the rule:

A® A BN = (A; dg’) A (B;dg’)
= A;B; dg' A dg’ .
= —A;B; dq’ ~ d¢'
= 4(A,;B; — B;A) dq' A d¢’. (1.2.3)
The structure emerging from the above product is termed a 2-form.
Repeated use of the exterior product then induces the so-called p-forms

{p < n), which are scalars characterized by the contraction of the antisym-
metric dg" A -+ A dg'7, (p, 0)-tensor with a (0, p)-tensor 4; ---, (¢), ie,

AW — Ao (@) dgi* A - A dgie. (1.2.4)

The ordinary concept of a derivative is now generalized to that of the
exterior derivative of a p-form, which is defined by the scalar (p + 1)-form

dA® = %qu Adgt A - A dgie {1.2.5)

k

For the case of a 1-form, we have

A . )
dAY = 94;, dg A dg™

éq'
=— a—-‘%dq"z A dg
dg't
1 (04, 04 4 an
— = (a9 g ag 2.
2 (aqu aqlz) dq A dq * (l 6)

17 For differentiable manifolds, see Chart 2.1.

12 Tt should be indicated that a 1-form or, more generally, a p-form, need not necessarily be a
secalar. For references on Pfaffians, see von Weber (1900), Goursat (1922), and Cartan (1922
and 1937).
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where the last equality results from the antisymmetric nature of the (2.0)-
tensor dg’ A dq". Equation (1.2.5) can thus be written, more generally,

dA® = (— l)l’ﬁ‘2 dg't A --- A dg'r A dgier, 127

The algebraic manipulation of p-forms and their exterior derivatives is

considerably simplified by the use of the so-called generalized Kronecker
delta. This is a (p, p)-tensor defined by the determinant

o -5
Sl =1t p<n (1.2.8)
o+ %

For p = 1, we recover from the above definition the ordinary Kronecker
delta 5. However, for p = 2 we have

Siiz — 51"1 512 St §iz (129)

Juz Jz 7 n

For an arbitrary p(<n), 8% " ? is the sum of p! terms, each of which is the
product of p ordinary deltas.

If any two contravariant (covariant) indices are identical, then the general-
ized Kronecker delta is null from a known property of determinants. For

p > n, at least two indices must coincide and, therefore,

6l =0, p>n {1.2.10)
When the contravariant and covariant indices are pairwise equal, the
normalization rule

!
ghrlp= (1.2.11)

TR - p)!

can be proved The determlnant of a p x p matrix (m’) can be written'®

Im 6!1 m}l PR m{:. (1.2.12)

JI 1 Jie

Finally, the identitics
Sl dgh Ao A dgle = pldgt Ao A dg (1.2.13)

also hold.!®
By using Equations (1.2.9), we can now write a 2-form as follows.

AP =44, Ydg't A dg?

lllz Izl]

L a,

2[ Jifz2 “rigiz

dg't A dg™. (1.2.14)

1% See Problem 1.4.
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More generally, a p-form (1.2.4) can be written in terms of the generalized
Kronecker delta,

AP = 5“ dgit A - A dgir, (1.2.15)

p'l “ip

Similarly, for the exterior derivative (1.2.6) we have

DA,
dAW = % (aA 4 ) dg* A dg®

aql: 6912

A,
_ 1 511t2 a ot 2 dqh A qul (1216)

Jijz a 53
and, more generaily, for the exterior derivative {1.2.7) we can write

1y o4
dA® = ( i ipay iy
( + 1)' 511 J‘;;-t-l aqlp.n

dqh A A dqu’+1. (1217)

It then follows that the necessary and sufficient conditions for a p-form
(1.2.15) or for its exterior derivative (1.2.17) to be null are

b =0, (1.2.18a)

J'p iy

Sitipes L — 0, (1.2.18b)

dtrip+t dqir+t
Ji - dpe1 = 1:2;"'sn»

respectively.
The above property can easﬂy be seen for the case of a 2-form (1.2.14).
Indeed, we can write

A® = {A — Ag.) dg" A dg®

1112

5‘“2A dg' A dg”

f1ia s

= Z (Asi, — Asi,) dg* A dg = 0, (1.2.19)

i1 <i3
The conditions

82 4,

Jrjz iz = A = 0 j1=j2 = 1: 2: LI ] n, (1220)

J1h2 1211
foliow from the linear independence of the elements dg** A dg* for i, < i,.
Equations {1.2.20) then recover the known property that a necessary and
sufficient condition for the contraction of a tensor A4,;,;, with an antisymmetric
tensor, say B2, to be identically null is that A;,;, be symmetric in its indices.
Conditions (1.2.18) are then a generalization of the above familiar case to
higher orders. ‘ ‘
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We are now equipped to formulate the Poincaré Lemma. For this purpose,
we recall that a p-form (1.2.15) is termed exact if there exists a (p — 1)-form,
say B®~ D called a primitive form, such that

AP = dBle— D (1.2.21)

Also, a p-form (1.2.15) is termed closed whenever its exterior derivative is
identically null, ie.,

dA® = 0, (1.2.22)

We then have the foliowing.

Lemma 1.2.1 (Poincaré Lemma). Every p-form AP = A, _.; dp" A A
dg'r on an n-dimensional differentiable manifold M" with local coordinates
q'G = 1,2,...,n), which is exact and of (at least) class €" in a region R" of
points ¢', is closed in R".
PROOF. From the assumption that 4* is exact, it follows that
dAr = d(dBUJ— 1))
_328,-1....',,_, l Ky d k2 i i1
—ch Adg adgt A ---ndgrr =0, (1.2.23}

where the last equality resitlts from the symmetry of the tensor 8B;,. /0g" 8¢** in

the k, and k, indices. Q.E.D.

A simple illustration of the above lemma is given by the case p = 1, for
which

cip-t

dAD = d(dA™) = d(de)

ap %% . .
== d T d = —d H d 12 — 0 1.2.24
(6q“ q ) agog= 4 ( )

This is equivalent to the well-known property that (under the minimal
continuity conditions indicated above) the curl of the gradient of a scalar is
identically null. Equations (1.2.22) then express the generalization of this
property to higher orders p = 2,3, 4,....

As indicated at the beginning of this section, what is particularly significant
for the study of the integrability conditions is the Converse of the Poincaré
Lemma, rather than the Lemma per se. In order to formulate and prove the
Converse, we need a more adequate characterization of the region of defini-
tion of the p-forms.

A region?® R*" on M" is termed star-shaped when, jointly with a given open
and connected set of points ¢'(i = 1,2,...,n),all points g = 7¢, 0 < 1 < 1,
are also contained in R*". Notice that such a region contains the local origin
g =0

20 For the definition of a region, see page 16.
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Lemma 1.2.2 (Converse of the Poincaré Lemma). Every p-form A® =
Aj o g’ A -+ A dg' on an n-dimensional differentiable manifold M"
with local coordinates ¢'(i = 1,2, ..., n) which is closed, well defined, and of
(at least) class €* in a star-shaped region R*" on M", is exact on R*".

PrROOF. Introduce the following operation on p-forms

P 1
PAP = Z(—I)"1 {J dt T””A,-l...,-p(rq)] grdgt A - A dgtt A dgt A - A dgh

= (p — 1)1 [f dt =F~ lAll :,,(rq):lq"‘ﬁ 'f;, dqu Ao A dqul‘ (1.2-25)

Its exterior derivative reads®’
L ! 8A; ..; )
d(@A(ﬂ)) = Z (— I)r*l I:.( dr P i) ;;:,(Tq}] g
r=t 0 oq
dgt A dg't A - A dghet A dgitt A A dge
1
+ p[f dt 1P~ ‘A,-t...,-p(rq)] dgit A -+ A dg's, (1.2.26)
©
But we can also write
(p¥ r—1 11 Ip(‘rq)
DA = — Z( 1y dr 09
dg A dg' Ao A dgivet A dq"“l Ao A dghe
[f de » 4, "’( Q):l g dg't A - A dge. (1227

Therefore, under the assumptions that the p-form is well defined and of (at least) class
%! on R*", the following identity holds.

1ood . .
d(GAPY |- G(dAT) = {f dTE ['c”A,-,...,-p(rq)]} dg A - A dg'r
0

= Ail “'ip dqil A U A dqip

= A", {1.2.28)
Under the additional assumption that the p-form is closed, we have
d(ZAW) = AW, (1.2.29)
This establishes the existence of a primitive form
Br—1 = g4® {1.2.30)
such that
AW = 4Bie—D (1.2.31)

and completes the proof of the lemma, Q.E.D.

21 See Problem 1.8.
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A few comments are now in order. First of all, it should be stressed thatona
comparative basis with respect to the Poincaré Lemma, its converse demands
a new condition, namely, that the p-forms are well behaved on a star-shaped
region rather than an ordinary region. This condition is needed to ensure the
existence of the integrals of Equations (1.2.25)—(1.2.28). This is clearly a
restriction on the types of p-forms for which Lemma 1.2.2 applies. The problem
of the removal of such a restriction would go outside the scope of this mono-
graph. Therefore, we shall content ourselves with differential forms that obey
such a requirement.

Under the condition that the A® form is of (at least) class €' in R*", the
integrability condition for the existence of a primitive form B?~! is that the
A® form be closed, i.e., that each and every one of the conditions

o BA,
sieipn Tlumia g GG =12, (1232)

Jidp+n aqipu ?

are everywhere identically satisfied in R*"
To summarize, the conditions for the existence of a primitive form (1.2.30)
are that

1. The A® form is of (at least) class ¥’ in a star-shaped region R*",
namely, that the tensor 4; ...; (g) satisfies this continuity requirement;

2. The A*” form is well behaved in R*" and, thus, the integral of Equation
{1.2.25) exists; and

3. The AW form is closed, namely, that each and every one of the integ-
rability conditions (1.2.32) are identically satisfied in R*".

The Converse of the Poincaré Lemma is, therefore, centered on the identi-
fication of the conditions under which a primitive form exists. As a con-
sequence, such a lemma will be crucial for the study of the conditions under
which a Lagrangian exists, as we shall see in Chapter 3. For initial illustrative
applications, see the examples at the end of this chapter.

The significance of Lemma 1.2.2, however, goes beyond the identification of
the integrability conditions. Indeed, it also provides a solution for the primitive
form. More specifically, given a p-form satisfying conditions 1, 2, and 3 above,
rule (1.2.30) provides a solution for the primitive B¥ " form. As we shall see
in Chapter 3, this property will play a crucial role in the methodology of
computing a Lagrangian.

It should be stressed that such a solution is not unique. Indeed, given a
solution (1.2.30), one can construct an infinite family of forms according to
the rule

B — ge—b 4 JCr-2) (1.2.33)

all of which satisfy Equation (1.2.31) identically in view of property (1.2.23). .
This fact is significant for the problem of the “degrees of freedom” of a
Lagrangian, namely, the construction of equivalent Lagrangians [see Santilli
(1979)].
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1.3 Calculus of Variations, Action Functional, and Admissible
Variations

The calculus of variations originated in the eighteenth century with the
problem of determining the maxima or minima of definite integrals of known
functions. Subsequently, the significance of this problem was identified for
several branches of mathematics, physics, and engineering, and the calculus of
variations was developed up to the present degree of sophistication, which
includes disciplines such as functional analysis, differential geometry, and
algebraic topology.

In this section, we shall review the rudiments of the branch of the calculus
of variations which, as Caratheodory puts it,?? is the “servant of mechanics.”
This review appears to be advisable on the following grounds. (a) The
subject of this monograph, the Inverse Problem, was originally developed
within the context of the calculus of variations, as indicated in the Introduc-
tion. A review of the rudiments of this discipline is, therefore, useful to provide
a proper methodological perspective. (b) The approach we have selected for
the study of the integrability conditions for the existence of a Lagrangian or
Hamiltonian (to be introduced in the next chapter) is based on variational
techniques. Therefore, it is useful to identify the admissible variations within
their proper methodological context, the calculus of variations. (c) Later, we
shall be involved with variational principles [see the charts of Chapter 3 and
of Santilli (1979)]. Therefore, it is appropriate to recall that the variational
principles customarily used in analytic mechanics are, actually, a particular-
ization of the more general methodological context of the variation probiems.

As indicated in the Introduction, we are primarily interested in the meth-
odology which underlies the variational problems, rather than these problems
per se. More specifically, in this section we shall review certain aspects related
ta paths, path functionals, and their variations, which are of direct significance
for our subsgquent analysis, while the extremal aspect of the methodology will
be referred to the several excellent treatises on the subject.?3

For unity of notation throughout this volume we shall use the symbol ¢ to
denote the independent variable and the symbols ¢*(¢), k = 1,2,...,n, to
denote the dependent variables, although the symbols more commonly used
in the calculus of variations are, instead, x and y*(x), respectively.

A path (ot path ségment) is the set of values

E={gOite(tn ) k=1,2... n (1.3.1)

for given functions ¢*. The values ¢, and ¢, are termed the end points, with
t1(t,) being the initial (final) point. The values ¢%(t,), s = 1, 2, are called end
values, with ¢*(t,)(g*(t,)) being the initial ( final) value. A path E is of class
%" in the (closed) interval (¢,, ¢,), when each and every function g%(), k = 1,

22 Caratheodory (1935, preface).
22 See, forinstance, Caratheadory (1935), Bliss ( 1946), Gelfand and Fornin (1963}, Rund (1966),
and Hestenes (1966). :
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2, ..., n,is of class @ in it. A similar definition applies for the case of an (open)
regiont K,.

The set of all possible paths forms a rather large space S(E), called function
space. A subset of S(E) constituted by paths E*, E2,... of class ° in (¢, t2),
when equipped with the nonnegative number

I1E¥|® = {Max. valuelEX(®)|, te (ty, to), k= 1, 2,...}, (13.2)

called the norm, constitutes a normed function space of class 4°, N E).
When paths E*, E%, ... of order €™, m > 0,are considered, the norm of order m,

m ik
|E*|™ = {Z Max. value 7 |t€ (t1, Iz)}, (1.3.3)
i=0
applies with the properties
|E¥|™ =0 if and only if E¥ = 0, (1.3.4a)
cEF|™ = |ci|| E¥f™, ¢ = const,, (1.3.4b)
I|Ef + F|™ < |EY|™ + |E||™, Lpk=12..., (1.3.4c)

yielding a normed function space of class €™, /™(E).
The norm allows the characterization of the distance of order m between
two paths E' and E?, given by

D"(E', E?) = |E* — E2|. (1.3.5)

In turn, the concept of distance allows the characterization of the neighborhood
of order m of a given path E, which is the space of all paths E' = E + dE whose
distance of order m from £ is less than £ > 0, ie,

E™EN = {E'\E' = E + OF, |F' — E|" = |3E|" < ¢}.  (1.3.6)

The path E’ so characterized is the varied path. From these definitions, we see
that the continuity properties of a path E and those of its varied path E' =
E + 8E can be different, e.g., E € %? and E' € ¢°. Within the context of the
calculus of variations, the neighborhood of order zero of a given path is
customarily considered. This is essential to study certain aspects of the extre-
mal problems, such as the so-called Weierstrass necessary condition. Within
the context of the Inverse Problem and, more specifically, the variational
approach to self-adjointness, the minimal continuity conditions for paths and
their variations can be unified for simplicity but without loss of generality, and
assumed to be that of class % for configuration space formulations (and of
class %! for phase space formulations). This implies that we shall be dealing
" with paths E!, E2, ... which are of at least class %” and their neighborhoods
also of class €2 (ie., E'', E”, ... € %?). This also implies that the variations
SE', SE2,... have the same continuity properties of E!, E*,.... From a
Newtonian profile, these continuity assumptions imply the study of tra-
jectories {g*(t)} and their variations {8¢*(f)}, which possess continuous
derivatives up to and including that of order two, i.e., not only the velocities,
but also the accelerations and their variations are continuous.
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A path functional is a correspondence which assigns a (real) number A(E)
to a given (real) path E. Several types of path functionais for a given path E can
be conceived. The correspondence which is of central relevance for the cal-
culus of variations, as well as for the Inverse Problem, is given by the quantity

A(E) = rdt Lt ¢, Dle = rdx L(t, E, E). (1.3.7)

When the integrand function L({¢, g, §) is a Lagrangian of a Newtonian sys-
tem, path functional {1.3.7) is generally (although not universally) called the
action functional, or action for short.

The so called simplest variational problem essentially consists of finding the
path E, satisfying the end conditions

Eot,) = uo = {up}, Eo(ty) = vo = {16} (1.3.8)

along which the functional A(E) affords an extremum (1.¢., either a maximum
or a minimum).** Such a path E, is then called the extremal path of problem
(1.3.7).

Notice that the continuity of a given function L(z, ¢, §) can be different than
that of the path E along which it is computed. Throughout our analysis, we
shall only consider functions L(t, g, §) that are of at least class €* in a region
R*7 L of their variables. Within a Newtonian context, these functions will be
called admissible Lagrangians. A path E will be called an admissible path and
its varied path E' = E + 0E an admissible varied path (or its variation 8E,
admissible variation) when E and E’ (or 6E) are of at least class &2

Path functional (1.3.7) is called regular or degenerate (also regular or
singular, and standard or nonstandard) in a region R?"* ! when the integrand
Lisregular or degenerate in it in the sense of Definition 1.1.1. Throughout our
analysis, we shall only consider regular path functionals.

Path functional (1.3.7) is said to possess an absolute maximum or an
absolute minimum along E, when the inequalities

A(E) — A(Ey) <0 (1.3.9a)
and
A(E) — A(Ey) = 0 (1.3.9b)

hold, respectively, for all paths E satisfying certain continuity properties
(usually E & C). The fundamental quantity for the study of the variational
problems is, therefore, A(E) — A(E,). ‘

Of particular significance is the study of the relative maximum or minimum,
which occur when inequalities (1.3.9a} and (1.3.9b), respectively, hold for all
paths E in the neighborhood of E, of order zero, £°(E);. If the case E € &' (E)g,
is considered, inequalities (1.3.9a) and (1.3.9b) characterize the weak relative
maximum and minimum, respectively.

24 The problem we refer to here is also called the variational problem with fixed end points.
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An absolute extremum is also a relative extremum and a weak relative
extremum, but the inverse property does not necessarily hold. This is due to
the fact that if A(E) has an extremum along E, for functions E of class %°,
the same property will be satisfied with paths of class €™, m >. 1, but theinverse
property does not necessarily hold.

The comparison of the above continuity conditions for the extremal -
problem and the corresponding sufficient conditions for the Inverse Problem
(or the variational principles) is instructive.

The total variation of path functional (1.3.7) is given by

AA(E, OE) = A(E + 6E) — A(E),  [OEl™ <¢ (1.3.10)

and it is a functional of both E and SE. Notice that AE(E, §E) is not a linear
functional of 6E.

A path functional A(E) is said to be d:jj’erentzable when AA admits the
decomposition

AA(E, SE) = 5'A(E, 6E) + a|l6E|°, (1.3.11)
im a=0
a0 0

where 814, called the first-order variation of A, is a linear functional of JE.
Without proof, we quote the following theorem.

Theorem 1.3.1 (A First Necessary Condition for an Extremum). A neces-
sary condition for a differentiable path functional A(E) to have a relative
extremum at E = E, is that its first-order variation 6' A vanishes for E= E,
and for all variations 5E0 of at least class %%, ie.,

SYA(Ey, 9E) = 0,  [|IBE,|° < & (1.3.12)

As we shall see, the above theorem characterizes a methodological context
of variational principles. ‘

A path functlonal is said to be twice dyj’erentaab[e if A4 admits the decom-
position

AA(E, 8E) = 51A(E, SE) + 5%(4, 6E) + ﬁ(uaEn‘))Z, (1.3.13)
im =0

|| EN0—~0

where 624, called the second-order variation of A, is a quadratic functional of
SE,
Also without proof we quote the following theorem.

Theorem 1 32 (A second Necessary Condition for an Extremum). A
necessary condition for a twice differentiable functional A(E) to have a
relative extremum at E = E is that one of the inequalities

52A(E,, SEo) 2 0, (1.3.144)
52 A(E,, 6Eq) < 0 (1.3.14b)

holds for all variations 8E, of at least class €°.
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This second fundamental theorem of the calculus of variations has no
counterpart in contemporary analytic mechanics. This is essentially due to the
fact that this discipline considers the customary variational principles only,
which are first-order principles from the viewpoint of the calculus of variations.
Therefore, higher-order varidtions of the action are customarily ignored.

As we shall see during the course of our analysis, this analtyic context is
modified by the methodolegy of the Inverse Problem because the use of the
second-order variation of the action functional will be necessary for the
study of the conditions under which a Lagrangian exists or not. In turn, this
implies an imiplementation of the customary variational principles into
second- (as well as higher-) order forms.

In summmary, of fundamental importance for the Inverse Problem is the
study of both the first- and the second-order variationi of path (or action)
functionals, even within the context where the extremal aspect.of the problem
is ignored. The rest of this section is primarily devoted to the identification of
these variations.

First, we shall identify the first- and second-order variations of the path
{action) functional with fixed end points, i.¢., variations for which

SE(t) = {8¢"(t)} =0, s=12 (1.3.15)
If we assume the following explicit form of the variations,
89"(6) = en(®),
SH(0) = sie) = % 50, (1.3.16)

often called weak variations, Equationg (1.3.13) can be explicitly written?®
dz

+ iz

AA(E, 8E) A(E + 5E) Jt BUISE(®)?

21

L
zJ‘ dt(a—é "—I—gl;céq)

1¢2 (&L _. . _ &L .. . &L '
—| d — dq'dg! + 2 ——— 6964’ 3Gt
+ 7 t(aqlanéqéq + 3 57 q'dq +a o7 qéq)

(1.3.17)

The first- and second-order variations iinder consideration at this time are
then given, respectively, by

51A(E SE) = J (SI; éq* +3Lk5 )E (1.3.18a)

oq' og’ oq' 04’ o4’ o’
(1.3.18b)

27 &L ... 0L .. .
S2A(E, 6E) = 1 dt( oL Sq'dq’ + 2 = 04'0¢" + 5 .-54‘64’)
E

Without proof, we quote the following lemma.

2% See, for instante, Bliss (1946).
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Lemma 1.3.1 (A Fundamental Lemma of the Calculus of Variations). If
the functions Bi(t), k = 1,2, ..., n, are of class €° in (¢, 12), and if

'rzdt BN = 0 (1.3.19)

for all functions n*(t) of at least class %0 in the same interval, which are
identically null at end points,

fit) =0, s=1,2, (1.3.20a)
then
B =0, k=1,2....n (1.3.205)

for all values t € (t,, t2).

By integrating by parts Equation (1.3.18a) and using Equations (1.3.15),
Theorem 1.3.1 and Lemma 1.3.1 imply the following theorem.

Theorem 1.3.3 (Euler’s Necessary Condition). 4 necessary condition for a
path E, of at least class 6" to be an extremal of functional (1.3.7) is that the
Fuler equations ‘

—0, k=1,2....n (1321

Eg

d oL 0L
Lk(EO) = (E an‘ - E&E)

be identically verified along E,.

As indicated in the Introduction, Equations (1.3.21) will be referred to as
Lagrange’s equations whenever the function Lisa Lagrangian of a Newtonian
system, as customarily used in the recent literature of analytic mechanics. A
more adequate term would, however, be Euler-Lagrange equations.

For later use in Chapter 3, let us recall that if the path E, is of class €°, the
integral form of Euler's (Lagrange’s) equations

éL J“ 6L)
— — b dt—] = ¢ = const 1.3.22
(aqk t aqk Eo * ( )

must be used to treat possible corners of E,, Le., points with discontinuous
first-order derivatives. Clearly, the total derivative with respect to ¢ of Equa-
tions (1.3.22) reproduces Equations (1.3.21) identically. Thus, Equations
(1.3.21) and (1.3.22) are equivalent for paths of at least class 1.

The fundamental variational principle of analytic mechanics, Hamilton's
principle,

f2
SLA(E,, 6Ey) = — f dt L(Ep)dq5 = 0, (1.3.23)
. "

follows from Theorem 1.3.3.
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Of particular importance for the extremal problem A(E) is the study of the
so called accessory extremal problem. This consists of the study of the second
order variation (1.3.18b) as a variational problem per se. Theorem 1.3.3,
applied to this problem, yields

SYOA(E,, SEp)) = ﬁf dt JOE)S(6q5) =0 (1.3.24a)

and
1{a*L _ . . AL ... 0L ...
= | ¢ J 2 T 7 ‘og’ - 3 1047 . 1. .
3 (6q' e dg'oq’ + 34 37 oq'dq’ + 3d o0 (5q5q) (1.3.24b)
The underlying equations,
d aJ o
JOE) = |- ———] =10 1.3.2
8 = (G i o™ (1329

are called Jacobi’s equations in the literature of the calculus of variations and
their solutions are referred to as the accessory extremals. The study of ac-
cessory problem {1.3.18b) is essential for the characterization of the behavior
of the second-order variations within the context of Theorem 1.3.2 and results
in the so-called Jacobi’s necessary condition. A review of this condition (which
is centered on the theory of the so-called conjugate points) would bring us
considerably outside the scope of this monograph; therefore, we urge the
interested reader to study the literature on the calculus of variations.

For our needs, it is sufficient here to recall that, when the variations are
restricted to satisfy Jacobi’s equations, the varied path of an extremal path
is also an extremal. This can be seen with the Taylor expansion

d OL(t, q + 99,4 + 69)  OL{t, q + 64, g + 84)
E)y=|— —
Li(Eq + 6Ey) (dt 3qk aqk Eot o5y
_(d0Lt g4 0L g 4)
dt o o /g,
d0J 59, 09) oI, 64,69\
dt 6(5114‘) a(qu) 3Eg
= L{Ey) + JUOEy) 4 -
= J{6Ep) + -+ =0, (1.3.26)

where we have used Euler’s condition {1.3.21). This point also illustrates the
deep relationship between Euler’s equations and their associated Jacobi’s
equations. The latter are uniquely characterized by the former. Also, while
the latter are aiways linear, the former are generally nonlinear. Finally, the
regularity or degeneracy properties of the latter and those of the former coin-
cide, owing to the value of the functional determinant

8%, oL, &L

0(3g) g’ ag' og’

| #|(R) = (R) = (R). (1327)

J(R) =




40 Elemental Mathematics

Regrettably, Jacobi’s equations are customarily ignored in the ‘current
literature of analytic mechanics. As we shall sec in Chapter 3, these equations
will play a fundamental role in the identification of the necessary and sufficient
conditions for the existence of a Lagrangian. This is a reason why the Inverse
Problem also demands the use of second-order variations. It is in this sense
that, even though the extremal aspect can be ignored within the context of the
Inverse Problem, the methodology of the calculus of variations plays a
fundamental role in it.

When the independent variable ¢ represents the time, the variations con-
sidered until now are often called contemporaneous variations, because they
occur at a fixed value of time. The total contemporaneous variation of a path
can then be expanded:

AE = Et) — EQ) = {¢™0) — ¢())} = {ié‘q"(t) + o;;“}, (1.3.282)

S0 = 5O, (13.280)

by characterizing in this way the contemporaneous variations of order s = 1,
2,3,..., of a path, i.e., °*(t). The total contemporancous variation of a path
functional can be subject to a corresponding expansion,

Ad = A(E) — A(E) = ¥ &A + 07*, (1.3.29a)

s=1

1
0°A = 3 SH& 1 4), {1.3.26b)

by characterizing the contemporaneous variations of order s of A(E), &°A. For
the case s = 1, we recover Equation (1.3.18a). However, for the case s = 2,
we have the expression

52 A(E, SE) = % 31(8'A4) = j dt (_ St + SL,‘ b q")
E

oL ... 8L
J Lyt
2J.dt(6 6" q'5q +26 aléqéq +6 aféqéq)E

oL
5y ko 52"‘) , 1.3.30
j (5 P (3 Sk 0d . ( )

which exhibits the presence of the two additional terms in the second-order
variations of the path, which we had ignored in Equation (1.3.18b) because
they are not essential for the accessory extremal problem.?® The computation

26 By using an integration by parts and the fixed end point conditions, the last integral of
Equation {1.3.30) becomes

2
- j dt L(E)$%g"
t

and, as such, it is identically null along the extremai path E,.
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of higher-order variations can then be done by using iterative formula
(1.3.29b).

The above variations are a particular case of the more general noncon-
temporaneous variations, i.e., those also involving a variation of time. The
total noncontemporaneous variation of a path can then be written and expanded
as follows.

AE = E'(t") — E@) = {g™(t) - q"(?)}

= {i 5q () + 6';“}, (1.3.31a)

=1
Fqe) = é NG A ) (1.3.31b)

At=t —t= Y &t+ Ort, (1.3.31c)

s=1
85 1 S1c8s—1
o't = ;5 (o*~ ). (1.3.31d)

The noncontemporaneous variations of order s of a path can then be computed
with the iterative formulae

Slq* = qM(t + 8'0) — g(t) = 8'q* + ¢*o1, (1.3.32a)
5q* = 16131 = 18'(6'¢* + ¢*6")

N R s B d . . a
= 8% + 1018 + 18184 + 317 + 44— (B1de

oy oA a d . . a
= 6%¢" + 814%0t — g*i(6%r)? + L4t o (o'1)o't. (1.3.32b)

This also yields the relationship between the contemporaneous and non-
contemporaneous variations. Notice that the operations of variation and
derivative commute for the former, ie., §1§* = (d/dt)6'4", while they do not
for the latter, ie., §1¢* # (d/dt)é .

On similar grounds, the total noncontemporaneous variation of a path
JSunctional can be written and expanded as follows.

3 153
AAGE, 8E) = f dr Lt ' ) — f dt L{, ¢, )
ti In

Py

&A 4+ 097, (1.3.33a)

naE

5=1

Q>

A = 231(55-&4). (1.3.33b)
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By using the reduction
-dt’ d
C =l — R — (o't ' 1.3.34
dt -~ dt [1 + 5 ( )] ( )
the first-order noncontemporaneous variation of A(E) is given by
- iz A ad s
0'4 = f dt [6‘L + L—(5lt)]
t dt E

© TaL, oL .. oL d .
— dr| — 1 g1k ety 9 1. L — 1t
J:l t[6t5t+aqkéq T LR )]E

2 | dL JaL d s
- tl— olg* + —— 8'¢* + — (Lo't
Ld [6(1" ¢+ 5 0+ )]E
2 d
=f dt[élL +—(L51t)] , (1.3.35)
t dt E
where we have used Equations (1.3.32a).

The second-order noncontemporaneous variation of A(E) is then given by

4 =15(3'4)
a [ d 4
=1 lf dt [51L + —(Lé‘r)]
t dt E

_1 i 1{ 51 i 21 i 1 i £1.4 )81
_foldz{a [5L+dt(Lér) rol(r Sl |

f2 d - 14, 4+ .2
— 2 S ls17 5 el 141
= .[,dt{é L+ s |:5 Lo*t + 3 (L&) t]}E {1.3.36)

Higher-order variations can then be computed with iterative formula {1.3.33b).

For these more general variations, the concept of neighborhood according
to Equation (1.3.6) is insufficient. This is due to the need for using a concept of
distance between two paths E and E’ of different end values. An extended
definition of distance of order m, often used in the literature of the calculus of
variations, is given by?’

P™(E', E?) = |E' — E*|" + |ENtY) — EX(1))]
+ |ENty) — B2 + |ty — to| + [t — t5]. (1.3.37)

This yields the extended definition of a neighborhood of order m:
(E); = {E'\E' = E + 8E,D™(E',E) < &}. (1.3.38)

When considering noncontemporaneous variations, we shall always
assume an extended neighborhood (1.3.38) of at least order two.

27 Gelfand and Fomin (1963).
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When the independent variable ¢ does not necessarily represent time, the
more general variations considered here are referred to as variations with
variable end points, and they characterize the so-called variational problem
with variable end points. In this case, by integrating by parts, the first-order
variations with variable end points of A(E) can be written

N . L . |
0'A(E, OE) = f dt L(E)oq* + ‘ Sg* (g_q" g — L)élt
(1.3.39)
where we have used Equations (1.3.32a). The quantity '

' t
2&51 k (gl;‘q _ )5‘1r

is called the first-order end-points contribution.

When Equation (1.3.39) is computed along an extremal (and thus a
possible) path, we have the so-called Weiss’s principle®® (also called Holder's
principle®®) of analytic mechanics,

$' Ao, 8E0) = 6 dt LGt Dls, = (EPOI(E),  (1341)

(EPC)YE) = (1.3.40)

which is clearly a generalization of Hamilton’s principle (1.3.23). This
broader principle is particularly significant in analytic mechanics for a
number of methodological aspects, such as the derivation of the Hamilton—
Jacobi equation, the computation of conserved quantities, etc., as can be seen
in Santilli (1979).

The inclusion of the Inverse Problem will inevitably demand the use of
higher-order noncontemporaneous variations. The second-order variation
with variable end points of A(E) can be written

SPA(E, $E) = — f “dt LBE)S*q — f dt J(SE)s'q* + (EPCYX(E), (1.342)

where the quantity

oL R oL .
(EPC)X(E) = ’—52 , (6 <4 = L)525 '-*(aqk ¢ - E)(élf)z
1 L , e "
13 k 1 - 1.4 _ il 1§ _ =isl
6"5 5t+26 61(5q go't)alqg’ — ¢'otr)
1 3°L 1 — GG anl? ‘
i -j_ ..j 1 E 3.
2igap G - aB0@ s @) 134y

is called second-order end-points contribution. Higher-order variations and
end-point contributions can then be computed with an iterative procedure.

28 See, for instance, Sudarshan and Mukunda (1974).
29 See, for instance, Pars (1963).
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The variations 5°¢*(5°q*) will be referred to as thie abstract contemporaneous
(noncontemporarieous)variations of order s of a path. They can havean arbitrary
explicit and/or implicit dependence on the independent variable, the path,
and its first-order derivative, i.e.,

gt =840 a. D 8¢° = 59t 4, 4), (1.3.442)
D™E + SE,E) <&,  D™E + SE,E) <, (1.3.44b)
which is admissible by the assumed continuity conditions. When variations
(1.3.44) are computed along a given path, they reduce to the explicit depend-
ence on the independent variabie only, i.e.,
qsqk(t, 4, CI) |E = ésqk(t)s ,
5sqk(tv 9, q)lE ~ 5qu(t)- (1345)

When an explicit functional dependence in Equations (1.3.44) 1s assumed,
we have a realization of an abstract (admissible) variation. For instance, weak
variations (1.3.16) are a simple realization of abstract variations (1.3.44).
However, they are not the only admissible form, and any other functional
dependence which characterizes varied paths in the neighborhood (of the
considered order) of the given path is equally admissible.

The use of the broader functional dependence of the variations according
to Equations (1.3.44) will play a crucial role for the broadening of the direct
representational capability of Hamilton’s principle [see Santilli (1979)].

Chart 1.1 A Theoreém on the Existence, Unigueness, and Cantinuity
of the Implicit Functions for Newtonian Systems3?®

This simplified version of Theorem 1.1.1 is often usefui for practical
applications in Newtonian Mechanics.

Theorem. Given a system of ordinary second-order differential
equations

Fit. g ¢ ) =0, i=1,2,...,n (1)
let:
(1) the point Py = {ty, 4g. Gy, §,) satisfy all the equations of system
(1)
(2) the functions F, be of class €™, m = 1, inthe neighborhood of P,
and
(3) the functional determinant || = | 0F,/04!| be different from 0
at P,

30 See Rektorys (1963).

Nota Bene: The continuity conditions in the accelerations ¢’ can be ignored for
system (3) due to their lingarity in such variables. The functional detetminant for
Newtonian systems in configuration space is the determinant of the factor terms A4, ;.
Unlike the case for system (1), such a determinant is always independent of the
accelerations. Notice the vital role of the regularity condition |4, | # 0 for the very
existence of the implicit functions. Indeed, when such & condition is violated, the
inverse (A,)~" does not exist and the set of alf implicit functions ' does not exist,
either.




Calculus of Variations, Action Functional, and Admissible Variations 45

Then in a neighborhood of (t,, q,. G,) there exists a unigue system of
functions (¢, g, ¢}, termed the implicit functions, of class ¥™ such that

g’ = filt. q. 4) (2)
for all (t, q. ¢} in the neighborhood of (£, q,. 4,).

The application of the above theorem (or, similarly, of Theorems 1.1,1
and 1.1.2) to Newtonian systems is straightforward. Consider such systems
in their fundamental form in configuration space (A.7.5) (of the Appendix),
e,

F, = At q. 0)d, + BAL q. 4). (3)

Let: (a) the point P = (t,, 9,, 4,. §,) satisfy such equations, (b) the
functions A,.J. and B, be of class ¥7, m = 1, and (c) the functional
determinant

F,
%”.I—’—

il =14, (4)

be differentfrom zero at (1. g,. §,). Then theimplicit functions #/ exist, are
unique and of class ¥™ in a neighborhood of (¢,, q,. 4,). and are given,
trivially, by

Fl=—ASB,  (AN) = (A), (5)

Chart 1.2 A Theorem on the Existence, Uniqueness, and Continuity
of a Solution of a Newtonian Initial Valie Problem??

The following simplified version of Theorem 1.1.5 is particularly usefui for
Newtcnian systems.

Theorem. [/fallthe functions B*(t, a) are of (at least) class %' ina reg.ron
B2ot1 of points (t, a%), then the initial value problem

g = ':l‘(f a)‘ (1)
a'(t,) = cb, pu="12...,2n,

admits a unique sofution a*(t) in any interval of time (t,, t,) comtaining t
for which all points (t, a(t)) lfe in the interior of R27+1 and such a solut.ran
is continuous in (t,. t,).

If the region A27+1 is the entire space —co < t, a* < +co, then a
solution exists provided its norm remains finite, This remark is useful to
determine whether a Newtonian system admits a solution for ali values of
time in the interval {—co, +o0). For configuration space formulations of

31 Akhiezer (1962).

Nota Bene: The theorem of this chart also holds under the weaker continuity
canditions that all ¢ and 0=*/0a* are continuous. However, the case when a
discontinuity of the Z* functions in their time dependence occurs, is rather problematic
within a Newtonian context and, as such, we shall ignore it. Notice also that 1o avoid
certain delicate aspects related to frontier points, we have assumed that the interval
(t,. t,) and all elemients (¢, a(t)) are in the interior of Ranvr,
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Newtonian systerns {Appendix A), the requirement of the above theorem is
that, for instance, the implicit functions (¢, q. ¢), are of at least class €
in a region R27+1 = {t, g, g}. Then the solution g* (¢} of the initial value
problem,

fji =f.'.(rl q: q)' (2)
gt = Ul G() =vE, Lk=1,2....n,

exists, is unique, and is of class €7 in any interval (z,, t,) containing ¢, such
that {t. g{t), ¢(2)) lies in the interior of R27+7 But along such solutions,
gk = f& {from the theorem on implicit functions) and the £'s are continuous
functions of timein (¢,, t,). Thus, g% (¢} possesses continuous second-order
derivativesin (¢,, t,) (see alsothe last statement of Theorem 1.1.4), namely,
not only the generalized coordinates and velogities but also the generalized
accelerations are continuous in (¢, £,}.

Chart 1.3 A Theorem on the Existence, Uniqueness, and Continuity
of the Derivatives with respect to the Parameters of
Solutions of Newtonian Systems?3?

For the reader's convenience, we shall again give a simplified version of
certain aspects of the “existence theory,” this time of Theorems 1.1.4
and 1.1.7.

Theorem. When the conditions of the theorem of Chart 1.2 are met,
and the =" functions are single valued, then through every point of the
neighborhood I, = (L, ¢,), there passes one and only one system of
functions of time and 2n parameters c*, a* = a*(t; ¢), which, together with
a* = da*/dt satisfy system (1) of Chart 1.2 identically, are continuous
functions of t e (t,, t,) and possess continuous first-order partial deriva-
tives with respect to alf ¢ e (¢f).

Again, the application of this theorem to Newtonian systems is straight-
forward. Suppose that the initial value problem

filt. q. 4).
W, Gt =vh,  i=1,2....n

t'?‘d'
g'(ty)

satisfies the conditions of Chart 1.2 and, in addition, the implicit functions
f’ are single-valued. Then the solution ¢/(t) exists, is unigue, and can be
uniquely imbedded into a 2n-parameter family of solutions g/(t; u, v),
only one element of which satisfies system (1). Furthermore, such solutions
possess continuous partial derivatives up to and including the second-
order with respect to all values t e (¢,, £,), v’ e (¢]), and v/ e (v )i

m

32 Akhiezer {1962).

Nota Bene: The appearance of the additional condition of single-valuedness
should be indicated here but not overemphasized. In essence, such a condition can be
related to the uniqueness of the imbedding of a solution into a 2n-parameter family of
solutions. Such unigueness, however, will not be crucial for our analysis. What will
turn out to be of primary importance, particularly for the conditions of self-adjointness
{Section 2,1), is the continuity of the derivatives of the solutions with respect to the
parameters, namely, that the variations (2.1.2) and (2.1.3) be continuous. Such
variations, however, are never unique in the sense that for system (1) there always
exists a family of admissible variations.
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Chart 1.4 A Relationship between Local and Global Solutions for
Conservative Systems3@

Consider a one-dimensional system of one particle of mass m and co-
ordinate x(¢) moving on the half-line (0, <o) under the action of a con-
servative force with potential ¥"(x(¢)). The Hamiltonian is H = Imx2 +
¥ {x) and the equations of motion are

X=v,
109y (1)
YT T max

Suppose that 8% /dx € (%9, Lips} uniformly on every compact subset of
(0, c0). Then system (1) admits a unique local solution x®(t) > G in the
neighborhood of each value ¢, > 0.

It is possible to prove that the only case where the focal solution x°(#)
does not extend to a global solution is when the particle runs into zero or
off to infinity in a finite time. If none of these two possibilities occurs, the
motion represented by Equations (1) in (0, o) is called complete. We can,
therefore, say that under the assumption that the motion is complete, a local
solution of Equations (1) always extends to a global solution in (0, ).

Without proof, we quote the foilowing theorem.

Theorem. Suppose that &8¢ [0x € (¥°, Lips) uniformly on each com-
pact subset of (0, 00). Then:

the motion is not complete at 0 if ¥ is bounded above in O

the motion is not complete at oo if V' is bounded above for x = 1 and

rL.(oo
L VN - (%)

for some N > Sup ¥ (x), x = 1.

Significance: The above properties are significant both ‘within the
framework of classical mechanics as well as in conducting a comparative
study of the corresponding case in quantum mechanics. In the latter case,
the Hamiltonian is the (symmetric) operator —(1/2m) d?/dx2 — ¥"(x).
Then, it is possible to show that the classical and quantum mechanical
motions are not equivalent when the potential ¥°(x) is complete at oo both
classically and quantum mechanically and 8¥ /dx is “too large"’ compared
to 7.

Chart 1.5 Hiflbert Space Approach to Newtonian Mechanics 34

It is generally assumed that Hilbert spaces appear only within a quantum
mechanical context. However, recent studies indicate that Newtonian
systems can also be studied within the framework of such spaces. In this
chart, we touch on certain background questions only. The Hilbert space
approach to the Inverse Problem will be considered in Charts 3.16 and 3.17.

33 Reed and Simon (1975, Vol. ll, Appendix to Chapter X.1).
3 Reed and Simon (1975, Vol. I, Section X-14).
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Hamilton’s equations characterize a generally nonfinear system of 2n
first-order ordinary differential equations in the finfte-dimensional phase
space of the # = {g, p} variables. In order to introduce a Hilbert space, such
equations must be turned into an equivalent /inear system of equations inan
infinite-dimensional space. This can be acomplished by considering first a
map m(a,. t) = a(t) from the (2n + 1)-dimensional A?7+' space of
initial data @, and time ¢ to the 2n-dimensional space A2" of the solutions
a(f) of Hamilton' equations satisfying such initial data, and then intro-
ducing complex valued functions f on A27 through the action of an oper-
ator U, according to the expression

(U, F)(a) = fim(a, 1))- M
Then we can write
d(U,F) _ .
Ta e
2n 2n
j da* hif, g} =j [ | da*ih. f1g:
n=1 =1
£ g heC=(R2, (2)

where {f, g} is the Poisson brackets and the last property can be proved by
using an integration by parts. The Liouville form and Liouville operator
are defined, respectively, by

i, 9) =S

2n
da*{f, g}H
4

H=

and
Lf = {f, H}. (2)

It is then possible to prove that (a) the Liouville form is skew-symmetric,
e, (f. g) = —Ilg, A, (b)if He ¢ and {, g belong to the domain of L, then
{f, Lg) = I{f, g), and (c) —iL is a symmaetric operator. If the theorems for the
existence, continuity, and uniqueness of a gfobal solution of Hamilton's
equations hold, then it is also possible to prove the Liouville Theoremn,
namely, that U, is a unitary operator. In this case, U, characterizes a one-
dimensional unitary group whose infinitesimal generator is —/L, and —iL is
essentially seff-adjoint on C=(R2n).

However, Hamilton's equations do not generally possess global
solutions (e.g., when there are forces due to collisions), in which case it
is not possible to extend —iL to a self-adjoint operator. As a result, self-
adjointness properties can be more easily established in quantum mechanics
than in Newtonian Mechanics (in their operational sense). This confirms
a predictable difference in the treatment of these two disciplines within the
context of Hilbert spaces. Indeed, even for simple conservative systems,
the classical Hamiltonian A = T{g) + V{g) can be unbounded from below
or above, while the corresponding guantum mechanical Hamiltonian can
be bounded on account of the Uncertainty Principle. Besides, possible
singularities of the potential V (e.g., the Coulomb potential) are made
worse in the Newtonian case because they enter into the definition of £,
with the overall consequence that they can be better handled in 3 quantum
mechanical context. Despite (or, if you like, because of) these and other
technical difficulties, the Hilbert space approach to Newtonian Mechanics
remains intriguing and potentially effective. ‘
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EXAMPLES??

Example 1.1

The equation F(4, §) = § — ¢** = 0 is regular (Definition 1,1.1) in any region R?
of points (g, §) because its functional determinant |6F/6§| = 1 is a numerical con-
stant. The function F(4, §) is continuous in R? (of class %), but it does not possess
continuous derivatives nor does it satisfy the Lipschitz conditions in g for any region
R? that includes the value § = 0. Therefore, its solutions exist but are not unique. In-
deed, both integrals

G=0 and =t —2° (1)
are solutions of the equation satisfying the initial conditions
g(tey = 0, th =2 (2)

The solution ¢ = 0 is then called a singular integral (Rektorys, 1969, page 737)
because the uniqueness condition is broken.
Example 1.2

The equation

FgiH=4-¢"=0 1
is regular and satisfies the existence and uniqueness theorem. Indeed, its integral is
given by

q= s ¢ = const. 2)

and it is unigque.

Example 1.3
The system
o+ 47 + oPq; —aqr” =0,
i — 437 + o7gx + ogi? = 0, (n
o # 0, g, # 0

satisfies the existence and uniqueness theorems for implicit functions and, therefore,
can be reduced to the kinematic form

g =fi = —oq.,
éz = f2 = +‘qus
The system also satisfies Theorem 1.1.5. Tts solutions can be written

@

g, = (¢, cos dar + ¢; sin o) V2™ 4 (¢, cos ut + c, sin da)e~ /2
g, = (¢, sin 3t — ¢, cos 3at)e! ™ 4 (—c; sin Lot + c, cos Jar)e 1V,
Theorem 1.1.7 is satisfied, too, for an interval of time (¢,, t;), say, in the interior of

(0, #/2x). Then q;, 4; and §;,i = 1, 2 arecontinuous and possess continuous derivatives
with respect to the four constants of integration, '

35 For references on differential equations with extensive applications see, for instance,
Rektorys (1969) or Brauer and Nohel (1969). '
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Example 1.4

Consider the 1-form A = A,(g) dg’ and suppose that it satisfies all conditions (1).

(2) and (3) given at the end of Section 1.2 (page 32) for the applicability of the Con-

verse of the Poincaré Lemma. Integrability conditions (1.2.32), in particular, read
dA4 dA 84

o = e " gt ®
Then Lemma 1.2.2 ensures the existence of a O-form, i.e., a scalar function ¢{g), such
that its exterior derivative coincide with A‘Y, By using Equation (1.2.25), such
scalar is given by _ .

1
b= U e Ak(rq)} ¢ @
Q

The above statements are a reformulation, in the language of the calculus of differ-
ential forms, of the known property according to which a necessary and sufficient
condition for a vector to be the gradient of a scalar is that its curl vanishes. Besides a
more rigorous formulation of this property, the use of the calculus of differential forms
also provides a solution for the scalar function. It should also be indicated that, in the
ultimate analysis, this is a solution of the system of partial differential equations in the
unknown ¢,

X0 i=12....n @)

which is overdetermined (because the number of equations exceeds the number of
unknowns), One of the most significant applications of this case to Newtonian
Mechanics is that when 4; represents an acting force Fi{¢). Then, the above integra-
bility conditions are the necessary and sufficient conditions for such force to be con-
servative, i.e., Equations (A.4.7) (see Appendix). The extension of the case to a differ-
entiable manifold with local coordinates 4* (rather than ¢*) yields the necessary and
sufficient conditions for the existence of a power function, ie., Equations (A.5.11).
Notice that the method also provides a solution for the primitive form.

Example 1.5

Consider the 2-form A™ = A4, dg" A dg* with antisymmetric (2, 0)-tensor
A; (= — A,,;,), and suppose that it satisfies all the conditions of Lemma 1.2.2. Then

the integrability conditions read

PN 2 P /. FRR- Y- PR . 19
R s s AU

They are the familiar necessary and suflicient conditions for an antisymmetric tensor
to be the curl of a vector, say B{g). Indeed, Lemma 1.2.2 guarantees the existence of the
i-form B'Y = B, dq' such that dB'"Y = A, In this case, the underlying system of
partial differential equations in the unknown B; is

- oB; 1/éB.. 0B,
1 2iyia 21 _ i3 0l _
2057 (Al'u'z - 'aq,-;) = Ay, — 3 (5(}; - @) =0 (2)
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and its solution, again by using Equation {1.2.25), is given by

B, =2 [fldr rA,-k(zq):' q~. (3)
0

Notice that this solution is not unigue because of the “degree of freedom™
B® o B = B 4 4RO BO = ¢(g), @

for which 4B = dBW, Notice also that the formulation of the problem within the
context of the calculus of differential forms is more restrictive than that of the ordinary
approach, because of the condition that the tensor A, ;,(4) be well behaved in a star-
shaped region R™ of points g. In turn, this guarantees the existence of the integral of its
solution. One of the most significant applications of this case to classical mechanics is .
that when the tensor A, ,, represents the electromagnetic field F,, in the variables
{¢) = (t, r), (c = 1), The method provides not only the necessary and sufficient
conditions for F,, to be the curl of the 4-potential (4,) = (¢, A), but also a selution for
A,

Example 1.6

Consider again a 2-form A® = A, dg"" A dg' which satisfies all the conditions
of Lemma 1.2.2, but suppose now that the tensor A, ;, is symmetric, i.e.,, A;,;, = Aiy,.
Our problem is that of identifying the necessary and sufficient conditions for a sym-
metric tensor 4, ;, to be derivable from a vector B; according to

1z

1 {éB, 6B,
Ay == [ ) (1
2 2 (aqlg aqn) ( )
This problem can be solved by using Lemma 1.2.2 twice. The 1-form
84;,, 084, .
Q. = [Pan i) g o 2
(aqu Py ) q i1 (2)
is closed if and only if
%4, ; 4, . .
aQ, . = 18— gt A dg =0, 3
i1ia (aq,., aqu aq,4 aq'z) g AN ag . ( )
When the above conditions hold, there exists a O-form I, = —T;; *® for which
.. . !
Qi =dly,;, = —2dg™. 4)
dq*
From the first use of Lemma 1.2.2, we then have the identities
0A4;; 94,; &U;;
D Tt ®
dq g oq
Now introduce the 1-form
oy, = Ay, dg't — Ty, dg™ (6)

36 According to footnote 18 of page 27, this is a case in which a tensor, without any contraction
with the differentials of the variables, is considered as a zero-form.
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This form is closed, ie., dw; = 0, in view of

A, 0Au . ;] D .
s TRb) et A dgt = — 2 dg A dg®, 7
(6(]‘2 aqu)q A dg oq= 4T~ N
From the second use of Lemma 1.2.2, then, a 0-form B; exists such that
oB;, .
L=t gy, 8
Oy = o (3
1€,
0B,
Ay ===+ T 9
tifz2 aqrz + U~ ( )

By interchanging the i, and i, indices and summing up, the desired relation holds in
view of the antisymmetry of the I'; ;, terms. The integrability conditions are then, from
aQ,, =0,

iz

1f2

62/41 i azAi i azAr' i 52Ai i
e — =0, (10}
aqla aqlz aqla aqlz aqu aqu aqla aqu
A significant application of this case is that when the symmetric tensor Ay, rep-
resents the strain tensor of the Theory of Elasticity.

Problems

1.1 Consider the second-order ordinary differential equation
tilnt —§—tghn 3 =0

Identify an interval of time for which the theorem of Chart 1.1 (for the existence of the
implicit functions) holds. Prove that in such an intérval the theorem of Chart 1.2 (for the
existence of a solution) also holds and identify such a solution.

1.2 Consider the following variation of the system of Example 1.3.
i+ Ga + o¥gy ~ agy? =0,
G2 + G2 + #’q; + ugi? =0,
o # 0, g, # 0.
Prove that for such a system both ilj‘iplicit functions f' and f do not exist.
1.3 Compute a solution at large of the system

qy — 4+ ‘jz_ =0,
. g+ 3 —q, =0
1.4 Prove properties (1.2.11), {1.2.12), and (1.2.13).

1.5 Prove that the generalized Kronecker delta (1.2.8) can be written in terms of
the contravariant and covariart Levi-Civita tensors as follows

Sarip = gy s,
1.6 Prove that the exterior product of a p,-form with a p,-form satisfies the tute

AP A Al = (_l)mpzA(pz) A Ate
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L7 Prove that the exterior derivative of the exterior product of problem 1.6
satisfies the rule
d(A“’" A A(pzl) = (dA("“) A Al + (—l)"‘A(”” A (dA(-"Z))

1.8 Prove the identities

a ! _ ! 84, ..i (q)
P J;dr 714, "',"v(?‘-q) = Ldr o _6;‘—’

which have been tacitly used for Equations (1.2.26).

1.9 By using the Poincaré Lemma, prove that the exterior derivative of the ele-
ments dg't A - A dg' is identically null. '

110 Prove Equations (1.3.39) and (1.3.42).




CHAPTER 2

Variational Approach to
Self-Adjointness

2.1 Equations of Motion, Admissible Paths, Variational Forms,
Adjoint Systems, and Conditions of Self-Adjointness

In this chapter we introduce a methodological tool of central relevance for our
analysis, the conditions of variational self-adjointness, which will later result
to be necessary and sufficient conditions for the existence of a Lagrangian or
Hamiltonian (Chapter 3).

Thissection is devoted to a presentation of the basicideas as close as possible
to their original derivation,! i.e., for systems of second-order ordinary differ-
ential equations that are generally nonlinear in the second-order derivatives
and, as such, generally non-Newtonian (see Appendix A). The specialization
of these ideas to the various Newtonian forms of differential equations will be-
worked out in the subsequent sections. The comparison of the variational
approach to self-adjointness and that for operators acting on linear spaces will
be considered in Section 2.8 and Chart 3.16. The algebraic significance of the
variational approach to self-adjointness will be worked out in Section 2.9,
while its geometrical significance will be indicated in the Charts at the end
of this chapter and in Chart 3.18. :

Throughout this section we consider a system of n second-order ordinary
differential equations

F(p)=Ft, g, =0, i=12...,n (2.1.1)

! See, for instance, Frobenius (1878), Helmholtz (1887), Mayer (1896), Kurshak (1906), and
Davis {1929).

54
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which is generally nonlinear in all the variables ¢*, 4%, and 4*, and we assume
that it satisfies the global existence theorems of Section 1.1 in such a way that
the co®"-family of solutions 73", exists, is unique, is of (at least) class %2 in
(t1, t;), and possesses continuous derivatives with respect to the 21 parameters
in the neighborhood of given values.

Our objective is the identification of the conditions of variational self-
adjointness without the necessary knowledge of the solutions. This will
allow us later (Chapter 3) to compute a Lagrangian, when it exists, also with-
out the necessary knowledge of the solutions. By recalling that the systems
considered are generally nonlinear, this is clearly a central requirement for the
practical effectiveness of the methodology of the Inverse Problem.

This objective is achieved by

1. Considering the fimctions F, rather than the equations F; = 0;

2. Computing these functions along a one-parameter path 2 = {g*(t; w)}
te(ty, ty), wel, k=1,2,...,n, which is of (at least) class % in ¢
and of class %" in w but is not necessarily a solution of Equations (2.1.1);

3. Applying the variational approach to self-adjointness to the functions
F; along &, ie., F(2).

More generally and in line with the assumptions.of Section 1.3, we shall
call the family of admissible paths that characterized by all one-parameter
functions g*(¢; w) satisfying the indicated continuity conditions. The function
F; can then be computed along any element of this family.

To implement the variational approach to self-adjointness we begin with
the construction of the variations of the admissible paths, which can be
defined by?

K
ro =Ll | k=12...n 2.12)
ow w=0

From the viewpoint of the calculus of variations (Section 1.3), quantities
(2.1.2) are, in essence, the finite part of the contemporaneous first-order
variations of ¢*. Indeed, we can write §'q* = 5*(t)w, we0,.

It is readily seen that, by construction, the variations #*(¢), considered as
functions of time, have the same continuity properties of g*(¢; w), namely, they
are of (at least) class ¥2 in (¢, t,). This implies that the derivatives

k

7(t) = Z—i (2.1.3)

o
ok _Yd

w=0 w=0

exist and are continvous in (¢,, t,).

* The analysis can be equivalently carried out for w in the ncighborhood of any (finite)
value w°.



56 Variational Approach to Self-Adjointness

Our second step is that of constructing the so-called system of (first-
order) variational forms of Equations (2.1.1). This can be done by computing
the functions F; along a one-parameter admissible path, by differentiating
with respect to w and letting w = 0. In this way, we reach the system

dF;

M) = d_M;

_oF,
w=0 aqk

'k+%
T og*

w=0

aF.
"+ oz

wlk
= , (214
w=0 aqk 1

w=0

which, from the viewpoint of the calculus of variations, can be considered as
the finite part of the contemporaneous first-order variations of Fy, ie.,
SF, = M{mw, wel,.

Notice again the distinction between the variational forms M(y) and the
associated equations M(n) = 0, called equations of variations. These latter
equations essentially restrict the class of variations along which the forms M;
are computed.® This restriction, even though not excluded, is not necessary
for the variational approach to self-adjointness and, therefore, we shall not
assume it,

Since the original functions F, are known and the path £ along which they
are computed is also known, all coefficients of the variations in Equations
(2.1.4) are known, and we shall write

Mn) = ag(On* + bu(i* + calt)i, (2.1.5)
where (at w = 0),

oF;
Q. = 6—4"’ by =

oF; oF;
a‘q_—k, Cip = %IE (216)

Notice that, given a system of functions [Equations (2.1.1)] not necessarily
linear in q~, q and &, their variational forms (equations) are always linear
in #*, #* and if".

The variations #*(t), as defined by Equat10ns (2.1.2), are not unique. We
shall call the family of admissible variations that family characterized by the
variations (2.1.2) of all possible admissible paths. This means, in practice, that
all functions #*(t) of at least class 2 in (¢, t,) are admissible. Two or more
elements of this family can be constructed by considering two or more ad-
missible paths, say g*(z; w), §(t; w), etc. Equations (2.1.2) then yield the
variations

2.1.7)

P

8q* . og"
e 94 = oq

R T W |

which are admissible because of class %7 in (z,, t,).

3 1t is significant to note that, when the original system (2.1.1) is consistent, so is the system of
equations of variations (see Problem 2.11).
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We shall call the family of admissible ordinary variational forms that family
characterized by the computation of the forms M; along all admissible
variations, i.e.,

{Mi(@)} = {aya* + byd* + cud, a=n7,... €€t t2)}), (2.1.8)

where the term “ordinary” is introduced to stress the fact that the procedure
is here referred, specifically, to ordinary differential equations.*
Our next step can be characterized by the foliowing definition.

Definition 2.1.1. A system of (ordinary) variational forms M () is termed
the adjoint system® of forms M () defined by Equations (2.1.5) when there
exists a function Q(x, 7)® such that the Lagrange identity’

M) — VG = & 0, ) .19

holds for all admissible variations.
To identify a possible structure of the adjoint system M,(#) and of the
functions Q(y, %), consider the relations

M) = Ffagn' + byt + e, i

. ood . d . , . d
= ffa..n + — (f*h..n’ — 1\ (Fc. W — v — (#c,;
- "Wu’? + dt (ﬂ bu’? ) + dt [(’7 Cu)rf ) 4t (’7 Cu)}
. d . o4
— W Z ih.. P (#e. ) 2.1.
= by + o = (e (2.1.10)

1. d . d* .
= [nlaij T (fi'hi) + 3 (??'Cij):l

¢
dlr.. . . 4 .
— | #h..w Bl — wdl — (Fe..
+ [nb.m + Feyiq — 1 d:(”cu)]'

* For the extension to partial differential equations, see Santilli (1977a).

% The term adjoint was, apparently, proposed by Fuchs {1873).

® Q(x, #) is sometimes called the bilinear concomitant.

7 Condition (2.1.9) was, apparently, introduced by Lagrange. See Bocher (1917, page 23) and
Ince (1927, page 124), Notice that this condition can also be turned into an integral form. This
yields the Green identity:

[ aetrna, — it = 10

Ouranalysis will be based on the Lagrangerather than the Green identity due to certain uniqueness
problems related to the latter.
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Thus, M(7) and Q(y, #) can be given, respectively, by
T (o — gk d o 2
M(#) = Fay — — ([{Fb) + 57 (e (2.1.11a)
dt dt
and

Y R P S 4
Qn, i) = by’ + freyn’ — 0’ I (#'e;p)- (2.1.11b)

Theorem 2.1.1 (Uniqueness of the Adjoint System). Every system of
(ordinary) variational forms M; which is a contintious function of time in
(¢,, t,) possesses one and only one® adjoint system M.

The idea of the proof is the following. Suppose that there are two adjoints
M (7) and M;(#)) for each given form M (). This implies the existence of two
functions O(x, ) and Q'(n, #), such that

M — it = O, §'M, — ' = O 2112)
Then we can write
it~ 1) = 5 (@~ ) @113
But the integral
szdt n(M, — M) =10 - Q'I (2.1.149)

must be independent of the path in (, 7)-space. This can be so, in view of the
continuity conditions, if and only if M () = M(#).

Notice that the above argument excludes also the trivial degrees of freedom
M; = M; + c;c; = constant.

Theorem 2.1.1 can also be studied under weaker continuity conditions of
the forms M,(y), but we shall not indulge in analyzing this aspect at this
time.®

Notice that the actual functional dependence of M, is in the elements
(t, 4, #, #) and, thus, the notation M(y) must be considered symbolic. The
function Q is also, in general, a function of the elements (¢; #, 7; #, ).

Clearly, under the assumed continuity and regularity conditions, the con-
cept of adjointness is reciprocal and involutive. It is reciprocal in the sense

8 The uniqueness is referred here to the functional structure of the forms M; and not to the
variations #; along which they are computed.

9 However, we must indicate that, as we shall see more clearly later, when the variations
#* are of class $™, m < 2, in the considered region of time there exist considerable difficulties for
the conditions of self-adjointness. This is a reason for our restriction to equations of motion
which possess solutions of at least class 2.
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that if M #) is the adjoint of M (r), then M (n) is the adjoint of M,(#). It is
involutive in the sense that if applied twice it reproduces the original form
identically.

We are now equipped to introduce a concept of central significance for
our analysis. '

Definition 2.1.2. A system of (ordinary) variational forms M;(} is termed
self-adjoint when it coincides with its adjoint system M (n) for all admissible
variations, i.e., .

M (n) = Mn),
i=1,2,...,n, ne%-. (2.1.15)

The conditions of self-adjointness can be derived by imposing the identity
between forms (2.1.5) and (2.1.11a), i.e,,

. d d?
agt* + bt + eyt = ntay — gt (1*by) + i (),  (2.1.16)

which vields

Cix = Cii» (2.1.17a)
ba + by = 264, (2.1.17b)
g — ay = & — by : (2.1.17¢)

We shall call Equations (2.1.17) the conditions of self-adjointness of the
variational forms (2.1.5).

A system of ordinary differential Equations (2.1.1) is called self-adjoint
when its variational forms are self-adjoint. By substituting definitions (2.1.6)
into Equations (2.1.17), we obtain the relations

oF; OF,
Fraair v 2.1
o 04" (2.1.182)
9F, oF, _ d@F, d (0F, &F, .
aqk + aql - dt aqk - di (aqk aq,); (2118b)
OF, OF _dTd (oF) OF,
ot aq'  de|dt\og’) o4’
1d {0F, OJF,
24t (5; a—¢)= (2.1.18¢)

which must be satisfied everywhere in the considered region R**! of points
(t, g, 4, 4, §). We shall call Equations (2.1.18) the conditions of self-adjointness
for systems of ordinary second-order differential equations. To my best knowl-
edge, such conditions were first identified by Helmholtz (1887).

Theorem 2.1.1 and Definition 2.1.2 imply the following theorem.
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Theorem 2.1.2 (Self-Adjointness of Systems of Ordinary Second-Order
Differential Equations). A necessary and sufficient condition for a (regular)
system of second-order ordinary differential equations (2.1.1) to be self-adjoint
in a region R**1 of points (t, 4, 4, 4, q) is that all conditions (2.1.18) are
everywhere satisfied in R*"" 1,

When at least ore of the conditions (2.1.18) is violated, we shall call the
system non-self-adjoint.

In practice, given a (regular) system (2.1.1), one first sees whether the
functions F; are of at least class %2 in a region R>**! of points (¢, g, 4, §).'°
When this is the case, for the self-adjointness of the system it is sufficient that
all Equations (2.1.18) are identities among functions. Notice that Equations
(2.1.18)imply, in general, third-order time derivatives of ¢*. Thus, even though
the continuity condition F, e ¥? is sufficient, when Equations (2.1.18) are
computed along a path (rather than considered as identities among functions),
_ sucha path is assumed to be of at least class €. For later use (see next section),
notice also that, if the functions F, are lincar in the §’s, then no third-order
derivative of ¢* appears in Equations (2.1.18), and their computation along
a path of class €* is sufficient.

A most important property is that, according to Theorem 2.1.2, the self-
adjoininess or non-self-adjointness of system (2.1.1) can be ascertained with-
out any knowledge of the solutions. Indeed, it is sufficient to ascertain whether
conditions (2.1.18) are satisfied as identities among functions (without
necessarily considering their computation along given paths), as we shall
illustrate with the examples at the end of this and the next chapter.

This is a rather remarkable occurrence. In more explicit but nontechnical
terms, we can say that the machinery of the variational approach to self-
adjointness, after producing the central conditions {2.1.18), can be ignored in
practical applications. We are referring here to: (1) the family of admissible
paths, (2) the family of admissible variations, (3) the systems of variational
forms (and equations), (4) the systems of adjoint forms (and equations), and
(5) the self-adjoint or non-self-adjoint systems of variational forms (or equa-
tions). All these tools play a crucial role in the derivation of conditions (2.1.18).
Nevertheless, the net result is a set of conditions on the original functions F;
that can be directly tested without any need of variational techniques and-
without any knowledge of the solutions of the system considered. As indicated
earlier, the latter occurrence will allow us to ascertain whether a Lagrangian
exists and, in case of afirmative answer, to compute it, without any knowledge
of the solutions of the system considered.

For completeness, however, it should be recalled that the terms self-adjoint
or non-self-adjoint systems of ordinary differential equations refer to systems of
ordinary differential equations whose systems of variational forms are self
adjoint or non-self-adjoint.

10 This is due to the fact that conditions (2.1.18) involve second-order partial derivatives.
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We are now in a position to identify the arena of applicability of the methods
considered in this book. This can be done by considering the following five
different classifications of Newtonian systems. The emerging resirictions on
the applicability of the methods under consideration then trivially extend to
ordinary differential equations of non-Newtonian interpretation (e.g., those
of the Optimal Control Theory).

Classification 1: Holonomic or Nonholonomic Systems

This classification arises from the nature of the acting constraints (see
Appendix). Its significance for our analysis rests on the fact that the meth-
-odology for the problem of the existence of a Lagrangian demands a con-
siderable amount of technical implementation in the transition from holono-
mic to nonholonomic systems, The analysis of this volume is restricted
to holonomic systems that can be written in configuration space according to
Jfundamental form (A.7.5):

Fg) = Ault, 9. D' + Bt 4. 4) = 0,
k=1,2,...,n (2.1.19)

If the constraints are nonholonomic, the reduction to the configuration space
of the generalized coordinates cannot be performed. We are dealing, then,
with a system of second-order ordinary differential equations (i.e., Newton’s
equations of motion) subject to a system of subsidiary constraints. The
methods of this book are expected to be extendable to this latter class of
systems. Nevertheless, such an extension will not be considered at this time.

Classification II: Local or Nonlocal Systems

In principle, a Newtonian system can be nonlocal, in which case it demands
the use of integro-differential equations. These systems are excluded by the
analysis of this -volume, which is restricted to local ordinary differential
equations, i.-, equations of type (2.1.1). It should be indicated in this respect
that this latter class is sufficient for our needs because it includes conservative,
dissipative, and dynamic systems according to their conventional inter-
pretation as reviewed in the Appendix. Notice that the problem of the existence
of a Lagrangian or Hamiltonian is trivial for (holonomic) conservative
systems but is not trivial for arbitrary local systems. From now on, we shall
tacitly assume that fundamental form (2.1.19) represents a holonomic system
with arbitrary (but local) Newtonian forces. When the holonomic constraints
are absent, we shall tacitly assume that the variables ¢f, k = 1,2,...,n = 3N,
represent the Cartesian coordinates Hi=12...,N,a=uxy z(inagiven
ordering) of the considered systems of N particles in a three-dimensional
Euclidean space.
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Classification III: Systems of Class ¥™, m > 2 or of Class €™,
m < 2 in Their Region of Definition

This classification arises from the integrability conditions for the existence of
a Lagrangian, which, as we shall see in Chapter 3, are the conditions for self-
adjointness (2.1.18) and, as such, exhibit the presence of second-order partial
derivatives. From now on, we shall restrict our analysis to systems (2.1.19)
which satisfy the continuity conditions

Ay, Bre G(R™H D, mz=2. (2.1.20)
The above assumption, together with the condition of regularity,'! also
guarantees!? the consistency of the system considered, (i.c., the existence of a
physically acceptable motion). When a Lagrangian for the representation of
systems (2.1.19) exists, conditions (2.1.20) correspond to the assumption that
such a Lagrangian is of at least class ¥* in R¥*! an assumption rather
familiar in the calculus of variations.!® It should be indicated that the problem
of the existence of analytic representations for systems (2.1.19) can also be
considered with the minimal continuity conditions,

Ay, B e @™(R*Y,  m> 1, (2.121)

by means of their reduction to normal forms (Section 2.4) and the identi-
fication of a Hamiltonian (Section 3.12), rather than a Lagrangian. The
- Hamiltonian would then be, when it exists, of class 2, a minimal continuity
assumption which is also familiar in the canonical formulation of the
calculus of variations.*3

Notice that the assumed continuity conditions exclude impulsive motions.

Classification IV: Regular or Degenerative Systems

This classification arises from the nature of the functional determinant
{Section 1.1). Its significance rests on the fact that the methodology for the
existénece of a Lagrangian is highly sensitive to the regularity or degeneracy of
the functional determinant. The analysis of this volume is restricted to systems
(2.1.19), which satisfy the regularity condition

aF,
|# [(R) = Er

7 (R) = [A5{(R*H) # 0 (2.122)

1 This condition is requested for the existence of the implicit functions which, in turn, allow
the reduction of Equations (2.1.19) to the normal form (Section 1.1). If the condition of regularity
is violated, continuity assumptions (2.1.20) are not even sufficient to guarantee the existence of a
solution.

12 Assumptions (2.1.20) are actually redundant for this purpose, with their weaker form
(2.1.21) being more familiar (see Chart 1.2).

12 See, for instance, Bliss (1946, page 7).
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at every point (¢, g, §) of the considered region of definition. It should be
indicated here that, on practical grounds, it is sufficient to demand that the
functional determinant is non-null as a function of (¢, g, ). However, this
does not exclude possible zeros of such a function along the path considered.
To avoid occurrences of this type we shall, from now on, tacitly assume that
the region of definition of systems (2.1.19) is selected in such a way that its
functional determinant is everywhere non-null in it. For an illustration of this
point, see Example 2.6,

Classification V: Self-Adjoint or Non-Seif-Adjoint Systems

This classification arises from the use of conditions (2.1.18) and it will be
shown to be crucial for the problem of the existence of a Lagrangian, The
analysis of this volume is restricted to self-adjoint systems. [The problem of
the existence of analytic representations for nonselfadjoint systems is treated
in Santilli (1979)].

2.2 Conditions of Self-Adjointness for Fundamental and Kine-
matic Forms of Newtonian Systems

Under the restrictions of the preceding section, the central objective of this
volume is the study of the necessary and sufficient conditions for the existence
of a Lagrangian representation of (local) Newtonian systems in the funda-
mental form:

Fy= Au(t. ¢, §)¢' + Byt 4,9) = 0, (2.2.1a)
Ay, By e GHRMH Y, (2.2.1b)
| A HR™ 1) # 0 (2.2.1c)
or in the equivalent kinematic form,
¢ — M99 =0, (2.2.2a)
Sre @} (RN, (2.2.2b)

where, from the theorem on implicit functions,
fr=—AkB, (At = (4 (2.23)

This objective demands the specialization of the conditions of self-ad-
jointness (2.1.18) to Equations (2.2.1a) and (2.2.2a). Let us begin with the
former case. Assume that for Equations (2.1.1) all conditions (2.1.18) hold.
Then the system is necessarily linear in the accelerations . This is due to the
fact that, since the left-hand side of Equations (2.1.18b) is independent of &,
all terms 8F,/6§' must be independent of the accelerations, Therefore, we
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reach the important conclusion that a necessary (but not sufficient) condition
for a system (2.1.1) to be self-adjoint is that it is of the Newtonian type (2.2.1a).
Conditions (2.1.18a) now read simply

AI-J' = Ajl" (2.2.4) '
Since the coefficients of the §' terfns of Equation (2.1. 18¢) must vanish, we have

0y _ 04y
8¢ a4

(2.2.5)

The above conditions, together with Equations (2.2.4), imply that the ex-
pressions dA,,/d4’ remain unchanged under all permutations of the indices
i j, k.

From Equation (2.1.18b), by using Equation (2.2.1a) and properties (2.2.5),
we obtain

B, 0B; _d 4, (% +6A,-k)..k

J
it i_ 2" . j
o + g dt ¢  og

8Ay | [0y 4 | Ay 0y | Ay #
2[at +(6q g + T g a7 + 5 (2.2.6)

Equations (2.1.18c¢), by using Equaticns (2.2.5), can be written

OB, B, (aA,.-k ~ %E) w, 1d (5Bi aBJ‘), @227

8¢ o \og aq 2di\od ~ ag

which can hold identically if and only if the following separate sets of identities
"hold.

0A; 04y 10 (B, 0B
G o 268 (aq*‘ EFY (2.282)
0B, ©B; 1{0 . 3)(B, 8B

i O (9B _ 085 228b
G oq {ac +d ﬁq"} (an a.;r) (2.2.80)

Equations (2.2.8a) are not independent, since they can be obtained from
Equations (2.2.6) and (2.2.5).'* Equations (2.2.8b), however, constitute an
independent set of conditions,

14 See Problem 2.,7.
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In this way, we obtain the following sets of independent conditions.

Ay = A;, (2.2.9a)
%ﬁ _ %?k (2.2.9b)
% ‘;—z’ = 2{2 + ¢ aiqk}AU, 7 (2.2.9¢)

Lik=1,2,...,n

which must hold everywhere on R*'*? for system (2.2.1) to be seif-adjoint.
We shall call Equations (2.2.9) the conditions of self-adjointness for the
Sfundamental form.'*

The above situation can be summarized by the following theorem.

Theorem 2.2.1 (Self-Adjointness of the Fundamental Form). A necessary
and sufficient condition for a holonomic Newtonian system,

Aki(t’ q, q)q! + Bk(ta q, q) = 0; k= ]-s 2: ey By (2210)

satisfying the continuity and regularity conditions
Ay, Bye ™R, m=2, (2.2.11a)
[ A | (R*"*1y £ 0, (2.2.11b)

in a region R*"*1 of points (1, g, 4} to be self-adjoint in R***', is that all
conditions (2.2.9) are satisfied everywhere in R*"!,

We must stress again that, strictly speaking, when conditions {2.2.9) hold,
system (2.2.10) has self-adjoint variational forms. When at least one of con-
ditions (2.2.9) is violated, we shall call the system non-self-adjoint.

Essentially, continuity conditions (2.2.11a) guarantee the existence and
continuity of all derivatives appearing in Equations (2.2.9) everywhere in
R?***+1.18 Regularity condition (2.2.11b) plays a crucial role in Theorem 2.2.1.
Indeed, the study of the corresponding theorem for degenerate systems is
considerably more delicate.!”

15 Conditions (2.2.9) have apparently been derived for the first time by Mayer (1896) and then
worked out in more details by Davis (1928 and 1929).

'¢ Notice that, strictly speaking, the conditions Ay, = " and B, e % are sufficient. Nevertheless
this occurrence, as compared with the unified condition (2.2.11a), has little practical significance
in Newtonian mechanics.

17 Basically, the difficulties are due to the fact that, when the condition of regularity is relaxed,
the continuity conditions (2.2.11a) alone are not sufficient to guarantee the existence of a solution.
This, in turn, affects the question of the existence of the adjoint system as well as its uniqueness,
both of which are needed to properly define the conditions of self-adjointness.
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Another aspect which we must stress is that conditions for self-adjointness
(2.2.2) or {2.2.9) do not imply the linearity of the system either in g or ¢~

When the co2" family of possible paths g*(¢; u, v) for (¢, t;) and (v, v) €
(1o, vy). is known, and conditions (2.2.9) are verified, we can alternatively say
that system (2.2.1) is everywhere self-adjoint along all possible paths q(¢; u, v).

For an illustration of Theorem 2.2.1, see the examples at the end of this
chapter as well as those in Chapter 3. As a trivial (but significant) example,
consider conservative systems of the type'®

a
m;f; — F(r} = m;f; + o 0, 2.2.12)
where
Wan ‘ 3N . '
=5 20 VEE®RY, m=22  i=12..,N (@213

Then conditions (2.2.9) reduce to the single set of conditions

s
war e 2214

which are implicit in continuity properties (2.2.13). Thus, when the acting
forces are derivable from a potential ¥(r) of (at least) class €2, the systems in
the form (2.2.12) are self-adjoint.

We now study the sets of all independent conditions of self-adjointness for
the kinematical form (2.2.2a). Conditions (2.1.18a) are always identically
verified for systems in this form. Conditions (2.2.2b) become

af;  of;

i o= (2.2.15)

and constitute a first independent set. Conditions (2.2.2c) can be written

6_12_%_1{a+,ki}(aﬁ 6j})+1(52ﬁ f’zfj)q-k

2 o 2Ya  Taf(\ogd " aq) T 2\od od  oF ad
(2.2.16)

and can hold identically if and only if the following distinct sets of conditions
hold.

»n o
T~ O 22.172)
of o, 1({o .. o(% &
U8 _1Jo L 0% I 2.17b
o o 2{3: TNy T o (22175)

18 We assume here no summation on repeated indices.
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In this way, we obtain the following sets of all independent conditions

o, o _
05 T3 0, (2.2.18a)
3%, 8%,
6q_, 5‘q“ - 6@‘ 5qk = 0: (2218b)
o o 18 e l{df o
3 ag " 2{5: T oi\ar " ag) (22189)

which must be verified everywhere in R2**! for system (2.2.2a) to be self-
adjoint. We shall call Equations (2.2.18) the conditions of self-adjointness for
the kinematical form.

From Equations (2.2.18a) and (2.2.18b), we see that a necessary (but not
sufficient) condition for system (2.2.2a) to be self-adjoint is that it is linear in
the velocities,'® i.e., of the type

@ — pift, ) — oft, @) = 0. (2.2.19)
Then equations (2.2.18a) for system {2.2.19) become
Pyt p =0, (2.2.20)

and Equations (2.2.18c), in view of Equations (2.2.20), can be explicitly
written

Opu  ony  Ops\ . (007 0a; Gpy\ _
(6q" Yo T ) T \eg T =0 @22

Clearly, Equation (2.2.21) can hold everywhere in R?**! if and only if each
term within the parentheses individuaily vanishes. We obtain, in this way, the
following theorem.

Theorem 2.2.2 (Self-Adjointness of the Kinematical Form). A necessary
and sufficient condition for a Newtonian system in the kinematical form

G — g, =0, i=12...,n (2.2.22a)
fie®™(R>™Y, m>=1 (2.2.22b)

to be self-adjoint in a region R*"*! of points (t, q, §) is that the system is
linear in the velocities, i.e., of the type®®

g — piyts )’ — oi{t, g) = 0, (2.2.23a)
Py GGEFHR™TY),  m= 1, (2.2.23b)

1% problem 2.5.
20 We assume the minimal continuity conditions (2.2,23b} in view of the appearance of only

first-order partial derivatives in conditions (2.2.24).
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and all the conditions

P+ P =0, (2.2.242)
3pi; |, Opa | OPu
Py TR 2 =), 2.2.24b
a¢* o = oq ( )
dpy; 0oy do;
=t 224
a og og° (2.2.240)

are satisfied everywhere in the subregion R™ ' e R**! of points (¢, q).
y € reg P

When at least one of the conditions of the above theorem is not verified, we
shall say that the kinematical form is non-self-adjoint.

When the implicit functions represent the acting forces, the conditions of
self-adjointness for the kinematical form are ultimately restrictions on the
acting forces. Notice that cond1t10ns (2.2.24) do not imply llnearlty in the
coordinates g,

The analysis of this section relates to an arbltrary number # of dimensions.
For n = 1, we have the fgllowing corollaries.

Corollary 2.2.1a. A necessary and sufficient condition for a holonomic one-
dimensional Newtonian system in the fundamental form

A(t, g, Q)q + B(1, g, Q) =0,
A, Be®™(R?), m=1, A(R?) #£ 0,
to be self-adjoint in a region R* of points (t, q, §) is that the condition

0B _04 04,
2g ot ag°

(2.2.25)

(2.2.26)

holds everywhere in R®,

Corollary 2.2.2a. A necessary and sufficient condition for a one-dimensional
holonomic Newtonian system in the kingmatical form,

) ij—f(t,q,(j)=0,
fe®d™(R?, m=1,

to be self-adjoint in a region R> of points(t, g, §) is that the implicit function is
independent of the velocity 4.

(2227

By comparing condltlons of self-adjointness (2.2.9) for the fundamental
form (2.2.1a) and conditions (2.2.24) for the kinematical form (2.2.2a), an
aspect of considerable methodological 51gn1ﬁcance emerges. Let us first recall
thata (regu]ar holonomic) Newtonian system in the fandamental form can be
equivalently written in its kinematical form. The aspect in which we are inter-
ested at this point is that, despite the above equlvalence, if the system in the
fundamental form is self-adjoint, the same system in its equivalent kinematical
form is not necessarily self-adjoint, and vice versa.
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Let us illustrate this property with a simple example. Consider the con-
servative system (2.2.12) under the assumption that the potential function is
not linear in the coordinates. Its kinematic form is?!

1 av

bt e =0 (2.2.28a)
oy

oror,” 0, (2.2.28b)

ie., it is of type (2.2.23), where all p’s are identically null. Then conditions
(2.2.24) for Equations (2.2.28) reduce to

1 &* 1 &
m; O, 6r;  m; Or; Or;

=0, (2.2.29)

and systent (2.2.282) is self-adjoint if and only if all masses are equal.??

Therefore, if we start with a conservative system (2.2.12) of N particles, all
with different masses. (m; # m;), which 1s self-adjoint when written in the
fundamental form (2.2.12), after performing the transition to its equivalent
kinematic form (2.2.28) the system is no longer self-adjoint. In this case, we
can say that the simple operation of “division by the masses” applied to
system (2.2.12) is insufficient to break its self-adjointness,

More generally, we have the following property.

Lemma 2.2.1 (Independence of the Solutions from Self-Adjointness
Properties of the Equations). Systems of ordinary differential equations
that are equivalent to a self-adjoint system are not necessarily self-adjoint.

This property will turn out to be crucial for the construction of an analytic
representation of non-self-adjoint systems [see Santilli (1979)].

The variational approach to self-adjointness presented in Section 2.1 and in
this section extends to systerns of ordinary differential equations of arbitrary
order. A unified approach to the conditions of scif-adjointness for systems of
ordinary differential equations of arbitrary (finite) order is presented in
Chart 3.10. The following theorem for the first-order case is significant for our
analysis.

Theorem 2.2.3%3 (Self-Adjointness of Fifét Order Differential Egtiations in
Configuration Space). A necessary and suﬁic:ent condition for a system
of ordinary first-order differential equat:ons in configuration space,

Flt,g.d)=0, k=12...,n, (2.2.30)

21 We assume here no summation for repeated Latin indices.

22 See also Example 3.5.

3 See Mayer (1896) and Havas (1973, Appcndlx B}. For the field theoretical case, see, for
instance, Santilli (1978, Vol. I).
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which is of at least class €2 in a region R*"* " of points (¢, q, ), to be self-
adjoint is that the system is linear in the velocities, Le., of the type

Fo= Xyt 9 + %69 =0, (2231
and all the conditions of self-adjointness,

Xk.' + Xik = 0, (2232&)

08X,  0Xy | 0Xy
- : = =0, 2232b
aqk 6q: aqj ( )

8X, oy, aYy, -
=t —— 2.2.32

ot ¢ oq” ( °)

are identically verified in the subregion R 1 e R*™*! of points {t, ).
ProOF. Conditions (2.2.18) for system (2.2.30), after simple manipulations, become
?F,  8F,

S L I ) 2.2.33
o oF g o (2.2332)
oF;, OF,
iy ko, 2.2.33b
37 + 3 ( )
F, oF, 1(& 2 ) (0F, &F,
aff—a—€=f*+q*—k ) (2.2.33c)
agf 8yt 2 \or aqg*i\e¢  of

The combined use of Equations (2.2.33a) and (2.2.33b) demands that the system be linear
in the velocities (Problem 2.5). Conditions (2.2.32) then follows by specializing Equations
(2.2.33) to system (2.2.31). Q.E.D

Let us recall that system (2.2.30), in the terminology of Section 1.1, is
totally degenerate. The above theorem indicates that the variational approach
to self-adjointness for regular second-order systems can be trivially extended
to the case when these systems are totally degenerate. The reader shouid,
however, be alerted that the extension of the analysis to the case of “bona fide”
degenerate systems of second-order differential equations is not trivial, owing
to the presence of subsidiary constraints. See, in this respect, footnote 17 of
page 65. In any case, this extension demands specific investigations that will
not be considered in this book.

The important property that the Lorentz force is variationally self-
adjoint is presented in Example 2.7.

2.3 Reformulation of the Conditions of Self-Adjointness within
the Context of the Calculus of Differential Forms

As indicated earlier, our study of the integrability conditions for the existence
of a Lagrangian will be based on the calculus of differential forms in general,
and the Converse of the Poincaré Lemma in particular. This requires a
reformulation of the conditions of self-adjointness within such a context.
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The Lagrangian representations of Newtonian systems in their fundamental
forms (2.2.1a), i.e., the identifications

d L oL F*L #L ., 6*L oL
T T ek amakd tamamnd toma T am
dt 8t ogt 8dt 8¢t a4t dgte g ot gt
= A, G + By, (23.1)
k1 = 1,2,...,n
demand the validity of the following separate equations
AL
3™ 8g = Ay ;s (2.3.2a)
%L d*L oL

+ks =
ot aa o~ B (2.3.2b)

Suppose a particular solution, say K(¢, g, §), of Equations (2.3.2a) exists. From
the continuity and regularity conditions of Equations {2.2.1), it follows that
such a solution must be of (at least) class ¥* and nonlinear?* in the velocities.
The most general solution L of Equations (2.3.2a) can then be written

L(t, g, 9) = K(t, g, @) + Dylt, 9)d" + C(t, ). (23.3)

Indeed, if X is a particular solution of Equations (2.3.2a), then so is function
(2.3.3), because of the appearance in such equations of the second-order
partial derivatives in the velocities.

We now substitute structure (2.3.3) in Equations (2.3.2} and obtain the
equations

K
o ags e
0D, _OC\ (D 0D\, _, , 0K K __¥K
o e )T T TR T o T 6 e T A a1
(2.3.4b)

(2.3.4a)

ot gt

where we have written all terms involving the K function on the right-hand
side because they can be assumed to be known from the solution of Equations
(2.3.2a). But the left-hand side of Equations (2.3.4b) is linear in the velocities.
By differentiating with respect to ¢*2, we obtain the equations

oD, 0D, 0B, [8 ., 0} &K &K FK
s ~ dgh T age o T o[ g et T aqh aq T gt oq
(23.5)

% The regularity condition implies that at least some of the second-order derivatives of the
function K in the velocities must be non-null and this, in turn, can occur if and only if the function
is at least quadratic (and, thus, nonlinear) in the velocities.
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which constitute a second independent set of equations for identifications
(2.3.1) to hold, jointly, with Equations (2.3.4a).

By assuming that a solution D, of these equations exists, we can substitute
Equations (2.3.5) into (2.3.4b), yielding the equations

E_@Dkl_ _8K + 0’°K
o o M ogt T agh o
azK ok aBkt sk 0 ok a 82K “ka
+‘aqkl aqkzq aqqu - a+q i Wg , (2.3.6)

which constitute the third (and last) independent set of conditions for identi-
fications (2.3.1) to hold, jointly with Equations (2.3.4a) and (2.3.5).

Suppose now that all conditions of self-adjointness (2.2.9) are verified for
system (2.2.1a). Then, by using Equations (2.3.4a) and (2.2.9¢), the system of
equations (2.3.4a), (2.3.5), and (2.3.6) can be written

°K

Frar e A ks> _ (2.3.7a)
oD, ab,, 1 0B, 9By, *K B 82K
aqkz aqkz ) aqkz @(j‘kl aqkl aqkz aék‘ aq"z
= Zii, (2.3.7b)
aC 3D, oK 3K 2K 1 (8B, 8B,
o Y g T 1 . 9B |
aqkl at ky aqh + acjk‘ at + I:aqu 6@"2 + 3 84"2 aqkz q
= W, (2.3.7c)

where the right-hand side of each of these equations at this point is assumed
to be known.

Equations (2.3.7a) constitute a generally overdetermined system of second-
order differential equations in only one unknown, the function K. Since the
partial derivatives are in the velocities only, we can assume that the ¢ and g*
variables are fixed. The underlying differential form is then defined on a
(differentiable) manifold with local coordinates ¢* and can be written (see
Section 1.2)

A(Z) = Aklkz qul A dq'kl
| G- , . ‘
=3 Sz Ay, dg® A dgee. (2.3.8)

The conditions of self-adjointness (2.2.9a) then imply that this 2-form is
identically null. Indeed, Equations (2.2.9a) can be rewritten in terms of the
generalized Kronecker delta (1.2.9),

5;;1:':22 fiz = 0: kl: k2 = 1: 2: SRR/ (239)
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We consider now the exterior derivatives of a (not necessarily null) form
(2.3.8). From Equations (1.2.5) and (1.2.17), we can write

A
dA® = ___a;;jz d§*s A dght A dgt

aAlllz :
=3 5;(‘1‘,32‘33 53 dg*t A dg* A dgi, (2.3.10)
Conditions of self-adjointness (2.2.9b) then imply that this exterior derivative
is identically null, as the reader can verify by a simple inspection, because they
imply the identities
o 0A;
Stk =0 kiuka ks =1,2,...,n 2.3.11)

kikaks aqm

From now on, whenever working within the context of the calculus of
differential forms, weshall use conditions of self-adjointness (2.3.9)and (2.3.11)
rather than (2.2.9a) and (2.2.9b).

Next, we consider Equations (2.3.7b), which also characterize a generally
overdetermined system of, in this case, first-order partial differential equations.
Since the partial derivatives appearing in these equations are in the coordi-
nates, the underlying differential form is defined on a manifold with (locai)
coordinates ¥, and can be written

ZPD = Z, 1. dg" A dg*. (2.3.12)
The closure condition in this case is

1

8Z;,;
dZ® = = Gk, o Sl ggh A dgt A dgt =0 (2.3.13)

and it identically holds if and only if

o 0
Ot S =0 kpka ks =12 n (2.3.14)

But the Z-terms are antisymmetric in their indices, Therefore, conditions
{2.3.14) reduce to (sece Example 1.5)

GV AN VAN + 0Zy 4,

BB G =0 (2.3.15)

By substituting the values of the Z terms from Equations (2.3.7b), the above
equations take the explicit form

1f o (0B, 0B\ & 0 (0B, OB\, K & (9B, 0B.\]_,
2laq \ogc ~ aq=) T ag2 \ag™  ag™) T g~ \agn  ag ’

(2.3.16)
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where we have used the continuity properties of the K function. By again
using the generalized Kronecker delta, the above equations can be written
... 8%°By

5;(111;?‘,;;;3 W = 0., kl’ kz, k3 = 1, 2, PSP (3 (23.17)

Consider, now, three sets of conditions of self-adjointness (2.2.9d) in the

pair of indices (k,, ki), (k3. k), and (ky, k;). By differentiating them with

respect to ¢, ¢*2, and ¢, respectively, and adding up, we obtain the ex-
pressions ' ’

iyiaf BZBII 1j0 4 0 iilzi3 aZBix
S Ets pryrs =3 {é_t + ¢ a_qk}aklhkj 34" 05" (2.3.18)

From the commutativity of the second-order derivatives in the velocities and
the antisymmetry properties of the generalized Kronecker delta, it follows
that Equations (2.3.18) are identically nuli. Therefore, under the conditions
of self-adjointness, integrability conditions (2.3.17) hold and the 2-form
(2.3.12) is closed.

We now consider Equation (2.3.7c), which again characterizes a generally
overdetermined system of first-order partial differential equations in the
unknown function C. Since the partial derivatives are again in the ¢* variables,
the underlying differential form is defined in a manifold in such (local)
coordinates and can be written

W) = W, dg*. (2.3.19)

The related closure conditions read

dg* A dg*2 = 0 (2.3.20)

L, OW
dw = 5 6.':11’622 aqizl

and can identically hold if and only if
T1i2 alel
kikz aqiz

By substituting the explicit form of the W, terms from Equations (2.3.7¢),
we obtain the relations

= 0, kl’ kz = 1, 2, P (B (2.3.21)

5i11’2 awCl — aBkz — aBk‘ — 1_6_ % — aBk‘
kiki'ggt T \ogt  agt) 20t \agt 04"
1 6 aBkl 5Bk3 a aBkJ aB}(Z sky __
"3 [aq"l (a¢*3 o) e \ag " o) |1
(2.3.22)

which, from Equations (2.2.9d), can be written
oW, 1 &*B,,

6i1i2 o mbpigia

kika aqiz = p) Rkikaka 6qi2 aq:‘;

=0 (2.3.23)
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and they identically hold whenever Equations (2.3.17) hold. Therefore, under
the conditions of self-adjointness, 1-form (2.3.19) is closed. Notice that the
closure conditions for Equations (2.3.7b) and (2.3.7¢) are equivalent,

Finally, for consistency, the right-hand sides of Equations (2.3.7b) and
(2.3.7¢) must be independent of the velocity. By differentiating these equa-
tions with respect to ¢** and after some simple algebra, we obtain the re-
spective consistency conditions

S~ (53’“ i "2) + (aA"Z’“* - BA’“"Z) =0 (2324a)

204 \og™  ag" a Toge

and

1 & (8B, 0B, Ak, i\ | s
- 1 2 Iy 1 =0 3.24b
[2 g (aq"“ aq’“) " ( ag  ag= ) |7 2320

which are clearly equivalent among themselves. But, as indicated in Section
2.2, Bquation (2.3.24a) can be derived from Equations (2.2.9b) and (2.2.9c).
Therefore, under the conditions of self-adjointness, consistency conditions
(2.3.24) identically hold.

We now summarize the contents of this section:

1. The most general structure of the Lagrangian for the representation of
Newtonian systems in their fandamental form (2.2.1) is given by
structure (2.3.3).

2. The underlying system of independent partial differential equations for
the existence of such a Lagrangian is given by Equations (2.3.7).

3. The reinterpretation of the conditions of self-adjointness within the
context of the calculus of differential forms leads to the following
closure and consistency conditions.

St Auyi, = 0, (2.3.252)
o 0A;

Tt Eg?z =0, (2.3.25b)
... O°B,
f11283 i1 — 0’ (2.3.25C)

kykaks aqil aqig

1 a aBk ﬁBk 5Ak & aAklk3
e et T 2ts _ = 232
2 aéka (aqk: atj’kl) + ( aqkl aqkz 0 ( 3 Sd)

It should be stressed that all conditions of self-adjointness (2.2.9) enter into
the reformulation (2.3.25). Also, when conditions (2.2.9) hold, Equations
(2.3.25) are automatically verified and there is no need to reinspect them.

Finally, it should be stressed that Equations (2.2.9) and (2.3.25) are not
equivalent, What we have proved is simply that the former equations always
imply the latter. This is sufficient for our needs (see Chapter 3).
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The interpretation of the conditions of self-adjointness (2.2.24) for kine-
matic form (2.2.23) within the context of the calculus of differential forms is
left to the interested reader (see Problem 2.8).

2.4 The Problem of Phase Space Formulations

As is well known, the transition from configuration space to phase space of a
Newtonian system (2.2.1) requires the knowledge of the Lagrangian L(z, g, §)
and is based on the prescriptions for the canonical generalized momenta p,,

_ oL
Gk(taQaq’P)=Pk“’é‘&_k=0a k=12...,n. (241

However, at this stage of our analysis we do not know yet whether a Lagran-
gian capable of representing system (2.2.1) exists and, thus, we are not yetin a
position to introduce canonically conjugate variables (g, p)-

In order to treat this aspect, we shall first transform Newtonian systems of
gither one of the forms (2.2.1) or (2.2.2) into equivalent, not necessarily
canonical systems of 2n first-order equations. This is done in this section. We
shall then express these systems in a more adequate tensor notation (Section
2.5).

Let us introduce a set of prescriptions for the characterization of new
variables y,, which are linear in the velocities, i.e., of the type

Gk(h q, ‘.'L y) = akf(t! /8 }’)ql + Bk(ts 4, y) = 0’ (242)

where a;; and f; represent known functions.

In order to avoid cases rather delicate to handle, we assume that pre-
scriptions (2.4.2) are selected in such a way as to produce a one-to-one
mapping of points (¢, ¢, ) of the region R***! onto points (¢, ¢, y} of an
“image” region R"* 1. We shall fulfill this requirement by assuming that the

functions a(t, ¢, ¥) and Bi(t, g, y) are single-valued, of class @2 in R2+128
and are such that the determinants
aG, 26,
@ = [a,-jl and "@J_ (2.4.3)
are non-null everywhere in their respective regions of definition.
These assumptions imply that the normal forms
W = gk(ta 4, q) (2443')
and
q'k = gk(ts 4, y) (244b)

exist and are unique, single-valued, and at least of class > in R*"*! and
R2"*1 respectively.

25 This assumption will later be consistent with class %* Hamiltonians.
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We should stress the fact that the 2n variables (g, y) are not necessarily
canonically conjugate. Nevertheless, the above approach is useful for the
reduction of the system of n second-order equations (2.2.1) to an equivalent
system of 2n first-order equations in the variables (g, y).

Indeed, under the above assumptions, the second-order derivatives

d agvk . agk ag-k
--k=_~k=__-7-1 5
=219 2 ¢ + oy, +_—6t (2.4.5)

exist (and are continuous). Therefore, they can be substituted into Equations
(2.2.1a)}, yielding the following equation?® in the y.

" . oF ., oF . . ag*
Fit,q, 9, ) = A;/t, ¢, D| = F + — yp + — B{t, q,
{6a. 0.9 i qg”)(aqu +aykyk+at + Bdt, q, §)
= a;j(a q, J’)J’J + ﬁ}(t! q, .V) (246)
The system of 2n first-order equations linear in §* and y, so constructed, i.c.,
Gi = Gij(t’ q; y)qJ + ﬂi(t: qs y) = O: (2473')
Fl’ = a;j(ta 4 Y).V; + ﬁ;(t, q, .V) = 0» (247b)

is equivalent to system (2.2.1). Indeed, the procedure is everywhere invertible.

Kinematic form (2.2.2) can be reduced accordingly.

In should be mentioned that when a canonical structure exists, prescrip-
tions (2.4.2) do not coincide in form with the conventional prescriptions (2.4.1)
(with y, = p,). However, when the functions «;; reduce to the Kronecker &,
then the resulting form, i.e.,

Gi=4¢—-dtan=0 (2.4.8)

must coincide with the normal form in ¢, of Equations (2.4.1) for such a
canonical structure to exist.

More generally, in view of the assumed regularity conditions, prescriptions
(2.4.2) can always be written in the “factorized” form

G = ot g, W& — §t. ¢, W] =0, (2.4.9a)
F=—a*f, (@)= ()L (2.4.9b)

Thus, when a canonical structure exists in the space of (g, ¥) variables, in
view of the regularity and continuity of the «;; functions, Equatton (2.4.9a)
is equivalent to the normal form in §' of the conventional prescriptions (2.4.1).

The reasons for selecting prescriptions (2.4.2) or (2.4.9) linear in ¢; rather
than an equivalent form of type (2.4.1) (i.e., linear in y;) are related to certain
properties of the conditions of self-adjointness, and will be discussed later on.

26 We want here to obtain equations which contain time derivatives of y, variables only.
Therefore, we substitute the ¢* terms with the §* functions of Equations (2.4.4b).
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2.5 General and Normal Forms of the Equations of Motion

~ In this section we implement. a second step which will be crucial for the
necessary and sufficient condition for Equations (2.4.7) to admit a Hamil-
tonian representation. This step essentially consists of the identification with-
in Equations (2.4.7) of two forms of first-order equations termed general and
normal, each one expressible in either contravariant or covariant form. The
problem of the analytic representation of the normal forms in terms of
Hamilton’s equations will be studied in Chapter 3. [The significance of the
general tensorial forms for the problem of equivalent canonical formulations
are studied in Santilli (1979)].

The reader should be aware of the fact that the proper handling of these
tensorial forms, or of any tensorial quantity in general, inevitably demands a
geometrical analysis, with particular reference to transformation theory, as an
essential tool for the same characterization of the tensors considered.

This program will be implemented in sequential steps. In this section we
shall simply identify such tensor forms on somewhat empirical grounds
without reference to their geometric significance or their transformation
properties. In the charts at the end of this chapter, we shall point out the
geometric interpretation of such tensor forms for the primary objective of
identifying the differentiation between the contravariant and covariant
versions of the same forms. The program is completed in Santilli (1979) when
studying the phase space transformation theory.

The ultimate significance of the tensorial forms, however, will be trans-
parent only after the introduction of Hamilton’s equations (Chapter 3).
Indeed, one of the most effective ways of expressing the canonical equations is
precisely in terms of contravariant and covariant normal forms. In turn, such
formulations will play a crucial role in the problem of identifying the neces-
sary and sufficient condition for the existence of a Hamiltonian capable of
representing Equations (2.4.7). '

Introduce the vector a* with 2n components

oo 44k =12...,n (2.5.12)
Vacns p=n+1ln+2...,2n (2.5.1b)

and the matrices

o [ (it a%) 0y xn
(Cuft, a) = ( 0. (i, aa))), (2.5.2a)
(D,(t, &) = (ﬁg z;) (2.5.2b)

where the functions o;; and f; are the functions appearing in prescriptions
(2.4.2) and the functions «f; and B; are defined by Equations (2.4.6). Then
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system (2.4.7) can be written in the form

Clt, a®)d* + DA, a®) = 0, - (2539)
C,y, D, e E"(R*™"), m=2, (2.5.3b)
| [(RP"H1) 0, (2.5.3¢)

wv=12..,2n,

which we shall call the general first-order form of a Newtonian system, or
general form lor short.

Owing to the linearity of the derivatives as well as regularity condition
(2.5.3¢), the normal form of system (2.5.3) can be identified easily.

It is convenient, for reasons to be illustrated later, to denote the matrix
elements of the inverse matrix (C)~! with upper indices, i.e.,

(Cu)™ ! =(C™). (2.54)
Then, in view of the identities
CuC™ = CC,, = &, (2.5.5)
system (2.5.3) can be written in the equivalent®” form
P a) =0 u=12,...,2, (2.5.62)
Te@nRrTY,  mz 2, (2.5.6b)
m¢ = _CMD,, (2.5.6¢)

which we call the normal form.28

Notice that system (2.5.6) is of the type considered for the existence theorems
of Section 1.1.

Clearly, an inspection of systems (2.5.3) and (2.5.6) indicates the need for an
interpretation of the significance of the upper and lower indices as well as the
identification ofa tensor of rank 2 suitable for raising and lowering such
indices.

The geometrical framework is undoubtedly the best arena for analyzing
these problems. However, as indicated at the beginning of this section, we shall
not consider the geometric aspect at this point, but we refer the interested
reader to Chart 2.5. Essentially, we shall now proceed to a characterization of
the above tensor forms suitable for the identification of their conditions of
self-adjointness.

27 In the sense that systems (2.5.3) and (2.5.6) characterize the same family of possible paths,
28 See footnote 6 of Chapter 1 for this terminology.
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For reasons to be justified later (primarily from the conditions of self-
adjointness), we assume the elements of the matrix*?

0 -1
— nxn nxn . 7
(wuv) (+ 1" n On x.n) (2 5 )
as the tensor needed for lowering the index of the a* vector.

By inspection, we note the following.

1. The elements w,, are numerical constants given explicitly by

0 forpvsn pyven,
w,, =y+1 for v<n p=v+n (2.5.8)
—~1 for pu<n v=p+n,

and, thus, are independent of the paths in R2"*!,
2. The matrix (w,,) is antisymmetric:

Wy = — Wy, (2.59)

3. The inverse matrix {©*") = (@,,)” " exists [because (w,,) is regular]
and is given explicitly by

Opxn  +1lax
Fiiy — HXH RXn . 2' '1
(™) (—lnx,, 0,.x,.) (2.5.10)
Thus, the properties
0, O = 0V, = &), (2.5.11)

always hold.?°
4. The transition from the a* = (g, y) coordinates to a new set of co-
ordinates a, defined by

a, = w,a" =(—y,q) (2.5.12)

preserves the equivalence with configuration space formulations, in the
sense that the equations with iower indices that can be constructed with
the tensor w,, from Equations (2.5.6) are also equivalent to the cor-
responding equations in configuration space.

5. The tensor w,, (or w*) is independent of thc Lagrangian or the
Hamiltonian and, thus, can be introduced at this stage of our analysis.

2% The initidted reader has eventually identified the introduction of a spmplectic structure
in the space of the coordinate a = (g, ¥) through the inverse of matrix (2.5.7) {for more details, see
Chart 2.3).

30 11 the language of matrix theory we can say that the matrix (w"*) is unimodular, antisym-
metric, and orthogonal, ie.,

lw™] = 1, (@)" + (@) = 0, (@) () = (@) (@) =1,

where T denotes the transpose.
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We now introduce the quantities

g, = w,, =" (2.5.13)
By contracting equations (2.5.6) with w,,, and by using definition (2.5.12), we
obtain the system

b, — B,(t, %) = 0, (2.5.14)

which constitutes another form for representing Newton’s equations (2.2.1).
On similar grounds, one can construct a fourth form of the type

(L, a%)a, + DH(t, a%) = Q. (2.5.15)

It should be mentioned at this point that the tensor for raising or lowering
the indices of the normal form does not necessarily apply to the general form
because, in this case, a suitably generalized tensor with a possible path
dependence is, in principle, admissible. Therefore, the form (w,,) is not
unique.?!

By construction, all tensor forms (2.5.3), (2.5.6), (2.5.14), and (2.5.15) are
equivalent among themselves as far as the characterization of the solutions in
g* is concerned. However, they have different algebraic (or geometric)
properties which will be indicated later on.

By anticipating some of these properties, we shall label all equations with
upper (lower) indices contravariant (covariant). Explicitly, we shall call
Equations (2.5.3) and (2.5.15) the covariant and contravariant general forms,
respectively, and equations (2.5.6) and (2.5.14) the contravariant and covariant
normal forms, respectively.??

Notice that the above forms can be related in a “crosswise” way, in the
sense that the theorem on implicit functions applied to the contravariant
{covariant) general form gives rise to the covariant (contravariant) normal
form. Alternatively, we can write the factorizations

C.d* + D, = Cp(@ ~E) =0

(2.5.16)
4, + D* = (4, — E,) =0
in which the “crosswise ™ relationship is transparent.
Again, we must stress the point that the forms considered in this section are
not necessarily embodied in a canonical structure owing to the independence
of prescriptions (2.4.2) from the existenice of a Lagrangian.

31 Qee Section 2.7, the comments after Theorem 2.7.3.

32 This terminology is introduced from the geometrical significance of the upper and lower
indices as indicated in Chart A.,13, In particular, Equations (2.5.6) characterize contravariant
vector fields and, similarly, Equations (2.5.14) characterize covariant vector fields (Chart 2.2).
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2.6 Variational Forms of General and Normal Systems

Consider a covariant system of the type

I, a%,d) =0, u=12...,2n (2.6.1a)
I, e §™(R**1), mz= 2, (2.6.1b)

ar, |, «
Ei# (R*+1) % 0, (2.6.1c)

which is not necessarily lingar in &*. Let a"(t; w) denote a one-parameter
family %} ., of admissible paths which is of at least class @* for all te (¢, 1)
and possesses continuous first-order derivatives with respect to w in a
neighborhood 0,.

Then the variations (see Section 2.1} of } ,,

oa*
= — s 2.6.2
"= | (2.6.2)
exist and are continuous together with their derivatives,
7l
= —— . 2.6.3
= awl (2.6.3)

for all te(ty, t5).
The (first-order) variational forms of system (2.6.1) can be written®?

M () = e, (07" + d, (O, (2.6.4)
where
_ T, _ar,
cjw - aav ’ d,uv - aava (265)

and they are of covariant type.
In view of the identity

ﬁFM,u(’?) = ﬁﬂcuvﬁv + ﬁ# d.uv '7“
e d ot ¥ d oo ¥
= ’?,u duv - ;E (’T”va) ) + E (’Tucuvrf ): (266)

which hold for all admissible variations (Section 2.1), the adjoint system of
Equations (2.6.4) is

_ . d
M) = T dy, = 5 (7). (2.6.7)

Indeed, by introducing the scalar
O, ) = e, (2.6.8)

33 Notice the need for the proper characterization of the equations of variation of considering
a “covariant” (“contravariant ) system (2.6.1) in the “contravariant” (“covariant”) variables «.
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the identity
414 Iy ~ d o

holds for all admissible variations,
When system (2.6.1) is the covariant general form

[, = Cut, a0)d + D,(t,a%) =0, (2.6.10)
the quantities.(2.6.5) are given by '
ac oD
Cuy = Cpys ay = aa’:“ a+ aa: (2.6.11)

and Equations (2.6.4), (2.6.7), and (2.6.9) are correspondingly defined.
When system (2.6.1) is the covariant normal form

T, = 0,,d" — 5, a*) =0, (2.6.12)

quantities (2.6.5) become

o=
duv = - aaf (2.6.13)

and system (2.6.4) with its adjoint system (2.6.7) are correspondingly defined.

Notice that both systems (2.6.10) and (2.6.12) are “covariant " systems with
a functional dependence on the “contravariant” vector a@”. These systems
originate in a natural way from the reduction of Equation (2.2.1) to a first-
order form and, as such, they constitute the most direct framework for the
study of the conditions of self-adjointness.

The condition of self-adjointness can, however, be equivalently studied for
the contravariant forms when considered as functions of the covariant
vector 4,,.
~ Indeed, for a contravariant system of the type?*

4, a,,4,) =0, u=1,2...,2n, (2.6.14a)
rteg™(R,,,), m=2, (2.6.14b)

aTr|
‘ % (Raws1) # 0, (2.6.14c)

one can also introduce the variations

—_ aa’#

da
71”—% = .

W:O’ ’7,!1 B E‘;

(2.6.15)

w=0

34 From now o, symbols of the type R*"* 1, and R, + , will denote regions in the contravariant
and covariant variables, respectively.
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Then the contravariant variational forms are given by

M*(n) = ™, + d*'n, (2.6.16)
where
o ar«
av 70 Y
c 20, d Za. (2.6.17)
and the adjoint system
: ~ d
M) = fiy ™ — - (7,¢™) (2.6.18)

satisfies, for all admissible variations, the identity

A MHr) — n, WTG) = 5 061 ), (26.19)

where
_ Q) = fuc'ny. (2.6.20)
Consider now the contravariant normal form .
& — 241, a®) = 0, " @621)

In order to obtain an expression suitable for the construction of the equations
of variations, we must re-express its dependence in terms of the covariant
vector a,. This can be done by using the quantitics

ot = oa,, (2.6.22)
for which
@ — EH(t, wa,) = wa, — E™t, a,) = 0, (2.6.23)

where the prime emphasizes the fact that the functions EH4(t, a”) arc now
regarded as new functionsona,.
Quantities (2.6.17) for systems (2.6.23) become
o=

O = o Y = — (2.6.24)

Then system (2.6.16) and the adjoint system (2.6.18) afe defined accordingly.
For the contravariant general form, notice that in the transition fromithe
matrix (C,(t, a°)) to its inverse (C**(t, a”}), the functional dependence of its
elements remains oh the contravariant vectors a°. ,
In order to be in a form suitable for the study of the conditions of self-
adjointness, the contravariation general form (2.5.15) must be rewritten as a
function of the covariant vector a,,le.,

CM(t, a®a, + DH(L, a°) = C™(t, a,)a, + D*(t,a,) = 0. (2.6.25)
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For such a system, definitions (2.6.17) become

_ecr  op*
" da, Gt da,
System (2.6.16) and adjoint system (2.6.18) then follow accordingly.

AN e
»

(2.6.26)

2.7 Conditions of Self-Adjointness for General and Normal
Systems

We now study the conditions under which the covariant system

Lt a%a) =0 pu=12..,2 (.7.12)
T, e@™(R*Y, m=2 (2.7.1b)

a]‘_‘.:! Bpdn+ 1
S E R 20 (2.7.16)

is self-adjoint in a region R*"* ! of points (¢, a7, 4°). This is the case, according
to Definition 2.1.2, when the system of variational forms (2.6.4) coincides with
adjoint system (2.6.7) for all admissible variations, ie.,

M) =MJfn), ne%? (21.2)

The above conditions explicitly read
xy v Y d v
Cunll + dllv'? =7 duv - ;i—t (’? Cv_u): (273)

and they can hold identically for all admissible variations if and oniy if the
properties
Cuy + € = 0, ) (2.7.4a)

dyy — dyy = Gy (2.7.4b)

ny
wv=12,...,2n
are satisfied everywhere in the interval (¢, £,). We shall call Equations (2.7.4)
the conditions of self-adjointness for a covariant first-order system of variational
Jorms.

By substituting definitions (2.6.5) into Equations (2.7.4) for c,, and d,,,
we obtain the identities

‘ or, or,

oa*  daH

or, or, dor,

da*  Ba*  dt da”’

wv=12...,2n

=0, (2.7.5a)

(2.7.5b)

which must be satisfied everywhere in B***1,
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Theorem 2.7.1 (Self-Adjointness of a Covariant First-Order Ordinary
System in Tensor Notation). A4 necessary and sufficient condition for a co-
variant system (2.7.1} to be self-adjoint in aregion R of points (¢, a%, &°, &%)
is that all conditions (2.1.5) are satisfied éverywhere in Ren+1,

It should be recalled that the conditions of self-adjointness (2.7.5) do not
demand the knowledge of a solution for their applicability to systems (2.7.1).
This point will be tacitly implied from here on.

Notice the significance of continuity conditions (2.7.1b) for the right-hand
side of Equations (2.7.5b) to be well defined. Conditions (2.7.5b) explicitly

read
or, ar g ,d)er, T, .
— T =+ 4= ¥, 2.7.6

B0’ da* {(% T aa“} o | oa ai" @10

Since the left-hand sides of these equations are independent of &, we sce

that a necessary (but not sufficient) condition for system (2.7.1) to be self-
adjoint is that it is linear in the first-order derivatives, ie., it is of the type>’

[, = C,(t a)a" + D¢, a%) =0, (2.7.74)
Cpy» D e B (RN, m=22, (2.7.7b)
|C,|(RP"H1) 0. (2.7.7¢)

We shall now derive the sets of all independent conditions of self-adjoint-
ness, specifically, for this form.
Conditions (2.7.5a) for system (2.7.7) read

Cup +Cp =0, (2.7.8)

namely, the matrix (C,,) must be antisymmetric. Let us now recall that an

m % m matrix which is antisymmetric is (is not) necessarily singular when the

dimension m is odd (even). Therefore, property (2.7.8) is consistent with the

regularity condition (2.7.7¢) because its dimension is always ever.
Conditions (2.7.7b) for system (2.7.7) become

8C, 0Cy\,., , 0D, 8D, 0C,,  9C, ,
(Ba" (J‘a")a T T ar * o 279)
and they can hold identically if and only if the conditions
C,,  0C,, , Cy
B + 2 + a =0 (2.7.10a)
and
oD D
OCy 9Dy _ 0D, (2.7.10b)

at  da® da

35 This is the reason for selecting prescriptions (2.4.3), which are linear in the first-order
derivatives.
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are satisfied everywhere in R*"*1, where for conditions (2.7.10a) we have
used properties (2.7.8).
In this way, we obtain the following theorem.

Theorem 2.7.2 (Self-Adjointness of the Covariant General Form). A
necessary and sufficient condition for the covariant system

Cult, @& + Dt,a®) =0, u=1,2...,2,, (2711a)

Cpy D, e ™R, m>1, (2.7.11b)

|l (RE"+1) 0 @7.110)

to be self-adjoint in a region R*"* ! of points (1, a°) is that all the conditions
C,+C, =0, (2.7.12a)

OC oy + Cop + OCou =, (2.7.12b)

da” oa* oa*

oC,, oD, D,
ot da°  Ba*’

(2.7.12¢)

mLY, o= 1,2,...,2”,

are satisfied everywhere in R2"*1,

When at least one of the conditions (2.7.12) is violated, we shall call the
system (2.7.11) non-self-adjoint.

Notice that conditions (2.7.5) or (2.7.12) do not imply linearity in a* and
that continuity conditions (2.7.11b) with m > 1 (rather than m > 2) are now
sufficient for Equations (2.7.12). '

Again, strictly speaking, conditions (2.7.12) are the necessary and sufficient
conditions for system (2.7.11) to possess a self-adjoint system of variational
forms. When the general solution a*(t; ¢) of system (2.7.11) is known and
conditions (2.7.12) hold, we can say that the system is self-adjoint everywhere
along all possibie paths. For an illustration of Theorem 2.7.2, see the examples
at the end of this chapter as well as those of Chapter 3.

We now introduce the w structure defined by Equation (2.5.7) and trans-
form system (2.7.11) into the covariant normal form

W& - Eft,a%) =0, (2.7.13a)

E, e ™R, m=>1, (2.7.13b)

Our problem is to study the conditions of self-adjointness, specifically, for
system (2.7.13). This can be done by using either conditions (2.7.5) or con-

ditions (2.7.12). In the latter case, expressions (2.7.13) can be interpreted as a
subcase of Equations (2.7.11), with the substitutions

Cpy = Oy, (2.7.14)

_=
D, - Z,.
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Conditions (2.7.12a) then become
0,y F Oy =0, (2.7.15)

and they are always identically satisfied because the matrix (e,,) is antisym-
metric by assumption. Conditions (2.7.12b) identically hold because

0
v _ g, (2.7.16)
da
also by assumption. Finally, conditions (2.7.12¢) become
g8, 08,
PP i 0 (27.17)

in view of substitution (2.7.14) and the assumptions

0w,
ot

Thus, we have the following theorem.

=0 (2.7.18)

Theorem 2.7.3 (Self-Adjointness of the Covariant Normal Form). A
necessary and sufficient condition for the covariant system

0l — Bylt,a) =0, p=12..,2n (2.7:19a)
B e@™R*™Y, mz1 (2.7.19b)

to be self-adjoint in a region R+ 1 of points (t, a®) is that all the conditions
05, 0%,

W st 0, wv=12..,2n (2.7.20)

are satisfied everywhere in R*"* 1.

We are now in a position to comment about the assumption of Section 2.6
for the w,, tensor as the lowering tensor of the contravariant normal form.

In essence, the matrix {e,,) is selected (independently from any geometrical
consideration) to comply with the conditions of self-adjointness of the
covariant normal form, or, more specifically, the matrix (w,,) is identified asa
solution with constant clements of conditions of self-adjointness (2.7.12a) and
(2.7.12b).3¢ Since these two sets of conditions also admit solutions with an
explicit dependence on time and path, the above situation illustrates the
comment after equations (2.5.15) related to the nonuniqueness of the w
form.??

36 The geometrical significance of the form o has been indicated in footnote 29 of this chapter.
Here we would like to stress the fact that the selection of o has been done to comply with the
conditions of self-adjointness and, thus, quite independently from a symplectic structure. Not
surprisingly, the symplectic approach and our differential approach converge to the same non-
degenerate antisymmetric form @. See Charts 2.1 to 2.5 for more details.

37 This is an aspect of typical geometrical significance. In this respect, see also Charts 2.1 40 2.5.
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On similar grounds, one can study the conditions of self-adjointness for the
contravariant forms when considered as functions of the covariant vector a,.
This is left as an exercise for the interested reader.

A problem of particular algebraic significance, as we shall se in Section 2.9,
is the following problem. .

Given a self-adjoint covariant general form in a*, what are the differential
properties of the corresponding contravariant general form when considered as a
Junction of a*, too?

In turn, this problem is centered on the properties of matrix (C*'(t, a®))
whenitsinverse (C,(t, a”))isaregular 2n x 2n matrix satisfying the identities
(2.7.12a) and (2.7.12b).

As is known from matrix theory, the inverse of a (regular) antisymmetric
matrix is also antisymmetric. Thus, conditions (2.7.12a) imply that

e+ e =0 (2.7:21)

To identify the properties that correspond to Equations (2.7.12b), consider
the relation

Cu C% = CC,, = &}; (2.7.22)
then the identity
éC, ac
ey, = 272
22 Y+ Cy, o 0 (2.7.23)
can be written
aCc™ ac
w — (TtPao v T HE
C Fw crceC 6a‘" (2.7.24)

By permuting the indices and summing up, we can write>®

ac™ oc . aC (ac,m Ly acp,‘)

cv cer  (CIPOXVR EO,
+ - + C? — = C¥CC 20° o pye

da® da’? da’
(2.7.25)

which is identically null in view of conditions (2.7.12b).
In this way, we obtain the following theorem.

Theorem 2.7.4 (A Connection Between Covariant and Contravariant Self-
Adjoint Structures). A necessary and sufficient condition for a matrix
(C*(z, a°)) to be the inverse of a 2n x 2n matrix (C,(t, a®)) satisfying the
continuity and regularity conditions

Ce€™ (RN, mz1, IC[(RP™* Yy £ 0,  (2.7.26)

38 W, Pauli (1953).
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and the identities
C.+C,=0 (2.7.27a)

ac,, C,, oC
i e (2.7.27b)

in a region R*"* ! of points (t, a”), is that all the conditions

cr 4+ C =, (2.7.282)
, 0C" ac ., dC*
CF = OO+ O =0 (2.7.28b)

are satisfied everywhere in R***1. Conversely, the necessary and sufficient
conditions for a matrix (C,(t, a°)) to be the inverse of a 2n x 2n matrix
(C*(t, a¥)), which satisfies equations (2.7.28) in a region R*"* ' in which it is
of at least class €' and regular, is that all conditions (2.7.27) are satisfied
everywhere in R*"* 1,

In essence, the above theorem indicates that conditions (2.7.27) and (2.7.28)
are equivalent in the sense that, under the assumed continuity and regularity
properties, each set of conditions uniquely implies the other, and vice versa.

But we can have, as a particular case, C,, = w,,. The theorem then
illustrates a relationship between the contravariant and covariant forms o**
and ,,. We can also say, more generally, that the forms (C,,) and (w,,) are
solutions of Equations (2.7.27) satisfying conditions (2.7.26), while their
inverses (C**) and (w**) are solutions of Equations (2.7.28), satisfying cor-
responding continuity and regularity properties.

2.8 Connection with Self-Adjointness of Linear Operators

The concept of self-adjointness which is nowadays familiar in theoretical
physics is that for linear operators acting on vector spaces. Such a concept, as
we shall now see, is closely related to the variational approach to self-adjoint-
ness considered in this chapter.

For simplicity (but without loss of generality), consider a finite-dimensional,
real linear space S over the field F of real numbers. Let S be of dimension n
with elements u;, w;, etc. Consider an operator 4;; which transforms an »
vector u into an n vector w according to

W, = Aju; 2.8.1)
or, in symbolic notation,

w= Au = A(u). (2.82)
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Define the inner product of S:
W, w) = (W', A(u)) = wiA;u;. (2.8.3)

Consider another operator, A4;;, which transform a vector v into a vector z, i.e.,

z; = Ayv; (2.8.4)
or ‘
z = Av = A(v) (2.8.5)
The operator A is called the adjoint operator of A when
(v, A@)) — (u, A(W)) = v, dju; — W Ayv; =0 (2.8.6)

Clearly, the definition of an adjoint system for a system of second-order
differential equations (Section 2.1),

ML) ~ 5'M@G) = O, ), (2.8.7)

can be considered as a generalization of condition (2.8.6). An operator in S is
called self-adjoint (or Hermitian) when it coincides with its adjoint.?® For the
space under consideration, the adjoint operator A is simply the transpose of
A le,

A=A". (2.8.8)
Thus, an operator 4 in Sis self-adjoint when it coincides with its transpose, i.e.,
A=Ay 289

Conditions of self-adjointness (2.2.9) can clearly be considered as a gener-
alization of conditions (2.8.9). Indeed, within the framework of our variational
approach to the self-adjointness of Newton’s equation (2.2.1a), at the limit
when the functions B, are identically null and all A4;; are independent of , g%,
and 4, the quantity Q becomes identically null, definitions (2.8.6) and (2.8.7)
formally coincide, and conditions (2.2.9) reduce to conditions (2.8.9).

Notice that the above correspondence holds, as mentioned before, for
systems of “second-order” differential equations.

It is of some interest, then, to note that when considering the case of “first-
order” differential equations, instead of the symmetry property (2.8.9) we have
‘the antisymmetry property C,, = —C,, or w,, = —w,,. Thus, in this case,
the conditions of seif-adjointness can be considered as a generalization of the
concept of skew-Hermiticity.

For additional informations on the relationship between the operational
and variational approach to self-adjointness, see Charts 3.16 and 3.17.

39 For a recent account, see Reed and Stmon (1975).
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2.9 Algebraic Significance of the Conditions of Self-Adjointness

An algebra U is a vector space of elements, say, 4, B, C,... (¢.g., operators)
over a field F of elements N, N, N3, ... (e.g, complex numbers) equipped
with a product AB satisfying the right and left distributive laws (also called
axioms or identities)

A(B + C) = AB + AC, {A + B)C = AC + BC, (2.9.1)
and the scalar law
N(AB) = (NA)B = A(NB), (2.9.2)

for all A,B,CeU and NeF. In essence, laws (2.9.1) and (2.9.2) ensure
that the product AB is bilinear.

A major classification of algebras is that into associative and nonassociative
algebras, depending on whether the product 4B verifics or does not veriy,
respectively, the associative law

(AB)C = A(BC) (293)

for all elements A,B,C e U.

As recalled in the Introduction, some algebras of particular relevance in
physics are the Lie algebras. These are the nonassociative algebras L which
verify the laws

AB + BA =0, (2.9.4a)
(AB)C + (BC)A + (CA)YE = 0, (2.9.4b)

called the anticommutative and Jacobi law, respectively, for all elements
A,B,C € L. It is here understood that the product AB, in order to properly
characterize a Lie algebra, must first obey the distributive and scalar laws
(that is, it must first constitute an algebra as commonly understood) and then
verify laws (2.9.4). In this respect, it should be noted that Lie algebras verify
the particular form of the scalar law

AN =NA =0 ' (2.9.5)

for all Ae L and N € F. Lie algebras also verify, in the realizations used in
physics, the differential laws

(A< B)C = (AC)< B + A~ (BC) (2.9.6)
A(Bo+C) = (AB)+ C + B+ (AC), (2.9.6b)

where A ° B is the associative product.

It should be stressed that in all the above identitics the product AB is
intended as the abstract product of the algebra L.

Among all possible realizations of the algebra L and of its abstract product
AB, we are now interested in those significant for Newtonian systems. Sup-
pose that the quantities A, B, etc. are functions of the 2n-component con-
travariant vector a*, u = 1,2,..., 2n and, possibly, of time. Suppose also that
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such functions, A, B, etc., are of class ¥, m > 2 in a region R2"*! of points
3 ? 2 3 2 g p

{t, a®).
In a set { of such functions 4, B, etc., introduce the composition law
84 0B
A, B]* = C*(t, %) —- —, 9.
[4, B] (t,a S S (2.9.72)
Cveg™(R*™Y), mz=1, (2.9.7b)
|C# (R 1) £ 0. (2.9.7c)

Clearly, the “product” [ A, B]* satisfies bilinearity laws (2.9.1) and {2.9.2),
ie,*0

[N.A + N,B, CJ* = N,[A, C]* + N,[B, CI*, (2.9.82)
[A, N,B + N,CT* = N.[A, BI* + N,[4,C]*,  (29.8b)
rules (2.9.6), i.e.,*?
[AB, CJ* = [A4, CT*B + A[B, C}*, (2.9.92)
[4, BC]* = [A4, B]*C + B[A, C]*, (2.9.9b)

and laws (2.9.5), 1.e,,
[4, N]* =[N, A]* = 0. (29.10)

If, in addition, the set { and the matrix (C*") are selected in such a way that
the closure law

[A,B]*=C, A B Cel, (2.9.11)

also holds for all (ordered) pairs of elements A and Be(, then we have a
(finite-dimensional or infinite-dimensional) closed algebra.

In order for such an algebra { to be a Lie algebra, the product [4, B]* must
obey Equations (2.9.4). Antisymmetry law (2.9.4a) implies that

Cw+ O™ =0 (2.9.12)

In order to obtain the (necessary and sufficient) conditions to satisfy the

Jacobi law (2.9.4b), notice that such a law must hold for arbitrary elements 4,

B, and C. Therefore, one can select for those elements the components a7,

a*, and a* of the vector a resulting in the equations

[a’, [a", @' 1*]* + [¢*, [a", a']*]* + [, [a", &"T*]*

acH oc™® oC™
aP

= P O CY o = 0 (2913)

Clearly, Equations (2.9.12) and (2.9.13) express the Lie algebra identities
(2.9.4) for the “product™ [4, BJ*.

4¢ Here we revert to the conventional notations whereby N4 and AB are the ordinary
(associative) products. .
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When axioms (2.9.12) and (2.9.13) are satisfied, [4, B]* is called the
generalized Poisson brackets*" and, in view of the antisymmetry law (2.9.12),
it can also be written

: 2 dA 8B 2A OB
A B * = gy _ 9
[ 5 u,vzilc (aﬂ” oa¥ oa’ aaﬂ) (2 9 14)
gy

Clearly, the simplest solution of Equations (2.9.12) and (2.9.13) is given by
the now familiar matrix (w""). The related product,

.24 08
da* da”’

is then the conventional Peisson brackets in tensor notation. To see this,
suppose that the vector g* represents the canonically conjugate generalized
positions 4* and momenta p,, i.c., a* = (g, p). Then

8A @B ™ (34 0B 084 OB
" ot 0 Z“’”( _____ )

H,v=1

[4.B]l=w (2.9.15)

[A,B] = w

dA dB JA OB

aq“ a%  op dq"
For later use, notice the important property

(gD @ DY _{ Onxa +1nxn) yo
[, D) (pis Pj])) (—1 (29.17)

namely, the matrix (w"”) represents the fundamental Poisson’s brackets.

By inspection, we see that Equations (2.9.12) and (2.9.13) ceoincide with
conditions (2.7.27) which, in turn, are equivalent to conditions of seif-
adjointness (2.7.28) (Theorem 2.7.4). Thus, conditions of self-adjointness
(2.7.28) are the necessary and sufficient conditions for generalized brackets
(2.9.7) to satisfy Lie algebra identities (2.9.4). This property can also be seen
on a more direct basis by noting that

[@), [, &’ 1*]* + [a* [@F, @'0*]* + [, [@, a*]*]

ac, aC aC,,
g ot ) = 291
dar + da” + 6a”) 0 < 8

nxn Onxn

(@) = ([&" a']) = (

— Ctrcpaco’ﬂ(
We can thus state the following theorem.

Theorem 2.9.1 {Indirect Algebraic Significance of the Conditions of Self-
Adjointness). Necessary and sufficient condition for the brackets

. 0A 8B

¥ — my el
A B = O ) 5o s

(2.9.19)

41 The asterisk in the notation [ 4, B]* stands for the generalized nature of the brackets. For
brackets [A, B]* see, for instance, Pauli (1953).



Algebraic Significance of the Conditions of Self-Adjointness 95
characterized by the contravariant factor tensor C* of the (regular holonomic)
Newtonian system,

C(t, a[a, — Bt a®)] = 0, {2.9.20a)
C*, B, e@m(R*™*Y), m=1, |C*HR™ )0, (29.20b)
wmy=12,...,2n
to satisfy the laws of the generalized Poisson brackets,
[4, B]* + [B, A]* = 0, (29.21a)
[4, [B, CT*1* + [B, [C, AJ*T* + [C,[4, B]*]* =0, (2.9.21b)

in a region R*"*Y of points (t, a®) is that the covariant version of system
(2.9.20) satisfies all the conditions of self-adjointness (2.7.27) everywhere
in R’Zn'l- 1_

Other brackets that are particularly significant in classical mechanics are
the Lagrange brackets,

a" 8a* _ 0q" dp. _ Op. 0"

or the generalized Lagrange brackets,
da* da’
B}* = Y- = 9.
(A4, By = Cult, ) 57 25 (2923)
where (C,,) is the inverse of the matrix (C*") of the generalized Poisson
brackets.
For brackets (2.9.23), Equations (2.9.1) are replaced by
{A,B}* + {B, A}* =0, (2.9.24a)

* * * 4

and they can be written

C,, + Cpu =0, (2.9.25a)
ac,, ac,, ac,,

¥ ¥ — X 2- '2
i e 0 (2.9.25b)

Clearly, the above axioms coincide with conditions of self-adjointness
(2.7.28), and the following theorem holds.

Theorem 2.9.2 (Direct Algebraic Significance of the Conditions of Self-
Adjoininess). Necessary and sufficient condition for the brackets

da" da¥

{4, B}* = C,(t, a°) EVRT L (2.9.26)
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characterized by the covariant factor tensor C,, of the (regular holonomic)
Newtonian system

Cult, ana’ — 2, a1 =0, (2.9.27a)
Cp, B e@™(R*HY), m=>1, (2.9.27b)
|Col (B2 # 0 (2.9.27¢)
to satisfy the laws of the generalized Lagrange brackets
{A, BY* + {B, A}* =0, (2.9.28a)

d 8 )
* * 3 *
5 (B.CY 425 {C AV + 2o (4, B} =0 (29.28b)

in a region R*" Y of points (t, a®), is that the system satisfies conditions of
self-adjointness (2.7.27) everywhere in R2"*1,

Notice that the identity
[4;, Ad*{ A, 45} = 8y, (2.9.29)

Li=1,2,...,n

hold. In this sense, each of the brackets [ 4, B]* and {4, B}* can be considered
as the “inverse” of the other.

To make a crude summary of the contents of this section, we can say that,
under suitable technical implementations, the conditions for self-adjointness
guarantee the existence of a Lie algebra structure.

Chart 2.1 Hausdorff, Second-Countable, oo-Differentiable Mani-
folds4? : L
(]

A geometric approach to Newtonian systems can be formulated by
representing the equations of motion in their first-order forms (Sections 2.4
and 2.5), by interpreting these forms as vector fields on suitably selected
manifolds, and then by using the sc-called symplectic geometry. In this
chart, we shall outline certain basic concepts of point-set topology and
identify the needed notion of manifold. In Chart 2.2, we shall outline the
interpretation of Newtonian systems as vector fields on manifold. The
symplectic geometry will be outlined in Chart 2.3, The concept of contact
manifold will be indicated in Chart 2.4. Finally, in Chart 2.5 we shall point
out the geometrical significance of the conditions of variational self-
adjointness for Newtonian systems in their first-order forms. The geometrical
interpretation of the integrability conditions for the existence of a Hamil-
tonian are also treated in Santilli (1979). The interested reader is urged
to consult the quoted literature for all technical details.

A topological space M is a set, together with a collection of subsets O
called apen sets, suchthat M e O,if0,, 0, ¢ O,then 0, () O, € Oand the

42 See, for instance, Abraham and Marsden (1977).
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union of any collection O, of open sets is open. The re/ative topology on a
subset M, e M-is given by Oy, = {0, () M,|0, € O}. A basis of the
topology i |s a collection D of open sets such that every open set of Mis a
union of elements of D. This topology is called first-countable if and only
if for each element me M there is a countable collection {N,(m)} of
neighborhoods of m, such that for any neighborhood NM{m) of m there is a

- set M, such that Ny, (m) = N({m}. The topology is called second-countable

if and only if it has a countable basis.

A topological space M is called Hausdorff if and only if each two distinct
points have disjoint neighborhoods. Alternatively, a first-countable space is
Hausdorff if and only if all sequences have at most one limit point.

A focal chart (M|, ¢) is a bijection ¢ from a subset M, € M to an open
subset O of a (finite-dimensional, real) vector space M. M is then called
the domain of M. An atfas on M is a family of charts 4 = {M @,;} such
that M =|_M,. Two atlases are equivalent if and only if their union is an
atlas. A differentiable structure 2 on M is an equivalence class of atlases
on M.

A differentiable manifold can be conceived as a topological space M
equipped with a differentiable structure Q, and we shall write AM(Q).
Throughout our analysis, we shall consider only oc-differentiable manifolds.

Consider a map /1 M — M', where M and M are two (differentiable)
manifolds. Let {V/, ¥} be a chart of M" with f{im) € Viorm e Mand (U, ¥)
be a chart of M with me U and f(U) ¢ V. The focal representatives (or
local coordinates) of f can be introduced as g = £, =¥ - f - £-7,

The notion of manifold, which is often used in the study of Newtontan
systems, is that of a Hausdorff. second-countable, co-differentiable
manifold M. An example of this type of manifold, which is relevant here,
is given by the configuration space of a Newtonian system (see, Appendix
A) with (local) coordinates g%, when equipped with the indicated topology
and restricted to satisfy the indicated differentiability properties.

Chart 2.2 Newtonian Systems as Vector Fialds on Manifolds43

Let M be a {Hausdorff, second-countable, co-differentiable) manifold
realized in terms of the configuration space of a Newtonian system with
(local) coordinates g. This manifold is insufficient to characterize the
system because, for instance, nonequivalent trajectories may pass through
each point of M. In this chart, we shall indicate the additional notions
needed to achieve a characterization of a Newtonian system.

Let ¥, and V, be (finite-dimensional, real) vector spaces. An open sub-
set of V, will be denoted with O. A (local) vector bundle is the Cartesian
product O x V, with O being the base space. Let the points of O be
denoted with g. A fiber over g e 0 is the product {g} x V,. In essence,
O x V,isanopensubsetof V. x V, and, as such, itis (locaily) a manifold.
Thus, a vector bundle is, at least locally, a manifold with a vector space
attached to each of its points. For the case of Newtonian systems, therefore,
the notion of vector bundie allows complementing the generalized co-
ordinates g with, say, the generalized velocities §.

A (local) vector bundle isomorphismisa €* map 0: O x V, = O’ x V..

'A (local) bundle chart is a pair (O, o) where % is the buectlon p:0— 0 %

V', for an open subset 0 of a set 5. A vector bundle atlas on S is a family

4% See, for instance, Abraham and Marsden (1967), Herman {1973), and Caratl
et al. (1976).
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{0, »,} of local bundle charts which covers S and whose overlap is a local
vector bundle isomorphism. A vector bundle structure on § is an equi-
valence class of vector bundle atlases. A vector bundle can now be
reinterpreted as a pair (S, 8), where S is a set and B is a vector bundie
structure.

A %m section of a map n: B, — B, of a vector bundle is a class ¥™ map
p: B, > B, such that for each be B,, p(n{b)} = b. The set of all ¥~
sections of a map & will be denoted by I'™(xn). It should be indicated here
that the %™ sections form a linear space, though this is not necessarily the
case for other ¥™ maps.

A curve at a (local) point g, of a manifold M is a map g: / » M of {(at
least) class ¥ from an open interval / of the field of real numbers R such
that for t, e /, g(t;) = g,. The tangent space of M at g, is the set of all
equivalence classes of curves at go, 7o, M. The tangent bundle TM of M is
the union of all tangent spaces of M, TM =\JT7_M for all ge M. The
tangent bundle projection is the map t,,: TM — M.

As is known, given a vector space V, one can form new vector spaces by
means of tensors T4 of contravariant index r and covariant index s (Chart
A.13). The procedure can be extended to tensors 77 on manifolds. This
leads to a generalization of the notion of tangent space 7M. The vector
bundle of tensors 77 on Mis the tangent bundle of contravariant index r and
covariant index s, To{M). In particular, the ordinary tangent bundle 7\ is
given by 7 (M). The quantity TO(M) is called the cotangent bundlfe and is
denoted with T*M.

A tensor field on a manifold M is a €= section of T{M). A contravariant
vector field is an element of I (T} (M)}). A covariant vector field is instead
an element of I'=(72(M)). All operations of tensors apply to tensor fields
fiberwise.

Consider a Newtonian system in the kinematical form in configuration
space (2.2.2), i.e.,

G -t g g =0« Ffe®, k=12...,n (1)

The first possibility of reinterpreting this system as a vector field on a
manifoild M with local coordinates g is through the use of the tangent
bundle 74 of M via the association, e.g., of the velocities ¢ at each point ¢
and the interpretation of the functions & of the normal forms (2.1.30), i.e.,

a—-E(@ =0, (2)
a=(qyh y=4q E=(y.fe®”,
as elements of T'=(73(M)). The underlying mechanism is called the
fifting of M to TM.

In Section 2.4 we have stressed that the transition from Equation (1) 1o
Equation (2} is not unique because it depends on the assumed prescrip-
tions for the characterization of the new variables y. It then follows that the
lifting from M to 7M is not unique and many different liftings can be con-
ceived for the interpretation of a Newtonian system as a vector field on a
manifold. Notice that the lifting from M to TM is of contravariant character,
e.g.. in the sense that it associates the contravariant guantities §* to g%,
k=12,...,n

A sscond important lifting is that to the cotangent bundle 73(M) =
7*M. Suppose that a Lagrangian for the representation of system (1) is
known. The conventional canonical prescriptions p, = 0L/0g* then allow
the association of new quantities, the covariant canonical momenta p,.
to g*. The construction of the generally different normal form for Equations
{1) in terms of p, then leads to the lifting to 7*M, i.e, the interpretation of
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Newtonian systems as vector fields in 7M. If different Lagrangians for the
representation of the same systems in the same generalized coordinates are
known [see Santilli (1979)], this leads to different liftings to T*M. There-
fore, the lifting to 7*Mf is also not unique and other aiternatives are
possible. This situation can be schematically represented with a gcom-
mutative diagram of the type

TM) < @ M)
(M) AT M)

Ty —2— (7Y

where ¢ and ¢’ are (fibre preserving) diffeomorphisms. Notice that the
diagram implies the existence of mapping from functions E on T4/ to
functions E* on T*M.

Chart 2.2 Symplectic Manifolds

The geometrical, coordinate-free generalization of the econventional
phase space of Analytic Mechanics for autonomous systems (i.e., systems
that do not depend explicitly on time) is characterized by the so-called
symplectic manifolds.

Consider a contravariant tensor field of rank 2, €2 on the cotangent
bundle 7"\ of a (Hausdorff, second-countable, wo-differentiable) mani-
fold M. When restricted to exact differentials, it induces the structure in
local coordinates

of og
(o1
oa” @) Qa" (1)

_QQJ(de dg} = (f’ g) =

satisfying the properties
(f.g,+g9,) = g,)+{f g,
(f.ey=0 (fg,9,)=(g)g,+g,( g, (2)
¢ = const.

Q2 is nowhere degenerate if it is nondegenerate at all points of T*A/.
This is possible if and only if the dimension of 7*M is even. By writing
Q2{f, g) = A,(g) a covariant tensor field of rank 2, Q5. can be uniquely
associated to (2 (under the assumption of nowhere degeneracy) through
the equations Q2 g) = Q5 (4, 1) which, when restricted to exact
differentials, can be written in local coordinates

oa* oa
Q(z)(df: dg) = <fz g> = _6';(' va(a) d_g' (3)

An éven-dimensional manifold M, equipped with a covariant nowhere
degenerate tensor field of rank two, £, is called a symplectic manifold,
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and we shall write M(), when structure (1) satisfies the additional
properties o

JEg)=(fg) - (g =0 (4a)
Jif.g h)y=(f (g h)) + (g. (A )} + (h (£ g)) =0 {4b)

Q, (Q3) is then called a symplectic structure (casymplectic structure)
Conditions (4) essentially ensure that brackets (1) satisfy the Lie algebra
identities (Section 2.9), i.e., (f g) = [ g1* are the generalized Poisson
brackets. Then {f, g> = {f. g}* are the generalized Lagrange brackets.
It should be indicated that this connection with conventional notions of
Analytic Mechanics occurs through the introduction of local coordinates,
while the full geomettical treatment is coordinate-free.

Theorem 1 (Darboux). Suppase that (), ,, is a nondegenerate 2-formon
a 2n-dimensional manifold M. Then d(z), when restricted to exact
differentials, satisfies Equatiops (4) if and only if there is a chart (U, ¢) at
each me M such that o(m) =Q and, with o{f) = x'(t), .... x"(8).

v, (). . ... v, (). we have

(U, 0): Q) > o, = dxk oA dy, (5)
or, in matrix form,
Oan _1nxn
(U, €): Q) = Wy = (+1 - 0 ) (8)

The product » of Eqyation (5) is the exterior product of Section 1.2.
The form @, is sometimes called the fundamental symplectic form.
The analytic counterpart of Darboux's theorem is offered by the following

property

Theorem 2 gﬁayliz. To every point m of a 2n-dimensional cosymplectic
manifold M(Q) ithgre exist Jocal, canonical coordinates & = (q, p) such
that E

da  da"
Qe (@) > Q" = 0% o = o (7)

In essence, Pauli's theorem provides the possibility of reinterpreting
Darboux's theorem in terms of the conventional transformation theory of
analytic mechanics. The connection of Theorem 1 or 2 with the conventional
canonical formulations is that under a Darboux chart or under a Pauli
transformation, brackets (1) become the conventional Poisson brackets
and then brackets (3) become the conventional Lagrange brackets
(Section 2.9). Itthen follows that vector fields (Chart 2.2) on'a symplectic
manifold can be locally Hamiltonian. This is the case when, given a vector
field Z on M(Q) and a point m e M, there exists a neighborhood N(m) of m
and a function H on N(m) such that L.(f} = [£, H]® for all f on N(m),
where L is the so-called Lie derivative. If, in particular, we have Lg(f) =
[£, H1 for all fon N(m), then the vector field is called globally Hamiltonian
{or Hamiitonian for short). in this case,

' oH

 dat = dH = — do*. ' (8)

n
1]

= =v L
Ny T O E da
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Alternatwe!y, the connection between symplectic geometry and canonical
formuiations can be seen from the fact that Hamilton's equations char-
acterize a symplectic manifold M(w). For the explicit form of Hamilton's
equations with the fundamental symplecti¢ structure o, see Section 3.9.
For the necessary and sufficient conditions for a vector field to be globally
Hamiltonian, see Section 3.12.44

Chart 2.4 iContact manifolds48

We now consider the case of nonautonomous systems (i.e., systems
with an explicit dependence on time). In this case, the base manifold is
generalized into a (2n + 1) dimensional manifold B x M, where R is
representative of the time variable. The odd dimensionality of the base
manifold then demands a suitable generalization of the notion of sym-
plectic manifold.

A contact manifold D) isa (2n + 1)-dimensional {(Hausdorff, second-
countable, co-differentiable) manifold R x 7 equipped with a covariant
two-form Q( 2, of maximal rank (i.e., 2n) which, when restricted to TM is
symplectic, i.e., 9(2 (df. dg)lTM = 2)(df dg) ={f g>is symplectlcmthe
sense of Chart 2.3. O .z 15 then calied a contact structure and, in local
coordinates, it |nducest e more general form of the generalized Lagrange
brackets

- . _ oa* oa”
Qo (@, dg) = {f. 91 = 57 Ounlt @) 5 (M

Despite the presence of an explicit timie depehdence, the & o) Structure
can still be reduced to a fundamental structure e, by means of 2 Darboux
chart

(RXUrxcp)Q —> 0, = dxk A dy, (2)

Alternatively, there exist the mare general Pauili transformations ¢t — ¢ and
a — a’ under which

Qi lieay = Ozl a9 - )
This allows the connectidn'With convertional canonical formulation.

i

44 We have here mostly followed Jost (1964) It should be indicated that this
author calls a symplectic structure Q%) a nowhere degenerate confravariant two-
structure which is only skew-symmetric, i.e., it does not necessarily satisfy Jacobi
identity (4b). When condition (4b) i includéd, Jost calls 2 a canonical
structure. We have preferred the name of ymplectic structure over that of canonical
structure because it appears to be more generaily adopted. Also, we have called
symplectic structure the gavariant two-form Q rather than the contravariant form
Q2 agin Jost, because it is more WIdelyaccepieJ See, forinstance, Sternberg (1964)
and Abraham and Marsden (1977). The formulation of the Darboux theorem has
been derived from the latter authors. Théorem 2 js that presented by Jost (1964) with
reference to Pauli (1953). The notion of symplectic structure wiil be more properly
presented in Chart 2.6 via the concept of closure. The purpose of this chart (which
was, perhaps, Jost's objective) is restricted to the indication of the deep interelation
between symplectic geometry and Lie algebras. As a final note, the reader should be
aware that a symplectic structure (or manifold) is often called canonical or Hamil-
tonian structure (or manifold) in the literature of differential geometry.

45 Abraham and Marsden {1967).
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A given vector field £ can be globally Hamiltonian at a point (f, m) €
R x 7*M when there exist a neighborhood N(¢. m) of (¢, m} and a function
H on N(t, m) such that Lo{f) = [f H] + 0f/dt for all fungtions £ on
N{t, m). This recovers the more general time evolution law 7 = [£ H] +
dffot. Alternatively, Hamilton’s equations for nonautonomous systems
characterize a contact manifold M(w). In essence, mappings (2) or (3)
allow the representation of Hamilton’s equations in terms of the funda-
mental structure  irrespective of whether the Hamiltonian is explicitly
dependent on time or not (Section 3.9).

Chart 2.5 Geometrical Significance of the Conditions of Self-
’ Adjointness

We are now equipped to study the geometrical significance of the con-
ditions of variational self-adjointness

CIJ\‘ + C\'u = 0, (13) ’
8C,, , 0C,, , 0C,, _ (b)
0a” da* da"

8C,. oD, oD,
puhal it L . 1
ot oa  da (1c)
wvp=12,....2n

for first-order systems
Cnlt.a)a + D, a)=0

Covr Dy € C=(RZ1), | Cl (R2+1) # 0. (2)

Consider first the autonomous case for which €,, = €, (a) and
D, = D, (a). One of the fundamental properties of a symplectic structure
Q,,, is that, when written as the 2-form Q,, = Q,, da* A da", is closed {in
the sense of section 1.2}, ie., dQ , = 0. As a matter of fact, one can
equivalently define a symplectic structure as a nondegenerate, closed
2-farm on a 2n-dimensional manifold M (Abraham and Marsden (1967,
page 95)]. The geometrical significance of conditions of self-adjointness
{1a) and {1b) is then straightforward: under the indicated continuity and
regularity conditions, they are the necessary and sufficient conditions for
the tensor C,, to characterize a symplectic structure or, equivalently, for
the vector field {2} to be embodied in a symplectic manifold. This is a
consequence of the fact that Equations {1a) and (1b) are the necessary
and sufficient conditions for the form C,,, de* ~ da' to be closed {Example
1.5}.

In the transition to nonautonomous systems, the closure property of a
contact structure persists, although it is now referred to as a (2n + 1}-
dimensional space R x M with local coordinates &',/ =0,1,2, ..., 2n,
a% = t. As a matter of fact, a contact structure can be equivalently defined
as a closed 2-form of maximal rank on a (2n + 1}-dimensional manifold
[Abraham and J. E. Marsden (1967, page 132)]. In this cass, the full set of
conditions (1) must be considered, and their geometrical significance is also
straightforward.

introduce the tensor

=Cue .
= -D,.

=1,2,...,2n,

- 3
Q0. 800 = 0 )

[ —

Q
Q.= _®
Q

if
Qu
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Then conditions (1) are necessary and sufficient conditions for the 2-
form Qm =Q.da’ Ada, i j=0,12 ..., 2n to be closed. Thus, the
conditions of variational self-adjointness for vector fields (2) are the
necessary and sufficient conditions for the tensor C,, to characterize a
contact structure or, equivalently, for vector fields (2) to be embodied in a
contact manifold.

The connection between the geometrical and algebraic significance of
the conditions of self-adjointness (1) is also significant. The necessary and
sufficient conditions for the closure property of a symplectic form can also
be proved by using Equations {4} of Chart 2.3 [Jost (1964}]. But these
equations are the Lie algebra identities for the brackets 22 (df. dg) =
[£. g]". On the other side, conditions (1a) and (1b) are equivalent to the
Lie algebra identities (Section 2.9). Thus, the conditions of self-adjointness
(1) can be interpreted as the analytic counterpart of the necessary and
sufficient conditions for either the brackets Q(2(df, dg) = [f g]* to
characterize a Lie algebra or for the 2-form Q,, = Q, da’ A da/to be a
contact (symplectic) structure for autonomous énonautonomous) systems.

As we shall see in Section 3.12, conditions (1), when restricted to

« covariant normal forms, are the necessary and sufficient conditions for the
existence of a Hamiltonian. We can, therefore, say that the integrability
conditions for the existence of Hamilton’s equations, as expected, are also
the integrability conditions for the (classical realizations of the) Lie
algebra identities and for the symplectic structure.

In conclusion, the Inverse Problem for Hamilton's equations results to be
an effective arena for the study of the deep relationships that exist between
canonical formulations, Lie algebras, and differential geometry.

EXAMPLES

Example 2.1

The kinematical form for the one-dimensional harmonic oscillator,
k

E+wix=0 wi=—
m

is self-adjoint,*® since it satisfies Corollary 2.2.2a. However, if for x # 0 the same
equation is written in the form

i

S+ wj=0

X

then it is non-self-adjoint.

Example 2.2
The kinematical form for a particle under a drag force
Ed+yk=0
%6 When the region R¥** ! in which a system is self-adjoint (non-self-adjoint) can be arbitrarily

selected for all finite values of (¢, ¢, §) we shall ignore it and simply call the system self-adjoint
(non-self-adjoint).
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1s not self-adjoint. However, if the same equation is written in the form
x
—+y= 0, % 0,
X

then it is self-adjoint.

Example 2.3

The equation for the one-dimensional damped oscillator,
4+ 2B% + wix =0,

is non-self-adjoint.

Example 2.4

The fundamental form
m¥, + mx, +kixy +kx,=0
ch'fq + mz)'.':z + kcxl + kzxz =0

can represent a system of two linear, coupled, and undamped oscillators with ocupling
constants m, and k. For m, = k, = 0, the two oscillators are decoupled (i.e., they do
not “interact” between themselves even though each individual particle “interacts™
with its own elastic force field). ’

Since the system is in more than one dimension, its regularity must be checked
prior to studying its sell-adjointness,

The functional determinant in this case is
my m

= mm, — m.

m, My
Therefore, the (necessary and sufficient) condition for the system to be regular is that
D mgm, # ml,

By inspection, we then see that conditions (2.2.9) are satisfied and the system is self-
adjoint.

Example 2.5

Consider the Whittaker equations (Problem 2.9}
i1 = g1,
i = 4y

Assume for prescriptions (2.4.2) the functions

Gj=y|-—q'j=0, 121,2
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Then the equations can be written in the equivalent first-order form

g1 = Y1
43 = Y2,
P =qy
Jr=71

By introducing tensor notation (2.6.23), we can write

q1 a ay a3
I O _ ( 0342 I2>c2) az 1 _ L7
Y1 @ —laxz 0203/ a5 —a
Y2 at ) —a;

Therefore, contravariant normal form (2.6.23) holds with the following functions

[y

E Y1 —4a;
E? _frY2y_] —a:
) gl as
g* Y1 —dy

By inspection, we see that the conditions of self-adjointness, i.e., the contravariant
version of Equations (2.7.20), are violated and such a normal form is non-self-adjoint.
However, this does not preclude the possible existence of other prescriptions (2.4.2),
for which the corresponding normal form is self-adjoint.

Example 2.6

The system
th +d + fitg =0
§+d+ ot 4,9 =0
is regular because its functional determinant

t 1

#| =
||11

=r~-1

is non-null as a function. However, at the value ¢ = 1, such a determinant is null.
According to the assumption of Section 1.1, we then consider the system in any
interval of time that does not contain the value t = . Notice that the existence of the
zero t = 1 of the functional determinant is in line with Definition 1.1.1 of regularity.
Indeed, according to such a definition, for a system to be degenerate it must be null at
least at a point and in its neighborhood, which is not the case for the system considered.

Example 2.7

In this example, we shall indicate the important property according to which the
Loreniz force is variationally self-adjoint, and identify in more detail the objective of
this monograph.
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Consider for simplicity, but without loss of generality, the case of one particle of
mass m and charge e moving in a three-dimensional Euclidean space with Cartesian
coordinates ¥, i = x, y, z, under the action of an electric field E and a magnetic field
B in Gaussian units. We also assume, for simplicity, that the speed of light ¢ = 1. The
Lorentz force is then expressed by the familiar equations of motion

mi = FL
=e¢(f x B+ E)
8A
=etx VxA—e|Vo——],
at

where A and ¢ are the electromagnetic potentials. The components of F* can be written

a4, s 0A;
FL o ggun —2pi _of = _ —
P e(&r’ at )

i=x,pz

where 87" is the generalized Kronecker delta (Section 1.2).

It is easy to see that the Lorentz force satisfies all the conditions of Theorem 2.2.2
and, therefore, it is variationally self-adjoint. To see it, we first note that F" is linear
in the velocity and, as such, it satisfies the first part of Theorem 2.2.2. Secondly, by
using the notation of Equations (2.2.23a), we can write

wn 0 dp  04;
piy=¢ed o; = _e(ar‘_—)

i gt at

It is a matter of simple algebra to see that the above realization of the p;; and o; terms
satisfies all the conditions of self-adjointness (2.2.24), and this concludes our proof.*”
It is significant here to indicate that the property of variational self-adjointness of the
Lorentz force persists in the transition to relativistic, field theoretical, and gravita-
tional generalizations. The proof of this property, of course, demands the generaliza-
tion of the methods of the Inverse Problem to Minkoswki space, field theory, and
Riemannian manifolds. As a result, we can say, more generally, that the forces or
couplings of the electromagnetic interactions (satisfying the needed minimal con-
tinuity conditions) are variationally self-adjoint. Still more generally, we can say that
the couplings of the recently unified gauge theories (of Abelian or non-Abelian type)

7By taking into account the geometrical significance of the conditions of self-adjointness
{Chari (2.5), the property indicated essentially implies, on geometrical grounds, that the terms
p;; of the Lorentz force characterize a symplectic structure under even-dimensjonality and no-
where-degeneracy conditions. Indeed, conditions of self-adjointness (2.2.24a) and (2.2.24b) are
the necessary and sufficient conditions for the (nowhere degenerate) two-form

niti aAru

Py = b

drt A dzd, iLj=x1

to be closed. Similarly, the terms py; and &, of the Lorentz force characterize a contact structure,
in which case the full set of conditions {2.2.24) is used (see Chart 2.5 for details).
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of weak and electromagnetic interactions are all variationally selfadjoint. Indeed,
all these couplings or forces are linear in the derivative terms and satisfy the con-
ditions of variational self-adjointness in the appropriate form. For a detailed study
we refer the reader to Santilli (1978 I, II, and II1). As we shall see in Chapter 3, the
variational self-adjointness of the Lorentz force essentially implies that this force
possesses the structure of the most general (acceleration independent) Newtonian
forces derivable from a potential, Indeed, for the Lorentz force, we have the familiar
expressions

ou dou

Fl—
‘ o +d£61

U= —ep +eA-t = U(t,r,1),

yielding the most general functional dependence of a potential funcnon in Newtonian
mechanics.

It is significant at this point to indicate that this monograph and the forthcoming
second part (Santilli 1979) are devoted to the study of Newtonian forces which are
analytically more general than the Lorentz force, that is, nonderivable from a potential.
Indeed, this is the dominant analytic character of the Newtonian forces, in general, as
recalled in Appendix A. Besides this Newtonian profile, the analysis could be of some
value also for other physical aspects. For instance, an initial study of the problem
whether the strong interactions can be interpreted in terms of forces analytically more
general than the Lorentz force (variationally non-self-adjoint strong forces) has been
conducted by Santilli (1978 I, TI, and 1I1; for a review, see the quoted articles in the
Hadronic Journal). Additional studies by a number of authors on this intriguing
physical problem are currently in progress.

Problems

2.1 Provethe following table of conditions of s¢lf-adjointness for one-dimensional
systems

Equation Condition of self-adjointness
6B 6A 04
A Vi -+ B, 9, §) = ob
(t.4.9)4 + Blt, g, §} =0 = & td rm
d
Al 9 + B,y =0 74=0
. d
a(t)j + b(t)g + clt)g + d(1) = 0 R L ORLON
9 _

g+ f{t,a.g)=0 %
G
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22 Prove that the Bessel equations, when they are written in the form

2+n2
tfi+é+—t—q:0, £ #0,

are non-self-adjoint and that, when they are written in the equivalent form
g+ g+ (7 —aPg =0,
they become self-adjoint, .
2.3 Consider this variation of the system of Example 2.4:

¥+ omE, - kyxy +kx, =0
mik, +myk, + kix, +hox,; =0
mim, # m.m,, m, # mg, k. # k..

Prove that it is non-self-adjoint.
2.4 Select an interval of time in which the system

g(sin wt +4) + gy cos at + fi(t.4.9) =0,

gyeoswt + g4, + L. =0

is everywhere regular.

2.5 Prove that Equations {2.2.18a) and (2.2.18b) imply the linearity of the related
functions in the velocities 4",

2.6 Consider the harmonic oscillator § + g = 0. Assume for prescriptions (2.4.2)
the functions

G=}’+C1‘?+C2=O,
G'=qp+cig+c;=0

with¢,, ¢, = constants. Construct the corresponding contravariant normal form (2.6.23)
as functions of the covariant vector a,, and prove that for prescription G(G') such a
form is self-adjoint (non-self-adjoint).

27 Prove that Equations (2.2.8a) can be obtained from Equations (2.2.6) and
(2.2.5). .

2.8 By following the analysis of Section 2.3, reinterpret the conditions of self-
adjointness (2.2.24) of the kinematical form (2.2.23) within the context of the calculus of
differential forms.

2.9 Determine whether the system of equations (sometimes called Whitiaker
equations)

ijl = g1,
iy = gy
is self-adjoint or non-self-adjoint

2.10 The Mathieu equations

d2
——f+(a—2bcos2z)=0,
dz
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where
aml, _ Zogml

¢ a = —, = T 2
’ Ie? Tey?

.

zZ =

can represent an inverted pendulum with an applied force proportional to cos we, a
moment of inertia [, and a downward acceleration of the applied force «, cos wt. Deter-
mine whether the system is self-adjoint or non-seif-adjoint.

211 Prove that, when a system Fi(z, ¢, 4. ) = 0, satisfies the (local or global)
existence theorems for solutions, so does its system of equations of variations, M) = 0.



CHAPTER 3

The Fundamental Analytic Theorems
of the Inverse Problem

3.1 Statement of the Problem

We consider now the conventional analytic equations® in configuration space,
i.e., Lagrange’s equations:

4oL, 0, 0L, ¢ G
L) = = (a éff D_ (aq‘f Dy, G.L1)
k=1,2,...,n

Our problem is to identify the necessary and sufficient conditions for regular
holonomic Newtonian systems in their fundamental form (2.2.1) to admit a
representation in terms of Equations (3.1.1).

This problem can be studied first by searching for the conditions under
which a Lagrangian L exists that satisfies each of the identifications

d 9L dOL

e e o A . oy i . 1.
dt aqk 6q" kl(t’ 4, q)q + Bk(ta 4, q)s (3 1 2)
k=12,...,n
But Equations (3.1.1), after expanding the total time derivative, explicitly read
&L gL . 8L dL
- -4 ——=0 1
sraid oo ToFa of (3.1.3)

1 We shall use the term “conventional” when referring to Equation (3.1.1) to avoid possible
confusion when we encounter other types of analytic equations in Santilli (1979).

110
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From the linearity in the accelerations * of both the equations of motion and
the analytic equations, it then follows that identifications (3.1.2) demand the
validity of cach of the equations (Section 2.3)

é*L
aék aq; = Aki: (3143)
2 2 .
J°L 0L 8L (3.1.4b)

iy _% _ g,
aFod Tiga ag

By inspection, we see that this is a system of n? + n partial differential
equations in only one unknown, the Lagrangian L, and as such it is over-
determined. From the current literature on the subject®, we know that, in
view of the overdetermined nature of the system, a solution L does not
necessarily exist irrespective of any assumption concerning the regularity and
continuity of the system.?

Our analysis of this problem will proceed as follows. In Chapters 1 and 2
we have studied certain methodological aspects related to the equations of
motion, i.¢., the right-hand side of identifications (3.1.2). The first sections of
this chapter are devoted to the extension of this study to the left-hand side of
identifications (3.1.2), i, to Lagrange’s equations. In particular, we shall
first study (Section 3.2) the basic continuity, regularity, and consistency con-
ditions for Equations (3.1.1). Secondly, we shall analyze (Section 3.3)
Lagrange’s equations from the variational approach to self-adjointness as
introduced in Chapter 2. In this way, we will compiete our analysis of certain
basic properties of each separate member of identifications (3.1.2). In order to
combine those results, we shall then give an appropriate definition of the
concept of analytic representation in configuration space (Section 3.4). The
problem of the necessary and sufficient conditions for the existence of a
Lagrangian will then be treated in Section 3.5, Section 3.6 wiil be devoted to a
method for the construction of a Lagrangian. A reinterpretation of the results
for ascertaining the most general form of Newtonian forces admissible by a
Lagrangian representation will be given in Section 3.7.

2 See, for instance, Goldschmidt (1967), Spencer (1969), and Gasqui (1975).

* It is significant here to point out the dual nature of Lagrange’s equations depending on
whether one considers the Direct Problem or the Inverse Problem of Newtonian Mechanics, The
Direct Problem is essentially the conventional approach whereby one first assigns a Lagrangian
and then computes the equations of motion through Lagrange’s equations. Within the context of
this problem, Lagrange’s equations are ordinary second-order differential equations in the ¢'s.
The Inverse Problem, on the contrary, as by now familiar, consists of assigning the equations of
motion and then computing a Lagrangian through identifications (3.1.4). Within the context of
this latter problem Lagrange’s equations are partial second-order differential equations in the
unknown L. On methodological grounds, the existence theory for ordinary differential equations
reviewed in Section 3.1 is, therefore, sufficient to ascertain the consistency of Lagrange’s equations
in the context of the Direct Problem. As we shall see in this chapter, the theory of differential
forns reviewed in Section 1.2 (which is essentially centered on the study of partial differential
equations) is sufficient to study the integrability conditions of the fundamental identifications
(3.1.2) of the Inverse Problem. These remarks illustrate the need for both methodologies, i.e., those
for ordinary and partial differential equations, although from different profiles.
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The remaining sections of this chapter are devoted to the independent
Inverse Problem of phase space formulations. After reviewing the Legendre
transform (Section 3.8), we shall study the equivalence of Lagrange’s and
Hamilton’s equations (Section 3.9) and establish the self-adjointness of
Hamilton’s equations (Section 3.10). The concept of an analytic representa-
tion in phase space will be treated in Section 3.11, and the study of the neces-
sary and sufficient conditions for the existence of a Hamiltonian, treated in a
manner independent from that of a Lagrangian, will be presented in Section
3.12.

3.2 The Conventional Lagrange’s Equations

Let us recall that Lagrange’s equations are linear in the accelerations §* (but
not necessarily linear in the g* and 4¢* variables) and, as such, they are of
“Newtonian type” (in the sense of the Appendix, Section A.7). Their con-
tinuity properties can thus be studied, as was the case for Newtonian systems,
in a region R>"*! of points (¢, g, §).

By inspection we sce that for the second-order partial derivatives of
_ Equations (3.1.3) to exist and be continuous, the Lagrangian L{t, g, §) must
be at least of class %2 in a region R2"*! of its variables. However, such an
assumption corresponds to Newtonian system (A.7.5) whose functions Ay
and B, are only of class #° in R*"* !, and, as such, it is insufficient to guarantee
the uniqueness of the solution.

For consistency with the continuity assumptions of Section 2.1, we shall
assume from now on, unless otherwise specified, that all Lagrangians are of
at least class €* in a region of their variables, i.e.,

Le@HR¥ ), (3.2.0)

The above assumption implies that all partial derivatives, up to and including
fourth-order, exist, are continuous, and “commute,” i.e., ‘

L oL
@gy™(@gm — (0g’y™(0q)™
my + M, =m=0,1,2,3,4.

(3.2.2)

The functional determinant of Equations (3.1.1), also called the Hessian
determinant, is given by

9*L

55 o0 (R 1) (3.2.3)

|%|(R2"+1) — ’

and it is also defined in a region R?"** of points (¢, ¢, §) in a way similar to the
corresponding Newtonian determinant (Chart 1.1).
In line with Definition 1.1.1, we then have the following definition.
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Definition 3.2.1. The Lagrangian L(t, ¢, §) or Lagrange’s equations (3.1.1)
are called regular (degenerate)® in a region R?"*! of points (¢, g, 4) when the
functional determinant (3.2.3) is non-null (null) in it, with the possible
exception of a (finite) number of isolated zeros.

Again, let us stress that, according to the above definition, determinant
(3.2.3) must be null at a point (¢, g, 4) and at least in its neighborhood (z, ¢, §)
for a Lagrangian (or Lagrange’s equations) to be degenerate (Section 1.1). In
practice, a simple inspection as to whether the Hessian is non-null or null as a
function is sufficient to ascertain the regularity or degeneracy of a Lagrangian.
If the Hessian is non-null as a function, this does not prohibit the possible
existence of its zeros. Such zeros, when they occur, render the value of the
Hessian null only at a (finite) number of points and rot in their neighborhoods.
Such a Lagrangian is then still regular according to the above definition.®
More generally, we can say that when Hessian (3.2.3) admits a (finite) number
of isolated zeros, the Lagrangian is still regular. From here on we shall
tacitly assume that the region of definition of a Lagrangian has been selected
in such a way as to avoid possible zeros of the Hessian (see Problem 2.4).

Identifications (3.1.2) demand, through identities (3.1.4a), that

&*L

aq-‘i aq-_r (R2"+1) = IAijl(R2"+l)‘ (3.2.4)

This clearly irﬁplies the following theorem.

Theorem 3.2.1 (A Necessary Condition for the Existence of a Lagrangian).
A necessary condition for regular (degenerate) Newtonian systems (A.7.5) to
admit an analytic representation (3.1.2) in a region R2** 1 of points (1, q, 4), is
that the Lagrangian be regular (degenerate) in it.

It should be emphasized here that the condition of the above theorem is
necessary but not sufficient.
A path (ot path segment)

E={gld"O,tet, t), k=1,2,....n} (3.2.5)

will be called a possible path when it is a solution of Equations (3.1.1). Such
a path is often called regular or degenerate (also nonsingular or singular)
depending on whether the Lagrangian s regular or degenerate along it, that is,
Hessian determinant (3.2.3) is null or non-null along (t, E, E).

* See footnote 3 of Chapter 1 for comments on this terminology.

* Let us recall that, according to our definition (Section 1.1), a “region ™ is an open and con-
nected set. Thus, the minimal region of definition of a Lagrangian is constituted by a point
(t, g. §) and its neighborhood.
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We shall call the actual path, and denote it with E, the solution of Lagrange’s
initial value problem

gi(te) = uf, ¢ = vb. (3.2.6b)

In essence, with the terms “possible path” and “actual path” we intend to
indicate the fact that the former, since it is a solution of Lagrange’s equations
without initial conditions, depends on 2n arbitrary constants and, as such, it
does not necessarily represent the actual trajectory of the system. The latter,
however, is the solution of Lagrange’s initial value problem (3.2.6); it does not
depend on arbitrary constants and, as such, does represent the actual tra-
jectory of the system in the space of the ¢’s.

We shall call the co®" family of possible paths the family

2", = {E|E = {g"(t; u, v), t € (ty, 1), w* € (uf),, vF € (vG),}  (3.2.7)

induced by the general solution of Equations (3.1.3)for all admissible values of
the parameters.

Given a Lagrangian L(¢, g, ¢), after computing the indicated partial deriva-
tives, Equations (3.1.3) become ordinary differential equations. Therefore,
under the assumption that the Lagrangian is of (at least) class 4 * and regular,
all the theorems of the existence theory of Section 1.1 apply. We then say that
the assumed continuity and regularity conditions guarantee the consistency of
Lagrange’s equations, namely, the representation of a physically admissible
motion.

Suppose that all admissible paths (including actual and possible paths) are
of (at least) class % in a given interval of time. This corresponds to the ex-
clusion of an impulsive motion® or any type of discontinuous force. Then, for
class #* regular Lagrangians, Equations (3.1.1) are equivalent to the so-
called integral form of Lagrange’s equations (1.3.22), i.e.,

oL ftdtaL— = const 3.2.8)
5 ), digg = o= comst, 3.2

everywhere in the interval considered. Indeed, under the continuity propertes
Le% R¥* VYand E = {g,(t; u, v)} € 6*(¢,, t,) with ¢, and ¢, in the interior
of R2"*1 the continuity of L along the possible path E is ensured.” Then, the

% See Chart A.3 (Appendix).

7 1t is essential in this respect to differentiate between the continuity of L as a function of the
variables (z, ¢, §) and the continuity of L when computed along a given path E, because the
former does not imply the latter. For instance, the Lagrangian L = ¢* — ¢* is of class ¥ in
(4. ¢), but whensucha Lagrangianiscomputed alongthepath £ = g = [tll,t €{—tg, +iohte # 0,
then L(E, E) is discontinuous at t = 0. Our restriction that all paths are of at least class %!
eliminates occurrences of this type.
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total time derivative of Equations (3.2.8) exists and is continuous everywhere
in (t,, t,), yielding

d {8L " 9L d 6L AL
7 (6{;" J;ldt o ck) S GoF A (3.2.9)
A similar situation exists for the inverse transition through an integration.

Despite the assumptions E € %' and L € *, we are still left with the prob-
lem of the continuity properties of the accelerations g*. This problem is
solved by the so-called Hilbert Differentiability Theorem, which indicates the
deep relationship existing between the continuity of (possible or actual) paths
and the regularity of the Lagrangian.

Theorem 3.2.2 (Hilbert Differentiability Theorem).®  Suppose that the path
E is of class €* in a neighborhood (1), of a point t, and satisfies Lagrange’s
equations (3.1.1) or (3.2.8) for a given L(t, q, q). Then, in the neighborhood of
every point (ty, E(ty), E(to)), in which the Lagrangian is of class ™2,
m > 1, and regular, the path E is of class €™ in (to),- If the assumptions hold
everywhere in an interval (t,, t,), so do the conclusions.

The proof can be outlined as follows. Equations (3.2.8) can be interpreted as
a system of first-order differential equations, i.e.,

. oL t 8L
Filt,q,4) = a—qk - j dt @E —¢ =0 3.2.10)

In the neighborhood of a point Py, = (¢4, 4{ts), 4(¢,)), the Implicit Function
Theorem 3.1.1 holds for Equations (3.2.10) with respect to ¢* if and only if its
functional determinant

oF; &2L
aqi - aqi aq-j
is different from zero at Py. But the Lagrangian L is regular by assumption in
(Py),. Thus, Theorem 1.1.1 holds and from property (e) of the same theorem it
follows that 4* has the same continuity properties of F,,, namely, ¢* € €"~ (t,),
and, thus, g* € €™(z,)..

It should be stressed that the regularity condition plays a crucial role in the
above theorem. Indeed, if such a condition is removed, the conclusions of the
Hilbert Theorem 3.2.2 do not necessarily hold.

Without proof, we also quote the following reformulation of Theorem 1.1.6
for Lagrange’s equations.

(3.2.11)

‘Theorem 3.2.3 (Embedding Theorem for Solutions of Lagrange’s Initial
value Problem).®  Every regular actual path Ey = {q|q* = ¢*(t; ug, vo), t €
(t,, 1), k =1, 2, ..., n} of Lagrange’s initial value problem (3.2.6) can be

¥ See, for instance, Bliss (1946), Akhiezer (1962).
9 See, for instance, Bliss (1946), Sec. L.7.
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embedded in a 2n-parameter family of possible paths E = {g*|¢* = ¢"(t;u, v),
tE(ty, ty), u* € (uk),, v* e (WE),, k = 1,2, ..., 3n} whose functions q* possess
continuous partial derivatives of at least the second order for all values
€ (ty, ta), 4 € (uk),, v* € (v}),, and the determinant

o¢ o
ouw ol
o ar’

D(t;u,v) = (3.2.12)

is everywhere non-null along E.

Unless otherwise stated, all Lagrangians considéred from here on will be
regular and of at least class €* in their region of definition.

3.3 Self-Adjointness of the Conventional Lagrange’s Equations

Consider a class €2, regular, holonomic Newtonian system (2.2.1). The
problem of the existence of a Lagrangian for its representation (3.1.2)
centrally depends on the variational characteristics of both members of these
identifications. _ .

In Chapter 2, we established that systems (2.2.1) can be either self-adjoint or
non-self-adjoint. In this section, we shall investigate the corresponding
properties of the conventionai Lagrange’s equations.

Let us begin by constructing the equations of variations and variational
forms of Lagrange’s equations. Consider a one-parameter family of possible
paths

T = {EIE = g(t; w); te(ty, 13), we O, @3.3.1)

which are solutions of the equations

4oL oL
Ly(E) = (Eé? - 5{?) (E) = 0, (3.3.22)
Le®%E), (3.3.2b)
5L

From the existence theorem of Section 1.1 and Theofem 3.2.2, we know that
the paths g*(z; w)arc of class € in (¢, t,). Theorems 1.1.4 and 1.1.7 then apply,
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and g*(z; w), ¢*(t; w), and §%(¢t; w) possess continuous derivatives with respect
to all we0,.1° Thus, the variations

oq* oq* og* .
;1"‘ = _q; R ?"]k = i , ﬁk = i (333)
W =0 W =0 oW [w=o
exist and are continuous in (¢, ¢,).
Equation (3.3.2) can be more explicitly written
' 4d 9 a :
E)=9—57—z=+L ; i(t; .3,
Lk( ) {dt aqk 5qk} (t: q(t7 W), Q(ts W))5 (3 3 4)

where now both L and g are known. By differentiating with respect to w and
by putting w = 0, we obtain the system

Jk(r])"'"d“;w=0
_fa(L . PL N (&L . L
~la\eFeq " Tarad”) " \oFaq " Y aFad )|y

(3.3.5)
which, as is the case for all equations of variations (se¢ Section 2.1), is linear
in %%, #, and #f'.

By introducing the function

1{ a*L ., 0:L . . 2L . .
= 1) = — T .'I-J 2—*-11 n T l", 3.3.6
J =m0 =3 (aqlaq,nﬂ + g + Maq,w) (3.3.6)
Equations (3.3.5) can be written in the form (1.3.25), i.c.,
d ol aJ
= e e — —— = () 3.3,

Jk(n) dt a’?k 617" ] ) ( 3 73)

J & €*(R{np)
a7 . &L "
aﬁi ar-,j (R(zt.r::}n) = [ atj'i 6q-j (R(zx.g, }3) :'w=0 # 0. (3.3.7b)

These are the equations of variations of Lagrange’s equations, also called
Jacobi’s equations (see Section 1.3). When the forms J,(n) are computed along
a variation # which is not necessarily a solution of Equations (3.3.7), we
shall call them variational forms of Lagrange’s equations in line with the
-assumption of Section 2.1.

Equations (3.3.7) are similar in structure to Lagrange’s equations. Never-
theless, it must be recalled in this respect that the former are always linear in

1% The analysis of this seetion can be equivalently carried out for w in the neighborhood of any
(finite) value wy,.
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n', #', and # while the latter are linear only in §' but not necessarily in gq* and
¢' as well. .

We are now equipped to prove a theorem of major significance for our
analysis.

Theorem 3.3.1 (Self-Adjointness of the Conventional Lagrange’s Equa-
tions).'* Under the assumptions that the Lagrangians L(z, g, §) are of (at
least) class €* and regular in a region R*** of points (8, 4, §), the conven-
tional Lagrange’s equations are always self-adjoint in RmH1

ProoOF. The variational forms

d{ L &L
i = —(—..-ﬁ — = |
dt\égq' 8q"] &q' oq

L[e (o )+ PL _ PL ., PL
a\od o) " ageqd oqodt)” T aged

under the assumed continuity and regularity conditions, always coincide with the adjoint
system (see Section 2.1)

. d AL 8L
0 Iy P .
oy =n Lu (aq" aq*) Y aq'}

_d{k[d é’L N &L &*L +d2 , &L
dr i dt aqkaql aqkaqi aqkaéi dtz 4 aqkaqx

everywhere in R**"'. Q.E.D.

(33.8)

(3.3.9)

In essence, Theorem 3.3.1 states that, under the indicated continuity and
regularity assumptions, Lagrange’s equations are self-adjoint for “all”
possible Lagrangians.

Notice that the continuity property L € €3(R***") is sufficient to establish
the existence and continuity of Jacobis forms (3.3.8). However, such a
continuity property is insufficient to establish the self-adjointness of Lagrange’s
equations because adjoint system (3.3.9) demands the use of partial derivatives
up to the fourth order. The emerging minimal continuity condition Le
%*(R*"*!) then coincides with the minimal continuity conditions Ay,
B, & €*(R2"*1) to study the self-adjointness of Newtonian systems in their

11 Asindicated in the Introduction, this property goes back to Jacobi (1837). For a subsequent
proof see, for instance, Davis (1929). For an extension to relativistic field theories see Santilli
(1977a, Theorem 7.1). Notice that Theorem 3.3.1 deals with the variational self-adjointness of
Lagrange’s equations. The sel-adjointness of the Lagrange operator

d 9 d

dt 8¢ og"
is a well-known property, but it demands a different treatment. Therefore, the approach to self-
adjointness which is followed in this monograph is variational rather than operational in nature.

For the latter approach, sec Vainberg (1964). For the equivalence of the operational and varia-
tional approach, see Charts 3.16 and 3.17.
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fundamental form (Sections 2.2 and 2.3). Indeed, when the Lagrangian is of
class ¥*, Lagrange’s cquations are of class 2. :

Theorem 3.3.1 can also be proved by showing that Equations (3.1.3) satisfy
all the conditions of self-adjointness (sce Problem 3.1).

It should be stressed that Jacobi’s equations (3.3.7) are intimately linked to
Lagrange’s equations in the sense that they demand the prior knowledge of the
latter. The combination of Lagrange’s equation and the related Jacobi’s
equations puts the conventional analytic framework in a different light. The
need for the joint use of these equations to properly characterize an analytic
representation in configuration space will be indicated in the next section. Its
significance for the problem of the existence of a Lagrangian will be pointed
out in Section 3.5. However, the joint use of Lagrange’s equations and the
related Jacobi’s equations might have a significance that goes beyond the
problem of the existence of a Lagrangian. This is due to the fact that while
Lagrange’s equations are generally nonlinear, and therefore their general
solution is usually unknown,'? the related Jacobi’s equations are always
linear and, as such, their general solution can be computed with conventional
techniques. To the best of my knowledge, the possible significance of the
Joint use of these equations for nonlinear systems has not been investigated
until now.

Asa final remark, we would like to stress that the knowledge of a solution of
Lagrange’s equations is not necessary for establishing the self-adjointness of
the same equations, as can also be seen, for instance, by proving Theorem 3.3.1
along the lines of Problem 3.1. This is the reason why we have used, in the
proof of Theorem 3.3.1, the variational forms J,(n) and their adjoint A
rather than the corresponding variational equations J,(#) = 0 and J,(n) = 0.
This point has a crucial relevance for our analysis owing to the generally
nonlinear nature of the equations of motion considered.

3.4 The Concept of Analytic Representation in Configuration
Space

As previously stated, a central objective of this monograph is to consider a
given system of Newton’s equations of motion and then study the conditions
under which a Lagrangian capable of “representing” such a system exists. In
order to achieve this objective it is essential to clarify the concept of an
“analytic representation in configuration space,” namely, the representation
of the system in terms of Lagrange’s equations,

In principle, we can say that a system of Newton’s equations of motion
admits a representation in terms of Lagrange’s equations for a given Lagrang-
ian when the solutions of those two systems coincide. Predictably, this

12 We are referring here to exact solutions. Approximate solutions of nonlinear equations can
be computed, e.g., with numerical methods.
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approach encounters severe practical difficulties because the equations of
motion are generally nonlinear.

In order to overcome these difficulties, we introduce the following de-
finition.

Definition 3.4.1.13 A class %2, regular, holonomic, system of Newton’s
equations of motion admits an analytic representation in configuration space
in terms of the conventional Lagrange’s equations in a region R#*1 of the
variables (¢, g, ¢) when there exist n* functions hi(t, g, ¢) which are of (at
least) class 42 and whose matrix (hi) is regular in R*"**, such that the con-
ventional Lagrange’s equations coincide with the equations of motion up to
the equivalence transformation induced by such a matrix (%), ie.'*

d oL 8L . .

EEE - EE = hi(A,;# + By, k=12...,n (34.1a)
h.e FX(R>T1), (3.4.1b)
BLIR2™1) # 0, (34.1c)

or, equivalently, when the equations of motion coincide with the conventional
Lagrange’s equations up to the equivalence transformation induced by the
inverse matrix (b 1Y) = (b)) 71, Le,

{d oL oL
k“(aa—q-a - 5?) = A# + By (34.22)
(hy 1) = (b))~ N (3.4.2b)

A few comments are in order here, First of all, let us note that the right-hand
side of definition (3.4.1a) is indeed an equivalence transformation of the
equations of motion, precisely in view of the assumption of regularity of the
matrix (k). Assumptions (3.4.1b) are introduced to preserve the minimal
continuity condition of the equations of motion in their fundamental form.
The functional dependence hi = hi(t, g, ¢) is the maximal functional de-
pendence of these functions, which is admissible within the context of
Definition 3.4.1. Indeed, any additional functional dependence of these
functions on the accelerations would not preserve the Newtonian character
of the equations of motion, namely, their linearity in the accelerations
(Appendix). Finally, the equivalence of definitions (3.4.1} and (3.4.2) is also
self-evident from the assumed regularity of the matrix (k). From now on, we
shall refer to this matrix as the matrix of the factor functions. -

The first significant implication of Definition 3.4.1 is that, given a system of
Newton’s equations of motion, the knowledge of only one function, i.e., the

13 Santilli (1977a).
14 Notice that these identities are not set equal to zero because they must hold along any
admissible path.
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Lagrangian L, is generally insufficient to characterize an analytic representa-
tion because n? additional functions, i.., the factor functions A}, are generally
needed. This fact, which will have an impact at several levels of our analysis,
will be illustrated later in this section.

To better elaborate the significance of the factor matrices, we now introduce
the following definition.

Definition 3.4.2.%5 The analytic representation of Definition 3.4.1 is called
direct (indirect) when the matrix (1) of the factor functions is (is not) the unit
matrix (4;).

We therefore have a direct analytic representation when the equations of
motion are represented as given, without any equivalence transformation.
But, as will be evident later, the Lagrangian for this type of representation
exists only under special circumstances. As a consequence, one remains in the
general case with the study of the analytic representations of equivalent
systems, rather than the original system as given. Thisindicates the significance
of the concept of indirect analytic representations, particularly when non-
conservative forces occur. However, it should be pointed out that this type of
analytic representations is also significant for the case when all acting forces
are conservative,!®

It is useful here to illustrate the concepts of direct and indirect analytic
representations with a simple example. Consider the self-adjoint system of
two uncoupled harmonic oscillators with the equations of motion

i, + w'q; =0, 343
éz"!‘C!)Zqz:O. ()

A well-known Lagrangian for the representation of this system is given by
wZ
L=3gt+ 4¢3 - 5 (g? + 43). (344)

By computing Lagrange’s equations with this Lagrangian, we obtain the
identity :

do o
BT vota)

= (T2} oy, (3.4.5)
d L. dL Gy + g [sa

Ao’ g [sa

15 Santilli (1977a).

16 This is because conservative Newtonian systems can also be given in non-self-adjoint forms
[see in this respect Equations {2.2.28) or Example 3.5], in which case a Lagrangian for their
direct analytic representation does not exist, as follows from the Fundamental Analytic Theorem
of the next section,
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where the symbol SA stands for self-adjointness. Therefore, we have in this
case, according to our terminology, a direct analytic representation of the
equations of motion (3.4.3).

But an equally acceptable Lagrangian for the representation of system
(3.4.3) is given by’

L* = 4,4, — W q1q,. (3.4.6)

By again computing Lagrange’s equations with this new Lagrangian, we now
have

qor o
dt aql aql _ [(0 1) (ql + wqu) _ g (347)
d dL* @8L* 1 0/\d, + w?q3/sasa ) o

dt 0’ 0q” Jsa

This is precisely an indirect analytic representation of system (3.4.3), where
the factor function ki, in this case, characterizes a permutation of the indices.
Indeed, a simple inspection of Lagrangian (3.4.6) indicates that Lagrange’s
equations, say, in the (g,, ¢,) variables, reproduce the equations of motion in
the (g;, ;) variables, and vice versa. This did not happen for Lagrangian
(3.4.4). Another inspection also indicates that both Lagrangians (3.4.4) and

17 A brief digression to the field theoretical case is significant here. Under the transitions

d d

ql([) i (p(x)a QZ(t) - @(x)a w? - "lz(ﬁ =C= l)! EE e ‘[};

Equations (3.4.3) become those of the complex scalar field, i.e.,

(O + mHe =0,
O +mHhp=0

" The Lagrangian density customarily used in field theory for the representation of these equations
is precisely one of type (3.4.6), ie.,

- _ iy
Fr =Gt o wPe, M=oy

g=0,1,23
while the Lagrangian corresponding to structure (3.4.4), ie,,
£ = o 0" — m2o?) + Ko 9 — mie)

even though it is fully acceptable on grounds of its real-valuedness and capability of reproducing
the considered field equations, is usually ignored. Qddly, this position in field theory is opposite
to the corresponding position in Newtonian Mechanics, where Lagrangian (3.4.4) is generally
assumed, while its equivalent form (3.4.6) is customarily ignored. In actuality, this multiplicity of
the functional structure of the Lagrangian has rather deep implications within the context of both
Newtonian Mechanics [see Santilli (1979)] and field theory [see Santilli (1978, Vol. I)].
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(3.4.6) are regular, as they must be from Theorem 3.2.1, in view of the values of
the corresponding Hessians

2L | v of_ .
a4 o¢| (0 1| 7
(34.8)
x| o 1 _
ag'eg’| |1 o]

Strictly speaking, Lagrangian (3.4.4) alone is capable of representing the
considered system in the form (3.4.3), while representation (3.4.7) demands the
knowledge of Lagrangian (3.4.6) and four elements of the factor functions hi.
Notice that in this simple case the question of whether the representation is
direct or indirect is, in the final analysis, immaterial because it is merely
related to the assumed order of the equations of motion. For instance,
Equations (3.4.3) can be assigned in their reverse order. In this case, re-
presentation (3.4.7) becomes direct, while representation (3.4.5) is indirect.
What will be significant for our study of the transformation theory [see
Santilli (1979)] is the possibility that the same system admits both a direct and
an indirect analytic representation.

The combined use of Definitions 3.4.1 and 3.4.2 is still insufficient to
characterize properly, according to our needs, the behavior of the equations
of variations. To fulfill this last requirement, we introduce the following
definition.

Definition 3.4.3.'% The analytic representations of Definitions 3.4.1 and
3.4.2 are termed ordered (nonordered) when the left-hand and right-hand sides
of Equations (3.4.1) or (3.4.2) coincide (do not coincide), member by member,
for all values of the index k = 1,2, 3,..., nin a given ordering.

In essence, the concept of ordered direct analytic representations implies
that Lagrange’s equations and the equations of motion not only coincide as
systems, but also coincide member by member for a given ordering of the
index k. In this case, we shall write

Lig)=Aud' + B,, k=12,...,n (3.4.9)

On the contrary, the concept of nonordered direct analytic representations
implies that the left-hand and right-hand sides of the above equations only
coincide as systems, with no reference to their respective orderings. In this
case, we shall write

(L@} = {Aud’ + By}. (3.4.10)

1% Santilli (1977a).
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Clearly, the only possible differences between the left-hand and the right-hand
sides of the above identifications are permutations of the indices. For instance,
Equations (3.4.5) characterize an ordered direct analytic representation of the
equations of motion (3.4.3) in the ordering g = (q;, 4,), while Equations
(3.4.7) characterize an ordered indirect analytic representation of the same
system in the same ordering. If the condition of ordering is removed, then
both Lagrangians (3.4.4) and (3.4.6) characterize nonordered direct analytic
representations of the equations of motion (3.4.3).

From the viewpoint of our objective of studying the necessary and sufficient
conditions for the existence of a Lagrangian, the condition of ordering plays
a crucial role. Indeed, the term “ordered direct analytic representation”
implies that each of the following three sets of identities for class ¢ and
regular Newtonian systems hold in the assumed ordering:

Lagrange’s equations Equations of motion
L@ = Fd9) (34.11a)
Jacobt’s equations Equations of variations

of the equations of motion

Jdmy = Mdn), (3.4.11b)
Adjoint system of Adjoint system of the
Jacobi’s equations equations of variations

T®m = M@ (3.4.11¢)

This is a consequence of the uniqueness of the variational forms and their
adjoint system as identified in Section 2.1.

Similarly, the terms “ordered indirect analytic representation” implies
that each of the following threc sets of identities, again for class €*? and
regular systems, also hold in the assumed ordering:

Lagrange’s equations Equivalent equations of motion
L{g) = Fi¥qg) = hF(a), (34.122)
Jacobi’s equations Equations of variation of

the equivalent system

Jdm = M), (3.4.12b)
Adjoint system of Adjoint system of the
Jacobi’s equations equations of variations

J@ = MEG. (3.4.12¢)
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1t is essential to illustrate the above remarks with an example. Consider the
simple generalization of system (3.4.3),

(ot = 6 D669+ )G
g1 — bd; + 0’q, 0 1/\4, 0—5/\4, 0 o*/\g

= (cud") + (bud’) + (@uq)

=0, (3.4.13)
which exhibits the presence of a ronconservative force F = (—bg,, + bg,)."*
This is a two-dimensional linear system of ordinary second-order differential

equations with constant coefficients. The conditions for self-adjointness
(2.1.17) now become

Ou = s (34.14a)
by = —by, (3.4.14b)
Ay = Qg - (34.14¢c)

Since Equations (3.4.14b) are violated, system (3.4.13) is non-self-adjoint.
By anticipating the Fundamental Analytic Theorem of the next section, one
might, therefore, conclude that a Lagrangian for the representation of such
a system does not exist. This conclusion, however, is erroneous. Indeed, an
analytic representation of system (3.4.13) is known in the physics literature
and is given by the Morse-Feshbach Lagrangian®°

. . b, . )
L* = 4.4, +'§(91‘12 — §,92) — w*q,92. (34.15)

Our objective here is that of identifying the behavior of the analytic re-
presentation characterized by such a Lagrangian from the viewpoint of the
equations of variations and their adjoint system.

By computing Lagrange’s equations with Lagrangian (3.4.15), we can
write

d oL* oL*

aoqt g iy + bdy + ’q) _
o1 (gl ot el g (3416)
d aL* oL* 1 0 42 — b{h + w7q;

dt o o

19 Notice that this force is not dissipative, because while the component —b¢q, is passive, the
component + b4, is active.
20 Morse and Feshbach (1953).
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Therefore, we have an ordered indirect analytic representation of the
equations of motion.

A striking apparent discrepancy, however, emerges between the left-hand
and right-hand sides of the above identifications. This is because Lagrange’s
equations, from Theorem 3.3.1, are expected to be self-adjoint, while equations
of motion (3.4.13), as indicated earlier, are non-self-adjoint. This indicates the
need to inspect the variational behavior of this analytic representation in
order to ensure that a structure of type (3.4.12) actually occurs.

Let us first verify that Theorem 3.3.1 is indeed satisfied by Lagrangian
{3.4.15). Jacobi’s equations for such a Lagrangian are

=0, (3417
*odaq 0. (34.17a)

2LE ( L* azL*)q. 2L

JE = — ——— - — |7
k(n) aqk aql n + aqk 8(1' aqk aqr
The adjoint system of Jacobi’s equations is, from Equations (3.3.9),

;AL

JEm) = —n' Pyl = 0. (3.4.17b)

o2 2L* L. @cL
(aqi aqk - aqr aqk) " 6q' aqk

But Lagrangian (3.4.15) is trivially of class €. Therefore, systems (3.4.17a)
and (3.4.17b) coincide, i.e.,

JEmy = J¥m), ne€*(R) (34.18)

and Lagrange’s equations for Lagrangian (3.4.15), i.e., the left-hand side of
representation {3.4.16), is self-adjoint, as expected.

To complete our analysis, we must now inspect the right-hand side of the
same representation. This is easily achieved by rewriting such a system in the
form -

0 1\/§, + bg, + wqu) _ (0 1) (c’jl)
1 0/ \d, —bdy + wiq, 1 0/\4,
0 - b q“l 0 (.1)2 ql
(6 o)a)+ Ge 96

= (ciud) + Biud) + (@uq)
=0 - (3.4.19)

A simple inspection then indicates that such an equivalent form of the
equations of motion does indeed satisfy all conditions (3.4.14) and, therefore,
it is self-adjoint. All Equations (3.4.12) for this representation then hold.
The variational significance of the analytic representation characterized by
the Morse—Feshbach Lagrangian (3.5.15) is therefore that of transforming the
equations of motion from the original non-self-adjoint form (3.4.13) to the
equivalent self-adjoint form (3.4.19) through a simple permutation of the indices,
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which we symbolically write?!

oL o
deéq’ oy [(0 1) (‘h + b, +°”2q1) ] =0, (3420)
d oL* JL* 1 0/ \dy — bds + ®°q5)nsasa ’ o

dt0®  0g” Jsa

where NSA stands for non-self-adjointness.
If the ordering condition is removed, then simple calculations yield, instead
of Equations (3.4.12), the equations

® _ 4y + bgy + wqy -
(Li@) = {qz e +w2q2} (Fa), (34.212)

{JEm)y = {Mum)}, (3.4.21b)
{TE@} # {(MD}, (34.21¢)

where the curly brackets indicate, in line with notation (3.4.10), that the en-
closed quantities are considered as systems rather than term by.term. We can,
therefore, conclude that the elimination of ordering in this case does allow the

21 A digression to the corresponding field theorctical case is significant here. Under the
transitions
_ b 3 " 2 2 2 d d
4:1(0) — plx), qa(t) = Plx), 3 —ied w® - mt - e*d, 4%, prndr
Morse-Feshbach Lagrangian (3.4.15) becomes
Pt = g, " — ieAN@, @ — @p,) — (m? — eZA“ AMed
= (@u; + ie A, oHP"; — ied'P) — w0, “

and represents one of the central models of contemporary gauge-invariant field theories, namely,
that of the interaction of a complex scalar field with an external electromagnetic field. As a
matter of fact, Lagrangian (3.4.15) was originally derived precisely through a Newtonian limit of
the above field theoretical Lagrangian (Feshbach, private communication 1976). The variational
behavior of the field theoretical case closely follows that of the corresponding Newionian case
[see Santilli {(1977a), particularly Appendix C]. Besides its variational significance, this example
has rather deep physical implications characterized by the fact that the Newtonian limit of the
couplings appearing in the gauge-invariant Lagrangian of the complex scalar field in interaction
with an electromagnetic field is of nonconservative type. The significance of the nonservative
forces for our description of Newionian systems as they actually exist in our environment is
stressed in the Appendix. The above example indicates that such nonconservative forces also have
a physical role within the context of elementary particle interactions. Indeed, they occur already
al the level of the electromagnetic interactions of charged particles. The current unified gauge
theory of weak and electromagnetic interactions preserves such a “noncenservative” character
of the couplings. Therefore, “ noncenservative couplings™ also occur within the context of weak
interactions. It is then conceivable to suppose that the same type of “ nonconservative couplings”
also occur for strong interactions. In this latter case, however, it is equally conceivable to suppose
that the ultimate characterization of the strong interactions will demand a further generalization
of the nonconservative character of the couplings. The above remarks put the analysis in this
monograph in a different perspective. Indeed, the Newtonian analysis of the nonconservative
forces presented in this monograph appears to be an advisable step prior to any attempt at a
generalization of the couplings of the electromagnetic and weak interactions along these
“nongonservative” lines. The hope to reach some insight along these lines for the problem of the
strong interactions was one of my primary motivations for undertaking this task. For studies
along these lines, see Santilli (1978, Vols. 1, 11, and III}.
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existence of an analytic representation even though the system is non-self-
adjoint. This clearly affects the necessity of the conditions of self-adjointness
for the existence of a Lagrangian.

The above remark illustrates the significance of the ordering in the concept
of analytic representations. From now on, unless explicitly stated, all our
direct or indirect analytic representations will be assumed to satisfy the
ordering condition.

The subsequent Sections 3.5, 3.6, and 3.7 will be devoted to the study of the
fundamental type of analytic representations, namely, the ordered direct
analytic representations. [The indirect representations are studied in Santilli
(1979)].

As indicated earlier, system (3.4.13) is a simple nonconservative generaliza-
tion of system (3.4.3). The Morse-Feshbach Lagrangian (3.4.15) appears to be
a generalization of Lagrangian (3.4.6). A significant question is whether a
generalization of Lagrangian (3.4.4) for the representation of system (3.4.13)
also exists. .

An inspection of the problem®? indicates that such a Lagrangian does in-
deed exist and is given by??

L = (4 — 0q]) + e "4(g3 ~ w’q3) (3.4.22)

22 For a derivation of this Lagrangian, see Santilli (1979). )
23 A digression to field theory is also significant here. By performing the same transitions asin
the previous cases, the Lagrangian density which corresponds to Equation (3.4.22) is given by

& =Ml g gt - (P — €24, A7)
+ etHE ML F T — (mF — ¢ A, AMP].

It also represents the complex scalar field in interaction with an external electromagnetic field,
with the only difference that now the factor functions, rather than characterizing a permutation,
are nontrivial. By comparing the above Lagrangian density with the conventional form of gauge
theories, the reader can identify the following rather puzzling breakings.

(1} Theso-called minimal coupling rule of the electromagnetic interactions, i.e., the substitutions
@l —ied, and B @+ jed,

no longer hold for the Lagrangian .%.
(2) The invariance of & under the gauge transformations

o=@ =, PogedvE wel,
which is at the basis of the customary derivation of the charge conservation law, no longer
holds for &,
(3} The invariance of % under translations in space-time

= x™M = x! o

which is at the basis of the customary derivation of the energy-momentum conservation
law, no longer holds for ..

The existence of this new Lagrangian density with the above-indicated underlying breakings
is, in the final analysis, a consequence of our definition of ordered indirect analytic representations
because of the freedom in the explicit form of the factor functions. The existence of two different
Lagrangian densities for the representation of the same system indicates the existence of degrees
of freedom, which become intimately linked to the methodology that underlies the problem of the
existence of a Lagrangian. For an analysis of these and other aspects see Santilli (1978, Vols. I II,
and I1I},
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with the underlying ordered, indirect analytic representation

d oL oL
A2 A2
dtodi  oqi _[fe" 0 Yfd + bdy + 0P, =0 (34.23)
d oL oL 0 e ™f\d, — bdy + 02qy ) nsa lsa o
dt 04> 8q” Jsa
and factor functions
. e? 0 ;
() = (o e_,,,), || = 1. (3.4.24)

A few comments are now in order. Within a Newtonian context, Lagrangian
(3.4.22) could be interpreted as more “natural” than Lagrangian (3.4.15) for
the representation of the system considered,?* because its explicit dependence
on time directly indicates the underlying nonconservative nature of the
system.?> This aspect is somewhat hidden in Lagrangian (3.4.15) because of its
lack of explicit time dependence. Indeed, the attentive reader, after an initial
inspection of Lagrangian (3.4.15) enly, might arrive at the erroneous con-
clusion that, in view of its invariance under time translations, the total
mechanical energy is conserved.?® An inspection of the equations of motion,
however, indicates that this is not the case, owing to the presence of the
nonconservative force F = (—bg,, +b4d,). :

On practical grounds, the selection of Lagrangian (3.4.15) or (3.4.22) is a
question of personal preference, because both Lagrangians lead to fully
admissible analytic representations of the same system, with the only differ-
ence given by the explicit form and functional dependence of the factor
functions,

On methodological grounds, what is significant is the existence of the
different Lagrangians (3.4.15) and (3.4.22) for the representation of the
same system, Indeed, this indicates a possible significance of the concept of
analytic representations introduced in this section within the context of
transformation theory. This aspect is investigated in Santilli (1979).

24 This is not necessarily the case for the corresponding situation in field theory.

23 For an elementary approach to the problem of symmetries and conservation laws, the
interested reader can consult Chart A.2. For details, see Santilli (1979).

26 1t should be indicated here that the quantity related to Lagrangian (3.4.15),

aL*

= ¢ — L*,

il

is indeed conserved owing to the invariance of the Lagrangian under time translations. However,
the above quantity does not represent the total mechanical energy [see Santilli (1979) for more
details].
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Another aspect of the concept of analytic representations is that it indicates
the existence of a generalized form of Lagrange’s equations, as is exhibited by
the left-hand side of Equations (3.4.2). [This aspect is also investigated in
Santilli (1979)].

Finally, the reader should be aware that the definition of analytic re-
presentation (3.4.1) implies that the actual path, the implicit functions, and
the conserved quantities of the equations of motion coincide with those of
their Lagrangian representation.

3.5 The Fundamental Analytic Theorem for Configuration
- Space Formulations

The fact that Lagrange’s equations in class ¥* and regular Lagrangians are
self-adjoint (Theorem 3.3.1) constitutes a property of central methodological
significance with implications at several levels of analytic mechanics. In this
section, we shall study the implications of this property for the existence of an
ordered direct analytic representation of Newtonian systems. In order to
formulate and prove our main theorem, we remain with the problem of
identifying a suitable region of definition of the analytic representation under
consideration.

Let us recall in this respect that both Newton’s equations of motion in their
fundamental form and Lagrange’s equations can be defined in a region R*"*!
of the variables t, g%, and ¢* only, where the dependence of these equations on
the accelerations g* can be ignored owing to their linearity. Thus, the con-
dition that a fundamental form be of (at least) class %2 can be reduced to the
condition that the A,{t, ¢, 4) and B,(t, g, §) functions are of class 7 in R#"*!
or, equivalently, that the Lagrangian L(t, ¢, §) is of class ¥* in R*** 1,

As a consequence, the ordered direct analytic representations of class €
and regular Newtonian systems can be defined, at least in principle, in an
arbitrarily selected region R*"* !, However, this position is insufficient for our
intent of formulating and proving our main theorem within the context of the
calculus of differential forms.

Let us recall from Section 1.2 that the Converse of the Poincaré Lemma
(one of the most effective tools for studying the integrability conditions in
general) demands the use of a star-shaped region R* rather than an ordinary
region R, according to the formulation of Lemma 1.2.2. Therefore, we shall
restrict the analytic representations to be defined in a star-shaped region
R*2n+1 of the variables (¢, g, §), namely, an open and connected set of points
(t, g, ¢) where all points (t, 79, 74), 0 < 7 < 1, are interior points. Notice
that there is no restriction on the values of the time variable, and that such a
star-shaped region contains the (local) origin ¢* = 0,¢* =0,k = 1,2,...,n
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We are finally equipped to formulate and prove the foliowing important
theorem,

Theorem 3.5.1*7 (Fundamental Analytic Theorem for Configuration Space
Formulations). A necessary and sufficient condition for a local, holonomic,
generally nonconservative Newtonian system in the fundamental form

Aki(te q, Q)qt + Bk(ts Qs q) = 0’ k = ]-9 29 cees 1y (351)

which is well defined, of (at least) class €°, and regular in a star-shaped region
R**"*1 of the variables (t, g, q), to admit an ordered direct analytic re-
presentation in terms of the conventional Lagrange’s equations in R¥*" 1,

— = A4 + B, (3.5.2)

is that the system of equations of motion is self-adjoint in R¥*"*1,

PROOF.  Since the equations of motion are of (at least) class %2 and regular in R*2+ 1,
the Lagrangian I. must be (at least) of class ¥* and regular in R*2"! (Theorem 3.2.1).
Then Theorem 3.3.1 applies and Lagrange’s equations are self-adjoint in R*>"*!. This
proves the necessity of the condition of self-adjointness of the equations of motion for the
existence of the ordered identifications {3.5.2) in view of the seif-adjointness of their left-
hand sides. '

To prove sufficiency, we shall show that, under the conditions of self-adjointness

(2.2.9) of the equations of motion in R**"*1 e, 28
Ay = A, ‘ (3.5.32)
a;; - %%g, (3.5.3b)
% + Z—?{ = 2{% + g Z%}A,-j, {3.5.30)

L k=1,2...n

27 A list of all the most relevant references on this theorem known to me has been given in the
Introduction. The formulation and proof presented here follow the field theoretical version given
by Theorem 2.1 of Santilli (1977b). The most significant difference between this formulation and
those of the quoted references lies in the vse of the Converse of the Poincaré Lernma with con-
sequent restriction of the region of definition to a star-shaped region. For comments on this
point, see Section 3.6 and Santilli (1979).

28 This is the form of the conditions of self-adjointness which is customarily used for the proof
of the theorem. See, for instance, Davis (1929).
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their reformulation (2.3.25) within the context of the calculus of differential forms apply,
ie,??

:c]ll-l?zAiliz = 0, (3543)
o BAy,
By iaia aq,-j =0, (3.5.4b)
frizis aBil
Lol W =0, (3.5.4c)
1 2 (8B, 8B\ (0w, _ aA,;m) -0 (35.4d)
284 \ag™  agh dg*t g™ ’ -

kl,kz,k3=1,2,...,n,

and a Lagrangian L{t, ¢, ¢) for ordered identifications (3.5.2) always exists.
Let us recall that the most general structure of the Lagrangian for the representation
of regular systems is given by Equation (2.3.3), ie.,

L, ¢, 9) = K(t. q. §) + Du(t, 94" -+ C(t. ), (3.5.5)

where the “kinetic term” K is nonlinear in ¢* and all terms K, D, and C are of (at least)
class €* in a (star-shaped) region of their variables.

By substituting structure (3.5.5) in identifications (3.5.2) the problem of the existence
of a Lagrangian can be reduced to the study of the set of the generally overdetermined
system of partial differéntial equations (2.3.4a), (2.3.5), and (2.3.6) which, under the
conditions of self-adjointnigss (3.5.3), reduce to system (2.3.7), i.e,

9K
T e 4. 3.56
aq-l aq; 2 ( a)
éD; @p; 1(éB; 0B 82K 82K
—_— . = = —_— T . r i n - E Z", it
2 (a(y 54‘) * (64‘ a¢ o' dg’ Y (3.2.60)

o0C_o_, K PK [ K 1 (0B, 5}3)} .
aqk T k g 8t or agfagt 2 gt g (3.5.6c)
= W,

Our proof of sufficiency consists of showing that conditions of self-adjointness (3.5.3)
. are the integrability conditions of system (3.5.6).

1. Integrability conditions of Equations (3.5.6a)
Introduce the quantities

oK
Ty, = 521.";;;, (3.5.7)

2% This is the alternative form of the conditions of self-adjeintness which I have used in the
proof of the theorem within a corresponding field theoretical context [Santilli (1977,b)]. It
should be recalled here that Equations (3.5.3) imply Equations (3.5.4) but the inverse property
does not necessarily hold. This has no bearing on our proof because the conditions of self-
adjointness, in their implied form (3.5.4), will be used for the proel of sufficiency only.
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and consider the system of first-order partial differential equations

T,
aqkz

— A =0, kpk.=12...,n (3.5.8)

with underiying 1-form
AN = A4, ., di= (3.5.9)
From the Converse of the Poincaré Lemma, reformulation (3.5.4b) of conditions of
self-adjointness (3.5.3b) are the integrability conditions for Equations (3.5.8). Thus,

under the assiimptions of the theorem, a solution of Equations (3.5.8) always exists and is
given, from Equations (1.2.30) and (1.2.25), by

1
= I:j dt Ak]k:(ls q, T‘i):, qkz' (3'510)
Q

The additional condition of self-adjointness (3.5.3a) or {3.5.4a) then ensures the proper
symmetrization of this solution, ie., the joint validity of Equations (3.5.8) with the
additional system

a1,

o Ak =0 (3.5.11)

The next step is to consider Equations (3.5.7), 1.,

oK
2 T = a Fyrn U dr Ay (g, ’cq)} 7 (3.5.12)

with underlying [-form

TV = T, dg*e {3.5.13)

The integrability conditions in this case are®

! [} ! aA(ll
;:;,32 T f dt 3, Anlt, 4, 79) + UO dt 183, 2 —n g rq):,

—0 (3.5.14)

and they identically hold in viéw, agdin, of .conditions (3.5.4a) and (3.5.4b). Therefore,
under the assumptions of the theorem, a solution of Equations (3.5.6a) always exists and,
again from Equations (1.2.25), is given by

1 ol
K(t, ¢, 4) = ¢ f dr'{[ [ & At a uz)} q’“}(r, 47d,  (3515)
[i] 1]

where the curly brackets indicate that the function of ¢* resulting after integration with
respect to T must be computed along 7'¢* prior to the integration with respect to 7',
This completes the first part of our proof of sufficiency.

3¢ For the last terms of Equations (3.5.14), see Problem 1.8.
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2. Integrability conditions of Equations (3.5.613) and (3.5.6¢)

We consider now, independently from each other, Equations (3.5.6b) and (3.5.6¢), 1.¢.,

aD aD
6q:; - 6q:‘2 = Zy ko (3.5.16a)
acC .
= (3.5.16b)
The underlying differential forms are, respectively,®”
' Z® = 7, dgh A dg, (3.5.17a)
Wi = W, dg", (3.5.17b)
with related integrability conditions
o 02
;(llllf;l:za aq‘,}; = Oa (35.183)
. OW;
b 5 =0 (3.5.18b)

As indicated in Section 2.3, upon substituting the explicit values of the Z and W terms,
the above conditions reduce to -

Fisizis oB;, _ ) (3.5.192)
kikzka aqiz aqig — .
1{. .. dB;
Z [ Fiiaia - h_ gk = 0, 3,5.19b
5 ( Kakaks aq" 6@‘3)q ( 9b}

and they identically hold under conditions of self-adjointness (3.5.3) in view of their
reformulation (3.4.4¢). ,
Therefore, under the assumption of the theorem, independent and sequential®?

solutions of Equations (3.5.6b) and (3.5.6¢) exist and, also from Equations (1.2.25), are
given by

1
Dt = |:f dt 12 5. (L Tq)] q-, (3.5.20a)
0

1
Clt.q) = |:j dt W (t, rq):| . (3.5.20b)
0
This completes the second part of our proof of sufliciency.

3. Compatibility of Equations (3.5.6)

To complete our proof, we must first show that, for consistency, the right-hand sides
of Equations (3.5.6b).and (3.5.6¢) are independent of derivative terms. By differentiating

31 1p line with Example 1.3, the form which underlies Equations (3.5.16a} is now a 2-form due
to the antisymmetric nature of the indices.

' 32 During this second stage of our proof, Equations (3.5.6b} and (3.5.6¢) are considered inde-

pendently from each other. Therefore, Equations (3.5.6b) must be solved first because the D

functions appear on the right-hand sides of Equations (3.5.6¢) and, as such, are assumed to be

known.
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these equations with respect to §*, we obtain the respective conditions

1 ¢ foB, @B, Oy OApp,

Samlaie ~am] o T ] = 3.5.21

2 aq‘.h (aq'.kz aqkl) ( aqu aq;‘, 03 ( 5 a)
1 o (8B, 0B, 8, A\ .

samlam ] U~ a4 = 5.21b
[2 P (aq"z o) “\age T e JJTT=0 0 G3D)

which identically hold under conditions of self-adjointness (3.5.3) in view of their
redefinition (3.5.4d).

This completes the first part of our proof of compatibility and shows that Equations
(3.54d) guarantee that the right-hand sides of Equations (3.5.6b) and (3.5.6c) are
independent of derivative terms, Our proof of the theorem will be completed by showing
that Equations (3.5.6) are compatible among themselves.

Since Equations (3.5.6a) must be solved first, the proof of compatibility can be reduced
to the proof that Equations (3.5.6b) and (3.5.6¢), under identifications {3.5.6a), are
compatible among themselves. Let us rewrite these equations in the form

ap,, D,
Equz =3 = Dus (3.5.22a)
o,
S g = W (3.5.220)
where
2D
Wi, == = W (3.5.23)

After partial differentiation with respect to t and g*2, we can write
92Dy, 0Z,,, 0°D,
agr o ot dg*t o’
8Dy, _ 0w, | 9C,

= —_— . 5.24
aqkz at aqkz + aqkz (3 b)

(3.5.24a)

Therefore, the necessary conditions for the compatibility of Equations (3.5.22) are

0y, W, OW,,

ot ag=  ag’

(3.5.25)

where we have used Equations (3.522b). To prove that Equations (3.5.25) are also
sufficient, consider Equations (3.5.22) for fixed values of the indices k;, = kS and k, =

3(#k3). Then, in view of the continuity properties of the Z and W’ functions, the
existence theorem for lingar partial differential equations®? applies and a solution
Dy, Dyg, and C exists. W< now substitute such a solution into Equations (3.5.22)
according to

éD oD,0
aq:“xz = aq:; — L4Skas (3.5.26a)
&D ac

5 = Wit 5 (3.5.26b)

33 See, for instance, Forsyth (1906, Vol. V, Articles 160-161),
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These equations are compatible provided that

Dy 0Zyy,  OW, a*c

a = 3.5.27
og* Ot at og* + dgt dghi ( )

But the above conditions reduce to Equations (3.5.25) after use of Equations (3.5.22b).
Thus, Equations (3.5.25) are the necessary and suflicient conditions for the compatibility
of Equations (3.5.22).

We must now inspect Equations (3.5.25). By substituting the explicit values of the Z
and W’ functions from Equations (3.5.6) and {3.5.23), Equations (3.5.25) can be written

By, _0B,) 12 (th _ %8y
g og" 2ac\agt gt

5 (0B, 0B\ @ (0B, 9B.\]..
a7 \a s DO gk =0, (3.5.28
+ [5qk1 (aéka 3@"2 + aqkz aqkl 6@"3 q 0 )

In view of condition of self-adjointness (3.5.3d), they become

e @B\
(5;‘1""233 éq—écT) ¢ =0 (3.5.29)

and are identically verified in view of Equations (3.5.4c).

This completes the third part of our proof and shows that the Equations (3.5.4¢) are
not only the integrability conditions for Equations (3.5.6b) and (3.5.6¢), but are also the
necessary and sufficient conditions for their compatibility.>*

3¢ Our proof of compatibility of Equations (3.5.22) closely follows that of Davis (1929). It
might be of some relevance to point out that Davis’ crucial Theorem 2, p. 377, could be centro-
versial in its formulation and proof. This theorem states the following,

A necessary and sufficient eondition that there exists a solution of a system of differential equations
of the form (3.5.22) where C, Z,,,. Dy, Witk ko = 12,001, n) are finctions of t, 4", ..., ¢" and
Zyke = — Zi, is that Equations (3.5.25) hold identicatly int, q',.... 4" for every pair of values of
ky and k.

The proof of the theorem then proceeds along the lines of part 3, from Equations (3.5.22) to
(3.5.28), namely, of what we have called compatibility of Equations {3.5.22). The point is that
Equation (3.5.25) is indeed the necessary and sufficient condition for the compatibility of
Equations (3.5.22), but this aspect alone is insufficient to guarantee the existence of a solution of
the same equations owing to the need for the additional closure conditions of the underlying
differential forms, i.c., Equations (3.5.18). In other words, the proof of the consistency of Equations
(3.5.22) under the conditions of self-adjointness demands the verification of

(a) the integrability conditions of Equation (3.5.22a), i.e., (3.5.18a);

(b) the integrability conditions of Equation {3.5.22b), i.e., (3.5.18b); and

(¢) ~ the compatibility conditions of Equations (3.5.22a) and {3.5.22b), i.¢., Equation (3.5.25).
This more accurate proof was formulated, in Santilli (1977b) and indicates the effectiveness ofthe
calculus of differential forms for the study of the integrability conditions (Davis' approach in his
paper of 1929 was based on the conventional--for that time —methods of the theory of partial
differential equations). Rather unpredictably, and this indicates the peculiarity of the problem of
the existence of a Lagrangian, a more detailed analysis indicates that the integrability and com-
patibility conditions of Equations (3.5.22) are o/l ultimately equivalent to Equation (3.5.25),
as clearly exhibited by their explicit forms (3.5.19) and (3.5.29). In turn, this indicates that the
proof of compatibility of Equations (3.5.22) could also be considered as redundant {¢.g., from
the need of computing the solutions of Equations (3.5.22a) and (3.5.22b) in a sequential way).
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Thus, when all the conditions of variational self-adjointness (3.5.3) are identically
verified for the equations of motion, their reformulation (3.5.4) holds, Equations (3.5.6)
always admit a solution, and a Lagrangian according to structure (3.5.5) always exists.

Q.ED.

Notice that ali the conditions of self-adjointness (3.5.3) enter, without
redundancy, into the proof of the theorem. Therefore, when the equations of
motion in configuration space are non-self-adjoint, they cannot be directly
represented by the conventional Lagrange’s equations. It should be recalled,
in this respect, that a system is non-self-adjoint when at least one of the con-
ditions of self-adjointness is violated.

The reader should be aware of the fact that when the conditions of Theorem
3.5.1 are not met this does not necessarily imply that an analytic representation
of the equations of motion does not exist, because this theorem deals specific-
ally with direct analytic representations. Indeed, when the equations of
motion are non-self-adjoint, one can seek an indirect analytic representation.
[This aspect is considered in Santilli (1979)].

The significance of the ordering ¢ondition in Theorem 3.5.1 is now self-
evident. If the ordering condition for identifications (3.5.2) is relaxed, the
conditions of self-adjointness are only sufficient for the existence of a La-
grangian.®® This point is clearly exhibited by example (3.4.20), where a
permutation of the order of the equations of motion render the sysiem non-
self-adjoint. Nevertheless, a Lagrangian for its (nonordered) representation
still exists.

Theorem 3.5.1 can be easily generalized to the second-order differential
equations

Ft,g. 6,8 =0 k=12...,n (3.5.302)
aF;
F e G2R>™ ), g; (R 1) 0, (3.5.30b)

which are not necessarily linear in the accelerations. This was, ultimately, the
original problem considered by Helmholtz (1887). Indeed, conditions of self-
adjointness (2.1.18) demand the linearity of Equations (3.5.30) in the ac-
celerations, as shown in Section 2.2. Therefore, Theorem 3.5.1 can be equi-
valently formulated and proved either in terms of the Newtonian form (3.5.1)
with underlying conditions of self-adjointness (3.5.3) or in terms of the
more general form (3.5.30) with underlying conditions of self-adjointness
(2.1.18).

Theorem 3.5.1 can also be applied to the particular case of the kinematical
form of the equations of motion, i.e., Equations (2.2.2), for which

Aki = CS]“’, BR = ‘—ﬁc (3.5.31)
This is left as an exercise for the interested reader (see Problem 3.2).

35 The ordering condition within the context of the Inverse Problem was introduced in
Santilli (1977a and b).
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Another significant application of Theorem 3.5.1 is for the analytic re-
presentation of first-order equations, in which case the Lagrangian, according

to our terminology, is totally degenerate, ie.,
2%L

f—ﬁEO, .,.=1,2,..., . ..2

37 o ij n {3.5.32)

This case is worked out in Chart 3.9.

The case of a bona fide degenerate Lagrangian, ie.,
d%L

ag' 8g’

&L

W (R2n+1) — 0,

# 0,  (3533)

will not, however, be considered in this volume. This is because these
Lagrangians imply the presence of subsidiary constraints which, in turn,
demand a careful reinspection of the variational approach to self-adjoint-
_ness.?®

A somewhat special subcase of Theorem 3.5.1 is the one-dimensional case
for which identifications (3.5.2) become?®’

oL . 8L . 2L dL . X
W g+ m q+ m - % = Alt, ¢, §)4 + B(t, q,9). (3.5.34)

This was, ultimately, the problem considered and solved by Darboux (1891).
There is, however, a potentially misleading aspect of problem (3.5.34) which

36 The condition of regularity is introduced in the Inverse Problem in Santilli (19772 and b).
In the early references on the [nverse Problem listed in the Foreword, the only condition which is
(sometimes) considered is that of continuity. My attitude is mainly precautionary in nature, and it
is due to the need to specifically inspect the problem. A few remarks are in order. First of all, when
the Lagrangian is degenerate, one of the central parts of the Inverse Problem, the extremal part,
becomes vacuous. This is because one of the necessary conditions for an extremum, ie., the
Legendre condition, is violated by degenerate Lagrangians [cf, Bliss (1946, p. 23) or Rund
(1966, p. 358)].

The second point is that, when the Lagrangian is degenerate, Lagrange’s equations can be
inconsistent (i.e., a solution does not necessarily exist) despite the required continuity condition
[cf. Dirac (1964)].

The third point is that, while for regular Lagrangians the consistency of Lagrange's equations
implies the consistency of their equations of variations, the corresponding case for degenerate
Lagrangians is quite delicate to handle. Thercfore, in line with Section 1.1,a first step which seems
to be advisable prior to the extension of Theorem 3.5.1 to degenerate Lagrangians is the study of
the conditions under which degenerate Lagrange’s equations are consistent, to avoid the handling
of systems which are ultimately vacuous on physical grounds. Oddly, to the best of my knowledge,
this aspect is virtually ignored in the recent literature on degenerate systenis (both physical and
mathematical), with the only exception known to me being the paper by Shanmugadhasan (1973).
A second advisable step is the study of the equations of variations and adjoint systems of con-
sistent degenerate systems (and related aspects, e.g., the uniqueness of the adjoint). A third
advisable step is the reinspection of the calculus of differential forms and the Converse of the
Poincaré Lemma in particular, for the case of degenerate systems. My preliminary unpublished
investigations indicate that, with a careful handling of these and other problems, the extension of
Theorem 3.5.1 to class ¥2 degenerate, consistent Lagrange’s equations does indeed hold.

37 Notice that the concept of ordering is inessential for one-dimensional systems.
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deserves a comment. Since identity (3.5.34) constitutes one linear partial
differential equation in one unknown, the Lagrangian I, one might be
tempted to conclude that, in view of the assumed continuity and regularity
conditions, a solution always exists. This is so if and only if the right-hand
. side of identity (3.5.34) is self-adjoint. Indeed, two equations can be identical
ifand only if they both are either self-adjoint or non-self-adjoint.*® This is the
property which is ultimately at the basis of the necessity of the conditions of
self-adjointness in Theorem 3.5.1.

If the right-hand side of identity (3.5.34) is non-self-adjoint, then such a
direct representation is inconsistent, but one can search for an indirect
representation of the type [see Santilli {1979)]

%97 g = [h(t, g, §)(Ad + B)nsalsa (3.5.35)

with a factor function  as an integrating factor. It is within this broader
context that Darboux’s result on the “universality” of the existence of a
Lagrangian for one-dimensional systems (under the assumed continuity and
regularity conditions) can be formulated in the context of our approach.3®

Another peculiarity of the one-dimensional case is due to the fact that, since
system (3.5.34) is determined, it can be treated with standard existence
theorems of the theory of partial differential equations without recourse to the
conditions of self-adjointness. As indicated in the Introduction, this was
precisely Darboux’s approach to the problem.*° Indeed, the conditions of self-
adjointness become crucial whenever n > 1 because, in this case, the under-
lying system of partial differential equations for the existence of a Lagrangian
is overdetermined. The point we would like to bring to the reader’s attention
is that, even though problem (3.5.34) can be solved with conventional tech-
niques, the use of the conditions of self-adjointness is advisable to formulate it

properly.

To close this section, we would like to indicate that the methodology which
underlies the formulation and proof of Theorem 3.5.1 is ultimately variational
in nature. There are several reasons for this. First of all, Lagrange’s equations,
as a variational algorithm, are the Euler equations of the action functional
(Section 1.3). Thisis, ultimately, Hamilton’s Principle (1.3.23). Thus, Lagrange’s
equations originate within the context of first-order variations of the action
functional. This framework, per se, is insufficient for the proof of the theorem.
Indeed, the conditions of self-adjointness can be derived within a variational
context only by using second-order variations. This is implicit in the use of the

38 Rather unpredictably, we can see in Santilli (1979) that this crucial property fails to hold if
the two equations are considered in different coordinate systems,

39 For more detaiis, see Santilli (1979).

40 1t might be of some significance here to indicate that Darboux (1891) does not mention the
prior publication by Helmholtz (1887).
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Figure 3.1 A schematic view of the Fundamental Analytic Theorem for configuration
space formulations. The equations of motion in their fundamental form are constructed
from Newton’s second law. Whenever they satisfy each of the conditions of self-
adjointness, they are self-adjoint. Lagrange’s equations in class %% and regular Lagran-
gians, on the contrary, are always self-adjoint. This establishes both the necessity and the
sufficiency of the conditions of self-adjointness for the existence of a Lagrangian accord-
ing to the formulation and proof of Theorem 3.5.1, As a result, the conditions of self-
adjointness emerge as a central mathematical tool of the Inverse Problem. The existence
theory for ordinary differential equations is a prerequisite to the approach because of the
need to ensure the consistency of the considered system. The calculus of differential forms
is a complementary aspect to the approach in view of the fact that it constitutes one of the
best arenas for the study of the integrability conditions in general, and of the existence of
a Lagrangian in particular. The net result is a methodological perspective which, in view
of the elemental nature of the problem of the existence of a Lagrangian, has implications
at several levels of the theory considerably beyond the original objective of identifying a
Lagrangian, as indicated in Santilli (1979).
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equations of variations of Lagrange’s equations, ie., Jacobi’s equations
(3.3.7), which are of second-order variational nature, as recalled in Section 1.3.

Alternatively, the variational nature of the formulation and proof of
Theorem 3.5.1 is expressed by our concept of “ordered direct anaiytic
representation™ as introduced in Section 3.4. Indeed, this concept implies the
identification not only of Lagrange’s equations with the equations of motion
(first-order variational techniques) but also of Jacobi’s equations and their
adjoint system, with the equations of variations of the equations of motion and
their adjoint system, respectively (sccond-order variational techniques),
according to Equations (3.4.11).

Another point we would like to make is that the formulation and proof of
Theorem 3.5.1, even though ultimately variational in nature, is insensitive to
whether the action functional affords a (relative or absolute) extremum or not.
This point has been crucial for the organization of this monograph in which,
asindicated in the Introduction, the extremal aspect of the Inverse Problem is
ignored.

Nevertheless, the Fundamental Analytic Theorem of this section indicates
that, despite a rather general belief to the contrary, the methodology of the
calculus of variations has a rather profound impact in Newtonian Mechanics
which goes beyond the framework of Hamilton’s Principle and its applica-
tions. For a schematic view, see Figure 3.1.

3.6 A Method for the Construction of a Lagrangian from the
Equations of Motion

Our proof of Fundamental Analytic Theorem 3.5.1 provides not only the
the system of partial differential equations for the construction of a Lagrang-
ian but also one of its solutions. This result is a direct consequence of the use
of the calculus of differential forms in general and the Converse of the Poin-
caré Lemma in particular. Indeed, it is a simple restatement of the proof of
Theorem 3.5.1 to obtain the following theorem.

Theorem 3.6.1 {A Method for the Construction of a Lagrangian).*! A4
Lagrangian for the ordered direct analytic representation of local, holonomic,
generally nonconservative Newtonian systems that are well defined, of (at
least) class €2, regular and self-adjoint in a star-shaped region R****! of

points (t, 4. §),
At g, DF + Blt,g,9) =0, k=12...,n, (361
is given by '
L =K, q,9) + Dt 9d* + C@t, q), (3.6.2)

41 Santilli (1977b).
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where the n + 2 functions K, Dy, and C are a solution of the linear, generally
overdetermined system of partial differential equations

’K

s ogn Mt D (3.63a)
0Dy, _ 0Dy, _1 0By, _ 0By, *K _ *K
aqkz aqh ) aqkz aqk; aqk; 3qk1 aq-kl aqk2
= Ziwo(t @), (3.6.3b)
oc Dy, 8K 32K
A kL =5 Bk1 — A ki + ~ K1 M.
oq* ot dq*r  0g Ot

aqu aqkz + 5 aqk; - aqkt
= W, 9),

[ 82K 1(6B,n aBkz)]qkz (3.6.3¢)

given by*?

1 1
K(t: q, 4) = q.li‘ dT,.{ [J dT AklkZ(ti q, TQ):| qkz} (ts 4, T’q.): (3‘6‘43')
v} 0
1
Dy, = [I dt 12, (1, tq)] g, (3.64b)
0

C= [fldr W (t, ’Eq)] q-. (3.6.4c)
0

42 Tt is significant here to elaborate on the fact that Equation (3.6.4b) possesses a factor 7 in the
integrand, while Equations {3.6.4a) and (3.6.4c) do not. Basically, this situation originates from
the order p of the underlying differential form because the z factor in the integrand of the solution,
from Equations (1.2.25), is equal to 77~ !, The form that underlies Equation (3.6.3¢) is clearly a
1-form. As a result, =7~} = 1. This case is, therefore, straightforward. The situation for the other
two scts of Equations (3.6.3) is not, however, equally transparent. First of all, since Equation
(3.6.3a) is of second order, one might be tempted to assume a 2-form as the underlying form. This
would yield the solution

1 1
K= 24“'J dt’ {U d1 TA {8 4, r{}):| c}“z}(z, 4, T4)
¢} 0

which, strangely enough, produces the desired result for terms Ay, , which are independent of
the velocities. In this case, we can write

1 1
K = 4,1, Q)zék‘f dr’{[J dr 1:| rj“z}(t’é) =40, .0 R
o )

by producing a “kinetic” term K which is quadratic in the velocities and with the correct
coefficient 4. However, the above alternative solution is erroneous in the gencral case. Indeed,
when the A,;, terms depend on the velocities, e.g.. n = 1, 4 = ", we have

1 1 2
K= ZJ’ d ' j d .L_m+l 'm+1} 4 = (‘m+2’
4 0 i {|: 0 : 4 ) (m + 2)(m + 3) 1
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For illustrations of this theorem, see the example at the end of this chapter
and, in particular, Example 3.6.

A few comments are in order. The first point which must be stressed is that
Theorem 3.6.1 does not demand the knowledge of a solution of the underlying
equations of motion for the computation of a Lagrangian. This point is
significant for practical applications in view of the generally nonlinear nature
of the considered class of equations of motion.

Secondly, under the assumptions of the theorem, there is no need to
verify the consistency of system (3.6.3). Indeed, the proof of sufficiency of
Theorem 3.5.1 is precisely centered on the fact that the conditions of self-
adjointness are the integrability conditions for system (3.6.3). Therefore, for
practical applications, one must verify that the given system of equations of
motion is well-defined, of (at least) class €2, regular, and self-adjoint in a
star-shaped region R*?>"*!, When such conditions are met, a solution of
Equations (3.6.3) exists and is given by Equations (3.6.4).

Notice that the solutions of Equations (3.6.3) must be computed in the
given order, namely, one must first solve Equation (3.6.3a) from the knowledge
of the A, functions of the equations of motion according to Equation
(3.6.4a). The knowledge of a solution K of such equations jointly with the B,
terms of the equations of motion then allows the computation of the D,
functions through Equation (3.6.4b), and, finally, the knowledge of the X,
Dy, and B, functions allows the computation of the C function through
Equation (3.6.4c).

Almost needless to say, solutions (3.6.4) are local in nature, as is the case for
all applications of the calculus of differential forms.

The reader should also recall that the velocity independence of the Z and W
functions is guaranteed by the conditions of self-adjointness and should be
aware that the integrals of Equations (3.6.4) are insensitive to the varidbles of
the integrands other than those multiplied by the 7 variables. Specifically, in
the integrals of Equation (3.6.4a), the t and g* variables of the 4 functions are
assumed fixed and the integration is performed only on the double (1%
dependence. Similarly, in the integrals of Equations (3.6.4b) and (3.6.4c),
the t variable of the integrand is assumed to be fixed and the integration is
performed only in their (t4*} dependence.

which is not a solution of Equation (3.6.3a) in view of the incorrect numerical coefficient. The use
of Equation (3.6.4a), on the contrary, yields

1 1 1
-4 ’ m w1 ey R
K_qJ.odT{[Ld”]q }(Tq)_(m+l)(m+2)q .

which is the correct solution. This illustrates the reason that, in line with our proof of Theorem
3.5.1, Equation (3.6.3a) must be solved twice through the use of the Converse of the Poincaré
Lemma. This yietds the use of 1-forms twice, which, in this way, do not produce the z factor in the
integrand. The situation of Equations (3.6.3b) is somewhat the oppesite, This equation is
of first*order, and thus one might be tempted to assume a 1-form as the underlying differential
form with consequent lack of factor 7 in the integrand. However, such a position would be
erroneous in view of the antisymmetric nature of the equations themselves (Example 1.5).
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1t should be stressed here that solutions (3.6.4) are not necessarily unique.
This is a primary reason why we have and shall always refer to the problem
of the existence of “a” Lagrangian rather than “the” Lagrangian. Indeed,
while the solutions of systems of ordinary differential equations generally
depend on a number of free parameters, the solutions of systems of partial
differential equations often depend on arbitrary functions, rather than param-
eters. As a result, system (3.6.3) can ultimately characterize a family of
Lagrangians rather than one Lagrangian. When this is the case, each element
of this family is an acceptable candidate for the analytic representation under
consideration, The problem of the “degrees of freedom”™ of the analytic
representations for a given system of equations of motion are considered in
Santilli (1979).

Notice that the method for the computation of a Lagrangian according to
Theorem 3.6.1 is computerizable, as intended.

We now come to a crucial as well as delicate point of our formulation and
proof of Theorems 3.5.1 and 3.6.1. This is the assumed restriction that the
equations of motion should be well behaved in a star-shaped, rather than an
ordinary, region.

Before commenting on this point, let us note that on practical (although
nonrigorous) grounds one can ignore any distinction between star-shaped
and ordinary regions and simply verify that the system is well behaved and of
{at least) class %2 for all the values of ¢* and 4* in the interval with fixed ¢§ and
ds

gt =1qf, =1k, O=<t<l " (3.6.5)

Notice that this interval is closed. This implies that the equations of motion
must also be well behaved at the local origin ¢* = ¢* = 0 as well as at the
values ¢*, ¢* # 0, k = 1, 2,...,n. When the above conditions are met, one
can compute integrals (3.6.4). On rigorous grounds, however, the notion of
the star-shaped region must be used to ensure the existence of these integrals.
As a matter of fact, the primary reason for restricting the formulation and
proof of Theorems 3.5.1 and 3.6.1 to a star-shaped rather than an ordinary
region is precisely that of ensuring the existence of the integrals of Equations
{3.6.4).

The attentive reader is by now aware of the possibility that the conditions
for the equations of motion to be well behaved for all values (3.6.5) can be
violated in practical cases, e.g., when terms such as log g, etc. appear. How-
ever this does not necessarily imply that in such instances a Lagrangian does
not exist. Indeed, as indicated earlier, the Converse of the Poincaré¢ Lemma
has a local character only. This allows for redefinition of the variables, e.g.,
the translations

q“ — ¢"* = ¢* + ¥, & = const. (3.6.6)

or the more general pdint transformations [see Santilli (1979)]
g~ g% = 4%, (3.6.7)

aiming at a removal of possible divergences.
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To put this situation in a different perspective, it is significant to point out
that Theorem 3.6.1 ultimately provides only ore method for the computation
of a Lagrangian and that different methods for solving Equations (3.6.3)
are conceivable. Indeed, the conditions of self-adjointness do not necessarily
need a star-shaped region to be well defined, as the reader can verify with a
simple inspection. Other alternatives for solving Equations (3.6.3) are,
therefore, conceivable whenever the equations of motion are seif-adjoint in an
ordinary region.*> Among these alternative approaches, the most notable is
that offered by the use of the Clauchy integral, as outlined in Chart 3.11, which
does not require the use of a star-shaped region. For further comments, see the
alternative methods for the computation of a Hamiltonian in Section 3.12.
This aspect is reconsidered in Santilli (1979} within the context of the trans-
formation theory.

In conclusion, it appears that under the conditions of self-adjointness, a
Lagrangian could exist in an arbitrary region, in which case the Fundamental
Analytic Theorems could be formulated without restriction to a star-shaped-
region, The rigorous proof of this expected property would, however, bring
us outside the objectives of this book owing to the need of additional mathe-
matical tools (e.g., algebraic topology or global differential geometry).
Therefore, we content ourselves with the formulation and proof of the Funda-
mental Analytic Theorems as given and the presentation of the methods for
the computation of 2 Lagrangian with and without the restriction to a star-
shaped region (i.e., that of Theorem 3.6.1 and of Chart 3.11).**

We now consider the case of the ordered direct analytic representations of
Newtonian systems in their kinematical form (Problem 3.2). Under the
conditions of self-adjointness, such a form reduces to the form (2.2.23).
Therefore, the problem reduces to the identifications

aL L L aL

sk

T .
aqk: 6qk2 q aqkl aqkz d

e T o
= Gy, — Prlt, 4% — 0,6, @), (3.6.8)
with underlying conditions of self-adjointness (2.2.24), i.e.,

Prks T Prory = 0, (3.6.9a)

OPriks | OPisry | OPryr
: 2 1=0 3.6.9b
oq*s oq*: og* ’ (3.6.90)

apklkz _ 60’,” aﬂ'k1

= . 369
ot oqc  oq° (365
This is a particular case of Theorem 3.6.1, with the identifications
Ahkz = 6k1k2:
. (3.6.10)
By, = _pklkzqkz — Oy

43 See Example 3.1 for an illustration of this point.
4+ For a recent study of star-shaped regions the reader may consult Staneck (1977) and quoted
references.
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From Equation (3.6.4a), we have

1 1
K =g f dt'{ U d 5,“,Q] ék’}('c'q")
0 0
1
=gt U dr’ 1:'] 45, ., (3.6.11)
)]

= %qquk1
by recovering in this way the familiar structure of the kinetic term. The
following corollary then trivially follows.

Corollary 3.6.1A.*° A Lagrangian density for the ordered direct analytic
representations of local, holonomic, generally nonconservative Newtonian
systems in their kinematical form

G, — P DI — 0, (D=0, k=12,...,n (3612)

which are well defined, of (at least) class €*, and self-adjoint in a star-shaped
region R¥*"* 1 of points (t, q) is given by

L = 344y, + D, (t, )" + C(t, @) (3.6.13)

where the n + 1 functions Dy, and C are solutions of the linear, generally
overdetermined system of partial differential equations

aD,, oD,
aq:z - aqffj = _pk1k2) (3.6.142[) .
aC oDy,
@_ ot Ok,s (3614b)
given by
1
Dkl =~ |:j du Tpkl.kz(t’ TQ)] qkz, (3.6.15a)
Q
! oD
€= U de (% + a:) & rq)] q". (3.6.15b)
0

The above corollary can be simplified further.*® Conditions of self-adjoint-
ness (3.6.9a) and (3.6.9b) imply that the p, ;, functions must have the structure
of a curl (Example 1.5). Therefc -¢, under the assumed conditions, a set of
functions, say I'.(t, g) such that

oT,, oI,

Prikez = é:li; - 3 (3.6.16)

45 Santilli (1977b).
6 Santilli (1977b).
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exists. The conditions of self-adjointness then reduce to Equation (3.6.9¢)
only, the Dy, functions are trivially given by

Dy, =Ty, (3.6.17)
and Lagrangian (3.6.13) takes the form
= 34"4y, + [y, (6, )" + C@, 9), (3.6.18)

where the only unknown function C is a solution of corresponding Equation
(3.6.14¢),ie.,

1
C= q"f dt (ok + %%) {t, Ta). (3.6.19)
0

One of the best illustrations of Corollary 3.6.1A is that given by the
equations of motion of a charged particle under the Lorentz force, which, as
proved in Example 2.7, is variational self-adjoint. In this case Equations
(3.6.12) become

s . i mn 6"lm . & aAl
[m¥ —ef x B — eE]in componem = MF; — €87} Fr M4 e(a%t: — E—) =0,

(3.6.20)
i=x z

and, after computing integrals (3.6.15), one re-obtains the familiar Lagran-
gian
L =imi* + eA - — eq, (3.6.21)

which is precisely of type (3.6.18).

This concludes our analysis of the problem of constructing a Lagrangian
once its existence is assured by the validity of the underlying integrability
conditions. Alternative methods are presented in Chart 3.11.

3.7 The Implications of Nonconservative Forces for the
Structure of a Lagrangian

Qur analysis of the Inverse Problem for ordered direct analytic representa-
tions in configuration space would not be complete without attempting a
physical interpretation of the results from the viewpoint of the nature of the
acting forces (i.e., along the lines of the Appendix), and then a reinterpretation
of the same results from the viewpoint of the concept of Newtonian inter-
actions (i.e., along the lines of the Introduction). '

Qur first objective is the study of the following problem. .

What is the role of conservative Newtonian forces within the context of the
problem of the existence of a Lagrangian?
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This problem can be more technically formulated by asking what the role of
conservative forces is within the context of the integrability conditions for -
the existence of a Lagrangian, namely, the conditions of self-adjointness for
the considered form of the equations of motion.

It has been rather surprising for me to see that, within the context of the
Inverse Problem, the problem under consideration is marginal because no
condition of self-adjointness is capable of restricting the acting forces to be
conservative.

The possible forms of the equations of motion in configuration space are
either the fundamental form or the kinematical form. The nonconservative
nature of the fundamental form is clearly exhibited by the generally non-
linear dependence on the velocities which is allowed by the conditions of self-
adjointness (Section 2.2). Therefore, the problem under consideration reduces
to the study of the analytic representations of the kinematical forms.

But under the conditions of self-adjointness the kinematical form reduces to
the form of Equation (2.2.23) (Theorem 2.2.2). Therefore, the problem under
consideration further reduces to the study of the role of conservative forces
within the context of the integrability conditions (3.6.9) for identifications
(3.6.8). A simple inspection then indicates that the conditions of self-adjointness
(3.6.9) are unable to restrict the acting forces to be conservative.

Indeed, the generally nonconservative nature of the represented system is
clearly expressed by the admissible velocity dependence of the equations of
motion. As a result, the ordered direct analytic representations of Newton’s
equations of motion in their kinematical form generally characterize non-
servative systems.

This fact is remarkable, partlcularly inview of the simplicity of identifica-
tions (3.6.8). The functionsf; of the kinematical form (i.e., the implicit functions
of the system) are often proportional to the acting forces through the multi-
plication of the inverse of the masses.*” One would, therefore, expect that the
conditions of self-adjointness (which in this case are the conditions of the
functions f; and, thus, of the acting forces) restrict these forces to be con-
servative. The fact that, contrary to any different belief, this is not the case, is
exhibited by the nonconservative nature of identity (3.6.8).

By including in the analysis the more general fundamental form, we can
conclude by saying that the integrability conditions for the existence of a
Lagrangian are insensitive to whether the acting forces are conservative or not.
As a matter of fact, this is one of the most intriguing aspects of the Inverse
Problem, which ultimately dispels the rather general belief that the Lagrangian
for the representation of Newtonian systems exists only when the acting forces
arc derivable from a potential function (Chart 3.1).

Obviously, conservative forces are admissible by the Inverse Problem. To
see them, consider a system of particles of unit masses which is unconstrained
and represents the assumed type of coordinates (e.g., Cartesian) with the q

#7 From Newton’s equations of motion m¥ — F(t, r, i) = 0, the implicit functions are simply
given by f = F/m.
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variables in a given order. Suppose that in identifications (3.6.8) the gy,
functions are identically null. Then the conditions of self-adjointness (3.6.9)
reduce to

da,,  doy,

aqkz aqkl — (3.7.1)

and they coincide with the integrability conditions for the existence of a
(conservative) potential function, ie., Equations (A.4.7). Indeed, in view of
the assumption of unit masses, the implicit functions (represented in this case
by the o, functions) coincide with the acting forces.

The point is that there is no need to impose the requirement that the p; ;,
functions are identically null for identifications (3.6.8) to exist and to be
consistent. As a result, conditions of self-adjointness (3.6.9), even though they
do include conservative forces as a particular case, are unable to restrict all
of the acting forces to be of this type.

In this way, we arrive at a most crucial point of the analysis of this momno-
graph, which can be stated simply by saying that Lagrange’s equations can
represent Newtonian systems as they actually are in physical reality, namely,

generally nonconservative.
Our second problem of this section, which is an immediate consequence of

the above result, can be formulated as follows.

What is the most general admissible form of the acting forces within the
context of the analytic representations of Newtonian systems?

For simplicity, but without loss of generality, we shall consider the case of
anunconstrained system of N particles of unit masses represented in a reference
frame characterized by the g* variables, k = 1,2, ..., n = 3N. Suppose, as a
first step, that these particles are free. The equations of motion are trivially

given by
g, = 0, k=12,...,n (3.7.2)

A Lagrangian for their analytic representation (see Equation (3.6.11)) can be
written as*®

n

L= Z %(qk)Z = Lirge- (373)

k=1

Our problem is to study the most general form of coupling. these free particles
that is admissible by a Lagrangian representation, i.e., by Theorem 3.6.1.

a8 By no means should this Lagrangian be considered as unique. For instance, an equally
acceptable family of Lagrangians for the indirect representations of Equations (3.7.2) is given by

L= Y@ a=01L2...
k=1
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First, let us review the most general form of Newtonian couplings,*? ie.,
the most general form of couplings that preserves the linearity in the acceler-
ations. Such a form is given by the superposition of each of the following three
classes of couplings.

1. Time-dependent generally nonlinear couplings in the coordinates
The equations of motion (3.7.2) are modified in this case to the form

G, — filt,@) = 0. (3.7.4)

This class of couplings contains as a subclass [when the functions f, do not

depend explicitly on time and satisfy integrability conditions (3.7.1)] the class

of conservative couplings.

II. Time-dependent generally nonlinear couplings in the velocities
Equations of motion (3.7.2) are modified in this case to

G — filt: @) = 0. (3.7.5)

This class does not contain conservative couplings as a subclass. If couplings
of classes I and 11 are combined, then equations of motion (3.7.2) are modified
to what we have called the kinematical form, ie.,

i — fltsq:9) = 0. (3.7.6)

IIL. Time, coordinates, and velocity-dependent couplings that are linear in the
accelerations _
In this case the equations of motion (3.7.2) are modified to

At, g, 3 = 0. (3.7.7)

The coltection of all couplings of classes L, II, and I then leads in a natural
way to what we have called the fundamental form of the equations of motion,
1.€.,

Ault, g, ' + Bylt, 4, 9) = 0. (3.7.8)

It is relevant to stress that the acceleration couplings, in their most general
form, demand that both the diagonal and off-diagonal terms of the matrix (4)
are non-nuil.

An example is useful to indicate the need, in general, for all of the above
three classes of couplings as well as of the nonlinearity of couplings I and IL

Consider the case of a system of oscillators. Linear, time-independent
couplings of type I produce the familiar form

C.jk + Ch'qi = Q. (3.7.9)
This conservative formulation, however, is insufficient to represent the system
as it actually occurs in our environment owing to the inevitable presence of

dissipative forces. A natural generalization of Equation (3.7.9}is then given by
the inclusion of time-independent linear couplings of type Il by obtaining in

49 Here the term “coupling” is used as a way of referring to the acting forces.
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this way the familiar form of the coupled and damped osciltators.
e + bud + cug' = 0. (3.7.10)

This dissipative formulation, however, is insufficient because, as is well known
in the theory of coupled oscillators, couplings of type III also occur. The next
simple generalization then yields the familiar form of the linear system with
constant coefficients,*®

@' + bud' + cug = 0. (3.7.11)

Notice that the acceleration couplings occur precisely because the off-
diagonal as well as the diagonal elements of the matrix (,;) are non-null.

This indicates the need to consider all three classes of couplings I, II, and
IIT for the representation of a system of oscillators. Equations of motion
(3.7.11), however, still constitute an approximation of physical reality. Indeed,
as is well known, they are valid only for small oscillations precisely in view of
the linear nature of couplings I and II. The removal of this restriction in-
evitably brings the equations of motion from the linear form (3.7.11) to the
fundamental form (3.7.8), where the possible presénce of applied forces (which
are, in practice, essential to preserve the motion for a sufficiently long period
of time) can be incorporated in the B terms.

This indicates the need to consider nonlinear couplings of types I and I1.
Their time dependence can then be inferred on other grounds (e.g., the
variations of the parameters in time due to temperature, etc.).

Thus, the above example of a system of coupled oscillators indicates that,
whenever a more accurate description of physical reality is needed, equations
of motion of type (3.7.11) must be abandoned and the fundamental form of the
equations of motion must be adopted. This conclusion holds irrespective of
our interpretation and classification of the Newtonian couplings.

The fundamental form of the equations of motion, therefore, represents an
arbitrary collection of the most general Newtonian couplings I, I, and I,
although in a somewhat hidden form. Specifically, the couplings of types I (11)
are represented by the time and generally nonlinear coordinate (velocity)
dependence of the A and B terms, and the couplings of type III are repre-
sented by the non-null values of the off-diagonal, as well diagonal, terms A,;,
jointly with the indicated functional dependence of these terms.

At this point one can argue that the acceleration couplings are inessential
for the equations of motion because, under the assumption of regularity, the
fundamental form (3.7.8) can always be reduced to the kinematical form (3.7.6)
through the identifications

fi=—A4VB, (At = (A (3.7.12)

Indeed, the reduction from Equations (3.7.8) to (3.7.6) is true from the
Theorem of Implicit Functions (Section 1.1). As a consequence, the statement
that Equation (3.7.6), without acceleration couplings can equivalently

*© See, for instance, Symon (1960).
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represent the system is also true. Thus, within the context of the theory of
ordinary second-order differential equations, the acceleration couplings are
indeed inessential for representing the motion.

However, within the context of the problem of the Lagrangian representa-
tion of the equations of motion, the situation is substantially different. It is
precisely at this point that the integrability conditions for the existence ofa
Lagrangian, i.e., the conditions of self-adjointness, play a vital role.

Indeed, Newton's equations of motion in the kinematical form (3.7.6) are
non-self-adjoint (unless trivial forms of couplings are assumed) and, therefore, a
Lagrangian for their ordered direct analytic representation, from Theorem
3.5.1, does not exist. This is because the conditions of self-adjointness restrict
the kinematical form to the simpler form (3.6.12), which can represent the
most general form of couplings of type I, but the couplings of type II are
restricted to be linear in the velocities, and the couplings of type III are
absent.

In order to represent such equations of motion, one is forced, as one
possibility, to study the indirect representations, ie., the representations of
equivalent systems of the type

{hie, g, Da: = £t @ DInsatsa =0, (3.7.13)

and use the freedom of the factor functions A to induce a self-adjoint struc-
ture.5! If one of these equivalent self-adjoint forms of the equations of motion
exists, a Lagrangian for their analytic representation exists from Theorem
351

The point which must be stressed is that the net cffect of the “integrating
factors” K. is precisely that of retransforming the equations of motion from
the kinematical form (3.7.6) to the fundamental form (3.7.8), with the con-
sequent restoration of the acceleration couplings.

At this point, the reader is urged to inspect the conditions of self-adjointness
for the fundamental form, ie., Equations (3.5.3). It is then easy to conclude
that, unlike the case of the kinematical form, the conditions of self-adjointness
for the fundamental form do allow a collection of general couplings of types I, I I,
and 111. This is due to the fact that such conditions allow an explicit time
dependence of the equations of motion, a generally nonlinear dependence in
both the coordinates and the velocities, and non-null as well as nontrivial
values of the off-diagonal and diagonal elements of the matrix (4).

Our findings, therefore, can be stated simply by saying that Lagrange’s
equations can represent equations of motion with (local) arbitrary Newtonian
forces, i.e., with an arbitrary collection of conservative, dissipative, and applied
forces of types I, II, and 111

To summarize, the acceleration couplings are not essential for representing
the motion under arbitrary Newtonian forces within the context of the theory
of ordinary second-order differential equations, but they are necessary within
the context of their Lagrangian representations. If such acceleration couplings

51 This problem is investigated in Santilli (1979).
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are ignored within this latter context, the net effect is a considerable restriction
of the type of admissible Newtonian forces.
Our third objective of this section is the study of the following problem.

What is a general form of modification of Lagrangian (3.7.3) for free motion
capable of representing the same system when subject to an arbitrary collection
of couplings I, 11, and 111 or, equivalently, to arbitrary Newtonian forces?

First, it is advisable to reproduce the conventional structure of the Lagrang-
ian for interacting Newtonian systems within the context of Theorem 3.6.1.

Corollary 3.6.1B.°? A total Lagrangian for the ordered direct analytic
representation of local, holonomic, generally nonconservative, interacting
Newtonian systems

i 23 1(t: q) &r Z(E, Q. ,
Gt [ quz - qul ¢ — ot ) =0, (5.7.14)

k=1,2,...,n,

which are well defined, of (at least) class €*, and self-adjoint in a star-shaped
region R¥*"* 1 of points (t, q), is given by

H

Laol = Lfree(q-‘) + Lint(ts Q) ‘.’I) = Z Ll('ﬂe + Lim: (5715)

k=1
where
L. = 447, (5.7.16a)
Lin = TW(t, 94" + C(t, q), (5.7.16b)
and the function C is given by
C = qkfldf (a‘k + %) (. tq). (5.7.17)
0

It should be stressed that within the context of the above corollary, the
term L, can have only a linear dependence on the velocities.

The general case can also be derived as a reinterpretation of Theorem 3.6.1
according to the following corollary.

Corollary 3.6.1C.>% A general structure of the total Lagrangian for the
“ordered direct analytic representation of local, holonomic, generally non-
conservative, interacting Newtonian systems in the fundamental form

At ¢ DF + Bt g, 9) =0,  k=12...,n (3718

which is well defined, of (at least) class €2, regular, and self-adjoint in a
star-shaped region R**"*' of points (t, q, ¢), is characterized by n + 1

52 antilli (1977b).
53 R. M. Santilli (1977b).
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interaction terms, n multiplicative terms, and one additive term to the
Lagrangian for the free motion of each particle, according to the generalized
structure

ngfln(t, q, q) = Z Lgﬁ’l,l(ts q, ‘j)ngee + Lint,ll(r! s Q)a (3719)
k=1

where the terms K, |, L{%,, and L,y y admit the decompositions

LE = KP¥(tq, @) + DY@ 9 + CPG, ), (3.7.20a)
L. = 3d9? (3.7.20b)
Lo = Ku(t, ¢, §) + Dielt, )4 + Cu(t, ), {3.7.20c)

and can be expressed in terms of solutions (3.6.4) of Equations (3.6.3) by
means of the identifications

s

Kt q,4) = Y LR Lite + K, (3.7.21a)
k=1

Dy = Dy, (3.7.21b)

C= C"- (37210)

Here the multiplicative interaction terms are necessary for the representa-
tion of the motion under forces not derivable from a potential. Indeed, when
such terms are reduced to unity (jointly with the restriction that L;;, y be
linear in the velocites), the net effect is that of eliminating the acceleration
couplings with consequent restriction of the types of admissible couplings,
as indicated earlier. Notice that all interaction terms can now have a generally
nonlinear dependence on the velocities (as well as the coordinates).

It should be stressed that structure (3.7.19) is by no means unique and other
generalized forms are equally admissible. Along these lines, another signifi-
cant generalized structure of the total Lagrangian is given by the following
simple reinterpretation of structure (3.6.2), which emerges directly from the
Fundamental Analytic Theorem’*

Ltg:tn(t’ q, Q) = K(ts 4, q) + Dk(t5 Q)qk + C(Es Q)
= 3['Gift, 4 DI’ + 24'F it Dg’ + d'Eift, 9]
By inspecting the transition from the Lagrangian for free motion to the above
generalized structure, we clearly see that the crucial role of representing the
acceleration couplings is here played by the G;; tensor. Indeed, whenever the
matrix (G;;) reduces to the unit matrix (J;;), Lagrangian (3.7.22) reduces to
Equation (3.7.15).°°

(3.7.22)

54 This structure of the Lagrangian appears to be more promising than structure (3.7.19) from
the viewpoint of possible quantization due to the underlying need for symmetrization. It should
be recalled that, to the best of my knowledge, the problem of quantization of arbitrary Newtonian
couplings is far from being solved at this time [Santilli (1978)].

%5 The extension of structure (3.7.22) to field theories is closely related to the so-called chiral
Lagrangians. For more details, see Santilli (1977b and c).
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We can, therefore, conclude that any generalized structure of the Lagrangian
is capable of representing systems with arbitrary Newtonian couplings provided
that such a structure contains the representatives of the acceleration couplings.

It might be of some significance here to point out that the Morse-Feshbach
Lagrangian (3.4.15) is precisely of type (3.7.22), and not of type (3.7.15),
despite the linearity of the velocity couplinigs, in view of the identifications

1
= o)

O —
(Fu)=( +b g), (3.7.23)

—w?
(Eij) = (_3)2 0 )

Indeed, the represented form of the equations of motion, i.e., the right-hand
side of Equation (3.4.16) is precisely a simple version of the fundamental form
according to the identifications®®

(Aij) = ((1) (1)),

By = ( —bd, +w2q2). (3.7.24)

+bg, +wiq

However, the A4,; terms in this case do not represent genuine acceleration
coupling, because their diagonal values Ay, are null. This is reflected by the
simplicity of the couplings of the equations of motion. It is, then, conceivable
that any further generalization of the couplings of this system will inevitably
lead to bona fide acceleration couplings, i.e., to less trivial values of the G;;
tensor of structure (3.7.22).%7 This aspect will be illustrated in the examples at
the end of this chapter, as well as in those of Santilli (1979).

The extension of the above analysis to the case of regular Newtonian
systems with holonomic constraints is straightforward. Consider, first, the
case of a systems of N free particles subject to 3N — » holonomic constraints.
Their equations of motion in configuration space can be represented by
Lagrange’s equations in the kinetic energy (A.4.10), i.e.,

Lfree = T(t» q, q)
» L . 3.7.25
= L7t O + Z4t D+ Zolt, q). (3.7:25)

%€ Let us recall from footnote 21 of p. 127 that this system is the Newtonian limit of the inter-
actions of a complex scalar field with an external electromagnetic field, i.e., a central model of
gauge theories. Therefore, the field equations which are represented in these theories are a
generalization of structure (3.4.16). For more details, see Santilli (1977a, b, and ¢).

7 Within a field theoretical context, this problem ultimately constitutes one of the central
problems of contemporary theoretical high-energy physics, the study of the generalizations of the
unified gauge theories of the electromagnetic and weak interactions aiming at an effective in-
clusion of the strong interactions. For studies along these lines, see Santilli (1978, Vols. 1, IT
and III).
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Figure 3.2 A schematic view of the classes of Newtonian couplings that are admissible by a
Lagrangian representation, In view of Fundamental Analytic Theorem 3.5.1, all ad- -
missible couplings must induce self-adjoint forms of the equations of motion. The
simplest class of couplings, i.e., those of class I, are not necessarily conservative because
the conditions of self-adjointnessare unable to resirict theacting forces to be conservative,
although the case is obviously admissible. The second class of couplings, i.e., those in
both coordinates and velocities, is considerably restricted by the conditions of self-
adjointness, because only a linear dependence on the velocities is admitted, whenever the
equations of motion are written in their kinematical form. The third class of couplings
is the largest admissible by a Lagrangian representation and it does allow nonlinear.
couplings in both the coordinates and the velocities, provided the equations of motion
are written in their fundamental form. The net effect is the necessary presence of the
acceleration couplings, which results in the presence of interaction terms in the total
Lagrangian of both muitiplicative and additive type to the free Lagrangian. Owing to the
limited nature of the couplings of class 11, generalized structures of the total Lagrangian
emerge as necessary for a closer representation of the Newtonian physical reality.
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Notice that, despite the lack of acting forces,*® the structure of this Lagrangian
closely follows structure (3.6.2) or (3.7.22), with the only functional difference
characterized by the velocity independence of the Z;; tensor.

When all the acting forces are derivable from a potential, structure (3.7.25)
is modified into the familiar form>®

Llul = T(ta qs fi) - U(ts q; Q)- (3-7.26)

If some of the acting forces are not derivable from a potential, thén the above
structure is insufficient®° to represent the motion. The extension of the analysis
conducted previously in this section then leads to the conclusion that
generalized structures, e.g., of the type (3.7.22), can indeed represent regular .
holonomic systems with arbitrary Newtonian forces. Notice that this is
equivalent to the only additional velocity dependence, in structure (3.7.25) for
free motion, of the Z;; tensor. Other equivalent forms of representing the
motion are

LEM = R(t, g, T, 4, ) + St 4, D, (3.7.27a)
LE = R(t, q, PLT @, g, §) + St ¢, D], (3.7.27b)

and they again indicate the presence of both multiplicative and additive
interaction terms in the kinetic energy.
For a schematic view of the content of this section, see Figure 3.2.

3.8 Direct and Inverse Legendre Transforms for Conventional
Analytical Representations

We consider now the transition to phase space formulations for the (ordered)
direct identification

d oL oL - . '
i a—qk - a—qk = Ay(t, 9, ' + Byt 4, D), (38.1a)
Ay, B e €*(R*>"H 1Y), Le®*R*™*, (3.8.1b)
|A~'i(R2n+1)= az—L (R2ﬂ+1) % 0 (3810)
¥ aqt od’ N o

The conventional canonical prescriptions for the chdracterization of the
generalized momenta p; are

oL

G, 9,4, p) = pr — T 0. (3.8.2)

58 At this stage, even the frictional forces of the constraints are ignored.

5% See Problems 3.3 and 3.4.

60 Under the assumption that T is the kinetic energy and U the potential. When these physical
restrictions are removed, then each function T or U can have an arbitrary functional dependence.
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The transition from the Lagrangian L to a new function, the Hamiltonian
H, is done through the Legendre transform,

L - H :""‘quk - L(ta CI, q) = H’(I: q= q-s P)’ (383)

which possesses the following important properties

1.

Expression (3.8.3), as written, is a function of the 3z + 1 variables
(t 4, 4, p). Its reduction to a form depending only on the 2n + 1
variables (t, ¢, p) demands the computation of @l the implicit functions
of systems (3.8.2) with respect to 4, ie,

¢ =dtqgp, k=1,2..,n (3.8.4)

When the set of all such functions exists, their substitution into
Equation (3.8.3) produces the desired reduction, ie.,

H(f, q, p) = pkgk - L(ta q, \fi) = H’(t: s g, P) (385)

A point of central methodological significance is that the set of all
functions (3.8.4) exists and is unique if and only if Implicit Function
Theorem 1.1.2 can be applied to prescription (3.8.2) with respect to
the g, variables everywhere in the region of interest. But from assump-
tion (3.8.1b), the functions G, of Equation (3.8.2) are (at least) of class
%3,and condition (1') of Theorem 1.1.2 holds. Condition (3.8.1c)implics
that the functional determinant of Equation (3.8.2) with respect to g, is
regular in R*"*!, je. !

oG, &L
‘ = , (3.8.6)

| |od ag

and condition (2) of Theorem 1.1.2 holds. Then the functions §, of
Equations (3.8.4) must be such that

Gk(ts 4, g’ P) = 09 (3.8.7)

and this ensures the fulfillment of condition (3" of Theorem 1.1.2,
Thus, under assumptions (3.8.1b) and (3.8.1c), Implicit Function
Theorem 1.1.2 holds and all functions % k ='1, 2, ..., n exist and are
unique. Then, Hamiltonian (3.8.5) is unique.®? '

Assumptions (3.8.1b) and (3.8.1c) imply, from Theorem 1.1.2, that all
implicit functions ¥ besides existing and being unique, are single-
valued. In turn, such properties imply that Legendre transform (3.8.3)
induces a one-to-one mapping '

R+, ﬁ?_rﬁvl (388&)

81 In Equation (3.8.6), p, and 4, are independent variables.

62 The implication of degeneracy should be indicated at this point. Basically, when the
Lagrangian is degenerate in R*""!, besides the breakdown of Hiibert Differentiability Theorem
3.2.2, there is the lack of applicability of Implicit Function Theorem 1.1.2 to system {3.8.2) with
respect to the 4's. This implies that the set of all implicit functions (3.8.4) cannot be computed. A
different methodology must then be used for the mapping to phase space. See, in this respect,
Dirac (1964).
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from the original region R*"*! of points (¢, g, §) to an “image” region
R?*1 of points (¢, g, p). Furthermore, the (open) region R2"*! is
unrestricted for transform (3.8.3). Therefore, when R2"*! is the space
M, ® M, ; of all possible values of ¢, g,, and §;, its “image” region is
the Kronecker product

Mt =M, Q@ M, , (3.8.8b)

of the space M, spanned by the time variable and the phase space M,
of the 2n canonical conjugate variables g, and p,. Furthermore, under
the above assumptions, the variables g, and p, are all independent®?
and the “image” path of (E, E) is the path (or path segment) in phase
space E = {q, = q(t), p. = px(£)}-

3. Since, under the above assumptions, H can be regarded either as a
function of (t, g, 4, p), Equation (3.8.3), or as a function of (z, g, p),
Equation (3.8.5), the total differential of those two functions must
coincide, i.e.,

oL oL
H' s sy .; =g - = k2=
dH'(t, g, 4, p) = §" dp, aqkdq 5 &
= dH(t, g, p) (3.8.9)
oH 0H oH
=——dgt +—— =
Therefore, the following identities, involving the old and new func-
tions®+
oL oH
o of (3.8.10a)
oL oH
- (3.8.10b)
éH
¢ =g q,p) = (3.8.10c)

ape

hold everywhere in their respective regions of definition.

4, Under assumptions {(3.8.1b) and (3.8.1c), the new function H(t, g, p)
induced by the Legendre transform has the same continuity properties
of I, but in the “image” region R2"*! ie.,

H e @¥R¥+1) (3.8.11)

®% Notice, in this respect, that prescriptions (3.8.2) are of nenintegrable type, i.e., functions
Gi(t, g, pysuch that G, = (&} do not exist. Therefore, they cannot be used to decrease the number
of independent phase space coordinates. This case is somewhat similar to that of nonholonomic
velocity constraints (Section A.3), which, since they are nonintegrable by assumption, do not
affect the independence of the ¢ coordinates, For degenerate systems, the above independence of
gy and p, is lost due to the appearance of constraints. See Dirac (1964).

5% In view of the structure of Equations (3.8.10), the variables r and g, are sometimes called
passive variables, and the variables §, and p, are called active variables.
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Indeed, all left-hand sides of Equations (3.8.10) are of (at least) class
3. Then 8H/dt, 0H/dq¥, and 6H/6p, are of class € and, thus, H is of
class 4(R¥"*1). In particular, when L does not depend explicitly on
time, neither does H.

5. Condition (3.8.1c) implies that

2
oH (R2"+1y £ 0. (3.8.12)
&p: Op;
Indeed, by differentiating equation (5.8.10c) with respect to ¢/ we
obtain®?
C0*H L

i

01 = 3o ope 04 08"

where we have used Equation (3.8.2). Therefore,

azH (ﬁ2n+ 1) —_ a'ZL )
op; an oq' g’

and property (3.8.12) follows from assumptions (3.8.1¢).5® Thus, we can
say that property (3.8.12) is the phase space “image” of condition
(3.8.1c) under a Legendre transform and, as such, it can be used
equivalently to define the regularity of the represented system®’

6. Condition (3.8.1¢) implies that the Hamiltonian as defined by Equation
(3.8.3) cannot identically vanish. Indeed, suppose that

(3.8.13)

(RZ"“)}_ L 6814

oL
o7 g —L=0. (3.8.15)
Then, differentiating with respect to ¢/, we obtain
’L .,
g =0 .8.16
sand =0 (38.16)
which can hold for §* # 0 if and only if
J*L
———| =0 3.8.17
1 g~ 8¢’ ( )

&5 See, for instance, Rund (1966, p. 18).

56 For degenerate Lagrangians, this procedure does not apply because all Equations (3.8.10c)
cannot be defined with a conventional Legendre transform.

57 In the following, we shall say that a Hamiltonian is regular or degenerate in a region
depending on whether condition (3.8.12) holds or not in this region, The problem of the behavior
of the regularity condition of a Lagrangian or & Hamiltonian under transformations of the
coordinates is studied in Santilli (1979). It is significant to recall here that the conventional
canonical transformations do not necessarily preserve regularity conditions (3.8.12). As a result,
the concept of regularity is customarily restricted to that of a Lagrangian only in the current
literature on Analytic Mechanics. As we can see in Santilli (1979), the configuration space image
of these regularity-violating transformations exists. As a result the concepts of regularity of a
Lagrangian and a Hamiltonian, besides their equivalence within a fixed system of variables as
indicated by Equation (3.8.14), will emerge equivalent even within the context of the transforma-
tion theory.

'RZu-I-l
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7. The Legendre transform (3.8.3) applies for an arbitrary functional
dependence of the Lagrangian and, as such, is insensitive to whether
the represented system is conservative or not.

Properties (1)-(7) above do not exhaust the methodological profile of the
Legendre transform. A further property, which is particularly significant for
our analysis, is that the Legendre transform is an involution, namely, a
transform which, when applied twice, reproduces the original function. This
implies that instead of first assigning a Lagrangian and then computing the
Hamiltonian, one can inversely first assign a Hamiltonian and then compute
the Lagrangian.

To avoid possible confusion, we shall call the transition from L to H the
direct Legendre transform, and the transition from H to L the inverse Legendre
transform.

Suppose that a Hamiltonian H(t, g, p) satisfying the continuity and
regularity properties

He@HR™ ), (3.8.182)
| 8*H |
R £ 0 3.8.18b
op; 5Pj ( ( )
is assigned. The inverse Legendre transform is characterized by
~ aH
Gt.g. 4, p) =4 —— =09, (3.8.192)
‘ pi
H—L=4¢p,— H(t.q,p) = L'(t, 9, ¢, ), (3.8.19b)

where Equations (3.8.19a) and (3.8.19b) are in lieu of Equations (3.8.2) and
(3.8.1c), respectively. ,
It is casy to see that the “inverse” of properties (1)-(7) holds.

1. The reduction of function (3.8.19b} to a form depending only on the
variables (t, g, §) demands the computation of all the implicit functions
of Equation (3.8.19a), i.c.,

pe=alt4,4, k=12,...n (3.8.20)

Assumptions (3.8.18) then ensure the applicability of Implicit Function
Theorem 1.1.2 to Equaticon (3.8.19a) with respect to p, and, thus, the
existence, uniqueness, and single-valuedness of all implicit functions
(3.8.20). In this case, instead of Equation (3.8.6), we have the functional
determinant

oG *H
op; op; 3p;
and its regularity is ensured by assumptions (3.8.18b). Once all implicit
functions (3.8.20) have been computed, their substitution in function
(3.8.19b) produces the desired reduction, i.e.,

L =g*g, — H(t, q9) = L@t g 4) (3.8.22)

, (3.8.21)
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In essence, for the direct transform one must turn prescriptions (3.8.2)
“inside out” to compute functions (3.8.4). For the inverse transform
an equivalent procedure applies. A point which must be stressed is that
prescriptions (3.8.2) and (3.8.19a) arc equivalent. More specifically,
Equations (3.8.2) and (3.8.19a) are two different ways of writing the
same equations. The former provide the implicit functions of the p
variables, while the latter express the same prescriptions but in terms
of the implicit functions in the ¢ variables. Then, Lagrangian (3.8.19b)
is unique and the Legendre transform is involutive. Indeed, by apply-
ing first a direct and then an inverse Legendre transform (under the
above continuity and regularity assumptions), one recovers the
original function identically.®® Notice the key role played again by
regularity condition (3.8.18b) for the existence of all implicit functions
(3.8.20).

2. In view of the existence, uniqueness, and single-valuedness of all
implicit functions (3.8.20), inverse transform (3.8.19) induces the
one-to-one mapping

Gl S (3.8.23)
of the region R2"*! of points (¢, g, p) to an “image” region R*"** of

points (4, g, §). Again, the region R>"*! is unrestricted, and when
R?*1js the entire space (3.8.8b), the “image” region is the Kronecker

product
M¥» 1 =MO®M,QM,. (3.8.249)
3. The differentials of functions (3.8.19b) and (3.8.22) are again identical,
ie, : :
oH dH
r - _ -k _ k "
dL'(t, ¢, 4, p) = P 4 Py dq’ — - dt
= dL(t, g, g) (3.8.25)
oL ,, @L ,, 0L
W dg* + 5—(1" dq* + F dt
The properties
JH aL
Eq— = = %',;, (38263)
oH oL
i (3.8.26b)
. 0L
Dy = gk(ts q, Q) = a_ék: (3826C)

58 We hereignore the degrees of freedom of the functions L and H represented by multiplicative
and/or additive numerical constants.
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then hold identically. In particular, Equation (3.8.26c) guaraniees that
original prescriptions (3.8.2) are indeed recovered.

The function L, from Equations (3.8.26) and assumption (3.8.18a),
is of class ¢* in R*"*!. When H is independent of time, so is I..
Condition (3.8.18b) and prescription (3.8.19a) ensure that the Lagrang-
ian L is regular in R*"* !, Indeed, by differentiating Equation (3.8.26¢)
with respect to p;, we obtain

;9L &*H

T 04 0d" opy p;’
Then Equation (3.8.14) follows and property (3.8.1¢) holds from
assumption (3.8.18b).

Under assumptions (3.8.18), the Lagrangian cannot be identically
null, for suppose that

(3.8.27)

0H g
——p—H=0, 8.
o0s p— H (3.8.28)
Then, by differentiating with respect to p;, we obtain
0*H
n =0, 3.8.29
3o ap; 7 ( )

which cannot hold for p, # 0 unless assumption (3.8.18b) is violated.
Notice, in this respect, that equivalent regularity condition (3.8.1c) or
(3.8.18b) implies that the Lagrangian cannot be linear in the velocities
and the Hamiltonian cannot be linear in the momenta.5®

The inverse transform (3.8.19) is also insensitive to the nature of the
acting forces and, thus, it applies irrespective of whether the considered
Hamiltonian represents a conservative, dissipative, or dynamical
system.

On practical grounds, when a class ¥* regular Lagrangian L has been
assigned and a direct Legendre transform is requested, the following se-
quential steps can be implemented.

1.

2.

3.

Identify a region R*"*! which contains no zero of the functional
determinant.

Introduce prescriptions (3.8.2), ‘compute all the implicit functions
(3.8.4), and identify the image region R2"*! of R21+1,

Introduce the direct transform (3.8.3) and compute the Hamiltonian
through the use of implicit functions (3.8.4),

There is no need to inspect all other aspects [e.g., the one-to-one nature of
mapping (3.8.8a), the involutive character of the transform, etc.] because they
are guaranteed by the same continuity and regularity assumptions.

5% In essence, this reflects the structure of the kinetic energy for regular systems.
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If the Lagrangian is of class 4™, m = 2, 3, and regular, all the properties
indicated in this section apply in full without any modification. Indeed, in this
case from Hilbert Differentiability Theorem 3:2.2, the accelerations g, are
continuous for all possible paths of at least class ¥' ; Lagrange’s equations are
continuous; the generalized momenta p,, from Equation (3.8.2), are of class
%™~1; and the Implicit Function Theorem 1.1.2 can be applied to prescription
(3.8.2). Thus, the direct Legendre transform holds.

The case when L is only of class ' will not be considered. It generally
implies the breakdown of the above indicated properties of the Legendre
transform due to the fact that the functions Gy of Equation (3.8.2) fail to
possess the continuity properties needed for the applicability of Theorem 1.1.2.
Then the implicit functions (3.8.4), when they exist, are not necessarily unique.

Therefore, the minimal continuity property of the Lagrangian, which we
shall assume for the validity of the direct Legendre transform,is L e € Z(RZ”+ H.

Ifa Hamlltoman H(z, g, p), which is of at least class > and regular’®, is
assigned and an inverse Legendre transform is requested, then steps (a), (b)
and (c) can be equivalently implemented. Again, if H is of class ™, m < 2
and/or degenerate, then the inverse Legendre transform in its conventional
formulation does not apply.

For illustrations$ of the above propertles see the examples at the end of th1s

chapter [as well as thosg of Santilli (1979)]
* The most significant aspects studied in this section can be summarized
with the following theorem.

Theorem 3.8.1 (Direct and Inverse Legendre Transforms). Given a
Lagrangian L{(t, g, g) satisfying the continuity and regularity properties

Le®™(R*™Y), m =2, (3.8.30a)
azL 2r+1
" 0, .8.30b
siar| R # (3.8.30b)
in a region R3"* ! of points (1, g, 4), the direct Legendre transform
. aL
Gilt, 9,4, p) = px — o 0, (3.8.31a)
q
H = pd* ~ L = H(t 4, p) (3.8.31b)

induces a one-to-one mapping from R¥* to an “image” region R?"™! of
points (t, q, p) and defines a unique non-null new function, the Hamiltonian
H(t, q, p), which satisfies the continuity and regularity properties

Heg™(R*"tY, m>=2, (3.8.32a)
2
a;gj ‘ (R2n+1y £ 0. (3.8.32b)
J

7® See footnote 67 of p. 160.
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Conversely, given a Hamiltonian H(t, q, p) which satisfies properties (3.8.32)
in a region R*"*! of points (t, g, p), the inverse Legendre transform

- PH

Gt g, 4, p)=¢" - — =10, (3.8.332)
opy

L=4¢p—H=Ltqgq (3.8.34b)

induces a one-to-one mapping from R2"*1 1o an “image™ region R of
points (t, 4, 4) and defines a unique non-null new functioi; the Lagrangian
L(t, q, 4), which satisfies continuity and regularity properties (3.8.30).

Corollary 3.8.1A.  For functions that are of at least class > and regular, the
Legendré transform is involutive.

Theorem 3.8.1 provides the foundations for the equivalence of configura-
tion and phase space formulations of class 42, regular, and holonomic
systems which will be studied in the next section after introducing Hamilton’s
equations.

Corollary 3.8.1A emphasizes an aspect of central methodological signifi-
cance according to which the Legendre transform characterizes the configura-
tion and phase space formulations on equivalent footing, in the sense that
each of those formulations can be assumed as “primary” and the others as
“derived.” This implies the existence of the foliowing altcrnatives for the
representation of regular holonomic Newtonian systems in terms of analytic
equations.

Alternative I, which consists of first identifying a Lagrangian and then
computing the Hamiltonian through the direct Legendre transform.

Alternative 11, which consists of first identifying 2 Hamiltonian and then
computing the Lagrangian through the inverse Legendre transform.”!

In relation to alternative I, the identification of a Lagrangian for self-
adjoint systems has been studied in Section 3.5 through 3.7. [The case of non-
self-adjoint systems is studied in Santilli (1979)]. Once a Lagrangian has been
identified with those techniques, then the miethodology of this section can be
used to compute the Hamiltonian.

In relation to alternative I, we shall study in the rest of thlS chapter {also
see Santilli (1979)] the prior identificatioh ofa Hamiltonian. The methodology
of this section can then be used to compute a Lagrangian.

7! There exists another alternative, which consists of the independent identification of both the
Lagrangian and the Hamiltonian, Notice that the functions L and H so obtained are not neces-
sarily related by a Legendre transform (even though they represent the same system by con-
struction) in view of the freedom of the prescriptions for the construction of the normal forms.
Therefore, this third alternative is significant for the study of equivalent analytic representations
[Santilli (1979)].
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Predictably, the two alternatives above will turn out to be equivalent.
Nevertheless, their independent study is significant (e.g., for transformation
theory) because their equivalence indicates the existence of certain “degrees of
freedom” of analytic formulations, which are somewhat “hidden” in the
conventional approach for conservative systems.

3.9 The Conventional Hamilton’s Equations

We consider now the conventional analytic equations in phase space, ie.,
Hamilton’s equations

P — a—H =0, (3.9.1a)
ap;
. 0H
by + ;3? = 0? (3.9.1b)
He (g’"(ﬁz'” b, m>2, (3.9.1c)
0*H | ~
R2n+1 0 0.
) R (G219

which can be derived, for instance, from prescriptions (3.8.2), properties
{3.8.10c), and Lagrange’s equations.

Let us recall from the Hilbert Differentiability Theorem 3.2.2 that when a
path E is of (at least) class €' in (¢,, t,) and the Lagrangian is regular and of
class €™, m = 2 in R?"*! then E is also a class €™ in (f,, £,).

Theorem 3.9.1 (Relationship between Paths in Configuration and Phase
Space).”? If the path

E= {Cbplqk = qk(t)s P = pk(t)s te (tla r?_)a k = 1: 23 teey ?’l} (392)

in configuration space is a class €"(t,, t;), m = 2, solution of Lagrange’s

equations
(%2—; — %) (E)=0, (3.9.3a)
Le®m™(RI"1), m=2 {3.9.3b)
‘ agiz 6qu (RZ* 1), (3.9.3¢)

2 See, for instance, Gelfand and Fomin (1963, Chapter 4).
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then the image path

. JL
E= {q’ plqk = qk(t)s Pr = P = Pk(t): 55(529 EZ): Py = ija k= L2,.. ;n}

(3.94)

induced by a direct Legendre transform is a class €™(t,, t,) solution of
Hamilton's equations (3.9.1) and vice versa.

PROOF. Every class 4™(m > 2) path E that satisfies Equations (3.9.3) also satisfies
equations of the normal forms (3.8.4), i.e.,

. 2
¢ =dq.p) = (39.5)

H
o’
But Equations (3.9.3) under a direct Legendre transform become the second set of
Hamilton’s equations (3.9.1b). Thus, the image path E of E satisfies all Hamilton’s
equations. The functions §H/d¢* and 0H/dp, are of class ™~ ' and, therefore, the path £
is of class ™. This proves the first part of the theorem. Conversely, if E satisfies Equation
(3.9.1b) and is of class 4™, m = 2, then an inverse Legendre transform applied to Equa-
tions (3.9.1) generates Lagrange‘_s_ equations (3.9.3). But the functions dH /34" are of class
%™ !. Thus the image path E of E satisfies Lagrange’s equations and is of class E(ty, 13).
Q.E.D.

The involutive nature of the Legendre transform then impilies the following
corollary.

Corollary 3.9.1A. Lagrange’s equations (3.8.3) and Hamilton’s equations
(3.9.1) are equivalent when their respective Lagrangian and Hamiltonian
functions are connected by a Legendre transform.

The equivalence property of the above corollary can also be proved in
several other ways, but we shall not indulge in their analysis at this time.

In essence, Theorems 3.8.1 and 3.9.1 and Corollaries 3.8.1A and 3.9.1A
prove that, for the study of regular Newtonian systems, one can equivalently
use the analytic equations in either configuration space or phase space.

The problem of the existence of a Lagrangian has been investigated in
Section 3.5. When a Lagrangian exists, the consequent existence of a Hamil-
tonian has been stressed in Section 3.8. However, one of our objectives is the
study of the problem of the existence of a Hamiltonian per se, i.e., independently
from the existence of a Lagrangian. This latter problem demands a more
effective formulation of Hamilton’s equations.

Introduce the 2n-component contravariant vector

qﬂ,.u: 1525---’]1’
fo= 39
¢ {pﬂ-n=#=n+19n+2s-“’2na ( 96)
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which now spans a phase space by assumption. Then Hamiltonian H can be
written H(z, g, p) = H(t, @) = H(t, @*), and through the use of the con-

travariant form?>
0 +1
avy CEL Bxn 3.9.
(w ) (_1nxn Onxn) ( 97)
we can write
0H
. oH
“ - (a) _v). (39.8)
AH da
o

Therefore, Hamilton’s equations (3.9.1) can be written in the form

@ — o® = =0, w=1,2...,2n, (3.9.9
da ‘
which we shall call the contravariant normal form of the analytic equations in

phase space.
By introducing the inverse matrix

(w,,) = (™) ! = ( Onsc _é"" ") (3.9.10)
and the covariant 2n-vector

_ . _pu“u=1,2,...,n,
_ _ 39.11
= O { ¢ u=n+1ln+2,..,2n G310

we obtain, from Equations (3.9.9), the system

oH _,

o OH _
“ da* ’

() (39.12)

uyv

which we shall call the covariant normal form of the analytic equations in phase
space.
Trivially, Equation (3.9.12) in conventional notation reads

oH
—Px — a_qk = 07
(39.13)
+4* - " _ 0,
ap;

73 This introduces a symplectic structure in the space M, , = M,,. See the Charts of
Chapter 2.
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and, as such, they are the conventional Hamilton’s equations, only written
in a unified notation™
By introducing the notation

H'(t, a,) = H'(t, ,,0") = H(t, a"),

_oH
T ap
Iy - (w ‘”{), (39.14)
é’au aH da )
oq
Equations (3.9.9) and (3.9.12) can also be written in the factorized form
w““(dv - éff;) =0, (3.9.15a)
da
co,,v(d“ + g%) =0, (3.9.15b)

which more fransparently exhibits the “cross-wise™ correspondence of the
contravariant (covariant) tensor @**(w,,) with the covariant (contravariant)
normal’® form of the canonical equations.

3.10 Self-Adjointness of the Conventional Hamilton’s Equations

We are now equipped to study the self-adjointness of the conventional
Hamilton’s equations. .
Consider the one-parameter family £} ,, of contravariant paths

E(w) = {¢"|a" = a*(t; w); te(ty, t,), we 0,} (3.10.1)
which are solutions of the covariant canonical equations
- L OH\ .
FE) = |w,a — Py (Ew) =0, u=12...,2n (3102)
Suppose that the family 7, , satisfies all necessary theorems of the existence
theory in such a way that the contravariant variations
_ da* . o0d*

TW o T o

exist and are continuous in (¢, ¢5).

n

, (3.10.3)

w=0

™ Notice that Equation (3.9.12) directly exhibits the fundamental symplectic structure w
(Chart 2.3), while Equations (3.9.13) do not, even though the two systems coincide. This difference
in the way of writing Hamilton’s equations, besides its geometrical significance, will be crucial for
the study of the self-adjointness properties.

75 Here, we stress the point that Hamilton’s equations, from the viewpoint of the theory of
ordinary differential equations, constitute a system of 2n first-order differential equations in the
mormal form (in the sense of footnote 6, Chapter [).
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By computing the total derivative of Equations (3.10.2} with respect to w
and by setting w = 0, we obtain the equations

dF " .
M) = d—“ = o, — o, =0, (3.10.4)
W lw=0
where
o*H
Oy = a oa d (3.10.5)

which are the equations of variations of Hamilton’s equations. If the forms
M ,(n)arecomputed along an (admissible) variation #* which is not necessarily
a solution of Equation (3.10.4), we shall call them the variational forms of
Hamiltorn’s equations.

Theorem 3.10.1(Self-Adjointness of Hamilton’s Equations).”® Under the
assumption that the Hamiltonian H(t, a*) is of (at least) class €* and regular
in a region R*"* 1 of points (t, a*), the covariant normal form of Hamilton’s
equations is always self-adjoint in R*"* 1.

PROOF. The equations of variations (3.10.4), under the assumed continuity conditions,
always coincide with the adjoint system (Section 2.1}

M, = —i'o,, — 10, =0 (3.10.6)

everywhere in R2**!, Q.E.D.

In essence, the identity
M) =M,  1e@@un),  u=12...,21 (3107
is based on the following assumptions. _
1. The form (w,,) is independent of the path «* and of the time ¢. This
guarantees that in the construction of the adjoint, the identities
d ¥ b
o o) =R, (3.10.8)

hold.
2. The form (w,,) is antisymmetric. This guarantees the identities of the
following terms of Equations (3.10.4) and (3.10.6).

Wy fi” = —H'w (3.10.9)

v

76 This theorem, to the best of my knowledge, is not treated in the available literature.
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3. The Hamiltonian is of (at least) class €2 (R*"* 1), This guarantees the
last identities needed for Equations (3.10.7), ie.,

o
v " da* 6a"
_ 3 JH (3.10.10)
=T = éa* da*

Alternatively, Theorem 3.10.1 can be proved by verifying that Equations
(3.10.2) satisfy the conditions of self-adjointness (2.7.20), i.c., for a covariant
normal form

W, 4" — Bt a") =0, (3.10.11)
that is,
0= =,

# =
Ja"  da*

(3.10.12)

(see Theorem 2.7.3). But the functions E, for Equations (3.10.2) are given by

JH
B = (3.10.13)
thus condition (3.10.12) trivially reduce to the “commutativity” property
(3.10.10).

The study of the self-adjointness of the contravariant normal form (3.9.15a)
with respect to the covariant vector a, can be done with simple modifications
 of the above procedure, It is left as an exercise for the interested reader.

Notice that the self-adjointness of Hamilton’s equations can be proved with
the minimal continuity conditions that H# € €%(R*"* ). This should be com-
pared with the corresponding aspect in configuration space for which the
minimal continuity property is L e #* (R2"*1).

By introducing the quantities

a H
oq =t u=12...,n
ow w=0
-y (3.10.14)
g‘;n =fou=n+Ln+2,.., 2,
w=0

Equation (3.10.4) can be written in conventional notation:

8H . 9*H
=yl 4 " 3.10.15a
dq' dp; ap; Opy, P ( )
. *H 0*H
B, = i : By (3.10.15b)

T o opog
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DLT
Lagrange’s Equations Hamilton’s Equations
- ) ILT n
IP DP DP 1P
L DLT ,
Jacobi’s Equations Jacobi’s Equations
in configuration space |, in phase space
ILT

Figure 3.3 A schematic view. of the fundamental analytic equations of Newtonian Me-
chanics, their equations of variations, and their refationships, where DLT = direct
Legendre transform, ILT = inverse Legendre transform, DP = derivation with respect
to the parameters, and IP = integration with respect to the parameters. Notice that the
above diagram is closed and invertible, The analysis of this book is centered on the fact
that the joint use of the analytic equations and their equations of variations, with the
underlying sclf-adjointness properties (Theorem 3.3.1 and 3.10.1), allows the study of
the necessary and sufficient conditions for the existence of a Lagrangian or Hamiltonian
{Theorems 3.5.1 and 3.12.1).

Furthermeore, by introducing the function

1/ é*H | ?H . 0*H
Ot o, f) == |-———de/ + 2——— ', + —— B:f;

= Q(t, n), (3.10.16)

Equation (3.10.4) can be written in the form
78]

g — o P =0, u=12,....2n (3.10.17)
which exhibits a striking resemblance to the conventional Hamilton’s
equations.

Equations (4.10.15) or (3.10.17) (sometimes referred to as Jacobi’s equations
in phase space) emerge within the framework of the calculus of variations for
the so-called accessory problem in canonical formulations.””

It shouid be noted that Jacobi’s equations in configuration and phase space
can also be related through a direct or inverse Legendre transform. The
verification of this important property is left to the interested reader (Problem
3.7.

7 See, for instance, Bliss (1946).



The Concept of Analytic Representation in Phase Space 173

Finally, the reader should be aware that the direct proof of the self-adjoint-
ness of Hamilton’s equations demands the use of the tensor formulation, e.g.,
the formulation of Hamilton’s equations in the form (3.10.2). It is an in-
structive exercise for the interested reader to see that the proof of this central
property of Hamilton’s equations for the conventional form (3.9.1) is rather
laborious. This fact has a number of implications for variational principles
(see Charts 3.6 and 3.7), as well as for the transformation theory [see Santilli
(1978)].

For a schematic view of the fundamental analytic equations, see Figure 3.3.

3.11 The Concept of Analytic Representation in Phase Space

The fundamental and kinematical forms of Newton’s equations of motion in
configuration space, even though they are particularly significant for the
problem of their Lagrangian representation, do not exhaust all possible forms
of writing the equations of motion. Clearly, within the context of the problem
of the Hamiltonian representation, the forms of the equations of motions
that are particularly significant are the first-order forms.

Let us recall from the analysis of Sections 2.4 and 2.5 that, starting from the
equations of motion in configuration space as they naturally arise from
Newton'’s second law, i.e., the equations of the form

Ault, ¢ 4" + Bult, 4, 9) = 0, (3.11.14)
Ay, Bee IR, (3.11.1b)
[Ayl(R?H1) #0, (3.11.1¢)

one can reduce these equations to first-order forms, without using Lagrange’s
equations, by introducing the generally noncanonical prescriptions (2.4.2) inn
new variables y,, i.e.,

Gk(ts q‘: q; y) = C{ki(ta q: _V)qt + ﬁk(ts qs y) = Os (3112&)
Oy, B EHRPTY), T o l(RPY) £ 0. (3.11.2b)
The reduction of Equations (3.11.1) in §* to equations in y, then renders the

systern of » second-order equations equivalent to a system of 2 first-order
equations of the type

O:Jci(“'? q, J’)ql + ﬁk(r’ q, y) = 09

. (3.11.3)
't ¢ ¥V + Bt 4, ¥) = 0,
which can be written in the general covariant form (2.5.3)
Cu(t, @)@ + D,(t,a) = 0, (3.11.4a)
Cpyr D, €GHRATY), (3.11.4b)
|C,[(R2mH 1) £ 0, (3.11.4¢)

(@) = (4" v, (3.11.4d)
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or in the equivalent contravariant normal form (2.5.6)
@ — B4t a) =0, Ere@(R¥™), (3.11.5a)
=M = — VD, (C*™) = (Cp)™ Y, (3.11.5b)

or in the equivalent general contravariant form (2.6.25) or covariant normal
form (2.5.14), 1e.,

C™(t, a)d, + D™(t, a) = O, (3.11.6a)

d, — (L, a) =0, (3.11.6b)

g, O, D e gI(R2HY),  |CPI(RT) #£0,  (3.11.60)
C™(t, a) = C™(t, a¥(a,)) = C*(t, w,ya”), etc, (3.11.6d)
(@) = (Wga”) = (= > 7 (3.11.6¢)

For the reader’s convenience, let us also recall that: (1) at this stage the
variables y, do not necessarily coincide with the generalized momenta p,; (2)
the form which directly arises from the reduction of system (3.11.1) with
identifications (3.11.4d) is the covariant form (3.11.4a) in the contravariant
variables (*); (3) the application of the Theorem on the Implicit Functions to
form (3.11.4) then naturally produces the contravariant normal form (3.11.5);
(4)the remaining two forms (3.11.6a) and (3.11.6b) can be constructed through
the use of identifications as in Equation (3.11.6e); and (5) the prime in the
above expressions indicates a transition in the functional dependence of the
considered functions from the contravariant to the covariant variables, e.g.,
Equation (3.11.6d).

Our problem is that of extending the concept of the analytic representation
of Section 3.4 to the representation of the above first-order forms in terms of
Hamilton’s equation. This can be done according to the following definition.

Definition 3.11.1. A class %!, regular, holonomic system of Newton’s
equations of motion in a first-order contravariant (covariant) form admits an
analytic representation in terms of the contravariant (covariant) Hamilton's
equation in a region R of the variables (t @) when there exist 4n? functions
ki (hy) which are of (at least) class € Lin R and whose matrix (h) is regular in R,
such that the conventional contravariant (covariant) Hamilton’s equations
coincide with the equations of motion up to the equivalence transform
induced by such a matrix (1), i.c.,

WG, - ‘? = h(C™d, + D), (3.11.7a)
o
N
O’ = 55 = WY(Cpd + D), (3.11.7b)

w=1,2...,2n,
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or, equivalently, when the equations of motion coincide with the contravariant
(covariant) Hamilton’s equations up to an equivalence transform induced by
the inverse matrix (h~1) = (k)™ 1, ie,

oH'
h'v_w(vadﬂ ~ ba ) = C%a, + D", (3.11.8a)
., OH .
h#‘“(cuvpa” - 567) =C,, 4 + D,. (3.11.8b)

The representation is called direct (indirect) when the matrix (k) is (is not) the
unit matrix, and it is called ordered when identification (3.11.7) or (3.11.8)
holds not only for the left-hand and right-hand sides considered as systems,
but also member by member for all the values of theindex p = 1,2, ..., 2rnin
a given ordering. When the latter ordering requirement is not met, the
representation is termed nonordered.

The most significant case is again that of an “ordered direct analytic
representation” which, in this case, consists of the identifications of the
normal forms

Hf

o', — —— = w*'d, — EM, a,), (3.11.9a)
da,

CU#.', a’ — %}I = w_uv a’ — Eﬂ(t’ a“). (3.11.9b)

A variational structure equivalent to that of Equations (3.4.11} then holds.
For illustrations, see the examples at the end of this chapter [as well as those
of Santilli (1979)].

Notice that: (a) the factor functions of Equations (3.11.7) or (3.11.8) have
been selected in such a way as to preserve the contravariant or covariant
nature of the system; (b) the maximal functional dependence of these
functions is b = h(t, a) because any dependence on the derivatives a would
alter the first-order nature of the systems; and (¢) in identities (3.11.7) and
(3.11.8) there is not only the preservation of the overall tensor nature of the
systems {e.g., contravariant systems are identified with contravariant analytic
equations), but also the preservation of their functional dependence (e.g., the
contravariant Hamilton’s equations in the covariant variables g, are identified
with the contravariant equations of motion in the same covariant variabies).

A comparative analysis with the framework of Section 3.4 reveals not only
predictable similarities between the concepts of .analytic representations in
configuration and phase space, but also significant differences. In the former
case, the implicit functions of the system are the functions fi(t, g, ), the
underlying form i§ the kinematical form, and the ordered direct analytic
representation of this form is a particular case of the more general representa-
tion of the fundamental form. In the latter case, the implicit functions of the
system are the functions Z(t, a), the underlying forms are normal forms
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(3.11.5) and (3.11.6b), and their ordered direct representations in terms of
Hamilton’s equations are not a particular case of a more general representa-
tion. This difference is ultimately due to a difference in the structure of
Lagrange’s and Hamilton’s equations. Indeed, unlike the case of Lagrange’s
equations, Hamilton’s equations are equations in their normal form. As such,
they can only directly represent systems in such a form. This difference between
Lagrange’s and Hamilton’s equations will imply, as we shall see in the next
section, a considerable simplification of the Inverse Problem in the transition
from configuration to phase space formulations.

Another considerable difference between the analytic representations in
configuration and phase space is constituted by their impact on the underlying
representation spaces. In the former case, the underlying space (at the level of
the equations of motion in their second-order form) is the configuration space
of the generalized coordinates g*. The existence of an analytic representation
of such equations of motion in terms of Lagrange’s equations does not affect
the nature of such a space. In the latter case, the original underlying space of
the equations of motion in their first-order form is the 2r-dimensional space
of the variables (a”) = (g*, y,), which is not necessarily a phase space. How-
ever, if an analytic representation of such equations exists, such a spacr is
a phase space with y, = p,. Therefore, the existence of an analytic represe .ca-
tion in the a-variables implies the presence of a canonical structure. This
occurrence has several geometrical implications. '

As a final remark, we would like to point out that the concept of analytic
representation according to Definition 3.11.1 indicates the existence of
generalized forms of the conventional Hamilton’s equations, i.e., the left-hand
sides of identifications (3.11.8). [This aspect is studied in Santilli (1979)].

3.12 The Fundamental Analytic Theorem for Phase Space
Formulations and a Method for the Independent Con-
struction of a Hamiltonian

We are now equipped to formulate and prove the following important
theorem '

Theorem 3.12.1 (Fundamental Analytic Theorem for Phase Space Formu-

lations).”® A necessary and sufficient condition for a local, holonomic,

generally nonconservative Newtonian system in the covariant normal form
Wy, & — B (t,a%) =0,

p=12 n (3.12.1)

8 Despite a rather laborious search, 1 have been unable to identify any reference to this
theorem in the mathematical or physical literature within the context of the variational approach
to self-adjointness.
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which is well defined and of (at least) class €' in a star-shaped region R*"+!
of the variables (t, a*), to admit an ordered direct analytic representation in
terms of the covariant Hamilton’s equations in R*"*1

JH

— LAY
da - Ow

W, a" @ — g, (3.12.2)

uv
is that the covariant normal form is self-adjoint in R*"¥1,

PrOOF. Conditions of seli-adjointness (2.7.20) are the integrability conditions of the
differential form that underlies identifications (3.12.2). . Q.ED.
Explicitly, identifications {3.12.2) hold if and only if
JH
oa"

This is an overdetermined system of first-order partial differential equations
in the unknown H. The underlying differential form is

BN = 5, da*. (3.12.4)

— Bt a%) =0. (3.12.3)

In view of the Converse of the Poincaré Lemma 1.2.2, the integrability
conditions for the existence of a primitive form are given by

=
viva © Y
Mz aavl

=1, B, e =1,2,..., 28, (3.12.5)

and they coincide with conditions of self-adjointness of form (3.12.1} ac-
cording to Theorem 2.7.3.

It is significant to compare the simplicity of the proof of Theorem 3.12.1
with the rather involved proof of Theorem 3.5.1. The problem of constructing
the Hamiltonian, once its existence is guaranteed by Theorem 3.12.1, is also
considerably simpler than the corresponding problem of the computation
ofaLagrangian. Indeed, a simple reformulation of the proof of Theorem 3.12.1,
as well as use of Equation (1.2.25), leads to the following theorem.

Theorem 3.12.2 (A Method for the Construction of a Hamiltonian). A
Hamiltonian for the ordered direct analytic representation of holonomic,
generally nonconservative Newtonian systems in the covariant normal form
(3.12.1), which is well defined, of (at least) class €*, and self-adjoint in a star-
shaped region R***1 of points (¢, a®), is a solution of the overdetermined
system of first-order partial differential equations (3.12.3) given by

1
H= aﬂfo dt B,(t, ta®). (3.12.6)

For illustrations of the above theorem, see the examples at the end of this
chapter [as well as those of Santilli (1979)].
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A few comments are in order, The first point which must be stressed is that
Theorems 3.12.1 and 3.12.2 establish a methodology for the existence of
analytic representations of Newtonian systems which, according to our
derivation, is independent of any prior knowledge of a Lagrangian. Basically,
according to the remarks at the end of Section 3.8, Theorem 3.6.1 is in line with
the approach of first identifving a Lagrangian and then computing a Hamil-
tonian through a direct Legendre transform. Theorem 3.12.2 is along the
lines of the opposite approach, namely, that of first identifying a Hamiltonian
and then computing a Lagrangian by means of an inverse Legendre transform.

A rather intriguing implication of the Inverse Problem is that the above
two methods do not necessarily lead to the same Lagrangians and Hamiltonians,
in the sense that, given a Newtonian system in the self-adjoint fundamental
and normal forms with corresponding Lagrangian L and Hamiltonian H,
the function H(L) is not necessarily the Legendre transform of L(H). This
property is due to the fact that prescriptions (3.11.2) for the construction of a
normal form do not necessarily coincide with canonical prescriptions (3.8.2)
related to a given L. As a result, the emerging Hamiltonian is not necessarily
the Legendre transform of L. For illustrations, sce the examples at the end of
this chapter.

This situation clearly offers a first hint of the significance of the Inverse
Problem for transformation theory, which is investigated in more detail in
Santilli (1979).

Given a system of Newton's equations of motion in their “natural” form,
i.e., the fundamental form (3.11.1), the computation of a Hamiltonian ac-
cording to the above independent method can be carried out according to the
following steps.

1. Construct a covariant normal form which incorporates arbitrary
funetions. This can be achieved by using prescriptions (3.11.2), where
the n? + 1 functions a; and B, are, at this stage, arbitrary. As a result,
the implicit functions of the system will depend on these functions, i.e.,

Eu = E,u(r" aas Oyis ﬁk)

2. Impose conditions of self-adjointness (3.12.5) to remove the functional
arbitrariness of step 1. This can be done by solving Equations (3.12.5) in
the unknown functions «,; and f, and, therefore, by reducing the &,
functions to a known functional dependence. Verify that the normal
form so obtained is well defined and of at least class %" in a star-shaped
region of the variable.

3. Compute the Hamiltonian by using integral (3.12.6). There is no need to
inspect the consistency of Equation (3.12.3) because the proof of
Theorem 3.12.2is centered precisely on the point that Equations (3.12.5)
are the integrability conditions of Equation (3.12.3).

The possible non-uniqueness of the Hamiltonian then emerges in a self-
evident way. Notice that a Hamiltonian does not necessarily exist within the
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context of the above method. The problem of whether the method can be
implemented to “always” yield a Hamiltonian is studied in Santilli (1979).

The remarks of Section 3.6 regarding the nature and use of a star-shaped
rather than an ordinary region extend trivially to Theorem 3.12.2. In this
respect, another method for the computation of H (when its existence is
ensured by the conditions of self-adjointness), which does not require the use
of a star-shaped region, is given by the Cauchy integral™

al
H(t,a") = f da" Bt a* = ap,...,a* P =ay d @, )
ao
(3.12.7)

Clearly, if covariant normal form (3.12.1) violates only one of conditions of
self-adjointness (3.12.5), then it is non-self-adjoint and a Hamiltonian for its
ordered direct representation (3.12.2} does not exist. Again, if the ordering
condition of Theorem 3.12.1 or 3.12.2 is removed, the condition of self-
adjointness is only sufficient for the existence of a Hamiltonian.

The extension of the theorems of this section to contravariant normal forms
is left as an exercise for the interested reader.

The crucial role of the (w,,) matrix for the construction of the covariant
normal form should be emphasized here. Indeed, if one uses, say, the tensor
8, as the lowering tensor of the a* variables, then the emerging normal form
takes the structure '

8t® — Z,(t, 0% =0 (3.12.8)

and, as such, it cannot be directly represented with Hamilton’s equations.
This indicates the need for using a symplectic structure in the space of the a*
variables which, in turn, is deeply linked to the seif-adjointness of Hamilton’s
equations and their canonical structure (Chart 3.18). In the final analysis,

Theorem 3.12.1 provides necessary and sufficient conditions in local coordinates
for a vector field to be globally Hamiltonian, in the sense of Chart 2.3.

% By comparing the use of the Poincaré approach for the computation of a Hamiltonian,
Equation (3.12.6), and the use of the Cauchy approach, Equation (3.12.7), one might have the
impression that the freedom in the presence of the initial point ag exists only for the latter approach,
This is not the case, because Equation (3.12.6) can be modified nto the form

1
H = (e~ )| de 2,05 + (1 = D)
o

1 would like to express may appreciation to E. Engels for bringing this point to my attention. A
corresponding method for the construction of a Lagrangian with the use of the Cauchy approach
(and, thus, without the use of a star-shaped region) is given in Chart 3.11, In conclusion, the
computation of a Lagrangian or a Hamiltonian with the use of the Cauchy approach constitutes
a valuable alternative to that offered by the Converse of the Poincaré Lemma, particularly when
the system considered is self-adjoint but violates the condition of being well behaved in a star-
shaped region.
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The extension of the ahalysis to the case of locally Hamiltonian vector fields
is done in Santilli (1979) via the use of Birkhoff s equations.

The analysis of Section 3.7 can also be easily extended to the framework of
this section with the equivalent result that the conventional Hamiltons
equations can represent Newton’s equations of motion with arbitrary N ewtonian
forces, i.e., couplings of types I, IT, and 111. The insensitivity of the conditions
of self-adjointness to the nature of the acting forces is, within this context,
even more evident owing to the considerable “degrees of freedom” that often
oceur in prescriptions (3.11.2). In this respect, it should be noted that, unlike
thie case of Equation (3.7.1), conditions of self-adjointness (3.12.5) cannot be
interpreted as integrability conditions for the existence of a potential function,
ie., for the acting forces to be conservative. Indeed, such conditions are
explicitly given by the 2n x 2n expressions

@ G\ (@)
dq’ ap; oq' oq’
E PIA o VA (3.129)
08 4n aEHn) 65; an+n
aqj op; op; op;

The statement then becomes self-evident, for instance, when prescriptions
(3.11.2) reduce to the simple identities §, = y;, by indicating in this way a
possible explicit dependence of the E, functions on the velocities. Obviously,
conservative forces also occur as a subcase of conditions (3.12.9), e.g., when
the off-diagonal elements are all identically null.

The analysis of the structure of the Hamiltonian capable of representing
nonconservative systems can be conducted along lines parallel to those of
Section 3.7 and leads to equivalent results. This analysis can also be carried
out by studying the Legendre transform of the generalized structures of the
Lagrangian introduced in Section 3.7. Consider, for instance, the case of a

“system of free particles subject to holononiic constraints and represented by
the kinetic energy (3.7.25). Let T(;, g, p) bé the “image” of T(t, 4, §) under a
Legendre transform. If all acting forces are derivable from an additive inter-
action term to the kinetic energy according to structure (3.7.26), the Hamil-
tonian will have the conventional structure

H,=T+70T. (3.12.10)

However, if some of the acting forces are not derivable from a potential, then
the phase-space image of structure (3.7.27a) can be written

HEr = RT + 8. (3.12.11)

The nonconservative nature of the system is thus again reflected by the
presence of terms which multiply the Hamiltonian for the free motion.

For a schematic view of the content of this section, see Figure 3.4. For a
schematic view of the Inverse Problem, see Figure 3.5.



Newton’s Second Law

Normal form of the equations
of motion (Section 2.5)

Self-adjointness of the normal
form (Section 2.7)

;:’;:ﬁizra Self-adjointness of Hamilton’s sSt); ﬁlgfz]c
(Section 2.9) equations {Section 3.10) (Chart 2.5)

Fundamental Analytic Theorem
for Phase Space Formulations
(Section 3.12)

Figure 3.4 A schematic view of the Fundamental Analytic Theorem for Phase Space
Formulations treated independently from the corresponding theorem in configuration
space. The equations of motion in their (first-order) normal form are constructed from
Newton’s second law through a set of prescriptions for the characterization of new
variables. Whenever, for a suitable selection of such-prescriptions, they satisfy each of the
conditions of self-adjointness, they are self-adjoint. Hamilton’s equations with class 4
Hamiltonians, on the contrary, are always seif-adjoint, Similar to the corresponding
situation in configuration space (Figure 3.1), the conditions of self-adjointness for first-
order forms emerge again as the central mathematical tool for the independent treatment
of the Inverse Problem in phase space. However, the underlying conditions are different
from the corresponding ones in configuration space. Furthermore, such conditions now
acquire a direct algebraic and geometric meaning because, from an algebraic viewpoint,
they guarantee that the analytic brackets of the theory satisfy the Lie algebra axioms and,
from a geometric viewpoint, they guarantee the presence of a symplectic structure in the
space of the (g, p) variables. The emerging methodological context is, therefore, centered
on a synthesis of primitive concepts of three interrelated disciplines, i.e., analyticmechan-
ics, abstract algebras, and differential geometry (Chart 3.18), with implications par-
ticulaily for transformation theory, symmetries, and conserved quantities of systems with
arbitrary couplings [as can be seen in Santilli (1979)].
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Conditions of self-adjointness Conditions of self-adjointness
for second-order differential s for first-order differential
equations equations
Fundamental Analytic theorem Fundamental Analytic Theorem
for configuration space | for phase space formulations
formulations B
+ Explicit construction of a ) Explicit construction of a
Lagrangian Hamiltonian

Figure 3.5 A schematic view of the Inverse Problem in Newlonian Mechanics. The
problem consists of the independent methods for the construction of a Lagrangian or
Hamiltonian from given equations of motion. The methods are centered on the con-
cept of variational self-adjointness which establishes the corresponding Fundamental
Analytic Theorems (Figures 3.1 and 3.4) and then allows the construction of the desired
functions. The net result is a considerable broadening of the representational capabilities
of the analytic equations, or of Hamilton’s principle, which now emerge as being able to
represent all Newtonian systems admitting a self-adjoint form of the equations of
motion (Chart 3.2). The independent treatment of the problem in configuration and
phase space reveals deep conceptual and technical differences, despite the ultimate
equivalence of the two approaches [which is investigated in more detail in Santilli
(1979)]. In particular, the independent computation of a Lagrangian and a Hamiltonian
for the same system produces functions that turn out to be not necessarily related by a
Legendretransform, Thisisanindication that theintegrability conditions for theexistence
of a Lagrangian or Hamiltonian have a direct impact for transformation theory resulting
in degrees of freedom of these functions which are not expected to be of conventional
type. Despite their structural differences, Lagrange’s and Hamilton’s equations can be
written in a formally unified way (Chart 3.7). This implies a formal unification of the two
aspects of the Inverse Problem. Variational principles can then be generalized not only
1o induce the conventional analytic equations, but also the necessary and sufficient
conditions for their existence (Charts 3.3 through 3.7).

Chart 3.1 The Controversy on the Representation of Nonconservative
Newtonian Systems with the Conventional Hamilton’s
Principle

Nanconsetvative Mewtonian systems are known to be representable by
the following modified form of Hamilton's principle with external terms

2
S| di(r+wW) =0, W=, rk, sw=gF, ok (1)
tq
[see, for instance, Goldstein (1950, pp. 38-40)].
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A problem which has been controversial for over a century in the
physical literature is whether nonconservative Newtonian systems can be
represented by the conventiona/ Hamilton's principle without external
terms (1.3.23), i.e.,

t2

o | dtl(t g.4) = 0. (2)
T

To the best of my knowledge, this controversy, somewhat inherited from

contrasting statements dating back to the nineteenth century, reached a

climactic stage in the early 1930s as a result of the following corollary of a

theorem by Bauer (1931):

The equations of motion of a dissipative finear dynamical system with
constant coefficients are not given by a variational principle.

The above corollary prompted the publication of Bateman's disproof of
1931 according to a prolongation method we shall outline later in Chart
3.13. {(Bauer's paper was submitted as a Harvard note in March.21, 1931
and Bateman's rebuff was submitted as a Caitec note in June 17 of the
same year.) ,

Despite the contribution by Bateman (which he properly published in
The Physical Review), the controversy did not end, but was taken up again
by J. L. Synge (1932) and other authors, and subsequently resulted n
negative positions in more recent textbooks on the subject.

Forinstance, C. Lanczos, in his textbook on variational principles (1944),
states on page xxi: ‘

Forces of a frictional nature, which have no work function, are outside the
realm of variational principles.

Similatly, on p. 19-7 of Vol. Il of the Feynman Lectures [Feynman et ai,,
(1966)], we read

The principle of least action only works for conservative systems—where
all forces can be gotten from a potential function.

It was unfortunate that the Inverse Problem of the calculus of variations,
which was already well established in mathematical circles in the late
1920s, as indicated in the Introduction, had not propagated into the
physical literature.

As we shall see in this book and in Santilli {1979), the Inverse Problem
allows the resolution of this controversy. In particular, the arena of repre-
sentational capabilities of the conventional Hamilton's principle without
external terms for nonconservative Newtonian systems will emerge as heing
of considerable magnitude.

Chart 3.2 The Arena of Applicability of Hamilton’s Principle

Consider a class %2, regular, unconstrained Newtonian system of N
particles in the Euclidean space of its experimental detection with Cartesian

coordinates rk2, k= 1,2,... , N, a=x, vy, z:
Al v 0+ B (8, £) =0,
Ao B e €2(R), |A|(R) # 0, k=1,2,...,na=xy z (1)
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The assumed continuity and regularity conditions ensure the existence and
unigueness of the implicit functions (Chart 1.1)

fka = fke(t' T, r), fke = _Akaijjb c %Z(R)’ (Akajb) = (Akajb)w‘l_
(2)

We can say that a nonconservative Newtonian system [Equation (1}]
admits a representation within the considered variables {t, r} in terms of

Hamilton's principle

s(CdeLier, ¢ (L 0L - O Ve < g @
L) = | dtf—— - =

j, (er.f) L (dt o7 orka) ! )

1 4

when the totality of solutions of Lagrange’s equations

Lo =22 2 ., )
dt drke  orka .
and of equations of motion (1) coincide.

From the uniqueness of the implicit functions and the existence theory of
Section 1.1, we can equivalently say that equations of motion (1) admit
a representation within the considered variables {t, r} in terms of principle
(3) when the system of implicit functions of Lagrange’s equations (4)
coincides with that of the equations of motion.

By using our concept of analytic representation, Definition 3.4.1, we can
equivalently say that equations of motion {1) admit a representation within
the considered variables {t, r} in terms of principle (3) when there exists
a class €2 regular matrix of elements A2 (¢, r, ¥) such that the following
ordered identifications hold

L) =hE(A

jbicffc+3jb), k=1,2,...,n a=x1y 2 (b)
The Fundamental Analytic Theorem for configuration space representa-
tions, Theorem 3.5.1, implies that, whenever a class %2 and regular matrix
(h) exists such that the right-hand side of Equations (5) is well behaved
and self-adjoint in a star-shaped region of the variables, a representation
of system (1) in terms of principle (3) holds. The Fundamental Analytic
Theorem for phase space formulations, Theorem 3.12.1, yields the same
result (via the use of the inverse Legendre transform} with the additional
possibility of reducing the minimal continuity condition to that of class
%1 only.
The above remarks are already sufficient to indicate that the arena of
_representational capabilities of Hamilton's principle in Newtonian mech-
anics is rather broad indeed. When the matrix (/) of representation (5} is
the unit matrix and the Lagrangian has the conventional structure L =
T(¥) — U(t, r. ), one recovers the representation in terms of Hamilton’s
principle of the Newtonian systems with (local) forces derivable from a
potential including, of course; the case of the Lorentz force. However,
when the matrix (/) of representation (5) is not the unit mattix, the repre-
sentation in terms of Hamilton's principle of a considerably broad class of
nonconservative systems is allowed. This is essentially due to the fact that
Hamilton's principle, as a mathematical algorithm, holds for Lagrangians of
arbitrary functional dependence in their variables [a2 property which is
crucial for the consistency of the calculus of variations {Section 1.3}],
while the integrability conditions for the existence of a Lagrangian, the
conditions of variational self-adjoininess, are insensitive as far the physical
nature of the acting forces is concerned (Section 3.7).
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Representations (B) with nontrivial factor matrices (4#) are indirect
according to our terminclogy (Section 3.4). As such, they are studied in
Santilli (19789). Itis significant here to indicate that, as formulated within a
fixed system of the variables {t, r}, they are not “universal™, namely, a
factor matrix {#) allowing representation (5) does not necessarily exist
for an arbitrarily given system (1). As seen in Santilli (1979), the conditions
of variational self-adjointness essentially characterize a class of non-
conservative Newtonian systems (1} which admit representation (5).

When analytic representation (5) does not exist within the fixed system
of variables {t, r}, this does not mean that Hamilton's principle is neces-
sarily unable to represent the system at hand. The reason is that one can
still seek a representation of an equivalent system in a new set of variables
{¥, r'} induced by the class ¥ and invertible transformations

r$ > r'* =r%( r,r), t—=>t=2t(r, r), (6)

with underlying indirect analytic representations
L v}y = fge(e, v, &) [AS, (L, v, e + 8 (v, i)]. (7
In this case, by construction, the totality of solutions of Lagrange's

equations in the new variables is equivalent to (rather than coincidental
with) the totality of solutions of system {1).

In conclusion, the analysis of this first volume allows the formulation and
proof of the following lemma

Lemma. Hamilton's principle is capable of representing all class 72,
regular, unconstrained Newtonian systems, admitting an equivalent
form which is well behaved and self-adfoint in a star-shaped region of the
local variables.

A primary objective of Santilli {1979) is the study of this lemma within
the context of the equivalence transformations induced by factor matrices
and transformations of the local variables.

Chart 3.3 Generalization of Hamilton’s Principle to Include the
Integrability Conditions for the Existence of a Lagrangian

Let £, be an admissible possible path of the action functional A(£) =
J’f12 dt L(t, E, £'},i.e., an element of the oo 27 family of solutions ¢* (¢; v, v) of
Lagrange’s equations in L(¢, g. g) which is of at least class €2 (Section 1.3)
(we here tacitly implement our continuity and regularity restrictions on the
Lagrangian). Let £/ = £, + 8'E, be an admissible varied path with fixed
end points, i.e., a varied path which is also of class ¥2 and which satisfies
end-point conditions (1.3.15). By integrating by parts and using these
conditions, the contemporanecus second-order variation of the action,
Equation {1.3.30), can be written

12 t2
824, = 208" A} gy = —j dt L (Eg)d2%g% — ot J (8E)81g. (1)
t1 1
L, (E,) =0 stands for Lagrange’s equations (1.3.21) and J, {§'£;) =
0 represents the associated Jacobi's equations (1.3.2B). Since £, is a
possible path, Lagrange’s equations are verified and the first term of
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Equation (1) is identically null. However, since the varied path £ is not
necessarily a possible path in the sense of Equations (1.3.26), the varia-
tions §1E,, are not necessarily a solution of Jacobi's equations and variation
(M is not necessarily null,

Let £ = E, + 5’E be another admissible varied path with fixed end
points dlfferent from E’ The two first-order variations of Equation (1) can
be differentiated between themselves, and we can write

- 2 .
15151 4) |, —j dt J (51E )81,
[&]

(2)

Il

~ t2 -~
161(514) Ig, ﬁJ' dt J,(81E,)8¢5.
£1

But the variations 67 and &1 are trivially commutative. By interpreting the
system J (51E ) as the adjoint system of Jacobi's system J_(8'F;)
(Section 3 3) and by recalling the fundamental condition of self-
adjointness, Equation (2.1.15), we obtain th following generalization of
Hamifion’s principle to include the conditions of variational self-adjoint-
ness.

2z
S1A(E) |y, = —J dt L (E)8'qk =0, (3a)
t

lim 4f67(5'4) — &1 (0'A) I,

i1=s

= lim dt[é‘q“J (6VE,) — 51q"J (51E0)]E =0, (3b)

61 =81 t

which is equivalent to the following Iemma.

Lemma. MNewtonian systems representable by the action functional A(E)
evolve according to a possible path E, along which the first-order
variation with fixed end points of the action is null and self-adjoint.

This generalization of Hamilton’s principle clearly incorporates in the
variational algorithm not anly Lagrange’s equations, but also the necessary
and sufficient conditions for their existence. In turn, this indicates the need
of the inclusion in the variational principles of the second-crder variation
of the action.

In view of the generalizations of Hamilton's principle of the subsequent
charts, it should be stressed that for principle (3) the variations 8'£, and
&£, need not necessarily be the solutions of Jacobi's equations.

Nota Bene. The fact that the limit §1 = §1 of the left-hand side of Equation {3b) is
null, is trivial. This is not the case for the right-hand side of the same expression.
indeed, by using Equation {2.1.8}, this limit implies that

) - d
WM — M (n) = % Qln, ) =0, (4)

which is not the case for an arbitrary system. However, property (4) holds if and only
if the system is self-adjoint, i.e., when all conditions of self-adjointness are varified
(Problem 3.5). It is in this sense that the generalization of Hamilton’s principle
presented in this chart contains all the integrability conditions for the existence of a
Lagrangian or, equivalently, of an action functional.
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Chart 3.4 Generalization of Hamilton's Principle to Include Lagrange’s
Equations and Their Equations of Variation

Let £, be an admissible possible pathand £ = £, + J£; be an admissible
varied path in the senserecalled in Chart 3.3. The computation of Lagrange’s
equations along £ and the use of the Taylor expansion leads to the im-
portant formula

L(EY =L (E,) + Y JSSE) + 0p+1, S(SE) = %61(J§c—1(és—15)) 4]
&=1
This is a generalization to an arbitrary order s = 1, 2, 3, . . . of the property
of Section 3.3 according to which Jacobi’s forms are the variationail forms
of Lagrange’s equations, i.e., J} (8'E) = &L, (£). The equations J (§°E) =
0 will be called the equations of variation of order s of Lagrange's
equations.

Suppose that the varied path £ satigfies fixed end-point condition
(1.3.15) to all orders in the variations. Then, by using these conditions and
by extending the integration by parts of Equation (1) of Chart 3.3 to
higher order, we can write

t2
51 A =~ f dt L (E)87g% =0,
£
tz £y
32A |y = — J; dt L (E )d2g% — L dt J)(B1E,)81g5 # 0, 2)
1 1
2 S 2 . . .
Al = = [ L (E)Feh - 3 [ s@Eys gy # o
1 1

Suppose, finally, that £ is also a possible path (#FE£,.), i.e, £ =£, is
another element of the co?~ family of solutions of Lagrange’s equations.
We then reach the following generalization of Hamilton's principle to a
variation of the action of arbitrary orders =1, 2,3, .. ..

£ t2 . . n
5l = - Y f dt JSENS gk =0,  JO=1L,, 8%, =E,
1 T

(3)

which is equivalent 1o the following lemma.

Lemma. AMNewtonian systems representable by the action functional
A(E) evolve according to a possible path E, and & possible varied path
£, along which the contemporaneous variation of order s = 1,2,3,...0f
A(E)Y is null.

The case s = 1 trivially recovers the conventional Hamilton's principle
with underlying Lagrange's equations. The cases § > 1 represéent gener-
alizations, where the underlying equations are the equations of variation of
order s of Lagrange’s equations. Thus, our generalizations, to be applicable,
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demand the validity of Lagrange’s equations as well as their equations of
variation of arbitrary order. Besides being regular, the Lagrangian L is here
tacitly assumed to be of class ¥~.

Chart 3.5 Generalization of Hamilton’s Principle to Include Lagrange’s
Equations, Their Equations of Variation, and the End-
Point Contributions

The generalizations of Hamilton’s principle of Charts 3.3 and 3.4 are
restrictive because they deal with contemporaneous variations, i.e., those
occurring at a fixed value of time {Section 1.3). In this chart, we introduce
an extension of the generalization of Chart 3.4 to noncontemporaneous
variations, i.e., those which also imply a variation of time (Section 1.3). The
corresponding extension of the generalization of Chart 3.3 is left as an
exercise for the interested reader. Other types of generalizations of
Hamilton's principle suggested by the methodology of the Inverse Problem
will be introduced in subsequent charts, as weil as in the charts of Santilli
(1979), depending on the aspect considered.

By using an iterative procedure, the noncontemporangous variations of
the action functional can be written (Section 1.3}

. t2

$1Al, = - j dt L (E)51g* + (EPC)",
L]

R t2 t2

324, = - j ot L (E)o2g* — J dtJIF E)Srgk + (EPC)2, (1)
1 1

. t2 s a2 o ]

SA|, = - j dtL (E)osqk - 3. J dt Ji (§1E)0+-igk + (EPC)s,
71 =1 it

where {EPC)# is the end-point contribution of order s which is given, for the
cases s = 1 and 5 = 2, by Equations (1.3.40) and (1.3.43), respectively.

By using the lemma of Chart 3.4, we then reach the generalization of
Harmifton's principle to include Lagrange’s equations, their equations of
variation, and the end-point contributions

5A|g £ = (EPC)S, s=1,2,..., (2)

which is equivalent to the following lemma.

Lemma. Newtonian systems representable by the action functional A(E)
evolve according to a path E, along which the noncontemporaneous
variations of order s = 1, 2, 3, .. . with variable end points of the action,
when computed along a possible varied path, are equal to the end-point
contributions of the same order.

The case s = 1 recovers the known Weiss' {Holder's) principle, as recalled
in Section 1.3. The cases s > 1 constitute generalizations to higher orders.
Their significance is indicated in Santilli (1979) in relation to the problem of
symmetries and conserved quantities of Newtonian systems with arbitrary
couplings.
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Chart 3.6 Generalization of Hamilton’s Principle to Include a
Symplectic Structure

By performing a direct Legendre transformation of the Lagrangian
(Section 3.8), the action functional in phase space can be written from
Equation (2) of Chart 3.1:

A(E) = f “dtlato, - Ht 0, p))e  E={a.ph (1)

It constitutes the basic functional of the canonical formulation of the
calculus of variations {see, for instance, Bliss (1846, Chap. Ill}]. Since
the generalized momenta p, are independent of the coordinates g*, they
must be independently varied. This implies the doubling of the number of
variations of configuration space formulations. Elementary calculations
then yield Hamilton's principle for phase space formulations

= 2 aH . oH
ot (o= om0
t Tk ; Eo

1 .
which now leads to Hamilton's, rather than to Lagrange’s equations.

Principle {2) has been subjected to a number of critical examinations.
As we see in Santilli (1979), a first problematic aspect is due to the inability
of principle (2) of being form-invariant under phase space transformations
more general than the canonical transformations. A second problematic
aspect is the lack of “symmetry” of action (1} in the derivatives. This
implies the rather peculiar situation wherehy the action cannot be written
in terms of the (covariant or contravariant) tensor notation a = (g, f)
while the end result of the principle, Hamilton's equations, can. A third
problematic aspect is the inability of introducing a symplectic structure
directly in the integrand of action (1), contrary to the established fact that
the geometry that underlies canonical formulations is the symplectic
geometry. In turn, this has led to the general lack of use of variational
principles in the study of Newtonian systems from a geometrical profile
fas Abraham and Marsden (1967) put it, variational principles, sfter their
function of inducing the canonical equations, " do not have a cruciai role
in the theory” (p. 129), contrary to their role for other aspects (e.g.,
derivation of the Hamilton-Jacobi equations and quantizatign].

This situation demands the study of whether the conventional Hamilton’s
principle in phase space can be implemented into a form allowing a
ditect geometrical treatment. This objective can be achieved by introducing
the extended action functionalin phase space

-~ tz2 -
Ae® = [ atld'p, — Hle  $1apds3
1
iz A A
- [ atiate, - o)~ M
t1
2 ‘ (3)
= J dt[3é"w,, 8" — H(t a)lz.
t
a“ = {g% p.}. @w,a = 3,0,



190 The Fundamental Analytic Theorems of the Inverse Problem

which now directly exhibits the presence of the fundamental symplectic
form w. The variations of the g* and p, variables can now be unified into the
vatiations of the a* variables. We reach, in this way, the following gen-
eralization of Hamilfton's principle to include a symplectic structure

2
a1Ae [EO = §1 dt[%é“wma" _-H]EO
[

2 oH
—j dt[wmé"——“] Sa (4)
\ oa £o

1

=0,

which now leads directly to Hamilton's equations in their (covariant or
contravariant) normal form (Section 3.9). Since these equations, when
explicitly written, coincide with the conventional nontensorial form of
Hamilton’s equations, principles (2) and (4) characterize the same New-
tonian system and, thus, the same path, In this sense, they are equivalent.
However, our generalization (4) is clearly preferable over the conventional
form (2) from the viewpoint of the transformation theory, the differential
geometry and, inevitably, the Lie algebra structure [which is elaborated
upon in Santilli (1979)].

The configuration space image of principle (4) yields equivalent results.
By using an inverse Legendre transform (Section 3.8), we reach the
extended action in configuration space

t2 1] 0L t2
As(E)y = | dti(t q g}, 3 ‘ d_‘qu (F)
. v n (5)
= A(£) + g(£)
with corresponding generalized principle
t2 N
3148z = - j dt L (E)0gx =0, g =0. (6)

[

The underlyihg equations are, therefore, the conventional Lagrange's
equations, as expected. Thus, principle (8) is equivalent to Hamilton's
principle in configuration space. Notice that in principle (8) the additive
term produces no contribution under contemporaneous variations with
fixed end points because, trivially, it is (constant and) computed at end
points.

In conclusion the variational principles with fixed end points of the
extended action in configuration and phase space are equivalent to the
conventional corresponding forms of Hamilton’s principle.

To avoid possible misrepresentations, it should be noted that the above
equivalence of the actions A(£) and A¢(£) holds only at the level of
variational principles, but not at the level of variational problems (Section
1.3). Indeed, the transition from A{£) to A2(F) characterizes the transition
from ain ¢.afnary extremal problem of single integral path functionals to a
subcase of the extension known as the Probfem of Bolza [ses, for instance,
Bliss (1946, part {1}].

it should also be indicated that the above equivalence of the variational
principles for A(£) and A¢(£), strictly speaking, holds only at the level of
contemporaneous variations with fixed end points. The corresponding
principles for the case of noncontemporanecus variations with variable end
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points are still equivalent in the sense that they still characterize the same
system, but the additive term of our extended action in configuration space
now implies a modification to the end-point contribution. This is left to the
interested reader. Notice that the generalizations of Hamilton's principles
introduced in Charts 3.3, 3.4 and 3.5 can be reformulated in terms of our
extended action. These further generalization appear to be significant for
the study of the transformation theory of Newtonian systems with arbitrary
(local) forces, as can be seen in Santilli (1979).

Chart 3.7 Generalization of Hamiiton’s Principle for the Unified
Treatment of the Inverse Problem in Configuration and
Phase Space

As is familiar by now, the independent formulations of the Inverse
Problem in configuration and phase space exhibit rather significant
differences due to the differences in the underlying analytic equations
(Lagrange’'s and Hamilton's equations) and their integrability conditions
(i.e., the conditions of self-adjointness for systems of second-order and
first-order equations).

Nevertheless, the analytic formulations in configuration and phase space
are known to be equivalent. The corresponding Inverse Problems are,
therefore, expected to be equivalent, too. This situation creates the problem
whether there exists a variational algorithm which exhibits such equivalence.
A formal answer to this problem is given by the following lemma.

Lemma. [Let R?»+' be a (2m + 1} space spanned by time t and m
independent variables y*, and fet

A(E) = j'zdt Fit, v, 1), (1)

4]
be the action along E = {y*}. Then the self-adjoint variational principle
with fixed end points (Chart 3.3)

ta
SAl, = - J dt £, (E,)0y% = O, (2a)
[

lim 4[81(574) - 81(514)1,,

31 =41
2, ~
= im A3 S (B1E) — 'y T (3TE)],, = O (20)
81281 Jig

can characterize the Inverse Problem in either configuration or phase space,
depending on the assumed realization of the y* and F functions.
Assume m = n, y* = g%, and F = L(¢, g, ¢). Then Equation (2a) yields
Lagrange's equations
d OF OF d oL oL
Fk(EO)z(__'k__k 785 ook =0 (3)
droyk  Oykj., \dtogt ogf/.,

while Equation (2b) characterizes their integrability conditions.
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Assume now m = 2n, {y*} = {a"}, and F = 1&*w,@" — H(t, a). Then
Equation (2a) now yields Hamilton's equations

~ d OF oF oH
= - — - — . = Y - = 0' 4
F‘f(EO) (df oy* GV“)EO (wu,a ‘33")50 “

while Equation (2b) characterizes their integrability conditions.

Notice that, while for realization (3) the function F is {generaily} regular, -
for realization (4) the function F is totally degenerate because it is linear in
the first-order derivatives.

A central difference between realizations (3) and (4) is that, while for the
former case the action is the conventional form, for the latter case the action
is the extended form introduced in Chart 3.6.

We are now in a position to better elaborate the insufficiency of the
conventional Hamilton's principle within the context of the Inverse
Problem. Let us recall that the identification of the self-adjointness of
Hamilton's equations demands, for its proper treatment, the use of
tensor formulations. To state it explicitly, when Hamilton’s equations are
written in the tensor form of Equation {4}, their self-adjointness can be
established easily (Section 3.10), though this is not the case when the
same equations are written in the conventional notation, i.e., Equations
(3.9.1). At the level of variational principles, this situation implies the
inability to reach a second-order generalization inclusive of the integrability
conditions for the existence of a Hamiltonian, i.e., the canonical formula-
tion of our generalization of Hamilton's principle of Chart 3.3 cannot be
formulated directly. In turn, this situation can be reduced to the insufficiency
of the conventional action in phase space, Equation (1) of Chart 3.6. On the

. contrary, if the extended action in phase space, Equation (3) of Chart 3.6, is
assumed, then the implementation of the first-order principle with a second-
order algorithm directly expressing the integrability conditions for the
existence of a Hamiltonian is possible, as indicated by the lemma of this
chart.

In conclusion, the methodology of the Inverse Problem provides
additional indications of insufficiency of the conventional action in phase
space, besides those of algebraic and geometrical nature recalled in
Chart 3.8. In turn, this provides additional confirmation of the known deep
relationship between the analytic, algebraic, and geometric profiles in the
sense that the insufficiency of the conventional Hamilton's principle in
phase space from, say, a geomaetric profile (lack of a symplectic structure)
has a precise image within an analytic setting (lack of a variational algo-
rithm expressing the integrability conditions for the existence of a Hamil-
tonian). ]

The interrelations of the analytic, algebraic, and geometric approaches to
Newtonian Mechanics are studied in more detail in Santilli (1979). For a
preview, see Chart 3.18.

Chart 3.8 Seif-Adjointness of First-Order Lagrange's Equations

Theorem. Under the assumptions that the Lagrangian L(l. g, q) is of
{at least) class €3 and is totally degenerate, i.e., 02L/dg' 0g/ = 0,4, j =1,
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2,...,n,inaregion R2n+1 of points (¢, q, ), the first-order Lagrange’s is
equations
d ol oL oL 02L oL
e — = - =0, (N
dt ogk  Ogk  dgk o oGt ot dg*t
k=1,2....n

are always self-adjoint in R2n+1,

PROOF From Equations {3.3.8) and (3.3.9), the equation of variations
of Equation (1) is

d 02L 02L o2 02f
J = [ — - i+ - =0 2

and, under the assumed continuity conditions, always coincides with the
adjoint system

j()=,-[ﬁ(. 621.)" 0i ] d ,-( orL o V| _ o
T \og 065/ oq' 0g%| dr | \0g ogF  og ogF

3)

everywhere in R27+1. Q.ED.

The above theorem can also be proved by showing that Equations (1)
satisfy a// conditions of self-adjointness (2.2.32) for first-order systems.
This analysis is simplified if one notes that, from the condition of total
degeneracy, the Lagrangian must be /inear in the velocities, i.e., of the type

L=y, q)g* +4(t q). (4)
Equations (1) then become

L dL _ fay, oy, dy, 09
got oL _ (8, 0. (%% _ %) _, 5)
ot 0g*  dg* o’ Og* ot  agt

and Equations (2.2.32) are readily verified under the identifications

_ %y oy
X~ 591 ag" (6a)
oy, 08
y. = 2 - —. 6b
oAt o (6b)

Nota Bene: The above theorem indicates that the variational approach to the
self-adjointness of the regu/far Lagrange equations as given in Thecrem 3.3.1 extends
to the case of totally degenerate Lagrange equations without any additional technical
difficulty. The reader should again be warned that this is not the case for the transition
to “bona fide' degenerate Lagrangians (see footnote 36 of page 138 for more
details).

193
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Chart 3.9 The Fundamental Analytic Thecrem for First-Order Equa-
tions of Motion in Configuration Space

Theorem. A necessary and sufficient condition for a system of first-
arder equations of motion in configuration space

Fitg.d) =0  k=12....n (1)

which is well defined and of (at least) class €2 in a star-shaped region
R*2041 of the variables (t, q. §) to admit an ordered direct analytic
representation in terms of the conventional Lagrange’s equations in a
first-order Lagrangian L(t, q. q) in R*2r+}
d oL oL

= Fk(tr q. q)l (2)

Lig) = G oF  dgk

is that the system is everywhere self-adjoint in R*27+1, j.e., that each and
all the conditions

OF, . _ o,
og' oGk’
OF, _OF _ d0oF,, 3)
ot og dt ag’
Lk=1,2....n

is everywhere satisfied in R™2n+1,

PROOF80 The necessity of the condition of self-adjointness follows
from the theorem of Chart 3.8. For the sufficiency of this condition,
assume

L(z) = ~¢'F (¢ q. 19). (4)
Then, by using conditions (3) and after some simple algebra, we can write
oF, d OF,
L =F +qgL~—— ¢ —
LGy =F, +q agc  dt q Y
= Fk + -yr’ % + —Pr’ ﬂ
oy oy’
(5)
. d 3 .
- '&; [TFk(t, 4. ‘Eq)],
-},i = ‘tqi
By integrating Equation (4) with respect to te (0, 1), ie.
1
Lt g.9) = ~* [ o Flt za.79), (6)
[¢]

identifications (2) then follow and, under conditions (3), & Lagrangian
always exists. Q.E.D.

80 The above given proof had been formulated following a private communication
by Lovelock and Anderson (1976) concerning the studies by these authors within the .
context of the cohomologica! approach by Horndeski (1974).
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Notice that Equation (6} provides a method for the computation of a
Lagrangian (once its existence is assured by the verification of the con-
dition of the theorem). In line with the remarks following Theorem 3.6.1,
if the integral of Equation (6) is not well defined, then the above method
for the proof of the theorem does not hold.

Conditions (3) directly follow from conditions (2.1.18) under the
absence of dependence on the accelerations. Notice that this “direct
form™ of the conditions of self-adjointness, rather than the ' reduced form ™.
(2.2.32), enters into the proof of the theorem. The proof under these latter
conditions is left to the interested reader.

The Lagrangian L{t, g, g} is called first order in the theorem to indicate
the order of the maximal derivative of its functional dependence. Therefore,
the extension of the thearem of this chart to second-order equations of
motion /s not eguivalent to the Fundamental Analytic Theorem 3.5.1,
because it deals with analytic representations of such systems with secend-
order Lagrangians, ie., L = L{t, g, ¢. §). which are now, again, totally
degenerate (i.e., linear, in this case, in the accelerations). Within such a
context, the extension does indeed hold (see Problem 3.6). As a matter of
fact, the reader can verify that the extension of the theorem of this chart
holds for a totally degenerate Lagrangian of arbitrary order.

It is of some relevance to indicate that the transition from the above
Newtonian framework to that of relativistic field theories leads to the
corresponding theorem for the analytic representation of spinarial field
equations.®!

Chart 3.10 A Unified Treatment of the Conditions of Self-Adjointness
for First-, Second-, and Higher- Order Ordinary Differential
- Equations

Theorem 1. A necessary and sufficient condition for a system of n
ordinary differential equations of order m,

Fk(tr q(o)' q('l)'_._lq(m)) =0’
k=1,2....n
d2
<“>=d;f,m=1,2,3,..., (1)
=012 ...m

which is of class €2™ in a region R of the variables (¢, g1, gin), ., ., g'm)
to be self-adjoint in R is that all the conditions

2m _qyef @ d* OF, \  OF, -0 f=012 ..., 2m, 2)
E,,( ) o \ogem) “agm = Vij=1,2.....n
are everywhere satisfied in R.

The proof of the theorem®2 can be conducted by using a generalization of
the methods of Section 2.1, and is left to the interested reader.

81 For the (spinorial} field theoretical case, see Santilli (1978, Vol. ).
82 Lovelock and Anderson (1976) and Horndeski (1974).
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Theorem 2. {/nder the assum,etron that the m-order Lagrangian

L(E qiO, g, ..., qi™) is of at least class €2+ 2 and regular in a region of
its variables, the m-order Lagrange's equations along class %2m+3 paths
J* oL k=1,2...,n
m) & _
e = Z( R {m =1,23 ... 3

are always self-adjoint in R.

This second theorem can be proved by showing that Equations (3).
under the assumed condltlons, satisfy each of the conditions of self-
adjointness (2}, and it also is left to the interested reader.

For m = 1, Equations (2) reproduce conditions of self-adjointness
{(2.1.18}), and Thearem 2 of this chart coincides with Theorem 3.3.1
according to the first proof of Problem 3.1.

Theorem 2. extends trivially to the case of totally degenerate m-order
Lagrangians, i.e., Lagrangians. that are linear in g'™. The case of degenerate
Lagrangians is excluded on precautionary grounds along the remarks of
footnote 36 of pége 138. Theorem 2, for the case of totally degenerate
first-order Lagrangiang, coincides with the theorem of Chart 3.9.

Notlce the unified treatment offered by Theorems 1 and 2 of this chart.

Chart 3.11 Engels’ Methods forthe Construction of a Lagrangian

A central aspect af the Inverse Problemis the constructionof a Lagranglan
once the integrability conditions for its existence are verified. Therefore, is is
important to review the available methods for this construction, other than
that of Section 3.8. In this chart, we review two methods introduced by
Engels (1975 and 1278).

Consider a second-order system of ordinary differential equations in the
fundamentg',fprm

Fo = Ayt q, O + Bt a, @) = O, (1)

which satisfies all the conditions of Theorem 3.5.1 and thus, in particular,
ali the conditions of self-adjointness (3.5.3). The problem under considera-
tion is that of constructing a regular first-order (Chart 3.9) Lagrangian
Lt q. q) for:the ordered direct analytic representations of system (1) in
terms of the conventional (second-order) Lagrange’s equations.

The method of CRart 3.9 for totally degenerate first-order Lagrangians
can be extended to higher order. For system (1), this method yields a totally
degenerate secénd-order Lagrangian given by

Lolt 9. 4 4) = —q*j de Folt, 1q, 19, <) (2)

This Lagrangian is not suitable for our objective because it demands the
use of third-order Lagrange’s equations. The problem is now turned into
that of identifying an equrvalence transformation of L, which removes its
dependence on the accelerations:

oot =ty Lot g s ns
k=12 ....n
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By using Equations (1) and (2), this condition can be written

1 oG
J dr(tg©)A, (L, 1q. g} — — = 0. (4)
0 og'
The solution
i 1 i ]
G(t. g, g) = f j dt o' (sgM) AL, 1q, TG G (5)

is then ensured by conditions (3.5.3b).
Therefore, a regular first-order Lagrangian for the representation of
system (1) is given (up to gauge transformations) by

i 1
Lt.g.4) = ~¢* [ ot Fi(t, w0, =g, x0)
(o]

+ — J‘ J. dt dz'(1g)A,, (L 1q, tT'g) G (6)

see Engels (1978).
Another method can be introduced as follows. Caonsider first a solution
=T, + x,(t q) of Equatioris (3.5.11), where T, is any particular solution
of Equatlons (3.5.11), e.g.,

4 R , ) L R
= -[ dil A lg, = e, .. .. A U O AR g, (7
5j
and the y's are, at this point, arbitrary {but of class ¥3) functions. Introduce,

then, the functions

o7, o7,
=B, - —Lgi—- L 8

By using the conditions of self-adjointness, it is then possible to prove
that the functions x; can always be selected in such a way that

Py =
0g/ og
a¢’  og !
or, or, _ 6
ogf o '
It then follows that
ol of d
& = —, [L=-—-—, Fi=—0, +T,. 1
i oq, i 6q' i dt ( 0)
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Therefore, a regular first-order Lagrangian for the representation of system
(1) is given (again, up to gauge transformations) by

g . . L .
Lt g §) = J dg/ @t . G, = €40 -0 Gy =cj_1,qj,qi+1,...,qn)
CJ' :
9
- dg Uit g =d. ....4_,
dj
=d 1 GGy G, G0 (n

see Engels (1975).

The reformulation of Equations (7) and (11), in terms of the Converse of
the Poincaré Lemma, is left as an exercise for the interested reader.

In conclusion, there exist at least three methods for the construction of a
Lagrangian (i.e., that of Section 3.6 and the two additional methods of this
chart). For cases of simple equations of low dimensionality, they are
equivalent from a computational viewpeint. However, for more complex
functional structures and/or higher dimensionality, one method may result
to be more manageable than the other owing to the differences in the
integrals to be computed. In general, method {6) appears to be the most
straightforward. Notice that all three methods considered appear to be
computerizable.

Chart 3.12 Mertens’ Approach to Complex Lagrangian Structures

The Lagrangians that originate within the context of the Inverse Problem
for the representation of nonconservative Newtonian systems generally
exhibit a rather complex structure, as indicated by Equations (3.7.19) or
(3.7.22). It then follows that the explicit computation of Lagrange’s
equations is, in these cases, a rather labarious task. This aspect is com-
pounded by the fact that the difference in the two main terms of Lagrange's
equations,

d
; (orad; L) — grad, L =0, (1)

generally implies the cancellation of complex terms which are in this way
redundantly computed twice,

To simplify the computational process, therefore, it is significant to ask
whether Equation (1) can be wtitten in a form which avoids the indicated
canceliations. This problem was solved by R. Mertens in a note of 1976.82
Moertens' result is that the known form of Lagrange’s equations in terms of
Christoffel symbols {see Chart A.14), besides its geometrical significance,
has precisely the practical advantage of avoiding the indicated cancellations
of form (1).

Lat us illustrate Mertens’ findings with the simple Lagrangian

L(g. §) = 3EM (@)@ M, =M, (2)

83 Mertens (1976).
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Equation (1) then becomes
M-ﬁ+M—q’v—grad L =90 (3)

The cancellations accur here between the terms M - ¢ and grad,_ L. Write
the /th component of the difference M - g — grad, £ in the form

oM, 1M, y
3 209 ) YA (4)

It is then straightforward to prove that
A, = (GMH 1 OMjk)dk

ogk 2 ag
_ 1 (oMu + OM,:k _ oM, i 5)
dgk o g
= [Jk: i1g*,

where [jk; /] is the Christoffel symbol of the first kind (Chart A.14).
Equation {1) can then be written

M, § + Ljk, ilg*gi = 0 (6)

by recovering, in this way, a subcase of Equation (4) of Chart A.14 for
Lagrangian (2).

The point is that the computation of the term [j&; /1 ]g%¢’ in lieu of the
term M - ¢ — agrad,, L has precisely the practical advantage of avoiding the
indicated cancellations. As a result, form (6) of Lagrange’s equations is
preferable over the conventional form (1) for explicit computations in
several cases of complex Lagrangian structures.

The extension of the analysis to Lagrangian structures more general
than form (2) and to the inclusion of external terms is left as an exercise for
the interested reader.

Chart 3.13 Bateman's Approach to the Inverse Problem?84

Theorem. Given a linear, second-order, homogeneous system of n
ordinary second-order differential equations,

2,00 + b (G + ¢, (g =0, (1)

which does not admit an ordered direct analytic representation in terms of
the conventional Lagrange equations, there always exist a prolongation of
Equation (1) into a system of 2n second-order ordinary equations in the
variables g% and a new set y* for which such an analytic representation
exists.

Bateman'’s proof of the theorem was based on conventional techniques
of the theory of differential equations. The following proof is a simple
elaboration of Dedecker's analysis with the use of Section 2.1. Since
Equation (1) does not admit an ordered, direct analytic representation by
assumption, from Theorem 3.5.1 they must be non-self-adjoint. But such

84 Bateman (1931). A treatment of Bateman’s prolongation method is given by
Dedecker (1949), who also treated the nonlinear case.
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equations are linear and homogeneous. Therefore, they are equivalent to
their equations of variations, say M, () = 0. The adjoint system M, (%) = 0
now does not coincide with M, (5} = 0. However, the system of 2n
equations of variations {M, (1), M, (7%)} = O is self-adjoint and, as’a
consequence, a Lagrangian for its representation exists. The theorem then
follows by performing the prolongation of system (1} into a 2n-dimen-
sional system, where the second set of n-equations are equivalent to the
adjoint M, (7) = 0.
The case discussed by Bateman is the damped oscillator,

g +2kg+n?qg=0, (2)

which does satisfy the conditions of the theorem. The extension found by
Bateman is then given by

g + 2kg + n?g =0,
¥~ 2ky + n?y =0,

(3)

The reader can now verify our proof because the second equation of the
above prolongation is precisely equivalent to the adjoint equation of
variation of the first equation.

Nota Bene: System (3) is equivalent to system (3.4.13), which can be
represented by Morse—Feshbach Lagrangian (3.4.15). This point is
significant because, as indicated in the footnotes of Section 3.4, the
Morse—Feshbach Lagrangian constitutes the Newtonian limit of the
Lagrangian densities of the gauge theories. Therefore, the structure
of the Lagrangian representations of the recent unified gauge theoties
of weak and electromagnetic interactions can ultimately be seen, to a
considerable extent, from the viewpoint of Bateman’s prolongation
approach.

Chart 3.14 Douglas’ Approach to the Inverse Problem

Consider a system of second-order ordinary differential equations
F (1. g4 4§ =0 k=12, ..., n which satisfies all the conditions of the
Theorem on Implicit Function 1.1.2. Then such system can be equivalently
written in what we have called the kinematic form:

§=Ftq ¢ Fe€ (Ry.,) (M

The same Theorem 1.1.2 then allows one to replace the accelerations §'
_ with the implicit functions # everywhere in the region of definition of the
system.
By using this latter property, Douglas (1941} studied the generally
overdetermined system of partial differential equations,
02L o2L a2l oL

i '

—f + — -4t — ey
Agx OF og* g’ 0g* ot dg*

in the unknown function £, where the implicit function 7 is given. The
analysis was conducted within the context of the conventional theory of
partial differential equations, with particular reference to the so-called
Rigier theory, without any use of the conditions of self-adjointness, as can
be inferred from the same starting point, i.e., Equation (2).

=0 (2)
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The analysis was centered on the reduction of second-order system (2)
to an equivalent first-order system derivable as follows.

The Lagrange derivative L, = (d{df) (0L/0g¥) — OL/dg* satisfies the
identities

oL, oL, _di, oF o«
— A2 A+ =
da " og i a ToaglnToglu=O (32)
<E(% _9L _2(%_% L1of foL; oL,
A d¢ og')  20d \og*  og/
106 (3L, oL, ~
L -EW(W+°_¢)+LMG;~LMG§—O, (3b)

_d o off T afm off

Gf = — T e L
dt Og/ o/ 2 0 dg™
02L
L. = 3
i adi oq'j' ( C)

Under the assumption that the Lagrange derivatives are null, i.e., that they
reduce to Lagrange's equations L, = 0, the above identities reduce to the
following linear system in the unknown £ ;.

%___OLM=0

oGk ogd
| L6t - L6t =0,

d 1 of 1 af (4)
Bl SR T i S

gt i Dag kT Zag

Ly~ L, =0,

which Douglas, proved to be equivalent to the original system (2). Douglas
then entered into a detailed study of the problem for the case n = 2.

Despite the minimal dimensionality assumption {the case n = 1 being
trivial) Douglas™ analysis turned out to be considerably involved to the
point of apparently discouraging subsequent investigations by other
researchers.

In essence, Douglas” approach is an extension of Darboux’s approach
(1891) to the case of two-dimensional systems.

It should be indicated here that the concept of ** analytic representation”
used in this chart and that of Section 3.4 do not coincide. For an elaboration
of this point as well as additional remarks, see Santilli (1273).

Chart 3.15 Rapoport's Approach to the Inverse Problem
Consider the initial value Newtonian problem
Fo = Ayt 0. )F + B,(t.q.9) =0, (1a)
q'(t,) = b4, gz} = by, (1b)
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and suppose that it satisfies the conditions of Theorem 3.6.1. Then it can be
turned into the initial value variational problem

2 .
A(g) = f dt L{¢, q. q), (2a)

g,y =bi , g(t) = b4, (2b}

where L provides a ditect analytic representation of system (1a). Let ¢’ be
an admissible {in the sense of Section 3.3) varied path. Then we can write

12 t
A=Alg') - Alg) &4 = j dt5iL = J “dtF 5qk = 0. (3)
t

1 s

The problem of the construction of a function L capable of satisfying the
above relation under the presence of initial value conditions was studied by
Rapoport (1938). He basically transformed the single integral of Equation
(3) into a double integra!l of the type

t2 3
S(a. ) = j dtj di Flt,q + t(q — q). ¢ +t(d — @),
t1 0

g +d - ¢ lgr - g%, (4)

which he proved to be equal to the difference between the desired func-
tional A computed along the paths g and ¢, i.e., S(g, ¢') = A(g) — A(¢').
We shall content ourselves with an illustration of Equation (4). For more
details, the reader is referred to the article by Rapoport.

Consider the Newtonian initial value problem

G+ kg =0, q(t)) = by, q(t,) = b,. (5)
Then, in view of the relations
gi) =q) s=12 (6)
Equation (4) yields

t 1
S{g,¢) = J zdtj de{g +o(d — §’) + k2[g" +elg— g1} (g~ q')
t1 Q
1 iz
=§Ldrw'+ g+ k(g + @l q')

1 1
S +d G- q)

1 (2
2 J dilg? - 42 + k2(q ~ )]
2), 2 t2

rz
= - J dt
1 .
by producing in this way the correct expression of the Lagrangian for
problem (5).

Rapoport’s approach is significant because it ultimately provides an
alternative method for the construction of a Lagrangian (once its existence
is ensured by the conditions of self-adjointness). Notice, however, that
again the system must be well defined in a star-shaped region for the
integral with respect to t of Equation (4) to exist.

g=g’(t)

’
5 (6% ~ k*a?) )]

g=qlr)
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Chart 3.16 Vainberg's Approach to the Inverse Problem88

The branch of functional analysis which is particularly significant for the
Inverse Problem is that dealing with nonlinear operators. A few basic
definitions, given below, are useful to outline this profile. The reader is,
however, urged to consult the quoted references for all technical details.

A generally nonlinear system of # second-order ordinary differential
equations in the /7 generalized coordinates g, i.e., F{g) = 0, is characterized
by a generally nonlinear operator F acting on the function space Q(q) of
the g's. In such (linear) space Q{(g), we can define the scalar product
{q,, 9.} = [7 9,(0qg,(dt, Re(t, t,); the norm |q| = {g. g}/2, and
the distance D = |q, ~ q,|: 4. g,, g, € Q(g). This characterizes what is
{often) called a pre-Hilbert space. Such a space is turned into a Hilbert
space by adding to it all the missing limit elements. A /ine joining two paths
g, and g, is a one-parameter family of paths g(¢; <), 7€ (0, 1) such that
g(t; 0) = g, and g(t; 1) = q,. The circulation of F(g) along a line is
defined by

A- f L‘:ZF(q)ad dt = fﬁ j;F(q(r))%%dr dt. (1)

If the circulation is independent of the path, we can compute italong g, = 0
and g, = 7q and write

Alg) - fﬁ L’F(rq)q de dt = LL(q)dr,

1
L(g) = qj Fleq)dr. 2)
o}

The functional A(g) is called the potential of the operator F(g) which, in
turn, is called the gradient of the functional. When a functional A4(g),
such that its gradient generates the operator F(g) exists, then F{q) is called
a potential operator. Thus, within this context, the problem of the inte-
grability conditions for the existence of a Lagrangian is turned into the
necessary and sufficient conditions for a generally nonlinear operator to be
a potential operator. The derivation of these latter conditions demands the
introduction of the concept of a differential of a noniinear operator, which
can be achieved through the so-called Frechét differential

F + - + &
im 4@ Fem) — Fla) _ Fry = 0F (g + an)
g & q o¢

(3}

=0

where the term F is called the Frechét derivative of F. The Frechét
differential of a functional is then given by

Alg + - A
lim 249 * 2n) — Alq) _ fL;rf ot )
£=+Q & A
The Gateau differential of F(q) is given by
. Flg +en) - Flg
lim M: VE(g, ), (5)

£—+0Q &

85 Vainberg (1964). See also Atherton and Homsey (1975), and quoted references.
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and is generally nonlinear in 5, while the Frechét differential is always
linear in 7. Thus, a linear {uniformly continuous) Gateau differential is a
Frechét differential.

Theorem [Vainberg (1964)]. Suppose the following conditions are
fulfilled:

1. Fis an operator from Q{q) into the conjugate space Q*(q).
2. F has 8 linear Gateau differential VF(q. n) at every point of the ball B:

"q—qo” < . . ,
3. The functional {VF(q,n), 7} is continuous at every point of B.

Then, in order that the operator F be potential in B, it is necessary and
sufficient that the bifinear functional {VF(q. n). i} be symmetrical for
every g in B, ie.,

V(g n). 7} = {(VF(q. i) n},  m7eQ (6)

Chart 3.17 Tonti's Approach to the Inverse Problem#8®

As recalied in the foreword, Vainberg's approach to the inverse Problem
within the context of functional analysis (Chait 3.16) was so abstract that it
remained either inaccessible or unknown to researchers in applied mathe-
matics for a considerable time.

E. Tonti recognized the significance of Vainberg's approach to the Inverse
Problem and reformulated the approach in a form directly applicable to
practical problems for single-integral as well as multiple-integral path
functionals.

We consider here, for simplicity, the case of single-integral path func-
tionals, The Frechét differential can be explicitly written

Fg+en) — Flg) . _OF _OF OF
mf@r ZF@ gy Ty e S )

li n - -
og oq og

c—=+0 &

According to Vainberg's theorem, a necessary and sufficient condition for
an operator £(g) to be potential, i.e., the gradient of a functional, can then be
explicitly written

— OF  OF d  OF o?
AF ) —nFm] = | dtdii| =+t =x =+ = =5
Ldt[n( 21— n(Fm] L t{”[oq 55 dt | 35 dﬂ}”
(- a2 o
"\3qg dtoq drzog

oF d OFN d  OF d? |
- =+2—=——= |+t ==z i;=0
oq dt O/ dt 0f dit?

(2)

88 Tonti (1968).
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This condition, in turn, holds if and only if all the relations

OF, _ OF,

4

Fr Y

OF, , OF, _, dOF,

3 3w P dsg @

o/ o¢ dt

OF, OF, _d [doF, oF,

dtogi  Og
are verified identically in the domain of definition of £. Equations (3) can
then be used as the explicit form of the integrability conditions for the
existence of a path functional.

Nota Bene: Tonti's analysis is particularly significant for the study of this
monograph. It essentially indicates that the formulation of the Inverse
Problem within the context of the functional analysis is equivalent to our
variational approach to self-adjointness. Indeed, when explicitly computed,
Frechét differential (1) coincides with variational forms (2.1.4}, Vainberg's
concept of potential operator, Equation (2); coincides with the concept of
self-adjoint variational forms, Definition 2.1.2, and the explicit forms of the
integrability conditions identified by Tonti, Equations (3); and coincides
with Helmholtz's conditions of self-adjointness, Equations {2.1.18).

For brevity, we leave to the interested reader the proof that the geo-
metrical approach by Klein (1962) or the cohomology approach by
Hordneski (1974} are also equivalent to the variational approach to self- .
adjointness used in this monograph, in the sense that the integrability
conditions for the existence of an action functional or a Lagrangian, when
explicitly computed, either coincide with those obtainable with the
variational approach or are equivalent to them.

In conclusion, it appears that the methodology of the Inverse Problem
can be formulated in a variety of different mathematical methods which,
however, result to be equivalent to the variational approach to self-
adjointness.

Chart 3.18 Analytic, Algebraic, and Geometrical Significance of the
Conditions of Variational Self-Adjointness

The analytic, algebraic, and geometric approaches to Newtonian systems
are known to be deeply interrelated. Therefore, it is significant to reinspect
these interrelationships within the context of the !nverse Problem for
phase space formulations.

Consider a class €=, regular Newtonian system in the general first-order
form (Section 2.5)

Colt,@)d + Dt ) =0, pu=12 ... 2n (1)
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The conditions of variational self-adjointness for this system are (Section
270

c,uv + Cvu =0, (23)

R V) (2b)

3C,, oD, oD’

uy

3t o3 dat

(2c)

The methodological significance of the above conditions, depending on the
profile considered, can be formulated as follows.

Analytic Significance. Conditions (2), when applied to a normal form,
guarantee the existence of a Hamiltonian. Indeed, for a normal form we have
C,.. = w, and D, = —E,. The conditions for seif-adjointness in this case
are the integrability conditions for the existence of a Hamiitonian (Theorem
2.12.1).

Algebraic Significance. Conditions (2) guarantee the existence of a Lie
algebra structure. In particular, conditions (2a} and (2h) are equivalent to
the Lie algebra laws, as indicated in Section 2.9.

Geometrical Significance. Conditions (2) guarantee the existence of
symplectic or contact structure. By keeping into account the Charts of
Chapter 2, conditions (2a) and (2b) guarantee a symplectic structure for
the autonomous case while the full set of conditions (2) guarantees a
contact structure for the nonautonomous case.

We can, therefore, reach the conclusion that the conditions of variational
self-adjointness for (class ™, regular, local) Newtonian systems in their
first-order general form constitute a symbiotic characterization of certain
fundamental aspects of analytic mechanics, abstract algebras, and
differential geometry.

EXAMPLES

Example 3.1

We shall illustrate the independent application of the Inverse Problem for con-
figuration and phase space formulations with a simple example.

Consider the case of a particle under a drag force represented by the equation of
motion in the kinematical form

i—flg =G+ 1dsa=0  4>0 (M

This equation is, trivially, of class €~ and regular, but non-self-adjoint. A Lagrangian
for its direct analytic representation in terms of the conventional Lagrange’s equation
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does not exist (se¢ the remarks after Theorem 3.5.1). However, the same equation of
motion can be written in the equivalent seif-adjoint fundamental form

Ag + B =" + e¥yg =0, (2

which satisfies all the conditions of Theorems 3.5.1 and 3.6.1. A Lagrangian for the
direct representation :

d dL oL .
(EE B ?3;) = ["(d + Y@)nsalsa 3
SA
then exists. Equations (3.6.3) in this case are
PK
=
8 b . PK @
dqg & M- )
and solutions (3.6.4) become
1 1
k=g av M & ‘*W](r’q) = o,
0 0
D=C=0, 3
yielding the Lagrangian®”
' L= "2, ©®

A simple inspectton then proves the validity of the above computation. Indeed, from
structure (3.1.3) of Lagrange’s equations we have

JL L &L

= oMy R, = oM

¢ ¢ Gqa %
, @
#L 6L
dgdq dq

and this verifies representation (3).

Notice that Lagrangian (6) is of the generalized type (3.7.19) or (3.7.22) or (3.7.27),
where the presence of a term which multiplies the Lagrangian for the free motion, i.¢.,
14°, is necessary because the acting force is not derivable from a potential.

This concludes a first use of the Inverse Problem for configuration space formula-
tions.

We now turn to the independent application of the inverse problem for phase space
formulations. By following the guidelines given after Theorem 3,12.2, we introduce the
following prescription for the reduction of Equation (1) to an equivalent system of two
first-order differential equations,

G=oft.q, )4+ Bl.q. ) =0,

o, feFHRY), a(R) # 0, ®

87 This and several other Lagrangian have been identified without the use of the Inverse
Problem. See, for instance, Denman and Buch {1972) and quoted papers.
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where the functions z and f§ are at this moment undetermined. After substituting in
Equation (1), we obtain the system

d—qlt g }’) =0, g1 = — B,

. 8g./0 + (dg,/3t) +
-y gz(t, q, y) = 0’ gs = ( gl/ Q)gl ( glfl ) ?91’ (9)
dg. /%y .

which can be represented with the notation

W, d" = Eft,a} =0,

(10)
0 -1 2
(w.uv) = (1 0)’ @)= (i): (EJJ) = (gl)

The conditions of self-adjointness for this form, Equations (3.12.5) or, explicitly,
(3.12.9), now give rise only to the condition

dg.  om '
992 _ Y41 11
5y~ g (11)

All the functions « and § that, through Equations {9), satisfy the above condition,
imply the self-adjointness of system (10) and, from Thecrem 3.12.2, the existence of
corresponding Hamiltonians. This gives an indication of the existence of a family of
different Hamiltonians that are all capable of representing the considered system,
However, we are interested, at this stage, in identifying ene Hamiltonian. To simplify
the computation we assume the reduced form of prescription (8),

G=4¢+p0) =0, (12)
where f§ is again unknown but it is independent of t and ¢, Equation (11) then becomes
%=i( ?ﬁ)=%=_§§ (13)
dy Ay \apioy/ oq dq’ .
admitting as a solution
B =cert", ¢, d = const (14)
By assuming the values ¢ = —1 and d = 0, for convenience, system (10} becomes
W =y _[TYTTY
(@08 — B )sa = ( i ey)m = 0. (15)

Such a system satisfies all the conditions of Theorem 3.122. A Hamiltonian then
exists and, from Equation (3.12.6), is given by

1 1 1
H* = a“f dv B, ta) = alf dt B, (ta) + azf dt E,(ta)
0 0 0
(16)
1 1
=qf dw+Pf die? =yq+e" — 1,
0 0
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where we have used the identification y = p because we now have a canonical
structure. It is significant here to indicate that aiternative method (3.12.7) can also be
applied, yielding

a¥ @l ay
H*:f da"Eu=f dalE.l-f-f da® B,
0 o 0
17
L) i
=quv+fdpe"=m+e"~l-
0 0 .

A simple inspection then verifies that the above Hamiltonian does indeed provide a
representation of system (1) in phase space, because

(w v aH*) —Pey 0 (18)
vl — = - =W
. da" [sa +4 —e"/sa

The third part of this example deals with the necessary comparison of the above
independent applications of the Inverse Problem.

By using the methodology of Section 3.8 and, as expected, from the analysis of
Section 3.12, we immediately see that Lagrangian (6) and Hamiitonian (16) are not
related by a Legendre transform. Rather than being a drawback of the Inverse Problem,
this indicates its richness, particularly from the viewpoint of transformation theory,
because the resultant Lagrangian and Hamiltonian represent, by construction, the
same system.

First, let us see whether the framework of Lagrangian (6) has a phase space image
which is consistent with the Inverse Problem. By using a direct Legendre transform,
from Lagrangian (6) we can write the Hamiltonian

L
—_———= —_ W':O,
b a4 p—eq

H = e "t (19)

From the form of canonical prescription (19a), we can then identify the functions «
and § of Equation (8) as

x=—e f=p 20)

A simple inspection shows that the above values do satisfy condition (11), yielding the
self-adjoint covariant normal form

. —~p—0
A — EJen = ~0. 1
(b wsa (-l-fi _ e_‘"P)SA (21)

The use of Equation (3.12.6) then yields the Hamiltonian
1
H= pf dr e Mip = e~ Mip?, (22)
o
which coincides with that obtained by using a Legendre transform of Lagrangian {6).

This indicates that the phase space image of the analytic framework of representation
(3) is indeed consistent with the Inverse Problem.
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Finally, we inspect the configuration space image of analytic representation (15)
with Hamiltonian (16). First, an inverse Legendre transform yields

. 8H* | »
- =d—e

q ap q »
L*=gp—H*=¢Ing—y—(¢— 1. 23)

The new Lagrangian representation is now given by

daL* dL 1

aoL” ony L. . ) 4
(dt éq BQ)SA [4 @+ ?q)NSA:ISA =

A simple inspection shows that, despite the presence of a new factor term as compared
with Equation (3), the right-hand side of the above identification is indeed self-
adjoint.
A point of considerable methodological significance is that representation (24) is
not well defined in a star-shaped region because of its divergent character at § = 0.
The reader is urged, at this point, to verify that solutions (3.6.4) do not hold for
representation (24). However, the underlying system of equations for the construction
of a Lagrangian, Equations (3.6.3), is given by
7K 1
o g
oc  ab
2q o

23

and it is consistent from the self-adjointness of the right-hand side of Equation (24).
Therefore, it can be integrated with methods other than that of Equations (3.6.4).
Indeed, the use of the second method of Chart 3.11 yields, as a solution of Equations
(25),

K=4lng, D= -1, C= -y +1, (26)

with underlying Lagrangian
L*=K+Djg+C=¢glng—yg—(¢g— 1), : )]
which coincides with that obtained through an inverse Legendre transform of
Hamiltonian (16). This illustrates the statement of Section 3.6 to the effect that, under

the conditions of self-adjointness, a Lagrangian or Hamiltonian is expected to exist
without any restriction to a star-shaped region.

Example 3.2

The analysis of the previous example can be extended to the more general non-self-
adjoint equation of motion

2 -
. y
G+ 74+ ?Pusa =0, @ — 77 0, ¢y

which represents the one-dimensional, linear, damped oscillator.
The method of reducing this equation to an equivalent self-adjoint form is studied
in Santilli (1979). Therefore, we ignore, at this stage, the problem of constructing a
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Lagrangian and search for a Hamiltonian representation. Explicit calculations indicate
that prescription (8), with values (20) of the previous example, also leads to a self-
adjoint covariant normal form of the equation of motion that satisfies all the con-
ditions of Theorem 3.12.2. The Hamiltonian, then, exists and is given by

H = e "p? + et viw?g® (2

This yields, by using an inverse Legendre transform, the Lagrangian

L= e"}(d? — w'q?), 3)
which produces the representation
d 0L 6L . .
(Efé?_gq-)s = [€"(d + 74 + O qnsalsa- @)
A

The reader can now verily that, because of the factor ¥, the above equivalent equation
of motion is self-adjoint. If such a self-adjoint form were known, one could have first
used Theorem 3.6.1 for the computation of Lagrangian (3) and then computed
Hamiltonian (2) through a direct Legendre transform with equivalent results, But the
above value of the prescription, which induces a self-adjoint normal form, is not
unique. A more elaborate solution then leads to the Hamiltonian®®

H =1In g — In [cos (wpg)] — $1pg, %)
with corresponding Lagrangian

L. M+mw _1( 24 + yq
2

— Lp (a2 ; 2.2
_2q /wz_yz,mtg m) z1n(§* + ygd + w?q®),  (6)

which can be considered as the generalization of corresponding functions (16) and (23)
of the previous exampie. Notice that for both Examples 3.1 and 3.2, the knowledge of
the Lagrangian alone is insufficient for establishing an anaiytic representation in line
with Definition 3.4.1.

Example 3.3
Consider the class ¥ regular system of linear, coupled, and damped oscillators

a)d + blthg + ()i = 0,

ity buss € € FHR), [Ci R} # 0. W

The system is & * adjoint if and only if conditions (2.1.17) hold, i.e,,

e — i =0,
bis + by = 24, @
Qi —ay = —I.JU + &
Therefore, the particular system
al{)g + &uD)d + c,(DG = 0,

3)

Qg = Gigs Cri = Cig

¥ Havas (1957).
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is self-adjoint. To determine the Lagrangian we use Theorem 3.6.1 which, in this case,
yields the equations

&K
a—m = Csj(f),
,_a,_, @
d¢’  Of
0D _3C_ g K OK
o o T T Tag e

with a solution
- ) K = fe,{0)d'q.
b, =0, k=1,2,...,n, {5}
C= —3a;('e’.
Therefore, one admissible Lagrangian is given by

Lit,q,§) = %[qicu(f)qj - qr.aij(t)qj]- 6

Example 3.4

A Lagrangian for the self-adjoint system

- {chi(r, o + [66";“; 2ol q)]é"er' 3 Pl gy aki(z)q'} =0
q q at sA

L= %[‘}icfj(f, e — qiaij(t)qj]- 2

Example 3.5

Consider the radial equation for a particle subject to a central force field,
M2 aV(r
[mj-' -y (')] =0 )
My ar sa

This equation is self-adjoint and can be directly represented with the well-known
Lagrangian

M2 '
L=13m (J"Z + ’;21.2) — t{r). (2)

However, a Lagrangian capable of satisfying the direct representation of the equiv-
alent form
av(r
[1112r-3i" - M2+ mr® —(J)il =0 3
o Jnsa

does not exist because the equivalent system is non-seli-adjoint. In particular, Equa-
tions (3.6.3) become inconsistent. This can be seen by first computing the solution of
Equation (3.6.4a), i.e., :

K = im*rr2 4
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Then, Equation (3.6.3¢), i.e.,

éD  aC v

—— — =mr — — M? — 3m¥ 5

ot or ar e )
is now inconsistent due to the appearance of the velocity # on the right-hand side.
Similarly, one can see that a Lagrangian capable of satisfying the direct representation
of the equivalent non-self-adjoint form of the harmonic oscillator (for g # 0), given by

(g -+ wz) =0, (6)
q NSA

does not exist,

Example 3.6

In this example, we illustrate in more detail the “mechanics” of the construction of a
Lagrangian from the equations of motion according to the method of Section 3.6 for
the case of more than one dimension. The two-dimensional, nonlinear, nonconserva-
tive system

(41 + 262)4 + 204y + §2)F2 + 4292 ~ @142 + q1d2 + 393 = 0,
Ag: + §2)dr + Qqy + d2)dz + @14y — g261 + G192 + g1 =0
satisfies all the conditions of Theorem 3.6.1, namely, the system is (a) of class C*, (b)
regular, and {(c) well behaved and self-adjoint in a star-shaped region. Thus, a
Lagrangian for its ordered direct analytic representation in terms of the conventional

Lagrange’s equations exists in terms of solutions (3.6.4). System (1) is the fundamental
form

(0

Al + Blg, =0,  k=1,2. (2a)
Gy +245) 26y + Ga)
(i) = (2(41 +d) (24 +42)) 2b)

(92 — 1)z + q192 + %‘15) )

(By) = ( .
TN — )+ q1g0 + 6]

The use of Equation (3.6.4a) then yields
Lt (e + 24, (g, + QZ)) (‘11)} 's
K= d d . .
(i Uo T(Zr(q, v @ + )\ ST
c ! Ya, + 24 (4 + 4 )(fh)] s
= drl(?
i [( Gt 30+ i)\ [P

1 142 P +2
. . 247 + 24,4, + 423,
=(qq)fdr’(% 41 .)(rq)
e b @+ 2444, + 343

PN f[h, (r’zeql + 24,4, + 4%))
e \TAGE + 24440 + D)
20+ 3014. + %q‘%)

="{g fi‘z)( . . .
LG + 3004, + L2

3)

= &4 + 43) + 414, + 4,43,
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which is the “kinetic term” of Lagrangian (3.6.2). To compute the D, terms of the
same structure, we must first compute the Z,; terms of Equation (3.6.3b). Since
function (3) does not depend on the ¢’s, we have

| (0B, 2B,
o 3l

1 {8B, 8B, 0 (g1 — q2) 0
2\aq" o

Equation (3.6.4b) then becomes

" (D _ ! 0 Z5(zq) (‘h)
(Dz) [JodTT(Zz1(TQ) 0 )] Gz
_ [jldf( 0 g, — 41))] (‘h)
o A\THg1 + 4q2) 0 g2

1 (%)
— ( 0 gz — ‘Il)) (fh)
gy — q2) 0 4s
_ (%(q% - 41(12))
Hai — 4192)
We can thus construct the second term of Lagrangian (3.6.2) according to
s (HaE — 082)
Dy(g)* = (m%)(? :” e )
g1 — ¢192) (6)

= Yq24, + 4142) — 31149204, + ¢2).

To compute the last term C of the same structure we must first compute the W terms
of Equation (3.6.3¢). Since K is independent of the g’s and the D;’s are independent of
time, we have

B, + ! (aBl a;B")qk
W ' 20 ag! i — 3
W) =\ g0 — 12} %)
’ —B _I_E(%_a_Blf " d142 — 347
2 2 aqk 642

Notice that the above terms are also independent of the velocities as guaranteed by
the self-adjointness of the equations of motion. The use of Equation (3.6.4c) then yields
the desired result '

_ L (Wi(z9)
C= (%%)J; dt (Wz(rq))

L (—1q,4; + 195)
= (@19 )J- dt( )
T\ 1,90 + 39D
1( 1,2
4142 + 343)
(g9 )(3 )
Y2 \Ma1qz + 49D
—3(g3qz + 0193)

)]
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By summing up the various terms, the Lagrangian is given by
L = K(§) + D{g)§" + Clg)
= #di + 43) + did. + §u43 )
+ 3adg1 + alda) — 30420 + 42) — Hatay + a1qd).

The interested reader is urged, at this point, to verify, through the proper use of
Lagrange’s equations in their full form (3.1.3), that Lagrangian (9) does indeed provide
an ordered direct analytic representation of system (1).

Problems

3.1 Establish alternative proofs for the self-adjointness of Lagrange’s equations
by writing them in the form

d 8L 8L
Sk a0
dt og°  dqg

A+ B = aZL)"‘+ &L . &L oL —0
w5 o ag) ! Y \aFard TaFam o) =

and by proving that they satisfy all conditions of self-adjointness (2.1.18) and (2.2.9),
respectively.

Flg =

3.2. By using Theorems 2.2.2 and 3.5.1, prove the fundamental analytic theorem
for kinematical forms, ie.,

Theorem. A necessary and sufficient condition for a local, holonomic, generally non-
conservative Newtonian system in the kinematical form

QR_.ﬁc(taq’é)=O: k=1,2,---,n,

which is well defined and of (at least) class € in a star-shaped region R¥*"* 1 of points
{t. @, ), to admit an ordered direct analytic representation in terms of the conventional
Lagrange’s equations in R*2"*1, ‘

— sz == =4 — flt.q. @), k=1,2,..,n

is that the system of equations of motion is self-adjoint in R*3"+1,

3.3 Prove the Inverse of the D’Alembert Principle (A4 9) in configuration space,
namely, that the equations of motion ‘

ui -« . 0Z, 4 fv‘i‘) | azi'(ts Q) si=f
A, 3 + Bilt, 9, 4) = Z,(t, @i + [ w9 192y qq’

oq' 2 ¢
N 0Zy(t. q)  GZ(t, q) N BZt, ) .
oq’ doq* at
LGB @y 3Z4(9) _ aV(g)
ot éq" éq*
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admit an ordered, direct analytic representation in Lagrange’s equations with Lagrangian

L= T(t) /B q-) - V(q)
= 14Z,(t, Pd + Zult, D + Zolt ) — V(@)

34 Study the generalization of Problem 3.3 to the case of forces derivable from a
potential U(z, g, 4).

35 Prove the crucial relation (3b) of Chart 3.3 for a generalization of Hamilton’s
principle to include the integrability conditions for the existence of a Lagrangian, by
proving the following theorem.

Theorem. A necessary and sufficient condition for the self-adjointness of a system of
differential equations is that the quantity Q(n, 7f) of Definition 2.3.1 is conserved, ie.,

. d .
lim — O, 7)) = 0.

irn

36 Newton’s equations of motion in their fundamental (second-order) form can
also be represented with second-order Lagrangians L{t, 4. 4, &), which are totally degener-
ate (i.c., linear) in the accelerations and corresponding second-order Lagrange’s equa-
tions. By using the methodology of Chart 3.10, prove the following theorem.

Theorem. A necessary and sufficient condition for a Newtonian system of second-order
equations

Fo=At,4,94 + B, =0, k=1,2,...,n,

which is well defined, regular and of at least class > in a star-shaped region R* 3ntlof
the variables (¢, q, 4, §) to admit the ordered direct analytic representation in terms of
totally degenerate second-order Lagrange’s equations in Redatl

#oL doL L _ g

aZag " deegd ot M ©
is that the system is self-adjoint in R**"* ', i.e., that each of the conditions (2.1.18) are
satisfied everywhere in R**"* . In particular, establish a method for the computation of
this higher-order Lagrangian.

37 Prove that the equations of variations of Hamilton's equations can be derived
through a direct Legendre transform of the equations of variations of Lagrange's
equations and vice versa.

38 By following the procedure in Example 3.1, construct an analytic representa-
tion of the non-self-adjoint system with an “inverted ” drag force,

g+v4'=0, ¢#0,
by first identifying a self-adjoint covariant normal form which satisfies all the conditions
of Theorem 3.12.2, then by computing 2 Hamiltonian by means of Equations (3.12.6),
and then by computing a Lagrangian through an inverse Legendre transform. Ascertain
whether such a Lagrangian characterizes an analytic representation which is or is not
well defined in a star-shaped region of its variables.
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39 The Newtonian limit of the field theoretical sine-Gordon equation can be
written

g+ sing =0

Prove that this equation satisfies all the conditions of Theorem 3.6.1 and compute a
Lagrangian. The given equation of motion with related Lagrange’s equation is highly
nonlinear. Show that the associated Jacobi’s equations are linear and compute their
solution. :

3.10 Compute the factor term h of analytic representation (3.4.1a) induced by
Lagrangian (5) of Example 3.2.

3.11 Compute a Lagrangian for the self-adjoint system

sin (§,d2)(§3d; + §16242) + g2 =0,
sin (414204342 + d14281) +‘ g, =0






APPENDIX

Newtonian Systems

A.1 Newton’s Equations of Motion

As indicated in the Introduction, present-day theoretical physics provides a
variety of methodological formulations to represent the physical world.
Each formulation can be identified from the salient characteristics of the
considered system such as, for instance, whether the system is

1. discrete or continuous,
2. nonrelativistic or relativistic,’
3. classical or quantum mechanical.

In this book, we study some methodological foundations of only one class
of physical systems: the discrete, nonrelativistic, classical systems also known
as Newtonian systems. Therefore, we shall restrict our attention only to those
systems for which the continuous, relativistic, and quantum mechanical
aspects can be ignored.

Within such a framework, the equations describing the motion of N
particles in a Cartesian reference frame are the celebrated Newton’s equations®

P = Filt, 0, 1), k=1,2,...,N, © (AL

! This terminology, even though almost universally accepted, is not immune from criticism,
due to the fact that what is commonly referred to as a “nonrelativistic” (“relativistic™) system is
in actuality a Galilei (Einstein) relativistic system. See, in this respect, Chart A.1.

2 Newton (1687). For historical notes see, for instance, Dugas (1950).

219



220 Newtonian Systems

where #, is the total force acting on the particle k, py is the linear momentum,

and p, is its total time derivative.? '
In this Appendix, we classify systems (A.1.1) from a physical profile and

point out a general form of the equations for the (constrained) motion.

A.2 Constraints

The study of Newtonian systems demands the characterization not only of
all the acting forces but also of all the possible constraints, namely, re-
strictions on the dynamical evolution. Several types of constraints exist,
e.g., those restricting the degrees of freedom of coordinates, velocities, and
accelerations. To avoid possible confusion, it is important to classify such
constraints and properly identify the related terminology.

It should be mentioned in this respect that, regrettably, there does not
seem to be a universally accepted terminology in the existing literature and
sometimes identical terms are used with different meanings by different
authors. This has led to a voluminous and often contrasting literature on the
problem of the identification of the class of Newtonian systems that are
derivable from a variational principle.*

Consider a system of N particles in a three-dimensional Cartesian reference
frame. Suppose that certain means (hinges, strings, etc.) restrict the possible
values of the coordinates r', velocities ¥, and accelerations ¥,

The first classification of such constraints which is significant for our
analysis can be formulated in terms of whether:

I.a. all constraints can be expressed in terms of equalities, .g.,

¢l 1) =0, s=1,2...,r; (A.2.1)
Lb. all constraints can be expressed in terms of inequalities, ¢.g.,
o1, B, 1) =0, s=12,...,r; (A.2.2)

Lc. some of the constraints are of type La and others are of type Lb.

A particle® that can only move along a sphere of radius R is subject to a
constraint expressible in terms of an equality, i.e.,

[r|—R =0, (A.2.3)

and thus this constraint is of type La.
A particle placed on the surface of a sphere of radius R is subject to a
constraint which is only expressible in terms of an inequality, ie.,

lr| — R = 0. (A2.4)
Thus the constraint in this case is of type Lb.
3 We shall denote with script letters, e.g., &, ¥, 7, etc. quantities in a Cartesian reference
frame. :

+ See, for instance, Rund (1966, Section 5.5).
5 By particle we mean a massive point.
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A second significant classification is given in terms of whether:

ILa. all constraints do not depend explicitly on time;
ILb. all constraints do depend explicitly on time;
ILc. some constraints are of type ILa and others are of type ILb.

For instance, constraints (A.2.3) and (A.2.4) are of type ILa. A typical
example of a constraint of type ILb occurs in the case of a bead sliding on a
moving wire.

The third classification is given in terms of whether:

IIla. all constraints either are expressed by, or can be reduced to,
equalities involving the positions and, possibly, time, i.e., '

Pt =0, s5=12...,1 (A2.5)

ITLb. no constraint can be reduced to the form (2.2.3);
IMl.c. some constraints are of type IILa and others are of type IILb.

In accordance with the most widely accepted (although not universally
accepted) terminology, constraints ITLa (IILb) will be called holonomic
(nonholonomic)® and those of type ILa (ILb) will be termed scleronomous
(rheonomous)’ constraints.

Thus, Equation (A.2.3) represents a scleronomous holonomic constraint. '
Expression {A.2.4), if modified for the case of the moving sphere, would
represent a rheonomous nonholonomic constraint. Those are simple
examples for which, apparently, there is no major differentiation in the
existing literature as far as the terminology is concerned.

However, according to our terminology, velocity-dependent contraints

of the type
plt,r,¥) =0, s=1,2,...,r (A.2.6)

can be either holonomic or nonholonomic depending on whether they are
integrable or not, that is, whether or not there exist functions ¢(¢, r) such that

o1, i) = %qﬁ’s(t, r)=0. (A27)

When this is the case, constraints (A.2.6) are equivalent to the conven-
tional holonomic coordinate constraints

P =0, s=1,2...,r (A.2.8)

This is so because of the property that, for consistency, a constraint must be
obeyed at all times. Thus, when Equation (A.2.8) holds, Equation (A.2.7)

also holds, and vice versa.
For instance, if a system of two particles is subject to the velocity constraint

D — §2) = 0, (A.29)

§ Von Hertz (1894).
7 Boltzmann (1922).



222 Newtonian Systems

then, for consistency, such a constraint is equivalent to the coordinate
constraint
't —r® — ¢ =0, (A.2.10)

which is holonomic,

More generally, according to case IILa, all constraints which depend on
time t, positions r and their time derivatives, and which are integrable
(nonintegrable) to coordinate comstrainis of type (A.2.5) are holonomic
(norholonomic).8

One of the most common types of velocity constraints is characterized by a
linearity in the velocity, i.e., it can be expressed in the form

bty 1, B) =Tyt r)-i' + A, r) =0, (A.2.11)
s=1,2,...,r
Such constraints admit the equivalent differential form
Lt r)-dr' + Aft, r)dt = 0. (A.2.12)
Suppose, now, that Equation (A.2.11) can be written
ot 1, ) = % i, r) = % g %4:—; (A.2.13)

In this case, they are integrable because they are reducible through integra-
tion to the coordinate constraint

¢t 1) = 0. (A.2.14)

The necessary and sufficient conditions for the integrability of Equation
(A.2.13) are

¢, 0%,

aor adar ADLS
’p, P _ (219
ot ater

and by using the right-hand side of Equation (A.2.11) they can be written®
6rsia a‘1_‘5_1‘11 _
5 o = 0, _ (A.2.16a)
0T, A,
E—-——==0 2.
o 57 (A.2.16b)

& For a different meaning of the term “nonholonomic” see, for instance, Gelfand and Fomin
(1963), page 48. According to the terminology of these authors, Equation (A.2.6) are nonholo-
nomic, irrespective of whether they are integrable or nonintegrable. In principle, this is also an
acceptable terminology. The point we want to stress here is that the reader should be fully aware
of the significance of the terms “holonomic” or “nonholonomic™ assumed by each author in
order to avoid some considerable confusion when studying the methodology for Newtonian
systems, particularly within the framework of the variational approach.

? See Rund (1966, Section 5.5). See also Section 1.2.
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Thus, according to our terminology, velocity constraints of type (A.2.11)
are holonomic (nonholonomic) depending on whether all Equations (A.2.16)
hold (do not hold). If Equations (A.2.16) hold only for a subset of constraints
(A.2.11), then we have a case of constraints of type Ill.c.

A typical example of a nonintegrable (and, thus, nonholonomic) constraint
of type (A.2.11) is a vertical disk of radius R rolling without skidding on a
horizontal plane (x, y). The speed [£] at the center of the disk is restricted by
the equality ™®

|E| — Ra =0, (A.2.17)

where & is the angular velocity of the disk. The projection of Equation (A.2.17)
in the (x, y) plane can be written

dx — (R sin f)dx = 0,
dy + (Rcos dou = 0,

where # is the angle between the x axis and the projection of the symmetry
axis of the disk in the (x, y) plane. The above equations do not satisfy integra-
bility conditions {A.2.16). Thus, the constraint is nonholonomic.

(A.2.18)

A.3 Generalized Coordinates

We now restrict our attention to holonomic systems of N particles, namely,
to Newtonian systems whose constrains are all holonomic, Suppose that the
number of such independent!® constraints is 3N — #. When all such con-
straints are either assigned or reduced to the coordinate form

¢lt, 1) =90, s=1,2,...,3N —n <3N, (A3.1)

they can be used to express the n actual degrees of freedom in terms of a set
of n new independent variables, termed generalized coordinates,'* and
customarily denoted with the symbols g*, ¢%, ..., ¢".1?

Such new independent variables can, in general, be assumed to be n

independent functions of the positions r' and time ¢, i.e.,
g = ¢, r). (A3.2)

Such functions determine n Cartesian coordinates as functions of the g’s, the
remaining 3N — n Cartesian coordinates and time. Constraint Equation
(A.3.1) then allow the determination of the residual 3N — n .Cartesian
coordinates. Therefore, from the combined use of Equations (A.3.1) and

10 See, for instance, Goldstein (1950, page 13).

1! The independence of the constraints (A.3.1) can be expressed, for instance, by the condi-
tions that the (3N — m)x(3N)matrix (¢/or™),s = 1,2,...,3N —n,i=1,2,... , N,a=1,2,3,
has rank 3N — n.

12 Thomson and Tait (1879).

13 For a first geometrical significance of the upper or lower indices, see Charts A.11 through
A.14. For a more advanced treatment, see Charts 2.1 through 2.5.
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(A.3.2), we can express all Cartesian coordinates as functions of the ¢’s and
of time, i.e.,

r=ritq) =1t q,.....q"). (A.3.3)

In this way, the constraint equations (A.3.1) are obeyed identically by
Equation (A.3.3). As a result, in the representation of holonomic systems in
terms of generalized coordinates, as we shall see more clearly in the next
section, we expect no representative of the forces of constraints. This fact
can be seen at this point from the property that the generalized coordinates
can be varied arbitrarily without conflicting with Equation (A.3.1), while
this is not the case for the Cartesian coordinates. Explicitly, jointly with the
g’s, all the differentials

dq"*
a i
are independent and, once interpreted as virtual dispiacements, are consistent
with Equation (A.3.1). On the contrary, the 3N differentials dr'®, to be con-

sistent with the constraint equations, cannot all be independent. This can be
seen from the time derivative of Equation (A.3.3),

dg =2 a4 aq dt (A3.4)

G o, o
' = a—qk q + ot s (A.3.5)
whose differential version,
.oor orf
dr' = 32 % dg* + b dt, (A3.6)

allows only a subset of the differentials dr’ to be independent. As a result, all
trajectories in the space of generalized coordinates are admissible by the
constraint ¢quations, and, as such they do not activate the forces of con-
straints. )

The n-dimensional space M, characterized by the generalized coordinates
will be termed configuration space. The space M, will be the representation
space of our analysis. It will be used with the understandmg that when the
systems are unconstrained, the set of n = 3N variables qt, ¢%, ..., ¢V
represents any set of conventional coordinates (e.g. Cartesian, cylmdrlcal
spherical, etc.) in a given ordering.

A.4 Conservative Systems

A class of Newtonian systems of central significance from a methodological
viewpoint is that for which all the acting forces &, ..., & y are conservative,
that is, they depend only on the positions of the particles, and their virtual
work is the total differential of a (single-valued) function —¥7(r), i.c.,

F ) &' = —d¥". (A4.1)
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We shall use the term conservative systems to describe all Newtonian
systems with acting forces satisfying condition (A.4.1). Then for such systems

v
Fo=——, 4.
; g (A4.2)
The function ¥7(r) of equations (A.4.1) will be called the potential energy
function (or potential for short) of the acting forces (or of the system). When
Equation (A.4.1) holds, then along any closed curve in the space of the r's,'*

§Fi-drf = - de“If =0. (A4.3)

Suppose, for simplicity, that the masses m; are constant. Let the kinetic
energy and its total time derivative be represented by the familiar forms

T = ik F, (A.4.4a)

7 . .
d‘i_t = mii'l' . 'f! = gi . i.l. (A.4.4b)

Then, by using Equation (A.4.2), we can write’

d Y 2

— (T +¥)=F,-F+——-¥=0. 4.

dt( + ) ; r+6r‘ =0 (A4.5)
Thus, for a conscrvative system, the sum of the kinetic and potential energies
is a constant, i.e.,

&r =9 + ¥ = const. (A.4.6)

The value &1 is then determined by the initial conditions.
The necessary and sufficient conditions®® for the left-hand side of Equation -
(A.4.1) to be an exact differential are (in Cartesian coordinates)

0F, O0F 4

orf® oria

(AAT)

ij=12..,N,  ab=123.

Notice that Equation (A.4.7) can be used as a criterion to ascertain
whether a given set of Newtonian forces & ,(r), #,(r), ..., & ,(r) is conser-
vative or not.

* For a more rigorous treatment, see Example 1.4.

!5 For a first elementary approach to conservation laws, see Chart A.2. For a more detailed
treatment, see Santilli (1979).

!6 For a more technical formulation, sec Example 1.4, Theorem 3.5.1, and Section 3.7,
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Consider now a conservative N-dimensional system in a Cartesian refer-
ence frame subject to 3N — nindependent holonomic coordinate constraints.
The equations of motion are

p=F=— %—IV (A.4.8a)

bt r) =0, (A.4.8b)
i=12...,N, s=1,2,...,3N —n.

If dr' represents a virtual displacement of the particle i, that is, an infinites-
imal displacement compatible with the acting forces'’ " and constraints, then
the virtual work 4, dr' of the forces of constraints ' is null, and we have
the so-called D’Alembert s principle:

Iéi
(pl + ;—) vdr' =0, (A.4.9a)
¢t 1) =0. (A.4.9b)

In view of constraint (A.4.8b), the system has » actual degrees of freedom.
Suppose they are represented by the generalized coordinates ¢, ¢% ..., g™

Then properties (A.3.2) and (A.3.3) allow the reformulation of the kinetic
¢nergy in configuration space according to

P ) iy 2
T (k) = Im;b; B zm(r *'+?;;)

= %Zij(ts q)qtqj + Zk(£5 q)qk + Zo(t’ q) = T(t: g, q)’ (A410)

where
ar, or*
Zyj=my 4 G o (Ad.11a)
or; ort
il e A4,
Z, = m; o o (A4.11b)
o' ort
Zy=3m Adl
0= MG o (Ad.1lo)
For the case of the potential energy, we have simply
vy =¥Ix(t, 9)] = V(. ). (A4.12)

17 We shall term “acting” force any force &;(#0) whose work ;- dr' for either virtual or
actual displacement is non-null.
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D’Alembert’s principle (A.4.9) can then be written

'+€i dﬁ—iiinféi — myr afe +6V5f
P T a7 agf gy o) " og 1

_'dal_,ial_,i an
- | dt EXY (zm;E; - ) — aﬁqJ (FmE; - 1) + BTQ"":,CSQ

_[dor AT - V)]éqj

| dt 6’ dq’
[d T - V) &T -1, .
= — 3 — - 5q-l
[dt &g’ dg’
=0, (A4.13)

where we have used Equations (A.4.10) and (A.4.12). The variation in the ¢’s
is denoted by the symbol dg;.
By introducing the Lagrangian

L=Ltgqq)=Ttgqgd— V(iag), (A.4.14)

the necessary and sufficient conditions for the validity of principle (A.4.13)
(in view of the independence and arbitrariness of variations dg', can be
expressed in terms of the (Euler—) Lagrange’s equations in configuration space

d L. dL
———— ———— = A .=1,2,..., . A..S
dt o~ o / ? (A4.13)
Under the assumption!® ,
a?L
—_ Ad,
oo | % O (A4.16)

and the prescriptions for the characterization of » new variables termed
generalized momenta
oL

= 3 | (A4.17)
one can introduce the Hamiltonian through the Legendre transform
H{t, q, p)= §p, — L. (A4.18)
Equation (A.4.15) can then be mapped into Hamilton’s equations
oH
- ——=0, Ad.19a
- ( )
, , 6H 0
Pet g =5 (A-4.19b)

18 According to the notation of Equation (1.1.6) and (1.1.8), matrices and determinants are
denoted with the symbols ( ) and | |, respectively.
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which act on the space }\71’(4, » Of the canonically conjugate variables g* and
Py, termed phase space.

For scleronomous holonomic conservative systems the Hamiltonian does
not depend explicitly on time; it represents the total energy of the system, and
thus it is a constant of the motion, i.e.,

dH(q, p)
g r _ A4.20
dt 0 : ( )

Let us stress the fact that when the Hamiltonian H depends only on the
elements (g, p) of the phase space, this by no means guarantees that the system
is conservative or that H represents the total energy, even though property
(A.4.20) still holds. Indeed, in this volume we shall encounter several cases in
which functions H(g, p) represent truly nonconservative systems.

Another aspect we would like to stress is the fact that the equations of
motion of conservative systems, irrespective of whether or not they contain
holonomic constraints, are not necessarily linear in the coordinates. For
instance, a Lagrangian (A.4.14) with a potential of the type

V(q) = quk + C,'jqiqj + C,’jkqiqjqk + .- (A.4.21)

represents a truly conservative system, but Lagrange’s equations are non-
linear in ¢*.

Equations (A.4.15) and (A.4.19) will often be referred to as the analytic
equations in configuration and phase space, respectively. When Newtonian
systems (A.1.1) can be expressed in terms of such equations, we shall say that
they admit an analytic representation.

Our derivation of Lagrange’s equations through the use of D’Alembert’s
principle is the one most widely used in the current literature. However, such
a derivation is not immune to criticisms,'® owing to the “static™ nature of
D’Alembert’s principle.

Whatever approach is used for deriving Lagrange’s equations, it must be
compatible with one of their central features, namely, the lack of any repre-
sentative of the forces of constraints. For principle (A.4.13), this is a con-
sequence of the assumption that the displacements dr' are compatible with
the constraints, and thus the work of the forces of constraints is null.

A.5 Dissipative Systems

Conservative systems often constitute a simplification of physical reality,
since they imply, for instance, that motion is frictionless even in the presence
of constraints. As is well known, constraints inevitably imply the presence of
frictional forces and the motion in an actual environment necessarily implies
a resistance due to the medium.

1® See, for instance, Kilmister (1967, page 34).
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A second significant class of Newtonian systems is represented by dis-
sipative systems, namely, systems that are subject to an arbitrary collection of
conservative and dissipative forces and whose total energy is monotonically *°
nonincreasing in time, ie.,

Erly = Erly, <t (A.5.1)

Energy can be dissipated in an endless variety of ways, and dissipative
forces can be characterized in an equally endless variety of ways. For in-
stance, when a particle moves in a medium, a dissipative force is any drag
or resisting force which opposes the motion. In this case, if the total cnergy is
equal to the kinetic energy, all resisting forces due to the medium for which
the kinetic energy monotonically tends to zero as t — w0, i.e.,

Iim & =0, (A.5.2)
I+
can be considered to be dissipative forces.?!

A large class of dissipative forces is expressible as a series in the velocity,

say

g"d=|g—‘:d|=bo+b11}+b2v2+"', (A.5.3)

where the cocfficients depend, in general, on positions and on time. Thus the
functional dependent of #¢ is

F = FUL, 1, ). (A.5.4)

Dissipative forces are usually opposite in direction to the velocity, in
which case their Cartesian components can be written as

Fa

Fq= _Wlif!’ a=123 (A.5.5)

Several types of dissipative forces can be approximated with expressions
simpler than the form (A.5.3), such as the following.

1. Dissipative forces independent of the velocity.
They are proportional to the normal force % | between the surfaces in
contact and are independent of contact area and velocity

Fé = by = by(r, F,), (A.5.6)

where the space dependence arises from possible variations in the
coefficient of friction and the time dependence arises from possible
variations in the normal force as well as the positions.

20N funcuonf(x) is said to be menotonic (strictly monotonic) in an interval (x3, x3) if for every
pair of points x,, x; € {x9, x2) such that x, < x,, the relation f(x,) < f(x,) (or f(x,) < f(x;))
holds.

21 According to Birkhoff (1927, page 31), a force £ is dissipative when f¢4* = 0. Then the
energy integral is monotonically nonincreasing. When j¢4* > 0, the eneigy integral decreases
toward some limiting value in a strictly monotonic sense.
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2. Dissipative forces proportional to the velocity.
They are usually opposite in direction to I, ie.,

Fé= —b,i. (A.5.7)

Resistive forces of this type occur when a system is slowly moving in a
fluid, or a magnet is slowly moving near a conducting sheet.

3. Dissipative forces proportional to higher powers of the velocity.
When the motion in a given medium is not slow, the resistive force can
depend on higher powers of £, e.g.,

Fi=b,v", m=fixed, (A.5.8)
where for a given range of speed, m = 2, for a higher speed m = 3, etc.

Usually, dissipative forces do not affect the degrees of freedom of a system.
For instance, if dissipative forces are considered for a system of N particles
with 3N — n independent holonomic constraints, and thus » degrees of
freedom, the number of generalized coordinates remains unchanged. It is
then possible to represent dissipative forces in terms of generalized co-
ordinates. This is achieved by considering the virtual work done by the
dissipative forces, which must be the same in Cartesian and in generalized
coordinates, 1.e.,

AW® = 4. gt
= by V"V, dr® (A.5.9)
= fi, q, Dg"

where we have assumed for simplicity that the series (A.5.3) can be truncated
at the power M of the speed, and where f represents the components of the
so-called generalized force.

For a significant class of dissipative systems, it is possible to introduce the
so-called power function PU(t, q, ), which represents the dissipative force in
configuration space through the relations®’

apP?

Suppose the dissipative forces satisfy the relations®*

d d
0FY, _ 0T

= 12 S
vt v (A1)
Then the following exact differential occurs.

F4 dve = dp(v), (A5.12)

22 Gee, for instance, Wells (1967, Chapter 6).

23 T avoid possible confusion, we shall sometimes add a superscript ¢, d, ¢, or a to the symbol
of a force to denote, specifically, conservative, dissipative, applied (or external), and acting (or
total) force, respectively. Notice the mathematical similarity between Equation (A.5.11) and
(A.4.7). For & more rigorous treatment, see Example 1.4,
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which can also be written
fi6g =0,  Pt,q ) =p), (A5.13)

yielding relation (A.2.1).
A typical example of a power function in configuration space is

Pd - ﬁi bk(q-k)m+19 m= 1: 2, 3’ R | (A514)

with corresponding dissipative forces

i=byd"  (no summation). (A5.15)
Suppose that the f§ force is a function of position and time only:
fi=rit 9. (A.5.16)
Then, as in case (A.2.5), we have '
Pl = figk (A.5.17a)
fi= %. (A.5.17b)

Notice that all conservative forces can be expressed by means of power
function (A.5.17a). Clearly, P? has the dimension of power.

Expression (A.5.14) with m = 2 is the celebrated Rayleigh’s dissipation
Junction** More generally, this function can be defined as a homogeneous
quadratic form in &%, i.e.,

P = 44, ¢, (A.5.18)

where the coefficients b;; are negative definite functions of the ¢’s and time.
Then the components of the dissipative forces are

fi = bilt, 9)d" (A.5.19)

In all the cases considered above, the dissipative force is opposite to the
direction of motion, But dissipative forces can also have an arbitrary orienta-
tion with respect to the velocity of the particle. To illustrate this point,
consider a magnetic pole®® which moves with velocity t in the vicinity of a
conducting grill. As a result of the variation of magnetic flux, the grill acquires
local currents. The induced magnetic field will oppose the motion of the
magnetic pole through a force which is not opposite to k, but opposite to the
component of I along the direction perpendicular to the grill.

24 Notice that the analytic representations of dissipative systems studied in this book are

without the Rayleigh function, .
5 For example, one pole of a sufficiently long permanent magnet, so that it can be considered

as isolated.
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Consider, now, a holonomic conservative system with forces represented
in configuration space by
: av
fi=— Er (A.5.20)
and with total energy &7 = T + V. If an arbitrary dissipative force f{(z, 4, 4)
is applied to it, the rate of change of &1 is
d€r 4.
=r_ , AS521
dr P ( )
If ¢ can be expressed in terms of a power function P, Equation (A.5.21}
becomes

d€, oP*
= —— g, AS5.22
a g (A.522)
Finally, if P is homogeneous of degree two in the ¢’s, then we simply have
dé ¢
— =2P A5.23
dr (A.3.23)

that is, the rate of change of the energy is twice the power function. Since
P? is definitely negative (or null) by assumption, condition (A.5.1) of the rate
of variation of the energy with time is verified.

Clearly, as for conservative systems, dissipative systems can also be
represented by either linear or nonlinear differential equations.

From a methodological viewpoint, dissipative Newtonian systems con-
stitute a significant complement to conservative systems, since they generally

" imply “nonconservation” not only of energy but also of linear momentum,

angular momentum, or any other physical quantity. Ultimately, the class
of dissipative systems is broader than that of conservative systems, i.e.,

{conservative systems} < {dissipative systems}, (A.5.24)

because the former class occurs as a particular subclass of the latter at the
limit when all dissipative forces are null. Thus, it is expected that the meth-
odology for dissipative systems implies a suitable generalization of that for
conservative systems.

In this book, we study the problem of the representation of holonomic
Newtonian systems in general (and, thus, holonomic dissipative systems in
particular) in terms of the (conventional) Lagrange’s equations without
external terms. In this way, we remove the major simplification made in the
transition from Newton’s equations of motion (A.4.8) to Lagrange’s equa-
tions (A.4.15), namely, that the motion is frictionless despite the presence of
constraints. The reader should be aware that, despite this broadening of the
considered physical context, our treatment is still restrictive because we
exclude nonlocal forces. Nevertheless, local forces not derivable from a
potential are known to constitute a good approximation of nonlocal dis-
sipative forces and, as such, are sufficient for our objectives.
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A.6 Dynamical Systems

Dynamics is the branch of classical mechanics that studies the motion of a
system of particles subject to “arbitrary” Newtonian forces and constraints.

Clearly, the conservative and dissipative forces considered so far do not
exhaust all possible Newtonian forces. Without any claim to completeness,
it is sufficient for our needs to introduce a third class of forces, the applied
Jorces.

We shall call an applied force any external force of a nonimpulsive nature26
with an arbitrary functional dependence on positions, velocities, and time.
The above definition includes a rather large variety of forces not necessarily
derivable from a potential ¥(g) or a generalized potential U(t, ¢, 4), such as
logarithmic forces, periodical forces, etc. However, applied forces derivable
from a potential are not excluded.

We shall define a dynamical system as a system of particles subject to an
arbitrary collection of conservative, dissipative, and applied forces. Clearly,
in a dynamic system the energy can vary arbitrarily in time, i.e.,

Erly Erly 1 <ty (A6.1)

A typical example of a truly dynamical®’ system is the damped and forced
oscillator. In practical applications within a Newtonian framework,?® the
conservative approximation of the oscillatory motion generated by an
elastic force is usually valid for periods of time in which there is no appreciable
variation (in relation to the desired approximation) of the amplitude and
frequency. For comparably longer periods of time (or higher approximation),
the inevitable presence of dissipative forces will result in a progressive
damping of the motion up to the configuration of null amplitude (or energy).
Thus, the preservation of the motion for a long period of time demands the
use of applied forces. The rate of variation of the energy then depends on the
relationship of the rate of supplied energy with the rate of dissipated energy,
thus it can vary arbitrarily in time. The dependence of the energy on time,
however, can only be continuous if possible discontinuities in the velocities
are excluded.?® :

From now on we shall assume that the acting forces in Cartesian coordi-
nates have an arbitrary dependence®® on time, coordinates, and velocities,?!
le, F, = F (¢ 1, 1), and they represent an arbitrary collection of con-
servative, dissipative, and applied forces. We shall also assume that all

26 This restriction is introduced to avoid discontinuities in the velocities. See Chart A.3.

*7 The term “truly” dynamical is used here in the sense that the total acting force includes
conservative, dissipative, and applied forces.

% We stress here the exclusion of non-Newtonian (e.g., quantum mechanical) frameworks,

*% Clearly, discontinuities in the coordinates r'(z) or g%(t) are not admissible in any Newtonian
system, irrespective of whether or not it contains impulsive forces.

30 Certain continuity restrictions are introduced in Chapters 1, 2, and 3.

31 We shall tacitly exclude a possible dependence on the accelerations or higher-order
derivatives of the coordinates.
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constraints are holonomic. As a more general formulation of the virtual
work (A.5.9), we have

dW=5"-,--dri
PRI A6.2
_Jiéaq_qu' (A.6.2)
The generalized forces
ot
=% o7 (A.6.3)

then represent the configuration space “image” of the forces & .

The definition of total physical energy for a dynamical system with dissipa-
tive and applied forces should be recalled. It is, in essence, given by the sum
of the kinetic energy and the potential energy of all forces derivable from a
potential.>? A central aspect of the study of dynamical systems is then given by
identification of the variation of this energy in time.

Notice the generalization of the concept of rate of variation of the energy
in the transition from dissipative to dynamical systems. Indeed, from ex-
pressions (A.5.1) and (A.6.1), we see that while for the former the energy is
nonincreasing in time (dissipation), for the latter the energy can vary arbi-
trarily in time (nonconservation). This is a consequence of the fact that
dissipative systems are a subclass of dynamical systems. By recalling Equa-
tion (A.5.24), we shall then write the inclusion properties

{conservative systems} < {dissipative systems} c {dynamical systems}
' (A.6.4)

with an example provided by the above-indicated case of damped and forced
oscillators:

{harmonic oscillators} c {damped oscillators}
< {damped and forced oscillators}. (A.6.5)

It should be indicated here that the broadening of our framework to include
arbitrary Newtonian forces implies a conceptual as well as a technical
modification of the theory. In particular, while the conventional meth-
odology of Newtonian systems is basically a theory of “ conservative systems,”
the methodology of dynamical systems is eminently a theory of “non-
conservative systems.” This fact, however, does not exclude the study of
symmetries and conserved quantities. Only their emphasis is changed, as
seen in Santilli (1979).

Our definition of “dynamical” systems is in line with the conventional
definition of “dynamics” as recalled at the beginning of this section. The
reader should be aware, in this respect, that the term “dynamical” systems

32 gee, for instance, Symon (1960).
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is often restricted in currently available literature to that of “conservative”
systems, This is certainly a proper terminology, because conservative systems
are also dynamical systems. However, they constitute, strictly speaking,
only a sublcass of the class of dynamical systems and often a crude approxi-
mation of physical reality. Clearly, on methodological grounds, a deeper
insight can be gained by including all (local) Newtonian forces, namely,
conservative, dissipative, and applied.

A.7 The Fundamental Form of the Equations of Motion in
Configuration Space

We shall now identify a general form of the equations of motion in con-
figuration space for holonomic systems with arbitrary Newtonian forces.
Such a form is used in the text for the study of the problem of the existence
of a representation of a given dynamical system in terms of conventional
analytic equations.

Consider a holonomic dynamical system in Cartesian coordinates repre-
sented in terms of the D’Alembert principle

(b, — Filt, T, )] - dri =0, (A.7.12)
P, 1) = 0. (A.7.1b)

Under the assumption that the masses are constants, the above system
can be written in configuration space as

(4t )47 + Bt, ¢, 910¢" = 0, (A7.2)
with
Ay =2y, (A.7.33)
102y s 92, 0Z,

Bi=Z.¢+2, —-—& = —
i qu i 2 aql q q aqj q 6q1
where we have used Equations (A.4.11) and (A.6.3).
In view of the arbitrariness and independence of the d¢’s, a necessary and
sufficient condition for the validity of principle (A.7.2) is that each of the
equations

fi»  (A.7.3b)

Af, QF + B{t,g, @) =0, i=1,2. ..n (A.7.4)

holds. The above equations, however, do not represent the most gencral
form of Newton’s equations of motion in configuration space because they
do not necessarily account for the so-called “acceleration couplings”™>® or
for possible equivalence transformations.

33 These couplings occur, for instance, within the systems of coupled, forced and damped
oscillators (see Section 3.7).
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By taking into consideration these latter aspects, we obtain the equations
Aij(t’ 4q, 01)‘1} + Bi(ta d, q) = 03 (A75)

in which there is an additional dependence of the 4,; terms on the generalized
velocities ¢°. We assume (A.7.5) to be our fundamental form of the equations of
motion in configuration space.

A central aspect of Equation (A.7.5) is their linearity in the accelerations.
This is ultimately a consequence of the same structure of Newton’s equations
(A.1.1).

Independent of that, equations of the type (A.7.5) constitute the most
general form of ordinary differential equations that are representable by
Lagrange’s equations. Indeed, the explicit form of these equations is

d oL dL L oL . ¢*L 4L

—_——_—— = > 7 g’ = ] i T —_ =
siog o ood? Togegt Taga aq

= A;j(ta q, Q)qj + B:(t: q, Q)

=0, ' (A.7.6)
where
) &L :
Al = Haqf o (A.7.7a)
2L .. &L oL
Bl= g = = A.7.7b
=oiag? T o (A7.70)

that is, Lagrange’s equations are also always linear in the accelerations. By
inspecting Equation (A.7.6), we then see that the most gencral form of
differential equations they are capable of representing is precisely the funda-
mental form (A.7.5).

" In this Appendix we have introduced the classification of Newtonian
systems into (1) holonomic or nonholonomic, from the nature of the con-
straints, and into (2) conservative, dissipative, or dynamical, from the type
of acting force. We have then restricted our analysis to holonomic constraints
only and included all (local nonimpulsive) Newtonian forces. Finally, we
have obtained a general form of the equations of motion in configuration
space for such a class of systems, i.e., Equation (A.7.5).

A central objective of this monograph is the identification of the necessary
and sufficient conditions for Equation {A.7.5) to admit an analytic repre-
sentation in terms of Lagrange equation (A.7.6). For this purpose, the above
classifications of Newtonian systems are insufficient and other methodo-
logical aspects must be taken into consideration. This task is initiated in
Chapter 1 and completed in the Chapters 2 and 3.
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Chart A.1 Galilean Relativity

The representation (or carrier) space for unconstrained Newtonian
systems is the Kronecker product £, (r, ) = E£.(r) x £,(t) of the
three-dimensional Euclidean space £,(r) representing the coordinate of
the particles and the one-dimensional space £, (t) representing time. Space
£,(r} is homogeneous and isotropic, while space E,(f), being one-
dimensional, is only homogeneous. These characteristics of the representa-
tion space express certain basic assumptions of Newtonian Mechanics.
First of all, the homogeneous and isotropic character of E . (r) guarantees
the existence of /nertial frames. Indeed, under such assumptions, a free
particle which is at rest at a given time with respect to a given frame remains
at rest at all subsequent times and the frame is inertial. All reference frames
considered in this volume are inertial. The independence of E,(r)and £, (1)
expressed by the Kronecker product £,(r) = £,(#) and the homogeneous
character of £ (1) allow compliance with another basic postulate of
Newtonian Mechanics, namely, the assumption that #me /s absolute, or,
alternatively, that the same event, if measured by two inertial frames A and
A’, occurs at the same time, i.e., t = . This implies the acceptance of
infinite velocities for signals and/or particles. Throughout our analysis, the
absolute nature of time is tacitly assumed.

The Galilean Relativity Principle states that for all inertial frames, the laws
of Newtonian Mechanics are the same. Thus, starting with one inertial
frame, one can equivalently study the same motion from a second inertial
frame. The procedure can be iterated an infinite number of times by
indicating in this way that there is no inertial frame of reference in New-
tonian Mechanics which is "absolute,” that is, preferable over all other
inertial frames, becauss all inertial frames are equivalent.

This demands the study of the transformations connecting two inertial
frames which do not alter the faws of Newtonian Mechanics. Consider
Newton'’s second law in the {unprimed) inertial frame A for a particle with
constant (inertial) mass m, i.e., mi = F, Let m'¥" = F’ be the law for the
same motion as seen from a second inertial frame, A’. The assumption that
the mass must be the same for both A and A’ implies m = n7'. The assump-
tion that the work done by the acting force must be the same for both
A and A’ then restricts all possible finear coordinate transformations to
the so-called orthogonal transformations (or rotations)

re=Rsr, RRT=RTR=1, R=(R2). (1)
a=1,223 '

The admissible nonlinear transformations are then given by the solutions
of the equations

a? o2

—ra = Ra rb‘ 2
dt2 b gt2 (2)
which are
7o = Rard + va, va = const,, {3a)
re=Rerb + vt + 3, rg = const. (3b)

If m is at the origin of A, then r3(v) represents the coordinates (velocities)
of such an origin within frame A’. Notice that the admissible relative
motion between A and A’ is that with constant velocity v.
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The assumption that time is absolute implies that the duration of an
event in 4 is the same as that in A’, i.e., At = Af, thus t = t + ¢, with
t, = const.

o]
The set of all transformations so obtained,

4)

{r’=Rr+vt+ro.
£ =ttty

are called Galilei transformations332 and represent the largest set of linear
transformationsin £, , (r, t) that preserve the laws of Newtonian Mechanics.
Such transformations form a 10-parameter group called the Galilei group
G, ,, where

1. 3 parameters (angles) characterize an arbitrary rotation r’ = Rr;

2. 3 parameters (the velocity v) characterize the transformation
r' = r + vt called Galile/ boost;

3. 4 parameters (the positions r, and the time ¢;) characterize the
translations in space r' = r + r, and in time ¢ =t + ;.

As a final comment of speculative nature, the reader should be aware that
the systems studied in this monograph are nret form-invariant under the’
Galilei transformations because their forces, besides being not derivable
from a potential and explicitly dependent on time, are nonlinearly depend-
ent on coordinates and velocities. This creates the problem whether the
Galilei relativity as currently known (and outlined in this chart) needs a
suitable generalization to become applicable to nonconservative systems
in general (rather than to conservative and Galilei form-invariant systems in
particular). This problem is identified and treated in details by Santilli
{1978). The same references present the conjecture of a generalization of
the Galilei relativity for nonconservative systems based on the so-called
Lie-admissible algebras (which are algebraic coverings of the Lie algebras
directly applicable in Newtonian Mechanics for forces not derivable from a
potential via the brackets of the time evolution law of a suitable generaliza-
tion of Hamilton's equaticn). Possible relativistic extensions are considered
too.

Nota Bene: According to the assumptions of Section A.1, our analysis is restricted
to those systems for which all relativistic effects can be ignored. Therefare, all
velocities considered in this volume are tacitly assumed to be much smaller than the
velocity of light. Within such a framewaork, Newtonian Mechanics and the underlying
Galilean Relativity Principle are in agreement with physical reality. In this respect, cne
aspect of our analysis calls for clarification. The Lagrangians L(¢ ¢. §) we deal with
are functions generally defined for all values —o0 < £, g%, g% < +oo. This implies
possible values of the velocities ¢* for which relativistic effects should be taken into
consideration. We eliminate such possibilities by considering the Lagrangians and
retated analytic representations over a region 27+ of values (¢, g, ¢} selected in
such a way as to avoid relativistic effects. Therefore, throughout our analysis we
tacitly assume that all regions of definition of the Lagrangian are consistent with the
assumptions of Section A.1. This is compatible with the methodology used far the
integrability conditions for the existence of a Lagrangian, i.e., the calculus of differ-
ential forms and the Converse of the Poincaré Lemma (Section 1.2). Indeed, this
methodology can be formulated in the neighborhood of a point of the variables

332 Galilei (1638). For contemporary accounts, see, for instance, Landau and
Lifshitz (1960, Section 1.3) or Mann (1974, Section /.1.C). For the Galilean group see,
for instance, Levy-Leblond (1971).
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{t. g, ) satisfying certain restrictions {of being star-shaped). In particular, the value
of ¢ can be arbitrarily selected. In conclusion, there is no need for including divergent
values of the velocities for the rigorous formulation and treatment of the problem of
the existence of a Lagrangian.

Chart A.2 Ignorable Coordinates and Conservation Laws

Let£(t, q. 4) = T(t, q. ¢) — V(t, ¢) be the Lagrangian of a conservative
system. Each of the 2n + 1 quantities ¢, g, and §* is said to be ignorable
when the Lagrangian does not depend explicitly on it.

Conservation law of the total energy. When the time is ignorable, the
totalenergy &, = g~ OL/0g* — L = T + Vis constant.

PrRoOF By using Lagrange’s equations, the total time derivative of
the Lagrangian can be written

oL _d (oL ;
at at\7 3G/ )
Thus
d oL d
— gk — — = _ =
dt (q ag* L) a’r=" 2)

Nota Bene: The quantity ¢* 0L/dg* — L does nof, in general, represent the
physical total energy unless the system is scleronomous, holonomic and conservative,
in which case §* 8L/dg* = 27. Notice that when L does not depend explicitly on
time, it is invariant under time translations {i.e.. t = ¢ =t + r,, t, = const.)

Conservation law of the generalized momentum. /f the generalized
coordinate g is ignorable then the generalized mormentum p . 15 constant,

PrROOF From the definition p, = 0L/d¢*, the Lagrange equations, and
the assumption that ¢* is ignorable, it follows that

Py == — = 0. (3)

Nota Bene: The generalized momentum p, does not, in general, coincide with the
physical linear momentum unless the system is conservative and without constraints.
If this is the case, the above conservation law does not imply that the “total”
momentum is constant unless all coordinates are ignorable (i.e., when, trivially, all
particles are free). For conservative systems (only) the condition p, = 0impiies that
the k£ component of the acting force is null. Notice also that when £ does not depend
on g% (k = fixed) it is invariant under translations in the £ coordinate (i.e., g — g'* =
gt + gf, g = const.). ’

Conservation law of the anguiar momentum.3* Consider a conservative
system of N particles with total angular momentum m7T = E, m,, and

34 Ses, for instance, Whittaker (1904), Goldstein (1950), and Mann (1974). A
study of the problem of symmetries and conserved quantities for Newtonian
systems with arbitrary forces is provided in Santilli {1979).
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without constraints. Let m, - n be the component of the angular momentum
m, along an axis in space with unit vector n. Represent the system in
cylmdncal coordinates ¢ =r, g+l =@, g+2=n), i=1,2,.. . N,
where n' is the component of v along the n axis. Then, if the angle
g+ = 0 is ignorable, the component m, - n of the angular momentum
m, /s constant.

ProOF Forgi+? = 0, p,,, = OL/dgi*1 = mr20" = m, - n. The proof is
then similar to that for the conservation of the generalized momentum By

Nota Bene: Again, the above conservation law does not imply that the “total”
angular momentum is constant unless "all” angles in all three possible representa-
tions of the systems in cylindrical coordinates aloeng three orthogonal axes are
ignorable (e.g., when ¥7(r', ..., r¥) = ¥ (s, ..., V). For the considered systemn,
the condition 0L/98" = 0 implies that the /¢ component of the acting torque is null.
When the system is not conservative, the generalized momentum dees not ceincide
with the linear momentumn, and &£/d¢ does not represent the companent m, * n of
the physical angular momentum m;,. Notice that when the Lagrangian (of gither a
conservative or nonconservative system) does not depend on an angle, then it is
invariant under rotations about that angle.

Caution: The conservation laws given above do not allow the identification
of ali possible constants of the motions. For instance, for a free particle
with p = mf, the quantity mr — pt is also a constant of the motion re-
sulting from the invariance of the system under translations and the Galilean
transformations r - r’ = r — vi.

Chart A.3 Impulsive Motion35

Consider a Newtonian system of particles with constant masses without
constraints. The motion is said to be impulsive when sudden changes of
dynamical quantities occur because of forces & of large intensity acting in
a small period of time (called impulsive forces). For instance, we have an
impulsive motion when there is no appreciable change of the positions r{z)
in the interval {t, — ¢ t, + &) but a large variation of the velocities F(t) in
the same |nterval of t|me occurs. This |mpulswe motion is customarily
interpreted in mathematical formulations by saying that the coordinates
r(#) are continuous, while the velocities f(f) are discontinuous at f.

By introducing the /mpuilse,

ro+e

@ = dt &, {1

tp—=

the equations of motion can be written
m(F, - %) =&, (2)

where F(F°)} represents the velocmes prior to (after) the application of the
impulse.

Nota Bene: Impulsive motions present several problematic aspects if one
attempts to represent them with conventional analytic formulations. This is
due, for instance, to the fact that the Lagrangian £ customarily depends on

35 See, for instance, Pars (1965, Chapter XIV).
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the velocities, L = L{r, ¥}, and, thus, the inclusion of impulsive forces
implies the appearance of discontinuities in the functional dependence of
the Lagrangian. In turn, such discontinuities have implications at all levels
of the methodology, e.3., the existence theory of solutions, variational
principles, etc. Therefore, we shall exclude, from here on, the representation
of impulsive motion whenever considering analytic formulations. More
specifically, we shall restrict our study of analytic formulations to systems
whose coordinates, velocities, and accelerations are all continuous
functions of time in the interval considered.

Chart A.4 Asrow of Time and Entropy

From the viewpoint of time inversion,
t— -1, (1

Newton’s equations of motion can be classified into * symmetry-preserving
and " symmetry-violating” equations. Conservative systems, such as the
case of a particle under an elastic force —kx, i.e.,

mi + kx = 0, (2)

constitute a class of systems which is t/ime-inversion symmetry-preserving.
This implies that for each process there exists a corresponding equivalent
time-reversed process. Dissipative systems, on the contrary, such as the
case of a particle moving under the action of a drag force —bx, i.e.,

mi+ bx =0, (3)

are, generally, time-inversion symmelry-violating. In this case, a time
inversion leads to a nonequivalent motion, such as

mi — bx = 0. (4)

As a result of this property, dissipative systems and, more generally, all
systems with velocity-dependent forces (e.g., dynamical systems) that
are not invariant under time inversion demand, for their consistent descrip-
tion, a specified direction of time or “time’s arrow."’

Nota Bene: The time-inversion symmetry violation is not in contradiction with the
Principle of Causality according to which a cause must precede the effect, because
such a principle holds in Newtonian Mechanics for each specified direction of time.

The above behavior of Newtonian systems under time inversion has
profound implications from a thermodynamic profile. One of the most
significant aspects of the thermodynamical description of systems of
particles is the existence of irreversible processes. According to Planck’s
definition, they are processes which, once performed, leave the world in an
altered state with no experimental process capable of restoring the initial
state, Such irreversibility has been related to a priviledged direction of time,
namely, that for which Clausius's entropy is nondecreasing. More
specifically, the second law of thermodynamics states that for any isolated
system, the variation dS of the entropy $ in the time dt(>0) must be non-
increasing, i.e., dt > 0« dS = 0. Eddington vividly expressed such
connection by saying that entropy is time’s arrow.
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Thermodynamics is today a sophisticated and fascinating discipline with
a direct or indirect impact on virtually all other branches of Physics. A
variety of excellent easily identifyable treatises are available to the inter-
ested student. Among the contributions by the ‘founding fathers™ of
thermodynamics, Boltzmann’s contribution were and still are crucial. In
essence, they identify and correlate the following layers of descriptions of
the physical reality.

Newtonian description (Newton's equations of motion)
Probabilistic description (kinetic equations)
Thermodynamical description (entropy)

Boltzmann's approach is useful here to emphasize that the content of this
book deals only with the first layer of description, namely, the Newtonian
description.

It is also significant to indicate that Newtonian systems with time-
inversion symmetry-violating forces, i.e., dissipative or nonconservative
systems, have a rather natural place within the cantext of Boltzmann's
analysis. This is not the case for conservative systems precisely in view of
their time-inversion symmetry-preserving character. This problem can be
expressed in terms of the so-called Loschmidt's paradox: when a system is
invariant under time inversion, the time-reversed process is physically
admissible and the original state can be recovered contrary to the second
law of thermodynamics,

For a treatment of Loschmidt's paradox see, for instance, Prigogine
(1973).

Chart A.5 Gauss’ Principle of Least Constraint3¢

Consider a system of A particles with (constant) masses /m, without
constraints in a Cartesian reference frame. Introduce the quantity

a(iy = -;-m,.(i",. - i’)z (1
m,

Gauss’ Principle of Least Constraint states that the system evolves in such
a way that the quantity Q affords a minimum for the actual accelerations.

ProoF Let r be the actual accelerations and ¥ + AF represent possible
accelerations. Then

Q(F + AF) - Q(F) = Im(AF)2 + (mF, - F)  AF >0, (2)

i

unless AFF =0,/=1,2,..., N
Significance: The condition that the {first-order) variation Q of Q be
null, i.e.,

o) =0 (3)

is sufficient to derive Newton’s equations of motion.

36 See, for instance, Pars (1965, page 42).
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Chart A.6 The Gibbs—-Appel Equations23?

Consider a Newtonian system of /V particles (with constant masses) in a
Cartesian reference frame. The quantity

G = im,i (1

is called the Gibbs function. When expressed in terms of generalized
coordinates, it can be written

G = G(t 4.4, §) = WZ,(t 9 + ZU(t, 4 HF + Zy(t. 4, 9), (2)

where Z;; is the same quantity as that of the kinetic energy and Z; and Z; are
functions which depend on the forms of the constraints. The Gibbs function
is instrumental in formulating the following theorem.

Theorem. The accelerations of the system are such that the quantity
G =G-1y 3)
always assumes a minimum value when considered as a function of .

Nota Bere: In the above theorem, coordinates ¢/ and velocities ¢’ are assumed to
be constants. The proof then can be given by noting that the total variation AG(#) is
always positive unless Ag' = 0.

Necessary conditions for G(§) to afford 2 minimum at & are the equations
dG" '
b_fjk

called Gibbs-Appel equations. They are equivalent to Newton’s equations

of motion, they hold for both holonoemic and nonholonemic constraints,

and they are closely related to Gauss's principle of least constraint
(Chart A.B).

=f,, k=1,2,...,n {4)

Chart A.7 Virial Theorem38

The so-called Clausius’s virial for a Newtonian system of MV particles in
Cartesian space subject to (nonimpuisive) forces &, is the time average

) 1 [w ;
V=_<%,,.gi>=_a£) dtiri - F,. (1)

The virial theorem states that under the assumption that the particles move
in a closed region and the velocities are bounded, the time average of the
kinetic energy is equal to'the virial, i.e.,

(T3 = (Emk, - K = ={ri - F 5. (2)

For central force fields, the term v - &, becomes equal to the potential
energy. Thus, the virial theorem for central force fields states that the time
average of the kinetic energy is equal to, but opposite, half the time average
of the potential energy.

37 See, for instance, Pars (1965, Chapters XI| and XIIi).
28 See, for instance, Lindsay (1941).
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Significance: The virial theorem is particularly useful from a statistical
profile, e.g., in the kinetic theory of gases where it leads in a natural way to
Boyle's law for perfect gases.

Chart A.8 Liouville's Theorem for Conservative Systems39

Consider a conservative holonomic Newtonian system of A particles,
represented by the Hamiltonian H(t, p. g) = T{t. g. p) = V(t. q) and
Hamilton’s equations

g L

op,” Pe gk’
Suppose that the Hamiltonian H satisfies all needed continuity conditions.
Each point of the phase space M, ., represents a possible state of the
system and one and only one possible path crosses through each of those
points.

k=1,2...,n. (1)

_Liouville’s Theorem for Conservative Systems states that the
phase space volume occupied by a conservative holonomic Newtonian
system of particles is constant in time {i.e., particles in phase space move as
an " incompressible fluid’’).

Let V¥ be the volume in phase space. By using Gauss's divergence ,
theorem we have

av og%  op
o = dat -+ - dg" d, c e d _+_k’ 2
i L q " dp, (" (Oq"‘ ﬁpk) (2)
and in view of Equations (1) and the continuity of A, we can write
av 924 O2H
— = |dg" - dg¥dp, g - =0 (3
dt L 9 q P P (6(;" op, Op, Oq") )

Nota Bene: Liouviile’s Theorem holds also for time-dependent Hamiltonians.

Significance: Liouville's Theorem is particularly important for statistical
mechanics and, thus, for any large collection of either microscopic or
macroscopic particles {such as a plasma or a galaxy, respectively). The
statistical properties of such systems may be specified at any time ¢
through the density p(t, g, p) of points per unit volume of phase space.
Liouville's theorem then implies that the density p remains constant in the
neighborhood of possible trajectories in phase space. Statistical equilibrium
can then be defined as the distribution for which the density p is uniform
along possible phase space trajectories.

Chart A.9 Generalizations, of Liouville’'s Theorem to Dynamical
Systems

Two generalizations of Liouville’s theorem to dynamical systems can be
formulated depending on the assumed form of the canonical equations.

39 See, for instance, Tolman (1938).
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Global Approach: Suppose that a holonocmic Newtonian system admits a
representation in terms of the Hamiltonian H(t, g, p) and the conventional
Hamilton's equations

_OH . oH

= -0 k=1,2...,n Mm

R =
op,’ Pu og*

Gauss’s divergence theorem (Chart A.14) applies and we can state the
following theorem.

Liouville's Theorem for the Global Approach to Holonomic
Newtonian Systems. The volume V in the phase space Mg 1n)
occupied by a holonamic Newtonian system of particles represented in
terms of the conventional Hamifton's equations is constant in time, i.e.,

02H  32H
ogt Op, Op, Og*

il dq‘---qudp1---de( =0 (2)

Nota Bene: The Hamiltonian H(Z, g, p) can have here an arbitrary functional
dependence on (¢, ¢. p}. The dependence H = T + {/ may occur as a particular case
when all the acting forces are derivable from a potential. Theorem (2) is clearly
insensitive to the functional dependence of A and it centrally depends on Equations
(1) and the tacit requirement that 4 possess continuous partial derivatives of at least
second order. For the construction of a Hamiktonian capable of representing a (self-
adjoint) holonomic Newtonian system through Equations (1), see Chapter 3.

External Approach: Suppose that a holomic Newtonian system is rep-
resented in terms of the Hamiltonian Ht(f g, p*) and the Hamilton
equations with external forces

oH+ oH*
= , At = — + f ) 3

o, I gt Tk (3}
where the ¢'s are the same as those of Equations {1) and the p*'s are new
variables.

Let M+ denote the space spanned by the 2n variables ¢ and pt. Gauss's
divergence theorem still applies for the space A4+, but we now have the
following thecrem.

Ak

Liouville’s Theorem for the External Approach to Holonomic
Newtonian Systems. The volume V+ in the space M+ of variables
{g. p*) occupied by a holonomic Newtonian system of particles represented
in terms of the MHamifton's equations with external forces is not constant
in time unless of fop} = 0, ie.*°

dv+ ogk  apf
—_——= dq1...qudq+...dp+(_+ k
dt - 1 SUM ogk  op}
O24+ 244+
=qu1...qude...dpE( 8 _O3H +Ofk)
v . Og* opy  opf ogt  opf
= | dq' - dg¥ dpt - do), o # 0. (4)
e 1 N op;r

40 Lightenberg, Stehie, and Symon (1956).
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Nota Bene: 1ff, = f,(t, q) in Equation (4) and the system is conservative, then the
above two generalizations of Liouville’s Theorem are equivalent. Thus, these two
theorems actually differentiate when the acting forces (either dissipative or applied or
both) are velocity-dependent. It must be stressed that these two theorems are not in
contradition, because the spaces M and M+ do not coingide. In actuality, the above
two theorems are complementary to each other in the sense that they express comple-
mentary views: if the system is represented as a whole with one single function H
{global approach), the volume in the space M(qg, p) is constant; but if the system is
only partially represented with a function H*{(g. p*) and external p*-dependent
forces f, occur, the volume in the related M+ (g, p*), space is no longer constant due
to the presence of external terms. The reformulation of the two theorems in terms of
the densities p and p~ is here left to the interested reader.

The above properties give a clear indication of the methodological differences
which result from the use of Equations {1) or (3) for the representation of Newtonian
systems, as indicated in the Introduction.

Chart A.10 The Method of Lagrange Undetermined Multipliers*

Consider a halonomic conservative system represented by the Lagrangian
L(r, ©) = T(F) = ¥ (r). Suppose that the system is subject to &k non-
holonomic constraints of the {nonintegrable) velocity type,

b B =T 0 F+At)  s=12...k (1

Suppose also that %, are the forces necessary for the system to satisfy such
constraints. Then the equations of motion can be written

d ol oL
—_————— - . i = A w4y . )
dt aF  or Fy i=12, N (2)

But the work generated by &, for all displacements dif which satisfy
constraints (1) at a given (fixed) time ¢ must be null by assumption, i.e.,
&, - dr’ = 0 for all dv' such that & - dr = 0 at fixed t(dt = 0}. Then a
necessary condition for such work to be null is that &, = £, where the
/s are termed Lagrange undetermined multipliers. Therefore, the equations
of motion of the system are given by the set of A/ + k equations

dol oL
Gor or e
pft, r, 1) =0 (3)

in the 3N + k unknowns I and £.
Suppose, now, that constraints (1) are integrable, i.e., they satisfy
conditions (A.2.18). Then Equations (3) are equivalent to the equations

qaL® oLe
dt or or )
doLe oLt _ .
dt oas 0o’ 4)

41 See, for instance, Rund (1966, Section 5.5).
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in the Lagrangian
e =f+ asqf)s’ (5)
with ¢ = —#, Indeed, Equations (4) can be written
LRIV - T 4 s (01"5,. N r)I‘sk)_ b or,, O_AS'
dt o ari s ork  drf or ori ]|’
doLe oLt al¢™r
at o Ou® Ous ¢

=0, (6

and, in view of Equations (A.2.16), they coincide with Equations (3) for
as = —f,

Nota Bene: Equations (3) are customarily derived on an empirical basis without
methodological backing (e.g., variational}. On somewhat pragmatic grounds they
are used because they are known to be correct. In the transition to the configuration
space of generalized coordinates, the forces of constraints are lost (Section A.4).
By comparing Equations (A.4.15) with Equations (3) or {4), we see that when only
the actual path is needed, both types of equations can be used. However, when the
computation of the forces of constraints is required, then anly the fatter equations
should be used. If a holonomic constraint is assigned in the coordinate form, it can be
equivalently written in velocity form (1) through a time derivative (see Section A.2).
Notice that the transition from Equations (3) to the equivalent form (4) is not trivial on
- methodological grounds, because it represents the transition from analytic equations
with external terms in the Euclidean space £,(r} to analytic equations without
external terms in the space £,(r)® x £, («} of the Cartesian coordinates and the
multipliers o=. It should finaily be indicated that Equations (3) constitute, strictly
speaking, a system of second-order ordinary differential equations subject to a
system of first-order subsidiary constraints. This class of systems will not be studied in
this book. :

Chart A.11 Geometric Approach to Newtonian Systems

in the main text of this book, we study the analytic approach to New-
tonian systems. Such an approach is undoubtediy essential to analyze
several basic aspects and advisable as a first step for the uninitiated reader,
but it does not exhaust ali possible methodological alternatives. In this
series of charts at the end of each chapter, we often touch upen a second
significant approach to Newtonian Mechanics, the gecmetric approach,
with the intention of providing the interested reader with the elements for
a broader methodolfogical horizon, but without any claim of completeness
or mathematical rigor. Therefore, the uninitiated reader is urged to study the
quoted references or some equivalent sources.

There exist several motivations for the analysis of Newtonian systems
from a geometrical profile, ranging from a purely aesthetic need to specific
methodological tools not provided by the conventional analytic approach.
It is sufficient, in this respect, to mention that the geometric approach
provides the means for characterizing the “essential features” of a
dynamical system in a way independent from the selected type of co-
ordinates. There are, however, deeper motivations for recommending the
study of the geometric aspects. They are ultimately connected to the fact
that within each selected coordinate system there exists an infinite variety
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of equivalent equations of motion, all able to characterize the same
actual path (i.e., the solution of a Newtonian initial value problem). This
fact will be analyzed in more detail later. Thus, the actual path can be
considered as an “‘essential feature” of a dynamical system. However,
when such a system is represented in terms of Newton’s (or analytic)
equations, then the study of the class of equivalent Newtonian initial value
problerns becomes essential for any in-depth study of the framework. In
turn, this aspect is intimately linked to the so-called transformation theory.

Again, the geometric approach provides means for characterizing the
ciass of equivalent differential equations without any specific reference to
an individual element of the class. There exist several aspects of the geo-
metric approach which are relevant for our analysis. In these charts, we
touch only on those of major significance. In Charts A.12 through A.16,
we consider only the tensor calculus for linear and nonlinear coordinate
transformations and the representation of the equations of motion in
curvilinear coordinates. The concepts of manifold and symplectic geometry
are introduced in the charts of Chapter 2. We hope that the presentation of
the geometric approach jointly with the conventional analytic approach,
rather than as a disjoint discipline per sé, will render it more accessible to
the uninitiated reader, and that it will be more effective.

Chart A.12 Tensor Calculus for Linear Coordinate Transformations4?

Tensor calculus, one of the first steps toward a geometric analysis of
physical systems, is concerned with the behavior of physical quantities
under coordinate transformations. in this chart, we restrict cur attention to
linear transformations. The nonlinear case is considered in Chart A.13.

Consider an n-dimensional Euclidean space £, with coordinates ¢,
i=1,2,...,n for a point Pe £, . Let the linear transformation ’

g, = a.q, (1

be an orthogonal transformation, i.e., a transformation satisfying the
conditions aa” = aTa = 1, where a = (a)) and a7 is the transpose of a.

A setof n” quantities 7, ,, , is termed an affine tensor of rank r if these
quantities transform, under transformations (1), according to the law

7. . =0i12q;_2%]' ) (2)
f1i2.. e Oq” 6qi2 dqi AT

with inverse

o

g, o
T =k 2ip. iy 3)
1712.004r équ oqu bq J1I2 0 dr

An affine vector A, in £_is an affine tensor of rank r = 1 with transforma-
tion laws {and inverse)

o
|

o

L3

A = LA (4)

4

o
£
>
R
1]
o
g
k

42 Gee, for instance, Lovelock and Rund (1975).
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An affine scalar A{q) (or affine invariant) is. an affine tensor of rank r = 0
with transformation law

A(q) = Ala). (5)

If an affine tensor vanishes in one coordinate system it vanishes in any
other reference frame obtained through orthogonal transformations. The
set of all affine tensors of rank r constitutes a (linear) vector space over the
field of reai numbers.

Nota Bene: For the affine (or orthogonal or Cartesian) framework there is no
distinction between coordinates with upper orlowerindices,ie. g, = ¢,/ = 1,2, . . ..
The configuration space M, with generalized coordinates gf used in the text refers
primarily to this context. 'I!he set of all orthogonal transformations in £, forms a
group called the orthogonal group O{n) {which includes inversions, i.e., the trans-
formation g, = —q,).

Chart A.13 Tensor Calculus for Nonlinear Coordinate Trans-
formations43

The linear transformations of Chart A.12 are often inadequate {e.g., for
the case of curvilinear coordinate systems or of tensor calculus on
manifolds). As a generalization of the affine framework, consider the
transformations in a Euclidean space £, with points P = (g', ..., ¢7)

F = §'(q). (1)

which are rnot assumed to be necessarily linear in ¢’. Suppose that the
functions §'(q) possess continuous partial derivatives of the second order
in a region R & £ and that everywhere in such a region transformations
(1) are invertible. A scalar (or invariant) in R is any quantity A(g) such
that A(g) = A(g). The gradient vector A, = 0A/dqg’ transforms under (1)
according to

A =24 (2)

i
/ og' i’
and is termed a covariant vector. A set of quantities 4/(q) is termed a
contravariant vector when it transforms under Equation (1) according to
the law

- o .
Al = — Al 3
S (3)

The coefficients of transformation laws (2) and (3) must be evaluated at
the point P. Three types of tensors of rank 2 can now be distinguished. They

43 See, for instance, Misner, Thorne, and Wheeler {1973) or Lovelock and Rund
(1975).
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are the contravariant tensor, T', the covariant tensor T, and the tensor of
mixed type T, = T}, defined by the corresponding transformanon laws

Tii oF o’ Tki

agk o

_ _ 07 o'

I 3gk dg f

- _ 0g¢' og/

i ATk At (4)
og* o

In addition, a quantity I, , termed connection, can be introduced for which
e 0T 0 0gF | Ot 927" oq

Pk ag’ og’ 0ak' ix qu' dgk bqn’ oqk

Such a connection allows the quantities d4’ + I}, A/ dg* to transform as

contravariant vectors. This permits the mtroductlon of the covariant

derivatives

(3)

Y-
Al = —+ T A
4 oq
0A,
Ay = g +TEA,. {6)
for which
Ai:j;k - Ai:k:j = AIR::H + (Fj-,- - r,':f)AiJ,,
the quantity
. ory, arj, .
Rins = 2qe ~ agn + D7 = Thn T )

is termed the curvature tensor of the connection.

MNota Bene: Unlike the case of linear transformations (Chart A.12), the covariant
and contravariant quantities do not coincide within the context of nonlinear trans-
formations. This is ultimately due to the fact that the terms 0g/0g/ and 3% /0g/ are not,
in general equal. If, however, transformations (1) are linear, then: {a) such identifica=
tion is possible; {b) the distinction between covariant and contravariant quantities is
lost; and {c) the connection becomes identically null (together with its curvature
tensor). We must stress that the connection I, is, at this point, arbitrary in the sense
that it can be characterized by any set of n3 numbers and law (5) It should be
mentioned that such a connection is often called an affine connection, although the
context is not the conventional affine framework of Chart A.12,

Chart A.14 Dynamical Systems in Curvilinear Coordinates*+

Consider a Newtonian system of /V particles with constant masses sub-
ject to scleronomous hoionomic constraints and generalized forces
f.(t. g, §). Its kinetic energy can be written

7(q. §) = 342, ()¢, ' (1)

44 Seeg, for instance, Rund (1966, Appendix 2).
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where the quantities Z,; are given by Equation (A.4.11). Then we can write

dor _or _ +1(02,-k+02,-f_02ﬁ)-;-k 2
dtog o+ T2\3gl T Bgr g )T @

By intrc;ducing the so-called Christoffel symbols of the first kind,

; /- ;) @

1/82,  oZ, oZ
[, K] =_( i
ogf  agt  og*

the equation of motion can be written

de_dT_f= Sk 4 i Kk — f = 0 @
diog og ixd [, Klgiq ;= 0.

By introducing the Christoffel symbols of the second kind,
[ = 2k 1 (5)
with the “inverse”
Lk 1) = 2,443 (6)

where the matrix (Zi) is the inverse of (Z,.I.), the eguation of motion can be
written

Zulgc + {5 g’ - £, =0 7

In Riemannian geometry, the quantity within the square brackets is termed
the covariant derivative of ¢* with respect to ¢, and denoted by

Do~ _
o -9 T idd. (8)

Then the equations of motion can be written in the concise form

Dg*
(@) D_‘?; —f=0. (9)

¥

Significance: Equations (4) or {7) or {9) are particularly useful from a
geometric (i.e., Riemannian) profile both per sé and as an intermediate
step prior to the general theory of gravitation.

Nota Bene: Equations (4), (7). or (9) can be interpreted as the equations of
motion of scleronomous holonomic systems in a curvilinear coordinate system with
affine connection I, = {}} or, equivalently, in a curved space with metric tensor
g;, = 3Z,.. When the elements g, {¢) characterize a nonsingular, symmetrjc, covariant
tensor field over a differentiable manifold (see Chart 2.1), the representation space
can be interpreted as an n-dimensional Riemannian space.

At the limit when g, = im.6,; (i.e.. when the system is uncenstrained), the
Christoffel symbols vanish identically and Equation (4), {7}, or (2) coincides with
Newton’s equations in Cartesian coordinates.
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EXAMPLES

Exampie A.1

A significant example of 2 Newtonian conservative system without constraints is
provided by an isolated system of N particles moving in a vacuum under their mutual
gravitational forces. This system can be represented by the Lagrangian

L(k, ©) = g1 — G Z >
ij=1 [re — rjl

i<j
where G is the universal constant of gravitation. The study of this system, particularly
for the case N > 2, falls within the framework of the many-body formulations in-

dicated in the Introduction.

m;m;

Example A.2

One of the simplest examples of systems with conservative forces and scleronomous
holonomic coordinate constraints is given by the plane penduium. In this case, the
coordinate constraint arises from mechanical means (inextensible rod of length I
and hinge), which force the particle to move in a vertical circle of radius I. If one takes
the generalized coordinate ¢ to be the angle between the rod and the vertical, the
system is described by the Lagrangian

Lig, §) = 3m*§* — mgl(1 — cos q)

when [rictional forces are ignored.

Example A.3

An example of a system with conservative forces and rheonomous holonomic co-
ordinate constraints is given by a particle which moves under the force of gravity
along a straight line, rotating in a vertical plane with a constant angular velocity ¢.
The Lagrangian (for g = r = coordinate along the straight line) is

Lit, g, @) = m(g*p* + §°) + mgq cos @L.

Example A4

Another simple example of a conservative system is the one-dimensional harmonic
oscillator with the Lagrangian

L(x, %) = tmx? — $kx?
and the (linear) equation of motion

2
5=

F+wix=0, o

|

which holds for small oscillations when damping forces are ignored.
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Example A.5
A typical example of a nonlinear conservative system is the anharmonic oscillator
with the Lagrangian
Lix, %) = $mx? — $hx® — ke xt
The equation of motion
+oix +olxr=0,
k. 2. ky

wi=—, o
m m

is nonlinear (in the coordinate) and provides a higher approximation than that of the
linear case, when damping forces are again ignored.

Example A.6

A typical example of one-dimensional linear dissipative systems is the oscillator with
conservative (elastic) force #° = —mowdx and damping force #¥ = —2mf %
The equation of motion is

£+ 2B0% +wix =0.

If one assumes ¢ = —mf,%? as the power function, then the rate of change of energy
is
&
‘Z—T =2 = FUh% = —2mfl, %%
t

‘Example A.7

An example of a nonlinear dissipative system occurs when the conservative and dis-
sipative forces are
F = —modx — mo?x® and FY= —2mfyx — 2mf 37,
respectively. The equation of motion is
%4 200% + 2Bo%% + wox + wx2 =0
and the rate of change of the energy is

dé'r

i —2mBp X — 2mp %3,

Notice that this system is nonlinear in both the position and the velocity.

Example A8
An example of a linear dissipative system in more than one dimension is given by the
equations
a(Dg* + bf0)g* + ()i =0  (no summation)
k=12,...,n,
which represent a system of damped oscillators. The osciilators, however, are de-
coupled.
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Example A.9

A more significant example of a (linear) dissipative system of arbitrary dimension
is given by a system of coupled and damped oscillators with the equations

aul)g’ + b’ + c ()i =0,

which play a central role in the theory of smail oscillations with damping.

Example A.10

A significant example of a truly dynamic system in one dimension is the damped and
forced oscillator with conservative force --mw3x, dissipative force —2mfyx, and
applied force £, x, X)/m. Its equation of motion is

%4 280% + wix = fo(t. x, ).

Example A.11

The system of coupled, damped, and forced oscillators with the equations of motion
a(g' + b + e = filt. 0, @)

is a significant example of a dynamic system in more than one dimension. Notice
that this system can be written in the form of fundamental equations of motion
(A.7.5) by putting :

Ay = s
B, = ayq + bud' — fi.

Notice the appearance of the so-called acceleration couplings due to generally non-
null values of the off-diagonal térms of the matrix (c;)).

Problems

Al Prove the following relations in the transition from the Cartesian to the
generalized space of coordinates.

st o
o og”
dor_aw
A g
o de . 0 .
l's‘@=$a—‘jj(%rf'r)—?%rrr),

which are used for the Lagrangian formulation of D*Alembert’s principie (A.4.9),

A.2 Prove that acceleration-dependent forces generally violate the postulate of
Newtonian Mechanics according to which the total acceleration of a particle is the
(vector) sum of the accelerations produced by each individual acting force.
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A3 Perform the transition to configuration space for D’Alembert’s principle
(A.7.1) in the case of masses variable in time.

A4  Compute the equations of motion of Examples A.2 and A.3.

A.5 Compute the energy rate of variation for Examples A.9, A.10, and A.11.

A.6 Examples A.2 and A.3 constitute only an approximation of the corresponding
physical systems. Construct more realistic models with the inclusion of dissipative forces
and identify their equations of motion.

A7 The case of a massive charged particle moving (nonrelativistically) in an
clectromagnetic ficld constitutes a somewhat hybrid mixture of a discrete system (the
particle) and a continucus system (the electromagnetic fleld). Assume the total energy
of this system to be that of its discrete part, namely, the kinetic energy of the particle.
Compute the rate of variation of this energy and identify the system as conservative,
dissipative, or dynamic.

A.8 Prove the Gibbs-Appel equations of Chart A.6. (Hint: Assume coordinates
and velocities to be constant.)

A9 Prove the virial theorem of Chart A.7.






References

1638

1687

1736

1765

1788

1834

1837

1873
1878
1879

1887
1891
1894

18%6
1897
1898
1900

Galilei G: Dialogus de Systemate Mundi, translated and reprinted by Mac-
Millan, New York (1917).

Newton I: Philosophiae Naturalis Principia Mathematica, translated and re-
printed by Cambridge University Press, Cambridge (1934).

Euler L: Mechanica, Sive Motus Scientia Analytice Exposita, see L. Euler Opera
Ommnia, Teubner, Leipzig (1911).

Euler L: Theoric Motus Corporum Solidorum Seu Rigidorum, Greifswald. See
L. Euler Opera Omnia, Teubner, Leipzig (1911).

Lagrange JL: Mechanique Analytique, reprinted by Gauthier-Villars, Paris
(1888).

Hamilton WR: On a General Method in Dynamics and Second Essay on a
General Method in Dynamics, in Hamilton’s Collected Papers, Cambridge
University Press, Cambridge (1940).

Jacobi CG: Zur Theorie der Variationensrechnung und der Differentualglei-
chungen.

Fuchs L: J. Reine Angew. Math. 76, 178.

Frobenius G: J. Math. 83, 207,

Thomson W: and Tait PG: Treatise on Nawmral Philosophy, Vols. 1 and 11,
reprinted by Cambridge University Press, Cambridge (1912).

Heklholtz H: J. Reine Angew. Math. 100, 137.

Darboux G Legons sur la Théorie Générale des Surfaces, Gauthier-Villars, Paris.
von Hertz H: Prinzipien der Mechanik in Newen Zusammenhang Dargestelit,
Barth, Leipzig. '

Mayer A: Ber. Ges. Wiss. Leipzig, Phys. Cl, 519,

Hirsch A: Math. Ann. 49, 49,

Hirsch A: Math. Ann. 50, 429,

Bohem K: J. Reine. Angew. Math. 121, 124.

von Weber H: Vorlesungen uber das Pfaff sche Problem, Teubner, Leipzig.

257



258 References

1901
1903
1904
1906

1917
1922

1927

1928

1929
1931

1932
1935

1937
1938

1941

1946

1948

1949

1950

1951
1953

Konisberger L: Die Prinzipien der Mechanik, Teubner, Leipzig.

Hamel G: Math. Ann. 57, 231

Whittaker ET: A4 Treatise on the Analytic Dynamics of Particles and Rigid
Bodies, Cambridge University Press, Cambridge (reprinted in 1963).

Forsyth AR: Theory of Differential Equations, Cambridge University Press,
Cambridge.

Kurshak J: Math. Ann. 60, 157, 317.

Bocher M: Legons sur les Methodes de Sturn, Gauthier-Villars, Paris.
Boltzmann L: Verlesungen Uber die Prinzipien der Mechanik, Barth, Leipzig.
Cartan E: Lecons sue les Invariants Integraux, Hermann, Paris.

Goursat E: C. R. 174, 1089,

Birkhoff' GD: Dynamical Systems, American Mathematics Society College
Publishers Providence, RI, Vol. IX.

Ince EL: Ordinary Differential Equations, Longmans-Green, London.
Levi-Civita T and Amaldi U: Lezioni di Meccanica Razionale, Vols. I and II,
Zanichelli, Bologna.

Davis DR : Trans. Am. Math. Sec, 30, 710.

Davis DR : Bull. Am. Math. Soc. 35, 371,

Bauer PS: Proc. Natl. Acad. Sci. USA 17, 311.

Bateman H: Phys. Rev. 38, 815,

Davis DR: Trans. Am. Math. Soc. 33, 244,

Synge JL.: Trans. Roy. Soc. Can., Sec. II1, 49.

Caratheodory C: Variationsrechnung und Partielle Differentialgieichnungen
Erster Ordnung, Teubner, Leipzig.

de Donder Th: Théorie Invariantive du Calcul des Variations Gauthier-Villars,
Paris.

Cartan E: Théorie de Groupes Finis et Continus, Gauthier-Villars, Paris,
Rapoport IM: C. R. Acad. Sci. U.S.S.R. 18, 131

R. C. Tolman, The Principles of Statistical Mechanics, Wiley, New York.
Douglas J: Trans. Am. Math. Soc. 50, 71.

Lindsay RB: Introduction to Physical Statistics, Wiley, New York.

Wintner A: The Analytic Foundations of Celestial Mechanics, Princeton Uni-
versity Press, Princeton, NJ.

Bliss GA: Lectures in the Calculus of Variations, University of Chicago Press,
Chicago (reprinted in 1968).

Bliss JW: Thermodynamics, in The Collected Works of J. W. Gibbs, Vol. 1,
Yale University Press, New Haven, CT.

Gibbs TW: Collected Works of J. W. Gibbs, Vol. I, Yale University Press, New
Haven, CT.

Dedecker P: Bull. Acad. R. Bely., CI. Sc. 35, 774,

Lanczos C: The Variational Principles of Mechanics, University of Toronto
Press, Toronto (reprinted in 1970).

Dedecker P: Bull. Cl. Sci., Acad. R. Belg., 36, 63.

Dugas R: Histoire de Mécanique, Griffon, Neuchatel.

Goldstein H: Classical Mechanics, Addison-Wesley, Reading, MA (reprinted
in 1965).

van Hove L: Bull. Acad. Cl. Sci., R. Belg., Mem. 6.

Morse PM and Feshbach H: Methods in Theoretical Physics, Vol. I, McGraw-
Hill, New York.

Pauli W: Nuovo Cimento 10, 648.



1955

1956

1957
1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

References 259

Coddington EA and Levinson N: Theory of Ordinary Differential Equations,
McGraw-Hill, New York.

Lichtenberg DB, Stehle P, and Symon KR: Modification of Liouville Theorem
required by the presence of dissipative forces, report MURA-DBL/PS/KS-1
(unpublished).

Sommerfeld AW: Theormodynamics and Statistical Mechanics, Academic Press,
New York (reprinted in 1964).

Havas P: Suppl. Nuovo Cimento 5, 363,

Landau LD and Lifshitz EM: Mechanics, Addison-Wesley, Reading, MA.
Symon KR: Mechanics, Addison-Wesley, Reading, MA,

Khilmi GF: Qualitative Methods in the Many Body Problem, Gordon and
Breach, New York.

Akhiezer NI: The Calculus of Variations, Blaisdell, Watertown, MA.

Kiein J: Espaces Variationnels et Mécanique, Ann. Inst. Fourier, Grenoble, 12.
Flanders H: Differential Forms, Academic Press, New York.

Gelfand IM and Fomin SV: Caleulus of Variations, Prentice-Hall, Englewood
Cliffs, NJ.

Dirac PAM: Lectures on Quantum Mechanics, Yeshiva University Press New
York.

Jost R: Rev. Mod. Phys. 36, 572.

Prosser R: J. Math. Phys. 5, 701.

Vainberg MM : Variational Methods for the Study of Nonlinear Operators,
Holden & Day, San Francisco.

Sternberg S: Lectures on Differential Geometry. Prentice-Hall, Englewood
Cliffs, NI.

Streater R and Wightman AS: PCT, Spin & Statistics and All That, Benjamin,
New York.

Friedrichs KO: Advanced Ordinary Differential Equations, Gordon and Breach,
New York.

Pars LA: A Treatise on Analytic Dynamics, Wiley, New York.

Feynman RP, Leighton RB, and Sands MS: The Feynman Lectures, Addison-
Wesley, Reading, MA.

Hestenes MR: Caleudus of Variations and Optimal Control Theory, Wiley, New
York.

Rund H: The Hamilton-Jacobi Theory in the Caleulus of Variations, Van
Nostrand, London.

Tisza L: Generalized Theormodynamics, MIT Press, Cambridge, MA.
Abraham R and Marsden JE: Foundations of Mecheanics, Benjamin, New York,
Goldschmidt H: Ann. Math. 86, 246,

Katz A: Principles of Statistical Mechanics, Freeman, San Francisco,
Kilmister CW: Lagrangian Dynamics: An Introduction for Students, Plenum,
New York,

Van Der Vaart HR: Am. J. Phys. 35, 419-423,

Wells DA Lagrangian Dynamics, McGraw-Hill, New York.

Loomis L and Sternberg S: Advanced Calculus. Addison-Wesley, Reading, MA.
Denman HH: Am. J. Phys. 36, 516-519.

Santilli RM: Suppl. Nuovo Cimento 6, 1225.

Tonti E: Variational Principles, Tamburini, Milano. ‘

Brauer FB and Nohel JA: The Qualitative Theory of Ordinary Differential
Eguations, Benjamin, New York.



260 References

1970

1971

1972
1973

1974

1975

1976

1977

1978

Edelen DGB: Nonlocal Variations and Local Invariance of Fields, American
Elsevier, New York. ' .

Rektorys K (ed): Survey of Applicable Mathematics, MIT Press, Cambridge, MA.
Roman P: Introduction to Quantum Field Theory, Wiley, New York.

Santilli RM: Meccanica 1, 3.

Spencer DC: Bufl. Am. Math. Soc. 75, 179.

Hagihara Y : Celestial Mechanics, Vol. I, MIT Press, Cambridge, MA.
Kostant CB: Quantization and Unitary Represenfations, Lecture Notes in
Mathematics Vol. 170, Springer-Verlag, Heidelberg.

Santilli RM : In Aralytic Methods in Mathematical Physics, edited by Gilbert RP
and Newton RG, Gordon and Breach, New York.

Souriau I: Structure des Systémes Dynamiques, Dunod, Paris.

Levy-Leblond JM: In Group Theory and its Applications, edited by Loebl EM,
Academic Press, New York.

Saletan EJ and Cromer AH: Theoretical Mechanics, Wiley, New York.
Denman HH and Buch H: J. Math. Phys. 14, 326.

Havas P: Actq Phys. Austriaca 38, 145,

Herman R: Geometry, Physics and Systems, Marcel Dekker, New York.
Misner CW, Thorne K8, and Wheeler JA: Gravitation, Freeman, San Francisco.
Prigogine 1: In The Physicist’s Conception of Nature, edited by Mehra J, Reidel,
Dordrecht.

Shanmugadhasan S: J. Math. Phys. 14, 677.

Horndeski GW: Tensor, New Ser. 28, 303,

Mann RA: The Classical Dynamies of Particles—Galilean and Lorentz Relativity,
Academic Press, New York.

Sudarshan ECG and Mukunda N Classical Dynamics: A Modern Perspective,
Wiley, New York.

Allcock GR: Philos. Trans. Roy. Soc. London, 4. Math. Phys. Sci. 279, 487.
Atherton RW and Homsey GM: Stud. Appl. Math. 54, 31.

Engels E: Nuovo Cimento 26B, 481.

Gasqui I: J. Diff. Geom. 10, 61.

Horndeski GW: Tensor, New Ser, 29, 21.

Lovelock D and Rund H: Tensors, Differential Forems and Variational Principles,
Wiley, New York.

Reed M and Simon B: Merhods of Modern Mathematical Physics, Vol. 11,
Academic Press, New York.

Carati G, Marmo G, Simoni A, Vitale B, and Zaccaria F: Nuovo Cimento 31B,
152,

Feshbach H: Private communication,

Lovelock D and Anderson IM: Private communication.

Mertens R: A simplified method for the establishment of equations of motion
for complicated dynamical systems with Lagrange’s formalism, Report of the
Instituut voor Theoretische Mechanica, Ghent, Belgium.

Edelen DGB: Lagrangian Mechanics of Nonconservative Nonholonomic Systems,
Noordhoff, Leden.

Guillemin V and Sternberg S: Geometric Asymptotics, Mathematical Survey
No. 14, American Mathematical Society, Providence, RI.

Santilli RM: Ann. Phys. 103, 354 (a), 409 (b), and 105, 227 ().

Staneck JC: Can. J. Marh. 29, 673.

Engels E, Hadronic J. 1, 465,



1979

References 261

Santilli RM: Lie-Admissible Approach to the Hadronic Structure, Vols. I, I, and III,
Hadronic Press, Nonantum, MA.; for a summary, see Santilli RM, Hadronic J.
1,223 (1978); 1, 574 (1978).

Santilli RM: Foundations of Theoretical Mechanics. 11; Generalizations of the
Inverse Problem in Newtonian Mechanics, Springer-Verlag, New York, 1979 (in
press).



Index

Abstract product, of algebras 92
Acceleration couplings 235
Accessory extremal problem 39
Action functional 35
Adjoint system
for first-order equations 82
for second-order equations 57
Admissible
Lagrangians 35
paths 35, 55
variations 56, 57
Affine scalars, vectors, and
tensors 248
Algebra 92
Analytic representations
in configuration space
direct and indirect 121
integrability conditions 131
ordered and nonordered 123
region of definition 130
in phase space
direct and indirect 175
integrability conditions 176
ordered and nonordered 175
Associative algebra 92
Atlas 97
Autonomous systems 99

Base space 97
Bilinear concomitants 57
Bilinearity of products of algebras 92

262

Bundle chart 97
atlas 97
structure 98

Canonical generalized momentum 9,
157

Canonical structure, see Symplectic
structure

Christoffel symbols 257

Closed algebra 93

"Closed p-forms 30, 102

Conditions of self-adjointness

analytic, algebraic, and geometrical
significance 206

for first-order systems 70, 85

for fundamental forms (of equations
of motion) 65

for general covariant and
contravariant first-order
forms 87

for higher-order systems 195

for kinematical forms 67

for normal covariant and
contravariant first-order
forms 88

for second-order systems 59

reinterpretation for caleulus of
differential forms 75

reinterpretation for caiculus of
differential forms 75



Conservation laws 239
Conservative systems 225
relation with self-adjointness 149
Constraints 220
holonomic and nonholonomic 221
scleronomous and rheonomous 221.
Contact
manifold 101
structure 101
Continuity of functions 16
Contravariant vector 249
Corner 38
Cosymplectic
manifold 100
structure 100
Cotangent bundle 98
Couplings of coordinate, velocity and
acceleration type 150
see also Newtonian forces
Covariant derivative 251
Covariant vector 251
Curve 98

Darboux’s theorem 100
Degenerate (or singular, or
nonstandard)
Lagrangians 113
paths 113
systems 17
Differentiable
action 36
manifold 97
structure 97
Direct Legendre transform 157
Direct problem of Newtonian
Mechanics {or of the Calculus
of Variations) 111
Dissipative systems 228
relation with self-adjointness 149
Distance 34
Dynamical systems 233
relation with self-adjointness 149

Embedding
for Lagrange’s initial value
problem 115
for solutions 23

Index 263

End points contribution, of first and
higher order 43
Energy, total, of a nonconservative
system 7, 234
Equations of motion, see Newton's
equations
Equations of variations
for first-order systems 169
for Hamilton’s equations 170
for Lagrange’s equations 117
for second-order systems 56
of higher order 187
Euler—Lagrange’s equations 11, 38
see also Lagrange’s equations
Exact p-forms 30
Existence theory, for ordinary
differential equations 26
Exterior
derivative 27
form 27
Extrema 33
Extremal paths 35

Fiber 97
First countable topology 97
Frechét derivative 203 |
Functional (or Hessian) matrix and
determinant 17
Function space, normed 34
Fundamental analytic theorem
in configuration space 131
in phase space 176
Fundamental form of the equations of
motion 60, 236
Fundamental lemma of the calculus of
variations 38-
Fundamental Poisson brackets 94

Galilean relativity 10, 237

Gateau derivative 203

Gauss principle of least constraint 242

General first-order form, of equations
of motion 79, 81

Generalized coordinates 223

Generalized Lagrange brackets 95

Generalized Poisson brackets 94



264 Index

Gibbs— Appel equations 243

Globally Hamiltonian vector
fields 100

Green identity 57

Hamilton’s equations
equivalence with Lagrange’s
equations 167
self-adjointness 170
tensorial formulation 168
with external terms 6
without external terms 2, 166
Hamilton’s principle
arena of applicability 185
formulation of 38, 184
generalizations 185—192
Hamiltonian
admissible 160
construction from equations of
motion 177
regular or degenerate 160
use of Cauchy integral 179
Hamiltonian structure, see Symplectic
structure '
Hausdorff topological space 97
Hessian 113
Hilbert differentiability theorem 115
Hilbert space approach to Newtonian
mechanics 47

Implicit functions 18, 44, 138
Impulsive forces 240
Integrability conditions 32
for analytic representations, see
Conditions of self-adjointness
Inverse D’Alembert Principle 215
Inverse Legendre transform 161
Inverse Problem of Newtonian
Mechanics (or of Calculus of
Variations) 10, 111
Involutive character
of adjointness 58
of Legendre transform 1635

Jacobi’s law 92
Jaconi’s equations 39, 117

Kinematical form of equations of
motion 19, 63
Kronecker delta, generalized 28

Lagrange brackets 95
Lagrange derivative 201
Lagrange identity 57
Lagrange undetermined
multipliers 246
Lagrange’s equations
with external terms 6
without external terms 2, 110
integral form 38, 114
self-adjointness 118
Lagrangian
admissible 35
computation from the equations of
motion 141
continuity 112
integrability conditions 194
for the case of the Lorentz
force 147
regularity or degeneracy 113
structure 153, 154
Legendre transform
direct 3, 157
inverse 161
Lie algebra 3, 92
Lie’s derivative 100
Liouville
operator 48
theorem for conservative
systems 244
theorem for nonconservative
systems 245
Lipschitz condition 23
Local charts (and coordinates) 97
Locally Hamiltonian vector fields 100
Lorentz force 105
integrability conditions for
potential 147
self-adjointness 106

Mathieu equatizri: 108
Maximum
absolute 35



relative 35

weak relative 35
Mipimum

absolute 35

relative 35

weak relative 35

Neighborhood
of a point 16
of order m 34
Newton’s equations 1, 5, 219
conservative 225
dissipative 228
dynamical 233
integrability conditions for analytic
representations, see conditions
of self-adjointness
fundarnental second-order form 236
kinematical second-order form 19,
63
general first-order form 79 _
normal first-order form 19, 79
as vector field on manifolds 98
see also Newtonian forces
Newtonian forces
coordinates, velocity and
acceleration dependence 235
integrability conditions for
potential 67, 215
local and nonlocal 61
Nonassociative algebra 92
Nonautonomous systems 101
Non-self-adjoint system 60, 65
Nonsingular path 113
Norm 34
Normal form of equations of motion,
' see Newton’s equations

One-form 27

Path functionals 35

Path segment
in configuration space 33, 113
in phase space 159

Pauli’s theorem 100

p-forms 27

Index 265

Pfaffian forms 27
Phase space 159
Poincaré lemma
converse 31
direct 30
Poisson brackets 31, 94
Potential 153
Potential operator 203 !
Realization of product of algebras 92
Reduction of second-order systems to
equivalent first-order form 76
Region 16
Regular
Langrangians 113
paths 113
systems 17
Relative topology 97
Rotations 237

Scalar law 92
Second countable topology 97
Section 98
Self-adjointness, see Conditions of
self-adjointness
Self-adjoint variational forms 59
Self-adjointness
of Hamilton’s equations 170
of Lagrange’s equations 118
of Lorentz force 105
Sine—Gordon equation 217
Solution of systems of ordinary
differential equations
general 22
global 47
local 47 )
Star-shaped region 30, 130, 144
Symplectic
fundamental structure 100
manifold 99
structure 100

Tangent space 98
Tensor 27, 250
Tensor field 98
Time inversion 241



266 Index

Topological space 96 ' of Lagrange’s equations 116
Totally degenerate systems 18, 70 of second-order systems 56
Two-form 27 Variational problems 35, 43
Vector bundle 97
Variation atlas 97
abstract 44 isomorphism- 97
of admissible paths 37, 55 structure 98
contemporaneous 41 Vector field 97
noncontemporaneous 41 Virial theorem 243
realization of abstract 44 Volterra equations 25
total, of action functional 36, 41
Variational forms Weierstrass necessary condition 34
of first-order systems 82 ‘Whittaker equations 108

of Hamilton’s equations 110



Texts and Monographs in Physics

Edited by W. Beiglbock, M. Goldhaber, E. Lieb, and W. Thirring

Texts and Monographs in Physics includes books from any field of physics that might
be used as basic texts for advanced training and higher education in physics, especially
for lectures and seminars at the graduate level,

Polarized Electrons
By J. Kessler
1976. ix, 223p. 104 illus. cloth

The Theory of Photons and Electrons
The Relativistic Quantum Field Theory
of Charged Particles with Spin One-Half
Second Expanded Editien

By J. Jauch and F. Rohrlich

1976. xix, 553p. 35 illus. cloth

Essential Relativity

Special, General, and Cosmeological
Second Edition

By W. Rindler

1977. xv, 284p. 44 illus. cloth

Inverse Problems in Quantum Scattering
Theory
By K. Chadan and P. Sabatier
* 1977, xxii, 344p. 23 illus. cloth

Quantum Mechanics
By A. Bohm
1978. approx. 576p. approx. 85 illus. cloth

The Concepts and Logic of Classical
Thermodynamics as a Theory of Heat
Engines

Rigourously Constructed upon the
Foundation Laid by S. Carnot and
F. Reech

By C. Truesdell and S. Bharatha

1977. xxii, 154p. 15 illus. cloth

Principles of Advanced Mathematical
Physics

Volume I

By R.D. Richtmyer

1978. approx. 448p. approx. 45 illus. cloth

Foundations of Theoretical Mechanics

Part I: The Inverse Problem in
Newtonian Mechanics

By R.M. Santilli

1978. 288p. cloth

Part H: Generalizations of the Inverse
Problem in Newtonian Mechanics

In preparation







e
A






