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Abstract

f»This paper is devoted to a first formulation of the axiomatic Hilbert space foundations of the branch of the Hadronic
. Mechanics dealing. with the exterior treatment of strong non—Hamiltonian systems, and which admits. a Lie—isotopic
~ algebraic character. In particular, we are interested in generalizing the conventional eigenvalue equations of the Atomic

Mechanics into the broadest possible equations which are permitted by an associative algebra of operators on a one—
sided, modular, Hilbert space. The objective is made possible by the isotopic generalization of the associative'algebra' ot
of operators A, B, ..on a Hilbert space, such as the isotope ctdT}! characterized by the product A#B. = ATB, where T

is a fixed, bounded, and nonsingular operator of <. By using the T=isotopic product, we first introduce a _generaliza-
tion of the Hermitean conjugate, transpose, Hermitean, skew—Hermitean, unitary, skew—unltary, prolectton and. -exponen- .
tial operators. We then pass to the isotopic generalization of the notion of determinant, trace, and eigenvalue of a '
linear operator Some essential properties of this modular—isotopic formulation of the Hilbert space theory are identified.
The results are then applied to Hadronic Mechanics. In particular, we present the hadronic generalization of ‘@ number of
postulates of Atomic Mechanics, ranging from observables, states, and their time evolution, to total probability, its con-
servation in time, and the expectation values. We also prove that the isotopic generalization of Schrodinger’s equations
presented in Paper | are equivalent to the isotopic generalization of Heisenberg’s equations. We then pass to a central
aspect of the exterior hadronic problem, the achievement of total conservation laws under non—Hamiltonian internal

forces. For this purpose, we review the classical Birkhoffian solution of the problem, and point out its possible had-
ronic counterpart. As an application, the structure model of the =0 particle proposed by one of us in 1978 is_re—examined
and shown to possess a modular—isotopic structure. The existence of rather intriguing and virtually endless possibilities

of further developments of mathematical, theoretical, and experimental character, are  self—evident.
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II. ISOTOPES OF LINEAR OPERATIONS ON A HILBERT SPACE

2.1. Conventional Definitions. (Sée, for instance, Ref.s 7).

Throughout this section, by a linear space V we mean a vector space over the

complex number fieid € with addition x +y and sca]af multiplication

A, X, ye V¥ and 2 € C For a complex number X, A denotes the conjugate

of . In the essence, we shall consider enly f%nite-dimensiona] spaces.
Important linear spaces are the inner product spaces. Reca11.that

if V is a linear space then a mapping ( , ) : V x ¥+ C is called an .innex

(scalar) product on V if it satisfies the axioms

(x,x) >0 for a1l x#0in Vv, = {2.1)
ay) = (vax) . - (2.2)
{xoyz) = (k) + (x:2) (2.3)
{%,2y) = alx,¥)s x e C : 7(2.4)

for all x, ¥, z € ¥ . Note that the inner product (x,y) is also denoted by
the Dirac's notation <x|y> in other literature. A Tinear space V equipped
with inner product is called an {nnen pnaﬁuct {Euclidean) space.

In an inner product space V , we define the ronm [{x|| of each vector

xeV by

Hxli = Jlxax) {2.5)
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Thus every inner product space V turns out to be a metric space under
the metric d(x,y) = ||x - y|| . A complete-inner product space in
this metric is called a (complex) Hifbert space. An.dinner product
space and so Hilbert spaces can be.defined for the real number field.-
Since complex Hilbert spaces are .more exclusively.-used in quantum
physics, in this section we only treat complex Hilbert spaces.

Due to the technical problem of developing the concept of isotope,
we will essentigllyrestrict ourself to}finité—dim&nsquﬁ} Hilbert, spaces.

If H is a finite-dimensional Hilbert spdfg;rfhere exists é'special

type of basis ey, + + -, e of H - such that’

(ei,ej) = ﬁij’ i, j_=-1,;2;'igrr' M (I (2.6)

Such basis eqy,-+-, g, 1is called’an aathbnaaﬁﬁﬁ bq§i4 of H. Henceforth, -

we fix an orthonormal basis e, * * , € of H . Thus every vector x e H

is uniquely expressed as

X =ageg b e, oy .G LT -2

n
= : = e e+ g N L VR
where o; = {e;, x) . Given y =pe; ¥ _En?n.,)we have

{x:y} = g B - ' ‘ {2.8)

.Definition 2.1. Let x be given by (2.7). ‘Then the &onjdgate‘vectan

X of x is defined by X = aey et &nen .

Definition 2.2. Let V be a linear space. A Linear operaton A

on V is a mapping A : x -~ Ax of V inio itself satisfying:

Ao +py) = A(Ax) + n(Ay)

s e
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for a1l x, yeV and A, ueC . If A: V-V satisfies the relation
A(ax + y) = M{Ax) + n{Ay)

for all %, yeV and A, pe C then A is called an antilinear
operator on V. ]
In view of Definition 2.2., alf Linear operaters an.a Hilberi sprce

H are assumed in this section o be defined on the entine set H ,

whereas a more general definition requires only that a linear operator

in K is defined on a subspace of H . Antilinear operators in a

Hilbert space play a very minor role in quantum mechanics by comparison
with linear operators. Thus, for most of the cases, we focus on

linear .operators. For the sake of generality, we introduce the following.

Definition 2.3. A complex (assocdiative] algebra (r 1is a linear

. space with addition A+B and scalar multiplication AA such that there

is defined an operation : (A,B) ~ AB of Jlxg into satisfying
1) (AB)C = A(BC), associativity,

(it} {A+8)C = AC + BC, A(B+C)} = AB + AC, distributivity,

(ii1) A(AB) = {AA)B = A{A8), assoc., and comrut. of scalar multiplic.

for all A, B, Ce Il and complex_numbers XA . The algebra 8L is
called commutative it AB = BA for all A, Be JL . An element
1e¢@l is called an identity efement of (L if TA = Al = A for all

Ael . #
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An algebra {L is in general neither commutative nor has an identity
element. We are particularly interested in algebras of linear operators
in a Hilbert space H . Denote by L{W) the set of all Tinear operators

on H -. Far A, B € L(H) , as usual we define

{A+B}x = Ax + Bx, . ' (2.9)
" (aB)x = A(Bx), _ (2.10)
{(M)x = x(Ax), x e H, A e C . (2.11)

It is- readily seen that these operations convert: L(H}: into a comp1exr
associative algebra in the sense of Definition 2.3. Note that L{H} is
not commutative in general but has an identity element I which is the

identity operator on H; i.e., Ix=x forall xeH.

-Definition 2.4. Let H be a Hilbert space,
By a{(linear) operator afgebra {1 of H , we mean a subalgebra {1 of
L{H} which contains the identity element I . Namely, £ is a
subspace of L(H} such that Iegl and ABc O for all A,Be L

Definition 2.5. Llet L be an {associative) algebra with
muitiplication AB and with identity element [ . An element A of
is said to be {nventible in (L if there exists an element A~} ¢ (L

such that AA™' = A"V A =1 . In this case, call A™! the inverse of A .

‘ An invertible linear operator A in a Hilbert space is customarily

called nonsingu]aﬁ with inverse operator A'1 .
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A linear operator ‘A ¢n a Hilbert space H- is called bounded if
[iAx]] < ¢ |lx|], xeH

for some fixed positive real number c . Note that if A ts a bounded

nonsingular linear gperator then the inverse operator A" is bounded

als0. We assume the reader s familiar with the boundédness of operators

on finite-dimensional Hilbert spaces. -

2.2. Isotope of an operator algebra. The concept of isotope ot an

operator algebra ¢ s to convert &0 into another algebra defined.

on the same underlying 1inear space as O where the algebra 4L can

be recovered as a special casé of the isotope. Therefore, it is very
important in our inves%igation to distinguish the notions of product;
inverses and identity element in OL from those in the isotope of 'EZ
This distinction wi11 be the central scheme of our attempt to introduce

a more generalized notion of unitary, symmetric, hermitian and exponential
operators in a Hilbert space. For a general .approach, we define an

isotope in an arbitrary complex associative algebra.

QEfiﬂiEigg_g;g, Let fL be & complex associative algebra with
product AB and with identity eiement 1 . Let T he a fixed element

of OL . The algebra with multiplication ~
A=%B=AmB, A Bell (z.12)

defined on the same underiying 1inear!spape as. 1 is called the
T-homotope of 0L and is denoted by gpt') . If T is invertible in
0L then the T-homotope gﬁT) s called the T-{isotope of &L . #
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. Notice that [ﬂfT) is an associative algebra; )
(A+B)*C=Ax%(BxC) forall A, B,Cefl . The notion of )
homotope and isotope has been a useful tool for the structure of
associative and Jordan algebras. The interested reader may be refe_rr'ed
to Jacobson], Myungz, Osborn3, and Myung and Santi1]i4. An isotopic generalization ¢

of Lie's theorems can be found in Santi11114.

Remqu 2.1. Homotopes and isotopes éreAclose1y related to some

classes of Lie-admissibie algebras. Llet JL be an associative algebra

with product AB . Llet R, § be fixed elements of 0L . Denote

by  OJHR,S) the algebra with multiplication

A°B=ARB -B8SA, A, Be(l (2.13)

defined on the same linear space as &L . The algebra A(R,8) has
been called the (R,S)-mutation of (L and arises from a generalization
of the Heisenberg equation by Santilli. Denote by O1L(R,S}” the algebra

with the commutator product
[A.B]°=A°B-BeoA, A, BellL

defined on the linear space OI{R,5) . Then I(R,S} is a Lie-
admissible algebra in the sense that OL(R,S)” s a Lie algebra;

that is, [ , ]° satisfies the anticommutative law, [A,B]? = - [B,A]®
and the dJacobi identity, [[A,8]°, €1° + [[B.CI°, AJ® + [{C,A°, B]° =0 .
However, OL{R,S) 1is not in general associative; i.e.,- ’
{(AoB)oC#Ace (BoC) forsome A,B, Ce JI(R,S) . By direct

computation, one sees
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[A, B]®

A{R + S)B - B(R + S)A,

ATB - BTA = [A, B]"

which implies that the commutator [A, B]® in @L(R,S} equals the
commutator [A, B]* - AxB-B=+A inthe T = (R+ S)-homotope m(T) ,
being associative. The structure of gL{R,S) has been studied in
considerabie dgtaﬂ in relation with 02,(T) by a number-of authors

(see Ref. 2, 3, 4 and Oehmkes). #

Given & homotope gL(T) of gL , define a mapping g of ol(T) .

into L by

g(A) =AT, Ae 0L . . (2.14}
Then g is clearly linear and satisfies
g{A » B) = g(A)g(B), A, Bedl . {2.15)

Thus g 1is an algebra homomorphism of m(T) inte @ . Assume that
T 1s invertible in 2 with inverse T'1 , so that m(T) is an isotope
of ¢ . Then g is an iscmorphism of aZ(T) onto O with inverse

g =f: 0 > OI(T) given by

fAY= ATV, Aedl . (2.16)

Though &1 has an identity element, in a homotope &{T) there is no
guarantee for the existence of fdentity element, unless T 1is invertible

in ¢ . This leads teo

Definition 2.7. Let 0L be an associative algebra with product

AR and with identity element 1 . Let 02_(” be the T-homotope of (L

and with ident’ity element I
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¥ al(T) has an identity element, it is denoted by * ; i.e.,

Fepm AxI*"=A forall Ac?l . Llet aL(T) have an identity

element 1™ If an element A in az(T) is invertible in atl)
*

1* 1 _

the inverse of A 1in 01“) is denoted by A ' ; i.e., Ax A =

-1* -
A s A=Y F

The following result is very important for our discussion and may

be found in Myung2 {or easily verified).

Theorem 2.1. Let @1 be an associative algebra with product AB
and with identity element I . Let UZ{T) be the T-homotope of (2

for a fixed element T e QL Then we have

(1) OZ(T) has an identity element 17 if and only if T is

-1

. i = n - *
invertible in &L In this case, I =T

;.(2) If T is invertible in (0 then an element Ae L s
invertible in O1 if and only if A is invertible in AT . 1 tais
=1 -1 T_]

a
case, A =T A

(3) If T is invertible in & then the set of inyertthe elements

in Ot coincides with the set of invertible elements in gL(T) . #

Another important canceﬁt for our investigation is the notion of

cne-sided modules for an associative algebra and its isotope.

Definition 2.8. Let (% be an associative algebra with product AB
A Tinear space V is called a Left writal
Ol -modufe if there is defined a mapping : (A.x) » Ax of IxV into

¥ satisfying :
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(1) Al + py) = a{Ax) + u(Ay) ,

(11)  {dA + uB)x = A(Ax) + u(Bx) ,

(1i1)  (AB)x = A(Bx) ,

{iv) Ix=x
forall x, yeV,A,Befl,and A, nuel . #

Let gL be the same as in Definition 2.8 and Y be a Jeft
o -module.  Let tR{T) be the T-isotope of &2 . Defipe a .
mapping {A.x) + A % x of cE(T} XV infb ¥ by

Avx= (M)x=ATxh xe Vo Ae Ol , (2.17)
.o

where Ax is the module action in the ¢Z -module Y . It i; easily
checked that V becomes a unital left OI(T)—module undeyr the
compositian A % x , since 1'% x = T"](Tx) = (T"IT)x = ix = x for

all x eV . Thus we can put

Definition 2.9. Let £ and V be the same as in Definition 2.8.
Then the unital left aﬁT)—module‘defined on Y under the composition
A+ x given by (2.17} is calied the T-itotope of the M -module ¥

and is denoted by V') . & .

The definitions and results above are in particular applied to any
pperator algebra O in a Hilbert space H where Ax is simply the
Tinear operator action of A on H . MNote that if T =1 is the identity
alV = a ana v oy, 2

element ,then

Our aim s to introduce & generalized notion of unitany, hermitian,
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symmetnic and exponential cperatorns, and of eigenvalues by means of
Lsotope. It is important to note that the hermitian conjugate and
transpose of linear operators in & Hilbert space is an involutional

mapping in the sense of

Definition 2.10. Let &2 be an algebra. A linear (or antjiipear)

g1 + (0 s called an {nvolution (or anti-involution)

of JL if i(i(A)) = A and i(AB) = i(B) i{A) for all A,Becfl . #

mapping i

The following result is useful for later discussion.

Theorem 2.2. Llet J1 be an associative algebra with product AB
and with identity element I . Let T be an invertible element in
Let 1 be an involution {or aﬁti-invo1ut10n) of 01 Then the mapping

i alm + o™ defined by
iR = iMim T, As
is an involution {or anti-involution) of the T-isotope QQ(T} of 41 .
Proof. The mapping i; f{s the composition feiog of the mappings

g i f ()

0 > 0 »y O —— (1

o
where f and g are algebra isomorphisms defined by (2.16) and (2.14},

respective1y; Hence 1, is an iavoiution {or anti-involution) of

a . s
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2.3, Isotope of unitary and hermitian operators. Let H be a

Hilbert space with inner product ( , ) and let O = L(H) be the
operator algebra of all linear operators on H , with addition A+B,
muitiplication AB and scalar miltiplication AA defined by {2.9} -
(2.11). We z‘ﬂso fix T as a(boundechonsingu]ar linear operator in

H {so 71 s bounded also}. Thus the T-isotope 02(T) and

H(T) of O and H are defined by Definitions 2.6 and 2.9, respectively.

In other words, W is regarded as a unital left 01(T}-modu1e by
the operation (2.17). The following definition is of extreme importance

for our programs.

Definition 2.11. Given a linear operator A , define the linear

operator AhT by the relation
(Axx, 9= (x, T« y), x, yedH. (2.18}

call A" the T-henmitian conjugate of A . Similarly, we define the

tT

T-transpose A of A as a linear operator satisfying

:

(xs A*y) = (7 AT « R} xaye . # {2.19)

When T =1 is the identity operator, the I-hermitian conjugate
and I-transpese of A are simply the usual hermitian cenjugate Ah

and transpose A . In this case, (2.18) and (2.19) are given by

(A, ¥) = (x, A% ), {2.20)

u

(x, Av) = (5, & %) . (2.21)
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Theorem 2.3. Llet H be a Hilbert space,
and let QA = L(H) . Then, for each Ae & , the T-hermitian

canjugate AhT and the T-transpose AtT exist and satisfy
WALIFE LU Sl (2.22)
AT = 7t at 7 (2.23)
where Ah amd At are the usual hermitian conjugate and transpose.
Furthermore,
(AhT)hT - {AtT)tT = A, . (2.24)
(a4 + )T = % AT 4 g ghT | : fé.zs)
(& 5 )T = BT . T | (2.26)
- (A * s)fT = g7« Al (2.27)
for al1 A, Be L and X, peC
Proof. First, note that (2.24) - (2.27) hold for A" and AL .

In view of (2.18) and (2.20), we have

AhT

(Axx, ¥) = (x AT wy) = (x, A" T y)

= (ATx, ¥) = (x, (AT y) = (x, " AP )

and this impiies UL T AM and so (2.22). similarly, {(x, Axy) =

(x, AT ) = (7, (AN R) = (7, T8 AE %) = (7. AYT % %) and this gives

(2.23). Since the mapping - i O+~ & defined by i{A) = A or

At is an anti-involution of gt , it follows from Theorem 2.2. that
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the mapping i : am(T) + 51(T) defined by iy (A) = AT or

AtT

the relations (2.24} - (2.27). #

is an anti-involution of the T-isotope JltT) . This implies
Definition 2.12. A linear operator S is said to be T-zgmmetnic if

tT

sti=s : _ (2.28)

and S5 is called T-skew-symmeinic if

s = s (2.29)

Simitariy, a linear operator B dis calied T-hemmitian (or_T—éezs—adjaint)
or T-shew-hemitian if ‘

hT - B or BhT =-B. # "

B
The following result is immediate from Theorem 2.3.

Theorem 2.4. A& linear operator A {5 T-symmetric or T-skew-symmetric

if and only if
A= TR oroa = oTRNT o (2.30)
Similarly, B is T-hermitian or T-skew-hermitian if and only i¥
B=1M or B -TMEMTTT . 4 (2.31)

Note that (2.31) is equivalent to:

(x,B %7y} = {B + x,¥) or {x,Bxy}=-(Bx X,¥) (2.32)
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for all x, y € H . The usual definition of symmetry, hermitian, etc. is '

recovered when T =1 {is the identity operator.

Définition 2.13. A Tinear operator A Js called Toisometric i€
(18 *x]| =[|x]], xed. # {2.33}

If T=1 , Definition 2.13 leads to the usual definition of isometry.
By the standard linearization, one sees that (2.33) is equivalent to the

relation
(Bxx, Axy)=(xy)s xsyeH. - ‘(2.34)
Theorem 2.5. A linear-operator A 1is T-isometric if and only if
A g 1 (2.35)

where I* = T".l is the identity element of LRﬁT) . Any T-isometric linear

operator is bounded.

Proof. By (2.18) and (2.34), we have {x,y) = (A * x, A ¥ ¥) =
(s AhT w (A x yl) = (x,(AhT * A) *y) = (x,(AhT * A)Ty) }or all x, yeH,
since H(T) is a unitai left (R(T}-moduie. This ines (AhT * A)T = 1
and AhT * A= T'T =1 Clearly, AT is bounded and s?nce T s bounded

by the assumption, so is A . #

Definition 2.14. A linear operator U is called T-uniioay if

N

(U=xx,Uxy)=(xy) {2.36)

for all x, ye H and U is surjective; i.e., UH=H . # Clearly, T-unitari-

ty and T-isemetry are equivelent for finite-dimensional Hilbert spaces.
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Note that a T-unitary linear operator is T-isometric.

Theorem 2.6. A linear operator U is T-unitary if and only if

*
. P IR . AU | T (2.37)

The set of all T-unitary linear operators of H forms a group ‘with

identity element ;* under the T-isotopic product " # " defined by (2.72).

Proof. Assume U is T-unitary. Since U s T-isometric, by {2.35}

W . U= 1* . On the other hand, (U * x.y) = (x, U7 % y) =

hT .

(U » x,{U * UhT) *x y) . Since UT is also surjective, we have U+ U" =
Conversely, if U satisfies (2.37), U is clearly T-unitary. It remains

to show that if UI’ U2 are T-unitary then U1 * UZ is T-unitary. From

hT

hT J—
.* U U] * U2 =1

(2.26), it follows that (U; » uz)“T * Uy * ) = Uy
and Tikewise (Uy * Uy) » (U] * TRLER S

The group of all T-unitary linear operators on H is called the

T-unitary ghoup.

An antilinear operator U satisfying (2.36) is called T-antiunitary.
Again, notice that if T = I then the definitfon of T-unitary agrees with

the usuail definition of unitary operators U satisfying

TLTRSRTT. . (2.38)

In fact, the T-unitary group is isomorphic to the unitary group.
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Theorem 2.8. Let UT(H) and U(H) be the T-unitary and the unitary

group of H , respectively. Then the mapping f given by

1

U} = UT™', U e UH) . _ (2.39)

is a group isomorphism of U{H) to UT(H) .

Proof. Let U bewunitary. Then (UT M + @y = urhyd 1~ lqurl

= Tt = 10 = 18 and tikewise (UTTY) « (uTTHPT = 17

Thus UT™ s T-unitary. Assume U §s T-unitary. Then (UT)hUT
Tl = W) L wn =T e e e @ el 6T P T

I and
similarly (UT)(UT)h =1, Hence UT +1s unitary. Clearly, ,f(UIUZ) =
f(U]) * f(uz) and f 1is an isomorphism of U(H) to UT(H) . #

Theorem 2.9. Suppose that W is a Tinear operator on H and satisfies

[(x.¥)] = |{¥ « x, Wex y)| for all %, yeH . (2.40)

Then we have
Wrx=el®X,yx xen (2.81)

for some T-unitary or T-antiunitary operator U where ¢(x} is a real valued

function of x .

Proof. The proof is immediate from Theorem 2.8. and the known resuit
that if [{x.¥}] = [{Ax,Ay)| for a linear operator A and x, y ¢ H then
AX = e]¢(x)u1x for some unitary or antiunitary operator U] . Since WT

is a linear operator and U = UTT'1 is T-unitary or T-antiunitary by
Theorem 2.8, we can express as W + x = {(Wl)x = ef¢(x)ulx = ei¢(x)(U1T"1) %X =

ei¢(x)u *x. #
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When T =1, Theorem 2.9. is well known
for the study of symmetry properties of physical systems. .Theorem 2.9
gives the interpretation that if (2.40} or {2.41) holds then the phases

of all vectors can be adjusted in such a way that the T-isotopic mapping

x+W=xxX by W is effected by either a T-unitary or T-antiunitary cperator.

is T~hermitian then

Thecrem 2.10. If U .is T-unitary and A

-1*
UxAxU is T-hermitian.

. . 7
Proof. Note U'1 = UhT since U is T-unitary. Thus by Theorem 2.3.
* . a* * '
(U* A= ' )hT = (U'1 ]hT * AhT * UhT =U+ A+ UV and hence

i

U*A=+U' .is T-hermitian. 4

i

.. 2.4, Isotope of projection operators. We discuss the isotopic

generalization of a special type of linear operators, called projection

operators.

Definition 2.15. A linear operator P on H 1is called a

T-idempotent operaton if

PxP=P or PTP=P. # (2.42)
Consider now a subspace Ho of H. Letting
L .
Hy = {x7e HI(x,y) = 0, y e Ky}
we have a lineqr space direct sum
4L
H = Hy @HD . (2.43)

1299

and any vector x £ H s uniquely expressed as x =y +z, ¥ ¢ HO’
z ¢ Hy - [Note that §f H s of infinite dimension then (2.43) is still

valid for a closed subspace Hy of H ]

" Definition 2.16. Given a subspace HO of H. tLet any vector
XL
x el be expressed as x=y+z for ye HO’ zZe H0 . Then the

mapping PH : H+H defined by
0

(2.44)

Py #x= (P, T)x =y
o Ky

is Tinear and is calied the prﬂd@no%o%. A mapping P : H H
is called a T-projection if P is the T-projection onte somé subspace

Hy of H; i.e., P=PHD. #

Theorem 2.11. A tinear operator P on H is a T-projectioﬁ'éf énd
only if P 1is T-hermitian and T-idempotent, that is, PhT =P and

PxP=P.

Proof. Assume P is the T-projection onto a subspace :Hb of H .

L Ny
Let x;= y;+ 2., ¥, Hys ze Hy -4 =1,2 . Then (x], P * xz) = (y] + z],yz}

= @1,y2)= (y1,y2 £ 22) = (P & x1,x2) and by {2.32) T wp .

Clearly, P x P =P . Suppose that a linear operator P is T-hermitian and

T-idempotent. Let Hy=fye R |P=xy=y3. Then Hy is a subspace of

H . For each vector xcH and ye Hﬂgﬂx -Pxxe H&L since {x ~ P + x.y)
= (x - P % x,P*y) =-(P #(x - Pax)ay) = (P*x=-PwPxx,y)=0. But
since x =P xx + {x —'P * x} and P %€ Hy ‘for x ¢ K, P ='PH , the

0

T-projection onto HU . f
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'2.44)

+H
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+ z'| ayz)
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Pz x,¥)
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Note that if T =1, a T-projection is the usual projecticn. In

fact, we have

Corollary 2.12. A Tinear operator U 1is a projection if and only
it o1 is a T-projection.

Proof. If P is a projection then (PT_]) * (PT'IJ = pp7"t = pr]
and by (2.22) (P )T = thprNyBrl o ghpTiherl < oprel | g pre]

is a T-projection. -Let Py =

PT™ L so P=PT. Then PP =PTR,T = (P xP)T=PT=P and o=

(o) = TN = (RlrTyy = T - PyT =P, since P, is T-idempotent

is T-hermitian. Conversely, assume pr7l

and T-hermitian. B8y Theorem 2.171, this complietes the proof. #

Definition 2.16. T-projections P], =+ + , P are said to be

n
metually T-onthogonal if

PixPy=0 for i#=1,2, +»«,n. # (2.45)

Since the mapping f : A+ AT"] is an algebra isomorphism of the

operator algebra g7 = L(H) onto CH(T) » by Corollary 2.12 and the

known result for projections, the following is immediate.

Theorem 2.13. T-projectians Pys =+ », P are mutually T-orthogonal

n

if and only if the sum P =(® f 1 P, is a T-projection. In this case,

T=1"
we have P = PHo and P; = PHoi(i L PR ,n)lfur some subspaceas
HBysHg; of H, and Hy =Hy &« - - B Hon @s a linear space direct

sum where Hgy» ¢ ¢ = s My, are mutually orthogonal, i.e., (HUT’HDj) =0

for i#j . In particular, H0 =H 1if and only if
n
Iop=rretl | g
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2.5. Isotope of exponential operators. If & is a finite-

dimensional real or complex algebra with product AB and with identity
element 1 then it is a well known fact that, for each Ae JL , the

exponential eA = exp A defined by

eA=epr=1+A+ -—2—1-A2‘i‘";+n%-An+"' (2-45)

exists and is & uniformly continuous function defined en a Besides
the central role of the exponential function in the analytic and cantinuous
group theory, it alse plays an important role for the structure of some
classes of nonassociative algebras (see Remark 2.3 below). If £ s
infinite dimensional, exp A does not in general exist. But the convergence
of exp A can be guaranteed for some element Ac Far example,
if A is a bounded operator in a Hilbert space then exp A is defined in
0 = L(H}. For fhe sake of simplicity, we assume that. H is a finite-
dimensional Hilbert space. Let &L= L{H}.

Our aim is to develop the isotopic generalization of the following two
important problems.

(1) If a linear operator A e ¢ 1is also a function of a real

parameter t, then, for a fixed H e ZL , the solution of the equation

R IH.AT = (HA-AH) (2.47)

s expressed by

A(t}=A = eitHyg)e Tt | ' (2.48)
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The equation (2.47) is recognized as the Heisenberg eqguation.
{(2) If H 1is a hermitian operator then
u(t) = &M 7 : (2.49)

is a unitary operator for all real numbers ¢t .
We consider these problems in the T-isotope al(T) : We first

generalize Heisenberg's equations (2.47) in the T-isotopic form accaording

to Santilli (see Ref. 6):

*

3t = [

=1 (Av8<B%A) =} (ATB - BTA) .(2.50)
Let us begin by noticing '

[A,B]* = 0 4is not equivalent to the eguation [A,B] = 0 , unless T

commutes in OL with A and B . Denote by a*" the n th power of A

in LR(T) . It is readily seen that

A= ) e s A L=, 2, e e (2.51)

where A" indicates the n th power of A in (L .

Definition 2.37. We define the T-exponentict e# = éxpT A of A in
the T-isotope 6E(T) by -~ .

A _ . 1 ,*2 1 %
ep=expp A=D1 +A+or A+ e 40 Twwe o £ (2.52)
Since the mappings f, g & 41 -+ LH(T) defined by

Fa) = AT, g(A) = TA, A e OL (2.53)
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are algebra isomorphisms, they map the exponential eA in £&F to the
exponential eg{A) and eg(A) of f(A) and g(A) in aﬂT) . Thus

AT, e$(AT) .\

£(eATy - Ao AT

Ll

g(ETA) o T-]ETA = e%(TA) - E#
Hence we have the following result {also see Myungz).

Theorem 2.14. For every linear operator' Ae O, wehave

of =TT = AT (2

If [AB]*=A+BE-B+A=0 then
hxep=ef " F (2.55)
Sl (e#}q* . (2.56)

By direct computation, one sees that the solutios of the generalized

equation (2.50) “is given by

A= e1tHTA{0)¢-1tTH (2.57)

which can alsc be written as

Bty «el™ L (2.58)

T T
It is interesting to compare {2.57) and (2.58)} with the conventional form
(2.48). The solution (2.58) has an infinite series expansion by the formula
ed s B w &P =B+ [ABTH g [ALAB]T
1
* 37 [AJA[ABT T T + e v - (2.59)




'.54)

1.55)

1.56)

2.57)

2.58)

orm

ormula

2.59)
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Noting the fact that the T-isotopic product A = B is assaciative, (2.59)
can be ﬁruved by the same argument as in Ref. 8 (see p. 159).

For the isotopic generalization of Problem (2) above, we need

Theorem 2.15. Llet H be a Hilbert space {of arbitrary dimension).
The mappings %,‘g defined by {2.53) are bijecticns from the set of
hermitian or skew-hermitian (symmetric or skew-symmetric} 1inear operators
in O1 to the set of T-hermitian or T-skew-hermitian (T-symmetric or

T-skew-symmetric) linear operators.

Proof. Let A be a hermitian linear operator in I . Then

T = (AT = eyl = At so f(A) is T-hermitian. IF

B is T-hermitian then, letting ‘A = BT , we have Ah = (BT)h = (ThBhT'1)T
= BhTT =87 = A and hence A is hermitian. The same argument applies to

g and to the symmetric or skew-hermitian operators. #

Since it is known that every hermitian linear operator in any Hitbert

space,is bounded and T 4s bounded by the assumption, in view of Theorem 2.15,

we have
Corollary 2.16. Any T-hermitianm linear operator is bounded. #

Remark 2.2. The hermitian and T-hermitian operators are not closed

under the product AB and the T-isotope product A + B . Define the

anticommtator {A,8} and {A,B}Y* of A8 in & and in 52(7) by

fA,B} = AB + BA, {AB} = A*B+B*A.
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If A and B are hermitian or T-hermitian then so is {A,8} or §A,BF" .
This follows from Theorem 2.3. B8y a similar reason, i¥ A and B are

skew-hermitian or T-skew-hermitian then so is [A.B] ar [A,B]* . #
In terms of T-isotope, we can state Problem (2) above as follows.

Theorem 2.17. Let H be an.arbitrary Hilbert space. If B is a

T-hermitian linear operator on H then
Uplw) = e¥® (2.60)

are defined for all real numbers w and are T-umitary linear operators

satisfying
i) =7, (2.61)
. UT(w1 + wz) = UT(w}) * UT(WZ)’ (2.62)
The infinitesimai = %wUT{w)lw =g =i8. (2.63)
iwA

Proof. Note that if A is hermitian, e is unitary. We use this

and Theorems 2.8 and 2.15. Let 3 be T-hermitian. By Theorem 2.15, BT

wBT

is hermitian and hence g is unitary. Thus, by Theorem 2.8,

iwBTy _ _iwf(BT) _ _iwB
fle )} er ey
is T-unitary. The remaining relations follow from Theorem 2.14. #

Remark 2.3. The exponential e? has a close relation with the
exponential defined on the class of Lie-admissible algebras of the (R,S)-
mutation type mentioned in Remark 2.1. Llet g be an assecciative algebra

with product AB and with identity element I . Let JIR,5) be the
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(R,S}-mutation of £7 with product A °» B = ARB - BSA as in Remark 2.1.
In general, the n th power of each element A in UI(T) is not definable.

, define A" dinductively as A°) =4, A% = aeln=1), 4
A?(m+n) for

Given A e O
Then OL(R,S) is called power-associative if A" o A°M =
all positive integers m,n and a1l A e O If there exists an element
1° in gZ(R,5) such that 1°cA=Ao1" =4 forall. Ac Ol then
1° s called an identity efement of QHR,S) . 1In this case, we can

define the exponential eé of A in CZ(R,5) by
A_ q° 1 4°2 4. .. 1 gon, , . .
el =174 A+ or A2+ + arAME .

The important fact is that if -ZJi(R,$) s powet~assoc{étive with identity

element 1° then 1° = (R - S)_] and

for all A e JL where eé - 5 15 the exponential af A in the {R - §)-
isotope 0Z(R - S} defined by (2.52). In other words, the exponential
in somé {nonassociative) Lie-admissible algebra can be realized as that in
an isotope (so associative) of an associative algebra. This problem ﬁas

been discussed in detail by Myun92 and Myung and SantﬂH4 . #

An important special case of isometric 6berators is the Cayley thansform

c¢(A) of a Tinear operator A :
c(A) = (A -i1)(A +41)F, (2.64)

which plays & key role in the hermitian operator theory. The T-isotope

generalization of {2.64) can be stated as
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Definition 2.18. Given & Tinear operator A e Jf If the linear

operator cT(A) given by
So® N b
cplA) = (A1)« (A+ 1D) {2.65)
is definable then cT(A) is called the T-Cayley fransfomm of A . #

Since any unitary operator ﬂ on H is expressed by (2.64) for some
hermitian operator A on H , in view of Theorems 2.8 and 2.15, the ’

following is immediate.

Theorem 2.18. Any T-unitary operztor on H 1is givem by the T-Cayley

transform cf(B) for some T-hermitian operater B . #

2.6. Isotope of eigenvalues, deterpinants, and traces,

i " Until now we have essentially considered ti

isotopic generalization of some elementary definitions and results in the
linear operator theory of Rilbert spaces. On the other hand, some notign
may not be preserved under the isotope in its original form.CDqsider,
agatn, a finite-dimensional Hilbert space.Then, for a Tinear operator A
on H , we define Tr A as the usual trace of A . As 1s well known,
Tr[A,B] = 0 in 2
However, if T commutes in &2 with A and BJ, then Tr[A,B]* = 0.

.For another example, given a linear operator A on H , consider the

eauation
Awxx=xxx= {AT)x ) . {2.66)

for some scalar (complex number} X and & nonzero vector x e H . If

one attempts to make the isotopic generalization of eigenvalues and

But Tr[A,B]* = Tr(AT8 - 8TA) # 0 in @2(T) , in general.




'.65)
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onsiderediﬁ
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y general.’:
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eigenvectors by means of (2.66). one encounters an inconsistency, namely,
H does not become a Linear space over { under the scalar mubiiplication -
A+ X given by (2.66), since (Ap) = x = (WT) x # A » {(n « x) =
(AuTz)x , in genera1. :

T his situation suggests to introduce an {actopic general-

ization of the notien of scaland. For this, one can proceed as follows.

Definition 2.1%. We define C(T) as the set of atl linear operators

in ¢Z given by

M =far*=arpect . | (2.67)

We denote AT = AT'1 and cali each element in C(T) a T-acalan. C(T} may
be called the T-isofope of C . We also call A T-complex or T-real if

» is compiex or real. #

Define the addition Ap toup in C(T) as the same as in ¢ or

in az(T) but the muitiplication AT * up in C(T) by
Ap % g = MTup = (aT™F 7 (2.68)

Then it can be easily seen that C(T) is a field isomerphic to C .
In fact, the mapping X -+ AT = AT'] is an isomorphism of C onto C(T)

*
and the inverse 1%1 of Ap and the identity element I in C(T)

is
given by

SR R [ B S
e I AR PR G L {2.69)
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We can now convert H intoc a linear space over the field C(T) of

T-scalars by defining the T-scalar multiplication AT'* X
Ap ¥ %= (ATT)x *= A, XeH , (2.70)

nahely, by defining kkT * x- as the same as the scalar mu]tip1iéation

ax in the linear space H over C . VIt can be directly checked that
this definition makes g‘ a linear space over C(T) , for examplé,

(AT * uT) * x = {Ap)x = Ap * (uT *x) . It 1§ impartant to note that
each element Ay of C(T) is not in the center of ZZ = L(K) but is
in the center of the T-isotope gz!) ; for, if A O  then A« A
AT(AT'1) =M =2, A . Thus a T-scalar is not a scalar Ifﬁear operatar

on H but is on the T-isotope H(T) (see Definition 2.9}. This leads to

Definition 2.20. Given a linear operator A , a T-scalar At s
called’a T-eigenvalue of A if there is a nonzero vector x € H such

t

that
Axx=Ar*x. (2.71)
Then x is called a T-ei{genvecton of A corresponding to Apoe  #

From the definition, it is clear that a T-scalar A; isa T-
eigenvalue of A with T-eigenvector x if and only if A is an
eigenvalue of AT with eigenvector x . Thus thé T-eigenvalues AT of
A are chtained by the eigenvalues X of AT , namely, by the solutions of

the equation

det {AT - A1) =10 . {2.72)
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We rewrite (2.72) as 0 = det (AT - AI) = det [(A - AT )T]
= [det (A - AT'T)] det T . Since det T.# 0 (T nonsingular), we have
det {A - AT'T) = 0 . Therefore, we have

Theorem 2.19. Let A be a Tinear operater on K . Then a T-scalar

Ar is a T-eigenvalue of A if and only if A is an eigenvalue of AT .

T
The T-eigenvalues of A are the seTutions of the equation,‘taT1ed the

T-chanaetenistic pofynomial of A ,
det (A - ap * iy=0. # . {2.73)

The ful]owing'is the T-isotope genera]izafion of the known result

for hermitian operators.
!

Corollary 2.20. Let B be a T-hermitian operator on H . “Then

the'T~eigenvalues of B are all T-real.

Proof. If B 1is T-hermitian then, by Theorem 2.15, BT is hermitian.
Hence, by the known result, the eigenvalues of BT are all real and by

Theorem 2.19 the T-eigenvalues of B. are all T-real. #

The discussion above and Theorem 2.19 also suggest the-fo]fowing

T-isotope version of trace and determinant.

Definition 2.21. Let dim-H =n . Given a Tinear operator A on H ,
Tet 1}, ey, A? be the T-eigenvatues of A. The T-znace, Trp A,

of A is defined to be the T-scalar:

1 -
LR L (U I U} ol
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Define the T-defesminant, detT A, of A as the T-scalar given by

-+ (that

det; A= (det AT)T . 4
The proof of the following result is straightforward.

Theorem 2.20. Let H be a finite-dimensional Hilbert space. For

linear operators A, B, P, we have

(1) Tro A= {Tr ATV,

T
. o

(2) Tr; (Prhxp ) =Try A ;

(3} det; (A *=B) = (detT A) + {detg B) ,

_-I* _.‘*

(4) dety A = (detT A) o

(8) Try (A%B)=Trg (8 =A),

(6) dety (éxpT A) = expr {TrT Ay . #

Note that if T =1 then the T-trace and T-determinant coincide

with the usual cnes {(multiplied by T1.

2.7. Isotopes of Kilbert spaces and C*-algebras

Our next step is to generalize the inner product ( , } of H 4n such a way
a3’ to permit the study of the compatibility with the generalized envelope “
ot (M and rieta &1

Definjtion 2.22. Let {x,y} be the inner product of a Hilbert space H

and let T be an operator on H which is nonsingular

and satisfies all needed topological conditions {regarding domain, range;"étut_;

‘Then the T-isotopic extension of (x,y) is given by

(uy)* = (aly)ie = I%(x,Ty) {2.74)
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his b i jugate of T.
where T0 7s the usupl Hermitean conjugate o field C(T) of T-scalars with isotopic enveloping associative algebra of

i i i ing invertible, is pasiiive on H ]
In particular, if T, besides being i : p 1ve operators OL(T) and isotopic inner product (x,i)*.

{that is, (x,Tx) >0 for'aH x # 0 in H), then the folTowing result
: Remark 2.4, Since all the mappings

can be easily proved. }
T
¢ —> cf (2.77)

Theorem 2.21. Let T be an invetible and positive operatér as per Definition 2.22 ot OL(T}

under which the product (x,y)* is am ipner product mapping H x H - C(T),
. (XSY) —_—> (x,y}*

r
B given by (2.74). Then it satifies
I : are iscmorphisms ‘we shall continue to use the name "HiTbert space" for
: . m . .
3 the space ]-I( However, we would 1ike to stress that & considerabl ount of
i {(x;x)*>0 forall x #0onH P . Teerable amoun
E () = (y_xF additional studies {not conducted in this paper) are needed for the fuli, technical
i , ' - Tific ation of w i ‘
‘ (x.y + X)% = (x,y)% + (x,2)* (2.75) qualific ation of the space H*"as a Hilbert space. |
% (x, Ay} = Ny = }\T*(x,y)*/ Jec Note the appearance of the generalized unit I*in the definition of inner
where we have used the notien of T-scalar in the Tast expression. product {2.74). It is essential to ensure that the values (x,y)* belong to M
b .
by “ rather than C. In turn, this is essential for Hmto have the pre-requisites of
:"3.}5 The realization of the product {x,y)* we shall use in the next section ’ . _
i . o a2 Hilbert space. Finally, note that {x,y)* = (x,y) whenever T = *.
g can be expressed in terms of L°~functions x and y and a {suitably selected) n .
3 . Thus,Hm is a meaningful generalization of H only for non-trivial (i.e.,
measure dm {we ignore the multiplication by I* here} '
' eperator) isotopies.
‘ | — . We pass now to a few considerations for the extension of the T-trace. to
CxaTyy = L] > = Xxy du = | Ty dn {2.76) . ‘
i arbitrary dimensions. Let }\T be a T-eigenvalue of A defined by (2.71). Thus,
and can be interpreted as the "expectation value™ of the isotopy operator T. {A- >‘T)*x = 0 for seme x in H{U But {A - AT)*X = (AT - A)x = 0. Thus,
We should insist, however, on the fact that since the ordinary product (A- }T} is not invertible in OL(T) if and only if (A - A) is not invertible in
. : . T R . .
.. has no algebraic meaning in o ( ), the inner product is now given by (2-74-) OC. In 1ight ofoneDrem 2.19, this leads to the following definition of
such 4 way g and not by (x,y). This implies a number of predictable restrictions on the spectrum in H(T),
lope s : .
P admissible operators T which we hope to study in a separate paper. Definition 2.24. Let A be a linear operator on (T), The T-spectrum,
We are finally equipped to identify the generalized form of Hilbert SpTA, is defined as the set of T-scalars )\T such that A - AT is not
" ; ) :
ice spaces that will be used in the physical applications. invertible in OT (T).
,QM 2.23. Let H be a Hilbert space over the field C of complex ’ The follawing result is frmediate from this and Theorem 2.19.
et | S - ,
» range : numbers, with enveloping associative algebra of operators <J¢ and inner Theorem 2.22. For any linear operator in H(T),
product {x,y). We shall denote with |-]‘-(T) the Tinear vector space over the
2.74) ‘




—_—
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SpTA = {SpAT)I* (2.78)

where Sp is the conventional spectrum of operators on H.

The following additional results can also be readily verified.
Theorem 2.23. Let A be a Tinear operator on H(T).
(1) If A is T-Hermitean, then each element of S?TA is T-real; and

(2) I A is T-unitary, then, for each A € SpA,
*- Fl
“r”,-= Iy jr™ = &

Theorem 2.24. Let A be T-Hermitean in C7i!T). Then, the followings are

equivalent. )
(a} spsA >0 {i.e., /\T> 0 for all /\Te,SpTA)
{b) A is of the form B*BhT for some B £ CﬁL(T). ,

(¢} A is of the form BhT;BhT for some T-Hermitean operator B.
It can be seen that each of the corditions in Theorem 2.24 is equivalent

to the condition

(xAex)> 0 for a1t x e H(D 12.79)
when, when T is pesitive, can be equivalently written

{x,Aby)* = (ATY)*2> 0 (2.80)
This permits to.call a T-hermitean opefator A on H(D T-positive when (2.79)

is verified. In particular, a T-hermitean operator A is T-Positive if and only

if AT is positive jn the conventional sense.

A linear operator A-on H(I) is said to be of the T-trace ¢lass if, for any

orthonormal basis {ed} of H(_T) the series 5:%(&9( ,Jf\'maa< I* Fonverges to .

a unique T-scalar {that is, in a way independent of the choice of the basis}.

. T)
In this case, the value of the series $ is defined as the T-trace of A in H( s
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A = “.%-({ea(, A*,ed) I* (2.81)

If H(T) is finite-dimensional, the definition above coincides with that
T}

given before in Definition 2.21. Note that not every linear operator on H(
possesses a T-trace. However, for a T-positive operator (essentially those

needed for Equations (2.759, the existence of a T-trace can be proved under

certain conditions that will be presented elsewere.

. P
Let H be a {conventional) ? e
Hilbert space of arbitrary dimensions,andD7 the(conventional) associative a]gebﬁ_
of Tinear operaters on H. We regard &1 as a complex C*-algebra under the usual o

norm IIA’{ » AE L . Consider now the following genera]i;ation of the

norm

iall; - ]{.ATH I+ (2.82)

Assume T to be & {conventionally) positive operator for simplicity. Then the
ordering of T-scalars follows as for the ordinary case.
To show that norm'(2.82) also defined a form of C*-algebras, it is suffi-

cient to verify the following properties.

Jasll; &l A”T*"B“T (2.83)
”AhTHT = |l o (2.84)
Iy = Jallednlly - ATl (2.85)

This is Teft here as an {instructive) exercise to the Thterested reader.

We then call  (2.82) the T-norm of A. The resulting algebra is here
called C*(T)' 2lgebra. The conventional C*-algebra js then admitted as the
particular case when I* = I, Additional studies are‘in progress and will be

reported eisewhere.
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I1I. APPLICATIONS TO THE LIE-ISOTOPIC BRANCH OF HADRONWIC MECHANICS

The aﬁp]i?ations of the theory of the preceding section are virtuwally
endless. In fact, as we shall indicate in this section, the theory permits
the isotopic generalization of each and every aspect of Atomic Mechanics
{the ardinary quantum mechanics} into a non~Hamiltanian form-which appears
to be valuable for strong non-Hamiltanian interactions as well as ofhér
physical phenomena where contact/nonpotential interactions are possible
(e.g., statistical ensembles of extended molecules with inelastie collisions;
electronic systems; neural systems; etc.).

In Paper I we have attempted the presentation of the Lie-isotopic gen-
eralization of Heisenberg's mechanics via aniy one postulate. The theory of
the preceding section permits a more refined study of the results, as well as,
and perhaps more importantly, the formulation of postulates encompassing other
representations, such as those of Schrﬂdinger—type.

In this section we shall therefore attempt the identification of the
physical foundations of the Lie-isptopic branch of the Hadronic Mechanics,
in the hope that our work results to be valuable for applications to specific
systems (e.g., the deuteron, the neutron, the =° , the nenpotential scattering
theory, etc.).

A first understanding is that this section is, by far, incomplete and a
considerable amount of additional work is needed.

A second understanding is that the contents of this section shduld be
considered as of tentative nature until the theory is completed, tested in a

variety of cases, and confirmed by experiments.
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A third understanding is related to the primary cbjective of the Lie-
isotopic branch of the Hadronic Mechanics, the exterior freatment of
composite systems with non-Hamiltonian internal forces. Classically, the
compatibility of total conservation laws with non-Hamiltonian forces is
achieved via subsidiary constraints (Paper I). At the hadronic level, the
difficulties are then twe-fold. We must first reach a non-Hamiitonian
generalization of Atomic Mechanics, and then we must implement it in such a
way to permit total conservation laws. This séct1on is primarily devoted to
the first task, and only incidental comments will be presented for the second
objective. Thus, the reader shouid keep in mind that the systems treated in
this section are, in general, of epen mon-Hamiltonian character.

A sound knowledge of related theoretical studies is recommendabie, with

12 i 13

particular references to the research by Ederlo, Mignan1]1, Qkubo =, Kapusci
and others.
'A sound knowledge of the Birkhoffian generalization of the classical

Hamiltonian mecham'cs14

appears to be also recommendable for an in-depth

understanding of this section as well as for possibTe further developments.
In regard to numerical applications of the theory of this section, we

refer specifically to the studies by Eder1D (e.g., to represent conventional

values of the spin while the magnetic moment is anomalous).In regard to the pro-

15

blem of structure, we refer specifically to the studies by Santilli’ for which

the Hadronic Mechanics was.suggested in the first pilace. The reader should however
be aware that the model of structure of hadrons of ref.15 {as closed variatio-
naliy nonse]fadjo%nt systems) 1is considerably different than those of current
trends. For instance, by recalling that the number of constituents increases in

the transition from the hydrogen atem to the heljum, and from the deutercn to

15

the tritium, a fundamental condition of the madel of ref. ~ is that the number

- . * o
of constituents increases from the TFD to the fF~ and to heavier hadrons [for a

theoretical description of what is meant by "constituent" see Paper III].
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3.1. Existing applications. A number of applications of the theory
of the preceding section have already been identified, as indicated in
Section II1I of Paper I. We are referring here to the iso;opic generaliza-
tion of

{1) Enveloping associative algebra of Hgisenberg's mechanics;

‘{2) Lie algebras;

(3) Heisenberg's equations;

(4) Canonical commutation rules;

{5) Cononical quantization;

{6) Heisenberg's uncertainty principles;

{7) Planck's constant;

(8) Galilel's relativity;

{9) Representation theory.

It is an instructive exercise for the interested reader to reformulate

each and every topic {1} through (9) within the context of the theory of the

preceding section.

3.2. Hadronic-isotopic observables. We begin our study with the

identification of the mathematicq1 characteristics of observabie quantities
under strong non-Hamiltonian interzetions. The conventional Atomic Mechanics,
since it is strictly Hamiltonian in character, is 1;app11cab1e. As a result,
the old characterization of observability under electromagnetic interactions
via Hermitian operaters is inapplticable. Once the non-Hamiltonian character
of the theory of the preceding section is seen, the following generalized

postulate appears plausible.
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POSTULATE I. Measwiable hadronie quantifies of the extenlon sithong

problems (such as the total energy H, the fotal Linear momentum ?, the total T
angufan mementum J§, ete.} are chadactenized by T-Hewmitian operators (in the Los
the sense of Definition 2.12), i.c., its rep
' eraliza
T = 18077 = R, ete. (3.1) +ion of
The generalized observability submitted here is clearly a covering of }';: conditi:
the conventicnal atomic one, in the sense thal the latter is admitted as a | T B
particuiar case of a broader mathematical and physical context. of}Atom
Note tﬁat the conventional observabiiity is recovered not only when the i _—iﬁg 1ol
hadronic unit [*% = T'] is the conventional one I , but also when.I* is a rei 17.%??gnac
scalar (#I} . In fact, in this latter case we have :‘akﬁted<
- infinit

T = yhehe] oyl (3.2) e

under which T-Hermiticity and comventional Hermiticity are equivalent.

As it will be evident later on, the transition from conventional Hermi-
ticity to T-Hermiticity implies that physical duantities are generally
nonconsesved. The "germs" of the new mecﬁﬁﬁics are therefore already contained

. . . - ; " Ha i
in Postulate I. In Tact, the Atomic Mechanics was conceived to achieve a rep- Hadront

resentation of the stabifify of the onbit of the electrons in the atomic .jﬂéter °
structure. An objective of the Hadronic Mechanics is 1nste}d that of achieving
a representation of oabits as wnstfable as dynamically possible, because we have
in mind the treatment of exterded hadrons moving within & medium of other
hadrons. When total conservation laws are regained, the internal dynamics is
left as unrestricted as possible, in the hope of achieving "global stability™

via irreversible, nonconservative, and non-Hamittonian internal dynamics,

along the idea of "closed variationally nonselfadjoint systems" (Paper I}.

i Why 2
; A'notior




oo
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This equation is intrinsically Hamiltonian in character, and, thus, inappli-
The transition from atomic to hadronic observability therefore implies 9 4 ° ’ ’ : s

) cable to the system considered. To 1ift the restriction, we introduce the
. the £oss of quantum Levels, that 1s, the loss of Planck's constant - , and JSLEm ere o

following second postulate. wherse hereon "Hilbert spaces" are referred to Def., 2,23,

1.1ts replacement with the pperator T"i . As recalied in Paper I, this gen-

g eralization is~submitted in the hope of achieving a mere adequate representa- POSTULATE 1i. A hadronic stfate of the extenion sirong probfem &a
tign of the processes of emission and absorption of energy for particies under chanactenized by a vecton | > of a Hilbeat space on which the hadronic

,' " conditions of mutual penetration within other particles. . obsenvabfes A act acgonding fo the T-isofopic eigeavalue equations
But there are other reasons to suggest a departure from the originai idea (in the sense of Definition 2.20).

of Atomic Mechanics. They are given by the clear experimenial gvidence accerd-
ing te which, in the thansition from the fwo-body problem under electromagnetic 7 o Axl>= a7 * > (3.4a)
interactions to that under stnong interactions, there i3 the diéabpeaaance oﬁ' . Ax]>=AT| >, ap * | > = aTTl 5= al » . (3.4p)

] exited states. In Fact, while the hydrogen atom and the positronium admit an

R o, . . . . As it is the case in the Atomic Mechanics, not all gbservables can be
infinite variety of exited states, no exited state has been experimentally . -

measured simultaneously. Consider a second observable B with eigenvalue

(3.2) : gstablished until now for the deuteron# ‘The same situation may occur alse for
: , equation
: other composite particles supposed to be of two-bady nature, such as the n“l? g N
ermi- ;‘; This drastic change in phyéica1 behaviour is, perhaps, the most forceful ' ' Bx|o>= by * | > . (3.5)"
31 : : :
. experimental evidence suggesting a revision of the Atomic Mechanics into a
5 i N . o . . . Then we can write
: = form specifically conceived for thé strong interactions (ar application of
ontained ‘
2 rep- Hadronic Mechanics for the suppression of the atomic spectrum w?]] be reviewed T OBxA*|>=Brag*]>= a; * B+ | >=ar*brxl> , {3.6)
N later on).
¢ A¥Bx|>=RAwbrx|>=brahx|>abrrag*]|>,
chieving
h . 3.3. Hadranic-isotopic states. The state of an atomic system is charac- i.e.
we have

. terized by a vector ! > on a Hilbert space on which Hermitian observables A

er : :

i Ce e e - A * - = s .
act according to the familiar eigenvalué equation - ‘ *BF}yeBrAx]|>=0 {; 7

ies is _ .
1ity" fi Al>=a]> . (3.3) which can hold if and only if
s [A8]"  =A+B-B*Az0 {(3.8)

# It takes a minimum of five nucleens to reach a nucleus with exited states vaguely
). ‘; reminiscent of the quantum levels of the Atomic Mechanics, and this is a reason
why the efforts here are to abandon the notion of quantum ia favor of more general
notions {Paper I).
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Lemma 3.1. A necessary and sufficient condition for two or more hadronic
observables o be measurable simultaneously is that they T-comrute in the
sense of Equation (3.8). #

The reader should keep in mind the remark after Equaiion (2.50) in regard
to the lack of equivalence of the commutators [A,B1* and [A.B] . In fact,
ordinary commutativity {s not in general sufficient to permit thg simultaneous
hadronic observability, It then follows that quantities which are measurable
simultaneously in Atomic Mechanics are not necessarily measurable simultaneously
in the Hadronic Mechanics.

Needless to say, the ordinary commutativity ig a particular case of the
T-commutativity. 1In particuiar, if fhe isotopy operator T is a scalar,
ordinary commutativity and T-commutativity are equivalent. ,

The study of the "maximal and complete set of T-commuting observables” of a
hadronic system will not be conducted here. We merely assume that this set

exists, and write
A x| >=a_x I
1 .
Az*,>=a2*f> , (3.9)
Ry s[> w | > )

The state vector can then be labeled via the collection, say, o , of all

T-eigenvalues

| > = z ':F(:x)*ld> o= (apa 0, 2,) (3.10)
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where

¥la} = @] + | > (3.11)

The functions ¥(a} will be called hadndnic sfate gunctions. Note
that, if one preserves the operator in the transition from the atomic to the
hadronic setting, the state functions are generally different because of the
isotopy in the eigenvalue equations.

Equation (3.10) identifies the existence ;:lf haduwonie nepresentations in
much of the way as accurring in Atomic Mechan%cs. Our immediate objective is
that of identifying at Teast some of these representations; identify the
methods for passing from one to the nther; and study some of their properties
(e.g., nermalization).

It is recommendable to identify the alteration {catled mutation in Ref.]s,
p. 690} of eigenvalues under isotopy. This mutation is at the basis of the

physfcal applications of the Hadronic Mechanics, such as the anomalous mag-
10

netic moments in nuclear physics'“, the theoretical representation of nuclear

v
1rreversib111ty1}, the models of the structure of the pions and of the neutroq15, S
ete.

Suppose that the atomic state function is given by

- wa-irs . ;
¥ = Ne (3-12) T
where r and s represent given physical quantities. Suppose that zn operator ! :,h
A verifies the atomic eigenvalue law . : ﬁ
W
=39 u.
AY = 'IE"P =y (3.]3)

Suppose now that this law is implemented into the isotopic form with a scalar

T quantity. Then we have



(3.11)

te
to the
of the

ons in
tive is

he

perties

i mag- o
nuclear ¥

3 neutrun15%‘

(3.72)

an D])E\“B.'tor‘ :
(3.13)

a scalar
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) .
Aw¥eigeTe=r'Y . (3.14)

Thuss the mutated éigenva&ue r' is given by

r' = Tr {3.15)

If T =T{r,s) , the mutated eigenvalue is given by the more general

'
expression

=42l (3.16)

rto= et Tr

where we have assumed that atomic and hadronic Hermiticity coincide. If this

js not the case, a further, more general mutation occurs which can be computed

via the rules of Section 2.6 and the explicit form of the T-quantity -

Note that, if the T-eigenvalues are used, then Eg. (3.14) can be written

r% * Y {3.17)

AxY

where

e r+

16 W 1r) , ete. (3.18)

3.4. Hadronic-isotopic generalization of Schrodinger's representation.

This representation was achieved in Paper I via the technigues of the Birk-

hoffian Mechanics

Hilhert space structure,

within the context of the Hilbert-isotopic theory of the preceding sectien.
It may be recommendable to review the most important steps. Consider an

open nonselfadjoint system in-first order form

14 gur objective here is that of identifying the underlying

that is, to achieve a formulation of the representation
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sy _ (e T -
(3 - (B ) @) - ) - ()
- iy B/
EN PAF) - BPNLEE) L a = (B S (319)
p=1,2, -+ 8N, K=1,2, " 4 N

where the symbol '“pﬁ represents the physical Tinear momentum ({m %) . The -
physicai angular momentum is then given by' T=¥x% 3 . The enerdgy H is
that of the maximal selfadjoint subsystem (réca]] that the notion of potential
énergy has ne physicat basis for contact nonselfadjoint interactions).

"By using the techniqhes of Ref.14, the next step is that of constructing

a representation of system (3.19) in terms of the semiautonomous Birkhoff's

equations
t R (fa) R {a), Y 1 SA.
{[__1 LA 3B(t,a) } . C (a.0) -
A oa ‘aa“ . .
aRr aR
det (—¥ - #a0
s sa’

with underlying generaiized variational principle of Pfaff's type

t
2 .
sp9 = GJ;[Ru(a)da“ - B{t,a)dt] - (3.21)
] .
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def. t, i .
-6 [ I FBr + i Fa - BeFA ™ = 0.
t-l :

The representation is called of "semiautonomous" type to indicate that

the geometric (symplectic} tensor of the theory

3R By
=¥ _ _H :
2,,{a) o i {3.22)

does not depend explicitly on time in order to be consistent with the con-
ventional geometric realizations in local coordinates of the most general

possible (exact) symplectic two-forms

'

8y = 5 B, (a)datada” . - (3.23)

The dependence of the vector field an time is then represented via thé explicit

time dependence of the Birkhoffian B .
Under topological restrictions inessential here, all systems (3.19) admit
a representation in terms of Equations (3.20) in the local variables Bf the
observer. This is the so-called direet univensality of Binkho{f's equations.
Note that the Hamiltonian representations occur as a particular case of
the Birkhoffians when ~

def.
(RS () = (3.0) (3.24)

in which case the Birkhoffian and the Hamiltonian coincide.

By using the degrees of freedom characterized by the Birkhoffian guages
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* o L. t_ 36 ‘
Ru + Ru R + w b BrB=B- = . {3.25)

4 9a

Equations (3.20) can be turned into an equivalent form verifying the addi-

tional condition

3R
det (a_a%) F o (3.26)

under which the following Birkhoffian genera]iiation of the Hamiiton-Jdacobi

theory exists (Paper I).

g .

%ﬁ— + B(t.R{a)) =0, {3.27a)
g L

R(a) = %u + @(t,R) = B(t,a(R)) . - (3.27b)

The Hamiltonian particularization is now given by the guaged case

0+_ 1 v 0 -1
R*"=-zw a _
u 27w, eyy) - ( 1 0 ) . _ (3.28}

The use of the naive quantization rules

3ad. . '
SECER XA (3.29)
aa® 1 3 GF ‘
R =2, 1 8 7
il o R, _ (3.29b)

finally permitted in Paper I the identification of the fellowing generalization

of SchrSdinger's equation




(3.25)

addi-

{3.26)

Jacobi

(3.27b})

{3.28)

{3.29a)
(3.29h)

ralization '§
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1—% ¥(t,a) = (B (.R) ¥ (t.a) . (3.30a)
R W(t a) = ——-———-?(t a) = R ¥ (t,a) . {3.30b)

T 3a¥

The reader shouid keep in mind the necessity that the hadronic wave

:_functidn t depends on both, the space coordinates ?k and linear momentum

Ek (as well as on time), as pointed out in Paper I. The reformulation of

the conventicnal Schrﬁdinger's equations via Birkhoff's guages (3.28) to achieve

an equivalent theory in terms of the atomic wave functions W(t,F,g) should be

_kept also in mind.

Qur task is now that of interpreting Equations (3.30) in terms of the

isotopic Hilbert space theory of the preceding section. For this purpose we

note that the classical equations (3.20) are characterized by
{1) The 2n functions Ru(a) whikh essentially characterize the under-
1ying symplectic isotopy or Lie-isotopy, that is, the replacement of the exact

canonica],’symp]ectic structure with the most general possible exact symplectic
structure (symplectic iaorapy14}

1

! dperdrk-> % = 39,

= 2w dafAda’=

Hy g 331
@, = Uy (a)da"nda (3.31)

or, equivalently, the replacement of the fundamental Poisson brackets with the

most general possible Lie realization of fundamental brackets in mechanics

0

[Lie iAuzapy)14

irf,rd [ri,pj] 0 1
({a",a"1) = . =
[p.isl"']] [P-,sPJ] ‘-_] 0
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TR L :
2RO oRG . .

|z = ST = (@)
da 3a

(3.32}

=1y pv
:fﬁz-ﬁ)

(2)  The Birkhoffian function B(t,aj which is the generator of the

noncancnical but generalized canonical time evo1ution14
ml..l\)(a} BB!t,a! _3'__c . .
3’ aa¥ (3.33)

alt) =e a(tu)
(where_]{ is the conventional associative algebra);

{3) The preservat1on of the underlying carr1er.space of the Ham11ton1an
Mechanies (the cotangent bundle T*M a]though without the conventional rneamng
of phase space ; it is called 1nstead the dynam&caz Apace ]4)

In the transition to the Hadronic Mechnaies, the following possibi]ifiéﬁ

to charaéferize the generalized Schradinger‘s represenfatiun appear plausibie.

{(1*} Identification of the generalized unit operator I* = 'i"'| needed
repiace tpe conventional  Heisenberg's commutation rules
([a",a"]) = (a"Ta"-a"71a") = (") 1

{3.34)

(HSRO aagllq)“". 0 1 ’T.—‘ﬁ'11
L S )

(where now a, R0 , etc, are operators) with their isotepic form
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([ﬂu;av}*) = {a"Ta"-a"Te") = 12"V(a)
S\
= 1(&-& 1) s T=T(a) .. {3.35)
BaB aa™

{(2*) Identification of the T-Hermitian Birkhoffian operator B which
characterizes a nonunitary, T-unitary time evolution according to structure

{2.60), i.e.,
Up(t) = eltB o TeTBTE - fFoiBet (3.36)

(3*) Preservation of the Hilbert space of the Atomic Mechanics, .although
“interpreted in the generalized form . of Definition 2.23. It should be
stressed that remarks (1*)-{3*} are introduced here on pure grounds of
similarities with the classical cases (1)-{3). MWe assume the reader is
familiar with the noncanonical character of thé Birkhoffian time evolution
(3.33), and the consequen??y necessary nonunitary character of the hadronic
time evolution. ' |

These occurrences render piausi51e tﬁe following third postulate.

POSTULATE T131. The £ime evofution of a hadronie state in the isoiopic
genenalization ¢f Schaddingen's nepresentaition is chaxacterized by the genena-

Lized unit operaton I1* = 7!

and by the T-unitary time evolution induced by
a T-Hewmilian Binkhof{ion operaforn B within the context of the Lsoifopic

formubation of the Hilbeat space.

Let |t0> be the hadronic state vector at time to . According to

Postulate IIT, the state vector at & Tater time t 1is given by
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[t> = Ut ty) = ltg> = U(t,tg)T[t> (3.37)

where U(t,to) admits representation (3.36) and, in particular, it is such that

byt
. has
= idtB
U(t,t-st) T+ . (3.38) “case
Since T-unitary transformations form a Lie-isotopic group, they verify property f -Vinte

{2.62), i.e.,

U(t,t-6%) » U(t—ﬁt,to) = ”(t’to)

. (3.39)
= (I" - i§tB) = U(t-at,to)
We can then write .
8 Ult,t.} - U{t-6t, t,)
lim ) 0 - &
8640 53 = ¢ Ut tp)
h (3.40)

=-iB * U(t,to)

and, by recalling (3.37} we finally have the desired isotopic interpretation

of Equation (3.30a), i.e.,

i =B [t = BT[t> (3.471)

This essentially implies the following interpretation of' the Birkhoffian operator:

(3 as emerging from the naive quantization rules (3.29a) - -
3 = BT . (3.42)

The Hamiltonian particularization is intriguing, inasmuch it can be written




{3.37}

such that §

{3.38)

property';

(3.39)

(3.40)
:ation
(3.41)
n operatu?

(3.42)

tten
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iZit> =W+ [to = HTjt> , T=F"

5E (3.43)

by therefore cunfirminé that the conventional Schrgdinger's representation
nas indeed an isdtopjc structure, although of trivial character, as it was the
case for Equations (3.34). _

This latter point can be made more p}ecise by passing to the isatopic

jnterpretation of therremaining equations {3.30b}. Consider the atomic wave

structure
G
() = N = we™, ke 2 (3.44)
It can be written in the trivial isotopic form
ipar. . ipTr. T -1
¥r) =Ne "™ = Ne'" = Ne » T=% (3.45)
Similarly, the atomic eigenvalue equation for the linear momentum
pe(r) =-ifiZs w(r) = K¥(r) (3.46)
can be turned into the trivial isotopic form
p* ¥(r) = -1 ¥(r) = Ko+ ¥(r) (3.47)

By using these Quide]ines, we therefore postulate that the hadronic gen-
eralization of structure (3.45) is given by

iR = a
il

¥(a) = Ne {3.48)
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The naive gquantization rules (3.29b) can then be reformulated in the isotopic
form

Rx #(a) = -13—23 ¥(a) = ap, * ¥(a) . (3.99)

Under the assumption that the new unit I* = T—] is known, the operator

CRu originating from the naive quantization (3.29b) can be decompesed accord-

_ing to the rule

(3.50)

To see the joint equations {3.30), recall that the complete atomic wave

packet for a free particle is given by

. (K #r - E. % t) (3.51)
¥(t,a} = Net(p*r SHAE) g T T

{

The conventional Schradinger's equation is then justified on grounds of .the

identities
RV E Ay
Pt ' (3.52)
4 =é%? i ¥ =HEY .

The Hadronic genera]iéation is straightforward. First, we shall write

the hadronic wave packef in the form
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Ne'i(R *a = Bx t)

¥(t,F,B) = ¥(t,a)
s P+ «F -8B+t | (3.53)

- > -
i+ v+ B ®Pp-yy xt) ifp- % a -ve s t)

= Ne T T T =Ne T T .

by therefore recovering the form achieved in Paper 1. Equations (3.30a) or

{3.41) are then readily obtained via astraightforward generalization of (3.52),

5 @ _
13.‘6"}'— 'YT*"P

R
1 y pT % ¥ R (3‘54)

B=B(t,R) » iZv=Bav.

The advancement in the transition from the atomic to the hadronic wave
Packet is selfevident. In fact, the atomic wave panﬁet [3.51) nepresents a
free panticle, while the hadronia wave packet (3.53) represents a panticle
under the most genenal possible collection of £uca£hvpoteniia£, and nenpofential
Anterantions., '

Recall that wave packet {(3.51) is, in actuality, an approximation of the

form

t
1TJ[ {pdr - Hdt)
t

¥(t,r) = Ne © L T4 (3.55)
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Equivalently, we can say that the phase of the atomic wave packet is charac-

terized by the canonical action functionmal. "
On similar grounds, wave packet {3.53) should be considered an approxi-
mation of the more adequate form

7 t b Note
| i ft (R da" - Bat) (3:56) | poar

¥(t,a) = Ne ° ; -
in which the phase is characterized by the act;on of Birkhoffian Mechanics, . int
appl

{with the understanding that the nature of T needs specific study).

To avoid possible misrepresentations, we should stress that the quantities
*r! and "p" are no longer canonically conjugate in the Hadroﬁic Mechanics.
In fact, the fundamental brackets (3.34) are mutated into the isbtopic form
{3.35). ’
Intriguingly, there are new quantities which may be formaT]y interpreted

as "canonically conjugated”. In fact, a comparison of the Hamiltonian and

Birkhoffian actions

" t

Ayam. = ~[t (pdr - Hdt) , ABirk. = J,t (Réa - Bdt) (3.57)

i

reveals the possibility that the quantities "a" and "R" may be interpreted
as "canonically conjugated”, again, under regulérity condition (3.26) to ensure
their independence. In fact, we may formaily introduce the "conventional®

commutation rules.

[a"R"] = aHR” - R¥a¥ = 6™, wu=1,2, . | . 2a (3.58)
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charac-

approxi-
(3.56) -

nanics,
quantities -
achanics.

ic form

terpreted
in and
{3.57}

irpreted
| to ensure !

ional”

{3.58)

PN

i
:
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with the understanding that équations {3.58) now 1mp]§

rlpl=rlpy - pyr' = 0 (3.59)

Note that, if the atomic operatars r and p are 2n , the corresponding
hadronic operators a and R are d4n.

These remarks may assist the interested researcher for furfher studies
in the construction of the Hadrenic Mechamics, as well as for specific
applications.

Until now we have been interested in studying the formal structure of the
isptopic generalization. of Schr&dinger's representation. Its .explicit con-
struction demands the selection of the identity and the Birkhoffian operators.
A formal solution was given in Section IV of Paper I, and it can he reviewed

according to the steps summarized below with their isotopic formulation.
STEP 1. Identify the desired Newtonian aystem (3.19) and compute .Liis

Birkhofgian represcntation in the variables a = (3,3 with B, = ik,

This imp]ies,rin particular, the identification of the {(2n + 1) functions

(R,) = R (a)) = (& (F.5).G,(FB) 5 8 = B(t,a) = B(t.F.F) .

wo=1s2, 0t 1, 28 = 6N, k=1,2, » « -, N, (3.60}

as well as of the energy E , angular momentum J , and all needed physical

quantities .

=2
Py > -
E = i iﬁ;-+ virm , J = ﬁ ?k X By » etc. (3.81)
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STEP 2. Upown verification of regularity aondition {3.26) via guage (3.25],
compute the dependence of the _aruaniabﬂaé in the R-ones, L.e., {dentify

a = alR) , and neduce all funetional dependences fo the R-variables,

(a*) = (a"(r)) = (Fe(RQ) L B P

Blt,alR)) = B(t.R) = BP0 (3.52)
+2 - 3-» - ﬁ- +)
pk -y pk( SQ) pk( !Q . -
E= i "'_mk + (l") = i T’"— +y (3&) s ete.
STEP 3. Perfonm the naive [nonisotopic) quantization {3.29), and identify

the operational fonm of aiR) , 4.e.,

.-J.I_n

QR (3.63)

3 - a2
aaM ’ d3 ) 13t

STEP 4. Compute the operaton image of the temson o and seanch fon
the operator T such that

[a%,a%]* = a%Ta¥ - aVTa® = igHY (3.64)
where
at 2 (29T (3.65)
STEP'5. Perfoam the Lsoiopic reformufation of the eigenvalue equations
obtained via the naive quantization
2 ¥(t,a) = B « ¥(t
3t > * »a) (3.65)
where
B= ®T =g (3.67)
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The procedure above solves an important point left open in Paper I. Recall
that in Example (3.26) we had assumed p = 1'1’3 / 70 r also for the Hadronic
Mechanics, lacking specific rules for the identification of a more adequate
operator form of p. These rules are now identified; although on formal grounds,
in a way admitting a 1imit into Birkhoff's equations, In fact, the rules’ are_now
provided by the functional dependence a = a{R), and then the operator form
R=i1® /Da, a=(r,p). In this way, the existence of a correspondence
into the Birkhoffian generalization of fhe Hamilton-Jacobi equations is ensured.

Note that, if one assumes p = 1'1'73 / 2 r, then this correspondence

into the Birkhoffian mechanics is lost. The point s important to stress again

the departure of the Hadronic from the Atomic Mechanics.
The status of the current knowledge for the explicit computation of

[l

isotopic rg1es (3.64) is therefore the following. ;
{a) Identify the operater form of a(R} via the Birkhoffiazn method above.
(b) Ideptify the operator form of cﬁZ}ﬂ?a) via suitable symmetrization
of the classical expression under quantization rule a — a(R); and
(c) when the operator form of a and cﬂa are so determined, solve Equations
{3.64) in 'the unknown isotopic operator T.

Note that, in the Atomic Mechanics, a = (r,p) has the realization via
noncommuting operators r and p = i'1’5 /7O r. In the transition to the-Hadronic
Mechanics thgh r and p aperators are more dirgct]y replaced by the R}‘ operators
Their realization Ry = i1 Dy ¢Ye may give the impression that such
operators commutes. This is true conventicnally, but not im the hadronic case
where the isotopic product must be used. It s then trivial to see that,
in general, [R}\,R\) F* # 0. Thus, not only the hadronic operator are non-
comnuting, but actually the hadronic generalization of the éomponents ofL

(or‘p)are noncommuting, as expectable from gravitational arguments.
A

‘which ane dynamically conjugate in the sense of the Lie-{sotopy (3.3%].

1339

We should indicate that the assignment of classical quantities R“(a) and

B{t.a) where (Rp) £ (§.0) .15 generally sufficient to incorporate non-

potentiai forces. Nevertheless, in this case the mathematical symbol p!t
does not, in general, represent the physical linear momentum.

The interested reader is therefore urged_to compute explicitly the
Newtonian equations of motion in their first-order form (3.18) for any given
Birkhoffian quantities R]J and B . The first set of equations in #
will then provide the actual meaning of "p" .

This is an often forgotten peculiarity also of conventional Hamiltonian

Mechanics. In fact, the expression p = mr is lost already for Hamiltonians

of the type quadratic in p

H = a(t)p? + B(t.r)p + Y(t.r) (3.68)

and the departure of p from the 1inear momentum becomes even greatgr for

- - 4
more complex functional dependences (e.g. quartic polynomials cp ).

The identificatien of the physical meaning of the q1gor1thms at hand has
been stressed in paper]5, as well as in much of fhe'literature of Lie-admissibie
algebras, in order to prevent mathemztical statements (e.g., &r Ap é %—ﬁ)
which are physically vacuous (e.g., p = 3! log gy 7 r).

To cliose this subsection, we can now compiement‘Postu1ate III with the

following operational postulate essentially based on Steps I through 5.

POSTULATE IV. ALL cfassdical Biikhoffian guantities can be characterized
via functions depending on time and 6N independent vaniables a = [%,B)
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The hadronic operatons which can be inferpreted as comnresponding Zo Zhese
ebnssdcal quantities are obtained by replacing ithe dynamical vardiables via
T-Heamidian hadronic oppaatons verigying the Lie-isotopia commutation rules
(3.35). It is~undersiopd that the hesulting Hadrenic Mechanics can admit
quantities, paopeAziaA, and physical fows which are noi shared by the
Binkhofgian {on the Atomic] Mechanics.

1

3.5. Hadronic-isotopic generalization of Heisenberg's representation.

As is-well known, the transition from Schrsdinger's to Heisenberg's representa-

tion, within the context of the Atomic Mechanics, implies the transition from

"a representation in which the states are time dependent to another, in which

the states become time independent. We shall assume that this feature persists

in the transition to the covering Hadronic Mechanics.

The Lie-isotopic generalization of Heisenberg's equations have been
proposed by Santilii (see the review in Paper I). The following postulate
can then be formulated by combining these generalized equations with the

constancy pf the states.

POSTULATE V. The time evofution of an operaton .in the hadronic ges-
enalization of Helsenbeng's repnesentation fon the exterfon sthong problem
L8 charaeterized by the lsclopic operaton T and by the T-Hemditian
Birkhofdian operator B within the context of the Lsotopic formubation of
the Hilbert space.

Explicitly, we can write for an arbitrary hadronic operator A

idax > A >, 4 >=0. (3.69)

134

Qur task is now that of proving that ihe iqotopic gengralizations of
Sehrbdingen's and Heisenberg's nepresentations are equivalent. This task

clearly calls for the prior generalization of the transformation theory..

With the understanding that this objective cannot be achieved in one single

paper, the following subsection may be useful to identify some basic aspects.

3.6. Hadronic-isotopic generalization of the unitary transformation

theory. Let us recall that Birkhoff's equaticns are the classical images of
the generalized Heisenberg's equations, while the ciassical. image of the
generalized Schridinger’s equations is given by the Hamilton-dacobi form

according to the scheme {see Paper I, Sectiem IV, for comments}

g
& = [*,87* W BLR =0

Birkh. ——

T
- | R =2
(3.70a} (3.708)
ia* = [a%;8]" ‘ v =Bay
Hadr. i
1
*y =22
R Ia
(3.70c) " (3.70d)

In order to avoid inconsistencies under the correspondence principle,
the hadronic transformation theory must therefore be buiit as a suitable
image of the Birkhoffian transformation theory (studied in detail in mono-

graph24).
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What is important for this introductory study is to recall that the
transition from Equations (3.70a) to (3.70b) is performed via a noncanonical,
generalized canonical transformation. These are reguiar, class C trans-

formations a + a'{a) which do not presesve the fundamental Poisson

brashets

aa M od 11y -
W gy B 2 we {3.71)
W 2t @ Bas #
Nevertheless, the transformations preserve the generalized fundamental

brackets (3.32), i.e., verify the rules

Y aat B v .
ala)+ @™ = if; naB(a(a'))igg- = ™) . (3.72)
a 1

A finaz fundamental requirement fox the hadronic transformation theany is
therefore that it must not be of unitary ifype. By keeping in mind that the
physical laws and relativities of the Atomic Mechanics are based on unitary
transformations, the remark is sufficient to provide additional elements
indicating the nontriviality of the generalization under consideration.
‘The Birkhoffian Mechanics is a covering of the Hamiltonian Mechanics,
in the sense that the latter can be recovered aé'é particular case of the
former. For the case of generalized canonicg} transformations, one can see
that, when ali nongeifédjoint forces are identically null, the generalized

Lie tensor MY reduces to the fundamental ones o'V
My = W™

NSA (3.73)

and the generalized canonical transformations become identical with the con-

ventional ones.
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A second fundamental nequinement of the Dnansgormation theory of the
Hadnonic Mechanics is therefone fhat of adnitting the conventionat unitany
Anans formation theory as a partiouban ease.

These (and other) requirements can be met via the use of the T-unitary

transformations of Section 2, i.e.,

B
k
i

A = U AT AT,

(3.74)

hT _ kT

U0 =y s y=1*=7

whiéh recover the conventional unitary transformations at the value I* = I
(the transformations were proposed by Santilli under the namé.ofrunizaky—
admi#aibﬂa transformations in Ref. 15, p. 743, precisely to stress the latter
feature). '

In the following we shall identify some of the essential ‘properties of
the' T-unitary transformation theory.

First, we must verify that the generalized unit I* is invariant under
T-unitary transformations. This property is clearly important for physical
aspects related to the preservation of the hadronic probability, as we shall

see. It 15 a matter of elementary calculations to show that

]

ETORTL L (3.75)

Lemma 3.2. T-unitary transformations leave invariant the operator unit
* =171 of the Hadronic Mechanics. # - )

Next, by using the trivial identities
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hT-,

U = Turgh”

p=mrl et =y

(3.76)
uruhTr

"
—
n
n

R o Ly

one can see that the isotopic product A * B of gperaters preserves its

structure, i.e.,

U+ A« B« uMT = uTaTeTUNT

(3.77)
- . nT_ ' .
UTATU™ T UTBTU" = A'TB' = A's B

Theorem 3.1, The Lie-isotopic product of operaters is left imvariant by
T—un%tary transformation in the sense of .the rules
U * [ABTE UM = uT(aTB - BTAYTUNT
(3.78)
= [A',B'T"= A'TE' - B'TA' . #

It should be recalled from Paper 1 that, unlike the simplest possible
Lie product AB - BA, the isotopic product A + B - B = A preserves its
structure under (nonsinguiar} nonunitary and non- T-unitary transformations.
inder these latter transformations, however, the T-operator is changed, i.e.,

we have transformations of the type
ATB' - BTA -+ A'T'B' - B'T'A' . (3.79)

On the contrary, in transformations (3:78), the operators A and 8 are

transformed but the staucture of the product (that is, the isotopy operator T)

is Teft invariant. This confirms the special rele of the T-unitary trans-
formations for the Hadromic Mechanics.

Next, we recall that the usual differential rules of Atomic Mechanics

1345
[AB,C] = [A,C]8 + A[B:C] H [A’BC] = [A,B]C + B[A)C] (3.80)
generalize . directly into the hadronic form
[A « 8,01 = [A,C1% B + A « [B,CT*,
(3.81)
[A,B * CI* = [A,B]% C+ 8+ [A,C]" '
with the understanding that, in general,
[A8,CT* # [A,C]* B + A[B,CT*
(3.82)

[a,8CT" # [A,B]T" C + B{A,CT* .

It is then easy to see that, if A and C are operators verifying time

evolution (3.69), their isotopic product A % B verifies the law

%*C+A*%:[A*mm*. S (3.83)

i
=
*
O

u

We are now eguipped to identify the transformation rules under T-unitary
transformation of the isotbbic generalization of Heisenberg's equation. 1In
the case of Birkhoff's equations, the transformation rules under a generalized

canonical transformation a-+a' are given by

vy - A . a?(t,a) '
Ru(a) - Ru(a } Ru o Ru(a ]+ > , {3.84a)

3F

B(t,a) +~ B'(t,a") = B{t,afa")) + == (3.84b)

ot

where rule {3.84a} expresses the form-invariance of the generalized Lie product,

Equations (3.72), while rule (3.84b) gives the new Birkhoffian.




1346

Consider now the hadronic time evolution of the transformed operator A'

Aol ed hT
A e I AU
—'d—U*A*UhT+ ‘U*'gﬂ*UhT-'l- 'U*A*i@T
T Tat W * 3t 1 dat
= dU UhT*U*A*UhT+ l'U*A*UhT*U*EU—hT
BT ! Pt
FU« (A*B-B+A) *,UhT {3.85)
- hT
o 80 hT ' . du’ Y " op t
=i U AT HAT 2 U at T (A= B' - B'AY)
Introduce a T-Hermitian operator D' such that
hT hT - : -
_oLdu s du
D' = e * U= -iU+ & - - (3.86)
Then Equations (3.85) become

i%l = (0" %A A *D') + (A x B -BLxA) - (3.87)

and we have proved the following important property.
Theorem 3.2. The Lie-isotopic generalization of Heisenberg's equations

transform under a T-unitary transformation U according to the rute

1B AT = AR - KTA (3.88)
where

PUNRETRMPORTLE STIT LN ) PR , (3.892)

OTIN | M L # (3.89b)
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It should be indicated that the calculations above are based on right-
modular actions. They can be repeated for left modular actions by therefore
gaining information important for the tdentification of the intrinsic irre-

versibility of the Hadronic Mechanics. This aspect will not be investigated

here (see Paper I11).
Next it is important for our program to identify the behavior of T-

elgenvalues under T-unitary transformations. Recall that, in conventional

Atomic Mechanics, the eigenvalues of an operator are left unchanged by unitary
transformations. ‘It is easy to see that the property persicsts in the covering
hadronic context.

In fact, suppose that the following eigenvalue equation holds
Ax|>=AT|>=a;%|>=0q]>, (3.90)
Then we can write

Ux Aol >= U A UTaUn |5 =nt  (Un|>)=ars]s

Usorw |2 =U%al>=aix | > mox (Wu|s)=a+|

Theorem 3.3. The T-eigenvalues of an operator are left unchanged by

T-unitary transformations. #

3.7. Equivalence of the hadronic-isotopic generailizations of Schrgdinger'

and Heisenberg's representations. Birkhoff's equations §3.70a) and their

Hamilton-Jacobi form (3.70b) are equivalent n the sense that the former reduce
to the latter under a generalized canonical! transformation for which the new

Birkhoffian is identically null {Paper 1).
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B' = B{t,a{a')) +% =0 . 7 (3.92)

It is possible to prove that this classical property admits a consistent
hadronic image. In fact, the T-unitary operator U can be selected, for a
given Birkhoffﬁan. B and identity I* , in such a way that the transformed

Birkhoffian (3.89b) is identically null, i.e.,

K= w8 ox UM T 2 g (3.93)

As a matter of fact, this expression can be assumed as a condition on the
transformation U . [Its existence (under sufficient topological conditions}
can then be proved in a way similar to the atomic case.
By using identities (3.76), Equation (3.93) can then be written in the
generalized SchrBdinger's form
du .
L B' » U ‘ (3.94)
We now indicate, for notational convenience, quantities belonging to the
representation of Postulate III with a subscript (1) and those belonging to
the representation of Postulate V with the subscript (2). Then Equation

(3.94) can be written

'@. = = R' = |} . hT
3t B(j)* U, B(1) B U-% B(z)? U, (3.95)
By recalling the expressions

£ 2q) =Vl Oy s g | By 0, (3.96)

we finally have the Tfollowing important result.
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Theorem 3.4. The hadronic-isotopic generalization of Séhradinger's

representation

1'% | By = By * | 2 {3.97a)
dA -
EtJL) =0 (3.97b)

is equivalent ot the hadronic-isotopic generalization of Heisenberg's rep-

resentation

i5E oy 1) = BBy Tl 72 (3.992)

a% | >y =0 (3.99b)

in the serse that, under sufficient topological conditions, there exists a

'
T-unitary transformation under which

o itea e et e (3.100)
and such & transformation is given by
U=e B Eoqe B (3.181)

Note that the theorem confirms the time-dependence of the hadronic wave

function (3.53).

Theorem 3.4 clearly generalizes the cnrrespundfng Hamiltonian property
of the Atomic Mechanics. In addition, the theorem identifies in technical

terms an insufficiency of the contemporary formulation pointed out in Paper I.
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It is given by the fact that the states of the Heisenberg's representation

are dependent on both * and F

[ >(2)° | a>19)" | ?,E>(2) {3.102}

In the reduction of this representation to the Schradinger's one, one gains
the time dependence, but the E—depeudeuce eannol be, in genenal, suppressed.
As a resuit, the wave function of contemporary quantum mechanics s expected

to be dependent on both * and 3
Yoo HEFE) . {3.103)

In turn, this implies the existence of an equivalénz formulation of Schrgdinger's
equations in terms of wave function {3.104). This problem has been Edentified
in Paper I, and a solution has been proposed via the use of the Birkhoffian
gauge (3.28). Since it deals with an equivalent formulation of the Atomic
Mechanics (which has apparently escaped the attention of the researche.rs in the
field) we shall not consider it any lenger. We have mentioned it here because
the atomic particularization of Theorem 3.4 , while involving the conventional
Reisenberg's equations, %mplies the indicated reformulation of Schrﬁdinger's
equations.

The study presented until now is sufficient to indicate the existence of the
hadronic generaiization of other atomic representations, e.g., the interaction
representation, that via path integrals, etct The study of these additional

aspects of the Hadronic Mechanics is left here to the interested researcher.

3.8. Hadronic-isotopic generalization of Kronecker's and Dirac's deltas.

To make further progress we need the generalization of the Kronecker's deftz
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;I s i= i
8.1 = S {3.108)
Yoo, 147 _
and of Dinac's delta
+m g
8(x) =% f 12X g, (3.105) -

which is app]icaB]e to Hadronic Mechanics. The need for the genera]ization is

se]fevédent. In fact, the unit of the Hadronic Mechanics is no longer I, and

the Kronecker's Gij must be suitably generalized. The generﬁ]ization of the ;

guantity &(x) is equally needed inasmuch exponentials of the type appearing

in {3.105) are generaily meamingless in Hadronic Mechanics.

Befinition 3.1. The hadronic generalization S?j of Kronecker's Séj

given by

8. = I*s,, = (3.108)
0 H 'i #j

i

The hadronic generalization of Dirac's 6{x) is given by

oo +eo |
_ 1 iz x x _ 1 izTx ’
Sfx) = [ e 8z =5 J e dz.
de
=k [ el™re o {3.107)
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As in the conventional case, there exist numerous reformulations of the
ugs-function" which we camnot possibly study at this time.
to the indication of the properties

§*(x) = sfrx) = § 6(x)
N ‘ {3.108)
ff(x) 8" (x)dx = T* £(0) = £,(0) .
The generalization 'of the symmetry properties [e.g., 8(x) = 8(-x)] will be
studied at a later time after having fdentifiéd the basic structure of the

symmetries of hadronic systems.

3.9. Hadronic-isotopic generalization of the atomic orthonormality,

normalization. Two atomic states |ai> and ]qj> are said to be orthonormal

when they verify the rule

<uiiuj> 2 Gij » {3.109}
Definition 3.2. Two hadronic states |a;> and |aj> are said to be
Ifonzhonoamat, when they verify the generalized ruie

- <aglTlagp = 835 = T 0oy« # (3.110)

<u1I * |uj> ij ij

Note thaf when T 1s a scalar, the atomic and hadronic orthonormality
are equivalent.

As is well known, one of the fundamental points of the Atomic Mechanics
is the normalization of states |a> to the unit element I of the enveloping

associative algebra of operators

<o = IT (a)¥(a)de = I (3.111)

We Tlimit ourselves
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In turn, this normalization is at the basis of the probabilistic interpretation
of the Atomic Mechanics.

Let us recall that one of the primary objectives of the Lie-isotopic
branch of the Hadronic Mechanics is the exterior treatment of strong non-
Hamiltonian interactions, that is, the experimenial observation of strong
interactions. For such a task, it is clearly important to preserve a form of
probabilistic interpretation, in order to reach a theory which is consistent
with available experimental data. In turn, tﬁis can be apparently achieved
via the reguirement of the exisience of the unit operator I* = T'1 {plus

additional topological conditions, besides regularity, which are inessential

here).

Defimition 3.3. A hadronic state |[a> 15 said to be 1 nommatized when

it verifies the rule

-1

e *

) <a]* |o> = <afT|e> = f‘k‘ ©)x va)da=1"=T7 (3.112)

Along similar lines, two hadronic wave-functions
WB {e) and ?B,(m) are sajd'to be &inormatized when they verify the rule

PG ERNGITE 5" (8-8") . (3.113)

Similar normatization occur for other hadronic generalizaticns of atomic nor-

malizations. #

It is recommendable to give a simple example. Consider two hadronic wave

packets

tpula) = WeTR2, y(a) = WM (3.114)
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Normalization (3.113) now reads (assuming, for simplicity, T = const.)

*2TJ’ RICEN DI

N TZHG(R -R') = N T 2ué {R - R}, (3.115)

‘@;.(a) * ¥p(a)da

u

thus yielding the hadionie nommaliration coefgicient

*
1 1 I
R e . (3.118)
T 'ﬂZn 2r
which is a direct generalization of the atomic ones
Ne L (3.117)

3.10. Hadronic-isotopic probability and expectation values. The physical

impiications of Definition 3.3. are intriguing. In fact. it implies a nontrivial
generalization of the atomic probabilistic interpretation. The total probability

of an atomic state is given by the familiar form
P = cyfu> = fT(a)‘?(a}du =1 {3.118)

and 1ts unit value represents the certainty. We now define as hadrondic total

probability the corresponding quantity

p*= <al * o> = ;]:Er {a) » ¥{a)do = : (3.119)

of which {3.118) is a particular case. The nontriviality of the generalization
is due to the fact that the tota) probability is no Tonger the ordinary unit,
and 1t is instead a more general quantity depending on the coordinates and

I* = I*(r,p)

momenta, However, this guantity provides a perfectly acceptabie

13585

characterization of certainty because it is the (right and left) unit of

the algebra.

The consistency of the hadronic probability can be further illustrated

by showing that it is conserved in time. This is & consequence of Lemma 3.7.
Nevertheless, owing to its importance, it is appropriate to prove the
property within the context of each hadronic-isotopic representation. Con-

sider first the representation of Postulate III. Then we have
1% = fﬁ’ (o) * ¥{o)de
f[(at vo) ey o+ y o« 2 ]da (3.120)

=f(?f' *Ba¥-¥ %xB#Y)da =0

where we have used Fquations (3.30a) and the condition of T-Hermiticity of

the Birkhoffian.
The proof of the conservation of I* within the context of the represen-
tation of Postulate V is even simpler. In fact, we triviaily have

I——-— [1*,B]* = [T_}
{3.121}

=7 hB-8+1 =T B -8 -5-8z:0.
POSTULATE VI. The Zotfal hadnonie probabilify fon the exterion stnong
problem is characterized by the generalized upit 16 = T°! which is conserved
An the hadronie-isotopic genenalizations of Heisenbeng's and Schﬂﬂdingen'é
hepresentations, as well as under all possible T-unitany Anans joamations.
For readers not yet familiar with the Birkhoffian Mechanics, it shou1d

be indicated here that the lack of explicit time dependence of I* originates
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in the semiautonomous character of Birkhoff's equations (3.20}. 1In fact,

the general nonautonomous equations

R (t,a) BRu(t,a}]é\, _p Bty

BRu(t »a) SA
v a2k 3t

13 = 0 (3.122)

v

3a 3a

imply an exp]iéit time debendence of the tensor ﬁuvtt,a) as well as of the
tensor @V(t,a) = (|| T ||~1)W V
This impli€s a hadronic T—operaior with an explicit time dependence.
However, the brackets of the time evolution of esquations (3.122) violate the
necessary condition for constituting an algebra (that is, not only we lose the
Lie algebra, but we actually lose the condition for admitting any a1gebra)]&'
This is sufficient to clarify the reason for the reétriction of our
analysis to the semiautonomous equations. At any rate, these latter equations
are already directly universal in mechanics. The transition to Equations
(3.122) is therefore not needed.
The remarks, however, serve the purpose of indicating that the theory
has the necessary mathematical structure to permit a time rate of variation
of the "probability", in case needed in future developments.
The atomic expectation values of a (Hermitian) operator. A are given

by the familiar form

L <alAle>
<A> = —@l—dr (3.123)
which, in view of normalization (3.]11),is generally written in the reduced

form

<h> = <a| A o> = ‘fiiF(a)Aw(a}du (3.128)
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We consider now the problem of the generalization of the atomic expectation
valyes for the case of the Hadronic Mechanics.

Recall that the conventicnal field C cannot be used for the isotopic Hilbert
space H(T) of Definition 2.23 {because H(T) would not act linearly on C}. As
a result of this occurrence, the conventional "numbers” of the Atemic Mechanics

had to be generalized to the YT-numbers™ of the field C(T).

This occurrence 1eaﬂs to the following definition of hadramic expectation

values

xAx] >
L]

'CB,IZS)

- *

LA> = 1
T

which trivially coincides with the conventional oneswhen T is itself a scaiar,

| LA> = <Aa> (3.12¢)
]

with the understanding thaf, when T is an operator, the hadronic
and the atomic expectation values are structurally different.

Note that values (3.125) are composed of two parts, an operator part
expressed by the unit I*, and an (ordrary) scalar part expressed by the rest
of the right hand side. Actual physical measurements are, of course, associated

to the latter part, and this is the reason far the selection of normaI%zation

(3.112) rather than.a corresponding normalization via the use of product (g.?#),{.e.

S p2is
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POSTULATE VII. The values expected .in the measurements of haduonic
obsenvables in the exteriorn stiong paoblem are given by nule (3.125) and,
when nepresenting fodal quantities, can be conmsenved {see Sectfion 3.17).

Owing to the open/non-Hamiitonian character of the mechanics under
study, we expect the last part of Postulate VII to be selfevident.

" By noting the Tollowing trivial properties
P =_pr" (a) * Ho)da = j'@' (@) « U U+ Ya)da
=f'§?'" fe) + ¥ (a)da = 1* {3.127a)
JF (@) % A« va)a af? (o) * U'Te U s & = UMe U % ¥(a)da
=fu7- (o) * A% ¥ (a)don (3.127b)
we have the following result.

Lemma 3.3. Hadronic-isotopic expectation values are left invariant

by T-unitary and by T-antiunitary transformations. #

By recalling the invariance of the Lie-isotopic praduct and the pre-

. servation of the T-eigenvalues, we then reach the following important fheofem.

Theorem 3.5. All hadronic systems which can be connected by a T-unitary

or a T-antiunitary transformation are equivalent. #

It is evident that the theorem above generalizes the corresponding

property of the Atomic Mechanics for unitary and antiunitary transformations.

RO R L "
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Note that, if the hadronic systems can be connected by a unitary or "

an antiunitary transformation, they are not necessarily equivalent (e.g., &
because the eigenvalues can be now different).

{:

3.11. JImplementation of the theory with subsidiary operator constraints 3 ol

for total conservation laws. Consider a closed selfadjoint Hamiltonian system

0
e @y o (™= ( ?:NSA(t‘",'r"aﬁ))

- ®/m -
¥ = Ma) = m“v%(,Q v (89) = (;SA{;)) (3.128a)

- K )
ko Tk, Tkl Tk [X,H] = 0 {3.1280)

u=1923"’:6N51k=132"")]0:

X = {H; Ptot’ jtot’ Etot} - (3.128(:)

As well known, the total Galilean conservation laws are first integrals of

the equations of motion.
Generalize now the system via additive nonpotential (non-Remiltonian)

foraces. This yields the closed nonseifadjoint Birkhoffian systems

O M= MtLa) = BV a) BB(E,a) ,
oa
(3.129a)

e rRal e, u=1,2, (0,68, ko= 1,2, 0,10, (3.129b)

X = {H, 3tot. Titot, [J9] (3.129¢)




|

em

2}

c)

ja)

2b)

9c)
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in which the total conservation laws are no longer first integrals of the
equation 6f motion, but “hona fide" subsidiary constraints.

As reviewed in Paper I, one of the simplest realizations of systems
(3.729) is to restrict the nompotential vector I to be the null eigenvector
of the matri; BXk/aau , T.g.,

X
—Kk pu a

m > k=12, -.,10 (3.130)
2a

which results into the conditions

N
K

£p - Ao, (3.131)
o Ry

2 SA _

E Py X fg =0 , i

The existence and consistency of classical models {3.129) .is then selfevident.

Until now we have considered the formulation of the Hadronic-isotopic
Mechanics for open strong systems. The implementation to the c¢losed non-
Hamittonian form is'a]sa‘passible, in full analogy with the classical-
Birkhoffian case, as it was the case for the preceding aspects.

Consider a closed Hamiltonian atomic system, say, in Heisenberg's rep-

resentation
if—t a"] > = [a'H1} > L [2MaV]] 5 = V) s (3.132a)
X ax aX
.d AP PO . :
g Xl > = gt @ > = Gigg # DD > =0, (3.132)
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_ _Wh
X = {H, ﬁ’tot, 3m, Etot} =X, (3.132.c)

The ten conserved operators are the generators of unitary symmetries of the
Hamiltonian.

But, as stressed in Paper I, the symmetries of the total energy are not
necessarily symmetries of the equations of motion, owing to the fact that
internal nonpotential 1h;eractiuns have no representatives in the total energy.

This leads in a natural way to the implémentation of hadronic-isctopic

representations.via subsidiary constraints. e.g., of the type

A R it R PN e L N IR A [ {3.133a)
axk * ° i
1j_t Xex | 2= g [4BT" + [ > =0, {3.133b) L
- B o hT
X= (H Prgys Jope s B = X0 (3.133c)

r
which were originally propased in Schrgdinger’s*form in Ref.15, p. 707.

" MNote that, in the transition from Egs. (3.128) to (3.129) the physical
quantitieé have been Teft ﬁnfhange& as a fundamental cendition for consistency.
Thé situation is somewhat altered at the hadrenic Tevel, inasmuch conventional
Hérmitici&y of quantities (3.132c) should be replaced by . T-Hermiticity in
the hadromic extensien, ﬁnd this generally implies different symmetrizations.
Alsa, the expiicit realization of the operators a* changes in the transition

from the atomic to the Hadronic setting, as by now familtiar.

With an open mind on these and other aspects, systems {3.133) are expectad
to be consistent as it is the case for systems (3.129}. In fact, the con-
sistency reduces to the search of a generalized identity I* and a Birk- f

hoffian B under which Equations (3.133) are consistent for given pre-
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assigned total cbservables Xk
The deta11ed study of this problem will not be considered here, and we
shali mean]y 1imit ourselves to the presentation of a simple but physically

nontrivial application.

3.72. Application to the structure of the ¢° particle. As indicated

earlier, the applications of Hadronic Mechan1c5 are already considerable,
even though they are scattered in the ITterature with a terminology different
than that of this paper. Also a rather comprehensive effort teward specific
app11cat1ons appears to be under way, beginning with the attempts to elim-
fnate the rather unphysical spreading of the atomic wave packets (which, in
nuclear cases may reach the size of the exper1menta] apparatus}; and passing
to a systematic study of the departures from atomic settings of the nuglear
magnetic moments: and the problem of strong nonpotentia] scattering, etc.

To conclude this Paper, we would Tike to review a structure model of
the 7° proﬁosed by Santilli in Ref.15, Section 5, and reformulate it in
terms of the isotopic theory of this paper. We expect the basic in 1deas and
niethods to be extendab1e to other systems (such as the deuteron or the neutron)
upon su1tab1e 1mp]ementat10ns

The starting point of the model was the inability of fﬁé Atomic Mechanics
tp provide a nonrelativistic structure model of the 7 as a bound state of
a particle, say e, and its antiparticle et under the condition that
their mass U

is much smaller than that of the 7% (~135 MeV) . This

feature was explicitly worked out by showing that the atomic eguations

#21 4 ,2d, 2. . sbr - Bind.
Loz & g0 - &+ Yot = Ty
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ghest, 2E}E(in + 2Egest . gBind

T° =135 MEV,

=Kin
E
= ark?| (o) |2§§fi = 100 sec™T, (3.134)

b7 = 10713 cn, gRest. g MeV<<gRest
are {nconsistent, in the sense that there exists no rezl solution for the
total energy. In fact, under the condition that the masses of the con-
stituents are much smaller than the total mass of the bound state, the -
indfcial equation admits only complex solution, thus preventing the
achievement of a real tota) energy.

To resolve the problem, Santilli therefore proposed a "hadronic

mutation" of Equations (3.134) which we now rewrite in the isotopic form

.

21 d 24 e gbr _ _Bind.
[ zar (F) - ¥y S5, 01 = v = gBIndiy
eEr -£
Rest

ERSSE- 135 mev |, etos mey (3.138)

-1 --13

1016 gec, bl = 107 Vem

-1,
Tyo
Under the condition that the isotopic operator is averaged to a .con-

stant

1 =
T+VIMV—%, {3.136)
v

equations (3.135) coincide with equations {5.1.14) of Ref.ls.

Intriguingiy, .the isotopy permitted the achievement of a consistent

structure equations of the =° » that is, equations capable of reproducing

the
well

the

- 2qua
. The
“-than

stru

Cof

'fyénd



134}

1w

.135)

.136)

:ing
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1the neaf values of the total enmergy, the mean life, the charge radius, as

%the gpace'and charge parity, etc.), via the following value

Tg=1.73x 107 . (3.137)

In particular, the isotopy suppressed energy spectrum of the atomie

-':equations, by therefore resulting into one single total value of the energy.

The w° particle resulted to be a unique structure, fundamentally different
than the = * (which were interpreted in Ref.]5 as a hadronic three-body
structure}.

The model permitted a quantitative study of the hypothesis that the
constituents of hadrons are the ordinary efectrons. and positrons, although
in mutated states {called eletons and antieletons).

In the final analysis, the comstruction of the Hadronic Mechanics was

15 '

proposed in paper ” to study the possibility of the rather suggestive re-

duction of the entire physical universe to photons, neutrinos, and electrons.
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