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The most majestic scientific achievement of this century in muthematical beauty,
axiomatic consistency, and expurimental verificarions has been special relativity
with its unitary structure at the operator fevel and canonical structure at the
clussical fevel, which has turned out to be exactly valid for point particles moving
in the homogeneous and isotrapic vacuun (exivrior dynamical problems). In recent
decades a number of anthors have studied nommitary and noncananical theories,
here generally called deformations, for the representation of broader conditions.
such as extended and deformable particles moving within inhomogeneous and
anisotropic physical media (interior dynamical problems). In this paper we shaw
that nonunitary deformations, mncluding ¢~ k-, quantum-, Liv-isotopic, Lie-
admissible, and ather deformations, eoen though mathematically correct, have a
number of problematic aspecis of physical charucter when formulated on conven-
tional spaces over conventional fields, such us lack of invariance of the basic
space-time wnils, ambiguous applicability to nmeasurements, toss of Hermiticity-
observability in time, lack of invariant numerical predictions, loss of the axioms af
special relativity, and others. We then show ther the classical nancananical
cownterparts of the above nommitary deformations are equaily afflicted by corre-
sponding problems of physical consistency. We also show that the contemporary
Sormulation of gravity is affficted by similar problematic aspects because Rieman-
nign spaves are noncanonical deformations of M inkowskian spaces, thus having
nenincariant space-time wnits, We then point out that new mathematical ethods,
calfed isotopies, genotopies, hyperstructures and their isoduals, affer the
possibilities of constructing @ nonunitary theory, known as refativistic hadronic
mechunics which: (1) ix as axfomativally cousistent as relativistic quantin
mechanfcs, (2) preserves the abstract axioms of special relativity, and (3} results
in @ complerion of the conventional mechanics much along the celebrated Einstein-
Podolski~Rosen argument. A number af novel applications are indicated, such as
a geometric unificarion of the special and general relativity via the isomitkowskian
geometry in which the two relativities are differensiated via the invariant basic
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unit, while preserving conventional Ricmannian metrics, Einstein’s field equations,
aned refated experimental verifications; u novel operator form of gravity verifying
the axioms of relutivistic quantum mechanics under the universal isopoincaré
symmetry; @ new structure model of hadrons with conventional massive particles
as physical constituenis which is compatible with composite quarks and with estab-
lished wnitary clussifications, and other novel applications in nuclear physics,
astrophysics, theoretical biology, and other fields, The paper ends with the
proposal of a number of new experiments, some of which may imply new practical
applications, such as conceivable new forms of recycling nuclear waste. The
achievement of axiomatic consistency in the study of the above physical problems
has been possible for the fivst time in this paper thanks to mathematical advances
that recently appeared in a special issue of the Rendiconti Circolo Matematico
Palermo, and in other journals, identified in the Acknowledgments.

1. OUTLINE OF DEFORMATIONS

in 1948, the American mathematician A. A. Albert!" introduced the notion
of Jordan admissible and Lie-admissible algebras as generally nonassociative
algebras U with elements a, b, ¢, and abstract product ab which are such
that the attached algebras U/t and U~, which are the same vector spaces
as U equipped with the products {a, b} ,=ab + ba and [a, b],=ab—ba,
are Jordan and Lie algebras, respectively. Albert then studied the algebra
with product

(A, B)=pxAxB+(1—p)xBxA (L1

where p is a parameter, 4, B are matrices or operators hereon assumed to
be Hermitian, and A4 x B is the associative product. It is easy to see that
the above product is indeed jointly Jordan- and Lie-admissible because
{4,B}y=AxB+BxAand [4,B},=(1-2p)x(AxB—BxA).

As part of his Ph.D. studies in theoretical physics, Santilli”® intro-
duced in 1967 a stronger notion of Lie admissibility which is Albert’s
definition,'"! plus the condition that the algebras U/ admit Lie algebras in
their classification. This refinement is recommendable for physical applica-
tion because Albert was primarily interested in the Jordan content of a
given algebra {for p =0 product {1.1} becomes that of a commutative Jordan
algebra), while possible physical applications are evidently enhanced by a
well-defined Lie content. In fact, product (1.1} does not admit a (finite)
value of p under which it recovers the Lie product and, therefore, it cannot
be used for possible generalizations of current physical theories.

Santilli‘® therefore introduced the realization

(A, B)=pxAxB~gxBxA4d (1.2)
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with related time evolution in the following infinitesimal and finite forms
{(h=1})

iddjdi=pxAxH—gxHxA (1.3a)
A(t)=et'qx:xlfo(O)xe—ipxrxH (13'.'))

where p and ¢ are finite parameters with non-null values p+g¢, 4, B are
Hermitian matrices or operators; and A x B is aiso the associative product.
It is easy to see that product (1.2) is Jordan-admissible, Lie-admissible, and
admits Lie algebras as particular (nondegenerate) cases for p=g (#0).

Refinement'® turns out to be insufficient in physical applications
because, as we shall see shortly, the parameters p and g become operators
under the time evolution of the theory. Santilli"® ® therefore introduced in
1978 the broader condition of general Lie-admissibility which is the notion
of Ref. 1 plus the condition that the algebra U admits Lie-isotopic (rather
then Lie) algebras in its classification.

The latter notion was realized via the general Lie-admissible product
{first introduced in Ref 3b, p. 719)

(A, B)=AxPxB—Bx(QxA (1.4)
with time evolution in infinitesimal and finite forms (Ref 3b, pp. 741, 742)

iddjdi=AxPxH—-HxOxA {1.5a)
A(t)=er‘H>‘erxA(0)xe—uxqu (l.Sb)

where P and @ are generally nonhermitian matrices or operators with non-
singular and Hermitian sum P+ Q admitting of parametric values p and g
as particular cases. The conventional Heisenberg’s equations are evidently
recovered for P=0=1.

Note that the P and Q operators must be sandwiched in between the
elements 4 and B to characterize an algebra as commonly understood in
mathematics. In fact, the script Px 4 x 8— @ x Bx A would be acceptable
for P and @ parameters, but it would violate the right distributive and
scalar laws for P and Q operators (see Refs. 3a, 3b for details).

In the latter case the algebras U admit Lie algebras for P=¢ =1, and
the attached antisymmetric algebra U~ is not characterized by the tradi-
tional product [A4, B]=Ax B—Bx A, but rather by the product (first
introduced in Ref. 3b, p. 725)

T=P—Q=T"
(1.6)

[4, "B]ly=AXB—BXxA=AxTxB—~BxTxA,
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called Lie-isotropic, because verifying the Lie axioms, although in a more
general way, with the product A xB=AxTx B called isoassociative
because it is more general than the conventional associative product 4 x B,
yet preserves associativity, 4 X (BX C)=(4x B)X C.

According to the above results, the nonassociative algebra U with
product {4, B), Eq. {1.4), can be replaced by an algebra £ with isoassociative
product 4 X B= A x T x B, in the characterization of the attached antisym-
metric algebra(3 334}

[A, "Bl =(4, B)—(B, A)=[A4, "Bls=AXB—B%XA (L.7)

The latter property permitted a step-by-step lifting of the conventional
formulation of Lie theory in terms of the isoassociative product 4 x B,
including enveloping algebras, Lie algebras, Lie groups, Lie symmetries,
transformation and representation theory, etc.,'® called today Lie-Santilli
isotheory (see Rel. 5 and papers quoted therein).

As a particular case of the broader Lie-admissible formulations, San-
tilli¢® therefore studied the Lie-isotopic time evolution in infinitesimal and
finite forms for T'= T (first introduced in Ref. 3b, p. 752)

idAjdt=[A, "H];=AXH—HXA=AxTxH—-HxTx4 (l8a)
A(,):eihx?‘xrxA(O)xe»—a‘:xTxH (Igb)

which admit conventional quantum equations for = 1.

The latter theory was called isotopic'® in the Greek sense of being
axiom-preserving, because the deformation is still Lie, yet of a more general
nature, while the preceding theory (1.5) was called genotopic, in the Greek
sense of being axiom-inducing, because the Lie axioms are replaced by the
covering Lie-admissible axioms.

No operator theory has sufficient depth without well-defined classical
foundations. For this reasons, Santilli conducted extensive studies on the
classical counterparts of the preceding theories reported in Refs. 3d, 3e. In
essence, the classical action underlying the Lie-isotopic theories resulted in
the most general possible, first-order Pfaffian action in phase space

a=["diL R, (b) db*Jat + H(1, b)] (19)

b= {0} = {r*, pi)

R={R) ={4{r, p), B*(r,p)}, w=12.,6, k=1,23
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whose variations yield the well-known Birkhoff’s equations in the follow-
ing covariant and contravariant forms (see Ref. 3d for historical notes and
references)

db* _dH(1, b)

Q,.(b) == B {1.10a)
db" OH(t, b) :
— = (Y pulinial ik et 4
o £2:b) 55 (1.10b)
with (nowhere degenerate) covariant and contravariant tensors
Q,,=0R, [0b"—0OR,[3b" - (1.11a)
Q) = (|24 "y (1.11b)

The ensuing mechanics, called Birkhoffian mechanics in Ref. 3d, and
Birkhoff-Santilli isomechanics in various references (see, e. g, Ref. 5 and
papers quoted therein), was said to be isotopic because it preserves the
main axioms of conventional Hamiltonian mechanics although realized in
their most general possible form, i.¢.: (1) derivability from the most general
possible first-order action (analytic isotopy); (2) characterization by the
most general possible, regular symplectic structure in local coordinates
(analytic isotopy),

Q=0 (b)db" A db" (1.12)

and (3) characterization by the most general possible regular
(unconstrained) brackets verifying the Lie axioms (algebraic isotopy)

oA B
. 27 ouvppy
[A’ B] abyQ (b) aby

(1.13)

Conventional classical Hamiltonian mechanics is admitted as a par-
ticular case at all levels for R= R°=(p, 0), as one can easily verify.

One may consult Ref. 3d for additional aspects, including: the unified
treatment via the conditions of variational self-adjointness; the use of the
isotopies of Lie's theory, the proof of the “direct universality” of the
mechanics, i.c., its capability to represent all well-behaved local-differential
nonconservative Newtonian systems (universality) in the given b-coor-
dinates of the experimenter (direct universality); and other aspects.

Since Egs. (1.8) and (1.10) have the most general possible
(unconstrained and regular) Lie structures, the former were introduced in
Ref. 3d as the operator image of the latter.
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References 3a, 3e were devoted to the study of the classical counter-
part of Lie-admissible equations (1.5). Conventional Newtonian forces are
divided into variationally self-adjoint (SA} and non-self-adjoint forces
(NSA), Fi(t, b)=F3* + F5* The SA forces are represented in terms of a
conventional potential U(t, b) via the techniques of the inverse problem of
Ref. 3d. The NSA forces are represented via the algebraic tensor of the
theory, according to the equations of Refs. 3a, 3e

db* ., OH(1, b)
- — St b) —5 2 — = dv, jdt — FSMt, b) — FYSA(e, b)) (1.14a)

(=@ +w=(2, 0

0 0
o onomon) (H190)

where w* is the familiar canonical Lie tensor and S, is a Lie-admissible
tensor because

S#¥(t, by — S¥(t, b) = 200" (1.15)

Consequently, the brackets of the time evolution

8A ... . OH
dAjdt = (A, H)—W SH(t, b)EF (1.16)
are Lie-admissible,
(4, B)— (B, 4)=2[4, B] (L17)

with a compatible lifting of the symplectic two-form (1.12) called symplectic-
admissible.

The emerging mechanics was called Birkhoff-admissible mechanics in
Ref. 3e and it is called Birkhoff-Santilli genomechanics in the literature.”®
Note its very simple direct universality for all possible Newtonian systems,
owing to general solution (1.14b), which should be compared with the
rather complex direct universality of Birkhoff’s equations (1.10).

We should also recall that the Lie-admissible equations (1.14) were
constructed® 3! along the original Hamilton’s equations, those with
external terms here denoted F}'54, The important point is that the numbers
of independent functions in the external terms F.°* and in the Lie-
admissible tensor S** coincide.
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Reformulation (1.14) is required by the fact that the brackets of
Hamilton’s equations with external terms violate the condition to form any
algebra, let alone the Lie algebras, thus preventing the construction of a
covering mechanics. On the contrary, brackets (1.16), first of all, verify all
conditions to characterize an algebra, and, second, that algebra becomes
Lie-admissible, i.e., a covering of the algebraic structure of conventional
Hamiltonian mechanics.

Note also that Lie-isotopic equations (1.10) are structurally reversible,
that is, they are reversible for reversible Hamiltonians. On the contrary,
Lie-admissible equations (1.14) are structurally irreversible, that is, they are
irreversible even for reversible Hamiltonians. These main characteristics
will persist throughout the analysis of this paper.

As such, the Lie-admissible equations are particularly suited for an
axiomatization of irreversibility, that is, its representation via the structure
of the theory, rather than the addition of symmetry breaking terms in a
time-symmetric Lagrangian or Hamiltonian.

Since Eqs. (1.5) and (1.14) have the maximal possible (unconstrained
and regular) Lie-admissible structures, the former were assumed in Refs. 3e
to be the operator image of the latter. For additional aspects, the reader
may inspect Ref. 3e.

Classical and operator Lie-admissible structures and their Lie-isotopic
particularizations were then studied in a variety of mathematical and physi-
cal papers; see, e.g., Ref. 5 and additional papers.'®) A comprehensive bibli-
ography up to 1984 can be found in Ref. 7, and that on subsequent works
in Ref. 5d.

In 1985 Biedenharn® and Macfarlane®® introduced the so-called
g-deformations which were followed by a large number of papers in the
field (see, e.g, Refl 9). Still more recently, other types of deformations of
relativistic quantum formulations appeared in the literature under the
name of k-deformations (see, e.g., Ref 10). Comprehensive studies were
also conducted in the field known under the name (somewhat misleading)
of quantum groups (see, e.g. Rel 11).

The latter deformations are essentially reducible to the following

types:

(1) Deformations of enveloping associative algebras
AxXBo AXB=gxAxB (1.18)
(2) Deformations of the Lie product

AXB—BxA—AxB—gxAxB (1.19)
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(3) Deformations of the structure constants
X x X=X, x X;=CiX, » X, xX;~ X, x X;= C{ X, (1.20}

and numerous others studied in Sect. 2 and 3.

One can easily see that deformations (1.18) and (1.19) are particular
cases of the Lie-admissible deformations (1.5), while alteration of the struc-
ture constants, Eq.(1.20), are true deformations as intended in mathe-
matics. Because of this disparity, Ref. 2 suggested the name of mutations for
alterations of the structure of the Lie product, with the intent of preserving
the name of deformations for structure such as (1.20),

Nevertheless, the term “deformations™ is now widely used and will be
kept in this paper to avoid misinterpretations. We shall therefore call
“deformation” any alteration of the structure of classical or quantum
mechanics, thus including ¢-, k-, quantum-deformations, the deformations
of Lie-isotopic and Lie-admissible type, as well as any deviation from the
conventional linear, local, canonical, or unitary structure.

Ironically, by the time Biedenharn’s and Macfarlane’s papers'®
appeared, Santilli had aiready abandoned this line of inquiry because of
insurmountable problematic aspects of physical character preliminarily
reported by Lopez in Ref. 12.

Despite the appearance of the latter papers and the passing of time,
the problematic aspects of deformations of classical and quantum formula-
tions have not yet propagated in the literature, thus rendering their addi-
tional study recommendable.

The ultimate problem addressed in this paper is the following. On the
one hand, the main characteristics of conventional classical and quantum
formulations are those of being canonical and unitary, respectively. On the
other hand, advancements in interior problems, e.g., the classical represen-
tation of the irreversibility of the structure of Jupiter, requires a noncanoni-
cal theory®®3¢) or the operator representation of a black hole structure
requires a nonunitary theory.!'®

But, as outlined in the next section, the above classical and quantum
deformations possess a number of rather serious, problematic aspects of
physical nature, even though they possess an undeniable mathematical
beauty (which perhaps accounts for the large number of papers in the
field).

Above all, noncanonical-nonunitary theories violate the axioms of the
special relativity, thus creating the considerable problems of identifying
new axioms, proving their axiomatic consistency and, after that, estab-
lishing them experimentally.
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The main problem considered in this paper is therefore the achieve-
ment of theories which are structurally noncanonical at the classical level
and nonunitary at the operator level, yet formulated in such a way to be
as axiomatically consistent as conventional mechanics and, above all,
capable of preserving the abstract axioms of especial refativity.

As we shall see, contemporary formulations of quantum gravity are
afflicted by similar problematic aspects because Riemannian spaces are
deformations of he Minkowski space which are noncanonical at the classical
level and nonunitary at the operator level. Therefore, quantum gravity suffers
from essentially the same problematic aspects of the preceding nonunitary
theories.

The primary objective of this paper is of methodological character. As
such, applications and verifications will only be indicated for further studies
elsewhere with the understanding that it would be unreasonable to expect
their joint detailed treatment here.

2. PROBLEMATIC ASPECTS OF QUANTUM DEFORMATIONS,
CLASSICAL DEFORMATIONS AND GRAVITY

As is well known, a necessary condition to exit the class of equivalence
of quantum mechanics is that the map from quantum to deformed formula-
tions must be nonunitary

Ux Ut %1 2.1)

when referred to conventional Hilbert spaces # with inner product and
normalization

Yledelle, +, x), (Yl =1 (22)

where C(e, +, x ) represents the conventional field of complex numbers ¢
with familiar sum -+, multiplication x, and related additive unit 0 and
multiplicative unit 1.

It is evident that, to be nontrivial, quantum deformations must be a
nonunitary images of conventional quantum setting, otherwise they are
mere equivalent quantum mechanical forms. Note that this includes not
only ¢-, k-, and quantum-deformations, but also all Lie-admissible and Lie-
isotopic formulations {1.2)—{1.8). As an example, we have the following

Lemma 1. The general Lie-admissible time evolution (1.5) and its
Lie-isotopic particularization (1.8) are nonunitary on ¥ over C.
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t=0 are no longer generally Hermitian at subsequent times, and the con-
sidered quantum deformations do not possess unambiguous observables.

As is well known, the numerical predictions of quantum mechanics are
the result of data elaboration via special functions (and transforms). The
predictions of quantum deformations are also the result of special functions
although of new type specifically built per each case considered, the so-
called ¢-, k-, quantum-special functions of Ref, 8-11. But nonunitary defor-
mations are not form invariant under their time evolution and so are the
related special functions. Problematic aspect (3) then follows because the
lack of invariance of deformed special functions evidently implies the lack
of invariant numerical predictions.

For instance, g-special functions at the initial time t=0 no longer
generally apply at a later time ? because the ¢ parameter becomes a @
operator under nonunitary transforms, according to the rule

gxAXxBogxUxAxAxBxUt=AxOx 8 {2.6a)
UxU'#I, Q=gx(UxUH™!
A=UxAxU', B=UxBxU™! (2.6b)

and a similar situation holds in the other cases. J

It should be stressed that Theorem | applies, specifically, to nonunitary

deformations computed on a conventional Hilbert space over conventional
fields. If the deformations are wnitary, no problematic aspect evidently
arises when computed over a conventional Hilbert space over C.

Similarly, if the deformations are nonunitary and computed over
suitably generalized Hilbert space and fields, then consistency can be
regained under certain conditions studied in Sec. 3.

The problematic aspects of the above “No-Go Theorem™ are serious
per se. Yet, additional problematic aspects are implied by consequences (1),
{(2), and (3). For instance, it is known that the probabilities of quantum
mechanics are deeply linked to the invariance of the unit and its decom-
position. The lack of invariance of the unit under nonunitary transforms
then implies the following property (where the computation on conven-
tional Hilbert spaces over conventional fields is assumed hereon):

Corollary 1.A. Nonunitary quantum deformations do not possess
invariant probabilities.

Recall that the physical laws of quantum mechanics are unique in their
definition and invariant under the time evolution of the theory. By recalling

the several alternative possibilities of defining ¢-, k-, quantum-, and other.
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special functions (e.g, the numerous g-exponentiations existing in the
literature!®'® and their lack of invariance in time, we have the following:

Corollary 1.B. Nonunitary quantum deformations do not possess
unique and invariant physical laws.

Recall that the causality of quantum mechanics follows from the
unitarity of its time evolution. We therefore have the additional:

Corollary 1.C. Nonunitary quantum deformations violate causality.

But the problematic aspect considered particularly serious by this
author is the following one of evident derivation from Theorem 1:

Corollary 1.D. Nonunitary quantum deformations violate the axioms
of the special relativity.

The above occurrence can be easily illustrated by noting that, e.g., the
deformed Minkowski spaces of Ref. 10 are not compatible with the Lorentz
transforms, or that the corresponding deformed Poincaré symmetry is not
isomorphic to the conventional symmetry. These occurrences create the
sizable problems identified in Sec. 1 (which are inherent in relativistic defor-
mations"'® of: (a) identifying new relativistic axioms which replace the
Einsteinian ones; (b) proving their axiomatic consistency; and, after that,
(c) establishing them experimentally.

By no means does the above analysis exhausts all physical problematic
aspects of the deformations of quantum mechanics currently under study.
For completeness, we mention that the rather old addition of an
“imaginary potential” /¥(r) to a (Hermitian) Hamiltonian H,, H=H,+
iV(r), which is frequently use in nuclear physics to represent dissipation,
implies the deformation of the basic brackets from a bilinear to a triple
form,

(4, H=AxHy—HyxA—[AH H =AxH' —HxA4 (27)

By recalling that the brackets of the time evolution must be, for con-
sistency, the brackets of the underlying algebras and symmetries, generaliza-
tions (2.7) imply the loss of all algebras as commonly understood, let alone
the loss of all Lie algebras {e.g,, the SU{2)-spin symmetry cannot be even
defined, let alone treated, with triple systems). Under these conditions,
familiar physical terms such as “protons and neutrons with spin 1/2” have
no mathematical or physical meaning of any known nature (for more
details on the problematic aspects of generalization (2.7}, see Ref. 3b.
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Proof. Heisenberg's time evolution in finite form has a bimodular Lie
structure, in the sense of being characterized by an action to the right, here
denoted U> =exp{iH xt}, and an action to the left, here denoted ~U=
exp{ —itx H},

A =U> xA(0)x “U=¢eT*'x 4(0) x e="*H (2.3)
The unitarity of the evolution follows from the familiar conjugation
“U=(U~)! (2.4)
under which we have the law
UxUl=Utx U=U>x U= <UxU>=U>x(U>)'=(U>)'xU">
= <Ux(<Dt=(<)tx <U=I (2.5)

The general Lie-admissible law (1.5) violates, first, condition (2.4) and
then each condition (2.5) because of the lack of commutativity of P and @
with H. The Lie-isotopic time evolution (1.8) verifies condition (2.4) but
violates conditions (2.5), again because of the lack of general com-
mutativity of T and H. Therefore, time evolutions (1.5) and (1.8) are non-
unitarity. The same occurs for particular cases such as g-deformations

(1.19). §

Neediess to say, the corresponding transformation theory of the classical
Lie-admissible {1.14) and Lie-isotopic equations (1.10) are noncanonical, as
studied in detail in Refs, 3d, 3e,

Even though Lie’s theory is preserved, we essentially have a similar
situation for deformations {1.20), in fact, to be nontrivial, the deformation
of the structure constants C}; » D}, must be produced at the classical level
by noncanonical transforms with nonunitary image at the operator level (the
reader may inspect the noncanonical deformation of the Minkowski space
and of the Casimir invariants of the Poincaré symmetry of Ref. 10).

The general loss of unitarity then has the following serious
problematic aspects of physical character:

Theorem 1. Al possible nonunitary deformations of quantum
mechanics computed on conventional Hilbert spaces over conventional
fields, including g-, k-, quantum-, Lie-isotopie, and Lie-admissible and
other deformations, have the following physical problematic aspects: (1)
they lack the invariance of the unit, thus lacking unambigucus applications
to measurements; (2) they lack the preservation of Hermiticity in time, thus
lacking unambiguous observables; and {3) they lack invariant special func-
tions and transforms, thus lacking invariant numerical predictions.
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Proof, The unit of a quantum theory is the unit J of the enveloping
associative operator algebra & with generic elements 4, B,... and conven-
tional associative product 4 x B,

IxA=AxI=A, Vded @1

1t is well known that, by definition, the above unit is not invariant under
nonunitary transforms

I-TP=UxIxUt#I (2.2)
and it is not generally preserved under the time evolution, e.g.,
idijdt=(LHy=IxPxH—-HxQxI#0 (2.3)

Problematic aspect (1) then follows because the considered quantum
deformations cannot be unambiguously applied to measurements, e.g, it is
not possible to measure distances with a (stationary) meter of varying

length.
Under a nonunitary transform, the familiar associative modular action

of the Schrédinger’s representation Hx |y), where H is an operator
Hermitian at the initial time =0, becomes

UxHx ) =UxHxU'x(Ux U 'x Ux|¢)

=AxTx|§> (2.4a)
UxUt=l, T=WUxUH™, W>=Uxld, H=UxHxU?
(2.4b)

By noting that T is Hermitian, T'= (U x U')~' =T, the initial condi-
tion of Hermiticity of H on o, {yix{Hx¥>}={W|xH"} x|¥),
when applied to the Hilbert space 5 with states [, |#>, etc. requires the
action of the transformed operator (2.4) on a conventional inner product,
resulting in the expressions

CIx {AxTx )} ={<IIx Tx AT} x|,
le, At=T""xAxT#H (2.5)
As such, Hermiticity is not preserved under nonunitary transforms for-

mulated on conventional spaces ¢ over conventional fields C, because of
the lack of general commutativity of 7 and A. By recalling that the time

~ evolution of the considered class of deformations is nonunitary, problematic

aspect (2) follows because operators which are Hermitian at the initial time
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The same situation occurs in statistical mechanics when collisions are
represented via the deformation of the Liouville equation with an external term

idpjdt=[p, HY —idpjdt=[p, H Cl=pxH—Hxp+C (2.8)

In addition to the loss of all algebras, and, therefore, of all possible sym-
‘metries as currently understood, theories {2.7) and (2.8) do not have an
invariant unit, thus suffering from most of the problematic aspects of
Theorem 1 (see Ref. 14 for additional studies on the problematic aspects of
statistical equations with external terms).

Similarly, the deformation of the finearity of quantum mechanics into
nonlinear theories (hereon referred to nonfinearity in the wavefunctions), e.g.,
of the typet!>

H{x, p, .. )xy=Exy 2.9)

even though mathematically impeccable, has serious problematic aspects of
physical nature, such as the violation of the superposition principle. As
such, nonlinear theories cannot be used for consistent studies of composite
systems, besides having the problematic aspects of Theorem 1 whenever the
time evolution is nonunitary (see Ref 16 for detailed studies on the
problematic aspects caused by nonlinearity).

Additional deformations of quantum mechanics are based on non-
associative envelopes, e.g., Weinberg's theory!!™ which can be reformulated
in the methods of this paper via the general Lie-admissible structure,

[4, “B]=(A, B)~(B, A)=Lie (2.10)

04 OB

B =0

= nonassociative Lie-admissible .  (2.10b)

Even though of impeccable mathematical beauty, the latter theory
violates Okubo’s'®® “No-Go Theorem” on deformations with nonassociative
envelopes, under which there is the loss of the equivalence of the Heisen-
berg-type and Schrodinger-type representations and other problematic
aspects. In addition, Weinberg’s theory possesses no unit at all in the
envelope (ie., there is no nontrivial guantity E such that for product
(2.10b) (F, A)=(A, E)=A4 for all possible generators A), thus having
physically unsettled aspects more serious than those of Theorem ! (for
detailed studies of the latter problematic aspects see Ref 18).

Note that the attempt of Ref, 17 to reconstruct Weinberg’s theory with
an associative envelope with the brackets awb —bwa=(a,}(w. }b)—
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(b, )(w,Nay) is precisely along our rule (1.7) which turns Weinberg's non-
linear theory into our Lie-isotopic theory.

Yet another group of deformations of quantum mechanics affected by
Theorem 1 is that of the so-called squeezed states''®’ which are also
generally nonunitary images of conventional theories. As such, they suffer
the same problematic aspects of Theorem 1.

A further important type of guantum deformations is Prigogine’s non-
unitary statistics'®® introduced to attempt a reconciliation of the irrever-
sibility of classical and quantum worlds. Being nonunitary, this theory too
is affected by Theorem 1. However, unlike other deformations, Prigogine’s
nonunitary statistics may only requires its isotopic formulation on
appropriate spaces and fields to achieve invariance and axiomatic con-
sistency, as shown in the next section.

Needless to say, the same problematic aspects exist for the more
general Lie-admissible statistics in its first formulation submitted by Fron-
teau ef al.'®) (see Sec. 3.12 for its current mathematical formulation).

There is little doubt that problematic aspects in deformed quantum
Jornuudlations must have corresponding problematic aspects in their classical
counterpart. Recall that the Birkhoff-admissible equations (1.10) are the
classical counterpart of the operator Lie-admissible equations (1.5), and
the Birkhofl's equations {1.10) are the classical counterpart of the operator
Lie-isotopic equations (1.8).

Recall also that the fundamental unit of classical theories is the unit
1=Diag(1, I, 1) of the Euclidean space which represents the units of the
three Cartesian coordinates (say, 1 cm) in dimensionless form. We then
have the following:

Theorem 2. All noncanocnical deformations of classical Hamiltonian
mechanics formulated on conventional spaces over conventional fields,
including the classical image of g-, k-, quantum-deformation, the Birkhoffian-
admissible and other deformations, do not possess invariant units, with
consequential problematic aspects in their application to measurements,

Proof. The admitted transformation theories are noncanonical by
assumption, e.g., they leave invariant the Birkhoff’s (1.11) or Birkhofl-
admissible tensor (1.15). As such, they do not leave invariant the canonical
tensor ,,. In particular, a map from the Hamiltonian to the Birkhoffian
mechanics is given preciscly by noncanonical transforms b= {r, p} —
B'{b)={r, p'} (see Ref 3e for details) such that

’

ob* obY
@, — @

> ;u'=5‘l;;: wzﬁ'é“g}_;:ﬁgpv(a,) (2'I t)
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But the canonical tensor represents the fundamental space units of the

theory,
0 -7
@n=(; o) @.12)

and this establishes the inability of noncanonical theories on conventional
spaces over conventional fields to have invariant basic units, with ensuing
problematic aspects in measurements. [

We then have the following evident implication,

Corollary 2.A. The relativistic versions of all noncanonical classical
theories, inciuding the classical image of g-, k-, quantum-, and other defor-
mations, the Birkhoffian and Birkhoffian-admissible mechanics, and other
theories, violate the axioms of classical relativistic mechanics.

This illustrates the reasons why, after conducting the rather laborious
classical studies of Refs. 3d, 3e, Santilli had to re-start from the beginning
and identify a new form of generalized classical mechanics with invariant
fundamental units. Intriguingly, a necessary condition resulted in the
preservation of the abstract relativistic axioms, as we shall see in the next
section.

By no means should the reader dismiss Theorem 2 following a possible
impression that it has marginal implications, because the lack of invariance
of the unit implies rather deep axiomatic inconsistencies which generally
remain undetected by a nonexpert in the fieid.

As an illustration, the lack of conservation of the basic unit implies a
corresponding lack of conservation of the base fields. Thus, starting from
a theory defined at the initial time on conventional numbers, the same
theory has to be defined at a later time on new yet unknown numbers, The
ambiguities of noncanonical theories in their application to actual
measuretnents are then beyond scientific doubts.

Another important class of theories with serious problematic aspects
of physical character is given by the conventional formulation of gravity,
i.e., that on conventional curved spaces over conventional fields (see, e.g,
Rel. 21 and contributions quoted therein). In fact, we have the following:

‘Theorem 3. The basic unit of all (nowhere degenerate, real valued,
and symmetric) geometries with non-null curvature over conventional
fields is not invariant under the symmetries of the line element with conse-
quential problematic aspects in applications to measurements for both
classical and quantum formuiations.
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Proof. Let E(x, §, R) and R(y, g, R) be n-dimensional Euclidean and
Riemannian spaces, respectively, with the same signature (+, +,., +),
basic unit Jf=diag(1, 1,.., 1), metrics § =4,) = Diag(l, 1,.., 1) and g(y}=
(g,) = g', and local coordinates x = {x*}, y={ ¥}, i k=12, n, over
the reals R=R(n, 4+, x).

The transformation x — y(x) for which the Euclidean metric is mapped
into the Riemannian metric,

dy" . oy
8y 8 =580 5 (2.13)

is noncanonical. Therefore, the symmetries of the Riemannian line elements
y*= y'gy are necessarily noncanonical. As such, these symmetries do not
generally preserve the basic unit f at the classical level. The symmetries of
the same line element in operator formulation are then necessarily non-
unitary for consistency (seec next section), and this proves the lack of
invariance of the basic unit also for operator theories, The same proof
evidently applies for indefinite signatures {+, +,.., — —}.

To understand the implications of the above theorem, recall that for
the (3 + 1)-dimensional Minkowskian and Riemannian geometries the
basic unit is given by I= Diag({1, 1, 1}, 1), where the first three components
represent the space units (say 1 cm) in dimensionless form, and the fourth
component represents the time unit (say 1 sec), also in dimensionless form.
The above theorem establishes that curvature implies the lack of invariance
of the fundamental space-time units, thus activating the problematic aspects
of Theoremn 1.

In different terms, the adoption of the conventional Riemannian space
R(x, g, R) over conventional fields R implies the adoption of a noncanoni-
cal theory, thus suffering from the problematic aspects of all noncanonical
theories (Theorem 2). In fact, a particular case of the Birkhoffian
mechanics is that in which the Euclidean metric J is replaced precisely by
a Riemannian metric.?

Therefore, the problems in the gquantization of gravity are not necessarily
due to Einstein’s (or other) field equations, but rather to their referral to a
manifold in which the basic unit is not invariant. This identifies a novel alter-
native in both classical and quantum gravity considered in the next section,
that of preserving Einstein’s (or other) field equations identically and
searching instead for a formulation of the Riemannian spaces in which the
unit is invariant (see the Sec. 3.11).

A detailed study of the lack of invariance of numerical predictions of

_nonunitary deformations can be found in Ref. 22b, App. 4.E, where it is

shown that the numerical predictions of deviations from the conventional
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uncertainties of squeezed states and other theories are not unique in their
definition at the initial time and their numerical value is not preserved by
the time evolution of the theory. Besides, when formulated in an axiomati-
cally correct way, nonunitary theories preserve Heisenberg’s uncertainty, as
shown in the next section. Note that these problematic aspects also apply
{o quantum gravity.

This completes our study of deformations of quantum mechanics with
the understanding that, by no means, do the above lines exhaust all classi-
cal and quantum deformations available in the literature. They are merely
intended to identify primary classes. The author would be grateful to
colleagues who care to bring to his attention additional important defor-
mations.

In summary, the problematic aspects studied in this section confirm
the majestic mathematical beauty and physical consistency of relativistic
classical and quantum mechanics, and suggest caution before exiting from
their canonical and unitary structure with associative enveloping algebra
and invariant fundamental unit.

3. A POSSIBLE RESOLUTION OF THE PROBLEMATIC ASPECTS

3.1. Foundations

According to overwhelming experimental evidence, relativistic quan-

tum mechanice is exactly valid for the so-called exterior dynamical
problems, such as the structure of atoms, the electroweak interactions at
large, and others.

Despite these achievements, Prigogine et af,,*" Ellis et al,,'* and San-
tilli ef @l have suggesied the study of broader theories for the more
general interior dynamical problems, such as the structure of stars, quasars,
black holes, and others in which hadrons are under “contact interactions,”
i, at mutual distances equal to or smaller than their charge radius. The
jatter physical conditions are expected to imply novel nonlinear and non-
local interactions which, being of contact type, are nonhamiltonian and
therefore, nonunitary.

In short, the nonunitary character of new operator theories appears to
be uncompromisable for possible advances, with the corresponding non-
canonical classical counterpart. The problem considered in this section is
therefore how to reach a theory as axiomaticaily consistent as conventional
classical and quantum mechanics yet having a noncanonical and non-

unitary structure.
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Above all, the problem consists in reaching a noncanonical and non-
unitary theory for interior dynamical conditions while preserving the
abstract axioms of the relativistic quantum mechanics for exterior condi-
tions. Moreover, to represent a smooth transition from interior to exterior
conditions, ail nonunitary formulations must admit conventional formula-
tions as particular cases under a smooth limit, a condition which is
assumed hereon.

The above problems werc studied at length by this author. Their solu-
tion appears to be possible thanks to certain rather crucial mathematical
advances which only recently appeared in the special issue'?®! of Rendiconti
Circolo Matematico Palermo entirely dedicated to the mathematical issues
herein considered. This section is dedicated to the outline of the essential
physical aspects.

We have attempted to render this section minimally self-sufficient.
Nevertheless, its technical understanding requires a technical knowledge of
at least the special issue.”*’ The noninitiated reader should be aware that
the studies herein presented are based on novel mathematics. Any appraisal
based on conventional mathematics is therefore afflicted by a host of incon-
sistencies.

As in Secs. 1 and 2, we shall first identify the axiomatically correct
operator nonunitary theory and then study the corresponding classical
noncanonical counterpart.

3.2. Nonunitary Image of Quantum Mechanics

The main problem of the earlier operator formulations'® of Lie-
isotopic and Lie-admissible deformations is that they are computed on con-
ventional Hilbert spaces over conventional fields, thus sufferings the
problematic aspects studied in Sec. 2.

By recalling the need to preserve nonunitarity for advances, the only
possible alternative for consistency is therefore their formulation on
generalized Hilbert spaces and fields. However, in order not (o exit from
the axioms of special relativity, the latter generalizations have to be axiom-
preserving. This is the main idea of Santilli's® isoropies, although its
realization in an axiomatically consistent form is possible only following
the mathematical advances that recently appeared in Ref. 23, as illustrated
below.

The best way of identifying the needed mathematical structure is by
subjecting to nonunitary transforms the main aspects of conventional
quantum structures (see later on for other maps). This approach yields the
following nonunitary image of the algebraic structure of quantum mechanics
(unit, enveloping operator algebra &, and attached Lie algebra L)
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I-f=UxIxUt=[t#1, T=(UxUHY =11 (3.1a)

EAxB—oE UxAxBx Ut =AxTxB=A4A%8 (3.1b)
Lxé i [A, Bl=AxB—BxA—L: {4 "B]1=A%B-B%x4d

' =AxTxB-BxTxA (3.1c)

where 4=UxAx U, etc. The nonunitary image of states and inner
product of the Hilbert space is then given by

) = > =Ux ) (3.2a)
H: (Bl > F I UT U x U x Ux ¢
=<l x T |y =PI ) (3.2)

where one should keep in mind that f and 7 are Hermitian, As such, they
are herecon assumed to be diagonal and positive-definite (see Refs. 22 and
23 for other possibilities).

It is then easy to see that the above liftings are axiom-preserving and
thus isotopic in the sense of Ref. 3a. In fact, £ is still associative because
(A% B % C=A%(B%C), and posseses the left and right unit £,

PxAd=A%xi=4, vdeé (3.3)

Thus, ¢ is locally isomorphic to &, yet it is structurally broader, as desired.

Similarly, the generalized Lie product [A, ~B] (first proposed in
Ref. 3b p. 725} is still Lie, as one can verify, and L can be proved to be
locally isomorphic to L {for positive-definite f>0).*> Thus the lifting
L — L is nonunitary yet axiom-preserving, as desired.

Finally, the deformed composition (Hx Tx | is still inner and,
therefore, o is still Hilbert. The lifting # — 3 is therefore an isotopy,
with 4 broader than #, as desired.

Nonunitary structures (3.1) and (3.2) imply the following Heisen-
berg-isotopic formulations (first introduced by Santilli in Ref 3b, p. 752),
here considered in one dimension for simplicity:

idAjdt=[A, "Hl;=AXA-A%d=AxFxA-HxTx4d (34a)
15, "F]=ﬁ>’2f—-f“p‘up‘xf’xf—FxTxﬁ=ixf (3.4b)
(8, "p1=[F "F1=0 (3.4c)
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and the following Schrédinger-isotopic counterpart for the energy (first iden-
tified by Myung and Santilli®" and Mignani'*® and for the linear momen-
tum (first identified by Santilljt?* 2}

AR =AxTx > =E ) (3.5a)
PR =PxTx|>=—ifxV > (3.5b)

where we have assumed for simplicity that 1 is independent of r so that
UxV > =UxVx U x(UxUT) "' x Ux ly>=TxV ) (see later on
for an arbitrary dependence).

The above structures do permit the resolution of the problem of
Hermiticity of Sec. 2, because now the condition of Hermiticity reads

X Px {Hx x>} =PI x Fx HY) x Px ) (3.6a)
Hi=T- 1 xTxH' xTx T '=H' (3.6b)

Thus, starting from an operator A which is Hermitian at the initial time,
the nonunitarily transformed operator H = Ux Hx U' remain Hermitian
under nonunitary transforms. However, a necessary condition is that Her-
miticity is not computed in the conventional Hilbert space J#, but rather
in the above-defined generalized Hilbert space.

Despite this encouraging result, deformations {3.1)-(3.3) and related
dynamica! equations (3.4) and (3.5) are still far from physical consistency,
because they are not invariant under additional nonunitary transforms, for
which we have

WxWwtzl, Z=(WxWhHh! (3.7a)
Fofr=wxfxWwtsf - (3.7b)

EAxTxBoE Wx(AXBYx WH=AxZ2xT'x2xB #A'xTx B
(3.7c)

LrAxTxBBuxTxd=L AxZ2xT'xZ2xB ~Bx2xT' xZ2x 4
£ A xTxB —B xTx4 (3.7d)

It then follows that a theory with dynamical equations (3.4) and (3.5)
is not physically consistent when formulated on generalized Hilbert space
(3.2), because the “No-Go” Theorem 1 still applies.

3.3. Isofields and Jsohilbert Spaces

Extensive studies of all possible alternatives conducted since Ref 3
have established that the above problematic aspects are due to the fact that
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a nonunitary transform cannot be consistently applied only to part of the
quantum formalism, while the remaining formalism stays conventional.
In fact, as shown in the recent works,'?*) the isotopic theory apparently
achieves the same axiomatic consistency of conventional quantum mechanics
when the entirety of the mathematical structure of quantum mechanics,
without exception, is subjected to an isotopic map with the same generalized
unit.

A primary objective of this section is to indicate the problematic
aspects which emerge for nonunitary theories in isotopic treatment when-
ever any aspect of quantum mechanics is not subject to isotopy.

To begin, transforms (3.1a) imply the generalization of the basic unit
of the theory. The definition of generalized structures (3.1)-(3.5) on a con-
ventional field C(c, +, x) is, therefore, bound to imply axiomatic incon-
sistencies. This is due to the fact that the latter is still defined with respect
to the conventional unit 1 while the former has a generalized unit [,

To achieve a consistent formulation of the above nonunitary theory,
the conventional {ields of numbers have to be generalized into a form
admitting of £, rather than of 7, as their left and right unit. This study has
been conducted in detail in Ref. 26, resulting in the isofields C = C(8, +, X)
which are rings of elements £ =¢x I ¢ C, called isocomplex numbers ot, in
general, isonumbers, equipped with the following isotopic sum and multi-
plication;

8+, =(c,+e)xf, & k&= xTxéy=(c;xe)xf  (38)

under which the quantity f= 7! is the correct left and right multiplicative
unit, fxé=¢%F=¢ VceC, called isounit, while T is called the isotopic
element. The additive unit remains the conventional quantity 0=0, £+ 0=
0+&=¢, Vée € It is easy to see that, under these conditions, € satisfies all
axioms of a field. The lifting C— € is therefore an isotopy, as desired.

It is evident that all operations of fields are generalized for isofields in
a simple yet unique and significant way. For instance, conventional squares
¢ =¢x ¢ have no sense for ¢ and must be lifted into the isosquare &=
2% &, with corresponding isopower &' =¢% &% .. X & square roots ¢'? are
lifted into the isosquare roots &2 =c'? x ', quotients afb are lifted into
the isoguotient a b=/ (a/b)x I the norm || is lifted into the isonorm
181 =le| x F, etc.

The isofield 2 = B(A, +, ) of isoreal numbers #=nxf, ne R(n, +, ),
is evidently a particular case of C. For subsequent needs one should note
that the isoproduct of an isonumber A by a quantity Q is conventional,
A% Q=nxIxTxQ=nxQ. Even though the numbers are generalized, the
numbers predicted by the theory are therefore conventional, as we shall see
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(for detailed studies of the isoreal, isocomplex, isoquaternionic, and iso-
octonionic numbers we refer the interested reader to Ref. 26).

As is well known, Hilbert spaces are defined over fields. Part of the
problematic aspects of Theorem ! is that nonunitary theories are defined
on a conventional Hilbert space over conventional fields. It is easy to see
that the use of generalized Hilbert space (3.2) over a conventional field
C(c, +, x) is bound to be axiomatically inconsistent. ‘

In fact, the modular action HX ) =Hx T'x > and composition
O RIS =< x Tx > possess the generalized unit f=7~", because
that is the only quantity such that f% > = |¢). Their referral to a field
Clc, +, x) with conventional unit J is then inconsistent. i

To achieve axiomatic consistency, the new Hilbert space 5 must be
referred to the isofield € with the same basic unity /. As a consequence, the
deformed Hilbert space must have the structure of an isonumber ¢ X . This
leads in a unique and unambiguous way to the isohilbert space charac-
terized by the following isoinner product and isonormalization'?2* %30:29

F (BT =< Ry xI=( P xTx ) xT'eC  (39a)
PRy =PI x x> =1 (3.9b)

Note that isohermiticity coincides with conventional Hermiticity in view
of property (3.6). As a result, all conventional quantum mechanical observ-
ables are preserved for the above isohilbert spaces over isofields.

The conventional unitary transforms on 3 over C are lifted under
isotopies into the isounitary transforms on # over €

Ox0t=0xTx0t=0t%0=0xTx0=F=T"" (310

The conventional theory of linear operators on 5 must then be subjected
to a compatible lifting on 3% over € which is studied in Ref. 22a. We here
merely mention the correct form of the isoeigenvalue equations

ARy =AxPx|§y=Exiy =(ExDx x> =Ex|§>
Ai=pef, EeR  EeR (3.11)

and of the isoexpectation values

=(1[;| xTx BxTx Icﬁ)
= T |

The reader can easily prove that the isoeigenvalues of isohermitian
operators are isoreal, and that the isoeigenvalues and isoexpectation values

(HY (3.12)
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of the same operator coincide. Note that the final numbers of isoeigenvalue
equations {3.1}) are conventional, and so are the isoexpectation values
(because the isounits cancel in the quotient). Equations (3 11) and (3.12)
therefore confirm that the final numbers of the theory are conventional.
Note the necessity for each and every multiplication to require the
sandwiching of the isotopic operator T in order to have I as the isounit (for
these and all other aspects, see Ref. 22a).

The nontriviality of the isotopies here considered is illustrated by the
fact that the isoeigenvalues of an operator are generally different from its
conventional eigenvalues. In fact, starting from the expression H x |y} =
Eyx ), we have A X > = Ex |{f>, where the operator A is the same,
but the eigenvalues F, and E are different. This result should not be sur-
prising to the attentive reader because the theory under consideration is a
nonunitary image of the quantum theory, and such transforms are known
not to preserve the eigenvalues.

In actuality, Eqgs. (3.11) establish that the same Hermitian operator
generally possesses an infinite class of different sets of eigenvalues, one per
each selected unit, thus disproving a rather popular belief that a Hermitian
onperator possesses a unique set of eigenvalues,

3.4. Isolinearity, Isolocality, Isounitarity

The current definition of (operator) isotopies, originally submitted in
Ref. 3a but completed only in the recent special issue,'®* is that of maps of
any given linear, local and unitary, mathematical or physical structure into
the most general possible nonlinear, nonlocal, and nonunitary forms which are
capable of restoring linearity, locality, and unitarity in isospaces over
isofields. An understanding of these basic aspects is essential for this paper.

As we shall see better later on, the quantum mechanical representation
of exterior systems (particles at large mutual distances compared to
wavelengths) requires the knowledge of fwe quantities, the Hamiltonian H
and the assumption of the trivial value F for the basic unit. Similarly, the
isotopic representation of interior systems (particles at mutual distances
equal to or smaller than their wavelengths) also requires the knowledge of
two quantities, the Hamiltonian H representing all conventional exterior
interactions and, this time, a nontrivial unit £ representing interior non-
linear, nonlocal, and nonhamiltonian effects due to overlapping of the
wavepackets (which occurs also for point-like charges).

The Hamiltonian is conventional and it is only rewritten in isospace.
It is therefore time to begin acquiring more knowledge on the isounit, with
the understanding that, as is the case for the Hamiltonian, its explicit and
unique form can be solely fixed by the physical conditions considered
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regarding shape, density, and other typical interior characteristics usually
ignored in the Hamiltonian.

Besides the positive-definiteness, isotopic theories leave unrestricted
the functional dependence of the isounit £ and isotopic element 7, which
can therefore depend on coordinates r, wavefunctions ¥, their derivative of
arbitrary order, the local density u of the considered interior problem, its
local temperature 7, and any needed additional quantity,

f=1r, p, p, v, 00, 00, p, 7,.)>0,  T=T(r, p, p, ¥, 3y, 80¢, i, 7,..) > 0
(3.13)

Moreover, the latter dependence is unrestricted in topological charac-
ter, that is, it can be arbitrarily nonlinear in the wavefunctions or in any
other quantity, nonlocal, e.g., of integral type, or of other types as well as
of any other admissible character, e.g., discrete in time and/or space. As an
illustration, the isounit used in some of the applications (see later on Secs.
3.7 and 3.15 for more details) is of the type

[=Diag(n?, n3, n2, n3) x exp(tN(W 1 /i, + 0 /0 + --+)
xjdu W) x ¥, (r) (3.14)

where the quantities n3, n3, n3 represent the extended, nonspherical, and
deformable shapes of the hadron considered; n3 represents its density; the
terms in the exponent ﬂhl/l,al, Sy, /Oy, etc, represent a typical non-
linearity, and the integral |dvyi(r) x4 (r) in the exponent represents a
typical nonlocality due to mutual penetration and wave-overlapping of the
charge distributions of the hadrons considered. A system of particles is
evidently represented by an isounit which is the tensorial product of
isounits of type {3.14).

Whenever the hadrons considered are perfectly spherical and perfectly
rigid, n? = n2 =n? =1, the representation of their density is ignored, n; =1,
and the mutual distances are such as to imply no appreciable overlapping
of the wavepackets, | dvyi(r)x ¥ (r)=0; then f=1, the considered non-
unitary structure collapses into a unitary form, and conventional quantum
mechanics is recovered identically, in accordance with our fundamental

condition of Sec. 3.1.
As a result of the above occurrences, the lifting of conventional into

_ isotopic eigenvalue equations is highly nonlinear as well as nonlocal and

nonunitary:
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Hir, p)x > = Ex > = HX )
=H(r, p)x T, p, b, ¥, O, 30, 1, 7,..) x |
=Ex > (3.15)

As a matter of fact, the above lifting is “directly universal” for all systems with
conserved Hamiltonians (see Sec.3.12 for nonconserved Hamiltonians),
namely, it can represent all possible well-behaved, nonlinear, nonlocal, and
nonunitary generalizations of the conventional eigenvalue equation
(universality) in the coordinates of the observer (direct universality).

The first aspect to understand here is that, despite the above
generality, the mapped theory does indeed satisfy linearity in isospace over
isofields, called isolinearity.'**® In fact, the lifted theory satisfies all familiar
linearity conditions,

ARE@ERND +AX WD) =X AR P> +dX A% (3.16a)
(ERA+AXBRI> =2 A% [P BX|y>  (3.16b)
(AXBYXW>=AX(BX | (3.16¢c)

As one can see, the recovering of linearity in isospace is ensured by the
embedding of all nonlinear terms in the isounit. One can also prove that any
nonlinear theory can always be identically rewritten in an isotopic form. In
fact, all possible nonlinear theories (2.9) always admit the factorization of
the nonlinear terms, which can then be assumed as the isotopic element of
the theory

H(r, p,..) % > = Hy(r, pyx T(r, p, ¥ ) x|
=H, %Wy, T=H;'xH (3.17)

where H, is the maximal (Hermitian) operator representing the total
energy. A first advantage of the above identical reformulation is the
recovering of the superposition principle in isospace, thus permitting a consis-
tent study of composite systems under nonlinear interactions.'®)

A similar occurrence holds for nonlocality. In fact, under the condition
that all nonlocal terms are embedded in the isotopic element, isotopic
theories verify locality in isospace, called isolocality. ' In fact, the theory
is everywhere local except at the isounit.

A similar occurrence also holds for nonunitarity. In fact, any possible
(well-behaved) nonunitary transform with the same “magnitude” f can

Relativistic Hadronic Mechanics 651

always be identically reformulated in an isounitary form on isospace over
isofields, called isounitarity,'”® according to the rules

Wx Wt=Ff=l, W=WxT" (3.18a)
Wx Wt=WxPxW=WtxW=WxTFxW=f (3.18b)

Note that the actions Hx |> and Hx |¢) coincide at the abstract
level. We can therefore state that nonlinearity, nonlocality, and nonunitarity
are not irreducible properties because they can be made to disappear at the
abstract level under isotopies.

The recovering of a classical canonical structure in phase space, called
isocanonicity, is studied in Sec. 3.8.

3.5. Isotopic Realization of “Hidden variables” and “Completion” of
Quantum Mechanics

At this intermediate stage of our analysis we can temporarily define
the isotopies of quantum mechanics as a theory with dynamical equations
(3.4) and (3.5) defined with respect to the isoenveloping operator algebras
£ on ischilbert spaces # over isofields ¢ with common isounit £,

A fundamental property is that, in view of the positive-definiteness of
[ and T, the isotopic theory coincides with quantum mechanics at the
abstract realization-free level by conception®® and realization,'** because
at the abstract level 7 and £, & and & L and £, C and €, # and 2, etc,
coincide (see Ref. 22b when the isounit is no longer positive-definite).

To avoid misrepresentations, we should therefore stress that by no
means do the above isotopies constitutes a “new theory.” In fact, a new
theory can only be claimed under structurally novel axioms. On the con-
trary, the above isotopic theory preserves the conventional abstract axioms
by conception and construction. As such, the isotopies merely provide new
realizations of the abstract axioms of quantum mechanics, with the conven-
tional realization recovered identically as a particular case for I=1

In different terms, conventional quantum mechanics holds under the
(necessary) assumption that the basic unit has the trivial value I The
studies herein reported have established that such an assumption is unne-
cessary, and that the same axioms also hold for arbitrary positive-definite
units f. Thus, the isotopies identify the infinite class of realizations of the
same quantum axioms characterized by all infinitely possible isounits { with
the quantum unit /=171 as particular case.

It is understood that theories with different isounits are mathematically
equivalent but physically different, otherwise it would be like pretending
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that nonunitary theories are physically equivalent to the unitary ones.
Alternatively, we can say that the unit / is fixed in quantum mechanics and
the same must be for each isounit £ of the isotopic realizations.

The abstract identity of the isotopic and conventional operator
theories is illustrates by the following new invariance law of the Hilbert
space for T independent from the integration variables, here introduced
apparently for the first time,

(Pl =<y x Tx P =g x Px Yy x[={41y> (3.19)

and called iso-self-scalarity. The above invariance confirms the preservation
of the original quantum axioms, as desired, for the preservation of
Einstein’s axioms and as otherwise needed for axiomatic consistency under
ponunitary transforms.

Note that invariance (3.19) has remained undetected in this century.
This should not be surprising because its identification required the prior
discovery of new numbers, those with arbitrary unites.”*® In fact, invariance
(3.19) cannot be defined via the conventional theory of numbers, that with
the sole unit + 1.

It is intriguing to note that the isotopic theory here considered con-
stitutes an explicit and concrete realization of the theory of “hidden
variables” A (see, e.g., Ref. 27). In fact, we can rewrite Eq. (3.11) in the form

AWy =AxAx|§> =B ) =(ExA~"yx Ax > =E x [§>
EeR,  EeR (3.20)

which does evidently provide said concrete and explicit realization of
the “hidden variables” A actually in the more general form of “hidden
operators” A(r, p, p, b, &, 89y, i, 1,..) = T>0.

The “hidden” character is an evident consequence of the preservation
of the quantum mechanical axioms. Note the nontriviality of the realiza-
tion. In fact, the eigenvalues of a Hermitian operator turn out to be dif-
ferent for different “hidden operators” A.

In fact, the axiomatic structure of conventional eigenvalue expressions
is given by the modular, associative action of an operator on a state Hx |,
for which (AXxBxO)x[y>=Ax((BxC)x|¥d)=(AxB)x(Cx[§>)).
These axiomatic properties are preserved for the isotopies here considered
because in the latter case we have a modular isoassociative action of an
operator on an isostate HX |§> for which the preceding properties are
preserved in isospaces in view of (3.15¢). The important point from which
the realization of “hidden variables” follows is that the two axioms
“Hx | and “H % )" coincide at the abstract, realization-free level on
all grounds.
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We can therefore state that concrete and explicit realizations of “hidden
variables” are indeed admitted by the abstract axioms of quantum mechanics,
provided that they are realized in a nonunitary axiom-preserving way.

Moreover, the isotopies of quantum mechanics constitute a “completion”
of quantum mechanics intriguingly along the celebrated argument by
Einstein, Podolsky, and Rosen.®® In fact, the conventional unitary realiza-
tion can be “completed” into an axiom-preserving nonunitary-isounitary
form with evident structural broadening.

In particular, von Neumann’s theorem‘*’ and Bells inequalities*® do
not apply, trivially, because the considered theory is nonunitary. This rein-
forces the connection with the EPR argument, because the nonunitarily
transformed Bells inequalities (the only ones applying under isotopies) can
indeed admit a classical image in interior problems (only) owing to the
arbitrariness in their classical limit under no unitary transforms (see Ref
22b, App. 4.C).

In different terms, in exterior problems in vacuum von Neumann’s
theorem and Bell’s inequalities apply as is the case for all of quantum
mechanics. In interior problems the situation is different under nonunitary-
isotopic transforms, because they evidently imply a necessary alteration of
the upper boundaries of the inequalities which now can admit a classical
counterpart {(sec Ref. 22b, Appendix 4.C, for details and proofs, including
the image of Pauli’s matrices under nonunitary transforms as isorepresenta-
tions of the isotopic SU(2) symmetry).

A reason for the still unresolved controversies in these issues is that,
in order to be nontrivial, any realization of “hidden variables” or “comple-
tion” of quantum mechanics must be outside the class of equivalence of
quantum mechanics, that is, they must have a nonunitary structure. The
isotopies then emerge as the sole known methods capable of formulating
them in an axiom-preserving way.

The reader should meditate a moment on the implications of the
above results. For instance, the above realization of “hidden variables” and
“completion” of quantum mechanics imply that discrete time theories (see,
e.g., Rel. 31) are compatible with the abstract axioms of quantum mechanics,
provided that they are realized in their isotopic form (ie., via the embedding
of all discrete terms in the isounit of the theory}).

Virtually all applications and verifications of the isotopic theories outlined
in Sec. 3.14 are, strictly speaking, realizations and verifications of the theory of
“hidden variables” and of the EPR “completion” of quantum mechanics.

Almost needless to say, we have considered here only the “isotopic”
realization of “hidden operators” and “completion” of quantum mechanics,
without any claim that it is unique, while encouraging the identification of
inequivalent realizations.
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3.6. Isotopies of Differential Calculus, Lie’s Theory and F unctional Analysis

Despite all the preceding studies (conducted since the proposal *®' of
1978 and completed by the early 1990's), the isotopic theories were stifl
afflicted by axiomatic inconsistencies of rather subtle origin which escaped
prolonged efforts at their resolutions.

We come in this way to the crucial role of the special issue of Ren-
diconti.®® In essence, lengthy studies on all possible alternatives indicated
that the inconsistencies originated where one would expect them the least,
in the ordinary differential calculus. Even though ignored because of
protracted use over centuries, the dependence of the ordinary differential
calculus on the basic unit 7 is rather fundamental because the differential
calculus acts on rings of functions defined over conventional fields. Such a
dependence becomes nontrivial for generalized units because in this case
df 0. The use of the conventional differential calculus for theories with
generalized units is then bound to be inconsistent.

One should note that this is not a mere mathematical curiosity,
because the issue directly affects the basic dynamical equations which,
when defined via the conventional differential calculus in the time and
space derivatives as in Eqs. (3.4) and (3.5), escape all efforts to achieve
invariance.

Santilli therefore introduced in Ref, 23b the isotopies of the differential
caleulus, or isodifferential caleulus for short, which is essentially based on
the following simple, yet unique and unambiguous, isodifferentials and
isoderivatives

dré=Fxdr’,  dro="Tixdr, (3.21a)
§ors =T x8/or',  8/0r.=1%xd/or, (3.21b)
dp,=Tixdp,  dp*=Fxdp (3.21¢)
8/bp, =Fxxdjdp,,  &/op* =T x &/3p' (3.21d)

with basic properties

Orifdr! =61, brjori="11,  or'ifbr,= [, ete. (3.22)
and other axiom-preserving properties here omitted for brevity.**

It should be noted that other definitions, such as dr=d(fxr)=(rxal}
or+ Nyxdr=1"xdr, ['=rx3l8r + [, lead to inconsistencies because they
imply the alteration of the basic unit under the operation of differential, f —
" # £ This would imply the loss of the systems considered because of the
lack of homomorphic map under differentiation. In fact, the original ring
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of functions would be mapped into another ring with a different unit with
evident problematic aspects of various nature which are in general detected
only following in-depth inspection.

An important confirmation of the axiom-preserving character of the
isodifferential calculus (as formulated above with an invariant isounit) will
be indicated in the next section.

The next isotopies needed for axiomatic consistencies are those of Lie’s
theory. In fact, the use of conventional symmetries for nonunitary theories
also leads to serious inconsistencies, because Lie’s theory is notoriously
constructed with respect to the conventional unit I'=diag(l, 1,.., 1), while
the theories considered have the isounit f#1.

This occurrence required the construction of the step-by-step isotopies
of Lie'’s theory, including the isotopies of enveloping associative algebras, Lie
algebras, Lie groups, Lie symmetries, transformation and representation
theory, etc., which were first proposed by Santilli in,"** studied in detail in
Refs. 3b-3d, 4, 22, 23b and numerous other contributions, and are
nowadays called the Lie-Santilli isotheory (see Refs. 5, 23¢ and papers
quoted therein). The latter theory is essentially the reconstruction of all
aspects of the conventional formulation of Lie’s theory with respect to the
generalized unit £,

Regrettably, we cannot possibly review the latter, rather vast studies
and are forced to refer the interested reader to Refs. 22a, 22b, 5¢, Se, 5,
and 23c. We merely mention that by no means was the Lie-Santilli
isotheory conceived to discover new Lie algebras, because all these algebras
(over a field of characteristic zero) are known from Cartan’s classification.

By recalling that the current formulation of Lie’s theory is strictly
linear, local, and unitary, the Lie-Santilli isotheory is specifically intended
to provide the broadest possible nonlinear, nonlocal, and nonunitary realiza-
tions of known Lie algebras and groups, according to the following main
lines:

(a) the universal isoassociative enveloping algebra & with isounit £ and
isotopic product 4 % B as characterized by the isotopic Poincaré-Birkhoff~
Witt theorem (first formulated in the original proposal 33 (see also Refs.
5c, 6g) with infinite-dimensional basis

E:1 X, X%%, isj XikX,igjske. Lik=12..N (323)
from which we have the unique and unabiguous isoexponentiation
ey ¥ = X = P wx X+ (wx X)X (wx X)20 + -

= (e®*Txw)yx = [x ("> T %) : (3.24)
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(b} the Lie-Santilli isoalgebras, also proposed for the first time in
Ref 3a via the isotopes of Lie's theorems,

[£, "B]=X%%-8%2=Chx X, (3.25)
{c) the Lie-Santilli isogroups'® with rules

O(w) % OOv) = O(') % O(w) = O(w + w')

O % O(—w)=0(0y=f, w=wxfeR (3:26)
and realization in terms of isounitary operators
D(w) = 8% %% = gl = (P2 Ty f, - R £ (3.27)
(d) the isotransforms
X' =0 R x = (") K x = (e ") xx (3.28)

(e) the isorepresentation theory etc.;'** and other aspects.

The isosymntetries are then constructed accordingly.'**® The non-
triviality of the Lie—Santilli isotheory emerges from the appearance of a
nonlinear integro-differential operator T(r, p, p, ¥, 00V, p, t,..) in the expo-
nent of the group structure, as well as from the fact that it is a nonunitary
image of the conventional theory with consequential new weights.

A property important for this paper is that the Lie-Santilli isotheory
preserves the generators X and parameters w of the original symmetry and
merely changes the operations on them. In fact, the generators X represent
ordinary physical quantities such as coordinates, momentum, angular
momentum, etc. and, as such, they are the same for all possible interac-
tions. Similarly, the parameters w represent physical quantities such as
angles, speeds, etc, and, as such, they also cannot change.

The preservation of conventional generators under generalized sym-
metries implies that isosymmetries characterize new composite systems with
conventional total conservation laws and generalized structure called, for
certain technical reasons, closed-variationally non-self-adjoint system, for
which the Lie-isotopic theory was proposed in the first place® 3% (see
Sec. 3.14 for applications and verifications).

The reader should be alerted that the correct formulation of the
isotheory requires the use of the totality of isotopic structures at all levels,
including isofields, isospaces, isodifferential calculus, etc. A number of
mathematical and physical studies were initially conducted on the Lie-
Santilli isotheory with only part of the isotopic mathematics, e.g.,
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formulated over conventional fields, or via the conventional differential
calculus, and some of them are continued by independent authors
nowadays. The reader should be aware that these studies have turned out
to be axiomatically inconsistent, suffering from essentially the same draw-
backs of Theorem 1. The axiomatically consistent formulation of the Lie-
Santilli isotheory, that based on the totality of the isotopic mathematics,
has been achieved only recently in contributions of the special issue of
Rendiconti Circolo Matematico Palermo,®® and in Mathematical Methods
in Applied sciences,*® '

The latter occurrence is best expressed by the fact that the elaboration
of the Lie-Santilli isotheory with conventional and special functions and
transforms also leads to a host of inconsistencies, beginning with the use of
ordinary functions, such as trigonometric, exponential, or logarithmic func-
tions, or ordinary quantities such as matrices, determinants and traces,
which have no meaning under isotopies and have to be replaced by the
appropriate isotopic generalizations.'**

The latter aspects belong to the new field called functional isoanalysis
whose study was initiated by Kadeisvili®**! (who introduced the notions of
isocontinuity), Tsagas and Sourlas'**® (who introduced the notion of integro-
differential topology called Tsagas-Sourlas isotopology), and by Santilli and
others'*? (who constructed several conventional and special isofunctions,
isotransforms, and isodistributions).

Needless to say, we cannot possibly review here these additional,
equally vast topics and must refer the interested reader to Refl 22. To ren-
der this section minimally self-sufficient, we mention that, unlike ¢-, k-, and
other special functions and transforms,®~!"! those of isotopic character are
uniquely and unambiguously defined per each given isounit, and they are
invariant under the time evolution of the theory (see below). The reader
can verify these main characteristics for isoexponentiation (3.24), and the
same holds for other cases. The physical law constructed on isofunctions,
isotransforms, and isodistributions are then unique and invariant, as
desired.

3.7. Isotopies of Metric Spaces and Differential Geometries

Despite their broad character, the preceding studies are still insuf-
ficient to achieve axiomatic consistency of nonunitary theories under
isotopic reformulation because of the need for one final important class of
isotopies, those of metric spaces and conventional local-differential
geometries. In fact, the use under isotopies of conventional carrier spaces,

such as the Euclidean, Minkowskian, or Riemannian spaces and related

geometries, is bound to imply axiomatic inconsistencies, because the latter
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geometries are defined with respect to conventional units, while the
isotopies have generalized units,

The above occurrence requires the necessary construction of the so-
called isospaces and related isogeometries first presented by Santilli in
Ref. 4a and then developed in numerous works (see the general presenta-
tion in Ref. 22a and the update in Ref. 23b).

The basic geometric isotopies for physical applications are those of the
Euclidean geometry. Let E(r, d, R} be the familiar three-dimensional con-
ventional Euclidean space with local coordinates r= {r'}, k=1,2,3, basic
unit 7= Diag(l, 1, 1), metric § =Diag(l, 1,1), and line element rr=rix
Sxr=xx+ yy+zz over the reals R=R(n +, x). The isoeuclidean
spaces'™ also called Euclidean—Santilli isospaces, or Santilli’s isoeuclidean
spaces, are defined by"

£ 8 Ry f=rxl, 6-6=Txs, I-[=T"" (6292)

Fepi8sr=(rxD)xTxdxTx(rxl)
=[r % 8(x, %, % 1, &, 3d,..) xr] xf
=(xx Py xx+yxPyxy+zxPyxz)xfer (3.29b)

where T and [ are now 3-dimensional positive-definite 3 x 3 matrices which,
as such, can always be diagonalized. The corresponding isotopies of the
Euclidean geometry,'*>* also called Santilli’s isoeuclidean geometry,”
are the geometry of the related isospaces.

A most salient property of the isoeuclidean geometry is that it is
characterized by the abstract axioms of the original Euclidean geometry,
only realized in a more general way. In fact, the lifting of the metric
8 §=1Tx5 while the unit is lifted by the inverse amount, /— f=71-1,
permits the preservation of the original geometric axioms.

More particularly, the isoeuclidean geometry satisfies the axiom of
flatness in isospace over isofields, called isoflatness. Jointly, however, the
isogeometry acquires an unrestricted functional dependence of the isometric,
5=28(r, ¥, ¥, W, B, B¢, p, 7,...), with evident advantages. These features
permit a novel formulation of gravity outlined in Sec. 311

Another fundamental notion is the perfect sphere in isospace, called
isosphere. Consider the ordinary sphere in £(r, 4, R), P=rxdxr=xx+
yy +zz € R. Its image in isospace is given by the ellipsoidal deformation of
each axis /, — T, while each related unit is deformed by the inverse
amount [, - T'7!, thus recovering perfect spheriodicity in isospace.

The notion of isosphere has fundamental importance for applications
to hadrons which are represented precisely as isospheres {Sec.3.14). In
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fact, isospheriodicity permits the representation of the charge distribution of
hadrons as they are in the physical reality, that is, extended, nonspherical, and
deformable when represented in our space, although lifted into perfect
sphericity in isospace. The latter reduction has the evident fundamental role
of reconstructing the exact rotational symmetry in isospace (Sec. 3.10).

This is a most fundamental step in the preservation of the abstract
Einsteinian axioms by keeping, on the one hand, the perfect spheridicity
and rigidity in isospace and, on the other hand, representing physical
reality of hadrons as nonspherical and deformable via their projection in
ordinary space.

For future needs the reader should keep in mind that the quantity left
invariant under the lifting E(r, 8, R) —» E(f, 6, R} is given by (length)?x
(unit)® In turn, such an invariance permits intriguing novel geometric
studies {see, e.g.,, the “geometric propulsion” of Ref. 22a}.

Note that identities {3.29b) imply that in practical applications the
isocoordinates f=rx [ are redundant and can be reduced to the conven-
tional coordinates r. In fact, the important property is that the isoinvariant
must be an element of the isofield, ie., £* must have the structure A=
nx fe R, ne R, which is possible via the use of ordinary coordinates r and
the factorization of f, resulting in the identity #*=r"

We should also note that, as a necessary condition for consistency,
isospaces require their formulation over an isofield with the same isounit I3
This is not generally the case for conventional metric spaces where the
geometric unit is N-dimensional, J= Diag(l, I,.., 1), while the unit of the
base field R is the one-dimensional quantity + 1. Nevertheless, the reals can
be trivially redefined with respect to the unit /, thus reaching a unique unit
for conventional spaces too.

For detailed studies and applications of the isoeuclidean geometry we
refer the reader to Refs, 22a, 23b. We here merely mention that conven-
tional geometries can be safely assumed to be exactly valid for exterior
dynamical problems in vacuum. The isogeometries have been proposed to
attempt a more adequate representation of inferior dynamical problems
within physical media. This is possible thanks to the arbitrary functional
dependence of the isometric, which is particularly suited for the direct
geometrization of interior effects which have a notorious arbitrary func-
tional dependence on velocities and other variables (which dependence
simply does not exist in current geometries).

Perhaps the most effective illustration of the isogeometries is given by
the isosymplectic geometry originally proposed by Santilli**®? via the use of
the isotopic degrees of freedom of the product, and finalized only recently

_in Ref. 23b in its axiomatically correct form via the use of the isodifferential

calculus.



660 Santilli

The best way to express the isotopic character is by noting that the
isogeometry coincides with the conventional geometry at the abstract
realization-free level to such an extent as to require no new symbols. In the
symplectic geometry the symbol “d,” e.g., in the one-forms #=p xdr,
represents ordinary differentiation, while under isotopies in local realiza-
tions the symbol «d” represents the infinite possibilities d=1Ixd. This
permits the definition of the one-isoform on the isocontagent bundle
T*£(?, 5, R) equipped with Kadeisvili’s isocontinuity!®?® and Tsagas-
Sourlas isotopology'*?*’ on isofields R(#, +, % )23

b=pxdr=pxr, p, , ¥, 00, 00, 4, 7,...) % dr (3.30)

But f>0. Thus, the “hat” can be ignored at the abstract level and we
simply write = p x dr for both conventional and isotopic realizations.

Nevertheless, the broadening of the geometry is considerable, as estab-
tished by a mere inspection of one—isoform (3.30) and its comparison to the
conventional version 8=pxdr. In fact, the conventional symplectic
geometry is strictly local-differential, while our isosymplectic geometry is
integro-differential, and can represent all possible nonlocal terms under the
condition that they are all embedded in the isounit.

Similarly, by recalling the covariant nature of the linear momentum for
which dp = T'x dr, Eq. (3.21c), we have the (nowhere degenerate) Sfundamen-
tal isocanonical isosymplectic structure on T*E(#, 5, R) over R(A, +, % y(23e}

&=L, db A dbr=dp, A dF*
—(Fixdp, n PExdr)x ]
— (oo db? A db") xP=(dp ndryx T, b={r,p} (31)

which illustrates the invariance of the canonical symplectic tensor under
isotopies, D, = 0, & result of Ref. 23b of fundamental importance for the
preservation of relativistic axioms under noncanonical as well as non-
unitary theories for interior systems.

By recalling that the contraction of & is in isospace, we have the
following resuit:

Lemma 2. The fundamental canonical symplectic two-form satisfies
the iso-self-scalar invariance, ie, the invariance under the isotopies

Josfe=nixl, 6—d=n"2—x4 {(3.32a)
w={iw,, d" A db"}x I=(3,dp' ndryx1
=1, db* Adbr=(8;dp’ A driyxf=a (32b)
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As expected, the above invariance is the geometric counterpart of the
new iso-self-scalar invariance of the Hilbert space, Eq. (3.19). The impor-
tant point is that, at the abstract level, there is no need of putting a “hat”
on the fundamental symplectic structure because the assumed unit and
related field can be identified only in local realizations.

It is then easy to prove that the above isocanonical isosymplectic
structure is isoexact, ie., &= db, and isoclosed, ie.,

Ao = d(ddy=0 (2.33)

(isopoincaré lemma,*" thus confirming the axiom-preserving character of
the isodifferential calculus.
In conventional symplectic geometry, the Poincaré lemma do=
d(d9) =0 provides the integrability conditions for the contravariant tensor
V= (lwaﬁ!")"“ to be Lie (see, e.g, Ref. 3d). The isopoincaré lemma then
provides the following important classical realization of the Lie-Santilli
isobrackets that first appeared in Ref. 23b

4,08 3438 0804
L4 B = 55~ 5 3, 6 25, (334

which do indeed satisfy the Lie axioms in isospace T*E(&, 8, R) over the
isofietld B(A, +, X ), as one can see.

However, the projection of the above isobrackets in the conventional
space T*(E(r,d, R} over the conventional field R(n, +, X) generally

 violates the Lie axioms. In fact, brackets (3.34) are contracted with respect

to the isoeuclidean metric & and, after cancellation of the Tx [ terms, can
be written‘**®}

g =2A g ; 0B _0B g ; 04
[4, "B]= 5 1i(r, p, B, 8, 089;,..) o, o Fi(r, p, B, O, 00W,...) %,
(3.35)

As such, they are antisymmetric, but generally violate the Jacobi law in
view of the lack of restrictions on the functional dependence of the isounit
(for a realization of the isobrackets which satisfies the Lie axioms in both
isotopic and conventional spaces, see Ref. 22a).

Recall that a well-behaved and local-differential vector-field X(b) on
T*E(r, 6, R) is called (locally} Hamiltonian when there exists a function
H(b), the Hamiltonian, such that in a suitable neighborhood of a point of
b we have the identity w_ | X(b) x db = dH(b). However, this is the case

_only for a rather restricted class of systems, the conventional conservative

Ones.
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For this reason the symplectic geometry is generally presented with the
celebrated Darboux Lenwna, establishing that, under the necessary con-
tinuity and regularity conditions, there always exists a Darboux transform
b={r, p} = b'(B)=(r'(r, p), p'(r, p)}} under which the original, local-dil-
ferential and nonhamiltonian vector-field becomes (locally) Hamiltonian, -

w_ | X(b)x db # dH(b), w_ | X'(b')xdb =dH'(b")) (3.36)

Nevertheless, it is not generally explained in the literature in differential
geometry (see, e.g., the comprehensive literature in Vol. I of Ref. 3d) that the
use of Darboux’s lemma implies the violation of Einstein’s axioms as well as the
practical impossibility of conducting experiments in the transformed frame.

This is due to the fact that Darboux’s transforms b= {r, p} = b'(b) =
(r'(r, p), p'(r, p)} are highly nonlinear and, as such, the transformed frames
are highly noninertial, thus violating the inertia! character of the frames as
requested by the special relativity. Along the same lines, the Darboux coor-
dinates cannot be realized in actual experiments because one cannot possibly
move a heavy measuring device, from its original position at rest in r, to non-
linear Darboux trajectories, e.g, of the type r' = N xexp{Mrxp}, N, Me R.

In view of the above drawbacks, Santilli introduced in Ref 23b the
following alternative of Darboux’s lemma:

Lemma 3, Any (well behaved) vector-field X(b) which is not
{locally) Hamiltonian in a neighborhood of a point of the chart b=(r, p)
of the local observer always admits an isotopy under which it becomes
(locally) isohamiltonian, ie., there always exists a Hamiltonian H(b) and
an isotopy of the basic unit J— f with corresponding isotopy of the dif-
ferential dr — db = I'x db under which we have the identity in the original
neighborhood

@ _ | X(b) x db = dH(b) (3.37)

The above result is important to prevent a predictable tendency to
turn theories which are noncanonical or nonunitary in the frame of the
experimenter into forms which are canonical or unitary in hypothetical
reference frames. In fact, the latter have only the appearance of preserving
established knowledge, while in reality they violate it.

Because of the above occurrences, all studies herein reported, beginning
with Ref. 3, solely admit “direct representations” of physical systems, that
is, representations in the fixed coordinates of the experimenter. Only after
achieving such a representation may the use of the transformation theory
have physical refevance.
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Intriguingly, the isotopies have permitted the achievement of the
“direct universality” for the representation of all well-behaved local-dif-
ferential and nonpotential Newtonian systems in the frame of the
experimenter via the Birkhoff-Santilli mechanics.!** This direct univer-
sality is extended to the representation of all well-behaved nonlocal-integral
and nonpotential Newtonian systems via the isohamiltonian mechanics*®
(see next section). The same direct universality is extended in this paper to
operator systems of nonlocal and nonpotential type (see Secs. 3.5 and 3.9).

The isotopies of the Minkowskian geometry are outlined in Sec. 3.10 and
are the fundamental ones for the preservation of the relativistic axioms. The
isotopies of the Riemannian geometry are studied in detail in Refs. 22a, 23b
with the understanding that they have a mathematical character in view of
Theorem 3, and are not recommended for applications (see Sec. 3.11 for
details).

3.8. Isotopies of Newtonian, Lagrangian, and Hamiltonian Mechanics

We are finally equipped to identify the generalized noncanonical and
nonunitary formulations with the desired axiomatic consistency and the
capability to preserve relativistic axioms at the abstract level. It is expedient
to begin with a brief outline of the isotopies of the truly fundamental equa-
tions of dynamics, Newton’s equations, and of Lagrange’s and Hamilton’s
mechanics identified in Ref. 23b, and then pass to the study of their
operator counterpart. In this way the reader can see that the broadening of
the representational capabilities of operator isotopies originate at the
primitive Newtonian level. For all technical details of this section we refer
the reader to Ref. 23b. Additional studies are presented in Ref. 6w,

We assume hereon the following notation: the symbol “ x " represents
the conventional associative product of classical and quantum mechanics;
the symbol “ X ™ (— x T'x ) represents the isoassociative product; whenever
no symbol of product appears, we assume the conventional associative
product; all isotopies have the same Hermitian and positive-definite
isounits, the 3 x 3-dimensional space isounit .= T7'=F">0 and the one-
dimensional time isounit f, =T '=Ff1>0 (which are generally different
(because of different dimensionality); the velocity isounit is assumed to be
identical to the space isounit for simplicity, f,=1, {(because v* is con-
travariant as r%); the momentum isounit is instead given by [, =T, =1"
(because p, is covariant); the study of equivalence classes characterized by
more general isounits f, # [, and F, 7T, is left to the interested reader;
whenever no ambiguity arises, we shall denote f, and T, by the generic
symbols f and 7} the main isodifferentials are given by dff = % x df', do* =
fixds', dp,=T,xdp, di=Fxdi with isoderivatives 5/6¢* =T} x 8/dF,
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/6ot =T x9/30', 0/0p, = I xd/ap,, 0/0f=1,%8/df and properties
OF'jOp! = 81, 07, JOF, = 81, 5 S0P = T% % 8,,, OFf0f, =T, x 6%, ete; all quan-
tities with a “hat” (such as #, g, A, T, etc.) are computed in isospaces over
isofields, while all quantities without a “hat” (such as r, p, H, T, etc.) are
the corresponding projections computed on conventional spaces over con-
ventional fields; the isoscalar character of the coordinates f=rx f, f=1xf,
shall be generally ignored for simplicity in view of the identity f*=r* of
Sec. 3.7, although the symbol # will be preserved to denote computation on
isospaces over isofields; finally the ordinary multiplication by the isounit is
generally omitted for computational simplicity (e.g., we shall omit the
isotopy of the quotient a /b = (a/b) x ), with the understanding that it is
mathematically necessary for consistency for any structure of isoscalar
character on R,

The configuration space of nonrelativistic isomechanics is given by the
Kronecker product of isoeuclidean spaces S(7, £, 8) = £(7, R;) x £(f, 6, R) x
E(6, 8, R) with total isounit f,,,=f xZ, xf,. The fundamental isonewton
equations, first introduced in Ref. 23b, p 31, are given by

Lo do,  d 80U, A0) UG A
T
O, ¢, 8)= D1, #) 65 + Oy(F, /) (3.38b)

0 (3.38a)

where 1t = m x [{ #0) is the isotopic mass, that is, the image of the New-
tonian mass in isospace with isounit f,.

Theorem 4 [23b]. All possible sufficiently smooth, regular, non-
linear, nonlocal-integral and nonhamiltonian Newton’s equations in con-
ventional representations always admit in a neighborhood of a point
(t, r, v} of the local variables a representation in terms of the isotopic equa-
tions (3.38).

Proof, The inverse isotopic problem is here defined as the computation
of the isounits and potentials from given equations of motion according to
the identifications

e d(Th0) d ., 0051 0) ., 80, ¥, 0)

mxl = L T+ Th %
:...—...,ﬁf' T’l @_T T,i an(t, r} U"I-f-TI 600(t, ﬂ.}.,f,j“ d_j'j‘-
CRar TR o e RS K ]

=T {mdv,/dt — FS*(, (1, r,v) — FN*4,(t, 1, v)] =0 (3.39)
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where the unknowns are the isotopic elements 7, 7% and the potential U,,
U,; SA(NSA) stands for variational self-adjointness (non-self-adjointness),
i.e., the verification (violation) of the necessary and sufficient conditions for
the existence of a potential (see, Ref. 3d for details); and the potentials v,
and U, are computed from the SA force via the techniques of the ordinary
inverse problem (see also Ref 3d).

Sufficient conditions for the above identities are then given by

mx T, xdb,fdt =m x dv,/dt (3.40a)
T,xwéi'; r) ><65=6Ué&i’ L (3.40b)
aUg&‘; n_ aUg&‘ r) (3.40c)

dafi(t, r,..) : oNSA
m'f’,———T——U,= —TiFNSA (1,1, 0) (3.40d)

which are overdetermined and, as such, always admit a solution in the
unknown quantities T,, T, U, and U, for given equations of motion. In
fact, the simplest possible solution exists for diagonal space isounit and con-
stant time isounit,

Pt=giehtnr, [ =const>0, #=Tu (341}

for which
O, 1) =Ut,r) Ut ) =Uslt, 7) (3.422)
£t %, 0) = —m~! L: dt FNSA (1 7, 0o, (3.42b)

where there are no repeated indices and the remaining potentials are com-

puted from the self-adjoint forces.*"
The physical advantages in the transition from the conventional to
isotopic Newton’s equations are the {ollowing.

Corollary 4.A. The isonewton equations permit a representation of
the actual, extended and nonspherical shape of the body considered and of

_ its possible deformations via the generalized unit (or isotopic element) of

the theory.
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Recall that Newton’s equations can only approximate the body con-
sidered as a massive point, as is well known since Newton’s time. The point-
like representation of particles then persists under analytic representations
via Hamilton’s equations as well as under symplectic map to quantum
mechanics. A representation of the extended character of particles is reached
in second quantization via the form factors. However, this representation is
restricted to perfectly spherical and rigid shapes in order not to violate the
fundamental rotational symmetry.

On the contrary, the isonewton’s equations can represent the actual
extended, nonspherical and deformable shape of the body considered. As a
simple illustration, suppose that the body considered is a rigid spheroidal
ellipsoid with semiaxes n}, n%, n3 = const. Such a shape is directly represented
by the isotopic element of the theory in the simple diagonal form

T=diag(n; %, ny%,n7%),  ny=const>0, k=1,23 T,=1 (343)

The representation of the shape in isospace S(7, #, 0) is then embedded in

the isoderivatives of the isotopic equations and, when projected in the con-

ventional space S(¢, x, v), can be written

Ry RS

oU(t, x)
o =0 (3.44)
namely, the shape terms 7', are admitted as factors.
Note that the representation of shape occurs in isospace because, when
projected in the conventional Euclidean space, the shape terms cancel out by
recovering the conventional point-like character of Newton's equations. The
representation of shapes more complex than the spheroidal ellipsoids is
possible with nondiagonal isounits. The representation of the deformations
of the original shape due to motion within resistive media or other effects,
can be achieved via a suitable functional dependence of the T4 terms on
velocities, pressure, etc.(??®

Corollary 4.B. The isonewton equations permit a novel representation
of variationally non-self-adjoint forces via the isotopy of the underlying
geometry according to the rules

m dv, jdt — FN5A (1, r, v) = Fmd(T x v))/dt (3.45)

while leaving unchanged the representation of conventional self-adjoint
forces (except for the constant factor T, of Uy).
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In fact, the non-self-adjoint forces are embedded in the covariant coor-
dinates in isospace 8,= T'/v,, where the v,’s are the covariant coordinates
in conventional space. The novelty therefore lies in the fact that nonpoten-
tial forces are represented by the isogeometry itself.

The simplicity of representation (3.39) should be kept in mind and
compared to the complexity of the conventional solution of the inverse
problem of Newtonian mechanics,® ie., the representation of non-self-
adjoint systems via a Lagrangian or a Hamiltonian. Moreover, under the
assumed conditions, the latter exists in the fixed coordinates (1, r, v) of the
observer only for a restricted class called nonessentially non-self-adjoint
[loc. cit.], while isorepresentation (3.39) always exists in the given coor-
dinates (#, r, v) under broader conditions.

As an example, the equation of the linearly damped particle in one
dimension

mdv/dt +yv =0, ye R(n, +, %), y=>0 (3.46)
admits isorepresentation {3.39) with values
T=8, xem?, T,=1, Uy=Us=0 (347)

where S, is a shape factor, e.g., of the spheroidal type (3.43) prolate in the
direction of motion. In this way, the isotopic Newton equations represent:
(1) the non-self-adjoint force FN$* = —yv experienced by an object moving
within a physical medium; (2} its extended character {which is necessary
for the existence of the resistive force); and (3) the deformation of the
original shape (in the case considered a perfect sphere} caused by the
medium. .

The equation for the linearly damped harmonic oscillator in one
dimension

mF 4+ 4+ kr=0, ke R(n, +, x), k=0 (3.48)
admits isorepresentation (3.39) with the value
P=Gyxer  Uy=—1k?,  Ue=0, T,=1 (349)

where S, represents the shape of the body oscillating within a resistive
medium. The interested reader can construct a virtually endless variety of
isorepresentations of non-self-adjoint forces.

Corollary 4.C. The isonewton equations permit the representation of
nonlocal-integral forces when completely embedded in the isounit of the
theory.
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The strictly local-differential character of quantum mechanics originates
from the corresponding character of Newton's equations which are equipped
with the local-differential topology of the Euclidean space. In fact, the latter
carries over at the level of Lagrangian and Hamiltonian mechanics, and
then persists under quantization.

One of the most significant advances of our isonewtons equations is
that they can represent nonlocal-integral forces. As we shall see, the latter
characteristic then carries over at all subsequent levels, thus permitting
quantitative studies of the historical legacy of the nonlocality of the strong
interactions. As a matter of fact, Santilli conceived the above isotopic
broadening of Newton’s equations precisely as the necessary foundations
for nonlocal treatment of strong interactions.

Consider as an example the integrodifferential equation

m du/dt + yo? j do F(0,.)=0, y>0 (3.50)

representing an extended object (such as a spaceship during reentry in our
atmosphere) with local-differential center-of-mass trajectory r(t} and
corrective terms of integral type due to the shape {surface} o of the body
moving within a resistive medium, where & is a suitable kernel depending
on o as well as on other variables such as pressure, temperature, density,
etc, The above equation admits isorepresentation (3.39) with the values

T=8,em e Sto) P =1,  U=U;=0 (3.51)

where §, is the shape factor. Similar isorepresentations can be easily con-
structed by the interested reader.

In summary, the isonewtonian mechanics permits the identification
beginning at the purely classical level of the isounit as representing the
shape of the body considered, as well as its nonlocal and nonpotential
interactions,

We now outline the isotopies of Lagrange’s and Hamilton’s mechanics
first identified in Ref 23b via the isodifferential calculus for the direct
analytic representation of isonewton’s equations.

Proposition 1. All well-behaved action functionals of first or higher
order in Euclidean space S(¢, x, v)= E(¢, R,) x E(x, 6, R) x E(v, d, R) can
always be identically rewritten as first-order isoaction functionals in isospace

8¢, 6)=E(i, R,y x E(F, 8, R) x E(5, 6, R),
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A= f” dt L(t,r,0,a,..) = F di L(3, , 0) (3.52a)

L=1imp',0/ — U7, 7) 8,6/ — Ui, 7)
= Imb, 6* — U (F, £} vk — Uy(F, #) e (3.52b)

where we have used the isointegral | = T.%* Note that identity (3.52) is
overdetermined because, for each given %, it admits infinitely many
choices of #, T, T, Uy, and U,. These isotopic degrees of freedom can
be eliminated via the preceding inverse isotopic problem, ie., via the use of
equations of motion, and their study is left to the interested reader.

The isovariational calculus is a simple extension of the isodifferential
calculus and it is bere omitted for brevity.?*® Its application to isoaction
(3.52a) yields the following fundamental isolagrange equations, first intro-
duced in Ref. 23b, p. 44, and here presented along an actual isopath By,

(3.53)

_ [ oLt p0) BLU F 0) _
Lty =5 5 ) (=0

We shall say that the isonewton equations admit a direct isoanalytic
representation, when there exists one isolagrangian L(3, %, d) under which
all the following identities occur:

, {_{3’_5(?, £,0) BL( 4, ﬁ)}
“\a b b
=ff{ dv, 80,4, F)z_?f+300(f, F)}
“UUH b & R
- {m do, QU e, r)dr AUt 1)
B dr o  dt or¥

NSA
— FNSA (1, v)} - =0 (354a)
L, ¢, 0) =£ mt*g, — O, UG, F,8)= U1, F) 6"+ Oy, /) (3.54Db)

All remaining aspects of the conventional Lagrangian mechanics are
then subjected to similar isotopies.‘®® Note that Lagrange originally
proposed his celebrated equations with external terms under the assump-
tion of representing the kinetic and potential energies with the Lagrangian
and representing all remaining forces and effects with the external terms.
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The isolagrange equations have been constructed along the same
spirit, because all nonLagrangian forces/external terms are represented with
the isounit. It should be stressed that the replacement of the external terms
with the isounit is necessary for the preservation of Einsteinian axioms
under variationally non-self-adjoint interactions.

We now study the isotopies of Hamilton’s equations which, according
to our notation indicated at the beginning on this section, are defined in
the isospace S(7, #, p) = Ei, R,) x B¢, 8, By x £(p, 8, R) with total isounit
Loy=1F xI, xf,=1I xfxT. The isocanonical momentum is given by

8L(i, #, 9) _

Pn mb, — U1, F) (3.55)

ﬁk=

under the condition that the isolagrangian is regular in a {2n + 1)-dimen-
sional region M of points (7, #, f)

2 A -
Det (é L(F F,B)

"W) (R)y#0 (3.6)

thus admitting a unique set of implicit functions 8* = g*(f, #, p).
The isolegendre transform can then be defined by [loc. cit.]

L7, 2, 87, 8, By = 651, £, p)— imb (1, F, p) 0/(F, ¢, p)
+ 0.&([: f) ﬁk(ta Fs ﬁ) + UD((?’ F)
=P 2m+ PRI #) o+ POE A=H(t, 7, ) (3.57)

The isovariation of the isoaction in momentum representation then
yields the fundamental ischamilton’s equations, first submitted in Ref 23b,
p. 47,

agt_SA(L% p)  dpe_ _OH(E %, p)

— , = 3.58
F= 4, i 5o+ (3:3%)
which can be written in unified notation
ORe BR3N\db* BA(I,b),
T F A A A L Oy .
G ) a "% (3:5%2)

Ro={R} = {5, 0} (3.59b)
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or in the following covariant and contravariant forms:

db’ A, b)

B e =37 (3.60a)
db* ARG, b
hatal- V7T Butoh 0. Matf 4 3.60b
7= e (3.605)

with explicit expressions

(@, r_(éﬁﬁ é_R;)z(om —IM) (361a)

86" B ab" Tyun  Onuw _
S AN !
afy = v PRu)  _f VYNxN o INxN 3.61b
(@) (55" 55') (“"INxN ONxN) ( )

holding in view of the properties of the isodifferential calculus
B8R 86" = RS /Ob" (3.62)

The above equations confirm the fundamental invariance of the
canonical tensor under isotopies first identified via the isosymplectic
geometry in the preceding section. The above equations also confirm the
classical realization (3.34) of the Lie-Santilli isobrackets. In fact, the time

" evolution under Eq. (3.60b) can be written

dAjdi=[A4, ~HA] (3.63)

The equivalence of the isolagrangian and isohamiltonian equations
under the assumed regularity and invertibility of the isolegendre transform
can be proved as in the conventional case.

We also have the isotopic Hamilton-Jacobi equations, first identified in
Ref. 23b, p. 48, which have an evident fundamental character for quantiza-
tion,

o4 84
-y ﬁ !A! h =0: v k=0 3.64
4B 1 ) i (3.64)

plus initial conditions here ignored.
We finally quote also from Ref. 23b the following direct universality of
isoanalytic mechanics,
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Theorem S5, All possible sufficiently smooth and regular, nonlinear,
nontocal, and non-self-adjoint dynamical systems always admit a direct
isorepresentation in a star-shaped neighborhood of a point of their
variables via the isolagrange or the isohamilton equations on isospaces
over isofields.

Note the abstract identity between the conventional and isotopic
mechanics. Since the isounits are positive-definite, at the abstract level there
is no distinction between dt and df or dr and @, L and £, H and H etc. The
isolagrange and isohamilton equations therefore coincide at the abstract
level with the conventional equations. This illustrates the axiom-preserving
character of the isotopies, this time, in analytic mechanics.

This is another basic point of our efforts to preserve Einsteinian
axioms. In fact, we have established with the above results that classical
relativistic isotopic mechanics coincides at the abstract level with the conven-
tional relativistic mechanics.

Another important property is that the transformation theory of the
isohamilton’s equations is isocanonical, that is, it preserves the conventional
canonical structure,

b=(F, p} = B(b)={F(% p), '(#, §)) (3.652)
o .
B, — D, =~5-'2-§<¢0 36 =d,, =0, (3.65b)

v py éa“‘ xf xéﬁ"’

This permits the main result of this subsection, according to which the
isohamiltonian mechanics preserves the basic units and the canonical sym-
plectic tensor, thus confirming the capability to preserve Einstein's axioms at
the abstract level,

The advantages of the isoanalytic over the conventional mechanics are
evident. For instance, the isohamilton’s equations are directly universal in
the fixed inertial frame of the observer while the conventional Hamilton’s
equations are not, thus forcing the use of the Darboux’s maps to noninertial
frames with the consequential loss of the axioms of the special relativity
indicated in the preceding sections. Also, Hamilton’s equations are strictly
local-differential from the underlying conventional topology, while the
isohamilton equations are integrodifferential thanks to the underlying
broader Tsagas-Sourlas isotopology. Finally, Hamilton’s equations cannot
possibly represent the shape of the particles considered, while such a
representation is possible under isotopies,

We close this section with a comparison between the isoanalytic
mechanics outlined above and the Birkhoffian mechanics of Ref. 3d, so as
to identify the reasons why the latter was insufficient for the studies herein
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considered. Both mechanics are directly universal for well-behaved local-
differential systems. As such, they must admit an interconnecting relation
within the fixed frame of the experimenter.

In fact, the Pfaffian action {1.9) can be identically rewritten in the
isotopic form according to the rules

[ LRB) x b~ H(1, by x de] = f [Re(b) x db* — A(F, b) x dr ]

Ro={p0}, db=1F, xdb=(R/R)xdb
br=pr, H=H  di=dt (3.66)

Also, the totally antisymmetric Lie-isotopic tensor Q#*(b) always admits
the factorization into the canonical Lie tensor e and a regular symmetric

matrix T’;

O =™ x T‘;} (3.67)

As a result, Birkhoff*s equations can always be rewritten in an identical
isohamiltonian form (here given for the simple case with [, =1)

I I3
B oy PH: b)_db . 9H(1,b)

dt b dt bb" (368)

The above reformulation is nonirivial, mathematically and physically.
Mathematically, it implies the lifting of the totality of conventional
methods, from numbers to topology. Physically, the above reformulation is
fundamental to preserve the axioms of classical relativistic mechanics,
which is not possible with Birkhoff’s mechanics (Theorem 2). |

In summary, the inability of the Birkhoffian mechanics, as well as of
the noncanonical generalizations of Hamiltonian mechanics to preserve
Einsteinian axioms, is due to their representation in conventional metric
spaces over conventional fields, because the same theories when properly
reformuiated on isospaces over isofields can indeed preserve said axioms.

As a historical note, we should recall that Hamilton was fully aware
of the lack of universal character of what is today called the Hamiltonian
and, for this reason, he proposed his celebrated equations with external
terms. The latter were eliminated in the literature of this century owing to
the successes of analytic mechanics for the treatment of conservative
systems, such as planetary and atomic systems.

The studies herein considered are based on a return to the original

.conception by Hamilton on the limited representational capabilities of the

Hamiltonian. In fact, the isounit has essentially the same function of
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Hamilton's external terms to such an extent that they both have the same
number of independent elements.

As indicated in Sec. 1, the isotopic representation of the historical
external terms is necessary because the latter imply the abandonment of Lie
algebras in the brackets of the time evolution in favor of the broader Lie-
admissible algebras,’ thus implying the inability to preserve the axioms of

special relativity.

3.9. Isotopies of Quantization and Nonrelativistic Quantum Mechanics

We are now equipped to identify, apparently for the first time, the
main elements of the isotopies of nonrelativistic quantum mechanics, also
known as nonrelativistic hadron mechanics, in the version characterized by
the isodifferential calculus of the recent memoir."**® For a comprehensive
list of contributions and related references on the formulation prior to the
isodifferential calculus, we suggest to consult for brevity Ref. 22b.

The systematic use of the isotopic liftings or, equivalently, nonunitary
transforms, yield the following main mathematical structure:

(1) The basic isofields of isoreal R = R(A, 4+, X} or isocomplex num-
bers C= (&, +, X ) with isonumbers A=nxf, é=cxf, and isoproduct
akb=axTxb I=T"" a=n2¢

(2) The enveloping isvassociative operator algebra & over ¢ with
elements X = { X, }, and isoassociative product X, % X, infinite-dimensional
basis (3.23), and isoexponentiation (3.24);

_ (3) The isohilbert spaces 2 over C with isoinner product (Pl x T
1§> x fe € and isonormalization {¥| x Tx > =1;
(4) The isoeuclidean spaces E(#, 8, R) with isometric 8(r, ¥, ¥, d,...) =
Nr, 7y, O,..) x 8, S =diag(1, 1, 1); and biosphere #=(r'xdxr)xfeR
(Sec. 3.7);

(5) The Lie-Santilli isotheory with isoalgebra (3.25), isogroup (3.27),
and related isosymmetries in isounitary realization.

The operator theory herein considered can be uniquely and unam-
biguously derived from the isohamiltonian mechanics of the preceding
section via simple isotopies of the conventional naive or symplectic quan-
tization. Recall that the simplest possible map of Hamiltonian into quan-
tum mechanics, called naive quantization, is characterized by the map of the
canonical action functional

A= —ixhixLn [yt r)> (3.69)
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which maps the conventional Hamilton-Jacobi equations into the
Schridinger equations

iofor > =Hxh~"x > (3.70a)
DX AT x|y = —idfork > (3.70b)
with corresponding Heisenberg’s equation
idAjdt=Axh"'x H—Hxh " "x 4 (3.71a)
PixhTixr = fIxh=\p, =ixd! {3.71b)

pixhT xp—pxh ' xp=rixhT xr/ = xh ' xr' =0 (3.71c)

where Planck’s constant has been moved from the traditional place of writing
it, the Lh.s,, to the r.h.s. for reasons which will appear clear momentarily,

But the isoaction (3.52) is of arbitrary order in conventional space
and, therefore, the preceding map is not applicable. We therefore intro-
duced the map called naive isoguantization, here considered for the simpler
case when [ does not depend explicitly on the local coordinates.

A(F, P)— —if(p) Ln §(F, ) (3.72)

under which the isotopic Hamilton/Jacobi equations (3.64) yield the

isoschridinger equations

10/0ifr > =if, x DJOHI> = AR > = Ax x> =B 1>
= Ex i) (3.73a)
PRy =pux x> = —ibfor* [y = —iTix8/0f [§>  (3.73b)

with equivalent isoheisenberg equations

idA(dt = —if, xdA/di=[ A, Al;=AXH-A% 4

=AxTxA-AxTxA4 (3.74a)
[P Fl=pX# — /% p,=p,x Tx i/ — ) x Txp,=id! (3.74b)
[Pr B1=[#,#]=0 (3.74c)

The use of the full dependence of f merely implies the enlargement of the
isohamiltonian (for details see Schuch'® and Ref. 22b).

.The 150to_pie§ can also be applied to the symplectic quantization (first
studied by Lin‘“") yielding the same fundamental equations (3.73) and
(3.74), as the reader can verify.!2*®
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Note the essential role of the isodifferential caleulust®® for the iden-
tification of the axiomatically correct dynamical equations, as well as for
the construction of the fundamental isocommutation rules.

The most salient aspect emerging from the comparison of the conven-
tional and isotopic quantization is that the classical isounit of Newton’s
equations assumes al the operator level the role of the generalized Planck’s
constant,

f=]sh=1 (3.75)

Also, the isounit is the fundamental invariant of the isotheory because of
the dynamical conservation law

i&i/3z=fxﬁ—ﬁ>‘<f=ﬁ-ﬁ§o (3.76)

(plus its invariance indicated below). Moreover, f satisfies all axioms of the
conventional Planck’s unit,

o

p=pxti. kb=l A=t 1]i=let (3.77)

and, finally, its isoexpectation values recover the conventional Planck’s
value,

(Pl x Fx T x x>
(f 5‘_’_:___,____7-——-———517_; (3.78)
? < T x> '

1n turn, the above properties imply that the center-of-mass trajectories
of the systems represented by the isotopic completion of quantunt mechanics
verify Heisenberg's yncertainties. n fact, from Eq. (3.74b) we have (h=1)

Ar dp2 37 B =1 (3.79)

The latter property establishes the axiomatic character of Heisenberg’s
uncertainties, ie, their invariance under isotopies, and confirms the lack of
need of deviations from the same laws under nonunitary transforms
indicated in Sec. 2. In fact, the anomalies of “squeezed states”'??’ can be
reformulated in an axiomatically consistent and invariant way in which
there is no departure from Heisenberg’s uncertainties.

The latter results establish the novel character of the composite
systems characterized by the isotopic mechanics, as first anticipated via the
isosymmetries, because: (1) the systems verify conventional total conserva-

tion laws (Sec.3.7)% (2) the center-of-mass trajectory of the systems is
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conventional; nevertheless (3) the systems admit a generalized internal
structure with linear and nonlinear, {ocal and nonlocal, and potential as
well as nonpotential internal effects.

A dominant feature of the isotopic equations is the conservation of the
total energy due to the antisymmetry of the isoproduct,

idd=AxA—-A%A=0 (3.80)

The generalized composite systems represented by the theory can therefore
be assumed to be closed-isolated.

Recall that conventional quantum mechanics tepresents systems via
the sole knowledge of the Hamiltonian H under the tacit assumption of the
simplest possible space-time units I The isotopic theory requires instead the
knowledge of the Hamiltonian plus the assumed space-time units. In par-
ticular, the Hamiltonian A represents all conventional action-at-a-distance
interactions mediated by particle exchanges, while the isounit fcan represent
all contact-nonhamiltonian interactions which, as such, cannot possibly be
mediated by particle exchanges, such as the nonlinear and nonlocal interac-
tions of Sec. 3.8.

An objection is at times voiced that the isotheory is “too general”
because it admits infinitely possible operators 1 This is equivalent to the
statement that Newton’s equations are too general because they admit an
infinite possibility of different forces, or that quantum mechanics is too
general because it admits infinitely possible Hamiltonians. In reality, a
primary value of the isotheory is precisely the unrestricted character of the
isounit, which has been uniquely determined for ail interior systems studied
until now {Sec. 3.14).

Also, the isotopic lifting of each exterior system admits many different
possible isounits, because a system of particles at large mutual distances in
vacuum can be brought into a large variety of interior conditions depending
on density, temperature, size, chemical composition, etc.

It appears that the above isotopies of quantum mechanics do indeed
preserve all axiomatic properties of quantum mechanics.?%2” This can be
seen from the fact that the isotopic and conventional mechanics coinecide at
the abstract level by conception and construction. Any possible incon-
sistency is therefore expected to be due to the erroneous or lack of use of
the isotopies. Alternatively, we can say that any criticism on the axiomatic
structure of the above isotopic theory is de facto a criticisi o1 the axiomatic
structure of quantum mechanics.

{n particular, it is possible to show that the isotopic completion of
quantum mechanics resolves the problematic aspects identified in Sec. 2. To
begin, the isotheory is invariant under additional nonunitary transforms,
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provided that they have the same “magnitude” f and are written in the
isotopic form (3.18), which leaves numerically invariant the isounit

fr = WkIxWi=WxTx T "'xTx Wt=WxWt=1 (381)

as well as the isoassociative and Lie-Santilli products
Wi(AxBxWi=A"%8 (3.82a)
WR(AXB-Bx s W=A'%B B4 (3.82b)

This resolves the problematic aspects of Sec. 2 due to lack of invariance of
the unit, lack of conservation of probabilities, and lack of uniqueness and
invariance of physical laws.

The preservation of the original Hermiticity follows from Properties
(3.6) combined with the latter invariances. The invariance of the numerical
predictions can be established via the invariance of the isospecial functions
which is omitted here for brevity (see for details Ref. 22). The preservation
of causality for the above isotopic theory is essentially equivalent to that
for quantum theory, and it is ensured by the abstract identity and local
isomorphism of unitary group with their isounitary formulation. The
preservation of the Einsteinian axioms will be investigated in the next section.

Note that the isounitary theory is based on the assumption of one
fixed isounit, e.g., nonunitary transforms such that Ux Ut=1"#1are not
allowed, evidently because they would imply the transition to different
physical systems. This occurrence is fully equivalent to the corresponding
one in quantum mechanics in which only transformations such that
Ux Ut =T are admitted and others such that Ux Ut=[#1T are excluded.

A fundamental implication of the isotopic completion of quantum
mechanics is that the validity of quantum mechanics for the center-of-mass
treatment of strongly interacting systems, by no means, can be used as an
argument for the necessary validity of the same mechanics for the interior
structure. In fact, the same center-of-mass characteristics are also verified
by structurally more general theories.

Stated in plain language, the above results imply that quantum
mechanics can be safely stated as being exactly valid for exterior systems
such as atomic structures and electroweak interactions at large (Sec. 3.1),
but the problem of the physical laws holding for strong interactions remains
basically open at this writing on both theoretical and experimental grounds,
as pointed out in Ref 3b.

This completes our rudimentary study of nonrelativistic isotopies, For
further details we refer the interested reader to Refs. 22, 23
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3.10. Isotopies of Relativistic Quantum Mechanics

Consider a conventional Minkowski space M = Mix, n, R) with coor-
dinates x = {x*} = {r, cot}, where ¢, is the speed of light in vacuum, basic
unit 7 = Diag(+1, +1, +1, +1) and metric # = diag(+, +1, +1, —1) over
the reals R = R(n, +, X).

The fundamental isospaces of this paper, the isominkowskian spaces
M = M(%, A, R), were first introduced in Ref. 4a in 1583 jointly with the
isotopies of the Lorentz symmetry. They are called Minkowski-Santilli
isospaces' and can be characterized by the expressions

M2, 8, By 2= {24, fiCx, %0, 80, o, 7o) = T, %, 0, 0%, 7 ) X
: (3.83a)

(R — P =[(2— P 2N (x, %, 1, o) (2~ F)']
=[(x—p¥xA.dx % ¥, O, ) X (x = y) ] % !
=[(x'— 'y x Tylx, Wy} X (x'— J’l)
4+ (x2 = y?) x Taalx, 5] % (x*— %
4+ (x? =y} x Tag(x, ¥y} X (x*— %)
— (o = 9*) X Taa(t, ) x (x4 = )1 x
=(x—y)PeR (3.83b)
= Diag(T);, Tazs To3» Taa)y  I=T7"
P %, X%, %, 3, O, 06y, o, 7,.) > 0 (3.83c)
Ro=daxt  #0=al™P (3.83d)

The isominkowskian geometry,® also called Santilli’s isominkowskian
geometry,” is the geometry of isospaces M(#,#, R), and its outline is
omitted here for brevity (see Refs. 22, 23).

The first property of particular importance for this note is that
isominkowski spaces are locally isomorphic to the conventional Minkowski
space.*! In fact, the deformation of the metric 5 — f = T x n while the basic
unit of the original space is deformed by the inverse amount, - f=7",
implies the preservation of all original axioms. In particular,
isominkowskian spaces are isoflat, that is, they verify the axiom of flatness
in isospace (but not so in their projection to the original space M).

The local isomorphism M(%, 4, R) & M(x, 1, R) has evident fundamen-
tal importance for the main objective of these studies, the preservation of
the axioms of the special relativity under nonunitary theories, for which
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purpose the isominkowskian spaces and related geometry were proposed in
the first place.'®

The advantages of the isotopies M(x, n, R) = M(%, #, R) are trans-
parent. In fact, the isominkowski spaces are “directly universal,” in the sense
that they admit all infinitely possible signature-preserving deformations of the
Minkowski space (universality), directly in the x-frame of the experimenter
(direct universality) (this property was studied in detail by Aringazin.®*)
All possible, well-behaved, real-valued and symmetric metrics are therefore
particular cases of the isominkowskian metric 4, and this includes Rieman-
nian, Finslerian, nondesarguesian, and any other possible (3 + 1)-dimen-
sional metric. As a result, the isominkowskian geometry permits intriguing
geometric unifications (see next section) which are not evidently possible
with conventional geometries.

Recall that the quantity /= Diag({1, 1, 1}, 1) is the space-time unit of
the conventional Minkowski space. The 4 x 4 quantity £ therefore represents
the space-time isounits. In this interpretation the isounit is often written in the
form

f=Diag({n?, ni, n3}, n?), n(x, %, X, O, 00, u, 7,..) # 0 (3.84)

where {n?, ni, n2} are the space isounits in dimensionless form and n? is the
time-isounit also in dimensionless form (the »'s are also called in the
literature the characteristic functions of the isominkowski space). The
isocoordinates £ must therefore be referred to the above isounits.

Recall that “the universal constancy of the speed of light” ¢, is a
philosophical abstraction because the speed of light is constant only in
vacuum (exterior problem) and becomes locally varying within physical
media (interior problem). For instance, the speed of electromagnetic waves
propagating in our atmosphere varies with the density to assure yet dif-
ferent values in water, glass, oil, etc.

The rather frequent reduction of light in interior conditions to photons
in second quantization scattering through molecules is here ignored
because, e.g., the speed within our atmosphere of radic waves of I m
wavelength must be first represented classically before operator theories in
first, and then second, quantization can have sense,

According to our basic assumptions, the Minkowskian geometry is
exactly valid for exterior conditions in vacuum, where it provides a “direct
geometrization,” that is, a geometrization via the metric n, of the constant
speed ¢, as well as of the homogeneity and isotropy of the medium in which
it propagates (ether).

The objective of the isominkowskian geometry is to provide a direct
geometrization, this time via the isometric #, of interior conditions, e.g.,
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electromagnetic waves propagating with locally varying speeds within
infomogeneous and anisotropic physical media (with the understanding that
the background ether remains homogeneous and isotropic).

In fact, the basic isoinvariant characterized by isounit (3.43) is given

by
x2 = (' x"n? + x3md + x5 nd — rcdn3) x (3.85)

The above invariant does indeed permit the direct geometrization of locally
varying speeds of light ¢ = ¢, /n, where n4 is the familiar index of refraction, ¥

The same invariant (3.85) also permits a direct geometrization of the
inhomogeneity and anisotropy of the medium considered. In fact, the index
of refraction is complemented in isoinvariant (3.85) by the space-counter-
parts n2, which emerge from mere space-time symmetrization, or just
application of the Lorentz transforms. As one can see, the geometry based
on isointerval (3.85) is inhomogeneous, e.g., because of the local variation
of the density represented via the dependence of the isometric 4 in the local
coordinates, and anisotropic, e.g., because of a preferred direction in the
medium caused by an intrinsic angular momentum and represented via dif-
ferent characteristic functions #,,.

The preservation of the Einsteinian axioms despite variable speeds of
light is ensured by the isominkowskian geometry. In fact, jointly with the
deformation of the speed ¢, — ¢ =c/n, we have the deformation of the
corresponding time unit in the inverse amount. This leaves c, as the maxi-
mal causal speed in isospace M. The same occurrence holds for the space
components.

More specifically, the light cone in M, called isolight cone,™* is a per-
fect cone identical to the conventional light cone in M, including its charac-
teristic angle (which sets the value ¢;). Under lifting M — M each axis [,
of the original cone is deformed by the amount 14 — T‘ﬁ =n, 2 while the
related units are deformed by the inverse amount [}, ~ ! #=n}, thus pre-
serving the perfect cone in isospace. The locally varying speed of light
¢ = ¢o/n, and the deformed cone appear only in the projection of M on M.
For a proof of these properties (which requires the use of isotrigonometric
and isohyperbolic functions) we refer the interested reader for brevity to
Ref. 22a,

According to an occurrence similar to the iso-self-scalarity of the
Hilbert space, Eq.(3.19), and of the fundamental symplectic structure,
Eq. (3.31), the conventional Minkowskian line element admits the following
new invariance law, here introduced apparently for the first time,

nfA=n"%xn, I f=n? neR n#0 {3.86a)
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(x— PP =[(x—y)* % x(x=p)]xI
=[x ) x (a7 X)X (x— ) ) x I =(x = 3)
= [t ) X A X (x— p)' T x F=(x = y)? (3.86b)

also called iso-self-scalarity. The new invariance illustrates again the axiom-
preserving character of the isotopies, this time, for relativistic theories, In
fact, law (3.86) establishes that the isotopies are admitted by the invariance
of the conventional Minkowskian line element.

Invariance (3.86) represents a direct geometrization of homogeneous
and isotropic physical media such as water, for which n,=n,=n;=n,="n,
and permits a resolution of the ambiguities of special relativity when its
applicability is extended from the vacuum to physical media. In fact, isoin-
variant (3.86) represents the physical speed of light in water, ¢ = co/n < co,
while the maximal causal speed remains ¢,. This permits the causal inter-
pretation of electrons traveling in water faster than the local speed of light
(Cerenkov light), and provides the correct relativistic addition of speeds
(which in the conventional treatment on M does not permit the recovering
of the speed of light in water as the sum of two speeds of light, while jointly
assuming ¢, as the maximal speed to salvage causality). For these and
related aspects we refer the interested reader to Ref. 22b. Independent
studies can be found in Ref 5g.

Again, the reader should not be surprised that invariance (3.86)
escaped attention throughout this century, because its discovery required
the prior identification of new numbers with arbitrary unit.?®

The maximal possible isolinear isosymmetry of separation (3.83b) has
been constructed by Santilli in Ref. 4 under the name of isopoincaré sym-
metry B(3.1), and it is called the Poincaré-Santilli isosymmerry (see Refs. 5,
93¢ and references quoted therein). In particular, the isotopies of rotations
have been studied in Ref. 4b, those of SU(2)-spin in Ref. 4c, those of the
Lorentz symmetry in Ref. 4a, those of the Poincaré symmetry in Ref. 4d,
and those of the spinorial covering of Poincaré in Ref. de, with a general
study in Ref. 22 including initial studies of isorepresentations.

The isosymmetry P(3.1) is essentially given by the image of the con-
ventional symmetry P(3.1} under the lifting of the unit 7— f. Since [ is
positive-definite, B(3.1) is locally isomorphic to P(3.1) by conception and
construction. Nevertheless, it provides the invariance of the most general
possible fine element in isospace, Eq. (3.83b). By recailing the direct univer-
sality of the latter for all possible signature-preserving nonlinear integro-
differential deformations of the Minkowski space, we can anticipate from
the outset a corresponding direct universality of the Poincaré—Santilli
isosymmetry.
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The explicit construction of the isosymmetry £(3.1} is one of the
primary applications of the Lie-Santilli isotheory, and can be summarized
as follows. By using the same convention as those of Sec. 3.8, we have the
following isodifferential, derivatives and related properties on isospace M
(see Sec. 3.8 for conventions),

der=frxdsr, 0,=0/6%=T),xd,= P x0/0%  (3.87a)
Baribrs =64,  0%,/02" =1, bar/be, = 4w, 0%,/0%,=8, (387b)
dp,=Tixdp,,  8/0p,=I"=3/op, (3.87¢c)

The conventional relativistic four-momentum operator p, x o=
—id, [ is lifted into the relativistic iso-four-momentum With related
fundamental relativistic isocommutation rules

521D = x Tx P> = =B, 1> = —iT;x3, > (3882)

(%, "KWY =(R,x Txp,— px Txg,)x P>
=N, R (P> =l % 10D (3.88b)
N,=f.xfeR  f,eR (3.88¢)

7

where the quantities N, represent the realization of N=(N,,) as an
isomatrix,'¥® ig., a matrix whose elements are isofunctions in R.

The original generators and parameters of P(3.1) are preserved
-unchanged under isotopies (Sec. 3.6) and we write in standard notion

X= {Xx} E{M,uvs pa}! Muvzx,uva"vaPv (3893')

w={w;} =1{(6,v), a)eR k=1,2,.,10, p,v= 1,2,3,4 (3.8%)

by keeping in mind that the w's can be rewritten as isoscalar w=w x [ for
mathematical completeness, yet W XX=wx X .

The connected Poincaré-Santilli isogroup Py(3.1)=S0(3.1)X (3.1),

where SO(3.1) is the connected Lorentz—Santilli isogroup" and 7{(3.1) is

the group of isotransiations on M,*%) can be written via the isoexponentia-
tion {3.24)

By3.1): Aw)=T] 8¥*" = (1‘[ eX* T) xf=A(w)xf (390)
k k

under which the isotransforms can be written

X =AW xx=[AW) x D) x Fxx=A(w)xx (3.91)
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The preservation of the original dimension is ensured by the isotopic
Baker-Campbell-Hausdorff theorem'™ (see also Refs. 3d, 5¢, 5d).

To identify the isoaigebra 5,(3.1) of £y(3.1), we use the isodifferential
calculus on M which yields the isocommutation rules'**4%)

[M;n" AMﬁﬂ] = i(ﬁm X M{zﬁ“ﬁyax Mvﬂ—ﬁvﬁx Hya-{-’?yﬂx Mrzv) (3'923)
[M,, "Bl =iAuuxBy=RuxBa)  [Bas "Bsl=0 (3.92b)
where [4, *B]=AxTxB-BxTx A

The isocasimir invariants are then given by
CO = f= P! (3.93a)
COV = 2= p, X pH =" x P, % B, (3.93b)
CO=W, 5 Wr, W=t MP %P (3.93¢)

The local isomorphism fig(3.1) = py(3.1) is ensured by the positive-
definiteness of . In fact, the use of the generators in the form M“=
x*p,—x'p, would yield the conventional structure constants under a
generalized Lie product, as one can verify.

The explicit form of the isotransforms can be easily computed from
isoexponentiations (3.24) via the knowledge of the conventional transforms
and the given deformation of the Minkowski metric, i.e.,. the given isotopic
components Tm, of isoinvariant (3.83b). Moreover, the convergence of the
original exponentiation into a finite form plus the assumed topological
restrictions on 7" assure the convergence of the isoexponentiation,

The isorotations were first computed along these lines in Ref. 4b and
can be written in the (£, $)-plane

R=2xcos(P1Px P12 x )~ px T2 x T2 xsin(P}2x T12 % 85)
(3.94a)
P=2x T2 PL 2 xsin{T2x 12 x 0,)+ $cos(T V2 x T'12 x 8;)
(3.94b)
(see Ref. 22b for general isorotations in all three Euler angles and related
isorepresentations).

As one can verify, isotransforms (3.94) leave invariant all infinitely
possible ellipsoids

rx8xr=xPx+ylyny+zT5z=inv. (3.95)
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However, the above ellipsoids become perfect spheres in isospace, the
isospheres ri=(r'x J x r) x f of Sec. 3.7. This isosphericity is the geometric
origin of the isomorphism O(3) = 0(3), as well as of the preservation of the
rotational invariance for the ellipsoidical deformations of the sphere,""! In fact,
the isogeodesic of SO(3) are perfect circles, only defined in isospaces. 22 230}

To understand the abode occurrence, the reader should note that con-
ventional relativistic theories have only ome inferpretation, that on M.
Isorelativistic theories have instead two different interpretations, that in
isospace M as well as its projection in the original space M.

The connected Lorentz—Santilli isosymmetry SO(3.1) is characterized
by the isorotations and the isoboosts first introduced in Ref. 4a, which can

be written in the (£3, £4)-plane

=z, =g ' (3.962)
2 = xsin(T 12 x T2 xv)— 24 x P2 x 42 x cosh(PiF x T4 x v)
=yx (=T3P x 42 x fx 2% (3.96b)
= — P P2 xer x TP xsinh(F42 x P12 x v) |
+ £4 xcosh( P32 x T¥2x v)
=px (#=TI2x T3 2 x fx 2%) (3.96¢c)

where
f=(vex Paxvijeox Tuuxe)?  f=(1-f4H""2  (397)

Note that the above isotransforms are generally nonlinear nonlocal and
noncanonical in their projection in M precisely as expected. The above trans-
forms are, however, isolinear, isolocal, and isocanonical on M. Moreover,
the isotransforms are formally similar to the Lorentz transforms, as also
expected from their isotopic character. This completion of these occurren-
ces via the isolight cone in isospace confirms the local isomorphism
SO(3.1) =~ S0(3.1).W

The isotranslations can be written'*®)

X =(eP ) kx=x+ax A(x ..}, p =" )Xp=p (398a)
AH=TLL2+a“x[T’;L2, “p /14 - {3.98b)

The isoinversions are given by 4®)
Axx=nxx={—rx%, fRx=txx={(r, —x%) (3.99)

where #=nx f, #=1x [, and =, 7 are the conventional inversion operators.
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At this point the following novelty occurs. It has been believed
throughout this century that the maximal symmetry of the Minkowskian
line element is ten-dimensional. The isotopies add twe new symmetries to
the conventional setting. The first is invariance (3.86) with iso-self-scalar
isotransforms

oM =n-txg, [l =n*xf (3.100)

The second new invariance, called iso-self-duality, is introduced in
Sec. 14.

For the isotopies of the spinorial covering of the Poincaré symmetry
we refer the interested reader to Refl 4d. For initial studies on the
isorepresentations one may inspect Ref. 22b. The isofield equations charac-
terized by isocasimirs (3.93) are studied in Ref. 22b.

Note that there is nothing to compute for the desired invariance, but
merely plotting isetransforms (3.94)—(3.99) on isoinvariant (3.83b) for given
deformations T,,,, of the, Minkowski metric elements 71,,,.

The isominkowskian geometry and related isopoincaré symmetry per-
mit the achievement of the main objective of the studies herein considered,
the preservation of the axioms of the special relativity in isospace'*** In
fact, the isotopic and conventional structures coincide by conception and
construction at the abstract realization-free level. Applications are evidently
open to scientific debate, but eritisisms on the axiomatic structure of
relativistic isotopic theories are de facto criticisms on the structure of
Einstein’s axioms.

The above axiom-preserving results should be compared with the
departures from Einstein’s axioms which are necessary for deformations.‘!®}
At any rate, the deformed Minkowski isospaces such as those of Ref. 10a
admit the isogroup P(3.1) as their symmetry.

A primary function of the Poincaré-Santilli isosymmetry for which it
was conceived'* is the characterization of new composite systems with con-
ventional center-of-mass trajectories and total conservation laws, yet
generalized internal structure,

These new systems can be visualized as follows. The computer
visualization of the conventional Poincaré symmetry (for N z 3) is expected
to yield a Keplerian system, ie., a system of particles at large mutual distan-
ces without collisions with a nucleus, the Keplerian nucleus, occupied by the
heaviest constituent. This visual computerization confirms the exact
validity of the Poincaré symmetry for the atomic structure, as expected.

A computer visualization of the Poincaré-Santilli isosymmetry {also
for Nz3) is instead expected to yield a different system in which all
constituents are in mutual contact with each other and the center can be
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occupied by an arbitrary constituent®™** owing to the presence of
contact interactions represented by the isounit fs /I These features are
precisely the main characteristics of the interior systems for which isotopic
theories were conceived in the first place,® such as the structure of Jupiter,
of a star, or, for that matter, of a nucleus or a hadron. In fact, all these
systems lack a Keplerian center.

When treated with conventional methods, the loss of the Keplerian
center evidently implies a necessary breaking of the conventional Poincare
symmetry. Our isotopic methods permit instead the reconstruction of the
exact Poincaré symmetry in isospace over isofields, thus permitting a
significant unity of thought for both exterior and interior systems.

Note that the Poincaré symmetry is reconstructed as exact under the
most general possible nonlinear, nonlocal, and nonhamiltonian internal inter-
actions.

The isorelativistic studies outlined above are completed by the
isotopies of the special relativity, or isospecial relativity'®® for short, which
include a step-by-step isotopic lifting of the various aspects of the special
relativity, including the isotopies of the Doppler shift, time dilation, space
contraction, etc., whose outline is here omitted for brevity.

3.11 Isotopic Formulation and Quantization of Gravity

As is well known, gravitation is currently formulated on Riemannian
spaces R(x, g, R) with (well-behaved) and symmetric metrics g = g(x) =g’

. and line element x* = x'x g x x on the reals R{(n, +, x).

In Sec. 2 we have presented a main drawback of the above formulation,
the fact that the basic space-time unit I =Diag(l, 1, 1, 1) of the Riemannian
geometry is not preserved by the symmetries of the line element { Theorem 3).
The occurrence is a consequence of the fact that the Riemannian metric is
a noncanonical deformation of the Minkowskian one. Therefore, the
Riemannian geometry suffers of all the problematic aspects of noncanonical
theories.

The proof of Theorem 3 can now verified with the preceding resuits,
In fact, the universal symmetry of all possible line element x> =x"x g x x is
the Poincaré—Santilli isosymmetry P(3.1), only specialized to the particular
case 5 =#(x) = g(x). But its isotransforms are nonunitary-isounitary. The
jack of invariance of the basic space-time units whenever the curvature is
non-null then follows as in Theorem 1.

The above occurrences are not of marginal relevance, because they
have rather serious implications, such as a confirmation of the historical

. ambiguities in the compatibility of general and special relativities, lack of

achievement of a form of quantum gravity as consistent as relativistic
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quantum mechanics, inability to reach a unification of gravity with other
interactions, problematic aspect in the applicability of both classical and
operator theories to measurements, and others,

New possibilities for resolving in due time this impasse are offered by
the isotopies. Even though the studies are at their beginning, mentioning
them may be of relevance for an overall view,

The main hypothesis of the isotopic formulation of gravity, also called
isogravitation (first presented at the VII M. Grosmann Meeting on General
Relativity at Stanford University in July 1994;*% see also Refs. 34b, 34c)
is the representation of gravity in the isominkowskian, rather than the
Riemannian space. In fact, all {3 + 1)-dimensional Riemannian metrics g{x)
admit the isotopic factorization

glx) =Ty (x)xn (3.101)

where n is the conventional Minkowski metric, and 7' is necessarily
positive-definite (from the locally Minkowskian character of (3 + 1)-dimen-
sional Riemannian spaces).

Isogravitation for exterior problems in vacuum is then characterized by
the following identifications on isominkowski space M(£%, A, R)

A(x) = Tylx) x = g(x) (3.102a)
Lp=[T(x)]1"! (3.102b)

where [, is called the gravitational isounit and T, the gravitational isotopic
element.
The above assumption has the following main implications:

(1) [Isogravitation possesses a universal symmetry, the Poincaré-
Santilli isosymmetry £,(3.1) for isounit (3.102b). This resolves a historical
difference between the special and general relativities, because the former is
indeed equipped with the universal symmetry P(3.1}, while the latter is
not. Note the necessity of the isominkowskian formulation R(x, g, R) —
M(:Z’, # R), =g In fact, isotopic methods cannot be even defined on
Riemannian spaces.

(2) Isogravitation permits a unified treatment of relativistic and
gravitational phenomena, In fact, the two profiles can be formulated via the
sume abstract axioms, those of the special {rather than the general) relativity,
and can be merely differentiated by the selected realization of the unit. When
the conventional unit is assumed to be I, one has the conventional special
relativity, while the assumption of isounit (3.102b) implies a gravitational
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formulation. Evidently, this unification is a consequence of the prior
unification of the underlying carrier spaces and symmetries. The unification
is not a mere mathematical curiosity, because it resolves known
ambiguities in the compatibility of the general with the special relativities,
e.g., in regard to the total conservation laws. In fact, the mere visual inspec-
tion of the generators of P(3.1), Eq.(3.89a), establishes their conserved
character as well as the identity of the relativistic and gravitational conser-
vation laws without any possible ambiguity.

(3) Isogravitation possesses an invariant basic unit at both classical
and operator levels. This is also a consequence of the universal Poincaré-
Santilli isosymmetry P(3.1). This permits an unambiguous comparison of
the predictions of the theory with actual measurements, besides being
necessary for the achievement of real compatibility between the general and
special relativities,

(4) Isogravitation permits the preservation of Einstein’s field equations
and related experimental verifications. This is a peculiarity of the
isominkowskian geometry which is flat in isospace, but its metric is
assumed to coincide with the Riemannian metric. As a result, the formalism
of the Riemannian geometry (covariant derivative, connection, etc.) can be
preserved in isospace M(x, 7, R) and merely referred to a different field (see
Ref. 34d for details).

(5) Isogravitation admits a new operator form called “operator
isogravity,” which is as axiomatically consistent as relativistic quantum

mechanics. In fact, the relativistic operator isotheory of the preceding

section can be specialized to the gravitational isotopic element and isounit
(3.102), yielding an operator theory which verifies the same abstract
axioms of relativistic quantum mechanics. This may resolve known
problematic aspects of conventional quantum gravity. Note that the local
isocommutativity of the linear momenta, Eq. (3.92b), confirms the isoflat
character of isogravity.

The interior isogravitation is given by the above theory with isotopic
elements and isounits of the general type

T=Ty(x, %, % W, 8, 80y, 1, t,..) x Tp(x) (3.103a)
Ly =[Tu(x)] 7 % [ Tolx, % % ¥, O, 03¢, p, 7,011 (3.103b)

where T, represents internal nonlinear, nonlocal, and nonlagrangian effects.
The latter theory can then provide a direct gravitational geometrization of
the locally varying speed of light in interior media.
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As an example, a simple lifting of the Schwarzschild metric for isounits
can be written

T = 1/(1 — M/fr) x ni, Poo=(1—M/r)xch/n} (3.104)

which evidently permits a direct geometric characterization of the locally
varying speed ¢=cq/n, for light propagating within inhomogeneous and
anisotropic interior gravitational media. No such direct geometrization is
evidently possible in Riemannian spaces.

Intriguingly, all main characteristics (1)-(5) above remain valid for
interior conditions. This is due to the unrestricted functional dependence of
the isounit.

We can therefore conclude by saying that, the conventional Poincaré
symmetry applies for systems which are: linear, local, potential, canonical,
unitary, exterior, relativistic, and classical or quantum mechanical. The
broader Poincaré~Santilli isosymmetry holds instead for systems which are
linear or nonlinear, local or nonlocal, potential or nonpotential, canonical
or noncanonical, unitary or nonunitary, exterior or interior, classical or
quantum mechanical, and relativistic or gravitational.

3.12. Genotopic Formulations

The isotopies were proposed in Ref. 3 as a particular case of the broader
genotopies. The main idea is that the isotopies are axiom-preserving, while
the genotopies (also from the Greek meaning of the word) are axiom-inducing,
that is, they imply the abandonment of the original axiomatic structure in
favor of a broader structure under the condition of admitting the isotopies
as a particular case.

Even though the genotopies are considerably less developed than the
isotopies at this writing, their indication may be of value because of insuf-
ficiencies of the isotopies in certain interior problems, e.g,, those of irrevers-
ible type.t'>

The basic assumption of the genotopies is the relaxation of the Her-
miticity of the isounit, f f', and its realization via nowhere singular, real-
valued, and nonsymmetric N x N matrices (in which case the transpose ! is
sufficient for conjugation). Besides generalized products and related units,
the genotopies require the additional ordering of the multiplication to the
right and to the left 32

AsB=AxT>x8, [>=(T>)"" (3103)

Aaﬁ;&ﬁu%{kﬁzﬁx <Px B <I=(<T)' (3.105b)
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with interconnecting map {~ =( ~ T, which are usually assumed 1o repre-
sent motion forward and backward in time, respectively.

This essentially implies a duplication of the isotopic methods one per
each direction of time, and requires the construction of genafields,
genospaces, genoalgebras, genogeometries, etc.)

As an illustration, the forward genofield*® ¢>(é, +, > ) is the ring
of genonumbers £~ =c % [* with conventional sum -+ and additive unit 0,
and genoproduct (3.105a). A similar situation occurs for the backward
genofield = &(<é, +, <). For each genofield the genomultiplication is
commutative (for complex genonumbers), although the result is different
for different orderings, ie, c>d=d>c, ¢ < d=d<c, but c>d#c<d The
important point is that each genofield €~ (é>, +, >)and © C(<é +, <)
verifies the axioms of a field® under a selected ordering of the multiplication,

Similarly, the forward genospaces are characterized by the following
forward genometrics and genounits:

$>(2>, 8>, R> ) 2> =xx[>, g7 =T>xg, [>=()""
(3.106a)
x2” =(x'xg” xx)x [~ eR> (3.106b)

which also preserve the original axioms despite the loss of symmetric
character of the metric. A similar situation exists for the backward
genospaces = S$(<#,<8,<R).
, An intriguing consequence is that, contrary to. rather popular beliefs,
the Riemannian axioms admit a nonsymmetric metric g7 =T>xg#§>",
g=g', provided that the underlying unit > is the inverse of the nonsym-
metric component of the metric 7> (see Refs. 22, 23 for details}). Similar
occurrences hold for all remaining genostructures.

The fundamental physical theory is the genotopy of Newtonian
mechanics on the forward genospace

S‘>(f>’£>’ !3>)=E>(IA>,R;>)XE>(£>,5>, R>)XE>(ﬁ>,5>,R>)
(3.107)

with forward genonewton's equations, first identified in Ref. 23b,

__droz 47 87020 870G % 0)
T T TR F

(3.108)

and corresponding backward genonewton equations here omitted for brevity.
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The next important theory is the genotopy of analytic mechanics with
forward genohamilton’s equations [loc. cit.]

d>budi= =p>r8> A 86> (3.109a)
O = x [T =S5 =+ (3.109b)
7 =aw,; x5 (3.109¢)

and related genotopies of the Hamilton-Jacobi equations, with corresponding
backward version.

The reader should note reformulation (3.109) of the Lie-admissible
equations (1.14) which is similar to the isotopic reformulation (3.67) of
Birkhoff’s equations.

The genotopies of quantization then vyield the following
genoschrodinger equations:'®® (first submitted by Mignani and by Myung
and Santilli in 1982; see Ref. 22b for literature)

62107 |57y =A> W7 >=AxT> x|§>>=E> SW>=Exif¢™)
(3.110a)
fus 67> =P x T7 x> = =i 75 x0/2r' 7> (3.110b)

with corresponding Lie-admissible genoheisenberg's equations'': 3% 3 3%

A Ajd> = (4, "My=A<A—H>Ax <PxA—-HAxT> x4 (3.111)

where each ordered product must be referred to its corresponding
genofields, genospaces, etc., and exponentiated form (1.5b).

A dominant feature of the genotopic methods i¢ that they imply the
time rate of variation of the energy,

id>Hidt> =Hx(<T—T7)xH#0 (3.112)

Genotopic methods were therefore proposed®® *® to represent open-non-
conservative systems under the most general possible external interactions,

It can be proved that the product A< Bl<s—B>A|z verifies the
Lie-admissible axioms™** when computed in conventional spaces over
conventional fields, but it verifies the Lie axioms when interpreted as a
genobimodule in which each ordered product is computed in the related
genospace over the related genofield.**> > The latter property permits a
further, step-by-step lifting of the Lie-isotopic isotheory into a form called
in the literature Lie-Santilli genotheory.”’

Similarly, nonconservation law (3.112) holds only in its projection in
conventional spaces over conventional fields because, when computed in geno-
spaces over genofields, it recovers conservation. The genosymmetries therefore
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permits the characterization of fime rate of variations of physical quantities
as originally proposed in Ref. 3a, with isosymmetries and conventional
symmetries and conservation laws as particular cases.

The factorization of the conventional canonical Lie structure o in the
Lie-admissible tensor & >#", Eq. (3.109b), the rescaling of all methods with
respect to the mew genounit J>, and the computation of the dynamical
equations on genospaces over genofields permit the preservation of conven-
tional axioms under genotopies, an occurrence holding at both classical
and operator levels.?> %%

Thus genotopic theories are axiom-inducing in their projection in con-
ventional spaces over conventional fields, but they are axiom-preserving when
Sformulated in genospaces over genofields.

As a result, the genotopies constitute a still broader realization of
“hidden variables” and “completion” of quantum mechanics much along the
EPR argument (Sec. 3.5).

In their projection on conventional spaces over conventional fields, the
genotopies are particularly suited for an axiomatization of irreversibility,
that is, its representation irrespective of whether the Hamiltonian is revers-
ible or not. Stated in different terms, potential interactions are notoriously
reversible, The suggestion of Refl 3 was therefore that of representing the
irreversibility of the physical reality, not with a Hamiltonian or a Lagrangian
(which are assumed as reversible), but rather with their dynamical equations.
This is precisely the case for Eq. (3.110).

However, when formulated on genospaces over genofields, genotopies
are structurally reversible. This permits an intriguing and novel reconcilia-
tion of the irreversibility of physical reality with the reversible structure of
guantum mechanics.

In summary, isotopies are recommended for the study of
closed-isolated systems with conventional-reversible center-of-mass trajec-
tories and generalized internal structure, although isotopies can also repre-
sent irreversibility, e.g., via an irreversible isounit f(t,...)#f(—d,...). The
broader genotopies are instead recommended for open-nonconservative
systems due to interactions with an external term with irreversible and
generalized internal structure.

We finally mention that, besides irreversible interior problems such as
black holes,"? the genotopic methods have turned out to be particularly
promising for theoretical biology."® In fact, biological systems are
notoriously irreversible because they either grow or decay in time and, as
such, they require formulations characterizing time raie of variations of
given characteristics of size, weight, etc.

"~ Within such a setting, conventional quantum mechanics is transparently
insufficient, owing to its notorious characterization of conservation laws.
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As indicated earlier, isotopic formulations can be constructed via a
step-by-step nonunitary transforms Ux Ut = [+ I of conventional quanium
formulations. As we shall study in a subsequent paper,'*® the genotopic
formulations can be constructed via a step-by-step transform of quantum
formulations of a more general type characterized by 4 xB'=f> and
Atx B= <[, where 4 and B are generally different nonunitary operators.

In fact, the latter transforms applied to numbers yield the genonum-
bers to the right A~ =Axnx B =nx{AB")=nxf> and to the left AT x
nxB=nx(A'B)=nx <[, with the correct genoproducts, and the same
occurs for all subsequent aspects.

3.13. Hyperstructural Formulations

We should also indicate for completeness that the genotopies, in turn,
have recently turned out to be particular cases of the multivalued hyper-
structures with a-left and right unit as proposed in Ref. 23b. In this case we
have an ordering of the multiplication to the right or to the left as in the
genotopies, but each genounit and genotopic element is given by an
ordered ser of values, e.g.,

{(PPy={I7 .17, I3y ={P>} " = (T}, T7 ... T3} (3.113a)
(<N ={<f,<b.<L}={<P-1={<P,<F,,.,<Ty] (3.113b)
with corresponding multivalued hyperproduct
APy B=Ax{P7,T7,. T3} xB
={AxT> xB, AxT> xB,AxT; xB,.,AxT> x B}
(3.114a)
A{C) B=Ax{<T\,<T,..< Ty} x B

={Ax <Py xB, Ax <T xB Ax <Py x B,., Ax <T, x B}
(3.114b)

This implies the construction of a third layer of new mathematics
called Aypermathematics, recently studied in Ref 23b (see page 18 of Web
Site 3h for an outline with open problems). For instance, we have the
hyperfield to the right {C>}({A™}, +,{>}) with hypernumbers to the
right {¢>} =cx {f>} and conventional sum and additive unit, and multi-
valued product (3.114a). The important point is that, despite the yet
broader character, the above hyperfield satisfies all axioms of a field (via
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strong identities, rather than the weak identities generally used in hyper-
structures). Along similar lines we have the /yperspaces®™

(87327} (g7 L (R {g7) = (T} g, {PP}={T7}"!
(3.115)

(x3> =(x'x {7} xx)x {{*} e {R*} (3.115b)

which evidently represents a multiplicity of genospaces. We similarly have

hyperalgebras, hypergeometries, etc.
The fundamental theory is the Aypernewtonian mechanics defined on

hyperconfiguration space with basic forward hypernewton’s equations, first
identified in Ref. 23b,

107 N Cand A Caed 14 U ) 3 N K R LA GE L e Y

{di*} {d4{6*>} {aH{2}
(3.116)

(n=) (>} ¥

with corresponding backward hypernewton equations here omitted for
brevity. .

The next important theory is the hyperanalytic mechanics with forward
hyperhamilton’s equations [loc. cit. ]

(> Ybe{di>} = {& >} {6> } A [ {36~} (3.117a)
{&™} = x {17}, {7} =wa{s*} (3.117b)

and related hyperlifting of the Hamilton-Jacobi equations, with corre-

sponding backward versions. ’
The hyperlifting of quantization then yields the following forward

hyperschrodinger equations®®
HE> Y87} 10> =B (O} > > =Ax{T7} x ™)
={E7} DY W7D ={E>} x> (3118)
b {0} |117>>=ﬁk><{f'>}><llf'>> )
=—i{ T2} xofor, 1§ > (3.118b)
and related forward hyperheisenberg’s equations

i{d>} dfdr=} =(4, "B =A D} A-A{>} 4
=Ax{<TyxA-ABx{T>}x4 (3.119)
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where each ordered product must be referred to its corresponding hyper-
fields, hyperspaces, etc.

A dominant feature of the above hyperformulations is that they imply
the time rate of variation

i{d>} Aj{de=} = A({>} —{}) B #0 (3.120)

It is evident that the above hypertheory is structurally nonconservative
and irreversible when formulated in conventional spaces over conventional
fields. The theory was suggested by this author for a characterization of
systems for which the genotopies are insufficient, e.g., those of biological
type. 352

It should be indicated that hyperstructures are axiom-preserving when
Sormuluted on hyperspaces over hyperfields, in much of the same occurrence
as that for genotheories {Sec. 3.12),

We reach in this way a third, multivalued hyperstructural realization of
“hidden variables” and “completion” of guantum mechanics, in addition to the
isotopic and genotopic realizations of the preceding sections.

The reader is then encouraged to meditate a moment on the vastity of
the implications of the legacy of Einstein, Podolsky, and Rosen‘®®’ when
treated with the appropriate novel mathematics.

3.14, Isodual Methods for Antimatter

This presentation would be incomplete and somewhat misleading
without an indication that ali the preceding methods are solely intended for
the representation of matter and, if applied for the description of antimatter
. (see, eg., the historical account by Dirac®®), they imply a number of
inconsistencies.

As an example the sole transition from classical to quantum mechanics
of contemporary physics is the naive or symplectic quantization, It then
follows that the operator image of current classical descriptions of anti-
matter is not the charge (or PCT) conjugate as needed for consistency, but
rather a conventional parficle with the mere change of the sign of the
charge.

The origin of the inconsistency is that any correct representation of
antimatter, whether classical or quantum mechanics, must be an antiauto-
morphic {or, more generally, antiisomorphic) image of the description of
matter, as it is the ease for charge conjugation.

The above occurrence required an additional laborious search by this
author of the mathematics suitable for the description of antimatter beginning
at the classical level. It soon emerged that no available mathematics would
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meet the above requirement, because the entirety of contemporary mathe-
matics is based on the conventional unit +1, while a correct description of
antimatter requires a conjugation at afl levels.

In fact, preliminary attempts based on antiautomorphic maps of part
but not all of mathematics soon emerged as possessing axiomatic incon-
sistencies similar to the partial use of the isotopies. A similar insufficiency
emerged for the novel iso-, geno-, and hypermathematics outlined in the
preceding sections.

After a comprehensive investigation of all possible alternatives, Santilli
introduced in Refs. 4b of 1985 the following antiisomorphic conjugation of
the basic isounit,

I>0-f=—ft=—f<0 (3.121)

under the name of isoduality, which admits the conjugation of the conven-
tional unit of contemporary mathematics as a particular case, 1 >0
f=-1,

Then, all conventional or generalized methods have to be subjected to
isoduality, for consistency. For instance, it is not enough to change the sign
of the unit in number theory, because the quantity —1 is not the unit of
negative numbers, ( —1)x(—n)=+n# —n, ne R(n, +, x, and the same
situation holds under isotopy.

Jointly with map (3.121), the isotopic product must be also subjected
to isoduality, yielding the isodual isomultiplication

AkB=AxTxB+ A% B=AxTIxB=—A4A%B (3.122a)
PoPde —T, [=(PH! (3.122b)

under which 9 is indeed the left and right unit, /%9 A= A4 %4 f4=4 for
all possible A, with particularization for the ordinary product 4 x“b =4 x
(—1)x B=—AB.

The above rules permit the construction of the following chain of yet
novel mathematics specifically built for antimatter (see Ref. 26 for the
isodualities of numbers, isonumbers, and genonumbers, Ref. 23b for
isodualities of analytic and quantum mechanics, Ref 37c for a general
treatment and page 18 of Web Site 3h for an outline with open mathemati-
cal problems):

(1) Isodual mathematics, including new numbers, the isodual num-
bers, which are ordinary numbers with negative unit, a?=axI?= —at,

~a=n,c,q and related isodual fields F'(a“, +, x¥), F=R, C, Q; isodual

metric spaces S%(x9, g% R); isodual geometries, algebras, mechanics, etc.
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(2) Isodual - isomathematics, including isodual isonumbers &¢=
axli=—a" d=4,¢, ¢ and related isodual isofields £4(a% +, %9), F=
R, C, §; isodual isospaces 84(2%, §%, R); isodual isogeometries, isoalgebras,
isomechanics, etc.

(3) Isodual genomathematics, with isodualities of all various aspects;
and

(4) Isodual hypermathematics, characterized by the isodualities of
multivalued hyperstructures.

Each element of the above chain of isodual mathematics is an
antiautomorphic image of the corresponding formulation with positive
units. Moreover, all the above methods admit negative-definite norms,

la)'=lalxI“=—lal, 14°19=|alxf"=~141,etc. (3.123)

This implies the return to the original conception of antimatter
(Stueckelberg et al.), namely, all characteristics which are positive for matter
become negative for antimatter under its isodual representation, including
negaltive mass, negative energy, negative (magnitude of ) the angular momen-
tum, ete,, and mation backward in time.

A novelty is that all negative physical characteristics are now referred
to negative units. This removes the problem of causality for motion back-
ward in time, because motion backward in time referred 10 a negative unit
is fully equivalent, although antigutomorphic to motion Sorward in time
referred to a positive unit.

Recall that antiparticles were predicted by Dirac'®® in the nega-
tive-energy solutions of his equations,*® which however behave unphysi-
cally, thus calling for the celebrated “hole theory” in second quantization.
Santilli®™ pointed out that negative-energy solutions behave in a Sully
physical way when referred 1o negative units and, when properly formulated
in Hilbert spaces, isoduality is equivalent to charge conjugation.

The latter advances resolved the historical inconsistency of negative-
energy solutions and permitted a full treatment of antiparticles at the level
of first guantization, which is absent in current theories. In fact, such a
treatment requires the prior identification of a new antiisomorphic image of
quantum mechanics, the isodual quantum mechanics, with corresponding
antiautomorphic image of the special relativity, called isodual special
relativity, first identified in Ref. 22 (see Ref. 37¢ for additional studies).

In particular, Ref. 23b achieves a complete equivalence in the treat-
ment of matter and antimatter at all possible levels, beginning with
antiautomorphic Newton's equations, and then passing to Lagrange's and
Hamilton’s equations, quantization, quantum mechanics, etc. In this way,
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antimatter becomes equipped with its own isodual quantization, thus

resolving the problematic aspects indicated ea_rlier. . .
Thcg fundamental physical theory is in this case the isodual Newtonian

? sd fod
mechanics defined on the isodual isospace $4(P% 29, iz“') =dEd(f:d’ R‘)fx
£4(24 89 Ry x B4(64, 8%, Ry with isodual isounit I&, =T{xI¥x /= —1Iq
and ft’mdamentai isodual Newton's equations for antimatter, first submitted

in Ref. 23b,

diog @4 G0N 24 67 GO R DY o 5104
Jepd - depd Bdpkd Pgkd

"';Idd

We then have the isodual Hamilton equation

" dde":ade(ld, bd) (3125)
v ddfd adb,ud

corresponding isodual Hamilton-Jucobi equations, isodual n.aiue or ;yn?-
plectic quantization and, finally, the isodual quantumn mechanics with basic

equations
i x4 R9 x4 (@401 |4 = HY x4 [y )4 =E“x! [y (3.126a)
i x4 e x4 déadfdr! = A9 x4 b — HY x4 a* (3.126b)
; ' i, le., its i i under
here we have used the iso-self-duality of i; Le, 1ts invariance un
goceiuality, i = it = —F=}, the isodual Hilbert space #“ is characterized

1 = i i duct (g |y )>*=
he isodual states | >¢= —(|{>)}" and isodual inner pro
lz{q; [t" i‘ﬁ?ﬁ)" xIle C‘l“'tﬁ As one can see, the isodual eigenvalues E“ are

negative as expected for consistency. ‘
¢ We also have the additional, novel symmetry of the conventional

Minkowskian line element in M(x, , R)

I-fi=—1  p-y'=—9 (3.127a)

(x—yP=[(x—p) xq,x(x-p)"1xI

— [(xd__ yrf),u xnf ’];ir xd (xd""‘ yd)v] % frf

=(x_y):f2¢fe Rd (3.127b)
as well as the additional novel symmetry of the conventional inner product
of Hilbert space 4

QL x > X T= Wl x Wy x I4= <y 1) (3.128)
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The above invariances establish that the isodual representation of
antimatter is admitted by the very axioms of relativistic classical and quan-
tum mechanics, In fact, the same line element and inner product, and there-
fore the same physical laws, apply to both, matter and antimatter under
different antiautomorphic realizations.

Rather remarkably, the conventional Dirac equation has a negative unit
embedded in its gamma matrices, even though not interpreted as such during
this century. Its symmetry then turns out to be the iso-self-dual structure
£(3.1) x 27(3.1), contrary to a rather popular belief that it is solely given by
the spinorial covering of the Poincaré symmetry 22(3.1). Note that the latter
is ten dimensional, while the former is twenty-two dimensional,

The isotopy of the Dirac equations and related iso-self-dual isosymmetry
P(3.1)xP(3.1) and isogeometry M(%, 4, R) x M“(%4, 4% R?) emerge
as being of such broad applications as to characterize a new cosmology
called isacosmology,'*®' with the same amount of matter and antimatter in
the universe, and null total characteristics of energy, linear momentum, time,
etc. The covering genotopic formulations imply a broader cosmology, called
genocosmology, in which the Universe is open (or there is continuous crea-
tion). Finally, the still broader hyperformulations imply a rather complex
cosmology inclusive of biological structures with the same characteristics of
the genocosmology plus unlimited (yet ordered) multivalued structure.

Again, the new symmetries (3.127) and (3.128) have remained
undetected during this century because of the prior need of new numbers,
this time, rumbers with a negative left and right unit.

In conclusion, in this paper we have established that the vision by
Einstein, Podolsky, and Rosen'® on the lack of completion of quantum
mechanics is indeed correct, inasmuch as quantum mechanics can be first
completed in an axiom-preserving way with isotopic, genotopic, and hyper-
structural liftings, and then, still in an axiom-preserving way, can be com-
pleted with isodual conventional, isodual isotopic, isodual genotopic, and
isodual hyperstructural realizations, thus admitting a total of seven axiom-
preserving structural generalizations.

The abstract axioms of this entire, rather vast construction are those
of conventional guantum mechanics, merely assumed in different realiza-
tions of progressive complexity for the characterization of systems of
progressively increasing methodological needs.

3.15. Outline of Applications to Interior Hadronic, Nuclear, Astrophysical,
and Other Systems

As indicated in Sec. 1, this paper is devoted to the identification of
axiomatically consistent nonunitary formulations capable of preserving the
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abstract axioms of the special relativity. As such the paper cannot enter
into detailed studies on applications and verifications. Nevertheless, at least
an indication of some of the available applications with related references
appears t0 be necessary to justify the preceding study. At any rate, this
author believes that the conceptual foundations of any applications are the
basic ones, because technical developments are merely consequential
Needless to say, these applications are in their infancy and so much ’
remains to be done.

(A) Applications to Hadron Physics. As stated earlier, relativistic
quantum mechanics {and evidently quantum fleld theory) can be safely
assumed to be exactly valid for electroweak interactions at large, as well as,
more generally, for all conditions in which there is no appreciable overlapping
of the wavepackets of particles.

The isotopic completion of relativistic quantum mechanics was con-
ceived for the primary purpose of attempting new models of structure,
interaction, and scattering of hadrons'>* 32 (for which this author suggested
the name of “hadronic mechanics,”*® as well as, more generally, for all
conditions of particles in which there is an appreciable overlapping of
wavepackets, irrespective of whether charges are point-like or not.

The conditions of the former case imply the validity of the point-like
approximation of the particles and their wavepackets with consequential
validity of the underlying local-differential geometry and topology. Moreover,
point-like particles can only have action-at-a-distance interactions which, as

_such, are representable with 2 potential and related particle exchanges. The

exact validity of quantum mechanics then follows.

By contrast, strong interactions are profoundly different from the elec-
troweak ones. The range of strong interactions is of the same order of
magnitude as the size (charge distribution) of all hadrons (=1 fm=
10~'* cm). Thus, a necessary condition to activate strong interactions is that
hadrons enter into conditions of mutual penetration and overlapping. But
hadrons are some of the densest objects measured in the laboratory uatil
now. This implies the historical legacy by Bloch'intsev, Fermi, and others
on the nonlocal structure of the strong interactions. But the latter interac-
tions are of contact type, that is, they are due to the physical contact of the
wavepackets. As such, they have no potential, they cannot be mediated by
particle exchanges, and, consequently, they should be represented with any-
thing, except the Hamiltonian {or the Lagrangian).

Relativistic hadronic mechanics {(Sec. 3.10) represents all potential
interactions with the conventional Hamiltonians H(r, p) and all contact
interactions with an integrodifferential generalization of Planck’s unit h=
I— h=Hx, p, ¥, By,...) under the condition that the appropriate expectation
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value reproduce the conventional, (/> =#, Eq.(3.78). This representation
permits the verification of conventional total conservation laws and conven-
tional quantum behavior of the center-of-mass trajectories (e.g., verification of
the conventional uncertainties as shown in Sec. 3.9), yet admits the most
general possible nonlinear, nonlocal, and nonpotential internal structure.

As such, it has been stressed in the text that, by no means, relativistic
hadronic mechanics is a new theory, because it merely provides a new
realization of exactly the same axioms of relativistic quantum mechanics,
essentially differentiated by the selected basic unit. In particular, relativistic
hadronic mechanics has emerged to be a “completion” of relativistic quan-
tum mechanics much along the historical legacy by Einstein, Podolsky, and
Rosen'2® {Sec, 3.5).

Therefore, the validity for strong interactions of the abstract axioms of
relativistic quantum mechanics is outside scientific debates at this point of
our knowledge, and we solely study in this paper the validity for strong
interactions of alternative realizations of the same axioms.

As a result, there exist no a priori theoretical objections against the
axiomatic structure of hadronic mechanics because they are de facto objec-
tions against the axiomatic structure of gquantum mechanics. Also, there
exist no a priori experimental objections against the description of strongly
interacting systems provided by hadronic mechanics because it reproduces
conventional center-of-mass behaviour.

The selection of the validity for the interior problem of strong interac-
tions of the simplest possible quantum realization s =I of the unit, or of the
hadronic realization h=l(x, p, ¥, &,...), must therefore be left to a scientific
comparison of the plausibility of the predictions of the two realizations and
their comparative confrontation with experimental evidence.

In the latter respect one should avoid transparent inconsistencies, such
as the confrontation of hadronic predictions with expenmental data
elaborated with guantum methods because, as stressed in this paper, conven-
tional quantum methods have no meaning for hadronic mechanics of any
type, beginning with fundamental notions such as numbers, angles,
trigonometric and hyperbolic functions, etc., and then passing to special func-
tions, transforms, and distributions, etc. To conduct a scientific inquiry, one
must therefore e¢laborate with guantum methods the data for gquantum
mechanics and with hadronic methods those for Aadronic mechanics.

This includes above all the use of diffident scattering theories, the
conventional potential scattering theory for quantum mechanics and the
covering isoscattering theory for hadronic mechanics (see Refl 22b,
Chap. 12). In fact, by keeping in mind that the latter is a nonunitary image
of the former, the reader should expect different numerical results, beginning
with different definitions of differential cross sections [ loc. cit.}.
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Equivalently, the reader should expect that the same toral cross sec-
tion, here referred to the number of scattered particles in a given solid
angle, has different numerical interpretations in quantum and hadronic
mechanics. After all, the reader should keep in mind that the two scattering
theories are interconnected by nonunitary transforms.

It is at this point that all mathematical and physical efforts reviewed
in this paper acquire their true significance. In fact, the current theory of
strong interactions, that based on the assumption of the exact validity of
conventional quantum mechanics, has now reached a clear impasse due to
well known basic problems unsolved for decades (see below). This calls for
the initiation of the scientific process of trial and error for a structural
revision of the current quark theory along the teaching of the history of
physics, that is, by preserving unchanged results of clear value and
implementing the others in a broader description.

In this latter respect, the unitary classification of hadrons into families
can be safely assumed as being of final character owing to its now historical
capability to predict new hadrons. The aspects currently debated in various
physical circles are resiricted to the different problem of the structure of
each individual hadron of a given unitary multiplet.

More specifically, the latter problematic aspect, which constitute the
physical foundations for the applicability of the hadronic completion of
quantum mechanics, are the following:

(X} Inability by current theories to achieve a rigorous confinement of
quarks which, alone, should be sufficient grounds for structural revisions.

‘Note that the lack of confinement is deeply linked to the studies herein

reported, because the problem is due to the assumption of the same
mechanics for both the exterior problem in vacuum and the interior struc-
tural problem, with consequential finite transition probabilities for free
quarks originating from Heisenberg’s uncertaintics. The assumption,
instead, of the conventional mechanics for the interior behavior and a
generalized mechanics for the structure does indeed permit the achievement
of a rigorous coniinement via the incoherence of the two Hilbert spaces, as
indicated below.

(1} Inability to formulate gravity for matter composed of gquarks.
Gravity can be solely formulated in our space-time, while quarks can be
solely formulated in mathematical unitary spaces, without any possible
interconnection (in view of the O’Rafearthaigh theorem). At any rale,
the original and primary physical meaning of unitary theories is that of
classificarion of hadrons into families. It is then evident that no gravity
can be defined for a classification. This occurrence, alone, should also be
grounds for structural revisions of current quark theories. As treated in
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detail in the original proposal to build hadronic mechanics,®® this
problem is due to the use of one single theory, the quark theory, for both
the elassification of hadrons into families and the structure of each
individual member of a given family, which is unprecedented in the history
of physics. In fact, history teaches that atoms required two different models,
the Mendeleev model of classification of atoms into families and a different,
yet compatible, quantum model of structure of each atom of a given family.
The same differentiation proved to be necessary for nuclei, molecules, and
other structures. It was therefore an casy prediction of Ref. 3b that the
same differentiation will eventually emerge in one way or another as being
necessary for hadrons too. Note that the theory valid for Mendeleev's
classification, classical mechanics, proved to be insufficient for the resolution
of the problem of structure, which required the advent of a new mechanics,
guantum mechanics. The current scientific scene for hadrons appears to
be essentially similar, the methods valid for the classification of hadrons,
quantum mechanics, this time being insufficient for the structural
problem.'*®

(IIY) Inability to introduce quark masses as unambiguous physical
masses in our space-time. A necessary well-known condition for a mass to
be physical, that is, to exist in our space-time, is being the eigenvalue of the
second-order Casimir invariant of the Poincaré symmetry, m* = p*/c2. But
quarks are not admitted as representations of the Poincaré symmetry in
view of their fractional charges and other anomalous properties, and their
masses cannot therefore be introduced as eigenvalues of said Poincaré
Casimir. As a result, on strict scientific grounds, quark “masses” have the
sole meaning of parameters in mathematical unitary spaces, rather than
physical masses in our space-time. As such, quark masses cannot possibly
originate gravity in any known consistent way. The lack of admission of
quarks by the special relativity as physical particles in our space-time is
also sufficient, alone, to warrant structural revisions of current theories
because of the evident conflict in assuming mathematical structures in
unitary spaces as physical constituents of hadrons in our space-time.

(IV) Inability for quarks to be the “elementary” constituents of
hadrons. This occurrence was first pointed out by Santilli**® back in 1981
and forgotten by everybody in the field, aithough now rather widely accep-
ted by the physics community in view of the current impasse created by
conventional quark theories. In fact, a rather general current trend is that
quarks are composites. It is evident that such an assumption implies the
admission that the fundamental elementary constituents of hadrons are not
quarks but other particles, as predicted since the proposal of Ref. 3b. As
also pointed out in Ref. 38 and forgotten for over a decade, it should be
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noted that the assumption of quarks as composites appears to be the only
line of research capable of reconciling the two diflerent problems, the estab-
lished SU(3)-color theory for the classification of hadrons into families, and
a new theory for the structure of each individual hadron of a given unitary
multiplet. In turn, this is the only possible way permitting the definition of
gravity, not for quarks in their unitary spaces, but for their physical con-
stituents in real space-time.

(V) The historical legacy on the nonlocality of the structure of
hadrons and the strong interactions at large (indicated earlier). As is well
known, current unitary theories, QCD and all that, are strictly local
theories. Such a mathematical structure can be safely assumed to be exactly
valid for the problem of classification of hadrons into families, thus confir-
ming the validity of the unitary classification. However, the same local
structure cannot be expected to be of *final” character for the different
problem of the strucrure of hadrons which implies the mutual penetration
of some of the densest media measured in laboratory by mankind until
now. As stressed in the original proposal to build hadronic mechanics,!*"
the problem of the nonlocality of the hadronic structure will sooner or later
force a revision of current theories, the advantage being evidently gained by
those physicists who admit it first.

Above all, a revision of current theories on the hadronic structure
{only, and not that of classification) is warranted by rather clear theoreti-
cal, phenomenclogical, and experimental evidence. To begin, the Minkowski
space and reluted Poincaré symmetry are not exact already for interior
media of low density, such as our atmosphere. As indicated in Sec. 3.10, this
is due to: the locally varying character of the speed of electromagnetic
waves within physical media such as our atmosphere, walter, glass, oil, etc.;
the inability of reducing the above clussical setting to photons scattering
through molecules in second guantization, e.g., for electromagnetic waves of
one meter wavelength; ambiguities in the applicability of special relativity
within physical media, such as speeds of electrons greater than the local
speed of light or loss of the relativistic sum of speed under the causal speed
in vacuum; and other problematic aspects).'>*"!

Under these premises, the expectation that the Minkowski space and
the Poincaré symmetry in their current simplest possible formulation are as
valid for the hadronic structure as they are {for the atomic structure, has
little scientific credibility, owing to the hyperdense character of the
hadronic structure as compared to the virtually empty character of the
atomic structure. In fact, the expectation has a number of questionable
consequences such as the fact that the hadronic constituents must travel
free in vacuum in the same way as electron evolve in the atomic structure,
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or that hadrons have a “tiny atomic structure,” and the like. This provides
solid grounds for the “inapplicability” (and not “violation™) atomic realization
of the Minkowski geometry and the Poincaré symmetry within hadronic
media in favor of more general hadronic realizations of the same axioms,
All direct phenomenological calculations™ confirm such a plausible
assumption. As an example, Nielsen and Picket®® identified deviations
from the Minkowski metric in the interior of pions and kaons via the use
of conventional gauge theories in the Higgs sector, which we write in the

form

A= Diag((1 —3a), (1 - 30, (1 =3a), —(1+a))=Txy
T=Diag((n7?, ny% ny2, 072,  n=Diag(+1, +1, +1, —1) (3.129)

where

Forpions:n72=1+12x107% n;?=1-37x107° (3.130a)
Forkaons:m;2=1+20x10"%  n;2=1+6.00x10"% (3.130b)

Geometrically and numerically similar results are reached by the other
studies.®”

The reader should be aware of the fact that, even though not widely
known, the lack of exact character of the conventional realization of the
Minkowskian geometry and the Poincaré symmetry in the interior of
hadrons is also supported by a number of experiments.

The first supporting experiments were conducted by Aronson ef al.t*
at Fermilab in 1983 on the measure of the behavior of the meanlife of K2
with energy ranging from 30 to 100 GeV, which show deviations from the
Minkowskian geometry. Additional experiments were performed by
Grossman et al.'*! also at Fermilab in 1987 for the same behavior of the
K2, but for the different energy range from 100 to 350 GeV, and they claim
verification of the Minkowskian geometry. Unfortunately, the data of the
Grossman experiment'") were elaborated in a frame in which there is no CP
violation, which is known to yield no geometric anomalies, as shown by D. Y.
Kim®3%) and others. The results of the tests in Ref. 41, besides being inap-
plicable for the energy range 30-160 GeV, cannot be considered as final
in their own range of 100-350 GeV because they are dependent on ques-
tionable theoretical assumptions in the data elaboration. It should be
indicated that the data of the test in Ref. 40 too have considerable statisti-
cal errors. Therefore, both measures'®®4" have to be repeated with better
accuracy and without questionable theoretical assumptions in the data
elaboration to claim any scientific conclusion.
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Other experiments directly relevant for the geometry inside hadrons
are those on the Bose-Einstein correlation (see, e.g., Refl 42) of p— 7
annihilation at very high energy'*® and very low energy.'** These tests are
perhaps more relevant for the problem considered because, even thought
not widely admitted, it is scientifically established that correlation cannot
exist for strict local structures. Thus, measures'*>*) cqn be interpreted as
possible direct experimental evidence on the nonlocality of the structure of
hadrons. Deviations from the Minkowskian geometry then follow.

Numerous other experiments currently exists on anomalous
Minkowskian behavior some of which are somewhat hidden in “semi-
phenomenological adjustment,” such as the measure of photons and
astrophysical matter traveling at speeds higher than the speed of light in
vacuum, and they are not reviewed here for brevity (see Refs. 22¢, 34d).

The isotopic theories, including Santilli’s isominkowskian geometry on
isospaces M(%, #, R) and isopoincaré symmetry £(3.1) (Sec. 3.10), appear to
be particularly suited as {foundations for a new generation of theories on the
structure, interaction, and scattering of hadrons, in view of the foliowing

reasons:

{1) The isotheories are directly universal, thus admitting as particular
cases all possible deformations of the Minkowskoan geometry.’® In fact,
deformations of the type (3.129) are precisely of isominkowskian type.
Generalized structures M(%, 4, R) and £(3.1) therefore apply under defor-

mations even when not desired.

{2) The isotheories are the only known theories permitting the preser-
vation of the abstract axioms, symmetries, and physical laws of special
relativity. All other deformations considered in this paper'®" imply
the violation of Einsteinian axioms in one form or another. As noted in
Sec. 1, the use of the latter deformations implies the sizable problems of
identifying new axioms, proving their consistency, and establishing them
experimentally before applying them to the hadronic structure. Note the
significance of reconstructing the exact rotational, Lorentz, and Poincaré
symmetries in isospace (Sec. 3.10).") As an example, Nielsen and Picek!*®!
call the a-parameter in metric (3.129) the “Lorentz asymmetry parameter.”
In reality, it was shown by Santilli in Ref. 4a that the Lorentz symmetry
remains fully exact for metric (3.129) because it can be realized with respect
to the unit f=Diag((1 —«/3)~", (1 —a/3) ", (1 —a/3)~", (1 —a) ")

(3) The isotheories reproduce conventional total conservation laws and
cenler-of-mass {trajectories, including Heisenberg's uncertainties (Sec. 3.9).
By comparison, other theories, such as those on “squeezed states,"'® imply
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unnecessary deviations from established center-of-mass trajectories, as
indicated earlier.
(4) The isounits F=Diag(n[2, n7%, n;?, n;?) represents a geometriza-
tion of the extended, nonspherical, and deformable shape of the charge
distribution of hadrons via the characteristic functions n72%, n;2, n72, as well
as a representation of the density of the hadron considered via the charac-
teristic function n;*. By comparison, the representation of the extended
size of hadrons via conventional methods requires the second guantization
which can only represent perfectly spherical and perfectly rigid shapes
(evidently as a necessary condition not to violate the basic rotational sym-
metry), contrary to evidence in hadron physics. No representation of non-
spherical and deformable shapes is known for other theories, to our best
knowledge. No representation of the density {which is an important
characteristic varying from hadron to hadron) exists in other theories,
whether conventional or generalized.

(5) The isotheories admit excellent fits on available experimental data,
which include:
(5.A) The fit of the data by Aronson et al“® for the X° via the

isominkowskian geometry conducted by Cardone et al.'**® with numerical
results

n; % =0.9023 £+ 0.004, ns?=1.003 £0.0021 (3.131)

(5.B) The fit of both secemingly discordant data by Aronson ef
al“* and Grossman et al.®" via a unified isominkowskian representation
conducted by Cardone et al."**®! with values

n;* = 0,905080 + 0.0004, ny?=1.002 4 0.002 (3.132)

(5.C) The theoretical elaboration of the Bose—Einstein correlation
at high energy'*® with the isominkowskian geometry and the isopoincaré
symmetry conducted by Santilli® and its fit to the UA1 experimental data
conducted by Cardone and Mignani‘*” with numerical values

n; ' =0267 +0.054, ny'=043710.035 (3.133a)
ny'=1661 10013, n;!'=1653+0015 {1.133b)

which shows the known elongated ¢llipsoid of the p— p fireball (here
represented in a scale invariant form). It should be noted that the represen-
tation of the correlation requires the presence in the expectation values of
states of cross terms which are absent in the conventional expectation value
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of quantum mechanics.'*® Therefore, on strict scientific grounds, fwo-point
correlation functions are outside the arena of exact applicability of quantum
mechanics. In fact, correlation functions are nowadays obtained by throwing
in “semiphenomenological” parameters of unknown origin, such as the
“chaoticity,”*** which in actuality represents precisely the deviation from
quantum mechanics realizations of the axioms.“® By comparison, the
isoexpectation values of the hadronic realization, Eq.(3.78), do indeed
admit the needed cross terms for nondiagonal isotopic elements T, and
they produce a final form of the two-point isocorrelation function without
any ad hoc parameter, and with the sole assumption of null longitudinal
momentum transfer (which is experimentally verified). 4> #%

Other experimental data on Minkowskian anomalies, such as those of
speeds higher than that of light in vacuum, are directly represented by the
isominkowskian geometry, e.g., via the new invariance (3.85) for n <1 (see
Rels. 22¢, 34d for brevity).

In summary, we can state that all available theoretical, phenomenologi-
cal, and experimental information appears to support the validity of Santilli’s
isominkowskian geometry and of isopoincaré symmetry inside hadrons,
pending final experimental resolutions (see below).

In regard to the construction of the new theory of hadronic structure
based on isotopic methods, the main contributions have been the follow-
ing: Mignani'®® studied the isotopies of SU(3) and proved its local
isomorphism to the conventional symmetry; Kalnay'*® constructed an
operator image of Nambu’s mechanics for triplets which was then proved

‘by Kalnay and Santilli®®’ to be a realization of hadronic mechanics with

Eq. (3.74a) and isotopic element '=H [ '+ H ™' —2, where H, and H, are
Nambu’s Hamiltonians; Santilli**®) then presented preliminary studies on
the explicit construction of the isoquark theory (that is, the theory of
quarks defined as isorepresentations of SU(3) and obeying the isotopic
completion of relativistic quantum mechanics). Comprehensive studies are
available in monographs®® whose primary objective is the hadronic

structure.
The main characteristics of the isoquark theory are the following

(i} Isoguarks have the same quantum numbers of quarks. This
property is technically achieved via the construction of isorepresentations
of SU(3) obeying Klimyk's rule.’®2** %) The two theories are not there-
fore distinguishable on grounds of current theoretical and experimental
knowledge.

(i) Isoguarks have an exact confinement. This is due to the
incoherence of the internal isohilbert space ## with the conventional exter-
nal Hilbert space #, which imply an identically null transition probability

(48,4¢,49,22)
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for free isoquarks (but not for free quarks) even in the absence of a poten-
tial barrier {(asymptotic freedom at all energies);

(iii) Isoquarks have convergent perturbative expansions. This is due to
the fact that conventionally divergent series are isorenormalized into a con-
vergent form for isotopic elements sufficiently smaller than 1 in absolute
value, || <1, condition which is intriguingly verified by Kalnay’s'® quan-
tum version of Nambu’s mechanics for triplets and other versions. It is
evident that the above features are not readily possible for conventional
quark theories, thus confirming the plausibility of the isotopic formulation,

(iv) Isoquarks are reducible isounitary isorepresentations of Santilli’s
isopoincaré symmetry, e.g., isoquarks are composites.#®)

(v} The constituents of unstable hadrons are assumed to be ordinary
massive particles produced free in the spontaneous decays, generally those
with the lowest decay mode (tunnel effect of the constituents). It is in this
final aspect where all studies reported in this paper acquire their full
significance and for which they were proposed in the first place.®® In fact,
the above assumption can be readily proved to be impossible under con-
ventional quantum mechanics. On the contrary, the assumption of the
isotopic completion of quantum mechanics inside hadrons does indeed
permit the identification of the hadronic constituents as ordinary massive
particles, according to the following main lines:

(va) Ordinary massive particles experience “mutations™® in the
transition from conventional conditions in vacuum to the interior of hyper-
dense hadronic media. These mutations are technically represented via the
transition from the conventional to the isotopic symmetry. The new states
are called “isoparticles” and are essential to achieve consistency for the
reasons indicated above,

{vb) Nonlinear, nonlocal, and nonpotential internal effects imply
new renormalizations of conventional characteristics. Recall that all interac-
tions imply renormalizations. Those of potential-Lagrangian type are well
known and are here ignored. The new character of said normalizations
originates from the fact that the interactions considered are not represen-
table with a Lagrangian. Thus, isoparticles have different rest energy,
different charge, different magnetic moments, etc. than the corresponding
values in vacuum. These occurrences are confirmed by a mere visual
inspection of the isocasimirs (3.93) and are evidently essential to “build”
guarks inside hadronic media (see below).

{vc) Half-odd-integer angular momenta are prohibited for quantum
mechanics but are admitied in hadronic mechanics. Recall that half-odd-
integer angular momenta violate Hermiticy and unitarity on a conventional
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Hilbert space and, as such, all structure models based on quantum
mechanics must exclude them. On the contrary, half-odd-integer angular
momenta are fully admitted for the ischilbert space, under a full preserva-
tion, this time, of isohermiticity and isounitarity, as established by a mere
visual inspection of the new iso-self-scalar invariance {3.19) [see Ref. 22b
or a study via the isorepresentation theory of SU(2)]. As a result, when
and only when applicable, hadronic mechanics allows the construction of
structure models which are unthinkable with conventional settings (see

below).

(vd) Nonlinear, nonlocal, and nonpotential interactions of particles in
singlet coupling are attractive even under repulsive Coulomb barriers, while
triplet coupling are repulsive. This property was established in Refs. 6f and
49 where the lifting of conventional Coulomb equations characterized by an
isounit of type (3.14) produced an explicitly attractive force between the two
identical electrons of the Cooper pair in superconductivity, in remarkable
agreement with experimental data. The property is evidently general, and can
be used for a deeper understanding of known facts, such as how identical
protons can be bound together in nuclei (charge independence of the nuclear
force), or how the two identical electrons of the helium atom can generally
orbit together. The property can also be used to attempt new knowledge, e.g.,
the understanding of how an electron can “exclude” another electron when
there is no interaction carrying energy, exactly as permitted by the contact
interactions represented by isounits of type (3.14).

(ve) Nonlinear, nonlocal, and nonpotential interactions do not carry

‘appreciable binding energy. This latter property was established in Ref, 4e

where it was shown that the conventional {negative) binding energy is essen-
tially due to conventional long-range interactions (evidently adjusted by the

nonpotential effects).

The above main lines have permitted the construction of new models of
the structure of various unstable hadrons which are studied in detail else-
where {se¢ the forthcoming Rel 22c). We here mention that the original
proposal of 1978 to build hadronic mechanics,*® Sec.5, contained the
hadronic model on the structure of the z° as a “compressed positronium,”
that is, the transition from the quantum mechanical (QM) representation of
the positronium in singlet coupling to the corresponding state described by
hadronic mechanics (HM) yields a representation of the totality of the
characteristics of the #°, including rest energy, charge, mean life, charge
radius, electric and magnetic moments, parity, etc,,

Positronium = (g7, ¢ )om = 7°=(€7, 8] Jum (3.134)
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where e* — &% represents mutation, the total energy of the isoelectrons is
of about 67 MeV, and the binding is only of nonlinear, nonlocal and non-
potential type (because of its absorption of Coulomb interactions,'*%) with
small binding energy.*®

Note that the z° constituents are freely emitted and are the massive
particle emitted in the decay with the lowest mode, #° — e~ + e* (hadronic
tunnel effects of the constituents), in which we evidently have the inverse
transition 8% — e®,

Intriguingly, the indicial hadronic equation admits one and only one
energy level, that of the n°; see Ref 3b, pages 837-840 (this is called the
hadronic suppression of atomic spectra.®®* In fact, any excitation of the
hadronic state would imply distances bigger than 1 fm, for which all non-
potential effects are no longer appreciable, i.e, f=1, and hadronic
mechanics recovers quantum mechanics identically, thus recovering the
infinite atomic spectrum. It was stressed in Ref. 3b that, as a necessary con-
dition of consistency, the hadronic bound state must admit only one energy
level, Equivalently, we can say that the positronium can admit only one
additional state at distances <1 fm,®® because the existence of a spectrum
in the latter conditions would imply the assumption, again, of a “tiny
atomic structure” inside hadrons.

Similarly, relativistic hadronic mechanics in its isospinorial form has
permitted the construction in Ref. 4e of a structure model of the neutron as
synthesized in new stars, from protons and electrons only, essentially along
Rutherford’s historical conception of the neutron as a “compressed
hydrogen atom.” In fact, the isotopic completion

Hydrogen atom=(p7, p[)oqu=n=(p}, P )um (3.135)

permits the representation, again, of the totality of the intrinsic charac-
teristics of the neutron. The well-known historical objections were based on
the exact validity of quantum mechanics for the hyperdense medium inside
the proton, and, therefore, have no final character, In fact, they are easily
resolved by hadronic mechanics, For instance, the need in compression
(3.135) for an unacceptable “positive” binding energy (because the sum of
the rest energics of the constituents is smaller than that of the neutron) is
easily resolved by the isorenormalization of the rest energy of the con-
stituents; the quantum inability to reach the magnetic moment of the
neutron from those of the protons and electron is easily resolved by the
mutations of the latter due to their mutual immersion; the impossibility of
reaching a total spin 1/2 from a proton and an electron each of spin 1/2
is easily resolved by the admission of half-odd-integer angular momenta
{by recalling that the proton is about 2,000 times heavier than the electron,
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an inspection soon reveals that the orbital angular momentum of the elec-
tron must coincide with the spin of the proton as a condition for stability;
see Ref. de for details); and the same occurs for the other characteristics of
charge radius, mean life, ete,

Again, the hadronic indicial equations admits only one energy level in
compression (3.135), that of the neutron, as necessary for conmsistency,
Again, excited states imply distances bigger than 1 fm for which f=17 and
the atomic spectra is recovered identically. Again, the neutron constituents
are the massive particles emitted free in the spontaneous decay n—p* +
e” + 7 in which p* ~p* and 6~ -e~ 4.

It should be stressed that quark theories cannot represent the synthesis
of the neutron as occurring in early stars, from protons an electrons only.
In fact, their use requires the presence of the baryonic octet which does not
exist as yet in early stars (which are notoriously composed solely of
hydrogen). This provides a clear illustration of the limitations which are
inherent to a theory for classification when jointly used to provide the
structure of each element of a given multiplet.

Numerous additional hadronic structure models are possible along the
above lines in a quantitative and axiomatically consistent way, such as

Muonicatom = (u7, 4 o= 1={AT, A7 Jum (3.136a)
Pionic atom ={n*, &~ ) g = K2= (2%, £ Jum (3.136b)
A= 2w X =P, £y, elC (3.136c)

where the reader should keep in mind that, under mutation, conventional
differences, e.g., between u and =z, are lost, ie, 4% =A% The emerging
structure then resembles a number of early proposals in strong interactions,
such as “bootstrapping,” with the understanding that their realization is
now made consistently possible because of the advent of relativistic hadronic
mechanics (see Ref. 22¢ for technical details and historical references).

In summary, relativistic hadronic mechanics permits the consistent
reduction of all hadrons to the protons and electrons only, as predicted in
Ref. 3b. Note that, besides representing all characteristics usually treated
in quark theories, the model based on hadronic mechanics permits the
additional representation of the mean life and charge radius {which are
notoriously nor represented by quark theories), as well as the reason why
the latter is essentially the same for all hadrons,

The difference and complementarity of the new structure model with
quark theories should be indicated for completeness. The difference was
first pointed out in Ref 3b, Sec. 5.2, via the fact that the number of con-
stituents of n° and n* is the same for quark models while it must increase
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by one unit for the new models. In fact, quark models assume that the con-
stituents are two for both #° and #*. On the contrary, for the hadronic
model we have 7°=(27,87)um and the additional model proposed in
Ref. 3b, Sec, 5.2,

7t = (4% 6% )y = (€7, 8%, 87 Jum (3.137)

Again, the latter model is absolutely impossible for gquantum
mechanics (because of the inability to represent the total null spin of the
nt, and this may be the reason for the resiliency in its consideration by a
part of the scientific community since its proposal in 1978). However, the
model is readily possible for hadronic mechanics. In fact, for consistency,
the rotal angular momentum of the central isoelectrons é* must be the
same as that of the x° an occurrence identical to that of model (1.35).

A similar disparity between quark and hadronic models occurs in the

A —

transition from the model K= (27,77 Jum to
K*=(R)um=(#", 2% 2 )um (3.138)

where one should again keep in mind the equivalence under mutation
A% ~#% and the axiomatic constrain of relativistic hadronic mechanics of
recovering conventional total characteristics, including the behavior of the
center-of-mass.

In summary, as one can verify, the above new structure model of
hadrons is essentially that proposed in 1978, Ref. 3b, Sec.5, with the
primary subsequent advance given by the isotopies of the SIX2) spin sym-
metry {achieved in Ref. d¢ of 1993) and the availability of the mechanics in
an axiomatically consistent form {which can be claimed only in this paper
following the mathematical advances of Ref. 23).

The complementarity of the hadronic and quark model has been
indicated in Ref 48 and it is studied in detail in Refl 22¢. In short, frac-
tional charges are impossible in conventional space-time as is well known,
but they are readily possible under isotopies (because they verify the condi-
tion of conventional total quantities, thus being compatible with the
isorelativistic axioms). As such, relativistic hadronic mechanics permits the
construction of quarks with conventiona! fractional charged and other
standard characteristics as granules of real and virtual physical constituents.
In other words, the “count of physical constituents,” while fully correct in
classical and, to some extent, in atomic structures, is questionable already
in conventional quantum field formulations, and it becomes definitely
untenable under yet more general hadronic settings. The dominant physical
reality for hadrons is their hyperdense hadronic medium. Such a medium
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cannot granulate into quarks for conventional relativistic quantum realiza-
tion, but it can for the covering isotopic completion.

The compatibility between the novel isoquark theory and the estab-
lished unitary classification can be achieved as follows for the case of the
octet of mesons, On one side, mesons are assumed to be constituted by two
composite isoquarks, 1., isostates with reducible, thus multidimensional
isounits. This assures the preservation of all conventional results in the
classification via the techniques of this paper.

On the other side, the novel structure model of mesons is indeed
reducible to a rwo-body isotheory. For instance, we have zn¥=
(8%, 8%, 6 Yyn = (2% 8% )y, and the same happens for all other mesons
with actual, real, physical constituents produced free in the spontaneous
decays. But isoparticles are characterized by the isounits. Thus, we can
define the two isoquarks for the octet of mesons as reducible isorepresenta-
tions of SU(3) in the mathematical unitary space characterized by reducible
isounits each of which is the tensorial product of eight isounits representing
the eight pairs of actual, real, physical constituents of the mesons in our
space-time. This permits, for the first time to our knowledge, a consistent
definition of gravity under unitary theories, the achievement of a rigorous
exact confinement, and the other advances mentioned earlier. The com-
patibility for baryons is essentially the same.

The reader should note the emergence of the most advanced formula-
tions submitted in this paper, those of multivalued hyperstructural type. For
additional details, one may consult Sect. V, page 19 of Web Site 3h.

It should be stressed that, after comprehensive studies of all possible
alternatives, the above complementarity is the only one known to this
author which permits the resolution of the existing problematic aspects
(lack of confinement, lack of gravity, etc.), as well as the reconciliation of
the unitary model of classification with the new model of structure with
physical constituents defined in our space time.

Also, as in the preceding nuclear and atomic structures, the admission
of constituents which can be produced free permits for the first time the
predictions of novel practical applications, including conceivable new forms
of subnuclear energy inherent in the inverse of the artificial synthesis of the
neutron'*® (the latter requiring, while the former releasing, 0.80 MeV),
which are currently under study.”**®

(B) Applications in Nuclear Physics, It is easy to predict that the
above advances at the level of the structure of hadrons, and those in the
structure of the neutron in particular, permit the study of basically novel
aspects in nuclear physics. To begin, the representation of nucleons as
extended, nonspherical, and deformable has permitted the achievernent of
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the first exact-numerical representation in scientific record of the total
magnetic moment of the deuteron and.of few-body nuclei,*® which has
eluded refativistic quantum mechanics for some three quarters of a century
despite all possible corrections, including the inability of the latest attempts
via the polarizability of quark orbits (because they produce a correction
too small as compared to the missing 1% of the experimental value).

We recalled earlier the regaining of the exact SU(2)-isospin symmetry
in nuclear physics via the embedding of all symmetry-breaking terms in the
isounit.”*® Numerous other aspects are currently under study, including:
the representation of nuclear oscillations and deformations via an exact
rotational symmetry; the treatment of nuclear dissipation via an axiomati-
cally correct theory (rather than the axiomatically inconsistent triple
systems of type (2.7); the prediction under certain conditions of nuclear
reactions caused by nonlinear, nonlocal, and nonpotential effects against
the Coulomb barrier”’ which are rather lightly dismissed via conventional
linear, local, and potential theories; and others, ¥

Relativistic hadronic mechanics, however, permits deeper novel
insights into nuclear forces, For instance, it implies the termination of the
historical process whereby one keeps adding potentials to the Hamiltonian,
admitting instead contact, nonlinear, nonlocal, and nonpotential interac-
tions represented with generalized units, and reinterpreting some of the
terms believed to be of “potential” type as being in reality of “contact” type
without any potential energy. This is the case of the isotopic reinterpreta-
tion of the charge independence of nuclear interactions via the nonpotential
effects of Ref 49 indicated earlier. One should keep in mind that, even
though quantitatively smaller than those in the hadromic structure, non-
linear, nonlocal, and nonpotential effects are indeed present in nuclear
physics and may eventually be the origin of the lack of exact character of
quantum mechanics in the field as compared to the majestic validity of the
same discipline for the atomic phenomenoiogy.

Among possible new applications, we mention ongoing theoretical and
experimental studies on conceivable new recyclings of nuclear waste based
on the inverse of the synthesis of the neutron'™) (its stimulated decay)
and other means, which can be used by nuclear power plants in house, thus
avoiding altogether the need for its transportation to, and storage in, a yet
unidentified dumping site (which is projected by the U.S. Department of
Energy to cost some 230 billion dollars during the first five years). After all,
mean lives are perennial and immutable for the Poincaré symmetry, but not
for its isotopic completion.

(C) Applications to Astrophysics and Cosmology. Additional
intriguing applications to astrophysics should also be indicated, such as the
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exact numerical representation of the difference in cosmological redshift
between physically connected quasars and galaxies, originally proposed in
Ref. 51a, studied in Ref. 51b, and extended in Ref, 51¢ to the representation
of the internal quasar blueshift and redshift.

Other applications exist on cosmology based on Santilli’s isomin-
kowskian geometry and its isodual (Sec. 3.14), with suggestive properties,
such as equal distribution of matter and antimatter in the Universe and
null total physical quantities of energy, time, etc, lack of need of the
missing mass, and others.#2% > ‘

(D) Applications to Antimatter. Additional independent applica-
tions of the methods studied in this paper exist in the “new physics of |
antimatter” via the use of the isodual isominkowskian geometry and ‘
isodual isopoincaré symmetry.®” The latter theories reproduce known
electroweak data, represent gravitational attraction for particle-antipar-
ticles bound states in both fields of matter and antimatter, and predict
antigravity for elementary antiparticles and their bound states in the field of
Earth.

The latter prediction becomes mandatory following a forgotten iden-
tification (rather than “unification”) of the gravitational and electro-
magnetic fields achieved by Santilli a couple of decades ago'*™ from the
primary electromagnetic origin of mass. Such an identification then
imposes the equivalence of the two phenomenologies, including the
capability to reverse gravity. The above findings are so strong that the
absence of antigravity would imply the lack of identification of gravita-
tional and electromagnetic fields, with the consequential need of rewriting
the foundations of electromagnetism and particle physics into a form
avoiding the primary electromagnetic origin of mass.

The isodual theory of antimatter also predicts the existence of a new
photon, called isodual photon,'”™ which is predicted to be emitted by the
antihydrogen atom and be solely distinguishable from the ordinary photon
via gravitational interactions.

If confirmed, the latter studies may permit, in due time, the first
possibility on record to ascertain whether a far-away galaxy or quasar is
made up of matter or of antimatter.

(E) Applications in Theoretical Biology. Particularly suggestive and
novel are the applications of our new methods in theoretical biology.!*!
The insufficiency of quantum mechanics in hadronic and nuclear physics is
still reason for scientific debate in physical circles, while the same insuf-
ficiency must be widely admitted in theoretical biology for scientific
credibility. In fact, physical systems such as a nucleus or a hadron are
stable, thus being reversible in time and requiring conservation laws for their
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quantitative treatment. On the contrary, biological systems grow or decay,
thus being structurally irreversible and requiring time rate of variations of
given characteristics of size, weight, etc. The insufficiency of quantum
mechanics for biological systems is then beyond credible doubt.

Note that the above occurrence renders the genoropic methods
(Sec. 3.12) better than the isotopic ones for applications to theoretical
biology, with the multivalued hyperstructural methods {Sec. 3.13) being
preferable owing to the complexities of the biological systems,

As a first elementary illustration, computer visualization conducted by
Illert in Ref 35a has shown that the shape of sea shells can indeed be
represented in Buclidean three-dimensional space, but not their groweh in
time. In fact computer visualizations have shown that, under the strict
implementation of the Euclidean axioms, sea shells grow in a deformed
way and then crack. Santilli in Refs. 35a, 35b has then shown that the
imposition instead of the axioms of the isoeuclidean geometry (with a time
asymmetric isounit) permits a fully regular growth under computer
visualization, with the representation via the genoeuclidean geometry being
more axiomatically correct, and that under the hypereuclidean geometry
being the most appropriate.

The above studies have established that sea shells and other biological
structures are perceived by our sensorial capacities as belonging to our
three-dimensional Euclidean space in view of our three Eustachian tubes,
but the same structures may actually exist in a much more complex
world.

As an example, quantitative studies on bifurcations of biological struc-
tures have indicated the need of a bona-fide “space-time machine” (closed
loep in the forward time cone), which violates causality when formulated
in conventional Minkowski space-time, but it is readily admitted by our new
iso-self-scalar invariance (3.86) and iso-self-dual invariance, Eq. (3.127).

Also applicable to these biological aspects appears to be the
“geometric propulsion” indicated earlier,*** according to which locomo-
tion occurs without the applicability of Newtonian forces and via the altera-
tion instead of the geometry. In fact, this new conception of locomotion is
based on the isotopic invariant length?x unit? of Sec.3.7 in which the
alteration of the space unit implies a necessary inverse alteration of the dis-
tance, thus causing locomotion in space, while its application in space-time,
including isoduality, implies the most general possible formulation of the
“space-time machine.”

The reader shouid keep in mind that other models of “space-time
machine” currently under study in the physical literature require the com-
plexification of the Minkowski metric, quantum f{luctuations and the like,
On the contrary the “space-time machine” in the above most general
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possible realization based on the “geometric propulsion” in space and time
is fully admitted by the conventional Minkowski space, in view of our new
iso-selfiscalar and iso-self-dual invariances recalied above.

Intriguingly, the possible realization in physics of these advanced
geometric notions appears to be far in the future, because the alteration of
the isounit in isogravitational representation (Sec.3.11} requires the
availability in small regions of space of extremely large amounts of energy
which can be only conjectured at this time as existing in the ether. By com-
parison, the same . “geometric Jocomotion” and “space-time machine”
appear to be already existent in biological structures, and in actuality they
appear to be necessary for quantitative representations of events such as
bifurcations, the transportation of water in trees up to very high levels, cer-
tain manifestly non-Newtonian osmotic motions in cells, and others.***

The main aspect is that, despite its limitations, our sensory perception
is expected to detect the existence of geometries axiomatically inequivalent
to the Euclidean geometry. In fact, our senses do indeed detect the trans-
ition from a flat to a curved geometry. The axiom-preserving character of
the isotopies, genotopies, and hyperstructures and their isoduals has then
fundamental relevance for their application to biological structure, because
it renders them compatible with our sensory perception,'**)

This implies the compatibility with our sensory perception of our
isotopic, genotopic or multidimensional-hyperstructural times and their iso-
duals,'**> 23035} j e we perceive time as one-dimensional and one-directional
while the methods of this paper render compatible with such a perception

substantially more complex notions of times, and the same occurrence

exists for space.
In closing, we suggest the following experiments:

Proposed experiment 1: The finalization of the deformability of the
intrinsic magnetic moment of neutrons under sufficiently intense external
fields, as theoretically studied by Eder'®™ and preliminarily measured by
Rauch™® via neutron interferometric techniques. This test is of evidently
fundamental relevance because: it can provide independent verification of
the old hypothesis that the alteration of conventional intrinsic magnetic
moments of protons and neutrons when bound in a nuclear structure is
necessary for a representation of total nuclear magnetic moments; it can
establish the notion of isoparticle which is at the foundation of the new
structure mode! of hadrons with physical constituents indicated earlier; it
may permit new technological advances, such as the design of new equi-
pment for the recycling of nuclear waste by the utilities themselves, thus
avoiding their transportation to and storage in an as yet unidentified site;
and other advances.
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Proposed experiment 2: Measure the difference of the redshift “com-
ponent” of the tendency toward the red of sun light at sunset and sunrise.
This difference is visible to the naked eye and is predicted to have an
isotopic origin,”* *4) The measures can evidently confirm or deny the
validity of Santilli’s isominkowskian geometry within physical media such
as our atmosphere, resolve the vexing problem of the origin of the large dif-
ference in redshifts of physically connected quasars and galaxies, as well as
identify the geometry most effective in astrophysics and cosmology.

Proposed experiment 3: Finalize the direct and indirect measures on
deviations from the Minkowskian geometry inside hadrons, such as the
measures on the behavior of the mean lives of unstable hadrons with
energy,4? the Bose-Einstein correlation,'®") and others. These measures
are of such a fundamental character that they render conjectural any theory
on the structure of hadrons, whether quarks of isoparticles, prior to their
scientific finalization in a form without theoretically questionable assump-
tions in the data elaborations.

Proposed experiment 4: Measure the 10tal cross section of the reaction
Y-+n—p+e+ 0 to confirm or deny the prediction of a peak for photons with
1.294 MeV."® This test can confirm or deny the new model of the hadronic
structure with physical constituents in its most fundamental case, the syn-
thesis of the neutron from protons and electrons only as occurring in stars,
as well as confirm or deny the new subnuclear hadronic energy. An addi-
tional possible test is recommended for the reaction y+ z°— photons
which is predicted to have a peak for incident photons of 67 MeV. (2%

Proposed experiment 5:  Measure the gravity of positrons in korizontal
Jlight in Earth’s field inside a suitably designed, sufficiently long and shielded
vacuum tube, which has been theoretically predicted to experience antigravity®™
and experimentally studied as being within technical feasibility.®® The latter
experiment too, if successful, would have far-reaching implications for all of
science. As an indication, the detection of antigravity would establish that
the totality of contemporary mathematics, let alone of theoretical physics,
that based on the trivial unit +1, is inapplicable for the treatment of
antimatter (Sec. 3.14).
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