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Abstract

By recalling that q~dcformations have an impeccable mathematical structure, we
outline their numerous problematic aspects of physical nature which essentially
emerge whenever atlempting dynamical applications, thus implying evolution in
time. We outline Santilli’s initiation of gq~deformations back in 1967 via isotopies
and genotopies of classical and quantum mechanics. We show how they permit
an axiomatic reformulation of g-deformations which leaves the resulls
unchanged while avoiding their problematic aspects. We finally point out
applications and experimental verifications which would be generally precluded
to q-deformations without their consistent axiomatic reformulation.
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1: PROBLEMATIC ASPECTS OF q-DEFORMATIONS

The so-called q-deformations (see, e.g., ref.s [1] and quoted literature)
include a great variety of deformations of Quantum Mechanical (QM) formalisms
whose mathematical consistency is impeccable. Nevertheless, the gq-
deformatlions are afflicted by a number of rather serious problematic aspects of
physical character which emerge whenever dynamical applications are
attempted, thus implying the evolution in lime.

The latter problematic aspects and their resolution, together with a number
of applications, have been studied in great detalls by Santilli in the three volumes
[2] on Hadronic Mechanics (HM). They were also presented by this author (3] at the
International Conference on Symmetry Methods in Physics held this past July at
the J.LLN.R. in Dubna. This paper is an extended version of note [3]. By following
ref.s [2], we classily q-deformations into the following primary types:

I) Deformation of the enveloping assoctative algebra. Let E(L) be the
universal enveloping associative algebra of a Lie algebra L with elements A, B, ...
and conventional assoclative product AB over a field Fla,+%) with generic
elements o, conventional sum + and product a*f := aB. This first lype is
characterized by the following generalization of the assoclative product AB

AB > A*B=qAB, | (L

where q Is an element of the base field {or a function),

II) Deformation of the Lie product. Let L be a Lie algebra in quantum
mechanical realization on a Hilbert space JC over a field Fla,+x) with fundamental
commutation rules rp - pr = { (h = 1). This second type of g-deformation is based
on the generalized commutators

rp-pr = rp -qpr=iflg,.) (1.2)

where f(g,..) is a sufficiently smooth, bounded and nonsingular function.

III) Deformation of the structure constants. let L be an n—dimensional
Lie algebra with ordered basis X;, envelope &(L) and commutation rules (X;, X;l =
C,jk Xg over a field Fla,+X). This third type of deformations, which contains the
Hopf algebras and others, is based on the preservation of the original product Lie
XjX; - XX, while deforming this time the struclure constants

XX = XX = €= qFXe = XX - XX = FMa, )X, (1L3)
where the functions FUk are also sufficiently smooth, bounded and nonsingular.

Numerous other g-deformations exist in the literature (such as the
deformation of creation-annihilation operators of the above Types I, I, [11) [}
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which can be derived via the techniques of the above three deformations. Others
can be reduced to a combination of the above three types, or are given by to a
combination of one of the above types with QM structures (such as the
combination of deformed commutators (1.2) and conventional Heisenberg
equations for the time evolution).

Again, the mathematical consistency of all the above gq-deformations is
undeniable. However, when considered for physical applications they require the
necessary use of the dynamical time evolution, in which case the following
problematic aspects emerge as identified in detail in Vol. [ of ref.s [2] (see also 13])

A) General loss of the Hermiticity/observability of the Hamiltonian
and of other physical quantities. g-deformations imply a nonunitary time
evolution, as necessary for Types I, II, Il from the lack of canonicity of the
commutation rules, and demonstrable, e.g., via quantization of the corresponding,
classical, noncanonical theories (see below for more details). In turn, nonunitary
time evolutions imply the following generalization of the structurc of the
enveloping assoclative algebra first identified in ref. 14]

EAB = t: AxB =AQB, A=uaUl,B=uUBU, (143
vul =1, Q= (uulrt, (1.4b)

which evidently also applies to the product qAB. Still in turn, the above structure
implies the loss of the Hermiticity/observability of the Hamiltonlan and of other
physical quantities. This is due to the fact that q-deformations are defined on a
conventional Hilbert space, while the preservation of Hermiticity under lifting
(1.4) demands the joint deformation of the base fleld and of the Hilbert space (see
later on Lemma 3.1).

B) General loss of the measurement theory and consequential lack of
applicability to experiments. g-deformations are deformations of the basic
associative product AB and/or of Planck’s constant h = I, and/or of structure
conslants, without a corresponding redefinition of the unit as done in Santilll's
isotopic theories [2]. Therefore, g-deformations are theorles without a left and
right unit which remains invariant under the time evolution.

This occurrence is transparent in lifting (1.1) which deforms the product
AB = A*B = gAB without jointly deforming the unit as done In the foundations of
hadronic mechanics {2,344}

I = 1=qt. (1.5)
The lack of basic unlt can also be established for deformations of Types Il and

[11, e.g., under time evolution with ensulng nonunitary structure, and unification
of all envelopes into isotopic form (1.4). The loss of the unit then implies the
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evident loss of the measurement theory, owing to the necessary existence of a
well defined, left and right unit for the very concept of measurement.

It should be indicated that the problem of the unit is much deeper of what
may appear at a first inspection. QM theories have in actuality two different
units, the unit h = 1 of the field and the unit 1 = diag. {1, 1, ..) of the envelope.
Under deformations (1.1) we evidently have the loss of the unit I of the envelope.

In regards to the unit of the field we have two allernatives. The first is to
keep the theory with one single associative product A*B = qAB which would then
apply also to numbers a#8 = qaB. In this first case one has evidently the loss also
of the unit of the field. The q-deformations are then theories on a Hilbert space
defined over a commutative ring without unit. The lack of applicability to
experiments Is then transparent.

The second alternative, which is that followed by the current literature [1],
is to define deformations (1.1) on a Hilbert space defined over a conventional
field which, as such, does possess the unit. This evidently implies that
deformations (1.1) are theories with two different associative multiplications,
one for the envelope and one for the field. The problem is that the
differentlation of these two multiplications leads to the lack of observability of
the physical quantities because it prevents the needed lifting of the underlying
Hilbert space and related field. '

In summary, rather deep technical reason related Lo the preservation of the
observability at all times demand the unification of the associative product of the
envelope with that of the field, as well as the unification of their unit (see Vol. 1
of ref.s {2 for a detailed treatment),

C) General lack of uniqueness of mathematical structures, such as

‘Gaussian distributions, with consequential lack of uniqueness of physical

laws. One of the strengths of quantum mechanics is the uniqueness of its
mathematical structure (such as the exponentiation and related Gaussian) which
evidently implies the known uniqueness of its physical laws (such as the
uniqueness of Heisenberg’s uncertainties as derivable from the unique Gaussian
distribution). This uniqueness can be mathematically traced to the uniqueness of
the basic unit of the theory, Planck’s constant, as well as to the existence of a
right and left unit of the universal enveloping operator algebra E(L),

The mathematical implications of the general lack of the basic unit implics
that g-deformations do not possess a consistent formulation of the Poincaré—
Birkhof-Witt theorem which is applicable at all times. In fact, a necessary
condition for the very formulation of the theorem is the existence and
uniqueness of a left and right unit (see Jacobson [5).

This means the lack of existence of a unique, infinite-dimensional basis
for the envelopes of q-deformations and, therefore, the lack of existence of a
unique form of exponentlation. In fact, q—deformations are known for the
variety of their possible "exponentiations”.
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Even though mathematically correct (and intriguing), the above
occurrences have rather severe physical consequences identified by Santilli (2},
such as the lack of uniqueness of a Gaussian distribution with consequential lack
of uniqueness of the generalized uncertainties. A similar situation occurs for
other physical laws.

It should be stressed that the above occurrences are not referred to
different physical laws for different g-deformations, which would be physically
acceptable, but to different physical laws which can be introduced in each q-
deformation.

D) General loss of special functions under time evolution. As well
known, g-deformations are formulated at a fixed value of time, and so are the
related g-special functions [1]. But under time evolution the q-number is
replaced by the operator Q. The inapplicability of the q-special functions under
time evolution is then consequential,

Again, this occurrence is fully acceptable on mathematical grounds.
However, lts physical implications are rather serious, such as the impossibility of
performing a partial g~wave-analysis at all times.

E) General loss of the fundamental axioms of Einstein’s special and -

general relativities. Even though not fully identified in the. literature, all q-
deformations imply a structural departure from ail basic axioms of the special
and general relativities, as established by the noncanonicity of the commutation
rules, the nonunitary character of the time evolution, the deformation of the
structure constants of the Poincaré symmetry, etc.

Again, this occurrence can be mathematically intriguing, but it carries
rather serious physical problems in the compliance with physical reality which
~ must be addressed prior to any physical application.

The reader can derive numerous additional problematic aspects as a
consequence of the above primary ones.

In the following we shall review Santilli’s origination of g-deformations
back in 1967 because it provides significant insights in their appropriate
treatment, and then his axiomatization of g-deformations which avoids all the
preceding problematic aspects. After achieving a physically consistent re-
formulations, we shall then point out numerous physical applications of g-
deformations which would be otherwise precluded.

2: ORIGIN OF q-DEFORMATIONS

When studying the axiomatic structure of quantum mechanics, the first
and most fundamental task is the identification of the algebra characterized by
the commutator [A,B} = AB - BA, the Lie algebra [5). Similarly, when studying q-
deformations, the identification of the aigebra characterized by the "commutator”
[A.B]q = AB - qBA is an evident pre-requisite for the achlevement of a consistent
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axiomatization.

The algebra characterized by the product [A,Bl, was first introduced by the
American mathematician Albert [6] back in 1948, via the following notions:

Lie-admissibility: a {generally nonassociative) algebra U with elements a,
b, ¢, .. and (abstract) product ab over a field F is said to be Lie-admissible
when the attached algebra U™, which is the same vector space as U but equipped
with the product [Abl; = ab - ba , is a Lie algebra. A Lie-admissible {or any
other) algebra U is said to be flexible when it verifies the weaker form of
associativity a(ba) = (abla for all a,b, € U.

Jordan-admissibility: the algebra U is said to be Jordan-admissible 1T
the attached algebra U*, which is the vector space U equipped with the product

{a,bly = ab + ba, is a (commutative) Jordan algebra [7]. An algebra U is said to be

noncommutative Jordan algebra when the product ab is noncommutative but
verifies Jordan axiom (ablaZ = a(ba?).

The first introduction of g~deformations in the mathematical and physical
literature was done by the physicist Santilli [8] back in 1967 as part of his Ph.D. in
physics at the University of Turin, [taly. In fact, in [8], p. 573, one can see the
first appearance of the product ’

ab) = Aab - puba =plabl + clapl, A=p+topu=p-oeF, I

which, for ab associative, was introduced as characterizing an algebra U which is
Lie-admissible, Jordan—-admissible, {lexible as well as noncommutative Jordan.
Moreover, product (2.1) was introduced as the (\, p)~mutation of a generic (not
necessarily associative) aigebra U with product ab, in order to distingulish it from -

“deformations of an algebra as conventionally understood in mathematics.

In fact, formuilation of Type Il are true “deformations”, bul formulations
of Types | and 1l are not thus justifying the term “mulations”. Nevertheless, the
term “deformation” is now entered in the literature and will be kept in this paper
to avold confusion,

It Is evident that the q-deformation [A.qu = AB - qBA is a particular case
of Santilli's mutation for A = |, u = q and ab associative.

One should note the virtually complete silence in the entire literature (1] on
the above origin of g-deformations. This is rather odd because Albert’s notion of
Lie-admissibtlity, or the emergence of the still open Jordan’s legacy alone, should
be reason for their quotation.

To clarify the priority of product (2.1) we recall that Albert presented in (6]
an abstract {and relatively short) treatment of Lie—admissibility, with more
emphasis on the Jordan—-admissibility because of its greater interest in the
mathematics of the time. In fact. the sole explicit realization of the product in
Albert's paper Is given by the known realization of noncommutative Jordan
algebras [6,7]
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(ab) = nab - {1=-A)ba, (2.2)

for ab assoclative. The point is that g-deformations are a particular case of
Santilli’s mutation (2.1) and not of Jordan’s form (2.2).

Santilli Is therefore the originator on both mathematical and physical
grounds of theories today known as Lie-admissible formulations, and referred to
a step-by-step generalization of Lie’s theory, with realizations in classical,
operator and statistical mechanics. This priority is now acknowledged in
mathematical circles (see, e.g., the historical charts of ref. {10, p. 13, or the
mathematical monographs of ref.s [34]. In fact, following Albert [6] and prior to
paper 18}, only two short mathematical notes in Lie-admissibility had appeared
(see [8] and bibliography [9]), also without any specific realization.

On mathematical grounds, Lie-admissible algebras had been studied as
nonassociative algebras, an approach still continuing in the mathematical
literature [9). On the contrary, Santilli constructed a generalization of enveloping
associative algebras characterizing Lie~admissible algebras, groups,
representation theory, etc., which subsequently resulted to be crucial for the
axiomatization of q-deformations presented in below.

On physical grounds, Santilll studied already in 1968 (11} the classical limit

of the (A, w-mutations (2.1), by proving that they are a particular case of
Hamilton's equations with external terms. This established that the mutations AB
- BA - MAB - uBA imply the transition from closed-conservative to open~
nonconservative systems, because of the loss of total antisymmetry of the
product.
* " These initial classical studies were then complemented in 1978 [12] with the
identification that the brackets of Hamilton’s equation with external terms,
when propefly written, characterize a general Lie-admissible algebra. In fact, w:
can write for N particles in “phase space” with unified coordinates a = {a*) =(r,%,
Pax W =12 ., 6Nk=123a=12.,N

oH

k
(a4) r-( fa ) ={ O/ 0Pk }=( W 1>, 3, 8, ) ——— 1, 23)
Pak - 8H/or,K + R da

where wH? is the conventional canonical Lie tensor, 175" = 8" + wgy s, 5 =
diag. (0, F/(aH/ap) and the meaning of the symbol “>" will be identified later on.
The corresponding brackets among functions in “phase space”

B
i (2.4)

9A
A D) = — M7 M, a,8,.)
( oot a aa¥
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are then Lie-admissible because the attached brackets are twice the conventional
Poisson brackets, (A, B) - (B, A) = 2A, Bl

The need for the reformulation emerges from the fact that the brackets of
the original Hamilton’s equations with external terms violate the right scalar and
distributive law and, as such, they do not characterize any algebra (see (see Vol. 11
of ref. [13] fpor details). Intriguingly, the classical brackets (2.4) are not Jordan-
admissible, as one can verify. Only their operator counterparts (see Eq. (2.8) below)
are Jordan—admissible.

These classical studies were systematically continued in monographs [13,14]
via: the classical version of the Lie-admissible formulations with exponentiated
group structure called classical Lie-admissible group

pa> v
- (o WK 7y (25)

admitting a non-Lie, Lie-admissible structure in the neighborhood of the identity;
the Lie-admissible gencralization of Lie's first, sccond and third thcorems; the
identification of the exterior-admissible calculus, as a generalization of the
conventional exterior calculus; the introduction of the main lines of the
symplectic-admissible geometry as the classical geometry underlying brackets
(2.4); the derivation of Hamilton’s equations with external term from the
variational principle (despite their variational nonseifadjointness -NSA-[12)

58> = 5" (podr - Hodt = 0, (26)

‘where &, = p>dr = p T,”dr is the exterior-admissible one~form characterized

by a nonsymmetric matrix ’I‘0>; the Hamilton-Jacobi equations for principle (2.6),
etc.

To understand the significance of these studies it is sufficient to note that
they imply a generalization of Noether’s theorem In which the Lie-admissible
symmetry characterizes time-rate—of-variations of physical quantities. The
conventional Noether’s theorem is then an evident particular case when the
time-rate-of-variation is null.

On operator grounds, Santilli was the first to introduced back in 1978 [4}
the general Lie-admissible and Jordan admissible algebras with brackets

{A,B) = APB - BQA, (2.7)

where P and Q are operators; the well known Lie-admissible equations in the
infinitesimal form 4], p. 746 (b =1),

iA=(QAH =APH-HQA, (2.8)
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with corresponding finite form [4], p. 783,
Alt) = €lHQ 5(0) e71PH, (29)
the fundamental Lie-admissible commutation rules (4], p. 746,
@, a”) = atpPa’ - a¥Qa! = 10"1Y; (2.10)

the first formulation of Lie-admissible operator algebras on bimodular Hilbert
spaces; and other advances.

Subsequently, Fronteau, Tellez-Arenas and Santilli {15] were the first to
identify in 1979 the Lie-admissible structure of the most general possible
equations in statistical mechanics, those with an arbitrary collisions term C,

ip=(,H =pPH-HQp=pH-Hp+C @11

The need for the Lie-admissible reformulation stems from the fact that the
brackets pxn = pH - Hp + C violate the scalar and distributive laws and, therefore,
do not characterize any algebra of any kind. This implies that familiar notlons
such as "a proton with spin # which are well defined for brackets [p, Hl = pH - Hp
have no mathematical or physical sense for brackets pxH = pH - Hp + C.

The generalized Schrodinger’s counterpart of Lie-admissible equations (2.8)
was identified by Myung and Santilli [16] in 1982 and, independently, Mignani [17]
according to the expressions

Y ) _
i—|d> = HQ|d>, -i<y|— = <¢|PH. 212
ot at

The identification of the correct form of the linear momentum operator required
considerable additional studies at the classical level [13,14], which eventually
permitted Santilli [18] to reach the axiomatically correct form

pQlE> = —1@N V> <dlPp=i<d|vPTh}). i3

achieved via the prior identification of the Hamilton-Jacobi equations for
principle (2.6). The above classical and operator formulations were then
interconnected by a unique map called isoquantization, first identif ied by
Animalu and Santilli (see ref.s [2]l The simplest possible case, called naive
Isoquantization, maps the Hamilton-Jacob! equations for principle (2.6) into Eq.s
{2.12) via the rule
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A = -i1” Logt, (2.14)

where 1> = Q'l for the envelope acting to the right, with corresponding conjugate
quantities for the envelope acting to the left.

Note for subsequent needs the primary role of the universal enveloping
associative algebras in the above Lie-admissible formulations, exactly as it is the
case for the conventional Lie formulations {5},

Additional biographical data worth an indication are the following. The
first deformation of the (\pl-mutation of SU(2) spin was presented by Santilli at
the Clausthal Conference on Differential Geometric Methods in Physics of 1980
[19]. The first generalizations of the rotational and Lorentz symmetries for
operators P = Q was reached in [20,21]. The first identification of the underlying
generalizations of sympiectic, affine and Riemannian geometries was done in [22};
the first Q-operator generalization of gauge theories was reached by Gasperini
{23] in 1983; the first studies of the Lie-admissible generalization of creation and
annihilation operators were conducted by Jannussis et al. [24] beginning from
1981; Mignani [25] initiated the construction of a Lie-admissible scattering theory,
subsequently completed by Santilli [2,18] via the use of special P-Q-functions;
Okubo [26] identified certain “no go” theorems for operator formulations with
nonassociative envelopes; Kalnay and Santilli [27] discovered the operator form of
Nambu’s mechanics for triplets with an essential Lie-admissible structure;
Animalu (28] was the first to apply the methods to electron pairing in
superconductivity; Kadeisvili [29] initiated the systematic study of special
functions, distributions and transforms compatible with Lie-admissible

-structures; additional studies were conducted by Nishioka [30], Aringazin [31],

Lopez [32], and others.

A comprehensive presentation of all these operator studies is now avallable
in the three volumes on HM (2] (see also ref. [33] for a recent review), which is
based on the main classification of HM into: '

Lie-admissible formulations, applicable when the energy is not
conserved, i.e, from Eq.s {2.8), | H = (H, H) = H(P - QH # 0; and the simpler

Lie-isotopic formulations, applicable when the energy is conserved, which
occur when in Eq.s (28 P=Q, i A =[A [ Hl = AQH - HQA, in which case the algebra
is still Lie, although of a more general type.

Equivalently, the two branches can be identified via their underlying
methods, which were called in ref. {12}

Isotopies, when the original axioms are preserved, as it is Lhe case for the
Lie—-isotopic branch of HM; and

Genotopies, which apply when the original axioms are replaced by
covering axioms, as it is the case for the Lic—-admissible branch.

As marginal comments, we should note that the scripture A*B = qAB is
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correct but only when q is in the center of the algebra. In fact, the “product” A*B
= qAB for q a fixed operator violates the left distributive and scalar laws and, as
such, it does not characterize any algebra of any type. This is the reason why
Santilli's writes the deformation in the form A*B = AqB which now verifies the
left and right scalar and distributive laws for arbitrary operator realizations of q.
Similarly, the correct form of writing deformation (1.2} for arbitrary q is rp - pqr
because the form rp - qpr for q a fixed operator does not characlerize any
algebra of any kind [2,8,12],

3: SANTILLI’S AXIOMATIZATION OF q-DEFORMATIONS

We now present a dual axiomatization of g-deformations worked out by
Santilli [2,12,18] which avoids the problematic aspects of Sect. 1. The first is of
Lie-isotopic type, and the second is of the more general Lie-admissible type. The
former is sufficient for q-deformations of Type [ and 11, while those of Type Il
demand the full Lic-admissible treatment,.

The emerging axiomatization is naturally applicable for operator Q with an
arbitrary, nonlinear, nonlocal and noncanonical dependence Q = Q{t, r, f, ¥, §, a{;,
89, ...). Within this context, QM emerges as describing the exterior particle

problem, that is, motion of point-like particles in vacuum, while HM applies for.

the Interior particle problems, that Is, extended-deformable particles moving
within hyperdense physical media, thus resulting in the most general known
equations of motions with an arbitrary nonlinearity and nonlocality (in %, & a,.).
Also, the operator Q is restricted, by construction, to recover the identity when
motion returns to be in vacuum. In this way, HM is a covering of QM.

Before entering in the field, the reader should be aware of its dimension.
HM is first divided into the the Lie-isotopic and Lie-admissible branches, and
then each of them is classified into Kadeisvili five classes: 1 (when the isotopic
elements are sufficiently smooth, bounded, nowhere singular, Hermitean and
positive~definite), 11 (when the isotopic elements are the same as in [ but
negative~definite), l{1 {the union of I and II), IV (when the isotopic elements are
degenerate), and [V (when the isotopic elements are arbitrary, i.e., discrete
structures, distributions, lattices, etc.) [29]. For the Lie-isotopic cases these
characterizations refer to the operator Q, while for the Lie-admissible case they
refer to the maximal Hermitean part of P and Q. In this note we can only
consider for brevity HM formulations of Class I (see ref.s [2] for the other classes).

We shall now first study the isotopic axiomatization, which can be
summarized via the following basic points. _

1) Recall that Lie algebras L with product [A, Bl = AB - BA over F are the
antisymmetric algebras [E(L)]” attached to the universal enveloping algebra &(L)
with conventional associative product AB [5]. The first point is to focus the
attention of the deformations of £, and construct the brackets of the time
evolution only thereafter.
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2) Consider the q-deformations Eq of £ characterized by
E: AB = I;: gAB, 3.1

Santilli’s fundamental point is that any deformation of the conventional product
AB necessarily requires a corresponding generalization of the basic '
(multiplicative) unit. In fact, it is “anathema” in number theory to change the
product and keep the old unit, or viceversa, because units and products are
deeply inter-related. Recall that the basic (left and right) unit of £ is the trivial
unit matrix [ IA=Al=A, VA€t

The fundamental assumption is the interpretation of deformations (3.1) as a
redefinition of the basic associative product in term of the Q-operator (of Class 1)
called isotopic element [4,12]

Eg A*B:= AQB, Q = fixed (3.2)

We then have the consequential generalization of the unit | into the form1 = Q‘l
called isounit, which is such to be the correct left and right unit of the Q-theory

1=qQ!, 1+a = asl = A,V Ack,. (3.3)

Santilli identified other isotopies of associative algebras, such as the form
AB = A+B = WAWBW with W idempotent, w2 =W, which preserves associativity.
The latter isotopies were however rejected for the construction of physical
theories because they do not admit a unit. This is further illustration of the

‘emphasis throughout Santilli’s studied on the preservation of the basic unit.

3) The generalization of the multiplication and related unit requires, for
mathematical consistency, a generalization of the notion of “numbers”. Recall that
a field Fla,+*) is a set of elements a, B, v, equipped with two operations and
related units, the (associative and commutative) sum + with additive unit 0, a
+ 0 =0+ a = a and the (associative but not necessarily commutative)
multiplication %, axg = aB, with multiplicative unit |, i¥a = axl = a, which is
closed under sum, multiplication and their combinations {left and right
distributive laws). At the 1980 Clausthal Conference on Differential Geometric
Methods in Physics, Santilli [22] introduced the isotopies

Fla+¥) = Flats), x = x = xQx, a=d=d, 1 »1:=q"', 34

characterizing isofields. In particular, for Q =q € F the lifting a = @ = dl is un-
necessary because the set Fgla,+#) is a field (see Propositions 1.2.3.1 and 1.2.3.2 of
ref. [2]). However, the generalization of numbers a = @ = dl is needed whenever Q
is not an element of the original field F, as a necessary condition for isotopies, i.e.,
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for F to preserve all the original axioms of F[22]. [t is evident that this third §tﬁep
requires a suitable isotopic generalization of all operations on numbers, e.g, @ =
&#ds.5a = a" (n times), 47 b = a¥b,7 <1/; & = ot (see [22).

4) Recall that conventional carrier spaces are defined over conventional
fields. The generalization of multiplication, unit and f ields evidently requires, also
for mathematical consistency, a compatible generalization of conventional
carrier spaces, introduced for the first time by Santilli [21] in 1983. Let Sx,g.R) be
a metric or pseudo-metric space with local coordinates X and (Hermitean,
nowhere singular) metric g over the reals R. The isotopies necessary under Q-
deformations are

SkgR: @ =xtgx eR = SxgR: x2 =(xgx)leR g=0qg 1=Q7". (35

Isospaces S(x,g,R) characterize fundamentally novel geometries called
isoeuclidean, isominkowskian and isoriemannian, with intriguing mathematical
and physical implications, such as the isotopic generalization of conventional
angles, the geometric unification of spheres, ellipsoids and hyperboloids, etc. (2,14,
20-22]. -
Note that the original geometries are local-differential while Santilli's

isogeometries are nonlocal-integral, as well as nonlinear in the velocities and the -

derivatives of the wavefunction, as needed for interior dynamical problem. This
is due to the arbitrary functional dependence of the isometric alt, x, %, %, ¢, 3, ...

A most Intriguing property of the isogeometries is that they deform any

given structure. However, this deformation is seen only in the projection to the
original space because in isospace the original structure is preserved in its
"entirety. Thus, isotoples deform straight lines, circles and cones into geometric
structures called isostraight lines, isocircles and Isocones, which are perfect
straight lines, circles and cones, respectively, in isospaces, but are deformed when
projected in our space. )

This remarkable occurrence is due to the joint lifting of metricg -+ g = Qg
and of the unit in the amount which is the inverse of the deformation of the
metric, | 21 = Q"l and is at the foundation of the resolution of problematic
aspect E (loss of Einsteinlan axioms for conventional deformations). In fact, the
preservation of the perfect light cone under deformations evidently permits the
preservation of the basic axioms of the special relativity (see ref.s [2] for brevity).

As an example, the perfect sphere in Euclidean space Elr,5,R) rePrcsented by
the metric g = 8 = diag. (1, 1, 1) can be deformed into the ellipsoids g = 8=Q5=

diag. (b‘z, bzz. b32). by # 0. However, in isospace the original sphere remains
perfectly spherical because of the joint lifting of the unit | =1 = diag. (bl'z, b2'2,
b3’2), that is, for cach semiaxis we have the lifting | = bkz which is compensaled
by the opposite lifting of the relative unit 1 = bk'z. One of the intriguing
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consequences is that the conventional rotational symmetry O(3) is evidently lost
for the ellipsoidical deformations of the sphere, but it is reconstructed as an
exact symmetry under Santilli’s joint lifting 8= 8=Q8 and I »1=qQ"L.

These novel geometric properties have predictable fundamental
implications, such as the reconstruction of the exact light cone in vacuum for
electromagnetic waves propagating within physical media with a locally varying
speed [2]. ‘

The reader can begin to see the horizon of novel applications which is
available to qg-deformations, but only when lifted into an axiomatic Q-
operator/matrix form. In fact, for g-number there is no meaning{ul deformation
of Minkowski or Riemann, trivially, because in this latter case x* = (xtqu)q'l =
(xlgxlqq™! = xlgx = x2

4) The liftings of multiplication, unit, fields and carrier spaces require a

compatible lifting of the transformation theory into the so-called
Isotransformations

¥ =Ux = x = U*rx = HQx, Q=Trixed. (36)

first introduced in ref. [12] of 1978. Note that the preservation of the old
transformation x’ = Ux under isotopies implies the loss of linearity, transitivity, '
superposition principle, etc.

Note also that isotransforms are nonlinear, nonlocal and noncanconical only
when projected in the original space, while they verify the axioms of linearity,
locality and canonicity at the isotopic level. For this reason they are called
isolinear, isolocal and isocanonical.

This is another property of isotopic methods permitting further
applications of Q-deformations via the turning of given nonlinear-integral
theories into identical isolincar and isolocal forms, thus being manifestly more
manageable.

5) The generalization of the multiplication, unit, field, carrier spaces and
transformation theory then requires a step~by-step generalization of the entire
Lie theory into a form originally submitted as Lie~isotopic theory [12] and today
known as the Lie-Santilli theory {(see papers [23-33] and monographs [34]). We are
here referring to the isotopics of all structural parts of Lie’s theory, such as
enveloping algebras, Lie algebras, Lie groups, representation theory, symmetries
and first Integrals, etc. :

The fundamental isotopies, those of enveloping associalive algebras, were
the central topic of the original proposal [12]. Most important is the first
achievement of the isotopies of the Poincaré-Birkhoff-Witt theorem on the
infinite~dimensional basis of &, which provides the new basis of EQ and the
correct exponentiation under isotopies, called isoexponentiation



— 443 —

eEQW" =1+ (X 1+ (WeX) s (1) 7 20+ =(e T 37
Particularly important is the uniqueness of the above isoexponentiation (up to
isoequivalence transformations studied below), which should be compared to the
varlous types of g-exponentiation in the literature (1]

Yet another horizon of applications for g-deformations emerge from
isoexponentiation (3.7), such as the isotopic lifting of Dirac’s 8(x) to spread its
singularity at x = 0 over a finite region of space, thus removing the singularities
afflicting conventional theories from the beginning [2]

6) The above isotopies imply corresponding lifting of Lie algebras into the
Lie~Santilli algebras|12,34)

X X=X X) = X% = f X > XX =X, QX) - X, QX = ¢+ Xy, (38)

where the &s are called structure isofunctions, and depend on all needed local
variables and thelr derivatives. Note the preservation of the Lie axioms by the
isotopic product AQB ~ BQA (and not by QAB - QBA).

The existence of a unique infinite-dimensional basis for the

isoexponentiations then permits the identification of the (connected) Lie-Santilli |

groups
X = O *x =[eEQix.v:')*x=(e'xQW]x, (3.92)
0(0) = 00%) * (=) = 1 = @\, 06M * OW) = 0¥ = O6@) = 06w + W), (39b)
Xi)ele, X2) = e, 23 = “Xol + (39¢)
(eEQ 1] {eeq 2} CEQ . X3 Xf"Xz"‘[Xl 2]"'

'.ln turn, the above liftings imply the isotopies of the representation theory,
symmetries and first integrals, etc. Note the nontriviality of the' isotoples, as
transparently exhibited by the appearance of an unrestricted, nonlinear, integro-
differential operator Q in the exponent of the group structure (3.9a). In fact, the
isotopic Image of the conventional linear-local-canonical rotations, Lorentz and
Poincaré transformations are given by highly nonlinear—nonlocal-noncanonical
generalizations. ’

The remarkable property of Santilli's isotopies is that, despite these
differences, the isotopic groups are isomorphic to the original groups for all
positive-definite Q, OQ(B) ~ 0(3), OQ(3. 1) ~ 0(3.1), PQ(B. 1) ~ P3.1), SOQ(Z) ~ SU(2),
S0q3) ~ su(3), etc.

In fact, the isotopies are introduced as methods for the reconstruction of
exact space-time and internal symmetries when believed to be broken. One
should expect this property from the preservation of the geodesics of the original
symmetry in isospace mentioned earlier. In fact, the isorotational group OQ(B)
was introduced [20] to show that the rotational symmetry remains exact for all
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the ellipsoidical deformations of the sphere § = diag. (b2, b2, b3?), b, = 0.
Similarly, the Lorentz and Poincaré symmetries remain exact for all signature
preserving nonlinear-nonlocal-noncanonical deformations of the Minkowski
metric T = Qn (21}, etc.

Intriguingly, when the Q-elemnent depends only on the local coordinates, Q
= Qlx), the isopoincaré symmetry Pg(3.1) provides the universal invariance of all
possible conventional Riemannian metrics g{x) = Q{x.

Further physical applications of the Q-deformations then emerge in
conventional gravitation, such as the characterization of the gravitational horizon
as the zeros of Q, and the gravitational singularities as the zeros of the isounit 1
(see [2] for detail).

7) The preceding isotopies further imply a step-by-step generalization of
functional analysis into a new discipline called functional isoanalysis [29], in
which all conventional operations (say, log, derivative, integral, etc.), distributions
(Dirac’s delta, etc), transforms (Fourier, Laplace and other transforms), special
polynomials (Legendre polynomials, spherical harmonics, etc.), weak and strong
continuity, etc. are generalized into a unique form compatible with the basic
isounit 1 = Q”! which Is applicable at all times. See ref.s [2] for a comprehensive
presentation with applications.

8) The above chain of interconnected isotopies can indeed be formulated on
a conventional Hilbert space JC, as done in the original proposal [4]. However,
this implies the general loss of Hermiticity because isohermiticity is now defined
b B

’ H1 = quiqQ!. (3.10)

Lemma 3.1: An operator H € Eq which is originally Hermitean under q-
number-deformations at time t = 0, over a conventional Hilbert space 3C,
becomes generally nonhermitean over the same space X under nonunitary time
evolutions leading to a Q-operator—deformation, unless Q and H commute.

For this reason, Myung and Santilli [18] introduced in 1982 the isohilbert
space q characterized by the lifting

36 < o> =[ & 6t o) € C= Ry < ¥ >: =1/ a3 il Qfr, .Jofr) € € (B.11)

in which case isohermiticity coincides with Hermiticity. This is a first
manifestly fundamental property of Santilli's axiomatization of Q-deformations
because it permits the preservation of observability under arbitrary time
evolutions (the issue whether the observable is conserved or not iIs a separate
one treated below). Note that for Q positive-definite the composition is still inner
and SCQ is still Hilbert. Note also that for Q independent of the integration
variables (or constant), 3 = 3C because in this case
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<ylo> =<u|Qlo>1 =<¥|o>. (3.12)

In this sense, Myung-Santilli isohilbert spaces are “hidden” in the conventional
formulation of q-deformations. Note the crucial condition for consistency of
lifting the field F = F‘Q. In fact, the isospace I}CQ on a conventional field F has no
mathematical or physical sense. Interested mathematicians are encouraged to
extend the results to formal aspects, such as selfad jointness.

9) The preceding Isolopies imply, also for mathematical consistency,
compatible and unique generalizations of all operations on 3C into forms called
isolinear operations on SCQ [2,33). We here Hmit ourselves to Indicate
isounitarity

o0+0t = 0%0 =1 ,or 071 = T, (3.13)

nitary transformations
tsounttary A=0sas0T, (3.14)

with realization in term of an isohermitean operator X,

0-eqlXo¥ (3.19)
the notions of determinant and trace of a matrix A
DetA = [Det(AQ)11efF, TEA = (TrA)leF, (3.16)
wthe isoprojection operator
P =Ty w><wlat, @17
the isotopies of eigenvalue equations
He|d>=Ex|§>, B e Fg, (3.18)

and similarly for all other operations.

Recall that isotopic techniques turn nonlinear, nonlocal and noncanonical
theorles into identical forms verifying the axioms of linearity, locality and
canonicity at the isotopic level. This is a general property of the methods which
also holds for nonunitary transforms UUT # [, In fact, the transformation theory
of hadronic mechanics is nonunitary, although expressed in an identical form
0+0" = 0Q0T =1 = Q! which verifies the axioms of unitarity at the isotopic level.
This is precisely the meaning of isounitary transforms.

The above isooperations permit other applications of Q-deformations,
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when axiomatically treated. For instance, lifting (3.18) turns Q-deformations into
an explicit realization of the theory of “hidden variables”, with far reaching
epistemological implications. In fact, we can say that HM in general, is a
“completion” of QM essentially along the historical argument of Einstein,
Podolsky, Rosen and others [2].

The next step requires the selection of the specific dynamical brackets
constructed via the isotopies of envelopes. We now assume that the Q-operator is
independent from the coordinates r to avoid gravitational profiles within physical
conditions in which they are ignorable. :

ISOTOPIC AXIOMATIZATION OF q-DEFORMATIONS (2}

Fundamental assumptions: A) representation of systems via two
independent operators, the conventional Hamiltonian H = K + V, and the isotopic
operator Q; B) representation of all action-at-a-distance interactions via the
potential V, and all contact, nonpotential and nonlocal interactions due to mutual
wave-penetration via the isotopic element @ C) Integro~differential
generalization 1 = Q" of Planck’s unit h = 1, with reconstruction of the entire
QM rormalism to admit 1 as the correct left and right unit, as per the preceding
mathematical notions and the following physical axioms: :

Axlom I: The states are elements of a isohilbert space :}CQ interpreted
as (lert or right) isomodule with “isoschrddinger’s equation”

a .
i—gt-ltlt>= He|&>=HQ|J> =B*|T>, <4d> =1, (3.19)

where 3/t =1, 8/at is the isoderivative and 1y the time isounit (see ref.s [2] for
brevity)

Axiom 1I: Measurable quantities are represented by isocommuting
isohermitean operators on JCQ whose eigenvalues are conventional real
numbers, e.g.,

H = Hl, He|§> = Bx|d>=E|d> LeR EeR, (3.20
Axiom III: The fundamental dynamical operators, coordinates X and

momenta py , are characterized by isoeigenvalue equations and isocommutation
rules (in momentum representation)
preld>= V>, Kopr|ds =T+ |> =k d>, B2l

[a*7a"]:= aHQa¥ - a¥QaM =1 91 Y,a=(p, 1), (M = diagQ”!, Q71 .(3.21b)
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Axiom IV: The time evolution of states is characterized by isounitary
transformations with the (isohermitean) Hamiltonian as generator

10> = 0t )+ |dltg)> = (e H™ Ve[ dip) > = elHQlto =V gt ) > .

Q (3.22)
while the time evolution of operators is characterized by an equivalent, one=
dimensional, Lie-Santilli group of Isounitary transformations with the same
Hamiltonian as generators, expressible in the finite form

TH(,-t -i{ty- O H
MO = 0= A+ 0T = (ep (to ))*A(to)*(eEQ o"UH) (329

with infinitesimal version provided by the “isoheisenberg equations”
dA .
l-&r=[A,H]=AQH~HQA (3.24)

where 3/at =1,d/dt.
Axiom V: The values expected in measurements of observables are given
by the isoexpectation values
<Pi*A=|{> < AQid>
SAS = bleaxld _ vlaaqld ' (3.5
<yl*|d> <¢lQld>

The following comments are in order. The first T undamental result is that
Santilli’s axiomatization of Q-operator-deformations of Class I coincides with
“conventional quantum mechanics at the abstract level. In fact, at that level, all
distinction cease to exist between Fq and F, E(r,3,R) and E(r8R), Eqand & Xq and
3¢, etc. A subtle implication is that criticisms on the above axiomatization may
eventually result to be criticisms on the axiomatic structure of quantum
mechanics itself.

The second fundamental result is that Santilli’'s axiomatization Is form-
invariant under its own transformation theory, the isounitary transformations.
This can be seen from the fact that the isocommutator is invariant under
isounitary transformations, 0{{A; B0 = [A""B], or the invariance of eigenvalues
and Isoexpectation values under isounitary transformation, etc. This form-
invariance should be compared with the general Jack of invariance of g~
deformations under time evolution recalled in Sect. 1.

The third fundamental result is that Santillis isotoptes achieve a true
axiomatization of the quantity Q~! assumed as the isounit of the theory. In
fact,1 = Q! verifies the following properties: 1) 1 is isoidempotent of arbitrary
{finite) degree, 17 =141+ ... 1 = 1; 2) The isoquotient of 1 by itself is 1,171=%3)
The Isosquare root of 1 is1,7 =1; 4) 1 isocommutes with all possible operators,
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[A71] =A-~A=s0 51 is left invariant by isounitary transformations, 0¥1«QT =
U0t =1; 6)1 is conserved in time, 1 81 /dt = [ “H] = 0; and 7) The isoexpectation
value of all possible isounits1 is the ordinary number |,

.. dlaqQlald>
15= = 1, {3.26)

<$|Qle>

The latter property has evident, far reaching, epistemological, theoretical
and experimental implications studied in detall in {2]. We can here only mention
the following aspects:

1) The property <1 5 = | implies the reconstruction of Planck’s constant
for all measurement purposes;

2) Santilli's isotopies permit a fully causal treatment of nonlocal
deformations because they are all embedded in the isounit 1, thus resulting in
an axiom-~preserving isotopy of conventional causal treatments;

3) Santilli's isotopies also permit an axiomatization of discrete time theories
(Kadeisvili Class V [29]) via their embedding in the isounit Q”!, which therefore
result to be “hidden” in, and compatibility with the conventional axioms of
quantum mechanics, only realized in their most general possible (rather than
simplest possible) form;

4) there is the impossibility for conventional experimental measures to
distinguish between quantum and hadronic mechanics, unless complemented
with additional tests specifically conceived for the difference [33];

5) there is the conservation of conventional total quantities of an isolated

. System originating from from the invariance of the basis under isotopies [22],

according to which the generators of conventional and Lie-Santilli isosymmetries
coincide; and others.

GENOTOPIC AXIOMATIZATION OF q-DEFORMATIONS (2}

The above isotopic methods constitute half of HM. The remaining half is
provided by the genotopic methods. The Lie-admissible methods were proposed
by Santilli in [4] and developed in detail thereafter [2,12]. However, the largest
number of applications of genotopies has been provided by Jannussis and his
collaborators through several years [24].

The most salient aspect in the transition from the Lie-isotopic to the Lie-
admissible formulations is the differcntiation of the envelopes for the isomodular
action to the right and to the left. In particular, Santilli 12,18,22] identified the
origin of this distinction in the difference between the muitiplication of numbers
from the left and from the right, thus achieving a full axiomatization essentially
based on two different sets of Axioms I-V for muitiplications to the right and to
the left.

Consider two real numbers a, B € R. Their multiplication can be
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differentiated into two forms, a>g = aPf and a<p = aQf (where P, Q are fixed
nonsingulAR operators and P # Q), depending on whether “a multiplies B from the
left”, or "B multiplies a from the right”, respectively. Note that this differentiation
remains fully compatible with the commutativity of the product of ordinary
numbers, i.e., we have a>p = f>a and a<B = p<a, but a>p # a<B. The important

mathematical discovery here is that the ordering of the multiplication .

preserves all axioms of a field [22]

These results permit the introduction of two different generalized fields
called genofields, one in which only the multiplication to the right is allowed,
pf>(@,+>) and one in which only that from the left holds <Fgl€a,+.<), often
denoted with the unified symbol <pFq”(<6”,+,< >), with respective isounits

> =q!, A4=pL 3.27)

The Lie~admissible generalization of quantum mechanics therefore implies
two different generalizations of Planck’s constant for multiplication to the right
and to the left. In turn, this implies the existence of two different chains of
genotoples includinng: genospaces <pSq”(x,<§>*R>), genohilbert spaces <pitq”,
genoenvelopes <ptq”, etc. _

The axiomatization is then given by two different sets of Axioms [-V, one
for multiplication to the right >, and one to the left, whose identification is left to
the reader for brevity [2]. We only mention that the isospace <p)Cq” acts as an
isobimodule, Le., an isomodule with different actions to the right and to the left.
Eq.s (2.12) can then be rewritten in the axiomatic form

]
iéi—|*1'>=H>|41’>==HCN>=B>W>. (3.28a)
]
—i<¢|-—5—t—=<¢l<H=<¢|PH=<M<E, (.3.28b)

while Santilli's Lie-admissible equations (3.24) become
dA
l-—(ﬂ"-=(A,H)=A<H—H>A=APH-HQA. (3.29)

with corresponding finite form of a “Lie-admissible group” {2,4,12]
-iltg= UH ) 5 ¢IHQlto = ) 5t ) ¢7ifto = UPH

(3.30)
Note that the above axiomatization has been presented so far with the sole
assymptions that P # Q, P and Q nonsingular. This implies that the P and Q

MO=(%>”MO_O)>ARJ<(eQ
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operators can be individually Hermitean or, in particular, can be different real
numbers.

Nevertheless, Santilli conceived the Lie-admissible formulations [24] to
provide an axiomatization of open, nonconservative and irreversible processes.
This is achleved via the interpretation of the formulations with multiplication to
the right as representing motion forward in time >, and those to the left for
motion backward in time < (Eddington’s arrows of timc), and the assumption
that the P and Q operators are interconnected by conventional Hermitean (or
other) conjugation,

Qd=P=q Po= ()l =9, (328)

Thus, isotopic equations (3.24) are structurally reversible, in the sense that
they represent time-reversal invariant systems whenever the Hamiltonian is T-
invariant, while the genotopic equations (3.29) are structurally irreversible, in the
sense that they are irreversible even for T-symmetric Hamiltonians {21l

Note the Hermiticity/observability —of the Hamiltonian when
nonconserved, which is an occurrence possible for HM but not for QM {where
dissipation is often represented via “imaginary potentials”, H=K+i{V# HT, in
which case the brackets of the theory violate scalar and distributive laws thus
losing conventional notions such as that of spin (2.

As a final comment we recall the direct universality of HM [2], ie., its
capability to represent all possible systems of linear and nontinear, local and
nonlocal, Hamiltonian and nonhamiltonian, discrete and continuous type

‘z(universality). directly in the frame of Lhe experimenter (direct universality). This
“universality follows form the rather vast structure of HM (recall Kadeisvili five

classes per each branch) and it is based on two theorems, one for isotopic
formulations valid when the total energy is conserved, i = HQH - HQH = 0, and
the other of genotopic type which is valid when the energy is nonconserved, ifl =
HPH ~ HQH # 0.

4: AXIOMATIC REFORMULATION OF g-DEFORMATIONS

The first point stressed in ref.s (2] (see, e.g., App. L.7.A) is the independence
of g-deformations from HM, as evident from the structural differences of the
two theories. With this understanding, HM can provide a reformulation of q-
deformations which leaves the results of the g-deformations unaffected, while
avoiding their problematic aspects for physical applications indicated in Sect. l.

The reformulation is centrally dependent on whether the total energy Is
conserved, in which case isotopic methods are applicable, or the energy is not
conserved, in which case the broader genotopic methods are applicable.
Equivalently, isotopies are used when the brackets of the time evolution are
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totally antisymmetric, otherwise genotopies are needed.

The hadronic reformulation of g-deformations Is simple and can be
outlined as follows [2}

Case I: g-deformations of associative envelopes, as in the cases

AB = g AB, aal = qaaf, 4.0

The axiomatic reformulation is then achieved by simply lifting the unit [ into
the isounit 1 = q” ! and constructing the chain of Santilli's isotopies of fields,
spaces, Lie algebras, etc. The isotopic methods then ensure the form-invariance
of the theory under arbitrary transformations.

Case II: g-deformations of eigenvalues of commutators, e.g.

rp - pr = iflg =1, {4.2)

As proved by Jannussis [24], these formulations are noncanonical, thus lacking an
axiomatic character when treated with conventional methods. However, the
above g-deformations can be easily reformulated in Santilli’s isotopic form.
Assume f{g) as the new Isounit, 1 = f{g). The isotopic element is then given by Q =
(@™}, The axiomalic reformulation is then given by the isoeigenvalue equation

prld> = pQld> = -119[d>, (4.3
under which commutator (4.2) is turned into the equivalent form
r*p-p*r=r{f(q)l'lp—plf(q)rlr=i’l=lf(q). {4.4)

which is now form invariant under time evolutions. A similar axiomatic
reformulation occurs for creation and annihilation operators with noncanonical
eigenvalues. Note that Lie-admissible formulations are inapplicable in this case
because the energy is conserved or, equivalently, the brackets are antisymmetric.

Along similar lines, the axiomatic reformulation of q-deformatlons of Type
[11 is obtained by assuming the deformed structure constants Fj kg, ..) as the
scalar part of the structure isofunctions of the theory, and then searching for a
compatible isotopic element Q

X X=X X = Fiflt g, .0 % = XQX) - X;QX; = Fift g, .) X (45)

The form~-invariance of the theory under the time evolution is then ensured by
the isotopic methods.
Case 1II: g-deformations of Lie-preducts, such as
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rp-qpr = iflg. (4.6)

The latter case requires the full use of Santilli's Lie—admissible formulations
because the brackets are no longer totally antisymmetric. In fact, the
multiplication to the right is isotopic, p>r = pQr, Q = q, and that to the left is
conventional, r<p = rPp, P = |, resulting in the fiexible Lie-admissible, Jordan-
admissible product (p, r) = r<p - p>r. A necessary condition of consistency of the
theory is that the fundamental rules [4]

(at,a") = at<a’ - > a* = 12>, a = (r,p) 4.7

characlerize a Lie-admissible tensor o*® <1,Y in a sclected dircction of time.

The above reformulation was [irst studied by Jannussis and his collaborators
[24] on conventional fields. That on genofields was done by Santilli [2]. It requires
the selection of one “time arrow” and then the interpretation of the function
f(g,..) in rules (4.6) as the genounits for that direction. Jointly, the g-deformation
of the second term in the Lhs. is not axiomatic and must be lifted into the
inverse of the selected genounit, resulting in the reformulations

r<p-p>q=rPp-pQr="1,
1 =1lq,.)/q Q=q/flg.) P=fq,.)

rp -q pr = iflg.) = or
r<p-p>q=rPp-pQr=<

q=1g,.)/q Q= flg,.), P=q/rq,..)
{4.8
The entire theory must then be reformulated on genofields, genospaces,
genotrasformations, etc., for the selected direction of time. The axiomatic
reformulation of other q-deformations can be done with one or the other of the
above methods.

The best way to see the inevitability of Santiili axiomatic reformulation even
when not desired, Is by subjecting q-deformations to nonunitary
transformations. As a matter of fact, nonunitary transformations themselves can
be used as a method to achieve an axiomatic structure. By assuming

uul =1lg =1#1, Q = (uulrt, (4.9)

we have
U(rp-pr)Ut=r'QP"P’QF'=Q"l, (4.10a)

Ulrp -qprlul = rPp - pQr=1ip',Q=qp. (4100
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In both cases, starting from a conventional formulation of a g-deformation
[1] one ends up in Santilli’s axiomatic form [2]. Since the latter is constructed via
the most general possible nonunitary transforms, it evidently remains Invariant
under the same.

A few examples are now in order. To understand them, one must understand
first the arena of applicability of HM, the interior problem. The search, say, for
the description of conventional systems (such as the elcctron in an atomic cloud
or the harmonic oscillator) within the contest of HM with a nontrivial operator Q
has no physical or mathematical sense. QM is exactly valid for these
conventional systems, which means that one must necessarily put Q = L.

The objective of HM and related methods is that of treating the deviations
from conventional systems caused by their immersion within a physical media or
interactions with external terms. Systems which are therefore significant for HM
are the electron when immersed in the core of a collapsing star, or the damping
of the harmonic oscillator due to an external force, the deformation of the charge
distribution of a proton or a neutron due to sufficiently intense collisions and/or
external fields, and the like. :

A first simple example is the damped particle represented by

HO =Y, Hy=ip2, m=1  H=-7vH, (4.11)

which is axiomatically represented by Santilli’s Lie-admissible formulations via
Eq. (3.29) with

P=-31yHy ", qQ =Pl .12)
Eq. (3.30) then correctly reads i = - ) H? = - | v H. The direct universality of
the theory ensures the existence of axiomatic representations of other systems.
Note that the Hamiltonian remains Hermilean thus obscrvable, yet it Is not
conserved In time.

To our knowledge, Santill's Lie-admissible theory is the only one
establishing the observability of nonconserved quanlities, as actually
occurring in laboratory. '

As another example, consider the Lagrangian of the harmonic oscillator L =
3 (¢t + krr) In E(r,¢R). The lifting in £(r,5,R), 8 = Q8, Q = exp (yt) represents the
damped osciilator. This case also illustrate the interplay between isotopic and
genotopic formulations, in the sense that a nonconservative system can at times
be represented with isotopic methods. The understanding in this case is that the
algorithm “H” Is just a mathematical quantity (a first integral) and does not
represent the energy.

It is equally instructive for the researcher in g-deformation to see that the
isotopic treatments resolve all the problematic aspects of Sect. 1. To begin, HM
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has been built under the condition of possessing a generalized, but well defined
left and right unit 1. As now familiar, this implies a corresponding compatible
isotopy of the enveloping algebra, the base fields and the Hilbert space, thus
ensuring the Hermiticity/observability of the Hamiltonian and other operators at
all times.

The above assumptions also imply the existence of a unique generalization of
the Poincaré-Birkhoff-Witt theorem resulting in a unique exponentiation and
unique structures defined on it, such as isotopic delta functions, isofourier
transforms, isogaussians, etc. This implies the uniqueness of physical laws and
the applicability of the isospecial functions at all times.

The preservation of the fundamental axioms of Einstein’s relativities was the
central reason for the very construction of the isotopies (see ref.s [2] for details).

The regaining of the applicability of the measurement Lheory Is rather
intriguing. The isoexpectation values of the isounit 1 = q~l of q—deformations
reconstruct the conventional unit, <1 5 = < flg) 5 = L. Thus, the measurement
theory which is applicable to Santilli’'s axiomalic reformulation of q-
deformations is the conventional theory. This is necessary for physical
consistency and applicability to actual experiments, because measures are
conducted in our classical frame which, as such, cannot be modified by
theoretical deformations introduced in the microworld.

5: PHYSICAL APPLICATIONS AND EXPERIMENTAL
VERIFICATIONS.

Once the g-deformations are reformulated in a axiomalically consistent
form, an intriguing horizon of novel physical applications and experimental
verifications become within technical reach. Despite their evident tentative
nature, it appears recommendable to mention these possibilities (see [2] for
details),

Applications I: Direct representation of nonspherical shapes and their
deformations. While QM can only provide an abstraction of hadrons as points,
HM can represent their nonspherical charge distribution as well as all their
infinitely possible deformations. This representation occurs at the level of first
isoquantization without any need of second isoquantization, and is achieved in
isominkowski space by assuming isounits of the type [20,21)1 = Q! = diag. (b, "2,
b2~2' b3'2, b4'2 ), b, > 0, where: the space components represent the semiaxes, in
this case, of an ellipsoid; their deformation can be represented via a dependence
of the by from the needed external quantities (e.g., intensity of external Tields);
and the time component b4’2 provides a novel geometrization of the medium in
the interlor of the particle (a form of isotopy of the conventional index of
refraction). These first formulations have been applied to: the apparent
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deformability of the charge distribution of hadrons [19,35] with a quantitative
interpretation of Rauch’s interferometric experiment on the 47 symmetry; a
numerical resolution of the total magnetic moments for few bodies nuclear
structures; the anomalous behaviour of the meanlives of unstable hadrons with
speed [37}; and other cases [2,35,36].

Applications 2: Direct representation of nenhamiltenian-nonlocal-
nonlinear interior effects of strong interactions. Deep inclastic scattering of
hadrons are not expecled to be sole scatterings among ideal points interacting at-
a-distance, because they imply mutual penetrations of the densest extended
objects measured in laboratory until now. Under these conditions we expect the
presence of internal interactions of the so—-called “contact” type which are beyond
the representational capabilities of a Hamiltonian (because NSA {12)), are
nonlocal-integral, and nonlinear in the most general known form (e.g., in the
derivatives of the wavelunctions). The axiomatic formulation of g-deformation
permits a direct representation of these internal nonhamiltonian~nonlocal-
nonlinear effects precisely via the deformation-mutation of the associative
product. Then the Q-operator itself, being independent from the Hamiltonian,
acquires the direcl physical meaning of representing sald nonhamiltonian—

nonlocal-nonlinear interactions. A most representative case is the Bose-Einstein

correlation because there are reasons to expect that the correlation itself is absent
under only local-differential interactions. Detailed phenomenological studies [38]
have shown the effectiveness of the relativistic, isotopic, nonlocal treatment of
the Bose-Einstein correlation. Independent phenomenological studies [39] have
shown its remarkable agreement with experimental data from the UAI
experiment.

Applications III: Chemical synthesis and artificial disintegration of
hadrons. Hadronic mechanics predicts fundamentally novel events, that is,
events beyond the predictive capacities of quantum mechanics. One of them is
the prediction that the cold fusion currently observed at the molecular/atomic
level in actuality originates at the level of elementary particles. The novel
prediction is that massive particles have a natural tendency to form a bound
state at small distances (< 1 fm) in singlet states which is enhanced at low
temperature {or low energy). Santilli [4] originally formulated a quantitative
representation of the cold fusion of electrons and positrons as well as of mesons
at large. More recently, Animalu [28] has reached a quantitative interpretation of
the electron pairing in superconductivity which is in preliminary, yet remarkable
agreement with experimental data. The lifting is done via: isotopic Eq.s (3.6); the
conventional QM Coulomb Hamiltonian H; and the simple isotopic element Q=
expl -t N f d3r $H0P(r) ) representing the overlapping of the electrons’
wavepackets § and $. A comprehensive theory of the cold fusion of all {massive)
particles (leptons, mesons and baryons) is now available [40] with preliminary
experimental verification {41l
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These novel advances should not be looked lightly because they imply the
possibility of producing (unstable) hadrons via chemical synthesis of lither
(massive) particles. In turn, this implies the possibility of the artificial
disintegration of hadrons (say, of the peripheral neutrons in a nuclear structure),
with consequential emergence of a possible new technology called hadronic
technology.

Numerous additional applications have been studied, including Q-operator—
isotopies of quark theories with exact confinement, Q-isotopies of potential
scattering theory, applications to discrete~time theories, etc. {2l

The significance of the axiomatization presented in this paper is that, in its
absence, the above physical applications and experimental verifications are
generally inapplicable to the q-deformations in their current formulation.

I want to thank the Institute for basic Research for hospitality. Thanks are in
particular due to Prof. Santilli for submitting the problem, putting at my disposal
the IBR computer files and providing invaluable lechnical assistance. 1 aiso want
to thank Dr. G. F. Welss for linguistic control, and Mrs. Fleming for the typing of
the manuscript.

REFERENCES

1. T. L. Curtright, D. B. Fairlie and Z. K. Zachos Editors, Quantum Groups,
World, Scientific (1991); Mo-Lin Ge and Bao-Heng Zhao, Editors, Introdu-
ction to Quantum Groups and Integrable Massive Models of Quantum Field

. Theory, World Scientific (1991); Yu. F. Smirnov and R. M. Asherova, Editors,
Proceedings of the Fifth Workshop Symmetry Methods in Physics, JINR,
Dubna, Russia (1992)

2. R. M. Santilli, Elements of Hadronic Mechanics, Vol I: Mathematical Foun-
dations, Vol. 1l: Theoretical Foundations, and Vol. lll: Experimental Veri—
fications,

3. D.F. Lopez, Origin and axiomatization of q-deformations, in Proceedings of

the 1993 Workshop Symmetry Methods in Physics (dedicated to Ya. A.

Smorodinsky), G. Pogosyan et al. Editors, JINR, Dubna, Russia, In press

R. M. Santilli, Hadronic J. }, 574 (1978)

N. Jacobson, Lie algebras, Interscience (1962)

A. A. Albert, Trans. Amer. Math. Soc. 64, 552 (1948)

(L J. )Paige, Jordan Algebras , in Studies in Modern Algebras, Prentice-Hall

1963

8. R. M. Santilli, Lett. Nuovo Cimento 51, 570 (1967) (see also Suppl. Nuovo
Cimento 6, 1225 (1968))

9. ;4 C.)Baltzer et al., Bibliography in Nonassociative Algebras, Hadronic Press
1984

10. Proceedings of the 1989 Conference on Quasigroups and Nonassociative

Neas



I

12

13.

15.
16.

18.
19.
20.
2L
22,

23.
24.

26.
2.

28.
29.
30.

3L

32

33

34.

~ 457 -

Algebras in Physics, Estonian Academy of Sciences, Tartu {1989)

R. M. Santilli, Meccanica }, 1 (1968)

R. M. Santilli, Hadronic J. 1, 228 and 1279 (1978, (see also Phys. Rev. D20, 555
(1979), Foundations of Theoretical Mechanics, Vol. 11, Springer-Verlag (1983))
R. M. Santilli, Lie-admissible Approach to the Hadronic Structurg Vol. l
(1978), 1 (1982), and 111 (in preparation), Hadronic Press

. R. M. Santilli, Isotopic Generalization of Galilei's and Einstein’s Relativities,

Yols I and 11 , Second Edition, Ukraine Academy of Sciences, Kiev, in press

J. Fronteau, A. Tellez-Arenas and R. M. Santitli, Hadronic J. 3, 130 (1979)

H. C. Myung and R. M. Santilli, Hadronic J. §, 1277 and 1367 (1982)

R. Mignani, Hadronic J. 5, 1120 (1982)

R. M. Santilli, Hadronic J. Suppl. 4B, issues 1,2,34 (1989)

R. M. Santilli, Hadronic J. 4, 1166 (1981)

R. M. Santilli, Hadronic J. 8, 25 and 36 (1985)

R. M. Santilli, Lett. Nuovo Cimento 37, 337 and 545 (1983); and 38, 509 (1983)

R. M. Santilli, Algebras, Groups and Geometries 8, 169 and 275 (1991); and 10,
273 (1993)

M. Gasperini, Hadronic J. §, 935 and 1462 (1983)

A. Jannussis et al, Hadronic J. 5, 1923 (1982}, 6, 1653 (1983);, 7, 947 (1984),14, 257
(1991}, Lett. Nuovo Cimento 30, 123 {1980%; 31, 177 (1981); 34, 375 (1982); 37,119
(1983); J. Phys. A24, L775 (1991); A25, L.329 {1992); A26, L.233 (1993); Ann. Fond.
de Broglie 18, 137 (1993) and in press; Hadronic J. 8, 387 (1985) 9, 223 (1986} 10,
75 (1987)% 14, 277 (1991); and in press; Physics Essays 4, 202 (1991); Physica
AlB7, 575 (1992)

R. Mignani, Lettere Nuovo Cimento 39, 413 (1984);, Hadronic J. 9, 103 (1986)
Physics Essays 5, 531 (1992)

S. Okubo, Hadronic J. 5, 1667 (1982)

A. J. Kalnay, Hadronic J.6, | (1983); A. Kalnay and R. M. Santilii, Hadronic J. 6,
1798 (1983)

A. O. E. Animalu, Hadronic J. 14, 459 (1990) and 16 (1993), and in press

J. V. KADEISVILI, Algebras, Groups and Geometries 9, 283 and 319 (1992)

M. Nishioka, Lettere Nuovo Cimento 39, 369 (1984); 40, 309 {(1984); Nuovo
Cimento 85, 331 (1985); Hadronic J. 11, 97 and 143 (1988),

A. K. Aringazin, Hadronic J. 12, 71 (1989 13, 183 (1990); and in press

D. F. Lopez, Hadronic J. 15, 431 (1992)

G. Brodimas, D. S. Sourlas and A. Sotiropoulos, An introduction to Hadronic
Mechanics, in Proceedings of the International Conference on Frontiers of
Fundamental Physics, F. Selleri and M. Barone, Editors, Hadronic Press, in
press

AX.Aringazin, A. Jannussis, D.F.Lopez, M. Nishioka and B. Veljanoski, Santilli's
Lie-isotopic Generalization of Galilel and Einstein Relativities , Kostarakis
Publ., Athens, Greece (1990); J. V. Kadeisvili, Santilif’s Isotopies of Contem-
porary Algebras, Geometries and Relativities, Second Edition, Ukraine

35.
36.
ar.

38.
39.

40.

41.

- 458 -

Academy of Sciences, Kicv, in press; D. S. Sourlas and G. T. Tsagas, Mathe-
matical Foundations of the Lie-Santilli Theory, Ukraine Academy of Scien—
ces, Kiev (1993); J. Lohmus, E. Paal and L. Sorgsepp, Nonassociative Algebras
in Physics, Estonian Academy of Sciences, Tartu, in press

R. M. Santilli, Isotopic lifting of SU(2) symmelries with applications to nuclear
physics, Acta Appl. Math,, in press

R. M. Santilli, in Proceedings of Deuteron 1993, V. K. Luykianov et al,, Editors,
JINR, Dubna, Russia, in press

F. Cardone, R. Mignani and R. M. Santilli, J. Phys. G18, L61 and L141 (1992)

R. M. Santilli, Hadronic J. 15, 1, (1993)

F. Cardone and R. Mignani, Univ. of Rome report No. 894 (1993)

R. M. Santilli, Hadronic J. 13, 513 (1990), Application of isosymmetries/Q-
operator deformations to the cold fusion of elementary particles, in Procee~
dings of the 1993 Workshop Symmetry Methods in Physics (dedicated
to Ya A. Smorodinsky), G. Pogosyan et al., Editors, JINR, Dubna, Russia (1993);
and JINR Communication E4~93-352 '

C. Borghi, C. Giori and A. Dall'Olio, Hadronic J. 15, 239 (1992)



