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ORIGIN AND AXIOMATIZATION OF Q-DEFORMATIONS
D. F. Lopez*

State University of Campinas, 13083 Campinas S.P., Brasil

1. Problematic aspects of g-deformations.

The so-called g-deformations (see, e.g., [1]) include a great variety of deformations of con-
ventional quantum mechanical (QM) formulations, such as: deformations of fundamental com-
mutation rules

rp—qpr = if(q), TP —pr =14(q); (1.1)
deformations of creation and annihilation operators; deformations of Lie algebras; Hopf alge-
bras; mixtures of conventional Lie-Hamiltonian time evolutions and ¢g-commutators; and others.

All the above deformations are clearly correct on mathematical grounds as currently treated,
that is, under the conditions that: I) ¢ is a number {e.g., an element of the base field of reals
R or complex numbers C); II) the quantities f(q), g(g), etc. are ordinary functions on R or C,;
and I1I) there is no time evolution (see, e.g., the mathematical rigor of the g-special functions
of [2]).

However, a number of rather fundamental problematic aspects emerge in physical applica-
tions whenever one attempts to do dynamics, thus including time evolution. Their origin was
first identified by Santilli 3] back in 1978 (see also Jannussis [4], and others) who showed that
departures (1.1) from QM structures generally imply a nonunitary time evolution, with conse-
quential loss of form-invariance, loss of the original Hermiticity of the Hamiltonian (see later
on Lemma 3.1), loss of probabilities, loss of applicability of the g-number-special functions, etc.

In fact, under a nonunitary time evolution UUY # I, an arbitrary ¢-“commutator” be-
comes (3]

U(AB—qBA)U' = APB' —B'QA, A'= UAUY, B =UBUt, P'= (UUY™, @=qP, (1.2)

thus showing the inevitability of the transition from g-numbers to Q-operators (as well as to a
more general P — @ deformations identified below).

Moreover, in general, g-deformations are theories without the unit which implies a number
of additional problematic aspects, such as the loss of the uniqueness of the exponentiation, or
the lack of applicability to measurements. Let F{n,+, x) be a field of real or complex numbers
n with conventional sum + and multiplication n x m = nm. As well known, a necessary
condition for F to be a field is the existence of the element 1 € F called multiplicative unit,
such that In =nl =n, Yn € F. Let £ be an enveloping associative albebra with elements
A, B,... and conventional associative product AB over F, that is, with the same associative
product of F, AB = A x B. Let J € £ betheunit of £, i.e, IA=AI = A, VA€ £.

Most g-deformations are deformations of the basic associative product X, i.e,

AxB=AB= AxB=qAB (1.3)

without jointly redefining the unit as done in Santilli’s axiomatization (Sec. 3). As a conse-
quence, deformations (1.3) imply the evident loss of the unit J € £. In turn, this implies the
inapplicability of the Poincaré-Birkhofi-Witt theorem on the infinite-dimensional basis of ¢,
with consequential loss of a basic property of Lie algebras, the uniqueness of the exponentiation
from algebras to groups.

In addition, in specific cases one may find the need of keeping the identification of the
associative product-of £ with that of F. In this case, deformations (1.3) evidently imply the
additional loss of the unit of F, that is, the reduction of the field F(n,+, x) to a commutative-
ring without the unit F*(n,+,*). Under these circumstances, the underlying Hilbert space of
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the theory is defined over F* and not over F. This results in the general— inapplicability of
the measurement theory to g-deformations, with consequential inapplicability to experiments,
because of the necessary condition for any measure to have a well defined unit. As we shall see,
Santilli’s axiomatization is conceived precisely to prevent these problematic aspects. )

But perhaps the most serious uneasiness is created by the fact that g-deformation imply
necessary deviations from the axiomatic structure of the Poincaré symmetry and of the special
relativity, with a number of consequential open problems, e.g., for causality. On the contrary,
Santilli's axiomatization is conceived to preserve these basic axioms and only realize them in
more general way.

To avoid misrepresentations, we would like to stress that we are referring here to “prob-
lematic aspects” which are essentially “physical” in nature, and not to “mathematical incon-
sistencies”. Also, these problematic aspects are not referred to “all” g-deformations, but only
to those for which the time evolution can be proved to be nonunitary or which lack the unit.

2. Bibliographical notes.

When studying the axiomatic structure of quantum mechanics, the first and most fundamen-
tal task is the identificatione{ the algebra characterized by the commutator [A,B] = AB—BA,
the Lie algebra [5]. Similarly, studying g-deformations, the identification of the algebra
characterized by the “commutator” A,B), = AB—¢BA is an evident pre-requisite for the
achievement of a consistent axiomatization.

The algebra characterized by the product [A,B], was first introduced by the American
mathematician Albert [6] back in 1948, via the following two notions.

Lie-admissibility: a (generally nonassociative) algebra U with elements g, b, c,...and
(abstract) product ab over a field F is said to be Lie-admissible when the attached algebra U™,
which is the same vector space as U but equipped with the product [A,bly = ab — ba, is a Lie
algebra; and

Jordan-admissibility: the algebra U is said to be Jordan-admissible if the attached al-
gebra U+, which is the vector space U equipped with the product {a,b})y = ab+ ba, is a
(commutative) Jordan algebra (7.

1t is easy to see that the algebra U characterized by the g-product [A, B], is a nonassocia-
tive, Lie-admissible and Jordan-admissible algebra, because [A, Bly = (1 — q){AB — BA) and
{A,Bly=(1-q)(AB+ BA). We can therefore say that in the transition from the quantum
to the g-“commutator” we do preserve a well defined content of Lie algebra and, in addition,
we gain a new content of Jordan algebra which is notoriously absent in Lie algebras. The
emergence of the still open Jordan legacy alone should be sufficient reason for its quotation in
the specialized literature on g-deformations.

The above characterization of ¢-deformations was first introduced in the mathematical and

physical literature by the physicist Santilli [8] in 1967 as part of his Ph.D. in physics at the
University of Turin, Italy. In fact, in 8], p.573, one can see the product

(a,8) = Aab — pba = pla, Y+ o{aB), A py o€, RCRY

which was introduced as the (A, p)-mutation 1 of a generic algebra U with product ab, as
well as a particular class of algebras called flexible Lie-admissible algebras. The g-deformation
[A,B), = AB — gBA s an evident particular case of Santilli’s mutation occurring for A =
1, p = g and ab associative. '

1Gantilli [8] introduced the term “mutations” rather than “deformations” to stress the fact that structures
(2.1) are different than the deformations of Lie algebras as understood in mathematics, e.g., because the former
are non-Lie, while the latter remain Lie. As we shall see shortly, Santilli also introduced the name of “Lie-
admissible group” [12] to characterize generalized group structures with non-Lie, Lie-admissible brackets in
the neighborhood of the identity. By comparison, the name subsequently introduced of “quantum groups” is
doubly misleading, because g-deformations imply a generalization of both, the notion of group and the quantum
of energy. :

S
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Albert presented in [6] an abstract {and relatively short) treatment of Lie-admissibly, with
more emphasis on the Jordan-admissibly because of its greater interest in the mathematics of
the time. In fact, the sole explicit realization of the product in Albert’s paper is given by the
known realization of noncommutative Jordan algebras [6]-19].

(@,6) = Aab— (1 — M\)ta, : (2.2)

for ab associative. The point is that ¢-deformations are a particular case of Santil
(2.1) and not of Jordan’s form (2.2).

Santilli is therefore the originator on both mathematica) and physical grounds of theories
today known as Santilli’s Lie-admissible formulations, constituting of a step-by -step generaliza-
tion of Lie’s theory, with realization on classical, operator and statistical mechanics, a priority
now acknowledge in mathematical circles (see, e.g., the historica] charts of [10], p. 13). In fact,
following Albert [6], only two short mathematical notes in Lie-admissibility had appeared in
1967 (see [8] and bibliography [9]), also without any specific realization.

On mathematical grounds, Lie-admissible algebras had been studied as nonassociative alge-
bras, an approach still continuing in the mathematical literature [9]. On the contrary, Santilli
constructed a generalization of enveloping associative algebras characterizing Lie-admissible
algebras, groups, representation theory, etc., which subsequently resulted to be crucial for the
axiomatization of g-deformations presented on Sect. 3 below.

On physical grounds, Santilli studied already in 1968 [11] the classical limit of the (A, p)-
mutations (2.1), by proving that they are a particular case of Hamilton’s equations with external
terms. This established that the mutations 45— BA — XMAB—;BA imply the transition from

1i’s mutation

closed-conservative to open-nonconservative systems, because of the loss of total antisymmetry

of the product.

These initial classical studies were then complemented in 1978 [12] with the identification
that the brackets of Hamilton’s equation with external terms, when properly written, charac-
terize a general Lie-admissible algebra.

These classical studies were systematically continued in monographs [13, 14] via: the classi-
cal version of the Lie-admissible formulations with exponentiated group structure, called clas-
sical Lie-admissible group, admitting a non-Lie, Lie-admissible structure in the neighborhood
of the identity; the Lie-admissible generalization of Lie’s first, second and third theorems; the
identification of the exterior-admissible calculus, as a generalization of the conventional exterior
calculus; the introduction of the main lines of the symplectic-admissible geometry as the clas-
sical geometry underlying the Lie-admissible brackets the derivation of Hamilton’s equations
with external term from variational principle on the exterior-admissibje one-form (despite their
variational nonselfadjointness-NSA- [12}).

On operator grounds, Santilli was the first to introduced back in 1978 [3]: the general
Lie-admissible and Jordan admissible algebras with product ?

(A,B) = APB - BQA; (23)

the now well known Lie-admissible generalization of Heisenberg’s equations, which can be
written in the infinitesimal form (3], p. 746 (h = 1),

iA=(A,H)= APH - HQA, (2.4)
and finite form (3], p.783, 3 ' '
A(t) = eH9tA(0)etPH (2.5)

2One should note that the scripture AB — QBA, with Q-operator, violates the left distributive and scalar
laws and, therefore, characterizes no algebra of any kind [3].

3Note for future use that nonassociative algebras emerge only in the product of the time evolution (2.4), while
the envelope remains strictly associative,as shown by each term APH, HQA, exp(iHQt) and exp(—~itPH).
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the fundamental Lie-admissible commutation rules (3], p.746, -
(¢",a") = a*Pa” — a*Qa* = iwuaj:} a=(r,p), (2.6)

where w*® is the (antisymetric) canonical Lie tensor and fisa general, non-Hermitean operator
for P = Q*; the first formulation of Lie-admissible operator algebras on bimodular Hilbert
spaces; and other advances.

Subsequently, Fronteau, Tellez- Arenas and Santilli [15] were the first to identify in 1979 the
Lie-admissible structure of the most general possible equations in statistical mechanics, those
with arbitrary collisions terms

#=(p,H)=pPH - HQp = [p, H] + C 27

The generalized Schrédinger’s counterpart of Lie-admissible equations (2.4) was identified
by Myung and Santilli [16] and, idependently, Mignani [17)in 1982 according to the expressions

.0 - . ] .
w >=HQPW >, —i< wlgj =< p|PH. (2.8)

The identification of the correct form of the linear momentum operator required considerable
additional studies at the classical level (13, 14], which eventually permitted Santilli [18] to reach
the expressions :

PRI >= —i(Q Vil >, < PiPp =i < YIVi(P), (2.9)

achieved via the identification of the Hamilton-Jacobi equations for the classical Lie-admissible
variational and its map into the operator form called isoquantization.

Additional biographical data worth an indication are the following. The first study of the
(A, #)-mutation of SU(2) spin was presented by Santilli at the Clausthal Conference on Differ-
ential Geometric Methods in Physics of 1980 [19]. The first gencralizations of the rotational
and Lorentz symmetries for operators P = @ was reached in [20, 21]. The first identification
of the Lie-admissible generalizations of symplectic, affine and Riemannian geometries was done
in [13, 22J; the first Q-operator deformation of gauge theories was reached by Gasperini [23] in
1983; the first studies on the Lie-admissible generalization of creation and annihilation operators
were conducted by Jannussis et al. [24] beginning from 1981; Mignani [25] initiated the construc-
tion of a Lie-admissible scattering theory, subsequently completed by Santilli [18] via the use
of special P ~ Q-functions; Okubo [26] identified certain “no go” -théorems for operator formu-
lations with nonassociative envelopes; Kalnay and Santilli [27] disovered the operator form of
Nambu'’s mechanics for triplets with an essential Lie-admissible P'— Q-structure; Animalu [28]
was the first to apply the methods to electron pairing in superconductivity; Kadeisvili [29]
initiated the systematic study of special functions, distributions and transforms compatible for
Q-operator deformations; additional studies were conducted by Nishioka [30] Aringazin [31]
Lopez {32], and others.

A comprehensive presentation of all these operator studies is now forthcoming in the three
volumes [33] under the name of hadronic mechanics (HM), which is based on the main classi-
fication into:

Lie-admissible formulations, applicable when the encrgy is not conserved, i.e., from
Eqs. (24),i{H = (H,H) = H(P—Q)H #0, and the simpler

Lie-isotopic formulations, applicable when the energy is conserved, which occur when
in Eqs (24) P = Q, id = [A," H] = AQH — HQA, in which case the algebra is still Lie, -
although of a more general type. The latter theories were called isotopic [12], in the sense of

being axiom-preserving, while the former theories were called genotopic floc. cit.] in the sense
of inducing covering axioms.
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In conclusions, the studies here considered have essentially established: 1) the Lie-
admissible/Jordan-admissible character of the deformation/mutation AB — gBA; 2) the exis-
tence of a step-by-step generalization of Lie’s theory of Lie-admissible character; 3) the existence
of Lie-admissible formulations in classical, quantum and statistical mechanics; 4) the existence
of a unique map interconnecting classical and operator formulations; and 5) the existence of an
axiomatization of the operator deformations of associative algebras which is at the foundation
of both the Lie-isotopic and Lie-admissible theories.

3. Santilli’s axiomatization of g-deformations.

An axiomatization of g-deformations which avoids the problematic aspects mentioned in
Sect. 1, will now be presented via the so-called isotopies of enveloping associative algebra [12,
14, 33]. The formulations can then be used for the axiomatization, first, of Lie- isotopic theories,
and then of the more general Lie-admissible theories.

The emerging axiomatization is naturally applicable for operator §) with an arbitrary, non-
linear, nonlocal and noncanonical dependence Q = Q(t,r, 7, 7,1, 0, 884, .. .), which is classi-
fied into Kadeisvili five topologically different classes [29]. In this note we can only consider for
brevity @-operators of Class I (smooth, bounded, nowhere singular, Hermitean and positive-
definite). The axiomatization can be summarized via the following basic points.

Consider a universal enveloping associative algebra £ of a Lie-algebra L ~ £~ of Sect. 1.
Santilli’s fundamental point is that any deformation-mutation of the associative product AB
necessary requires a corresponding generalization of the basic (multiplicative) unit. In fact, it
is “anathema” in number theory to change the product and keep the old unit, or vxceversa
because units and products are deeply inter-related.

Santilli therefore introduced the general isotopic deformation of the associative product AB
of £ in terms of an operator @ called isotopic element {12] *

fo: A*B:=AQB, Q =fixed (3.1)

and, jointly, redefined the basic unit I € ¢ into the form [ = Q71 called isounit, which is the
correct left and right unit of the Q-theory

I=Q7, JIxA=A«I=A vVAcé,. (3.2)

The generalization of the basic multiplication and related unit then requires, for mathe-

matical consistency, a generalization of the notion of “numbers”. In fact at the 1980 Clausthal

Conference on Differential Geometric Methods i in Physics, Santilli [19], [20]-[22] introduced the
isotopies

Fla,+,x) = Fo(a,+,%), x=%:=xQx, a=maw=al, 1=]:=0Q", (3.3)

characterizing isofields, i.e., FQ verifies all axioms of F. Note that for Q@ = ¢ € F theliftinga = &
is un-necessary because the set Fq(a F,%) in this case is a field. However, the generalization
of numbers a => & is needed whenever @ is not an element of the original ﬁe]d F. 1t is evident
that this third step requires a suitable isotopic generahzat)on of all operations on numbers, e.g.:
@ =axax...+a(ntimes); a /b, "/ =1I/; &2 = a5 f (see [22}).

Recall that conventional carrier spaces are defined over conventional fields. The generaliza-
tion of multiplication, unit and fields evidently requires, also for mathematical consistency, a

“Santilli identified three isotopies of associative algebras: I) the g-isotopy with g scalar, AB = Ax B = gAB;
11) the Q-isotopy with @ operator (not necessarily Hermitean), AB = A+ B = AQB; and III) the isotopy
AB = A% B= WAWBW with W idempotent, W2 = W. All of them preserve the original associativity as a
necessary condition for an isotopies, A * (B * C) = (A * B) * C. Of these, Santilli selected the second because
the third does not admit a left and right unit, thus implying the problematic aspects for physical applications
of Sect. 1.
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compatible generalization of conventional carrier spaces, introduced for the first time by San-
tilli [21] in 1983. Let S(z,g, R) be a metric or pseudo-metric space with local coordinates z,
(Hermitean and nowhere singular) metric g over the reals R. The isotopies necessary under
Q-deformations are

S(z,9,R): 2’ = z'gz € R = 5(z,§,f2) 1zt = (:c'f]:l:)f eR §= Qs I=q™. (3.4)
Isospaces S’(z g, R A) characterize fundamentally novel geometries called isoeuclidean,
isominkowskian and isoriemannian with intriguing mathematical and physical implications,
such as a certain isotopic generalization of conventional angles, a geometric unification of
spheres, ellipsoids and hyperboloids, etc. [14], [20]-[22], [33].

The generalization of multiplication, unit, fields and carrier spaces then requires a com-
patible lifting of the tranw}lmry, from the conventional linear expression, into the

isotopic form

T=Uz=zc=0+z=HQz, @ =fixed. (3.5)

first introduced in ref. [12] of 1978. Note that the preservation of the old transformations
z' = Uz under isotopies implies the loss of linearity, transitivity, superposition principle, etc.

The generalization of the multiplication, unit, field, carrier spaces and transformation theory
then requires a step-by-step generalization of the theory of enveloping associative algebras which
was the central topic of study of memoir [12]. Most important is the first achievement of the
Poincaré-Birkhofl-Witt theorem on the infinite-dimensional basis of £, which provides the new
basis of £ and the correct exponentiation under isotopies, called isoexponentiation [12]

e;?;w = I+ (iwX)/1 + (fwX) * (wX)/2 +... = {¢¥%}, we F, X e & (3.6)

Particularly important is the uniqueness of the above isoexponentiation (up to isoequiva-
lence transformations studied below), which should be compared to the various types of q-
exponentiation in the literature [1].

The preceding isotopies then imply a step-by-step generalization of Lie’s theory into a form
submitted in memoir [12] and today called Lie-Santilli theory [23]-[32], [34], which includes
the isotopies of Lie algebras, Lie groups, representation theory, the notion of symmetry, etc.
(see [14, 33]) for details).

The preceding isotopies further imply a step-by-step generalization of functional analysis
into a new discipline called functional isoanalysis [29], in which all conventional operations (say,
log, derivative, integral, etc.), distributions (Dirac’s delta, etc.), transforms (Fourier, Laplace
and other transforms), special polynomials (Legendre polynomials, spherical harmonics, etc.)
weak and strong continuity, etc. are generalized into a form compatible with the basic isounit

= Q. See ref.s [33] for a comprehensive presentation with applications.

The above chain of interconnected isotopies can indeed be formulated on a conventional

Hilbert space H, as done in the original proposal [3]. However, this implies the general loss
of Hermiticity because isohermiticity is now defined by we therefore have the following H' = t=
QuiQ-.
Lemma 3.1: An operator H € £, which is originally Hermitean under g- -number-deformations
at time t = 0, over a conventional Hilbert space H, becomes nonhermitean over the same space
H under nonunitary time evolutions leading to a Q-operator-deformation, unless Q and H
commute.

For this reason, Myung and Santilli [18] introduced in 1982 the isohilbert space 'HQ charac-
terized by the hftlng

Hi< Plgp >= / Prite(r) e C= Hy i< Pl >i=1 / Ert(P)Q(r,.. N e C (3.7)
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in which case isohermiticity coincides with Hermiticity. This is a first fundamental property of
Santilli’s axiomatization of Q-deformations because it permits the preservation of observability
under arbitrary time evolutions (the issue of conserved vs nonconserved quantities is a separate
one under isotopies treated below). Note that for @ of Class 1 (positive-definite) the composition
is still inner and Hg is still Hilbert. Note also that for ) independent of the integration variables
(or constant), H = H because in this case :

<Pl >=<$IQId> T =< Pld>. (3.8)

In this sense, Myung-Santilli isohilbert spaces are “hidden” in the conventional formulation
of g-deformations. Interested mathematicians are encouraged to extend the results to formal
aspects, such as selfadjointness. )

9) The preceding isotopies then imply, also for mathematical consistency, compatible gen-
eralizations of all operations on H into a form called isolinear operations on ”FlQ [33]. We here
limit ourselves to indicate the isounitarity laws

U0t =00 =1, orff‘j-—=U§; (3.9)

the isounitary transformations A =U*Ax* (ﬁ, with realization in term of an isohermitean

operator X, i A
U =€l (3.10)
the notions of determinant and trace of a matrix A

Dét A = [Det (AQ)|f € F, TiA=(TrA)f € F; (3.11)
the isotopies of eigenvalue equations 5
Help>=Exlh> Ecky (3.12)

and similarly for all other operations.

Then next step requires the selection of the specific dynamical brackets constructed via the
isotopies of envelopes. We now assume that the Q-operator is independent from the coordinates
r to avoid gravitational profiles within physical conditions in which they are generally ignored.

Axjomatization of Lie-isotopic g-deformations [18, 33]
Fundamental assumption: Integro-differential generalization i = Q! of Planck’s unit
A =1 [3, 12], with reconstruction of the entire QM formalism to admit I as the correct left and
right unit, as per the preceding mathematical notions and the following physical axioms:
Axiom I: The states are elements of a isohilbert space Hq interpreted as (left or right)
isomoedule with isoschidinger equations and isonormalization
L0 . - . ann .
z—ét—lll) >= H « |¢p >:= HQ|p >= E x|, <P >=1I= Q. (3.13)
@xiom II: Measurable quantities are represented by isocommuting isohermitean operators
on Hg whose eigenvalues are conventional real numbers, e.g.,

Hi=H', H+lp>=Ex$>=Elp>  EcR EcCR, . (3.14)

5This latter lifting is intriguing indeed for Q-deformations because they are turned into an explicit realization
of the theory of “hidden variables”, with significant epistemological implications. In fact, we can say that

hadronic mechanics in general, and the Q-deformations in particular, are a “completion” of quantum mechanics
* essentially along the historical argument of Einstein, Podolsky, Rosen and others [33].
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Axiom IIT: The fundamental dynamical operators, the coordinates r* and momenta p,
are characterized by isoeigenvalue equations and isocommutation rules

gk B >= —iliViE >, Tkl s= ik x [ >=H >, e R reR  (313)

[a*," @] := a*Qa” — a"Qa" = el a=(pr), (I2)=diag(Q,Q7") (3.15)

Axiom IV: The time evolution of states is characterized by isounitary transformations
with the (isohermitean) Hamiltonian as generator

(1) >= U(t,t) [9(0) >= L™} (t0) >= 9 (t0) > (3.16)

while the time evolution of operators is characterized by an equivalent, one-dimensional, Lie-
Santilli group of isounitary transformations with the same Hamiltonian as generators, express-
ible in the finite form

A(t) = U » Alto) + UF = (e ™} + Alto) * {eg ™ H) (3.17)
with infinitesimal version provided by the Heisenberg-Santilli isotopic equations

i‘-f-i.f:- = (A" H] = AQH — HQA (3.18)

where d/dt is the isoderivative. 6

Axiom V: The values expected in measurements of observables are given by the isoexpec-
tation values . R N .

<Pl Axlp> _ <9|QAQWK >
<Pl > < PRl >

The following comments are in order. The first fundamental result is that Santilli's axioma-
tization of Q-operator-deformations of Class I coincides with conventional quantum mechanics
at the abstract level. In fact, at the abstract level, all distinction cease to exist between 1:'Q and
F, E(r, é, R) and E(r, 6, R), ég and £,Hg and H, etc. A subtle implication is that criticisms
on the above axiomatization may eventually result to be criticisms on the axiomatic structure
of quantum mechanics itself.

The second fundamental result is that Santilli’s axiomatization is form-invariant un-
der its own transformation theory, the isounitary transformations. This can be seen from
the fact that the Lie-Santilli isocommutator is invariant under isounitary transformations.
U=*{A, " B]* Ut = [A",” B'], or the invariance of eigenvalues and isoexpectation values un-
der isounitary transformation, etc. This form-invariance should be compared with the general
Jack of invariance of g-deformations under time evolution, Eq. (1.2).

The third fundamental result is that Santilli’s isotopies achieve a true axiomatization of
the quantity Q‘Al assumed as the isounit of the theory. In fact, I = Q" verifies the following
properties: 1} I is isoidempotent of arbitrary (finite) degree, o= dsis..xl =12
The isoquotient of [ by itself is i, i]i = [; 3) The isosquare root of fisd, it = i 1)
i isocommutes with all possible operators, [A,” =4A-4A=005) i is left invariant by
isounjtary transformations, Ui«Ut =00t = i; 6) [ is conserved in time, idijdt =

ZAS =

(3.19)

6For isounits independent of local variables (but dependent on the velocities and other quantitics) djdt =
fod/dt, where I is a new isounit of time independent of that of space I = Q~!. 'the appearance of the
new isounit I, has crucial importance for the overall consistency of the theory, c.g., for the compatibility of
nonrelativistic and relativistic “isoplane-waves” {(r,t) = Nexp{kQr — EQut}. I = Q,"‘. for the axiomatic
formulation of discrete -time theories, and others aspects.
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(I,"Hl=0 and 7) The isoexpectation value of all possible isounits [ is the ordinary number
1, &5 =< $1QQ7QI > / < YIQ >= 1.

The latter property has evident, important epistemological, theoretical and experimental
implications studied in detail in 33]. We can see here mention only the following aspects:

1) The property 215 =1 implies the reconstruction of Planck’s constant for all measure-
ment purposes;

2) Santilli’s isotopies permit a fully causal treatment of nonlocal interactions because they
are all embedded in the isounit I, thus resulting in an axiom-preserving isotopy of conventional
causal treatments;

3) Santilli’s isotopies also permit an axiomatization of discrete-time theories (Kadeisvili
Class V [29]) via their embedding in the isounit !, which therefore result to be “hidden” in,
and comPatibility with the conventional axioms of quantum mechanics, only realized in their
most general possible (rather than simplest possible) form;

4) There is no known possibility for conventional experimental measures to distinguish be-
tween quant d-hadronic mechanics, unless complemented with additional tests specifically
conceived for the difference [33];

5) There is the preservation of conventional total conserved quantities, originating from the
invariance of the basis under isotopies [22], according to which the generators of conventional
and Lie-Santilli isosymmetries coincide; and others.

Axiomatization of Lie-admissible g-deformations [18, 33]

The most salient aspects in the transition from the Lie-isotopic to the Lie-admissible formu-
lations is the differentiation of the envelopes for the isomodular action to the right and to the
left. In particular, Santilli (18, 22, 33) identified the origin of this distinction in the difference
between the multiplication of numbers from the left and from the right, thus achieving a full
axiomatization essentially based on two different sets of Axioms I-V for multiplications to the
right and to the left. Regrettable we are forced to outline this axiomatization in a subsequent

" work for brevity.

Axiomatic reformulation of g-deformations.

Most of currently available g-deformations can be easily put in the above axiomatically
consistent form. Consider the cases

AB = ¢AB, aa! = qad'. . (3.20)

Their axiomatic reformulation is then achieved by simply assuming ¢! as the isounit I, and
constructing the chain of Santilli’s isotopies reviewed earlier. Similarly, consider the deformation

rp—pr =if(q) #4, (3.21)

As proved by Jannussis 141, these formulations are noncanonical, thus lacking an axiomatic
character when treated with conventional theories. However, the above g-deformations can be
easily reformulated in Santilli’s Lie-isotopic form. Assume f(g) as the new isounit, I = f(g)-
The isotopic element is then given by @ = [f(g)]™*. The isotopic reformulation is then given
by the isoeigenvalue equation

px b >i= pQI >= ~ilVIP >, (3.22)
under which commutator (3.21) is turned into the equivalent, yet axiomatic form

rep—per=plf(g) ' — plf(g))*r =il = if(q). (3.23)

e

e

309

A similar axiomatic reformulation occurs for creation and annihilation operators with non-
canonical eigenvalues. The axiomatic reformulation of the Lie-admissible ¢-deformations of
type (1.1) will be presented in a subsequent paper for brevity.

Physical applications and experimental verifications.

Once the g-deformations are reformulated in an axiomatically consistent form, an intriguing
horizon of novel physical applications and experimental verifications becomes within technical
reach. Despite their evident tentative nature, it appears recommendable to mention these
possibilities (see [33] for details). V

Applications I: Direct representation of nonspherical shapes and their deforma-
tions. While QM can only provide an abstraction of hadrons as points, HM can represent their
actual nonspherical shape as well as all their infinitely possible deformations. This representa-
tion occurs at the level of first isoquantization without any need of second isoquantization, and is
achieved in isominkowski space via the isounits {20, 21] I'=Q ! = diag.(b7%, 572, b3%,07%), b, >
0, where: the space components represent the semiaxes, in this case, of an ellipsoid; their de-
formation can be represented vis a dependence of the by from the needed external quantities
(e.g., intensity of external fields); and the time component b;? provides a novel geometrization
of the medium in the interior of the particle (a form of isotopy of the conventional index of
refraction by = 1/n). These first formulations have been applied to: the apparent deformability
of the charge distribution of hadrons with a quantitative interpretation of Rauch’s interfero-
metric experiment on the 47 symmetry; a numerical resolution of the total magnetic moments
for few bodies nuclear structures [35, 36}; the anomalous behaviour of the meanlives of unstable
hadrons with speed [37]; and other cases.

Applications 2: Direct representation of nonhamiltonian-nonlocal-nonlinear in-
terior effects of strong interactions. Deep inelastic scattering of hadrons are not expected
to be sole scattering among ideal points interacting at-a-distance, because they consist of mu-
tual penetration of the densest extended objects measured in laboratory until now. Under
these conditions we expect the presence of internal interactions of the so-called “contact” type
which are beyond the representational capabilities of a Hamiltonian (because NSA [12]), are
nonlocal-integral, and nonlinear in the most general known form (e.g., in the derivatives of the
wavefunction). The axiomatic formulation of ¢-deformation permits a direct representation of
these internal effects via the deformation of the associative product. Then the Q-operator itself
acquires the direct physical meaning of representing said nonhamiltonian-nonlocal-nonlinear
interactions. A most representative case is the Bose-Einstein correlation because there are
reasons to expect that the correlation itself is absent under only local-differential interactions.
Detailed phenomenological studies (38} have shown the effectiveness of the relativistic, isotopic,
nonlocal treatment of the Bose-Einstein correlation. Independent phenomenological studies {39]
have shown its remarkable agreement with experimental data from the UA1 experiment.

Applications IIT: Cold fusion of elementary particles. Hadronic mechanics pre-
dicts fundamentally novel events, that is, events beyond the predictive capacities of quantum
mechanics. One of them is the prediction that the cold fusion currently observed at the molecu-
lar/atomic level in actuality originates at the level of elementary particles. The novel prediction
is that particles have a natural tendency to form a bound state at small distances (<1 fm}in
singlet states which is enhanced at low temperature (or low energy). Santilli [3] originally for-
mulated a quantitative representation of the cold fusion of electrons and positrons as well as of
measons at large. More recently, Animalu {28] has reached a quantitative interpretation of the
electron pairing in superconductivity which is in preliminary, yet remarkable numerical agree-
ment with experimental data. The lifting is done via: isotopic Eq.s (3.13); the conventional
QM Coulomb Hamiltonian H; and the simple isotopic element Q = exp{—tN fd3r1$7(r)¢(r)}
representing the overlapping of the electrons wavepackets $ and ¢. A comprehensive theory of
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the cold fusion of massive particles (leptons, measons and baryons) is now available [40] with
preliminary experimental verification [41] and possibilities for a novel technology (see [33] for
additional applications).

The significance of the axiomatization presented in this paper is that, in its absence, the
above physical applications and experimental verifications are generally inapplicable to the
g-deformations in their current formulation. '
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