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Seashells are remarkable geometrical objects, being approxim-
ately self-similar throughout growth, and governed by laws
and physical principles which are scale-invariant.
ly shells pose a non-trivial dynamical problem which can be
rigorously formulated (in complex-space) and completely un-
derstood. And, once we understand this general problem, it
becomes evident that shell-geometries are of interest beyond
conchology, malacology and paldontology, with broad implicat-
ions for theoretical mechanics generally.

Collective~




Shells are non-trivial geometrical shapes: the end-product of
500 million years of evolution in the oceans of our planet .
perhaps one of the greatest simulations of all time, dwarflng
anything done by humans on super-computers. Shells are
static real-world "snapshots" of dynamic forces and torques in
action, providing solid examples that can be held in the hand:
examples of, amongst other things, the onset of "chaos" (in-
cluding "temporal chaos", see Section 3.2) in "dissipative"
scale-invariant systems.

The fossil shell NIPPONITES MIRABILIS is a wonder of nature
and a magnificent example: its principal growth-trajectory
starts off in a predictable planar coil but becomes increasingly
loopy, like the suture-line on a tennis ball, ultimately execut-
ing wild serpentine meanders resembling turbulent fluid flow
(i.e. a vortex-street wrapped in a spiral). And the growth-
trajectory that we see (hereafter called a CLOCKSPRING) is
only the real part of a more general (perhaps even geodesic)
curve through a multi-dimensional complex-space. Even the
underlying physical principles (such as HOOKE'S LAW) only
emerge coherently, and seem to make sense, within our full
complex-space formalism (as in Section 1). Real-space E?®
just doesn't seem adequate.

So are seashell geometries profound enough to tell us that we
live in a world that doesn't quite make sense unless we assume
that it has at least five space-like and one time-like dimensions?
How seriously should we take them? Certainly, if we do take
shell geometries seriously, our insights are all the more power-
full because they emerge from totally classical, non-quantum,
reasoning.

To some extent, much of this could be shrugged-off were it
not for the fact that even in the purely real formalism (as
given in Section 3. 1) the critical physical constants associated
with trajectory "curvature” and "torsion” often have to be
complex numbers. Furthermore, a whole class of branching
shell-geometries exist, exhibiting a feature called "temporal
chaos" that implies hidden dimensions, acausal influences, or
both. In this class are shells such as JANOSPIRA NODUS,
and others beside, all required by theory and observed in
nature despite the fact that their geometries could only be
produced by forces that "act-at-a-distance" (both backward
and forward) through time itself, thereby violating causality
as we "know" it!
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Such oddities, suspected by theoreticians such as Kanatani’ but
ignored for lack of real-world examples, can now be convincingly
demonstrated simply by reaching into the nearest shell cabinet.
The proof is in the "seeing", so to speak, and as this is the way
that Nature itself "does" theoretical mechanics, we might do well
to learn from it ... no matter how surprizing.

Not only do shells teach the significance of complex curvature
and torsion in differential geometry (results not mentioned in
any standard text on the subject), and the causal implications of
self-similar non-conservative systems, but they also show that
sensible, physically-meaningfull Lagrangians exist in nonconserv-
ative mechanics. Just because things sometimes happen "dissipat-
ively" in the real-world, does not mean that there isn't an optimal
fashion for them to proceed. This has been known for most of
our present century, but denied by a small portion of the modern
mathematical community concerned with Liapunov Function theory
which, of course, advocates the use of conservative Lagrangians
to model non-conservative systems ... a total contradiction in
terms, rather like hammering a square peg into a round hole!

Santilli's book?® in 1979 gave a history of this misconception

as it relates to the inverse problem in variational calculus yet,
still, by 1982, research papers (such as the one by Chen & Rus-
sel®%) were still appearing in the mathematical literature advocat-
ing the use of conservative Lagrangians for nonconservative sys-
tems. In the cited case®® it was admitted that the approach was
unsatisfactory, in their words "primitive and ad hoc", and yet
the Quarterly of Applied Mathematics refused to print the correct
Lagrangian for the problem (when I supplied it) and, surprizing-
ly enough, even produced a spirited referee response which
echoed almost word-perfect the notions of Bauer and Synge from
the 1930's. In fact, there's absolutely nothing in several centur-
ies of theoretical mechanics to even suggest that anything "more
general than the concept of energy" either exists or makes sense.
Liapunov Functions are a nonsense.

Mistakes happen all the time, we've all made them, and that's how
knowledge progresses. But when at least a portion of the math-
ematical community don't seem to want to correct a serious over-
sight, one which has been perpetuated on and off since the 1920's,
then there is an interesting sociological phenomenon in progress.
Why would Liapunov Function theorists simply choose to ignore
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nonconservative Lagrangians, or. arbitrarily discount them as
"purely mathematical” objects.devoid of physical meaning?
Perhaps it is because mathematicdl equations, and logic alone,
simply aren't enough to convince some people. What may be
needed is a physically convincing, real-world example of a non-
conservative system, one whose Lagrangian can be derived from
first principles. If this can be achieved then we may overcome
the psychological barriers, and progress most of the way toward
convincing all mathematicians that there is a better way to deal
with "dissipative" systems. If the seashell problem is able to
provide such an example, then it will indeed have served an
important role in theoretical (as well as applied) mechanics.

In any case, from a solid empirical base encompassing 100,000 or
so (living and extinct) molluscan shell varieties, the horizons of
seashell mathematics reach outwards cutting into the fabric of
other, better-known branches of modern physics ranging from
elasticity theory and fluid dynamics, perhaps to subatomic par-
ticles. Indeed, the incremental nature of shell growth, emphas-
ised in Sections 1.2 to 1.4, conjures notions of a succession of
"force impulses" discretely deflecting straight-line trajectory
increments into continuous-looking spirals. The whole metaphys-
ical atmosphere resembles Feynman Diagram interpretations, and
quantum-electrodynamic accounts of charged particle motion in
external fields. Just how far this analogy extends, and how
relevant it is, still remains largely to be seen but we make a
start in Section 3.2 by offering the "example" of charged Lepton
decay and Neutrino production in terms of discrete vector sums
(1.3) which, in the limit, become circle-integrals.

Although constants associated with various modes of complicated
shell-coiling are already being determined to several 31gnzﬁcant
figure accuracy® 1, THEORETICAL CONCHOLOGY itself is a
relatively new scxence which has emerged in the last two decades.
Its literature is sparse and scattered, and no textbook on the
subject has yet been made available by large publishers. For
this reason we discuss literature from a diversity of sources in
more detail than might otherwise be the case, as well as present-
ing new and previously unknown results, Such coverage should
provide the best basis from which to grasp the logical develop-
ment and significance of the subject, its relevance to other areas
of science,and the theoretical problems which still lurk unresolv-
ed at the frontiers.

Chris ILLERT (1991).



' 1 CLOCKSPRING MECHANICS l

1.1 LIVING CLOCKSPRINGS?

In 1908 Harold Sellers Colton® communicated, to the Philadel-
phian Academy of Sciences, the results of his extensive field
and aquarium studies of the feeding-habits of marine snails. He
found that some carnivores used their shell-aperture to force
open the oysters and cockles on which they fed. It was a com-
plicated process with the snail's soft-body muscles, coiled as
they are about the shell's central axis (the columella) , being
able to create a torque that rotated the shell as a whole thereby
enabling the current shell-aperture to be used as a tool to
"bulldoze" bivalves open.

The dynamics of this process is rather like twirling the winding
spindle of a tensile clockspring whose outermost end is anchored
(satisfying a "fixed-end" boundary condition; see Case 3, in Sec-
tion 3.1). Indeed, this is the kind of image suggested in 1914 by
Theodore Andrea Cook?, in his book "the Curves of Life", though
he was apparently unaware of Colton's earlier fieldwork and apol-
ogised to the reader for making the analogy!

A succession of conchologists and malacologists have since con-
firmed Colton's finding that many marine snails (including volutes,
bonnets, helmets, olives, harps and whelks) all to some extent
physically twirl their shells, using them like clocksprings during
the normal course of feeding. Some of these researchers include
Warren (1916), Copeland (1918), Clench (1939), Megelhaes (1948),
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Carricker (1951), Nielsen® (1975) and Illert" (1979/80/81). The
history of this strand of thought is summarized in a four-part
series of articles by Illert® (1985) which also supplies a number

of - less well known literature references.

There can be ILittle doubt that the forces acting on the shell are
considerable, and the spring analogy appropriate, as some
snails use their shells to bore through sand, wood or solid rock.
The common abalone has a muscular foot capable of supporting
4000 times its body-weight ... have you tried to pry one off a
rock? Wczinwr'ighltS (1969), resglizing that the stresses were so
great that small cockles or scallops sometimes just shattered,
implanted strain-gauges to physically measure the forces involv-
ed. Nielsen® (1975) found that even the predatory snails some-
times fractured their own shell-apertures, and Illert" (1979/80)
realized that this was why some snails such as the South Aus-
tralian Helmet, Cassis bicarinata, have a specially thickened
apertural band (called a "varix") to reinforce their shell and
prevent it from breaking when it is used to "bulldoze" seaurchin

spines away during the course of feeding.

Another kind of "clockspring" geometry is represented by the
cowrie shell. The juvenile starts coiling in a regular spiral way
but, by maturity, the aperture curves inward and growth stops.
The cowrie wanders about with its shell exterior covered by a
fleshy skin, called the "mantle", emanating through the shell's
apertural slit. If a fish or other predator grabbed at the cow-
rie's exposed mantle-skin, and would not let go, then the cowrie
would try to withdraw back through the apertural slit by lever-
ing on the rigid shell. In this grim tug-of-war the fulcram of

-6-
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CLOCKSPRING OF THE SECOND KIND
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forces is the shell aperture; this is probably why most cowries
have apertural crenelations ("teeth") enhancing their "grip"

during such attacks.

All this biological evidence suggests that, although different
species have different reasons for doing so, they produce shells
that don't just coincidentally resemble optimal tensile clockspr-
ings, as originally suggested by Cook, but that they actually
function as such in order to best dissipate stresses incurred
during the normal course of life. We would expect some version
of Hooke's Law, for elastic springs, to underlie all naturally oc-
curring shell geometries: it seems self-evident from the life-

styles of the creatures themselves.

It is, of course, one thing to claim that this mathematics exists,
and quite another thing to find it! The rest of Section 1 is de-
voted to the task of creating an internally consistent, logical
and powerful "clockspring mechanics". By the end of Section
1 we have a mechanics which is too powerful and too general;
the Hookean (matrix) constant of proportionality k, and one
other (matrix) constant 2, will remain undetermined. This is
why Section 2 is devoted to deriving, and explaining, two sym-
metry constraints (respectively equations (2.41) and (2.42))
arising in a natural way from self-similarity, from which the
structure of the two matrices can be deduced (as in (2.45)) or
inferred (as in (2.46) & (2.47)). But, although we know the
form of these two matrices, the constant terms within them are
still arbitrary. Section 3 therefore shows various classes of
clockspring trajectories which satisfy the Euler equation ((1.38)
= (3.1)) for different values of the arbitrary constants A and yu.

-9-



1.2 FIRST ORDER DISCRETE MECHANICS

Consider a vector-valued function E(¢) = (£1(¢), £2(¢), E3(¢))
describing a continuous, twice-differentiable trajectory through
some generalised multi-dimensional space: say &: [0,=) ~ ¢* .
A physically meaningfull formulation of the seast;ell problem does
not seem attainable solely in E® . It was attempted by Illert® in
1983 but even the real-space equations themselves suggested a
complex-space formalism (the Euler equations becoming diagonal-
ised only in complex coordinates § ). Of course, all our complex
space equations have their real-space counterparts ("projections”)
but something of the logical rationale is lost in them. The actual
problem to which real-world seashells are the solution can only be
fully appreciated in more than three real-space dimensions. We
will consider ourselves to have done well if we can, by imposing a
geometrically simplifying symmetry, reduce the space in which we
formulate the problem down from ¢3 to ¢? x E?! .

Continuing then, with the above-discussed trajectory ¢ , a suit-

able quantity of arc-length is defined as follows

— d¢ ... (1.1

il
vy e
>

The diagram opposite is a geometrical "cartoon" whose purpose

is to convey a visual image of what our equations mean.
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representation of a continuous
trajectory & through ¢*.

For small values of A an element
of arclength is é A as shown above.




Of course real-world seashells grow incrementally along their

respective trajectories so let us consider a sequence of points,
{gemr= g e ¢}

for some small constant A, and integers s =1, 2, 3, ..., n,

through which our continuous trajectory £&(¢) passes.

We may also, in principle, introduce at this stage the notion of
a generalised complex-space potential (either an "attractor" or
"repulser"), denoted w(gs) , which acts impulsively at the
points gs generating a discretized approximation to §(¢)

according to a simple vector recursion relationship

£, = Egg * .5 b - el (1.2)

This is rather like Newton's equation x = x,+ vt and simple

iteration gives

Zn = §n-—1 + gn—l a
= (gn—Z + gn-—Z A + gn—l a
= (Ep3 * EpgB) FE g0 v E 0
= etc.
n-1
- 2: E, A . el (1.3)
s=1 -
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the simple vector addition
in eq. (1. 3) may thus be
viewed as a trajectory
which is modified by the
potential several times.

Consecutive points link

to their nearest neighbours
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as shown (RIGHT).

Our first order mechanics
thus provides a mental
picture (cartoon) which

assists our visualisation of .
the mathematical framework.
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the alteration of a
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In the limit as A becomes very small, and n very large, it
makes sense to replace the discrete quantity nA by a contin-

uous variable ¢ .

The summation in eq.(1.3) becomes an

integral and we thus obtain the trivial result

E(9) -

£(0) =

£E(T) dr cee (1.9),

O = S




1.3 SECOND ORDER DISCRETE MECHANICS

First-order mechanics helps us visualise the potentials Yy that
discretely modify our trajectories, but it tells us little about
the form of the potential functions, themselves, and nowhere
defines "acceleration". We need to generalise eq.(1.2) into a
second-order mechanics of the form

~

Esyy = F(Bs Egs Egr Q) cee (1.5)

for some function f. Reverberi® chose the first few terms of
a Taylor Series, but Kanatani’ has suggested that the accur-
acy of this kind of second order mechanics can be improved by
choosing f such that

2
Es+1 Eg * Eg A+ EAT e (1.6)

n

along with the auxillary definitions of "instantaneous growth

velocity" (at location s)

B, = (B - ED /D, e (1D

s <

and "instantaneous acceleration" at the same location (expressed
in terms of the rate of change of these growth-velocities)

gs-l) /A ce. (1.8).
From the introductory discussion in Section 1.1 we have reason

to believe that the forces behind seashell geometries are both
Hookean and nonconservative (after all, shells grow from nothing
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into something, in the process taking energy and materials from
their external environments, so they must be considered to be
"thermodynamically open" systems interacting with sources and
sinks). This means that we are dealing with accelerations (hence

forces) such that
s oo (1.9

for a constant [3x3] diagonal matrix k (the Hookean constant of
proportionality) and  (the Boycott constant of proportionality
for the velocity dependent "dissipative" term). Generally the
constants in Q are related to the magnitudes of static torques
and axial compression forces acting within the shell structure,
whereas k is a measure of elasticity. Also the quantity ES R
appearing in eq.(1.9), is the average radius-vector at locat-

jon s defined as follows

[l |

s = gy * &) oo (1.10)-

Thus substituting egs.(1.10) and (1.7) into (1.9) gives

g, = th(Eg g ¥ Es-p) ~ &gy T gg) /8

]

(3R -Q/0) E, + (@A) Eg + 3R E;

.oo (1.11)
hence we have
2 ¥ - 2
22 E = GRAT - 98) £, + QM E 00D

eeo (1.12).



We can ignore the small term of order ((A%) and substitute
eq.(1.12) back into the general equation of motion (1.6)

to obtain the following result

Eg4y = (1+QA) ES + A és + GRS - Q) Es+1

ee. (1.13).

The temptation is, of course, to simplify eq.(1.13) even further
by cancelling the two terms containing QA. But if we look back
carefully at eq.(1.12) we see that they had different origins: one

ina & term, and the other in a £ term, so they are not

quite Z?le same. One piece of the stzérm properly belongs with
the acceleration coefficient (2 k A? - 2 A) whilst the other proper-
ly belongs in the displacement coefficient (1 + A). They are
significant terms of order A and must both remain in eq.(1.13).
To cancell them would be equivalent to assuming a conservative

system wherein eq.(1.9) reduces to 'és = k Es .

-~

LEMMA # 1
b

S g(t) dt = 3(b-a)(g) + g(a)) ee. (1.14).
a

This will not be proved as it is the well known Trapezoid Inte-
gration formula which can be found in any standard text on
numerical analysis and improves in accuracy if b - a is small.

- 16 -



LEMMA # 2

120 (£ + E(O) (0 dr cen (1.15),

n
e

D ey >
[t

This result follows from Lemma 1 for small values of A.

LEMMA # 3

kO (EQA) + EC0)) (u) du dt ... (1.16),

"
o

D s >

O = A
Ly

PROOF:
It follows from Lemma 1 that

T
§ canan = 31 ceo + g
0

Using Lemma 1 to integrate a second time gives

A
§ trceo « e at = 18 Gacee) + g0 + 0,
0

and multiplication throughout, by the matrix k , yields eq.(1.16).

NOTE: these Lemmas are adapted from Reverberi® (1985) with
relatively minor modifications.



Eq.(1.13) holds for all real integers s, including the simplest
case of all,where s = 0, corresponding to the relationship

E(A) = (1+08) E(O) + AE(D) + (3kAZ- Q) E(A)

-~

eee (1.17).

In the right-hand-side of this equation we can make the approx-
imation £(A) = 3(£(L) + £(0)) giving

[H4

E(A) = (1+0A8) £(0) + AED) + (RR82-304) (E(B) + EO)

AT
a+am) e@ + 8 E@ + k §§ g auar
00

A
- 2§ goar
0
... (1.18)
by Lemmas 2 and 3,
A
= @a+an E@ + A ~ § @-@-0p g ar
0
... (1.19)
by the Reimann-Liouville Integral Theorem”.
A T A
*NOTE: the theorem states S S g(y) du dt = S (A -1) g(1) dt
00 0
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Replacing the discrete variable A with its continuous coun-

terpart ¢ gives us a general equation of motion

¢
E(O) = (1+62) £ + ¢ £ - f@-(6-1B) E(D) dr
0
... (1.20)

which must be valid at least for small angles ¢ = A. Actually we
have done better than first appearances might suggest. This
equation actually holds for any finite value of the continuous var-
iable ¢ and it describes a huge variety of tensile "clockspring”
trajectories through .¢3. We hereafter refer to eq.(1.20) as the

complex-space clockspring equation.

An interesting feature of eq.(1.20) are the terms containing §(O)
and é(O) . These enable us to readily incorporate into our model
the clockspring "fixed-end" boundary conditions (as discussed in
Section 1.1). However, if we want to write the integral equation
(1.20) as a differential equation it becomes

E(o) + QE@) -REW = 0 cee (1.2D)

which should be compared with our original discrete relationship
eq.(1.9). In Appendix B of his 1987 paper, Illert'® used the
Leibnitz rule to differentiate the above eq.(1.20) thereby obtain-
ing (1.21). In Appendix D of the same paper he showed how to
Laplace Transform equations of the form (1.20) or (1.21) to obtain
various clockspring trajectory solutions. Whilst, in Appendix F,
he also discussed the clockspring "fixed end" boundary conditions.
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DISCUSSION

We can compare eq.(1.6) with Newton's famous equation of motion
x =xo+ut +4at?®. The similarity would have been even great-
er had we used Reverberi's® Taylor Series approximation instead
of Kanatani's’ version. Our eq.(1.7) is the same as eq.(1.2)
hence resembling Newton's equation x =xo +vt . Likewise our
eq.(1.8) is a statement of the impulse equation Ft =mv - mu.
We wanted to form a self-contained, and internally consistent,
second order mechanics so it was essential that all these relation-
ships held. It was also important to demonstrate that the equat-
ion (1.20) could be derived in a natural way from (1.6), clearly
showing the kinds of auxillary conditions and assumptions (such
as eq.(1.9)) which had to be made along the way. But there is
still one equation from Newtonian mechanics whose counterpart
has not yet been discussed: v? - u? = 2ax. Obviously this re-
lates kinetic and potential energies, so it will be dealt with in the
next Section when we derive the Lagrangian for our problem.

B3,
]
..
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1.4 THE DISSIPATIVE HOOKEAN LAGRANGIAN

We will define force, Fs , in our nonconservative system as follows

~

E = F - QE =k§ —sz_{; ... (1.22)

where Es was defined along with the constant matrices k and
Q in equation (1.9). Indeed, we can extract eq.(1.9) from (1.22)
above. Also we can obtain a more familiar statement of Hooke's law

by rearranging (1.22) as follows
=kEs= & RE ve. (1.23).

We may now repeatedly use (1.8) to expand the velocity term as below

= T = E o+ r .
~FS k §s f’S & (.E.s bt gs—l )
= b + L e oo °e °
Es QA(§S+§3—1+'“+§1+§°/A)
= E 4 ¥ ... assuming
Es sd @ és {the velocity term

is negligeable

(1+sh Q) &g

sAQ

e eoo (1.24),

[ ]
v

n

Thus quke’s Law emerges naturally in our nonconservative system
provided the forces are appropriately scaled to reflect the influx

or outflow of energy.



We can use eq.(1.24) to define a quantity which has dimensions

of [force]x[time] as follows

which, because of (1.8), can be expressed entirely in terms of

velocities as below

flsA ;
= e (&, - &4 p) ... (1.25)

and this is just a discrete version of Newton's so-called "impulse"
equation, Ft = mv - mu , adapted to our nonconservative

system.

We now need to define two new quantities, respectively the "mean

growth increment"” gs and the "average growth velocity" gs )
at the location s, related to eachother as shown in the below

diagram:

2d, = Es41 T Es-1

(Esyp - E) (& - €s-1)

3

~8 ~S—1 A

]
vy

g

+

= ’}(§ + gs-l) 24

= £ 24 oe. (1.26).




At present we are mainly interested in the relationship

ZdSIA = (gs + £

a Eo 1) ... (1.27).

We can obtain a quantity with dimensions of [energy], hence

a measure of the work expent growing from location s-1 to
location s, simply by multiplying the left-hand-sides of equat-
jons (1.25) and (1.27), and equating the result to the product
of the right-hand-sides of equations (1.25) and (1.27) as below

erA ;és : 2513 = erA (és - és-—l).(gs + és—l)
... (1.28)

which is essentially a discrete version of Newton's equation

2ax =v2- u? adapted to our nonconservative system. Now,
as E =kRE =k

s Egep t Egoy) @nd 2d =k, ~bg g
equation (1.28) becomes
1 %QSA 2 _ 1 %QSA 2
P (ke Eorg) 1 (/R e Eo )
_ 19sA : 2 10sh L2
= 1 (e &) 3 (e £s-10" ... (129
or
User ~ Ve-) T T 7 Tseg .- (1.30)

which is just a statement of conservation of energy: any gain
in kinetic energy comes from the nonconservative (source) pot-
ential § (as discussed previously in Sections 1.2 amd 1.3).

In passing we note that eqs.(1.29) and (1.30) follow from (1.28)
because the two [3x3] matrices, k and , are diagonal.
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We now define the discrete equivalent of a Lagrangian

Ls = TS - Ts_.l - % (ws+1 - wS-l)
... (1.3D

and sum it over all growth-increments on the trajectory giving

n
E=EL
s
s=1

n n-1 n-1 n-2 n-3
et Ty = Ty v Tp - Tp *

- - -
5(1Pn+1 wn-l + lpn lpn—Z + Ipn—l an_

+ ‘94 - wz + w3 - ‘Pl + sz - ‘Po)

= Tn - TO _%((wn+1 + wn) = (wl + wo))

... (1.32) .

Thus it makes sense to define our dissipative Hookean potential

energy term as

n

Up =3 QU + 00 = v ... (1.33).
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We thus have a conserved quantity

T, - U, = Ty- U, ve. (1.34)

for any integer n, and

3 (/E 0 g )2 ... (1.35).

UTL ~n

n

Thus the obvious form for a continuous Lagrangian, in the limit
as A becomes small and n becomes large, is just

Lo, €82, E@))

= 3% £y ¢ 3 0/E 270 )2
eos (1.36)

... a sum of kinetic and (Hookean elastic) potential energies,
which can be integrated to give an appropriate "energy" functional

Y
g =§ L ao eel (1.37)
0

which needs to be extremised if the seashell growth-trajectories
given by eqs.(1.20) and (1.21) are to be energy efficient and
"optimal" tensile Hookean "clocksprings". The integration in
eq.(1.37) is analogous to the summation in eq.(1.32) and both
processes give a quantity related to total energy expent in the
growfh process. We can easily show that the clockspring
trajectories extremise our energy functional by checking that
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our Lagrangian satisfies the Euler equations

0. a2 F
— - =)= ... (1.38)
]

for j=1,2,3 and £(¢) = (£1(9), £2(9), £5(¢) ). Substitut-
ing eq.(1.36) into (1.38) yields the differential equation (1.21),
verifying that our Lagrangian and Euler equations are indeed
compatable, and that we do have an optimisation problem to which

clockspring trajectories are optimal energy-efficient solutions.

ADVANCED TOPIC:

Of course (1. 36) is not the only Lagrangian satisfying (1.38) to
give the "clockspring" Euler equations (1.21) hence (2.50).
Santilli®® cites another interesting possibility:

Zé.dl»w.g- Zé.-}w-g- o °
& = T gL pin(gt e g E 4y £2)
i 2ic].g1. 2:‘01.5]. /A A B |

where oy=a+iw+i, o=a+iw,-1, o3=a+fws, such that wz=yu
and wy=wy=XA, for the scalar constants o, A and u as defined
in equations (2.46) and (2.47). More concisely, we have the simple
relationship between all these constants

o, = x/kjd»iw;'

i where j=1,2,3

3

for the eigenvalues k}. as defined in equation (2.48).

Because of the arctan function, it is possible that this new Lagrang-
ian is multiply acausal (in a sense touched upon in Section 3.2) and
therefore suited to the description of repeatedly-branching, multiple
clockspring complexes such as Yoichiro Kawaguchi's "corals” and
"plants” (as shown in color plates F, G and H). If so, then such
Lagrangians may assist our understanding of the onset of "chaos"

in relatively "self-similar" branching systems. For now, the best we
can do is to describe the onset of “chass" in nonbranching systems
as in Cases 5, 6 and 7 of Section 3. 1.

-2 -



26NOMONS, SCALE-INVARIANCE & SELF-SIMILARITY

2.1 TRIANGULAR-NUMBER GNOMONS

Mathematicians in ancient Greece, and probably also Egypt, were
familiar with the concept of self-similarity. Aristotle wrote that
"there are certain things which suffer no alteration (except in
magnitude) when they grow" (Categ. 14, 15a, 30}.

As an example consider triangular arrays made respectively from
0,1, 3, 6, 10, 15, ... dots as below.

no dots ‘ ’ @ @
e @O ® ® X
3 gote @©O@® 0..‘0‘
6 dots @
successive triangular numbers 10 dots

represented as arrays of dots.

We see that these "triangular numbers" differ respectively by
the "natural numbers" (real integers 1, 2, 3, 4, ...): i.e.

1-0 =1, 3-1

2, 6-3 = 3,

10 - 6

i

4, 15-10 = 5, etc.
' ... (2.1)

Thus if we adopt Aristotle's definition of a GNOMON as "any
figure which, being added to any figure whatsoever, leaves
the resultant figure similar to the original”, then the natural

numbers clearly serve as gnomons to our triangular numbers.
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-This can be visualised if we denote triangular-number elements
by black dots, and natural number elements by white do:cs, as

below.
triangular triangular triangular triangular
number O numbel:l/ number ‘3/ number &
@
® ® X
@0 L K R J
®) OO0 (j 000 <-7 OO0 07
natural number natural number natural number natural number
Gnomon of Gnomon of Gnomon of Gnomon of
1 dot 2 dots 3 dots 4 dots

2.2 TRIANGLE AND CONE GNOMONS

We can extend the concept of gnomons from arrays of dots to
rectilinear figures such as the triangle, or even a triangle of
revolution (a cone), either of which may enlarge self-similarly

through addition of variously shaped gnomons.

/2 AN I

there are various modes of self-similar gnomonic growth
but only case C correctly describes the way that real
conical shells accrete.

The inner stippled triangle (or triangular section) might en-
large equally all round (as in case A), or by increments on
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just two sides (as in case B), or by incrementation at the base

only (as in case C).

But at least as early as 1709 Réne Reamur knew that biological
shell material, once formed, remains in being, thereafter in-
capable of significant change (some sort of bound is placed upon
our definition of "significant" change in Section 2.6 when we dis-
cuss the Japanese Star Shell). Thus molluscan shells enlarge
NOT by growth or magnification in all parts and directions simul-
taneously (as with the case A triangle, discussed previously)
but, instead, at one end only (the base of the conical tube, also
called the shell aperture)

through accretion of gnomonic

pre-existing ring-like increments, each
shell similar to its predecessor, so
that the whole shell, after
every spurt of growth, is still
just like what existed before.
In this way conical limpet shells
grow in size without changing
their overall shape: as Thomp-

new gnomonic increment son observed, a juvenile view-
deposited at the shell

aperture (cone base). ed through a magnifying lens

is identical to the adult form.

Of course this is not completely true. Some "Keyhole Limpets"
have a hole at the cone apex; other limpets coil and develop
slits in their adult shells; other molluscs redissolve existing
shell material in order to create new shell-growth.
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\

successive growth increments on a conical keyhole
limpet shell, in real-space cylindrical-polar co-
ordinates where Z; =-h.

EXAMPLE: axial growth

Consider a conical keyhole limpet shell in real-space cylindrical
polar coordinates (R, Z), as above, such that successive
apertural gnomons throughout growth are simple similar rings
centred on but perpendicular to the Z-axis;

Zn = Cng Znag T Cpog Cnez - €2 €1 G %

.o. (2.2)
for constants C, where j=0, 1, 2, ..., n-1. If all the con-
stants were different, or any were unknown, then eq.(2.2)

would not be very usefull. But, fortunately, the Reverend

Henry Moseley® in 1838 found that
"to each particular species of [self-similarly grow-
ing] shell is annexed a characteristic number, be-
ing the ratio of the geometric progression of simil-
ar successive linear dimensions".
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What this means is that the constants are all approximately the

same; i.e.

I
O
i

the same constant for all n
n-1 .. (2.3).

Furthermore Moseley's precise "admeasurements"” established
that gnomons, on self-similarly growing shells, increase in

size exponentially. So it makes sense to redefine C in terms
of two other constants (o related to the exponential growth-
rate, and A related to the relative gnomon width) such that

c = MO _ gob . (2.9).

Thus eq.(2.2) becomes

z, = c"z =z "t .. (2.5).
On most real-world biological shells there are a large number of
growth-increments (n tends to 'infinity'), each of which is very
thin (A tends to 'zero'), so it ié sensible to replace the discrete
quantity nA by a continuous variable ¢ (which is a measure of
the passage of time, arclength, or angle grown-through), and
to introduce a continuous function Z(¢) such that Z(0) = -h
and Z(nA) = Zn . -Thus eq.(2.5) becomes

Z($) = z(0) e®*® = _p %¢ ... (2.6).

This equation describes the growth ('time-evolution!) of the
shell's apertural 'generating curve', downward, along the axis
of symmetry, as successive gnomons are added.
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2.3  RECTANGULAR GNOMONS

Just as "triangular-numbers"™ have natural-numbers for their
gnomons, likewise do "squared-numbers" n? have successive
odd-numbers for their gnomons:

i.e. 02 + 1 =12, 12+ 3 =22, 22 + 5 = 32,

32 + 7 = 42, ete. ce. (2.7).

This gnomonic relationship may be represented with L-shaped
arrays of dots, whose addition to pre-existing square-arrays
yields new larger arrays that are also square. Denoting the
squared-number aray elements by black dots, and gnomonic
odd-number array elements by white dots, eqs.(2.7) become:

O 0 000 0060

the initial O O . . O ‘ ‘ ‘ O
odd-number gnomon O O O ‘ . . O

gnomon of of 3 dots
one dot gnomon of O O O O
$ dots
gnomon of 7
dots

squared-number arrays remain square
upon addition of these L-shaped gnomons.

More generally, as Aristotle knew, rectilinear figures such as
squares and parallelograms also retain their shapes upon addit-
ion of appropriately shaped gnomons (see figure over page).

NOTE: for further discussion see Sir D'Arcy Wentworth
Thompson's classic book "On Growth & Form" 1%,
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of L-shaped gnomons,
inal forms.

quadrilateral figures may increase,
whilst preserving their orig-

through addition

EXAMPLE:

Az

L1

l:a

Piet Hein's "Super Ellipse" for m=6

radial growth in the "fingernail" shell (Solen)

In the September 1965
"Scientific American",
Piet Hein gave his fam-
ous "Super Ellipse"
equation

& G-

... (2.8),

which describes various figures that are symmetrical about the

origin and can be made as "square" as one likes merely by select-

ing the constant m to be a sufficiently large positive integer.

A simple coordinate transformation,

Z A R + a
-0 >

I

1

I

l

|
-h JEmm———— A

from (r,z) to (R,Z), gives

{ZR - a]’" . (22 + th
a -h

=1 co. (2.9).

This is the same curve as

above, simply relocated to



the fourth quadrant, below the R-axis, such that 0 <R<a
and -h<Z<0. A simple rearrangement of eq.(2.9) gives
a suitable equation that can be used to simulate the growth of
the "fingernail" shell (Solen):

my1/m
zZ = —%h{l - {2R“a] ] —3h ... (2.10).
a

see Lucien Lison??

successive gnomonic growth-rings on Solen

Just like the "squared-numbers" discussed previously, or like
Aristotle's squéres and parallelograms, the shell Solen also
grows by accretion of L-shaped gnomons. If we use the Super
Ellipse described by eq.(2.10), with m = 6, as the generating
figure, then any point on its leading (rightmost) edge under-
goes a succession of radial expansions throughout the course
of shell-growth, such that

R = & R _, = R " ... (2.10).

If there are a large number of growth increments (n+ «), each
very thin (A > 0), then we may again replace the discrete quant-
ity nA with the continuous (time) variable ¢ to obtain a con-
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tinuous radial ("time-evolution") function R(¢), such that
R(nA) = R, and R(0) =a:

R(¢) = a e*® ... (2.12).

This equation describes the "time-evolution" of an apertural
point, in the radial direction. Compare it with equ.(2.6). We
can think of the Super-Elliptical "generating-curve" as being
made from many such points, each of which obeys egs.(2.6)
and (2.12). A typical computer program for drawing these

various growth-stages is given over the page.

Solen marginatus (Pennant, 1777).
(generated with the computer
program given at the top of page 36)

Ensis ensis (Linne, 1758).

(generated with the computer program
on page 36, plus the extra lines of
code).
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I the "fingernail" shell SOLEN I

-0.5
16
-10
0.5

10 Rmin
20 Rmax
30 Zmin
40 Zmax
50 a
60 h
70 m
80 a

100 FOR ¢ = =2 TO -0.6 STEP 0.2
110 FOR g = =1 TO 1 STEP 2

nnun
O O\ > =
(S LI 1 |

°
(=)

120 FOR R = 0 TO @ STEP a/100
130 g = -g*0.5%h* (1-((2*R-a) /a) +m) 4 (1/m) -0.5%*h
140 R1 = EXP(a*¢)*R

150 Z1 = EXP(a*¢)*Z

160 GOSUB 500

170 720 = z1

180 RO = R1

190 NEXT R

200 NEXT g

210 NEXT ¢

220 END

500 REM plot subroutine

510 R1 = (R1-Rmin)/(Rmax-Rmin)*600
520 21 = (Z21-Zmin)/(Zmax-Zmin)*180
530 21 = 180~21

540 IF NOT R = 0 THEN

550 LINE (RO,Z0)-(R1,Z1)
560 END IF

570 RETURN

Additional program lines for the optional ENSIS modification:

155 GOSUB 300

300 REM the D'Arcy Thompson grid transformation
310 # = 3.1418

320 g = 0.5%SIN(2*7*R1l/a)

330 z1 = zl-q

340 RETURN




This simple BASIC program runs on an Amiga 500 computer
with a Commodore 1081 color monitor. With minor changes it
would also run on a MacIntosh except that, last time we look-
ed into the matter, the Apple version of BASIC was inferior:
for one thing, it lacked an END IF statement, forcing the
programmer to compress large quantities of logic on single
lines. We have therefore used the more powerful Amiga
version.

The program uses Piet Hein's Super-Ellipse, as given by our
equation (2.10) [see line 130 in the program] with major diam-
eter a = 15 and minor diameter h =4 and exponent m =6
[see lines 50, 60 & 70]. The horizontal R-axis is scaled to
range between -3 and 16 [lines 10, 20] whilst the vertical
Z-axis ranges between -10 and # [lines 30, 40]. The R-loop
[lines 120 to 190] uses our eq.(2.10) to plot the top half of the
Super-Ellipse then, when g changes sign [loop lines 110-200],
the R-loop [lines 120-190] is called upon again - this time to
plot the bottom half of the Super-Ellipse: note the presence
of gin line 130. The GOSUB statement [line 160] simply acces-
ses the PLOT subroutine [lines 500-570]. Line 510 simply
scales values of R so they fit upon the T.V. screen which is
(on the Amiga 500 computer) 600 pixels wide. Line 520 like-
wise scales values of Z so they fit on a screen 180 pixels high.
Because the T.V. screen has its origin in the top left-hand
corner, plotting vertical values downward, hence upside-down,
line 530 inverts the Z axis ready for plotting. In order to

join two points (R0,Z0) and (R1,Z1) with a straight-line seg-
ment [line 550], we must first actually have two-such points:
so line 540 checks that this is so. If it is, it draws a line, if
not it returns immediately to the R-loop to generate another
point. The end result of all the inner loop [lines 110-200] is

a single, complete, Super-Ellipse. But a time factor is intro-
duced by the outer ¢-loop [lines 100 and 210] and our equat-
ions (2.6) and (2. 12) which appear respectively in lines 140
and 150. Each time, as ¢ increases in increments of 0. 2,

from -2 to -0. 6, the ¢-loop generates a new growth-ring.
After this process has run its course we end up with a succes-
sion of Super-Ellipsoidal growth-rings as an approximation to
the "continuous" surface of the "Fingernail” shell (Solen).
Each new ring adds gnomonically to the pre-existing surface
closely mimicing the way that real shells grow.




2.4 CRESCENTIC GNOMONS

It may have become evident, from the example of the "Finger-
nail" shell that points about the aperture of a self-similarly
accreting shell, expand exponentially and in proportion in both
axial and radial directions simultaneously, such that

N

-1
e oo =2t .. (2.13)
Rn Rn-—l RO a
hence the continuous relationships
2(9) - R _ po¢ e (2.14)

+h a

which follow also from equs.(2.6) and (2.12). Thus the growth-
trajectory of any single point of the apertural generating curve,
within the (R,Z) plane, may be written in vector notation as

Rn
... (2.15)

Zn

which, in continuous notation, becomes

R($) R(0) a
= ¢%? = ¢ ... (2.16).
Z(9) Z(0) / -h
a trajectory in its a single
space as ¢ varies time data point
‘ development



As ¢ increases the point moves away from the origin, finding
itself on successive, different, increasingly larger growth-
rings. And a generating curve is made of many such points.
Previously we used an equation (2.10) to generate points
round the circumference of a Super-Elliptical generating curve.
But, more often than not, the generating curve is not given
by a simple equation and it is best to select ("digitize") a
suitable number of discrete points Peé {(Re, Zg): 6=1,2,3,
...} from about the perimeter of an actual shell aperture, and
join them together with straight-line segments. As successive
gnomons accrete, during self-similar shell growth, the traject-

ories of all these points are given by a generalisation of (2.16):

Re(cb)]
Zg(9)

T RO
oo (2.17)

Z4(0)

or, in the limit when we select so many points about the shell's
aperture that 6 becomes a "continuous" variable, we can write

the continuous surface equation

R(6,9) R(6,0)
= %? ... (2.18)
Z(6,9) Z(6,0)
the resulting initial apertural
surface generating curve
time
development

In this equation, 6 is some measure of arclength round the
shells apertural generating-curve, whilst ¢ is a measure of

the passage of time throughout the growth process.
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It must be emphasised that eq.(2.16) defines a curve , gen-
erated by moving a point through space, in terms of a vector
valued function of a single time-related variable ¢. On the
other hand, eq.(2.18) defines a surface, generated by a
curve expanding or moving through space, in terms of a
vector-valued function of two variables 6 and ¢ . A solid
volume would likewise be generated by moving a surface
through space, and one would need a vector-valued function

of three variables 6, ¢ and Yy to describe it.

EXAMPLE: a flat Scallop shell from a digitized generating-curve

To adequately describe the growing edge of a flat Scallop shell
(i.e. its "generating-curve") we need to place it on a sheet of
graph paper and digitize about 100 points. If the shell is sym-
metrical about the R-axis, however, we can halve this number
by digitizing only the bottom half (in the present case we used
46 points) then reflecting these same data points through the
R-axis to generate the top half of the generating curve. In
our program (OPPOSITE) the 46 data points Ry, Z,, R ,, Zo, o..
«-.s Ruys, Zus, Ry, Z g are stored in DATA statements [lines

700 to 790]. The horizontal R-axis and vertical Z-axis respect-
ively have their lengths defined in lines 10 to 40. The bottom
half of the generating curve is drawn [lines 80 to 150] then
RESTORED [line 160] ready for use again, when g changes
[lines 70 and 170], to draw the top half of the generating curve.
The lines 70 to 170 draw a single, complete, generating curve
for any fixed value of ¢ specified by the outer loop [lines 60
to 190]. A second RESTORE statement is needed [line 180]
each time the data is to be re-used to draw a totally new growth
ring. The vector equation (2.17) is used in lines 100 and 110.
The screen scaling and other features in the plot-function are
the same as in our previous program. The only really new
feature is the READ statement [line 90] and the DATA state-
ments [lines 700 to 790 ].
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10
20
30
40
50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200

500
510
520
530
540
550
560
570

700
710
720
730
740
750
760
770
780
790

‘ a flat SCALLOP shell I————

Rmin = ~5
Rmax = 15
Zmin = -6
Zmax = 6
a = 0.9
FOR ¢ = -0.8 TO 0 STEP 0.03
FOR g = -1 TO 1 STEP 2
FOR 6 = 1 TO 48
READ R, 2%
R = EXP(a*¢)*R
Z = EXP(a*¢)*Z*g
GOSUB 500 .
Z0 = Z
RO = R
NEXT 6
RESTORE
NEXT g
RESTORE
NEXT ¢
END

REM plot subroutine

R

Z (Z-Zmin) / (Zmax

Z 180-2

IF NOT 6 = 1 THEN
LINE (RO,Z0)-(R,Z

END IF

RETURN

DATA 1.7,-2
DATA 6
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

o

.3,0.9
1,-2.6,1.7,-
3.45, ~4.7,

-4.8,4.3,-4.
5.3 . 6
6.4 . 5
7.2 5
8,
8.1 2

§
-2
5
8
' 5
’ 6
’ 7
-2. 8
p 8
6

3 /
1 -2.
4 3.
4.3 6,
-4.4,5.6,
-3.8,6.5,
-3.4,7.5,
2,7.8,-2.
-1.4,8.2,
8.4,-0.2

-0.

7
.
Ld
7
7
14
14
°
14
14

H4 14

(R-Rmin) / (Rmax-Rmin) *600
-Zmin)*180

)

,0.3,-0.4,0,0,0,-2,0.4,-2.4
,2.6,-4,3.1,-4.4,3.2,-4.7

,~4.5,4,-4.6,4.1,-4.8,4.4
.8,-4.4,4.9,-4.7,5.4,-4.6
5.8 6.1 6,-4
6.9 6.8 7,-3.2
3 5 7,-2.7
-1.5

8.3

4
1
7
' -2,
-1 9,

.8

5.4,~
.1,-4.2,
.8,-3.5,
p 5,7.
-1.9,8.4,-
.7,-0.8,

-1
3
4
4
-4
-3
-3
1
-1 8
8

8 4.9
.2 —4.4
.9 —3.6
' 7 -2.9,7
:8 .8,8.2
.1,8.6,-1.2,8
.7,-0.2,8.7,0

14
7
14
?
14
°
4
2
[

°

-4
14
14
7
°
’
[
14

4
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using the program on page 41.

a flat Scallop shell generated from a digitized generating-

curve, of 92 data-points,

with the (x,z) plane in a three-dimensionial Cartesian system,

1f our cylindrical-polar coordinates (R,Z) happen to coincide

the surface equation becomes

x(8, 0)
y(6,0)
z(6,0)
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2.5 SELF-SIMILARITY AND ROTATION ABOUT AN AXIS

So far we have studied two-dimensional, self-similarly-growing
surfaces; modelling them with (continuous or digitized) generating
curves that expand exponentially in some plane, in accordance with
the vector equation (2.20). Both the Scallop and the Fingernail
shell were assumed to be completely flat, and even the conical lim-
pets were represented by a flat, vertical, triangular section.

However, few shells in Nature are completely flat; usually at least
some rotation occurs about an axis of symmetry which we choose to
be the z-axis. Rotation about an axis is another process where-
by a simple generating-curve can sweep out a surface in space

without changing its shape. We will now consider two examples of

surfaces of revolution.

EXAMPLE: a Torus

Az

Consider a circular generat-

ing curve of radius b, and
whose centre is displaced a
distance a along the R-axis

R(6) a b cosb
= +
Z(8) 0 b sin®
circular generating-curve in ,

cylindrical-polar coordinates for ©€E[0,27] . (2.2D).

Just as in equations (2.19) and (2.20), we converted cylindrical-
polar equations to Cartesian coordinates, we can do the same for

eq.(2.21) as follows:
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x(6,0) R(9) a+ b cosb
r(e,O) = |y(6,0)}| = 0 0
z(6,0) Z(8) bsing

i}

.es (2.22).

If we rotate this generating curve, through an angle ¢ about
the z-axis, a surface is swept out in accordance with the gen-

eral equation

cos$, -sing, O

r8,¢) = |sing, cos¢, O r(e, 0)
0o, 6 , 1 ee. (2.23)
NSNS NS
w\/
toroidal rotation generating
surface matrix curve
x(6, ¢) (a+ bcosb) cosd
i.e. (6, ¢) = (a + bcos8) singd
z(6, ¢) b sin® . (2.29)

for 6 € [0,27] and ¢ € [0, 27].

To emphasize the significance of rotation matrices, we will tilt
the whole toroidal surface forward (about the x-axis), through
an angle 8 , giving the new surface equation

i, 0, O cosp, -sind , 0
re(e,¢) = |0, cosB, -sinB}| | sin¢, cos¢, 0 | r(6,0)
0, sinB, cosB 0, 0o, 1

eoo (2.25).



Scientific American 247(1): 116-22 (1982)

see the "mazzocchio":

\

TORUS generated using the program given on page 46:
see also the color plate A.
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5 a=1

10 b=0.3

20 Xmin=-1.2% (a+b)
30 Xmax= 1.2*(a+b)
40 Ymin=Xmin

50 Ymax=Xmax

60 Zmin=-3*p

70 Zmax= 3*b

80 7=3.1418

90 B=m/6

100 FOR ¢=0 TO 2*m STEP u/20
110 FOR 6=0 TO 2.1*m STEP 7/10

120 x=(a+b*cos (6) ) *cos (¢)
130 y=(a+b*cos (6)) *sin(¢)
140 z=b¥*sin(6)

150 GOSUB 300

160 GOSUB 500

170 x0=x

180 yO=y

190 z0=2

200 NEXT ©

210 NEXT ¢

220 END

TOROIDAL surface _
as on page 45

300 REM rotation through angle B about the x-axis

310 yl=y*cos(B)-z*sin(RB)
320 zl=y*sin(B)+z*cos (B)
330 y=y1

340 z=zl

350 RETURN

500 REM plot subroutine

510 x=(x-Xmin)/ (Xmax-Xmin)*600
520 y=(y-¥min) /(Ymax-¥Ymin)*600
530 z=(z-Zmin)/(Zmax-Zmin)*180
540 z=180-z

550 IF NOT 6=0 THEN

560 = LINE (x0,z0)-(x,2z)

570 END IF

580 RETURN
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{{ The computer program (opposite) draws the inclined torus, as
given by eq.(2.25). The eqs.(2.24), describing the uninclin-
ed toroidal surface, appear as lines 120 to 140 in the program.
Line 150 then rotates all points on the toroidal surface through
an angle B, about the x-axis, then line 160 plots the points
on the screen (joined by straight line-segments) as they are
calculated. Again, the way that the 6-loop [lines 110 to 200]
is nested inside the ¢-loop [lines 100 to 210] implies a surface
which is generated by rotating a circular generating curve
round an axis of symmetry, through an angle ¢. The step
sizes can be made as small as desired, so this computer code

defines what we mean by the term "continuous smooth" surface.

EXAMPLE: Paolo Uccello's Renaissance Chalice

In generating the toroidal surface, our previous program used
a circular generating curve which could be expressed, in
eq.(V2.22) , in terms of simple trigonometrical functions. But,
as the previous example of the Scallop shell showed, it is more
usefull to generate surfaces from digitized generating curves.
Uccello's Renaissance chalice drawing can be reproduced by rot-
ating about an axis, a vertical "meridian-line" composed of
straight-line segments joining 54 separate data-points (each
point (Rg, Zg) corresponding to a different value of 6).

These 54 points are stored in DATA statements and respectively
called upon by the READ statement within the 6-loop. The
points also need to be RESTORED each time the meridian-line

is redrawn, in a new position, by the ¢-loop (see over the page)
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Renaissance CHALICE

as on page 49

[

1 Rmin=-50
2 Rmax= 50
3 Zmin=-~15
4 Zmax= 100
5 7=3.1418
6 B=1/6

10 FOR ¢=0 TO -m STEP -1/30
15 FOR 6=1 TO 54

20 READ R, 2
25 X=R*cos (¢)
30 y=R*sin(¢)
35 GOSUB 100
40 GOSUB 300
45 x0=x

50 y0=y

55 z0=2z

60 NEXT 6

65 RESTORE

70 NEXT ¢

75 END

100 REM forward tilting subroutine

105 REM through angle B about the x-axis
110 yl=y*cos(B)-z*sin(B)

115 zl=y*sin(B)+z*cos(B)

120 y=yl

125 z=z1

130 RETURN

300 REM plot subroutine

305 x={(x-Rmin) / (Rmax-Rmin) *600
310 y=(y-Rmin) /(Rmax-Rmin) *600
315 z=(z-Zmin)/ (Zmax-Zmin) *180
320 z=180-z

325 IF NOT 6=1 THEN

330 LINE (x0,20)-(x,z)

335 END IF

340 RETURN

500 pATA 37,1,37,2,32,3,30,6,25,7,26,8,25,7,25
505 DATA 11,23,14,28,16,28,21,23,23,18,21,16,23
510 DATA 14.5,25,13,27,12,29,11,31,10.5,33,10,35




515 DATA 9.7,37,9.3,39,9,41,8.8,43,8.8,46,20,46
520 DATA 19.5,48,18.5,50,17.5,52,16,54,14,55.5,12
525 DATA 57,10,58,11,60,10,62,13,63,16,64,19,65
530 DATA 22.5,67,25,69,27,71,28.5,73,30,75,31,77
535 DATA 33,77,33,78,30,80,32,83,32,85,37,85,40,88
540 DATA 40,93,37,96,32,96

i
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B=0 B=m/6 g=-m/6

By choosing different values of 8 in line 6 of the computer
program, we can obtain different views of the Renaissance
chalice. The tilting subroutine [lines 100 to 130] is respons-
ible for this and it is accessed through line 35, Uccello orig-
inally drew his chalice with nothing more than a straight edge
and a compass: a monumental feat which we can now mimic
with mathematical equations and computers. Other generating
curves can be specified in the DATA statements [lines 500 to.
540] then this program giveés other figures of revolution.
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2.6 CONI-SPIRAL GNOMONS IN 3D

We have seen that special surfaces can be generated in 3D from
either the scalar magnification eq.(2.20), or rotation about an
axis eq.(2.23), of generating curves which remain self-similar
throughout the process. Obviously the next step is to combine
both operations together in a more general coordinate transform-
ation equation:

cos¢, -sing, 0
r8,¢) = e |sing, coss, 0| r(o,0 ... (2.26)

0, o, 1
s e
R U i T e
surface
scalar rotation generating
magnification matrix curve

This vector-transformation should be read from right-to-left: it
says that a generating-curve r(6,0) is rotated through angle
¢ about the axis of symmetry whilst simultaneously being magnif-
ied (equally in all directions) by a scalar factor ead). In this
way the surface r(6,¢) is generated. These are the kinds of
sﬁrfaces about which Jan Swammerdam, in 1737, wrote

"fa Sfnail fhell] mulft be conceived as a certain
oblong, hollow, Jharp, and flexible tube, which
if rolled and turned round a /mall iron line or
wire, and afterwards this thread or line were
drawn away from it, would Jhew fuch a perfor-
ated pillar [the collumellar umbilicus], which
would be the more exact, if thoJfe foldings,
together with their inclofures, were applied
clofely to each other, and faftened and united
together ... and after this manner are almo/t all
kinds of Juch little /helly habitations built, in
whatever wonderful manner they appear to be
turned or con/tructed. "
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Thus plani-spiral shells such as the chambered Nautilus have
long been viewed as "conical tubes rolled-up into a spiral”

in such a fashion that they increase in size without changing
their overall form: hence their name "equiangular" spirals. But
our transformation eq.(2.26) also applies to coni-spiral, or

"{urbinate", shellfforms as well.

If we delete the rotation matrix from eq.(2.26) it becomes our
earlier equation (2.20); alternately if we deleted the exponent-
ial scale factor from (2.26) it would become (2.23). Thus the
equations (2.20) and (2.23) are, in a sense, limiting cases of
each other. Another way to see this is to select different val-
ues of o ineq.(2.26): o=0 means that e®? = eo = 1 for all
values of the angle ¢, in which case (2.26) describes figures
of revolution as a special case. If a> 0 then (2.26) describes
dextrally coiled surfaces, and if a < 0 they coil Sinistrally.
Also, if o+ « the exponential scale factor expands so rapidly
that it resembles a delta-function, and it accordingly describes

conical limpet-like shell forms.

z zZ A ’ z
X a
1 .
T T

VS{

a<0 a =40 a>0




In its own way, eq.(2.26) is the "Lorentz Transformation" in
seashell mathematics, summing up a special type of symmetry
that determines the form of the Hookean constant matrix in
relevant differential equations. The likeness to the Lorentz
transformation is strong in other ways too, for (2.26) is a
statement that all growth-rings (frames of reference) on the
surface are similar and governed by the same equation. It is
a statement of self-similarity at all stages of shell growth, and
most shells obey this transformation at least to a first approx-
imation.

the equi-angular (logarithmic)

spiral r =e® has the re-

markable property that we
can take any chunk, rotate
it through an angle ¢ and
magnify it by e%, as in
equation (2,26), only to
find that it exactly maps
onto some-other portion of
the spiral. As ¢ may be
any real value we say this

is an example of CONTINUOUS

SELF-SIMILARITY

equiangular
spiral

the "triadic snowflake", de-
vised by von Koch in 1904,
also obeys a transformation
like equation (2. 26), but
only for discrete angles

¢ =nd (n=1,2,3,...) s0
we need a new transform-
ation (2.27) to capture the
essence of this DISCRETE

SELF-SIMILARITY.

triadic Koch
Snowflake
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~ But whereas the Lorentz transformation is a simple "conserv-

ative™ rotation in space-time, our transformation (2.26) is
"dissipative" from the outset because of the exponential scale
factor.

Our transformation (2.26) is continuous in the variable ¢.
This means that we can take any "chunk" of an "equiangular"
spiral, rotate and magnify it, and it will exactly map onto some
other "chunk" elsewhere. But, for some fixed constant A,

eq.(2.26) can.also give the discrete symmetry

cosh, ~sinA, 0
A
r(e, ¢+A) = e® sinA, coshA, O r(o, ¢)

o, 0 , 1
... (2.27).

This discrete symmetry, rather like Bloch's transformation in a
crystal lattice, says that some surfaces are made from finite
gnomons (each subtending an angle A) and that we have to map
one gnomon onto another, as a whole. Examples of this occur
in Murex shells, Wentletrap shells, frilled cockles and Helmets,
to name just a few (see illustrations). Yet this discrete symmet-
ry also applies to certain fractal objects such as the Koch "snow-
flake", indicating that we are touching a symmetry far deeper
than might first have been imagined. Yoichiro Kawaguchi?® has
shown that discrete self-similarity can also be a property of
repeatedly branching corals, plants such as the cauliflower,
and even blood-vessels inside lungs (see color plates F and G).
Often, however, self-similarity is disrupted in certain ways and
"chaos" subtly modifies branching patterns (see color plate H).

-53-



successive chambers in
the pearly NAUTILUS.

The DISCRETE SELF-SIMILARITY of equiangular spirals, as in eq.(2.27),
can easily be demonstrated by starting with_a special rectangle, A, whose
sides are in the "Golden Proportion” 1:3(/5 - 1) or 1:0.618. Then,
choosing as a gnomon the square B, erected upon the original rectangle's
larger side, and so on for successive square gnomons C, D, E etc., we
can crudely mimic the way that successive internal chambers are added to
the equiangular spiral shell of the pearly Nautilus. Interestingly, each
gnomon subtends exactly the same angle, 4, relative to its nearest neigh-
bours on either side. This is more apparent in the Japanese "star shell”
(see below) and some other gastropod shell varieties (see opposite page).

Japanese "star shell”

The Japanese "star shell” Guildfordia yoka (Jousseaume) has niné hollow,
backward-curving spines round its outer gerimeter throughout growth.
Each spike subtends the same angle A = 407, relative to {ts nearest neigh-
bours on either side, showing clearly the significance of the Reinecke
angle & in eq.(2.27). Note also how the oldest spike, blocking the cur-
rent shell aperture and obstructing present growth, is being abbraided

at its base and removed by the mollusc. In this fashion growth may pro-

ceed self-similarly again, after the relatively minor modification to existing
shell ornamentation.
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the frilled cockle”

Callanditis disjecta
(Perry, 1811).

Harpa articularis
(Lamarck, 1822),
a "harp” shell.

Epitonium scalare
(Linne, 1758),
the precious stair-

shell.




LEMMA # 4

0,-1, 0
cosd, -sing, 0 1,0,01¢
- . _ 0,0,0
A($) = |sin¢e, cos¢p, O = e
0, 0,
PROOF:
0, 0,0 i, 0,0 0,-1, 0
A =10,0,0{ + |0, 1, 0] cosp + |1,0, 0} sind
09 O) 1 O, 03 O 0 s 0

B + C (1-¢%/2' + ¢*/4 - ..) +

1l

I + D (6 - 63/31 + ¢5/5! - ...)

I + D¢ - C¢?/2! - Do%/3! + C ¢*/4! +D ¢°/5! - ...

[+o}

2

s=0

0,-1, 0)° .
1, 0, 0 ¢° /st , because D?* = -C
0, 0, 0

which is the power series expansion for the exponential, eDCb ,

as required.

COROLLARY : a,-1,0
cos¢, -sing, 0 1, a,0} ¢
el0s 0, 0) - T¢

e(w sin¢, cos$, O
0, 0, 1

for the constant matrix r defined as above.
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Using the notation and the substance of the preceding Corollary,
eq.(2.26) can now be written in compact exponential notation as

r(8,¢) = ¥ reo, ... (2.28)

whilst eq.(2.27) likewise becomes

r(8, ¢+4) = e°2 r(e, ¢) ... (2.29).
Equation (2.29) follows trivially from (2.28) because the expon-
ents of multiplied exponentials are additive. Thus it is easier to
prove important results using the compact exponential notation

as above.

EXAMPLE:
Consider the following three matrices

cosBi, -sinRy, O cosB,, 0 ,-sinf;
Uz(Bl) = |sinB;, cosBy, 01, Uy(Bz) 0o ,1, 0 ,
0o , 0 , 1 sinfs, 0 , cosB2

i, o , O
and Ux(83) = {0, cosBs —-sinBs ..o (2.30).
0 , sinBs, cosBs

The first matrix, Uz(Bl) , represents a rotation through angle 8;
about the z-axis, and such a matrix was first introduced in our
eq.(2.23). The matrix Uy(Bz) represents a rotation through an
angle B, about the y-axis. The third matrix Ux(Bs) is a rotat-
ion through angle B3; about the x-axis, and such a matrix was
previously used in our eq.(2.25).
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Consider also the following vectors

1 0 0
~T.x =10}, g‘y = |1 and 3"2 = 10 ... (2.31).
0 0 1

T.x represents a translation through one distance-unit, along the
direction of the x-axis. T:y represents a unit-translation along

the y-axis. Tz represents a unit-translation along the z-axis.

Now we could, for example, use the generating-curve suggested
in eq.(2.22): substituting it into eq.(2.26) would give rise to
a plani-spiral (nautilus-like) surface. Alternately we could use

a generating curve of the form

cos o
f(8,0)=ag’x+03‘y—h~Tz+b 0
lsine
a cos B
= |0} + b 0 oo (2.32)
-h sind

which is a circle of radius b, lying entirely in the x-z plane,
whose centre-of-mass has been translated a distance a along
the x-axis and a distance -h down the z-axis. Such a gener-
ating curve would, when substituted into eq.(2.26), produce a
variety of coni-spiral (turbinate) shell forms depending upon the
values of the constants a, h and a. Illert (1976) plotted the
whole range of these forms in his book "Seashell Mathematics".
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Although the generating-curve (2.32) is usefull and simple, few
real shells have such curves confined to the vertical plane. Most
generating curves are tilted or inclined, relative to the coiling
axis, and quite often they are elliptical instead of circular. So
a more general generating curve would be elliptical, with major
and minor radii respectively b; and b», such that the shell

tube radius is given by the equation

b = b(6) = b, cos6 + b,sinb ees (2.33).

Furthermore, in the most general case (see Illert 12 1983 and
Cortiel® 1989), the generating curve might be inclined through
angles B3, B2 and B3 respectively about the z, y and x axes.

Thus our generating curve might be of the form

a b cos6
r(,0 =0 + UZ(BI)A Ux(Bs) Uy(Bz) 0
-h b sinbd

eee (2.34).

We can substitute in the matrices for the respective rotations,
as defined in eq.(2.30), then substitute the resulting generat-
ing curve into eq.(2.26) to obtain the final surface-equations:

x(6,9) = e°‘¢ [a cosd + b cos(B8+Bz) cos(¢+B1)
+ b sin(B3) sin(8+B2) sin(B1+¢)] ,

y(6, ¢) = ead’ [a sing + b cos(0+B2) sin(¢+B1)
— b sin(B3) sin(6+B2) cos(¢+AR)] ,

2(8,4) = €*® [-h + b sin(8+B8,) cos(Ba)] ... (2.35).
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In 1983 Illert'? suggested variously inclining the shell generat-
ing curve (through two main angles B; and B3) as in eq.(2.34):

", .. the generating curve ... has been inclined about an
axis parallel to the x-axis. It could also have been tilt-.
ed about an axis parallel to-the z-axis, in which case a
slightly different rotation matrix would be needed "

By 1989 Mike Cortie'® had introduced a third mode of inclinat-
ion, through angle B,, and used the most generally oriented
generating curve (2.34) to successfully model a variety of
real-world shells such as those following on pagés 61 to 64 and
on page 20. Of course, working in isolation, Cortie developed

a nonstandard notation but his equations are equivalent to those
already given here (see the below conversion table), relying on
the substitution of the generating curve (2.34), into (2.26), to
give the general surface equations (2.35). The knobs and cor-
rugations are produced on the following simulations through
defining special tube-radius functions, b =b(6,¢) a little more
complicated than (2.33), and substituting them into (2.35). The

resulting images are visually pleasing and quite realistic.

Cortie's INlert's standard
notation®® (1989) notation? (1983)
« v
cota [
8 8
‘% e ¢
A B T
“3AsinB=ro a ))) h
- o ~-A cosB ~h a
R(s) b(e)
Q, 6, u B1, B2, Bs
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A planispiral (apex-angle 21 = 180°) ammonite shell
with almost "orthoclinal" growth-lines (i.e. the
generating curve is perpendicular to the direction
of growth at all stages of development):

a=0.1214, t=189.95°, By =8;=B8s =1.1°.
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rotation U, (83) as in (2.34). —_——————uyy

1
o
/

" 1
S

Euomphalopterus (%2) has "prosoclinal™
(forward-leaning, B; >> 0) growth-lines:

a=0.1725, T=45.3°, B =8,=0, Bs;=60.2°.
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Two views of a corrugated turbo shell whose generating-curve
always lies (approximately) in the plane containing the coiling
axis (i.e. the z-axis):

0=10.162, t=235° B, =8,=0, B;=5.16°.
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An example of the rotation
Uz(Bl) in eq.(2.34).

1

the same shell

as opposite, but
with its generating
curve significantly
inclined (By >> 0)

relative to the plane

containing the coil-
ing axis.

-

o=0.162, 1= 34.4°,
B, = -40°, B, =0, Bs=5.2°.

RN
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horizontally-pointing knobs:

An example of the rotation Uy(Bz)

in eq. (2. 34) is the trochus

Angaria delphinius (x1). It has its
generating-curve significantly rotated
(B2 >> 0) about its centre of mass,
within the original plane, thus giving
rise éo knobs which point upward at
29.8" relative to the coiling-plane.

A planispiral (21 = 1800) shell (x1), Phanerotinus sp.,

with unrotated (B8, = 0) generating-curve hence the

a=0.1214, T=90° B, =8,= B;=1.1° (almost zero).

B2

o= 0.1214°, T= 45.26°,
3, =B, =5.2°, B, =29.8°




2.7 THE SELF-SIMILARITY DIFFERENTIAL EQUATION

With the coordinate transformation for self-similar surfaces ex-
pressed in the easily differentiable form (2.28) we have

or ‘
= zr ... (2.36)
3¢
?*r \
nd = ¢ r coe (2.37)
ad)z -~
asr CS’\—SS’ 0
~ = 5pr =0o%|S, Cs, 0| r
8¢s -~ S ~
6, 0 ,1
... (2.38)

where C_ = ((a+D)° + (a-D%) /(26

and S, =i((a-D° - (a+D5)1(2a%).

These are important "self-similarity" constraints which must be
installed into any differential equation that we devise for sea-
shell surfaces. Hopefully they will enable us to determine the
structure of the unknown Hookean constant matrix. But, first,
there is a problem. Once we consider surface equations contain-
ing higher-order derivatives, the question immediately arises as
to how the generating curve must orient itself in order to cor-
rectly turn sharp corners during growth. This question does
not arize in first-order mechanics because the trajectories there
are all "equiangular" spirals and, once the generating curve is
correctly oriented (using, say, equation (2.35)), it remains
similarly oriented throughout growth. But second-order mech-
anics implies growth-trajectories more complicated than just the
equiangular spiral.
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The so-called Frenet conditions that need to be imposed upon
the generating curve have been discussed elsewhere by Willem
Bronsvoort1® (1985), Chris IllertS (1989) and to some extent
also Takashi Okamoto® (1988). But we can't tackle such mat-
ters until we have worked out the general clockspring traject-

ory equation.

To simplify matters we will shrink all shell-tubes r(6,¢) onto
their "principal growth trajectories" 'E‘(cb): i.e. the imaginary
path along the centre of the shell tube, traced out by the cen-
tre-of-mass of the generating curve throughout growth. In the
previous example we simply shrink b - 0 for all values of 6
in eq.(2.34) thereby reducing the generating curve to a single
point at its centre of mass

a
limit r(6,0) ~»~| 0 = T(0) ... (2.39).
b->-0 ~ -h -

As ¢ varies in eq.(2.35) this point traces out the principal growth

trajectory
x($) a cos¢
T = (¥ | = e*® T(0) = e*® |asing| ... (2.40)
z(¢) -h

but this is, of course, only for first-order "equiangular" sur-
faces as in eq.(2.35). Second order theory would have more
complicated trajectories '5‘(4)). The question is, "what are they?
and how do we find them?". The first step lies in realizing that
the equations (2.36) to (2.38) are also satisfied by the principal
growth trajectory, hence it follows immediately that
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T =g T ... (2.41)

and

133
I

g2 T .o (2.42).

-~

But from equations (1.9) and (1.21) we are seeking a real-space
clockspring trajectory equation of the form

§=KT—GT

~ ~ ... (2.43)
~— ——
Hookean velocity dependent
elastic externally applied
term force term

for unknown constant matrices K and G . We can immediately
install the first "self-similarity" condition (2.41) into eq.(2.43),

eliminating the velocity term as follows

T =KT — GgT = (K=-Gg) T ... (2.49)

but the second "self-similarity" constraint (2.42) must also hold

so (2.44) gives the result

K~-Gg = ¢? hence K = 2 +G¢ ... (2.45).
Thus the two "self-similarity" constraints (2.41) and (2.42) have
determined the structure of the Hookean elastic constant matrix

in our real-space differential equation (2.43) in terms of the

known matrix ¢ and the other unknown matrix G.
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In the book "Seashell Mathematics" (1976), Illert considered the
simplest possible case where G is taken to be a simple real scal-
ar constant -2a, and this did give a biologically meaningfull
shell geometry corresponding to the landsnail Marisa cornu-
arietis (as discussed by Sowerby in 1820, and Adams in 1858)

but it was only one special case and, if one thinks about equat-
ion (2.43), the assumption that G be the same scalar constant
for all three spacial directions essentially means that coiling about
the axis of symmetry is coupled to translation along it by a force

of the same magnitude in both processes.

In 1928 A.E. Boycott had noticed that coiling about the axis of
symmetry proceeded to a large extent independently of axial tran-
slation throughout shell growth. So at the very least, we should

assume a matrix of the form

A, 0, ©
G =10, A, O ... (2.46)
0, 0, yu

where ) is a scalar constant related to the magnitude of the
winding-force (torque) responsible for coiling about the axis of
symmetry (in our case z), whilst y is a scalar constant related
to the magnitude of axial compression/extension forces which
regulate shell-whorl translation along the coiling axis. In other
words, we are allowing for axial-growth (as discussed in Section
2.2) to proceed at a different rate to radial growth (as discussed
in Section 2.3). If the forces of axial and radial growth happen
to be equal A =y, then G is equivalent to a scalar constant in
that one special case. But, assuming a Boycott matrix of the

form (2.46), the Hookean matrix in eq.(2.45) becomes
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a’?+Aa-1, -(20+1), 0
K =] (2a+ 1), a?+2Aa-1, 0 ee. (2.47).
0 9 0 ? az+w

The three eigenvalues of K are ki = (a+i)(a+i+A),

k; = (a-i)(a-i+21) and ki3 =a(u+a), corresponding to the
respective eigen-vectors (i, 1,0), (1,i,0) and (0,0, 1).
By constructing a matrix S whose vertical rows correspond to
these eigenvectors, we can reduce K to a diagonal matrix with

these eigenvalues down its diagonal

K = 8§ kR S cee (2.48)
where

kl’ 0’ 0 1,1‘, 0
kR = 0, ky, O s S=1i,1, 0
0, 0, ki 0,0, 1

%,'%i: 0

end S =|%, %, 0

0, 0, 1

Actually we don't need to know S™' because we can write our

real-space clockspring equation (2.43) as follows

Dr=xr=5"ksT cee (2.49)
2
for the differential operator @= %5-2- + G-
3¢
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This whole differential equation can be left-multiplied through
by the matrix S giving

S v =sstrs T

-~

3

or : we can interchange the
@S T = kST matrix S, and the dif-

- ferential operator as

the latter is diagonal

or
e = kg ... (2.50)
where we have defined G = Q and
x+iy
£ = S:]E‘ = y+ix ... (2.51).
z

Actually eq.(2.50) is exactly our earlier equation (1.21), the
only difference being that we have now determined the form of
the Hookean constant matrix k from the "self-similarity" con-
straints (2.41) and (2.42). Also, of course, eq.(2.51) gives
the appropriate relationship between real-space and complex-
space coordinates. As the equations (2.50) are uncoupled we
can multiply them through by arbitrary scalar constants, and

it is more usual to use the "normalized" coordinates

(x+iy)/ £
£ = [(y+ix)/V/2 ... (2.52),

V2 z

This transformation has the physical significance that it pres-
erves the axial component of angular momentum.
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This is best demonstrated by defining angular-momentum in ¢?
as follows

Hos g

T e

= (Ezés‘ﬁaéz» €3é1° gléS, 51&2’ €2é1),

then expressing it in real-space coordinates using the transform-
ation (2.52) (for which & = (x+iy)/V2 , & = (y+ix)/v2 and
£ = /2 z) giving

H (y+ix) 7 — 2 (P+i®), z(x+iy) — (x+iy)z,

3( (x+iy)(§+i50) —(y+ix)(5c+i§)))

(yf - z;{z +i(x£ -zx), zx-x2z + i(z;;f - y:Z), x;;r ~y5c).
Conversely, in E®, real-space angular-momentum is usually defined
as

h = r xr: = (yz'-z;{), za'c—xz;, x;{:—ya'c)
As might perhaps be expected real[H] = h. And, more import-

antly, we notice that the coordinate transformation (2.52) has left
invariant the axial component of angular-momentum:

i.e. - EXE = zerxr «ee (2.53),
Turritella duplicata (L. 1758) 2 o= ’00’02
sinistral turrid o Pt A ,;.-;»» 2 ,,’,' 2 T=
4 #- 1 ’" "“"l l"’"’" it " Ill”'"[' THY ;!”,,,’," ll 0
: f—fa‘-’" il '7"" £ ittt il it il ”’ﬂl lllll = 1.7
G s "17111",:'1,:}ﬂlllmlll'r'llllll"m/ B o
e gt u'.:u'ﬂ",,,"',‘,’,l,:wlll i, ,ll,m”"m; ”ull \ B, = 55
& A ‘ﬂ,-.':,, ml" ‘llllm’,ll’l/ﬁlllﬂ‘ o
generated from eq. ( 2. 35) qp ",a..'._l‘{,: iy By = 1.1
‘\./ '\“-4




'3 SOLUTIONS TO .THE EULER EQUATION t

3.1 .REAL-SPACE; CLOCKSPRING TRAJECTORIES

The Principal Growth Tragjectory, denoted I(d)) » was previous-
ly defined as the spiral curve through the centre of the shell-tube,
traced-out by the centre-of-mass of the shell's aperture (generat-
ing curve) throughout the course of shell-growth. These coiled
curves may be thought of as tensile clocksprings satisfying the
following second-order real-space matrix differential equation

[—3-2- +p2 r? — Q'c] T($) = 0 cee (8.1)
3 ? 30 ~
where
Ay 0O a -1 0 x($)
Q =10 A, 0 ], =1 o 0| and T(¢) = |y(®)|,
0 0 vy 0 0 o z(9)

such that o, A3, A2 and u are constants for any given shell:

i) a is related to the elasticity of the clockspring wire material,
ii) Ay generally equals X, so long as they are both real numb-
ers, and A; = A2 = XA is related to the magnitude of any
winding-force (torque) acting in the xy-plane hence ( as

Okamoto® and Illert*® have suggested) it is probably also
related to the curvature of the spiral trajectory,

iii) u is related to the magnitude of any squashing or stretching
forces which act along the z-axis hence to the torsion of

helico-spiral trajectoriess’ 16 |

-72 -



Equation (3.1) is just (2.49) with the matrices (2.46) and (2.45)

installed. Written in full we have

¥+ Ax - (al+Ara-1x + (20t )y

I
=]

Yy + Ay - 2o+ x-(a2+Aa- Dy = 0

Z + uz -(a2+p)z =0 c.. (3.2)

where dots denote 3/3¢ . Clearly, as A and u are independ-
ent parameters which may assume any real or complex value, there
are a diversity of clockspring trajectories, solutions to (3.2), and

we will now examine as many of them as are known at present.

CASE # 1: the Coni-spiral, (real) A = (real) u = -20 (3.3)

The elasticity of the clockspring wire is any real constant a . So
substituting A = -2a into the first two equations in (3.2) gives

x - 202 + (a2+1)x = 0

y - 2ay + (af+1)y = 0 ... (3.4).
Direct substitution reveals a solution of the form

x(¢) = a eud) cos¢ , v(¢) = a eaq) sind ... (3.5).
Likewise, for a real number u = -2a, the third equation in (3.2)

simplifies down to



Z — 2z +02z =0 ... (3.6)
which has a solution of the form

= -pe%?
z(¢) = -he ... (3.7 ().

Collectively the equations (3.5) and (3.7)(i) correspond to
previously discussed trajectory (2.40): i.e. a "turbinate" spiral
lying upon the surface of a cone of base-radius a, and height
h. And, depending on the value of o, these coni-spirals can be
left-handed, right-handed, or circular (as, for example, in a

sea-urchin's test, or a hen's egg).

It was, perhaps, Pierre Varignon in 1704 who first demonstrated
that a circle is a limiting case of a spiral: just substitute a =0
into equations (3.5) and (3.7), above, to obtain a circle of radius
a parallel to the xy-plane, but located a distance -h down the

z-axis.

Another solution to (3.6) happens to be
2(¢) = ¢ e*® ee. (3.7 ().

This special solution was discussed by Illert (1976) in the book
"Seashell Mathematics': equations (3.5) and (3.7)(ii) describe
the principal growth trajectory of the land-snail Marisa cornu-
arietis (as discussed by Sowerby in 1820, and Adams in 1858).

The most general solution to (3.6) is therefore

28) = (G(0) — az(0) ¢ e®® + z(0) e*?
... (3.7)(iii).
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CASE # 2: Mobius Conoidal Spires
(real) A = -2a

(real) u # -2a ... (3.8).

If u can assume any real value, except -20, in the third

equation (3.2) then there are two solutions

Z5(6) = -h e P cosn((atin)e)
= -3h(e®® + (@t e (3.9)(0)
and
279 = -he P sinh((orn)e)
= —3n(e®? — g (@tWIO, ... (3.9)(ii)

which we may write collectively as

26) = -3h (2 2 o (OTWO, ... (3.10).

But, as A=-2a , the solutions for x(¢) and y(¢) are still
given by the equations (3.5). Hence, assuming axial symmetry,

we can define cylindrical-polar coordinates as follows

Vx2(9) + y2(9)

R(¢)

((a ¢ cos$)® + (a L sin¢>)2)'lf

ae®? ... (3.11).

I

Substituting (3.11) back into (3.10) enables us to eliminate the
variable ¢, giving the purely cylindrical-polar relationships
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Mébius elastic Conoids of the First Kind
g and some conchoidal counterparts.

Conoldi elasticl Méblus del primo tipo e
qualche conchiglia corrispondents.

Coeloconold
Turroid
~2a>4>-q p=-Q “-a>u>0 H+ -
o ¢ 2 9
H m Sy L
H=-2a &1 ' J

Lo

emvetyae
XA Y

Mobius elastic Conoids of the Second Kind
and gome conchoidal counterparts.,

Conoid} elastici M&bius del secondo tipo e
qualche conchiglia corrispondente.

Bulloid

Ovulofd

Hollongoid

also see color plates A and B
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ps

. Y- (L+p /o)
EAN S R {B_} ~ ... (3.12).
h

This equation describes two different fé.milies of surfaces, of
revolution, upon which our clockspring trajectories lie. Those
surfaces of revolution given by (3.12), with the plus sign, are
called Mobius Elastic Conoids of the FIRST KIND. Their count-
erparts satisfyi,ng‘(3.12) , with the minus sign, are called Mobius
Elastic Conoids of the SECOND KIND. Various shell-spires, as
they occur in Nature, corresponding to these conoids, are shown
opposite. Additionally, conoids of various kinds can be super-
imposed (added together) to describe more complicated spires
with recurve and compound curvatures (see Illert*® (1987) and
(Dec. 1990)). It is important to notice that, as u assumes differ-

ent values,the conoids (opposite) appear to be axially compress-
ed or stretched.

Some exotic shells start growing along the
shell-axis, only to reverse their growth- i

. : : : 7 7 Juvenile stage of ;
d.lrectlon and begin spiralling about their M mgmaugea’w
liner protoconch. after Okamoto

g

The surface, upon which the
protoconch growth-trajectory

Eubostrychoceras muramotol lies, Okamoto's "hyperbola
after Okamoto of revolution”, is actually
o;rdes of our type E mébius con~
o

also see color plate F




see ref. 5, Dec. 1990

sectioned ammonite shells provide an explanation for
conoid meridian lines in terms of elastic bow armatures.
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Turkish

s

superpowerful

recurved elastic bow armature

superposition of different conoid meridian-lines
b4

produces the optimal

-

R R

some Olive, Turrid and stromb shells have recurved spires
-79 -




EARLY PROTOCONCH (*2)

ABOVE: the Baler Shell protoconch
a few weeks after hatching (x2).

RIGHT: a juvenile with convex al-
most hemispherical spire, and
spikes developing round the shoul-
der of the outermost whorl (x2).

BELOW RIGHT: adult Baler Shell
shown in section to highlight the
upswept outermost whorls (x4),

& /. cz=\c;€¢

z

meridian
line

Some shell-spires change their
direction of translation along
the axis-of-symmetry during
growth. By adding two Mobius
Elastic Conoids (G, and G,), as above,
we can generate an aspheric surface of
revolution, resembling a Mexican hat,
which resembles the undulations of the ADULT (x4)
spire of the mature Baler Shell (RIGHT).

CONOID SUPERPOSITION AND COMPOUND SEASHELL-SPIRES
(Sovrapposizione di conoidi per produrre compdsite geometrie guglia)
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CASE # 3: Hyperbolic Clocksprings
(real) A # -2a : ... (3.13).

The hyperbolic clocksprings are best appreciated if we initially
choose them to lie entirely in the xy-plane. Another way of say-
ing this is that we choose the trivial solution z=0 in eq.(3.2).
In any event, with A # -2q, the first two equations (3.2) have

the solutions

x(¢) = ae ¥ cosh((a+tiN)g) cosd
y(#) = ae **? sinh((a+iN @ sing ... (3.14)

the so called hyperbolic clocksprings of the FIRST KIND;

and also

x(¢) = ae M sinh((at3N)¢) cos
_ -3 Ad .
y(¢) = ae cosh((o+%A)¢) sing ... (3.15)

the hyperbolic clocksprings of the SECOND KIND. By inspection
it should be obvious that clocksprings of the First Kind are an-
chored at the point (x(0), y(0)) = (a, 0), whereas those of the
Second Kind pass through the origin such that (x(0®), v(0)) =
(0, 0). Check by substituting ¢=0 back into (3.14) and (3.15)
respectively. We can now understand the significance of the
"fixed end" boundary condition obeyed by the urchin-eating
Helmet discussed in Section 1.1, and see how to mathematically
formulate such a constraint using equations (3.14). Conversely
we would use equations (3.15) to model the cowrie-shell whose in-

curved aperture was also mentioned in Section 1.1.

-8l -



CLOCK-SPRINGS OF THE FIRST KIND

anchorage

Anitially the apring has
numerous inflated polar
colls, As the ®wire" is
infinitely thin it may
pess through itself.,

As the spindle iz wound clockwise
the cofls shrink. The outermost
end of the wire temains anchored.

or>

As the gpring is wound.even mors
{t becomes a straight line and pas-
ges through itself, reversing the

direction of coiling in order to re-
t sist the external torqua.

llmlllmuumumlmmn%

................ petsnieisenantsast

!
LETRR RS IERF IR LA Ssm s ‘ the “catastrophe® when A = ~2q

‘Q;(“mmuummmlﬂﬂﬂmﬁﬁl!ﬁﬂh‘tﬁfl— ceras

L]

the spring has now reversed its
direction of cofling in order to optim-
ally resist the externally spplied
torque. Continued winding will now
P only cause greater Euler
buckling,

Salpingostoma
(a Bellerophont)




L

Of course these clocksprings need not be confined to a flat plane.
Either of (3.14) or (3.15) could be combined with either of the -
z(¢) solutions given in eq.(3.10), or maybe with either of the
simple‘r solutions (3.7) (i) or (3.7)(ii), and perhaps with other
solutions yet to be discussed or discovered, to give a variety of
complicated three-dimensional spirals, any of which may be super-
imposed (added together) to give composite spirals. ‘The import-
ant thing is that, as A varies, the clocksprings actually tight-
en or loosen their coils as if acted on by an external torque ap-

plied to the winding-spindle (axis of symmetry).

Opisthostoma
retrovertins

1.2

0.3
0.4
Q.5

the back-curved final whorl of a typical
CLOCKSPRING of the FIRST KIND

Siliquaria ponderosa




CASE # 4: wrinkled Ramm Cones
(real) A # -2a
¥ = any real number ... (3.16).

Some interesting trajectories arise if we allow the hyperbolic
cloéksprings (3.14) and (3.15) to lie upon surfaces of revolution;
not unlike the conoids in Case 2. Consider, for example, clock-
springs of the First Kind given by (3.14) and a cylindrical polar

coordinate R(¢) given parametrically as follows

RT(¢) = Vx2e) + y2(¢)

a2 4 2@ Lo mhd (oe2h  sinZgy)®
... (3.17)
which satisfies the boundary condition
RT(0) = «a ... (3.18)

the "fixed-end" constraint that characterizes clocksprings of the
First Kind (in this case giving a fixed "neutral" ring of radius a
for all values of 1).

Likewise clocksprings of the Second Kind (3.15) have a corres-
ponding cylindrical-polar radius given parametrically as follows

R (¢) = }a (e20qu + e 2(at o _ 5 m2d (cos?¢p - sinzcb))%
... (3.19)

which satisfies the boundary condition

R(0) =0 ... (3.20).



- Now, either of the radial functions (3.17) or (3.19) can be com-
bined with any of the functions z(¢) given by the equations
(3.7) or (3.10). Specifically, combining R® with z can give -
wrinkled Ramm Cones; trajectories on such surfaces of revolut-
jon are multiple-tiered and self-similar. Combining R~ with zt
can yield a whole class of Edwards Conoids of finite height, some
of which are completely closed and similar to pine-cones or sea-
urchin shells (tests). These are fundamentally different to the
conoids previously discussed in Case 2 which were infinitely tall

and open at (at least) one end.

A
¥

Sy
s

ANVEP e b2 018 A n0RY
Ol ‘yr.mmw.-\w»ﬂ"-

IR idiies
o e

S0

YIRS

SN

(VIR

i"

" wrinkled Ramm Cone geom-
etries in actual land-snails
are often self-similar




CASE # 5: Heteromorphs
complex values of A

The constant A in the Boycoit matrix (2.46) is real-valued,
corresponding in some way to the magnitude of nett winding-
force (torque) about the axis of symmetry Z. Obviously, the
greater this winding torque, the tighter the coils of the spring
spiral hence the smaller the instantaneous "curvature" at each
point on the trajectory. Thus our constant A is some kind of
measure of trajectory-curvature, and the tightness of coiling
in a general sense, so it is sometimes called the "normalised"

curvature (see Okamoto® and Illert!S).

In general, complex values of "normalised curvature" A cor-
respond to trajectory-transverse oscillations in the coiling-plane
(i.e. the xy-plane). This is a result that one won't find in the
standard text-books on Differential Geometry. It has only come
to light through our study of seashell geometries. To apprec-
iate what is being said here it helps to recall that, so long as

A1 and A; were both real in equation (3.1), we could put A; = Az
= A as in the original Boycott matrix (2.46). But if they are
both complex then their imaginary components might not be equal.

Indeed, if we select

A1 -2a - In(e) +1i 2y

Az -20-In(g) +i(2y + 7w) ... (3.21)

the real components are the same, but there is a phase difference
in the imaginary terms. Thus a hyperbolic clockspring trajectory
of the First Kind



n

a (% + g (@t Ad, cos¢

x(¢)

... (3.22)
y(¢) = a e - (et A2, sin¢

becomes
real{x(¢)] = a ea‘b (1 + e¢’ cos(2v9)) cos¢
o 6 ... (3.23).
really(¢)] = a e ¢ (1+ €7 cos(2v9)) sind

Now, depending upon the value of y, we can describe spiral traj-
ectories with multiple bumps (called "apses"): if 2y = 2 we are
describing heteromorphic Ammonites with two apses like Macro-
scaphites; if 2y = 3 we have three-apsed trajectories as in
Soliclymenia paradoxa and Parawocklumeria (see Illert'®, Octob-
er 1990).

also see color plate C

Soliclymenia paradoxa (Minster)

Parawocklumeria

- N ( . ) ——
Macroscaphites fvant (GOTE SHELLS WITH COMPLEX CURVATURE A
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CASE # 6: cylindrical Sine-Spirals
(real) X = -2a
(complex) u =a - B -i(y- 3w ... (3.24).

For A = -2o0 we obtain the equiangular spiral in the coiling
plane, as given by equations (3.5). But complex values of yu,
the measure of axial squashing and stretching forces, result in
trajectory-transverse oscillations perpendicular to the coiling
plane. This physical consequence of complex values of torsion
is not to be found in standard texts on Differential Geometry
and has only been uncovered through studying real-world shell
geometries. Typically we are dealing with trajectories of the
form

z2(4) = b e(B+i(Y-%TT))¢> ... (3.25)(i)
alternately written as
real[z($)] = b eBd) sin(y¢) ... (3.25)(ii).

We can demonstrate the validity of the solution (3.25) (i) simply
by substituting it into the third of the equations (3.2), in the
process determining u (as in 3.24 above). Typically these
cylindrical sine-spirals, given by equations (3.5) and (3.25),
start coiling in a regular planispiral fashion soon thereafter de-
veloping trajectory-transverse oscillations, of increasing mag-
nitude, perpendicular to the plane of coiling as with the fossil
ammonite Nipponites occidentalis (shown opposite). Some,
however, like the juvenile Nipponites mirabilis curve back over
themselves requiring a more complicated trajectory equation

(see the discussion in Case 7).



SHELL GEOMETRIES EXHIBITING THE EFFECTS OF
COMPLEX TORSION u

Z)

\Q‘,}\“\\\\\\m\mululu{((,,,
£5 2\

Nipponites occidentalis

Nipponites mirab{lis

Nipponites occidentalis starts coiling in a regular plani-
spiral fashion but soon develops trajectory-transverse
oscillations perpendicular to the plane of coiling. This
kind of trajectory is called a cylindrical Sine-Spiral.

Nipponites mirabilis starts off in a similar fashion, but
its looping whorls overhang significantly and a more
complicated trajectory equation is needed.
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CASE #7: spiral Lissajous Figures
(the miraculous Nipponites)
complex A and complex

Complex values of curvature

]

A1 ~2a - In(e) +1i 2y

Ao ~2a~-In(e) +i(2y+m)

and also complex values of torsion

B = a=-B-i(y-3m) ... (3.26)

produce the most incredibly sinuous spiral Lissajous Figures
. as in the fossil Ammonite Nipponites mirabilis. Typical
trajectories satisfying equation (3.1) and the conditions (3.26)

are of the form
reallx(¢)] = a ewb (1+ ed) cos(2vy¢)) cosd
real[y(9)] = a e*® (1 + e? cos(2v4)) siné

b eP? sin(yé) ... (3.27).

real[z(¢)]

Generally we can generate a huge range of Lissajous spirals »
assuming that e¢ 2 gg, aconstant, throughout growth.
But if we wish to correctly describe the transition from plani-
spiral juvenile growth to the wild serpentine adult trajectories
then it is important to take into consideration the €¢ term in
(3.27).

A refinement to our basic trajectory (3.27) has been suggested
by Takashi Okamoto:



Nipponites mirabilis
after Illert*® (Oct. 1990).

X aeamid
S

a)

also see color plates D and E

L}

real[x(¢)] a ead) (1 + eq) cos(2y¢)) cos(¢d-f sin(2y¢))

a eoccb (1+ sq) cos(2v9)) sin(¢ -f sin(2v¢))
... (3.28)

real{y(¢)]

where f is a small constant which helps round the trajectory,
making it more sinuous and serpentine, like the suture-line on

a tennis ball. Thus, with the generalised solutions for x(¢)
and y(¢) given by (3.28), and z(¢) as in (3.27), we can
not only describe the meanderings of adult Nipponites but also
planispiral juvenile growth-stages and the transition between
them. This is, perhaps, one of the most awesome and challeng-
ing growth-trajectories given by our equation (3.1). It is al-
most conclusive "proof" that our analysis is correct.
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3.2 BRANCHING CLOCKSPRINGS AND ACAUSALITY

We return now to the Newtonian notions of time-flow, and linear
causality, underlying the analysis in Section 1.2 . Equation
(1.2) conjured a mental-image of each new point 'gs (on some
continuous trajectory £(¢)) being attained by the vector

3 A, starting from ~the preceding point § s-1° with entire

€
2s-1
spiral trajectories being created from a sequence of linear steps

(as in eq.(1.3)) just like walking round a spiral-staircase.

This is all very classical, and "sensible", but we should have
realized from the second-order mechanics in Section 1.3 that it
isn't quite what's happening. Yes, equation (1.6) looks causal,
but the auxillary equations (1.7) and (1.10) require us to "know"
£ 1 (ahead of time) in order to respectively define the velocity

2s+1
term gs and the (absolutely essential) "average radius" vector

-~

£ s® Greenspan and Kanatani’ have already remarked upon
this acausality within our kind of discrete mechanics. But does
it matter? Could it have observable macro-temporal consequen-

ces?
Consider the example of clocksprings of the Second Kind

E() = a e P* (sinh((a+1A+1)0), § sinh((at+3A-D9), 0)
cee (3.29)

which, because of . eq.(2.52), correspond to the real-space
trajectories (3.15) that spiral out from the pole, only to have
their outermost whorl loop-back to intersect pre-existing inner
whorls. The cowrie shell discussed in Section 1.1 is of this kind
but its inturned lip stops short, before any-such intersections
could occur.
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Yet shells such as Yochelcionella, Rhaphaulus, Rhiostoma and
Spiraculum all utilize self-intersecting clockspring trajectories;
actually BRANCHING at points of trajectory-intersection, there
after growing simultaneously along two separate branches of
the clockspring! Some shells branch during the earliest devel-
opmental stages (as in Yochelcionella daleki, a self-intersecting
clockspring of the First Kind,named after a "Dr. Who" science
fiction character), whilst others {(such as Janospira nodus, a
self-intersecting clockspring of the Second Kind) wait almost
till the end of ontogeny before branching.

Yochelcionella daleki Yochelcionella cyrano touchella P

A=—0.45 A=—0.6 A= =09
a=1] a=1 a=1

Planar branching clocksprings of the first kind.

PR L LY
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Rhiostoma,
an example of
adpolar branching

o——

o wes wmam o
oY ~- e
-

A=-—0.55 ‘
a=0.5 s

Planar branching clocksprings of the second kind.
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The palaeontologists who first studied these branching clock-
spring geometries described the shells as "curious", "ridiculous"
"absurdities"  but we can now see them as the same optimal
tensile spirals which other non-branching shells also utilize. And
as trajectory-branching seems to occur widely, in unrelated
species, the usual "once-off" biological explanations won't suffice

... there is a deeper geometrical principle at work!

Whilst its clear that the outermost whorl of Janospira's traject-

ory traverses an elongated loop before returning to intersect it-

self, at the branch-point, we need to carefully think about the
causality underlying the actual shell's growth processes. Initial-

ly the shell starts spiralling outward from somewhere near the

pole (¢ = -»), eventually reaching the branchpoint (¢ =na)

where it duly splits along both trajectory paths! But how can ﬂ
the trajectory at the branchpoint (¢ =n A) be causally linked to

the FUTURE outgoing pathway (located at ¢=mA, for m>n)?

It seems as if Janospira, at the instant of branching, "knew"
(ahead of time) about the existence and location of a future por-
tion of the clockspring trajectory ... even though the outermost
whorl had not, at the time of branching, actually looped about
to (and indeed, never ultimately would) physically create the
future intersection-point. We are talking here, about action
with foreknowledge, action outside the expected linear Newton-
ian time sequence, rather as if an impending future event acted
BACKWARD THROUGH (future) TIME to influence the present!

Although highly unusual, this is not logically or physically im-
possible. Lila Gatlin?® has explained that



"Tolman’s paradox forbidding time-reversed information
transmission is nonexistent and rests.only upon our in-
grained thought processes involving, hidden, unnec-
cessary assumptions ... although it will never be pos-
sible to design a system that transmits messages from
the future upon request from the designer ... this
alone does not exclude the possibility that intermittent .
unrequested messages from the future may sometimes
reach a simple computer or, particularly, living organ-
isms, which are masterful information processing sys-
tems ... ". '

We can more rigorously analyze the causality underlying the
branching of Janospira by recourse to discrete-growth analysis
as in Section 1. We know that the vector-equation (1.6) is the
correct approximation to the clockspring trajectory (3.29), par-
ticularly if A is small and n is large, in which case we can
delete the A? term from (1.6) and think more in terms of (1.3)
and & schematic vector-spiral diagram (as below):

action from action forward  action back
past to present  through future through future
time time
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The logical rigour of this vectorial analysis makes clearer the
causal implications of Janospira's geometry, For branching to
occur, in the present, there isn't just Lila Gatlin's "action
backwards through time [minus the sum from n+l to.m-1] ...
there is also action forward through future time [the sum from
n+l to m] and we will name this second kind of temporal propo-
gator after Rupert Sheldrake®®. We see that these acausal
temporal fluxes seem to appear in pairs and, in the limit as
growth-increment size A becomes infinitessimal, we can imagine
the finite sums associated with the Gatlin and Sheldrake propo-
gators becoming circle integrals.

The main thing to realize is that branching clocksprings arize
naturally from the same theory that describes all other known
shell geometries, and that examples such as Janospira occur
in Nature. To be predicted by theory and observed in pract-
ice is a powerfull metaphysical position: how one mentally recon-
ciles the causal implications is a psychological problem.

EXAMPLE: charged Lepton decay and Neutrino production.

Instead of being a logical anomaly, the temporal propogators
may possibly be a theoretical asset in various contexts. For
example, the discrete analysis in Section 1 is not unlike the
idea of a particle interacting with a potential according to
quantum-field theoretical notions. Although dissipative, be-
cause of the exponentials, our Lagrangian (1.36) has a Kline-
Gordonish look about it. In order to adapt it for the descript-
ion of spinless uncharged particles we could start by selecting
the matrix =0, and mass M2 = -k which gives three pos-
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sible cases M= 11+ic or M =0z*ia. Ignoring the complex
component we might, for example, choose M = 1 to represent
particles, M = -1 to represent antiparticles, and M = 0 to rep-
resent, say, neutrinos or photons. The complex component o
can represent some other aspect -of the particle's mass-energy:

perhaps spin (so if we want to describe leptons we just set a = 3).

In any event, if we want to describe charged particles then we
do not choose =0 and this has the effect of making our
Kline-Gordon equation "dissipative": perhaps empowering us to
tackle BremBtrahlung emissions of a decelerating charged particle
in an external potential. Certainly the preserved z-component
of angular momentum Z . rx f , as in equation (2.53), does sug-
gest a spin-direction d~ue to an external field. If this is the case
then we would expect our charged particles to travel in clock-
spring trajectories such as (3.29) which sometimes BRANCH.

Of course the Kline-Gordon equation is normally only used to des-
cribe the behaviour of Bosons. But our equations aren't quite the
normal version of the Kline-Gordon equation. We will persevere
with our description of decaying charged Leptons, even if it only
applies in the sense of an analogy: like the "clocksprings", "elastic
conoids" and "archery-bows" that have been mentioned earlier. At
worst the analogy will help us grasp the mathematical meaning, yet
perhaps it is more than an analogy. It is for others to decide.

Consider the trajectories (3.14) and (3.15) which depend critically
upon the value of A. This reinforces our guess that trajectory
curvature, A, is related to the elementary particle's charge q.

A. Prosperetti's “"zero-order gpproximation" to the "chronon"
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has a q* term, so perhaps A is a simple function of q (see
reference®’). The main point here, is that there are idéentifiable
quantities in our Lagrangian which might correspond to mass,
charge and spin of elementary particles. So let us consider the
decay of a charged MUON (mass = 105 MeV) into an identically
charged ELECTRON (mass = 0.5 MeV) in the process giving off a
supposedly massless e -NEUTRINO and a u-ANTINEUTRINO:

T S R ... (3.30).

The same branching trajectory that we used for the shell Jano-

spira can now represent a muon entering from the left (see bel-
ow) and decaying into an electron which, because of the external
field, spirals inward losing kinetic energy. But what about the

temporal propogators?

The decay of a muon into an electron, modelled in terms of
our branching "Kline-Gordon" trajectories. The neutrinos
also produced in this decay arize because of circle integ-

rals round the dotted portion of the curve (see opposite).




The Gatlin temporal propogator can be thought of as a flux,
backward through future time, from ¢, to ¢, 'supplying
the neccessary impulse to stop the forward momentum of the
muon: it is a y~ANTINEUTRINO. On the other hand, the
Sheldrake temporal propogator can be thought of as a flux,
forward through time, from ¢, to ¢, supplying the down-
ward momentum neccessary to kick the electron into existen-
ce: thus it is an e-NEUTRINO. So, in our model, the muon-
antineutrino is just a time-reversed electron-neutrino and,
because they both exist outside the normal time-flow, they
must both escape off at the speed of light carrying away
recoil momenta. In this model, the time loops have physical

meaning.
BELOW: action back- Ve Sheldrake propogator b2
ward through future '
time, reaching the
present, supplies the ¢1

neccessary momentum
to stop the forward-
moving Muon.

51

momentum to

¢1

ABOVE: action
forward through
time supplies the

kick an electron
into existence.

TIME-LOOPS: vector-sums in "temporal loops”
become circle integrals representing neutrinos.
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Perhaps a more modern interpretation of these matters would
require us to view the incident muon as NOT being a pointlike
Newtonian particle with precisely defined position and moment-
um: instead it might be considered as "smeared over a region
of space-time". In which event the branchpoint may be viewed
as a temporal version of Young's double-slit in the famous opt-
ical interference experiment. Thus the incident muon sends
temporal propogators out from the branch-point, both backward
and forward through time, along both possible paths round the
trajectory-loop (Huygen's Principle). These two propogators
pass frictionlessly through each-other, through space and time,
meeting again at the branch-point where they interfere with
what's left of the incoming muon that caused them ... thus giv-
ing rise to an explosive resonance of destructive interference

that results in the observed lepton decay.

One final observation is that the torsion constant in S} 1is zero
for for zero-mass particles, but may increase to minus infinity
for massive particles: thus torsion could supply a measure of

Lorentz-Fitzgerald contraction of accelerating particles.

The Niraculous Shell:

This graceful spiral seashell,
evnlutionary sculpture suhlime,

is a clockspring of optimal strength,
and a record of passing time.

Its second-oprder surface,
round an axis doth toine,
exhibiting ripples and waves,
frozen in calcified lime.

Our extinct fussil Nippanite,
with coils all serpentine,
recanstrucked as ‘twas in 1life,
using super-compuker time,

Baa
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3.3 CONCLUSIONS:

In formulating the general problem of seashell geometries we have made
the assumptions that 1) seashells grow by the accretion of finite incre-
ments thus requiring discrete mathematics for an appropriate description,
2) such growth is necessarily nonconservative thus requiring the use of
mathematical methods outside the old-fashioned Lagrangian and Hamilton-
ian treatments familiar from conservative-stable (hence nongrowing) syst-
ems and 3) seashells require the use of novel techniques for their repres-
entation based upon the so-called conditions of variational self-adjointness.

These assumptions permitted the first quantitative representation of shell
growth verifiable by computer simulation, thus separating personal beliefs
and the mediaeval sophistry of the paleontological literature from true
fundamental science. We have, after all, a unique second-order coupled dif-
ferential equation (3.2) describing all of the several major categories of

shell geometries found in the real world.

The earliest-published seashell Lagrangians had terms representing kinetic
and potential energies but were confined entirely to real Euclidean space E3.
The model was subsequently improved by lifting the whole problem into what
is called ISO-EUCLIDEAN space ¢3 (named from the Greek isos-topos meaning
preservation of the original configuration).  The seashell Lagrangian still
has the same form, with terms representing kinetic and potential energies,
but they are complex instead of purely real (contrast references 2 and '%).
The resulting isogeometries seem to obey the axioms of familiar real-space.and
we made an effort to emphasise the. Newtonian-ness of our mechanics in Sec-
tion 1, yet isospace is in reality curved and forms that are different in nor-

mal Euclidean space may be unified in this more general geometry.

Does it matter if space is Euclidean or Iso-Euclidean? Yes, actually! We al-
ready know that shell growth trajectories are iso-euclidean but, if we tried to
force them into purely Euclidean space, they would wrinkle and the shells
would crack or explode. We can roughly convey this from the previously dis-
cussed case of Nipponites mirabilis (see pages 90 and 91). The first main step

toward "Euclideanising" our iso-euclidean Lagrangian (1.36) would be to set
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the exponential terms equal to unity (or at least some constant). Now this
is a bit too radical for present purposes, but we can go most of the way to-
ward this with minimal effort simply by examining the equations (3.26) and
realising that the exponentials in our Lagrangian are of the form et 9

and e’2 ¢ hence the fastest-varying component in either case will be an
e? term. By setting this equal to a constant €, we should start to "see"

the effects of forcing iso-euclidean curves to exist in purely euclidean space.

We have already examined the effect of setting ecb = gy for the shell Nip-
ponites mirabilis. It produces a loopy serpentine lissajous spiral that goes
on in a self-similar fashion for ever as in case d) in the figure on page 91 .
Conversely, in the fﬁll iso-euclidean case where €? is allowed to vary, the
shell undergoes a transition from regular plani-spiral juvenile coiling, to
increasingly serpentine meanders as in cases f) and g) in the figure on
page 91 (see also Nipponites occidentalis on page 89).

In other words, the iso-euclidean trajectory of Nipponites mirabilis starts coil-
ing in a regular planar spiral before eventually becoming serpentine. But if
we force it to exist in a more "Euclideanish" space (by setting b =¢ ¢ ) the
whole curve meanders grossly from beginning to end, it is just like stuffing
elastic piano-wire into a smaller box thereby forcing it to wrinkle more severe-
ly. And these substantial wrinkling effects arise from the rather gentle first
approximation to the euclideanisation of an iso-euclidean curve. Full euclidean-
isation would, no doubt, produce much more dramatic effects ... perhaps with

individual geometries exploding like bombs!

There are also other important consequences of isospace. Shells evolving in it
appear, on first inspection, to be évolving in normal euclidean space and time
in accordance with classical Newtonian dynamics: see equations (1.2), (1.9),
(1.8), (1.7, (1.25) and (1.28). But we see from the Lagrangian (1.36) that
all associative products must be written in the form A*B = ATB where the
iso-unit T = efw . But this exponential can equivalently be negative-definate
thereby defining an isodual universe wherein time evolves backward, and
energy is negative definate. Thus our discovery of action backward and for-

* ward through time at branchpoints, constitutes the first manifestation of
isodual isogeometries ever seen in nature. The necessity for motion backward

through time is precisely the geometric isoduality.
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The isoeuclidean geometry was discovered by Prof. Ruggero Maria Santilli
in Hadronic J. Suppl. 4A, 1 (1988) and was subsequently treated in detail
in the monographs:

R. M. Santilli Isotopic Generalizations of the Galilei and Einstein
Relativities, Hadronic Press, Palm Harbor, FL [1991], Second edition,

Ukraine Academy of Sciences, Kiev (1994).

An outline of the isoeuclidean geometry and its application to sea shells is
presented by Prof. Santilli in Part I of this volume
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Abstract

An inspection of the pioneering research in theoretical conchology by Chris Illert [1]
indicates that sea shells appear to be in our Euclidean space. However, the strict
imposition of the axioms of the Euclidean geometry prohibits a quantitative
representation of their growth, as verifiable via computer visualization, thus
indicating that they belong to a geometry structurally more general than the
Euclidean one. In this paper we show that a quantitative, computerizable
representation of sea shell growth can be obtained via new geometries recently
proposed by this author, called isoeuclidean and genoeuclidean geometries, which
are based on two new branches of mathematical methods called isotopic and
genotopic, respectively. Unlike other generalizations, such as Riemannian or
Finslerian, the iso— and geno—euclidean geometries are based on the generalization
of the trivial unit of the Euclidean geometry I = diag. (1, 1, 1) into a nonsingular and
well behaved 3x3 matrix T with an unrestricted functional dependence on all needed
local quantities, and then the reconstruction of the entire mathematical methods
into a form admitting T as the correct left and right unit. The isoeuclidean
geometry emerges when 1 is Hermitean and positive-definite, and the broader
genogeometry emerges when 1 is not Hermitean, thus requiring the necessary
selection of a direction in time. The main result of this paper is that a structural
generalization of the unit of space and time is requested for a quantitative
representation, not only of the growth of seas shells, but also of their bifurcations.
The same isotopic and genotopic methods are expected to be applicable to other
biological structures. However, yet more complex biological structures are expected
to require yet more general mathematical methods, such as the hyperstructures,
which can be realized via genotopies with an infinite number of generalized units.
In short, the view conveyed in this paper is that genuine advances in theoretical
biology require fundamentally novel and advanced mathematical methods.
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1: INTRODUCTION

1.1: The problem of sea shall growth in space. Let us consider one of the
sea shells studied for the first time by C. Illert [1] via rigorous, quantitative,
computerizable, mathematical representations, such as the Angaria Delphinius of
Fig. 1.

By observing it in our hands, one generally has the impression that the shell
belongs to our conventional, three-dimensional Euclidean space E = E(r,5,R) with
local coordinates r = {x, y, z}, metric & = diag. (1, 1, 1) and invariant

Z=xxtyy+zz, (L.1)

T
over the field Rg = Rs(n,+,><) of real numbers with conventional addition n+n’,
multiplication nxn’ = nn', and muitiplicative unit of space

Ig=+1, Ikn=nlg=n Y neR, (1.2)

where one can assume, e.g., the value Ig = 1 mm.

The evolution in time would indicate that the Angaria Delphinius belongs to
a space-time characterized by the Kronecker product S = E(t,Ry)E(r,8,R), where t is
our time and R, = R(t,+x) is the field of all possible times t, equipped with the
conventional addition t+t’, multiplication txt' = tt’, and multiplicative unit of time

Iy = +1, ht=th=tVteR,, (1.3)

where one can assume, e.g., the unit value 1; = | sec. The total representation space
would therefore be

slt,r, 1y, 1) = E(tRY) x Er,3Rs), (1.4)

Note that the sea shell is at rest in our hands. As such, the relativistic
space-time, such as the Minkowski space M, is excluded (at any rate, if used, it
would reduce to the space S under known contraction methods).

To our best knowledge, Illert [1] was the first to show that sea shall growth



cannot be quantitatively represented via conventional space (1.4). He reached this
conclusion by nothing that the Euler-Lagrangian equations could not be
diagonalized in a real-valued space, but they could be diagonalized in a more
general complex—valued space.

The problem of sea shell growth in space

FIGURE 1I: Reproduction of the computer visualization of the quantitative
representations of growth of the Angaria Delphinius reached by Illert [1], p. 64.

The same result can be reached by noting that the strict imposition of the
basic axioms of the Euclidean geometry render impossible any quantitative
representation of the growth of sea shells such as the Angaria Delphinius. We are
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here referring to a mathematical representation which is verif iable via computer
visualization (since we cannot reproduce shells in laboratory) as well as via other
means, such as their predictions.

In different terms, in holding a sea shell in our hands, the limited
capabilities of our three Eustachian tubes give us the impression that it lives in
our three-dimensional Euclidean space, while in reality the sea shell lives in a
structurally more general space.

To illustrate the above occurrence, we introduce following Illert [1] a well
behaved vector-value function &(¢) = &gy, &y, £,) of a characteristic angle ¢
representing the generic hypersurface of sea shell growth. A finite increment A of
growth along such hypersurface can be characterized by

(dE/dd)do = (dE/dd)do = (dd/dd) A (1.5)

By recalling that the sea shell grows by finite increments, one must then consider a
sufficiently large sequence of finite in increments &(¢) = &(sA) = & characterized by
an integer, s = 1, 2, .., n, and a sufficiently small A, whose derivation is omitted here
for brevity (see [loc. cit.], Sect. 1.2).

A quantitative mathematical representation of the sea shell growth then
follows via the familiar Euler-Lagrange equations in a given Lagrangian L(d&/do, £)
in the Euclidean space E(&,S,Rs) whose explicit expression varies from shell to shell
[loc. cit.].

The strict imposition of the axioms of the Euclidean geometry demands that
the Lagrangian L must be solely constructed from Euclidean scalar products of
the type

€ = E & + § & + £ L. (1.6)

and corresponding forms (dE/dt)x(8E/dt), (GE/dt)xE. This restriction is deeply linked
to the notion of Euclidean distance between two points 1 and 2

= [EIX‘EZX)Z + (‘Ely_EZY)Z + (Elz - 522)2}1/2. (.n

D
Euclidean

In fact, ahy use of products different than (1.6) implies a necessary, consequential,
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generalized notion of distance and, therefore, a generalized geometry. The same
result can be reached via a number of other ways, e.g., by imposing the
fundamental symmetry of the Euclidean geometry, that under the conventional
rotational symmetry O(3).

The above restriction then implies that the only possible Lagrangians must
have the structure

L = K [(d&/at) x (ae/dt) ' + K[ (dg/a) x eI + KgleExEP, (1.8)

where n, m, p are positive integers and K, K, and K are arbitrary constants.

It is then easy to see that the strict implementation of the Euclidean
geometry does not permit a quantitative mathematical representation of sea shell
growth in a way conform with evidence, as established by comparing Lagrangians
(1.7) with those needed for actual representations [1].

1.B: The problem of sea shell growth in time. The need for a geometry
structurally more general than our Euclidean geometry becomes compelling when
time is added in the quantitative representation of sea shell growth.

In fact, the Euclidean geometry and “our” conventional notion of {ime are
manifestly unable to provide any representation of the behaviour in the
neighborhood of branching points (see Fig. 2). As a matter of fact, the Euclidean
notions would imply clear inconsistencies, such as the prediction of an acausal
behaviour which is against the physical evidence of the consistent growth of sea
shells.

The above occurrence establishes beyond scientific doubt that sea shells
evolve in time in a way structurallty more general than our own perception of time
and, in particular, in a way capable of mastering both directions of time. In fact,
the behaviour of sea shells at bifurcation is one specific example of what is
commonly referred to as a space-time machine, that is, the capability of moving
in both space and time in a causal way (see recent studies [2,3] and references
quoted therein).

The occurrence has fundamental implications for the selection of an
appropriate geometry. In fact, in stud'ying the problem of sea shall growth in space
only one might have the impression that a quantitative representation can be
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achieved via the transition from the three-dimensional Euclidean space E(r,8,Rg) to
the more general three~dimensional Riemannian space Sﬁ(r,g(r),Rs); i.e,, representing
sea shall growth in a curved space.

The problem of sea shall growth in time

0-2
o
4‘ ‘\
4‘ ‘\
J \
) )
d s
s
F a2
..

=& \'3

f>f>

a2 o2
" 3
+ 2t 25
o2
action from action forward  action back
past to present  through future through future
time time

FIGURE 2: A reproduction of the figure of Illert [1]} p. 95, on sea shall branching. As
one can see, their mathematical representations requires three contributions: 1) one
forward from past time; B) one forward to future time; and C) one backward from
future time.

This possibility is immediately ruled out by the behaviour at bifurcations,
trivially, because the “time arrow” in the transition from the Euclidean to the

Riemannian geometry remains the same.

1.C: Representation of sea shell growth via the isoeuclidean geometry. In this
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paper we show that a quantitative representation of sea shell growth is permitted
by a generalization of the Euclidean geometry proposed by this author in 1988
under the name of isoeuclidean geometry (see monographs [4] for the classical
treatment and [5] for their operator counterpart). For an in depth mathematical
study of the new manifolds underlying the new geometry, here called Tsagas
isomanifolds, see the recent memoirs by Tsagas and Sourlas [6].

The main idea of the new geometry is the generalization of the
fundamental Euclidean units of space and time. Let E(E8Rs) be the three-—
dimensional Euclidean space considered earlier. The covering isoeuclidean space is
indicated E(E8,Rsand is characterized by the same functions &, and the lifting of the
trivial space unit 1 = diag. (1, 1, 1) into a sufficiently smooth, bounded, nowhere
singular and Hermitean, three-by-three dimensional matrix T with unrestricted
functional dependence on time t, characteristic angle ¢, hypersurface £ and its
derivatives of arbitrary order, d&/d¢, dZE/dcpz, as well as any needed additional
quantity

Iy = diag. (L 1, 1) = 14t ¢, de/d, a%d¢? ) =11, (19)
while, jointly, the Euclidean metric is lifted in the inverse amount
8 - 8=T8, 1=T71 (1.10)
The simplest pos;ible realization is evidently the diagonal one,
Tg = diag. (Ty, Ty, T,), 15 = diag. (T, 1,7, 7,71). (L11)

The most general possible realization is however the nondiagonal form, in which
case we shall write

Ts = (Tyft, 6, € d&/dg, )}, 15 = (Tyft, &, & d&/de, ) 7), det T=0, (L12)
where i, j= X, Y, z.

A first implication of the isoeuclidean geometry is the generalization of the
scalar product (1.6) into the form called isoscalar product, which assumed the
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following diagonal or general forms
EXE = B Ty + & Ty &y + E, T, &, (1.13a)

and, consequently, of the distance (1.7) into the form called isodistance, which can
also be in the diagonal and nondiagonal forms

Isoeucl. = [Elxugzx)Z TX + (Ely_‘52y)2Ty + (EIZ — §22)2TZ}1/21 (1143)

D = [ Zij=x,y,z ( E“ - EZi ) Tij(t’ ¢, E, ) ( «EIJ - 52] ) }1/2. (l.l4b)

The following property is evident from the completely unrestricted
functional dependence of the quantities I and 1, but it is fundamental for the
analysis of this paper.

Lemma 1.1: The isoeuclidean geometry is “directly universal”, that is,
capable of representing all infinitely possible, integrodifferential
deformations of the Euclidean geometry (universality), directly in the
considered local variables (direct universality).

Note that the above direct universality includes the Riemannian geometry as
a particular case, although it applies to structurally more general geometries, those
in which the basic unit is generalized.

It is then evident that the quantitative representations of sea shell growths
achieved by Illert [1] are indeed a particular case of the isoeuclidean geometry. In
fact, an inspection of the general Lagrangian of ref. [1], Eq. (1.36), p. 25, i.e,,

d¢ doé
L=K1 eQ(b + KzEeQ
do do

¢

£ {1.15)

where Q is another characteristic function of the sea shell considered studied in [1],
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sect. 1.3, indicate the particular case in which the 3x3—-dimensional isotopic element
Ts = (T}) reduced to a one-dimensional scalar function,

EXE=e TEXE, A =A,=A,=e . (1.16)

The understanding is that more general realizations in three dimension are possible.

The isoeuclidean geometry is the geometry of isospaces E(E8,Rg). An outline
is provided in the subsequent sections. The following main aspects should be
indicated in these introductory words.

The new geometry is called an isofopic image of the original one because
constructed via the so-called isotopies, which (according to the Greek meaning of
the word) are methods capable of generalizing a given structure in an axiom-
preserving way [4,5]. For instance, the trivial unit I and its generalization (1.8), called
the space isounit, coincide at the abstract level because both nowhere singular,
bounded and hermitean, and the same occurs for the scalar products (1.6) and (1.12),
as well as for all other aspects. The inverse T of the isounit is called the space
isotopic element [4,5).

A generalization of the unit implies a consequential, compatible
generalization of the fotality of the mathematical structure of the original
geometry, as we shall briefly outline in the next section. For instance, conventional
numbersn, n’ € Rs(n,+,><) are now inapplicable for the new geometry, and must be
replaced by generalized numbers called isonumbers. Similarly, the conventional
notion of angles is no longer applicable because the isoeuclidean space E(8,3,Rg) is a
space with the most general known curvature depending not only on & (as for the
Riemannian spaces), but also on their derivatives of arbitrary order. This implies the
loss of the notion of intersecting straight lines which is necessary for the definition
of angles. However, for reasons we shall see, generalized angles can indeed be
defined, and result to have a rather intriguing connection with the representation
of sea shells. Still in turn, this implies the loss of the conventional trigonometry,
spherical coordinates, spherical harmonics, and all that. More generally, the lifting
of the unit implies a compatible structural generalization of the entirety of
functional analysis into a new discipline known as functional isoanalysis [4.5). Any
appraisal of the content of this paper via old notions of numbers, angles,
trigonometric functions, etc. is generally plagued by a host of inconsistencies which



usually remain undetected.

Another fundamental property which should be known from these
introductory words is that the isoeuclidean geometry coincides with the
conventional geometry at the abstract level [4,5]. This is due to the fact that the
metric is indeed generalized 8§ — 8 = Tg8, but the unit is generalized in an amount
inverse of the deformation, 15— = Ts"l, thus implying no geometric change at
all.

This property has far reaching implications for conchology because it
implies that the shapes we actually see may in the final analysis not be the real
Ones.

The best way to see this occurrence is by studying one of the novel
geometric notions of the isoeuclidean geometry, that of isosphere. Consider the
deformations of the perfect sphere of radius | into a quadric characterized by the
deformation of the original axes

k-semiaxes=1 - Ty, (1.17a)
Exbx ¥ & &y + 68 = 1 o LT + ETyE + T, 6 = L. (1.17b)

Suppose now that, jointly, the units of the axis are lifted of an amount inverse of
the deformation

unit of k-semiaxis — Ty~ . (1.18)

Then the deformation of the original perfect sphere emerges only when projected
in the original space E(£3,R;) because, when represented in the appropriate isospace
EB(E3Rg), all possible surfaces remain indeed perfectly spherical.

Stated in different terms, all possible compact and noncompact quadrics in
Euclidean space (including sphere, ellipsoids and paraboloids) are unified by the
isoeuclidean geometry in the covering notion of isosphere. The capabilities of the
new geometry for a quantitative representation of sea shell growth then follows.

The implications are rather deep. In fact, the isoeuclidean geometry
indicates that the shape in which a sea shall appears to us, despite its complexity,
can indeed be a perfect sphere in its own isospace. In fact, the deformation of the
perfect sphere into the most general possible shape in the conventional space
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E(E8Rg)

Yoy ST > T BTy 0,6 aE/00, a%/a0?, ) E (119

implies the reduction of all infinitely possible shapes of sea shells to only one shape,
the perfect sphere in isospace E(E3,R). The differentiation between one shape and
another is then given by different isounits (see Fig. 3).

The isoeuclidean geometry has also a direct implication on the size of a sea
shell. In fact, if we measure, say, the volume of a sea shell, we can only claim that
such a value is the volume of the projection of the sea shell in our space. In fact,
the volume of the sea shell in its own space can be much bigger or smaller then our
measured volume depending on whether the space isounit is much bigger or
smaller than Ig=+1 mm.

The implication of the corresponding lifting of time are even more
intriguing and far reaching. In this case the one—-dimensional Euclidean space for
time, E(tR,), is lifted into the one-dimensional isoeuclidean space E(t,Ry)
characterized by the lifting of the trivial value I; = +1 into a well behaved, bounded,
nowhere singular and real valued (because Hermitean) scalar function 1T with an
arbitrary functional dependence on all needed quantities

I, = 14t & d&/do, d%/ad?, ) . (1.20)

In turn, the field of ordinary time R(t,+) is lifted into the field R(t,+,%) of the so-
called isotime

t - t=1t1. (1.21)

The abandonm:znt of the unit 1; = +1 in favor of an arbitrary quantity T;(t, &, ...)
then implies the 1 ~ssibility of a quantitative representation of sea shell bifurcations
(Fig. 2). In fact, while ordinary time has only the flow forward, isotime can
arbitrarily flow forward or backward depending on the sign of its unit.

The understanding cf isotime require the knowledge that, in the same way
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Unification of sea shell shapes into the isosphere

if
ik

4

FIGURE 3: We present in this picture a geometric notion which is rather abstract, but
which carries deep technical implications for quantitative mathematical studies of
sea shells, the fact that the infinitely possible different shapes of sea shells can be all
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unified into the perfect sphere in isospace, called the isosphere. The shapes as we
see them with our senses occur only when they are projected in our space E(8Rg).
However, when the shapes are represented in isospace E(8Rg) they are indeed
reducible to the perfect sphere under a suitable generalization of the unit. In fact, all
infinitely possible shapes in three-dimension can be reduced to the surface S =
2k=xy,z & Tkt ¢, & ..) & = | with unrestricted functional dependence of the
quantities Ty. It is then evident that, under the assumption of the generalized units
Tk_l per each of the three axes, the surface S is a perfect sphere in isospace,
evidently because equivalent to the structure 2k=x,y,z ExEx = 1. As an illustration,
all the quadrics of this figure and the turbinate shell reproduced from Illert [1}, p. 20,
are all unified in the isosphere (see the appendix for the isospherical coordinates). The
reader should be aware that, at this level of generality, there is the emergence of
basically novel geometric notions, such as the sphere with singular unit (which shall
be identified in the next section as of topological class IV, see ref.s [4,5] for
comprehensive studies), or the sphere with a lattice for unit (to be identified as of
class V). These latter notions have no known application in physics, but they appear
to have important applications in theoretical biology, evidently due to the much more
complex structure of the latter over the former.

as it occurs for spheres and isospheres, time and isotime coincide at the abstract
level. In particular, our ordinary time t remains completely unchanged, because all
changes occur in the unit of time.

The way in which time reversal is characterized in the isoeuclidean
geometry is also new. In fact, time reversal is usually characterized by mapping
the value t into the value -t within the same space. In isoeuclidean geometry, time
inversion is characterized instead by a novel antiautomorphic map introduced by
this author in 1985 under the name of isoduality [4,5]

In this latter case, time t remains unchanged, and its unit changes sign. In
particular, since the unit has changed, isoduality implies the map from the original
space to a new space, called isodual isospace.

The implications of these novel geometric notions are intriguing indeed. As
an example, we have the direct consequence that, when we see with our senses a
sea shell in our hands, this does not necessarily means that it evolves with our own
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time, because the isounits of time of the sea shell and our own may be different, in
which case the two respective evolutions in time may be drastically different even
under actual physical contact of our touching the sea shell.

Also, if we see a sea shell growing in time, it does not necessarily means that
it evolved forward to future time, because the unit of time can be negative in
which case the shell moves backward in time.

Moreover, isogeometries directly affect the age of a sea shell. In fact, if we
measure the life of a sea shell from its birth, on rigorous scientific grounds we can
only claim that this is the age projected in our space-time. The life of the sea shell
in its own space-time can be substantially different, that it, it can be much bigger
or much smaller than our measured age, depending on whether 1; is much bigger or
smaller than Iy = + | sec.

Also, the generalization of the unit of time has the further direct
consequence of implying a fully causal, theoretical prediction of the space-time
machine [2,3], that is, the capability for an elementary particle of performing a
closed loop in the forward time-like cone under a certain combination of fields due
to matter and antimatter. The reader may be intrigued to know that this author
patterned the space-time machine of ref. [3] along the time behaviour of sea shells
at bifurcation of sea shells studied by Illert [1l. In fact, for all practical purposes,
there is no technical difference between a particle traveling backward and then
forward in time and the evolution of a sea shell at bifurcation as in Fig. 2.

1.D: Representation of sea shell growth via the genoeuclidean geometry. A
further important characteristics of sea shell growth, fully identified in Illert [loc.
cit.] is that they constitute nonconservative systems; that is, systems with
quantities increasing (or decreasing) in time, as necessary for any growth.
Therefore, sea shells constitute a structurally irreversible process, that is, an
evolution forward in time which is inequivalent to the evolution backward in time.

The isoeuclidean geometry was conceived by this author for a
geometrization of reversible time evolutions, as expected from the condition of
Hermiticity of the basic isounit, TS = 'IST. The same geometry can however also
represent irreversible processes via the addition of an explicit time dependence
such that
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Lt E ) = 1t &) =1. (1.23)

However a true geometrization of the nonconservative—irreversible character of the
sea shells can be better achieved via a further generalization of the isoeuclidean
geometry proposed by this author in 1988 under the name of genoceuclidean
geometry (see also ref.s [4] for classical treatments and ref.s [5] for operator
counterpart).

These latter geometry is constructed via more general methods called
genotopies which (from the Greek meaning of the word) does not preserve the
original axioms but induced generalized axioms admitting the original ones as a
particular case.

The main difference between the isoeuclidean and the genoeuclidean
geometries is that, while the former is characterized by Hermitean units 1, = '[aT, a
= §, t, the latter are characterized by units which also also sufficiently smooth,
bounded and nowhere singular, but now nonhermitean.

This latter generalization is particularly suited for the characterization of all
possible directions of time (see Fig. 4 for more details):

1) Evolution forward to future time, denoted with the symbol >, with
forward time genounit 1,”;

2) Evolution forward from past time, denoted with the symbol < with
backward time genounit <l; interconnected with the forward one via the
conjugation <1 = (1>} ;

3) Evolution backward from future time, denoted with the symbol >l= -,
where d stands for the novel conjugation called isoduality, with isodual forward
time genounit1,>% = -1,;

4) Evolution backward to past time, denoted with the symbol <% = —< with
isodual backward genounit 1,9 = -<1,.

Correspondingly, we have four different space genoeuclidean geometries,
two geometries for motion forward to future time and from past times usually
denoted with the unified symbol

<E>E<ERT), B = T, E.)8, U7 = (ST )T (1. 24)
S S S S .

and two isoduals for motion backward in future or past time usually denoted with
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the unified symbol
B>, B RY, <9 = <1, 0,8, )8, U0 = (<P (1.25)

where d represents isoduality, with the understanding that only one direction at the
time can be used.

When the genogeometry is assumed to be of sufficient generality, the above
distinction is lost and all four branches are unified into one single genoeuclidean
geometry with smooth interconnections.

An axiomatic representation of the four possible time arrows
<R(A,+,<) RG> ,+,>)

!
>
]
d<p(d<t + 4o 0 R>44>4+ 59  time

FIGURE 4: A schematic view of the axiomatization of time via genofields introduced
by this author [45}: the genofield R”(t”;+,>) with genotime t> = 1;”, where t is the
ordinary time, and genounit 1;” = (’I‘t>)"1 # 1”1 for motion forward to future time
>; the genofield “R(<t,+,<) with genotime <t = <4t and genounit 3, = (1»[>)T for
motion forward from past time <; the isodual genofield R>d(t>d,+,>d) which is the
image of R>>,+,>) under isoduality for motion backward from future time >4 =
->; and the isodual genofield %<R(3<t,+,9<) which is the isodual image of R(t+<)
for motion backward in past time ¢ = -<. As one can see, the main element of the
characterization is the generalization of the trivial unit +1 sec of the current
description of time into a (nonsingular and) nonhermitean quantity 'It which,
being a one~dimensional scalar is a complex function. The conjugation under
Hermiticity then allows the transition from motion forward to future time to
motion forward from past time, while the conjugation under isoduality permits the
representation of the remaining two directions. Note the fundamental point here:
time t remains the conventional real time as ordinarily measured, and only its
unit is generalized into a nonhermitean quantity. The simplest and most effective
realization of the above notion of genotime is that by Jannussis [7] in which the
genounit is the complex quantity 1, = n + im, n, m € R(n,+x). We therefore call
Jannussis complex times the following four quantities t” = {1y = tln + im), % = <t
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= tln - im), 9 = t(-n - im), 9<%t = t(-n +im), where, again, t is the ordinary real time.
Intriguingly, Jannussis’ notion of complex time is a quantitative mathematical
representation of the notion of absoclute time in ancient Greek philosophy. This
illustrate again, this time from a different perspective, that there may exist a very
large difference between our perception of the evolution of sea shells in time, and
that actually occurring in the reality.

The capability of the genogeometry to provide a geometrization of
irreversible processes is now evident. In fact, the geometry is structurally
irreversible because the units for motion forward and backward in time are
different.

The genoeuclidean geometry appears to be the most effective for a
quantitative study of sea shell growth as well as of other biological entities, because
of their intrinsic irreversible structure, as well as their direct universality for all
possible systems considered.

A yet more general mathematical formulation can be reached via the so-
called hypergeometries (see the recent monograph by Vougiouklis [8]). In essence,
in all the above models, the generalized unit acquires one specified realization for
each given sea shell,, ie., the isotopic or genotopic elements are fixed, as in example
(1.14) where = expl{Q¢). In the hyperstructures these quantities can acquire a finite
or infinite family of values. The capability of representing even more complex
biological structures is then consequential.

In particular, hypergeometries permit the introduction of new notions even
more general than those of the iso— and geno-geometries. For instance, the
fundamental notion of the latter geometries is that of isonumbers, that is, of
“numbers with an arbitrarily generalized but fixed unit” from which the notion of
isospace and genospaces are derived. In the transition to hypergeometries the latter
notion is generalized into that of hypernumbers, that is, of "numbers with a family
of generalized units”.

In a scientific scene of this type it is recommendable to proceed in stages of
increasing complexity. As a first step, we recommend the study of the
isogeometries as outlined in Sect.s 2 (see ref.s [4,5] for detailed studies), and the
initiation of its application to quantitative mathematical representations of sea
shells growth as well as of other biological structures. As a second step we
recommend the study of the more general genogeometries as outlined in Sect. 3 (see



also ref.s [4,5] for more detailed treatments), and the reformulation of the results
achieved via isogeometries within this more general; setting. As a third step we then
recommend the generalization of both isogeometries and genogeometries into
hypergeometries via a family of units.

1.E: A crucial geometric distinction between physics and biology. The following
additional comment is recommendable since these introductory words.

Physical systems at both the classical [4] and operator [5] levels have clearly
show the separation of geometries with positive and negative isounits, in the sense
that matter can be entirely represented with isogeometries with positive-definite
unit, while antimatter can be entirely represented via their isoduals possessing
negative—definite isounits.

Equivalently, we can say that stable elementary particles do not admit
bifurcations, in the sense that they can only move forward in time, while
antiparticles can only move backward in time (not so for the decay of unstable
particles, see Illert [1], p. 98).

This distinction is lost in the transition to biological structures such as a sea
shell because, as clearly illustrated by Fig. 2, each sea shell requires the use of both,
geometries with positive—definite and negative—definite isounits.

From a geometric standpoint, such a distinction is so fundamental that can
indeed be used as one way to differentiate between physical and biological
structures.

To
conclude this introductory words, without any claim of completeness or unicity, in
this paper we suggest quantitative treatments of sea shells growth via the hierarchy
of generalized geometries of increasing complexity and methodological needs

isogeometries C genogeometries C hypergeometries. (1.26)
Such hierarchy should not be surprising to the scholar with young mind. In fact,
the complexity of biological structures much more difficult than the sea shell

growth, such as the code of a DNA, is such to be simply beyond our comprehension
at this time, thus requiring mathematical methods simply beyond our current
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imagination, let alone knowledge. The above chain of generalized geometries is
expected to be only the beginning of further generalizations expected for a true
understanding of complex biological structures such as a DNA..

Despite the important achievements reached by mankind until now in
biology, we can safely state that our current mathematical and theoretical
understanding of biological structures is at its first infancy.

2: ELEMENTS OF ISOEUCLIDEAN GEOMETRY

One of the most insidious aspects for a researcher first approaching
isotopic methods is the use of conventional mathematical thinking, because it leads
to a number of inconsistencies which remain generally undetected.

In fact, the transition from conventional to the isotopic methods requires a
simple yet significant generalization of all conventional mathematical tools, which
is somewhat reminiscent of, but broader than the mathematical generalization
needed in the transition from Newtonian to quantum mechanics. In this section we
shall first outline the basic elements of isotopies and then pass to the outline of the
isogeometries.

2.A. Isotopies of the unit. The fundamental isotopies from which all
others can be uniquely derived are the liftings I = 1 of the unit of the current
formulationS. These liftings were classified by Kadeisvili [9] into:

Class I (generalized units that are smooth, bounded, nondegenerate,
Hermitean and positive-definite, characterizing the isotopies properly speaking),

Class II (the same as Class I although 1 is negative-definite, characterizing
isodualities);

Class III (the union of Class I and I}

Class IV (those of Class Il plus those with singular isounits); and

Class V (unrestricted generalized units, such as discrete structures,
discontinuous functions, etc.).

All isotopic structures identified below also admit the same classification.
In this paper we shall generally study isotopies of Class Il because they are the



most effective for theoretical conchology, as pointed out in Sect. 1. Classes IV and V
are vastly unexplored at this writing.

2.B. Isotopies of fields. The fundamental quantities underlying all isotopic
theories are given by a novel notion of numbers introduced by this authors in 1980
(for recent physical studies see monographs [4,5], for recent mathematical studies
see ref. [10]). Let Fla,+x) represent ordinary fields, such as the fields of real R or
complex C numbers (the quaternions and octonions [10] will be ignored for
simplicity),with generic elements a, addition a; + a, , multiplication aa, = a;xa,,
additive unit 0,a+0=0+a=a, and multiplicative unit l,al=1a=aVa,a,
ageF.

The lifting I = 1 requires, for necessary compatibility, a generalization of
the conventional associative multiplication ab into the so—called isomultiplication

ab=axb - a*b=aTb, T="fixed 2.1)
where the quantity T is called the isotopic element. Whenever 1 = T™!, 1 is the
correct left and right unit of the new theory, Txa=T Ta=adl =aTT !=a, Vace
F, in which case (only) 1 is called the isounit. In turn, the liftings I =~ 1 and x — *,
imply a generalization of the very notion of numbers and of fields into the
structure

F={@+9]2 =al, a=n,cqeF, x>*=xTx1=T" =isounit), (2.2)
called isofields, with elements a € F called isonumbers [10).

All conventional operations are evidently generalized in the transition from
numbers to isonumbers. In fact, we have:

a+tb — a+b={(a+b)} axap; > 3 *ay = 3 Tapy=(ajay);
al - 3l =al a/b=c — a’b=¢ c¢c=cl a% - ﬁ’y=a4"1%,
(2.3)

etc. Thus, conventional squares al =

be lifted into the isosquare 32 = &+ . The isonorm is

aa have no meaning under isotopy and must



Tal =@al =|a|l €F, (2.4)

where a denote the conventional conjugation, | a | the conventional norm, and 1 is
positive-definite for isofields of Class I but of undefined character for Class IlI.

The isotopic character of the lifting | — 1 is then confirmed by the fact
that the isounit 1 verifies all axioms of 1. In fact,

Tx1=.x1 =1,  171=], 1} =1, etc (25)

The isodual isofields are characterized by the isodual map1 —~ 19 = - 1
and are given by the structures

td= (@0+x9|29=2a19 a=ncqeF*—> s =x1d T9=-T719=-1), (26)

in which the elements, called isodual isonumbers, are given by 3 = - &l Thus, for
real numbers we have n% = -n while for complex numbers we have ¢l = —C. Note
that the imaginary unit is isoselfdual, i.e., invariant under isoduality, id==j
while tvhe conjugation of a complex number is (n + ixm)d = nd + {9x9md = —n + im.
The isodual isosum is given by 3% + B4 = ~(a + D), while for the isodual
isomultiplication we have

30030 = adrdad = 307130 = -3Ta (27

An important property of the isodual isofields of Class II is that their norm is
negative—definite because characterized by

1a%@d = [a]19 = -74af. 2.8)

The latter property has the nontrivial implications that physical quantities defined
on an isodual isofield, such as time, energy, etc., are negative-definite.

One can then begin to see the inconsistencies in the use of conventional
mathematical thinking under isotopies. For instance, statements such as "two
multiplied by two equals four” are correct for conventional methods, but they
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generally have no mathematical sense for the covering isotopic methods, evidently
because they lack the identification of the basic unit as well as of the
multiplication.

Note that the isomultiplication of an isonumber 2 by a quantity Q coincide
with the conventional multiplication, a*Q = aT'lTQ = aQ, and the same occurs for
isodual isonumbers 21d*dQ = aQ. This may be a reason why isonumbers and their
isoduals were not discovered in pure mathematics, but rather in physics. In fact,
thy originate from a novel interpretation of antiparticles, as recalled in Sect. 1 (4,5]

The theory of isonumbers is today sufficiently well established new
branch of mathematics, and includes:

(A) ordinary numbers with unit 1

(B) isonumbers with isounits of Class [,1 > 0

(C) isodual numbers with isodual unit 19 = -1;

(D) isodual isonumbers with isounits of Class 11,19 < 0
(that is, we have four different types of real numbers and complex numbers).

The theory of isonumbers needed in theoretical conchology is that of Class
III which encompasses and unified all the preceding four types.

In addition, the theory of isonumbers includes generalized numbers of
Class 1V (this is a basically new notion of number with singular isounits) and Class V
(another new type of numbers with distributions or discontinuous functions as
isounits) which are not studied in this paper for brevity. The reader should be
aware that the distinction between real and complex numbers is lost under
isotopies because all possible numbers are unified by the isoreals of class Il owing
to the freedom in the selection of the isounit1[11].

Note also that the lifting a = a = al is necessary for F to preserve the
axioms of F whenever the isounit 1 is not an element of the original field F, as
generally occurring in conchology (for details, see [10]). This implies that the
‘numbers” suggested for use in theoretical conchology have an nonlinear—integral
structure.

2.C: Isospaces. Let Fla,+x) be a field of real or complex numbers with
elements a, b, ..., conventional sum a+b and multiplication axb = ab and related
additive and multiplicative units 0, and I, respectively. A linear space V(a,F) [12] is
a set of elements a, B, ¥,... over a field F(a,+,%) such to verify the following laws for
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alla,b,ceFanda,B vy €8
a+b=b+a a+(b+c)=(a+b)+g (2.9a)
a(Ba) =(aBla ala+b)=aa+tab (a+bla=aa+Ba (2.9b)
and, for every a € V, there exists an element -a such that
a+tl-a) = a-a =0 (2.10)
From the above structural lines one can see the following:
Definition 2.1 [5} Given a linear space V(a,F) over a field Fla,+x), the
Class I “isotopes” Va,F) of V called “isolinear spaces’, are the same set of
original elements a, B, ,.. € V although defined over the isofield of Class I
Ha,+,%) with isomultiplication a*b = aTb, additive unit 0, and multiplicative
unit 1 =T}, such to preserve all original axioms of V, ie,
ax(b*xa) =(a*b)*xa, axla+p) =2a*xa + axp (2. 11a)

(a+D)*a = a*a + bxa, a*(a+B) =a*xa + axp, (2.11b)

forall a,pe V and a b e F. The “isodual isolinear spaces” %Y are
Class 11 images of V(a,F) under the isoduality

1 - 19=-1, 2.12)

and, as such, are defined over an isodual isofield £9nd +49) or Class II with
negative—definite isounit19 = -1. The “isolinear spaces of class I1l” are the
union of those of Class I and I1.

A fundamental property emerging from the above isotopies is the

preservation of linearity in isospace. As a matter of fact, systems which are
nonlinear in conventional spaces, can be turned into an identical form which
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regains linearity in isospace [5]

This property has important implications for the applications of the isotopic
methods, e.g., computer visualization, solution of the equations, etc. In fact, we
learn that such methods can turn notoriously difficult nonlinear systems into much
more manageable isolinear systems (see later on for more details).

Note also that the field is lifted but the elements of the original vector space
remain unchanged. The interested reader can prove as an exercise a number of
properties of isolinear spaces and their isoduals via a simple isotopy of the
corresponding properties of linear spaces [12]. One which is particularly relevant for
these studies follows from the invariance of the elements a, B, vy, ... under isotopy
as well as under isoduality and can be expressed as follows.

Proposition 2.1 [5]: The basis of a (finite~dimensional) linear space remains
unchanged under isotopy up to possible renormalization factors.

The above property essentially anticipates the fact that, when studying the
isotopies of conventional Lie symmetries, we shall expect no alteration of its basis
because a Lie algebra is, first of all, a linear space. In turn, this implies that
isotopies preserves the conventional generators.

The elements a, B, v € V are called vectors. The same quantities when
belonging to the isotopes ¥ are called isovectors. Note the existence of the simpler
isodual vector spaces V%a,F9) defined over the isodual of a conventional (rather
than isotopic) field with isodual vectors. Thus, given elements a, B, y, can be
vector, or isovectors, or isodual isovectors depending on the space (i.e., the unit) in
which they are defined.

A metric space [12] hereon denoted S(x,g,F) is a (universal) set of elements x,
Y, Z,.. over the fields F = Fin,+,x) equipped with a nonsingular, and Hermitean map
(function) g: Sx S = F, such that:

glx, y) 20, (2.13a)
glx,y)=gly,x) YxyeS gix y)=0iff a=0orb=0or both. (2.13b)
glx,y)=glx,z2) +gly,z2), Vx,vy,z€S. (2.13c)
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A pseudo-metric space, hereon also denoted by S(x,g,F), occurs when the
above first condition is relaxed. Finally, recall that metric or pseudo-metric spaces
over the reals F =R are used in contemporary physics to characterize our physical
space-time. Spaces over the complex numbers, such as the complex Hermitean
Euclidean spaces E(z,8,C,) are used for unitary symmetries, such as SU(2) or SU(3).

Suppose that the space S(x,g,F) is n—dimensional, and introduce the
components x = (x), y = (y}),i = 1, 2, .., n. Then, the familiar way of realizing the
map glx, y) is that via a (Hermitean) metric g of the form

glx,y) = x! g v\ Det.g # 0, g = gi. (2.14)

The axiom g(x, y) > 0 for metric spaces then implies the condition that g is
positive-definite, g > 0.

A celebrated physical example of metric spaces is the Euclidean space in
which case the metric is g = § = diag. (1, 1, 1).. Pseudo—metric spaces of primary
physical relevance are the Minkowski space (with metric g = n = diag. (1, 1, 1, -1),
and the (3+1)-dimensional Riemannian spaces with metric g = g(x).

The simplest possible way of constructing an infinite family of isotopes of
S(x,g,F) is by introducing n—-dimensional isounits of Class I

1= =0, iins =120 .19
with isotopic elements
T=11=(1) = (7)), (2.16)
Then, we can introduce the notion of the isomap g $x § = F with realization
8lx, y) = (x! éij vl eF (2.17)

where the quantity

g=Tg=(T¥g,) (2.18)



is the isometric [4,5].

The basis e=(g), i=1,2, .., n of an n-dimensional space S(x,g,F) can be
defined via the rule

gle; ej) = gj- (2.19)

Then, the isobasis is characterized by
The above isotopic generalizations can be expressed as follows.

Definition 2.2 [5}: The “isotopic liftings” of Class I of a given, n-dimensional,
metric or pseudometric space S(x,gF) over the field F = Fla,+x) are given
by the infinitely possible “isospaces” 8(x,g,F) characterized by: a) the same
dimension n and the same local coordinates x of the original space; b} the
lifting of the original metric g into one of the infinitely possible
nonsingular, Hermitean “isometric” g = Tg  with isotopic element T of
Class I depending on the local variables x, their derivatives X, X, .. with
respect to an independent variable t, and any needed additional quantity

g > g=Tg, (2.21a)
T=T6 % %%.), dtT =0, TN=T>0, (2.21b)
det. g #0, g= gl, (2.21¢)

and c) the lifting of the field Fa,+X) into an isotope of Class I F(a+x)
whose isounit 1 is the inverse of the isotopic element T, i.e,

1=11", (2.22)
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with “isocomposition”
X7y) = &, Tyl =(Tx,y1 =1&Ty) =(x éij ek, (2.23)

The “isodual isospaces” of Class II 8% (x39F9) are given by the image of
S(x,g,F) under isoduality and are defined by the map

g~ gl=1dg 1= -1, (2.242)
1T - W=(mHl=-1, (2.24b)

with “isodual isocomposition” in £d
oy = x, 19919 = (MIxy)1d = 19xTdy) =K gdij y1defd. (225

The “isospaces of Class I1I” are the unions of those of Class I and II.

"A few comments are now in order. The first and geometrically most
dominant aspect is that, because of the unrestricted functional dependence of the
isotopic element T, the isometrics g = Tg are generally of nonlinear-integral type.

Thus, the isotopic liftings S(x,g,F) — 8(x,g,F) imply a nonlinear and integral
generalization of the original linear-local space. In particular, isospaces require a
suitable integral topology for their rigorous treatment which has been studied by
Tsagas and Sourlas [6].

A simple approach to this new topology is the following. All nonlinear and
integral terms are embedded, by construction, in the isounits 1. On the other hand,
topologies are known to be insensitive to the functional dependence of their own
units. This implies the particular integro—~differential topology of the isoeuclidean
geometries whereby conventional topologies hold everywhere except at the unit.

Isospaces can also be distinguished via Kadeisvili’s classification depending
on the characteristics of the unit (Sect. 1.5) into:

Isospaces properly speaking (Class I),

isodual isospaces (Class 1)



Indefinite isospaces (Class I11),

Singular isospaces (Class 1V], and

General isospaces (Class V).
Theoretical conchology requires the use of isospaces of (at least) Class III.

As indicated earlier, isospaces are bona-fide nonlinear and nonlocal
generalizations of the original spaces. Despite the above differences, we have the

following

Theorem 2.1 [5]: Isospaces of Class I 8(x,g.F) (isodual spaces of Class Il
x84+ are locally isomorphic to the original spaces SxgF) (isodual
space S%xgF9). Isodual spaces of Class III are isomorphic to the union of
spaces and isodual spaces.

The above simple mathematical property has fundamental implications
anticipated in the introductory section. In particular, the property implies that the
isotopies of Class I of space-time symmetries such as the rotation, Lorentz,
Poincare and unitary symmetries are locally isomorphic to the original symmetries.
Nevertheless, the explicit form of the transformations will be generally nonlinear,
nonlocal and nonlagrangian when formulated in the original space, thus achieving
the desired structural generalization of conventional symmetry transformations.

Note the necessity for these isomorphisms of the joint liftings

g > g=Tg and F - F 1=TL (2.26)

In fact, a lifting of the type S(x,g,F) = S(x,g,F), g = Tg, alone without the joint lifting
of the base field is not an isotopy and the spaces S(x,g,R) and S(x,g,R) are generally
non-isomorphic.

From the above properties we have the following

Proposition 2.2 [5: The compositions (x,”y) on isospaces 8(x,g,F) are
isoselfdual, i.e, invariant under isoduality

x'y) = (x 8ij yin xy)d = (xi édij yi)19 . (2.27)
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The above property jmplies the preservation of causality under isoduality. In
fact, the known objections based on causality for motion backward in time refer
strictly to the conventional unit +1. The same objections becomes inapplicable for
motion backward in time represented via isoduality precisely because of the
abstract identity of the two directions of motion identified by the above property.

Scalar functions f(x) on isospaces $(x,g,f) are ordinary functions. An
isoscalar function T(x) on 8(x,g,F) is a function with values on the isofield, i.e.,

) = fx)1 e F. (2.28)

It should be indicated that in Definition 2.1 the local coordinates x € 8(x,g,F)
are assumed to be ordinary scalars and not isoscalars. One can then build an
isospace 8(x,8,F) with isocoordinates

x=x1. (2.29)
in which case the isocomposition is factorizable into the conventional one
= %k o= GxO1. (2.30)
The interchange between the isotopic element and the isounit

T - 1 (2.31)

is called isoreciprocity map [5].
In summary, we have four different formulations of isospaces per each

individual Class, given in self-explanatory notations by

SxgRn+4), SxgRM+x), S&gRMn+¥) SkgRn+x). (2.32)

The isospaces of primary relevance for theoretical conchology are given by
the structures 3(x,g,F) of Class I1I of Definition 2.1 specialized to the cases of isoreal
and isocomplex fields F =R, C.
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2.D. Isotopies of the transformation theory. Let S(r,F) be a conventional
vector space with local coordinates r over a field F, and let r = A(w)r be a linear,
local and canonical transformation on S(r,F), w € F. The lifting S(r,F) - 3(r,f)
requires a corresponding necessary isotopy of the transformation theory

r=0W=r =AW Tgr, T fixed, re8r,F), 1=T7, (2.33)
called isotransformations, with isodual form
r=A%wYdr = -AW) *r. (2.34)
Expectedly, isotransformations verify the condition of isolinearity
Ax(axr + Bxr) = a%x(A*r) + Dx(A*r), VrrelSrk), abef, (235

although their projection in the original space S(r,F) is nonlinear, because r’ = ATIr,
X,..)r. Isotransformations are also isolocal because the theory formally deals with
the local variables r while all nonlocal terms are embedded in the isounit.
Nevertheless, they too are nonlocal when projected in the original space.

Similarly, isotransformations are isocanonical because they are formally
derivable from a variational principle on the isosymplectic geometry [4,5],
although they are noncanonical when projected in S(x,F). Note that nonlinear,
nonlocal and noncanonical transforms can always be identically rewritten an in
isotopic form.

2.E. Isotopies of functional analysis. As indicated earlier, the isotopies
imply simple yet nontrivial generalizations of the totality of contemporary
mathernatical structures , beginning from elementary notions such as numbers, and
then passing to angles and leading inevitably to a generalization of functional
analysis called by Kadeisvili [9] functional isoanalysis.

The generalized discipline begins with the isotopy of continuity (whose
knowledge is assumed when dealing with technical aspects), and includes the
isotopies 0: conventional square-integrable, Banach and Hilbert spaces; all
operations on them; special functions, distributions and transforms; etc.
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Evidently we cannot possibly review this new discipline here to avoid a
prohibitive length (see ref. [5] for details). In the appendices we shall outline the
isotopies of trigonometry and spherical coordinates because of their fundamental
character for conchology.

2.F: Isotopies of Lie’s theory. The preceding liftings demand a
corresponding compatible lifting of all branches of Lie’s theory, including the
lifting of enveloping associative algebras, Lie algebras, Lie groups, representation
theory symmetries, etc.

The emerging generalized theory was submitted by this author in 1978 under
the name of Lie-isotopic theory, and it is generally called nowadays Lie-Santilli
theory [6]. This generalized theory is essentially based on the lifting of the trivial
unit [ = diag. (1, 1, ... ) of the conventional formulation of Lie’s theory into the most
general possible isounit1 =T,

The lifting I =T then implies the generalization of the simplest possible Lie
product of contemporary use, AB ~ BA, into a generalized form called Lie-Santilli
isoproduct [6] ATB — BTA, which still verifies the Lie axioms although at a
generalized level. '

Jointly, (connected) Lie transformation groups represented with the
conventional exponentiation

A=e XY Sl (iXw)/ I+ Xw)(iXw)/21 +.. *(2.36)

are lifted into the Lie-Santilli isogroups with realization in terms of the so—called

isoexponentiation
~ o1 iXT
A= Vol Gixw)/ e GXwITGXW) /210 +.=(e X TV (237)

where one should note the appearance of a nonlinear-nonlocal quantity T in the
exponent. A corresponding nontrivial generalization of all aspects of Lie’s theory
then follows (see ref.s [4,5,6] for comprehensive presentations).

The Lie—Santilli theory is also subdivided into five classes. The structure of
primary use for theoretical conchology are the following four:

1) conventional Lie theory with trivial unit I = diag. (1, ,) > 0;
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2) isodual Lie theory with isodual unit 19=-1<0;

3) Lie-Santilli isotheory with isounit 15 > 0; and

4) isodual Lie-Santilli isotheory with isodual isounits 1.8 = -14 < 0.
The theory needed for the study of the symmetries of sea shells is the Lie-Santilli
theory of Class I1I which encompasses all the above types.

A result important for theoretical conchology is the following studied in
App. C. Recall from Fig 3 the unification of all possible shapes of sea shells into the
isosphere. But the Lie-Santilli theory identifies the universal symmetry of the
isosphere in the isotopic O(3) symmetry. which results to be locally isomorphic to
the conventional rotational symmetry O(3). The isorotational symmetry O(3) is
therefore results to be the symmetry of all possible sea shells.

2.G: Isoeuclidean spaces. The fundamental spaces of this analysis can be
introduced via the following:

Definition 2.3 [5: The liftings of the conventional n-dimensional Euclidean
spaces E(r,8,R) over the reals Rin,+,¥) into the “isoeuclidean spaces” of Class
I are given by

ErS8R) - ErSR), (2.38a)
8 = Iy — 8 = T, 1,111 7,n,.) 8 (2. 38b)
det5=1%0,6=8 — det.5%0, & = 8, (2.380)
R~ R, 1=T1!=3%! (2.384)

2= no=rs;d -2 =00 = 6,801 =
= (8,01 =1(r,81) = [riSij(r, 1)1 € R, (2.38¢)

where the isofield R, +*) is of Class I. The “isodual isoeuclidean spaces” of
Class II are given by the isodual image of the preceding ones
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ErdR - BrsdRY), (2.39a)

8=Ts - 8 = Tdsg = -3 TI=-T, (2.39b)

R - RO~R1Y, 19=-1 (2.39¢)

2= = (i1 29 = (r70%= (f1897r10 = 2. 230)
The “isoeuclidean spaces of Class 111" are the union of those of Class I and I1.

Note that the correct formulation of the isosphere of fig. 3 is the
expression

2 = (rig;r)1 =1, (2.40)

where the multiplication by 1 is necessary because the quantity must be an
element of the isofield.

For numerous physical applications of the isoeuclidean spaces we refer the
interested reader to monographs [4,5]. The following outline may be useful as a
comparative basis with applications in theoretical conchology.

A) Geometric applications. Recall that the conventional Euclidean metric
8 =diag. (1, 1, 1) is a geometrization of the perfect rigid sphere with unit radius.
[sotopic elements of the diagonal type

T = diag. (b2, 02, 55%), by =bylt, r, 1,1, .) >0,k =1,23 (2.41)

and related isounits
1= diag (b 7?,by 2, b3?), (2.42)

then permit a direct representation of the actual nonspherical shape of a given
body as well as of all its infinitely possible deformations.

B) Analytic applications. As well known, Lagrange’s equations of motion in
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the Lagrangian L = L{t, r, t) = K -~ V, where K is the kinetic energy and V the
potential energy on a conventional Euclidean space generally represent
conservative systems.

A main objective of the isotopies is the representation of arbitrary, generally
nonconservative dynamical problems with conventional potential forces, plus
contact, nonlinear-nonlocal-nonlagrangian! forces due to the medium. In this
latter case, the system is represented by two independent quantities, the
Lagrangian L = K - V and the isounit 1.

In this latter case, the isounit permits a direct representation of contact,
nonlinear-nonlocal-nonlagrangian forces for interior physical conditions. The
Lagrangian L must now be properly written in isoeuclidean space E(r,3,R), as we
shall see shortly.

One can see that isospaces provide a direct geomeltrization of the
inhomogeneity and anisotropy of physical media in which motion occurs. In fact,
the inhomogeneity can be represented in isospaces, e.g,, via a dependence of the
isometric 8 on the locally varying density . The anisotropy, e.g., due to the
presence of an intrinsic angular momentum along the direction m, is then
representable via a factorization of such a preferred direction also in the isometric,
much along the Finslerian geometry, for via the differentiations b} # by # bg.

Note that the representation is "direct” because occurring directly in the
isometric itself, without any need of operator formulations or any use of artificial
or indirect approaches.

Note that the 3-dimensional Euclidean “space” is one. On the contrary, there
exist infinitely many 3-dimensional isoeuclidean “spaces”. This is evidently due to
the infinitely possible isometrics 8 representing the infinitely possible physical
conditions of interior problems.

C) Algebraic applications: Recall that the unit [ = diag. (1, 1, 1) of the
Euclidean space is the fundamental unit of Lie’s theory, e.g., the unit of the group
of invariance of the sphere, the orthogonal group O(3).

! By “nonlagrangian” we mean hereon non-first-order Lagrangians, namely, equations of
motion which violate the integrability conditions for their representation via first-order
Lagrangians L = L{t, r, t). Evidently, higher order Lagrangian may exist, eg., L = L{t, r, 1, 1).
The point is that, under these latter conditions, there is no (conventional) Hamiltonian. The
term “noncancnical” is then used as a synonym of “non-first-order—-Lagrangian”.
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Then, the isounit characterizes a structural generalization of Lie’s theory as
outlined above.
The following property is a consequence of Theorem 2.1.

Corollary 2.1A: Isoeuclidean spaces E(r,8,R) of Class I (isodual isoeuclidean
spaces of Class II E4(r3%RY) are Jocally isomorphic to the conventional
Euclidean spaces of the same dimension E(r,8,R) (isodual Euclidean spaces of
the same dimension Er,89R%). The isoeuclidean spaces of Class Il are
isomorphic to the union of the original space E(r,3R) and its isodual
E9(r,5R9).

We shall say that, from a geometrical viewpoint, Euclidean spaces and their
isotopes are equivalent, as ensured by the preservation of the original axioms, as
well as the identity of the two spaces at the abstract level.

The isospaces needed for theoretical conchology, including representatives
of the evolution in time, can be introduced via the following:

Definition 2.4 [5} The “isoeuclidean space-time” of Class I is given by the
Cartesian product of two isoeuclidean spaces, one representing space and the
other representing time with corresponding isounits lt and Ts,

isocomposition
BtR )X BrAR: € = (tTyt)1 € Ry, 1, = T, (2.43a)
2= (fT,81)1 R, 1, = T, (2.43b)
S S » s s L

and diagonal realization
T, =Tyt r, i1 ..) > 0, (2.44a)
Ty = diag. Ty, Ty, Tp), Ty =Tyt r, 1,1, .0 > 0,k =x,y,2 (2.44b)

The “isodual isoeuclidean space-time” of Class I is then given by



BdeRY, ) x BdrsdRY): 129 = (¢ 79, )19, € RY,, (2.450)

20 = (rt1dsr)10 €R, (2.45b)

19 = (19 =-1, 18 =(19r! = -1, (2.450)
19, = ™t r, 1,70, ) <0, | (2.45d)

T = - diag. (Ty, Ty, T,) <0, (2.45¢)

The “isodual isoeuclidean space-time of class I11” are the union of those of
Class I and I1.

As it is the case for all other quantities, the above definition implies the
existence of four distinguishable nonrelativistic times:

Time, as the usual element t of the field of real numbers R(t,+x);

Isotime, the element t=t1, € R,+»,

Isodual time, the element t9=¢19=-t e RYtd+x7),

Isedual isotime, the element 19 = {19, =t € RY19,+,49),
which are all unified in Class 1.

Note that time moves backward for isodual time and isodual isotime. In
fact, under isoduality, we have the antiautomorphic map

t>0 - @=¢19=-t <o, (2.46)

and the same result persists under isotopy.

The reader should however keep in mind that such backward motion in
time is referred to a negative—definite unit and, as such, it is fully equivalent to the
forward motion in time referred to a positive—definite unit. The equivalence of
these two directions of time referred to units opposite in sign is at the foundation
of the preservation of causality for the space-time machine of ref. [3], as well as of
the isotopic representation of the bifurcations of Figure 4.
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2.H: Isoeuclidean geometry. The isoeuclidean geometry [4,5] is the
geometry of the isoeuclidean spaces on isoreal fields. For clarity, we shall study
first the isogeometries of Classes I and II and then pass to the more general Class
I11.

Recall that in the transition from the Euclidean space E(r,3,R) to the
Riemannian space in the same dimension #r,g,R) there is the loss of angles and
trigonometric functions evidently because of the loss of straight lines due to the
curvature of the space, as expressed by the Riemannian metric g = glr).

In the transition from the Euclidean space E(r,8,R) to the isoeuclidean
spaces E(r,8,R) we acquire the most general possible curvature dependent also in
the velocities, accelerations and other quantities, as expressed by the isometric 8 =
3(t, r, 1, 1, ....). Nevertheless, the lifting E(r,8,R) = E(r8R) is an isotopy, that is, a
generalization which preserves the original axioms.

Since the original space is flat, the isoeuclidean geomelry is isofiat, that
is, the curvature emerges only when E(r,3,R) is projected in E(r,8,R) because, within
the isospace itself, there is no curvature,

The novel geometric property of isoflatness then permits the
reconstruction in E(r,3,R) of angles and trigonometric functions which is
precluded in Riemannian spaces.

Let us consider first the isoeuclidean geometry in two dimension with
isotopic element and isounit

T = diag. (Ty, Ty), 1 = diag.(T -1 Ty‘l). (2.47)

Let 6 be the angle among two intersecting straight lines in E(r,8,R). Then the
corresponding angle ® in E(r,3,R), called isoangle, is given by

- i
8 =06 (TyTy). (2.48)
This result is established by the basic invariance of the space, the isotopic O(2)
symmetry, and in particular from an inspection of the arguments of the

isorotations, or from the isorepresentation theory.
A study of rule (2.48) has indicated that the isoangle ® can also be
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interpreted as the original angle prior to the deformation. The angle 6 in rule
(2.48) is then the angle of deformation measured in our space. This implies
that, when deforming a circle into an ellipsoid, the directional angle of a point is
evidently altered in the Euclidean plane into the angle 6, but the isoeuclidean
plane reconstructs the original directional angle ®.

The above results are sufficient to indicate the existence of a consistent
and intriguing isotopy of conventional trigonometry, which is studied in more

detail in Appendix A.
We are now in a position to study the unification of all possible three-

dimensional hypersurfaces in the isosphere (Fig. 3). In essence, the isoeuclidean
geometry of Class I preserves the signature of the original metric, sig. 8 = sig 8 =
(+, +, +). The only possible isometrics are given by structures of the type

8=Ts = diag (+b?,+b?,+b), by #0; (2.49)

the isoeuclidean geometry oof Class Il is characterized instead by the isodual of
the preceding metric -

83=Td = diag (- be?,-b2,~b2), b #0; (2.50)

the isogeometry of Class Il has an undefined signature of the isometric, and we
can write

8=Ts = diag. (b2, + b2, £b?), b #0; (2.51)
while the isogeometry of Class IV includes all the above, plus the possibility that
the individual b's can be singular.

The surfaces unified by the isosphere of Class I and related symmetry are
therefore the following:
1) The sphere

08): xx +yy+zz= inv, (2.52)

2) All ellipsoids (prolate or oblate spheroidal ellipsoids)
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~

03): xb2x + y by2 y +zb2z = inv, (2.53)

The surfaces unified by the isosphere of Class I are:
3) The isodual sphere

0%3; ~xx-yy - zz = inv, (2.54)
4) All isodual ellipsoids
0%3): - xb2x -y by2 y - zb2z = inv, (2.55)

The surfaces unified by the isosphere of Class I1I are all the above, plus:
5) The hyperbelic paraboloid (paraboloid with two sheets here
reinterpreted as the isodual of the elliptic paraboloid)
o%21: -xx + yy - zz = inv, (2.56)
6) All signature preserving deformations of the hyperbeolic paraboloid

0%21): - xblx +y byzy - zb2z = inv, 257)

7) The hyperbolic paraboloid (paraboloid with two sheets here
reinterpreted as the isodual of the elliptic paraboloid)

092.1: -xx + yy - zz = inv, (2.58)
8) All signature preserving deformations of the hyperbolic paraboloid
021 -xblZx +ybly - zbfz = inv, (2.59)

9) All possible surfaces in three-dimensional space of arbitrary order



03); x Tyt r, Jx+y Tylt,r, )y + z Tt r, )z =inv. (2.60)

as well as all cones of all preceding surfaces (holding when the invariant is null).

The isosphere of Class V implies all the above plus isospheres with arbitrary
isounits, e.g., a distribution or a lattice.

As indicated in Sect. 1.C, the unification of all the above surfaces in the
perfect sphere in isospace is due to the fact that, jointly with the deformation of
the semiaxes of the sphere in Euclidean space, ly — Ty, the unit is each direct is
deformed of the inverse amount 1y =1 = Tk", k = x, v, z, thus preserving the
perf eétly spherical character.

Note the direct universality of the above unification. In fact, given an
arbitrary surface in E(r,8,R), there always exist three elements Ty, k = X, y, z, under
which that surface is identically represented by Eq. (2.60).

2.1: Operations in isceuclidean geometry . We consider now the representation
of vectors and their operations in the isoeuclidean geometry. Recall that the basis
of a vector space is not changed under isotopy (up to possible renormalization
factors). Let ey, k = 1, 2, 3, be the unit vectors on E(r,5,R) directed along the x, y, z
axes, and let &, be the corresponding isobasis in E(r,8,R). Then, a vector V can be
expressed in isospace as in the conventional case

V=x +ye + zées. (2.61)
This is another way of expressing the fact that the vector V is straight in E(r,5,R),
although its projection in E(r,8,R) is curved. As usual under isotopies, the vectors
are not changed, but operations on vectors are changed. In fact, the scalar
product V<V, of two vectors V; = {x}, y},z;} and V = {x, y», 25} is now lifted into
the expression called isoscalar product

VioVy = (XITX Xty Ty Yo ZITZZZ)’I € Rin,+¥ . (2.62)

Note that, as expected, the isoscalar product preserves the original axioms as
necessary under isotopies, i.e.,
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V10V2=V20V1, VIO(V2+V3)=VIOV2+VIOV3. (2.63)

Moreover, the isonorm on E(r,3,R) is expressible in terms of the isoscalar product
via the rule

IVl = (Vo V)ETeRA+. (2.64)

Consider now two points P; = (x|, y|, z;} and P, = {x, y,, zo }. Then the
isodistance among them is the quantity

D = [ Xz)g“ X y2)g22(y1 22)g33 FI 265

it is evidently unique (for each given isounit) and permits a study of the isotopy of
the original Euclid axioms.

Note that conventional distances and isodistances do not coincide even
when the isotopic element is a constant, T = N € R(n,+x) because in this case

D=DNN!=DNt =D, (2.66)

Similarly, the vectorial product Vi A V, is lifted in the expression called
isovectorial product

Vg = VIAVy, Vo = ylgifx ) (gying), iik=123. (@67
which satisfies the basic axioms of a vector product
Vi AV, = VaAV,, ViA(Vy + Va)= V{AVy + V| AVs. (268)
It is instructive for the interested reader to verify the preservation of Lagrange’s
identity of the Euclidean geometry under isotopies among four vectors A, B, C, D

in Br,3R)

(AAB)o(CAD)=(QAoC)*(BoD)-(BoC)*(A0D). (2.69)
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Isotopies of Euclid’s fifth axiom

D = cost.

FIGURE 7. A schematic view of Euclid’s celebrated Fifth axiom on parallel lines,
which can be reformulated in isoeuclidean spaces, thus leading to the notion of
isoparallel lines.

Other properties can be easily derived by the interested reader via similar
procedures.

We now study the notion of isolagrangian. Recall that the systems under
consideration are non-first-order Lagrangian, i.e, they do not verify the
integrability conditions for their representation via Lagrange equations with a
Lagrangian L = L{t, r, i). However, when the same systems are properly represented
in isospace, a first-order Lagrangian [(t, r, 1) exists, called isolagrangian.

The methods for properly writing an isolagrangian are simple and
essentially based on the rule that all products, powers, square roots, quotients, etc.
have to be isotopic. Let L{t, r, i} = K(t) - V(t, r, 1) be a conventional Lagrangian
where K(f) = #mi*i is the conventional kinetic energy and V(t, r, t) is the potential
energy (e.g., of the Lorentz force).

The isolagrangian L(t, r, i) = R(i) - V{t, r, 1) is then characterized by the
isokinetic energy

Rif) = +mror, (2.70)

while the isopotential V(t, r, 1) is the original expression for variables r calculated
via the rule of the isodistance.

The above isoanalytic representation has been introduced for the
representation of nonconservative systems [4,5]. A simple example may be of
assistance for application in conchology. Consider an extended free particle in
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empty space, which is evidently represented via the kinetic energy alone L = fmixf
€ Elr, 8, R), where r represents the trajectory of the center of mass.

Suppose now that the particle at a given value of time penetrates within a
physical medium, thus experiencing nonpotential forces. The drag forces
experiences in the latter instance are represented by the isotopic element T, that is,
the transition from motion in vacuum to motion within a physical medium can
be represented by the transition from the Euclidean geometry to its isoeuclidean
covering. In turn, the transition is represented by writing the original Lagrangian
in isospace, thus reaching the expression [ = miof € Elr, 8, R) . The geometric
aspect important for this section is that the two Lagrangians L and L coincide at
the abstract level for all Class | isospaces.

Numerous classical examples are now available (see ref.s [4,5)). the simplest
one is the particle with linear velocity-damping

$+yx=0 m=1 vy >0, @71

which is merely represented via the particular realization of the isotopic element
and isounit

T=e¥!, 1T=¢77l y>0. 2.72)

as the reader is encouraged to verify (see ref. [6], p. 101). The isorepresentation can
be enlarged into the form

T = diag. (b b2 b2 e, (273)

exhibiting a feature completely absent in Euclidean geometry, a direct
representation of the actual nonspherical shape of the particle considered here
assumed to be an ellipsoid with semiaxes bkz. The understanding is that the
isoeuclidean geometry can also be realized via nondiagonal isotopic elements, as
requested by the case at hand.

Note that the representation of shape is completely absent in Newton's
equation of motion and it is a sole feature of the isoeuclidean geometry. In fact,



after computing the equation of motion, the “shape factor” cancels out.

But perfectly rigid objects do not exist in the physical reality. The
isoeuclidean geometry then permits a direct representation of all infinitely
possible deformations of the original nonspherical shape, which can be easily
achieved via a dependence of the characteristics b—quantities in the local pressure,
velocity, etc.

In summary, the isoeuclidean geometry has the following primary
applications in physics: A) geometrization of the physical medium considered; B)
representation of the resistive effects on the motion of extended particles; and C)
representation of the actual nonspherical shapes and all their possible
deformations.

2.J: Connection with other noneuclidean geometries. A few comments are now
in order on the connection between the isoeuclidean geometry and others non-—
Euclidean geometries (see, e.g., ref. [13] and quoted literature). As well known,
Euclid’s Fifth Axiom lead to a historical controversy that lasted for a millennium,
until solved by Lobacevskii in a rather unpredictable way, via the introduction of a
new, non-Euclidean geometry today appropriately called Lobacevskii geometry
(see [loc. cit.)).

As well known, Lobacevskii geometry is also based on certain liftings of
Euclidean expressions, although defined on the conventional unit. Thus, the
Lobacevskii and isoeuclidean geometries are structurally different.

Nevertheless, it is also important to understand that the Lobacevskii
geometry is a particular case of the projection of the isoeuclidean geomelry in
the Euclidean plane. To see this point consider the celebrated Lobacevskii
transformations

X + a y(1-a2 ¥

X = ——, y = . lal<, (2.74)
Il +ax I + ax

which have the peculiar property of carrying straight lines into straight lines and
circles into circles (see ref. [13] for details) while keeping the unit the same. Now,
the isoeuclidean space E(r,8,R) in two dimensions can be equivalently reinterpreted
as an ordinary Euclidean plane E(r,3,R) in the new coordinates



Xx=Ttx, y=Tty, (2.75)
under which we have the identity
XX +yy=xTyx +yTyy. (2.76)

It is then evident that Lobacevskii transformations (2.74) are contained as a
particular case of the much larger class of isotransformations (2.75).

The connection between Lobacevskii and isoeuclidean geometries can
therefore be expressed by saying that:

A) the Lobacevskii geometry identifies “one” particular lifting of the
Euclidean geometry preserving straight lines and circles under the conventional
value of the unit; while

B) the isoeuclidean geometry identifies “an infinite class” of liftings of the
FEuclidean geometry which preserve straight lines and circles under a joint lifting
of the unit.

Note finally that the Lobacevskii geometry itself can be subjected to an
isotopic lifting which has not been studied here for brevity.2

Numerous other noneuclidean geometries exist in the literature [13]. One
particularly intriguing geometry is the so-called nondesarguesian geometry
studied by Shoeber [14], which has a significant connection with these studies
because it can also represent nonlagrangian systems.

This latter geometry too is different from the isoeuclidean one, again,
because it is based on the conventional unit. However, the underlying mapping
between the Euclidean and nondesarguesian geometry is also contained as a
particular case of the infinite transformations (2,75) of the isoeuclidean geometry.

These comments are significant to focus the attention on an additional
reason for our selection of the isoeuclidean geometry over other possible choices,
its “direct universality” of incorporating “all” infinitely possible maps of the
Euclidean geometry (including singular maps for Class [V and discrete maps for
Class V).

In summary, the isoeuclidean geometry is directly universal for all

2 Note that the isolobacevkii geometry is no longer contained as a particular case of
the isoeuclidean geometry because the original axioms of the two geometries are
different.
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infinitely possible generalizations of the Euclidean geometry which are: nonlinear
in coordinates and their derivatives of arbitrary order, nonlocal-integral in all
needed variables, and non—first-order-Lagrangians.

2.K: Isoeuclidean representations of sea shells. A few examples are now
in order. Consider the hyperbolic clocksprings of the first kind in a plane, ref. [1],
Eq. (3.14), p. 81, i.e,

= e-%)\¢cosh[(a+%)\)d>]cos¢, (2.77a)

y=ae_%)‘¢sinh[(a+%)\)¢]sin¢. (2.77b)

It is easy to see that in the isoeuclidean plane E(r,8,R), 8 = T8, T = diag. (T,
Ty), the above surface reduces to the perfect circle. In fact, under the values of the
isotopic element

~iX¢

Ty =f{ae cosh[{a++)\)®1)7? (2.78a)

{ae Mosinh[(a+ir)e])2 (2.78b)

Ty

the surface equations reduce to the isopolar coordinates (App. B)
x = Ty Fcos (T, Ty'*tb), (2.79a)
= = =
y = Ty sin(Ty " Ty ¢), (2.79b)
and they do indeed describe a perfect circle in isospace, the isocircle
xTyx + yTyy = cos? (T T, o) + sin? (i) = 1. (280
A similar result evidently occurs for the hyperbolic clockspring of the
second kind, ref. [1], Eq. (3.15), p. 81, where we have the interchange of Ty and Ty.

Along similar lines, it is easy to see that the Lissajous spiral, ref. [1], Eq.
(3.27), p. 90, occurring for the nipponites, is indeed a perfect sphere in a three-
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dimensional isoeuclidean space. In fact, one has to solve the following equations in
r and the B’s

x =ac®l1 + e®cos(2yd)lcosd =
=»r[822~lsin(8218229)][B11—ICOS(B|1B12<I))], (2.81a)
y —ac™(1 + e®cos2y¢)lsing =

= r[Byy !sin (By By 0)[Bys ! sin (B B2 9], (2.81b)

o 1

z="Dbe "sin(yé¢)=r By 'cos (ByyBpnb), (2.81c)
in which case the shells is represented via the isospherical coordinates (App. B) as

the perfect sphere in isospace
xTyx + yTyy +zT,z2 =
= 12(Byy2 By 2 isosin? B cs2 & + Boo? Byo? isosin® isosin® & +
+ By 2 isocos?®) = r2. (2.82)

Similar representations hold for all other possible shapes of sea shells owing
to the direct universality of the isoeuclidean geometry. The above examples
confirm the geometric unification of all possible sea shells into the isosphere.

Such a geometric unification permits the identification of the universal
symmetry for all possible sea shells as being the isorotational symmetry 0@3) of
App. C. In turn, the application of the isorotations is particularly intriguing because
it permits the study of interconnections between sea shells which simply cannot be
studied via the conventional rotational symmetry. This aspect will be studied in a
separate work.

The extension of the results with the inclusion of time and the
representation of sea shells evolution at bifurcations will be studied in a future
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work.

3: ELEMENTS OF THE GENOEUCLIDEAN GEOMETRY

3.A: Genounits. We shall now briefly outline the broader genoeuclidean
geometry. As indicated in Sect. 1, the fundamental quantities are the four
sufficiently smooth, nonsingular, bounded and nonhermitean generalized units,
called genounits, for the characterization of the four possible time arrows for
nonconservative irreversible processes (Fig. 4).

We then have the space genounits and related space genotopic elements
characterized by 3%x3-matrices interconnected by two conjugations, Hermiticity and
isoduality

1 =T, =020, (3.1a)

>d - 1> dy - <
170 = =17, 99 = -9, (3.1b)
and the time genounits and related time genotopic elements characterized by a
one—dimensional complex function also interconnected by two conjugations,
Hermiticity and isoduality.

17 =T, <=2, (3.2a)
1t>d = _1t>' d<]t = ”<,It, (32b)

The above units are distinct in the genoeuclidean geometries of Class I and
I1, but they are all unified for the case of Class III or higher. The representation of
the bifurcation of sea shells then requires the use of genogeometries of at least
Class I, while Class I is sufficient for particles in irreversible conditions and Class
11 is sufficient for antiparticles also in irreversible conditions [4,5].

3.B: Genonumbers. The technical understanding of the genoeuclidean

geometry requires the knowledge that they are based on a theory of numbers
which is more general than that of isonumbers.
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Let Fla,+x) be a conventional field (Sect. 2.B) with multiplication a8 = axg.
Its isotopic generalization is characterized by the isoproduct a3 = a1, T = Tl =
fixed. Both products aB and a*3 are based on the assumption that they apply
irrespective of whether a multiplies 8 from the left, or B multiplies a from the
right. We can therefore introduce the following:

Definition 3.1 [5,10: The multiplication of two numbers a and p is ordered to the
right, and denoted a>f = aT>B, when a multiplies B to the right, while it is
ordered to the left, and denoted a<@ = a<TB when 8 multiplies a from the left,
where T> and <T are genotopic elements of Class I11.

Note that the above ordering is compatible with other properties and axioms
of number theory. As an example, if the original field F is commutative, it remains
commutative in each of the above ordering, that is, if apf = Ba, then a>8 = B>a and
a<B = B<a. The same occurrence holds for other properties, such as associativity
while the verification of the left and right distributive laws is evident. Thus, the
entire theory of numbers can be reformulated under ordering by characterizing
fully acceptable fields.

The point at the foundations of the genoeuclidean geometry is that the
multiplications of the same numbers in different orderings are generally different,
a>B # B<a, as requested by the different isounits (3.1), (3.2) whether for space or
time genoproducts

P: Ps>a=a>P =a, ¥ =(T)V! (3.32)

i}

94: 9<a=a<l=a, A =(<T)VL. (3.3b)

The above features permit a dual generalization of isonumbers, one for
ordering to the right, yielding the right genofield

e+ ), @ = al’, (3.4

whose elements a~ are called right genonumbers, and one to the left, yielding the Jeft

genofield



e+, <a=9aq, (3.5)

whose elements <3 are called left genonumbers. The above two different genofields are
often denoted with the unified symbol “F~(<&”+,+), with the understanding that the
orderings can solely be used individually and not jointly.

Note the need for a prior isotopy ap — aTg in order to construct the above
genotopies. In fact, no ordering is evidently meaningful for the conventional multiplication
aB = alf.

Under the above assumptions, the product ordered to the right can characterize
motion forward in time, while that ordered to the left can characterize motion backward
in time. In different term, the above orderings represent Eddington’s arrows of time.

Note that the theory of isonumbers is a subcase of that of genonumbers under the
simple condition T =<T=T=T This illustrates that the origin of the reversibility can
be seen in the appropriate theory of numbers, more specifically, from the fact that their
multiplications to the right and to the left are identical, a >B=a <p.

The isodual genofields cannm= now be constructed with the familiar
isoduality and are denoted with <¢> 4<3> 4 + <«> 9) again, the distinction between
genofields and their isoduals is lost fort Class 111. The rest of the isotopic theory can then be
generalized accordingly, including isotransformation theory, Lie-Santilli theory, functional
isoanalysis, etc. (se ref.s [5] for brevity).

3.C: Genoeuclidean geometry. The theory of isospaces admits a consistent and
significant genotopic covering. Let E(r,8,R) be a conventional, three-dimensional Euclidean
space over the reals R and let E(r,5,R) be its isotopes over the isoreals R. Then, the

genoeuclidean spaces are given by

B R): 8 =18, r20=8r, ¥ =(T)], (3.6a)
LIRS =5<T, r=r3rt, 9 =<7V, (3.6b)
1> = (), (3.6¢)
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A most visible difference between genospaces and isospaces is that the invariant in
the former is unique for both multiplications to the right and to the left, while in the latter
we have the invariants for the multiplication to the right and one to the left are different.
We therefore have two different genospaces one for motion forward in time, and one for
motion backward in time.

The use of conventional transformation theory for genospaces also violates
linearity, transitivity and other basic laws. For this reason it must be lifted into the right
and left genotrasformations

’

r= 0P>r=0TTr, (3.7a)

r=1r<<0 =r<T7<0. (3.70)

The above transformations are, individually one-sided isolinear, isolocal and isocanonical as
it occurs for the isotransformations, although they are again different for different
orderings of the product.

The genoeuclidean geometry is the geometry of genospaces <E~(r,<6”,<R”).
An important difference between the iso- and genogeometries is that the metric of the
former is unique for both directions of time, while the metric of the latter is differentiated
depending on the assumed direction of time, ” = <§.

This implies the existence of two different deformations of the sphere, one per each
direction of time, each of which is mapped into the perfect sphere in genospace. called
genosphere. Note however that, for purely imaginary genotopic elements , e.g, T~ = iT, T
= TT, 5=T81=T1, the forward genosphere is the negative of the isosphere

2 = ('8 )1 = (rtidr)il = -r2 ==(r'81)1. (338)

Note also that the negative of the isosphere is not the isodual isosphere (because
the latter coincides with the isosphere). Genotopies can therefore used to alter the
sign of the isosphere. More general realizations evidently occur for broader
structures of the genometric (for numerous physical applications, see [4,5]).

The extension of the remaining properties of isogeometries into the genotopic form
is an instructive exercise for the interested reader, and it is omitted for brevity (see ref.sd

[5].. Genoeuclidean representations of sea shells will be done in a future work.



APPENDIX A: ISOTRIGONOMETRY

In Sect. | we pointed out the inapplicability of the conventional trigonometry and
related Gauss plane for the characterization of the isocomplex numbers. In this
appendix we study the isotopic generalization of trigonometry submitted by this
author in 1988 under the name of isotrigonometry (see [4,5)).

‘Consider a conventional two-dimensional Euclidean space E(r,5R), 8 = diag.
(1, 1) over the reals R(n,+x). Its fundamental notion is the familiar distance among
two points

D2 = (XI"X2)(X1"X2) + (yl‘YZ)(YI'Yz) € Rin+x), (A.1)

which represents the celebrated Pythagorean theorem expressing the hypothenuse
D of a right triangle with sides A and B,

D? = A2 + B2 (A.2)

A property of the space E(r,8R) is the angle a between two vectors from the
origin to points P,(x;, y,) and Pok,, y,). The trigonometric notion “cosa” is given by

XpXg * ¥1 Y2
cosa = . (A.3

(xyxp + v va? Goxg + ya 5}

From the above definition one can derive the entire conventional trigonometry. For
instance, by assuming that the points are on a circle of unit radius D2 = 1, we have
for Py(x;, y;) and Py(1, 0) cosa = x|, for Po( 0, 1) we have sina = y;, with
consequential familiar property of the Gauss plane

sinffa + cos?a = I, etc. (A.4)

All the above properties lose mathematical and physical significance under
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isotopy for numerous independent reasons, such as the loss of the central notion,
that of distance, Eq. (A.1), the generally curved character of the lines, etc. The use
of conventional geometries, those defined over ordinary fields, is also inapplicable
because they are based on the conventional unit 1, while under isotopies we must
necessarily redefine the unit.

Reconstruction of angles in the isoeuclidean geometry

(A) (B)

FIGURE . Diagram (A) depicts the origin of the notion of angle in the conventional
Euclidean plane from two straight intersecting lines, which can be analytically
expressed via the familiar expression (A.2). In the transition to the Isoeuclidean plane,
the lines are no longer straight when projected in the original space, thus preventing
the conventional definition of angles. However, the isoeuclidean geometry is
isostraight, that is, the lines are straight in isospace. This does indeed permit the
reconstruction of angles, although in the generalized form of Eq. (A.8). In turn, the
possibility of a consistent generalized notion of angle permits the construction of a
consistent generalization of trigonometry. Note that this is impossible in the
Riemannian and other curves geometries, and it is permitted by the Isoeuclidean
geometry because of its fundamental structure, the property that the Euclidean
metric is arbitrarily deformed, & — 8 = T8, thus acquiring the most general possible
curvature, but the original unit is deformed of the inverse amount, I =1 = 1L, thus
eliminating the curvature in isospace.

These and other reasons have rendered mandatory the generalization of
conventional trigonometry under isotopy. Consider the isotopic lifting E(r,8,R) into
the now familiar two-dimensional isoeuclidean space over the isoreals R(n,+*)
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(Sect. 3.3) here assumed for simplicity in the diagonalized form
ErdR):r=(x,y), 8 = Ts = diag. (Ty, Ty), R =R+, (A.5a)
1 =7 = diag (T,”, 7, ), Te=Tt,ntt.0k=12.  (A5b)

Consider now two points P(x, y;) , Poxs, yo) € E(r,3,R). Then the conventional
distance (6.A.1) is necessarily (and uniquely) generalized into the isodistance

D2 = (x; = x) Ty (%= %3) + (y, = y2) T (y, ~y,) € R. (A.6)

(where we ignore the factor 1 for simplicity). The above generalized notion of
distance evidently characterizes an infinite family of isotopies of the Pythagorean
theorem, called isopythagorean theorem, according to which the image of
expression (A.2) under isotopies is given by

D2 = AT 11, )JA + BTt )8, (A7)

Suppose now that the two points P; and P, also represent isovectors
originating from the origin of E(r,3,R). The isoangle between these two isovectors is
given by [4,5]

~

= 1/2
a—a(TxTy) , (A.8)
where A is the original angle.
We can then introduce the notion of isocosinus of the isoangle a via the
definition3

X Tyxp + y; Ty o
isocos a = (A.9)

(XlTXXl + yl Tyyl )%(XZTXXZ + YZTYY2)%

3 The attentive reader may have noted the conventional square in the denominator.
However, the isofactor in the denominator cancels out with that of the numerator,

resulting in expression {A.9)
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Isopythagorean theorem

(A) (B)

FIGURE 9: A schematic view of the isotopic image of the Pythagorean Theorem
which permits the reconstruction of the theorem for figure (B) with arbitrarily
curved sides. Its understanding requires the knowledge that the right triangle (A)
remains a right triangle in isoeuclidean space, called “right isotriangle”. Diagram (B)
is only the projection of the right isotriangle in the conventional Euclidean space. In
fact, the conventional sides are lifted into curves. Then, the original angle a
between two generic sides is lifted into the isoangle a = Tx*Ty*a_. Despite these
generalizations, a relationship between the isohypothenuse and the isosides still
exists, and it is given by Eq. (A.7). As a matter of fact, this is precisely the central
geometric meaning of isoeuclidean distance. It may be intriguing and instructive for
the interested reader to note that all conventional trigonometry on a plane admits a
consistent and nontrivial isotopy. As an example, the original angles of a triangle a, 8,
v, which are such that a + g + 1y = 180°, are deformed under isotopies into the new
values a, B, ¥’ such that @’ + 8 + v # 180° in the Euclidean plane. However, the
peculiarity of the isoeuclidean geometry is such that the deformations a — a, etc. are

"

compensated in such a way that Tx"’Ty)"a' a, etc. The sum of the angle of (any)
isotriangle is then

T T (a+p+y)=a+ B+ = 180"

All other properties can then be derived accordingly. To understand the novelty one
should note that the above generalization of the Pythagorean theorem does not exist
in conventional geometries, those constructed with respect to conventional units,
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such as the Riemannian or other noneuclidean geometries.
We now assume the two points to be on the surface
D= xTx+yTyy=1, (A.10)
and for the values P, (x;, y}), P, (b; ], 0), the isocosinus & becomes

x; =T Y2 cos @ = isocos @ . (A.11)

We can then define the isosin & by assuming P, (0, Ty"I ) for which
y2 = T, M2sind = isosin G . (A.12)
The following isotopy of property (A.4) then holds

2

Ty isocos?d + Ty isosin®d = 1 (A.13)

The above results characterize the isopolar coordinates in the isogauss plane

X = isocosd = Tx'% cos (TX% Ty% a), (A.14a)
y = isosina = Ty_% sin(Tx% Ty%a). (A.14D)

which verify again the isotopic generalization of property (A.4) for D = 1
XxTyx + yTyy = Ty isosin? & + Ty isocos?d = 1. (A.15)

When the isohypothenuse D is not one, we have the value of the sides

A=D Tx‘* cos a =D isocos a, (2.16a)
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B=0D Tyn% sina =D isosin a , (A.16D)

which are again consistent with basic isopythagorean theorem.
In summary, the isotopy of the trigonometric functions is given by

cosa - isocosd = Tx-% cos (TX’lr ’I‘y’lr a), (A.17a)

sina — isosina Ty_% sin ( TX% Ty% a). (A.17b)
The construction of the isotrigonometry in all the necessary details can be
conducted accordingly.

Note that the trigonometric functions are deformed both in intensity and in
their angle. These properties render them particularly intriguing in physics, e.g.,
for the study of deformation of potential wells in nuclear physics, or in theoretical
biology, e.g., the study of the shape of sea shells.

The reader should be aware that, despite they apparent simplicity, the
isotrigonometric functions are rather general indeed because of the dependence of
their angles, sina = sinlalt, r, t, ..)], cosa = cosla(t, r, 1, ..). For isoeuclidean planes of
Class I, the factor of the isoangle (TXTY)” 2 is positive-definite in which case sind
and cosd remain conventional trigonometric functions. For the isoeuclidean plane
of Class Il the factor (TxTy)l/ 2 still remains positive-definite. Thus the argument
of the isotrigonometric functions is isoselfdual. However, true generalization
emerge for the isoeuclidean plane of Class I because, in this case, the factor
(TxTy)U 2 can be purely imaginary and the trigonometric functions sind and cos
become hyperbolic functions (see below).

Note that in the formalism of Sect. 2.J, the isocosinus of the angle for two
intersecting vectors can be written as the isotopy of the conventional case

V0V,
iS0C08 B = (2.18)

[ViT=1v1

Also, one can introduce the directional isocosinuses of a vector



isocosa = V| /]V], isocosB = V,/1V], isocosy = Vz/[V].  (219)
Then, we have again the correct lifting of the corresponding conventional identity
T, isocos? & + T, isocos?B + T, isocos?y = 1 (2.20)
X y r ' ‘
here we have ordinary squares rather than isosquares.
The reader can then readily compute the remaining properties of the

isotrigonometry. We here limit ourself to mention only a few properties. For
instance, the isotrigonometric functions are also periodic of period 2w,

isocos (a + 27) = isocos a, isosin (a +2mw) = isosin a. (A.21)
The following symmetry properties then follow as in the conventional case

isocos (-a) = isocosa, isosin(-a) = —isosina . (A.22)

Simnilarly, the theorems of isoaddition become

isosin(a+B) = Tx—% (isosin a isocos B * isocos a isosin B ), (A.23a)
isocos (& +B) =Ty (T, ! isocos & isocos B + Ty !isosin G isosinB)  (A.23b)
isosin @ + isosinB = 2 TX"% isosin 4+ (@ +B)isocos + (@ -B), (A.23c)
isocos a + isocos B = 2 TX-.& isocos 4+ {a +B)isocos 4 (a—-P), (A.23d)
etc.

The connection between isotrigonometric functions and isoexponentiation

requires the use of the isounit

1= Tx"* Ty‘i‘ = (det1, t=T, %Ty% =(det T (A.24)



under which we have the alternative definition of isotrigonometric functions

. ia ita - . - .

e =1le =Ty ¥ isocos & + i Ty ¥ isosin &, (A.25)
where the isoenvelope is now defined for product a*b = atb and isounit 1. We can
then also introduce the isohyperbolic functions fort > 0

isocosh & = TX_% cosh(ta), isosinha = Ty-{’ sinh (ta), (6.A.26)
with basic property
T, isocosh? & - Ty isosinh? & = 1, (A.27)
and their derivation via the isoexponentiation

. @ 1 - . - N
e b =1e = Ty % isocosh & + Ty ¥ isosinh .. (A.28)

It may be intriguing and instructive for the interested reader to work out
additional properties of isotrigonometric and isohyperbolic functions.

However, a peculiar property is that all distinctions between trigonometric
and transcendental functions are lost in the isoeuclidean plane of Class I,
trivially, because in this case the factor t can be real or imaginary, as indicated
earlier.

We close this appendix with the following intriguing property of the isogauss
theory

Lemma A.1: All possible algebraic or transcendental functions f(x, y) = 0 in
the Gauss plane can be unified into the isocircle.in the isogauss plane of

Class 1T

In fact, for any f(x,y) = 0 there always exist elements 8;; such that flx,y) = riSijrj -1
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= (. The above property can be illustrated via a certain geometric complementarity
between the circle xx + yy = | and the tractrix

2y
ye T e = (A.29)

It is evident that tractrix (6.B.1) is unified into the isocircle by the diagonal

isometric with elements 8, =yx Zexp {1 - (1 - y21 ), 8y =y M1 - yz)%.

APPENDIX B: ISOSPHERICAL COORDINATES

In ref. [5] we have proved that the conventional spherical coordinates in Euclidean
space E(r,8R)

X =rsinfcosd, y =rsin®sing, z = rcossh, B.1)
with familiar measure
ds? = dx2 + dy?+ dz2 = dr + r2(de? + sin2e d¢?), B.2)

imply a number of inconsistencies when used in isospaces E(r,8,R), such as the
impossibility of separating the radial and angular part in the equations of motion,
and other problems, which persist in the use of other conventional coordinate
systems, e.g., elliptical.

These occurrences have rendered mandatory the construction of the
isotopies of the spherical coordinates, called isospherical coordinates, which are the
correct coordinates for isospaces E(r,3,R).

We shall present first the simplest possible derivation of the isospherical
coordinates, and then its more general form as needed for the isorepresentation
theory of the isotopic SO(3) symmetry and other applications. Consider the three-
dimensional isoeuclidean space E(r,8,R) with isometric
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8=T8 & =diag(l,1,1), T = diag (Tx, Ty, TZ). (B.3)
Introduce the redefinitions of the Cartesian coordinates
X =xTt, ¥V=yT}, Z=zT}, (B.4)

which are such to reduce the isoinvariant in £(r,5,R) into an identical form in a
conventional Euclidean space E(r,8,R) # E(r,8,R),

2= XxTex +yTyy + 2T,z =XX + yy + 27 = 2. (B.5)
Next, we introduce the isospherical angles
®=T,e, d=TtT}0, (B.6)
defined to coincide with the original angles prior to the deformation. They are
derivable from the representation theory of the isorotational group O(3) which is

here omitted for brevity [5].

Under these assumptions, the isospherical coordinates can be first written
in the form [5] (see Fig. 10)

= - o i P d
x = 1Ty sin (T, 8)cos (T, Ty’ ¢) (B.7a)
y=r ’I‘y""l sin (T, 8)sin (T, Tyd), (B.7b)
z = 1T, cos(T,0), (B.7¢)

We can then introduce the simplest possible form of the isomeasure on
E(r,3,R), that in terms of conventional differentials with the isotopic element
independent from the local variables

ds2 = dxdX + dydy + dzdz =

= dx Tydx + dyTydy +dzT,dz =
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= dr? + 12 [T,d6% + Ty Tysin®dde?] =
= dr? + 12 [a? + (sin?d)ddp2]. B.8)

The expression of the isomeasure for the general case in which the isotopic element
depends on the local variables requires the full use of the differential calculus and,
as such, it is omitted for brevity (see ref. [5).

The isospherical coordinates in form (B.7) are useful for practical
calculations, although they are not in their most general possible form because
conventional trigonometric functions admit isotopic images. Their formulation in
terms of the isotrigonometric functions then permits deeper insights.

Recall from Appendix A that the isopolar coordinates expressed in terms of
the isotrigonometric functions in the isogauss (x, y)-plane with isotopic element
T = diag. (T,, Ty) are given by

X = risocosd=r Tx'* cos [ ( Tx* Ty"' Yo l, (B.9a)
y =71 isosind = r Ty"* sin [ ( Tx* Ty* Yol , (B.9b)

and verify the isopythagorean theorem
xTyx + yTyy = rz(Txisocoszib + Ty isosin$) = 2.  (B.10)

In particular, the isotopic element of the above isotrigonometric functions is
not that of the isogauss plane, but rather the element T in the isoexponentiation

8ei® =15el T = 1,6l 1021y (cosd + isind)] =

= T, Fisocos § + i T, isosin &, (B.11a)
=TT}, 1o =171 (B.11b)

The next issue is the appropriate isotrigonometric formulation of the
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remaining terms in ®. At this point there is the emergence of a further degree of
freedom which is "hidden” in the isotopic theory itself and completely absent in
quantum mechanics.

By inspecting structure (B.7) one could conclude that the isogauss plane for
the polar angle has the isotopic element T = diag. (T,, 1). However, one can also
introduce the following redefinition of the isotopic element in three-dimensional

space
Ty = BpByy, Ty = BB, T, = By, (B.12a)
By Bos = By Bpa. (B.12b)

with solution

B = T, T/ T, (B.13a)
Bi®= T, T,/ T, (B.13b)
Bgo® = by by/ bz, By =bg, (B.13¢)
Bi®B12® = Bp®By 3 = T T T, (B.13d)

under which we can introduce the general isospherical coordinates

X = risosin® isocos ¢ =

r[Byy Lsin(By; By 6)1[B); L cos (B Bp 91, (B.14a)
y = risosin & isosin $ =

= r[Byy Isin (Byy Byo8)[Byy Lsin (B By o], (B.14b)

Lcos (By; By ®) , (B.14c)

z = risocos® = rByg;”

with isoidentity



xTyx + yTyy +zT,z = (B.15)
= 12(Byy? By isosin? B cds? & + Byy? Bjo? isosin® ® isosin? § +
+ Byj2 isocos?®) =12,

Isospherical coordinates

Z N\

<\

=

FIGURE 10: A schematic view of the coordinates of a point on the isosphere in
isoeuclidean space in three-dimension, Eq.s (B.14). As one can see, the
representation coincides at the abstract level with the conventional one in
Euclidean space with coordinates (B.1}). However, the projection of the former in
the space of the latter exhibits the ellipsoidical character of the isosphere.

Redefinitions (B.14) are important for the isorepresentation theory studied in
ref.s [5] because they permit the identification of the values of the isospherical
isotopic elements and isounits separately for the 6 and ¢ angles

Tg = Boy By = TC[) = By} Bys, (B.16a)

19 = B2l~l822—l = Tq) = B“—IBIZ_I, (B.16b)
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with evident computational advances.
The “hidden” isotopic degree of freedom in the transition from the
decomposition

T = diag (T, Ty, T,) = diag (Ty, T,)  diag (T, 1), (B.17)
to the more génera] form underlying structure (5.5.14)
T=diag (T,, Ty, T) = diag. (B2 B2 x diag By By?), (B.182)
Ty = Bp?By, Ty = BB, T, = By?, (B.18b)

is also important for numerous applications of the isotopies.

APPENDIX C: THE UNIVERSAL ISOROTATIONAL
SYMMETRY OF SEA SHELLS

As it is well known, the symmetry of the sphere in three-dimensional Euclidean
space E(r,8,R) is the rotational symmetry O(3). As it is equally well known, sea shells
are believed not to admit a symmetry owing to their nonspherical shape as well as
the increase of the shape itself in time.

In this appendix we introduce, apparently for the first time, the universal
isosymmetry for all possible sea shells as being the isorotational symmetry 03
identified by this author in 1985 for physical applications (see the detailed studies in
ref.s [5]). Such a symmetry is possible following the representation of sea shells in
isoeuclidean spaces E(r,8,R) and the identification of all possible shapes with the
isosphere (Fig. 3). The proof of the universal isosymmetry O(3) of sea shells is
therefore reduced to the proof that O(3) is the universal symmetry of the isosphere.

Consider the isoeuclidean spaces E(r8R) of Class III with isometric, isotopic
element and isounit in the diagonal form



§=T6, T = diag. (T, T, T), Tx = Telyrrt,.)>01="1" (€D
The isotopies we are studying characterize the deformations of the sphere
2=l + %+ 38 s, (€2
into all infinitely possible three—dimensional surfaces
2= KT =+l ol + r2Tyr?+ T, =inv. (c3)

Some of the main properties of isorotations can then be expressed as
follows:

Theorem C.1 [5]: The isosymmetries O(3) of all infinitely possible
deformations of the sphere on the isoeuclidean spaces E(r,8,R), verify the
following properties:

1) The groups O(3) consist of infinitely many different simple groups
corresponding to the infinitely many possible deformations of the sphere
(explicit forms of the isometric);

2) All isosymmetries O(3) are locally isomorphic to O3) for positive=
definite isounits or are isomorphic to the isodual 0%3) for negative-definite
isounits; and

3) The groups O(3) constitute “isotopic coverings” of the conventional
group O(3) in the sense that:

3a) The groups O(3) are constructed via methods (the Lie-Santilli theory
[6]) structurally more general than those of O(3) (the conventional Lie’s
theory);

3b) The groups O(3) represent physical conditions (deformations of the
sphere; inhomogeneous and anisotropic interior physical media; etc.) which
are broader than those of the conventional symmetry (perfectly rigid sphere;
homogeneous and isotropic space; etc.} and

3.c) All groups O(3) recover O(3) identically whenever 1 =1 and they



can approximate the latter as close as desired for1 = 1.

It is generally believed in both the mathematical and physical literature that
the rotational symmetry is broken by ellipsoidical deformations of the sphere. This
belief is disproved by the Lie-Santilli theory because of the following:

Corollary C.1A [loc. cit.l The rotational symmetry is not broken by
ellipsoidical deformations of the sphere, but it is instead exact because of
the isomorphism O(3) = O(3), provided that it is realized at the covering
isotopic level with respect to the isounit 1 = T~

Note that the conventional rotations are indeed no longer a symmetry of
the deformed sphere. Corollary C.l1.A therefore focuses the attention on the
difference between the violation of a symmetry in conventional spaces and its
exact validity for the corresponding isospace. Equivalently, we are here referring to
a mechanism of reconstruction of an exact symmetry in isospace when
conventionally broken.

The isorotations can be explicitly written in E(r,5,R)

r=®Rexr = RO TU, 1,1, 1. )r=8r, 1,80, R = 81, (C4)

and therefore result to be intrinsically nonlinear. This is due to the fact that the
functional dependence of the isotopic elements is completely unrestricted by the
isotopies. We therefore have the following

Corollary C.1B [loc. cit.: While conventional rotations are linear, local and
canonical transformations in E(r,8R), isorotations are isolinear, isolocal and
isocanonical in E(r,8,R), but nonlinear, nonlocal and noncanonical when
projected into E(r,5R)

A further important result is the isotopic generalization of the conventional
Eulers theorem on the general displacement of a rigid body with one point fixed
which we can express via the following;



Theorem A.2 [loc. cit.}: The general displacement of an elastic body with
one fixed point is an isorotation O(3) of Class I around an axis through the
fixed point.

The above theorem illustrates the use of the classical isorotational
symmetry for the characterization of deformable bodies. ,

A brief outline of the classical isorotational symmetry is the following. First,
let us consider the three-dimensional isoeuclidean space E(r,8,R). Its local coordinates are
usually assumed to be contravariant and we shall write r = {r¥), k = 1, 2, 3. Assumne that
the isometric in its natural form has covariant indices

8= = diag. (T, T, T,). (C5)
Its contravariant form is then given by
(8Y) = (8;;)7" = diag. (T, L1, Ty By 86 = 8 ()

We consider now the isophase space T*E(r,8,R) with local coordinates a =
(@Y =1{r, p) =&, p), 1 = 1, 2, ..., 6, where the linear momentum py is contravariant, as usual.
The raising and lowering of the indices therefore follows the rules

T = 8y = Ty i, pk = ki P = Tk'l pg (no sums). cn

The classical Lie-Santilli brackets then assume the form?

X dA oB B dA
[ATB] = 1P - 17, =
arP op, o 7 ap,
oA _ B B _ BA cs
s — 77— - — 77—, c8
ark apy ok X apy

To identify the Lie-Santilli algebra so(3), let us compute first the classical
fundamental isocommutation rules which are readily given by5

4 The proof that the above brackets do indeed verify the Lie axioms although in a
generalized way is based on the isotopies of the symplectic geometry and, as such,. it
cannot be reviewed here for brevity (see ref.s [[5] for brevity).

- 178 -



el 1) o 1
([a“fa”])=( R )=(m>= ( . ) 9
lp;7 [pi, pj] -1 0

showing the isotopy I = 1. However, when considering the isocommutation rules
between r;and p; we have

( 57 ) [ p ) ( 0 1 ) cu
lpi7 o) o, ) -1oo0 /

Lemma C.1: The classical isocommutation rules between r; and p; coincide

with the conventional canonical ones.

Next, we introduce the generators of the Lie-isotopic algebra s&3) which, by
central assumption, are given by the conventional, contravariant generators of
0(3), 6

K o= Xl np; = kil Tj r Pj- (.11

The above quantities are called the components of the isofopic angular
momentum to emphasize the fact that they characterize a generalized notion
defined on T*E(r,8,R) rather than on T*E,(r,8,R).

In particular, the magnitude of the conventional angular momentum is
given by the familiar expression J? = JXJ, = 8 J,J,, while the magnitude of the
isotopic angular momentum is given by7

J2=Js= Joegy = 8y =80Ty (C.12)

Next, the following isocommutation rules are readily computed

® These rules require the knowledge of the isoderivatives for which dr,/dr) = 8;; (5
6 Unlike the operator case to be considered soon, note that the quantities r! and Pj here
are ordinary functions and, thus, they do not require the isotopic product ri*p i Note also
the subtle but important differences of the indices of 8 = (8;), 1={1") and T = (Ty)).
Thus, only the tensor Si jor its inverse 8! used for lowering or raising indices.
732 is in this case an isoscalar, that is, a scalar quantity in isospace. For this reason it
must be contracted in the form J2 = Ky
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(%7 ] = &iry, (C.13a)

[J57 pl = Mip,, (C.13b)

and evidently coincide with the conventional ones.
The desired classical isorotational algebras so{3) are then given by (3

so3):  [Ji) J] = ek gk (C.14)

namely, the isocommutation rules of so{3) have the same structure constants as
those for the conven