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This monograph presents an enlarged version of the lectures
delivered by Prof. Ruggero Maria Santilli at the INTERNA-
TIONAL CENTRE FOR THEORETICAL PHYSICS of Trieste,
Italy, in the first part of December 1990, following notes taken
at the lectures by one of the Authors, Prof. A.J annussis, and
subsequently enlarged thanks to the assistance of all the other
Authors, as well as to the editorial assistance of the staff of
THE INSTITUTE FOR BASIC RESEARCH of Palm Harbor,
Florida, U.S.A.

An invitation by Prof. Abdus Salam, Director of the Cen-
tre, to Prof.s Santilli and Jannussis must be here acknowledged
with sincere gratitude, because it permitted the organization of
the original material presented at the lectures and stimulated its
subsequent enlargement. Penetrating comments by Prof. Salam
at the lectures resulted to be invaluable for the achievement of
sufficient maturity of presentation, and for stimulating subse-

quent research.

The material reviewed in this monograph is the Lie-isotopic part
of the studies conducted by Prof. Santilli under partial support by
the U.S. DEPARTMENT OF ENERGY, under contract numbers ER-
78-S-02-47420.A000, ASO2-78ER0-4742, DE- AC02-10651, DE-ACO2-
80ER-10651.A001 and DE-AC02-80ER- 10651.A002. The Authors
hope to review the Lie-admissible and operator parts of the research

conducted under the same contracts at some future time.
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PREFACE

Throughout this century, Lie’s theory has been developed in both mathe-
matical and physical literatures with respect to the simplest conceivable unit,
say I = Diag.(1,1,...,1), and the simplest conceivable product AB — BA,
where AB is the trivial associative product. In a pioneering memoir written
at Harvard University in 1978, Ruggero Maria Santilli identified, apparently
for the first time, a generalized formulation of Lie’s theory constructed with
respect to the most general possible unit I, in which case the Lie product
assumes less trivial forms, such as A+ B — B x A where A x B is still associa-
tive but of the more general type A+ B = AgB, where g is fixed, sufficiently
smooth and nonsingular, and I = g~1. The generalized theory was called
the “Lie-isotopic theory” for certain historical reasons reviewed in the text.
The original proposal of 1978 contains the development of the Lie-isotopic
theory to a rather remarkable extent, including a generalization of: the
theory of universal enveloping associative algebras (Poincaré-Birkhofl-Witt
Theorem, etc.); Lie’s celebrated First, Second and Third Theorems; Lie’s
transformation groups; and Lie’s symmetries. The memoir concluded with
the conjecture of a conceivable generalization of Galilei’s Relativity in clas-
sical mechanics for extended particles moving within resistive media (which
are not only Galilei-noninvariant, but also generally nonhamiltonian). This
original proposal was subjected to a systematic study in subsequent years
by Santilli as well as a number of independent authors, not only for the
original classical profile, but also for a conceivable operator counterpart, as
well as for relativistic, gravitational and gauge extensions.

This review is a guide through a considerable and disparate literature,
devoted to: the identification of the state of the mathematical studies on
the Lie-isotopic generalization of conventional formulations of Lie’s theory;
their primary applications, to classical mechanics, particle physics and astro-
physics; and an outline of the proposed fundamental tests. Except for minor
treatments, the studies on conceivable operator realizations are deferred to
a possible separate review.

We begin with a review of the algebraic notion of isotopy and its applica-
tion to associative and Lie algebras. We then pass to the notion of analytic
isotopy in classical mechanics, that realized via the Birkhoflian generaliza-
tion of Hamiltonian mechanics. We also indicate the notion of operator
isotopy on Hilbert spaces, that realized via the hadronic generalization of
quantum mechanics, as well as the methods of “hadronization,” that is, the
mapping of Birkhoffian into hadronic mechanics. The notion of isotopy in
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symplectic geometry concludes our introductory chapter.

The second chapter is devoted to a detailed review of the mathematical
studies on the Lie-isotopic formulations of: enveloping associative algebras;
Lie’s Theorems; Lie algebras; Lie groups; and the application of the gen-
eralized theory to space-time symmetries. The second chapter ends with
a fundamental theorem by Santilli on the reconstruction of the exact na-
ture of space-time symmetries at the Lie-isotopic level, when broken at the
conventional level.

The third chapter is devoted to the applications of the Lie-isotopic the-
ory. We begin with a review of Santilli’s isotopic generalization of the group
of rotations and some of its properties such as: the capability by the rota-
tional symmetry to remain exact at the Lie-isotopic level when convention-
ally broken, say, for spheres undergoing deformations, or for any physical
condition implying a topology-preserving alteration of the Euclidean metric.
We then pass to the review of Santilli’s Lie-isotopic generalization of Galilei’s
Relativity for systems of extended-deformable particles which are nonhamil-
tonian (but Birkhoffian) because of motion within a resistive medium. We
review the property that, again, under certain topological restrictions, the
Galilei symmetry remains exact at the Lie-isotopic level when convention-
ally broken by nonhamiltonian forces. A number of intriguing implications
and open problems are also considered. We then pass to the review of San-
tilli’s Lie- isotopic generalization of Einstein’s Special Relativity and related
properties, such as: the capability of incorporating all available studies on
Lorentz “noninvariance” (universality), e.g., the several phenomenological
calculations predicting deviations from Einstein’s behavior on the mean life
of unstable hadrons at different speeds; the capability of reconstructing the
Lorentz symmetry as isotopically exact for all the above models (in which
it is conventionally broken); the capability to represent a disparate variety
of physical conditions outside the applicability of the conventional relativ-
ity, such as deformation of charged distributions, motion of electromagnetic
waves in inhomogeneous and anisotropic media, motion of electrons in met-
als, propagation of causal signals within dense hadronic matter, etc.; the
generalization of the various laws of the conventional relativity with intrigu-
ing implications although in need of experimental preliminary confirmations;-
and a number of other aspects. The third chapter then passes to a review of
the construction by Gasperini and Santilli of a Lie-isotopic generalization of
Einstein’s gravitation which is, locally, Lorentz-isotopic and Galilei-isotopic,
as well as capable of resolving at least some of the numerous problematic
aspects of the conventional theory available in the literature. The need for



the conduction of certain basic tests on fundamental space-time symme-
tries (that have been regrettably ignored for decades) completes the third
chapter.

In the Appendices we review a variety of topics that complement the
main text, such as: Lie-isotopic generalization of gauge theories; computa-
tion of the maximal speed of causal signals within hadronic matter; Lie-
isotopic field equations; and other aspects.

The situation emerging from this review is essentially as follows. From a
mathematical viewpoint, there is little doubt that the Lie-isotopic theory is
mathematically consistent and does provide a genuine covering of the con-
ventional formulation of Lie’s theory. The understanding is that the studies
are at the beginning and so much remains to be done. From the viewpoint
of theoretical physics, the classical formulations of the Lie- isotopic theory
have clear applications in Newtonian mechanics, particularly for the phys-
ical systems of our everyday life, that is, with nonhamiltonian forces, for
which the conventional formulations are simply inapplicable. In regard to
relativistic settings, the isotopic theories are admittedly tentative, conjec-
tural and in need of direct tests, although we are aware of no experimental
or other information on the novel physical conditions considered capable of
disproving the predictions of the new theory at this writing. As a matter of
fact, all evidence currently available appears to favor the Lie-isotopic sym-
metries over the conventional ones, in a way, after all, predictable from the
necessary compatibility with established Newtonian applications.

We are here referring to: phenomenological calculations on the behavior
of the meanlife of unstable hadrons with energy conducted over the past
several decades showing an apparent violation of the Einsteinian law, while
they are clearly and directly interpreted by Santilli’s covering law; the pre-
liminary measures via neutron interferometry conducted by Rauch and his
associates on the apparent deformation of the charge distribution of neutrons
under external nuclear fields, with consequential alteration of the magnetic
moments/rotational asymmetry, which are also directly and quantitatively
interpreted by Santilli’s exact, SU(2)-isotopic symmetry; and others. Not
surprisingly, the astrophysical applications of Santilli’s covering relativities
appear to be in full agreement with their particle and classical counterparts. -
We are here referring, e.g., to the possibility of interpreting the quasar red-
shift as due to propagation of light within the hyperdense, inhomogeneous
and anisotropic media surrounding the quasars, rather than to the currently
unplausible quasars speeds of the order of ten time the speed of light in
vacuum; and other very intriguing astrophysical applications. '



As a result of all the above, a thrilling possibility of a new scientific edi-
fice emerges from Santilli’s pioneering studies, with predictable implications
at every level of contemporary physics, most of which are still unexplored as
of now. But, by far, the most important implications of Santilli’s studies are
from an experimental viewpoint. In fact, the studies focus the attention on
considerably overdue, fundamental experiments which have been submitted
in the technical literature for decades, but largely ignored until now. We
are referring to experiments such as: final measures of the behavior of the
mean life of unstable hadrons at different speeds; or to final measures of
the expected deformation of the charge distributions of hadrons under suf-
ficiently intense external fields; and others. All these experiments, in their
currently available preliminary form, show clear deviations from the Ein-
steinian predictions, in favor of the prediction of Santilli’s relativities and
their exact, isotopic, Lorentz symmetry. This situation leaves the ultimate
foundations of contemporary physics in a state of “suspended animation”
which will evidently persist until the experiments are finally done, and the
issue of conventional versus isotopic space-time symmetries resolved one way
or the other.

This work will achieve one of its most important objectives if it suc-
ceeds in stimulating experimentalists to finally conduct these much overdue,
fundamental tests.

June 1, 1990






1 INTRODUCTION

1.1 A Brief Survey of the Literature

Despite rather vast mathematical and physical studies, the formulation of
Lie’s theory has been essentially restricted until recently to that via the
familiar Lie product [A, B] = AB — BA, where AB is the simplest possible
associative product, e.g., that of matrices. The unit of the theory is then
the trivial element, e.g., I = diag(1,1,...,1).

An inspection of the physical literature confirms this condition, which
has its origin in the construction of quantum mechanics via the enveloping
associative algebra of operators A, B, ..., their simplest possible product AB,
and Heisenberg’s time evolution zhA AH — HA. An inspection of the
mathematical literature confirms the same condition which has its origin,
this time, in the representation theory of enveloping associative algebras
also realized via the product AB.

In a pioneering memoir of 1978 (written while at the Lyman Laboratory
of Physics of Harvard University), Ruggero Maria Santilli [1] identified, ap-
parently for the first time, a generalized formulation of Lie’s theory which
he called Lie- isotopic theory for certain historical reasons reviewed later on.
The central idea is that of building the theory around the most general pos-
sible unit, say [ = (Ii;), where the elements I;; have an arbitrary functional
or operator dependence subject only to certain topological restrictions. This
demanded, of course, a generalization of the enveloping algebra, from the
form with trivial product AB, into a covering form with product of the type
A% B = ATB, where [ = T~ = . The Lie product then takes the more general
form A+ B— B * A.

Santilli was the first to realize the mathematical and physical nontriv-
iality of the theory and to develop it to a considerable extent already in
the original proposal [1]. In fact, in this first memoir one can see several
theorems generalizing enveloping associative algebras, the celebrated Lie’s
first, second and third theorems, and the conventional notion of Lie group,
into forms compatible with the most general possible unit 7. Under the con-
dition that the old unit I is contained as a particular case of the generalized
unit [, Santilli’s theory becomes a covering of the conventional one, in the
sense of being formulated on structurally more general foundatlons, while
admitting the conventional formulation as a trivial particular case.

Remarkably, the Lie-isotopic theory was proposed by Santilli as a par-
ticular case of a structurally yet more general theory based on the so-called



Lie-admissible algebras, which will not be reviewed in this monograph. Nev-
ertheless, the point is important for this review because some of the subse-
quent advances made by Santilli and others on the Lie-isotopic theory can
be identified only as a particular case of the more general Lie-admissible
formulations. Perhaps this is the reason why the Lie-isotopic theory has not
received until now the attention it deserves in both physical and mathemat-
ical literatures.

The subsequent memoir also of 1978 [2] and paper [3] were primarily de-
voted to Lie-admissible algebras, although containing advances important
also for the simpler Lie-isotopic theory such as the foundation of a con-
ceivable operator realization of the algebras, including the generalization of
Heisenberg’s equations of the type ihA = Ax B — B % A. Santilli completed
the year 1978 with the release of the two monographs [4,5], the first set-
ting up the methodological foundations of the classical realization of the
Lie-isotopic theory (the so-called conditions of variational selfadjointness),
and the second initiating the application of hadronic mechanics to particle
physics.

In 1979 we see the appearance of the first review [6] [again for the Lie-
admissible approach] followed by paper [7] on the initiation of the repre-
sentation theory of the generalized algebras on suitable bimodular vector
spaces. Paper [8] presents an intriguing application to gauge theories.

Paper [9] of 1980 studies the difficulties of conventional quantization,
and suggests their reinspection under a broader algebraic structure. Paper
[10] of 1981 studies the expected existence of a conceivable generalization
of quantum mechanical laws for the interior of hadrons, with particular
reference to Heisenberg’s uncertainty principle. Paper [11] enters deeper
into conceivable physical implications for particle physics, this time for the
notion of particle under external strong interactions realized with nonlocal
and nonhamiltonian terms due to mutual wave overlappings.

In 1982 we see the appearance of paper [12] which consists of a review of
the physical implications of the generalized Lie structures for nonpotential
nonhamiltonian interactions in Newtonian, statistical and particle mechan-
ics. Paper [13] studies the conceivable generalization of Heisenberg’s and
Schrédinger’s equations that are expected from the broader realizations of
Lie’s theory. Paper [14] presents another courageous analysis, the possibil-
ity that causal signals can propagate within dense hadronic matter at speed
higher than ¢,, the speed of light in vacuum. At the end of 1982 we also
see the appearance of monographs [15,16] on the classical realizations of his
algebraic theories, the so-called Birkhoffian [15] and Birkhoffian admissible



[16] mechanics. In these monographs one can see Santilli’s extended presen-
tations of the conceivable generalizations of Lie-isotopic and Lie-admissible
type, respectively, of the classical Galilean relativity for extended particles
with action-at-a-distance, potential forces, as well as contact, nonpotential
and nonhamiltonian forces due to motion within a resistive medium.

In 1983 we see the appearance of three central contributions. Paper [17]
presents a model on the reversibility of strong interactions for center-of-mass
conditions, with irreversible dynamics for each individual constituent when
considering the rest of the system as external. Paper [18] is, in our opin-
ion, the most important paper under consideration here after refs. [1,2]. Tt
presents the foundations of a conceivable Lie-isotopic covering of Einstein
special relativity for generalizations of the Minkowski metric caused by mo-
tion of extended particles within generally inhomogeneous and anisotropic
physical media. The paper also provides the explicit method for the con-
struction of an infinite class of covering transformations from the original
Lorentz ones and the given generalized metric. Paper [19] provides a gen-
eralization of Wigner’s theorem on quantum mechanical symmetries within
the broader Lie-isotopic setting representing nonpotential nonhamiltonian
forces caused by mutual wave-overlappings of particles. This paper also sig-
nals the achievement of mathematical maturity of the generalized operator
formulation, with the clear understanding that its physical validity is still
basically open at this writing.

In 1984 we see the appearance of another important contribution [20].
In the preceding paper [18] Santilli shows that, under certain topological
restrictions, the continuous part of the Lorentz symmetry can be proved
to be exact at the abstract, Lie-isotopic level when generally considered
as “broken” at the simplistic level of the product AB — BA. Paper [20]
complements these results, this time, for the discrete part of the Lorentz
symmetry. In fact, the paper indicates how parity may well be an exact
symmetry under weak interactions, provided the theory is realized within the
context of the covering Lie-isotopic approach, because all P-breaking terms
can be incorporated in the generalized unit I [as well as in other degrees
of freedom]. The exact character of the P-[as well as other] symmetries
then follows from the property that Lie algebras leave invariant their unit
element.

In 1985 we see additional contributions by Santilli in the field. The year
started with the inspiring “Journey in the Solar system” [21] (an invited
contribution to the Calcutta conference). We then see the appearance of
papers [22,23] specifically devoted to Lie-isotopic symmetries. These papers
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(which had been written prior to paper [18] and presented at a meeting of
1983) essentially provide a rigorous mathematical formulation of the process
according to which a given Lie symmetry, when broken at the simpler level
AB — BA, can be “reconstructed” as exact at the higher Lie-isotopic level
A% B — B« A. The papers also identify the means of constructing the
(generally infinite family of) covering, exact, Lie-isotopic transformations
via the sole knowledge of the old transformations and of the new metric.
Papers [22,23] then apply the theory to a case of truly central physical
relevance: the breaking of the rotational symmetry, say, for the deformation
of a spherical charge distribution under external fields, and the recovering of
the exact rotational symmetry for the deformed distribution at the covering
Lie-isotopic level.

In 1988 we see the appearance of four memoirs [25] which, jointly with
the original memoir [1], constitute Santilli’s most significant scientific contri-
butions. In fact, these latter memoirs present a comprehensive isotopic gen-
eralization of contemporary algebras, geometries and mechanics for systems
that are not only nonlinear and nonlocal (as those of the preceding contri-
butions), but also nonlocal integral; the memoir then apply these broader
mathematical tools for the construction of isotopic coverings of Galilei’s,
Einstein’s Special and Einstein’s General Relativities for interior dynamical
problems; the memoirs finally present a detailed study of the mutual com-
patibility of the emerging generalized formulations and propose a number of
experimental verifications.

In 1989 we see the appearance of four additional memoirs [26] this time
devoted to the operator formulation of the isotopic theories, including a
study of the “hadronization” of classical into operator formulations; the con-
struction of the spinorial SU(2)-isotopic symmetry and its representations;
some isotopic generalizations of the various properties of the conventional
theory of angular momentum and spin (such as the isotopic Clebsch-Gordon
coefficients, etc); the construction of the operator formulation of the isotopic
Galilean and special relativities; the foundations of the isotopic field theory,
including the isotopic generalization of the Klein-Gordon and Dirac’s equa-
tions; the operator study of Rauch’s experiment on the spinorial symmetry
of neutrons; and other important topics.

Paper [25] of 1990 tests the possibilities of hadronic mechanics via a
quantitative study of the possible representation of the original Rutherford’s
conception of the neutron as a generalized bound state of one ordinary pro-
ton and one electron, whose total angular momentum is represented via
the isotopic SU(2)-symmetry to account for the expected nonlocal and non-
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hamiltonian effects due to total mutual penetration of the wavepackets of
the constituents.

In 1991 we use the appearance of a series of papers written at the ICTP
[27, 28, 29] which develop in more details the operator formulation of the
isotopic special relativity based on the isotopies of the Poincaré symme-
try; the construction of the generalized field theory invariant under the
isotopic Poincaré symmetry, and some applications (Rauch’s experiment on
the spinorial symmetry and Rutherford’s conception of the neutron).

Monograph [30], currently under preparation, is expected to complete
the series of the preceding volumes [4,5] and [15,16]. This completes the
review of the contributions written by Santilli alone.

Papers [31-44] were written by Santilli in collaboration with several au-
thors on numerous topics related to the precedings research (see below).

A number of physicists have studied Santilli’s proposal of 1978.

R. Mignani [45] made seminal contributions in the operator realization
of Lie-isotopic theories, such as: the independent identification of the Lie-
isotopic generalization of Schrédinger’s equation; the proposal to construct
a nonpotential scattering theory; the construction of the Lie-isotopic SU (3)
symmetry; and others.

M. Gasperini [46] made other equally seminal contributions, such as: the
computation following hypothesis [14], that, within the context of contempo-
rary gauge theories, the speed of causal signals within hadronic matter could
indeed exceed c,; the foundations of a possible Lie-isotopic generalization of
gauge theories; and the foundations of a possible Lie-isotopic generalization
of Einstein gravitation for the interior problem.

A team headed by A. Jannussis made numerous contributions [47] in
both classical and operator realizations of Santilli’s algebras. M. Nishioka
[48] also made several contributions in the field, such as the expected gen-
eralization of the delta function. A. J. Kalnay [49] succeeded in quantizing
Nambu’s mechanics for triplets. The algebra emerging at the operator level
is exactly that of Santilli’s type [2]. (This aspect, which we regrettably can-
not review in this paper, opens the possibility of a true quark confinement
with an identically null probability of tunnel effects into free states, besides
an infinite potential barrier, as studied in papers [44].

Animalu [50] conducted several, additional, independent research, such
as the study of possible contributions to conventional quark theories of the
generalized setting offered by hadronic mechanics, and others.

A. Tellez Arenas, J. Fronteau and R. M. Santilli [31,32] studied the sta-
tistical profile of a generalized class of physical systems characterized by the
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Lie-isotopic algebras, the so-called closed variationally nonself-adjoint sys-
tems (these are systems submitted in memoir [2] which verify conventional
total conservation laws, but the internal forces are of nonlocal, nonhamilto-
nian type).

The (mathematician) H. C. Myung and R. M. Santilli [36,37] achieved a
consistent mathematical formulation of the operator realization of the Lie-
isotopic algebras. These studies were then further extended via the addition
of a suitable form of Hilbert spaces and reached their final form in ref. [38]
by Mignani Myung and Santilli, which is here considered the best available
presentation on the operator version of Lie-isotopic theories.

Additional contributions were made by A. K. Aringazin [51] such as: the
application of Lie-isotopic Lorentz transformations to describe an anomalous
energy dependence of some fundamental parameters of the K°— 7° system;
the proof that Pauli’s exclusion principle is valid for the center of mass of
a composite system under a Lie-isotopic operator mechanics, in a way com-
patible with possible departures from the same principle for each individual
constituent (a similar occurrence for Heisenberg’s principle had been estab-
lished in ref. [38]); the universal capability of the Lorentz-isotopic symmetry
to include as particular cases all available research on Lorentz noninvariance;
and others.

An in depth study of torsion in gravitational theories, and its appar-
ent ultimate origin of Santilli’s isotopic type has been conducted by D.
Rapoport-Campodonic [52], with intriguing developments in stochastic and
operator formulations.

S. Okubo [53] has also conducted a number of investigations in the field,
most remarkably, the identification of certain inconsistencies which emerge
in any attempt at generalization of the conventional associative enveloping
algebra of quantum mechanics, and other mathematical studies.

One of the most intriguing applications has been provided by P.A.M.
Dirac in two of his last (and little known) papers [53] presenting a certain
generalization of his celebrated equation which resulted to have an essential
isotopic structure, as shown by Santilli [27] (see Appendix C for a review).

The interested reader can identify a number of further contributions by
various additional authors in the bibliographies of the above quoted papers,
as well as in Proceedings [55,61].

The contributions by pure mathematicians specifically devoted to the
Lie-isotopic formulation of Lie’s theory (or their universal enveloping asso-
ciative algebras) are grossly lacking at this time, to our best knowledge. In



fact, as we shall see later on, the sole mathematical paper of which we are
aware is ref. [62] by H. C. Myung on the isotensorial product of isorepre-
sentations. Another mathematical paper connected with this review is that
by E. B. Lin [63], devoted to the problem of “hadronization” (i.e., symplec-
tic mapping of Birkhoffian into hadronic mechanics). The authors of this
review are aware of several mathematical papers by mathematicians specif-
ically devoted to the more general Lie-admissible algebras (see bibliography
[64]) and, as such, they will be quoted and reviewed in a separate review
of Santilli’s Lie-admissible formulation of classical and operator mechanics.
Nevertheless, these mathematical works are of difficult specialization to the
Lie-isotopic context. It is hoped that this review will stimulate contribu-
tions by pure mathematicians, specifically, on Lie-isotopic algebras so as to
be readily available for physical applications. An outline of this monograph
written for mathematicians, with a list of intriguing, open, mathematical
problems has been provided by these authors in paper [65].

1.2 The Notion of Algebraic Isotopy

As limpidly expressed in Santilli’s writings, physical theories are a manifesta-
tion of an articulated body of formulations of algebraic, analytic, geometrical
and other character. A generalized notion in any one of these formulations,
to be consistent, must admit corresponding, compatible generalizations in
the remaining branches of the theory. This is the case of the central notion
of this review, that of isotopy (ref. [1], §2.13, pp. 287 and ff.).

Let U be an (associative or nonassociative) algebra with (abstract) el-
ements a,b,c,... and (abstract) product ab over a field F with elements
o,f3,7,... (hereinafter assumed to have characteristic zero). The product
ab, by assumption, verifies the basic axioms of U. For instance, if U is as-
sociative, ab verifies the associative law; if U is commutative, it verifies the
commutative law; if U is a Lie algebra, it verifies the Lie algebras axioms;
etc.

DEFINITION 1.1 (Algebraic Isotopy): An isotopic mapping
(also called image or lifting) of an algebra U with product ab is
any mapping U — U of U into an algebra U which is the same
vector space as U (i.e., the elements of U and U coincide), but
is equipped with a new product a b which is such to verify the
original axioms of U.

Note that [15] the Greek for “isotopic” is “4’ ¢ 0 s T o/ 7 0 s” which means



“same configuration,” precisely along the concept of the above definition.

The central property of the notion of algebraic isotopy is therefore that
of preserving the character of the original algebra. Thus, if U is associative,
a necessary condition for U to be an isotope of U is that the new product
a * b also verifies the associative law, and we shall write:

U:(ab)e=a(be) = U:(a*xbyxc=ax(b*c). (1.1)

Similarly, if U is a Lie algebra, a necessary condition for U to be one of
its possible isotopes is that U is also Lie, and we shall write

U_{ab+ba:0 - {a*b-{—b*a:O

(ab)e+ (be)a + (ca)p =07 : (axb)xc+(bxc)*a+(cxa)*b=0.
(1.2)

A similar situation occurs for other algebras, such as Jordan algebras, alter-
native algebras, etc.

Santilli identified three types of associative isotopy, each one with an
attached Lie algebra isotopy. The first is the trivial one (ref. [1], p. 287)

U:ab—U:axb=cab; o€ F; a0 andfixed, (1.3)

evidently given by the multiplication of the old product ab by a constant
(that remains fixed for all multiplications of the new algebra). The attached
Lie algebra is then given by the trivial mapping

[a,b]y = ab — ba — [a,b]; = ala,bly. (1.4)

The second realization of associative isotopy, which plays a central role
throughout Santilli’s analysis, is given by (ref. [1], p. 352)

U:iab— U:a+b % alb, T €U, invertible and fixed. (1.5)
It is simple (but instructive) to verify that indeed
(axbd)*xc=(aTb)Tec= aT(bTc)=ax(bx*c). (1.6)
Thus, U is an isotope of U,
U:(ab)e=a(be) — U:(a*b)xc=ax(b*c). (1.7)

Evidently, isotope (1.5) is not trivial. Equally non trivial is the attached
Lie algebra isotopy

la,bly = ab—ba — [a,bly = a*xb—b*a=alb-bTa. (1.8)
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Since the element T' does not necessarily commute with the generic elements
a,b, ..., of the algebra, the nontriviality of mapping (1.7) follows. The inter-
ested reader is encouraged to verify that, if [a,b]y is Lie, [a, by is also Lie,
i.e., it verifies the laws

[a,b]fj -+ [b,a]U =0,

Ha'> b][}: C]f] + [[bac](}" a]fj + [[Ca a’][:H b]f] = 0. (19)
Isotopies (1.5) and (1.8) were assumed by Santilli at the basis of his formu-
lation of Lie algebra isotopy, and we shall do the same in this review. In
fact, the isotopic element T is sufficient to represent a generalized metric.
Isotopies (1.5) and (1.8) are then amply sufficient to illustrate the mathe-
matical and physical nontriviality of the generalized theory.
One additional algebraic isotopy was identified by Santilli [11]. It is given
by
U:ab— ()’:a*b:WaWbVV,

W € U, idenpotent(W? = W), and fixed. (1.10)

It is again an instructive exercise for the interested reader to verify that
the above product a b is still associative. The attached anticommutative
product then remains Lie, ie., the mapping

[a,8lu = ab — ba — [a,b]y = a b —b*xa = WaWbW — WbWaW (1.11)

constitutes another example of Lie algebra isotopy.

The reader may be interested in knowing that no investigation on iso-
topies (1.10) and (1.11) has been conducted until now, to our best knowl-
edge, in both mathematical and physical literatures. All available studies
are referred to isotopies (1.5) and (1.8).

The reason for the lack of physical investigations by Santilli on isotopy
(1.10) is the general loss of the unit under the lifting considered. In turn, the
loss of the unit has fundamental drawbacks from a physical profile, such as
the loss of the measure theory, the loss of the notion of quantum of energy,
the loss of the Casimir invariants, etc. For these (and other reasons), Santilli
centered his research on the fundamental condition that the generalized
theory must admit a consistent, left and right unit [1,2], which condition is
indeed verified by isotopy (1.5) as we shall review shortly.

Also, a private communication by Santilli indicates that, according to
preliminary research, isotopies (1.3), (1.5) and (1.10) and their combinations
are expected to exhaust all possible associative isotopies, but no rigorous
study has been conducted on this problem until now.



The classification of all possible associative (and therefore Lie) isotopies
is evidently important because different isotopies are expected to character-
ize different physical theories.

As one can see, the notion of algebraic isotopy essentially represents a
sort of “degree of freedom of the product” for given algebra axioms. As San-
tilli recalls [1], the notion is rather old, and actually dates back to the early
stages of the set theory [66]. In fact, the notion apparently originates within
the context of Latin squares (two Latin squares were called “isotopically re-
lated” if they could be made to coincide via permutations). Appropriately,
Santilli quotes Bruck statement [66] to the effect that the notion is “so nat-
ural to creep in unnoticed.” And in fact, the notion had not been applied
to Lie algebras until Santilli’s proposal [1] (even though some application to
other nonassociative algebras, e.g., the Jordan algebras, can be identified in
the specialized mathematical literature [64,67]).

1.3 The Notion of Analytic Isotopy in its Classical and Op-
erator Realizations

Let us pass now to the analytic counterpart of the concept of isotopy. It
was introduced, also for the first time to our best knowledge, in memoir [1]
and developed in detail in monograph [15] for the nonlinear and nonhamil-
tonian, but local-differentize case considered in this work. The more general
nonlocal-integral case of memoir [24] will not be considered for brevity.

By following Santilli, let us write the conventional Hamilton’s equations
(those without external terms) in the unified notation

)4

S0’ pw=1,23,..2n,

a=(*p), k=1,2,..,n, H=H(ta), (1.12)
with Poisson brackets between functions A and B in phase space (7, p)

def 0A ,, 0B _0A OB 0B 94
A B1= 5" 5ar = 8% 8pr ~ 7% Bps

(1.13)

and canonical commutation rules characterizing the fundamental Lie tensor
) £,
P (g
D= o Dllpopl) ) =)
—_ ( O‘an Inxn ) . (1.14)

““Ian Onxn
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The canonical action principle can be written

t
GA(L,7) = 6 / [RSa* — H)dt =0,
to

R° = (5,0), (1.15)
yielding Hamilton’s equations in their covariant form
., OH
W@ — 5&‘#‘ = 0, (116)

where wy, is the covariant (symplectic) counterpart of w# with explicit local
realization in phase space
OR, OR;

Wypy = ok - _3—07 s (117&)

(Ww) = (Oﬂxn‘fnm):(waﬁ)-l. (117.b)

IanOan

Finally, the Hamilton-Jacobi equations can be written in the unified form

0A
L=
8t+ 0,

0A
%‘J = Rﬂ 5 (118)

where the second set of equations can be explicitly written in the familiar
form

0A
'5;? = Pk, (1.19.&)
u o

showing the lack of dependence of the canonical action functional in the
linear momentum (a property with important implications for quantization).

DEFINITION 1.2 [1], [15] (Classical-analytic Isotopy): An
isotopic mapping (or image or lifting) of Hamilton’s equations is
given by any generalized form of the equations which preserves:
a) the derivability from a (first- order) variational principle; b)
the Lie character of the underlying brackets; and c) the existence
of a generalized, but consistent, Hamilton-Jacobi theory.

11



The generalization of Hamiltonian mechanics originating from the above
definition was called by Santilli Birhkhoffian mechanics for certain historical
reasons (see ref. [1], p. 259 for the first appearance of these terms, and
monograph [15] for a comprehensive presentation).

Under the above definition, principle (1.15) is generalized into the most
general possible Pfaffian variational principle (here restricted to the semi-
autonomous case for simplicity)

5Auﬂ):5£ﬁRA@wk-Hamua:

R = R(a) = R(7,p) # R°, (1.20)

with fundamental equations given by Birkhoff’s equations in their covariant
form

., OH(t,a) _ _

Qw(a)a - "—'55‘;1— =4y, u= 1,2,...,277, , (1213,)
dR, OR,
Qu,u it 8_a_l; - ”""‘—aau Y (121b)
with contravariant version
QM)Mma):O, (1.22.2)
OR OR
B = v Zpy=aB 22,

Q I( Sar S | (1.22.b)

The algebraic brackets of the theory are given by the so-called generalized
Poisson brackets

‘B def 0A I
3B % 22 () (1.23)
with fundamental Birkhoffian brackets
[a*5a"] = 9% (a) , (1.24)

which do verify the Lie algebra axioms (see the analytic, algebraic and geo-
metrical proofs of ref. [15])

[ASB] + [B3A] =0,

[[A3B1,C] + [[BCTA] + [[CIALB] = 0. (1.25)
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Finally, Eqs. (1.18) are lifted into the Birkhoffian form of the Hamilton-
Jacobi equations

%—‘j+ﬂ =0, (1.26.2)
oA
o R, . (1.26.b)

Note that, unlike Eqgs. (1.18), the generalized action functional does depend,
in general, on the linear momentum, thus resulting in nontrivial generaliza-
tions of Eqgs. (1.19b) (for simpler versions see below).

In summary, the notion of analytic isotopy gives rise, not to one partic-
ular algorithm, but to an entire new mechanics generalizing each and every
aspect of the conventional Hamiltonian mechanics. It is hoped that, in this
way, the reader begins to see the rather intriguing implications of Santilli’s
research.

Of course, the algebraic isotopy is a particular case of Definition 1.2, this
time in its classical realization in the local coordinates a = (7, p)

= %ww% o [A2B] = %Q””(a)%. (1.27)
This proves the compatibility of the notion of isotopy at the algebraic and
analytic levels (see the next section for the geometrical aspect).

From the above property we also see another seminal result achieved in
memoir 1}, that Birkhoffian mechanics is a realization in classical mechanics
of the Lie-isotopic algebras. The reader interested in acquiring an expertise
in Lie-isotopy is therefore urged to study monograph [15]. This point must
be stressed here because this review can only serve as a guide to the existing
literature.

Unlike the conventional Hamiltonian mechanics, the Birkhoffian mechan-
ics is directly universal, in the sense of being able to represent all possible
systems of the class admitted (essentially nonself-adjoint/nonhamiltonian
systems verifying certain topological restrictions) in the frame of the exper-
imenter. This property has nontrivial implications (particularly for quan-
tization) because the mathematical algorithms of the theory can now be
assured to have a direct physical significance, e.g.,; “ 7 ” represents the
actual local coordinates of the experimenter; “ 7 ” represents the physical
linear momentum m#; “FA§” therefore represents the angular momentum;
“H?” represents the actual physical energy T + V; etc. (see ref. [15], §4.5).

[4,B
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By comparison, the algorithm “p” in Hamiltonian mechanics coincides with
the physical linear momentum m7 only in very special cases; nevertheless,
upon quantization, its operator image is rather universally assumed to be
the physical linear momentum (with consequential results of equivocal char-
acter).

Let us also recall that each formulation of Birkhoffian mechanics can be
constructed via noncanonical transformations of the corresponding Hamilto-
nian counterpart. In fact, Hamilton’s equations do not preserve their form
under noncanonical transformations, as well known. What has been identi-
fied by Santilli (ref. [15], §5.3) is that, under noncanonical transformations,
all essential properties persist (derivability from a first-order principle; veri-
fication of Lie algebras axioms; existence of a Hamilton-Jacobi theory; etc.).

As a further aspect, the function H of Birkhofl’s Eqs. (1.21) does not
represent, in general, the total physical energy T + V (although, as men-
tioned earlier, a representation of any given system always exists under the
restriction H = T + V). In order to avoid confusions, Santilli introduced
the name Birkhoffian for this function. The term Hamiltonian within the
context of Birkhoff’s equations is used only when the function represents the
total energy. In the following, whenever referring to this function, we shall
use the Hamiltonian H to denote specifically the restriction to the physical
total physical energy 7'+ V (which is not necessarily conserved), and the
Birkhoffian B to stress its departures from the total physical energy H.

As a final point, the classical Birkhoffian realization of the Lie-isotopic
theory is fully established on physical grounds. Birkhoff [68] introduced his
equations for a better study of the stability of the planetary orbits, although
his use of Eqs. (1.21) was restricted to conservative systems. Santilli [1]
rediscovered these equations (after some 51 years) and proved not only their
applicability to a much larger class of Newtonian systems, but also their
direct universality. For numerous physical applications along these latter
lines, we refer the reader to the examples of Ref. [15], as well as to the
quoted literature.

The restriction of this review only to classical realizations of the Lie-
isotopy would however be a gross disservice to the reader, because, as well
known, the abstract formulation of Lie’s theory is directly interpretable via
operator realizations.

This renders unavoidable a brief review of the operator realization. In the
following we shall review the apparent generalization of quantum mechanics
which emerges from these studies, with the clear understanding that, unlike
its classical counterpart, the physical validity of the generalized operator

14



formalism is not established as of this writing.
Let 'H be a Hilbert space (hereinafter assumed to be finite-dimensional)
with elements |a),[b), ... and norm over the field C of complex numbers

H:{(alb)=ceC. (1.28)

Let ¢ be an enveloping associative algebra of operators A, B, ... on H
with trivial associative product AB and unit I = diag(1,1,...,1),

£:TA = Al = A, AVE . (1.29)

The Lie algebra L attached to ¢ is then characterized by the familiar
product
: L:[A,Bl¢ = AB - BA, (1.30)

which provides the structure of the first fundamental equation of quantum
mechanics, Heisenberg’s equation

iA=[AH; = AH - HA, h=1. (1.31)

Let the homomorphism & x H — H be characterized by the (right)
modular action of, say, an operator H € £ on an element la) € H according
to the familiar eigenvalue equation

Hla) = cla), ceC. (1.32)

This provides the structure of the second fundamental equation of quantum
mechanics, the familiar Schrédinger’s equation

¥
ile) = Hla) (1.33)

with corresponding well known additional aspects (such as unitary transfor-
mation theory, various physical laws, etc.).

DEFINITION 1.3 [2], [15], [36], [38] (Operator-analytic Iso-
topy): An isotopic mapping (or image or lifting ) of Heisenberg’s
and Schrédinger’s equations is given by compatible generalized
forms that preserve: a) the ezistence of an underlying Hilbert
space; b) the Lie character of the brackets of the time evolution;
and c) the operations on the Hilbert space, such as transpose,
hermiticity, unitarity, etc.
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A realization of the above operator isotopy was identified by Santilli in 1978
[1], [2] apparently for the first time. Let £ be an isotope of £ with product

£:A+B¥E ATB, (1.34)

where T is a generic, Hermitian, invertible and fixed, but otherwise arbitrary
operator. The lifting AB — A+ B evidently implies the underlying mapping
of the unit, from the original trivial unit of £, = diag(1,1,...,1), into the
nontrivial operator unit I =T, called isounit, according to the rule

E:f+xA=AxT=4, AVE. (1.35)

The antisymmetric algebra I attached to the isotope f is evidently a Lie-
isotopic algebra with now familiar form

L:[A,Bl;=A*B-B*A. (1.36)

The above generalized structures allowed Santilli to propose the following
Lie-isotopic generalization of Heisenberg’s equation (ref. [2], p. 752)

iA=[A,H;=A+«H—-H+A=ATH-HTA, T=T"  (137)

The remaining realization of Definition 1.3 was accomplished in subse-
quent years. First, Santilli [7] pointed out the need for a full bimodular
(left and right) generalization of the conventional (uni)modular represen-
tation theory. These studies lead to the proposal in 1982 by Myung and
Santilli [36] of the following generalization of Schrédinger’s representation
(other attempts, see ref. [13], produced generalized equations not manifestly
compatible with isotopy (1.37)).

The analysis was conducted by providing, apparently for the first time,
a comprehensive isotopic generalization of conventional operations on a
Hilbert space which, along Definition 1.3, were compatible with the iso-
Heisenberg’s equations.

In order to preserve linearity, the following isotopic generalization of the
field C (called isofield) results to be needed (see ref. [36], pp. 1307-1309)

C:{ele=cl; cecC; Teé}. (1.38)

The elements éAof C are then called isonumbers.
Note that C is still a field. Also, the sum in C is the conventional one,
although the multiplication is isotopic, according to the rule

& %éy = creol; &,80€C . (1.39)
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The achievement of compatibility with the iso-Heisenberg’s equations
requires the lifting of the conventional modular/eigenvalue action on H into
the isomodular/isoeigenvalue form

foﬁH:H*!a)qngTla)-c*m)—c]a) (1.40)

Note that the “numbers” of the theory, i.e., the last numbers in the above
identities, remain the conventional ones as in Eqgs. (1.32).

With these preliminaries, Myung and Santilli presented a generalization
of all familiar operations on a conventional Hilbert space (see below for
generalization of the Hilbert space itself) (loc. cit. §II, pp. 1281-1315).

Evidently, we can review here only some of the most relevant operations.
Let H be a conventional Hilbert space with elements |a), |d),... and norm
(1.28). A linear operator H € £ on M is called isohermitean iff it verifies the
identity

H S rtgtp-i- g, (1.41)

The eigenvalues of isohermitean operators results to be isoreal, i.e., the num-
ber at the end of equalities (1.40) is real as in the conventional case.
A linear operator U € £ on H is isounitary when it verifies the rule

(a]  UT % U * |b) = (alp), (1.42)

which holds iff
vtvv=vsvt= vt = i, (1.43)

Along similar lines, the following generalized properties hold, where con-
ventional symbols denote conventional operations and symbols with a su-
perscript “hat” denote generalized operations

TrA = (TrA), (1.44.2)
Tr(A+B) = Tr(BxA), (1.44.b)
detA = det(AT)T, (1.44.c)
det(A* B) = (detA)« (detB), (1.44.d)
deta™l = (deta)1. (1.44.¢)

After these preliminary results, Myung and Santilli proposed the follow-
ing isotopic lifting of Schrédinger’s equation (also called 180-Schrédinger’s
equation) (ref. [36], p. 1332)

z%!a):ﬂ*[ Y& HTa) . (1.45)
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The equivalence with Eq. (1.37) was proved in loc. cit §3.7.

It should be indicated here that Eq.(1.45) was jointly but independently
proposed by Mignani (ref. [69], p. 1128), although without the isotopic gen-
eralization of linear operations on Hilbert spaces worked out by Myung and
Santilli (also, Mignani presented his generalized equations for the broader
Lie-admissible level in which the T operator is nonhermitean, thus resulting
in different, nonequivalent, left and right isomodular actions. See in this
respect also paper [37] by Myung and Santilli).

The above results essentially established the mathematical consistency
of the generalized operator theory, under the isotopic generalization of the
enveloping associative algebra £, the attached Lie-isotopic algebra I, and
the underlying isofield C, while keeping the conventional Hilbert space H
unchanged.

The above operator realization of Definition 1.3 shall be symbolically
referred to hereon with the isotopies

f_)éfa
C -+ Cr, T:Tf, (1.46)
H—-H,

where evidently the last mapping is the identity isotopy. We should stress
that generalized formulations (1.46) are fully consistent on mathematical
grounds, even though based on a conventional Hilbert space (see below for
physical aspects). Also, we should stress that the Lie character of the for-
mulation is centrally dependent on the (conventional) hermiticity of H on
H. In fact, in case T is not Hermitean we have the following pair of iso-
Schrodinger’s equations

0

i%l“) = H *|a) = HT|a) ,
(a|TTH = (a|3H = (al%i,
T #TH. (1.47)

The generalized form of Heisenberg’s equations corresponding to the above
equations is then given by

iA=(AHYY ARHF - HSA,
R=Tt#8=T, (1.48)
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which is precisely the yet broader Lie-admissible generalization of Heisen-
berg’s equation proposed by Santilli (ref. [2], p. 746).

In summary, operator isotopy (1.46) is centered on the isotopic element T
as one additional operator, besides the Hamiltonian, for the characterization
of the time evolution laws (1.37) and (1.45), thus broadening substantially
the arena of physical applicability of the theory.

Further studies revealed that the new “degree of freedom” characterized
by T is still partial, and that an additional degree of freedom exists in the
structure of the Hilbert space, with a corresponding further broadening of
the representational capabilities of the theory (see §3).

In fact, subsequent studies by Mignani, Myung and Santilli [38] iden-
tified the followmg isotopic generalization of the Hilbert space itself (called
isohilbert space), Hg as the linear vector space with elements |a), |b), ... and
the isoinner product

~

He : (alb) EalGIp) = e e, (1.49)

where the new operator G is hermitean and positive definite, but otherwise
arbitrary. It represents an additional “hidden” degree of freedom of the
theory besides that provided by the isotopic element 7.

It is easy to check that the inner product (1.48) of the isohilbert space
Ha obeys all conditions which are used to define an abstract Hilbert space.
So the isohilbert space He may be thought of as an extended realization of
the conventional Hilbert space H of quantum mechanics, with G being an
integration measure. The two spaces are isometric to each other.

It is instructive also to verify that the following generalized Schwarz
inequality holds I(a[b)l < |lallg|b]|a, where we have denoted the isonorm of
a as |lal|e = (afa)/.

Generalization (1.48) demands a further enlargement of linear opera-
tions. For instance, the condition of isohermiticity now becomes

Ht =T GH'TG = R . (1.50)

The above results are intriguing. In fact, one can see that for T =

G the generalized notion of isohermiticity coincides with the conventional
hermiticity i

HY' =77'TH'TT' = B, (1.51)

In turn, this has the direct consequence that the observables of quantum
mechanics (Hamiltonian, linear and angular momenta, etc.) remain ob-
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servables under a general isotopy of enveloping associative algebras, fields
and Hilbert spaces characterized by the same isotopic element T = G.

In summary, the most general known isotopic formulation of operator
algebras is characterized by the following liftings

§_>£;Ta
C—Cr, T=T", (1.52)
H—Hg, G=GI, G>0,

where, in general, T # G. In the following we shall however often refer to
formulations (1.52) under the specialization T' = G, owing to their capability
to preserve the operation of Hermiticity of quantum mechanics (as well as
other operations, see ref. [36]).

The above rudimentary review is sufficient for our purpose here: to show
the mathematical consistency of the generalization of quantum mechanics
characterized by isotopes (1.46) and (1.52). In turn, this implies the ex-
istence of a consistent operator realization of Santilli’s Lie-isotopic theory.
Still, in turn, this property results invaluable for the study of the theory
because, as mentioned earlier, isotopes (1.46) or (1.52) provide the most
direct possible interpretation of the generalized Lie theory.

A few words on the physical profile are in order here. The generalization
of quantum mechanics characterized by isotopies (1.46) and (1.52) was called
by Santilli hadronic mechanics (ref. [2], p.756) to emphasize the restriction
of the intended applicability of the theory only to the interior of hadrons,
or to the interior of strong interactions at large.

The physical foundations of the proposal are the experimental evidence
of the existence, under strong interactions, of necessary conditions of mutual
overlapping of the wavepackets of particles (which are generally ignorable
under electromagnetic interactions as in the atomic structure). In turnm,
these interactions are known at the classical level to be:

o a) of contact type, in the sense of zero range, i.e., not being repre-
sentable via action-at-a-distance interactions;

e b) of nonlocal type, in the sense of occurring throughout a volume,
and not being reducible to a finite number of isolated points; and

e c¢) of nonhamiltonian type, in the sense of being, not only of nonpo-
tential type, but actually of being beyond the representational capa-
bilities of a Hamiltonian in the frame of the observer (see monograph
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[15] for the violation of the integrability conditions for the existence
of a Hamiltonian).

The same properties are evidently expected to remain for particle wave-
packets (see Fig. 1).

FIGURE 1. A reproduction of the slide presented by Santilli during his
invited talk at the Conference on Differential Geometric Methods in Math-
ematical Physics held in Clausthal, West Germany, in 1980. The slide was
intended to illustrate, for the diétinguished geometers and theoreticians at-
tending the conference, the incontrovertible experimental evidence on the
nonlocal nature of the strong interactions as pointed out by the founding
fathers of the theory. In fact, all hadrons are not point-like, but have a
charge distribution of the order of 1F (= 10™%3¢cm) which coincides with
the range of the strong interactions. Also, all known (massive) particles
have a wavepacket which, again, is of the order of 1F. Thus, a necessary
condition to activate the strong interactions is that the particles enter into
a state of mutual penetration of their charge distribution and wavepackets.
This characterizes interactions which cannot be reduced to a finite number
of isolated points, because they occur throughout the volume of mutual pen-
etration/overlapping. Also, the interactions are of contact nature, that is,
the nonlocality cannot be represented via a potential of integral type be-
cause the integrability conditions for the existence of a Hamiltonian are vi-
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olated without, of course, precluding the existence of conventional potential
terms. By keeping in mind that all geometries conventionally used nowadays
in theoretical physics are of strictly local/differential nature, the slide was
intended to stimulate the study of more general, nonlocal (e.g., integrodiffer-
ential) geometries for a more adequate representation of the interior strong
problem. The Lie-isotopic theory and its various applications reviewed in
this work are intended precisely as a first step toward a quantitative rep-
resentation of the nonlocal/nonhamiltonian character of interior dynamical
problems, in which the conventional, potential, local interactions are repre-
sented by conventional Hamiltonians, and the nonlocal, integrodifferential,
and nonhamiltonian interactions are represented via the generalized unit of
the theory. The symbol of overlapping spheres was subsequently assumed by
Santilli as the logo of The Institute for Basic Research, at its inauguration

ceremony the following August 1981.

As stressed earlier, hadronic mechanics is not physically established as of
this writing because a large number of theoretical and experimental studies
remain to be done. Nevertheless, hadronic mechanics may be applied also
to account for a number of conventional applications, such as: quark con-
finement, hadronization processes and other cases where the perturbative
techniques of QCD are known to fail to achieve a consistent description.

An apparent reason for the current resiliency toward hadronic mechanics
is due to the inevitable existence of certain generalizations of basic quan-
tum mechanics laws, such as: Heisenberg’s uncertainty principle; Pauli’s
exclusion principle; the very notion of “particle”; etc.

The reader should however be aware that, as stressed in the literature,
these deviations from conventional quantum mechanical laws are expected
only in the interior of hadrons, or in the interior of systems of strongly
interacting particles, while conventional quantum mechanical laws are re-
covered in full for the center-of-mass motion.

For instance, Mignani, Myung and Santilli [38] proved the validity of
the conventional uncertainty relations for the center-of-mass motion of a
composite system characterized by hadronic mechanics, in a way fully com-
patible with generalized uncertainty relations for each individual constituent.
A similar situation has been proved by Santilli [17] for the time reversal, or
by Aringazin [51] for Pauli’s principle.

These results are important because they establish the fact that es-
sentially no valid experimental evidence exists at this time for disproving
hadronic mechanics, for the simple reason that all available direct tests for
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strong interactions are essentially center-of-mass tests. To put it differently,
in order to establish experimentally the validity or invalidity of hadronic me-
chanics, we have to repeat the historical process that lead to the establishing
of quantum mechanics. The historical experimental measures conducted for
charged particles under external electromagnetic interactions, must be re-
peated, this time, for hadrons under external strong interaction. No direct
experimental study along the latter lines evidently exists as of this writing.

In the final analysis, readers with an open mind to potentially fundamen-
tal advances should notice the evident plausibility of the occurrence: conven-
tional quantum mechanical laws for the center-of-mass motion of hadrons,
and generalized hadronic laws for their internal structure.

The physical foundations for this plausibility is provided by another
seminal contribution by Santilli, the notion of closed essentially nonself-
adjoint systems, introduced in 1978 jointly with his algebraic and classi-
cal/operational studies [1], [2]. In a few simple words, it is generally be-
lieved that the stability of a system is provided by the stability of the orbits
of each individual constituent. This is essentially the case of the stability of
the solar system as well as of the atomic structure.

Santilli pointed out the existence in Nature of a class of more general
systems which verify all total conventional conservation laws for their center-
of-mass motion, but the internal equations of motions are nonhamiltonian.
(See Fig. 2.)

These broader systems are essentially provided by composite systems
with each individual constituent in unstable conditions due to exchanges
of energy, linear momentum and other physical quantities with the rest of
the systems. The point is that these nonconservations are merely inter-
nal exchanges under total conserved quantities, the system being, after all,
isolated.
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FIGURE 2. A reproduction of Figure 1, page 1208 of ref. [13], depicting
a dichotomy of central relevance for the studies under review: the compati-
bility of the conventional symmetries and physical laws for the center-of-mass
motion of celestial bodies (such as Jupiter), with manifest deviations from
the same symmetries and physical laws in the interior dynamics. In fact, on
one side, we have clear evidence on the stability of Jupiter’s orbit in the So-
lar system with consequential manifest validity of the rotational symmetry
for the exterior dynamics; on the other side, we have equally clear evidence
for the existence in the interior motion of vortices with continuously varying
angular momentum, with consequential internal violation of the rotational
symmetry. Similarly, we have a manifestly reversible center-of- mass tra-
jectory, as compared to a manifestly irreversible interior dynamics. A sim-
ilar situation occurs for all other aspects at all levels of study, as we shall
see, including the relativistic and the gravitational level. The dichotomy
reviewed here was quantitatively interpreted by Santilli via the notion of
closed- isolated systems with nonhamiltonian internal forces (see later on).
The above dichotomy also provides the conceptual foundations of the funda-
mental experiments proposed later on in §3.5 regarding clear phenomenolog-
ical predictions of apparent violation of Einstein’s Special Relativity in the
interior of (unstable) hadrons in flight, while the relativity is preserved for
center-of-mass motions of the same hadrons, say, when moving in a particle

accelerator.

The mathematical consistency of these broader systems at the classical
and the operator level was also shown in the original proposals [1,2].

At the classical level, closed nonhamiltonian systems are characterized
by the Birkhoffian equations (ref. [2], p. 624; see also monograph [15], pp.
234-237)

mpt = FoAF) + ENSA@, 77, ...), (1.53.a)
. d
H = ZE(T +V)=0, (1.53.b)
2 d & ~
Py = "d—t'(kakPk) =0, (1.53.c)
1
. d - -
Mtot = Eg(z T A Pk) =0 N (153d)
k
b d . -
Gt = ZZ—t(Z mgfy — tPr) =0, (1.53.¢)
k
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where the symbols “SA” (“NSA”) indicate verification (violation) of the
integrability conditions for the existence of a potential, those of variational
self-adjointness.

An intriguing point is that the conventional total conservation laws are

not necessarily subsidiary constraints to the equations of motion. In fact,
Egs. (1.53.b)-(1.53.e) are verified when

n
SNSA
dkEA =0,
1
n —p
Dk AFYSA =0,
1

n
> BB =0, (1.54)

which consist of seven conditions on 3n unknown quantities, the components
of the nonhamiltonian forces FN SA_ Infinite varieties of unconstrained so-
lutions therefore exist for n > 3. The case n = 2 has been proved to be
consistent, even though with very special features (e.g., only circular orbits
are possible). The case n = 1 is impossible for the evident reason that an
isolate particle cannot be under nonhamiltonian external forces (see Fig. 3).
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FIGURE 3. A reproduction of Figure 5.1, page 529 of ref. [16], pre-
senting a schematic view of the notion of “closed non-self-adjoint systems”
originally proposed in ref. [1], [2] and then investigated at several levels
of study by a number of authors (see §1.1). Conventionally, closed-isolated
systems are represented by assuming that total, conserved, quantities (such
as energy H, angular momentum M, etc.) are the generators of space-time
symmetries (translations, rotations, etc.). The assumption of the simplest
conceivable Lie product AB — BA then requires the Hamiltonian H to rep-
resent all acting internal forces. Additional technical arguments restrict all
internal forces to be action-at-a-distance potential/Hamiltonian. Santilli’s
proposal is to assume the same total, conserved physical quantities H, M,
etc., as the generators of isotopically lifted space-time symmetries, in which
the product is less trivial, e.g., A* B— B A= ATB — BT A. This yields
an additional element 7', besides the Hamiltonian H, to represent internal
forces that are beyond the representational capability of the Hamiltonian
(Fig. 1). This results into the covering notion of closed nonhamiltonian
systems which are at the foundation of the studies of Lie-isotopy at all lev-
els: Newtonian, relativistic, gravitational, statistical, etc. Remarkably, the
space-time symmetries are not broken under the presence of internal non-
hamiltonian forces, but merely realized in a structurally more general, but
isomorphic way. This important finding was only empirically known in the
early stages of the Lie-isotopic theory, and subsequently formalized in ref.
[22] (see later on Theorem 2.9). The implications of these results are far
reaching at all levels of study. To begin, Santilli has disproved statements
such as “breaking of the Lorentz symmetry” or “Lorentz noninvariance,”
which are technically correct only when specifically referred to the “simplest
possible realization of the Lie product AB — BA.” In fact, Theorem 2.9
allows the reconstruction of the same symmetry as exact at the Lie-isotopic
level when broken at the conventional level. Furthermore, the notion under
consideration and its underlying Lie-isotopic methods, allow the possibility
of constructing genuine covering of contemporary relativities, as we shall see
in §3, with far reaching implications in classical as well as particle mechanics.
All the above considerations refer to the “exterior problem,” here intended
as the description of the systems from the exterior with the emphasis on
total conservation laws, along the line of monographs [4], [15]. A comple-
mentary aspect is the “interior problem” intended as the study of only one
constituent of the system when all other constituents are considered as exter-
nal. The emphasis is now shifted to the maximal possible nonconservation
of the physical quantities of each constituent (of course in a way compatible
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with total conservation laws), as the best way to maximize internal dynam-
ical conditions. This complementary approach is along the Lie-admissible
line of study of monographs [5], [16] which is not reviewed here.

The operator image of systems (1.53) was also identified by Santilli in his
second memoirs of 1978. In fact, the operator H in his Eqgs. (1.37) represents
the total physical energy of the system and it is evidently conserved because
of the Lie character of the underlying algebra. We can therefore write the
following operator version of systems (1.53)

iH=[HH;=H+H-H+H=0,

[Prots Hlg = [Mior, H); = [Grot, H] = 0 . (1.55)

Notice that the observability of physical quantities persists because, as re-
called earlier, one can select isotopes (1.52) with T' = G, under which a total
Hamiltonian H which is conventionally hermitian in quantum mechanics,
remains hermitian in hadronic mechanics. Also, its eigenvalues remain real
(although different!) [36].

This confirms the point touched earlier, that the center-of-mass motion
of a composite system obeying hadronic mechanics, when inspected from the
outside, verifies conventional physical laws. Nevertheless, the system admits
in its interior a generalized integrodifferential unit I for which conventional
physical laws are inapplicable, in favor of suitable covering laws.

In Santilli’s words [21], the solar system is a closed Hamiltonian system
whereby total stability is provided by the stability of each orbit. The plan-
ets, however, possess structures considerably more complex than that. For
instance, Jupiter is an example of a closed nonhamiltonian system because,
when assumed as isolated from the rest of the solar system, it verifies to-
tal conservation laws; yet its internal structure is highly nonconservative,
nonhamiltonian (and irreversible).

In the transition to the particle setting, the atomic structure is analyti-
cally equivalent to that of the solar system because, again, total stability is
provided by the stability of each orbit. Santilli’s view is that the hadronic
structure is equivalent to that of Jupiter [2], in the sense that each isolated
hadron evidently verifies total conservation laws; nevertheless, the internal
orbits are expected to be generally nonconservative due to the deep mutual
overlapping of the wave packets of the constituents. (See Fig. 4.)
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FIGURE 4. A reproduction of Figure 9.1, page 1945 of ref. [38], signal-
ing the achievement of mathematical maturity in the operator {formulation
of closed nonhamiltonian systems on Hilbert spaces. Ref. [38] established
the operator counterpart of the dichotomy of Figs. 2, 3, that is, the valid-
ity of conventional quantum mechanical laws for the center-of-mass motion
of the state, in a way compatible with structurally more general laws for
the interior dynamics. The analysis was presented for the case of Heisen-
berg’s uncertainty principle, with guidelines for the expected extension to all
other physical laws and principles of quantum mechanics. In fact, Aringazin
[70] has recently proved the same occurrence for Pauli’s exclusion principle.
These operators results are merely indicated for the purpose of informing the
reader on the existence of mathematically consistent operator counterparts
of the classical models reviewed in this work, with the hope of reviewing

them in detail in a future paper.

Hadronic mechanics was then applied, along the above concept of closed
non-Hamiltonian systems, to the construction of a structure model of the
7% as a generalized bound state of one electron e~ and one positron et,
although in a mutated state expected from the condition of total mutual
immersion of their wavepackets, called eletons and denoted with the sym-
bols €t [2]. The model 7% = (et,€™) resulted to be able to represent all
physical characteristics of the 70, such as: rest energy, meanlife, charge ra- -
dius, total charge, spin, magnetic and electric dipole moments, as well as
the primary decay. The above hadronic structure model was extended in
memoir [2] to all remaining light mesons, resulting in structures of the type
rt = (et,et,e), K° = (#+,7#7) , K* = (#%,#%,47), where the su-
perscript " denotes expected mutation of the characteristics of the particles
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caused by total immersion within the hadronic medium.

Hadronic mechanics was then applied to the quantitative interpretation
of Rutherford’s historical hypothesis that the neutron n is a “compressed
hydrogen atom”, along the representation submitted in memoir 2], » =
(pt,€7), 1., as a generalized bound state of an ordinary (unmutated) proton
pt and a mutated electron ¢~. The total angular momentum 1 for state

(p*,€™) was first achieved in papers [24] via the construction of the ﬁ@)—
isotopic spin symmetry and its representations, and resulted to be due to
very simple constraints on the orbital angular momentum of the electron
when “compressed” within the densiest object measured in laboratory until
now. The subsequent paper [25] showed that the generalized bound state
(p*,€7) is capable of representing all the characteristics of the neutron, i.e.,
rest energy, meanlife, charge radius, total charge, spin, magnetic and electric
dipole moments as well as its primary decay. A comprehensive presentation
of the model is provided in paper [28]. A detailed analysis of the notion
of eleton is provided in paper [27] via a generalization of conventional field
equations that is invariant under the Poincaré-isotopic symmetry [26].

In this way, Santilli illustrated the possibility of achieving the primary
objective for which hadronic mechanics had been suggested: the identifica-
tion of the hadronic constituents with (massive) physical particles simply
produced in the spontaneous decays, under the assumption of obeying a
generalized mechanics when in condition of total mutual immersions, and
of recovering ordinary quantum mechanics when exiting the hadronic struc-
ture.

The full compatibility of this novel structure model of hadrons with
established quark models is under study by a number of authors [44,50].
Rather than being in conflict with established theories, hadronic mechanics
appear to offer some genuine possibility of resolving their basic problematic
aspects, such as: achieving null probability of tunnel effect for free quarks,
reaching fractional charges as mutation of ordinary ones, etc.

To summarize our viewpoint, the classical analytical realization of San-
tilli’s isotopies (Birkhoffian mechanics [15]) is nowadays established on both
mathematical and physical grounds. The corresponding operator counter-
part (hadronic mechanics [36]) is clearly consistent on pure mathematical
grounds, but far from being established on physical grounds, although no
experimental evidence can be moved against the generalized mechanics at
this moment. In the final analysis, the central physical notion of the theory
(that of closed nonhamiltonian system) is manifestly plausible for the repre-
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sentation of hadrons, as we shall see better in the final part of this analysis,
and, more technically, in a possible subsequent review.

We now briefly review the process of naive hadronization, i.e., the sim-
plest possible mapping of Birkhoffian into hadronic mechanics. This aspect
is important for our analysis because it throws a deeper light in the notion
of isounit of the Lie-isotopic theory (besides indicating how diversified the
studies of compatibility and consistency have been conducted until now).

The conventional naive quantization, i.e., the mapping of classical Hamil-
tonian into quantum mechanics, can be characterized by the mapping of the
action functional A into a constant unit, Planck’s unit & = 1, time —¢log 1,
ie.,

A— —illogt, (1.56)

under which Hamilton-Jacobi Eqgs. (1.18) assume the form

0A N,

—E?—H”"Z'é}"‘p—‘ﬂop,

0A i "

57 =7— —zavw = Pop » (1.57)

thus becoming Schrédinger’s equations

.0
Z'a—t'l/) - H¢ »
— iV = P (1.58)

Animalu and Santilli [41] pointed out that mapping (1.56) is expected
to be insufficient for Pfaffian action principles, because of its inability to
provide a representation of the contact/nonlocal/nonhamiltonian forces of
the broader systems considered. The authors proposed instead, as naive rule
of hadronization, the mapping of the Pfaffian action functional A into the
operator unit of the theory, the isounit of hadronic mechanics I, time—ilog i,
ie.,

A — —illogp. (1.59)

For our needs we now consider the following particularized Pfaffian action
,\ t
A= [MiGppi* - B 7PN,
to

det(Mi) # 0, (1.60)
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with Hamilton-Jacobi equations (which are still of genuine generalized na-
ture, yet of the simpler form)

A
o
oA ;
5% = Mip; ,
(%% ~0. (1.61)

The application of mapping (1.59) to Egs. (1.61) then yields the forms
[41]

dA oI ;)
el - SN el T = FOP
8./1 . = Pt 4 1 —Op
Fra —i(Vilogy — iIVip = MipT (1.62)
k
which can be rewritten
25—t¢—{ﬂ‘28t10g¢]*?/)—5 *p,

— iV = [Mif: + (Vi logy] x » & Mi P 4 o | (1.63)

yielding precisely the iso-Schrédinger’s Egs. (1.45), plus corresponding equa-
tions for the linear momentum. Notice the natural appearance under hadron-
ization of a nonlinearity in the wavefunctions, besides additional nonlin-
earities emerging from the arbitrary functional dependence of the isotopic
element (see below).

A mathematically rigorous formulation of hadronization was achieved
by (the mathematician) E. B. Lin [63] via the methods of symplectic quan-
tization. Recall that the Birkhoffian mechanics can be constructed via
noncanonical transformations of Hamiltonian mechanics (and remains form-
invariant under these general transformations). Along parallel lines, hadronic
mechanics can be constructed via nonunitary transformations of quantum
mechanics (and also remains form-invariant under the most general possible
transformations) [6]. Lin essentially shows that the lifting of conventional,
symplectic quantization techniques (e.g., prequantization) characterized by
noncanonical (nonunitary) transformations provides precisely the desired
hadronization, as expected.
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This completes the objective of this section, to show that the classical
and operator realizations of the notion of analytic isotopy, not only are in-
dividually consistent, but admit a consistent mapping of the former into the
latter, the entire process constituting a true generalization of conventional
theories.

A few comments are now in order. Evidently, the assumption of the sim-
pler Pfaffian form (1.60) has the objective of rendering the generalized action
functional independent of the linear momentum. This, in turn, allows the
construction of an operator image in which the wavefunction has the familiar
functional dependence ¥(¢,7) without a dependence on the momentum.

A personal communication by Santilli confirms the rather vast capa-
bilities of action (1.60) to represent nonhamiltonian interactions, once the
several degrees of freedom of Birkhoffian mechanics are taken into considera-
tion (ref. [15], pp. 54-67). Nevertheless, Santilli stresses the fact that, unlike
the case for general action (1.20), the direct universality of the reduced form
(1.60) has not been proved as of today. In case action (1.60) does not re-
sult to be directly universal, the construction of a “wave mechanics” with
“wavefunction” dependent also in the momentum, ¥(t, 7, 5), is inevitable.

Second, hadronization (1.62) indicates the intrinsic nonlinearity of
hadronic mechanics, where the nonlinearity is referred also to the depen-
dence of the equations of motion in the wavefunctions. As a matter of fact,
the iso-Schrodinger’s equation in its original formulation by Santilli, that in
term of the Birkhoffian operator B [6], is the most general nonlinear as well
as nonlocal equation of motion in operator form know until now. We shall
write it in the explicit form

i}%¢ = B¥ = B(t,0,%,9",..)D(t, 0,997, )0 . (1.64)

All known equations, nonlinear in the wavefunctions as well as in other
quantities, are evidently a particular case of the above equation.

We are referring here to the direct universality of hadronic mechanics,
i.e., the capability of representing all conceivable nonlinear and nonlocal
equations verifying certain topological restrictions (universality) in the frame
of the observer (direct universality). This is merely the operator counterpart
of the classical direct universality of Birkhoffian mechanics [15].

The proof of this important property is quite easy. Recall that the univer-
sality of Birkhoff’s equations ultimately results from the form-invariance of
the theory under the most general possible (noncanonical) transformations.
The direct universality of the iso-Heisenberg’s or the iso-Schrédinger’s equa-
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tions then follows from their form-invariance under the most general possible
(evidently nonunitary) transformations.

As an example, it is an instructive exercise for the interested reader to
show that certain nonlinear wave equations currently under investigation
by Weinberg [71] and others (to explore a possible nonlinearity of quantum
mechanics) of the type

.0

_ 9 t

are in fact a particular case of hadronic mechanics, i.e., they can always be
rewritten into an equivalent isomodular form (1.64).

But there is more. The direct universality of the theory, combined with
its isotopic structure, have rather profound epistemological implications for
the very notion of nonlinearity.

This is another central aspect of the Lie-isotopic theory we shall consider
in more detail later on, when reviewing the isotransformation theory in the
next chapter. At this point we can limit ourselves to the remark that the
isotopic element D of Eq. (1.64) is arbitrary. As a result, all nonlinear terms,
whether in the wavefunctions or in the other quantities, can be incorporated
in the isotopic element, in which case the (nonlinear) Birkhoffian operator
B is replaced by a linear Hamiltonian H, and we shall write

2
ot

I

B(t,a,9,¢"..)D(t,a,%,%", . )

H(t,a)T(t,a,%,9, .. )¢
= Hx1. (1.66)

The implications of the above results are rather deep. They essentially
establish that, not only we have a direct universality for all possible non-
linear (and nonlocal) theories, but in addition any possible nonlinear (and
nonlocal) theory can always be rewritten in an equivalent isolinear form. It is
regrettable that the authors of studies [71] do not appear to be aware of the
Lie-isotopic theory, because the intrinsic isolinear structure of Weinberg’s
equation (1.64) may evidently void most of their argumentations.

This is the technical reason why Santilli (private communication) does
not consider nonlinearity a structure characterizing feature. Instead, he con-
siders structurally fundamental the nonlocality and nonhamiltonian charac-
ter caused by the deep mutual overlapping of the wave packets of strongly
interacting particles.

33



Regrettably, we cannot enter into a detailed analysis of the implication
of the isotransformation theory for Weinberg’s work because this is substan-
tially outside the scope of this review. Nevertheless, the above occurrence
is important to point out the rather deep implications of the Lie-isotopic
theory for a virtually endless variety of frameworks in classical, operator
and other branches of physics.

In addition to the above, Weinberg’s nonlinear generalization of quan-
tum mechanics [71] is apparently afflicted by rather fundamental problem-
atic aspects [43] essentially caused by the fact that it is based on a general,
nonassociative, Lie-admissible generalization of the conventional associative
envelope of quantum mechanics. These algebras are known not to possess
a consistent unit [1]. As a result, all basic physical laws and quantities of
quantum mechanics that are central dependent on the unit (1.29) do not pos-
sess a consistent formulation in Weinberg’s theory. This is the case for the
measurement theory, the notion of quantum of energy, the Casimir invari-
ants, etc. Moreover, the nonassociative character of the underlying envelope
activates the inconsistency theorems by Okubo [53] on nonassociative gen-
eralizations of Schrédinger’s equations precisely of type (1.65). Finally, such
a nonassociative character of the operator algebra prevents the equivalence
between the Heisenberg-type and the Schrodinger-type representations in
Weinberg’s theory [43].

These problematic aspects have been mentioned here to point out the
fact that they are all resolved by Santilli’s central assumption for the con-
struction of hadronic mechanics; the existence of the generalized unit (1.35).
The occurrence is also useful to illustrate the central role of the preservation
of the associative character of the envelope, Eq. (1.34). In fact, general
Lie-admissible algebras do enter in hadronic mechanics, but for the charac-
terization of the brackets of the time evolution for the exterior-open problem,
while the underlying envelope remains associative. In turn, the preservation
of such an underlying iso-Heisenberg and iso-Schrédinger’s representations
[36], and the resolution of the other problematic aspects of Weinberg’s for-
mulation.

Another aspect that is worth mentioning is the use of the iso- Schrédinger’s
equation for a deeper understanding of the Berry’s phase [72], as studied by
Mignani [73].

Next, we want to point out a fundamental feature of hadronization
(1.59), according to which the isotopic lifting of quantum mechanics is es-
sentially centered on the replacement of Planck’s constant unit h = 1 with
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the operator isounit I
h(=1) = I(t,a,%,91,..). (1.67)

In turn this provides another illustration of the intriguing physical implica-
tions of the Lie-isotopic theory in general, and of Santilli’s notion of gener-
alized unit [1,2], in particular.

The epistemological implications of concept (1.67) are self-evident. They
are essentially centered on the expectation that the quantum of energy,
while so effective for the area of its original conception (discrete energy
states of the individual electrons of the atomic structure), is expected to
be insufficient for the representation of the nonlocal and nonhamiltonian
conditions of wavepackets in deep mutual immersion.

This is one of the reasons why Santilli carefully avoids the use of the
terms “quantization” or “quantum mechanics” when referring to the opera-
tor mechanics characterized by the Lie-isotopic theory.

We now close these analytic comments with the indication of the fact
that the Birkhoffian and hadronic mechanics constitute genuine coverings of
their original counterparts, the Hamiltonian and quantum mechanics, in the
sense that:

1. the generalized theories are conceived for physical conditions intrin-
sically more general than those of the original theories (essentially
nonhamiltonian interactions);

2. the generalized theories are constructed with mathematical methods
essentially more general than those of conventional theories (Lie-isotopic
methods); and

3. the generalized theories are capable of approximating the conventional
ones as close as desired, e.g., for

Qxworlxh, (1.68)

and they recover the conventional theories identically when all the
nonhamiltonian interactions are null, e.g., for

Q=worl=h. (1.69)
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1.4 The Notion of Geometrical Isotopy

We now briefly touch upon another notion of isotopy, this time at the geo-
metrical level.

Let M be an n-dimensional C*-manifold with local coordinates rg, k =
1,2,...,n, and let T*M be its cotangent bundle with local coordinates a”,
p=1,2,..2n, a = (r,p). The familiar canonical one-form on T*M can
then be written

0, = ppdrt = R} (a)da" , (1.70)

where one recognizes the same R° as that of Eqs. (1.15).
The fundamental symplectic two-form on T*M can then be written

8, = dfy = dp A dr* = %w,wda“ A da” (1.71)

where w,,, is the covariant tensor of Eqs. (1.17).

Form (1.71) is nowhere degenerate and “closed” (in the geometrical sense
that df; = 0). The space T*M, when equipped with the form 63, becomes
a symplectic manifold in the local canonical coordinates ¢ = (r,p). All the
several aspects of the symplectic geometry then follow (see, e.g., ref. [74]).

DEFINITION 1.4 [1],[15] (Geometric Isotopy): An isotopic
mapping (or image or lifting) of a symplectic manifold with fun-
damental two-form (1.71) is any mapping in the same local chart
that preserves the symplectic character of the two-form, i.e., its
closed and nowhere degenerate character, but remains otherwise
arbitrary.

Evidently, Birkhoff’s equations characterize, not only a Lie-algebra iso-
topy (in their contravariant form), but also a corresponding symplectic iso-
topy (in their covariant form).

In fact, the canonical one form (1.70) is replaced by the Pfaffian one-form

61 = R,(a)da". (1.72)
The associates two form
b, = %Qw(a)da“ A da” (1.73)

where the tensor Q,, is given by Egs. (1.21b), is also closed and nondegen-
erate [15]. As such, the Birkhoffian two-form (1.73) characterizes the most
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general possible symplectic two-form in local coordinates. The direct uni-
versality of the symplectic geometry in classical mechanics then follows from
that of Birkhoff’s equations. This is another important result of monograph
[15].

The implications of the above geometrical aspects are far reaching.

Recall that, at the abstract, coordinate-free level, all symplectic two-
forms coincide. The differentiations merely emerge in local realizations, the
canonical two-form being the simplest conceivable one, while the Birkhoffian
two-form being the most general possible one.

Exactly the same results occur at the analytic level. In fact, Hamil-
tonian and Birkhoffian mechanics coincide at the abstract, coordinate-free
level [15]. As a matter of fact, the latter has been constructed by Santilli
precisely under the condition of coinciding with Hamiltonian mechanics at
the abstract coordinate-free level.

We can therefore expect a similar occurrence at the algebraic level too.
In fact, the Lie-isotopic theory has been proposed and constructed precisely
in such a way to coincide with the conventional formulation at the abstract
coordinate-free level. The differences merely occur in local charts: the con-
ventional formulation of Lie’s theory is the simplest conceivable one, ulti-
mately equivalent to the canonical, analytic-geometrical counterpart. San-
tilli’s Lie-isotopic realization is the most general possible form, which is
ultimately equivalent to the Birkhoffian analytic-geometrical counterpart.

This final unity of vision is, in turn, fundamental for understanding
Santilli’s capability of reconstructing at the higher Lie-isotopic level, ex-
act space-time symmetries (e.g., the rotational, Galilean and Lorentz sym-
metries) when conventionally broken within the context of their simplest
possible realizations. The review of this occurrence is, after all, a central
objective of this presentation.

1.5 Final Introductory Remarks

A few final remarks appear to be recommendable to prevent possible mis-
representations of this review.

Recall that all simple Lie algebras (over a field of characteristic zero)
have been classified by Cartan a long time ago and are today well known.
Thus, the reader should not expect new simple algebras from the Lie- -isotopic
lifting of the conventional Lie’s theory.

Rather than looking for new algebras (or groups), the scope of the Lie-
isotopic theory is that of identifying new, structurally more general realiza-
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tions of known algebras (or groups).

As we shall see, the Lie-isotopic theory permits in fact the identification
of a generally infinite family of physically different symmetry transforma-
tions which are all representations of the same simple, abstract, algebra.

Also, readers may tend to expect that all conventional methods currently
available for Lie algebras (such as the representation theory) are directly
applicable to any Lie theory, thus including the Lie-isotopic one.

This second, rather natural expectation can be readily disproved by not-
ing that a compact Lie algebra (or group) can be turned into a noncompact
form under isotopic lifting, evidently depending on the topology of the as-
sumed isounit . Available methods, such as the representation theory for
compact algebras (groups), are known not to be directly applicable for non-
compact structures. A reinspection of the representation theory is then in
order.

Rather than having preconceived assumptions, the reader is encouraged
to enter into the study of Lie-isotopic algebras with an open mind, and the
expectation that all the various methodological aspects worked out for Lie’s
theory must be reinspected and eventually reformulated for the covering
Lie-isotopic theory.

Our final introductory remark is that Santilli’s Lie-isotopic theory, de-
spite its beauty, is far from being the ultimate Lie theory, as stressed by
the author himself. This point is illustrated quite vividly by the classical
Hamiltonian mechanics, because the conventional Poisson brackets have the
structure [1]

O0A 8B OB O0A ges

L: [A,B]U = —'8—;7;‘51)'—]6' - W% = (A,B) — (B,A) = Lie 5
U:(4,B)= %{};gg = Nonassociative Lie-admissible , (1.74)

namely, the Lie algebra L of the Poisson brackets is the anticommutative
algebra attached to a nonassociative algebra U evidently because

U:((4,B),C) # (4,(B,C)). (1.75)

In particular the algebra U results to be a nonassociative Lie-admissible
algebra precisely because (as per definition of these algebras) its attached
algebra [A, B]y is Lie. The same result evidently persists at the Birkhoffian
level (ref. [15], p. 152).
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By comparison, the algebraic structure of the conventional Heisenberg’s
brackets is given by

L:[A,B]. = AB— BA = Lie,

£: AB = Associative Lie-admissible , (1.76)

namely, the Lie algebra L of conventional quantum mechanics is the anti-
commutative algebra attached to an associative algebra £ which, as such, is
also Lie-admissible.

The physical and mathematical implications of the above findings are
predictably deep. On physical grounds, we have to expect problematic as-
pects in the quantization of conventional Hamiltonian mechanics, for the
evident reason that a mapping of a nonassociative envelope U into an asso-
ciative form £ simply cannot be formulated in a consistent way (see ref. [6]
for a study of this aspect).

This problematic aspect can be readily avoided in hadronic mechanics
because Santilli’s Lie-isotopic brackets can always be formulated according
to the structure [2]

L:[A,Bly = ATB - BTA% (4,B) — (B, A) = Lie — isotopic ,

U:(A,B)= ARB — BSA = Nonassociative Lie-admissible ,
T=R+S, (1.77)

namely, a Lie-isotopic algebra, owing to its nontriviality, can always be re-
formulated as the antisymmetric algebra attached to a nonassociative Lie-
admissible algebra. Consistency of algebraic structures with the classical
counterpart (1.74) is then regained.

On mathematical grounds, the above findings establish the fact that the
most general possible formulation of Lie’s theory is that via nonassociative
envelopes, along the conceptual lines so clearly expressed by the Poisson
bracket, Eq. (1.74).

This is the reason why Santilli provided his primary efforts for the formu-
lation of the theory at the nonassociative Lie-admissible level, and presented
his Lie-isotopic studies only as a simpler particularization. It is remarkable
that these so fundamental structures, so clearly embedded in the structure
of the conventional Poisson brackets, had escaped attention in the mathe-
matical and physical literatures until the appearance in 1978 of ref. [1,2,3].
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This review is restricted to associative Lie-admissible formulations, al-
though in their most general known form. The covering nonassociative Lie-
admissible formulations shall be ignored hereon, and referred to a possible
future review.

40



2 THE MATHEMATICAL FOUNDATIONS OF
THE THEORY

2.1 Central Role of the Universal Enveloping Algebra

Let us begin by recalling the central role for Lie’s theory of the universal
enveloping algebra. This role is somewhat de-emphasized in the contempo-
rary physical literature, but not in the mathematical one. We shall closely
follow in this review the presentation of monograph [15], pp. 148-154.

The terms “Lie’s theory” are referred today to an articulated body of
sophisticated mathematical tools encompassing several disciplines. Whether
in functional analysis or in the theory of linear operators, the structure of
the contemporary formulation of Lie’s theory can be reduced to the following
three parts:

Universal enveloping

/ associative algebras sf \

Lie Lie
algebras G groups G

FIGURE 5. The structure of the conventional formulation of Lie’s the-
ory with the emphasis on its central mathematical structure, the universal
enveloping associative algebra. The Lie-isotopic theory follows exactly the .
same lines, beginning with the generalization of the envelope and then fol-
lowing with the consequential generalization of all remaining aspects of the

theory.

As duly emphasized in the mathematical literature (see, for instance,
Jacobson [75], Dixmier [76], and others), a truly fundamental part of Lie’s-
theory is the enveloping algebra £. In fact, the algebra £ provides a symbiotic
characterization of both the Lie algebras and the Lie groups. This is due to
the fact that the basis of £ (which is constructed via the Poincaré-Birkhoff-
Witt Theorem, to be reviewed in the next section) is given by an infinite
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number of suitable polynomial powers of the generators X; of G of the type
£:1eF; XiuXiX;(i<j); XiXiXp(i<j<k)..., (21)

where the products X; X, etc., are associative. It then follows that the Lie

algebra G
G:[ X, X;]=XX; - X;X; = Cink, (2.2)

is (homomorphic to) the attached algebras £~ of {. The Lie group G of G
is then the infinite power series

: 6* 69
G : "Xk :1+ﬁXk+7Xin+... R (2.3)

which, evidently, can be properly defined and treated only in the enveloping
algebra (note that all terms from X;X; on are outside the Lie algebra).
One can then see why fundamental aspects of Lie algebras (such as the
representation theory) are treated by mathematicians within the context of
its enveloping algebra.

On physical grounds, the role of the enveloping algebra is equally cru-
cial. For instance, a frequent physical problem is the computation of the
magnitude of physical quantities such as the angular momentum operator
M?. While the components M; of M are elements of the Lie algebra SO(3),
the quantity M? is outside SO(3) and can only be defined in the (center
of) the enveloping algebra £(SO(3)). Thus, while the Lie algebra SO(3) es-
sentially characterizes the components of the angular momentum and their
commutation rules, the envelope £(SO(3)) characterizes: 1) the components
M;; 2) their commutations relations via the attached rule {~ = SO(3); 3)
the magnitude of the angular momentum M?; 4) the exponentiation to the
Lie group of rotations; 5) the representation theory, etc. Also, enveloping
algebras play a central role in quantization at large and, specifically, in the
quantization of Lie algebras and Lie groups. In short, we can state that a
truly primitive part of the contemporary formulation of Lie’s theory is its
universal enveloping associative algebra.

Once the mathematical and physical origins of this occurrence are un-
derstood in full, one can easily see how any consistent generalization of the
enveloping associative algebra ultimately provides a generalization of the
conventional formulation of Lie’s theory.

The physical motivations for this study have been pointed out in Chapter
1, and are provided by the fact that Lie algebras characterize the fundamen-
tal equations of physical theories, their time evolution. Any generalization
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of Lie’s theory then inevitably implies the achievement of broader physical
capabilities. V

The mathematical motivations of the study are equally evident. In the
mathematical tradition, the efforts are devoted to the formulation of the-
ories in their most general possible form. This is typically the case for
mathematical formulations such as the symplectic geometry [74], which has
indeed achieved its broadest possible formulation. It is a truism to say that
a similar situation within the context of Lie’s theory was not in existence
prior to Santilli’s studies of 1978, owing to the rather general referral of the
enveloping algebra, not only to its associative form, but actually to such
- form in its simplest possible formulation.

In the next section we shall review Santilli’s studies toward a broader
formulation of Lie’s theory, beginning with the isotopic lifting of its envelop-
ing algebra which admit a consistent, generalized, left and right unit (with
the understanding that the still broader nonassociative envelopes [1] will not
be considered). The reader should be aware that we shall follow Santilli’s
original presentation as close as possible.

2.2 Isotopic Lifting of the Universal Enveloping Associative
Algebra [1], [15]

In this section we shall first review the definition of universal enveloping
associative algebra and the methods for the construction of its basis ac-
cording to the Poincaré-Birkhoff-Witt theorem [75]. We shall then present
their isotopic liftings, that is, generalizations which preserve the associative
character of the product. By keeping in mind the primitive character of
the enveloping algebra in Lie’s theory, the generalization presented in this
section renders inevitable a corresponding reinspection of Lie algebras and
of Lie groups.

DEFINITION 2.1 [75]: The universal enveloping associative
algebra of a Lie algebra G is the set (£,7) where € is an asso-
ciative algebra and T a homomorphism of G into the attached
algebra £~ of € satisfying the following properties. If £ is an-
other associative algebra and 7' a homomorphism of G into ¢,
a unique homomorphism v of € into &' ezists such that ' = 7;
i.e., the following diagram (2.4) is commutative.

Whenever an algebra £ belongs to the content of the definition above, we
shall write £(G). All Lie algebras are assumed, for simplicity, to be finite-
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dimensional. Also all algebras and fields are assumed to have characteristic
zero, and the basis of all Lie algebras is ordered.

- Ve

_T e
T //i (24)
G

The construction of the enveloping algebra £(G) is conducted as follows.
Consider the algebra G as a (linear) vector space with basis given by the
(ordered set of) generators X;, ¢ = 1,2,...,m. The tensorial product G® G
is the ordinary Kronecker (or direct) product of G with itself as a vector
space. Such a tensorial product constitutes an algebra because it satisfies
the distributive and scalar laws. Also, the algebra is associative because
the Kronecker product is associative. A general form of associative, tensor
algebra which can be constructed on G as vector space is given by

F=F19GoGRGHPGRIGCGRGHD..., (2.5)

where F is the base field and @ denotes the direct sum. Let R be the ideal
generated by all elements of the form

X, X;] - (Xi ® X5 — X; 0 X3), (2.6)

where [X;, X;] is the product of G. Then, the universal enveloping algebra
£(G) of G is given (or, equivalently, can be defined) by the quotient

{§(G)=F[R. (2.7)

§

It is possible to prove that the algebra (2.7) satisfies all the conditions of
Definition 2.1 (see, for instance, Jacobson [75]).

Of utmost importance for mathematical and physical considerations is
the identification of the basis of {(G). The quantities '

M,=X;, ® Xi, ®...0 X, (2.8)

are called standard (nonstandard) monomials of order s depending on whether
the ordering
i1 <2< .. <5 (2.9)
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is verified (not verified). It is possible to prove that every element of £(G)
can be reduced to an F-linear combination of standard monomials and
(cosets of) 1. This yields the following fundamental theorem on envelop-
ing associative algebras.

Theorem 2.1 (Poincaré-Birkhoff-Witt Theorem [75]): The cosets of 1 and
the standard monomials form a basis of the universal enveloping associative
algebra £(G) of a Lie algebra G.

The associative envelope £(G), as presented, is still abstract in the sense
that the product of £(G) is the tensorial product X; ® X;, while the product
used in physical (e.g., quantum mechanical) applications is the conventional
associative product X;X;. Consider then the algebra

AG)=FloAY AP g .. .,

AW =Xy, Xi . X, #1<i<...<i,. (2.10)

It is possible to prove that £(G) is homomorphic to A(G), in line with
Definition 2.1. Thus, the algebra A(G) can be assumed as the universal
enveloping associative algebra of G with basis

]-, Xi) XilX‘i27 XilXizX‘isa ey
i Sig, 41 Sip <, (2.11)

and arbitrary elements
xhxk. xk, (2.12)

where the X’s are the generators of G. Notice that A(G) is infinite-dimensional.
The center of A(G) is the set of all polynomials P(X) verifying the property
[P(X),X]a=0, (2.13)

for all elements X; € G. Most important elements of the center are the so-
called Casimir invariants of G. For additional study, we refer the interested
reader to the mathematical literature on the topic [75],[76]. We move now
to the identification of the desired associative-isotopic generalization

DEFINITION 2.2 [1], [15]: The isotopically mapped univer-
sal enveloping associative algebra of a Lie algebra G is the set
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((¢,7), (€,4,7)) where: (1) (€,T) is the universal enveloping asso-
ciative algebra as per Definition 2.1; (2) i is an isotopic mapping
of G,iG = G; (8) £ is an associative algebra generally noniso-
morphzc to &; and (4) 7 is a homomorphism of G into £ such
that the following propertzes are verified. If§’ is still another as-
sociative algebra and 7' a homomorphzsm of G into §’ a unique
homomorphism 4 of § into £ exzists such that #' = 4%, and two
unique isotopies i and ¥ exist for which it =€ and?t = &, ie.,
the following diagram is commutatine

N

A
&@é

Whenever an algebra ¢ verifies the conditions of the definition above,
we write é(G) Again, for simplicity, we assume that all Lie algebras are
finite-dimensional, all algebras and fields have characteristic zero, and all
Lie algebra bases are ordered.

We are now in a position to elaborate on the insufficiency of Definition
2.1, and the need of Definition 2.2. We shall indicate first the mathematical
aspect and then point out the physical profile.

The main idea of Definition 2.1 is, beginning with the basis of a Lie
algebra G, to construct an enveloping algebra £(G) such that [{(G)]™ =
The more general idea of Definition 2.2 is, beginning also with the basxs
of a Lie algebra G, to construct an enveloping algebra E(G) such that the
attached algebra [f(G)] is not, in general, isomorphic to G but rather is "
isomorphic to an isotope G of G, and we write [48]

€(G) ~G#G. (2.15)

The lack of unique association of a given basis with the envelope then ensures
freedom in the realization of the associative product. Equivalently, we can

.<
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say that within the context of Definition 2.1, a given basis essentially yields
a single unique enveloping algebra and thus a single unique attached Lie
algebra. On the contrary, within the context of Definition 2.2, a given basis
yields all possible enveloping algebras and thus all possible Lie algebras of
the same dimension, as we shall see. Still equivalently, we can say that, as is
conventional in the contemporary formulation of Lie’s theory, nonisomorphic
Lie algebras are expressed via the use of different generators and the same
Lie product. On the contrary, within the context of the isotopic formulation
of Lie’s theory, nonisomorphic Lie algebras can be obtained via the use of
the same basis and different Lie products. We can therefore state that all
possible enveloping associative algebras can indeed be introduced according
to Definition 2.1, which is therefore suitable for the Cartan classification of
Lie algebras. Definition 2.2 is more general inasmuch as, besides permitting
the introduction of all possible enveloping algebras, it also permits us to
construct nonisomorphic algebras via the same basis, by therefore rendering
necessary the use of the most general possible realizations of the associative
product.

On physical grounds, these mathematical mechanisms are at the founda-
tion of the Lie-isotopic generalization of Hamilton’s and Heisenberg’s equa-
tions for closed nonself-adjoint interactions (§1.3).

As familiar, the definition of physical quantities is independent of whether
or not the systems possess nonpotential interactions. When these interac-
tions are admitted by the theory, they are represented via an alteration of
the Lie algebra product. As a result, when the Hamiltonian description of
a closed self-adjoint system

0A ,,0Fiy

A(CL) = [A, Etot] = 5—;};&) 50,1} s

(2.16)

is generalized into a Birkhoffian form (1.22) to represent the additional pres-
ence of internal, contact, nonpotential, interactions, i.e.,
. N A 8Etot
A(a) = [AlEw] = SV (@) 50
the basis of the original Lie algebra remains unchanged, together with the
underlying carrier space (R X T*M) and the field, and only the realization
of the Lie algebra product (that is, the realization of the envelope) is per-
mitted to change. As a result, the original Lie algebra G with basis X;,(a)
over T* M equipped with conventional Poisson brackets is mapped into the

(2.17)
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isotope G, which preserves the original basis X;(a) in the same local coor-
dinates of T*M, although it is now equipped with the generalized Poisson
brackets, i.e.,
G : [X;, X;) = (X5, X;) = (X, Xi) = G [X5X5] = (X5X;) — (X3%0).
(2.18)
In the transition to the case of Heisenberg’s equation, the situation is
essentially the same and actually turns out to be more directly compatible
with Definition 2.2. In fact, for consistency of the theory with its classical
image, during the generalization of Heisenberg’s equation (now expressed
for operators),

iA(a) = [A,H] = AH — HA, (2.19)
into the Lie-isotopic form (1.37), i.e.,
iA(a) = [A;H] = ATH — HTA, (2.20)

the nonpotential forces due to charge overlapping are expressed via the Lie-
isotopic generalization of the product

G:[X;, X;]=XX;, - X;X; — G: (XX, = XiTX; - X;TX;. (2.21)

Mechanism (2.21) is clearly along Definition 2.2 rather than 2.1.

The alternative approach would be that of preserving the original sim-
plest possible product and changing the basis in order to reach direct com-
patibility with Definition 2.1. However, this approach has a number of prob-
lematic aspects. First of all, it is centered on the loss of the direct physical
meaning of the generators (e.g., the physical linear momentum in one di-
mension, p = m#, is replaced by abstract objects of the type p = aexp(frs).
Secondly, the approach does not permit the achievement of the direct univer-
sality, as recalled by the preceding section. The removal of the unnecessary
restrictions on the realization of the enveloping algebras is clearly preferable,
both mathematically and physically.

Owing to the relevance of mechanisms (2.18) and (2.21) for this review,
it is important to give an explicit example. To stress the fact that the ideas
are not necessarily restricted to nonpotential interactions, we review one of
the first examples of isotopy identified by Santilli, that for the harmonic
oscillator in a three-dimensional Euclidean space [1], [15].

The nonisomorphic groups SO(3) and SO(2.1) are isotopic symmetries
of the corresponding Hamiltonians

1 1
H(a) = Sz +p+p2)+56"+v"+7), (2.22.2)
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- 1 1
H(a) = 5(pz—py+pl)+ S@ =+ 2, (2.22.b)
a = (r,p)ym=k=1, (2.22.c)

that is, they are symmetries leading to the same conservation laws of the
components My, b = z,y, z, of the angular momentum via the use of Noether’s
theorem. Let us review the case again and reinterpret it in light of Defini-
tions 2.1 and 2.2.

The Hamiltonian realization of the symmetry SO(3) of H(a) is based on
the Lie algebra of conserved quantities

SO(3): [Mz, M) = M., [My,M.,)=M,, [M.,M]=M,, (2.23)

which is defined in terms of the conventional Poisson brackets

[MbrMc] = (MbaMc) - (Mc,Mb) 3 (224&)
+1 0
(My, M) = 8M”6’13M°; (6%) = +1 . (2.24.b)
ort 7 Op; I 0 41

In the transition to the equivalent Hamiltonian H(a), the conserved
quantities My clearly remain conserved, but the SO(3) symmetry is bro-
ken and is replaced by the nonisomorphic symmetry SO(2.l). The problem
now is the construction of a realization of the SO(2.1) algebra (the Lorentz
algebra in (2 + 1)-dimensions) whose generators are those of the nonisomor-
phic SO(3) algebra (the rotational algebra in three-dimensions). This can
clearly be achieved if and only if one alters the Lie algebra product. An
explicit realization has been identified by Santilli [1], [15] and is given by
the commutation rules

SO(2.1) : [MosM,) = M,, [MyM,) = —M,, [M;M,)=M,, (2.25)

which are now expressed in terms of the generalized Poisson (Birkhoffian)
brackets
[My;M.] = (MyIM.) — (M M,) ,

aMb i aMc

/410
boife (i) = -1 : 2.26
oy () ( 0 +1 ) 220

Note that the insistence in the preservation of the same realization of the
Lie algebra product, in this case, would prohibit the representation of the

(My;M.) =
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conservation of the angular momentum via a symmetry of the Hamiltonian
H(a).

The example considered therefore establishes that one given basis (the
components of the angular momentum M = 7 X p,p = m7) can define a
hierarchy of enveloping algebras and attached Lie algebras, depending on
the selected realization of the products, which is fully in line with diagram
(2.4) and Definition 2.2. The example actually establishes not only the in-
sufficiency of Definition 2.1 but also that of Definition 2.2 itself. In fact, the
algebras (M, M,) and (My}M.) are nonassociative, therefore demanding a
further generalization of Definition 2.1 for nonassociative enveloping alge-
bras, even though the existence of a realization within the context of the
Lie- isotopic generalization is expected to exist (§1.5).

Stated in different terms, the above example by Santilli establishes the
generalization of the conventional definition of the envelope of the Lie alge-
bra of the group of rotations as per diagram (2.4).

- Y ,

(2.27)

S
T/

N

SO@3)

into the Lie-isotopic form as per diagram (2.14) |
Ay ~,

AN A |
SO2.1) (2.28)
€

1

Y
i

T T’

SO@3)

which is expected for operator-type realizations (2.21).
Note that by no means does diagram (2.28) exhaust all possible isotopies
of the group of rotations. See §3.2 for details.
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With a clear understanding of the new capabilities (as well as limita-
tions) of the Lie-isotopic generalization, we pass now to the review of the
generalization of Theorem 2.1 achieved by Santilli (loc. cit.).

The construction of an isotope £(G) of £(G) can be conducted as follows.
Perform an isotopic mapping of the tensorial product X; ® X; of £(G),

X,‘®Xj-—>X,'*Xj, (2.29)

that is, any invertible modification of the product ® via elements of £(G),
of the base manifold, and of the field, which preserves: the distributive and
scalar laws (to qua,hfy as an a.lgebra), the associativity of the product (to
qualify as an isotopy), i.e.,

(Xi*Xj)*Xk=Xi*(Xj*Xk), (2.30)

as well as the existence of the unit 1. The product of two elements X; x X;
and X, * X; is then given by

(Xi*Xj)*(XT*Xs)=X¢*Xj*XT*Xs, (2.31)

and no ordering ambiguity arises because of the preservation of the associa-
tive character of the original product.
The isotope of the associative tensorial algebra (2.5) can then be written

F=FloGoG+GopG+G+Gq.... (2-32)
Let R be the ideal of F generated by
[Xi3X5] — (X * X — X + X;), (2.33)

where [X;]X;] is the product in G. An 1sotopically mapped universal en-
veloping associative algebra E(G) of a Lie algebra G can then be written

£(G) = F/R. (2.34)

Structure (2.34) is, by construction, the universal enveloping associative
algebra of G reallzed via an isotopic mapping G — iG.
The remaining aspects of the theory of §(G) are essentially given by an
isotopic mapping of the corresponding steps for £(G) outlined above.
The quantities
My= X, % Xop *... %X, (2.35)
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are called isotopically mapped standard (nonstandard) monomials depending
on whether the following ordering condition

i <idp < ... < s (2.36)

is verified (not verified). In the reduction of an arbitrary element of £(G)
XP s XPax Xk, (2.37)

to standard monomials, a new feature arises, due to the fact that the emerg-
ing combinations of these latter monomials may occur via functions on the
base manifold. This, in turn, occurs because the isotopy ® — * can be real-
ized via functions of this type. We call these combinations F- linear, where
F is an isofield of type (1.38), to differentiate them from the F-linear com-
binations of the conventional case, that is, combinations only via elements
of the field. As we shall see in the next section, these F-linear combinations
have a precise interpretation within the context of the isotopic Lie’s theory.
Despite this generalization, the construction of the basis of E(G) parallels
that for £(G), because £(G) is a conventional envelope for G. The (inverse)
isotopy then simply reduces G to G.

Theorem 2.2(ref. [1], p. 353 and ref. [15], p. 161; Isotopic Gen-
eralization of the Poincaré-Birkhoff-Wiitt Theorem): The cosets of 1 and
the standard isotopically mapped monomials form a basis of the isotopically
mapped universal enveloping associative algebra é(G) of a Lie algebra G.

The basis is thus given by
i, Xi, Xi1 * Xig, Xi: >I<)(i2 *Xis)- ..

13 <idg, 13S0 13, (2.38)

where 1 is the (abstract) unit of £. The distinction between the tensorial
realization and that used in practical applications is now lost. Indeed the
mapping X; ® X; — X;X; can be considered, in the final analysis, a partic-
ular form of isotopy.

The explicit form of the basis depends on the assumed type of isotopy
® - *. In turn, this depends on the realization of the basis X; of G,
whether via matrices, quantum mechanical operators, classical functions on
phase space, etc.
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Suppose that the X’s are realized via matrices. Then an isotopy is
provided by Eq. (2.21). Let T be a polynomial on the X’s (not necessarily
on the center of £(G).) Then the explicit form of basis (2.38) is given by

1, X; X,TX,, X,TX,TX,...

11 <9, 1 <1< 143, T =fixed and invertible. (2.39)

Needless to say, the isotopy X;X; — X;TX; is only one example of possi-
ble associativity-preserving modifications of the product. Other associative
isotopies are given by Eqgs. (1.4) and (1.10).

A comment on the quantity I of Theorem 2.2 is in order here. As an-
ticipated in §1.3, the element 1 € F is no longer the unit element of the
enveloping algebra under an isotopic mapping of the product. In fact, for
isotopic envelope (2.39) the unit element (when it exists) is given by

i=1terF, (2.40)

because only this quantity verifies the (left and right) rules 1+ X; = X;*1 =
X; forall X; € 5 It should be indicated that, as we shall illustrate in §2.4,
basis (2.38) can also be formulated in terms of the unit 1 € F (called in
this case weak unit [36]). This is due to the possibility of factoring out the
isounit 1 € F' (see, later on, Eq. (2. 139)). The formulations of Theorem 2.2
in terms of the cosets of 1 (ﬁeld F) or cosets of 1 (isofield £) are, therefore,
equivalent.

The restriction of the existence of the unit on all acceptable isotopies
(recalled earlier) should be emphasized here. In fact, no generalization of
Theorem 2.1 for isotopy (1.10) is known at this writing, precisely because
of the general lack of unit I for the product a * b = WaWbW, W2 = W,
i.e., the general lack of existence of a quantity 1 such that {+a=a*1 =
WiWaW = WaWiW = a for alla € £.

The restriction to the isotopic liftings of Theorem 2.2 is also worth a
mention. In fact, Santilli presented in his original memoir [1] also a genotopic
lifting of the theorem, i.e., a generalization of the original associative algebra,
£ into a nonassociative Lie-admissible form. However, the nonassociativity
causes problems in orderings of type (2.31) which are known to be resolvable
only for a particular case of nonassociative Lie-admissible algebras called
flezible [1]. This latter generalization was reinspected by Ktorides, Myung
and Santilli [35]. We therefore defer the interested reader for details to the
genotopies of Theorem 2.1 to ref.s [1,35].
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An important mathematical aspect reviewed in this section is that the
knowledge of a given set of generators does not uniquely characterize a Lie
algebra because of the freedom in the selection of the enveloping algebra
(product). The physical aspect treated is that the knowledge of a Hamil-
tonian does not uniquely characterize the physical system because such a
characterization also depends on the explicit form of the brackets of the
time evolution. As we shall see, the implications are rather intriguing. For
instance, the assumption of a Hermitian Hamiltonian H contrary to popular
belief, does not ensure that the time evolution is unitary and thus does not
guarantee that H is observable unless one specifically identifies the assumed
realization of the envelope, i.e., of the assigned Lie product in Heisenberg’s
time evolution.

2.3 Isotopic Lifting of Lie’s First, Second, and Third Theo-
rems [1], [15]

As is well-known, an effective historical, and technical way of presenting
Lie groups and Lie algebras is according to their original derivation by So-
phus Lie [77] via his celebrated First, Second, and Third Theorems. In this
section we shall first present these theorems, review Santilli’s Lie isotopic
generalization, and then show its comparability with the isotopic generaliza-
tion of the enveloping algebra of the preceding section. More specifically, the
objective is to show that the notion of connected Lie transformation group
admits a generalization such that, when reduced in the neighborhood of the
identity, admits Lie algebras with the most general possible realization of
the product.

The emerging isotopic generalization of Lie’s theory (that is, of the en-
veloping algebra, the Lie algebras, and the Lie groups) was used for the
construction of the isotopic generalization of Galilei’s relativity for closed
non-self-adjoint systems [1], [15] with corresponding relativistic and grav-
itational extensions [18], [58]. Since the theory also admits operator-type
realizations, its abstract formulation is expected to permit the joint treat-
ment of closed, classical and quantum mechanical, nonpotential interactions,
in much of the same way as the conventional abstract formulation of Lie’s
theory permits a joint treatment of closed, classical and quantum mechani-
cal interactions of potential-Hamiltonian type. Santilli’s ultimate objective
is to lay the foundations for achieving, in due time, a generalization of the
contemporary notion of interactions, with corresponding generalization of
relativities and physical laws.
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DEFINITION 2.3: Let M be a Hausdorff, second-countable,
analytic, N-dimensional manifold with local coordinates a*,p =
1,2,...,N (e.g., T*M or Rx T*M ). The set of transformations
on M depending on r-independent parameters 6°,i = 1,2,...,r,

¢ — a' = f(a;0) = {f*(a*;67)} (2.41)

is called a Lie transformation group [77] when the following con-
ditions are verified.

1. All functions f* are analytic in their variables.

2. For any given two transformations
a' = f(a;8), "= f(d;6"), (2.42)
a set of parameters exists
0" = g'(8,0"), (2.43)

characterized by analytic functions g' called group compo-
sition laws, such that

a’ = f(a;0"). (2.44)

3. Transformations (2.41) recover the identity transformation
at the null value of the parameters, i.e.,

a = f(a;0). (2.45)

4. Corresponding to each transformation (2.41), there is a
unique tnverse transformation

a= f(a’;67%), (2.46)

and thus the transformations are regular.

5. The combination of any transformation (2.41) with its in-
verse yields the identity transformation.

The number r of independent parameters is called the dimension of the
Lie group.

A central property of Lie transformation groups is that they are con-
nected; that is, they can be continuously connected to the identity. The
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primary idea of Lie’s theorems is that, under the conditions indicated, the
groups can be studied via their infinitesimal transformations, because a fi-
nite transformation can be recovered via infinite successions of infinitesimal
transformations. Santilli [1] first reviewed these ideas by following as closely
as possible their original derivation [77], as we shall do in the following.
Consider transformations (2.41) with their identity

d = f(a;6), a=f(a;0), (247)
and perform the infinitesimal variations
d =a+da= fla;0+dB); a+ba= f(a;60), (2.48)

where df and 66 represent two independent variations of the parameters.
We can then write

o = U0, aa0m
fa = (af (a; 0))_050 (2.49.b)

The transformation € + df can be interpreted as the product of transforma-
tions relative to # and 64, i.e.,

' + dé* = ©'(9,69) , (2.50)

for which 501 (0
6+ b = i(8,0) + (222 ( a))a— 867 + . (2.51)
Thus we can write ) ) .
df' = p(0)66° ,
8¢ (6, )
= (e dad Jozo

The formula above represents a relation between df and 68 which can also
be written

(2.52)

867 = M (0)d6', Mpuk= kX =6l . (2.53)
By putting
oy _ Of*(a;0)
uj(a) = (=g )o=0, (2.54)
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and by using Eq. (2.53), Eq. (2.49.a) can be written
da* = ul(a) M5 (6)dp? . (2.55)

In this way we reach Lie’s First Theorem.

Theorem 2.3: When transformations (2.41) form a connected, m-dimensional,

Lie group, then
Oa*

067
where the functions u}, are analytic.

= ul(@)N5(0) , (2.56)

Let A(a) be an (analytic) function of the a variables. The infinitesimal
Lie transformation a — a + da induces a variation of A(a) which can be
written

0A , s g ou O
= 605X A . (2.57)
The m-independent quantities
0 0f*(a;8) 0
— N —
X = Xu@) = w05 = (P i oo, (258)

are called the infinitesimal generators of the transformations (or of the
group). For our later needs, we refer to the X’s defined by Egs. (2.58)
as the standard generators.

We are now interested in the (necessary and sufficient) conditions for
transformations (2.41) to constitute a Lie group. By using the converse of
the Poincaré lemma, they can be written

32 a't 62 a't

26063 ~ 96306° ° (2:59)
that is 9 ok y oAk
Uk kg om0 OUk kg nOA
50 /\J + uy, 505 505 A+ uy, 507 " (2.60)
Thus
u“(a/\;.? B B_AS _ /\,?aug B Ak@uz _ /\,?ﬁuf: 8a"’ B ,Pﬁu;c‘ 8a‘f
kA ogi  9gi J 96t b 062 7 fa* 06° t fav 08
ou# out
r, vl T k., vyl k
= AJ’LLI A,’ 6aV — )“i Ul )\J aal’ . (261)
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Therefore
out oul

u? aafl ~ uY Frie = CEul, (2.62)
where Y
Ch = 1 (355 — 5 (2.63)

The m® quantities Cikj are independent from 6. This can be seen by
differentiating Eq. (2.62) with respect to §. After some simple calculations,
one then sees that

ock
a6t 7
i,5,k, 1 =1,2,....m. (2.64)

In this way we reach Lie’s Second Theorem.

Theorem 2.4: If X;,i = 1,2,...,m, are the generators of an m-dimensional
Lie group, they satisfy the closure relations

(X, Xjle = X0 X; — XX = C' Xk (2.65)

where the quantities C’fj are called structure constants.

The symbol £ in Eq. (2.65) denotes an associative algebra with a con-
ventional, associative product of operators X;X;. At closer inspection, this
algebra emerges as being the universal enveloping associative algebra of the
Lie algebra.

The fundamental Lie’s rule (2.65) can be explicitly written

w8 o, 0 )

[XHX]S "‘[ 1 dar’ Uj aa,,] Cz] ka o ? (266)
where the product [X;, X;]¢ is Lie; that is, it satisfies the identities
[XiaX.‘i]E + [Xj7Xi]§ =0,
[1Xi, Xle» Xele + [ X5, Xile, Xile + [ Xk, Xile, Xjle = 0. (2.67)

By substituting into these expressions the explicit form of the Lie product
in terms of the structure constants, Lie’s Third Theorem is reached.
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Theorem 2.5: The structure constants of a Lie group in standard realiza-

tion obey the relations
Ck+Ck=0,

CECh + cher + cker; =0 (2.68)

Theorems 2.3, 2.4, and 2.5 essentially provide the correspondence be-
tween a given (connected) Lie group G and its Lie algebra G. In particular,
they allow the characterization of a Lie group in the neighborhood of the
identity via the structure constants. We have here tacitly implied that dif-
ferent Lie groups may exist all admitting the same Lie algebra, that is, the
same structure constants. However, among all Lie groups with the same Lie
algebra only one is simply connected, called the universal covering group.

The inverse transition from a Lie algebra to a corresponding Lie group
can be characterized via the inverses of Lie’s First, Second, and Third Theo-
rems. We suggest the interested reader to study the specialized literature on
this topic, such as Gilmore [78] and quoted references. We here outline one
of the simplest approaches, known as the ezponential mapping [15]. Write
Egs. (2.56) in the form

da*

2g7 = U(a)Xi(8) = M (6)Xi(a)a* (2.69)
and introduce the one-dimensional parametrization
0% = 1ok, o* = d(0(r)) = a"(r) . (2.70)
Then we write
a"(r)=THr)a”, a’ =[a"(T)]r=o0 . (2.71)

To compute the elements T#(7), consider the equations

da* _ datdet | "y
el vl AL(0)Xr(a)a"™(0),

—(—%Tﬂ(r)a” = o*AL(0) X, (a)T4(8)a"™(0) . (2.72)
However, the a””(0) are arbitrary initial values. Thus the solutions of the
total differential equations

d

T TA(T) = & XN (0)X, (a(r))TL(7) , (2.73)
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with initial conditions

TO) = 8, A TH(lmo = ANOX (DS, (274)
can be written -
HM—Z W&www (2.75)

yielding the exponential mapping
a* = egkX"[éa” . (2.76)

If, instead of the variables of the base manifold, we have a function of the
same variables, the procedure above also applies, and we can write

A(d') = " X¥). A(a) . (2.77)

In particular, the infinitesimal (standard) generators can be recovered via
the rule
0

X = [We" Xilelo=o - (2.78)

Notice that the standard realization (2.76) of the group of transforma-
tions (2.41) is manifestly connected. The verification of the conditions to
qualify as a Lie group is simple. Here we restrict ourselves to recalling that
the product of two elements of group (2.76)

eXoeXs = %o, (2.79)

is characterized by the so-called Baker-Campbell-Hausdorff formula:

Xp—-X +Xﬁ+ Xa,Xﬁ]g—}— [(X Xﬁ) {Xa,Xﬁ]} + ... (2.80)

2[

It is significant for our review to recall that a Lie algebra does not neces-
sarily admit a corresponding Lie group. For specific examples of Lie algebras
of this type, the reader may consult, for instance, Hurst [79]. In essence, the
applicability of the exponential mapping in general, or the “integration” of
a Lie algebra to a Lie group must satisfy certain (convergence) conditions
of the underlying infinite series, known as integrability conditions. We also
refer the reader in this respect to the specialized literature in the subject
and, in particular, to Nelson [80].
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We pass now to the review of Santilli’s Lie-isotopic generalization of Lie’s
theorems. The prior review of the main objective may be useful here. Lie’s
crucial result is fundamental rule (2.65). This rule essentially characterizes
Lie algebras via the conventional associative product X;X; of vector fields
X; = u¥(a)d/da* on a manifold M. Santilli’s main objective is to generalize
Definition 2.3 and Lie’s theorems in such a way as to characterize a Lie
algebra via the most general possible associative product X; * X; of vector
fields on a manifold.

Of utmost importance is the condition that the base manifold M with
local coordinates a*, the parameters 6;, and the generators X; of the conven-
tional formulation of Lie’s theorems are not changed in their isotopic gen-
eralization. This is due to physical requirements for the description under
consideration. As we recalled earlier, the local coordinates of M custom-
arily have a direct physical meaning such as the coordinates of the frame
of the experimental setup; the parameters carry a direct physical mean-
ing as measurable quantities such as time, angle, etc., and the generators
directly represent physical quantities such as energy, angular momentum,
etc. When the conventional description of self-adjoint interactions via The-
orems 2.3, 2.4, and 2.5 is broadened to permit the additional presence of the
nonself-adjoint interactions, the frame of the experimental observer must be
preserved; measurable quantities such as time and angles must be preserved;
and physical quantities such as energy and angular momentum must also be
preserved unaltered.

These objectives were achieved by Santilli as follows.

DEFINITION 2.4 (ref. [1], pp. 329-368. See also ref. [15],
pp. 169-173): Let
G:d" —a¥ = f'(a;6), (2.81)
be an r-dimensional Lie transformation group G as per Defini-
tion 2.3. A Lie isotopic image or, simply an isotope G of G is
a set of transformations characterizable via a regular (N x N)
matriz of analytic functions (g¥(a;0)) acting on (2.81)
G:a* — " = gt(a;0)f*(a,0) = f*(a;0),

det(gl) #0, gllo=o =6, , (2.82)

which verify the following properties. (a) The transformations
a4 = f(a;8) constitute a Lie transformation group, by therefore
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verifying conditions 1-5 of Definition 2.8. (b) The group G is
realized via the same base manifold, the same parameters and
the same generators of G. (¢) When reduced in the neighborhood
of the identity transformation, the group G can be characterized
by a Lie algebra isotope G of G.

Condition (c) is introduced to avoid non-Lie, Lie-admissable algebras in the
neighborhood of the identity transformations [1]. As a matter of fact, it
is precisely this possibility that permits the further generalization of Lie’s
theory of Lie-admissible type.

Since the group of transformations f“(a; ) is a conventional, connected
Lie group by assumption, it can be studied in the neighborhood of the
identity as in the conventional case. The repetition of the analysis of f(a;8)
then yields the expressions

da* = a4 (a)AF(8)d8"* ,

i(a) = |0 045 ) (a5 D)oo - (259)

In order to realize the isotopy, we then introduce the following reformulation
in terms of the quantities of G for given g} (a) functions

ik (a) = gi(a)uf(a), det(gi)#0. (2.84)

Note that the other possibility 4% = g#uY, even though conceivable (and
actually more in line with Eq. (2.83)), is excluded here because it would im-
ply the redefinition of the generators Xy, = u}(9/8a*) — X = ghu¥(d/da*)
which is contrary to the notion of isotopy. The analyticity of the transfor-
mations then implies the following Santilli’s generalization of Lie’s First
Theorem.

Theorem 2.6 [1], [15]: If transformations (2.82) characterize an isotopic
image G of the Lie group G of transformations (2.81), then analytic func-
tions gi(a) exist such that

oa+ .
07 = gf(a)uf:(a)/\;-, detg #0, (2.85)

and the uy(a) functions are analytic.
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This theorem, though mathematically trivial, has nontrivial implica-
tions. Indeed, it implies a modification of the structure of the group in
the neighborhood of the identity, i.e.,

G:d" ~a* +0ut(a) - G: a4 ~ 6'g (a)u(a) (2.86)

which is precisely the desired situation. We must now identify the integrabil-
ity conditions under which such a behavior is still Lie in algebraic character,
when expressed in terms of the generators and parameters of the original
group. Under these conditions, we say that the quantities g;: of Eqs.(2.85)
or (2.86) are isotopic functions with respect to G.

The group G is Lie and thus admits the standard realization worked out
earlier,

v 0 v 9
u 5o uf - = Ck uké) = (2.87.a)
. s BA’“ Nt
(X0, Xjle = XiX;—X;Xi = CEX, (2.87.c)
0
Xk uf:(a)%; . (2.87.d)

The group G is also Lie and thus can be realized in the standard form

o 0 . o 0 kg O
U B “5 T Yige i = Cij“;:‘g;; ) (2.88.a)
: ok axk
Ch = BB(GE — 55 (2.88.)
[Xi,XjL = Xin - XX = Ck " Xk (2.88.c)
. . 0
R = g (2.88.d)

However, as indicated earlier, this realization generally implies a change of
the generators in the transition from G to G:

G:szuk-ai'_}G X :ﬂza—i-‘:’ (2.89)

and, as such, does not verify the conditions for isotopy. To achieve the
objective under consideration, Santilli introduced the following isotopy of
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the universal enveloping associative algebra, according to §2.2, this time
realized via functions on the base manifold [1], [15].

E(G): XiX; — £(G): Xix X = g} X, g3 X, - (2.90)

Notice that this mapping does verify the conditions of isotopy, in the sense
that it is realized via the generators of the original algebra, while preserves
the associativity of the product,

(9 Xr g2 Xs)gi X = g7 X, (95 X9 Xs) - (2.91)
The fundamental Lie rule (2.87.c) can now be rewritten

o N

u B Ak 1
u;-’aay *u; — u}’aay *u; = Chu ,
= Crigk(a) . (2:92)

The integrability conditions for the functions gi(a) to be isotopic, that is to
yield rule (2.92), can then be readily computed. Thus we reach the following
Santilli’s generalization of Lie’s Second Theorem.

Theorem 2.7[1], [15]: Under the integrability conditions

y 0 d
dhufm—0) — gl n ool = 9791 Cr + Cligh (2.93)

the generators X; of an isotope G of a Lie group G satisfy the isotopic rule
of associative Lie admissibility
(X X); = XixX;—X;+X;=Ch(a)X), (2.942)
§G): Xi*xX; = ¢/X.g:X,, (2.94.b)
7]
Xy = uf:(a)—a—a—u~ , (2.94.c)

where the quantities C’fj(a), called structure functions, are generally depen-
dent on the (local) coordinates of the base manifold of the original group.

In this way Santilli reached an interpretation of the F-linear combina-
tion of the isotopically mapped standard monomials of §2.2. While in the
standard realization (2.87.c) the quantities C{‘j are constants (the structure
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constants of a Lie group), the corresponding quantities which emerge after
the reformulation of the same group G in terms of the base manifold, the
parameters, and the generators of G, acquire an explicit dependence on the
local coordinates (the structure functions é’,’;(a)) This situation has numer-
ous technical implications (e.g., from the viewpoints of the representation
and classification theory) which are not reviewed here.

The use of the Lie algebra laws for the isotopically mapped product
(2.94.b) yields Santilli’s generalization of Lie’s Third Theorem.

Theorem 2.8 [1], [15]: The structure functions C'f;(a) of the isotopic real-
ization of a Lie group G verify the identities
Ck+Ck =0, (2.95.a)
CkaH'C WCLi+ CECE + [T, Xlg + [Cf, Xile + [Chi, X,);(2.85.b)

The exponentiation from the Lie algebra to the Lie group can now be
formulated in terms of the isotopic image of the ezponential law (2.77), i.e.,

G:e" Xy » G K lé (2.96)
which is based on the following rule of Lie isotopy
G :[Xi, Xj)e = CEXi — G : [Xi, Xj]; = CE(a) Xk, (2.97)

with consequential isotopically mapped Baker-Campbell-Hausdorff formula

[1], [15]

Koy eXp = Ko ,X:gX,
1
X =X, +Xﬁ+ [Xa,Xﬁ] 1—2—[(Xa—Xﬁ),[Xa,Xﬁ]é]é—l—..., (2.98)

whose existence is ensured by that of the standard realization. The reader
can now see the emergence of the F-linear combination of the basis directly
in the group composition law. Clearly, the enveloping algebra underlying
expressions (2.98) is the isotope §(G) of £(G).

A simple example may be useful in illustrating the above analysis [1],
[15]. Consider the one-parameter group of dilations

v = f(r;0) = e'r. (2.99)
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The standard generator for this group is given by

7]
X=rs. (2.100)

Indeed

62 J
6r(8/0r) 2 6
e r=[1+ (ra )+ 07") +.Jr=ér. (2.101)

The group composition law is, in this case, trivial, i.e.,
v = f(r';0) =€ = e +or (2.102)

Consider now the one-parameter connected Lie group of nonlinear trans-
formations

0
G T e
= f(r;0) = T T g(r,8)f(r,0),9 = T (2.103)
with composition law
, P rf/(1-0r) 7
RGO R vl w7y Bl ey e mER R

We are interested in realizing this group, as a necessary condition of iso-
topy, via the generator (2.100) of the different group (2.99). This implies
the search for an isotopic function, that is, a function which multiplies gen-
erator (2.100) to yield the correct tra,nsformatlon law of f as a solution of
integrability conditions (2.94). Such a solution, in the case at hand, is simple
and is given by r. Indeed, the isotopically mapped exponential law (2.96)
yields the correct result

or(r(8/0r)) _— Y2 2 2

: pe ey Loy
T
1—6r°

(2.105)

Thus group (2.103) can be realized as an isotopic image of group (2.99).

The case considered above is trivial in the sense that all connected one-
dimensional Lie groups are (locally) isomorphic. Thus, to activate the truly
nonisomorphic character of the isotope with respect to the original group,
one needs more than one dimension. Such a case is already provided by
the realization of SO(2.1) as an isotope of SO(3), in Egs. (2.26). More
examples will be provided in Chapter 3.
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2.4 Isotopic Lifting of Space-Time Symmetry Groups on Met-
ric Spaces [22]

After achieving the generalization of Lie’s theory reviewed in the preceding
sections, Santilli specialized it to metric spaces, so as to facilitate the di-
rect application to cases of physical relevance. In this way, he achieved a
result of truly important value (Theorem 2.9 below) which provides the re-
construction of an exact space-time symmetry when conventionally broken
[22].

In the following we shall review Santilli’s original presentation as closely
as possible.

We shall use the term metric spaces for the n-dimensional topological
spaces M over the field F of real numbers R, or complex numbers C or
quanternions Q, equipped with a nonsingular, sesquilinear, and Hermitian
composition (z,y), ¢,y € M, characterizing the mapping

(z,y) : M xM —F. (2.106)

Let e = (e1,...,e,) be a basis of M, and define the metric tensor via the
familiar rules

(eirej) = gij - (2.107)

Then, the condition of nonsingularity is intended to ensure the existence of
the inverse

I=g7" g=(g;), (2.108)

with the consequent characterization of covariant and contravariant quanti-
ties ' y
z; = gi;2?, ot =1Yg;. (2.109)

The conditions of sesquilinearity

(z,0u + Bz) = a(z,y) + B(z,2) (2.110)

or
(az + By, z) = a(z,2) + By, 2) , (2.111)

where the overbar represents complex conjugation in F, permit the realiza-
tion of the composition

(z,9) = elgy = dgijai (2.112)

where the dagger represents Hermitian conjugation in M.
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Finally, the condition of Hermiticity can be formulated via the rules

(z,99) = (g72,9) = (92,7) , (2.113)

and is introduced for reasons to be identified below.

Additional conditions, such as the positive-definite character of the met-
ric, are not recommendable for a general view of the Lie- isotopic theory,
and they will not be considered at this time.

Metric spaces were then indicated in Ref. [22] with the notation

M = M(n,9,F), F=R,C,Q. (2.114)

which is also adopted hereon. Some of the metric spaces admitted for F = R
are: the Euclidean space E(3,6,R), é§ = diag(+1,+1,+1); the Minkowski
space M(3 + 1,n,R), n = diag(+1,+1,+1,—1); the Riemannian space
R(n,g(z),R), with g(z), « € M, being symmetric and positive definite;
the Finsler space F(n,g(z,%),R), where g(z,3) = 1(8?f(z,)/02'0x?) is
positive definite (for non-null £) and of rank n; and others with correspond-
ing spaces for the fields F of complex numbers and quaternions. Thus, we
shall assume that the metric ¢ is nonsingular, Hermitian, and verifies the
needed continuity conditions (e.g., analyticity) in all variables, and we write

detg £0, ¢l =g, g=glt,2,4,..). (2.115)

As one can see, the above definition of a metric is as general as possi-
ble, and does not coincide with the more restrictive definition conventionally
used in specific geometries, such as the symplectic or the Riemannian ones.
This situation is permitted by the Lie-isotopic theory because it does not
require restrictions on g beyond those considered here. The formalization
of the metric and its restriction to specific cases would then imply particu-
larizations (such as the removal of the dependence on the velocities) which
are not warranted or recommendable for a general study in Lie isotopy.

We consider now a special case of Definition 2.3, an m-parameter, con-
tinuous Lie transformation group G(m) on M(n,g,F), i.e., a topological
space G(m) equipped with a binary mapping, e.g.,

¢ : G(m) x G(m) - G(m) , (2.116)
verifying the conditions for G(m) to be a topological group, and an addi-

tional mapping
f:Gm)x M — M, (2.117)
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characterized by n analytic functions f(w;z) depending on m parameters w
and the local coordinates € M, which verify the conditions for G(m) to
be a Lie transformation group (closure, associativity, identity, and inverse).
We shall furthermore assume that the group G(m) acts linearly on M,

ie.,
o ¥ f(wz) = A(w)z, (2.118)

under which the group conditions can be realized in the form

A(0) = I, (2.119.2)
Aw)A(W") = A", v'=w+w, (2.119.b)
Aw)A(w™) = Aw HAMw)=TLw = —w, (2.119.¢)

where I is the unit matrix in n dimensions.

Among the rather large number of aspects of the theory of linear, contin-
uous, m-parameter Lie transformation groups, we now consider for clarity
the specialization of the following aspects of §2.2 and §2.3 to metric spaces:

(1) The universal enveloping associative algebra £ of G(m), which we
shall indicate with the symbolic expression of the basis

f :Ia XT7 XrXsa XTXth 9

r<s,r<s<t, nst...=1,2,...m, (2.120)

where I is now the m X m identity of ¢,
IX, =X, I=X,. (2.121)

The X’s are the generators of G(m) in their fundamental (m x m) represen-
tation verifying the skew-Hermiticity property

xi=-x,, (2.122)

the product X, X is the conventional associative product of matrices; and
the attached Lie algebra is given by the familiar rule

¢ :[P,,P)e = PP, — P,P,, (2.123)

where the P’s are polynomials in the X’s.
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(2) The Lie’s group G(m) of transformations on M for the case of the
action to the right as in Eq. (2.118), which we shall write in the symbolic
exponentiated form for continuous transformations

G(m) : A(w) = eXMiwighewe  Xmum

m
= [ e, (2.124)
k=1

and which will be reduced to the appropriate exponential form whenever we
consider specific cases. The corresponding action to the left,

2 = a:TAJ[(w) , (2.125)

can be characterized by the operation of Hermitian conjugation, which we
shall write in the symbolic form

G(m): Al(w) = (ﬁ eXruryt (2.126)

k=1

and whose explicit form will be computed whenever the reduced form of Eq.
(2.124) is known (see the case of rotations of §3.2).
(3) The Lie algebra G(m) of G(m), characterized by the closure rules

G(m): [ X, Xsle = X Xs — X X, = CE Xy . (2.127)

The underlying methodology we shall tacitly imply is the familiar one con-
sisting of the Poincaré-Birkhoff-Witt theorem for the characterization of the
basis (2.120); the Baker-Campbell-Housdorff theorem for the composition
of the exponentials (2.124) and (2.126); Lie’s First, Second,and Third Theo-
rems for the characterization of the closure rules (2.127); the representation
theory; etc.

The idea of the Lie-isotopic theory [1]is that of generalizing the structure
of the enveloping algebra £, of the Lie group G(m), and of the Lie algebra
G(m) in such a way to preserve the Lie character of the theory (in order to
qualify for isotopy). The generalization is done via the replacement of the
simplest possible, associative, Lie-admissible product X, X, of the conven-
tional theory into a form denoted by X, * X, which is still associative and Lie
admissible (i.e., its attached product X, * X; — X, * X, is Lie); nevertheless,
it is given by the structurally more general form

X, + X, = XrgX, . (2.128)
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It is evident that the generalization of the product of £ implies a step-by-step
generalization of the entire formulation of Lie’s theory, from basis (2.120) to
groups (2.124) and (2.126), to algebra (2.127), etc.

In paper [22] Santilli investigates not the Lie-isotopic theory per se, but
its action on a metric space. He therefore identified the generalization of
the structure of the metric space permitting a consistent action of the Lie-
isotopic theory.

For this purpose, we shall first review the notion of metric isotopy, that
is, a generalization of a given metric space which preserves its metric charac-
ter. We shall then review the corresponding Lie-isotopic theory. Finally, we
shall apply the results to the case when the considered Lie and Lie-isotopic
groups constitute symmetries of the metric and its isotope, respectively.
This latter result will be presented via Theorem 2.9 below on the symme-
try properties of isotopy which is at the foundation of the applications of
Chapter 3 to rotations, Galilei and Lorentz transformations.

Consider the simplest possible metric spaces, the Euclidean space
E(n,6,F), F = R,C,Q, with composition law

(z,y) = z'6;;27. (2.129)

Suppose that the metric § has to be modified into a form of the generic type
(2.115). The emerging generalized space can be expressed via the notion of

metric isotopy as follows.
Let I = g=! be the inverse of the new metric according to (2.108).
Introduce the isotopic lifting of the field (1.38), i.e.,

F={N|N=NIi,NeF=R,C,Q}. (2.130)

The composition of elements of the field with elements of the metric
space is now done according to the redefinition of the product

Ns+z=Ngz = Nigz = Nz. (2.131)

Thus, the lifting ¥ of F essentially permits the use of a generalized compo-
sition N *z which, while being characterized by the new metric g, preserves
the old values Nz.

Next, Santilli generalizes the metric space E(n,§,F) into a form E that
accommodates the new metric g under a mapping of the type

m:ExE—¥. (2.132)
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This implies that the generalized composition law must have value in F.A
realization is given by the form patterned along the isotopic lifting of the
Hilbert spaces, Eq. (1.49), i.e.,

(z39) = I(z,g9y) = Iz'gija’
= (2,99)] = (9z,9)I. (2.133)

Ref. [22] defines as isotopic liftings of the FEuclidean space all possi-
ble spaces E(n,g,F) over the field F = R, €, Q, equipped with mappings
(2.132) realized via composition (2.132), Where g is the new metric tensor.

It is evident that, by construction, all possible nonsingular metrics of
the same dimension are isotopes of the Fuclidean metric. This includes the
Minkowskian, Riemannian, Finslerian, and other metrics.

Note that, strictly speaking, the metric spaces E(n, g, F) cannot be con-
sidered as isotopes of E(n,§,F), owing to the lack of lifting of the field.
Nevertheless, this technical point can be ignored in practical applications
owing to the identity N +z = Nz. We can then assume that all possible
metric spaces of n dimensions over the field F are isotopes of the Euclidean
space.

Note that, since F is still a field, E’(n g,F) is also a metric space in the
sense indicated earlier.

It is evident that the original Lie group G(m) cannot act consistently
on the new spaces. In fact, to begin, the action of the group on the space
cannot be formulated according to the old composition (2.118) and must be
modified into the form

o' = Alw)x 2z 4t A(w)gz , (2.134)

[where the quantities A(w) will be identified shortly]. In turn, this implies
that the old composition laws (2.118) cannot be consistently preserved, and
must be generalized into the form

Aoy = T, (2.135.a)
A(w)+ A(w') = Alw+v), (2.135.b)
A(w)x A(-w) = A(-w)*A(w)=1, (2.135.¢)

which are precisely the defining conditions of a Lie-isotopic transformation

group [1], [15].
The most important property of generalized laws (2.135) is the replace-
ment of the old unit I with the new unit [ = g~!. Thus, the dominant
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feature of Santilli’s isotopy under consideration is the assumption of the in-
verse | of the new metric g as the generalized identity of the group. Since
the original identity I can be interpreted as the inverse of the metric § of
the Euclidean space, when the original group G(m) is a symmetry of §, we
expect its isotopic image G(m) to constitute a symmetry of g.

To achieve this result, Santilli uses the following main lines of the Lie-
isotopic theory reviewed in §2.2 and §2.3:

(1) Isotopic lifting of the universal enveloping associative algebra. The
Poincaré-Birkhoff-Witt theorem admits a consistent isotopic generalization,
resulting in the new basis

E:1, X,, Xo+xX,, X,*Xs*Xi,..., (2.136)

r<s, r<s<it,
7,8t.=1,2,...,n

expressed in terms of the isounit [, which is the same as that of the group
composition laws (2.135). The generators X, are here the same as those of
. The attached Lie algebra is now given by the isotope

£ [P, P); = Pr#P,—PyxP,
= P.gP.- PgP, < [P;P], (2.137)

The algebra é is still “universal” and “enveloping” not, of course, with re-
spect to the algebra £, but with respect to £~. We see in this way that the
generalized metric g enters into the very structure of the Lie product, Eq.
(2.137), as expected.

(2) Isotopic lifting of the Lie group. The new basis (2.136) permits the
construction of the new group elements A(w) via the so-called isotopic ez-
ponentiation [1], [15]. For one-parameter actions to the right, this exponen-
tiation is characterized by the old generator X of G(m) but now expanded
in the new envelope according to the rule

. . 21 1 3, 1 3
G(): A@w) = I+ 5(Xw)+ 5(Xw)? + 5(Xw) +
.1 2 1
= I+ F(Xw) + :?—!(Xw)g(Xw) + -é-!-(Xw)g(Xw)g(Xw) +
Xw!é d:e__f éXw (2138)

= e 5
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which, for clarity of practical computation, can be reexpressed via the fol-
lowing expansion in the old envelope

A . 1 1 1
G(1): A(w) = [1+ ﬁ(ng) + -2—!(ng)(ng) + Q(ng)
(Xgw)(Xgw) + ...
= (X[ )] = X
= [(e¥5X|;) = Tew*X. (2.139)
It is evident that the elements A(w) so constructed verify all the rules
(2.135), and thus they constitute the desired Lie- isotopic lifting of G(1).

The generalization to more than one dimension is permitted by the Lie-
isotopic generalization of the Campbell- Baker-Hausdorff theorem

o xéf=e,

y=at it olofl+ plla- e+, (2140)

under which we have the desired Lie-isotopic lifting of the Lie transformation
group (2.124), here written, again, in the symbolic form

G’(m) : A(w) = gXiw g gXowz oy pXmum

m
I
k=1

(eXrrwiehowz .eX’"*“’"‘)f
m
= (J] e*)i. (2.141)
k=1
The action of the Lie-isotopic group to the left,

o = ol v Al(w), (2.142)
is given, for the one-parameter case, by the expansion of the old generator
X1 in the new envelope £, according to the rule

A . . 1 1 A1 .

G): Atw) = I+ ﬁ(wXT) + —2—!(wXT)2 + a(wx’()3
- 1

= I+ %(wXT) + a(wXT)g(wXT) +...

ewXT !é - éwXT — é-—-wX , (2143)
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with reformulation in £ for practical calculations

G(1): AT(w) = I+ %(ngT) + %(ngT)(ngT) +...]
= [(ewsX Tle) = fevsx]
= Xlowj o femwex : (2.144)

and m-parameter expression here symbolically written
G(m) : AT(w) = I(J] Xyt (2.145)

whose explicit form will be computed in specific cases (see, e.g., the case
of the isotopic rotations in §3.2). It remains to prove that the operation
of Hermitian conjugation, as conventionally defined, also acts consistently
under isotopy in E(n, g,F) The fact that this is not the case in general is
known [36]. Nevertheless, as for case (1.51), the operation of Hermiticity
persists for the particular case under consideration here, that for which the
isotopic element of the envelope coincides with that of the composition [38],
as is readily seen by using the property (2.115) and definition (2.133)

(:cj/i *xy) = f(x,g/igy)
= f((gA)Tx,gy) = f(ATgx,gy)
= f(/ﬁ *Z,Y), (2.146)
for which
(eXouyt = cwalxt _ mugx (2.147)

(3) Isotopic lifting of the Lie algebra. This is characterized by the iso-
topic generalization of Lie’s first, second, and third theorems here expressed
according to the rules

G(m): [X,,X,] = X, *X,— X, *X,
= Xrng - ngXr
= Ci(e)* X, (2.148)

T 1
Crs=Cr I,
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where the s are the structure functions. As is the case for the expansion
(2.138), rules (2.148) can also be reformulated in £ according to either one
of the following expressions, useful for practical calculations

(X3 Xs] = XegX,— XogX,
= [X,9,X,9)f
= [ X5, Xolg + Xolg, Xs] + X[ X0, 9]
= IlgX,,9X.]
= g[Xr, X.] + [ X5, 91X, + [9, X)X (2.149)

each one derivable from the other via the Jacobi law.

The primary lines of the Lie-isotopic theory as outlined above are suf-
ficient for the main task of this section, that dealing with symmetries of
arbitrary metrics g.

Suppose that the original (conventional) Lie transformation group G(m)
is a symmetry group of the composition (z,y) in E(n,§,F), or, equivalently,
of the metric §, according to the familiar conditions

el'a’ = oVsa’ = 2T At6 Az = 2162 = o1, (2.150)
which can hold identically iff
Afea=ata= a4t = asat =1=61, (2.151)
ie.,
Al =41,
(detA)? = (detI)?* = 1. (2.152)

As is well known, when conditions (2.152) are verified, we have the orthogo-
nal groups O(n,R), the unitary groups U(n,C), and others. When realiza-
tions of the continuous type are considered, we have the special orthogonal
groups SO(n,R) or the special unitary groups SU(n, C). In this latter case,
the determinant of the transformation is 1, and the discrete transformations
(e.g., inversions) are excluded.

Santilli [22] investigated the behavior of the symmetry (2.150) under an
isotopic lifting of the Euclidean space E(n,§,F) and of the group G(m) to
a form characterized by an arbitrary metric (2.115). For this purpose, we
recall that the composition law of E(n,g,F) is based on the term

el sz = CI)TQCE . (2.153)
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We therefore have a symmetry when the following conditions are identically
verified

xf’*m'zxf*fif*fi*x=zf*z, (2.154)
which can hold iff R )
AlgA = AgAt = F, (2.155)
ie., iff
Af = A—i ,
(detA)? = (detl)?, (2.156)

where the inverse is computed, of course, with respect to 1.

It is easy to see that, when the original transformations verify condi-
tions (2.150), their images under lifting necessarily verify the new conditions
(2.154). In fact, for the case of continuous transformations, we have, from
Egs. (2.142) and (2.143),

Al(w) = A(~w) . (2.157)
Therefore, conditions (2.154) are reduced to one of the conditions for the
very existence of a Lie-isotopic group, Eq. (2.135).

The rules (2.155) can be expressed in a f0{m particularly suitable for
practical applications. Redefine the elements of G (m) according to the forms

A(w) = B(w)I, B(w)= ﬁ eXrrwn
k=1

m
Al(w) = 1B (w), Bl(w)= ([ Xr=omyt . (2.158)
k=1
Then, conditions (2.145) can be equivalently expressed as
Bl¢gp = 4. (2.159.2)
(detB)? = 1, (2.159.b)

which hold identically under the Lie-isotopic liftings of continuous transfor-
mations owing to the identity

—W w 1
e X geXov = g~ w(gXg - 9Xg)+ 5w (9XgXg - gXgXg)+...
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For the case of discrete transformations, Santilli introduces the following
Lie-isotopic lifting of inversions

Pz = (Plgs =Pz = -z, (2.161)

where P is the conventional total inversion. The preservation of the sym-
metry then results from known expressions of the type

PgP =g, (2.162)

whose validity is trivial.
We reach in this way Santilli’s main result, which can be formulated as
follows.

Theorem 2.9 [22]: Let G(m) be an m-parameter Lie symmetry group
of the composition 216z of an n- dimensional Euclidean space E(n,§,F)
over the field F of real numbers R, of complex numbers C, or of quar-
ternions Q. Then the isotopic lifting G’(m) of G(m) characterized by a
nonsingular, Hermitian, and sufficiently smooth metric g in the local vari-
ables leaves invariant the generalized composition o gz of the isotopic space
E(n,g,¥),F=FI,I =g

All physical applications of Chapter 3 can be considered as applications
of the above theorem to specific cases of physical relevance.

Note that the explicit construction of the Lie-isotopic transformations
(as well as of the entire theory) can be done following the knowledge only
of the original symmetry and of the new metric.

Note also that all Lie algebras admit the following trivial Lie isotopy

G(m):[X,;X,] = X +xX, - X+ X, (2.163.a)
= (X, X, - X, X ) =CEXy,
X = XI, XeG(m), (2.163.b)

with a self-evident isomorphism G(m) ~ G(m). The above trivial isotopy
should be excluded from the content of Theorem 2.9 because it does not pro-
vide the invariance of the generalized composition law. This can be readily
seen from the fact that the exponentials (2.141) and (2.144), when realized
for the generators Xy, coincide with the original exponentials (except for the
factorization of the new unit), and no genuine lifting has actually occurred.
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Theorem 2.9 has clearly far reaching mathematical and physical impli-
cations, which can be only partially reviewed here. To begin, Theorem 2.9
provides a new concept of covering Lie-isotopic symmetry under the sole
condition that the original metric § is contained as a particular case of the
new metric g.

But Theorem 2.9 applies for an infinite variety of possible new metrics.
As a result, a given, conventional, Lie symmetry G(m) admits an infinite
class of covering Lie-isotopic symmetries G’(m) The implications of these
findings will become transparent in the next section when we shall show
that the ezxplicit form of the Lie-isotopic symmetry transformations evidently
varies with the varying of g.

Furthermore, under certain topological conditions on the new metric
(identified in the next chapter), the original Lie symmetry G(m) and its
infinite class of Lie-isotopic coverings G’(m), not only become locally iso-
morphic, but they actually coincide at the abstract realization-free level.

This is evidently permitted by the abstract formulation of the symmetry,
that in terms of an abstract enveloping algebra with abstract product, say,
ab, and its realization, first in terms of the trivial associative product AB,
resulting into the familiar notion of symmetry G(m) as commonly available
in the mathematical and physical literature, and then its isotopic liftings
Ax B = aAB or AgB, or WAWBW (W? = W) resulting in Santilli’s
notion of infinite covering symmetries G(m).

Yet in turn, the above properties of Theorem 2.9 are at the foundation
of the capabilities by Santilli to “reconstruct” an exact Lie symmetry when
conventionally broken (see the next chapter for specific cases).

Still another property of Theorem 2.9 of considerable mathematical and
physical importance is the intrinsic nonlinear character of Santilli’s Lie-
isotopic theory, even though expressed in a formally linear form, the isolinear
form.

In fact, the transformations underlying Theorem 2.9, Egs. (2.134), have
an intrinsically nonlinear structure in the coordinates z, their derivatives &
with respect to independent parameters, etc., and we shall write

¢’ = B(w;z,i,...)z (2.164)

where the nonlinearity evidently emerges from the arbitrary dependence of
the metric in expansion (2.139), i.e.,

B = exp(Xg(z,#,...))w|e. (2.165)
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Nevertheless, nonlinear transformations (2.164) can always be written in
the equivalent isolinear form

z' = A(w) * z. (2.166)

The mathematical implications of the above results are evident, and
linked to the possibility (not yet explored so far) of turning complex non-
linear problems into more manageable, equivalent, isolinear forms.

The physical implications are equally far reaching. In fact, the intrin-
sic isolinear character of the Lie-isotopic theory is the technical reason un-
derlying Santilli’s view that the expected nonlinearity of the strong inter-
actions is not a structure characterizing feature; only their expected con-
tact/nonlocal /nonhamiltonian character is.

In particular, the capability of turning all possible nonlinear models, such
as Weinberg’s attempt (1.65), into an equivalent isolinear form, is expected
to void most of the experimental argumentations currently presented on
nonlinearity.

As a further comment, the isotopic liftings of Euclidean spaces reviewed
here are expected to be extendable to accommodate antisymmetric metrics
and their symplectic symmetry groups. In fact, liftings (2.138) and (2.144)
are possible also for antisymmetric metrics. The restriction to Hermitian
metrics was done by Santilli because of compatibility condition (2.147),
having in mind operator-type applications based on the completion of the
Euclidean spaces into Hilbert spaces.

This completes our review of Santilli’s mathematical studies on his Lie-
isotopic theory which, with the sole exception of paper [62] known to us,
constitute all mathematical studies on the topic available at this time.

2.5 Some Open Mathematical Problems

It is clearly remarkable for one single individual to work out the generalized
formulation of Lie’s theory to the extent reviewed in the preceding sections
(as well as its applications reviewed in the final part of this presentation).
Nevertheless, the mathematical research on the Lie-isotopic theory is only
at a beginning, and so much remains to be done. The number of open math-
ematical problems is so large to prevent their comprehensive identification.
We merely limit ourselves here to identify open mathematical problems that
are relevant for the physical applications considered in the next section. A
presentation of the open mathematical problems for mathematicians has
been done by these authors in ref. [65].
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To begin, the virtual entirety of basic definitions of Lie’s theory need a
suitable reinspection and reformulation into corresponding covering notions
that are directly applicable to the Lie-isotopic theory. This is the case for
the notions of: compact and noncompact algebras; simple and semisimple
algebras; Cartan’s decomposition; Killing form; etc.

All these notions in their familiar presentation have an unequivocal
meaning because referred to one specific realization of the Lie product, the
simplest possible one AB — BA. The same notions, unless properly re-
defined, become ambiguous when referred to Santilli’s product A+B—BxA =
AgB — BgA because of the infinite family of possible isotopic elements g all
with potentially different topologies.

Once these fundamental notions of Lie’s theory have been properly re-
viewed, one can pass to the study of basic methodological aspects which
have remained untouched as of now.

A central open mathematical problem is the representation theory of Lie-
isotopic algebras and groups. Santilli’s studies reviewed here, e.g., §2.4, es-
sentially provide the fundamental representation, as we shall see in Chapter
3. The case of the general representation theory has been studied by Santilli
only for the @(2)-isotopic group [24] and that of the SU (3)-isotopic group
is under study in ref. [44]. But, again, a general study of the representation
theory is lacking as of now (Spring 1990) to our best knowledge.

The mathematical relevance of the problem is expressed by the fact that
the exclusion of the trivial isotopy (2.163) prevents a simplistic lifting of
the conventional theory. Also, the infinite variety of isotopic transforma-
tions (§2.4) demands a reinspection of the representation theory from its
foundations.

The physical relevance of the representation theory is also self-evident.
It can be best expressed as essential to characterize the notion of “particle”
within the arena of physical applicability of the Lie-isotopic theory, i.e., the
notion of “hadron” under contact/nonlocal/nonhamiltonian strong interac-
tions (§1.3).

Of particular relevance are studies of the representation theory of San-
tilli’s isotopic group of rotations (§3.2), and of Lorentz transformations
(83.4), which are evidently essential for possible basic advances, e.g., on the
notion of intrinsic angular momentum (spin) of one hadron under ezternal
strong interactions of the considered type.

Another mathematical aspect in need of a comprehensive study is that
of the product of the above representation, i.e., the isotensorial product of
Lie-isotopic representations. Studies on this aspect were initiated in the
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only pure mathematical contribution to Lie-isotopy known to these authors,
Ref. [62], but so much remains to be done.

The physical relevance of the isotensorial products of isorepresentations
is evidently provided by the need, reviewed in §1.3, of recovering conven-
tional, total, quantum mechanical quantities for an isolated bound system
of strongly interaction particles, while admitting generalized internal laws.

A further mathematical problem deserving specific studies is the contrac-
tion and ezpansion of Santilli’s Lie-isotopic groups. Recall from §1.3 that
the “hadronization” of the classical Birkhoffian mechanics into the operator
form, hadronic mechanics, proved to be particularly valuable for the under-
standing of both new mechanics. A quite similar situation occurs for Lie-
isotopic groups. As we shall review in the next sections, Santilli applied his
theory to the isotopic lifting of the Galilei and Lorentz symmetries. While
the contraction of the Lorentz symmetry into the Galilean one (and the in-
verse expansion) is well known, no study has been conducted until now on
its covering Lie-isotopic setting. Its value for a deeper understanding of the
Galilei- isotopic and Lorentz-isotopic symmetries (see the next section) is
evident.

The educated reader can easily identify numerous, additional, mathe-
matical problems of fundamental, yet open character.

It is hoped in this way the reader can see the need, anticipated earlier,
for a re-inspection of the entire Lie’s theory and its reformulation into a
covering form directly applicable to Lie-isotopic algebras and groups.

This review would have achieved a primary objective, if it succeeds in
stimulating this much needed, independent mathematical research.

The authors of this review would be grateful to all mathematicians who
can send to their attention (at the address of The Institute for Basic Re-
search, P.O. Box 1577, Palm Harbor, FL 34682-1577, U.S.A., Fax 813-934-
9275) any mathematical research directly or indirectly related to associative-
isotopic and Lie-isotopic algebras or groups.
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3 THE PHYSICAL FOUNDATIONS OF THE
THEORY

3.1 Introductory Aspects

The Lie-isotopic theory was conceived by Santilli for the specific purpose
of attempting a generalization of conventional space-time symmetries and
related relativities [1].

In this section we shall review the state of the research in the isotopic
lifting of:

a) the rotation group [23],[24],[25];
b) the Galilei group and related relativity [1],[15],[24],[25]; and
c) the Poincaré group and related special relativity [18],[24],[25],[26],[27].

For completeness, we shall also review Santilli’s [18],[16], [25],[26] and
Gasperini’s [81], [82], [83] research on a conceivable isotopic generalization
of Einstein’s gravitation. Gasperini’s lifting of gauge theories [84], [85] shall
be reviewed in the Appendices, jointly with a number of other aspects. All
known applications shall be either reviewed or indicated to the interested
reader. This section shall end with a review of much overdue experiments.

Regrettably, we are unable to review numerous intriguing applications
of the Lie-isotopic theory because of their intrinsic operator character, such
as: Kalnay’s [40] hadronization of Nambu’s mechanics; Santilli’s [30] true
confinement of quarks with null probability of tunnel effects; Mignani’s [45]
nonpotential scattering theory; Nishioka’s [48] studies; Animalu’s [50] re-
search; the studies by Jannussis and collaborators [47]; and others.

A few introductory comments appear to be recommendable, not only
because of the manifestly delicate nature of the review, but also in order to
prevent unnecessary misrepresentations.

The best way to present the material is that along the spirit of the
original proposals:

1. The Lie-isotopic theory provides true, mathematically consistent gen-
eralizations of conventional space-time symmetries. As such, they are
intriguing on pure mathematical grounds alone [1].

2. The nonrelativistic, isotopic, space-time symmetries have clear appli-
cations in classical mechanics [15].
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3. The relativistic [18] and gravitational [5], [16], [26] isotopic, space-time
symmetries are conjectural at this time because of the lack of certain
fundamental tests recommended since quite some time.

As reviewed in Chapter 2, the single most dominant mathematical con-
cept in Santilli’s Lie-isotopic theory is the generalized notion of unit, the
isounit J = g~1. The single, most dominant physical concept in the appli-
cations of the Lie-isotopic theory is the notion of extended particles moving
within a physical medium, such as: propagation of light in gaseous or liquid
media; motion of a satellite in Farth’s atmosphere; motion of the wave-
packet of a hadronic constituent within the “hadronic medium” [2] (the
medium composed by the wavepackets of the remaining constituents); and
other cases.

If the particles considered are assumed as being point-like, the Lie-
isotopic theory has no relevance known at this time and none of the struc-
tures reviewed below has a known physical meaning.

In fact, systems of point-like particles can only admit action-at-a-distance
interactions of potential-Hamiltonian type without collisions. The conven-
tional Lie’s theory then applies in full without need for any generalization.
This is the case irrespective of whether the particles move in empty space or
in a physical medium, for that medium too becomes composed of isolated,
point-like constituents. A similar situation occurs also for an extended par-
ticle moving in vacuum under long range, external, potential forces. In fact,
under these conditions, the size of the particle can be effectively ignored.
(This is the case, e.g., for the wave-packet of an electron when a member of
an atomic cloud.)

The physical arena changes significantly when the size of the particles
must be specifically taken into account, e.g., when the particles move within
a physical medium and /or experience a deformation of their shape. In these
latter conditions the particles experience interactions which are generally of
nohamiltonian, and therefore non-Lie character (§1.3). It is at this point
that Santilli’s Lie-isotopic theory offers intriguing possibilities for a quanti-
tative treatment. In fact, as now familiar, all nonhamiltonian forces can be
incorporated in the generalized unit of the theory, while the Hamiltonian
can represent conventional interactions.

A second fundamental physical concept in Santilli’s studies is that empty
space (vacuum) remains conventionally homogeneous and isotropic. It is the
physical medium in which motion of extended objects occurs which is, in gen-
eral, inhomogeneous and anisotropic. To put it differently, the Lie-isotopic
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symmetries were not conceived for treating the conventional space. After all,
by ignoring certain galactic indications, there is no available evidence dis-
proving the homogeneity and isotropy of space in our Earthly environment.
Conventional space-time symmetries are then the only ones applicable, as
stressed by Santilli himself [1].

The inhomogeneity and anisotropy of physical media (whether classical
or operational), leads to the inevitable breaking of conventional space-time
symmetries beginning with the rotational symmetry (§3.2); and then passing
to the Galilei symmetry (§3.3); the Lorentz symmetry (§3.4) and, inevitably,
Einstein’s gravitation (§3.5).

Admittedly, Santilli’s Lie-isotopic theory is only tentative at this time,
and recommended as a conceivable first step for a future more adequate
treatment. But the breaking of conventional space-time symmetries under
the physical conditions considered is simply out of any question. The in-
terested reader is urged to study the classification of the various forms of
breaking of conventional space-time symmetries provided by the variational
self-adjointness, as originally presented in ref. [1], and subsequently reviewed
in detail in monographs [4], [5].

Another important concept in Santilli’s studies is the ezperimental evi-
dence of the deformability of extended particles. Again, conventional space-
time theories are strictly referred to rigid bodies. This is typically the case
of the theory of rotations, as well known. But absolutely rigid objects do
not exist in Nature. When the deformability of objects is admitted, conven-
tional space-time symmetries are inapplicable, as stressed again by Santilli
[1], [18], [20].

As an example, the conventional rotational symmetry is manifestly bro-
ken to a sphere which is jointly experiencing a rotation and a deformation.
The inapplicability of the Galilei and Lorentz symmetries is then conse-
quential, owing to the central role of the rotational symmetry (as well as for
additional reasons).

The deformation of extended particles moving in vacuum but under suffi-
ciently intense external forces is therefore another arena, of possible physical
applications for which the Lie-isotopic theory was conceived. Again, the ef-
fectiveness of Santilli’s approach is unknown at this time, for it was merely
proposed as a first quantitative step. Nevertheless, the breaking of conven-
tional space-time symmetries under this second class of physical conditions
is simply out of any question.

Note the independence of the breakings caused by deformation from
those caused by the inhomogeneous and anisotropic character of the physical
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medium.

A third class of breakings is given by the ultimate essence of contact
interactions, that of being instantaneous no matter whether in “nonrela-
tivistic” or “relativistic” mechanics. After all, these interactions have a null
range by their essential nature. We are here referring to the evidence that
motion of a particle within a physical medium results in interactions be-
tween the particle and the medium which, by nature, are of “contact,” that
is, “instantaneous” and “null range” character, as well known in classical
(but not yet in particle) mechanics.

This leads to a third physical origin of the breakings of conventional
space-time symmetries, which is independent from the preceding two (re-
garding the inhomogeneous/anisotropic character of physical media, and
the deformability of extended objects).

A fourth class of breakings of the conventional space-time symmetries
is given by the strictly non-Hamiltonian character of the interactions con-
sidered. In fact, the notion of “potential” has no physical meaning for con-
tact interaction, as a direct consequence of their zero range nature. More
specifically, contact interactions have no potential “energy” and, as such,
are conceptually and structurally outside the capabilities of Hamiltonian
mechanics.

This leads to a fourth class of breakings of conventional space-time sym-
metries, that caused by the inapplicability of the canonical realization of
Lie’s theory, thus establishing the need for its structural generalization.

A fifth and final class of breakings of conventional space-time symme-
tries is given by the non-local/integral nature of contact interactions. In
fact, when an extended object moves within a physical medium, it expe-
riences a contact interaction on all its surface, thus requiring an integral
representation of the same. In the transition to particle settings, we have a
fully analogous situation, as stressed in the preceding chapter whenever we
have deep, mutual, wave overlappings.

This leads to a fifth class of breakings of conventional space-time symme-
tries caused, this time, by the inapplicability of their ultimate mathematical
structure, their local differential topology. In fact, a proper representation
of interior dynamical systems necessarily requires a non-local/integral gen-
eralization of the conventional local/differential topology of contemporary
relativities.

The reader should be aware of the existence of three “No- Reduction The-
orems” [21] which prevent the simplistic reduction of the systems considered
to an ideal ensemble of point-like particles in stable orbits under only poten-
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tial forces. The first theorem establishes that a classical object in an interior
continuously decaying trajectory due to contact, non-Hamiltonian and non-
local forces, simply cannot be reduced to a finite collection of ideal point-like
constituents each one in a stable orbit under potential, local/differential in-
teractions. Vice versa, a finite collection of elementary particles all in stable
orbits under potential forces simply cannot produce a classical system whose
center of mass is in a decaying orbit. The second “No-Reduction Theorem”
establishes that a classical body which violates conventional space-time sym-
metries according to any of the mechanisms here considered, simply cannot
be reduced to a collection of elementary particles each one verifying said
symmetry. Vice versa, a finite collection of elementary particles each one
verifying the Galilei or Lorentz symmetry simply cannot result in a classical
system which violates said symmetry. The third “No-Reduction Theory” es-
tablishes that a classical irreversible system cannot be consistently reduced
to a finite collection of elementary particles each of which is reversible and,
vice versa, a finite collection of elementary particles all in reversible condi-
tions simply cannot produce a classical irreversible object.

These “No-Reduction Theorems” provide final proof of the open char-
acter of interior dynamical systems within inhomogeneous and anisotropic
physical media, and the need for suitable covering relativities.

A final concept should be re-called here, the rather remarkable capability
offered by Theorem 2.9 of reconstructing as ezact the symmetries that are
broken at the conventional Lie level. This is the case in general, not only
for the rotational symmetry, but also for the Galilei symmetry, the Lorentz
symmetries, or any other continuous or discrete symmetry, as we shall see.

In summary, this section shall deal with three established classes of
breakings of conventional space-time symmetries, those characterized by:

A: the inhomogeneous and anisotropic character of physical media;
B: the deformability of extended physical objects;

C: the instantaneous/null range character of the (classical) contact interac-
tions;

D: the strictly non-potential /non-Hamiltonian character of the interactions
considered; and

E: the non-local/integral nature of the dynamics of extended bodies within
physical media.
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Santilli conceived and developed his Lie-isotopic theory for the specific
purpose of attempting a generalization of Galilei’s and Einstein’s relativities
capable of providing a first quantitative treatment of conventional symme-
tries, when broken according to classes A, B and C above. One of the
aspects of the studies is that the broken symmetries are not left mathemati-
cally undefined, as in the conventional literature, but they are replaced with
covering, exact, Lie-isotopic symmetries. In this way, Santilli put the math-
ematical and physical foundations for the construction of a conceivable new
generation of true covering relativities, as we shall see.

In closing these introductory words, we should point out that Santilli’s
preparatory studies for his generalized relativies are rather vast and can-
not possibly be reviewed on one single monograph. As an example, Santilli
constructed in memoir [24] the isotopic generalizations of the symplectic,
affine and Riemannian geometries for the direct representation of nonlin-
ear, nonlocal and non-Hamiltonian vector-fields, and then constructed his
generalized relativities.

Evidently, we cannot review these new geometries here to avoid a pro-
hibitive length. We shall therefore content ourselves with presenting San-
tilli’s generalized relativities for nonlinear and non-Hamiltonian systems, but
in local-differential approximation based on the use of the Lie-isotopic theory
and conventional geometries in their most general possible realization.

As a result, this monograph should be considered as merely preparatory
for the study of Santilli’s Relativities in their most general possible nonlinear,
non-Hamiltonian and non-local forms [24].

3.2 Lie-isotopic Generalization of the Group of Rotations [1],
[23],[24]

3.2.1 Introduction

As is well known, when absolute rigidity is relaxed to admit the deformations
of the real world [86], [87], perfectly spherical objects in Euclidean space,

riér=zz+yy+2zz=1, (3.1)
can be deformed in ellipsoids
rigr = ablx + ybly + 203z = 1, (3.2)

with the consequent manifest loss of the symmetry under rotations.
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Similarly, when the motion of extended objects occurs within inhomo-
geneous and anisotropic material media, the Euclidean invariant (3.1) is
generalized to a form of the type

rlgr = rig(t, . )07, (3.3)

where, in general, the metric tensor has a dependence on time, coordinates,
velocities, and a number of additional physical quantities (such as temper-
ature, density, pressure, etc.).

In this section we shall review Santilli’s generalization [1], [23] of the
special orthogonal rotation group SO(3) which provides the invariance of
all possible deformations of the sphere, Eq. (3.2), while recovering the con-
ventional theory identically whenever the original structure (3.1) is resumed.
We shall then show that the generalized theory also provides the invariance
of the generalized metric g(¢,r,7,...). The generalization of the covering,
special unitary group SU(2) [24] will be reviewed in Appendix C.

These objectives are achieved via the use of the Lie-isotopic lifting of Lie
symmetries presented in Chapter 2, with particular reference to Theorem
2.9.

3.2.2 Foundations of the Conventional Rotational Symmetry

The basic space is the conventional Euclidean space in three dimensions,
E(r,6,R), with local coordinates

xr
r=rF= (y) k=1,2,3, (3.4)

and composition

Pt — Ti5ijTj =z + yy + 2z. (3.5)

The continuous component SO(3) of the metric-preserving group 0(3) is
given by the familiar form

R(8) = e [ce”%|¢e”% (3.6)
verifying the conditions
R'R=RR' =1,
Rt — R_I,
det R = +1, (3.7
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where the 8’s are Euler’s angles; the skew-Hermitian generators are given
by

0 0 0
J1=J23= 0 0 1 5
0 -1 0
0 0 -1
Jo=Jun=[0 0 0 |,
1 0 0
0 10
Js=Jpp=|-1 0 0},
0 0 0
Jb=—Jy, (3.8)

and the infinite series leading to the exponentiations (3.6) are computed in
the universal enveloping algebra £ with conventional associative product of
matrices and unit

¢ : JiJ; = associative product,
IJi=JiI =J,,
I = diag(+1,+1,+1). (3.9)

The attached Lie algebra is characterized by the familiar commutation

rules
SO(3): [Ji, J;le = JiJ; — J;Ji = —€isudk,

i,k =1,2,3, (3.10)

while the second-order Casimir invariant is given by

J? = ES:Jka = -2I. (3.11)
k=1
The discrete part of O(3) is characterized by the inversion
Pr=—r,
P = diag(-1,-1,-1),
detP = —1, (3.12)

which, as well known, commutes with all elements of SO(3). We shall keep in
mind that O(3) is not connected and that, since the reflections do not contain
the identity, they constitute a group only when combined with SO(3).

90




3.2.3 Lie-Isotopic Generalization of the Group of Rotations

We now introduce arbitrary, nonsingular, symmetric, and sufficiently smooth
metrics over R:

9= (9i5) = (g:5(t,7,7,...)) (3.13)

with composition law

rtxr = rlgr = riggrd | (3.14)

characterizing the isotopic liftings E(f", g,R) of E(7,6,R), according to the
specifications of §2.4. )
We are interested in identifying the Lie-isotopic liftings O(3) of the group
of rotations O(3), that is, the set of transformations
r' = R(O)xr X R(0)gr , (3.15)

which verify the conditions for constituting a Lie-isotopic group, including

the isotopic rules ) )
RO)=I=g471,

R(8:) + R(82) = R(6; + 65)
ROR(-0) =1, (3.16)
while leaving invariant composition (3.14), i.e.,
P e =t s R« Rar = rlurp . (3.17)

_ As indicated in §2.4, the latter property holds if the elements R(B) S
O(3) verify the isotopic- orthogonality conditions

Rt*}%:];’,*l;?t:f, (3.18)

which can be expressed in terms of the inverse operation with respect to the
new unit I (§1.3) )
Rt=RT, (3.19)

and imply the following generalization of condition (3.7.c):
(detR)? = (detf)?, (3.20)
or equivalently (because of the symmetric character of 9),

[det(Rg)? =1. (3.21)
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The desired liftings O(3) of O(3) can be explicitly constructed for each
given metric g via the methods of §2.4. The first recommendable step is
the isotopic lifting é of the envelope £. This is essentially achieved via the
associativity-preserving generalization of the product J;J; of £ (associative

isotopy),
E:Ji*qu—EfJing, g fixed , (3.22)

with consequent generalization of the unit
j:g_l, f*Ji:Ji*j:Ji, i:1,2,3, (323)

and of the methodology of enveloping algebras (Poincaré-Birkhoff- Witt the-
orem, etc.) now familiar from Chapter 2.

The Lie-isotopic groups 0(3) are then constructed in such a way to admit
the inverse of the metric as the new, generalized unit, that is, as the Casimir
invariant of order zero. The invariance of the new separation (3.14) is then
ensured by construction (Theorem 2.9).

The continuous component of O(3), say, S 0(3), is characterized by the
reformulation of the expansion (2.124) in the new envelope § acccording to
Eq. (2.138)

50(3) : R(6) = €%z x 77| x 7% (3.24)

and can be equivalently formulated in the old envelope £ for computational
convenience, resulting in the factorization of the isotopic unit
e > J1g@ Jogb J3 g6 7
S0(3): R(6) = (e |ee9|ce™9 )]
3
= ([T &%) = 5,(0)1, (3.25)
k=1

where all possible reduced elements S, verify rules (2.159) by construction,
§tgS = g. (3.26)

Note that, from rules R‘R = I and [R}, R] = 0, we have the isotopic
rules Rt + R = I and [Rt R] = 0, from which Eqs. (3.18) follow. For the
case of factorization R = S, as in Eq. (3.25), we have property (3.26) as
a consequence of (3.18). However in general, [5?,5] # 0 and S¢S # S¢S°.
Also, detS = 1, but S'S # I. The reader interested in learning about Lie
isotopy is encouraged to verify these (and other) properties [23].
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The discrete component of 0(3) can be characterized by the isotopic
inversions (2.161), i.e.,

Pxr= -7, P= Pj, (3.27)

where P characterizes the conventional inversion (3.12).

One readily verifies that the isotopic inversions alone do not constitute a
Lie-isotopic group. However, the set of all possible combinations of isotopic
rotations (3.24) and inversions (3.27) does form a Lie-isotopic group, as the
reader is encouraged to verify.

Note that the isotopes O(3) can be explicitly constructed for each given
metric g, as indicated earlier. In fact, the only unknown of Eqs. (3.24) and
(3.27) is precisely the assumed metric g. Note also that the invariance of
the generalized separation (3.14) is achieved for all possible metrics of the
admitted class, including generally nondiagonal metrics.

To simplify the review we restrict ourselves from here on to the canonical
reference frame, that is, the frame for which the metric is diagonal, and we
shall write

k1 = rlgr = 29112 + ygagy + 2gsaz. (3.28)

It should be noted that the reduction to a diagonal form can always be
achieved for all metrics of the class admitted via a similarity transforma-
tion, as is well known in the theory of metric spaces. The reader should
however keep in mind that the diagonal character of the metric holding in
the canonical frame, is not generally preserved in other frames, irrespective
of whether they are inertial or not.

Despite these physical limitations, the canonical frame provides a great
simplification of the computations. In particular, it permits the speedy
identification of the Lie- isotopic algebra via rule (2.149), i.e.,

(X X5l € [X5X;)
= XigX; - X;9X;
= [Xi, Xjlg + Xilg, X;] + X;[X, g)
= g[Xi, X3+ [Xi, 9)X; + [9, X1 X (3.29)

which yields the desired commutation rules
SO(3) : [Ji3J;) = JigJ; — J;gJi = CE  J.

i k=1,2,3, (3.30)
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where the structure functions are
CE = —eingri(t,m, 7, ) (3.31)

One can see in this way the generalization of the “structure constants”
of the standard formulation of Lie’s theory into “structure functions,” as
correctly predicted by the isotopic generalization of Lie’s second theorem of
§2.3.

The commutativity between isotopic inversions and rotations holds in
the canonical frame owing to the identities

VPl =[Js, P]=0, k=1,2,3. (3.32)

Under the conditions specified above, the isotopic inversions therefore
constitute a discrete, invariant, subgroup of é(3) The decomposition of
O(3) into a continuous and a discrete component can then be done essentially
along the conventional lines.

The corresponding decomposition for the case of nondiagonal metrics,
demands additional, specific, studies not available at this time. This is
due to the fact that the topological structure of O(3) is expected to be
considerably broader than that of O(3). The relationship between discrete
and continuous transformations for arbitrary, generally nondiagonal metrics
is therefore expected to depend on delicate, yet unexplored properties (e.g.,
of cohomological nature).

3.2.4 Classification of Isotopic Rotational Symmetries

Our next objective is to review the classification of all possible Lie alge-
bras O(3) characterized by all possible metrics (3.28) of the class admitted
(regular, diagonal, and sufficiently smooth, but not necessarily positive or
negative definite).

First, it is evident from rules (3/39) that the isotopes have no proper
invariant subalgebra. The algebras SO(3) are therefore simple in the con-
ventional (abstract) sense.

Second, to identify the compact or noncompact character of the isotopes,
we ﬁgnsider an arbitrary element X = a;Jy + asJ2 + asJs. The Killing form
of SO(3) can be written in E(7,6,R)

K(X,X) = tr(adX)?
0 —asgaz  Gagss \
= 3911 0 —a19gs3
—a3g11 41922 0
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= —2(aig229s3 + 3911933 + afg11022), (3.33)

with a trivial reformulation in E(F, g, R). One can readily see that the above
form is negative definite, and the isotopes 6(3) are compact for all elements
gkk possessing the same sign (whether positive or negative). The isotopes
are noncompact whenever two of the elements g11, go2, and gs3 have different
signs.

Since the metric elements are functions of the local variables, grr =
gkk(t,7,7,...), their sign cannot, in general, be globally defined. As a conse-
quence, we must assume an additional local restriction for the achievement
of a first classification of §(\)(3) More particularly, we shall assume suf-
ficient topological restrictions on the functions gkk to preserve the sign of
their value in the neighborhood of the considered point (t,r,7,...) of their
variables.

Under these restrictions, all possible isotopes §6(3) are characterized
by all possible invariants

rtgr = tablz 4 ybly + zb2z . (3.34)

It is then easy to see that the only compact Lie-isotopic algebras are the

following two: .
801(3) : Signg = (+’ +7+) >

S0,(3) : signg = (-, —,-), (3.35)

while all the remaining six algebras are noncompact, according to the clas-

sification .
SO3(3) : signg = (+,+,-),

S04(3) : signg = (+,—,+)
$05(3) : signg = (~,+,4)
556(3) :signg = (—,—,+),
§67(3) 1signg = (—,+,-),
SOs(3) : signg = (+,—, ). (3.36)

To identify the type of algebras, we introduce the following redefinition
of the generators

Fi=b7"510, S = b5, Ja = b7tbs s, (3.37)
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The Lie-isotopic commutation rules for the compact algebras (3.35) then
become . o R o ) o R
SOy : [Ji5)2) = J3,  [J23s] = J1,  [Jsih] = U2,
SO3(3) : [Ji3ha] = —Ja, [Jasfal = =1, [Jaih]=—Jz . (3.38)

The second-order isotopic Casimir invariants are then given by

-~ 3 - ~ ~
J(2a) = Z Jkg(a)Jk = —2I(a), a=1,2. (3.39)
k=1
Comparison of Egs. (3.38) and (3.39) with (3.10) and (3.11), respec-
tively, then leads to the following result.

Proposition 3.1 [23]: All compact isotopes 8/6(3) are locally isomorphic to
the SO(3) algebra, and they occur for positive or negative definite metrics.

Under the assumed topological restrictions on the metric, the Lie-isotopic
algebras are integrable to their corresponding groups. The exponentials
(3.24) therefore exist and characterize well- defined, finite isotopic rotations.

Numerous examples can be explicitly computed. As an illustration, we
consider a compact isotopic rotation around the third axis for the case of
the isotope (/)\1(3) Trivial calculations then yield the group element [23]

R(03) = S,(8:)]

cosfs %?;sz'n03 0
= —%{;sz’neg cosbzs 0|1, (3.40)
0 0 1

with underlying transformations

= R(63)xr = S5,(63)r
zcosls + y%}sin&e,

= -—:c%;-sz'nﬁs + ycoshs | (3.41)
z

which leave invariant the ellipsoids
gqyr’ = 2’02z’ + y'b2y’ + 2'b32
= zblz + ybly + 2032
= riggyr, (3.42)
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as the reader is encouraged to verify.

Note that the isotopic commutation rules of 8/61(3) and those of the
conventional algebra SO(3) coincide at the abstract level of realization-free
treatment of rotations. The same situation occurs for all other aspects of
the theory, such as enveloping algebra, Casimir invariants, etc. A similar,
formal unification can also be reached between the full orthogonal-isotopic
group 6\1(3) and the conventional one O(3).

A main result of ref. [23] is then expressed as follows.

Theorem 3.1 The groups of isometries of all possible ellipsoidical defor-
mations of the sphere,

rtg(l)r = zb%z + ybly + zb2z =1,

by = bi(t,r,7, L) F 0, (3.43)
here denoted (/)\1(3), verify the following properties:
(a) The groups 6\1(3) are all locally isomorphic to O(3) when isotopically

realized in such a way that their isounits I(1y are the inverse of the
metrics gy of ellipsoids (3.43).

(b) The groups 5\1(3) consist of infinitely many different (but isomorphic)
realizations, corresponding to the infinite possibilities of explicit, local
forms of the isounits Iy (or, equivalently, of the metrics 90))-

(¢) The groups 6\1(3) constitute “isotopic coverings” of O(3), in the sense
that

(c-1) the groups 5\1(3) are constructed via methods structurally
more general than those of O(3);

(c-2) the groups 5\1(3) apply for physical conditions broader than
those of O(3); and

(c-3) all groups 6\1(3) recover O(3) identically whenever ellipsoids
(3.43) reduce to the sphere.

The nontriviality of the notion of isotopic covering can be illustrated via
the following important property.

97



Corollary 3.1.1 [23]: While the action of O(3) on local coordinates is
linear, i.e.,

v = R(f)r, (3.44)
that of its isotopic coverings 61(3) is generally nonlinear, i.e.,
P o= R(0)xr = S84(8)r
= S@t,r 7.0 (3.45)
An illustration of this occurrence is given by transformations (3.41).
In fact, the nonlinearity occurs because the elements b; entering into the

transformations are generally dependent on the local coordinates (see Fig.

6 for some of the implications).
We pass now to the review of the noncompact forms, which, besides

being useful for achieving a classification of all possible isotopic images of
rotations, constitute the foundations of the Lie-isotopic lifting of special

relativity (§3.4).
For the case of the noncompact algebras (3.35), isotopic rules (3.30)

become
SO,(3) : [JiyJo) = —Js, [Jo3fa] = Ji, [Jabfi] = Ja,
SO4(3) : [JiyJal = Ja,  [Jasda] = J1,  [Ja3h) = o,
SO5(3) : [J13 /o) = Ja, [J23Ja] = —Ju, [Ja3 1] = Ja,
S0¢(3) : [J13Js] = J, [Jo5ds] = =i, [Jasa] = —Ja,
SO4(3) : [Ji3/a] = —Ja, [Nl = =1, [Jsi/h] = o,
S0:s(3) : [Ji3]a] = —Js, [Ja3a] = Ji,  [Jasdi] = —Ja, (3.46)

while the second-order Casimir invariants preserve form (3.39), i.e.,

j(Za) - ijg(a)jk = ‘_2i(a)’a =3,4,...,8. (3.47)
k
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FIGURE 6. A fundamental application of the Lie-isotopic theory: the
deformation/rotational-asymmetry of neutrons under intense external fields,
and the exact character of isotopic rotations [23], [27]). As well known, neu-
trons are not point particles, but extended charge distributions with a ra-
dius of about 1F (= 10~ cm). Suppose that such distributions are perfectly
spherical (an assumption already questionable [42]). Then, under sufficiently
intense external fields, the particles are expected to experience a deforma-
tion of their shape precisely along the fundamental invariant (3.2) of the
isotopic. rotations. This deformation of shape has a number of truly funda-
mental, theoretical and experimental implications. On theoretical grounds,
it implies the breaking of the conventional rotational symmetry, as mani-
fest in the deformation of invariant (3.1) into ellipsoids (3.2). But the ab-
stract rotational symmetry is not broken. In fact, Santilli’s isotopic group
O(3) provides an exact symmetry for the deformed neutron while being iso-
morphic to O(3). Furthermore, the deformation of the charge distribution
implies an alteration (“mutation” in the language of ref. [2]) of the mag-
netic moment of the particle, as clearly established already at the classical

99



level. One recovers in this way an hypothesis formulated since the early
stages of nuclear physics (but oddly ignored in more recent treatises in the
field), that protons and neutrons experience a deformation of their mag-
netic moments when members of a nuclear structure, e.g., under intense,
short range, nuclear interactions. Finally, and still on theoretical grounds,
the rotational-asymmetry of the figure implies a necessary breaking of the
conventional Galilei’s and Einstein’s Relativities, thus creating the need for
suitable generalizations of Lie-isotopic type as we shall review in the next
sections. On experimental grounds, the physical occurrence depicted in the
figure has a number of fundamental implications, for instance, in the con-
trolled fusion. In fact, protons and neutrons are expected to experience an
alteration of their intrinsic magnetic moments exactly at the time of initi-
ation of the fusion process, with evident implications for confinement. The
deformation/rotational asymmetry /magnetic- moment-mutation depicted in
the figure has already been the subject of fundamental experiments by H.
Rauch and collaborators (see ref. [88] and quoted papers) via neutron inter-
ferometric techniques. The experimenters tested the spinorial character of
the neutron’s SU(2) symmetry via the symmetry of the wavefunction under
two complete spin-flips caused by an external magnetic field. The calcula-
tions are evidently based on the conventional value of the magnetic moment
of the neutron. As a result, deviations caused by the deformations under
consideration evidently result in deviations from the SU(2) symmetry. The
last experimental numbers {dating back to 1978) are 715.87 &= 3.8deg. Thus,
the 720 deg needed to verify the exact, conventional, rotational symmetry
ARE NOT contained within the minimal value 712.97 and the maximal value
719.67 of the experimental error. A quantitative representation of Rauch’s
data [88] has been provided by Santilli [27] via his isotopic lifting of Dirac’s
equation and it will be reviewed in Appendix C. Rauch’s fundamental exper-
iment will be considered in detail in the separate review we hope to complete
on the operator version of Lie-isotopic techniques on Hilbert spaces. San-
tilli has been a strong proponent (for over a decade now) of the repetition
of Rauch’s experiment by other independent experimentalists, owing to its
manifestly fundamental character (see, e.g., ref. [11]). It is regrettable that
the experiment has continued to be ignored by experimentalists in the field.
In fact, the last available experimental numbers date back to 1978 and, most
unreassuring, show a violation, thus rendering even more compelling the need
for an experimental resolution of the issue. The clear, unquestionable plau-
sibility of the deformation; the ready availability of all needed equipment
at numerous (low energy) nuclear laboratories throughout the world; the
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quite moderate cost of the experiments as compared to other lesser relevant,
yet much more expensive experiments preferred until now by experimenters
in the field; the manifestly fundamental character of the experiment for all
of theoretical physics; the equally sizable financial-administrative implica-
tions, e.g., for the investments in attempting controlled fusion via magnetic
confinement; and several other aspects, have forced Santilli to raise serious
issues of scientific ethics in regard to the lack of independent repetition of
Rauch’s experiment which are not addressed in this review.

The following result then holds:

Proposition 3.2 [23]: All noncompact isotopes §(\)(3) are locally isomor-
phic to the SO(2.1) algebra, and they occur for (diagonal) metrics whose
elements have different signs.

Under the assumed restrictions, the noncompact isotopic algebras are
also integrable to their corresponding groups. The exponentials (3.25) there-
fore exist, although the range of the parameters now becomes infinite.

Again, numerous examples of “noncompact isotopic rotations” can be
explicitly constructed for all cases (3.36). As an illustration, we consider a
“rotation” around the third axis for the case of the isotope 554(3). Then,
trivial calculations yield the group element [23]

coshfs - glzsz'nh()g 0
R(03) = | —Bsinhbs  coshfs 0 |1 (3.48)
0 0 1

with underlying isotopic transformations

zcoshbfs — y%—fsinh%
r'= R(b) x 1 = Sy(b)r = | —zBsinhbs + yeoshts | (3.49)
z

which, this time, leave invariant the hyperbolic form
rt’g(3) v o= 2'bia — ybly + b2

= ablz — ybly + 2022
= rtg(g)r. (3.50)
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Again, the noncompact isotopes are indistinguishable from SO(2.1) at
the level of abstract, realization-free formulations.

In summary, the isotopic lifting of Lie algebras does not produce new
Lie algebras, because (as stressed in §1.5) all Lie algebras over a field of
characteristic zero are already known. Santilli’s Lie-isotopic theory merely
provides infinitely new covering realizations of known algebras. The results
of Propositions 3.1 and 3.2 are therefore predictable from the simplicity of
algebra (3.30). In fact, all simple, three- dimensional Lie algebras over the
reals are known and are given either by SO(3) or by SO(2.1) (or by algebras
isomorphic to them.)

To complete our classification, we need additional information on Lie-
isotopic algebras whose metrics have opposite signs.

DEFINITION 3.1 [23]: Let G be an isotopic algebra char-
acterized by (diagonal) metrics with elements grr. The isotopic
dual G? of G is the algebra characterized by the (diagonal) met-
ric with elements g,‘fk = ~gir, k=1,2,...,n.

It is then easy to prove the following result.
Proposition 3.3 [28]: Isotopically dual Lie algebras are locally isomorphic.

Note that the proposition above includes the case when one of the al-
gebras is conventional. We discover in this way that SO(3) has an image
that cannot be identified via the simplest possible Lie product AB — BA of
current use, but demands instead the use of a more general product, such
as AgB — BgA.

In fact, besides its conventional form, SO(3) can be realized via the
isotopic dual, according to the expressions

SO(3): [Ji3d;] = Jigd; — J;9J;

= —€rJk,
g = diag(+1,+1,+1),
Jp = —Jg.

SO43) : [Jis;] = Jigli — JigJ:
= +e€iikdks
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g = dja'g(”lv—la_l)’
Ji o= - (3.51)

At the level of the full orthogonal group O(3), this essentially implies the
interchange of the identity I with the total inversion J = —1I , the latter
becoming the identity of the isotopic dual. It is then easy to see that the
basic algebras (3.51) and the eight isotopes (3.38) and (3.46) can be divided
into two sets interconnected by isotopic duality. Until now we have con-
sidered isotopes characterized by metrics with locally definite topological
characters, resulting in locally definite compact or noncompact groups. To
complete his classification, Santilli indicated the existence of isotopes that
can smoothly transform compact algebras into noncompact ones, and vice
versa. Evidently, this topic is technically involved (and yet unexplored); it
therefore demands specific, detailed investigations. We shall thus content
ourselves with the mere indication of the existence of this additional class
of isotopies.

For this purpose it is more effective to return to the original basis J; of
Egs. (3.8), to the original isotopic rules (3.30), and to the generic separation
(3.28), with diagonal metric elements g;z. An isotopic rotation around the
third axis can be readily computed from the exponentiations (3.25), resulting
in the expression

cos(83g11% g3 922(911922)1/2311'7;(93%%{29;42) 0
— . 2
S¢(0) = | —11(911922)/%sin(63911 % ¢3! cos(93911 93} 0
0 0 1
(3.52)

It is easy to see that the above transformations do not have, in general, a
globally defined compact or noncompact character. In particular, they can
be isomorphic to SO(3) for given values of the local variables and to SO(2.1)
for others. Thus, they can continuously interconnect compact and noncom-
pact structures. Evidently, this is the most general possible isotopic lifting
of rotations, which includes as particular cases all other forms considered so
far.

To illustrate this occurrence, assume that the elements g11 and g33 have
the value +1, while the element gy is given by a function of the local
variables #,7,7,... that interconnects smoothly the values +1 and —1. It
is then easy to see that, for the case g1; = gg2 = ga3 = +1, transformations
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- (3.52) reduce to the familiar, compact rotations

cosfz sinf; O
59(03) = —sin03 60893 0 , (3.53)
0 0 1

while, for g11 = —g22 = ¢33 = 1, transformations (3.52) reduce to the equally
familiar, but this time noncompact, Lorentz transformations

cosh@; —sinhfs 0
S4(63) = | —sinhf3 coshlz 0| . (3.54)
0 0 1

The generalization to metrics (3.34) is self-evident. Note the lack of
~ consideration in this review of the trivial isotopy

SO0(3) : [Ji3fi] = —eijudi, Ji=Jkg™t,  Jk € SO(3), (3.55)
9’5(3) g=(+1,+1,+1) g=(-1,-1,-1) 0,,0)
03 g=(+bh+bh 4B | g=(-bh-bd-B) 0,0
03  g=(+bh+bL—bD) | g=(-b}-b,+E) 0,0
0  g=(+b}~8,+8) | g=(-bh+bh-bD)  O,0)
00)  g=(-bh+bh+b3) | g=(+b%,-b-b) O ()

0(): g = (8111 8220 833)

FIGURE 7. A reproduction of Table I of ref.[23] presenting a preliminary
classification of all possible isotopes of the conventional group of rotations
denoted with O,(3). On the left hand side we have the most notable isotopes
characterized by different topologies of the metric, while on the right hand
side we have their images under the notion of duality of Definition 3.1. The
isotope O(3) at the bottom of the diagram symbolizes Santilli’s conception
of one single Lie-isotopic group which unifies all possible Lie groups of the

same dimension via a metric of varying topological structure.
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which does not provide the invariance of the ellipsoidical deformations of
the sphere, as indicated in the closing remarks of §2.4. On the contrary, the

realization
50(3) . [If,',Kj] = —Gijkffk,

0 0 0
Ki=| 0 0 ],
b
- 0 0)
(0 0 ~b
2]
Ko,={0 0 0 |,
b g o
ba
0 2 o
b;
K3 = _:; 0o ol, (3.56)
00 0 0

even though conventional in structure (that is, realized via the conventional
associative envelope without any isotopy), verifies the basic invariance prop-
erty (3.26), as the reader is encouraged to verify.

Here it is important to understand that, by no means, can the results
under consideration be uniquely derived via the Lie- isotopic theory. In fact,
structure (3.56) indicates the possibility or recovering the form invarance of
the ellipsoidical deformations of the sphere via the conventionally realized
O(3) or other ways. The Lie-isotopic liftings of Lie symmetries have been
merely submitted by Santilli on grounds of their pragmatic effectiveness in
constructing the covering symmetry when a given, conventionally realized
Lie symmetry is broken, while admitting the latter as a particular case
whenever the original physical conditions are regained.

3.2.5 Physical Applications

In order to identify physical applications, it is desirable to identify first its
dynamical foundations. This, in turn, can be done more effectively in the
arena of our best intuitions, Newtonian mechanics. Applications to particle
physics shall be considered in Appendix C.

The Birkhoffian generalization of (classical) Hamiltonian mechanics (§1.3)
evidently provides the desired dynamical setting. A knowledge of mono-
graph [15] is therefore essential for a deep understanding of the physical
applications of isotopic rotations.
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For simplicity but without loss of generality, Santilli [23] first considered
the case of one, free, extended particle in Euclidean space E(7,6§,R), and
the trivial canonical action

123 . 1
Alt,r) = t di[p - — p - p]
1

t
= / * dtlppix — H), m=1. (3.57)
t

Suppose that, at a given value of time, the particle experiences only contact
nonhamiltonian forces due to its extended character (e.g., because of pene-
tration within a resistive, generally anisotropic and inhomogeneous, material
medium). Suppose that these physical conditions can be represented via the
isotopic lifting E(F, g, R) of the Fuclidean space, i.e., via the generalization
of the action into the form

12 1
AB(t, 1) = / dt(p*r1— §p *P)

i1

23 . 1
= " dtlpigu; - spigiinil (3.58)
1

g = g(t? ’r’ 1:‘7 "'),

which is manifestly of Birkhoffian non-Hamiltonian type with identifications

1
Py(t,r,p) = pigir, B = 5 PigiiPs- (3.59)

The nonhamiltonian character of the theory can be technically estab-
lished via the property that the equations of motion underlying action (3.58)
generally violate the integrability conditions for the existence of a Hamil-
tonian in the r-frame considered [4]. The inapplicability of Hamiltonian
mechanics implies, in particular, the inapplicability of the Poisson brackets
for the Lie characterization of both the time evolution as well as, of course,
the theory of rotations.

The direct applicability of Birkhoffian mechanics has the immediate ad-
vantage of permitting the identification of the generalized Lie product for
both the time evolution and the applicable theory of rotations. It is suffi-
cient, for illustrative purposes, to restrict ourselves to the case of a diagonal
metric ¢ with constant elements

g = diag(b?,b2,b2), b= const.. (3.60)
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Use of Egs. (1.21.b) and (1.22.b) then readily yields the Lie- isotopic tensor

0 9P;
(Q;w) — (8_PL 81’) )

Op;

- (_0__1 -‘7(')1>, (3.61)

with generalized brackets

[4;B] = %gila_.B... - Q.égiléé' (3.62)
1 J

Simple calculations then establish the following Newtonian realization of
the isotope 801(3) of rotations [23]

SO1(3) : [Ji2;] = eijubi 2, (3.63)
with redefinition according to Eq. (3.38)
SO1(3) : [Ji3J;] = eijudr,
Ji = bobsJy, Jo=bibsJy, Sy = bibyJs, (3.64)
and group form of the symbolic type

551(3) ra = H exp(0p Q" gi’f Ba“ )a, (3.65)

k=1

with a corresponding reduction to a form of type (3.25).

The achievement of the desired objective is then confirmed by illustra-
tive examples. For instance, an isotopic rotation around the third axis with
generator J; can be computed via exponentials (3.65), yielding the trans-

formations
zcos(03byby) — y%lzsz'n(é?gbl b2)

= IE%Sin(@gblbg) + ycos(f3b1b2) |, (3.66)

z

with additional transformations of the type (3.40) for the generator Js.
The achievement of the form invariance of the Pfaffian action (3.58) is

then consequential. Action-at-a-distance forces can be tr1v1ale mcorpora.ted

in the theory via additive potentials in the Birkhoffian B = 3 1p? provided
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that they are properly written in (7, g, R), e.g., with “squares” of the type
(3.2).

As a further application, Santilli [23] presented a generalization of Euler’s
theorem (on the displacement of rigid bodies) to the case of elastic bodies.
As the reader recalls [89], Euler’s theorem essentially states that the general
displacement of a rigid body with one point fized is a continuous rotation
around some azis.

Suppose that the object is an elastic sphere of radius 1, and that the fixed
point is the origin of the reference frame. In the absence of deformation, the
displacements of the object are given by time-dependent transformations
R = R(t) € 50(3). At time ¢ = 0 one can assume

R(0) = I = diag(+1,+1,+1). (3.67)

At subsequent times ¢, the rotations are such that their eigenvalues are the
elements of the conventional 3 X 3 unit I, i.e., there exists an eigenvector a
of R(t) which preserves its components in the rotated system:

a' = R(t)a = a, (3.68)
or, equivalently, rotations verify the eigenvalue equations

[R(t) — Ila=10, (3.69)
with secular determinant

det(R—-1)=0. (3.70)

Suppose now that at time ¢ = ¢, the sphere experiences a small defor-
mation into the ellipsoid

rgr=z(l+e)z+y(l+e)y+z(1+e)z=1. (3.71)

It is easy to see that the displacement can now be described via a compact
isotopic rotation R(¢) € SO1(3), beginning with the identification

Rle)=T=g"". (3.72)

It is also easy to prove that the eigenvalue equation for the rigid motion,
Eq. (8.69), admits the isotopic generalization

[R@t) - I*a=[Si(t)~Ia=0, (3.73)
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with isotopic-secular determinant (§1.3)
det(R-H=det(S-I) =0, (3.74)

where we have used the decomposition of Eq. (3.25), R = §,I, and Theorem
2.19 of ref. [36], p. 1310.

In fact, from Eq. (3.20), det R(t) = det I. A step-by-step generalization
of the conventional proof (see, e.g., ref. [89], pp. 119-123) then leads to the
following result.

Lemma 3.1 [23]: The isotopic eigenvalues of the compact-isotopic rotations
of type 1 are the elements of the (diagonal) generalized unit I = g=1.

Thus, much as in the conventional case, the compact-isotopic rotations
admit an eigenvector that preserves its components in the transformed sys-
tem. By recalling that the transformations considered here can only be
continuous, the extensions to the case of finite deformations and to non-
spherical objects are straightforward, yielding the following result.

Theorem 3.2 [23]: (Isotopic Lifting of Euler’s Theorem) The general dis-
placement of an elastic body with one point fived is a compact isotopic rota-
tion of type 1 around some fized axis.

Numerous additional applications to the dynamics of extended, elastic,
and deformable bodies are possible. Here, we limit ourselves to the indica-
tion that the isotopes of O(3) seem to be naturally set for the description
of deformations, with the understanding that the theory generally demands
the use of nondiagonal metrics. In fact, all metrics of the theory of elasticity
are permitted by the isotopic theory of rotations.

An additional class of physical applications is the motion of extended
objects within generally inhomogeneous and anisotropic material media. In
effect, the description of the displacement of elastic bodies (Theorem 3.2)
and that of the motion within material media are complementary to each
other, in the sense that they can both be reduced to suitable isotopic liftings
of the Fuclidean space.

To illustrate this possibility [23], consider a (classical) particle moving in
a region of empty space for which the Euclidean geometry applies. Suppose
now that the region considered is filled with intense radiation originating
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from a distant and constant source, assumed to be at infinity. It is evident
that, under these novel physical conditions, the particle cannot be consid-
ered as moving in empty space. The new medium of propagation is space
filled with radiation. Depending on the physical characteristics of the parti-
cle (size, charge, electric and magnetic moments, etc.), the new medium will
directly affect the trajectory of the particle, that is, its dynamical evolution.
In particular, the new medium is homogeneous but manifestly anisotropic,
in the sense that the distribution of radiative energy is uniform, but the
medium has a preferred orientation in space given by the direction of prop-
agation of the background radiation.

Clearly, the Euclidean geometry is merely approximated for these broader
physical conditions. The selection of an appropriate isotopic lifting is then
relevant. We select the Finsler space with composition [23]

gr = 1 f(r,u)di;r?,
(3.75)

where u is a unit vector (u? = upur = 1), here assumed along the direction
of the radiation.

The Finsler space with composition (3.75) characterizes an isotope
E(7,g,R) of E(7,6,R). As a result, the symmetry O(3) applies (includ-
ing isotopic reflections). The reader should be aware that the symmetry
O(3) is broken for composition (3.74) because of its inability to preserve the
preferred direction in space. The achievement of this preservation via the
covering symmetry O(3) is instead ensured by the invariance of the metric
under isotopic rotations, i.e.,

e 997 gel9% = g. (3.76)

It is also clear that, in the transition from the Euclidean to the Finsler
space, we have the transition from a flat, homogeneous, and isotropic geom-
etry to a curved, homogeneous, and anisotropic one. Numerous intriguing
properties then follow. Owing to the particular metric of Eq. (3.74), the
conventional Casimir J? = JiJi is preserved by the isotopic rotations,

3
I = R+ (D Judi) xR =37, (3.77)
k=1
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as the interested reader is encouraged to verify. This result indicates that
the angular momentum can be conserved also for motion within anisotropic
media in which the conventional rotational symmetry is broken.

We recover in this way a result already known in analytic mechanics [1].
We are referring to the fact that the conservation of the angular momen-
tum, by no means, necessarily implies the symmetry under the conventional
rotation group. In fact, angular momentum conservation can be also char-
acterized by isotopic symmetries.

GLOBAL_STABILITY OF A CLOSED NON~HAMILTONIAN SYSTEM
VIA THE MAXIMAL POSSIBLE INSTABILITY OF THE ORBIT OF
EACH CONSTITUENT.

CONSERVED TOTAL ANGULAR \ »
MOMENTUM UNDER NON-HAMIL-~ .
TONIAN INTERNAL FORCES Wi

LIE-ISOTOPIC COVERING
OF ROTATION GROUP

NONCONSERVED ANGULAR
_ | HOMENTUM OF EACH CONSTITUENT

LIE~ADMISSIBLE COVERING OF
/ LIE-ISOTOPIC ROTATION GROUP.

FIGURE 8. A reproduction of Fig. 5.4, p. 560 of ref. [16] repre- -
senting the physical characterization of the complementary Lie-isotopic and
Lie-admissible generalizations of the conventional group of rotations. Con-
ventionally, global stability of a system is achieved via the stability of the
orbits of each constituent, e.g., as in the Solar system. Closed nonhamil-
tonian systems, however, have identified a structurally more general global
stability under maximal possible nonconservation and instability of the or-
bits of each constituent, e.g., as in Jupiter (see Figs. 2, 3). The Lie-isotopic
lifting of rotations reviewed in this section represents the first part of San-
tilli’s program, the characterization of total, conserved, angular momentum

via the collection of the argular momenta of the constituents each, individu-
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ally, nonconserved. The completion of the study requires the representation
of one individual nonconserved angular momentum when all other particles
are considered as external. This requires an algebra with non-antisymmetric
product. The algebras selected by Santilli are the covering of the Lie-isotopic
algebras known as Lie-admissible algebras. This leads to the possibility of
constructing a second class of generalized relativities, specifically conceived
for nonconservative conditions, which constitute coverings of the Lie-isotopic

ones [16].

The generalization of the model to an inhomogeneous form is possible,
and occurs, for instance, when the energy distribution of the background
sea of radiation is not homogeneous. This is the case when the intensity of
the radiation varies in space and time, in which case the metric (3.75) is
generalized to forms of the type

gi; = f(r,u)di;(t,r,7,...), (3.78)

where the inhomogeneity and anisotropy are differentiated and represented
by the respective terms f(u,r) and d;;(t,r,7,...). Note that, with sufficient
care, the applications of model (3.78) can also be extended to treat the
motion of systems within a resistive medium with density varying in space
and time, and witha preferred direction in space. Numerous additional
applications are conceivable, as the reader can easily see.

As a concluding remark, we would like to indicate that, by no means,
the Lie-isotopic theory of rotations is the only possibility of representing
extended particles. In fact, a number of additional possibilities have been
identified in the literature, most notably, Kdlnay’s approach via the use of
intervals [90] and Prugovecki’s studies via stochastic techniques [91]. Each
of these approaches has its own preferred features. For instance, the Lie-
isotopic approach has been conceived to achieve a covering unity of thought;
Kélnay’s approach is particularly tailored for certain quantum-mechanical
measures; Prugovecki’s approach is particularly suited for extended (per-
fectly spherical) particles under electromagnetic interactions.

Despite these differences, a central property of Santilli’s Lie-isotopy is
its “direct universality” which, for the case of classical mechanics, can be
inferred from the theorem of Direct Universality of Birkhoffian mechanics
(Ref. [15], Theorem 4.5.1). As a result, all possible approaches to rotations
are expected to be a particular case of Santilli’s isotopic group O(3).
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3.3 Lie-isotopic Generalization of Galilei’s Relativity [1], [16],
[23]

3.3.1 Introduction

The Lie-isotopic generalization of the classical Galilei’s Relativity was a first
central objective of Santilli’s studies, evidently conceived as a necessary step
toward a compatible generalization of Einstein’s Special Relativity (reviewed
in the next section).

The mathematical foundations of the generalized relativity, hereinafter
referred to as Santilli’s Galilean Relativity, were achieved in the first memoirs
of 1978 [1], [2], as reviewed in §2.2 and 2.3. These foundations were then
complemented with studies [22] reviewed in §2.4.

The physical foundations of the generalized relativity were identified
also in the original memoir of 1978 which contains the proposal of a still
more general covering of Galilei’s Relativity of Lie-admissible type. Studies
specifically devoted to the Lie- isotopic subcase under consideration here
were continued during the period 1979-1981. The covering relativity was
formally submitted in 1982 in Chapter 6 of ref.[15] entitled precisely: “Gen-
eralization of Galilei’s Relativity.” The central part of the covering relativity,
the isotopic theory of rotations, was also developed in the subsequent paper
[23], reviewed in the preceding section. The Lie-isotopic spin covering was
presented in papers [25,27], and reviewed in Appendix C. Finally, the formu-
lation in its most general possible non-linear, non-Hamiltonian and nonlocal
forms was reached in memoir [24a). From here on we shall tacitly assume a
sufficient knowledge of the isotope 0(3) and SU (2), as well as, particularly,
knowledge of their applications.

Evidently, we cannot review here in details such rather vast research.
We shall therefore review only the central aspects of the covering relativity.

For notational convenience, we shall first review the rudiments of Galilei’s
Relativity in classical Hamiltonian mechanics, and then pass to a review of
Santilli’s covering.

3.3.2 Foundations of Galilei’s Relativity

Galilei’s Relativity is a body of methodological tools for the form-invariant
characterization of closed-isolated systems of

1. particles which can be effectively aproximated as being point-like;
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2. when moving in vacuum (empty space) assumed as homogeneous and
isotropic;

3. under the conditions that possible speeds are much smaller than that
of light (i.e., v < ¢,), quantum mechanical aspects are ignorable (i.e.,
A > 1), and gravitational effects are absent (i.e., all spaces have null
curvature).

The mathematical formulation of the relativity can be summarized as
follows.

Let E(3) be the Euclidean space in three dimension. Let a system of
N particles in E(3) have the local coordinates 7%,k = 1,2,..., N, which are
the physical cordinates with respect to the observer. Let the phase space be
represented via the cotangent bundle T *E(3) with local coordinates 7%, Pk,
where Jj, = my7} are the physical linear momenta of the particles considered.
Let R represent the physical time ¢ of the observer. The basic manifold of
Galilei’s Relativity is then given by the (6N + 1) dimensional space R X
T*E(3). Its local coordinates shall be written in the unified notation

R x T*E(3): (47,5) € (ta),
a=(a")=(7,7;), 4 =1,2,...,6 N, (3.79)

when emphasis is needed on the symplectic geometry on T*E(3), and in the
still more general notation

R x T*E@3): 75 % (b),
b= (") = (;77F), p=0,1,2,...,6N, (3.80)

when emphasis is needed on the contact geometry of the entire space R X
T*E(3).
The celebrated Galilei’s transformations can be written

t=t =t+1,,
G(3.1) { 7o > 7, = R(8)% + Fol + o, (3.81)
Pk — D), = R(0)Dx + miTok,

and they characterize the Galilei group G(3.1), with ten parameters (5, Vo To;
t,) and related subgroups: rotations Oy(3); Galilei’s boosts T3,(3); transla-
tions in space T, (3); and translations in time T},(1). The Lie algebra G(3.1)
of G(3.1) is then given by

G(3.1) = [04(3) & T5,(3)] & [Tr.(3) + Tu.(1)] , (3.82)
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where +(@) represents the direct sum (semidirect sum).

The following Definition is presented in ref. [15] to focus attention on
some of the central methodological tools of Galilei’s Relativity. For a com-
prehensive list of references, including some of Galilei’s historical work, see

ref. [15], §6.3.

DEFINITION 3.2 (Galilei’s Relativity): Consider a local,
analytic, reqular, unconstrained, conservative, Newtonian system
of N particles in the unique, normal, first-order (vector field)
form expressed in the local variables of its experimental observa-

tion /
" 7} — Dka mk)
@ =(}.) =@ = (R,
p=12,...,2n=6N;k=1,2,...,N;a = z,y,2;p = mr,
(3.83)

(where SA stands for varational self-adjointness), with the ten
total conserved quantities

Etot - T(p) + V(l‘) = XI,

N N
Ptot Zpk - Z mEPr = {X2’X39X4}
k=1 k=1
N
Mot = Z rp X pg = {XS’X67X7}7
k=1
N
Giot = Y _(myri — tpg) = {Xs, Xo, X10}- (3.84)
k=1

Then, Galilei’sRelativity can be defined as a form-invariant de-
seription of closed self-adjoint systems, that is, as the symmetry
of the equations of motion under the ten-parameter Lie transfor-
mation group G(3.1) (form-invariance):

G(3.1): b — b™(b), b=(t,a),

- - 0 0
=) = =H(P)— = “
=0) = g =05t 5
abe 9 - 0
_ "‘liv / . agpy Y
- (b(b )) 61)“ 8b/a e (b )6bla.
3

ECY( /)

= E(¥), (3.85)

il

ab/a = ‘_‘Of( )a Ia atl
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whose ten generators Xy, represent conservation laws (3.84) (closed
self-adjoint character):

0Xy.
b

The relativity is characterized by the following formulations.

Xi(b) = =4(b)=0, k=1,2,..10. (3.86)

I. Analytic formulations. They essentially consist of the repre-
sentation of the equations of motion via the conventional
Hamilton’s equations

OF:a) ORy(a), BH()
dat da¥ da+

8Rg aRZ _ (Oan —1an)

(w‘“j) - (W - dav laxn Onxn

R° = (p,0) (3.87)

and related canonical formulations (canonical transforma-
tion theory; canonical perturbation theory; Hamilton-Jacobi
equations; Noether’s theorem; etc.);

II. Algebraic formulations. They essentially consist of the uni-
versal enveloping associative algebra £(G(3.1)) of Galilei’s
algebra

€G(31) = 7,

F=FoGaGRGH...,
R:[Xi, X - (Xi® X; - X; ® Xy),
G(3.1) = [E(G(3.1)]™ : [X:, X;] = CE Xy, (3.88)

the canonical realization of Galilei’s group (here expressed
in symbolic form prior to a scalar extension)

0Xy, 0
. — k o k
GB.1):a* - a* = exp(fw ﬂ—é—a—ﬁ-é—&—; a*
(3.89.2)
0F = {to;%0:00;V,}, (3.89.b)

and related Lie’s theory (representation theory, etc.).
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ITI. Geometric formulations. They essentially consist of the
characterization of the (autonomous) equations of motion
as a Hamiltonian vector field

ZE1lw,=—dH, (3.90)
with respect to the fundamental symplectic structure

1 8R, OR;

=~ 2\%ar  av

and related symplectic and contact geometric formulations
(Lie’s derivatives, etc.).

wy Yda* A da” = dpg, A dr¥e | (3.91)

Note that the “time component” of canonical realization (3.89.a) of
Galilei’s relativity, a’ = exp(tw*? ga%-g%;)a, characterizes the time evolu-
tion of the system and should not be confused with the time translation. In
particular, the latter acts on time, ¢ — ¢/ = ¢ + t,, while the former acts
on the a variables, a(t) — a(t + t,). Also, the latter is unique, while the
former depends explicitly on the Hamiltonian, and therefore its explicit form
is different for different systems.

A few comments are in order. First, we should stress the restriction
of the applicability of Galilei’s relativity only to closed self-adjoint systems.
This restriction is based on the notion of (physically) ezact symmetry applied
to the case at hand. In fact, we have the combination of the mathematical
condition of Hamiltonian form-invariance and related first integrals, with the
physical condition that the first integrals directly represent laws of nature.
The conservative character of the forces is then a consequence [16].

We can say in different terms that Definition 3.2 applies only for systems

of Newtonian particles verifying the following conditions.

1. Closure condition: The system can be considered as isolated from the
rest of the universe in order to permit the conservation laws of the
total mechanical energy, the total physical linear momentum, the total
physical angular momentum, and the uniform motion of the center of
mass.

2. Self-adjointness condition: The particles can be well approximated as
massive points moving in vacuum along stable orbits without collisions,
in order to restrict all possible forces to those of action-at-a-distance,
potential type.
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3. Form-invariance: The ten conservation laws follow from the Galilean
symmetry of the system.

The existence of physical systems obeying these conditions is unequivo-
cal. For instance, our solar system in Newtonian approximation is indeed a
system of this type, and, as such, obeys all conditions for the applicability
of Galilei’s relativity.

3.3.3 Arena of Applicability of Santilli’s Covering Relativity

The applicability of Galilei’s relativity is the exception, and its violation is
the rule in Newtonian mechanics for several reasons. The most important
is that Newtonian “particles” can be well approximated as “massive points”
only under very special conditions. In fact, Newtonian systems generally im-
ply motions of extended objects (e.g., a satellite) in a resistive medium (e.g.,
Earth’s atmosphere), in which case their reduction to massive points would
imply excessive approximations (e.g., the approximation of the satellite or-
biting in our atmosphere with a conserved angular momentum). When the
extended character of the objects is represented together with their motion
within physical media, the dynamical conditions become unrestricted. As a
result, the equations of motion break the Galilei’s symmetry according to
one of the mechanisms of the classification of ref. [15], §A.12 (isotopic, self-
adjoint, semicanonical, canonical, and essentially self-adjoint breakings).

Equivalently, we can say that, if Galilei’s Relativity is imposed in its ex-
act meaning, it generally implies an excessive restriction of the acting forces,
with consequentially excessive approximations of the perpetual-motion type.

In view of these and other considerations, Santilli constructed a gener-
alization of the analytic, algebraic and geometrical foundation of Galilei’s
Relativity to attempt a covering relativity for the form-invariant description
of closed- isolated systems of:

1°. extended-deformable particles which cannot be effectively approximated
as being point-like;

2°. when moving in physical media which are generally inhomogeneous and
anisotropic;

3°. under the condition that the dynamical evolution is still “nonrelativistic”
(i.e., v € ¢,), “classical” (i.e., A > k), and “nongravitational” (i.e.,
null curvature).
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It should be stressed that the above arena is specifically restricted to
closed-isolated systems in which case the medium is evidently a part of the
system (see Fig. 9).

PRIMARY REFERENCE FRAMES OF A
CLOSED NON-HAMILTONIANW SYSTEM

COSTITUENT FRAME

CENTER-OF~MASS FRAME

FIGURE 9. A reproduction of Fig. 5.2, p. 532 of ref. [16] depicting the
three most important reference frames for closed nonhamiltonian systems:
the frame of the observer, the center-of- mass frame of the system as a whole,
and the center-of-mass frame of each individual constituent. In conventional
dynamical systems (with action-at-a-distance interactions of point-like con-
stituents) these frames represent all stable orbits, and result to be equivalent.
The corresponding situation for closed nonhamiltonian systems is different.
To begin, the orbit of one individual constituent is unstable and, therefore, it
generally requires nonlinear symmetries. Secondly, the center-of-mass frame
of the system as a whole generally represent stable conditions. As such, it
cannot be linked to the center-of-mass frame of each constituent via linear
transformations, such as the conventional Galilean (or Lorentz) transforma-
tions, but requires suitable generalizations. The Lie-isotopic generalization
of Galilei’s Relativity [1], [15] deals only with the observer’s and center-of-
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mass frame of the system as a whole. The inclusion of the center-of-mass
frame of each constituent requires a still more general Lie-admissible gener-
alization of Galilei’s relativity [1], [16] which is not considered here.

The covering relativity is also applicable to other systems, e.g., when the
medium is considered as external. In this case, however, the emerging “con-
served quantites” are only first integral, without in general direct physical
significance. In fact, the total energy, the total linear momentum and other
physical quantities are generally nonconserved for open systems.

Also, the reader should be aware that conditions 1’), 2’) and 3’) were
conceived as a sort of classical image of the structure model of hadrons
[2] whose constituents have extended wave-packets moving in the hadronic
medium made up of other constituents. However, classical mechanics offers
numerous systems verifyng the above generalized conditions (e.g., Jupiter)
in a way independent from possible operator-counterparts.

Our review shall therefore be purely classical. Particle aspects will be
treated in Appendix C. In order to have the appropriate perspective, the
recommended research attitude is the opposite of the conventional one. Cus-
tomarily, one first assumes an established relativity, and then restricts the
dynamics to that compatible with the assumed relativity. On the contrary,
Santilli advocates first the assumption of dynamical conditions as identifi-
able in Nature, and then the search for a compatible relativity. This research
attitude can be implemented according to the following three steps: the iden-
tification of the largest possible class of systems with unrestricted dynamics;
the identification of the methods for their treatment; and the identification
of the covering relativity.

3.3.4 Closed Non-Self-Adjoint Systems

When a system of particles is isolated from the rest of the universe, it must
necessarily obey the ten conservation laws (3.84); that is, it must be closed.
However, this does not necessarily imply that all internal forces are of the
potential, action-at-a-distance type. In fact, closure conditions (3.84) are
compatible with internal forces of contact, nonpotential, non-self- adjoint
type due to internal collisions and/or motion within resistive media. This
leads in a natural way to the notion of closed non-self-adjoint systems [2]
reviewed in §1.3 in their second-order form. Their formulation for first-order
systems can be presented as follows.

Implement closed self-adjoint systems (3.83) with an unrestricted col-
lection of local and analytic forces. These additive forces can be classified
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into self-adjoint (SA) and non- self-adjoint (NSA), resulting in the following
systems

7ka
@) = (}) =)= @@ + (Fta)

ka

_ pka/mk) ( 0 )

= + . ,(3.92
(fmr) FSA(t,x,p) + FNSA(L,r,p,p,... ) 392

where one can recognize: the conservative forces f,f(;‘1 7) verifying Galilei’s
Relativity; plus additional forces F2A(t,,7) that are also self-adjoint and
Newtonian, but not necessarily Galilei-form-invariant; plus additional forces
FNSA(4,¥,P,P,.. .) that are, in general, Galilei-form-noninvariant, non- self-
adjoint, as well as non-Newtonian (that is, they can also depend on the
acceleration and other non-Newtonian terms).

It should be indicated here that the original presentation [1], [15] put
the emphasis on Newtonian forces. Nevertheless, following a private com-
munication by Santilli, we have added here non-Newtonian forces, not only
because the results of refs. [1], [15] are readily applicable to these forces
without any modification, but also because the inclusion of accleration- de-
pendent forces has truly intriguing implications in the operator- images of
the theory for particle physics, e.g., the capability of achieving consistent
nonrelativistic bound state models in which the total energy is higher than
the sum of the rest energies of the constituents (a possibility which is pre-
cluded in conventional quantum mechanics). Also, explicit examples of the
generalized relativity have indicated the existence of these acceleration- de-
pendent forces, as we shall review below. Finally, acceleration- dependent
forces appear, quite independently, in recent studies by A.K.T. Assis [92]
and others in ordinary (nongravitational) mechanics via the postulate that
the total acting forces on an individual body is null and the use of Mach’s
principle.

The total enegy is modified in the above implementation, trivially, be-
cause of the additional presence of potential forces,

Etot = T(p) + V(r) + U(tyr» P),

N

1
T(p)= > =—Pk Pk
b1 ka
P oU d oU
F];S'A(t,l‘, -77-?_,) = ——51‘—k Zi;-a—r—’: (393)
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All the other total quantities (3.84.b)-(3.84.d) remain unchanged. In
fact, physical quantities such as the total linear momentum P;,; are defined
in a way independent from the acting forces which, clearly, can only affect
their behavior in time.

DEFINITION 3.8 [2],[15]: The most general possible class
of local, analytic, closed, discrete, and non-self-adjoint systems
is given by the class of all possible, consistent, generally overde-
termined and constrained systems

(@) = (;Z) = (T*(t,a)) = (3.94.2)

< Pka /M )
\fEA() + FaA(t,x, p) + FS4(t,2,p,0,) )

Xitya) = Kign _0Xi_ g (3.94.b)

Oa* ot
X1 =Ei =T(p)+ V(xr)+ U(t,r,p), (3.94.¢)

N
{X2,X5,X4} = Piot = Y miPk,
k=1

N
{X5,X6,X7} = Mot = »_ Tk X Piy (3.94.d)
k=1
N
{Xs, X9, X10} = Gror = »_(mgTx — tPk), (3.94.¢)
k=1
p=2,1,..,6N, k=12,..,N, a=uz,y,2, t=1,2,..,10.

(3.94.1)

The primary difference between closed self-adjoint and non-self-adjoint
systems is that the conservation laws of total quantities are first integrals of
the equations of motion for the former, while they are, in general, subsidiary
constraints for the latter.

The physical existence of closed non-self-adjoint systems is established by
a simple observation of Nature. For instance, the Earth, when considered
as isolated from the rest of the universe and inclusive of its atmosphere,
is precisely a closed system with unrestricted internal forces, rudimentary
approximated by Eqgs. (3.94).

The mathematical existence of the systems is established by the existence
theory of overdetermined systems. In fact, the following hierarchy exists of
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classes of consistent systems (3.94) with a dynamics of increasing complexity
and methodological needs [15]:

Class a: when the conserved total physical quantities are first integrals of
the vector field;

Class 3: when the conserved total physical quantities constitute invariant
relations of the vector field;

Class «y: when the conserved total quantities constitute bona fide subsidiary
constraints of the vector field.

For brevity, we limit ourselves to the illustration of class . The existence
of the more general classes 8 and 7y will be only indicated.

Assume for simplicity that the additive self-adjoint forces in Egs. (3.93)
are null. This implies that the original total energy (3.84) persists during
the implementation of the systems with internal contact forces. We now
impose the conservation laws to be the first integrals of the new systems
according to the (strong) equality

x 0X; 0X;
i(t:a) Ba# ot T Bt
X; 0X;
""”’ — =
(X s 8t Xiy . (3.95)

But the original Eqs. (3.84) are verified by assumption. Thus, conditions
(3.95) reduce to

0X; 0X;

SCipe = L pNSA o 3.96

dat apka =0, ( )
that is, the non-self-adjoint forces must be null eigenvectors of the matrix
(0X:/0pra)- When all ten conservation laws are worked out in detail, they
imply the following conditions

N
dopk-F%4 =0, (3.97.a)
k=1

N

SRS = o, (3.97.b)
N
dorpx FRS4 = 0. (3.97.¢)
k=1
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Note that these are conditions on non-self-adjoint forces for total phys-
ical quantities to be first integrals. As a result, conditions (3.97) are only
sufficient for the consistency of systems (3.93) and not necessary.

It is now trivial to see that consistent systems of class o do indeed
exist. In fact, the consistency of systems (3.94) has been reduced to that
of systems (3.97). These are functional systems of seven equations in 3N
unknown functions FkNaSA. Solutions in the functions FJ,XLSA exist beginning
with N = 3. The case N = 2 is a special one, inasmuch as the closure forces
the orbit to be in a plane. The number of Egs. (3.97) therefore reduces
to five, while the number of functions FﬁlSA is four. Despite the lack of
sufficient degrees of freedom, a solution still exists, and it is reviewed later
on.

The N-body, closed, non-self-adjoint systems of class o (N > 3) are also
instructive at all levels of study. For instance, conditions (3.97) might con-
ceivably be derived via arguments of global stability of the system achieved
via unstable orbits of the constituents.

In fact, condition (3.97.a) (which ensures the conservation of the to-
tal energy) is clearly a first condition for global stability via unrestricted
internal exchanges of energy; conditions (3.97.b) (which ensure the conser-
vation of the total linear momentum and the uniform motion of the center
of mass) are a clear expression of additional conditions of global stabil-
ity via unrestricted action and reaction effects with null total value; and
conditions (3.97.c) (which ensure the conservation of the total angular mo-
mentum) are clearly the last expected condition for global stability. (A first
statistical study of closed non-self-adjoint systems has been conducted by
Tellez-Arenas, Fronteau, and Santilli [32].)

However, as indicated earlier, conditions (3.97) are only sufficient for the
systems considered. When the broader class 3 is admitted, Egs. (3.95) are
generalized into the weak equality for invariant relations

Xi(t,a0) = M(t,a0)V;(t,a0) = 0, (3.98)

that is, they hold along the solutions of the systems. In turn, conditions
(3.98) themselves are only sufficient, inasmuch as the most general class of
the systems (class ) is that for which the conservation laws are bona fide
subsidiary constraints of the equations of motion. The study of these latter
systems is left here to the interested researcher.
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3.3.5 Symmetries, First Integrals, and Conservation Laws in Birkhof-
fian Mechanics

As is well-known, Galilei’s relativity in its contemporary interpretation is an
expression of some of the most advanced analytic, algebraic, and geometric
techniques of Hamiltonian Mechanics. But a necessary condition for a closed
system to be non-self-adjoint is that the vector field is not Hamiltonian
in the variables (t,r,p),p = mr, of its experimental observation. This
implies that, for systems (3.94), not only do we have the general lack of
Galilei form-invariance, but we actually have the lack of applicability of the
methodological foundations of the relativity. In turn, this creates the need
to identify covering methods before any attempt at the construction of a
covering relativity can acquire scientific value.

The direct universality of Birkhoff’s equations for the representation of
all closed non-self-adjoint systems was established in Chapter 4 of ref. [15],
together with the methods for the construction of the Birkhoffian repre-
sentation from the equations of motion, as well as the identification of the
underlying degrees of freedom. The representation can be constructed ac-
cording to the equations

OR, OR. ., . OB OR,
(Gar ~ 20 T 00 = 5+ 35
p=1,2,..,6N, (3.99)

where the Birkhoffian can be the Hamiltonian H, i.e., the total energy,
B=H=T(p)+V(r)+U(t,r,p), (3.100)

and the R-functions are obtained via one of the three methods of Corollary
4.5.1d, loc. cit. In this way, while all self- adjoint forces are represented by
the Hamiltonian, all non-self- adjoint forces are represented via the general-
ization of the canonical tensor wy, into the Birkhoffian form Q,, (which is
not possible in Hamiltonian formulations).

The transformation theory of Birkhoff’s equations is worked out in detail
in Chapter 5 of ref. [15]. Regrettably, we cannot possibly review it here for
brevity. The theory emerges as being a true covering of the transformation
theory of Hamilton’s equations. This allows the use of the Birkhoffian me-
chanics and its Lie-isotopic/symplectic-isotopic structure for the construc-
tion of the desired generalization of Galilei’s relativity.
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In the following, we shall review, for brevity, only the most essential as-
pects. To begin, Santilli formulated his covering theory in its broadest pos-
sible form, that of the contact geometry in unified local coordinates (3.80).
For this purpose, Birkhoff’s Eqs. (1.21) should be written in the unified
notation

Q. (b)dv” =0, p=0,1,2,..,6N,

(€, (b)db*) = (77 + )da” = 0, (3.101)
D)= (3t — e — (32 + Sy =0, '
where the first equation holds in view of the trivial identity
0B 0OR, 0B OR, (’9B 3R
— 4+ ——)da” Qre =0, .102
(28 P yia = (g + )0 (@) (o (3.102)

and where, as assumed in §1.3, we use the Birkhoffian B for the case of
its generic functional dependence, and the Hamiltonian H when specifically
restricted to be the total energy.

The reader should be aware that (Chapter 5, ref. [15]) all possible
smoothness and regularity preserving, but otherwise arbitrary transforma-
tions

b= {b"} = {t;7,p} — b'(b) = {¥"*(&)} = {{'(¢,7,0); 7 (&, 7, 0), T (t,7, D)} »
(3.103)
are contact-isotopic, i.e., they preserve the contact nature of the underlying
two-form

Qa(b) = #,,(b)db“ Adb” = IQL,,(b’)db’“ Ay = ()
b ~ bl
0 (V) = 5 Qas(6(¥)) 577 - (3.104)

To understand this property in more explicit terms, recall that Hamil-
ton’s equations preserve their canonical form only under a special class of
transformations, the canonical ones. As indicated in §1.2, when Hamilton’s
equations are submitted to a general, noncanonical transformation, they are
transformed precisely into Birkhoff’s equations. Unlike the simpler case of
Hamilton’s equations, the covering Birkhoff’s equations preserve their form
under the most general possible transformations.

This point is important for the covering relativity. In fact, in the con-
ventional Hamiltonian case, symmetries must be first canonical, and then
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form-invariant transformations. In the covering Birkhoffian setting the first

condition is unnecessary.
We reach in this way the following definition (ref. [15], p. 238):

DEFINITION 8.4 (Symmetries in Birkhoffian Mechanics):
The most general possible smoothness and regularity preserving
transformations (8.108) on R x T*E(3) are said to be symme-
tries of Birkhoff’s Eqs. (3.101) when they are identity contact-
isotopic, i.e., they leave form-invariant the contact tensor

o
0, (b)db” = %l;—ﬁ'aﬂ(b')db'ﬁ
b’ ’ l/¢]
= o a,g(b )db’” = 0, (3.105)

or, more explicitly, when the following particularization of trans-
formation rules (3.104) holds

- (85 + 28«)da” )
Qu(b)db”) = >
(B (2)) (<—-—a—-&>d (2 4 Buygy
ob'e
= (G Qas(¥)db”)
_ (8bla) aa’P+ at' )d i
06"\ (g — 358)da® — (2 + e )at
= 0, (3.106)

or

R.(t',d') = (R

“3 a ‘Baa/a )(t,’ a,)’

ot

B(t,a) = (B - By )t a)

FEquivalently, we have a symmetry when the primitive one-form
of Birkhoff’s equations (the integrand of the Pfaff’s action) is
form- invariant up to Birkhoffian gauges,

R,(a)da* — B(t,a)dt ¥ R,(b)db* = R, (b')db"™
= R0+ o e,
RL(W) = (Ru oo ). (3.107)
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Clearly, the symmetries of Hamilton’s equations are a particular case
of the symmetries of Birkhoff’s equations, in exactly the same way as the
transformation theory of Hamilton’s equations is a particular case of that of
Birkhoff’s equations.

Most important is the property that the new time t/, in general, can be
not only a function of all old variables t/(¢,r, p), but also the image of any
old variable (Corollaries 5.3.3a and 5.3.3c, loc. cit.).

We move now to the review of the generalized methods for the construc-
tion of first integrals from known symmetries of Birkhoff’s equations. For
this purpose we suppose that given Birkhoff’s equations possess the following
Lie symmetry group of infinitesimal transformations

=) =0 (4)

(b* + 6b*) = (b* + w'ék (b))
< t+ w'pit,a) ) ., (3.108)

a* + whi(t,a)

where the w’s are the infinitesimal parameters.
Then, via the direct use of variational techniques, the Pfaffian action
transforms according to

§A = /D B (b)db" — /D B (0)db™ = — /D d6G(b)], (3.109)

where Dy is the original (closed) interval of time, and Dy is its image under
the transformations.

By recalling the Pfaffian variational principle (equations (5.3.50), loc.
cit.), we can write along a possible or actual path E°

5 / dt R, ()b / it ()b b
[ arop = [ a0

= - [ @R +CENE)

= / dti[ﬁu(b)&ﬁ‘(b)-I-Gi(b)](Eo)

= —w / dt [Ru(t,a)7f(t,a) — B(t,a)pi(t,a)
- Gi(t,a)] (E") (3.110)

In this way we reach the following important result of refs. [1], [15]:
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Theorem 3.3 (Noether’s Theorem for Birkhoff’s Equations) If Birkhoff’s
equations admit a symmetry under an r-dimensional connected Lie Group
G, of infinitesimal transformations, then r linear combination of Birkhoff’s
equations ezist along an admissible path which are exact differentials, i.e.,

d e vl
EL(b) = Qu(b)b ey,

L(b) = Ru(b)af(b) + Gi(b)
= R,(t,a)f(t,a) — B(t,a)pi(t,a) + Gi(t,a),

i=1,2,..r (3.111)

A quite simple, alternative proof can be formulated via (a) the prop-
erty that Noether’s theorem also applies to first-order totally degenerate
Lagrangians L(t,a,a); (b) the property that Birkhoff’s equations coincide
with Lagrange’s equations in L(t,a,&); and (c) the specialization of the the-
ory to the case at hand. This alternative approach gives rise to the quantities

L(t,a,a) = R,(t,a)é" — B(t,a),

oL ; oL YD
- T e —
I = Bar ba (&'Ll‘a L)t + 6G(t,a)
= Ry6a" — (R,é" — R a* + B)ét + 6G

= w[Ru(t,a)if(t,a) - B(t,)pi(t,0) + Gi(t,a)],  (3.112)

Corollary 3.3.1. The quantities (3.111) are first integrals of Birkhoff’s
equations

—%Ii(b)l o = O (D)0 &4 (b)|go = 0. (3.113)

The covering character of Theorem 3.3 over the corresponding Hamil-
tonian formulations is expressed by the fact that, when the Pfafian form
becomes the canonical one (i.e., for R = R° = (p,0) and B = H), we have

L = praif® — Hp; + G;

0L ;. oL ;. )
Wka’?f —(5;;7;7"“ = L)pi + G; (3.114)
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which is the formulation of the conventional Noether’s theorem in Hamilto-
nian mechanics. Additional properties (such as the lack of necessary inde-
pendence of the r first integrals, the lack of their necessary direct physical
meaning, etc.) can be obtained via the extension to a Birkhoffian context
of the analysis of Chart A.9, ref. [15].

We now pass to the review of the Lie algebra structure of an r-dimensional
symmetry G, of Birkhoff’s equations. By recalling the lack of algebraic
structure of the general nonautonomous case (Chart 4.1, loc. cit.), we must
restrict ourselves for this purpose to semi-autonomous equations (1.21).
(The capability of reducing all nonautonomous equations to this form is
proved in §4.5, loc. cit.) Also, we assume the reader is familiar with the
problematic aspects related to the physical meaning of the Birkhoffian un-
der the reduction considered. Finally, we shall assume that Theorem 3.3
is applied to the reduced semi-autonomous form (rather than the original
nonautonomous form), because symmetries are not necessarily preserved
under the reduction considered.

An inspection of the notion of symmetries of Birkhofl’s equations soon
reveals that they are not canonical transformations. The necessary and
sufficient condition for infinitesimal transformations to be contact-isotopic
transformations is that they have the form

a* = a* + w' W (a) Z‘Z’ (t,a),

0R, OR,
da*  da¥
where the w’s are, again, the infinitesimal parameters and the X’s the gen-
erators of G.

The necessary and sufficient condition for a transformation of this type
to be a symmetry is therefore that it leaves the Birkhoffian invariant, i.e.,

OB iquwdXi _ B(a) + w'[B;X]

Bat dav
= B(a). (3.116)

o = (| =, (3.115)

B'(d) = B(a) +

Thus we reach the following additional result of refs. [1}, [20]:

Theorem 3.4. (Integrability Conditions for Birkhoffian Symme-
tries) Necessary and sufficient conditions for infinitesimal, contact- iso-
topic transformations to be symmetries of the autonomous Birkhoff’s equa-
tions are that the generalized Poisson brackets of the Birkhoffian with all the
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generators X;(a) of the transformations are identically null, i.e.,
[BX:]=0, i=1,2,..r (3.117)

The use of the isotopic generalization of Lie’s theory reviewed in §2 then
yields the following Corollary (see, in particular, the generalization of Lie’s
structure constants Ck into the structure functions C% “(a) of §1.3).

Corollary 3.4.1. The Lie algebra G, of an r- -dimensional Lie symmetry
group G, of Birkhoff’s equations is given by the vector space (over the field
F of real numbers) of the generators X; verifying Egs. (8.117) equipped
with the generalized Poisson brackets as the applicable realization of the Lie
product, and verzfymg the following closure rules expressed in terms of the
structure functions C (a)

[X:,X;] = CE(a) Xy (3.118)

In closing this topic, we can therefore say that each and every aspect of
the Hamiltonian formulation of symmetries, first integrals, and conservation
laws has been consistently generalized into a Birkhoffian form.

3.3.6. Construction of the Covering Relativity

At this point we review the definition of the covering relativity and then
identify methods useful for its construction. We shall then review a few
examples.

DEFINITION 8.5 [1], [15]: Santilli’s Galilean Relativity is
a description of physical systems verifying the following primary
conditions:

1. the relativity provides a form-invariant description of closed
systems of extended particles under action-at-a-distance self-
adjoint interactions as well as contact non-self-adjoint in-
teractions;

2. the relativity is based on the isotopic generalization of the
methodological formulations of Galilei’s Relativity, that is,
on the Birkhoffian generalization of Hamiltonian mechan-
ics, on the isotopic generalization of Lie theory, and on
the symplectic and contact geometries in their most general
possible local and ezact realizations; and
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3. the generalized relativity recovers the conventional one iden-
tically when the systems are reduced to pointlike constituents
with consequential lack of contact non-self-adjoint interac-
tions.

By keeping in mind the conditions for a new theory to qualify
as the covering of an ezisting one (§1.3), property 1 ensures that
the new relativity applies to a physical arena broader than that of
the conventional one; property 2 ensures that the new relativity
is based on a generalization of the methods of the conventional
one; and property 3 ensures the compatibility of the new relativity
with the conventional one.

On more specific grounds, property 1 is classically realized via
the construction of a ten-parameter Lie-isotopic transformation
group G’(3.1) which verifies the form invariance of systems (3.94)

G(B.1):b—V(b), b=(t,a),

o= o
ob* Ob'

F0) = THb)s0r = T00)
9 aur B

o = 1 (g

I = (1,T#(,a)), (3.119)

— f\/a(bl)

and whose generators X;(b) represent directly the conservation
laws of total quantities (8.94.c)-(5.94.f), i.e.,

X;(0)=0, i=1,2,..10. (3.120)

Property 2 is classically realized via the following formulations.

1. Isotopic generalization of Hamiltonian formulations; which es-
sentially consists of the representation of the equation of
motion via the semiautonomous Birkhoff’s equations

{[BR,,(a) _ O0Ry(a),., 9B(t,a)
da* da” Oa#
and related Birkhoffian covering of Hamiltonian formula-

tions (generalized canonical transformations, generalized
Hamilton-Jacobi equations, etc.).

la” }sa=0, (3.121)
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II. Isotopic generalization of Lie’s theory; which essentially con-
sists of the isotopic lifting of the universal enveloping as-
sociative algebra £(G(3. 1)) of Galilei’s algebra G(3.1) and
attached isotopic algebra G(B 1)

§G(3.1) = j—:-

F=FoGopG+G®---,
R = [XiX,] - (X + X; - X + X),
G(3.1) ~ [{(GEB.L)™ : [X5X,] = Ch(a) Xy, (3.122)

the Lie isotopic realization of the symmetry group G(3.1)
(here symbolically written prior to iso-scalar extensions)

A X,
. o __ koap k
G(3.1).a“—>a“_exp(09 ()8580)/‘
. aRﬁ aRa -1 O(ﬁ
- (” da® - daB ” ) )
(6%} = {to; %3 603 ¥0}, (3.123)

and related theory (generalized representation theory, etc. ).

III. Isotopic generalization of canonical geometries; which es-
sentially consists of the characterization of the (autonomous )
equations of motion as a Birkhoffian vector field

[ 1Q=-dB, (3.124)

with respect to the ezact but otherwise unrestricted symplec-
tic structure

= l(gfu gf:‘)da“ Ada?, (3.125)

and related symplectic as well as contact geometric formu-
lations (Birkhoffian realization of Lie’s derivatives, etc.).
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Finally, property 8 is classically realized via the additional
condition that, together with the reduction of systems (8.94.a) to
the self-adjoint and Galilei form-invariant form

a/ T a/ T —
(T#)|prsazg = ( skt / 1’55;1) = (pk éA k) = (2),
P4+ F FNSA—q fis

(3.126)
we have the reduction of the group G(3.1) to Galilei’s group
G(3.1), i.e., )

G(3 1)IFNSA..0 = G(3 1),
0X 0X, 0
koo k k k
exp(9 Q ﬁ( )8 B da a)lF'NSA—O _exp(9 aﬁa B fac )
(3.127)

When all these conditions are met, group G(3.1) is the iso-
topic covering of Galilei’s group, herein after called the Galilei-
isotopic group.

A rather direct way of arriving at the covering relativity is the following
[15]. When confronted with equations of motion violating Galilei’s form-
invariance, a frequent attitude is that of transforming the equations in a
new coordinate system in which the applicability of familiar notions is recov-
ered. It is intriguing to know that this is always possible. In fact, Theorem
6.2.1 of ref. [15] on the Indirect Universality of Hamilton’s equations has
the following consequence (which can be proved via the superposition of a
Daurboux’s and a canonical transformation).

Lemma 3.2. Consider a non-self-adjoint and Galilei form-non-invariant
system (3.94). Then a transformation always erists under which the trans-
formed system is Galilei form- invariant.

In particular, a transformation

a* — a™*(a) (3.128)

always exists under which the new system acquires the “free” structure
(I*#(a)) = ( P,

™ = (1‘“ a*), (3.129)
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with consequential form-invariance under Galilei’s group in the new coordi-

nates
50X} 0
da*P dax

However, this way of recovering Galilei’s relativity is mathematically
consistent but physically illusory. In fact, one of the uncompromisable con-
ditions for the physical meaning of abstract mathematical algorithms is that
they admit a realization in the frame of the experimental observation. It is
easy to see that the variables r*(r, p) and p*(r,p) in which symmetry (3.130)
holds are generally nonrealizable experimentally. In fact, the functional de-
pendence of the new variables in the old is generally nonlinear, therefore
implying the inability of setting measuring apparata along trajectories of
the type r* = aexpfr - p, etc.

This deficiency can be bypassed by transforming symmetry (3.130) from
the mathematical coordinates r*, p* to the original ones r, p via the inverse
a* — a(a*) of transformations (3.128). However, these transformations
must be necessarily noncanonical, trivially, because the original vector field
is non-Hamiltonian by assumption. One can then prove that, under such
an inverse transformation, the conventional relativity (3.130) in mathemat-
ical coordinates transforms into the isotopic covering relativity in physical
coordinates. In fact, under noncanonical transformations, Hamilton’s equa-
tions transform into Birkhoff’s equations; the conventional Poisson brackets
transform into the generalized ones; and the conventional canonical realiza-
tion of Galilei’s group transforms exactly into form (3.123) according to the

G(3.1) : & — a*'* = exp(#Fw®™

Yarb, (3.130)

rules axXr 9 0X), 8
k, af 9k = gkoob kO
O w 8a*P fa*e 6707 (a) 8aP dax
da® 8aP
afl _ ny
(a) = da " Garv
X; = X7 (t,a*(a)). (3.131)

We can therefore conclude by saying that Santilli’s covering relativity emerges
rather naturally, provided that excessive approximations of perpetual-motion-
type are avoided, and the local variables permitted are restricted to be those

of the experimenter.

3.3.7 Examples

We would like to review now a few specific examples.
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The intriguing classical case of two particles was first identified in the
original proposal for closed non-self-adjoint systems (ref. [2], pp. 622 ff), and
submitted as a Newtonian limit of conceivable structure model of the neutral
pion under deep mutual penetrations of the wavepackets of the constituents.
The case was then studied again in additional papers (see, e.g., ref. [6]). The
two-particle case was however put in a Birkhoffian/ Lie-isotopic form only
recently by A. Jannussis, M. Mijatovic’ and B. Veljanoski [93] who worked
out also a constrained version of the three-body case. In the following we
shall therefore review the main results of ref. [93].

It should be indicated here that, after “hadronization” (1.59) into their
corresponding operator forms, the examples reviewed below constitute the
classical foundations of the hadronic structure models of the light mesons [2]
and of the neutron [25,28] with ordinary particles as physical constituents
(§1.3). As a matter of fact, one of the objectives of the examples is that of
identifying the generalized action (and its degrees of freedom) for which gen-
eralized quantization (1.59) is applicable, resulting in Schrédinger-isotopic
equations of type (1.63). The classical examples under consideration here
are therefore particularly important for applications to particle physics.

It should be indicated that Relativity 3.5 was called in ref. [93] the
“Galilei-Santilli Relativity.” We have submitted here the terms “Santilli’s
Galilean Relativity” to stress the truly profound mathematical, physical
and epistemological (see below) differences between Galilei’s and Santilli’s
relativities.

Consider the case of a closed non-self-adjoint two-particle system for
which Eqgs. (3.94.a) become )

MR =0,
mi = f3AF) + FVSA(F, 7, 7), (3.132)
where
M= my + mg,
mime
my + my’

Fommntmne  ar—i—R, (3.133)
my + My

with the closedness conditions (3.97)

F1NSA — __F2NSA 1 FNSA,
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7 FNSA =
7x FNSA = o, (3.134)
The general solution of the above conditions is

FNSA _ g[’l—_§2n) _ ?:.gzn)}’

n=12,..., (3.135)

where g = const. and #?") is 2n-th derivative of the relative coordinate. We
shall take n = 1, i.e.,
FNSA = g(7) — 7). (3.136)

Note that force (3.136) is non-Newtonian and that the only admissible orbit
is the circle (think of gears turning one inside the other in which case the
mutual orbit is circular indeed and no elliptic orbit is possible) [2]. The
motion is then contained in a plane, as in the conventional Kepler case.

Further, we shall work in the Laboratory Frame. If we choose the
Coulomb force

k
’S — ~—
f A — _m(Tl - 7‘2), (3137)

where £ is a constant of proportionality, the generalized two- body Kepler
problem can be written for n = 1

m k

e NG
o m k - =
maTo = (7‘1 - 7’2). (3138)

m—g|f —
We can reduce equations (3.138) to the normal first-order form [2]
yis
m;

P2

[y

=0,

S e e

P
~ g Fonp (11— 72)
m k - e~
mg =P (11 = 72)
™ = (2k,9%)s Pk = (Pak,Pyr), k=1,2, (3.139)

where the last expression represents the planarity of the motion.
We can identify the Birkhoffian representation if we assume [93]

[S)

B = m-g 512 m-—g 522 k
o= T - |9
m 2m m 2my  |Fy — T
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m—g_, m—g_, ==
(B} = {"5, "5, 0,0, (3.140)

with
a= (F177—32,Z—)’1’ﬁ2)- (3141)

The Lie-isotopic tensor is then given by the simple scalar isotopy

9 (). (3.142)

(Quu) = =

By using the Birkhoffian gauge transformation (ref. [15], p. 62)

9G(t,a)
R — .R/ (t a) “(t,a) + ——‘éa’T"
B — B' = Eipr = B(t,a) — ath’ @) (3.143)
we have ., .,
by Pg
B =FE;: = _ ,
Et ¢ 2m1 + 2m2 |’l‘1 - 7—"2]
gt P P2
=—(so—+ 5 — 14
¢ m2m1+2m)’ (3.144)
and . .
Mg m—g gthHh _gtP
{R,}=A{ e T mmg}’ (3.145)
ie.,
oB' OR!
v "
Qi = ==+ L (3.146)

We can now obtain the contravariant Lie-isotopic tensor, which results to
be, in this case, of the simple form

Q) = Q) = riCaol (3.147)

The time component of Santilli’s Galilean Relativity is then given by [93]

12 __m A tl3 m
oy At e+t +
.; /i_ tlz m A tl3 m
T 7 2 m—g A _ _ m-g c _ ...

(a/#) —_ -72 = T2 + t moy 21! myp 3! 2 (3148)
;2;,1 ﬁl‘l‘t'—m‘“A‘*'z'm_ doeen
2
-t A - o ,,—{“,;C -



where
k

A= FoRp T
0= B - BB )
[P =P my me’ [ -t N my

The form-invariance of the equation of motion can then be easily verified.

The Lie-isotopic rotation group 0(2) can be constructed via the tech-
niques of §3.2. Note that, since the term m/(m — g) in generalized tensor
(3.147) has a definite signature, SO(2) is isomorphic or anti- -isomorphic to
S0(2).

We should recall for the reader’s convenience that, while the conventional
rotational symmetry SO(2) in a plane leaves invariant the familiar form
zz + yy = inv., the isotopic symmetry SO(2) leaves invariant the form

=i == 3.150
zqz + yqy = inv., q_m. (3.150)
The isomorphism between the rotational symmetry and its isotopic covering
is therefore trivial in the two-body case (but not so from the three-body
case on).

The construction of the remaining “components” of the Galilei-isotopic
relativity is trivial for the two-body case and shall be left to the interested
reader, jointly with the proof of its local isomorphism with the conventional
components.

We consider now the three-body Kepler problem in the presence of non-
self-adjoint internal forces which has been treated for the first time in ref.
[93]. The equations of motion are:

. mim mims, ., -
mTy = ——1“—2-(7‘1—7‘2)'— 13 3(71—7’3)4'F1NSA’
7'12 Tis3
. mom mMam,
MoTy = ———g——l(rl - 7y) — —23(7'2 — 73) + FNSA
T12 23
- mMam mam
msfs — 3 1 (7‘3 — 7‘1) - = 2(7‘3 — 7‘2) -+ FNSA (3151)
13 23
where
T2 = 7—"'1 - ’7‘23 ,T13 = Fl - ‘f"3l, and To3 = Fz — 7—"3 . (3152)
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From closedness conditions (3.97) we obtain for the components of the
non-self-adjoint forces:

r3 — Tg
Fpo=D2—"Fy,,
Ty — I3
ng = (D —1)F1.1:7
3 —
Fly:y ylFla:,
T3z — Iy

F2y = D22 Ys — Y2 Fip ,
1 — I3

Ty — T3 Iy — T3

Flz = Fla: )
3 — 21
Fe=D3"2p,,
Ty — T3
Fop=(D2T2 B 7 p (3.153)
1 — T3 Ty —~ T3

where 1o )
zl(hn - 7)1 (3.154)

and Fi. is arbitrary. Under the assumption that
= Loy — o) (L (ry — 1)) F (3.155)
- 9 1 3 di 2 3 y .

where F' is an arbitrary function, formulae (3.153) take the following sym-
metrical expressions:

Fio = (r1® — 139)(7 — 73)(72 — T3)F
Foq = (%% = r2)(7y — 73)(71 — 7)F
F3, = —F1g — Faq
= (Tk,Yks 2), @ =2T,Y,% . (3.156)

However, it is computationally quite elaborate to obtain the components
of the Lie-isotopic tensor from this general form of non-self-adjointness. For
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this reason Jannussis, Mijatovié and Veljanoski choose the following special
case [93]:

FP4 = (15 - 73),
F'2NSA = 7(F3 - Fl) ’
PS4 = y(f1 - 7)), (3.157)

where 7 is a resistive coefficient.

We can see that the above forces are Newtonian and non-self-adjoint and
obey the closedness conditions (3.97.a) and (3.97.b). However, condition
(3.97.c) leads to the subsidiary constraint

T3 X To + Ty X 73 + T3 X 71 = c, (3158)

where ¢'is a constant vector. According to a definition given above, we are
therefore dealing with a closed non-self- adjoint system of class 7.
The normal first-order form is [93]

P
5 m1
™1 P2
-2 zi
s | _ —
7 ___1r2(7.1 —7) - (,,,1 — )+ 7(L fn% = 0. (3.159)
% —Ja—wz-m)— (7“2—7‘3)+’r(L 2
° *‘—33—1(7‘3 - 71) = (7‘3 - 72) + 'r( - E)
If we choose
23? 13% ﬁ% MMy  Mim3z  MaMm3
B = + + - - - = Eio s
2m1 2m2 2m3 T12 T13 Ta23
{R#} = {ﬁl + 77—"3)ﬁ2 + 77-"1’53 + 7F276’ 61 6} ’
a = (71,72, 73, P1, 02, 3) , (3.160)
the Lie-isotopic tensor is given by
(0)oxo (Doxs
(@) = 03x3 TWsxs  —v(Daxs | (3.161)

(=1)oxo —7(1)3xs 0O3x3 Y(1)3xs
¥(1)axz —7(1)sxs O3x3
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The various components of Santilli’s Galilean Relativity can then be com-
puted explicitly (see ref. [93] for details).

The (local) isomorphism between the “time components” of the conven-
tional and generalized relativities is, again, trivial. The isotope S 0(3) of
the full rotation group can again be constructed from the knowledge of the
generalized tensor, Eq. (3.161), and the techniques of §3.2.

Since the elements of the tensor have a topologically defined character
(constants for each fixed 7), one can prove again the (local) isomorphism be-
tween SO(3) and SO(3). The nontriviality of the generalization, however, is
now more transparent than in the simpler two-particle case. Unlike SO(3),
its covering ?5(3) leaves form-invariant an infinite- family of ellipsoids char-
acterized by all possible values of 7. The form-invariance of the equation
of motion under SO(3) also holds, and its proof is left to the interested
reader. The (local) isomorphism between the remaining components [those
of “acceleration type”] is then expected from similar arguments.

These results illustrate the nontriviality of Santilli’s covering relativity
over the conventional one. In fact, the generators and, therefore, the physical
conserved quantities remain the same. Nevertheless, in the transition from
the conventional to the covering relativity we see the emergence of internal,
non-self- adjoint nonhamiltonian forces which are rendered representable by
structurally more general analytic, algebraic and geometrical formulations.

3.3.8 The Covering Lie-Admissible Formulations

The reader should be aware that the covering relativity reviewed here is
only a particular case of that proposed in memoir [1], and worked out in
more details in monograph [16], which is of the more general Lie-admissible
type. The primary conceptual difference between these two relativities is
the following. While the Lie-isotopic relativity is specifically constructed to
represent total conservation laws of closed/isolated systems, the still broader
relativity of Lie- admissible character is conceived to represent time rates of
variation of physical quantities for open systems of extended particles under
external contact, nonlocal and nonhamiltonian forces. In particular, while
Lie-isotopic symmetries are used to represent conservation laws, the still
more general Lie-admissible symmetries are used to represent time-rate-of-
variations of physical quantities. The (mathematical and physical) covering
nature of the latter over the former notions is evident. Regrettably, we
cannot possibly review this still broader approach here (although we hope
to do so in a separate review at some future time). The existence of the
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broader Lie-admissible relativity was used by Santilli to illustrate a central
point: the lack of terminal character of physical theories, beginning with his
own theories, no matter how broad they appear to be (see the hierarchy of
conceivable relativities depicted in Fig. 15 of §3.5).

3.3.9 Epistemological Comments

We now pass to the review of certain epistemological aspects. At this point
it becomes essential to avoid preconceived ideas, merely established because
of their extended use rather than on true technical grounds.

The epistemological differences between Galilei’s and Santilli’s relativi-
ties are several and quite deep. We can consider here only a few. To begin,
we must stress again the differences in physical attitudes. When dealing with
Galilei’s Relativity, one customarily assumes first a basic symmetry, and
then searches for physical systems that are compatible with that particular
symmetry. In Santilli’s Relativity this attitude must be reversed: one must
first select a system of equations of motion as established by ezperimental
or other information, and only then construct a relativity that is compatible
with it. The insistence in the former approach is so questionable, to have im-
plications of scientific ethics, as it is the case when excessive approximations
of physical reality are involved. In fact, the insistence on Galilei’s Relativity
as the sole possible relativity literally implies the acceptance of the perpet-
ual motion in our environment. Santilli’s position is quite firm on this [1]:
any proposed generalization of Galilei’s Relativity is evidently debatable as
part of the essential scientific process of trial and error, but the need for a
suitable generalization of Galilei’s Relativity in Newtonian Mechanics must
be simply out of the question.

A second aspect deserving a specific comment is the contemporary atti-
tude of associating only one symmetry with each given relativity. This is cer-
tainly correct for the arena of applicability of conventional relativities (closed
self-adjoint systems), but it is definitely erroneous for structurally more gen-
eral systems (closed non-self-adjoint systems). In fact, the nonhamiltonian
forces result in a generalization of the Lie product, and, in particular, of the
basic tensor #¥ which characterizes the structure of the Lie-isotopic trans-
formation group. Different nonhamiltonian forces then result into different
tensors 2*¥ and, thus, different Lie-isotopic transformations.

It follows that, while Galilei’s relativity 3.2 characterizes only one sym-
metry, Santilli’s covering relativity 3.5 characterizes an infinite family of
covering symmetries all admitting Galilei’s symmetry as particular case.
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This is another uncompromisable point, for the evident reason that, again, if
one insists in selecting only one Lie-isotopic symmetry, excessive restrictions
on the physical systems follow, with the consequential problems related to
excessive approximations recalled earlier.

A further aspect where preconceived ideas may lead to misconceptions
is the customary linear structure of relativity transformations in contempo-
rary physics. The abandonment of linearity in favor of nonlinear relativity
transformations is another uncompromisable point for a more adequate rep-
resentation of Nature. In fact, the insistence in preserving linearity for all
possible relativities of Newtonian mechanics directly implies, again, the ac-
ceptance of the perpetual motion in our environment. An inspection of the
various examples of Lie-isotopic groups [1], [15] reveal that they are in fact,
generally nonlinear. Santilli’s Relativity 3.5 therefore characterizes generally
nonlinear symmetry transformations. A most intriguing aspect is that all
these nonlinear transformations can be cast into an isotopically linear form
(§2.4), which is essentially achieved by incorporating all nonlinear terms in
the isotopic unit, thus leaving the structure of the theory formally linear.
The physical and mathematical implications of this property are also in-
triguing although they are more transparent in the operator formulation of
the theory.

Still another aspect deserving a comment is the routine tendency to
characterize relativities via the so-called manifest symmetries [15], i.e., sym-
metries that can be essentially identified with a visual inspection. This is of
course the case for the simple systems of Galilei’s Relativity. When consider-
ing physically more complex systems, this attitude too must be abandoned,
again, as a condition for a more adequate representation of physical reality.
In fact the Lie-isotopic symmetries are, in general, nonmanifest. This point
was illustrated in the original proposal [1] by showing that some of the rela-
tivity transformations are so complex, to be characterized by transcendental
functions.

The reader should keep in mind that the convergence of power- series
expansions is established (under the assumed topological restrictions) for
the isotopically lifted Poincaré-Birkhoff-Witt theorem (§2.2). As a result,
all possible Lie-isotopic groups (3.123) admit convergent and explicitly com-
putable, finite, transformations. Thus, Santilli’s methods always permit the
explicit computation of the covering symmetry transformations, from the
sole knowledge of the old transformations and of the generalized Lie tensor
Q¥ representing the nonhamiltonian forces. The point is that the reader
should not expect simple, easily computable symmetry transformations for
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rather complex physical systems.

Still another point deserving an epistemological comment is the vexing
problem of inertial reference frames. As well known, contemporary relativ-
ities are specifically restricted to inertial frames. But these frames do not
exist in our Earthly environment, nor are they expected to be available in
the future, owing to the lack of inertial character of our Solar system as well
as our Galaxy. Owing to this occurrence, Santilli’s Relativity is specifically
conceived for noninertial reference frames, as stressed since the original pro-
posal [1]. More specifically, Relativity 3.5 is restricted, by construction, to
the actual reference frame 7 of the observer which is essentially noninertial.
The covering relativity then maps noninertial frames into noninertial frames.
This is another uncompromisable point for attempting a better representa-
tion of physical reality. In fact, the insistence in preserving inertial frames
would imply, as a consequence, the admission of only linear transforma-
tions. In turn, this would imply again the acceptance of perpetual-motion
approximations, thus preventing a more adequate representation of physical
reality.

Numerous epistemological aspects (such as the apparent characterization
of a privilege reference frame, that at rest with the medium in which motion
occurs) will not be considered here because not yet sufficiently investigated
in the current literature, to our best knowledge.

In summary, the assumption of the equations of motion as the funda-
mental quantities of the theory implies all the epistemological consequences
considered here, such as: the need for an infinite family of relativity trans-
formations one per each individual system; the intrinsic nonlinearity of the
relativity transformations, although expressible in a formally isotopic-linear
form; the general nonmanifest character of the relativity symmetries; and
the intrinsically noninertial character of the covering theory.

It is remarkable that, despite all these profound differences, Galilei’s and
Santilli’s Relativities coincide at the abstract, coordinate-free level. In fact,
- under the assumed topological restrictions, the Galilei group (3.89) and its
covering (3.123) are locally isomorphic [15].
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3.4 Lie-Isotopic Generalization of Einstein’s Special Relativ-
ity
3.4.1 Introductory Remarks

The construction of the Lie-isotopic generalization of Finstein’s Special Rel-
ativity is another central objective of Santilli’s studies under the following
major structural conditions:

o The generalized relativity should recover the Galilei- isotopic relativity
(§3.3) under the nonrelativistic limit (or group contraction);

o The generalized relativity should be a covering of the conventional one
in the sense identified earlier (see the end of §1.3); and, last but not
least,

o The generalized relativity should be admitted, locally, by a conceivable
Lie-isotopic generalization of Einstein’s Gravitation (see next section).

The generalized relativity verifying the above conditions shall be called
hereon Santilli’s Special Relativity (or Santilli’s Isospecial Relativity when
emphasis is needed on its isotopic character). Its mathematical foundations
are those submitted in memoir [1] of 1978, as reviewed in §2. The phys-
ical foundations are essentially a relativistic generalization of the Galilean
one, also submitted in memoir [1]. The generalized relativity was formally
submitted in a paper of 1983 [18], following the completion of the studies
on: the space-time formulation of the Lie-isotopic symmetries (§2.4); the
isotopic generalization of the group of rotations (§3.2); and the isotopic gen-
eralization of the Galilei Relativity (§3.3).

Important foundations of the generalized relativity are also submitted in
paper [14] and monograph [16] which preceded ref. [18]. The Isospecial Rel-
ativity then reached its final form for classical non-linear, non-Hamiltonian
and non-local systems in memoir [24c]. Additional aspects are studied in
paper [27]. Operator formulations have been presented in Refs. [25], [27]
and [28].

Of utmost importance for the new relativity is Theorem 2.9 (which is
indeed quoted in page 549 pf ref. [18]). In fact, the generalized relativity is
ultimately a realization of this theorem, as the reader will see.

To emphasize the speculative nature of the studies, the reader should be
aware that the physical departures of Santilli’s from Einstein’s Special Rela-
tivity are rather deep, inasmuch as each and every law of the old relativity is

146



replaced with a covering law. As an illustration, the new relativity predicts
the existence of physical conditions (within hyperdense hadronic matter)
under which massive, physical, ordinary particles can (locally) attain speeds
higher than that of light in vacuum (hereinafter indicated with Co)-

To emphasize the thrilling aspect of the covering relativity, the reader
should be equally aware that, after careful examination, we have found no
experimental, phenomenological or other evidence capable of disproving the
novel predictions. On the contrary, all available phenomenological informa-
tion (e.g., that on the anomalous dependence of the mean life of unstable
hadrons with speed) appear to confirm the novel predictions quite clearly,
including that of causal physical speeds higher than c,. The predictions had
simply escaped other research on Lorentz noninvariance because of the lack
of rigorous mathematical tools capable of constructing a covering relativity.

Needless to say, the resolution of the validity or invalidity of the new rel-
ativity will occur at some future time via direct experiments on fundamental
space-time symmetries. The need for conducting these crucial tests, which
have been proposed since quite some time but essentially ignored until now,
will be stressed at the end of this chapter (§3.5.18).

A true understanding and appraisal of the new relativity requires the
mind to be free of preconceived ideas, essentially established by prolonged
use, rather than real physical support. In approaching Santilli’s Special
Relativity, the reader is urged to abandon the central physical arena of
Einstein’s Special Relativity (motion of point-like particles in vacuum), in
favor of a much more complex physical reality (e.g., extended wavepackets
moving within hyperdense media composed of wavepackets of other parti-
cles). No experimental, theoretical or epistemological information accumu-
lated throughout this century on Einstein’s Special Relativity is therefore
applicable to Santilli’s much more complex physical setting. New studies,
specifically tailored for the new relativity, must therefore be conducted.

During the preparation of this review, we had access to the files of the
Institute for Basic Research in Cambridge, Massachusetts, which include
a number of virtually completed, yet unsubmitted manuscripts by Santilli
following works [14], [18]. In fact, manuscripts [24-28], available since 1985,
were released for printing in conjunction with this review. It is appropriate
here to stress that this section contains no new results besides those already
published in the quoted literature. We were authorized to use the unpub-
lished manuscripts only to gain insights for a more mature presentation of
published material.
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Owing to the novelty of the new relativity, and despite a number of inde-
pendent contributions that have already appeared in the literature (reviewed
later on), a number of truly intriguing and fundamental problems remain
open to this writing at the classical level (let alone the corresponding op-
erator level for particle physics), such as: the proof that Santilli’s Special
Relativity recovers the Galilei-isotopic relativity under the nonrelativistic
limit; the comstruction of the representation theory of the Lorentz-isotopic
group (only the fundamental representation has been achieved until now);
the isotensorial products of these isorepresentations for the treatment of
composite systems; etc.

This review will achieve a primary objective if it succeeds in stimulating
this much needed independent research.

3.4.2 TFoundations of Einstein’s Special Relativity

As clearly stated in the historical contributions by Lorentz, Poincaré, Ein-
stein, Minkowski, and others (see, e.g., ref. [94] and quoted historical litera-
ture), the body of formulations today known as Einstein’s Special Relativity
was conceived for the description of:

1. particles which can be effectively considered as being point- like,

2. while moving in vacuum (empty space) conceived as homogeneous and
isotropic; and

3. under the conditions that the setting is classical (i.e., the action A >
R) and gravitational effects are ignorable(i.e., the space has null cur-
vature).

The above conditions clearly include the electromagnetic interactions of
charged particles in vacuum, as well as a vast number of other cases of
physical relevance.

The relativity is based on the form-invariance of the following separation
in Minkowski space M(z,n,R)

n = (nu) = diag(1,1,1,-1), (3.162.a)
e?=zatpz = 2tq,eY =2l +2%2% 4 2%2% — 2% (3.162.b)
¢, = speed of light in vacuum , (3.162.c)

et = e, pu,v=1,234, (3.162.d)
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under the largest possible group of linear transformations. This yields the
celebrated Lorentz transformations, e.g., for motion along the third space
component

oV =gt
o = g2
g% = 7(:”3 - ’I)t), 7=(01- ﬂz)_’lﬂ, g=uv/c,
g = y(z* - B23/c,) . (3.163)

The relativity constructed via Lorentz transformations characterizes well
known physical laws, such as: the relativistic composition of speeds

v1 + V2

I/tot = ﬁ”yt?,

(3.164)

with consequential impossibility for causal physical signal and /or processes
to exceed the speed of light in vacuum (under conditions 1, 2, 3 above); the
constancy of ¢, for all observers; the time dilatation

At =¥ - o¥ = yar, = 2= o (3.165
B e e Dk 1%

the Lorentz contraction
Al =23 — 23 = /1~ B2Al, = /1 - f2(ad, — 23,), (3.166)
the Doppler’s effect and related aberration
w' =wy(l - Pcosa),
cosa’ = (cosa— B)(1 - Bcosa); (3.167)

and other laws.

Owing to incontrovertible experimental confirmations, Santilli [18] as-
sumed that Einstein’s Special Relativity is ezact under conditions 1, 2, and
3 above. The same assumption is evidently embraced in this review.
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3.4.3 Survey of Lorentz Noninvariance Research

Ref. [18] begins with a review of independent research on conceivable con-
ditions under which the conventional Lorentz symmetry is not expected to
be ezact. The understanding tacitly assumed hereon is that its approzimate
character remains out of the question.

Authoritative doubts on the exact validity of the Lorentz symmetry un-
der physical conditions different than those conceived by Lorentz, Poincaré,
and Einstein have been expressed since the early part of this century. For
instance, in regard to the interior of strongly interacting particles, Fermi
[95] clearly expressed in 1949

“doubts as to whether the usual concepts of geometry hold for
such small region of space.”

The legacy of Fermi and other Fathers of contemporary physics was based
on the expected nonlocal nature of the strong interactions (§1.3) which im-
plies a breakdown of the mathematical foundations of the Lorentz symmetry
(e.g., its topology), let alone its physical properties.

The above legacy remained unanswered for decades, until systematic and
quantitative studies were initiated in the ’60s.

Consider an unstable hadron moving in a particle accelerator. Its center-
of-mass motion must strictly obey Einstein Special Relativity because mo-
tion occurs in vacuum under long range electromagnetic interactions. The
actual size of the hadron is therefore ignorable and all Einstenean conditions
1, 2 and 3 (§3.4.2) are met.

Deviations from the special relativity (and the Lorentz symmetry) are
conceivable only in the interior of the particle. One of the most direct ways
in which such possible interior deviations can manifest themselves to the
outside is via deviations from the prediction of Einstein Special Relativity
regarding the behavior of the mean life 7 with the speed of the hadron, i.e.,
via deviation from the Einstenian law originating from Eq. (3.165)

T=To; v =14/1—v?/ck. (3.168)

The initiation of quantitative phenomenological studies on the above
“Lorentz noninvariance” are usually associated in the literature with the
research by Blockhintsev [96], Redei [97], and others who suggested a mod-
ification of law (3.168) of the type

T = 1,7(1 4+ 10%42%4?) , (3.169)
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where a, is a fundamental length.

Numerous additional studies followed along similar lines in various branches
of physics. For instance, Kim [98] provided, via the use of quantum field
theory, specific percentage predictions of deviations from law (3.168) at a
number of different speeds.

A considerable phenomenological study was conducted by Nielsen, Picek
and others (see ref. [99] and quoted papers) for the weak decay of hadrons
within the context of unified gauge theories. In these studies deviations from
the Lorentz symmetry occur in the Higgs sector of spontaneous symmetry
breaking. The use of available experimental information then leads to the
following modification of the Minkowski metric [loc. cif]

Nuv = Guv = Muv — Xuvs

X = diag(%a, %a, %a,a), (3.170)
with generalized mean life
4 2
T =roy(1+ ";,7 ), (3.171)
where the Lorentz asymmetry parameter o assumes for pions the value
a=(-3.79+£1.37) x 1073, (3.172)
and for kaons
a=(0.6140.17) x 1073, (3.173)
with weighted average
a = (0.54£0.17) x 1073, (3.174)

A first experimental study regarding the anomalous energy-dependence
of the mean-life as well as of other parameters of the K° — K° system was
conducted by Aronson et al. [100]. The data which were obtained from a
series of regeneration experiments at Fermilab (in the energy range Ex =
30 — 100GeV) specifically indicate that the values of the mass difference
Am = my, — mg, the lifetime 7g, the C'P-violation parameters |, _| and
tan¢,_ as determined in the K° — K -system rest frame, depend on the
velocity of this rest frame with respect to the laboratory. The authors
arrived at the conclusion that the experimental results, if correct, cannot be
ascribed to an interaction of kaons with an electromagnetic, hypercharge,
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or gravitational field, or to the scattering of kaons from stray charges or
cosmic neutrinos. In order to describe the anomalous behavior of these four
parameters, denoted by X, they introduced the slope parameters b&N) defined
by

x = xo(1 + 0{Ma),

a=Eg/m, N=1,2, (3.175)

and presented an elaborated analysis of the origin of these b&N). We note
that Eq. (3.175) exhibits in fact, up to a factor 7, Blokhintsev-Redei-like
behavior as it was described earlier for the lifetimes of unstable particles,
Eq. (3.169).

A second experimental study was conducted by Grossman et al. [10]
who verified the Einsteinian behavior of the K° — K~ system for energies
from 100 to 400 GeV, in disagreement with the results of the preceding
experiment [100]. However, experiments [100] and [101] refer to different
ranges of energies (30-100 GeV for the former and 100 to 400 GeV for the
latter). As a result, none of them can disprove the other. Also, experiment
[101] was conducted under considerable theoretical assumptions in the data
elaboration, such as the assumption of a rest frame in which there is no CP
violation, in disagreement with the results by Kim [98].

The only possible scientific conclusion at this time is therefore that the
situation is unsettled, and the problem of the behavior of the meanlife of
unstable hadrons with speed fundamentally open on both theoretical and
experimental grounds, and that it will remain unsettled until resolved by
a comprehensive series of experiments covering the entire range of energies
from 30 to 400 GeV and more, as well as of more direct type without exces-
sive theoretical assumptions in the data elaboration.

The preceding phenomenological papers [96-101] were studied by Car-
done, Mignani and Santilli [102] who reached the following results:

1. The available phenomenological data on the behavior of the meanlife
with speed ezclude rather convincingly that the geometrization of the
interior of hadrons can be exactly done via constants. Generalized
metrics such as those by Nielsen and Picek [99] must therefore be
solely considered as a first approximation.

2. The generalized metric apparently holding in the interior of hadrons
is expected to have a nonlinear dependence on the velocities exactly as
stated in ref. [100]. Moreover, such a nonlinear dependence should be
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considered, in turn, as a mere approzimation of the ezpected, ultimate,
nonlocal character of the structure of hadrons, as originally stressed in
ref. [2].

3. If, indeed, properties 1) and 2) above are confirmed by future data,
they may imply a reinspection of the meanlife of unstable hadrons at
rest, as currently provided by the Particle Data Group. In fact, these
meanlifes are not measured at rest, but at different speeds. The mean-
lifes are then scaled down to at rest condition, but under the assump-
tion that their behavior with speeds is exactly Einsteinian. Deviations
from this Einstenian character then imply a revision of the meanlifes at
rest currently known. In particular, available phenomenological data
appear to support an increase of the mainlifes of current mainlifes of
the Particle Data Group with about 60% probability.

Cardone, Mignani and Santilli [102] then concluded their studies by
showing the compatibility of the seemingly discordant measures [100],[101]
via the representation of the K° particle as an isotopic minkowski space, thus
providing additional motivations for the open character of the problem, and
for the need of additional, comprehensive tests.

In regard to theoretical studies on Lorentz asymmetry, the literature
is rather vast indeed and only a few representative contributions can be
indicated here.

Gasperini has conducted a number of investigations such as: the ultra-
relativistic particle motion within the context of gauge theories, with local
broken gauge symmetry [103]; the possible breaking of the Lorentz sym-
metry in the very early stages of the universe [104]; the possible origin of
Lorentz asymmetry from strong gravity [105] (see also papers [106]); besides
specific studies via Santilli’s Lie-isotopic (and Lie-admissible) techniques we
shall review later on.

The conceivable Lorentz noninvariance of the primordial fluid was also
studied by Rosen [107].

Ellis et al. [108], Zee [109] and others have studied the hypothesis of a
possible decay of the proton from the viewpoint of Lorentz noninvariance
within the context of grand unified theories. In particular, these authors
have essentially confirmed Fermi’s statement of some four decades earlier to
the effect that in the small region in the interior of the proton “anything”
can happen.

Aringazin and Asanov [110] have studied the gravitational and other
consequences for a possible, local, Lorentz noninvariance from the viewpoint
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of the Finsler geometry [111, 112].

In regards to efforts for the construction of a possible generalization of
Finstein Special Relativity besides those of ref. [18], the most notable theory
is provided by Bogoslovski’s Special Relativity [113], which is based on the
following Finslerian generalization of the Minkowski metric for homogeneous
but anisotropic spaces

249, 8" = 2P (=162 ) [(~2 1pe %) s (3.176)

where (v°) = (vo1),#% = 0 is a vector along the direction of anisotopy
and r is a scalar parameter. Bogoslowsky’s generalization of the Lorentz
transformations are given by expressions of the type

=1z,
.’1:2/ — :L‘2,
2% =5(z® - pz*), B=v/eo,
¥ = F(z* - Bz3), (3.177)

where the new parameter
B=ve,, 7=n[1-0v/co/(1+v/co)]!?, (3.178)

characterizes the Lorentz asymmetry.

In this way, Bogoslovski constructed a bona-fide generalization of the
Lorentz group, although the methods were those of the conventional Lie’s
theory, and the relationship to the Lorentz group remained unknown.

Yet another generalization of the Lorentz transformations is that pro-
vided by Edwards [114] and, independently, by Strel’tsov [115], which can
be written

oY = 22
- b
2 = g2,
1.1 1
3 _ 3 4
e ={[1+ 5(@ - Zg)”]x — vz},
1,1 1 v
4 _ 4 3 4 __
¥ =y{[1+ §(§ - Eg)v]m - c{ch }, zf=t, (3.179)
with related invariant
1.1 2,2 3.3 4 g z® 4
zhga’ =z'z! + 2% + 2°2° — 2%[efcd — (c—o - 23)3;—4—]2: , (3.180)
1 2
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where 7 has the conventional value, and c$, c represent the speeds of light
in opposite space directions.

The Edwards-Strel’tsov transformations are clearly based on a possible
anisotopy of time and recover the conventional Lorentz transformations for
] = ¢§ = c,.

A comprehensive presentation of the above (and other) topics can be
found in a recent monograph by Logunov [116]. More recent research by
Strel’tsov can be found in ref. [117], which include an extension of the
anisotopy to the space components. Further work on anisotropy deserving
a mention is that by Ikeda [118].

The above outline of research on Lorentz non-invariance (outside Lie-
isotopic studies), even though far from complete, is sufficient for the scope of
this book. In fact, as we shall see, all the models reviewed in this section (and
more) shall result to be particular cases of Santilli’s Special Relativity [18],
trivially, because of the arbitrariness of the generalized metric g appearing
in the isounit [ = g~1, as shown by Aringazin [119].

The objective of ref. [18] was, however, not limited to the construction
of a covering relativity that could unify all available research. An addi-
tional objective was to prove that, under suitable topological restrictions,
the Lorentz symmetry can be proved to be still exact, of course, when real-
ized at the covering isotopic level.

We shall now enter into our presentation of the new relativity beginning
with the arena of its physical applicability. We shall then review the gener-
alizations of the Minkowski space identified in ref. [18] and subdivide them
into three classes owing to the variety of physical possibilities. A review of
the new relativity will then follow.

3.4.4 Arena of Applicability of the Generalized Relativity

The earlier, well written, treatises on Einstein’s Special Relativity stressed
explicitly its conception and limited applicability to point-like particles (see,
e.g., the title of Chapter VI of ref. [120]). Unfortunately, this sound scien-
tific attitude was terminated in more recent times, perhaps because of the
overwhelming successes of the relativity for electromagnetic interactions.

In a series of articles [1], [2], [3], [4] (as well as in monograph [5]), Santilli
brought back to the attention of the physical community the intrinsic limi-
tations 1 and 2 of §3.4.2 of Einstein’s Special Relativity, and the existence
of physical conditions beyond those of the original conceptions, under which
the applicability of the relativity is questionable.
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By continuing his studies on the Galilean setting, Santilli [18] submitted
a generalization of Einstein Special Relativity for the description of closed-
isolated systems of:

1’ extended-deformable particles which cannot be effectively approximated
as being point-like;

2’ when moving in a physical medium which is generally inhomogeneous
and anisotropic;

3’ under the condition that quantum mechanical effects are ignorable (4 >
k), and gravitational profiles are absent (null curvature);

under the further condition that the generalized relativity is a covering of
the conventional one, i.e., it recovers the latter identically when physical
conditions 1), 2°) and 3’) above recover 1), 2) and 3) of §3.4.2.

As the reader can see and as expected, conditions 1’), 2’) and 3’) above
are a relativistic generalization of conditions 1’), 2’) and 3’) of §3.3.3 for the
Galilean framework. They have been specifically and primarily conceived
for the representation of hadrons as closed-isolated systems of extended-
deformable particles whose constituents possess extended wavepackets mov-
ing within a medium composed of other wavepackets (the “hadronic medium”
[2]). Nevertheless, conditions 1), 2’) and 3’) above apply also to a variety
of classical cases such as: motion of light in liquids (Cherenkov light); mo-
tion of charged particles in metals (e.g., the motion of electrons in metals,
possibly along Graneau’s [121] formulation of the Ampére-Newman electro-
dynamics); interior problems of planets (e.g., Jupiter) with locally varying
angular momentum and other physical quantities; redshift of light propagat-
ing within inhomogenous and anisotopic media (as existing around quasars);
etc.

The reader should be aware that Santilli conceived his Lie-isotopic rela-
tivity specifically for closed-isolated systems. This is a consequence, on one
side, of assuming the total physical energy H as the generator of the time
evolution (as in Einstein’s case) and, on the other side, of the Lie charac-
ter of the theory, that is, of the antisymmetry of the Lie-isotopic product
[A;B] = —[B;A]. Under these conditions, the only possibility for the total
energy is that of being conserved according to the familiar rule

iH=[H,H]=0, H=T+V. (3.181)
For the case of systems that are open, for which H = f(t) # 0, Santilli
submitted in the final part of monograph [16] a further generalization of
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his Lie-isotopic relativity, this time of Lie-admissible character with prod-
uct (A5B) = ARB — BSA which is neither symmetric nor antisymmetric,
(A}B) # £(B;A). In this case the total energy can indeed be the generator
of the time evolution as well as be nonconserved

iH = (H}H) = f(t) # 0. (3.182)

The covering Lie-admissible relativity reduces to the Lie-isotopic one under
the condition

(A;B)y_, = [4;B]. (3.183)

This review is restricted to the Lie-isotopic case. The reader should be
aware that, as it is the case for the Birkhoffian mechanics [15], the Lie-
isotopic theory can also represent open systems. In this case the generator
of the time evolution is the Birkhoffian B # H with rule

iH = [H;B] = f(t) # 0. (3.184)

A knowledge of these structural foundations is essential for a true un-
derstanding of the following review, and will be tacitly assumed hereon.

Notice, as stressed earlier, that the space (empty space) remains perfectly
homogeneous and isotropic. The fundamental inhomogeneity and anisotropy
of Santilli’s Relativities originates from the physical medium in which motion
occurs.

3.4.5 Isotopic Generalizations of the Minkowski Space

The next step of ref. [18] is the construction of suitable generalizations
of the Minkowski space capable of: a) representing the generally inhomoge-
neous and anisotropic character of the theory; b) admitting the conventional
Minkowski space as a particular case; and c) allowing a formally isolinear
theory while the underlying transformations are intrinsically nonlinear.

From hereon, we shall call Santilli’s spaces all generalizations of the
Minkowski space obeying conditions a), b) and c) above. Due to the large
variety of admitted cases, these spaces will be divided below into three
classes of increasing complexity and methodological needs.

The main idea of ref. [18] is that, in the transition from empty space to a
physical medium, the Minkowski metric 7,, is generalized (“mutated” [16])
in a form g,, verifying conditions a) and b) above. The generalized metric
9uv is assumed to be Hermitean, nonsingular and sufficiently smooth but
otherwise with an arbitrary dependence in all needed local quantities, such
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as: space-time coordinates = and velocities & (see below); index of refraction
n; density p; temperature 7, etc.

G = Gu (T3 &30 4475 .0). (3.185)

which can be interpreted as a geometrization of the physical properties in-
herent to the medium considered.

The Hermiticity and smoothness of g,, implies the existence of its re-
duction to the canonical (diagonal) form

g = diag(g11, 922, 933, 944) & Tn o 6nb , (3.186)

which is the only one considered in ref. [18] as well as in this review.

The condition of nonsingularity implies the existence everywhere of the
inverse T~ which, as now familiar, is the generalized unit I =771 of the
theory. The form g = 674 shall be of use in gravitational studies (§3.5).

We remain with the central condition ¢) of achieving isolinearity. This is
achieved in ref. [18] via the techniques of “hadronic mechanics” (§1.3). Let
R be the field of real numbers and let M(z,n,R) be the Minkowski space.

DEFINITION 3.6 [18]: Santilli’s spaces M(z,g, R) are given
by all possible isotopes of the Minkowski space M(z,n,R) where:
the space-time coordinates z remain unchanged; the metric n is
generalized into Hermitean, nonsingular and sufficiently smooth,
but otherwise arbitrary forms g with a dependence on all needed
local quantities g = g(z;2;nyp;T5...); and R is the isotope of R
characterized by (see Eq. (1.38) for the complex case)

R={N|N=NI,NeR,I=T""}. (3.187)

The lifting R — R allows the achievement of isolinearity, as per condi-
tion c) above (§2.4). In fact, the linear transformations

M(z,n,R): 2’ = Az, (3.188)
are now lifted into the isotransformations
M(z,g,R): ¢’ = Axz % ATs, (3.189)

which are formally linear, yet intrinsically nonlinear because of the general

dependence
Axz = AT(z;¢;,...)2 . (3.190)
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Scalar values on M(z,7n,R) are in R,
M(z,n,R) : 2 = a#p,, 2" otz er , (3.191)
while scalar values on AZ(x, g,R) are in R
M(z,n,R): 2 = atg et M otor e R . (3.192)

It is this interplay between the isotopic transformation theory and iso-
scalars that ensures isolinearity. For details, the reader is recommended to
consult Myung and Santilli [36].

It is intriguing to note that, without a lifting of the field R — R. (jointly
with that of the Minkowski space and of the Lie product), the generalized
relativity of ref. [14] would have been mathematically inconsistent.

In practical calculations, the lifting R — R can be ignored, as it is the
case for hadronic mechamcs because of a property similar to Eq. (1.40)
where the measured numbers are the conventional ones. In fact, by keeping
into account the multiplication in R

Nl * Nz déf NlTNQ = N1N2f = N:]\Vz, (3193)
the scalar action R * M coincided with the conventional one B x M
Nsz = Nz. (3.194)

After clarifying the above mathematical structures, ref. [18] makes cer-
tain assumptions that are embraced hereon. In essence, we shall deal with
three quantities:

A—Fourvectors. Their components are the same as those in M, but their
scalar value is given by the contraction in M ie., z? = a:“gww with
the clear understanding that the correct form is (3.192). The terms
isofourvector or isocoordinates shall be sometimes used to prevent con-
fusion with the conventional case.

B—Threevectors. Their components are the same as those in the isotope
E(r,g,R) of the Euclidean space E(7,§,R) used for the isorotation
theory (§3.2) and the generalized Galilean relativity (§3 3). The con-
traction (“square”) of three vector is then given by # = r tgi;m7 with
the understanding that a law of type (1.187) is more rigorous. Again
the term isovector may be occasionally used to stress the departure
from conventional Euclidean space.
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C—Scalars. These are ordinary numbers N € R, with the understanding
that a more rigorous form is that of Equation (3.187). We shall at times
call an ordinary number an isoscalar to stress the tacit assumption of
structure (3.187).

Santilli’s spaces as per Definition 3.6 above are rather numerous indeed.
We shall therefore introduce the following classification.

DEFINITION 8.7: Santilli’s spaces M(w,g,f{.) are classified
into

e Spaces of Class I, denoted Ml(x,g,f{), when the metric g
preserves the topological properties of the Minkowski space,
i.e., it is of the particular type

g = diag(b?,b2,02,~b2), T = diag(b?, b3,b%,62),

2>0, p=1,234, (3.195)

and the space has null curvature, i.e., the Christoffel sym-
bols of the second kind are identically null

def 1
FZ.V = = pa(g,ua v+ Govp — g‘w,g) =0,

= —6g“” =1,2,3,4; 3.196
g;w,v - 6:2,'”, By Vo= 152,90, ( . )

e Spaces of class II, denoted MH(:I:,g,R) when they are
still flat, i.e.,
T, =0,p=1,2,3,4, (3.197)

but the generalized metric g loses, in general, the topological
properties of the Minkowskt metric; and

e Spaces of Class III, denoted Mzn(x,g,ﬁ) when they are
curved, i.e.,

p 20 (3.198)

For the purpose of achieving a covering of Einstein’s Special Relativity,
Santilli restricted the presentation of ref. [18] to spaces of the first class,
M 1(z,g, R) In fact, the reader now familiar with the Lie-isotopic theory can
expect that the assumption of spaces M I(m,g,R) assures the admission of
the conventional theory as a particular case, while the Lie-isotopic covering
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of the Lorentz symmetry is expected to be isomorphic to the conventional
one (see below).

Intriguingly, the spaces M 1(z, g,f{) are sufficient to unify all research on
Lorentz noninvariance reviewed in §3.4.3, as we shall see.

The reader should be aware that the Lie-isotopic generalization of the
Lorentz symmetry holds also for an unrestricted metric g, including the case
when g is Riemannian or of more general gravitational nature.

An advance knowledge of this point is essential for the reader’s under-
standing of the continuity of thought in the transition from the relativistic
framework of this section to the gravitational context of the next section.
Note that the contact interactions due to motion in resistive media are gen-
erally independent of the coordinates z, but dependent on the velocities
& and other quantities. A considerable class of physical conditions under
consideration in this paper therefore verifies the condition of null curvature,
e.g., (3.196), via the stronger conditions

09
Oz*

Unless otherwise specified, metrics of this latter type are assumed hereon in
the section.
Notice also the enclosure properties

=0,p=1,2,3,4. (3.199)

M; C My C My, (3.200)

which illustrate the possibilities of increasing generalizations offered by the
Lie-isotopic theory.

A final comment on the definition of the isounit I is in order. In this
section we have assumed the conventional Minkowski space as our origi-
nal space with metric 7. The isotopic spaces are then characterized by
the deformation T' of metric 7, as per Eq. (3.186), with particular case
(3.195). The above assumption evidently anticipates the construction of the
Lorentz-isotopic symmetry via the use of the generators and parameters of
the original Lorentz symmetry.

Under these assumptions, the isounit must be the inverse of the defor-
mation element T, [ = T~1, while the assumption [ = g~1 = (T'n)~! would
lead to incomsistent results. Note that for Santilli’s spaces of Class I, the
above assumptions imply that the isounit is positive definite.

An alternative would be to assume as original space the Euclidean space
in four dimension with metric § = diag(1,1,1,1), E(z,6,R). Santilli’s
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spaces M(z,g,R) can also be interpreted as isotopes of E(z,§,R). How-
ever, in this case, the deformation of the original metric § is given by g itself,
g =T6 = g. As a consequence, in this latter case the isounit must be given
by the inverse of the full metric, I = ¢g~1, and the assumption I=171,
where T is given by Eq. (3.195), would be inconsistent.

This second assumption implies that the Lorentz-isotopic symmetry must
be constructed by using the generators and the parameters of the rotational
group in four dimension, O(4), much along the construction of the 0(2.1)
isotope from the original O(3) symmetry of §3.2.

In conclusion, one could construct the conventional Minkowski space
M(z,n,R) as an isotope of E(z,6,R), and then build Santilli’s spaces
M (z, g,R) as isotopes of M(z,n,R). Alternatively, one could ignore the
Euclidean spaces E(z,8,R), and build the isotopes M(z,g,R) of M(z,n,R).
The reader should be aware that, in his original derivation [18], Santilli fol-
lowed the former approach, evidently to provide a deeper illustration of the
possibilities of his isotopies. In this monograph we shall follow instead the
second approach mainly for simplicity of presentation.

3.4.6 Physical Interpretation of the Generalized Metric

Before passing to the review of the generalized relativity, it may be rec-
ommendable to point-out the physical meaning of the generalized metrics
of Santilli’s spaces. Stated differently, our problem is to clarify the fate of
light when dealing with physical media because, after all, these media are
generally opaque to light.

The space components of metric (3.186)

(9i;) = diag(g11, 922, 933) (3.201)

is the metric of the isotope E(r,g,R) of the Euclidean space E(r,g,R), Eq.
(3.28) hereinafter assumed as being dimensionless. It remains fundamen-
tally unchanged in the transition to Santilli’s (3 4+ 1)-dimensional isotopic
spaces. All the physical consideration on metric (3.201) of §3.2 therefore
apply for this section. For example metric (3.201) can represent a deforma-
tion of the particle considered caused by external forces, the inhomogeneity
and anisotropy of the medium considered, etc. (See Appendix C for appli-
cations.)

Almost needless to say, the Lie-isotopic generalization 0(3) of the group
of rotations O(3) reviewed in §3.2 is a central part of the new relativity, and
its knowledge shall be tacitly implied hereon.
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The remaining component g44 of metric (3 186) must evidently be also
dimensionless, and we shall put for isospaces M

def .
9aa T —b3(&5n5575.), zt=cot, & =22 (3.202)

Our problem is the physical interpretation of the “velocity” ¢ = bycq.

The simplest possible cases are those of fluids transparent to light, such
as water. In these cases c clearly represents the speed of light in that par-
ticular medium, according to the familiar law ¢ = ¢, /n < ¢,, where n is the
index of refraction. Note that, at a deeper study, n is not a constant, but
possesses a rather complex functlonal dependence precisely of type (3.202).

At times, fluids may be opaque to light but not to other wavelengths.
In this case Santilli [loc. cit.] suggests the replacement of light with any
electromagnetic wave that can propagate within the physical medium con-
sidered.

Nevertheless, physical media are generally opaque to all electromagnetic
waves. This is the case of metals (whether solid or liquid), or more complex
media such as the structure of nuclei, of hadrons or of collapsing stars.
Evidently, no electromagnetic wave can classically propagate within these
media in a conventional sense (the propagation of virtual or physical photons
is excluded here because of quantum mechanical nature).

In these more general cases, the quantity ¢ = byco generally represents a
purely geometrical object wzthout necessarily representing a physical, actual
speed. The above conclusion can be best reached by considering spaces M;y;.
In this case we are dealing with curved spaces in which each element of the
metric, including g44, has a purely geometrical interpretation, as familiar in
the theory of gravitation. This situation is merely extended by the notion
of isotopy also to flat spaces of type Mj.

The occurrence can be illustrated by considering the medium composed
by one kaon, and Nielsen-Picek’s generalization (3.170) of the Minkowski
metric, i.e.,

1 1 1 .
g=(1- 3% 1- 3% 1- 3% -(1+a)), z*=cot, (3.203)
in which case
F=c(1+a)>c?,

a=(0.54£0.17) x 1073 . (3.204)
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The best conceivable interpretation of component (3.204) is that it is a
purely geometrical quantity. In fact, we know at this time of no electromag-
netic wave that can classically propagate through a kaon.

Note that value (3.204) characterizes a speed ¢ higher than the speed of
light in vacuum c,. But, as correctly stated in refs. [14], [18], this does
not necessarily mean the existence of physical speeds within the kaons higher
than c,. The latter problem can only be investigated later on when reviewing
the characterization provided by the generalized relativity of the maximal
speed of massive, physical particles within the kaon structure.

As a further comment, note that the explicit form of the generalized
metric must be obtained from experimental, phenomenological, or other
considerations, but it cannot possibly be predicted by the generalized rela-
tivity owing to the endless variety of possible media. This can be illustrated
by comparing Nielsen-Picek’s metric for the kaons, Eq. (3.204), with that
of the pions, Eq. (3.172), in which case

d=c2(1+a)<

o= (-3.79+1.37) x 1073 (3.205)

Thus, in the transition from kaons to pions, the Lorentz asymmetry pa-
rameter o changes not only in value, but also in sign. With the advancement
of our knowledge, one should therefore ezpect in general different metrics for
different hadrons, with a complexity predictably increasing with mass (evi-
dently because the size of hadrons does not increase with mass thus resulting
in an increase of density with mass). Highly complex metrics for superdense
hadronic matter as occurring, say, in the core of collapsing stars, are then
conceivable as limit cases.

As a final comment, it should be stressed that generalized metrics of
the Nielsen-Picek type (3.203) with constant elements are potentially mis-
leading, unless taken in their proper perspective. In fact, as stressed in
§3.4.3, they constitute first approzimations of metrics that are expected to
be intrinsically nonlinear in the velocity, where the nonlinearity is, in turn,
expected to be an approximation of the ultimate, nonlocal nature of the
interior dynamical problem [102].

3.4.7 Lie-isotopic Generalization of the Lorentz Symmetry

We shall now review a central part of refs. [18], [26], the Lie-isotopic gener-
alization of the conventional Lorentz group, in its broadest applicable form,
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that for spaces of gravitational types M 11z, g, .ﬁ.) with diagonal separation

o = zhgu,1” = algual +22g2? 4+ 2293323 + 2tgat, 2= cot,
(3.206.a)
1
Ty = 597 (Guow + Govn = Guo) # 0. (3.206.b)

Regrettably, we have not been authorized to present unpublished ex-
tensions of the Lorentz isotopy available in Santilli’s manuscripts, e.g., for
non-diagonal metrics which are applicable to gravitational theories more
readily than separation (3.206).

Nevertheless, spaces M;;; are sufficient for our ob jective: show that the
Lie-isotopic theory allows the construction, apparently for the first time, of
the symmetry transformations in their explicit form for arbitrary gravita-
tional theories, let alone for arbitrary flat deformations of the Minkowski
metric [26].

For clarity of notations, let us first review the structural foundations of
the Lorentz group. Consider the linear transformations in Minkowski space
M

' = Az, 2" =2'Al (3.207)

Under the condition that they leave invariant the conventional separation
(3.162), one obtains the familiar rules

A'pA = ApAt =gt
AR nuuAuﬂ = U;ﬂl ’
det(A) = =1, (3.208)

which characterize the siz-parameter Lorentz group on M, usually denoted
O(3.1), with familiar components 01 (3.1) and 01(3.1) of which 01(3.1)
forms a connected Lie transformation group, i.e., it verifies the conditions

A(u)A(—u) = I = diag(1,1,1,1),
AWAQW) = Aw + ),
A(0) = I, (3.209)

where the six parameters u = {5, W} represents the three Euler angles § and
the three parameters @ of the Lorentz boosts.
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The remaining components form a group only when combined to O_TF(3.1)
owing to the presence of the discrete transformations (inversions)

Pz = P(7,t) = (-7,1),
Tz = T(F,t) = (F, —t),
PTz = PT(7,t) = (-7, —1). (3.210)

Let J and M be the generators of O_T,_(3.1) in their fundamental repre-
sentation, e.g., that of ref. [122], p. 40 (see also Eqs. (3.8) for the space
generators)

0 0 0 0
J1 = Joz = g ~01 (1) g )
0 0 0 0
(00 -1 0
R=ta={ 0 0 ol
\o 0 0 o0
0 100
Jz = Jig = _01 8 g g )
0 00 0
0 00 -1
w3800
\-1 0 0 0
0 0 0 0
wmsae 8 88 3).
0 -1 0 0
00 0 0
Ms = Msy = 8 g g _01 (3.211)
\o 0 -1 0

The structural foundations of the connected Lorentz group O (3.1) are
then given by the now familiar forms:
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A) The Enveloping Associative Algebra 6(01(3.1)) characterized by the
ordered, infinite dimensional basis

¢golB.a): I, X XiX;, XiX;Xk...,
1<j, 1<j<k,
X = {f9 M}: 4,J,k=1,2,3; (3212)

B) The Lie Group 01(3.1), characterized by convergent infinite series in
5(01(3.1)) here formally written

04(3.1) : A8, ®) = (o exp(Jid) ) (M yexp(Mrun)le), (3.213)
C) The Lie algebra 01(3.1) characterized by the familiar commutation
rules in the neighborhood of the identity I € £(01(3.1))
[Ji, Ji] = —€ijud,
(M, M;] = +eijnde = —nuacijidy ,
[Ji, Mj] = —eije My (3.214)

where the product is, of course, the simplest conceivable Lie product
of matrices A, B

[A,B]e = AB — BA. (3.215)
The second-order Casimir invariants are then given by the familiar
expressions
- 3 1
C1=J% -~ M* = (JaJs + — My My) = -3I,
k=1 T44
Lo 3
Co=J M=) JiM; =0, (3.216)

k=1
where one should keep in mind that the selected basis verifies the

property
Jp=~Jy, M= M. (3.217)
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We now pass to the review of the isotopic lifting of the Lorentz group
0(3.1) which is one of the central objectives of this review, and which was
presented for the first time in ref. [18]. The isotopy will now appear trivial to
the reader with some familiarity with the techniques; yet it’s mathematical
and physical implications are far from trivial.

The first step is to lift the linear transformation theory on M, Eq.
(8.207), into its isotopic generalization on space My with separation (3.206)

~ o def 3 .
o' =Axz = AT(z;8;5n50575, .02,

ot = ot « A & gIPAL (3.218)

The emerging transformations are generally nonlinear, although isotopically
linear.

The second step is to impose the form-invariance of separation (3.206.a)
which yields the isotopic conditions

oz =aga' = 2t x Alghl vz = algz =2l o2, (3.219)
which can be explicitly written
Algh = AgA* = g7,
det(A) = +det(]), (3.220)

and constitute a clear isotopy of conventional conditions (3.208).

The theory reviewed in §2, particularly the isotopy of Lie’s theorems
(§2.3), ensures that the transformations A preserve the six parameters u =
{8,} of the original transformations A(u), and form a siz- parameter, con-
nected, Lie-isotopic transformation group on Mjy, i.e., they verify the iso-
topic group laws ) )

A(w) * A(—u) =1,
Au) * A(u') = A(u') * A(w) = A(u + o),
A(0) =1 (3.221)

The explicit form of the isotopic lifting of the Lorentz group is then
provided by the isotopes of structures A), B) and C) above. For later needs,
we introduce the following redefinition of the basis

Xy = {Jx, Mp},
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j]_ — 92—21/293_31/2'11; jz — gil/zg;S1/2J3; j3 = g;ll/:zg;zl/zJS ,
Mi =gt My, k=1,23. (3.222)
We then have the following results of ref. [18].

A’) the isotopic lifting 5(01(31)) of the enveloping algebra 5(03(3.1))

characterized by the infinite (ordered) isotopic basis (§2.2)

5(01(3.1)) : f, Xi, X; *Xj; X% Xj * Xk,. N

i<j, i<j<k, (3.223)
I=11.

B’) The isotopic lifting OA_T,,(Sl) of the connected Lorentz group 01(3.1))
characterized by convergent infinite power series expansions in £(O] (3.1))
here symbolically written

~ ~ — 3 ~ 3 ~
01(3.1) : A8, @) = (][] “exp(Jibi)lg) * (T * exp(Mewy)l ), (3.224)
k=1 k=1

which can be reformulated in §(OL(3.1)) for computational facility

01(3.1):A(6,®) = (i, exp(Jegfe)le)(TEey exp(Mrguy)e)]
= exp A(6,w)l;

(3.225)

C’) The isotopic lifting 61(31) of the Lie algebra 03_(3.1), which is char-
acterized by the isocommutation rules

[Ji3d;] = —eijndx,

[MiM5) = —gaseiji i,

~ - ~ _1 2 ~
[JiM;] = ~g;; e in My,

(3.226)
where the Lie product is now less trivial than (3.215)
[4;B] € [4,Bl;=A+B-Bx 4,
= ATB - BTA. (3.227)
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The isocenter of the algebra is now given by the isotopic Casimir
operator of the first order, I, and those of the second-order

. s 1 s 8. . . 1 ~ .
Cr=T"+ —M* =) (JrgJe + —MTM,) = -3,
944 k=1 G44

3
Co=J+M=> (JiTM)=0. (3.228)
k=1

As expected for mathematical consistency, the values of the Casimir
invariants are isoscalar, i.e., elements of R and not ordinary scalars
(this clarifies the need for the lifting R — R pointed out in §3.4.5).

The isotope O(3.1) of the entire Lorentz group O(3.1) is achieved by
including [18] the isodiscrete transformations (or isoinversions)

Pxg =P« (7 t)= P(7,t) = (—=71),
Txe = Tx(Ft) = T(71) = (F,-1),
I/”\I‘*x = P*T*m:’i‘*ﬁ*x
= PTz = PT(7,t) = (-7, —1), (3.229)
with explicit realization
P=pi, T=TI, PT=(PD)I. (3.230)

The above results then leads to the following property which is the most
important application of Theorem 2.9.

Theorem 3.5 [18] The Lie-isotopic generalization O(3.1) on spaces
Miri(z, g, R) with metric (3.206) of the Lorentz group O(3.1) on M (z,n,R),
hereinafter called Santilli’s (or Lorentz-isotopic) group leaves form-invariant,
by construction, the separation in M In(m,g,R), i.e.,

0(3.1) tzt oz = 2lg(z)z = 2" 0 2’ = 2"g(2(a"))2’

o' = A0, @) *z = MG, DTz . (3.231)

An inspection of the results then leads to the following.
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Corollary 3.5.1 [18]: The process of Lie-isotopy is insensitive as to whether
Santilli’s spaces M(a:,g,f{) are flat or curved.

An inspection of isotopic expressions (3.224) or (3.225) yields the follow-
ing additional property.

Corollary 3.5.2 [18]: The isotopic transformations (3.224) can be explic-
itly computed from the sole knowledge of the conventional Lorentz generators
J and M in their fundamental ({z4) representation and the generalized met-
ric g.

In fact the assumed topological restrictions on g assure the existence of
an isotopic Poincaré-Birkhoff-Witt theorem (§2.2). The proof of the conver-
gence of exponentials (3.224) to a finite form is then reduced to the proof of
the convergence of the conventional exponentials (3.213).

Corollary 3.5.3 [18],[26]: The Lie isotopic theory allows the ezplicit con-
struction of the form-invariant transformations not only for flat general-
izations Ml(z,g,f{) and M[I(a:,g,f{) of the Minkowski space M(z,n,R),
but also for all permitted gravitational models on Mi(z, g,R), whether of
conventional or generalized type (see nest section).

An inspection of isotopic commutation rules (3.226) and the use of the
theory of §2.4 (see also the classification of the isotopes O(3) of §3.2) leads
to the following additional property.

Lemma 3.4 [26]: The isotopic groups 6(3.1) on MH[(x,g,R) are gen-
erally nonisomorphic to O(3.1). Depending on the assumed metric and its
topology, 0(3.1) can be isomorphic to any siz-parameter group of Cartan’s
classification, i.e., 0(3.1), or 0(2.2), or O(4) or other groups.

The reader should note the appearance of the structure functions of
§2.3 in isocommutation rules (3.226). Remarkably, Santilli identified the
need to replace the structure constants with structure functions on pure
mathematical grounds, while studying the isotopic generalization of Lie’s
Second Theorem [1]. This was several years before the essential appearance
of these functions in actual models.

Recall that the central idea of the Lie-isotopic generalization of a given
Lie symmetry is to leave unchanged the parameters and the generators of
the theory, and generalize instead the Lie product. In the preceding analysis,
Santilli left the parameters of the Lorentz group unchanged under the lifting,
but changed the generators via redefinitions (3.222). This was done to reach
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form (3.226) of the isocommutation rules which is more suitable for the proof
of the isomorphism of O(3.1) with O(3.1) of the next section.

The reformulation in terms of the original basis (3.211) is straightfor-
ward. Consider that basis in the form M,,, and recall that their commuta-
tion rules are given by

[Map, Mys) = —1ayMps + Nas Mpy + Mgy Moas — N6 Moy,
n = diag(1,1,1,—1). (3.232)
It is then simple to show that, under isotopic lifting, we have the isocom-
mutation rules
V3051 = —€ijugrkd
[Mi\M;] = —gaacijidk
[JisM;] = —gjj€ijeMy (3.233)

which can be written in the unified notation [26]
[Maﬁ;M'yﬁ] = —ga'yMﬁﬁ + gaéMﬁ'y + gﬁ'yMa6 - gﬁ6Ma'yy

g = diag(gi1, 922, 933, 944)- (3.234)

Note that, despite the similarities of rules (3.232) and (3.234), the alge-
bras are not generally isomorphic because of the possible different topologies
of the metrics 7 and g. Also, the reader should keep in mind that isocom-
mutation rulesh(3.234) occur for a generally curved space, although of the

isotopic form Myys.

The extension of the results to the Poincaré algebra (also called the
inhomogeneous Lorentz algebra P(3.1) = 0(3.1) @ T(3.1), where T(3.1)
is the Lie algebra of the group of translations in conventional Minkowski
space, has been investigated by Santilli in ref. [26] for the case when g does
not depend on space-time coordinates z. Consider the isocomposition of a
Lorentz-isotopic transformation A and of an isotranslation T on spaces M

{A,T}*w :f&*x-}-a,
a = (a*) = (&,a*) = const., (3.235)

by keeping in mind that the product of two such transformations {Ay, Ty}
and {A2,75} follows the isotopic rule

{Al,Tl} * {A2,TZ} = {]\1 * Ag,f’l + ]\2 * TQ} (3236)
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Let P, be the generators of translations in conventional Minkowski space
(recall that the M, generators are also the conventional ones). Then, the
Lie-isotopic generalization of the Poincaré algebra is given by the isocom-
mutation rules [26]

. [MogiMys] = —garMps + gas Mpy + 95y Mus — 9ps Moy,

PB.1): [MugiPy] = gpyPa— Yoy Pp,

[PaiPs] =0,
(3.237)
(where the reader should keep in mind the diagonality of the P’s).

Again, despite the similarity of isoalgebra (3.237) with the conventional
one, the algebras P(3.1) and P(3.1) are generally nonisomorphic.

We are now in a position to elaborate in more details the comments
at the end of §3.4.5 regarding the appropriate selection of the isounit. In
the original proposal [18], Santilli selected for isounit the inverse of the full
metric, I= g~", because he constructed his isospaces and isotopic 0(3 1)
in thelr most general possible form, i.e., as isotopies of the conventional
Euclidean space in four dimension and of the conventional orthogonal group
O(4), respectively. In fact, the generators of 0(3 1) in paper [18] are not
those of the noncompact 0(3 1) group, but those of the compact O(4) group.
The conventional Minkowski space and the conventional Lorentz groups are
therefore particular isotopies in Santilli’s general construction of ref. [18],
of E(z,6,R) and O(4).

In this monograph we have elected, for simplicity, to construct the iso-
topic spaces and groups as mutations of the conventional Minkowski space
and Lortentz group O(3.1), respectively. Since the basic metric is now as-
sumed to be the Minkowski one 7, the isounit must be given by the inverse
of the mutation T of 7, i.e., I=1- 1 g = Tn (§34. 5). For consistency,
however, we had to assume as basic generators, those of the noncompact
0(3.1), Eq. (3.211), along paper [26].

The two constructions are manifestly equivalent. As stated by Santilli
himself [26], the latter construction is preferable for possible applications in
particle physics because of the positive-definite character of the isounit and,
thus, the more transparent pos51b111ty of preserving the abstract axioms of
relat1v1st1c quantum mechanics on Mj.

The extension of the above result to the lifting P(3.1) of the Poincaré
group P(3.1) is straightforward [26] and essentially provided by the semidi-
rect product of the isotopic group OI_ (3.1), Eq. (3.224), times the isotopic
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group of translations
T(3.1): T(a) = exp(P¥nua”)|s = Iexp(P*g,,a")le, (3.238)

with similar procedures for the inclusion of the isoinversions. For these and
other aspects we refer the reader for brevity to the locally quoted paper.
In order to identify the isotopic Casimir operators, we have to review
the means of lowering and raising the indices of the various quantities [26]
which follow conventional geometrical (e.g., affine) approaches. Let |g| be
the determinant of g, and introduce the contravariant metric tensor g*”
defined by
9" gar = 6, (3.239)

with solution
l9"] = lgw |, (3.240)

i.e., because of the diagonal character of the considered metrics,
9% =g (3.241)

Then, the covariant (contravariant) vectors z,(P*) are characterized by
relations of the type

z, = guz’, z¥=g"z,, P,=g.P’, P'=g"P, (3.242)
and verify the identities

gz’ = z,9"z, =2tz =, 2"
o 4
z'gi;a? + 2% gaan”, (3.243)

as the reader can verify.
Similarly, for tensors we have the raising of the indices

M*™ = gt ghP Mg, (3.244)

with similar forms for other cases.
After these preliminaries, one can introduce the isotopic generalization
of the Pauli-Lubanski four-vector (or Pauli-Lubanski isovector) on isotopic

spaces Mrr [26]
1
W, = §g#aﬁ7Maﬂ % P7, (3.245)
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which verifies the properties
{Mozﬁ;W"/] = gﬁnya - ga’yWﬁa
[PasWp] = 0, (3.246)

where use has been made of the isotopic rule [36]
[A5B x C] = [A}B] * C + B + [A;C]. (3.247)

It is then easy to see that the center of the Poincaré-isotopic algebra
P(3.1) is given by the isounit | = g~ !, the quantities in R

2 = (Prgup*)f = (Pigi; P + Plgy PYI,

2 = (Whgu W) = (WigyWi + WiguWh], (3.248)

as well as any of their iso-combinations.

The deviations of the numerical values of the above isocasimirs from
the conventional ones is the mathematical foundation of Santilli’s concept
of “mutation” of elementary particle when immersed within dense hadronic
matter [2]. This important new concept is illustrated in Appendix C via the
1sotop1c lifting of field equations [27], i.e., field equations that are covariant
under P(3.1).

3.4.8 Lie-isotopic Generalization of Einstein’s Special Relativity

Following ref. [18], we now restrict the analysis to Santilli’s spaces of the
first class, Eq. (3.195), with fourth component (3.202), i.e.,

Mz, g, R):z% = ztgz” = z1bizt + 220222 + z3b22® — o1p2at
gt =cot, Ob,/0z=0, b,>0, c=cobs, (3.249)

where the diagonal elements have a positive-definite character in the consid-
ered region of isospacetime. The subsequent property follows from Theorem
2.9 and the preservation by spaces My of the topological character of the
conventional Minkowski space.

Theorem 3.6 [18]: The Lorentz group O(3. 1) on Minkowski space M (z,n,R)

and all possible isotopes O(3.1) on spaces M 1(z,9,R) are (locally) isomor-
phic, and they coincide at the abstract, realization-free level.
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To put it differently, there ezists only one abstract Lorentz group, say
O(3.1), that realized in terms of a Lie algebra with abstract product ab— ba,
where “ab” is an unspecified Lie-admissible product in a coordinate free
form. Then there exist infinite varieties or realizations O(3.1) in terms of
the product ATB — BT A where g = T7 possesses the same topological
structure of the Minkowski metric. Finally, there exists the “simplest pos-
sible realization” O(3.1), that of the contemporary literature with trivial
Lie product AB — BA and the Minkowski invariant. All these different
realizations are geometrically equivalent, and algebraically isomorphic.

Owing to the convergence of exponentials (3.225) (Lemma 3.3), the iso-
topic transformations can be easily computed for each given generalized
metric g (which is the only unknown of the expansions).

In the case of motion along the third axis and for arbitrary elements
b2, c2, exponential (3.225) on M7 yields the following generalization of the
Lorentz transformations (3.163) introduced in ref. [14]

10 0 0 z!
A 0 1 0 0 z?
r— -
d=Axz=1,4 g cosh(wec) — sinh(wc) z2 |’ (3.250)
0 0 —%— sinh(we)  cosh(we) z*
which can be written more explicitly
eT——
2 = g2,
2% = 4(s— fat), ot =t (3:251)
2V =4(at - fa%),
where
B> = vk, B* = vbiv/cobieo (3.252.a)
v o= (1=8)"12 3=(1-pH12 (3.252.b)
cosh(we) = 4, sinh(we) =% (3.252.c)

by = bu(&muTyer), e=c(FnyuTie0), (3.252.d)

The nonlinearity of Santilli’s transformations is then evident. The veri-
fication that they do leave form-invariant separation (3.249) is a simple but
instructive exercise for the interested reader. The computation of different
forms for different explicit expressions of the metric is also trivial. Finally,
the inclusion of the conventional Lorentz transformations, Eq. (3.163), as a
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particular case is also evident. The “direct universality” of Santilli’s trans-
formations will be discussed in §3.4.16.

Needless to say, the transformations acting in the three-space {z!, 22,23}
are the isorotations of §3.2. Eqs. (3.251) provide an example of isoboosts.
The isoinvertions have been reviewed in §3.4.7.

DEFINITION 8.8: Santilli’s transformations (also called Lorentz-
isotopic transformations) shall be called of the first, second or
third class, depending on whether they leave invariant the sep-
aration of spaces of the first, second and third class (Definition
8.7), respectively. Their most general form is characterized by
arbitrary superpositions of isorotations, isoboosts and isoinver-
sions.

We now come to a central point of this review.

DEFINITION 3.9: Santilli’s Relativity of the First Class, or
Santilli’s Special Relativity, is the generalization of Einstein’s
Special Relations characterized by the Lorentz-isotopic transfor-
mations of the first class on M;(m,g,ﬁ.).

The following property can be easily proven.

Theorem 3.7 [18]: Santilli’s Special Relativity is a covering of Finstein’s
Special Relativity in the sense that

a the generalized relativity is constructed with mathematical methods (the
Lie-isotopic theory) structurally more general than those of the con-
ventional relativity (Lie’s theory in its simplest possible realization );

b the generalized relativity describes physical conditions (eztended-deformable
particles moving within inhomogeneous and anisotropic media ) which
are structurally more general than those of the conventional relativity
(point-like particles moving in vacuum); and

c the generalized relativity

[c-1]  contains the conventional relativity as a particular case;

[c-2] can approzimate the conventional relativity as close as
desired, evidently for g ~ 1; and

[e-8]  recovers the conventional relativity identically for g = n,
I=1=diag(1,1,1,1).
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The ezplicit construction of the generalized relativity will be reviewed in
the next subsections.

DEFINITION 3.10: Santilli’s Relativities of the Second and
Third Class are those characterized by Lorentz-isotopic trans-
formations of the second and third class on M 11(z,9,R) and
Mir(z,g, R), respectively.

Note that these more general relativities do not constitute, in general, “cov-
erings” of Einstein’s Special Relativity (in the sense of Theorem 3.7) because
the generalized metrics g do not admit, in general, the Minkowski metric as
a particular case.

Also, note that the isotope O(3.1) of these broader relativities is not
necessarily isomorphic to O(3.1), as indicated earlier.

The generalization of Class II is important to achieve the desired unity
of physical and mathematical thought. In fact, one can find in the literature
several studies on conceivable generalizations of the special relativity, still on
flat spaces, but with a topology different than that of the Minkowski metric.
All these studies are then unified by Santilli’s Relativity of the Second Class.
As an example, Recami and Mignani [123] have introduced the superluminal
transformations

z? = ¢'tga’ = —2% = —z'nz, (3.253)
which are evidently transformations in M;r(z,g, R). Note that Recami-
Mignani’s transformations provide the generalization to (3 4 1)-dimension
of the notion of isotopic dualintroduced in §3.2 (Definition 3.1) for the case
of the isotopic lifting of rotations. The reformulation of transformations
(2.353) in terms of the Lie-isotopic theory is therefore recommended.

We should also indicate that the notion of isogroup duality (Definition
3.1), leads to the duality of isorelativities. In fact, a subclass of Santilli’s
Relativities of Class II is characterized by families of metrics which can be
divided into the two classes g = +Tn, T > 0, with corresponding isolorentz
groups O(,3,1).

It is evident that the relativity with ¢ = +T'n is the one of this sec-
tion, and that with ¢ = —T7, is its isotopic dual, the isolorentz groups
O(+,3,1) and its dual O(—,3,1) being isomorphic to each other and to the
conventional group O(3.1).

Santilli’s Special relativity is specifically restricted to the case g = +7T'n,
T > 0, (Definition 3.9) because it is conceived for all possible mutations T
of the Minkowski metric 7 which are practically realizable, those preserving
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the topological character of the original metric. Santilli’s Relativity with
g=-Tn,T >0, is a sort of “mirror image” of the Special Relativity in the
mathematical space with metric 7 = —7.

Recami-Mignani transformations [123] can then be reinterpreted as map-
ping the relativity with ¢ = +T'y, into that with ¢ = —T', and viceversa.
In this sense, they would be isosuperluminal, that is, beyond the maximal
causal speed of Santilli’s Special Relativity (see next subsection).

The generalized relativity of Class III is of gravitational character and,
as such, will be discussed in the next section.

In closing, we note that no lifting of the Lorentz group with isotopies
different than those of ref. [18] has been investigated until now, to our
best knowledge. We are referring to isotopies of the associative enveloping
algebra with product of the type (1.10) ie., A* B = WAWBW, W2 =
W, or combinations of isotopies (1.4), (1.5) and (1.10) with product of the
type A* B = aWAWTWBW, a € R, W2 = W, T = Tt. The reader
should however be warned about the general loss of the unit under the
latter isotopies, with evidently deep implications for Lie’s theory which are
absent in isotopy A+ B = ATB, I =T, g =Tn.

3.4.9 Maximal Speed of Massive Particles within Physical Media

In Einstein’s Special Relativity, the maximal speed of a massive particle (or
of a causal, physical signal) is that of light in vacuum. It is characterized
by the infinitesimal separation in Minkowski space M

ds? = dz'8;;da? — datdz?, de* = codt (3.254)
when of null value,
di- dF — dtc3dt = 0, (3.255)
resulting in the value
Vites = ( )2 =c;, (3.256)

which also provides the fundamental zn’uamant of the theory.
In Santilli’s Spec1a,l Relativity, the infinitesimal separation is defined on
isotopic spaces M 1, and is given by

ds® = da*bldz* — dz*bidz. (3.257)
The case of null separation

dr¥bidrF — dtc*dt = 0, ¢ = bsco , (3.258)
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then yields the expression

drk ,drk

—h = A(&;myp;75..), (3.259)

which leads to the following fundamental
POSTULATE 3.1 [14],[18]. The mazimal possible speed

hy dr¥ def .
Vidaz = |-(—1—t-|Maz = C(z;n;pu;75...), (3.260)

predicted by Santilli’s Special Relativity for massive physical par-
ticles (or causal signals) propagating within physical media (§3.3.6)
can be higher equal or smaller than the speed of light in vacuum
,Co

Viaz = C%Co, (3.261)

depending on the particular physical conditions at hand.

To illustrate this postulate, it is sufficient to consider the case of an
isotropic Euclidean space for which Equation (3.259) becomes

i j 2 2
dr* . dr? ¢ 2 b%

= o

—Eij'c‘ﬁ“— bip=by=bs=b>0. (3.262)

The maximal speed C is then given in this case by
d7
VMaz = | 25 |Maz = C = cop- - (3.263)

The existence in Nature of causal physical signals propagating faster
than light in vacuum, which was postulated in ref. [14], has a number of
independent, although preliminary, confirmations. Consider for instance,
Nielsen’s mutation of the Minkowski metric Egs. (3.170), i.e.,

1 1
g = diag(1 — 3% 1- %a, 1- 3% —(1+ a)). (3.264)
Then, Santilli’s maximal speed C for the case of kaons, Eq. (3.173), is given
by

o= (0.614£0.17) x 1072 > 0,

1
C= CT 1, +1aa >¢, c=co(l+a)>co, (3.265)
3
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and does indeed result to be higher than c,. For the case of the pions, Eq.
(3.172), we have instead

o= (-3.79+1.37) x 1073 < 0,

C= c"f__i_lt% <c, c=cy(l+a)<cg, (3.266)

3
i.e., the maximal possible causal speed is smaller than c, (recall from §3.4.6
that light itself cannot propagate within such hyperdense media). Egs.
(3.265) and (3.266) provide clear illustrations of Postulate 3.1 for the cases
of maximal speeds higher and lower than the speed of light.

At a deeper analysis, all studies on Lorentz noninvariance reviewed in
§3.4.3 generally admit mazimal possible speeds higher than that of light in
vacuum. This is the case of the studies by Blockintsev [96], Redei [97], Kim
[98], the various works by Nielsen and collaborators [99], Aronson et al.
[101], and others.

In general, all modifications/mutations of the Minkowski metric must
necessarily result in an alteration of the mazimal speed of causal signals,
trivially, because the space remains flat. The emerging new mazimal speed
can then be, depending on the conditions considered, higher, equal or smaller
than the speed of light, ezactly along Santilli’s Postulate 3.1. The above
property was studied in details by de Sabbata and Gasperini [124] who,
stimulated by Santilli’s paper [14], computed the maximal possible speed
within hadronic matter via the use of gauge theories, resulting again in
a maximal speed which is higher than ¢,. These latter calculations are
reviewed in Appendix B.

Additional, independent evidence, again purely preliminary, in support
of Postulate 3.1 is given in astrophysics by certain galactic conditions under
which ordinary matter appears to propagate faster than c,.

More specifically, Santilli postulated the following cases [14]:

a) Nuclear structure, in which case the maximal speed is expected to be
generally lower than c,;

b) Hadronic structure, in which case the maximal speed is expected to be
generally higher than c¢,; and

c) Superdense star structure (e.g., the core of a collapsing star) in which
case the maximal possible speed is expected to be much higher than
¢, and, under suitable limit conditions, even infinite.
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The physical basis for the above expectations is provided by the interac-
tions at the foundation of the studies on Lie-isotopy: the contact, nonhamil-
tonian interactions experienced by particles when moving within physical
media. In fact, as stressed earlier, these interactions are of instantaneous
character by conception and, as such, substantially outside Einstein’s Spe-
cial Relativity. Furthermore, the interactions are of nonpotential nature also
by assumption. Therefore, conventional relativistic considerations regarding
the energy needed for the acceleration of the particles simply do not apply.
A new physical horizon, beyond that of Einstein, then emerges quite clearly.

When a particle is under the joint action of conventional forces (e.g.,
electromagnetic, or weak, or strong, or gravitational), plus the additional
contact forces due to motion within a medium, the emerging maximal speeds
is then expected to be precisely along Postulate 3.1.

The postulated increase of the maximal speed in passing from nuclear to
star conditions is suggested by the progressive increase of the contact non-
hamiltonian interactions. In fact, the condition of mutual wave overlapping
of the constituents of nuclei (protons and neutrons) are minimal and esti-
mated of the order of 10~ nucleon’s volumes from values of nuclear volumes
as compared to the volumes of the charge distributions of the nucleon [35].

In the transition to the structure of hadrons, such as the protons and neu-
trons themselves, the conditions of mutual overlapping of the wavepackets
of the constituents increase substantially to about 100% of the wavepackets
which are approximately the same for all particles and equal to the range
of the strong interactions (1F). Finally, in the transition to the core of stars
undergoing gravitational collapse, we have not only 100% overlapping of the
wavepackets of the constituents, but also their compression. A progressive
increase of the maximal possible speed is then consequential. This is, in
essence, the central physical idea of the postulate submitted in ref. [14].

It should be stressed, to avoid misrepresentations, that particles propa-
gating at speeds higher than c, are not tachyons when dealing with Santilli’s
Special Relativity, but ordinary physical particles. In fact, the conventional
notion of tachyons demands propagation in vacuum, being strictly referred
to the conventional special relativity. In Santilli’s case we have motion
within physical media, thus resulting in a different notion of tachyons, here
called isotachyons, as conjectural particles traveling faster than the speed C
of Postulate 3.1.

Another point that should be stressed to minimize misconceptions is
that the notion of mazimal causal speed in Einstein’s special relativity is an
absolute constant, the invariant ¢, that applies everywhere in space-time.
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In Santilli’s Special Relativity, instead, the notion of the mazimal causal
speed is a strictly local invariant that can be generally defined only in the
neighborhood of a point or at best in small regions of space (e.g., the interior
of a kaon). In fact, as indicated in Eq. (3.260), the maximal speed C is a
generally nonlinear function of the local quantities as an approximation of
the expected, ultimate, nonlocal structure of matter (§3.4.6).

3.4.10 Isotopic Generalization of the Light Cone

Another important concept introduced in ref. [18] is the generalization of
the conventional notion of “light cone” caused by isotopic liftings of the
space.

DEFINITION 3.11 [18],[26]: The isolight cone, or hyper-
surface of maximal speed of massive particles, Eq. (3.261), is
the deformation of the light cone caused by the lifting of the
Minkowski space M(z,n,R) into Santilli’s isotope of the first
class, M 1(z, g,R), and divides the isospace itself into the follow-
ing three regions:

1. isotime-like region, when the separation is negative- defi-
nite;

2. isonull region when the separation is null; and

3. isospace-like region when the separation is positive definite.
(See Fig. 4 for more details.)

Spec1ﬁcale, suppose that the observer is at the origin of the isotopic
space M. Let z1 and 5 be two isoevents in M 1. Then their separation z =
z1 — T3 can be

Isotime-like when z? < 0,

Isonull when z? = 0,
Isospace-like when z? > 0, (3.267)

where

z? = z*g,, 2" = ¢'b%6;;27 — 2tbic?,

T=gx;— 2y, zt=cot. (3.268)
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FIGURE 10. A reproduction of Fig. 1 of ref. [26] depicting the defor-
mation (mutation) of the light cone caused by contact, instantaneous, null
range interactions experienced by (extended) particles when moving within
a physical medium. The deformed cones characterize the maximal speed of
causal signals (e.g., the maximal speed of a massive ordinary particle) which
results to be =qual, greater or smaller than co = Cvacuum, depending on )
the physical conditions at hand. All available phenomenological information
is encouragingly favoring the hypothesis of physical speed within hadronic
matter higher than co. In fact, all research on Lorentz “noninvariance” re-
viewed in §3.4.3 favor a deformation of the Minkowski metric in the interior
of hadrons. In turn, such a deformation necessarily implies an alteration of
the maximal speed of massive particle [18]. The maximal speed can then
be bigger or smaller than c, depends on the circumstances. And in fact,
as illustrated in the text, the Nielsen-Picek deformation of the Minkowski
metric [99] implies that the maximal causal speed is smaller than ¢, inside
the pions, but it becomes higher than c, inside the kaons exactly along the
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two corresponding, deformed cones of the figure. This appears to indicate an
increase of the maximal speed with the density, thus supporting the general
calculation of the maximal speed provided in Appendix B, of course in a
preliminary way. The reader should be aware that [26] Einstein’s Special
Relativity remains strictly valid in the arena of its original conception (mo-
tion of point-particles in vacuum). Nevertheless, when considering funda-
mentally different physical conditions, deviations are not only expected, but
actually necessary to achieve compatibility with available phenomenological
information (§3.4.3). Finally, such deviations are referred, specifically, to the
Special Relativity and not to the Lorentz symmetry which remains exact in

the interior of hadrons although at the covering Lie-isotopic level.

Throughout this section we shall assume for simplicity (but without loss
of generality) that the metric of the isotopic Euclidean space is of the type

gi; = b25ij, b>0. (3.269)

Seven possible classes of physical media were identified in ref.s [18,26]
via the following analysis. First, Santilli writes the isoinvariant in 3 in the
special form under assumption (3.269)

1 1
zhge’ = T T ;ﬁtcgt , (3.270)
1 2

for which we have the expressions

Wax = 5= 0= n—260 ) (3.271.a)
c = bieo=-2, (3.271.b)
n2

where n; and ny have a local dependence on all possible local quantities
ng = ng(;n;u;75--0), k=1,2. (3.272)

Three primary cases can then be identified, depending on whether, lo-
cally,

n = n2, (3.273.a)
n < ng, (3273b)
ny > ns. (3.273.C)

The following seven cases of physical relevance follow from the behavior of
the disequalities (3.273) with respect to one, according to:
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SANTILLI’S CLASSIFICATION OF THE GEOMETRIZATION
OF PHYSICAL MEDIA [18,26]:

CLASS 1: n1 =19 = 1, VMax = ¢ = ¢o.

This is evidently the case of Einstein’s Special Relativity which,
as now familiar, is contained in its entirety as a particular case of
the covering Santilli’s Special Relativity (see also the remaining
parts of this section).

CLASS 2: 1 < n1 = ng, VMax = €0, ¢ < Co.

This is the case of the propagation of light and particles within
transparent fluids, such as water, a typical example being given
by the Cherenkov light. In this case, as experimentally estab-
lished a long time ago, light propagates at a speed smaller than
co according to the familiar rule

c= % <0, (3.274)
where n = ny = ng is the familiar index of refraction. But

ordinary particles, such as electrons, can propagate in water at
speeds higher than ¢, which are exactly the condition of Class 2
above.

Note that this is the simplest conceivable isotopic lifting of
Einstein’s Special Relativity, given by the scalar isotopy of
Minkowski invariant

1
zhg et = -Ez-x“n“,,a:” . (3.275)

We can therefore say that the scalar isotopy of the Minkowski
invariant represents the transition from motion in vacuum (Ein-
stein’s conditions) to motion within a transparent, homogeneous
and isotropic fluid (Santilli’s conditions of Class 2).

CLASS 3: 1 > ny = ng, VMax = Co, € > Co-

No known example exists in this class to our knowledge. Santilli
conjectured as a probable candidate superconductivity, in which
electrons can indeed attain the speed of light in vacuum, and
the quantity ¢ does not represent a physical speed, but merely a
geometrization of the medium in which electrons move.
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This is the last case that can be represented via scalar isotopy
(3.275). As such, its dynamical implications (i.e., deviations
from Einstein’s laws) are minimal, as we shall illustrate later on
in this section.

CLASS 4: 1 < ny < ng, VMax < ¢g, ¢ < Cg.

In this case, the medium is generally opaque to all electromag-
netic waves. The quantity ¢ therefore represents a geometrization
of the medium and not necessarily a physical speed. The maxi-
mal causal speed is then the maximal possible speed of massive
physical particles (remember that no neutrino is admitted at this
classical level) which is given by Vas < ¢o because of “drag” and
other dynamical effects caused by motion within the medium
considered.

The best available illustration of this case is given by Nielsen-
Picek metric for the case of the pions, Eq. (3.266), with the
understanding that the medium in the interior of a pion can be
geometrized via a constant only as a crude approximation [102].

Another possibility conjectured by Santilli [26] for Class 4 is
the geometrization of ordinary conductors in non-superconduct-
ivity conditions, such as ordinary metals. In fact, the medium is
manifestly opaque to all electromagnetic waves, while the impos-
sibility for electrons to attain the speed ¢y exactly is plausible
on numerous counts. Note that the lifting of the Special Rela-
tivity for ny # ny is no longer trivial, i.e., it cannot be expressed
via the simple scalar isotopy (3.275), thus requiring structural
changes of the theory, which will be more transparent later on in
the study of the remaining postulates of the covering relativity.

It should be finally stressed that, from Class 4 on, the opacity
of the medium is intended in general, with the understanding
that particular cases of media transparent to electromagnetic
waves are expected to exist.

The best example identified in the literature is the medium
surrounding quasars and astrophysical bodies. These media are
necessarily inhomogeneous (e.g., because their density tends to
zero with the distance) and anisotropic (e.g., because the medium
is spinning along a preferred direction in space).
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Yet, these media allow the propagation of light from the in-
terior of the astrophysical bodies to the empty space beyond
the medium itself and, as such, they are transparent to electro-
magnetic waves. As a result, these media cannot be represented
with scalar isotopies of type (3.275), and require the full use of
Santilli’s Special Relativity.

The only geometrization of astrophysical, transparent media
currently under study is that by Mignani [125], which belongs
exactly to Santilli’s Class 4 as we shall see better later on when
studying Postulate 3.4 on the redshift. Nevertheless, other astro-
physical media transparent to electromagnetic waves belonging
to some of the remaining geometrical classes are possible, and
they will be implied later on.

CLASS 5: ny < ng < 1, Vmax < €g, € > Co.

This is the geometrization of the interior dynamics of nuclei
originally suggested in ref. [14], and subsequently elaborated in
ref.s [18] and [26]. According to this view, nuclear matter causes
a geometrical value ¢ higher than the corresponding value ¢ in
the absence of matter. The maximal causal speed, that of the
nucleon constituents, is then expected to be smaller than cg, as
suggested by the excellent approximations of nuclear problems
provided by nonrelativistic theories.

Note that, according to this view, the constituents of nuclei
(protons and neutrons) cannot attain the speed co even under
infinite energies. We should again recall that the geometrization
is purely classical. As such, nuclei are completely opaque to
electromagnetic waves (because virtual or real photons emitted
in the nuclear structure are excluded), and the maximal possible
speed is that of the nuclear constituents (because of neutrinos
and other operator-particles effects are excluded).

We should finally recall that the existence of media of Class
5 which are transparent to electromagnetic waves (e.g., X rays)
are not excluded.

CLASS 6: ny > ng > 1, VMax > ¢o, ¢ < Co.

No example is known to this writing for this class. Santilli [26]
conjectured that, while hyperdense astrophysical, transparent
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media belong to Class 4, rarefied, transparent, inhomogeneous
and anisotropic media could belong to Class 6.

In this case, ¢ < ¢o would be the actual, physical speed of the
electromagnetic waves in the medium while the maximal possible
speed of physical particles is conceivably higher than ¢y because
of very high turbulences in the medium which provide exactly
the contact interactions capable of “breaking the barrier” of the
speed of light in vacuum.

CLASS 7: 1 > ny > ng, VMax > cg, ¢ > Cg.

This is the case submitted in ref. [14] for the structure of hadrons
at large, as well as for all remaining cases of hadronic media of
density higher than that of hadrons, such as the core of collapsing
stars, supernova ezplosions, etc.

In all these cases: a) the media are opaque to light; as a
result, the quantity ¢ has a geometrical meaning, and does not
represent a physical speed; b) the medium is manifestly inho-
mogeneous (e.g., because of local variations of the density of the
overlapping wavepackets) and anisotropic (e.g., because of the
spin), thus requiring the use of the full Santilli’s Special Relativ-
ity; and c) the maximal causal speed is the Viy,y of the hadronic
constituents which is generally higher than the speed of light
in vacuum (thus allowing rather intriguing possibilities, e.g., of
achieving a true confinement of quarks [44), i.e., a confinement
with an explicitly computed probability of tunnel effects of free
quarks which results to be identically null).

This is, by far, the most intriguing possibility predicted by
Santilli’s Special Relativity (the “breaking of the barrier” of the
speed of light in vacuum by causal, physical signals), which ap-
pears to be confirmed by the phenomenological studies on the
deviations from Einstein’s Special Relativity of the behavior of
the meanlife of unstable hadrons with energies, ref.s [96-102].
As an example, Nielsen-Picek metric for the kaon, Eq. (3.265),
is a direct illustration of Santilli’s geometrization of Class 7, and
the same situation is expected for all remaining hadrons, owing
to their higher density. For explicit calculations pertaining to
Class 7, see Appendix B.
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It should be mentioned for completeness that later clasification bring  the total
number of physical media to nine, depending on the comparative values of 1. n 1
and my. This essentially add two types, the first withn | <ng andmp = 1, which
is contained inm Class 4, and the second withn 1| > n and np = 1, which is
contained in Class 6.

The predictions of Class 2 (Cherenkov light) appear to be confirmed by
available experimental information; the predictions of Class 7 (motion inside
hadrons) appear to have indirect phenomenological confirmations from the
elaboration of available data on the behavior of the mean life of unstable
hadrons at different energies (§3.4.9 and Appendix B); the predictions of
intermediary cases are plausible, but not sufficiently investigated as of this
writing.

The understanding is that the future, final resolution of the validity or
invalidity of above predictions will require direct fundamental experiments
(§3.5.18).

One point is important for this review. Despite the lack of final res-
olution, there is no experimental or other evidence available at this time
that can disprove the prediction of the generalized relativity, to our best
knowledge. In fact, as stressed earlier, no information on Einstein’s Spe-
cial Relativity can possibly be applied to the much more complex physical
conditions of Santilli’s covering.

3.4.11 Isotopic Composition of Speeds

The use of successive Lorentz-isotopic transformations (3.251) yields, after
some algebra, the following isotopic covering of Einstein law of composition
of velocities, Eq. (3.164)

vt = T2 (3.276)
14 ube

POSTULATE 3.2 [18]: The invariant speed is not, in gen-

eral, that of light, but the mazimal speed of propagation of mas-
sive particles ViMax 2 Co-

In fact, if one assumes in Eq. (3.276) vy = vz = ¢, one obtains the
noninvariant condition

=—mte (3.277)



On the contrary, if one assumes v; = vy = Vigup = ¢/b, one obtains the
invariant relation 90 /b
Viot = ~92/— = g = Vitas. (3.278)
Note that, for the case of Einstein’s Special Relativity, we trivially have
the identity Vasee = ¢ = ¢,, thus recovering the familiar invariance of ¢,.
The nontriviality of Santilli’s Special Relativity is the capability to show
that, in actuality, the invariant quantity is Vase, and not the speed of light.
As indicated in ref. [18], Postulate 3.2 is verified by the Cherenkov light
(in which Vi, is precisely ¢,), and appears to be plausible for other cases.
After all, when light propagates at speeds smaller than c,, those speeds cannot
be the invariant of the theory. Postulate 3.2 is equivalently reached when
no electromagnetic wave can propagate at all within the medium consid-
ered. Any consistent relativity must, under these conditions, provides the

invariance only of the maximal speed of propagation of causal signals.

3.4.12 Isotopic Generalization of Time Dilation and Lorentz Con-
traction

The generalization of Einstenian laws (3.165) and (3.166) provided by San-
tilli’s Special Relativity can be directly read from the Lorentz-isotopic trans-
formations (3.251).

POSTULATE 3.3 [18]: The dependence of time intervals
with speed follows the law of isotopic time dilation

At,
(1 — wb?uy1/2 0
(1- ey

while space intervals follow the law of isotopic space contraction

At = §At, = (3.279)

. 2
Al=(1-HY2A1,=(1- %)1/2Alo. (3.280)

As indicated in §3.4.9, isotopic law (3.279) appears to be confirmed by all
available phenomenological elaborations of the dependance of the mean life
of unstable hadrons at different speeds, although still in a preliminary way
because of the lack of direct experiments. In the final part of §3.5 we shall
show that isotopic law (3.279) has a truly crucial character for fundamental
experiments, such as the resolution of the validity or invalidity of the locally
Lorentz character of current theories.
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3.4.13 Isotopic Generalization of the Doppler’s Effect

The generalization of the Doppler’s effect for motion within physical media
(assumed in this section to be transparent to light) is straightforward, and
was worked out in detail in ref. [26].

The fundamental physical assumptions are that the medium considered
is inhomogeneous (e.g., because of the variation of the density with the local
coordinated), and anisotropic (e.g., because of the spinning of the medium,
thus creating a preferred direction in space).

A typical example is the hyperdense transparent medium existing around
quasars and other astrophysical objects.

The dynamics in the medium considered cannot be reduced to a scalar
isotopy of the Minkowski metric of type (3.275). The inomogenuity and
anisotropy of the medium then render necessary the inapplicability of Ein-
stein’s Special Relativity for the exact calculation of the Doppler’s shift.
The only scientifically debatable issue is the identification of the appropri-
ate generalization of Einstenian Doppler’s shift law.

The solution proposed by Santilli [26] (see also ref.s [24]) is based on his
geometrization of the class of media considered, Class 4 or 6, and is reviewed
below.

The “plain wave” form of the electromagnetic waves on Santilli’s isotopic
space M can be written

P(z) = Aexp(ik*nua”)|s = Aexp(ik* g,z eI, (3.281)

where one can recognize the familiar expansions in the isoenvelope f as well
as the expansion in the original envelope £. The isounit I shall be ignored
hereon for simplicity (see §3.4.5 for comments in this respect).

The k-isovector in Eq. (3.281) is an isonull vector with components

- W w2

k = —_— k4 ST e ID ——

(k, c ), c A’
ktg,k” = kb%k — w? =0, (3.282)

where w is the wave frequency and k is the wave vector. As a first step, we
have assumed the three-space with metric g;; = b%6;;.

Suppose that light propagates along the third axis and ¢ is detected by
two observers S and 5’, e.g., one at rest with the source of the wave and
one in motion with respect to it at relative speed ¥; along z3. Suppose also
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that k makes an angle a with the z3-axis in frame S, k= |k| = Lcosa.
Let o', ', and o' be the corresponding quantities in frame 5’.
Santilli’s Special Relativity requires the form invariance of the “isowave”
(3.281), i.e.,
kY g’ = kg, (3.283)
under which
kll - kl, k2/ — k2,
kP = 4(k% — BkY) = || cos’ a,
N w'
k' = 4(k* — g% = — (3.284)
Elementary algebra then leads to the following

POSTULATE 3.4 [26]: The Doppler’s frequency shift for
electromagnetic waves propagating within physical media (e.g.,
transparent fluids) follows the isotopic law

5 N N b2
W' =wi(1-Beosa), F=(1-p2)"12, F= ”62”, (3.285)
with isotopic aberration rule

cosa’ = (cosa — f3)/(1 — B cos ). (3.286)

Postulate 3.4 was recommended by Santilli for the study of possible revi-
sions of current views on quasar redshift of two types. A first correction, ex-
pected to be of dominan quantitative character, for the propagation of light
within the inhomogeneous and anisotropic media surrounding the quasars.
A second correction, of quantitatively smaller implications, is expected by
the fact that space can be considered empty, and thus ezactly homogeneous
and isotropic, only locally in our planetary system. When large interplane-
tary distances are considered, space is far from empty, being filled up with
energy (light), dust, elementary particles, etc. It is not inconceivable that
these actual physical characteristics of space, when properly treated in a
quantitative way, result in an (expectedly small) additional correction to
Einstein’s law for the Doppler’s redshift.

The above suggestions were worked out by Mignani [125] who recalls the
unplausibility of the current interpretation of the quasar redshift, because
it requires the motion of quasars in vacuum, thus under strict Einstenian
conditions, at speed much higher than the speed of light in vacuum, thus in
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violation of Einstenian laws under Einstenian conditions (which are strictly
prohibited in Santilli’s Special Relativity). In fact, the use of the Einstenian
redshift law now calls for quasars speeds in vacuum of the order of 10co and
higher, which are manifestly unplausible, as stressed by H. Arp [126].

Mignani pointed out that the use of Santilli’s geometrization of inho-
mogeneous and anisotropic transparent media surrounding quasars, with
consequential Postulate 3.4 on the Doppler’s shift, permits in principle the
complete interpretation of the quasars redshift as due to the propagation
of light within such media, while the quasars can remain at rest with re-
spect to the associated galaxies, exactly as suggested by Arp’s astrophysical
measures [126).

Stated in different terms, Mignani [125] showed that the “Doppler’s red-
shift” may not be “Doppler’s” at all, in the sense that there may be no
motion at all, and at best “partially Doppler’s”, in the sense that it may be
due to motion only in part.

In particular, Mignani, loc.cit., computed Santilli’s parameters k = bi =
%f for several different galaxies, evidently as an average of parameters (3.272)
over the entire medium surrounding the quasar. By assuming that the entire
shift is due to propagation in the medium considered, Mignani obtained the
following values: k = 31.91 for quasars OB1; k = 20.25 for quasar BSQ1;
k = 87.98 for quasar 68; etc.

A number of comments are in order. The first point that should be
remarked is that Mignani’s calculations [125] avoid the violation of Einstein’s
relativity under Einstein’s conditions which is prohibited in all Santilli’s
contributions and evidently adopted in this monograph.

Second, Mignani’s calculations provide a clear illustration of Santilli’s
geometrization of the hyperdense, transparent, medium around quasars as
being of Class 4, evidently because it emerges that n; < m2 and, more
specifically, 1 < ny < ny for all quasars considered, as the reader can verify.

The second, quantitatively smaller corrections to the Einstenian redshift
law expected from the lack of empty character of space was not computed
in paper [125], and it is recommended for study by interested researchers.

Even though all calculations conducted by Mignani lead to a characteri-
zation of Class 4, the possible existence of very low density, extremely turbu-
lent atmospheres around astrophysical objects leading to a characterization
of Class 6, should not be excluded. It is hoped that additional astrophysical
calculations along Mignani’s line are conducted so as to clarify, in due time,
the existence or lack of existence of physical media of Class 6.

As indicated earlier, the numerical values obtained by Mignani for the
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ratio k = ny/nq should be interpreted as average of k over the entire atmo-
sphere surrounding a quasar. But, as indicated by Eq. (3.272), the quantity
k is a rather complex function of the local variables, k& = k(z;n;pu;7;---).
Thus, the study of the average itself leading to Mignani’s numerical results
is important, and it is also recommended to the interested researcher.

Finally, we should note that the generalization of the Einstenian Doppler’s
shift law occurs only when there is a space-time anisotropy for which b/by #
1. For instance, in the case of propagation of light in water (Cherenkov
light), we have isotopy (3.275) under which isotopic laws (3.285) and (3.286)
coincide with Einstenian laws (3.167). Santilli [26] reached in this way the
important conclusion that the Doppler’s shift for light in water follows the
conventional Einstenian law [26].

3.4.14 Isotopic Generalization of Relativistic Kinematics

We now pass to the review of the isotopic generalization of the conventional
kinematics for one particle according to ref. [26], which, as the reader may
readily predict, is the basis for the isotopic lifting of field equations outlined
in Appendix C.

The generalization is mathematically quite simple. Nevertheless, its
physical implications are far reaching. It is recommendable to mention at
this point the fact that, in some of his last papers, P. A. M. Dirac [54]
proposed a generalization of his celebrated equation which results to be pre-
cisely of isotopic type [27], that is, of a quite simple generalized mathematical
structure. Nevertheless, the spin of the represented particle is altered from
the value 1/2 of the conventional equation into the value 0 of the isotopic
form, as we shall review in Appendix C.

Introduce the infinitesimal invariant in isotopic space M

ds? = —da*g,,dz" = dtc*dt — dz*g;;da?,

gij = b26ij, ¢ =bsco, (3.287)
from which one can write
dz# dz#
= 5 Y9u——7 = 1. .

We now define as iso-four-velocity the vector on M;

_ dz#

i
uh = = (3.289)

195



To compute the components of u#, we can write from Eq. (3.288)

dz* dz?

)2( P i) =1, (3.290)

from which we have the fourth component

di
ut = — = e,

(3.291)
The space components are then given by

T ds  ds dt

&

= Fev®. (3.292)

We now define as iso-four-momentum on M; the four-vector
" = mout, p= (mFet, moFe). (3.293)

By recalling the lowering and raising of the indices in M of §3.4.7, we then
have the fundamental property

PG’ = pug™’p, = pPp, = pup* = miFtvig; v’ — m24%ct
_ mzcz;»z(”gw ~1)
C

= —m2c? = —m3bick, (3.294)
that is, the value moc2 of the conventional relativity is replaced by moc? of

the generalized relativity.
By keeping the conventional assumption

where F is the energy of the particle, we have from Eq. (3.294)
pcpt — Px = E® - plgijp’ = mict, (3.296)

with the following consequences.
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POSTULATE 3.5 [26]: The mass m, of a particle moving
within a physical medium varies with speed according to the iso-
topic law

m = myY,

§=(1-p82,
. viggvd
B = %, (3.297)
and its equivalent value of the energy for at rest conditions is
given by the isotopic mass-energy relation
E = m,c?zm,c?, (3.298)
where c is the speed of the light (or electromagnetic wave ) within
the medium considered, when admissible, or a geometrical quan-
tity characterized by the medium itself as in Classes 1-7, §3.4.10.

Note that for the case of water represented by invariant (3.275), Eq.s
(3.297) coincide with the conventional ones, trivially, because in this case
b/c = ¢,. Also, in this case p? = ;15]72 and the conventional Einstenian ex-
pression E = m,c? can be recovered. In order to have a nontrivial departure
from the conventional relativity one must have an isotopic generalization of
the Minkowski metric other than its scalar isotopy g = ;12—77.

For the case of Nielsen-Picek metric for kaons, Eq. (3.170), one has

21— %a)—1/2

?

E = myc2(1+a)> moe?,
a=(0.61+£0.17) x 1072, (3.299)

that is, the mass m of the particle is not infinite at speed c, (because the
particle in that metric can exceed c,, see §3.4.9) and the energy equivalent
at rest is higher than that predicted by Einstein’s Special Relativity.

Conceivably, the above deviations from the conventional predictions are
suitable for experimental resolutions in favor or against the predictions of
Postulate 3.5.

It should be stressed that isotopic laws (3.299) are referred, specifically,
to a mesonic constituent and not to the particle as a whole.

197



Note that the fundamental isoinvariant (3.294) is the central starting
point of the Lie-isotopic generalization of classical (and operator) field the-
ory. See in this respect Appendix C.

An important particularization of Santilli’s Special Relativity with min-
imal deviations from the conventional setting has been worked out by Ani-
malu [127]. We regret to be unable to review it here for brevity.

3.4.15 Relativistic, Closed, Nonhamiltonian-Birkhoffian Systems

We now review the studies presented in ref. [26] on the relativistic extension
of the Galilei-isotopic notion of closed, nonhamiltonian systems.
Consider the iso-four-force on isotopic space M, which is given by the
Minkowski force 1
K=(K")= (K, WK’gin’), (3.300)

referred to the isotopic contraction on Mj. This means that K* is no longer
orthogonal to the four velocity u* (§3.4.13) on the conventional Minkowski
space, i.e., K#n,,u” # 0. We have instead the isotopically lifted property

Ktguv’ = K,g"u, = K"u, = K,u* = 0. (3.301)
The dynamic equations for one particle can therefore be written
du#
- =K* A
Mo~ K*. (3.302)
The space component is given by
di dt di . di 5
Mo—— = Moo~ = Mofe— = K. (3.303)
thus yielding the following relationship
- 1 =
Frewton = %I(Santilli- (3304)

As now familiar, forces (3.304) are classified into self- adjoint (SA) and
non-self-adjoint (NSA) depending on whether they are derivable or not from
a potential [4].

We reach in this way the following “relativistic” generalization of the
Galilei-isotopic systems (3.93) of N particles with Hamiltonian and non-
hamiltonian forces [58]

du#
oy T Kisa+ Kinsa
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a=1,2,...,N,

ip“ _i(ﬁf: #) =0

ds tot_ds a=1pa — Yy

d. . d &

EMtl;t = EE(; M) =0,

Thguity = —1, (3.305)

where the ten conservation laws for the P/, and MY are the relativistic
version of the ten Galilean conservation laws of Eq. (3.93) and the last
equations are the conventional constraints for relativistic theories, evidently
expressed in the generalized metric.

Equations (3.305) constitute systems of 4N ordinary differential equa-
tions with IV + 10 subsidiary constraints, which can be interpreted as alge-
braic constraints in the 4N components of K Nsa- Thus, for N > 3, system
(3.305) admit an infinite variety of solutions, the case N = 2 being a special
one, exactly as it happened in the Galilean case (83.3).

Systems (3.305) are of central relevance for Santilli’s Special Relativity,
not only classically, but also operationally. In fact, the systems are proposed
as a classical limit of structure models of hadrons, in which each extended-
deformable constituent moves within a medium with metric 9uv geometrizing
the wavepackets of the other constituents. As presented, systems (3.305) are
based on the requirement that the center of mass of the system, when seen
Jrom an outside observer, obeys Einstein’s Special Relativity, while having a
manifestly generalized internal structure obeying Santilli’s Special Relativity.

A large variety of generalizations, implementations and modifications of
systems (3.305) are conceivable. Stronger requirements may be expressed
by the more restrictive systems [26]

adug 122 14
Mo = Kosa + Konsa
a=12,...,N,
d d v oo -
E;Ptl;t =0, ;Z;Mt%t = Ovzgglwxa = -1,

d v
- (PnuP¥) = 0,

d .y 1 v
E’;(W“UWW )=0, W,= '2'5auu>\Mt;2tPt2t>
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X Xt = —1, Xio = Z zh (3.306)
a==1

where one can see, not only the ten conventional, relativistic conservation
laws, but also the condition that total quantities can be well defined in
the conventional Minkowski space. For these stricter systems, the general-
ized internal structure is not detectable from the outside, trivially, because
external observers can only detect total quantities, and such quantities are
constrained to a conventional Minkowski space.

Note that, despite their restrictive character, systems (3.306) remain
consistent for sufficiently large N. In fact, the total number of constraints is
N +13. By assuming that the self- adjoint forces are conventionally assigned,
one remains with a total of 4N + 4 free functions, the 4N components of
K44 and the four diagonal functions of the metric g. Solutions then exists,
again, for N > 3, and they are expected for N = 2.

Following ref. [26], we shall now present a special class of closed non-
hamiltonian systems, those verifying by construction the Poincaré-isotopic
symmetry. In this case the ten conservation laws for Pf, and M/, are
guaranteed by the symmetry itself (see Theorem 3.3).

Recall that the kinetic energy of each particle is given by

E2,. = m%® = m%yc, (3.307)

and, for "nonrelativistic” conditions, does indeed recover the corresponding
Galilei-isotopic counterpart (except for a scale term)

E¢, ~ Em2c*(1+ ,62) =ES + ;m vigivl. (3.308)

Suppose that the particles are under the action of an electromagnetic field
generated by the other particles, and represented with the four potential
Ak (z). Then, the correct form of the potential energy in M| must be written

Ule,2)=Y %Ag(x)gm,:bz. (3.309)
a

To add the contact nonhamiltonian forces, one needs only to general-
ize conventional, relativistic, variational principles into those of Birkhoffian
type, where the Birkhoffian is the conventional total Hamiltonian properly

formulated on M I.
The simplest class of such systems is a relativistic generalization of the
Birkhoffian systems used to identify realizations of the isotopic group of
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rotations O(3), Egs. (3.57). By assuming for conventional Hamiltonian on
M| expressions of the type (see, e.g., ref. [128], p. 127)

1 !
H= Z —QTpggm,pZ - Z mec? + U(z,¢) + 5 Z)\a, (3.310)
a a a a

where the As are multipliers, the desired particularization of systems (3.305)
can be represented by the generalized action [26]

n S2 ~
A= / D> Prgu(p)ay + Y Tod, — Hlds. (3.311)
51 a p.
The symplectic tensor of the theory is then given by

Q; = <g0 —%/w> , 14,7=1,2,..,8, (3.312)
ny

with corresponding, Lie-isotopic counterpart

i 0 -1 0 Y
Qi = (_g_l g‘ff) - (_gw g ) (3.313)
my

and generalized Poisson brackets

0A _,0B OB _, 04

[A’B} = am“gm/ ap,, - amugy./_t 51—)—;

(3.314)

The departure of the generalized from the conventional brackets is a direct
representative of the non-self-adjoint forces, as the reader is urged to verify
via a study of monograph [15]. Systems (3.311) then assume the Birkhoffian
form

OH
b e APV WL — g MY
wa - g apz7 pa - g (9:1:5’
: 0H . OH
/\a - ﬁ—, Fa = —'(‘9”“A—, (3.315)

where, as now familiar, the last two sets of equations represent the subsidiary
constraints Z, * £, = —1.

Note the manifest Poincaré-isotopic invariance of Pfaffian action (3.311),
with consequential conservation laws. Note also that the conmserved quan-
tities are the conventional ones because Santilli’s Lie-isotopic theory leaves
unchanged the parameters and generators of the original symmetry.

201



Almost needless to say, several refinements of systems (3.305), (3.306)
or (3.315) are possible, most notably, that via Dirac’s theory of relativistic
systems with constraints. For brevity, we must refer the interested reader
to paper [26] for a discussion of these and other aspects. For the purpose of
this paper it has been sufficient to review that:

1. the relativistic generalization of Galilei-isotopic, closed, nonhamilto-
nian systems can be consistently formulated in isospaces Mr;

2. such systems are not only consistent, but generally admit infinite va-
rieties of different solutions; and

3. the systems admit a representation in terms of (relativistic) Birkhoff’s
equations which allows the identification of the generalized metric of
the theory from given nonhamiltonian forces via the use of the tech-
niques of monograph [15].

The above results are sufficient for the limited scope of this review.

In closing, we would like to mentjon another important consequence of
Santilli’s Special Relativity, that of being able to bypass the so-called No-
Interaction Theorem of Einstein’s Special Relativity (see, e.g., ref. [128]).
The theorem essentially states that, under certain quite plausible, Lorentz-
covariant conditions, systems of particles that are in nontrivial mutual inter-
actions are incompatible with Einstein’s Special Relativity. For the isotopic
setting we have instead the following property.

Theorem 3.8 [26]: (The No No-Interactions Theorem). Systems of par-
ticles on isospace M7 which verify Santilli’s Special Relativity (i.e., are co-
variant under the Lorentz-isotopic group) cannot be reduced to a free form
unless the generalized relativity is reduced to the conventional Einstenian rel-
ativity (and the isospace M is reduced to the conventional Minkowski space
M, except for a possible scalar isotopy).

The proof of the theorem [26] is based on Gasperini’s [46] Lie-isotopic
generalization of Einstein’s Gravitation and, in particular, the property that,
under a nontrivial isotopy of the Minkowski metric, the motion cannot be re-
duced to a geodesic one (i.e., it is irreducibly nongeodesic), thus establishing
the existence of irreducible nontrivial interactions.

The main conceptual foundations of this important result is the follow-
ing. Recall that the Birkhoffian formulations are based on a nontrivial gen-
eralization of the conventional canonical action into a Pfaffian form. Now,
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at the conventional (relativistic) level, there exist canonical transformations
capable of reducing the system to its free, and therefore noninteraction,
form.

At the level of Santilli’s Special Relativity, the situation is different. In
fact, the use of the transformation theory can at best reduce the Birkhof-
fian to the “free” form, but the system remains interacting owing to the
remaining nontrivial Pfaffian terms.

To put it differently, the conventional transformation theory can at best
eliminate the potential-Hamiltonian forces, but not the contact, nonhamilto-
nian forces owing to their representation by the generalized unit (and related
Lie-isotopic brackets) which evidently remain unaffected by the transforma-
tion theory. This yields Theorem 3.8 above.

In conclusion, particles obeying Santilli’s Special Relativity and which
therefore admit a generalized isounit I, cannot be free. This important prop-
erty has truly fundamental implications, especially in particle physics, as we
hope to indicate in a subsequent review on “hadronic mechanics” (§1.3).

3.4.16 The Direct Universality of the Lorentz-Isotopic Symmetry

As the reader familiar with the Lie-isotopic techniques can now predict, San-
tilli’s Lie-isotopic generalization of the Lorentz symmetry is directly univer-
sal, i.e., capable of including all possible cases of noninvariance or general-
tzations considered until now (universality) without any need of the trans-
formation theory (direct universality).

This property is a direct consequence of the arbitrariness of the metric
g in the Lorentz-isotopic symmetry. It is the “relativistic” counterpart of
the direct universality of Birkhoffian mechanics and its Galilean-isotopic
relativity [15].

As an illustration, the generalized relativity on isotopic spaces M in-
cludes, as particular cases, all models of Lorentz noninvariance reviewed in
§3.4.3.

This latter property has been studied in detail by Aringazin [119] for
the case of (1 + 1)-dimensional spaces with components z® and z%, and
the assumption that the quantity b3 of the Lorentz-isotopic transformations
(3.251) does not depend on the local coordinates, but only on the velocities
v, thus allowing power series expansion of the type

bs(v) =14+ Ao+ A1y + X072 + ..., (3.316)
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where the \’s are much smaller than one, and the quantity v is the conven-
tional relativistic one. By putting ¢ = 1 for convenience, Aringazin expresses
behavior (3.279) of the mean life of unstable hadrons in the form

)\2
7= {1427 + ML+ o)y + [T+ A1+ Y+ (3:317)

which evidently includes behavior (3.169) by Blockhintsev [96] and Pecei
[97], as well as behavior (3.171) by Nielsen and collaborators [99].

The case of behavior (3.175) by Aronson et al. [101] for the mean life is
also a subcase of Aringazin’s expansion (3.317). The corresponding behavior
for other parameters of the K% — fo—system, such as the mass difference,
were obtained by Aringazin via a Lie-isotopic lifting of the field equations
compatible with the assumed structure of the metric underlying Eq. (3.317).
For brevity, we refer the interested reader to ref. [119].

Finslerians spaces are also a subcase of the isotopic spaces and are ob-
tained, trivially, by factorizing the anisotropic term from all terms of the
metric g = Diag.(b%,¢?), as the reader can verify.

In case a model of Lorentz noninvariance breaks the topology of the
Minkowski metric but it is still flat, the isotopic spaces M1, are needed. The
lifting of the Lorentz symmetry is in fact unaffected by this generalization,
as indicated earlier. This broader class includes models such as Recami-
Mignani’s superluminal invariants (3.253), ref. [123], and others.

The illustration of the direct universality of the Lorentz-isotopy with
other available models is left to the interested reader.

3.4.17 Reconstruction of the Exact Lorentz-Isotopic Symmetry
when Conventionally Broken

One of the most important properties of Santilli’s Special Relativity is that
of being able to reconstruct as exact, at the isotopic level, space-time sym-
metries that are conventionally broken (see fundamental Theorem 2.9).

The direct consequence is that all statements of “Lorentz noninvariance”
or “breaking of the Lorentz symmetry” available in the contemporary liter-
ature are generally incorrect on strict technical grounds.

As an example, consider the phenomenological studies by Nielsen and
Picek [99]. They result in generalized metric (3.170), i.e.,

1 1
g = diag(1 - —ga,l - 3% 1- %a, -(14a)=Tn, (3.318)
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which is clearly “Lorentz noninvariant” but only when the symmetry is
realized in its simplest possible way, that via the trivial Lie product AB —
BA.

If the Lorentz symmetry is realized instead in a more general way, via
Santilli’s isotopic products A+ B— Bx A = ATB — BT A, with the metric g
given by form (3.318), then the Lorentz symmetry remains exact (Theorem
3.6).

A similar situation occurs for all cases of “Lorentz noninvariance” re-
viewed in §3.4.3 Consider, for instance, the generalization of Einstein’s Spe-
cial Relativity proposed by Bogoslovski [113] for Finslerian invariants of
type (3.176). Since the topological character of the conventional Minkowski
metric is preserved (for positive-definite anisotropic terms), Theorem 3.5 ap-
plies and the abstract Lorentz symmetry in Bogoslovski’s Special Relativity
remains exact.

The implications of the above results are far reaching. A central result
of the Lie-isotopic studies is that, by no means, the Lorentz symmetry is
“broken” and therefore “abandoned.” Instead, it is preserved in full, although
realized in its most general possible form.

As a consequence, all the “deviations” from conventional laws expressed
by Postulates 3.1-8.5 are deviations from the Einstenian realization of the
Lorentz symmetry, and not from Lorentz symmetry which remains ezact.

3.4.18 Epistemological Comments

A few epistemological comments are important to illustrate in more depth
the physical departures of Santilli’s Special Relativity from the Finstenian
one.

As now familiar, the generalized relativity has been constructed with
the objective of admitting the Galilei-isotopic relativity as particular case
for “nonrelativistic” speeds. As a result, all the epistemological comments of
§3.3.9 on the Galilei-isotopic relativity apply, of course, in their “relativistic”
generalization. Traditionally, the (conventional) Lorentz symmetry has been
assumed as the fundamental symmetry of Nature. The metric (or the equa-
tions of motion) have then been restricted to comply with such a symmetry.
Santilli advocates the reverse attitude: one should assume as fundamen-
tal physical information the metric (or equations of motion) as provided by
ezperimental, phenomenological or other evidence, and then seek the gener-
alized relativity capable of leaving that metric (or equations of motion) in-
variant. The insistence on the assumption of the conventional Lorentz sym-
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metry and Minkowski metric as the fundamental quantities would directly
imply disagreements with available phenomenological information, besides
forcing the excessive approximations of physical reality indicated in §3.3
(Perpetual-motion approximations in interior dynamics, etc.).

As for the Galilean case, relativistic studies have been essentially re-
stricted until now to only one symmetry, the Lorentz symmetry. San-
tilli’s Special Relativity characterizes, instead, an infinite number of different
symmetry transformations, each of which is a covering of the conventional
Lorentz symmetry. This is evidently due to the infinite variety of possible
metrics g. If only one symmetry is imposed, whether conventional or gener-
alized, a substantial limitation on the representational capability of physical
reality would follow.

NONEINSTENIAN SYSTEMS

[i
CLOSED OPEN
EXTERIOR INTERIOR
TREATMENT: TREATMENT:
Lorentz— Lorentz—
isotopic admissible
relativity ? velativity ?

CENTER—OF—MASS TREATMENT: the special relativity
under point-Jike approximations

FIGURE 11. A reproduction of Fig. 2 of ref. [26] depicting the vari-
ous descriptions that may eventually result to be needed for the dynamical
behavior of a hadron. First, we have the description of the center-of-mass
behavior of the particle under external, action-at-a-distance interactions,
say, when moving in a particle accelerator. This first description strictly
obeys Einstein’s Special Relativity. Second, we have the description of the
structure of the particle when inspected from an outside observer. In this
case, Santilli’s “Lorentz-isotopic relativity” reviewed in this section is recom-
mended because the generalized unit of the theory allows the representation
of nonlocal, integrodiflerential internal forces due to mutual wave overlapping

of the hadronic constituents, all in a way compatible with total, conventional,
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conservation laws. Finally, we have a third description, that of one individ-
ual constituent when considering all the others as external. The relativity
suggested for this latter viewpoint is of “Lorentz-admissible” type along
monograph [21], that is, with an algebraic structure capable of directly rep-
resenting the nonconservation of the physical quantities of the constituent.
Note that in the atomic structure one single relativity, Einstein’s Special
Relativity, is fully sufficient for the description of both, an atom as a whole
and one of its peripheral electrons. This is due to the fact that the electrons
have stable orbits under potential forces. The conventional Lie-Hamiltonian
structure is then sufficient. In the transition to the structure of hadrons,
the situation is expected to be different because individual constituents are
in generally nonconservative conditions under the action of nonhamiltonian
forces. A description of non-Lie type is then recommendable. We hope to

review the above aspects in a subsequent review of “hadronic mechanics.”

The abandonment of linearity in favor of intrinsically nonlinear, but for-
mally isolinear transformations, is another condition for a more adequate
representation of Nature. Again, the insistence on the linearity of the trans-
formations would imply another substantial limitation on the representa-
tional capability, with consequential excessive approximation of Nature.

Also, as in the Galilean-isotopic case, Santilli’s Lorentz-isotopic symme-
tries are generally nonmanifest; yet they can be explicitly computed from the
sole knowledge of the new metric and the old Lorentz symmetry.

Finally, Santilli’s Special Relativity has been conceived to map noninertial
frames into noninertial frames, because inertial frames are a conceptual ab-
straction that cannot be realized in ezperiments. From a different viewpoint,
the insistence on the preservation of inertial frames would imply only linear
symmetry transformations, with the consequential excessive approximation
of Nature indicated earlier.

Despite all the above differences with the conventional case, it is re-
markable that Santilli’s and FEinstein’s Special Relativities coincide at the
abstract, realization-free level. By keeping in mind the large variety of dif-
ferent particular cases admitted by the Lie-isotopic theory, this latter prop-
erty provides genuine hopes for a true, ultimate unity of mathematical and
physical thought.

We regret being unable to review a considerable number of contributions,
all conceived in a way entirely independent from the Lie-isotopic theory, but
which eventually result to be a particularization of the Lie-isotopic lifting of
the Special Relativity. We limit ourselves to mention Preparata works [129]

207



which are based on the idea of a possible anisotropy in the interior of hadrons
with intriguing implications. Quite clearly, Preparata’s research, in its clas-
sical formulation, is a particular case of Santilli’s Special Relativity which,
as now familiar, deals with the most general possible class of anisotropy and
inhomogeneity in the interior of hadrons. Intriguingly, as now predictable,
Preparata’s anisotropy does not imply the necessary violation of the Lorentz
symmetry, which is expected to be recovered as an exact symmetry at the
level of Lie-isotopic formulations (Theorem 3.6). Needless to say, the es-
tablishing of the property requires a form of statistical averaging [130] of
Preparata’s space or other approaches capable of reducing the quantum
field theoretical setting of ref. [129] to a primitive, classical, anisotropic
framework.

Similarly, we are unable to review a rather considerable number of addi-
tional research, such as the studies by P. Bandyopadhyay and S. Roy [130],
or S. Roy [131] and others.

We would be grateful to any colleague who sends to our attention (at the
Institute of Basic Research, P.O Box 1577, Palm Harbor, FL 34682, U.S.A.)
articles or references of papers directly or indirectly related to Santilli’s
Special Relativity for their possible review in a future work.

3.5 Lie-Isotopic Generalization of Einstein’s Gravitation
3.5.1 Introductory Remarks

As stressed in the preceding section, when violations occur because of motion
within inhomogeneous and anisotropic media, Einstein’s Special Relativity
must still be considered approzimately valid.

The situation for Einstein’s General Theory of Relativity (or Einstein’s
Gravitation for short) is different because of the existence of so many and so
deep problematic aspects to create serious doubts even on its approximate
validity.

The literature on these problematic aspects accumulated throughout this
century is so vast that it cannot possibly be reviewed here. We shall simply
limit ourselves to a review of those problematic aspects that have a direct
relevance for our objective: a review of the Lie-isotopic generalization of
FEinstein’s Gravitation.

With reference to monograph [5], a necessary condition [64] for under-
standing the problematic aspects, as well as for avoiding potentially major
misrepresentations, is a return to the old separation of (any) theory of grav-
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itation into

A) The interior problem. This is essentially the theory of gravitation appli-
cable to the interior of the minimal surface (or sphere, for simplicity)
containing all matter (thus including the atmosphere, when it exists).

B) The exterior problem. This is essentially the theory of gravitation ap-
plicable to the exterior of the above identified surface (or sphere).

The best way to illustrate the distinctions between the above two prob-
lems is by observing their physical differences as they occur in Nature.

Consider the motion of a test particle in a given gravitational field, say,
that of Jupiter. When considering the ezterior problem, motion occurs
in vacuum (empty space), in which case the actual size of the particle is
ignorable. We can then effectively deal with a point-like test particle moving
in vacuum under a gravitational field, with consequential local conservation
laws, e.g., that of the angular momentum.

When the same test particle enters the interior problem, the situation
is different because we now have motion within a physical medium such as
Jupiter’s atmosphere. Under these conditions, the actual size of the particle
is no longer ignorable, but must be properly represented to avoid excessive
approximations of physical reality. We therefore have motion of an ex-
tended particle within a physical medium, with the consequential contact,
nonhamiltonian forces we have encountered at each level of our analysis
(Newtonian, relativistic and, therefore, gravitational), with all their partic-
ular physical implications that are simply absent in the exterior problem
(inapplicability of the notion of potential, null range, deviations from local
conservation laws, etc.). ‘

At a deeper analysis, the distinction between the exterior and the interior
problem is even deeper than that. In fact, the interior problem includes not
only the long range interactions (electric, magnetic and gravitational), and
the contact nonhamiltonian interaction indicated above, but also the short
range interactions that are typical of the structure of matter (such as the
weak, nuclear and strong interactions). By comparison, the exterior problem
includes only the long range interactions without any contact or quantum
mechanical effect.

The distinction between the interior and the exterior problem was well
known soon after the inception of Einstein’s Gravitation but it has been
ignored in more recent times, thus reaching the condition of (most of ) the
contemporary literature in which no mention is made of such distinction.
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This is regrettable owing to the incontrovertible experimental evidence es-
tablishing the physical differences of the motion of a test particle in the
exterior and in the interior problem.

The distinction under consideration is crucial for the physical applica-
tions of the Lie-isotopic theory, consistently, at all levels of study, from the
Newtonian to the relativistic and to the gravitational level. In fact, the dis-
tinction was brought back by Santilli in 1978 [2] with the notion of closed
nonhamiltonian systems (§3.3), and then extended to the relativistic context
(§3.4). As now familiar, these systems obey conventional relativities for the
exterior dynamics, but require a structurally more general description for
the interior problem.

It is then natural to expect that a similar distinction plays a fundamental
role in the Lie-isotopic formulation of gravity.

A similar distinction also exists in the structure model of hadrons [loc.
cit.] according to the “hadronic generalization of quantum mechanics” (8§1.3)
in which, again, conventional quantum mechanical laws and relativities ap-
ply in the exterior problem, while structurally more general laws and rela-
tivities apply in the interior dynamics. In turn, this dichotomy opens up a
truly new frontier of possible advances, we hope to present in a subsequent
review, such as: achievement of a true confinement of quarks (with an iden-
tically null probability of tunnel effects for free quarks); identification of the
quark constituents with physical, ordinary particles; etc.

As it occurred in the preceeding parts of this review, in this section we
shall ignore operator profiles and restrict the analysis only to classical as-
pects. Thus, all short range quantum mechanical interactions of the interior
problem will be only marginally indicated without treatment.

We shall now begin with a review of some of the problematic aspects of
Einstein’s Gravitation; identify what we call an “ideal” theory of gravitation;
and then pass to a review of Gasperini [81,82,83,84] and Santilli [5,16,18,26]
work on the Lie-isotopic General Relativity.

3.5.2 Problematic Aspects of Einstein’s Gravitation for the In-
terior Problem

Einstein’s Gravitation is based on a geometry, the Riemannian geometry,
which is local and differential. Santilli [5],[16] points out that such a ge-
ometry is fundamentally incompatible with the interior problem of celestial
bodies, because of the incontrovertible nonlocal nature of the forces for the
interior dynamics, as well as the ultimate nonlocal nature caused by the
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mutual penetration and overlapping of the wavepackets of particles in the
core of the celestial body considered (Fig. 1). The use of a suitable nonlocal
integrodifferential generalization of the Riemannian geometry is therefore
advocated as the fundamental mathematical tool for a more adequate treat-
ment of the interior problem.

The above occurrance leaves open the problem whether the Riemannian
geometry can be at least approzimately valid for the interior problem. The
answer to this question appears also to be negative.

A known way to approximate contact nonlocal interactions experienced
by an extended object moving, say, within a gas, is via power-series expan-
sions in the velocities, as well known in Newtonian mechanics.

In this way, locality is regained in first approximation; yet the power
series in the velocities allows a quantitative treatment of the conditions
considered. Santilli [loc. cit.] contends that the Riemannian geometry does
not allow the representation of a sufficiently high value of the power of the
velocities, thus preventing a nontrivial, quantitative treatment of the interior
dynamical conditions (this is also known in the specialized literature as the
Cartan legacy, that is, the inability of the Riemannian geometry to recover
all possible Newton’s equations of motion under PPN approximations, see
ref.[6]).

Another central property of Einstein Gravitation is its intrinsically ho-
mogeneous and isotropic character. Santilli [loc.cit.] contends that such
character is in violation of incontrovertible physical evidence for the interior
problem (only). In fact, interior motions are not in empty space, but occur
within the physical medium constituted by the celectial body itself. In turn,
such medium is, in general, inhomogeneous and anisotropic. As an example,
the density of Jupiter manifestly increases with the decrease of the distance
from the center.

Owing to this occurence, Santilli [26] advocates the construction of a
gravitational theory for the interior problem capable of representing motion
within generally inhomogeneous and anisotropic material media. The un-
derstanding is that space itself remains homogeneous and isotropic, exactly
as in the Newtonian and relativistic cases.

Another central feature of Einstein’s Gravitation is its local Lorentz char-
acter. Santilli [loc.cit.] contends that this character too is violated in clas-
sical mechanics by incontrovertible physical evidence. In fact, the local
Lorentz character implies, in particular, the local rotational symmetries, as
well known. Santilli therefore suggests the observation of dynamical systems
in the interior problem of our Earth, such as satellites during re-entry with
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their continuously decaying angular momentum; the vortices in Jupiter’s
atmosphere with their continuously varying angular momentum; etc. All
these systems constitute incontrovertible physical evidence of the breaking
of the (conventional) rotational symmetry in our classical environment. The
violation of the local Lorentz symmetry is then consequentive.

In the words of the quoted author, the insistence in the acceptance of
Einstein’s Gravitation for the interior problem directly implies the acceptance
of the perpetual motion in our environment. In turn, the acceptance of ex-
cessive approximations of Nature, inevitably raises ethical issues (which are
not considered in this review). Needless to say, the selection of the appropri-
ate theory capable of avoiding the above perpetual-motion approximations
is open to scientific debate, and the Lie-isotopic solution reviewed below is
presented only as one possibility. But the insufficiency of Einstein’s Grav-
itation for the interior problem should not be questioned to avoid issues of
scientific ethics.

It should be stressed that the objective is strictly classical, in the sense
that it consists in identifying a classical theory of gravitation for the interior
problem which allows local nonconservation laws, of course, in a way com-
patible with total conservation laws as well as with the exterior treatment
of gravitation (see below). Once this physical reality of our direct observa-
tion is represented, and only then, the study of ossible operator/particles
interpretations has a sound scientific value. But, again, the ignorance of
the classical representation of our direct physical reality of the local non-
conservation laws of the interior dynamics and its reduction to theoretical
assumptions at an operator/particle level would also raise issues of scientific
ethics.

The customary attitude when facing systems with varying angular mo-
mentum is that such breaking of the rotational symmetry is “illusory” in the
sense that, when the interior system considered is reduced to its elementary
particle constituents, the rotational symmetry is regained in full.

The suggestive “journey without return” in the Solar system [21] shows
that such an attitude itselfis “illusory”. In fact, a mathematical proof of the
contention would require that an object such as a satellite during re-entry,
with its continuously decaying angular momentum (and noncanonical, non-
hamiltonian time evolution) is reducible to a finite number of elementary
particles all possessing a locally conserved angular momentum (and thus
obeying a unitary, Hamiltonian time evolution). Such a proof evidently
does not exist. Santilli contends that the proof is impossible for numerous
technical reasons, such as the impossibility for a finite number of unitary,
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Hamiltonian time evolutions to reconstruct a classical, noncanonical, non-
hamiltonian time evolution.

Again, in the words of the quoted author, the insistence in the capability
to resolve classical violations of the rotational symmetry at the particle level
without rigorous mathematical proofs, constitutes such an approximation of
Nature to shift the issue from a technical to an ethical context.

The next problematic aspect (which is also linked to the above “illusory”
reduction) is the now vexing impossiblity of achieving a consistent guantum
mechanical formulation of Einstein’s gravitation, despite serious and pro-
tracted efforts. Santilli [loc.cit.] claims that this additional problematic
aspect is due to the intrinsic property of Einstein’s Gravitation of admitting
a null Hamiltonian. As a result, a “true” quantization of the theory (ie. a
unique quantization without ambiguities) is expected to be quite difficult if
not impossible to achieve owing to the intrinsically Hamiltonian character
of quantum mechanics.

In view of this occurance, and because of the evident need that any
future theory of gravitation must eventually admit a consistent operator
formulation on Hilbert spaces, Santilli [loc.cit.] suggests that a more ade-
quate theory of gravitation for the interior problem (which is not expected
to be Hamiltonian because of the power series expansions in the velocities
indicated earlier ) should admit a consistent Birkhoffian representation via
a generalize Pfaffian action principle (§1.3). Once such a non-null structure
has been identified, “hadronization” without ambiguities becomes at least
conceivable (see also §1.3).

Finally, in regards to the problem of quantization/hadronization, San-
tilli [loc.cit.] does not see the need, or even the consistency, of a quantum
mechanical formulation for interplanetary distances, but only locally, in the
interior problem. To put it differently, the conceivable operator formulation
of gravity is recommended for the interior, but not for the exterior prob-
lem. This is trivially due to the evidence that quantum mechanical effects
are manifestly present in the interior problem and manifestly absent in the
exterior one.

For a technical understanding of the above comments, we urge the reader
to acquire a knowledge of the techniques of variational selfadjointness [4] and
understand occurrences such as the violation of the integrability conditions
for the existence of a Hamiltonian in the frame of the observer for systems
experiencing forces with an arbitrary dependence on the velocities, while
such a representation always exists, (directly universality) for the Birkhoffian
covering of Hamiltonian mechanics [16].
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3.5.3 Problematic Aspects of Einstein’s Gravitation for the Ex-
terior Problem Caused by the Lack of Source

The problematic aspects for the interior problem reviewed above are absent
or otherwise inapplicable to the exterior problem of gravity.

In fact, the Riemannian geometry is evidently applicable to the exterior
problem because of the absence of all the contact, nonlocal, integrodifferen-
tial effects of the interior dynamics. Also, the medium of the exterior prob-
lem, empty space, can be well assumed to be homogeneous and isotropic.
Finally, since motion occurs in empty space with evident local conservation
laws, the local Lorentz character of the theory is also applicable. Santilli
[16,26] therefore advocates a gravitational theory for the exterior problem
that is Riemannian and locally Lorentz in character.

Despite that, Einstein’s Gravitation for the exterior problem remains still
affected by such fundamental problematic aspects to raise serious doubts on
its approximate validity.

A first problematic aspect relevant for this review was identified also by
Santilli in 1974 [132]. It consists of an apparently irreconcilable incompatibil-
ity of Einstein’s field equations for the exterior problem with the electromag-
netic structure of matter. Intriguingly, the resolution of these problematic
aspects offers intriguing possibilities for achieving a “grand unification” of all
known interaction as we shall indicate below. To put it differently, the cur-
rent difficulties in achieving a complete unification of all interactions appears
to be due to the lack of acknowledgement of the irreconcilable incompata-
bility of Einstein’s Gravitation and Maxwell electromagnetism identified in
ref. [132].

Consider a celestial body with null total electromagnetic phenomenology,
i.e., null total charge, null total electric and magnetic dipole moments, etc.
Under these assumptions, Einstein’s field equations for the interior problem
are given by the familiar form

e 1 87G | Ma
GIW (?:f .Ruy - ggu.UR = '—64—Mm g 5 (3319)
0

where G, is Einstein’s tensor, and M, Mft is the energy-momentum tensor
of matter. For the ezterior problem the equations acquire the familiar form

Guw =0, (3.320)

which represent the essence of Einstein’s Gravitation, namely, the gravita-
tional field of a celestial body with null total electromagnetic phenomenology
is characterized by pure geometry without source.
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Santilli [132] essentially shows that the above purely gravitational feature
of Einstein’s exterior gravitation is incompatible with the charge structure
of the body considered in an apparently irreconcilable way (see Fig. 12). As
well known, matter is composed of atoms which, even though neutral, are
composed of charged particles in highly dynamical conditions, the peripheral
electrons and the elementary charged constituents of protons and neutrons.
It is the dynamical condition of the charged consituents of matter that re-
sults into a total non-null electromagnetic field outside the body considered,
contrary to Eq.s (3.320). (See Figure 6). Owing to the importance of this
point for the analysis of this paper, let us review its essential aspects.

As a first step, Santilli computes the total electromagnetic field outside
a 79 under the assumption that it is a bound state of a generic “parton” and
an “antiparton” (say a quark-antiquark system, or equivalently in Santilli’s
approach, an “eleton”-“antieleton” system) of charges (+q,-q). The analysis
is purely classical and relativistic. Also, it is based on the conventional
Maxwell’s theory of electromagnetism in flat space-time via the use of the
(advanced and retarded) Lienard-Wieckert potential at a point z of the
Minkowski space M

JAE (2) = —qg—"j—,m = Adv., Ret., (3.321)

where the v’s are the velocities and the d’s are the distances between the
charges.

Under the approximation of a point-like structure of the 7° constituents
and of their absence of magnetic moments (spin zero), the potential of the
system at an exterior point in Minkowski space M is given by

o
quo(iI}) = —QZGnGanmdnm
nm nm
Y Ret Vi Adv
= =g |CinreoTBEt (g Ay (3.322)
d4Ret diAdv
vCRet vZaa
— _ —het _ —Aav — AH
[C Ret d-—-Ret C Adv d—Adv]} %Cnm nm(x)3
where: €, = —1 for positive charges; ¢ = +1 for negative charges; the C’s

are (at this point) arbitrary constants verifying the properties

C+Ret. + C+Adv =1 3
C—Ret +C_aqv = 1 » (3323)
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and " .
AB(2) = —qenem 2 (3.324)
dnm

The exterior energy-momentum tensor is then given by
2C4 1
W I = %1——‘1 {——-é[cgpnf’pnﬁ + (D - v)a{D% v"}n
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d.3d3,
(3.325)
where
{A*,BP} = A®BP + BF A~ ,
D2 =X*-YZ2, . (3.326)

FIGURE 12. A reproduction of Fig. 1, p. 111, ref. [132] presenting a
schematic view of a celestial body with null total charge as a “gas” of charged
particles in highly dynamical conditions. Even though the total charge is
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zero, the total electromagnetic field is nowhere null in both the interior
and the exterior problem. Explicit calculations show that such a field has
a value so high to account, in principle, for the gravitational mass of the
body (Assumption 3.1). These results establish an incompatibility between
Einstein’s Gravitation and Maxwell’s Electromagnetism in the sense that
the latter theory predicts the existence of a large, first order source due to
the charged structure of matter which is simply lacking in the former theory.
Ref. [132] evidently embraces Maxwell’s electromagnetism and suggests a
revision of Einstein’s gravitation with the inclusion of a nowhere null source
tensor. Besides the resolution of the above inconsistency, the revision also
offer’s the possibility of resolving the vexing problem of “unification” of the
gravitational and electromagnetic fields via their “identification” in the sense

of Assumption 3.1.

When the magnetic moments y of the constituents (in a singlet ground state)
are included, we have an additional potential outside the 7° system given
by

aﬁD BD
@) = [e®g? 4 co(D-a)it -
. aﬁ.D
]
CO—E'Z.E ]r:rm ’ (3327)
with additional total electromagnetic field
WO = JFfhs + wFifpe + uFf (3.328)
where 03
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After a judicious handling of the advanced and retarded component, the
corresponding energy-momentum tensor is then given by

1 1
0 = (FRFhL, + 0P F, ),
Ff = (F*P 4 FF. (3.330)

The volume integral of the 0 — 0 component of the above tensor then char-
acterizes the electromagnetic contribution to the gravitational mass of the

70,

1
mfolm = C—z./@,,ogd'v . (3.331)
0

Explicit calculations [132] show that the above value of mEm is very
close to the rest mass of the 7°. Under certain velocity-dependent correc-
tions (caused by the deep wave overlapping of the 70 constituent), the total
rest mass of the 7° can be reached both, via Schrédinger’s type equations
[2,25,28] as well as via purely electromagnetic contributions [132].

Clearly, such a large, first-order value of the electromagnetic field in the
exterior of the 70 is incompatible with Einstein’s field equations (3.320).
Note that the 7° was selected because, (as it is the case for the celestial
body considered) it has null total charge as well as null total electric and
magnetic moments.

The extrapolation of the analysis to a massive body is conducted in ref.
[132] in sequential steps. First, the problem of the neutron n is considered
under the assumption (rather generally accepted nowaday) that quarks are
not elementary but have a structure resulting from a suitable bound state
of a yet unknown number of elementary charges.

This results into an energy-momentum tensor for the neutron of the type

" 1 1
Qﬂ = I <FuozF3 + ZnquaﬁFaﬁ> >
El & El El
FEm = 3 (FE™ 4, FEm), (3.332)
g,p=1

where the sum goes over all elementary constituents. For a sufficiently high
number of such constituents under sufficiently high dynamical conditions,
volume intergral (3.331) for the case at hand acquires, again, such a high
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value to be able to account, in principle, for the entire gravitational mass of
the particle.

The extension to the proton is trivial inasmuch as it implies a simple
increase of the sum in Eq. s (3.331). The extension to atoms and molecules
then follows the same pattern along Eq.s (3.332), and with similar results.

Notice that @E,fm cannot be reduced to zero unless one alters the struc-
ture of matter, e.g., by forcing all charges to be at rest and sufficiently close
to each other.

As a result of this analysis, Santilli [loc.cit.] concludes that any massive
celestial body with null total electromagnetic phenomenology has a sizable,
first-order, energy-momentum tensor Oflfm due to the electromagnetic struc-
ture of matter which is nowhere reducible to zero.

Under the classical approximation here considered (i.e., short range,
weak and strong interactions are ignored), the following hypothesis was for-
mulated.

ASSUMPTION 3.1 [132] (Strong Assumption):
The gravitational mass of any massive body is entirely due to the
electromagnetic field of its charged constituents.

The “weak assumption” (which is the minimal possible under the cal-
culations of ref. [132]) is that the gravitational field of a massive body is
substantially, but not entirely due to the electromagnetic field of the charged
constituents (because of the additional short range fields of the weak and
strong interactions).

On the contrary, no contribution to the gravitational field is admitted
in Einstein’s Gravitation, evidently because, under such a contribution, the
r.h.s. of Eq.s (3.320) cannot be null.

In different terms, the gravitational field is nowhere sourceless, because
the only possibility to render integral (3.332) null is to work-out an ad hoc,
profound modification of Maxwell electrodynamics which would undoubt-
edly result to be contrary to experimental evidence.

Under the classical approximation indicated earlier, ref. [132] therefore
submitted the following reformulation of Einstein’s field equations for both
the ezterior and the interior problem

871G
G = -:T@f,fm , (3.333)

where @Eﬁm is precisely the energy-momentum tensor produced by all charged
constituents of matter.
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As a consequence of the above results, Santilli put the foundation for a
possible genuine resolution of the vexing problem of the “unification” of the
gravitational and the electromagnetic fields, and replace it with the “identi-
fication” of the gravitational field with the electromagnetic field of the mat-
ter constituents. The understanding is that contributions from short term
(weak and strong) interactions must be expected from a more appropriate
formulation of a gravitational theory (see Figure 13).

Stated differently, the ultimate objective of ref. [132] was to conduct a
study on the origin of the gravitational field along the hypothesis underlying
Eq.s (3.332),

MMt = oFlm, (3.334)

After all, the use of mass terms is nothing but an expression of our ignorance
of the dynamical structure originating the mass.

A number of approximate expressions for the tensor @f,f’" are computed
in ref. [132]. The value of the tensor M, Mat jtself can evidently be assumed as
an approximatioh of G)E,fm, provided that its dependence in space is assumed
to be equal to that of G)E,fm, and the tensor can be rendered nowhere null.

A number of conceivable experiments to test the expected gravitational
character of the energy of electric or magnetic nature (which have not been
conducted to this day, to our best knowledge) were also formulated in ref.

[132] (see below).

FIGURE 13. A reproduction of Figure 7 of ref. [132] depicting the
“electromagnetic heads” of the proposed experiments. All gravitational the-
ories predict that any electromagnetic field generates a gravitational field
via mass (3.331). This prediction has not been experimentally verified until
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now. For this reason, Santilli suggested back in 1974 [132] the conduction
of this fundamental test in a number of ways. The first proposal was to test
the prediction itself in its most direct possible way, via the use of the largest
available sources of electromagnetic fields, e.g., those of the large magnets
available in a number of laboratories. The test can be conducted via available
neutron interferomenter techniques and/or gravity meters of high sensitiv-
ity by measuring first the background with the magnetic field off, and then
the gravitational field following the activation of the magnetic field. To our
best knowledge this first fundamental experiment is indeed feasible nowaday
(and of rather contained cost) because, on one side, neutron interferometric
techniques have reached a very high degree of sensitivity, while, on the other
side, we have available very large sources of magnetic field. Regretably, this
proposal has remained ignored by the experimental community, to our best
knowledge, despite its manifestly fundamental nature, e.g., for the possible
resolution of the vexing open problem of “unification” of the electromagnetic
and gravitational fields, e.g., via Santilli’s hypothesis of their “identification”
(Assumption 3.1). The second test suggested in ref. [132] is a deeper refine-
ment of the first test and considerably more difficult in practical realization.
An inspection of energy-momentum tensor (3.330) under potential (3.332)
indicate that a significant part of gravitational mass (3.331) is due to the
dynamical conditions of the charges. The second test under consideration
was intended precisely to test the contributions to the gravitational field
originating from the dynamical conditions of the charges. For that purpose,
Santilli suggested the measurement of the gravitational field (also via neu-
tron interferometric techniques) produced by the “electromagnetic heads” of
the figure which, as one can see, essentially consist of opposite charges and
magnetic moments in extremely high rotational conditions so as to reproduce
the conditions of the structure of matter as close as possible. Apparently,
this second test was not feasible back in 1974 (Santilli, private communica-
tion) owing to a number of limitations such as: the impossibility to reach
sufficiently high angular momentum, and electromagnetic fields. Neverthe-
less, this second class of experiments can well be within practical feasibility
nowadays owing to the advancements in technology that have occurred in
the meantime (e.g., in superconductors). Whether along the lines of propos-
als [132] or any other approach, the above tests are strongly recommended

here for consideration by experimenters in the field.

We would like to present now a few informal comments on the problem
of “grand unification”. To begin, the problem is enlarged by Santilli’s stud-
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ies because, in addition to the conventional, electromagnetic, weak, strong
and gravitational interactions, any unification must also include the addi-
tional class of contact, nonhamiltonian interactions due to wave-overlappings
(§1.3).

The only way known for the incorporation of the latter interactions is
via Lie-isotopic techniques. Thus, the structure of the “grand unification”
emerging from these studies is given by an isotopic lifting of current, uni-
fied, gauge theories, plus Assumption 3.1 on the identification of the gravi-
tational and electromagnetic fields. In fact, the current unification of weak
and electromagnetic interactions is expected to be isomorphically lifted un-
der isotopy. Santilli’s Strong Assumption 3.1 (or the weaker assumption of
ref. [132]), may then permit the identification (rather than unification) of
electromagnetic and gravitational fields, while the isotopy of the underly-
ing gravitational-gauge structure opens up the possibility of an unambigu-
ous hadronization into an operator form (via the existence of a non-null
Birkhoffian). This, in turn, opens up the possiblity of incorporating strong
interactions, e.g., because the isotopy, per se, is a direct representative of
the contact nonhamiltonian component of the strong interactions.

Needless to say, we are referring here to mere unverified possibilities
currently under investigations (see, e.g., D. Rapoport-Campodonico’s [133]
studies on isotopic unification via stochastic techniques, and Santilli’s forth-
coming works; the isotopy of gauge theories is reviewed in Appendix A).

As a final comment, the reader should be aware that the extension of the
analysis to a celestial body with a non-null electromagnetic phenomenology
is simple. Einstein’s field equations assume in this case the familiar form

Mat El
G =1 (mMet 4 ¢ (3.335)
where tff,m is the electromagnetic tensor solely due to the fotal electromag-
netic quantities (and, as such, itsvalue is much smaller than that of @E,fm .
Eq.s (3.335) are trivially contained as a particular case of Eq.s (3.333), i.e.
Gflfm is inclusive, by construction, also of total electromagnetic effects.

3.5.4 Problematic Aspects of Einstein’s Gravitation for the Exte-
rior Problem Caused by the Lack of Stress-Energy Tensor.

By far the leading expert on the problematic aspects of Einstein Gravitation
forthe exterior problem is H. Yilmaz. We list here only some of his papers,
ref.s [134] through [144]. Yilmaz’s analysis is related to that by Santilli
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(§3.5.3), although it is based on different physical motivations. In fact,
Yilmaz advocates a generalization of Einstein’s field equations (3.320) for
the ezterior problem of the type

8
G = C—4tf§;“ , (3.336)
0

where tff,fa" is the stress-energy tensor of the gravitational field, i.e., a tensor
physically and mathematically different than @f,fm of Eq.s (3.333).

Yilmaz’s motivations for Eq.s (3.336) are numerous and can be only sum-
marily reviewed here. First, he shows that, when the stress-energy tensor
is absent, the Newtonian limit of Einstein’s Gravitation is unable to recover
the Galilean description of the planetary system, because it recovers instead
the so-called Hooke’s mechanics (in which the Sun has infinite inertia and
there is no principle of action and reaction). When the stress-energy tensor
is however present, this problem is apparently resolved.

Furthermore, Yilmaz [loc.cit] shows that, in the absence of the stress-
energy tensor, Einstein’s gravitation is appartently unable to recover the
energy-momentum conservation law of the Special Relativity.

More seriously, Yilmaz additionally shows that, under the absence of the
stress-energy tensor, Einstein’s Gravitation is indeed capable of representing
the celebrated 43” of advancement of the perihelion of Mercury, but serious
problematic aspects exist for a consistent representation of the Newtonian
532” because of the strict Hamiltonian character of Newton’s laws.

By implementing Einstein’s equations with the stress-energy tensor, Yil-
maz has constructed a generalization of the theory, hereinafter referred to
as Yilmaz’s Theory of Gravitation for the exterior problem with rather re-
markable possibilities, such as:

a) compatibility with the Newtonian description of the planetary motion;
b) compatibility with the relativistic description; and
¢) compatibility with the quantum-mechanical formulation.

In particular, Yilmaz’s theory appears to be consistent with currently avail-
able experimental evidence.

The latest development in the space-time theory of gravitation is the
rediscovery of Freud’s identity and its application to the problem of exterior
field equations. Freud’s identity was originally found by P. Freud [145] in
1939. It was mentioned by W. Pauli [94] in 1958 in the “Notes” section of

223



the Dover edition of his famous 1921 work and by J. Weber [146] in his 1961
work on gravity waves but no systematic application to the problem of field
equations was made.

Recenly H. Yilmaz [143,144] pointed out that the existence of two inde-
pendent identities (that of Bianchi and of Freud) creates severe restrictions
on the possible form of the field equations. This is the problem of overde-
termination in the presence of multiple conditions and the consequences are
quite dramatic: In order for the field equations to be compatible with two
identities one must add in the exterior problem the stress-energy tensor tff,fa"
on the right hand side with unit cofficient Atfra", A= 1.

Otherwise the field equations either have no solutions or only solutions
which are trivial (for example, only a 1-body solution if A # 1) or solutions
which are non-unique (for example, a linearly accelerating frame depending
on a parameter € = ++/(1 — A) which is double valued).

Compatibility requires A = 1, so that in this case one has non-trivial
N-body solutions and, at the same time, all solutions are unique since € =
++/(1=X) = 0. Furthermore, Yilmaz demonstrates that only when A =1
(that is, only when the field equations are compatible with the two identities)
that the theory is experimentally viable.

An example of this is that, unless A = 1, there are no N-body solutions,
hence the N-body equations of motion cannot be constructed other than
(possibly) by putting the second, third, etc. bodies by hand. But then the
theory becomes a test body theory and cannot predict the 532” per century
N-body part of the perihelion advance of Mercury, since test particles cannot
interact with each other.

These points were already made by H. Yilmaz [144] before the rediscovery
of Freud’s identity but now with their exact derivation using that identity,
the results become quite strong.

Yilmaz’s theory itself is not immune from criticisms. For instance, Eq.s
(3.336) are unable to account for the first-order tensor @ff,m of Section 3.5.3
owing to the different structures of the two tensors (one traceless and the
other not). As a consequence, the electromagnetic field originating from the
charged structure of matter and propagating in the exterior problem is not
explicitely represented in Yilmaz’s theory.

This indicates that, even though Yilmaz’s criticisms of Einstein’s Gravi-
tation appear to be valid, and his objectives a), b) and c) above are equally
valid, his theory might need further generalizations to achieve compatibility
with other aspects, such as the origin of the gravitational field itself, and
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the unification of all interactions.

It is possible to show that Yilmaz’s arguments persist after the addition
of a traceless tensor to his stress-energy tensor. On these grounds, the field
equations advocated by Santilli [26] for the exterior gravitational problem are

given by .
8
G = =5 (05" +155) (3.337)
0

and their physical origin can be motivated as follows.

A primary emphasis of this review is the identification of the origin of
any tensor that is needed in the r.h.s of the field equations for the exterior
problem. This emphasis has been the guide for the presentation of the elec-
tromagnetic tensor @f,fm. As a result, we cannot escape the problem of
the possible origin of Yilmaz’s stress-energy tensor tf,f““. To put it differ-
ently, if a clear origin of such a tensor can be identified, its place in the
r.h.s. of the field equations becomes incontrovertible irrespective of any of
the advantages reviewed earlier in this section.

Santilli [26] contends that Yilmaz’s tensor tff,f“” sees its origin in the
short range (weak and strong) interactions at the foundations of the struc-
ture of matter. More explicitly, he recalls that all fields of the elementary
constituents of matter are expected to contribute to the total gravitational
mass. Of these fields, the electromagnetic fields reviewed in 83.5.3 is ac-
countable for the @f,fm tensor which, as such, is traceless. The remaining
weak and strong fields are responsible for an additional tensor. It is easy to
see that such tensor cannot be traceless and, thus, it can well be Yilmaz’s
stress-energy tensor tf,f v,

The position assumed in this monograph is that the correct field equa-
tions for the exterior problem are expected to be Eq.s (3.337), with the
understanding that the contribution to the gravitational field by tf,f‘“’ is
expected to be smaller than that of G)fflfm

In summary, Santilli’s [132] and Yilmaz’s [134-144] studies indicate the
existence, in the r.h.s. of the gravitational field equations for the exterior
problem, of a nowhere null tensor whose traceless part represents the con-
tributions from the electromagnetic structure of matter, and the remaining
part originates from the short-range interactions at the nuclear and hadronic
levels. Since the former tensor @E,I,m is of the order of magnitude of the con-
ventional mass tensor M M,at"’er and, as such, it is expected to provide the
conventional predictions of the theory. The second tensor tflfa" is then ex-
pected to provide the additional ones suggested by Yilmaz.
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The point which should be stressed here is that we can merely indicate
the plausibility of Eq.s (3.337) and of the physical origin of their terms,
although the wvalidity of the theory is unknown at this writing owing to the
lack of specific quantitative studies.

We would like to close this section with the indication that, except for a
few comments, we shall not be unable to consider orsion in our gravitational
analysis. Nevertheless, the reader should be aware that most of the aspects
considered below can be equivalently treated with torsion, in such an ef-
fective way that torsion is often considered as a measure of the departure
from conventional Einsteinian settings. For in depth treatment of torsion
within an isotopic gravitational context, we refer the interested reader to
the studies by Rapoport-Campodonico [52].

3.5.5 Some Desirable Features for a Generalized Theory of Grav-
itation

By combining the various problematic aspects of Einstein’s Gravitation,
Santilli [16,26] advocates the construction of a suitably generalized theory
of gravitation having the following primary features.

INTERIOR PROBLEM

1. The generalized theory should represent motion within a gen-
erally inhomogeneous and anisotropic material medium. The un-
derstanding is that space itself remains homogeneous and isotropic.

2. The generalized theory should be based on a nonlocal, in-
tegrodifferential generalization of the Riemannian geometry in
order to account for the nonlocal forces experienced by an ex-
tended test particle moving within the medium composed by
all the other particles. If a local-differential approximation is
assumed (via power series expansions in the velocities), the gen-
eralized theory should be able to produce under the PPN ap-
proximation all possible Newtonian equations of motion, with
an arbitrary functional dependence on the velocities (the essen-
tially nonselfadjoint forces of ref. [4]).

3. The generalized theory should be able to represent local devi-
ations from the conventional rotational and Lorentz symmetry,
in order to avoid perpetual motion approximations, as evident
in the classical physical reality of the interior problem.
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4. Despite all the above departures from the conventional Ein-
stein’s Gravitation, the generalized theory should be locally Lorentz-
isotopic (§3.4) and, in particular, the local Lorentz-isotopic sym-
metry should be isomorphic to the abstract Lorentz symmetry
on isotopic spaces My (§3.4). This latter requirement evidently
demands the realization of the preceding characteristics via a
Lie-isotopic generalization of Einstein’s Gravitation.

5. The generalized theory should admit a non-null Birkhof-
fian representation via a nontrivial, Pfafian generalization of the
canonical action principle. Furthermore, such a representation
should permit an unambiguous “hadronization” of the theory
into an operator form on Hilbert spaces (§1.3).

EXTERIOR PROBLEM

6. Along the lines of the Galilean (§3.3) and relativistic (§3.4)
closed nonhamiltonian systems, the generalized theory is ex-
pected to be a theory with subsidiary constraints to ensure the
validity of conventional total conservation laws, as well as to en-
sure any needed additional feature.

7. The generalized theory is expected to be purely Riemannian
in the exterior geometrical character and, therefore, should pos-
sess the local, conventional, Lorentz character in the exterior
problem;

8. The generalized theory should incorporate the electromag-
netic tensor originating from the charged structure of matter, as
well as the stress-energy tensor of the gravitational field.

9. Last, but not least, the generalized theory must be compati-
ble with all available experimental data on gravitation, for both
the exterior and the interior problems.

It should be stressed that a gravitational theory satisfying all the above
requirements does not exist at this writing, to our best knowledge. Never-
theless, major advances have been made along these lines, as we shall report
in the rest of this section.

The foundations of the studies are provided by Santilli’s identification
of the apparent electromagnetic origin of the gravitational field (§3.5.3),
the Lie-isotopic generalization of the conventional Lie’s theory (Section 2);
the Lie-isotopic generalization of Galilei Relativity (§3.3) and of Einstein’s
Special Relativity (§3.4); as well as the formulation of the Lorentz-isotopic
symmetry for generally curved isotopic spaces M (§3.4.7).
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Following these lines Gasperini [81-84] constructed, for the first time,
a step-by-step Lie-isotopic generalization of Einstein’s Gravitation which
possesses precisely a local Lorentz-isotopic character. He then presented
numerous developments, particularizations and examples.

Santilli [26] reinspected Gasperini’s theory, by making a number of ad-
ditional contributions, such as: the restriction of the isotopy to the interior
problem only in order to recover the conventional homogenuity and isotropy
of space as well as the conventional Riemannian geometry for the exterior
problem; by restricting the Lie-isotopic theory in the interior problem to
be locally isomorphic to the abstract Lorentz symmetry, so that this funda-
mental symmetry is not lost, but only realized in its most general possible
way; and by presenting additional contributions reviewed below.

Santilli then resumed his studies of interior gravitation where he made
his most significant mathematical and physical contributions encompassing
all preceding results. In fact, in memoir [24d] Santilli introduced the iso-
topic generalization of the affine geometry and of the Riemannian geometry
for the most general known formulation of non-linear, non-Lagrangian and
non-local /integral interior gravitation, and constructed a generalization of
Gasperini formulation in his Riemannian-isotopic geometry.

As stressed earlier, the most visible evidence on the ultimate non-local
nature of interior problems is gravitation itself, say, for a star undergoing
gravitational collapse, in which we have not only total mutual penetration
of the wavepackets of the constituents, but also their compression in large
numbers within a small region of space. Under these conditions, the emer-
gence of interior non-linear, non-local and non-Lagrangian interactions is
simply beyond any scientific doubt.

Now, the conventional Riemannian geometry is strictly local and dif-
ferential. As such, it cannot provide a representation of non-local interior
gravitational models. Because of this, Santilli constructed a step-by-step
generalization of the Riemannian geometry based on Riemannian-isotopic
spaces (which essentially are Minkowski-isotopic spaces of the third class).
This included a generalization of the basic unit in which all non-local inter-
actions are embedded, and the consequential generalization of the totality
of the structure of the Riemannian geometry, such as metric, Christoffel’s
symbols, curvature, torsion, identities, etc.

Of utmost importance is Santilli’s isotopic generalization of the conven-
tional notions of parallel transport and geodesic motion. In fact, Santilli
essentially proved that, in the transition from motion in vacuum to motion
within an inhomogeneous and anisotropic medium, the axiomatic structure
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of parallelism and geodesic is preserved in its entirety, thus allowing an ul-
timate geometric unification between conventional and isotopic relativities
which, in our view, is the ultimate mathematical and physical result achieved
by Santilli in his sequence of studies.

Regrettably, we cannot review here the Riemannian-isotopic geometry to
avoid a prohibitive length. We are therefore forced to content ourselves for
brevity with an intermediate presentation, that on a conventional Rieman-
nian space. The understanding is that our presentation is merely prepara-
tory to Santilli’s Isogravitation on a full Riemannian-isotopic space [24d].

The generalized theory of gravitation which emerges from the above
studies shall be referred hereon as the Gasperini-Santilli General Relativity
(or the Gasperini-Santilli Gravitation).

In the remaining parts of this section we shall review the rudiments of
this novel theory, point out which of the above requirements 1-9 is verified,
and identify some of the open problems.

THE POSSIBLE LOCALLY NONLORENTIAN CHARACTER
OF THE INTERIOR PROBLEM OF GRAVITATION
FOR_EXTENDED CONSTITUENTS OF

MASSIVE BODIES

EXTERIOR PROBLEM:

MOTION OF POINT-LIKE
MASSIVE, TEST-
PARTICLE IN VACUUM
LOCALLY LORENTIAN

SEPARATION
Xex - (X0) 2= INV

LOCALLY LORENTIAN
THEORY OF GRAVITA-

INTERIOR PROBLEM:

HOTION OF EXTENDED
CHARGE DISTRIBUTIONS
WITHIN A MEDIUM OF
OTHER CONSTITUENTE
LOCALLY LORENTIAN~
gigzkggRTHE ADMISSIBLE SEPARATION

: ke, (6, %, Fee Ix1s
PROBLEM x’-tﬁ(tq,g,..)x?*

LI S ELES
LOCALLY NONLORENTIAN,
LORENTIAN-ADMISSIBLE
THEORY OF GRAVITATION
FOR THE INTERIOR
PROBLEM

FIGURE 14. A reproduction of Figure 5.7 of ref. [16] illustrating the
essential aspects of the “ideal” theory of gravitation reviewed in Section
3.5.5: the physical differences between the exterior and the interior dynam-

ics, with motion of test particles in vacuum (empty space) in the former case,
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and motion within a physical medium in the latter case. For these reasons,
ref.s [16] and [26] advocate the use of the conventional local, Lorentzian the-
ory of gravitation for the exterior problem. The reader should be aware that
the gravitational theory for the interior problem advocated in ref. [16] is a
covering of the Lie-isotopic theory reviewed in this section, owing to its Lie-
admissible character. As it happens for other levels of study (see, e.g., Figure
3), the Lie-isotopic theory puts the emphasis on total, conventional, conser-
vation laws under generalized internal structures. The still more general
Lie-admissible approach essentially represents one individual test particle
when the rest of the system is external, thus resulting in an open, noncon-
servative, system requiring the Lorentz-admissible generalization [26] of the

Lorentz-isotopic symmetry of this review.

Remarkably, the Gasperini-Santilli Gravitation we shall review hereon
is only a particular case of a more general theory of gravitation of the cov-
ering Lie-admissible (rather than Lie-isotopic) character for the study of
open gravitational problems, which has been independently investigated by
Gasperini [147],Santilli [16], P.F. Gonzalez-Diaz [148], A. Jannussis and col-
laborators [149] and others. This more general approach will not be reviewed
(although we hope to review it in a future work).

In Section 1.2 we quoted Bruck’s statement to the effect that the notion
of algebraic isotopy is “so natural to creep in unnoticed”. In this section it
is appropriate to quote Gasperini’s words (ref. [81], p. 652): “This (Lie-
isotopic) generalization (of Einstein’s gravitation) is so natural to appear
nearly trivial. However, its physical implications are rather deep”, as we
shall see.

3.5.6 Lie-isotopic Lifting of Einstein’s Gravitations without Source

In three pioneering papers of 1984 Gasperini [81],[82],[83] presented a Lie-
isotopic generalization of Einstein’s Gravitations for the case without energy-
momentum tensor of matter (see later on for the case with source tensor).

The starting point is the formulation of conventional gravitational the-
ories as gauge theories with local Lorentz invariance [150]. Gasperini first
shows that conventional gauge theories admit a consistent (and intriguing)
Lie-isotopic generalization, as reviewed in Appendix A. The Lie-isotopic lift-
ing of gravitation was presented subsequent to such gauge isotopy.

Consider Einstein’s Gravitation for the simplest possible case, that with-
out matter and field equations (3.320). Reformulate such theory in the gauge
language [150-152)].
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Let P, and M, be the conventional generators of the local Poincaré
symmetry, where small Latin indices denote anholonomic Lorentz indices.
Denote the usual frame and connection one-form with

Ve = Videt, w® = wida, (3.338)

respectively where small Greek indices denote Lorentz indices in our space-
time (as in the preceding sections of this work).
The standard “potential” of Einstein’s Gravitation can then be written

h=h4X, = VP, + v M, (3.339)

where capital indices 4, B,... run over the set (a, ab,...).

Along the lines of Santilli’s Lie-isotopic theory [1], Gasperini [81,82]
leaves the parameter and the generators of the theory unchanged, but sub-
mits the various composition laws to a lifting characterized by generally
different isotopic elements T4® for different generators. Conventional po-
tential (3.339) then becomes under lifting

h = KT4BXp = VOT,P Py + VoI, M) +
+ WP, + 0T M., . (3.340)
Suppose that the isotopic elements T4P are constant matrices, which
commute with the Poincaré generators and among themselves. The isotopic
curvature can be expressed in terms of the generalized components of the
potential h4 = ABTgA = {V4 2} according to the expressions
Va — hATBa - VbTba + ,wbchca ,
D% = BBTp = VeI, 4 v, . (3.341)

Using the standard commutation rules of the Poincaré algebra, one ob-
tains then the same structure equations as in general relativity [151]

R =dve + 0% AV?, (3.342)

and )
R® = dir®® 4+ 9%, A B, (3.343)

defining the isotopic torsion R“, and curvature 1;’,“1’, in terms of the isotopic
potentials At = {V“,tb“b}.
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Imposing the constraint R® = 0 as in general relativity, the group man-
ifold procedure prescribes then for this theory the standard Einstein action
expressed in this case with the generalized variables RA and A4, i.e.

S = Zl-]; / R®(%) AVEAV%eqpeq (3.344)

where €54 is the totally antisymmetric symbol, and k = 167G/c} is the
usual Newton coupling constant.

In this way, Gasperini [loc.cit] achieves a result analogous to those reached
in Sections 3.3 and 3.4, namely, that the conventional Finstein’s Gravita-
tion and its image under isotopic lifting coincide at the level of abstract,
realization-free formulations.

Despite these similarities, and exactly as it happens for the Galilei-
isotopic and the Lorentz-isotopic cases, the physical differences between the
conventional and the isotopically lifted theory of gravitation are rather deep.

In order to identify these differences, the isotopically lifted theory must
be explicitly worked out and expressed in terms of the conventional potential
A = {V“,w“b} for, again, these mathematical symbols represent physical
quantities that remain unaffected by the lifting.

It then follows that the geometrical structure underlying the isotopically
lifted theory is more general than that of the conventional theory, as we
shall see below.

3.5.7 Isotopic Origin of Torsion

Gasperini [82] first illustrated the physical differences between the conven-
tional and the isotopically lifted theory by showing that the former is a
torsion free theory, while the latter is, intrinsically, a gravitation theory
with torsion. In turn, the appearance of torsion is of fundamental nature,
inasmuch as it allows the possibility of attempting the resolution of at least
some of the problematic aspects of Einstein’s Gravitation recalled earlier
(Sect. 8.5.4).
Consider the simple isotopic lifting defined by

T =0=T.", (3.345)

Tab = nbcTac # Tlab Tade = 5acabd )

where T, = Ty, is a symmetric constant matrix, and 7, = diag(1,1,1,-1) is
the Minkowski metric.

232



In this case the isotopic potentials (3.341) become
Ve=Vie | 9% = (3.346)
and the isotopic structure equations are

R = R} =dT* + w*y AT®,
R¥®(%) = R®(w)=dw® + w A w® . (3.347)

Therefore, the connection and the curvature are not lifted (for the simple
case considered); however, according to Eq. (3.347), the connection is de-
fined in terms of a generalized vierbein field Vi

Ve=Vine =T . (3.348)

The action (3.344) for this isotopic theory of gravity becomes
A 1
§=o / R (w) AT A Teyyy . (3.349)

By introducing explicitly holonomic indices, we have R% = R“v“bda:“ A
dz¥, and dz# A dz¥ A dz* A dzP = dizervef. By using the properties of the
totally antisymmetric symbols Gasperini rewrites this action in the (perhaps
more familiar) tensor language

1 1 1
= = / d'oy/=g{ 5B - SRT.PT3* — 2R,*T."¢ +
+ 2 ROT.’Tg" + R,PT, Ts" } (3.350)

where
R,,%" = zvaanﬁ(a[uwy]“b + wp, w,h) (3.351)

is the usual curvature tensor for the connection w, Ry = Ru0,” is the Ricci
tensor, R = R,* the curvature scalar, and g = det g,,, = (det V2)?, where

Guv = V:Vybnab ’ (3352)

is the world metric tensor. Finally, Lorentz indices are holonomized by
means of V7, for example T,” = V2V*T,%, and

¢ = g"T,, = n*Tu (3.353)

is the trace of the isotopic element.
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Comparing the action (3.350) of the isotopic theory with the usual Ein-
stein action

S = ;—k / R AVE A Ve = -]1; / dis/=gR (3.354)

the coupling constant of the usual gravitational Lagrangian is renormalized,
R/k — R/K [82], where
' 2k
k= m 3 (3355)

as expected in general when performing the isotopic lifting of a gauge theory
(See Appendix A). Also, the isotopic element is coupled, in a strongly non-
minimal way, to the curvature tensor, thus introducing additional terms to
the Lagrangian besides the scalar curvature. Notice that these new terms are
all proportional to the scalar curvature, if the isotopic element is the same
for all the generators of the group or, in other words, if T, is proportional
to Tlab-

By varying the isotopic action (3.349) with respect to the frames V¢,
Gasperini obtains the modified Einstein’s field equations in vacuum

R®(w) AV T T %eapea = 0 (3.356)
or, in the usual notation,

44T."G,P = -2 R T,'T,P — 4 R'T*T,P +
+4 R)"T,PT* + 4 TLAT,"RP 44 Romun”P T AT, (3.357)

where 1
G =R/}~ §R5f (3.358)

is the usual Einstein’s tensor (remember that in the standard theory the
vacuum field equations are simply G2 = 0).

By varying (3.349) with respect to the connection w
expected constraint on the isotopic torsion, i.e.

@ one obtains the

~

R =T =dT* + W AT =0, (3.359)

where 7 denotes the Lorentz covariant exterior derivative. From this equa-
tion Gasperini is led to the remarkable result that, even considering the
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lifting of a torsionless theory (such as general relativity), the connection w™
of the isotopic theory contains a generally nonvanishing torsion part.
Consider in fact the following decomposition of the isotopic element:

T.b = 06,0 + 1,0, (3.360)

where 4¢ is the trace and 7,b = T,% — p6,° the tracefree part of T,°. The
isotopic frame then becomes

Ve =T° = VPTytdat = oV° 4 72, (3.361)
and the isotopic structure eq. (3.359) can be rewritten
dV® + w AV 4+ o™ {dr® + w A ) =0, (3.362)

from which R X
R =gVei=—plyre£0, (3.363)

where R is the usual torsion two-form relative to the standard frame.
Gasperini [82] therefore reaches the following important conclusion.

The Lie-isotopic lifting of a Riemannian geometry induces even
in the absence of matter, a Riemann-Cartan [153-1 57] geomet-
rical structure, with the isotopic element acting as a source of
torsion.

The connection w can be explicitly calculated in terms of V and 7 solving
Eq. (3.359) which can be written explicitly as

1 1
C'bca + §wbac - §w0ab + cha =0 3 (3364)
where
Che® = ViV 8, V8 (3.365)

are the usual Ricci rotation coefficients, and Q5. are the components of the
torsion tensor

Qoc* = VV/o OV n® + wpu ®iV,)kn')
. .1 .
= SO_I{CbczTia -+ %wbaﬂ'cz — 'iwcain'} , (3366)

(remember that 7,° is a constant matrix).
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By cyclic permutation of indices in Eq.(3.363), using the metricity prop-
erty [151] w®® = w°lo®l one obtains then

Wach = Yach + Koch ’ (3367)

where Yqc is the usual Riemannian part of the connection

Yach = Cbca — Lecab — Cabc s (3368)
and K, is the contorsion tensor [153,154]
Koep = cha - Qcab - Qabc . (3369)

This isotopic theory can be interpreted [82] then as an Einstein-Cartan
theory for gravity coupled nonminimally to a symmetric second-rank tensor,
which is a source of torsion according to Fq.s(8.366).

3.5.8 Modified Field Equations with Torsion

Another direct way for showing the differences between the conventional
and the isotopically lifted gravitation identified by Gasperini [82,83] is to
work-out explicitly the field equations, and show that they do not coincide
with the pure geometrical equations (3.320) but exhibit a first-order non-
null tensor on the right hand side. This result is implicit in Eq.s (3.357).
We shall derive it again for clarity following ref. [83].

As now known, the second structure equation (3.347) defining the cur-
vature two-form is not modified by the lifting, i.e. 1%“6(&) = R¥®w) =
R,,%dz* A dz¥. The action (3.349) for the isotopic theory becomes then,
using (3.361)

5= % /R“b A(VEAVER? +20VEATE+ 70 A 7%)e€abed- (3.370)

By introducing explicitly holonomic indices, we have dz* Adz” Adz® AdzP =
dze***8 and using the properties of the totally antisymmetric symbols we
can rewrite this action in the more familiar tensor language

. 1

S = /d4$\/——g-[Rg02—-QQDRNVTV”-F?R‘WTVO(TQ“— 5Rraﬁrﬁ°‘+Rwa[gr°‘“Tﬁ”],
(3.371)

where: square brackets denote antisymmetrization;

R (w) = Vaavbﬁz(a[uwu]ab + w[uacwy]cb) (3.372)
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is the usual curvature tensor, constructed from the Riemann-Cartan connec-
tion w; Ry = Rua® is the Ricci tensor; R = Ry, * is the scalar curvature
(flat indices are holonomized by means of V¢ u, for example 7, = V:Vl,bTab);
finally, g = det g, = (det Vu“)z, and

Guv = VEVna,m = diag (1,1,1,-1) (3.373)

is the world metric tensor.

Santilli’s Lie-isotopic theory becomes then, in this case, an Einstein-
Cartan theory for gravity coupled, in a strongly nonminimal way, to a sym-
metric second-rank tensor.

The variation of the isotopic action in the form (3.370) with respect to
w, gives the expected constraint on the isotopic torsion,

Rt =gVe=o. (3.374)

By varying Eq.(3.370) with respect to the frames V%, we obtain the modified
Einstein field equations

(gozR“bAVc+<pR“bAT°)eabcd+(goR“b/\Vcrdk-i—R“b/\TCTdk)eabck =0, (3.375)
or, in the usual notations
Gof = ¢ YFP — 17GP) + 21,  F.8, (3.376)
where G”? is Einstein’s tensor and
1
FP = R,*1,° + 1,”R," — §Rraﬁ — R,#7,78.° + Ruo"Pr, . (3.377)

In the same way, the variation of the action (3.370) with respect to ®
and 7 gives the equations for the isotopic element. The kinetic terms for
these fields are obtained inserting, into the definition of curvature (3.372),
the explicit expression for w®®.

Notice that Eq. (3.363) can be solved by an iterative procedure, under
the hypothesis that the isotopic element 7T, induces small deviations from
the original geometrical structure, i.e. Ty — 1, = €5, with |€as] < 1 (a sort
of weak-field approximation). To the first order in £, R* is then equivalent

to
dVe 4+ wh AVE 4 de* =0, (3.378)

and this equation can be easily solved for w to obtain the first-order isotopic
contribution to the connection.
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The connection between Gasperini’s modification (3.376) of Einstein’s
field equations (3.320) and Yilmaz’s modification (3.336) is remarkable. In
fact, Yilmaz’s stress-energy tensor tff,fa" is contained in the right hand side
of Eq.s (3.376). A study of this important, yet unexplored aspect, is recom-

mended here to interested researchers.

3.5.9 Isotopic Generalization of the Equations of Motion

To clarify better the generalized theory, Gasperini [82,83] provides the ex-
plicit calculation of the generalized equations of motion.

As is well known, the equations of motion in a gravitational theory should
be obtained as a consequence of the energy-momentum conservation, which
follows from the contracted Bianchi identities and from the field equations
with matter sources for the interior problem.

In general relativity, the contracted Bianchi identity is given by

G, =0, (3.379)
where a semicolon denotes the usual covariant derivative in terms of the
holonomic connection I‘,wd. The field equations are given by

G* = -’236”” , (3.380)

where ©#” is the (symmetric) matter energy-momentum tensor. The con-
servation equations which follow from the above equations are given by

ew =0, (3.381)

and can be written explicitly (remembering that in this case the connection
reduces to the Christoffel coeflicients) as

8,(vV=g0) + { V"‘a} V=40 = 0. (3.382)

By integrating this conservation law over the world tube of the test
particle, following Papapetrou’s method [125], defining

m utu’ = g—z/dg’m\/—g@“” , (3.383)

and developing in power series the gravitational field, one gets in first ap-
proximation (pole-particle) the geodesic equations of motion

dp*
_P_+{u

ANn s } P =0, (3.384)
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where p# = m u# is the momentum and u* the four-velocity of the test body

(§3.4.13).
In the Einstein-Cartan theory [153-157] we have two Bianchi identities,

one for the curvature
VR*®=0, (3.385)

and one for the torsion
VR =R AV, (3.386)

By introducing holonomic indices, and contracting the first identity, we
obtain, instead of Eq. (3.387), the following one

G ==2QuG" ~ 2 Q" Gy + Sap R, (3.387)

and contracting the Bianchi identity for the torsion one obtains
Glop) = Sapn +2 QuSag” (3.388)

where @, = Q,o%, Sup, is the so-called modified torsion tensor
Sap” = Qap” +04Qp — 95Q o, (3.389)

and the covariant derivative now must be expressed in terms of the Riemann-
Cartan connection.
Using the field equations of the theory

k
G;w = 5‘@/.&1/7

S/.wa = kU;waa (3390)

where ©,, is the (generally nonsymmetric) canonical energy-momentum
tensor, and o0,,, the canonical spin density tensor, one obtains, from Eq.
(3.387), the following generalized conservation law

Q;ﬁ/ +2 QV@HV +2 Ql/ua@ozy - o'aﬁuR“Vaﬁ =0. (3391)

Writing explicitly the covariant derivative, and separating the symmetric
and antisymmetric part of @+, this equation reduces to [158]

LV=10")+ VT f 10+ /=gKA, ol =
= TG RS (3.392)
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and integrating this conservation law, as before, one can obtain the gener-
alized equation of motion for a test particle in the Einstein-Cartan theory.

Notice that the antisymmetric part of ©#” can be expressed as a funciton
of the spin density. For a spinless test particle one has then 0,0 = 0 and
O = Gl = 0, so that the conservation law reduces to the Riemannian
one (3.390) and we obtain again a geodesical motion, as noticed first by Hehl
[159].

The isotopic theory of gravity has the same geometrical structure as
an Einstein-Cartan theory, as shown in Section 3.5.7, in which torsion is
produced by the isotopic element T,°. Using the decomposition (3.361), the
isotopic structure (3.347) can be written

Rab — dwa.b +wac chb ,
R = dVe+w AV?, (3.393)
where ' .
R* = —¢"YCho'Tia + wp® g }VEA V. (3.394)

By taking the Lorentz exterior covariant derivative, we get the same Bianchi
identities as in the Einstein-Cartan case

vRab — 0,
VR* = RHAVY, (3.395)

and then, contracting indices, we are led to Eq. (3.387), (3.388) as before.

In order to obtain the equations of motion, however, it is necessary to
introduce field equations relating Einstein tensor and the torsion tensor of
the isotopic theory to the matter sources, so that the corresponding con-
servation equations for energy-momentum and angular momentum can be
written.

To this aim, the isotopic theory for pure gravity considered until now
must be completed by introducing a term in the isotopic action coupling the
matter sources to gravity. As the full theory must be based on a Lie-isotopic
algebra, also the matter fields, in general, will be coupled to the operator
defining the isotopic lifting.

It should be stressed, therefore, that consistent equations of motion can
be formulated only in the framework of a complete Lie-isotopic theory, in-
cluding matter sources besides the gravitational field.

Such a theory will be reviewed later on. However, even in the simple
case in which the matter Lagrangian does not contain explicitly the iso-
topic element (and then the source of gravity is simply the usual canonical
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stress-energy tensor ©#”) the equations of motion of the isotopic theory are
different from the ones of the Einstein-Cartan theory considered previously.
Consider in fact the isotopic field equation (3.376) and, to simplify nota-
tions, let us denote with A4® the isotopic correction to the Einstein tensor,
ie.

AP = oY RTP - R.'TH6.P + R,oPPr, M)
+ ¢ ’rFf . (3.396)
Suppose that, introducing matter, the isotopic field equations (3.376), i.e.
G = AP, (3.397)
are modified as follows
Gof = NP + g-@aﬁ , (3.398)

and that torsion is related to spin according to the usual Eq. (3.390). We
then have 5
Goly = 505+ Aafig, (3.399)

and from the contracted Bianchi identity (3.395) we obtain the following
conservation equations

0", +2Q,0" +2Q,P0," — 0,p,R**F =
2
7 (A5 +2Q0 AP +2Q,4% e ) (3.400)

which differ from Eq.(3.391) because of the A*” terms representing the con-
tributions due to the coupling of gravity to the isotopic tensor.

Again the connection of the above results with Yilmaz’s [134] theory of
gravitation is remarkable. In fact, tensor (3.396) is evidently inclusive of
Yilmaz’s stress-energy tensor.

We can therefore say that the isotopic generalization of Einstein’s grav-
itation naturally produces Yilmaz’s stress-energy tensor.

The connection of the above results with Santilli’s [132] identification of
the gravitational field with the electromagnetic field of matter constituents
is also intriguing. In fact, the tensor ©,, of Eq.s (3.398) can be interpreted
as Santilli’s electromagnetic tensor @E,]}n of Eq.s (3.333).

In summary, the isotopic generalization of gravity does indeed offer gen-
uine hopes of achieving all conditions 1 through 9 of Sections 3.5.5 for an
“ideal” theory of gravitation, as we shall see better later on.
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3.5.10 Deviation from Geodesic Motion of the Isotopically Lifted
Gravitation

Gasperini [83] then passes to the identification of another important aspect
of the generalized theory of gravitation, the irreducible lack of (conventional)
geodesic character. In turn, this property is at the foundation of the proof
of the “No no-interaction theorem” considered in Section 3.4.14, as well as
of several other implications of the generalized theory.

The equations of motion of the isotopic theory are not geodesics even in
the case of spinless test particles. In this case, in fact, we have from (3.398)

2
Olap) = —E/\[aﬁ] , (3.401)

and Eq. (3.400) becomes

du(v=g0") + V=g { V’; } o) = %ay(\/:g/\bwl)
+72c_\/_—g(kuua Al _amve 20, AP =20, Ao ¥) . (3.402)

Suppose that the deviations of T,b from the identity are very small. We
can put ¢ ~ 1 and 7 € 1 and, neglecting terms which are quadratic in 7,
conservation eq. (3.410) reduces to

0,(v=50¢) + v { 1 Lol 4 y=ga» =0, (3.403)

where, to the first order in 7,
/=gt = %V"g/\(‘“’);u =
%au(\/:'g"/\(“")) + %\/IE { V"a } Alv) - (3.404)

and
AW = RHer v _ R Pr Y — Raﬁrﬁ"g‘“’ + Ro‘”ﬁ"rﬁa . (3.405)

The integration of this equation, according to the standard procedure,
shows that the path of a test body in this isotopic theory deviates from a
geodesic, and it is described by the equation

v, { # } P —FF =0, (3.406)

ds vo
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where, to first order in 7,
= % / Bry/=goH =
_2d 3 pd 2{”}(%/3 (av)
-2 / Pov=g 424 B L2 [ a5 (3.407)

is the isotopic 4-force acting on a spinless test particle.

Notice that in global flat space (g,, = Ny everywhere) this force is
vanishing. However, it cannot be locally eliminated, because of the curvature
dependent terms contained in A#* appearing in the first integral; F* is then
similar, in this respect, to the spin-curvature forces [158-159] which break
the validity of the equivalence principle in its strong form.

As pointed out by Santilli [26], Eq.s (3.406) are the gravitational ex-
tensions of the Lorentz-isotopic dynamics, Eq.s (3.305). The gravitational
formulation of closed nonselfadjoint systems of N particles each moving
within a medium composed by the remaining particles is then characterized
by [26]

d H
T+ { A Ry = Finsa» k=1,2,..,N 3.408
o L (o)

where one recognizes the conventional total conservation laws (see, e.g., ref.
[160]) as subsidiary constraints.

Also, Eq.s (3.406) cleary establish the No No-interaction Theorem of
Section 3.4.14, trivially, because the nongeodesic forces cannot be eliminated
in a Lie-isotopic theory of gravitation. Thus, a nontrivial isotopic lifting
always implies the existence of nontrivial interactions.

This result is trivial if one keeps in mind the arena under consideration
here: test particles moving within a physical medium in the interior problem
of gravitation. In fact, a test particle cannot be reduced to free conditions
when moving, say, in Jupiter’s atmosphere.

As a final remark, the reader should be aware that the nongeodesic
forces Fiysa have been derived here for the case of the simplest possible
realization of the isotopic elements 7T,°. When such elements acquire a
nontrivial functional dependence, say in the velocities (see Sect. 3.5.10), the
nongeodesic forces also acquire a nontrivial functional dependence. It is at
this more general level that the nonselfadjointness of the nongeodesic forces
emerges more clearly.
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3.5.11 Restriction of the Isotopically Lifted Gravitation to the
Interior Problem

We now pass to the review of other important aspects of the generalized
theory: the extension by Gasperini [82,83] to isotopic elements with a non-
trivial functional dependence, and its use by Santilli [26] for the restriction
of the lifting to the interior problem of gravitation.

As shown in Section 3.4.11, the algebraic structure of the Poincaré group
is preserved not only in the case of a constant matrix T,?, but also in the
case of variable isotopic elements. Consider, as an example, the following
particular form [82]

T,b = diag (fi(z1), fo(=2), fs(23), fa(24)) , (3.409)

where f;(z;) are four scalar functions, each depending only on the corre-
sponding coordinate. Assume the general expression for the isotopic struc-
ture (3.340), where X4 are the Poincaré generators, X4 = {Pa, Map}. As
the isotopic elements (3.409) commute with rotations, but not with transla-
tions, the isotopic curvature reduces in this case to

B o= BAX.={d+ % foo BB ARCYX 4 +
+ VeEAVALOP, TPy, (3.410)

where k4 + {V¢,w*} are the components of the isotopic potential. We
obtain then, from (3.418) the following isotopic structure equations

R* = dVe+w AV + VAV P, T,
R® = duw®® 4wt Aw®. (3.411)

But since [PyT.*] « 84T:%, it is easy to see that for the particular form
(3.409) of the isotopic elements, one has

Ty “04Ti" =0 . (3.412)

In this case the generalized structure (3.518) reduces simply to Eq.
(3.411). The algebraic and geometrical structure of the Lorentz group is
preserved, and an isotopic gravitational theory can be formulated following
exactly the same formalism of Section 3.5.7, with the only difference that
there is an additional contribution to torsion due to the derivative of T,°.
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Another very simple, but interesting, lifting in terms of a not constant iso-
topic element is obtained starting again with the form (3.345) of the isotopic

operator, and putting
T.b = 06,° (3.413)

where ¢ is a scalar field, ¢ = ¢(z).

Following the same procedure as before, we obtain again Eq.(3.411).
This time, however, the last term of the isotopic torsion is not vanishing,
and we have a theory with a new algebraic structure, different from general
reltivity. In particular, V* = oV* and the isotopic torsion (3.410) becomes
explicitly

R*=dp AV + oR* + o AV® (3.414)

where R* 4+ 7V is the usual torsion two form relative to the standard
frame V. In this case the choice of a standard gravitational action (3.344)
is no longer justified, as the underlying geometrical structure is changed,
and the problem of finding an appropriate action to formulate a consistent
Lie-isotopic theory in this case is presently open.

Santilli [26] reinspected the above findings by Gasperini and pointed
out that the isotopic elements T, represent the deviations from the conven-
tional, local Minkowski space caused by motion of a test particle within the
physical medium of the interior problem as per Eq. (3.186), where (T?) = ¢
(see below). As a consequence, the functional dependence of the elements
T,? is expected to be, in general, not only the local coordinates z of the test
particle, but also the velocities &, density u of the interior medium, tempera-
ture T, and any other needed physical quantity, according to geometrization
(83.4.10)

T. = Tub(z,,p,T,...) . (3.415)

In particular, the dependence on the local coordinates could be indirect, e.g.,
via a dependence of the density and temperature on the distance r from the
center of the system, i.e.,

Tab = Tab(ia/‘(‘r),T(x)’ ) ’ (3‘416)

but without a direct dependence on z.

In different terms, the most important functional dependence of the
isotopic elements is in the velocities because, when a particle is at rest
with respect to the interior medium, the contact nonhamiltonian forces are
null. The second dominant functional dependence is on the density because,
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again, when such density is null, the contact nonhamiltonian forces are also
null. Santilli therefore suggested the following form of the isotopic elements

(Tab) = dlag (fl,fZ’fBaf4)
fa = fa("iaﬂ'yT)y a'7b - 17253,4 ’ (3417)

where the local dependence of the density and temperature on the distance
r from the center is ignored for first, local approximations. )

The important aspect is that elements (3.417) commute, locally, with all
generators of the Poincaré algebra, by therefore putting the foundations for
regaining the exact (but isotopic),local, Poincaré symmetry, as we shall see
better in the next section.

Once the isotopic elements are interpreted as representing the deviations
caused by the interior physical media from the dynamics of the exterior
problem, it then follows, as a consequence, that they must reduce to the
identity in the exterior problem itself. This leads to the subsidiary constraint
(or conditions) imposed by Santilli [26] on all Lie-isotopic generalizations

of Einstein’s Gravitation
TLbll>r = 6", (3.418)

where R is the radius of the sphere of the interior problem, and r = | F] | is
the distance of the considered local point from the center.

As now familiar from the work by Gasperini [82], when T,® = 6,° the con-
ventional gravitational theory is recovered in its entirety. In this way Santilli
ensures the existence of a generalized geometry for the interior problem of
gravitation, while ensuring the preservation of conventional geometries for
the exterior problem, exactly along the preceding occurences at the Newton-
ian (§3.3) and relativistic (§3.4) levels.

It should be stressed, however, that, even though the geometry for the
exterior problem is the conventional one, the field equations are expected to
be different than those by Einstein, Eq.s (3.320), because of their source-
less character which is incompatible with the charged structure of matter
(§3.5.3).

In summary, we shall hereon assume the following realization of the iso-
topic elements

(Tab) = Dia‘g (flaf%f37f4)7fa = fa(‘b,ll‘:T) ’
Tt lorn =8, (3.419)
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where the second conditions can be verified either with a discontinuous func-
tion (say, a step function) or with a smooth functional behaviour, depending
on the physical conditions at hand.

More specifically, suppose that the celestial body considered has no at-
mosphere. Then, the transition from the interior to the exterior problem is
discontinuous and a step function is appropriate. Suppose instead, that the
body has an atmosphere with a density continuously going to zero with the
increase of 7. A correspondingly smooth realization of conditions (3.419b)
is then needed.

The equations of motion for isotopic elements (3.419) are expected to
be the same as those of Section 3.5.9. Nevertheless, specific studies to this
effect are absent at this moment, to our knowledge.

Santilli [26] finally suggested the use of integrodifferential realizations of
the isotopic elements, as a way to represent more closely the nonlocal nature
of the contact interactions ezperienced by the test particle.

This yields an intriguing geometrical structure. Recall that all avail-
able geometries are essentially local in character because the topology most
known until now is local in nature. A bona-fide generalization of a geometry
into a nonlocal/integrodifferential form therefore requires a generalization of
the background topology into a suitable nonlocal form, which has not yet
been accomplished by mathematicians in a final form applicable to physics,
to our best knowledge.

Santilli’s Lie-isotopic lifting appears to be able to bypass these topologi-
cal problems and yield a genuine, mathematically consistent nonlocal/integro-
differential geometry. The idea is so natural to “creep in unnoticed”. The
mechanism is essentially based in incorporating all nonlocal /integrodifferential
terms in the isotopic unit (or elements) of the theory. But Lie’s theory leaves
such unit unaffected. Thus, conventional, local topologies can be used, while
the emerging geometrical context is intrinsically nonlocal.

As indicated in Section 3.5.5, if local realizations of the isotopic elements
are desired, one can obtain them via power series expansions in the velocities.
As a result, the velocity-dependence of the isotopic element is, in general,
arbitrary, and depends on the considered conditions at hand, including the
value of the speed itself. In fact, as now familiar in engineering (but equally
so in physics), contact forces of test particles in Earth’s atmosphere (say,
rockets or satellites) may reach powers in the three-velocity as high as the
10-th.
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3.5.12 The Locally Lorentz-Isotopic Character of the General-
ized Theory

We now review a central aspect of the Lie-isotopic generalization of Ein-
stein’s Gravitation, its local Lorentz-isotopic character identified by Gasperini
[82], and its restriction to a form isomorphic to the Lorentz group by Santilli
[26]. An important property of the isotopic theory of gravitation is therefore
that the local Lorentz symmetry, rather than being “violated” in the interior
problem, is instead realized in its most general possible form.

For clarity, let us recall the definition of Santilli’s spaces of the first, sec-
ond and third class My, M1, Mir1 (§3.4.5). In essence, M is a space with
null curvature equipped with isotopic metric (3.195) which is topologically
equivalent to the Minkowski metric; Mj; is an isospace also with null cur-
vature, but the topological equivalence of the metric with the Minkowski
metric is generally lost; finally, M1 is a generally curved isospace.

Recall also from Section 3.4.7 that the Lie-isotopic lifting of the Lorentz
symmetry is formulated for space Mir1, although it evidently admits for-
mulations in the simpler spaces M;r and Mj. In all these liftings, the iso-
morphism of the Lie-isotopic Lorentz group with the conventional group is
ensured when the isounit is positive-definite.

The applications of these results to any theory of gravitation are at
least twofold [26]. First, as anticipated in Section 3.4.7, Santilli’s lifting
of the Lorentz symmetry provides means for the explicit construction of
the generalized transformations leaving invariant the metric g of the curved
space. As the reader will recall, this is achieved via the sole knowledge of

the new metric g and use of expansions (3.224).
This first step is applicable to any theory of gravitation, (whether Lie-
isotopic or not, and Riemannian or not) and we shall symbolically write

Flat theory Curved gravitational theory
( Lorentz Symmetry 0(3.1) ) — Lorentz — isotopic symmetry 0(3.1) .

Minkowski space M(z,n,R) Santilli space Mr11(z, 9, R)
(3.420)

Secondly, the lifting is applicable to the tangent space of any gravita-
tional theory (Lie-isotopic, Riemannian-Cartan, affine, etc.), in which the
local symmetry of the tangent space is no longer the conventional Lorentz
symmetry. Again, the methods provide the means for the explicit construc-
tion of the generalized symmetry transformations in their explicit form, via
the sole knowledge of the generalized metric 7 and we shall symbolically
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write

Flat theory Flat tangent space
( Lorentz symmetry 0(3.1) ) — ( Lorentz — isotoPic symmetry 0(3.1) ) ,
Minkowski space M(z, %, R) Santilli space M17:(z,%,R),
(3.421)
where the generalized tangent space is assumed to be generally curved.

But all gravitational theories are two-metric theories, one metric for the
curved space and one metric for the tangent space. Whenever the tangent
space is a generalization of the Minkowski space, Santilli’s isotopy of the
Lorentz symmetry applies again, thus allowing the construciton of the ex-
plicit symmetry transformations of the tangent space. Furthermore, the
techniqes show that, in this latter case, the deviations of the generalized
tangent metric from the conventional Minkowski one may only be apparent,
in the sense that the Lorentz symmetry can still be exact at the Lie-isotopic
level (see also the Finslerian treatment of tangent spaces [110,112]).

We now pass to the inspection of the Lie-isotopic generalization of Ein-
stein’s gravitation. First, the Lorentz-isotopic symmetry is applicable to the
curved space via lifting (3.420).

Second, Gasperini [82] identified the local Lorentz-isotopic character of
the theory (or, more accurately, constructed the generalized theory in such a
way to be locally Lorentz-isotopic). In fact, via the use of lifting (3.350) and
vierbein (3.351), Gasperini obtains a generalized theory with the tangent
space characterized by the metric

7" = T T, (3.422)

The Lie-isotopic character of the theory is then evident, with the identifica-
tion of the metric g = Ty of Eq. (3.186) with T(n°*T,°T?).

Santilli [26] reinspected Gasperini’s results and introduced the restriction
of the isotopic metric 7) to be topologically equivalent to the Minkowski melric,
and we shall symbollically write

7 ~ Diag (b7,03,03,—b3), b2 >0, u=1,2,3,4. (3.423)

The above restriction essentially ensures that the isotopic Lorentz symmetry
and the conventional one are isomorphic.

Restriction (3.423) is formulated for curved tangent spaces Mj;;. Never-
theless, flat tangent isospaces M are generally sufficient for practical appli-
cations of the isotopic theory of gravity (see the examples later on in this
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section). In this case, restriction (3.423) implies the equivalence of metric
(3.422) with the diagonal form (3.195), i.e.

#* = Diag (b2,b2,b3,~02), 2 >0, (3.424)

which is characterized by lifting (3.350) via the explicit form of the isotopic

elements
(T.") = Diag (b1,bs,b3,b4), b >0. (3.425)

The local isomorphism of the Lorentz-isotopic and the conventional symme-
try is then ensured by Theorem 3.5. All the examples to be reviewed later
on are particular cases of isotopic elements (3.425).

In summary, the Lie-isotopic gravitation is a two-metric theory as it hap-
pens for all gravitational theories. The primary difference with conventional
theories is that the metric of the tangent space (for the interior problem only)
is generalized (as it happens already at the level of Finslerian approaches
[110,112]). However, this does not imply a breaking of the local Lorentz
symmetry, but its preservation as an exact symmetry, although realized in
its most general possible form.

Also, the two metrics are not independent, but rigidly related. In fact,
according to Eq.s (3.350) and (3.351), the tangent space metric (3.422) is
defined via the isotopic elements of the algebraic (Lorentz) isotopy which is
coupled nonminimally to the gravitational metric according to the rules [60]

7% = g VEVE = g VETEVETS (3.426)

In different terms, the Lie-isotopic lifting of Einstein’s gravitation pro-
duces a form of quasi-Riemannian gauge theory with a tangent space group
other than the Lorentz group (in conventional realization), and that group
results to be the Lie-isotopic Lorentz group.

In this generalized geometrical framework, gravitation can be interpreted
as a deviation of the world manifold from Santilli’s tangent isospace M.
This allows Gasperini [81,82] to reach the following, important, additional
result

ISOTOPIC PRINCIPLE OF EQUIVALENCE: Gravitational ef-
fects may locally disappear when the metric of the space-time
manifold approaches the metric of the tangent, Santilli’s isospace
MHI, i.e. for

g = (3.427)
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In fact, it can be seen from Eq.s (3.347), that the isotopic connection @
can be locally eliminated by putting Vi = 65. A free falling observer in flat
media defined by V,? = 62 will no longer represent an inertial frame for the
Lie-isotopic theory. In this system, force fields are the physical manifestation
of the Lorentz-isotopic symmetry (see the deviation from geodesic motion of
§3.5.10). Also, the deviation of the isotopic metric 7 from the conventional
Minkowski metric 7 is a measure of the “breaking” of the (conventional)
Lorentz symmetry.

To understand the generalized theory of gravitation we are here formu-
lating (see below for a more accurate definition), the reader should think of
a test particle that begins its motion in the ezterior problem. In this case
motion occurs in empty space, and the metric of the tangent space is the
conventional Minkowski metric. The geometry for the exterior problem is
then the conventional one, but the field equations are not expected to be
Einstein’s Eq.s (3.320) because of the lack of electromagnetic source (Section
3.5.3).

Suppose now that the same test particle moves into the interior problem
(say, Jupiter’s upper atmosphere). Then the particle experiences velocity-
dependent, contact forces which imply a necessary deviation from the con-
ventional Minkowski metric of the tangent space. The Lie-isotopic general-
ization of Einstein’s Gravitation is then activated. The new physical features
(the generally inhomogeneous and anisotropic character of the medium, the
velocity-dependence of the forces, etc.) are represented precisely by gener-
alized action functional (3.370).

As far as the local symmetry of the tangent space is concerned, the
contact interactions of the interior problem do generate a deformation of the
Minkowski metric, but the deformation is not such to alter the topological
character of the original Minkowski metric, in the sense that the topological
structure Diag (1,1,1, -1) cannot be deformed into an inequivalent topology,
say, of the type (1,1,-1,-1). As a result, the Lorentz symmetry remains exact,
although at the covering isotopic level.

In closing, we would like to indicate that S. Weinberg [155] has proposed
a quasi-Riemannian theory of gravity with a tangent space symmetry other
than the Lorentz symmetry. It would be interesting to identify the possible
connections between Weinberg’s and Gasperini’s works.

Similarly, C. Wetterich [156] has proposed a vierbein of the type

gt efle{; £, (3.428)

starting from a different physical motivation, within the context of multidi-
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mensional, chiral, fermionic theories.

Also, Rosen [157] has formulated a bimetric theory in which one of the
two metrics describes gravitation, and the other describes a generally curved
background associated to a fundamental reference frame, a preferred rest
frame of the universe. The connections with the Lie-isotopic theory of grav-
itation are remarkable and deserving a study. In fact, the former metric
can describe gravitation in both theories, and the second metric could be
associated, in the Lie-isotopic theory, with a priveleged reference frame at
rest with the medium in which motion of the interior problem occurs, as
suggested in ref. [1]. Note that liftings (3.420) and (3.421) apply to both
metrics of Rosen’s Gravitation and that, under restriction (3.424), the exact
nature of the (abstract) Lorentz symmetry persists.

Studies directly related to the Lie-isotopic lifting of Einstein’s Gravi-
tation have been conducted by Nishioka [162,163]. In the first paper, one
can find a Lie-isotopic formulation of Maxwell electromagnetism and a Lie-
isotopic formulation of gravitational, electromagnetic and scalar fields. The
second paper deals with the connection of the Lie-isotopic lifting of the
Riemannian manifolds with the Lyra and Weyl Manifolds.

3.5.13 Gasperini-Santilli Gravitation

We shall now summarize all the preceding results of this section and present
the essential aspects of Gasperini-Santilli General Relativity (or Gravitation,
for short).

As now familiar, the conventional Einstein’s General Relativity can be
formulated as a gauge theory for the Poincaré group. The fundamental
variables of the theory are then the frames V? and the connection wab,
Using the algebra of the Poincaré generators, one obtains the usual structure
equations defining the torsion R* and the curvature R*. The simplest
action, including matter sources minimally coupled to gravity, can be written
as
1
3
where @, is the canonical energy-momentum three-form, whose explicit ex-
pression, in terms of the canonical energy-momentum tensor 0%, is

5= / (%R“b AV A Vieqpoa — 200 A V), (3.429)

0° = 0%¢, 0pde” A dz® AdaP (3.430)

and €,,4p is the totally antisymmetric symbol.
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As reviewed earlier, a Lie-isotopic theory of gravity can be formulated
by introducing a generalized frame T° = VbT,* where T,% is an isotopic op-
erator which defines the lifting of the vierbein field. The structure equations
are then

R® dT® + W A T?
R® = dw® 4w Aw. (3.431)

In this way, one is led to the following Lie-isotopic action without source
A 1 pab c d
S = 7 R AT AT %44 (3.432)

The geometric and algebraic structure of general relativity is preserved;
however, the gravitational gauge fields are T and w®, instead of V* and
wab,

It seems therefore natural, in the framework of such Lie-isotopic grav-
itational theory, to introduce matter according to the formal prescription
(3.390) supposing that the canonical stress tensor O is minimally coupled
not to V%, but to the generalized isotopic frames 7°.

The Gasperini [81-84]-Santilli [16,26,182] Gravitation can then be de-
fined by the following equations

” 1. 1
5 = / (ZR“” AT AT 4404 — -3-95‘1“‘ AT®), (3.433.2)

T.b = T.b&,u,T,..), (3.433.b)
T, = 0, (3.433.c)

r>R

7* = 0T T, ~ Diag (b2,63,0%,b2),b, > 0, (3.433.d)
efm - o, (3.433.¢)

where: Eq. (3.433a) is Gasperini’s [82] isotopic action with Santilli’s [132]
hypothesis on the electromagnetic origin of the gravitational field, of course,
in this first classical approximation; the second and third equations repre-
sent the assumed functional dependence of the isotopic elements and their
restriction to the interior problem only [26]; Eq.s (3.433d) represents the
restriction of admissible metrics for the tangent isospace to be topologically
equivalent to the Minkowski metric, so as to preserve the exact character of
the Lorentz symmetry; and Eq.s (3.433e) represent the conventional conser-
vation laws as subsidiary constraints to isotopic action (3.433a). Note that
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the condition of topological equivalence, Eq.s (3.433d) implies the validity
of all topological properties of the Lie-isotopic theory, such as the sufficient
smoothness of functional dependence (3.433b) or the invertibility of the el-
ements T,°.

The variation of action (3.433a) with respect to T gives the isotopic
generalization of Einstein’s field equations

%Rab A T ped = %-@glm . (3.434)
Note that the same equation can be obtained also by using the definition
Te = VbT,% and performing the variation with respect to V*, because T,b
is invertible.

The variation with respect to the connection w® (supposing that we are
considering unpolarized macroscopic matter, i.e. that w? is not explicitly
contained in the matter part of the action) gives the isotopic generalization
of the usual torsion equations

1

2

In order to obtain a solution of the field equations for the interior problem

it is convenient to rewrite the isotopic equations (3.433) in the usual tensor

language, introducing explicitly holonomic indices. Using the decomposition

T =V 4 7 for the isotopic frames, Eq.s (3.434) yield the Gasperini-Santilli
field equations for the interior problem

R*A Tb€abcd =0. (3.435)

GoP = 08 4 G."1,P — R,'1,"6,° + RPT.Y + Ru"Prt,  (3.436)
where:
Ruve® = 6,0,0" = 6,000f + T0pPT0a? = T,,PT 0" (3.437)

is the Riemann curvature tensor;

o 1
T = 59°°(09u8 + Bu9up — a9y (3.438)

are the Christoffel symbols; R,” = R,."*, R = R#“;
1
G.” = R,P - §5aﬁR (3.439)
is Einstein’s tensor; and finally, 7,” is the traceless part of the tensor T,b.
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The Gasperini-Santilli field equations for the exterior problem are given
by
Gop = OS5 . (3.440)

The above theory can be trivially extended with the addition of Yilmaz’s
stress-energy tensor tff,fa" as in Eq. (3.337), in which case we shall call it t
he Gasperini-Santilli- Yilmaz Theory of Gravitation.

To avoid possible misrepresentations of the above equations, the reader
should recall that, in the conventional theory for the exterior problem, the
matter tensor My is null, and all sources resulting from nonull total values
of the charge and of the magnetic moments are represented via an additional
tensor tglﬁm In Santilli identification of the gravitational and electromagnetic
field, Myp =~ G)Eg“, such an additional tensor is redundant because the
contributions tfflﬁm are automatically produced by the contributions of each
individual charged consituent of the body considered.

It is easy to see that the Gasperini-Santilli-Yilmaz Gravitation does in-
deed verify most of the conditions set forth in Section 3.5.5, with the under-
standing that considerable additional research remains to be done.

To begin, the background (empty) space remains homogeneous and isotropic,
as represented by the local Minkowski metric 5 of Eq.s (3.433d). Neverthe-
less, the geometry of the interior problem is generally inhomogeneous and
anisotropic, as represented by the metric 4 of the tangent isospace Mjz;.

The theory is, in the interior problem, essentially noninvariant under
local, conventional, Lorentz transformations. This is a necessary condition
to represent local variations from conventional conservation laws (in a way
compatible with the total conservation laws) and avoid perpetual-motion ap-
proximations. Nevertheless, the theory is invariant under the local, Lorentz-
isotopic symmetry (§3.4). Furthermore, under condition (3.4334d), this sym-
metry results to be isomorphic to the conventional one.

In the transition to the exterior problem, condition (3.433c) ensures the
recovering of the conventional Riemannian geometry with a conventional,
local, Lorentz symmetry.

However, unlike Einstein’s Gravitation, the Gasperini-Santilli-Yilmaz
theory exhibits in the exterior problem a nowhere null source tensor of the
gravitational field, thus allowing the compatibility of the gravitational the-
ory with the charged and stress-energy structure of matter. Gravitation is
then nowhere reducible to pure geometry, but it is generated, in a classical
approximation, by the contributions of all interactions of the constituents
of matter.
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Finally, the conventional conservation laws (see, e.g., ref. [160], Section
IV-20) are imposed as subsidiary constraints in order to achieve a gravita-
tional counterpart of the notion of closed nonhamiltonian systems, which
we have already encountered at the Newtonian (§3.3) and relativistic (§3.4)
levels. As the reader will recall, conventional total conservation laws are
imposed as subsidiary constraints in all these systems.

The reader should also recall that, at the Newtonian and relativistic lev-
els, the systems considered admit algebraic solutions, that is, the number of
constraints represented by total conservation laws results to be less in num-
ber than the total number of internal nonselfadjoint forces (for N > 3). The
systems therefore admit particular cases in which total conservation laws are
automatically satisfied without being bona-fide subsidiary constraints (see,
Eq.s (3.96) and following comments). As expected, exactly the same situa-
tion occurs at the gravitational level, e.g., because the number of subsidiary
constraints for total conservation laws is less than the number of isotopic
elements.

We therefore expect the existence of explicit models of the Gasperini-
Santilli-Yilmaz Gravitation in which the conventional total conservation
laws are automatically verified without being genuine subsidiary constraints
to the isotopic action (3.433a). Nevertheless, in general, Eq.s (3.433e) are
indeed bona-fide subsidiary constraints to action (3.433a), exactly as it hap-
pens at the Newtonian and relativistic levels.

In this way, the Gasperini-Santilli-Yilmaz Gravitation verifies most of
the conditions 1-9 of an “ideal” gravitational theory introduced in Section
3.5.5, with the understanding that so much remains to be investigated.

An explicit example verifying all conditions (3.433) is presented in the
subsequent sections via a small constant deformation of the Minkowski met-
ric in the interior problem.

Without any claim of completeness, we point out below the following
open problems.

The explicit construction of a general example verifying all conditions
(3.431) is recommended. In particular: the example should exhibit a non-
trivial functional dependence of the isotopic elements at least in the velocities
and/or in the density of the interior medium; the Lorentz-isotopic symmetry
transformations for the related tangent space should be explicitly computed
via the techniques of Section 3.4; the verification of conventional total con-
servation laws should be explicitly proven; and the covering nature of the
gravitational model over the corresponding relativistic and Newtonian mod-
els should be studied as an important element for completing the classical
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study of closed nonselfadjoint systems.

An important point in the explicit construction of a model of gravitation
(3.433) is that Santilli’s electromagnetic tensor for the case of the interior
problem #s not the conventional one of Maxwell theory on curved spaces
[160], but requires a construction on an isotopically lifted space along Nish-
ioka lines [161].

The possible existence of a (noncanonical) Birkhoffian representation of
the interior problem should also be investigated because of the possibility of
allowing an unambiguous “hadronization” into an operator form on Hilbert
spaces, along the lines of Section 1.3, Eq (1.58) and following.

In turn, the existence of a consistent “hadronization” could allow the
identification of the possible short range contributions to the “origin” of the
gravitational field, i.e. those of weak, nuclear and strong character.

Another problem that remains open is the resolution of the issue of
“unification” of the gravitational and electromagnetic fields, as attempted
in most of the literature, versus the “identification” of the gravitational and
electromagnetic fields advocated by Santilli (§3.5.3).

A further problem that remains open is the study whether the Gasperini-
Santilli Gravitation is capable of representing all experimental data in grav-
itation.

Despite the existence of these open (and rather intriguing) problems,
we are unaware of any experimental, phenomenological or other informa-
tion that may disprove the Gasperini-Santilli Gravitation for the interior
problem. This is evidently due to the fact that all classical information
accumulated during this century on gravitation is strictly related to the ex-
terior problem and certainly not applicable, say, in the interior of a star.
We therefore know of no criticism that can be moved against the Gasperini-
Santilli interior gravitation. As a matter of fact, all available information
favors the generalized relativity over the conventional one. We are referring,
classically, to the incontrovertible experimental evidence of local interior
departures from the conventional rotational and Lorentz symmetries, ver-
sus the perpetual-motion approximation implied by the conventional theory.
At the microscopic level, all available phenomenological information also fa-
vors a departure from the Minkowski metric in the interior of hadrons, as
reviewed in Section 3.4.3. Needless to say, all this information is merely
preliminary. The final resolution of the issue is evidently of experimental
nature, and will occur only after the conduction of the fundamental tests of
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space-time symmetries recommended in Section 3.5.18 (see Fig.6).

FIGURE 15. A reproduction of Figure 6.1 page 250 of monograph [15]
(see also the more general Figure 1, page xvii of monograph [16]) express-
ing Santilli’s view of the lack of existence of terminal physical theories. In
fact, starting from conventional relativities, the figure includes the general-
ized relativities reviewed in this work, and indicates the yet more general
relativites that are already conceivable at this time, although not technically

realizable because of insufficient mathematical formulations (e.g., insufficient

topologies).

As far as the exterior problem is concerned, the generalized theory pro-
vides no numerical alteration of the results achieved by Einstein’s Gravi- .
tation, trivially, because G)E},m ~ My, + tE},m Notice also that, when seen
from the outside, the Gasperini-Santilli gravitation coincides with the con-
ventional one because of the subsidiary constraints (3.433e). As a matter
of fact, the restriction of the isotopy to the interior problem, and the con-
ventional total conservation laws as subsidiary constraints are imposed [26]
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precisely for the purpose of avoiding any quantitative differentiation in the
exterior problem between the isotopically lifted and the conventional the-
ory. As a result, we know of no criticism that can be moved against the
Gasperini-Santilli exterior problem unless exactly the same criticism applies
also to the conventional theory (see Yilmaz’s criticisms of Section 3.5.4).

In closing, we would like to mention the fact that the Gasperini-Santilli
Gravitation is a genuine covering of Einstein’s Gravitation in the sense of
ref. [1], that is:

a) The generalized theory is constructed via mathematical meth-
ods (Lie-isotopy) more general than those of the conventional
theory;

b)  the generalized theory describes physical conditions (con-
tact nonhamiltonian interactions) more general than those of the
conventional theory; and

c) the generalized theory admits the conventional one as a par-
ticular case when all isotopic elements are everywhere equal to
the identity.

The authors would be grateful to any colleagues bringing to their atten-
tion (at the address of the Institute for Basic Research, P.O. Box 1577, Palm
Harbor, FL. 34682, USA, Fax: 813-934-9275) any information, whether in
favor or against, related to the theory of gravitation here considered.

3.5.14 An Example of Isotopic Interior Problem

We now consider, as an example, a neutron star which, for simplicity, is as-
sumed to be spherical, homogeneous and isotropic. In his original proposal
[82], Gasperini worked out an example of the isotopically lifted gravity which
is directly applicable to the interior problem of such a neutron star. For sim-
plicity, we shall ignore herinafter the source terms and restrict our attention
to the pure contribution from the isotopy. Its generalization to include the
source terms was worked out by Gasperini in the subsequent paper [84].

A very simple parametrizaton of Lorentz “non-invariance” formulations
has been suggested by Nielsen and Picek [99] in terms of the following gen-
eralized metric tensor (§3.4.3)

7" =0 - x*, feM;. (3.441)

Under the assumed rotational invariance, x,; is a symmetric traceless
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tensor, defined in terms of only one constant parameter «,
Xab = g— diag (1,1,1,3) =
= (s +2) (3.442)
If the metric (3.441) is interpreted as the metric of Santilli’s isospace M; (for

a different interpretation see however ref. [105]), one can formulate a Lie-
isotopic theory of gravity based on this metric, by introducing the isotopic

element
= diag (\/ \/ 1- \/ \/ﬂ_&) , (3.443)

. a a a
nOT.e TS = diag (1 - 5-,1 - §’1 — g-,-(l + a))

= n%—x". (3.444)

for which

The underlying assumption is that the neutron star has the same den-
sity and interior problem, say, of kaons. The gravitational field is however
modified, as we can see explicitly by considering the vacuum field equations
of the isotopic theory.

Suppose that the deviations from the conventional Lorentz symmetry are
very small, i.e. @ < 1 (intef. [99] the value & < 1073 has been obtained from
experimental data relative to the charged pion and kaon decays). Gasperini
then evaluates the isotopic corrections to the usual Einstein theory to the
first order in a.

In this approximation we have

Ty =~ diag (1—%,1—%,1—%,—(1-}-%))
1

= Xab - (3445)

= 77ab-2

The vacuum field equations (3.376), neglecting a? terms, and putting ¢ =~ 1
and 745 = 3Xqb, become

1 1
Ra Xc __Rc Xdcé + Rca Xd ) (3446)

b
G“‘z 2
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from which, using the explicit expression (3.442) for x,;, we have again to
first order in a,

Gap = ’g‘(Racécb — R8.47ap + Regpab®®) . (3.447)

Notice the explicit breaking of the conventional Lorentz symmetry, corre-
sponding to the contraction of the curvature with the Kronecker tensor bab,
instead of that with the Minkowski metric 7,;.

Notice also the reconstruction of the exact Lorentz symmetry at the
Lie-isotopic level because metric (3.441) verifies conditions (3.4334).

Other isotopic corrections to Einstein’s equations are due to the non-
Riemannian part of the connection, contained implicitly in the curvature
terms. The first order contribution to the torsion can be obtained from Eq.s
(3.366), putting ¢ ~ 1 and 74 = x45/2:

1. 1 I
Qoc” = 5[Mc"xia + 3 Vo Xei = 5%ea' Xt 5 (3.448)

where 7,p. is the Riemannian part of the connection, defined in Eq. (3.368).
Using Eq. (3.367), one obtains the isotopic connection to the first order in
a

Wach = Yach + Kach s (3449)
where
o . . .
Kep = 3‘[7bc16ai - 7cbz6ai + '}'bazaci
—~Yea" 3] - (3.450)

Again the presence of the Kronecker symbol denotes the deviation from the
conventional Lorentz symmetry. Notice that in this particular case the non-
Riemannian part of the connection is nonvanishing only if at least one of the
indices of Ko, is equal to four, otherwise K 3, = 0 because of the metricity
of the Riemannian connection, Ypeq = —Ypqc.

Finally, using the definition of curvature (3.351) applied to the connec-
tion (3.349) one finds, to the first order in e,

Ruuab — leab + a[”K”]ab + a[ﬂacKu]cb
+K %0 (3.451)

where R,,% denotes the usual curvature tensor for the Riemannian part
of the connection. By using contraction to obtain the Ricci tensor and the
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scalar curvature, one gets
1
Gab Gab l a[a Kc]bc 28[0 Kd]cdb‘ab

"7[:'{0 j]cjaab + 7[abiKc]ic + K[abi7°]ic : (3'452)

Combining Eq.s (3.447) and (3.452) we have the explicit expression for the
first order isotopic corrections to Einstein’s field equations G5 = 0

1
Gap = —3[,,Kc]b° + 53(ch]°dnab +
K 16 b — Yoy Ko — Kapp™ i +
a
+§(Rac6cb - RCd&cdﬂab + Rcadbacd) 3 (3453)

where the contorsion K is given by Eq.s (3.450).

Note that the considered neutron star has a discontinuous transition from
the interior to the exterior problem, as far as matter density is concerned.
A step function is in this case appropriate for the realization of condition
(3.433c).

The above example is useful to illustrate the local symmetry of the the-
ory. In fact, the conventional, local Lorentz symmetry is manifestly broken.
But metric (3.441) preserves the topological character of the Minkowski
metric, thus verifying Theorem 3.5 and conditions (3.433c). The Lorentz
symmetry therefore remains exact.

The next issue illustrated by the above model is the dynamics of the
tangent isospace M 1, that is, which is the local invariant, and what is the
maximal possible speed of causal signals. These questions are answered by
Santilli’s Special Relativity (§3.4). The reader should recall that the value
of the fourth component of metric (3.441) is greater than the speed of light
in vacuum, 7** = ¢o(1 + @) > co,co = 1,a > 0. Nevertheless, #** is not the
invariant of the theory, which is given instead by the maximal speed of causal
signals (§3.4.9), and this speed, for the model of neutron star considered,
results to be greater than ¢y (see Appendix B for more details).

The reader should be aware that the above results, are not peculiar for
the Nielsen-Picek metric, because any modification of the Minkowski metric
necessarily implies a change in the maximal speed of causal signals [18],[26].

In summary, the example illustrates that the Gasperini-Santilli gravi-
tation exhibits deviations in the tangent space of the interior problem from
FEinstein’s Special Relativity, but the Lorentz symmetry remains ezact. In
turn, this occurrence is important for the formulation of experiments, as
suggested in the closing Section 3.5.18.
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3.5.15 An Example of Isotopic Equations of Motion

Gasperini [84] continued the example reviewed in the preceding section
by working out explicitly the isotopic equations of motion for the case of
Nielsen-Picek metric (3.441) on Santilli’s space M;. We reproduce the ex-
ample below because of its value for interior problems, such as its direct
applicability to the neutron star of the preceding section.

As stressed earlier the equations of motion for a test particle in a given
external Lie-isotopic gravitational field are to be obtained by integrating the
conservation laws of the energy and angular momentum. This follows from
the field equations and the Bianchi identities of the Lie-isotopic theory.

By taking the covariant exterior derivative of the isotopic equations
(3.434), we obtain the isotopic Bianchi identities

VR“ = Rab/\Tb,
vR® = 0. (3.454)

Using these relations, the exterior covariant derivative of the field equations
(3.434) and (3.435) gives the conservation laws of the isotopic theory, for
the energy-momentum

3.
v Qg = 51{“” A R€apeq (3.455)
and for the angular momentum
1 pa k b
-2—R kAT AT €5pcq =0, (3.456)

where the symbol “Elm” has been dropped for simplicity. To first order in
@, the torsion is vanishing, Re = 0, the connection is Riemannian, and con-
dition (3.455) is reduced simply to \7O¢ = 0, which, introducing holonomic
indices, can be rewritten as

AO" = @8 =, (3.457)

where a semicolon denotes the covariant derivative performed with the Chris-
toffel symbols.

The second isotopic equation of conservation (3.456) provides informa-
tions on the antisymmetric part of the canonical stress tensor. In fact, Egs.
(3.456) and (3.434) imply

O*AT® - 0P AT® =0, (3.458)
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and can be rewritten in the tensor language as
O — OYF = OVFT,F — OFY Y. (3.459)

Expanding ©#” in power series in the parameter o, and using the explicit
form of 7,”, one obtains, to first order in «

o = @) 4 o,
o

ol 3 oUWs» — @WHgM] (3.460)

where round and square brackets denote respectively symmetrization and
antisymmetrization.

Therefore, the isotopic conservation equations are different from the cor-
responding general relativistic one because, in the isotopic theory, the canon-
ical energy-momentum is no longer a symmetric tensor, even in the case of
spinless matter.

Using the properties of the Christoffel connection, Eq.s (3.457) become

9, (V=g0") 4 T,oty/=g0(*)
+8, (v=g0"1) = 0. (3.461)

Integrating this conservation law over an isospacelike section (§3.4.11) of
the world tube of the test particle, performing a multipole expansion of
the gravitational field inside the particle according to Papapetrou’s method
[158], multiplying by dt/ds, and using Eq.s (3.460), one gets, in first approx-
imation :

d 4 . 4
- / da'\/=gl0W(1 - Sa) + 500 6,]
+rmﬂg§ / P’ /=50 = 0. (3.462)

Finally, defining
moutu?’ = -:—Z— /d3z'\/—g®(’“’), (3.463)

where mg is the mass, and u# = dz*/ds is the four-velocity of the test body,
we obtain the following equations of motion, for a Lie-isotopic theory of
gravity in which the deviation from the Lorentz symmetry is parametrized
by the metric of Nielsen and Picek

4  d*z* 4 d?z* ,de” dz°

(1- ga) 77 T —abys”

3 ge2 T v "Js——dg‘=0- (3.464)
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In the limit @ — 0, we recover the usual geodesic equations, as expected.

The above example of equations of motion is important to illustrate
another aspect of the generalized theory, the local deviation from geodesic
motion in the interior problem (only), which is the crucial condition for the
representation of local internal deviations from conservative conditions, and
interior trajectories of perpetual-motion type.

The example also illustrates the “No No-Interaction Theorem” of Sect.
3.4.15. In fact, for o # 0, trajectory (3.464) cannot be reduced to a conven-
tional geodesic motion. As a result, the test particle under consideration is
experiencing a nowhere reducible, nontrivial interaction.

As a final comment, the reader should be aware that Eq.s (3.464) have
primarily local meaning, that is, they provide a first approximation of the
motion of the test particle in the neighborhood of a given point of isospace
M. In fact, as stressed in §3.4, the isotopic metric 7 is expected to be a
nonlinear and nonlocal function of the local quantities.

3.5.16 An Example of Isotopically Lifted Orbital Motion for the
Interior Problem

Gasperini [84] continued his example with the explicit calculation of the
modification to orbital trajectories caused by isotopy, again, for the case of
Nielsen-Picek parametrization of local Lorentz “noninvariance”. We review
this additional development below because of its practical value for explicit
calculations regarding the interior problem.

The reader should be aware that Gasperini presented the isotopy of
orbital trajectories for the ezterior problem [84]. The objective was that
of ascertaining possible upper limits to Nielsen-Picek Lorentz-asymmetry
parameter o that could be established by the precession of the perihelion of
Mercury.

Following Santilli’s analysis [26], such objective is no longer realizable,
even though the orbital equations reviewed below remain valuable for the
interior problem.

To put it differently, the Gasperini-Santilli Gravitation as per Eq.s (3.433)
recovers the conventional Riemannian geometry in the exterior problem and,
thus, admits conventional orbital motion in the exterior problem.

Using spherical polar coordinates, and inserting the Christoffel symbols
corresponding to the metric (3.441) the isotopic equations of motion (3.464)
for 22 = @ are satisfied by assuming that the orbit is confined to the equa-
torial plane (as in general relativity), so we can put everywhere 8 = 7 /2=
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const. The remaining equations for z! = r,2% = ¢, and z* = ¢ become then
1d

4 . —) -2 1d’U
(1—§a)r+-2—3—r — e <p+2d

(1- %a)g’é + %7’“9’0 =0, t4+09i=0, (3.465)

where a dot now denotes derivative with respect to s.
The last two equations can be easily integrated, and we obtain

P20+ %a)¢ = Bt ga,

et = K, (3.466)

where h and k are two integration constants. Notice that Kepler’s second law

is modified, as the areal velocity is no longer constant but becomes a function

of the radial coordinate, 72¢ « r~3%/3 (if @ # 0); this is a consequence of

the generalized angular momentum conservation law of the isotopic theory.
Using Egs. (3.466), the radial equation (3.456) can be rewritten

d _ 16,
;l; {(1 — 2mu) 1h2u'2(hu) 3

+ h2u2(hu)13_6°‘ — k2(1 - 2mu)(1+%°‘)}
_ 14.d o p
a{(l 2mu) d‘P(h u')
+——-—(h2 2)} (3.467)

where u = 7~1 and a prime denotes derivatives with respect to (. Notice
that a circular orbit of constant radius, u' = 0, is still a possible solution of
the isotopic equation (3.467). Supposing u’ # 0, the equation of the orbit
becomes, to first order in a,

" (hu) T — gau” + p(hu)T¥(1 — 2mu)

+ —gaulzu—l + mu'z(hu)légo‘(l — 2mu)~?

L m(1 + a)(l — 2mu)~(+32) = 0. (3.468)
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An approximate solution of this equation can be obtained by using an iter-
ative procedure (as in general relativity), putting

we + @, (3.469)

(]
where (u) is the unperturbed Newtonian solution, obtained putting @ = 0 and
neglecting the relativistic contributions. We suppose then that the isotopic

0
corrective terms, of order « (u), are not larger than the terms representing
0)
general relativistic corrections (~ m u?) due to the curvature of the world

manifold, and that both contributions are included in ('zlt).
Putting the o = 0, from Eq.s (3.467) we have

©) (0) (0)
(1 —2m u) h? u'? +h2 42

-1
e (1 —2m (?)) =1, (3.470)
and Eq. (3.468) for @ is reduced to
©
o 1+ @ 75 =0, (3.471)

The well-known Newtonian solution

( - ;Z; [1+ ecos(e — ¢o)] (3.472)

represents an ellipse with eccentricity e, semimajor axis a, and semilatus
rectum L related by

h2
L=qa(l-¢€*)= po (3.473)
To first order in o, neglecting terms of order higher than
© o Q.
o U~ Z and m ﬁ, (3.474)
we have, from (3.468) and (3.469), the following equation for @
@) (0)
v+ @ -3m u +4a Q@ —201%
8 QO 16 m ©
+ 3 w4 = 3 h2l (h ) 0. (3.475)
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Using now the explicit expression (3.472) for (3), we can expand the last two
terms for orbits with small eccentricity, neglecting terms of order e? and
higher. We can also neglect the terms representing constant corrections, as
they do not produce observable effects, keeping only those corrections whose
contibution increases continuously at each revolution. Equation (3.475) is
reduced then to

(1) 3
N (11):_. (%—- - gaga%n—?—> ecos(p — wo) , (3.476)
and the solution is
2
%= (3-’;‘—2 - 139~a) %esin(cp — o) - (3.477)

To first order in «, including also general-relativistic effects, Gasperini ob-
tains the approximate equation of the orbit
©

u=U + U= % [14 cos(p — o — Apo)], (3.478)

where

2
Agp = (%. - 13904) @, (3.479)

is the precession of the orbit per unit revolution angle . After a full revo-
lution (¢ = 27), the perihelion shift is then

6rm L
Apg = —— (1 - %Qafl—> . (3.480)

L

The above equations, again, are valid for the interior problem only of Gasperini-
Santilli Gravitation with Nielsen-Picek tangent metric. They essentially
provide a quantitative, although approximate model of deviations from con-
ventional Einsteinian equations that are expected for realistic conditions in
the interior motion. Equivalently, Eq.s (3.478) provide a first approximation
of the physical differences existing between the motion of a test particle in
the exterior case (motion in vacuum) and in the interior case (motion within
a physical medium).

The above approximation with a small and constant isotopy of the
Minkowski metric,  — 7, could however have astrophysical applications,
e.g., for a body orbiting inside the atmosphere of another body.
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3.5.17  An Isotopic Generalization of the Schwarzschild Metric

Gasperini [84] finally computed explicitly a Lie-isotopic generalization of the
Schwarzschild metric for the case of Nielsen-Picek parametrization (3.441)
of local Lorentz “noninvariance”. It should be stressed from the outset that
the isotopic metric provided below is not an exact solutions of Eq.s (3.433),
but it provides a solution only on a first approximation.

Nevertheless, the emerging model naturally applies to the interior of the
neutron star of the preceding sections. As one can see, the findings are sig-
nificant to illustrate the profound physical implications of the Lie-isotopic
generalization of Einstein’s Gravitation, e.g., for the problem of black holes.
The reader should be aware that similar results are obtained via any the-
ory capable of representing the local nonconservation of angular momen-
tum and other quantities in the interior problem. To put it differently, the
Schwarzschild metric is a by-product of the perpetual motion approxima-
tion in the interior problem implied by Einstein’s Gravitation. If physical
reality is admitted and quantitatively represented, say, for the vortices in
Jupiter’s atmosphere with a varying angular momentum, a departure from
Scwarzschild metric is unavoidable. A suitable revision of the conventional
notions of “singularities” and “black” (or “brown”) holes is then expected.

The usual procedure to obtain a static and spherically symmetric solu-
tion of the gravitational equations is to introduce spherical polar coordinates
{r,0,¢}, so that the proper-time interval can be written in the “standard

form”
ds? = —e’dt? + dr? + r%(d6? + sin? 8dp?), (3.481)

where v and A are functions only of r (notice that a static and isotopic metric
like (3.481) can be a solution of the isotopic equations (3.447) because, using
the metric of Nielsen and Picek as the metric of the local Santilli space, we
are considering a deviation from the conventional Lorentz invariance which
is still rotationally invariant).

The explicit computation of the Christoffel symbols and of the curvature
tensor for the metric (3.481) shows that Ro® = 0 if o # f, that Ry = R33,
and that the only nonvanishing components of R4, *? are

1d
Ru* = R&+ ___?e—/\,
rdr
1dv
Ryp*? = Ry® = ——5;5,;6-’\. (3.482)

In this case the isotopic equations (3.447) are reduced to only three inde-
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pendent equations:

1y 1do () 1dodod)
2dr? " rdr 4 \dr

= U,

4 dr dr dr
1d%v 1(dv)2 1d\  1ldvd) 2 a dv

2ar Y a\@) “ra dardr T 3rdr
1= [1 +ir (% - %;l)] —1= %r%e“)‘. (3.483)
By subtracting (3.483b) from (3.483a) and integrating, we get
v(l-2a)+ A =0, (3.484)
where f is an integration constant; Eq. (3.483c) gives then
re!(1-%2)-F — v 4 const. (3.485)

We choose, as usual, this second integration constant equal to —2m =
—2G'M (where G is the Newton constant and M the mass of the central
source) in order to obtain the Newtonian gravitational potential in the weak
field limit; combining (3.484) and (3.485), we obtain then, to first order in
a,

e = 1-—-2-”—71-,
r

2
e = (1 - 2?>1+3a P+ie), (3.486)
The value of # could be determined by imposing the boundary condition
that, in the limit in which the gravitational field is vanishing, the metric
must reduce to the isotopic form (3.441). In this case one can easily obtain,
to first order, 8 = In(1 4+ @) (modulo a suitable renormalization of the
constant value of the light velocity in vacuum). Notice, however, that the
requirement of spherical symmetry is not sufficient to determine univocally
the choice of the time coordinate in the proper-time interval (3.481) and,
in view of the general covariance of the theory, we are free to define a new
coordinate t' = f(t), where f is an arbitrary function of ¢ only.

Using this freedom we can choose then the time coordinate so as to
eliminate the exponential factor on the right-hand side of Eq. (3.486b) or,
in other words, to put the integration constant 3 = 0. Therefore

e = (1 - 2?)”%0 . (3.487)
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In this way Gasperini obtains the static, spherically symmetric approximate
solution of the isotopic equations (3.436), to first order in «,

1+§-a dr?
2 _ _[1_om 2 r
ds®* = (1 27‘) dt +_—_—_1—2m/7'
+ 1%(d6? + sin? 0dp?). (3.488)

The usual Schwarzschild solution can be recovered in the limit a — 0,
corresponding to an exterior motion.

Isotopic lifting (3.488) of the Schwarzschild metric is significant for a
number of aspects. In fact, it opens up a problem, unexplored until now,
regarding the implications for black holes caused by the isotopic lifting of
gravitation.

More specifically, we are referring to the identification of the depar-
tures from the Schwarzschild metric and gravitational singularities in gen-
eral caused by a bona-fide representation of the physical conditions of the
interior problem with metrics less approximated than (3.441). All available
studies are essentially based on the same theory for both the exterior and
interior problem without any treatment of their physical differences.

Note also that the Lorentz-isotopic theory can provide the explicit form
of the symmetry transformations, not only for the isotopically lifted metric
(3.488), but also for the conventional Schwarzschild metric. Their explicit
construction is another interesting open problem we recommend for consid-
eration by interested researchers.

3.5.18 Some Overdue Fundamental Experiments

A primary purpose of this review is to recommend the conduction of truly
fundamental experiments, that is, of experiments on fundamental physical
laws, rather than tests on secondary aspects and, therefore, of secondary
relevance. We shall review below a few basic tests which have been sug-
gested for quite some time, but have remained, regrettably, ignored by the
experimental community and are now substantially overdue.

As well known, a truly considerable number of experiments have been
suggested to test Einstein’s Special Relativity. Regrettably, we cannot pos-
sibly review them here. In fact, for brevity, we shall consider only the tests
that are of fundamental character, as well as directly related to Lie-isotopic
techniques.

The first basic tests of this work were reviewed in Section 3.5.3 and they
can be expressed as follows:
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FUNDAMENTAL TESTS I: Measure the prediction of gravita-
tional theories that any electromagnetic field is a source of a
gravitational field (Figure 13)

The experiments have been lingering in the literature on gravitation
since the early stages of the theory. In 1974, Santilli [132] brought them
back to the attention of the experimental community by recommending first
the measure of the gravitational field which is expected to be produced by
large magnets as available at several laboratories. This first test is well
within current ranges of senmsitivity of neutron interferometric techniques.
Secondly, Santilli suggested the conduction of deeper tests to measure the
contribution to the gravitational field caused by the dynamical conditions
of charges and/or magnetic moments (see Figure 13 for a summary and
ref. [132] for details). These additional tests, apparently, were not feasible
in 1974 because of limitations on the sensitivity of gravity meters, on one
side, versus limitations for reaching sufficiently high electric and/or magnetic
fields and sufficiently high rotational conditions. Nevertheless, the experi-
ments may well be within practical realization nowaday, owing to advances
in superconductivity and other fields.

The fundamental nature of Tests I is manifest. For instance, the tests
could well allow the resolution of the vexing problem of “unification” of the
gravitational and electromagnetic fields originating in the charge structure
of matter along Santilli’s hypothesis of their “identification” (3.334), i.e.

MG ~ @Fm (3.489)

In turn, such an identification would open the door to realistic possibilities
of achieving a unification, not only of the electromagnetic and weak interac-
tions (as permitted by the conventional Lie theory), but also of the strong
and gravitational interactions, as conceivable under isotopic lifting of gauge
theories (See Appendix A).

There is also little doubt that Fundamental Tests I are now grossly over-
due.

The second group of experiments reviewed in this work consist of the
following.

FUNDAMENTAL TESTS II: Measure the deformation/rotational-
assymmetry/magnetic-moment-mutation which is expected for neu-
trons (or any other hadron) under sufficiently intense (e.g. nu-
clear) external fields (Figure 6).
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The tests have been conducted by Rauch and his collaborators (see ref. [88]
and quoted papers) via neutron interferometric techniques up to 1978, but
regrettably halted since that year.

The latest available experiments tested the spinorial symmetry of neu-
trons via two complete spin flips while the (low energy) neutron beam is
under the action of an external nuclear field (i.e. the spin flips occur while
neutrons are under external nuclear forces). The best available measure are
715.87 + 3.8 which, as such, do not include (within the limits of the ex-
perimental error) the 720 deg needed to establish the exact nature of the
spinorial symmetry.

A preliminary, but full and direct representation of the above deviations
from the exact SU(2) symmetry has been reached by Santilli [27] via the iso-
Dirac’s equation, i.e., the isotopic generalization of the conventional Dirac’s
equation which is invariant under the Poincaré-isotopic group of Section 3.4.

Fundamental Tests II shall be considered in detail in a separate review
on the “hadronic generalization of quantum mechanics” (Sect. 1.3), owing
to their essential operator nature on Hilbert spaces. Here, we limit ourselves
only to indicate the manifest plausibility of the violation of the conventional
rotational symmetry in particle physics. In fact, perfectly rigid, spherical,
charge distributions (3.1), i.e.

rér=gzx4+yy+22=1, (3.490)

do not exist in Nature, but admit instead deformations, e.g., of the ellipsoidic
type (3.3), i.e.

r'gr = zblz +ybly +zb3z=1,
>0, k=1,2,3, (3.491)

with manifest breaking of the rotational symmetry. The deformation is mea-
surable because it implies a (necessary) alteration of the magnetic moment
which, in turn, is measurable via the test of the spinor 27-symmetry of
neutrons under external nuclear interactions.

It should be stressed that the tests have been fully within current exper-
imental feasibility since quite some time, as well known.

The fundamental nature of Tests II is incontrovertible. After all, the
rotational symmetry is at the foundation of quantum mechanics and all of
particle physics. It is a truism to say that deviations from the rotational
symmetry, when experimentally established, could stimulate a new scientific
renaissance. In particular, the mutation of metric (3.490) into form (3.491)
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is a clear case of isotopy and, as such, it provides one of the most important
applications of Santilli Lie-isotopic generalization of the group of rotations
(§3.2). This implies, in particular, that the rotational symmetry remains
ezact at the isotopic level. Only its conventional realization is violated by
deformations (3.491) (see Appendix C).

Fundamental Tests II are also grossly overdue. In fact, the only available
tests are those by Rauch and collaborators [88]. In particular they show a
violation of about 1% (outside statistical errors). Lacking the final exper-
imental resolution of the issue one way or the other, the entire branch of
particle physics dealing with the rotational symmetry is now in a state of
“suspended animation”.

The situation becomes unreassuring and acquires nonscientific (e.g., ethi-
cal) overtones if one notes that all experiments currently preferred in particle
physics, besides costing substantially more than the relatively inexpensive
Tests II, are of manifest, less, comparative relevance. These ethical aspects
have been pointed out by Santilli [163], and are not reviewed here. We
restrict ourselves only to indicate that, when fundamental tests remain ig-
nored for protracted periods of time, scientists in good faith should expect
the emergence of ethical issues.

But the fundamental tests primarily suggested in this review are the
following.

FUNDAMENTAL TESTS III: Measure the local validity or inva-
lidity of Einstein’s Special and General Relativities within hadronic
matter via the measure of the behaviour of the mean life of un-
stable hadrons at different energies (Figure 16).

The test in this case are numerous and consist, more specifically, of the
measure of the behaviour of the mean life of (at least) pions and kaons at a
sufficient number of different speeds to allow the verification or the disproof
of the Einsteinian law (3.165),

T =10y = To(1 — v%/c2)"V/2. (3.492)
As reviewed in Section 3.4, possible deviations from law (3.492) should

follow Santilli’s isotopic law (3.279), i.e.,

2\ —1/2
vb ”) , (3.493)

T=‘ro'“r=To(1——cT
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which, as shown by Aringazin [119], unifies all known or otherwise conceiv-
able models of “Lorentz noninvariance” reviewed in Section 3.4.3.

HADRON IN A PARTICLE ACCELERATOR

HOTION OF MASSIVE

MOTION OF CENTER~
P T e LS i CONSTITUENT:
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LORENTIAN
SEPARATION LORENTIAN-ADNISSIBLE
SEPARATION

1,2 .02
AN %5 (x9) 4 12 2 o8 o
Inv., 2t x® « x%8x0 =

vl °

EINSTEIN SPECIAL

RELATIVITY (FOR
POINT-LIKE APPRO-
XIMATION OF
HADRON «

EINSTEIN-ADMISSIBLE
RELATIVITY (FOR TREATMENT
OF CONSTITUENT AS EXTENDED
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FIGURE 16. A reproduction of Figure 5.6, page 592 of monograph [16]
summarizing the conceptual basis of the fundamental experimental tests rec-
ommended in this work: measure the behaviour of the mean life of unstable
hadrons while moving at different energies in a particle accelerator. The
center-of-mass motion strictly obeys Einstein’s Special Relativity. Never-
theless, the interior dynamics is fundamentally noneinsteinian. This is due
to the fact that the former dynamical evolution occurs in vacuum, while the

“latter deals with motion of extended wavepackets (the hadronic constituents)
moving within a physical medium composed of other constituents, thus re-
sulting in nonlocal forces under which Einstein’s Special Relativity is well
known to fail. The compatibility of the above two different dynamical con-
ditions has been proved at all levels of description, that is, at the Galilean
(§3.3), Relativistic (§3.4), Gravitational (§3.5) and operator levels (§1.3),
and it is now an established fact. The only known way according to which
deviations from Einsteinian laws in the interior dynamics manifest them-
selves in the exterior one is via departures from the Einsteinian law of time
dilation. As a consequence, the proposed tests are the most fundamental
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ones conceivable at this time, inasmuch as they probe the local Einsteinian
or noneinstenian behaviour of the ultimate structure of matter. It is very
regrettable that the tests, proposed in the literature for decades, have been

ignored by experimentalists until now.

For instance, Nielsen and Picek [99] have reached modification (3.170) of the
Minkowski metric in the interior of pions via the use of currently available
phenomenological information

1 1 1
g = (1 - ga,l —_ ga,l - §a,—-(1+a)) N
o= (-3.79+ 1.37) x 1073, (3.494)

which, when plotted in law (3.493) yields the non-Einstenian behavior

- {1 cg(1+a)2]' (3.495)

Similarly, for the case of kaons, Nielsen and Picek have reached modification
(3.170) of the Minkowski metric with

o= (+0.5440.17) x 1073, (3.496)

with corresponding non-Einstenian behavior (3.495).

Numerous, additional, essentially similar, quantitative predictions also
exist in the literature as reviewed in Section 3.4.3.

Let us also recall alternative law (3.171) proposed by Nielsen and Picek,
ie.,

2
T = 1oy (1 + 4‘? ) : (3.497)
which is however reducible to Santilli’s unified form (3.493) as shown by
Aringazin [119].

Note not only the different value of the “Lorentz-asymmetry” parameter
a but also its different sign in the transition from pions to kaons. This
confirms, quite eloquently the need to conduct Tests III for at least pions
and kaons.

It should be stressed again that isotopic metrics (3.494) with constant
values provide only a first approximation of the geometry in the interior of
hadrons. ‘In fact, the isotopic metrics are expected to be nonlinear [101]
in the velocity, in turn, as an approximation of the ultimate nonlocal [102]
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structure of hadrons (Fig. 16). Quantitatively too, metrics (3.494) are
expected not to be representative. In fact, while these metrics deal with
deviations of the order of 10~3, Kim [98] predicted deviations of the order of
2.6% at 150 GeV and 14.3% at 400 GeV. For the best available predictions
of violations, we refer the reader to ref.s [101,102].

In conclusion, by no means metrics (3.494) should be taken as an in-
dication of the lack of feasibility of the Fundamental Tests ITI, because of
their very low deviation from the Minkowski metric. In fact, metrics (3.494)
merely provide first approzimations for low speeds, which, as such, have only
an indicational value. On the contrary, the feasibility of Fundamental Tests
IIT should be considered as fully and completely within current range, be-
cause of the predictions of large numerical percentage of departures from law
(3.493) that are readily attainable today in particle accelerators [101,102].

The reader should keep in mind the truly fundamental implications of
modifications (3.493) of Einsteinian law (3.492), as represented by Santilli’s
Special Relativity (Sect. 3.4). For instance, the maximal speed of a physical,
massive, particle (or causal signal) is smaller than ¢ for the interior of pions,
but bigger than ¢q for the interior of the heavier kaons and, expectedly, of all
remaining (still heavier) hadrons. In turn, the possibility for causal signals
of surpassing the speed of light in vacuum, if experimentally established,
would have truly deep implications throughout all of particle physics, by
offering intriguing and still unexplored possibilities (e.g., the achievement
of a true confinement of quarks with null probability of tunnel effects [44)).
Finally, the experimental verification of deviations (3.493) would establish
the need for a Lie-isotopic generalization of Einstein’s Gravitation for the
interior problem at the operator/particle level. In turn, this would have at
least two-fold implications. First, the occurrence would be a rather natu-
ral, particle-image of the established classical violations of Einstein’s Special
Relativity in the interior dynamics, such as satellites during re-entry with
a continuously decaying angular momentum. Secondly, the occurrence con-
sidered would finally remove the current, rather widespread belief that the
classical violations of the Special Relativity are resolvable via the reduction
of the classical object to its elementary particle constituents (see Sect. 3.5.3
for the lack of technical feasibility of such a belief).

The tests for unstable leptons, such as the muons, are recommended but
positively not in lieu of the above tests for hadrons. In fact, the problem
whether leptons are elementary or composite is still basically unsolved. If
they are indeed elementary, then they are expected to obey law (3.492)
exactly, thus leaving the issue under consideration here (local Einstenian
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character of strong interactions) fundamentally open. At the same time, if
the tests are conducted for unstable leptons, and they show violation, this
would be indirect experimental evidence of their composite structure.

It should be stressed here that Fundamental Tests III are quite simple
and fully feasible nowadays. In fact, they require relatively low energies, and
as such, they are realizable in all available particle accelerators throughout
the world. Also, the tests are of very moderate costs, particularly when
compared to the costs of the current search for heavy mesons and other
contemporary particle experiments. Finally, Tests III require no theoretical
elaboration of the results, trivially, because they have simply to measure a
time at a given speed. As such, they are intrinsically model-independent (a
feature rather rare in contemporary particle experiments).

The motivation for the conduction of the suggested tests are simply
compelling, because of their number and diversification. They are at the
very foundation of the Lie-isotopic theory, and, as such, have been reviewed
throughout this work. We simply recall here:

1. The incontrovertible experimental evidence requiring a deep overlap-
ping of the wavepackets of the constituents of unstable hadrons (Figure
1) with consequential nonlocal nature of the strong interactions. In
turn, such a nature implies a necessary violation of Einstein’s Special
Relativity, as well known since quite some time;

2. All phenomenological calculations of the mean life conducted until now
show clear violation and none of them recovers Einsteinian law (3.492).
We are referring here to the predictions by Blockhintsev [96], Redei
[97], Kim [98], Nielsen and Picek [99], Huerta-Quintanilla and Lucio
[100], Aronson, Bock, Cheng and Fishbach [101], Cardone, Mignani
and Santilli [102] and several others;

3. The incontrovertible experimental evidence of the violation of Ein-
stein’s Special Relativity in classical macroscopic dynamics of interior
problems recalled earlier;

as well as other motivations.

The contributions made by the Lie-isotopic theory at the various levels
considered (Newtonian, relativistic and gravitational) are numerous, such
as:

a) The proof of the compatibility of deviations (3.493) for the interior
problem, with the exact character of Einstein’s Special Relativity for
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the center-of-mass motion of the unstable hadrons (see Figure 16)
achieved, as now familiar, with the notion of closed nonhamiltonian
systems;

b) The construction of genuine covering relativities at all levels of study
which do not leave the “broken” context mathematically and phys-
ically undefined, but replace it with covering, explicitly computable
symmetries unifying all available generalizations;

c¢) The clarification that, contrary to popular belief, the Lorentz sym-
metry remains exact under generalized law (3.493). As a result, all
predictions of violations of ref.s [96] through [101] must be referred,
specifically, to Einstein’s Special Relativity and not to the Lorentz
symmetry;

and numerous additional contributions reviewed in this work.

The fundamental experiments under consideration have already been
recommended for decades, but regrettably, they have not been conducted
until now.

For instance, the paper by Kim [98] originated as a preprint at SLAC
back in 1977. The paper by Huerta-Quintanilla and Lucio [100] originated
as a preprint at FERMILAB. Santilli [163] conducted a rather considerable
effort in the period 1978-1981 at various laboratories in the USA and abroad
(see ref. [163], Vol. I, Sect. X, Vol. II, Section XII and Vol. IT1, Sect.
XXXIII) to recommend the conduction of Fundamental Tests III but this
effort too resulted in no actual conduction of the tests.

In particular, Kim [98] concludes his analysis with the statement that
Tests IIT are such to “deserve a serious, unprocrastinable study”. Santilli
states on p. 1977 of ref. [6] that

“Until the validity or invalidity of Einstein’s Special Relativity for
strong interactions has been ezperimentally resolved, all theoreti-
cal studies on hadrons and all ezperiments in strong interactions
will remain of conjectural character”.

Note the conjectural character of the ezperiments on strong interactions
in the absence of Tests III. In fact, Einstein’s Special Relativity is a central
component of the data elaborations of experiments on strong interactions.
If deviations of type (3.493) do occur, a corresponding alteration of the
data elaboration is evident, and equally evident is the alteration of the
experimental results.
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This occurrence is clearly illustrated by the fact that, in case deviations
of type (3.493) do occur, this will imply an increase of the meanlife of unsta-
ble hadrons at rest as currently provided by the Particle Data Group [102].
In fact, these meanlifes are evidently not computed at rest, but at given
different speeds, and then extrapolated at rest by using precisely Einstenian
law (3.492). Any deviation from the latter law will then predictably imply
a revision of all “experimental numbers” based in the (generally tacit) as-
sumption of its exact validity. The same nonreassuring situation occurs for
virtually all experimental in strong interactions, which illustrate Santilli’s
statement quoted above.

In short, the entire, theoretical and ezperimental knowledge on strong
interactions is kept in a state of “suspended animation” by the lack of Tests
III, and this situation will persist until the tests are finally conducted. The
economical, let alone scientific implications for any additional deferral of the
tests are then evident.

This situation is regrettable, not only for the experimental community,
but also for the entire physics community, world-wide. The lack of conduc-
tion of the tests has essentially left the foundations of contemporary physics
in a state of “limbo”, with no resolution one way or the other, and with
manifest implications beyond those of scientific ethics.

As well known, physics is a discipline with an absolute standard of value:
the experiments. Lacking a direct experimental verification, physical theories
remain conjectural no matter how old, and no matter how important they
are.

Ezperiments themselves have their own standard of value: the more fun-
damental the test, the more relevant is its conduction as compared to lesser
fundamental tests. It is in the tradition of physics to measure and then
measure again physical quantities. And in fact, the mean life of unstable
hadrons has been measured a truly considerable number of times, and ad-
ditional tests are scheduled for a refinement of available data (see, e.g., ref.
[164] and quoted papers). But then, by comparison, the conduction of new
fundamental tests of these mean lifes at different speeds is manifestly more
important than the refinement of already established data. By no means
are we against new measurements of the mean life of unstable hadrons at
rest, because all feasible experiments must be supported. We are merely
stressing a known absolute standard of value among various experiments.

The reason for priority on fundamental tests are evident and well known.
Refinements of available data can at best imply refinements of available
theories. But new, fundamental tests of the type recommended here have,
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by comparison, potentially far greater implications, no matter whether the
results are in favor or against Einstein’s Special Relativity.

In the final analysis, ref.s [96] through [102], by no means, recommend
the test of the violation of Einstein’s Special Relativity. On the contrary,
they simply require its verification in new physical areas, such as in the
interior of hadrons, in the tradition of physics: via experiments, rather than
conjectural-theoretical work.

When the above scientific scene is put all together, including:

e the manifestly fundamental character of the experiments;

the clear plausibility of the violations;

e the rigorous mathematical structure of the proposed covering theories;

the clear feasibility of the experiments with currently available equip-
ments and technology;

o their moderate costs when compared to other, lesser relevant tests;

the truly historical implications of the results, whether in favor or
against old doctrines;

and many additional motivations, the conduction of Fundamental Tests III
becomes simply compelling.

A primary hope of this review is that experimentalists will understand
this scenario, and finally conduct the much overdue tests.
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APPENDIX A:

LIE-ISOTOPIC LIFTING OF GAUGE THEORIES
Gauge theories, within the context of the conventional formulation of Lie’s
theory, have been instrumental for an important physical achievement: the
unification of electromagnetic and weak interactions (see, e.g., ref. [165] and
quoted papers).

The Lie-isotopic covering of the above theories appears to offer realistic
possibilities of advances, in due time, toward a much broader unification
which is inclusive of the strong as well as the gravitational interactions. This
possibility is a central theme of a subsequent possible review on Santilli’s
“hadronic generalization of quantum mechanics”.

At this point we merely limit ourselves to mention that these advances
toward a “true grand unification” are made conceivable by the following
elements reviewed in this work: the novel representational capabilities of
Lie-isotopic theories offered by the isounit I =711 Eq. (1.35); the addi-
tional degrees of freedom offered by the isotopic element G of the underlying
Hilbert space, Eq. (1.49); and, last but not least, the hypothesis of “iden-
tification” of the gravitational field with the electromagnetic field of matter
constituents, Eq. (3.334).

In this appendix we shall review the pioneering works of 1983 by M.
Gasperini [85],[86] who formulated, for the first time, the Lie-isotopic gen-
eralization of gauge theories. We shall also review important advances
achieved subsequently on the subject by M. Nishioka [161,162,166,167] and
G. Karayannis and A. Jannussis [168-171]. The analysis shall remain essen-
tially classical as in the rest of this review. All major operator aspects are
deferred to the possible subsequent review of “hadronic mechanics.” Ad-
ditional important research by Nishioka, Karayannis, Jannussis et al. on
isotopic gauge theories will be reviewed in Appendix C following the intro-
duction of isotopic field equations.

By following Gasperini’s original presentation [85] as close as possible,
we shall first review, for notational convenience, the notion of compact gauge
group, present its Lie-isotopic covering, identify some of the physical impli-
cations and then conclude with a review of additional advances.

Suppose we have a field theory invariant under some compact Lie group
G of global transformations, which can be represented via the transforma-
tions

P =Ut, (A1)
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where

U=e % (A.2)

6% is a set of constant real parameters, X} is a matrix representation of the
generators of the group satisfying the rules

(X, X;5] = i eij* Xy, (A.3)

and c;;* are the structure constants of the Lie algebra of G. The infinitesimal
form of the transformation (A.1) is

6 = —ie*F Xy, (A.4)

where £F are the infinitesimal parameters corresponding to 6*.

Notice that the representation matrices of the transformations are uni-

tary
Utu =1, [U*t,U]=0, (A.5)
and the basic invariant of the theory is ¢t = ¢+,

If the global symmetry is enlarged to a local symmetry, i.e. if we consider
transformations with space-time dependent parameters, 6% = 6*%(z), then
the theory is no more invariant, in general. The invariance is restored if
the partial derivative of the matter field, § w0, is replaced with the covariant
derivative

Dy = (9, — igAEX)Ty (A-6)
where g is the group coupling constant, and the gauge potential A, = AﬁX &
is a vector field with values in the Lie algebra of G. Its transformation
properties are fixed by imposing that D, transforms like 1, that is

DU =UD.y. (A.7)
We obtain then
. , _ 7 _
ALX; =UAX; U™ - E(mU)U 1 (A.8)
Performing an infinitesimal transformation, i.e. putting
UxI—ie*Xy |, U 'oT+icfXxy, (A.9)

and using the commutation relations (A.3), we can obtain, from Eq. (A.8),
the infinitesimal gauge transformations for the potential vector

. 1 . .
§AL = 5 L€+ cip'el AL (A.10)

283



Finally, we must complete the field theory by adding a dynamical term
for the gauge potential. To this aim, one defines the Yang-Mills field strengths
F,, as follows

; 1
Fy.u¢ = Fy,yXid) = —Zq'[DlnDV]/w 3 (All)
that is, using Eq.s (A.6) and (A.3),
Fi, = 0,4, - 0,AL +g i ALAS (A.12)

Its transformation law can be obtained from Eq.s (A.11) and (A.7)
F,=UF,U', (A.13)
and then we can construct the following gauge-invariant kinetic term
Tr(F,, F*) = Tr(F,,F") « FL, F* . (A.14)

These few basic notions on classical gauge theory are sufficient for the pur-
pose of this review. Further details can be found by the interested reader in
ref. [165].

At this point, Gasperini [85] introduces Santilli’s Lie-isotopic generaliza-
tion of the conventional formulation of Lie’s theory (Sect. 2). For notational
convenience we review the isotopy for the case at hand.

Given an invertible and hermitian operator T', the enveloping Lie algebra
of a theory with associative product AB and unit [ is generalized introducing
the isotopic (associative) product Ax* B = AT B and a new unity =11,
such that A« f=TxA= A

As a consequence, the usual definition of hermitian conjugate, A™, and
inverse, A~1, of an operator A must be replaced by the isotopic generaliza-
tions, the T-hermitian conjugate (141), i.e.,

At =THAY], (A.15)

and the T-inverse . )
AL =71, (A.16)

Furthermore, the T-isotope, exp A, of an exponential operator exp A, is
given by Eq. (2.138), i.e.

eA=TeTA=eT. (A.17)
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The Lie-isotopic lifting G of the compact Lie group G is represented then
by transformations (2.134), i.e.,

P =Ux, (A.18)
where
U =1 e 0" Xr = gmiXind* j (A.19)
The explicit computation of its isotopic hermitian conjugate
UF = THel™+Xnp—1 = i0™Xif (A.20)
and of its inverse
U1 = 7717 0" Xep-1 _ i Xif (A.21)

shows that U is a T-unitary operator, since
ot=p-1. (A.22)

It is important to mention that G is locally isomorphic to G if T is a positive-
or negative-definite isotopic element (this result is due to Santilli’s Theorem
2.9).

Another important point is that the isotopic condition of hermiticity co-
incides with the usual one, when the Hilbert space is generalized introducing
the isotopic inner product (a,b)* = (a,Tb) of Eq. (1.50).

Notice also that the infinitesimal form of the Lie-isotopic transformation
(A.19) is given by

A~ A

Ux~T-icfx,, (A.23)

and
6 = —iXy ke (A.24)

respectively.

At this point, Gasperini [85] introduces his Lie-isotopic generalization of
a gauge theory, by following as close as possible the structure of a conven-
tional theory.

Suppose we have a field theory invariant under the global isotopic trans-

formations R
Y =Uxq, (A.25)
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where U is the representation of a continuous, Lie-isotopic group G’, and is
given by Eq. (A.19). As U is a T-unitary operator,

U« =1=0x0%, (A.26)

the basic invariant of the theory is then structure (2.153), i.e.,
bt =Pt x = Pt KUV U xep. (A.27)
In order to preserve invariance also under local isotopic transformations

U = U(z) (i.e. 8 =6(z)and/or T = T(z)), we introduce, in analogy with
ordinary gauge theory, the isotopic covariant derivative

D, = (8, — igAk x X0)I , (A.28)
and we impose the following transformation rules

D, =UxD,xU", (A.29)

that is X ) o
D, xUxyp=U%D,*7. (A.30)

By using the factorization D =5u Tand U :5’ I, where

Du= 8, — ighAk « Xy , (A.31)

[7= eie"*Xx , (A.32)
we obtain, from Eq. (A.30),

, . -1 1 -1
Al Xy =U AL+ X U —é(aﬂ nou (A.33)

which is the isotopic lifting of the gauge transformations (A.8). In order

*
to obtain the corresponding infinitesimal transformations, we develop U as
follows

* .k
U ~ I-ie"xXg,
-1

0 o~ I+icFxX;, (A.34)
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and then we get, to the first order in ¢,
6AL * X; = éaﬂ(g" * Xi) + i[Ad « Xj,e5 % X], (A.35)
which can be written
. 1 ) . A
ALTX; = —E(Bus‘T)Xi + AL T XXy (A.36)
where we have introduced the isotopic commutators [1], i.e.
[XiX;] = XiTX; - X;TX,; . (A.37)

_ Finally, Gasperini [loc.cit] defines the isotopic Yang-Mills field strengths
F,,, for the gauge potential as follows:

. ~1.. =
Fuy %9y = E‘[Du,DV]’/’:

1 . . A A
= _E(Du *Dy, —D,xD,)*x, (A.38)

which transforms covariantly under an isotopic gauge transformation. In
fact, from Eq.s (A.29), (A.38) he gets

F,=UxF,«01, (A.39)

Its explicit expression can be easily obtained substituting Eq. (A.28) into
the definition (A.38). The result is

Fi, % Xi = (0,4, — 8,A%) % X; + AL (029,T —
~6:0,T)X; — igAl AFT[ XX, . (A.40)

Equations (A.28),(A.36) and (A.40) describe the main aspects of Gasperini’s
Lie-isotopic gauge theory. It must be stressed that the isotopic generaliza-
tion is simple but not trivial, as one can see. For example in Eq. (A.40) the
gauge field is radically modified by the coupling to the isotopic element 7'.

At this point, Gasperini [loc.cit] passes to a preliminary physical inter-
pretation of the results.

For this purpose, some additional information on the element 7 is needed.
Assume the simplifying hypothesis that 7T is in the center of the algebra of
the original Lie group G, i.e.

[X;,T] =0, (A.41)
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since, as stressed by Santilli [1],[26], this condition is verified in several cases
of physical interest.

In this case, using the commutation relations (A.3), the basic equations
of the Lie-isotopic gauge theory can be rewritten as follows:

Duxtp = (0, — igTAEX ), (A.42)
i T-! i i _imy Ak
6A” = ——g——' #(8 T) -+ Cik (EJT)Au s (A.4-3)
Fi, = 7uAL — 7, Al + gTci' AL A, (A.44)
where ' . '
Vu Atx/ - a;tAzu - Azaruua s (A.45)
Tu® = 2(6%0,T ~ 6%,8,1T7, (A.46)

Comparing the above isotopic equations with the corresponding equations of
the conventional theory, Gasperini interprets the isotopic theory as a gauge
theory for local transformations with infinitesimal parameter 't = ¢'T, and
with an effective coupling constant given by

'=¢gT. (A.47)

Since the isotopic element does depend, in general, on the spacetime coor-
dinates z, the linear momentum p, the energy E, and so on, then we have a
gauge theory with a variable coupling g’

g =4¢(z,p,E,.....). (A.48)

This offers rather interesting possibilities which could be connected with
the phenomenon of the so called “running coupling constants” (i.e. cou-
plings evolving as a function of the energy scale), which takes place in the
framework of the grand-unified theories [165].

Furthermore, the isotopic field strengths of Eq. (A.44) can be interpreted
as the gauge field for a potential Ai“ coupled to the geometry of an effective
Riemann-Cartan space (§3.5) equipped with the antisymmetric connection
Iw®=-T,° of Eq. (A.46).

It should be stressed that the coupling (A.45) of the gauge field to the ge-
ometry is the usual “minimal coupling” obtained by replacing partial deriva-
tives with the geometrical covariant ones. In a Riemann-Cartan space such
a coupling is usually forbidden, as is well known [153] because it destroys
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the gauge invariance of the theory, and only more indirect interactions, such
as a “semi-minimal” coupling, are allowed between torsion and the gauge
potential (§3.5).

It is then remarkable that the minimal coupling of Eq. (A.45) is com-
patible with the invariance under isotopic gauge transformations. But even
more remarkable is the fact that the coupling of the gauge field to the ge-
ometry of a curved manifold is not only allowed, but also necessary when
the isotopic lifting of a gauge theory is performed. This may suggest, as
stressed by Santilli [16], that the Lie-isotopic theory represents a promising
clue towards a satisfactory quantum mechanical formulation of gravitation.

Another point worth noticing is that, by putting

T=1Ifq), (A.49)

where f(z) is a scalar function, Eq.s (A.42-A.46) reduce to the same equa-
tions proposed by Hojman et al. [172] for the case of an abelian Lie group,
and generalized by Mukku and Sayed [173] to the non-Abelian case. The
latter theories, therefore, are only particular cases of the Lie-isotopic lifting
of a gauge theory.

In papers [172,173], however, the modification of the gauge structure,
and the explicit form of the torsion tensor (i.e. of the antisymmetric part
of the connection), are introduced “ad hoc”, with the only justification of
allowing a gauge invariant coupling between torsion and the gauge potential.
In Gasperini’s theory, on the contrary, the modification of the theory, and
the necessity of introducing a connection with a nonzero antisymmetric part,
given in Eq. (A.46), are well justified as the consequences of an underlying
isotopic algebraic structure.

Notice that by putting T' = 1, the Lie-isotopic gauge theory reduces to
the usual gauge theory. As a result, Gasperini’s isotopic gauge theory is a
bona-fide covering of the conventional theory, in the same way as Santilli’s
Relativities are a covering of the conventional ones (Sect. 3).

Gasperini then concludes paper [85] with the following words.

“Perhaps the most intriguing dream of contemporary physics
is to describe all interactions with a unified theory. Electro-weak
and strong forces have been put together into grand-unified the-
ories [165], but it seems likely that the gravitational interaction
can be included only by gauging a graded Lie group and using
a graded algebra (extended supergravity theories [173]). The re-
sults, however, are not fully satisfactory up to now, as the theory
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is unable to contain the totality of ezisting particles, even in its
mazimal extension (N = 8). As siressed by Santilli [1], the
graded Lie theory is only a particular case of the Lie-admissible
theory. Therefore it is tempting to speculate that a realistic uni-
fied theory, comprehensive of all particles and forces of nature,
will be reached only on the ground of Lie-admissible generaliza-
tion of supersymmetry and extended supergravity.”

Note the referral, specifically to the broader Lie-admissible generalization
of the Lie-isotopic gauge theory, evidently for a structurally higher level of
treatment.

£ % %k %

We now review some of the research by M. Nishioka, beginning with
paper [166]. As shown in the preceding review, in his formulation of the
isotopic gauge theory, Gasperini essentially selects an element T which is in
the center of the algebra of the original Lie group G,

[X;,T] = 0. (A.50)

Under this hypothesis, Gasperini obtains the basic equations of the Lie-
isotopic gauge theory which are reviewed here for convenience

DU = (8, - igTAE X)),
1 ; i G Ak
6A, = —ﬁaﬂ(e T) + ¢k (8’T)Au ,
Fl, = VuA, - VoA, + gTei ALAT (A.51)
where _ . .
Vel = 0,4, -Tw 4, ,
1 o -

T,.°%= 5(5;:6,,:1’ ~ 620,T)T7 7, (A.52)
ﬁy are the isotopic covariant derivatives, AL are the gauge potentials, and
Fj, are the field strengths. In the space-time with symmetric connec-
tions I'},,* consider isotopic covariant derivatives (A.51a) and the covariant

derivatives (A.52a) with antisymmetric connection I',,*. Then, the covari-
ant derivatives are generalized to

D, + X = (8, — igTAE X )N + 1,7 X%,
V#Afz = auAfz - L/waAi,a (A.53)
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where M are the components of an arbitrary vector, and L,,* are given by
L =Tp*+T,,° (A.54)

The generalized isotopic covariant derivatives (A.53a) are equivalent to
the covariant derivatives appearing in a gauge model of gravitation except
for the variable coupling constant gT.

Following the well known parallelism of vectors defined by Levi-Civita
in a Riemannian manifold, Eisenhart [174] gave a definition of parallelism
of vectors in a general connected manifold given by

dA\? dz¥ d)\? dz¥
P o\u — )¢ p\H —
A <dt +L,,° A dt> A (dt + L,PA dt) 0, (A.55)

where A7 are the components of a vector on a curve which is the locus of
points for which the coordinates z* are functions of a parameter t. The
curves whose tangents are parallel with respect to the curves are called the
paths of the manifold. The equations of these curves are

dz? [ d?*z* ; ndz? dz? da* [ d?zv , ,dz% dz?
d (Tﬂ Z 7177.27) _—dT<———dt2 tloe Grar ) =0 (456)

From (A.56) it is clear that all connected manifolds for which I,° are the
same but I';,,” are arbitrary, have the same paths.

The changes of connection which preserve parallelism were also investi-
gated by Eisenhart. Nishioka [166] makes use of these results. Let L,,” and
L,.° be the coefficients of two different connections, under the condition
that parallel directions along every curve in the space-time are the same for
the two connections,

L’ =Lu° +284, , (A.57)

where @, is an arbitrary covariant vector. ~
If we denote the symmetric and antisymmetric parts of L,,° by I‘LV"
and £, respectively, from (A.54) and (A.57) they are given by

Euuo = L;.wa + 26Z¢u + 5g¢u,
Qu° =T + 656, — 656, (A.58)

From (A.52b) and (A.58) Nishioka concludes that ,,° vanishes if the fol-

lowing relations hold
0T = -2¢,T. (A.59)
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In this case, from (A.582) and (A.58b) I, becomes
_ 1
T =T’ = 5(650,T + 870, T)T, (A.60)

and L/,,° is symmetric.
If T is a function, ¢, becomes the gradient

¢u = —0uln/T, (A.61)

where we assume 7' is positive definite. In this case we have

Epr =L, (A.62)
because, in general, from (A.57)
To o (4 a¢ a¢
L”,yp = Lqu + 26#‘ <amz - 8:1;:) ) (A.63)

where L9, are the components of the curvature tensor for Ly, 7.

From the above analysis, Nishioka [166] concludes that, as far as the
preservation of parallelism is concerned, the symmetric connection in space-
time plus the antisymmetric connection induced by the Lie-isotopic lifting
become equivalent to the symmetric connection L/, provided that (A.59)
or (A.61) hold.

We now pass to the review of Nishioka’s paper [162]. Santilli (Sect. 3.4)
has shown that, in the framework of a Lie-isotopic theory, the conventional
Lorentz symmetry should be replaced with a generalized Lorentz-isotopic
symmetry whose transformations preserve a corresponding Minkowski-isotopic
metric describing a generally inhomogeneous and anisotropic physical medium.
Along these lines Gasperini (Sect. 3.5) has formulated a corresponding Lie-
isotopic theory of gravity, i.e. a generalized gravitational theory based on an
underlying Lie-isotopic algebra and has moreover suggested the formulation
of a Lie-admissible theory of gravity.

In note [162] Nishioka takes a slightly different position from the above,
stressing the isotopic generalization of the associative product and neglecting
the isotopic lifting of other concepts or of other entities. Along this line the
author gives some connections between the Lie-isotopic lifting of the space-
time (Riemannian manifold) and the Lyra or Weyl manifold.

Following the parallelism of vectors defined by Levi-Civita in a Rieman-
nian manifold, Eisenhart [174] gave a definition (A.55) of parallelism of
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vectors in a general connected manifold. Changes of connection which pre-
serve parallelism were investigated also by Eisenhart. Let L, and L,,° be
the coefficients of two different connections. We impose the condition that
parallel directions along every curve in the space-time are the same for the
two connections. The condition is given by

- 1
Lu® = Lu® + 5654,, (A.64)

where A, is an arbitrary covariant vector. Notice that, if L,,° are sym-
metric with respect to p and v, then E,w" are asymmetric. Notice also the
introduction of an arbitrary vector A, which plays an important role later.

As usual, Nishioka assumes that in the space-times the length of the
displacement vector £# = dz* between two points P(2*) and P'(z* + dz*)
is defined by the invariant quantity

ds? = gudatdz?, (A.65)

where g, is the metric (symmetric) tensor of second rank. Nishioka’s iso-
topic lifting of the space-time begins by introducing the isotopic associative
product

ds? = g, * da* + da”, (A.66)

where the symbol * defines Santilli’s product 4 *+ B = A¢B, and ¢ is a
positive definite scalar function.
In the usual space-times the parallel transfer of a vector & is given by

8¢* = —T,, ¢ dz°, (A.67)

where I',;# are the Christoffel symbols of the second kind. For the isotopic
lifting of (A.67) Nishioka assumes

880 = — L, % & % da®, (A.68)

where L,,* are the coefficients of the connection in a general connected
manifold.

For the parallel transfer of length, Nishioka assumes as in the Riemannian
manifold that it is integrable, that is,

6(guy x €+ % €) = 0. (A.69)
The above condition can be considered as the isotopic lifting of
6(guEr€”) = 0. (A.70)
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From (A.68) and (A.69) Nishioka obtains the representation of L,*
— — 1 4 o 4
=¢ W, +¢ 15(6“,4,, + 654, — guwA’), (A.71)

where L,,° have been found to be symmetric with respect p and v.
By setting
44, =B, =1, (A.72)

Z,W" are found to have the same form as the coeficients of a connection in
a manifold suggested by Lyra in 1951 [175] as a modification of the Weyl
manifold, which had a defect of nonintegrability of length transfer. In Lyra’s
geometry 4 is called a gauge function and B, is the electromagnetic field.
Although one can obtain the coeflicients of connection in Weyl’s geometry
provided that ¢ = 1, this is uninteresting, because it is a very special case of
Lie-isotopic liftings. If one uses a new unity I = ¢~1, which is an important
concept in Lie-isotopic theory, the coefficients of the connection in Lyra
manifold L,(f,,) 7 can be written as

L7 =1IL,.°, (A.73)

where ¢ is a gauge function and A, is an electromagnetic field. In this way,
Nishioka [162] identifies a remarkable connection between the isounit I, the
gauge potential A, and the electromagnetic potential B,,.

We now pass to the review of Nishioka’s papers [167], which essentially
consists of the introduction of the gauge field via the Lie-isotopic lifting of
the Hilbert space (Sect 1.3) where the commutator between the isotopic
element and the generators of the Lie algebra does not vanish.

Let T be an operator that is nonsingular and Hermitian. Following [38]
we shall introduce the isotopic lifting H of the Hilbert space H of quantum
mechanics. Let vectors be go,@ﬁ, . The inner product will be defined via
Eq. (1.49), i.e.

(@l¥) = (BIT|$) = (PlTY)eC (A.74)
and normalization X
@lp) =1, (A.T5)
where all symbols without the upper hat denote the corresponding quantity
H.
Following ref. [1], Nishioka defines the Lie-isotopic lifting of the envelop-

ing associative algebra of Hermitian operators A, B on C whose composi-
tion is given by the simple associative product AB, into the isotopic form
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€ characterized by the product A+ B = ATB and the new unity I= T,
T+A=Ax«T= A

Following ref. [38], Nishioka defines the action of the algebra € on the
space H, which is characterized by the modular isotopic form A * 1& = AT@/;,
as well as the linear, Hermitian, adjoint as follows

(A+91p) = (941 + p). (4.76)
Nishioka therefore assumes liftings (1.52) with T = G, in which case
Al = 4t (A.77)
Next, the isotopic, linear, unitary operator is defined by
(0 %[0 ) = (419) (A.78)
which characterizes Eq.s (1.43), i.e.
Tl =0+0t=1 (A.79)

Santilli’s Lie-isotopic lifting G of the compact group G is represented by
the transformation (Sect 2.5)

O =09, (A.80)
where U is an isotopic, linear, unitary operator given by
U = I exp[—if* + X] = exp[—i6* « X;]1, (A.81)

6% is a function of z, Xk is a matrix representation of the generators of the
group G satisfying

[X:, X;] = ici;* X, (A.82)
and c¢;;* are the structure constants of the Lie algebra of G. If one sets
e=Plxg, (A.83)
it follows from isounitarity
o =o, (A.84)
that is to say X . o
P x ' = ot « . (A.85)



Next Nishioka [loc.cif] introduces a Lie-isotopic lifting of the exterior

derivative as follows: R R
d=dI, (A.86)

where d is the ordinary exterior derivative.
The operation of d on 1 is assumed as follows:

d* P = di. (A.87)

One can then operate d on p by making use of (A.87)

= (d* P« P+ PH(d T) + 9 * (d * ). (A.88)
If one assumes X
d*T=VI«T+TxV, (A.89)
where V is given by )
V =FI, (A.90)

where F is a 1-form, then it follows that
dro=(Dx Pt s+t + (D), (A.91)

where D is given by . .
Dsxip=dxp+V x. (A.92)

At this point Nishioka postulates that under transformations (A.80) and
(A.91) should be invariant. Then

(d+o) =dxe. (A.93)
From Eq. (A.93) one has the transformation law for D ¢
Txp=UxDxp, (A.94)

from which X ) X
D =d—-iA** X1, (A.95)

where, from Eq. (A.90), F is given by
F=—iAF 5 Xy, (A.96)

and A* is a 1-form.
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From (A.94) one also obtains the transformation rules for Ak which are
defined as A% = Akdz»

Ap X =UA L« X;U™ = (8,U)0 1, (A.97)

where [/ = UJ.
Aﬁ can be identified as a gauge potential. One can then define the

isotopic gauge field strengths ﬁ',w for the gauge potentials as follows:
Fo*d=iD,«D,-D,+ D,) x4, (A.98)
from Eq. (A.94) and (A.98) Nishioka derives the transformation rule for E,
Fl,=UxF, 01, (A.99)

where D, are defined from D = D, dz.
The simplifying hypothesis that T is in the center of the algebra of the
original Lie group G,
X, T]=0, (A.100)

does not hold, in general, in the above analysis, because if it holds, formula
(A.89) vanishes provided that the commutator between the gauge poten-
tials and T" vanishes. In the discussion reviewed above the vanishing of the
commutator between the gauge potentials and T was tacitly assumed.

* ok ok ok

We now review the research conducted by G. Karayannis and A. Jan-
nussis in ref. [168-171] (additional research by the same authors will be
reviewed in Appendix C after the introduction of the isofield theory).

Paper [168] is important for this review inasmuch as it provides a di-
rect connection between the Gasperini-Santilli Gravitation for the interior
problem (reviewed in Section 3.5) and Gasperini’s isogauge theory (reviewed
earlier in this Appendix). The connection is established by studying one of
the simplest conceivable interior test particles: a charged particle moving in
a physical medium with a velocity-dependent drag force of the type —y o
caused by the medium itself. A semiclassical treatment (which remains es-
sentially valid at the pure classical level), allows the authors to reach the
following results: a) via an essential use of Santilli’s isotopic theory, the
motion of the charged test particle under drag is isogauge invariant; b) the
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electromagnetic field of the test particle, when properly written in the iso-
topic theory, is isogauge invariant in excellent agreement with Gasperini’s
isogauge theory; and c) there is the natural emergence of a torsion pro-
duced precisely by the drag force due to the medium, which is in excellent
agreement with the Gasperini-Santilli Gravitation for the interior problem.

The problem of finding the proper Hamiltonian that describes the motion
of a particle in an electromagnetic field with quantum friction has been
faced by many authors [176,177]. All efforts consist of constructing the
classical Hamiltonian and its canonical quantization. This method usually
leads to ambiguities related to the Heisenberg uncertainty relation, and other
problems. A novel approach was pioneered in memoir [2] and based on the
Lie-isotopic formalism, where the Schrédinger equation is generalized in for

(1.45), i.e.
zh@— = HTVY. (A.101)
ot
The explicit form of the operator 7' and the Hamiltonian H which de-
scribe the motion of a particle in an electromagnetic field with quantum

friction was computed in ref. [178], resulting into

T=e", (A.102)
and
~ h2 2 ieh - - — = 62 t
_ e _’th ——— . . 2 v .
H=HT Zme +ch(AV +VA)+(V+e¢>+2mch Je
(A.103)

In ref. [168], Karayannis and Jannussis prove that this result is also
established by the isotopic gauge invariance principle. Consider the trans-
formations

Al = fi + ﬁ(Q7t)€7/\ ’
: L2
¢ ¢ cgﬁ(q,t)m,
¥ = ety (A.104)

1

for Eq. [A.101-103], and compute the functions 3,6 and € under the condi-
tions of being a gauge transformation. After simple calculations the results
are

b=F=e" and € A (A.105)

- £
" he
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Then the new gauge transformation takes the form

A = Atemga,

¢ - ¢ Coe at ’
U = enh.U. (A.106)
The conservation of probability density is given by the equation
% +vJ =0, (A.107)
ot
where
p=0dT (A.108)
and "
= 2 - e -
= — Ut gt M AW Tt, .
J e (v UTy7¥)e o v (A.109)

From this equation we see that the expression for the current density, which
is invariant under the gauge transformation (A.108b) is similar to that of a
frictionless motion except for the factor e~ multiplying the first term of
the second member.

Gauge transformation (A.106) in compact for is given by

A=A, e, (A.110)

and it does not hold for the Razavy’s case [176]. The preceding expressions
for ¥ — 0 are reduced to the usual ones.
Next, Karayannis and Jannussis reproduce, under certain conditions, the
gauge transformation (A.106) using the Lie-isotopic formalism.
Let the Lie-isotopic gauge transformation be
V=00, (A.111)
where Ut is T-unitary and the symbol (*) denotes Santilli’s isotope product.
Equation (A.101) with the new product is written
LY =
and the gauge-transformed equation becomes
ER%

W = H 29, (A.113)
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From relations (A.111-115) we get

-1 R
H' =Ur+Hx+Uz? +h(%@*UT1UT*agt *U:;l). (A.114)

It is known from quantum mechanics that operators corresponding to ob-
servables must be Hermitian. Also, there should be a gauge invariant such
that its expectation value is independent of the gauge transformation.

By expressing these requirements in the Lie-isotopic generalization of
quantum mechanics we demand the ezpectation value of the operator corre-
sponding to an observable to be invariant under the isotopic gauge transfor-
mation i.e.,

(U,0(4,)*70) = (T,0(4,)+7). (A.115)
Since the operator Uz of the Eq. (A.111) is T-unitary we have
O(4,) = Ur+0(A,)+ U = 0'(4,) - (A.116)

This means that the T-gauge transformation of the operator which corre-
sponds to an observable, generates a gauge transformation in the fields A,,.
From equation (A.116) for

ie

O =ero™ (A.117)
where
A =T 14 = AT (A.118)
we have .
p'=I7T*P*0171=p+ [—;L%X,p] E (A.119)
By taking T = €7* we get ‘
, edX
—p— —— . 12
P=r-,%, (A.120)
Similarly
A =UrxA,«U 1 =A4A,, (A.121)

and for the kinetic momentum one gets

. 0X

=Ur+(p— -—A) xUsl=p— —(A + —=— 34 (A.122)
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Now since the kinetic momentum is an observable it should be gauge invari-
ant, i.e.
e
T =p— -C~A' , (A.123)

and we have the transformation
A=4A+gX. (A.124)
Equation (A.112) must be form invariant, where
1 € .9
H = %(p—z‘o-fl) +V+6@,
ﬁT = Thle_’f—e"aTX R

A1 —de ¥ _1
UT =€ heg T 5

T=¢e", (A.125)
and from the invariance of the operator (A.114) we get
= Lo Ly ! 9X
H = 2m(p COA) +V 4 e[@ CO('yX-}- 5 ] . (A.126)
Thus 1 ax
=% —(yX+ ). .
60(7 + 5 (A.127)

We see that the isotopic extension of the Schrédinger equation yields gauges
transformations (A.124) and (A.122) which coincide with Eq (A.106), if
"X = A.

Finally if we demand the operator H of Eq. (A.112) to remain T-gauge
invariant, then from Eq. (A.114) we have the relation

or-1 ~ e aT-1! } oT e ON\ ie

which connects the isotopic operator 7 and the gauge function A.

Next, Karayannis and Jannussis [168] pass to the study of the Lie-isotopic
formulation of the electromagnetic field of a charged particle in dissipative
conditions due to motion in a physical medium.

In conventional cases, one considers the invariance of the fields

B = yxA,
- 164

es]
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under the gauge transformation

A A =A4YA,
10A
@ =@ - ——— A.130
- co Ot ° ( )
as a consequence of the requirement that the fields and not the potential
enter the several physical processes.

If one demands the same to hold in the Lie-isotopic gauge theory, one
must properly modify relations (A.129) in such a way that the invariance
with respect to the new gauge transformation (A.106) is conserved. Indeed
from Gasperini’s work [85] reviewed earlier it follows that

BT = vwX(AT),
- 18 -
ET = —v(fI’T)———cga(AT). (A.131)

For T = € we have for the fields

B=yxA,
= - 104 v -
E=-y®— Z—a—t— - -C—A 5 (A.132)

which, as one can easily see, remain invariance with respect to the new gauge
transformation (A.106).

Note the essential character of Santilli’s Lie-isotopic theory to achieve
the above results. In fact, other conventional approaches such as [177], do
not allow the achievement of a gauge invariant formulation.

We now continue to a review of Karayannis and Jannussis’ studies [168]
on the connection between (quantum) friction and torsion for the interior
problem of gravitation (sec. 3.5).

S. Hojman et al. [172] have developed a formalism making torsion com-
patible with the principles of gauge invariance and of minimal coupling. This
theory leads to the following modified form of the gauge transformation of
the field 4,

Al = Ay + 0N, (A.133)

which depends on a scalar field (the “tlaplon” field) & which serves as a

potential for torsion
T, = 6,0,® - 6,0,%. (A.134)
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In the case of the electromagnetic field of a charge particle with friction
we have ® = —7¢ and we can say that the problem of the quantum friction
in the electromagnetic field is equivalent to an interrelation of the electro-
magnetic field A,, a complex field ¥, and a scalar field & = —7t, which
generates a constant torsion,

T =i (A.135)
Co

in agreement with the gauge invariance and the minimal coupling principles.
A consequence of the existence of this torsion is the appearance of Am-
pere’s - like equivalent currents [121]

e __Z_”____' re
Jy = 47rE-\7><M ,
= —Z}B:@me, (A.136)

The components of the electromagnetic field tensor F,,s in case of quantum
friction, are given by

Fu =0,A,-0,4, for puv+#4, (A.137)
and

Fy = 044, — 8,45 — AT, = 04A, — 8, Ay — Ayfg- : (A.138)

which leads again to relations (A.132). In general, Hojman’s electromagnetic
tensor is

Fu = 0,4, —0,A, — A,(650,® — 6,0,9), (A.139)
and corresponds to the special case of Gasperini’s theory if we put
T=e2. (A.140)

Also, from Gasperini’s theory [85] it results that

Fﬂ,yT = a“(AyT) - BV(A”,T). (A.141)
If we put
B,=A,T, (A.142)
and
H,=F,T, (A.143)



the new gauge invariant fields are derived from B,
H, =0,B,—-0,B,, (A.144)
and obey the conventional gauge transformation
B,=B,+0.N. (A.145)

Karayannis and Jannussis [168] conclude by noting that Gasperini’s the-
ory implies a “lifting” of the field A, to B, which obeys the known gauge
transformation. This conclusion is in agreement with the relations (A.131).

The “lifting” of the field A, to A,T gives an electric and a magnetic
current and thus acts as a part of the source of electromagnetism. Indeed
from the relation

v X (BT) = ————(ET) , (A.146)
we have a density of electric current related to T°

( Ea—T +BxyT)T™!, (A.147)

and from the equation

v X (ET) = ———-(BT) (A.148)

one gets the density of magnetic current
m T - -
JF (___B(?’)‘t +ExgT)T™t. (A.149)
Relations (A.147) and (A.149) coincide exactly with those of Hojman’s
theory [172] for T = e~2, and constitute a particular case of the more
general theories of ref. [27]. Similarly, from the other two “lifted” Maxwell
equations, one finds the relations for the electric charge density and magnetic

charge density respectively,

1 - -
Pt = Z;r.(E.vT)T—l, (A.150)
PP = —211;(1”3.{7T)T—1. (A.151)
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For the case of quantum friction in electromagnetic field from (A.147) and
(A.149) it follows that

Te 7 —
= LF A.152
S=1F. (A.152)
- ’7 —_
m—_.._.
Ip=-L8, (A.153)

and in a region free of charge we have
L= yxMe,
J7 = UXM™. (A.154)

Thus the currents J¢ and j,;” behave like Ampere’s currents [121].

Karayannis and Jannussis conclude the analysis of ref. [168] (see also
ref.s [169-171]) by noting that the invariance of Eq. (A.101) under a gauge
transformation leads to a new gauge transformation for the potentials A,
and establishes, in the Lie-isotopic theory, the requirement that the expecta-
tion value of the operator corresponding to an observable must be invariant
under the isotopic gauge transformation, Eq. (A.115). The new gauge trans-
formation demands a “lifting” of the fields from A, to A,T which in the
case of quantum friction takes the forms (A.132). In this way, they reach a
new definition of the fields £ and B from the potentials ® and A.

In Maxwell’s equations the “lifting” of the fields gives an electric and a
magnetic current where the corresponding relations (A.147) and (A.149) co-
incide exactly with those of Hojman’s theory [172]. These studies lead to the
conjecture that the quantum friction in the electromagnetic field generates
a constant torsion between the electromagnetic field and a complex field in
agreement with the gauge invariance and the minimal coupling principles.
These results are also in remarkable agreement with the Gasperini-Santilli
Gravitation for the interior problem §3.5).
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APPENDIX B:

CALCULATION OF THE MAXIMAL SPEED OF CAUSAL

SIGNALS WITHIN DENSE HADRONIC MATTER.

It is generally believed that massive physical particles (causal signal) can-
not acquire speeds bigger than the speed of light in vacuum co. By using
the Lie-isotopic theory, R.M. Santilli [14] has disproved this belief by es-
tablishing, apparently for the first time on rigorous theoretical grounds, the
conceivable existence of dynamical conditions under which ordinary massive
particles may indeed surpass the speed of light ¢o. In turn, this result is
of a manifestly fundamental nature for the Lie-isotopic studies, particularly
those of operator nature on Hilbert spaces, because it opens-up possibilities
that are otherwise precluded, such as the achievement of a true confinement
of quarks (with identically null probability of tunnel effect [44]), as we hope
to illustrate in our possible subsequent review of “hadronic mechanics”.

In his courageous paper of 1982, Santilli [14] stressed that the maximal
speed of a causal signal is certainly cg for the conditions originally conceived
by Einstein (point-like particles moving in empty space under long range
action-at-a-distance interactions), but not necessarily for substantially dif-
ferent physical conditions. In fact, he considered extended particles moving
within physical media under action-at-a-distance potential forces as well as
contact resistive forces caused by the medium. He pointed out that the
latter forces are profoundly different than the former one, inasmuch as:

1. the formers admit potential energy, while the notion of potential has
no meaning for the latters; on more technical grounds, the formers
are Hamiltonian, while the latters are not because they violate the
integrability conditions for the existence of a Hamiltonian in the frame
of the observer [4];

2. The formers have infinite range, while the latters have zero range,
being contact forces by conception; and

3. the formers are action-at-a-distance, while the latters are instanta-
neous (evidently from their null range).

Owing to these profound dynamical differences, Santilli [loc.cit.] conjec-
tured that the mazimal speed of massive particles Vmax while moving within
a physical medium is not necessarily co, but can be bigger, equal or smaller
than co depending on the local physical conditions at hand

>
VMax <¢o- (Bl)
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On the basis of his theory that the strong interactions have a compo-
nent precisely of the above contact type due to the necessary condition of
mutual penetration and overlapping of the wavepackets of the particles [2]
(see Figure 1), Santilli [loc.cit.] submitted the following

HYPOTHESIS I: The mazimal speed of nuclear constituents (pro-
tons and neutrons) is smaller than co; and

HYPOTHESIS II: The mazimal speed of the hadronic constituents
or, in general, of a hadron within dense hadronic matter (e.g.,
the core of a collapsing star) can be bigger than cq.

The former hypothesis was formulated on the basis of the observation
that nonrelativistic calculations have a truly remarkable degree of accuracy
in nuclear physics. The latter hypothesis was formulated on the basis that
null range, instantaneous, forces are structurally outside the framework of
Einstein’s Special Relativity and, as such, the maximal speed must be re-
computed independently from conventional prescriptions. Besides, since the
forces considered have no potential energy, there is no a priory technical, ex-
perimental, or conceptual information precluding the achievement of speeds
beyond cp. Needless to say, these speeds higher than ¢y should be gener-
ally conceived as being local, that is, as conceivable at one given point in
space-time inside superdense hadronic matter.

In the subsequent papers [18,26], Santilli constructed his Lie-isotopic cov-
ering of Einstein’s Special Relativity (§3.4) which confirmed in full Hypothe-
ses LII. In particular, the application of the new relativity to the Nielsen-
Picek metric [99] for the interior of kaons, Eq.s (3.170), i.e.,

(mw) = Diag(1,1,1,-1) — (9u)

= Diag(1 - %a, 1- %a, 1- -;-a,—(l + a))
a=(0.61+0.17) x 1073, (B.2)

provided a direct confirmation of Hypothesis II (Section 3.4). In fact, by
using Eq.s (3.263), one obtains for the above metric

1
Wax = ¢o +la >co, (B.3)
1- ga

while the value Virax < ¢p occurs for pions.

Papers [18,26] established the fact that, any modification of the Minkowsk:
metric in-the interior of hadrons as suggested by the currently available phe-
nomenology (Section 3.4.8) implies a corresponding necessary modification
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of the mazimal speed of causal signals precisely along Eq. (B.1). In this
way, the Lie-isotopic generalization of the conventional Lie’s theory permit-
ted the rigorous prediction of the possibility of breaking the “barrier” of the
speed of light ¢o by physical massive particles.

The above findings were confirmed by V. De Sabbata and M. Gasperini
who published a paper [124] in 1982 following paper [14] providing an explicit
calculation of the maximal causal speed within hadronic matter, via the use
of conventional gauge theories. In the following we review the calculation
by De Sabbata and Gasperini because particularly relevant for the line of
study of this work.

In a preceding paper [181], De Sabbata and Gasperini had shown that
the breaking of the SU(2) x U(1) gauge symmetry can be related to the pos-
sibility, inside hadrons, that causal signals propagate with a speed c different
than cp, much along the classical case of the Cherenkov light. This result
was obtained by embedding the Yang-Mills Lagrangian in a space-time with
a constant scalar curvature and allowing the maximal causal speed to be a
local variable. The Higgs field was therefore introduced in a natural way into
the gauge Lagrangian, and the Higgs potential can acquire a gravitational
interpretation.

However, in order to reproduce the negative mass squared term of the
Higgs potential, De Sabbata and Gasperini [150] were forced to introduce a
space-time with a negative scalar curvature.

Santilli’s hypothesis [14] of maximal causal speeds higher than co al-
lowed the elimination of the negative curvature, thus rendering the model
more realistic. In fact, De Sabbata and Gasperini showed in the subsequent
paper [124] that, by using a metric background with a nonzero cosmological
constant, one can obtain the spontaneous breaking of the internal symme-
try without introducing a negative curvature. This also establishes a quite
intriguing link between the maximal propagation of a causal signal and the
mechanism of symmetry breaking in the presence of interactions on a curved
background. (The reader should note that paper [124] was written prior to
Gasperini’s isotopic generalization of gauge theories [85]. As a consequence,
a conventional gauge theory was used in the calculations. This creates the
intriguing problem, still open to our knowledge, of reinspecting the calcula-
tions via the theory of Appendix A.

Consider a space with a conformally flat metric tensor, g,, = w?(t)7u.,
and with a nonvanishing cosmological constant A. The gravitational La-
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grangian is then given by

4
Lo=Y92 (R, 2A B.4
°~ 167G (Ro ), (B.4)
where /=g = w* and Ro = 60 /wc3(w = dw/dt). Suppose that the maximal
causal speed is a variable quantity, co — ¢(z,1) (this is to be seen only like
a starting formal prescription, as we end up with a constant vacuum light
velocity), and associate to ¢ a scalar multiplet ¢ such that [181]

G
2(e,t) = 5510, 01, (B.5)

where v is a constant velocity, introduced for dimensional reasons, which
will be interpreted later on.
Putting R = 60w?v?, Lagrangian (B.4) becomes

£= Y22 (Lol - Lot (8.6)

Complete it by adding a kinetic term for the scalar field. Then, the total
Lagrangian, which can be interpreted as the Higgs Lagrangian producing
spontaneous symmetry breaking, is given by

L1 =Y I(D,p) + Do - V(o) (B.7)
where R GA
Vie) = Slel* + il (B.8)

To preserve invariance under the local gauge transformations of ®, the au-
thors used the gauge covariant derivative D, = 8, — iaAﬁOk, where A;]i are
the gauge potentials, o and 6y, are, respectively, the coupling constant and
the generators of the gauge group. Notice that for a positive curvature,
R > 0, potential (B.8) has the right signs to provide a positive real mass for
the scalar field after the application of the Higgs mechanism.

From Lagrangian (B.7) one obtains the following field equations for v
and ¢:

1314°Cu = = [Tul0) + g poslil®] (B.9)
.k A%
(D*@), = icAb0,D*p + P (B.10)
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where a bar denotes the metric-covariant derivative, G, is the Einstein
tensor and T, (¢p) is the so-called “improved” energy-momentum tensor of
the scalar field (see for example ref. [182])

Ty ) = (Du®) + Do = 30 (Do)t D0+ 21611 — gl P*%|a)- (B-11)

The vacuum state is obtained for A¥ = 0and () = (¢*) = w0, where o
is a constant value minimizing V(¢). The field equations (B.9) and (B.10)
in vacuum are reduced to

GA
(le> = _<gyu)§'&ﬁog’ (B.l?)
6(V)
— =0 ’ B.13
6(100 ( )
and they both give
2 _ 3v* (R)
900 - G 3/\ ’ (B.14)

where (R) is the vacuum scalar curvature. Obviously it must be (R) # 0 in
order that spontaneous symmetry breaking may occur.

Assuming in vacuum a De Sitter metric background, i.e. putting (w) =
7/t, where T is the “Hubble constant”, we have (R) = 4A = 12/a?, where
a = v7 is the constant space-time radius of curvature of the vacuum; it
follows then, from (B.5) and (B.13), that |po| = vz(S/G)%, and (c) = v.

Therefore, the parameter v may be interpreted as the constant value of
the speed of light in vacuum, and since it depends on ¢yp, its experimental
value is not arbitrary, but is fixed by the spontaneous breaking of some
internal symmetry. It is amusing to notice that in the absence of symmetry
breaking, we have ¢o = 0 and then, according to our model, {¢p) = 0, i.e.
light cannot propagate in vacuum.

In conclusion, De Sabbata and Gasperini [124] evaluated the maximal
speed of causal signals inside hadronic matter, applying their model for the
Higgs Lagrangian to the SU; x Uy gauge group of the standard Weinberg-
Salam theory. In this case ¢o must satisfy the low-energy experimental
condition [181]

K202 Gp
= ZE B.15
A V2 (B15)
where G is the Fermi coupling constant, and then we obtain
R G '
= —= . B.16
6v2 Gr (B-16)
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Since in the De Sabbata-Gasperini model the curved space-time must
represent the “hadronic medium” [2], one can identify the De Sitter met-
ric background with the hadronic “microuniverse” governed by strong in-
teractions (see ref. [183] for an extension review of the possibility of this
identification). By replacing the Newton constant G with the strong gravity
coupling constant k; = (0.85 - 1038)G (as in ref. [183]) of De Sabbata and
Gasperini then reach the following value for the maximal speed of causal

signals .
R? k;\?
= —==L] ~75¢c), B.17

v (6\/56’1?) “ (B.17)

which is determined by the spontaneous breaking of the weak-interaction
symmetry induced by the presence of Santilli’s “hadronic medium”.
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APPENDIX C:

THEORY OF MUTATION OF ELEMENTARY PARTICLES AND

SOME OF ITS APPLICATIONS.

In this appendix we shall provide a semiclassical review of a central phys-
ical notion of hadronic mechanics, the hypothesis that ordinary, massive,
particles experience an alteration (called mutation) of their intrinsic charac-
teristics in the transition from the conditions under which they have been
measured until now (motion in vacuum under external electromagnetic in-
teractions) to motion within the hyperdense hadronic medium in the interior
of nuclei, hadrons, and stars.

The hypothesis was formulated by Santilli in the original proposal of
hadronic mechanics [2] via the generalizations of Dirac’s and other field
equations of variationally nonselfadjoint type (ref. [2], §4.20, pp. 798-906)
conceived as realization of the Lie-isotopic symmetries presented in the pre-
ceding memoir [1]. A comprehensive study of the notion was subsequently
presented by Santilli, first, in papers [24], where the notion of isotopic lift-
ing of the SU(2)-spin symmetry is studied in detail, then in paper [27]
where a study of the Poincaré-isotopic symmetry is conducted, and finally
in paper [28] which presents the isotopic generalization of conventional field
equations as realizations of the Poincaré-isotopic symmetries. In the same
paper [29], the theory of mutation of elementary particles is applied to the
interpretation of Rauch’s [88] experimental data on the apparent deforma-
tion/mutation of the magnetic moment of neutrons under external nuclear
field, achieved via neutron interferometric techniques. The theory of muta-
tion was subsequently used by Santilli for the achievement of a consistent
representation of Rutherford’s historical hypothesis according to which the
neutron is a “compressed hydrogen atom”, i.e., a bound state of a proton
and an ordinary electron totally compressed inside the hyperdense medium
in the interior of the proton, say, when in the core of a collapsing star [25,29].
Additional uses of the theory of mutation of particles are in progress, e.g.,
the possibility of identifying quarks with mutated forms of ordinary massive
particles that are freely emitted by unstable hadrons in their spontaneous
decays [44].

A central part of the appendix is a little known generalization of Dirac’s
equation by P.A.M. Dirac himself in two of his last papers [54], which im-
plies the mutation of spin from % to zero (for at rest conditions, exactly
as needed in Rutherford’s hypothesis). As proved by Santilli [28], “Dirac’s
generalization of Dirac’s equation” possesses an essential isotopic structure
and, as such, it is a particular case of the isotopic generalizations of Dirac’s
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equations.

It is evident that we cannot possibly review here all this comprehensive
research. In this appendix we shall therefore limit ourselves to a review of:
1) Santilli’s theory of mutation of elementary particles achieved via an iso-
topic lifting of conventional field equations [29]; 2) an outline of the notions
of hadronic angular momentum and spin achieved via the isorepresentations
of isotopic SU (2) coverings [24] of the O(3) symmetries [23]; 3) “Dirac’s
generalization of Dirac’s equation” [54]; 4) a review of certain developments
of the theory by Nishioka [184], and Janussis, Karayannis et al. [168-171];
and, finally, 5) a review of some of the applications, such as: direct interpre-
tation of Rauch’s interferometric measures on the apparent alteration of the
magnetic moment of neutrons under external nuclear fields; technical charac-
terization of current “hadronization models”; application of the “hadronic
models of structure” of hadrons with massive physical constituents freely
produced in the spontaneous decays (including Rutherford’s historical hy-
pothesis on the neutron); and an indication of the expected results in the
ongoing applications to the “quark models of classification” of hadrons into
families.

* ok ok ok

The central physical notion of this appendix is the concept of mutation
of elementary particles proposed by Santilli in his second memoir of 1978 [2].
This is an alteration of the intrinsic characteristics of a particle (rest energy,
spin, magnetic and electric moments, etc.) that is conceivable under the
transition from motion in vacuum (strict Einsteinian conditions), to motion
within a hyperdense hadronic medium (Santilli’s conditions).

Santilli proposed this concept following his isotopic (and Lie-admissible)
generalization of the Galilei relativity [1] (and prior to his generalization of
Einstein’s relativity [14]), precisely as one way to illustrate the physical im-
plications expected from the Galilei-isotopic (and the Lorentz-isotopic) sym-
metries. As well known, field equations are characterized by representations
of the fundamental Galilei or Lorentz symmetry. If the latter symmetries
are subjected to an isotopic generalization, he expected the characterization
of different field equations which, in turn, render inevitable the alteration of
the characteristics of conventional particles according to the schematic view
in Fig. 17.
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FIGURE 17: A schematic view of the origin of mutation of the intrinsic
characteristics of particles, as originally conceived in ref.s [1,2].

As a result, the notion of mutations of particles is already implied by
the Galilei-isotopic (or Galilei-admissible) symmetry. As a matter of fact,
the notion can see its mathematical foundations in the isotopic general-
ization of Lie’s First, Second and Third Theorems introduced in memoir [1]
jointly with the consequential notion of Lie-isotopic symmetry. The Lorentz-
isotopic symmetry essentially provides a technical refinement (hadronic me-
chanics provides yet another contribution to mutation that will be indicated
later on).

More specifically, Santilli submitted in memoir [2] the notion of eleton as
a mutated form of the conventional electron which is conceivable when the
wavepacket of the particle is in a state of total immersion within hadronic
matter. He then formulated the hypothesis that eletons are the physical
constituents of hadrons (or of quarks).

The central part of memoir [2], the proposal to construct hadronic me-
chanics via an isotopic lifting of its enveloping algebra, was formulated pre-
cisely to achieve a quantitative representation of the notion of mutation
of elementary particles at large, and of the notion of eleton in particular
(mutations are necessary to achieve a consistent model of quark and/or of
hadronic structure with physical already known constituents [25,29]).

314



Also, the construction of hadronic mechanics was suggested to achieve a
consistent model of structure of hadrons (or of quarks) as (hadronic) bound
states of eletons. In memoir [2] Santilli presented a consistent model of
structure of the light mesons (which is capable of representing all known to-
tal characteristics of the particle, including their size). Unaware of Dirac’s
work [54] at that time (1978), he then suggested as a subsequent objec-
tive for hadronic mechanics the achievement of a consistent formulation
of Rutherford’s hypothesis of the neutron as a compressed hydrogen atom
(in Rutherford’s words). Thanks to the resolution of the problem of spin
achieved by Dirac himself [54] and in ref. [24], the consistency of Ruther-
ford’s hypothesis has been recently indicated in ref.s [25,29], as we shall see
in a possible separate review on hadronic mechanics.

In conclusion, the particle characterized by the Dirac’s new equation [54]
turns out to be exactly one form of Santilli’s eleton with a finite discrete
mutation of the spin, while intermediary forms of mutation of the eleton are
provided by the isofield equation of ref. [28].

This appendix is an essential complement of the isotopic generalization
of the Lorentz group of Section 3.4, because it provides a quantitative il-
lustration of the physical implications occurring in the transition from con-
ventional representations of the Lorentz group to isorepresentations of the
Lorentz-isotopic group.

To see these novel physical results, the reader is urged to alter the con-
ventional mental attitude (preservation as much as possible of established
doctrines), and leave instead free course to scientific curiosity by seeking,
specifically, the maximal possible alteration of conventional doctrines.

*  x  k %

We shall now review the foundation of the isofield equations as presented
in ref. [29], i.e. as characterized by isorepresentations of the inhomoge-
neous Lorentz-isotopic (Poincaré-isotopic) group P(3.1) (83.4.7). Let us
begin by assuming the following formulation of the underlying Minkowski
and Minkowski-isotopic metrics

= (7w) = Diag(1,1,1,-1),

Tn = Diag.(911, 922, g3, —gaa),

Diag(b?,b2,5252), b, > 0,

= (%,2%) = (T,c0t), (C.1)

Qu
g |l

n
g
T
z
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where the b’s are independent of z but can have dependences of the type
by = bu(&,p,7,...). The central (classical) invariant of the theory is then
isoinvariant (3.246) on the Minkowski-isotopic space M =M 1z, g,R)

P’ = p.g"p, = P*gup’ = p'pu = pup*

Pkbzpk - P4Cob4p4 = m0c0b2 = —mgcz ’ (C-Q)

In this way, the (dimensionless) quantities b, represent the mutation of the
conventional Minkowski metric suggested by the specific case at hand, such
as the Nielsen-Picek mutation (3.170) for the medium constituted by the
interior of pions and kaons.

The reader should be aware that the quantity “c” = cobs of the theory
is not necessarily the speed of light within the physical medium considered,
but can be a geometrical quantity characterizing the contact, zero-range,
instantaneous interactions (§3.4.6). Also, in general, ¢ # co = speed of light
in vacuum. The reader should finally recall that the unit of space M is the
familiar isounit of §3.4,

i=17"1 = Diag(b72,b52%,b5%,07%) > 0. (C.3)

In order to reach the (semiclassical) isofield equations, Santilli introduces
hadronic mechanics (see the elements reviewed in Section 1.3) according to
structure (1.52) assumed (for simplicity but without loss of generality) for
the particular case in which G = T is a Hermitean and positive-definite
operator, i.e.

def

§ : AxB<E ATB, (4.2)
¢ : {fé=cl, cec,lzT—l}, (4.b)
R (dle) (gl )i = (gITIw)i € €. (4.c)

The modular action of an operator A of an element % of H is then given
(for necessary reasons of consistency) by the isotopic form (1.40), i.e.

Axp S ATy . (C.5)

The “hadronization” (i.e., the mapping of Birkhoffian into hadronic mechan-
ics, see §1.3) is done according to the isorelativistic extension of rule (1.63),

i.e.
0

*1/)_-—16u¢h_16 e

(C.6)
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In order to understand the isofield equations, it is important to review the
basic rules for properly writing equations in hadronic mechanics. In fact,
misrepresentations are possible because familiar expressions such as z;p;
or p;p;, which are fully defined within the context of quantum mechanics,
become intrinsically inconsistent when referred to hadronic mechanics (they
violate the postulate of isolinearity because the trivial associative product
of operators has no mathematical or physical meaning for isoenvelope f , see
§2.2).

The essential notions of the theory are the following;:

1. Units. Whenever confronting generalizations of Lie’s theory it is rec-
ommendable to identify first the underlying unit. In general, we have
two different isounits, for the simple reason that we have two gener-
alized structures, the iso-Minkowsky space M 1, with related isounit [
and the isoenvelope £ with isounit 1. These two units are generally
different, and we shall write

iIsosyrmn. ?é iOper. Alg. - (C7)

As we shall see, this is exactly the case of “Dirac’s generalization of
Dirac’s equation” [54]. Nevertheless, in the first part of this review we
shall assume the simpler case in which [ = 1 = 7-1.

2. Scalars. Ordinary scalars n € R (or ¢ € C) have no mathematical
sense in hadronic mechanics and must be replaced with the isoscalars
of Eq. (C.4b), e.g. 7 = nl. However, as shown in Section 3.4, this way
of writing scalars is purely formal and has no practical implications,
because the product of the isoscalars is given by 7y * fig = 177, =
ningl. As a result

k) =np. (C.8)

Hereon we shall ignore the above mathematical formality and use or-
dinary scalars for simplicity. Note that the elements gpv of the gener-
alized metric g are, strictly speaking, isoscalars and should be written
Guv = 1g,,. However, property (C.8) allows the reduction of isotopic
contractions to ordinary ones, e.g.

Ty = Gu * ¥ = gu3"° . (C.9)

3. Operators. As stressed earlier, the conventional associative product is
inconsistent within the context of generalized envelope £ and must be
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replaced with the more general isoproduct. For example, if 2; and p;
are operators, their “product” in £ must be written
2

T3

= z; * T;, p? = p; *pj, etc. (nosum). (C.10)
The reader should also keep in mind that, from the assumption 7 = G
in Eq. (1.52), and from rule (1.51), operators that are conventionally
Hermitean remain isotopically Hermitean. See §1.3 and ref.s [36-38]
for details.

. Vectors. Until now we have been dealing with classical vectors on iso-
topic generalizations of metric spaces, such as three-vectors 7 on iso-
Euclidean spaces E(?, g, f{.), or four-vectors z and p on iso-Minkowski
space M;. Their products are therefore characterized by the general-
ized contractions

ro= rgyr P =Dpig’p;,
z? = zhgz” Pt = Pug*’py . (C.11)

? are now operators, that is, they

But the quantities “z;” and “p;
acquire the additional meaning of being elements of £ acting on iso-
Hilbert space H. As such, contractions of the type (C.11) are no
longer acceptable after hadronization, and must be replaced with the

expressions

-3 . . . .2 .. ..
— .. t gy ot . — A . S ¥
Top = Gij*T * 70 = gi;7 T"'J, pop"‘ g *pixp; =g piT'p
3 . v o__ v, 2 . AuY _ v
zo, = Guwrzt ¥z’ = g2l pg, = § *pu*p = g"pTpy .

(C.12)

For simplicity, Santilli [28] also rewrites hadronization rule (C.6) in
the form

PPt = —idup & —idxp & —ilg, vy, (C.13)

which allows the substitution rule

pF — —id, = —ild, . (C.14)
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Thus, the fundamental operator-invariant of the isofield theory can be

written
= d——ﬁfﬁ"”*pﬂ*pu=g“”pu*pu=p"*pu
= g"p,Tp, = ——g‘“’éu %0, = —O* « 5u
= -g"9,0,1= -0*9,1 . (C.15)

Similarly, if 4# are matrices, their correct contraction with the opera-
tors p, must be written

Y pu =G *Juxp, = ¢*5,.Tp, , (C.16)

as correctly identified for the first time by Karayannis and Jannussis
[168].

5. Hilbert space. The reader should finally keep in mind that the proper
way of writing the norm in the underlying Hilbert space is form (C.4c).
i.e. the space is a iso-Hilbert space. Thus, the conventional, linear-
action of an operator, say H, on an element 1 of 7 has no mathemat-
ical or physical meaning and must be replaced with the isolinear form
(C.5). If H is (iso)Hermitean, then the (iso)eigenvalues are real [36]
and we shall write

Hxyp=hy, H=H! hreR. (C.17)

Finally, the correct product of the element ¥ and its dual 9! is given
by ¢! x ¢ = I T

We are now in a position to point out the contribution provided by hadronic
mechanics to Santilli’s notion of mutation of elementary particles. This
latter notion is intrinsic in the very basic eigenvalue equation of the theory,
Eq. (C.17). Suppose that the Hermitean operator H has eigenvalue hg in
quantum mechanics, H¢ = ho¢. Then the same operator H has a different
eigenvalue A in hadronic mechanics, H * % = ht. The transition hg — A
is precisely Santilli’s notion of mutation because it mutates specifically, the
physical characteristic hg [28].

When the isotopy of isospace M is different than that of isoenvelope £,
Eq. (C.7), we have two different, mutually compatible contributions to the
notion of mutation, one originating from the fundamental Lorentz-isotopic
structure, and one generated by the isotopic lifting of the enveloping oper-
ator algebra.
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Once rules 1-5 above and the physical objectives of the theory are prop-
erly understood, the formulation of isofield equations is quite easy. In fact,
we readily have the following iso-Klein-Gordon field equation [28].

(guU*Pu*pu'*'mOC) Y= (p *pu-l-mOC)*’t,b
= (D md 2)*1/)——(3“31—moc)*¢—0 (C.18)

The corresponding extension to the case of a charged particle under an ez-
ternal electromagnetic field while in immesion within the hadronic medium
is given by

w”*Qm+§&J*On+;%>+m&ﬂ %P
__ [(éu + i%A“) + (a‘u + fcfAu) m2e ] «p=0. (C.19)

The isofourcurrent is then given by [loc.cit]

~

[«p‘wa * ) — (3“*1/)1)*@4

»= 2zm

* ), (C.20)
and it verifies the conventional conservation law
HJ,=08*+J,=0. (C.21)
The isocharge density is then given by
p= %j‘i = 2m0c2 (W %%tb %@ ¢)

+ WAO « Yl x 9, (C22)

and it is indeed conserved,
X %/ﬁdv = 0. (C.23)

The mutation of the characteristics of the particle is now evident. To
begin, we have a mutation of the rest energy, from the value moc3 for Ein-
steinian conditions to the value mgc? for Santilli conditions where the quan-
tity ¢ has been defined in Section 3.4.6. Suppose that p is the charge density
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for Einsteinian conditions, i.e., for T = 1. Under the presence of contact,
zero-range, instantaneous interactions represented by the operator T" # 1 the
charge density assumes value (C.22). The transition p — pis evidently a
form of charge mutation. A similar situation occurs for the fourcurrent. The
mutation of other characteristics will be considered in more details below.
The iso-Klein-Gordon equation (C.19) is invariant under the Jull Poincaré-

isotopic group P (3.1) [28]. In particular, the wavefunction transforms as
an isoscalar. In fact, by keeping in mind rules (3.218-320), it is easy to see
that

~

é a 2.2 uué é 2.2

g’“’%}: * 5w~ ¢ =9 5n ¥ 5w — ™oC - (C.24)
A plane isowave solution is given by Eq. (3.281), i.e.,
P(z) = Ne*loms” (C.25)
and evidently transforms as follows
P(z) = NetFome” = Netk™ome™ — yi(yr) (C.26)

thus proving the isoscalar nature of the equation under P (3.1).

The reader should be aware that the iso-Klein-Gordon equation does
not represent a free particle (see the No-No-Interaction Theorem of Section
3.4.15), and, thus, solution (C.25) is not a conventional, free, plane wave
solution. This is evidently due to the fact that the deformation of the metric
17 — g is per sé a representative of interactions, not of the conventional
Hamiltonian-Lagrangian type, but precisely of Santilli’s non-Hamiltonian
type.

To put it differently, a relativistic (massive, spin zero) particle that is
truly free must obey Binstein’s Special Relativity ezactly and, as such, must
be characterized by the conventional Klein-Gordon equation. Any deviation
Jrom this established setting caused by motion of the same particle within a
physical medium or other reasons obeys the covering Santilli’s Special Rela-
tivity and, as such, it can be characterized by the covering iso-Klein-Gordon
equation.

As a final comment, note the way Santilli [loc.cit] writes wavefunction
(C.25) with the exponent given by guk*z” and not g*k, xz, = g,, k*Tz".
This is evidently due to the fact that the quantities “k” and “z” in the
isophase are isoscalars and not isooperators.

The construction of the remaining essential parts of the theory (e.g.,
the iso-Green functions) will be deferred to the possible subsequent review
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on hadronic mechanics. It is appropriate here to bring to the attention
of the interested reader the important work by Nishioka [185] on the so-
called Dirac-Myung-Santilli delta function (which is essentially an isotopic
generalization of the structure of the conventional delta function) and which
plays an essential role for the further development of the isofield theory.

We now pass to the review of the isotopic generalization of Dirac’s equa-
tion as presented in ref. [28]. The origin of the equation is an isotopic
decomposition of the fundamental second-order isoinvariant operator, Eq.
(C.18). For this purpose, suppose that ¥, are 4 X 4 matrices. Then, the
second-order isoinvariant operator can be decomposed into the isoproduct
of the two first-order 4 X 4 operators according to the form

pu * p* + mic?
= (§u * p* — imoé) * (§, * p” + imoé)
1. .. -
= 5 {3uih} # 2"+ p¥ 4 mie” (C.27)

which holds iff the %, matrices verify the laws

~

{'?u;:)’u} =Fu* N+ * Y = 291 . (C.28)

Note that the preceding law is exactly the isotopic lifting of the conditions
on the conventional y-matrices of Dirac’s equation

{71“ 71/} = YuTv + YvYp = 277;1.1/-[ . (029)
The desired isotopic lifting of Dirac’s equation is then given by

(3, * p* + imoé) ¥ = 0
= — (15, * 0" —imeé) x ¥ = 0. (C.30)

Introduce now the adjoint wavefunction

o

b=t xq,, (C.31)

then, each and every step of the theory of conventional Dirac’s equations
(see, e.g., ref. [186]) can be subjected to an isotopic lifting. In fact, the
(iso)adjoint of Eq. (C.30) is given by

(10" % ) 4, — imoeh = 0 . (C.32)
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The combination of Eq. s (C.30) and (C.32) then yields
(10" % D) % A b+ 5 % (B4 % 9p) = 0, (C.33)
thus allowing the introduction of the isocurrent
Fo=ich+q, %9, (C.34)
which is evidently conserved
xd,=0"J,=0. (C.35)
The isocharge density is then given by
p=Zi=driuxp=tipty, (C.36)
with corresponding isocharge
Q= /ﬁd?’:c - ezﬁ/dﬂ‘ s s | (C.37)

that is, it is proportionate to the isoinner product of the underlying space
H. Note that density (C.34) is positive-definite under assumptions (C.4),
i.e., an isotopic lifting of a positive-definite inner product via a positive-
definite operator T'. Along the same lines, it is possible to prove that f“ is
(iso)Hermitean, and that its components are real.

A realization of the 4-matrices verifying Eq.s (C.25) has been identified
by Santilli [29] and it is given by

Yu = Ful =buyy,l (no sum), (C.38)
where the ¥’s are any given representation of the conventional 7-matrices
[186]. Note the non-triviality of the generalization, inasmuch as the quan-
tities b, (representing the deviation from the Minkowski metric caused by
motion within the hadronic medium) enter directly into the structure of the
4-matrices.

Santilli [28] then passes to the identification of the mutation of angular
momentum and spin caused by isotopic lifting (C.30). First, the total angu-
lar momentum can be defined as the sum of the orbital and intrinsic angular
momentum in é

M,-T = M,‘ + 5',' . (C.39)
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The orbital part is given by

M; = /W * (€45Tj * -1—5;9) * Pdz | (C.40)
while the intrinsic part (spin) is given by

8 = %/«pf % (€195 * ) * Pd’z. (C.41)
The above expressions are nothing but isotopic liftings of the corresponding

equations for the conventional Dirac’s setting (see, e.g., ref. [186], page 142).
The corresponding densities are

. 1,
m; = EijkTj* gak s
. 1 A
§i = geur¥i* (C.42)
with explicit form of the spin matrices
4 = L * Y3 = Lo i
1 = 272 Y3 = 272’73 >
3 = 1 *Jp = L. i
2 = 2’73 "= 2’7371 >
. 1, . 1 -
8 = h*f= 571721 . (C43)

By using Eq. (C.28) the isocommutation rules for the spin matrices are
readily computed, resulting in the isotopic rules [28]

[§i:~§j] =8 *8; —8;*8 = —EijkkkSk (C.44)

which formally coincide with those of the isotopic rotational algebras 0 (3),
Eq. (3.30), but characterize instead those of the isotopic SU (2) algebra.
In this way, Santilli [loc.cit.] reached the desired mutation of the spin of
Dirac’s equation which can be expressed via the eigenvalue equation

st = (B1%81+ 83 +83%383)*7

1
= Z(gngzz + 922933 + g33g11)% - (C45)

Note that 32 is not an iso-Casimir invariant (because it is not propor-
tional to 1, which is iven by expression of type (3.39) after redefinitions
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(3.37). Nevertheless, 3% is indeed invariant for metric of Nielsen-Picek type,

Eq. (3.170), i.e., when g;; = g99 = 933(# ga4). For infinitesimal muta-
tions these latter conditions can always be assumed. In this case, Santilli
recovered the expression [loc.cit.]

.§:—;—+e , €0, g1, (C.46)

which is precisely the mutation of spin he submitted at his invited talk
at the 1980 Clausthal’s Conference on Differential Geometric Methods in
Mathematical Physics (see Fig. 1; also Eq. (4.26), p. 1249 of ref. [11]).

The orbital angular momentum remains formally unaffected by the lift-
ing. In fact, from hadronization rule (C.6), the fundamental isocommutation
rules preserve the quantum mechanical values

[piszi] % = (pi ¥ 25—z * p;) o = ~ibij0p
[ei2;]* ¥ = [pilp;] + ¥ = 0. (C.47)

As a result, the components of the angular momentum verify the isocom-
mutation rules,

[halmg] * o = epmg x 9, (C.48)
that is, the structure constants are not modified by the isotopy under con-
sideration [28]. In computing rules (C.47), the reader should be aware of
the validity of the following properties [36]

[A+ BiC] = A% [B;C] + [4C] * B. (C.49)

Santilli [loc.cit.] then passes to the study of the transformation properties
of the iso-Dirac’s equation (C.30). Essentially he proves that the equation is
invariant under the full Poincaré-isotopic group P(3.1) (§3.4.7, Eq. (3.237))
that is, the wavefunction transforms according to

” V() =5x(x) = SA) s pA- (2 ~a)],
P(3.1): P(a) = P(z) * S71A) = PA~T % (« - a)] ¥ §-1(A),
AtvA=A+At = F= g1 deth = +det].

(C.50)
The equations transform according to
(—i9* % 8}, + imo&) x /(") = 0,
P(e') * (—id, + 44 — imee) = 0, (C.51)
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under the particular rules

Al xq, xAx 0" = 5, % 0"
ATV = Gy s AT x4 (C.52)

Let us review first the transformations under isotopic rotations. By
following the isotopic lifting of conventional lines (see, again, ref. (186, pp.
162-163), it is easy to see that Eq. (C.30) is invariant under the following
realization of the isotopic SU(2) group

SAU(Q) . R(g) — e%’?z*"‘/s*% |Ee%ﬁ3*’71*02156%’?1*’?2*93 ki , (C_53)

which turns out to be precisely an isospinorial covering of Eq. (3.24-25).

The nontriviality of isotopy (C.30) can now be shown in all its depth. In
fact, the invariance of the iso-Dirac equation under isotopic rotations implies
a breaking of the ezact spinorial character of the conventional equation [28].
This is readily proved by nothing that the components of structure (C.53)
can be written in the form

26)

B(83) = e (C.54)

Eq. (C.30) therefore breaks the exact spinorial character of the conventional
Dirac’s equation in view of the factor b;b;. Note also that realization (C.54)
holds irrespective of whether the iso-Casimiz invariant is an expression of
type (C.46) or of type (3.39). This illustrates the irreducible nature of
Santilli’s spin mutation.

The experimental implications are also far reaching. Recall the funda-
mental experiment by Rauch and collaborators [88] on the spinor symmetry
of neutrons when in the vicinity of nuclei. As now well known to experts
of Lie-isotopic theory (see Fig. 6 of §3.2), neutrons are expected to experi-
ence a deformation of their charge distribution caused by external nuclear
fields. This, in turn, would necessarily imply a mutation of the magnetic
moment of the particle from the conventional value p to a mutated value
Y # My i = p. The current experimental numbers for two complete spin
flips are [88]

a = 715.87+3.8Deg; aMax = 719.67 Deg < 720 Deglamin = 712.07 , (C.55)

that is, available data DO NOT prove the exact character of the spinor
symmetry for the case considered, but show a deviation of about 1%. The
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isotopy of Dirac’s equation is capable of representing experimental data
exactly. In fact, from Eq. (C.53) and (C.54) Santilli [28] reaches the values
of the deformed metric

by = b3 2 1.005, b3=0.995, (C.56)

which essentially shows a small deformation of a spherical charge distribution
into an oblate spheroidal ellipsoid.

IAeT
interferometer (220 ,:’\9")\‘ _}magnet frame
M= coil
3 ¢ o ry
J_.'q BN\ B ;__.___{
A Fay
Io " ‘\ IH

FIGURE 18: A view of the perfect crystal neutron interferometric appara-
tus used by Rauch and his collaborators [88] to test the spinorial symmetry
of neutrons under external nuclear fields. The figure shows the electromag-
netic gap in air, although that used for the latest tests was filled up with
Mu-metal sheets to reduce stray fields. This turned the experiments into
a test of the SU(2)-spin symmetry under joint external, electromagnetic
and strong/nuclear interactions. Recall that all experimental information
achieved during this century on elementary particles was achieved via ez-
ternal electromagnetic interactions. The historical aspect of Rauch’s exper-
iments is that they are among the first to achieve measure under ezternal
nuclear interactions, where the external character is evidently established
by the fact that the Mu-metal sheets are fixed and external with respect
to the neutron beam. The mechanism of mutation is so simple to appear
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trivial, and it is due to the expected deformation of the charged distribution
of neutrons (Fig. 6, p. 96) under sufficiently intense external field, which, in
turn, demands a necessary alteration (mutation) of the magnetic moment, as
established at the classical and atomic levels. Current measures (C.55) are
evidently preliminary and, in need of numerous additional tests stressed in
$3.5.18, such as the repetition of the test for [28]: several spin flips, various
different metals filling up the electromagnetic gap, and others. Note that
the amount of mutation of the neutron magnetic moment is unknown at this
writing, and open to scientific debates, but the existence of the mutation
under sufficiently intense external fields should be out of the question to
prevent the raising of issues of scientific ethics, for the simple reason that
there are no perfectly rigid objects in Nature.

At a deeper analysis, one can start with the representation of the shape
of the charge distribution of a proton via hadronic mechanics provided by
Nishioka and Santilli [42]. In this case, one has a shape of the type g11 =
g22 = 1, g3z = 0.60, i.e., one has an oblate spheroidal ellipsoid already in
the absence of mutation (because of the anomalous value of the magnetic
moment). The mutation merely increases the oblate nature of the ellipsoid
because of values (C.55), i.e., g11 = g22 = 0.597. Intriguingly, the iso-Dirac’s
equation does indeed reconstruct the exact (iso)spinorial symmetry [28]. In
fact, for measures (C.55) and values (C.56), the total angle of rotation is

exactly 720 deg., i.e.
1
‘2‘b1b29|9=715.87 Deg = 720 Deg . (C.57)

This is fully in line with all other cases of conventional symmetry breaking
we have encountered throughout our analysis. In fact, as it was the case
for the rotational, Galilean and Lorentz symmetries, when the symmetry is
broken at the conventional level, it is exact at the Lie-isotopic level.

Paper [28] then passes to the study of the invariance of Eq. (C.30)
under iso-Lorentz transformations. In this way Santilli reaches the following
realization of ﬁ(Z.C’) covering of the orthochronous Lorentz-isotopic group
(§3.4.7)

,§(w1) = e%’yi*&‘i*wllei — e%"‘ﬁ"ﬁwllsi ,
ﬁ(?..C') :S(we) = e%:’?*'?**wqei = e%’?z’uwzlsi ’
g(’wg) = e%’%*ﬁ**wsifi = e%’73’74w3|£i , (058)

where each expression evidently holds for speeds along the directions 1, z2,
and z3, respectively. The proof of the invariance of Eq. (C.28) under trans-
formations (C.58) is an instructive exercise for the interested reader.
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Paper [28] then passes to the study of the invariance of Eq. (C.30) under
discrete transformations, the isoinversions (see Eq.s (3.229)). For the case
of space iso-inversions one has

g’ = (El,ct') =P+ (7,ct) = (- z,ct) = P(%,ct), (C.59)

where P is the ordinary space-inversion operator. In this case, the § quan-
tities verify the conditions

S7lsq 48 = —5k=1,2,3,

57154458 = 4, (C.60)

with a solution given by the expected isotopic lifting of the conventional
forms § = Mp¥4, Mp = £ 1, £i where the last value originates from the condi-
tion that two space isoinversions provide the identity transformation.

For the case of the invariance of Eq. (C.30) under time is0-inversions,
one has [28]

o' = (T, ety =Trz=T(Z,ct) = (T, —ct). (C.61)

The § quantities must then verify the conditions

S*i*’?k*g = Y, k:17273?

5'—1 * ’?4 * 5' = -—"3/4 s (062)
with solutions
,§' = nr¥s * Y4,
¥5 = FakJ1*Y2%93,
nr = 1,41, (C.63)

In this case too we have a simple generalization of conventional settings.
In fact, the time iso-reversal is equivalent to the operation of complex iso-
conjugation [36] which is formally identical to the conventional complex
conjugation for assumptions (C.4). We can therefore write

' = (s * Ja * )" . (C.64)

As a further comment, the reader should keep in mind that, as it was the
case for Eq. (C.18), the iso-Dirac’s equation (C.30) DOES NOT represent
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a free particle. After all, deformation (C.45) of the conventional spinoral
character is due precisely to interactions which, being represented by the
generalized unit of the theory, is of non-Hamiltonian (or of non-Lagrangian)
type.

Next, paper [28] identifies the mutation of the magnetic and electric
dipole moments characterized by the iso-Dirac’s equation in a way parallel
to the spin mutation (C.45). For this purpose, introduce the extension of Eq.
(C.30) to represent a charged isoparticle under an external eleciromagnetic

field

[3%  (—id,, + %Au) — imoé) * P

(5 4w, — imod) kP =0, (C.65)
which is manifestly invariant under Gasperini’s isogauge theory (Appendix
A).The isocurrent remains the same as in Eq. (C.34). In particular, the

isocharge is given by Eq. (C.37).
Eq (C.66) is invariant under the following charge iso-conjugation

P = 77:5}_1 x99 = —77c"/)T * Sc > (C.66)
with a solution (for the iso-Pauli’s representation of the §-matrices)
Se=4%2 %%, (C.67)

(and similar solutions for other representations).

In order to understand Eq. (C.66) and its underlying mutation of con-
ventional quantities, one must differentiate between physical quantities that
are isotopically lifted in an essential way, and those that are not. Along these
lines, Santilli points out first that the electromagnetic field is not mutated
in Eq. (C.66). This is an important property, for such a field is external
and, as such, is expected to be conventional. Explicitly, the four-potentials
A, are the conventional ones, and the associated iso-electromagnetic field
coincides with the conventional one owing to the properties

F,=8,xA,-8,+A, = 0,4, -0,4,
= F, . (C.68)

In addition, the isotopic commutators of the m-operators coincide with the
conventional commutators owing to the properties

-‘Z-F,W = [,,m] . (C.69)

~

N e
[muim] = ZFuV
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The quantities that are mutated in an intrinsic (non-reducible) way are
the 4-matrices, owing to their new structure (C.28). In fact, they can be
written explicitly by using Eq. (C.1) and (C.38)

s (0 G \s5_, (0 o Ni. (T o \ (10 \.

7k:»74*ak,dk=(gk gk)izbk<gk gk)i,k=1,2,3, (C.70)

where the o are the conventional Pauli’s matrices. For the isometric

g = diag(b,b3,02,-b;%), by =by=b;p>0, (C.71)
we can write
> 0 o\ - 5 0 7 \.
=b - 1, =b| o 1. 72

For the Nielsen-Picek generalized metric (3.170), one therefore has the
appearance of the term (1 + %a)% (representing the mutation of the space

part of the Minkowski metric) directly in the structure of the 7-matrices.
The conventional spin tensor is then lifted into the isospin tensor (28]

~

it 1. . .
Ouv = '2“(7u Yy — Fo *Yu) (C.73)
also in an essential way, as the reader can easily compute eplicitly.

Once the above basic concepts have been understood, the ientification of
the mutation of the magnetic and electric dipole moments is quite simple.
Consider the isosquare

(7# * mu + imoé) * (3% * 1, — imgé)
= (" *m, + mgcé) + g—c—&““ xF,, . (C.74)

This shows that the second order equation corresponding to Eq. (C.30) is
Eq. (C.19) plus the term
e . « €., ., =
—2—60"“’ *F,, = —2—6-7“ * 57 % F,,
e

2mgce

(6% + Hy, = ia* « Ey) (C.75)
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which is precisely the derived isotopic lifting of the conventional term.

In this way, Santilli [28] reaches the important result of identifying the
mutation of the magnetic moment and of the electric dipole moment char-
acterized by Eq. (C.66) which, for the general case, are given respectively
by

B = —— &
o 2moc ’
— [ -
= 1 i e
Moy, z2moc a, (C.76)

and for the particular case of matrices (C.72), can be written

—ﬁ _ € po__° b 5
"o 2moc - 277’&()00 b4 ’
— € e € b
= i ba=i —&, C.77
M szQC @ z2’!7’L()C() b4a ( )

where the mutation is manifestly represented by the b value.

This concludes our review of paper [28]. Additional developments on
isofield equations require, a detailed study of the isorepresentations of the
Poincaré-isotopic group P(3.1) (which is essentially lacking at this time),
as well as the construction of the iso-Green functions and related solu-
tions, which is a topic more appropriate to the possible subsequent review
of hadronic mechanics.

On historical grounds, it should be remarked that, by no means, the
hypothesis of the mutation of the magnetic moment is new. In effect it dates
back to the early stages of nuclear physics [187] and emerged immediately
following the availability of experimental data on total nuclear moments in
the 40’s. These data, as well known, show a rather sizable departure from
the expected total values (which are far from being truly explained to this
day). The hypothesis was subsequently abandoned, as soon as it was clear
that it implies significant deviations from orthodox lines of inquiry.

Santilli’s isofield equation (C.30) with its mutated values (C.77) and
related experimental backing [88] offer an intriguing possibility of reinspect-
ing the problem of the total magnetic moments of nuclei on the basis of the
hypothesis that the charge distribution of nucleons and related magnetic
moments are altered when these particles become members of a nuclear
structure.

It is hoped that such an investigation is indeed conducted by interested
physicists in the field.

332



* * L

A brief review of the original submission of the hypothesis of mutation
is recommendable, not only to point out its connection with the preced-
ing results, but also because of the usefulness of the original derivation for
contemporary studies, e.g., those of phenomenological hadronization.

The proposal of mutation was submitted via Eq.s (4.20.5), p. 88, ref.
[2], i.e.

Elm
—-7“@‘6 +me _ = _ f= _
{[( 7#0ue tme )SA (fe )SA (fe )}}NSA”O, (0.78)

and is centered in any variationally nonselfadjoint (NSA) [4] generalization
of the conventional, selfadjoint (SA) Dirac’s equation, where: the ¥’s are
the conventional gamma matrices; fE™ is the conventional electromagnetic
interaction, and the e’s (&’s) are the fields of the eleton (antieleton).

Since variational nonselfadjoint couplings are generally dependent in the
velocities [4], Santilli expressed the strong couplings in the form

Fe=TH(z,2,e,€,---)0se, Fr=T"(z,4,e,F¢, -)o,e, (C.79)

which allowed to rewrite Eq. (C.78) in the form

—(~v% L T*V9. 7 z "
(e o)1) ] o com
7 " NSA ¢ /salnsa
the assumption I'* = f4# where f is a function on local coordinates and
velocities, allowed to illustrate, apparently for the first time, the follow-

ing mutation of spin, magnetic and electric moments (Eq.s (4.20.12) and
(4.20.16) loc. cit.)

™ = f(z,%,--)o*, (81.a)
- . ek
o= [1+ f(z,%,-- -)]choo , (81.b)
o= i1+ f(x,i:,---)]2§f'cod’. (8L.¢)

In ref. [28] Santilli proved that original proposal (C.78) and isotopic form
(C.30) are equivalent. In fact, the nonselfadjoint character of Eq. (C.78)
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implies that the underlying variational principle is necessarily noncanonical-
Birkhoffian of the type for constant element, g,,

R 2] T — 2,
A=["2 [z/)wgu,,aw — (0“) g + 2meo + ¢} i,  (C82)

t1

where g = T, J * h = ’(ET’(/J, and T is precisely the isotopic element
of Eq. (C.30), with more complex expressions for non-constant elements
guv- Equivalently, one can readily obtain Eq.s (C.80) from (C.30) by simply
assuming 4# = y* + I'*(z,¢,--+).

The reader can now see the relevance of the original formulation (C.78).
In fact, any generalization of conventional field equations via additive cou-
plings of variational nonselfadjoint type implies a mutation of the intrinsic
characteristics of the particle considered [28]. The physical origin of the mu-
tation is the loss of the canonical character of the underlying variational
principle in favor of a more general Birkhoffian one, which is necessary
under nonselfadjoint couplings within a fixed system of local coordinates.
The emerging equations can then be written in the more conventional form
(C.78), or in the more geometric, but equivalent form (C.30).

Oddly, a considerable number of models existing in the literature do
indeed characterize mutation of the intrinsic characteristics of the repre-
sented particles without any acknowledgement of it, evidently because of
the lack of the techniques for its quantitative identification. The first cat-
egory is, in general, that of particles under nonunitary time-evolutions, as
rather frequent in nuclear physics. These models require the more gen-
eral Lie-admissible formulations and their mutation is not treated here (see,
however, the original presentation [2] which is precisely Lie-admissible in
character).

A class of systems more directly in line with the above Lie-isotopic tech-
niques is that of the so-called phenomenological hadronization models, such
as the generalization of Dirac’s equation of ref. [188], i.e.,

[(wﬂaﬂ«p + map)g, + % <o, (C.83)

T4 ] NSA

In fact, Aringazin [189] has shown that the above equation has precisely the
isotopic structure (C.30) with the isotopic element T given by the Gaussian

T = Nexp(—z?/z4) . (C.84)
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Note also that the statements of “Lorentz noninvariance” caused by the
term ¥ - &/z4 are not technically correct whenever the isotopic element T is
positive-definite (Theorem 3.6). Finally, it appears recommendable to study
explicitly the mutation of the intrinsic characteristics of the original particle
under phenomenological hadronization (C.82), which does not appear done
so far.

In summary, Santilli’s theory of mutation of elementary particles suggest
a reinspection of all available modifications of conventional field equations
via additive couplings that violates the integrability conditions for the ex-
istence of a canonical action principle in the frame of the experimenter [4],
or which possess a manifest isotopic structure, as per model (C.82). The
understanding, stressed in ref. [28], is that any, selfadjoint, coupling that is
added to conventional equations characterizes no mutation at all.

This reinspection is evidently recommendable to prevent scientific distor-
tions, such as the belief that the original characteristics of particles persist
under the generalizations considered, with consequential physical inconsis-
tencies in the results.

The direct universality of Santilli’s Lie-isotopic methods should be re-
called here, to prevent the other illusory hope that nonselfadjoint gener-
alizations of conventional field equations could escape mutations. In fact,
Birkhoffian mechanics has been proved to be directly universal (Theorem
4.5.1, p. 54, Ref. [4]). Thus, all nonselfadjoint generalization of conven-
tional field equations admit a Birkhoffian representation of type (C.82) (un-
der sufficient topological conditions, e.g., analyticity).

The direct universality of iso-Dirac’s equation (C.30) for all conceivable
generalizations of the conventional equation under additive nonselfadjoint
couplings then follows under an arbitrary functional dependence of the iso-
topic elements b, = b,(z,...).

* ok k¥

We now pass to another central topic, Santilli’s [24,25,29] characteriza-
tion of the mutated angular momentum and spin (called hadronic angular
momentum and spin to stress their applicability only for particles inside
hadronic matter), achieved via the construction of the isorepresentations of
the isotopic SU (2) covering of the O(3) symmetries in ref. [23].

Let us begin by defining SU (2) as the infinite family of isotopes of SU (2),
along the general lines of §2.4. As well known, SU (2) can be interpreted
as a group of unimodular isometries of the invariant in the two-dimensional
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complex Euclidean space E(z,6R) [24,29]

SU(2):276z = zf6ijz2=2zzn+ 22,
§ = Diag(1,1)>0. (C.85)
We shall therefore define the (infinite) family of 5U(2) coverings of SU(2)

as the Lie-isotopic groups of isounimodular isometries of the invariant in the
isotopic space E(z,g,R)

§l\/’(2) v 2'gz = 2giz = Aigun + 2392222,
¢ = g, g=Diag(gi1,922)>0,
g=g(t,z,2%,...). (C.86)

From the analysis of Chapters 2 and 3, we therefore know that all iso-
topes SU(2) are locally isomorphic to the conventional SU(2) group, owing
to the preservation by the isometric g of the positive-definiteness of the
original metric § (if this condition is relaxed, we would get also, as part of
the family of isotopes SU (2), groups locally isomorphic to SU(1.1), which
are not relevant for the physical objectives of this appendix even though
mathematically significant).

Santilli realized SU(2) with respect to the generalized unit (isounit)

oo 0 YL 0
0 g3 A\NO gun )’

A = Detg=g11¢22 >0 (C.87)

I

with universal enveloping isoassociatve algebra of generators, say, jk,k =
1,2,3,

A(SU(2)) : J; + J; & Jigd; (C.88)
(where the preservation of the dimension 3 of the group under isotopy has

been implemented from Theorem 2.9; similar implementations will be tacitly

done hereon).
Algebra A(SU(2)) shall act on the isohilbert space with isoinner product

H;: (UV) = (U|*|V) = (UlglV), (C.89)

where the isotopic element has been assumed equal to that of the envelope
to ensure the Hermiticity of the generators under lifting (Sect. 1.3). The
underlying field shall be the isocomplex field.
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Santilli realized ST (2) as the Lie-isotopic group of isounitary transfor-
mations

U = &0 = feithods — gilhotef (C.90)

(no sum in the latter exponents), where the 6’s are the conventional Euler’s
angles [21], under the condition of isounimodularity

Detll = T, (C.91)
which can hold iff )
DetU =1, (C.92)
ie., iff
TrJrg=0, k=1,2,3. (C.93)

From the local isomorphism between SU (2) and SU(2), we can write
the isocommutation relations in the form [24,29]

>

[j,:jjJ = j; * jj - jj * j,' = j;gjj - fjg i

= ie,‘jkjk 5 (C.94)

which are defined up to redefinitions to be reviewed later on in this appendix.
Santilli [24,29] then constructed the isorepresentations of SU (2) for the
general case, and then specialized them to the hadronic angular momentum
and spin (the reader should be aware that, to our knowledge, this is the first
attempt at constructing isorepresentations of Lie-isotopic groups in general,

which are known until now only for the regular-fundamental cases).
Isocommutation rules (C.93) imply the following consequences as for the

conventional case
=2 =2
J Ukl = |JJe| =0,
[jsﬁj;t] = +J,
[j+;j..] - 2j3 3
)

- 3 R
J = EJk*Jk,
k=1
Jr = JLtif,. (C.95)
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Let |6¢), k=1,2,...,d, be the d-dimensional isobasis of SU(2) on H;
with isoorthogonality properties

(0] + |63y = (B¢|glbd) = 6ij, 4,5 =1,2,...,7. (C.96)

Note that, if |+) are the conventional basis for the 2-dimensional repre-
sentation of SU(2), then the above isobasis are given by

162) = g/ 21+) 5 182) = 632771 - (C.97)

If |+) ,]0) ,|-) are the conventional basis of the three-dimensional repre-
sentation of SU(2), then, from Eq. (C.89) the isobasis is given by

163) = g2 |+) , 163) = 9327210, 183) = g3 *1-) . (C.98)

and similarly for the other cases.

-2
_ Asin the conventional case, from Eq.s (C.94), we can diagonalize J and
J3. We can therefore assume the existence of the following isoeigenvalues

I3 ¢ |63) & Fag|bd) = b¢[pE) , (C.99)

where the b’s must be necessarily real under the conditions assumed. Then,
from Eq.s (C.94) we have, as in the conventional case,

Jex[b) = [bfs),
jS * ‘b%:’cl) = biﬂlbiﬂ) s
= JaxJex b)) = (JexJstJi)*[pd),
= (0fJe £ Je)*[8f) = (EEDbE) (C.100)
Thus,
bl =0b3+1. (C.101)

Since Jy * [b3) = 0, we have

=2 ... .
J o« by = (JoxJp 4+ JaxJa+ J3) +|b5)
= 363+ oG (C.102)

and similarly

[ 13

J o« pd) = (f+*f_+j3*j3—j3)*[b‘li)
= boi-1), (C.103)
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from which

K = bjbg+1)=0§(b¢-1),
b = —bd. (C.104)

In this way Santilli shows that, as in the conventional case, the dimension
of the isorepresentation is characterized by the familiar rule

n=%+l,j:m;L;~m (C.105)

The explicit form of the matrix elements was computed by lifting the
conventional case. In fact, we can write for J_

j— * lbi) = aklbg 3
a,% = (b;‘g[ * f+ *J_ % lbﬁ)

o) (F — J2 4 Jo) x b0
(b% 3 3) * [bi)

i

= k- (H2+ 6 oy for = 2,etc. (C.106)
and for J,
Texlbf) = prlof) A
BE= (Wil T dun i) = 1+ — 2= J)e b
=k— (b))% - b def —2b;  for 7 = 2etc. . (C.107)

The matrix elements are then given by [24,29]
(Ja)j = (bf|= Jax[of),
(s = 50080 (e + ) )
(i = 081w (= ) ohy (C.108)
under the subsidiary conditions (C.91) or (C.92), i.e.,
det(frg) =1, Tr(frg)=0, k=1,2,3, (C.109)

which essentially imply the identification of the by quantities with the ele-
ments grr.
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For the case of the fundamental 2-dimensional representation, the above
results permitted Santilli to construct the following isorepresentation [24,29]

jo= L 0 af _1[0 o’
2A1/2 gggz 0 2 gl—ll/? 0 ’

5o L ( 0 —igl® ) _1 ( 0 —igy” )
20172 \ igi* 0 2\ ig” 0 ’
A 1/2 -1
e (3 ) (F ) o
The isoeigenvalues of J? and J3 are then given by [loc. cit.]
Py = &2 (A;” n 1) 2)
Jax |B2) = :x:A;/ngg) , k=1,2, (C.111)

and they coincide with the isoexpectation values under the conditions as-
sumed, i.e.,

-3 Al/2 [ Al/2
- 1/2
Fa) = AQ , h=1. (C.112)

We can therefore conclude by saying that Santilli’s liftings SU (2) of
the SU(2)-spin symmetry imply the following mutation of the conventional
etgenvalues

j— AV, (C.113)
j=0,1/2,1,3/2,...; A =Det.g=g1g22 - "gnm; 1—2j+1.

As a result, the SU (2) symmetry is suitable for the characterization of the

hadronic angular momentum and spin [loc. cit].
Notice the lack of reducibility of representation (C.110) to the conven-

tional Pauli’s matrices

0 1 0 -1 10
013(10),022(2. OZ>,G3=(O_1), (0114)
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that is, the lack of existence of equivalence transformations of the type

Jy = %AakA“l (C.115)
under which the SU(2) algebra of Pauli’s matrices remains conventional, i.e.,
with the trivial Lie product AB — B A, and this illustrates the mathematical
nontriviality of the representations of ST (2) introduced in this section. The
nontriviality of the physical implications will be illustrated shortly in this
paper via the application of the theory to Rutherford’s historical hypothesis.

The degrees of freedom of the hadronic SU (2)-spin should also be re-
viewed for completeness, because they are considerably broader than those
of the conventional theory.

The SU (2) symmetry was constructed by Santilli under the specific con-
dition of preserving the structure constants of SU (2), via isocommutation
rules (C.93). This was done for the evident purpose of stressing the isomor-
phism of SU(2) and SU(2).

However, the general formulation of the Lie-isotopic theory, as originally
proposed in memoir [1] (see Chapter 2) requires the generalization of the
conventional structure constants into the structure Sfunctions.

We can easily generalize the preceding realization of ST/ (2) into the
following form [24,29]

Vi =ify, Undil=iad, [FgH]=iad;, (C.116)
where the generally nonlinear and arbitrary dependence of the determinant
A on all the local variables illustrates the structure functions of the Lie-
isotopic theory.

A repetition of the representation theory previously given then yields,
after tedious but simple calculations, the following matrix forms

. 1/0 1 1 L 1[0 —¢ 1
- 2 = - ':- = -
o= 2(1 0)“2"1’ J2 2(z‘0 )“2"2’

o 1{ g O _ A
J3 - 5 0 gi1 = 2.[0'3. (C.ll?)

The isoeigenvalue equations are then given by
- A
Jy* by = :&—2-]1;,3) =12,

Fapy = -3—(%4-1) 162 , (C.118)
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and, again, we have the preservation of the eigenvalues as the expectation
values, under the assumptions considered.

One can notice the additional mutation in the transition from Eq.s
(C.111) to (C.118)

A1/2 A
2 2 =7
which is nothing but an isotopic lifting of an isotopic symmetry [24,29].

To understand the occurrence from the geometric-algebraic viewpoint,
one can recall the results of §3.4 in the construction of the § 0(3 1) covering
of the §O(3.1) symmetry. As one can see, S 50(3.1) can be constructed in
one single step as an isotopy of SO(4) or, equivalently, in two steps, the
first by constructing SO(3.1) as an isotopy of §O(4) and then 50(3.1) as
an isotopy of SO(3.1).

Along similar lines, one should keep in mind the multiplicity infinite
nature of all possible ST (2) coverings of SU(2), in the sense that, besides
the infinite number of mutations (C.85) of the original metric (C.84), with
consequential infinite numbers of 5U(2), one has in addition an infinite
number of isotopies §U(2) of SU(2) provided by additional mutations of
the mutated metric (C.89). For illustrations regarding the different nature of
the nonlinear isorotations for different isometrics, the reader is recommended
to consult ref. [23].

A simple way of constructing the fundamental isorepresentations is via
an isotopic lifting of the conventional technique based on the use of creation
and annihilation operators. For brevity, we refer the reader to the original
derivation [24] (where one can find numerous additional developments of the
isotopic 5U (2) spin symmetries, such as the iso-Clebsch-Gordon coefficients,
the iso- Wigner coefficients, and other topics).

Here, we limit ourselves to mentioning that the use of the isocreation
and isoannihilation operators permits the reconstruction of the preceding
2 x 2 isorepresentations, plus the following one [24]

P 1 0 g1 2 0 —ignn
hio= = , da= | ,
! 2 ( 922 ) 2 ( 1922 0

5 1 g119% 0
J3 = = , C.120
8 2 ( 0 —g20h ( )

(C.119)

which verifies isocommutation rules (C.93) and isoeigenvalues (C.118), as
one can verify.
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Needless to say, fundamental isorepresentations (C.110), (C.117) and
(C.120) are all isoequivalent.

* % x %

We now pass to the review of the last pioneering articles written by
P.A.M. Dirac [54a,54b]. These articles were written in 1971 and 1972, re-
spectively, but have remained largely ignored since that time, apparently
because of their manifest lack of alignment with established doctrines of
contemporary physics. In the following we shall first review the essential
aspects of the articles in a way as close as possible to their original presenta-
tion (including the use of the original notation). We shall then point out the
intrinsic isotopic character of the new equation which, as such, results to be
incompatible with conventional quantum mechanics (because it breaks the
linearity condition), while being a clear realization of the covering hadronic
mechanics.

Consider two harmonic oscillators in one dimension with dynamical vari-
ables

(2) = (%) = (q1,P15¢2,p2),0 = 1,2,3,4 ,

[9a: %] = 9aqb — 590 = iBus , (C.121)
where
0 0 10
|l o 0 01 r_ _ .
B=1 _1 0 0ol>» #=-8, B=-1, g1=47. (C122)
0 -1 00

The generalized form of the conventional Dirac’s equations proposed by
Dirac himself at the very beginning of paper [54a] (Eq. 1.3) is given by

J 0
(m + ar%: + /6) =0, (C.123)

where % is a scalar (one-dimensional ) wavefunction with the dependence ¢ =
¥(z,q), the z’s are the space-time coordinates of a (conventional) Minkowski
space, ¢ is a column matrix with the four elements (C.121), the a, are 4 x 4
matrices that anticommute with each other and with 3, and the product is
the conventional associative product. One of the various possible realizations
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of the o, presented by Dirac is given by

0 0 -1 0 00 01 10 0 O
a:0001a__0010a:0100
1 10 0 o0 [|’™ o100 |""® 00 -1 0
0 1 0 O 1000 00 0 -1
(C.124)

Assume ag = 1 and 8, = 8/8z*. Then Eq. (C.123) was rewritten by
Dirac in the form

(@ud” + B)gy = 0. (C.125)

The second-order equation characterized by the above form was worked out
via the formulae

P, = (aua# + ﬁ)abe; Paw =0,
[Pa)PC] = i(auau + ﬁ)abﬂbd(auau - ﬂ)cd ’
= i{(@u0" + B)B(v8” — B)}ac » (C.126)

and resulted in the equation (Eq. 2.8, loc. cit.)
(0,0 +1)By = 0. (C.127)

This allowed Dirac to prove the mathematical consistency of Eq. (C.125).
Next, Dirac identified the main law of the a matrices which resulted to
be of the form
ayfo, + oy foy, = 2817, , (C.128)

where 7, is the conventional Minkowski metric. The conventional Lorentz
covariance of the equation was proved via the infinitesimal transformations
zy =z, +a, 2y, (C.129)

which resulted in the transformed equation
{(ay + a,”0,)0"" + B}y = 0. ; (C.130)

By putting .
N = Za”"apﬁaa , (C.131)

Eq. (C.130) can be rewritten

{au(1 - BN)O* +B(1+ N)}gyp =0, (C.132)
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thus resulting in the final form

(auau + ﬂ)q*ﬂ =0,
¢" = (1-BN)q. (C.133)

Dirac (loc.cit.) then passes to prove that his new equation (C.123) or
(C.125) has only positive energy (normalizable) solutions. Assume i8, = Dy
The equation can then be written

{(Po — p3)a1 + (i + p1)as — p2ga} = 0,
{(po ~ p3)g2 — pags + (i — p1)as}y = 0,
{(po+ p3)as + (71 — a1 ~ page}¥ = 0,
{(po + p3)ga — p2g1 — (p1 + 9)g2}9 = 0. (C.134)

By applying a Lorentz transformation to the rest frame with p= 0, the above
equations show that py can be either +1 or —1. Of these two possibilities
only the first is normalizable because the underlying wave function has the
form

e kexp{—%[a? + 65+ ip1(af — 63) — 2ip2q1¢2]/ (po + ps) exp(—iphz,)} .
(C.135)
This established the first significant difference between the new equation
and the conventional one (for which, as the reader knows well, both positive
and negative energies are admitted).
But by far the biggest differences emerged for the spin. Consider the
familiar total angular momentum

Mpo = 2,05 — 2,0, — 13,5 (C.136)
To identify the explicit form of s po» Dirac considered the equation

[(@.0* + B)q,a? (2,0, — z,0,20"° 0, 8,q] =
[(@.0% + B)g, w] = 2i(,0* + B)BNg, (C.137)

which can be written

[(«u0* + B)g,a" (2,0, — 2,8,) + iW] =
= —2Np(a,0* + B)q ,
a? $py = -W = —q'Ng = —i—a”"qTap,Baaq . (C.138)
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As a consequence
L1
Spe = ""8‘q (apﬂaa - aaﬂap)q ) (0139)
which, via Eq.s (C.128), becomes

1 1 1 1.
Spo = —ZqTOtpﬂagq + ngaqTﬂq = —ZqTapﬁaaq + 51"7/?0- (C.140)

For p,o0 = 1,2,3,, My, can be interpreted as the angular momentum,
while s,, is the spin. By using expression (C.124) for the o’'s, the spin
components can be computed explicitly,

1 1
823 = 5(111412 +g3qs), a1 = Z(‘Il2 -’ + ¢’ - a’),

1
S12 = 5((12(13 - ¢194) , (C.141)

and also 1 1
Sp1 = Z(q%qg - q§ +4¢3), Sso2= 5(%(14 ~ q142)

1
803 = 5(91‘]3 + q4q2) - (C.142)
As a consequence,

—2 1 1
S=shtshtsh=(dta+@+a)-7=s(s+1), (C143)

and, finally, . )
1
5= Z(Qf+¢l§+‘1§+q};)—§= g+,
n,n' =0,1,2,3,... (C.144)

In this way, Dirac (loc. cit) reached the remarkable conclusion that
modification (C.123) of his celebrated equation can have only even values of
spin beginning with the zero value.

The six quantities s,, provide a representation of the Lorentz group. By
introducing the additional four quantities

1
Sus = —Ssu = ZqTauq , (C.145)

the ten quantities s,5 = Spe,a.b. = 1,2,3,4,5, provide a representation of
the (3 + 2)-dimensional De Sitter Group.
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Dirac then passed to the identification of the four-current

J, = /¢TqTauqz/Jd2q , (C.146)
which verifies the usual conservation law
04J, =0, (C.147)

and transforms correctly under the (conventional) Lorentz transformations
J, = /szqT(a# +a, 00 )qd?q = J, +a,% J,. (C.148)

The charge density
Jo = / gl qpd?q (C.149)

is positive definite while the underlying wavefunction is normalized to unity
according to the rule

/ Wl qpd3e = 1. (C.150)

Generalization (C.1/8) of the charge density of the conventional Dirac’s
equation shows another departure from orthodoz values. In fact, value (C.148)
is manifestly different than the corresponding value for the conventional
equation.

Dirac concluded paper [54a] with the calculation of the Fock representa-
tion of his new equation (which is not reviewed here for brevity) as well as
with the warning that any estension of Eq. (C.123) to include interactions
is expected to result in inconsistencies. In fact, he showed that, by replacing
Py with the familiar form p, + eA,, the equation is inconsistent except for
the case A, = 0S5/X* which means the absence of field. (See below for
comments.)

The subsequent paper [54b] was primarily devoted to the physical in-
terpretation of the new equation. It turns out that the theory describes a
collection of random circles covered by the point = on a sphere. This results
in a random motion on said sphere. In particular, its radius is not constant
but pulsates in time within given boundaries.

Paper [54b] then concludes with the proof that the particle (in its ground
state) has a zero spin for all possible values of the linear momentum.

¥ 4% % k%
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The reinterpretation of Dirac’s pioneering paper [54a,54b] within the con-
text of the Lie-isotopic theory (Santilli [28]) is quite instructive. In short,
Dirac’s new equation (C.123) is characterized by an enveloping associative
algebra with an essential isotopic structure. The underlying Hilbert space 18
the conventional Hilbert space without any isotopic generalization (see below
for the consistency of such additional lifting). As a consequence, Dirac’s
new equation constitutes an intriguing realization of hadronic mechanics ac-
cording to structure (1.46). The Minkowski space is kept unchanged in Eg.
(C.123). As a consequence, we have no isotopic lifting of the Lorentz sym-
metry (although, again, a reformulation of the theory that shows a lifting also
of the Lorentz symmetry is possible). Finally, Dirac’s new equation provides
an intriguing realization of Santilli’s notion of mutation of the original con-
ventional equation and related particle [2].

The above results can be easily seen [28]. First, the isotopic element of
the isoenvelope is not g (trivially, because this quantity is a column matrix),
but B. Thus, all associative products must be formulated in the isotopic
form, say

E:AxB 4B, 1=p". (C.151)

It is easy to see that Dirac’s new equation (C.123) does indeed verify this
fundamental requirement at all levels.

Introduce the four-component column wavefunction ¢ = ¢ (as in the
conventional equation). Then, by recalling that gt = pT = -B, Eq.
(C.123) can be readily written in the isotopic form

(0,0 + B)gp = (&, %0* + 1)+ =0,

6, =a,d, =061, (C.152)
which, in particular, verifies hadronization rule (C.6) (but not the conven-
tional quantization rule).

To identify the properties of the & matrices, we consider the expression
for the characterization of the second-order equation (C.127)

(G, % 0" + 1) % (& + 8" — 1)

= %{dujd,,} £ OF % G — Jo}

=—(8,0*+1)8, (C.153)
which holds iff

~

{a} =ap*xo, +ay xa, = -2m,,1. (C.154)
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Note that the above equations coincide with Eq. (C.128) because of the
property 8 = —1.

Next, since all operators belong to isoenvelope £, so must be the case also
of the angular momentum and spin. Again, it is easy to see that quantity
(C.135) can be readily rewritten in the isotopic form

Moo = 205 — 2,0, — i8ps = 2, %8y — 2, %8, — iS50 (C.155)

while the spin is in full isotopic form already as written by Dirac. In fact,
Eq. (C.139) can be written

A 1 ?
Spo = Spe = —=Tp* T+ Mo,  Tp = Q. (C.156)
4 2

The underlying Hilbert space can be equipped with the conventional
inner product

H:(g|g) = / $odds =1, (C.157)

in a way fully compatible with isoenvelope £ (see Sect.1.3 and ref.s [36-38]).
In this case, the current is given by Dirac’s expression (C.146) without need
of any reformulation. The same happens for other calculations based on
Hilbert space formulations.

The reader should recall that, for structure (1.46) the definition of con-
ventional and iso-Hermiticity are different. These definitions can be made
to coincide with an isotopic lifting of the Hilbert space with the same iso-
topic element 3, as in structure (1.52) with 7 = G. This reformulation
of Dirac’s new theory can be also readily achieved by introducing the new
wavefunction

$=p0"%¢, (C.158)

under which the conventional inner product (C.157) can be reformulated
into the isotopic form

e olg) = [olodt =17 : (4d) = [#tsdez=i. (cas9)

The four-current (C.146) must be in this case rewritten in the different form

A

.= /q“s’r s, % ¢d’q. (C.160)

It is easy to see that the above four-current verifies too all essential Tequire-
ments of J, and it is therefore a fully acceptable expression. In this way,
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Dirac’s new theory can be extended to admit the same notion of Hermiticity
as the conventional one (with consequential preservation of the reality of the
eigenvalues).

Finally, the covariance under Lorentz-isotopic transformations can be
readily reached via the trivial isotopy

g =z, 48, xm,, 8 =a,01, (C.161)
as the reader is encouraged to verify. It should be stressed that, in the theory
under consideration here, the trivial lifting a,” — a,”1 is necessary because
Dirac formulated the theory in a conventional Minkowski space without
any deformation of the space-time metric. On the contrary, such a trivial
isotopy of the Lorentz group would be inconsistent for the content of Section
3.4 owing to the necessary presence there of a nontrivial modification of the
Minkowski metric (see the comments following Eq. (2.163)).

Notice also that, as formulated by Dirac, isofield equations (C.123) is a
field theory with two units, the generalizaed one 1 = —p for the equations
themselves, and the trivial unit 1 for the conventional Lorentz group on a
conventional Minkowski space.

It should be indicated here, as stressed in ref. [28], that the full study
of Dirac’s generalized equation (C.123) will eventually require a lifting of all
various aspects, peginnjng with he formulation of the theory in the isotopic
space Mi(z,5,R) (§3.4)

¢" = z#B,,2" = 2'2® - 2%z? — 232! — 2%2® . (C.162)

The Lorentz symmetry O(3.1) of the conventional Dirac’s equation is then
replaced by the Lorentz-isotopic symmetry O(3.1) characterized by isounit
Z1 = —f, which results to be isomorphic to the isotopic dual 0%(3.1) (Def-
inition 3.1) of O(3.1) [28].

We are now in a position to comment on the extension of Eq. (C.123) to
include interactions. Dirac [54] concluded that no interaction could be added
to his generalized equation because he was treating them in the conventional
associative envelope of the original equation, thus resulting in a number of
inconsistencies (violoation of linearity, etc.).

However, when Eq. (C.123) is written in its correct mathematical form,
the isotopic form (C.152), then interactions can be readily included as in
Eq. (C.65), provided that they are treated in the isoassociative form [28].

As a matter of fact, the resolution of the difficulties for the inclusions of
interacting terms is the best way to see the essential character of the isotopic
structure of Dirac’s generalized equation (C.123).
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Finally, the isotopic lifting from the conventional to the new Dirac’s equa-
tion

(0u0" +1)p =0 (6, %"+ 1)+ =0, (C.163)

provides a beautiful illustration of Santilli’s hypothesis of the mutation of
spin (see, ref.s [2,11]). More specifically, lifting (C.162) illustrates the pos-
sibility that the ordinary electron can be subjected to a mutation into a
particle with spin zero when passing from motion in empty space to full
immersion within dense hadronic matter. ' A

Lifting (C.162) and underlying mutation of the electron, play a funda-
mental role in the studies by Santilli [29] on the apparent consistency of the
original Rutherford’s hypothesis on the structure of the neutron (as a bound
state of one proton and one electron), as outlined below.

The reader should be aware of the implications of these findings. The
construction of hadronic mechanics was suggested for the specific purpose
of achieving a quantitative treatment of the mutation of particles, so that
the constituents of hadrons (or of quarks) can be consistently given by mas-
sive, already known particles. In turn this illustrates the profound physical
implications of Santilli’s Lie-isotopic theory under review in this work. The
alternative of preserving conventional doctrines is well known: new hypo-
thetical particles must be invented again to be the constituents of quarks.
The possibility that particles experience an alteration of their physical char-
acteristics when in conditions of total immersion within hadronic matter
is manifestly more plausible and positively preferable to the invention of
a second generation of unknown hypothetical particles. In the final analy-
sis, Rauch’s experiment on the spinor symmetry of neutrons under external
fields (see Fig. 6 and ref. [88]) appears to confirm the mutation of the mag-
netic moment of the neutron in its current form, thus providing the possible
experimental foundations to the notion of mutation.

These issues are the central objectives of a review of hadronic mechanics
we hope to conduct at some future time.

* ok ok %

We now pass to the review of paper [168] by G. Karayannis and A. Jan-
nussis on one of the first formulations of the isotopic lifting of field equations
that appeared in the literature, that achieved via the lifting of conventional
Lagrangian densities. The quoted article is important for this review be-
cause it establishes a direct link between Gasperini’s isotopic gauge theory
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(Appendix A) and the isotopic field equations. For additional papers by the
same authors see ref.s [169-171].

For notational convenience, let us review first some essential aspects of
Gasperini’s theory from Appendix A. Let G be a compact gauge group. Its
isotope G is characterized by the transformations

V=Ux", (C.164)
where o )
U =[x = ¢~ =*O"] (C.165)
Since U is a T-unitary operator, i.e.
ute 0 =1=0x01, (C.166)
where X )
vt =1tUti, (C.167)

the basic invariant is given by
Ut ¥ = 050, (C.168)

The isotopic Yang-Mills field strengths F),, are defined as follows:

~

Fo+¥ =
(D,*D,—D,*D,)*7, (C.169)

which transforms covariantly under an isotopic gauge transformation, and
D, is the isotopic covariant derivative. In fact,

Bl =UxE, 0", (C.170)
where . )
U-t=TU7'I. (C.171)

Finally, to complete the field theory we can construct dynamical terms
invariant under isotopic gauge transformations.

Karayannis and Jannussis construct in paper [168] a field theory which is
invariant under Lie-isotopic local gauge transformations. The starting point
is the free Dirac Lagrangian density

L=-U9¥ —mUV, (C.172)
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which is obviously invariant under global gauge transformations. As is well
known, Eq. (C.172) remains invariant under local gauge transformations

U = 9@y | (C.173)

if the conventional derivative, substituted from the covariant derivative, is
transformed as

(D,¥) = 2=} (D, w) . (C.174)
If we define
D,¥ = 1[0, —igd,(z)]¥, (C.175)
we obtain the following transformation for the gauge fields
A, =A,+08,A. (C.176)

Introducing the covariant derivative, the Lagrangian density (C.172) takes
the form

L = -UDV - mTV¥
= —-TOU — mUT + igA,Uy*T, (C.177)

from which it is clear that the local gauge invariance leads to interacting
field theories of a particular structure.

If one works out in a similar manner the Lie-isotopic gauge transforma-
tions,

v = eigTA(:L')\I,,
(Du+TY = 9TAR)(D, « ¥), (C.178)
where X
D,*¥ = (0, —-igTA,)¥ (C.179)

is the Lije-isotopic covariant derivative, then one obtains the generalized
gauge transformation for the gauge fields

Al = Ay + 8,A + A, (In T C.180)
o

Thus, the Lie-isotopic lifting of Eq. (C.172), which is invariant under local
Lie-isotopic gauge transformation, must have the form

L = ——21- [@*7“*1“)#*\11—13”*'&7*7”*‘11]
—mT & T (C.181)
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where

T = ¥t3 (C.182)

and R
A =T (C.183)

is the Lie-isotopic lifting of Dirac matrices, which are assumed to obey the

rule R
AR x4 4k AE = 277 1. (C.184)

Here it is assumed that we are in a space-time with the metric tensor
Juv = T—lnp.ua (C185)

where 7, is the Minkowski metric.
Writing Eq. (C.181) in terms of Dirac matrices v#, we have

I = —-;- (Ty#0,% - 8,T7¥)
—mUV + igT A, Uy*T . (C.186)

Thus, we see that by the Lie-isotopic gauge invariance we construct a gauge
theory with an effective coupling constant ¢’ = ¢T which is a function
of the space-time point where the gauge fields A, interact. This physical
interpretation is analogous to that of Gasperini (Appendix A).

As is well known, repeated application of covariant derivatives will always
yield covariant quantities. This fact can be used to construct a new covariant
object. Thus, if we define the Lie-isotopic Yang-Mills field strengths ﬁ’w, for
the gauge potential as in Eq. (C.169), then we have the curvature tensor

B, =08,A,—0,A,+ 8,n T)A, — (8, In T)A, (C.187)

for the Lie-isotopic gauge field U/(1).
In the same manner we prove the Lie-isotopic lifting of the Jacobi identity

[Du:[bu;i)p]] + [Du;[bp;ﬁu]]
+ [y, D] = 0. (C.188)
Combination of (C.187) with (C.188) leads to the following equation:

DyxFy+DyxFpy+ Dy Fyy =0. (C.189)
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Since the isotopic field strength is invariant under Lie-isotopic gauge trans-
formations, one may replace covariant by ordinary derivatives,

OuxFyp+ 0, % Fppy+08,+F,, =0, (C.190)

and thus obtain the Lie-isotopic lifting of the Bianchi identity. Equation
(C.190) in four dimensions is written as

Py, x Fy = 0. (C.191)
If we define the dual of the 17",,(, tensor as
G = —%ew“ﬁ’pa, (C.192)
we obtain the following field equations
8,G** = G*d,(In T). (C.193)

This equation gives the Lie-isotopic lifting of the second pair of the Maxwell’s
equations, and it entails a magnetic current

Jm = G*9,(In T), (C.194)

which, for T' = e™%, coincides with the magnetic current given by Hojman et
al [172]. Thus, Hojman’s theory is a special case of the general Lie-isotopic
gauge theory.

The field-strength tensor (C.187) can now be used to write a Lie-isotopic
gauge-invariant Lagrangian density for the gauge field, as follows

Le = —-%T’r(ﬁ”“’ x F,) (C.195)

Here the symbol 77 denotes the Lie-isotopic trace [36]. The Lagrangian
density (C.195) can now be added to the previous one (C.181), so that we
have obtained an interacting system of vector fields and fermion fields which
is invariant under the Lie-isotopic local transformations

Liot = —% [@—*’)"”*ﬁu*\ll— [f)ﬂ*ﬁ*?“*\lf]
—mT + ¥ — %Tr(ﬁ"“’ xF,). (C.196)
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This interaction takes place in an effective Riemann-Cartan space, equipped
with an antisymmetric connection

1 [24 o
re, =5 (620, (1n T) - 820,(1n T)| - (C.197)

From the total Lagrangian density (C.196) we produce the field equation
under some assumptions

NFX = —igW . x U — FXP95(In T). (C.198)

This equation constitutes the Lie-isotopic generalization of the first pair of
Maxwell’s equations. The first term in the right side gives the lifting of the
Dirac current, while the second term gives the Lie-isotopic electric current
associated with the isotopic element 7.

Je = F*o\(In T) . (C.199)

We see that the Lie-isotopic lifting of conventional gauge theories yields
new currents (magnetic and electric) which act as a part of the source of
electromagnetism.

The other two field equations produced from the Lagrangian density
(C.196) are

~

v ('y“ 5“ —m) = ——igﬁ* AL,
(v#0, + m)¥ +igytA, ¥ (C.200)

and constitute the Lie-isotopic lifting of the Dirac equation. So, once more
we see that the lifting of the gauge fields is equivalent with the lifting of 4,
to TA, or g to Tg.

Since the tensors ﬁ’w and G*¥ are antisymmetric, the total electric and
magnetic currents are conserved:

ouJ = 0,
8. JT = 0. (C.201)

The explicit forms of the electric charge and current densities are

pf = gUtk U+ E-TinT,
T = gWT*fw‘*\If—ﬁx——v—ln T———l—-—EalnT.
(¢4} ot

(C.202)
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These relations are those given in ref. [168] except for the first terms. In
a similar way we obtain, for the magnetic charge and current densities, the

relations R
p" =B -inT,

—m N — BolnT
J ——ExvlnT-{-g 5

In closing, Karayannis and Jannussis [168] quote the studies by K. Cahill
and S. Ozenli [190] for which g is a metric field, and which provide gauge
theories for arbitrary noncompact groups.

Again, as it is the case for Gasperini’s theory, the studies by Karayannis
and Jannussis [loc. cit.] characterize the U(1)-gauge theory as a gauge the-
ory on a curved space-time where the total magnetic charge is null, as proved
in ref.s [168] and [172]. The magnetic current is therefore not expected to
be observable from an outside observer. However, this does not rule out the
possibility that magnetic currents could be observed in the interior problem,
e.g., where the torsion (see the Lie-isotopic studies on torsion by Rapoport-
Campodonico [52]) is not null, or when future experimental advances will
achieve the capabilities of measures under external strong interactions.

(C.203)

* % ok % %

We now pass to the review of some of the studies by Nishioka [184,185].
In particular, we shall review only representative articles of mainly semi-
classical nature with a direct connection to the preceding content of this
review. The remaining articles will be outlined in a possible subsequent
review on hadronic mechanics owing to their strictly operator character.

Let us begin by reviewing paper [184] which is directly related to paper
[168] by Karayannis and Jannussis previously reviewed in this appendix.
As one will recall, the latter paper establishes that the isotopic lifting of
U(1)-gauge fields is equivalent to liftings

A, —-TA,, g—gT (C.204)

where A,(z) are the gauge fields, g is a coupling constant, and T is the
isotopic element. In paper [184], Nishioka confirms this important result
from a different approach. Again, for notational clarity we shall review the
basic elements of the theory considered.

Consider an invertible and Hermitian operator R which may be a func-
tion of space-time. The enveloping algebra of a theory with associative
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product AB and unit I is generahzed by introducing Santilli’s product
A%B = ARB and a new unity I = R™! such that AxI=I+A=A. Theel-
ements A, B, ... are essentially constituted by polynomials in the space-time
coordinate and momentum operators.

We define the isotopic generalizations of the Hermitian conjugate At and
inverse A~! of an operator A via the quantities At = RtAt], A-1 = T4,

respectively. _
The Lie-isotopic lifting G of the compact group G is represented by the
following transformation of a wave function ¥:

V=00V (C.205)
where _ : _
U = Texp(—i@F + X.) = exp(— Xy * OF)]. (C.206)

Here OF is a function of the space-time coordinates, X} is a matrix repre-
sentation of the generator of group G satisfying

(X, X;] = ici* Xz, (C.207)

and c,;jk are the structure constants of the Lie algebra G. It is now known
that U is an R-unitary operator, that is,

Ut =1, (C.208)
with invariant form
e =00, (C.209)

In analogy with ordinary gauge theory, Nishioka introduces Gasperini’s iso-

topic covariant derivatives D, by imposing the following transformation
rules

D xU+U=UxD,7, (C.210)
where
D, = (8, —igAk « X;)I (C.211)
and ;
D, =UxD,«U1, (C.212)

in which AZ are gauge fields, and ¢ is as a coupling constant.
Define the isotopic gauge field strengths ﬁ’,w for the gauge fields (poten-
tials) as follows

1 = ~ ~ ~
Fu#¥=—2(Dys Dy~ Dyx D)+ ¥, (C.213)
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with transformation rules
Fl,=UxF, 01 (C.214)
Notice that the minimal coupling term in (C.181) is
A%+ X, = AE(RXy). (C.215)
Nishioka [loc. cit.] then assumes that R has the following form
R=TS, (C.216)

where T is a nonsingular function of the space-time coordinates and § is
an invertible and Hermitian operator independent of the space-time coordi-
nates. Represent Aﬁ * X as follows

A%« Xy, = ARTY,, (C.217)

where Yk = SXk. . L
Using the discussion above, define F,, and F}, as follows

F, = F,«I

F, = FisX;. (C.218)
Then F ;;,, are given by
Fi,=T7H,, (C.219)

where
H,, = 8,B}-0,Bi+gs;BiBE,
B, = ALT, [Y.,Y;]=is;*Y;. (C.220)
Finally, introduce a “metric tensor” defined as
huy = T 'y, (C.221)
where 7, is the Minkowski metric. Then
it BoehvOFL < Ty i = THW . (0222)
Next rewrite F,“, and F* in terms of Y; as follows:
b, = F.TY;=H.Y,=H,,,
F¥ = F'™W s X; = F'WTY,
T H™*Y; = T*H* . (C.223)
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The Lagrangian density L for the gauge fields is then given by [156a]
L = —-%\/—hTr(F”" * F)
- _iT‘r(HW  Hu), (C.224)

where h = det(h,, ), the relations (C.222) and (C.223) have been used, and
Tr denotes the Lie-isotopic trace [36].

Before we interpret Lagrangian density (C.224), notice that H uv become
equivalent to the field strengths of ordinary gauge fields on changing A, —
B,(= BLY,) and X; — Y; and that the right-hand side is represented in the
flat space (the Minkowski space).

Nishioka [loc.cit.] therefore concludes that the Lie-isotopic lifting of gen-
eral gauge fields can be done via the following steps:

1. construct the Lagrangian density for ordinary gauge fields;

2. change the ordinary gauge fields A, — B, and the Lie-algebra gener-
ators X; — Yi;

3. change the product of two field strengths to the isotopic product;
4. change the trace to the isotopic trace.

We now review Nishioka’s paper [185] on the isotopic lifting of conti-
nuity equations. This paper is important for this review, inasmuch as it
establishes that several familiar dissipative models of quantum mechanics
are, in actuality, particular cases of the covering hadronic mechanics, and
its underlying Lie-isotopic equations. In fact, the concept of isotopy and
related generalized unit was proposed by Santilli [1] precisely to represent
dissipative conditions.

Consider the following Lie-isotopic lifting of the Schrédinger equation
[36]

tho,¥ = HGY = H % ¥, (C.225)

and its Hermitian conjugate
— iUt =0t GH= U+ | (C.226)

where the symbol * means Santilli’s product A * B = AGB; H is the total
Hamiltonian of the system, here assumed to be iso-Hermitian; and G is the
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Lie-isotopic element also assumed to be Hermitian and invertible, as well
as a function of space-time. Following Ref. [36], define the G-Hermitian
conjugate of ¥ as the quantity

ot = gtut] = guth, (C.227)

where [ is the new unity, I = G-1.
Define the Lie-isotopic lifting of the probability density as follows

p=0ts0. (C.228)

Next, the Lie-isotopic lifting of a differential operator — for example, the
time-differential operator 8; — will be defined as

=01 b0 =0,0. (C.229)
The derivative of p with respect to the time t is given by
9y * p = 8,(GUY) . (C.230)

Also, assume that the Hamiltonian H has the following form:
H = ~5-V +V(z,y,2), (C.231)

where V' is Hermitian and m is the mass of the particle considered. By mak-
ing use of the preceding formalism, Nishioka [loc.cit] obtains the equation

Oip+ v -J = (0;1n G)p, (C.232)
where
= GUty,
h t
= =GV v (GY)
~[v(Go)T)(Gu)} . (C.233)

If G is independent of time ¢, Eq. (C.231) is reduced to the conventional

form
(9tp +Vv- J=0 (0234)

which can be rewritten

dp+v- (G I =0, (C.235)
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where 5
0= —[uf — f 2
sl¥ V¥ = (V)] (C.236)
and the notation A - B denotes the scalar product. Equation (C.234) can
be written

8’ +v-3°= —(vInG?)-3°, (C.237)

where
P =0lw, (C.238)

As applications of (C.231) and (C.236), Nishioka considers two examples:
one is a complex-potential model by Feshbach, Porter, and Weisskopf [191],
the other is a model in which a particle with charge is interacting with an
electromagnetic field.

The complex-potential model is based on the idea that an incident parti-
cle inside a target nucleus effectively moves in a complex potential well; the
real attractive potential simply refracts the incident nucleon, while the pres-
ence of the imaginary term implies absorption of the nucleon. A simplified
Hamiltonian for this case is given by [191]

H R '
=5 v +V —iw, (C.239)
where V, W are assumed to be real, and W is constant.

The Schrédinger equation for Hamiltonian (C.239) in conventional quan-
tum mechanics is given by

ihdip = H, (C.240)
and its Hermitian conjugate is
- 4-—1’
—ihot gy=dT H (C.241)
with continuity equation
2w
0% +v-I% = “"fb—/’% (C.242)
where 5
pa=9¢'0, Ih=5—[o've-(vehel (C.243)

Nishioka [loc.cit.] then assumes that the Lie-isotopic element G is a
function of time only, and that the correspondences

p = P94 , J& J?q (C.244)
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hold. He then obtains from (C.231) and (C.242)
2w

O InG & — (C.245)
so that o
G < exp (—Tt) , (C.246)

where one has to keep in mind that Hamiltonian (C.239) is not Hermitian.
Next, Nishioka [loc.cit.] considers the Hamiltonian

R, .
H=-—v'+iB-v+V, (C.247)

where B is a vector and is assumed to be Hermitian, and V contains all
interaction terms (except the second term of the right side) and is assumed
to be Hermitian.

The Hamiltonian in this case is Hermitian. The Schrédinger equation is
given by

thoyp = Hp, (C.248)
and its Hermitian conjugate is
— it 9=yt H (C.249)
with continuity equation
Op% +v-JI% = %B 3%, (C.250)
where
ph =, 3= [utvv-(vei] . (C.251)

Assume that G is independent of time ¢, and that the following correspon-

dences hold '
G p® & o, I°23%. (C.252)

Then, from (C.237) and (C.251), Nishioka obtains the correspondence
= 2
—yinG? 2 —%B. (C.253)
The correspondence between the Lie-isotopic element G and the vector po-

tential B of the electromagnetic field can therefore be readily established
when B can be represented as a gradient term.
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In this way, Nishioka [loc.cit.] identifies the possibility of representing
the electromagnetic interactions themselves via an isotopic lifting of free
charged particles. This property had been established at a classical level by
Santilli in monograph [15], see Example 4.1, p. 98 and following, and its
operator counterpart has been established in paper [185].

As a final remark, note that the reformulation of a conventional model
with conserved (Hermitean) Hamiltonian generally leads to the Lie-isotopic
setting, while the reformulation of a nonconserved (non-Hermitean) Hamil-
tonian generally leads to the broader Lie-admissible approach.

This occurrence is, in the final analysis, a confirmation of the limitations
of the Lie-isotopic theory, and of the need to enlarge it into the yet more
general Lie-admissible approach, exactly along Santilli’s original proposal

[1].

We would like to review now the application of the (algebraic,classical
and operator) Lie-isotopic formulations to the physical arena for which they
were conceived by Santilli: the structure of hadrons.

These applications are being studied according to two subsequent, com-
patible, stages: first, the identification of the hadronic constituents with
(mutated forms of) ordinary, massive particles freely produced in the spon-
taneous decays; and, second, the identification of quarks with mutated forms
of ordinary physical particles.

The initiation of the studies on the first stage was done in the original
proposal to build hadronic mechanics [2] via the construction of a structure
model of the 7° as a hadronic bound state of one electron e~ and one
positron et mutated into the eletons é* as a “compressed positronium”
(loc. cit. §5)

Pos. = (e+7 e—)Qua.ntum Mech. 70 = (é+’é_ )Hadr Mech. - (0-254)

It was first pointed out that the use of the covering hadronic mechanics
is necessary for the model, not only to represent the conditions of total
mutual immersion of the wavepackets of the electrons, but also to achieve a
consistent bound state with real binding energy.

In fact, quantum mechanics cannot produce a consistent bound state of
two electrons with rest mass 0.5 MeV of the 7°, owing to a little known
property -according to which the initial equation of the bound state does
not generally admit real solution when Egoy >> 2ERest [192]. In this way,
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Santilli proved the necessity of generalizing quantum mechanics already at
the level of the lightest known hadron.

Hadronic mechanics proved to be readily capable of resolving the above
problem. In fact, in more recent formulations, we can say that hadroniza-
tion (1.59) of Jannussis generalized action (3.140) for the two-body, closed,
nonhamiltonian system yields the iso-Schrédinger’s equations

Prp=pTy=—ipVp, p=—""—, h=1

] - for
zg—t-?p:H*tp: [%A—}—V(F)-—z(g—t)logz/y}*zb:ﬁ?zﬁ

m=m/p, A=Al, Vv=VI, (C.255)

that is, the Birkhoffian form of the Hamilton-Jacobi equation in the linear
momentum results in a generalization of the operator form of the kinetic
energy which implies a sort of “renormalization” of the mass

ST 5 2—73175*;3': ~A. (C.256)
This mechanism then permits hadronic mechanics to achieve the de-
sired total energy because the “mass renormalization” (C.255) is such that
2ERest > E7ot, thus permitting real, negative, binding energies.
Upon achieving the resolution of this problem, Santilli proposed the
structure equations for the model 79 = (é*,é~), which we can today write
in the form (Eq.s 5.1.14, p. 836, ref. [2])

¥ 1 . e (a]
i ¥m) = ["—“A - EF"H <5t_) 10g4 *Im)

2
1 e e-«b’r
= [—%A—T——%m:’ I¢)=El¢>7

ERt = 2ERt 4 oFKn _ B o135 MeV, h=1,
T = 4nA|g(0)] aEFt = 1016sec? ,

b = 107%m, m=m/p, p=;{7~n—_§’
T = T(O)eXP(“itlEul(ul¢>)7
TO) = 1-|u)(e|=T(0) . (C.257)

The model resulted to be capable of representing all intrinsic character-
istics of the 79, such as: rest energy, meanlife, spin, charge, magnetic and
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electric moments, space and charge parity, and primary decay 79 — 7, the
decay 70 — et +e7(< 2x 108) being a tunnel effect of the electrons through
the Hamiltonian and nonhamiltonian barriers of hadronic mechanics.

The above model was then extended in ref. [2] to the remaining (light)
mesons, with the following results

™ = (ét,67) =135 MeV
= (&t,et,87) = (#%,6F) = 139 MeV ,
n = (26%,2¢7) = (#°#°) =548 MeV ,
K* = (28%,6%,267) = (7F,6%,57) = 493 MeV
K% = (3¢t,3¢67)=(K*,K™) =497 MeV , (C.258)

where a hat indicates mutation.

In this way, Santilli illustrated the purpose for which hadronic mechanics
(with its underlying Lie-isotopic structure and classical Birkhoffian backing)
had been conceived. In achieving the interpretation of the mesonic con-
stituents with physical particles, Santilli was however forced to increase the
number of constituents with mass, according to a law previously established
at the nuclear and atomic levels. In fact, a primary objective of compres-
sion (C.254) is to suppress the atomic spectrum of energy down to only one
admissible level: the 7°. This suppression was achieved in full via the use
of Hulten potential which, quite remarkably, resulted in system (C.257) to
admit only one admissible (real) energy level, 135 MeV.

The suppression of the atomic spectrum of energy was evidently nec-
essary to avoid a host of inconsistencies, e.g., to avoid the presence of an
infinite spectrum of energy near the ground state of typical atomic concep-
tion, that has no representation in the physical reality of hadrons.

In conclusion, another central result by Santilli in the original proposal
[2] is that the identification of the mesonic constituents with physical parti-
cles freely produced in the spontaneous decays demands the increase of the
number of constituents with mass. In fact, starting from two constituents
for the 70 (135 MeV), he obtained three constituents for the 7¥ (139 MeV),
four constituents for the 7 (548 MeV), five constituents for the K* (493
MeV) and six constituents for the K° (497 MeV).

Santilli concluded the analysis of memoir [2] with the suggestion of de-
veloping mechanics up to such level of maturity to be able to represent con-
sistently Rutherford’s historical hypothesis on the structure of the neutron
as a “compressed hydrogen atom” (in Rutherford’s words [193]), according
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to the isotopic lifting

Hydr. At. = (p%, €7 )Quantum Mech. — 7 = (0, 6™ )Hadr. Mech - (C.259)

He was fully aware that Eq. (C.257) could readily represent the total en-
ergy of the neutron as a hadronic bound state of one ordinary, unmutated
proton p*, and a mutated electron é- (which is also impossible for quantum
mechanics because E, > E, + E.). Nevertheless, the primary problem of
consistency in Rutherford’s compression (C.259) was the achievement of the
total spin % from generalized bound states of two particles each of spin %

At the time of memoir [2], 1978, Santilli was unaware that the problem
of spin for compression (C.259) had already been solved by P.A.M. Dirac in
his generalization [54] of Dirac’s equation which, as reviewed earlier, implies
the mutation of spin from % to zero precisely for at rest conditions. This is
exactly the total angular momentum needed for the eleton é~ to achieve a
consistent representation of compression (C.259).

Dirac’s papers [54] were brought to the attention of Santilli by A. Kalney
at a meeting of 1983 in Cambridge, MA. Lack of funds (as well as very stren-
uous oppositions by the local Cantabridgean physicists against the studies
here reviewed [163]), forced the delay of the research in Rutherford’s com-
pression, which was resumed only in subsequent years according to the fol-
lowing main lines.

First, Santilli [24] constructed the infinite family of isotopes SU (2) of
the SU(2)-spin symmetry as briefly reviewed earlier; identified their isorep-
resentations; and worked out a number of generalizations of the conventional
theory of spin.

Second, he then applied [25] the covering SU (2) theory to Rutherford’s
compression (C.259). In essence, with reference to Eq.s (C.113), the total
angular momentum of the eleton in Rutherford’s compression is given by
the sum of the hadronic angular momentum and spin

. - . 1
=l =07 - 507 =0, (C.260)
where the A’s are the determinants of the orbital and intrinsic isometrics.
The total angular momentum of Rutherford’s historical compression then
resulted to be interpretable as follows
Tot

) . 1 1
It =gy + i3t = §+A;/2-§Ai/2=

1
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and holds under a constraint in the orbital angular momentum so simple to
appear trivial (see Fig. 19).

After achieving a resolution of the problem of the spin, the quantitative
representation of all characteristics of the neutron in compression (C.259)
was straight-forward. In fact, rest energy, meanlife and charge radius of the
neutron were readily represented via the simple reformulation of Eq.s 5.1.14
of ref. [2] into Eq.s (2.19) of ref. [25], i.e.

¢ o
[_E%A - — 47 (5-{) log zb} * |1hn)
—b

Et = E}}est + Bt + Eﬁ“ﬂ — E =938.6 MeV
771 = 4xA|Y(0)PaERt = 1.09 x 1073 sec™!

0
zb—tld’n>

bl = 08x107Bem, m=ms=me/p, h=1,
T = T(0) = T(0)exp(—it| Eu|(u|¥))
T(0) = 1-lu)(y]=T(0), (C.262)

which also resulted to be, not only consistent, but also capable of suppressing
the spectrum of the hydrogen atom down to only one level: the neutron.

The representation of the anomalous magnetic moment of the neutron
was achieved via fundamental geometrization (C.1) [18] of the proton medium
and use of Eq.s (C.77)

Tot Orb Intr €
= S = —1.9
Hn ll’P + He + He 2mpco
b3 €
= 27 ol |2 26
2mpco e |t by 2meco (C-263)
following explicit solution
p2ot = |ud™| — |plP] = 2.5 x 1073y, . (C.264)

The neutron decays n — pt + e~ + U, then resulted to be interpretable

via the decay
& —e +7., (C.265)

i.e., Rutherford’s compression of the electron down the center of the proton
may well result to be the mechanism of creation of neutrinos in Nature. It
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should be understood that neutrinos are not physical constituents of the
neutroon according to model (C.262). They are merely created when the
eleton exits the hyperdense medium in the interior of the proton. In differ-
ent terms, the neutrinos appear to originate at the time of relation of the
constraint on the orbital motion of Rutherford’s electron inside the proton.

N

FIGURE 19. A schematic view of the structure model of the neutron
n = (p*,é”) proposed in ref.s [25,29] along Rutherford’s historical hypoth-
esis. The proton is represented, not as an empty sphere with points in it,
but as the densest object measured in laboratory until now. As such, the
proton is depicted as a sphere of radius equal to that of the charge distribu-
tion (~ 1F) filled up with the wavepackets of the constituents in conditions
of total mutual overlapping (because their size is also of the order of 1F).
Rutherford conceived his hypothesis on the neutron as a “compressed hy-
drogen atom”. The figure therefore depicts the initiation of Rutherford’s
compression of the electron inside the proton where the electron is repre-
sented by a sphere schematizing its wavepacket, and sizes are not necessarily
in scale. Once this physical setting is clearly identified, it is then easy to
see that the electron can only penetrate inside the proton with the relative
spinning “in phase” [2] (to avoid high dissipative effects expected from the
spinning of wavepackets one against the other), and with its angular mo-
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mentum parallel to the spin of the proton. These initial conditions appear
to be rather plausible and well founded experimentally. The final phase of
the compression is conjectural as of this writing. Santilli argues that, when
the electron is totally compressed inside the proton, the angular momentum
is expected to coincide with the spin of the proton owing to their physical
identity and, thus, to prevent inconsistencies in the mathematical treatment
of the structure i.e., lim lz|r=0 = lim A;|,=0 = jp. This automatically allows
to represent the spin of the neutron in model n = (»p*,é7) as coinciding with
that of the proton, Eq. (C.261). The representation of all other intrinsic
characteristics of the neutron is then readily allowed by the techniques of
hadronic mechanics. The electron, when totally immersed in the hyperdense
medium in the interior of the proton, is assumed to be mutated [2] into
an eleton, and acquire intrinsic characteristics different than those of the
ordinary particle.

A comprehensive presentation of the above studies is presented by San-
tilli in paper [29]. A relativistic formulation of the model is under prepara-
tion at this writing, and it is evidently based on “Dirac’s generalized equa-
tion” (C.152). As a matter of fact, we can readily state that the studies
[24,25,29] were conceived by Santilli as being a nonrelativistic version of the
relativistic treatment offered by Dirac.

This scientific scene can be conceptually summarized as follows. Hadronic
mechanics appears indeed to be successful for the objective for which it was
suggested: identification of the hadronic constituents with physical, ordi-
nary, massive particles freely produced in the spontaneous decays. In fact,
this possibility is now realistically established for all light mesons and for
Rutherford’s neutron. The extension of the results to the remaining hadrons
via iterations of type (C.258) is then only a question of routine studies with
no residual, fundamental difficulty.

The central mathematical idea is the generalization of the trivial unit of
conventional space-time symmetries into the isounit I of Chapter 2 [1].

The central physical idea is the geometrization [18] of the hyperdense
medium expected in the interior of hadrons via the mutation of the Minkowski
metric n — g = Ty, T > 0, with consequential construction of the ap-
plicable space-time symmetry and related relativity around the generalized
unit [ = T2

All the results outlined in this review, including Birkhoffian mechanics,
hadronic mechanics, the reduction of hadrons to two fundamental stable
particles (the protons and the electrons), etc., can be all uniquely derived
from the above generalization of the unit and its geometrical interpretation.
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We now conclude with a few comments on the problem of compatibility
of the structure models of hadrons provided by hadronic mechanics and
the conventional quark theories. It should be indicated that these studies
are only at the beginning and, therefore, only tentative main lines can be
reviewed at this time.

First, we should recall the emphasis put by Santilli since the original
memoir [2] on the fact that the fundamental problem is the identification
of the hadronic constituents with massive particles freely produced in the
spontaneous decays. This is due to the fact that, in Santilli’s view, the
primary achievements of quarks theories have been in the classification of
hadrons into family. The problem under consideration is therefore that of
achieving compatibility between the hadronic models of structure and the
quark models of classification [2,5].

At any rate, if one insists in preconjecturing quarks as the physical con-
stituents of hadrons, hadronic structure models (C.257) and (C.262) are
manifestly prohibited, particularly for quarks in their current conception
(see below).

To understand the problem (as well as the rather intriguing possibili-
ties for advancement the reader must abandon the current conception of
hadrons in quark theories, as ideal empty spheres with points in them, and
acknowledge the physical reality according to which hadrons are the densest
physical media measures in laboratory by mankind.

Whether for hadronic models of structures or for the quark models of
classification, the physical media in the interior of hadrons must be quantita-
tively represented. Again, the technical means for this treatment are today
open to scientific debate. But the lack of acknowledgement of such media,
and the acceptance of the underlying concept of “point-like wavepackets”
of quarks constitute such a gross approximation of the physical reality to
necessarily raise issues of scientific ethics [163].

The solution submitted by Santilli is the geometrical treatment of the
hadronic media via the mutation of the Euclidean metric § — g=T6,T >
0 (§2.2) with the clear understanding that there cannot be only one mutation
for all hadrons. This is as established already at the level of first approx-
imation for low energies by the constant mutation worked out by Nielsen
and Picek, [99], Eq. (3.170), where one can see different isometrics in the
transition from pions to kaons. More compelling differences emerge when
the full nonlinear [101] and nonlocal [102] nature of the interior metric is
taken into account.

Once the generalization of the metric for the interior of hadrons, and
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its generally different value for different hadrons (of the same multiplet)
is understood, then and only then the study of the compatibility of the
hadronic models of structure with the quark models of classification can be
properly undertaken.

Along the latter lines, Mignani and Santilli [44] have first constructed
the infinite family of isotopic §C\T(3) generalizations/coverings of the con-
ventional SU(3) symmetries, as the isosymmetries of the complex Santilli’s
space in three dimension E(z,g, ¢) with invariant composition

z;fg;jzj- =inv, g¢g= g’r = Diag(g11,922,933) > 0. (C.266)

The isotopes SU (3) were then constructed as verifying the isocommuta-

tion laws

§(7(3) : [5\‘:5\3] = 5\,' * A — ;\j * 5\,'
= ;;gjxj -~ :\jgj\,' = 2if,'jk:\k R (C.267)

where the f’s are the conventional structure constants of SU (3), g is pre-
cisely the isometric of invariant (C.266), and the A’s are the expected gen-
eralization of the familiar A-matrices [194].

Via a simple generalization of the isorepresentation theory of ST(2) of
papers [24,25,29], Mignani and Santilli [44] have then constructed the fol-

lowing fundamental isorepresentation of 5/'5(3)

i 0 gu O R 0 dgu O . 9119% 0 0
1 = g2 0 0 ) =1 dg2 0 0 |, A= 0 —g2295; 0
0 6 0 0 0 0 0 0 0
0 o0 2uma - —jae
w00 % Jacf o0 8 Ja=(o o mm
As = 0 0 0 As = 0 0 933
g2 O 0 ig22 0 gn 0
. 0 0 o . gug3 0 0
Aro= | 00 s ), Ke=—2| 0 gndh 0 (C.268
0 g 0 V3 0 0 _22L£§z -268)
g33

which is evidently at the foundation of the ongoing studies 01 Cotpavivasiv,
of the hadronic structure models and the quark models of classification. '

The following scenario can already be predicted. First, the old idea of
only one SU(3) symmetry has been disproved by Santilli’s Lie-isotopic for-
mulations. In fact, we can readily state today that there exist one abstract
symmetry, say, SU(3), with infinitely many isomorphic but physically dif-
ferent realizations: first the infinite isotopes SU(3) on isospaces E(z, 7,0,
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and, finally, the conventional symmetry SU (3) when the simplest conceivable
Lie product AB — BA is assumed.

The discovery of the infinite family of isotopes ST/ (3) evidently calls for
a re-inspection of quark theories from their beginning. At this moment,
we can state that the first implication of the above results [44] is that the
conventional concept of quarks u,d, s, requires a generalization into that of
isoquarks 1, cf,.é as characterized by the fundamental isorepresentations of
50 (3) and Santilli’s theory of mutation of particles [28]. In turn, since the
matrix elements g11, g22, ¢33 T remain totally unrestricted by the isosymme-
try, they admit particular values under which the charges of the isoquarks
can be integer [44]. In turn, this sets the foundations for the possible com-
patibility between hadronic models of structure of type (C.257) or (C.262)
and the isoquark models of classification, whose study is under way.

In conclusion, the Lie-isotopic formulations, when applied to the lifting of
the conventional quark theories, offers genuine possibilities of identifying the
isoquarks 4, d, §, with suitably mutated forms of the proton $ the electron
€~ and the positron é*. The strict understanding is that, as stressed earlier,
these studies are just at the beginning and so much remains to be done prior
to the achievement of their final resolution.

* ok ok %

In closing, we can say that all the possibilities of identification of the
hadronic constituents with physical particles outlined in this appendix are
centrally dependent of the Fundamental Test reviewed in §3.5.18 on the
problem whether Einstein Relativities are exactly or only approximately
valid in the interior off hadrons.

In fact, if Einstein’s Relativities are indeed ezactly valid in the arena con-
sidered (i.e., the nonlocal internal effects due to mutual wave overlappings
are quantitatively ignorable), then Santilli’s theory of mutation of elemen-
tary particles is inapplicable, the hadronic constituents cannot be identified
with ordinary massive particles freely produced in the spontaneous decays,
and the hadronic constituents must then be abstract particles not detectable
in laboratory, such as the quarks in their conventional conception.

On the contrary, if the non-local internal effects of hadrons will result to
be quantitatively significant, and the consequential violation of Einstein’s
Relativities for the interior of hadrons will be experimentally established,
then the mutation of elementary particles is expected to be consequential.
The consistency of structure models of type (C.257) and (C.262) is then
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expected to follow.

In conclusion, the possible identification of the hadronic constituents
with ordinary, physical, massive particles freely produced in the spontaneous
decays necessarily calls for a generalization of Einstein’s Special and General
Relativities inside hadrons.

This review will have achieved one of its central objectives if it succeeds
in indicating that the possible experimental verification of the predictions
of all available phenomenological calculations [96-102] on the violation of
Einstein’s theories inside hadrons, rather than being a scientific drawback,
opens instead the door to possible fundamental advances of clear historical
proportions such as the reduction of hadrons to only two stable particles
(and their antiparticles): the proton and the electron.

It is therefore hoped that this appendix elaborates the need to finally
conduct the Fundamental Tests of §3.5.18 which, after having been ignored
for decades, are now truly “unprocrastinable” [98].
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