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ABOUT THE TOPIC

Lie's theory, with its diversification
into algebras, groups and geome-
tries, constitutes one of the most
fundamental branches of contem-
porary mathematics.

In applied mathematics, Lie's the-
ory is equally fundamental. For in-
stance, contemporary physical the-
ories (such as classical mechanics,
statistical mechanics and quantum
mechanics) constitute different re-
alizations of Lies theory beginning
from their most fundamental dyna-
mical part, the time evolution.

This book deals with a gener-
alization of Lie algebras (beyond
grading-supersymmetric extensions)
which was proposed by A. A. Al-
bert in 1948 under the name of
Lie—admissible algebras, and subse-
guently developed by a number of
mathematicians and theoreticians.

The contents of this book is there-
fore of fundamental relevance for
pure as well as applied mathema-
tics. On the former grounds, the
Lie—admissible algebras permit the
broadening of the mathematical
structure of all branches of mathe-
matics dealing with Lie algebras.
On the latter grounds, the Lie—ad-
missible algebras permit the gener-
alization of physical theories for a
deeper understanding of nature.

The book is authored by one of the
foremost mathematical leaders in
the field.

The book is indispensable for all
mathematicians interested in funda-
mental advances, as well as for all
theoreticians interested in the bro-
adening of the structure of contem-
porary physical theories.
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PREFACE

Following the long history of Lie algebras in physics, and since the in-
troduction of Jordan algebras by physicist P. Jordan, there have been consider-
able efforts to generalize the formalism of quantum mechanics by means of

other nonassociative algebras, such as Jordan, noncommutative Jordan, and octo-

nion algebras.

Since A. A. Albert introduced Lie—admissible algebras in 1948, very
little has been known about the structure of these algebras until the recent
emergence of Lie—admissible algebras as a fundamental methodological tool in
theoretical physics and mechanics. As far as | am aware, R. M. Santilli is
the first physicist who became interested in Lie-admissible algebras. In an
article written in 1967, he states: “‘As is known, there have been attempts
to introduce new algebraic structures in physics other than Lie algebras (L.A.).
One of the most interesting attempts is the Jordan investigation on the r—num-
ber algebras today called (commutative) Jordan algebras (C.J.A.), which however
have not been successful in their physical applications. We personally think
that a possible reason for this disappointment in elementary particle physics may
be the want of L.A. content in the C.J.A. In other words, L.A. should not
be abandoned, but might be expanded. For instance, the validity of L.A. for
free particles is well known. It may be interesting to investigate the possible
validity of new algebraic structures of an interacting or decaying region but
only in such a way that the standard procedures corresponding to the free
states remain unchanged, that is, preserving in any case a well—defined L.A.

content.”

Both nonflexible and flexible Lie—admissible algebras arise in classical
and quantum mechanics as a generalization of conventional mechanics. However,
the general Lie—admissible algebras are too broad and diversified to provide at
this moment a fruitful structure theory. On the other hand, the structure of

certain classes of flexible Lie—admissible algebras is closely related to the theory

&



Preface X

of Lie algebras of characteristic zero. Especially, the structure and representa-
tion of semisimple Lie algebras of characteristic zero serve as a reasonable

model in the classification of certain classes of simple flexible Lie—admissible

algabras.

This monograph is based on lectures delivered for a first year graduate
course at Seoul National University while | was visiting under the project of
the SNU—U.S.AID Graduate Program for Basic Sciences in 1979-—-1980. My
intention was to provide elements of Lie algebras and flexible Lie-admissible
algebras. The subject matter in Lie algebras was designed to set up the
groundwork for the structure of certain classes of flexible Lie—admissible alge-
bras rather than to provide a comprehensive account of the general theory of
Lie algebras. Realizing that the majority of the audience had different moti-
vations and backgrounds, and had no experience in Lie algebras, | tried to
convey the material in a self—contained manner, without unnecessary difficulty.
Accordingly, the amount of material in Lie algebras grew up to a moderate

book length.

The treatment of Lie ‘f,jalgebras followed the three well—known books:
N. Jacobson, Lie algebras (Interscience, New York, 1962); D. J. Winter, Ab-
stract Lie algebras (MIT Press, 1972); J. E. Humphreys, Introduction to Lie
algebras and representation theory (Springer—Verlag, New York, 1972). The
basic classical theorems, including the theorems of Weyl and Levi, are drawn
from Winter's book which provides quick access to the classification of split
semisimple Lie algebras of characteristic zero. The classification and construc-
tion of simple Lie algebras were treated as in Jacobson’s book. The discus-
sion for root systems followed the classicai approach rather than the abstract

one. The exposition of representation theory was based on Humphreys’ book.

| had to omit many standard topics in Lie algebras, such as cohomo-
logy, theorems of Ado and lwasawa, classification over non-—algebraically closed

fields, character formuias, and multiplicity formulas, which the interested reader
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can pursue in the books of Jacobson and Humphreys, cited above. For the
discussion of certain flexible Lie—admissible algebras of prime characteristic in
Chapter 7, | stated some elementary results on classical Lie algebras without
proof which can be found in G. B. Seligman’s book, Modular Lie algebras

(Springer—Verlag, New York, 1967).

Chapters 6 and 7 are devoted to the structure of some special classes
of flexible Lie—admissible algebras. The main objective in Chapter 6 is to
classify finite—dimensional flexible Lie—admissible' algebras over an algebraically
closed field of characteristic zero whose associated Lie algebras are reductive.
The central idea for this classification is the notion of adjoint operators which
was first introduced by E. P. Wigner in 1941, for the Lie algebra of the
SU(2) group. The general case of adjoint operators was later studied in parti-
cle physics, notably by Okubo. The main result is that simple Lie algebras
of type An (n > 2) alone allow a non—zero symmetric adjoint operator and
otherwise, all adjoint operators are multiples of the adjoint mapping. Thus,
only simple Lie algebras of type An (n = 2) result in new simple flexible

Lie—admissible algebras.

Chapter 7 is concerned with the structure of flexible Lie—admissible al-
gebras of arbitrary characteristic. It is shown that the algebras turn out to be
Lie algebras when their associated Lie algebras are classical in the sense of
Seligman or generalized Witt algebras. In the final section, we investigate some
basic structure of the mutation of an associative algebra which originated from
" Santilli's generalization of classical and quantum mechanics. When the mutation
parameters are invertible, flexibility in a mutation of an associative algebra is

virtually equivalent to all other nonassociative identities.

The material presented here is far from complete. | have had to omit
many recent advances made for the structure of flexible Lie—admissible algebras

which is at present quite diversified in nature. It is hoped that a collective



Preface Xii

work on Lie—admissible algebras will be published in a readable form in the

near future.

In writing this monograph, | am indebted to a number of people. |
should like to express my gratitude to R. M. Santilli who first brought to
my attention the relevance of Lie—admissible algebras to physics in 1977.
Since that time, his continual encouragement has been most influential in pur-
suing the study of Lie—admissible algebras. It is his suggestion to publish
this monograph. | also owe a great debt to S. Okubo for making available
the current developments in physics relating to Lie—admissible algebras and
for many invaluable communications. The majority of material in Chapters 6
and 7 is drawn from joint works with Okubo. | wish to thank my friend
and teacher M. L. Tomber who first aroused my interest in Lie—admissible
algebras. | thank G. M. Benkart and J. M. Osborn for numerous conversa-

tions which have been immensely helpful in writing the last two chapters.

To the SNU—-U.S.AID Graduate Program for Basic Sciences and the
Department of Mathematics of Seoul National University who arranged my
visit during which the majority of this monograph was written, | express my
sincere thanks for financial suppori and generous hospitality. | would like to
acknowledge also occasional support from DOE contract DE—AC02—80ER10651,
and extensions A001, and AO002. Special thanks are also due to J. S. Cross
for a careful reading of the manuscript. It is a pleasure to acknowledge the

great help provided by the editorial staff of the Hadronic Press.

| am, of course, solely responsible for the errors or shortcomings that

remain.

November 1, 7982
Cedar Falls Hyo C. Myung



1. NONASSOCIATIVE ALGEBRAS

1.1. Basic definitions

An (nonassociative) algebra A over a field
is a vector space over F with a multiplication

A x A~ A , denoted by xy, such that

(ox + By)z = a(xz) + B(yz),

z(ax + By) = a(zx) + B(zy).

a,B e T, x,y,z € A .

Denote the associator (x,y,z) and commutator

[x,yl in A by
(X9Y9?) = (XY)Z - X(YZ),

[x,y] = xy - yx



If A is finite-dimensional over ', 1let u

1777 n
be a basis for A. Let

u.u. = g yk u (1.1)

R I ij "k )

The nB constants Y?j e F are called the structure

constants for A, which determine a unique element in

3
the space F' = F x...x F (n3 times). Conversely any
3

element (yﬁj) e F determines a unique nonassociative

algebraic structure on the underlying vector space A

via (1.1). Thus the set of algebras with underlying

3
n

vector space A over F 1is identified with F

Problem 1.1.1. Determine all algebras of

dimension 1 or 2.

The definitions of the terms, such as left cr
right ideal (two-sided)ideal, homomorphism, kernel,
quotient algebra, isomorphism theorems, and direct sum
in an algebra can be stated exactly the same as in an
associative algebra. An element 1 € A 1is called a

unit element for A if 1x = x1 = x for x e A.

For an algebra A over F, let A1 = F & A be the
vector space direct sum of F and A. Define a

multiplication in Al by
(o + a) (B + b) = aB + (Ba + ab + ab), (1.2)

a,8 € F, a,b ¢ A. Then A, Dbecomes an algebra over F

1
with unit element 1 e F.



Let A,B be algebras over F and let
B ®F A =B B8 A be the tensor product of A and B.

Defining a multiplication in B ® A by
(yl ® Xl) (YZ % Xz) = (YIYZ) ® (Xlxz)’ Xi € A, }’l e B
makes B ® A into an algebra over F. If B has 1,
1 @ A is a subalgebra of B 8 A which is isomorphic
to A and is identified with A. If A and B are

finite-dimensional over F,
dimF B ® A = (dim B) (dim A).

In particular, if B = K is an extension field of F,
then in AK = K® A we identify x with 18 x, x € A,

and AK becomes an algebra over K via

o(Z Byx;) = I aByXy
a,Bi e K, X; € A. If A is finite-dimensional over F
and CEERERIL is a basis for A over F, it is readily
seen that it is also a basis for AK over K and so
dimK AK =n. A is called the scalar extension of A

K
to K. While the scalar extension AK is often useful,

it should be stressed that some algebraic properties in
A may be collapsed in AK . An algebra A 1is called

simple if AA # O and A has no proper iedals.

Exercise 1.1.1. Give an example of an algebra A

such that A 1is simple over F  but AK is not over K

for some extension K of F.



1.2. Modules

Definition 1.2.1. Let S be a set. An S-module

over F 1is a vector space V over F together with a
mapping V x S -+ V, denoted by (x,s) - xs, such that
(ox + By)s = a(xs) + g(ys), a, B e F, x,y ¢V, s e S.

For an S-module V over F and a subset WC V
we let WS be the subspace of V spanned by xs,

x ¢ W, s € S. An S-submodule of V 1is a subspace W of

V such that WS¢ W. If W 1is an S-submodule of V,
the vector space V/W becomes an S-module over F via

(x + W)s = xs + W, x ¢ V, s € S. An S-homomorphism from

//

an S-module V into an S-module V' over F is a linear

transformation f: V - V' over F such that
f(xs) = f(x)s, x € v, s € S. The isomorphism theorems
for S-modules are straightforward generalizations of

the usual ones.

Definition 1.2.2. (1) An S-complement of an

S-submodule W of V is an S-submodule W' of V such
that V. =W @ W',
(2) An S-module V is S-completely reducible if
VS = V and every S-submodule of V has an S-complement.
(3) V is S-irredcible if VS =V and V has no

proper S-submodules. //
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Lemma 1.2.1. Let V be S-completely reducible and

let W be an S-submodule of V. Then W and V/W are

S-completely reducible.

Proof. (1) Let W, be an S-submodule of W and

0
let Wb be an S-complement of WO in V, so that
= 1 =
v WO & Wy . One sees that W =W N (WO ® Wé)

= WO e (WN W('))° Since VS = WS @ W'S =V =W®6 W, WS =W.
Thus W is S-completely reducible.

(2) Let V =V/W and let P be an S-submodule
of V. If P denotes the inverse image of P under the
natural S-homomocrphism : V- V, V = P & P' for an
S-submodule P' of V. Thus V =P & P' since PO W.
Clearly VS =V implies VS =V and sé V is

S-completely reducible. //

Lemma 1.2.2. Every nonzero S-completely reducible

module V has a nonzero S-irreducible S-submodule.

Proof. Pick an x # 0 in V. If every nonzero
S-submodule of V contains x, the proof is done. If
there is an S-submodule not containing x, by Zorn's
lemma one chooses a maximal S-submodule W of V such
that x ¢ W. Thus V =W ® W', W' an S-complement, and
W' # 0. Then W' is S-irreducible, since if not,

W' =W, &8 W for some proper S-submodules

1 2

W WZ(Lemma 1.2.1); but then x & (W + Wl)(j (W + Wz) by

1’
the maximality of W, so that x € W, a contradiction. //
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Theorem 1.2.3. The following are equivalent.

1) V is S-completely reducible ;

2) V=12 Vi for some family {Vi} of S-irreducible
S-submodules of V ;

‘3) V=220 Vi for some family {Vi} of S-irreducible

S-submodules of V.

Proof. 1) =>2): Assume V is S-completely
reducible and let W = I Vi where {Vi} is the collection
of all S-irreducible S-submodules of V.
Let V =W® W', W an S-complement of W. Since W'
has no nonzero S-irreducible S-submodules, by Lemmas 1.2.1
and 1.2.2, W' = {0}. Thus V =1 V..

2)=> 3) : Let {Wi} be a family of S-submodules.
Call {Wi} direct if X Wi is direct. Now, assume
V = 3 Vi for some family {Vi} of S-irreducible
S-submodules of V. By Zorn's lemma, one can choose

a maximal direct family {Vk} of S-submodules from the

family {Vi} . Thus V=% @ Vk’ for otherwise

Vi(i T 0 Vk for some i . But then Vi(\ T8 Vk # Vi
and so Vifﬂ T 0 Vk = {0} since Vi is S-irreducible.
Thus Vi e Vk is direct and this contradicts the

maximality of {Vk}
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3) = 1) : Let V =1 8 Vi for some family of
S-irreducible S-submodules of V. Let W be an
S-submodule of V. By Zorn's lemma, one can pick a
maximal S-submodule W' with WN W' = 0. For each i ,
(W e W)n Vi =0 or Vi. In the first case,

Wew @ Vi is diréct and so WnNn (W' & Vi) # 0, so
V. = {0} by the maximality of W'. In the second case,

i
ViCWSW' and so V=W @& W' . /Y

1.3. Jordan and Fitting decompositions

If V is an S-module over F, then fof T e S,
TV denotes the linear transformation of V defined by
XTV = xT, x € V. We say that T e S (or TV) is
split over F if the eigenvalues of TV are in F or
equivalently the minimum polynomial of TV is factored

over F into linear factors. Also, S 1is split over

F if every element in S is split over F.

Definition 1.3.1. For T e S and a.e F, let

v (T) = {x e V| x(Ty - )* =0 for some n > 0} . /
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Theorem 1.3.1. Let V be a finite-dimensional

S-module cver F . If T e S is split over F then

V=L g ® V()

Proof. Let f(X) be the minimum polynomial of
e.
T, and let £(X) = I(X - o) Y with o, ¢ F distinct.

e.
Setting hi(X) = £(X)/ (X - ai) * , since the hi(X) are
relatively prime, one finds polynomials gi(X) such

1 . Let

that £ g, (X)h, (X)

V.

1 Vhi(TV)

Since x = I (xgi(Tv)) hi(TV) for x ¢ V, we have
e.

- ' . - i

V = % Vi . Also, Vic: Vai(T) since Vi(TV ai)
e.
- - ;L = b~
= Vhi (TV)(TV ui) Vf(TV) {0}
Thus V = I Vu (T) and it remains to show that the sum
i
is direct. Let X € Vai(T) fa) Zj%i Vuj(T) . Then the
ideal J = {h(X) e FL[XJ| xh(Tv) = 0} contains
ki L kj

(X - ai) and Hj#i(x - aj) for some ki’ kj

Since these polynomials are relatively prime,

J = F[X] and 1 € J, so x =x1 =20 . //

Remark 1.3.1. 1In fact we have shown that

Vh, (Ty) =V, (1), i=1,2,... . //
%3
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Definition 1.3.2. Let dim V < » and let T be an

element in Hom V which is split over F . Then the
semisimple part of T is the element TS e Hom V such

that TS for « &€ F . The nilpotent

| v (m V(D)
part of T 1is T = T - T, . The decomposition

T = TS + Tn is called the Jordan decomposition of T
I£f T = TS , T is called semisimple. If T = Tn , T

is called nilpotent. //

Let W be a T-stable subspace of V . It is

it

evident that W )X WQ(T) where WQ(T) = Va(T)(\ W
Hence if T is semisimple on V then so is T|, on W .
¥
Since XTn = x(T - o), X ¢ Va(T), Tn and TS
stablize each Va(T) and so Tn and TS commute.
Note that T 1is nilpotent if and only if ™ = ¢

for some n > 0

Lemma 1.3.2. Let T ¢ Hom V be split over F

Let T =S + N, where S is semisimple, N is

m

nilpotent, and SN = NS . Then S = T and N = Tn

Proof. Since SN = NS, N and S stablize each
VQ(T) . If xS = gx for x ¢ Va(T)’ xN = x(T - B) and
so S has only one eigenvalue o on VQ(T). Since S
is semisimple, this implies S | Vu(T) = aly (1)

. a ?
o eF and S=T . Thus N=T-S8S=T-T_=T . //
s s n
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kN

Theorem 1.3.3. Let T e Hom V Le split over F

Define 4ad T ¢ Hom (Hom V) by
Sad T =[S,T]=ST - TS, S ¢ Hom V

Then ad T is split over F, and (ad T)_ = ad TS

and (ad T)n = ad Tn

Proof. First, note that ad [S,T]=T[ad S, ad T] .

T

Thus ad T ad T =ad T ad T since T T =T
S n n S s’ n ns

In view of Lemma 1.3.2, it suffices to show that ad TS

is split over F and semisimple, and ad Tn is

nilpotent. One can choose a basis €1sc-vs€y for V
consisting of eigenvectors for TS, so that eiTs = 05y
for 1 <1i<n . Let {Eij | 1 <i, j < n} be the basis
for HomPV such that € Eij = Sikej where Sik is
the Kronecker delta. Since TS = 7 aiEii’ we have
E.. ad T = (a. - a-.)E.. . Thus ad T is split over

ij s j i’ 7] s
F and semisimple. Let an = 0 . Since Y (ad Tn)m
- Typ-T 2q _ . .

)} Tn*Tn , (ad Tn) 0 and ad Tn is nilpotent . //

Definition 1.3.3. Let TE& HomFV, ‘dim V < ®

. o i -
Let V, = V(1) =U;2) ker 7% and V, = V(D)

=f\i:1 VT' . Then VO and V, are called the Fitting

0-component and l-compcnent of V with respect

to T . //
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Fitting Lemma 1.3.4. For any T ¢ HomF v,

and V, are T-stable, and T 1is

V=V, 8V, Vv

bijective on V,

Proof. Note that V':>VTZ:>VT2:) ... and
ker TC ker TZC; ... Since dim V < o , there exist ©p,q
such that VTP = VTp+1 = ... and ker T9 = ker Tq+1 =
If t = max (p,q) then VO = ker Tt and Vy, = vt
For x ¢ V , one gets sTt = yTZt for some y ¢ V and
x = (x - yTt) + yTt with x - yTt € VO and yTt e V. >
so V.=V, + V. If z ¢ Vof\ Ve, » 2z = uTt , ueVv,
and 0 = th = uTZt . Since ker TC = ker T2t ) uTt =z =0
and so V=V, 8V, . Since V,T - vittl =yt = v, , T
is surjective on V, and so bijective on V, . //

Let f(X) be the characteristic polynomial of T
c.
on V and let f£(X) =1 £, (X) 1 be the prime
. e
factorization of £(X) with £ (X) = x 1

Put
v, = {xeV I xfi(T)k = 0 for some k > 0}
Then, as in the proof of Theorem 1.3.1, we see that

V=18 Vi . (1.3)

The decomposition (1.3) is called the primary decomposition

of V relative to T . It is routine to check that T

is bijective on each Vi for 1> 2, V1 = VO(T) and
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Zs > 2Vi = V,(T) . Since V. = VO ® V, 1is direct, £(X)

is the product of the characteristic polynomials of T
on V, and V, . Thus dim Vg = €1 » the multiplicity

of the eigenvalue 0 in f£(X) . //

1.4. Derivations

Let A be an algebra over F . For a e A, let
La and Ra be the elements in HomF A defined by
xL = ax, xR_ = xa for x e A . We call L and R
a a a a

the left and right multiplications in A by a . The

adjoint mapping ad a by a 1is the element in Hom A

defined by x ad a = [x,a] = xa - ax, x € A . If S 1is
a subset of A , denote Lg = {L | a ¢ S}

For an algebra A over F , denote by A  the
algebra with multiplication [x,y]= Xy - ¥X defined on
the same vector space as A . If char F # 2, define

A" as the algebra over F with multiplication

x'y = %(xy + yx), called the Jordan product, with the

same underlying space as A .
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Definition 1.4.1. An algebra A over a field F

with multiplication [xy] is called a Lie algebra if A

satisfies

1) [xx] = 0, x & A,
2) the Jacobi identity [RxyJz] + [[yz] x| + [[zx])a =0

X,y,z2 € A . //

Note that if char F # 2, [xX] = 0 1is equivalent

to the anticommutative law [xyl = = [yx] . Various types

of Lie algebras will be discussed later.

Definition 1.4.2. . An algebra A 1is said to be

Lie-admissible if the asscciated algebra A" is a Lie

algebra, that is, A satisfies the Jacobi identity

on.d + a9 « B =0.  //

It is readily seen that any Lie and associative
algebras are Lie-admissible. Various classes of
(nonassociative) Lie-admissible algebras will be explored
later. To express the Lie-admissible condition into a

more convenient form, we introduce the notation
S(x,y,z) = (x,y,2) + (y,z,X) * (2,%,Y)

where (x,y,z) 1is the associator of x,y,z in A .

Then, by a direct computation, one checks that the

identity
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[xy,z] + [yz,x] + [zx,¥] = S(x,y,2) (1.4)

holds in any algebra A . Thus A satisfies the identity
S(x,y,2) = S(x,z,y) = [x,0,4d + [y>23.1 + [z,¥ Y]
Therefore, we have

Lemma 1.4.1. An algebra A over F is Lie-

admissible if and only if A satisfies S(x,y,z)

= S(x,2,Y),X,Y,z € A . //

While the algebraic origin of Lie-admissible
algebras arises as a byproduct of the study of
nonassociative algebras defined by identities, the
analytic orgin of Lie-admissibility stems from a
nonassociative product formed in terms of partial
differential equations in a space of differentiable
functions which are defined on a C”-manifold.
Lie-admissible algebras have been utilized to construct
a nonassociative quantization of forces or couplings not
derivable from a potential. Thus Lie-admissible algebras
have direct physical relevances in both classical and
quantum mechanics (see R.M. Santilli, "Lie-admissible
approach to the hadronic structure,'" Vol. 1,2, Hadronic

Press, Nonantum, Mass. 1979).
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It has been observed that the general Lie-admissible
algebras are too broad tc obtain a fruitful structure
theory (see H.C. Myung, '"On nonflexible Lie-admissible

algebras", Hadronic J. 1,(1978), 1021-1143).

Definition 1.4.3. A Lie-admissible algebra A is

called flexible Lie-admissible if A 1is a flexible

algebra, that is, A satisfies the flexible law
(xy)x = x(yx) . // (1.6)

Note that the associative and Lie algebras are
flexible Lie-admissible. The flexible law is also

written as (x,y,x) = 0 which is equivalent to
(x,y,z) ='—(29Y9X) (17)

if char F # 2 . The study of flexible Lie-admissible
algebras was first initiated by A.A.Albert ("Power-
associative rings' Trans. Amer. Math. Soc. 64(1948),
552-597), and the structure of these algebras have been
investigated by Laufer and Tomber, Myung, and Okubo

(for a review, see H.C.Myung, "Lie-admissible algebras',
Hadronic J. 1(1978), 169-193). Applications of flexible
Lie-admissible algebras to physics have been recently
pointed out in particular reference to a generalization

of the Heisenberg equation by a number of authors . .
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(see Santilli's monographs cited above; C.N. Ktorides,

H.C. Myung and R.M. Santilli, "Elaboraticon of the recently
proposed test of Pauli's principle under strong
interactions'", Phys. Rev. D22 (1980), 892~-907; H.C. Myung arn
R.M. Santilli, "Further studies on the recently proposed
experimental test of Pauli's exclusion principle for the
strong interactions', Proc. of the 2nd Workshop on Lie-
admissible Formulations, held at Harvard University,

August 1979, Hadronic J. 3(1979), 194-255, S. Okubo,
"Non-associative quantum mechanics via flexible Lie-
admissible algebras, Proc. of the 3rd Workshop on Current
Problems in High Energy Particle Theory, held at Florence,
Italy, 1979, Edit. R. Casabuni, G. Domokos and S.K. Domokos,
John Hopkins Univ. Press, (1979), 103-120, and "A
generalization of Hurwitz theorem and flexible Lie-
admissible algebras', Proc. of the 2nd Workshop on Lie-

admissible Formulations, Hadronic J. 3(1979), 1-52).

Definition 1.4.3. Let A Dbe an algebra over a

field F . Then an element De HomF'A is called a

derivation of A if
(xy)D = (xD)y + x(yD) , x,ye A . (1.8)

Denote by Der A the set of derivations of A . //
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In terms of the left and right multiplications

LX and RX , (1.8) is expressed as

LD =Ly * DL or Lep = [LX , 0] ., (1.9)

R D= DR_ + R or R = |[R_, D .

y y D Ryp = [Ry » O (1.10)
for x,y € A . Since the Jacobi identity in A is

equivalent to the fact that all adjoint mappings ad x
are derivations of A, in view of (1.9) or (1.10) A

is Lie-admissible if and only if
ad [x,y] = [ad x, ad Y] (1.11)

for all x,y € A . In this case, notice that ad x 1s
not necessarily a derivation of A (why?)

Suppose that A 1s an algebra over a field F‘ of
char # 2 . For x e A, define TX e Hom A by
TX = %(RX + L_). We contend that the following

X

identities are equivalent.
(xy)x = x(yx) ; the flexible law , (1.12)
(x,y,z) + (z,y,x) = 0, (1.13)

(x,7,2) *+ (2,¥,X) + (x,2,y) * (¥,2,%X)
= (y,x,z) + (z,%,Y), (1.14)

[x,y.z} = [x,yl.z * y.[x,z] . (1.15)
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As noted earlier, (1.12)<> (1.13) . Clearly,

(1.13)4& (1.14), while (1.14)&> (1.12) with x = z

By a direct expansion, one sees (1.14)&> (1.15)

Since (1.15) is to say that each ad x is a derivation

+
of A , we can state

Lemma 1.4.2. Let char F # 2 . Then A 1is

flexible if and only if ad AC Der A* if and only if

Tyl [T, ad yI x,y eA. //

Theorem 1.4.3. Let A be an algebra over a field

F of char # 2 . Then A 1is flexible Lie-admissible

if and only if ad A& Der A .

Proof. If A is flexible and Lie-admissible, then,

in view of (1.11) and Lemma 1.4.2, we have
ad [x,y] + qu,y3= [ad x, ad y] + [ZTX, ad yJ
which implies

Reyy ™ [R_, ad y] (1.16)

for x,y € A, so, by (1.10), ad AS Der A .
If ad A Der A , ad AC Der A~ and A is
Lie-admissible. Also, (1.16) implies the flexible law

with x =y . //
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Theorem 1.4.4. For any algebra A over F , Der A

is a subalgebra of (HomF A)" . That is, Der A 1is closed

under the Lie product [D,E]l = DE - ED .

Proof. By the Jacobi identity and (1.9),

[

[L ,[D,E]] [[LX,D],E] + [D,[LX,E]]

H

[Lyp-El + [DsLg)

= Lype ~ Lxep

= Lym,El . //

Lemma 1.4.5. For D e Der A and a,B e F ,

n
- - n _ n _ A __yn-m
CAICRI DR (3) x-)™ y(0-8)

for all positive integers n and x,y € A .

Proof. By induction, if n =1,

1}

(xy)(D - a - B) (xD)y - a(xy) + x(yD) - g(xy)

i

x[y(D - 8)] ~+ [x(D - )]y .

n-m-1

Assume (xy)(D - o - B)H_l = I (nél) x(D - )" y(@ - 8)

Then (xy)(D - o - 8)"

-2 x0 - ™y - ot

N z(né?) x@ - )" ym - )"
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= (®) x - 0"y - B
cnce (21 ¢ () = () for nom.

Corollary 1.4.6. (Leibniz's rule). For D ¢ Der A,

G)d™ =z (p) x0™ D" ./

Let p > 0 be a prime. Since p | (E)

for 1< i< p , we have from Corollary 1.4.6

Corollary 1.4.7. If char F=p>0 then

pP € Der A for D e Der A . //

Corollary 1.4.8. Let A be a finite-dimensional

algebra over F . Let D e Der A . Then
Ay (D) Ag(D) < Ad+B(D) for a,B € F and AO(D) is a

subalgebra of A . If D is split over F , then

Ay (DA (D) < Ay (D) and Ax (D)A,(D) & Ax (D)

Proof. Let X € Ad(D) , vy € Ag(D) and pick an
r such that x(D - of =y - By = 0 . Letting
n = 2r in Lemma 1.4.5, (xy)(D -© - B = 0 and
A, (D)A; (D) E Ay g (D) . So, A (D) isa subalgebra of A .
If D is split over F, by the remark following the
primary decompesition we have Ax (D) = Zafo Au(D) and

the second assertion follows from this. //
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Lemma 1.4.9. Let A Dbe finite-dimensional over

F and let D ¢ Hom. A be semisimple and split over F

F
Then D ¢ Der A if and only if Aa(D)AB(D)g; A&+B(D)
for all o,R € F
Proof. Let x ¢ Aa(D), y € AB(D) . If xy ¢ Aa+B(D)
then since D 1is semisimple, (xy)D = (o + B)xy
= (ax)y + x(By) = (xD)y + x(yD) . Since A =73 A (D) ,
D ¢ Der A . The converse follows from Corollary 1.4.8. //

Corollary 1.4.10. Let dim A < «» and let D e Der A

be split over F . Then D, and D are in Der A .

Proof. If D is split over F , so is D,
Since A = Za ] Aa(D) = Zu ® Aa(Ds) and AQ(D}CZ Aa(Ds) R
= Der A by Lemma 1.4.9, and
AQ(D) Au(Ds) . Thus DS e Der y Lem >

D =D - D e Der A . //
n S

Lemma 1.4.11. Let D ¢ Der A be hilpotent and let

char F = 0 . Then exp D = el = Z;=0 D"/m! is an
automorphism of A .
, n+1
Proof. Let n be such that D = 0 . Then
2n m i m-i
D xD” yD
xerye = Lo L IT m-i)

m=0 1=0

By Leibniz's rule
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n m n m
(xy)eD = 7 (xy) %T =r 1 %T(];) xDlyD 1

m= om=0 1i=0

2n m i m-i

oo Xy

n=0 j=0 +' (@1

. i i
since xD~ = yD = 0 for 1 n . //

1.5. Solvability and radical
Let A be an algebra over F
B, C of A, denote by BC

spanned by bc, b e B, c e

Definition 1.5.1.

are recursively defined by

for 1 >1
similarily defined. Then B
B(l) = 0 for some i > 0

Note that if A is Lie

an ideal of A by the Jacobi

Lemma 1.5.1. Let

A is solvable if and only if B

For a subalgebra

For subspaces

the subspace of A

A (1)

The subalgebras i>0,
A(O) = A, A(l) = A(l—l)A(l"l)
B of A, B s

is called solvable if

//

or associative, A(l) is
identity.
B be an ideal ef A . Then

and A/B are solvable.
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Proof. Clearly (A/B)(i) = (A(i) + B)/B and

B(i)g; A(i) . Thus if A 1is solvable then so are B and
A/B . If B and A/B are solvable, choose i, j such
that (A/B)(i) = 0 and B(j) = (0 . Thus A(i)g; B and
WG L (O -y oy

As an immediate consequence of Lemma 1.5.1, we have

Corollary 1.5.2. If B 1is a solvable ideal of A

and C 1is a solvable subalgebra then B + C is solvable. //

If B and C are maximal solvable ideals of A ,
then by Corollary 1.5.2, B + C 1is solvable, so
B=3B+C=C. Therefore, if. A is finite-dimensional,

A contains a unique maximal solvable ideal which is called

the (solvable) radical of A and denoted by Rad A .

Definition 1.5.2. An algebra A over F 1is called

semisimple if A has no nonzero solvable ideal. //

If A is finite-dimensional, then A/Rad A is
semisimple and A is semisimple if and only if
Rad A = 0 . Denote by M(A) the (aésociative) subalgebra

of HomP A generated by LX R RX , X € A .

Lemma 1.5.3. A is simple if and:oﬁly if A is

M(A)—irredutibie. A is the direct sum of simple ideals

of A if and only if A is M(A)-completely reducible.
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Proof. The first assertion as well as one direction
of the second is obvious. Let A Dbe M(A)-complefely
reducible. Then A =3I ® Ai where the Ai are M(A)-
irreducible M(A)-submodules of A . So, Ai is an
ideal of A . Note that AiAj = 0 for i # j since
AiAjCZ Ai n Aj . Thus an ideal of Ai is an ideal of A
and Ai = AiA # 0 since AiM(A) = Ai . Hence each Ai

2

has no proper ideal and Ai = Ai , SO Ai is simple. //

Corollary 1.5.4. Let dim A < « and let

A=17186 Ai with Ai simple ideals of A . Then every
jdeal B of A 1is a sum of some Ai's . In particular,

the Ai are the only simple ideals of A .

Proof. By Lemma 1.5.3, A is M(A)-completely
reducible. Thus B has an M(A)-complement C , so
that C is an ideal of A and A =B ® C . Since
A=a%,A-BA®CA and B =BA = I BA, . Since
Bl A. is an ideal of A, , B NNA. =0 or A. . Thus

i i i i
B is the sum of those- A.'s with Bl A, = A; (B[] A

= Ai implies BAi = Ai). //

If A is a direct sum of simple ideals, A 1is
semisimple by Corollary 1.5.4. The converse is not
true; however, we will see in the next section that the
converse holds when A has a suitable nondegenerate

bilinear form.
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1.6. Algebras with invariant forms

Let ( , ) be symmetric bilinear form on a vector
space V over F . For S& V , define
S ={xeV | (x,y) =0 for all y e S} . Call V&

the radical of V . If vt o= 0 , { , ) 1s nondegenerate.

I1f we define ( , )' on V/V¢' by (x + v , Yy * v* )!

(x,y), x,y € V, ( , )J' 1s nondegenerate on V/V‘L .

Definition 1.6.1. Let A be an algebra over F

An invariant form ( , ) on A is a symmetric bilinear

form on A satisfying the associative law
(xy,z) = (x,yz), X,y € A . (1.17)
If (, ) is nondegenerate, call A a symmetric algebra.

Note that if ( ,) is an invariant form on A ,
then A/A‘L is a symmetric algebra. Observe that if B

is an ideal of A , so is B* by (1.17).

Theorem 1.6.1(Dieudonné). Let A be a finite-

dimensional symmetric algebra over a field F such that
there is no nonzero ideal B with B2 = 0 . Then
A=1I6 Ai where the Ai are simple ideals of A and

symmetric with (Ai,Aj) =0 for 1 # j
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proof. Let ( , ) be a nondegenerate invariant
form on A . Let B be any ideal of A . First we show

that C =Bfl B* =0 . Since C& B and CAS B, by

#

(1.17) (xy,z) (x,vyz) = 0 for x,y ¢ C and z e A .

Thus CZC: AL

1

0 and C2 =0 , so C=0 . G&ince
dim A = dim B + dim B* , this proves A = B © BL .
Hence A is M(A)-completely reducible and by Lemma 1.5.3

A= A1 ® ... ©® An where the Ai are simple ideals of A

Q3 o= 2 ’ = b= i
Since (Ai ) Aj) (Ai y Aj) (Ai s AiAj) 0 for

i# j , each Ai is symmetric too. !/

If A=18 Ai where the Ai are simple symmetric
ideals of A <then A is semisimple by Corollary 1.5.4

and is symmetric.

Exercise 1.6.1. Let A be a finite-dimensional

symmetric algebra with ( , ) over a field F of

char # 2 . Prove

(1) 1If A satisfies third-power-associativity

xxz = x?x for all x € A then A is flexible.
(2) If char F # 2,3,5 and A satisfies
xxz = xzx and szz = xx3 for all x & A then A

satisfies the Jordan identity

(xzy)x = xz(yx) . (1.18)

-
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A flexible algebra satisfying (1.18) 1is called

a noncommutative Jordan algebra

Exercise 1.6.2. Let <char F # 2 . An algebra A

over F is called Jordan-admissible if the algebra A"

is a Jordan algebra ; that is, A" satisfies xzo(y—x)
= (xz-y)»x . Prove that A 1is a noncomutative Jordan

algebra if and only if A 1is flexible Jordan-admissible.

Definition 1.6.2. Let L be a finite-dimensional

Lie algebra over F and V be a finite-dimensional
vector space over F . Then a representation f of L
acting on V is a homomorphism of L into (Homg V)~
That is, £([xy]) = [£(x) , £(y)] , x,¥y e L . Also,
define (x,y) = (x,y)f = Trf(x)f(y) and call (x,y)
the trace form of L with respect to f . The mapping
ad : L » (Hom L) defined by x » ad x becomes a
representation acting on L , called the adjoint
representation of L . The trace form K( , ) of L

with respect to ad is called the Killing form of L . //

Lemma 1.6.2. The trace form ( , ) = ( , )f is

an invariant form on L

Proof. ([x,y],2) Tr £([xy1) £(z)

1}

Tr [£(x), £(y)] £(z)
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Tr £(x) £(y) £(z) - Tr £(y) £(x) £(z)

it

Tr £(x) £(y) £(z) — Tr £(x) £(z) £(y)

B

e £x) [£(), £(2)]

]

(x, [yzIl) . //

Lemma 1.6.3. Let the Killing form KX( , ) be

nondegenerate on L . Then L =1 & Li where the Li
are simple ideals of L and K( , ) is nondegenerate on

each Li . In particular, L is semisimple.

Proof. Let B be an ideal of A with B? = 0

Then B ad Bad L = 0 and L ad B ad L& B . Thus
K(b,x) = Tr(ad b ad x) = 0 for all b e B , x el and
so BC EL = 0 . The result then follows from

Theorem 1.6.1. //



2. POLYNOMIAL MAPPINGS

2.1. The zariski topology

Let V and V' be vector spaces over a field F
and let dimV=m , dim V' =n . Let {ei} and {ej}
be basis for V and V' , respectively. A mapping

f .V s V' is called a polynomial mapping with respect

to {ei} 5 {ej} if

f(z aiei) = T fj(al,...,u )ej s

where fj € P[Xl,,..,Xm] , j=1,2,...,n . A polynomial

mapping £ : V >~ F 1is called a polynomial function on V

Note that Homg (V, V') consists of polynomial mappings.
Denote by F[V] the set of polynomial functions on V
Then F[V] becomes a commutative associative algebra over

F with multiplication defined by (fg) (x) = £(x)g(x), X € Vv
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Henceforth we assume that F is infinite. Thus F{Vl

is an F-algebra which is an integral domain.
If f e F[V] , define V. = {xe V| £f(x) # 0}

Then V, =V , Vy =4¢ , and an...nvf=vff £

1 1 n 172" ""n

The Zariski topology in V is the topology for V having

the Vf , £ e F[V] , as a basis of open sets.

Note that this topology is not Hausdorff. Let P be
a subset of F[Xl,...,Xm] and identify V with F"
Let

ﬁgp) = {x = (Xl""’xm) e V| £(x) = 0 for all f ¢ P}

Then the Zariski closed sets in V are the sets ‘5(1?)
Let I be the ideal of F[Xl,...,Xm] generated by P
Clearly '5(?) = 3,(1) = %({fl,...,fr}) by the Hilbert
Basis Theorem, where fl”"’fr e I . Thus the closed

sets are the affine varieties in V over F

Lemma 2.1.1. Every nonempty open set in V 1s

dense in V .

Proof. Let Ul and U2 be nonempty open sets

in V . It is enough to show UlfW U, # ¢ . Assume

Ui #V , 1=1,2, and let fl , fz be nonconstant

polynomials such that UiZD Vf
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Then Vflfz = Vflr\ sz # 0 since flfz # 0 and F 1is

infinite. Thus U1r7 U, # ¢ - //

Lemma 2.1.2. Any polynomial mapping of V into

V' is continuous with respect to the Zariski topology.

Proof. Let dim V =m and dim V' = n , and let
f :V-~>V"'" be a polynomial mapping. Let S be a closed
subset of V' , so S =‘§{{gl,,..,gr}) . Let

= ! =
f(x) ijj(al,...,am) ej, where x Zaie. e V .

Put

By (Xgoe e enXp) = 8y (£ (X s b X ) s e e £ (X500 X))

It is routine to check that f'l(S) =‘§({hl,...,hr})

and hence f-l(S) is closed. //

2.2. Differentials

. .
Let {el,...em} and {el,.,.,e } be basis for

1
n

V and V', respectively.
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Definition 2.2.2. Let p : V - V' Dbe a polynomial

mapping. Define the mapping o : FLVd - F[V] by
(op(f))(x) = f(p(x)) , xe V., £fe F{V'] . //

Clearly, Op is an F-algebra homomorphism.
Let w, be the element in FIVl given by wi(Zujej)

= a; . Call m, the i-th proiection. Then F[V] is

, M, 1.e.,

generated by MyseeesTy

F[v] = F[ﬂl,.,.,wm] . (1.21)

For each y ¢ V , define the mapping Ty, F[V] » F

by Ty(f) = f(y) , £ e F[V] . Then Ty is an F-algebra
homomorphism. Any F-algebra homomorphism A: FLV] - F
is described in this way. Indeed, let a; = A(ﬁi) R
i=1,...,m , and let vy = Zuiei . By (1.21) any

f ¢ F[V] 1is of the form £ = f(ﬂl,...,ﬂm) and hence
A(E) = f(ul,,..,am) = Ty(f) . Also, T, T T if and

only if x =y . Thus we have

Lemma 2.2.1. For any F-algebra homomorphism

A : F[vl - F , there is a unique y € V such that

T = A . //

Lemma 2.2.2. Let F be a perfect field. Let

p:V~>V'" be a polynomial mapping. If dap is
surjective for some a e V then Op : F[V'] - F[V]

is an isomorphism.
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Proof. Let dim V=m and dim V' = n . Write
B = (81,...,Bm) and X = (Xl,...,Xm) , so that
g®) = g(Bl""’Bm) , g e F[X] = FEXl”"’Xm] .  Suppose

that Op is not injective. Then, there is an

f = f(Yl""’Yn) # 0 such that Gp(f) = 0 , so that
0= f(p(y)) = £(py(B),...,p (B)) for all y =12 Bje; €V
where p(y) = Z pi(B)eé . Since F is infinite, this

implies - f(pl(X),...,pn(X)) = 0 and so pl(X),...,pn(X)
are algebraically dependent. Let f be of minimal

degree giving the algebraic dependence. By the chain rule

we have
n ap .
= af __._2_ 1 =
0 le(_é—Y_;)(pl(X)a"'apn(X))axl ] 1 1,...,]’1’1. (1'22)

Since dap is surjective, n < m and the matrix
(apj/BXi) has rank n . Thus the system (1.22) has the

only trivial solution,
CENSNCS p (X)) =0, j=1,2 n
an pl Sy e n 2 b 2"

Since deg (Bf/aYi) < deg £ , 1t follows that af/an = 0
for j=1,...,n . Thus, if char F = 0 , f is a nonzero

constant, which is absurd. If char F=p >0, f 1is

p

D . .
and so f =g since F 1is

. . D
a polynomial in Yi""’Yh

perfect. This contradicts the minimality of f . //
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2.3. Extension of homomorphisms

Theorem 2.3.1. Let A' be an F-algebra which 1is

an integral domain, K be an algebraically closed
extension field of F and R be an F-subalgebra of A
containing 1 . Let S = R[zl,...,zﬁ] » Z; € AT

Let f be any nonzero element in S . Then there exists
a nonzero element g € R such that if & : R » K 1is

any F-algebra homomorphism with g& # 0 , then ¢ can
be extended to an F-algebra homomorphism 1 : S =+ K

such that ft # 0

Proof.(Chevalley). To proceed by induction,

let S = Rfz]

Case 1 : z 1is transcendental over R . Since

feR[z] , £=a,+...+* akzk with a, # 0

Put g = a, and let & : R+ K be an F-algebra

homomorphism with g8 # 0 . Let I(X)

= agd + ...+ (aké) xK ¢ K[¥] . Then T(X) # 0 and there

is an o € K such that f(a) # 0. Since =z is
transcendental over R , the mapping 7T : R[z] - K
defined by (Z bizl)T =z (bié)al gives an F-algebra

homomorphism such that = = 8§ and f1 = ?(u) # 0

r
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Case 2 : 2z 1is algebraic over R . Let p(x)

be a polynomial in R[X] of minimal degree with

p(z) = 0 and let p((X) = ag * ... + aan with a # 0

Then p(X) = anh(X) where h(X) is monic in Q[XI ,

Q the quotient field of R . Thus h(X) 1is the minimum

polynomial of z over Q . Let k(X) = bO + oL F mem

be a minimum polynomial of £ over R . :

Then bO # 0 and set g = abO £ 0 . We show that g 1is

a desired element. Let & : R > K be an F-algebra

homomorphism with gé # 0 . Let a e K be a root of

p’(X) = a6 + ... + (a_8)X' # 0 . For each

0
q(z) =% qiz1 e R[z]1 , define =t : RTzl » K by

q(z)t = q°(a) = = (qié)ul . Then T | p =6 . We show
that 1 1is well-defined. Suppose that q(z) = 0 for

some q(X) € R[XJ . Then q(x) = c(X)h(X) , c(X) € QIX]

and so

anq(X) = C(X)anh(X) = c(X)p(X) . (1.23)
Letting c(X) = ¢y + ¢ X + ... # ctXt and a(X)
= qy * qlx + .. F qSXS , one computes from (1.23)
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Multiplying the last equation by a, s ct_zai e R and

continuing this we have that Ct—ia; e R, 1=1,2,...,t
- e . t+l

Since a ¢ R , this gives Cjan e R for all

j=0,1,...,t . Thus

t+2 . t+
a_ "q(X)

: = ar "l (0P = S0P € RIX

and  [af"%q(2)]) © = (2,8 %@’ @) = ¥ @p’@) = o0

Since a6 #0 , qé(a) = qz)t = 0 ,' so T 1is well-

defined. BEBvidently, £t # 0 since bo # 0

Suppose that the result holds for =n - 1 and
let B = R[znj . Then S = BEzl,...,zn~1] . Let £ #0
be in S . . Then there is a v # 0 in B such that if
0 : B+ K is any F-algebra homomorphism with vp # 0 »
o can be extended to an F-algebra hdmomorphism
T : S > K with ft # 0 . The case n =1 applied to

with v # 0 gives the desired homomorphism T . //

o)

Theorem 2.3.2. Let F be algebraically closed

and perfect. Let p : V > V' be a polynomial mapping
such that dap is surjective for some a € V . For any
nonzero £ e F[V] , there exists a nonzero element

g € F[V'} such that p(Vf)Zz‘Vé , or equivalently, there
exists 0 # g € F[VT such that if g(y) # 0 then

p(x) =y for some x e V with f£(x) # 0
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Proof. Let R = F{vY S where Gp : FIvl - FLV]
is an F-algebra isomorphism by Lemma 2.2.2. Then
S =z F[V] = F[Wl,...,ﬂm] = R[ﬂl,...,ﬂm] . By Theorem 2.3.1,
there exists a nonzero g' e R such that any homomorphism
§ : R+~ F with g'§ # 0 1is extended to an F-algebra
homomorphism 1 : S » F such that ft # 0
Choose a g # 0 in F[V'}] with go_=g' . Let y e V'

P
be any element such that g(y) # 0,i.e., y e V!

Define 6§ : R > F by (hop)é = h(y) , h ¢ P[V%

Then & is an F-algebra homomorphism with g's # 0

Let T be an extension of ¢ to an F-algebra
cmomorphism : S » F  such that £t # 0 . By Lemma 2.2.1
TS Ty for some x ¢ V , so that fr1 = Tx(f) = f(x) # 0

For any h e F{v1 ,

(hGp)T = (hap)s = h(y)
= (ho )7, = ho (x) = h(P(X))
Thus p(x) =y and vy ¢ p(Vf) . //

Exercise 2.3.1. Let K be an algebraically

closed field containing F and let FI[X] = F[Xl,...,XJ
be the polynomial ring in Xl""’Xn over F . Let S
be a subset of F[X] . The set %R(S) = {v € Kn(f(v) = 0

for all f e S} is called an(Zariski) F-closed set in -
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If I is an ideal of F[X] , the radical T of I is
defined by I = {f e FIXI|f" ¢ I for m > 0}
Clearly, VI is an ideal of F[X] containing I . Using
Theorem 2.3.1 prove the Hilbert Nullstellensatz : For any
ideal I of F[X] , T =4@(§R(I)) where A@(E)
= {f ¢ FIX1|£(v) = 0 for all v e E} for a subset E

of k%
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3. LIE ALGEBRAS OF CHARACTERISTIC O

3.1. Introduction

The theory of Lie algebras of characteristic 0
is an outgrowth of the Lie theory of continuous groups in
which local problems concerning Lie groups are reduced to
corresponding problems on Lie algebras. During the
development of the structure of Lie algebras for many
years, Lie algebras brought applications to many branches
of mathematics, such as group theory, differential
geometry, differential equations, topology, and physics.
Besides being useful in many parts of mathematics, the
theory of Lie algebras is the most widely and successfully
studied area of nonassociative algebras, mainly because
of the elegance and completeness of the structure and
representation theories for semisimple Lie algebras of

characteristic O
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In this chapter, we briefly discuss the classical
theorems on Lie algebras which are essential for the
general structure, the classification and representations
of semisimple Lie algebras of characteristic 0 . The
development of the material is designed to set up the
groundwork for the structure of flexible Lie-admissible
algebrasvrather than to provide the general theory of Lie

algebras for a comprehensive account.

Definition 3.1.1. Let B, S be subsets of a

Lie algebra L over a field F . The centralizer of §
in B 1is the set CB(S) = {x ¢ B| xS1 = 0} . The
centralizer of S 1is CL(S) and the center of L 1is
C(L) = CL(L) . For a subspace B of L , the normalizer

of B (in L) is the set N (B) = N(B) = {x ¢ L| xBl< B}

Definition 3.1.2. A Lie module V for L 1is

an L-module over F such that vixyl = (vx)y - (vy)x ,
veV, x,yel. If £: 1L~ (Homy V) is a
representation of L , then V together with the module
operation vx = vi(x) for v €V , x €L 1is a Lie
module for L . The Lie module obtained in this way is
called the Lie module afforded by £ . By an irreducible
representation f of L , we mean that the L-module

V afforded by f is L-irreducible.

//
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Conversely, if V 1s a Lie module for L over F ,
then the mapping f : L - (HomF V)  defined by
vi(x) = vx for x ¢ L becomes a representation of L
acting on V , which is called the represéntation

afforded by V . //

Henceforth, for a Lie algebra L , all
L-modules are referred to as Lie modules for L . Note
that the kernel of the ad representation of L 1is the
center C(L) . Also, a subalgebra B of L is an
ideal of NL(B) , and if B and C are ideals of L
then so is [BC] = [CB] . These are consequences of the

Jacobi identity.

Let V be an L-module and suppose that V is

also a Lie algebra such that Bnﬂ]x:= ﬂvx)v'] + [V(V'X)] .

v,v' € V, x ¢ L . Define a product in L & V by
[x + v, x'" =+ v'] = [xx'] + (vx' - v'x + [wv])
for x,x'e L and v,v' ¢ V. Then L & V becomes a Lie

algebra. Indeed, clearly L & V is anticommutative.

and R are derivations. Thus, to

If xel , R, X|V

see RX e Der (L ® V), one checks

[[v,y],x] = (vy)x = (v)y + v[yx]

[[v.x1.v] + [v, [.x]]
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for veV, x,y e L . For. veV, R is clearly

VIV
a derivation and it remains to check that

Hx,y],v] = -v[xy] = -(vx)y + (vy)x = ﬁk,v},y] + ﬁx,[y,vﬂ

and likewise RV acts on v'y as a derivation. Thus

RL@V§Q Der (L ®V) and L @& V 1is a Lie algebra which 1is

called the split extension of L by V . In particular,

the split extension of Der L by L 1is called the
holomorph of L . The Lie algebra L & V with EVV]ﬂ 0

is the split null extension of L by V

3.2. Nilpotent Lie algebras

The structure of Lie algebras can be described in
terms of certain nilpotent subalgebras (Cartan subalgebra).
In this section we develop some fundamental properties of
nilpotent Lie algebras. Here we assume that the

characteristic of F is arbitrary.

Definition %3.2.1. For a Lie algebra L , the
2

descending central series L 2 L" 2 ... >t L. s

recursively defined by L1 = I, L“ﬂ1 = ngL] , 1= 0,1,2,...
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If L' =0 for some i, L is called nilpotent. //

The derived series L(i) and the descending central
series Li are analogous to those of a group. If B is
an ideal of L , then B(i) and Bi are ideals of L
Note also that any homomorphic images of nilpotent Lie
algebras are nilpotent. By induction, one easily sees that
[}i Li]C: Li+j for integers i, j > 0 . This implies that
the products of n elements of L in any association are
contained in L" . In particular, L(n)CZ LG and hence
any nilpotent Lie algebra is solvable ; however the convers
is not true (why ?). If C 1is the center of L and L/C
is nilpotent then L 1is nilpotent since Li(: C implies

L1+1 = 0 . Since C 1is the kernel of ad, we have

Lemma 3.2.1. L is nilpotent if and only if ad L

is nilpotent. //

A stronger version of Lemma 3.2.1 is the celebrated
theorem of Engel that L is nilpotent if and only if
ad L consists of nilpotent linear transformations,

which we show below.

Definition 3.2.2. The ascending central series of L

is the sequence C](L) , 1> 0, defined recursively by

Py =0, ct) s xet | ety it



c(L) and crenysct i

1]

Obviously, Cl(L)

= ccttayy L
Lemma 3.2.2. L*™1 = 0 if and only if C (L) = L
for 1 >0
Proof. If L1+1 =0, LiCZ Cl(L) and so
' le ¢y, tectw . 1f ) =L, LPe i

and continuing. this gives L1+1c: CO(L) =0 . //

Definition 3.2.3. Let N be a subalgebra of L

Then Ci(N) is the series of subspaces of L defined

inductively by
clM) =0, ¢ = {x e L] Nl @ ¢t ton

crwy . //

L]

Clearly, Cl(L)

Lemma 3.2.3. Let T be a nilpotent linear

transformation on V . If W& U are T-stable
subspaces of V then W& U can be refined as

W=U €U C...CU _,cU_ =U with U,TCU; 5,
T T 1 1

0 1

i=1,...,T

-1

Proof. If we let U = U/W , T induces a nilpotent

transformation T on U by (a + WT = aT + W, a € U

Thus U T = 0 for some r > 0 and, letting

c ...C3T

g.=v™*, i=0,1,...,r , we have ﬁ'CIﬁi v

1
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= U with ﬁiT = Ui—l . Let U, be the inverse image of
Ui by the natural homomorphism. Then WCU, & ... CU_ =
with U.TC U;_;, as desired. //

Theorem 3.2.4. Let N be a subalgebra of L such

that adLN consists of nilpotent linear transformations.

Then Ci(N) = L for some i

Proof. If dim N =1, it is trivial. Assume that

the result holds for such subalgebras of dimension < dim N .
Let H be a maximal proper subalgebra of N . Then there
exists an m > 0 such that C?(H) =L , so CE(H) = N
since C?(H)(\ N = CQ(H) . Thus one can choose a j

such that C%(H)CZ H but C%+1(H)<$ H , and let

X € C%+1(H) - H. Then Fx ® H is a subalgebra of N

since [xHJ¢C H, so N =Fx +H and H 1is an ideal of

N . We show by induction on i that Ci(H) is ad x-stable
Thus, if Ciul(H) is ad x-stable, Yy ¢ Ci(H) and h e H ,
then

[fyxit] = [ohlg + [y xh]]
£ [Ci_l(H)x] + [Ci(H) [x}ﬂ] CCi_l(H)

since [xH] e H, so y ad x ¢ Ci(H) . Finally, since ad :

is nilpotent and stablizes the spaces in the chain

0 = Cg(HJ ... C:C?(H) = L , by Lemma 3.2.3 this chain
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has a refinement 0 = BOC BlC el & B! = L. such that

[Bix] - Bi—1 . Moreover, [BiH] - Bi~1 since

1 1

[ciewnlc el ™ty . 1f follows that [B'N]a B’

for 1 <i<mn . Thus C (N) =1L . //

If L dis nilpotent, clearly ad x 1s nilpotent
for all x e L . If ad L consists of nilpotent
transformations then by Theorem 3.2.4 L = Ci(L) = Ci(L)
for some i and by Lemma 3.2.2 L 1s nilpotent.

Therefore we have the following theorem of Engel.

Theorem 3.2.5 (Engel). L is nilpotent if and only

if ad L consists of nilpotent transformations. //

Remark. Let A be an algebra over F . For a
subalgebra B of A and a positive integer n , define

Bn

as the linear span of all product of n elements in B
in all possible associations. Then B is called nilpotent
if B® =0 for some n > 0 . We have observed that

a nilpotent Lie algebra is also nilpotent in this sense.

An algebra A 1is called power-associative if the

subalgebra generated by x € A 1s associative for

. +
every x € A , or equivalently, x™ = x™ for all
integers m,n > 0 , x € A . Then, an element x ¢ A 1is

said to be nilpotent if x® = 0 for some m > 0 , and
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A is called nil if every element is nilpotent. An

anticommutative algebra A is trivially nil with

xz =0, x € A. An algebra A 1is called alternative

if it satisfies the alternative laws xzy = x(xy) and

YX2 = (yx)x for all x,y € A . Unlike anticommutative
algebras (so Lie algebras), for other nonassociative
algebras such as Jordan ot alternative algebras A ,

the nilpotence of x, LX and RX are equivalent.
Moreover, if A 1is finite-dimensional (char F # 2),
solvability, nilpotence and nility of A are equivalent
(R.D.Schafer, "An introduction to nonassociative algebras',
Academic Press, N.Y., 1966). Therefore, for finite-
dimensional alternative and Jordan algebras, Engel's
Theorem holds. A.A.Albert conjectured in 1948 that the
solvability and nilpotence are equivalent in a cbmmutative
power-associative algebra. However, D.Suttles disproved
this conjecture in 1972 by constructing a 5-dimensional
commutative power-associative algebra A which is
solvable but not nilpotent. The algebra A has a basis
{a,b,c,d,e} with multiplication given by ab = c ,

ac =d, ae=-c, bc=e, bd=c and all other
products are 0 . It is easily seen that AZA2 =0

but A 1is not nilpotent. Subsequently, M. Gerstenhaber

and H. C. Myung showed that dimesion 5 'is least

possible by demonstrating that any commutative
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power-associative nil algebra of dimension < 4 is
nilpotent ("On commutative power-associative nilalgebras
of low dimension', Proc. Amer. Math. Soc. 48(1975),
29-32). In particular, Suttles' example shows that

Engel's Theorem does not hold for commutative algebras. //

If one takes N =L in Theorem 3.2.4 then the

proof establishes the following result.

Corollary 3.2.6. A maximal proper subalgebra of a

nilpotent Lie algebra L is an ideal of L of

codimension 1 . //

Definition 3.2.4. Let N be a set and let B be

an N-module. Then BS(N) is defined recursively by
0 i _ i-1
Bo(N) = 0, By(N) = {x e B|xN € By "(N1} . //

If N is a subalgebra of L and B = L then
Bg(ad N) = Ci(N) . In the following we prove two

variants of Engel's Theorem.

Theorem 3.2.7. Let V be a finite-dimensional

vector space over F . Let N be a subalgebra of
(Homy, V)  consisting of nilpotent linear transformations.
Then Vg(N) =V for some i . Thus, relative to a

suitable basis for V , the subalgebra N 1is represented

by nil triangular matrices.
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Proof. Since Yy(ad x)n is a linear combination of

terms mexn~m for X,y ¢ HomF v, in = (0 1implies

(ad X)n = 0 . Thus, adNN consists of nilpotent linear

transformations. Let L = N ® V be the split null

extension of N by V . Then adLN also consists of

nilpotent linear transformations. Thus by Theorem 3.2.4

L= C (N = L) for some i , where Lg(N) - Lj(ad W)

Since V¢ L , it follows by induction that V F\Lé(N)

= Vé(N) , i=0,1,2,... . Therefore, V = Vi(N) R

and this gives a chain Vé(N)CZ . CZ\[ Uﬂ c:V'(N) =V

such that V “(NNC V (N) , k=1,2,...,1 .  Hence one
can choose a basis for V relative to which N is

represented by nil triangular matrices. //

Theorem 3.2.8. (Engel). Let f : L » (Homg V)~
be a representation where V is finite-dimensional.
Suppose that f£(x) is nilpotent for x e L . Then

there exists a nonzero vector Vv € V such that vf(x) =0

for all x e L

Proof. In Theorem 3.2.6, take £(L) = N . Since
Vv = VS(N) for some i , Vé(N) # 0 and any nonzero

vector in Vé(N) gives the desired condition. //

Definition 3.2.5. Let B be a finite-dimensional

L-module over F . For a function a : L »~ F , define

n(T)

Ba(L) = {x ¢ B|x(T - a(T)) =0 for T ¢ L}
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If L is a nilpotent Lie algebra and Ba(L) # 0 , then
Ba(L) is called the weight space for L in B with
respect to a and a is called a weight of L in B . Note
that Ba(L) = (\TSL Ba(T)(T) " for any.function

a : L ~»~F . Let B,(L) = B,.(T) . Then BO(L)

ZTeL
and B,(L) are called the Fitting components of B with

respect to L . //

Theorem 3.2.9. Let B be a finite-dimensional

I-module over F . Suppose that L 1is nilpotent and
that each x ¢ L 1is split over F . Then B 1is a
direct sum B = Za ® Ba(L) of weight spaces for L 1in

B and each Ba(L) is an L-submodule of B

Proof. The proof is by induction on dim B
If dim B = 1 , there is nothing to prove. One may
take L to be a subalgebra of (Homp B)" . Then ad; x

is nilpotent for x ¢ L . Thus 0 = (adL x) . = adL X

S S

by Theorem 1.3.3 and [y,xg =0 for x,y ¢ L . If X
for each x € L acts on B as a single scalar a(x) ,
then B = Ba(L) since x - a(x) = x o Thus we may

assume that there is an Xs which is not a scalar on B

Hence B =1 @ Bai(xs) and Bui(xs) = Bi # 0,

[W
LN

i<m with m>1, so Ggoe-er0, ATE distinct.
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Since [L, XS] =0, each B, is L-stable and by

induction applied to B, , we have Bi = I, ® Bia(L)

where B, (L) is L-stable. Since 1.B. (L) CB_ (L) ,

ia ia
B = ZaBa(L) . Note that Bi = Ba.(xs) = Ba'(x) . Since

1 1

the oy are distinct, it follows from this that if

Ba(L) £ 0, a(x) = oy for some 1 since a(x) 1s an
eigenvalue of x . Thus Ba(L)(: Bi for some 1 and
moreover it is easily seen that Ba(L) = Bia(L) . //

In view of Theorem 3.2.9, if B is finite-
dimensional, there are only finitely many weights for

L in B

Theorem 3.2.10. Let N be a nilpotent subalgebra

of L and let B be a finite-dimensional L-module.
Regard L as an N-module via ad.. Then

Ba(N)Lb(N)(: Ba+b(N) for all functions a,b : N = F

Proof. Let B =1 ® B be the split null extension
of L by B . Regard B as an N-module via ad.
Since L and B are N-submodules of B, Fa(N)
=L, (N) @ B,(N) . Noting that [Ba(N), Bb(Nj}c: B, ., (M)

by Corollary 1.4.8, we have
(5,0, Byan] = [L,00L, (0] + B, (ML (N + B (ML, ()

Ci ,,(N) ®3B . (N

a+b
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Since B is an ideal of B, this in particular implies

B,(ML (NS B, (N) . //

Exercise 3.2.1. Let N be a nilpotent ideal in L

and let B be a finite-dimensional L-module. Prove that

Ba(N) is an L-submodule for every a : N » F

3.3. Cartan subalgebras

The Cartan subalgebras of a Lie algebra L are
certain nilpotent subalgebras that are central objects
for the structure of L . We show here that they exist
if F dis infinite and that the decomposition of L
into weight spaces for a split Cartan subalgebra provides

a rough description of a multiplication table for L

Definition 3.3.1. A subalgebra H of L 1is a

Cartan subalgebra (CSA) of L if H 1is nilpotent and
H = Lo(ad H) , the Fitting ¢ -component of L relative

to ad H . //

The following characterization of a CSA is often

convenient.
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Theorem 3.3.1. A subalgebra H of L is a CSA

of L if and only if H is nilpotent and H = NL(H)

Proof. Let N = NL(H) . Suppose that H 1is a
CSA of L, so H = Lo(ad H) . It follows that
N(ad x)n =0 for xe H and n >0 , since N ad xe H

for x ¢ H . Thus PJ(:lﬂ(ad H) = H and N =H . For
the converse, show that if H«% Lo(ad H), H<? N . Let
LO = Lo(ad H) . Since ad H stablizes LO and H ,
and ad x(x € H) 1s nilpotent on L0 and H , ad H
gives rise to a Lie algebra of nilpotent linear
transformations on LO/H # 0 . Thus by Engel's Theorem
3.2.8 there exists 0 # x + H ¢ LO/H such that

(x + H) ad H =0 and hence x ¢ N but x £ H,

i.e., H‘; N . //

Exercise 3.3.1. Show that a CSA H of L 1is

a maximal nilpotent subalgebra of L

Definition 3.3.2. An element h e L such that

dim Lo(ad h) is minimal is called a regular element.

Denote by Lreg the set of regular elements in L . //

Note that dim Lj(ad h) > 1 since [hh] = 0 and

that Lreg # ¢ . Henceforth we assume that F 1is

infinite.
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Theorem 3.3.2. If x ¢ Lreg then H = Lo(ad x)

is a CSA of L

Proof. Let L =H®L,(ad x) be the Fitting
decomposition of L relative to ad x . Let L, = L, (ad x)
By Corollary 1.4.8 L, ad HC L, . Thus 1if we let
f(y) = det(ad Y‘L*) for y e H, then f 1is a polynomial
function on H , and Hg = {y ¢ Hlf(y) # 0} 1is a
nonempty Zariski open set in H since ad x 1s
nonsingular on L, by Lemma 1.3.4 and so f£(x) # 0
Hence Hf is dense in H . Since L =L, & H and

ad y stablizes H and Ly for y e H, 1t follows

i

that Lo(ad y)S;ZLO(ad X) H for vy ¢ Hf . (Note that
ad y 1is nonsingular for y ¢ Hf) . Since dim H 1is
minimal, Lo(ad y) = H for all y e Hf . Thus if

dim H = n , (ad ylH)n =0 for y e Hp . I1f we let
g(y) = (ad ylH)n for y e H, g is a polynomial
mapping of H into HomF H and so is continuous by
Lemma 2.1.2. Since each point is closed in Hom H ,

{y ¢ H|g(y) = 0} 1is a closed subset of H containing
Hf and coincides with H since Hf is dense in H .
Thus (ad ylH)n =0 for all y e H and by Engel's
Theorem H 1is nilpotent. Since x e H , this implies

that H = Ho(ad H) < Lo(ad H) <& Lo(ad x) = H . Thus

Lo(ad H) = H and H is a GSA of L . //
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Corollary 3.3.3. Let H be a CSA of L . If

a e H (‘Lreg then H = L,(ad a)

Proof. Since H is nilpotent, H CZLO(ad a)
But by Theorem 3.3.2 Lo(ad a) 1is a CSA of L and
H = Lo(ad a) since a CSA of L 1s a maximal nilpotent

subalgebra of L (Exercise 3.3.1) . //

In view of Corollary 3.3.3, if two CSA of L have

a regular element in common, they coincide.

Corollary 3.3.4. If F is infinite, L has a CSA.

Proof. Since Lreg # ¢ , the result follows from

Theorem 3.3.2. //

Remark. It can be shown that any solvable Lie
algebra over an arbitrary field F has a CSA (D.J. Winter,
"Abstract Lie algebras', MIT Press, Cambridge, MA, 1972).
Also, C.W.Barnes has shown that if F has at least dim L
elements, L has a CSA ("On Cartan subalgebras of Lie

algebras", Math. Z., 101(1967), 350-355). //

Theorem 3.3.5. 1f F is infinite, L., is a

Zariski open set in L .

1f ¢ W
Proof. Note that Lreg # ¢ and x € Lreg if and on!

if dim L,(ad x) 1is maximal since L = Lo(ad X) @ L,(ad x)
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Let s = max {dim L,(ad x)|x e L} and let n = dim L
Then L,(ad x) = L(ad x)n (see the proof of Fitting
Lemma 1.3.4). Thus X € Lreg if and only if

s = rank(ad x)® if and only if det BVM(X) 4+ 0 for some
s x s minor M(x) of (ad x)n where B 1is a fixed
basis for L . Since the mapping X detBM(x) is

a polynomial function on L , it is continuous and

{x ¢ L[detBM(X) 4 0} is open in L . Let
Ml(x)"""Mr(X) be all the s x s minors of (ad x)n
and let U.l = {X ¢ L\detBMi(x) 40} , 1i=1,2,...57T

1 = , .
Then Lreg Ulvké’°' &]br and Lreg is open. //

Since Lreg is dense in L , almost all elements
in L are regular. If H is a CSA of L , we always

regard L as an H-module via the ad representation.

Definition 3.3.3. We say that a CSA H of L is

split over F if adL x is split over F for x e H .
Also, L is split over F if 1L has a split CSA '

over F . If H is a cSA of L , a root of H in L

is a function a : H 7~ F such that La(H)(= La(ad Y # 0.

Thus, the roots of H in L are the weights of
H in L where L is regarded as an H-module via ad
We will show later that the roots of a split CSA are

l1inear functions if the characteristic is O

/1l
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Theorem 3.3.6. Let H be a split CSA of L . Then

1y L ) 1, M] <L, (0 forall ab :H~F;

2) [H La(H)}cz L (H) for all a : H > F and if

[

a#0 then [HL (W] = [L,(H) H] =L, (1) ;

3) K(L,(M),L, (H)) =0 for .a,b : H~> F with

Q
+
o
T
)

4) L = Za ® La(H) where a Tranges over the roots

of H in L ;

5) K(H,La(H)) = (0 for all a : H~- F with

a # 0

Proof. 1) and the first part of 2) are
consequences of Theorem 3.2.10 while 4) follows from
Theorem 3.2.9. For the second part of 2), let h e H
with a(h) # 0 . If x ad h = 0 for some Xx € La(H) ,

0 implies a(h)nx = 0 or

then x(ad h - a(h))"

x =0, so adh 1is injective. For 3), let a + b £ 0

and let L =53% @@L (H) . Let B = \} B be a basis
C o cc
for L such that BC is a basis of LC(H) . For
X € La(H) and Yy ¢ Lb(H) , LC(H) ad x ad yC La+b+c(H)

where (H) =0 or c#a+b+c. Thus the

La+b+c

matrix of ad x ad y relative to B 1s



Hence

0% * 7]
.,_N&..-hr
% 0!
"___.l‘
~
3% iy
N E J
K(x,y) = ¢
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5) is a special

Tr(ad x ad y) =

case of 3).

//

3.4, Solvable Lie algebras
In this section we assume that
dimensional

Theorem 3.4.

1. Let

he (L(ad )y (B

Proof.

closed.

the algebraic closure K of F we have B §\(BK)O(h)

= Bo(h) Let h

By Theorem 3.2.10

B=2z 6B (h)

Then

gRIESRAY

B, (h)L,(ad h) € B_(h)

L-module over a field F

B is a finite-

h e L be such that

B

= By (h)

We may assume that F

Indeed, for the scalar extension

where

Hence each Ba(h)

is algebraically
BK‘ of B

X:5 Y5 € Lo(ad h)
where

is stable under

to

X.

1

of characteristic O

2

Y-

1
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Let £ : L > (Homg B)  be the representation of L

afforded by B . Then

SOl 2T ) g ny z £ (x,), f(yi)]‘Bu(h)

and hence Tr f(h)lBa(h) = gqe.dim Bu(h) = 0 . Since
char F = 0 , this implies o = 0 wunless Ba(h) =0 ,

so B = Bo(h) . //

Corollary 3.4.2. If ad h is nilpotent and
By(h) . //

h ¢ L(l) then B

Theorem 3.4.3. Let L be solvable. Then

- (1)
B = By(L)

Proof. Suppose not and take a counterexample with
dim L + dim B minimal. Choose n maximal such that
L(n) # 0 , and let A = L(n) . Then A 1is an abelian
ideal of L. 1f n=0,1" =0 andso B,y -3,
contrary to the supposition. Thus =n > 1 . Also
L adxy] € L™ oy X,Y € (™ 1) and hence
L(ad[xy])z = 0 since A 1is abelian. Therefore
L = LO(ad[xy]) and by Corollary 3.4.2 B = BO([xy])
for x,y ¢ L(n—l) . Since A is abelian, this implies
that B = BO(A) . Let W= {v e B|vA = 0} . Since

B = BO(A) # 0 , W# 0 by Engel's Theorem 3.2.8.
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Suppose W =B . Then BA =0 and B 1is regarded as

an L/A-module with v(x + A) = vx , x e L and v e B
By the minimality of dim B + dim L , we must have

B = BO((L/A)(l)) and this implies B = BO(L(l)) ,

a contradiction. If W # B then since (WL)A < (WA)L
+ W[LA] = 0 , W 1is L-stable and B/W becomes an
L-module with (v + Wx =vx + W, veB , x el
Thus W = WO(L(l)) and B/W = (B/W)O(L(l)) by the
minimality of dim B + dim L . For v e B,

(v + W)xm = (0 for some m > 0 and vx" ¢ W, so
me+n = 0 for X e L(l) . Hence B = BO(L(l)) .

a contradiction. //

Corollary 3.4.4. Let L be solvable. Then the

set N={xel | B
L (1

Bo(x)} is an ideal of L which

contains

Proof. By Theorem 3.4.3, L(l)c: N . Let H be
a maximal subalgebra of L such that L(l)ci H and
B = BO(H) . Thus, in view of Theorem 3.2.7,
Bg(H) = B for some m > 0 . We show that N =H,
whence N is an ideal of L since [(NL] € L(l)c: N .
So, let x ¢ N be any element and consider the series

0= 8)m ... cBy() =B . For Ve B (H),

(vx)HC (vH)x + v{Hx] C Bg'lm)x . vl since [Ex]erlMcH |



—52—
Thus by induction we see that each Bé(H) is x-stable.

By Lemma 3.2.3 this series has a refinement

0 1 1

0=8'cBlec...cB® =B such that B'xcB'"* and
B'H pi-1 (since Bé(H)H(Z Bé-l(H)) . Hence

Bl(px + H) « B'"1 for all i and B(Fx + )" =0 ,
so B = BO(FX + H) . By the maximality of H we have
H=Fx+H and H =N . //

Theorem 3.4.5.(Lie). Let L be a solvable Lie

algebra over F and let B # 0 be a finite-dimensional
irreducible L-module over F . Suppose that 1L has
a split CSA H such that every x ¢ H is split on B

over F . Then dim B =1

Proof. In view of Theorem 3.4.3, B = BO(L(l))

and so by Theorem 3.2.7 Bé(L(l)) = W#O0 . Since
is an ideal of L , W is an L-submodule and hence

W =B by the L-irreducibility of B . Thus BLU}) = 0

and B is regarded as an A-module with v(x + L(l)}
=yx, veB and x e L , where A = L/L(l) . Put
Ly = Za%OLa(ad H) . Then by Theorem 3.3.6 L = H & L,

and [HL,] = L, = [L,H] . Thus L =H + (1 and
A= (H + L(l))/L(l) , so every element in A is split
on B over F . By Theorem 3.2.9 B = I @ Ba(A)

where each Ba(A) is an A-submodule. But then since
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BL(l) = 0 , every A-submodule of B is an L-submodu
of B, so B = Ba(A) for Ba(A) # 0 . Now, let
x ¢ A be any element. Then there is a v # 0 in 3
such that vx = a(x)v and so Bx = {v g Blvx = a{x)v:

It follows that Bx is an A-submodule of B , since

is abelian. Thus Bx = B = Ba(A) for x ¢ A and thi:
happens only if dim B = 1, since B 1is

A-irreducible. . //

Definition 3.4.1. Let V be an S-module wheys

is a set. An S-composition series of V 1s a sequsic”

of  S-submodules of V

i
<

0 = VO % Vl % ce % Vn

such that each V:.L/'Vi‘_.1 is S-irreducible. //

3

1f V is a finite-dimensional S-module, V R

i

an S-composition series. Indeed, let Vm be =
g-submodule of V of maximal dimension. Thes
U'ﬂtvm « V and continuing this with Vm ,  ome aviyits
at an S-composition series.

Let L be a solvable subalgebra of {(Ro7g i
such that each x e L is split on & over oo E
is a Finite-dimensional vector space over . N

that each adLK is split over F by Theoren
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Then B has an L-composition series

= c e 3 = B
0=8,% 51 % # P
Since each Bi/Bi—l # 0 1is L-irreducible, by Theorem
3.4.5 dim B./B. =1, 1i=1,2,...,m . Thus
i’ 7i-1
dim Bi =i, i=1,2,...,m . Therefore, one can choose

2 basis for B relative to which the matrix of each

x ¢ L 1is in an upper triangular form

. (1.24)

. ”

We refer to this situation as the simultaneous

triangulability of L . We state this as

Theorem 3.4.6. (Lie). Let B be a finite-dimension

vector space over a field F of characteristic 0
Suppose that L is a 'split" solvable subalgebra of

(HomF B) . Then L is simultaneously triangulable. //

Corollary 3.4.7. Let L be a "split" mnilpotent

Lie algebra and let B be a finite-dimensional
L-module. Then each weight of L in B is linear and
vanishes on L(l) . In particular, each root of a split

CSA of a Lie algebra is linear. (char F = 0 ).
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Proof. By Theorem 3.2.9 B = Za ® Ba(L) where
each Ba(L) is an L-submodule of B and the only
eigenvalue of X|Ba(L) is a(x) for x e L . Thus by

Theorem 3.4.6 the matrix (1.24) of X]B (L) has the
a

form
g a(x) 1
. x*
0 N
. a(x)
for x € L . Thus there is an element v # 0 in
Ba(L) such that vx = a(x)v for all x € L . Hence

vix +y) =a(x+y)v=vx+vy=_[ax)+ay)]v,

v(ax) = a(ax)v = a(a(x))v and v[xy] = (vx)y - (vy)x

= [a(x)a(y) - a(y)a(x)] v = a([xy])v , so a([xy]) =0,
o e P, x,yelL . . .//

Corollary 3.4.8. Let L be a split solvable

subalgebra of (HomF B) . Then L(l) is nilpotent.

Proof. By Theorem 3.4.6 L(l) is simultaneously

nil triangulable. //

Corollary 3.4.9. If L 1is solvable then L(l)

is nilpotent.
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Proof. We may assume that F is algebraically
closed, since solvability is preserved under scalar
extension. Since ad L 1is a solvable subalgebra of
(Hom L), [ad L, ad L] = ad (1) s nilpotent and so

is L(l) by Lemma 3.2.1. //

Corollary 3.4.10. Let L be the same as in

Corollary 3.4.8. Then L has a common eigenvector

v ¢ B, that is, vx = A(x)v , x e L , A(x) ¢ F

Proof. This is clear from Theorem 3.4.6. //

3.5. Conjugacy of Cartan subalgebras

In this section we assume that F 1is of
characteristic 0 . If H 1is a split CSA of L then
by Theorem 3.3.6 L 1is expressed as a direct sum of

root spaces for H in L ;

= L & ... 8L 1.
L=H®L, . 5 (1.25)

where La = La(H) and o,8,...,p are the nonzero roots

of H in L .
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We refer to (&.25) as the Cartan decomposition of L

relative to H . Note also that the roots of H in L

are linear (Corollary 3.4.7) and so polynomial functions

on H . Let

H = {(h e H | a(W)BCh) ... p(h) # 0}
Then HO is a nonempty Zariski open set in H . Letting
L, = .+ L, L, 1is ad h-stable for h € H and if

L +..
o P
h ¢ HO then all the eigenvalues of ad h

are nonzero
Ly

and so ad h]L is nonsingular. Therefore we have
%
H = Lo(ad h) for h ¢ H0 . Conversely, if H = Lo(ad h)

for h e H then ad h is nonsingular since

L,

L=H®UL, , and hence h ¢ B . Thus we have
Lemma 3.5.1. HO = {h el | ad h]L ~ is nonsingular}
- {heH | H=Ly(adn}. //

If ad x 1s nilpotent for x ¢ L then exp ad x
is an automorphism of L . Denote by Aute(L) the group
of automorphisms of L generated by exp ad x for

x ¢ L where ad x 1is nilpotent. Each element in

Aute(L) is called an invariant automorphism of L . For
a nonzero root o of H , let x ¢ La . Since

LB(ad x)n e L and there are only finitely many roots

B+no
of H, LB(ad x)n = 0 for some n > 0 and any root B of
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Thus exp ad Q&C:Aute(L) for nonzero roots o of H .

Theorem 3.5.2. Let L be a finite-dimensional

Lie algebra over an algebraically closed field F of
characteristic 0 . Let H and H1 be any CSA of L
Then there exists an invariant automorphism n of L

such that H = Hln

Proof. Let L = H + La + L +...F Lp be the

B
Cartan decomposition of L relative to H and let
L, = Lu + LB ...t Lp . Let {hl""’hﬁ’e£+l"'"’en}
be 2 basis for L where {hl""’hz} is a basis of H
and the ej consist of basis of La”""Lp . For
indeterminates Xl’Xz""’Xn , let
(Zi Xihi)exp(ad X2+1€£+1) ... exp(ad Xnen)

= Zi pi(Xl,...,Xn)hi + Zj pj(Xi"'°’Xn)ej

Then the mapping p : L - L defined by

p(Z uihi + I ajej) = I pi(al,..,,an)hi + pj(ul,...,an)ej

is a polynomial mapping. For any elements hO € HO

= {x e H| a(x) ... p(x) # 0} and e e L, with e = 2 ajej

we have

[

p(ho + t(h + e)) (ho + th)exp(ad tax+1e2+1)...exp(ad tanen:

h, + th + t[hye] (mod t%)

11
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where he¢ H and t 1is an indeterminate. But then the
Taylor formula applied to p(hO + t(h + e¢)) implies that

(dy, p)(h + e) = h + Ehoé] . Since ad hOlL

is
0 *

nonsingular by Lemma 3.5.1, this shows that dhop is
nonsingular oﬁ L and so 1is surjectivé. Since HO + L,
is a nonempty open set in L , by Theorem 2.3.2

p(HO + L,) DU for some open set U # ¢ in L , so
LIC:HOAute(L) . The same argument applied to H1 assures
that Ul(: HgAute(L) for some nonempty open set U1

Since U N U1 # ¢ , we see that h = kn for some h € HO ,

0
1

= Ly(ad (kn)) = Ly(ad k)n = Hyn . //

k ¢ H and n € Aute(L) . But by Lemma 3.5.1, H = Lo(ad h)

Theorem 3.5.2 in particular implies that all CSA of
L. have the same dimension. Thus by Corollary 3.3.3 and

Lemma 3.5.1 we have

Corollary 3.5.3. Hpn L - 1 //

Teg
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3.6. Cartan's criteria

We discuss important criteria for solvability and
semisimplicity of L in terms of a trace form. These
criteria give the basis for the structure of semisimple
Lie algebras. We assume that all L-modules are finite-
dimensional over a field F of characteristic 0 and

f denotes the representation of L afforded by B

Theorem 3.6.1. Let x,y,h be elements in L such

that [xyl = h, x ¢ L_u(ad h) and vy ¢ La(ad h) where
o ¢ F . Suppose that B # By(h) . Then Tr F)2 # 0
and Tr f(h)z =7 uz for a positive rational number T

In particular, o # O

Proof. As in Theoftem 3.4.1. we assume that F 1s
algebraically closed. Let B =1 ® BB(h) . Then B 1s

the only eigenvalue of f(h) if B,(h) # 0
BB(h) B

(h) , by Theorem 3.2.10 W is

Letting W, = I @ B 8

B ez  Btia

stable under x and Yy . Thus

0 = Tr[f(x), f(yﬂ( y =TT £(h) |y = 2d;(B + ia)
B B

) idi
where di = dim BB+ia . Hence B = - = di o




and B = TB o for some rational TB . Since B # Bo(h) s

dim BB(h) # 0 for some B8 # 0 and, for such B , TB # 0

and so o # 0 . Since Bz is the only eigenvalue of

2
f(h) IBg(h) , Wwe now have Tr f(h)2 = ZB dBBZ = ZdB(rBu)z
where dB = dim BB(h) . //

Let X be an extension field of F and LK be
the scalar extension of L to K . Then we note that

L(ﬁ) = (LK)(I) and so L is solvable if and only if LK

is. Note also that f has a unique extension fK to LK ,

which is afforded by BK , and that ker fK = (ker f)K

Theorem 3.6.2. (Cartan's criterion for solvability).

Let (x,y) = Tr £(x)f(y) . Then L 1is solvable if and
only if ker f 1is solvable and (x,y) = 0 for all
X,yY € L(l)

Proof. By the foregoing remark, we can assume that
F is algebraically closed. If L 1is solvable, ker £
and f(L) are solvable. Since f(L) 1is a solvable
subalgebra of (HomF B) , by Lie's Theorem 3.4.6 £(L)
is simultaneously triangulable. Thus, relative to some
basis for B , the elements of f(L)(l) = f(L(l)) are
upper triangular nilpotent matrices, so (x,y) = Tr £(x)f(y)

= 0 for X,y é'Lcl)
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Conversely, suppose that ker £ is solvable and
(x,y) = 0 for x,y ¢ L(l) . We proceed by induction on
dimL . If dim L = 1 , the assertion is trivial. It
suffices to show that f(L) is solvable since
£(L) o L/ker £ and ker f is solvable (Lemma 1.5.1).
Thus, we assume that L 1is a subalgebra of (HomF B)
and f(x) = x for x e L . Let H be a CSA of L and

0
relative to H . Let Xx ¢ L-a , Y € Lu , h = [{xy]

let L = H + Zu% La be the Cartan decomposition of L
- : (1) = 2

Then [xy) = h ¢ H and since h e L , (h,h) = Tr h

= 0 . Thus by Theorem 3.6.1 B = Bo(h) and h 1s

niipotent. So, [L-aLa] c N = {x ¢ H|x 1is nilpotent}

for all roots a . Now, by Corollary 3.4.4, N 1is an

ideal of H . Letting J =N + I L , J 1is an ideal

a#0 o
of L since [HJ)< J and [L_ L Jc N. If J#L,
(H+ 0)/J v By~ g

I then H =N

i

by induction J 1is solvable and L/J

= H/N is solvable, so is L . If J
and x 1is nilpotent for x ¢ H, so ad x 1is nilpotent
by Theorem 1.3.3. Thus L = Lo(ad H) = H since H is

a CSA. //

Notice that, in Theorem 3.6.2, (x,y) =0 for

X,Y € L(l) if and only if (x,x) = 0 for Xx € L(l).

Theorem 3.6.3 (Cartan's criterion for semisimplicity).f

If L 1is semisimple then the trace form of any 1 - 1

representation of L is nondegenerate.
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L is semisimple if and only if the Killing form is nondegenerate.

Proof. If £ is a 1 - 1 representation of L ,
let (x,y) = Tr £(x)f(y) . Thus ker £ = 0 , and
L = {x e L|(x,y) = 0 for y e L} is an ideal of L
Since (x,y) = 0 for x,y ¢ (Ll)(l) , by Theorem 3.6.2.
LY is solvable. Hence if L is semisimple, ( , ) 1is
nondegenerate. Note that if L 1is semisimple, ad

representation of L is 1 - 1 . The converse follows

from Lemma 1.6.3. //

Corollary 3.6.4. Let J be an ideal of L . Then

L/J is semisimple if and only if Rad LC J

Proof. If L/J is semisimple, then (J + Rad L)/J
is a solvable ideal of L/J and so Rad L ©J . Suppose
that Rad L<cJ . Let L = L/Rad L and J = J/Rad L
Then L/J ~ L/J and since L is semisimple by Lemma
1.5.1, the Killing form on L is nondegenerate by
Theorem 3.6.3. Lemma 1.6.3 then assures that L is a
direct sum of simple ideals fi of L . On the other
hand, by Corollary 1.5.4 J 1is a sum of some fj's and
hence L/J is a direct sum of simple ideals. In fact,

T/J is a direct sum of simple ideals (Ei + J)/J _where

iﬁfﬁ J . Thus L/J 1is semisimple. //
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Corollary 3.6.5. Any homomorphic image of a

semisimple Lie algebra is semisimple.

Proof. Let f : L+ f(L) be a homomorphism of a
semisimple Lie algebra. Then £(L) 7 L/ker £ is

semisimple by Corollary 3.6.4. //

Let {xl,xz,.,.,xn} be a basis of L . Then we
note that the Killing form X( , ) of L 1is
nondegenerate if and only if the matrix (K(xi,xj)) is
nonsingular. For an extension field X of F , since
K( , ) is regarded as the Killing form on LK and
{xl,.,.,xn} is a basis for LK , by Theorem 3.6.3 we

have

Corollary 3.6.6. If L 1is a semisimple Lie algebra

over F (of char 0), then any scalar extension LK of

L is semisimple. //

3.7. The theorems of Weyl and Levi

In this section we prove two important theorems on

the existence of complements. One is the Weyl's theorem



—75—
that any finite-dimensional L-module for a semisimple
Lie algebra L is L-completely reducible. Another one
is the Levi's theorem that if L 1is a finite-dimensional
Lie algebra then L contains a semisimple subalgebra S
such that L = S ® Rad L . Here we assume that the
characteristic is 0 . As before, B denotes a finite-
dimensional L-module and £ is the representation
afforded by B

Suppose also that L has a nondegenerate invariant
form ( , 0§, and let {el,,..,en} and {fl,...,fn} be

dual bases for L ,. that is, (ei,fj) = 6ij

Definition 3.7.1. The Casimir operator for L with

respect to ( , ), {ei} and {fj} is the element
T =12 f(ei)f(fi)v in Homp, B . //

Lemma 3.7.1. The Casimir operator T commutes

with every element in £(L)

Proof. For x e L , let [xe;] = Zjaijej and
[xfi] = ZjBijfj . Then Gip T Zjuij(ej,fk) = ([xei],fk)
= - ([éix},fk) = - (ei,[xfk]) = - ZjBkj(ei,fj)
= - Bki Using this, we compute

[ £(x),T] = zi[f(x) ,f(ei)f(fi)]
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I f(ei)[}(x),f(fi)] + 0 [F(),£(e )] £(£))

8356 (e )E(E))

L. .0 .f(ej)f(fi) + zi,J

1,717
= 0 . //

Assume now that L 1s a nonzero semisimple Lie
algebra and the representation f is faithful, that is,
ker £ = 0 . Then the trace form (x,y) = Tr f(x)f(y) 1is
nondegenerate by Theorem 3.6.3. Let {ei} and {fj} be

dual basis for L relative to ( , ) and let T be the

]

corresponding Casimir operator T b f(ei)f(fi) . Then

]

Tr T = % Tr f(ei)f(fi) = Z(ei,fi) dim L = n # 0 . We

use this to prove

Fitting's Lemma 3.7.2. (for semisimple Lie algebras).

Let L be semisimple and let B be a finite-dimensional
L-module. Then B is a unique direct sum B = B0 ® B,
where By and B, are L-submodules of B such that

B,L =0 and B,L = B,

Proof. We prove by induction on dim B . If B = 0
it is trivial, while if L = 0 , we set BO = B and
B, = 0 . Assume that B # 0 and L # 0 . We may further
assume that the representation f afforded by B is
faithful. 1Indeed, letting J = ker £ , we make B an

L/J-module via v(x + J) = vx, v € B, x ¢ L
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The decomposition of B for L/J gives the desired
conditions for L . Note also that L/J 1is semisimple
by Corollary 3.6.5. For brevity, we set f(x) = x, x ¢ L

Let T be the Casimir operator for L as above. Let

B = BO ® B* be the Fitting decomposition of B relative

to T . Thus B" = B (T) and B = B,(T) . Since

Tr T# 0 , T is not nilpotent on B and hence

dim By < dim B . Since [T,L}] = 0 by Lemma 3.7.1, g0

and B* are L-submodules, so by induction we have

0 and WL =W . If we let

i

= BO ® W with BOL

W+ B* , then B = BO ® B, and B,L = B, since

B#T = B* and B*T < (B*L)L < B*L

o
i

ov)
*
]

The uniqueness of B, follows from BL = B, while

that of B, amounts to {v e By|]vL = 0} = 0 . Noting

dim W < dim B , by induction we have {u e W|uL = 0} = 0
since WL =W , so W, = 0 . Since B, =W ® B*¥ and

T is bijective on B* , it follows that

{v e By|vL = 0} = 0 . //

Theorem 3.7.3. Let B be an L-madule and let

Rad L be abelian. Suppose that U 1s a proper
and B Rad L& U

L-submodule of B such that U Rad L = 0

Then there exists a projection 7 B -~ U such that

L = C + Rad L and Cﬂ ~ Rad L = (ker £) N Rad L ,
0
where C_ = {x e L|[m,£(x)] = o} and f is the

representation afforded by B
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Proof. Let A = Rad L and N = {g e Homy (B,U)!g[U

k.idU} . We make N an L-module with gx = gf(x)

f(x)g = [g,£(x)1., ge N, xe L . It suffices to find

a 7 ¢ N such that w]U = idU and 7L = wA . Indeed,

let C = {xe Lirx = [n, £(x)]

0y . If xe L,

7x = my for some y e A, so0 X - Yy ¢ CTr and L = CTT + A
To see Cﬂ,q A= (ker f) n A, cleary (ker f)(\~A.g;Cﬂtﬁ !
and if x ¢ Cﬁ/ﬂ A  then, for v e B, we have vx = (vrm)x

+ vx - (vi)x = (va)x + vx - (vm)f(x) = (vm)x + vx - (vx)m

(vi)x + vx(1 - ) ¢ Ux + U(1 - n) = 0 . To find such

a 7 , let M= f(A) . Then M is an L-submodule of N
with MA = 0 (=[M,f(A)]). Make N = N/M an L-module via
(g + M)(x + A) = gx+M, geN, xelL , where

T = L/A . By Fitting's Lemma 3.7.2, N = Nb ® N, where

N = N T = N 1 = o M
ON 0 and N,I =N, . Letting N, {go € ngOL - M},

it follows that N = N, + NL + M . Since NL = [N, f(L)]
and each element in N is a scalar on U , M and NL

=

are contained in M' = {g ¢ N | glU = 0} . Thus
N = NO + M' and since N # M' , NO # 0 . One chooses
a m# 0 in N0 . Then ﬂlU

c=1, so w is a projection from B onto U . By

= C idU and we may assume

choice, 7L< M . For x e A, 7mx = nf(x) - f(x)m
= -f(x) since B f(x)c U and ﬂ|U = idy - Hence
Mc A and M = 1A since 7A c L <M . Thus 7nA = 7L ,

as desired. //
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Corollary 3.7.4. Let L Dbe semisimple and let B

be a finite-dimensional L-module. Then, for any proper
L-submodule U of B , there is a projection 1w from

B onto U such that [m, £(L)] = 0 .

Proof. If Rad L = 0 then Cﬂ = L in

Theorem 3.7.3. //

Theorem 3.7.5. (Weyl). Let L be a finite-

dimensional semisimple Lie algebra over a field of
characteristic 0 . Then any finite-dimensional L-module

B is L-completely reducible.

Proof. Let U be any proper L-submodule. By
Corollary 3.7.4 there exists a projection m from B
onto U such that L = C_ or [w,£(L)] = 0 . Letting

U' = B(1 - m) , U' is an L-complement of U in B . //

Theorem 3.7.6. (Levi). Let L be a finite-

dimensional Lie algebra over a field of charactersitic
0 . Then there exists a semisimple subalgebra S of L

such that L =S & Rad L

Proof. Case 1 : Rad L 1is abelian. Let A = Rad L

and let C be the center of L . By Theorem 3.7.3 there
exists a projection w from L onto A such that
L = CTT + A and Cﬂ{ﬂ A = AN ker ad = C . Note that C_/C

i

is semisimple, since L/A = (CTr + A)/A CW/CW(W A .
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Regard C_ as a C_/C-module via x(y + €) = [xy] ,

X € CTr , vy + Ce CW/C . In view of Theorem 3.7.5, C1T
has a Cﬂ/C—complement S of C . It follows that S

is a semisimple subalgebra of L , since CTT =S ® C and
CH/C v S . Also, L = CTr + A=S@®C+A=8®A, since

ANS 1is a solvable ideal of S

]

Case 2 : A Rad L . Show by induction on dim L

If L=0 or A 0 , there is nothing to prove. Thus,
we may assume that A(l) # 0 . Noting that Rad(L/A(l))
= A/A(l) is abelian, by Case 1, we have L/A(l) = B/A(l)

A(l) and

] A/A(l) where B 1s a subalgebra containing
B/A(l) is semisimple. By Corollary 3.6.4 Rad B = A(l)
and by induction B = S @& A(l) for some semisimple
subalgebra S . But then L =B + A + A(l) = B + A

=58 A . //

The decomposition L = S ® Rad L in Theorem 3.7.6

is called a Levi decomposition for L and the semisimple

subalgebra S is called a Levi factor of L . It is

known that all Levi factors of L are conjugate ; that
is, if S1 R S2 are Levi factors, there exists an
invariant automorphism N of L such that S1 = Szn

(Theorem of Malcev-Harish-Chandra)

Corollary 3.7.7. Let Rad L be the center I of

I, . Let B be an L-module where each element in Z 1s
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split on B over F and is semisimple. Then B 1is

L-completely reducible.

Proof. By Theorem 4.2.9, decompose B = I, ® Ba(Z)
as the direct sum of weight spaces relative to Z . Since
each element in Z 1is semisimple, each x e Z 1is the
scalar a(x) on Ba . Let L =S ® Z be a Levi
decomposition of L . Since [LZ] =0 , each Ba(Z)
is L-stable. Thus, by Weyl's Theorem Ba(Z) is
S-completely reducible. Since each element in Z is a
scalar on Ba(Z) , every S-irreducible submodule of

Ba(Z) is L-stable and so is an L-irreducible submodule

of Ba(Z) . The result then follows from Theorem 1.2.3.

Schur's Lemma 3.7.8. Let V be a finite-dimensional

vector space over an algebraically closed field F and let

f: L~ (HomF V) be an irreducible representation of L
If P is an element in Homy V such that [P,f(L)] =0

then P is a scalar on V .

Proof. Let v # 0 be an eigenvector of P with

eigenvalue X ¢ F . Then (vx)P = (vP)x = A(vx), x ¢ L

Let VO be the subspace of V spanned by v and the

elements obtained by repeated application of the elements

in L to v . Then VO is L-stable and VO =V since

V is L-irreducible. Since ﬁ?,f(L)] =0 ,P acts on

VO as the scalar X . //

//
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Therefore, if f 1is an irreducible representation
of a semisimple Lie algebra L then, by Lemma 3.7.1, the

Casimir operator of L 1is a scalar.

Theorem 3.7.9. (Zassenhaus). If the Killing form

of L is nondegenerate (in arbitrary characteristic),

then Der L = ad L

Proof. Let D e Der L . Then x » Tr(ad x)D 1is
a linear mapping of L into F . Since K( , ) 1is
nondegenerate, there exists an element d ¢ L such
that K(d,x) = Tr(ad x)D for all x e L . Let
E=D-add . Then Tr(ad x)E = Tr(ad x)D - K(d,x) = 0
and so Tr(ad x)E = Tr E(ad x) = 0 for x e¢ L . We now
compute K(xE,y) = Tr(ad xE)ad y = Tr[ad x,Elad y (since
E e Der L) = Tr ((ad x)E ad y - E ad x ad y] -
= Tr(E ad y ad x - E ad x ad y) = -Tr E adl[xy] = 0

1]

for x,y ¢ L . Thus xE 0 for x e L and E =0

or D =ad d ¢ ad L . //

A derivation of L in ad L 1is called inner. In

view of Theorem 3.6.3 we have

Corollary 3.7.10. If L 1is semisimple and of

characteristic 0 then all derivations of L are

inner. //
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Let V be a finite-dimensional vector space over
an algebraically closed field F of characteristic O
To ascertain the semisimplicity of L , there is often
a much simpler method than Theorem 3.6.3. A Lie algebra
L # 0 1is called reductive if Rad L = Z(L) . Abelian
and semisimple Lie algebras are obvious examples for this.

Also, (Hom V)  1is reductive.

Theorem 3.7.11. (1) Let L be reductive. Then

L = [LL] ® zZ(L) and [LL] is semisimple or 0

(2) Let L ¢ (Hom V) be a Lie algebra acting
irreducibly on V . Then L 1is reductive with
dim zZ(L) < 1 . 1If, in addition, Tr x =0 for x e L ,

then L 1is semisimple.

Proof. (1) Suppose that L 1is reductive but not
abelian, so L' = L/Z(L) is semisimple. Since
ad L v L', by Weyl's Theorem ad L acts completely
M® Z(L) , M an ideal

reducibly on L and hence L

i

of L . In particular, [LL] [MM] € M . But since

L' = [L'L'] , [LL}m = L' » M where 7 is the natural

map : L » L' . Hence M = [LL] and L = [LL1 @& Z(L)

(2) Let A = Rad L . By Corollary 3.4.10 there
is a vector v # 0 in V such that vz = A(z)v,

z e A, A(z) eF . If xeL then [xz] ¢ A, z € A
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and so (%) (vx)z = v[xz] + (vz)x = x(z)vx + x([xz])v
Since L acts irreducibly, V is spanned by v and the
elements obtained by repeated application of the elements
of L to v . It therefore follows from (*) <that the
matrices of all z ¢ A relative to a suitable basis of
V are triangular with A(z) the only diagonal entry.
Since [AL] ¢ A have trace 0 , this implies that
A([AL}) = 0 . Thus by (®*) we conclude that =z e A
acts diagonally on V as the scalar A(z) . In particular,
A= 72(L), L is reductive and dim A <1 . If Tr x =0
for x ¢ L then L contains no nonzero scalars and

hecnce A =0, so L 1s semisimple. //

We remark that Theorem 3.7.11 (1) 1is also a

consequence of the Levi's Theorem (why?).

For example, let sf(V) = {x € Hom V | Tr x-= 0}
Then Hom V = sf(V) ® F1 . Since Hom V acts irreducibly
on V (why?) , so does sf(v) on V . Thus by
Theorem 3.7.11 (2) sA(V) is semisimple. In fact, it

can be seen that sf(v) is simple.



4. SPLIT SEMISIMPLE LIE ALGEBRAS OF CHARACTERISTIC 0

4.1, Introduction

In this chapter we discuss the classification of
simple Lie algebras over an algebraically closed field F
of characteristic 0 . This classification was first
given by Killing and E.Cartan, and its simplification
was later made by Weyl, Coxeter, and Dynkin. The restric-
tion on the base field F can be relaxed by assuming
that a semisimple Lie algebra L has a split CSA H
This is due to the fact that the algebraically closed-
ness in classical treatments is used only to ensure the
existence of the Cartan decomposition L = H © La ®...0 L6
relative to H . The classification is carried out by
obtaining more stringent information on the Cartan
decomposition and then by associating a simple system of
roots with each split semisimple Lie algebra. The
classification is then reduced to that of simple systems
of roots. We finally outline the existence of a simple
Lie algebra corresponding to each type of simple system

of roots.
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Throughout this chapter we assume that L denotes
a split semisimple Lie algebra over a field F of

characteristic 0 and all L-modules and representations

of 1L are finite-dimensional.

4,2, Maximal tori

We first describe the CSA of L as maximal tori
in L . Let x be an element in L such that ad x 1is
split over F . Since the Jordan components (ad X)S
and (ad x)n are derivations of L by Corollary 1.4.10,
in view of Corollary 3.7.10, there exist elements

x , x_ e L such that (ad X)S = ad x and (ad x)n

S n s
= ad X - Since L has center 0 , we have
X = x, * X, (1.26)
and clearly [xsxn] = 0 . The decomposition (1.26) is

unique subject to the fact that ad X is semisimple,
ad X is nilpotent and [xsxn] = 0 , or equivalently,
ad x_ = (ad x) and ad x_ = (ad x) in view of

s s n n
Lemma 1.3.2. The decomposition (1.26) is referred to as

the abstract Jordan decomposition of x
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If x x is called semisimple while x 1is nilpotent

il
>

it
=

if x

Lemma 4.2.0. Let V be a finite-dimensional vector

space over F (of arbitrary char.). Let x ¢ Hom V
split over F . Then there exist polynomials p(T), q(T)

without constant terms such that X, = p(x) and x = g (x)

where x = X + X is the (usual) Jordan decomposition of

X . Moreover, if UC WC V are subspaces of V and
Wx € U then X and X =~ map W dinto U also.

m,
Proof. Let 1II(T - ai) ' be the characteristic

polynomial of x , with the a. distinct. Let

V=2=re Vi be the primary decomposition of V relative
to x , so that Vi = ker(x - ai)mi (see Section 1.3),
being x-stable. By the Chinese Remainder Theorem, we
find a polynomial p(T) satisfying the congruences

m.
p(T)

a, (mod (T - a,) Y, p(T) 2 0 (mod T) (if 0 is
an eigenvalue of x, the last congruence is superfluous).

Hi

Set q(T) =T - p(T) and X, = p(x) , x = q(x) , so

X, X, X all commute with each other. Hence the Vi

, 4 m.
_ = . . _— i
are X - , X, stable. From p(T) = a. (mod (T ai) ),
it follows that V.(x_ - a.) =0, so x_| = a.id
1s 1 S Vi 1
and X is semisimple. Hence x = X, ot ox is the

Jordan decomposition of x (Lemma 1.3.2).
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By definition, X =X - X is nilpotent. The last

part is now obvious. //

Theorem 4.2.0. Let L C (Homg V) be a semisimple

Lie algebra where V is finite-dimensional over F (of
char 0). Let x e L be split over F . Then L contains

the semisimple part X and the nilpotent part X of x

Proof. Let E = HomF V . Note that ad x = ad X
+ ad X is the (usual) Jordan decomposition for ad x
(Theorem 1.3.3). Set N = NE(L) , the normalizer of L

in E . Since L ad xC VL , by Lemma 4.2.0 L ad xsc: L
and L ad Xn(: L , so X X € N . Let Zn,be the family
of L-submodules of V . If W e 7, define

Ly = {y e B | WCW and Tr y|, = 0} . Since L =[11] ,
clearly L C Ly, for all We Bl . Set Ly = N(\((\WEZLLW)

Then L is a subalgebra of N and contains L as an

0
ideal (since L is an ideal of N). Note that X X € L0
by Lemma 4.2.0 (since Wx(C. W for all W e | and
Tr Xslw = Tr (x - Xn)lw = 0)
We contend that L = L, . Regard L as an L-module

0 0
via ad , so by Weyl's Theorem we have LO =L ®&® M with

[L,M]C M . But since [L,LJC_ L (since LyC N), [L,M] =
Let W be any irreducible L-submodule of V . If y e M,
then [L,y] = (0 , so Schur's Lemma implies that y]w is

a scalar.
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But Tr y!w =0 as y e Ly, so ylw = 0 . Since V
is a direct sum of irreducible L—Submodules of V (Weyl's
Theorem), y =0 for y e M , so L = LO and

x , x_ e L . //

Corollary 4.2.0. Let L be the same as in

Theorem 4.2.0 and let x e L be split over F . Then
the usual and abstract Jordan decompositions of x

colincide.

Proof. Let x = xé + xg = X ot X be respectively

the abstract and usual Jordan decompositions of x

Then ad x' = ad x and ad x'! = ad x_ (Lemma 1.3.2;
s s n n

uniqueness, and Theorem 1.3.3). Since X, X € L by

Theorem 4.2.0, x' = x and x' = x_ . //
s s n n

Theorem 4.2.1. Let f be a representation of L

Let x be an element in L such that ad x 1is split

il

over F . Then f(xs) f(x)s and f(xn) = f(x)n R

4

that is, £(x) = f(xs) f(xn) is the usual Jordan
decomposition of f£(x) . Thus the usual and abstract

Jordan decompositions of f£(x) coincide.

Proof. Since ad X, = (ad X)s is semisimple on L ,
L is spanned by eigenvectors of ad X - Thus £(L) 1is
spanned by eigenvectors of adf(L)f(XS) . Since ad X

is nilpotent on L , so is adf(L)f(Xﬁ)< on £(L)
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From szn] = 0, we have ‘édf(L)f(Xs)’ adf(L)f(X)gl =0
and thus by Lemma 1.3.2Z,

adg )£ (xg) = (adg 0D 5 adpqyE0) = (adg €0y

Since f(L) is semisimple by Corollary 3.6.5, we have
that f(xs) = f(x)s and f(xn) = f(x)n , Wwhere f(x)s
and f(x)n are the abstract Jordan components of £(x)
It follows from Corollary 4.2.0 that these are in fact

the usual Jordan components. //

Definition 4.2.1. Let T be a subalgebra of L

sucl that ade is split over F for x e T . Then T

is called a torus of L if T is abelian and consists

of semisimple elements. //

Theorem 4.2.2. A subalgebra T of L 1is a maximal

torus of L if and only if T is a split CSA of L

Proof. It suffices to show that any maximal torus
T of L is contained in a CSA of L and a split CSA of
L is a torus of L

Suppose that T 1is a maximal torus of L . Let
C = CL(T) = {x e L | [xT}] = 0} , the centralizer of T
in L . Let H be a CSA of C . By Theorem 3.3.1
T CNC(H) = H and so L, (ad H) C Lo(ad T) . Noting

that CL(T)C: Lo(ad T) and each element in ad T is
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semisimple, we see that Lo(ad T) = CL(T) . Thus
Lo(ad H) C Co(ad H) = H since H 1is a CSA of C
Hence Lo(ad H) = H and H 1is a CSA of L

Suppose that H is a split CSA of L and T 1is

the set of semisimple elements in H . We show that
T is a torus and H =T . Let x e H . Since ad x[H
is nilpotent, so 1is ad XSIH = (ad X)SIH on H . Thus

ad XSIH =0 and x_ e C (H) C N, (H) = H . In particular,
TCC (H) or [TH] =0 . (1.27)

Hence x_ € T for all x e H . Let x,y € T . Since

[xy] = 0 by (1.27), x and y span an abelian
subalgebra A . By Theorem 3.2.9, L 1is decomposed into
L=1¥8 La(ad A) as an A-module via ad . Since ad x
and ad y are semisimple, they are scalars on La(x)(ad x)

and La(y)(ad y) . Noting that La(ad Ay C L )(ad x) ,

a(x
we find that the matrices of ad x and ad y are diagonal.
Thus any linear combination of X and y 1is semisimple
and T is an abelian subalgebra. Let N = {x e H ] adL X
is nilpotent} = {x € H | x is nilpotent} . By
Corollary 3.4.4 N is an ideal of H . If x e H, X
=X - X, € H and so H= T ® N . It remains to show

N =0 . Since adL N is simultaneously nil triangulable

by Engel's Theorem, K(N,N) = 0 . Noting that

fad x , ad y] =0 for x e N and y e T , we see that
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K(N,T) = 0 since ad x 1is nilpotent. But since K( , )

is nondegenerate on H by Theorem 3.3.6, N = 0 and

H=T. //

Corollary 4.2.3. Let H be a split CSA of L and

L = H+ Za%OLu be the Cartan decomposition. Then

(1) L, ={xel | [xh]= a(h)x , h e H} for each

root o of H
(2) H = Cp (M

Proof. (1) By Theorem 4.2.2 ad h (h e H) 1is

senisimple, so (ad h)IL is the scalar a(h)
o
(2) Clearly H C CL(H) since H is abelian.

Let x € CL(H) and let x = Zu X, » X, € L, - If a# 0,
choose an h e H with o(h) # 0 . Thus [xh] =0

implies X, = 0 since the sum is direct. //

4.3. Representations of sf(2)

Let S be the 3-dimensional Lie algebra with basis

{x,y,h} such that
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[xh] = 2x, [yh] = -2y, [xy] = h . (1.28)

Assume that F is a field of characteristic 0 . Then

S 1is simple and is isomorphic to the Lie algebra sd(2,F)

of 2 x 2 trace 0 matrices over F . In fact, S 1is
a simple Lie algebra of least dimension (why ?). Clearly,
H = Fh is a CSA of S . The 3-dimensional Lie algebra

given by (1.28) is called the split 3-dimensional simple

Lie algebra.

Let V be an S-module with the afforded represen-

tation f # 0 . We first suppose that F 1is algebraically
closed. Henceforth, we denote by A, u,... weights of
a CSA H in V . For brevity, we identify vt = vi(t),
veV, teS . Let

V=3, 8V, () (1.29)

be the weight space decomposition of V relative to
H=Fh . In view of Theorem 4.2.1 h(= £(h)) 1is

semisimple, so V =V, (h) = {v e V| vh = v}

Lemma 4.3.1. If v e Vk then vx ¢ VA+2 and

vy € V>\_2

Proof. (vx)h = vixh] + (vh)x = (2 + A)vx and

likewise (vy)h = (A - 2)vy . //

Since V is finite-dimensional, in view of (1.29)

there exists V, # 0 such that VA+2 = 0 . TFor such A,
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any nonzero element in V is called a maximal vector

A

of the weight A . Note that vx = 0 for all v ¢ VA

by Lemma 4.3.1.

v

Lemma 4.3.2. Let v, €V be a maximal vector,

0 and let v, = (1/2!)V0;i (i > 0) . Then
(1) vsh= (d - 2i)v,

(2) vy = (G Dy

(3) V.X = (1 - X - 1)Vi_1 (i >0)

Proof. (1) follows from Lemma 4.3.1 while (2) is

just the definition of Ve - For (3), use induction on
i If i =0 then it is clear since v_, = 0
iv.x = (Vi_ly)x

= vy Iyx] o+ vy Xy

= -Vi_lh + (i - 2 - X)vi_zy (induction and (2))

= -(A - 2(i - 1)v, v (- (-2 - Mv, 4
((1) and (2))
= i(i- A -Dvy - //

In view of Lemma 4.3.2 (1), the nonzero v. are

linearly independent. Since dim V < « , one can choose

the least integer m such that Vo # 0 but v =0 ;

m+l
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evidently Vin+i - 0 for all i > 0 . Lemma 4.3.2 (1) - (3)

show that VO’Vl""’Vm span an S-submodule of V

Suppose that V is S-irreducible. Then VO’Vl""9vm

form a basis for V . Since Voel T 0 and v # 0 ,
it follows from (3) that A =m . Thus the weight m
of a maximal vector is a nonnegative integer, called the

highest weight of h in V . Each weight space VU is

one-dimensional and so A =m = dim V - 1 1is uniquely
determined by V . Since dim Vk =1, vy is unique up
to scalar multiple. It follows from (1) that the weights
of h form an arithmetic progression with difference 2 ;
that is, the weights are m,m - 2 ,...-(m - 2), -m with
the lowest weight -m . Therefore, if m 1is even, the
weight 0 occurs once and only once while if m is odd,
1 occurs as a weight once and only once. It is clear
that both 0 and 1 cannot occur as weights.

Since any irreducible S-module of dimension m + 1
is described by Lemma 4.3.2 (1) - (3), irreducible
S-modules are isomorphic if and only if they have the same
dimension. For any nonnegative integer m , let V be
a vector space over F with a basis VO,Vl,...,Vm
Define the actions of S on V by the relations (1) - (3)
in Lemma 4.3.2. It is eaéy to check that V Dbecomes an

irreducible S-module (Exercise 4.3.1). We summarize

these 1in
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Theorenm 4.3%.3. Let V be a finite-dimensional

irreducible S-module. Then

(1) V is the direct sum of weight spaces VU of

h, u=mnm-2,...,~-(m - 2), -m, where m+ 1 =dim V ,

dim VU 1 for each u and m is the highest weight

of h

(2) V has, up to nonzero scalar multiple, a unique

maximal vector whose weight is m and highest.

(3) Exactly one of 0 and 1 occurs as a weight

~once and only once.

(4) For any nonnegative integer m , there exists
a unique irreducible S-module of dimension m + 1 . This

module is described by (1) - (3) in Lemma 4.3.2. //

Note that any nonzero weight vector v of h with

vx = 0 1is a maximal vector of V

Corollary 4.3.4. Let V be a finite-dimensional

S-module. Then the eigenvalues of h on V are all
integers and if k 1is an eigenvalue of L then the
arithmetic progression k,(k - 2),...,-(k - 2), -k are
all eigenvalues of h . Moreover, the number of
irreducible S-submodules in V is precisely dim Vo(h)

+ dim Vl(h)
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Proof. By Weyl's Theorem 3.7.5, V is decomposed

as a direct sum of irreducible S-modules. Thus by

Theorem 4.3.3 all eigenvalues of h are integers. If

k is an eigenvalue of h on V , k occurs as an

eigenvalue of h on an irreducible summand of V and

hence k,k - 2,...,-(k - 2), -k are all eigenvalues of

h . Since each weight space in an irreducible S-module

is one-dimensional, by Theorem 4.3.3 (3), the number of

irreducible S-submodules is < dim Vo(h) + dim Vl(h)

If v e Vo(h) then vh = 0 and, by Lemma 4.3.2 (1),

v is a linear combination of eigenvectors of h having

0 as eigenvalues. Thus dim Vo(h) equals the number of

irreducible S-submodules of V in which 0 occurs as

weight. Likewise, dim Vl(h) is the number of irreducible

S-submodule of V in which 1 occurs as weight. //

Remark. If F is not algebraically closed, let
K be the algebraic closure of F . Regard Vg as an
SK—module. Then the above discussion shows that the
eigenvalues of h 1in V, are all integers ; but these

are also the eigenvalues of h in V . //

Exercise 4.3.1. Let V(m) be the irreducible

S-module with basis vo,vl,...,vm given by Lemma 4.3.2
(1) - (3) . Find the matrices of x( = £f(x)), ¥y and h

relative to this basis. Utilize these matrices to verify
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that the relations (1) -(3) of Lemma 4.3.2 define an
(m + 1)-dimensional irreducible S-module.

Notice that the matrix of £(h) is diagonal, while
those of f(x) and £(y) are respectively upper and

lower nil triangular matrices, so nilpotent.

Exercise 4.3.2. Let U and W be L-modules where

L is any Lie algebra. Prove that the tensor product

UR®® W becomes an L-module via
(u ® wyx = (ux) 8w+ u® (wx), uelU, weW, x el

Let V(m) Dbe the irreducible S-module as in Exercise 4.3.1
Prove that the S-module V(3) ® V(7) 1is decomposed into
the direct sum of irreducible S-modules

V(4) ® V(6) 8 V(8) ® V(10) . The general case of this is
the Clebsch-Gordan formula : If n < m then V(m) 8 V(n)

v V(m+n) ® V(m+n-2) & ... ® V(m-n) , n+l summands in all.
This formula plays a role in elementary particle physics,

angular momentum, spin, etc.
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4.4. Properties of roots and root spaces

Let H be a split CSA of L and let

L=H#+z (1.30)

a#OLa

be the Cartan decomposition of L relative to H
Henceforth, we denote the Killing form X( , ) by (, ).
Let H* be the dual space of H . Since ( , ) 1is
nondegenerate on H , the mapping h - (h, ) 1s an
isomorphism of H onto H* . Thus, for each ¢ ¢ H* ,
there exists a unique ’cql e H such that ¢ = (t¢, ).
Also, the mapping ¢ = té is an isomorphism of H#* onto

H , and

= F3
w(t¢) (tw’ t¢), , ¥ e H® . (1.31)

Denote by @ the set of all nonzero roots of H in L
We define a bilinear form ( , ) on H* by (¢,¥) = (t¢,tw).
Then ( , ) 1is nondegenerate on H* since ( , ) 1is

nondegenerate on H .

Theorem 4.4.1. (1) ¢ spans H*

(2) If o e & then -0 € @

(3) For o e @, let Xx € La and y e L_

Then Xy = -(x,y)t@
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(4) If o e & then [LaL—a] is one-dimensional

with basis t
a
(5) a(ta) = (a,0) = (ta,tu) # 0 for a e @

(6) For o ¢ & and each nonzero x, € Lu ,
there exists an element y_ € L such that x _, vy ,
a -a o a
ha = [Xuya] span the split 3-dimensional simple Lie
algebra where h_ = 2t /(a,a) with h_ = -h . In
a a o -a

particular, h@ is uniquely determined by «

Proof. (1) Let H be the subspace of H* spanned
by & . Let {al,...,ur} & © be a basis for H . Then
the mapping h = ¢(h) = Z§=1ai(h)ai gives a linear mapping
of H into H . Thus, if dim H < dim H , there exists
a nonzero h e H such that ¢(h) = 0 , so al(h) =
= ar(h) = 0 and o(h) = 0 for o e ® . This, by
Corollary 4.2.3 (1), implies that h 1is in the center of

L . This is absurd since L 1is semisimple.

(2) Suppose that -a ¢ ® . Then o + g # 0 for
all B e & and hence (LW’LB) =0 for B e & by
Theorem 3.3.6(3). Therefore, (La’L) = 0 and this is

impossible since ( , ) 1s nondegenerate.

(3) Let x ¢ L@ and Yy ¢ L-a . For h eH , we

have (hs[XY]) = (_[Xh]9)7) = "OL(h) (X:'Y) '(tayh) (X7Y)

= (—(x,y)ta,h) . The nondegeneracy of ( , ) on H

then implies [xy] = -(x,y)t,
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1#0

Let x # 0 be in L . Suppose that (x,L_u) = 0 . Then

(4) In view of (3), it suffices to show [La’L—a
by Theorem 3.3.6 (3), (x,LB) = 0 for B e & and so
(x,L) = 0 , contrary to the nondegeneracy of ( , )
Thus there exists a y # 0 in L-a with (x,y) # 0

and [xy] # 0 by (3)

(5) Suppose that a(ta) = (a,a) = 0 . Then

[xt 1 = [yt 1 = 0 for all x e L, and vy e L-a . As in
(3), find x € La and vy ¢ L_a with (x,y) # 0 . We may
assume that (x,y) = -1 . Then, by (3), [xy] = t, and
x,y,t, span a solvable Lie algebra N . But then adL v4
is nilpotent for =z e [NN] by Corollary 3.4.4. Since

[NN] = FtG,C H, adL tu is both semisimple and nilpotent,
so ad., t =0 and t, € center of L , contrary to the

L "o

semisimplicity of L

(6) Given x| # 0 in La . As in (4), choose a

y # 0 in L__ such that (x,,y) # 0 . Since (w,0) # 0,

we set

2t
y = -2y L h o= —2_ (1.32)
a  (xg,y)(a,a) a  (a,o)

Then

(xy »Yg) = Té%ET* (1.33)

and hence [x,y,1 = - (xa ,ya)td = Zta/(a,a) = ha by (3),
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(1.32) and (1.33). Also, L;aha = (2/(a,@))[§at&] = 2x_
and likewise [Yahu = -Zya . Since «a(h) = (ta’h) for
heH and ( , ) is nondegenerate on H , we have
t = -t and so h = -h . Since t is uniquely
- a -0 a o

determined by o , so is h_, by (1.32). //

o

Corollary 4.4.1. Let H be a split CSA of L and

V be an L-module. Then V is a split H-module and
VA(H) = {veV | vh=2x(hv, heH} . Thus f(h) ,
h e H, 1is split over F and semisimple where f 1is the

representation afforded by V .

Proof. By Theorem 4.4.1(6), there is a basis

h ,...,h of H such that Xy o Yy o h span a split
@1 %9 i % %

3-dimensional simple Lie algebra Si . Regard V as an
Si~module. Then the eigenvalues of f(hu.) are integers,
SO f(ha.) is split over F and acts éiagonally on V
(Sectionl4.3, Remark). Since H 1is abelian, by a standard
argument in linear algebra there is a basis {Vl’VZ""’Vn}
of V relative to which every f(h“i) has a diagonal
matrix. Since the ha. form a basis of H , it follows
that every £(h)(h € H% has a diagonal matrix relative to
{vj} . Thus vjh = Aj(h)vj , heH , 3 =1,2,...,n

For each weight A of H , it is easily seen that VA(H)

is spanned by the v, such that A = A, . //
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Theorem 4.4.2. (1) o e & implies that dim Lu =1

In particular, S =L + L + H is the split 3-dimen-
o o -0 a

sional simple Lie algebra and, for any nonzero X, € La ,
h i i =
there is a unique Yy e L-u such that [Xayu] ha )

where H = [L L ]
a o -a

(2) If o e & then the only scalar multiples of «o

which are Toots are o and -o

Proof. For a fixed o e & , let M =H + % 2L
— ceF* ca

where F* = F - {0} . Let Su be the split 3-dimen-
sicnal simple Lie algebra spanned by Xa’yu’hu given 1in
Theorem 4.4.1 (6). Regard M as an Su-module via ad
Then by Corollary 4.3.4 the weights of hq in M are
integers which must be O and Ca(ha) for L # 0 ,

co
c ¢ F* . But then by (1.32) a(ha) = 2 and so

0 # ca(hu) = 2¢ = an integer (1.34)

for ¢ ¢ F* with Lca # 0 . If we let H' = ker a

then H = H' @& Fhu- since u(ha) =2 , and H' 1s an
Sa—submodule of M in which all Sa-irreducible summands
are one-dimensional with the only weight 0 . Also, Su
itself is an irreducible Sa—submodule having the weights
0, 2 of ha . By (1.34), H' ® Sa exhausts the
occurance of weight 0 . Thus, in view of Theorem 4.3.3,

the even weights of h@ in M must pccur in H' & 8§
' o
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Thus 0 , *¥2 are the only even weights of ha in M
Therefore, 20 1is not a root ; for, if it is a root then
Za(ha) = 242 = 4 would be an even weight of h& . It
follows from this that %o is not a root. This in turn
implies thét 1 can not be a weight of hu . Indeed, if
it is a weight then Lca # 0 for some c ¢ F*¥ and by (1.34,
2¢ =1, so o 1is a root, a contradiction. Therefore,

Ml(ad ha) = 0 and by Corollary 4.3.4 M = H + Sa , SO

Lca = 0 unless c¢ = *1 . Thus the only roots of the form
co, are *o . Since L _,L c M=H+ S , L = Fx and

a’ -0 o a o
L—a = Pya ; dim La = 1 . By Theorem 4.4.1 (4) [LaL—a] = Ha

= Fha and [XYy] # 0 for x # 0 in Lu and y # 0 in

L 0 This proves (1) and (2) . //

Theorem 4.4.%. Let V be an L-module and let A

be any weight of H in V . For a e @& , let r and
q be the largest integers for which A - ro. and A + qo
are weights. The set of all weights of the form A + ia

forms an arithmetic progression with first term A - ra ,

difference o , and last term X + qo . Also, 1,9 > 0
and

2(A,0) _ .

(o) T q . (1.35)
If we let A' = A - [2(A,a)/(a,a)] o then A' 1is also

a weight and dim VA(H) = dim VX'(H)
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Proof. Let Su be the split 3-dimensional simple
Lie algebra spanned by the canonical basis Xa’ya’ha as
in Theorem 4.4.1 (6). Set L(a) = H + Sa and let
HO = ker a . Then L(u) = HO ® Sa and Z(L(“)) = center
of L(a) is HO . Regard V as an L(a)*module. Then
by Corollary 4.4.1 each h e H is split over F and
semisimple. Thus by Corollary 3.7.7 V 1is the direct sum
of irreducible L(q)-submodules and, furthermore, each

h e H is a scalar on every irreducible summand W of

0
V (see the proof of Corollary 3.7.7). Thus W 1is

Sa~irreducible also. Let v be a maximal vector of W ,

0
sc that v.,x =0 and v,h = mv where m = dim W - 1
07 o 07 a 0
(see Theorem 4.3.3). Since h ¢ HO is a scalar on W ,
we can let VOh = p(h)vo for h ¢ H where u 1is a weight

of H . Thus

voh, = u(h v, = 2(d,0)

U0
0 a (a,0) Yo

by (1.31) and (1.32), so that 2(u,a)/(a,a) = m . Then,
i

as in Lemma 4.3.2, LR i=20,1,...,m , form a basis
for W . An easy induction on 1 shows
i B o i
(vqu)h = (u 1&)(h)v0yu , heH. (1.36)
Hence u - ia , i = 0,1,...,m , are distinct weights of

H in W and since dim W =m + 1 , these are all the
weights in W . Therefore, any weight A of H in W

is of the form 1y - ia and
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dim W, (H) = 1 . (1.37)

Let )\ be any weight in V and let V = I ® Vi be
the direct sum of irreducible L(a)—submodules Vi of V
Then A 1is a weight in one of the Vi . Indeed, if
vh = A(h)v , heH , v #0 then v = 1Iv, and vh = Zvih
= A(h)v = Zx(h)vi , so that Vih = A(h)vi , h e H . Thus
A 1is a weight 1in Vi where VX(H)tﬂ Vi # 0 and hence
by (1.37) dim VA(H) is the number of Vi's in which A
is a weight. Let W be an irreducible L(u)—submodule of
V in which ) 1is a weight. As before, voh = u(h)VO
where v, is a maximal vector of W and 2(u,a)/(a,a)
=m=dimW -1, so x =y - ko with 0 <k <m by (1.3¢
Let q be the largest integer such that X + qao is a
weight, so q > 0 since A 1is a weight. Let W' be an
irreducible L(a)—submodule of V in which X + qa 1s a
weight. Choose a weight vector Vé # 0 in W' such that
vih = (A + qa)(h)vé . Since A + (q *+ 1)o is not a weight

0

VéX = (0 and so Vé is a maximal vector of W' with the

highest weight (X + qu)(h&) = 2(x + qo ,a)/(a,a)

1}
1l

2(x,a)/ (a,a) + 29

u =X+ ka 1is a weight, 0 <k <q and m = 2(u,a)/ (a,a)

s = dim W' - 1 of ha . Since

il
il

2(x + ka,a)/(a,0) 2(x,a)/(a,0) + 2k . Thus

K -mo= - 2leol

(a,a)

_2(h,0)
(a,0)

b4

q >
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so k-m>q-s . Inview of (1.36), the weights of H

in W and W' are respectively
L= At ko, At (k- Da,...n + (k- ma , (1.38)
A+ qa, A+ (q - Da,...,x + (q - s)o . (1.39)

Since k<q and q - s <k -m, (1.38) is contained in
(1.39). Thus all weights of the form A + ia are in (1.39).
Indeed, if A + ia 1is a weight, then let j be the largest
integer such that A + ia + jo 1is a weight ; but then
i+3j=gq. Thus A + ic is in (1.39). Letting
r= -(q-s), r>0 since q-s<k-mz<0 and the
last term in (1.39) is X - ra , so that r 1is the largest
integer such that X - ra 1is a weight.

Let A' =2 - [2(0,0)/(e¢,a)]a = X + (2q - s)a
Since -r =q - s <2q-s =9+ (q-s)<qlqa-s<20),
A' occurs in (1.39). The argument just used shows that
A is a weight in an irreducible L(u)—submodule W if and

only if A' is a weight in W . Then, by (1.37) and the

foregoing remark, dim VX(H) = dim Vx,(H) . //

Notice that A - io 1is a weight for any integer 1

between 0 and r - q where r , q are as in (1.35).

Corollary 4.4.4. (1) Let o,B € © with B # *o

Let r and q be respectively the largest integers for

which g - ra and B + qa are roots. Then all B + io e O
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for -r <i<q with r,q > 0 and

g(h ) = —2Bs0) =y g, (1.40)

(2) If o e & then g - B(ha)a e @
(3) If a,8 e & and o + B e & then [LaLB]= Lo+g
(4) L 1is generated by the root spaces La , o e ¢

Proof. Since 8 # #fa , B *+ 1o can not be zero.
Thus (1) and (2) are consequences of Theorem 4.4.3 when
one notes that if B8 = a0 , B - B(hu)a = +q

For (3), let K = Zg=~rLB+iq and regard K as an
Sa—module, Then the weights of ha are integers which
must be B(hu) + iu(h&) = B(hu) + 21 . Since these are all
distinct, not both 0 and 1 can occur as a weight of

ha . Therefore, by Corollary 4.3.4, K 1s Su-irreducible

with highest weight B(ha) + 29 . Let 0 # x ¢ LB+QQ be

a maximal vector in K . By Lemma 4.3.2, %T x (ad ya)l R

i= 0’1""’B(ha) +2q =71 +q , form a basis for K and
these elements respectively span the weight spaces

. | q
L8+qa"'°’LB""’LB-ru In particular, (1/q!)x(ad yd)

spans L and we have

B

ya-t

1 _ 1
qr x (ad y&)q ad X, = - (r + 1)TETTTT x (ad Yy

by Lemma 4.3.2 (3). Since o + B e & , q > 1 and the
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right side is nonzero. Thus [LQLBE # 0 and [L@LB] = La+8

since dim La+B = 1

(4) Since o - t& is an isomorphism of H#* onto
H, by (1.32) and Theorem 4.4.1 (1) the hu for o e @

span H . //

Difinition 4.4.1. For roots a,B € & , the integers
B(ha) given by (1.40) are called the Cartan integers. The

arithmetic progression of roots
B -r1a , B8 - (r-1)a,...,8,8 + 0,...,8 + qo (1.41)
in Corollary 4.4.1 (1) 1is called the a-string through B.

Theorem 4.4.5. For a,B € & , the o-string

through B contains at most four roots. Hence the Cartan

integer 2(B,a)/(a,0) = 0 , 1, *2, *3

Proof. If 8 = xa , The result is trivial. Suppose
that B # *o and that the o-string through 8 contains
at least five roots. By relabelling these, we may assume
that B8 - 20 , B - 0,B,B + a,B * 20 are roots. Then
200 = (B + 2a) - B and 2(B + a) = (B * 20) *+ B are not
roots. Hence the @g-string through g8 + 2a consists of
the one term B + 20 . Thus the Cartan integer
2(8 + 20,8)/(B,B) = 0 since r =q = 0 . Similarly

8 - 20 - 8 and B - 20 + B are not roots, so that

//
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2(B - 2a,R)/(B,B8) = 0 . Adding these gives a contradiction,
since (B8,8) # 0 by Theorem 4.4.1 (5). Since the a-string
through B, B-ra,...,B,...,B + qo , contains exactly

r +q+ 1 7roots, T +q+ 1< 4 and so O

A

r, q=<3
,*3 //

This implies that 2(a,B)/(a,a) =1 - q = 0,£1,%2

Since the characteristic of F 1s zero, we may
identify the prime field of F with the rational number

field Q .

Definition 4.4.2. Denote by Hg the Q-subspace of

H* spanned by ¢ . Thus HS is a vector space over Q

spanned by @ . For convenience, denote <B,0> = 2(B,a)/ (a,a

for o,B8 € H*¥* when (a,a) # 0 . //

Notice that <B,a> is linear only in the first

variable.

Theorem 4.4.6. dim Hg = dim H¥

Proof. Let dim H* = & Since ® spans H¥* , ©
contains a basis SPERRRELY) of H%¥ . For B e @ , let

% .
g =%, _ c.a., c. € F . It suffices to show that all «c.

i=1 11 i i
are in Q . We have

(Bsu’j) = Zi Ci(ai’ OLJ) ]

<B,aj> = I, <oy, a;>c. , 3= 1,2, L (1.42)
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Since all <B,aj> and '<ai,aj> are integers, it remains
to show that the system (1.42) has a solution. But then,

since ( , ) 1s nondegenerate, det (<@i,aj>)
= {?Q/Hj(aj,ajﬂ ‘et ((a;,05)) # 0 . Thus (1.42) has a
solution . //

Theorem 4.4.7. (a,B8) 1is rational for all o,R € Hg

and ( , ) 1s positive definite on Hg ; that is, (B,B) > O

for all B # 0 in Hg

Proof. Let h, k e H. Since H 1is abelian and

ad h, ad k are semisimple, (h,k) = Tr ad h ad k

= Za€® o(h)a(k) . Thus we have for X,p e H¥
(Asu) = (tx’tu) =, a(tx)a(tu)
= Lo (tu’tk)(ta’tp) (by(1.31))
= Zae@ (o, A) (o) (1.43)

Thus, if B e @& then

. 2

(8.8) = 3, (0,87 . (1.44)
Let the @-string through o be a-raBB,.,.,u,...,a + an R.
Then by, = 2(a,8)/(6,8) ¢ 2 and (a,8) = ¥P,o(6,8) - It
follows from this and (1.44) that (8,8) = %7 P (8,8)"

aed " ap
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Since (8,8) # 0 , 3 P, # 0
is rational. Thus (a,B) = %p
0,8 & @ Since @& spans Hg
that (A,u) ¢ Q for A,u ¢ Hg
- 2
(A,A) = Z@g@ (a,A)" > 0 for
(a,2) = 0 for all o e & and
for 0 # A ¢ H¥ //
Corollary 4.4.8. Let «o

(0,8) < 0 then o + B € @

Proof. This is immediat

4.5. Simple systems of roots
Let QqsOiysecesly be a

. *

A vector p = Ii_; C;0; E HO
first nonzero Ai is positive

c>p if o - p >0 Then

this way and we refer to this

lexicographic ordering determi

(QI’QZ""’QQ) of roots.
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2

and so (B,B) = 4/2& Pus
aB (B,B) 1is rational for

, it follows from (1.43)

By (1.43),

A€ HS Thus if (A,A) = 0 ,
so A =0 Hence (A,x) > C
,B € & and let B # *a 1f
If (a,B) >0 then o - B e ¢

e from Corollary 4.4.4 (1).

H#*

Q-basis of roots of 0

is called positive if the

If we write

e

e H=%

O,sP 0

3

HS is totally ordered in
ordering in Hg as the

ned by the ordered set
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Lemma 4.5.1. Let PysPgsessPy € Hé and suppose

that the. p; > 0 and (pj,pj) < 0 for i # j . Then

pqs+--opy are linearly independent over Q

= k-1 - 1 i
Proof. Suppose P Zi=1 C4Pi X quq * L cipg
where 1 < q, s < k -1, cé >0, c! <0 Set ¢ = % Cépq
and T = I cgps . Since py > 0, o # 0 and we have

(6,7) = & cge’ ,pg) 2 0. Thus  (py,0) = (0,0) * (0,1) > 0

s(Pq

but (pk,c) = I Cé(pk,pq) <0, a contradiction. Hence

the p; are linearly independent. //

Definition 4.5.1. A root o € & is called simple

(relative to the given ordering of Hg ) if o > 0 and o«

can not be expressed in the form 8 + y where g,y are
. + .
positive roots. Denote by 1 and ¢  the sets of simple

roots and of positive roots, respectively. //

Thus the set & of negative roots is equal to

-6 = {-a | a e '} and o = ®+Lj o

Theorem 4.5.2. (1) If o, e I and o # B then

o - B 1s not a root.

(2) If o, e and o # g then (a,B) 20

(3) 1 is a basis for Hg over Q0 . If B e ®+ then
B =1 k o where the Kk are nonnegative integers.
oell o o
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(4) 1If B e 3  and 8 ¢ T then there exists an

o e T such that B - a € @+

Proof. (1) Let a,B el . If o -B ¢ ®+, o = B
+ (0,-B), contrary to the simplicity of o . If o - B € o

then we write B = (B-o) + o to obtain a contradiction.

(2) Let o - Ta,...,8,...,8 *+ qu be the o-string
through B . Then <B,a> =1 - q . Thus (@,8) < 0,

since r =0 by (1) and (@,a) > 0

(3) It follows from Lemma 4.5.1 and (2) that T 1is
lirearly independent. Since " is a finite set, by
induction we may assume that every vy ¢ 5¥ with g > v >0
js of the desired form and that g ¢ T . Thus B = 61 + BZ
B € ®+ and since B8 > B; > 0, B = ZaeH kdd’ kd
nonnegative integers. It follows from this that every

8 ¢ ® is of the form £, ko, k, ~monpositive integers.

Since ¢ spans Hg , this implies that 1 is a basis

E

for HO

(4) Suppose that B ¢ 5" and B ¢ 1 . In view of
Lemma 4.5.1, (2) and (3), there must exist an o € I such
that (B,a) > 0 . Thus <B,a> =t - q>0 and 1 >0,
so B -aed® . If B-a< 0 then o -8 >0 and

a = 8+ (a-B) . Thus B - a € " and B = (B-a) +a . //

Definition 4.5.2. If T contains & elements then
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we denote I = (al,az,...,aﬁ) and call this the simple
system of roots for L relative to H and the given

ordering in Hg . //

The classification of simple Lie algebras reduces to
that of simple systems of roots. Theorem 4.5.2(3) in

fact characterizes a simple system of roots.

Corollary 4.5.3. Let I = (ul,...,a be an ordered

)
set of roots where & = dim H . Then 1 1is a simple

system of roots relative to a certain ordering in Hg if
and only if every B8 & & has the form I kiai where the

k. are integers and either all ki >0 or all k. <0

Proof. One direction is simply Theorem 4.5.2(3).

For the other direction, we first note that 1 is a basis

for Hg , Since ¢ spans Hg . We introduce an ordering

. ES . 1 = = =

in HO by : I c.oy > 0 if <y oo e 0, Creq > 0o,

k < 2 . Then " consists of those roots B = I kiui

with the k; > 0 and some k., >0 . Since I is a basis

for H% the o. are simple. Since any simple system
0’ i

consists of & 7roots, 1 1is the simple system of roots

defined by the ordering. //

Definition 4.5.3. Let I = (al""’aﬁ) be a simple

system of roots and let Aji = <ai,aj> . Then the matrix
(Aji) is called the Cartan matrix of ¢ (or 1m). If

B=12k.a, €0, we define the level of B as [B] = leiJ -/
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If & has more than one root length (]]al| = vV(a,0)
= length of a), we speak of longer and shorter roots. For
a,8 ¢ ® the angle 6 between o and R dis given by
|lal] ||8]] cos & = (a,8) . Hence <B,0> = 2(8,a)/(a,0)
= 20|18}1/||e]|) cos & and <o,B><B,o> = 4 cos’e . This

shows that <a,B8> and <B,a> have the same sign, and if

o # 8 then <a,B><B,a> < 4 since a,B are linearly

independent and so 0 < cosze <1 . Since <a,B> , <B,a>
are integers, they must be 0, +1, 2, *3 . Thus, assuming
I18]] 2|lo|| , we have the following possibilities
2 2
<a, 8> <,a> 0 ell/ 11l
0 0 m/2 undetermined
1 1 m/3 1
-1 -1 27/ 3 1
1 2 /4 2
-1 -2 3m/4 2
1 3 /6 3
-1 -3 5m/6 3

In particular, if ai,aj are in I(i # j) then

<ai,aj> = Aji < 0 (Theorem 4.5.2(2)) and both Ajj and

Aji are 0 , or one is -1 while the other is

-1, -2, or -3 . Hence we have

Lemma 4.5.4. Any Cartan matrix (Aji) has all

diagonal entries Aii = 2 and if i # j then either
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A..A.. =0 or one of A.., A.. is -1 while the other

ij i ij ji

is -1, -2, or -3 . If i # j then the angle eij
between o, o is 90° , 120° , 135° , or 150° . //

For each a; € I , choose the canonical basis

h as in Theorem 4.4.1(6) and denote

i o i o - i o
i i i
Then Ekihi] = 2%. , [yihij = ~2y:.L and [xiyi] = hi
Since a; - aj is not a root for i # j . [Xiyj] = 0

n

and [xihjj = ai(hj)xi X and £yihij = -A..y.

A, .x.
jiti ji’i
by (1.32) . Therefore, we have

[hihy] = 0
X751 = %3P (1.45)
R B P

[.yihjl AAjiyi s 1, = 1,2,...,4

Theorem 4.5.5. & is determined by the simple system

I and the Cartan matrix (Aji) . That is., the sequences

(k ,...,kﬁ) such that I kiu. e & are determined by (A..)

1 i ji

Proof. It suffices to determine " . The proof
proceeds by induction on level. The roots in ® of level

. +
one are the o, € I . Suppose that the roots in 0 of

level < n are determined by (A..) . By Theorem 4.5.2(4)

1]
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any root P € 87 of level n + 1 1is of the form
o =T o *ta: s O € ®+ of level n, uj e T . Since if

J
aj then g 1is not a root, we may assume that

i

o

a = I kj“i with some ki > 0 for i # j and the kj are
determined by Aij . Let o - raj,...,q,u + aj,...,a + q@j
be the qj—string through o . Since g 1is in this string,
it suffices, to show that r and ¢ are determined by Aij
Since o - uj,...,a - rai are positive roots of level < n ,
these are determined by Aij and so is T by Aij . Thus
qg=71 - <u,aj> = r - 3 kiAji is determined by Aij . //

Since o + uj is a root if and only 1if gq > 0 ,
the last step in the proof gives a method of ascertaining

whether or not o + uj is a root.

Theorem 4.5.6. Let 1 = (a1’°"’“g) be a simple

system of roots for L relative to H and let Xio Vi hi

be as in (1.45). Then the 2% elements Xx., Y generate

i
L . For each B ¢ o° we can choose an expression of
3] + + + so that + + ®+
= o - o . Q. 5 o . . S
1 2 Tk 1 tm
for every m < k . Then the elements
h., [X. X. ... X. 20 FUE A (1.46)
i L i,mi, 1#] L i,’1, iy

determined by the B ¢ 8" form a basis for L , where

[ [xlxzj Xr] =[.X1X2 Xr-] .
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Proof. By induction on level, the second conclusion
follows from Theorem 4.5.2(4). Let B be any positive
root. In view of this and Corollary 4.4.4(3), the

expression for B8 implies that [Xi R ] # 0 and
1 k

{Yi c e yi;] # 0 ; hence these elements respectively

span LB and L"B . Thus the elements in (1.46) form a

basis of L since the h.l form a basis of H . //

Notice that if there is no positive root of level n
then &  contains no roots of level n + i for i > 0
This is due to the fact that if g ¢ " is of level
n + 1 , by Theorem 4.5.2(4) o = B - aj £ ®+ for some

o € I and J|a| =n

Example. Let L be a semisimple Lie algebra with

the Cartan matrix
2 -1 <O, 50,> <0, ,0,>
( )= ( S 2) , (1.47)
"3 2 <0L2,O(,1> <0¢2,OLZ>
We determine ® from this matrix. By (1.47)

2(@2,a1)/(@19d1) = -3 and Z(al,az)/(az,az) = -1 . Since

ay T ooy is not a root, these imply that the a1~string

through oo and the a2~string through a, are respectively

0., * al . uz + 2&1 5 uz + 3@1 R
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by (1.40). The only root in @+ of level 2 1s oy *oa,

Since g * 20, £ o, a, * 20, is the only positive root

g

of level 3 . Similarly, a, ¥ Sul is the only one in ¢
of level 4 . Simnce 2(@2 * 3ag, @2)/(a2, uz) =2 -3 =-1
(qz + 3@1) ta, ® 3@1 + 2@2 is a root. Noting that

a4 + 4@2 is not a root, 3@1 + 2&2 is the only root 1n ¢
of level & . 1In view of Theorem 4.5.2(4), there are no
roots of level > 6 . Hence @ consists of

iOL]:J iOLz: i(OL]Y + 01,2)9 i(OLZ + 2061)
o o (1.48)
oy * 3aq)5 (30 ¥ Zas)
and thus dim L = 14 . //

In general, this procedure applies to construct &

from any given Cartan matrix.

Exercise 4.5.1. Let @ = (ul"'°’qx) be a simple

system of roots. Let X:o Yy

as in (1.45) and let L have the basis as in (1.46).

, hi be the generators for L

Then the multiplication table for this basis has rational

coefficients which are determined by the Cartan matrix (Aj

Exercise 4.5.2. (The isomorphism theorem). Let L

L' be semisimple Lie algebras with split CSA H and H'
of the same dimensicn ¢ . Let (al""’ax) and {ai,...,
be simple systems of roots for L and L' vrespectively.

Suppose the Cartan matrices (<@i’ aj>) and (<ai, uj>)
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are identical. Let Xx., Y.

i 10 hi , X!, vyl hi be the

it 73’
generators for L and L' as in (1.45). Then there

exists a unique isomorphism of L onto L' mapping X;

on x!. . on ' " h. on h!
3 73 Yi» B4 i

Exercise 4.5.3. Let F be algebraically closed. Then

L has a basis hi’ x@, aed , 1=1,2,...,2 = dim H

such that if g # za and o,B ¢ ¢ then

[XuXB] = Nasxa+8

where x ¢ L and N ¢ F satisfies the condition
o o aB
= N
af 0, - B

Definition 4.5.4. A simple system of roots 1 = (ul"°"u£)

is called irreducible if it is impossible to partition il

into the disjoint union of proper subsets 1m' , I" such

= 1 1
that Aij 0 for every a; € n' ., aj e I . //

Theorem 4.5.7. L is simple if and only if the

associated simple system I of roots is irreducible.

Proof. Suppose that 1T = (al,...,ak){J (ak+1’°°"a2)

il

A

1 <k<2g, so that Aij 0, 1 <k, 3> k . Let L1 be

the subalgebra generated by the Xj’ yj, hi’ j <k, as

in (1.45). One easily checks that L1 = Hi + % LY where

H1 is the subspace spanned by hl""’hk and the summation
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runs over the roots Y which are lirearly dependent on

the aj . Thus 0 # L, # L . If >k and j £ k then

Ajr = 0 and since a. - o is not a root, this implies

that aj ta_ is not a root. Hence xjxr] = [ijr] =0

as well as [h.x7] =0 since (o, a.) = 0 . Therefore,
Jr T J

X, is in N(Ll) , the normalizer of L1 and likewise

Yy € N(Ll) . Since the X:: Yy generate L , 1t follcws

that L N(Ll) , SO Ll is an ideal of L and L 1is no

simple. Conversely, suppose that L 1is not simple and

L = L1 6 L2 where the Lj are proper ideals of L . Let
(2) () ¢y

' _ L (D)
o £ ® and X, € La . Then X, X, t Xy o

and since [xah] = a(h)x, , we have [xa(i)h] = @(h)xa(i)
Since dim L, = 1, this implies that L, & L1 or L,C L
Noting that [L L] = 0 and [LyL_ o] # 0 , we have

either L, + L ,C L, or Ly * L ,C L, . Thus we may
order the generators X:5 ¥y 5 SO that Xq5 Yoo Xy Vi

-sXg, Vg E L2 . Since the L, are proper,

Xyw1r Vg1 i

k<% and 0 = [XjI:Xryn]] = [xth] = Arjxj for

k, r > k . Hence A._ = A . =0 and I is not
Jr rj

1

A

A

j

irreducible. //

t

i

2

£
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4.6. Classification

In view of the results in the previous section,
determination of the simple Lie algebras reduces to that of
the Cartan matrices associated with irreducible simple
systems of roots. Instead, we classify all connected Dynkin
diagrams corresponding to irreducible simple systems of roots.
It is readily seen that a Dynkin diagram essentially determines
the associated Cartan matrices. Throughout we fix a
lexicographic ordering in Hg determined by I = (a1’°"’u2)
We call ||a112 = (a,a) (o ¢ @) the weight of o . If
we let a shortest root o have weight 1 then the weight

of any root 8 with (a,B) # 0 is 1,2, or 3 (see the

remark following Definition 4.5.3).

Definition 4.6.1. The Coxeter graph of @ (or 1) is

a graph having & vertices, the i th joined (connected)

to the j th (i # j) by AijAji lines. The Dyvnkin

diagram of & (or L) is the Coxeter graph having vertices

PEREERLTI together with weight attached to each vertex. //
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For example,

AZ O SO N
B2 1 G 0,
Gz [ e s

are Coxeter graphs having two vertices while their associated

Dynkin diagrams are

1 1
A2 O o
% %2
2 1
B . D,
2 04 05
3
G : = D
2 aq a,

By virtue of Lemma 4.5.4, it is possible to determine

rd

the Cartan matrix (Aji\ from the Dyvnkin diagram. Indeed,

if o. and o. are not joined then A.. = A.. =0
1 ] i] Ji

If o. and o. are connected then A.. # 0 , A.. # 0 and
i J ij ji

hence Aji/Aij = (ui, ai)/(uj, uj) and AijAji can be
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determined from the diagram. For example, the Dynkin

diagram of G2 gives AlZ/A21 (az, uz)/(ul, al) = 3 and

A]2A2] = 3 , which imply AZl = -1, AlZ = -3 by Lemma 4.5.4.
Hence the Cartan matrix is the matrix in (1.47). Likewise,

the Cartan matrix for AZ is

-1 2

Definition 4.6.2. Let E be a Euclidian space over

the reals. A set (Jj of & 1linearly independent unit

vectors ul,uz,...,ul in E is called an admissible set

(a.s.) if it satisties

(ui, u.) <0, 4(u., uj) =0, 1, 2, or 3,

j
143, 1,3 = 1,....0 . // (1.49)

If 6a, is an a.s. then we can attach a graph T to

C& which has & vertices uj,...,u, , the 1 th joined

to the j th by 4(ui, uj)z lines (i # j) . A simple
system of roots I = (al,,a.,az) gives rise to an a.s.
when we set wu, = ai/llai§| , since AijAji = 4fuy, uj)

Thus the Coxeter graph of 1 is regarded as a graph of an

a.s. An a.s. is said to be irreducible if it satisfies

the conditions in Definition 4.5.4. The graph of an a.s.

OZ is called connected if, for any u,v € 6% , there



—126—

exists a sequence U = U. , U, ,...,u. = V 1n 6@ such
' 1 2 Tk

that u, and us are joined in the graph. This

J i+l
definition of connectedness applies to Coxeter graphs and
Dynkin diagrams. It is easily seen that the graph of an
a.s. OZ is connected if and only if Cz is irreducible.
Recall that the classification of simple Lie algebras ic
equivalent to that of connected Dynkim diagrams. Since the
weights can be re-introduced, it suffices to classify the

graphs of irreducible a.s. This classification proceeds

in several steps. Let C@ be an a.s. with graph T

D 1. If some of the wu. in (ZZ are discarded then
i

the remaining ones still form an admissible set whose graph
is obtained from T by omitting the corresponding vertices

and all incident lines. //

D 2. The number of pairs of vertices in T connected

by at least one line is less than &

Proof. Let u =13 u. . Then 0 < (u,u) = & + 2 &k (ui,t
i<j
by (1.49). If (ui, uj) # 0, Z(Ui, uj) < -1

Hence the number of pairs us s uj with (ui, uj) # 0 1is

less than & . //

D 3. T contains no cycles (a cycle is a sequence of

vertices ul,...,uk such that u. is joined to Usyq v

l_<_i<k—l,andu

< 1 is joined to u. o)
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Proof. A cycle is a graph of an a.s. by D1,

which violates D 2 . //

D 4. The number of lines issuing from a vertex in T

does not exceed three.

Proof. Let u be a vertex and let ViseeesVy be
the vertices joined to u . No two v, are connected
since there are no cycles. Hence (vi, Vj) =0, 1i#7]
Set v, = u - Z? (u, v;Jv, and v, = Vé/l}vétl . Then
(VO, VO) = 1 and Vo Vyoee sV are mutually orthogonal.
Thus u = Zg (u, Vi)Vi where (u, VO) # 0 , since u

and the v, are linearly independent. It follows from

this that
(U,U) = (U:VO)Z + (U—,Vl)z + ... F (U,Vk)z = 1
k 2 k 2 .
Hence Zl (u,vi) < 1 and Zl 4(u,vi) < 4 . Since

27
4(u,vi)“ is the number of lines joining u and v, , we

have the desired result. //

D 5. The only connected graph I of an a.s. which

contains a triple line is the Coxeter graph

Proof. This follows from D 4 . //
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D 6. Let {ul,,..,uk}c: CZ have subgraph

)

O Dooocoess o————0 (2 simple chain in T)

O . If Ck'

B — = t 3

(Og’ {ul, - ,uk}) U {ur , u Iy Uy o then @’ is
a.s

an

Proof. We have Z(Ui, ui+1) = -1, i=1,...,k -1
Thus (u,u) = k + zzi<j (ui, uj) . Since there are no
cycles, (ui, uj) =0 if i < j wunless j =1 +1
Hence (u, u) =k - (k - 1) =1 and u 1is a unit vector.
Let V’s:C% . vV # us o Since there are no cycles, Vv 1is
joined to at most one of the u; , say uj . Then

(v,u) = (v, 25 ui) = (v, uj) and 4(v,u)2 = 4(v, uj)2

= 0,1,2, or 3 . Hence C@f is an a.s. //

D 7. T contains no subgraph of the form

(a0 @ 80 2 @ @ 0 (fpmmmmenim

Proof. These graphs contain simple chains whose

vertices are denoted by ul,...,uk as in D 6. Also, let
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I : .
u = Iy U . As in the proof of D 6, if v ¢ Gq,, v #ou,

and v is joined to uj then 4(V,u)2 = 4(v,uj)2 . Hence

the graph of C%: in D 6 contains subgraphs of the form

[om " e ‘¢ s s
u u u

Since (XC is an a.s., this violates D 4. //

D 8. Any connceted graph I of an a.s. has one

of the following forms

O e Do v v mmw o w O e O s Az
0 -0 Qmommmmm Qe I ) = 2 2 = = 4 { Qe
uq u, up.q U g Va-1 5 vy
IWl
:WZ
Wr-l
o MR, FPR O O Qe === - Q0
Yy u, Up-1 2 V-1 "2 1
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Proof. If T contains a triple line, it must be G2
by D 5. If T contains a double line, it contains only

one such line by D 7. If T has a double line, 1t can

not have a node (branch point)

(again by D 7). Let T have only single line ; if T
has no node, it must be a simple chain since there are no
cycles. Also, by D 7 I cannot contain more than one

node. Thus the four graphs above are the only possiblities

D 9. The only connected T of the second type in

D 8 are the Coxeter graphs B£(= CQ) and F4:

o T, PP O~ D BQ = cz
[ @ e e & IR §
o F4
Proof. Set u = sP iu. and v = 3¢ jv. . Since
—_— 1 1 1 j
2(u. UL ) = 2(V.,Vi,.) = -1 (w,u) = P 1% - Pl
Y i’ i+1 j9 j+1 3 2 1 ] . J
= pz -p(p - 1)/2 = p(p + 1)/2 . Likewise (v,v) = q(g + 1

Also. (u,v) = pq(up,vq) = (pq/Z)Z(up,vq) . Since
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2 o 2 22
4(up,vq) = 2 , this gives (u,v)” =p“a”/2 . Thus by
Schwarz's inequality, pzqz/z <[pp + 1)/2f[a(q + 1)/ﬂ
Since pq > 0 ., this gives (p + 1)(q + 1) > 2pq ,
which is equivalent to (p - 1)(q - 1) < 2 . [Hence the

only possibilities for p,q > 0 are

1, q arbitrary ; g =1 . P arbitrary,

jo]
il

p=q=2

The first two cases give the Coxeter graphs Bz = Cg

while the second gives F4 . //

D 10. The only connected T of the third type in

D 8 are Coxeter graphs DQ R E6 ) E7 and ES

7
@
G—0
o)
&
-
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Proof. Set u = Pl iy, v o= Z? jv. and

_o.r-1
w = Zl kwk

and z, u, v, w are linearly independent. As in the

Then u, v, w are mutually orthogonal

proof of D 4, find a unit vector u orthogonal to

0
u, v, w . Then 1z = (z,uo)uO + [(z,u)/(u,ui}u + Hz,v)/(v,x

O) # 0 . Since (z.z) =1,
. _ 2 2 2 2
this implies 1 = (z,uo) + COS 61 + COS 62 + cos” 0z

2 2 2 ;
or cos 91 + COS 62 + COS 63 < 1 where 61, 62, 63

are respectively angles between z and u, Vv and w .

Now cos? 0, = (u,z)z/(u,u) = 4%(p - 1)2/(P(P - 1)/2)

(ir the proof of D 9, replace p by p - 1) = (p - 1)/2p

+ Uz,w)/(w,wi}w where (z,u

1 - %) . Similarly, cos2 62 = 4%(1 - 1/g) and

cos® 6. = 4(1 - 1/r), so that we have

(1 - 1/q +1 -1/g + 1 - 1/r) <1 or P + q + T > 1

We may assume p >q>71 (2 2) . Then p_1 < q~1 r~1

]
[N

and so 3r71 > 1 . Since T > 2 , this gives T
L and q < 4 . Hence
2<q<4 . If qg=2 then p > 0 which holds for all
p. If g=3 then p  +a  >1% gives p—1 > 1/6

and p < 6 . Hence, in this case, p = 3,4,5. Thus the
possible triples (p,q,r) are : (p.2,2) for DQ s (3.3,2)

for E6 : (4,3,2) for E, : (5.3,2) for E8 . //
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D1 - D 10 show that the connected graphs of a.s.

of vectors in E are among the Coxeter graphs of types
A - G . In particular, the Coxeter graph of an irreducible
simple system of roots I = (al""’az) must be one of
these types. Therefore, for the classification of the
connected Dynkin diagrams, it remains to introduce the
weights.

As before, let a shortest root in 1 have weight 1

If the Coxeter graph has only single lines then A..A..

ij i
= (ai, ai)/(aj, uj) =1 if a; Is joined to oy - Thus
all (ai, ai) = 1 by the connectedness of the graph.
Hence the Dynkin diagrams for AQ, DQ, Eé’ E7, E8 are
A e T
%1 2 3 e-1 g
1
PR S U H
1 2 -2 -1
11@2
SR S S ¢ N S
¢ Oz % %5 6
11@2
%1 ®3 4 5 6 7
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2
1 1 1 1 1 1 1
Eg o - o o o o o
’ 1 3 4 5 % %7 oQ
1 \ = =
For GZ , 1if we let (uz, a,) 3, (ul, ul) 1 . Thus
1
G Ie: =03
2 al 0.5

For F, , if we let (uS, as) = 1 then A23A32 = 2

- > ) ‘ - -
implies (uz, az,/(ag, as) 2 or (uz, az) 2 . Hence

For B, and C, » we have

SloN
Q0N
o
4
¢
i
dro
jv
=
v
[a]

(@]
Q01—
20

§
§
L]
[}
Q%A
=
Y
N

We summarize these in

Theorem 4.6.1. The only connected Dynkin diagrams

are AR(Q > 1), BQ(Q > 2), CQ(R > 3], DQ(Q > 4) and the

five exceptional ones, GZ’ F4, E6’ E7, E8 . //
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Exercise 4.6.1. Verify the following table of the

Cartan matrices and their determinants. (Note that the

Cartan matrix depends on orderings of 1I.)

Cartan matrix determinant
2 -1 0 0 )
1 2 -1 0 0
A, 0 -1 2 -1 0 0 9+ 1
0O 0 0 0 1 2)
4 3\
2 -1 0 0
-1 2 -1 0 0
B, : ) ) ) 2
0 0 0 -1 2 -2
0 0 0 0 -1 z)
/
2 -1 0 0
-1 2 -1 0
o o -1 2 -1 0 2
0O 0 0 12 -1
0 0 0 -2 2
/
(2 -1 0 0
-1 2 -1 0
Dy ) ] i )
0 0 1 2 -1 0 0 4
0 0 12 -1 -1
0 0 0o -1 2 0
0 0 0o -1 0 2
\ J
4 N\
2 0 -1 0 0 0
| 0o 2 0 -1 0 0
E -1 0 2 -1 0 0 3
6 0 -1 -1 2 -1 0
o o o0 -1 2 -1
o o 0 o0 -1 2
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Cartan matrix determinant
\
( 2 0 -1 0 0 0 0
0 2 0 -1 0 0 0
-1 0 2 -1 0 0 0
E7 0o -1 -1 2 -1 0 0 2
0 0 0 -1 2 -1 0
0 0 0 0 -1 2 -1
0 0 0 0 0 -1 2
\ /
4 N\
2 0 -1 0 0 0 0 0
0 2 0 -1 0 0 0 0
E -1 0 2 -1 0 0 0 0
8 o -1 -1 2 -1 0 0 0 1
0 0 0 -1 2 -1 0 0
0 0 0 0 -1 2 -1 0
0 0 0 0 0 -1 2 -1
\ 0 0 0 0 0 0 -1 2
J
2 -1 0 0
-1 2 -2 0
Fy 0 -1 2 -1 1
0 0 -1 2

4.7. Construction of the algebras

Having classified all connected Dynkin diagrams, we

here construct simple Lie algebras whose Dynkin diagrams
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are those types described in Section 4.6. We first
construct the simple algebras of types Az(z > 1), BQ(Q > 2),
C,(% > 3) and DQ(Q > 4) which are called classical,
because they correspond to the linear Lie groups that Weyl
has called the classical groups. These algebras are the
only infinite classes of simple Lie algebras. The construc-
tion of the five exceptional simple Lie algebras of types
GZ’ F4, E6’ 7 E8 is more sophisticated and related to
simple alternative and Jordan algebras. The treatment

E

here follows Jacobson (Lie algebra, Interscience, New York,
1962).

In each of the constructions, we first show that the
algebra is semisimple. The simplicity then follows from
irreducibility of simple system of roots, or equivalently,
from the connectedness of the corresponding Dynkin diagram
(Theorem 4.5.7). For this, Theorem 3.7.11 and the follow-
ing are fundamental. Let L be semisimple and let L
contain an abelian subalgebra H such that L = H @& Zu (G an
where o represents a nonzero mapping of H into F such
that [kah] = a(h)x . heHd. Then H is a split CSA
of L . This follows from the fact that the centralizer
of H in L is H and bence H is a maximal torus of

I. (see Theorem 4.2.2).

AQ(R > 1). Let V be an (& + 1)-dimensional vector

space over F . We identify HomF vV = P£+1 , the algebra
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of (& + 1) x (& + 1) matrices over F Let

L =sf(s+1, F)={xc¢e Fg+1 | Tr x = 0} By comparing
dimension, one sees that Hom V = sf(g + 1,F) & Fl We
have observed in Section 3.7 that shie + 1,F)= L is
semisimple. Choose a basis for L as

hk = €y T e%+1,1+1 , k<4 eij , 1 #3j=1,...,0%1
Set h = z% wkhk Then the set of the h's is an abelian
subalgebra H of dimension & and we have

I?rs’h] - (ws ) wr)ers ?

e hl = (y + w e > = Zz

K 2+1,1° ] Y r?Ce+1,r” ¥ 1 Wi 2

[ér,%+1’h] = -(y + wr)er,ﬁél T # s =1, L,
where the eij are the usual matrix units. The 22 +

linear functions

are distinct and are nonzero weights of

w 9

h » w
s T

h—>’Y+wr,

ad., H

L This

gives L = H + ZaLu , o running over these weights.
It then follows that H is a split CSA and the o are
now the nonzero roots. Set
T T Al T i A S TSR]
OLQ/='Y+U)Q/.

h—+-('\{+wr



Then o, + o * oL... ta, =Y 4+ W k=1,...,2-1 and

k k+1 L k

' _ i} . . )
o + Csq L. ¥ uj ws .wj+1 , 1 i< jz2 1

This shows that every root has the form Zkiuj where the

k, are integers and k. 20 for all i or k, <0 for

all 1 . Thus the oy form a simple system of roots by
Corollary 4.5.3. The same relation also shows that

o. *+ O

5 ;41 1§ a root, 1 <iz< & -1, while o, + 2

i %541
is not a root and oy * &j is not a root for J > 1 + 1

Hence Ai+1,i = Ai,i+1 = -1, 1 <1i <& and Aij =0
for j >i+ 1 or j < i -1 . Thus the Dynkin diagram
is the connected simple chain of type AQ and L 1is
simple by Theorem 4.5.7.

B%(Q > 1). Let dimV = 2% + 1 and let (x,y) Dbe
a sym&etric nondegenerate bilinear form on V whose

matrix 1is

1 0
s =10 0
0 1Q

The orthogonal algebra C?(V) or C?%ZQ + 1, F) consists
of all elements a in Hom V such that (va, w) = -(v, wa)
for v,w ¢ V . Denote L = C%VJ and partition any

element a € L in the same way as s :

%11 1 2
a =l Yy 211 212
u a a

2 21 22
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The orthogonal condition is equivalent to the relation
as = - sa' which in turn translates into the following

set of conditions, where a' denotes the transpose of a

(1.50)

In particular, (1.50) shows that Tr a = 0 for
a ¢ L. where we have identified Hom V = F2£+1 .  The
relations (1.50) imply that L has a basis consisting

of the elements

hy = €541, i+1 ~ Cieg+l,i+a+1 (1.51a)
TS N © i1, jegel 2 T 7 (1.51b)
Cugreg T Ciral, il ©iige1,iv1 >+ < (1.51c)
e_wi—wj = ej+1,i+2+1 - ei+1,j+2+1 , 1< ] (1.51d)
w. T f1,i+1 "Civ+l,1 0 (1.51e)
Sw, T Ci+1,1 7 °1,ivel (1.51f)

where i,j = 1,...,% and we have set h = Z% wkhk

In fact (1.51a) comes from the relation a5,y = -ail

(1.51e) and (1.51f) correspond to u, = —vi and

u, = -v! . (1.51b) is from a = -al while (1.51c)

22 11
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follows from aél = "2, Finally, (1.51d) is obtained by

2

al, = The total number of basis elements is 284 + £

12 - %12
We show that V is L-irreducible. Note that a
subspace W of V is L-stable if and only if W 1is
stable under the (associative) subalgebra L* of Hom V
generated by 1 and L . Since Hom V acts irreducibly
on V , it suffices to show that L® = Hom V . From the
unit matrix 1 we get all scalars. From the matrices in
(1.51a) we can then generate all diagonal matrices. Then
multiplying various matrices in (1.51b-f) by suitable
e gives all the off-diagonal matrix units eij
Hence L% = Hom V and by Theorem 3.7.11(2) L is
semisimple since L<Z &ﬂ(V)
The linear forms which are subscripts in (1.51) can
be identified with the linear mappings h - a(h) , where
h = Zwihi and we get [eah] = oc(h)eOc where o = w. - W: >

1 J

W, + wj , etc. Thus H 1is a split CSA and the o are
the nonzero roots. We now assume £ > 2 and we set

ap T Wy T Wy

Og = Wy T Wz
Ogo1 T Wgoq 7 Wy oo
Gg T Yy

One checks that this is a simple system of roots with
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Dynkin diagram of type B% . Hence L is simple of type

Bg(l > 2)
Cz(z > 1). Let dim V = 22 , with basis (Vl""’VZQ)

Define a nondegenerate skew-symmetric form (x,y) on V

by the matrix

(It can be shown that even dimensionality is a necessary

condition for existence of such a form). Denote by

L = sp(V) or sp(2%,F) , called the symplectic algebra,

the set of elements a € Hom V such that (va,w) = -(v,wa)
v,w e V . If we identify the elements a e L with the
matrix
211 %12
a = ) ij € Foo
421 %22

then the symplectic condition is equivalent to the conditior

aq = -qa' , which implies

= al, = a

= -l r =
422 11 > %12 T %12 ¢ %21 21

Hence Tr a = 0 for a e L and L has the basis

h. = e.. - e, . .
i ii L+i, e+1 °
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where i,j = 1,2,...,% . As before, we can show that
H = {Zwihi} is a split CSA of L and o = wj T Wy
-wj T Wy etc. are the nonzero roots. As for B
V is L-irreducible and L is semisimple. If &

v =

then the roots

1 wl - U)z,...,OLSL_l = wg'_l - wQ, s

il

o 2wz

form a simple system of roots whose Dynkin diagram 1is
connected and of type CQ . Hence L 1is simple of type CQ.

Dg(z > 2). Let dimV = 2%, with basis
(Vl’vz""’VZQ) . The construction is identical with that
for B, , except that dim V = 2% 1is even. Thus the

2
orthogonal algebra L zcyqzz,F) consists of matrices

a e Fzz such that at = -ta' where
0 1
t = %
1 0
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Hence L is the set of matrices

411 212
a = , a.. ¢ F
ij 9
421 vy
= .gl i = - ! = -
such that 259 ayqy o ai, a4, and a5y 2,9
Thus L has the basis
by = €55 7 Cpui,eei
e = e.. - €. . , 1 # ]
w: "W, ji i+ ,3+8
1]
. +w. ~ Ci+g,j ~ Cjen,i vt S
1]
e = e. . - e. . , 1<
-wi~wj j,i+ 1,3+2 ]

where 1,] = 1,..;,2 . H= {Zmihj} is a split CSA and
the subscripts are the nonzero roots. As before, we can
show that V is L-irreducible and so L is semisimple

since Tr a =0 for aelL . If 2 >4 then

= w - w

R T B R et | 9-1 9

form a simple system of roots which has the Dynkin
diagram D2 . Hence L is simple of type Dz

Each algebra of types AQ(Q > 1), Bz(% > 2) ,
CQ(Q > 3) and Dz(% > 4) is unique up to isomorphism

and no two of these algebras are isomorphic.
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This follows from Exercise 4.5.2 and the classification
of connected Dynkin diagrams. When the restriction on
% is relaxed, we have the following isomorphism relations

for the low dimensional orthogonal and symplectic algebras.

Exercise 4.7.1. Prove that A1 = B1 = C, , B, = C

A3 o DS and D2 & Al @ A]

The construction of the five exceptional simple
algebras is related to simple alternative and Jordan
algebras. Thus a complete discussion will take us too
far afield. Here we outline the construction for Gz R
F4 , and E6 . The situation for E7 and E8 is more
complicated ; however, we intend to state the results
of a "remarkable" uniform method by Tits for the
construction of the exceptional algebras.

To proceed, we state some definitions in order.
Recall that an algebra A is called alternative if it
satisfies the alternative law Xzy = x(xy) and

yxz = (yx)x . An algebra A over F with unit element 1

is called a composition algebra if it has a nondegenerate

quadratic form =n(x) on A satisfying the composition

law n(xy) = n(x)n(y) » X e A .

Exercise 4.7.2. Prove that any composition algebra

A(of char # 2) 1is a quadratic algebra with involution
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x » X in the sense that every element x e A satisfies

the quadratic equation

XZ - t(x)x + n(x)1 = 0 ,
x + X 1linear, xy = yx and x = x , where t(al) = 2a
and n(al) = az,a e F . 1In this case, t : A -+ F 1is

linear and is called the trace form of A

Exercise 4.7.3. Prove that any simple alternative

quadratic algebra (char # 2) of finite dimension 1is
necessarily a composition algebra.

We construct a well-known simple alternative
algebra. Let V be a 3-dimensional vector space Over
F with basis i, j, k . Let ( , ) be the inner product
on V and define an anticommutative multiplication a X b

on V by

i

ixi=jxj=kXk=0,
ixj=k, ixk=1i, kXi-=]

In this way, V becomes a simple Lie algebra. Now, let C

be the set of 2 X 2 matrices

, o,BeF , a,belV
b B
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Define a multiplication in C as

a a (y o ay - (a,d) ac + 8a + bxd
b B d S vyb + gd + axc g§ - (b,c)
The remaining operations are defined in the obvious manner.

The 8-dimensional algebra C so defined is called the

split Cayley algebra or vector matrix algebra.

Exercise 4.7.4. (1) Prove that C 1is a simple

alternative quadratic algebra with trace t(x) = o * B

where o,8 are the diagonal entries of X

(2) Show that CO = {x e C | t(x) = 0} is equal
to ECsCJ = {LX’Y:l = Xy - yX l X,Y € C}
Due to the following famous theorem of Hurwitz, C

is the only nonassociative composition algebra.

Exercise 4.7.5. Any composition algebra A over

F (of char # 2) 1is one of the following : F1 ; F® F ; a
separable quadratic field X over F ; a quaternion
algebra Q over F ; a Cayley algebra C over F

Hence the possible dimensions for A are 1, 2, 4, 8

Exercise 4.7.6. Show that, in any alternative

algebra A , the mappings

Da,b = [La’LB] + [La,Rﬁl + [Ra,Rh] , a,beA
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are derivations on A and that D = -D
a,b b,a

Exercise 4.7.7. Let V be the 3-dimensional space

defined above. Let Te¢ Hom V he of trace 0 and let
T* be the adjoint of T relative to ( , ) . Prove that

the mapping

a al 0 aT

—
b 8 -bT#* 0

is a derivation on C and the set LO of these derivations

is isomorphic to AZ = sﬂ(S,F)

GZ' We retain the previous notations. Let
L = De;~C , the Lie algebra of derivations on C . Since
C, = [c,c] (Bxercise 4.7.4), C =C, ® F1 and C,L < C,
Also, CL C:CO since 11, = 0 . Thus L acts faithfully
on the 7-dimensional space CO . Moreover, it is shown
that L acts irreducibly on CO and that any derivation
in L has the form De a + De b + D0 where
1,712 2, 21

12 ~ ’ by =

|
0 a [oo
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and Da b and LO are the same as in Exercises 4.7.6

and 4.7.7, respectively. Then Tr D = 0 for D e L and
hence L is semisimple by Theorem 3.7.11. We identify
L, with A, = sf(3,F) . If H 1is a CSA of Ly » H is
also a CSA of L . Therefore, we can take H to be the

set of matrices of the form wlhl + wzhz . h1 =€y " €33 >

h, = Then H is a CSA of L and the nonzero

2 = %22 7 %33
roots are : Wy, 0,5 i(wl'- wz), i(w1»+“@2), i(Zml +,w2),
i(ml + sz) . The roots G T Wy T Wy s 0y T, form
a simple system of roots with Dynkin diagram G2 . Hence
L is simple of type G2

Recall that an algebra J over F 1is called Jordan
if it is commutative, i.e., x:y = y-'x , and satisfies
the Jordan identity [(x-x)-y]-x = (x-x).(y-x) . Note
that the Cayley algebra C bas an involution Xx ~ X such
that 1 =1 and x = -x for x € C, - Let Mg be the

set of 3 x 3 matrices of the form

El c b
x = |c £, @ » £y e F o, a,b,c ¢ C
b a 53
which are hermitian relative to the involution. If

X,y € Mg , then x.y = %(xy + yx) ¢ Mg where Xy 1is

the usual matrix product. It is shown that M§ with
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x.y becomes a central simple Jordan algebra. An algebra

A over F is called central simple if Ay is simple for

any scalar extension K of F . Mg is the only

"exceptional' central simple Jordan algebra (of char # 2),

because all other central simple Jordan algebras are

. . + .
isomorphic to subalgebras of A for some associative
8

algebra A but M3 is not.

Exercise 4.7.8. In any Jordan algebra J , the
mapping Dx,y = [RX,Ry] for x,y € J 1is a derivation
on J

Exercise 4.7.9. Let LO be the set of derivations
on M§ which kill e, = diag(1,0,0) , e, = diag(0,1,0) ,
e; = diag(0,0,1) . Show that the Lie algebra L0 is

isomorphic to D, , the orthogonal algebra &8 ,F)

Exercise 4.7.10. Prove that Tr Rx = 9Tr x for

X € Mg where Tr x = 51 + 62 + ES . Use this to show

that Mg D CZJO for all D e Der M% , Wwhere

J o={xeM | Tr x = 0}

0 3 |

Exercise 4.7.11. Prove that every derivation D

on Mg is inner (char # 2, 3)
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F4. Let L = Der Mg and let JO be the same as in

Exercise 4.7.10. Then it is shown that L .acts faithfully

and irreducibly on JO . In view of Exercise 4.7.11,

Tr x = 0 for x e L and by Theorem 3.7.11 L is

semisimple. When LO js identified with D4 by

Exercise 4.7.9, then the CSA H of L0 corresponding

to the CSA of D is a split CSA for L . Then the nonzero

4

roots of ' H in L are zw,, *w.*w., A., iMi, where
A. = %(ml tow, * g + w4) - ws
M= 3wy ¥ wy *owgF w4) ,

M, = %(wl +

The roots oq = Wy o, Oy = Wg T Wy o 0 = Wy s

a, = %(ml T W, T W T w4) form a simple system of rToots
with Dynkin diagram of _type F4. Thus L 1is simple of
type Fd . Note that there are exactly 48 roots and

dim L = 52

Exercise 4.7.12. Prove that Der Mg + RJ acts
) 0

irreducibly on M% (char # 2,3) where JO is as in

Exercise 4.7.10 and R; ={R | xe J.}
0 X 0
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E_. Let L = Der M8 + R . By Exercise 4.7.8,

“6 37 0T,

[RX,Ry] e Der Mg for X,y ¢ M§ and [R_D] = R for

DeM Thus [L,L} C 1L and L is a Lie algebra.

8
3
Since Tr z = 0 for z ¢ L , by Exercise 4.7.12 L is
8
3
Then H' = FRe + FR + H is a split CSA of L

,-1‘83 82‘83

semisimple. Let H be the CSA of Der M (of FA)

where e e,, €z are the same as in Exercise 4.7.9.

The nonzero roots of H' in L are iwi *w©

i<j=1, 2, 3, 4, i(mi + %(wé - ws)), +(A. * %(m7 - ws)),
: Y - H . i

i(bi + 2(w7 m6)), where hl and A1 are as in type

F4 . The roots ay T oy + %(w6 - ms), Ay = wg T Wy
as = wl - wz s a4 = wz - ws ’ us = ws + w4 5

ag = —M1 + %(w7 - w6) form a simple system of roots
with Dynkin diagram of type E6 . Hence L 1is simple
of type E6 . Notice that there are 72 roots and

dim L = 78

Let B be a finite-dimensional algebra over F

with a nonzero linear form t and let B have a unit

element 1. Assume t(1) # 0 . Thus if we let
BO = {x ¢ B | t(x) = 0} , then we have the vector space
direct sum B = BO + F1 . Hence, for x,y e B, xy 1is

uniauely expressed as

1
XY = Ty t(xy)l + x=Yy (1.52)
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where Xx=xy € BO , since t(xzy) = 0

The Tits' construction. We outline a partial results

of the Tits' construction. Let A be a composition algebra

over F of char # 2,3 , so that A 1is a quadratic

algebra with trace form t . Let A have a unit element
u. Let J = M§ with unit element e . Set

Ay = {a e A | t(a) = 0} , JO = {xedJ | Tr x = 0}

Note that t(u) = 2 and Tr e = 3 , and the bilinear

forms <x,y> = Tr x-y and (a,b) = t(ab) are respectively
nondegenerate on J and A . The relation (1.52) turns
out as

ab = % t(ab)u + axb , a,b e A,
X'y = LT '
y 3-( T x-y)e + xxy , X,y € J

It is easy to check that axb defines an anticommutative

product 1in AO while x=#xy defines a commutative one in

JO . Let

L = Der A + Ay 8 J; + Der J (1.53)

be the vector space direct sum of Der A , Der J and
the tensor product AO L% JO over F . We define a
multiplication [ . ] in L which is bilinear and

anticommutative, which agrees with the ordinary Lie

product in Der A and Der J , and which satisfies
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[Der A, Der J] =0,

[a 8 x, D] = aD R x, D e Der A, a ¢ AO’ X € JO’
[ @ x, D] =a®&xD, DeDerJ, achyxelJ,
[a R x, b 8 y] = T% Tr(xy)Da’b + (axb) 8 (x=y)

+ 35 t(ab) [Ry, Ry] ,
a,b € AO ; X,Y € JO .

where Da b is as in Exercise 4.7.6. .Utilizing the fact
3,

that Da,b= -Dh,a and asxb = -bxa for a,b ¢ AO , 1t

can be shown that L 1is a Lie algebra under the product
just defined.

Let K be the algebraic closure of F . By

is one

i
=

Exercise 4.7.5 the composition algebra A =
of the following : Ku, Ku @& Kv1 with vi =u , a split
quaternion algebra Q , a split Cayley algebra C

Then the corresponding Lie algebra LK formed by (1.53)

is listed as

‘ Ku Ku + Kv, Q C

Hence L 1is central simple. Here we note that



Der(Ke) = Der(Ku + Kvl) = 0 while Der(Q) 2 sf(2) and

Der C = G2 . Thus when A = Ku + Kv1 (so AO = Kvl) , L

in (1.53) corresponds to E6 . In fact, L = Kv1 ® JO + Der J
is isomorphic to E6 = RJO + Der J via vy R x + D ~ RX + D
In (1.53), J can be replaced by other central simple

Jordan algebras. For example, if J = Ke and A = C

then L in (1.53) corresponds to G, . The relation (1.53)

2

enables us to enumerate dim L via

dim L = dim Der A + (-1 + dim A)(-1 + dim J) + dim Der J

In particular,

dim Eg = 0 + 1.26 + 52 = 78 ,
dim E, = 3 + 3:26 + 52 = 135 , and
dim Eg = 14 + 7-26 + 52 = 248

The dimensions of irreducible representations we
presented here for A, - Dy, GZ’ F4 and E6 are
minimal. In fact, E. Cartan has computed the minimal
dimension of irreducible representations of the

exceptional algebras.
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minimal dim. of

L dim L irreducible representation
A% L(2+2) g + 1

BQ L(22+1) 28 + 1

CQ L(20+1) 2%

DQ 2(28-1) 2%

G2 14 7

F4 52 26

E6 78 27

E7 133 56

E8 248 248

Thus the "simplest" matrix realization of E8

will involve 248 x 248 matrices.

Jacobson first identified G2 with Der C , C a
split Cayley algebra (Cayley numbers and normal simple
Lie algebras of type G , Duke Math. J. 5(1939), 775-783),
while the description of F and E6 as Der M8 and

4 3

RJ + Der M§ is due to Chevalley and Schafer (The excep-
0

tional simple Lie algebras F4 and E6 , Proc. Nat. Acad.
Sci. U.S.A. 36(1950), 137-141). The Tits' construction

has been reinvestigated many times ;

1. J. Tits, Algebres alternatives, algébres Jordan

et algébres de Lie exceptionelles, 1.”, Nederl. Akad.
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Wetensch, Proc. Ser. A 69 = Indag. Math. 28(1966), 223-237.

2. J. R. Faulkner and J. C. licrra, "Exceptional Lie
algebras and related algebraic and gcomctric structures',
Bull. London Math. Soc., 9(1977), 1-35.

3. N. Jacobson, "Exceptional Lie algebras', Lecture
Notes in Pure and Appl. Math. I, Marcel Dekker, Inc. N.Y.,
1971.

4. R. D. Schafer, "An introduction to nonassociative
algebras", Academic Press, New York, 1966.

5. R. D. Schafer, "On the simplicity of the Lie
algebras, E7 and E8", Nederl. Akad. Wetensch. Proc.

Ser. A 69 = Indag. Math. 28(1966), 64-69.

The Tits' construction allowed Schafer (Paper 5.
cited above) to show that there are indeed simple Lie

algebras of types E7 and E8



5. REPRESENTATIONS OF SEMISIMPLE LIE ALGEBRAS

5.1. Universal enveloping algebras

We discuss an associative algebra defined by a uni-
versal property. This algebra has a unit element and 1is
generated by a Lie algebra L . The purpose 1is to prove
the Poincare-Birkhoff-Witt Theorem (PBW Theorem) that
this algebra has a basis consisting of 1 and the "standard"
monomials in an ordered basis of L . Universal enveloping
algebras along with PBW Theorem are basic tools for
representation theory of Lie algebras. In this section,

L denotes a Lie algebra (not necessarily finite-dimensiona

over an arbitrary field F

Definition 5.1.1. An (nonassociative) algebra A

is said to be graded if A = Z?_O @ A' , where the A
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i o adt]
are subspaces of A and AA’ € A . The elements of
AY are called homogeneous of degree 1 . Every element
a ¢ A 1is uniquely expressed as a = Zai » a; € At ,

a; = 0 for all but a finite number of i . Then a. is
called the homogeneous part of a of degree i . A left
(right) ideal B of A is called homogeneous if

B = Zi (B N Ai) . An algebra A 1s said to be filtered
if for each i e Z' = the set of nonnegative integers,

there is defined a subspace Ai such that AiCZ Aj if

i<j, A=UA; and AiAjC Ay //

If A is graded as A = Zi ® A" and we set

A. = AJ then this defines a filteration in A . Let

i j<i
A now be an algebra with unit element 1 and let A be

n

generated by a subspace V . Denote by V the subspace

spanned by all the products of any n elements in V in

F1 + V + V2 + ... +

all possible associations. Thus A

\

+ ... . If we set Ai = F1 + ... + VY with A, = F1 then

0

these Ai define a filteration in A

Suppose that A is filtered by subspaces Ai . We

set GM = Gm(A) = Ai/Ai~1 and take the vector space direct

sum G = G(A) = Z?zl ® G' where we set A_l =0 . A

multiplication in G is defined by

(x.

i + Ai-l)(xj + Aj_i) = X. X, 7 Ai+j—1 (1.54)

1]

n
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and

Y (mod Ai-l)

= Y35 (mod Ai+j-1)

for X; € Ai R Xj € Aj . If X

X. = vy. (mod A. . then clearl X
IS J_1) y

and hence (1.54) is well-defined. This makes G a graded

X,
it]

algebra, called the graded algebra associated with A .

We turn to special cases of graded algebras. Let V

be a vector space over F . Let TOV

I}

1
F, TV=V,

™vVyV=vVe® ... 0V (mtimes). Set T = T(V) = zjz o Tt v

0

and introduce an associative product in T by the obvious

manner ., (V1 R ... ® Vk)(w1 R ... 8 wm) = vy ® ... 8

K & Wy a ... K wo €

associative graded algebra with 1 which is generated by 1

Tk+m

v V . This makes T(V) an

and any basis of V . Call T(V) the tensor algebra on

V . T(V) 1is the universal associative algebra on a basis
of V in the following sense ; given an associative
algebra A with 1 and an F-linear map ¢ : V >~ A,
there exists a unique homomorphism of F-algebras
¢ : T(V) - A such that ¢(1) =1 and yYi = ¢ where 1
is the inclusion map V - T(V)

Let I be the ideal in T(V) generated by
xRy - y®x , x,y € V . Call the algebra S(V) = T(V)/1

the symmetric algebra on V and denote by 0 : T(V) » S(V)

the natural map. We note that the generators of I are
in T2V and hence I = (INT-V) @ (INT V) ®

1
Thus ¢ dis injective on TO v=F, T V=V . Since

I is homogeneous, setting s" v = O(Tm) makes S(V) a
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[ee]

commutative associative graded algebra S(V) = Zi=0 e s" v
Hence S(V) 1is the universal commutative associative
algebra on a basis of V 1in the above sense. Let

{Xi | i ¢ P} be a fixed basis of V and let {zi | 1 e P}
be a set of indeterminates which is bijective to {Xi}

It is readily seen that S(V) is canonically isomorphic

to the polynomial algebra over F in {zi}

Definition 5.1.2. Let L Dbe a Lie algebra over F

A universal enveloping algebra of L is a pair (U,1)

of an associative algebra U with 1 and a homomorphism

i : L U satisfying the following property : If A is
any associative algebra with 1 and j : L > A is any
homomorphism then there exists a unique homomorphism of

algebras ¢ : U -~ A such that ¢(1) =1 and ¢1i = j . //

Theorem 5.1.1. 1) Let (U,i) and (V,j) be

universal enveloping algebras of L . Then there exists

a unique isomorphism ¢ of U onto V such that ¢1i = j

2) U is generated by 1 and i(L)

3) Let Ll’ L2 be Lie algebras with universal

enveloping algebras (Ul,il), (Uzgiz) respectively and

let <t be a homomorphism of L, into L2 . Then there
is a unigue homomorphism ' of U1 into U2 such that
. _

iyt iy
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Proof. Proofs are straightforward and standard. //

We show that there always exists a universal envelop-
ing algebra (U,i) for L . Let T(L) be the tensor

algebra on L and let J be the ideal in T(L) generated

by all
(%) x@y - y®&x - [xy] , x,y €L
Set U = U(L) = T(L)/J and let = : T(L) » U(L) be the

natural homomorphism. Since J C:Zi>0 Ti L, m is
injective on TD L =F . We will show later that m 1s
injective on L too. Let 1 be the restriction of ™

to L . We claim that (U(L), i) is a universal envelop-

ing algebra of L . Indeed, let j L~ A" be as in

Definition 5.1.2. By the universal property of T(L) we

have an algebra homomorphism ¢' : T(L) -~ A which extends
j and sends 1 to 1 . Since ¢' vanishes on the
elements in (%), J < ker ¢' and so ¢ induces an

algebra homomorphism ¢ of U(L) into A such that
o(a + J) = ¢'(a) , a e U(L) , so ¢i = j and ¢ 1is
unique since 1 and 1(L) generate U(L)

Note that if L is abelian then I =J and U(L)
is just the symmetric algebra S(LY on L

To prove the PBW Theorem we proceed in steps. Let

{x; | i e p} be a fixed ordered basis of L and let



—163—

{z; | 1 e p} be a set of indeterminates. Thus S(L)
is identified with the polynomial algebra over F 1in

{Zi} . For brevity, write T = T(L), S = S(L), U = U(L),

™ - ™, and S™ = s™L . For each sequence M = (il,...,im)

~of indices, let 1z, =z, ... Z; ¢ s™ and let
1 m

Xy = Xil & ... 8 Xim e T" where m is called the length

of M . Say that M is increasing if i1 < iz < eee < im

in the given order of P . View ¢ as increasing and

z¢ = 1 . Thus {ZM | M increasing} is a basis for S

Define filterations on S and T by Sm = S0 ® S1 ® ... S

and Tm = TO ® T1 o ... 8 T" , respectively. In the

following, write i <M if i <] for all jJ e M

+ .
Lemma 5.1.2. For each m ¢ Z , there exists a

unique linear map fm : L B Sm ~ S satisfying ;

(Am). fm(xi®zM) vA for i <M, Zy € S

.7
i "M m

[}

Z.° (mod S

(Bm). fm(xi@ZM) Y ) for k <m, Zy € Sk

k =

(Cp) - £ (x;0F, (x;020) = £ (x;0F, (x;62,))
+ fm(fxixj]®zN) for all zy e S

m-1

Moreover, the restriction of fm to 1eS__, is £
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Proof. To verify existence and uniqueness of fm ,

we proceed by induction on m . If m = 0 then only
Zy = 1 occurs, so we let fo(xi@l) =z - Then fO is
extended to a linear map : L@SO~4 S and (AO), (BO), (CO)

are clearly satisfied. The uniqueness of fO follows

from (AO)

Assume the existence of a unique fm—l satisfying
(Am-l)*(cm—l) . We show how to extend fm—l to fm
For this it suffices to define fm(xi®ZM) when M 1s an

increasing sequence of length m

Case 1 : i <M . To meet (Am) , we must define

fm(xi®zM) = zitzy - Then (Bm) is automatically satisfied.

Case 2 : i < M fails. In this case, the first

il
~~
e
-

o

index j in M is less than i . Thus if we let M
then j < i and j < N where N has length m -1

By (Am—l) R fm_l(xj®zN) = zij = Zy > and since j < N,
by Case 1 fm(xj®zizN) = ZjZiZN is already defined. Thus

fm(xiQfm(ijZN)) = fm(xi®zM)

[}

the left side of (Cm)
On the other hand, (Bm-l) implies that fm(xiﬁzN)

= fm_l(xiQZN) = 252y (mod Sm_l) . Thus the right side of
(Cm) is already defined as

u = z5z52y + fm_l(xj®y) + fm_l([xix; 8z ) » ¥ e S, 4
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If we define f (x Rz

M ) = u then fm(xi®z

M) = Zi%M (mod 5.)
Hence by induction (Bm) is satisfied.

Therefore, by Cases 1 and 2, fm can be defined in
a unique way, so as to satisfy (Am) and (Bm) as well as

to extend f It remains to verify (Cm) for arbitrary

m-1
i, j . If j < i and j < N then this is the situation
treated in Case 2, so that fm(xiQZM) = fm(xi®fm(xj®zN))

has been defined to satisfy (Cm) . If i<j and 1 <N,
then since X X fx X. } , we can reverse the above
case. When 1 = 3J , (Cm) is triviael. It remains to
consider the case where neither 1 < N nor j < N 1is true.
Write N = (k,R) where k<R, k<i, k<j . For
convenience, abbreviate fm(x@z) by xz whenever Xx e L ,

z € S . By induction hypothesis we have that Xizy = Xj(xsz\

= 3 =
(x zg) ¥ [X ij Zp (by (Cm_l), and X;2p ZiZp * W,

, by (B,_4) . Since k < (j,R) and k< i

( i )|
by the case treated above kCm) applies to Xi(xk(ZjZR*)

W € Sm~2

By induction, (Cm) also applies to xi(xk w) . Therefore,

ie 1 o= x. {3 ) !
(Cm) applies to xi(xk(szR), xl(wk(szR + W) )

= xi(xk(zjzR)) + xi(xK w) . Comnsequently,

it

(#2) xi(szN) Xi(xk(ijR)) + xi([xjxk]zR)

xk(xi(szR) + [Xixk] (ijR)

4

[XjXQ (XizR) + [Xi xjxkj] zg » by (Cm_l)
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Note that i, j are interchangeable throughout this
argument. Thus if we interchange i, j in (%) and

subtract the two resulting relations, we have

xi(szN) - xj(xizN)

L]

xpe [xg Oy2g) — x5 0yzp) ] [x; By Jog =[xy Byxd] s

Xk([xixj]zR) + [Xi PijJ]ZR + [xj[xkxi]]zR (by (C, _-

i

[xgx ] Ouzg) = A [xoeyd ]+ [ Dogxd ]+ [xy a0 ]

[xixj Zy
by - (Cm~1)" (Am_l) and the Jacobi identity.

This proves (Cm) . //

Lemma 5.1.3. There exists a representation

g : L > (Homg S)  satisfying

(1) zMg(xi) = 2.2y for i <M.

i
)
N
N

(2) zMg(xi) (mod Sm) if M has length m

Proof. Note that S = Ej Sm . By Lemma 5.1.2.
m:

one can define a linear map f : LS - S by setting

f(xQz,,) = fm(x®z if M has length m . Since

o
, f is well-defined and satisfies

M

= f
-1 m

(Am)-(Cm) for all m . If we define zMg(xi) = ~f(xi®zM)

fm]LQS -1
m
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then it follows from (Cm) that g : L - (Hom S) is
a representation. Also, (1) and (2) are consequences

of (Am) and (Bm) . //

Lemma 5.1.4. Let t ¢ Tm{\ J . Then the homogeneous
part t_ of t of degree m lies in I , where
J=%erm, @ : T+ U mnatural map and I = ker o ,

c : T+ S natural map.

Proof. Write t = Z§=1 @5 X (i) where each M(i)
is of length m . Let g : L - (Hom S)  be the
representation as in Lemma 5.1.3. By the universal
property of T , g 1is extended to an algebra
homomorphism : T - Hom S , denoted by the same g ,
with JcCker g . Thus g(t) = 0 . 1In view of Lemma 5.1.3,
the term of highest degree of 1g(t) = 0 1is precisely

T _
izizl usz(i) = (0 . Hence tm e I . //

If we set U_ = n(T.) with U = 0 then U 1is
m m -1

filtered bv the U since U U < U and U < u
. m m n m+n m-1 m

Let G = I, ® G be the graded algebra associated

i=0
with this filteration where ¢" = Um/Um_1 (see (1.54)).

be the composite. Since

Let ¢ : T, — Ul nat, gm

n(T. - T ) =a(T") =0 -0

is surjective.
m m-1 ’ ¢m ]
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Thus the maps ¢m combine to yield a linear map

¢ : T > G which is surjective and sends 1 to 1

Lemma 5.1.5. ¢ : T - G 1is an algebra homomorphism.

Moreover, ¢(I) =0 , so ¢ induces a homomorphism w

of $S=T/I onto G

Proof. Let x ¢ ™ , Y € ™ . Then ¢ (x8y)

]

bran (XOY) = w(x@y) + U o= () U () + U )
b(x)o(y) by (1.54). If x,y ¢ L then m(x8y - y8x) ¢ U2

but 7w (x®y - y®x) T([xy]) e U1 . Hence ¢ (x®y - y8x) e Ul/U

=0 and IC ker ¢ . //

Theorem 5.1.6. The homomorphism o : S -~ G 1s an

isomorphism which sends s™ isomorphically onto c"

Proof. By Lemma 5.1.5, it suffices to show that w

m Then

is injective. Let w(t+I) =0 for t e T
w(t+I) = ¢(t) = ¢m(t) = m(t) + Um—l = Um_1 and hence

m(t) € U , so w(t) = n(t') for some t' e T

m-1 m-1

Thus t-t' ¢ J and t-t' € Tm(\ J . By Lemma 5.1.4,
the homogeneous part, being t , of t-t' of degree

m , must lie in I . Hence w 1s injective. //

Corollary 5.1.7. Let W be a subspace of ™ . If

the natural map o : ™ -~ s™ maps W isomorphically onto
p

s™ , then m 1is injective on W and Um = ﬂ(W)@Um_l
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Proof. Consider the diagram

€learly, w(t+I) = ¢(t) = n(t) + Um—l , t e T , and so

the diagram is commutative. Thus, by Theorem 5.1.6, wo

isomorphically sends W onto G . If T(t) + Um-l
= U 4 for t e W then wo(t) =0 in G" and t =0

This in particular implies that # 1is injective on W

and w(W) + Um—l is direct. Since wo 1s surjective on

W, so is t (eW) - w(t) + Um and Um = (W) & Um

-1 -1

Corollary 5.1.8. The natural map i : L - U(L) is

injective (so L may be identified with 1i(L)) . Thus

any Lie algebra has a faithful representation.

Proof. We have observed that ¢ 1isomorphically maps

W = T'(=L) onto S' . Hence the result follows from

Corollary 5.1.7. //

Theorem 5.1.9. (PBW Theorem) . Let {Xj | j ¢ P}

be any given ordered basis for L . Then the elements

X. .. X. = 7(x. 8x.0 ... 8x. ), me 7" s

X.
J1 7 Im 1 12 T

, form a basis for U(L)
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Proof. Let W be the subspace of " spanned by

all x. ® ... 8. , me Z ,

< ... <3 . Then o
J1 Im o o

I m
maps isomorphically W onto s™ . Hence by Corollary 5.1.°

m is injective on W and Um = 7(W) & Um~1 for all

e

me 72 . //
Definition 5.1.3. For j1 < aee £ jm , Mg Z+ ,
the basis element X. e X. is called a standard

iq im

monomial of degree m . The standard monomial of degree

0 is 1 . A basis of U(L) consisting of all standard
monomials in {Xj | j ¢ P} is referred to as a PBW basis
of U(L) . //

Because of the identification i(x) = x , X e L

the PBW Theorem can be restated as : For any ordered basis
x5 | 3 e P of 1L, the standard monomials in this
basis form a basis of U(L) . Also U(L) 1is characterized

as : If ¢ is any homomorphism of L into A as in
Definition 5.1.2 then ¢ can be extended to a unique
homomorphism (denoted by ¢ ) of U(L) into A , sending
1 to 1 . In particular, if f 1is a representation of

L into (Hom V) , £ is extended to a unique
representation £ of U(L) into Hom V and hence f
affords a unique U(L)-module structure on V . Conversely

if V is a U(L)-module then the restriction of the
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module action to L defines an L-module structure on V

Theorem 5.1.10. Let H be a subalgebra of L and

extend an ordered basis {hi} of H to an ordered basis

{hi’ xj} of L

(1) U(H) is the subalgebra of U(L) generated by
1 and H . Hence U(L) 1is a free U(H)-module with

basis consisting of standard monomials X X.

L XL e
J1 Ja Im

j1 < eee 2 jm s, M e Z

(2) Let H be an ideal of L . Then L/H can be
identified with (L+R)/R where R 1s the ideal of U(L)
generated by H , and U(L)/R 1is the universal
enveloping algebra U(L/H) of L/H . Moreover, the

standard monomials

%) h. ... h; ... X i
(%% hll hlk XJl XJm_, iy

A
A
fuud

31;...;:)1“,
form a basis for R .

Proof. (1) Let B be the subalgebra of U(L)
generated by H . Then the standard monomials

h. b. ... h. , i. < ... =< i, ke Al , form a
i, i = = "k

1 17 Iy 1

basis for B . Thus by PBW Theorem B = U(H)
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(2) We first show that (U(L)/R, i) 1is a universal
enveloping algebra of L/H where i : a + H->a+ R, ac¢ L

Let j : L/H+ A" be as in Definition 5.1.2. Define

j'* : LA by j'(a) = j(a + H) . Then j' is

extended to a unique homomorphism j' : U(L) - A . Since
He ker j' , R<ker j' . Thus j' induces a homomorphisn
6 : U(LY/R > A such that ¢(a + R} = j'(a) . Now

¢ifa + H) = ¢(a + R) = j'(a) = j(a + R) , so ¢i =]
The uniqueness follows from the fact that i(L/H)

generates U(L)/R . Thus, by Corollary 5.1.8, we identify

L/H with the subalgebra (L+R)/R of (U(L)/R) . Hence
(i.+R)Y/R has a basis {xj + R} . By the PBW Theorem

X. ...X%X. *R,j,<...%<3F ., me 7" , form a basis
iq In 1 = = -m

of U(L)/R . Therefore, if we let D be the subspace of

U(L) spanned by the standard monomials Xg e Xj , M € 7
-1 m
then RN D =0 . Noting that the elements in (%%} lie
in R and these together with x. ... X. , J, < «.. <]
iq in” "1 = = m

form a PBW basis for U(L) , it follows that the elements

in (sx%%) form a basis of R . //

Let A be an associative algebra with 1 . Then an

associative algebra B is called a left quotient division

ring for A if (1) B 1is a division ring, (2) A 1is a

subring of B and (3) every element of B has the
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form a b , a,be A.

In a ring theoretical aspect, a universal enveloping

algebra has the following interesting properties.

Exercise 5.1.1. Prove

(1) The universal enveloping algebra U of any

Lie algebra L has no nonzero zero divisor.

(2) If L is finite-dimensional then U has the
a.c.c. on left or right ideals and U has a left or

right quotient division ring. //

5.2. Free Lie algebras

A free Lie algebra L over F on a set X is

defined by the universal property

Definition 5.2.1. Let L be a Lie algebra over F

generated by X . Then L is said to be free on X if,
given any mapping ¢ of X into a Lie algebra X , ¢

can be extended to a unique homomorphism ¢ : L - K . //
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It is easy to verify that such a Lie algebra L 1is
unique up to isomorphism. For the existence of L , we
let V be a vector space over F with X as basis and
form the tensor algebra T(V) on V . Let L be the
Lie subalgebra of T(V)  generated by X . We claim that

I, is free on X . Thus, let ¢ be any mapping of X

into a Lie algebra K . Extend ¢ to a linear map

6 : V> KCU(K) . Then ¢ 1is extended to an algebra
homomorphism ¢' : T(V) » U(K) . The restriction y of
' to L gives the desired ¢ : L » K since ¢ maps

X into K and L 1is generated by X . Observe that
if L is free on X then any vector space V can be
made into an L-module by assigning to each x e X an

element of (Hom V)  and extending canonically.

Theorem 5.2.1. (Witt). Let X be any set and V

be a vector space over F with X as basis. Then the
Lie subalgebra L of T(V)  generated by X 1is the
free Lie algebra on X and the tensor algebra T(V) 1is

the universal enveloping algebra of L

Proof. The first part has been proved. Let
6 : L ~A be as in Definition 5.1.2. Since VC L ,
¢|V is extended to a unique algebra homomorphism
p : T(V) - A, sending 1 to 1 . Noting that w]x = ¢|X

and X generates L , |, = ¢ since § : T(V) -+ A
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is a homomorphism. Thus ¢ 1s an extension of ¢ and

is unique, since L also generates T(V) . Hence

T(V) = U(L) . /7

A free Lie algebra along with universal enveloping
algebras is a basic tool for the construction of
semisimple Lie algebras by means of the Cartan matrix,

the canonical generators X., V.

, h. and the
i i i

relations (1.45). For detail, consult Jacobson's or

Humphreys' book.

5.3. The Weyl group and roots

We rTeturn to a split semisimple Lie algebra L with
split CSA H . We retain the notations in Chapter 4.
Thus @& stands for the set of roots # 0 , Hg for the
Q-subspace of H¥ spanned by ¢ , I for a simple
system of roots relative to a given ordering in Hg , o"
(more precisely @E ) for the set of positive roots

relative to n , and ( , ) for the positive definite

form on Hg . Let E be the Euclidean space of dimension
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2 = dim H* that 1is the scalar extension of Hg to R,
the reals. Thus ( , ) 1is canonically extended to a
positive definite form on E . Note that 1 is a basis
of E . Also, T defines a partial order in E which
is compatible with the order o > 0 , o € o ; namely,

define o < B in E 1if B - a is a sum of roots in 1

Definition 5.3.1. A hyperplane in E 1is a subspace

of B of codimension 1. A reflection in E 1is an
element in Hom E which leaves pointwise fixed some
hyporplane P in E and sends any vector o orthogonal

to P to -a . //

Clearly, a reflection o 1is nonsingular with its own
inverse and *1 are the only eigenvalues of o . Also,
o is orthogonal, that is, (oa,0B) = (a,B) for o,B € E
(note E = Ra ® P where oL P and P is a hyperplane
fixed pointwise by o ). Any nonzero vector o determines

a reflection Oy with reflecting hyperplane

P, = {B e E| (B,a) = 0} and oa(a) = -a . This o is

explicitly given as
o, (8) =B - [2(8,0)/(0,0)] @ =B - <B,0> @ (1.55)

where <B,o> = 2(B,a)/(a,a) , o # 0 . When a e ¢,
the reflection 9, is particularly important, since

oa(®) = & by Corollary 4.4.4(2).
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Definition 5.3.2. If o e & , 9 is called the

Weyl reflection by o . The subgroup WG of the general
linear group GL(E) generated by all Weyl reflections

o, » O € ® , is called the Weyl group of ¢ . //

Since WG permutes ©® and ¢ is finite, we can
identify WG with a subgroup of the symmetric group on @

The Weyl group plays a crucial role in the sequel.

Lemma 5.3%.1. (1) If o e GL(E) leaves °©

invariant, fixes pointwise a hyperplane P in E , and

sends some nonzero o € & to - o then o0 =0 and

(2) If o e GL(E) leaves © invariant then
-1 _
S = Oo(a) for all o € & and <B,0> <g(B),o(a)>

for all o, B e @

(3) Let E' be a subspace of B . If a reflection

’

Ou leaves E' invariant then o € E' or E'C Pu

Proof. (1) Let 1 = 0,0, Then <T(®) = @& and
t(a) = o . Since o fixes P pointwise and E = P & Ra
for a suitable basis of E the matrix of is upper
triangular having all diagonal entries 1. Thus the

minimal polynomial of T is of the form (T - 1)m .

Sipce & is finite, for each B e ¢ , not all
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B, T1(8), 12(6),... are distinct, so Tk{B) =B for
some k > 0 . Choose a sufficiently large k so that
Tk fixes all R e ® . Since ¢ spans E , L

so the minimal polynomial of T divides Tk - 1 : This

forces the minimum polynomial of T to be T -1, so

. -1
= = (6] =
T 1, and o o, since o Oy - //

(2) Since oa(B) e &, ccac"l(c(e)) = 00 (B) € ®
But 00@(8) = 5(g - <B,a> a) = o(B) - <B,a> o(a) . Since
s(®) = ® , this shows that ocac_l leaves @ invariant,
while it fixes the hyperplane G(Pa) pointwise and sends

1

o(¢) to -o(a) . By (1), 09,9 but then

(o(B)) = 0(B) - <o(B),0(®)” (o) . Comparing this

- O
O’(Ot) >
Y5(a)

with the above equation gives the desired relation.

(3) Suppose that o £ E' . For Begr,

O@(B) = g - <B,o>a, If (9,B # 0 , one would have

o ¢ B' . Thus E'C P, . //

Exercise 5.3.1. Prove that the union of finitely

many hyperplanes Pu, a € ®, can not exhaust E

Exercise 5.3.2. Let Yl,...,YQ be a basis of E

and let P = {g ¢ E | (g,yi) > 0} be the posizive
i _
open half-space, 1 = 1,2,...,% . Prove that N Pi # 0
i=1

To obtain more stringent information about the



—179—
effect of the Weyl group to the root system, we put

several terminologies in order. For each vector y ¢ E ,
+
set @ (y) = {a e @ | (y,a) > 0} . Thus @+(y) = 0 N P;

(Exercise 5.3.2).

Definition 5.3.3. Let K =E - Ua€® P, (# ¢

Exercise 5.3.2). Any vector vy e K 1is called regular.
Call a € ®+(y) decomposable if o = By * B, for some
B; € ®+(y) , indecomposable otherwise. If <y 1is regular
then 1T (y) denotes the set of all indecomposable roots
in ®+(y) . Each connected component of K 1is called

a (open) Weyl chamber of E . Therefore each regular

v ¢ E belongs to precisely one Weyl chamber, denoted by

Cly) . //

Exercise 5.3.3. (1) Prove that there are only

finitely many Weyl chambers of E

(2) Let I = (al,..o,az) be a simple system of roots.
Prove that (\§=1 P; is a Weyl chamber (compare with
i

Exercise 5.3.2).

Theorem 5.3.2. Let vy € E be regular. Then TI(y)

is a simple system of roots relative to some ordering

in Hg (or E) and ®+(y) is the set of positive roots

(relative to 1M(y)). Moreover any simple system of roots

T has the form 1I(y) for some regular vy € E
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Proof. (1) Show that each B ¢ ®+(y) is of the

form where all ka are nonnegative

k
Zweﬂ(y) a¥
integers. Suppose not and let «a e ®+(y) be a
counterexample with (y,a) minimal. Thus a £ M(y) and

o = B. +B., B. € 0 (y) . Hence .(v,a) = (v,8,) + (v,8,)
2 1 2

1 i
Since (y,ei) >0, i=1,2, by the minimality of (vy,a) ,
Bl and 82 are nonnegative Z-linear combinations of

n(y) and so is o , @ contradiction.

(2) Show that T(y) is linearly independent. First,
let o, B ¢ H(y) and let o # B . By Corollary 4.4.8
(a,8) < 0 . OSuppose ro = 0, aoceI(y), ra e R .
Partitioning the indices o as the disjoint union of

a's and B's where LI 0 and r_ 6 < 0 , we rewrite

B
the sum as I ro = b3 tBB s ru >0 , tB = - TB >0 ,
Let p = % roo . Then (u,u) =a§BratB(a’8) < 0 and

since (u,u) > 0 , this is absurd unless all T and

t are 0
B
+ +
Since & =0 (Y)iy- @ (v) ., in view of Corollary 4.5.
(1) and (2) assure that n(y) 1is a simple system of roots
relative to some ordering in Hg such that ®+(y) is the

set of positive roots.

(3) Claim that any simple system of roots 1 has

the form 1 (y) for some regular vy e E . By Exercise 5.3.
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+ .
choose a Y € (wuéﬂ Pu , So y 1is regular. Clearly,
+ + -
< ¢ (y) and o cC -@+(y), and hence ¢ = @+(y)
Since each voot in 1T is indecomposable, 1T < I(y)

But both T and 1(y) are bases of E , I = I(y) . //

Notice that the map vy - (y,a) 1s continuous for
each o and P; or P; is an open convex set in E
Thus if C(y) = C(y') for regular v,y' then (y,a) and
(vy',a) have the same sign for each o e @ . Hence
3 (v) = " (y") or m(y) = mly') . Conmversely, if
I(y) = N(y') then by Theorem 5.3.2 & (y) = & (y') and
so v,y' 1lie in the same component, or C(y) = C(y")
This, in view of Theorem 5.3.2, shows that C(y) - T(y)
gives a 1-1 correspondence between the set of Weyl chambers
and the set of simple systems of roots. If I = T(y) ,

write C(y) = C(m) and call this the fundamental Weyl

chamber relative to 1 . Thus if «y' e C(I) = C(y) then

(y',0) > 0 for all o e I by the above remark. Thus

e N P; and C(I) = r\agﬂ P; (this in particular

proves Exercise 5.3.3).

Example. Let L be of type AZ , SO
® = {+0, tB, *(a+B)} where «, B are simple. Note
that & has only one root length and hence the angle
between o and R 1s 1200 (see the table following
Definition 4.5.3). Also, C(m) = {y ¢ K | the angle

0
between +y and o, B8 is < 90 } . The Weyl chambers
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with the shaded one being fundamental relative to

{a,8} can be dipicted as follows.

Since each ¢ ¢ WG is a homeomorphism on E ,
o(Cty)) = C({a(y)) and o sends a Weyl chamber onto
another. Also, we have o(Il(y)) = H(o(y)) since
(6(y), o(a)) = (y,a) . Thus these acticns of WG are
compatible with the above correspondence between Weyl

chambers and simple systems of roots.

Lemma 5.3.3. Let o € I . Then 9, permutes

+ .
the positive roots other than 0., i.e., o(® - {al)

+
=90 - {a}

+ +
Proof. Let B e @ - {a} and B = ZYEH kyY(ky e Z )
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Hence kY # 0 for some vy # a and so Ua(s) = B - <B,0> a

has term vy with the cofficient kY > 0 . This forces
Oa(B) to be positive and moreover, GQ(B) # o since

Ga(‘u) =0 - //

Corollary 5.3.4. Let ¢ = %ZB>O B Then
ou(é) = § - o for all o e II . //

Lemma 5.3.4. Let Gqs Gpseccsy Op € I (not necessarily
distinct), and set g; = Oai . If Gl.ouct_l(ct) <0

then for some index 1 <'s < t, 0y::.0, = Oq-+:0g 105 9°""

Proof. Write 8. = Oi+1"'0t-1(at) , 0 <1<t

Bt—l = o - Since BO < 0 and Bt—l >0 , we find a

smallest index s for which Bs > 0 . Then OS(BS)

= Bs-l < 0 and by Lemma 5.3.3 we must have ag = Bs
Set o0 = 0_,q--:0¢ 7" Then O(Qt) = By T og and the
relation o = 00 o—l for o € WG gives
o(a) o
o, = (OS+1"'Gt~1)Gt(Ot—l"°GS+1) (Lemma 5.3.1(2)),
which yields the lemma. //
If o = in Lemma 5.3.4 is a shortest

01...0t
expression, then the Lemma forces 01...gt_1(at)) >0

and this gives O(at) < 0 since ap = - gt(ut) . Thus

we have
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Corollary 5.3.5. If o = 00y is an expression

for o ¢ WG in terms of reflections by simple roots with

t minimal then c(at) <0 . //

Theorem 5.3.6. Let T be a simple system of roots.

(1) Let vy € E be any regular vector. Then there

exists o e WG such that (o(y), o) > 0 for all
o e T , i.e., o(C(Y)) = c(m) . Thus WG acts transitively

on Weyl chambers.

(2) If 1n' 1is another simple system of roots then
o(li') = 1 for some o e WG (WG acts transitively on

simple systems of roots).

(3) If o 1is any root, o(a) € I for some o & WG
(4) WG is generated by all o, » O F ii

(5) If o(m) =10 for some o e WG then o =1

(WG acts simply transitively on simple systems of roots).

Proof. Let WG' be the subgroup of WG generated by
all o, » OE m . We prove (1) - (3) for WG' and then

show that WG = WG’

o and choose o ¢ WG' for
o>0

which (o(y), 6) is maximal. ULet o € I be any simple

(1) Let § = %%
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root. By the choice of o , (o(y),8) > (oao(y),d)
= (o(y)s0 (8)) = (o(y),6-a) = (o(y),68) - (o(v),a)
(Corollary 5.3.4) and so (o(y),a) > 0 . But since ¥y
is regular, we can not have (o(y),a) =0 = (y,c‘l(a))

and so (o(y);a) >0 , o e I . This means that

o(y) e C(m) or o(C(y)) = C(o(y)) = C(nm) , as desired.

(2) Let 1n' = n(y) for some regular vy (Theorem 5.4.2).
By (1), there exists ¢ e WG' such that C(o(y)) = C(I)

Hence T(o(y)) = o(N(y)) = o(X') =1

(3) In view of (2), it suffices to show that each
toot belongs to at least one simple system of roots. If
g # 00 and B € @& then since o, B are linearly

independent, Pa # PB for all B # +o. . Indeed, if

Pa = PB , write E = Pa ® R = PB ® Roo and this implies

that a, B are linearly dependent. Therefore, Pu #&jg%ia PB s
so we can choose a vy ¢ Pa but vy £ PB for all B # *a

Since vy - (y,B) 1is continuous from E into R , in

a sufficiently small neighborhood of y we choose a

v'" ¢ E such (y',a) = ¢ > 0 while |(y',8)| > e for all

8 # ta . Then ' 1is regular and o e I(y') ; if o = By * B,

for B. € ®+(Y') then (’Yvya) = (Y':Bl) * (YV’BZ) > 2¢ 9

1

a contradiction.

(4) For WG' = WG , it is enough to show that
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each o, € WG' for o e ® . By (3), find o ¢ WG' such
- _ _ -1 ,
that B o(a) ¢ T . Then Oq O () GO 0 (Lemma 5.3.:
so o = 0_10 o e WG'
a B

(5) Let o(m) =T and o # 1 . By (4), let

G = Oy---0y be a minimal expression by simple reflections.

Then t > 1 and by Corollary 5.3.5 o(ct) <0, a, € m,

a contradiction. //

Definition 5.3.4. If o ¢ WG 1s expressed as

G «+.0 with o. e I and t minimal, we call the

oq oy i

expression reduced and write 2(¢) =t , called the
length of ¢ 7relative to I . View &£(1) = 0 . Denote

by n(c) the number of o € " such that o(a) < O

Lemma 5.3.7. (o) = n(c) for all o e WG

Proof. If (o) = 0 then o =1 and n(oc) = 0
To proceed by induction on 2(¢) , assume that the

equality holds for all 1 € WG with (1) < (o)

Express o in a reduced form as o = cul...cut and let
o = o - By Corollary 5.3.5 ofa) < 0 . Since I,
permutes the positive roots in ®+ - {o} by Lemma 5.3.3,
we have n(coa) = n(g) - 1 . But clearly 2(00@)

= g{c) - 1 < #(c) . so by induction z(ooa) = n(oca)

and (o) = n(o) . //

/
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Theorem 5.3.8. Let C(11) be the closure of the

fundamental Weyl chamber relative to 1 = {ul”"°’@£}

(1) Let vy e C(m) and let o e WG be any element.
Then v - o(y) = 2 S where the c, are nonnegative
real numbers and the a, are those simple roots occuring

in a reduced form of o

i

i
ot

(2) If vy e C(m) and o(y) y then o

il

i
H

(3) If vy e Clm) and o(y) or

y e C(m - C(m)

vy then o

(4) o(C(m) N C(m) = ¢ for all o # 1 in WG

(5) Let v e C(I) be such that <o(y), a> € Z
for all o e I . Then o(y) <y for all o ¢ WG (relative
to the partial order in E). The equality holds only

when o =1 or vy e C(m) - C(I)

(6) Every vector vy ¢ E 1is WG-conjugate to one

and only ome vector in C(M)

Proof. Let o be any element in WG and assume

o # 1 . Write o = Oi(l)"'gi(t) in a reduced form

where o, =0 , o. € I . Note that if v e C(I), (v,a)

. 1
061

for all o ¢ ®+
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(1) Note that each partial product Oi(t)"'gi(s)
(1 <s < t) in 0_1 is also reduced. Thus, by Corollary 5

Oi(t)"'gi(s+1)ai(s) = - Oi(t)"'Oi(s+1)gi(s)&i(s) > 0 and

h . ee.0. . = . ee.0. .
ence (03 g1y 95 ()Y % (s)) T (V205 (e) - T4 (s+1)%i(s))
is nonnegative real for any 1 < s < t , since vy ¢ c(m .

Let Ci(s) = <Oi(s+1)"‘gi(t)y’ai(s)> Then we have

o(y) = Oi(2)°"oi(t)Y - <Oi(2)°°'Gi(t)Y’ui(1)>ai(1)

continuing this we get o(y) =y - & Ci(s)ai(s)
s

and

(2) If g(y) =y then Ci(t) = <Y,c{,i(t)> = 0 1in

il
ot

(1), so (Y’“i(t)) = 0 and v ¢ C(m) wunless o

This also proves (3).

(4) Suppose o(C(m)) N C(m) # ¢ and let vy be
a vector in this intersection. Thus vy = a(y') for some
v' ¢ C(m) . But then C(m) = C(y) = o(C(y")) and this
corresponds to | = n(y) = o(u(y')) = o(m) . By

Theorem 5.3.6(5) this forces ¢ =1

(5) Under the assumption, we have all Ci(s) € A
in (1) and hence ¢ (y) <y for all o ¢ WG . The second

part follows from (3).

(6) Let vy ¢ E . Then vy ¢ C(yoi for some regular
Yo - By Theorem 5.3.6(1) there exists a ¢ ¢ WG such
that oC(v,) = c(m) and so UC(yoi = C(I) . Hence Y is
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WG-conjugate to a vector in C(II) . For the unigqueness,

it suffices to show that o(y) = vy' for vy, yv' e C(I) ,
o ¢ Wo only when y = y' . Since 1 is a basis of E ,

this follows from (1. //

We call C(m) the fundamental domain for the action

of WG (in the sense of Lemma 3.5.8(6)). Recall that
the irreducibility of 1 is equivalent to the simplicity
of L (Theorem 4.5.7). We show that this is also
equivalent to the irreducibility of ¢ in the sense of

Definition 4.5.4.

Lemma 5.3.9. 1 is irreducible if and only if @

is irreducible.

Proof. Let 1 be irreducible and let ¢ = @1\J 9,
(disjoint) with (e,, ¢,) = 0 . Then T = (A eq) U (mn e,
and since [ is irreducible, 10 C @1 or I C @2 ; but
mC @y implies (E, @2) = 0 since 1 spans E . Hence
o, = ¢ - Conversely, suppose that ¢ is irreducible and
let 11 = Iy U I, with (Hl, HZ) = 0 . Since each root
is WG-conjugate to a simple root, we can write & = @1\J @2
where 2 is the set of roots having a conjugate in m.
Noting that (o, g) = 0 implies 9,98 = OBOu and that
WG is generated by the g, O € m , we can write each

o ¢ WG as 019, where o3 is a product of reflections
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by roots in Hi . Since g, fixes each root in My

o(a) 1is an integral linear combination of roots in Iy

for each a ¢ Hl . This shows that @1(: El , the

subspace spanned by Iy s and likewise 2, C EZ . Thus
we have (@1, @2) = 0 and this forces @1 = ¢ oOr @2 = ¢ ,

so My = ¢ or T, =9 . //

Lemma 5.3.10. Let & be irreducible. Regard E

as a WG-module. Then E is WG-irreducible and in
particular, the WG-orbit of a root o spans E (i.e.,

WG(a) = E)

Proof. Let E' be a nonzero WG-stable subspace of

E and let E" = E'"  be the radical of E' in E under

( ,) . Since ( , ) is nondegenerate, E=E'"® E"

and E" is clearly WG-stable. Let a € ¢ . By Lemma 5.3.
either o ¢ E' or E'(C Pa , Since oa(E') = E' . Thus

o £ E' implies o e E" so each root lies in E' or
¥ 2

E" . Since ¢ is irreducible and spans E , this implies
that E' = E . For the second part, note that WG(a) # 0
and WG(o) is WG-stable. //

Lemma 5.3.11. Let & Dbe irreducible. Then at most

two root lengths occur in @ , and all roots of the same

length are WG-conjugate.
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Proof. Let ¢, 8 be any roots. Since the inner

product is invariant under WG and WG(a) = E (Lemma 5.3.10),
we may assume (g, g) # 0 . Then the possible ratios
all%/118]1% are 1,2, 3, %, 1/3 (the table following
Definition 4.5.3). Suppose that there are three root
lengths and let o, B, y be roOts with

Hal1? < 118112 < 1vl1? . then [l8]1%/]]all® = 2, 3

and | |v]1%/]lo]|? = 2, 5, and these give ||v||%/[l8]|”
= 3/2 , a contradiction. Let o, g have the same length.
As in the above, we may assume that (a,B) # 0 and

o # 8 (if o =8 , we are done). The same table shows
<a,B> = <B,a> = *1 . Replacing g by -g = 08(8) , 1if
necessary, we may assume <qg,B8> = 1 . Hence (O&GBOQ)(B)

= OQOB(B-Q) = Ou('B-Q+B) = o . //

In view of Theorem 5.3.6(3), the first part of
Lemma 5.3.11 is also a consequence of the classification
of Dynkin diagrams in Section 4.6. If L 1is a simple
Lie algebra of types Ag, DZ’ E6’ E7, E8 then @ has
only oné root length and for the remaining types @

has two root lengths. If © has two root lengths then

we can now speak of long and short roots.

Theorem 5.3.12. Let & be irreducible.
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(1) Let B8' be a positive root such that (B',a) > 0

for all o ¢ I . Then B' = I kua (o e ) with ka > 0

for all o e 1

(2) Relative to the partial ordering < in E , there
is a unique maximal root B and B satisfies (B,a) > 0
for all o e I . Furthermore, B 1is the unique positive

root of mawimal level.

(3) If pB' 1is any positive root with (g',a) > 0

for all o eI then B =8' or B - B' e @

(4) B 1is long (if & has one root length, regard

all roots long).

Proof. (1) Let B' =3I kaa (o ¢ T) and set

= {oe @ | k =0}

m. = {aenmn | k >0} and T
a . a

1 2
Suppose I, # ¢ . Since 1n 1is irreducible (Lemma 5.3.9)
and (o,a') < 0 for all o # o' in T (Theorem 4.5.2),

\

we have (a,a') < 0 for some a € n, and a' e Iy

But this leads to (a,B’') < 0 , a contradiction.

(2) Let g be maximal in the ordering. Clearly
g8 >0 . If (a,B) <0 for some o el , o * 8B would
be a root (Corollary 4.4.8) and this contradicts the
maximality of 8 . Thus (a,8) > 0 for all o e I and

{a.,8) > 0 for some o e I since 1 spans E . Let By
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be another maximal root, so (u’,BO) > 0 for all o' eI
and by (1) BO = 3 kuu s ka >0 for all o ¢ I . When
(a,B) > 0 for some o € I , we conclued that (BO,B) > 0
It follows from Corollary 4.4.8 that g - By € ¢ oOT B =8
It g - BO e & , either B < 60 or B, < B, a
contradiction. Hence R is unique. Let 61 be a positive
root with maximal level. Then Bl is evidently maximal in
the ordering (any root 82 with By < 62 has level > |81|)-

Thus B = 81

(3) As in the last part of the proof of (2), we have

od

(B,B") >0 and g =8' or B - B' e @

(4) Let o be any root. In view of Theorem 5.3.8(6)

we may assume that o e C(I) , so that (o,a') > 0 for
all o' el . By (3) B -a>0 and so (y,B-a) > 0 for
any y e C(I) . By (1) (8,8-a) 20, so (B,8) 2 (a,8)
while (o,B-a) > 0 , showing (a,B) > (a,a) . Thus

(B»B) 2 (asa) . //

Exercise 5.3.4. Verify that the simple Lie algebras

have the following maximal roots

% ¢2 g’
B/Ou 061 + 20(,2 + + ZO(: 2
CQ, 20(-1 + 20(.2 + + 20‘52,"1 * CL,Q, 9

0 °



—194—

Dy ap * 2oy et Zag o T 0y g T Oy

E6 aq + Zuz + 2a3 + 2a4 + 2@5 + Qe

E7 a, * Zuz - 3a3 + 4a4 + 3&5 + 2a6 T

E8 Zal + Suz + 4@5 + 6a4 + Sus + 4@6 + 3&7 + 2@8 ,
F4 : Zul + 3@2 + 4a3 + 2u4 .

G2 : 3@1 + Zaz

Exercise 5.3.5. Depict the root systems ¢ for

Al ® Al , B2 and G2

groups of A1 ® A1 ) A2 . B2 and G2 are respectively

dihedral groups of order 4, 6, 8, 12

in the plane. Prove that the Weyl

The results discussed in this sections all hold
for an Mabstract" root system ¢ . In other words, the

only conditions to be imposed on ¢ are
(R1) @ 1is finite, spans E and does not contain O

(R2) If a e @& , the only multiples of « in ©

are o .

(R3) ‘Oa(®)<: ® for all reflections O, , o € o

(R4) If o, € @ then <B,a> € Z

For details, consult Humphreys' book.
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5.4. Integral functions

Let H be a split CSA of a split semisimple Lie

algebra L and I = (al,...ya ) be a simple system of

2
roots relative to some ordering in ‘Hg . Denote by
hl’h2’°"’h2 be the basis of H as in (1.45),
corresponding to 1 (Sectiomn 4.5).

Definition 5.4.1. An element X e H*¥ 1is called

integral if <i,a> ¢ Z for all o e & . Denote by A
the set of all integral functions in H¥* . Define X e A
to be dominant 1if <x,ai> = A(hi) e z° for all a; € I
and to be strongly dominant if all <A,ui> are positive.

+ . . .
Denote by A the set of dominant integral functions

in H#* . //

One can imitate the proof of Theorem 4.4.6 to
ensure that every element in A 1is a rational linear
combination of roots in T and hence A(ﬁHg . Thus A
is canonically embedded in E with the inner product
(, ) . An element A e A 1is often called a weight in
E in the abstract sense (see Humphreys' book). In view

of Theorem 4.4.3, any weight of H in a finite-dimensional
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L-module is integral. It will be shown later that any
A€ A+ is a weight of H in some finite-dimensional
irreducible L-module.
Since I is a basis of E , the vectors Zai/(ai’ai:
a. e N , form a basis of E . Let Q = {Xl,kz,...,x }

1 2

be the dual basis of this basis relative to the inner

product, so that Z(Ai,aj)/(uj,aj) = aij , 1, = 1,2,...,%

Definition 5.4.2. Call g the fundamental system

of dominant weights (FSDW) relative to 1

Lemma 5.4.1. The Weyl group WG leaves A

sinvariant and A 1s a free Z~modu1é with basis @
Moreover, A € A" if and only if A = I m.A, with all

m. Z
i E

Proof. Let o e WG and X € A . Then <o(A),0(a)>
= <\A,a> ¢ Z for all o e © since WG preserves the
inner product. Noting o(®) = @ , we have o(A) e A
Let X ¢ A and let m, = <A,ai> » O € I . Then
0 = <A-2 mixi,u> for each o e I and (M-I miki,a) =0

A: , M. g Z

Since 1 spans E , we get A = I m i

i%1

Evidently, X ¢ A+ if and only if all m. = <As05> € A

Note that ¢ C A . Let A be the Z-span of I

in E . Clearly, A is the Z-span of ¢ also and
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is a free Z-module with basis 71 which is a (additive)
subgroup of p . Call the quotient group A/Ar the

fundamental group of ¢

Suppose that L is simple. Then the order of A/Ar

can be directly computed from the Cartan matrix of L

relative to 1 . In fact, let a; = by mijxj .  Then
= Zj mij< j;uk> =M.y » SO (mij) is the

Cartan matrix of L . Thus each Xj is expressed as

<O . L0, > A
i’k

1 1 : - :
Aj = 7 Zi kjiai where d(kji) is the inverse matrix of

(<@i,@j>) , d is the determinant of the Cartan matrix
and kji ¢ Z . As shown in Exercise 4.6.1, d 1is a
positive integer and hence is the order of A/Ar . We

state this as

Lemma 5.4.2. If L is simple then the fundamental

group _/\/Ar of o© has order : & + 1 for Ag 2 for

Bz, CQ, E7 ; 4 for DQ ; 3 for E6 ;1 for E8, P4, G2 ./

The explicit expressions of the Ki in terms of
simple roots are useful information for the structure
of certain classes of simple flexible Lie-admissible

algebras, which we discuss later. For examples, the

2 -1

algebra G has the Cartan matrix ( ) with inverse

Z -3 2

2 1
(3 2) , SO Al = 2@1 * oo, and Az = Sal + Zaz . The
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2 -1

Cartan matrix ( ) of AZ has the inverse

1 2

21 . .
3, ) %0 T 3(209 * ap) and 3y = 3(ay * Zoy)

Through somewhat laborious computations, one can furnish

the following table where I C oy is abbreviated

(Ci’CZ""’CQ)

Exercise 5.4.1. Verify the following table.

A, i A, 7o [(2-i+1)a1 b 2(emit1)ay +a..t(i01) (8-iv1)oy

+ i(z-i+1)ai + i(z—l)ai+l +o..t i“g]

By ¢ Ay =gt 20, *..ot (i-l)qi_l + i(ai ¥, +-~-+fu2)
(i < 2)
Xl = %(ul + 2@2 +,, .+ gaz)
CQ Ai =ag * 2&2 oot (i-l)ui_l + i(@i oot ag g + %ul

+*Hi(ay ¢ va)) (<2 - 1)
Aoo1 " %(al t 20, teeot (2-2)&2_2 + %laz_l + %(Q-Z)al

AL = %(al + Zaz oot (Q-Z)ag_z + %(Q"Z)az_l + %2&2)



(6, 9, 12, 18, 15, 10, 5)

(5, 8, 10, 15, 12, 9, 6, 3)

(10, 15, 20, 30, 24, 18, 12, 6)
(8, 12, 16, 24, 20, 15, 10, 5)
(6, 9, 12, 18, 15, 12, 8, 4)
(4, 6, 8, 12, 10, 8, 6, 3)

(29 39 4: 6a 53 4’ 3: 2)

—-199—
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F : A = (29 3; 49 2)
A, = (3, 6, 8, 4)
A, = (2, 4, 6, 3)

A, = (1, 2, 3, 2)

4
G, + Ay = (2, 1)
r, = (3, 2)

Let L be simple and regard L as an L-module
via ad . Then the weights of H are the roots of H .
Let AO be the unique maximal root of H relative to
the partial ordering < in E . Comparing the list in

Exercise 5.3.4 with the table above, one finds the

following interesting result.

Theorem 5.4.3. Let L be a simple Lie algebra with

split CSA H and let AO be the maximal root of H

relative to the partial ordering < in E . Then
AO = Al + kg for . AQ(R > 1),

AO = Al for E7, F4 ,

A = A

0 5 for -Bz(z > 3), Dz(l > 4), E6’ G2 ,

>
1}

[N

>

for cz(z > 2) ,

A = A for E, . !/
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In Theorem 5.4.3 we adopted the ordering of I as

in Theorem 4.6.1.

Exercise 5.4.2. Let YooYy be an '"obtuse"

basis of E (i.e., all (y., v:) 0 for i # j)

i’ ')
Prove that the dual basis yi,...,y; is 'acute" (i.e.,

fin

(vi» v{) 2 0 for i ¢ 3)

Lemma 5.4.4. Each XA € A is WG-conjugate to one

and only one dominant integral function. If A 1is
dominant then o(A) < A for all o e WG , and if A

is strongly dominant then o(Xx) = A only when o =1

Proof. The first part follows from Theorem 5.3.8(6),
since WG(A) C A . Recall that Theorem 5.3.8(1), so (5),
requires the only conditions that (A,a) 2 0 for all
o ¢ T and WG(A) C A . This proves the second part

while the last part is immediate from Theorem 5.3.8(2). //

Lemma 5.4.5. Let A ¢ A+ . The number of dominant

+ . ..
U e A such that u < A 1is finite.

Proof. Recall that each Ai e § , FSDW, is a
rational linear combination of the a; € . It is
easy to see that these rational coefficients are all

nonnegative. In fact, let . = X Then

i Tij%;

(Ai, Ak) = 3 rij(aj’ Ak) = rik(ak’ ak) and Tig 2

A\
o
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by Exercise 5.4.2. Thus, by Lemma 5.4.1, X = I T.a:

i’1
+

and u = I S;a; > Ty, S; € Q . If p <A then all

T."S; € 7% . This allows only finitely many possibilities

for the S (why 7). //

5.5. Weights and standard cyclic modules

Let L, H, T and F be the same as in
Section 5.4. If V is a finite-dimensional L-module,
recall that, in view of Corollary 4.2.3(1), H acts
diagonally on V = ZAeH* VA(H) where VA = VA(H)
= {veV ]| vh=2x(h)v for all h e H} , and that
A ¢ H* 1is called a weight of H in V if VX #0

We extend the notion of weight to an arbitrary L-module.

Definition 5.5.1. Let V be an L-module of

arbitrary dimension and let V, = {veV | vh = A(h)v

fof all h e H , A e H*¥ . If VX # 0 , we call VA

a weight space and call A a weight of H in V . //
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Unlike the finite-dimensional case (Theorem 3.2.9),

if dim L = «» then there is no guarantee that V is the
sum of its weight spaces. However, the sum V' of all
weight spaces VA is direct : The argument is the same
as in showing that eigenvectors of distinct eigenvalues

for a single linear transformation are linearly independ-

ent (check!). If V 1is an arbitrary L-module then

various situations can happen, as shown by

Exercise 5.5.1. (1) If V is an irreducible

L-module having at least one (nonzero) weight space,

prove that V 1is the direct sum of its weight spaces.

(2) Let V be an irreducible L-module. Then V
has a weight space if and only if vU(H) is finite-
dimensional for all v e V , or if and only if vA 1is
finite-dimensional for all v ¢ V where A is the
subalgebra with 1 generated by an arbitrary h e H in

U(H) , the universal énveloping algebra of .H .

(3) Let L = sf(2,F) with the canonical basis
x, vy, h as in (1.28). Show that 1 - x is not
invertible in U(L) , so 1 - x 1lies in a maximal
right ideal I of U(L) . Let V = U(L)/I , so V 1is
an irreducible L-module. Prove that 1 + I, h + I, h2 + I,

are all linearly independent in V (so dim V = «) ,
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using the relations

0 (mod I) T > S
(x-1)ThS = ’

k(—2)r rt«1 (mod 1) , t = s

Show that V has no weight spaces. [See F.W.Lemire,
Existence of weight space decompositions for irreducible
representations of simple Lie algebras, Canad. Math.

Bull. 14 (1971), 113-115.]

Due to Weyl's Theorem on complete reducibility
(Theorem 3.7.5), the determination of finite-dimensional
L-modules reduces to that of finite-dimensional irreducible
L-modules. The objective in this section is to prove that
there exists a one-one correspondence between the set N
of domirant integral functions in H¥* and the isomorphism
classes of finite-dimensional irreducible L-modules.

The correspondence is given by assigning to each X ¢ N
a cyclic L-module generated by a single element which
has )X as the highest weight. For this, we proceed in

steps. A universal envelcoping algebra and a maximal

solvable subalgebra of L play main roles.

Definition 5.5.2. A Borel subalgebra of any Lie

algebra L 1is a maximal solvable subalgebra of L . //
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While we do not intend to elaborate on Borel
subalgebras, we are interested in a special type of
Borel subalgebra (for detail, e.g., the conjugacy of
Borel subalgebras under an invariant automorphism, see
Humphreys' book, p. 83).

Let I be a simple system of roots and let

L =H+ 3 L be the Cartan decomposition of L
a0 Ta

Lemma 5.5.1. Set B(m) =H + I L . Then
a>0 o

B(m) 1is a Borel subalgebra of L

Proof. Let N = [B(H)B(H)] . Then, since L is
semisimple, N = L L . We contend that N is
a>0 Ta
nilpotent. Note that [NN] = Zy4p20 Lotg and the level

of a positive root a *+ B , a,B € ®+ , 1ncreases by

at least one. Since 6" is finite, continuing this
brings the descending central series of N to zero.
This in particular implies that B(Il) 1s solvable. Let
J be a subalgebra of L properly containing B(T)

Then the weight space decomposition of J relative to
ad H must involve a weight v (in fact, a root) with

Yy £ ®+ , so y 1is a negative root. But this forces K
to contain the 3-dimensional split simple Lie algebra

S as in Theorem 4.4.2(1), so K can not be solvable. //
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Call B(I) a standard Borel subalgebra relative

to H . Note that B(I) depends on the choice of I

Lemma 5.5.2. Let V be an arbitrary L-module.

Then

T s . ' .
ZAeH* Vx is direct and V' 1s

]

(2) The sum V'

an L-submodule of V
(3) If dim V < » then V = V'

Proof. If x ¢ La , V€ VA and h ¢ H , then
(vx)h = v(xh] + (vh)x = (a(bh) + x(h))vx , showing
VxLacj VA+& . The first part of (2) is just the foregoing
remark while the second part follows from (1). (3) is

clear from Corollary 4.2.3(1). //

Recall that if V is an L-module then the
L-module action on V 1is extended to define a unique
unital right U(L)-module V where U(L) 1is the

universal enveloping algebra of L .

Definition 5.5.2. Let V be an arbitrary L-module.

A maximal vector of weight X in V is defined to be a

+ +
nonzero vector Vv ¢ VA such that v L = 0 for all

+
a e & (or just o € I ; Theorem 4.5.6). If V =V U(L)
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for a maximal vector of weight X then V is called

standard cyclic of weight X and A  1is called the

highest weight of V . //

Notice that the notion of maximal vector depends on
the choice of T and the existence of such vectors is not

guaranteed in case dim V = «» . However, we have

Lemma 5.5.3%3. Let V be a finite-dimensional

L-module. Then a nonzero v’ ¢ V is a maximal vector of
weight A if and only if v’ is a common eigenvector of
B(nm) . Hence V has a maximal vector, and if, in addition,
V is irreducible then V is standard cyclic of weight X
If L is simple and regarded as an L-module via ad ,

then 0 # vt e L is a maximal vector of weight g if and

. . . . . +
only if 8 is the unique maximal root and v ¢ L

B

Proof. Any maximal vector of weight A is evidently
a common eigenvector for B(II) . Let v’ # 0 be a common
eigenvector for B(I) . Then v'h = A(h)v+ for heH,
so A 1s a weight. Also, v+La<: V) , o > 0 but by
Lemma 5.5.2(1) V+Lu(: Vk+a ; this is absurd unless
V+Lu =0 for o >0 . Since B(I) 1is solvable, by
Corollary 3.4.10 B{(I) has a common eigenvector in V
If V is irreducible then V+U(L) , being a nonzero
L-submodule, must be V . The last part is clear

(Theorem 5.3.12). //
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Therefore, the study of Standard cyclic L-modules

embraces that of finite-dimensional irreducible
L-modules. Recall that the partial ordering X > py in E
if and only if ) - y 1is a sum of positive roots. This
ordering is also defined in H* . We show below that the
highest weight ) associated with a maximal vector is
highest in the sense that y < A for all weights y in
V . Recall also that for a fixed nonzero Xa € La (o > 0)
there is a unique Y, € L*a for.which [xuya] = ha
(Theorem 4.4.2(1)) where ha e H is as in (1.32). The

following describes the structure of a standard cyclic

module.

Theorem 5.5.4. Let V be a standard cyclic

. +
L-module with maximal vector Vv ¢ VA . Let

®+ = {81,62,...,Bm} . Then,

i i
1 V is spanned by the vectors viy 1 ce m
y y
B1 Bm
(ij € Z+) . In particular, V is the direct sum of its

weight spaces (compare with Lemma 5.5.2(3)).

(2) The weights of V are of the form

X - z%_l kiai (ki £ Z+) . Thus all weights yu satisfy

=
il

<A

(3) For each yu e H* , dim Vu < o and dim VA =1
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(4) V is an indecomposable L-module.

(5) If W is an L-submodule of V then
W = 5 6 WA Vu is the weight space decompositicn fer W .

Hence V contains a unigue maximal (proper) L-submodule.

(6) Every nonzero homomorphic image of V is also

standard cyclic of highest weight A

Proof. (1) and (2), Let L =B + N_ where

N =12 L and B = B(II) . Note that N is a
- 0<0 o -

subalgebra of L . It follows from Theorem 5.1.10(1) that

v = v'U@) = v'U(B)U(N) = Fv UNN_) , since v’ o is a

common eigenvector for B . By the PBW theorem U(N )

has a basis consisting of the standard monomials
i i

y .. y M so the vectors
B2 B
+ i1 i2 im +
(%) vy y cee Y , 1. € L
By "B, B J

form a basis for V . Thus V 1is the direct sum of
weight spaces Vu and since each vector in (x) has
weight A - Zj iij by Lemma 5.5.2(1), rewriting each
Bj as a sum of simple roots, we have (2).

(3) If w=2Xx-1I4 ki“i is a weight then dim Vu
is the pumber of vectors (%) for which I i.gj = 3 kiai

B
(k. € Z+ . This number is finite when I k.o. is fixed.
i i~i
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. . . . . +
The only vector in (%) having weight w =X 1s Vv ,

so dim V., =1

A
(4) Suppose that V = V1 0 V? R Vi L-submodules
. + + +
of V. Let v = vy + v; » Vo€ Vi . Then V+x = va
+ V;X is a scalar multiple of V+ for all x ¢ B
(Lemma 5.5.3). If v; # 0 , this forces V; to be a
maximal vector of weight ) . Since dim V. =1 by (3),

A
. . . + .
this in turn implies that v, is a scalar multiple of

V+ . Since V = V1 + V2 is direct, we have VI = 0 or
+ + + . _

v, = 0, so VvV ¢ V2 cT V € V1 ; that is, V = V2 or

V=Y since e generates V

(5) Clearly Zu & WA Vu<: W . Let v e W . Then

ve Wn (V +...+V ) = W' and regard W' as an
Lok Hn

H-module. It is clear that any weight of H in W' is

a weight in V and hence is among TR TN This

implies that if W' =3 ® W& is the weight space

decomposition (this decomposition exists since W' 1is

finite-dimensional (Theorem 3.2.9)) then ‘wﬁ = WA VU and

w! =§:1 ®WAV . Thus- W 8WAV . If W is
i=1 Hi H H

proper then W F\VA = (0 since if WnN VA # 0 , V)(: W
(by part (3)) and W =V as v’ generates V . Therefore
WcC ZU#X Vu and the sum of all proper L-submodules of

V is still proper.
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(6) Let £ : V ~>V'=£(V) bea nontrivial
L-module homomorphism. Then V' = f(v+)U(L) and f(v+) # 0
since V' # 0 , and clearly f(v+) is a maximal vector

of weight X . //

Corollary 5.5.5. Let L be simple and let B Dbe

the maximal root relative to 1 . Then o < 8 for all

o g @

Proof. Note that L is standard cyclic of highest
weight B (Lemma 5.5.3) and the weights of H are just

the roots in & . The result follcws from Theorem 5.5.4(2). //

Corollary 5.5.6. Let V be as in Theorem 5.5.4.

Suppose, in addition, that V is L-irreducible. Then
+ . . .
v is the unigue maximal vector 1in V up to nonzero

scalar multiples.

Proof. Let w  be another maximal vector in V .
Then w'U(L) =V since V is L-irreducible. If w'
has weight A' , Theorem 5.5.4 applied to v+, w'
implies that A' < A and A < A' , SO A = A" . But
+

then by Theorem 5.5.4(3) w is a scalar multiple of v //
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5.6. Finite-dimensional modules

Since finite-dimensional irreducible L-modules
are closely related to standard cyclic L-modules, it 1is

natural to consider the following basic questions as to

(a) Existence of irreducible standard cyclic modules.
(b) Uniqueness of such modules.
(c) Which of such modules are finite-dimensional.

(d) Enumeraticn of dim Vu if u 1is a weight.

In this secticn we treat Questions (a), (b), (c)
and we can obtain the results for these along the expected
line. Due to the uniqueness (b), we méy denote by V(i)
the irreducible standard cyclic module of highest weight
A . A rigorous treatment of the Question (d) involves a
somewhat laborious procedure which we omit here. dim Vu

is known as the multiplicity of u in V(\) . There are

two well-known formulas for this, Freudenthal's

formula and Kostant's formula. Related to this is

also Weyl's formula which enables us to enumerate

dim V(») . Finally, consider the L-module V(A') 8 V(\'")
where A' , A" are dominant integral. In view of Weyl's

Theorem 3.7.5, V(A') @ V(1") is the direct sum s ® V()
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of irreducible standard cyclic L-modules V(A)
Steinberg's formula is designed to enumerate the number
of times V(X)) , A € A" , occurs in V(A') 8 V(A")
For the development of these formulas in detail, the
reader may consult Jacobson's book or Humphreys' book.

We first consider the uniqueness question.

Theorem 5.6.1. Let V and W be standard cyclic

L-modules of highest weight A . If V and W are

irreducible then V and W are isomorphic as L-modules.

Proof. Consider the L-module U =V & W and let
V+, w'  be respective maximal vectors of weight A in
VvV, W. Clearly, ut = (V+,w+) is a maximal vector of
weight A in U . -Let X be the L-submodule of U
generated by u® , so X is standard cyclic of weight A
Let p: X~+V, p': X~ W be the maps induced by the
projections of U onto V and W . Clearly, p and p'
are L-module homomorphisms, and since p(u+) = v' and
p‘(u+) = w , p, p' are surjective. Thus, it suffices
to verify that p, p' are injective, so that X 1is
isomorphic to both V and W as L-modules. Note that
~ker p' = VN X where (v,0) (v e V) is identified
with v . Since ker p' is an L-submodule of V and V

is irreducible, VA X =0 or VN X =V, If v X =1V

then (V+,O) e X is a maximal vector of weight A in X
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(since it is killed by B()), so (v+,0) is a scalar
multiple of (v',w’) (Theorem 5.5.4(3)). This is

impossible, so p' (and likewise p) 1is injective. //

Since an irreducible standard cyclic L-module bf
highest weight ) 1s uniquely determined by the weight A
(up to isomorphism), we denote this module (if exists) by
V(A) . As to the existence question, the central idea
stems from the fact that when any standard cyclic
L-module is viewed as a B(Il)-module, it contains a one-
dimensional B(I)-submodule spanned by a maximal vector.
Hence we begin with a one-dimensional space in the

following existence theorem.

Theorem 5.6.2. For any XA e H* , there exists an

irreducible standard cyclic L-module V(i) of weight A

Proof. Let DA = FV+ be a one-dimensional vector

space with basis v’ and let B = B(m) . Make DA a

B-module by the rule v+(h + Za>0 Xa) = v'h = A(h)v+ ,
heH, X, € La . it is easy to check that this is a
B-module action on Dx . This also makes DA a right
U(B)-module. Regarding U(L) as a left U(B)-module,
we form ;he tensor product Z(X) = DA ®U(B) U(L) . At
this moment, Z(A) is simply an abelian group ; however,
we make Z(A) a right U(L)-module via the natural right

action in U(L) : (vi e t)t' = v 8 tt' , t,t' e U(L)
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We contend that Z(A) 1is standard cyclic of weight A
Clearly, vi 8 1 generates Z(A) and since U(L) 1is a
free U(B)-module (Theorem 5.1.10(1)), v’ 8 1 # 0

Therefore vi ® 1 is a maximal vector of weight X . In
view of Theorem 5.5.4(5), Z()X) <contains a maximal (proper)
L-submodule Y(A) and V(X)) = Z(A)/Y(x) 1is irreducible

standard cyclic of weight A (Theorem 5.5.4(6)). //

Remark. Let Z(x) = DA QU(B) U(L) be the same as

above.

(1) By PBW Theorem, U(L) = U(B) ®P U(N ) , where

N_ =2 .9 L, - Then Z(A) 1is viewed as a right U(N_)-

module, so that Z()) ¥ F @ U(N_ ) (as right U(N_)-modules)

fl

via kv' 8 (b8t) > k1 ® bt , ke F, beU(B) , te UN)

(again by PBW Theorem).

(2) An alternative construction-of Z{x) 1is as
follows. Let I(Ax) be the right ideal in U(L) generated
by all La (a0 > 0) and all ha - x(ha)l (o e ®) . Since
vih = X(h)v+ and V+La =0, ao>0, V+I(A) = 0
Define a mapping g : U(L)/I(x) » Z(Ax) Dby g(t + I(A))

o+

viet, teUM . If tel(rx) then v @t

-+

. “ +
v 8 (Z biti) =L vV bi 8 ty = 0 where bi e UBYN I(N)

(note' U(L) = GB)U(N)) . Thus g 1is well-defined, and

so a U(L)-module homomorphism. Suppose that vigt =0
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for t € U(L) . Write t =1 biti where the ti are
U(B)-basis elements of U(L) so bj e U(B) (PBW Theorem).
Then 0 = v © t = % v'b., 8 t. , SO v'b., 8 t. = 0 for

i i i i
all i since U(L) is U(B)-free. This implies that
the bi e UB)A I(A) , so te I(A) . Thus g is

injective and an isomorphism. //

Finally, we attack a necessary and sufficient
condition for an irreducible standard cyclic L-module V(X)
to be finite-dimensional. Corresponding to each a; € I,
let Si denote the 3-dimensional simple Lie algebra
spanned by the canonical basis Xi"yi’ hi . As before, .
let A and AT be respectively the integral and dominant
integral functions in H¥* . It is easy to see that a
necessary condition for V(A) to be finite-dimensional

is that X ¢ A+

Theorem 5.6.3. If V is a finite-dimensional

irreducible L-module of highest weight X then X 1is

dominant integral.

Proof. For each i =1, 2,..., & , regard V as
an Si-module. Let v be a maximal vector for L in
V of weight X . Since V is a finite-dimensional

+

Sj~module and X(hi) is a weight of hi s V is a

maximal vector of weight x(hi) in an irreducible
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Si—submodule V' of V . Thus A(hi) is a nonnegative

integer (see Section 4.3). //

+
Indeed, that X e A is a sufficient condition also.
The proof cf this is carried out in steps. Let A be an
associative algebra and let x, a ¢ A . One can easily

prove by induction the formula

(%) ¥y = xak ) (i)x'ak—l + (Kyxn k-%.. . X(k)
where X(O) =x, x'=/[x, a] eand x(i"’l) (X(‘i))'

Lemma 5.6.4. Let U(L) be the universal enveloping
algebra of L . For k>0, 1<1i, j<2&, the

following identities hold in U(L)

k+1 - : S
(1) i H] XJ] =0 9 1 7£ J
k+1 _ _ k

Proof. (1) [yi, xj] =0 if i # j , since a5 - 0y

is not a root (Theorem 4.5.2(1)).

(2) If k=0, it is trivial. Assume that
k _ k-1 .
[yis x3] = k[(k - 1)1 - hi]yi . First, note that

= = L = (t) -
ht = [h., v, =2y; , by = [[h, v, ﬁj 0, ht 0

for t > 2 in (%) . Using this, we compute
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k+1 K K
(v: > x50 = vilyge x50 * Lyys x;1y;

_ Lk ) . k : :
= -y;h, + k{(k - D1 - hly; (by inductio

X k X K
- a® - onpy S e k- DyE -y oy
= (k + 1) (k1 - h)yX . //

1 1

Lemma 5.6.5. Let V = V()) be an irreducible

standard cyclic L-module of weight ) where ) 1is

dominant integral.

1 If v is a maximal vector or weight then,
A

+4mi+1
vy = 0 where m, = X(hi)

fin
Py

for each 1< i

(2) For each 1 < i< %, V is the sum of finite-

dimensional Sj—submodules.

(3) For any v e V and each 121 2% , there

i
<
S
i
(o]

. . . T
exist positive integers r , s such that VX

m,+1
Proof. (1) Set w = V+yil . The m. are

ponnegative integers by the assumption. If i F 3,

wxj = 0 by Lemma 5.6.4(1). Using Lemma 5.6.4(2),. we have

m.+1 m.+1 m,+1
v 1 x = v+[ T x 1+ vix y.*t
Yy i Yoo o % i’
+
+ 13 ( v’ V+) ! '
=(m. m. - m. )
(ml I iV Yy
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} + 3 + _ + +
since v x; = 0 and v hi A(hi)v =mv . Thus
wx; = 0 for i=1,...,2 . If w# 0, w would be a
maximal vector in V . But, by Lemma 5.5.2(1), w has
weight A - (mi + 1)ai # A , which is contrary to

Corollary 5.5.6. Hence w =0

(2) We first show that V contains a nonzero finite-
dimensional Si—submodule for each i . Let W be the
subspace spanned by V+, v+yi,...,v+y?i . By (1), W 1is
yi-stable. Since these vectors are weight vectors in V ,
W 1is hi~stable. These in turn imply that, in view of
Lemma 5.6.4(2), W 1is also xi-stable, so W # 0 is a
finite-dimensional Si-submodule. Now, let V' be the
sum of all finite-dimensional Sj-submodules. Then V' # 0
Let W be any finite-dimensional Si-submodule and W'
be the span of the subspaces WLa , ae® , and Whj ,
j=1,...,% . Then W' is finite-dimensional, since @&
is finite. One can directly check that W' 1s Si—stable,

so W'c V' . This implies that V' is L-stable, so

V = V' since V 1is irreducible.

(3) Let v e V be any vector. By (2), for each
1<i< %, veW for some finite-dimensional
Si—submodule W . Then, by the discussion in Section 4.3,

X and Y act on W as nilpotent linear transformations.

/1l
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Lemma 5.6.6. Let V and ) be the same as in

Lemma 5.6.5. Then the set A(V) of weights in V is

permuted by the Weyl group WG , i.e., WG(A(V)) < A(V)

Proof. Let o, be the simple reflection by a; e I
Since the oy generate WG (Theorem 5.3.6(4)), it suffices
to show that o, (A(V)) cA(VY) , i=1,...,2 . Let
be any weight in V . By Lemma 5.6.5(2), wu 1is a weight
of hi in a finite-dimensional Si—submodule. Hence u(hi)

is an integer.

Let v # 0 be a weight vector of p in V , so

that vh = u(h)v , h ¢ H . Suppose that u(hi) >0 . By
Lemma 5.6.5(3), choose q such that w = ng # 0 ,
VX§+1 = 0 and m such that wy? # 0 , wy?+1 =0

Since WX, = 0 , as in the proof of Lemma 5.6.5(2) the
subspace W spanned by w, wyi,...,wy? is Si—stable,
so W is an irreducible Si-submodule of highest weight
m, i.e., Whi = mw (see Section 4.3). Since V € Vu R

by Lemma 5.5.2(1) we have

wh (vxg)h = (p + qai)(h) w o,

K
(#+)  (yh = (u + qo; - kay) (Wwyy

h ¢ H. Hence (u + qai)(hi) = u(h;) + 2g = m and it

follows from (==x) that the sequence

[V qais u+ (q - 1)0('1'.’...’“ + (q - m)o‘i
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consists of weights of H in V . Since u(hi) =m - 29 >0
and 9 >0, q-mZ< 2¢ -m< g, soO Oi(”) = U7 <u, a0y

=y - U(hi)“i =y + (2q - m)(xi occurs in the sequence.

Thus Oi(u) e A(V) . If “(hi) < 0, we set xi =Y
yi = X; hi = -hi . Then x!, y:, hi form a canonical
basis for Si . The same argument can be applied to

‘Xi3 yi, hi to show that gi(u) e A(V) . //

We are now ready to verify the sufficient condition.

Theorem 5.6.7. If X ¢ H* 1is dominant integral

then the irreducible standard cyclic L-module V = V(i)

is finite-dimensional.

Proof. Since each weight space VU is finite-
dimensional and V = zu ® Vu (Theorem 5.5.4), we only
need to verify that A(V) 1is finite. Let

+ + +
Ay = {“0 e A | Hy 2 A} . Then, by Lemma 5.4.5, AO

is
finite. Note that A(V)C A (cf. the proof of Lemma 5.6.6).
Since WG is finite, the set WG(AS) of WG-conjugates

of Ag is finite. By Lemma 5.4.4, each u e A(V) is
WG-conjugate to an element Mg € A+ , i.e., u = o(uo) ,

g e WG . It then follows from Lemma 5.6.6 that Hg € AVY

SO uy 2 Ao since A 1is highest. Therefore, yu ¢ WG(Ag)

and A(V) C WG(AS) . hence A(V) is finite. //



—222—
Corcellary 5.6.7. The map A > V(X) induces a

+ . .
one-one correspondence between A and the isomorphism

classes of finite-dimensional irreducible L-modules,

Proof. In view of Theorems 5.6.2 and 5.6.7, the
map A > V(A) 1is well-defined. By Theorem 5.6.3, the
map is surjective (cf. Lemma 5.5.3). Finally, it follows

from Corollary 5.5.6 that the map is injective. //



6. FLEXIBLE LIE—ADMISSIBLE ALGEBRAS WITH A~ SEMISIMPLE

6.1. Adjoint operators

In this chapter we classify finite-dimensional
flexible Lie-admissible algebras A over an algebraically
closed field F of characteristic 0 when A is
semisimple. The central idea for this classification is
the notion of adjoint operators which was first introduced
by Wigner (E. P. Wigner, "On representations of certain
finite groups', Amer. J. Math. 63(1941), 57-63) for the
Lie algebra of the SU(2) group. The general case of
adjoint operators has been studied in particle physics,
recently by Okubo (S. Okubo, 'Gauge groups without
triangular anomaly', Phys. Rev. D16(1977), 3528-3534
and "Casimir invariants and vector operators in simple and

classical Lie algebras', J. Math. Phys. 18(1977), 2382-2394).



Definition 6.1.1.

algebra over F (of any

be a representation; V

—224—

Let L be an arbitrary Lie

Let £

char.). L > (Homp V)

not necessarily finite-dimensional.

A linear mapping 6 : L > Hom V 1is called an adjoint
operator (ad-operator ; L-invariant) of L in £ (or in V)
if 6 satisfies

§ (xyl = [§(x),£(y)] (2.1)
for all x,y € L The set Vf(L,V) of all ad-operators
of L in f forms a subspace of HomF (L,HomF V) If
dim V = d < o Vf(L,V) is often denoted by Vf(L,d)
If f = ad then we write VO(L) for Vf(L,L) //

Note that f ¢ Vf(L,V) , so if £ # 0 ,

dim V. (L,V) > 1
{xl,xz,...,xN}

multiplication table

[Xi’xj]

where the bk.
1]

§ € Vf(L»V) 9

¢ F are

For let

Then the ordered N-tuple

the relations

[Ti,f(xJ

If L

be a basis of L

is finite-dimensional, we let
Let L have the
N
- 3 bk Xy (2.2)
k=1 *J

the structure constants of L

T. = §(x.) , 1i=1,2,...,N
i i
(Ti) = (Tl,...,TN) satisfies
J] =z bfT (2.3)
k J
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Conversely, let (Ti) = (Tl""’Tn) e (Hom V)N , the

N-fold Cartesian product space. If (Ti) satisfies (2.3)
then the unique linear mapping & : L » Hom V defined by
5(xi) = Ti (i=1,2,...,N) 1is, by (2.2) and (2.3), an
ad-operator of L in £ . Thus the mapping & =~ (5(xi))
is an isomorphism of Vf(L,V) to the vector space (the
subspace of (Hom V)N) consisting of (Tl,...,TN)
satisfying (2.3).

When L is simple and £ = ad , we can explicitly
enumurate dim VO(L) . This virtually leads to the -
classification of flexible Lie-admissible algebras A with
‘A" semisimple. Accordingly, & e V¢(L,V) 1is often
identified with (8(x;),..+,8(xy)) e (Hom VY . In case

f = ad , we have

Definition 6.1.2. Let L be an arbitrary Lie

algebra. An ad-operator 0 # 68 € VO(L) is said to be

symmetric if & satisfies
ys§(x) = x8(y) » x,y e L,

while & 1is called skew-symmetric if it obeys
ys(x) = -x8(y) , X,y e L. /7

Note that any Lie algebra L has a skew-symmetric

ad-operator, since ad e VO(L) is skew-symmetric.
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We will see later that not every Lie algebra possesses a

symmetric ad-operator.

Lemma 6.1.1. Let L = sf(g+1,F) with ¢ > 2 be

the special linear algebra over F of char 0 . Then the

linear mapping 6 : L - HomF L defined by

2
ye(x) = xy + yx - g (Tr xy)I, X, y e L

is a symmetric ad-operator of L , where xy 1is the
usual matrix product and I is the (& + 1)x(2 + 1)

identity matrix.

Proof. It is clear that 6 is well-defined and is

nonzero. In fact, if o = 0 then xy + yx = (2/(2+1))(Tr

for all x, y e L . Since ¢ > 2 , we can choose matrix

units eij’ ejk with 1 < j < k . But then eijejk = ek

while e..e.. = 0 ; this forces e., € FI , a contradicti
k™1j ik

By direct computation one sees that ze[x,y] = z[6(x),ad y

for all x, y, ze L , so 6 1is a symmetric ad-operator

of L . //

In contrast, note that if ¢ =1 then Xxy + yx
= (Tr xy)I for all x, y ¢ sf(2,F) . Specifically, it
will be shown that the simple Lie algebra of type AQ(Q >
alone allows a symmetric ad-operator.

Let A be an algebra over F of char # 2
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Denote by RX and LX the right and left multiplications

in A by x . Set

ad x =R_-L_ and t(x) =R +L (2.4)

X X

We have observed that A 1is Lie-admissible if and only if
ad [x, vyl = [ad x, ad y] , x, y ¢ A ((1.11), Section 1.4),
and that A is flexible if and only if =[x, y] = [t(x), ad y]

for x, vy ¢ A (Lemma 1.4.2). Therefore we have

Theorem 6.1.2. Let A be an algebra over F of

char #’2 . A necessary and sufficient condition that A 1is
flexible Lie-admissible is that ad 1is a skew-symmetric
ad-operator in VO(A—) and T defined by (2.4) is a

symmetric ad-operator in VOQA_) . //

6.2. Highest adjoint weights

We utilize representation theory of semisimple Lie
algebras to obtain more information on Vf(L,V)‘ which
is useful to enumurate dim Vf(L,V) . Let L be a

split semisimple Lie algebra over F of char 0 and H
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be a split CSA of L . Denote by V a finite-dimensional
irreducible L-module with afforded representation £ # 0
Henceforth, for brevity, we write f(x) = x, x e L
Let 11 = (“1’“2""’“23 be a simple system of roots

and let h. =h , i=1,...,2 . Then the hi form a

1 .
OLl

basis of H . 1In view of Theorem 4.4.1, for each o € ¢

we can choose basis elements X ¢ La > X_y € L—a such

o
. 2 i
* =
For VY ¢ H* , we can write tW Zi=1 Y hi
i

where the V¥~ ¢ F are uniquely determined by V¥

that [xax_d] = t , where ta is uniquely determined

by «a

Therefore, by (1.31) we have

(4,0) = (ty,t,) = 5oy ¥hom;) (2.5)

*
for V¥, ¢ ¢ H¥ . The Xa(a e &) , hl’hZ""’hz form a

basis of L and have the multiplication table

[hihj] =0, i,j = 1,2,...5%
[?ahi] = a(hi)xOC R
(2.6)
XO(.XB] = NOL,B XOL'*‘B 9 a + B % 0,
. ok i
Xax~d] - Zi=1 o hi
where o, B € ® and Na,s e F, Na,B =0 if o + B £ O

If F is algebraically closed then even more can be done

N can be so chosen that N = N—a’ (Exercise 4.5.3

0"8 OL:B -B
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Denote this basis by a short hand notation

(tp) = (hi’ X X-a) in a fixed order with o representing
all pcsitive roots. Accordingly, we denote by (Tp)
= (Hi, Ea, E_a) an ad-operator of L in V . Thus,
by (2.3), Hi (i = 1,...,2) Ea,E_a(a € ®+) are elements
in HomF V satisfying the commutation relations

[Hi,hj] =0,

[Ea’hi] = E&x’Hi] = a(hi)Ea R

[E_a,hil = [x_u,Hi] = —a(hi)E_a , (2.7)

[EOL’XBJ = NO(,,B EOL'*‘B s o * B % 0,

9
j=1 ¢

i
X Hi

[Eu’x-u] B [;u’E°a]

Note that if & € Vf(L,V) , we can identify ¢§ with

il

(H., E , E a) via G(hi) H. , S(Xa) = Ea’ o e &

i

Recall that V 1is a standard cyclic L-module V(i)
of maxmimal vector v’ with highest weight A (Lemma 5.5.3).
Let (H;, E_, E_u) e V(L,V) . Since [Hi,h] = 0 for

heH,
(V+Hi)h = (v'h)H, =_x(h)v+Hi , heH

Hence V+Hi has weight X , and since dim Vx = ]

(Theorem 5.5.4(3j), we have

v, = y.vT , i=1,2,...,8 (2.8)
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where Y; € F is uniquely determined by Hi . This

leads to

Definition 6.2.1. For an ad-operator

(Tp) = (Hi’ Ea’ E ) 1in Vf(L,V) , the highest ad-weight
vy of (Tp) for H in V 1is defined as the element

y ¢ H¥ such that y(hi) = vy (i = 1,2,...,%) with Y; € 1
in (2.8). Call (Hi) = (Hl,...,H ) the Cartan part of

(Tp) relative to I . //

If 6§ ¢ Vf(L,V) then the Cartan part of & 1is

(6(h.))

Lemma 6.2.1. Let (Hi, Ea’ E*a) £ Vf(L,V) . Then,

for any o € s s v'E =0 and V'E e V
o -a Ao

Proof. In view of (2.7), (v'E)h = v [E ,h]
+ (vh)E = O+ @) (WV'E_ . Thus if v'E, # 0 then
A + o would be a weight and this is absurd since ) 1is
highest. Similarly, one gets (v+E_u)h = (x - u)(h)v+E_a

so V' E e V . //
- A-d

Lemma 6.2.2. Let vy be the highest ad-weight of
£

(Hy, E_, E_ ) e Ve(L,V) . If (a,\) =0 for o e @

then (a,y) = 0

Proof. Let r, q be the least nonnegative integers

such that X - (r + 1)o and A + (q *+ 1)a are not weight
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Since A is highest and o > 0 , by Theorem 4.4.3 q = 0

Therefore, if (X,a) = 0 then <A,a> =T - q =T gives

r =0, so that A o 1is not a weight (Theorem 4.4.3).

Hence, by Lemma 6.2.1, V+E_a = 0 and by (2.5) and (2.7)

we have

i

0 = (v E_a)x V+([E—u’xa] + XuE-u)

i

+ i
\ (Zi o Hi

)

]

-(Z.

i +
i oYV (by (2.8))

- oty (v

- (s y)V" (by(2.5)).  //

+
Lemma 6.2.3. Let (Tp) € Vf(L,V) . If v Tp =0

for all p then (Tp) = 0

Proof. Let U(L) be the universal enveloping algebra
of L . Then V = v U(L) . Let (t)) = (hy, x,, x_) be

a -a
the basis of L . Since T_t -t T =1 bk T, ,
P9 qp x P4 k

V+Tp = 0 for all p implies that (V+L)Tp = 0 for all p
Noting [xy,Tp] = x[y,Tp] + [x,Tﬁ]y for x,y e L , so

(v+xy)Tp =0, it follows by induction that VTp = V+U(L)Tp
=0 . //

Theorem 6.2.4. Let vy be the highest ad-weight of

(T,) & Ve(L,V) . If y =0 then (T)) =0
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Proof. Let (Tp) = (Hi, Ea’ E-a) and let N =u§OLd
We first contend that

Vy =3 viE U@
-0
0L>O

is an L-submodule of V . Let P =1 Lu . Then by
a>0

PBW Theorem U(L) = U(N)U(H)U(P) = UMH)U(P)U(N) , so

VUL = g V+E_uU(H)U(P)U(N) . Observing that
o>0

E'uh = EE~Q’ h] + hE-a = -@(h)E_u + hE-u , by induction
we have that V+E_QU(H)C: FV+E_a , since vi o is a weight

vector of H . Hence V,U(L) =% v*E_uU(P)U(N) and it
o>0

remains to show that V+E_OLXB £ VO for all o, B ¢ ®+

N + _ + + - + .
Since V E_ X, =V [E_Q, Xé] + v XBE-u v [E~a’ XB] , it

suffices to verify
+ +
v [E”a’ Xél e Vo for a, Be @

e V

V+E
-(0-8) 0

+
If g - a < 0 then Vv [E_a, xé] = NB’_a

+
NB,-aV EB-a =0
by Lemma 6.2.1. Finally, if o = g then

If g - o > 0 then v+[E_a, XB]

i

+ i
VZ_IuHi

+
v [E_u, xa] ;

[}

i +
- v H.
L 0 i
1

+
'(OL} Y)V =0

]
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since y = 0 by the assumption. This proves that VO

is an L-submodule,

Since VO is spanned by weight vectors V+E_Ot R
+ . . ’
v E_QX_B,... with weights X - o > A -0 - B ,...
(Lemmas 6.2.1 and 5.5.2) which are lower than ) , V0 can

4
not contain v. . This implies VO = 0 , since V. 1is

0 for o > 0 while

i

. . . +
irreducible. In particular, Vv E

-
V+Ea = (0 by Lemma 6.2.1. Hence V+Tp = 0 for all p
since V+Hi = yiv+ =0, i=1,2,...,%4 . This, in view of
Lemma 6.2.3, proves (TP) =0 . //

Therefore, an ad-operator of L in V 1is uniquely
determined by its highest ad-weight and so by its Cartan
part. Denote by H? the subspace of H* spanned by all
highest ad-weights of H in V

Corollary 6.2.5. dim Vg(L, V) = dim H?

Proof. Let y(J) € H; (j = 142,...,m) and let 6j

be the ad-operator in VF(L, V) with highest ad-weight

y(j) . Suppose that Z?=1 cjy(l) = 0 . Then the Cartan

m . i

art of = 3. .§. 1is given b

pat R R A I Y

§(h,) = £8_. c.6.(h) k =1 g

k j=1 j j k.l s v M
+ + _um +

As these act on v , we have Vv é(hk) = Zj=1 cjv sj(hk)
= 7 ij(J)(hk) = 0 . Hence the highest ad-weight «y of

j
§ is zero, so by Theorem 6.2.4 ¢ =0
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This proves dim Vf(L,V) < dim H; . Conversely, let

5 Cjéj = (0 for 5j £ Vf(L,V) . Let y(J) be the highest

ad-weight of 6j . Then ¢ Cjéj(hk) =0, k=1,...,2,
+ = (1) - (j) _

and ¥ cjv Sj(hk) % ij (hk) 0, so I cjy = 0

This proves dim Vf(L,V) > dim H; . //

6.3. The adjoint dimension

We utilize the results in Section 6.3 to enumurate

dim Vf(L,V) in terms of the highest weight of H in V .

Definition 6.3.1. dim Vf(L,V) is called the adjoint

dimension of L in V (or in £f) . The adjoint dimension
of L in V 1is customarily denoted by nA(f) in physics

literature. //

It is clear from Corollary 6.2.5 that nA(f) < 4,
% = dim H* . Since V is irreducible, it is standard
cyclic of highest weight A and ) 1is dominant integral

(Theorem 5.6.3). Let Q = (xl,...,x be the fundamental

)
system of dominant weights (FSDW) relative to 1 . Thus

<Ai,@j> = 6ij (i,j = 1,...,8) and
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A= m1A1 + mzxz I mzx2 (2.9)
where
mj = <k,aj> (2.10)
(j = 1,...,2) are nonnegative integers (Lemma 5.4.1).

Let Vi(i =1,...,m) be L-modules with afforded
representations fi . Then we can make the tensor product

V' = V1 0...8 Vm an L-module via

m
(v, 8...8 v )x =L v, 8...8 v,x 8...8 v,
m _ m

1 1 k

x € L (cf. BExercise 4.3.2). The representation afforded
by the L-module V' is customarily denoted by

fr = f 8...8 f
1 m

Lemma 6.3.1. Let V be a finite-dimensional

irreducible L-module of highest weight A and let

.,xn be dominant integral functions on H such that
A= Al o0t An . Then Al,...,kn are highest ad-weights
of some ad-operators of L in V

Proof. Since the Ai are dominant integral, by

Theorem 5.6.7 there exist finite-dimensional irreducible

L-modules Vi of highest weights xi . Let v, be a

maximal vector in Vi of weights Ay - Then v; 0...8 v;

is clearly a maximal vector in the L-module V' = Vl 8...0 V

n
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of weight A . By Weyl's Theorem, write V' = I @.Wj as

a direct sum of irreducible L-submodules Wj . Let
+ + + + ‘ + )
vy Q...8 v, = pX wj s .wj € Wj . Then any wj # 0 1s also

maximal vector in Wj of weight X . Since Wj is
irreducible, if w; # 0 then Wj is a standard cyclic
L-module of weight A generated by w; . Thus Wj is
isomorphic to V as L-module (Theorem 5.6.1). Hencé \
can be identified with one of these Wj . Let £ be
the representation afforded by V

For each j = 1,2,...,n , define a linear mapping

gj : L » Hom V' by
(V1 8...8 Vn)gj(x) = vy 0...8 ij 8...0 Vo oo

xel, Vi > Vj . Let i :V » V' be the injection and
let p : V' -V be the projection. Then i and p are
L-module homomorphisms. Finally, define a linear mapping

dj : L > Hom V by aj(x) = iogj(x)op , x e L . Then

(v1 @...8 vn)(éj(x)f(y) - f(y)éj(x))

it

(v, ©...8 VX 8...8 vn)pf(y)

1

- (v, @...8 Vv

I 1 1 Q...8 vn)sj(x)

(v1 Q...0 ij @...8 vn)f(y)p
- £
[(vl @...0 v.x @...0 v )E(Y)

- v, 8...8 vj[xy] 8...8 Vn]p
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= (Vl ®...8 vn)ﬁjfxyj

for vy R...0 v, € V . Hence éj is an ad-operator of
L, in V., j =1,2,...,n . It follows that each xj
is the highest ad-weight of dj . //

Theorem 6.3.2. (Adjoint Dimension Theorem). The

adjoint dimension nA(f) of L in V is equal to the

number m+(f) of nonzero mj's in (2.9).

Proof. Denote q = n+(f) . Reordering the roots in

m , if necessary, we may assume that mj =0 in (2.9) for

q+1<j<& . Thus r 1is expressed as A = Z?=1 mjkj

Since <Ai,a.> = dij , Wwe have (aj,x) = (0 for

J
q+1<j<t. Let vy be any highest ad-weight. Since

Q is a basis of H* , one can write vy = z§=1 ijj ;

Cj e F . Then by Lemma 6.2.2 (aj,y) =0 for q+ 1 <] <%
¢ . It follows

i

and this implies Cj =0, q+1<7]
from Corollary 6.2.5 that nA(f) <q = n+(f)

Since the mjkj are dominant integral and
mlxl,,..,m A are linearly independent, it follows from

q4a
Lemma 6.3.1 that nA(f) > q . //

Theorem 6.3.2 has been proved over the complex

number field by Okubo, employing an analytic method. The

present algebraic proof is due to Okubo and Myung ("Adjoint

operators in Lie algebras and the classification
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of simple flexible Lie-admissible algebras', Trans. Amer.
Math. Soc., 264(1981), 459-472) .

Let L be a Lie algebra over arbitrary F and let
U(L) be the universal enveloping algebra of L . A linear
mapping & : L » U(L) is called an ad-operator of L

(in U(L)) if & satisfies

s xyl = [§(x), ¥]

for all x, y ¢ L . Denote by V(L) the space of all
ad-operators of L . Let K be the quotient field of the
center C of U(L) (C is an integral domain ; cf.
Exercise 5.1.1). Set V(L)K = K @C V(L) . When L 1is a
simple Lie algebra over the complex number fieid, Okubo
has shown that dim V(L)K > dim H for the algebra L of
or G ("Casimir invariants and

2
vector operators in simple and classical Lie algebras",

type A, B, C.» Do,
J. Math. Phys. 18(1977), 2382-2394). Okubo and Myung have
conjectured that dim V(L), = dim H over a field of
characteristic 0 ("On the classificaticn of simple flexib
Lie-admissible algebras', Hadronic J. 1(1978), 504-567).

If f=ad and L is simple then Theorem 6.3.2 is

strengthened to

Theorem 6.3.3. Let I be a simple Lie algebra.

Then the adjoint dimension nA(ad) of L din ad 1is

i or 2
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Proof. Since ad ¢ VO(L) and ad # 0 , dim VO(L)

= nA(ad) > 1 . The highest weight KO in ad is the

unique maximal root (so positive) of H (Theorem 5.3.12(2)

and Corollary 5.5.5). Write

Ao = miAq t Moy +eeo® mgxk (2.11)
as in (2.9) where mj = gxo,aj> e 77 . Since AO is a
positive root, mj =0, 1, 2, or 3 (Theorem 4.4.5). Let
AO = Ccq0q * Cha, + T Cpog - (2.12)
+ . - -
Then all c; e Z . Since <xi,uj> = éij , it follows

from (2.12) that c, = Z(AO,Ai)/(ai,ai) , so (2.12)

becomes

which leads to

()\03>\0) = i (>\l,>\0)<>\o,otl> = i ml()\l,AO)

since m; = <x0,ui> . We now rewrite this as

2 = ? mi<xi,ko> . | (2.13)

Since each A € At s Ay is the highest weight in
some irreducible L-module (Theorem 5.6.7). Since AO € 0"

this implies that <Ai,x > € 7" , i=1,2,...,% . We

0

further claim that all <Ai,x0> > 0 . Since AO is



—240—

the highest weight in ad , each root in T (being a -
weight) is expressed as ko -z kiui with the ki € z*

i
(Theorem 5.5.4(2)). Thus each s in (2.12) is positive,

so all <xi?x0> > 0 since c; = Z(Ao,xi)/(ai,ai) .  Hence,

by (2.13) we have m. < 2 and this with (2.11) allows

1 J

o

the only possibilities
P O ij s, OT X = At A . (2.14)

Thus n+(ad) = 1 or 2 and by Theorem 6.3.2 nA(ad) =1
or 2 . //

In view of (2.14), one notes that the result in
Theorem 5.4.3 is no accident and determines the relations
more explicitly. Hence, by virtue of the Adjoint Dimension

Theorem and Theorem 5.4.3, we can state

Theorem 6.3.4. Let L be a split simple Lie algebra

over a field F of char 0 . Then the adjoint dimension
of L in ad is 2 for L of type A (% > 2) and is 1

for all other types. //

When L is of type AQ(Q > 2) , we have observed
that VO(L) has two linearly independent operators ad
and o defined as in Lemma 6.1.1. Thus ad and 0

form a basis of VO(L) . Moreover, since 6 1is symmetric,

we have
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Corollary 6.3.5. If L 1is of type AQ(K > 2)

then any symmetric ad-operator of L in ad is a scalar
multiple of 6 , constructed in Lemma 6.1.1. Also, any

skew-symmetric element in VO(L) is a scalar multiple of

ad . //

Remark. The result of Corollary 6.3.5 agrees with
those by Djokovic and by Kramer who computed directly the
multiplicity of ad in the tensor product ad®ad by
means of Steinberg's formula or its variant. The
relations in Theorem 5.4.3 is noted and utilized by Kac
for the classification of simple Lie superélgebras. Also,
Okubo has obtained Theorem 5.4.3 by invoking (2.14) and
the table in Exercise 5.4.1 with slightly different

ordering of I . References to these are cited below.
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Lie algebras'", J. Pure and Appl. Algebra, 1(1976), 210-230.

2. M. Krdmer, "Eine Klassification Bestimmter
untergruppen Kompakter Zusammen-Hdngender Lie gruppen",
Comm. in Algebra, 3(8)(1975), 691-737.

3. V. G. Kac, "Lie superalgebra”, Advances in Math.
0 26(1977), 8-96.
4. S. Okubo, "Gauge groups without triangular

anomaly", Phys. Rev. D16(1977), 3528-3534.
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6.4. The classification

We show that the classification of flexible Lie-
admissible algebras A over F of char # 2 1is equivalent
to finding all symmetric elements in VO(A_) . The
classification under consideration is then an easy

consequence of Lemma 6.1.1 and Corollary 6.3.5.

Theorem 6.4.1. Let L be an arbitrary Lie algebra

over F of char # 2 and let @ be any symmetric element
in VO(L’) . Denote by L(6) the algebra defined on the

vector space L but with multiplication given by

xy = 4(x6(y) + [xy])

Then L(g) is flexible Lie-admissible such that L(8)
is isomorphic to L . Moreover, 6(x) = t(x) in L(®)

where ¢ is defined by (2.4).

Proof. Let LX and RX be the left and right

multiplications by x in L(e) . Then adL(e) x = RX - Lx
and clearly adL(e) = adL , since 6 1s symmetric.

Hence L(g) 1is Lie-admissible such that L(s) =1L and

6 = ¢t in L(e) . Noting that

LXRX = L(p(x) - ad x)(e(x) + ad x) ,
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RxLx = 4(o(x) + ad x)(6(x) - ad x) ,

we have LR - RL = yb(x), ad x] = %0[x, x] = 0 since

X
® 1is an .ad-operator of L in ad . Thus L(®) is

flexible. //

In view of this result, the classification of flexible
Lie-admissible algebras A reduces to the determination of
all symmetric elements in VO(A—) . However, at present,
VO(A_) is determined only when A is reductive with a
simple Levi factor. We first classify A when A is

simple.

Theorem 6.4.2. Let A be a finite-dimensional

flexible Lie-admissible algebra such that A is a split
simple Lie algebra over F of <char 0 . Then either A
is itself a Lie algebra isomorphic to A  or A is
simple Lie algebra of type Ay (¢ > 2) . In the latter
case, A 1is either a Lie algebra or isomorphic to an

algebra with multiplication given by
xxy = uxy + (1 - u)yx - E%T-Tr(xy)l (2.15)

which is defined on the space of (& + 1)x(2 + 1) trace
0 matrices over F , where xy 1is the matrix product,

L # % is a fixed scalar in F and I is the identity

matrix.
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Proof. If A~ is not of type A%(K > 2) , then
dim VO(A—) =1 . Since 0 # ad ¢ VO(Au) , the symmetric
ad-operator Tt(x) = RX + LX in VO(A_) must be zero for
all xe A . Thus A is a Lie algebra. If A is of
type A (4 > 2) then we set AT = sf(e+1,F) . By
Theorem 6.1.2, 1t defined by T1(x) = RX + LX is a
symmetric element in VO(A_) . It follows from
Corollary 6.3.5 that T = c6 for some ¢ e F , where ©

is given by

- 2
yo(x) = xy + yx - 57 (Tr xy)I,

X,y € s£(2+1,F) and xy 1is the matrix product. Thus,
by Theorem 6.4.1, A is isomorphic to an algebra defined

on A = sf(&+1,F) but with multiplication given by

]

xxy = hx(ce(y) + ad y)

L{(c+l)xy + (c-1)yx - ﬁil (Tr xy)I}

it

If c= 0 then A is isomorphic to A = sd(a+1,F) . 1If
c # 0 then, dividing both sides by c¢ and setting

p = %(1 + %) # % , we obtain the algebra described by

(2.15). //

When A is semisimple, it can be shown that A
is a direct sum of ideals Ai such that A; is simple.

More generally, we can prove
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Theorem 6.4.3. Let A be a flexible algebra over

F of char # 2 (not necessarily finite-dimensional) such
that A~ is a direct sum of simple Lie algebras A;
Then each Ai is an ideal of A , so that A 1is the

direct sum of simple flexible Lie-admissible algebras Ai

Proof. We first show that each Ak is a subalgebra

of A . Let Bk = Zi%k Ai . Then A = Ak ® Bk and
Ak(: CA_(Bk) , the centralizer of Bk in A , since
[Ai,Bi] = 0 . Noting that each ad x 1is a derivation of
A, the centralizer of any subset of A in A is a

subalgebra of A . Thus it suffices to verify A, = CA'(Bé) = C.

Hence, let x ¢ C and let x a+b , ac¢ Ak , b g Bk
[x,b'] = [a,b'] + [b',b]

= [b',b] , so beC . Suppose b # 0 . Then, write

Then, for every b' ¢ Bk , 0

b = Zi#k bi with bj # 0 for some j # k . It follows

from [b,BiJ = 0 that [bj,AB] = (0 , since [A;,A;] =0

for 1 # j . This shows that the center of A3 is
not 0 , and this is absurd since A; is simple. Therefore
x = a 1s in Ak , showing that Ak = C

To show that each Ak is an ideal of A , observe

§

first that [BL,BL] = Bi since [A;,A;] A; for all i

Let a ¢ Ak and b ¢ Bk , and write b i [Xi’yil s

X y; € Bk . Since ad z is a derivation of A , we have

ab = ? a[xi,yi] = ?[axi,yi] - ?[a,yi]xi = ?[axi,yél e By
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since Bk is an ideal of A . Using [Ak,Ak] = Ak )
we can similarily show that ab e Ak . Hence ab =0
and Ak is an ideal of A . //

If A is a finite-dimensional semisimple Lie
algebra of char 0 then A" is a direct sum of simple
ideals (Lemma 1.6.3 and Theorem 3.6.3). Therefore, in view

of Theorems 6.4.2 and 6.4.3, we have

Corollary 6.4.4. Let A be a finite-dimensional

flexible Lie-admissible algebra over a field F of char 0
such that A~ is a split semisimple Lie algebra. Then A
is the direct sum of simple Lie algebras and simple flexible

algebras defined by (2.15). //

Corollary 6.4.4 completes the classification of flexib]
Lie-admissible algebras in the characteristic zero case whicl
was proposed by Albert in 1948.

Theorem 6.4.3 first proved by Weiner when A 1is
power-associative, and later by Laufer and Tomber when F
is algebraically closed of char 0 and A 1is finite-
dimensional over F . The present general form of
Theorem 6.4.3 is due to Myung.

The simple algebras described by (2.15) are nelther
power-associative nor have unit elements. As an application
of Theorem 6.4.2 we can easily prove the following result of

Laufer and Tomber (the reference cited below).
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Corollary 6.4.5. Let A be a finite-dimensional

power-associative flexible Lie-admissible algebra over a
field F of char 0 such that A  is semisimple. Then

A is a Lie algebra isomorphic to A

Proof. We may assume that F is algebraically
closed since any scalar extension of A" is semisimple
also (Corollary 3.6.6). By Corollary 6.4.4 it suffices
to show that the algebra defined by (2.15) can not be
power-associative. Thus, let A~ = sf(& + 1, F) with
% > 2 and let A have the multiplication given by (2.15).
If A is power-associative, it is easily checked that

(x#x) % (x%x) = [(x#x)#x]#x implies

(Tr XZ)XZ - (Tr x3)x - @%T(Tr XZ)ZI =0

for all x ¢ A . This is absurd since, for example, the
diagonal matrix x = diag{1,2,-3,0,...,0} does not satisfy
this identity. Thus A can not be power-associlative. //

1. A. A. Albert, "Power-associative rings', Trans.
Amer. Math. Soc. 64(1948), 552-597.

2. P. J. Laufer and M. L. Tomber, "Some Lie
admissible algebras', Canad. J. Math. 14(1962), 287-292.

3. H. C. Myung, "Lie-admissible algebras", Hadronic

J. 1(1978), 169-193.
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4, L. M. Weiner, "Lie admissible algebras', Univ.

Nac. Tucuman Rev. Ser. A., 11(1957), 10-24.

6.5. The reductive case

Recall that a Lie algebra L of characteristic O
is called reductive if Z(L) = Rad L and that L =S5 & Z ,
where 7 1is the center of L and S 1s a semisimple
subalgebra (a Levi-factor) of L (Theorem 3.7.11). Since
S =[LL] , S is the unique Levi factor of L . The
classification in Section 6.4 can be applied to determine
all flexible Lie-admissible algebras A such that A is

reductive and the Levi factor of A is simple.

Lemma 6.5.1. Let L be a finite-dimensional

simple Lie algebra over an algebraically closed field
F of char 0 . Then any invariant bilinear form ( , )
on L (not necessarily symmetric or nondegenerate) is a

scalar multiple of the Killing form ; that is,

(x, y) =k Trad xady , x,yel, ke6PF
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Proof. Recall the invariant condition of ( , )

([xyl, z) = (x, [yz]) » X, ¥, ze L

Let x ¢ L be any element. Since the Killing form is
nondegenerate, there exists an x' e L such that (x, y)
= Tr ad x' ad y for all y ¢ L . Then the mapping x =+ x'

defines a linear mapping T : L - L , so that
(x, y) = Tr ad xTady , x, Yy el

Then we have

i

(x, [yz]) Tr ad xT ad [yz]
= Tr(ad xT ad y ad z - ad xT ad z ad y)
= Tr ad [xT, ylad z
= ([xy], z)
= Tr ad [xy]T ad z
Thus the nondegeneracy of the Killing form implies
[xy]T = [xT, vyl , x,y €L

and this is equivalent to [T, ad j] = 0 for all ye L

Hence by Schur's Lemma 3.7.8 we have T =%k , a scalar. //

Let L be a reductive Lie algebra with a simple
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Levi factor S and center Z . Henceforth we denote the
elements of S by x,y,z,... while those of Z are
labelled by a,b,c,... . Then the symmetric elements in

VO(L) are determined as follows.

Theorem 6.5.2. Let L be a finite-dimensional

reductive Lie algebra over an algebraically closed field
F of char 0 such that the Levi factor S is simple.

Then any symmétric element ¢ 1in VO(L) satisfies the

relations
xo (y) = xeg(y) + [Tr ad x ad y]c (2.16a)
xp(a) = ap(x) = nla)x , (2.16b)
ag(b) = be(a) = g,(a)b e 2, (2.16¢)

where 6g and are respectively symmetric elements in

7
VO(S) and VO(Z) , X, yeS, a,bgZ, c 1is fixed

in Z , and n 1is a linear form on Z . Conversely,
given any symmetric elements 6g € VO(S) and 0, € VO(Z) ’
¢ fixed in Z and linear form n on Z , the linear
mapping 6 : L » HomF L satisfying (2.16a)-(2.16c) is a

symmetric element in VO(L)

Proof. Since L =S 6 Z , HomF L = HomF S
® Homp (S, Z) © Homg (Z, S) ® Homp Z . ~Thus it is convenien
to express a linear mapping 6 : L - Hom L by the matrix

notation
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%11 %12 0,0(x)  85,(x)
8 = E , 0(x) = (2.17)
921 922 0,1 (%) 8,,(x)
for x ¢ L where the eij are the component linear
mappings of ¢ :
611 L - Hom S , 612 L - Hom (S,z2) ,
651 L » Hom (Z,S) , 0yp L - Hom Z
In particular,
ads.x 0
ad x = », X &S (2.18)
0 0

while ad Z = 0 since Z 1is the center of L

Suppose now that 6 is a symmetric element in

Vo(L) . Equating 0 = efax] = [6(a), ad x] with (2.17),

(2.18), we have

[}

(adS x)ell(a) ell(a)ads X ,

(adg X)o;,(a) = 0,

921(a)ads x =0

Since adS is an irreducible representation of L , by

Schur's Lemma the first relation gives

ell(a) = n(a)IS
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where IS is the identity mapping on S and N 1is a

linear form on It follows from the second relation

Z
that Selz(a) = 0 (since- [ss] = S) , so elz(a) = 0

Similarily, 621(3) = 0 . Thus

n(a)IS 0
6(a) = , a & 17 (2.19)

0 622(3)

while 6fab] =[06(a), ad b] = 0 is an identity. By (2.17),
the symmetric condition ag(x) = x6(a) leads to 3921(X)

= xell(a) and aezz(x) = xelz(a) , which reduce to
8,,(x) =0, ag, (x) = nla)x (2.20)

by (2.19). Similarily, equating 6[xy] = [6(x), ad Y]

gives the relations

6,1 [xy] = [0,;(x), adg ¥], (2.21a)
6,[xy] = -(adg ¥)0,(x) , (2.21b)
621[Xy] = 921(X) adS y - (2.21c¢)

It follows from x6(y) = y6(x) that
x0,1(y) = yo,,(x) (2.21d)

xelz(y) = yelz(x) . (2.21e)
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If we put 6g = ell‘S then (2.21a) and (2.21d)

show that © is a symmetric element in VO(S) . Set

S

6, = eZZ‘Z Then ag(b) = bo(a) dimplies that 0, is
a symmetric element in VO(Z) . We also have from (2.21b)
ZGlZEXYJ = -[zy]elz(X) . (2.22)

Note that Z always has a symmetric nondegenerate bilinear

form ( , ) . Since 015 ¢ L > Hom (S, Z) 1is linear,
one can define a bilinear form ( , )a on S by
(x, y), = (&, y8,,(x)) (2.23)

for each a ¢ Z . Then by (2.22) we have

([xyl, z), = (a, 26,,[xy])

- (a, [ZYJelz(X))

fl

x, [yD), = &, e, s
so ( , ) 1is invariant. Thus, by Lemma 6.5.1,
(x, y)a = g(a) Tr ad x ad y , | (2.24)

o(a) ¢ F . From (2.23) and (2.24) it is easily checked
that o is a linear form on Z . Since ( , ) 1is
nondegenerate on Z , we have a(a) = (a, c) for some
¢ ¢ Z . Again, by the nondegeneracy of ( , ) , this

together with (2.23) and (2.24) implies
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,yelz(x) = (Tr ad x ad y)c

Since ye(x) = yo q(x) * y8,,(x) = yog(x) + y0 ,(x)
this gives (2.16a). We have ag(x) = u021(x) + aezz(x)
= aQZl(x) =n(a)x by (2.20). On the other hand,
xp(a) = xell(a) + xelz(a) = xell(a) = n(a)x by (2.19).
This gives (2.16b). Finally, be(a) = ag(b) = b621(a)
+ bezz(a) = bezz(a) = bez(a) by (2.19) and this is (2.16c¢).
Conversely, let o : L » Hom L be a linear mapping
satisfying (2.16a)-(2.16¢c). Then since 6(a) 1is a scalar

on S, [e(a), ady] =20, so o[x + a, y + bl = 0[xy]

]

ogfxy] = [6g(x), ad y] = [6(x) + 8(a), ad (y + b)]
[6(x + a), ad (y + B)] . Thus 6 e V,(L) and evidently

i

® 1is symmetric. //

Theorem 6.5.3. Let A be a finite-dimensional

flexible Lie-admissible algebra over an algebraically closed
field F of char 0 such that A =S ® Z is reductive
with S simple. If S 1is of type AQ,(Q > 2) then A
is isomorphic to the algebra defined on sf(e + 1, F) & Z

with multiplication given by

x&y = uxy + (1 - p)yx - —l~(Tr xy)I + (Tr ad x ad y)c, (2.25¢

4+1
xxa = asx = n(a)x , (2.251
axb = b%a € Z . (2.25¢
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If S 1is not of type Az(z > 2) then A 1is isomorphic

to an algebra with multiplication given by
xxy = [xy] + (Tr ad x ad y)c (2.25d)

and the remaining multiplication is the sames as in
(2.25b) and (2.25c). Here [xy] denotes the multiplication
in S while xy indicates the matrix product. The

notations are the same as in Theorem 6.5.2.

Proof. In view of Theorems 6.1.2 and 6.4.1, A 1is

isomorphic to an algebra defined on the space A  but

with multiplication given by x=zy = x08(y) + [x, y] where

8 1is a symmetric element in VO(A_) . But then 6 1is
determined by (2.16a)-(2.16c). Thus if S 1is of type

AQ(Q > 2) then GS is determined by Lemma 6.1.1 and

(2.25a) follows from (2.16a) and Theorem 6.4.2. Also,

(2.25b) and (2.25c) are consequences of (2.16b) and (2.16c).

If S is not of type Ag(z > 2) then es = 0 (Theorem 6.3.4).

This gives (2.25d). //

Notice that the quaternion algebra and HomF V are
included in the classification of Theorem 6.5.3. It is
easy to determine all flexible Lie-admissible algebras A

of dimension < 4 such that A is non-solvable.

Corollary 6.5.4. Let A be a flexible Lie-admissible

algebra over an algebraically closed field F of char 0
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such that dim A £4 and A is non-solvable. Then

(1) A is a Lie algebra isomorphic to sf(2, F)

(2) A is a 4-dimensional algebra with basis x, h, vy

whose multiplication table is given by

X h y a
X 0 2x h-Ya aX
h -2X 2y a 2y , ah
y -h-ya -2y 0 ay
a oXx ah ay Ba

where o, B, Y are scalars in F

o]

Proof. It is easy to see that if dim A< Z then A
is solvable. Thus dim A =3 or 4 . If dim A =3 then
it is routine to check that A  is the split 3-dimensional
simple Lie algebra, so A is a Lie algebra isomorphic to
sﬁ(z, F) (Theorem 6.4.2)f If dim A = 4 , then by a
dimension argument we see that A" =S ® Fa is a Levi
decomposition for A  where S 1is isomorphic to sf(z, B)

Let x, h, y be the canonical basis of S , so that

[xh] = 2x , [yh]l = -2y, [xy] = h .

Then A  is reductive (why ?). Also, ad x , ad h , ady

have the matrices (relative to x, h, y)



0 0 0 2 0 0
ad x = -2 0 0}, ad h = 0 0 01,
0 -1 0 0 0 -2
0 1 0
ad y = 0 0 2
0 0 0

Thus the matrix of the Killing form relative to x, h, y s

0 0 -4
0 8 0
-4 0 0

The multiplication table given in (2) then follows from
(2.25b)-(2.25d), since dim Z =1 and Z 1is a subalgebra

of A . //

The classification in Corollary 6.5.4 has been
obtained by Myung under the assumption that A 1is a nilalbebra
("A class of almost commutative nilalgebras'", Canad. J.
Math. 26(1974), 1192-1198). The table above also includes
the pseudo-quaternion algebra P4 introduced by Okubo
("Pseudo-quaternion and pseudo-octonion algebras', Hadronic
J. 1(1978), 1250-1278). For this, let S be a 3-dimensional
simple Lie algebra over the field F (as in Corollary 6.5.4)

X such that

with basis X1 Xp5 Xg
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[x1X,] = x5 5> [Xp%5] = X3 > [X3X] = X,

or

3

i, j, k=1, 2, 3
where ¢.. is the totally antisymmetric Levi-Civita symbol
ijk y

with = 1 . Note that S is isomorphic to the split

€123
3-dimensional simple Lie algebra (in fact, this is the

unique Lie algebra L of dimension 3 such that [LL] = L)
Thus any non-solvable Lie algebra of dimension 4 1is of the

form S ® Fe . Let A be a flexible Lie-admissible algebra

such that A =~ S ® Fe . Then A is determined by (2.25b)-

(2.25d). Compute the matrices relative to X;s X5 Xz 8S
0 0 0 0 0 1
ad X, = 0 0 -1 1, ad x, = 0 0 01,
0 1 0 -1 0 0
0 -1 0
ad X; = 1 0 0

so that the Killing form of S has the matrix
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Thus if we set o = -8 = 1 and ¢ = -%e in the table, we
have a 4-dimensional flexible Lie-admissible algebra with

multiplication given by

3
ST IE S SR S A
(2.26)
X.%€ = e*xj = xj , exe = -e , j =1, 2,3

This algebra is the pseudo-quaternion algebra P4

Rémé;k. (1) Benkart and Osborn ("Flexible Lie-admissible
algebras", J. Algebra, 71(1981), 11-31.) have determined all
flexible Lie-admissible algebras A of <char 0 such that
Rad A~ s a direct summand of A~ . Thus the case A~ is

reductive is included in their classification.

(2) 1In spite of these results, the classification of
the general simple flexible Lie-admissible algebras appears
to be very difficult, if not impossible. To support this
view, Okubo has recently provided a method to construct a
(infinite) class of simple flexible Lie-admissible algebras
from a given simple algebra ("A generalization of Hurwitz
theorem and flexible Lie-admissible algebras', Hadronic J.
3(1979), 1-52). These algebras are related to quasi-classical
Lie algebras. An arbitrary Lie algebra L 1is called quasi-
classical if it has a symmetric nondegenerate bilinear form
( , ) satisfying the invariant condition (xy], z)

= (x, [yz]) , X, Y, ze L . Itis easy to see that any
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reductive Lie algebra is quasi-classical. However, the
converse is not true ; in fact, there is a solvable Lie

algebra which is quasi-classical.

(3) The material in this chapter is drawn from
Okubo and Myung ("Adjoint operators in Lie algebras and
the classification of simple flexible Lie-admissible

algebras', Trans. Amer. Math. Soc., 264(1981), 459~472.).

6.6. An extension of the PBW Theorem

We digress to discuss an extension of the PBW Theorem
to a flexible Lie-admissible algebra. Specifically, given
a Lie algebra L , we construct a flekible Lie-admissible
algebra generated by L which satisfies a "universal-
like" property.

Let A be any algebra over a field F of char # 2
and let A # y be fixed scalars in F . Denote by A(X,H)
the algebra defined on the vector space A but with

multiplication given by

X0y = AXy * uyx ,
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x, vy e A, where xy indicates the product in A .

Call A(xa,p) the (A,y)-mutation of A . Let (X,y,z)o

o) .
and [x,y] be the associator and commutator in A(X\,u)

Thus,

(x,y,z) = (xoy)oz - xo(yoz) ,

fl

X0y - YyoOX

[x,v1°

Since [x,y]o = (A p)[X,y] , A 1is Lie-admissible if
and only if A(\,u) is
Henceforth, assume that A 1is an associative algebra

over F . It is easily checked that (x,y,z)o is written as

o] A
(x,y,2) = XU[[Z’XJ’Y] = '—_E——Z—[[Z’Xloa}’]o 9 (2.27)
(A-u)
x, ¥, z ¢ A . Setting x = z in (2.27) implies that

A(r,u) 1is flexible. If we put xz =z , (2.27) gives the

Jordan identity (x,y,xox) = 0 , so A(i,u) is flexible

Jordan-admissible (noncommutative Jordan).

Remark. The (A,u)-mutation of an associative
algebra is nothing but a quasi-associative algebra
introduced by Albert (Ref. 1 cited in Section 6.4).
Denote the (A,1-A)-mutation of A by A(A) . A
nonassociative algebra A over F is called quasi-

associative if there exist an extension field K of F
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and an associative algebra B over K such that AK = B()

for some X ¢ K . Note that if » =0 , 1 then AK is
associative, so is A . If X =% then AK is Jordan,
so is A . If A # -u , the product xoy in .A(x,u) 1s
given by

xoy = O+ wy=xy ¢ (- gy vx ]

Since an algebra with product xy is isomorphic to an
algebra with product oxy (o # 0 fixed in F) via

X - % x , we have that if A is associative then A(X,u)
(A # -u) is quasi-associative. Indeed, the identity
(2.27) characterizes quasi-associativity. It is shown

that an algebra A over F , which is neither associative
nor Jordan, is quasi-associative if and only if A
satisfies the identity (x,y,z) = u[[z,x],y’] for some

o # % in F (Y. Ko and H. C. Myung, "On Lie-admissible
algebras associated with invariant bilinear forms', Bull.

Korean Math. Soc., 16(1980), 77-84.). //

Let L be any Lie algebra over F and let ), u
be fixed scalars in F with A # u . Let T = T(L)

=F1®L®LOL® ... be the tensor algebra on L

Take the (\,u)-mutation T(A,u) of T . Denote by
TA y the subalgebra of T(A,u) generated by 1 and L
Let R be the ideal of TA y generated by the elements

[xy] - [x¥1° = [xy] - (a-u) (x®y - y8x) ,
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x,y ¢ L , where [xy] is the product in L and

[x,y]o = xoy - yox . We form the quotient algebra
U = U(L = T R .
T T
Then UA L is flexible Lie-admissible and satisfies (2.27).
>
Let ¢ : T, U be the natural homomorphism. Clearly,
Asl Asu
¢ maps F isomorphically into U and hence U
>\,U A
contains the scalars. In fact, we show that ¢ is

injective on L also.

Theorem 6.6.1. Let L be a Lie algebra over F

and B be an associative algebra with unit element over

F . If f is a homomorphism of L into B then there
exists a unique homomorphism g of UA . into B(X.u)
3
_ 1
such that g¢ = e

Proof. Since the tensor algebra T(L) 1is a
universal associative algebra generated by 1 and L ,
the linear mapping X%ﬁ f 1is extended to a unique
homomorphism g' of T(L) into B . Since g’ is a

homomorphism of T(L)(A,u) into B(A,n) , g' induces

a homomorphism of TK y into B{(x,p) . Then we have

2

g' ([xy]l - (O-p) (x@y - y8&x))

- $5 £(DyD - nwg’ (8 - yex)
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- TR0 - g Fe0L£00] =0
Hence R C ker g' . Therefore, there is a unique
homomorphism g : UA,u = TK,U/R - B(A,u) such that
gp = g' . As this 1is restricted to L , we have
g¢ = X%E f . Such g is unique since 1 and ¢(L)
generate U . //

AU

Corollary 6.6.2. The natural map ¢ : T + U

is injective on L

Proof. Take B in Theorem 6.6.1 to be the universal
enveloping algebra U(L) of L . By Corollary 5.1.8, the
natural map i : L » U(L) is injective. Thus if we set
f =1, it follows from Theorem 6.6.1 that ¢ is injectiv

on L . //

Due to Theorem 6.6.1, Ux y is called a universal
5

enveloping (A,u)-mutation algebra (UE(A,u)-MA) of L

In view of Corollary 6.6.2, we identify a =a + R , a e I

SO UK I is generated by 1 and L . Theorem 6.6.1

now teads as : If f is a representation of L into an
associative algebra B with unit element then the
representation i%a f of L into the flexible Lie-
admissible algebra B()A,u) is extended to a unique
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homomorphism of Uk " into B(A,u) , which we denote
?

1
b —— f
y o

Let {x; | i € I} be an ordered basis of L
Then each element in UA " is a linear combination of

2

nonassociative monomials in X5 ie I,

in some association of the product. Thus the unique

homomorphism L f of U into B(A,u) is given by
Al )\,Ll

1 _ 1
e f(xi 0X. 0...0X. ) = ——r f(xi )of(xi )o...of(xi )

A-H 1 12 1y )t 1 2 r
where both sides have the same type of association. In
particular, if B = U(L) , the universal enveloping

algebra of L then there is a unique homomorphism

g : UA l + U(L) (A,u) such that
1
g(x. oXx. 0...0X; ) = ——— X. OX., 0...0X, ,
i, i, (A-u)r i, 7, i

where the right side is a product in U(L)(A,u) . It is
not known whether g 1is injective.

Let B be an associative algebra with 1 . If
b’al’aZ""’ak € B then, using the fact that each ad x

is a derivation of B , one easily checks
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k-1
[b,aja,...a ] = 2 a;...a;lb,ag,qla;, 02y (2.28)
where aq8y. .08y =1 if i =0 . Call an element of the
form [[a,b],c] a double commutator in a, b, c¢ . Thus

we can state

Lemma 6.6.3. Let b,c,al,az,...,ak be elements in

B . Then [[b,alaz...ak],é] is a sum of products each of
which contains exactly two commutators or One double

commutator in b,c,al,...,ak . //

Let {x; | i e I} be an ordered basis of L , L 2
Lie algebra. A monomial X. OX., 0...0X, in T(L)
i, 71, 1, A,

(or in UX U) in some association is called standard if
b4

i, 2 i, 2.0 2 i, and call r the degree of the monomial.
Since the product is not associative, an ordered subset
{x. ,...,x; } with i, < ... <1 gives rise to different

i 1 1= =T

1 T
standard monomials in U, b For examples,

2
((x, ox, )ox. )ox. , (x. ox. )o(x. ox, ) ,
i, i, iy i, i 1

(x. o(x, ox. ))ox. , etc.
iy i, i

To obtain an analogue of the PBW Theorem for U

b3

A,U
we first need to develop machinery to interchange two

basis elements in a monomial. Let wu, Vv be monomials 1in
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Tx L and let x, y be basis elements of L . Then
3

(xow)oy = (uwox)oy + [x,ul’oy = (uox)oy + (A-p)[x,ufoy ,

and by (2.28) the last term is a linear combination of
monomials (in T(L)) of degree < 1 + deg (x) modulo J
where J is the ideal of T(L) generated by the elements
[xy] - (x®y - y®x) , x,y e L . A similar observation can
be made for a product of the form (uox)o(voy) . Thus

it suffices to consider the following two types of

ducts i T
products in A, u

(uox)oy , (uox)o(yov)

where u and v are monomials in TA y of degree m
9

and n , and x, y are basis elements. We make repeated

use of (2.27) and the fact that ad a 1is a derivation of

TK y and T(L) . First we compute
3

(uox)oy = uo(xoy) + Aﬂ[[y,u],k]

[

uo (yox) + uoﬁx,yjo + au[[y,4]»x]

(uoy)ox + uo [x,y]° - Au[[x,u],¥]

+ o [y.u].x] -

In the last expression, the second term can be written as

a sum of standard T(L)-monomials modulo J of degree < m + 1
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and by Lemma 6.6.3 the last two terms are linear combination
of standard T(L)-monomials modulo J of degree ; m .

Similarly, we compute

(uox)o (voy) ((uox)oy)ov - Au[[v,uox],y]

1]

((uox)oy)ov - Au [uo [v,x] + [v,u] ox,y']

[

((uox)oy)ov - kuuo[[v,i],y] - aufu,y]olv
- afLv,u],y]ox - aulv,u]o[x,y]

Now, x and y in ((uox)oy)ov can be interchanged by
the previous calculation. As before, the remaining terms
are linear combinations of standard T(L)-monomials modulo
J of degreé <m+mn+ 1 . Note that (uox)o(yov) 1is

a Tx’u—monomial of degree m + n + 2

Therefore, we have proved the following generalizatior

of the PBW Theorem

Theorem 6.6.4. Every element in a universal

enveloping (A,p)-mutation algebra U>\’h of L 1is a
linear combination of R cosets of 1 and standard
Txau~monomials, and J cosets of 1 and standard T(L)-
monomials. //

Remark. The standard monomial expression in

Theorem 6.6.4 is quite crude. However, when
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L = su(2) , U(su(2))(r,u) has physical applications and
has been utilized to explain the non-conservative nature
of angular momentum under strong interactions (C. N. Ktorides,
H. C. Myung and R. M. Santilli, "Elaboration of the recently
proposed test of Pa&li's principle under strong interactions",

Phys. Rev. D22(1980), 892-907.).



7. LIE—ADMISSIBLE ALGEBRAS OF ARBITRARY CHARACTERISTIC

7.1. Classical Lie algebras

The aim is to classify certain classes of flexible
Lie-admissible algebras A over F of char # 2, 3,
according to the structure of the Lie algebras A~ which
closely resembles that of semisimple Lie algebras of char O

Unlike the characteristic zero case, the classificatic
of simple Lie algebras of prime char is a long standing open
problem. However, there is a class of Lie algebras over F
of char # 2, 3, called classical Lie algebras, which
satisfy properties similar to those of semisimple Lie

algebras of char 0

Definition 7.1.1. Let L be a finite-dimensional

Lie algebra over a field F of char # 2, 3 . Then L
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is called classical if
(1) the center of L is 0 ;
(2) [LL] =1L ;

(3) L has an abelian CSA H (called a classical CSA),

relative to which

(a) L has the Cartan decomposition L H + Za# L

0 o
such that (xh] = a(h)x , x ¢ La , h e H;

(b) if o # 0 1is a root, dim [LaL—a]

]
sy

(c) if o, B are roots and B # 0 then not all

a * kg are roots. //

Clearly, split semisimple Lie algebras of char 0
are classical in this sense. In fact, it can be shown
that if F 1is algebraically closed and L has nondegenerate
Killing form then L is classical relative to any CSA
(see G. B. Seligman, "Modular Lie algebras', Springer-
Verlag, New York, 1967 ; hereafter this is referred to as
[S]). Note that the results in Chapter 1 and in
Sections 3.1-3.3 are independent of characteristic. Thus
by Lemma 1.6.3 each of the following propositions implies

the next
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(a) L has nondegenerate Killing form.
(b) L is a direct sum of simple Lie algebras.
(c) L 1is semisimple.

In the characteristic zero case, these are all equivalent
(Theorem 3.6.3) while all reverse implications fail in
prime characteristic (see [s]). However, if L 1is classics
then (b) and (c) are equivalent (rsy} , p. 37).

We classify flexible Lie-admissible algebras A when
A" is classical. In fact, we can do so under slightly
weaker conditions. We list, without proofs, some known
results about classical Lie algebras. The reader may find

proofs in Seligman's book.

Theorem 7.1.1. Let L be a classical Lie algebra

with classical CSA H . Let ¢ be the set of nonzero

roots of H in L . Then
(1) if o e & then dim Lu =1,

(2) Only 0, za are roots among the integral

multiples of o ,

(3) if a,p e @ and o + B e & then [LQLB]
= L . //

o+B

If o, B are roots with g ¢ © then we let 1, ¢
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be the least nonnegative integers such that o - (v + 1)B
and o + ( q + 1) are not roots. Then the integer T - g

is called the Cartan integer of the ordered pair of roots

a, B8 and is denoted by Au,s

Theorem 7.1.2. Let Aa be the Cartan integer of

s B
a, B8 (B # 0) . Then

(1) -3 < Aa,B <3,

(2) Aa,B < -2 implies that o - § 1s not a root,
(3) Aa,-B = _Au,B = A-u,B ,

(4) AO,B =0,

(5) Aa,B < 0 implies that o + 8 1s a root,

(6) if o,B € ® then A = (0 implies A = 0

o, B B,0

Definition 7.1.2. Let L Dbe a classical Lie algebra

with classical CSA H . Then a set 1 = (al,az,...,qm) of

roots is called a fundamental system of roots relative to

H if
(1) oa; - o is not a root for i # j ,

(2) if o e @ then one of the following holds

/7
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and s +, ..+ ay is a root for all 1< q < k
1 q -
(3) every diagonal minor of the matrix (Aij) is
positive where A.. = A
1] O o0 =

1]

We say that two roots «a,B e II lie in the same
component if there are roots Pqoee ol € n  such that

= = and A 0 1 <1i<k-1
o 111 s B Uk ui’“i+1 76 5 S <

This relation is an equivalence relation on I and the

equivalence classes are called the components of I . If

[ consists of a single component the T is said to be

connected. //

Theorem 7.1.3. For each o ¢ @& , there exist nonzero

elements x L , y €L and h ¢ [L L ] such that
o o o -0 o o -a

[xay&] = ha ) [xaha] =X, and [yuhu] = Y, - If

I = (al,uz,...,am) is a fundamental system of roots then
for any root o, oo OT -qa is a sum of roots in I , SO
L has a basis consisting of elements of the form

h. f...[xi Xié]...xi] o [oeeLYy

y.1 ...y 1
* 1 K 1 12 1k

i=1,2,...,m, {il,...,ik} c {1,2,...,m}

where h. = h and x. = X . //
1 o . 1. o

Theorem 7.1.4. Let L be a classical Lie algebra.

Then L is a direct sum of simple classical Lie algebras.

L is simple if and only if T 1is connected. //
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7.2. Flexible Lie-admissible algebras with A classical

Let A be a flexible algebra over F of Charx% 2,
and denote by A" the algebra with multiplication
xX.y = 4(xy + yx) defined on the vector space A . Then
the right multiplication T(x) 1in A" by x 1is expressed
as T(x) = %(R(x) + L(x)) where R(x) and L(x) are the
right and left multiplications in A by x . Recall that
A 1is flexible if and only if all ad x are derivations
of A" (Lemma 1.4.2) ; that is, [x,y-z] = y-[x,z] + [x,y]-z

for all x,y,z ¢ A . This is also expressed as
ad y:z = (ad y)T(z) + (ad z)T(y) , (2.29)

X,Y,z € A .

Let h € A be a power-associative element. Then we
get from (2.29)
ad h% = 2(ad h)T(h) = 2T(h)ad h (2.30)
3 _ 2 2 . .
and ad h™ = (ad h)T(h") + (ad h")T(h) , which imply

ad hS = (ad h)(2T(h) 2 + T(h?)) . (2.31)

From (2.29) and (2.30) we obtain
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ad h% = 2(ad h2)T(h?) = 4(ad WTM)T(hD)
- 4T(h®)T(h)ad h (2.32)
- (ad W)T(hY) + (ad KT(H) ,

ad 1 = (ad REYT(R3) + (ad BHYTMD) . (2.33)

Lemma 7.2.1. Let A be a flexible algcebra over F

of char # 2 and let h e A be a power-associative

element. Then

(1) If x(e A) 1is a common eigenvector of ad h
and ad h% then ([x,h3] = [x,h*] = 0 imply [x,h%] = 0

(2) If x 1is a common eigenvector of ad h , ad h2

R(h) , and R(hz) then [x,h4] = [x,hsj = 0 imply
[x,h3] =0

Proof. (1) Let x ad h = Ax and x ad n? - X
A,pe F. If X =20 then it follows from (2.30) that
u =0 , Or [x,hzj = 0 . Suppose X # 0 . Then by (2.31)
we get xT(hz) = —ZXT(hj2 since [X,hsj = 0 . Hence by
(2.32), 0 = x ad h* = axT(W®)T(h) ad h = -8xT(h)°> ad h
- -8axT(h)> , since T(h) ad h =(ad h)T(h) (the flexible
law is equivalent to the identity R(x)L(x) = L(x)R(x)).
Thus xT(h)3 = 0 but by (2.30) xT(h) = u(22) 'x , so

w=0; [x,h’] =0 .
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2 ux , XR(h) = vx

(2) Let xad h=xx, xadh
and xR(hz) = WX 5, ASMsV.w E F . If » =0 then we can
use (2.31) to conclude [x,hs] = 0 . Now suppose A # 0
If u =0 then by (2.30) xT(h) =0, so by (2.31) we
get x ad h3 = x(ad h)T(hZ) = Awx , Since [x,hzj =0 ;

xR(h%) = xL(h?) . Hence, by (2.33), this implies that

x(ad h)T(h?) = rwxT(h?) = rw’x (recall wu

0 0). Thus

]

W 0 and [x,h3] = (0 . Finally, assume u # 0 . By (2.32),

0 = x ad h? = 2x(ad W¥)T(RZ) = 2uxT(?)

SO xT(hz) = (0 . Since A # 0 , this gives x(ad h)T(hz) = 0

Therefore, by (2.31), we have

x ad h3 = 2x(ad MT(M)% = 2axT(h) 2 = 2a9%x

since xT(h) = Lhx + %xh = %(v - A)x + LBvx = (v - HAM)x ,

where v = v - %) . Since XT(hz) = 0 , this and (2.33)

imply
0 = x ad h° = x(ad h3)T(h3) + x(ad h>)T(h?)
- uxT(h%) + 292xT(h))
= uxT(h) ,
SO xT(hS) = 0 since u # 0 . Therefore, it follows from

(2.32) that
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0 = x ad h? = x(ad WTH®) + x(ad K3 T(h)
= AXT(R®) + 2357°xT (h)
= ZAJSX
since xT(h) = vx . Thus v = 0 and x ad h? = 0 since
we have computed x ad he o= 9% . //

In the remainder of this section, we assume that A
is a finite-dimensional flexible Lie-admissible algebra
over F . Let H be a CSA of A . Then H = Aé(ad H)

and since ad h (h ¢ H) 1is a derivation of A , we have

Lemma 7.2.2. Any CSA of A is a subalgebra of A .

If H is a split CSA of A then let

A =H+ 3 A
o0

be the Cartan decomposition of A" relative to H . Then

[Aa,Aé]g,Aa+8

Since ad Hc Der A (Theorem 1.4.3), in view of

Corollary 1.4.8 Aa(h)(ad h)AB(h)(ad h) ¢ A(a+B)(h)(ad h)

Noting that A = JQH Aa(h)(ad h) , we have

Lemma 7.2.3. Let A, be the root space of A
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relative to a split CSA H of A , corresponding to a

root o . Then

c .
AaAB “‘Aa+8 , o, B, TOOtS //
Lemma 7.2.4. Let H be a split CSA of A  such

that h® = hh = 0 for all he H. If a # 0 is a root

of H such that ad h 1s a scalar on Au for all h e H

then AuT(H) = 0

Proof. Let h e H . Since of(h) is the only
eigenvalue of ad h on Aa , ad h = o(h) on Aa . By
(2.30) (ad h)T(h) = 0 for all h e H . Hence if a(h) # 0 ,
then 0 = Aa(ad h)T(h) = a(h)AuT(h) gives AaT(h) =0
Assume o(h) = 0 .. Since o #.0 , choose an h' € H
With a(h') # 0 . We linearize (ad h)T(h) = 0 to get
(ad h)T(h') + (ad h')T(h) = 0, so 0 = Au(ad h)T(h')

+ Aa(ad h')T(h) = Aa(ad h')T(h) = u(h')AaT(h) . Thus
AT(R) =0 . //

Recall that a power-associative element x e A 1is

called nilpotent if x®™ = 0 for some m >0 . If dim A =n ,
then x,xz,... span a nilpotent commutative associative
algebra B of dimension < n . Thus the right multiplication

R(x) in B by x 1is nilpotent, soO R(X)n = 0 and this

gives xn+1 = 0



—280—
We prove the following structure theorem on flexible

Lie-admissible algebras.

Theorem 7.2.5. Let A be a finite-dimensional

flexible Lie-admissible algebra over a field F of
char # 2 . Suppose that A~ has a split abelian CSA H

satisfying

(1) H is nil in A ; that is, every heH 1is

nilpotent in A ;

(2) dim Au = 1 for each root o # 0 ;

(3) the center A is zero.
Then A is a Lie algebra isomorphic to A

Proof. We first show that H is a nil subalgebra
of A such that h2 = 0 for all h e H . By the foregoin
remark there is a positive integer t such that ht = o
for all t ¢ H (for example, t = 1 + dim H).

Suppose t > 3 and let n be the least integer
such that 3n > t . Let h be any element in H . Set
g = h"™ . Then g3 = 0 ., Since dim Au =1 for o # 0,
each element of Aa is a common eigenvector of ad g

2 Since H is abelian and g3 =0, by

and ad g
Lemma 7.2.1(1) we have that g2 is in the center of A

so g~ =0 or h =0 . If 2n >4, let m be the
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least integer with 3m > 2n . Then n > m , since if

m > n then 3m > 3n > 2n and n=m , so 3(n - 1)

=2n'+ (n - 3) >2n (Zn > 4 gives n > 3) , a contradiction.

Then the argument just used implies hZm = 0 . Hence, by

repeated applications of this, we have either h4 =0

or h2 = 0 . Since dim Aa =1 for ao # 0 , by
Lemma 7.2.3 every element of Aa is an eigenvector of
R(h') for all h' e H . Therefore, Lemma 7.2.1(2) implies

h3 = 0, since A~ has center 0 . Thus by the above

2 _ o 2 _ ., 2 2 _
h® = 0 . Hence 0 (h1 + hz) h1 + Zhlh2 + h2 = Zhlh2

for all hl’h e H, since H is abelian. That is,

2
HH = 0 . If Aa = Fx for o # 0 and [x,h]} = a(h)x ,

then by Lemma 7.2.4 we have
xh = -hx = a(h)x , he H. (2.34)

Let o, 8 be any nonzero roots of H . If o + B

is not a root then by Lemma 7.2.3
AaA =AA =0 . (2.35)

Suppose o + B is a Toot. If o + B =0 , choose an
heH with o = a(h) # 0 and let xh = ox and AB = Fy ,

so hx = (6 - a)x . Since xy and yx are in H ,

i

from the flexible law (h,x,y) + (y,x,h) 0 (see (1.7))-or
(hx)y - h(xy) + (yx)h - y(xh) = 0 we have (o - o)Xy - 0OyX

=0 or Xy = ou_l[x,y] . If o + B8 1is a nonzero root
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then by Lemma 7.2.3 AdAB C:Ad+6 = Fz . Therefore, for

any roots o and g # 0 , we can let

Xy - yX =)z , Xy =uz , YX 7 (W - Az (2.36)

for x ¢ Ad » Asp e F and some =z # 0 in A
Choose an h ¢ H with g(h) # 0 and let o =a(h) and

B =B(h) . By Lemma 7.2.4 we get
xh = -hx = ax , zh = -hz = 4(a + B)z (2.37)

for x € Aa and some z # 0 1in A We utilize the

o +B
flexible law (hx)y - h(xy) + (yx)h - y(xh) =0 together

with (2.36) and (2.37) to obtain

5 (cau + (a+B)p + (u-2)(a+B) - a(u-A)lz = 0

]

Since z # 0 , this gives B8(2u - A) =0 , so A 2u

]

It therefore follows from (2.34) - (2.37) that xy -yXx
= 4[x,y] for all x,y e A . Thus A 1is a Lie algebra

isomorphic to A . //

If A is classical then A satisfies the condition

of Theorem 7.2.5(Theorem 7.1.1). Thus we have

Corollary 7.2.6. Suppose that A" is a classical

Lie algebra having a classical CSA which is nil in A .

Then A is a Lie algebra isomorphic to A . //
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Let A Dbe a power-associative algebra over F . An
ideal I of A 1is said to be nil if every element of I

is nilpotent. If I and J are nil ideals of A then
m

so is I + J . 1In fact, let ae¢ I , be J with a = 0
Then (a + b)m =a"+c=ceJ , so (a + b)mn =c™ =
for some n > 0 . Hence I + J 1is nil and so A <contains

a unique maximal nil ideal N(A) , called the nil radical

of A . It is shown that if A is a finite-dimensional
flexible strictly power-associative algebra over F of
char # 2,3 and N(A) = 0 then A has a unit element 1
(R. H. Oehmke, "On flexible algebras', Ann. of Math. (2)
68(1958), 221-230). Thus, if, in addition, A is a
simple Lie algebra then A must be a nilalgebra. Suppose
that A is a semisimple Lie algebra over a field F of
char 0 . Then A is a direct sum of simple Lie algebras,
so by Theorem 6.4.3 A is a direct sum of simple flexible
Lie-admissible algebras Ai with A; simple. Therefore,
A is a nilalgebra and so Corollary 6.4.5 is also a

consequence of Theorem 7.2.5.

Remark. A necessary and sufficient condition that
A be a nilalgebra has been given in terms of a CSA of A
It is shown that a finite-dimensional flexible Lie-admissible
power—associative algebra over F of char 0 is a

nilalgebra if and only if A~ contains a CSA H which
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has a basis consisting of nilpotent elements (H. C. Myung,
"Flexible Lie-admissible algebras with nil-basis",

Hadronic J. 2(1979), 360-369). //

In Theorem 7.2.5, the conditions that H is abelian,
dim Au =1 for o # 0, and center A = 0 are not
strong enough to imply that H is nil in A . Let A be
a 3-dimensional algebra over F with multiplication
given by

xh = x , yh=1%(+1)y , hy = %(l-a)y , h®=rh

and all other products are 0 , where o # 0,1 in F

It is easy to see that A 1is flexible Lie-admissible and

A" is given by
(x,yJ =0, [x,h]=x, [y,h] =ay,

so that A is a solvable Lie algebra. Note that

A" = Fh + Fx + Fy is the Cartan decomposition of A
relative to CSA H = Fh , and A1 = Fx , Aa = Fy for
roots 1 and o . The center of A is 0 but H is
not nil in A . This example also shows that the Lie

algebra A in Theorem 7.2.5 need not be semisimple.

Theorem 7.2.7. Let A be a 4-dimensional flexible

algebra over an algebraically closed field F of char 0

such that A is a non-solvable Lie algebra with a CSA H
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which is nil in A . Then A 1is either a Lie algebra or
a nil algebra of nil-index 3 with basis x, y, h, a whose

multiplication table is given by
xy =h + % , yx=-h+ % , xh = -hx = 2x,
= = 2 _
yh = -hy = -2y , h™ = -a

and all other products are O

Proof. The general case of A has been classified

in Corollary 6.5.4. Then H = Fh + Fa is a CSA of A

which must be nil in A by the assumption. Thus b3 =0

for all b & H since dim H = 2 , and a2 = Ba implies

B =0, so az = 0 . Using this and h3 = 0 , we have
0= (h +a)> =h% + (ha)a + (ha)h = a’h + 20va , so

o =0 . If y =0 then A is a Lie algebra. If vy # 0
then we replace a by -7% a to obtain the algebra given
in the table. It is easy to check u3 = 0 for all

ueA . //

The algebra A in Theorem 7.2.7 shows that the

condition of center A = 0 is essential in Theorem 7.2.5.
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7.3. Embedding of Lie algebras

We discuss a necessary and sufficient condition that
a classical Lie algebra is embedded into a flexible Lie-
admissible algebra. This condition is given in terms of a

Cartan subalgebra of its associated Lie algebra.

Lemma 7.3.1. Any flexible Lie-admissible algebra A

of char # 2 satisfies the identity

[x,y]y = %([x,yzl + [[x,y1,y])

Proof. Recall ad x 1is a derivation of A for all
x € A . The flexible law (x,y,y) + (y,y,x) = 0 implies

y(yx) = (xy)y - [X,yz] . Thus we have

(xy)y - (yx)y - y(xy) + y(yx)

[[x,¥] Y]

fi

(xy)y - 2y(xy) + y(yx)

2(xy)y - [X,yzj - 2y (xy)

]

2[xy,y] - [x,y%]

L]

2[X3YJY - [X:YZ] 3

so [oyly = 5(0x,y3 + [DGy10]) - /)
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Lemma 7.3.2. Let L Dbe a Lie algebra over an

arbitrary field F . Let S be a finite-dimensional
subalgebra of L and H be a CSA of S . Then, for an
ideal S of L , [SR] = 0 if and only if [HR] = 0

Proof. We may assume that F 1is algebraically
closed ; if not, one takes the scalar extension of S to

the algebraic closure of F . Let S =H + I Su be the
a0

Cartan decomposition of S relative to H . Then, for

each h e H with o(h) # 0 (o # 0) , ad h : Sa > Su

is surjective (see the proof of Theorem 3.3.6(2)), so
[Sah] =5, . If [HR] = 0 and o # 0 then, by the Jacobi

identity,
(s R] = [[s,h]R] < [[Rn]S ] + [(s,RIh) =0
since R is an ideal of L . Thus [SR} =0 . //

Theorem 7.3.3. Let A be a flexible Lie-admissible

algebra over a field F of char # 2 . Let S be a
finite-dimensional subalgebra of the Lie algebra A" and

H be a CSA of S . Then S 1is a subalgebra of A if and

only if HH < S

Proof. As before, we may assume that F 1is
algebraically closed. Let S = H + Za%O Sa be the Cartan

decomposition of S relative to H . Suppose that HH C S
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We first show that SQH(:,S for o # 0 . Thus, choose
an he¢ H with o(h) # 0 . Then [Sa,h] = Sa for o # 0
since ad h : Su + S is surjective. For any element

a

X g Sa , we have by Lemma 7.3.1

[x,h]h = %([x,h’] + [[x,h],h]) e [S,HH] + [[S,H],H]C &

Since fSa,h] = Sa , this implies Sah ¢ S . Now, let k

be any element in H . Then one gets

[x,h]Jk = [x,hk] - h[x,k]

(x,hk] - [h,[x,k]] - [x,k]h

m

(s,nn] + [H,(s,H]] + (S ,Hhc S+ ShcCS

H

Again, since [Sa’hj S, » this implies S HC § for

o
o # 0 . Since HHCS , we have SHC S
For any o # 0 , let h be an element of H such

that a(h) # 0 . Let x ¢ Su , Yy €S . Then
y[x,h] = Cx,yh] - [x,y]h e [S,SH] + SHC S

Since [S_ ,h] = S, , this shows that SS C S for a # 0
It follows from SHC S that SSC S and S is a
subalgebra of A . //

In view of the known structure of A when A  is

classical, Theorem 7.3.3 enables us to give a condition
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for A that a classical Lie algebra is embedded into A

as a subalgebra.

Corollary 7.3.4. Let A be the same as in Theorem 7.3.3.

Let S be a finite-dimensional subalgebra of A  which is
classical and H be a classical CSA of S . Then S 1is
a Lie algebra under the multiplication in A if and only

if HHC S and H is nil in A (char F # 2,3).

Proof. One direction is trivial. If HHC S and H
is nil in A then by Theorem 7.3.3 S is a subalgebra of

A, so the result follows from Corollary 7.2.6. //

In the case of characteristic 0 , we have the

following stronger result.

Corollary 7.3.5. Let F be of characteristic 0 and

let S be a finite-dimensional semisimple subalgebra of A~
Suppose that S contains a split CSA H such that HHC S
Then S 1is a subalgebra of A , and is isomorphic to a

direct sum of simple Lie algebras and simple algebras given

by (2.15) defined on sf(&+1,F) for some & > 2

Proof. This follows from Theorem 7.3.3 and

Corollary 6.4.4. //

Note that if, in addition, S 1s power-associative

then S 1is a Lie algebra under the multiplication in A

(Corollary 6.4.5).
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In the discussion above, when the classical

subalgebra S of A  is complemented by an ideal R of
A (i.e., A =S ®R as Lie algebra) then it is possible
to determine the multiplication between S and R . Note
that, by Levi's Theorem 3.7.6, if A 1is finite-dimensional
of char 0 then A contains a semisimple subalgebra
which is complemented by the solvable radical Rad A~

Let Sl’SZ""’Sn be Lie algebras over F of
char # 2 (each Si with multiplication written as Xxy)

and let R be a flexible Lie-admissible algebra over F

Let fl,...,fn be linear functionals on R which vanish
on [R,R] . Let S be the direct sum of Lie algebras
Sl""’sn . Form the vector space direct sum A = S + R

and define a multiplication in A by

n n n
(#) (Zxg *+1)( Ty *+s) =2 [xyyy + £(0)y; + £;(s)x;] +
i=1 i=1 i=1
X;,Y; € Si , r,s eR, 1=1,2,...,n
Then one sees that [x + r,y + s| = 2xy + [r,s] for x,y e
and r1,s ¢ R . Thus A is Lie-admissible. We also compute

[(x + )y + )] (x + 1)

| 2
;[(xiyi)xi )y x, ¢ £L(s)xg T o+ £o(rs)xg + £ (T)xgy
1

+ £ (0)E (v)y; + fi(r)fi(s)xi] + (rs)r

p[(xy )%, £, (rs)x; + fi(r)zyi £ £.(r)f (s)x,] + (rs)r
1
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since each Si is anticomutative. Likewise we have

(x + 1) [(y + s)(x + r)]

= p[x, (yyx;) + £5(s1)%; + fi(r)zyi + fi(r)fi(iji] + 1(sT)
l E

Thus [(x + 1)(y + s)] (x + 1) - (x + ©)[(y + s)(x + 1))

=3 fi([r,s])xi = ( since each Si and R are flexible
i -

and each £, vanishes on (R,R] . Therefore, A is

flexible Lie-admissible.

In fact we can give a condition that a classical
Lie algebra S is embedded into A in such a way that
the multiplication between S and R is given by the

rule (=%).

Lemma 7.3.6. Let M be a subset of a flexible Lie-

admissible algebra A . Then the centralizer C(M)

= {xeA|[x,M] =0} of M in A is a subalgebra of A .

Proof. Let X,y e C(M) . Then [xy,M]c x|y,M]
+ [x,M]y = 0 . //

Theorem 7.3.7. Let A be a flexible Lie-admissible

algebra over F of char # 2,3 (not necessarily finite-
dimensional). Let S be a finite-dimensional classical
subalgebra of A which is complemented by an ideal R

of A” . Then S is a Lie algebra under the multiplication



—-292—
in A and is an ideal of A if and only if S contains
a classical CSA H which is nil in A and such that
HH ¢ S and [H,R] = 0 . In this case, R 1is a subalgebra
of A and the multiplication in A 1is given by the rule
(#) where fl"'"’fn are linear functionals onﬂ R which
vanish on [R,R] , and n 1is the number of simple

summands in S

Remark. By Theorem 7.1.4 S is a direct sum of

simple classical Lie algebras. //

Proof. One direction is clear. Suppose that S

contains a classical CSA H satisfying the conditions.
By Lemma 7.3.2 [H,R}] = 0 implies [H,S] =0 ., while it
follows from HHc S that S is a subalgebra of A
(Theorem 7.3.3). Therefore, by Corollary 7.2.6 S 1is a
Lie algebra under the multiplication in A . Thus we have
[x,y] = xy - yx = 2xy , X,y ¢ S . Since (S,R] = 0 and
S has center 0 (by definition), we have R = C(S) . Thus
by Lemma 7.3.6 R 1is a subalgebra of A .

Let x,y ¢ S and let v ¢ R . Write yr = 1y = 2 *
for some z ¢ S and s e R . Then the flexible law
(xy)r - x(yr) + (ry)x - r(yx) =0 implies (xy)r = Xz
since S is anticommutative and [R,S]= 0 . Thus
(SS)Rc. S and since S is a direct sum of simple algebras

SS = 5 . This implies that S 1is an ideal of A . Since
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Cg(H) = H and HH = [H,H] = 0 , from [h',hr] = [(h',h]r
+ h[h',r] = 0 for all h,h' ¢ H and r ¢ R we have

HR = RHC H . (2.38)

Let S =H+ L S be the Cartan decomposition
a0 o

of S relative to H . Recall that dim Sa = 1 for

o # 0 (Theorem 7.1.1), and xh = a(h)x , X € Sa , heH.

For a root o # 0 , choose an h e H such that a(h) # 0

If xe S and r € R then from (xh)r - x(hr) + (rh)x

- r(hx) = 0 and (2.38) one gets Xr = a(h)nla(hr)x

Thus we can put

Xr = rX = AX , X € Su , o # 0 (2.39)

where A ¢ F depends on 1 & R and o # 0 . Since S
is classical, Sas—u is one-dimensional for o # 0
Thus one can choose nonzero elements X € Su s Y E S~a s

h ¢ H such that
xh =x , yh= -y, xy =h. (2.40)

Then by (2.39) xr = rx = Ax and yr = Ty = uy , U € F,
v ¢ R. If we let H = Fh + B be a vector space direct
sum then by (2.38) hr = rh = vh + b , v e F, beB

By the flexible law (xy)r - x(yr) + (ry)x - r(yx) =0,
it follows from (2.40) that 2(vh + b) = 2uh , so b =20

and v = p. Similarly, from (yx)r - y(xr) + (rx)y - r(xy) = 0
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one gets v = ) . Therefore,
XT = TX = fa(r)x, yr = 1y = fa(r)y, hr = rh = fd(r)h (2.41

for o # 0 and 1 ¢ R, where fa is a linear functional
on R and {x,y,h} 1is the canonical basis as in (2.40).

In particular, we have fa = f'u
Since S is a direct sum of simple classical Lie

algebras, for the remainder of the proof we may assume

that S is simple. Let II = {al,...,am} be a fundamental

system of roots for S. Then 1 is connected (Theorem 7.1.

that is, for any roots o , B e 0T there are roots

up e T such that o = g > B < br and A #

Fe MioMiseq

1< i<t , where A 8 is the Cartan integer. For

Qo
brevity, denote A = A.. and f = f. . We
OLi:aOLj 1] O{,i 1

contend that if A.. # 0 then f. = f. . If A.. < O

‘ 1] 1 J 1]
then . *+ o. 1s a root, so S S # 0 (Theorem 7.1.1(3))

1 J Oti Ol.j
and hence one chooses elements X ¢ Sa , Y € Sa with
1 j

xy # 0 . Then by the flexible law (xy)r - x(yr) + (ry)x
- r(yx) = 0, it follows from (2.41) that (xy)r = fj(r)(x
for all 1 ¢ R . Similarly, (yx)r - y(xr) + (rx)y - rv(xY)

= 0 gives (xy)r =vfi(r)(xy) . Thus fi = fj . If

Aij > 0 then, using Aa,-B = -Au,B (Theorem 7.1.2(3))

and f = f , we argue that f£. = f£. . Since I 1is
o -a : i ]
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connected, this prove that fi = fj for all i,j = 1,2,...,m.
Denote one of these fi by f

Let Xx., ¥;» hi be the canonical basis corresponding

1

to the root o; € T . We have then shown

X ;T = rX, = f(r)xi, y;r = ry; = f(r)yi, hir = rhi = f(r)hi,

(2.42)

Then S has a basis consisting of elements of the form
h.o 5 (eoo(x: X2 Jooexe ) 5 (ooelys Vs Jeeoys ) s
T t2 Tk ) Tk

i=1,2,...,Mm , {11""’lk} < {1,2,...,m}

(Theorem 7.1.3). The flexible law (x.x.)r - xi(xjr)

f(r)(xixj) by

[ -1

i
+ (rxj)xi - r(xjxi) = 0 gives (xixj)r

(2.42). Therefore by induction we have
xr = rx = f(r)x , xe S, 1T e R.

Finally, let 1r,s € R and let x be a nonzero
element of S . Then (rs)x - r(sx) + (xs)r - x(sr) =0
gives f([r,s]) = 0 , so £ vanishes on [R,R] . Thus

the multiplication in A is given by (%) . //

In view of Corollary 6.4.5, the following is

immediate from Theorem 7.3.7.

" Theorem 7.3.8. Let A be a finite-dimensional
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flexible Lie-admissible over F of char 0 . Let R
be the solvable radical of A and S be a Levi-factor
of A which is power-associative in A . Then § 1is a
Lie algebra under the multiplication in A and is an
jdeal of A if and only if S contains a split CSA H
such that HH< S and [H,R] = 0 . 1In this case, the

multiplication between S and R is given by (x) . //

Corollary 7.3.9. Let A, S, R be the same as in

Theorem 7.3.7 and let S be embedded into A as in
Theorem 7.3.7. If {R,R] =R then R 1is an ideal of A .
In particular, if R™ is simple then R is an ideal

of A .

Proof. The linear functionals fi vanish on
[R,R] =R, so £.=0, i=1,2,...,n . If R is
simple, [R,R] = R . //

The materials in Sections 7.2 and 7.3 are drawn

from Myung

1. "Some classes of flexible Lie-admissible algebras'
Trans. Amer. Math. Soc. 167(1972), 79-88.

2. "A subalgebra condition in Lie-admissible
algebras', Proc. Amer. Math. Soc. 59(1976), 6-8.

3. "Embedding of a Lie algebra into Lie-damissible

algebras'", Proc. Amer. Math. Soc. 73(1979), 303-307.
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7.4. Lie-admissible algebras associated with generalized

Witt algebras

We discuss in this section an extension of Theorem 7.2.5 which
has recently been proved by G. M. Benkart ("The construction of exam-
ples of Lie-admissible algebras", Hadronic dJ. 5(1982), 431-493). The
idea is to replace the restriction of dim Aa =1 for o # 0 by the
weaker condition that the Cartan subalgebra H acts diagonally on
each root space Aa . In this way, the conclusion of Theorem 7.2.5
applies to a broader class of flexible Lie-admissible algebras, such
as algebras where the attached Lie algebra A" is a generalized Witt
algebra or a Virasoro algebra. The identity (2.29), which can also

be expressed as
[x = y,z] = x o [y.z] + [x,2] = ¥ » (2.42)
plays a main role.

Theorem 7.4.1. Let A be a flexible Lie-admissible algebra

with product xy (not necessarily finite-dimensional) over a field
F of characteristic # 2 and let H be an abelian Cartan subalge-
bra of A~ . Assume that A~ has a Cartan decomposition relative
to H such that each ad h (h € H) diagonally acts on the root

space A for all o ; i.e., [h,x] = af(h)x for all x e Aa and

heH
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(1) If heH and xeA, for o # 0 then hx and xh are

multiples of X

(2) If xeh,, YE AB and o # -8B for o, B# 0 then xy

is a multiple of [x.y]
[x,y] for all x, ye A and

PO w2

(3) If HH =10 then xy =
hence A 1is a Lie algebra.

(4) If the center of A~ s zero and H fis power-associative
under the product xy with propérty that there exists a positive in-
teger n such that WM=0 forall heH, then HH=0 and A is

a Lie algebra.

Proof. We first note that, under the assumption, each root a
is a linear functional on H . Let o be a nonzero root of H

For h, h' e H and xeA_ by (2.42) we have

a(h-h)x=[h=-h,x]=[hx]>h"+h-[h'x]

a(h)x « h* +a(h')h = x . (2.43)

First, we consider the special case where h = h' and h ¢ ker o
the kernel of o . Then a(h)®x = a(h)[h,x] = a(h)(hx - xh) ,
while a(h®)x = a(h)(hx + xh) by (2.43). This implies that hx 1is a
multiple of [hox] . If heh=0 then x° h=0 by (2.43) and

hence

La(n)x = Mnad . (2.44)

hx

Assume that h ¢ ker o and h' e ker o . Thus, by (2.43),

aflh = h') x =a(h)x = h* and so x < h' 1is a multiple of x
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This proves part (1) . In particular, if h ° h' =0 then by (2.43)
x *h"' =0 and so h' = x=0-= %@(h‘)x = %{h‘,x] . By the Tinearity
of o , we conclude that if HH = 0 then (2.44) holds for all
heH, xe Aa .

Suppose now that x e Aa and y ¢ AB for a#0, 87 0 with

a# -8 . It follows from (2.42) that
[h e x,y] =h < [x,y]+ [h,y] = x = glh)y « x + h - [x,y] (2.45)

for h e H . By part (1), the left side and the second term of right
side of (2.45) are multiples of [x,y] . Since B # 0 , we see that
x =y is a multiple of [x,y] and so is xy . This verifies part
(2).

Assume HH = 0 . For nonzero roots a, B, let x ¢ Au ,

yeA In Tight of (2.44), h  x =0 forall heH, x¢ Au .

g -
This together with (2.45) and Lemma 7.2.3 implies RB(h) x - y = 0 for

all heH. Since B#0 , we have x -y =0 and hence
_ 21
xy = - yx = 5{x.y] .

Therefore, it follows from this and (2.44) that A 1is a Lie algebra.
For the proof of part (4), it suffices to show that HH = Q
under the hypotheses. The proof of this is based on the idéntity
(2.42) and hence is the same as the first part of the proof of Theorem
7.2.5 (also see Lemmas 7.2.1, 7.2.2 and 7.2.4). //
An interesting example of the Lie algebra A~ satisfying the
hypotheses in Theorem 7.4.1 is a generalized Witt algebra. Let G be

any additive subgroup of the field F and let G(m) = GX---XG
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(m copies) be the direct product. Assume that W is the vector space
over F with basis { e' } where i =1,2,°*, m and o e G(m),

and define multiplication in W by

i Jq - J i

where o = (@]3&25°‘°5 am) and B = (B]°82”°°’ Bm) .

Then W becomes a Lie algebra over F under the product (2.46) and

is called a generalized Witt algebra (see Seligman's book and R. Ree,

“On generalized Witt algebras", Trans. Amer. Math. Soc. 83(1956),

510-546). Note that the elements 1 eg }ofor §=1,2,°°c, m span

m

o deter-

an abelian Cartan subalgebra H and the span of e&,m°°3e
mines a root space for H . Thus W 1is not classical for m> 1 .

Since

1 Jq . J
[909 ea] o, ey

by (2.46), H acts diagonally on each root space.

Two special cases of the construction (2.46) are noteworthy.
First when F has characteristic zero and G = {+¢2,-1,0,1,°°}, the
generalized Witt a1gebré obtained by taking m =1 has the special-

ized multiplication

[ejﬂek] = (k - J) €tk (2.47)

where we have set e} = @, ., The resulting algebra is called the

J
Virasoro algebra which arises in relativistic string dual model theory

(J. Scherk, "An introduction to the theory of dual models and strings",

Rev. Mod. Phys. 47(1975), 123-164). For the second special case we
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take F to be a field of characteristic p >0 and G to be the
integers modulo p . Then the generalized Witt algebra obtained by

(2.46) is the Jacobson - Witt algebra (N. Jacobson, “"Classes of

restricted Lie algebras of characteristic p, II," Duke Math. J. 10

(1943), 107-121).

Theorem 7.4.2. lLet A be a fiexible Lie-admissible algebra

with product xy over a field F of characteristic # 2 such that
A” is isomorphic to a generalized Witt algebra. Then Xy = %—[x,y]

for all x, y e A , so that A 1is a Lie algebra.

Proof. In Tight of Theorem 7.4.1. and the foregoing remarks, it

suffices to show that ea e% = 0 for the basis eé, soe, eg of the
Cartan subalgebra H . We first prove that
i_J . i
ey €5 Gij i € (2.48)

where c; € F and 6ij is the Kronecker delta. Since ad x (x € A)

is a derivation of A , we have the equation

[ea egc, e‘_(u] = ea [egc, e‘fa] + [6(1)’ elfa] egc . (2.49)

If we let j = k and choose o so that oy = 0 but uj # 0 , then

the right side of (2.49) is simply - Zajegeg . By Theorem 7.4.1 (1),

the left side of (2.49) is a multiple of [eg, eéa] = -2 ajeg .

3 . . .

Hence if 1 # j then ea eg is a multiple of eg . But since ea

. 3 .

and eg commute, ea eg = eg ea and the latter is a multiple of ea .

Thus, for i #j , ea ea =0 . Assume that i =k in (2.49) and

that o 1is chosen so that a; = 0 , but uj # 0 . The second term
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on the right side of (2.49) vanishes and the first term is - aj ea ea
i

whereas the left side of (2.49) is a multiple of [eg,e;] = - aj eé
by Theorem 7.4.1. Therefore, ea eg is a multiple of ea s giving
the desired relation (2.48). |

Consider the relation
[eg_eége&] = [eg,e&] eé + eg [eé,e&] . (2.50)
If B =0 then we have from (2.50) that

i i i i
. O, = 0, +
c; 05 e ; (e, &g * & e,)

which, together with [es,e;] =0, e; . implies that ea e; =
-] _i a 03 ' o
§'(Ci + ai) e, and e; ea = %(ci - ai) e; for all o #0 . If

B = -a in (2.50) then we see that

1 i i i i
— . o= O, . = O, + . C.
2 (c1 a1) (2@1) e0 a1 o €-a 2@1 C1 eO
or
i i
= . + ‘
€y €y (c; +a,) ey

Using this, we compute

i i i
- (Ci + ui) ai ea - (Ci + ai) [eO’ed]

i1 i
B [ea e-a’ea]

]

i i i
e, [e_a, eu]

i iy _ 1 _ i
e, (Zoc_i eo) = 2“1 2(c1 “i) e@

i
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This gives C; = 0 for all i , and it follows from (2.48) that
HH = 0 . By Theorem 7.4.1 (3), xy = %—[x,y] for all x, ye A
and hence A 1is a Lie algebra. //

The special case of Theorem 7.4.2 where A~ 1is a Jacobson -
Witt algebra of characteristic p > 0 has been proved by a direct
computation in Tomber's paper ("Jacobson - Witt algebras and Lie-
admissible algebras, Hadronic J. 4(1981), 183-198). For the construc-
tion of new flexible Lie—admissib]é algebras which are not Lie alge-
bras, Theorem 7.4.2 does not seem useful. In this regard we recall
that a flexible Lie-admissible algebra A with A~ simple of type
An (n > 2) alone yields a non-Lie,flexible Lie-admissible algebra
(Theorem 6.4.2).

Assume that A s a flexible Lie-admissible algebra with

product xy and with a prescribed attached Lie algebra A~ . Then

xy=-]2—[x,y]+><°y, X, ye A (2.51)

where x o y is a commutative product defined on the vector space A .
Conversely, if there is defined a commutative product x y on A
then the product xy given by (2.51) defines a Lie-admissible product
on A with the prescribed structure on A~ . What has been dis-
cussed in Chapters 6 and 7 shows that the flexible law imposes con-
straints on the product x o y and specifies relations with the Lie
product [x,y] . In fact, x - y is identically zero, except when
A" is a simple Lie algebra of type A, (n>2) (of char 0)

However, there is a well known commutative product that has arisen in

an earlier work of L. M. Weiner ("Algebras based on linear
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functionals", Math. Mag. 28(1954), 9-12) and in Benkart's paper

quoted in the beginning of this section. Let A be a vector space

over F with a Lie algebra product [x,y] . Suppose that there is
defined a linear functional T on A . We define a multiplication
Xy on A by

xy = 3 Doyl +T(x) y + T(y) x . (2.252)

Then A is a Lie-admissible algebra such that A~ has the product
[x,yl . Furthermore, A 1is power-associative, since it is readily
m

seen that x" = 2M! r(x)m"] X, X ¢ A . But the product xy is not

in general flexible, as we show in

Lemma 7.4.3. Let A be an algebra over F with an anticommu-
tative product xy and let T be a linear functional on A

Define a product x *y on A by
x*y=xy+1(x)y+1(y) x.
Then the algebra (A, *) 1is flexible if and only if T([A,A]) =0

Proof. Note that x ° y = %—(x*y +y*x) = T(x) y + T(y) x .
It suffices to show that [z, x *y]l =x-°[z,y] + [z,x] * y holds
for all x, y, z € A if and only if T([A,A]) =0 . For

X, V¥, Z €A , we have
[z, x =yl = t0)[z,y] + t(y)z.x]

x o [z,y] + [z,x] =y = t([z,x]) ¥y + t(y)[z.x] + t(x)[z,y] + ©([z.y]) x
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Thus, if (A, *) 1is flexible then <t([z,x]) y + t([z,y]) x = 0 for
all x, ¥y, z ¢ A and this gives t([A,A]) =0 . //

Let V be the Virasoro algebra defined by (2.47) and Tet L
be the subalgebra of V generated by the basis {ei | 1 =0,1,2,°°°} .

As an application of Theorem 7.4.1 and the remarks above, we have

Theorem 7.4.4. lLet A be a flexible Lie-admissible algebra

with product xy over a field of characteristic 0 such A~ is the
subalgebra L with basis {ei | 1 =0,1,2,o°} of the Virasoro
algebra. Then there is a linear functional t© on A with

T(ei) =0 for all i > 0 such that the multiplication xy in A
is given by (2.52). Conversely, any such product determines a flexi-

ble Lie-admissible algebra on L

Proof. Let A be a flexible Lie admissible algebra such that

A" is L and let xy = %~[x,y] + X ey ,as in (2.51). The element
ey spans a 1-dimensional Cartan subalgebra of L , whereas each

e (k > 0) determines a 1-dimensional root space. Thus by Theorem
7.4.1 ey e is a multiple of [ej,ek] = (k=j) €tk for a1l j, k ,
and so is ej © e . Hence we can write ej c e = ij ej+k 5

where Yik T Vi - Since A s flexible, we can use (2.42) to

compute

Yok (k-J) ej+k = [ejan ° ek]

[ej,eoj - e tey [ej,ek]

=3 v 85 T (K3) v sk Bek (2.53)
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If k=0 then equation (2.53) implies vy, = T forall §#0,

and, substituting this into (2.53), we have Yk = 0 for all

Jjs k# 0 . We define the linear functional T on A by

T(eo ) = %'YOO and T(ei) =0 forall i>0 . It is clear that
Xey=1(x)y+t(y) x forall x, ye A and T([A,A]) =0 . In
light of Lemma 7.4.3, this proves the Theorem. //

7.5. Lie-admissible mutations of an associative algebra

We close this chapter with a mutation type of Lie-admissible
algebras constructed from an associative algebra. Let A be an
associative aigebra over a field F of char # 2 with product xy
Let r, s be fixed elements in A and define a product x * y on

the same vector space as A by
X* Yy = Xry - ysx . (2.54)

Denote the resulting algebra by A(r.,s) ., called the (r,s) - muta-

tion of A . The (r,s) - mutation was originally introducted by
Santilli for a formulation of a Lie-admissible time evolution law
which generalizes the conventional Heisenberg equation. The structure

of A(r,s) has been studied in a number of physical and mathematical
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publications. In this section, we discuss some basic structure of this

algebra. The material is largely drawn from the work:

(1) R. H. Oehmke, “Some elementary structure theorems for a
class of Lie-admissible algebras", Hadronic J. 3(1979), 293-319.

(2) J. M. Osborn, "The Lie-admissible mutation A(r,s) of an
associative algebra A", Hadronic J. 5(1982), 904-930.

(3) H. C. Myung, "The exponentation and deformations of Lie-

admissible algebras", Hadronic J. 5(1982), 771-903.

Related to the (r,s) - mutation is the homotope and isotope
of an associative algebra. Let a be a fixed element of an associ-
ative algebra A . The algebra, denoted by A(a) » With multipli-

cation x 2y defined by

X * Yy = xay

a
is called the a-homotope of A . If a 1is invertible in A . then
A(a) is called the a-isotope of A . Clearly, A(a) is
associative.

*
Denote by [x,y] =x*y -y * x the Lie product in A(r,s)

Since

*
[x.y] = xry - ysx - yrx + xsy = x(r + s) -y(r + s)x ,

r+s) Since the (r + s)

we see that A(r,s)  is isomorphic to A(
- homotope A(r+s) is associative, this implies that A(r,s) is

Lie-admissible. Similarly, we compute the Jordan product 1in
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A(r,s) as

{

%(x*yﬂ/*X)"%—(xry-ysx+yr><~xsy)

1]

%-EX(P-S)y’ry(r-S) x] .

Thus A(r,s)+ o A(r—s)+ and hence A(r,s) 1is Jordan-admissible also
(see p. 12). The (r,s ) - mutation is not in general flexible. We
can show that flexibility of A(r,s) is equivalent to many of the
well known 1dentities when v and s are invertible in A (in the
original introduction of A(r,s) in physics, r and s are assumed
to be invertible operators in a Hilbert space). For this, we need
some definitions.

Assume that A is an associative algebra with unit element 1
over a field F of char # 2,3 . A nonassociative algebra is

called third power-associative if it satisfies the identity

(x * x) % x=x%*(x*x) , (2.55)

which is satisfied by the flexible identity (x * y) * x = x * (y * x) .
Also, any power-associative algebra (see p. 47) clearly satisfies the
third power-associative identity (2.55). With the exception of Lie-
admissibility and Jordan-adhissibi]iﬁygkvirtua]]y all the identities
that aré considered in nonassociative algebras imply (2.55). A non-

associative algebra B 1is called generalized quasi-associative if,

up to isomorphism, it arises from an associative algebra A under the

new product

X *y = axy + Byx
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for some fixed o,8 in the center Z(A) of A , where Z(A) is
defined as the set {x | xy = yx for all y € A} . Thus if B is
generalized quasi-associative, then B = A(a,8) . If o and B
are just scalars then B 1is called quasi-associative. Since it can
be easily seen that if o # 8 then the mapping x - (oc—B)'1 x s
an isomorphism of A(r,1 - r) to A(a,8) where r = a(a—B)-] , the
present definition agrees with one given in Section 6.6 (see p. 261).

It is easy to verify that every generalized quasi-associative algebra

is both flexible and power-associative.

Theorem 7.5.1. Let r,s be invertible elements in A . The

following properties for the algebra A(r,s) are equivalent:
i) A(r,s) is third power-associative,
ii)  A(r,s) 1is flexible,

i) A(r,s) 1is power-associative,

e
el

(
(
(
(iv)  A(r,s) 1is generalized quasi-associative,

(v) s = ar for some invertible o 1in the center of A ,
(vi) A (r,s) = A (1,8) for some invertible B in the

center of A

Proof. We have already noted that the implications (iv)=
(ii) = (i) and (iv) = (iii)= (i) hold. Also, the implication
L(vi) => (iv) ds obvious. Assume (v) holds. Then
X ¥y =xry -oyrx , and since r is invertible, the mapping
X > Xr is an isomorphism of the isotope A(r) to A which in turn

induces the isomorphism A(r,s) = A(r) (1,-a) = A(1,0) . Setting
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B = -0 , we have established (vi) . It remains to verify that (i)

implies (v)

If (i) holds then, using (2.54), the relation (2.55) gives

XPXPX = XSXPX = XSXPX + XSXSX XPXrX - XPXSX = XPXSX + XSXSX

This reduces to

XSXrX XIXsX

and replacing x by x + 1 , the terms linear in x are

XSr 4+ SXr + srx = Xrs + rxs + rsx . (2.56)

The special case x =1 in (2.56) gives sr =rs or r“]s = sr']

Using this, (2.56) reduces to sxr = rxs for all xe A . Since
r and s are invertible, from this we have r']sx = xsr™ = xr7ls
for all x e A . Thus r’]s is invertible and is in the center of

A . Letting o = rls = gp] , we have established (v) . //

In most cases of interest, the algebra A has the property
that the center of A 1is scalar multiples of the unit element. This
is the case when A s centra]vsimp1e over F . In this case, a
generalized quasi-associative aigebra derived from A s quasi-
associative. It can be shown that if A 1is simple then the condi-
tions (i) =~ (vi) 1in Theorem 7.5.1 are equivalent, under the

assumption that r +s or v - s 1is invertible in A

Theorem 7.5.2. Let r -s or v + s be invertible in A
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Assume that A 1is simple. Then the conditions (i) - (vi) in

Theorem 7.5.1 are equivalent. In this case r and s are inverti-

ble also.

Proof. Assume that r + s is invertible. Let p = (r + s)"]r .
Then the mapping f : x = x(r + s)*] is an isomorphism of

A(p,1 - p) to A(r,s) . In fact,

]

f{x) * fly) = f(x)rf(y) - fly)sf(x)

x(r +s) "1ry(r + s)'T - y(r + s)_lsx(r + s)']

[x(r + S)’]fy -yl +5)7lsx] (r + )7

(xpy - y(1 = p)x) (r +s)7"

]

flx *y)

since 1 ~-p=(r+ s)']s . Since each of the conditions (ii) - (vi)
implies third power-associativity, in Tight of Theorem 7.5.1 it suf-
fices to show that the condition (i) implies that r and s are
invertible. Thus, assume that A(r,s) = A(p,1 - p) 1is third power-
associative. The identity (2.55) in A(p,1 - p) 1implies

xpx(1 - p)x - x(1 - p)xpx = xpx2 - xsz = 0 . Replacing x by

T+ (X e F) in this, we get (1 + Ax)zp(1 + Ax) = (1 + ax)p(1 + >\x)2

and

0= A(xp - px) + xz(xzp - pxz) + A3(x2px - prz) .

for alt A e F . This gives xp = px for all x € A and hence
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p is in the center Z(A) of A . Since A s simple, Z(A) is
a field and so p = o for some invertible o in Z(A) . Thus
(r + s)_]r =0 and s = (1 - a)u']r , hence r and s are invert-
ible. 1In light of Theorem 7.5.1, this establishes the equivalences.
If r - s is invertible then we set q = (r - s)_1s and, as
above, the mapping x -+ x(r - s)'} is an isomorphism of A(g,q - 1)
to A(r,s) . The identity (2.55) then implies that g is in the

center of A . This establishes the same conclusion. //

An algebra is called prime if the product of any two nonzero
ideals 1is nonzero. 'Thus any simple algebra is prime. We note that
if the (r,s)-mutation A(r,s) 1is simple then so is A , since any
ideal of A is an ideal of A(r,s) . Here, we investigate the con-
verse of this as well as the relation between the primeness of A

and A(r,s) . The following lemma is useful.

Lemma 7.5.3. Let A be an associative algebra with unit ele-
ment over F of char # 2,3 . Let v and s be invertible in A

(1) The subspace C of A spanned by all elements of the form
xry + ysx for x, y € A contains the ideal A(r + s)A of A

(2) If B is an ideal of A(r,s) , then B contains the sub-
spaces B(r - s)C, C{r - s) B , and C(r - s)B(r -~ s)C

(3) If B 1is an ideal of A(r,s) , then
A(r + s)A(r - s)B(r - s)A(r + s)A is an ideal of A which is con-

tained in B

Proof. (1) The subspace C contains the elements
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xr(zsy) + (zsy)sx , (ysx)rz + zs(ysx)

for x, y, z € A , and hence their difference which is xrzsy - ysxrz

Setting z =r gives xsy - ysx € C , and adding this to
xry + ysx € C yields xry + xsy = x{(r + s)y € C . Hence
A(lr +s)A € C

(2) Assume that B is an ideal of A(r,s) and ue B and

X, z€ A . Then
(x*u) *z-x%* (u*z)=urzsx - usxrz + xrzsu - zsxru € B ,

us(zsx) e B ,

(zsx)ru

ur(xrz) - (xrz)su € B

Adding these together, we have
urzsx - usxrz + urxrz - uszsx = u{r - s) (xrz + zsx) € B ,

which implies that B(r - s)C & B . For we C , we get w(r - s)u =

U*w+w?*u-u(r-s)we B and hence
C(r - s)B(r - s)C & {C(r - s)B} (r -s)C € B(r-s)C&B

This proves part (2).
(3) Clearly, A(r + s)A(r - s)B(r - s)A(r + s)A is an ideal of

A and is contained in B since
Alr + s)A(r - s)B(r - s)A(r + s)A & C(r - s)B(r - s)CE& B ,

using parts (1) and (2). //



-314—
Lemma 7.5.4. Let r,s be invertible elements in A such that

r#s . If A dis prime then every nonzero ideal of A(r,s) con-

tains a nonzero ideal of A .

Proof. Let B be a nonzero ideal of A(r,s) . First, assume
r+s=0. Then x*y=xry +yrx and A(r,s) = (A(r))+ = A" .
since the mapping x =~ rx 1is an isomorphism of A(r) to A . Thus
it suffices to show in this case that every nonzero ideal B of A+

contains a nonzero ideal of A . If beB and x e A then

b(bx - xb) + (bx - xb)b = b2x - xb% € B ,

and b2 e B, bzx + xb2 e B , showing that bzx e B and xb2 e B .

Hence AbzA is an ideal of A which is contained in B , since

2 eB for x,yehA . If

xbzy = [(xbz)y + y(xbz)] - (yx)b
Ab%A = 0 then b2 =0, and b(bx + xb) + (bx + xb)b = 2bxb € B ,

so bAb = 0 . Therefore, AbA is an ideal of A that squares to

]

zero. Since A is prime, bAb = 0 , giving b =0 . Thus the proof

is complete when vr + s =20 .

Assume v +s # 0 . Thus A(r + s)A 1is a nonzero ideal of A .
By Lemma 5.7.3(3), the ideal A(r + s)A(r - s)B(r - s)A(r + s)A s
an ideal of A contained in B . Thus if this ideal is nonzero, we
are done. Suppose that A(r + s)A(r - s)B(r - s)A(r + s)A =10 .
From this, we see that A(r + s)A and A(r - s)B(r - s)A(r + s)A
are ideals of A whose product is zero. Since A(r + s)A# 0 , we
have A(r - s)B{(r - s)A(r + s)A =0 . But then A(r + s)A and

A(r - s)B(r - s)A are two ideals of A whose product is zero,



~315—
hence A(r - s)B(r -s)A=0 or (r-s)B{r-s)=0. Let beB
and y € A(r + s)A . By Lemma 7.5.3 (1) and (2) we obtain

b(r - s)y € B and this gives
(xr" r(b(r - s)y) - (b(r - s)y)s(xr™) & B

for all X e A . But the second term is in B(r - s)A(r + s)AC B ,
since y € A(r + s)A (see Lemma 7.5.3 (1)). Thus xb(r - s)y ¢ B
or AB(r - s)A(r +s)A=0 . Since A is prime, from this we have
AB(r - s)A = 0 , yielding B(r - s) =0 . Thus for b e B and

X e A,

1

br(r']x) - (r']x)sb =bx - r 'xsbeB,

implying that

1

0= (hx - v 'xsb)(r - s) = bx{(r -s)

or BA(r - s) = 0 . Hence the product of ideals ABA and A(r - s)A

is zero. Since B#0 and r - s # 0 , we have a contradiction.

Therefore, A(r + s)A(r - s)B(r - s)A(r + s)A 1is a nonzero ideal of

A contained in B . /7

Theorem 7.5.5.. Let v and s be invertible elements of A

such that r # s . Then,
(1) A(r,s) is prime if and only if A 1is prime;
(2) A(r,s) is simple if and only if A is simple;
(3) if A(r +s)A=A and if r - s 1is invertible,

then a subspace of A 1is an ideal of A(r,s) if and only if it is
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an ideal of A .

Proof. (1) It suffices to show that if A is prime then
A(r,s) is prime. Suppose that A is prime. Let B], 82 be nonzerc
ideals of A(r,s) . By Lemma 7.5.4, we can choose nonzero ideals
D1, D2 of A which are contained respectively in Bl’ 82 . Hence

D= D] D2 is a nonzero ideal of A contained in both B] and. 82 .

Suppose that B1 * 82 =Q . Then, for u, veD , we have u* v =

urv - vsu = 0 , and
urvr = {(vsu)r = ((vsr'])ru)r = (us(vsr']))r = USVS ,

since Vsr”] e D . Hence D(rvr - svs) =0 for v e D , showing

that D annihilates the ideal generated by rvr - svs . Since A is

prime, it follows from this that vrvr = svs or \/rs-1 = r']sv for

all veD. If xehA , then xr']sv = xvrs'] = r']sxv for all

1

veD,or (xr's - r"]sx)D =0 . Since A is prime, this gives

xr'ls = r“]sx for all x e A and hence o = r']s is in the center

of A . Thus, rvr = sys = azrvr , implying 0 = r'1(1 - ocz)(rvr')r"1

= (1 - uz)v or (1 - aZ)D =0 . Hence az =1 and since r # s
by hypothesis, we get o = -1 or r +s =0 . As in the proof of
Lemma 7.5.4 we are in the situation where A(r,s) = AY . Thus we can

think of B, and 82 as ideals of A+ . But then, for u, v, weD

1
we have uv + vu = 0 and uvw = - vuw = vwu = - uvw , giving D3 =0 .
This is impossible since A 1is prime. We have proved that for any

nonzero ideals By, B, of A(r,s) , the product B * B, is nonzero.

Hence A(r,s) 1is prime and this proves part (1).
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(2) Suppose that A is simple. Then A 1is prime and so, by
Lemma 7.5.4, any nonzero ideal B of A(r,s) contains a nonzero
ideal D of A . Since A 1is simple, D =A and hence B =A .
Thus A(r,s) 1is simple.

(3) Assume that B dis an ideal of A(r,s) and that
A(r + s)A = A . Let C be the subspace of A spanned by xry + ysx
for x, y e A. Then by Lemma 7.5.3 (1) C=A and B(r - s)AC B
by Lemma 7.5.3 (2). Since r - s is invertible, (r - s)A=A,

and hence BA&€ B . Similarly, AB&B and B 1is an ideal of A . //
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Symbol Meaning Page
o n-fold Cartesian product 2
AGB Tensor product 3
AK Scalar extension of A to 3
v (T) {(xeV | x(T-a)® =0, n> 0} 7
TS‘ Semisimple part of T 9
Tn Nilpotent part of T 9
VO(T) Fitting O-component of V 10
V. (T) Fitting 1-component of V 10
RX (or R(x)) Right multiplication by x 12 (or 275)
LX (or L(x)) Left multiplication by X 12(or 275)
X-y ‘4L(xy + yx) ; Jordan product 12
[x,y] Commutator ; Lie product 12
(x,¥,2) Associator 13
ad x Adjoint map ; RX - LX 17
TX %(LX + RX) 17
Der A Derivation algebra of A 18
exp D Exponential map 21
Rad A 3 Solvable radical of A 23
M(A) Multiplication algebra 24
v Radical of V relative to , ) 25

Trace form relative to f 27
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Symbol ‘ Meaning Page
K(, ) Killing form 27
FLV] F-algebra of polynomial functions 29
ng) Zariski closed set 30
daf Differential of £ at a 32
CB(S) ' Centralizer of S in B 41
C(L) Center of L 41
NL(B) = N(B) Normalizer of B in L 41
Cj(L) Ascending central series 44
¢t 45
Bé(N) 49
CSA Cartan subalgebra 53
Lreg The se? of regular elements 56
La(H) = La Root space 56
Va(H) = Va Weight space 50
Aute L Group of invariant automorphism 67
X_s X Abstract Jordan components 86
V(m) Irreducible s/f(2)-module 98
t¢ 99
H# Dual space of H 99
0 Set of roots 99
Su _ Split 3-dimensional simple Lie

algebra 103

Q-subspace of H* spanned by ¢ 110
;0> 2(8,0)/(a,0) 110
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Symbol Meaning Page
0" Set of positive roots | 113
o Set of negative roots 113
I Simple system of roots 114
| ol Length of «a 116
Aji <ui,aj> ; Cartan integer 115
(Aji) Cartan matrix of I 115
|81 Level of B 115
sP(e+1,F) Special linear algebra 138
C(28+1,F) Orthogonal algebra 139
sp(2%,F) Symplectic algebra 142
Mg Exceptional Jordan algebra 149
T(V) Tensor algebra on V 160
S(V) Symmetric algebra on \Y 160
U(L) Universal enveloping algebra 162
PBW Poincaré-Birkhoff-Witt 169
Pa Reflecting hyperplane 176
o, Reflection by o 176
WG Weyl group 177
" (v) {a e @ | (y;a) > 0} 179
C(y) Weyl chamber 179
C(m) Fundamental Weyl chamber 181
2(0) Length of o© 186
n(o) Number of o € ®+ with o(a) < 0 186

C(m) Fundamental domain 189
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Symbol Meaning Page
A Set of integral functions 195
N Set of dominant integral functions 195
B(1) Standard Borel subaigebra 206
v Maximal vector 206
V(A) Standard cyclic module 212
Vf(L,V) Set of adjoint operators in £ 224
VO(L) Set of adjoint operators in ad 224
H; Set of highest ad-weights 233
n, (£) Adjoint dimension 234
Eijk Levi-Civita symbol 258
A(x,u) (A,u)-mutation of A 261
U(L)A,u Universal enveloping

(A,u)-mutation algebra 264
N(A) Nilradical of A 283
A(r,s) (r,s)-mutation 306
A(a) a-homotope or a-isotope 307
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Abstract Jordan decomposition 86
Abtuse basis 201

Acute basis 201

Adjoint dimension 234

Adjoint dimension theorem 237
Adjoint mapping 12

Adjoint operator 224

Adjoint representation 27
Admissible set 125
Ad-operator 224

Algebra 1

a-string through B 109
Alternative algebra 48
Anticommutative law 13
Ascending central series 44

Associator 1

Borel subalgebra 204

Cartan decomposition 67
Cartan integer 109, 273
Cartan matrix 115

Cartan part 230
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Cartan subalgebra (CSA) 53

Cartan's criterion for semisimplicity 72
Cartan's criterion for solvability 71
Casimir operator 75

Centralizer 41

Central simple algebra 150

Classical algebra 137

Classical Cartan subalgebra 271
Classical Lie algebra 271
Clebsch-Gordan formula 98

Commutator 1

Complgment 4

Component 274

Composition algebra 145

Composition series 63

Conjugacy of CSA 66

Connectedness 125

Coxeter graph 123

Cycle 126

Decomposable vector 179
Derivation 16

Descending central series 43
Differential 32

Dominant function 195
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Double commutator 266

Dynkin diagram 123

Engel's Theorem 47

Exceptional Jordan algebra 150

Filteration 159

Fitting component 51

Fitting's Lemma for semisimple Lie algebra 76
Flexible Taw 15

Free Lie algebra 173

Fundamental domain 189

Fundamental group 197

Fundamental system of dominant weights (FSDW)
Fundamental system of roots 273

Fundamental Weyl chamber 181

Generalized quasi-associative algebra 308
Generalized Witt algebra 300

Graded algebra 158, 160

Highest adjoint weight 230
Highest weight 95

Hilbert Nullstellensatz 39
Holomorph 43

Homogeneous ideal 159
Homotope 307

Hurwitz theorem 147

Hyperplane 176

196



Inner derivation 82, 150
Integral function 195
Invariant automorphism 67
Invariant form 25
Involution 146
Irreducible module 4
Irreducible set 121

Isomorphism theorem 120
Isotope 307

Jacobi identity 13
Jacobson-Witt algebra 301
Jordan-admissible algebra 27
Jordan decomposition 9

Jordan product 12

Killing form 27

(A,u)-mutation 261

Left(right) multiplication 12

Left quotient division ring
Leibniz's rule 20

Length of a root 116
level of a root 115
Levi-Civita symbol 258
Levi decomposition 80
Levi factor 80

Levi's Theorem 79

172
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Lexicographic ordering 112
Lie-admissible algebra 13
Lie algebra 13

Lie module 41

Lie's Theorem 62, 64

Maximal root 192
Maximal vector 94, 206
Module 4

Multiplicity of weight 212

Nilalgebra 48, 283

Nilpotent Lie algebra 44
Nilpotent part 9

Nilradical 283

Noncommutative Jordan algebra 27
Nondegeneracy 25

Normalizer 41

Orbit 190

Orthogonal algebra 139

Partial order 176

PBW basis 170

Poincaré-Birkhoff-Witt Theorem (PBW Theorem) 169
Polynomial mapping (function) 29

Positive definite form 111
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Power-associative algebra 47

Primafy decomposition 11
Prime algebra 312
Pseudo-quaternion algebra 257

Quasi-associative algebra 261

Quasi-classical algebra 259

Radical of bilinear form 25
Reduced expression 186
Reductive Lie algebra 83
Reflecting hyperplane 176
Reflection 176

Regular element 54

Regular vector 179
Representation 27

Root 57 -
(r,s) - mutation 306

Scalar extension 3
Schur's Lemma 81
Semisimple algebra 23
Semisimple element 87
Semisimple part 9
Simple algebra 3
Simple chain 128
Simple root 113

Simple system of roots 115



Simultaneous triangulability 64
Skew-symmetric ad-operator 225
Solvable algebra 22

(Solvable) radical 23

Split Cayley algebra 147

Split CSA 57

Split extension 43

Split null extension 43

Split over F 7

Split 3-dimensional simple Lie algebra
Standard Borel subalgebra 206
Standérd cyclic module 207
Standard monomial 170, 266
Strongly dominant 195

Structure constant 2

Symmetric ad-operator 225
Symmetric algebra 25, 160
Symplectic algebra 142

Tensor algebra 160

Third power-associative 308
Tits' construction 153

Torus 90

Trace form 27

Unit element 2

Universal enveloping algebra 161
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Universal enveloping (A,u)-mutation algebra

Vector matrix algebra 147
Virasoro algebra 300
Weight 51, 202

Weight of a root 123
Weight space 51, 202
Weyl chamber 179
Weyl group 177

Weyl reflection 177

Weyl's Theorem 79

Zariski open set 30

Zariski topology 30
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