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DISSIPATIVITY ANk LIE-ADMISSIBLE ALGEBRAS*

Ruggero M. Santilli **

SOMMARIO : Si richiama la validita della Meccanica Flamil-
toniani e Dinvarianza secondo le algebre di Lie per campi liberi,
insieme alle lovo difficolta per campi interagenti. Si discute il
ruolo della dissipativita dei campi interpolati come wn indirizgo
che permette Pintroduzione per le regioni di interazione di pin
larghe strutture analitiche ed algebriche comnesse da parentesi di
Poisson generalizzate. Si introduce un criterio di lavoro espresso
in termini di algebre Lic-ammissibili, il quale da lnogo alla Mec-
canica Psendo-Flamiltoniana introdotta da R. J. Duffin nel
1962 per sistemi classici, discreti ¢ dissipativi. Come esempio
di applicazione fisica si costruisce un modello di plasma dissipa-
#ivo ¢ si mostra come i parametri della formulazione influenzano
il vettore corrente elettrica ed il tensore di conduttivita. Inoltre
la procedura viene estesa a sistemi ¢lassici, contingi e dissipativi
costruendo, come applicazione, aleuni esempi di equazioni diffe-
rengiali per campi interpolati indotte da strutture di tipo Lie-
ammissibile.

SUMMARY : The validity of Hamiltonian mechanics and Lie
algebra invariance for free fields and their difficulties for interacting
fields are recalled: The role of dissipativity is discussed as an
approach allowing the introduction for interacting regions of lar-
ger - analytical dynamics and algebraic formulations related by
the enlarged bracket. A working criterion is introduced in fterms
of Lie-admissible algebras and the psendo-FHamiltonian ne-
chanics introduced by R. J. Duffin for discrete dissipative systems
75 considered as an explicit choice able to reduce to the Flamiltonian
mechanics when the systems become conservative. An example of
dissipative plasma is explicitly investigated. Furthermore the
procedure is extended to continmons systems and classical inter-
polating dissipative flelds induced by Lie-admissible structures
are constricted.

1. Introduction.

As is well known, Familtonian mechanics is a fundamental
mathematical tool for elementary particle physics both
from a field theoretical and an algebraic viewpoints.
Indeed the field equations for free fields have been con-
structed by performing quantization of the Hamilton equa-
tions for continuous systems [1]. Furthermore the validity
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of Lie algebras as invariance algebras of free fields is guar-
anteed by Hamiltonian mechanics since already at a clas--
sical level the Poisson bracket satisfies the defining Lie
algebra identities and after transition into the Lie product
under quantization the algebraic structure remains un-
changed [2].

However is well known too that for interacting fields
Hamiltonian mechanics presents so many different problem-
atic aspects which at the present time do not seem to
be soluble [3]. Indeed the Hamilton field equations should
satisfy the asymptotic conditions, that is the interpolating
fields should reduce to the free fields for #—+ c0; at
least in principle the spectrum of the mass operator should
contain a discrete spectrum of singlets, a continuous spec-
trum and the vacuum all in compatible form with the bound-
ary conditions; the uniqueness of the Hamiltonian opet-
ator cannot be generally stated in the presence of highly
singular interactions while even the selfadjointness of
the Hamiltonian on the basic Hilbert space must be proved
[4]; the renormalization procedure opens many problems
for the transition from the interpolating fields to the free
fields; and finally the canonical commutation rules may
be violated in the presence of divergent terms in the systems
of correlation functions (e. g. for the excessively singular
structure of the propagators), in which case there is the
same practical impossibility of constructing the field
equations by means of the quantized Hamilton equations.

The loss of the Hamiltonian mechanics for interacting
fields means the loss of an analytical dynamics procedure
for justifying the Lie product and the Lie algebra invariance
generally becomes formal.

As a consequence of the above problematic aspects the
Heisenberg S matrix idea has been preferred to the Hamil-
tonian mechanics for interacting fields and has been deve-
loped up to a satisfactory level. However the § matrix is
a bridge between the initial and final states. Thus a satis-
factory mathematical representation of the interpolating
fields from both an analytical dynamics and an algebraic
viewpoints is still an open problem.

In this connection from an analytical dynamics viewpoint
we note that at a classical level too Hamiltonjan mechanics
possesses well defined limits of validity. Indeed it can be
applied in its general formulation to conservative (and
holonomic) systems only and can be extended to only 2
few specific dissipative (or non-holonomic) systems [5]:
Consequently dissipativity may have a role in the problem-
atic aspects of the Hamiltonian mechanics for interacting
fields. Indeed if, instead of considering a process on the
whole, we consider partial regions of globally consetvative
systems with internal exchange of energy ot momentum
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ot angular momentum (e. g. we consider one or more lines
of a Feynman diagram as external), then dissipativity
becomes the essential feature of the transition region, the
Hamiltonian mechanics is not longer generally valid (e. g.
when the dissipative forces are not derivable from a genez-
alized potential) and the way is open to the investigation
of a generalization of the Hamiltonian procedure. On the
contrary, if a particle process is considered on the whole,
then it is always conservative. By the variational principe,
the only allowed procedure is the Hamiltonian mechanics
and the above problems cannot be avoided. Thus dissipa-
tivity is an approach in quantum field theory (not vet
deeply investigated) allowing the introduction of a gener-
alization of the Hamiltonian mechanics for interpolating
fields.

From an algebraic viewpoint we note that this general-
ization implies as a first consequence the enlargement of
the Lie algebra invariance since the abstract product of
the algebra is the generalized bracket of the analytic for-
mulation. Moreover the algebraic viewpoint may itself
give a criterion for selecting an analytical dynamics pro-
cedure for dissipative regions since the enlarged formula-
tion must be able to regenerate Lie algebra invariance when
the fields become conservative. In this connection the
interest of a generalization of the Lie algebra structure
by means of Lie-admissible algebras (Y) [8] has been recently
pointed out for physical regions where Lie algebra invarian-
ce no longer holds. Indeed it has been shown that [6], [7]:

i) Lie-admissible algebras possess a well defined content

of Lie -algebras. Consequently, the generalization of the
Lie algebra invariance by means of Lie-admissible structure
for an interpolating field is able to preserve a defined con-
tent of the original free field invariance.

ii) Lie-admissible algebras are able to reduce to Lie
algebras when anticommutativity of the product is re-
quested (see |7] footnote 10). Consequently they are able
to satisfy the asymptotic condition in the sense that the
generalized invariance algebra of an interpolating field is
able to reduce to a Lie algebra when the field becomes
conservative.

iii) The only simple trace-admissible power-associative
and normed Lie-admissible algebras able to satisfy requests
i) and ii) are the mautation algebras A(2, p) of quasiassociative
type, 1. e. the (4, x)-mutation of an associative algebra A4
in terms of the product [6], [8]

(a, by = 2ab + uba = ¢[a, b] + ola, b} (1.0

where 1= o -4 p and u= 6— p are free scalars and ab
is the associative product in 4. By noting that a Lie al-
gebra is a (1, — 1)-mutation of .4, the investigations on
a possible dynamical meaning of the “deviations” (A—1)
and (x4 + 1) in connection with an interpolating field

seem to be interesting, while the asymptotic conditions

(1) The non-trivial. Lie-admissible algebras are algebras U
with product '@ ® & neither totally antisymmetric nor totally
symmetric such that the attached algebra U~, which is the same
vector space as U but with the new product {4, bl =a ® b—
— b @a, is a Lie algebra [6], [7].
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can be simply obtained by requiring that ¢—>0 for conserv-
ative regions.

In the present paper we introduce a working criterion
for selecting analytical dynamics procedures for dissipative
systems in terms of Lie-admissible algebras and we discuss
an explicit choice.

Let us consider a conservative (and holonomic) system
described in terms of Hamiltonian mechanics and possessing
a given symmetry Lie algebra L. We suppose that duting
a given period of time and in a given region of space the
system becomes dissipative under the action of an external
system according to Fig. 1. For an analytical dypamics
representation of the dissipative region we require that:

A) The formulation must be able to regenerate Hamilto-
nian mechanics and ILie algebra invariance at the bound-
aries without loss of continuity.

B) The formulation must be able to induce a (nonasso-
ciative) algebra U by means of a generalization of the Pois-
son bracket.

C) The algebra U must be Lie-admissible. Then a well
defined content of the original invariance is preserved if
an imbedding of the Lie algebra L into the Lie-admissible
algebra U holds according to [6]

I Isomorphism - Imbedding o4 (1.2)

that is when the attached algebta U- is isomorphic to L.

Since a Lie algebra is always Liec-admissible [6], [7]
the first procedure which trivially satisfies our requirements
is the same Hamiltonian mechanics. Similarly the above

1 II IT1

Conservative region Dissipative region Conservative region

Y
Yy
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Y

Y

space of time axis

Hamiltonian mechanics Generalized formulation Hamiltonian mechanics

Lie - admissible Lie algebras

algebras

Lie algebras

Fig. 1 - The figure refers to an interacting system whete some
processes are considered as external. The horizontal and vertical
lines represent tespectively the considered states and the external
states. The transition between the consetrvative initial and final
regions T and III occurs by means of an interacting. region II
which is essentially dissipative. The Hamiltonian mechanics
and Lie algebra invariance occur for the asymptotic regions only,
while for the dissipative region a generalization of the Hamilton
procedure and a Lie-admissible algebra able to satisfy the asymp-
totic conditions are: requested.

reqmrements are satisfied by any generalization of the
Poisson bracket satisfying the lLie ’Lloebra Identities, as
for instance the Dirac¢ bracket [9], since the Jacobi iden-
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tity can be considered as the Lie-admissibility condition
for anticommutative algebra [7].

In the present paper as a generalization of the Hamilto-
nian formalism for a dissipative region satisfying our
requests we consider the pseudo-Hamiltonian mechanics
introduced by R. J. Duffin for discrete systems according
to the Egs. [10]

. oH
qk_‘ apk >
k=1,2, 0 n  (L3)
.1 oH
Pk— B aqk >

where ¢ is a free scalar (% 0) and fi denotes the external
force components. Then the Poisson bracket is general-
ized according to the Duffin expression

0A 0B 1 9B a4

—_ 1.4
c'?qk Opk + 3 aq;; 8pk ( )

(A, B)p =

while the total derivative of any function F(p, g, #) (for
Jx =0) can be written

dF oF
7:(]7, H)D—I-"E:“- (1.5)

Cleatly the pseudo-Hamiltonian mechanics satisfies our
requirements. Indeed when & =-— 1 the formulation red-
uces to the usual Hamiltonian mechanics; the generali-
zation of the Poisson bracket according to (1.4) induces a
(nonassociative) algebra U(e) which is not longer a Lie
algebra; the algebra U(e) is Lie-admissible since the prod-
uct (A, B)p satisfies the general Lie-admissiblity condi-
tion for nonassociative algebras [6], [7]

[A, B, C] + [B, C, A] + [C, A, B] =
= [C, B, A] + [B, 4, C] + [4, C, B},  (1.6)

where
[4, B, Cl =((A, B)p, C)p— (A, (B, C)p)p - (1.7

The above statement can be more directly seen by noting
that the attached algebra [U(s)]~ of U(e) is characterized
by the Poisson bracket, being

‘ 2A OB dB 94
(A, B)p— (B, A)p = (1—¢) < Oqr. Ipu g Opk> .
(1.8)

: Pseudo-Hamiltonian mechanics has been introduced in
ordet’ to represent some. dissipative electrical networks
and to describe small motions of dissipative systems about
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a position of static equilibrium [10]. However the proce-
dure may be useful not only for dissipative systems in
general but also, because of its Lie-admissibility content,
for partial regions of globally conservative systems with
internal exchange of energy or momentum or angular
momentum. Thus the procedure may be interesting for
particle physic too, i. e. for some non-elastic processes
represented in terms of Feynman diagrams where one or
mote lines are considered as external.

In the present paper we introduce a two-parameter for-
mulation of the procedure and we perform an extension to
continuous systems. Some classical examples are discussed.
In a subsequent paper we should like to attempt the direct
construction of a particle model by investigating the quan-
tization of the procedure on the basis of the property that
the Lie algebra content (1.8) can be quantized. In this
case the proposed imbedding of Lie algebras (1.2) might
possess analytical dynamics procedures useful for deriving
field equations for both classical and quantum mechanical
systems given by the Hamiltonian mechanics for conserv-
ative regions characterized by Lie algebras and pseudo-
Hamiltonian mechanijcs for dissipative regions character-
ized by Lie-admissible mutation algebras. Finally it is
interesting to note that at a quantum mechanical level
this procedure may be proved to be the only possible gen-
eralization of the Hamiltonian formalism possessing sim-
ple trace-admissible power-associative and normed al-
gebraic structure [6].

2. Two-parameter pseudo-hamiltonian mechanics for
discrete systems.

We consider a discrete conservative system corresponding
to region I of Fig. 1 characterized by the generalized
coordinates g (£ = 1, 2, ..., #) possessing time derivatives
g, and the Lagrangian density L(g, g) expressed in terms
of kinetic 7(g) and potential T/{g) energies

L=1()— V). 2.1)

We suppose that in the transition from region 1 to re-
gion IT the system becomes dissipative under the action
of an external system characterized by the components
Jfr, and that the new expression Lp for the Lagrangian
density for region II at a given instant of time can be
written

Lo=T()—V'(g), (2.2)

whete

T'(g) = 21() ,

(2.3)

Vi(g) =— V9

with 1 and u real scalar quantities.
Under the above assumptions we have
d oL oL d 0L oL

T T @Y

an 3%
5



Hence, instead of considering the Lagrange equations
corresponding to Lp we can equivalently use the following
psendo-Lagrangian eqnations for discrete systems

d oL oL
ot = (25)
5{71;

A

using the same expression of L for both regions I and II
since the variations of the kinetic and potential energies
are represented by the parameters involved in formulation.
Then L is the true Lagrangian density for the conservative
region and is assumed to be the psewdo-Lagrangian density
for the dissipative region.

Similarly we can introduce the Hamiltonian densities

H=1(p + V(9

(2.6)
Hp=T'(p)+ V'(g),
where
T'(p) = 21(p),
2.7)
Vi(g) =— ulq),
by which
dLp oL
pk 0@; =7 6@;
0Hp OH
T e 2.8
0Hp o oH
oge " Toge

Thus for the dissipative region II, instead of using the
Hamilton equations corresponding to Hp, we can intro-
duce the equations

., 0H
gk = 4 apk >
E=1,2, . n (2.9

b = ﬂ—aq—k‘—f‘fk,

which we assume as the psendo-Hamiltonian equations for
discrete systems. Thus /7 has the meaning of true Hamil-
tonian density for the conservative region and of psexdo-
Hamiltonian density for the dissipative region.

We note that the total time derivative of A is now

dH oH . OH

B N OH OH
dr 0% 7E 8pk

Thus the energy is consetrved only for i=— x4, i e.
for the conservative formulation. Similarly the total time
derivative of any function F(g, p, #) (for fi = 0) is given
by ‘

dF :<“ ar 0H

; L 0H 8F>+ OF
7 “Oge opr " Oqe opn

o @1

and the generalization of the Poisson bracket for any two
functions .A(g, p) and B(g, p) is

0A 0B
an 8]715

0B 0A

A, By =1 .
. B) 'uaqkapk-

(2.12)

Let us note that the above expression can be written

0A 0B 0B 8A> G(&A 0B

(A B)=e < Oqr  Opx o g, Opx Oqr  Opr

0B 0A A= o o,
e 2.13
g 8pk>’ 3,&20'—9. ( )

Thus, if the following supplementary condition on the pa-
rameters holds

24 == 2 or +o2=1, (214
then the bracket (2.12) can be written

(A, B) = cos a [A4, B] +sin a {4, B}  (2.15)

where [A, B] is the usual Poisson bracket and {4, B} is
the totally symmetric expression on the r.h.s of Eq. (2.13).

Under the above assumption Egs. (2.5), (2.9) and (2.11)
can be written

d oL oL T tan a oL
dt ..  Oqx sina+ cosa 14 tan a Ogx

0q,c
(2.16)

é]k = (sin a -} cos ) g;_] S
k

|
- 2.17)

8q k

Pr = (sin a— cos a)

+flc:

—é};— = cos a|F, H] + sin «{F, H} + —86; (2.18)

In this way the transition from the conservative region to
a dissipative one is characterized by an “angle” «, while
for a=0° all the formulation coincides with the usual
Hamiltonian mechanics.

For supplementary properties of the bracket (2.12) see
Appendix A.
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Let us note that from an algebraic viewpoint the one-
parameter and two-parameter formulations of the pseudo-
Hamiltonian mechanics are equivalent. Indeed the algebra
characterized by the product (2.12) is isomorphic to the
isotopic algebra [6], [7] U*(e) induced by the product

dA 0B 1 9B 04

[P U Y S
A4 B) g * apx e Oqi * Opu

(2.19)

for ¢ == A/u, where the associative product 4B is substi-
tuted by A*B == 1AB.

In connection with the problems involved in a possible
quantization of the formulation, we note that the bracket
(2.12) looks, in a stimulating way, like the classical corre-
spondence of the product (1.1) defining the mutation al-
gebras A(2, x). However the algebra U(J, ) characterized
by (2.12) and the algebra A(2%, x) characterized by (1.1)
generally differ. Indeed the flexibility condition [A4, B, A]
==((A, B), A)— (A, (B, A)) = 0 is not verified by U(4, z)

since

9A 9B  rA
Oqr Oqi  Opxdpi

»rA 0B 094 >
Oqudpi  Ope  Ogqu/

(4, 8, 4] = (2 — )

(2.20)

Furthermote the algebra [U(2, ¢)|* induced by the product

1 J4u 04 0B | 9B 0A
S (A BB ="" (G gt )
@2.21)

is not a (commutative) Jordan algebra since the Jordan
identity [A?2, B, A] =0 is not verified. Consequently
U(2, p) is not a realization of the noncommutative Jordan
algebras as for the A(2, u) algebras [6]. However, if we
consider a set of elements A4, B, C, ... satisfying the iden-
tities

A - 02A
0910q: - Opidps

(2.22)
2B B

= =0, ..
0q10q; OpxOps ’

then flexibility and Jordan-admissibility conditions are
verified and in the transition U(4, @)—>-A(Z, u) the alge-
braic structure remains unchanged.

As an example of application we consider the Liouville
equation for the particle density g¢(g, p) corresponding to
the conservative regions I and IIT of Fig. 1

do do _
StV (VO =V Ve=0,  (223)

where 1/ is the velocity in phase space such that V - 7= 0.
For: the dissipative region II \7- 7% 0 and Eq. (2.23),
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by using (2.9) and (2.12) becomes

do 02H

o (@ E) e ) o= 0. (229

Let the Hamiltonian be of linear velocity force type, i. e.

02H

— = 2.25

where K is a constant. Then by (2.24) and by the total
time derivative of p, using condition (2.14), we get

0 = go exp [— 2Kssin o] . (2.26)

Thus the particle density in phase space is not longer
invariant, and more exactly we have a decrease or an in-
crease of density in time corresponding respectively to
the cases Ksinaz 0.

We consider now a collision term of the Fokker-Planck
form (89 /62). = — (¢ — o) /Z. Where 7, is the relaxation time
and go the equilibrium distribution. The Boltzman equation
can be then written

(2.27)

%+v-AqQ+F-me=——z—?—-}9—9

[

whete » = ¢, F = pand y =1 -4 Kt,(A -+ p). If the above
equation refer to an electron gas under the action of an
electric field E then, for small deviations from the equilib-
tium configuration, we can write

1 1
0 =7 ¢ — 7(0 - Vo + eE - Jrg)  (2.28)

by which to the first order, by assuming go independent
of q,

1 Z
e=— 0 — eE - JPgo . (2.29)
x x

Under the above assumptions the electric curtent and
the conductivity tensor defined respectively by [11]

o7,

6@0

T =— po E; ‘ v T dy (2.30)
€27, ) doo
Tis po [ v 07 & (2.31)

corresponding to a Maxwell distribution become

2
_ M g (2.32)
my



27,
Ty = 22 5, (2.33)

my

which shows as an example the possibility of connecting
the 2 and u parameters of the formulation to physical
quantities.

3. Extension to continuous systems.

We consider now the case when regions I and III .of
Fig. 1 represent classical conservative complex fields char-
acterized by the functions yr(x), yr*(x) and the Lagrangian
density L= L(vyx, v&*, 0,5, 0,9x*) where x == (x°, x1, x2,
x%), x0=1det, k=1,.,n u=0,1,2,3, and 9, = 0/0x,.
Corresponding to region II we suppose that the fields
become dissipative under the action of external systems
characterized by the functions F;c(x) and I'p*(x). For an
analytical dynamics formulation of the dissipative region
satisfying requirements A, B and C of Sec. 1 we introduce
the following equations as covariant extension of Egs.
(2.5) to continuous systems

aL oL

;"a/‘ aa/‘wk + u

= F}c,
a'l"k

k=12 .. n (3.1)

oL oL .

20, —%—ﬂ;f—l— ﬂ%fz P

which we assume as the psendo-Lagrangian equations for
continnons systems. We note that Eqgs. (3.1) are obtained by
performing the extension of Egs. (2.1)-(2.4) to continuous
systems, that is by assuming the original expression of the
Lagrangian density of the conservative region as valid
for the dissipative region too since the variations of the
kinetic and potential energies are represented by the param-
eters involved in the formulations.

The transition to equations corresponding to (2.9) can
be performed by defining the conjugate momenta, as for
(2.7), according to

mp = A gfk , k= u 881;1);’; (3.2)
and by introducing the expression
H == 8L + wk ;l; — L (3.3
where
L' =L+D (3.4)

and D is a real scalar function of the spatial derivative
Osyr and Jsyi* only, satisfying the propetties

8

aD A+ u OL
8011;;;@ - U aaﬂ/)k ?
(3.5)
9D 4 u OL
90y - w00k
Thus D =0 for 2 =-— p. Then Egs. (3.1) are equivalent
to (2)
. 0H . 0H
i }, * — ;..
Vi 67’[}; > wk. 675:
(3.6)
. oH . 0H "
nk—ﬂawk—}—ﬂc, ﬂk'zﬂéwz+l”k

which we assume as the pseudo-Flamiltonian equations for
COnLinuons Systents. Indeed by introducing the global quan-
ties

&z = J Libx, 9= f i | 3.7)

and by diflerentiating both sydes of Egs. (3.3)

d%~j<6Hdw+ Hd"ﬂlu

Oy
OH
M 3 .
+ = 1*) 35 (3.8)
" dL'! oL
d% = j <— _—de —-I—— wkdﬂ}g—- * d!,U* +
. Oy v

1
- z,u;;dn;;) &, (3.9)

Egs. (3.6) follow by means of (3.1), (3.2) and (3.4).
We note that the total time derivative of S# is not longer
equal to zero, being

T lles (G s

oH DH
3. (3.10
Bz 6nz>]dx(31)

Indeed, by definition, pseudo-Hamiltonian mechanics ap-
plies to systems which dissipate energy. Hence the quanti-
ties which are usually consetved in the Hamiltonian for-
mulation for free fields, such as energy, momentum and
angular momentum, are not longer conserved in the above

(?) We use the functional derivative

0.4 04 . = 04
6;/7; al/)h F 00w aat'/)l
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formulation because of the exchange between the fields
and the external systems.

Similarly the total derivative of any function F = de‘*x
can be written

dF [ ; OF dH OH 6F> < dF E)_.E[_
ar —J (béy)k Dy “ Oyr Omg ’ oyt ot
P 6F> aF]dSX. 3.11)
61/): da* or .

We can thus introduce the following expressions for the
generalization of the bracket (2.12) to continuous systems

0.4 - bB 0B 0A
.A, .B =2 .12
( Je Oyr Omy ~ dpr Omy (3-12)
04 °B dB A
(A, B)x = 1 —+ u 3.13
¢ ) Oy da* Op* Ont (313)
by which Egs. (3.6) can be written

t:uk‘ Z(’Pk, H)C 3 y);’; = (’/’?;; H)C* 3

(3.14)

7 = (7g, H)e + Tk nfz(n;’:, H)* - r*.

By introducing the supplementary condition (2.14) we
can write '

(A, B). = cosalA, B]. + sina{A, B}., (3.15)

P oL aL Iy tana OL
# 00 vk Ayr sina -+ cos a T "1t tana Oy
(3.16)

vi = cosa[yg, H]e + sina{yx, H}e,
(3.17)
g = cosa|mg, H]e + sina{mg, H}e + I,

and similarly for the relations corresponding to yx* and
n*, while

——— =2sina

d¢

d% ’ <6H o (3.18)

0H oH > s

dyr Omp 61;:’]'; 675’;‘6

by which we see that the formulation reduces to the usual
one when the value of the “dissipativity angle” « is equal
to zero.

We now briefly discuss some example of classical fields
represented in terms of the given dissipative formulation.
We consider a free field charactetized by the Lagrangian
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Ly corresponding to regions I and III of Fig. 1. We suppose
that the field becomes dissipative under the action of exter-
nal systems characterized by the interaction Lagrangian
L;. Then the dissipative region II can be characterized by
means of Egs. (3.1) or (3.6) in the following two equivalent
ways:

i) By assumimg I'y == 0 and I'y* = 0. Then the expres-
sion for L can be given by the usual form

L=Io+/Li, (3.19)

where £ is the coupling constant and Lo is not comprehen-
sive of the external term, while &/ can be constructed
by means of expressions (3.3) and (3.5).

i) By assuming Iy and I'x* # 0. Then
L =1Ly, (3.20)

H can be constructed in terms of (3.3) and (3.5), while
I'; and I'p* are generally given in terms of L; by

rt=—f g (3.21)

k

Flcz-'f

Oy’

We note that the usual methods consider always (3.19) in
terms of Lagrange equations, but without a deep character-
ization of the dissipativity induced by the interaction. If
we construct field equations by means of the given dissi-
pative formulation we find that the equations formally
remain unchanged with respect to the usual ones, since
the parameters of the procedure affect the numerical con-
stants of the system, i. e. masses and coupling constants.
Thus at a classical level, or formally at a first quantization,
the procedure presents a possibility of direct renormalization
only. However at a level of second quantization there are
deeper consequences concetning, for instance, the alge-
braic invariance or the statistical characterization of the
interacting dissipative region.

Let us consider for example a classical complex scalar
(or pseudo-scalar) field characterized by the following
Lagrangian for the conservative regions I and I1I of Fig. 1

Lo =— 0,950 w0 — mowhyo (3.22)
and the field equations

O—m)po(x) =0,  (O—mpx)=0. (323

We suppose that the field becomes dissipative under the
action of an external source characterized by Iy = f ¢%()
and I'y* = fo(x). Then by introducing the expression
formally equal to (3.22) as in (ii)

L = —0,4%0,p— m2yp*yp . (3.24)
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Egs. (3.1) gives rise to the new inhomogeneous equations

(O — 7)w() = f'ao()

(3.25)
@ — m)p*() = f ' ¢*()
where

= ot 3.26
Wi = fr=—7 (3.26)

or in terms of the “dissipativity angle” a

s 1l-—tan a 1
= e 2, e — 3.27
” 1 + tan aw J sin a -+ cos af ( )

where clearly — 450 < a< - 45¢°,

In the same way, if we consider an interaction of the
state y corresponding to (3.24) with an external field ¢
characterized by 't = f ¢*(x)p*(x) and I* == f $(x)p(x),
then Egs. (3.1) give rise to the following expressions

(O — myw(ex) = f ' ()u(x) 5
(3.28)

(O — m)w*(x) = f 1 *(x)p*(x) .

If ¢ is, for instance, a spinor, then by introducing the
expression

L =— —;_ ?S_V#a/»‘?s - d;— a#‘ﬁ_yﬂ?[’ - 772'(];{) (3:29)

we get the inhomogeneous equations by assuming p as
external

(PO + mi)p(x) = f " w(o)p() »

(3.30)
140, + mi)p(x) = [ 9 () ()
where
" 1 —tan «a
my = — ', ot m'=-——-——m  (3.31)
A 1+ tan a

And similarly, if we consider a dissipative coupling of v
and ¢ induced by an interaction of Yukawa type L; ==

=—¥¢w, then we get for y and o*

(O — ma)w(x) = ' $()(x) ,
(3.32)

(C1— mayw*(x) = £ () p(ex)
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while for ¢ and ¢ the equations are always given by (3.30).

Egs. (3.25), (3.28), (3.30) and (3.32) formally coincide
with the usual ones but they no longer admit Lie algebras
as invariance algebras. Indeed they are constructed with
an analytical dynamics procedure which induces Lie-
admissible algebras by means of the generalizations
(3:12) and (3.13) of the Poisson bracket for dissipative
conditions. The new invariance algebras are able to satisfy
the asymptotic conditions in the meaning that they reduce
directly to Lie algebras when the fields become conserva-
tive.

As a concluding remark, let us note that a second quanti-
zation of the given formulation, instead of a statistics
(ot parastatistics) characterization of the interpolating
fields would give rise to the recently proposed unified
statistics [8], which are parametrized structures, interme-
diate between those of Fermi and Bose, expressed in terms
of Lie-admissible mutation algebras and able to regenerate
Fermi or Bose statistics (i. e..a physical asymptotic state)
when the Lie-admissible algebras reduce to Lie algebras.
Indeed the D function.defined by (3.5) generally breaks the
symmetric (Bose) or antisymmetric (Fermi) character of
the states, while quantization of equations (3.14) directly
expresses the Lie-admissible structure of the formulation,
which are the essential requitements for unified statistics.
Conceivably, the construction of a physical model of in-
teraction or decay in terms of the proposed formulations
would be interesting, for instance, for investigating a
dynamical interpretation of problems like the P-violation
in weak interactions.

Appendix A,

Let us briefly list some properties of the bracket (2.12).
(A, B) is neither totally antisymmetric nor totally symme-
tric. Thus the “square value” of a function 4 = A(g, p),
i e

04 04
A, A) = (4 —— Al
(A 4) = 1) o o (A1)
vanishes only for 4= — y, that is for the conservative

region.
(A, B) is a linear function on the arguments 4 and B
since

(A+B,C)=(A4,C)+(B,C)
(A.2)
(A, B+ C)=(A,B)+(A4,C).

The “differentiation property” follows as for the Poisson
bracket

(AB, C)=(A4, C)B + A(B,C),
(A, 8 =0, (A3)

(A, BC) = (A, B)C + B(4, ©),
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where 6 is any quantity independent of ¢4 and p. Conse-
quently (A, B) can be considered as a linear differential
operator Dy acting on B (or viceversa) with

94 0 04 0 4 0

= R ——. (A4

Dg=2
4 ﬁr,-

The fundamental Poisson bracket now becomes

(95 95) =0 (P 1) =0,
(A.5)
(95 p1) = 2041, (o> 45) = udi
consequently
oF oF
> Fy= 24— 5 F, p) = —_—
(g, 1) b (L, qu) = u TR
(A.6)
oF OF
o FY == pyt ——— F. op2) = } ———
(pk: ) M 84](; 3 ( > Pk) aqk

A generalization of the Lagrange bracket corresponding
to (2.12) can be given by

@“T 04 8B ' 4 0A 9B (A7)

Indeed if Fi(a, p) (i =1, 2, ..., 24) is a set of 2# functions,
we have
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