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Snmmary. — Via the method of induced representations, all irre-
ducible unitary projective representations of ,the recently introduced
new relativistic dynamical group ®, are deduced and classified. An
explicit form of the transformation law is given. The properties of the
corresponding infinite-dimensional basis functions are studied. It is
shown that in the limiting case of [= oo (corresponding to &, — &)
the infinite spin-tower representations become reducible and decompose
into irreducible representations of the Poincaré group. The reduction
of the direct product of two irreducible unitary ray representations of &
is studied. The Clebsch-Gordan coefficients are computed. Finally, some
comments on the physical interpretation of the results are given.

1. — Introduction.

In a previous publication (*) we introduced a new symmetry group (denoted
by &;) for ralativistic dynamics. This group acts on the Cartesian product
space I, , X H,, where F,, is the Minkowski space with points #* and F, is a
one-dimensional manifold with points denoted by ». As was indicated in ref. (%)
and discussed in greater detail in a subsequent publication (%), the new kine-
matical variable # must be interpreted as the proper time. The defining trans-

s

(*y Work supported by the U.S. Air Force under Grant No. AFOSR-67-0385B.

(1 J. J. Acmassi, P. Romax and R. M. Saxrirri: Phys. Rev. D, 1, 2753 (1970).
() J. J. Agmassi, P. Romax and R. M. Sanrinni: Jowrn. Math. Phys., 11, 2297
(1970).
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formations (3) of &; are

I

(1.1) ) = A

r__
. wZy b, w=u-40.

Here A, is a restricted Lorentz matrix, @, a constant translation vector, ¢ a
constant scalar. The transformations associated with the constant vector b,
are analogous to the boost (velocity) transformations of the nonrelativistic
Galilei group. We call these the «zest» transformations. In obvious notation,
the structure of &; is as follows:

(1.2) ;5 = {TiXT7} 3 {T] 2 800}

where X and » denote direct and semi-direct products, respectively. Thus,
&; contains as a subgroup both the restricted Poincaré group and the non-
relativistic Galilei group. Moreover, &; is a group extension () of the restricted
Lorentz group 80y, From these comments. it follows that, on the one hand,
our &; is a natural generalization of the Poincaré group and, on the other.
hand, it is also a natural generalization of the nonrelativistic Galilei group.

In ref. () it was pointed outthat for the use in relativistic quanium mechan-
ics, the central extension (1) of the covering group of &; by 2 one-dimensional
Abzlian phase group Tf must bz used. This new relativistic quantum-meéchan-
ical dynamical group will be denoted by &, and its structure is

(1.3) Gy = (T3 I D {T D (SLye X T}

where SL,, appears as the covering of SOg;..

The generators of &, are denoted by o, wrr Puy @y 8 and they generate the
subgroup SL, ,, 1§, T3, 19, respectively. Since we shall not need them in this
paper, we do not write out here the Lie algebra (%) in full. But we recall the
most important relation, viz. (%)

(1‘4) ['Py) Qv] = ?/g,uv .

Here the real constant ! has the dimension of length and its appearance is
connected with the phase group T‘l’.

(®) In a recent private communication M. Noga (Purdue University) gave an alterna-
tive derivation of our group, emphasizing that it is actually the dynamical group of
the standard equation of motion in relativistic mechanics. See also ref. (7).

(*) See ref. (*), Appendix A.

(®) See ref. (}), eqgs. (3.7) through (3.12).

(®) We use the Minkowski metric gy=-—g¢,,.= 1. Note, incidentally, that the full
carrier space F,,x F, is not a metric space.




REPRESENTATION TIHEORY OF A NEW RELATIVISTIC DYNAMICAL GROUP 553

The Casimir operators of &, are

(1.56&) 9 :IJ”I)# ~*_ 21—13 ,

(1.50) J =1 T, ™,
(1.5¢) A = i‘guwa e

where

(1.6) T,y =y — 1M,

with

(1.6a) M, = 1)#(%_1}” Q, -

Of course, in addition to &, #, o, the operator I1 is also an invariant of our

group. As is well known (see, for example, ref. ( )) this leads to a superselec-
tion rule.

In ref. (1) we showed that X, = —1, is a perfectly aceeptable relativistic
space-time position operator (¥) and . =-—21"*§ is a nontrivial relativistic

mass operator. S also plays the role of an evolution operator with respect to
proper time. Some other physical consequences of &, were also explored (+2),
and finally we showed (?) that &, is the contracted limit of the covering of
the connected component of the inhomogeneous de Sitter group I80;,.

The main purpose of the present paper is to study in detail and with suf-
ficient mathematical rigor the representations of @,. We find this study crucial,
because all further applications of @&, depend critically on the thorough under-
standing of the representations (*). Apart from this, the representation theory
of &, merits study from the purely mathematical point of view. The group
has a sufficiently interesting structure (cf. (1.3)) and the mathematics involved
is far from being trivial. It is true that there are some similarities with the
nonrelativistic Galilei group, but in the present case the little group (see
Subsect. 2°4) is noncompact; this makes the theory quite involved.

In Sect. 2 and 3 we systematically derive all irreducible unitary projective
representations of ®;, in an explicit form. In Sect. 4 we study separately the
l= oo limiting case, which corresponds (*°) to replacing &, by ®;. In Sect. 5
we give a discussion of the products of representations and their reduction.
This turns out to be a rather involved problem. In Sect. 6 we discuss additional
features of our group, pointing out also some problematic aspects.

(Y V. BareMaxn: Ann. Math., 59, 1 (1954).

(®) In this respeet, see also J. E. JouxsoN: Phys. Rev., 181, 1755 (1969); L. CAsTELL:
Nuovo Cimento, 49 A, 285 (1967).

() Among other things, we have in mind the establishing of wave equations for arbi-
trary spin.

(19 See ref. (1), Appendix C.
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The main mathematical tool used in this paper will be the method of induced

representations, developed by MACKEY (). Actually, some parts of our calcula-
’ y Y !

tions parallel rather closely the work of VoIsix (**), who used Mackey’s method
to study the ray representations of the nonrvelativistic Galilei group (1%).

2. — Some algebraic preliminaries.
2'1. Factor system. — Let us represent a generic element g of &; by
(2.1) g = (exp [0]; o, @, b, A) ,
where o, @, b, A stand for the parameters in (1.1) and 6 is the phase associated
with the Tf subgroup. As we already stated in ref. (), the composition law

of &; can be written as

(2.2) 9201 = (exp [i0,]; o, Gy, by, /12>(0Xp [i0:1; o1, ai, by, A,) =

== (w(gz, 91) exp [#(0, + 0.)]; oy -+ o1, Gy +Ayay 01by, by + /12b1, /12/11) .
Here
(2.3) (G2, 1) = exp [if(gs, g)]
18 a phase factor (f is real), called the factor system (%), which arises from the
scalar extension of &; to ;. TIts appearance in (2.2) has deep implications for

the representation theory of &;. Let us consider a homomorphism

(2.4) g U,

from ©; to a family of unitary operators. The multiplication law for these

(") A very readable account of this powerful tool can be found in G. W. Mackey:
Induced Representations of Groups and Quantum Mechanics (New York, 1968). A
shorter, but more rigorous summary is given in G. W. MAcCKETY Group representations
in Hilbert space, which is the Appendix in I. B. Swearn: Mathematical Problems in
Relativistic Physics (New York, 1963). The latter contains also a bibliography of original
publications.

(1) J. VorsiN: Jowrn. Math. Phys., 6, 1519, 1822 (1965).

(**) An alternative, somewhat more intuitive treatment of the ray representations
of the nonrelativistic Galilei group was given by J.-M. LEvy-LesroNDp: Journ. Math.
Phys., 4, 776 (1963). Some parts of our calculations are analogous to those of Lfvy-
LEBLOND.

(**) See Appendix A of ref. (3).
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operators corresponding to the composition law (2.2) is
(2.5) Uy Uy, = (G, 9y, -

As follows from the general theory of nontrivial central extension of groups (7),
the phase w in (2.5) is essential and cannot be eliminated by a redefinition
U,—7(9)U,, |t(g)] =1, of the operators #,.

The explicit determination of w is done by applying (2.5) onto the state
vector of the one-dimensional representation. This will be shown at the end
of the Appendix. The result of the calculation is that f (defined by (2.3)) is
given by

(2.6) f(g2y g1)=— I=1(bo Ay 0y + %19301) ’
where [ is the constant appearing in (1.4) and (1.Ba). Thus, f or o depends
only on the translation part of ¢, and on the «homogeneous » part of ¢,.

Finally, we note that the unit element of &, is (1;0,0,0,1) and hence
the inverse element g is given by

(2.7) g = (exp [— (0 + D)]; — 0, — A7 (@ —bo), — 471D, A7)

where
(2.74) F=1(g, g7) = —1""(—ba + $b%0) .

The unitary representations of @&, furnished by the homomorphism (2.4)
and the multiplication law (2.5) (with o given by (2.3) and (2.6)) are called
unitary projective (or ray) representations (7). It is these ray representations
(which cannot be reduced to the true representations of &;) that will be con-
structed in the following. The first step in this programis the decomposition of &,
into the semi-direct product of a suitably chosen invariant Ab alian subgroup N
and a remainder H. The coset space I'=@;/H will then be taken as the rep-
sentation space.

2'9. Imvariant Abelian subgrowp. — Consider the invariant Abelian subgroup
(2.8) N =TIxT;
of ®, and introduce the notation
(2.9) H = {T% (8L, ,x T} .
Then @, can be written as the semi-direct product

(2.10) Gs=N H.
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The semi-direct product structure is realized by the automorphisms s, of N,
(2.11) n—my(n) = b1, nekn, heH .

Indeed, the mapping

(2.12) h—m,, he H,

defines a homomorphism of H mto the group of all automorphisms of N.
Thus, every element ¢ of &, can be uniquely represented by a pair,

(2.13) g=(n; h), neklN, he H,
in terms of which the composition law of &, becomes
(2.14) 929 = (M2 ha) (a5 Ty) = (s (ma); hohy)

We now turn to the irreducible unitary representations of the Abelian
group N. They are, of course, one dimensional, and have the form U, =
= exp [i(ro + pa)]l. Here ¢ is a real scalar and P a real four-vector (35). For

convenience (and to emphasize the dual role of the parameters o, ¢ and rep-
resentation labels », p), we introduce the notation

(2.15) (0, alr, p) = exp [i(ro + pa)] .
The pair of labels [r, p] is called the character of the representation.

The set of all representations (0, alr, p) forms a group j\\f usually called
the character group of N. For each he H, the automorphism =z, defines a one-

to-one mapping of N into itself, because the transformed form of (2.15) induced
by 7, is again a unitary irreducible representation of N , s0 that it belongs to V.

2'3. Orbits. — Let n=(1;0,a,0,1)e N and let h = (exp [40]; 0,0,b, A)e H
The automorphism (2.11) is explicitly given by

(2.16) n—m(n) = (w(h, n); 0, Aa + bo, 0, 1),
where, according to (2.3) and (2.6),

(2.16a) w(h, n) = exp [—il-Y(bAda + Lb)] .

(*%) Since § and PP are the generators of 77 and Tj, respectively, the numbers » and Py
are obviously the corresponding elgenva,lues
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Because of the dualism between (o, ) and (r, p) in (2.15), eq. (2.16) implies
that the character [+; p] evaluated at m,(n) is equal to a transformed character
[r'; p'] evaluated at ». In other words,

(2.17a) W, alr, p) bt = w(h, n)(s, Ada + bolr, p) = (o, alr’, p') .

In a similar manner we get

(2.170) ko, alr, p) b = o(h, n)(0, A-'e — A balr, p) = (o, al’, p") .

Thus, h and A~! induce automorphic transformations of the characters. We
write, somewhat symbolically,

1 1
(2.18a) i pl =10, 9] = [r +ph— 7 b2, A7 (p ~37 b)} ,
s " 1 1
(2.18D) My, pl=r", p"] = [TMAPZ)_E b2, Ap + 7 b} .

/
| 2.
p2>0;p0>0 // / ‘\ \p)O ,PO<O
\
i
1y
F 1N
/ AN
i L
_ ] Ny
L
45°
VoY o
\ 45
| .
|
\ ~
/ ’ \ //
p2<0;p1<0 / / ‘
/
)/po l

Tig. 1. — The orbit surface p*- Alr=9 for =0, 1<<0. 'Two spatial directions
(p, and p,) arve suppressed. Cuts parallel to the (py, p,) plane give all Poincaré orbits.
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Itis easily verified that under these transformations the value of the invariant @
(cf. eq. (1.5@)) is left unchanged, i.e.

(2.19) P? 20l = p'2 201 = p"2 4 20 = P

Thus, the automorphisms s, of N define orbits in N. Each orbit is characterized
by some standard character [#, $],,. (The subscripts 2 and 1 were used to
emphasize that each orbit is fixed when the invariants 2 and [ are given. In

the following, however, we shall suppress these subscripts.) If [71, p.] and
[7:, =] belong to the same orbit then there exists an element he H such that

(220) [7’% p2] = h[rly pl] .
The orbit (2.19) is graphically represented in Fig. 1.

2'4. Stability group. — By definition (1), the stabilizer (stability group, or
litle group) H, of an orbit [, P] is a subgroup of H such that for every element
hye Hyc H, any given point of the orbit remains ﬁxe‘,d, i.0.

(2.21) h[F, P] = [F, P].

From (2.18a) and (2.21) we obtain the conditions

~ A ~ 1
(2.22a) F =7 Apb— 57 b2,

(2.22b) D= AP + —ll— b.

These are not independent, because using (2.220) in (2.22¢), we simply get

[(AP +T-1D)2—p2] =0 .

~ 1 A
2 e — —
(2.23) Apb+2lb 5

This tells us that, selecting an arbitrary 4, we only have to choose
(2.24) b=UP—4D),

whence both conditions become satisfied. Thus, an arbitrary element h,e H,
has the form

(2.25) ho(0; A) = (exp [i0]; 0, 0, UP — AP), A) .
We easily verify the combination law

(2.26) ho(0" 5 A" Bo(07; A7) = ho(6" + 073 A" A7)
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Thus, we see that the little group is isomorphic to the direct product of a phase
group with an 8L,, group (1):

(2.27) Hy~ T°x8L,, .

At this point we wish to make a remark. Instead of (2.8), we could have
chosen the maximal Abelian subgroup of @5, V12, fo T7xT;. Then, instead
of (2.9), we would have had T} ® 8L,,, but (2.10) would still have held.
If we had done so, the characters would have been exp [¢{f0 - ro -+ pa)] =
= (0, o, a|p, 7, a), and the parameter f would have explicitly occurred in
the transformations (2.18«), (2.180). The orbits would no longer have been
the invariants (2.19) of @5; instead we would have had p*+ 21-1f~» = const
as their equation (**). On the other hand, (2.25) would have been réplaced
by the simpler term hy(A) = (1; 0, 0, P —AD), 4), and the little group would
have been simply H, ~ SL,,. However, we feel that our treatment is more
satisfactory, because, as pointed out above, our orbits have a more direct
interpretation. The inconvenience of having a somewhat more complicated
little group is only trivial, since (2.27) is a direct product.

Returning to our main subject, we now wish to find a relation between
elements of our little group (2.27), and arbitrary elements of H. Let us consider
an orbit [#, §] and choose for a specific point [r, p] of this orbit an element &,
of H such that (*8)

(2.28) b o7, P] = [r, p] .

Let now h(0; b, A) = (exp [40]; 0, 0, b, A) be an arbitrary element of H and
write

(2.29) h=2(0; b, A)[r, p] = [r', 2],

where the r.h.s. is given by eq. (2.184). Combining the last two equations,
we get the identity

BZRNO; by, AYh, 7, B]=[F, D],

(1) From (2.25) it is clear that the 8L, , which appears in H, is not the 8L, ; subgroup
of ®;. We shall come back to this point later, in Sect. 3'5.

(*") In his work on the ray representations of the nonrelativistic Galilei group, VoIisin
actually proceeds in a manner as now sketched, and obtains the orbits B — p?/2Mg,=
=const (ef. eq. (14) of ref. (1?), first paper), instead of the more desirable
E— p?/2M == const paraboloids. At a later point, he then sets ¢,=1 which, even
though it seems to be an artificial choice, apparently does not lead to loss of generality.
(1) In view of (2.20), we are assured of the existence of such an element of H.
Actually, h, , is not even unique.
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which, because of (2.21), implies that the product of the three elements on
the 1.h.s. is an element of the little group H,. We denote this particular ele-
ment by A%, so that we have

(2.30) by = T, (05 by AY s e

Conversely, we have

(2.31) ‘ O; b, A) = b, hoh,

The meaning of this equation is that given an arbitrary element heH, it
can be expressed in terms of some element h, e H, associated with the orbit
[7, #]. The transformer h,, is defined by (2.28). The point [s/, p'] that labels
the transformer on the right is related to [r, p] by eq. (2.18a).

2'5. Representation space. — We choose for our representation space the
coset space
(2.32) I'=@8,)H .

In view of eq. (2.10), I" is isomorphic to the Abelian group N. Consequently,
there is a one-to-one correspondencs between the elements of I” and the charac-
ters [r, p] of the orbits [¥, ] in . Therefore, the elements of 1" can be labzled
by the character of an orbit [F, D], 4.¢. by all numbers #, p which obey the rela-
tion

P2 =P 20 =T,

The basis of our representation will be a set of functions w.(r, p), which
depend on the character [r, p] as specified above. The additional collective
label & stands to distinguish further the states within a given representation.
(Thus, in general, the functions y, are vector valued.) We introduce in I an
invariant measure by defining

(2.33) AdQ(r, p) = drd*p §(p? + 202y — D),
and require that the functions v, belong to the space Z*([, d2) of square-

integrable functions. Thus, our representation space is the Hilbert space (1)
with the inner product defined by

(2.34) <yl :fdrd"*p Mp? 4 201y — ) zpfs(?', P)Pelry p) .

Here summation over & is understood.
It %, is a unitary representation of N, the basis v, will transform under
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the action of this representation according to

(2.35) Unpe(ry p) = exp [i(ro + pa)] pg(r, p) -

Our problem is now to find the transformation law of the basis under the unitary
irreducible projective representations %, of &;.

3. — The unitary irreducible projective representations of ;.

In order to check the applicability of the subsequent mathematical con-
struction, let us summarize the relevant properties of our group &;:

i) &, is a separable locally compact group ('),

ii) it ean be written as the semi-direct product of the invariant Abelian
subgroup N’ = T{x T x TP=Nx Tf and the noninvariant subgroup H'=1T%
>§ SLZ.U?

iii) both factors ¥’ and H' are closed subgroups (3°).

As MACKEY has shown (1%), the fulfilment of these criteria ensures that the
method of induced representations will furnish all irreducible representations
of the group if the irreducible representations of the stabilizer are known.

3'1. Represeniations of H,. — We start with the study of the representa-
tions of the stability group H,. Because of its direct-product structure (exhib-
ited by (2.27)), all irreducible representations of H, will have the form

(3.1) Uy, = exp [if01D(Ry) -
Here, the first factor (with § arbitrary and real) is a representation of 77 and
the second factor stands for a representation of 8L, ,. In view of (2.27) and

(2.26), the group element T, in the argument of D denotes the element (2.25)
with 0 set equal to zero, i.e.

(3.14) Tho = ho(0; A) = (15 0, 0, UP —AD), ) .

(**) This is obvious from the parametrization of the group elements.

(20) Since N is Abelian, its closedness is obvious. To see that H is closed, we note
that the first factor in (2.9) is isomorphie to the covering of a Poincaré group which
is known to be closed, and the second factor is an Abelian phase group, likewise closed.
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The irreducible representations D of 81, , are well known (*!). They are
labeled by a pair of indices (22) k, ¢ and we shall write D*® to symbolize a specific
irreducible representation. There are the following cases:

a) k=0, ¢=1. This is the trivial one-dimensional (and obviously unitary)
representation.

b) k and ¢ simultaneously integral or half-integral (**) and |c] > |&|.
These representations are finite dimensional and monunitary.

¢) k=0,%,1,... and ¢ =1, with —oco< ¢ < + co. These representa-
tions are infinite dimensional and unitary. They are said to belong to the
principal series.

d) k=10, and ¢ is a real number such that 0<<¢<<1. These are also
infinite-dimensional unitary representations and arve said to belong to the
supplementary series.

We shall not be interested in the nonunitary representations of case b),
and will discuss the simple case of the representation «) separately in the
Appendix. For the unitary infinite-dimensional representations ¢) and d),
each state of a given representation is characterized by two numbers (24) s and s,.
For any given representation D*’, s can take on the infinite sequence of discrete
values

(3.2a) s=5k k4+1, k42, ....
For any specified s, the s, then can assume the 25 4+ 1 values
(3.20) Sg=—8, —8-+1,...,8—1,8.

‘We mention that the representations D* and D-#-¢ are equivalent. Finally,
we recall that the representation D¢ is conjugate to Dre.

3'2. Induced representations of &;. — We are now in a position to determine
the labels which are needed to specify a representation of &;. They are as

(*1) See, for example, I. M. GELFaND, R. A. Mixros and Z. Ya. Suariro: Represen-
tations of the Rotation and Loventz Group (New York, 1963), especially p. 200 and p. 188.
See also M. A. Nammark: Linear Representations of the Lorentz Group (New York, 1964).
(**) The numbers %k and ¢ are related to the Casimir operators of SI, ;; see eqs. (3.26)
and (3.27) below.

(2%) Case a) is a special case of Case b), but for obvious reasons has been treated
separately.

(**) These numbers are rvelated to the Casimir operators oceurring in the chain
8Ly, 58U,D80,.

.y
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follows:
i) an arbitrary real number [,
ii) an arbitrary real number 9,
iii) two numbers k and ¢ (as given above).

Here | and @ are necessary to specify an orbit, and k, ¢ ave neaded to specify
the representation of the little group associated with the orbit (). A represen-
tation of &; will be denoted by the symbol (1|2, &, ¢). Bach state of a given
representation is labeled (apart from r and p, selecting a point of the orbit)
by two supplementary labels (*) s and s,. For the relevant unitary irreducible
representations (Cases ¢) and d) above) the possible values of s and s, are given
by (¥) (3.2a), (3.2b). In view of these comments, the complete labeling of
the basis functions p,(r, p) (introduced in Subsect. 2'5) belonging to an irredue-
ible representation of @&, is given by the notation

)z@kc

Y= P, (1, D).

Let us now consider a representation %, == exp [4801 D% () of H,. The
transformation law of our basis under %, is

(3.3) U, 9171, p) = exp [IO1D* (ho) s,y WEE°(1, )
where summation over s’ and s; is understood.
Next we consider a homomorphism h—%, from the subgroup H to a set

of unitary operators. On account of eq. (2.31) we can write

(34:) 02/7:, == 02/7»,‘7,

Rl -

Since the functions w(r, p) carry the representation U,, we have (omitting
for a moment the super- and subseripts of ¥)

Uy, p) = P52, P1) = Py B3 Wby 1) = 9l B[Py B1) = iy, 9(F, D) -

(%) The additional real number f, that occurs in (3.1) and .which, in addition to k and ¢,
is needed to specify a representation of thelittle group, is immaterial because exp [¢f6]
will only be an arbitrary phase factor multiplier in the representation of &,, cf. eq. (3.6)
below.

(%) Thus, the additional « collective label » & which was introduced in Subsect. 2°5,
corresponds to the pair s, s,.

(2"} Thus, these labels run through a set of discrete, integer or half-integer numbers.
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In the next to the last step we used (2.28). Now, we have (38)

le huh;",:'z‘,: = % Ry %h

-1 .
T'p’
Hence, we can continue the previous equation as
Ui, P(1y D) = Un,Un, (Fy D) = Uy, p(Byopilrr, p1) =
=, (', p') = exp [i01 D () p(r', p') .

In the penultimate step we used again (2.28) and in the last step we utilized .
(3.3). Thus, in detail we have the transformation law

(3.5) U= (r, p) = exp [BOILD* (R, Vo0 ')

In view of (2.28) and (2.184), the arguments ¢ and p’ are explicitly
- 1 , 1

(3.50) = pb— 0, p=/1“(29~z‘b)‘

Finally, let us consider an arbitrary group element ge®,. Because of (2.10),
we have the unique decomposition (**) g=mnh. In the homomorphism g—%,
this means that (3¢} %, =%,%,. The action of U, is given by (3.5), and the
action of %, is shown in (2.35). Thus, putting these together, we obtain the
transformation law for the irreducible unitary projective representations of @,
as follows (31:32);

(3.6) %z,uéf’j’“(r, Pp) = exp [i(f0 + ro + PALD* ()], o, wiff;’“’“(r', Py,
We note that the unitarity of the representation is, of course, meant with

respect to the inner product in the Hilbert space s2(I") of 2T, 482) integrable
functions, as defined by (2.34). That is, for p, gL dQ),

2
B0 ldy = ardps v+ 71— 2) iz, ) 120, 1)

(*%) Bince the group elements heH have no translational part (a=o==0), no phase
factor will occur in the composition law of the representation operators %,,.

(**) Asis well known, this is a consequence of the representation (2.18) and composi-
tion law (2.14) of semi-direct-product groups.

(*) We do not have a phase factor, because the group element % has no translational
part.

(*1) Equation (3.6) has been already given, without proof and without detailed discus-
sion, in Appendix C of our first paper, ref. (1).

(3%) ‘We remark that, as the reader will easily verify, we would get eq. (3.6) in an
unchanged form if we had used the maximal Abelian subgroup fo T3 x T§ instead
of (2.8).



REPRESENTATION THEORY OF A NEW RELATIVISTIC DYNAMICAL GROUP 565

(summation over s, s, understood). The unitarity follows trivially from that
of D¥, Furthermore, we emphasize that in consequence of Mackey’s theo-
rems (1), our construction (3.6) gives all unifary irreducible representations,
up to equivalence, because, as pointed out at the beginning of Sect. 3, all
necessary criteria are satisfied.

For clarity’s sake we summarize the notation in (3.6). £ and [ are inva-
riants of &,. The numbers %, ¢ are the labels of the unitary irreducible represen-
tations of the SL, , part of H,. The labels s, s, characterize the state within
each representation of @5, together with the labels #, p. The transformed ¢
and p’ are given by (3.5a¢). The element R, is given by h, with zero phase, where

(3.8) by =k h(0; b, Dby s
as follows from (2.31). Here, in turn, b, is defined by (2.28), [7, P] being
an arbitrary point on the orbit selected by 1 and 2.

Finally, we note that the constant § in (3.6) is completely arbitrary. Since
our representations are ray representations, the ﬂ may be taken to be one,
without any loss of generality.

It appears from (3.8) as though the dependence of the operator D’w(%o) on
the parameters of the group was rather complicated. However, we may take
advantage of the arbitrariness of [¥, $] and simplify this dependence consid-
erably. Let us choose, in particular, ¥ =1/29, p =0. (This is certainly a
point of the orbit defined by I and £.) Then eq. (2.38) reads

by o[1/22, 0] = [, p]

and one easily verifies that the simplest (*%) solution is

(3.94) hrp =(1;0,0,1p,1).
Similarly,
(3.90) By = (15 0,0,1p',1),

with p’ being given, of course, by (3.5a). Using (3.9a), (3.90) in (3.8), one
easily finds

(3.9¢) fip=(1;0,0,0,4).

Thus, &, can be taken to be a pure SL,, transformation of &,. We can re-

(3%) Cf. footnote (*8).
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write (3.6) in the final form
(3.10) X, yiZ(r, p) = exp [(B0 + 16 + PP (A))yy; o W20, 1)

where ¢/, p’ are given by (3.5a).

3'3. An equivalence theorem. — Asis well known (7), the concept of equivalence
for projective representations is somewhat different from that which applies
for true representations. Because of the appearance of w in the composition.
law (2.5), we must consider %; unitarily equivalent to %, if

(3.11) U, = alg) VU, V-,

g

where V ig a unitary operator and « is a complex function of modulus one.
Let us define now an operator V by setting

l A
(3.12) Vyiipln, 9) = yigh (v + 5 9, 1) = B ).
We have, using (3.7) and (3.12), and setting f=1r +1/292,

iy = [arasps (p+ 3 r—2) o, gt 1) =
2 ~ ,
=[arass (o2 47— 2) v, 2180, 1) = BI> = VoIV

Hence, V is a unitary operator, and provides an isomorphic mapping from the
Hilbert space (") to the Hilbert space #,(I"). The latter is the same set
of funetions but is equipped with the measure

(3.13) AQ = drdsp 6(p* + 21-17)

instead of (2.33). This implies that the wnitary represemtation (|9, k, ¢) is
uwitarily equivalent to the representation ()0, k, ¢). Actually, it is easily seen
from (3.12) and (3.10) that if %, is a representation in (1), then

l
(3.14) U, = exp [ ie o‘@] v, v

o

is a representation in (1), which, in view of (3.11), bears out our statement
in detail.
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Therefore, without loss of generality, we can restrict ourselves to represen-
tations with £ =10. The label & may be omitted (**).

3'4. Conjugate representations. — The complex conjugate of eq. (3.10) is
(3.18) %, PT*(r, p) = exp [i(— O —ro — pa)l[D* " (D)yy, o, Par 075 ) 5
where the bar means complex conjugation and where we took cognizance of
Dte = D¥=¢. On the other hand, let us consider the representation (—1|2, k, —¢)
of &;. Denoting the unitary operator which corresponds to a group element
g in this representation by @’/g, we have
(8.16) Wy ? 0 (r, p) = exp [iB0 + 10 + pa) I[P ()], o YO, B)
where now

(3.164) Fer bt 5 b ,ﬁzA—l(p+%b).

If we introduce the operator 4 defined by

l@l;c( ~19D e

(3.17) AyZre(y, p) = FL(—r, —p)= PZ*(r, p)

then, using (3.15) and (3.54), we easily find that

3.18) (U, p(r, D) = U, P(—r, — p) = exp [i(— B0 + ro + bp)[LD**(A)]H (", p')
with
1 , _ 1

Thus, comparing with (3.16) and (3.16a), we can write
(3.19) exp [20p01%, H(r, p) = U, P(r, P) -
Using (3.17), we find that

(3.20) U, = exp [— 2ip01 A%, A .

(3%) See, however, our subsequent discussion of the reduction of products of represen-
tations, Subsect. 5'2. Furthermore, the equivalence theorem obviously holds true
only as long as I is finite.

(%) Tor simplicity, we suppress in this caleculation all labels.
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Thus, according to (3.11), the representations %, and %, are equivalent (3%)
in the sense of ray represenfations. We write symbolically

(3.21) (N2, &, ¢) ~ (U2, k —e¢).

It also follows from the above discussion that the basis functions yf’g’ ° of
the (—19, k, — c¢) representation can be expressed in terms of the basis fune-
tions y)’@” of the (1|2, k, ¢) representation. We have

(3.22) YT, p) = APy, p) = Gy —p) .

Finally,
so that 4 is antilinear unitary.

> = (Agldyy,

3'5. Some properties of the basis functions. — For subsequent physical appli-
cations, it will be useful to summarize the effect of some operators of &, on
the basis functions. First, it is obvious that the v are eigenfunctions of P,
and of §, and we have (37)

(3.23) PyiZx(r, p) = pupiZ*(r, p)
(3.24) SplZr(r, p) = 1yl (r, p) .

Next we recall that the Casimir operators of @, are the operators 9, ¢4, A
as given by (1.54)-(1.5¢). Hence, we have (*), from (1.5a),

(3.25) (P, P* 42171 8) wi;j’““( Y, P) = 91/)’9”(1', ).

From (1.50) and (1.5¢) we obtain

(3.26) lfwg () = (6 + 02— 1)yl (r, p)
(3.27) Eungs T TP Y20, p) = 2ilkhe 2™ (r, p)

respectively. Here we used the facts that # and # are Casimir operators
of () 8L, , and that our basis carries a representation of SL,,. (The relation

(36) On the other hand, it must be emphasized that the conjugate representation

(l[@ L, ¢) is nmot equivalent to the original (1|2, k, ¢) representation unless ¢= 0.
(*") This follows from the fact that the representation space I’ is isomorphic to N.
It is also consistent, naturally, with the realizations P =140, §=1i0, in configura-
tion space, cf. ref. (1). This can be seen by taking the Fourier transforms of (3.23)
and (3.24).

(*) Equation (3.25) follows also from (3.23), (3.24) and (2. 19).

(*) In rvef. (*) we showed that the opelatms Ty, generate an SL, , algebra.
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of the eigenvalues of SL, , Casimir operators to the labels k, ¢ of the representa-
tion can be found, for example, in ref. (3).) Incidentally, eqs. (3.26) and (3.27)
tell us that the SL, , part of our litile group H, is generated by the operators T,
(defined by (1.6)).

Furthermore, in view of the meaning of the state labels s and s, (ef. foot-
note (*4)) and the algebraic properties of 7,,, we also have the relations:

(328) T*yi2%(r, p) = s(s + 1) pi2*(r, ) ,
(3.29) T w25 (r, p) = s, 912" (r, p) .

In eq. (3.28) we used the notation ()

(3.30) T = (T, Tay, Tha) -

Equations (3.23) through (3.29) exhibit clearly the mathematical meaning of
all labels relative to the basis functions of our representation. However, we
must make one additional comment. Equations (3.23) and (3.24) do not hold
for the conjugate represeniations. Indeed, from (3.22) we find

AZE =1 ke ~1D ¢

P,y 240, p) = P, 2% (—ry, —p) = — pP2*(—r, —p) = — py 7" (r, p) .

Thus, (3.23) and (3.24) must be replaced by

(3.31) Py, p) = — pyt?(r, p)

(3.32) SYaZt o, ) = — 1y p) -

This is not too surprising since it is consistent with the definition of the orbit,
which is now given by (—p)*+2(— 1) (—1) =D =p? -+ 2l-1y, that is the D
has the same wvalue as for the original (Z]@lco) representation (*). (This is how
the representation (—1|Z, k, —¢) was defined.)

The essence of this Subsection can be summarized as follows. Our basis
for the representations of @5, to be called henceforth the canonical basis, is
distinguished by baving taken the set of mutually commuting state labeling
operators to be the set

(3.33) G—{P,, 8, T, Ty} .

(") Incidentally, if we introduce alongside of T the quantity V= (T, Lo, Lo,
then we may write J = T?—V? and X = ;TV.

(**) Equation (3.25) does not change: replacing I by — 1 both in the operator acting
on w and in the label of y leaves the equation unchanged.
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Corresponding to this choice, we have the chain of reduction of @,
(3.34) @ = TR T2 8L, 4,2 TR T4 8U,, > TR TR 80, .

(Here the subscript 7 reminds us that the corresponding groups are gen-
erated by the operators T,,, T, Ty =1T,,.) The choice of % and the corre-
sponding choice of the reduction chain define a basis (**), via the following
equations (*%):

(3.354) (P* + 21 8) yiZ(r, p) = Dy

(3.35b) 1T, T 2%, p) = (k* + ¢ — 1) yl2™(r, ) ,
(3.35¢) T Eunge T TP P75y, p) = 2akeyl) (v, D),
(3.35d) Ty 7%(r, p) = s(s + 1) pi™(r, p)

(3.35¢) T, 2% (r, p) = s, 920, D),

(3.357) P ylee(r, p) = puyiete(r, ),

(3.359) Sp T, p) = rpl2t(r, p) .

For the reader’s convenience, we quote here the well-known corresponding
case for the Poincaré group. The set of commuting operators is usually taken
to be {P,, W.}, where

(3.36) W, = — %84, 7P
The corresponding chain of reduction is (for P*=m*>0)

(3.37) P = T2 80,,2> T2 80,, .

The basis is defined by

(3.38a) Pry™(p) = m* ¢ (p),

(3.380) Wey™s(p) = —m®s(s + 1)y ()
(3-38¢) Py (p) = puyn(p),

(3.384) W y(p) = ms, 9 () -

(42) Obviously, other possibilities for defining a basis exist. Our choice is directed by
convenience.
(1%) TFor the conjugate representation, (3.35f), (3.35¢) must be changed, cf. (3.31), (3.32).
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Finally, for comparison, we also quote here the case of the nonrelativistic
Galilei group. The set of commuting operators is {P, H, F?, F,}, where ()

(3.39) F=J—XXP.
The corresponding chain of reduction is
(3.40) @, = TR TR 8V, 2T R 15280,

The basgis is defined by (for m > 0)

P2
(3.41a) (57—% — ) yr?( B, p) = Byn?#(L, p),
(3.41D) Foyr? (B, p) = s(s + 1)y (B, p) ,
(3.41¢) Py ? (B, p) = 5, 9.7°(B, p) ,
(3.414) P, y"?E, p) = p,¥o? (B, p)
(3.41¢) Hy"? (B, p) = Ey”(8, p) .

4. — The special case of I = co.

In the preceding analysis we, of course, assumed that 7 is finite. In the
limiting case [ — oo, several changes oceur. First, as was already pointed oub
in ref. (%), the crucial commutator (1.4) changes to (*%)

(4.1) [Py, Q]=0.

Turthermore, the factor system w(gs, g.) becomes 1 (ef. (2.3) and (2.8)), so that
the central extension becomes trivial (1), and the group is

(4.2) lim®; = T} < ©; .
The Casimir operators of this group are (*%)

(4.3a) ¢, = P,P",
(4.3D) C, = W, W",

(1) Tor details, see, for example, our summary in Appendix B of ref. (Y).

(*5) This does not mean that we «lose quantum meehanics ». Since X, =-1Q,,
we still have [P”, X,,]::—igm.

(*) It is easy to check that C; and C, commute now with all generators. That there
are no other Casimir invariants ean be checked by considering the contraction (see

ref. (3)) of the IS0y, Casimir operators in the limit I— oo.
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where W, is the Pauli-Lubanski vector (¢f. (3.36)). Actually, €, arises directly
from eq. (1.54) when -+ oo, 50 that we have
(4.4) P, Pt=g .

‘These simple observations suggest that, when [ —= oo, the unitary irredu-
cible ray representation (112, k, ¢) will become reducible and decomposes
into irreducible unitary representations of the Poincaré group (). We shall
study this below in detail.

First, we realize that the construction (8.10) of Sect. 3 still holds and we -
have

(£5) Uy, p) = exp [i(A0 + 1o + pa) D)), oo wETHC, 1)
where now, instead of (3.5a), we have
(4.5a) =7 - pb, pl=A"1p.
Furthermore, the measure in (3.23) changes too, 5/11c1 we have
(4.6) | A0 = drdpd(p* — 2),
t.e. » and p become unrelated (**); the value of » is arbitrary.
Next, we note that the equation of the orbit is, on account of (4.4), p?= 2,

as in the Poincaré group. Hence, there will be four different types of little
groups for our &;. We have

Case I)  Z=m*>0, P=(vm%0,0,0), £ =248U,,
Case IT)  Z=p*<0, P=(0,0, Vu’,0), L, = 8L, ,,
Case III) 2 =0, P=(1,0,0,1), PLow =B,
Case IV) 2 =0, »=1(0,0,0,0), Fw =8L,,.

In each case we listed, besides the invariant 9, a typical character vector of
the orbit, and showed the corresponding little group (*) 2.

(*") This is so because ¢, and O, are invariants of the Poincaréd group, generated by P,
and J ,.

(*®) In passing we note here that, in consequence of (4.6), we cannot apply the reasoning
of Subsect. 3'3, so that & becomes an essential label of the representation and cannot
be shifted to zero.

(**) We note that SI, 5 is the covering of 80, ; and E, denotes the covering of the
two-dimensional Euclidean group.
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From the foregoing it follows that the irreducible unitary representations
of @&, are characterized by the same labels as are those of the Poincaré group.
Corresponding to the four cases above, we then have the representations

Case I) (m?; s), when >0,
Case II) (p2; 1, 8), when <0,

Case III) (0; @, ), when =0,

Cage IV) (0; k,¢) when =0, p=0.

In Case I), s is the label for the irreducible unitary representation of the SU,
little group, and analogous statements hold for the other cases (*%).

We now see that (as was already mentioned in footnote (48)), when ! = oo,
the value of @ is essential if one wishes to recover from the decomposition of
the representation (4.5) all four classes of the possible representations that
may oceur.

Before going into details of the reduction process, we wish to dispose briefly
of the physically uninteresting Case IV). Since here not only £ =0 but also
each component of P is null, these representations are not connected with par-
ticles or tachyons and will not be studied in the following. However, it is
interesting to mote that in Case IV) the representation (4.5) happens to be
jrreducible and we have, symbolically,

(4.8) (000, &, €)5_, = exp [ira] X (0 E, ¢) .

-~
P=

The basis functions are ¥™(r, p), and the Hilbert space of the representation

583

is defined with respect to the degenerate measure given by
(4.8a) Q% = dr d'p d(py) 6(p1) 0(p2) 0(ps) -
In the following we shall study, by a somewhat intuitive but quite direct

mothod, the decomposition of the representation (4.5) into irreducible compo-
nents, for the Cases 1), IT), I1I).

4'1. Algebraic preliminaries. — Let & be any one of the little groups of the
classes I), II), or III), and let P be a corresponding character. Let us define

() An easily readable survey of the representations in question is given, for example,
by H. Joos: Forts. Phys., 10, 65 (1962) or in the article by T.D. Newron: in
The Theory of Groups in Classical and Quantwm Physics, Vol. 1, edited by T. Kamax
{Edinburgh, 1965).
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the three transformations A,, A, AelSL,, by setting

(£.9) LP=p, A7p=p, Alp=p'.

»
Combing these definitions, we find that
P=A,4741p.
This implies that any element L of % can be written as
(4.104a) L= 4,445 .
Conversely, any given A€8L,, can be expressed in terms of some L e & as
(4.100) A=A41LA4,

Consider now two elements A, and 4 of 8L, ,. The corresponding representa-
tives in some unitary 1neduclble 1eplesen’ca‘r10n of SL,, are D(A,) and D(A).
Using (4.100) we then find that

(4.11) D(A,)D(A) = D(L) D(A,,) .

At this point we note that in our previous work in Sect. 3, we used the
representations D of 8L, , in an SU, basis, 4.c. the basis (3.35), where the
states are labeled by s and s,, corresponding to the reduction chain containing
8U, and 80,. For our present purposes, however, we must introduce a basis
which fits the little group (°!). This, in turn, is detelmmed by the value of &,
as was discussed above. Thus, in Case 1) (2 > 0), we again use the basis cor-
responding to the chain SL,,>8U,>80,. In Case II) (2 < 0) we use the
basis corresponding to ;S’LMDSLORD;S’O2 In Case III) (2 =0), we use the
basis corresponding to SI, CDE 580,. For the sake of uniform notation, we
shall indicate the state labels by the generic symbols 8, ». (In Case I),
f =s="fixed, y =s,. For the other two cases, see, for example, ref. (39).)

Now, starting with the functions 1/)‘”9’“ of the appropriate basis, let us
define the new set of functions (%2)

(4.12) Pay(rs D) = [D*(A,) gy Wi (r, D) -

Here o refers to the labels necessary to characterize the representations of the
Poincaré group, corresponding to Cases I), II), IIT) (determined by 2), see (4.7).

(*1) It must be pointed out, however, that the representations using different bases
are unitarily equivalent.
(°%} As always, summation over f’ and 3 is understood.
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In the following we show that the subspaces of functions @, with given « are
invariant subspaces. This then tells us that, as claimed, for | = co the (c0)D, k, €)
representations are reducible and reduce into components which are, essentially,
irreducible representations of the group 79X T¢X 7, where & is the Poincaré
group.

4°2. Irreducible components of (o9, k, ¢). — From (4.5) and (4.12) we get

%‘P;;z(?’, p) = [‘ch(‘/l;p)]ﬂ"y';ﬂ’yqu 1/);37;693 Z’) =
= exp [i(f0 + 1o 4+ pa)[D*(A,) gy g [ D) gryrpry Wi 0", ') =
= xp [H(B0 + ra + pa)I[D*(L) gy gy [ D () pryms gy Wi 0, D) -

In the last step, we used (4.11). Using on the r.h.s. the definition (4.12), we
finally have

(4.13) Uiy, D) = exp [0 + 10 + PO (L) gy 5 Wy (7, ) -

Here, clearly, Dv¢(L) is an irreducible unitary representation of the little
group 2.

Thus, the ¢f, with fixed o span an irreducible unitary representation of &;.
The transformation law in this representation is the same as for the group (**)
T?x 2, except for the fact that ¢ depends not only on p, but also on 7, and
the latter must be also transformed, according to (4.5a).

For illustration, let us consider Case I) (2 = m?>0) in some detail. The
elements of the little group SU, are the Lorentz transformations A restricted
to pure spatial rotations B. The matrix elements of the SL,, representation
become diagonal with respect to the SU, subgroup when 4 is restricted to R,
and we have (3¢%)

(414) [DZCC(R)]S'S;; §85 6s's[Ds(R)]s;;33 3
where D° are the familiar «votation » matrices. Equation (4.13) then reads (*°)

(4.15) U@, p) = exp [i(B0 + 1o + pa)[D(R)],:, ¢ "(0"'s P") -

(53) The constant g is arbitrary and the factor exp [¢80] can now be omitted.

(54) This well-known result can be proved easily by using, for instance, the Strém basis,
of. 8. Stwrom: Ark. Fys., 34, 215 (1967) and earlier papers quoted therein.

(35) Note that the matrices of the restriction of the representation become indepen-
dent of k, c.

{36) The subscript s on @ is irrelevant and can be suppressed. The properties of the
basis functions are those given by eq. (3.38).
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Here B =/, ,445}", where, in tmn A, is determined by A, p=p. In detail,
this means (A "”pﬂ Vm?, (A,)*p, =0.
The result of these (301151(161 aflons can be summarized symbolically by writing

(4.16) (00| @, &, ¢), = exp [ira]x @ (m?;s)
=k

where m*= 2. Incidentally, this result may be also derived by decomposing
the basis 1/)""” " into irreducible components with respect to the basis of the
little group:

(4.17) v, p) =2 3 Gk, o)y

’
8= SJ——S

Formulae analogous to (but more complicated than) eqs. (4.16), (4.17) hold
for Cases II) and III).

5. — Product of two representations.
In this Section we consider the direct product of two irreducible unitary

projective representations (1,|%,, k., ¢,) ® (124, k1, ¢1), and we shall decom-
pose it into irreducible components.

5°1. Definition of the direct prodwct. — Let & and & be two &, groups
with constants I =1, and [ =1,, respectively (%). According to (2.10) we have

(5.1) G =N H", i=1,2,
with ¥ and H defined as in (2.8), (2.9). Consider the coset space

(5.2) Iy = (67 2G3) /(1" HY)

and the corresponding invariant measure defined by

(5.3) ALy, = AQy(ry, p1) AQ(r,, py) =
2 2
= dr; d4p, dr,d*p, o (pf -+ 77— 91) é (p§ + 7T .@2) .
1 2

Here [r,, p;] are the characters in N " =1, 2, respectively.
We now define the Hilbert space Z2(I},, d©Q;,) which is spanned by the

(®7) We assume [, %0, 1,40,
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functions (°8)

"/):iifm(? P& Q/)sg'm:z 2(1y, Pa) -

Next, let us restrict Cj’* >§@5"’ to its « diagonal» subgroup, spanned by the
elements

(54) (gh gz)l} = {(GXP [i01]; g, &, b7 A)lu (eXp [/i02]; Gy &y b7 A>l:} .

It is not difficult to show that this group is isomorphic to a,(gf group with (°°)

8 b,
(5.5) L= L
Let
(5.6) i — G H”

be the restriction of 77, to the coset space of @f‘ Then the representation
(1o D, Keay €0) ® (| Dy, iy, 01) on I% can be explicitly written as

19

lh/ﬂ,c, [ 7NN

(5-7) (g1 g, )L{’(/)slm1 T1s pl) ® 1/)3..771: . ‘( 27 p")}
= exp [4(0, + 0,)f -+ (ry + 1,00 4 (p, + p,)a]-
TDH ANt D) o V0, DD © W0 20

where
1
4I pr— s [
7y =9+ pib 2lib2’
(5.8) 1 1=1,2
pp=A7 (n——; b) ;
5'2. Reduction of the measure. — We wish to reduce the measure (5.3)

with respect to the total four-momentum p; 4+ p,. To this end, we introduce,
instead of [r, p,] and [r,, p.], the new characters

(5.9a) Bo=r 47, P=0p, +p,
and
(5.9b) U= (lyr,~— )/(ll + 1), T=(lp, ’”Zzpz)/(ll 4 1y)

(**) For ease of notation, we shall henceforth denote the «spin component» s, by m,
so that we have m, and m,, respectively, as labels on the two w’s.

(**) We recall that I~* enters as a factor in the definition of the phase, so that it is -1
rather than ! which behaves additively, i.e. L= I+
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From (5.8) it follows that
(5.10) Pl 2l R=9
is invariant under the transformation

R'=7, +r =R+ Pb— (2L)~1b?,
(5.11) o
=p, +p, = AP —LD).

Thus, the new set [, P] of characters is suitable for the decomposition of the.
product representation.
The orbits

(5.12) P2 =9, i=1,2,

can be expressed as

{ 21, + (L) P* + QLL)PT + T* = 9,,
(5.13) ,

27y, - (L) PP — L) PT 4+ T = 9, ,

so that we obtain for the new set [T, U] of characters the restrictions
(5.14a) , I =oD + p1D, + . D>,

(5.14D) U+ PT 49,1 = 8,9, — 6,9

Here we have used the notations

o= —1 lg/ ) ﬁlzL/lzy ﬂzIL/lla

We can now transform the volume element-(5.3) by means of (5.9a), (5.9b),
(56.10) and (5.14a), (5.14b) into the form

(5.16) dQu(R, P; U, T)=Ad9dRAPAT A T-

2
b (P2 + 7 R— 9) S(T% — 0y D — B, Dy — B D) (U —ypy PT+ 9, T2— 8, D, — 6,D,).

Here, because of (5.10), & varies from — co to -+ oo.

Equation (5.16) tells us that the direct-product representation can be de-
composed into irreducible components (L|2, k, ¢) with respect to the charac-
ters [R, P]. More specifically, the Hilbert space o# [(11}91, ki, 61) @ (112, Fs, 02)]
can be represented as a direct integral of Hilbert spaces # [(Z]D, k, c)] of the
irreducible components. From now on, we shall consider only the principal
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series representations of 8L, 4. It is then convenient to introduce the nota-
tion @ = —ic¢ (p real, —oco< @< 4 oo) and then our preceding statement
can be expressed by the formula

+o oo

GA7) (LD, by ) @ (LT, by )] = D[4 A [ (112, T, )]

The decomposition is done as a direct-sum decomposition relative to all admis-
sible values of the discrete label k, and a direct-integral decomposition relative
to the continuous labels & and @. The subscript ¢ refers to possible multi-
plicities.

At this point we recall that in each representation (1%, k;, ®;) the label
9, (i =1, 2) is inessential, because (cf. Sect. 3'3) they are ray equivalent to
(1,00, &, @.). However, the label 2 in the irreducible components of the pro-
duct representation is essential, since by (5.14a) it is connected to T*. But,
of course, we may still choose Z,= 2,=0. Then (5.14a) becomes

(5.18) G =0 1% =—(lLpr— ngé)g/ll lyy

and (5.14b) simplifies correspondingly. The meaning of & is evident from (5.10).
The total invariant mass square M2 being (p, -+ p.)? = P?% we must write

2

(5.19) Wr=2—

R,

in contrast to the «free-particle representations », where M?=—20-*y. Using,
as we decided, @, = Z,=0, eq. (5.19) becomes, explicitly,

(5.20) M= —(Lp,— lzpz)g/ll lo—2(0 + L) + 7'2)/11 [

To obtain further insight into the significance of &, we consider the special
case Iy =1, =1 Then L=1/2, and (5.18) gives

(5.21) D =—(p1—p2)*.
Thus, in this case 2 can be interpreted as the negative of the squared mo-

mentum transfer (0). Another important special case is Iy =—1I, ==[. Then
L= co and

(5.22) D= (p, + p:)?,

() That is, the Mandelstam variable ¢.



580 J. J. AGHASSI, P. ROMAN and R. M. SANTILLI

whence now £ can be interpreted as the squared c.m. energy (°!). Equa-
tions (5.19), (5.22) give, in the present case, the invariant

(5.22a) D=Pr= M2,

The components (L|9, k, ¢) = (ool M2, k, @) in (5.17) are now no longer irre-
ducible, and a further reduction, as discussed in Sect. 4, must be performed.

3°3. GZebsch-G’owlan coefficients. — Let
Yo kPR, P)e [ (L2, k, )]

be the basis of the irreducible component in the direct product (L] 21, k@) ®
® (1| D5, ks, @.). The superseript A stands for the set of Iabels by Dy ks, sy
t=1,2. We define the Olebsch-Gordan coefficients of & by writing

P LDkl Dyl il, Dy k
(5.23) PpEZEA(R, P) :fdgfz <R J PPl Py 1‘%’1i 2 Ly Ko Py

W]
"1fpl>
| sm l $1My | SyMy

Y

{plZie(r], pi) ® plaZa(rl, ph)},

where d£,, is given by (5.16). We determine the CG coefficient by a procedure
somewhat similar to that used in the corresponding problem for the Poincaré
group (°).

First we recall that
(5.24) Uy el ¥?(R, P) = exp [i(0f + Ro - Pa)[[D*(A)] 5 om WEZEP(R!, PY)
where g, = (g1, ¢,), (cf. (5.4)), and where B', P" are given by (5.11). Taking,
in particular,

(91) 92)1 = {(exp ['501}5 g, a, 0, 1)11) (exp ['502]5 g, a, 0, l)la} ;
and applying the corresponding operator U,, to eq. (5.23), we see that the
CG  coefficient vanishes unless () 0=0,+0,, R"=R, PP=P (and hence

2'=2). Thus, the CG coefficient must contain the factor

(D' — D) d(R' — R) 6P’ — P) .

(°t) That is, the Mandelstam variable s.

(°2) Cf. the article by P. Moussa and R. SToRa: in Lectures in Theoretical Physics,
Vol. 7 A (Boulder, Colo, 1965); M. Joos: Forts. Phys., 10, 65 (1962); A. J. MacFAR-
LANE: Journ. Math. Phys., 4, 490 (1962).

(°*) Notation: B, P, 2 are defined by (5.9a), (6.10) and the corresponding R’, P’, 9’
arise by changing »;~ 7}, p,~ p].
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At this point we must decide what particular coupling scheme we wish to
use. We will choose one which is analogous to the I-s coupling for the Poincaré

group.
Tiet us consider the group element

(3.25) §=(1;0,0,54),

where 5, A are determined by the requirement that the mapped characters
p;:—:ﬁl and p; = J, (caleulated according to (5.8)) are such that (*%)

Pr=Pr=0 for k=1,2,3,
27‘1’+233750, L —LP#0 .

Applying now %; to (5.23), and using (5.24), (.7), we obtain the transforma-
tion of the CG coefficient to our special frame (5.26). We find

(5.27) <RP§LQZ7G(}J D k|1, D,y 702(,0»' 1p1> _
T sm | sy | Sy
— [ D42 () otz sam] Do) sl g <RP L2y l Dy by i | Uy Dy koo | Ty 33> .
T | sm Slml §5My Py Py

Now we rewrite our product basis in terms of quantities referred to the special
frame (5.26). We have

(5.28) PRIy, p,) @ YTy, py) =
B [Dkl(pl(‘/1;1)}s';m'[;s;m'l['thq’c(/I_ )]s misym, {‘P?,ﬁh%( 11 291) ® (Pbggh%< 2 pz)}

Tt we use the composition law for the SI, , representations (*) and take notice
of the transformation (5.9a), (5.95) to the new characters, we can write

2P (Fy, Py) =

2

(5.29) PRIMT(F,, Py) ® ¢l
+c0

=@ fd.Q((ﬁ, k) ey py s, my 5 Ty @y 5, 'qusm\)ﬂp” (R, P; U, Ty.
5

(%) It is not difficult to see that one can find (mﬁmtely many) values for & and A so
that (5.26) is satisfied.

(65) R. L. AxpErsoN, R. Racka, M. A. Rasurp and P. WINTERNITZ: tWo papers in
Jowrn. Math. Phys., in press (1970). We are much obliged to Dr. P. WINTERNITZ for
having made available to us the galley proofs of these papers prior to publication.
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Here
E == ~1 + 72 »
P=pi+ = (304 5,0,0,0),
(5.294)
(h+ Zz)q = (11233—12253, 0, 0,0),
G =Py o R
Furthermore,
(5.30a) G, k) = d@(§> + 4k) .

The % summation extends over all Z such that
(5.300) Btk lo=mn=0,1,2,... .

The 8L, , CG coefficient (whose complex conjugate appears in (5.29)) can be
written as (%)

(5.30¢) ko @rsimy; @y symyllpsm) = (811, SymMy|5M) X(ky 181, kayss, kps) ,
Wwhere the first factor is an 8U, OG coefficient and X vanishes unless
(5.304d) [$1— 8o <5 <8y + 85 .

The orthogonality relation reads

(5.30¢) > S kypisimy; ka2 82| kpsmy* ey oy symy ko@osamo|l’ @' s'm"y =

SyMy Spmy

= ((pz -+ 4]‘;2)_1 6((10 - (pl) ékk' 633' dmm' .
Using (5.27), (5.29), (5.30) we can now rewrite (5.23) as

(5.31)  pi%m4(R, P) — f dGAR AP asT o(T:—3)-

(RPEL@kqp

b Dy lvg |l Dy bypy | 7y ﬁ1> )
T | sm

SiMy | $yM, 7o P

‘{@fd!?((ﬁ, ]:) ey py$ymy; 752?’2827”2!]2’ P&y {/j\;_’,ﬁéﬂii(ﬁ’ Py T)} 3
k
where

(5.31a) C=0d+p D+ b D,
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and

(5.31b)  PEHIE P, Ty =

=fd(75((7+y PT 4 T2 — 6,9, — 0,2,y Z% (R, P; U, T

Next we note that, as seen from (5.31), the function ¢ is invariant under
homogeneous Liorentz transformations on Z'. We introduce the new variable (%)

(5.32) v=TNT:=TWNZ,

and expand % on the hyperboloid »*> = 1 in terms of the basis fi? of irreducible
unitary representations of the principal series of 8L, ,. We write

oo

(5.33) ALJ"”'(R Piv)y= @ dQ(@, /»)f Z(v KW"“””’(R Py.

sm; sm
ke=u

00

Here, the basis f satisfies the orthonormality relation

3 N
(5-330’) f %?)i: ;‘ﬁ(”) Z;’l;fz:(v) = (92 -+ 4792)_15((]9/“(P) (Sk'la (Ss'sém"m .

The coefficients K in (5.33) transform under 8L, , as the product of two basis
funetions of the irreducible representations of 81, ,. Hence, K can be reduced
(according to the pattern (5.30)) and we get

(5.34)  IEGEERIE Py —
=@ |dQg, k') <k g5 & §SM|k'g's'm Y prgre:i(R, P),
I

-

where the sum ranges over all k' values such that
(5.34a) Fl+k=mn=0,1,2, ...

Combining now (5-34), (5.310) and (5.31), and using the orthogonality
condiditions (5.33a) and. (5.30¢), we finally obtain the explicit form of our CG

(56) Note that the o-function in (5.31) restricts 7 to be %. Furthermore 72> 0,
because of (5.29a).
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coefficients:
(5.35) <RPIL D ko | LD k|l Dy Bearp, 7‘§pI{> _
v smo | &My .My |15
= 8(Z'— D) 8(B'— R) 6 (P'— ) DM (A1) il om [ D0 A1) Ko

'<751<P181m1§ kz(Paséméfl‘? ></ ‘7’3 7§3(]9383m3]79(p8m>f33m3( v).

If desired, (5.30¢) may be used to split off SU, CG coefficients.
The reader may find it instructive to compare (5.85) with the corr esponding
result for the Poincaré group (62).

5'4. Reduction of the product represemtation. We are now in a position to
reduce the scalar product in J/[(lllgl, ki, @) @ (1), ko, ¢2)]. We define,
naturally, the scalar product in J/’s[(L}@, k, gp)] by

(5.36) (@, ded‘P(S (P2 + =Rk— 92) [525’*9“1’ R, P)]'yi2to(R, P).

Using then (5.30), (5.33), (5.34) (as applied to a general reference system) and
taking note of (5.33a), (5.30¢), we obtain, after a lengthy but straightforward
caleulation,

(5.37) (D) Yh, =
= (dQ12{¢l‘9‘kl¢‘ (11, 1) @ Plezsas(ry, py }*{wi‘ﬁi'”" T1y 1) @ Yl Zekere(ry, py)} =

4o Few
= DO @ |d2| A2, P)AL(ky, ) ALK, ) (b, )2
koky E
The ranges of summations are
B=my— (kb -+ k), m=0,1,2, ..., ky=0,1,2, ...,
(5.37a) -
b= ny—(k+ k) = ny—mny + [(ky + ky) —Tsl, 7M,=0,1,2,....

In view of (5.37), we can formally write the decomposition of direct products as

(5.38) <l1l917 ky, (Pl) ® (lzlgza 7527972) =

+o  tow

= DO @ [12[40(, 500k, . 42k, 0) (112, )

ok ok

- -0

We also see now that the multiplicity label & (which we introduced in eq. (5.17 )
corresponds to the set (n, m,, ks).



REPRESENTATION THEORY OF A NEW RELATIVISTIC DYNAMICAL GROUP 585

6. — Concluding remarks.

It was our intention to keep this paper on a purely mathematical level.
The complexity of the problems we dealt with fully warrants such an attitude.
The length of this study prevents usfrom also presenting here a detailed analysis
of the physical consequences of our mathematical results, and now we only
make some general remarks, so as to avoid any possible misinterpretation.

Equations (3.10) and (3.35) tell us that the unitary irreducible ray represen-
tations correspond to states which are infinite spin towers (7). The minimal
value of spin is, in a given tower, given by k. This observation furnishes the
physical meaning of k. In order to find the meaning of ¢, we note that
physical particle states must be normalizable. Now, in view of (3.35), our
basis states have the form wif’”(r, p)zf’;si(pl‘@(?‘, p), where f is a basis
function of SL,,,. It is well known (*) that unless ¢=0, f has only a
delta normalization. However, for ¢=0, one has simply (%)

fd%) fls;sa (1)) f:’s:;(/[)) = (Skk' (Sss' 6338; ‘

Thus, for admissible physical representations (°?), we must take ¢=0. Inci-
dentally, this consideration also tells us that all our spin towers will be in the
principal series () (the supplementary series has e 0). Of course, in the
dirvect product of two ¢ ==0 representations we will have all possible p-values
(¢f. (5.38)). However, scattering states need not be normalizable, so we have
no contradiction.

Concerning &, the equivalence theorem of Subsect. 3’3 tells us that we
may take @ ==0 for the single-particle representations (when ! oo). Thus,
we are left with two significant labels ({, k). This is quite similar to both the
Poincaré and the nonrvelativistic Galilei frameworks.

Inspection of the basis-defining eqs. (3.35a)-(3.35g) reveals that the basis
can be factorized as

12ke

PEZE(r, p) = f - (r, p) .

(°?) As was discussed in ref. (), 7, is the internal spin part of J . Thus, T? represents
the square of spin angular momentum.

(%8) An example of a basis satisfying this relation has been given in ref. (1j, Sect. 5.
(57) Of course, since p has a continuous spectrum, we still will have a §(p—p’) in the
full orthonormality relation. But, as in the Poincaré case, this can be handled easily
by an enclosing box or by wave packets.

(") On the other hand, for spin zero, we also have besides the spin tower (llO, k=0,0),
the one-dimensional (relative to spin) scalar representation (1}0, 0, 1). This is discussed
in the Appendix.
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This implies that in this basis there is no connection between the spin and the
orbit equation. Hence, each irreducible tower is infinitely mass degenerate.
However, it is possible that by symmetry breaking or otherwise this degen-
eracy could be removed and a nontrivial mass spectrum obtained.

The physical meaning of I is naturally connected to the fact that subspaces
with different value of I-* are incoherent (). In particular, there will operate
a superselection rule between any representation with 1140 and -1 = 0. As
we saw in Sect. 5, the latter do not give rise to towers. Hence, it is very tempting
to associate [-'=0 representations with leptons. We then automatically
have a very desirable superselection rule between leptons and particles with
["*5£0. Furthermore, let us associate baryons with -1 0 and suppose
that every baryon tower has the same I-' =1[;'. From (5.5) we then see that
systems with # baryons have I-' =al;*. Thus, we could have a superselec-
tion between states with different baryon number. Finally, we observe that
antiparticles can be associated with conjugate representations: if a particle
is in the (1|0, k, 0) tower, its antiparticle is in the (1[0, k, 0) ~ (—10, &, 0)
tower ("*). This, then, extends the superselection rule so that antibaryons
are also correctly encompassed. ,

We conclude with one important comment. Inspection of the momentum
transformation law (3.5a¢) or of the orbit shown in Fig. 1 reveals that there
are zest transformations in 7} which can connect states with p>0, p2 =0,
p*<<0 to one another. Consequently, besides normal particles with p®>0,
we also have tachyons (*) with p*< 0. In the following we show how on
the basis of some physical considerations we may avoid the situation where
an object, which appears to one observer as a normal particle, could appear to
another observer as a tachyon.

We define a class of «inertial frames » which are distinguished by the require-
ment that every point of the frame F is stationary with respect to internal
development, " = const, 4.¢.

(6.1) datfdu =0 .

All such frames are related to each other by the subgroup PXT? so that
if p*>0 in one of them, it will be the same in all. Now consider a zested

("Y) As pointed out in ref. (2), we have a superselection rule with respect to I. This is
so because the center of the Lie algebra contains a multiple of the identity operator.
(%) This interpretation, based on Subsect. 3'5, is further substantiated by noting that
in configuration space -z, u)= $Y—w, —u), i.e. particle-antiparticle conjugation
corresponds to total inversion and complex conjugation.

(*®) A simple review on tachyons, including references to the original literature, is given
by O.-M. BiLaNivk and E. C. SupArsuaN: Phys. Today, 22, No. 5, 43 (1969). See also,
Phys. Today, 22, No. 12, 47 (1969).
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frame I, We have
(6.2) T, =a,+b,u.

For the velocity of this frame relative to an inertial frame we easily get,
taking (6.1) into account,

(6.3) Ty, = A&y/dE, = bifD, .

Since for any physical (material) observer his frame’s velocity must be less
than the light velocity (|v:]< 1), we see that for physically admissible observers
by —b2 = b*> 0. Furthermore, (6.2) gives

(6.4) by = dF,/du .

Since, by definition as an increment of an independent variable, du >0, and
since for a physical observer the sense of time-flow (d%,) must be positive, it
follows that b,> 0. Thus all physical observers are related to arbitrary inertial
frames by zests which are positive timelike, b*>0, by,>0. Now, from (3.5a),
in the frame F we have

N 1 \2 1
(6.5) p=(p—10)'=p—F o+ o

If we admit only I<C 0 representations (“4), this 2> 0 whenever p*>0. Hence,
to physieally realizable inertial observers a normal particle will never appear
as a tachyon (%).

We would like to add that, in view of the importance of the question,
further investigations on the above and related problematic aspects are in
progress. For example, one may investigate nonlinear realizations of @& in
Minkowski space, which may shed additional light on the problems involved.

Finally, we mention that after this work was completed a paper by NoGa (%)
appeared, in which, from different considerations, he also arrived at the prob-
lematic aspects of the mass spectrum and of the tachyon states.

(") There is no problem with the conjugate representations. Even though (I|k)~
as (— llk), for these p has an opposite sign relative to the (Ijk) representation,
ef. (3.31).

() In order to ensure also that p®= 0 particles (« luxons») remain unchanged for #
(i.e. that p2=0), we must demand that luxons belong to I= oo representations.
This is quite agreeable, since there do not seem to be spin-tower objects with zero mass.
(%) M. Noga: Phys. Rev. D, 2, 304 (1970).
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APPENDIX

In this Appendix we study, by using a direct elementary method in con-
figuration space, the scalar (one-dimensional) representation (1]0, 0, 1) of &;.
As was shown in ref. (%), the scalar wave equation in configuration space is

(A1) , (D— @-? Bu) plx; u)=20.

The solutions are subject to the square integrability condition
(A.2) : ol = lptw; wrdia< oo

If we go from a frame (z, %) to a frame (a', '), the transformed wave equa-
tion must read

(A3) (DL/L';%P;,") (s ) =0 .

Here

(A.4) gl uw') = Uplw; w),

where ge &, and %, is a unitary operator. Hence, |¢'[|=]¢], which means

that [p'(2; w')| = |p(w@; v)|, so that
(A.5) o' (@' w') = exp [iF(x, w)]p(@; u).
In order to find [ and 2,, we note that the inverse of (1.1) is

@, = (A" (2, — bu' 4 b,o —a,
(A_G) { ji ( ),u( )7

W =u'—0c.

Hence, from the identities

o dz, 0 du @ 0 dw d  dm, O
W T Wiow, Tdrow M w Tawde T aw an,’
we easily get
(A7) 0" = (A 0", Ou = 0,— (A~ V)b, 0".

Substituting (A.7) and (A.5) into (A.3) we obtain

i OUF 4 Cp — 98, PO"F + 29,7 0'p —

2
—1 z_ [“P auF + auq)“ @'(P(Awl):zbva”ﬁ' - (A—l);; bv aqu] =0.
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Using (A.1), we thus have the conditions on r

(A.8a) OF =0,
(A.8D) 3,F = —13(A)b
(A.8¢) 8., F = — (2174, b,

Because of (A.8b), eq. (A.8a) is automatically satisfied. The solution of the
remaining two equations is easily found to be (7")

(A.9) Fe=—T"YA %z + 1b%u) .

Thus, from (A.4), (A.5) and (A.9) we get the ewplicit transformation Taw in
configuration space:

(A.10) @l u) = Uyp(x; ) = exp [— i (Abw + Fo2u)]p(w; w) .

We now wish to pass to « momentum space». We define the Fourier
transform

(A1) w(r, P) =fexp [i(ru -+ p2)]ple; u) dudiz.
This implies

- Up(r, ) :J'exp [i(ru' -+ pa' )]/ (@'; uf)du’dw’.

Using (1.1) and (A.10), we then obtfain, with the help of (A.11),

(A.12) U, p(r, p) = exp [i(ro + pa)]p(’, p'),
where

' 1 1
(A.12a) ¥ =r+pb—é—lb2, p'=A"1 (p__l_b)_

The transformation law (A.12) is precisely the special case of eq. (3.10) per-
tinent to the scalar represenfation. ol

Finally, we wish to use (A.12) to compute the factor system (2.3). “We can’
write (disregarding the irrelevant exp [40] factors) S -

(A.13) U [ U, p(ry P)] = exp [i(roy + pag) U, p(r', p') =

> ] 2 1 " I/.
= eXp {@ [7’0’2 + pa, + (7’ + pby— By bg) o+ 457 (29 -7 bz) C‘IJ]"P(T » ')

(") We disregard an immaterial additive constant.
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where

21

e fp-2a) 2]

On the other hand,
(A.14) %yzyﬂ)(r; ) = exp [7;[7'(0'2 +01) + plag+ Asa, + Gle)]] p(’y p") .

where we took cognizance of the composition law of the parameters o, a, b, 4;
as given by (2.2). Recalling now (2.5) and using (A.13), (A.14), we imme-
diately obtain w(g., ¢.) in the form as given by (2.3), (2.6). q.e.d.

@ RIASSUNTO (%

Tramite il metodo delle rappresentazioni indotte si deducono e classificano tutte le rap-
presentazioni proiettive unitarie irriducibili del nuovo gruppo dinamico relativistico &;,
introdotto di recente. Si d& un forma esplicita della legge di trasformazione. Si studiano
le proprietd della corrispondente funzione di base ad infinite dimensioni. $i mostra
che nel caso limite I = oo (corrispondente a 555 — &) le infinite rappresentazioni della
torre di spin diventano riducibili e si decompongono in rappresentazioni irriducibili
del gruppo di Poincaré. Si studia la riduzione del prodotto diretto di due rappresenta-
zioni radiali unitarie irreducibili di &;. Si calcolano i coefficienti di Clebsch-Gordan.
Infine si fanno -alcuni commenti sull’interpretazione fisica dei risultati.

(") Tradusione a cura della Redazione.

Teopust npencrasjeHuii I HOBOH PEJIITHBHCTCKOH AMHAMHYECKOH IDYIHIBLL.

Pessome (*). — Vcnonb3ys MeTOO MHAYLHPOBAHHBIX HPEICTABJCHUH, BHIBOJATCS ¥ Kllac-
cuUIMPYIOTCsT BCe HENPUBOILMMEBIC YHHTADHBIE MPOEKTHBHBIE MNPEACTABIICHUS HEIABHO
BBEJICHHON HOBOH PeMATHBUCTCKON auHaMmuYeckoit rpynmsl &;. IIpuBomurcs spras dopma
I 3aKOHa mpeobpazosamms. VICCIENYIOTCS CBOMCTBA (yHKIWH, COOTBETCTBYIONIMX
OeckoneunomMepHoMy Gazncy. IIokasbiBaeTcs, YTO B IPEHNENBHOM cliydae l=—oco (COOT-
BETCTBYIOHIEM @y - @5) MPEACTABICHUSA DECKOHEYHOM CIIMHOBON OGAlHY CTAHOBSITCS IPHU~
BOOUMBIMH MW PAa3NararoTcs Ha HENPWBOOuMMBIC NpeacTapiienust rpymmsl Ilyaukape.
Wccnenyercss mpuBefenwe TPSIMOTO TNPOH3BEACHMs NBYX HENPHBOIUMBIX YHUTAPHBIX
JIYYEBBIX IIpeICcTaBleHuH @75. Beryucasttores: xosbdunmentsr Knebma-I'oprana. B sakxro-
YeHHIE MHENAIOTCS HEKOTODHIE 3aMEYaHHS OTHOCUTEITBHO GH3MYCCKON MHTEPIIpeTallnn
MOJIYYCHHEBIX PE3yJIbTAaTOB. k ’

(*) ellepesedero pedaiyueil.



