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Cowrexes. — 1. Inftroduction. — 2. The «fundamental» algebras. —
3. Lie-admiggible algebras. — 4. Jordan-admissible algebras. — 5. Some
properties of the Lié-admissible algebras.

1. - Introduetion.

The central role of Ide algebras in particle physies is well known, Starting
from fundamental mathematical tools such as the Lie algebras of the Poincaré
group, the rotational group and the isospin group, the interest for Lie algebras
received a determining impulse with the celebrated Racah lectures at Prince-
ton in 1951. Tinally in 1959 there has been the heginning of the use of the
Lie algebras of the unitary compact groups whose importance for hadron
physics is today well known.

Recently a large nnmber of Lie algebras of the orthogonal, nnitary, simplectic,
gpecial linear compact and noncompact Lie groups have been investigated
either as invariance algebras of the Hamiltonian or as symmetry algebras in
the global sense.

Thus we are near to a clarification on the one hand of the meaning of a
large number of Lie algebras for particle physics, and on the other hand of
the limits of validity of Lie algebras for particle physics, particularly in con-
nection with some interacting or decaying regions. In the framework of the
above investigations algebraic structures more general than Lie algebm-s and

(*) The study was supported by the Air Foree Offics of Seientific Resea.leh Con-
tract No. AP ATOSR 1268-87.

(**) On leave of absence from the Istituto di Tisica dell’UmveuthL Tonno Present
: _addless Boston University, Physics Department, Boston, Mass.
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their enveloping associative algebras, but possessing a well-defined Lie algebra
content, may have a direct physical interest.

Lie algebras are generally introduced in particle physies in terms of the
product [a, b] =a-b—Db-a, where «-b is an associative product. However,
according to ALBERT {'), a Lie algebra can also be introduced in terms of the
product [#, b] = ab--ba, where ad is the product of a nonassociative algebra.
More exactly, any algebra U/ with product ab is called ¢ Lie-admissible algebra
if the attached algebra U~, which is the same vector space as U but with the
new product [a, b] = ab—ba, is a Lie algebra.

The present notes are devoted to an elemeniary introduction to the theory-
of the Lie-admissible algebras with the puipose of stimulating the interest of
physicists in this class of mathematieal tools.

2. — The « fundamental » algebras.

In connection with the Lie-admissibility properties the algebras which
admit realizations as mutations of an associative {*) algebra play an essential
role. We assume these algebras as « fundamental». They are:

1) Lie algebras, which are (nonassociative) anticommutative algebras
satisfying the identities

(2.1) at=0,
©2) . , (ab)e + (be)a -+ (ea)h = 0.

2) (Commutative) Jordan algebras, which are (nonassociative) algebras
satisfying the relations (*1)

2.3y ab = ba,
24) (a%b)a = a*(ba) .

M A. A. ArprrT: Trans. Amer. Math. Soc., 64, 552 (1948).

_ (") We defitie a ring I to bo an additive Abelian group possessing a multiplication
satisfying the distributive law {a+-b)e=ac-be, a{b--c)==ab+ac, for every a,b,cc R,

We define on algebra U to be a vector space over a field F possessing a bilinear operation

of multiplication verifying the identities {(aa)(fl)= (fa)(ub)=ef{ab), (& +ble=ac+be,

alb -+ ¢) = ab + ac for every a, b, ec U and e; fe F. If in addition the associative law

of multiplication holdg, i.c. (ab)e= a(be) for every a,b,ce R(U), then R(T)} is called

an. associative ring (algebra). The amount by which three elements fail to obey the

asgociative law of mulmphca,tmn is calletl the associator and is denoted by

[e, B, €] == (ab)e— a(be).

(*) H. Braux and M. KODCHDR Jmflan Algebren (Berlin, 1966).

(® L. J. Pater: Jordan Algebras, MAA Studies in Math., vol. 2 (1963).

(9) R. D, Scuarer: Adn Introduction to Nonassocialive Jllgebms (New York, 1966).
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3) Noncommautative Jordan algebras, which are (nonassociative) algebras
defined by the relations {*4)

{2.5) {ab)o = a(ba),
(2.6) (a7h) = a(ba) .

In connection with the explicit forms of the product let us consider an
assoclative algebra A, with product 4-b, over a field F of characteristic (%)
other than two. It is then possible to construet a new algebra, nsually denoted
with A7, by means of the anticommutative product

(2.7} [a, 8] =a-b—Db-a.

Clearly 4~ is a Lie algebra in the usual form used by physicists. A funda-
mental result in the theory of Lie algebras iy the Poincaréd-Birkhoff-Witt the-
orem which states that every Lie algebra is isomorphic to a subalgebra of
some algebra 4. There is no analogue of the Poincaré-Birkhoff-Witt theorem
for the remaining « fundamental » algebras. Consequently inequivalent forms
of the product are possible for both the conmmuiative and noncommutative
Jordan algebras.

Amnother algebra which can be constructed by means of the associative
product is characterized by

(2.8) Ha, b} = 4{a-d + ba)

This product is commmutative and characterizes a class of Jordan algebras.
Indeed the (commutative) Jordan algebras which are isomorphic to a sub-
algebra of some algebra A" are called special Jordan algebras; the remainder
which are not isomorphic to some A% are called exceptional Jordan algebras.

In the same way it is possible to introdnce always in terms of the associa-
tive product the following bilinear form (1):

(2.9 ab=Aa b+ 13— Db-a= Aila,b]+ b-a,

{*} Let £ be the additive group of integers. The cyclic additive subgroup Z{a)
of & ving B is the set of clements (ma) with a& R and me Z. The mapping m—me
is an homomorphism of Z into & and is an isomorphism if ma st ne for all ¢ and w st n.
Lvery element @ of a ring B generates a cyelic additive subgroup Z(«). If every such
sabgroup has finife order m, then the least common mulfiple of {m,) is called the
characteristic of the ring. If such finite number does not exist, then +he ring is said
to have characteristic sero (for instance the field of real numbers has characteristic zero).
The above definition applies equivalently to fields and algebras too.
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where 1 is a free scalar belonging to the field, which characterizes the
J-mutations A(J) of 4. Clearly A(1) is isomorphic to 4; A(0) is anti-isomorphic
to 4; A(l) is isomorphic to A*.

An algebra U over a field of characteristic other than lwo is called a Uasi-
associative algebra if there exists a scalar extension {*y B of P and an element
el such that U,= A(1) where A is an associative algebra over R (*). The
quasi-associative algebras constitute the basic algebra of the noncommutaiive
Jordan algebras and they represent an interesting example of (nonassociaiive)
Lie-admissible algebras, as we shall see in Sect. 3. However there is no finite
value of Ain the product (2.9) able to reproduce the commutator (2.7}, which .
Jessens the possibilities of physical interest.

Tn this connection a more general bilinear form in terms of the associative
product is given by (5%

(2.10) (@, b} = Aa-b + ub-a = g[a, b] + ofe, b},

where A= oo and = o-—p are free scalars belonging to the field, which
constitutes the basic product of the (A, u)-mutations A(4, p) of A. Clearly
A(1, 0) is isomorphic to A; A(0,1) is anti-isomorphic to A; A1, 1) is iso-
morphic to 475 A{}, 4) is isomoerphic to A™; and A(4, 1— 1) is isomorphie
to A(A).

The A(A, u) algebras are equivalent to A(4) for any finite A -—p. Indeed,
by pubting 7 = A-g, A= AT, p=pu't, Where A'+u'=1, we can write

{2.11) (a, ) == Nra-b+ p th-a= Aa*b 4+ (1 — ) a,

that is the {2, u)-mutations of A are isomorphic to the A-matations of the
isotopic algebra (™) 4* with product a*b = 7e-b. Consequently for any A —p
the essential results on the theory of quasiassociative algebras U, such as
for example the structure theorems, the construction of the matrix represen-
tations, the multiplieation table, etc., can be applied to the A{Z, u) algebra
over B (5.

{*) The scalar extension Uy of an algebra T is the Kronecker product Uz =E&, U
of an arbitrary extension B of the field ¥ and U ifself.

() R. M. SaxrmLri: Nuove Cimento, 51 A, 570 (1967).

(&) B. M. SanTriur and G. SoLIaNI: Stofistic and parastatistic formal wnification,
to appear.

(**) Lt 4 be an associative algebra with multiplication a-b and let ¢ be an invertible
element of A. Tt is then possible to introduce a new multiplication given by
a*h == @-¢-b. This multiplication essentially leaves the algebraic structwe unchanged
since the assoeiative law of multiplication is preserved, The algebra induced by the
multiplication a*b is called an dsolope A% of 4. As.a particular case we may have
¢=al, with aeF and o= 0. Then the new multiplication a¥b is simply « times the
original produet «-b.
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The A(4, ) algebras are some of the most interesting examples of (non-
assoclative) Lie-admissible algebras because, in addition to their Tie-admis-
sibility content as for the A(A) algebras, they are able to transform dirvectly
into Lie algebras when anticommutativity of the produet is requested {7).

In connection with the problem of the classification of the simple alge-
bras (™) we note:

1} Lic algebras. — The Cartan classification of the complex simple Lie
algebras and the construction of the corrvesponding real jorms by means of
inner and outer involntive automorphisms is well known. However the above
classification refers to algebras of characteristic zero. In addition other simple
Lie algebras of characteristic p exist. Indeed:

1) For characteristic zero we have the well-known simple algebras
Classical algebras: 4, B, €, Iy
Exceptional algebras: G., F,, E;, E, Es.

ii

—

Tlor characteristic p we list the following simple algebras
p-dimensional algebras by Wimr;

pr-dimensional algebras by ZASSENEAUS;
npr-dimengional algebras by JAcoBsoN;

rp-dimensional algebras by KAPLANSKY;
{(n—1)(p™--1)-dimensional algebras by FrRaNZ;

2y, Vi, Lo and L; algebras by ALBERT and FRrANZ;
LT, 8, /) algebras by Brocx.

(*) See footnote (*) on p. 1232,

(**) Let us recall that an algebra U is called simple if 0 and U are $he only ideals
of U and U= UU 0. An algebra U is ealled semi-simple if the radical is the zero
ideal. TFor the definition of the radical the associativity or nonassociativity of the
algebra plays an essential role. Indeed for finite-dimensional associative algebras the
radical is defined as the unique maximal nilpotential ideal. For (nonassociative) algebras
the coneept of nilpoteney gives rise to difficulties. Thus for finite-dimensional Lie and
(commutative) Jordan algebras the radical is defined as the unique maximal solvable
ideal (*). Iowever for finite-dimensional noncommutative Jordan algebras the radical
is defined as the maximal nilideal (that is an ideal eomposed by nilpotent elements) (7).
This rules out Lie algebras in the classification of the noncommutative Jordan algebras
(see Sect. 2) since all Lie algebras are nilalgebras of degree 2. For exhaustive discussions
in connection with the radical of (nonassociative) algebras see papers (8-11).

(") K. MoCrimMox: Pacific Journ. Math., 15, 187 (1965); Proc. Amer. Math. Soe.
17, 1455 (1966); Trans. dmer. Math. Sec., 121, 187 (1966).

(®y A, A. ArpErT: Bull. Amer. Math. Soc., 48, 891 {1942).

(") B. Dunise and 8. Peruis: Amer, Journ. Math., 70, 540 (1948).

(1 W. E. JennER: Proc. Amer. Math. Soc., 1, 348 (1950).

{1*} A, Mavrezv: Dokl. Akad. Nauk SSSE, 86, 42 (1942).

{(1*) R. REB: Proc. Amer. Math. Soc., 9, 886 (1958).

(%) M. ¥, Ssirey: Proc. dmer. Math. Soc., 2, 138 (1951).

(M) 8. A. AMrzsur: Amer. Journ. Math., T4, 774 (1952); T6, 100, 126 (1954).
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For an exhaustive discussion on simple Lie algebras of characteristic p see,
for example, ref (15).

2) (Commautative) Jordan algebras. In this case the central simple alge-
bras {7) of characteristic p are equivalent to those of characteristic 0 if p>2.
Furthermore it has been shown for (commutative) Jordan algebras that the
scalar extension of a central simple algebra is a reduced (™) simple algebra,
and wice versa any reduced simple algebra is central simple. Consequently the
classification can be performed for reduced simple (eommutative) Jordan
algebras J7 of degree (™) » and dimension N over a field F, which we assume
of characteristic zero, according to (*1).

a) Degree n = 1: In this case we have that J = elf, where ¢ is the prim-
itive identity element of 7.

D) Degree n = 2: Let B,(F) (m > 2) be an m-dimensional vector space of
syminetrie bilinear nondegenerate forms |, b| with values in ¥, possessing an
element ¢ such that |e, ¢/ =1 and satisiying the relations: |a, b| = [, a|;
lat+b, o] = |a, o] -+ [by el ey bef = |a, b] + |a, c|; ola, b| = |a, ab] = |oa, b| for
any a, b, ¢ce B, (I and «e . Furthermore let U be the direct sum U=FL@™
@™ B,,(F). Then the algebras J; can be introduced as special Jordan algebras
isomorphic to some subalgebra of UY of dimension ¥ = m-1.

(15} G. B. Spuienav: Modular Lie Algebras (Berlin, 1967); Nat. Aead. Seci. (Nal.
Res. Council) Pub., 502, 24 (1957).

{*) The centre O of an associative algebra 4 consists of all the elements ee ¢ for
which ac=ce with any ecd. If A is simple, then ¢ is a field (but not necessarily
the ground field) and 4 can be considered as an algebra over its centre. For the defini-
tion of the cenire of a (nonasscciative) algebra U not only commutativity but also
associativity is requested between the elements of the cenfre and the elements of the
algebra. The centroid O(U) of U is the sei: of linear transformations ¢ of the algebra L(T)
of all linear transformations of U for which {(ab)i==a(bf)= (a))b for any a,be U.
A {nonasscciative) algebra U7 over a field F is called central if the centroid coincides with
the field. It has been shown that any simple algebra over ¥ is central simple if and
only if all the scalar extensions are simple. Furthermore every simple algebra U over ¥
is central simple when considered as an algebra over its centroid. Thus the classification
of the simple algebras can be reduced to the classification of all the eentral simple
algebras.

{(**) An element e of an algebra U is called idempolent when e*=ec=e (5 0).
An idempotent ¢ is called prircipal when U does not contain idempotents orthogonal
to e. An idempotent ¢ is called primitive when U does not contain orthogonal idempo-
tonts ¢, and e, such that e=e +e. A primitive idempotent e is called absolutely
primitive if it remains primitive in the scalar extensions Ur of U. An element 1 of U
is ealled left {right) identity if la= o (al==a) for any clement «. An idenfity is an
element 1 for which both les=e and al =« hold for any a. The degree of an algebra
ig the number of pairwise orthogonal absolutely primitive idempotents in the decom-
position of the identity. A reduced algebra is an algebra possessing an identity which can
be decomposed in terms of absolutely primitive orthogonal idempotents.
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¢) Degree n>2: In this case J7 is isomorphic to the Jordan algebra
J(Ua, I) of elements of an alternative (*) algebra U, of »Xn matrices which
are self-adjoint with respeet to a canonical invelution (**). Then we have the
following classes:

4) the algebras of the I-symmetric matrices whose elements ave
real numbers;

B) the algebras of the I-Hermitian matrices whose elements are
complex numbers;

C) the algebras of the I-Hermitian matrices whose elements are
guaternions;

D) the algebras of the I-Flermitian matrices whose elements are
octonions (Cayley numbers). In this case the only possible value
of # is 3 and ¥ = 8.

The dimension N is given by N = n-n(n— 1)7/2, where » = 1, 2, 4, 8 cor-
responding respectively to the classes 4, B, ¢, D. We note that U, is always
an asgoeiative algebra with the only exception of the elags D. Thus the alge-
bras of the classes 4, B, and  are special and the algebras of the class D
are exceptional.

For specific ipvestigations on (commutative) Jordan algebras see ref (36-46),

"} An allernative algebra is an algebra satisfying the identities (aa)b == a(abd),
{ab)b = a(bb), for any element «, b, e&ﬂed respectively left and right alternative laws.
‘We recall for ingbance that the algebra of the Cayley numbers (also ealled oetonions)
is an alternative (nonassociative) algsbra.

(**) An dnvolution of an algebra U is antiautomorphic mapping a—a on U such
that ab=ha and g= a, that is the antiautomorphism iz of degree fiwo. An involution
of the n X7 matrix algebra D, whose elements (belonging to D) are real numbers or
complex numbers or quaternions or Cayley numbers, is called a standard involution
when the operation of conjugate transpose is induced, i.e. (a;)— {gs5). An involution
of D, is called a canonical nvolution when a— T—ta' T, where &' is given by a standard
involution and T is a diagonal matrix whose elements are in the field.

(%) P. Jompax, J. von NuoManw and E. WieNer: Ann. Hath., 35, 20 (1934).

(¥) A. A, ALBERT: Trans. Awmer. Math. Soe., 59, 524 (1046).

(*#) A. A. AuBERY: dwn. Math., 48, 1, 546 (1947); Proe. Nat. dcad. Sei., 38,
372 (1950); Ann. Math., 67, 1 (1958); Jouwrn. Math. Mech., 8, 331 (1959); Proe. Nat.
Acad. Sei., 50, 446 {1963).

() A. A. Areerr and N. Jacopson: dnn. Math., 66, 400 (1957).

(%) A. A. Aveerr and L. J. Paten: Trans. Amer. Math. Soc., 93, 20 (1959).

) V. G, Asginvze: Ukrain Math. Zurn., 3, 381 (1951).
) G. Bremorr and P. M. Wortsaw: Trans. Amer. Malk. Soc., 65, 116 {1949),
) P. Civmw and B. Yoopn: Pacific Journ. Math., 15, 775 (1985),

) P. M. Gouw: Canad. Jowrn. Math., 6, 253 (1954); Proc. London Math. Soe.,
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3) Noncommutative Jordan algebras. The central simple algebras U
over ¥ such that UT is a central simple (commutative} Jordan algebra have
been classified aceording to (%)

A) the central simple {commutative) Jordan algebras;
B) the flexible quadratic algebras (") with nondegenerate norm;

() the central simple algebras of quasi-assoeiative type.
el

(") An algebra U is called a flexible algebra if the following identity (ab)a = a(ba}
holds for any e beU. Then ((e+Db)a)({a+b)=(a+ b)(e(a-+ b)) by which (abd)e-’
+ (eb)a=a(be) - elba) or (1) [a, b, cl=—[b,c,a]. In the framework of the Lie-
admissible algebras flexibility has a particular importance. Indeed, by noting that
all the « fundamensal » algebras ave flexible, flexibility ean be considered as a generaliza-
tion of hoth the (2.1) and (2.3) axioms. Furthermore. as we shall see in Seet. 3, the
defining identities of the Lie-admissible algebras reduce to the corresponding ones of
the Lie algebras when anticommutativity is requested, Consequently the Lie-admissible
flexible algebras characterized by the relations (ab)e=a{ba), [a, b, ¢]+4[b. e, al+
+[e, a, b= 0, can be interpreted as a generalization of the Lie algebras fo algebras
whose product is neither totally antisymmetric not totally symmetrie. Indeed, when
anticommutativity is requested, the Lie-admissibility condition reduces to the Jacobi
identity and the Lie-admissible algebras reduce to the Lie algebras, as it ocewrs
for the .4(A, #) algebras. The investigations on a possible physical meaning of fhe
transition from a Lie algebra to a Lie-admissible flexible algebra (2, p) in terms
of dissipativity ave in progress () on the basis of the Duffin analytical dynamics
formulation for dissipative systems (). An algebra [ is called a gquadralic algebre
if U possesses an identity 1 over a field I and is such that for any ac U: o*+ Ha)a +
4+ n{a)l =0 where i{a}, n{a)c F.

Soe., 81, 331 (1956}; dmer. Journ. Math., T8, 629 (1956); Bull. Amer. Math. Soc., 87,
517 (1961).

(2%) Cr. HErtNECK: HMath. Ann., 146, 433 (1962).

(*0) . D. Jacossox and N. Jacomsox: Trans. Amer. Bath. Soc., 85, 141 (1949).

(31) N. FA00BSON: Amer. Jowrn. HMath., 70, 317 (1948); Ann. HMath., 50, 366 (1949);
Amer. Journ, Math., T1, 140 (1949); Trans. Amer. HMath. Soc., T0, 509 (1951); Amer.
Haih. Soc., 2, 37 (1952); Proc. Amer. Hath. Soc., 3, 973 (1952); Proc. Intern. Congress
of Math. Amsterdam, vol. 8. p. 28 (1954); Osake Math. Journ., 8, 1 (1954); Froc. Nat.
Acad. Sei., 42, 140 {1956); Math. Ann., 186, 375 (1958); Math., 201, 178 (1959); 204, 74
{1960}; 207, 61 (1961); Arch. Math., 18, 241 (1962); Proc. Natl. dead. 8ei., 48, 1154
(1962).

() N. Jacossow and L. J. Pawee: Jowrn. Math. HMech., 8, 8953 (1957).

{33} N. Jacossox and C. E. Riogarr: Trans. dwmer. Hath. Soc., 69, 479 (1950);
79, 310 (1952).

(3%) G. K. KariscH: Trans. dmer. Math. Sec., 61, 432 (1947).

{33y M. Kopeuer: Math. Phys. Ki., 2 A, 67 (1938); Bull. Amer. Math. Soc., 68
874 (1962).
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In connection with the simple algebras of characteristic p (where U™ is
no longer a central simple Jordan algebra) we note as an example the nodal
algebras () characterized by the product (™)

1« ta &b
ab=aoel+=>—o——o0;
where aeb = }{ab-+ba), ¢, = — ¢, at least one ¢; possesses an inverse, @ and b

belong to a nilpotent polynomial ring F(w, ..., 2,). For specific references on
noncommutative Jordan algebras and connected problems of flexibility, trace
admissibility (™) and power associativity (™), interesting for any Lie-admissible
algebra, see papers (750-02),

(*%) L. G. MacDoxaLn: Proe. London Math. Soc., 10, 395 (1960).

(3" K. McCrraemoxn: Bull. Amer. Math. Soc., T0, 702 (1964).

(®8) K. Mevsrire: Math. Zeits., 89, 52 (1965).

(3 W. H. Mirrs: Pacific Journ. Math., 1, 255 (1951).

(**}y A. J. PeNico: Trans. Amer. BMath. Soe., 70, 404 (1951).

(*1) R. D. Scuarer: dmer. Jowrn, Math., 70, 82 (1948); Proc. Amer. MHath. Soc,.
2, 200 (1951}; Amer. Math. Soc., 84, 426, (1957). 4

(**) M. F. SuiceY: Proc. Amer. Math. Soc., 8, 668 (1957); Portugal. Math., 20,
147 (1961).

(13) T. A. SPRINGER: Proe. Nederl. Akad. TWetensch., A 62, 2564 (1959); A. 63, 414 (1960).

(*1) E. Svormer: Trans. dmer. ath. Soc., 120, 438 (1965).

(%) J. Trrs: Proc. Nederl. Akad. Wetenseh,, A 65, 530 (1962).

(4) D, M. Torpixg: Memor. Amer. Math. Soe., 53, (1965).

(7} R. M. Sawrticii: Haag theorem and Lie-admissible algebras, confributed paper
at the Indiona Symposium on Analylic Methods in Mathematical Physics, Bloomington,
Ind., June 3-6, 1968; Dissipativily and Lic-admissible algebras, Coral Gables pre-
print CTS M 67 2.

(18) R. J. Durrix: Adreh. Rational Mech. dnal., 9, 309 (1962).

(Y A nodal noncommutative Jordan algebra U is a finite-dimensional algebra
possessing the clement 1, which can be decomposed according fo: U=F1@ N,
where N is nilpotent but not a subalgebra of U.

() L. A. Koxoris: Caenad. Jowrn., Math., 12, 488 (1960).

{(**) An algebra U over a fleld F is called trace admissible if there is a hilinear form
n{a, b) with arguments in U and values in 7 such that n{a, b} ==n(b, a); nlab, ¢) =n(a, be);
n(a, b)== 0 if ab is nilpotent; and nle, e)s= 0 if ¢ is an idempotent (= 0).

(***) An algebra U is called power associative if for all elements ee U and m, n=
=1, 2,3, .., a®a*= ", where recursively el= ¢, a*=ala ..., a**=g%q. Then the
following identities arve satisfled: ala== ao®, afo®== {z*a}a. Conversely the above iden-
tities imply that U is power associative if some restrictions on the characteristic are
introduced, for instance a characteristic zero (or % 2, 3, 5) is assumed.

(59 A. A. Arserr: Proe. Nat. dead. Sei., 35, 317 (1949); Summa Brasiliensis Math.,
2, 183 (1951); Amer. Math. Soe., Proc. Intern. Congress Math. Cambridge, 2, 2 (1952);
Proc. Amer. Math. Soc., 9, 928 (1858).

("1 J. D. I'eapreY and R. W. RrrcuiE: Proc. Amer. Math. Soc., 11, 399 (1960).

(53) E. Freixrerp and L. A. Kororis: Proe. Admer. Math. Soe., 13, 881 (1962).

(") J. KxorPFMACHER: Quater. Journ. Math, Ozford, 13, 264 (1962).
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An interesting connection exists between the « fundamental » algebras and
particularly between the exceptional Lie algebras and the exceptional {commmu-
tative) Jordan algebras, and between the Lie algebras of characteristic p==0
and the nodal noncommutative Jordan algebras. See, for instance, in this
connection ref. (1).

As historical remark let us recall that the Jordan algebras were introduced
by a physicist, JORDAN, in the early 1930%. A paper by JORDAN, VOX NEUMANKN
and WIGNER in 1934 introduces these algebras with the original name of
« r-number algebras» (*¢). The name ¢« Jordan algebras » was introduced by
ALBERT in 1946 (7). The noncommutative Jordan algebras were introduced,
by SCHAFEER in paper () on the basis of the theory of the quasi-associative
algebras previouslty introduced by ALBERT in paper ().

The (commutative) Jordan algebras were introduced essentially for gquan-
tum mechanieal purposes. However at the present no evidence for a large
physical contribution in guantum mechanics has appeared, although the alge-
bras stimulated a new direction of algebraic studies in whose framework the
essential toals for the characterization of the Lie-admissible algebras have
been developed. A possible reason for the above . disappointment in physical
applications may be the lack of a nontrivial Lie-admissibility content. Indeed
the only anticommutative algebras which can be construeted by a mutation
of & commutative algebra are the zero algebras (°). '

The situation is different for the Lie-admissible algebras because of their
TLie algebra content. Indeed at least in principle at the present time the in-
vestigations on possible physical applications of the Lie-admissible algebras
seem o be interesting, for instance, for regions where the Lie algebra invariance
no longer holds, as for some interpolating field. Then, the possibility of a

(1) L. A. Koxoris: Proc. Nal. Acad. Sei., 38, 53¢ (1952); Trans. Amer. Math.
Soc., T7, 363 (1954); Proe. Amer. Math. Soc., 8, 705 (1955); Ann, Hath , 64, 544 (1956);
Proc. Amer. Math. Soc., 9, 164, 652, 697 (1958); 18, 335 (1962).

%) E. N. Kuzax: Sibirsh. Math. Zwrn., 1, 198 {1960). _

(3%) R. H. OmmEMgE: Ann. Math., 68, 221 (i958); Trans. Amer. Math, Sec., 87T,
226 (1958); Proc. Amer. Math. Soc., 12, 151 (1861); Trans. Amer. Math. Soe., 112,
416 (1964). _ .

(57} J. M. Osporx: Pacific Jowrn. Math., 14, 1367 (1964).

58) L. J. Patgr: Portugel Math., 16, 15 {1957).

(39 . M. Price: Trans. Amer. Math. Soc., T0, 291 (1951).

(69} R. W. RivcEre: Proc. Amer. Math. Soc., 10, 926 {1959).

1y D, Ropasavem: Trans. damner. Math. Soc., 114, 468 (1965).

%) R. D, ScHAFER: Proc. dmer. Math. Soc., 9, 110, 141 (1958); Trans. dmer.
Math. Soc., 94, 310 (1960).

(*3} R. D. ScHAFER: Proe. Amer. Math. Sec., 6, 472 (1955}

{*} A zero algebra is a nilpotent algebra of degree two. Letus recall that the nilpo-
tencey of a (nonassociative) alzebra requires that all the possible products of k elements
of the algebra are zero.
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direet transformation of a Lie-admissible algebra into a Lie algebra (as for
the A(A, u) algebras) seems to be interesting in connection with the asymptotic
conditions connecting an interpolating field with a free field (*°). Furthermore,
Lie-admissible algebras may be also inferesfing as an alternative to the envel-
oping associative algebras for the construction of a Iie algebra in terms of the
product [a, b]= ab—ba, where ab is nonassociative. The assumption of a
Lie-admissible mutation algebra for nonassociative extension implies the intro-
duction of free parameters in the structure constants of a Lie algebra (as we shall
see in Sect. 5), that which may be interesting for an algebraic interpretation of
renormalization procedures of field vectorg or currents (*7).

3. — Lie-admissible algebras.

Corresponrding to any algebra U with product ab it is possible to define
an anticommutative algebra U™ which is the same vector space as U bul with
the new product

(3.1) [a, &)y~ == ab—ba .
An algebra U is called ILig-admissible if the algebra U™ is a Lie algebra.
An algebra U is called L-simple (L-semi-simple) if the algebra U™ is a

simple (semi-gimple) Lie algebra.
It is easy to see that all the algebras of Fig. 1 are Lie-admissible. Indeed:

1) I U is an associative algebra A, then the product (3.1} coincide
with {2.7) and A~ is o Lie algebra in its miore usual form. Thus the associative
algebras constitute a basic class of Lie-admissible algebras.

2) If U is a Lis algebra L with product ab=a-b—b-a, then L™ iz still
a Lie algebra isomorphic to the isotepic algebra 4* with product

(3.2) fa, b~ =[a, b]p = a*b—b*a = 2{a-b—D-a).

Hence TLie algebras are always Lie-admissible algebras.

3) 1t U is a special Jordan algebra J, then J~ is a zero algebra because

{3.3) [&, b],- = ab—da=0.

More generally any commutative algebra is trivially Lie-admissible.

4) If U is a mutation algebra A(A), then [A(2)]™ is isomorphic to the
isotopic algebra 4*- with product

{3.4) (e, D]sn- = [, U g0 = @b —b¥*a = (24— 1)(a-b—Db-a}.
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5) If U is a mutation algebra A(A, w), then [A(Z, g)1” is isomorphic to
the isotopie algebra 4"~ with product

(3.5) [y Blusca, - = [ Do = a*b—b¥a = (A—p)a-b—1D-a).

As a consequence of the above properties we note that, in addition to the
nsual meaning of the attached algebra 4~ of an associative algebra, a Lie alge-
bra can also be introduced as the attached algebra [A(4)}™ or [A(4, g)]~ of the
(nonassociative) Lie-admissible algebras A({A) and A(4, u).

We note that the e-mutation 4 ({A)x) of A(2) is characterized by the product’

{(3.6) ab = (1 —d—oa+3lata-b - (A +a—2x)b-a.

Hence A((A)x) can be considered as a £2-mutation A4(Q) with 2=1—1—a-+240.
I 254 3,4 ean De recovered by A(1) by means of an «-mutation with
o= A(2A—1) {&s£ 0,3, 1). If A=1 we cannot recover A since all mutations
of a commutative algebra leave the algebra unchanged.

Similarly the (o, f)-mutations A((1, p)a, #) of A(4, u) is characterized by the
product

(3.7) (@, b) = (@ -+ fu)a-b + (o -+ )b

Hence A((Z, u)e, #) can be condidered as an (2, w)-mutation A(2, w) of 4
with 2 = «d+pu and w = eu-+F24. If 155 4+ u then 4 can be recovered from
A(4, 1) by means of an (&, §)-mutation where ¢ = A/{A2—u®) and f = pf(p*—A3).
If A==d-p we cannot recover 4 sinee the (2, g)}-mutation of both a commu-
tative and an anticommutative algebra leaves the algebraic structure unchanged.

Hence the algebras L, J, A(A) and A(1, u} can be all introduced as muta-
tions of an associative algebra A. Conversely A can be recovered by means
of mutations of A(A) (for As=4) and A(A, u) (for A== 4-u) but not by means
of mutations of I and J. Similarly L and J can be constructed by means of
mutations of 4, 4(4) and A(4, x}, but the mutations of L and J do not produce
new algebraic stinctures (see Fig. 1).

In order to derive the condition for Lie admissibility for any algebra U
we note that U~ is anticommutative by construetion. Thus U is Lie-admissible
i and only if U~ satisfies the Jacobi identity, that is the following relation
holds:

(3.8) [, b, ] 4 [b, ¢, a] + ¢, &, V] =[¢, b, a] +[b, @, ¢] +[a, ¢, D]

for any a, b, ee U, where [a, b, ¢] = (ab)c—a(be) is the associator (7).

(*) Bee footnofe (*} on p. 1226.
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Associative algebras A
Product: a-b

N\, Special Jordan algebras J
Product: ({a-b+b-a)
Lie algebras L
Product: a-b—b-a Blutation algebras A(1}
Produet: ie-b+(I1—2i}b-a

Mutation algebras A4, p)
Product: Zie-b4 ub-a

Fig. 1. — The «hexahedron» of algebras constituted by the associative algebras and
their mutations: Lie algebras, special Jordan algebras, 4(4) algebras and A(2, x) algebras.
These algebras are characterized by the common properties of flexibility, Lie-admis-
gibility and Jordan-admissibility. The arrows befween two algebras denote the pos-
gibility of constructing ome algebra by means of a .mutafion of the other.

If U7 is flexible, then () [o, b, €] = —1I¢, b, a] and condition {3.8) reduces to
the expression

(3.9) [@, b, ¢] -+ [b, 0, &] -+ [¢, @, D] = 0.

If U is anticommutative (any anticommutative algebra is flexible) con-
dition (3.9) reduces to the Jacobi identity itself

(3.99 (@d)e + (be)a + (ea)b = 0,

and we have proved the following (%)

Lemma 1. Any anticommutative Lie-admissible algebra is a Lie algebra.

Finally if U is commutative (any ecommutative algebra is flexible) condi-
fion (3.9) is trivially satisfied since (ab)e-(be)a--{ca)d = a{be)+b{ea)-+e(ab).

In terms of right and left multiplications R, and L, (") relation (3.8) can
be written

(3'10) Rabmba - Labmba == (Ra - er) (-Rb - Lb) - (Rb - Lb) (Ra - Ln) -
If we require that U be flexible, then R, — Dy, = RoFy— Loly, and B, L, —

("} See footnote (*) on p. 1232.

(**) The multiplication algebra M (U) of any algebra U is the enveloping associative
algebra of R(T)U L{U) where B(U) and L(U) arve the sets of right and left multiplica-
tions B,: s—we=all,, L, z->aw=DL,», the mapping a—R, and e—I, being
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— L. Ry = L,R,— R,L, by which, using (3.10) we get

{ Rb-—ba = -Ra(Rb - Lb) - (Rb - Lb) R, H
(3.11)

Lab—ba = (Lb_Rb)Lu-“La(Lb‘_Rb) .

Convergely relations (3.11) imply flexibility, that is R.L. = L. R, ().
Theorem 1 (ALBERT (1)). An algebra U is a flexible Lie-admissible algebra.
if one of conditions (3.11) holds for every element a, b, € U.
‘We note that conditions (3.11) can be respectively written

{[CL, b; G]——[ft,, ¢, b]':—[c’ t, b] =0,
(3.12)

[a; b, c]—[a, ¢, ] —[b, @, c] = 0.

Hence they are equivalent to (3.9) in wvirtue of the flexibility property
[a. b, ¢]=—[¢, b, a] _

Let us also note that an imbedding of Lie algebras I into (nonassociative)
Lie-admissible algebras U has been recently proposed according to (%)

__ Imbedding

(3.13) _L Igomorpism U

v,

that is by requiring that U~ is isemorphic to I by construction. Clearly U
cannot he a commutative algebra since in this case the attached algebra U™ is
a zero algebra. If U is an anticommutative algebra then it is a Lie algebra
by Lemma 1. Thus the nontrivial (nonasseciative) Lie-admissible extensions U/
must be neither commutative nor anticommutative. Indeed it has been shown (5)
that the only simple power associative and trace admissible extensions U of
degree n>>2 are the algebras of quasi-associative type. Consequently the
A(2, ) algebras, in addition to their Lie-admissibility content and possibility
of direct transformation into a Lie algebra are some of the most interesting
examples of extension U for the imbedding (3.13).

linear mappings and &, and L, being linear transformations of the vector space U
for all ae U. TFor example the relations a(ab)= (2a)b==a{cd) and a(d--c¢)=ab+ ac
correspond to offy=1R,, and Ry, ,= E,+ K, If U is an associative algebra 4 then the
identity (ab)e=a(be) implies that ali,B, =« aky,, L.lye=Lye, Byo=EyR. Lg==L,L,.
Consequently the mappings ¢--R, and eI, are homomorphisms of 4 inte I(4).
These homomorphisms become isomorphisms if 4 possesses the unit element since in
this case K,= R, implies a=25. If the algebra is commutative than E,=T, and one
mapping only can be uged. Leb us note that the Jacobi identity (2.2) can be written
Ly + BBy LR, =0, the Jordan identity (2.4) becomes L, B,=R,l,,. and the flexi-
bility law can be expressed by the commutativity law L, R,= R,T,.
(*) Sec the foobnote (**) on the preceding page.
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4, — Jordan-admissible algebras.

Corresponding to any algebra U with product ab it is possible te define,
as for U, a commuiative algebra U¥ which is the same vector space as U but
with the new product

(4.1) F{a, D}ps = 3 (ab + bay.

Clearly Lie algebras L have a trivial content of the attached algebras IT on
account of the anticommutativity of their product., On the contrary non-
trivial Lie-admissible algebras have a well-defined content of UT because, as
we have seen, they are neither commutative nor anticommutative. Conse-
quently for the characterization of the nontrivial Lie-admissible algebras T
the determination of both U~ and U™ is essential.

In this connection the most interesting case ocenrs when U is a (com-
mutative) Jordan algebra. An algebra U is said to be Jordan admissible if U
is a (commutative} Jordan algebra. An algebra U is said to e J-simple
(J=semi-simple) if U* is a simple (semi-simple) Jordan algebra.

All algebras of Fig. 1 are Jordan admissible. Indeed:

1) If U is an associative algebra A, then the product (4.1) reduces to (2.8)
and At is o special Jordan algebra. Thus associative algebras constitute a
basic class of Jordan-admissible algebras.

2) XX U is a Lie algebra L, then L7 is a zero algebra since
(4.2) ${a, b} = ${ab +ba) = 0.

More generally any anticommutative algebra is trivially Jordan admissible.

3) If U is a special Jordan algebra J, then J* is still a special Jordan
algebra isomorphic to the isotopic algebra A*+ with product

(4.3) Ha, by = ${o, D}y == §(a*b + D a) =a-D+ Da.
&) If U is a mutation algebra A(2), then [A(A)]F coincides with 4+, since
(4.4) 3ty Ve = {0, 0} o = (@b - b-a).

5) It U is a mutation algebra A(X, n), then [A(2, p}]T is isomorphic to
the isotopic algebra 4** with product

A

2

.5)  3{a, Dpapr = 3o, D= 3(@*b +b*a) =" X (a-b 1 ba) .
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In connection with the Jordan admissibility conditions we note that U'T is
commutative by construction. Hence U is Jordan admissible if and only
if UF satisfies the Jordan identity, that is the following reiation holds

(4.6) {a2b)a -+ a(ba®) + (ba)a + a{a*dh) = a*(ba) + (ab)a® + a®(ab) I (ba)a®.

Tf we require that U is flexible, then aa® = a®a, (a*b)a — a®(ba) = a(ba®) — (ab) a?,
a{a2bh) — {ae®) b = (ba?)a — b{a*a), and a*(ab) — (a*a)d = (ba)a* — blaag?), by which
relation (4.6) becomes

(4.7) (@*b)a + ale?h) = a*(ba) + a*(ad) .

If we require that U is commutative, then the above relation reduces to one
of the following equivalent forms:

{ (@*b)a = a2(ba), alab) = axab),
(4.8)

alba®) = (ab)at, (ba)a:= (ba®)a,

by which we have proved the following:

Lemma 1. Any commutative Jordan admissible algebra is a (commuiative)
Jordan algebra.

Finally it U is anticommutative then all the above relations are trivially
satisfied since the square value of any element is zero.

In terms of right and left multipHeations (7) (4.6) becomes

(4‘9) (Ra + La){Ran '+' Laa) = (RRG _ll_ Laa)(Ra + -La) .
Similarly (4.7} can be written
(4'10) -RaLaa_Lna-Ra == LaaLa_LaLuu

while conditions (4.8) correspond to the commutativity of B, and L, with R,
and L, ‘

LaeRe= RuLuey, Luakoa= LDy,
(4,10

-RaaLa = I’a Raa ’ RaaRa == -Ra-er -

Let us recall that for flexible algebras all relations {4.8) are equivalent (1),
Consequently the condition for Jordan admissibility of flexible algebras is

(*) See footnofe (**) on p. 1237.
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that one of conditions (4.8) holds. In this case the algebra is in addition power
associative (") if some restrictions on the characteristic of the fleld are in-
troduced, since flexibility implies that ¢*e = aa® and one of the conditions (4.8)
implies that a®a? = (¢*a)a. Indeed:

Theorem 1 (ArBurr (1)): A flexible algebra U over a field of character-
istic 5= 2, 8, 5 is Jordan admissible and power associative if one of conditions {4.8)
holds for every a, be U.

More particularly let us recall that any flexible Jordan-admissible algebra
is by definition & noncommutative Jordan algebra ().

5. — Some properfies of the Lie-admissible algebras.

One of the most interesting features of the Lie-admissible algebras is that
some of the methodological procedures nsed in the theory of Lie algebras can
be extended to the Lie-admissible algebras if a supplementary condition is
introduced, for instance flexibility or trace admissibjlity or L—semi-simplicity
is requested. Iew investigations have been done in this connection.

Let us consider a nontrivial Lie-admissible algebra U, with elements X,

Xgy . and product X X, over a field F. We note that X X, can be
written
(8.1) X X=X, Lo+ % { Xy Xoje-

Consequently U can be given by
{5.2) U=U0w@U",

where the operation @ means that an element Z=X X 5 of U can be
obtained as a sum of a product of X, and X, in U*- and U*, while U~
is the isotopic algebra with the product [X,, Xl == X’;’ X —X:X 0 =
= G (X X X X ).

Let us discuss first the U~ content by suppesing that U is L—semi-simple.
Furthermore let the commutation rules of U™ be given by
{5.3) [Xy Xolo- = O;;X,,
where the structure constants G;f, satisty the Cartan condition Det|g.|=
== Det iO;’,f :,ﬁl 7 0. Corresponding to two elements 4 =X, and X' = foX
where o, f2c F, the eigenvalue problem for getting the standard form of the

(*) See footnote (***) on p. 1233.
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generators holds

(5.4) [4, X), = oX, ocF.

Consequently all the essential results on semi-gimple Lie algebras oceur as in
the usual way. For instance the number of independent elements H,, H, ..., H,
which commute with each other is equal to the multiplicity of the null root,
t.6. the rank, and the standard form of the commutation rules of U can be
introdunced

[Hiy H]p-=0, [Ba Bgly- = C57PE, glatp#0),
[Hi, B, 1y~ = octEﬂ s By B f-= o Hi.

If U is an associative algebra, the form of the above procedure coincides
with the usual one. However the same results occur also, but in a more general
torm, if U is nonassociative, provided that U is L—semi-simple,

If we assume that the Lie-admissible algebra U (nob necessarily I-semi-simple)
i a mutation algebra A(4, p), and we denote with 0, the structure constants
of the Lie algebra A~ isomorphic to U™, then the connection between G;};
and 07, is characterized by the relation

(5.6) Cr = (A—p@) C, .

This means that if we construct a Lie algebra by means of a Lie-admissible
algebra A(4, u} instead of A the free parameters A and g appear directly in
the sfirncture constants. Furthermore if the following supplementary condi-
tion is introduced (%)

{5.7) Ptur=2,
relation (5.6) can be written

(5.8) Cp =2 cosa (.

Thus for the «angle» « =0 the Lie-admissible algebra A(A, u) reduces to the
Lie algebra A7, and for « = }x 4(4, u) reduces to the trivially Lie-admissible
algebra A+,

Let us consider the case now when the Lie-admissible algebra U is flexible
and power associative. If B is a subspace of U, we denote with U the com-
mutator space of U, 4.e. the set of elements X e U such that [X ot XH=0
for any X2e¢ B, Furthermore let (X o) be the set of all the scalar mmltiples
of X,, and the characteristic be always equal to zero.
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Lemma 1 (WEINER (¢9). If U is a flexible, power associative and Lie-
admissible algebra, then U(F)C UXD for any X €U

Proof. By definition of U’[X,, X,]=0 for any X,eU. Then by the Lie-
admissibility condition (3.9) we can write [, X = (X X)X A+ (X, X)X,
— X (X X)) — X (X, X,). Furthermore [X, X2 =0 from the flexibility con-
dition. Thus X, e Uy,

Theorem 1 (WEINER (*4)). If T is a flexible power associative and Lie-
admissible algebra and B is a subspace of U, then B is a subalgebra of U if B~
is a subalgebra of U~ and X}eB for every X €B.

Proof. Since B~ is a subalgebra of U~, [X,, X,Je B for any X, X €B.
Moreover {X, X,}eB for any X, X, eB since (X, X} = (&, + X, —
—X:— X} and X}, XjeB. Thus X X, = }[X,, X ]+} {X,, X}eBand B is
2 subalgebra of U.

We note also that ¢ = U? is a subalgebra of U for any subspace B of U.
Indeed ¢~ = (U%)~ is a subalgebra of U~ since for any X, X, e U and X,¢ (25
by the Jacobi identity we have [[X,, X ], Xs] =[x, [X,, X1]+[X, [Xs X,
and by the property [X,, X,]=[Xs X,J=10 we have [[X, X ], X;]= 0.
Furthermore if X,e ¢ by Lemma 1 Xje . Hence Theorem 1 applies to C.

We consider now the case when the Lie-admissible algebra U is only flex-
ible and not necessarily power associative, always of characteristic zero.

Lemma 2. The set of transformations D x, = R XQH—LXQ of a flexible Lie-
admissible algebra U for any X e U is a derivation algebra of U.

Proof. Relations (3.11) can be written for any X,, X,e U
Rix,, x4 = [Bx, Ry,~1Lg,] and Iix, x)=[Lx, Bx,—Lxl,
by which

(5.9) Bx,pz,=[Bx, Dxy  LIxox,=[lx, Dx,].

The above relations constitute an equivalent for for deﬁnmg the cleuv%mn
property (X, X,)D = (X, D)X, o T X (X D).

Let us deﬁne an element X, of U to belong to the chamctenstsc 100‘5 o
of the derivation Dx for X € U if

(5.10) X (Dx,—ol)® =0

for some integer p.

(64) T.. M. WeiNpr: Reviste Mat. Fis, Teor. Tucuman, 11, 10 (1957). -
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Lemma 3 (LAUPER-TOMBER (%9)). The elements X, X, and X X of a flex-
ible Lie-admissible algebra U over an algebraically closed field F helong to
the root -8, where c+f is a root of D X, or zero, if for X, X, X el and
e, e P, & and f§ are roots of Dx, and X, X belong respectively to « and 5.

Proof. By the property of the derivations we can write
XX (Dx, — (x4 B)1) = XDy, —el) X, + X (X Dy —p1)).

Consequently the proof by induction used for Lie algebras can be used also
for Lie-admissible algebras. '

Theorem 2 (LAUFER-TOMBER (%)), A flexible L—semi-simple algebra U over
an algebraically closed field F is a direct sum of simple flexible Lie-admissible
algebras.

Proof. Since U™ is semi-simple it can be decomposed in terms of simple Lie
algebras L, (y=1,2,..., ») according to the direct sum U~ = Z@Lﬂ,. Cozr-

respondingly there is the decomposition of U according to the vyector space
direct sum of subspaces U == U, ... +T, such that U, and L, are the same
additive groups.

Let ms fisst prove that U, is a subalgebra of U for any y=1,.., %
We write the product &, X, for X, X el according to X, X, =3 X,

3
where X e U,. If X, 0 there is an element XéeLﬁ such that [X,, X]s 0
since Ly is simple. Then in account of the semi-simplicity of U™ we can write

(X, X,) Dx, = (;Ix)l?x;; = (X, Dx}) X, + X, (X, Dy;) = X, Dy, .

Furthermore for sty (X?,Xw)px}a = 0. Hence for any gy we have
XpDxy=[Xp, Xg]=0 by which X, = 0, X, X, €T, and U, is a subalgebra
of U,

Let us now show that each U, is simple and that U is a direct sum of
the U,. We consider the elements X,el, and XU, with e 8 and we
suppose that X, belongs to a root of a Cartan subalgebra, 2#,cU, of L.
Then by definition of root there is an element H, and a nonnull scalar ge F
sach that [H,, X=X Dy = oX_ . We write X Xg= > X, Then by ap-
plying Dy, we have ¥

(‘AY“Xﬂ).DHa = ('Xa‘Dqu)'Xﬂ + Xa(xﬁpﬂa) = ch('Xﬂ = [‘Xa’ Hor] € Ua -

(%) P. J. LADFER and M. L. Tomeer: Canad. Jour. Math., 14, 287 (1962},
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Similarly
(X, X5 =[X,, X_1¥,=HX,eU,,

where X, belong to the corresponding roots o and X;e U;. Consequently
each U_ig an ideal of U and is simple. Then U is the direct sum U= U, ®

PU.E.eU0,.

Eguivalent results were obtained in paper (*) with the supplementary
request of power associativity.

In counection with the U™ content of U let us assume that U is power
associative over a field F of characteristic =2, 3, 5. The linearization of the
of the identities aa? == ate and a*¢® = {&*a)a in U gives rise to the respective
relations

(B11) (X, X,+ XXX, + (XX, + X, X)X, + (X, X, + X, X)X, —
= X (X, Xy + XpX,) o+ X (XX, + X, Xp) + Ty X, X, + X T,

612) 3 Porm (XX, + X, X)X, T + X,X,) =
=3 Pom [2 Perm| (X, X+ X, X,) X, %5,

corresponding to any X, Xz X, X;€ U. The above relations can be written
(5.13) By, xprxpx,— Ixaxptxpx, =
= (Bx, + Lx, ) Bxy— Lxg) + (Bxp— Ly (Bx, -~ Lx,)
(8.14)  Lix,xg+xpxax, t Laxpx,+x,Xpx0 + x, Xt X, X 0%, =
= (Rx, + dx,) Bxpx 5,55 + Ixpx, rx,x, — Bxplix, — fix, Bixg)
+ (B, + Ly W Bx,x, 43,5, + x5, x, X, — Bx, Bx, — Bx, Foxc) —
— (Bx, I xpixpx, + Bxglx x4 xpx, + Bx, Dxpx, ex,5x,) -
By putting X, = X; in {5.13) and X, = Xy= X in (5.14) we have
(5.13) By x, + Lx,x, = (Bx, + Lx J(Bx,— Lx,) s
(5.16) Dix,xox, = (By, 4+ Ly W By x, + Lx,x, — By, Lx,) — Lx, x Bx, -
Finally, by considering the case of an idempotent X = ¢ we have

(5.17) (R.— LR, + L,—1) =10,
(5.18) (B 4+ L) — (B, + L) B, — L{B, + 1) = 0.
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We note that the above relations are not able to establish characteristic
equations for B, and L.. Consequently the characteristic values of B, and L,
remain arbitrary in any nontrivial Tie-admissible algebra. However if we
consider U* which is commutative by definition, then R, = I, corresponding
to the idempotent ¢ U™ and by (5.18) we ean write E(2R, —1)(R, —1) = 0,
by which we see that the characteristic roots of R, are 0, Z and 1.

Under the above assumptions the U content of U can be decomposed. by
means of the Pierce decomposition {*¥) with respect to the idempotent ¢ ac-
cording to

(6.19) U™ = Ui(e) @ Ufe) @ Ui(e),
where Uj(e) (4 =0, %, 1) are invariant subspaces with respect to R, defined by
{5.20) Ute) = (XQ{XQe = e}, X, el i=0,4%,1,

where now X o 18 the product in U™, and Uf(e), U(e) are zero or orthogonal
subalgebras of Ut satisfying the inclusion relations
7’

(5.21) U(e) Ui(e) =0,

(5.22) Uile) Us(e) = Ulle),

(5.23) Us(e) Uk(e) = Ulle),

(5.24) Usle) Uf(e) ¢ US(e) + Uie),
(5.25) Uie) Ui (e) c Ufle) + Uf(e),
(5.26) Uf(e) Uf(e) ¢ Ufte) + Ui (e).

We now consider the case when the attached algebra U¥ of U is a (com-
mutative) Jordan algebra. Then instead of (5.24) and (5.25) we have

(5.27) Us(e) Uke)c Ui (e,
{(5.28) Ufe)Ufe) c Uife).

Furthermore if the following closure relation holds for U+
(5.29) (X, X3=DLx_,
then by (5.1), {5.3) and (5.29) we can write

(5.30) X, X, =R, X, =}(0p +DHX,.
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where R, ave the «structure constants» of U. Let us note for instance that
the closure relations {5.30) occur corresponding to the fundamental represen-
tations of the U, Lie algebras, which are closed under both commutators
and anticommutators, when s Lie-admissible mutation algebra is assumed
for extension U.

Finally if U] is a reduced (comxmutative) Jordan algebra of degree n we
have the decomposition of UF with respect to the set of idempotents
(e) (=1, ..., n) with e=> ¢

1

(5.31) Ul =2°%U0i@ 2@ Uy,

where the subspaces Uf and U} are defined by
(5.32) Uf= (XX, 6= X,), Uh=(X)X,0,=X,0,=%T,)

and ave related to UJf(e) by the relations

(5.33) Uh=Ule), Z@ Uh="Ufe), 2°Ufh="Uj(s).
<

i;e:' ER¥2

For specific investigations when the U' content of T is a (commutative) Jordan
algebra we refer to papers (2649),

Since idempotents in U™ are idempotents in U, decomposition (5.19} ean
be directly extended to the Lie-admissible algebra U according to

(5.34) U = U} @ Uylo) @ Talo),
where the subspaces Uie) are defined by
(5.35) Uile) = (X | X e + X, = 210},

with X,e¢ now defining the produet of U.

We note that the Pierce decomposition can be introduced for a nontrivial
Lie-admissible algebra but not for a Lie algebra since in this ease the same
concept of idempotent is meaningless.

TFinally let us briefly discuss the case when the Lie-admissible algebra U
is a noncommﬁt&tii"e Jordan algebra. As we have seen the latter represent
the only 130‘-‘.%17016 simple power associative and trace admissible extensions U,
hence they comtltute a case. of central interest. We note that the Pierce
decomposition (5 ‘34)_ ca_n _be e;tei_lded to the set of idempotent (g} (4 =1, ..., %)
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with ¢ = ¢ according to (")
i

(5.36) U=320,:0 _2@ Ui,

‘ s
where
5.37) = (X, eX, + &, =0},
(5.38) (X e, X, + X6 =eX, + X, EXQ) = Uy,
(5.39) Uy=(X,|e,X,+ X, e,=eX, +X,¢ =2X),
(5.40) (Xg|eiXe+)IQc,.:e,.Xg+Xee§m}fe) = U,

for any i js%¢0 while the inclusion properties becomes

{5.41) Ul c Uy,

(5.42) UuUs;+ Uy Unc Uy, |
(5.43) Uy U+ Un U Ui,
(5.44) UUs; € U+ U+ Uy,

with all other products zero and Uy == U == 0 if ¢ is the identity 1.

For supplementary specific papers on noncommutative Jordan algebras
see vef (7.50-62),

As a concluding remark let us guote without proof the following:

Theorem 3 (LAUFER-TOMBER (%)), A flexible power-associative L-simple
algebra U over an algebraically closed field of characteristic zero is a simple
Lie algebra isomorphic to U,

{(*} Let us consider as an example the imbedding (3.13) of the ST, Lie algebra of
the Gell-Mann 1,-matrices (fundamental representations of SU,) into the ANA, u)
Lie-admissible algebra of degree 3, dimension 9 and elements ¢ = (ay) (4,j=1, 2, 3).
Then the [43(4, )1+ content can be decomposed with respect to the idempotents e;
(§=1,2, 3) according to [}, ) (¢)) = (a|ae;=de;; i=10,%, 13 j=1,2,3) where for
instance corresponding to ¢ fthe elements e are cxplicitly given by for i=0:

00 0 0 a5 g, 00
a=| Qagay |; forie=4: a=1{ a6y 0 0 |;fori=1:a={ 0 00|, and similarly for
0 ay, a5y a; 0 0 ¢ 00

¢ and e, in such a way that decompositions (5.31) and (5.36) hold respectively for
[A3(4, @)+ and A, p).
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Although the above theorem opens some preblems concerning fhe defini-
tion of the radical (#4), conceivably it would be interesting for the imbed-
ding (3.13) of a simple Lie algebra L into a simple extension A(4, u). Indeed
in this case, while the algebraic structure is preserved, the mathematical tool
presents two free scalars of possible interest for divect physical applications.

oW W
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