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An inspection of the contemporary physics literature reveals that, while matter is treated
at all levels of study, from Newtonian mechanics to quantum field theory, antimatter is
solely treated at the level of second quantization. For the purpose of initiating the restora-
tion of full equivalence in the treatment of matter and antimatter in due time, and as
the classical foundations of an axiomatically consistent inclusion of gravitation in unified
gauge theories recently appeared elsewhere, in this paper we present a classical represen-
tation of antimatter which begins at the primitive Newtonian level with corresponding
formulations at all subsequent levels. By recalling thai charge conjugation of particles
into antiparticles is antiautomorphic, the proposed theory of antimatter is based on a
new map, called isoduality, which is also antiautomorphic (and more generally, anti-
isomorphic), yet it is applicable beginning at the classical level and then persists at the
quantum level where it becomes equivalent to charge conjugation. We therefore present,
apparently for the first time, the classical tsodual theory of antimatier, we identify the
physical foundations of the theory as being the novel isodual Galilean, speciel and general
relativities, and we show the compatibility of the theory with all available classical
experimental data on antimatter. We identify the classical foundations of the prediction
of antigravity for antimatter in the field of matter {or vice-versa) without any claim on
its validity, and defer its resolution to specifically identified experiments. We identify
the novel, classical, isodual electromagnelic woves which are predicted to be emitted by
antimatter, the so-called space-time machine based on a novel non-Newtonian geometric
propulsion, and other implications of the theory. We also introduce, apparently for the
first time, the isodual space and fime inversions and show that they are nontrivially
different than the conventional ones, thes offering a possibility for the future resolution
whether far away galaxies and quasars are made up of matter or of antimatter. The
paper ends with the indication that the studies are at their first infancy, and indicates
some of the open problems. To aveid a prohibitive length, the paper is restricted to the
classical treatment, while studies on operator profiles are treated elsewhere.

1. Introduction

After being conjectured by A. Schuster in 1898, antimatter was predicted by
P. A. M. Dirac! in the late 1920’s in the negative-energy solutions of his celebrated
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equation. Dirac himself soon discovered that particles with negative-energy do not
behave in a physical way and, for this reason, he submitted his celebrated “hole
theory,” which subsequently restricted the study of antimatter to the sole level of
second quantization (for historical aspects on antimatter see, e.g. Ref. 2).

The above occurrence created an imbalance in the physics of this century
because matter is described at all levels of study, from Newtonian mechanics to
quantum field theory, while antimatter is solely treated at the Jevel of second quan-
tization.

To initiate the study for the future removal of this imbalance.in due time, in
this paper we present a theory of antimatter which has been conceived to begin at
the purely classical Newtonian level, and then to admit corresponding images at all
subsequent levels of study.

Our guiding principle is to identify a map which possesses the main mathe-
matical structure of charge conjugation, yet it is applicable at all levels, and not
solely at the operator level.

The main characteristic of charge conjugation is that of being antieutomeor-
phic (where the term “automorphic” is referred to the map of a given space onto
itself). After studying a number of possibilities, we have selected a map which
is anti-isomorphic (where the term “isomorphic” is referred to a map from one
space onto another of equivalent topological characteristics to be identified later
on) applicable at all levels of study, and given by the following isodual map here

generically expressed to an arbitrary quantity Q (i.e. a function, or a matrix or an
operator)

Q($,¢: .. ) — Qd(xd: ¢d: . ) = _QT(_$T1 _¢T1 . ')J (11)

which, for consistency, must be applied to the totality of the mathematical structure
of the conventional theory of matter, including numbers, fields, spaces, geometries,
algebras, etc. This results in a new mathematics, called isodual mathematics, which
is at the foundation of the classical isodual theory of antimatter of this paper.

Since the isodual mathematics is virtually unknown, we shall review and expand
it in Sec. 2. In Sec. 3 we shall then present, apparently for the first time, the classical
wsodual Galilean, special and general relativities and show that their representation
of antimatter is indeed compatible with the totality of available classical experimen-
tal data, those of electromagnetic nature.

In the Appendix we outline for completeness the classical isodual Lagrangian
and Hamiltonian mechanics and the rudiments of the novel isodual quantization
into the isodual quantum mechanics studied in details elsewhere jointly with the
proof of the equivalence between isoduality and charge conjugation.

A basic objective of the paper is to provide classical foundations for the axiomat-
ically consistent inclusion of gravitation in unified gauge theories of electroweak
interactions recently presented elsewhere. In fact, the latter evidently require, as
a pre-requisite, the achievement of a classical geometric unification of electromag-
netism and gravitation for both matter and antimatter.
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The rather limited existing literature in isoduality is the following. The iso-
dual map (1.1) was first proposed by Santilli in Ref. 3 of 1985 and then remained
ignored for several years. More recently, the isodual numbers characterized by map
(1.1) have been studied in Ref. 4. The first hypothesis on the isodual theory of
antimatter appeared for the operator version in Ref. 5 of 1993 which also contains
an initial study of the equivalence between isoduality and charge conjugation. The
fundamental notion of this stud , the isodual Poincaré symmetry (also called the
Poincaré-Santilli isodual symmetry), from which the entirety of the (reIa.tivistic)
analysis can be uniquely derived, was submitted in Ref. 6(a) of 1993 also at the
operator level. MemoirS(™ presents a recent systematic study of the underlying
geometry.

The isodual differential calculus, which is fundamental for the correct formula-
tion of dynamical equations all the way to those in curved spaces, was identified
only recently in Ref. 8. A review of the operator profile up to 1995 is available in
monograph.®

The prediction of the isodual theory that antimatter in the field of matter expe-
riences antigravity was first submitted in Ref. 7(a) of 1994 which also proposed an
experiment for the measure of the gravity of elementary antiparticles in the gravi-
tational field of earth. The experiment essentially consists of comparative measure-
ments under the gravity of collimated, low energy beams of positrons and electrons
in horizontal flight on a tube with sufficiently high vacuum as well as protection
from stray and patch fields and of sufficient length to permit a definite result, e.g.
the view by the naked eye of the displacements due to gravity of the positron and
electron beams on a scintillator at the end of the flight.

This paper is the classical counterpart of: Ref. 10(a) in which we study the
operator profile with particular reference to the equivalence between isoduality and
charge conjugation and the prediction of antigravity at the operator level; Ref, 10(b)
in which we present the apparently first axiomatically consistent inclusion of gravity
in unified gauge theories of electroweak interactions; and memoir,! which studies
antimatter in interior conditions (such as the interior of an antimatter star).

An important independent contribution in the field has been made by the exper-
imentalist A. P. Mills Jr.,)2 who has confirmed the apparent feasibility with current
technology of the test of the gravity of antiparticles proposed in Ref. 7(a) via the
use of electrons and positrons with energy of the order of milli-eV in horizontal
flight in a vacuum tube of approximately 100 m length with a diameter and design
suitable to reduce stray fields and patch effects at its center down to acceptable
levels,

Additional contributions have been made by: J. V. Kadeisvili on the isodual
functional analysis and isodual Lie theory;'® Lohmus, Paal, Sorgsepp;'*(® Sourlas,
Tsagas;14®) and others,

Theoretical and experimental studies on the isodual theory of antimatter were
conducted at the International Workshop on Antimatter Gravity and Anti-Hydrogen
Atom Spectroscopy, held in Sepino, Italy, in May 1996 (see Ref. 15).
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terize antiparticles via negative energy states,
Additiona) motivations have been identified in Refs, 9-11. The need for a

Systematic study alming at a resolution of these issues is then beyond scientific
doubts.

compatible with all known classical experimental data on antiparticles, those under
electromagnetic interactions, smce no conclusive experiment under gravitational
interactions is available at this writing for antimatter,

Moreover, the theory proposed in this paper confirms at the classical level the
prediction of Refs. 7(a) and 10(a) that antimatter in the field of matter {or vice-
verse) ezperiences antigravity (defined as the reversal of the sign of the curvature
tensor) in a way which by passes conventional objections. 22 Iy, reality, as we shall
see, the classical isodual theory of antimatter provides the strongest available theg-
retical evidence for antigravity.

The theory proposed in this paper confirms at the classical level the predic-
tion of Ref. 10(a) according to which antimaiter emits new electromagnetic waves,
here called “isodual waves,” which coincide with the conventional waves emitied
by matter under aJl interactions, except gravitation, and can be distinguished from

Iatter or of antimatter,

We also point out the prediction of the so-called space-time machine, which
is a mathematical model of a new form of non-Newtonian geometric propulsion
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in space and time as one way of illustrating the far reaching implications of the
possible experimental detection of antigravity,

We finally indicate that the isodual theory of antimatter is deeply connected
%o a variety of pre-existing research. First, isodual particles emerge as possessing
a negative time precisely along the historical conception by Stueckelberg for anti-
particle. Moreover, the equivalence of treatment between particles and antiparticles
at all levels of study can be first seen in the Stueckelberg-Feynman path integral
theory.

The isodual theory emerged from the identification of negative units in the
the antiparticle component of the conventional Dirac equation and the reconstruc-
tion of the theory with respect to that unit. Isoduality therefore provides a mere
reinterpretation of Dirac’s original notion of antiparticle, while leaving all numerijcal
predictions under electroweak interactions essentially unchanged.

We then show that the isodual theory of antiparticles is deeply linked to Majo-
rana’s spinors,®(®) particularly in their recent formulation by Ahluwalia,26(d) The
link is so deep that the norm of Ahluwalia’s spinors for antiparticles coincides with
that of isodual particles. Therefore, isoduality provides a mere reinterpretation of
these results, which nevertheless implies the extension of their applicability, from
the current sole level of second quantization, to first quantization, as well as to the
classical level (when applicable).

The isodual discrete symmetries also turn out to be deeply linked to pre-
existing studies. As an example, the parity of antiparticles originally introduced
by Bargmann, Wightman and Wigner,2”®) when expressed in the recent formula-
tion by Ahluwalia, Johnson and Goldman,?”(®) turns out to be equivalent to isodual
space inversions.

Despite these similarities on physical grounds {(which are evidently expected
since all theories study the same physical problem), the reader should be aware
that the isodual theory of antimatter presented in this paper is 'mathematicaily
inequivalent to pre-existing studies, as established by the fact that the latter are
formulated on conventional spaces and fields, while the former is formulated on new
spaces and fields.

In particular, the main novelty of this paper rests on the fundamenta) notion
of all quantitative inquiries, the basic unit, which is assumed to be positive in pre-
existing studies and to be negative in the isodual theory, as we shall see.

The paper ends with the indication of rather intriguing open problems,

2. Rudiments of Isodual Mathematics
2.1. Isodual units, numbers, and fields

Let F = F(a,+, %) be a conventional field of real numbers R(n, +, x), complex
numbers C(c, +, x) or quaternionic numbers (g, +, x) with the familiar additive
unit 0, multiplicative unit J , elements g = n, 64 85umag+az, e+0=0+g= a,
and multiplication G1Xaz=aas,axI=Ixg=ag, Ya, ay, as € F.
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The isodual fields, first introduced in Ref. 3 and then studied in details in Ref, 4,

are the image F'¢ == fd(qd +4, x9) of F(q, *+, x) characterized by the isodual map
of the unit

I-sIf=_p__g (2.1)
which implies: isodyql numbers
a,d:aTxId:hafo:—af, (2.2)
where T is the identity for real numbers nt = 7, complex conjugation ot — ¢ for
complex numbers ¢ and Hermitian conjugation gf for quaternions ¢'; isoduql sum
af +%af = —(al + o). (2.3)
and isodual multiplication
afxdag=af><1dxag=—a;rxa£; (2.4)
under which I is the correct left and right upit of Fd,
I¢ xdad:addedEad, VadeFd, (2.5)

in which case (only) /7 is caljed isodual unit,

We have in this way the dsodual real fielq Ré(nd, 4¢ %) with isodual req]
numbers

ndzwnTxIE—n, neR, n?epRd, (2.6)
the isodual complex: field Ccd, +4, x%) with isodual comples numbers
d _- . .
c=—c=—n1~—zxn2 =~—n1+z><n2
( ) ; )

n, 2 €R, ce(, e? € 04,

and the isodugl quaternionic field which is not used in this paper for brevity.

Under the above assumptions, F%(a?, 14, x4) yerifies all the axioms of g field
(loc. cit.), although F? and I are anti-isomorphic, as desired, This establishes that
the field of numbers can be equally defined ejther with respect to the traditional
unit +1 or with respect to its negative image ~1. The key point is the Preservation
of the axiomatice character of the latter via the isoduality of the multiplication. In
other words, the set of isodual numbers g4 with unit —1 and conventional product
does not constitute a field because 1% x gd £ 4d,

It is also evident that all operations of numbers implying multiplications must
be subjected for consistency to tsoduality. This implies the isodygl square root

a%3d — _ /T ad, qdid yd dld _ o, 143d _ i (2.8)
the isodual quotient
a®/dpd = —(ad/bd) = —(al /bty = ?, b X9 o a?; (2.9)

and so on.

e 2
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E A property of isodual fields of fundamental relevance for our characterization of
z antimatter is that they have negative-definite norm, called isodual norm4
f T laf] x 11 = ~{aa")1? < 9, (2.10)

where | - - - | denotes the conventional norm. For isodual real numbers n we therefore
have the isodual isonorm

[n* = —n| < 0, (2.11)

and for isodual complex numbers we have

el = —lel = —(&)'/2 = —(n2 + )12 (2.12)

Lemma 2.1. All quantities which are positive-definite when referred to fields
{such as mass, energy, angular momentum, density, temperature, time, ete.) became
negative-definite when referred to isodual fields,

As recalled in Sec. 1, antiparticles have been discovered in the negative-energy
solutions of Dirac’s equation’ and they were originally thought to evolve backward
in time (Stueckelberg, and others, see Ref. 2). The possibility of representing anti-
matter and antiparticles via isodual methods is therefore visible already from these
introductory notions.

The main novelty is that the conventional treatment of negative-definite energy
and time was (and still is} referred to the conventional contemporary unit +1, which
leads to a number of contradictions in the physical behavior of antiparticles whose
solution forced the transition to second quantization,

By comparison, the negative-definite physical quantities of isodual methods are

PRI T e T i TR e e e G s e TR e

: referred to a negative-definite unit I¢ < 0. As we shall see, this implies a math-
i ematical and physical equivalence between positive-definite quantities referred to
H positive-definite units, characterizing matter, and negative-definite guantities re-

ferred to negative-definite units, characterizing antimatter. These foundations then
permit a novel characterization of antimatter beginning at the Newtonian level, and
then persisting at all subsequent levels,

Definition 2.1. 4 quantity is called isoselfdual when it is nvariont under is0-
duality.

The sbove notion is particularly important for this paper because it introduces

a new invariance, the invariance under isoduality. During our study we shall en-

counter several isoselfdual quantities. At this introductory stage we indicate that
the imaginary number i is tsoselfdual,

=it Fe (g =y, (2.13)

This property permits to understand better the isoduality of complex numbers
which can be written explicitly*

cdz(n1+ixng)d=nf+idxdn§=—n1+z‘><n2=—é. (2.14)
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2.2. Isodual functional analysis

All conventional and special functions and transforms, as well ag functional anal-
ysis at large must be subjected to isoduality for consistent applications of isodual

theories, resulting in a simple, yet unique and significant isodual Junctional analysis,
whose study was initiated by Kadeisvilj, 13

We here mention the tsodual trigonometrie Sfunctions

sin? 49 = _ sin(—6), cos?§% = — cos(—#), (2.15)

with related basic property
cos?gd 4 gind2dgd _ 14 _ ~1, (2.16)

the ésodual hyperbolic Sfunctions

sinh? ¢ = sinh{—w) , cosh®w¥ = — cosh(—w), (217)

with related basic property
cosh?¢w? _ ginhd2dyd _ a _ \ (2.18)

the isodual logarithm

etc. Interested readers ean then easily construct the isodual image of special func-
tions, transforms, distributions, etc.

2.3. Isodual differential calculus

basic unit is the trivial number -+1, thus having null differentjal. However, the
dependence of the unit emerges rather forceful under its generalization.

The isodual differential caleulus, first introduced in Ref, 8, is characterized by
the isodual differentials

d%z* = 1% dz® = _grk d%y = ~dzy, (2.20)
with corresponding isoduql derivatives

0% /dck = 5 jagk 0/0%;, = —8/9, (2.21)

and other isodual properties.
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Note that conventional differentials are tsoselfdual, Le.,

(dz®)? = d¥zhd = gk | (2.22)
but derivatives are not in general isoselfdual,
(Of (2)/02%)% = 81 /2% = _pf /a5, (2.23)

Other properties can be easily derived and shall be hereon assumed.

2.4. Isodual Lie theory

Let L be an n-dimensional Lie algebra in its regular representation with uni-
versal enveloping associative algebra ¢ (L)L)~ = L, n-dimensional unit J =
diag(1,1,...,1), ordered set of Hermitian generators X = Xt = {X,}, conventiona)
associative product X; x X;, and familiar Lie’s Theorems over a field F(a,+, x).

The isodual Lie theory was first submitted in Ref. 3 and then studied in Ref. 9
as well as by other authors.}®!* The isodual universal associative algebra [¢(L)])4
is characterized by the isodual unit I, isodual generators X% = X and isodual
associative product

XExXd= —X; x X;, (2.24)
with corresponding infinite-dimensional basis (isodual version of the conventional

Poincaré-Birkhoff-Witt theorem?) characterizing the isodual erponentiation of a
generic quantity A

o' = 14 ATjANN 40l phpdod (2.25)
where e is the conventional exponentiation.
The attached isodual Lie algebra L = (€%}~ over the isodual field

Fé(a?,+4, x4) is characterized by the isodual commutators (loc. cit.)
X X = (X, X5) = O8F <2 x3, (2.26)
with a classical realization given in App. A.

Let G be the conventional, connected, n-dimensional Lie transformation group
on a metric {or pseudometric) space S {z, g, F) admitting L as the Lie algebra in the
neighborhood of the identity, with generators X and parameters w = {wr}. The
isodual Lie group G*3 admitting the isodual Lie algebra L? in the neighborhood
of the isodual identity I is the n-dimensional group with generators X9 = {—Xi}
and parameters w¥ = {—wx} over the isodual field F¢ with generic element

§dyd yd o d 5ed .
Ut(w?) = e T o e (wxx —U(—w). (2.27)

The isodual symmetries are then defined accordingly via the use of the isodual
groups G¢ and they are anti-isomorphic to the corresponding conventional symme-
tries, as desired. For additional details, one may consult Ref, 9.

In this paper we shall therefore use Conventional Lie symmetries, for the

characterization of matter; and Isodual Lie symmetries, for the characterization
of antimatter.
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2.5. Isodual Fuclidean geometry

Conventional (vector and) metric spaces are defined over conventional fields. It is
evident that the isoduality of fields requires, for consistency, a corresponding iso-
duality of (vector and) metric spaces. The need for the isodualities of all quantities
acting on a metric space (e.g. conventional and special functions and transforms,
differential calculus, etc.) becomes then evident.

Let § = S§(z,g,R) be a conventional N-dimensional metric space with local

coordinates z = {zf}, k = 1,2,...,N, nowhere degenerate, sufficiently smooth,
real-valued and symmetric metric g{z,...) and related invariant

7’ = zgiat (2.28)

over the reals R.

The dsodual spaces, first introduced Ref. 3, are the spaces S4(z9, g%, R?) with
isodual coordinates 2¢ = z x I = —z, isodual metric

¢ (z%,.. ) = —gt(-z,.. J=gl-z,..), (2.29)

and isodual interval
(- 9)®? = [(z - y)* x4 955 x4 (z — )1 x I¢
=[(z—y)" x gf x (z —y)" x [4, (2.30)

defined over the isodual field R? = RA(n¢, +¢, x9) with the same isodual isounit I9,
The basic space of our analysis is the three-dimensional isodual Euclidean space,

Ed(rd,éd,Rd): = {rkd} = {—r%} = {—2, —y, -z},
& = —§ = diag(—1, —-1,-1), (2.31)
1% = ~I = diag(—1, -1, ~1).

The isodual Buclidean geometry is then the geometry of the isodual space E¢
over R? and it is given by a step-hy-step isoduality of all the various aspects of the
conventional geometry.

We only mention for brevity the notion of isedual line on E4 gver R4 given
by the isodual image of the conventional notion of line on E over R. As such, its

coordinates are isodual numbers 2¢ =  x 1¢ with unit 14 — —1. By recalling that
the norm on RY is negative-definite, the isodual distance among two points on an
isodual line is also negative definite and it is given by D= p x 14 = —D, where

D is the conventional distance. Similar isodualities apply to all remaining notions,
including the notions of parallel and intersecting isodual lines, the Euclidean axioms,
etc. The following property is of evident proof:

Lemma 2.2. The isodual Buclidean geometry on E? gyer RY 5 anti-isomorphic
to the conventional geometry on E over R.
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The isodual sphere is the perfect sphere on EY over R and, as such, it has
negative radius,
Ri2d _ 2924 4 4924 4 2924 5 4 (2.32)
A similar characterization holds for other isodual shapes which characterize the
shape of antimatter in our isodual theory.

The group of isometries of B over R is the isodual Euclidean group studied in
Ref. 9.

2.6. Isodual Minkowskian geometry
The isodual Minkowski space, first introduced in Ref. 3, is given by
Mz, n%, RY): 29 = {z#d} = {2 x ]9} = {—r, ~eot} x I,
7% = —n = diag(~1, -1,—1,+1), (2.33)
I* = diag(—1,-1,-1,-1).
The isodual Minkowskian geometryf is the geometry of isodual spaces M¢ over
R4, Tt is also characterized by a simple isoduality of the conventional Minkowskian

geometry and its explicit presentation is omitted for brevity.
We here merely mention the isodual light cone

$d2d — (:c,ud angv xdmud) % Id

= (—zz—yy — 2z +tcit) x (-)=0. (2.34)

As one can see, the above cone formally coincides with the conventional light
cone, although the two cones belong to different spaces. The isodual light cone
is used in these studies as the cone of light emitted by antimatter in empty space
(exterior problem).

The group of isometries of M¢ over RY is the isodual Poincare symmetry
Pi3.1) = L#3.1) x T3.1)° and constitutes the fundamental symmetry of
this paper.

It may be instructive for the reader interested in learning the new isodual theory
to write down the isodual Mazwell equations which characterize a fundarmental
prediction of the theory, the isodual electromagnetic waves discussed later on.

2.7. Isodual Riemannian geometry

Consider a Riemannian space ®(z,9,R) in (3 + 1) dimensions with basic unit
I = diag(1,1,1,1) and related Riemannian geometry in local formulation (see,
e.g. Ref. 25). The isodual Riemannian spaces are given by

%d(xdagdst): z¢ = {"ﬁ“}:

gd = “'9(3.7), gc R(E,Q,R) ) (235)
= diag(-1,-1,~1,-1)
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with interval 228 = [z x @ gd(d) x? 2 x I = gt x 9%(z%) x 2] x I on R, where
t stands for transposed.

The isodual Riemannian geometry is the geometry of spaces R over R%, and it
s also given by step-by-step isodualities of the conventional geometry, including,
most importantly, the isoduality of the differential and exterior calculus.

As an example, an isodual vector field X%z?) on R is given by Xd(zd) =
—X(—z). The isodual exterior differential of X4(24) is given by

Do) = diX ) T X Xl et = DXM ), (g

where the I'*'s are the components of the isodual connection. The isodual covariant
derivative is then given by

X a o = 94X () il 1 pdk d xiday ~X(~a2).  (237)

The interested reader can then easily derive the isoduality of the remaining
notions of the conventional geometry.

It is an instructive exercise for the interested reader to work out in detail the
proof of the following:

Lemma 2.3. The tsoduality of the Riemannian space R(x, g, R) to its antiquio-
morphic image R (x?, g4, R%) is characterized by the following isodual quantities:

Basic unit I = -1,

Metric g—+g*=-g,

Connection coefficients Ten = I‘ﬁlh = =Ty,

Curvature tensor Ry — Rﬁjk = Ry,

Ricei tensor Ry — Rﬁ,, =-R,., (2.38)
Ricci scalar R Ri=R,

Einstein tensor G~ wa =-~G.,
Electromagnetic potentials A, > Aﬁ =-4,,

Blectromagnetic field Fu— ng =—-Fu,

Elm energy-momentum tensor Tw = T2, = ~Tp.

The reader should be aware that recent studiesS®® have identified the universal
symmetry of conventional gravitation with Riemannian metric g(z), the so-called
Poincaré-Santilli isosymmetry P31 = £(3.1) x T(3.1).% The latter symmetry is
the image of the conventional symmetry constructed with respect to the general-
ized unit

I(z) = [T()) 1, (2.39)
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where T'(z) is a 4 x 4 matrix originating from the factorization of the Riemannian
metric into the Minkowskian one,

g(z) =T(z) x 5. (2.40)

In particular, since T(z) is always positive-definite, we have the local isomor-
phism P(3.1) ~ P(3.1).

The same Ref. 6(a) has constructed the operator version of the isodual Poincaré—
Santilli isodual isosymmetry P?(3.1) ~ P4(3.1), whose classical realization is the
universal symmetry of the isodual Riemannian spaces ®¢ over R,

In summary, the geometries significant in this paper are: the conventional
Buclidean, Minkowskian and Riemannian geometries, which are used for the char-
acterization of matter; and the isodual Euclidean, Minkowskian and Riemennian
geometries, which are used for the characterization of antimatter.

The reader can now see the achievement of axiomatic compatibility between
gravitation and electroweak interactions!'®® which is permitted by the isodual
theory of antimatter. In fact, the latter is treated via negative-definite energy-
momentum tensors, thus being compatible with the negative-energy antimatter
solutions of electroweak interactions.

3. Classical Isodual Theory of Antimatter

3.1. Fundamental assumption

As it is well known, the contemporary treatment of matter is characterized by
conventional mathematics, here referred to conventional numbers, fields, spaces,
etc. with positive unit and norm, thus having conventional positive characteristics
of mass, energy, time, etc.

In this paper we study the following:

Hypothesis 3.1. Antimatter is characterized by the isodual mathematics, that with
isodual numbers, fields, spaces, ete. thus having negative-definite units and norms.

All characteristics of matter therefore change sign for antimatier represented via
isoduality.

The above hypothesis evidently provides the correct conjugation of the charge
at the desired classical level. However, by no means, the sole change of the sign of
the charge is sufficient to ensure a consistent classical representation of antimatter.
To achieve consistency, the theory must resolve the main problematic aspect of
current classical treatments of antimatter, the fact that their operator image is not
the correct charge conjugation of that of matier, as evident from the existence of a
single quantization procedure (Sec. 1).

It appears that the above problematic aspect is indeed resolved by the iso-
dual theory. The main reason is that, Jointly with the conjugation of the charge,
isoduality also conjugates all other physical characteristics of matter. This implies
two channels of quantization, the conventional one for matter and a new isodual
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quantization for antimatter (see App. A) such that its operator image is indeed the
charge conjugate of that of matter.

of Ref. 2), and creates new possibilities for the ongoing research on the so-called
“time machine” to he studied in separate works.

In this section we construct the classical isodual theory of antimatter at the
Galilean, relativistic and gravitationa) levels, prove itg axiomatic consistency and
verify its compatibility with available classical experimental evidence (that op
electromagnetic interactions only). We also identify the prediction of the iso-
dual theory that antimatter in the field of matter experiences gravitationa re-

magnetic waves, first identified at the operator level in Ref. 10(a}, which coincide
with the conventional waves emitted by matter under all known interactions, except
gravitation. For completeness, the classical isodual Lagrangian and Hamiltonian

mechanics are provided in the Appendix as the foundation of the isoquantization
of the recent papers,10

3.2. Representation of antimatter via the classical isodual
Galilean relativity

We now introduce the isodual Galilean relativity as the most effective way for

the classical nonrelativistic characterization of antimatter according to Hypo-
thesis 3.1.
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Symmetry between the treatment of matter and antimatter ig reached at the New-
tonian level, it is expected to persist at ail subsequent levels,
The conventional Newton’s equations for a system of N pointlike pariicles with

(nonnull) masses mq, ¢ = 1,2,..., N, in exterior conditions in vacuum are given by
the familiar expression

Mg xdvka/dt=Fka(t,r,v), r={z,y,z2}, 3.1)
3.1
a=12,...,N, v=dr/df,
defined on the seven-dimensional Euclidean space Eyoi(t,r,v) = E(t,Ry) x
E(r,8,R;) x E(v,6, R,) with corresponding seven-dimensional tota] unit Ip, =
Iy x I. x I,, where one usually assumes R, = By Li=1I=] = diag(1,1,1).

The isodual Newton equations here submitted for the representation of n point-
like antiparticles in vacuum are defined on the isodyal space

Bt v, vd) = Bl Ry x B4(rd 59 R7) x By, 54 Ry (3.2)
with total isodual unit I, =TI x Jd x I8, If = —1, 14 = I = — diag(1,1, 1}, and

can be written for (nonnull) isodual masses md = —Ty)

me x4 qdyt jdgdpd FE (9,4, v, k= Z Y, z,a=1,2,... N, (3.3)

desired.

We now introduce the isodual Galilean symmetry G4(3.1)

as the step-by-step
isodual image of the conventional

symmetry G(3.1) (see, e.g. Ref. 16). By using
stem of NV particles with

nonnull masses m,, q = 1,2,...,N G4(3.1) is characterized by isodyal parameters

and generators

wt = (6, rffd:'”x]:cd1 tg) = —w,

I = Z aijkTie X4 ph, = ~Jy |
P}E:Zapga:'_Pk:

GE=D2_ almd xrd —tdxpl )
ld

He = 3 Xdz aPay X% phd 4 VirY) = -7,

equipped with the isodual commautator (A.11), i.e.

(3.4)

[Ad,Bd]d — Z a,k[(BdA‘i/dadrffd) wt (adBd/dadpgk)

— (B[l x (g2 4¢ “0°pi)) = - (4, B]. (3.5)
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In accordance with rule (2.26), the structure constants and Casimir invariants
of the isodual Lie algebra G%(3.1) are negative-definite. From rule (2.27), if g(w) is
an element of the {connected component) of the Galilei group G(3.1), its isodual is
characterize by

dydydydyd

g (w) = ed T o gixtoudnX o gy ¢ G4(3.1). (3.6)

The isodual Galilean transformations are then given by

s t/d = gd ot = gt

o @)

ol =pd gl ot

@ o 'l = pd 4o x4id = ¢,

3.8
rd = 1'd = RY(64) x4 = _R(—0), 4

where R%(6") is an element of the isodual rotational symmetry first studied in the
original proposal.?

The desired classical nonrelativistic characterization of antimatter is therefore
given by imposing the G¢(3.1) invariance of isodual equations (3.3). This implies,
in particular, that the equations admit a representation via the isodual Lagrangian
and Hamiltonian mechanics outlined in App. A.

We now verify that the above isodual representation of antimatter is indeed con-
sistent with available classical experimental knowledge for antimatter, that under
electromagnetic interactions. Once this property is established at the primitive New-
tonian level, its verification at all subsequent levels of study is expected from mere
compatibility arguments.

Consider a conventional, classical, massive particle and its antiparticle in exterior
conditions in vacuum. Suppose that the particle and antiparticle have charge —e
and e, respectively (say, an electron and a positron), and that they enter into the
gap of a magnet with constant magnetic field B.

As it is well known, visual experimental observation establishes that particles
and antiparticles under the same magnetic field have spiral trajectories of opposite
orientation. But this behavior occurs for the representation of both the particle
and its antiparticle in the same Euclidean space. The situation under isoduality is
different, as described by the following:

Lemma 3.1. The trajectory of a charged particle in Euclidean space under o mag-

netic field and the trajectory of the corresponding antiparticle in {sodual Euclidean
space coincide.

Proof. Suppose that the particle has negative charge —e in Euclidean space
E(r,é,R), that is, the value ~e is defined with respect to the positive unit +1
of the underlying field of real numbers B = R(n,+, x). Suppose that the particle
is under the influence of the magnetic field B. The characterization of the corre-
sponding antiparticle via isoduality implies the reversal of the sign of all physical

a.
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quantities, thus yielding the charge (—e)? = +¢ in the isodual Euclidean space
Ed(rd, 8%, RY), as well as the reversal of the magnetic field BY = —B, although
now defined with respect to the negative unit (+1)% = ~1. Tt is then evident that
the trajectory of a particle with charge ~e in the field B defined with respect to
the unit +1 in Euclidean space and that for the antiparticle of charge +¢ in the
field — B defined with respect to the unit —1 in isodual Euclidean space coincide.
g.e.d.

An aspect of Theorem 3.1 which is particularly important for this paper is given
by the following:

Corollary 3.1. (A) Antiparticles reverse their trajectories when projected from
their isodual space into the conventional space.

Lemma 3.1 assures that isodualities permit the representation of the correct
trajectories of antiparticles as physically observed, despite their negative energy,
thus providing the foundations for a consistent representation of antiparticles at the
level of first quantization studied in papers.}0 Moreover, Lemma 3.1 tells us that
the trajectories of antiparticles may appear to exist in our space while in reality
they may belong to an independent space, the isodual Euclidean space, coexisting
with our own space.

Needless to say, the property of Corollary 3.1(A) is only a novel mathematical
formulation of a well known physical behavior already treated in various ways, e.g.
via Stueckelberg-Feynman path integrals, quantum field theory, etc,

To verify the validity of the isodual theory at the level of Newtonian laws of
electromagnetic phenomenology, let us consider the repulsive Coulomb force among
two particles of negative charges —g; and =@z in B(r,d, R),

F=Kx(-q)x(—g)/frxr>0, (3.9)

where the operations of multiplication x and division / are the conventional ones
of the underlying field R(n, +, x}. Under isoduality to B%(r, 6%, R%) we have

Fo= K x4 (—q1)? x? (—go)t/drd xd od _ _pp 0, (3.10)
where x¢ = —x and /¢ = —/ are the isodual operations of the underlying field
Ré(nd, +, %2},

But the isodual force F9 = —F oceurs in the isodual Euclidean space and it

is therefore defined with respect to the unit —1. As a result, isoduality correctly
represents the repulsive character of the Coulomb force for two antiparticles with
positive charges.

"The Coulomb force between a porticle and an entiparticle can only be computed

by projecting the antiparticle in the conventional space of the particle or vice-versa,
In the former case we have

F=Kx(—q)x(~@)irxr< 0, (3.11)
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thus yielding an attractive force, as experimentally established. In the projection of
the particle in the isodual space of the antiparticle we have

F= K x (—g1) x (—ga)? /% xpd 5 . (3.12)

But this force is now referred to the unit -1, thus resulting to be again attractive,
In conclusion, the isodual Galilean relativity correctly represents the electro-
magnetic interactions of antimatter at the classical Newtonian level.

3.3. Representation of antimatter via the isodual special relativity

We now introduce the isodual special relativity as the best way to represent classical
relativistic antimatter according to Hypothesis 3.1.

In essence, the conventional special relativity (see, e.g. Pauli’s historical
account'”) is constructed on the fundamental four-dimensional unit of the
Minkowski space I = diag{1,1,1},1), which represents the dimensionless units
of space {+1,+1,+1}, and the dimensionless unit of time +1, and is the unit of

the Poincaré symmetry P(3.1}. The isodual special relativity is characterized by
the map

I=diag({1,1,1},1) > 0 - I* = — diag({1,1,1},1) < 0. (3.13)

namely, it is based on negative units of space and time. The isodual special relativity
is then expressed by the isodual image of all mathematical and physical aspects of
the conventional relativity in such a way to admit the negative-definite quantity J4
as the correct left and right unit.

This implies the reconstruction of the entire mathematics of the special rela-
tivity with respect to the single, common, four-dimensional unit I¢, including: the
isodual field R? = R (n, +9, x9) of isodual numbers nd = nx J¢ — —nx I with fun-
damental unit I = —~ diag(1,1,1 =, 1); the isodual Minkowski space M%(z4,n¢, RY)
with isodual coordinates z¢ = 2 x I?, isodual metric 7¥ = —7 and basic invariant
over R4

(@ —9)™ = [(a* - y*) x 0, x (@ —4¥) x I € R4, (3.14)

the fundamental isodual Poincaré symmetry®
P4(3.1) = LU3.1) x¢ T9(3.1), (3.15)

where L9(3.1) is the isodual Lorentz symmetry, x? is the isodual direct product and
T9(3.1) represents the isodual translations, whose classical formulation is given hy
a simple relativistic extension of the isodual Galilean symmetry of the preceding
section.

The algebra of the connected component P_T_d(&l) of P4(3.1} can be constructed
in terms of the isodual parameters w? = {—wr} = {~6,~v,—a} and isodual
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generators X¢ = — ¥ = {=Xi} = {~M,,, —F.}, where the factorization by the
four-dimensional unit T is understood. The isodual commutator rules are given by

d id d L dy d d ard d d prd
{M,EwMaﬁ] =1 X (nvax Myﬂ_ﬂpax Mv,ﬁ

- 773;‘3 Xd Mga +nfc,3 Xd ng)) (316)
(M5, pG) = i x4 (g, xdpd _ <E) e gt =0, @ap)

The isodual group Pld(S.l) has a structure similar to that of Egs. (3.6). These
results then yield the following:

Lemma 3.2. The classical isodual Poincaré transforms are given by

zld = gld _ _ o3 ’

2l p2d _ —.’,l:2,

p3dr ,}.d Xd (m3d . ﬁd de*id) = —2:3’,

24" i e (td B9 xd z3d) — - (3.18)
T = pdp 4 gdud _ —zH

e =l ydgd (=7, 21,
Téxdgd = 7 % T = —~(r,~zt),

where
ﬁd:,vd/dcgz ___ﬁ, ﬁd2d= _62, ,Yd:__(l_ﬁZ)-—l/z' (3’19)
end the use of the isodual operations (quotient, Square roots, etc.), is implied,

The isodual spinorigl covering of the Poincare symmetry P%(3.1) =8L4(2.04) x4
T%(3.1) can then be constructed via the same methods,

The basic postulates of the isodual special relativity are also a simple isodual
image of the conventional postulates. For instance, the mazimal isodual causal speed
Is the speed of light in Af 4 ie.

Vinax = ¢ = —¢,, (3.20)

with the understanding that it is referred to a negative-definite unit, thus being
fully equivalent to the conventional maximal speed ¢, referred to a positive unit. A
similar situation occurs for all other postulates.

A fundamenta] property of the isodual theory is the following:

Theorem 3.1. The line elements of metric or pseudo-metric spaces are isoselfdual

leaves invariant the fundamental space—time interval of the special relativity,
md2d — (:C'Ud xdngy Xd:{,‘mi)
= (~z'g! — 2222 _ 43,3 _ z'z?) x (~I)

= (z'2? + 2% 4 %3 2tet) x I = g2, (3.21)
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The above novel property evidently assures that conventional relativistic laws
for matter are also valid for antimatter represented via isoduality, since they share
the same fundamental space-time interval.

The above property illustrates that the isodual map is so natural to creep in
unnoticed. The reason why, after about a century of studies, the isoduals of the
Galilean, special and general relativities escaped detection is that their identification
required the prior knowledge of new numbers, those with a negative unit.

Note that the use of the two Minkowskian metrics 7 and 5% = —7 has been
popular since Minkowski's times. The point is that both metrics are referred to the
same unit I, while in the isodual theory one metric is referred to the unit I on the
field R(n, +, ) of conventional numbers, and the other metric is referred to the new
unit I9 = —J on the new field R%(n?, +9, x9) of isodual numbers n? = n x I¢.

The novelty of the isodual relativities is illustrated by the following:

Lemma 3.3. Isodual maps and space-time inversions are inequivalent.

In fact, space-time inversions are characterized by the change of sign £ ~— —z
by always preserving the original metric referred to positive units, while isoduality
implies the map z = 2% = —x but now referred to an isodual metric 7t = —q with
negative units I = —I. Thus, space-time inversions occur in the same space while
isoduality implies the map to o different space. Moreover, as shown by Lemma 3.2
isodualities interchange the space and time inversions.

We now introduce, apparently for the first time, the isodual clectromegnetic
waves and related isodual Mazwell’s equations

F:f,, = BdAﬁ /28%zrd — gl Ad jdgdypde — —Fu,
L, + BIFS +8IFE, =0, (3.22)
a:dev — _Jdu’
which characterize the phenomenology of electromagnetic waves emitted by anti-
matter according to the isodual theory.

As one can verify, the isodual electromagnetic waves are essentially equivalent to
the conventional waves in the sense that their behavior for antimatter is essentially
the same as the corresponding behavior of the conventional electromagnetic waves
for the case of matter.

"Their primary differences is the behavior under gravitation. In fact, as we shall
see, isodual electromagnetic waves are attracted by the gravitational field off anti-
matier. However, isoduel waves in the gravitational field of matter (or vice-versa)
experience a repulsion.

As identified earlier, the isodual transforms and the space-time inversions are
mathematically and physical different maps. In this paper we have studied the iso-
dual maps. The space-time inversions of the isodual electromagnetic waves will be
studied in future works. Their importance is evidently due to the possible identi-

fication of physical differences between conventional and isodual electromagnetic
waves which may assist in their experimental detection.
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The interested reader is encouraged to verify that the physical consistency in
the representation of electromagnetic interactions by the isodual Galilean relativity
carries over in its entirety at the level of the isodual special relativity, thus con-

firming the plausibility of the isodual theory of antimatter also at the classical
relativistic level.

3.4. Representation of antimatter via the isodual general relativity

We finally introduce the isodual general relativity as the most effective gravita-
tional characterization of antimatter according to Hypothesis 3.1. The new image
is also characterized by the isodual map of all aspects of the conventional relativity
(see, e.g. Ref. 18), now defined on the isodual Riemannian spaces R4(z?, g, RY) of
Subsec. 2.7.

The primary motivation warranting the study of the above new image of general
relativity is the following. A problematic aspect in the use of the Riemannian geom-
etry for the representation of antimatier is the positive-definite energy—momentum
tensor.

In fact, such a representation has an operator image which is not the charge con-
jugate of that of matter, does not admit the negative-energy solutions as needed
for operator treatments of antiparticles, and may be one of the reasons for the
lack of achievement until now of a consistent grand unification inclusive of gravi-
tation. After all, gauge theories are bona-fide field theories which, as such, admit
both positive- and negative-energy solutions, while the contemporary formulation
of gravity admits only positive-energy states, with an evident structural incom-
patibility.

Isoduality offers a new possibility for a resolution of these shortcomings. In fact,
the isodual Riemannian geometry is defined on the isodual field of real numbers
R¥(n?, 44, x%) for which the norm is negative-definite, Eq. (2.11). As a resuls,
ell quantities which are positive in Riemannian geometry become negative under
isoduality, thus including the energy-momentum tensor.

Explicitly, the energy—momentum tensor of the isodual electromagnetic waves,
Eqgs. (3.22), is given by

T = (4m) ™' x4 (F, x4 F2 + (1/4)14 x4 g4, x4 Fd x4 pdas)

=-T,.,. (3.23)
As such, antimatter represented in isodual Riemannian geometry has negative-
definite energy-momentum tensor and other physical quantities, as desired. The
above occurrence is the classical foundation of the grand unified theory proposed
in Ref. 10(b). X
For completeness, we mention here the isodual Einstein equations for the exte-
rior gravitational problem of antimatter in vacuum

ld
Gow = Bl — 5 x4 gy, x R = k¥ x4 T4, (3.24)
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We also mention the field equations characterized by the Freud identity'® of the
Riemannian geometry (reviewed by Pauli!” and then generally forgotten)

1 1
Rf—5 X0 X R— = x 85 x O=Ug§ +0Vg?[0c" = kx (t5+15),  (3.25)

where
0 = g°P¢"(Tapl % — T paplLs), (3.26)
180 .4
Ug = -3 agrﬁf T8, (3.27)

1
Ve? = 50" (63T%= — 95T%s)

+ (859%7 — E’gm)f‘ia + 975, — g°'T%. ], (3.28)
which indicate the apparent need for a no-where null source in the exterior problem
in vacuum, contrary to Einstein's original assumption.}” As we shall see shortly, the
forgotten Freud identity appears to have a truly fundamental role for quantitative
studies of antigravity.

The isodual version of Egs. (3.25)

ld
ad _ =
Rg 2

d
x4 884 x4 RY — % x4 854 x4 ©F = k? x4 (839 4 g (3.29)
are then suggested for the study of the exterior problem of antimatter in vacuum
(see Ref. 11 for interior profiles).

It is instructive for the interested reader to verify that the physical consistency
of the isodual theory at the preceding Galilean and relativistic levels carries over at
the gravitational level, including the attractive character of antimatter-antimatter
systems and their correct behavior under electromagnetic interactions.

Note in the latter respect that curvature in isodual Riemannian spaces 1s
negative-definite (Subsec. 2.7). Nevertheless, such negative value for antimatier—
antimatter systems is referred to a negative unit, thus resulting in attraction.

The universal symmetry of the isodual general relativity, the isodual Poincaré-
Santilli isosymmetry P%(3.1) ~ P4 (3.1), has been introduced at the operator level in
Ref. 6(a). The construction of its classical counterpart is straightforward, although
it cannot be reviewed here because it requires the broader isotopic mathematics,
(that based on generalized unit), and its isodual image.

3.5. The prediction of antigravity, isodual electromagnetic waves,
and the “space-time machine”

We close this paper with the indication that studies on antimatter have so far
reaching implications, to invest in a direct or indirect way our entire mathematical
and physical knowledge. At any rate, studies on antimatter are broader than those
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of matter evidently because the latter are included in the former, but not the other
way around,

To begin, we recall that the isodual theory of antimatter predicts the eristence
of antigravity (defined as the reversal of the sign of the curvature tensor in our
space-time) evidently for antimatter in the field of matter, or vice-versa.

The prediction originates at the primitive Newtonian level, persists at all sub-
sequent levels of study,'® and it is here identified as a consequence of the theory,
without any claim on its possible validity due to the lack of experimental knowledge
at this writing on the gravitational behavior of antiparticles.

In essence, antigravity is predicted by the interplay between conventional
geometries and their isoduals and, in particular, by Corollary 3.1(A) according to
which the trajectories we observe for antiparticles are the projection in our space—
time of the actual trajectories in isodual space. The use of the same principle for
the case of the gravitational field then yields antigravity.

Consider the Newtonian gravitational force of two conventional (thus positive)
masses m; and my

F=—-Gxmixmgfrxr<0, (3.30)

where the minus sign has been added for similarity with law (3.19).

Within the context of contemporary theories, the masses m,; and my remain pos-
itive irrespective of whether referred to & patticle or an antiparticle. This yields the
well-known Newtonian gravitational attraction among any pair of masses, whether
for particle-particle, antiparticle-antiparticle or particle~antiparticle.

Under isoduality the situation is different. First, the particle—particle gravita-

tional force evidently yields law (3.30). The case of antiparticle-antiparticle under
isoduality yields the different law

Fé=_@d x4 md x4 mdjdrd xdpd g, (3.31)

But this force is defined with respect to the negative unit —1. The isoduality
therefore correctly represents the attractive character of the gravitational force
among two antiparticles.

The case of particle-antiparticle under isoduality requires the projection of the

antiparticle in the space of the particle, as it is the case for the electromagnetic
interactions of Corollary 2.1(A)

F=-Gxmyxmfrxr>0, (3.32)

which is now repulsive, thus illustrating the prediction of antigravity. Similarly, if
we project the particle in the space of the antiparticle we have
Fé= _@¢ xdm, x4 mg /4rd 59 pd < 0, (3.33)

which is also repulsive because referred to the unit —1.
We can summarize the above results by saying that the classical representation
of antiparticles via isoduality renders grawitational interactions equivalent to the
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electrornagnetic ones, in the sense that the Newtonian grovitational law becomes
equivalent to the Coulombd law. Note the impossibility of achieving these results
without isoduality.

The interested reader can verify the persistence of the prediction of antigravity
at the relativistic and gravitational levels,

In our view, an intriguing argument favoring the existence of antigravity is given
by studies on the “origin” of the gravitational field, rather than on its “description.”
We are here referring to theories assuming that the mass of ali particles constituting

weak and strong interactions, as studied, e.g. in Ref. 23 for the case of the 7°
meson. These theories permit the identification (rather than the “unification”) of
the gravitational field with the fields originating mass.23 A primary difference is that
the electromagnetic field is represented by rank-one tensorial (vectorial) equations,
while the gravitational aspect of the same field is represented by rank-two tensoria]
equations.

by the forgotten Freud identity, Eqs. (8.26)-(3.28).
A forceful nature of the above argument is due to the fact that the lack of

origin of their mass.

As a concrete Hlustration, the identification of the electromagnetic and gravita-
tional fields in the exterior problem in vacuum was worked out in detaiis in Ref. 23
for the case of the 7° meson. Even though its total electromagnetic data are null,
this particle is made up of two opposite charges in very high dynamical conditions
with respect to each other. The total electromagnetic field tu in the exterior of the
particle was computed via relativistic techniques (including retarded and advanced

rest energy of the 7°, resulting in the exterior field equations in vacuum G = kty.
The additional relatively small contributions from the weak and strong interactions

of the interior problem yielded the tensor Tpw With interior field equations G, =
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As an incidental contribution, the model yielded an explicit representation of
the gravitational (exterior) mass characterized by the volume integral of oo and
inertial (interior) mass characterized by the volume integral of £,, + 754, as well as
an explanation of their differences (due to the short range nature of the weak and
strong forces).

The model also establishes the validity of the forgotten Freud identity!? in
vacuum. We are here referring to the emergence for the 7° of a first-order source
tww in its exterior which is nowhere null even though the particle has null total
change, and null multipole moments, the extension to the 7+/- protons, neutrons
and all macroscopic masses being consequential, By comparison, field equations for
masses with null total electromagnetic data are today written in the form G =

The interested reader is encouraged to inspect paper®® and verify that the lack
of existence of antigravity would imply the lack of identification of electromagnetic
and gravitational fields and of their respective phenomenologies. In turn, the latter
is only possible for masses with an ignorable electromagretic origin. Still in turn,
the latter requirement would imply the hecessary abandonment of the entire cur-
rent theory on hadrons, including the abandonment of quark theories and QCD,
and their replacement with a new hypothetical theory in which the mass of all
elementary particles does not Possess an appreciable electromagnetic origin.

We should indicate for completeness that the identification of the gravita-
tional and electromagnetic fields appears to be disproved by the assumption that
quarks are physical constituents of hadrons owing to the known large value of their
“masses.” However, the latter are solely defined in the mathematica] unitary space,
while the only masses which can be permitted for the characterization of gravity
are the eigenvalues of the second-order Casimir invariant of the Poincaré symme-
try. Since the latter identification is impossible for quarks, as well known, the large
values of quark “masses” is inapplicable to the above considerations on the possible
identification of electromagnetism and gravitation at the level of the structure of
matter, because the latter must solely oceur in our physical space~time without any
consideration of unitary spaces used for the hadronic classification.

Various arguments against the existence of antigravity exist in the literature
(see, e.g. the review Ref. 22), such as those by Morrisen, Schiff and Good, and
others. It should be indicated that these arguments do not apply under isodualities
owing to their essential dependence on positive units, as one can verify.

The argument against antigravity based on the positronium?®? also do not apply
under isoduality, because bound systems of elementary particle-antiparticle are
isoselfdual and, as such, the sign of their total energy is that of the field {observer) in
which they are immersed, thus being attracted both fields of matter and antimatter,
as shown in Ref. 10(a). 7

We can therefore state that the gravitational behavior of antiparticles is funda-
mentally unsettled at this writing. The true scientific resolution is evidently that

via experiments, rather than via personal theoretical view in favor or against anti-
gravity.
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The possible alternatives are the following: (1) Antiparticles are attracted by
matter in the same way os particles, as predicted by Einstein’s field equations
in vacuum, with the representation of antimatter via positive-definite energy-~
momentum tensors and the lack of the Freud identity; (2) Antiparticles are repelied
by matter in a way opposite to that of particles, as predicted by the projection of
exterior field equations (3.29) in the space of Egs. (3.25), with the representation
of antimatter via negative-definite energy—mornentum tensors and the wuse of the
Freud identity; (3) Antiparticles in the field of matter are atiracted, although in
lesser amount as that for particles, as predicted by certain intermediary theories
(see Ref. 22 for details).

One of the first experiments on the gravity of antiparticles was done by Fairbank
and Witteborn®® via low energy positrons in vertical motion, although the measure-
ments were inconclusive because of interferences from stray fields and other reasons.

Additional data on the gravity of antiparticles are those from the LEAR machine
on antiprotons at CERN,?! although these data too are inconclusive because of the
excessive energy of the antiprotons as compared to the low value of gravitational
effects, the sensitivity of the measures and other factors.

Santilli”{®) proposed the measure of the gravity of antiparticles via the use of
a suitably collimated beam of very low energy positrons in horizontal flight in a
vacuum-superconducting tube of sufficient length and diameter to yield a resolutory
answer, that is, a displacement under gravity at the end of the flight up or down
which is visible by the naked eye.

According to Mills,? the above experiment appears to be feasible with current
technology via the use of peV positrons and electrons in a herizontal vacuum-
superconducting tube of about 100 m in length and 1 m in diameter for which
stray fields and patch effects should be smaller than the gravitational deflection (if
not, the problem is solved by a proportional increase of the diameter of the tube}.

A number of additional experimental proposals to measure the gravity of anti-
particles are available in the proceedings,! although their measures are more
sophisticated, they require interferometric techniques, and the results are not
“visible by the naked eyes” as those of test.”(®)12

This paper would be incomplete without the indication that the possible ex-
perimental detection of antigravity would have implications beyond our most vivid
imagination.

A first illustration is given by the classical counterpart of the prediction of
the “isodual photons” of Ref. 10(a), namely, the prediction (here submitted for the
first time at the classical level) that entimatter emits the novel “isodual electromag-
netic waves” with isodual fields Eqs. (3.22), which coincide with the conventional
waves under all known interactions except gravitation. In fact, the isodual waves
are predicted to experience a gravitational repulsion when in the field of matter evi-
dently because of their negative-definite energy-momentum tensor, Egs. (3.23). As
a result, the possible existence of the novel isodual electromagnetic waves requires
the existence of antigravity.
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Yet another far reaching implication of antigravity would be the existence of a

spece-time machine,” (b) namely, a machine which would permit motion in space and
time. Locomotion in this case is

as permitted by sufficiently large amounts of sufficiently localized energy (see Ref. 9
for details). In turn, the modifications of Space cannot occur without g, correspond-
ing alteration of time, thus implying motions in both space and time,

Geometric locomotion forward in time would be permitted by the use of suf.
ficiently large amounts of positive energy, while that backward in time would be
permitted by the use of negative energy. As far as we currently know, locomotion
both forward and backward in time appears solely permitted by isoselfdual states
(see Ref. 7(b) for details) and not for arbitrary matter or antimatter. Within such
a setting, the so-called “barrier of the speed of light” has no mathematical or phys-

t or curved space-time, while
the geometric propulsion implies the local creation of a fundamentally different

Rather than being farfetched, it appears that one form of geometric locomotion
is already realized in biclogical structures,?® such as in the upward motion of the sap
in very tall trees which cannot be explained via conventional means (e.g. capillary
effects) due to the height. This biological locomotion occurs indeed without any
Newtonian action and reaction and therefore, it is precisely a realization of the
geometric propulsion herein considered,

All in all, it appears that the measure of the gravity of antiparticles has such
mathematical, theoretical and experimental implications to dwarf by comparison
any other possible physics experiments.

In closing we should indicate that studies on antimatter are at thejr first infancy,

as indicated by the existence of only one meeting in the field, Ref. 15. As such, there
is so much to be done.
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Appendix A
A.l. Isodual Lagrangian mechanics

After having achieved in the main text the isodual theory of antimatter at the
primitive Newtonian level, Eqs. (3.3) it may be of some value to outline in this
appendix its analytic representation because it constitutes the foundations of the
novel quantization for antimatter studied in the joint papers,10

A conventional (first-order) Lagrangian L(t, z, v) = tmyky, + V(t, z,v)} on the
configuration space E(t,z,v) = E(t,R,) x E(r,s, R.) x E(v,4, Ry} of Newton’s
equations is mapped under Isoduality into the negative valye LA(d,rd, vy — _,
defined on isodual space BA(td, 74, 4y of Eq. (3.2). The isodual Lagrange equations
are then given by

d?  BeLA(td pd U o A v?)
désd Jdykd d- Hdykd d=0. (A.1)

de B‘iLd(td,r‘f,vd) d a‘iLd(td,rd,vd)
ddsd Sdykd & Hdpkd

= mi x* d%f/datd _ masag -y g (A.2)

where SA stands for variational Selfadjoz'ntness, i.e. verification of the conditions
to be derivable from a botential. The compatibility of the isodual Lagrangian
mechanics with the primitive Newtonian results then follows,

A.2, Isodual Hamiltonian mechanics

The isodual Hamiltonian is evidently given by
He = e xdpdk/d(2m)d + V(e 4 W=_p. (A.3)

It can be derived from (nondegenerate) isodual Lagrangians via g simple iso-
duality of the Legendre transforms and it is defined on the seven-dimensional carrier
space (for one particle)

E(td, 08 py — B4 RY) x Ed(pd, 6%, RY) x E4(p?, 62, RY). (A.4)
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The isodual canonical action is given by

iz
: Acd — (pg xd ddi"kd — g Xd ddtd)
; 2

iz
_ / [RE4(bY) x @ ddpd _ prd a4 (A.5)
t1

R°={p:0}7 b={:1:,p}, #=1,2,...,6.
Conventional variational techniques under simple isoduality then yield the isodual
Hamilton egquations which can be written in disjoint form
ddpka _ ade(td’md’ pd.') ddpg _ 3de(td,md,pd) A
ddid 84pd ! ddgd T T Hdydk : (A.6)
or in the unified notation
o 4 ddbdu _ adﬂd(td, bd) N
W X Gmd T g (A7)
where w¢,, is the isodual cononical symplectic tensor

A

. i e n g

O 1e] 17 O I
(wh) = @R 0% ~otmst gty = (O 0)=—w) (a8
: Note that in matrix form the canonical symplectic tensor is mapped into the

canonical Lie tensor, with intriguing geometric and algebraic implications studied
elsewhere for brevity.

The isodual Hemilton-Jacobi equations are then given hy
HLA%d jdgdyd | prd 0,
adAod/dadwg —pf =0,

894°4 /28%E = 0.

TR e

(A.9)

The isodual Lie brackets among two isodual functions A¢ and B¢

E on
b 54(t, 2¢, p9) then become

L d ndid adAd d, .d d adBd

i (44, B¢ = gt X0 x4 2 d = ~(4, B, (A.10)

where

W = [(wdg) 1,

is the isodual Lie tensor. The direct representation of the iso
in the first-order form is self-evident.

(A.11)
dual Newton equations

In summary, all properties of the isodual theory at the Newtonian level carry
over at the level of isodual Hamiltonian mechanics. In so doing, there is the emer-
gence of a fundamental notion of these studies, the characterization of antimatter
; via isodual space—time symmetries nowadays called Galilei-Santilli isodual symme-

try G(3.1) for nonrelativistic treatments, the Poincaré

~Santili isodual symmetry
Pd(3.1) for relativistic treatments and the Poincaré-Santilli isodual isosymmetry
for gravitational treatments.6:13-15
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A.3. Isodual naive quantization

The isodual Hamiltonian mechanics and its underlying isodual symplectic geometry
permit the identification of the novel naive tsodual quantizetion

A%y i xd pd d Lnypd(t?, 79) (A.12a)
B4 /2% 1 Y — 44 xd plyd fdgdsd _ prd ¥ =B x4y, (A12b)
OUA /0% — p = 0 — pf x? = i giyga (A.12c)

or more refined isodualities of symplectic quantization (see, e.g. Ref. 24 for the
conventional case), which characterize a novel image of quantum mechanics for
antiparticles, called isodual quantum mechanics, introduced in papers,'® which is
defined on the isodual Hilbert space #? with isodual states 1)) = —|4))T and isodual
inner product (3|?x (—1)x )2 x (~1) on the isodual complex field C¢ with unit —1.

Note the compatibility of the classical and quantum isodual theories, e.g. the
values of the energy remain negative after isodual quantization.

As one can see, isodual quantum mechanics originates from the invariancel®

(3 (+1) x o) x (+1) = (] x (~1) x |[g)? x (-1). (A.13)

As a result, all physical laws holding for matter also hold for antimatter. The
equivalence of charge conjugation and isoduality then follows (see Ref. 10 for
details). Note that isoduality replaces charge conjugation at the operator level.

Note finally that, even though seemingly trivial, the above novel invariance
of the Hilbert space has remained undetected throughout this century because it
required the prior discovery of new numbers with negative unit4

A.4. Isodual Reinterpretation of Dirae, Majorana, Ahluwalia, and
other Spinorial Representations

Isoduality has permitted a novel interpretation of the conventional Dirac’s equa-
tion!® in which the negative-energy states are reinterpreted as belonging to the
isodual images of conventional spaces, with explicit form

¥ x (p —ex Afe)+1 x m] x ¥(z) =0, (A.14a)
. _ {0 of (L 0
G HETCI) R

- o= = - : &
{7u:7!f}_2dxdnﬁw U=y x¥=1ix (q)d) ’ (A.14c)
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which is defined on the following representation space with related total unit and
symmetry®

Moy = {M(:C’n: R) x Sspin} x {Md(:cd: T]d’ Rd) >"‘G':‘S'sd:;:ai:n}# (A153.)
ot = {Torb X Lapin} x {Igy, x24I, 3, (A.15b)

Stot = P x P? = {SL(2.0) x T(8.1)} x {SLY(2.c% x4 T4(3.1)}. (A.15¢)

A salient mathematica) feature of the above structures is that they are all iso-
selfdual. As such, they are ideally suited to represent the superposition of particles
and their antiparticles. A salient physical feature is the achievement of a represen-
tation of antiparticles fully valid at the level of first quentization, without any need
for the second quantization exactly as it is the case for particles, and as expected
by a theory of antimatter beginning at the classical level.

It should be noted that, as conventionally written, Dirac’s equation is not jso-
selfdual because not sufficiently symmetric between (two—dimensional) states and
their isoduals. It should also be recalled that the isodual theory was born via an in-
spection of Dirac’s equation, the identification in -4 of an essential two-dimensional
negative unit, and the reconstruction of the entire theory with respect to the latter
new unit, resulting in the isodual mathematics of Sec, 2.

In summary, Dirac’s! was forced to formulate the “hole theory” for antiparticles
to eliminate unphysical behavior because he referred the negative energy states to
the conventional positive unit, while their reformulation with respect to negative
units yields fully physical results, thus avoiding the hecessary use of second quan-
tization, with consequential unbalance between particles and antiparticles,

In so doing, Dirac’s historical representation (1/2) x (1/2) of the (spinorial
covering of) the Poincaré symmetry P (which is not isoselfdual) is reinterpreted
under isoduality as the representation (1/2) x (1/2)% of P x P? which is isoselfdual,
Similarly, the conventjonal spinorial space (1,2,0) + (0,1/2) is reinterpreted as the
isoselfdual space (1/2,0) + (1/2,0)? which is also isoselfdual.

It is easy to see that the same isotopic reinterpretation applies for Majorana’s
spinorial representations?() (see also Refs. 26(b) and 26(c)) as well as Ahluwalia’s
broader spinorial representations26(d) (see also the subsequent paper®8(¢)) (1/2, 0)+
{0,1/2) which are reinterpreted in the isoselfdual form (1,2,0) + (1,2,0)¢, thus
extending their physical applicability to first quantization,

In the latter reinterpretation the Tepresentation (1/2,0) is evidently referred
to conventional spaces over conventional fields with unit +1, while the isodual
representation (1/2,0)? is referred to the corresponding isod
isodual fields with unit ~1, As a result, a
change sign under isoduality.

It should be finally indicated that Ahluwalia treatment of Majorana spinors has
a deep connection with isoduality because the underlying Class II spinors have a
negative norm™ (<) precisely as it is the case for isoduality. As a result, the isodual

ual spaces defined on
1l quantities of the representation (1/2,0)
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reinterpretation under consideration here is quite natural and actually warranted
for mathematical consistency (e.g. to have the topology characterized by a negative
norm be compatible with the underlying fields unknown at the time of Refs. 26).

A.5. Isodual diserete symmelries

As it is well known (see, e.g. Wigner’s historical contribution?”(®)), the fundamental
space—time symmetries used throughout this century in particle physics are the
contimuous Poincaré transforms plus the discrete transforms characterized by parity,
time reversal and charge conjugation,.

Note that in the above setting antiparticles are treated in the same representa-
tion space end under the same symmetries as those of particles.

The theory submitted in this paper and in Refs. 10 introduces a novel charac-
terization in which charge confugation is replaced by isoduality. This implies the
introduction of the isodual irnages of the continuous Poincaré transforms, as well
as of parity and time inversions (without any isodual image of charge conjugation).

The connected component of the Poincaré-Santilli isoduat symmetry has been
studied in Refs. 6. We here introduce the following isodual space and time inversion
(formulated for simplicity for a scalar field)

mx® et xntt = et o = (el = gy (A16a)

T8 U@t X = B 0 < (i 2 (Cry), (A6)
where 7 (= ~7) is the isodual coordinate on space B¢(rd5?, RY), and %= —~1) is
the isodual time on E4(i9,1, RY).

As one can see, isodual space and time inversions formulated in their proper
isodual spaces, coincide with the conventional space and time inversions formulated
on conventional spaces.

Despite that, the isodual discrete symmetries are not trivial. In fact, all measure-
ments are done in our space-time, thus implying the need to consider the projection
of the isodual discrete symmetries into our space-time which are manifestly different
than the conventional forms. In particular, they imply a sort of interchange, in the
sense that the conventional space inversion {ryt} — (—r, 1) emerges as belonging to
the projection in our space-time of the isodual time inversion, and vice-versa,

In Ref. 10(a) we have introduced the isodual photon as a new photon emitted
by antimatter which coincides with the conventional photon under all interactions,
ezcept gravitation. In particular, the isodual {conventional) photon is predicted by
the isodual theory to experience a repulsion in a gravitational field due to matter
(antimatter). In this paper we have introduced two additional means for a possible
distinction between photons emitted by matter and those emitted by antimatter,
given by the isodual space and time inversions, which are different than those of
the ordinary photons irrespective of the applicable interactions.

The possible formulation of experiments based on the latter differences will be
studies elsewhere. At this moment we reerely mention that these two additional
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predicted differences are significant for the future theoretical and experimental
resolution as to whether far away galaxies and
or of antimatter.

In closing, we point out that the notion of isodual
nections with the parity of antiparticles in the {(7,0)
originally studied by Bargmann, Wightman and Wigner”®) and more recently
studied by Ahluwalia, Johnson and Goldman.?7(¢) Ip fact, the latter parity results
to be opposite to that of particles which is fully in line with jsodual parity. The
reformulation of the (non-iso-self-dual) space (4,0) + (0, 5) into the isoselfdual form
(4,0) + (4,0)¢ would then permit: a topologically consistent treatment (indicated
earlier); the isodual reinterpretation of parity; and the addition of the isodual time
reversal, with intriguing interchanges in their projection into our space-time.

Allin all, the isodual reinterpretation of current studies on antiparticles appears
to be significant per se, as well as Necessary preparatory grounds for the future
experimental resolution of the correct theory of antiparticles valid at all levels of
study, including classical, first quantization and second guantization theories, as

well as under all interactions, including electromagnetic, weak, strong and gravita-
tional interactions,10(b)

quasars are made up of matter

parity has intriguing con-
+ (0, 7) representation space
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