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PREFACE

OF VOLUMES | AND Ui

Physics is a science that will never admit sna/ theorres . No matter
how autoritative, the generalization of fundamental physical theories
is only a matter of time.

Physics is also a guantitative science, that is, requiring mathema-
tically rigorous, quantitative formulations of predictions suitable for
direct experimental verifications.

Finally, physics is a science with an absolute standard of values:
the experimental verification. No matter how plausible a new theory
is, it remains conjectural until verified in laboratories. By the same
token, no matter how fundamental and authoritative an existing theory
is, its validity remains conjectural for all physical conditions under
which it has not been directly tested.

Along these lines, the sooner the scientific process is initiated with
the submission of possible generalizations of existing theories and
their critical examination by independent researchers, the better for
the advancement of physical knowledge.

The author has spent his research life in studying possible classi-
cal and operator generalizations of Gali/ers relativity, Einsteins
special relativity and Einsten’s general refativity (or Finsteins
gravitation , for short). The studies were conducted along the
foliowing main lines:

1) Identifation of the “papsica/ conditions of unequivocal validity™
of conventional relativities,

2) ldentification of broader physical conditions under which
possible generalized relativities may be physically relevant;

3) identification of the generalized mathematical tools needed for
a quantitative representation of the broader physical conditions
considered;

4) Construction of the generalized relativities, including the




identification of their mutual compatibility, implications and
quantitative predictions; and, last but not least,

5 Formulation of specific experimental proposals for the
verification or disproof of the new relativities.

In particular, this author has studied the above problem, in an
evident preliminary way: a) for each of the Galilean, special and
general profiles; b} for both classical and operator formulations; and cj
in regard to the intrinsic compatibility of the emerging generalizations
of Galilei’s, the special and the general relativities, first, independently
at the classical and operator level and, then, for the identification of a
map from the classical into the operator formulations.

After an introductory chapter, Volume [ is devoted to the review of
the novel mathematical structures needed for a quantitative treatment
of the broader physical conditions considered.

Volume Il is devoted to: the construction of the classical
generalized relativities; the study of their mutual compatibility; the
identification of their most important implications; and the proposal of
experiments for their verification or disproof.

The scope of these monographs is to identify the status of the
studies in the field at this writing (Fall 1991}, so that the interested
researcher can appraise the new relativities, and participate in their
mathematical-theoretical development or experimental verification.

The understanding of these volumes requires a mind open to the
possibility that Galilei's relativity, Einstein’s special relativity and
Einstein’s gravitation are not final theories, but only beautiful
foundations for expected more general relativities for more complex
physical conditions in the Universe.

Ruggerc Maria Santilli
Box 1577, Palm Harbor, FL 34682 USA
Fall 1991




CHAPTER I:
INTRODUCTION

I.1: INTERIOR AND EXTERIOR DYNAMICAL PROBLEMS.

The “physical conditions of wweguivecal applrcabifity™  of
contemporary relativities can be identified with the notion introduced
by Galileo Galilei {1638) of “wassive po/nc™ , subsequently implemented
by Isaac Newton (1687) into the notion of “wassive point moving i
empty space (vacuum) under action-g-distance, potential forces”,
and finally embraced in its entirety by Albert Einstein.

In fact, Einstein stated quite clearly in his limpid writings (see, eg.,
Einstein (1905)) that his specia/ relativity was conceived for

A) particles which can be well approximated as massive points;

B) when moving in vacuum conceived as a homogeneous and
isotropic medium;

¢} under action-at-a-distance potential interactions.

This physical field was subsequently implemented in Gallers
refarivity  (see, e.g., Levy-Leblond (1971 and quoted papers), and’
remains the central notion of a test particle in Lnscein’s gravitaton
(see, e.g., Pauli {1921) in its English edition (1358), and quoted historical
sources).

The above physical conditions were well identified in the early
treateses on relativities (see, e.g., the title of Chapter VI of Bergmann
(1942) with a Foreword by Einstein). However, as a result of the
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successes of established relativities in various fields, they gradually
disappeared in more recent treateses and papers, by acquiring the
current assumption of their universal validity under all possible
conditions of the Universe.

A primary purpose of this Introduction is the identification of
physical conditions broader than A) and B) above under which
conventional relativities are either inapplicable or have not been
directly tested, and possible generalized relativities may have a
physical value,

The best way to study this problem is by returning to the Founding
Fathers of ama/viic mechanics and see that the soundedness of their
description of the physical reality persists to this day.

In fact, Lagrange (1788}, Hamilton (1834} Jacobi {1837) and others,
based their analytic studies on the distinction between:

1) The Zrterior dvmamical problem , which is essentially the study
of dynamics in the interior of the minimal surface §° containing all
matter of the celestial body considered, including any possible
atmosphere;, and

2) The exterior dynamicsa! problem , which is essentially the study
of dynamics in the empty space {vacuum) outside the above minimal
surface 8°, assumed as homogeneous and isotropic.

In fact, the original Lagrange’s and Hamilton’s eguations were
formulated with external terms precisely to represent the forces of
the interior dynamics which were known to be outside the
representational capabilities of the Lagrangian or Hamiltonian
functions by their very originators. Similarly, Jacobi formulated his
celebrated theorem for the original analytic equations with external
terms, and not for the contemporary equations without external terms.

The distinction between the exterior and the interior problem
gradually disappeared from the scientific scene as a result of an
evolutionary process that does not appear to have been sufficiently
studied by historians in the field until now. Without any claim of
completeness, we cah mention here:

a) The birth of Zies theory (1893) which identified the algebraic
structure of Hamilton’s equations w7Zyour external terms, and its vast
impact in mathematical and physical studies;

b) The discovery of the special relativity by Lorentz (1904),
Poincaré (1905), Einstein (1905} and others with its strictly Lie-
Hamiltonian character, and the profound influence in the scientific
thought which resulted from its experimental verification in the
conditions originally conceived by Einstein;

¢} The successes of the quantum mechanical description of the
atonic structure with its strictly Lie-Hamiltonian character in
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operator form (see, e.g., Pauli (foc. cz));
and numerous other factors.

Birkhoff (1927) identified a generalization of Hamilton's equations
also derivable from a first-order variational principle, but its
algebraic structure remained unknown. Also, he applied his equations
to typical exterior problems, such as the stability of planetary
trajectories.

Despite the general lack of recent interest, the historical
motivations that led Lagrange, Hamilton, Jacobi and other Founders of
analytic dynamics to formulate interior problems with external terms,
were sound indeed. In fact, as we shall review shortly, the contact
interactions of interior trajectories generally possess #zonlwear as
well as wmonloca/-integral forces (see, e.g., Hofstandter (1970},
Fujimura er 2/.(1970) and quoted papers).

Moreover, quantitative studies on the irreducibility of the interior
to the exterior problem were initiated by H. Helmholtz (1887) who
introdguced the so-called conditions of var/gtions! selfadjoininess
(treated in detail in Santilli (1978e) as the integrability conditions for
the existence of a first-order Lagrangian! or of the corresponding
Hamiltonian representation. This provided rigorous mathematical tools
to establish that the trajectories of interior problems, i.e., the external
terms in Lagrange’s and Hamilton's equations, violate the integrability
conditions for the existence of a Lagrangian or & Hamiltonian in the
frame of the experimenter.

As we shall elaborate throughout this monograph, we can
therefore state that:

The “physical copditions of ynequivocal applicabllity” of con-
Yeational relgtivities 1s provided by the exterior dvnamical
probiem, wihile the dirrerent physical arenma under which
generalized refativities may have a physical valve is that or the
nterfor physical problem.

A classical example of the dichotomy exterior vs interior problem
is provided by Jupiter, whose exterior center-of-mass trajectory is
manifestly stable and verifies all conventional symmetries and

! That is, via a Lagrangian L depending at most on the first-order derivative of the
local coordinates, say, r, with respect to an independent variable t, L = L{t, r, £}. Unless
the contrary is explicitly stated, the first-order character of aill Lagrangians
considered in these volumes will be tacitly assumed hereon. Some of the systems
considered in these volumes will be representable in local approximation via
second-order Lagrangians L = L{t, r, ¥, ¥). The understanding is that the conventional
Lie-Hamiltonian formulations are lost for the latter representations.
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physical laws; nevertheless, the interior dynamics is manifestly
unsiable, nonconservative, as well as nonlagrangian—-nonhamiltonian.

A conceptual guidance of the classical studies of this volume is
therefore provided by Jupiter's structure. In fact, this volume can be
essentially considered as attempting the identification of the
generalizations of conventional Galilean, relativistic and gravitational
treatments which can provide a classical, direct, representation of
Jupiter's structure, as it appears to our experimental observations,
and without hypothetical, seemingly inconsistent {see below),
conservative reductions.

JUPITER'S STRUCTURE

CONVENTIONAL RELATIVITIES FOR
THE CENTER-OF-MASS BEHAVIOR

GENERALIZED RELATIVITIES FOR
THE INTERIOR STRUCTURAL PROBLEM

FIGURE 1.1.1: The first experimental observation at the foundations of
all contemporary relativities (Galilei’s, Einsteins special and
Einstein’s general relativities) can be identified in the first visual
observation of the Jovian system by Galileo Galilei with his  telescope
in 1609. The experimental observation at the foundations of the
generalizations of contemporary symmetries and related relativities
studied in these volumes can also be identified in the Jovian system,




but this time in the observation of Jupiter itseif, considered as an
extended composite system. A dichotomy of far reaching implications
emerges from this experimental evidence: the manifest local validity
of the rotational, Galilei’s and Poincare’ symmetries in Jupiter's
exterior motion in the Solar system, and the equally manifest breaking
of the same symmetries in the interior structure, as established by
nonconservative interior trajectories, vortices with monotonically
varying angular momenta, etc. In these monographs we shall show
that the Lie-isotopic generalization of the conventional formulation of
Lie's theory permits the quantitative representation of this dichotomy
at all levels, the Newtonian, the relativistic and the gravitational
levels, as submitted in Santiili (1978a), (1882b), (1988a, b, c, d), and
{1991a~d). As we shall see, the Lie-isotopic formulations permit the
achievement of nontrivially generalized interior structures, in such a
way to preserve the abstract symmetries and the axiomatic structure
of the exterior physical laws, although realized in their most general
possible, nonlinear and nonlocal form. In this way, we shall attempt
an ultimate wunity of mathematical and physical thought, whereby all
distinctions between the exterior andthe interior prebiem, or between
conventional and generalized formulations cease to exist at the
abstract, realization-free level.

In a subsequent monograph we hope to review the operator
formulation of our results, and apply them to the problem of the
hadronic structure. The primary objective which stimulated the Lie-
isotopic studies (Santilli (1978a) and (1978b)) is that of attempting the
identification of the hadronic constituents with ordinary {massive)
physical particles modified in such a way by short range, noniocal,
internal forces, that they can be consistently produced free in the
spontaneous decays, as occurring at the atomic and nuclear levels.

In different terms, the hope of these studies is that of investigating
whether the historical identification of the atomic and nuclear
constituents freely produced in the spontaneous decays, can also be
extended, in due time, to the hadronic structure, of course, under
suitably generalized formulations. For this purpose, it may be of some
assistance to identify a conceivable operator counterpart of the
classical lines of inquiry of this work.

Hadrons (see the reprints of the historical contributions in
Lichtenberg and Rosen, editors (1980)) are currently conceived as
being strictly Lagrangian or Hamiltonian, with a strictly local-
differential and potential-Lagrangian structure. This essentially
implies the treatment of the hadronic structure as an erterior
dynamical problem.




In Santilli (1978b} we submitted the conjecture that the hadronic
structure is an operator version of the classical structure of Jupiter,
much along the historical open legacy of the ultimate nonlocality of
strong interactions. In fact, in their exterior center-of-mass dynamics
{e.g., in a particle accelerator) hadrons obey all conventional
symmetries and relativities, as is the case for the motion of Jupiter in
the Solar system. Nevertheless, the interior dynamics of hadrons could
well be generalized, along Jupiter’s interior structure.

After all, hadrons are the densest objects measured in laboratory
until now. Moreover, under sufficient dynamical conditions on the
wavelength of nearly free constituents (asymptotic freedom) and on
the size of the hadrons (that is, the effective range of strong
interactions), we have an evident wave overlapping producing the
nonlocal nature of strong interactions.

Needless to say, the hadronic constituents can indeed have a
point-like charge {such as the electron), as supported by current
experimental evidence (Bloom e &/ (1969)). However, “point-like
wavepackets” do not exist in nature, thus resulting again in the
nonlocal structure of hadrons which, rather than being new, is in
actuality the open historical legacy of Fermi {1949), Bogoliubov (1960),
and others.

It then follows that, while in the atomic structure we have very
Jarge mutual distances as compared to the size of the wavepackets of
the constituents, in the hadronic structure we have instead mutual
distances of the order of magnitude of the wavelength of the
constituents themselves. This results in 2 quark motion which is typical
of all interior problems because it is characterized by the motion of an
extended wavepacket within the physical medium constituted by the
wavepackets of all remaining constituents, called Aadronic medivn
(Santilli (1978b)). )

AS a result, e hadronic structure, could therefore be
gnalytically equivalent to that of Jupiter in tie sense that motion of &
hadronic constituent Ilnside a hadron could experience rorces
anzlvtically equivalent to those, S&y, of & space-ship moving in
Juplters atmospliere, resuliing in both cases i the presence of short
range, nrernal forces of nonlocal and nonhamilton/an type.

In conclusion, a conceptual guidance for our operator studies can
be given by the hadronic interior problem conceived precisely along
the hystorical teaching by Lagrange, Hamiitpon and Jacobi recalled
earlier for the interior problem.




1.2: INEQUIVALENCE OF INTERIOR AND EXTERIOR
PROBLEMS

Consider a test particle in the gravitational field of a celestial object,
say, Jupiter. When considering the exterior trajectory, motion occurs
in empty space which is known to be homogeneous and isotropic to the
best of our approximations. Under these conditions, the actual size and
shape of the test particle do not affect its dynamical evolution. The
particle can then be effectively assumed as being dimensionless,
resulting in Galilei’s concept of “wassive point™ indicated earlier.

In turn, this implies the exact validity of a local-differential
geometry. Since points cannot collide, the only admissible forces are
the conventional action-at-a-distance, potential forces called
varizlionally selfadjornt (Helmholts (1887), Santilli {1978e)). The orbits
are therefore necessarily stable, with consequential validity of
conventional symmetries, such as the rotational symmetry O(3), the
Galilei’s symmetry G(3.1), or the Poincaré symmetry P(3.1).

We can therefore say that:

The exterior gvaanmical probleq consists of motion or point-fike
particles in vacvum under potential (selfadjoint), and therefore
Lagrangian-Hamiftonian rorces, and can be errecrvely
represented vig the conventions! Lagranges and Hsmilton's
equations without exteirnal terms, therr Lie glgebra strucrure,
and their focal-dirrerential geometries (e.g, svmplectic or
Riemannizn .

When the same test body penetrates Jupiter's atmosphere, thus
passing to the interior dynamical problem, the physical framework is
profoundly different. To begin, we now have motion within a physical
medium which is evidently inbomogeneous (e.g., because the density
of Jupiter tends to zero with the increase of the distance from its
center), and az/sotropic (e.g., because Jupiter’s intrinsic angular
momentum creates a preferred direction in the medium considered).

Also, the actual size and shape of the test particle cannot be
ignored any longer, because they affect directly its dynamical
evolution. As a result, we cannot any longer claim motion of a point-
like particle in vacuum, but we have instead motion of an extended
object within a generally inhomogeneous and anisotropic physical
medium.

Moreover, the acting forces are given by the conventional
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potential {say, gravitational) forces which evidently remain unaffected
by the interior dynamics, plus the contact forces, that is, forces
caused by the actual contact of the extended object with the physical
medium.

In particular, besides being nonlinear, these latter forces are

known to be generally non-newtonian® as well as:
1) of monfocal type ,in the sense of requiring surface or volume
integrals for their representation (Hofstadter (1970}, or Fujimura
er a/ . (1970));

2) of roufggrangizn-nonhamiftonian type , first, because the
notion of potential has no physical meaning for contact
interactions and,more deeply, because they are (variationally)
ponselradioint {Helmholts (/oc /), Santilli (/oc. /g, ie., they
violate necessary and sufficient conditions for the existence of
a Lagrangian or a Hamiltonian representation;
and, last but not least,

3) of zero rangein the sense that they occur at the instant of
mutual “contact” between the body considered and the medium,
thus being Jzscantanecous by conception at the classical level
(with the understanding that, at the operator-particle level,
they become of spore range type owing to their technically
different treatment}).

Finally, as a result of the latter interactions, the orbits are
manifestly unstable, e.g., because of the monotonic decay of the
angular momentum, thus resulting in an apparent (see Chapter III)
breaking of the rotational symmetry O(3). The local breaking of
Galilei's symmetry G(3.1) is then consequential, as requested, e.g., by the
inhomogeneous and anisotropic character of the interior media, the
lack of applicability of canonical formulations, etc.

In fact, the insistence in the exact validity for the interior
trajectories of the same symmetries of the exterior problem would
directly imply excessive approximations, such as the acceptance of

I Newtomian forces ¥ are traditionally assumed as depending on time t, the
coordinates r and their derivatives ¢, F = F(t, r, ), but of being independent from the
accelerations . Forces of the type F = F{t, r, I, ¥, ..} are therefore referred to as being
non-newtoniern.  While acceleration-dependent forces appear in the exterior
problem only in particular cases, as well known (see, e.g., Sudarshan and Mukunda
(974)), they do play a crucial role in the interior problem, as we shall see in Chapter
I11. Acceleration-dependent forces have also been brought to the attention of the
scientific community by other, quite intriguing aspects related to inertia (see Assis
(1989) and (1990) and Graneau {990},
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the perpetual motion in a physical environment, trivially, because of
the necessary conservation of the angular momentum.
In conclusion:

Lhe fprerior dvnamicsl problem consists of the motionh of

extended fand therefore deformable) test particles within
generally mmhomogeneous And anisotropic material media (with
the uwpderstanding thar the uwnderiyving space rewmzains
homogeneous znd Isotropic), and requires for an effective
reamment the orlginal Lagranees and Hamiftons egquaiions with
external erms representing the coniact rorces precisely afong
the original conception of the Founders of anslytic dvnamics
recalled in the preceding section; with suitably generslized
algebralc and geometrical SIructures.

A primary task of these monographs is therefore that identifying
the state of the art in the available generalized, analytic, aigebraic
and geometrical formulations for the gquantitative treatment of the
above interior systems, as a preparatory ground for their possible
operator formulation.

1.3: IRREDUCIBILITY OF THE INTERIOR TO THE
EXTERIOR PROBLEM

Physicists tend to react differently when exposed to novel physical
conditions.

A first group confronts the novel conditions for the specific
purpose of attempting a generglization of established theories , wWith
the knowledge that, even if the primary objectives cannot be achieved,
quantitative efforts always result in scientific advances, e.g., in the
knowledge of new techniques.

A second group of physicists, instead, tends to preserve as much
as possible old knowiedge via all conceivable efforts in rendering
the new physical conditions compatible with old theories.

The latter attitude has a clear scientific value, inasmuch as new
theories should not be developed for physical conditions under which
existing theories are sufficiently valid. However, there is a subtle line
beyond which the latter attitude has no scientific value, e.g., when the
insistence in old theories implies excessive approximations, and their
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applicability is not realizable on technical or experimental grounds.

Studies on interior dynamical problems have been systematically
dismissed by the second group of physicists throughout this century
on grounds of numerous {seemingly unpublished) objections. It is
important for the analysis of these volumes to review the most
important objections and show their excessively approximate
character, or proved mathematical inconsistency, or rigorously
established impossibility of experimental realization.

In particular, we shall point out that the conventional concepts of
the exterior problem, when applied to the interior probiem without
sufficient care as a result of protracted use, generally lead to
insidious inconsistencies as well as fundamental physical
misrepresentations.

The first objection refers to the classical and local treatment of
the interior problem and consists of the belief that the conventional
Lagrange’s and Hamilton’s equations are sufficient to represent
interior trajectories. The fact that this is indeed the case for
numerous physical systems, is undeniable (see, e.g., the numerous
examples of Santilli (1978e)). However, the lack of general applicability
of the conventional analytic equations is rigorously established by the
violation of the conditions of variational selfadjointness by the
systems of our physical environment {the so-called essestia/ly
nonseliadjoint systems, see Santilli (/oc c/7)). Besides, the insistence
in the general use of the conventional analytic equations would lead to
evident, excessive approximations of physical reality.

In fact, nonlocal forces can be well approximated via power series
in the velocities truncated (via suitable coefficients) at given powers.
The point is that, to avoid excessive approximations, such powers must
remain arbitrary, thus precluding the general existence of a direct
Lagrangian or Hamiltonian representation in favor of suitably
generalized representations of Birkhoffian type (Santilli {1982a)).

As an example, computerized guidance systems in contemporary
rocketry require the use of up to zhe renth power in the velocity or
more It is evident that, under these conditions, no Lagrangian or
Hamiltonian exists in the frame of the observer. On the contrary, the
existence of a direct Birkhoffian representation is ensured for the
systems considered (Santilli foc. cit./) with numerous methodological
possibilities, e.g., the consequential direct applicability of the optimal
control theory in the frame of the experimenter.

A second objection, also of classical and local nature, is that the
above noniagrangian and nonhamiltonian systems can be transformed
into suitable frames in which a c¢onventional Lagrangian or
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Hamiitonian exists. Under sufficient topological conditions {regularity,
locality and analyticity) the ZL/ie-Aoening Theorem ensures that there
always exists a tranformation under which a nonlagrangian or a
nonhamiltonian system admits a conventional Lagrangian or
Hamiltonian representation (see the geometric and analytic proofs of
Santilli (1982a), Sect. 6.2). However, the transformation is necessarily
noncanonica/ (evidently because the original system is
nonhamiltonian by assumption), and generally npon/inear ifn z//
variables. Therefore, the admitted frames are strictly wromimertis/
and, as such, rcompatible with the applicable refativizy. Besides, tze
Lransrormed rrames are not realizable /n experiments (g, because
e needed lranstorwations are hyperbolical or even ranscendental ,
see the examples in Santilli {1978a)), thus having a purely mathematical
meaning. As a result, the objection here considered is not physically
sound.

This is the reason for the insistence in various works by this
author (Santilli {1978a, b, c, ¢, e)) that zhe methodolaeical rormulstions
or the [nterior problem must be directly gpplicable in the rrame of the
experimenier. The same, evidently sound insistence will be Kept
throvghout the analysis of these volumes. Only gr7er the achievement
of a direct representation of the classical physical reality in the frame
of the experimenter, the use of the transformation theory may have a
physical value.

We can therefore state that g quaniitalive, classical treatment or
mrerior rajectories requires:

I the treatwent directiv i the rrame of the observer, to avord
marhematical noninertiz! rrames nohrealizable n actual
EXPErTNCNLS ARd olher MConsistencies;

I} a generally noniggrangian and nonhamiltonian theory, to
represent the inrerior rorces 8s they occur in the physical reslicy
or the experimenter; and '

Iy & generally nonfoca/~integral theory; moreover, If localitv is
gdmitred fn Hrst gpproximation, the theory must remain non-
Hamiltonian to avold excessive approximations or the ppe of
perpetuz! wotion 1 2 pAysical enviraiment.

Still another attempt at reconciling old theories with the new
physical conditions here considered, consists in the addition of a
“noniocal-integral potential” to a given Lagrangian or Hamiltonian.
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This approach too is inconsisient on a number of counts.
Mathematically, it implies the need of an integral topology, thus
resuiting in fundanental technical inconsistencies in the use of
conventional topological symmetries, such as the Galilei’s or Lorentz’s
symmetry.

Physically, the approach is manifestly inconsistent because, as
stressed earlier, contact forces have no potential. When they are
erroneously represented with a potential, this implies necessary
deviations from physical trajectories.

A final objection is moved by physicists interested in preserving as
much as possible old theories. It is the claim that the distinction
between the exterior and the interior problem is “illusory” because,
when the test body and the surrounding atmosphere are all reduced
to their elementary constituents, one regains motion of point-like
particles in vacuum, in which case all distinctions between the
exterior and the interior problems cease to exist.

This latter objection itself has been proven to be “illusory”
because intrinsically inconsistent and not technical realizable (Santilli
(1985¢)). Consider, again, a space-ship in Jupiter’'s atmosphere. Its
trajectory is manifestly noncanonical and nonhamiltonian, as
established by clear experimental evidence. On the contrary, the
elementary constituents of the space-ship are evidently assumed Lo
have unitary and Hamiltonian time evolutions. The following property
can then be readily proved.

THEOREM 131 (NO-REDUCTION THEOREM [ Samtilli (955¢/:
Under sufficient topological conditions, & classical noncanonical
and nonhamiftonian interior syvstem cannot be reduced to &
rinite colfection of umitary and Hamiftonian particles; ano,
viceversa, a Ifinite collection or unitary and Hamiftonian
particles cannot produce & classical noncanonical and
nonhamiftonian ensemble under the correspondence or other
Lnies,

The proof is trivial. In fact, a macroscopic, monotonically unstable
orbit simply cannot be decomposed into a finite number of stable
elementary trajectories; and, viceversa, a coliection of stable
elementary trajectories simply cannot result into a classical,
monotonically unstable ensemble. On the contrary, a classical, stable
system can indeed be decomposed into a collection of unstable
trajectories (Santilli (1978b)), as we shall review in Chapter II1.

The symmetry counterpart of the above property is then
predictably given by the following
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THEOREM £32 (NO-REDUCTION THEOREM 11 loc cit) Under
sufricient topological conditions, a ciassical Galiler- for
Lorentz-/ noninvaright svstem cannot be reduced to a rinite
collection or Galilei- for Loremtz-/ invariant particles; and,
Viceversa, & riiite collection of Galijei~ for Lorentz-} invarignt
partcies cannot produce s Galiler- for Lorentz-/ nomipvarisnt
ensemble vnder the correspondence or olier Nmits.

In fact, the local validity of the Galilei {(or Lorentz) symmetry
necessarily implies the stability of the constituents’ orbits which, as
such, cannot result intc a nonconservative and, therefore, Galilei~ {or
Lorentz-) noninvariant ensemble. For the additional “No-Reduction
Theorem [II” we refer the reader to the quoted lietrature for brevity.

The above theorems essentially establish that classical systems
such as a satellite during penetration in Jupiter's atmosphere with its
continuously decaying angular momentum, iS an experimental reality
outside the field of applicability of conventional symmetries and
relativities, and that the conceptual reduction of these systems to the
elementary constituents, cannot be consistently realized.

Stated in different terms, the above theorems indicate that the
contact, nonlocal and nonhamiltonian forces of the satellite in Jupiter’s
interior trajectory, by no means, are “illusory” and can be made to
“disappear” in the reduction of the satellite to its elementary
constituents,

In fact, we find exactly the same forces in the region of contact of
the satellite with the atmosphere.

Furthermore, along the open historicai legacy of the nonlocal
nature of the strong interactions (Fermi (1949), Bogolioubov {1960)), and
others, we expect to find again the nonlocal forces in the mutual
overlapping of the wavepackets of the constituents in the hadronic as
well as, to a lesser extent, in the nuclear structure {Santilli {1978b)). The
fact that current particie theories cannot accomodate this historical
legacy, is not a sufficient reason to conclude that strong interactions
are necessarily local

An objective of these monographs is therefore that of abandoning
conceptual abstractions, and confronting the problem of the
mathematical representation of interior trajectories as they appear in
our physical reality, that is, with internal nonconservations, of course,
in a way compatible with conventional settings in the exterior probiem.

Equivalently, we shall attempt a reconciliation between the exact
character of local relativities in the center-of-mass behavior
(exterior problem), and the open historical legacy of the ultimate
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nonlocality of classical and operator structures (interior problem).

The necessity of a joint study of the problem at the Newtonian, as
well as relativistic and gravitational levels can now be identified. In
fact, the excellent results of current quark theories {see, e.g.,
Lichtenbergand Rosen, editors (1980)) indicate the possibility that, after
all, the nonlocal and nonhamiltonian internal effects under
consideration here could be small in the hadronic structure, and
therefore ignorable at a first nonrelativistic and nongravitational
treatment. This could be the case if the wavepackets of quarks could
be experimentally proved to be very small as compared to the size of
the hadrons.

However, when passing to the gravitational treatment, the physical
evidence of the nonlocal structure of gravitation cannot be ignored.
As an example, in a star undergoing gravitational collapse, we have
not only the tota/ mutual pehetratiohr of the wavepackets ol the
constituents (Whatever their size), but also their compression in
large numbers within the same very small region of space. The
emerging, essentially nonlocal, and therefore nonselfadjoint structure
of the interior gravitational problem is then beyond any scientific
doubt.

At the same time, nonlocal and nonselfadjoint interior problems
cannot be solely studied at the gravitational level, but require for
consistency their study also at the preceding Newtonian and
relativistic levels, as done in these volumes.

In conclusion, the historical distinction between the exterior and
interior problems was established by the Founding Fathers of anaiytic
mechanics on rather sound physical grounds and direct experimental
evidence; it is confirmed by theoretical studies on their inequivalence,
and all known objections are not technically consistent at this writing.

This establishes the open character of the central objective of
these monographs: the construction of the space-time symmetries and
relativities of interior nonlinear, nonlocal and nonhamiltonian
problems at the Newtonian, relativistic and gravitational levels.

1.4: LIE-ISOTOPIC AND LIE-ADMISSIBLE FORMU-
LATIONS

Contemporary theoretical physics is centered in the analytic,
algebraic and geometric formulations underlying the Hamiltonian
representation of conservative, exterior, dynamical systems, i.e., their
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representation via the familiar Agavitons eguations withour external
terms

. 8Hir,p)
il = — P = - , (4.1)
ap; ar!
where r represents the coordinates of the experimenter, p is the
linear momentum and H = T + V is the Hamitonizn (the total energy).
The brackets of the theory, the familiar Poisson brackets among
functions A{r,p) and B(r,p) in phase space

8A @B B 8A
(A Bl = - . (4.2)
ark  apy ark  ap,

verify the ZLie afgebra sxioms
[A,B] + [B,A]l = 0, (4.3a)
[A,[B.Cll + [B.[C,All + [C[A, Bl = 0. (4.3b}

The antisymmetry of the product, Eq. (4.3a), and the lack of
external terms, render the theory particularly suited for the
representation of conservative systems, for which the total energy is
trivially conserved,

H=[HH =0 H=T+V. {4.4)

Regrettably, the interior problem has been grossly ignored in this
century, with only few contributions known to the author.

Some of the most comprehensive studies of nonconservative
interior conditions are those conducted by Prigogine and his
collaborators {see Prigogine (1962), (1968} and (1990) and quoted papers),
primarily along statistical lines but with rather deep analytic and
operator counterparts. Additional studies in interior dynamics have
also been conducted by few other researchers (see, e.g., Edelen {1977),
Ziman (1978) and quoted literature).

Somewhat stimulated by Prigogine’s pioneering work, this author
initiated his research (Santilli (19567), (1968) and ({1969)) with a reinspection
of the original Hemiitons equstions with externil/ terums
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oH(r, p} 8H(r, p)

. Py = - i
apl ! Br’

=

+ Fjlt, r. p). {4.5)
and the indication that the brackets of the time evolution

dA

AxB = [A,B] + Fj (4.6)

violate the necessary conditions to constitute an algebra {the right
scalar and distributive laws, see App. 1LA), besides evidently violating
the Lie algebra axioms {4.3). Nevertheless, when written in the form

8A . @B

(4,B) = [A,B] + — sj —, (4.7a)
8[’1 ap]

sij= diag (0,s), s=F / {3H/op), (4.7b)

the brackets verify all the necessary conditions to constitute an
algebra, and that algebra results to be a generalization of Lie algebras
knownh as Zie-aduwissible algebras (Albert (1948)) with the following
axiom in classical realization

(ABC) + (BCA)+ (CAB) = (CBA) + BAC) + (ACB),  {48)

where the quantity

(ABC) = (A, (BL) - (AB)C), (4.9)

is called the associator:

While the primary emphasis of the conventional Hamiltonian-Lie
formulations is on the conservation of total quantities, the primary
emphasis of the above Lie-admissible formulation is on the
characterization of the fmwe-rate-or-variation of pfhiysical quantives.
In fact, since product (4.7) is no longer antisymmetric, it cannot any
longer represent the total conservation (4.4), but represents instead
the variation of the energy H in time,

_ aH
H=@HH=—TF ~0 (4.10)
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Therefore, the Lie-aoumissible rormylations are particulariy suvited
ror the representation or an individuval, open-nonconservalive
interior mrgjectory, say, a satellite during penetration in Jupiter's
atmosphere which is considered as external.

The formulations were introduced in the memoir Santilli (1978a.c},
and then developed in the monographs (Santilli (1978c) and (1981a)).

AS a complement to these Lie-admissible studies, the author
submitted an aiternative formulation of the interior dynamics based on
Birkholrs generalization of Hamiftons eguations (4.1} (Birkhoff (1927)),
which can be written

dH(a)
al = oMV) (4.11a)
32V
a=f@Yy=(@p, n=12..2n, (4.11b)
where Birktorr’s tensor PV is given by
QW = (Jaud H MY (4.12a)
aR(a)  oR,fa)
Q@) = - , {4.12b)
sat aa¥

and admit the Hamiltonian formulation as a particular case for R = (p,
0) {see Sect. IL.8).

Unlike Hamilton’s equations (4.1}, Birkhoff’s equations have been
proved to be direct/v wvmiversal , ie., capable of representing all
possible nonlinear and nonhamiltonian interior trajectories in local
and analytic treatment (universality), directly in the frame of the
experimenter (direct universality) (Santilli {/oc <z ).

The algebraic structure is characterized by the brackets

) oA , B
[AB] = — oV —, (4.13)
aalt aaV

which result to be the most general possible classical, and regular
realization of the Lie algebra axioms, i.e., to verify the axioms

[A Bl + [B Al= 0, (4.142)

A B cll + B [c all+ [c {a Bl = 0. (4.141)
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The mapping from Hamilton's to Birkhoff’s brackets within a fixed
system of local variables

[A,B] = [A.B] (4.15)

is called {for certain historical reasons reviewed in Sect. IL1)) a Z/ie-
/soropy and it implies, as we shall see, a corresponding generalization
of the entire Lie’s theory into the so-called Lie~isoropic theory.

Unlike the Lie-admissible formulations, the Lie-isotopic ones are
based on brackets (4.13} which are totally antisymmetric as the
conventional ones. As a result, be Lie-isolopic rformulalions are
pariicularly suited for the representation of the conservation of the
fotal energy,

H=[H.H =0, {4.18)

under a generalized Internal strvcture represented precisefv by the
generalized Lie tensor 2 #

The Lie-isotopic formulations therefore possess a structure
particularly suited for the representation of closed-isolated systems
such as Jupiter's when considered as isolated from the rest of the
Universe, which evidently verifies total conservation laws under a
generalized nonhamiltonian internal structure,

The main lines of the Lie-isotopic theory (isotopic universal
enveloping algebras, Lie-isotopic groups and Lie-isotopic algebras}
were outlined in the memoir {Santilli {1878a)) as a particular case of the
broader Lie-admissible formulations, and subsequently developed in
the monographs (Santilli (1982aj} . A recent review for mathematicians
has been provided by Aringazin er g/ {1990).

An objective of the alternative, Lie-isotopic approach is to show
that, in the transition from the exterior to the interior dynamics, there
is no need to abandon the conventional analytic, algebraic and
geometric structures of contemporary physics, but onily the need to
pass from their simplest possible (Hamiltonian) realizations to their
most general possible (Birkhoffian) forms.

These monographs are primarily devoted to the Lie-isotopic
formulation of interior dynamics. The reader should however be aware
that our results can be reformulated in terms of the broader Lie-
admissible approach. In fact, the central topics of these studies, the
Lie-isotopic generalizations of the Galilei and Poincaré symmetries,
are particular cases of still more general, Lie-admissible
generalizations of the same symmetries (Santilli (1981a)).
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1.5: BACKGROUND LITERATURE

The beginning of the analytic part of the Lie-isotopic studies of these
monographs can be identified with Birkhoff’s (1927) proposal of Eq.s
{4.11). The algebraic and geometrical structures of the equations,
however, had remained essentially unknown. Also, Birkhoff applied his
equations to typical exterior problems, such as the stability of
planetary orbits.

The Lrie-rsotopic generalization of the conventional rormulation of
Lies theory was apparently submitted for the first time in Santilli
{1978a, c), and continued with the monographs (Santilli (1978e) and
{1982a}}.

The author’s contributions most relevant for these monographs are
the identification of the transformation theory underlying the Lie-
isotopic theory with a general theorem on the Lieisotopic symmetries
{(Santini (1985a)), the study of the isotopies of contemporary algebras
and geometries (Santilli (1988b) and (1991a, b)), and the isotopic liftings
of: the rotational symmetry (Santilli (1985b)), the Galilei symmetry
{Santilli {1982a) and (10988a));, the Lorentz symmetry (Santilli (1983a)); the
Poincare’ symmetry {Santilli (1988c)); and of Einstein’s gravitation (1938d).
Additional studied can be found in the ICTP preprints (Santilli {1991c-n}).

Independent contributions in Z/e-isoropy are the following. The
construction of specific examples of the Lie-isotopic generalizations
of Galilei’s relativity was done by by Jannussis ez 2/ (1991).

Contributions on the Lie-isotopic generalizations of Einstein's
special relativity known to the author are those by: de Sabbata and
Gasperini (1982) on the maximal causal speed in the interior of
hadronic matter; Aringazin 1889) on the “direct universality” of the
Lie-isotopic relativity; Mignani (1992) on the application to the problem
of the quasars’ redshift; Nishioka (1984a, b) and Jannussis (1985) on
certain Lagrangian densities invariant under the Lie-isotopic Lorentz
symmetry; and Cardone ez &/ (1992) on the phenopmenological
interpretation of current experiments on the behaviour of the
meanlife of unstable hadrons with speed.

Additional fundamental contributions of Lie-isotopic type outside
relativity profiles are those by: Gasperini {1983a, b) on the first
construction of a Lie-isotopic gauge theory (see also the isotopic
degrees of freedom of gauge theories in Santilli (1979b); Nishioka (1983)
and (1984b, c), Karajannis (1985a, b) and Karajannis and Jannussis (1936)
on the development of certain aspects of the Lie-isotopic gauge
theory; Karajannis's (1985) first Ph.D. Thesis on isotopic gauge theories;
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and Mignani's {1984) first construction of the Lie-isotopic SU(3)
symmetries.

The first isotopic generalizations of Einstein’s gravitation on
conventional Riemannian spaces were proposed by Gasperini {1984a, b,
c) with a local Lie-isotopic Lorentz symmetry along Santilli’s ((1978a)
and (1983a)) proposal which were defined everywhere in space-time.
Santilli {19884, 1991a, b, c) restricted the validity of the theory to the
interior gravitational problem only, and formulated the theory on
suitable isotopies of the Riemannian space (see next chapter). A
geometric Lie-isotopic treatment of torsion was provided by
Rapoport-Campodonico (1991).

A {irst review article is that by Aringazin er g/ (1990), following by
a review monograph by the same authors (Aringazin ez 2/ {1591}).
Another review monograph of more mathematical orientation is that
by Kadesivili {1982). This exhaust all physical contributions in classical
Lie-isotopic theories known to the author (contribution on operator
formuiations have not been considered here to be quoted in a
separate work).

Besides the papers (Santilli (199ia, b)), the only known contribution in
a mathematical journal specifically devoted to Lie-isotopic algebras is
the review for mathematicians by Aringazin ez &/. (1990).

Numerous theories possess an essential Lie-isotopic structure,
although mostly unknown. A notable case is that of two of the last
articles written by Dirac (1971, 1972) on a certain generalization of the
Dirac’s equation which has resulted to possess an essential invariance
under the Lie-isotopic Poincare’ symmetry, as shown by Santilli {1991d).
Numerous other cases of theories with an unidentified Lie-isotopic
structure exist in the literature, as the reader will be in a position to
see following the study of these volume.

A further class of Lie-isotopic theories are those formulated
within the context of the conventional Lie’s theory, but which can be
better treated within the context of the covering Lie-isotopic theory.
The most important case is that of Bogosiowsii's special refatvicy
(Bogoslowki (1977), (1978} and (1984)) which achieved the first
generalization of Einstein’s special relativity for amisoiropic space-
ume ,and which is a particular case of our Lie-isotopic relativity for
Inhomogenous and anisotropic physical media, as we shall see.
Edward (1963) and Streltsov (1990) suggested another class of
generalized Lorentz transformations with an anisotropy in time. Also,
Recami and Mignani (1972) introduced a yet different generalization
capable of mapping space-time into time-like events, and viceversa
which, as we shall see, is particularly significant for our analysis.
Important work that appears to be directly related to ours can be
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found in the recent monograph by Logunov and Mestvirshvili (1989) and
references quoted thereof, which focuses the attention on
gravitational sources beginning at the relativistic level. Other
generalizations of Lorentzian theories will be listed whenever needed.

A third class of studies worth a mention is that on the so-called
generalized Porfsson brackers which, as we shall see, are precisely of
Lie~isotopic type (4.13). For a general Newtonian and relativistic
presentation, the interested reader may consult Sudarshan and
Mukunda (1974). The relativistic notion of generalized Poisson brackets
was introduced by Dirac (1950), (1958) and (1964) and also constitutes a
realization of the relativistic Lie-isotopic brackets. Further
relativistic studies with generalized brackets can be found in Martin
{1959}, Hughes (1961), Hill (1967) and quoted papers. As we shall see, these
latter studies too are particular cases of the relativistic Lie-isotopic
theories.

The independent physical contributions in the broader Lie-
admissible formulations {Santilli {(1967), (1968) (1978a,b,c.d) and (1981a)} are
more numerous, such as those by:

1} Kobussen (1979), who introduced a classical, Lie-admissible field
theory;

2) Trostel {1982a, b), who proposed a geometrical extension of the
conditions of variational selfadjointness;

3) Scoeber ((1981) and (1982)), who introduced a (non~Fuclidean) non-
Desarguesian geometry for open Lie-admissible systems;

4) Fronteau ((1979) and (1982)), who introduced the foundations of a
Lie-admissible statistical mechanics for open systems along the
original Jacobi's theorem recalled earlier (see also Fronteau er 2/
(1979))

5) Tellez-Arenas (1982) (see also Tellez-Arenas et z/. (1979)), who
worked out certain aspects of Fronteau's Lie-admissible statistics;

6) Ktorides et al. (1980), who worked out certain mathematical
problems (a generalization of the Poincare-Birkhoff-Witt theorem to
flexible Lie-admissible algebras);

7} Mignani ((1982), (1984b), (1985), (1986) and (1989)), who made several
important contributions, including the construction of a Lie-admissible
generalization of the scattering theory for open systems; 8}
Jannussis {{1985), (1986)) and Jannussis er &/ ((1982), (1983), (1984), (1985},
(1986), (1987), {1988), and {1891)), who made a large number of contributions
on numerous aspects, including the proof of the direct universality of
the Lie-admissible formulations for nonconservative classical and
operator systems, the identification of the algebraic structure of the
so-called g-algebras, of Caldirola’s equation, etc,; 8} Eder
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{1981) and (1982)}, who developed the Lie-admissible notion of SU{2} spin
proposed by Santilli {1978b) and (1981b)) for the case of flexibie Lie-
admissible algebras with applications to neutrons interferometric
experiments (Rauch (1981) and (1982));

10) Animalu {(1982), {1986), {1987} and (1991a)), who worked out a number
of developments, including an alternative formulation of Lie-isotopic
and Lie-admissible relativities, a Lie-isotopic study of “Dirac’s
generalization of Dirac’s equation”, an application of Lie-isotopic
theories to superconductivity {1991b), and others;

11} Nishioka ((1983), (1984), (1985), (1986), (1987) and (1988)), who made
several important contributions, ranging from Lagrangian to
geometrical structures, at the nonrelativistic, relativistic and
gravitational levels, as well as in the classical and operator
treatments;

12) Aringazin ((1290), (199]) and quoted papers) made several
additional contributions;

13) Mijiatovic (1990}, who studied several aspects of open sysiems;

14} Veljanoski er &/ (1987), who studied ceriain aspects of open
systems;
and others.

Worth a special mention is Gasperini (1985), who presented his Lie-
isotopic gravitation as a particular case of the more general Lie~
admissible generalization of Einstein’s gravitation. Jannussis (1985},
Gonzales-Diaz {1986) and others submitted a number of advances in
Gasperini's Lie-admissible gravitation for open conditions, e.g., a test
particle in the interior of Jupiter considered as external, or the
possible Lie-admissible cosmological structure of an open Universe.

Adler (1978) identified a certain form of classical chromodynamics
with a Lie-admissible structure of a particular type (called trace-
admissible). but this line of studies was not continued. This is
regrettable because contemporary string theories can also be shown
to possess a Lie-admissible structure.

Unlike the Lie-isotopic algebras (which, rather oddly for
mathematicians, have been solely developed in physics Journals), the
mathematical literature in Lie-admissible algebras is rather vast (see,
e.g, the mathematical bibliography on nonassociative algebras by
Balzer era/. (1984))

This completes the most significant classical contributions in Lie-
isotopic and Lie-admissible theories known to this author at this time.

The mathematical content of the remaining part of this Volume |
will essentially follow the presentation of Santilli {1988b) and (1991a, b).
The physical contents of Volume 11 will essentially follow the most
importart memoirs written by this author (Santilli (1978a), (1988a, c, d)).

24




CHAPTER Hi:

MATHEMATICAL FOUNDATIONS

I.1: STATEMENT OF THE PROBLEM

In this chapter we shall identify the analytic, algebraic and
geometrical tools for the guantitative treatment of classical interior
dynamical systems of N particles in their first-order, vector-field
form.

From a mathematical viewpoint, these systems are given by the

most general known regular, analytic (or C°°), nonlinear, integro-
differential, first-order systems of ordinary differential equations,
which can be written as vector-fields in cotangent bundle (phase
space)} with local variables a = (r, p}
i.la
a= @ = = Mtaa.) =T =
Pia

pia/ma

SA NSA : NSA : v (L1)
F ia(r) PR p b, +_r do ¥ G r.p. P,

i=123y2, a=12.,N p=12.6N

where: r are the coordinates of the experimenter, the p’s represent
the linear momenta; the m's are the masses of the N particies all
assumed to be non-null; SA and NSA stand for variational
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seifadjointness and nonselfadjointness, respectively (Santilli (1978e));
and o reprersents a surface or volume.

More specifically, in this chapter we shall identify mathematical
tools which can:

1) Represent forces that are generally nonlinear and nonlocal-
integral in all variables, as well as nonlagrangian-nonhamiltonian

{footnotel, p. 5) and non-newtonian {footnote2 p.10);

2) Permit the construction of generalized space-time
symmetries representing conventional total conservation laws;
and, last but not least,

3) Admit conventional representations as particular cases
when performing the transition to the exterior problem, that is,
when motion exits interior physical media and returns in vacuum.

The formulations verifying the above requirements were submitted
by Santilli (1978a, c) under the name of Lie-fSotopic formulations . This
chapter is therefore devoted to the study of the analytic, algebraic
and geometric branches of the Lie-isotopic formulations.

The fundamental mathematical (and physical) idea is the
generalization of the conventional trivial unit I of current theories, I =
diag. {1, 1, ...,1), into a quantity ! which is nowhere null {i.e., everywhere
invertible in the considered region of the local variables} and
Hermitean (i.e., symmetric and real valued), but otherwise possesses
the most general possible, nonlinear and nonlocal dependence on: time
t, coordinates r; their derivatives of arbitrary order ¢, ¥,. (or p, p...); as
well as any other needed quantity, such as the density p = p{r) of the
local medium considered, its local temperature T(r), its index of
refraction n = niy) (if any} , etc.

1 = diag.{1,1,...1) = 1T =1 i p 10,0 (1.2)

All our formulations, whether analytic, algebraic or geometric, are
then generalized in such a way to admit the quantity 1 as their unit. In
particular, systems (1.1) will be represented via a conventional
Hamiltonian H = T + V characterizing the selfadjoint forces, and by
embedding all nonhamiltonian forces in the generalized unit 1. The
insensitivity of conventional formulations to the topology of their unit
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will then allow the representation of nonlocal-integral interactions.
The similarities as well as the differences with the original
equations {4.5) should be noted. One of the most important teachings we
have received from Hamilton is that the knowledge of only one
function H = T + V we call today the Hamiltonian is not sufficient to
represent the physical reality, because we need, in general, 3N + 1
functions, the Hamiltonian (representing all potential forces) and the
external terms Fy, (representing the contact nonpotential forces).

This teaching is implemented in its entirety in our isotopic theories.
In fact, as we shall see, the 6Nx6N-dimensional isounit 1 is
diagonalizable and reducible to 3N independent quantities. The
representation of physical systems via the isotopic theories therefore
calls for the knowledge of 3N + 1 gquantities, the Hamiltonian (for the
potential forces) and the 3N-independent elements of the isounit 1 {for
the contact nonpotential forces), exactly along Hamilton's teaching.

The motivation for the transition from Hamilton's equations (4.5) to
the isotopic theories is that the formers do not admit a consistent
algebraic structures (Sect. 1.4 and App. I1.A3}, while the latters not
only admit a consistent algebra in the brackets of the time evolution,
but in particular that algebra results to be Lie,

As we shall see, the assumption of 1 as the generalized unit of the
theory has nontrivial mathematical implications, inasmuch as it implies
the generalization of each and every notion used in contemporary
mathematics, such as: fields, metric spaces, Lie algebras, symplectic
geometry, affine geometry, Riemannian geometry, etc.

Physically, generalization {1.2) has equally far reaching
implications, inasmuch as it requires a zecessary generalization of
conventional space-time symmetries and, consequently, of
contemporary relativities.

The methods for the construction of the generalized formulations
are known under the generic name of Jsotop/es (Santilli, (Joc ot )}
In particular, the generalization 1= 1, is called an fsorgpic firting of
the conventional unit I, and the generalized unit 1 is called an Isotopic
upre, or isounft for short.

The main idea of the isotopies is that of identifying the ultimate
geometric properties and/or axioms of the theory considered, and
realizing them in their most general possible way. This generally result
in an infinite number of possible isotopies, and explains the reason for
the use of the plurals in the title and throughout this volume.

As a first example, the primary properties of the conventional unit

% From hereon sections will be denoted with the chapter first, and then the section,
while equations other than those of the section at hand, will be denoted with chapter,
followed by section and equation number,
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I are those of being nowhere singular, real valued and symmetric. The
lifting I = 1 is then an isotopy. Later on, in physical applications we
shall add the condition of positive-definiteness (which will be
instrumental in proving the local isomorphism between the isotopic
and conventional symmetries).

A similar situation occurs for fields, metric spaces, aigebras, etc,
as we shall see,

One aspect which should be brought to the reader’s attention since
these introductory words is that, owing to the deep inter-relation and
mutual compatibility of the varicus mathematical structures used in
dynamics, the isotopies of any one of them require the isotopies of all
others.

For instance, the isotopy of an algebra soon requires that of the
underlying field which, in turn, requires the isotopy of the space in
which their modular action holds which, in turn, requires the isotopy of
the applicable geometry, etc.

This is the reason why we shall start with the isotopies of fields,
and then pass to those of linear spaces, metric spaces, algebras,
geonietries, etc,

A second important aspect of our analysis is the restriction of the
isotopies to those admitting a well identified (left and right) isounit 1.
As well known from a mathematical profile (see, e.g., Jacobson (1962)),
the conventional Lie's theory is formulated with respect to the trivial
unit 1 of current use in all its branches (universal enveloping
associative algebra, Lie algebras, Lie group, representation theory,
etc.). 1t is then evident that the selection, say, of an isotopy of the
associative enveloping algebra which does not possess the unit? is
bound to be inadequate for the gquantitative treatment of interior
systems of type (1.1).

The terms Lie-isotopic theory are specifically referred to the
generalization of the various branches of the conventional Lie’s
theory when formulated with respect to, and under the condition of
the existence of the most general possible isounit 1.

On physical grounds, the existence of the conventional unit I has
fundamental implications, e.g., because a measurement theory cannot
be consistently formulated without the existence of a left and right
unit I of the universal enveloping associative algebra, classically and
quantum mechanically. It is evident that no consistent generalization
of current physical theories can be achieved without preserving,
although in a generalized way, the fundamental notion of unit.

4 See later on Sect. 4 of Chapter If for specific examples of isotopies of associative
algebras without unit..
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An intriguing point is that, despite the known interplay between Lie
algebras, analytic mechanics and symplectic geometry, Lie-isotopic
algebras readily permit the identification of their isounit {e.g., via the
appearance of the isotopic element directly in the brackets of the
algebra, as shown in Sect. 1.5 and 1L.6) while the same identification
was generally unknown until recently in the corresponding analytic
and geometric treatments.

As an example, the Birkhoffian generalization of a Hamiltonian
mechanics was formulated (Santili (1978a) and (1982a)) as a classical
realization of the Lie-isotopic algebras via product {1.4.13) which, as
one canh see, has no identification of the isounit of the theory. The
two-forms of the corresponding symplectic geometry are equally
studied in the literature without any identification of the related
iscunit (Sect. 11.9).

In turn, the lack of identification of the isounit in the analytic and
geometric structures is responsible for the restriction of the
represented systems to those of nonlinear and nonhamiltonian type
although in their local-differential approximation.

These latter aspects were resolved in Santilli (1988a, b, ¢, d} and
(1991a, b). A central objective of this monograph is to identify analytic
and geometric formulations that are true counterparts of the Lie-
isotopic theory, that is, which admit a readily identifiable isounit in the
structure of the brackets and of the two-forms.

In turn, such an identification is at the foundation of the classical
nonlocal treatments of physical systems presented in this monograph.

A third and final guideline should be presented from these
introductory words. The isotopies essentially represent the "degrees
of freedom” of given mathematical axioms and, by central conditions,
they produce no new abstract axiomatic structure.

As a matter of fact, this property is so universal that the most
effective criterion for ascertaining the mathematical consistency of a
given isotopy is that zhe conventiona! and isorepic rormulations must
coincide, by construction, 2t the RbSLracyt, reglization-yree jevel,

As a result, the reader should not expect the identification of new
Lie algebras via the use of isotopies, trivially, because all Lie algebras
(over a field of characteristic zero (see next section) are known from
Cartan’s classification. On the contrary, zZbe rsofopies wil merelv
produce mnfnitely many direrent realizations of known gbstract Lie
algebras’®

5 This is the case for Lie algebras over a field of characteristic zero (see footnate’
it the next section) which have been fully classified. The situation for Lie algebras
over a tield of characteristic p is different inasmuch as their classification is far from
being complete, as well known in mathematical circles. It is therefore possible that

29




Therefore, the Lie-isotopic generalizations of the Galilei and
Poincaré symmetries treated in these volumes coincide, by conception
and realization, with the conventional Galilei and Poincaré symmetries,
respectively. More generally, our isotopies of Galilei’s relativity,
Einstein’s special relativity and Einstein’s gravitation for the interior
problem will be such to coincide with the conventional exterior
relativities at the level of abstract, realization-free formulations.

In short, the isotopies permit the achievement of a rather
remarkable unity of mathematical and physical thought in which the
fundamental space-time symmetries and physical laws, rather than
being abandoned, are preserved in their entirety, and only realized in
the most general possible nonlinear and nonlocal way.

The content of this chapter originated in & number of papers
identified in the various sections. Its first comprehensive presentation
appeared in Santilli (1988b), and was then expanded in (Santilli {1991a, b}}.
which are essentially followed in this review.

The mathematical literature on isotopies is rather limited indeed.
While working on the original proposal (Santilli (1978a)) at the

Department of Mathematics of Harvard University®, this author
conducted an extensive search in all Cantabridgean mathematical
libraries. The ox/r mathematical book that could be identified with
the notion of isotopy was Bruck (1958), who points out that the notion
dates back to the early stages of set theory, whereby (wo sels were
called isotopically related Ir they could be made to coinclide vig
Periutations.

An extensive search in abstract algebras revealed that the notion
had been applied to associative and (commutative) Jordan algebras
{(see the mathematical bibliography by Baltzer ez 2/ (1984)), but this
author could identify in the mathematical literature up to 1978 no
application of the notion of isotopy to structures of direct physical
relevance, such as Lie algebras, metric spaces, etc.

Stil! at this writing, to the author’s best knowledge, no additional
mathematical book has appeared with the notion of isctopy, and the
only articles appeared in a mathematical Journal with the names "Lie-
isotopic algebras” are those by Aringazin er #/ (1990) and Santilli
{i9gia, b).

It appears appropriate to end this section with Bruck’s (/foc ¢it)
remark:

~ The notion \of isotopyl Js so natural to crecp in unnoliced,”

the use of isotopic techniques may assist in identifying new Lie algebras.
% Under contracts from the US Department of Energy Numbers ER-78-8-02-4742.A000,
AS02-78ER04742 and DE-AC02-8-0ER10651 which are here gratefully acknowledged.
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I.2: ISOFIELDS

Recall that a s7e/o’ (for a mathematical reference consult, e.g., Albert
(1963) and a presentation for physicists is, e.g., that by Roman (1975)) is a
set F of elements ¢, B, ... equipped with two (internal) operations,
usually called gddiiona + § and wmuftiplication or product ap, such
that

1) Propereies of addition: For all o, B,y €F, a+8=p+a,anda +
+ vl ={g+ B) +v; for each element & there is an element 0, the unit for
the addition here called godii/ve wmit such that @ + 0 = ¢ and an
element - @ such that ¢ + (~a) = 0; and the set is not empty, ie, there
exist elements a ~ 0;

2) Properiies or multiplication: for all o, B,y € F we have ap = Ba
and «alpy) = {ap)y; for all elements a € F there exists an element I, the
unit for the multiplication here called mu/tiplicative unst, such that al

= J@ = ¢, and an element ol suchthateal = o la = I; and the equations
oX =B ,and xo = B, for ¢ # 0, always admit solution,

3) Listriputive laws for all @, B,y €F, o+ v} = ap + ay, and (B +
Yo = pa + ya.

Unless otherwise stated, all fields are assumed of characteristics
zero?! throughout the analysis of this volume, so as to avoid fields
with an axiomatic structure different than that currently used in
physics. The extension of the results of this chapter to fields of
characteristic p # 0 is rather intriguing, but it will be left for brevity to
the interested mathematician.

The sets of real numbers R, compleX numbers C and quaternions Q
constitute fields with respect to the conventional sum and
multiplication. However, the octonions O do not constitute a {ield
because of the loss of the associativity of the product.

DEFINITION I 21 Given g rief/d F witl elewents &, b, v.., sum @ +
A multiplication af, and respeciive units § an1d 1, we detine as an
Isotope” F of F with respect to the multjplication the set F with
the same sum a + f and related unll O but equipped with a new
multiplication e+ and a new multiplicative uvnit I, called

7 Let F be a field with elements o, §,.. If there exists a least positive integer p such
that pe = 0 for all xeF, then the field F is said to be of charsctersstic p. The fields
of reals, complex numbers and quaternions evidently have chsracreriztic rero.
Contrary to a general belief ib physics, the classification of simple Lie algebras is
still incomplete. In fact, we have today the Cartan classification of &/ simple Lie
algebras, but ondv over a field of characteristic zero, because that over a field of
characteristic p is still incomplete at this writing.
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“multiplicative fsounit™ which verifies a/l properties ror F (o be a
lield,

Thus, an isofield is a field by construction. The basic isofields of
this analysis are the res/ Isorie/ds &, also called /fsoreals , ie., the
infinitely possible isotopes ® of the field of real numbers R, which can
be symbolically written

f={n|n=nlneR 170} (2.1}

and their elements n are called /[sonumbers As per Definition 11.2.1,
the sum of two isonumbers is the conventional one,

ﬁi + ﬁ2 = (n1 + nzn (22)
To identify the appropriate isoproduct, recall that 1 must be the

right and left isounit of . This is the case if one interprets T as the
inverse of an element T, called Jsolopic efemen!,

1 =711, (2.3)
and defines the isoproduct as
fyri, S ngTh,, T fixed. (2.4)
Then,
Txh = pxl =1, for allfi €f, {2.5)
as desired.

Note that the isotopic element T need not necessarily be an
element of the original field ®, because it can be, say, an integro-
differential operator. As we shall see, this feature is of fundamental
relevance for the applications of the isotopic theory.

Note also that the lifting I = 1 does not imply a change in the
numbers used in a given theory. This can be seen in various ways, e.g.,
from the fact that the isoproduct of an isonumber n times a quantity Q
coincides with the conventional product,

n*Q = nqQ, {2.6)

and in other ways we shall see in next chapters.
Note finally, from the complete arbitrariness of the isotopic
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element T in isoproduct (2.4}, that the field of real number ® admits an
infinite number of different isotopies.
Another field of basic physical relevance is the complex isofield C,

¢ =(@|ec=clcec 170} (2.7)

which plays a fundamental role in the operator formulation of the
classical isotopies of this volume. As such it will be considered
elsewhere.

An important property of the notion of isofield is that of permitting
the unification of all possible fields (of characteristics zero) into one
single, abstract field, say ¥. This unification can be expressed via the
following

PROPOSITION I12.1 The Infinitely possible isotopies # of the
neld or real numbers %, calied ‘isoreals’ coniain, s particv/ar
cases, all possible fields or characterisics zero.

PROOF: Let &, = ®1 be the field of real numbers with the ordinary

unit 1. The field of complex numbers C is an isotope of ® because it can
be written as the axiom-preserving tensorial product

C=#& = Ri xR, i1 = i, (2.8)

(or, depending on the viewpoint at hand, as the direct sum C=R = #ti
+ ?Rii), where | is the conventional imaginary unit. In this case the

isounit is the tensorial procuct 1 = 1 x 1, while generic elements have

the structure n = o *$, a, p € R In turn, the field of quaternions Q is
an isotope of C and, therefore, of R, because it can be written as the
tensorial product

Q=C=®& = a1x Rl « &l, <R, (2.9)

where 1, = i, k=1,2,3 By keeping in mind that octonions violate the

associativity law, structures (2.8) and {2.9) exhaust all possible
conventional fields of characteristics zero (Albert (1963)), by therefore
proving the proposition. Q.E.D.

Proposition 11.2.1 provides the first illustration of rather general
unifying capabilities of our isotopies. In fact, we shall see in the next
section that all conventional metric and pseudo-metric spaces (such
as the Minkowski, the Finslerian and the Riemannian spaces) are
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isotopes of the Fuclidean space, with similar unifications holding for
other mathematical structures.

It should stressed that the c/ass of mrinitely possible isotopes # Is
substantially more general than the class of fields %, C and ¢ In fact,
the isofield ® are defined with respect to an arbitrary, integro-
differential, nxn isounit 1.

As an illustration, the isofields #® include the notion of
quaternionic Isorield Q with a structure evidently more general than
that of the conventional field Q. Intriguingly, isofields Q do not appear
to have been studied in the mathematical or physical literature until
now

Finally, note that the isotopy F = F used in these volumes is solely
referred to the multiplication, and not to the addition. Needless to say,
a more general notion of isotopy including both sum and multiplication
as well as internal and external operations is conceivable, but its
study is left to the interested mathematician.

The notion of isofield was submitted by the author at the Clausthai
Conference on [irerential Geometric AMethods in Mathematical
Physics of 1980, and was subsequently elaborated in Santilli (1980),
{1981} and (1988b)) and Myung and Santilli (1982a).

11.3: ISOSPACES

A Jinear space V (see again Albert (1963) or Roman (1975)) is a set of
elements abc,.. over a field F of elements «, B, v, ... and vnits 0 and |,
equipped with the additions a+b, and a + b, and the multiplications ab,
aa, and ab, such that, for allapceVand g By eFratb=b+a;a+
+¢l=(a+ b)+c; afa) = (@p)a; ala + b} = ga + ab; (a + bja = aa + pa; for
every a € V there exists an element -a such that a +({-a)= a-a =0
and the multiplicative unit | of F is the right and left unit of V, ie, la =
al=1forallaceV,

From the above definition one can see that we cannot construct an
isotopy of a linear space without first introducing an isotopy of the
field, because the multiplicative unit I of the space is that of the
underlying field.

DEFINITION [L31: Given & [inear space V over & rfield F, the
isotope”™ ¥ or V with respect to the mulliplication, or the
“Isolinear space<, Is the same set of elements 2,0,¢c,.. € V defined
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over the Isorield F with multiplicative isounit J and is theretore
equipped with 8 new multiplication a+b, which Is such to veriry
a2/ the axloms rfor a linear space, Le,

a+p*a) = {ega, axa+ b} = axa + b, (3.1a)
{a+pra = axa + pra, axa+ b) = a*a + a=b, {3.1p)
T*a = axi = a, (3.1c)

roraflabelVandag f ¢ F

Note the lifting of the field, but the elements of the vector space
remzain unchanged. This is a property of important physical
consequence, inasmuch as it is at the foundation of the preservation of
the conventional generators of Lie algebras under isotopies. In turn,
this implies the preservation of conventional conservation laws under
lifting.

The interested reader can prove as an exercise a number of
properties of isolinear spaces. One which is particularly relevant for
this analysis follows from the invariance of the elements a, b, c, ... of
the space under isotopy ahd can be expressed as follows.

PROPOSITION [L31: The basis of a lnear space V remains
unchanged vnder isoropy.

The above property essentially anticipates the fact that, when
studying later on the isotopies of Lie algebras, we shall expect no
alteration of its basis, as originally proposed (Santilli (1978a}).

Linear spaces V are also called vector spaces in which case their
elements ab,.c, are called yecrors. The isotopes ¥ are then called
Isovector spaces and their elements ab.c ssovectors.

A wmetric space hereon denoted M(xgF) is a (universal) set of
elements X, y, Z,. over a field F equipped with a map (function) g: M x M
= F, such that:

gixy) =0, {3.2a)

glxy) =glyx) foralixyeM; gly)=0iff x=0ory= 0 (3.2b)

8 This is due to realization (3.3} of the distance. !, instead, one assumes glry) =
(! - ylgg;) - y)), then gley) = 0iff x = y.
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ghxy) = glxz) + glyz) for all xy.z € M. {3.2c)

A pseudo-metric space, hereon also denoted with M(xgF), occurs
when the first condition (3.2a) is removed. Finally, recall that the field
of metric spaces generally used in physics is that of the reals ®.

Supppose that the space M{xg) is n-dimensional, and introduce the

components x = (xi), y = (yi), i = 1,2, .. n Then, the familiar way of
realizing the map g(x.y) is that via a wetr7c g of the form

g&m==fgqﬁ, {3.3)

The axiom g{x,y} > 0 for metric spaces then implies that g is positive-
definite, g > 0.

The best physical example of a metric space is the n-dimensional
Fuclidean space hereon denoted with the symbol E(r,8,8), namely, the

vector space E with local charts r = (rl) and realization of the metric
glr o) = rli 8jj rzj, (3.4)
where
5={8;) =diag. (1,1, ... 1) (3.5)

is the matrix of the Aronecker deliz Bjj.

A pseudo-metric space of primary physical relevance is the (3+1)~
dimensional Afiwkowskr space hereon denoted M(xn).®), namely, the
vector space with charts

x = &M = &l,x%, x eBrsy), x? = cots {3.6)
where ¢, € # represents the speed of light in vacuum. The map is then
indefinite,

= v 2 q
nbey) = xM Y 0 (3.7)

where 1 is the celebrated Minkowski (1913) metric, hereon assumed of
the type
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n = diag. 1,1, 1, -1). (3.8
Further spaces also relevant in physics are the Avemannian
spaces hereon denoted R(x.g,%), which are the fundamental spaces of
Chapter V.
The simplest possible way of constructing an infinite family of

isotopes of M(xgF) is by introducing n-dimensional, nowhere null and
Hermitean isounits

1= (}ijﬁ = (lji], i,hes, = 1,2..0 (3.9)
with isotopic elements
T =11 =) = @), (3.10)
Then, we can introduce the Isomap
gxy) = 6 gy, (3.11)

where the quantity

-

g =mg = (1 g (3.12)
shall be called hereon the Jsowmelric
The basis e = {g)i = 1,2, .,n of an n-dimensional space M{x.gJF)
can be defined via the rules
gleg.e5) = g5 (3.13)
Then, under isotopy we have the rules
é(ei, ej] = éij’ (3.14)

which illustrate the preservation of the basis as per Proposition 11.3.1.
The above isotopic generalizations can be expressed as follows.

DEFINITION 132 The “Isoropic Hrtings™ of a gliven, n-
dimensional, metric or pseudowelric space ME.g# over the
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reals i or ‘isospaces” for short, are given by the miimnitely
possible Isotapes Mg F/ characterized by: &) the same
dimension n and the same focal coordinstes x ol the original
space; b the isotopies of the original metric g into one of the
nrinrtelv possible nonsingular, Hermitean “Fsometric” g = Tg with
Isoropic element T depending on the local variables x, their
derivanves X, X, ... with respect to an lndependent parameler, s
well a5 any needed additions! quantity

g => Eg=Tg, {3.15a)
T=TK%%.), det T #0, T =T, det.g#0, g=g. (3.15b)

and ¢ the hirtng the field % into an fsotope & whose isounit 1 is
Lhe fverse of the Isoropic efement 7, Le,

=81 1=11=3%1 (3.16)
witlh composition now in #
xy) = Tyl = (TxnT1 = 1&Ty) =
=l gy N1 e (3.17)
The lirungs of the conventonal n-dumensional Fuclidean spaces

E &R over the reals & into “Fuclidean-isolopic spaces™ or
ISoeuclidean spaces’ are given by the particvlar case

ErsR = ErSH] (3.18a)

8 = Iy = 5 = T, E .S, (3.18b)

det. T#0, T = T, det.§ #0, 8 =3, (3.18¢)
R =>f=x5 1=11=5"1 (3,184)
(r,r‘)=ri 'Sij o= e =@31 = (3.18¢)

= Br.1 = 10,80 = [f §fr 5B, (3.181)
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The lirtings or the conventional Minkowsks space ME,n# in
(Fri/-space-time dimensions are given by the Isotopes called
Minkowski~Isolopic spaces”™ or Isominkowskl spaces”

MEn®) = MR, (3.19a)

N = diag.{1,1,1,-1) = f = T % L. 0, {3.19b)
det. T#0,T=Th detf=0,nt =7, (3.19¢)
f = @ =81 1=T1 (3.199)

bex) = xP oy, x¥ = &k 0x) = T = (Txy) =

=TTy = [ iyl % %) X, (3.19¢)
Finglly, the Hriings of a given n-dimensional Kiemaimiian or
pseudoriemannian space RxXg# over the reals & into the
mrinicely  possible  CRiemannran-isotoplc spaces” or

ISorfemannian spaces” Rixg Y are given by the particular case
RixgR) = RxgR) (3.20a)
g=gl) > g = T, % &, ..} g, (3.20b)

det. g #0,g=g . det. TZ0, T=T, det. §<0,§=¢, (3.20c)

1 (3.204)

—?
il

®f = § = 41,

o, TXT = (Txx)1 =

tk,y) = I g o= aln

=16, ) =[x g %%, )1 (3.20€)

The general character of the concept of isotopy is illustrated by
the following property of evident proof.

FROPOSTTION 11322 All possible melric and pseuvdometric spaces
In n-dimension Mg F can be interpreted as isotopes of the
Euclidesn space in the same dimension E0,6F7

39




Mirgh): F=F, 1 =gl {3.21)

The reader should therefore keep in mind that there is no need to
study the isotopies of all spaces, because those of the fundamental
Euclidean space are sufficient, and inclusive of all others, as
illustrated by the following

COROLLARY: H.32a: The conventional Minkowsti space M55/
in (3t1) space-time dimensions over the reszls & can be
Interpreted as an isotope Menp#) orf the {-dimensional
Luclidean space Ex.88/ charsclterized by the isotopy of the
metric

8 = Igey = 8 = T8 = n = diag. (1, 1,1, -1), (3.22)
under the rederinition of the relds

fa=>fi=f, 1=Tl=g1=y (3.23)

The reader should remember that the isotopy of the field is a
feature needed for the mathematical consistency, which however does
not affect the practical numbers of the theory owing to the properiy
N*x = Nx, N e®, x € M. Also, as we shall see in Sect. 118, the
symmetries of M{xn%) and those of M{x,n.#%) coincide ebcause
characterized by the metric 1. Thus, the isotopic Minkowski space
Mx,n#) and the conventional Minkowski space M{xn#) space can be
made to coincide for all practical purposes used in physics (see
Chapter 1V for details).

COROLLARY [11.32.5b: The conventional Riemaninian Spaces
REER In (3r1)-space-time dimensions over the reals % Is an
isotope Rixg# of the #-dimensional Euclidean space Efx,88/
characterized by the lirtmg or the Fuciidean meltric § into the
Riemannian melric £

§=lyy > TS = g, (3.24)

and by the corresponding lirting or the rield

fR=>fh=w 1=T11!=¢gl (3.25)
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We aiso have the following alternative interpretation of the
Riemannian space.

COROLLARY [£32¢c: The conventional Riemannizh space REgLR%/
I (3+1/-space-time dimensions over the reals # can be
Interpreted as an Isotope Kxg#) or the Minkowsks space
M Q& in the same dimension characterized by the isotopy of
the Minkowsks metric

n = diag. {1,1,1,-1) = T = g, (3.26)

and of the rnefd

®=>A/=%, 1=11L (3.27)

The notion of isotopy of a metric or pseudometric space is
therefore first useful for comventiona/ formulations. In fact, fhe
lransition from relalvistic to gravitationa! aspects is an isoropy . This

concept is at the foundations of our study of the genera/
Svmmelries of copventional gravitationa! theorfes  which can be
readily studied via the Lie-isotopic theory, as we shall see, but which
is otherwise of rather difficult treatment via conventional techniques.

Notice also the cha/r or rsotopies illustrated by the above
Carollaries, also called Jsozaples of isoropres,

Ex88®) = Mixn® = RiExgh. (3.28)

Corollary 11.3.2.c is useful to illustrate the insensitivity of the
isotopies to the explicit functional dependence of the isounit. The
reader can then begin to see the vastity of the isotopies of the
Euclidean space, which encompass, hot only the Minkowski and
Riemannian space, but also all known metric and pseudometric spaces
of the same dimension, such as Finslerian spaces, etc., as well as
additional classes of infinitely possible, genuine isotopies of the
Euclidean, Minkowski, Riemannian and other spaces.

* We here distinguish between the Jors/ symmetry of a gravitational theory,
which is eveidently the conventional Poincare symmetry, from the gegera/
symmetry of a separation in a Riemannian space under the full gravitational metric,
which should not be confused with gfods/ aspects (eg., of topological nature),
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DEFINITION £33 Given & metric or pseudo-metric space

MEEHR with metric g its Isodual” space MO(x.gF%) Is the
Isotopic space M characterized by the Isotoplc element

T =~1 = diag. (~1,-1,-1, ...-1}. (3.29)

The isodual of the Euclidean space E(x.5R) is therefore the isotope
£9x,54) where the isometric is given by

5= -s. _ (3.30)

As we shall see, the above spaces are useful for the construction
of the isodual realization of given simple Lie groups with rather
intriguing implications.

Similarly, the isodual of the Minkowski space Mf{xn#) is the
isospace MY(x,i,#) where the isometric 1) is given by

f = Tn = - = diag. -1, -1, -1, +1). (3.31)

Clearly, the notion of isoduality in Minkowski space allows the
mapping of time-like into space-like vactors and viceversa. As such,
isodual spaces are at the basis of the generalized Lorentz
transformations x = x'(x) introduced by Recami and Mignani (1972) for
which

X’u nuv X vV o - xu— nl},]} XV’ (3 32)

ang they are important to identify certain properties of the isctopies
of the Lorentz group (Chapter 1V).

The notion of isospace was introduced by Santilli {(1983a), with
particular reference to the case of the isominkowski space, as a
structure necessary for the mathematically consistent formulation of
the isotopies of Einstein’s special relativity. The notion was
subsequently studied in more details for the general case in Santilli
{1985a), and specialized to the case of isoeuclidean spaces in Santilli
(1985b). The notion of isoriemannian space was introduced in Santilli
(1988d) and then studied in more detail in Santilli (1991b).




11.4: ISOTRANSFORMATIONS

Let V and V' be {wo linear spaces over the same fiel¢ F. A flivear
ranstormation  (Albert (1963) or Roman (1975)) is a map f: V = V" which
preserves both the sum and the multiplication, iLe., it is such that

fla + b) = f(a) + t{b), {4.12)
flaa) = o fla), (4103
which can be equivalently written
floa +pb) = af(a) + pfibjforallabeVanda,p €F. {4.2)

DEFINITION /141 An “ISotopic transrormation™ Js an isomap F- ¥
= " between two Isolinear vector spaces F and P of the ssme
dimension over the same Isofield F which preserves the sum and
Isomultiplication, I e, wiich Is such that

floxa + $*b) = Tla) =Ta) + TR)<I(b)
forallab,e Vand o, B €h. (4.3)

In physical applications, the spaces V and V' are usually assumed
to coincide, ¥V = V', in which case the /resr map f is an
endomorpfi/siar with realizations of the familiar right, modular-
associative type

X = AX, Xe€V, XeV. (4.4)

where: A is independent from the local variables; the product Ax is
associative; and the notion of module will be treated in more details in
the next section. A similar notion would evidently result for a left
modular associative action X’ = xA.

The transformations are mon/inesr when of the form

X = Ax)x. (4.5)

i.e,, when A has an explicit dependence in the local coordinates x, If
the x-dependence is of integral type, we shall see that the above
transformations are nox/ocal

Assume now that V = V. Then the isomap T can be realized with the
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isotransformations characterized by the right modular, associative~
isotopic action

X = Axx = AT, T =fixed. {4.6)

where the action A*a is still associative. A similar notion would result
for a left, modular-isotopic action X = x*A = XTA.

DEFINITION Il 4£2- An “isotransformation”™ (4.6/ Is safd to be
rsolinear- andsor “Isclocal” when the element A IS
convenrtionally Wnear andsor local respeciively, Le, when all
noninear andsor nonlfocal rerms are embedded I the isotopic
element 7.

A number of properties of isotransformations can be easily proved.
At the level of abstract axioms, all distinctions between the ordinary
multiplication ab and the isotopic one a*b (transformations Ax and Axx)
cease to exist, in which case linear and isolinear spaces (linear and
isolinear transformations} coincide.

However, the isotopies are nontrivial, as illustrated by a number of
properties. First, one can readily prove the following

FROPOSITION I 41: Conventional linear transrormations r on an
Isolinear space ¥ violate the conditions or isolinearity.

Explicitly stated, the lifting of the Euclidean spaces and of the
Minkowski spaces into their corresponding isospaces requires the
necessary abandonment, for mathematical consistency, of the Galilean
and Lorentz transformations in favor of suitabie isolinear and isclocal
generalizations to be identified in the next chapter.

FPROPOSTTION 142 A transrormation F which Is isolinear and
isolocal in an isospace V is gemerally nonlinear and nonlfocal i
¥

In fact, when explicitly written out, isotransformations (4.6) become

X = ATx = AT %X, ¥,.)% (4.7)

the nonlinearity and nonlocality of the transformations then becomes
evidently dependent on the assumed explicity form of the isotopic
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element T.
Another simple but important property is the following

FROPOSITION [L4£3- Under surricient topological condiliclis,
ronlinear transrormations on & flinear vector V space can
aiways be cast mto an egquivalent Isolinegr form on an isospace
I

In different terms, given a map f in ¥ which violates the conditions
of linearity and/or of locality, there always exist an isotope V of V
under which t is isolinear and/or isclocal. Explicitly, nonlinear
transformations (4.5) can always be written

¥ = AlX)x = BT = Bwx, {4.8)

ie, for A = BT, with B linear.

The above property has important mathematical and physical
implications. On mathematical grounds we learn that nonlinearity and
nonlocality are mathematical characteristics without an essential
axiomatic structure, because they can be made to disappear at the
abstract level via isotopic liftings.

In turn, this feature is not 2 mere mathematical curiosity, but has a
number of possible mathematicai applications. As an example the
isotopies of the current theory of linear equations may be of
assistance in solving equivalent nonlinear systems.

On physical grounds, the first application of the notions presented
in this section is that of rendering more manageable the formulation
and treatment of nonlinear and nonlocal generalizations of Galilean or
Lorentzian theories which, if treated conventionally, are of a
notoriously difficult (if not impossibie) treatment.

The physical implications are however deeper than this. Recall
that the electromagnetic interactions are fully treatable with linear
and local theories, such as the symmetry under the conventional
Lorentz transformations.

One of the central open problems of contemporary theoretical
physics {as well as of applied mathematics) is the still unanswered,
historical legacy by Fermi (1949) and other Founders of contemporary
physics on the nonlinearity and nonlocality of the strong interactions
{(Sect. 1.1}

All attempts conducted until now in achieving a nohlinear andg
nonlocal extension of current theories via conventional techniques
have met with rather serious problems of mathematical consistency
and of physical effectiveness, as well known.
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Because of their simplicity, our isotopies appear to have all the
necessary ingredients for the achievement of a mathematically
consistent and physically effective nonlinear and nonlocal
generalization of the current theories for the eleciromagnetic
interactions via the mere generalization of the trivial unity | into our
isounit 1, and the consequential isotopic generalization of the various
notions of field, spaces, transformations, etc.

The mathematical consistency of the isotopies is self-evident from
their simplicity. Their physical effectiveness is due to the fact that,
given a linear theory on a metric space, all its possible nonlinear and
nonlocal generalizations are guaranteed by the mere isotopies of the
underlying space, without any need of even considering the equations
of motion in their explicit form, as we shall see.

The notion of isotransformation as used in this section was first
considered in Santilli {1979) and then studied in Santilli (1983a) as
another central tool for the construction of the isotopies of Einstein’s
special relativity. The notion was then studied in Santilli (1985a, b), (198a,
b), (1991a). Additional studies are those by Myung and Santilli {1982a),
and by Mignani, Myung and Santilli (1933).

1:5: ISOALGEBRAS

A (finite-dimensional) Zesr algebra U, or afgebra for short (see
Albert (1963) or Behnke er z/ (1974)) is a linear vector space V over a
field F equipped with a multiplication ab verifying the following axioms

alab) = {(@a)b = ale), {ab)p = albp) = (@b, {5.1a)

alb+c) = ab + ac, {a + bjc = ac + bc, {5.1b)
called right and /ert scalar and disiurrbutive /aws, respectively, which
must hold for all elements apce U, and o, B e F.

The reader should keep in mind that the above axioms must be
veritied by all products to characterize an algebra (see Appendix HLA
for products commonly used in physics which do not characterize a
consistent algebra).

Algebras play a fundamental role in physics, as well known, and
their use is predictably enlarged by the isotopies. Among the existing
large number of algebras, a true understanding of the formulations
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presented in this volume, as well as for attempting their operator
image require a knowledge of the following primary algebras (see, e.g.,
Albert (1963} and Schafer (1966}):

1) dssocigtive sigebras A, characterized by the additional axiom
{besides laws {5.1))

albc) = (abjc, {5.2)

for all ab.c € A, called the associative /aw. Algebras vioclating the
above law are called somassociztive. All the following algebras are
nonassociative:

2) Lle ajgebras L which are characterized by the additional
axioms

ab + ba =0, (5.3a)
albe) + blca) + (clab)=0. {5.3n)
A familiar realization of the Lie product is given by

{a,blA = ab - ba, (5.4)

with the classical counterpart being given by the familiar Poisson
brackets among functions A, B in phase space T*E(r8.®( (or the
cotangent bundle of Sect. i1.9)

dA 0B dB 3dA

[A.B] poisson = Tx . Tk (5.5)
ar* ap,  or- opy

3) Lommutative Jordan glgebras J, characterized by the
additional axioms
ab-ba=0, (5.6a)
(ab]a2 = a(baz), (5.6b)

A realization of the special commutative Jordan product is given by

{a,p} 2 =ab+ba. (5.7)
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No realization of the commutative Jordan product in classical
mechanics is known at this writing. As an example, the brackets

3A 9B 3B 9A
{AB}= — — + — — (5.8a)
ark %, ark apy

evidently verify axiom (5.6a), but violate axiom (5.6b).

4) Gepergl Lie-adwissible algebras U (Albert (1948), Santilli (1967)
and (1978a)), which are characterized by a product ab verifying laws
{5.1), which is such that the attached product {ab]; = ab - ba is Lie.

This implies, besides (5.1), the unique axiom
(abgc) + (bea) + (cab) ={cha) + (bag) + (ach), (5.9)

.where
{abc) = albc) - (ablc, (5.10)

is calied the assocraior
Note that Lie ajgebras are g particular case or the Lie-admissible
2/gebras. In fact, given an algebra L with product ab = [ab], , the

attached algebra L™ has the product [a,bly = 2 [ab] A and, thus, L is

Lie—admissible,

Therefore, the cilassification of the Lie-admissible algebras
contains all the Lie algebras. Lie algebras therefore enter in the Lie-
admissible algebras in a two-fold way.: first, in their classification and,
second, as the attached antisymmetric algebras. Finally, assocrzuve
algebras are trivially Lie-adnssible

The first abstract realization of the general Lie-admissible
algebras was given by Santilli (1978b), Sect. 4.14} and can be written

U: fab), = arb - bsa, {5.11)
rs fixede A, r# s, rs5#0

where ar, rb, etc., are associative. In fact, the antisymmetric product
attached to U is a particular form of a Lie algebra (see below).

The first realization of U in classical mechanics was also identified
by Santilli {1969) and (1978a) and it is given by the following product for
functions A{r,p} and B(r,p) in T*E(r8.®)

dA @B

U: (AB) = — —, (5.12)
ark  apy
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namely, the genersl, nonassocialive Lie-admissible algebras are al
the roundations of the structure of the conventional Poisson
bracktetls, which can be written

[ABlpoisson = [ABly = (AB} - (B.A), (5.13)

5) fexible Lie-admissiple algebras U (Albert (1948), Santilli (1978a)),
which are characterized by the axioms in addition to (5.1)

(aba) =0, {5.14a)
fabge) + (beca) + cab) =0, (5.14b)

where condition' (5.14a), called the s/ex/bilicy /aw, is a simple
generalization of the anticommutative law, as well as a weaker form of
associativity. An abstract realization of the flexible Lie-admissible
product is given by (Santilli (1978b))

{a,bly = Aab -~ pba, Ap€F (5.15)

where the products Aa, ab, etc. are associative, No classical
realization of flexible lLie-admissible algebras has been identified until
now, to the best knowledge of this author. As an example, the brackets
on T*E(r.8.%

3A 9B 3B 8A
AB=A— — - p— —, {5.16)
ark  ap, ark  apy

are Lie-admissible, but violate the flexibility law.

b) Ceneral Jordan-admissiple slgebras U {(Albert (1948), Santilli
{1978a, b)), which are characterized by a product ab verifying laws (5.1),
such that the attached symmetric product {abl; = ab + ba is Jordan,

i.e., verifies the axiom

a2p,a) + (aba?) + (bala) + @aZp) = 0. (5.17)

Again, associative and Jordan algebras are uwivially Jordan-
admissibfe. Also, Jordan algebras enter in the Jordan-admissible
algebras in a two-fold way, in the classification of the latter, as well as
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the attached symmetric aigebras.

It is important for the operator formulation of the isotopies of this
volume to point out that the Lie-admissible product (5.11) is, jointly,
Lie-admissible and Jordan-admissible (Santilli (1978b)), because the
attached symmetric product characterizes a special commutative
Jordan algebra (see below).

Finally, we should note that the classical Lie-admissible product
(5.12) is only Lie-admissible and not jointly Jordan-admissible.

) Flexible Jordau-gomissible glgepras U (Albert (1848), Santilli
(1978a, b)), which, in addition to axioms {5.1}, are characterized by the
axicms

alba) = (abla, (5.18a)

a%ba) + aZab) = (a’bla + (ala)b. (5.18b)
The flexible Lie-admissible product (5.15) is also a flexible Jordan-
admissible product, but the classical product (5.16) is only Lie-
admissible, and not flexible Lie-admissible nor Jordan-admissible.
We now pass to the study of the isotopies of the above notions.

DEFINITION I 51 [Saniilli 9783} Anr “Isozlgebra”, or simplv an
Jsotope” U of an ajgebra U with elements a,5,c,.. and product ab
over z Iield F, is the same vector space U but defined over the
Isorield F, eguipped with a new product &+b, called “isotopic
product’; which Is such to verity the original axioms of U

Thus, by definition, the isotopic lifting of an algebra does not alter
the type of algebra considered.

It is important for this study (as well as for its operator
formulation} to review the isotopies of the primary algebras listed
above, beginning with the associative algebras.

Given an associative algebra A with product ab over a field F, its
simplest possible Jsozope A, hereon called associalive-isotopic or
Isoassocizifve algebra, is given by

Ay: ab=qab, a eF, fixedand~0, {5.19)

and called a sca/sr isoropy. The preservation of the original
associativity is trivial in this case.

A second less trivial isotopy is the fundamental one of the Lie-
isotopic theory, and it is characterized by product (Santilli {foc c/t)
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Ay: axb=aTb, (5.20)

where T is an nonsingular (invertible) and Hermitean {real valued and
symmetric) element not necessarily belonging to the original algebra
A. The associativity of product {5.20) can also be readily proved.

Note the necessary condition, from Definition 1L15.1, that the
isoproduct and isounit in U and F coincide. This is the technical
reason for the lifting of the universal enveloping associative algebras
of a Lie algebra (Sect. 11.6} into a form whose center coincides with the
isounit of the underlying isofield.

The reader should keep in mind that the identity of the isoproduct
and isounit for U and F occurs in the associative cases (5.19} and (5.20),
but does not hold in general, e.g., for nonassociative algebras. This is
due to the lack of general admittance of a unit, while such a unit is
always well defined in the underlying field.

Only a third significant isotopy of an associative algebra is known,
to the author's best knowledge. It is given by (Santilli (1981b))

Ag:  ab = wawbw, .
3 b b (5.21)
w2=ww = w #0,

Additional isotopies are given by the combinations of the preceding
ones, such as

Ag:  axb=wawTwbw, {5.22)

w2=ww=w &0,
and

Ag: axb = awawTwbw, (5.23)
a €F, w2 =w, a,w,T=0.

It is believed that the above isotopies {of which only the first three
are independent) exhaust all possible isotopies of an associative

algebra (over a field of characteristics zero, see footnote® page 31),
although this property has not been rigorously proved to this writing.

The issue is not trivial, physically and mathematically. In fact, any
new isotopy of an associative algebra implies a potentially new
mechanics, while having intriguing mathematical implications (see later
on Lemma }1.5.1).
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It should be finally indicated that this author has selected isotopy
(5.20) over (5.21) because the former possesses a well defined isounit,
while the latter does not, thus creating a host of problems of physical
consistency in its possible use for an operator theory.

Nevertheless, the study of isoassociative algebras (5.21) remains
intriguing indeed, although it has not yet been conducted in the
mathematical and physical literatures, to our best knowledge.

We now pass to the study of the [sofopes L. of a Lie algebra L with
product ab over a field F, which are the same vector space L but
equipped with a Zie-isotopic product axh over the isofield f which
verifies the left and right scalar and distributive laws (5.1), and the
axioms

axb + bxa =0, (5.24a)
ax(bxc} + bx(cxa) + cxlaxb) =0, (5.24b)
Namely, the abstract axioms of the Lie algebras remain the same by
assumption.

The simplest possible reslization or the Lre-isotopic product is
that attached to isotopes Ay, Eq. (5.19) (foc: o)

Ly axb= [z:t,l:n]ﬁ‘1 =ab - bxa =alab - ba) =« [ab],, (5.25)
a €F, a #0
and it is also called a scsa/ar Lie-/sotopp. 1t is generally the first
lifting of Lie algebras one can encounter in the operater formulation
of the theory.

The second independent realization of the Lie-isotopic algebras is
that characterized by the isotope A, also introduced in {/oc c/t)

Ly axb = [a,b] i, =a*b - b*xa=aTbh - bTa, (5.28)

The third, independent isotopy is that attached to Ag, and it was
introduced in Santilli {1881b)

{3: axb=1{a}] L wawbw — wbwaw, (5.27)
3
w2=wwx0.

A fourth isotope is that attached to A4, ie,
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Ly: axb =[a,b] AyT wawTwbw - wbwTwaw, (5.28)

wZ=w, w,T#0.
A fifth and final (abstract) isotope is that characterized by As, i.e.

Lg: axb = [a.b] Ag = ¢ [ab] A4- (5.29)

Again, it is believed that the above five isotopes exhaust all
possible abstract Lie algebra isotopies, although this property has not
been proved to date on rigorous grounds.

Note that the Lie algebra attached to the general Lie—admissible
product (5.11) are not conventional, but isotopic. In fact, we can write

{a,b}U = (a,b)A - (ba)y, = arb - bsa - bra + asb, (5.30a)

=aTb - bTa=a*h - b+a, {5.30p)
r#s, ns5T#0, T=r+s570

As a matter of fact, this author first encountered the Lie-isotopic
algebras by studying precisely the Lie content of the general Lie-
admissible algebras (Santilli (1978a)).

The following property can be easily proved from properties of
type (5.30).

LEMMA 5.1- An abstract Lie-isotopic algebra L attached to a

general, nonassociative, Lie-admissible aleebra U £ = [, can
arwars be Isomorphically rewritten as the algebra attached to

a&n isoassociative afgebra A, £ ~ A, and viceversa, i e

L=u = A" {5.31)

The above property has the importance consequence that zhe
construcon of the abstract Lie-isorapic theory does not necessarilv
regquire & nonassociative enveloping algebra because it can 2/ways
be done vig the use or an lsoassocialive enveloping algebra. In turn,
this focuses again the importance of knowing all possible isotopes of
an associative algebra, e.g., from the viewpoint of the representation
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theory.

As an example, the studies by Eder ((1981) and 1382)) on a
conceivable spin fluctuation of thermal neutrons caused by
sufficiently intense external nuoclear fields, are formulated via a
fiexible wmorassociztive, Lie-admissible generalization of the
enveloping associative algebra of Pauli's matrices. As such, these
studies can be identically reformulated via an assoc/gtive-isotopic
enveloping algebra. The consequential simplification of the structure
is then expected to permit further physical advances.

Note also that zhe consiruction of the abstract Lie-isoropic
theory necessarily reguires the Isotopies of conventionsl associalive
envelapes.

As typical for all abstract formulations of Lie’s theory, the Lie-
isotopies indicated above are in a form readily interpretable in terms
of operators. As such, they put the foundations for the operator
formulations of the generalized relativities of this volume, to be
studied in a separeate work. Note in particular the identification of the
inverse of the isounit 1 in the structure of product {5.30).

A primary objective of this monograph is that of identifying the
classical realizations of the Lie-/sotopic product in such a way to
admit a ready identification of the isounit, as pointed out in Sect. I1.1..
The latter problem will be the subject of subseqwuent sections of this
chapter. At this point, we shall identify some classical realizations
without the identification of their underlyiong isounit.

The most general possible, classical realization of Lie-isotopic
algebras via functions Afa) and Bfa) in T*E(r,5,%) with local chart

a= (@ = @t.p = @, P L = 1,2..m 0 = 1,2,..,2n,  (532)

is provided by the Zirdkoltian brackers (Santilli (1978a), (1982a) also
called gex;emjf;?ea’ Poisson braciets (see, e.g., Sudarshan and
Mukunda (1974),

oA,
(A, Blgirkhott = AB), = — @) —-, {5.33)
u dal daV

where QY. called the Zie—isotopic temsor, is the contravariant form
of (the exact, symplectic) Birkhorr’s tensor  (Santilli (1978a)) and

(1982a))

o = (g™ MY, (5.34a)
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@ Ry
Qy = - , (5.34b)
aaM sa¥

where the R’'s are the so-called Birkhofrs runceions, and the
symplectic character of the covariant tensor (5.34b) ensures the Lie-
isotopic character of brackets (5.33) (see the geometric, algebraic and

analytic proofs in Santilli (1982a)}.

Recall that, unlike the conventional, abstract, Lie brackets (5.4), the
conventional Poisson brackets (5.5) characterize a Lie algebra
attached to a wonassociztive Lie-admissible algebra U, Eq.s (5.12). It
is then evident that the covering Birkhoff's brackets (5.33) are also
attached to a nonassociative Lie-admissible algebra, although of a
more general type (see Santilli (/oc. /£ ) for details).

Numerous other classical Lie-isotopic brackets exist in the
literature, the most notable being Dirac’s generalized brackets for
systems with subsidiary constraints (Dirac (1964)).

Note the lack of identification of the underlying generalized unit in
Birkhoff's brackets (5.33), as well as in Dirac’s brackets. This problem
will be studied in Sect.s 11.8 and 11.9.

Realizations of the abstract isotopes U of the Lie-admissible
algebras can be easily constructed via the above techniques. For
instance, an isotope of the general Lie-admissible product (5.11) is
given by

U: (a.b) =wawrwbw - wbwswaw, {5.35}
w2=w, wrs {0, r~s.

An isotope of the classical realization (5.12) is then given by

‘ aA aB
0: (A’B = — s*ia) —, (5.36)
aat aaV

where the tensor S””, called the Lrie-admissible rensor, is restricted
by the conditions of admitting Birkhoff’'s tensor as the attached
antisymmetric tensor, i.e.,

sV - gVik = BV (5.37)

{see Appendix I1.A and, for a detailed study, Santilli (1981a)).
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[1.6: LIE-ISOTOPIC THEORY

To avoid an excessive length of this volume, in this section we can
only outline the central ideas of the Lie-isotopic theory, with
particular reference to those aspects needed for the physical
objectives of the following chapters.

The theory was originally proposed by Santilli (1978a)). A first
review appeared in Santilli (1982a), while recent reviews can be found
in Aringazin er 2/ {(1990) and 199]) andf in Kadeisvili {1992).

The literature on the conventional formulation of Lie’s theory is so
wast to discourage even a partial outline. A mathematical treatment of
structural theorems on universal enveloping associative algebras and
other aspects can be found in Jacobson (1962). A physical treatment of
the theory can be found in Gilmore (1974). The reprersentation theory
can be found, e.g., in Barut and Raczka {1977). Classical realizations of
the theory are available in Sudarshan and Mukunda (1974).

In the following we shall first outline the Lie-isotopic theory in its
abstract formulation, (i.e., a formulation admitting a direct
interpretation via matrices), and then point out its classical
realization (i.e., a realization in terms of functions in phase space).

To begin, let us recall that the conventional formulation of Lie's
theory is based on the notion of zmwr 1 realized in its simplest
possible form, e.g., via the unit value 1 e & for the case of a scalar
representation, or the trivial n-dimensional unit matrix 1 = Diag. (1.1,...1)
for the case of an n—-dimensional matrix representation, and so on.

In this case, the wwiversal enveloplng associgtive algebra A
{Jacobson (1962)) with elements a, b, C, ..... over & field F (again assumed
of characteristic zero) has the structure

A: ab = ass. product, la=al=a forallaceA. (6.1)

The Lie zlgebra L {(Jacobson {/oc, c/t) is then homomorphic to

the antisymmetric algebra A™ attached to A characterized by the
familiar commutator

L: [ab]y=ab-ba. (8.2)

Connected Lie groups G (Gilmore (1974)) can then be defined via
power series expansions in A, according to the familiar form for one
dimension
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iwx

G: giw)=exp,y =1+ (iwx)/ 11+ (iwx)(iwx) 7 20+ .. (6.3)

weF, x=x1eA.

with well known generalizations to more than one dimension, as well as
to discrete components such as the inversions (Gilmore {/oc. ¢/t ).

As recalled in Sect. [L1, the central idea of the Lie-isotopic theory
is to realize Lie's theory with respect to the most general possible unit
1 which, besides invertibility and Hermiticity, has no restriction on its
functional dependence, As such, 1 can have a generally nonlinear
dependence on all possible or otherwise needed quantities. For an
operator interpretation of the theory (see below for its classical
counterpart), such a dependence is on an independent parameter t,
coordinates X, velocity X = dx/dt or momenta p}, accelerations % =

d%/dat? {or p), wavefunctions §, their conjugate dﬁ, their derivatives ai¥
= /8% and ¥ /ax , etc.,

1 = e, x, %, %, 4, ¥, 90, 8%t,.) . {6.4)

Furthermore, Lie’s theory is known to be insensitive to the
topology of its unit. As a result, the generalized unit T can be, not only
nonlinear, but also nonlocal in all its variables.

The Lie-isotopic theory therefore has the necessary chara-
cteristics to admit, #¢ J#/t/o, nonlinear, nonlocal, nonhamiltonian and
non-newtonian forces of systems (11.1.1), provided that they are all
incorporated in the generalized unit (see the subsequent chapters for
their analytic representation).

The reader should be aware that representations of nonlocal
forces outside the unit of the theory would require a new topology
precisely of nonlocal-integral type which, at any rate, does not appear
to be available at the pure mathematical level at this time in a form
usable for physical applications.

It is easy to see that the lifting 1 = 1 requires a necessary,
corresponding, generalization of the entire structure of Lie's theory.
In fact, for 1 to be the left and right unit, the universal enveloping
algebra, say £, of Lie’s theory must be generalized into the form, say, &,
which is the same vector space as , but now equipped with the
generalized product (11.5.20) , i.e.,

E: axb=aTb, (6.5)

where T is fixed, invertible and Hermitean.
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As shown in Sect. I1.5, the new product a»b is still associative and,
for this reason, § is called assoc/ative-Isotopic algebra, or
Ispassociative glgebra for short (Santilli (1978a)). Under the

assumption 1 = T'l, 1 is indeed the correct right and left unit of the
theory, ie,
1 =11 (6.68)
1a = a*xl=a, forall ach, {6.6b)

and is called the Jfsoumiz (foc cit).

Owing to the isotopic character of the generalizations (often
referred to as /7ings ), the structural theorems of conventional
universal enveloping associative algebras §, such as the Porncare-
Birkforr 10-wiet Theorem for the infinite-dimensional basis (see
Jacobson {Joc ¢/t )}, admit consistent extensions to the Jjso-
associative envelope E, as shown since the original proposal (Santilli
(foc cit)).

In particular, the ordered basis X = (Xi), i=1,2 ..n0 of the original

Lie algebra L is left unchanged by the isotopy, as anticipated in Sect.
I1.3. In fact, Proposition 11.3.1. appiies to L. as a vector space, thus
preserving the basis X.

In the transition to the underlying associative algebra we have
evidently the same occurrence. However, when § is turned into an
Isotopic envelope the original infinite-dimensional basis of € is lifted
into the form characterized by the Jsoropic Poincaré-Birkhoff-Witt
Theaorem

E: i, Xi, Xi*X'

j (i=j, XXXy (i=j=K),.. (6.7)

For brevity, we refer the interested reader to the reviews by
Santilli (1982a) and Aringazin es £/ (1990). Thus, A is indeed, a bowz ride,
universal enveloping Isoassoclalive aleebra.

Additional associative isotopies independent from form (6.5) are
presented in Sect. 11.5. Isotopy (6.5} is however the fundamental one of
this analysis because it admits a right angd left generalized unit.

The Lie algebras, say, L are now homomorphic to the antisymmetric

algebra ¢~ attached to £ L = 7, with the new product (11.5.26), i.e.,

10 1t should be indicated that the name “Birkhoff* here refers to the author's former
colleague at the Department of Mathematics of Harvard University, G. Birkhoff, son of
G.D.Birkhaff, the discoverer of Birkhoff’s equations.
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L: [a,b]E=a*b - b*a = aTb - bTa, (6.8)

which verifies the Lie-algebra axioms (11.5.24), while possessing a
structure less trivial than the simplest possible Lie product “ab - ba”
of current use. For this reason, the algebras [ were called Zje-
Isotopic afgebras (Santilli (1978a)).

The interplay between the Lie-isotopic algebra L and its
isoenvelope ¢ is intriguing. Consider an n-dimensional Lie algebra L
with ordered basis X. In the conventional theory, the Poincaré-
Birkhoff-Witt Theorem then characterizes the envelope & such that

£ = &L, (L) = L. .9

The corresponding context of the covering Lie-isotopic theory is
considerably broader. In fact, the isotopic Poincaré-Birkhoff-Witt
Theorem now characterizes an isoenvelope & which, since it is
constructed via the original basis of L, was denoted from its originail
formulation as § = §(L) {and not as &(L)). The novelty is that now, in
general, we have

LI ~L,  ELI L, LxL. (6.10)

More particularly, the original envelope E(L} can characterize only
one Lie algebra, the algebra L. On the contrary, it has been shown that
the Jurinite number of possible iscenvelopes &L) for each given
origmal gleebra L cafi characterize in one single, unified glgoritlhm
f1L) all possible Lie algebras L of the same dimension, with the sole
possible exception of the exceptional Lie algebras L 1t is hoped
that, in this, way the reader can begin to see the power of geometric
unification of our isotopies.

Again, owing to the isotopic character of the lifting, conventional
structural theorems of Lie algebras, such as the celebrated Z/es
First. Second and Third Theorems (Gilmore (1974)), admit consistent
Lie-isotopic generalizations identified since the original proposal. We

refer the interested reader for brevity to the locally quoted reviews.
Most importantly, the conventional structure constsnts Cijk of a

Lie algebra are generalized under isotopy into the swructure

11 rhe exclusion of exceptional Lie algebras is due to the assumption of the
Hermiticity of the isotopic element {see also Sect. I1.8)
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runciions Cijk(tg(,:'{,:’i,..) as requested from the Lie-isotopic Second
Theorem with isocommutation relations for the generators

Lo X, = XpX) - Xp¥; = Ci}.k{r,x)'c,ii,...} Xp  (6.41)

E im0
where the €'s are restricted by certain integrability conditions
originating from the Zie-isotop/ic Third Theorem (Santilli doc c/t)).

An important objective of this volume is to review the
classification of all infinitely possible isotopes of given simple Lie
algebras for the physically important cases O(3) (Chapter 1I1) and 0(3.1)
(Chapter V).

As we shall see, for all isotopes L. of given, conventional, simple Lie

k

algebras L with basis Xj and structure constants Cij emerging in the

phhysical applications pof Volume 11, rules (6.10) always admit a
reformulation X; of the basis while keeping the isotopic element T > 0

unchanged, which recovers the conventional structure constants, ie.,
. Y. = . - /. ’, = ..k
L: [x';.x ]]g: XX X = Gy X {6.12)

In turn, this is evidently useful to prove the local isomorphism of
the infinitely possible isotopes L with the original simple algebra L, L=
L, by keeping in mind that, for an isotopic element of an arbitrary
topology, L. # L, as pointed out earlier.

More particularly, the conventional Cartan’s classification of
simple Lie algebras is intended to identify the nonisomorphic simple
algebras of the same dimension, e.g.,

Simple 3-dim. algebras: O{3), and 0(2.1}, (6.13a)
Simple §-dim. algebras: O(4), ©0(3.1), and 0(22), (6.130)
etc. (or algebras isomorphic to the above; see, e.g., Gilmore (/oc. oz ).
The covering Lie-isoropic lAcory allows rInstead the
representation of all simple Lle algebras (6,13 with onme, unique,
abstract, simple, Lie-isotopic algebra of the sawe dimension,

Simple 3-dim, isoalgebra 6(3), (6.14a)

Simpie 6-dim. isoalgebra 0{6), (6.14b)
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The recovering of different, genergally nonisomarpiiic, and compact or
noncompact ajgebras is then reduced ro the mere rezlization ol lie
Isounit }

The above results are expected from the capability indicated
earlier of the universal enveloping isoassociative algebra E(L) of
representing all Lie algebra of the same dimension, with the sole
possible exclusion of the exceptional Lie algebras. Unification (6.14a)
will be studied in detail in Chpo. IIl of Vol. 1I, and unification (6.14b) in
Chapter 1V..

A technical understanding of the above unification is a necessary
pre-requisite for the understanding of certain physical results of this
monograph, such as the geometric unification of Einstein’s special
relativity in a Minkowski space, with Einsten’s gravitation in a
Riemannian space, as well as all their isotopic generalizations for the
interior problem (Chapter 1V), which is achieved via one unique,
abstract notion, that of the Poincaré-isotopic symmetry, admitting of
an infinite number of different realizations, whether in Minkowskian,
or in Riemannian or in more general spaces.

The reader should Keep in mind that, in physical applications, the
generators have a direct physical meaning. The isotopic algebras with
a direct physical meaning therefore remain structures (6.9), while
reformulations (6.10) lose the directly physical meaning of the
generators and, as such, they generally carry a sole mathematical
meaning.

We also recall the Jsedirrerential/ ruje for the isocommutators

*B, (6.15a)

£

[A,B]E*C + BAC]

[A*B,C],§ = A*[B,C]E + [Ad

{6.15b)

*
[AB C];; 3
which is based on the fact that the conventiona/ product AB of
elements A and B of the isoassociative envelope has no mathematical
or physical meaning in &, and must be replaced with the isotopic
product A=B.

In particular, this implies that all conventional operations based on
multiplications are now inapplicable to the isotopic theory. As an
example, the insistence in the use of the conveniional square

al=aa, {6.16)




such as the magnitude of the angular momentum

2=

k=123 Il (6.17)

within the context of the isoenvelope § would imply the violation of
isolinearity and numerous other inconsistencies {Sect.s I1.3, 11.4}. The
correct quantity is evidently given by the Isolgpic square

a2= axa. {6.18)
such as the isotopic magnitude of the angular momentum

5
Jé = Ju*Jy. {6.19)
2:k=1,2,3 kK

The lack of knowledge of these basic elements is reason for
considerable confusions. In fact, readers not familiar with the Lie-
isotopic theory tend to preserve the old notion of square, say, of the
angular momentum under isotopy, by therefore resulting in a host of
mathematical and physical inconsistencies of which they are generally
unaware.

Additional isotopies of Lie algebras independent of (6.7) are
presented in Sect. IL5, although structure {6.7) is the fundamental one
for the analysis of this volume, as well as for its possible operator
extensions,

Finally, connected Lie groups cannot be any longer defined via
power series in £ (which would violate the linearity condition), and
must be defined in the new envelope & via infinite basis (6.7) with
expressions of the following type called isoexponentiation

G é(w)#expgiwx =T+ (wX) 7 11+ GwX)sliwX) 7 20+ .. =

=1 [exp ,g,iWTX] = [expgiXTw} 1, {6.20)

with corresponding expressions for more than one dimension as well
as for discrete components.

The elements g(w) cannot evidently verify the old group laws
{Gilmore {/oc.c/t. ) but must verify instead the [sotgpic group laws

gwigiw) = glwiglw) = glw+ w), {6.21a)
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glwhgl-w) = go) = 1, (6.21D)

where the associativity of the isotopic group product g(w)*g(w’) is
understood.

All Lie groups verifying the above laws were called Lie-fsotopic
groups (Santilli (1978a)). Again, we refer the interested reader to the
locally quoted literature for the isotopic lifting of conventional
theorems on Lie groups.

As an example the J[sorop/c Mring of lhe Baker-Campbel/-
Hausdorsr Theorem (Santilli (foc. cit)) is given by

[eEXi] *{eEXj] = ezxk, (6.22a)
Xg=Xj+ Xj + [xj,xj],gfz + 10 - X9 KXl /12 + e (6. 22b)

As now predictable from the preceding remarks on isoenvelopes
and Lie-isotopic algebras, fhe covering Lie-isotopic theory Is
expected to umly inle one, single, absiract, n-diwensionzl, Lie-
Isotopic group G} all possible conventional Lie groups in the same
dimensions G with the sole possible exclusion of the exceptional
Lroups.

In fact, as we shall see in Chapter I1I, the abstract isotope O{3) can
smoothly interconnect, as particular cases, the compact and
noncompact Lie groups O(3} and 0(2,1), with similar results for other
dimensions as well as for inhomogeneous {non-simpie) Lie groups (see
Chapter 1V)

With the terms Zie-iSotopic theory we shall specifically refer to
the collection of formulations based on: 1) the universal enveloping
isocassociative algebras, 2) the Lie-isotopic algebras, and 3) the Lie-
isotopic groups, including all related structural theorems.

Needless to say, an inspection of the quoted literature indicates
that the theory is just at the beginning and so much remains to be
done. Nevertheless, the main structural lines developed so far are
amply sufficient for the primary objectuives of this monograph, i.e.. the
construction of Lie-isotopic generalizations of conventional
relativities, as we shall see.

The Lie-isotopic generalization of the conventional formulation of
Lie’s theory was submitted along structural lines conceptually similar
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to those of the Biriborrian generalization of Hamiltonian mechanics
(Santilti (1982a)), i.e., under the condition that the generalized theory
coincides with the conventional one at the abstract, realization-free
level. In fact, the ispenvelopes £ the Lie-isotopic algebras L and the
Lie-isotopic groups G coincide by construction with the original
structures & L and G, respectively, &t the abstract, reslization-free
fevel

Note that, by central assumption, Zfe Lie-isotopies preserve lhe
generators and pargmeters of the original group and generalize
lnstead the structure of the group itselr In g gxiom preserving way.
These features are of central relevance for the characterization of
closed non-Hamiltonian and non-Newtonian systems via Lie-isotopic
symmetries, as we shall see in the subsequent chapters.

The representation of the time evolution is evidently of
fundamental physical importance. In the conventional case it is given
by a one-dimensional Lie group G, with the Hamiltonian H as
generator and time t as parameter,

For the Lie-isotopic case, we have instead the more general
structure in finite and infinitesimal forms for an arbitrary quantity Q{t)

6o Q) = fep Qe = Tl TR e M T

= e f—’tHT Q(0) e ;TH, {6.23a)

j——— = [GH]; = Q*H - HxQ = QTH - HTQ =
da

= Q T(ts}{!pipadj!‘pTaalbsaqj?'") H - H T(t‘» Xap;p’lb’dﬂ‘!adjvamfr") G' (6' 23b)
| _yh T=T
H=H> R {6.24c)

characterizing the ALie-isotop/c generglization oF Helsenbergs
equations today called isoe/senberg’s representation, originally
submitted in Santilli (1978b), p. 75212,

12 Eqs (6.23) have been proved to be directly wmiversal , that is, admitting as
particular cases (under sufficient topological conditions} all possible operator
equations {universality), directly in the local quentities considered (direct universality)
(see Santilli (1989) for detsils and references). As an example, certain nonlinear
equations proposed by Weinberg (1989) are a particular case of Eq.s {6.23), as shown in
detail by Jannussis ef &/ (1991). Note that the nonlinearity generally treated until
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The corresponding, equivalent, /soscherddinger’s represeniation
is characterized by the right and left modular-isotopic eigenvalue
equations

3
f=——[y> = H{g> = E{y> = Hy >, (6.24a)
at
3
i <y|— = <ypH = <y pE = <§IE, (6.24b)

at

proposed by Mignani (1982} and Myung and Santilli (1982a),

By inspection, one can see that Eq.s (6.23) or (6.24) represent a
physical system with all possible potential forces, characterized by the
conventional Hamiltonian H = T(X} + V(t, X, %) with potential forces

d av av
FSA = - , (6.25)
dt  ax ax

as well as an additional class of forces beyond the representational
capability of the Hamiltonian, characterized precisely by the isotopic
element T which, as one can see, ww/ples the Hamiltonian from the
right and from the left.

Eq.s (6.23) and (6.24) are evidently at the foundations of the
cperator formulation of the Lie-isotopic theory. In fact, as shown in
Santilli (1978b} and subsequently developed by Myung and Santiili
{1982a), Mignani, Myung and Santilli (1983), and Santilli {1989), the abstract
formulation of the Lie-isotopic theory can be directly interpreted as
representing a generalization of quantum mechanics on a suitable
isotopic form of the Hilbert space, called /Aadronic mechanics .

In this case, the generators X are generally expressed via
matrices or via local-differential operators, while the isounit 1 is
generally represented by a nonlinear and nonlocal, integro-
differential operator.

As an example, for the case of two particles with wavepackets
P(tr) and ¢(t;y) in conditions of deep mutual penetrations, the isotopic
element can be expressed via the form first introduced by Animalu

now, includuing that by Weinberg (/oc ot. ), is the nonlinearity in the wavefunction
s, while Eqs (6.23) are nonlinear also in the derivatives of the wavefunction 3¢, the
latter one being more relevant than the former for the study of short range, internal
interactions caused by wave overlapping, as typical for all motions within physical
media. Note alsc that conventional nonlinear models, including that by Weinberg
(/oc. ait. ), are strictly local-differential, while Eqs (6.23) are directly universal also
for all possible nonlocal-integral equations, as illustrated later on via isounit (6.26).
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(1991}

1=e, k] ¢v ueo) o) eq (6.26)

One can therefore see in this way that for null wave-overiapping,
the integral in the exponent of Eq. (6.26) is null, the isounit T assumes
the conventional trivial value I, and all Lie-isotopic formulations
recover the conventional formulations identically at both the quantum
mechanical as well as Lie levels.

In turn, the emerging isotopic generalization of quantum mechanics
under isounit (6.26) is useful for a more adequate, nonlocal treatment of
systems such as: bound states of particles at very small mutual
distances, as expected in the structure of hadrons and, to a lesser
quantitative extent, in the structure of nuclei (but not in the structure
of atoms); the Cooper pairs in superconductivity; Bose-Einstein
correlations; etc.

Realization (6.26) is useful to provide the reader with a simple
illustration of the needed type of nonlocality, as well as of the type of
operator Lie-isotopic theory which is expected from the classical
formulations of this analysis. The understanding is that the actual form
of the isounit in specific models is rather complex.

We now pass to the c/zssical/ realizalion of the Lie-isoropic
theory, which is the central topic of the remaining parts of this
volume. In this section we shall present only a few introductory
" notions. The topic will be studied in detail at the analytic level in Sect.
11.7 and at the geometric level in Sect. 11.9.

Introduce the conventional phase space T*E{r8,%) with local
coordinates

a=f@"=1(p={fpp), i=t2.n p=12.20 (627

where we shall ignore for simplicity of notation any distinction
between covariant and contravariant indeces in the r- and p-
variables, but keep such a distinction for the a-variables.

As well known, the celebrated Lie’s First, Second and Third
Theorems provide a direct characterization of the conventional
Hamilton’s equations without external terms, as presented in their
original derivation (Lie (1893)). Equivalently, we can say that Lie’s
Theorems provide a direct characterization of the familiar Poisson
brackets among functions A(a) and Bfa) on T*Er.8#)
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dA aB dA OB B  aA
[oB] = — oV —or = — — - — (6.28)
3aH ¥  ar, dpy  8rg dpy

where wuv is the conmiravariant, canonical, Lie tensor With
components

(wh¥) , (6.29)

“Inxn n*n
{see the next sections for details and geometrical meaning).

A primary physical motivation for proposing the Lie-isotopic
theory was to show that the Lie-isotopic First, Second and Third
Theorems characterize a generalization of Hamilton’s equations
originally discovered by Birkhoff (1927) and called ZBir&forr's
equarions, with the ensuing mechanics called Birlhoffian wechanics
{(see next section).

In fact, the Lie-isotopic First, Second and Third Theorems directly
characterize the most general possible, regular realization of Lie
brackets on T*E(r,8.8), given by Birdborr’s brackets

dala) aB{a)
oHVia) . {6.30)
aakt LPd

[ao.B] =

where QVVY, called contravariant Birk hofr’s temsor, verifies the
conditions for brackets {6.30) to be Lie

otV + oW = g, {6.31a)
" gqkV aavT kT
QTP + QMP + qVP = 0.  (6.31b)
daf aaP aaP

The reader should also be aware that, ih a c¢lassical realization, the
isotopic rules (6.15) no longer hold because the product of functions A
and B in the phase space T*E{(r,8%) is conventional, AB, and the
Isodirrerentia/ ru/es for the classical isotopic brackets are given by

[A.BCl = [A B]C + B[A.C] (6.32a)

[AB cl = [A.C]B + A[B;C) (6.32b)
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A comprehensive treatment of Birkhoffian mechanics was
presented in Santilli (1982a). However, such a formulation is basically
insufficient for the needs of this monograph, and a further structural
generalization is needed.

In essence, the abstract formulation of the Lie-isotopic theory, as
reviewed in this section, is directly suited for the representation of
nonlinear as well as nonlocal interactions, via their embedding in the
isounit of the theory.

On the contrary, the classical realization of the Lie-isotopic theory
as originally proposed and developed into the Birkhoffian mechanics
could indeed represent all possible nonlinear and non-Hamiltonian
systems (11.1.1), but only in their local-differential approximation.

The occurrence was dictated by the use of the conventional
spmplectic geowelry, although in its most general possible exact
realization precisely given by the Birkhoffian mechanics (see next
sections). The inability to represent any form of nonlocal-integral
interactions was then due to the strictly local-differential topology of
the underlying geometry.

This created a rather unusual dichotomy whereby the operator
formulations of the theory does indeed permit nonlocal interactions
(Myung and Santilli (1982a), Mignani, Myung and Santilli {1383)), but their
classical counterpart could only admit local interactions (Santilli
1982a)).

This problem was solved only lately via the submission (Santilli
(1988a, b), (1981b)) of the so-called spmplectic-isoloplic geometry and
Birkfiorfizn~isotopic mechanics as the true, classical, geometric and
analytic counterparts, respectively, of the abstract Lie-isotopic
theory reviewed earlier, in the sense of being capable of identifying
the underlying isounit and therefore admitting of nonlocal-integral
interactions.

The symplectic-isotopic geometry and the Birkhoffian-isotopic
mechanics will be reviewed in the next sections. In this section, we
shall merely present the main idea of the needed Lie-isotopic
brackets.

Let us review the conventional Poisson brackets in the unified
notation (6.27) on the conventional 2n-dimensional space T*E(r,8R). Its
underlying unit is evidently given by the trivial unit I in 2n-dimension,

Io={,%) = Ipnxan = diag.(, 1., 1) (6.33)

68




We therefore note that, while the conventional way of writing the
Poisson brackets in the disjoint r— and p-coordinates does not allow
an identification of the underlying unit, this is not the case for the
brackets written in the unified a-notation, because they can be
written

8Ala) aB(a)
[A,B] = —— P lp" _ (6.34)
dal aaV

thus exhibiting the unit of the theory directly in their structure.

The classical Lie-isotopic brackers (first submitted in Santilli
{(1988a, b), {1991a)) are given by a direct generalization of brackets (6.34)
of the form

8Aa) . dBfa)
WP 1 Yitaa..) , {6.35)
aat p aaV

fa Bl =

that is, with the following realization of Birkhoff’s tensor

QhV = w“p ip”(t,a,a,...}, {6.36)

evidently under integrability conditions {6.31) for brackets (6.35) to be
Lie-isotopic.

Brackets (6.35) can be readily written in the disjoint r- and p-
coordinates by assuming the diagonal form of the isounit

1 = diag Bpep Sy 5=8.  det 0, (6.37)

under which, by using Eq.s (6.29), we have

X A aB B A
faA Bl = — & (trp,.) — - — Si.(t,r,p,...) —-, (6.38)
ar, U ap. ar; ¥ ap;
i j ]

Again, one can see in this way that the unified notation {6.27)
permits the direct identification of the isounit 1, while such isounit is
not directly exhibited by the disjoint r- and p-formulation.

Classical Lie-isotopic brackets (6.35) do indeed permit the

representation of nonlocal systems without any need of introducing a
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nonlocal topology. This is essentially due to the fact that the canonical

structure PV js preserved in its entirety in structure {6.35), while all
nonlocal terms are factorized into the isounit 1, exactly as it occurs at
the abstract formulation of the theory.

The only difference between the abstract and classical
realizations is that in the abstract case, brackets (6.8) exhibit the
presence of the Zsotopic e/emens while in the classical realization
{6.35), the brackets exhibit the presence of the Jsoun/i

This is a fully normal occurrence and it is due to the interchange
between covariant and contravariant quantities in the transition from
the abstract to the classical formulation of the enveloping algebra.

The classical realization of the Lie-isotopic time evolution (6.23a) is
sitraightforward, and it is given by

poy v v i
t W, " (8H/8a”) (8/a )11 »Qlal), (6.39)

Gy Qlald) ={leg
which constitute precisely a classical realization of the abstract Lie-
isotopic transformation groups considered earlier, with a ready
extention to more than one dimension.

The infinitesimal version of time evolution (6.39) is evidently given

_ ) ] aH
Q=[A H = — otV ——| {6.40)

and characterizes the Birkforr-isotaplc egualions submitted in
Santilli (1988a, b), (19914, b)) as shown in the next section.

The reader should be aware that, while the classical realizations of
Lie algebras and groups in their conventional or isotopic realizations
are rather simple, as shown above, the classical realizations of
universal enveloping associative algebras are rather compiex,
whether conventional or isotopic, and they will not be treated here for
brevity.

in particular, the most notable differences between the abstract
ijsoenvelopes and their classical realizations is the appearance of the
so-called weutrral/ efemenis dij (see, e.g., Sudarshan and Mukunda

{1974), p. 222). Conventional closure rules must therefore be generally
written

L: X, X1 = ¥ Xy + oy (6.41)
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where the X’s are vector-fields on T*E{r,6R), the brackets are the

conventional Poisson brackets, and the neuiral elements dij are pure

numbers. .

In the transition to the Lie-isotopic brackets, the situation is
predictably more complex, inasmuch as rules (6.41} are now lifted into
the isotopic form

[Xl :X]] = Cijk(t,a,a,..) Xk + aij(t,a,é,.), (6.42)

namely, not only the structure constants Cijk are lifted into the

structure functions Cijk, but also the constant neutral elements dij are
lifted into the Jsapeuvira! elements aij with a nontrivial dependence in
the local variables.

Now, we shall see in the next chapters that the elimination of the
neutral elements is rather simple at the level of abstract Lie algebras
and groups, whether conventional or isotopic. Nevertheless their
elimination is rather complex at the level of isoenvelopes in classical
realjzations.

This occurrence has direct implications in the identification of the
classical realizations of Casiwm/r Invariasts of the Lie-isotopic
theory, called Jsocasimir Znvarigsais, but not in their abstract (or
operator) counterpart. In fact, in the abstract case the isocasimir
invariant can be globally identified in a rather simple way, while in the
corresponding classical realization, the same isocasimir invariants are
generally defined only locally in the neighborhood of a point of the
local variables.

This occurrence can be best illustrated by inspecting the global
identification of the isocasimir invariants of the Lorentz-isotopic
group in Santilli {1983a), and only the local identification of their
classical counterpart in Santilli (1983c) {(see Chapter 1V of Vol. 1I for the
latter case).

The ultimate roots of this occurrence are due to the fact that the
envelopes underlying the abstract Lie brackets “ab - ba” or their
isotopic generalization "a*b - b*a” are gssocizive Lie-admissible
in the conventional or isotopic sense,

E: ab =assoc, £ : ab- ba, {6.43a)

t: axb = assoc, E7: a*b - bxa. {6.43b)
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On the contrary, the envelopes underlying the classical Lie
brackets (6.34) or their isotopic generalizations ({6.35} are
nonassociative Lie-admissible, Eq.s (11.5.12),

0A OB dA OB dB dA
U: —— -— = nonassoc.,, U: —— - — — , (6.44a)
dA aB _ 0A OB dB JA
0: — §,;— = nonassoc, 0 sij 8jr— . (6.44b)

al’i

]jap- ar ap; arvul 3p;
) 1 3 1 ]

We know nowadays how to generalize the Poincaré-Birkhoff-Witt
theorem for isoassociative algebras, but their generalization for
nonassociative algebras is known only for fexible Lie-admissible
aigebras (Santilli (1978a), Ktorides, Myung and Santilli {1980)), namely,
for a type of algebra for which no classical realization is known at this
writing (Sect. IL5).

it is evidently true that the classical Lie algebras and groups can
be equivalently formulated via an associative envelope, Lemma 11.5.1.
In fact, the Lie-isotopic expansion (6.39) is precisely of conventionally
associative type.

However, in such an associative reformulation of nonassociative
envelopes, the neutral elements emerge. The difficulties in their
elimination at this time therefore lie in our lack of knowledge of the
infinite-dimensional basis for the nonassociative envelopes U and U
above.

It should be stressed, however, that this is a merely mathematical
aspect here left open for the interested mathematician, and implies no
major drawback for the physical studies of the theory of the next
chapters,

1.7: BIRKHOFF-ISOTOPIC MECHANICS

We shall now first review the elements of the RZirkhorrian
generalization or Hamiftonian mechanics, ov Birkfiolrian mechanics,
as originally derived in (Santilli (1978a), (1982a), that is, via formulations
on conventional spaces with the algebra structure being the Lie-
isotopic theory, and the underlying geometry being the conventional
symplectic geometry.
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We shall also review the direct wversaiity of Birkfrorrian
mechanics for local-ditrerentia/ systems, that is, its capability of
representing all possible nonlinear and nonhamiltonian systems of
ordinary local-differential equations verifying certain continuity and
regularity conditions (universality) directly in the coordinate system
of their experimental detection (direct universality).

We shall then reformulate the Birkhoffian mechanics in a form,
called Birkhorrian-isotopic mechznics, which is formulated on
suitable isospaces in such a way to exhibit the isounit of the theory
directly in the analytic equations and, therefore, in the Lie-isotopic
brackets. The geometric structure of the latter mechanics will be
studied in Stc. 119,

The primary reason for such a reformulation was indicated earlier,
and it is due to the fact that the Birkhoffian mechancs can only
represent local-differential systems because it is based on a
geometry, the symplectic geometry, which is strictly local-differential
in topological character. The Birkhoffian-isotopic mechanics, instead,
permits the representation of nonlocal~integral systems under the
condition that all the nonlocal terms are incorporated in the isounit of
the theory, as permitted by the Lie-isotopic algebra.

In turn, the achievement of a mechanics capable of representing
nonlocal interactions is necessary, not only for the classical
representation of systems of type (11.1.1), but also for the operator
formulation of the theory. In fact, the interactions of primary interest
for the snterior problem in both classical and particles physics are
precisely of neniocal-integral type.

As recalled in the Introduction, the studies of this section were
initiated by Birkhoff (1927) who identified the central equations of the
new mechanics. However, their algebraic and geometric structures
remained unknown. Also, Birkhoff applied his equations to
conventional, conservative, Hamiltonian systems, such as the problem
of stability of planetary orbits.

Birkhoff's studies went essentially un-noticed for about fifty one
years. Santilli (1978a) rediscovered the equations, by calling them
“Birkhoff’s equations”, and identified: 1) their algebra structure as
being that of the Lie-isotopic theory; 2) their geometric structure as
being that of the conventional symplectic geometry in its most general
possible exact and local formulation; and 3) the capability of the
equations of representing all possible nonlinear and nonhamiltonian
systems in local-differential approximation. The name of “Birkhoffian
mechanics ” was submitted in the quoted memoir for the first time.

A presentation of the foundations of the studies, Helmholtz's (1887)
conditions of variational selfadjointness, were Subsequently
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presented in the monograph Santilli {1978¢}, while a comprehensive
presentation of Birkhoffian mechanics was provided in the subsequent
monograph (1982a).

The wonrelativisiic Birkhortian-isotopic mechanics was introdu-
ced for the first time in Santilli 1988a), with the relativistic formulation
being presented in Santilli (1988c). In this section we shall present the
structure of the mechanics in isospaces of unspecified physical
interpretation. The relativistic and nonrelativistic particularizations
will therefore be studied in the subsequent chapters.

The reader should be aware that the Birkhoffian-isotopic
mechanics provides the ultimate analytic foundations of the isotopies
of Galilei’s and Einstein’s relativities studied in the subsequent
chapters. No in depth knowledge of the isotopic relativities can
therefore be reached without an in depth knowledge of their analytic
structure. The rudimentary outline of this section is basically
insufficient for this task, and a study of the original, locally quoted
references is recommendable.

We should finally mention that the author presented in the same
memoir of {1978a) a still more general mechanics possessing, this time,
the broader Lie-admissible structure and symplectic-admissible
geometry. This more general mechanics was subsequently studied in
detail in the monograph Santilli (1981a). The rudiments of this latter
mechanics are presented, for completeness, in Appendices 11.A and
ILB.

As anticipated in Sect. 1.4, the primary physical motivation for this
latter generalization is the following. Whether conventional! or
isotopic, Birkhoffian mechanics is an axiom preserving generalization
of Hamiltonian mechanics. As such, its primary physical emphasis is in
space-time symmetries and related first-integrals which represent
total conservation laws. This renders Birkhoffian mechanics ideally
suited for the characterization of closed-iso/gzed interior systems,
such as Jupiter when studied as a whole.

The more general Birkhoffian-admissible mechanics implies
instead a generalization of the axiomatic structure of Hamiltonian
mechanics into a form which represents instead the time-rate-of-
variations of physical quantities. This rendérs the Birkhoffian-
admissible mechanics particularly suited when studying open-
nonconservative interior systems, such as a satellite during
penetration in Jupiter’s atmosphere considered as external

Our nhotations will be the following. Manifolds over the reals & of
arbitrary physical interpretation will be indicated with the generic
symbol M(#®). Specific physical interpretation of M(®) (such as the
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Euclidean space over the reals), will be generally indicated with
different symbols (such as E@®)).

Generic local coordinates on an N-dimensional manifold M(®) will
be indicated with the symbol x, and their components with the symbol x
= {x!), where for all Latin indices i = 1, 2, ..N. Coordinates of specific
physical interpretation (e.g., the Carthesian coordinates on a Euclidean
space) will be indicated with generally different symbols (e.g., r = )]

To begin, considered a 2n-dimensional manifold M{(®) with local
coordinates X = {x‘), i =1, 2, .. 2n, over the reals #. Let t be an
independent variable and X = dx/dt. Birkhoffian mechanics is based on
the most general possible variational principle in M(®} which is of
linear and first-order character, i.e,, depending linearly in the X's. Our
basic analytic tool is then the Aasrian variationz! principle

8A = Sfttz(Ri(x) - B(t,x)]]E dt =0, i=i2..,2n, (7.1)
1

here written in its semvawronomous form, ie, with the t-dependence
restricted only to the function B called Birdhorrisn because
generally different than the Hamiltonian (i.e., total energy) H=T + V.

When computed along an actual path £ of the system, principle (7.1)
characterizes the following equations

3Bltx)
Q) = ——.  Li=t.2..2m (7.2)
ax!

called covarizn, semiautoloous Birkhorr’s equations, and

aRj(x) 8R;fx)
i) = — - ~, (7.3)
ax! axd
is the covariam Birkhorr's tensor hereon restricted to be nowhere
degenerate (i.e., det (Qij} # 0 everywhere in the region considered).
The cowmtravarianl, semravtonomous BIrkhorr’s equations are
given by

. .. OB(tX)
P = ol ——— (7.4
axd
where
o) = (] gl 1), (7.5)




is the comtravariznt Birkhorrs tersor.

It is easy to see that the brackets of the algebraic structure of the
theory among functions A(x), B(x), ... on M{#) are characterized by the
contravariant tensor QU

3A[x) . aB{x)
lix) — (7.6)
ax]

A Bl =

while the covariant tensor Q;: characterizes the two-form

i
Q=de = d®dx)

8Rj  8Ry .. P
=H{— - —r)ax'adx] = i@ dx! A dxd (7.7)
ax! ax!

As we shall review in Section 11.9, the two-form (7.7} is the most
general possible exact symplectic two-form in local coordinates. This
provides the necessary and sufficient conditions for brackets (7.6} to
be the most general possible classical, regular , unconstrained!® Lie-
isotopic product on M(®) {see the proof in Santilli (1982a}).

Brackets (7.6) are called Bir&horr’s brackels in our terminclogy or
generalized Poisson brackerts in other studies (e.g., Sudarshan and
Mukunda {(1974)). The sundamenta/ Birkforr’s brackets are then given

by
il = o), (7.8)

and they play an important role in the operator formulation of the
theory.

Other fundamental equations are given by the Birkhorrian
Hamifton-/acobi equations

aA

— + B{tx) = @ (7.9a)
ot

9A

— = Ry, (7.91)
axl

13 As we shall see in Chapter 1V, in addition to the brackets of this section, we also
have those defined on an hypersurface of constraints, as it is the case for Diracs
brackets {Dirac {(964)).

76




which are directly derivable from variational principle (7.1) {under the
condition of nowhere degeneracy of Birkhoff's tensors) and, as such,
are equivalent to Birkhoff's equations (see Santilli (1982a) for details).

As we shall see, Eq.s {7.9) play a predictable fundamental role for
the construction of the operator formulation of the isotopic
relativities, although in a reduced isotopic form discussed below.

In Hamiltonian mechanics, one usually assigns the Hamiltonian and
then computes the equations of motion, when needed. In Birkhoffian
mechanics, the situation is the opposite. In fact, one starts with an
arbitrary nonlinear and nonhamiltonian system and then computes its
Birkhoffian representations.

A main result can be formulated as follows.

THEOREM 1171 (Direct Universality of Birkhoriian Mechanics
for Local First-Order Svstems; Santilli (79523, Theorem 451, p
Sk Al Jocal, aralviic, regular, nonavtonomous, [finite-
dimension&l rirst-order, ordinary dirfferential equations on &
Zn-dimensional manirold ME) with local coordinates x = (¥}, 5 =
1, 2 .., 2n and derivaives X = dyv/dt with respect o an
ndependent variable t

%! = rlit, ), (7.10)

always adwit, In 8 star-shaped neighborfiood of & regular point
of thelr variables, a representaton 1 rerms of Birklolr's
eguations directly i the local variables atr hand, /e,

aRj(t, X) aR;(t, %) ) aBl(t, x) dR;(t, x)
—= - —-1 Tt x) = - + , (7.11)
ax! ax) ax! at

Namely, for each given vector-field I'(t, x) on M(®) verifying the
topological conditions of the theorem, one can always construct {n +
1) functions Ri(t, x} and B(t, x) which characterize Birkhoffian
representation (7.11).

The reader should be warned that, as the representation emerges
from the techniques of Birkhoffian mechanics, it is generally of the
nonautonomous type (7.11), even when the equations of motion at
hand are zutonomous Now, representation (7.11) is certainly correct
from an analytic viewpoint, i.e, for the use of variational principle (7.1},
the Hamilton-Jacobi theory, etc. However, structure (7.11) is not

77




suitable for a generalization of conventional relativities because it
violates the condition for the characterization of any algebra, let
alone the Lie-isotopic algebras {see Appendix ILA for details).

This requires the reduction of nonautohomous representation (7.11)
to the semiautonomous form (7.2} (with a consistent Lie-isotopic
structure) via the use of the "degrees of freedom” of the theory which
are considerably broader than those of the conventional Hamiltonian
mechanics.

We limit here to the indication that the so-called Birkhorfrian
Lgayge transrormalions

aG(t, x
Ri(t, X) = R’i(x) = Ri(f., }{) + n ) (7.123.)
axl
aG(t, x)
B{tx) = PBitx} = B{ta) - ———, {(7.12b)
at

leave unchanged the integrand of principle (7.1) as well as brackets
(7.6) and two-form (7.7), within the fixed system of local coordinates of
the vector-field. For other degrees of freedom, see the locally quoted
references.

Birkhoffian mechanics is evidentlty a coveripg of the
conventional Hamiltonian mechanics because:

1) The former mechanics is based on methods (the Lie-isotopic
theory) structurally more general then those of the latter mechanics
{Lie's theory in its simplest possible realization);

2) The former mechanics represents physical systems {local, but
arbitrarily nonlinear and nonhamiltonian systems} which are
structurally more general than those represented by the latter
systems {local potential systems); and, last but not least

83) The former mechanics admits the latter as a particular case.

To ijllustrate the latter occurrence, we now introduce a physical
realization of the preceding formulation. Let E(r#®) be an n-
dimensional Euclidean space with Carthesian coordinates r = (rl-), and
let p = dr/dt = (p;) be their tangent vectors (the ordinary linear

momenta). Then, the 2n-dimensional manifold M{(®) can be interpreted
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as the cotangent bundle (the conventional phase space} T*E(r®) with
local coordinates a = {a%) = Ty Pk W = 1,2, ., 20, and | = 1, 2, ..,n, Where,
for simplicity of notation, we shall assume all upper and lower Latin
indeces on ccordinates and momenta to be equivalent, but preserve
the distinction between the Greek upper (contravariant) and lower
(covariant) indices on T*E(r.R).

it is then easy to see that the particular case of Birkhoffian
mechanics characterized by

a=@" = {&.p = bppp, (7.13a)
R =R =RY= 0 = Py 0 (7.13b),
B = B(t,a) =B(t,r,p) = Hit,r,p} = HIt, a), {7.13¢)

g=12..,2n, i= 12 ..,n,

reproduces the conventional Hamiltonian mechanics in its entirety.
In fact, under values (7.13) Pfaffian principle (7.1) reacquires its
canonical form

t
2 .
3A=sf (' - Htr,p)] dt =
. [p; £ ( rp)]|E

t |
s s “[R @) 4% - H, al o

0, (7.14)

the covariant tensor {7.3) assumes the canonical-symplectic vaive on
T*E(r . ®)

aR® aR°® 0 -1
v il n=n nxn
(U)uu) = - —v = (7.15)
axt ax Inxp Opxn
with canonical-Lie counterpart )
0 I
-1 nxn nxn
@ = (o |} = (7.16)
ap -1 0
n=n nxn

Birkhoff's equations {7.2) then reduce to the covariant Hamilton's
equations
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y _aH(t, a)

w & = , k=1,2 ...2n, (7.17)
ald aakl
with contravariant form
AH(t, a)
ab = o (7.18)
daV

which, when written in the disjoint coordinates x = (r,p), assumes the
familiar form

~ eHltr,p) _ aH(t, r, p)
b= —, P = - —, (119
ap; arj

Finally, theBirkhoffian Hamilton-Jacobi equations (7.9) assume the
familiar canonical form

0A
+ Hit,r,p) = 0, (7.204)
at
JA oA
= Pp = 0. (7.20b)
ari Bp]

Note that, while the canonical action A is independent from the
variables p as expressed in Eq.s (7.20b), the Pfaffian action A is
generally dependent on all a’s and, thus also on the momenta, as
expressed by Eq.s (7.9D).

This occurrence creates problems in the use of the general
equations (7.9} for the construction of an operator image of Birkhoffian
mechanics, owing to its excessive generality (e.g., because, after using
conventional quantization techniques, it would imply "wavefunctions”
J depending also on momenta, ie.,§ = $(t, r, p)

The first motivation for the reformulation of the above mechanics
into a Birkhoffian-isotopic form is therefore of physical character,
and it consists of the study of Pfaffian variational principles which,
while being of a genuinely generalized nature, imply an action
independent from the p-variables.

It is easy to see that the above objective is achieved by the
followong particular form of the R-functions
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R*= (R°f@) = (ylr,ph0) =tpp TK; 0) = (T O,  (7.20)
where Ty is an n*n symmetric, nonsingular and reai-values matrix
Ty = (Ty) = (T ) = (T} = (ry40), (7.22)

Realization (7.21) characterizes a phase space T*E4(r.&) for which
principle (7.1) becomes

8A" = & L 2 Ry fyat - Hita) g ar
1
b2 )
= SJ.EI [pl Tll] i‘j - H(l‘.,!‘, pHI

and can be interpreted as acting on a 2n-dimensional iso-phase-space
T*E,(r.#t) equipped with the isounit

= Q, 7.23
Ec:il; (7.23)

1, = diag. (1,74, 1,7, (7.24)

Eq.s {7.9) then become

3A°
+ Hit,r,p) = 0, (7.25a)
at
3A° ) dA°
- = BTy — =0, (7.25b)

thus confirming the independence of the generalized action from the
velocities, as desired.

Intriguingly, the mapping oof Eq.s (7.25) into an operator forms
yields precisely the Sxchrodinger-isotopic equations (6.24), as studied
by Santilli (1989}, thus confirming the expectation that Birkhoffian
mechanics admits, as operator image, the isotopic generalization of
quantum mechanics.

The covariant Birkhoff’s tensor characterized by Pfaffian principle
(7.23) is calieed covariznt canonical~isotopic rensor and is given by

aR 0

n=n (Tz)nxn

v -
ok ox TJhn Onen
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Opn Ty * Pk Inxn

a7
- (T.'l l] * Pk )ﬂ"n ann
ap;
]
namely, has the factorized structure

Q° = u!"'T'g,

T, = diag. (T, Toh
a7 ]
Ty = (Tl ij * Pg

)nxn »
ap]

with corresponding two-form

. O
o = @y ot A =(oyg Tp ) da¥ A da®

where the upper script ” ° ” in structure ©° stands to indicate that the
factorized structure ® is canonical. The analytic equations, called

covariant familton-Isotgpic eguations, are given by

& v T @ XY aH(t, a)
uv (a) a = wlla 2 v(a) a - aau

The contrgvariail canonlicaf-/sotopic tensor has the siruciure

(@) = )01, = 1 ) = WRT,Y) -

B (Iz)nxn Opxn

= diag. (T,"L, T, ™Y = diag. Iy, Iy},
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{7.27a)

{7.27b)

{7.27¢)

{7.28)

(7.29}

(7.30a)

{7.30D)




%
Ip = Ty + Px | {7.30¢)
ap;

and characterizes the brackets, called FPoisson-isotopic brackets

A 8] aA ue v( ) oB
A nB = 1] l a,.. _—=
aal 2a aaY¥
dA aB aB p) dA 7.31)
— Lyfrpt — - — L rp) —, (7.31
211 » 21] ) »
ari ap} Bri apj
with comtravarignt Hamilton-isoropic equations
8H(t, a) i 9H(t, a)
v ] 44 y
ik = o) = w1 V) . (1.32)
daV 2 aaY

which can be written in the disjoint r- and p-coordinates

H(t, r, p)
8Hit, r, p)
pi = -y ij(r’ p—, {7.33b}
ar:

I

A few comments are here in order. First, two-form (7.28) remains
exact and symplectic, as the reader can verify (see Sect. 11.9 for
details). As a result, brackets (7.31) remain Lie-isotopic under
factorization (7.27), provided that the elements I, are computed as in
Eq.s {7.30c).

Second, we note that the particular version of the Birkhoffian
mechanics characterized by analytic equations (7.30) or (7.32) on
T*Ez(rs"’:) does indeed permit the representation of nonlocal-integratl
interactions, provided that they are all incorporated in the isotopic
element T or, equivalently, in the isounit 1,. In fact, the local-
differential topology of Hamiltonian mechanics is preserved in its
entirety in the factorized canonical forms, while the formulations are
insensitive to the possible nonlocality of their units (see Sect. 1.9 for
more details).
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Moreover, we note that, when the equations of motion represented
by Eq.s {7.30) or {7.32) are written in their second-order form (see
Santilli (1982a) for details), they characterize nonnewtonian forces!?,

As a result, analytic equations (7.30) or {7.32) on isospaces T*E,(r ®)
do indeed characterize systems of type (1.2.1}, that is, the most general
possible, nonlinear, nonlocal, nonhamiltonian and nonnewtonian
systems known &t this writing.

The reader should finally be aware of the distinction between
spaces 'I‘*El(r,s‘%) and T*E‘.z(r,s'%). The former is characterized by a one-
form, the integrand of Pfaffian principle (7.23), while the latter is
characterized by a two-form, Eq.s (7.28). As a result, they have
different isotopic elements, T; and T,, and different isounits, 1; and 1,,
respectively. The isospace characterizing the Lie-isotopic algebra is
evidently that of the analytic equations, T*E(r.%).

The extension of the above results to a full isotopy of Birkhoffian
mechanics, i.e., for structures (7.28) and (7.30) in which the factorized
structures are Birkhoffian, rather than Hamiitonian, is straightforward
{see also Sect. 11.9 for its geometrical treatment).

Wwe reach in this way the following

DEFINITION 171 Let T'# 2 5 be a Zn-dimensional iso-phase
spaces with local coordinates x = I, pf, Isofield & = % 1, and
Isounit

]2 = (12058) = 623(1) = (IQQB) = ﬁzga) = diag. {]2-. Iz) =

=y lay) = = (0, L = 1,7t = (r7L 17 >0, (7.342)
Ty = Py v g~ ) (7.34b)

with T i Ar,p/ being an mxn SymmeLric, nonsinguiar and real-value
malrix. Then, the “BirkholI-ISoropic equations” are given i thelr
covariant form &y

i . o . 8RBl(t, a)
qu fa)a” = [Tgu (a) Qav(a)]a = —M—uhw, (7.35)

14 see footnote? in Sect. 1.2,
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WL contravariant version

aHft, a) ; 8B(t, a}
i = o - @1 M) —— . (730
daV 2 daV

namely, they occur when the contravariant temsor £ Y
fcovariant tensor 2%/ Is, first, Lie-isotopic (symplectic-isotopic
see Sect 18 and sécond, adumits the ractorization or the [sounhrt
gsotopic efement/ of the isospace 7‘“)&‘2 (&Y in which it Is
derined

@) = (15,7 x @Y, (7.37a)
@) = @9 = %) (7.37b)
where .(2’-7 Kf.Pf- gre copventioinal local-difrerential

CORLravariant [covariany Birkporrs tepsors, The “Bir&holr-
ISotoplc mechanics™ Is the mechanics of Lhe Birkholf-isotopic
equalions.

It is easy to see that the Birkhoff-isotopic mechanics is lroader
then the conventional one, trivially, because of the preservation of the
most general possible Birkhoff’s tensors in its structure, plus the
isotopic element. As a result, the Birkhoffian-isotopic mechanics, not
only verifies Theorem I1.7.1 of Direct Universality, but actually verifies
it in an extemded form inclusive of nonlocal integral terms.

In particular, Birkhoff-isotopic equations (7.32) are expected to be
“directly universal” for systems (II.1.1), aithough the study of this
property is not needed for these monographs, and is left to the reader
interested in acquiring a technical knowelege of the field.

The Birkhoffian-isotopic mechanics is, however, excessively broad
for our needs. In the subsequent chapters of this work we shall use its
particularized form as per the following

DEFINITION fL.7.2 The “Hawmilton-isotopic mechanics™ Is the
particular case of the Birkhorr-isoropic mechanics in whiclh the
general Birkhorr's tensor .r?ﬂ p 15 replaced by the canonical one
@y The “Hawiiton-isoropic egquations™ on T“Z} .5} are
thererore given I therr covariant rorlm by £Egq.5 (7.30,and in
thelr copniravariant roriy by £g.5 (7.32, with explicit form (7.33/
I the r- and p-coordinates.
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The simpler analytic equations (7.30) and (7.32) with underlying
variational principle (7.23), Lie-isotopic brackets (7.30} and symplectic-
isotopic two-forms (7.28) are fully sufficient for our analysis. In fact,
the Hamiltonian H can represent the totality of potential forces, as in
the conventional theory, while the isounit can represent the totality of
nonlocal-integral forces that are admitted by the theory.

The problem of whether the simpler Hamilton-isotopic mechanics
is sufficient to reach the directly universal for all possible systems
{11.1.1) will be investigated at some subsequent time,

Let us provide some examples of the Hamilton-isotopic mechanics.
The simplest conceivable case is that in which T, is a diagonal,
positive-definite and constant matrix, e.g.,

Ty = diag. (b;% b,% bs?) > 0. (7.38)

Then, Ty Ty, and the isounit of T*Ez(r,ﬂ] is given by

1,= diag. (b; 2 by, 2, bg 2 b 20, 20573 > 0. (7.39)

As we shall see in Chapter 111, the above case can first represent a
free particle with an extended shape, say, of oblate spheroidal type,
see Eq.s (lI1.7.4), as well as the deformation of that shape due to
external forces, see Eq.s (111.7.7).

A simple class of systems with nontrivial dependence of the isounit
is given by

T = Ne Py, (7.40)

where T, is given by Eq. {7.39), F is an arbitrary function of r,and N € &
in this case

2 (7.41)

The represented systems are then, in general, nonlinearly damped
systems, such as (111.7.10).
A simple illustration of nonlocal isounits is given by

1=Ne T Jort) (7.42)
which generally represents nonlinearly damped, extended systems

with nonlocal corrections of the trajectory due to their shape ¢, as in
Eq.s (111.7.15).
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Similar examples hold for the Birkhoff-isotopic mechanics, with
structurally more general examples (see Sect. 11.9 and the following
chapters).

f1.8: LIE-ISOTOPIC SYMMETRIES

We are now sufficiently equipped to introduce the notion of symmetry
of systems (II.1.1) characterized by the Lie-isotopic theory on
isomanifolds, called Zsesymmetries, which play a fundamental role for
the construction of the isotopies of Galilei’s, Einstein’s special and
Einstein’s general relativities of Volume IL

In this section we shal! consider two main topics. The first is the
notion of isosymmetries as the largest possible nonlinear, nonlocal and
noncanonical groups of isometries of given isometric spaces. The
second is the notion of isosymmetries of given equations of motion on
isomanifolds, with related lifting of Noether's theorem and
conservation laws.

The notion of isotopic space-time symmetries was introduced in
the original proposal of the Lie-isotopic theory (Santilli (1978a)),
although it was formulated in conventional manifolds.

The formulation of isotopic space-time symmetries as
isosymmetries, that is, as symmetries on isomanifolds, appeared in
print, apparently for the first time, in Santilli (1983a) in conjunction with
the first construction of the infinite family of isotopes (3.1} of the
Lorentz symmetry O(3.1). In fact, the paper first constructed the
infinite family of isotopies M of the Minkowski space M, then
introduced the Fundamental Theorem on [sosymmetries (see below),
and finally constructed the isotopies of 0(3.1).

The theory was formalized in Santilli (1985a), which constitutes the
main reference of this section, and applied to the lifting 6(3) of the
group of rotations in the adjoining paper (Santilli (1985b)).13

The second part of this section dealing with the isotopic
symmetries of given equations of motions, was first introduced in the
monograph Santilli {1982a} as part of the Birkhoffian generalization of
Hamiltonian mechanics, including the isotopic generalization of
Noether's theorem, and related conservation laws. As now familiar, the

15 1n actuality, the author wrote first, in 1982, the papers (Santilli (1985a and b)) on the
background methods and then wrote the paper (1983a)) on the isotopies of the Lorentz
symmetry. The preceding two papers appeared in print some two years after the
latter, for reasons reported in detail in {Santilii (1985a)), p. 26.
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theory is nonlinear and nonhamiltonian but local, owing to the use of
conventional local-differential manifolds.

The operator counterpart was presented in Santilli {1983¢) via an
isotopy of Wigner’s theorem on unitary symmeries (see also the
memoirs Santilli (1989)).

The study of the classical profile was then resumed in Santilli
{1988a) and (1991a) where the theory is reformulated as isosymmetries
on isomanifolds, including the reformulation of Noether's theorem on
an isospace, which constitutes the basis of the related review of this
section,

To begin, consider a psevdometric space M (Sect. 11.3), here
defined as an n—dimensional topological space over the field F of real
numbers ®, complex numbers C or quaternions Q with local coordinates
x =), y={hi=1 2 ., n, equipped with a nonsingular, sesquilinear
and Hermitean composition (x,y) characterizing the mapping

®y): MxM = M. (8.1)

Let e = (e!) be the basis of M, and define the metric tensor via the
familiar form

e e = gip 8 = (g {8.2)

The condition of nonsingularity is intended to ensure the existence
of the inverse

gl = (lgpd I, (.3)

everywhere in the region considered, which permits the customary
raising and lowering of indeces

Xj = gij xj, y' o= gijx (8.4)
The condition of sequilinearity

oy +2) = aby) + pixz), (ox + pyz) = wlxz) + Blyz), (8.5

where the upper bar denotes conjugation in the field, permits the
realization of the composition in the familiar form
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y) = x'gy = x! g1 ¥ (8.6)
Finally, the condition of Hermiticity implies that

X gy = E&'x)y = &gx)y (8.7)

by characterizing abstract spaces hereon denote M{x.gF).
The additional condition of positive-definiteness of the metric g
implies that we have a wezrvic space as per the definition of Sect. 11.3.
A metric space of particular physical relevance is the three-

dimensional Zuc/idesn space E(r§F), with local coordinates r = (ri)
over the field F = &, C, Q, with composition (Sect. I1.3)

t? = o'yl e, 5 =diag (1,1,1), (8.8)

A pseudometric space also relevant in physica is the (3+1)-
dimensional Af/nkowsks space MEMR) (Sect. 11.3) with local

coordinates x = (rx%, x* = Col, Where ¢, represents the speed of light

in vacuum, r ¢ E(r,8,8), and the composition is given by the familiar
expression

x% = xh Ty xV, 1 = diag. (1,1, 1,-1). (8.9)

Let us also recall the notion of isoweiry Gim) of a generic
manifold M{x.gF), here defined as e fargest possible m-dimensional
Lie group Gfm) of linear and local transformations x = X~ leaving
imvariant the composition lor the separation xy; -~ Xp among two
POIILS X 5 X 5 Of &t n-dimensional manifold MELgF F=8 C Q

.ot . Y - 1
Xy X g &y - xp) = &y~ xobg &y -~ %)), (8.10)
(see for details, e.g., Gilmore (1974) and quoted literature).
The connected component G.(m) of G{m) can be defined as an m-
dimensional Lie transformation group on M(xgF)(, i.e, as a topological

space G,.(m) equipped with a binary associative composition ¢
characterizing the mapping

¢: G,(m) x Go(m) = G.(m), {8.11)

for G.(m} to be a topological Lie group, and the additional mapping
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f: Gofmj > M = M, {8.12)

characterized by n analytic functions f(w; x} depending on m
parameters w and the local coordinates x € M, which verify the
conditions for G.(m) to be a Lie transformation group.

It is finally assumed that G(m) is a Zwesr transformation group on
MxgF), i.e, the f-functions have the particular form

¥ = flw,x}) = Aw)x, {8.13)

under which the group conditions can be written

AlD) = 1, (8.14a)
Alw) Alw) = Alw) Alw) = Alw +w), {8.14b)
Alw) AlW) = 1, (8.14c)

where 1 is the trivial identity of Lie’s theory and the composition is the
associative one,

The isometry G.{m) can then be defined as the largest possible
group of transformations (8.13) leaving invariant separation (8.10), i.e.

lix, - %) ATl g [Alx, - %] = (g - %p) & (¢; -Xp). (8.15)

which can hold iff in F

Alga =AgaAl =g, (8.16)

andg
det A = #1, (8.17)

where the trivial unit is added for subsequent convenience.

Among the rather large number of methodological aspects needed
for a comprehensive characterization of G(m), we now restrict our
attention to the following.

1} The uwiversal enveloping associative zsigebra EG,(m)) of the Lie
algebra G.(m) recalled in Sect. 11.6. For readiness in the comparison of
the results under isotopy, let us recall that the basis of G.(m)

X = (X)X = -X k=iz.m (5.18)
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must be ordered, and that the envelope ¥{G.(m)) is characterized by
the infinite-dimensional basis

E: L Xy XpXg (r=s), XXX, =zs=zt... (819

A generic element of E(G(m)) is then an arbitrary polynomial P =
P(X) in the X's. The cewter C of E(G.(m)} is the set of all elements P
which commuite with all components Xk of the basis, and can be
characterized via the set of all possible scalar multiples of the
fundamental unit I in F

C = {ai| @ €F, 1 =diag.(1,1,..1)}, (8.20)

, where the dimension of 1 is that of the basis (e.g., for the regular
representation of G.{m), I is the m»xm unit, etc.), and I is the right and
left unit of Lie’s theory

Xp = Xpl= X., VX €& (8.21)

1) The comnected Lie group GJm) of transformations on M(x.g.F),
which is characterized by exponentiations in ¥G(m)) via the infinite
basis (8.19). For the case of the right modular transformations (8.13), it
can be written in the symbolic form

X, w
Gdm): Atw) = [T % KTk (8.22)

where the exponentiation is the conventional one (owing to the
associativity of E(G.(m)) and the trivial value of I, see below).

Exponentiation (8.22) can then be reduced to the desired form via the
Baker-Campbel/-Hausdorrr Theorem (Gilmore (/oc cit ). For the left
modular action of G{m} on Mx.gF)

o = x atew), (3.23)

we have the realization
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Xiwie T
G, m): A= (] % Kkt (8.24)
where the skew-Hermiticity of the basis should be taken into account.

11} The Zie afgebra G.(m) of G(m), which is homomorphic to the

antisymmetric algebra [£(G.(m))]” attached to the envelope E{(G.(m)),
ang it is characterized by the commutation rules

. - - - ot
Gl [Xp Xl = XXs = XgXp = Crs™ X (8.25)

where XX is the trivial associative product in E(G.(m)), and the Cs

are the structure constants.
Finally, the discrete part D(m) of G(m) is characterized by the
inversions

Dim}: ¥ = PX = X. (8.26)

As a specific example, the largest possible group of isometries G(m)
of a three-dimensional Euclidean space E{r8F) is the £Lwcldean
group (Gilmore (1974))

E{3} = 0(3) & T(3), (8.27)

where 0(3) is the familiar group of rotations and T(3) is the group of
transiations(see Chapter 111 for details).

Similarly, the largest possible group of isometries of the (38+1)-
dimensional Minkowski spoace M{xn.8) is the Poincare group (Joc.
ait)

P(3.1) = 0(3.1) e T(3.1), (8.28)

where O(3.1) is the ZLoremtz group and T{3.1) is the group or
trans/ations in space-time (see Chapter 1V for details).

We pass now to the study of the infinitely possible isotopies of
each given group of isometry. For this purpose, the first needed notion
is that of isospaces introduced in Sect. 11.3, with particular reference
to Pefinition 11.3.2:

a) The infinitely possible isotopes M{x§F) of M(xgF), called
Isospaces, which preserve the dimensionality and local coordinates of
Mix.gF), and generalize instead the metric g and field F into the
Isometrics and fSonelds
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2} The infinjte

g'—Tga T"Tad

= ! Tex)t cp

Y POssible Isotopeg Er54) of the Eucligeap Space
Efrs3), Calleq /:S‘Oé’l!C‘ﬁb’&?fl Spaces witp
8=T88 =Ty & = ®lg 1, = T = g1 (8.31)
and Compositiop
re o r's 7 €f (8.32)
and

and Composition

We intr
fsospaces M

- ~1
n i 0 'I‘n s (8.33)
x2 < (xH 5 )1 e #, (8.34)
v L]
Odluce now the isotr

(X,é,F‘), ie., the right,

moduay isoto

ansformg tion theor

Y of Sect. I14 op
pic transrormations




{8.36)

g = AW w €F,

peir images 1oF che infinitely possible [sotopes MEEF)
x = AWPE (8.37)

v are Jinear

are ~islIHEA
and Jocal at the abstract i
genemllu poniin€al and non!acal when pra]ected
y/
{8.38)

space ML

¥ = AT %) X
jes OF generic jsospaces
of isotineat

the groups
i d‘\mensiona\ group
g Glml, leaving jnvariant

Wix g F), namely:

and jsotocal transt ormations, hereon enote

the isoseparation x .y)on £.

1 is evident that the old group © jsometries G(m) annot act
consistently on wix g 8 pecause ¢he violation of the jinearity
condition and othel problems This renders pecessaly pifuing of
Lie’s {heory. from tne convenuonal tormulation ouu'med ariier in this
section, 10 the Lie-isotopic theory-

it is easy 0 see that the iSOLOPES Gim) are consututed py wnion of
the 1s0LOPes 5 (m) of the connected Li€ gymmetry
component Dim). 1t is #150

tWwo components,
e is0

easy to S€€ t
pecause isotopic jiftibngs 40 pot alie
the original symmetry.
assume that G (m) is an (abstract) topological

an therefore

we C
th the isomap
(3.39)

e equipped wi

spac
¢ Golm) Gy = Golm)s
verifying e conditions for GJm) W be 8 Lie—isotopic group {sect. 11.8),
and equipped with the additional jsomap
1. G M = M, (8.40)
characteriz® by analytic functions X, depending on the Same
parameters and the same 1ocal yariabies X of the original isometry
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G{m), as well as verifying the Lie-isotopic First, Second and Third
Theorems mentioned earlier.

We finally impose that isomap (8.40) is isolineart and isolocal, i.e.,, of
the left and right modular isotopic type

x' = xt*ﬁ.{w) = x*TA{w), (8.41a)
¥ = Alwhx = AW)Tx. (8.41b)

This implies that the elements A(w) of G.(m) verify the Zie-/sotapic

group laws
A =1 =17, {8.42a)

AlwpAlw) = AlwpAlw) = Alw+w), {8.42p)

AwprAl-w) = 1, (8.42c)

where the product A(w)~A(w) is isoassociative (Sect. 11.5), with similar
laws for the conjugate elements.

DEFINITION [18.1 (Santilli (19532} The group or isometrics of &
generic, n-dimensional isospace MEgLFL F = £ C ¢ heremn
called  Isotopic-isomelries”] IS the largest possible, m-
dimensional, isolinear and Isolocal, Lie-isotopic group Gl of
Isotranstormations (841) leaving invariznt the isoseparation ror
the difference z =x — y of tWo pomts x, v € Mx.g.f)

H

(2] 27) = (A [ Axg) =[*A) & (A2 11

il

= [t - o) T AT g IS TR - $H 1

= (xI - ys) érs &S -y 1. {8.43)

For the construction of G.(m} we evidently use the Lie-isotopic

theory (Sect. 11.6), with particular reference to:

1" The wmversal enveloping isoassociative zlgebra EG.m) of
G.(m) which, by central assumption, is constructed via the same
generators of the original isometry G.(m), i.e., the ordered basis (8.18).
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The isotopy E(G.{m) = E(G(m)) is characterized by the isotopic
Poincare-Birkhoff-Witt Theorem, with infinite-dimensional isobasis

EGam) : 1, X XpXg 0=E8),  XpXoXp b=s=t),., (3.44)

where 1 = T™! is the fundamental isounit of the theory and the product
is isoassociative, i.e.,

P*Xg = X T Xg, {8. 45a)
P =p«] = P v Pek, (8.45h)

where P is a generic element of ¥, i.e, a generic polynomial on the
basis X. The Jsecenter € of the envelope is then characterized by all
elements which isocommute with the basis X and all its possible
polynomial forms, and it can be represented via all possible isoscalar
multiples of T on F

&={a1| a e F} {8.46)

1Y The commected Lie-isotopic group G.m) which can be

characterized by power series expansions in the new envelope
¥(G.(m)). For the case of one parameter w and one generator X, these

generalized group structures are of type (I1.5.8) and can be written for
the m-dimensional case

w

VN XeWg
Gm) = Aw) : ] e|“ (nk=1,...m e\ﬁ

kawk 11 =
k=t,.m |£

def
= Bw; x,.) 1, {8.47)

with composition characterized by the isotopic Baker-Campbell~
Hausdorff Theorem. The conjugate expression is evidently given by

‘
Chtw) = T k= WkX'k 21 TTk= WXk _
Gim) : Aw) I1 k=1,.m e|§ {I Ik=1...m elf

def
= 1B w: x..). (8.48)
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HI) The Lie-isotopic algebra G.m) of G(m) charactdrized by the

Lie-isotopic First, Second and Third Theorems with isocommutation
rules

Golm) : [X,, XS]E = [Xp . Xgl = XpXg - XXy =

_ te o o
= Crs X, X, %,..} X {8.49)

where the {'s are the structure runctions of G.(m).
Suppose now that the original group G.(m) is an isometry of the

original space M{x.gF), i.e, it verifies conditions {8.15)~{8.17). It is then
easy to see that all infinitely possible isotopes G.(m) of G{m) as

constructed above automatically leave invariant the new
isocomposition

{-y)A" g Atx -9 }1= [-9) &t~ 91T, (8.50)
or, equivalently, they satisfy by construction the property
Alg A= Agal =g, (8. 51)
with
det. (AT) = %1, (8.52)
without any need of additional conditions.

In fact, property (8.50) holds for the continuous part in view of the
identities

-w,, TX
e K 7KTg &k ™Wk = g, {8.53)
which hold iff the original invariance conditions

Wy X X w
e Kkgek'k (8.54)
are verified, where the exponentiation in £ has been omitted for
simplicity.

In particular, if the original isometry is the orthogonal group Ofn)
of an n-dimensional Euclidean space E(r§F), the isometric § coincides
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with the isotopic element T (Definition 11.3.2), and expressions (8.53)
reduce to an identity, as one can see in the one-dimensional case

-w8 f; R - .
e WK A KW 5L wisns - BxB) +

+ IwW2(BXEXE - BXBXE) 4. =3 (8.55)

The isotopies D(m) of the discrete component D{m} (8.26) are
trivially given by the Zsomzversions

Dim): Px = Pl=x = Px =-X, (8.58)

where P is the original discrete generator.
The main results of of the aboive topiccan then be expressed as
follows.

THEOREM 1151 (Fundamental Theorem on fsolopic /somerlrses;
Santilii (1953a) and (19558} . Let Gl be an m-dimensional Lie
group ol Isometries of an n-dimensional metric or pseudomelric
space Mgl over the field or real numbers % cowplex
numbers C or gquaternlions Q,

Gm: x' = xA'w), x = AWX (8.57a)
[6c - )" Al £ 1AW (- ¥ = - y)' g & - ) (8.57b)
Alga = aga =gl (8.57¢)

det A = =1, (8.57d)

Then, the mnfinitelv possible isotopes G/ of Gl charscterized
by the same paramerers and genmerstors of Glwmj, and the
mrinitelv possible, nowhere singular, Hermitean and suliicienily

smaooth isounits 7 = T4 (isotopic elements T) Jeave invariant
the Isocomposition &7 Tex) 7 of the isotopic spaces M&SF) £ =
Te, F=FF =717

Gm) = x = x'*Aw) = x'TAW), x = AWwhx = AWTx, (8.5%a)
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(- y)"*A"] & [Asx-9)] = -y & x-y), (.58b)

Alg a=aga =2l (8.58¢)
Det A =(detB)1 = =1. {8.58d)

The following comments are now in order:

1) Each given isometry G(m) admits an infinite number of different
isotopes G(m) characterized by infinitely possible, different isounits
which, from a physical viewpoint, represent the infinitely possible
interior physical media.

2) Each of the infinite isotopes can be explicitly computed, from
expansions (8.47), via the sole knowledge of the old isometry G(m) and
the isotopic element T.

3} Even though the mathematical formulation can be unified for all
infinitely possible isotopes G{m), the explicit form of the
isotransformations is different for different isounits 1.

4) As indicated earlier, the isotransformations are generally
nonlinear and nonlocal, because of the dependence of T,

5 Al isotopes G{m) are coverings groups of the original isometry
G(m) under the sole condition that the old metric g is admitted zs a
particular case {or the isotopic element T admits the trivial unit I as a
particular case).

6} All Lie algebras, including that of the isometries G.(m}, admit the

following zrivial isotopy X, = X, = X,1, under which

= %k - ok, =

= [Xr=xs]§] = Cpg' X1 = Crgt %y (8.59)

|

The above isotopies are exc/uded from Theorem 11.8.1 because they
do not produce the invariance of the new isoseparation, as the reader
is encouraged to verify.

7) The dimension m of the original isometries G(m) is preserved by
all infinitely possible isotopic isometries G(m), as the reader is
encouraged to verify. In particular, the condition for closure of Glm),
Eq.s {3.49) are reducible to those for G{m).

8) The isotopic isometries G(m) are generally nonisomorphic to the
original symmetry G(m). However, as we shall see in the subsequent
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chapters, all infinitely possible isotopes G{m) can be resiricted to be
locally isomorphic to the original isometry G(m) under the sole
condition of positive- (or negative-) definiteness of the isotopic
element T.

To understand the physical relevance of Theorem 11.8.1, one should
be aware that the isotopic generalizations of Galilei’s relativity, of
Einstein’s special relativity and of Einstein's general relativity to be
studied in the subsequent chapters are particular applications of the
theorem.

The first, physically relevant particularization of Theorem I1.8.1 is
given by the following

COROLLARY 1818 {loc. citj- Let O3 be the simple, three-
dimensional orthogonal group of isometries of the three-
dimensional Euclidesn space Er S8 over the reals %,

o@: rt = ririe), r = RO, (8.60a)
12 = ¢lgr = rRBRr=1?=rtr, (8.60b)
R'R = RR" = |, (8.60¢)
detR = 1. {8.60d)

where the 85 are the Euler’s angles Then, the infinitely possible
Isotopic generalizations o3 or OfF) characterized by the sawe
paramerters and geherators of O[3, and & nowhere singular,

Hermitean and suiriciently smooth isovnits I = 7 lsotopic
elements T F F. ) feave Invarignr the correspondiig,

farinitely possible isocompositions (I8 1] 1 or the isoeuclidean
spaces ErSf)withs = 78 = 7, & = &, 7=T" z

Gm): r2 = (et )1 = {[ RYe) 13 ] REM)

=r2 = 501, (8.612)
b = BeRb= 1 = §7°1, (8.61b)
Det (BT} =det RS} = = 1. {8.61¢)
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As we shall see in Chapter ill, the isotopes Ofr) leave invariant all
infinitely possible deformations of the sphere, while resulting to be
locally isomorphic to O(3) for T > 0.

A further important case is given by the isotopies of the Lorentz
isometry.

COROLLARY 1.8 1.0 {loc. cit) Let OF1 be the simple Lorentz
group of Isometries of the conventional Minkowski space
M& p% over the reals %,

031 xt = xtAtw), x = AW)x, (8.62a)

»

x = xWyax = xyx, 1 = diag. (1, 1,1,-1),  (8.62b)

Abna = AqAb = 7, (8.62c)
{detA) = 1. (8.62d)

where the wis are the conventional six paramelers of Of31)
Then, the infinitely possible Loremtz-isotopic groups O{31)
characterized by the same parameters and generators of the
orjginal group O@.1), and by nowhere smgular, Heroiitean and
sulticiently smooth isounits I for isotopic elements Tk, X, X4,
leave mvariant the Isoseparatiol & Tox)/ I of the corresponding
lntinire class of Minkowski-isotopic spaces M%) with § =

Ty # =8 F=7%

6B.1): xb = xbAw), x = Atwx, (8.63a)
x2 = (xBALf Al = &0 (8.63b)
AR = A A = 1y, (8.63c)
det. (AT) = £ 1. (8.634)

As we shall see in Chapter 1V, the Lorentz-isotopic isometries
provides a relativistic geometrization of inhomogeneous and
anisotropic interior physical media. All isotopes O(3.1) result to be
locally isomorphic to O(3.1) for all isotopic elements T > 0, and they
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constitute the basis for our isotopies of the special relativity.

As we shall see in Chapter V, the isometric 1| can be a conventional
Riemannian metric g(x} (Corollary 11.3.2.c). As a result, the Lorentz-
isotopic group 0(3.1) for T = g results to be the global group of
isometries of Einstein’s exterior gravitational theory, thus creating
the possibility of constructing covering gravitational theories for the
interior problem via the mere isotopies of isotopies

n=7="THn =gk =8 = Thx%)gk. (864
A further case of physical relevance is the following.
COROLLARY I18.1.c Mignani (1984 Mignani and Santilli (1991} Let

SUG) be the semisimple special vnitary grovp or isometrlies of g
wo-dimensional fuclidean space Ex.pc) over the complex field

Al
to 44 .
SU@: z0 =z Uw), 2z = UWw)zg, (8.85a)
Zuts uz = 252, (8.65b)
too
v'u = uu = I (8.65¢)
det. U = +1, (8.65d)

Then, the infinitely possible isotopes SU3 of SU3) characterized
by the same parameters and generators of SUI3 and &y nowhere
degenerate, Hermitean and Surficiently Smoolfi iSounts 7 for

Isotopic efements 71z, z’: A feave invariant rhe Isotopic
separatioin A?fﬂ?z/ 7 or the isotopic spaces Fiz 8¢ with 8 = T8 C

=c¢l 7 =77
sU3) : ' = 2, z = U*z, (8.66a)
zi8z = 2050z = 2' $ 2, (8.66Db)
o's0 = 080t =1, (8.66¢)
det. (UT) = + 1. (8.664)
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The above corollary is instrumental in introducing the notion of
“Isoguark” (Sect. 111.7) as an ordinary quark with an extended
wavepacket under conventional local-potential as well as nonlocal-
nonhamiltonian interactions. represented precisely by the isounit 1.

We pass now to the study of Jsospmmelries of given equations of
motion (Il.1.1) on an isospace. Since these equations are represented
by the Birkhoff-isotopic equations (Sect. I1.7), we can effectively
restrict our analysis to the isosymmetries of the latter equations.

To aveoid an excessive discontinuity over current views on
symmetries and conservation laws, it appears recommendable to
review first the symmetries of Birkhoff’s equations on a conventional
manifold, and then generalize them to our isospaces.

Let E{r8®) be the 3N-dimensional Euclidean space of system (i.1.1)
of N particles. Its cotangent bundle T*E(r,5,R) is the 6N-dimensional
space with local coordinates

a = (@ = r.p) = (tjg Pigh (8. 67)
Wo=1,2.,6N, i=1,23 a=12..N

The full representation space is then given by the (6N+1)-dimensional
space RyxT"E(r,8.#), where R, represents (nonrelativistically) the time.

Suppose as first step that all noniocal forces in system (I1.1.1) are
nuil (but the vector-field remains nonlinear and nonhamiltonian), and

denote the correspondiong vector-field with I = (F*P(ta)). Then, the
theorems of direct universality of Birkhoffian mechanics (Sect. 11.7)
ensures that, under the assumed topological conditions, a
representation of the vector-field I'" always exist in terms of
Birkhoff’s equations in the local coordinates considered, and we shall
write

aR AR 3B R
v
p‘—} roV = + —H (8.68)

dak aaV dal o

[____ -

The first concept needed for the understanding of the physical
applications of the next chapters is the behavior of Birkhoff's
equations under the most general possible transformations of the local
variables.

Recall that Hamilton’s equations preserve their form only under a
special class of transformations, the canonical ones.

On the contrary, Birkhoff's equations are the most general
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equations which can be written in T*E(r,5%) with a Lie/symplectic
structure. As such, they preserve their form under the most general
possible transformations of the local variabies.

A detailed treatment of this property is provided in Chapter 5.3 of
Santilii (1982). Here let us illustrate the property by introducing the
unified notation

b= (" = (ta), p = 01,..,6N (8.69)

Then Birkhoff’s equations (I1.7.2) can be written in the unified form

$ miavY =0, @=01,..6N, (8.70)
18%
where Birkhoff’s tensor qu in T*E{r,8.R&) is now extended to the form
in sitXT*E(r,S,S%)
aR (b} ok, (b)
" v
Gy = - (8.71)
apH abY
and R = (-B, R) characterizes the one-form in & >T*E(r,58)
ﬁu(b) gt = Ru(a) dat - B(ta) dt, {8.72)

namely, it characterizes the complete integrand of the basic

variational principle (11.7.1).
Eq.s (8.68) are represented by Eq.s (8.70) fopr p = 1, 2, ..., N, with the
additional equation fo p = 0 being the identity

oB dR

v v
—— + —)da¥ =
(aa" at )
8B &R, ., 0B 3Rg
= + ) @V ( + ) = 0. (8.73)
aaV at aa< at

What we have done here is performed the transition from the
symplectic geometry in T*E(r88), to the so-called comtact geomelry
in R<TE(r,8.8) (see, e.g., Abraham and Marsden {1967} and Santilli (1982a)
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for a specific treatment of Birkhoff's equations in the contact
geometry). Equivalently, we can say that Birkhoff’s tensor in T*E(r.3,%)
is of symplectic type while its extended version (8.71) is of contact
type.

Once the contact character of tensor (8.71) is understood, one can
readily see the invariance of Birkhoff's equations (3.70} under the local,
but most general! possible, smoothness and regularity preserving
transformations in ®xT*E{r 8.8

b= {t,a = b =W = t,a) = ([t a)al, a)), {(8.74)

In fact, contact tensor (8.71) transforms as follows

B _ st abY
Qo) = &, bb) = gszaﬂ(b(b)} v (8.75)

by evidently preserving its structure. The form invariant (but not the
symmetry) of Birkhoff’s equations then follows.

The implications of the above findings for the interior problem are
the following. The space-time symmetries of contemporary relativities
for the exterior problem are, first of all, canonical, and then
symmetries of the system considered. In the transition to our
treatment of the interior problem all smoothness and regularity
preserving transformations are “canonical” and, therefore possible
candidates for interior symmetries.

DEFINITION I182 (Santifli 1975a), (19523} The local but most general
possible smoothness and reguiarity preserving wransroruations (874
onn BT ERSRY constitute a “Symmerry of Birkholrs equations”, when
they leave mvariant Birkiiofr's tensor in its cohtact forw, re, when
£gq.5 875 mmply the particular form

n

Gub) = &, ,0) = G, ,0) (8.76)

or, afternatively, when the underiyng contact one-tform (872! is
myvarian: up ro Birkhortian gayge transiormsiions, I e,

3aG(b)
ab

R’u(b') dp’P = [ﬁn(b’) + 1 ap, {8.77)
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We now review the construction of sirsz ntegral/ (ie., conserved
guantities) from a given symmetry of Birkhoff’s equations.

THEOREM 1182 (Birkbortian Noethers Theorem; floc cit/)
Birkhol’s equations adwit a Spmmetry under an r-oimensionss,
connected Lie group G, of infinitesinal Lransrormnations

G: b = b =b+ b=t + wiahb) =

t + W'p](t, a)
= (8.78)

at + wi Wit a)

tien there exist 1 Jirst integrals J; &) or the eguations of motion
which are conserved along an actval path £

d
—— Fibk =0, (8.79)
L

namely, there exist r finear combinations of Birkiofrs egqualions
which are exact dirrerentials along £ ie,

d
— Fift) = G, 0) b¥ oy, (8.80)
dt

£lven explicitly by

Fitb) = Ryaty =
= Ryt a) Wit a) - Blt.a)plt2) + Gt, a). (8.81)

Note that the “new time” t in Birkhoffian mechanics is a function of
the old time t as well as of the coordinates r and momenta p,

t = U{tr,ph (8.82)
This property is important to understand the isotranslations in time of

the new relativities presented in the next chapters.
Intriguingly, this property is typical of relativistic formulations but
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not of Hamiltonian mechanics. The Birkhoffian mechanics then
achieves a form of symmetric behavior of time for both nonrelativistic
and relativistic formulations.

Note that the symmetry Gp of Theorem 11.8.2 is a conventiona! Lie
symmetry defined on a cownventions! space.

Recall also that the nonautonomous Birkhoff's equations
considered until now in this section do not admit a consistent
algebraic structure {Appendix IL.1). From now on we shall therefore
restrict our attention to the semiautonomous case.

Finally, we shall consider the Birkhoff-isotopic representation of
systems (I1.1.1} introduced in Sect. 117 on a on isospace TE,(r.8.f), ie,

aB(t, a)
Top%(e) Q@) I¥ta) = , (8.83)
dal
where @, is the symplectic tensor and T, the isotopic element of
TE,(r 3 ).

It is easy to see that, owing to the appearance of the isotopic
element 'T2 directly in the analytic equations, structure (3.83) does
indeed allow the representation of the nonlocal forces of systems
{11.1.1), in addition to the nonlinear and nonhamiltonian forces
represented with structure (3.69).

Our objective here is, nhot only that of reaching isosymmetries on
isospaces, but also that of studying their most general known
nonlinear, nonlocal and nonhamiltonian form.

DEFINITION 1183 [(Kantilli (19522) (89124 An r-dimensional
spmmetry or Birkhorr-isotopic egquations (883) Is an
“ISosymmelrv” G, when it Is defined on isospaces T'E Ah,5,%) and

BOLNLS Frfintesimal iransrormalions or the Lie-rsotopic Lype

. e
at = gt + Wl ot 1, —, {8.84)

gaV

where 1, = 7}‘_] Is the basic Isouhit of the isospace, the ws are
the parameter and the Xs are the gencraltors of 6‘}, wiLh
Isocommutation rules
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) M oo, %
IXr ,XS] = ";-;'l"; Q™% 1oy -g;;— = CrS{a) Xg, {8.85)

It is easy to see that a wecessary condition for transformations a
= a’ to be a symmetry of the Birkhoff-isotopic equations is that they
have a Lie-isotopic structure. This renders nrecesszry the use of the
Lie-isotopic theory for the study of isosymmetries and their first
integrals.

THEOREM 1183 (fntegrability Conditions ror the EXistence or ai
Isosymmerry, loc. cit) Necessary and suiiicient conditions ror &
Smoothness and regularity preserving Lranstormation 234 to be
an isosymmerry of the Birkholr-isotopic equations (883 Is that
they leave the Birkfiorrian invarian, L€,

B() = Bfa) + w;[¥; Bl = Bla). (5.86)

which can hold I the Birkfiolrian B Isocommutes With afl
generalors Xy, le,

[xi,‘ Bl=0 i=12..r (8.87)

It is easy to see that the isosymmetries here considered are not
only nonlinear, but also nonlocal, as desired, owing to the appearance
of the isounit 1, directly in their infinitesimal structure.

Therefore, the above framework does indeed provide the
methodological foundations for studying the most general possible
nonlinear and nonlocal generalizations of conventional space-time
symmetries for the interior problem.

Until now we have essentially outlined the isotopic generalizations
of analytic mechanics and Lie’s theory. Nevertheless, no in depth study
of the problem considered can be achieved without the identification
of compatible isotopies of the fundamental geometries of
contemporary relativities, the symplectic, affine and Riemannian
geometries, which are studied in the remaining parts of this chapter.
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i.9: ISOSYMPLECTIC GEOMETRY

We now pass to the review of the new geometries needed for the
characterization of the most general possible class of systems {I1.1.1)
beginning with the isotopies of the symplectic geometries, and then
passing to those of the affine and Riemannian geometries.

The new geometries have been introduced, apparently for the first
time, in Santilli (1988a, d) and then studied in more details in Santilli
(1991b), under the names of Jsosymplectic, Isoaltine and Isoriemannian
geomelries . As we shall see, these geometries are centrally
dependent on a generalization of the conventional differential
calculus submitted under the name of Jsodifferentia/ calculus.

The literature in the conventional symplectic geometry is rather
vast indeed. A list of references can be found in Santilli (1982a), p.77. In
the following, we shall review only the most essential aspects needed
for our analysis following Abraham and Marsden (1967). The literature
in the calculus of exterior forms is equally vast. We here foliow
Lovelock and Rund {1975} of which we adopt the notation for clarity in
the comparison of the results,

All quantities considered are assumed to verify the needed

continuity conditions, e.g., of being of Class C*, which shall be hereon
omitted for brevity. Similarly, ail neighborhoods of given points are
assumed to be star-shaped, or have a similar topology also ignored
hereon for brevity.

Let M(R) be an n-dimensional (abstract] manifold over the reals #
and let T*M(®) be its cotangent bundie. We shall denote with T*Mi(a)

the manifold T*M(R) equipped with the carownical one-rorm o defined
by (see, e.g., Abraham and Marsden {/foc. o )

8 T'M®) = THTM,®), 6 ¢ A(TME). (1)

The rundamenial symplectic form is then given by the two-form
w = do, (9.2}

which is nowhere degenerated, exact and therefore closed, i.e, such
that dw = 0. The manifold T*M(#), when equipped with the symplectic
two-form w becomes an exact sypmplectic manifold T*Mo(®) in

canonical realization. The spmp/ectic geometry is the geometry of
symplectic manifolds as characterized by exterior forms, Lie's
derivative, etc.
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Let H be a function on T’“Mz{si) called the AHzmitonian A vector-
field X on T*M,(®) is called a SHamiltonizn vector-fiel/d when it
verifies the condition

XJw = - du. (9.3)

The above equation provides a global, coordinate-free
characterization of the conventional Hamilton’s equations (those
without external terms) for the case of gulonomous Systews, i.e.
systems without an explicit dependent in the independent variabie
{time t).

Finally, we recall that the L/e der/vative of a vector-field Y with
respect to the vector field X on T*MJ{®) can be defined by

LXY = [X.YL {9.4)

where [X.Y] is the canonical commutator.

The case of wmomautonomous systems {those with an explicit
dependence on time) requires the further extension to the coxlact
geowelry (see, e.g., Abraham and Marsden (1967), Santilli (1982a)), and it
will not be considered here for brevity because it does not affect the
Lie content of the geometry of primary interest for this study.

The Birkhoffian generalization of the above canonical geometry is
straightforward, and was worked out in Santilli {1978a) and (1982a).

Introduce in the same cotangent bundle "P*Ml(s&) the most general

possible one-form ©, called the Bird#ortian or Fraffianm one-fors,
8: T'M{®) = THT*M,®), 8 € A(TM,®).  (9.5)

The Birkhorfian two-rora: is then given by
Q = do, (9.6}

under the conditions of being nowhere degenerate. §2 is exact by
construction and therefore closed, that is, symplectic. The manifold
T*M(®), when equipped with the two-form , becomes an exzc/,
Birkhorrian, symplectic manifold T*My(®).

Let B be another function on T*Mo{®) called the Biré#offzan Then,
a non-Hamiltonian vector-field X on T*M,(®) is called a Birkhosiian
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vector-fje/d when it verifies the property
% ]e = -aB {9.7)

which provides a global, coordinate~free characterization of
Birkhoff's equations for autonomous systems.

Similarly, we recall that the ZLse-isoropic derivative of a vector-
field Y with respect to a zonszmiltonian vector field X (Santilli (1982a),
p.88) can be written

Ly? = R 7], (9.8}

where the brackets are Birkhoffian (see below).

The realization of the above global structures in local coordinates
is straightforward. Interpret the space M(®) as an Euclidean space
E(r,} with local coordinates r = (rj), i= i, 2, .., n. Then, the cotangent

bundle T*M becomes T*E(r,&)} with local coordinates (rp) = (ri, pi),

where p = dr/dt represents the tangent vectors, and all Latin indeces
are assumed to be contravariant for simplicity of notation. The
cahonical one-form (9.1} then admits the local realization

8 = p;dr; (9.9)
The Hamiltonian two-form (8.2) admits the realization
w=4de = dpll\ dri, (910}

from which one can easily verify that dw = 0. A vector-field can then
be written

il

X = Afep)a/ary + Bylrp)d/apy, (9.11a)

Ajdrj + Bydp; = -dH, (9.111b)

which can hold iff Hamilton’s equations are verified, i.e,

dry oH dp; 8H
_— =, — = - —, (9.12)

dt Bpl dr dl'i
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Finally, Lie’s derivative (3.4} admits the simple realization

ax a8y 8y oX
LyY = xy] = - . {9.13)
ar;  9p ar;  9py

where one recognizes in the commutator the familiar Poisson brackets
(Sect. IL.7).

The realization of the Birkhoffian generalization of the above
structures requires the introduction of the unified notation introduced
in Sect. 11.8, Eq.s (7.13), e,

a= @ = c,p = ypp) L=1.2,...2n, i=12..n (814}

where we preserve the distinction between contravariant and
covariant Greek indeces. In the a-chart, the canonical one-form can
ke written

8 = R, dat = p;dr;, R = (p.0), {9.15)

and the the Hamiltonian two-form (9.10) becomes

w = db = twy, dah A da” = dp;Adry, (9.16)

where Wy is the covarignt, canonical, symplectic tensor (11.7.15), ie.,

BR"V aR°,1 Opxn “Ipxp
() = (—_Fi— i ) = (9.17)
da da lixn ann
A vector-field can then be written
X = Xu(a) a/ dal. (9.18)

The conditions for a Hamiltonian vector-field become
wyy X dat = - dH, (9.19)

and can hold iff
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X = X,— = g* — — | {9.20}

where
W = (g™ W, (9.21)
namely, iff Hamilton’s equations (9.12) hold, which in our unified
notation can be written as in Eq.s (7.18), i.e.,
8H
at = otV —— (9.22)
daV
Finally, Lie’s derivative becomes in unified notation
ax aY

LyY = [XY] = " otV —-, (9.23)
aak da

The transition to the Birkhoffian realization is now
straightforward. In fact, it merely requires the transition from the
canonical quantities R°(a) = (p, 0) to arbitrary quantities R{a) on
T*Eq(r,8) under which the Birkhoffian one-form (9.5) assumes the

realization
6 = R, fa) dah, (9.24)

while the Birkhoffian two—form (9.6} becomes

Q = de =1 Q (a) dat A daV. (9.25)

I»lV(

where Q%Y is the fovariant/ symplectic Birkhorrs tensor (1.9), ie.

o By Fy
T sa¥ {9.26)

A Birkhoffian vector-field X can no longer be decomposed in the
simple form (9.11), but can be written
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% = xt 3/ day,. (9.27)

The conditions for a vector-field X to be Birkhoffian, Eq.s {9.7), then
become

xlJe =9, XV aa = -a8, (9.28)
and they hold iff
) 3 B 3
= X —— = oi¥ —, (9.29)
ak aaV aat
where
TL _
O = (| Qg tpy, (9.30)

which can hold iff the autonomous Birkhoff's equations (Birkhoff (1927},
Eq.s (7.4), hold, ie.,

9B
ab = 1 = gt e (9.31)
aaV

Similarly, the Lie-isotopic derivative (9.8} assumes the realization

ax ay
Lg¢ = RV = — oMa)—- , {9.32)
aat aaV

For additional aspects, the reader may consult Santilli {1982a), the

appendices of Ch. 4,
Note that an arbitrary vector-field X is not Hamiltonian in a given
local chart. This illustrates the relevance of the following

THEORES [19F (RIRECT UNFVERSALITY OF THE SFMPLECTIC
GEOMETRY FOR LOCAL NEWTONIAN SYSTEMS, Santilli floc. cit )
An arbitrary, local-dirferentigl, analvtic, semiautonomous and
regular vector-rield X on a given chart on T°M, (L8 always

admits & direct representation a5 g8 Birkholrian vector-rielo, ie.,
a represefialion directly i lhe chart considered.
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The physical implications are the following. When considering
conservative-potential systems of the exterior dynamical problem
{Sect. 1.1}, the vector—fields are evidently Hamiltonian in the frame of
the experimenter. However, when considering the nonconservative
systems of the interior dynamical problem, the vector-fields are
generally nonhamiltonian in the frame of the experimenter (which lead
Lagrange and Hamilton to formulate their historical equations with
external terms).

Now, under sufficient topological conditions, the Zie-Aoening
theorern ensures that a nonhamiltonian vector-field can always be
transformed into a Hamiltonian form under a suitable change of
coordinates {see the analytic and geometric proofs of Santilli (1982a)}.

However, since the original vector-field is nonhamiltonian the
tranformations must necessarily be noncanonical and nonlinear, thus
creating evident physical problems, e.g., conventional relativities
become inapplicable because turned into noninertial formulations.

This creates the problem of the “direct representation” of the
physical systems considered, that is, their representation, first, in the
frame of the experimenter, as per Theorem I1.9.1.

Intriguingly, the identification of the Lie-Koening transformation a
= a’ of a nonhamiltonian systems X(a) into a mathematical frame a’ in
which it is Hamiltonian, X(a(a)) = X(a), directly implies the Birkhoffian
representation of Theorem 11.9.1 in the a-frame of the observer. in
fact, Birkhoff's equations (9.31) in the a-frame can be characterized
precisley via a woncamonica/ transformation a = a of Hamilton’s
equations (9.22) in the a’-frame, i.e.

Ly aH(a’) B aap aB(a) _
Wy pa” - " = — [Qpc(a) " 1 =20 {9.333)
Hla’(a)) = Bla}, (9.33b)

(see Santilli (/oc ¢/}, p.130 for details).

We are now sufficiently equipped to study the spmplectic-
Isotopic geometry or Jsosvmplectic geometry for short {(Santilli
(1988a,b), (19911)). To begin, let us recall that the geometry outlined
above is strictly local-differential. In particular, the vector-fields
cannot incorporate nonlocal-integral terms without the construction
of a suitable, rather complex revision of the geometry via an
appropriate nonlocal-integral topology.

We now want to generalize the symplectic geometry into a
nonlocal-integral form which is mathematically simple and physically
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effective, while permitting the direct representation of vector-fields
with nonlocal-integral components.

For this purpose, let us first rewrite the canonical realization of
the symplectic geometry in the following way. Consider again the
original, abstract cotangent bundie T*M(R®), and let

P = (I = diag (1,1,...1) =T} (9.34)

be its unit. Then, the canonical one form (9.1) can be identically written
in terms of the factorization

8 =98 =6xT : T'M;® = THT'M,;") (9.35)

while the canonical two-form (2.2) becomes

~

W= =d8° = (@8 xT + 8dT = wxT" (8.36)

This implies that, in the realization T*E(r#&) of T*M(®) with local
chart a = {r, p), we can exhibit the isotopic element, this time, given by
the trivial identity T°, directly in the canonical-symplectic tensor

~a - o ¥
0y =T Wy (9.37)

. Then, its contravariant version, the unit I°, is exhibited in the Lie-
tensor of the theory,

oHV = @t Y, (9.38)

The main idea of the isosymplectic geometry is that of reaching a
generalization of two-form (9.38) in which the trivial isotopic element
T° is replaced by the most general possible, nonlinear and nonlocal
isotopic element T{t, a, 4,.), Le.,

By = oy T 02,4, ), (9.39)
under the conditions of characterizing an exact and therefore closed
two-fornm.

In this way, the conventional, local-differential, topological
structure of the symplectic geometry is preserved in its entirety in the
canonical two-form w, while all nonlocal-integral terms are
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incorporated in the isotopic element T.
The corresponding algebraic tensor is then of the type

@tV = hay a"{t, 2,4,..), {9.40)

namely, it is precisely of the Lie-isotopic type with the explicit
identification of the isounit directly in the structure of the Lie product,
as desired for this study.

The topological consistency of the geometry then follows from that
of the underlying Lie-isotopic algebra discussed eariier.

For clarity as well as for ready comparison of the results, we shall
follow the presentation of the conventional exterior calculus by
Lovelock and Rund (1975), by preserving their notation in terms of a

generic 2n-dimensional bundle T*M{#®) with generic local chart x = (x}),
i=1,2, .., 2n We shall return to our a-coordinates later on for specific
physical interpretations.

To begin, let us submit the manifold M(R) to one of the infinitely
possible isotopic liftings into n-dimensional isospaces M(®) over the
isofields #, and let T*M(R) be its “Isocotangent bund/e” that is, the
conventional bundle only referred to isospace M. Introduce one of the
infinitely possible, symmetric, nonsingular and real-valued isounits of
# in the original charts x

1=1xx%,.) = @) = 4) = @) = ) =71 (9.41a)
T = Ttx%..) = (Tf) = (1) = (1) = (7). (9.41b)

The fundamental tool for the construction of the isosymplectic
geometry is an isotopic generalization of the conventional differential
calculus introduced, apparently for the first time in Santilli (1988a)
under the name of fsedirrerential cgfcufus , and then treated in more
details in Santilli {1988b} and (1991hb).

For mathematical consistency, conventional linear transformations
on T*M(®), e.g.,

X = Ax, or ¥l = Ai]- xJ, (0.42)

must be necessarily generalized on T*M(®) into those of the isotopic
type (e.g., to preserve isclinearity, see Sect. 11.4)
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¥ = A, or x = AL TI xS, (9.43)

In the conventional case, the differentials dx and dx’ of the two
coordinate systems are related by the familiar expressions

dx = Adx, or dxl = Aij dxd, (9.44)

with the realization, say, for the coordinate transformations x = %X’ =
x(x) \
ax . &
ax’ = —dx, or ax! = — dxJ. {9.45)
ox ax]

However, the same notion of differentiais dx and dx’” becomes
inconsistent in the isocontangent bundle T*M(#). We therefore
introduce the generalized naotion of fsodirrerentials dx and dx which
holds when interconnected by the isotopic laws

4% = A«dx, or &X' = Air T 8x5, (9.46)
with the particular realization, say, for the case of the
isotransformations x = Xx{x)

ax ax!

~dx, or d% = —- TrS 8xS, (9.47)
ax axt

dx =

The full geometrical meaning of the above isotransformations and
of the isodifferential dx, will be evident later on in this chapter when
studying the notions of isoparallel transport and isogeodesics. At this
moment we shall simply assume the notions and derive their
consequences.

Let &(x) be an Jsoscalar runctior on T*M{®). Then its
isodifferential is given by

a0
ax

d¢ =

a¢
«dx, or @k = — T gdx> {9.48)
axt

where the partial derivative is the conventional one.

Similarly, let X = (X)) be a contravariant isovector-rie/d on
T*M{#), that is, an ordinary vector-field although defined on an
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isospace. Then its isodifferential is given by

ax )¢
aX = xdx, or aX!'= ——- 'I‘rs ax5,  (9.49)
X oxt

Thus, an isovector—field on T*M(®) transforms according to the
isotopic laws

axX . aX!
- X)), or XM = — T ) X5(&x). (9.50)
ax oxt

X =

Note that, while for conventional transformations (9.42) on T*M{,®)
we have 8x/8Xx = A, we now have for isotransformations {9.43)
ax! . L
— = AL T+ Al ——- %S (9.51)
ax3 ] ax}

By using the above results and the usual chain rule for partial
differentiation, one easily gets from law (9.51)

axXl % xS | ax)  axS aXt
— = c T X+ — T
axK  axSaxl axk axl axK xS

&l xS el

d — —

axl axk axs

XT. {9.52)

One can see in this way that, in addition to the isotopy of the
conventional two terms of this expression (see Eq.s (3.5), p. 67, Lovelock
and Rund, {/oe, cit )}, we have an additional third term. Note that the
quantity 65("]' / 8xX is not a mixed tensor of rank (1.1}, exactly as it
happens in the conventional case.

From the preceding results one can then compute the
isodifferential of a contravariant isovector-field

- 3Xj -
aX—;&_TTraX =
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a%xl o oXT ol arl,
= - T X 8xS + — T — dx5 + —
axs axlt ax! axs ! 8xS

XF 9xs
{9.53)

A contravariant isotensor XY of rank two on M{#) is evidently
characterized by the transformation laws
X¥ix) =  —x X%, Xm) = — TFp — TS XP4@),
ax  ox axd Faxs 9

(9.54)

Similar extensions to higher orders, as well as to contravariant
isotensors of rank (0.s) and to generic tensors of rank (r.s) are left as
an exercise for the interested reader.

In all preceding expressions (9.42}-(9.54) we have shown both, the
abstract forms and their realization in local coordinates, to illustrate
that the notion of isotransformations and isodifferentials do constitute
isotopies, in the sense that all distinctions between conventional and
isotopic notions cease to exist at the abstract, realization-free level.

We are now equipped to outline the isosymplectic geometry,
beginning with the introduction of oze-isoferms on T*M,(#®) as the

quantities

&y = avdx = AT} axl (9.55)

We shall now study the algebraic operations of isodifferentials and
one-isoforms. The sum of two one-isoforms is the conventional sum. In

fact, given two one-isoforms €>11= Axdx and tbiz = B+dx, their sum is
given by

é,1+ &2 = (A+ Bpax. (9.56)

The isoproduct of one-isoform &; = Axdx with an isonumber i € # is
the conventional product,

e, = né,. (9.57)

For the product of two or more one-isoforms tbik = AKsgx k = 1,2,

3, ..we introduce the Jseerter/on, or Isowedge product denoted with
the symbol A, which verifies the same axioms of the conventional
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exterior product, that is, distributive laws and anticommutativity, i.e.
@, + $,HA3= 6,18 &3 + 62443 (9.58a)

s 1AB2+ o = 61A62+ ¢1A63 (958D)

b lrd2=- 0246t (9.58¢)

The product of two one-isoforms &11 = Axdx and ct>12 = Bxdx
shall be called a swo-ssororzon T*M( $), and can be written

=¢,1426.2= i | axt AaxS =
by = & Ad° = AT, BT 8" AdxS =

=5 T BTy - AjTigByT) axF Adx® =

=1 A; B (T Thg - Tg Th) 8x" A dx5, (9.59)
thus showing the first deviations from the conventional exterior
calculus (compare with Lovelock and Rund {Joc ¢/z), p. 132).

For the case of the isoexterior product of the cne-isoforms we
have the three-isororims

= Al A2 a3, giWds it piz . i3 axt A dxke A ax¥s
ATy A5, A%, B kﬁﬂ‘aT jy T2, TRy 8x 1 A ax52 A 8x73

where (see Lovelock and Rund (Jfoc o/ ), Santilli (1982a) and others)

1 silj
512 5 = det ooz, (9.61a)
P 85 53,
i gt gl
2 s
11123- - I 1o, 1y
BU28 5. = der |89, 8%, 83 (9.61b)

R
8%, 89, 8%3
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etc. The extensionh to m—isororms on T*M(#) is left to the interested
reader,

Given n one-isoforms élk = Ak*ax, k = 1, 2, n, they are said to be
Isolinesrly dependent when

$ LA ... AdM =0, (9.62)

Note that given n one-isoforms linearly dependent on M{x %), their
isotopic images are not necessarily dependent.

Evidently, in an n-dimensional isomanifold M(#) there exist a
maximum of n lineraly independent one-isoforms as in the
conventional case, with basis dx!, .. 8x". The space M(#) equipped with
iso-oneforms is the cotangent space T*M (®) at a given point.

Similarly, two-isoforms are elements of an isomanifold here

denoted T*h?!z(fﬁ] of inln — 1)-dimension with basis axl A Elxj, i<ij, asin
the conventional case. A similar situation occurs for p-isoforms

@, = A, | TY T3 ox TR ax't A axl2A LA axp 1969)
and related isomanifolds T*!\?Ip(iﬁ).

As an incidental note we point out without treatment the
Grasswann-isolopic algebra &, or isograssmann algebra , which is
given by the direct sum

6= Ek T*M (). {9.64)

=01.2,..0

The necessary and sufficient conditions for a two-isoform {9.59) to
be identically null are that

i k K
st2 Al A2 ™ T2 =
AP SRR Y’ H 1
_ at 2 k K K K N
= Al A (TTE T2 - TL T22) =0 9.65
ky kz( PR Iy ‘1} (9.65)

A similar situation occurs for p-isoforms.
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We now study the [Sodifferential calculus or p-isororss . Let ‘51 =

A*dx be a one-isoform. We define as the isoexterior der/vat/ve of ¢y
(also called isoexterior difterentizl ) and denoted with 661, the two-

isoform

3, Th) | B <o
§, = 36, = —+Atol gdiiaxde-  (aee)
ax'2 I2
dAL, i aTil.
i i i i, . Co
2(—%T1-T2- + A 21 riy ) axdy A aa =
ax2 I 2 1 axla 7
iy dAi or'!
1) 1 i i P . .
=gt (LT op2 o — L rha ) axky A axke

i

kikg gtz i J2 Tl gy k2

from which one can see that acfal is no longer the curl of the vector

field Aii’ but something more general, although admitting the

conventional formulation as a particular case for 1 = 1.
The Zlsoexterior derfvative or g Iwo-isaform

$, = A, TL T2 et A ax2 (9.67)
B, " )1 )2

is given by the three-isoform

i
dAii. i s ; aTly . .
by= ddy - (—L2pit o2 8 4 4 g gl
i
i 0Ty, TIPS R A
Tij _ Tlsj)axlAax A 89X, (9.68)
2 1 axls 3

It is easy to see that the isoexterior derivative of the isoexterior
product of a p-isoform tisp and a g-isoform ci:q is given by

a(d, A q‘.vq) = (&ép)f\ ci:q + (-)P ci)pf\ (aei)q). (9.69)

P

A p-isoform cﬁp shall be called /soersct when there exists a {p-1)
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form ‘i’p—l such that

by = 8dp 4 (9.70)

Similarly, a p-isoform cbp shall be called Jsoc/osed when

aéap = 0. {9.71)

The most significant result of this section can be expressed as
follows.

LEMMA /.87 (Isotopic Poincarée Lemma; Santilli (1955a,6), 099/b)
Under sufficient regularity and continuity conditions, the

Poincare Lemma admits an mrinie nunber of /solopic images, /e,

grven an exgcr p-rorm cﬁp—- d¢p_j , there exists an iminite
number of Isofoples of ¢ Pp-1 o isoforms & 1

=
® o1 $p-1, (9.72)
with consegquentis! isoropies of the p-form

(pp = d(cpp_l} = tbp = a(@p_ﬂ, (9.73)

Ffor which the Isoexterior derivative of the isoexact p-Isoforis
are jdentrcally nuii,

4@ @py) = 0. (9.74)
PROOF: Consider an isoexact two-isoform
by =86, = da; T dxl). (9.75)

Then, under the necessary regularity and continuity conditions, its
ispexterior derivative
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i
BA i 8Aj, aT 1l . :
= { e 1'1*11}‘ lej T3j + - 1 ] ]1']"12]. ']"133. +
ax'2axls ‘1 2 3 axlz  ax'3 2 3
i
dAj, 5 9T2; : ; ;
+ 1T, 2 mig . ) axdt A ax? A ax®® {9.76)
axie 3 axis 13

is identically null for all infinitely possible isotopic elements, as the

reader can verify via simple but tedious calculations based on the
antisymmetrization of all indeces. An iteration of the procedure then
proves the lemma at any (finite) order p. QED.

In short, the existence of consistent isotopies of the Poincare” .

Lemma proves the consistency of the isotopic generalization of
the conventional and exterior calculus under consideration here.

The mathematical relevance of Lemma 11.9.1 is provided by the
fact that the abstract, realization-free axioms

@y = db;, ddy = 0, 9.77a)

;

$g = ddo, dbg =10, etc. {8.77b)
admit the conventional realization based on an ordinary manifold, as
well as an infinite number of additional realizations for each given
original form which can be readily identified via our isomanifolds. The
latter realizations are generally inequivalent owing to the generally
diiferent isotopic elements or isounits.

The conventional Poincaré Lemma constitutes a geometric
foundation of Galilei’s, Einstein's special and Einstein’s general
relativities for the exterior problem in vacuum. As we shall see in
Volume II, the [sotopic Poincaré Lemma constitutes a geometric
foundation of the isotopic coverings of the above relativities for the
interior dynamical problem within physical media.

Note that, for each given, conventional realization of axioms (9.77),
there exist an infinite number of isotopies which are all geometrically
equivalent, but physically inequivalent, because they characterize
different integro-differential systems (Il.i.1) with inequivalent
solutions.

We shall now consider some cases of exact isoclosed isoforms.
Consider a one-isoform &, on 'I‘*Mi(SR). Then, dé, = 0, iff
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N BAI, .y i | o
W5 102 (__iL_T1szj Y ] T2 ;) =0, (278)
kiky  axl2 t72 T ey 2

namely, the isoclosure of a one-isoform does not imply that the
conventional curl of the vector A is null.
Similarly, given a exact two-isoform $, = d6,, the property dé, =0

holds iff
i
32A; . . . 8A:; 8Tl . .
Slilalsk ) — gl qplaopls g LRSI R L
KKs axlaaxiy 1 2 B axlz  ax's 2= 3
i
9 Aj i aT 2 Jo i
+ __1__._ T 1. —-—---—-—2_ T3 . = (. (9.79)
ax12 I ayds 13)

We are now equipped to identify the desired geometry. Let us
review the interplay between exact symplectic two-forms and Lie-
isotopic algebras (see Santilli (1982a) for details). Recall that a
conventional two-form on an even, 2n-dimensional manifold T*Msy(®)

with covariant-geometric tensor Qiii

®g = 49y, XA dx'2 (9.80)
characterizes the algebra brackets among functions Af{x) and B(x) on
T*M,(#R})

[A;B] = — Q2 | {0.81)
ax't ax 2

where the contravariant-algebraic tensor o'tf2is given by the familiar
rule

o2 = (o, . "Y'tz (9.82)
Jd2
Now, the integrability conditions for two-form (9.80} to be an exact
symplectic two-form are given by
Qi + 954, =0, 9.832
id, ¥ g, (9.832)
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a; ; ad: & a8 -
o, T3, 4 0, (9.83b)
axl3 axl ax'2

The above conditions are equivalent to the integrability conditions

olfz + ldt = o, (9.84a)
i i i
_aolds . a0'dt _ aoite
QiK + o + ol =0, (9.84b)
axK axK 8x

for generalized brackets {9.81)) to be Lie-isotopic, i.e., verify the Lie
algebra axioms in their most general possible, classical, regular
reailization on T‘"Mz(?ﬂ]

[A Bl + [B,A] =0, {9.85a)

[a Bj.c] + [[B,c],A] + [IC, Al Bl

i
e

{9.85b)

Thus, the exact character of the two-form ¢, = d¢, implies its

closure dds = 0 {Poincaré Lemma), which, in turn, guarantees that the
underlying brackets are Lie-isotopic, with the canonical case being a
trivial particular case (see the analytic, algebraic, and geometric
proofs of Santilli (1982}, Sect. 4.1.5.

Lemma [1.9.1 establishes that ail the above results on the
conventional exterior calculus persist under isotopies. Our objective is
than that of using the isotopies for the identification of the isounit of
the Lie-isotopic algebra directly in the structure of the brackets.

DEFINITION 1191 (Santilli (195852.6), (19916)) Under sufficient
cConunuity and regularity conditions, 8n “exact syuplectic-
isotoplc manifold, or “Isosymplectic manirold” rfor short, Is 8 Zn-
dimensional Isomanirold TH ' a5 equipped witlh an exact and

nowhere degenerate Iwo—isorornt

®y= 40 ; (X%, ) axl1A dxl2= (9.86)
1172
1
a(Ai T 1.} . . .
= 8, = —1—d T2 alidad-
ax'2 )2
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i
JI aT !,
1 . N - n s
*‘*ii“'ri- T2 + Ai———fli—"rlz ) axdt A dxle=

a2 I Js 1 axls I3
i A o7t
i T A i ]
=2 (T p'2 e a — Il ) axKi A axke

kikp  axle dt 2 N gyl 2

Aj=Alx), T = T, X, X, ...)

WhICl I's Such Lo 30mit the 1actarizalion

0. = Qiik(x)XTzkiz(t,x,}'{, D, Ty >0, (98D

lito

where T, Is the howhere singular, spwmetric and real-valued
isotopic element of T'H , (58 and

94§ dA{
Q; = —2-—h (9.88)
f2 axlt  ax4

Is Birkhotr’s rensor (If7.3, with corresponding Lie-isotoplc
brackels

dA aB

. i ki
[A:B] = — 1 x %) e 4w — (9.892)
ax'1 ax'2
1=t L (oli2) - -1
1, = Ty ) = Uy ) (9.89b)

where 7 o 15 the isounit of the universal enveloping associative
#lgebra of the Lie-isotopic algebra with brackets (959 on T
o8 The “spmplectic-isotopic geowelrv” o ‘Isosymplectic
geometry™ for short, Is the geomelry of the isosymplectic
wmanirolds

As an illustration, we shall now work-out an explicit model of
isosymplectic manifolds. For physical applications it is sufficient to
consider the cznonical isosymplectic manifolds ie., the isomanifolds
of Definition [1.9.1 where Birkhoff’s tensor Q is replaced by the simpler
canonical tensor w.

Let us consider again the physical realization of the abstract
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T*Mo(x, 8} manifold as the cotangent bundle T*E,(r.®)} with local
coordinates

a=f@"=(p =@p) m=12..2n, i=12..n (9.90

where r represents the Cartesian coordinates and p the linear
momenta.

Then, we can introduce the cenonical one-isoform on T E{(r#) of
the particular type

¢y = R, T#, ax¥, (9.91a)

R° = (p,0), (9.91b)

Ty = diag. (b24,...b2%,) > 0, by >0 (9.91c)
b= gl p2

Ti] 8] b= {no sum), (9.91d)

Its isoexterior derivative on T*E,({r.#) is given by

o _ nee _ 2 2
) ¢ 2 = a&’ 1 kuj_p'z b p‘lb o +
av’y ab°y )
+ (RY,, ———2 b%, - R°, ——L b2 ) daM1 A aalte
2 aay M Hi gaky  H2 {9.92)

and it always admits the factorization

by =8 = s, Tzvuz{t, x, %, .) dalt A dal2  (9.93)
1
with
a2 a2
T RBZ o k2 MO M B2 g g2
P aa® ¢ pab P

{9.94)
The isomanifold T*E,(r.#t) equipped with two-isoform (9.93) is
isosymplectic when T, coincides with its isotopic element.

Under these conditions, the generalized brackets characterized by
structure (9.93)
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x 'IZVﬂg(t, X, %, . -, (9.95a)

1, = T,74, (9.95b)

are indeed Lie-isotopic and exhibit the isounit 1, of T*E,(r#) directly

in their structure, as desired.
An example is given when

T, = diag. (b}, .. b2p,) >0, by >0, (9.96a)
ab;?
—- = Cost, ij=1,2..20 (9.96b)
ax)

The interested reader can then work out an endless number of
examples of isosymplectic manifolds of both Birkhoff-isotopic and
Hamilton-isotopic type. Additional examples will be provided in the
physical applications of the subsequent chapters.

We close this section with a comparative analysis of the
isosymplectic geometry of this section and the Birkhoffian-isotopic
mechanics of the preceding section. In Sect. [1.7 wee did introduce
symplectic-isotopic two-forms, Definition 11.7.1, however, they were
not symplectic Jsosorms. In fact, the one-forms on T*E:i(r,ﬁ) of this

section

$; = Ryl@) TV [t 2,4, ) da", (9.97)
formally coincides with those of Sect. I1.7 in a fixed local chart in
which dx = dx.

However, forms (9.97) were characterized in Sect. IL7 via the
ordinary calculus of differential forms. In fact, the main geometrical
structure of Definition 1L.7.1 is the comventional exterifor derivative of
a7 exact conventional two-rori

oy = d(®,), (9.98)
Since the Poincarée Lemma does indeed apply to the exact two-form «i:z,
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we have
d<b2 = 0, (9.99)

and the isotopy of Definition 11.7.1 follows.

In this section we have brought the notion of isotopy to its most
general possible level, by introducing the isodifferential calculus of
isoforms, with isoexterior derivatives d, and then computed the two-
isoforms

ci>2 = a(cfai). {9.100)
The Isotopic Poincaré Lemma then ensures that
aci>2 = (. {9.101).

The infinite isotopies of Definition 11.9.1 then follow.

what we have gained in the process is a further enlargement of
the geometric structure which is needed for the study of the possible
direct uprversality of the Isospmplectic geometry ror lhe most
general known cfass of nonlinear and nonlocs! vector-tields (1£11) |
which we hope to study at some later time.

In addition, we have learned how to reinterpret any exact,
noncanonical symplectic structure as an isocanonical Sstructure,
directly in the local chart considered, which is a necessary condition
for the identification of the isounit of the related Lie-isotopic algebra.

i.10: ISOAFFINE GEOMETRY.

We shall now proceed with our study of the geometrical
characterization of systems (I1.1.1) by reviewing the a/7we-fsoropic
geomerry or  isoarfine geomeiry for short, introduced, apparently
for the first time, in Santilli (1983d} and then studied in more detail in
Santilli (1991b).

The new geometry essentially permits a generalization of the
current local-gifferential character of the affine geometry into a
nonlocal-integral form capable of treating systems of type (I.1.1), with
consequential generalization of the notions of curvature, parallel
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transport, geodesic, etc.

The literature in the conventional affine geometry is predictably
vast, Among the earliest references, the presentation by Schrodinger
(1950) still has considerable value. In this section we shall follow the
treatise by Lovelock and Rund (1975) of which we preserve the
notation mostly unchanged for clarity in the comparison of the results.

For a full understanding of this and of the following sections, the
reader is expected to have a prior knowledge of the following notions
introduced in the preceding sections: /isoffe/ds R, isovector spaces
V and Jisometric spaces M, with particular reference to the
Isoeuclidean space E(rdR) and the isominkowsks space MR

The study of the implications of isotopies for differentiable
manifolds was initiated in the preceding section on the isosymplectic
geometry, by introducing the notion of isodifferentials dx, and then
using it for the constructions of the elements of the isoexterior
calculus,

In this section we shail enter deeper into this study and identify
the implications of isodifferentials for the notions of connections,
curvature, etc,

Let M{x.®) be an n-dimensional #/7/ne space {Lovelock and Rund
(1975)) here referred as a differentiable manifold with local coordinates
x =x!),i=1, 2 .., over the reals #. We shali denote: the conventional
scalars on M(x®) with §{x); contravariant and covariant vectors with
X}x) and Xj(x), respectively; and mixed tensors of rank (r.s)

x(r.S) o= Xh] 2-) rk 11{ 2__}{ S(X)' (10.1)

Unless otherwise stated, all tensors considered on M(x,®) will be
assumed hereon to be local-differential and to verify all needed
continuity and regularity conditions.

DEFINITION L2 (Santilli (19880 799/ The inrinite class of
isotopic lirtings Mix%) or an arfine space Mx,#) called “arrine-
Isotopic Spaces™ or ‘Isoarfine spaces” lor short, are
characterized by the sawe locgl coordinates x and the same
Jocal-dirrerential tensors X ¥ of MY bur now derined with
respect to the Isotopic lrtings or the tield

MESR) = MxH) : & =&1, (10.2)

ror all infinitely possible isounits 7 in m=n dimension whickh are
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nowfhere singu/ar and Hermitesn, but otherwise possess a#
arbrrary, generally nonlinesr and nonfocal dependence on an
independent parameter s, the varigbles x, their derivalives with
respect to 5 of aroirary order, and any other quanity needed
ror physical applicarions, such &s density p, remperature T,
ndex af refraction n,..)

1=, %%, %, 1,7, 0, ..). {10.3)

In this and in the next two sections we shall study isoaffine spaces
for arbitrary isounits 1. Nevertheless, it may be recommendable to
keep in mind the intended use of the theory, that of attempting a more
general formulation of the /Jprersor gravitational problem, which is
capable of recovering identically the conventional gravitational
theories for the exterior problem (Chapter V).

AS a result, the reader should keep in mind that:

1) The isounits T are defined in a well identified region, in the
interior of the minimal surface §° encompassing all matter, including its
boundary (e.g., the interior of Jupiter);

2) The isounits 1 shall represent the nonlinear, nonlocal,
nonlagrangian and nonnewtonian forces expected in the interior
gravitational problem, as well as the generally inhomogeneous and
anisotropic character of interior physical media; and,

3} All possible isounits 1 shall admit as a particular case the trivial
units 1 = diag. {1, 1, ..., 1) of the affine geometry in the same dimension
and recover it everywhere in the exterior of §°, ”l>su = |, S0 as to permit
the recovering in their entirety of the conventional gravitational
theories for the exterior problem.

As done in the preceding sections, the isounit 1 will be assumed to
be nonsingular, real-valued and symmetrical

1=l 1=05 =0 o (10.9)

The Isotopic element T = T(s, X, X,..) of the theory can then be
written

1=11 1=l =) (10.5)
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A first salient feature of the liftings M{x,%) = M(@x#®) is that the
conventional Zwear rrapsformations i.e., the linear, right, modular,
associative transformations on M(x.%)

X = AX, {10.6}

must now be necessarily generalized into the [solinear
transtormations {or isotranstormations/ on M4}, i.e., the isolinear,
right, moduiar, associatiove isoropic transtormations studied in Sect.
1.4,

X = AxX = ATx, (10.7)

where T is fixed,

In turn, the lifting AX = A=*x has a number of consequences. First,
it permits the treatment of nonlocal-integral structures which would
be otherwise precluded by the conventional theory of affine spaces.

This is readily done via the embedding of all nonlocal-integral
terms in the isotopic element of the theory. The insensitivity of the
affine geometry to the topology of its unit then ensures the
achievement of a mathematically consistent structure.

Secondly, isotransformations (10.7) are called JZsolnesar and
Isolocal (Sect. 11.4) in the sense that they verify all abstract linearity
and locality conditions on M{x®). Nevertheless, zbey are generally
nonlinear and nonlocal when written i the arigina! space Ax,# i.e.

X = A*x = ATX¥.)X (10.8)

The liftings AX = A*x imply that all conventional contractions of
indeces are now lifted via the insertion of the isotopic element, i..e.,

Al s Al k. (10.9)

Let us also recall that the use of conventional transformations
{10.6) on the isotopic spaces M{x,f) would violate the condition of (iso)
linearity. This illustrates the zecesszzy of the liftings Ax = Axx.

Finally, we assume the reader is familiar with the fact that all
distinctions between conventional transformations (10.6) and their
isotopic forms (10.7} cease to exist, by construction, at the abstract,
realization-free level. Thus, by their very conception, rsozffine
spaces are & more general realization ol the mathematical axroms of
the conventional spaces, that is, the spaces M(#®) and M(®) are locally
isomorphic.
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This ultimate geometric equivalence ensures the mathematical
consistency of our liftings. As a matter of fact, the equivalence can be
used to verify the consistencies of individual treatments.

Despite this geometrical equivalence, the physical implications of
our isotopies are rather deep, as we shall see.

Recall in the conventional case that, given two contravariant
vectors Xy and X, on M(x), their difference Ax is a contravariant
vector iff the transformation is /Jzear Similarly, Ax is a contravariant
vector on M f) iff the transformation is Jsolizesr We reach in this
way the following simple result (see also Propositions 11.3.1),

PROPOSITION 1107 loc. cit} For any given [sufriciently smooth
and regular) nonlinear and nonlfocal tranpsrormation on AME,%
there afways exists an Isounit I under which the transrormation
becomes Isolinear and isolocal on MEAY # = %1 Similarly, for
any given coordinate dirrerence Ax or WO coniravariant
vectors on MER which does not transtori comiravariantly,
there always exists an Isotope M of Mx,8) under which Ax
Lransrorms [Socovarigniiy.

The /ferr, modular Isotransrormations are evidently defined by
X = A*x = ATx, {10.10a)
Xt = xbtxal = xtT Al (10.10b)

where t denotes conventional transpose. The inverse, right-moduiar
transformations are given by the isotopic rule

x=A1Tx (10.11)
where Aq is the Zisomverse, ie., it verifies the isotopic rules

Alwa = axpal =1 (10.12)

and, from here on, when considering the isotopy in the new coordinate
system, we shall put

T = T X,..) = Tl %) (18.13)

Note the preservation of the isotopic element for the left and
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inverse isotransformations. This preservation is ensured by the
assumed Hermiticity of the element T and it is at the very foundations
of the Lie-isotopic theory {Santilli (1978a) (1982a)} with basic product

[A'B] = AxB - BxA = ATB - BTA. {10.14)

Mix,®) is then the correct /somodufe for the isorepresentations
of the Lie-isotopic algebra characterized by product (10.14) (App. 11-
D).

If the Hermiticity of T is relaxed, the right isotopic element
becomes different than the left one

_ def _ . def
T = A>X =ATX, ¥t = xt< Al = b1t Al {10.152)

T # T, {10.15b)

This signals the necessary emergence of the covering AL/e-
sdmissible theory (Santilli (1967), (1978a) (1981a)) with basic product

(A.B) = A<B -~ B>A = AT'B - BTA, {10.16)

verifying the axioms of the covering Lie-admissible algebra. In this
case the generalized affine space is the correct [sesimodu/e of the
Lie-admissible algebra (Appendix !1.D).

Note that in this case we have we dirrerent ISounits,

> =1 <p =7t (10.17)
and fwo dirrerent isorields

R = /1, <& = IR, {10.18)
or, equivalently, we have one single quantity “®”, representing both
the right- or left-modular-isotopic action depending on the assumed
conjugation.

We shall reserve the name of &/fine-admissible spaces , or
genostiine spaces 18 for short, and the symbold <M”(x, ®”) for the

16 15 Santilli 1978a) we introduced the following two mein lines of research:

A) The Jisotopres conceived as axiom-preservipg geperalizations of a given
mathematical structure This first notion has resulted in the Lie-isotopic
formulations for the treatment of nonhamiltonian systems as closed-isolated, which
are the main mathematical tools of these monographs. And
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emerging structure.

The Isoarrine spaces are necessary for the studv or interior
gravitation as 8 whole, Le, In closed-conservative conditions {(see
App. 1I.C for details). In fact, the antisymmetry of the Lie-isotopic
product (10.14) ensures the conservation of the total energy,

dH/dt = [H,H} = HTH - HTH =0, (10.19)

and similar conservations follow for the other total quantities under a
generalized internal structure evidently represented by the isotopic
element T. As a result, isospaces M{xR) are the fundamental ones of
the analysis of this paper for interior gravitation.

The genoarnine spaces lnstead fmply lhe necessary study of
Lgravitation in opelr-nonconservstive conditions. In fact, owing to the
lack of antisymmetry of the Lie-admissible product (10.16), we now
have time-rate-of-variations of the energy H of the considered
interior particle (Sect. 1.4)

B) The gemofopies conceived as axiom-inducing alterations of grven mathematical
structures . This second notion has resulted intce the still more general Lie-
admissible formulations for the treatment of nonhamiltonian systems as open-
nonconservative, as presented in the appendices.

The two notions were illustrated as follows. Let L be a Lie algebra with (ordered)
basis { X; i = 4, 2, .., 1, and trivial product [Xj, x]-I = xixj - xixi, where xix}- is the
conventional associative product. Then, the isotopies L of L are given by the now
familiar mappings of the original Lie product while keeping the basis unchanged

LX) = XX-%% = LoBUXl = 5TX-%TY,  T=T

which prerserve the Lie algebra axioms by ceptra! copdition On the contreries, the
genotopies U of L are given by mappings of the original Lie product while keeping
the basis unchanged, which now wolste the orgrinal Lre alyebra axioms i ravor of
miore general covering axioms also by central conditfon ‘The realizations of U
suggested in Santilli (1978b) is that of form (10.16), i.e.

LX) = XX - X% 2 <1 (X)) = X< Xj - Xj> Xp = XTI - X1
which verify the axioms of the covering Lie-admissiblealgebras. From hereon, the
prefix “iso” shall therefore denote the preservation of the original sxioms, while the
prefix “geno” shall denote the alterations of the original axioms in favor of covering
axioms, Note that the original axioms are not lost under genotopies, but preserved in
their entirety, although as particular cases of covering axioms. In fact, the lLie
algebras are not lost in the transition to the Lie-admissible algebras, but are
preserved in their entirety because contained in the classification of the covering
Lie-admissible algebras.
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dH/dt = (H,H) = 0, (10.20)

while the remaining system is considered to be external. The affine-
admissible space therefore are the fundamental ones on the still more
general, Lie-admissible approach, which will not be studied in detail in
this volume for brevity, but only outlined in the Appendices..

We now study the as7ine-isotopic geomelry, or Isoaifine
geometry, ie. the isotopic liftings of the conventional geometry
characterized by isotransformations (10.8).

Recall from Sect. I1.9 that, in the conventional case, the
differentials of the two coordinates x and x” are given by the familiar
forms dx” and dx with interconnecting rule

dx = AKX, ax! = Alj ax) {10.21)
But the same interconnection does not hold for the differentials dx and
dx because of property (10.7), i.e., by central assumption of isotopy, dx
= A dx.
Foliowing Sect. 11.9, we therefore introduce the generalized notion
of Jsoditrerentia/s dX and dx when interconnected by the isotopic law

8% = Axdx, &% = Al T axk (10.22)

Similarly, we recall from Sect. 11.9 the /[sodifrerential of an
Isoscalar ¢x) on MxR)

a0 8 .
xdx = — le axJ (10.23)
ax ax!

dfx) =

where the partial derivative is the conventional one, as well as the
Isodifrerential of 4 contravariant sovector X = (Xix)) on M(x, )

ax coaxb o
«dx, oxl = — T axK, (10.24)
ax ax!

gX =

The above quantity then allows the introduction of the
sotranstormation [aws or the contravariant Isovector

oo
«X), X = a-x~j—T1k XK x), (10.25)

=

Xx) =

=4
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' Recall also that, while in the conventional (linear) case x' = Ax,
dx’/8x = A, we now have on M(xf)

K
ax! ) . 8T r
j - Alk Tkj + Alk__j_rx, {10.26)
Ix aX:

Similarly, we have the Jsotransformations or a& contravariant
Isotensor XY of rank two on M{x®)

_ _ _ _j
X 8% .. axt ax
(2 _
R0 = — s — e x), B = — T — 1, X )
r P s q
x & ax ax (10.27)

with similar extension to higher orders, as well as contravariant
isotensors of rank (0.5) and generic tensors of rank (r.s).

The reader should also recall from Sect. I1.9 the identity of the
above isoquantities with the conventional quantities,

From the preceding results we have the Jsodirtferential of 2
contravariant rsovector-rield

] ax
ax) = — Tk o =
Bl'fk
e o o o o, |
= -Tlr XF 4xS + = Tho— x5 + — X 3xS
ax> ax! ax! axS ax! xS {10.28)

We now introduce the ssocovariant for iscabsolute) difrerential
Hxr

Hxl = axd + Plix, X, ax), (10.29)

under the condition that it preserves the original axioms (Lovelock
and Rund (/oc.ciz), p.68), i.e.,

1) fJ(Xj + vl) = dx} + DY) which can hold iff P} is isolinear in XT;

2) DX} is isolinear in dx%; and
3) DXj transforms as a contravariant isovector.

By again using Lovelock-Rund’s symbols with a "hat’ to denote
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isotopy, we can write

pxd = axi + ) 7R &k axs, (10.30)
hk r 5

where the Is are here called the component of an J[sog/rine

connection.

By lifting the conventional procedure, one can readily see that the
necessary and sufficient conditions for the n3 quantities f‘m n to be
the coefficients of an isoaffine connection are given by

) axt ax4
ril o —75 xttP — 1%, ax? =
mp axS t q BXW

a%xl

" Til X 8% +

——h A
P T — (rSpaxt - &) - — —L xT axS. (10.31)

As in the conventional case, the [s do not constitute a tensor of
rank (1.2). The extra terms in conditions (10.31}, therefore, do not affect
the consistency of the isoaffine geometry, but constitute the desired
generalization.

An important particular case occurs when T is a constant, which is
the case when the characteristic isotopic functions representing the
interior physical medium are averaged into a constant {see next
chapter). In this case the isotopy of the conventional terms persists,
but the additional terms are null. Finally, note that all conventional
notions and properties are admitted as a trivial particular case by the
isoaffine geometry whenever T = L.

The extension of the above results to the isoconiravariant
derivarives is evidently given by

L= ax. - £S5 Ty, Th
DXy = 8% - PP T O X, T p 9xP. (10.32)

As @ result, zfe I[Ssocovariant derivative of & scalar coincldes wilh
the Isoditterentia/, as in the conventional case, i.e.,

= DXy = ¢ {10.33)

We shall say that the isoaffine connection is spmwea/c if the
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following property is verified
s - 5
N (10.34)

The following property can be trivially proved (but carries
important physical consequences).

PROPOSITION 1102 floc. cit)r The Isotopic jmige I'fy of #
conventional, symmetric, arine connection /",/ = j}}ﬂ s nor
necessarily symmerry:

The isotopic liftings of all remaining properties of covariant
derivatives, as well as the extension to the isocovariant differential of
tensors, will be left for brevity to the interested reader.

It is easy to see that the isocovariant (isoabsolute) differential
preserves the basic axioms of the conventional differential, i.e.
(Lovelock and Rund ((/oc. cit) , p.74):

AXTIOM 1. The isocovarianr difrerential or s consiant Is
Identicallv null; that of s scalar coincrdes with the

Isodirterentizl and that or & rensor of rank (rs) /s g rensor of
the same rank,

AXTON 2- The socovariang dirrerential of the sum of tWo Lensors
of the same rank Is the sum of the Isoabsofute differential of the
mavidual tensors, And

AXIOM 3. The Isocovariant drrrerential of the product of wo
lensors of the ssme rank veriries the conventional cham rufe or
dirrerentigtion.

By following again the pattern of the conventional formulation, and
&5 a natural generalization of the isocovariant differential, we

introduce the rsocovariant der/vat/ve of a contravariant vector field
xp

h
xrk= --—1~<+f*3'rrx, - {1035)

under which the isocovariant differential can be written
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o .k
pxd = K T SaxS. (10.36)

It is an instructive exercise for the interested reader to prove that
the isocovariant derivatives (10.35)) constitute the components of a (1.1)
isotensor.

It is also easy to verify that the isocovariant derivatives preserve
the axioms of the conventional covariant derivatives (Lovelock and

Rund (foc. crz), p. 77

AXIONM 1+ The Isocovariant derivative of & consiant Is
Identically null: that of & scalar Is egusl to the conventions!
partial derivative; and that of an isotensor of rank (1.5} is an
Isotensor of rank (r.s+1)

AYIOM 2° The Isocovariant derivative of the sum of Iwo tensors
of the same rapk Is the sum of he Isocovarisnrderivatives or
Lhe mdividual tensors. And

AXIOM 3: The Isocovariant derivative of the product ol two
Isorensors ol the same rank I's that of the usual chain rule or

parial gerivatives,

Axioms 1, 2, 3 and 1/, 2, 3 imply the most important result of this
section, which can be expressed via the following

FPROPOSITION 7L 103 Santilli foc. oIt} nder surlicient continiity
conditions, all inrinitely possible Isotopilc firings o an aline
geometry colncide With the same geomelry At Whe 2DSIract,
coordinate-rree jevel

In actuality, the capability of our isotopies of preserving the basic
axioms is such that, the isotopic liftings can be used as a test of
geometric consistency of a corventiorna/ theory.

In fact, & a given property Is not preserved under isoftopy, e
derinition of the property Jisell is geometrically ifncomplere As we
shall see in the next section, this is precisely the case of the historical
Einstein’s tensor.

We now pass to the study of a central notion of our analysis, the
generalized curvature, herein called Jsocurvature and the
generalized torsion, herein called Zsoforsion , which are inherent in
the isoaffine geometry prior to any introduction of an isometric (to be
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done in the next section).

For this purpose, let us study the lack of commutativity of the
isocovariant derivatives on isoaffine spaces M{x§} with respect to an
arbitrary, not necessarily symmetric, isoconnection I”th. Yia a simple

isotopy of the corresponding equations (see Lovelock-Rund (/oc o/t ),
pp 82-83), and by noting that

. a - .
3 | 2} P _ 2 P q
{10.37)
we get the expression
. F2] 2}
J —xj i {arlh i af']k)+
'mlk  fk[n axk oxh
+ (r-.Emlk Tmr ln.zlrh _ rzmlh Tmr r,ZIrk) TIS X5 -
_ 2 l 2 l r 3
Chk - Pip)Ty ¥y -
aTl BT!
- (1‘“2!1 —Eoopei Doyt (10.38)
h axk 1 kaxh

DEFINITION I.10.2 floc. cit)- The “Isocurvature tensor”™ of &
vector 1reld Xy on an n-dimensional isoattine space M%) is
given by the isotensor of rank (1.3

N ardy, i o'y,
Thk  gyk axhl
rJoom op2r j oo p2f
* P Thp T4 f‘mlh'r et
r r
. aT | L
U =% - pl 215 (10.39)

while the Isotorsion™ is given by
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Thk = T’k kh’ (10.40)

Expression (10.38) can then be written

i i _ i 1 S ~ 1 s j
X - X =K T X5 - TS . 10.41
[hlk Ik [h lhk ° S Thi 1 [s (10.41)

Comparison with the corresponding conventional expression (Eq.s
(6.9), p. 83, Lovelock and Rund (/eccst )) is instructive to understand
the modirication or the curvature as well as of the torsion caused by
our geomerrization of interior physical medsia . As we shall see, this
modification is the desired feature to avoid excessive approximations,
such as the admission of the perpetual motion within a physical
environment, which is inherent in conventional gravitational theories.

The extension of the results to a {0.2)-rank tensor is tedious but
trivial, yielding the expression

i1 ; i .
XJ _ X]l - Kr]hk_TrS XSI + Krlhk Tl‘s X]S -

Thlk fk[h
_& I o Syjl
™ kTr> Xs - (10.42)
Similarly, for contravariant isovectors and isotensors we have

- _ T g _ar s
Xitnre ™ Xk = Bk T s~ Th k Tr” Xjl's {10.43a)

_ - X Sy . .pP mSy. -
Xptulk ~ XulkTn = Bk TrXst =K Te s
“ Tk Tk Xl s {19.43b)

Relations (10.42) and (10.43) will be at times referred to as the fsoricc/
identities.

We now pass to the study of the properties of the isocurvature
tensor. The following first property is an easy derivation of definition
{10.39).
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The second property requires some algebra, which can be derived
via a simple isotopy of the conventional derivation (Lovelock and Rund

(foc. cit )} pp. 91-92).
LROERTY 2

. . . __..j s i
B + Rl + Bdn =Tnk * Tulap * Tdign

~j ol 2 8 IR S =5
+ TlerST +Th]rTSTkl+T3T Tlh+

h k KT
il ™. s Tty s
B L I i T Ay (10.45)
rhgxK 1 rigyl h réxh K

where, again, the reader should note the isotopies of the conventional
terms, plus two new terms which are important physical applications
indicated earlier in which the interior characteristic functions are
averaged info constants.

Note that, for a symmetric isoconnection, the isotorsion is nuil and
the above property reduces to the familiar form

The third property also requires some tedious but simple algebra
given by an isotopy of the conventional derivation {Lovelock and Rund

{foc. cit.), pp.92-93), which results in

LEOPLRTY 3

5 1 > 1 1 -
arp * Kptn* Fipl® M1

= @,F 7,8 K] + Skr Tp K + 8L, TS stk)

* @ik Telp * Kfkp Tetn * Kifpn Tl Y1+
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W 1 r 1

1 r
+ 8 [k } TY]_ y (10.47)

hereon called Jsobiamchi identiry , which can be written in a number
of equivalent forms here left to the interested reader (see an
alternative expression in the next section).

Again, as it was the case for property (10.45), the isobianchi
identities (10.47) for the case of a symmetric isoconnection reduces
tol?

+ 1 1 1 z

Kj nklp * Kj kp [k + K]_ phlk = O (10.48)
This completes the identification of all primary properties of an

isocurvature tensor prior to the introduction of the isometric. Other

properties, such as the Freud rfdentiey (Freud (1939), will be studied in

the next section because they require the isometric for their proper

definition.

iL11: ISORIEMANNIAN GEOMETRY

in this section we shall review the foundations of the Arewannian-
Isotopic geomelry, or Isoriemannian geomelry for short, i.e., the
most general possibie,‘ nonitnear and nonfoca/geometry which can be
constructed with a spwmerr/c connection on the modular, affine-
isotopic spaces M{x,f). The new geometry was introduced, apparently
for the first time, in Santilli (1988d) and then developed in more details
in Santilii (1991b).

As now predictable, the study should be intended as preparatory
for the construction of the more general ARlemannian-admissible
geometry , or genoriemaniian geomerr'® for short, namely, the yet
more general, nonlinear and nonlocal geometry which can be
constructed with a wsomspmmetr/c connection on the bimodular,
genoaffine spaces “M”{x, <#>) {see Sect. 10 and App. ILC).

To begin, let us perform the transition from the n-dimensional
isoaffine spaces M{(x.t) of the preceding section, to the corresponding
isospaces M(xg.®) equipped with & (sufficiently smooth, real valued

17 The generalization of the properties studied in this section to the case of
genoaffine manifolds is rather intriguing, but it will not be done at this time for
brevity.

18 For the meaning of the prefix "geno” see footnote 16 p. 136.

146




and nowhere singular) spmwelric isotensor gj or rank (0.2/on M(x.9),
hereon called Jsoweirsc, with a dependence on: an independent
parameter s, the local coordinates X, their derivatives with respect to
the parameter s of arbitrary order, as well as any additional quantity
needed for specific physical applications, such as the density B of the
interior physical medium considered, its temperature T, its possible
index of refraction n, etc. ,

Bij = g XXX Wm0, .), gy = & detgF0 (114)

It is easy to see that isospaces M(x.g.f) are a direct extension to
an arbitrary dimension n of the Jsoevciidean spaces Elr$#R) in three-
dimensions used for the construction of the &a/i/e/~fsotopic
spmmetries Ga(3.1) of Chapter II1, as well as of the Jssominkowsks
spaces Mk g &) in (3.1)-dimension used for the construction of the
Poincare-isotopic symmetries P§(3.1) of Chapter 1V. In this section we
shall continue our study of the general n-dimensional case, by keeping
in mind that, from a physical viewpoint, we are primarily interested in
the isoeuclidean and isominkowski subcases.

Among the infinite class of possible isceuclidean spaces E(x5.#), we
now restrict our attention to the following subclass.

DEFINITION [ 111 (Santilii (19550 (1991b) The “isotopic lftings™
Rixg B} of a conventional Riemannian space Rx.g8) in n-
dimension (see, eg., Lovelock-Rund (1975)) called ~Riemannian-
Isotopic spaces™ or ‘Isorielmannian spaces” for shore, are the n-
dimensional isoartine spaces M%) equipped with a (sufticiently
smooth, nowhere singular, real valued and symmetric/
Isometric g = Te characlerizing, 1rst, the isorield & via the
rvfes

g =gis,x,%.) =T, x,%,..) g, {11.2a)
g eRlxg#), geRkgh), (11.2b)
§ =81 1=T11 (11.2¢)

and rthen a symmetric Isoarfine connection, hereon called
Isochristorrel’s symbols of the rinst £ind™

h k 1’ klh '
ax ax X
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as well as the “Isochristoffels symbaols or the second Aind™

where the capability for an isomeliic of raising and lowering
the indices Is understood (s In zny arrine space) and

@=g )1 = () Wsxnw.) (1)

The “Riemannign-isoropic geomeilry-, or “Isoriemanmnian
geometry” for short, Is the geometry of isospaces R&£5)

THE GEOMETRIES OF GRAVITATION

EXTERIOR GRAVITATIONAL PROBLEM:
CONVENTIONAL RIEMANNIAN GEOMETRY
ON (3+1)-DIMENSIONAL SPACES R(x.g.%)

INTERIOR GRAVITATIONAL PROBLEM:
ISORIEMANNIAN GEOMETRY ON (3+1)-
DIMENSIONAL ISOSPACES R{x g %)

FIGURE I[Li1.1: A schematic view of the central objectives of the
isoriemannian geometry: the geometrization of interior gravitational
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problems via a direct representation, not only of gravity, but also of
the inhomogenuity, anisotropy and nonlocality of interior physical
systems, concejved in such a way to admit the conventional exterior
treatment as a particular case, as well as to coincide with the same at
the abstract, realization-free level, as submitted in Santilli (1988d),
(1991b). Let R{x,g2.®) be a conventional (3+1)-dimensional Riemannian
space of the exterior gravitational problem in vacuum with metric g =
g{x). The representation of the physical media of the interior
gravitation is represented via the alteration of g(x), called wmuizrion
{Santilli (1978b)} of the type glx) = g{s, x, %X, X, . T, n, ..), under the
conditions that the new metric g is also nowhere degenerate and
symmetric. The inhomogenuity is directly represented, say, via an
explicit dependence of g from the locally varying density | = pix),
temperature T = T(x}, index of refraction n = n{x), etc.; the anisotropy is
directly represented, e.g., by factorizing in the Finslerian fashion a
preferred direction n=x in the medium, such as that of its intrinsic
angular momentum; and the nonlocal interactions can be directly
represented via integral realizations of g The preservation of the
original geometric axioms of the Riemannian geometry is permitted

by

1) the decomposition of the isometric

2= ) =g %) = T x % ..) gh, fa)

where g(x) is the original Riemannian metric and all inhomogeneous,
anisotropic and nonlocal terms are embedded in the isotopic element
Ts

2} the assumption of T71 as the generalized unit 1 of the theory, with
gt = @l = (g1 and

3) the definition of the geometry with respect to the isofield # = & 1,
resulting in the iscriemannian spaces

Rixgh., g=Tg, HK=871, t=T . {t)

The above structure implies the important geometiic property that all
possible isoriemannian liftings R(xg®) of a given Riemannian space
Rix.gA) are locelly isomorphic to the latter, R(xg %) » R{xgR), even
though the formers are inhomogeneous, anisotropic and nonlocal-
inntegral, while the latter is homogeneous, isotropic and local-
differential. The preservation of the original geometric axioms can be
aiso seen from the transformation theory of isoriemannian spaces
which must be necessarily of isotopic type. The isospaces R(x.gh)
then remain nonlinear as the original one, but become isolocal (Sect.
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111.4), by therefore avoiding the need for an integrai topology, because
all the nonlocal-integra! terms are embedded in its isounbit 1. Note
that egch given gravitstionsl theory feact given Riewannian melrly
£/ can be subjected to an inlinite number of isotopic lRings
gsorfemanmnian imagces g = Fe/. This is a  necessary condition for
the new geometry because, for each given total gravitational mass m,
there exist an infinite variety of astrophysical bodies with different
interior characteristics all admitting the same mass m. This is the
reason why we use the plural “isotopies” or "isoriemannian spaces” in
these monographs. Note that the Riemannian geometry provides
general laws for the gravitational metric g(x), but cannot identify its
numerical value at a given point in space-time, which must be
identified via experimental measures, e.g., on the gravitational mass
m. Along exactly the same lines, the isoriemannian geometry provides
general laws for the metric g and the isotopic element T, but their
values must be identified via experiments, not only on the total mass
(to identify the metric g). but also on the size, density, temperature,
orientation of the intrinsic angular momentum, and other
characteristics of the body (for the isotopic element T). Finally, the
compatibility with the exterior problem is achieved by the conditions
that all isotopic elements T (isounits 1) considered in these volumes
recover the conventional trivial identity 1 everywhere outside the
surface § encompassing all matter of the uinterior problem, in which
case isoriemannian spaces recover the conventional spaces
identically

T L RixzH) = Rix g8}, fc)

I >§°
thus establishing the covering character of the isoriemannian over the
riemannian geometry. The above isoriemannian geometrization of the
interior gravitational problem constitutes the ultimate geometric

achievement of all the studies presented in these two volumes and
related references, inasmuch it permit an axiom-preserving
generalization of Einstein’s gravitation for interior problems (Chapter
V), which includes as a particular case on tangent planes the isotopies
of the special relativity (Chapter IV) and, under group contraction. the
isotopies of Galilei’s relativity (Chapter I1).

In order to avoid insidious topological problems, the reader should

be aware that both metrics g(x) and g(s, X, X, X,...) are nonlinear, but the
nonlocal-integral terms, jointly with all dependence other than that on

X, must be all embedded in the isotopic part T of the isometric g, and

cannot be admitted in the original Riemannian metric g{x). This implies
the embedding of all nonlocal terms in the isounit T = 1(sxXX,..), thus
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ensuring the topological consistency of the theory.

For simplicity, but without loss of generality, we shall consider
hereon the case in which the isounit is independent from the
parameter s, but depends on all other quantities identified above, 1 =
%, %, 1, 1,0, ..

The physical applications will be considered in more detail in
Volume II. In this section we shall study the isoriemannian geometry
per se,ie, from a mathematical viewpoint, and without any boundary
condition on the isotopic element of type (c) of Fig. I1.11.1.

As indicated in Definition I1.11.1, the introduction of a metric on an
affine space implies the capability of raising and lowering the indeces.
The sanme property evidently persists under isotopy.

Given a contravariant isovector X! on Rixg#), we can define its
covariant form via the familiar rule

Xj = g X (11.6)

Similar conventional rules apply for the lowering of the indeces of all
other quantities.

It is easy to see that the inverse of g Eq.s {11.5), is a bona-fide
contravariant isotensor of rank (2.0). Given a covariant isovector X; on
R(x g ), its contravariant form is then defined by

x! = gll X; {11.7)
Rules (11.6) and (11.7) can then be used to raise or lower the indices of
an arbitrary isotensor of rank (r.s).

From the definition of the isochristoffel’s symbols of the first kind,

Eq.s (11.3), we have

9gy)

Y | 1
— =7 + [ (11.8}
hik lhk»
axk
and
%8 . |
g =— -1 2 {11.9)
hi [k
I asck hik thk
Thus,
g = Q ;1 =0 {11.10)
ghlrk = 1 g [k Yy .




We reach in this way the following

LEMMA [1111 (Isoricci Lemma; Santilli foc. cit)) : All (svirrciently
smooth, and regular/ isotopic liftings of the Riemaninian
geometry preserve the vanishing character of the covariant
derivative or the Isometrics.

In different terms, the familiar property of the Riemannian
geometry

g. . =70 (11.11)
ijlk
is a true geometric axiom because it is invariant under all infinitely
possible isotopies. As we shall see, this property is not shared by all
quantities of current use in gravitation.
The isotransformation law of the isometric g is given by

axP axd

B k) = —— TR EIE BN T o T —, (11.12)
] axi P rs q B’XJ

where the isotopic elements T in the r.h.s. are again computed in the
new coordinate system as in Eq.s {10.32).

By repeating the conventional procedure (see Lovelock and Rund
(Zoc eit.)), pp. 78-70) under isotopy, we obtain the following expression
for the fsochristorfel’s symbol or the 1irst Kind

%a, % %nk,

PLo =4 (11.18)
1
hlk a axK ax!
2xr S o vl awS m
3 xS 8 ot xS &
=g, T TP, + ]pTers(——h———-—- 4
P IT gk Sl gyl ol oxK axdl
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a'r] axt axS  axS oxt
! ) - —H— —r— —),
axl axK ax! ax¥ axl sk axl axh ax! axh

with a number of alternative formulations and simplifications, e.g., for
diagonal isotopic elements T, which are left to the interested reader

for brevity.
The contravariant isometric gl evidently verifies the
isotransformation laws
. ax! axJ
g, %,.) = —TF & %.)ePi. %) T & X,.)— {11.14)
axr P T

In order to proceed with our study, we need the following

DPEFINITION I 112 (Rantlls ffoc. it )b Given gh isoriemannian
space Rxg#) in n dimension, the Tsocurvature tensor= Is given

oy
a3l a2,
= - +
I hk K ach
3 r
+f‘2}k’1‘m P2r, - redortop2t o
mh r 1k
r T
CaT aT
~5 ; s .5
ep2) —29% - g2l T (11.15)
and can be rewritien
i _,.p, %ph 9EpKk 9% %)
thk =4g | K - h + - = X )+
ax* axl ax axl axh axJ ax< axd

. s
-jp ( 1 25 1 I o2
T B (f'pr ™ l-'lh I‘prkTsFllt:)+
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r r
oT aT
R . s .5
AN = I 3 Iy (11.16)
axk rk gyh
the “Isoricct tensor”is givelr by
g = R =glg {11.17)
Ih = RPhs 7 87 Nipg
the Isoelstein’s tensor”is given by
6 =Rl -ssiR (11.18)

1 1 i

and the “romplered isoemsten’s tensor” Is given oy

8 = r!-islr - 8y (11.19)
1 i 1

where K Is the Tsocurvaiure [soscalar”
R=Rj=& R, {11.20)

and 8 Is the “Tsotopic isoscalar™

L Wdh Ak g r .95 1 ro.2s ., _
8=8 & (Mo TgMp - Ty Tslry) =

; gtk ik -dh
=L T's TP & & - a0, (11.21)

We are now equipped to study the isotopies of the various
properties of the Riemannian geomeiry as available in texbooks in
gravitation, From definition {11.16) we readily obtain {Santilli (foc. ¢ )

DROPER . Ant : : - .
Isocurvaiure tensor
Rl]hk = - Ri]Kh (11.22)
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The specialization of properties (11.10.45) to the case at hand easily
implies the following

isocurvature tensor
g +1faj +Rj = 0 {11.23)
1 hk h ki K1h ’ :

or, equivalently,

Rionk ¥ Prm * Pimm T © (11.24)

The use of property {11.22) and Lemma I1.10.1 then yields

FROPERTY 3. Anusvmmetry in the [Irst two Jjndices of the
Isocurvature tenser

or, equivalently,

lehk = thlj' {11.26)

From Definition {11.15) and the use of the Isoricci Lemma, after
tedious but simple calculations we have the following

PROPERTY & [Sobi: 0/ Jd e

. j J
Bimcte * Ripnfk * Rikpn T S (.27

where
& J 2]

= r 2s _ oo
T e e

s{p M%) +

1] 2
* lc‘rp(Trsihf'zlsk - Trs[kr' n) *

: 5
PP (s pp 155 - Tspafy )+
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rh k1[p Pk rp Chifk kK 1[h
. g2 ro_
frk(QpI[h Qhr[p}, (11.28)
and
r
. oTs
Q 11p = {a—x-;-wl g (11.29)

For isotopic liftings independent from the local coordinates {but
dependent on the velocities and other variables, as it is generally the
case, see Chapter V), or for the characteristic functions of the interior
physical medium averaged into constants, isodifferential property
(11.27) assumes the simpler form

&)

Chk[p R}

I'phlk R

) =

Ikp|h 0. {11.30)
The isobianchi identity can also be equivalently written in the

general case

R (11.31)

ink[p * Ripnik ¥ Rukpln T >lihkp ”

where the §-term is that defined by Eq.s (11.28), with the reduced form
for the isotopies not dependent on the local coordinates or constant

R R 0. {11.32)

lihk | p enlx * Rikpln

At this point, the reader is suggested to verify that the above
properties (in their conventional forms) are all the properties
generally presented in contemporary textbooks and papers in
gravitation.

The above properties, however, do not exhaust all independent
properties of the Riemannian geometry owing to the existence of an
additional property discovered by Freud (1939), and subsequently
studied in details by Pauli (i358), but which remained thereafter
ighored. This additional property, today called the Frevd rdentity ,
was recently brought back to the attention of the physics community
by Yilmaz (1990}, and also treated by Carmeli e 4/ {1990). The property
reached a final maturity of mathematical formuilation in the recent
article by Rund (1991), subsequently reviewed in Santilli (198lb). This
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completes all references on Freud's identity Known to this author.

In this work, we shall follow Rund's paper (/oc ¢/t ). It is easy to
see that a step-by-step isotopy of Rund’s analysis leads to the
following

DROPERTY 5 5oL, deticy

8V'k]
pk + ¢k = ; (11.33)
i} J ax]

where {see Rund (loc. cit. ), p. 269)
v,klj = 3§} {85 (Skj f‘zrls _ slj I—wzrks) N

e T ) R e N AR RCEETEY

aG

oK) = 181 élm =558, {11.34b)
aplm [ ]
i [k
o= 5K p2P o4 25 _ 2P 49 25
G =g (r]STprkq rakTprqs), {11.34c)
G’kj = & ékj. {11.344)

A major result of Rund's analysis is that the comventional Frevd
identity holds ror all spmmelric a&nd nonsingufar metric on 2
conventional Riemannian space of arbitrary (finite) dimension and
signarure The same property evidently persists under isotopies.
Thus, FProperiy 5 Is aviomsiically sausried for a/l symmetric and
nonsingular Isometrics on jsoriemannian spaces of arbitrary (finite/
dimension and sghature

The physical implications of the Freud identity will be considered
in Chapter V of Vol IL

We are now in a position to identify the most salient consequences
of the isoriemannian geometry. First, it is an instructive exercise for
the interested reader to prove the following important property

LERMAMA 112 Santilli floc. o/t Exnstein’s tensor
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cl.=rl. -s8LR (11.35)
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does nor preserve under Isotopies the vamishing valve of Iis
covariant divergence (contracted Branchii identity)

Gl

It

. =mby. - 38L Ry,
jli= Ryi ~ 4Ry

thar is, the Isoeinsteinian tensor (11.18) violates property (11.36)

0, (11.38)

LS S §
Gyri = Ry ib‘]ﬁ[i# 0, (11.37)

Theretore, Linstein’s tensor Joes Mot posSess &1 axiomalically
complere structure, and the comtracted Brianchl Iidentity does
ROL COnRSLtute an axiom or the Riemannian geometry.

This was at first a rather unexpected occurrence. But, under a
deeper analysis, it emerged to be relevant for a rigorous
understanding of the problematic aspects of Einstein’s exterior
gravitation, including quantization (see Chapter V).

It is interesting to note that he Freud Identity is 3 lrue geomelric
axiom of the Riemgnnian geometry i the sense that It persists vhder
Isotopies, while the contracted Bignchi identity Is not, evidently
because it is not preserved by ISolopies.

The following important additional property can also be proved via
tedious but simple calculations from isodifferential property (11.27).

LEMAMA 11113 floc cit} The completed isoeinsteinian tensor
(11.19) does possess an Jidentically null Isocovariant
Isodivergence, Lé,

i . : .
& » . = -1, - 1_ . - l_ =

§ypy = (Ry - 485k :819]“ 0. (11.38)

hereon rererred to as the “rvompleted and contracted Isobianchi

rdentity

By reinspecting the above findings, we can say that Einstein’s
tensor G!; is not ~axiomatically complete” because it does not
characterize an axiom which is invariant under all infinitely possible
isotopies. However, if Einstein’s tensor is “completed” by adding a
suitable tensor with null covariant divergence, then it is turned into a
true axiomatic form invariant under isotopy.

Let us first identify the implications of the above findings for the
conventiona/ theory of gravitation, and then study their isotopies.
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For this purpose, we introduce the following

DEFINITION [1.11.3- The “tompleted Einsteins rensor” on
g ) Is given by the expression

L I
S}-—R] éSjR 5836, (11.39)
where A’/ U5 e conventional Blocl tensorn, £ Is the conventions/
curvature scalar and 8 is given by the isotoprc quantity b, £q.
{1.21, for 7 =7, e,

G oT

- 1 ol ar
8= g (rjkrlh P Th )

k

jh 1 -
= Mok T4'n € g -g¥egM) (11.40)

But, the covariant derivatives of the 6-quantity are identically null
{from the conventional Ricci lemma). We therefore have the following

COROLLARY [L11.2.f : Einsteins tensor can be axiomatically
completed by substracting the term 387 ;8 with null covariant
derivaiives as per Deriniton 11113, while preserving the null
value ol e covariant divergence, e,

)

il

wiaich Is called hereon the “tompleted and contracted Branchi
fdenrity

= i__ i_ —_ i_ = i.-—- i. =
el (R] iSJR isja)“ (RI 58312)|i 0 (11.41)

The axiomatic structure which can be subjected to a consistent
lifting is therefore the generalized tensor (11.39), and not Einstein’s
tensor.

It should be recalled that our “rvompleted Einsterns rensor™ has
no relationship to the ~wodified Einstein’s  rensor™ with the
cosmological constant A, i.e., the familiar form (see, e.g., Pauli (1958))

aloo pll el i
G‘] RY; 18 R+ S}A. (11.42)

159




for numerous reasons. First, A is a constant in quantity (11.42), while 8 is
a scalar function in Eq.s (11.39). Secondly, tensar (11.42) leads to a static
universe, as well known, while this is not the case for our completed
tensor, as we shall see. Third, the modified tensor {(11.42) also does not
possess sufficient generality to constitute a geometric axiom invariant
under isotopies.

At this point, it is important to identify the implications for the
gravitational equations prior to the addition of gravitational sources
(to be done shortly in this section).

A repetition of the analysis by Lovelock and Rund ((/oc «/it ), p.
313 and the Theorem of p. 321) for the completed Einstein’s tensor
leads to the following

THEQOREM [511.1: fn & (conventionall rour—dimensional
Riemanhiahh Space Rixvg, 8 the most general possible,
axiomatically complete Fuler-Lagrange equations
gl = g, {11.43)
veriyving the properies
gl = gi gl =, (11.44a)
gl = g, g, . g = 0g/oxK etc. 11.44b

(where the latter properiy also expresses the Iack of source),
are characierized by the variational principle

= §fA MR+ 8 -2A] = 0, Al = (detg)? (11.45)
and resd
gl = At (AR - el (R+8)] +Agd) =0, (11.46)

where R Is the curvature scalar and 8 Is quantity (11.49)

The reader will recognize in the above theorem the cosmological
constant A, as well as its differentiation from our 6-guantity. The
reader will also see the difference of the gravitational equations
{11.50) with the corresponding Einstenian form.
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The isotopies of the above property can be readily done, via the
methods illustrated earlier, thus reaching the following

THEOREM fL11.2 floc cith fn g rour-dimensionsl! 1soriemaniian
space Ring#) the most genmeral possible Euvler-Lagrange
equaLions

gl = o, (11.47)
verirving e properies

Eij = Eji . E” =0, (11.48a)

. =m ].j
V= e & 5. ) &. , = 08 soxK et 11.48b
Cip 8wl Bk = % (11.48b)
where the lalter properiy denoles absenpce of Sources, are
clraracierized by the varigional prirciple

8A = (g .o , B d¥x =
(gij’gij,k gij,kl) x
= SfAM[A@® + B) - 2Alek = 0, A* = ()} {11.49)
and read
gl = AU - 337 @ + 8y ¢ Ay, (11.50)

where R s the isocurvature rsoscalar (11.20) and 6 is the
sotopic Isoscalar (11.21)

This completes our analysis of the conventional and isotopic
Riemannian geometry without sources.

To study the case with sources, let us first return to the
conventional exterior gravitational problem on a Rimannian manifold.
In this case, the conventional Einstein’s equations for the exterior
problem in vacuum, eg., for an astrophysical body with null total
charge and magnetic monents, assume the familiar form

gl = gl - 31gR= o, (11.51)

expressing the ultimate conception of Einstein’s gravitation as the
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reduction of the exterior gravitational field to pure geometry without
source.

The lack of souces in Einstein’s equations (11.51) is the reason of
considerable problematic aspects which do not appear to have been
resolved at this time. These issues will be considered in Chapter V of
Volume II. It is nevertheless important to recall the following
problematic aspects which have a direct connection with the
mathematical study of this section.

As shown in details by Santilli {1974), even when the total charge
and magnetic moments are null, any gravitational mass possesses in its
exterior problem in vacuum a nonnull source of electromaghetic
nature TH, which is so large, to be able to account in first
approximation for the entire gravitational mass,

My, JavT el {11.52)
This occurrence implies the following modification of Eq.s {11.51) in
vacuum

GY =R - 4gVr = snl | (11.53)

which is necessary from the well known electromagnetic origih of the
masses of all elementary particles, as proved in Santilli (1974) for the
case of the m° particle (which has preciselly a null total
electromagnetic phenomenology).

In a series of articles initiated in 1958 (see the bibliography), Yilmaz
has advocated a different generalization of Eq.s {11.51} into the
following form inclusive of the stress—energy tensor

i i i
Gl =R - 1glr = smdd_ {11.54)

Moreover, in a recent article, Yilmaz (1990a) suggests the possibility
that a modified form of the Freud identity (defined for quantities
without the metric as a factor) implies a modification of Einstein’s
equations (11.51) of the type

- gl - glip = i,

G R (g R = 8w(TY + ¢ stress)' (11.55)
Finally, we recently suggested (Santilli (1991b}) that the equations

for the completed Einstein’s tensor with the most general possible

sources
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s = R - 4glr - gl = emerld + o) (11.56)
can be recast in the form
oV =rl-yglr=gneld ) (157)
where
™ = s gy em (11.58)

elm

is & traceless tensor, to qualify for an electromagnetic source.

We therefore submitted the hypothesis (Santilli (1974) and (1991b)) on
the origin of the gravitational field as being entirely generated by the
electromagnetic field of the individual charged constituents of a
massive body, plus a comparatively smaller contribution from the
short-range, weak and strong interactions in the interior of hadrons ,
ie.,

ij = i ij
M patter = Tlem * U'sr int (11.5%a)

= [ dv T am * Javree (11.59b)

mgrav s.rint’

This lead in a natural way to the hypothesis that the physical
origin of Filmgzs stress—energy rtensor in vacuum Is ove preciselv to
the shorr range, weszk and strong [preractions I the strvcture of
marrer

ij = ¢l
t g .r.int. t stress (11.60)
The assumption of Eq.s (11.57) as exterior gravitational equations in

vacuum apparently resolves at least some of the problematic aspects
of Einstein’s equations (11.51). In fact, Eq.s (11.57):

a) avoid the incompatibility of Eq.s (11.51) with Maxwell's
electrodynamics, with specific reference to-the electromagnetic origin
of matter (Santilli (1974));

b) permit a theory on the origin of the gravitational field in which
the now vexing problem of the ™unification” of the gravitational and
electromagnetic field is replaced with their “identification” in the
sense of Eq.s (11.59) (Santilli (loc. cit. )); and

c) admitting rather intriguing features, such as a reduction to
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easily solvable field equations, an apparently unambiguous
quantization, and others {Yilmaz (1979), (1930), (1982), (1984), (1990)).

Following the recent appearance of Rund's paper {1991}, the role of
the Freud identity in the characterization of possible sources in
vacuum is under re-examination (Yilmaz, private communication} and
no final conclusion can be drawn at this writing.

We are now equipped to study the most general possible interior
gravitation on an isoriemannian manifold with sources, which can be
expressed via the following

THECORFM [f11.5 [GENERAL THEOREM FOR JISOINTERIOR
GRAVITATION, Santilli (199/8)): In a [rour-dimensional
isorfemannian space Rxg8), the most general possible £vier-
Lagrange equations

Eij = 0, (11.61)

verifving the properties: Ij symmelric condition on the Euler-
Lagrange rensor

Y i
gl = ¢ (11.62)
2} contracted isobignchi rdentity
il
E. =0 (11.63)
lj
and 3 isorreud identicy
e .
a(gto”) = o, (11.64)
are characterized by the variatong! principle
sh = 8f L & .&. .7 .t)dk
ij ijLk LKL 1))
= sfgHIN(R +8) + 2a +pft + ]akx
= sf g {ak + 2a +p(f + Didtx=0, (11.65)

where A, A, and p are constants, gand

T = 1 + ab/p, (11.66)
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Is the source tensor. For the case A =p =1 and A = 4, the Fufer~
Lagrange equations are given by

g0 =% - uglr cagle - -l g (11.67)

or, equivalently,

L\ IFL N L (11.68)

where T Y can pe traceless gna, thus, can represent the
electromagnetic field or{gimating 1rolr each charged constitent
or matter, and £ Y is the Siress-enercy ensor.

Throughout the analysis of these sections we have often
considered interior trajectories of “nonlagrangian” type. It is
important to understand that this term is referred to the lack of
analytic representations in terms of a first-order Lagrangian, ie., a
Lagrangian L depending at most on the first order derivatives of the
variables, L = L(s, x, X) . In this case the Euler-Lagrange equations
are of secong-order.

The theory of Lagrangians of order higher than the first (with
Euler-Lagrange equations of order higher than the second), even
though quite intriguing, implies a rather deep revision of the analytic
mechanics, e.g., for the construction of the corresponding
“Hamiltonian” formulation.

A first way to understand the nonlagrangian character of the
geometry considered in the sense indicated above, is by recalling that
the “Lagrangian” equivalent of the Birkhoffian mechanics is preciseity
of the second order {Santilli {(1982a)).

The generally nonlagrangian character of the geometry under
consideration is then made clear by the following

COROLEARY L1151 The Lagrangians of Theorew [11.5 are
rirst-order In the metric tensor, L = L[gfj éij K éi' i{i}’ bur
generally of the second- or hlgher-order in the toordinate
derivatives, L = L5 ¥ 1./

Euler-Lagrange equations of order higher than the second are
avoided in the isoriemannian geometry because all derivative terms
are embedded in the isometric, while Euler-Lagrange equations (11.67)
are computed precisely with respect to such isometric, and not with

19 e footuotei, p. 5
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respect to the local variables and their derivatives, as in the
conventional case.

The analysis of this section is complemented with that of the next
section on the notions of isoparraliel transport and isogeodesics.

We close this section with a few complementary aspects. As well
known, a most important system of local coordinates is that introduced
by Riemann (1868) with the name of wormal coordinates, say,

X = y°i(x), (11.69)

under which the (3+1)-dimensional Riemannian space R{x.g.R) can be
considered locally flat, i.e., in the neighborhood of the point P° = (y9) all
coefficients of the connection szuo are identically null20,

2 IJ‘ © =
r 0 O,(y) =0. (11.70)
Moreover, it has been proved in the literature that a system of
normal coordinates always exists for all affine spaces with a
symmelr/c connection. We can therefore introduce the following

DEFINITION [L11.4 (Saniii (195850), (199/6): The “isonormal
coordinates” of an isoriemannian (3+1j-dimensional space
Rl g %) are the coordinates y° ‘(x) such that, in the
nejghborhood of & poit y°7 all isoconnections coelficients are
Jdentica iy nulf

p2 ¥ y) =0, o, 1,0 = 1,2,8,4 (11.71)
p o

Norma! coordinates have a fundamental physical meaning in
conventional gravitational theories, because they allow the
identification of the foca/ Fuclidean ar Loreniz /rames.

In the transition to an isotopic formulation, we encounter another
difference with the conventional setting with fundamental physical
implications investigated in Chapter V of Yolume IL

LEMMA [111.6 floc sit}) The metric holding i the neighborfiood
of & point or the isonormal coordinates of an Isoriemannian
space Js [soeuclidean or Isominkowskian.

PROOF: Suppose that the transformations x = Y°(x) are such to

20 pccording to our notation, we now return to the use of Greek indeces because we
are dealing, specifically, with the physical space-time.
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eliminate the space-dependence of the transformed isoconnection
coefficients. Then, Eq.s (11.71) hold, but the local metric remains
generally dependent on the derivatives ¥, ¥, and other guantities, thus
being of isoeuclidean or isominkowskian type. Q.E.D.

Stated differently, in the conventional case, the connection
coefficients can only depend on the local coordinates, I“Zr’S = 12l (x).
The recovering of the Euclidean metric § or of the Minkowskian
metric ) under local coordinates then follows.

In the isotopic case, the isoconnection coefficients depend on the
local coordinates x as well as all possible {or otherwise needed)
derivatives and other quantities, Fzrls = r‘zrls{x, %, ¥, W, T, n,.). Their
transformation under isonormal coordinates then eliminates the
coordinate dependence of the metric, but generally leaves the
dependence on the remaining variables, and we shall write

ayi” ay"
_Wv a ., o .. o
= = T pxX.) g kx%,.) TP pek,) —- =
ax® o axP
= g™V (y,¥..) (11.72)

Needless to say, coordinate transformations of an isoriemannian
manifold

xF = wu(x, %, %,.), (11.73)

admitting the Euclidean or Minkowskian metric may indeed exist, but

they are generally nonlinear and nonlocal. In fact, for the case in
which the 3-dimensional Riemannian geometry generalizes the
Euclidean setting with metric 8 = diag. {1, 1, 1}, transformation (11.73) via
rule (11.72) would imply

xl B kX x = wle, Wl ijmn=123  {11.74)
1

with similar results for the case of the Minkowski metric (see Chapter
V). Needless to say, the latter coordinates are considerably more
difficuit to identify than the isonormal! coordinates, although their
existence is not excluded here.

The central point remains that reduction (11.74) /s zof necessarily
implied by the isotopic conditions (11.72). The local isotopic metric
{11.72) then persists as the geometrically natural case.

As now familiar, we have initially considered ‘a conventional
gravitational theory on and arbitrary (finite-dimensional} space
ROcg R} which, as well known, has #u// torsion, and have reached an
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infinite family of isotopies all of which also have a nu// [sotorsion on
B(x&H). In fact, the original symmetric connection I‘zhsk has been

lifted into an infinite family of isoconnections which are also
symmetric

s 2S5 _n28 | = S 25 _p2S _
Thk"rhk rgp=90 = Thk: Mk - Tp =0 {11.75)

However, the null value of torsion occurs at the level of our
geometrical isospaces Rix g ) which are not the pAysica/ space of
the experimenter, the latter remaining the conventional space-time
{see Chapter 1V for details).

The physical issue whether or not the isotopies of Einstein’s
gravitation have a non-null torsion must therefore be inspected in the
physical space and not in our geometrical isospace.

This can be easily done, e.g., by projecting the isocovariant
derivative of an isovector on R{xg#®) as a conventional covariant
derivative in the ordinary space Rx.g®), ie.,

i o 2i o
X =“"““"1"<+f‘hkT

Xr
[k ax g

=x! = — & 21 xr (11.76a)

i .
P20 = Pl T (11.76b)

it is then evident that, starting with a symmetric isoconnection
I"“hlk on Rixg#), the corresponding connection f‘r‘k on Rxg#®) is no
longer necessarily symmetric, and we have proved the following

LEMMA 11115 (Santitli floc. cit) The isotoplc litings IZgy =
120, or a symmetric connection /%‘k on & Riemanman Space
Rixg 8/ Into an nrinite 12miliy of ISOLOpIc connections Ve ﬁ’ & o
isoriemannian spaces R85 or the same dimension, lmply that
the Isospace always possesses & null isororsion, but, wihen e
isotopies are projected into the original space, & non-null
torsion generalfy occurs.

At this point the advances in torsion made by Gssperini {1984a, b, ),

Rapoport-Campodonico {((1991) and others become applicable to our
fnterior gravitation. We regret the inability to review these studies
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and reformulate them in terms of our null isotorsion.

Let us recali that any nonlinear and nonlocal theory can always be
identically written in an isolinear and isolocal form (Sect. 1.4} By
reversing the proof of Lemma I1.11.5, it is then easy to prove the
following

COROLLARY [L11.51 (Santilli {loc. cit}l Under sufficient
comiinuity and regularity conditions, any theory on 2
conventional affine space R&,% with non-null torsion, can
afways be written in an ifdentical rorm on a suitable rfsoafiine
space KA  of the same diwension with an identically null
Isororsion.

Let us recall that the reasons which render Einstein’s exterior
gravitation so effective for the characterization of the szgbiity of
the planetary orbits and other exterior features are exactly due to
the nuli value of its torsion. The Same reasons are then at the origin
for the /mab/lity of the theory to represent the Jmsezb/lity of the
interior orbits.

In turn, these results necessarily lead to Zhe reed ror rwo
dirrerent, but compstible gravitational theories: ohe ror the exterior
gravitational problem with noll torsion, sid ope ror the interior
gravitational problem with null isotorsion but nop-null torsion.

11.12: ISOPARALLELISMS AND ISOGEODESICS.

In the contemporary treatment of the Riemannian geometry, the
notions of para/lel/sm and geodesic play a fundamenmtal role for
the geometric characterization of the trajectories of the applicable
relativity which, as well as known, are geodesic whether in a curved
or a flat space.

in this monograph we have studied the isoriemannian geometry
which characterizes more general notions of parallelism and geodesic,
apparently introduced for the first time in Santilli (1988d) under the
names of Jsoparallefism and Jsggeodessic, and then studied in more
details in Santilli (1991b). Independent reviews can be found in
Aringazin ef g/ {1991) and Kadeisvili (1992).

Predictably, the latter notions play a fundamental role in the
isotopies of conventional relativities studied in the next volume,
because they show that the admitted trajectories in the interior
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dynamical problem are still geodesics, although referred to a more
general space, whether flat or curved.

In fact, the generalized notions were originally derived precisely
via axiom-preserving isotopies of the conventional notions. In
particular, one should expect that our generalized notions coincide
with the conventional notions at the abstract, realization-free level, as
it has been the case for 2/ our isotopies.

On physical grounds, the devigtions of the generalized from the
conventional notions are expected to represent the transition from
motion in vacuum {exterior problem), to motion within physical media
{interior problem).

Let R{x.g R} be a conventional n-dimensional Riemannian space.
Under sufficient smoothness and regularity conditions hereon
assumed, a vector field X! on R(xg#®) is said to be parallel along a
curve C if it satisfies the differential equation along C (see Lovelock
and Rund (1975))

: . ax! i
Dx! = Xl‘sdxs=(——; + T2 o XF)axS = o, (12.1)
ax

where Fzris is a symmetric connection. Then, by recalling the notions
of isodifferentials of Sect. 11.11, we have the following

DEFINITION T 12 1 Santilii (1955d) 0998} An isovector fleld X ! on
an n-dimensional isoriemannian Space Rag.$) is sald to be
Isoparallel” along & curve C o KEEM, HY It verifies the
isortapic equations along C

1 : r
DX = x‘[ T X, %,.) axs =
r
ax! ior t. s
= [— + 2! T %, )XIT &%.)]8xP =0, (12.2)
aXS s t p

Y . .
where 7 ‘j s 5 the spmmelric Isoconiection 1714 and the T5
are rhe Isotopic efements,

The identity of axioms (12.1) and (12.2] at the abstract level is
evident, again, because of the loss of all distinction between the right,
modular, associative progduct, say Xx, and its isotopic generalization
Xy = XTX.

To understand the physical differences between the above two
definitions, let us introduce an independent {invariant) parameter s,
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such that the isovector field % = dx/ds is tangent to C, and let X! =
X!(s). Consider the curve C at a point P{f) for s = s{ and let xl(1) be the
corresponding value of the isovector field x‘ at P(1).

Consider now the transition from P{1) to P(2), i.e., from 5q to 51 + ds,
The corresponding transported value of the isovector field xX42) =
xi(1) + ax¥ is said to occur under an Isoparallel dispiacement on
R{x.2.#) in accordance with Definition I1.12.1, iff

axl .
axl = — T ax =- f‘zrls Trp xP TSq ax4. (12.3)
ax

The iteration of the process up to a finite displacement is
equivalent to the solution of the differential equation

Wi i s

dX a¥ ax 2 l r p 5 axq
=TT =-TpsTpX Ty (12.4)
as '  °as ds

By integrating the above expression in the finite interval (51, 52), we
reach the following

LEMMA [L121 (Santili foc. cit )} The isoparallel transport of an
Isovector field X5/ on an n-dimensional isoriemannian manirold
Rg 9 rrom the point s 'y 80 & polnt S, o & curve C verifies the
Isotopic laws

)“(i(z)=)‘( _r I (xx)T (xx}X(x)T (xx)qus
r's {12.5)
where
ax ax4
-3l j‘ ax! = 2—— P — s, (12.6)

q&s

The physical implications are pointed out by the ract that the
isotransported isgvector does not start at the value X'(1), but at the
modjfted value X'(1) characterized by Eq.s (12.6). Additional evident
modifications are characterized by the isotopic connection [2plg and
the two isotopic elements T of the r.h.s. of Eq.s (12.5),

These departures from the conventional definition can be better
understdood in a #zs isospace via the following evident
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COROLLARY H.121.1 [Joc cit}) fn & rlat Isospace, such as the
isominkowski space Ma,pdy i (3.1)-space-time dimeunsions, or
the Isoeuciidean space LS #) in 3-dimensional the con-
ventional notion of paralielism no longer holds, in Javor of the
roliowing riat isoparallielism

21 -
rels =0, (12.7a)

2ax! axd
f[Zw 2

as. (12.7b)
1 axP 9 §s

TR 2 .
K1) - %) = _[ axl =
1

Consider, as an illustration, a straight line C in conventional
Euclidean space S%th(r,S,:-H), with only two space-components. Then a
vector R(i} at s = ty is transported in a parallel way to R ats~ t, by
keeping unchanged the characteristic angles with the reference axis,
ie.,

2 arK(@) aRk(r}
RK(2) - RK(H) = J ¢ ax!t +

ax2). {12.8)
1 axt ax2

Under isotopy, the situation is no longer that trivial. In fact, assume the
simple diagonal isotopy {Chapters Il and IV)

T = diag. (b %), by2) > . (12.9)

Then Eq.s (B.8) are lifted into the form

{12.10)

In figurative terms, a given straight and rigid arrow in 3-space is,
first, twisted under isotopy, and then transported in an isoparallel way,
that is, in such a way that the isotopic {rather than the conventional)
characteristic angles with the reference axis are preserved (see also
the example of isorotation of Chapter [11). For additional comments, see
later on in thhis section Fig. IL12.1.

The Jrreducibility of the notion of isoparallel transport to the
conventional notion can be illustrated even in the case of null
curvature. In fact, consider for simplicity the isominkowski-space
M{x.0.#) with local coordinates X = M, 1 = 1,2, 3, 4, and constant
diagonal isotopy # = Ty, T = diag. (b12, b22, b32, b 42) > 0, and
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introduce the redefinitions
i = Icn“2 ¥  (no sum), XPxE) = %), (12.11)

Then Eq.s (12.7b) become

2% tx) S
j‘ b, 2" j‘ @“am b2 3%, (12.12)
1

b_2dx
1 ax® a %

namely, the isotopy persists even under the simplest possible constant
isotopy (12.11), thus confirming the achievement of a novel geometrical
notion.

By submitting the conventional treatment (Sect. 3.7 of Lovelock and
Rund (/oc. ¢/t ) to isotopies, we now identify the /mieerability
condiions ror the existence or /soparallelisin. By performing partial
derivatives of Eq.5 {12.7) with respect to x!' and then interchanging
symbols, we obtain

1 2 i
L & T oxPertor 14T X" .
xS axt axt p rs*g'mt’ n

I“ . .
aT ax! ar2 1
) ) rtor P,

S
axt ax axS P

xP (12.13)

from which we obtain the following

LEMMA [7122 floc. cit} Necessary and surticient conditions ror

the existence of an isoparallel transport of an Isovector X' on
an n-dimensional Isorfemannian space RNE8 are that all the
following equaltions are rfdentically veriried

i
Rk Ts X3 =0, (12.14)
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where ﬁ;"!pq Is the Isocurvature rensor {Sect. /11 e,

. arg! arz]
sl o M ik,
I hk axck acll
2! om opar  _ 20 B pef
+ P2, T PRT, AR L
r r
. aT aT
i N i s .5
sp2! — 2% - p2l ). (12.15)
axk rk g

The re-emergence of the isocurvature tensor as part of the
integrability conditions of isoparallel transport, can then be
considered as a confirmation of the achievement and consistency of
isoparallelism as a novel geometrical notion.

We now pass to the study of the /sggeodes/cs Let s be an
invariant parameter and consider the tangent X' = dx!/8s of the curve
C on an n-dimensional isoriemannian space R{xg#). Its absolute
isodifferential is given by

r

s i oag 2 1
Dt = 4% + f‘rsTp

;‘cp quaxq. (12.16)

in accordance with Definition iI.12.1, lf))(i remains isoparallel along
C iff

bl = 0. (12.17)
We can therefore introduce the following

DEFINITION [ 12.2 (Santilli foc. cit ) The “Tsogeodesics™ of an
n-dimensions! isoriemaniisn manirold Rxg8 are the salutions
of the difrerential equations

a2yl (i -y } axP s axd
— + vk, ®YTE i i) — T % %) — =0
ds? rs P ds 4 ds
{(12.18)

By recalling that ds = ds, it is easy to see that the /sggeodesics or
flat Isospaces remaln the strajght fine e, linear runctions of s while
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lhose of curved Isospaces remall curves
It is a simple but instructive exercise to prove the following

LEMMA 1123 (loc cit) The isopeodesics of an n-dimensionsgl

Isorfemannran manirold Rixgs) are the curves veriring the
varigtronal principfe

sf ds = sf@ij(x, %, %) axl 3t = 0. (12.19)

THE ISOTOPIC GEOMETRIZATION
OF MOTION WITHIN PHYSICAL MEDIA

EXTERIOR GEODESIC MOTION AND
PARALLEL TRANSPORT IN VACUUM

INTERIOR ISOGECDESIC MOTION AND ISOPA-
RALLEL TRANSPORT WITHIN PHYSICAL MEDIA

FIGURE I1L121: A schematic view of the preservation of parallel
transport and geodesic motion of the trajectories in the transition from
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the exterior to the interior problem submitted in Santilli (1988d) and
{1991b). By assuming both problems to be flat and without potential
forces for simplicity, in the upper portion of the figure we depict a
rocket whose exterior geodesic in vacuum is a straight line, and
whose parallel transport is such to preserve the angle with the
direction of motion, as well known. In the lower portion of the figure,
we see the same rocket, but now moving within a generally
inhomogeneous and anisotropic, physical medium. The first difference
with the exterior case is that, in general, the trajectory of the center
of mass is no longer a straight line even in the absence of curvature,
as shown by clear physical evidence (say, a rocket felling in our
atmosphere “sideway”). The second difference is that the angle
between the orientation of the rocket is not preserved, but varies
locally, depending on the physical conditions at hand {shape of rocket,
its density, the density of the atmosphere, etc.). Despite these
differences, the motion of the rocket keeps verifying the axioms of
geodesic motion and parallel transport, although in a more general
realization called Jsogeodesic (Def. 11.12.2) and Jisoparelfe/ (Def.
IL12.1). In different terms, the isotopic theories allow to prove that the
exterior and interior motions of this figure are geometrically
equivalent under the sole condition that the action—at-a-distance,
potential forces are the same for both cases. In fact, the generally
curved character of the geodesic is clearly shown by the solution of
the variational principle (12.18), while the lack of preservation of the
angle with the local direction of motion is clearly shown by the
solutions of Eq.s {12.10). The equivalence follows from the fact that,
owing to their isotopic character, the structures in isospace coincide
with the conventional, corresponding structuresin empty space at the
abstract, realization—-free level. The notions outlined in this figure are
fundamental for the understanding of the isotopic relativities per se, as
presented in Yol. I1, as well as of their geometric equivalence with the
conventional relativities. In fact, the upper portion of the figure
represents a system characterized by the Galilei or Lorentz boosts,
while, the lower portion represents motion characterized by the
isogalilean or isolorentz boosts (see Chap.s III and IV, respectively).
The important geometric result that permits these advances is that no
alteration of structural axioms has occurred in the transition from the
exterior to the interior relativity, thus permitting an ultimate
geometric unity between conventional and isotopic relativities.

By recally that the isominkowski spaces are locally isomorphic to

the conventional ones, Rx.g.#) ~ R{xg#), the abstract identity of the
above isotopic variational principle with the conventional one
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confirms the achievement and consistency of isogeodesic as a novel
geometrical notion.

The notions of isoparallel transport and isogeodesic have a
fundamental role in our geometrization of physical media. In fact they
are the geometrical counterpart of our preservation of the exact
Galilei and Poincaré symmetries under Lie-isotopies.

An important application of the isogeodesics and isoparallelism can
be found in the isosymmetries. Consider the rotational symmetry O(3),
that is, the symmetry of an ideal (rigid) sphere represented by the
trivial metric § = diag. {1, 1, 1).. It is well known that the trajectories
under the modular action of O(3) on the sphere, the circles, are
geodesic.

Consider now the isorotational symmetry G{3) characterized by the
isometric 8§ = T§ = diag. (blz, b22, b32), which leaves invariant all
possible ellispoidical deformations of the sphere (See Chap. IIl for
details). But T > 0. [t is then possible to prove that all possible
isosymmetries O(3) of the class considered are locally isomorphic to
the conventional symmetry O(3).

The understanding of the theories presented in these volumes
requires the understanding that the preservation of the rotational
symmetry for the ellipsoidical deformations of the sphere is
geometrically made possible by the preservation of the geodesic
character. In fact, the interested reader can readily see that the
trajectories under the modular-isotopic action of O(3) on the ellipsoids,
the ellipses, are isogeodesic.

A similar situation occurs for the full Galilei's and Poincaré’'s
symmetries. In fact, equations of motion which appear to violate these
symmetries because of the presence of contact interactions, can be
proved instead to verify them exactly at the higher isotopic level.

The restoration of the exact space-time symmetries at the isotopic
level when believed to be broken at the conventional level is
geometrically permitted precisely by the results of this section, the
preservation of the geodesic character of the group action under
isotopy.

We hope the above comments are sufficient to illustrate the
importance of the central line of these volumes, the isotopic
geometrization of interior physical media.

This completes the presentation of the essential methodological
aspects of the Lie-isotopic formulations which are needed to study the
isotopies of Galilei's and Einstein's special, and Einstein’s general
relativities for the closed-isolated treatment of interior dynamical
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problems.. A few lines for the more general Lie-admissible
formulations for the open-nonconservative treatment of interior

systems are given in the appendices.
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APPENDICES

APPENDIX ILA: LIE-ADMISSIBLE STRUCTURE OF
HAMILTON'S EQUATIONS WITH EXTERNAL TERMS

No in depth knowledge of the topic of these monographs can be
achieved without a study of the analytic, algebraic and geometrical
structures underlying the equations originally conceived by Hamilton
(1834) for interior dynamical systems, those with external terms

8Ht, r, p)
fgg = —— = Pga/My. {A.1a)
8Pka
) oH(t, . p)
Pka =-—— * Fxa, (A.1b)
6rka
H = pka pka / 2ma + V(r)s . (A.IC)
Feg = P4 (e p, o)+ _['cI dogA e pp.),  (A10)

k=123Fxy,7,a=12.,N

As one can see, the “direct universality” of the equations for the
representation of all possible systems (11.1.1) in the coordinates of the
experimenter is direct and immediate, because the Hamiltonian H
represents all local and potential forces, while the external terms Fy,

represents all remaining nonlinear, nonlocal and nonhamiltonian
forces.
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However, in so doing, the Hamiltonian H is necessarily
nonconserved (Sect. 1.1.4) and, for this reason, the equations
characterize open nonconservative systems.

As we shall see momentarily, an algebraically similar situation
occurs for the most general possible nonautonomous Birkhoff's

equation (11.7.11) in T*E{r.8®) with local coordinates a = (a} = (r, p) =
(I'k, Pk)=

3B, a) aR,t, a)
al = glVital | + -1 wv=1,2..,N, (A.2a)
aaV at
V = =iy
v = (] o MW, (A.2b)
3R, (t, a) R, {ta)
2, = — - —& , (A.2¢)
aal aaV

The algebraic structure of Eq.s {A.1} was identified, apparently for
the first time in Santilli {(1967), (1968), (1368)). The studies were then
continued in Santilli (1978a). A comprehensive presentation can be
found in Santilli {19814), including the identification of an underlying
geometric structure and the extension of the results to Eqs (A.2).

In this appendix we shall outline the algebraic properties of Eqs
(A.1) and (A.2). We shall also point out in more details the reasons why
the restriction of the studies of interior trajectories solely to Lie—
isotopic treatements is insufficient, and the need for the
complementary Lie-admissible formulation is necessary. Additional
properties will be outlined in the subsequent appendices.

To begin, the conventional Poisson brackets {AB] of Hamilton's
equations without external terms are generalized for Eq.s (A.1) in a
form, say AxB, explicitly given by

oA

AxB =[AB] + Fra: (A.3)
appa

PROPOSITION A L : Brackers (4.3 or Hamiltons eguations with

external terms vielate rthe condjitions ro characterize any

algebra.

PROOF. Brackets (A.3} violate the right scalar and right distributive
laws (IL.5.1), i.e,
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ox(BxC) = Ax(oxB) = {oxA)XB, {A.4a)

(AxBxa # Ax(Pxa) # (AxalxB, (A.4b)

and
(A +BlxC = AXC + BxC, {A.5a)
AX(B + C) # AxB + AxC, (A.5Db)

As a result, brackets (A.3) do not characterize an algebra as commonly
intended in contemporary mathematics {Jacobson (1962). QED

In different terms, /v (he transition rrowm the contemporary
Hzmiltons equations ro lheir orjginal rorly with external reris, we
have the foss, not orly of the Lie algebras, but more preciselv of alf
aleebras.

Exactly the same situation occurs for the guantum mechanical
treatment of nonconservative forces via nonhermitean Hamiltonians

Hg # HdT {Santilli (1978b})). In fact, under these conditions, the

conventional Heisenberg's brackets among operators A, B, ... on a
Hilbert space I, [AB] = AB - BA, over a complex field C are generalized
into a form, say AXB, which is evidently defined by the new equations
of motion

iA = AXHq = AHg' -HgA, h=1, (A.6)

Again, rhe nonconservative Hersenbergs brackers A+H not onfy
fose the Lie algebra character of colvenional quaniulti mechanics,
but do nor characrerize any consistent aigebra, because they violate
the right scalar and Heght distribulive faws, as the reader can verify.

This is not a mere mathematical occurrence, because it carries
rather deep physical implications. For instance, the notion of gagw/ar
momentuz can be consistently defined in conventional (classical and
guantum) Hamiltonian mechanics, and treated via its underlying Lie
symmetry O(3).

In the transition to Hamilton’s equations with external terms (A. 1)
and their operator counterpart {A.6), we have lost #/ Lie algebras, let
alone that of the rotational symmetry. This has the direct consequence
that, even though the use of angular momenta is often kept for Eq.s
{A.6) according to a rather widespread use in papers and books
{particularly those in nuclear physics), the reality is that the notion
has lost all necessary background for its definition, let alone its
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quantitative treatment.

In fact, it would be fundamentally inconsistent to use one product
AXH for the time evolution, and a dif7erent product, say, [AH] for the
characterization of physical quantities such as the angular momentum.

This is due to the well known, ancient rule of dynamics whereby
the product of the glgebra characterizing & Liven theory, whether
classically or operationally, must coinclide with thar of the time
evolution /aw.

To put it explicitly, a statement to the effect that, say, a particle
described by Eq.s {6) has spin one, is mathematically inconsistent,
because of the loss of any algebra, and physically undefined, because
the spin of particles in open nonconservative conditions is ultimately
unknown to this wrtiting.

Numerous other inconsistencies of Eq.s (A.6) will be pointed out
when studying, specifically, the operator formulation of the theory.

Exactly the same situation occurs for the nonautonomous
Birkhoff's equations (A.2). In fact, Birkhoff’s brackets [A", B] for the
autonomous case (Sect. I1.8),

A 9B
[AB] = — QiV(@) —, (A.7)
aak daV

have to be generalized for Eq.5 (A.2) in the form
A 3R,

AoB = [A [ B} + i
gal L (A.8)

which again violate the right scalar and distributive laws.

Equivalently, one can say that for, the case of time-dependent R-
functions, Birkhoff’s equations can be expressed with the (2N+ 1)x(2N+1)
contact tensor (Sect. 11.9) which, being odd-dimensional, do not admit a
consistent contravariant {Lie} counterpart.

The reader should therefore be aware that f#e isolopies of
conventional refativities to be studied In tfie mext chapiers are
inapplicable to the nonautonomous BIrkfioff’s equations, because of
the loss or @ consistent algebraic structure, let alone the foss or thelr
Lie-Isotopic character.

The above occurrences evidently creates the problem of
identifying the relativities which are directly applicable to open,
nonconservative, nonautonomous, interior systems, such as osciilator
with a time-dependent applied force, etc.

In turn, the above relativities cannot be identified without first
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reformulating Eq.5 (A.1) and (A2} in an analytically Jdentica/ way (to
avoid the alteration of the equations of motion) which is however
admitting of a consistent algebraic structure.

This problem signals the birth of the Lie-admissible algebras in
physics. In fact, on one side, the consistent brackets for Eq.s (A.1), say,
(A,B), cannot be antisymmetric, to permit the representation of the
time-rate~of-variation of the energy

6H

H = (HH) = Fra = VkaFka * 0 (A.9)

9Pka

while, on the other side, Lie algebras cannot be evidently abandoned,
because they must be admitted as a particular case for null
nonseifadjoint forces, i.e.

A.B) = [AB]. {A.10)
(,B|Fm=0 [AB]

This problem was originally studied in Santilli ({1967),(1968), (1969)) and
then reinspected in Santilli (1978a), where it was pointed out that
conditions (A.9) and (A.10) identify the so-called gerera/ Lie-
Famissible algebras.

Recall from Sect. 11.5, an algebra U with {abstract) elements
a,bc,..and {generally nonassociative, abstract) product ab over a field
F is called a Lie-admissib/e ajgebra (Albert (1948)), when the attached

algebra U , which is the same vector space as U, but equipped with
the product

g, [a,b}U = ab - ba, (A.11)

is Lie.

The most general possible algebras of the type considered are
called gewneral Lie-admissible sigebras U (Santilli (1978a)) when they
verify no condition other than the Lie-admissibility law {A.12)

(@, b,c)+b,cal+lc,ab) = (c,ba}+b,ac+{achb) (AL
The first classical realization of the Lie-admissible algebras in

physics was introduced in Santilli (1978a, ¢) and then worked out in
more details in Santilli (1981a) Let A, B. ..be (nonsingular, sufficiently
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smooth) functions in R=TE(r.8,R). Then the brackets

dA ab
{AB) = — SHV(ta) —, (A.13)
aal Y14

over the reals & characterize a Lie-admissible algebra U when the
attached antisymmetric brackets

U [AB]U = (AB) - {B.A) (A.14)
are Lie, or, equivalently, when the attached antisymmetric tensor

g - g = guv (A.15)

is Birkhoffian.
Now, brackets (A.3) can be written in an algebraically consistent
way by introducing the tensor in ®T*E(rs.R)

HVaa = Y o+ Hia), (A.16)

where wMV is the (totally antisymmetric) canonical Lie tensor (1L.7.16),
ang sKV is the totally symmetric tensor

s = (sWV) = diag. (0,5), s=F/(@H/ap) (A.17)

The brackets (AB), when written in form (A.13) with the S-tensor
given by spwmetric form (A.16), first of all, verify both right and left
scalar and distributive laws, and, secondly, they characterize a Lie-
admissible algebra because the attached brackets are Lie

(AB) - B.A) = 2{aB], stV - sVt =2V {A.18)

The historical “true” equations by Hamilton, when rewritten in term
of tensor (A.16}

BH(t, a)

al = siw—;u-m = (a¥, H), {A.19)
da
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were called Hamifron-admissible equations (Santilli (1978a))., and are
more expliocitly given by

Pra = @H/8pka. (A.202)

= =gH/dr), + skajb BH/B]JJ.b =-0H/8Ry, +F {A.20b)

P ka ka’
In particular, the brackets (AB) preserve the correct time-rate-
of-variation of the Hamiltonian

H = (HH) = vgaFka, (A.21)

by construction.

The regaining of a consistent mathematical structure carries
rather intriguing mathematical and physical implications.

As an example, £g.5 (4 1/ do not adwit 2 consistent exponentiation
inio & rnite grodp On the contrary, when written in their equivalent
Lie-admissible form (A.19), they can be easily exponentiated into the
form

tosHVa H) (8
v 6 }a, (A.22)
I

In particular, e above structure leaves favariant the equalions
of motron. In fact, from a general property of vector-fields on
manifolds, we have

ra) =

tosu"(avﬁ) (au)
{ eIA }r(ta) = rital, (A.23)

For this reason, structures of type (A.22) constitute an intriguing
generalization of the notion of Lie-isotopic symmetry (Sect. I1.9) known
as a Llie-zdmissible symmetry (Santilli (/o oft)).

The physical differences with the conventional approach are,
however, rather deep. In fact, Zhe comventional Lie and Lie-isotopic
spmmetries represent the conservation of the energy and other
guantities. In the more general case under consideration here, we
can say that e broader Lie-adwmissible symmetry characterized oy
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he Hamiltonian a5 generalor represent the time-rate-or-variation of
Lhe energd

tOsHV (BVH] {8}

H = Hita) - {eIA }H(ta) = v, Fra  (A24)

Moreov
er, exponentiation (A.19) admits the following explicit form
tOsHV {3 H) (8
o CR TR
la
A+ OAHA + CHARHE/2 ... (A.25)

namely, spmmetr/es (.19 admit non-Lie, Lie-admissitle algebras
the nelghborhood of the identty. This signals the possibility of
generalizing the entire Lie’s and Lie-isotopic theories in a yet more
general Lie-admissible theory (Sanbtilli (1978a), (1981a)).

The covering character of the Lie-admissible formulations over
the Lie-isotopic and Lie formulations is then evident.

By recalling that the symmetry characterized by the Hamiltonian
as generator is the time component of the Galilei and of the Galilei-
isotopic relativities, symmetry (A.23) can then be considered as the
time component of conceivable, still more general relativities,
tentatively called Lje-admissible relativities (foc. cit) for open
nonconservative systems, in which the form-invariance characterizes,
this time, the time-rate-of-variation of the Galilean quantities. The
understanding is that the studies on Lie-admissibility are considerably
less advanced than the corresponding Lie-isotopic theories, and so
much remains to be done.

The identification of the algebraic structure of the nonautonomous
Birkhoff's equations {(A.2) is now easy (/oc </ ). Introduce the
generalized tensor

§W(ta) = QW) + THV{ta), (A.26)

where QW is the (totaily antisymmetric) Birkhoff’s tensor (A.2b}, and

™ is given by the totally symmetric form
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T =(ThY) = diag.00), o =@R)/ BB} (A.27)

Then, the generalized brackets

) oA oB
(A", B} = ——~ SWV(ta) . (A.28)
aal aaV

are algebraically consistent and Lie-admissible, as one can see. This
results in the generalized eguations

6B(t, a) BB(Y., a)
= 8 a) = (V) + T )] . (A29)
aaV aaV

called Brirkhorr-admissible equations (Santilli (1978a), (1982a)) and
which eviodently constitute a covering of both Birkhoff’s and
Birkhoff-isotopic equations.

In particular, the transition from brackets (A.13) to (A.28) (AB) =
(A", B}, is an example of Lie-admissitie isotopies (Sect. 11.5).

For further studies, we refer the interested reader to Santilli
(1981a), where one can see the elements for a further generalization of
Birkhoffian mechanics into a covering discipline, tentatively called
Brrihorian-adwissrble meckhanics

The operator counterpart of Hamilton-admissible equations {A.16)
was achieved in Santilli (1978b). Here we shall briefly outline it, because
the operator Lie-admissible equations possesses considerable
guidance wvalue in the study of the broader Lie-admissible
formulations.

The most salient physical difference in the transition from closed-
isolated-stable systems to open-nonconservative-unstable systems is
the appearance of Jrreversiprry, ie., the lack of invariance of
physical processes under time reversal. AS an example, the trajectory
of Jupiter in the Solar system is manifestly reversible, while the
trajectory of a satellite penetrating Jupiter’s atmosphere is manifestly
irreversible. Corresponding similar situations occur at the particle
level.

Consider then the rorward direction i e, and denote it with the
symbol ” > . Let £ be the conventional enveloping operator algebra of
quantum mechanics with operators A, B, .. and trivial associative
product AB on a Hilbert space J over the field of complex numbers C.

Introduce the isotope £ of £ (Sect. I1.5) describing the motion
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forward in time
def
£>: A>B = AT B, (A.30)

which is characterized by a nowhere pull and sufficiently smooth, but
nonfermitesn operator T, with Jssounit for motion rorward in time

¥ = ()L (A.31a)
P>A = ASIT = A, VA e, (A.31b)

Introduce now the isotope <t for motion backward in time, denoted
with the symbol ” <”,

def
<g A<B = A™TB, (A.32)

characterized by a different igotopic element <oz T>, with Jssounit
tor motron backward 17 tine

<) = (Spd, {A.332)
<i<A = A<ST, {A.33b)

Finally, assume that the forward description via envelope §> is the
time reversal of the backward one <, ie,

> o= <. (A.34)

LEMMA [LA.1: The aviomatic Structure of Jrreversibiity rrok
the algebralc viewpont cah be expressed Via IS0assoclalive
glgebras with two ditferent Isounits F~ = (<) 1 = < and related
Isorields, one for the motion rorward in tme I~ and the other
Jor the motion backward In tme “7.

It is an instructive exercise for the reader interested in learning
the techniques of these volumes to prove that structures (A.30)-{A.34)
are indeed invariant under isotopy and, thus possess an axiomatic
character.

Lemma 11.A.1 is of particular guidance value in studying abstract
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problems, ie., the identification of the generalization of the Riemannian
geometry needed for the Lie-admissible formyulations (Appendix 1L.C),

Under envelocpes §> and <§, the time evolution is given in
infinitesimal form by

iA = (AB) = A<H - H>A = ASTH - HT”A, &=1, (A.35
with finite version

iH>t
117, {A.38)

-it<H
Al = <1 {e]!g— } < AlD) > {ePf
which were proposed, apparently for the first time, in Santilli (1978b), p.
746.
It is easy to see that Eq.5 {A.35) are Lie-admissible. In fact, their
attached antisymmetric brackets are precisely the brackets of the
Lie-isotopic time evolution in operator form (Sect. 11.6)

iA = [AB] = ATB - BTA, (A.37a)

T = <T + 77, (A.37b)

This shows again, this time at the operator level, the complementarity
of the Lie-isotopic and Lie-admissible formulations.

In particular, structure (A.36) is an operator realization of the Lie-
admissible groups (A.22).

It should be stressed that, &y no means £g.5 (4.35) alter the
phvsical content of conventional nonconservative systeins (4.6, fn
ract, £q.5 (A.33) merely provide the rdentical reformulstion of the
Spstems but, Lhls tme, I an a/gebraically consistent form.

In fact, the nonhermitean Hamiltonians Hy of current use in physics

are generally the sum of a Hermitean term H and a dissipative
nonhermitean term

Hij = H + H . A.38
d diss. ( )

The desired, algebraically consistent, but physically identical
reformulation of systems (A.6) is then given by (Santiili {foc. oiz))

Hg = “TH, Hy = HT, (4.39a)
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iA = AHg' - HgA = A<H - H>A. (A.39b)

where the AHermitean operator H evidently represents the
noncopserved energy.

Eq.s (A.35) were proved tc be ~“directly universal” for the
representation of the most general known local and noniocal,
Hamiltonian and nonhamiltonian and continuous or discrete operator
systems (Jannussis ez 2/ (1984), (1985), {1986), {1987), Santilli (1989)).

The similarities of the above operator formulation with the
corresponding, classical, Rirkhoff's and Birkhoff-admissible
formulations, are remarkable, thus illustrating the applicability of the
complementary Lie-isotopic and Lie-admissible formulations at both
the classical and operator level

We can therefore close this appendix with the view expressed in
the Preface that, by no means, the isotopic relativities prersented in
the subsequent chapters can be considered as the final relativities,
because physics is a discipline that will never admit final theories.

APPENDIX 1i.B: SYMPLECTIC-ADMISSIBLE GEO-
METRY

As stressed thoughout this analysis, physical theories in general, and
relativities in particular, are a simbiotic expression of analytic,
algebraic and geometric formulations.

The analytic and algebraic structures of the Birkhoff-admissible
equations (A. 29) have been indicated in the preceding appendix. It may
therefore be of some value for the interested reader to outline their
geometric structure identified, apparently for the first time, in Santilli
(1978a) and then developed in Santilli (1981a} under the name of
spmplectic-admissible geomelry or genosymplectic’! geometry for
short.

Recall that the direct geometric structure underiying Birkhoff's
brackets {Sect. I1.7) in T*E(r,5,8) with the now usual unified notation a

=@ = ph=12..,2n

dA aB
A, Bl = — oMa) —, (B.1)

21 The meaning of the prefix “geno’ has been pointed out in footnotel®, p. 136.
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aat aaV

is the symplectic geometry also on T*E(r38®) characterized by the
exact, symplectic, Birkhoffian two-forms

Q = 4 Q) dah A da, (B.2)

where the algebraic-contravariant and geometric-covariant tensors
are interconnected by the familiar rule

oV = {]szaal—i)”v. (B.3)

In the transition to the Birkhoff-isotopic brackets on isospaces
T*E,r.8.8) with isounit 1, {Sct. 11.8),

LA, B
[A B] = o Q (a]]2a (a) —;l;, (B.4)

we have the transition to the symplectic-isotopic geometry (Sect. 11.9)
characterized by the isoexact, isosymplectic two-isoform

Q= é'lua(a) Qpla) dat A da¥ | (B.5)

where, again, the algebraic and geometric tensors are interconnected
by the rule

@Y = (pef 257 (B.6)

The problem of the geometry underlying the Birkhoff-adnmissible
brackets (B.28), i.e.,

) A B

(A,B) = — Vg —- | (B.7a)
galt aaY

Sy = gV RV {B.7b)

otV = - VK, (B.7¢)

™Y = Vi (B.79)
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was the central geometrical problem studied in Santilli {1981a), and
resolved via the introduction of a geometry more general than the
symplectic and the symplectic-isotopic ones, called spmpleciic-
gdmissible geomelryv, Or genosympleclic gecmelry .

We cannot possibly review these studies in detail here.
nevertheless an outline of the central ideas may be of some value for
the interested reader.

The first point to realize is that zpe spmplectic geomelry and
refated exterior calculus, whether in their conventional or Isotopic
rormulations, gre intrinsically unable to characterize the Lie-
admissible aigebras.

This is due to the fact that the calculus of exterior forms is
essentially amusypmmerric in the indices, while the Lie—admissible

tensors $MY are not, and the same occurs for the covariant
counterpart

§..(ta = (|‘saﬁ|“1)w # 8§ (B.8)

;xv(
In fact, the construction of a conventional exterior two-form with
the above tensor implies the reduction

8,y da nda¥ = 30, da A da, (8.9)
namely, the symplectic geometry automatically eliminates the
symmetric component of the S-tensor, thus characterizing only its Lie
content.

The main idea of the genosymplectic geometry is that of
generalizing the conventional exterion calculus, say, of two
differentials

daP A da¥ = - da¥ A dal, B.10)

into a more general calculus of differentials da¥ and daY, called
exterior-admissible calculus , or genoexterfor calcul/us which is
based on a product, say @ which is neither totally symmetric nor
totally antisymmetric, but such that its antisymmetric component is the
conventional exterior one,

dat o da¥ = dal Ada¥ + da¥x da’, (B.11a)
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dal A da¥ = - da¥ A gal, (B.11b)
dal x daV = @daVx da¥, (B.11c)

This allows the introduction of the erterior-sdmissible forms ., or
genoexiterior forws , via the sequence

So = ¢fa), (B.12a)
8¢ = §, dak, (B.12b)
= § Vo da¥
92 8,y dal* o da”, (B.12¢)

The exgct exterror-aduissible rorms , Or evact genoexterior rorms
, are then given by

8¢
8; = d§; = — dal, (B.13a)
dak
: ) 8A,,
2 = d8; = —— dat 0 ga, (B.13b)
aal

The calculus of genoexterior forms can indeed characterize the
Lie-admissible algebras in full, because they characterize, not only the
antisymmetric component of the Lie-admissible algebras, but also their
symmetric part, via the two-forms

S, = §ylta) dat o da¥ =

“ v
= pr(a) dat A gaV + TI.LV(t’ a) dat x da , (B.14)

Structures (B.14) were called in Santilli (foc ot ) spmplectic-
aomissible two-rorms , or genosymplectic teo-forms , because their
antisymmeyric component is symplectic, in a way fully parallel to the
property whereby the antisymmetric part of the Lie-admissible
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algebras is Lie. Spaces T*E(r$.®) when equipped with two-form {B.16)
were called spmplectic-admissible manirolds , or genosyuplectic
manirelds , and the related geometry spumplectic-admissible
geometry.

As incidental comments, note that the dependence on time appears
only in the symmetric part, as needed for consistency in the
symplectic component. Also, under inversion (B.8), we generally have

€, = ©Ft, G = @, (B.15)

which is a rather intriguing feature of the generalized geometry here
considered, whereby the symplectic content of a Lie-admissible tensor
is more generalk then the symplecticv counterpart of the
antisymmetric component of a Lie-admissibie tenmsor (see Santilti
{/oc. cit) for details).

The most salient departure of the exterior-admissible calculus
from the exterior calculus in its conventional or isotopic formulation
{Sect. 11.9) is that the Poincare’ Lemma no longer holds, ie., for exact
symplectic-admissible two-forms

§, = d§, (B.162)
ds, = a8y # 0. (B.16b)

In actuality, within the contest of the exterior-admnissible
calculus, the Poincarte’ Lemma is generalized into a rather intriguing
geometric struture which evidently admits the conventional Lemma as
a particular case when all symmetric components are null.

The geometric understanding of the Lie-isotopic algebras requires
the understanding that &he valoiy of the Poincaré Lemma withln the
context of the Symplectc-isoropic £eometry is 8 necessary conoition
for the represemiation of the conservation of the total energy uvnder
nonhamiftonran internzl rorces, as studied in the next chapters.

By the same token, the geometric understanding of the Lie-
admissible algebras requires the understanding that Zz2e /ack of
validity of the Poincaré Lemma Within the comtext of the symplectic-
admissible geomelry Is 8 necessary condition for the representation
of the nonconservation or the energy of an nterior dyhamicsl systel.
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APPENDIX [I.C: RIEMANNIAN-ADMISSIBLE GEO-
METRY

There is little doubt that future historians will consider our
contemporary studies in gravitations as beihg in their first infancy.

Among a rather large number of problems that remain to be solved
in gravitation, a further open problem is the representation of the
dichotomy constituted by the clearly (time-) reversible exterior
dynamics with a clearly irreversible interior behavior.

This is majestically illustrated, e.g., by Jupiter (Figure L1} whose
center-of-mass trajectory in the solar system is clearly reversible,
while the interior dynamics is manifestly irreversible.

It is at this point that the dual use of the Lie-isotopic and Lie-
admissible formulations becomes useful. In fact, the Z/ie-ssoropic
formulations are ultimately reversible in thelr structure, because
they provide a global treatment of nonhamiltonian systems via
Hermitian isounits. By comparison, rthe Lie-admissible formulgtions
are niripsically irreversible

We are referring here to formulations that are structurally
reversible or irreversible, rather than the achievement of reversibility
or irreversibility via the selection of suitable Hamiltonians. In fact,
Lie-isotopic formulations are irreversible irrespective of the selected
Hamiltonian.

The dual representation of reversibie center-of-mass-
trajectories wersus irreversible interior dynamics, is then permitted
by the complementarity of the Lie-isotopic and Lie-admissible
formulations via inter-relations of type (IL.A.37).

Note the necessity of the Lie-isotopic formulations for this
complementarity. In fact, reversible, conventionally Lie formulations
for the global-exterior description are not compatible with
irreversible, Lie-admissible, interior descriptions because their
attached Lie algebra is of Lie-isotopic character, as clearly expressed
by Eq.s (11.A.37).

A first axiomatic characterization of irreversibility was provided

in Appendix ILA, via different isounits for motion forward I~ and

backward <I in time. A further axiomatic approach to irreversibvility
will be provided in Appendix I1.D via the notions of inequivalent right
and left isorepresentations.

In this appendix we would like to merely indicate a conceivable
generalization of the Riemannian geometry submitted by Santilli (1988d),
{(199lb) under the name of Alemannmian-admwissible geometry , or
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genorfemannizn geometry , which could provide an irreversible
description of interior gravitation in a way compatible with the
reversible description provided by the Alemannian-isolopic geomeiry
lor isoriemannian geometry) of the exterior problem (Sect. [1.11).

In Sect. 11.10 we introduced the notion of a/fine-admissible
manitolds (or isoaffine mamifolds) as the manifolds “M”(x, “®”)
which possess the same dimension, local coordinates and continuity
propertties of a conventional affine manifold M(xR), but are defined

over an isofield R~ with two different isounits I~ and <1 for the
modular-isotopic action to the right and to the left, respectively

¥~ = A>x = AT x, I” = (T7)1, (C.13)
<% = x<A = xX°TA, <1 = 77 (C.1b)
= <yl (C.1¢)

DEFINITION [1CI (Santilli (1959, (1992 A “Riemannisn-
gamissible manirold™ or ‘geporiemannizn manirold” /s sn
Isoattine manirold (Derfinition f1.10.1) equipped witlh nequivalent
Isometrics and Isowoduiar actions to the right {forward in time/
and to the lerr (backward in tiwe), here donoted with <R, g,

<#) , mamely, characterized by the “ISometrics for motions
forward and backward in me”

g~ = T, %, %,.) gb, (C.2a)
<g = Tl %, %.) gk, (C.2b)
7 = 7, (c.2¢c)

and equipped with two nponequivalent, nonsymmelric, /soaliie
conpections, one for the modular-isotopic sction to the right
(forward) and the other to the lert (backward), called
“Christorfe/-admissible symbols of the rrst kind for molons
forward and backward in e’
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With corresponoing “Christolre/-admissible svmbols of the

second kg™
>2 1 _ 0 >ij > p>2i
<r-2 i - <gl] <Fi L= <r-2 i (C.4b)
h k hjk kKh -

where e capability ror an fsometric of raising and lowering
the mndeces Is vnderstood (as In any artine space) and

>j 2 (o> V1
g7l = s | A (C.5a)
<ol = [ <o v i)
gl = [ (g, J 1 (C.5b)

The “Riemannian-adnissible geometry”, or “genoriemannian
geometry” for short, is the geomelry of spaces Rx, g™, <#”).

The construction of the Riemannian-admissible geometry can be
done via the appropriate generalization of the Riemannian-isotopic
geometry presented in Sect. ll.11, with particular reference to the
isoconnections which, besides being different for the right and left
modular-isotopic action, are now necessarily zousymmerric.

Comparison of the above setting with that of Proposition 11.A.1 and
IL.D.1 then yields the following

FROPOSITION IL.CT (loc. cit): An axiomatization of irreversibility
in interior gravitation Is provided by ineguivalent modu/ar-
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Isotopic actions to the right forward in timel and to the feft
(backward In timel with necessarily nonsymmetric genoatiie
connecltions.

Regreitably, we cannot study the Riemannian-admissible geometry
in the necessary details to avoid a prohibitive length of this volume. It
is however hoped that geometers in the field will indeed develop this
new geometry for, in the final analysis, it is so general to encompass
and include as particular cases all generalized geometries presented
in this monograph.

The first generalization of Einstein’s gravitation with 2 Lie-
admissible structure was achieved by Gasperini (1983) in the full spirit
of the formulations: to represent interior, nonconservative,
irreversible trajectories, as well as a covering of his Lie-isotopic
lifting of Einstein’s gravitation (Gasperini {1984a,bc)). Nevertheless,
Gasperini formulated both, the Lie-isotopic and Lie-admissible studies
in conventional Riemannian spaces and, as such, they need a
reinspection for the proper formulation in suitable isospaces (see
Chapter Vi.

Additional important gravitational studies of Lie—admissible type
were conducted by Jannussis (1986), Gonzalez-Diaz (1986), Nishioka
((1985), (1987)), and others.

APPENDIX D: ISOREPRESENTATIONS AND
GENOREPRESENTATIONS

A deep understanding of the Lie-isotopic and Lie-admissible algebras
cannot be reached without an understanding of the structure of their
representation theories. 1n turn, the latters have well known, profound
implications in physics, inasmuch as they characterize the notion of
particle reviewed in the next appendix.

The Lie-isotopic and Lie-admissible formulations imply the
following sequence of generalizations of the representation theory:

A) REPRESENTATION THEORY OF LIE ALGEBRAS. As well known, it
is characterized by one-sided, left or right, modular representations,
generally called TEpresentaLions” ;

B) REPRESENTATION THEORY OF LIE~ISOTOPIC ALGEBRAS. It is
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characterized by one sided, left or right modular-isotopic
representations, called “Jsorep-resentations™ %5 apparently
jintroduced for the first time in Santilli (1979); and

C) REPRESENTATION THEORY OF LIE-ADMISSIBLE ALGEBRAS. It is
characterized by two-sided, left and right, modular-isotopic
representations, called two -s/ided Isoblrepresentations , or genore-

presentations ?  for short, also introduced introduced in Santilli
(loc. air),

To outline the main ideas, consider a nonassociative algebra U
over a field F. The right and left multiplications in U (Albert (1963),

Schafer (1966)) are given by the following linear transformations of U
onto itself as a vector space

Ry : a=aX, or aRy =ay, (D.1a)
Ly: a=xa, or aly =xa, (D.1b)

for all a, x e U, and verify the following general properties

(aa)Rx = (aghx = alax), or aRy = Ry, {D.2a)
aR(x+y) = alt + y) = aR, + aky - a(Ry + Ry)
or R{x £y = Ry * Ry (D.2b)

with evident similar properties for the left multiplications Ly
When the algebra is associative, we have the additional properties

afxy) = (axly, or aRyy = aRyRy, or Ryy = RyRy, (D.3a)

= LyL,. (D.3b)

xyla = xlya), or alyy = alyly, or Lyy xly

The above properties imply that the mapping a = Ry {a = Ly) is a
homomorphism (antihomomorphism) of A into the associative algebra’

V(A) of all linear transformations in A. Thus, they provide a rggir
representalion a = Ry Or a /fefr represeniation a = Ly, respectively,

22 By recalling the meaning of the prefixes Wsv” and ‘geso™ {footnotel®, p. 136),
the terms ‘Jsvrepresemifalions” and ‘gemorepreseatatiops” stand to indicate the
preservation™ and ‘alterstion” , respectively, of the axiomatic structure of Lie's
representations.
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of A, also called left or right HomAg(Vy), for T =R, L.

If the algebra A contains the identity I, we have a owe-lo-ole for
sarthru) representation because Ry = Rp implies 1 Rq = 1 Ry which
can hold iff a = b. When the space L is the algebra A itself, we have the
so-called adjoint for regular) representalion

In the case of nonassociative algebras, the mapping a = Ry is no
longer a homomorphism, and this illustrates the reason for the study of
the representation theory of Lie algebras via that of the underlying
universal enveloping associative algebra, as done in the mathematical
literature (see, e.g., Jacobson (1962)), but generally not in the physical
literature.

Consider now an isoassociative algebra A over an isofield F with
isounit 1 and isoassociative product a*b. Introduce the right and /eft
isomuliplications

Ry:a= amx, or a*Ry = axx, (D.4a)
fy:a=x+a, or axly=x4a, (D.4b)

for all a € A. It is then easy to see that properties (D.2) are lifted into
the forms

@Ry = Rguys Rixry) = Ry # Ry, (D.5a)
Ryxy = By*Ry, TRz =TRp = a=b, (D.5b)

with similar properties for the left isomultiplications.
It is easy to see that the mapping a = Ry characterizes a 7sig#/

saithral Isorepresentation of A in the isoassociative algebra V(A) of
isolinear transformations of A%, and denoted HomAF{\?R), with similar

results holding for the left isorepresentations.
The nontriviality of the isotopy is made clear by the following

LEMMA [1L.D.1 [(Santilli  (199/b)- [sorepresentations of
isoassociative algebras A over an isofield F are Isolinear and
Isofocal in V but generally nonlinear and nonlocal in ¥.

Nawmely, &re transition from Lie aigebras to Lie-Isotopic algebras

generally mmplies the transition from lnear and focal to noniinear and
nonlocal representations.
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A modufe of an algebra U over a field F, also called (/~module ,
(Schafer (1966)) is a linear vector space V over F together with a
mapping UXV = V denoted with the symbol (av) = av which verifies
the distributive and scalar rules

alv+t) = av + at, (a + bjv = av + bv, {D.6a)
alay} = (eayv) = (2av), (D.6b)

as well as all the axioms of U, for allabeU viteV,andaeF.
The mappings a = Ry, = av and a = L,, = va clearly show that the

space V is a left and right U-module.

The above notion of module implies only one action, e.g., that to the
right. In order to reach a two-sided action, consider an algebra U over
a field F. Let V be a vector space over F. Introduce the direct sum § =
U & Vinsuch a way that § is an algebra verifying the same axioms of U
while V is a two-sided ideal of 8. This can be done as follows (see, e.g.,
Schafer (1966)):

1) retain the product of U;

2) introduce a left and a right composition av and va, for all
elements a € U and v € V which verify all axioms of U (including
the and right and left scalar and distributive laws); and

3} to complete the requirement that V is an ideal of §, assume vt =
tv = 0 for all elements of V.

When all the above properties are verified, V is called a ¢wo-
sided, Jerr and right mooule, or a fmodu/e of U, and the algebra § is
called a sp/ir nul/ extension of U (Schafer (foc c/d.

Bimodules clearly provide a generalized, left and right
representation theory of all algebras, whether associative or
nonassociative.

It is important to understand why bimodules are #oz needed for
the representation theory of Lie algebras and of Lie-isotopic algebras,
but they become essential for the covering Lie-admissible algebras.

A bimodule V of & Lie algebra L or Lie-bimodule (Santilli (1979a))
is characterized by left and right compositions av and va,a e L, v € V,
verifying the properties

av= -va, (D.7a)
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viab) = (va)b - (vbla, (D.7b)

which can be identically expressed via the left and right
multiplications

La = = Ra, (D.Sa)
Rap = RaRp — RpRa, (D.8b)

The mappings a > Ry and 2 = Lg then provide # /fest and right
representation, or a birepresentation, of the Lie algebra L over the
bimodule V as a HomLp(VR,VL).

However, owing to property (D.8a), the left representation is
trivially equivalenty to the right representation, Ry = - La. This is the
reason why only one-sided representations of Lie algebras are
significant in physics,

The notions of isomodules and isobimodules, apparently introduced
for the first time in Santilli 1979a), can then be defined via the one
sided and two-sided isotopic liftings, respectively.

A Lie-Isobimodule (Santilli {/oc. cit. ))is therefore an isovector
space V with left and right isocompositions a*v and v*a verifying the
distributive and scalar laws, and the rules

axw = - v*a, (D.9a)
vaxh) = (vxalxb — (v*b)*a, (D.9b)

or, equivalently in terms of isomultiplications

- ~

Rg=-L,, (D.10a)
Rasp = Rg*Rp — Rp*Ra, (D.10b)

which characterizes an Jsobirepresentation of a Lie-isotopic algebra
{ as HombLg(Vp.01).

However, the left and right isorepresentations are again
equivalent because of the property Ry = - L. Thus, only one-sided

isorepresentations are needed for the plysical applications or Lie-
Isotopic algebras.
The notion of isobirepresentations on bimodules becomes
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necessary when passing to the study of the covering Lie-admissible
algebras U (Santilli (/oc ¢/t ). In fact, in this case, the action to the
right is no longer equivalent to the action to the left, thus resulting in
a much richer structure. In this case a Lie-admissible bimodule V has
the right and left isotopic compositions a>v and v<a, such that the
attached composition aev = g>v - v<a verifies the conditions

a0V = — Voa, (D.11a)
velaeb) = (vealed ~ Vo )@& {D.11b}

which can be equivalently expressed via the right and left
multiplications

iQa>i;u—})<a + 1A—ta>b—b<a = [(ﬁa - La)a(Rb - f‘b)]’ (D-12)

and they characterize a Jesr and right isobirepresentation {genore—
presentation) of a geperal Lie-admissible algeprs U as HomUp(Vy,
¥r).

Similar structures for commutative Jordan and Jordan-admissible
algebras and for other algebras (see also Santilli (/oo ¢z ), but their
study is not considered here for brevity.

By recalling Propositions B.1 and C.1 the following property is
evident.

PROPOSITION 1101 (Santilli (199/b) An axiomatization of
frreversibiity from the Viewpomnt of he represemiation heory
Is provided by generepresentations of Lie-adwissible algebras,
har Is, by modular-isotopic represemniations with ineguivalent
actioms Lo the rght and to the fert on bimodular vector spaces.

The reader should note the rather remarkable unity of
mathematical and physical thought provided by Propositions I1.B.1,
IL.C.1 and ILB.1,
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APPENDIX E: ISOPARTICLES AND GENOPARTICLES

The sequence of representations, isorepresentations and genore-
presentations of the preceding appendix implies the characterization
of the following sequential physical notions:

A’} “PARTICLES”, which are characterized by conventional
representations of Lie algebras, and consist of the Galilean or
Einsteinian notion of massive point moving in a stable orbit in vacuum
under action-at-a-distance, local-potential interactions;

B’) “ISOPARTICLES"23, which are given by the more general notion
of particle characterized by isorepresentations of Lie-isotopic
algebras, and consist of extended-deformable particles in stable
orbit24 under the most general known, linear and nonlinear, local and
nonlocal, potential and nonpotential interactions; and

C) "GENOPARTICLES"23, which constitute the most general possible
particles, characterized by genorepresentations of Lie-admissible
algebras, and constitute extended-deformable particles under the
most general dynamical conditions conceivable at this writing, that is,
in open-nonconservative-unstable orbits while moving within a
physical medium under linear and nonlinear, local and nonlocal, and
Hamiltonian and nonhamiltonian external forces.

From the content of Appendix D, we can say that

The Galilean or Elnsteinian particle Is a linear, focal, one-sided,
conventionally modulgr representation or & Lie algebra.

23 By keeping in mind the meaning of the prefixes ¥so” and ‘yemo” (footnotel,
p. 136}, the terms ‘isuparticles™ and  “genoparticles” siand to indicate the
“preservation” and ‘alteration”, respectively, of the axiomatic structure of the
Galilean or Einsteinian particles.

24 Recall that the Lie-isotopic algebras preserve the antisymmetry of the product of
Lie algebras. As such, they characterize conserved quantities whick, when
representing physical entities, imply stable orbits. The effective treatment of a
particle in an unstable (say, decaying) orbit with all algorithms at hand representing
physical quantities (e.g., the Hamiltonian H represents the energy of the particle, p
represents the linear momentum, etc.), requires the use of the Lie-admissible
formulations. These aspects have profound implications for the hadronic structure,
which we hope to review in a possible operator sequel of these papers. In fact, they
imply that the hadronic constitaents are “isoparticles” only when in stable ordits,
atherwise they are “penoparticies” (Santilli (1988) and (1989)). Needless to say, the two
formulations are interchangeable, in the sense that Lie-admissible formulations can
also represent stable orbits, but then the algorithms at hand must necessarily lose
their physical meaning (e.g., H = { o exp (B #2) } ). This illustrate the insidious
possibility of misrepresenting physical results whenever one relaxes the condition
that all algorithms at hand must have a direct physical meaning.
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The Lie-isotopic theory outlined in the main text implies a
nonirivial generalization of the preceding notion. In fact,

The notion or isoparticle Is a nonlinesr, noplocal, one-sided,
Isomodular representation (isorepreseniation) of a Lie-isotopic
aigebra,

The Lie-admissible formulations outlined in these appendices imply
the following further generalization

The nowon of genopariicle Is a nonlinear, nomlocal, Iwo-sided,
Isobimodular representation [(genorepresentation) of a Lie-
FANIsSIble aleehra,

On physical grounds, the implications are rather deep. Recall that
for Einstein’s special relativity a particle is a massive point which, as
such, is a perennial and immutable geometric concept. Moreover, the
orbits of Einstein’s particles are necessarily stable, as trivially
requested by the excact character of its rotational subsymmetry.

As indicated in the main text, the Lie-isotopic theory can instead
represent the actual shape of the particle considered, as well as all its
infinitely possible deformations. Thus, an isoparticle can have an
infinite number of different intrinsic characteristics, depending on the
infinite number of different interior conditions, and as permitted by
the infinite number of isotopes of the Galilei or Poincaré symmetry.
However, isoparticles should always be restricted to stable orbits, to
avoid possible, insidious misinterpretations of the algorithms at hand.

The more general Lie-admissible theory outlined in these
appendices implies further physical generalizations. In fact, besides
representing the actual shape of the particle considered and all its
possible deformations, genoparticle are in unstable orbits, and possess
an intrinsically irreversible time evolution.

Now, the Galilean or Einsteinian notion of particle is unque-
stionably exact for the physical conditions of their original erzersor
conception, say, for the motion of our Earth in the solar system or of
an electron in an atomic cloud. The lack of exact applicability of the
same notion in Jprerfor conditions is evident following the
mathematucal studies of this volume, '

In fact, the insistence, say, for the characterization of a spaceship
during re-entry in Earth’s atmosphere or of a proton in the core of a
star via the Galilean or Einsteinian notion of particle, would imply that
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the spaceship penetrates and moves inside Earth’s atmosphere with a
conserved angular momentum, or that a proton freely orbits inside the
core of a star undergoing gravitational collapse with a conserved
angular momentum.

The use instead of the covering notion of genoparticles offers
clear possibilities for advances, both classically and operationally. The
understanding is that we are referring to one of the most complex and,
by far, unexplored notions of contemporary mathematics, as
expectedly needed to represent some of the most complex physical
conditions in the Universe.
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