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In this paper, we review and upgrade the iso-representation of the spin 1/2 of nucle-
ons according to the isotopic branch of hadronic mechanics, known as hadronic spin,
which is characterized by an isotopy of Pauli’s matrices with an explicit and concrete
realization of Bohm’s hidden variable λ and show, apparently for the first time, that it
allows a consistent and time invariant representation of the spin JD = 1 of the Deuteron
in its true ground state, that with null angular contributions LD = 0. We then show,
also apparently for the first time, that the indicated hadronic spin allows a numerically
exact and time invariant representation of the magnetic moment of the Deuteron with
the numeric value λ = 2.65557.

1 The Einstein-Podolsky-Rosen argument

In the preceding paper [1], we have outlined the axiom-prese-
rving completion of 20th century applied mathematics into
iso-mathematics, (see [2] for an extended presentation and
[5–7] for independent studies), and the related iso-mechanical
branch of hadronic mechanics (see [3] for a detailed treat-
ment, [8–10] for independent studies and [11–13] for recent
reviews) which isotopic methods have been used for the ver-
ification in [14, 15] of the 1935 historical argument by A.
Einstein, B. Podolsky and N. Rosen that Quantum mechan-
ics is not a complete theory [16] (see [17] for the proceed-
ings of the 2020 Teleconference in the EPR Argument, and its
overviews [18, 19]).

Via the use of said isotopic methods, [1] achieved, ap-
parently for the first time, a non-relativistic and relativistic
representation of all characteristics of the muons (including
their recently measured anomalous magnetic moment) as an
extended and naturally unstable hadronic bound state of elec-
trons and positrons produced free in the spontaneous decay
with the lowest mode.

In the subsequent paper [20], we showed that said isotopic
methods confirm the 1983 experimentally unresolved devi-
ations [21] from the conventional formulation of time dila-
tion for composite particles such as the muons, in favor of its
axiom-preserving isotopic completion. We indicated in [20]
that said deviations are due to incompatibility of the conven-
tional time dilation with the time-irreversible character of the
muon decay voiced since 1967 by R. M. Santilli [22] (see the
1995 full treatment [3]) and independently voiced in 1968 by
D. I. Blokhintsev [23] for the incompatibility of the conven-
tional time dilation with internal non-local effects of compos-
ite particles.

In this paper, we review and upgrade the notion of hadro-
nic spin first introduced in [3, Section 6.8, page 250] and then
used for verification [14] of the EPR argument [16] as well as
in other applications [4]. The new notion of hadronic spin is

then used for the characterization of the spin 1/2 of the nu-
cleons, and realized via an isotopy of Pauli’s matrices with an
explicit and concrete realization of Bohm’s hidden variable
λ [43]. We then show, apparently for the first time, that said
hadronic spin allows the first known exact and time-invariant
representation of the spin S D = 1 of the deuteron in the true
ground state, that with null contributions from angular mo-
menta LD = 0.

We then show, also apparently for the first time, that said
hadronic spin allows a numerically exact and time-invariant
representation of the magnetic moment of the Deuteron with
λ = 2.65557.

A technical understanding of this paper requires a techni-
cal knowledge at least of [2, 3]. A preliminary understanding
of this paper requires a knowledge of reviews [11–13].

2 Iso-representation of the Deuteron spin

As it is well known, the quantum mechanical spin 1/2 of nu-
cleons is characterized by the fundamental irreducible repre-
sentation of the special unitary Lie algebra SU(2) which is
notoriously given by the celebrated Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (1)

(where σ3 is set hereon along the spin direction) with com-
mutation rules

[σi, σ j] = σiσ j − σ jσi = i2εi jkσk . (2)

The value S = 1/2 of the nucleon spin is characterized by the
eigenvalue equations on a Hilbert space H over the field of
complex numbers C with basis |b〉

S k = 1
2 σk ,

σ3 |b〉 = ±|b〉 ,

σ2̂ |b〉 = (σ1σ1 + σ2v2 + σ3σ3) |b〉 = 3 |b〉 .

(3)
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A serious insufficiency of quantum mechanics in nuclear
physics, which is fully supportive of the EPR argument [16],
is that the representation of the spin 1/2 of nucleons via Pauli
matrices does not allow a representation of the Deuteron spin
S D = 1 under the conditions of its experimental detection,
that is, in its ground state with null orbital contributions LD =

0. In fact, the sole possible stable bound state between a pro-
ton and a neutron permitted by quantum mechanics (qm) is
the singlet

D = (n↑, n↓)qm , (4)

for which the total spin is null, JD = 0. In an attempt of re-
solving this insufficiency while preserving quantum mechan-
ics, nuclear physicists have assumed for about one century
that the Deuteron is a bound state of a proton and a neutron
in excited orbits such that LD = 1 (see e.g. [25]).

When at Harvard University with DOE support, R. M.
Santilli noted that the most effective way of resolving the
above and other insufficiencies of quantum mechanics (see
next section) is to exit from its class of unitary equivalence.
Therefore, Santilli proposed in two 1978 memoirs [26, 27]
and in two Springer Verlag monographs [28, 29], the EPR
generalization / completion of quantum mechanics into a new
discipline which he called hadronic mechanics (see the Ab-
stract and [27, pages 684,749,777] and [29, page 112]).

Hadronic mechanics was conceived to be an axiom-prese-
rving, thus isotopic non-unitary image of quantum mechanics
for the representation of the dimension, shape and density of
hadrons in interior conditions with ensuing potential as well
as non-potential interactions due to mutual penetration.

The proposal voiced in [26]–[29] suggested the construc-
tion of the time irreversible completion of quantum mechan-
ics into hadronic mechanics with the basic time evolution
(see [27, (4.15.24), page 742], [29, (19), page 153] and [3,
(4.3.1), page 154])

i
dA
dt

= (A,H) = ARH − HS A =

= (AT H − HT A) + (AJH + HJA) ,

A(t) = eHS ti A(0) e−itRH ,

R = T + J , s = −T + J ,

(5)

which is called Lie-admissible / Jordan-admissible since the
bracket (A,H) clearly contains a Lie algebra (AT H − HT A)
and a Jordan algebra (AJH + HJA) content.

By recalling that quantum mechanics can only represent
systems whose time reversal images verify causality laws (be-
cause Heisenberg’s equation is invariant under anti–Hermitic-
ity), the aim of Santilli’s proposal (stemming from his DOE
support) was to achieve a consistent treatment of systems
whose time reversal image violate causality, which is the case
for all energy-releasing processes, with particular reference to
nuclear fusions and fossil fuel combustion.

In this paper, we study stable nuclei that, as such, are
time-reversal invariant. Consequently, our study requires the
Lie-isotopic branch of hadronic mechanics, called for brevity
iso-mechanics, which is based on the completion of the quan-
tum mechanical enveloping associative algebra of Hermitean
operators A, B, ... on H over C with product A × B = AB
and multiplicative unit I into the new product (first introduced
in [26, (3.710), page 352] and [29, (5), page 71])

A ? B = AT̂ B, T̂ > 0 , (6)

called iso-product because associativity-preserving, the posit-
ive-definite quantity T̂ being called the isotopic element and
new compatible multiplicative unit

Î = 1/T̂ > 0, Î ? A = A ? Î ≡ A ∀ A ∈ H , (7)

called iso-unit with ensuing basis time evolution first intro-
duced in [27, (4.15.59), page 752] (see also [29, (18), page
163, Vol. II] and [3, (3.1.6), page 81])

i
dA
dt

= [A,H]† = AT̂ H − HT̂ A , (8)

A(t) = eHT̂ ti A(0) e−itT̂ H = W(t) A(0) W(t)† ,

WW† , I ,
(9)

which is called Lie-isotopic because of the clear verification
of the Lie algebra axioms by the new brackets [A,H]?, al-
though in a generalized form.

Following the identification of the basic structure (6) to
(8), Santilli constructed in the 1983 monograph [29] the sys-
tematic isotopies in the 1983 volume [29] of the various bran-
ches of Lie’s theory (universal enveloping associative algebra,
Lie’s theorems, Lie’s transformation groups, etc.), resulting
in a theory nowadays known as the Lie-Santilli iso-theory [5]
(see also [30, 31]).

Santilli then constructed the isotopies of all known space-
time symmetries [32]–[42]. In particular, systematic studies
were conducted on the construction, classification and veri-
fication isotopies of the SU(2)-spin symmetry which can be
found in [3, Chapter 6, page 209 on], in papers [33]–[37] with
a summary in Section 3 of [12].

The hadronic spin (first introduced in [3, Section 6.8]) is
the characterization of the spin of hadrons under strong inter-
actions via the iso-irreducible, iso-unitary, iso-representations
of the Lie-Santilli iso-symmetry ŜU(2).

The simplest possible case of spin 1/2 of the nucleons
can be outlined as following: all mathematical and physical
aspects of the (regular [31]) isotopic branch of hadronic me-
chanics can be uniquely and unambiguously constructed via a
simple, positive-definite non-unitary transformation set equal
to the iso-unit of the new theory

UU† = Î > 0 , I, T̂ = 1/Î = (UU†)−1 > 0 , (10)
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provided said non-unitary transformation is applied to the to-
tality of the quantum mechanical, mathematical and physical
quantities and their operations with no exception known to the
author, to prevent insidious inconsistencies in mixing mathe-
matics and iso-mathematics that generally remain undetected
by non-experts in the field.

The indicated correct use of the above procedure permits
the map of all quantum mechanical quantities, including unit,
product, Lie algebras, etc., into their hadronic formulations
that are generally denoted with a “hat”

I → UIU† = Î ,

AB → U(AB)U† =

= (UAU†)(UU†)−1(UBU†) = Â ? B̂ ,

AB − BA = [A, B]→ U(AB − BA)U† =

= Â ? B̂ − B̂ ? Â = [Â, B̂]?, etc .

(11)

The hadronic spin 1/2 for nuclear constituents is given by
the iso-fundamental, iso-unitary, iso-irreducible iso-represen-
tation of the Lie-Santilli iso-algebra ŜU(2) under the condi-
tion of iso-unimodularity

Det Î = 1 . (12)

The above condition allowed Santilli to characterize the
basic iso-unit of iso-mechanics in terms of Bohm’s hidden
variable λ [43] which was presented for the first time in [3,
(6.8.19), page 248], according to the rules

Det Î = Det [(UU†)] = Det [Diag (g11, g22)] = 1 ,

g11 = g−1
22 = λ ≥ 0 ,

(13)

yielding the iso-Pauli matrices first proposed in [3, (6.8.20),
page 248]

σ̂k = UσkU†,

UU† = Î = Diag (λ−1, λ), T̂ = Diag (λ, λ−1),

σ̂1 =

(
0 λ
λ−1 0

)
, σ̂2 =

(
0 −iλ

iλ−1 0

)
,

σ̂3 =

(
λ−1 0
0 −λ

)
,

(14)

and then used in [14] for the verification of the EPR argument
thanks to the evident inapplicability of Bell’s theorem [44]
due to the non-unitary structure of the theory.

It is easy to see that the iso-Pauli matrices verify the Lie-
Santilli iso-commutation rules

[σ̂i, σ̂ j]∗ = σ̂i ? σ̂ j − σ̂ j ? σ̂i =

= σ̂iT̂ σ̂ j − σ̂ jT̂ σ̂i = i2εi jkσ̂k ,
(15)

showing the clear iso-morphism ŜU(2) ≈ SU(2).
The representation of the spin 1/2 of nucleons despite its

generalized structure is given by the iso-eigenvalues on an
iso-state |b̂〉 of the Hilbert-Myung-Santilli iso-space Ĥ [45]
over the iso-field of iso-complex iso-numbers Ĉ [46]

Ŝ k = 1̂
2 ? σ̂k = 1

2 σ̂k ,

σ̂3 ? |b̂〉 = σ̂3T̂ |b̂〉 = ±|b̂〉 ,

σ̂2̂ ? |b̂〉 = (σ̂1T̂ σ̂1 + σ̂2T̂ σ̂2 + σ̂3T̂ σ̂3)T̂ |b̂〉 = 3 |b̂〉 .

(16)

As it is well known, non-unitary theories violate causal-
ity, and that is the case for the hadronic spin when consid-
ered in its projection on a conventional Hilbert spaceH over
a conventional field C. Additionally, non-unitary transforms
generally change the numeric value of the isotopic element
which represent physical, measurable quantities (see next sec-
tion). These and other problems are resolved by the reformu-
lation of non-unitary time evolution (9) into the iso-unitary
iso-transformations [47]

WW† = Î, W = ŴT̂ 1/2 ,

WW† = Ŵ ? Ŵ† = Ŵ† ? Ŵ = Î ,
(17)

under which reformulation the iso-unit, iso-product, Lie-San-
tilli iso-algebras, etc., are invariant,

Î → Ŵ ? Î ? Ŵ† = Î′ ≡ Î , (18)

Â ? B̂→ Ŵ ? (Â ? B̂) ? Ŵ† =

= Â′ ? B̂′ = Â′T̂ ′B̂′, T̂ ′ ≡ T̂ ,

Â′ = Ŵ ? A ? Ŵ†, B̂′ = Ŵ ? B̂ ? Ŵ† ,

T̂ = (W† ? Ŵ)−1 .

(19)

It should be noted that, by no means, hadronic spin solely
characterizes the spin 1/2 because it was conceived [26, 27]
for the characterization of the most general possible notion of
spin for an extended particle such as a hadron in the core of a
star with ensuing non-local contributions from the star envi-
ronment (see [3, 14], [34]–[37]) according to the de Broglie-
Bohm non-local theory [48]. The notion of hadronic spin
was then specialized to the spin of nucleons because of clear
experimental evidence, rather than popular views in nuclear
physics, establishing its value 1/2.

The iso-representation of the Deuteron spin JD = 1 in its
true bound state with LD = 0 via the hadronic spin is elemen-
tary. To see it, let us call for clarity iso-protons, iso-neutron,
iso-nucleons, iso-Deuteron and iso-Helium (with correspond-
ing symbols p̂, n̂, N̂, D̂, Ĥe), the particles and nuclei charac-
terized by the hadronic spin. With reference to [3, Section
2.11, page 265 on] on the addition of hadronic spins, the
most stable hadronic bound state of the iso-Deuteron as a
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hadronic bound state of an iso-proton and an iso-neutron is
given by the axial triplet state. The axial triplet coupling
first identified in the new chemical species of magnecules
(see [49, Chapter 8, page 303 on] and [50, 51]) and then used
for the new Intermediate Controlled Nuclear Fusion [52–54]
with iso-representation (Fig. 1)

D̂ =

 p̂↑
?
n̂↑

 . (20)

3 Iso-representation of the Deuteron magnetic moment

Another serious limitation of quantum mechanics in nuclear
physics has been the inability, in about one century of stud-
ies, to achieve an exact representation of nuclear magnetic
moments via the tabulated values for the magnetic moments
of the proton and of the neutron in vacuum [55]

µp = +2.79285 µN , µn = −1.91304 µN , (21)

where µN represents the nuclear magneton.
As an example, the magnetic moment predicted by quan-

tum mechanics (qm) from values (21) for the magnetic mo-
ment of the Deuteron is given by

µ
qm
D = µp +µn = (2.79285−1.91304) µN = 0.87981µN , (22)

and does not represent the experimental value of the Deuteron
magnetic moment

µex
D = 0.85647 µN , (23)

due to a deviation in excess of about 3%,

µ
qm
D − µ

ex
D = 0.02334 µN ≈ 2.95% µex

D , (24)

with larger deviations for heavier nuclei.
E. Fermi [56], V. F. Weisskopf [25] and other founders

of nuclear physics formulated the hypothesis, hereon referred
to as the Fermi-Weisskopf hypothesis, that in the transition
from isolated particles in vacuum to members of a nuclear
structure, protons and neutrons experience a deformation of
their extended charge distribution with consequential change
of their magnetic moments (21) while conserving their spin
1/2 (see the statement at the top of [25, page 31]).

The first numerically exact and time-invariant represen-
tation of the Deuteron magnetic moment (23) was achieved
in 1994 by Santilli [57] (see also its subsequent extended
study in [58]) thanks to the prior construction of the isotopic
branch of hadronic mechanics for the representation of ex-
tended, thus deformable hadrons and related iso-symmetries
[32]–[42] with the isotopic element

T̂ = Diag
 1

n2
1

,
1
n2

2

,
1
n2

3

,
1
n2

4

 , (25)

in which n2
k , k = 1, 2, 3, represent the semi-axes of the de-

formable proton and of the nucleon under strong nuclear for-
ces and n2

4 repesents their density. Under the assumption, for
simplicity, that the proton and the neutron in the Deuteron
structure have the same dimension, shape and density, [57]
reached a numerically exact and time invariant representa-
tion of the magnetic moment of the Deuteron in [57, (3.6),
page 124] with the following values of the characteristic n-
quantities (that are denoted with the symbols bµ = 1/nµ in
[57])

b1 =
1
n1

= b2 =
1
n2

= 1.0028 ,

b3 =
1

= 1.6531.662 , b4 =
1
n4

(26)

(whose derivation is not reviewed here for brevity), by there-
fore confirming the 1981 preliminary experimental verifica-
tion of the Fermi-Weisskopf hypothesis via neutron interfer-
ometry [59].

In this paper, we present, apparently for the first time, a
second numerically exact and time invariant representation of
the magnetic moment of the Deuteron (23), with spin S D = 1
in its ground state via the representation of Santilli’s iso-Pauli
matrices (14) by using the Clifford’s algebra representation of
the conventional Pauli matrices [60]–[64], whose representa-
tion is here assumed to be known for brevity.

Note that, when formulated on their associative envelop-
ing algebra, the iso-Pauli matrices satisfy all algebraic prop-
erties of the conventional Pauli matrices. Consequently, we
can use the conventional representation in its entirety and in-
troduce the representation of iso-Pauli matrices (14) in terms
of Clifford algebra G̃3 = G̃3(R3) with the iso-basis

G̃3 : {1, σ̂1, σ̂2, σ̂3, σ̂1σ̂2, σ̂1σ̂3, σ̂2σ̂3, i := σ̂1σ̂2σ̂3} , (27)

and main properties

σ̂2
1 = σ̂2

2 = σ̂2
3 = 1 ,

σ̂12 = σ̂1σ̂2 = −σ̂21, σ̂13 = σ̂1σ̂3, σ̂23 = σ̂2σ̂3 ,

σ̂2
12 = σ̂1σ̂2σ̂1σ̂2 = −σ̂1σ̂2σ̂2σ̂1 = −σ̂2

1σ̂
2
2 = −1 .

(28)

The standard basis of unit iso-vectors {σ̂1, σ̂2, σ̂3} define
the x, y, z iso-coordinate axes, respectively. The iso-spectral
basis is (

û+ σ̂1û−
σ̂1û+ û−

)
, (29)

where û± := 1
2 (1± σ̂3) are mutually annihilating iso-idempot-

ents. In the standard iso-basis of Ĝ3,

{σ̂1, σ̂2 = iσ̂1σ̂3, σ̂3} ,

î = σ̂1σ̂2σ̂3 ,
(30)
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Fig. 1: In the top, we illustrate the structure of the iso-Deuteron as
a hadronic bound state of an iso-proton and an iso-neutron in axial
triplet coupling, thus representing for the first time the spin of the
Deuteron S D = 1 in its ground state, that with null angular contri-
butions LD = 0. The prefix “iso” represents the novel hadronic spin
characterized by the iso-Pauli matrices, (14), with an explicit and
concrete realization of Bohm’s hidden variable λ. The axial triplet
coupling was first identified in the new chemical species of mag-
necules (see [49, Chapter 8, page 303 on] and [50, 51]) and then
used for the new Intermediate Controlled Nuclear Fusion [52–54].
In the bottom, we illustrate the structure model of the iso-Helium as
a hadronc bound state under strong interactions of two iso-Deuterons
in singlet coupling, which allows a representation of the null spin
and magnetic moment of Helium in its ground state. It should be
noted that the above model is not necessarily extendable to heavier
stable nuclei due to the prior need of resolving the problem of nu-
clear stability caused by the natural instability of the neutron, which
problem is planned for study in a subsequent paper (see [65] for a
preliminary study).

is the conventional unit of the associative algebra G̃3. It must
be remembered that σ̂k verify the property

σ̂2
k = σ̂k ? σ̂k = 1 , (31)

for k = 1, 2, 3, where the ? denotes the iso-product.
We now show that the hidden variable λ of the iso-Pauli

matrices (14) can provide a second representation of the de-
formation of the magnetic moment of nucleons of [57, 58]
with consequential exact representation of nuclear magnetic
moments.

By introducing the realization of the hidden variable λ

λ = eφ ≥ 0 , (32)

with respect to the basis of the standard unit of the iso-Pauli
matrices Î, the iso-reciprocal T̂ and the iso-vector basis {σ̂k},
are given by

Î = cosh φ + σ3 sinh φ = eφσ3 ,

T̂ = cosh φ − σ3 sinh φ = e−φσ3 ,
(33)

Consequently
σ̂1 = σ1 Î = T̂σ1 ,

σ̂2 = σ2 Î = T̂σ2 ,

σ̂3 = σ3 Î = Îσ3 .

(34)

By recalling that σ3 characterizes the nucleon spin S =

1/2, we reach the result that the replacement of the standard
basis of the Clifford algebra G3 for Pauli matrices with the
iso-Pauli matrices (14) implies the EPR completion of σ̂3 into
the expression

σ̂3 |b̂〉 = σ3 Î |b̂〉 = σ3 eφσ3 |b̂〉 . (35)

Recall that the quantum mechanical (qm) relationship be-
tween magnetic moments µ and spins S occurs via the gyro-
magnetic factor g,

µ = gS , (36)

and that the corresponding relation for the isotopic branch
of hadronic mechanics (hm) is given by an expression of the
type [57]

µhm |b̂〉 = KgS |b̂〉 , (37)

where K is an iso-renormalization constant of the gyromag-
netic factor g created by the new notion of hadronic spin 1/2.
By using property (28), we reach the relation

µhm |b̂〉 = eφσ3µqm |b̂〉 = eφσ3gS |b̂〉 . (38)

Recall also that: 1) Bohm’s hidden variable λ is associ-
ated with the spin of a particle according to (14); 2) The pro-
ton and the neutron have the same spin 1/2 and essentially the
same mass, thus being characterized by the same λ; 3) The
quantum mechanical representation of the magnetic moment
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of the Deuteron is in excess of about 3% according to (24).
By selecting the value for conformity with the selected spin
orientation (Fig. 1)

σ3 |b̂〉 = −|b̂〉 , (39)

we can write the expression per each nucleon

µhm,k ≈ (1 + φσ3) µqm,k = (1 − φ) µqm.k, k = p, n , (40)

from which we obtain the iso-renormalized value of the mag-
netic moment of the proton and of the neutron

µ̂p = +(1−φ) 2.79285 µN , µ̂n = −(1−φ) 1.91304 µN , (41)

with corresponding value for the magnetic moment of the
Deuteron

µhm
D = (1 − φ) 2.79285 − (1 − φ) 1.91304 µN =

= (1 − φ) 0.87981 µN = µex
D = 0.85647 µN .

(42)

From this, we obtain the numeric value

φ = 1 − 0.87981/0.85647 = 1 − 0.02334 = 0.97666 , (43)

with corresponding numeric value of Bohm’s hidden variable
for the Deuteron

λ = eφ = e0.97666 = 2.65557 , (44)

by thereby achieving the desired exact representation of the
magnetic moment of the Deuteron in terms of Bohm hidden
variable λ. Its invariance over tine follows fom the derivation
of iso-Pauli matrices (14) from the Lie-Santilli iso-symmetry
P̂(3.1) [39]–[41].

The iso-representation of the magnetic moment of 4 −
He − 2 as the iso-Helium Ĥe(2) is a consequence (Fig. 1).
The study of the iso-representation for heavier stable nuclei
was initiated in [65], but its in-depth achievement requires
the still missing consistent representation of nuclear stability
against the natural instability of the neutron, which problem
is planned for study in a subsequent paper.

We should finally note that in this section we have used
the standard Clifford algebra and not the full isotopic Clifford
algebra Ĝ introduced by R. da Rocha and J. Vaz Jr. [66]. This
is due to the fact that the full isotopy Ĝ3 of G3 would have
required the use of iso-product (6) with the isotopic element
T̂ = e−φσ3 = 1/Î, and the consequential lack of representation
in (38) of the magnetic moment of the Deuteron for spin S D =

1 in the ground state.
The understanding is however that the full iso-Clifford

iso-algebra Ĝ3N is expected to be important for the numer-
ically exact and time invariant representation of the spins and
magnetic moments of nuclei with A ≥ 2 nucleons.

In a nutshell, we can say that the Copenhagen interpre-
tation of quantum mechanics deals with the simplest possi-
ble realization of quantum axioms, while the EPR completion
of quantum into hadronic mechanics deals with progressively
broader realizations of the same axioms for systems with pro-
gressively increasing complexity.
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