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SCIENTIFIC BACKGROUND

During the 20th century it was generally believed that the irreversibility over time of our
macroscopic environment was "illusory” (sic) because, when macroscopic events are reduced fo
their elementary particle constituents, irreversibility “disappears” (sic) and one recovers nice
elementary particles in the reversible conditions necessary for the applicability of special
relativity, quantum mechanics and quantum chemistry.

As part of his lifelong research in the field, the Italian American applied mathematician Ruggero
Maria Santilli (see CV, prizes and nominations at htip://www.santifli-foundation.org) has proved
the following:

NO REDUCTION THEOREM: A dassical system that is irreversible over time cannot be
consistently reduced to a finite number of elementary partides alf reversible over time and, voice
versa, a finite number of elemertary particles all in reversible conditions cannot yield a
macroscopic irreversible event under the correspondence or other principles.

The above theorem establishes that irreversibility originates at the most ultimate
structure of nature. For instance, the ireversibility of a spaceship during re-entry in our
atmosphere originates from the noniinear, nonlocal-integral and nonpotential-nonhamiltonian,
thus ireversible interactions between the electron orbitals of the peripheral atoms of the
spaceship and the corresponding orbitals of the atmosphere. Similar origins have been identified
for other irreversible events, induding inetastic, thus irreversible, high energy scatiering
processes,

Above all, all energy releasing processes at the particle, nuclear, atomic and chemical
levels are structurally irreversible over time. Consequently, basic advances in
irreversibie processes are crucial for the development, in due time, of much needed
new clean energies and fuels so, whose study is an important aim of the Conference.
~ Due to such a sodetat relevance of irreversibility, our Foundation encourages a wide
participation by experts in different fieids for communal advances.

By recalling that special refativity, quantum mechanics, quantum chemistry, and 20th century
sciences in general are reversible, the above No Reduction Theorem has far reaching implications
since it has stimulated the initiation of the broadening of the sdentific knowledge of the 20the
century. Another aim of the Conference is that of identifying the status of the research in
irreversibility as well as discuss new frontiers, such as much needed new algebras, geometries,
functional analysis and other methods with such an freversible structure to  achieve direct
compatibitity with thermodynamicai laws, beginning with a quantitative formulation of the
entropy, as a necessary corndition for an actual representation of nature.

The significance of Lie-admissible algebras for irmeversibility can be outlined as
follows. As it is well known, 20th century sciences are based on Lie algebras with familiar
product [A, B] = AB - BA] and known time evolution for a Hermitean operator | dA/dt = AH - HA.
Hence, the reversibility of special relativity, quantum mechanics, quantum, chemistry and other
20th century disciplines is redudible to the primitive invariance of the Lie product under anti-
Hermiticity, [A, B] = - [A, B] +.

During his Ph. D. studies, Santilli proposed in 1967 [1] the embedding of lie algebras in covering
algebras with the first known deformed product (A, B) = pAB - gBA , where p, g and p +/- q
(called fambda and my in the original paper) are non-nuil scalars, and the first known deformed
time evolution idA/dt = pAH - gHA, where the product (A, B) is Lie-admissible (as well as Jordan-
admissible) in the sense that the attached antisymmetric {symmetric) product is Lie (Jordan.



Subsequently, when at the Department of Mathematics of Harvard University under DOE grants
ER-78-5-02-47420.A000, AS02-78ER04742, DE-ACO2-80ER10651s, Santilli proposed in 1978 [2]
the most general known Lie-admissible and Jordan-admissible product (A, B) = ARB - BSA where
R and S are nonsingular operators, with Lie-admissible time evolution idA/dt = ARH - HSA that is
manifestly irreversible because no longer invariant under anti-Hermiticity.

A new mathematics based on generalized different units for ordered products to the right
{representing motion forward in time) and inequivalent ordered produdcts to the left (representing
motion backward in time) had to be developed because, when applied to Santilli's Lie-admissible
formulations, the mathematics underlying Lie's theory (conventional numerical fields, functional
analysis, differential caiculus, etc.) would lead to different numerical values under the same
conditions at different times, loss over time of Hermiticity-observability {Lopez lemma), violation
of causality, and other catastrophic inconsistencies.

Following contributions by a large number of authors reported in the Thind Announcement of our
Foundation 9see http://www.santilli-foundation.org/Announcments.html }), the latest
comprehensive presentation including the needed new mathematics, the new irreversible
mechanics, the proof of its universality with invariance, and a number of specific applications to
irreversible processes, can be found in the 2006 Nuovo Cimento memoir [3]. Additional
information can be found in the above quoted website of the Conference as well as of our
Foundation.

[1] "Embedding of Lie-algebras in Lie-admissibie algebras”
[1] R. M, Santilli, Nuovo Cimento Vol. 51, 570 (1967},
http: //www.santilli-foundation.org/docs/Santilii-54. pdf

[2] "On a possible Lie-admissibie covering of Galilei's relativity

in Newtonian mechanics for nonconservative and Galilei form-noninvariant systems,"

R. M. Santilli, Hadronic J. {\bf 1}, 223-423 (1978), available in free pdf downlcad from \\
http: //www.santilli-foundation.org/docs/Santilli-58.pdf

[3] "Lie-admissible invariant representation of irreversibility for matter and antimatter at the
ciassu:al and operator Ieveis "R. M, Santllh Nuovo Cimento B Vol. 121, 443 (2006),
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Advanced Studies (KIAS).
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served as its acting president in October 1996 when KIAS was first established, and since
July of 2007 served as its fourth president until his death. He leaves behind one of the
premier institutions of advanced research, modeled after the Institute for Advanced Study
(TAS) in Princeton that housed Einstein, Oppenheimer and von Neumann.
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invariant system theory, algebras and differential equations.
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University of Massachusetts, New Harbor Campus, Boston, August 4-9, 1980.

o  Co-organizer of "The Fourth Workshop on Lie-Admissible Formulations", held at
the Institute for Basic Research, Cambridge, Mass., August 3-7, 1981.
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First Workshop on Hadronic Mechanics", held at the Institute for Basic Research,
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¢ Co-organizer of “The First International Conference on Non-potential Inter actions
and Their Lie-Admissible Treatments", held at University of Orleans, Orleans,
France, January 5-9, 1982.

e  Co-organizer of “The Second Workshop on Hadronic Mechanics”, held at The
Center \A. Volta", Villa Olmo, Como, Italy, August 1-3, 1984,

¢ Co-organizer of “The Third Workshop on Hadronic Mechanics" held at University
of Patras, Patras, Greece, August 25-30, 1986.

e  Co-organizer of “The Fourth Workshop on Hadronic Mechanics and Nonpotential
Interactions”, held at University of Skopje, Skopje, Yugoslavia, August 22-26, 1988.

e  Organizer (Conference Chairman) of “The 5th International Conference on Hadronic
Mechanics and Nonpotential Interactions", held at the University of Northern lowa,
Cedar Falls, Jowa, August 13-17, 1990



Organizer (Co-Chair with E. Zelmanov) of “International Conference on Recent
Progress in Algebra", held at KAIST and KIAS, Taejon-Seoul, August 11-15, 1997.
Organizer of “Anniversary Symposium of KIAS", (Mathematics Division),
November 26, 1997.

Chair of Organizing Committee for “KIAS Number Theory Conference”, December
8-12, 1997, KIAS, Seoul, Korea.

Chair of Organizing Committee for “KI1AS Algebraic Geometry Conference”,
October 13-16, 1998, KIAS, Scoul, Korea.

Member of Scientific Committee for “4th International Conference on
Nonassociative Algebras and its Applications”, held at University of Sa”o Paulo,
Sa™o Paulo, Brazil, July 19-25, 1998.

Co-chair of Organizing Committee for “KIAS Lie Theory Conference", October 5-8,
1999, KIAS, Seoul, Korea.

Co-editor of Proceedings of \Korea-Japan Joint Workshop in Mathematics 2000",
November 7-9, 2000, KIAS, Seoul, Korea.

Member of Organizing Commiittee for “International Conference on Lie and Jordan
Algebras, Their Representations and Applications”, May 13-18, 2002, Guaruja,
Brazil.

Member of Organizing Committee for “Algebraic Groups and Quantum Groups",
April 7-9, 2003, KIAS, Seoul, Korea.

Member of International Advisory Board for “5th International Conference on
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Member of Organizing Committee for “International Conference on Lie Algebras
and Related Topics ", October 20-23, 2003.

Member of the Scientific Committee for “International Conference in Algebras,”,
August, 2007, Sao Paulo, Brazil.

Member of Scientific Committee for “The Second International Congress of Algebra
and Combinatorics™', July, 2007, Beijing, China.

Member of Scientific Committee for “Pacific Rim Mathematical Association
Congress", July, 2009, Sydney, Australia.

Over 30 review articles have been published in Mathematical Review, American
Mathematical Society.

Professor Myung’s commitment to support Korean Women in Mathematical Sciences
(KWMS) comes on the heels of the agreement he signed on August 17, 2009 to donate
the bulk of his fortune, valued at 300 million won ($240,900), to KIAS.

Even as he faces death, Hyo Chul Myung continues to devote his life to science.

Professor Hyo Chul Myung died on February 11, 2010 in Seoul, South Korea after a long

battle with cancer.at the age of 73.

The Scientific committee has decided to dedicate this conference in honour of

this outstanding Mathematician.
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Scientific Program Details

Day 1
January 4, 2011, Tuesday
LANGTAM Hall, Hotel Miracle, Dhulikhel

Time

Program

Session on Mathematics
Session Chair: Prof. Pushpa Raj Adhikary

14.00 - 14.45

Session 1: Ruggero Maria Santilli

Birth, History and Outline of Genomathematics for the Invariant Lie-
Admissible Treatment of Irreversible Processes

Available in free viewing and downloading formats from hitp.//www. worid-
lecture-series.org/

14.45 - 15.30

Session 2: Thomas Vougiouklis
The Santilli’'s Theory “Invasion’ In Hyperstructures

15.30 - 16.15

Video Session II: Noriaki Kamiya

From Lic-Admissible Algebras to Admissibic Triple Systems
Avaifable in free viewing and downloading formats from http.//www. world-
lecture-series.org/

16.15 - 16.30

Tea break

16.30-17.15

Session 3: Bijan Davvaz
A brief survey of applications of algebraic hyperstructures and
Santilli-Vougiouklis hyperstructures with hyperunits .

17.15-18.00

Session 4: Mohammad Reza Molaei
A New Structure in Semi-Dynamical Systems Based on Santilli's
Isotheory.

18.00 — 18.45

Video Session III: : Tepper L. Gill and W. W. Zachary

The Santilli S* Algebras and The Navier-Stokes Problem.

Avarlable in free viewing and downloading formats from hitp.//www. world-
lecture-series.org/

19.00

Dinner: Hotel Miracle




Scientific Program Details

Day 2
January 5, 2011, Wednesday
LANGTAM Hall, Hotel Miracle, Dhulikhel

Time

Program

Session on the Invariant Lie-admissible Treatment of Irreversible Processes
Session Chair: Prof. Shekhar Gurung

Session 5: Ruggero Maria Santilli
Invariant Lie-Admissible Classical and Operator Mechanics for

09.00 - 9.45 | Matter
Available in free viewing and downloading formats from hitp.//www.world-
lecture-series.org/
Session 6: Ivan Gandzha

09.45 - 10.30 | Iladronic Mechanics: Lie-Admissible Covering of Classical
and Quantum Mechanics
Session 7: Alexander E. Animalu and RM Santilli

10.30 — 11.15 | Lie-isotope and Admissible Scattering Theory of Hadronic
Mechanics.

11.15-11.30 | Tea break

11.30 — 12.15 Sess!0118 Athanassios A. Nassikas _
Santilli’s Etherino as a (G)+(EM) Interaction
Session 9: Stepan S. Moskaliuk

12.15-13.00 Santilli Category of Isotopic Groups.

13.00 - 14.00 | Lunch
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Day 2
January 5, 2011, Wednesday
LANGTAM Hall, Hotel Miracle, Dhulikhel

Session on Lie-admissible Algebra
Session Chair: Prof. Erik Trell

Session 10: Godfrey E. Akpojotor and Alexander E. Animalu

14.00 — 14.45 | Iso-Superconductivity Model: the generalization of conventional
BCS Model to nonconventional superconductors.
Session 11: Lubomir Skala :

14.45 — 15.30 | Lie-admissible algebras and mathematical statistics

15.30 — 16.15 | Session 12: Gonstantin Udriste
Multitime Optimal Control for Quantum Systems

16.15 - 16.30 | Tea break

Session Chair: Prof. Athanassios A. Nassikas

Session 13: 1. Felner, Y. Yeshurun

16.30- 17.15 | Irreversible magnetic behavior of amorphous and sulfur doped
carbon materials.
Session 14 : Anil A Bhalekar
17.15 - 18.00 Trreversibility. A Thermodynamic Insight
18.30 Dinner: Dhulikhel Mountain Lodge
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Scientific Program Details

Day 3
January 6, 2011, Thursday
LANGTAM Hall, Hotet Miracle, Dhulikhel

Time

Activities

Session on Open

Problems in Antimatter

Session Chair: Prof. Christain Corda

09.00 - 09.45

Session 15:Ruggero Maria Santilli

Elements of The Isodual Theory of Antimatter, Its Prediction of
Antigravity and The Open Problem of Detecting Possible Antimatter
Asteroids.

Available in free viewing and downloading formats from http.//www.world-
lecture-series.org/

09.45 - 10.30

Session 16: Victor 0. de Hann

Proposal for the realization of Santilli’s comparative test on the
gravity of electrons and positrons via a horizontal Supercooled
vacuum tube.

10.30 — 10.45

Tea break

10.45-11.30

Session 17: Leong Ying
Nuclear fusion process with antimatter can account for Dark Energy
mechanism driving an accelerated cosmic expansion.

11.30-12.15

Session 18: Stein Johansen
Some epistemological implications of Santilli hadronic mechanics and
mathematics — with special emphasis on irreversibility issues.

12.15-13.00

Session 19: Anita Leirfall
Shaking Hands Across the Universe Absolute Space and A Priori
Directionality.

13.00 - 14.00

Lunch
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Day 3
January 6, 2011, Thursday
LANGTAM Hall, Hotel Miracle, Dhulikhel

Session on New Energies
Session Chair: Mr. Ken Yang

Session 20: Allen Feng

14.00—14.45 MagneGas Technology in China.
Session 21: Pinchas Mandell

14.45-15.30 | 5 Introduction to MagneGas Technology
Session 22: Leong Ying

15.30 - 16.15 | Verification of intermediate nuclear fusions without harmful radiation
and the production of magnecular clusters.

16.15-16.30 | Tea break:

16.30 — 17.00 | Open Forum & Discussion led by RM Santilli

Session on Technology
Session Chair: Prof. Bhola Thapa

Session 23: Yong Hee Chung
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17.45 — 18,30 | Session 24: Erik Trell
) ) The Irreversible Phase Transition of Material Becoming and Process
19.00 Dinner: Himalayan Horizon
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10.30 — 10.45 | Tea break

Session Chair
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10.45 - 11.30 Fibonacci generation of natural numbers and prime numbers.
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11.30 — 12.15 | Group Representation and Santilli Genonumber Representation of
Johansen Revolving Prime Number Code.
Session 30: Gireesh Baghotia

12.15 — 13.00 Strapping Asymmetric 6 T-SRAM cell for low power operation in

: ) nano-CMOS technologies.
13.00 - 14.00 Lunch
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Day 4
January 7, 2011, Friday
LANGTAM Hall, Hotel Miradle, Dhulikhel

Session Chair: Prof. Stein Johansen

Session 30 Eyo Eyo Ita

14.00 — 14.45 | Instanton representation of Plebanski gravity: General covariance
and implementation of the Gauss' law constraint.
Session 31: Hiiunkar Kayhan and Cenap Aozel

14.45 — 15.30 | On Atiyah-Singer Index of Dirac Operator on Six Dimensional
Sphere with a S0(6)-Gauge Theory

15.30 - 16.00 | Tea break

16.00 — 17.30 | Closing Session

18.00 Dinner: Dhulikhel Lodge Resort
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Third International Conference on
Lie-Admissible Treatment of frreversible Processes
(ICLATIP-3}
Dedicated to the Memory of Prof. Hyo Chul Myung
January 3to 7, 2011

QOpening Ceremony

January 4, 2011, Tuesday
CV Raman Auditorium
Kathmandu University, Dhulikhel

11.00 Arrival of Guests
11.10 Welcome address

- Prof. Bhadra Man Tuladhar, Chair, ICLATIP-3 Nepal
11.20 High-light of the Conference

- Prof. Ruggero Maria Santilli,
Honorary Chairman, ICLATIP-3 Nepal &
President, The Institute for Basic Research, USA

12.50 Greetings:

Prof. Shekhar Gurung, President,
Nepal Physical Society
Dr. Chet Raj Bhatta, Secretary,
Nepal Mathematical Society
His Excellency Hong Sungmog
Ambassador, Republic of Korea to Nepal

12.05 Remarks by Prof. Suresh Raj Sharma,

Vice Chancellor, Kathmandu University

12.25 Vote of Thanks

- Prof, Pushpa Raj Adhikary,
Chair, LOC, ICLATIP-3 Nepal

12.35 — Lunch
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Welcome Speech

Very warm good morning!

Respected Vice chancellor Prof. Suresh Raj Sharma

His Excellency Hong Sungmog, Ambassador of Republic of Korea to Nepal
Invited guests, Faculty and staff of Kathmandu University and other academic
institutions, and above all the Participants of the ICATIP-3 Nepal and their family
members

Welcome,

I fell privileged to welcome the distinguished participants to the Third International
Conference on Lie-Admissible Treatment of Irreversible Processes being organized
by Kathmandu University and supported by Nepal Mathematical Socicty, Nepal Physical
Society and The Santilli Foundation, USA.

The idea to organize this conference came up in March of 2009 during my
correspondence with Prof. Ruggero Maria Santilli in connection to his nomination to the
newly established The 2010 V. Ambartsumian International Prize in Astronomy and
Astrophysics.

My first contact with Prof. Santill was his letter of March 28, 1982 which wast an answer
to my latter of February 26, 1981.

I first met Prof. RM Santilli in person during my participation in the First | nternational
Conference on Nonpotential Interactions and their Lie-admissible Treatment that
was held in the Université d'Orléans, France from January 5-7, 1982. He was of one of
the organizer of the conference. The other organizing members were Prof. J. Fronteau
and Prof. A. Tellez-Areans from Universitty of Orleans and Prof. Hyo Chul Myung. At
that time Prof. Myung was in the University of Northern lowa. The second conference
held in Italy in 1995

The Scientific Committee has decided to dedicate this conference in Memory of Prof.
Hyo Chul Myung, the outstanding Mathematician and past President of the Korea
Institute for Advanced Study (KIAS). Dr. Myung was one of the founding members of
KIAS. Even as he faces death, Hyo Chul Myung continues to devote his life to science.
Professor Hyo Chul Myung died on February 11, 2010 in Seoul, South Korea after a long
battle with cancer.at the age of 73.

The primary aims of the conference are to cover mathematical, physical and industrial
methods to study new clean energies with topics on irreversible fields, spaces, algebra's,
geometries in MATHEMATICS; on irreversible mechanics, statistics in PHYSIC,: new
magnecular and others combustion's. This conference has brought together scientists
working in various fields on the treatment of irreversible systems. During the course of

17



the four days starting from today, January 4 till 7, 2011, Mathematicians, Physicists,
Chemist and Engineers from 18 countries namely: China, Czech Republic, Greece, India,
Iran, Israel, Italy, Korea, Nepal, Netherland, Nigeria, Norway, Rumania, Russia, Sweden,
Turkey, Ukraine and USA will make 31 presentations and 4 video lectures.

1 hope that your participation in this very important Conference will contribute to the
advancement of the New Science and its application for the betterment of the mankind

We will do all our best to make your stay in this beautiful city of Dhulikhel comfortable
and memorable.

Prof. Bhadra Man Tuladhar
Chair, ICLATIP-3, Nepal
Kathmandu University
Dhulikhel, Nepal

January 4, 2011h
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REPORTS

REPORT ON THIRD INTERNATIONAL CONFERENCE ON LIE-ADMISSIBLE
TREATMENT OF IRREVERSIVBLE PROCESSES
(ICLATIP-3, NEPAL)
Kathmandu University (Dhulikhel) : January 3— 7, 2011

Mathematics is the mirror of civilization. Mathematics and Physics along with Chemistry
are three important fundamental subjects for the educational system of the nation in order
to achieve scientific developments. These classical subjects are distinct from others
having both pure as well as applied forms interrelated to each others. In spite of the least
interest and support from government sectors in Nepal which also contradicts the world’s
trends of basic science education, there are very few national and international events in
these core arcas. With the view of providing a platform to explore the new areas teaching,
research and development, Kathmandu University (KU) in collaboration with 7fe R.M.
Santifli Foundation (USA) and in partnership of Nepal Mathematical Society (NMS)
and Nepal Physical Society (NPS), has successfully organized “The Third
Interpational Gonference on Lie-Admissible Treatment of Irreversible Processes”
(ICLATIP -3, Nepal) at Kathmandu University, Dhulikhel from January 03 — 07, 2011.
This conference was dedicated to the renown Korean mathematician Prof. Dr. Hyo Chul
Myung (1937 — 2010), one of the founding member of leading Korean Institute for
Advanced Studies (KIAS)(http://www.kias.r¢ kr). Honorable Prof. Dr. Ruggero Maria
Santilli was the honorary chairman, Prof. Dr. Bhadra Man Tuladhar was the local
chair of ICLATIP — 3, Nepal and Prof. Dr. Pushpa Raj Adhukary was the chair of
local organizing committee (L O C) of this event.

On January 4, 2011, Tuesday, the program commenced with the inaugural session at C.V.
Raman Auditorium Hall in which Prof. Bhadra Man Tuladhar, the president of NPS
and the registrar of KU, presented his welcome speech. The program was inaugurated
jointly by honorable Prof. Dr. Suresh Raj Sharma, the Vice Chancellor of KU and His
Excellency Hong Sungmog, ambassador of the Republic of Korea to Nepal, by lightning
the lamp. Also, Prof. Dr. Jongmann Yang expressed his view regarding to the memory
of late Prof. Hyo Chul Myung. Prof. Dr. Ruggero Maria Santilli highlighted the
importance of the conference. The program was followed by greectings from His
Excellency Hong Sungmog, the ambassador of the Republic of Korea to Nepal, Prof. Dr.
Shekhar Gurung, the president of NPS and Dr. Ghet Raj Bhatta, the secretary of NPS.
The Vice Chancellor of KU Prof. Dr. Suresh Raj Sharma expressed his remarks on the
importance of this conference and related activities with KU in Nepal. Then, there was
shown a video clip on the need, history and foundations of the Lie-Admissible Treatment
of Irreversible Processes. Finally, Prof. Dr. Pushpa Raj Adhikary gave the vote of
thanks.

There were altogether thirty papers presented in this international conference which were
divided among seven scientific sessions with two special video sessions. All scientific
sessions were held at Langtam Hall of Hotel Miracle, Dhulikhel. The theme of the first
session on January 4, 2011, Tuesday, was “Mathematics’ in which four papers were
presented and the session was chaired by Prof. Dr. Shekhar Gurung (TU). The theme
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of the second session on January 5, 2011, Wednessday, was “The invariant lie-
admissible treatment of irreversible processes” in which five papers were presented and
the session was chaired by Prof. Dr. Pushpa Raj Adhuikary (KU). The theme of the
third session on January 5, 2011, Wednessday, was “Lie-admissible algebrad” in which
five papers were presented and the session was chaired by Prof. Erik Trel (Sweden) and
Prof. Athanassions A. Nassikas (Greece). The theme of the fourth session on January
6, 2011, Thursday, was “Open problems in antimatter’ in which five papers were
presented and the session was chaired by Prof. Dr. Bhadra Man Tuladhar (KU). Also,
the theme of the fifth session on Janwary 6, 2011, Thursday, was “New energies” in
which three papers were presented and the session was chaired by Mr. Ken Yang
(China). The theme of the sixth session on Janwary 6, 2071, Thursday, was
“Technology” in which two papers were presented and the session was chaired by Prof.
Dr. Bhola Thapa (KU). The theme of the seventh session on January 7, 2011, Friday,
was “/rreversible thermo dynamical processes” in which seven papers were presented
and the session was chaired by Prof. Dr. Bhadra Man Tuladhar (KU), Prof.
Alexander E. Animalu (Nigeria) and Prof. Stein Johansen (Norway).

There was a enthusiastic participation of prominent mathematicians, physicists, chemists
from various countries like India, China, USA, Korea, Romania, Russia, Greece, Turkey,
Sweden, Norway, Iran, Holland, Czeck Republic, Nigeria, Nepal. The remarkable
contributions and valuable interaction by participants in this conference have added to the
scientific values of this event. This conference has become historical and memorable for
us.

The program was a successtul event with the team work of all local organizing committee
members which was coordinated by Prof. Tuladhar and Prof. Adhikary together with the
untiring support of KU staffs Mr. Mahendra Niraula, Sunil Khanal, Yashu Shrestha,
Abmika Thapa, Prem Bania, Shreeram Khatri, KU ISMS team.

Thanks!.
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Dec. 30, 2010 — Jan. 7, 2011
Dorte M. Zuckerman writes report on:

The third International Conference on Lie-Admisssible Treatment of Trreversible Processes
(ICLATIP-3 Nepal, Jan 3-7, 2011)

Dedicated to the Memory of Prof. Dr. Hyo Chul Myung

From beginning to end the social events and the conference were very well planned and
professionally run thanks to the planning committee, and not least thanks to Prof. Dr. Bhadre Man
Tuladhar.

We were received at the airport if we so desired, and driven to the luxurious Hotel Himalaya in
Lalitpur (Patan) with an actual view (o the mountains. Here Prof, and Mrs. Santilli and Prof. and
Mrs. Tuladhar were ready to receive us. Everybody was given a traditional yellow silk welcome
scarf by Prof. Tuladhar and a gift bag containing two beautiful prints of Nepal. We also received
computer bags with booklets and schedules. An important booklet was one containing the names
of the presenting scientists as well as their abstracts.

It was a great idea to have socialization and tours first. This way, people had a chance to get to
know each other and get rid of jet lag. We went on sightseeing trips while Prof. Santilli and Prof.
Tuladhar had time to set up the technical part of the conference. At night there was more time
meeting and greeting each other for tea or dinner at Hotel Himalaya with its varied cuisine (the
Nepalese was the best!).

The first sightseeing tour went by bus to Swoyambhu and the Durbar Squares, the latter
exhibiting the typical old quaint architecture of Nepal.

New Year’s Eve we all went to the Moscow Restaurant, which surprisingly appeared more
Nepalese than Russian! There were outdoor drinks and appetizers around a large bonfire in the
courtyard surrounded by the restaurant rooms. The entertainment was music and dancing by
Nepalese artists. As [ finished talking with the guests, and was about to leave, I realized the party
had just begun. Indoors was a beautiful set-up for a full dinner buffet. It turned out to be a
remarkable evening meeting with people from Kathmandu University. Back at the hotel some
guests continued celebrating the New Year.

The next day was a well-needed rest day that 1 personally used to visit the K-House for girls, an
orphanage I had been in contact with before. Sunday morning we went on a wild sightseeing trip
out of town high up to Nagakot. The bus moved up a narrow steep dirt road. There was no guard
rail, and every time an oncoming vehicle approached, one of the vehicles had to back up or pinch
by. You tried not to look down if you had a window seat on the steep side as 1 did. It was a wild
adventure for vs six-laned Americans. Finally we reached the top by foot (4000 m), and had a
wonderful breakfast. Between breakfast and lunch, we relaxed outside waiting for the clouds and
fog to clear. Voila! There were the Himalayan Mountains. We had to pinch ourselves to realize it
was real.

Now, as we left the top and drove down, we hoped the bus had good brakes. We made it, and
were in for a great treat at the musical department of the university. The setting was an old temple

21



site, It was close to evening, and we seitled under a pagoda-like roof to listen to a truly Nepalese
concert with instruments not known to western culture. Several young men participated in three
mini concerts. There was a distinct sense of longing and searching in the rolling tunes alternating
with loud drums. Enormous energy was put out by these handsome young students. Meanwhile
we were served a traditional snack consisting of a boiled egg, popped rice, a small grilled fish,
bread and an herb. It was served on a plate made of palm leaves. To warm us, a strong rice wine
was served in small clay bowls with straws (made of real straw!}. As a thank you, two of our
young guests (danghters of a presenting scientist and who were also accomplished artists) sang a
duo very beautifully.

The very next day we moved to Dhulikhel, a most beautiful Alpine Hotel called Miracle with
another great view of the snow-covered mountains. That’s where it became a favorite question
among us to ask, “How many pictures can you take of the Himalayans?” There were no elevators
there but lots and lots of staircases.

This was where the conference supporting the New Sciences was going to be held. Forty
conference attendees were now in the hotel. Thirty one mathematicians, chemists and physicists
were to present from twenty two countries. The first morning we were taken to the nearby
modern Kathmandu University where there was an introductory ceremony. Among the speakers
were Prof. Bhadra Man Tuladhar, Prof. Suresh Raj Sharma, Vice Chanceltor of Kathmandu
University, His Excellency Hong Sungmog, Ambassador, Republic of Korea to Nepal, Prof.
Jongmann Yang honoring the Memory of Prof. Hyo Chul Myung, Prof. Ruggero Maria Santilli
Honorary Chairman, ICLATIP-3, Nepal & President, the Institute for Basic Research, USA, Prof.
Christian Corda, Co-Chair, I[CLATIP-3 Nepal, Prof. Shekhar Gurung, Nepal Physical Society, Dr.
Chet Raj Bhatta, Secretary, Nepal Mathematical Society, and final thanks by Prof. Pushpa Raj
Adhikary, LOC, ICLATIP-3 Nepal.

Prof. Santilli presented the first overview of a row of lectures, which were continued the
following days. Lunch was then served in the cafeteria. Nepalese foods are among the tastiest
foods I have ever had, a delicious mixture of spices and texture, ending with sweet desserts and
tea/coffec.

Back at the hotel, the sessions started the next morning. We would break for tea/coffee and
cookies between breakfast and lunch and again between lunch and dinner. There would be thirty
presenters (some making two presentations). Prof. Santilli made a presentation every morning for
three days. In a very up-beat way he would explain his theories of Hadronic Mechanics. He
would tell how he had had to invent a new algebra — the first in 600 years since Newton. He had
needed to do a lifting of Lie’s algebra.

Prof. Santilli explained with crescendo how in the last century a lot of universities influenced by
government funds would not support the New Sciences, how they clung to Quantum Mechanics,
which could never be applied to fields like biology and cosmology. Santilli’s theories have been
applied to new clean energies produced by Magne(Gas, a publicly traded company. The
production, he admitted was first meant to be experimental evidence of his theories but eventually
it turned into a business.

All the scientists had been asked to tie in their presentations with Hadronic Mechanics.
From the discovery of magnetic fusion to the theory of light moving in wave packets, from new

prime numbers in patterns to Kant’s directions in space, from the irreversibility over time as seen
in a seashell to seeing the universe with the eyes of the New Sciences, from black holes not being
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part of our space-time to the idea of two or more universes without a ‘big bang,” and from the
ether being a substratum of constant energy and antimatter to an inspiring and frightening
presentation of global warming, this was absolutely a fantastic conference, There were questions
and defending answers, disagreements and discussions. Altogether, it was very inspiring
especially for a non-scientist like me.

In spite of, or maybe because of the diverse cultures, the group was able to laugh, joke and sing
together at night. First, we had dinner at the Mirabel (Miracle) Hotel with its excellent foods and
service as well as friendly atmosphere both indoors and in the upper-level garden. Later we had
dinner at the Dhulikhel Mountain Lodge with its attractive textured tablecloths, candles and
delicious foods. We also dined in the Dhulikhel Lodge Resort with its open indoor fire under a
huge upside-down copper cauldron. Lastly, we went to the Himalayan Horizon with its
interesting decor and candle-lit room. In both places we enjoyed a buffet with foods so delicious
it was hard not to go back for seconds!

The friendliness and the smiles of the hardworking people of Nepal made up for the
inconvenience of the power black-outs. However, being from Tampa (Florida, USA), the
lightning capital of the world, I was used to sudden power problems where the old candle
becomes your best friend.

Thank you for an unsurpassable and adventurous stay in Nepal!
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PROCEEDINGS OF THE THIRD INTERNATIONAL
CONFERENCE ON LIE-ADMISSIBLE TREATMENT
OF IRREVERSIBLE PROCESSES (ICLATIP - 3)

Kathmandu University, Nepal, April {2011) pages 25-36

CAN ANTIMATTER ASTEROIDS, STARS AND
GALAXIES BE DETECTED WITH CURRENT MEANS?
Ruggero Maria Santilli
The Institute for Basic Research
35246 US 19 North, No 215, Palm Harbor, FL, 34684, U.S.A.

Email ibr@verizon.net

Abstract

Via the use of the isodual theory of antimatter, in this note we point out, apparently
for the first time, that antimatter asteroids are not necessarily visible with light originating
from a matter star, such as light from our Sun, thus constituting a threat for our planet
requiring collegial inspection and resolution,

PACS 03.65.Ta; 14.60.Cd; 29.30.-h

As it is well known (see, e.g., Ref. [1]), during the 20th century, matter was
treated at all levels of study, from Newtonian Mechanics to second quantization,
while antimatter was solely treated at the level of second quantization, resulting in
a clean scientific imbalance with rather deep implications from particle physics to
cosmology some of which will be indicated in this note. The imbalance originated
from the absence in special relativity of quantitative means for differentiating neutral
matter and antimatter, as well as for other shortcomings.

Santilli (see general review {2] and original papers quoted therein) resolved the
above imbalance via the construction of a new mathematics, today known as isodual
mathematics, the related isodual mechanics and relativity with the resulting isodual
theory of antimatter. The understanding of this note requires a knowledge of isodual
mathematics and physics, as well as the knowledge that they constitute the isodual
branch of the hadronic mechanics [3]. In this note we recall the truly essential aspects
for minimal self sufficiency of these studies, and then focus our attention on the
problem of detecting antimatter asteroid, stars and galaxies. We assume the reader
is familiar with the evidence according to which Earth has been hit in the past by
antimatter asteroids (see Fig. 2)
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Figure 1: An illustration of the main objective of this note: can we identify antimatter
asteroids with Sun light or to protect our planet we need a new technology? This ;problem
will also be studies art a workshop in Italy, September 5-9,. 2011, http://www.workshops-
hadronic-mechanics.org/

The main idea of the isodual theory of antimatter can be outlined as follows. Recall
that the conventional charge conjugation is defined on a Hilbert space H with states
(z) over the field of complex numbers C and can be characterized by expressions of
the type

C ¥(z) = — ¥(a), 1)

where z is the coordinate of the representation space, such as the Minkowski spacetine.

Sa

ntilli [2) constructed the isodual mathematics, mechanics and relativity via an
anti-Hermitean conjugation, called isoduality and denoted with the upper index d,
applied to the totality of the mathematics and physics used for matter with no known
exception to avoid catastrophic inconsistencies when mixing conventional and isodual
formulations. Therefore, the isodual conjugation of an arbitrary classical or operator
quantity A(z,p,....) depending on coordinates r, momenta p, and any other needed
variable is given by

Alz,p,...) = A4z p?..) = A(—z', —pl,...). (2)
This conjugation characterizes the novel isodual unit 14 = —11, isodual real, complez
or quaternionic numbers nd = —n', isodual product n¢ x?m* = n* x (197! x m?,

isodual functional analysis, isodual differential calculus, etc. (see Ref. [2] for brevity).
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Figure 2: A view of the devastation caused by the 1908 Tunguska explosion in Stberia
that has been estimated as being the equivalent of 1,000 atomic bombs, yet it left no
crater or solid residue in the ground. Consequently, the Tunguska explosion is solely
representable on a quantitative-numerical way via an antimatter asteroid annihilating
in our atmosphere. Other interpretations have been dismissed by calculations because
essentially conceptual. For instance, the hypothesis of a comet has been disproved
on various quantitetive grounds, such as: absence of a necessary depression in the
ground caused by the expected huge amount of water; basically insufficient energy to
represent the event; inability to represent the luminescence of the entire atmosphere
on Earth for days, which luminosity is solely representable via radiations typical of
annihilation processes; and other reasons. There is additional evdience of antimatter
asteroids hitting our planet, such as large explosions in the upper atmosphere that are
known not to be caused by atomic bombs. Additionally astronauts and cosmonauts
routinely see “flashes” in the upper atmosphere when in darkness that can solely be
interpreted as due to the annihilation of anttmatier cosmic rays.

In particular, the reader should keep in mind that isoduality is the only known con-
sistent procedure for the differentiation between neutral as well as charged matter
and antimatter at all levels of treatment.

Even though charge and isodual conjugations are both anti-Hermitean, their differ-
ences are not trivial. From a physical viewpoint, charge conjugation conjugates states
in a Hilbert space, but does not conjugate the local coordinates x. This implies that,
for 20th century theories, antimatter exists in the same spacetime of matter. At any
rate, the relegation of antimatter at the level of second quantization, e.g., via Dirac’s
“hole theory,” leaves the Minkowski spacetime unique, thus entirely characterized by
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Figure 3: Picture recently released by FERMILAB illustrating the apparent existence
of antimatter in the universe.

the fundamental Poincaré symmetry and special relativity.

By contrast, the isodual conjugation additionally maps spacetime coordinates z
into the novel isodual coordinates x® = —z7 that are defined on the Minkowski-Santilli
isodual spacetime M%(x?, n?,19), where 7 is the usual Minkowski metric. Therefore,
under isoduality, the Poincaré-Santilli isodual symmetry, and the isodual special rel-
ativity, antimatter is predicted to exist in a new spacetime which is distinct from, yet
coexisting with our spacetime. In particular, the differences of conventional and iso-
dual spacetimes are not trivial. e.g., because the isodual conjugation of coordinates
is different than inversions [2].

Tt should be remembered that the Minkowski spacetime is, ultimately, a mathe-
matical structure since our senses perceive space and time separately. Due to the full
democracy between matter and antimatter, the same applies for the isodual spacetime
that is here reviewed under the understanding of its mathematical character. At any
rate, despite being the originator of the theory, the author has to admit its inability
to “understand” the isodual theory of antimatter, in the same way as the author
must admit his inability to “understand” infinite dimensional Hilbert spaces at the
foundation of quantum mechanics. The author’s sole interest in the isodual theory
is the ability of the theory for providing a mathematical representation of antimat-
ter compatible with all available experimental evidence at the classical and particle
levels, as well as admitting new predictions [2].

The achievement of full democracy in the treatment of matter and antimatter has
identified a new symmetry called isoselfduality [2] with rather intriguing implications.
To begin, particle-antiparticle systems are evidently invariant under isoduality, as 1t
is the case for the positronium,

(e7,e") = e, (e7) ] = (e7,e")" (3)
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Figure 4: A view the Trifit Nebula, one of the numerous dark nebulas ezisting in the
universe. They are generally interpreted as being due to dense aggregates of matter,
thus being opaque to light. Recent studies have indicated the possibility that at least
some of the nebulas are caused by antimatter because of their being totally opaque
to matter light. In the event confirmed, the latter feature would support the entire
content of this note, because it would establish our inability to see antimatter with
ordinary light as well as establish the absorption without refraction of matter light
originating from clear matter stars in their background.

Additionally, the imaginary unit, the differential, the Hilbert inner product, and the
spacetime line element are isoselfdual 9see Ref. [2] for technical details)

=% (4a)

dz = d%* (4b)

<] x |9 > xT =< Ph|? x4 [y > I (4c)
-y ={z-y) xnwx(@-y)]xI=

= [(z — y)* x4, x4 (z — )] x I? = (z — )™ (4d)

The above invariance illustrates the mathematical meaning of the indicated coex-
istence of matter and antimatter in the same region of space, as well as the reason
for the lack of discovery of the isodual theory until recently.

A main difference in the treatment of antimatter between 20th century Einsteinian
theories and the novel isodual theories is the following. Special relativity and relativis-
tic quantum mechanics characterize antimatter with the same positive energy used
for matter. By contrast, the isodual theory characterizes antimatter via a negative
energy referred to as a negative unit, thus being as causal as a positive energy referred
to as a positive unit. Similarly, according to the isodual theory, antiparticle evolve



in a negative time referred to a negative unit of time, thus yielding an evolution as
causal as that of particles evolving in a positive time referred to positive units.

It should be stressed that the joint isodual conjugation of a physical quantity
and its related unit is mandatory for consistency of the theory, as well as for the
very achievement of scientific democracy for the treatment of matter and antimatter.
In fact, in the absence of said dual conjugation, the negative-energy solutions of
Dirac's equations are unphysical, thus solely admitting as consistent the 20th century
treatment of antimatter at the sole level of second quantization.

Similarly, Einsteinian theories predict that matter and antimatter emit the same
light, evidently due to the indicated lack of any differentiation between neutral matter
and antimatter, light having no charge as well known. By contrast, isodual theories
predict that light emitted by antimatter is different than that emitted by matter in
an experimentally verifiable way. In fact, matter light has a positive energy hxv
referred to positive unit MeV, while antimatter light has a negative energy Ed =
hd x? 4 = —E referred to a negative unit MeV? = —MeV.

Despite the above mathematical considerations, it should be stressed to prevent
major scientific misrepresentations that the isodual theory verifies all avatlable ex-
perimental data on antimatter at both the classical and operator levels. In fact,
the Newton-Santilli isodual equations for antiparticles verifies all available data for
charged particles and antiparticles, while isoduality is equivalent to charge conjuga-
tion at the operator level by conception and construction, as recalled via Egs. (1)
and (2) (see Ref. {2] for details).

In addition, the isodual theory has a number of rather fundamental, experimen-
tally verifiable prediction not tested until now. A first new prediction is that anti-
matter (matter) in the gravitational field of matter (antimatter) experiences a gravi-
tational repulsion (antigravity). Again, this prediction can be solely formulated under
isodual rules, that is, the systematic, step-by-step construction of the isodual Rieman-
nian geometry and related gravitational formulation of antimatter bodies. A negative
curvature tensor (representing gravitational repulsion) then occurs in the interplay
between a Riemannian gravitation and its isodual [2}.

An experiment to test the gravity of the positron in flight in a horizontal vacuum
tube on Earth has been proposed by Santilli in 1994 based on the comprehensive
prediction of antigravity by the isodual theory at all levels, from the Newton-Santilli
isodual equations to the Riemann-Santilli isodual geometry (see the review in Ref.
[2]). This test has been considered as being resolutory for the verification of the
disproof of antigravity by experimentalists A. P. Mills [4], V. de Haan {5] and others.
In fact, for a 10 m long horizontal vacuum tube and positron energy of the order of
milli-eV, the displacement due to gravity of the positrons on a scientilloscope at the
end of flight is visible to the naked eye whether upward or downward.

Similarly, Einsteinian theories predict that both, matter and antimatter light expe-
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rience gravitational bending (attraction). By contrast, the isodual theory predicts that
antimatter (matter) light experiences gravitational repulsion from a matter (antimat-
ter) gravitational field. Note that the differentiation between matter and antimatter
light is mandatory under isoduality which, in turn, is the only known differentiation
between neutral matter and antimatter, thus including matter and antimatter light.

We are now sufficiently equipped to address a main point of this note. As it is well
known, according to Binsteinian theories, matter light, such as that from our Sun, is
predicted as being first absorbed by the atoms of a matter or antimatter asteroid and
then being re-emitted in all directions according to the principle of refraction, thus
predicting our capability of detecting antimatter asteroids with Sub light.

By contrast, the corresponding occurrence for the isodual theory of antimatter
is not that simple. In fact, when matter light hits an antimatter asteroid, i s ex-
pected to be “annihilated” in the sense of being “absorbed without re-emission. ¥ Under
the assumption that a matter photon carries energy much smaller than the rest en-
ergy of peripheral positrons, the annihilation photon-positron is evidently impossible.
Nevertheless, the positive-definite energy of the photon can be “absorbed” by the
negative-definite kinetic energy of the positrons, thus preventing a re-emission. A
number of additional arguments suggesting an “annihilation-absorption” without re-
emission is also possible, and they will be treated elsewhere, such as decreases in
isodual temperature. a decrease of rotational degrees of freedom and others.

In conclusion, by keeping in mind that we are dealing with the safety of our planet
setting up our uimost responsibility as scientist, the speculative view submitted in
this note for collegial resolution is that we do not possess at this writing conclusive
and incontrovertible evidence establishing beyond reasonable doubt the possibility of
detecting antimatier asteroids with Sun light.

Along similar lines, Einsteinian theories predict that matter and antimatter stars
or galaxies emit the same light, thus being equally detectable with conventional tele-
scopes. This also implies that, according to Einsteinian theories, antimatter stars
and galaxies do not exist due to the indicated lack of experimentally verifiable differ-
ences with matter stars and galaxies. By contrast, isodual theories predict that light
emitted by far away antimatter stars or galaxies is annihilated-absorbed in the lenses
of our telescopes or even in the pupils of our eye, thus requiring new means for their
detection.

Another speculative view submitted in this note, also for collegial studies, is that,
in view of the complete absence in Einstein special and general relativity of a gquan-
titative distinction between neutral matter and antimatter, we have no conclusive
scientific knowledge at this writing on the antimatter component of the universe, to
such an extent that, as a limiting case, we cannot even exclude an isoselfdual universe
*(a universe with 50% maiter and 50% antimatter).

In the hope of initiating the ezperimental resolution of the above open issues, we
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recall that Dirac was forced to voice the “hole theory” for the consistent representation
of antiparticles due to the non-physical character of negative energy solutions of his
equation. This caused a clear imbalance in the treatment of particles and antiparticles
with rather subtle implications for the scattering theory indicated below.

By noting that the isodual theory represents antiparticles at all levels, thus in-
cluding quantum mechanics, a reinterpretation of the Dirac equation has been then
unavoidable for the achievement of a full democracy of treatment for the electron and
the positron. Consider the conventional Dirac equation

v x (pp — e X Aufc) +ixm] x ¥(z) =0, (5a)
_{ 0 —ox 4_ . Ixa G,
l}/k! - ( O 0 ) H 7 =1 X ( 0 _I2x2 ) H (5b)
. ) P
{’Yu, 'Tu} = 2X T, U =1x ( ¢t ) (56)

Santilli [2] first noted that there exists no irreducible four-dimensional representa-
tion of the SU(2) symmetry for spin 1/2, and there exists no reducible four-dimensional
representation of SU(2) with the structure of Dirac’s gamma matrices. The sole known
algebraically consistent meaning of the gamma matrices is that they characterize an
irreducible representation for spin 1/2 of the Kronecker product SU(2) x § U(2)¢ In
the author’s view, this is perhaps the strongest evidence in support of the isodual
theory of antimatter.

Consequently, Dirac equation directly represents an electron-positron sysiem with-
out any need for the hole theory as expressed by the following re-interpretation veri-
fying the crucial symmetry under isoselfduality (see Ref. [2] for details)

[ x (p, — e x Au/c) +i xm] x ¥(z) =0, (7a)
. {0 of a_ . f D2x2a 0,
fYk—(O'k 0)17"’3( 0 Ig,xz)? (7b)
U = ~ . o
{'Y,LM'YV} = QdXdUﬁw ¥ = —74 X U =ix ( q)d ) (70)

Since Feynman’s diagrams for electrons and positrons are centrally dependent on
Dirac's equation, it is evident that the above reformulation of the latter equation
requires a necessary reinspection of the former. To begin, the annihilation process in
Feynman’s diagrams

e +et = 27, (8)
violates a number of isodual laws, such as: the Lh.s. is isoselfdual but the r.h.s is
not; the annihilation process is assumed to occur via the exchange of a particle (an
electron or a photon), thus being itself not isoselfdual; etc.
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(a)

Figure 5: A view of the electron-positron annihilation according to Dirac-Feynman
theories (Lh.s) and the same annihilation as predicted by Santilli’s isodual theories
(r.-h.s). Note the verification for the latter of all isodual laws, as well as the absence of
the isoselfduality violating exchange of the former, since annihilation requires actual
physical contact of particles antiparticles and cannot be triggered by particle exchanges
at a distance.

By contract, the isodual theory of antimatter represents the electron-positron
annihilation with the form

etel=(etel) - yrrl=(y+7) e=e, f=¢T, 9)

that provides an evident resolution of all ambiguities and asymmetries of annihilation
(8). Moreover, in the latter case, there is no exchange of particles, since annihilation
is predicted to occur under actual physical contact or mutual penetration of the
wavepackets of particles and antiparticles (see Fig. 5).

The insidious character of the lack of full democracy in the treatment of matter and
antimatter is illustrated by comparing reactions (8) and (9). Reaction (8) is rather
universally treated in first quantization, resulting in clear inconsistencies since, at
that level, the electron and the photons can indeed be fully treated, yet the positron
has negative energy in first quantization, thus prohibiting such a treatment for the
sole consistent treatment in second quantization. By comparison, Reaction (9) can
be consistently treated at the level of first quantization, its treatment at the level of
second quantization being under study by V. de Haan (private communication).

Needless to say, there exists a very large number of experiments in electron-
positron annihilation and the emitted two gammas. It is then rather natural to
expect that such experimental evdience dismisses reformulation (9). A deep inspec-
tion, however, soon reveals that available experiments have provided no consideration
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whatsoever on the possible differences between the two emitted photons, trivially, be-
cause no such difference was provided by the used data elaboration.

In this note, we have presented speculative comments on rather fundamental is-
sues, such as a reinterpretation of Dirac’s equation, a reinspection of Feynman's
diagrams when dealing with antiparticles, and pointed out the open problem of the
detection of antimatter asteroids, stars and galaxies. Clearly, these issues require an
experimental resolution. With the understanding that the author is not an exper-
imentalist, specific proposal of experiments are solicited and the following possible
experiment is recommended for study. Consider a detector (such as a scintillator, a
photomultiplier, et cl.) producing a signal for each energy increasing event (when hit
_by a photon) while producing no signal when hit by possible energy decreasing event
(when hit by the isodual photon). The suggested experiment then essentially deals
in the production of a known large number of electron-positron annihilation under
such a condition that the produced photons are all absorbed by the detector. In the
event the number of detected photons is that predicted by reaction (8), the isodual
theory is in question, and antimatter asteroids, as well as stars and galaxies, can be
detected with standard means as used for matter. However, in the event the number
of detected photons is half that predicted by reaction (8), thus being in agreement
with reaction (9), the isodual theory of antimatter is confirmed, the detection of an-
timatter asteroids, stars and galaxies requires the development of a basically new
technologies, and we do have indeed a serious problem for the safety of out planet
that has to be collegially addressed.
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Abstract

We recall that gravitation is characterized by the rest energy, rather than the mass
of a body, and reformulate Newton’s equation accordingly also to achieve universality of
gravitation, thus inclusive of light. We then point out that, from the precise knowledge
of the trajectories of the planets of our Solar system, we can derive with great accuracy
the rest energies of the members of our Solar system, although the corresponding value of
the masses are an assumption at this writing because they are calculated via the mass-
energy equivalence principle E = mc® whose validity is certain under the conditions stated
by Einstein, for point particles moving in vacuum, but not certain for extended bodies due
to the unknown value of the maximal causal speed in their interior. We point out the
occurrence of a similar situation in particle physics and suggest a possible experimental
verification of the mass-energy equivalence principle for extended bodies. The cosmological
implications for the removal of the far reaching conjectures of the universe expansion, dark
matter and dark energy are briefly indicated.

PACS 02.90.4-p, 04.20.-q,

An important property of gravitation which is often ignored is that the source of
the gravitational field is given by rest energy and not by mass. In fact, the source term
in Einstein-Hilbert field equations is given by the energy-momentum tensor while, by
contrast, the “mass-momentum tensor” does not exist because geometrically, let alone
physically inconsistent. This occurrence has suggested the author to write for quite
some time to write the celebrated Newton equations {1]

ﬂ/f]_ Mg
r2

F=g



in the identical form [2]

MM, E\Ey, |, E1Ey
F= 2 E?"2C4 =g T21g::i2¢ (2)
where E;, E- refer to the rest energies of the two bodies, their kinetic energy being
ignorable for the initiating character of this note.

It should be stressed that we are here referring to an identical reformulation of
Newton’s equation without any intended structural change. As an illustration, for
the case of an electron, we would write for the case of Newton’s original formulation
the value of the electron mass M; = 9.109 x 10731 K g, while for our reformulation we
write the identical value 0.511 MeV/c?. Similarly, for the proton we would write for
Newton’s original formulation M, = 1,672 x 107" Kg, while for our reformulation
we would write the identical value 938,272 MeV/c®. Therefore, under the above
assumption, the formulation of Newton’s gravitation in terms of masses and that in
terms of rest energy give the same results.

Despite such an identity, the indicated reformulation is not trivial. To begin, we
recall that It should be indicated that the reformulation originated from the intent
of achieving a true “universality” of Newtonian gravitation. In fact, a mass cannot
attract light according to Newton’s original formulation (1) since light has no mass.
By contrast, a body with rest energy F; can indeed attract light with energy E» = hv
according to reformulation (2), thus achieving the desired universality and raising the
unresolved issues (not considered in this note) as to whether the bending of light is
due to Newtonian “universal” gravitational attraction or to actual curvature of space
[2].

Additionally, said reformulation essentially implies that, from known orbits and
data, we can derive with extreme accuracy the rest energies of the members of the So-
lar systems, but the corresponding values of their masses are unknown at this writing
on serious scientific ground without unverified assumptions. In fact, the derivation of
masses from rest energies depends on the familiar mass-energy equivalence principle

E=mc (3)

which is experimentally verified under the conditions stated by Einstein, for point
particles moving in vacuum (exterior dynamical problem), but its validity for extended
masses is a mere unverified assumption to our best knowledge.

In essence, the speed of light ¢ can be safely assumed as being the maximal causal
speed in vacuum and its validity for point particles is also beyond doubt due to the
lack of & structure. When passing to extended masses, the situation is fundamentally
different because the formulation of their energy equivalence requires the knowledge
of the maximal causal speed in their interior, whose value is vastly unknown at this
writing,.



As an illustration, for the case of the electron we can safely interchange rest energy
with mass, i.e., M; = 9.109 x 1073 Kg = 0.511 MeV/c?, again, because the electron
has no structure, in which case, the validity of ¢ as the maximal causal speed for
its structure is beyond doubt. In the transition to the proton, the situation is not
equally established because the proton has a big volume (for particle standards) filled
up with a hyperdense hadronic medium. In this case, the identity of the mass of
the proton 1,672 x 10~27 Kg with its rest energy 938,272 MeV/c? is a theoretical
assumption which is not only experimentally unverified (see Refs. [2], Vol. IV), but
also questionable on grounds that it implies the speed of light in vacuum as being
the maximal causal speed in the hyperdense medium in the interior of the proton.
In conclusion, for the case of elementary particles at large, we can safely assume
that rest energies are indeed accurate, but the corresponding masses are generally
unknown except for point particles. The situation for the masses of our Solar system
is essentially the same.

More generally, there are serious indications of the lack of exact validity of special
relativity for extended objects and electromagnetic waves moving within a physical
medium (interior dynamical problem) for various mathematical, physical and exper-
imental reasons, including: the inability to place inertial reference systems in the
interior of physical media due to the resistance; the impossibility of representing nu-
merical data on the refraction of light in water via the reduction to photons of all
frequencies besides the few ones truly admitting quantum absorption and re-emission;
experimental evidence on deviations from the Doppler law within transparent physi-
cal media with a frequency shift without any relative motion between the source, the
medium and the observer (called isoredshift for the case of reduced frequencies and
isoblueshift for the case of increased frequency); and other evidence [3].

Extensive studies for interior dynamical systems (such as the structure of hadrons,
nuclei and stars) have suggested the use of the most general possible symmetric
spacetime with line element

2 P 2 2
9 Xy Iy T3 2 € 4
t= 4+ 5+ 5 -, (4)
ny Ny N3 L

admitting as particular cases all possible spacetimes in {3+1)-dimensions (including
all infinitely possible Minkowskian, Riemannian , Finslerian and other spacetimes) all
possessing the unifying and universal Lorentz-Poincaré-Santilli (LPS) isosymmetry
for interior physical media [1,2].

Line element (4) is characterized by: n4 representation an average of the index of
refraction in the medium considered; n2, k = 1,2, 3, representing symmetrized space
counterparts; ni/n2 representing the general anisotropy and inhomogeneity of phys-
ical media; and all n,, 4 = 1,2, 3,4, being normalized to the value for the vacuum



n, = 1. It should be indicated that the n-quantities, called characteristic quanti-
ties of the medium, are not arbitrary parameters, but actually measurable physical
quantities, as it is the case for the index of refraction.

In particular, the Lorentz-Poincaré-Santilli isosymmetry predicts the light isocone
along the space direction s 22 = z2/n? — t2c*/n? = 0 with consequential mazimal
causal speed for interior conditions in the s space direction [2,3]

Mg

Vmamwcm, - (5)
which is smaller then ¢ for media of low density (such as atmospheres, chromospheres,
etc.) and bigger than ¢ for media of high density (such as interior of stars, quasars
and black holes). Note the impossibility of using the speed of light as the maximal
causal speed for interior dynamical problems, trivially, because they are in general
opaque to light, thus demanding broader geometrical vistas. The speed of light is
recovered as the maximal causal speed in vacuum, but only thanks to the identity in
that case n4 = ng.

It should be noted that all fits of experimental data in particle physics via the
Poincaré-Santilli isoisymmetry have systematically provided values of Vier inside
hadrons as being bigger than the speed of light in vacuum (see Vol. IV of Refs. [2]).

It is evident that the universal LPS isosymmetry predicts the following mass-
energy tsoequivalence principle in the s-direction

2

(6)
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where the reader should always keep in mind that, for the studies herein considered,
the fixed quantity is the energy F, while the quantity m, referred to the inertial mass,
is generally a local quantity depending on the characteristics of the medium consid-
ered. As an example, for a given planet with internal inhomogeneity (due to variable
density) and anisotropy (due to rotation), the total energy E is a fixed quantity, but
the corresponding inertial mass m is predicted to depend on the selected direction,
with particular reference to different values of the inertial mass in the equatorial radial
direction as compared to the corresponding value for the axial direction.

As indicated above, isostructures (4)-(6) have been verified for all available fits
of experimental data for interior particle conditions. Their additional independent
verification, with particular reference to that of the isoequivalence principle (6), are
far from trivial. A conceivable experimental verification is that via the measurement
in exterior conditions of the isotopic shift of the frequency of light emitted in interior
conditions, that is, a shifty in the absence of relative motion. Consider the Doppler-



Santilli isoshift law along the third axis, Eq. (13) Ref. [3],

y=lopete), popm 7
V1—p2 u

uniquely prediucted bvy the LPS isosymmetry, with approximate form for the case
of the third axis v
- 2+, (8)

thus illustrating the prediction of both the isored- and isoblue-shift without any rel-
ative motion between the source, the medium and the detector. In fact, the ra-
tio na/ng is generally dependent on velocity, e.g., in a linear form, in which case
Lim — v = 0v3/Vinee # 0. Recall that the decrease of frequency is merely due to the
loss of energy by light to the medium of low density generally assumed in its ground
states (thus unable to supply energy). while the increase of frequency is due to the
acquisition of energy by light from ,media of high density (thus being in a highly
excited state).

The comparison between a conventional prediction of frequency for photons emit-
ted in the interior and their value measured in the exterior is expected to provide
a value of V., at least in a preliminary form. To illustrate the complexity of the
problem here addressed, we should indicate that, assuming the suggested measure-
ment is achieved for one extended body, such a result does not necessarily apply to
another body. It is hoped this comment dismisses the expectation that the problem
of establishing experimentally the energy equivalence of extended bodies can at best
be identified in this note and definitely not resolved.

We close this note with the indication that deviations from the mass-energy equiv-
alence principle for physical media appear to have important cosmological implica-
tions, such as the elimination of the far reaching conjectures of the universe expansion,
dark matter and dark energy. Recall that all astrophysical measurements are based
on readshifts, and 20th century theories are generally based on the tacit assumption
of the exact validity of special relativity at large, thus including the Doppler shift,
throughout all conditions existing in the universe.

In fact, the conjecture of the expansion of the universe is a consequence of the
measured cosmological redshift of light from far away galaxies under the tacit assump-
tion of the exact validity of special relativity for intergalactic media, since the latter
assumptions solely allows the former. However, the cosmological redshift turned out
as being the same in all directions, thus losing plausibility due to the placement of
Earth at the center of the expansion. Plausibility was further reduced by the ev-
idence of the increase of the redshift with the distance from Earth, in which case
special relativity and the Doppler shift solely allow the additional conjecture of the
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acceleration of the expansion with the distance from Earth. The experimental verifi-
cation of Santilli isoredshift presented in Ref. [3] eliminates the need for Earth being
at the center of the universe, and eliminated as well as the universe expansion and
its acceleration, since the cosmological redshift is reduced to loss of energy by light
to the intergalactic medium. Such a loss is proportional to the distance traveled in
said medium with consequential elimination of the acceleration of the expansion.

The conjecture of dark energy was voiced and rapidly accepted quite widely, in
support of the conjectures of the expansion of the universe and its acceleration. The
conjecture of dark energy did succeed in derailing attention on deviations from special
relativity, but without resolving the problems for which the conjecture was ventured.
As stressed in this note, “energy” is the source of the gravitational field. Consequently,
dark energy should contract the universe and definitely not accelerate its expansion.
Additionally, when uniformly distributed, dark energy has no possible or otherwise
plausible gravitational effect on any galaxy. Finally, possible local concentrations
to achieved the desired expansion and acceleration of the expansion are faced with
serious global inconsistencies.

The universal Poincaré-Santilli isosymmetry eliminates any need for the dark en-
ergy. This is achieved first via the elimination of the expansion of the universe (and
the related big bang conjecture), but also via the isotopic mass-energy equivalence.
As an illustration, the conjecture that dark energy constitutes 90% of the energy in
the universe, is eliminates via the increased maximal causal speed in the interior of
astrophysical bodies and the expression [3]

Edar‘k energy = Muniv (V;;ZZm - C2) (9)

where V2% is an average of the maximal causal speed in interior of stars, quasars
and black holes. In particular, dark energy as comprising 90% of our universe is
eliminated for V2% ~ 10 ¢. By recalling trhat the fit ofd all particle data vields Vinar
bigger than c in the interior of particles (e.g., a value Vipgy = 1.65 ¢ for the interior of
the proton Vol. UV, Refs. [2]), value V2% = 10 c is rather moderate when keeping
into account the much denser interior of stars, quasars and black holes.

We finally recall that dark matter originated from the claim that peripheral galac-
tic stars have the same speed despite the decrease of their distance from the galactic
center. A scientifically more accurate statement is that peripheral galactic stars have
a redshift that increases with the decrease of the distracted from the galactic center.
The conjecture of equal peripheral speeds is a consequence of the tacit assumption of
the exact validity of special relativity and the Doppler shift law within innergalactic
media that are clearly visible with telescopes. Santilli’s isoredshift also eliminates the
conjecture of dark matter because innergalactic media have a density that increases
with the decrease of the distance from the galactic center, thus causing an increasing
isoredshift without any need for far reaching conjectures.
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In summary, this note addresses the limitations of special relativity, including
the limitations of the mass-energy equivalence principle, the Doppler shift and other
laws, for physical conditions much beyond those of their original conception and
experimental verification, point particles and electromagnetic waves in vacuum. Since
the entire 20th century physics was based on the tacit assumption of the exact validity
of special relativity for all possible conditions, the author hopes to stimulate a moment
of reflection on the expectation that dramatic structural revisions should be expected
for all 20th century conjectures, whenever dealing with interior dynamical problems,
thus including structural revisions on the masses of particles, the masses of the solar
system, the expansion of the universe, its acceleration, the big bang, dark matter,
dark energy and numerous others, all intimately reducible to the assumption of exact
validity of Einsteinian doctrines within physical media.
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Abstract. In this paper, we study multi-valued hyperstructures following the ap-
parent existence in nature of a realization of two-valued hyperstructures with hy-
perunits characterized by matter-antimatter systems and their extensions where
matter is represented with conventional mathematics and antimatter is represented
with isodual mathematics.

Keywords: algebraic hyperstructure, hypergroup, hyperring, hyperfield, two-
valued field, isodual spacetime, hyperunit.
PACS: 02.10.-v, 02.20.-a.

45



1 INTRODUCTION

As it is well known, antimatter was solely treated in the 20th century via charge
conjugation on a Hilbert space H with states 1(x) over the field of complex numbers
C

Coie) = - vHa),

where g is the coordinate of the representation space, such as the Minkowski space- -
time.

The above approach caused a historical imbalance between matter and antimat-
ter, because matter was treated at all known levels, from Newtonian mechanics
to second quantization, while antimatter was solely treated at the level of second
quantization.

The resolution of this imbalance required the construction of a new mathemat-
ics, called Santilli isodual mathematics [5], which is constructed via a step-by-step
anti-Hermitean conjugation, denoted with the upper symbol 4 and called isodual
conjugation, of each and all aspects of the 20th century mathematics used for mat-
ter. The isodual conjugation of a generic classical or operator quantity A(z,p, ¥, .. )
depending on coordinates z, momenta p, states 1, etc. is then given by

A(Iﬂpﬂlllb}' * ‘) _> Ad(md,pd’ de " ') = A(-"L‘TFPT1 ’lpf?‘ * '))

thus resulting in the new isodual unit 1¢ = —~11, isodual real, complex or quaternionic
numbers n® = —n!, isodual functional analysis, etc. [5].

The main advantage of the isodual conjugation over charge conjugation is that
the former is applicable at all levels of study, thus characterizing the classical and
operator isodual mechanics. The resulting isodual theory of antimatter has, there-
fore, established a complete democracy in the treatment of matter and antimatter
at all levels, with intriguing implications, such as the prediction of gravitational
repulsion (antigravity) for matter in the field of antimatter and vice-versa.

Despite their simplicity, the physical and mathematical differences between charge
and isodual conjugations are nontrivial. From a physical viewpoint, charge conju-
gation solely conjugates the state, and does not conjugate the local coordinates z.
This implies that, under charge conjugation, antimatter is assumed to exist in the
same spacetime of matter.

By comparison, the isodual conjugation maps, for consistency, each quantity used
in the representation of matter into its isodual image, thus including a necessary
conjugation of spacetime with coordinates x into the novel isodual spacetime with
isodual coordinates z¢ = —z!. This conjugation implies that, under isoduality,
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antimatter exists in a new spacetime which is physically distinct from yet coexisting
with our spacetime. In particular, their physical differences are not trivial. e.g.,
because the isodual conjugation of coordinates is different than inversions [5].

From a mathematical viewpoint, the co-existence of the conventional and isodual
spacetimes in the same region of space creates a number of intriguing problems. At
a first inspection, it is rather natural to attempt the representation of matter and
antimatter via multi-dimensional models, e.g., via eight-dimensional mathematics
essentially consisting of the Kronecker product of the four-dimensional mathematics
of spacetime and its four-dimensional isodual. However, this mathematical formu-
lation is easily seen as being unacceptable because our sensory perception deny the
existence of spacetime bigger than those with four dimensions.

The compatibility of the complexities of nature with our sensory perception has
motivated the construction of maulti-valued hyperstructures with hyperunits [7}. In its
most elementary possible formulation expressed via conventional operations, matter
and antimatter can be represented via a two-valued hyperstructure characterized by

the multiplicative hyperunit
E={1,1%

where {...} represents a set, with hypernumbers
N = {n,n%
and related hyperproduct
N x M = {n x m,n* x*m?}

where X is the conventional (associative} multiplication, under which E is the correct
left and right hyperunit for all possible hypernumbers.

The set of hypernumbers with the indicated hyperunit and hyperproduct verifies
all axioms of a numerical field, thus yielding the two-valued hyperfield

F = {F(n, x,1), F4n¢, x%,1%}

from which all remaining aspects of a two-valued hypermathematics can be con-
structed via known procedures. Compatibility with our sensory perception is achieved
by the fact that, at the abstract realization-free level, numbers and hypernumbers,
spaces and hyperspaces, etc., coincide, thus avoiding the increase of dimensionality
not allowed by our sensory perception.

We also indicate the possibility of extending the above two-valued example to
a four-valued hyperstructure via the inclusion of Ying’s twin universes [10], one
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for matter and one for antimatter, which extension has intriguing features such
as characterizing a universe with identically null total physical characteristics, ie.,
identically null total time, total energy, total momentum, total entropy, etc., when
examined by an observer either of matter or of antimatter.

In conclusion, the resolution of the historical 20th century imbalance betweern
matter and antimatter via the novel isodual theory of antimatter appears to produce
physical evidence for the realization in nature of multi-valued hyperstructures with
hyperunits, and therefore suggesting the mathematical study presented below. '

2 GROUPS, RINGS AND FIELDS

In the area of algebraic structures, a mathematical entity called a group plays a
key role that resonates throughout the fascinating meadows of this intriguing dis-
cipline. Still more fascinating is it that the theory of this mathematical creature,
or “group theory”, was thought early on by mathematicians to have only intellec-
tual appeal. That is, nobody in his right mind thought that the group and its
concomitant theoretical aspects would ever serve mankind in any way other than
to stimulate his cognitive awareness. Yet as irony would prove, the mathematical
group would prove to be the pathway to understanding particle physics and the
subatomic entities that spin the tales of this most curious science.

Definition 2.1. Let G be a non-empty set together with a binary operation (usually
called multiplication) that assigns to each ordered pair (a,b) of elements of G an
element a - b in G. We say G is a group under this operation if the following three
properties are satisfied:

(1) a-(b-c)=(a-b)-¢ forallabc€f,

(2) there exists an element € € Gsuchthata-e=e-a=a, forall a € G,

(3) for every a € G there exists an element o' € G such thata-a™' =a™ o =e.

We have (a™})'=aand (a-b)'=b"' a7l foralla,beG.

Group theory is a powerful formal method for analyzing abstract and physical
systems in which symmetry is present and has surprising importance in physics,
especially quantum mechanics. Various physical systems, such as crystals and the
hydrogen atom, can be modeled by symmetry groups. Thus, group theory and
the closely related representation theory have many applications in physics and
chemistry.
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In mathematics, ring theory is the study of algebraic structures in which addition
and multiplication are defined and have similar properties to those familiar from the
integers.

Definition 2.2. A non-empty set B is called a ring, if it has two binary operations
called addition denoted by a + b and multiplication denoted by a - b for a,b € R
satisfying the following axioms: '

(1) (R,+) is an abelian group;
(2) multiplication is associative, i.e., a-(b-¢) = (a-b)-clorall a,b,c € R.

(3) distributive laws hold: a-{b+c)=a-b+a-cand (b+c)-a=b-a+c-afor
all a,b,c € R.

There is a group structure with the addition operation, but not necessarily with
the multiplication operation. Thus an element of a ring may or may not be invert-
ible with respect to the multiplication operation. While the addition operation is
commutative, it may or not be the case with the multiplication operation.

The philosophy of this subject is that we focus on similarities in arithmetic
structure between sets (of numbers, matrices, functions or polynomials for example)
which might lock initially quite different but are connected by the property of being
equipped with operations of addition and multiplication. The set of integers and the
set of n x m matrices with real numbers as entries are examples of rings. These sets
are obviously not the same, but they have some similarities, and some differences,
in terms of their algebraic structure. Although people have been studying specific
examples of rings for thousands of years, the emergence of ring theory as a branch
of mathematics in its own right is a very recent development. Much of the activity
that led to the modern formulation of ring theory took place in the first half of the
20th century. Ring theory is powerful in terms of its scope and generality, but it can
be simply described as the study of systems in which addition and multiplication
are possible.

Everyone is familiar with the basic operations of arithmetic, addition, subtrac-
tion, multiplication, and division. Fields are important objects of study in algebra,
since they provide a useful generalization of many number systems, such as the ra-
tional numbers, real numbers, and complex numbers. In particular, the usual rules
of associativity, commutativity and distributivity hold. Fields also appear in many
other areas of mathematics.

Definition 2.3. Let (F,+,-) be a ring such that (F — {0},-) is an abelian group.
Then (F,+,) is called a field.



A strictly totally ordered set consists of a set F and a binary relation < which
satisfies: |

(1) z £ z;

(2) for all z and y, exactly one of the three possibilities holds: z < y, z =y,
y <

(3} if:v<y.a;ndy<. z, then z < 2.

Definition 2.4. An ordered field consists of a fleld (F,+,-) and a set P C F of
positive elements satisfying the following:

(1) fz€ Pandy € P,thenz +y € F;
(2) fze€ Pandy € P, thenz .-y € F;
(3) for each z, exactly one of the three possibilities holds: £ =0,z € Por —z € P.

We can define a strict total ordering on an ordered field by setting z < y if and only
ify —z € P. We may write z <y for (z =y or £ < y).

3 HYPERGROUPS, HYPERRINGS AND
HYPERFIELDS

Algebraic hyperstructures represent a natural extension of classical algebraic
structures. They were introduced in 1934 by the French mathematician F. Marty
[4]. In & classical algebraic structure, the composition of two elements is an element,
while in an algebraic hyperstructure, the composition of two elements is a set. Since
then, hundreds of papers and several books have been written on this topic; for
example see [1, 2, 3, 9].

Let H be a non-empty set and x : H x H — P*(H) be a hyperoperation,
where P*(H) is the set of all non-empty subsets of H. The couple (H, x} is called a
hypergroupoid. For any two non-empty subsets A and B of H and x € H, we define

Ax B= U axbh Axz=Ax{z} and zxB={z}xB.

acAbeB
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Definition 3.1. A hypergroupoid (H, x) is called a semihypergroup if for all a,b, ¢
of H we have (a x b) X ¢ = a X (b x ¢}, which means that

U uxe={J axw.
ueaxb vEbX

A hypergroupoid (H, x) is called a quasihypergroup if for all a of H we have ax H =
H x a = H. This condition is also called the reproduction aexiom. _

Definition 3.2. A hypergroupoid (H, x) which is both a semihypergroup and a
quasihypergroup is called a hypergroup.

Let (S, -) be a semigroup and P be a non-empty subset of 5. The P-hyperoperations
[8] are defined as follows:

sXcy=z-Pry, sx;y=z-y P axiy=r-x-y,

for all z,y € S.
Remark that if (S,-) is commutative, then X, = x, = x; = X.

Theorem 3.3. (8] Let {S,-) be a semigroup and P be a non-empty subset of 5.
Then (S, x,) is a semihypergroup. Moreover, (S, x.) is a hypergroup if and only if
(S,:) is a group.

EXAMPLE 1. The guaternion group is a non-abelian group of order 8. It is often
denoted by Q or Qs and written in multiplicative form, with the following 8 elements

Q = {1: _laia —i)jv _j1 k"a "k}

Here 1 is the identity element, (—1)? = 1 and (—1)a = a(—1) = ~a for all a in Q
The remaining multiplication rules can be obtained from the following relation:

=42 =k =djk=—1

Now, suppose that P = {i, ,k}, a subset of Qg with three elements. Then we obtain
the hypergroup (Qs, X.) with the following multiplication table:

Xg 1 -1 i —i j —j k ) -k
1 {4, 4, k} {~t,—=f =k} | {-1, -k} {1, k, —3} {k, -1, —i} {—%,1,1} {~ii. —1} {j,—41}
-1 | {—i —j ~—k} {4, 7, k} {l.k —~j} {-1,~k.j} {—k 1,4} {k, =1, i} {4, —i,1} {—d% -1}
i {-Lk ~j} {1, —k,5} {—i 4, k} {i, —j, —k} {—4 -1} {4, i, -1} {—k, -1, i} {k, 1,4}
-1 {1, -k, j} {-1,& ~j} {i. —j, —k} {—1, 4, k} {4, i, -1} {—4, =41} {&, 1,1} {—k —-1,-i}
i1 {=k-1,i} {k.1, ~i} {—4, =i, -1} {441} {4, —3, k} {—4, 4, -k} {1, ~k, -5} {-1,k. 5}
=i {k, 1, -1} {—k.—1,1} {541} {—3,—i,—1} | {—4. 4, —k} {# =4, k} {~1,k, 7} {1, =k, -7}
k {4 —i, -1} {—j. i1} {—k,1, =i} {k, —1,£} {-1,-k, -3} {1,k j} {5, 4, ~1} {~i,—4,1}
-k {—j i1} {3, =i, -1} {k, 1,1} {—Fk. 1, —i} {1,k 5} {-L -k, =5} | {—-i.-41} {#:d, -1}
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Construction 3.4. Let (G,-) be an abelian group and P be any subset of G with
more than one element. We define the hyperoperation x p as follows:

Xy = z-P-y={z-h-y|heP} ifz#eandyFe
PY=1 2.y fz=eory=e.

We call this hyperoperation P, hyperopemtzon The hyperstmcture (G, xp) is a hy-
pergroup. Then (G, Xp) is a hypergroup.

Proof. We prove it for P = {s,t} and the proof is analogous for any P with more
elements. Let z,y, z be non unit elements of (G, ). Then, we have

zxplyxpz)y=z-P-(y-P- z) Py Pz,
(zxpy)xpz=(z-P-y) P Poy-P.z

SO.’EXP(y Xp2)=(CL' Xpy) XpZ.
If one of =, y, z equals to e, say = = e, then we have

exp(yxpz)=y-P-z and (expy)xpz=y-P-z

Therefore, x p is associative.
Now, let  # e. Then

¢ xpG={z}Us-P-(G—{e})] =} Ulz-s (G~ {eP]Ulzt (G—{e}))

in which we remark that the set z- s - (G — {e}), which contain all the elements of
G except the element z - s and the set 2 -¢- (G — {e}) contains all the elements of G
except z-t. Therefore, we have £ x pG = G. The same proof for Gxpx = (7. Finally,
the reproductivity for the unit e is obvious. Thus, X p is reproductive. Therefore,

(G, X p) is a hypergroup. O

Remark that e is scalar unit in (G, Xp). Any element z of G has one or two
inverses, the elements (z-5)"* and (z-¢)"' whenz-s#eand z-t #e.

EXAMPLE 2. Consider the Klein four-group Ky = {e,a,b,c}. It is abelian, and
isomorphic to the dihedral group of order 4. It is also isomorphic to the direct sum
Zy ® Zo. Multiplication table for Klein four-group is given by:

b

oloola|o
oo |als
alajololo

b
c
e
a

|| 0

% e .
- : : -t - -



Now, we consider the subgroups P, = {e, a}, P, ={e, b} and P; = {e,c}. Then, ac-
cording to Construction 3.4, we obtain the canonical hypergroups (G, xp,), (G, Xp,)
and (G, X p,) with the following tables:

a b c X a b

) b C
{e,a} | {b, c} | {b, ¢}
{b,c} [{e,a} {{e,a}
{b,c} | {e,a} | {e, a}

a b
a b c
{e,c} | {e,c} | {a,b}
{e,c} | {e.c} | {a,b}
{a,b} | {a,b} | {e,c}

EXAMPLE 3. Consider the group (Z; — {0},-), and let P = {2,3}. Then (Z, Xp)
is a hypergroup, where the multiplication table for Xp is:

X

x
F

{e,b} | {a,c} | {e, b}
{a,c} | {e,b} | {a,c}
{e,b} | {a,c} | {e.b}

olols|alo

Ol |0IQ

o3 llusl Rull Re)
o3 =l =T Ras]

X py

Gloye |0
Olo|Re |0

xp|1] 2 3 4 5 6
1 1] 2 3 1 5 6
2 T2 {15 | {4,5) | 12,3} | {26} | (L3}
3 13|{4,5)|{4,6}|{1,3) | {23} |{L5}
1 [4[{2,3Y [{L,3} [ {4,6) {45} [{2.6}
5 151{2,6) [{2,3) | {45} |{L5}]| {46}
6 [6]{L3} 11,5} ]{2,6}[{4,6} {23}

Definition 3.5. A triple (R, +, %) is called a multiplicative hyperring it

4) for all a,b € R, we have a x (—b) = (—a) x b= —(a x b).

If in (3) we have equalities instead of inclusions, then we say that the multiplicative
hyperring is strongly distributive.

Definition 3.6. Let (F, +, x) be a multiplicative hyperring such that
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(1) (F — {0}, x) is a hypergroup,
(2) x is strongly distributive with respect to +.
Then (F,+, x) is called a multiplicative hyperfield.

Proposition 3.7. Let (F,+,-) be a field and P be a non-empty subset of F —
{0}. Consider the P-hyperoperation defined in Theorem 8.3. Then (F,+,%) 1 a
multiplicative hyperfield.

Proposition 3.8, Let (F,+, ) be a field and P be a non-empty subset of (F —
{0}, ). Consider the hyperoperation defined in Proposition 3.4. Then (F,+,%x}isa
multiplicative hyperfield.

EXAMPLE 4. Consider the finite field (Zr, +, -), the field of integers modulo 7, and let
H = {1,6}. Then (Z7, +, x) is a multiplicative hyperfield, where the multiplication
table for x is:

2 3 4 5 6
0 0 0 0 0

2 3 4 5 6
(3,47 [ 11,67 | (5,6} | (3,41 | {2.5]
1,6} [ {2,5} | {2,5} { {1,6} | {3,4}
{1,6} [{2,5} | {2,5} [ {16} |{3,4}
3,4} [ {1,6} [ {1.6} | {3,4} | {2,5}
61{2,5} | {3,4}]{3,4} | {2,5} | {1,6}
EXAMPLE 5. Consider the infinite fields (Q, +,-), (R,+,-) and (C,+,-). Clearly
[ ={1,-1} is a subgroup of (Q — {0},), (R — {0},-) and (C — {0}, ). Therefore,
according to Proposition 3.8, (Q,+, x), (R, +, x} and (C,+, x) are multiplicative
hyperfields. For example, we have:

3x5=3-1-5={15-15},
1/2 x 3/5=1/2-1-3/5 = {3/10,-3/10}.

Ot ] W B3] P O

[on] Nen] Nav] Nan] Ran] Jan] o) Rl

S| G i ] o BO | O X

4 HYPERUNITS

Let (F,+, ) be a field and H = T = {1,-1}. According to Proposition 3.8,
(F,+, x) is a multiplicative hyperfield. We define

G=ax1={a,—a},
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and we set R
F={a|aeF}.

We define a sum and a multiplication on F as follows:

: + b,

a- b,

Ty o)
Il
=]

i

&) =)

57
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foralle,be F. _ R R ~
Theorem 4.1. (F,®,®) is a field and I is the unit of (F' (we call I a hyperunit).

5 CONCLUDING REMARKS

In this note we have indicated, in the simplest possible mathematical formu-
lation, the apparent existence in nature of a concrete realization of multi-valued
hyperstructures with a basic hyperunit given by matter-antimatter systems. We
have then studied said hyperstructures in their proper mathematical formulation
and provided a number of examples. By keeping in mind the complexity of nature,
we hope this study may be valuable for quantitative representations of complex
systems, such as biological structures ion general and the DNA code in particular,
that appear to require indeed the most advanced and general possible multi-valued
hyperstructures.
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Tube
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Abstract. A proposal for the realization of Santilli’s comparative test of the gravity of
electrons and positrons via a horizontal supercooled vacuum tube is described. Principle
and requirements are described concerning the sources, vacuum chamber electromagunetic
shielding and pressure and position sensitive detector. It is concluded that with current
technology the experiment is perfectly feasible.

Keywords: Anti matter gravity; Equivalence principle; Experimental proposal
PACS: 14.60.Cd;29.30.-h;07.05.Fb

INTRODUCTION

Although the equivalence principle is well established for neutral bulk matter [2},(3]
and neutrons [4],[5],[6] it has no experimental verification for charged elementary particles
or antimatter.

Even the gravitational mass of the electron has not been measured. Although there has
been an attempt to measure the gravitational mass of electrons in the 1960’s by Witteborn
and Fairbank [7],(8], this experiment was inconclusive. The goal of this experiment was
to determine the gravitational force on both electrons and positrons, but is was only
performed with electrons yielding a result disputed in literature. The experiment was
not repeated with positrons due to lack of an adequate positron source [9]. The primary
cause of the failure of the experiment is the magnitude of the effect, comparable to the
force on a elementary charge due to an electric field of 5.6 x 107! V/m, corresponding
in magnitude to the force repelling two unshielded electrons 5 m apart in vacuum. All
electric fields must be controlied within at least an order of magnitude betfer accuracy.

Efforts are underway to measure the equivalence principle for neutral antimatter at
CERN [10],[11],/12] and Fermilab [13],[14] to avoid the problems associated with the
charge of the particle. However, it is argued that the equivalence principle for matter or
antimatter could be different from the one for charged elementary particles [1],[15] so that

an experiment with electrons and.peﬁltmns is still called for. e

£
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Since the first attempts of Witteborn [7] to measure the gravitational mass of an
electron much effort has been invested in the study of the experimental difficulties re-
ducing the electric field to theoretical acceptable limits. First, the focused changed from
positrons to anti protons [16] due to the large inertial mass difference between the ele-
mentary particles. Later after a 1996 workshop on antimatter gravity and anti hydrogen
spectroscopy [18] the focused changed again to neutral antimatter. The reason for this
was the problem posed by the so-called patch-effects [9]. These effects were assumed to
render the measurements with positrons and even with anti protons impossible.

However, Witteborn and Lockhart have always maintained that the patch-effects were
somehow shielded after cooling to a temperature of 4.2 K [8],[19],[20]. A possible shielding
mechanism of the patch-effect was observed by Rossi [21] and a patch-effect reducing with
temperature and surface treatment has been observed over a metal surface [22]. Also
Dittus (23], proposing a gravity experiment in space, argues that with modern techniques
the patch-effect can be reduced significantly.

The above shows the need for a comparison of the gravitation on electrons and
positrons and addressed why until now this has not been performed. In view of the
recent, technological developments of surface treatment these limitations can now be over-
come and the experiment in a free horizontal flight in a high vacuum tube as first proposed
by Santilli [1] and its principles worked out by Mills [25] can now be performed with small
technological risks.

In the following first the principle of the experiment is lined out, then the the several
components are highlighted and finally the conclusions are given.

PRINCIPLE

The principle of Santilli’s comparative test of the gravity of electrons and positrons is
shown in figure 1. At one end of a well-shielded horizontal vacuum tube an electron or
positron is released with a horizontal velocity, v. The particle moves through the vacuum
tube until it reaches the other end at a distance I and it is detected with a position
sensitive detector. During the flight the particle experiences a constant gravitational
acceleration, g, or gp. The deflection at the end of the flight path is simply given by

t2
Az p= ge,pE (1)

where ¢ is the time the particle needs to reach the detector after is has been released at
the source. This is called the time-of-flight.

The deflection of the particle is proportional to the gravitational force so that mea-
suring the deflection is sufficient to determine its sign. For neutral matter this set-up can
be easily realized and with some more effort the same principle has been used to detect
the gravity effects on neutrons [4],[5].

However, the measured deflection also depends on the time-of-flight, which is simply
given by L/v. Hence, the deflection'is" inversely proportional to the (horizontal) kinetic
energy of the particle. The particle.source will typical emit particles with some velocity =
distribution, hence the deflection is smeared out. This can be prevented by _Ilfieasurin'é;'fﬂ" .
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Vacuum tube

Source
Za
0 ' X
i}
< 7 ,]J
Detector

Figure 1: Principle set-up of Santilli’s comparative test of the gravity of electrons and
positrons.

the time-of-flight using a pulsed source. In that case the deflection of the particles is
proportional to the square of the time-of-flight.

Another assumption in the above reasoning was that the particles were emitted hori-
zontally. With a typical particle source this direction will have some final spread around
the horizontal, which again results in smearing out of the deflection. For neutral matter
this is overcome by applying a diaphragm system to direct and collimate the particle
beam. As Mills [25] has shown for charged particles a diaphragm system can be replaced
by a focusing system and a suitable aperture system in the middle of the flight path.
This relaxes the requirements for particle source strength quite a bit as a much larger
divergence can be tolerated. With the focusing lens the source is imaged on the detec-
tor reducing the smearing out of the deflection. This is schematically shown in figure 2.
For a lens to work appropriate (with as small as possible aberrations) the lateral dimen-
sions should be some two orders of magnitude smaller than the longitudinal dimensions
(par-axial approximation).

Vacuum tube Lens
Source \ @

}

Zy

] \
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. |

Detector

Figure 2: Principle set-up of Mllls s adaptatlon of Santilli’s comparative test of the grawty
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of electrons and positrons. Lo _ mIs oo
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Another experimental feature that Mills incorporates is to reverse the flight direction
keeping all other experimental conditions unchanged. The average of the four deflections
is much less sensitive to remaining electric and maguetic stray fields and equal to

(Az) = (ge + gp)LZ/vz (2)

Hence both sides of the vacuum tube must provide sources of electrons and positrons
and detectors of the same. This also limits the possibilities of the focusing system to a
syminetrical one, with a magnification of 1. In the following sections some details on the
main components are give.

COMPONENTS

Electron and positron sources

The main requirements for the electron and positron sources needed for this experi-
ment can be inferred from figure 3. To have a good compromise between maximal kinetic
energy and minimal flight-path, the available source area must have a height of some 100
um and a length of the order of a centimeter. The length can not be larger because then
the focusing properties of the lensing system will be imparted. The height can not be
larger as then too small kinetic energies would be needed. The kinetic energies needed
are of the order of 1 to 100 ueV, which for electron and positron sources are ultra low
energies. That these ultra low kinetic energy electron and positron sources needed for
this experiment are obtainable in sufficient quantities was shown in concept by Mills [25]
(needed fast positron beam intensity of 3 x 107 1/s/cm?) and by experiment as discussed
by Kurz [26]). The possibilities would increase when instead of a **Na source, a reactor-
based positron sources [27],[28] could be used where the positron yield is at least a factor
of 10 larger. Another possibility is to use positron traps which can store up to 3 x 10%°
positrons per cell {29] and release them in pulses.

Focusing, shielding and flight path

Focusing has to be done by means of a symmetric time-of-flight dependent electrostatic
or magnetic lens, because the focus distance of such a lens is determined by the relative
kinetic energy change of the particles passing the lens. The ability to tune the lens to the
right field value will determine for a large portion the minimal attainable kinetic energy
or maximal attainable deflection. An important design criterion is the wavelike structure
that electrons and positrons exhibit. The De Broglie wavelength is inversely proportional

to the velocity given by
h

A= e = Mgl (3)

‘ T v
where h = 6.626 x 1073* Js, m; = 9.109 x 10~ kg is the electron (or positron) inertial
mass, \g = 100 nm for vy = 7.27 km/s. Due to this wavelike structure of the particles,

the circular apertures in the middle ofithe setup result in a Fraunhofer diffraction pattemgs-. . . -

at the detector plane. The most simple diffraction pattern from a circular aperture with;-
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diameter D is the Airy pattern where the inner most intense fringe is called the Airy disk.
This Airy disk has a diameter of
I /\[}’UO L
d=122A—==122——— 4
D v D (4
as long as D >> A. Note that the Airy disk size is inversely proportional to the velocity
of the particles, while the deflection is inversely proportional to the square of the velocity.
The diameter of the Airy disk should be less than the anticipated deflection (Rayleigh’s
criterion), hence
Aot Dyt
|9e ol

where Dy = 10 cm and tq = 1.81 ms. Hence, due to the wavelike nature of the particles,
the minimal time-of-flight needed to obtain a sufficient resolution is inversely proportional
to the diameter of the aperture. Note that for L = 13 m and D = 10 cm, the velocity of
the particle should be maximal 7.3 km/s, hence its wavelength at least 100 nm and its
corresponding kinetic energy maximal 150 peV. In such a case the deflection would be
minimal 16 pgm. The deflection increases to 0.1 mm for particles with a kinetic energy of
25 peV. If one would take the values used by Mills [25] D = 10 cm and L = 100 m, then
the velocity of the particle should be maximal 55.2 km/s, hence its wavelength at least
13 nm and its corresponding kinetic energy maximal 8.7 meV. In such a case the minimal
deflection would still be only 16 um. The deflection would however increase to 5.6 mm
for particles with a kinetic energy of 25 peV.

In reality the source will have a finite dimension, increasing the above mentioned spot
diameter. For an ideal instrument the image of the source on the detector plane and the
Airy disk should have approximately the same size and be comparable to the detector
resolution. In such a case the minimal needed aperture is completely determined by the
needed resalution

t=L/v>244

Aot

@ |Gzl

This also fixes the minimal needed length of the instrument as D/L is between 0.1 and
0.001. The upper bound is due to limitation of the particle-optics components (par-axial
approximation) and the lower bound due to intensity limitation as the particle intensity
on the detector is given by all the particles that are passed through the aperture and is
proportional to 7?2, hence n cannot be made too small. If it is used that D/L = 7, then
the maximum velocity to obtain a sufficient resolution is given by

Doin = 1.73 (6)

Aotp
=122— 7
v=127 ™
and the corresponding maximal kinetic energy
2
Ekm = 0.74m;. (M) (8)
c R dn

The maximal kinetic energy of thespatticle as function of the aperture diameter is show®i=: - . -
in the left graph of figure 3 for different values of 7. The corresponding minimel length;-
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Figure 3: Left: Graph of the maximal kinetic energy of the particles as function of aperture
diameter in a gravity experiment to assure sufficient spatial resolution. Right: Graph of
the minimal needed flight path as function of the same. Solid black line for n = 0.001;
dashed red line for n = 0.01 (see text).

of the flight path is shown in the right graph. From these graphs one can see that the
choices made by Santilli and Mills to use a flight path between 10 and 100 m is a good
compromise between the needed flight path (as small as possible) and the needed minimal
kinetic energy (as large as possible). A flight path as large as possible would be optimal
as all other requirements relax when the flight path increases. However, the realization
costs for the flight path will be roughly proportional to the square of the flight path length
because for an optimal performance the diameter of the flight path has to be proportional
to its length. If only the length will be made larger and not the diameter then the
advantage of increasing the flight path is lost in the reduction of intensity. Hence, the
optimal flight path depends on budget but probably will be between 10 and 100 m.

Probably the most crucial part of the instrument will be the shielding of residual
electric and magnetic fields. The most important components that need to be shielded
sufficiently well are those resulting in a force in the same (or opposite) direction as gravity.
An extensive review of all possible fields that need to be shielded is given by Darling [9].
His conclusion is that with the current technology it is possible to construct an adequate
shielding. The way this can be done is described by Mills [25]. It consists of a stacked
layer system of different materials cooled to a temperatures close to 4.2 K to obtain op-
timal shielding.

Surface patch potential effect

The only remaining shielding issue is the electric potential variation in the flight path
of the particle due to the inner surface of the most inner layer of the flight path tube.
This inner surface consists of small crystallites exhibiting a small potential variation, these
constitute the so-called patch-effect. This might cause a potential variation of about 1 4V
on the axis of the flight tube. This is:a reason why the inner shield must also be cooled
down to liquid helium temperatures reducing the patch effects.

A way of determining the influetieé-of the patch effect is to estimate the optical phagei- - - -
differences due to potential variations over different paths from source to detector. The;
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optical phase along a particle trajectory is given by

21 -
¢ = fn(s)ds (9)

where n(s) equals the refractive index along the trajectory defined by 3. This refractive
index is coupled to the potential by

2em; A2V (3)

&) =1% 3

(10)
where e = 1.602 x 107 C is the elementary charge and V(s) is the potential along the
trajectory. The plus holds for electrons, the min for positrons. Variations in the potential
due to the patch effect are very small, hence the variations in the refractive index can be
approximated by

AV (3) (11)

and variations in the optical phase are directly related to variations in the potential

according to
em1

Ay = £271 ijV §)ds (12)

According to Darling [9] a Gaussian distributed patch effect {with root-mean-square patch
potential, ¢pacn and average crystallite size ¢) on the inner surface of a long cylinder
(L >> D) results in potential variations of ¢pa42¢/D on the axis. The line integral over
these variations can be estimated by transforming the integral over a sum of 1,/{ patches
of length . The sumn can be regarded as a random walk, so that the final spread in 9

becomes
Cr—‘l,[l A g qf’patch v (]3)
2 )\g D Pg

where Py = h%/(2em;h) = 1.5 x 107" Vm. To be able to get a good focus this variation
in optical phase should be much smaller than 27. Note that the variation is proportional
to the wavelength, which clearly favors faster particles.

For the optimal resclution setup of the previous section this condition puts a limit on

the ratio between D and L
Co $oCo
14
n<135(d) (C)(%Chc) (14)

where dy = 100 pm, {; = 1 pm, ¢o = 1 V. This is completely determined by the required
resolution and the patch potential distribution. If a resolution of 100 pm is required and
11 would be between 0.001 and 0.1, then for { = 1 pm, ¢paen has to be less than 100 to
10 'V, which is perfectly feasible [22].

According to equation {13) the spread in optical phases close to the cylinder axis is
proportional to the wavelength. This e:xplalns why the vertical flight path as used by
Witteborn [8] is much more sensitivé to the patch effect than the horizontal flight path
considered here. Take A = Ayvy/+\lg&{the average wavelength for a particle just reaching .. .
the top of the flight path), then for L=1m, D=4cmand (=1 pm, ¢peen has to-
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be less than 250 nV at least a factor of 400 smaller. Darling [9] takes { << 1 nm and
Ppaten, = 0.01 V, as limit which corresponds to a variation of the optical path phase of
gy << 2.4w. Hence, both approaches give similar results.

Equation (13) can be rewritten as function of the total deflection of the particle beam

O"IIJ 28 #QAZ ¢?Gtc}lc (15)
gep

This is independent of the particle properties. Hence, for a required given deflection in
the proposed experiment, the influence of the patch potential effects does not depend on
the type of particle used.

In view of the relatively large kinetic energies involved in this horizontal flight path
experiment with regard to the Witteborn experiment (7| and the implicit determination
of the average kinetic energy by means of the time-of-flight method, the influence of the
patch-effects will be much reduced.

This also relaxes the requirements on the vacuum pressure quality to about 1078 Pa
as the time-of-flight is at least a factor of 100 shorter and the main effect it has on the
results is a reduced intensity at the detector.

Electron and peositron detection

The preferable detector should be a linear position sensitive detector that can detect
both electrons and positrons. The spatial resolutions should be in the order of 100 um and
the time resolution of the order of 0.1 ms with an efficiency as high as possible. These are
moderate requirements and can be met by for instance micro channel plates {30],[31],[32]
or linear CMOS detectors [33].

CONCLUSIONS

The above shows that with current technology it is perfectly feasible to perform the
long awaited experiment to compare the gravitation on electrons and positrons as sug-
gested by R.M. Santilli [24] almost two decades ago. The largest challenge will be the
adequate shielding of the flight path to acceptable levels by means of a supercooled vac-
uum tube.
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Abstract. In the quiver of hyperstructures Professor R. M. Santilli in carly 90’es,
tried to find algebraic structures in order to express his pioneer Lie-Santilli
Theory. Santilli’s theory on ‘isotopies’ and ‘genotopies’, born in 1960’s,
desperately needs ‘units €’ on left or right, which are nowhere singular,
symmetric, real-valued, positive-defined for n-dimensional matrices based on the
so called isofieids. These clements can be found in hyperstructure theory,
especially in Hy-structure theory introduced in 1990. This connection appeared
first in 1996 and actually several Hy-fields, the e-hyperfields, can be used as
isofields or genofields so as, in such way they should cover additional properties
and satisfy more restrictions. Meanwhile, the hyperstructure theory obtained a lot
of results and applications in mathematics as well as in other applied sciences.

This presentation aims to review applicable hyperstructures in Lie Santilli
theory especially when multivalued problems appeared, either in finite or in
infinite case.

Key words: Lie-Santilli theory, hyperstructures, hope, Hy-structures.
AMS Subject Classification: 20N20, 16Y99

I INTRODUCTION

The hyperstructures were introduced by F.Marty in 1934 [18] when he first
defined the hypergoup as a set equipped with an associative and reproductive
hyperoperation. The motivating example was the quotient of a group by any, not
necessarily normal, subgroup. M.Koskas in 1970 [17] was introduced the
fundamental relation f*, which it turns to be the main tool in the study of
hyperstructures. T.Vougiouklis in 1990 [27] was introduced the H,-structures, by
defining the weak axioms. The motivating example of those hyperstructures is the
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quotient of any group by any partition. Therefore the class of H,-structures is the
largest class of hyperstructures. Therefore we have:

Motivation for H,-structures:

The quotient of a group with respect to an invariant subgroup is a group.
Marty states that, the quotient of a group with respect lo any subgroup is a

hypergroup.
Now, the quotient of a group with respect to any partition is an H,-group.

In [47] we introduced the abbreviation: hyperoperation=hope. Thus there is a
definition: In algebraic hyperstructures there is a hope, in the classical structures
there is not any hope!

In 1996 R.M.Santilli and T.Vougiouklis [21], point out that in physics the most
interesting hyperstructures are the one called e-hyperstructures. These
hyperstructures contain a unique left ant right scalar unit, which is the most
important tool in Lie-Santilli theory. In what follows we present the related
hyperstructure theory mainly from the paper [21], enriched with some new results
on the related hyperstructures. However one can see the books by P.Corsini [5],
T.Vougiouklis [30], P.Corsini-V.Leoreanu [6] and B.Davvaz- V .Leoreanu-Fotea
[12], for more definitions as well as the site: aha.eled duth.gr, for an extensive
bibliography on the concept. Moreover, in this site one can see the Vougiouklis’s
point of view on the birth and the history of Hy-structures in the above site: An H,~
interview, i.e. weak, with Th. Vougiouklis, Interviewer N.Lygeros.

2 BASIC DEFINITIONS ON HOPES

In a set H is called hyperoperation (abr. hepe) or muitivalued operation, any
map from HxH to the power set of H. Therefore, in a hope

-:HxH - @(H): (x,y) » xycH

the result is a subset of H, intead of an element as we have in usually operations.
In a set H equipped with a hope -:HxH — P(H)-{{J}, we abbreviate by

WASS the weak associativity: (xy)zmx(yz) # &, VX,y,zeH and by
COW the weak commutativity: xymyx +J, Vx,yeH.

The hyperstructure (H,-) is called H,-semigroup if it is WASS and it is called
Hy-group if it is reproductive H,-semigroup, i.e. xH=Hx=H, ¥xeH. The
hyperstructure (R, +,-) is called H,-ring if (+) and (-) are WASS, the reproduction
axiom is valid for (+) and (-} is weak distributive with respect to (+):
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x(yrz)n(xytxz) = &,  (xty)zm(xztyz) = &, Vxy,zeR.

An extreme class of hyperstructures is the following [26]: An H,-structure is
called very thin iff all hopes are operations except one, which has all
hyperproducts singletons except one, which is a subset of cardinality more than
one.

An H,-group is called cyclic [22], if there is an element, called generator,
which the powers have union the underline set. The minimal power with the
above property is called period of the generator. Moreover if there exist an
element and a special power, the minimum one, is the underline set, then the H,-
group is called single-power cyclic.

The main tool to study ail hyperstructures are the fundamental relations p¥, y*
and e*, which are defined, in H,-groups, H,-rings and H,-vector spaces,
respectively, as the smallest equivalences so that the quotient would be group,
ring and vector space, respectively [23, 27, 30]. A way to find the fundamental
classes is given by analogous theorems to the following:

Theorem 2.1 Let (H,:) be an Hy-group and U be all finite products of elements of
H. We define the relation P by setting xBy iff {x,y}cu, uclU. Then B* is the
transitive closure of f.

The main point of the proof of this theorem is that the relation p guaranties the
validity of the following: Take two elements X,y such that {x,y}cuel and any
hyperproduct where one of these elements is used. Then, if this element is
replaced by the other, the new hyperproduct is inside the same fundamental class
where the first hyperproduct is. Therefore, if the ‘hyperproducts’of the above p-
classes are ‘products’, then, they are fundamental classes.

Analogous theorems for the relations y* in H,-rings and £* in H,-modules and
H,-vector spaces, are also proved.

An element is called single if its fundamental class is singleton.

The fundamental relations are used for general definitions. Thus, to define the
H,-field the y* is used: A Hy-ring (R,+,-) is called H,field if R/y* is a field. In the
sequence the H,-vector space is defined [30].

Let (H,-), (H,*) be H,-semigroups defined on the same set H. () is called
smaller than (*), and (*) greater than (-), iff there exists an

fe Aut(H,*) suchthat xycfix*y), ¥x,yeH.

Then we write -<* and we say that (H,*) contains (H,"). If (H,-) is a structure
then it is called basic structure and (H,*) is called Hy-structure.

The little Theorem 2.2 Greater hopes than the ones which are WASS or COW,
are also WASS or COW, respectively.
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The definition of the H,-field introduced a new class of hyperstructures[40,43]:

Definition 2.3 The Hy-semigroup (H,.) is called A/v-group if the quotient H/$* is
a group.

The h/v-groups are a generalization of the Hy-groups because in h/v-groups the
reproductivity is not necessarily valid. However, sometimes a kind of
reproductivity of classes is valid. This leads the quotient to be reproductive. Ina
similar way the A/v-rings, h/v-fields, h/v-modulus, h/v-vector spaces etc, are
defined.

The motivation to this concept is the following: Let ®* be the kernel of the
canonical map from R to R/y¥*; then we call reproductive H,-field any H,-field
{R,+,") if the following axiom is valid:

x(R-0*) = (R-0*)x = R-0*, VxeR-o*.

So the h/v-group is a generalization of the H,-group since the reproductivity is
not necessarily valid. Sometimes a kind of reproductivity of classes is valid, i.e. if
H is partitioned into equivalence classes o(x), then the quotient is reproductive
xao(y)y=o(xyy=o(x)y, vxeH.

Hopes on any type of matrices can be defined:

Definition 2.4 [48] Let A=(a;)€Mu.n be matrix and s,teN, with 1<s<m, 1<t<n.

Then helix-projection is a map st: Mmu—>Mg: A—>Ast = (a;), where Ast has
entries

@i = { @irsjone| 1<i<s, 1<j<t and x,\eN, i+ks<m, j+At<n }
Let A=(aj)cMiuxn, B=(bj)cMu., be matrices and s=min(m,u), =min{n,v). We
define a hyper-addition, called helix-addition, by
B : MMy P(Mi.0):( A, B)> ADB=A st+Bst=(ajj)+(bij)c Msxt

where (2y)+(by)= {(¢y)~(aitby)| ayeay and byeby)}.
Let A=(aj)eMm«, B=(bj)eM,., and s=min(n,u). We definc the helix-
multiplication, by

® : MupaMuey = P(Mu): (A,B) > A®B = Ams-Bsv = (a;)-(bj)) € My

where (aj}(bi)~ {(ci)~(Zaiby) | ajea; and byebs)}.

The helix-addition is commutative, WASS but not associative. The helix-
multiplication is WASS, not associative and it is not distributive, not even weak,
to the helix-addition. For all matrices of the same type, the inclusion
distributivity, is valid.
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The problem of enumeration and classification of H,-structures, was started
from the beginning [18]. However, the problem becomes more complicate in H,-
structures because we have very great numbers in this case. The partial order in
H,-structures [27] and the Little Theorem, transfers and restrict the problem in
finding the minimal, up to isomorphisms, H,-structures. In this direction we have
results by Bayon & Lygeros [3]:

Let H={a,b} a set of two eclements. There are 20 H,-groups, up to
isomorphism,

Suppose in H={e,a,b}, a hope is defined and there exists a scalar unit, then,
there are 13 minimal H,-groups. The number of all H,-groups with three elements,
up to isomorphism, which have a scalar unit, is 292.

In a set with three elements there are, exactly 6.494 minimal H,-groups. 137
are abelians and the 6.357 are non-abelians; the 6.152 are cyclic and the 342 are
not cyclic.

The number of Hy-groups with three elements, up to isomorphism, is
1.026.462. More precisely, there are 7.926 abelians and 1.018.536 non-abelians;
the 1.013.598 are cyclic and the 12.864 are not cyclic, the 16 are very thin.

The number of all Hy-groups with four elements, up to isomorphism, which
have a scalar unit, is 631.609. There are 10.614.362 abelian hopes from which the
10.607.666 are cyclic and the 6.696 are not. There are 8.028.299.905 abelian H,-
groups from which the 7.995.884.377 are cyclic and the 32.415.528 are not.

3 ENLARGING AND REDUCING HYPERSTRUCTURES

In [37] the “enlarged’ hyperstructures were examined in the sense that an extra
element, outside the underlying set, appears in one result. In both directions,
enlargement or reduction, most useful in representation theory, are those H,-
structures with the same fundamental structure: Suppose we have a structure and
one element, outside of the structure, then we can attach this element in order to
have a hyperstructure which becomes h/v-structure. Moreover we have the
opposite problem: How one can remove at least one element of an Hy-structure or
a classical structure?

The Attach Construction 3.1 [37,41). Let (H,)) be an Hy-semigroup and veH.
We extend the () into H=Hu{v} as follows: x-v=v-x=v, VxeH, and v-v=H.
The ( H,-) is a h/v-group where (H,")/B*=Z, and v is a single element.

We call the hyperstructure ( H,-) the attach h/v-group of (H,.).

73



Remarks. The core of (H,:) is the set H. All scalar elements of (H,-) are also
scalars in (H,-) and any unit element of (H,-) is also a unit of (H,-). Finally, if (H,-)
is COW (resp. commutative) then (H,-) is also COW (resp. commutative).

The motivation of the attach construction is the first kind very thin Hy-groups
{26].

In the representation theory of H,-groups by H,-matrices one needs H,-rings or

H,-fields which have non-degenerate fundamental structures in addition with only
few of hypersums and hyperproducts to have cardinals greater than one,
Theorem 3.2 Let (G,)) be semigroup and v¢G be an element appearing in a
product ab, where a,beG, thus the result becomes a hyperproduct a®b={ab,v}.
Then the minimal hyperoperation (®) extended in G'=Gu{v} such that (®)
contains (-) in the restriction on G, and such that (G',&®) is a minimal Hy-
semigroup which has fundamental structure isomorphic to (G, ), is defined as
follows:

a®b={ab,v}, x®y=xy, V(xy)e G-{(ab)}
v®v =abab, x®v=xab and v®x=abx, VxeG.

Therefore (G7,®) is a very thin Hy-semigroup.
If (G, ) is commutative then the (G',®) becomes strongly commutative.
Generaly we have:

Definitions 3.3 [37,41]. Let (H.-) be a hypergroupoid.

We say that we remove heH, if we simply consider the restriction of (-) on H-{h}.
We say that heH absorbs heH if we replace h, whenever it appears, by h.

We say that heH merges with heH, if we take as product of xeH by h, the union
of the results of x with both h and h, and consider h and h as one class, with
representative h.

The uniting elements method was introduced by Corsini-Vougiouklis [7] in
1989. With this method one puts in the same class, two or more elements. This
leads, through hyperstructures, to structures satisfying additional properties.

The uniting elements method is the following: Let G be algebraic structure
and let d be a property, which is not valid and it is described by a set of
equations; then, consider the partition in G for which it is put together, in the
same partition class, every pair of elements that causes the non-validity of the
property d. The quotient by this partition G/d is an H,-structure. Then, quotient
out the H,-structure G/d by the fundamental relation P*, a stricter structure
(G/d)/p* for which the property d is valid, is obtained.
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An interesting application of the uniting elements is when more than one
properties are desired. The reason for this is that some of the properties lead
straighter to the classes than others. So, it is better to apply the straightforward
classes followed by the more complicated ones. The commutativity and
reproductivity are easy applicable properties. One can do this because the
following is valid.

Theorem 3.4 [30] Let (G,-) be a groupoid, and F= {fy,..., fn, four1,..., fnn } be @
system of equations on G consisting of two subsystems  F={fi,....,fn} and
Fo={fui1,.... fmn}. Let o, Gy be the equivalence relations defined by the uniting
elements procedure using the systems F and F, resp., and let o, be the equivalence
relation defined using the induced equations of F, on the grupoid  G,=
(G/om)/B*. Then

(G/o)/B* = (Gm/on)/p*.

4 THE 0-HOPES

In [44] a hope, in a groupoid with a map on it, called theta 0, is introduced.
Definitions 4.1 Let (G,)) be groupoid (resp., hypergroupoid) and f:G—G be a
map. We define a hope (0), called theta-hope and we write &hope, on G as
follows

X0y = { tx)y, xf(y) }, Vx,yeG. (resp. x0y = (f(x)y)o(x1(y), Vx,yeG)
If (-) is commutative then (0) is commutative. 1f () is COW, then (J) is COW .
Let (G,-) be a groupoid (resp. hypergroupoid) and f£.G— P(G)-{{J} be any
multivalued map. We define the (&), on G as follows
xdy = (fx) y)Ax-Af(y), Vx,yeG.
Let (G,-) be a groupoid, f:G—oG, icl, be a set of maps on G. The
£:G— PG): fL00={fix) liel },
is the union of fi(x). We have the union theta-hope (8), on G if we take f_(x).

If we take f=f(id), then we have the b-theta-hope: 0.
This definition can be generalized as follows:

Definition 4.2 Let H be a set equipped with n operations (or hopes) ©,,8,,...,Q,
and a map (or multivalued map)
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f: H—>H (or :H—>P(H), resp.), then n hopes &, &, ..., 9, on H can be defined,
called theta-hopes by putting

xOyy = {{)®iy, x&if(y) } , Vx,yeH and ie{l,2,...n}
or, in case where &; is hope or f is multivalued map, we have
x0y = (f{X)PYIVERi(y) ). Vx,yeH and ic{l1,2,....n}

If ®; is associative then J; is WASS.
Motivation for the definition of the theta-hope is the map derivative where only
the multiplication of functions can be used. Therefore, in these terms, for two
functions s(x), t(x), we have sot= {s't, st'} where (') denotes the derivative.

Example 4.3 Taking the application on the derivative, consider all polynomials of
first degree gi(x) = ax+b;. We have

210g2 = {ajasx+t ajbs, ajaxtbias},

so this is a hope in the set of the first degree polynomials. Morcover all
polynomials x+c¢, where ¢ be a constant, are units.

Properties 4.4 [45,46]. If{G,") is a semigroup then:
For every f, the hyperoperation (8) is WASS, and the b-theta-operation (J) is
WASS.
If f is homomorphism and projection, then (9) is associative.
Reproductivity. If (-) is reproductive then (9) is also reproductive.
Commutativity. If () is commutative then (0) is commutative. If f is into the centre
of G, then (9) is commutative. If (-) is COW then, (9) is COW.
Unit elements. u is a unit element if f(u)=e, where e be a unit in (G,"). The
clements of the kernel of £, are the units of {(G,9).
Inverse elements. Let (G,-) be a monoid with unit e and u be a unit in (G,3), then
flu)=e. The elements X = (f(x))'u and % = u(f(x))", are the right and left
inverses, respectively. We have two-sided inverses iff f{x)u = uf{x).
Proposition 4.5 Let {G,') be a group then, for all f: GG, the (G,0) is an H,-
group.

In order to see a connection of the merge with the d-hope, consider the map f
such that f{h)=h and f{x)=x in the rest cases.

Example 4.6 P-hopes. Let (G,-) be commutative semigroup and PcG. Consider
the multivalued map f such that

f(x) = P-x, VxeG. Then we have
xdy =xyP, VxyeG.
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So the 8-hope coincides with the well known class of P-hopes [22].
One can define theta-hopes on rings and other more complicate structures,
where more than one theta-hopes can be defined.

Definition 4.7 Let (R,+,-) be a ring and f:R—R, g:R—R be two maps. We define
two hopes (8.) and (&-), called both theta-hopes, on R as follows
xovy = {f(x)ty, x+f(y) } and x&y= {g(x)-y, xg(y) }, VxyeG.
A hyperstructure (R,+,-), where (+), () be hopes which satisfy all Hy-ring
axioms, except the weak distributivity, will be called H,-near-ring.

Proposition 4.8 Let (R,+,) ring and 'R—>R, g:R—>R maps. The hyperstructure
(R,8:,8), called theta, is an H-near-ring. Moreover (+) is commutative.

Proposition 4.9 Let (R,+,)) ring and f:R—R, g:R—R maps, then (R,0,,0), is an
H,-ring.

Properties 4.10 The theta hyperstructure (R.8.,0-) takes new form in special
casses:
(a) If f(x)=g(x), VxeR, i.e. the two maps coincide, then we have

XO-(yorz)M(x0-y)0(x0-z) = &.

If f is homomorphism and projection, then (R,9,,6-) is an H,-ring.
(b) If f{x)=x, VxR, then (R,+,0-) becomes a muitiplicative H,-ring:

XS (y+2)NxoO-yyHx0-z) = { gx)ytg(x)z} = J.

5 THE Hy-LIE ALGEBRAS

Definition 5.1 [40]. Let (F,+,-) be an H,-field, (V,+) be a COW H,-group and
there exists an external hope

st FxV > P(V): (a,x) > ax
such that, for all a,b in F and x,y in ¥ we have

a(x+y) N (axtay) # &, (atb)x m(axtbx)=J, (ab)x ma(bx)=d,

then V is called an H,~vector space over F.

In the case of an H,-ring instead of H,-field then the H,-modulo is defined.

In the above cases the fundamental relation €* is the smallest equivalence
relation such that the quotient ¥/e* is a vector space over the fundamental field
Fry*.
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The general definition of an H,-Lie algebra over a field F is the following [40]:

Definition 5.2 Let (L,+) be an H,-vector space over the field (F,+,-), o:F— Fiy*,
the canonical map and wg= {xeF:@(x)=0}, where 0 is the zero of the fundamental
field F/y*. Similarly, let @ be the core of the canonical map ¢': L — L/g* and
denote by the same symbol 0 the zero of L/e*. Consider the bracket (commutator)
hope:

[.]1:LxL — PL): (x.¥) = [x¥]

then L is an H-Lie algebra over F if the following axioms are satisfied:
(L1) The bracket hope is bilinear, i.c.

[Axstaoxz, Y IN( MfxuyFaalxay])2 &, [xhyrthay]ln(ua [y Hhalx,yz2])= &
forall x,x,%x2,y,vi.¥2€Ll and A, inF
(L2) [xx]no, 2& forall x in L
(L3 (x[v.z]]Hy.[z.x]Hz[x¥]D oL #&0 forall x)yinlL

This is a general definition thus one can use special cases in order to face
problems in applied sciences. Moreover, we see how the weak properties can be
defined as the above weak linearity (L.1), anti-commutativity (L2) and the Jacobi
identity (L3). Similarly the h/v-rings, h/v-fields, h/v-modulus, h/v-vector spaces
ete, are defined.

We present here a direction to obtain results from special cases by applying o-
hopes on more complicated structures, in the sense that they have more than one
operation.

Theorem 5.3 Consider the ring of integers (Z,+,-) and let n=0. Consider the map f
such that f{0)=n and f{x)=x,VxeZ-{0}. Then (Z,0,,0) is an H,-near-ring, with
(Z,04,0)y* = Z,.

Proposition 5.4 Let (V,+,) be an algebra over the field (F,+,-) and f:V—>V bea
map. Consider the J-hope defined only on the multiplication of the vectors (-),
then (V,+,0) is an H,-algebra over F, where the related properties are weak. If,
moreover f is linear then we have more strong properties.

Definition 5.5 Let L be a Lie algebra, defined on an algebra (V,+,) over the
field (F,+,-) where the Lie bracket [x,y]=xy-yx. Consider any map f:L—L, then
the O-hope is defined as follows

xdy = {fx)y-f(y)x, f(x)y-yf(x), xf{y)-f(y)x, xf{y)-yf(x)}
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Proposition 5.6 Let (V,+,)) be an algebra over the field (F,+,-) and ¥ —V bea
linear map. Consider the d-hope defined only on the multiplication of the vectors
(-), then (V,+,0) is an Hy-algebra over F, with respect to Lie bracket, where the
weak anti-commutatinity and the inclusion linearity is valid.

We can sec that the weak linearity is valid, more precisely, the inclusion
linearity is valid:

[MxiHAoxz,y] © A[x1,y] + Ralx2.¥]

Remark that one can face the weak Jacobi identity in analogous to the above
propositions as well. One can use well known maps as constants or lincar.

We conclude this paragraph with a definition of a hypergroupoid algebra
[23,30].

Definition 5.7 Let (G,-) hypergroupoid, is called set of fundamental maps on G,
the set of onto maps

Q={q:GxG>G:(x,y) —2 5 z| zexy}.

Any subset Q,cQ defines a hope (s5) on G as follows  x°y = {z | z= q(x,y) for
some qeQ}

og < - and QscQos, where Qs is the set of fundamental maps with respect to
(es). A Q,=Q for which every Q.cQ, has (°) associative (resp. WASS) is called
associative (resp. WASS). A hypergroupoid (G,) is q-WASS if there exists an
element q,=Q which defines an associative operation (°) in G. Remark that for
H.-groups we have Q=0 .

Suppose G is finite, cardG = |G|=n, itis q-WASS with associative g,€Q. In
the set K[G] of all formal linear combinations of clements of G with coefficients
from a field K, we define an operation (+):

(fitfa)(g) = fi(g)tAg), VgeGt,heK[G]
and a hope (*), the convolution,

fixfy = { f: fy(g) = X (x)f(y), qeQ}.

qlx.y)=g

Definition 5.8 The hyperstructure (K[G],+,*) is a multiplicative Hy-ring where
the inclusion distributivity is valid. This Hy-ring is called hypergroupoid H,-
algebra.

vqeQ, geG, wehave Qs [Jdoh). 1 <Ig' @l <n’n+l and Y |q'(g)ln’

(x, p)in(ix(y gin(;

The zero map f(x)=0 is a scalar element in K[G].
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6 REPRESENTATIONS

Representations (we abbreviate by rep) of Hy-groups, can be considered either
by generalized permutations [28] or by H,-matrices [23,25,29]. First we present
the matrix reps.

In the classical books on representations we find the following definitions:

Let G be a group and ¥ be a finite dimensional vector space over the field F. A
representation of G is a homomorphism p: G — Aut(¥) of G into the set of
automorphisms of V.

Analogous definitions are given for complicate structures: Let L be a Lie
algebra then a rep of L is a homomorphism p: L — gl(V), from L into linear
transformations on V over F.

Since there exists 1-1 correspondence on the sets of ail endomorphisms with
nxn matrices, where n=dimV, any rep corresponds to each element, of a finite
group, a matrix, and this set of matrices acts exactly as the group. Notice that the
addition of matrices and the external multiplication of scalars by matrices are
‘natural operations’, by contrast the multiplication of matrices is a “strange’
operation because it is dictated by the composition of lincar maps or
automorphisms or by the composition of maps.

With this theory, mathematicians try to transfer the study of the several
structures into the study of matrices which is clear and easy. Ado’s theorem -and
the related ones- states that every finite-dimensional Lie algebra has a faithful
finite-dimensional rep. The two steps in rep theory: first, by the Cayley’s theorem
every group has a faithful rep by permutations. Second, every permutation group
of order n can be represented by nxn monomial matrices, i.e. matrices with only
one entry 1 in every row and column and the rest entries are 0. The above steps
are clear but the obtained reps are not useful since the matrices are of type nxn.
Thus, the main attempt is to reduce the dimension of reps. Most important is to
find the irreducible reps over the field of real or complex numbers.

The rep theory is very important because it represents all groups in one form so
that they can be compared and studied in the same way. Thus the low dimensional
reps are most useful, i.e. the reps by 2x2 matrices is the simplest non degenerate
case.

H,~-matrix (or h/v-matrix) is called a matrix with entries elements of an H,-ring
or H,-field (or h/v-ring or h/v-field ). The hyperproduct of H,-matrices A=(a;;) and
B=(b;), of type mxn and nxr, respectively, is a set of mxr Hy-matrices, defined in
a usual manner:
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AB = (@)(by) = {C=(c) | ;e @Tarby},
where () denotes the n-ary circle hope on the hyperaddition [30]: that is the sum
of products of elements of the H,-ring is considered to be the union of the sets
obtained with all possible parentheses. However, in the case of 2x2 Hy-matrices
the 2-ary circle hope which coincides with the hyperaddition in the H,-ring.
Notice that the hyperproduct of H,-matrices does not nessesarily satisfy WASS.
The rep problem by H,-matrices is the following:

Definition 6.1 Let (H,-) be H,-group, (R,+,-) be Hy-ring and Mg ={(ai) | aijcR},
then any

T:H—>Mg: h>T(h) with T(hh)~T(h)T(hy) =D, YhyhseH,

is called Hy-matrix rep. If T(hih,)cT(h:)T(hy), then T is an inclusion rep, if

T(hiho)=T(h;)T(hy), then T is a good rep an induced rep T* for the hypergroup

algebra is obtained. If T is one to one and good then it is a_faithful rep.

In reps of H,-groups by H,-matrices, there are two difficulties: To find an H,-
ring and an appropriate set of H,-matrices.

The problem of reps is very complicated mainly because the cardinality of the
product of two Hy-matrices is normally very big. The problem can be simplified in
several special cases such as the following:

(a) The H,-matrices arc over H,-rings with 0 and 1 and if these are scalars.Thus
the e-hyperstructures are interesting in the rep theory.

{b) The H,-matrices are over very thin H,-rings.

(c) The case of 2x2 H,-matrices, since the 2-ary circle hope coincides with the
hyperaddition in H,-rings. This is the lowest dimensional, non degenerate,
rep.

(d) The case of H,-rings in which the strong associativity in hyperaddition is
valid.

(e) The case of H,-rings which contains singles, then these act as absorbings.

The main theorem of reps on Hy-structures [30], is the following:

Theorem 6.2 A necessary condition in order to have an inclusion rep T of an H,-
group (H, -} by nxn H,-matrices over the Hy-ring (R, +, -) is the following:

For all classes (*(x), xeH there must exist elements a;cH, ije {1,...,n} such that

TE*@) © (A=@5) | ey @), ijefl,.n)}

Therefore, every inclusion rep T:H->Mg: al-» T(a)=(a;) induces a homomorphic
rep T* of the group H/B* over the ring R/y* by setting T*(B*(a))=[y*(ai)].
VP*(a)eH/P*, where the element y*(aj)eR/y* is the ij entry of the matrix
T*(B*(a)). Then T* is called fundamental induced rep of 1.
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Denote tro(T(x)) = v*(T(x;)) the fundamental trace, then the mapping
Xt H > RAy* x5 Xr(x) = trp (T(x)) = tr'T*(x)

is called fundamental character. There are several types of traces.
Second, we present the rep problem is by Generalized Permutations (we write

&p).

Definitions 6.3 [28,30] Let X be a set, then amap f: X>P(X)-{}, isagpofX
if the reproduction axiom is valid Uycx f(x)= f{X)= X. Denote by Mx the set of
all gps on X. For an H,-group (X,-) and acX, the gp f, defined by fi(x)=ax is an
inner gp. Arrow of T is any (x,y)e)(2 with yef(x). feMx contains fieMy or
f1 is a sub-gp of £, if fi(x)cfx(x), VxeX, then we write ficf,. If, moreover,
fi#f2, then fi is a proper sub-gp of f>. A fe My is called minimal if it has no proper
sub-gp. Denote Mx the set of all minimal gps of Mx. The gp t with t(x)=X,
VxeX, is called universal and contains all elements of My. The converse of a gp
f is the gp f defined by f{x)={ze X: f(z)>x}, thus f is obtained by reversing arrows.
We call associated to feMx the gp ff, where (°) is the map composition.

The union f=wifi of a family of gps {fi: icl}, is defined by f{x)= Ui ifi(x),
vxeX.

For finite X, we reach a minimal gp, by the deleting arrows method.

Theorem 6.4 Let feMy, then feMy if and only if, the following condition is
valid: if azb and f(a)f(b) #J, then f(a)=f(b) and f(a) is a singleton.

Corollary 6.5 If feMy then feMy.

An explicit description of Mx: (fef)(x)= f{u: f(u)ax}= Unupx fln), ¥xeX.
So  (fHE)={y:3d ueX,{x,y}cf(u}}. So, if 1 is the identity permutation, then
Icfef, VieMx.

There is a direct relation of B* and the associated gp fof. We see this
relation, for finite X, in the following theorem:

Theorem 6.6 1If feMx then (fof)(x)={ yeX: f(y) =f(x)}.

In order to face the rep problem by the gp one can see that the usual map
composition can not be used because it is not multivaiued. Therefore the main
open problem is to find standard hope on Mx.

Several constructions can be used to obtain appropriate H,-rings and H,-
fields:

(i) Let (H,-) be Hy-group, then for every () such that x®y>{x,y}, Vx,yeH, the
(H,®,-) is an H,-ring. These H,-rings are called associated to (H,-) H,-rings.

In reps theory of hypergroups, in sense of Marty, there are three associated

hyperrings (H,&®,-) to (H,-). The (®) is defined respectively, Vx,yeH, as follows:



type a: x®y = {x,y}, typeb: x®y=p*x) p*(y), typec: xby= H.

In the above types the strong associativity and strong or inclusion distributivity, is
valid,
(ii) Let (H,+) be H,-group, then for all hopes (®) such that x®yo{x.v},
Vx,yeH, the (H,+,®) is an H,-ring.

A variation of this is the following: Let (H,+) be Hy-group with a scalar zero
0. Then V(®): x ®y D{x,y}, Vx,ycH-{0}, x®0=0®x =0, Vx<H, the (H,+,®) is
an Hy-ring.
(iii) Let (H,-) be Hy-group. Take a O0¢H and set H’=HU{0}. Define a hope (+) by:
0+0=0, 0+x=H=x+0, x+y=0, Vx,yeH,
and extend (-) in H’ by 0-0=0,0-x=x-0=0,vx,ycH.
Then (H’,+,-) is reproductive H,-field with H’/y* = Z, where 0 is absorbing and
single.

7 THE SANTILLI’S e-CONSTRUCTIONS

The Lie-Santilli theory on isofopies was born in 1970°s to solve Hadronic
Mechanics problems. Santilli [20], proposed a ‘lifting’of the n-dimensional trivial
unit matrix of a normal theory into a nowhere singular, symmetric, real-valued,
positive-defined, n-dimensional new matrix. The original theory is reconstructed
such as to admit the new matrix as left and right unit. The isofields needed in this
theory correspond into the hyperstructures were introduced by Santilli and
Vougiouklis in 1999 [21] and they are called e-Ayperfields. The H,-fields or h/v-
fields can give e-hyperfields which can be used in the isotopy theory in
applications as in physics or biology. We present in the following the main
definitions and results restricted in the H,-structures.

Definition 7.1 A hyperstructure (H,-) which contain a unique scalar unit e, is
called e-hyperstructure. In an e-hyperstructure, we normally assume that for every
element x, there exists an inverse elemen x', i.e. eex-x'mx'x. Remark that
the inverses are not necessarily unique.

Definition 7.2 A hyperstructure (F,+, -}, where (+) is an operation and (-) is a
hope, is called e-hyperfield if the following axioms are valid:

1. (F,+)} is an abelian group with the additive unit 0,

2. (-) is WASS,

3. (-) is weak distributive with respect to (+),

4. 0 is absorbing element: 0-x = x-0= 0, VxeF,
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5. there exists a multiplicative scalar unit, i.e. 1-x=x-1=x, VxecF,

6. for cvery element xeF there exists a unique inverse %', such that lex-x'mx
1
-X.

The elements of an e-hyperfield are called e-hypernumbers. In the case that
the relation 1=x-x'=x'-x. is valid, then we say that we have a strong e-
hyperfield.

Now we introduce a general construction which is based on the partial ordering

of the Hy~structures and on the Little Theorem.

The Main e-Construction 7.3 Given a group (G,-), where ¢ is the unit, then we
can define in G, a large number of hopes (®) as follows: x®y = {xy.g,.g2,...},
vx,yeG-{e}, and g,,g,... are elements from G-{e} which are not necessarily the
same for each pair (x,y). Then (G, ®) becomes an H,-group which in fact is an
Hy-group which contains the basic group G-{e}. The Hy-group (G, ®) is an e-
hypergroup. Moreover, if for each x,y such that xy=e then we have x®y = xy,
then (G, ®) becomes a strong e-hypergroup.

Proof. The proof is immediate since for both cases we enlarge the results of the
group by putting elements from the set G and applying the Little Theorem.
Moreover one can easily see that the unit ¢ is a unique scalar element and for each
x in G, there exists a unique inverse x, such that Tex-x'mx!x. Finally if the
last condition is valid then we have 1=x-x'=x"'-x, so the hyperstructure (G, ®) is
a strong e-hypergroup.

Remark. The above main e-construction gives an extremely large class of e-
hopes. These e-hopes can be used in the several more complicate hyperstructures
to obtain appropriate e-hyperstructures. However, we remark that the most useful
are the ones where only few products are enlarged and, even more, the extra
elements are one or two. This means that we have analogous situation to the rep
theory.

Example. Consider the non-commutative quaternion group Q= {1,-1,i,-i,j,-j,Kk,-
k} whose muitiplication is given by the table

Pl-t i |- j ) k|k

T T S T I I I N O PO 1

ST T T N T I I VO I

i A p i vl k| k|G
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S T R R " " I O T B I

kK | k| k| §|-|-i]ila]1

k| k| Kk || j|il]4]1]-

Using this operation one can obtain several hopes which are e-groups.
For ¢xample, denoting i={i,-i}, [={j.-i}, k={k.-k} we define (+) hope by the
table:

G-t i | k| k|1 ]-1]-]i

K| k| k |§|-5]|-]i}-1]n

x| k| k|| lil-f1]-

The hyperstructure (Q,*) is strong e-hypergroup because 1 is scalar unit and
the elements -1, i, -i, j, -j, k and -k have unique inverses the elements -1, i, i,
-is j» -k and k, respectively, which are the inverses in the basic group.

The important thing of this example is that one can have more strict hopes, so
for example, one can have a strong commutative hope,

2 I T R T D O I T I I O VO

T T S T I T [ [ PO i
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T S T T T T I T O T I ™

-i | -t i 1| -1

fox=
=
-
e

k| -k k i i i i 1 -1

therefore this strong e-hypersrtucture (Q,°) is a commutative e-hypergroup.

The reason we gave the above example is to see that there is a large variety of
e-hyperstructures we can construct from given classical structures. One can see in
the papers [21,39] and in the book [12] some classes of e-hyperstructures and
their properties and results connected them with the classical theory. The
representation theory and the Lie algebras as well as in hypermatrix theory large
classes of e-hyperstructures appear and can offer to Lie-Santilli algebraic theory
models to represent their theory. In the Lie admissible algebras the P-hopes can be
used as one can see the replacement of the unit matrix in the Lic-bracket (in
isoproducts): by any set of matrices P:

[X,Y]p = (XP)Y (YP)X, for all matrices or hypermatrices X and Y.
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Abstract. The hyperstructure notion was introduced in 1934 by the French mathemati-
cians F. Marty, at the 8" Congress of Scandinavian Mathematicians. The motivating
example was the quotient of a group by any, not necessary normal, subgroup. Algebraic
hyperstructures in the sense of Marty are a suitable generalization of classical algebraic
structures. In a classical algebraic structure, the composition of two elements is an ele-
ment, while in an algebraic hyperstructure, the composition of two elements is a set. Many
papers and several books have been written till now on hyperstructures. Many of them
are dedicated to the applications of hyperstructures in other disciplines. We mention here
some of fields connected with hyperstructures. Specially, in Chemistry (construction from
chain reactions). In 1996, R. M. Santilli and T. Vougiouklis point out that in physics the
most interesting hyperstructures are the one called e-hyperstructures. e-hyperstructures
are a special kind of hyperstructures and they can be interpreted as a generalization of
two important concepts for physics: Isotopies and Genotopies. We define and analyze sev-
eral types of e-hyperstructures. These hyperstructures have ordinary operations, contain
hyperunits and are mainly multi-valued in their structures. They are the most impor-
tant tools in Lie-Santilli theory. Also, we review some results on fuzzy Lie algebra and
some recent generalizations of algebraic hyperstructures such n-ary hypergroups and [-
semihypergroups.

Keywords: n-ary group, algebraic hyperstructure, hypergroup, Lie algebra, fuzzy set.
PACS: 02.10.-v, 02.20.-a, 02.20.8v.

1 A BRIEF EXCURSION INTO GROUP THEQORY

The concept of a group is one of the most fundamental in modern mathematics. Group
theory can be considered the study of symmetry: the collection of symmetries of some
object preserving some of its structure forms a group; in some sense all groups arise
this way. Although permutations had been studied earlier, the theory of groups really
began with Galois (1811-1832) who demonstrated that polynomials are best understood
by examining certain groups of permutations of their roots. Since that time, groups have
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arigsen in almost every branch of mathematics. There are three historical roots of group
theory: (1) The theory of algebraic equations; (2) Number theory; (3) Geometry.
Definition 1.1. Let G be a non-empty set together with a binary operation (usually
called multiplication) that assigns to each ordered pair (a,b) of elements of G' an element,
a-bin G. We say GG is a group under this operation if the following three properties are
satisfied: (1) a-(b-¢) = (a-b)-c, for all a,b,c € G, (2) there exists an element e € G such
that a-e = e-a = a, for all a € G, (3) for every a € G there exists an element ™! € G
such that a-a l=al-a=e

We have (a~!)™! = a and (ab)~! = b~1a7?, for all a,b € G. We say that two elements
a and b of a group GG are commutative or commute if ab = ba. A group is said to be
abelian or commutative, if any two elements commute.

ExaMpLE 1. (1) The set of integers Z, the set of rational numbers @ and the set of real
numbers R are all groups under ordinary addition.

(2) The set Z, = {0,1,...,n — 1} for n > 1 is a group under addition modulo n. For
any ¢ in Z,, the inverse of 1 is n — ¢. This group usually referred to as the group of
integers modulo n.

(3) The guaternion group is a non-abelian group of order 8. It is often denoted by
¢ or (g and written in multiplicative form, with the following 8 elements Q =
{1,—-1,%,—4,4,—j,k,—k}. Here 1 is the identity element, (—1)? = 1 and (—1)e =
a(—1) = —a for all @ in Q. The remaining multiplication rules can be obtained from
the following relation: i = j2 = k% = ijk = —1.

The concept of subgroups is one of the most basic ideas in group theory. If H is a
subgroup of G and a € G, then Hae = {ha | h € H}. Ha is called a right coset of H in
G. A left coset aH is defined similarly. There is one kind of subgroup that is especially
interesting. If G is a group and H is a subgroup of G, it is not always true that aH = Ha
for all a € G. There are certain situations where this does hold, however, and these cases
turn out to be of critical importance in the theory of groups. It was Galois, who first
recognized that such subgroups were worthy of special attention.

A subgroup N of a group G is called a normal subgroup of G if a"!Na C N for all
a€G.

Theorem 1.2. Let N be a normal subgroup of a group G, and let G denote the set of
all cosets of N. For any two elements X and Y of G, we define their product XY as the
subset of G obtained by taking the product of the two subsels X andY of G. Then XY is
a coset of N. With respect to this multiplication on G, the set G forms a group.

The group G whic_h was defined in the above theorem is called the quotient group of G
by N and is written G = G/N.
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ExaMPLE 2. (1) Let G=Zjg and N =< 6 >. Then G/N = {0+ N, 1+ N, 2+ N, 3+
N, 4+ N, 5+ N}.

(2) Let G be a group such that {ab)? = a?b” for all a,b € G, where p is a prime number.
Let N={z €G] x?" = e for some m depending on z}. Then N is a normal
subgroup of G. If G = G/N and if T € G is such that z° = &, then T — &.

In 1934, Marty introduced the concept of a hypergroup. The motivation example was
the following: Let G be a group and H be any subgroup of G. Then G/H = {zH |z € G}
becomes a hypergroup where the hyperoperation is defined in a usual manner:

eHobH = {cH |c€a-b-H},
for all e, b € G.

2 TWO GENERALIZATIONS OF A GROUP

We may define a group as follows:
Definition 2.1. A system (G, -), where G is a non-empty set and - is a binary operation,
is called a group if it satisfies the following conditions:

(1) a-(b-c)=(a-b) ¢ forall a,b,ce G,
(2} the equations a -z = b and y - a = b have solutions in G, for all a,b,¢c € G.

The non-empty set G together with an n-ary operation f : G — G is called an
n-ary groupoid and is denoted by (G, f). According to the general convention used in
the theory of such groupoids the sequence of elements x;, Z;41,...,2; is denoted by zJ.
The notion of an n-ary group is a natural generalization of the notion of a group and has
many applications in different branches. The idea of investigations of such groups seems
to be going back to E. Kasner’s lecture at the fifty-third annual meeting of the American
Association for the Advancement of Science in 1904. But the first paper concerning the
theory of n-ary groups was written (under inspiration of Emmy Noether) by W. Dérnte
in 1929 [15].

Definition 2.2. A non-empty set G with an n-ary operation f is called an n-ary group if
(1) Forevery i,7 € {1,2,...,n} and z1,22,...,Z2,_1 € G,
FET FEETT, e = fel T feT, 20,

(2) for all b,aq,...,0k—1,8k+1,---,8n € G (k = 1,...,n) there exists a unique z € G
such that

f(a,’ffl,z,agﬂ) =b.
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If (G,-) is a group, then (G, f) is an n-ary group, where f(z7) =1 -22-... z,. But
for every n > 3 there are n-ary groups which are not derived from any group.

Let H be a non-empty set and o : H x H — P(H) \ @ be a hyperoperation. The
couple (H, o) is called a hypergroupoid.

Definition 2.3. A hypergroupoid (H, o) is called a hypergroup if

(1) ac(boc} =(aob)ocforall a,b,c € H, which means that

U uecc= U a oy,

u€aob veEboc

(2) aoH=Hoa=H for all a € H. This condition is called the reproduction ariom.

The second condition is frequently used in the form: Given a,b € H, there exist
z,y€ Hsuchthat beaozand beyoa.

3 WEAK HYPERSTRUCTURES

Weak hyperstructures {or H,-structures) first introduced by Vougiouklis in Fourth
AHA congress (1990) [24]. The concept of weak hyperstructures constitute a generalization
of the well-known algebraic hyperstructures.

Definition 3.1. [23] A hyperstructure (H, o) is called an H,-group if

(1) zo(yoz)N(zoy)oz#® forall z,y,z € H,
(2) acH=Hoa=HforalaecH.
A motivation to obtain the above structure is the following:

ExAMPLE 3. [23] Let (G, -) be a group and R be an equivalence relation on G. On G/R
consider the hyperoperation ® such that T % = {Z| z € Z- 7}, where T denotes the class
of the element z. Then (G,®) is an H,-group which is not. always a hypergroup.

EXAMPLE 4. [22] On the set Zy,,, consider the hyperoperation @ defined by setting 0@m =
{0,m} and x @y =z +y for all (z,y) € Z2,,, — {(0,m)}. Then (Zyn, D) becomes an H,-
group. @ is weak associative but not associative.

Definition 3.2. [5] A multi-valued system M =< P,o,e,”! > whereec P, ~! : P —
P, 0: Px P — P(P)\ 9 is called a weak polygroup if the following axioms hold for all
z,y,2 € P:

(1) (zoy)oznNzxzo(yoz)#P (weak associative),
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(2) xce=z=cox,

(3) xr€yozimpliesyczoz tand zey oz,

Proposition 3.3. [6] Let (G,-) be a group and 0 be an equivalence relation on G such
that
(1) zfe implies x = e,

(2) z0y implies x 10y~ 1.

Let () be the equivalence class of the element x € G. Suppose that G/6 = {6(x)] z € G}.
Then < G/8,0,8(e),”! > is a weak polygroup, when the hyperoperation © is defined as
Jollows:
O: G/ x G/ — P(G/OY\ B

O(x) © Oy) = {8(z)| = € 6() - O(y)}
and 0{z)~! = §(z™1).
ExXAMPLE 5. Consider P = {e,a,b,c} and define * on P with the help of the following
table:

* | el a b c
elel|l a c
alalea b
b|b| ¢ |eb| a
clel| b a |ec

Then < P,*,e, ! >, where 27! = z for every z € P, is a weak polygroup which is not a
polygroup. Indeed, we have

(axb)*c=c*c={e,c}, ax(bxc)=axa={ea}.
Therefore, * is not associative.

An extension of polygroups by polygroups has been introduced in {2]. In the following
we define an extension of a weak polygroup by another weak polygroup.

Definition 3.4. Suppose that A =< A,-,e,”'> and B =< B,-,e,”' > are weak poly-
groups whose elements have been renamed so that AN B = {e} where e is the identity of
both A and B. A new system A[B] =< M, x,e,”! >, which is called the extension of .A by
B, is defined in the following way:

Set M=AUBandlete ' =e, o 1=z!, exz=cxre=zforalze M, and
for all z,y € M — {e},
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-y if z,y € A,

x it reB,ycA,
TEY=1< ¥y if xecAyeB,

Ty if m,yeByjy#a~!,

r-yUA if zyeBy=z""
Theorem 3.5. [5] A[B] is a weak polygroup.

4 SANTILLI-VOUGIOUKLIS HYPERSTRUCTURES
WITH HYPERUNITS

e-hyperstructures are a special kind of hyperstructures and, in what follows, we shall
see that they can be interpreted as a generalization of two important concepts for physics:
Isotopies and Genotopies. On the other hand, biological systems such as cells or organisms
at large are open and irreversible because they grow. The representation of more complex
systems, such as neural networks, requires more advances methods, such as hyperstruc-
tures. In this manner, e-hyperstructures can play a significant role for the representation
of complex systems in physics and biology, such as nuclear fusion, the reproduction of cells
or neural systems.

These applications were investigated by R.M. Santilli and T. Vougiouklis and we men-
tion here some of their results and examples (see [10, 18, 19, 20]). In this section, we
review several types of e-hyperstructures from [20].

Definition 4.1. A hypergroupoid (H, -) is called an e-hypergroupoid if H contains a scalar
identity (also called unit) e, which means that forallz € H, z-e =e-x = z. In an e
hypergroupoid, an element z’ is called inverse of a given element z € Hife € z-2' Nz’ - z.

Clearly, if a hypergroupoid contains a scalar unit, then it is unique, while the inverses
are not necessarily unique. In what follows, we use some examples which are obtained
as follows: Take a set where an operation “.” is defined, then we “enlarge” the operation
putting more elements in the products of some pairs. Thus a hyperoperation “o” can be
obtained, for which we have = -y € z oy, Vz,y € H. Recall that the hyperstructures

obtained in this way are Hy-structures.

EXAMPLE 6. Consider the usual multiplication on the subset {1, —1, i, —i} of complex
numbers. Then, we can consider the hyperoperation o defined in the following table:

ol 1 |-1f i ]| —i
1|1 |=1]i] =
I I [y
i | i | -i]-1] 1

i =i i [Li|—-1,3
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Notice that we enlarged the products (—1)-(—), (—¢)-i and (—i)-(—%) by setiing
(~D)o(=i)=fi, =i}, (~i)oi={1,i} and (~i)o(~i)={~1,}.

We cbtain an e-hypergroupoid, with the scalar unit 1. The inverses of the elements
—1,3, 1 are —1, —i,1 respectively. Moreover, the above structure is an H,-abelian group,
which means that the hyperoperation o is weak associative, weak commutative and the
reproductive axiom holds.

Theorem 4.2. (23] The weak associativity is valid for all Hy-structures with associative
basic operations.

We are interested now in another kind of an e-hyperstructure, which is the e-hyperfield.

Definition 4.3. A set F, endowed with an operation “+7, which we call addition and
a hyperoperation, called multiplication “”, is said to be an e-hyperfield if the following
axioms are valid:

(1) (F,+) is an abelian group where 0 is the additive unit;
(2) the multiplication - is weak associative;

(3) the multiplication - is weak distributive with respect to +,
ie,Vz,y,z € F, 2y +2)N(zy +zz) #0, (z+y)zN(zz+yz) #0;

(4) 0 is an absorbing element, i.e., VZ € F, 0.z =2-0 =0

(5) there exists a multiplicative scalar unit 1, ie.,Vz € F, 1l .2 =2-1=2;

(6) for every element x € F' there exists an inverse !, such that 1€ z-z7 ' Nz~! - z.
The elements of an e-hyperfield (F, +, -) are called e-hypernumbers.

EXAMPLE 7. (1) Starting with the ring Z3 = {0, 1, 2}, we can obtain a hyperring by
enlarging the product 202 = {1} to 202 = {1,2}. In other words, we obtain the
following table:

o|0fT]| 2
0j0(0} 0
1(0|1] 2
2|0(2(1,2

The above structure is an e-hyperfield.
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{2) Inthe above example, only a hyperproduct is not a singleton. These hyperstructures,
for which only a hyperproduct is not a singleton, are called very thin and they are
useful to the theory of representations of Hy-groups by hypermatrices. Hence, a
way to obtain a very thin hyperstructure is the following one: we take a classical
structure and we choose two elements a, b, then we can enlarge the product a - b.
Therefore, in order to obtain a very thin e-hyperfield we can take a ficld and enlarge
only one product of two, nonzero and non-unit elements. This simple change of the
operation leads to enourmous changes to the algebraic hyperstructure, so it looks
like a chain reaction in physics.

We can define the product of two e-matrices in an usual manner: the elements of
product of two e-matrices (a;;), (bi;) are ¢;; = 3 a0 by;, where the sum of products is
the usual sum of sets.

If we consider the e-hyperfield given in Example 7(1), then we have:

21 . 2 1] [202+T01 2014101
20 T 1| [206234001 201+001
[ {3,241 2+1
1 {1,2}+0 240
{201 0
L2} 2
_ 30 20 00 00
Tzl ez T 2Nl e o2

Moreover, notice that the product of an e-hypernumber with an e-hypermatrix is also a
hyperoperation. For instance, again on the above hyperfield, we have

OET _[202 20
2 9] 7| 202 20

]

This remark is useful for the definition of an e-hypervector space.

Definition 4.4. Let (F,+,-) be an e-hyperfield. An ordered set a = (a1,a2,...,a,) of n
e-hypernumbers of F is called an e-hypervector and the e-hypernumbers a;, i € {1,2,, n}
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are called components of the e-hypervector a.

Two e-hypervectors are equals il they have equal corresponding components. The
hypersums of two e-hypervectors a, b is defined as follows:

a+b={{c1,c2,...,cn) | €Ea; +b;, i € {1,2,-,n}}.

The scalar hypermultiplication of an e-hypervector a by an e-hypernumber A is defined in
a usual manner:

Aoa={(c1,c2,...,c) |G €A-a, i€ {1,2,...,n}}.

The set F™ of all e-hypervectors with elements of I, endowed with the hypersum
and the scalar hypermultiplication is called n-dimensional e-hypervector space. The set of
m X n hypermatrices is an mn-dimensional e-hypervector space.

5 FUZZY LIE ALGEBRA

Fuzzy sets are sets whose elements have degrees of membership. Fuzzy sets have been
introduced by Zadeh (1965) as an extension of the classical notion of set [25]. In classical
set theory, the membership of elements in a set is assessed in binary terms according to a
bivalent condition an element either belongs or does not belong to the set. By contrast,
fuzzy set theory permits the gradual assessment of the membership of elements in a set;
this is described with the aid of a membership function valued in the real unit interval
[0,1]. Fuzzy sets generalize classical sets, since the indicator functions of classical sets are
special cases of the membership functions of fuzzy sets, if the latter only take values 0 or
1.

After the introduction of fuzzy sets by Zadeh, reconsideration of the concept of classical
mathematics began. On the other hand, because of the importance of group theory in
mathematics, as well as its many areas of application, the notion of fuzzy subgroups was
defined by Rosenfeld. In 2001, Davvaz [7] studied the concept of fuzzy Lie algebra. In this
section, we review some results of {7, 8].

Definition 5.1. A Lie algebra is a vector space L over a field F on which a product
operation [z,y] is defined satisfying the following axioms:

(1) [z,¥] is bilinear for all z,y € L,
(2} [z,z] =0forallz € L,

(3) [z, 9], 2] + [ly, 2], 2] + [[2, %], ] = O for all z,y,z € L.
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As a simple consequence of axioms (1) and (2), we have

0= [a:+y,x—l—y] = [:L‘,:B] + [:Ev'y] + [y,x] + {y’y] = [:r:,y] + [y,x]

Thus, |y, 2] = —[z,y] and Lie multiplication is anti commutative.
Let L be Lie algebra and M, N be subspaces of L. We define [M, N} to be the subspace
of L spanned by all elements of form [x,y| for z € M, y € N. Since [y,z] = —[z,v] it is

clear that [M, N| = [N, M]. Thus, multiplication of subspaces is commutative.

Definition 5.2. An ideal of L is a subspace M such that [M,L} C M. Since [M,L] =
[L, M] there is no distinction in the theory of Lie algebras between left ideals and right
ideals. Every ideals is two-sided.

Definition 5.3. A linear transformation ¢ : Ly —+ Lo (L, Ls Lie algebras over F) is
called a homomorphism if

o(lz, y]) = [$(z), ()] forall z,y € L.

We say that two Lie algebras Ly, Ly over F are isomorphic if there exists a vector space
isomorphism ¢ : Ly — Ly satisfying ¢([z, y]) = [¢(z), #(y)] for all =,y in L.

Definition 5.4. Let X be a non-empty set. A fuzzy subset p of X is a function p :
X — [0,1]. Let 1 and X be two fuzzy subsets of X, we say that p is contained in A, if
p(z) < Az) for all z € X. If {i1;}icr be a collection of fuzzy subsets of X, then we define
the fuzzy subsets [}, ; y; and U;c; pi by:

(i ) (z) = inf{u(2)} forall z € X,
icl i
U,u,- (z) = sup{pi(z)} forall z € X.
iel el

If ¢ be a mapping from a non-empty set X to a non-empty set ¥ and pu a fuzzy subset
of X and A a fuzzy subset of Y. Then the inverse image ¢~1()) of A is the fuzzy subset

of X defined by ¢~1(A)(x) = A(¢(z)) for each z € X. The image ¢(u) of p is the fuzzy
subset of Y defined by

sup {u(t)} if ¢ 1(y) #9,
B(u)(y) = *E‘f’;)‘(y)

for each y € Y.
otherwise,

We have always ¢(¢~" (X)) C A and 12 € ¢~} (o(u)).
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Definition 5.5. Let u be any fuzzy subset of X. The set
m={ze X|uz) 2}, te,1]
is called a level subset of p.

Definition 5.6. Let V' be a vector space over a field F. A fuzzy subset p of V is called
a fuzzy subspace of V if for all z,y € V and « € F, the following conditions hold:

(1) plz+vy) 2> min{u(z),p(y)} forall z,y € V,
(2) p(—=z) > u(x) forallz € V,
(3) plax) > p(x) forallz €V, a e F.

Theorem 5.7. For a fuzzy subset p of a vector space V', the following statements are
equivalent.

(1) u is a fuzzy subspace of V,
(2) Tz, t € Imy, is a subspace of V.
Definition 5.8. A fuzzy ideal of L is a fuzzy subspace p such that
u(lz,yl) > pulx) for all z,y € L.

ExamPLE 8. (1) Let I be an arbitrary ideal of a semisimple Lie algebra L. Then It =
{x € L| k(z,y) =0, Vy € L} is also an ideal, by the associativity of Killing form
k, and we have L = I ® I+, Choose numbers t; € [0,1], 0 < i < 3, such that
t3 < t2 < {1 < tp. Define fuzzy subsets 4 and X by:

St ifzxerl [t ifzert
#(z) = { t3 otherwise, and  Az) = { ts  otherwise.

Then, i and A are fuzzy ideals of L.

(2) Let L be a Lie algebra and ¢;, ¢ € [0, 1] with ¢; < ¢;. Define fuzzy subset A of L by:

,u(:i:)——"{ t) fx=0

{5 otherwise.
Then, p is a fuzzy ideal of L.

The following corollary is exactly obtained from definitions.
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Corollary 5.9. If i is a fuzzy ideal of I, then we have

p([z, ¥]) = maz{u(z), u(y)} for all z,y € L.
Lemma 5.10. f p s a fuzzy ideal of L, then p(x) < p(0) for all z € L, and the following
are easily verified:

(1) plz) = u(—=z) for allz € L,

(2) u(x —y) = u(0) = u(z) = puly), where z,y € L.
Lemma 5.11. Let u be any fuzzy ideal of L. If for some z,y € L, u(x) < u(y), then
plx —y) = plz) = uly — ).
Proposition 5.12. The intersection of any family of fuzzy ideals of L is again a fuzzy
ideal of L.
Theorem 5.13. For a fuzzy subset p of a Lie algebra L, the following statements are
equivalent.

(1) u i3 a fuzzy ideal of L,

(2) &z, t € Imp, is an ideal of L.
Proposition 5.14. Let L be a Lie algebra and I C I C ... I, C Iny) C ... be a chain of
ideals of L. Then there exists a fuzzy ideal A of L such that Ay, = I, (0 < ... <ty <
ty <...<t) <tg<1).
Lemma 5.15. Let ¢ : L — L' be a Lie algebra homomorphism, and X be a fuzzy ideal
of L'. Then for eacht € [0,1], ¢~ (A)e = ¢ 1(\s).
Theorem 5.16. Let ¢ : L. — L’ be a Lie algebra homomorphism from a Lie algebra L
onto a Lie algebra L'. Then the following are true:

(1) if p<A L then ¢(u) a L';
(2) if A< L' then 6~ 1(A\) < L.

Let u be a fuzzy ideal of a Lie algebra L. For any ,y € L, define a binary relation
~on L by = ~ y if and only if u(x — y) = {0). Then ~ is a congruence relation of L.
We denote pfz] the equivalence class containing z, and L/u = {u[z]| x € L} the set of
all equivalence classes of L. Then L/u is a Lie algebra under the following operations of
addition, scalar multiplication and Lie multiplication:

#lz] + ply] = plz +y] for each z,y € L,
culx] = plex] foreachx € L, ce F,
[ulz], ply]]l = pllx,y]] for each z,y € L.

Theorem 5.17. Let ¢ : L — L' be an epimorphism of Lie algebras and A be a fuzzy
ideal of L'. Then L/ 1(\) 2 L'/
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6 A CHEMICAL EXAMPLE OF HYPERSTRUCTURES

In the following example [11], the halogens considered are non-metals. Although each
of Fluorine, Chlorine, Bromine and Iodine consists of diatomic molecules (i.e., Fy, Cly, Bry
and I3} in room temperature, the first two are gas, Bromine is liquid and ITodine is solid.
During the chain reaction, it is known that

Heat or Light
—

As + B> 2AB

are molecules Az, Bo, AB and their fragment parts A°, B® are present. All the combina-
tions form the set
H = {A®, B° A, By, AB}.

Regardless of any energy interaction, their reactions can be displayed in the following table:

+ A® B A Ba AB

Ae A®, Ay A°,B° AR A°, Ag A®, By, B®, AB A°, AB, Ag, B®
B® A®, B° AR B®, By A®, B° AB, Ay B®, Ba A°,B”, AB, By
Ag A°, Az A°, B° AB, Ay A, Az A®, B°, Az, Bz, AB A, B°, Az, AB
By | A®,B°,Ba, AB B”, By A®,B°, Ag, By, AB EB°, By A®,B°, By, AB
AB | A° AB, Ay, B° | A°,B®, A8 B, A%, B°, Aq, AB A°, B° B, AB A®,B®, Ay, By, AB

It can be easily verified that the set H under the reaction “+” forms an H,-group. Clearly,
(H1,+) = {A% Az} and (Hz,+) = {BY, Bz} are the only H,-subgroups of the H,- group
(#,+)- On the other hand, if we consider A = I and B € {F,CL, Br,I} (for example
B =1), then the complete reaction table becomes:

+ He IG Heo Iz Hi

H® H®, Hy H®,[°, HI H®, Hy H®, I3, I°, H] H® HI, Hp, I°
I° H® 1%, HI I°, Iz H®, I°, HI, Ha 1°, Iy H®,I°, HI, [
Ho H°, Hy H®,I°, HI, I3 H?, Hy H®, 1%, Ho, Iy, HI H® I°, Ha HI
Iz H®, 1% Iy, HI H®, I3 H? 1%, Ha, Io, HT H®, Iy H?,I°, I3, HI
HY | He,HI Hy,r® | H®, I°, HI I, H®,I°, Hy, HI H®, I, Hy, HT H®, [ Hy, I3, HI

7 n~-ARY HYPERGROUPS

In (12}, Davvaz and Vougiouklis introduced the concept of n-ary hypergroups as a gen-
eralization of hypergroups in the sense of Marty. Also, we can consider n-ary hypergroups
as a nice generalization of n-ary groups. Then this concept studied by Anvariyeh, Davvaz,
Dudek, Ghadiri, Leoreanu-Fotea Mirvakili, Vougiouklis, Zhan and others, for example see
(13, 14, 16, 17]. In this section, we review some results from [12, 16].

We denote by H™ the cartesian product H x ... x H where H appears n times. An
element of H™ is denoted by (z1,...,2,), where z; € H for any i with 1 < i < n. In
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general, a mapping f : H® -— P*(H) is called an n-ary hyperoperation. Let f be an
n-ary hyperoperation on H and Aj,..., A, be non-empty subsets of H. We define

FAL .. An) = U{f(z1, ..., z0)| 7 € Aiyi = 1,...,m)

Definition 7.1. A non-empty set H with an n-ary hyperoperation f : H* — P(H)\ §
is called an n-ary hypergroupoid and is denoted by (H, f). An n-ary hypergroupoid (H, f)
is called an n-ary semihypergroup if and only if the following associative axiom holds:

. - _ i1 i—1 —
Flat ™t Flap 1,220 = £ f= ), 2500
for every i, € {1,2,...,n} and z1,z2,...,T2,—1 € H.

If for all (ay,a3,...,a,) € H", the set f(a1,az,...,an) is singleton, then f is called an
n-ary operation and (H, f) is called an n-ary groupoid (resp. n-ary semigroup).

If m =#&{n— 1)+ 1, then the m-ary hyperoperation g given by

k(n—1}+1y _ n n— k(n—1)+1
Q(II ) - f(f( R f(f(xl )71:3;4-11): - ')’m(k—l)(n—1)+2)
k

is denoteed by f(x). In certain situations, when the arity of g does not play a crucial role,
or when it will differ depending on additional assumptions, we write f(), to mean f(;, for
some k=1,2,....

Definition 7.2. An n-ary semihypergroup (H, f) in which the equation
be f(ag_la :E‘i’a?{»l) (*)

has a solution z; € H for every ay,...,8; 1,0i11,-..,0,,06 € H and 1 < i < n, is called
an n-ary hypergroup.

In Definition 7.2, if f is n-ary operation then the equation (*) is as follows:
b= flai™mi, af4)- (x%)

In this case (H, f) is an n-ary group.
Definition 7.2 is a generalization of Marty’s formulation of a hypergroup.

ExamMmPLE 9. Let (H, f) be an n-ary hypergroup, ag_l € H be fixed and let z Oy =
f(z,a3 ', y). Then the hypergroupoid (H, ®) is a hypergroup and it is called a retract of
the n-ary hypergroup (H, f).
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Let (H, f) be an n-ary hypergroup. If the value of f(z1,x2,...,%,) is independent
on the permutation of elements x;,%2,...,%y,, then (H, f) is called a commutative n-ary

hypergroup.
The element a € H is called a scalar if

|f($iisa’s xin+2)| =1

forall xy,...,2; Tig2,..., T € H.
Element e of an n-ary hypergroup (H, f) is called neutral {identity) element if

fle,...,e,x.e,...,€)
i—1 n—i
includes z, forallz e Hand all 1 <i<n.

Lemma 7.3. Let (H, f) be a commutative n-ary hypergroup and a € H a scalar element
such that f{a,e,...,e) = a for some e € H. Then e is a neutral element.

Proposition 7.4. If the set of oll neutral elements of a given commutative n-ary hyper-
group is non-empty, then it is an n-ary group.

Definition 7.5. Let (H, f) be an n-ary hypergroup and B be a non-empty subset of H.
Then B is an n-ary subhypergroup of H if the following conditions hold:

1) B is closed under the n-ary hyperoperation f, i.e.,
for every (x1,...,z,) € B™ implies that f(zy,...,2,) C B.

2) Equation b € f(bﬁ_l,:r,-,b;"ﬂ) has the solution x; € B for every by, ..., b1, bi41,---,
bp,be Band1 <i<n.

Definition 7.6. Let (A, f) and (B, g) be two n-ary hypergroups. A homomorphism from
A to B is a mapping ¢ : A — B such that

w(fle1,...,an)) = g(plar),-..,o(an))

holds for all aq,...,a, € A.

If ¢ is injective, then it is called an embedding. The map ¢ is an isomorphism if © is
injective and onto. We say that A is isomorphic to B, denoted by A = B, if there is an
isomorphism from A to B.

Theorem 7.7. Let (A, f) and (B, g) be two n-ary hypergroups and p : A — B a homo-
morphism. Then

(1) If S is an n-ary subhypergroup of A, then ¢(S) is an n-ary subhypergroup of B,
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(2) If K is an n-ary subhypergroup of B, then v 1(K) is an n-ary subhypergroup of A.
Let (H, f) be an n-ary hypergroup. An equivalence relation ¢ on H is called compatible

(regular) if @10b,, ... ,an0by, then for all @ € f(ay,...,an) there exists b € f(b1,...,b,)
such that afb. An equivalence relation @ is called strongly compatible (strongly regular) if
aifby, ... ,a,0b, implies that a@b for all o € f(a1,...,6,) and b€ f(b1,...,b,).

Theorem 7.8. Let (H, f) be an n-ary hypergroup and 8 a compatible relation on H. Then
(H/8, f/6) is an n-ary hypergroup where

f160(a), ..., O(an)) = {0(a) | @ € f(a1,. .., an)}-

If (H, f) is an n-ary hypergroup, then E denotes the transitive closure of the relation
8= Ukzl B, where 3, is the diagonal relation, i.e., 81 = {(z,z)| = € H} and for every
integer k > 1, F is the relation defined as follows:

zfry if and only if {z,y} C f.

When zf1y (i.e., = y) then we write {z,y} C f(p), we define 8* as the smallest equiv-
alence relation such that the quotient (H/8*, f/8*) is an n-ary group, where H/8* is
the set of all equivalence classes. The 5* is called fundamental equivalence relation. The
equivalence relation 3* first was introduced on hypergroups by Koskas and studied mainly
by Corsini concerning hypergroups, Vougiouklis and Davvaz concerning H,-structures.

Theorem 7.9. For any n-ary hypergroup, §* = S.

8 I-SEMIGROUPS AND I-SEMIHYPERGROUPS

Let A and B be two non-empty sets, M the set of all mapping from A to B, and I' a
set of some mappings from B to A. The usual composition of two elements of M can not
be defined. But if we take f, ¢ from M and a from T, then the usual mapping composition
fog can be defined. Also, we see fag € M and (fag)Bh = fa(gBh) for f,g,h € M and
a,B € I'. Sen and Saha [21] defined the notion of a I'-semigroup as a generalization of a
semigroup as follows:

Definition 8.1. Let M = {a,b,¢,...} and T' = {e,3,7,...} be two non-empty sets.
Then M is called a I'-semigroup if there exists a mapping M x I' x M — M written as
(@,v,b) — ayb satislying the following identity

(aab}Bc = ac(bBe) for all a,b,c € M and for all , 3 € .

Let K be a non-empty subset of M. Then K is called a sub D-semigroup of M if
eybe K forall a,be K and y e T.
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ExaMpLE 10. If M is the set of m x n matrices and I is a set of some n X m matrices
over the field of real numbers, then we can define Ay, noy, m B » such that

(Am,nan,m Bm,n)ﬂn,mcm,n = Am,nan,m (Bm,nﬁn,mcm,n) )

where Amn, Bmn,Cme € M and anm,Brm € T'. An algebraic system satisfying the
associativity property of the above type is a I-semigroup.

ExaMmpPLE 11. Let M = [0,1]] and T = {rll | n is a positive integer}. Then M is a T-
semigroup under the usual multiplication. Next, let K = [0,1}. We have that K is a
non-empty subset of M and ayb € K for all a,b € K and v+ € . Then K is a sub
I'-semigroup of M.

Anvariyeh, Mirvakili and B. Davvaz [1] introduced the concept of I-semihypergroups.
We recall the following definition and examples from [1].

Definition 8.2. Let S and T’ be two non-empty sets. S is called a T-semihypergroup if
every v € I' is a hyperoperation on S, i.e, zvy C S for every z,y € S, and for every
o, €T and z,y,z € § we have zafy3z) = (zay)f=.

. If every v € T is an operation, then § is a I'-semigroup.
If (S,v) is a hypergroup for every v € I, then S is called a I'-hypergroup.
Let A and B be two non-empty subsets of § and v € I'. We define:

AvyB =U{avbla € A, be B}.

Also
ATB=U{ayb|a€ A, be Band yeT} = | ] A9B.
el

Let S be a I'semihypergroup and -y € I'. A non-empty subset A of S is called a sub
I'-semihypergroup of S if a;yaz C A for every aj,as € A. A I'-semihypergroup S is called
commutative if for all z,y € S and y € I' we have zyy = yyz.

EXAMPLE 12. Let (S,0) be a semihypergroup and I" be a non-empty set. We define
vy =xoy for every z,y € S and v € I'. Then § is a I'-semihypergroup.

EXAMPLE 13. Let (S, 0) be a semihypergroup and I' be a non-empty subset of S. We
define xyy =z oyoy for every z,y € S and v € I. Then S is a I'-semihypergroup.

ExAMPLE 14. Let $ = [0,1] and I' = N. For every z,y € § and v € T, we define

v:8x 8= PS)
Tyy = [0,%3].
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Then, v is a hyperoperation. For every z,y,z € S and a,3 € I" we have

(zay)Bz = [O, %’g] = za(yPz).
This means that § is a I'-semihypergroup.
Also, if ¥ € T, then (S,7) is not a hypergroup, becanse 0.1vS = [0, 9;1—] # 5. 5 Sis
not a I'—hypergroup.

Proposition 8.3. Let 5 be a I'-semihypergroup and there exists o € T such that (5, a} is
a hypergroup. Then for every v € T, (S,7y) is a hypergroup.
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Abstract. The Kerr BH geometry has initiate irreversibility which is related
by its twistorial structure determined by the Kerr theorem. Twistors form a time-
oriented congruence of the lightlike geodesics. In the works [1, 2, 3, 4] we described
exact Kerr-Schild (KS) solutions for electromagnetic (EM) excitations of the Kerr-
Newman {KN) black hole. It has been shown that the typical excitations form
singular beams which have very strong back-reaction on metric. The beams create
topological deformations of the metric and horizon. As a result, the internal region
of the BH becomes connected with its exterior, which allows matter to escape the BH
and leads to the BH evaporation and reversibility of the BH geometry on classical
level. In the idealized Kerr-Schild geometry the EM excitations form a time-oriented
|in. > vacuum. Backreaction of the EM excitations form a fine-grained prequantum
KS geometry of fluctuating beams. In this paper we analyze a process of the
measurement and show that the measurement breaks the idealized KS geometry.
Based on the Kerr theorem we show that any measurement breaks initiate symmetry
and creates an opposite-oriented sheet of the spacetime. As a result, the process of
formation of an amplitude of probability < out|G|in > involves a dual (bra-) state
< out} which (for a stationary measurement) has to be complex conjugate to the
initiate |in > state and describes a reverse time-evolution. Therefore, the initiate
irreversible prequantum classical Kerr-Schild geometry acquires time-reversibility
by the transfer to quantum level, and the transfer to classical geometry happens in
the process of the measurement.

Key words: Kerr-Schild geometry, time reversibility, nuil congruences, twistors,
muitisheeted spacetimes
AMS Subject Classification: 83(C22, 83C45, 52C28

1 Introduction

Irreversibility is usually related with composite objects consisting of
many elementary subsystems possessing great many degrees of free-
dom. From this point of view, black holes (BHs) are unique objects
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possessing an irreversible evolution (collapse} despite of they elemen-
tary (all-in-one) nature. Behavior of the BHs is somehow opposite to
conventional one. By the quantum treatment the BHs are completed
by a series of quantum modes (EM oscillators) which increase drasti-
cally the number of degrees of freedom. It could result in the extra
irreversibility, however, it has an opposite effect resulting in a reverse
process of the BH evaporation.

In the works [1, 2, 3, 4] we described exact Kerr-Schild solutions
for electromagnetic (EM) excitations of the Kerr-Newman (KN) black
hole. It has been shown that the typical EM excitations of the BHs
have the form of singular beams which give very strong back-reaction
on metric and the BH horizon [5]. In particular, they penetrate the
BH horizon leading to its topological fluctuations. As a result, the
internal region of the BH becomes connected with its exterior, which
allows matter to escape the BH, resulting in a reversibility of the BHs
on the classical level via the Hawking evaporation.

It has been shown in [3] that the initiate irreversibility of the Kerr’s
BH is related with the determined by the Kerr theorem twistorial
structure of the Kerr-Schild (KS) geometry. The BH solutions belong
to type D of the algebraically special metrics which are determined by
the time-oriented congruences of the lightlike geodesics. In the ideal-
ized Kerr-Schild geometry these congruences form the time-oriented
(ket) vacuum |in >= |0 >gg which corresponds to a pre-quantum
classical space-time of the KS black hole.

‘The pre-quantum KS geometry is fluctuating and has a fine-grained
structure which differs drastically from the usual classical gravity.
Contrary to the harmonic excitations obtained in the perturbative
approaches, the exact KS solutions for electromagnetic excitations of
the KS geometry (obtained in the Kerr-Schild formalism [6]) have
the form of singular beams which have very strong backreaction on
the metric and horizon. This effect is determined by an analytic
twosheeted structure of the Kerr-Schild geometry, which turns out to
be in a perfect agreement with the predicted in 7, 8] requirements
to the quantum BH spacetimes. There appears a question on the
relation between the obtained irreversible pre-quantum KS geometry
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and the reversible classical gravity.

In this paper we analyze a process of the measurement and show
that any measurement of any physical observable ‘G’ breaks the ide-
alizations of an isolate BH spacetime. As it has been mentioned in
[1], the usual necessary conditions for the proof of the theorems on
the uniqueness of the BHs (see for example [9]) turn out to be bro-
ken in practice. An isolated BH represents an idealization. Similarly,
the exact BH solutions represent idealization, which is changed in the
process of measurement. In the process of a measurement the one-
particle problem turns into a multi-particle one. It was shown in [10],
that in the presence of external sources, the initiate twosheeted KS
structure turns into a multisheeted one. Origin of this effect lies in
analyticity of the Kerr-Schild solutions and, in particular, in twistor
analyticity of the Kerr congruence determined by the Kerr theorem
[11, 12, 10}.

The Kerr theorem suggests [10] that in this case there appears
a multisheeted space with the extra opposite-oriented sheets of the
space-time related with the measurer, and the the process of forma-
tion of an amplitude of probability < out|G|in > involves a dual (bra-)
state < out| which (for a stationary measurement) has to be com-
plex conjugate to state |in > and describes a reverse time-evolution.
‘Therefore, the irreversible classical pre-quantum Kerr-Schild geome-
try based on the time-ordered congruences acquires time-reversibility
under transfer from pre-quantum KS geometry to quantum level and
by the subsequent transfer to classical level in the process of measure-
ment of the real physical observables.

2 The Kerr-Schild metric
The Kerr-Schild form of metric
Guv = Nuw + 2Hkuku: (1)

has many advantages with respect to other representations. First
is unfastening of coordinates from position of the horizon and their
rigid connection to auxiliary Minkowski space-time with metric 7,,.
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It allows one to analyze deformations of the horizon. The second
is absence of singularity of the solutions at the horizon. The third
advantage is related with the Kerr-Schild twistor structure [12] and
correspondence with the requirements of holographic principle and the
presumable properties of a quantum black hole space-time prescribed
by Stephens, t’ Hooft and Whiting in [8].

Analyticity of the Kerr-Schild geometry originates from the com-
plex function

Y = ¢ tan g (2)

which is a projection of celestial sphere S? on the complex plane. This
function determines the Kerr congruence and complex tetrad forms.
The Kerr theorem sets the dependence Y (), and the null vector field
k¥ of the Kerr-Schild metric form is expressed via function Y (z)

kydz" = P™Hdu+ Yd¢ + Yd( — YY dv), (3)
in the null Cartesian coordinates
25 =z +iy, 2 =z —iy, u=z—t Vv=z+t. (4)

Therefore, the field k#(z), z € M* determines symmetry of space-
time, polarization of the Kerr-Newman electromagnetic field, direc-
tion of gravitational ‘dragging‘ and so on. This vector field is tangent
to the Kerr congruence which is the family of the light-like geodesic
lines, in fact twistors. Twisting structure of the Kerr congruence is
shown in Fig.1

Twist of the congruence determines the complicate form of the
Kerr solution, in spite of the extremely simple form of the metric (1).

2.1 Twofoldedness

The Kerr-Schild space-time is twosheeted. The used Kerr’s oblate
ellipsoidal coordinate system r, theta, ¢ is related with the Cartesian
coordinates t, x,y, z as follows

z+iy = (r +ia)expligg}sin®, z=rcosd, p=r—t. (5)
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Figure 1: The Kerr singular ring and the Kerr congruence formed by oriented
twistor null lines and covering the Kerr-Schild spacetime twice.

The oblate radial coordinate r covers the spacetime twice, taking the
positive, r > 0, and negative, » < 0 values. The Kerr singular ring
7 = cosf = 0 is a branch line of space on two sheets: “negative (—
)" and “positive (+).” The fields and effective signs of the mass and
charge change their directions by the transfer via disk r = 0. The
Kerr congruence covers the spacetime twice: in the form of ingoing
PNC k#~ € K~ which falls on the disk spanned by Kerr singular ring
by r < 0, and as outgoing one, k** € KT, positioned on the positive
sheet of the same spacetime M*, r > 0. The metrics

gj,, = N + zﬂkjkf (6)

and the electromagnetic potentials o* %, being aligned with PNC, are
to be different on the in- and out- sheets. Two different metrics exist
on the same spacetime (!} and they should not interact with each
other or to be mixed. This twosheetedness is ignored in perturbative
approaches, leading to drastic discrepancies in the exact and pertur-
bative solutions. ' It is known [15] that the rotating BHs can be
described in the ingoing coordinate system as well as in the outgoing

1Note, that the twosheetedness retains also in the case of the flat KS
space by H = 0. One sees that the Kerr geometry clarify the origin
and gives justification for many ideas of prof. R.M Santilli on the Lie-
admissible spacetimes and the corresponding especial mathematics
[13, 14], including bimodular geometry.
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one, but not in the both simultaneously. The Kerr-Schild formal-
ism [6] takes into account that electromagnetic solutions have to be
aligned only to one of two congruences, i.e. the time orientations of
the electromagnetic and gravitational fields have to be matched. It
meets the requirements of the ‘t Hooft holographic principle (7], the
KS spacetime is projected by the light-like rays on the 2d disk » = 0.
It corresponds also to the presumable properties of a quantum black
hole space-time [8] which should be separated into the in- and out-
vacua to consider the process of evaporation as a scattering of the
in-vacuum on a black hole. The usual Penrose conformal diagram,
containing the in- and out-fields on the same sheet of M* must be
unfolded by a "splitting” the KS two-sheetedness, as shown in Fig.2,
demonstrating an explicit realization of the holographic principle in
the KS geometry. The twistor-beams of the Kerr congruence ” create”
the Kerr source (as a holographic image) by light projection from the
past null infinity 7= on the bulk of KS space-time. The BH then
appears as a holographic image generated by the initial data on the
past infinity 1.

out— out—
photons phatons

_af conformal diagram of unfolded conformal
Minkowski space-time diagram of the Kerr

space—time

Figure 2: Penrose conformal diagrams for (a) the Minkowski space-time and (b)
the Kerr space-time: unfolding the auxiliary M* space of the Kerr geometry into
two sheets generates the holographic structure of a prequantum BH space-time.

In [1] we have discussed elasticity of the BH horizons with respect
to EM field. For the KS form of the metric, positions of the BH
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horizons are determined by function

mr — e2/2

H= (7)

r2 + a2 cos? @’

where m is the mass, a = J/m is a spin-parameter, and e is the charge
of the Kerr-Newman solution, [6]. In particular, two positions of the
horizons are

re =m+vVm?—e? - a2 cos? b,

and for e > m? the horizons disappear at all, [15]. For the obtained
in [6] general stationary solutions, we have

2
- A ®
r“ + a*cos*f

where the function ¥(Y") is related with electromagnetic field. This
case was analyzed in [5], and it has been shown that v acts similarly
to charge, destroying the horizons topologically when || > m?. On
the other hand, it was obtained in [6] that in the exact stationary KS
solutions, function ¢ may be any holomorphic function of the complex
angular coordinate Y. ? So, it was obtained in [5] that the poles in
function 9 lead to topological deformations of the horizon.

3 Exact Kerr-Schild solutions with beams

The famous Kerr-Newman solution is the simplest solution of the
Kerr-Schild class having ¥ = ¢ = const., where ¢ is the value of
charge. However, any holomorphic function ¥(Y") yields also an exact
solution of this class [6]. It is known that any holomorphic function
on sphere, if it is not a constant, should have at least one singular
point. Therefore, all the exact Kerr-Schild solutions, except the Kerr-
Newman one, acquire one or more lightlike singular beams which are
positioned along the lines of Kerr congruence, while the usual har-
monic solutions with smooth angular dependence are absent on the

*Function Y (z) determines also the Kerr-Schild tetrad e*: e' = d(—
Ydv, e*=d(—-Ydv, = Pk,ds*, e*'=dv+he®, h=HP?
where P = (1+YY)/V2.
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Kerr background. It was shown in [6] that vector potential of the
exact stationary electromagnetic field on the KS background has the
general form

4

1
@ = o 2 ¢ [(r—|-iacosé’

)e* + xdY], 9)
where x = [ P~%)dY and Y being kept constant in this integration.
The expression dY represents gradient of the complex surfaces Y =
const. obeying the conditions

Y=Y,4=0. (10)

These surfaces are totally null, spanned by the tetrad forms e! and 3.
Similarly, dY is spanned by e? and €®, and therefore, o is spanned
by e!, €* and €®. So, using the null tetrad orthogonality relations
(eh)? = (e?)? = (¢°)® = 0 and e'e® = e2e® = 0 and €*, one obtains that

vector potential satisfies the alignment condition
aue™ = Pa,k* = 0. (11)

The ‘elementary’ beams, formed by a single pole ¥(Y) = ¢/(Y —
}A’) at the point Y € S2, propagate along the twistor null lines of
the Kerr congruence in direction k*, corresponding to ¥ = Y. The
beams play exceptional role, turning in the far zone (see [16]) into
uniform string-like singular pp-waves (A.Peres solutions {11]). In fact,
there are no the usual plane waves in the curved spacetimes, and the
most close analogs to the linearized gravitational waves turn out to be
divergent at infinity. More general analogs are the pp-wave solutions
(plane-fronted, or parallel propagating waves) which takes the KS
form (1) with a covariantly constant null vector field k#. The pp-
waves have remarkable quantum properties (vanishing all quantum
corrections), however, they turn out to be singular either at the front
of the wave or along a null line,[17]. In the last case, pp-waves imitate
the wave-particle duality, describing a plane-fronted wave together
with a singular null line corresponding to trajectory of the related
light-like particle. Similar to pp-waves, the beamlike solutions are the
analogs of the spherical harmonic functions for the KS background.
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So, it is natural that in the far zone the singular beams tend to the
pp-wave solutions. In general, holomorphic function may be expanded
in the Loran series containing a singular part ¥(Y) = S 0_ g, Y™,
which can be represented by a series of the above poles, and a regular
oneh(Y) =3 >° 1 ¢, Y ™. We shall see later that the regular polynomial
part plays very important role in the nonstationary solutions. It was
shown, that singular lightlike beams deform topologically the horizon,
forming the holes connecting the internal and external regions of black
hole, see [5]. The ‘elementary’ single-pole solution may trivially be
extended to the case of arbitrary number of single poles

W) =3 oy (12)

in different directions Y; = €' tan %‘. Elementary excitation #;(Y) =
qi/(Y —Y;), describes a singular light-like beam (pp-string) along the
null ray of the Kerr congruence in direction k¥ = k*(Y;,Y;). The vector
potential (9) is trivially generalized to a sum over beams, where for
the single i-th beam x; = ;P 2In(Y — Y;) + const. + O(Y — Y;), and
P, = (1+ Y;Y;)/V2. The corresponding vector field (9) gives rise to
electromagnetic field f = %Fabe"" Ae? = —do which is aligned with the

Kerr congruence,
okt =0, KHE = AEY, (13)

where A = Re [¢/(r +ia cos 8)%]. It was shown that these beams have
strong back reaction on the metric, via function 1;(Y") entering in (8).
The multibeam solution (12) is a particular case of the exact solutions
obtained by Debney, Kerr and Schild (DKS) in seminal work [6]. It
should be emphasized that in the usual perturbative approach the
beam solutions are absent, because the important alignment condition
are dropped out of the perturbative equations, and a mixing of the in
and out fields occurs on the same sheet of metric.

The appearance of light-like beam pulses is a pure classical effect,
however, it allowed us in [5] to put some conjectures concerning semi-
classical treatment of the black hole interaction with a weak stochastic
electromagnetic field and, in particular, with electromagnetic vacuum
fluctuations. Since the black hole horizon is extra sensitive to electro-
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magnetic excitations of black hole, it should also be sensitive to zero
point field (ZPF) which is classically exhibited as a Casimir effect.
Therefore, as it has been discussed by many authors (see for example
[18]), vacuum fluctuations may generate fluctuations of the metric
and horizon, see Fig.3. Note that such point of view assumes tac-
itly that there exist some semiclassical pre-quantum geometry which
lies beyond the usual classical gravity, and describes a fluctuating
fine-grained structure created by a backreaction of the vacuum fluc-
tuations on metric. We obtain that the exact KS solutions display just
the case of such a prequantum geometry, [3].

Figure 3: Excitation of a black hole by the zero-point field of virtual photons forming
a set of micro-holes in the horizon.

The performed in [10] treatment of multiparticle solutions showed
that the beams appear between the distant sources, being supported
on a twistor line between them. So, it has to be assumed that the
infinite beams represent an idealization, and the real beams are to be
finishing at some distant objects, or at the infinitely distant matter,
similar to the usual treatment on propagation of the lightlike particles.

The singular pp-wave solutions may take the form of the wave
pulses with a carrier frequency and a finite extension. Therefore, it is
desirable to consider a minimal generalization of the exact stationary
Kerr-Schild beam-like solution to time-dependent beam pulses, which
is necessary to consider a time-dependent process of scattering.
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4 Time-dependent Kerr-Schild solutions

The closest time-dependent generalization to (12) is given by the form

(Y, 7) = Z_ci(fr)(Y - Y™, (14)

which assumes that an elementary beam has ¢;(1) = ¢;(7)e™” where
¢;(7) is amplitude and w; is carrier frequency. Obtaining of the ex-
act nonstationary solutions is divided in two stages: i) obtaining the
exact solutions for electromagnetic field on the Kerr background, ii)
self-consistent solutions, taking into account the backreaction of the
EM field on the metric. General equations for nonstationary elec-
tromagnetic Kerr-Schild solutions were obtained by by Debney, Kerr
and Schild (DKS) [6] in 1968. However, their full integration was
performed only for stationary case. * General solution for the EM
field on the Kerr-Schild background was obtained only in 2004, [16],
and their backreaction on metric was obtained only recently, [1, 4].
The obtained in [16] wave solutions describe singular beams along
the +z— half-axis, and there appeared the conjecture that, for the
very seldom exclusions, any exact nonstationary electromagnetic ex-
citation of the KS BH should create the beams. The nonstationary
KS solutions form the fluctuating singular beams pulses which lead
to topological fluctuations of the black hole horizon.

Bellow we consider important peculiarities of the nonstationary KS
solutions, which are determined by a specific structure of the DKS
equations. The KS electromagnetic field is described by the self-dual
tetrad components,

flg = AZQ, fgl = "}’Z — (AZ),l y (15)

where F, = efel ), and the function 7 is a complex expansion of
the congruence, Z = Y. For the Kerr-Newman solution at rest Z
is inversely proportional to a complex radial distance 7 = —P/(r +
tacosf). Here P is a conformal factor which is determined by Killing

3See the history in [19].

121



vector of the solution [6]. For a black hole at rest P = 27Y2(14+YY).
4 Function A satisfies the equations

(AP2)12 = 07 A74 = 0. (16)

Their general solution is
A=ypP? (17)
where the function v should satisfy

w:Q = 1|b74 = 0. (18)

In the nonstationary case function 1 has to depend on a retarded-time
parameter 7, and (16) implies that 7 should obey the equations

T2~ T,4 = O, (19)

which are similar to (10). It shows that gradient of 7 is to be aligned
to congruence,

kAT, = 0. (20)

It was obtained in [16] that the corresponding retarded-time param-
eter has the form

T=1%t—1—iacosf, (21)

A principal difference from the stationary case is contained in the
second electromagnetic DKS equation which in [16] was reduced to

the very simple form _
(’YP)')}_’ = -Aa (22)

showing that any nonstationarity in electromagnetic field (A # 0)
generates an extra function v which, in accord with (15), generates
also the lightlike electromagnetic radiation along the Kerr congruence.
Such a radiation is well-known for the Vaidya ‘shining star’ solution
[11], in which the field A = P2 is absent and + is assumed to be a

“We are neglecting the recoil, P = 0, assuming that that the mass
of black hole is much greater then the energy of excitation.
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fluctuating incoherent field related with a loss of the total mass into

radiation, .

= —§P2fﬁ. (23)
This is one of two gravitational equations which determine consis-
tency of the Kerr-Schild solution, [6]. The equation {22) shows that
the field v is created by the nonstationary EM excitations. How-
ever, one sees that v does not enter in the expression for H, (8), and
consequently, it does not give immediate impact on deformation of
the metric and horizon. Its backreaction on metric is smooth and
circumstantial, via the expression (23) which determines the slowly
decreasing mass parameter m. Therefore, in the nonstationary Kerr-
Schild case we obtain that the functions ¥ and <y, have absolutely
different backreaction on the metric and horizon.
General solution of the equations (22) takes the form

21/21/')
- P2Y

where ¢(Y, 7) is an arbitrary analytic solution of the corresponding
homogenous equation (22) with A = ¢ = 0.

Similarly to -y, function ¢ does not impact on the metric and hori-
zon too. Important role of this function is obtained from analysis of
the second gravitational Kerr-Schild equation [eq.(5.44) in [6]) which
is reduced to the form

Y +¢(Y,7)/P, (24)

Solution of this equation was given in [4], and was based on ana-
logue with the close related Vaidya ‘shining star’ solution [11], and a
nontrivial regularization of the singular beam pulses. In the Vaidya
‘shining star’ solution ¢y = 0, and the equation (25) shows that the
function m(t) is real and independent from Y. In the same time, the
field y in (23) was assumed to be incoherent and the averaged r.h.s.
of (23) takes the form £ < P?yy > . This approach can be extended
to the r.h.s of the both gravitational equations which acquire the form

1 .
m,y =< qub/? >7 m = —§ < P2"}"_}’ >, (26)
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and may be considered as a semiclassical analog of a gquantum ap-
proach. It was shown in [4] that the form and positions of the poles
in the free function ¢/ P may be tuned to cancel the poles of function
W =35 ¢(7)/(Y —Y;) in (24). There was defined the function

P = P(Y,¥) = 221+ YY)). (27)

It is obviously analytic in Y, and one can set

(tun) 2P 26(7)
i (¥m) = Y(Y -Y)F YY(Y -Y)(Y + /) (28)

keeping the required analyticity of function d)gtun)(Y, 7) in Y. Using
the equality L
Y (- 7)
V2(Yi=Y)
one obtains that the function fy(reg) = ;—/g@ + qbgtun) (Y,7)/P , takes
the form

(P = P)/(Yi-Y) = (29)

(reg) _ 1 Ci [Y Y]

i PRy, —Y?"
which is regular at the point Y = Y;. The r.h.s. of the equation (25)
for this regular solution takes the form

(30)

e Sredp GG

o PR(Y ~Y)
and by using the Cauchy integral formula, the equation (25) is easily

integrated, leading to
@l . @l — 4G

Re m = my — 2nw;— pr mp—i% : (31)
where P; = %(1 + Y;Y;) are the constant, and the coefficients ¢;(7)
are replaced by the slowly varying amplitudes ¢;{(7) and the carrier
frequencies of the beam pulses w;, c;(7) = ¢;(7)e”*". The obtained
backreaction on metric for the time-dependent electromagnetic field
is exact up to our approximation which neglects the recoil. The so-
lutions turn out to be consistent with the Einstein-Maxwell system
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of the equations with an averaged stress-energy tensor, which takes
into account that the frequencies and phases of the different beams
are uncorrelated.

5 Observables and the process of a measurement

As a result of the integration we obtain a very specific geometry
of fluctuating singular twistor-beams. It differs drastically from the
usual classical gravity, displaying a fluctuating fine-grained structure.
We call it as a prequantum KS geometry, and there appears the ques-
tion, what is the relation of this geometry to the usual classical grav-
ity? The answer we find in the analysis of the measurement process
in quantum theory.

The holographic KS geometry is formed by a future-directed con-
gruence of twistor null lines which are strongly time-directed. It is
reflected on the all its excitations which take the form of an infi-
nite sum of the future-directed wave beam pulses propagating along
twistor lines of the Kerr congruence.

Similarly to the approach used in QED, the KS EM excitations
may be expressed via a complex vector potential® A = 3. A; where

A = AiZied + . dY (32)

are characterized by the lightlike direction of propagation k! = e?“ /P
determined by Y; = €% tan(6;/2), and by the polarization in the or-
thogonal direction dY; = Y;{id¢; + m%&dgi} ~ %d:ci‘ Here x = f AdY
is introduced in [6] function ( Y and 7 being kept constant in this

integration). We have
A; = i(Y,7)/P?,

where (Y, 7) = ¢:(7) /(Y - Y}).
When we consider the exact KN background, the infinite set of the
EM excitations forms a future-directed Fock vacua |in >pgys aligned

To be published in Proc. of the 6th Mathematical Physics Meeting
(14-23 September 2010, Belgrade, Serbia) .
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with the Kerr congruence. Since the function ¥ = >, 4;(Y, 7) enters
into the KS metric function H, we obtain that the EM excitations
generate an infinite set of the singular excitations of the KS metric
forming a future-directed gravitational Fock vacua lin >gg aligned
with the Kerr congruence.

Now, we have to consider a process of measurement of any phys-
ical observable G, say the components of the metric tensor. In the
process of the measurement we have to form an amplitude of proba-
bility < out|G|in >, and therefore, we have to involve a dual (bra-)
state < out| which (for a stationary measurement) has to be com-
plex conjugate to state |in > and should be described by a reverse
time-evolution. However, the idealized KS solutions are strongly ori-
ented and do not contain such the dual components. Resolution of
this problem lies in a breakdown of this idealization. We notice that
the presence of a measurer breaks topology of the initial ideal Kerr
background.

Based on the Kerr theorem, we will show that in the process of a
measurement, there appears an extra sheet of the space-time, which
1s opposite-oriented field with respect to the initial Kerr background.
Therefore, the irreversible classical pre-quantum Kerr-Schild geome-
try based on the time-ordered congruence of twistor null lines acquires
time-reversibility under transfer from pre-quantum KS geometry to
quantum level and by the subsequent transfer to classical level of the
real physical observables.

The Kerr Theorem The Kerr theorem [10, 11, 12] claims that
all the geodesic and shear-free congruences are determined by the
function Y'(x) which is a solution of the algebraic equation

F=0, (33)

where the generating function F' is an arbitrary holomorphic func-
tion of the projective twistor variables

Y, M=(—-Yv, l=u+Y{, (34)

expressed in the null coordinates (4).
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Recall that a twistor is the pair Z¢ = {14, u®}, where u® = 26,0y,
and a projective twistor is

Za/lbl = {]'?Y) AlaAQ}' (35)

Therefore, the target function Y (z) is a projective spinor coordi-
nate Y = /11, and function F' may be chosen as a homogenous
function of Z¢.

For the Kerr solution in a general position with an arbitrary finite
boost the generating function F' is to be quadratic in Y, [10, 20, 21],

F=AY -Y")Y ~-Y )=AY?4+ BY +C, (36)

where the coefficients are given in the null coordinates by the relations
[21]

A = ((—G)oo—(v— Uo)é_o;
B = (u—up)vo+ (¢ — ) — (€ — Go)o — (v — vo)iko;

C = (¢ — Go)uo — (u— uo)o (37)
For the BH in rest frame one obtains
A=(z—1iy)/2, B=z+1ta, C=-—(zx+iy)/2. (38)
Two roots of the equation F = (0 determine the function Y (x),
Y* = (-B+A)/24, (39)
where A = (B? — 4AC)/2. We obtain that

A=+/z24+2+ (z+ia)2 =7 (40)

is the complex radial distance, and the roots Y+ may be represented

Y* = (-B++)/2A. (41)

Ringlike singularity of the Kerr solution is a caustic of the Kerr
congruence. In the KS formalism it is determined by the equation

7 =dF/dY = 0. (42)
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6 Multisheeted twistor space of the multiparticle
KS solutions.

The expression 36 gives the quadratic in Y generating function of
the Kerr theorem F(Y, A, B, C) for an isolated KS particle. Denoting
the set of parameters of motion and orientation of the particle as
g = (A, B,C), we shell write F(Y|q). It was shown in [10] that taking
the generating function of the Kerr theorem F in the form of the
product of partial functions for i-th particle

=TI RVl (43)

where ¢; is the set of parameters of motion and orientation of par-
ticle i, one can obtain the multi-particle Kerr-Schild solutions of the
Einstein-Maxwell system under the assumption that particles are sta-
tionarily moving along some trajectories.

The main equation of the Kerr theorem for twistorial structure
(33) is satisfied by any partial solution F;(Y) = 0. It means that the
twistorial multi-particle space-time splits into sheets corresponding to
different roots of the equation F(Y) = 0, similar to the sheets of a
Riemann surface.

The twistorial structures on different sheets turn out to be inde-
pendent and the twistorial structure of i-th particle “does not feel”
the structure of particle j, forming a sort of its internal space. This
property is a direct generalization of the considered above twosheet-
edness of the KN geometry.

Since the function F(Y) for a single KN particle is quadratic in
Y [22, 20, 21}, the equation F;(Yl|g) = 0 has two roots Y;t and Y;~
corresponding to the positive (‘out’) and negative (‘in’) sheets. In
terms of these roots one can express F; in the form [10]

F(Y) = A)(Y — ¥, )Y - Y)), (44)

One sees that metric of a multi-particle solution depends on the
solution Y;(x) on the considered sheet of i-th particle. Indeed, substi-
tuting the (+) or (—) roots ¥;*(z) in the relation (2), one determines
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the Kerr congruence k,(f)(:v) and the corresponding function h; of the
Kerr-Schild ansatz (1) on the i-th sheet

1 1 i)
=L Ly e
2wt T 20F
The complex radial distance 7; and function u;(Y) are also deter-
mined from the extended version of the Kerr theorem [10],

T = —dy Iy, (46)

pi(Ys) = [ A=) (i - Y)Y = ¥). (47)
J#

Contrary to the independence of twistorial structures for different
particles, there is an interaction between them, since the function
pi(Y') acquires the pole p; ~ A(2)(Y;" —Y;7) on the twistor line which
is common to the particles ¢ and j. The metric and electromagnetic
field will be singular along the common twistor lines. For example,
a light-like interaction occurs along the line which connects the out -
sheet of particle ¢ to the in - sheet of particle j , see fig.4.

(45)

Figure 4: The lightlike interaction via a common twistor line connecting the out-
sheet of one particle to the in-sheet of another.

An analysis of some simple cases shows that each particle has a
pair of semi-infinite singular lines (the lightlike half-strings) which
are caused by interaction with some external particle. The lightlike
strings contain only the one-way modes. However, the similar modes
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of opposite direction link the positive sheet of the second particle with
the negative sheet of the first one. Therefore, the KS geometry dis-
plays a stringy analog of the interaction via the exchange of photons.
As it was discussed in [12, 22, 16], such a pair of strings is related
with the Dirac equation and turns out to be a carrier of de Broglie
periodicity.

a = m ow s
R S
)

P PN
y ¢ 7 s

Figure 5b: Two outgoing semi-infinite singular lines of the particle P1, caused by its
interaction with external particle P2.

In the limit of infinitely many external particles, the selected Kerr
particle will be connected by singular twistor lines with many other
external particle, and singular twistor lines will have even and dense
distribution among the twistor lines, covering the principal null con-
gruence of the selected particle.

7 Conclusion

The beam-like structure of the obtained semi-classical nonstationary
solutions reveals a classical fine-grained fluctuating geometry and a
specific mechanism of evaporation provided by the structure of DKS
equations. The obtained solutions show explicitly that both the func-
tions, ¥ and v = (g, Play their own specific role, and evaporation
is reminiscent of a classical analog of the quantum tunnelling process.
In particular, the cutgoing radiation contains two components playing
their own specific role:
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Semi-infinite
out-strings

Figure 6: Formation of the outgoing semi-infinite singular lines by interaction via
the common ‘out-sheet’-‘out-sheet’ twistor lines.

a) the outgoing singular electromagnetic beams, determined by
poles of function 1, perforate the horizon, forming classical micro-
holes which break impenetrability of the horizon with respect to out-
going radiation.

b) regular component .4 which is akin to the Vaidya ‘shining
star’ radiation and, in the agreement with m = —3P%Y(eq)V(reg)s 18
responsible for mass evaporation.

Holographic interpretation of twosheetedness of the Kerr-Schild ge-
ometry allows the treatment of evaporation as a scattering and reveals
important role of the ‘negative’ sheet, showing that the Kerr-Schild
classical twosheetedness represents a classical progress toward the nec-
essary holographic structure of quantum black-hole space-time sug-
gested by Stephens, t’ Hooft and Whiting in [8]. Such a holographic
space-time has to be divided into two causally-related ‘in’ and ‘out’
regions joined by a 2+1 (shell-like) boundary which is holographically
dual to the ‘in’ and ‘out’ regions, bulk of the Kerr geometry. Since
the twistor rays of the Kerr congruence are the time oriented null
lines, the Kerr-Schild alignment condition (13) plays specific role of
time-ordering on the considered semi-classical level.

The old paradoxical Penrose remarks that the twistors are more
fundamental then the points of spacetime acquires a confirmation in
the KS geometry, so far as the twistor-beams form elementary excita-
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tions and the basic elements of the time-oriented KS geometry. Prin-
cipal advantage of the twistor structure with respect to the pointlike
lattice structure is that the twistor vacuum states have the explicit
time orientation and Lorentz invariance.

When this paper was practically finished, we detected one new
important peculiarity the obtained exact EM KS solutions. One can
see that the analytic in Y function P;, used for regularization of the
poles in the function -y, has the pole at the point Y = —1/Y;, which is
antipodal with respect to the regularized direction determined by Y.
It means the tuned function (28) has two singularities corresponding
to two mutually antipodal points. As a result, the function ’y-(mg)
retains to be singular at the antipodal point Y = —1/Y;, and we obtain
that the true regular solution has to be determined by a function A
containing two mutually antipodal poles. This new fact shows that
the obtained in [4] solution (g of the eq. (22), has to be generalized
to take mto account the second pole. This phenomenon is not very
essential for the presented here motivation based on the Kerr theorem
and multiparticle spacetimes. However, it is very important for the
model of electron based on the KN solution {22, 16, 12, 23|, since it
was obtained that solutions of the Dirac equation are related with
two antipodal excitations of the KN background, [22, 16, 12]. The
anipodally syminetrized solutions suggest an alternative explanation
of the appearance of the dual bra-state, which we intend to consider
elsewhere. It should also be noted that the twosheeted twistor-beam
structure of the KS geometry can be considered as an illustration to
the physical significance of the stated by Prof. R.M. Santilli ideas in
his exotic isodual mathematics [13, 14].
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Abstraet. The development of thermodynamics of irreversible processes has encountered a few difficulties and even hurdles.
This gets exemplified by the fact that the chemical thermodynamics developed by the Belgian school based on the differential
form of Clausius’ inequality failed to unambiguously impress upon that it, indeed, is a nonequilibrium thermodynamic descrip-
tion. The differential form of Clausins’ inequality that is customarily used is ambiguous in that whether the entropy function
appearing in it is that of an equilibrium state or of a nonequilibrium state. The fact that the second law of thermodynamics
does not provide direct thermodynamic definition of entropy for a nonequilibrium state forced thermodynamicists to go for a
postulatory approach in the form of adoption of local equilibrium assumption (LEA). The Classical Iireversible Thermody-
namics (CIT) was developed with the help of LEA and then in the sequel it got invented that it is, indeed, a Linear Irreversible
Thermodynamics (LIT). Of course, CIT/LIT enjoyed a good deal of success on its application side but no clear physical un-
derstanding of LEA came forward, On the other hand, CIT/LIT/LEA posed some basic questions and inconsistencies that we
have described herein in some details and attempted to clarify them. It gets revealed that LEA is an ill conceived misconcept
and CIT is inapplicable to the time evolution of a system. Hence, a fresh attempt to develop nonequilibrium thermodynamics
is demanded. in order that no ambiguity should get cropped in while developing a nonequilibrium thermodynamic framework
we felt it necessary to explain the “universe of operations of thermodynamics” which was first conjectured by Bridgman 5-6
decades ago. This universe gets demarcated by the laws of thermodynamics allowed shortest time duration of observations and
smallest size of the system that we have further elaborated in this presentation. Next the generalized zeroth law of thermody-
namics for nonequilibrium states is stated that legitimizes temperature function in nonequilibrium. Various forms of Clausius’
inequality have been reanalyzed and by using the cyclic form of Clausius’ inequality an entropy function for nonequilibrium
states is established. In the sequel there evolves a derivation of differential form of Clausius’ inequality that establishes that
it does contain the entropy function of a nonequilibrium state. A representative example of a nonequilibrium thermodynamic
framework namely the Generalized Phenomenological Irreversible Thermodynamic Theory (GPITT) is described that amus-
ingly does not require LEA to develop it. In GPITT one is required to quantify the existing irreversibility by finding out an
appropriate expression of Gibbs function in terms of the relevant system parameters. GPITT reveals that the thermodynamic
irreversibility is all about the existence of imbalances in corresponding chemical interactions. For example, even the fluxes of
heat, momentum and matter diffusion originate because of the said imbalances in corresponding chemical interactions. The
GPITT based Gibbs relation resembles with the extended Gibbs relation of Extended Irreversible Thermodynamics (EIT) but
at no stage of the development of GPITT LLEA/beyond LEA prescriptions gets evolve, recall that EIT is being claimed to be
a beyond LEA thermodynamic description. GPITT also amicably incorporates the open system features and handles complex
systems consisting of macromolecules via internal configurational parameter and a quantity describing rate of corresponding
irreversibility. The implications, of the thermodynamic development of this presentation on statistically defined entropy has
been described both for within and out side of the “universe of operations of thermodynamics”. In view of the existence of
several nonequilibrium thermodynamic frameworks in literature and no two of them seemingly converge, it is hoped that this
situation might be overcome by coupling of the Lie admissibility of irreversibility, laws of thermodynamics and if required to
arrive at a new definition of the thermodynamic entropy function both for equilibrium and nonequilibrium states.
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INTRODUCTION

The natural events in the universe are irreversible, that is they posses time’s arrow. To understand this striking
behaviour of natural processes now a days a new apparatus named, Lie admissible treatment of irreversibility,
is being used [see for example: 1-3] in various scientific disciplines with froitful results. Therefore, it would be
interesting to see to what extent this new apparatus would help in strengthening and streamlining the subject of
nonequilibrium thermodynamics. The present scenario in the field of nonequilibrium thermodynamics is that no
two thermodynamic schools even seemingly converge in their approaches, thermodynamic understanding and the
so-called thermodynamic frameworks developed by them. However, before the formal initiation of the task to develop
nonequilibrium thermodynamics using this new mathematical apparatus, the present author feels that it is essential to
first elaborate in details the existing status of understanding of various fundamental thermodynamic aspects in general
and nonequilibrium thermodynamics in particular and as far as possible clarify the long pending ambiguities. We wish
that while attempting to reframe nonequilibrium thermodynamics using new mathematics we should begin with a full
and proper understanding of basic thermodynamic aspects. In this presentation, at certain places, the subject matter
covered, on the face of it, would appear as a text book level material but for the sake of self sufficiency and to reveal
the gravity of the ambiguities carried thereby we have included that part of the subject matter. This exercise as stated
above would help us in starting with as clean a slate as possible to frame nonequilibrium thermodynamics using new
mathematics. However, this latter aspect is not a part of this presentation as it is the subject matter of our further
investigations.

Thus in this presentation we have opted to describe the development of nonequilibrium thermodynamics as time
progressed. However, we would not include in our discussion various nonequilibrium thermodynamic frameworks
existing in literature, however, only a few of them would make inroads. In doing so the basic flaws that remained
imbedded in the course of development of nonequilibrium thermodynamics would also be spelled out and the solutions
of some of them would be presented of course without a recourse to the new mathematics. Moreover, a representative
example of how to proceed in developing a nonequilibrium thermodynamic framework starting from the second law
of thermodynamics has been described. In the end we have also briefly discussed the thermodynamics of complex
systems in nonequilibrium and implications of thermodynamic considerations on the statistical thermodynamics of a
system in nonequilibrium followed by the concluding remarks.

THE INITIAL THERMODYNAMIC DESCRIPTION OF IRREVERSIBILITY

Thus when one enquires about a thermodynamic description of irreversibility the first formal descriptions are in
terms of the efficiency of a device and the Clausius inequality. The Carnot Theorem [4] states that no device can be
more efficient than the reversible Carnot engine, mathematically it is stated as,

nrev > nirr (1)

where 1 quantifies the efficiency of the device. Based on equation (1) the involved irreversibility would get quantified
as,

nm_nirr :'ﬁ > 0 7 (2)
where .# is the quantitative measure of irreversibility. On the other hand, Clausius’ inequality [5] reads as,
d
TQ <0 (closed systems) (3)
) R

nr

where dQ is the differential amount of heat exchanged with the heat reservoir of temperature 7z by the device in a
cyclic operation. Now let us recall that, at the initial stages of development an attention was centered around realizing
a maximum amount of useful work that demanded minimization of the existing irreversibility. In doing so a little
attention was paid to a thermodynamic quantification of the existing irreversibility. As time progressed it was felt
that one should go for the thermodynamic quantification of irreversibility which would also serve in developing a
thermodynamics of irreversible processes. However, the development of thermodynamics of irreversible processes in
itself offered a multitude of formidable challenges that needed to be overcome. Let us now recall the said challenges,
they are:

1. To artive at the entropy function for nonequilibrium states, say starting from the Clausius inequality, equation (3).
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2. When the existing irreversibility is on account of the existence of spatial non-uniformity within the system, it
immediately forces one to go for the local level description as is the practice in fluid-dynamics.

3. As soon as one goes to the local level description the open system features get associated to each conceptual local
tiny pocket.

4. The inequality of equation (3) is a statement for a global closed system. This then would perhaps demand the
generation of corresponding version of the Clausius inequality at the local level.

5. When a system under consideration is spatially uniform still there can exist an irreversibility. It would be due to
the occurrence of chemical conversions proceeding at finite rates.

In view of the above facts in next section we choose to describe the steps involved in the chemical thermodynamics
developed by the Belgian school, which probably is the first nonequilibrium thermodynamic description, wherein the
second law of thermodynamics in the form of Clausius’ inequality (the differential form) has been used to start with.

IRREVERSIBILITY IN SPATIALLY UNIFORM SYSTEMS

The first attempt of thermodynamic quantification of irreversibility has been described in the monograph by,
Prigogine and Defay [6]. They have used the so-called differential form of Clausius’ inequality, namely:

aQ
s> —. (4)

But it seems that no one was aware that the preceding inequality was never derived by Clausius himself, say from
equation (3). He simply stated it about one decade after his derivation of equation (3) [7]. The crucial query herein
is that whether S in equation (4) is that for a nonequilibrium state or for an equilibrium state? Nevertheless, Meixner,
indeed, conjectured that it has to be that for the transient nonequilibrium states through which the system passes during
its time evolution,

However, till that date no method was evolved to arrive at the entropy of a transient state based on the second law of
thermodynarnics. Still the chemical thermodynamics developed by the Belgian school for a spatially uniform system
(indeed, it is the nonequilibrivm chemical thermodynamics) has no flaws other than the one stated above. The method
that they adopted involves the introduction of Clausius uncompensated heat, ', {5, 6] such that equation (4) gets
transformed to an equality as follows,

dQ+d
ds= Q;Q' (5)
T
Hence, an yet another second law of thermodynamics dictate is obtained as,
aqQ > 0. (6)

Next, as the irreversibility that exists has been assumed to be that on account of chemical conversions at finite rates,
dQ’ needs to be quantified through the parameters that measures the progress of chemical reactions. We recall that
with the progress of chemical reaction the mole numbers of reactants and products change at a finite rate. This change
gets described by Dalton’s law of constant proportions that mathematically reads as [6],

dny = Vi dé )
in the case of a single chemical reaction occurring within the sysiem, say:

v;A+vl;B+v(’:C+----—>va+vnN+vOO+--~- ®
By convention the stoichiometric numbers V;’s are taken positive for products and negative for reactants. Therefore, in
the case of reactants we have v, = —v;, %= —v{) and so on. Notice that equation (7} provides us a single parameter
£ and its change uniquely determines the corresponding changes in mole numbers of all reactants and products. Hence,
& is termed as the degree of advancement of the chemical reaction. Therefore, 40 /dt is taken proportional to the rate

of reaction, d& /dt, that offers us,
W dE Ao

o & @ T a0 ©)
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where the proportionality constant <7 gets termed as the chemical affinity of the chemical reaction under consideration.
Notice that from equation (9) we obtain following thermodynamic deductions, namely:

d

o >0, d—f >0, Forward reaction.
d& .

1 < 0, o <0, Reverse reaction.

& =0, d& =0, Equilibrium.
o =0, d&F#0, thesystem is carried reversibly.
d§

& #0, I 0, Energy of activation of the chemical reaction

is much higher or a metastable state.

In fact, the last two assertions stated above were not spelled out by the Belgian school.
When there takes place more than one chemical reaction (which is the case in reality) equation (7) gets expressed
as,
dm =Y v{dg" (10)
Y

where v/ is the stoichiometric number of the component k in y-th chemical reaction and £7 is the degree of
advancement of the y-th chemical reaction. This then transforms equation (9) to,

dQ' 487
— _;ﬂ = > 0. (11)

Moreover, equation (5) is customarily expressed as,

dQ

d
dS =dS+d;S, deS==7, d,-S:—Ql.

T (12)

Thus 4,5 is obtained as the exchange of entropy by the system with its environment which may be positive or negative
and d;§ is the entropy production within the system due to existing irreversibility which is obtained as a positive
definite quantity. Hence it is asserted that the entropy of the system can change on two and only two counts, one by
the mechanism of exchange of entropy by the system with its thermally interacting surroundings and the other by the
creation of it within the system. Thus the entropy can only be created but it cannot be destroyed, indeed, it can be
transported in or out of the system. Hence, entropy is a non-conserved quantity.

Of course, this is not the place to describe the entire work of the Belgian school on chemical thermodynamics hence
the reader is advised to refer the monograph cited as reference 6 of the bibliography. However, in the following two
subsections we describe how powerful assertions emerge from the above framework.

Coupled Reactions

Let us consider that in a closed system two chemical reactions are proceeding at finite rates. In this case the rate of
entropy production from equations (11) and (12) is obtained as:

T@:m@+%d§2

452 13
dr dr a > ° (13)

which means that the second law of thermodynamics requires that:

d& a0\ dé
= - (E) =L (14)

As we have seen that in the case of a single chemical reaction the reaction will proceed in the forward direction
(d& /dt > 0) only if & > 0, hence one would expect that in the present case too we must have & > 0 & d&,/dt > 0
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and o5 > 0 & d&;/dt > 0. However, without violating the second law of thermodynamics dictate of equation (13)
the system is, indeed, allowed to behave in such a way that even if & > 0, d&;/dt > 0 and &% < 0 still this second
reaction can proceed on its will in the forward direction that is the observed rate of chemical reaction 2 in actual can
be d&; /dt > 0 instead of d&;/dt < O provided equation (14) is not flouted. When it happens the chemical reaction 1
is called the coupling reaction and the reaction 2 is the coupled one. Thus the coupled chemical reaction consumes
entropy at the expense of the coupling chemical reaction, which produces entropy.

Examples:
Let us consider two biochemical cases [6, 8], namely:
(1) The case of biological burning of sugar that couples the production of urea:
1
6 CeH1204 + O3 —> CO; + HO 2 = 115.0 kcal/mol

2NH3 + CO; — (NH3)2CO + H,O b = —11.0 kcal /mol
L d& 115 d§ d&
“a T s S
(2) The case of biological hydrolysis of Creatine phosphate that couples the ATP (the energy store house of bioclogical
systems) synthesis:

Creatine Phosphate + HyO - Creatine +P & =43.5 kJ/mol

ADP+P — ATP + H,O by = —39.8 1J /mol
~d& 435 d§ dé,
ar 0398 ar X

The above two representative examples of urca production and the ATP synthesis are individually thermodynami-
cally unfavourable but nonequilibrium thermodynamics explains how and why in biclogical systems their synthesis is
unbelievably efficient.

Ordered Irreversible Biological Evolution

Now recall that the evolution of a biological system is an ordered irreversible process. In view of the discussion of
preceding subsection it must be due to the coupling of a host of biochemical and biophysical processes. Mathematically
speaking, each negative entropy producing biological process that occurs remains coupled with its complementary
entropy producing process. The latter maintains the irreversibility as it dominates over the former (in maintaining the
dictates of the second law of thermodynamics) whereas the former tries to produce an order (as the decrease in entropy
tries to increase the order within the system} during evolution, whose rate remains much higher than that of the former.

‘When this coupling totally breaks down (reasons can be very many) the biological system marches towards death.
That is, we have two types of components that comprise the overall entropy production rate in a biological system,

namely:
ds ;s\ ”* 4s\?
L = - 0 15
sy () x (%) o
with say:
diS\“
— 1
(dr) >0 (16)
and 5
d;S
— . 1
(dt) <0 a7

The entropy production rate of equation (16) dominates in magnitude over the negative entropy production rate
described in equation (17) within a biological system. This discussion reveals that the key of ordered biological
evolution is the occurrence of coupled processes.

Indeed, the above deductions hold good but there still remains a basic flaw regarding the origin of the involved
entropy function in the above description. In order to clarify this crucial and basic query we need to dwell a little bit
on the various forms of Clausius’ inequality. This aspect we resolve in the following section.
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UNDERSTANDING OF CLAUSIUS’ INEQUALITY

Let us now examine the implications of Clausius’ inequality, equation (3), including its other forms [9]. To elaborate
the implications of Clausius’ inequality let us consider that a given system goes irreversibly from an equilibrium state
A to another equilibrium state 8 and then it is carried reversibly back to 4. Thus the cyclic integral of equation (3) gets

expressed as,

d B d’ A

@ _ Q /-—<0 (18)
Ix  Ja

or

Notice that instead of Tz we have used T on the reversible segment of the cyclic operation. It is so because under
reversibility we rigorously have Tg = Ty, = T. Now the standard manipulations of equation (18) gives,

B
BdQ /A dQ B iTQ _ fqu_ (19

A

Again notice that we have used the Clausius definition of entropy of an equilibrium state in equation (19) namely,
dS =dQ,.,/T [4, 5].
Next on integrating the last integral on the right hand side of equation (19} we obtain the integrated form of Clausius’
inequality, namely:
B a0
AS > — 20

CJA Tr
irr

where AS stands for the difference in entropies of end equilibrium states, namely:
AS =Sp—S4. (28]

Notice that on going from the equilibrium state 4 to an another equilibrium state 5 the entropy change of the system
remains the same whether the system is carried reversibly or it went trreversibly, that is,

Sp—8a = (A‘S)rev (A - B) = (A‘S)irr (A -+ B) (22)
but it needs to be kept in mind that one cannot integrate to wrile,
B
(M%:ES (23)
i

because we have not yet defined or identified an entropy function on real trajectories, that is for a nonequilibrium state.
Therefore, one should not confuse (AS),,, with (AS), (4 — B) because the latter is not the result of integration along

an irreversible path. Moreover, as pointed out by Meixner [7] the much used differential form of Clausius’ inequality,
namely:
dg . .
ds > T (irreversible change) (24)
was never derived by Clausius himself from equation (3) and hence equation (24) is not simply a differential form
of equation (3). Meixner recalls that after a gap of about a decade from the first derivation of equation (3) Clausius
merely stated equation (4) or precisely equation (24) without any derivation. This point has been again scrutinized very

recently [9] which reveals and strengthens Meixner’s assertion. This can be illustrated as follows. Let the equilibrium
states A4 and 5 are such that their entropies are related as,

Sg=Sa+dS (25)

that is the two equilibrium states are infinitesimally away from each other. Now substitute equation (25) into equation
(20) and use equation (21) that gives,
B 4
as > [ 2 (26)

a Tp

irr
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and not equation (4). Alternatively, retain only the first and the last integrals of equation (19) which on rearranging

reads as, 5
dg

B

[dS > —. 27
A Ja Ix

rev rr

Now as an irreversible trajectory between given two equilibrium states cannot be coincided with any of the reversible
paths between them the symbol of integration on both the sides of equation (27) cannot be dropped out simultaneously
to produce,
dQ . .

as > ﬁ (irreversible change) (28)
and hence it cannot then be transformed to equation (4) on asserting the condition of uniformity of the temperature
within and across the boundaries of the system. Thus it is surprising that without realizing this serious flaw almost
all thermodynamic texts and textbooks of physical chemistry base their discussions on equation (4) but are totally
unaware of propagating a wrong message.

Thus from the above discussion it is clear that one should first establish an entropy function for nonequilibrium
states and then proceed to quantify the existing irreversibility. Hence, we proceed on these lines and the resulting
nonequilibrinm thermodynamic description of spatially uniform systems, indeed, is expected to be an identical one as
that has been developed by the Belgian school described above.

NONEQUILIBRIUM AND THE ENTROPY FUNCTION

The simplest nonequilibriom situation is that of a spatially uniform closed system having no gradients in intensive
parameters even across its boundaries but the seat of irreversibility lies well within it, namely due to chemical
conversions at finite rates. Thus the operating conditions are,

AT = Ap = 0 (across the boundaries)
VI = Vp = V¢ = 0 (within the system) 29

where T and p are the temperature and pressure and ¢ is the concentration of the component k. This means that within
the system and across its boundaries no heat, momentum and diffusion fluxes exist. It is further assumed that the
interacting surroundings are manipulated so efficiently that these fluxes do not get generated during a cyclic operation.
That is, throughout the cyclic operation the system remains spatially uniform and hence Tz = T}, = T can be safely
assumed. Therefore, the operative form of Clausius’ inequality, equation (24}, in the present case reads as,

% <0 (closed systems). (30)

irr

Now we proceed to establish the entropy function for a spatially uniform system in nonequilibrium.

Generation Of Entropy Function For Spatially Uniform Systems In Nonequilibrium

Herein it is necessary to first explain why we term the given transient condition as a nonequilibrium state. To grasp
it let us consider the following chemical reaction, namely:

kg
A+B? C+D

r

where A and B are the reactants, C and D are the products, and k r and k, are the forward and reverse rate constants. At
the chemical equilibrium under a given condition of say T and p we have, K = kg /k, [10], where X is termed as the
chemical equilibrium constant. When the imposed conditions that of T and p are varied the values of K as well as k¢
and &, also vary and hence the value of K uniquely determines the existing equilibrium state. On the other hand, at a
given instant of time the existing nonequilibrium gets uniquely prescribed [19] by,

141



4ac,
v‘f =krCaCp —k, CcCp

where C;’s are the respective concentrations at the given time ¢. Thus, we can replicate exactly the given nonequilibrium
condition by assigning T, p and C;’s. Recall that C;’s are accurately measurable even in a dynamic system. Hence, it
is legitimate to term the transient nonequilibrium condition at a given time as the nonequilibrium state.

Now on following mathematical manipulations adopted by Clausius [5], Eu [11, 12] and Eu and Garcia-Colin [13]
we define the uncompensation function, N, as,

d
N=- TQ >0 {closed systems). 31

irr
Thus we obtain the following dictate of the second law of thermodynamics, namely:
NZz0 (32)
That is N = ( is the equation of a reversible cycle. Now we treat N as an independent quantity [13] and write,
N= f dN > 0 (closed systems). (33)
irr

Again as uncompensation function appears only on account of irreversibility, dN cannot be negative and should vanish
on each reversible segment of the cycle [9, 11], therefore the dictates of the second law of thermodynamics read as,

N=0, dN = 0. (34)
Now on combining equations (31) and (33) we obtain,
dQ
f T +dN ] =0 (closed systems). (35)
irr

Notice that in equation (35) dQ/T and dN belong to the same segment at each stage of the cyclic operation. As the
cyclic integral of equation (35) vanishes its integrand is obtained as an exact differential, which we write as,

ds= @ +dN (36)
or in the explicit time rate form it reads as,
ds (t) 1 dQ
37
Tdt T dt A ( ) ©7)

Obviously, we have the following inequality, namely:

dN

7 — () > 0. (38)

Let us introduce Clausius’ uncompensated heat, ¢, as,

v .1 dg .
and as 7(¢) > 0 we have from equation (39),
dg’
— (>0 (40)

This development now allows us to produce the differential form of Clausius’ inequality and clarify the principle of
monotonic increase of entropy. That we describe in next two subsections.
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Clausius’ Inequality In Differential Form

In view of equations (38) and (39) we obtain a dynamic differential form of Clausius’ inequality from equation (37)
as,

ds(t) 1 dQ

dt T(t) dt

Thus we see that the correct form of the differential form of Clausius’ inequality is the one depicted in equation (41)
wherein the time dependent entropy function appears. Further, we need to remember that to arrive at this inequality
we had to first establish an entropy function for a nonequilibrium states.

On the other hand, notice that the Clausius inequality depicted in equations (19) and (20) contain the entropy
function of equilibrium states and in equation (41) S(z) is that for a nonequilibrium state. Therefore, the so-called
Clausius’ inequality of equation (4) remains ambiguous as it seemingly appears to be the differential version of
equation (20), the integrated version of Clausius’ inequality, and hence gives an impression that it is consisting of
entropy function of equilibrium states.

Moreover, equation (37) on using equation (39) reads explicitly as:

—(1). (4D

dst) 1 dQ 1 d¢

dr T(t) dt FACAS r) dt o (42)

which resembles with equation (5) and hence it is no wonder that the entire chemical thermodynamics developed
by the Belgian school would get reproduced from equation (42), of course, without any doubt as a nonequilibrium
thermodynamic framework but now on the sound base laid down by the second law of thermodynamics.

Principle Of Monotonic Increase Of Entropy

Recall the integrated form of Clausius’ inequality, equation (20), which on imposing adiabatic condition, d@ = 0,
produces,
AS = 0, 43)

which emphasizes that the entropy of the final equilibrium state will be always higher than that of the initial equilibrium
state if the transition is irreversible adiabatic. However, it says nothing about the rate of entropy variation during the
adiabatic evolution of the system.

On the other hand, the time rate differential form of Clausius inequality, equation (41), under the condition of
adiabaticity correctly produces the principle of monotonic increase of entropy, namely:

ds(t)
dr

in terms of the entropy function of nonequilibrium states. Notice that equation (43) does not ensure the monotonicity
in the increase of entropy whereas equation (44) transparently describes that the successive nonequilibrivm states in
adiabatic evolution of a system are of higher entropy than that of the preceding ones.

>0 (44)

CLASSICAL JIRREVERSIBLE THERMODYNAMICS (CIT)

Though we have already described in section entitled irreversibility in spatially uniform systems how Belgian school
has developed chemical thermodynamics framework (which, indeed, is one particular version of Classical Irreversible
Thermodynamics (CIT)) produced by using the so-called differential form of Clausius® inequality (from the above
discussion now we for the definite know that S in it is that for a nonequilibrium state) it is worth while to discuss CIT
in its more general setup before proceeding to directly establish an entropy function for spatially non-uniform systems
on the lines described in the preceding section. We also take this opportunity to reveal incoherencies carried by CIT.

We recall that the CIT [14-18] for the first time attempted to legitimize nonequilibrium states and seemingly
brought them into the fold of thermodynamics that appears to have helped in removing the apprehensions about the
thermodynamic status of nonequilibrium states. The backbone of CIT is the Local Equilibrium Assumption (LEA),
which for a spatially non-uniform system envisages the existence of a local equilibrium at every point within the
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system. In other words, when LLEA operates within a system globally in nonequilibrium its every interior tiny volume
element may be approximated as if they are in some sort of equilibrium. It is belicved that this assumption allows one
to accept,

+ entropy function for such nonequilibrium states.

« temperature function for such nonequilibrium states.

« the same functional dependencies of the so accepted entropy function on the system quantities as that has been
established in equilibrium thermodynamics.

- all state functions of such nonequilibrium states have the time and position dependencies whereas when the
system happens to be in a nonequilibrium stationary state (NSS) thermodynamic quantities are only position
dependent.

Mathematically, LEA gets expressed as [14-21],
s(r,1) = s(u(r, 1), v(r, 1), x1(r, 1), x(r, 1), ..) (45)

where s(r, t) and u(r, 1} are the per unit mass entropy and internal energy respectively, v(r, r) is the specific volume,
r is the position vector, x| (r, 1), x2(r, ), ... are the mass fractions of the components 1, 2, ..., and ¢ is time, This then
seemingly opens for us a gateway to use as such the Gibbs relation at the local level in time rate form, namely:

ds _du _y dv 1 dx;,
—=T""—+7T 'p—-T — 46

dt dt T dt ;_u, *dr (46)
where 1 is the chemical potental per unit mass of the component . For the sake of simplicity the explicit position
and time dependencies have not been shown but is implied from here onwards. Next, one uses the fluid dynamical
internal energy balance equation, which in a simpie situation reads as,

du dv
= --V.q—pp—+I1:V
pdt q ppdt II:Vu N

where p is the local mass density, p is the local pressure, g is the heat flux density, Il is the dissipative stress tensor
(the momentum flux density) and u is the barycentric velocity. Now on combining equation (47) with equation (46)
the following entropy balance equation is obtained, namely:

d
pd_j+V'Js=Gs (48)

where J; is the entropy flux density and o; is the entropy source strength and their expressions are obtained as,

q
i=a 49
J T (49)
1 . Y dEY
.=q-V|[= -V -2
G —q v(T)+r Vet L (50)
where the chemical affinity, &7, of y-th chemical reaction reads as,
gAY = _):ukvg (51)
k

and from Dalton’s law [6] the advancement of the y-th chemical reaction, £7, is given by,

dx, =Y vidE" (52)
¥

where vz is the stoichiometric coefficient of the component % in the y-th chemical reaction and by convention it is
taken positive for products and negative for the reactants and &7 is the mass fraction based degree of advancement of
the y-th chemical reaction.
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Further, each term on the right hand side of equation (50) can be shown as a positive definite contribution and hence
in the case under consideration equation (48) is nothing else but the well known Clausius-Duhem inequality [22],
namely:

d
pd—:+V-JS=0'S>O. (53)

In CIT g, IT and d&?/dt are termed as thermodynamic fluxes (J,'s) and V(1/7), Vu and «/¥/T as thermodynamic
forces (X,’s). In general o is composed of three kinds of terms namely scalar, vectorial and tensorial ones and each
kind is composed of more than one term depending upon the existing sources of irreversibility. However, it is obvious
that the fluxes may depend on the magnitudes of the forces of their kind. This in general is expressed in a Taylor
expansion as,
aJ, 1w 9%,
Ja - ; a_XbXb + 5 E mXch + """ (54)

Now as LEA has been supposed to operate it is obvious to conjecture that it can be realized only when the given
system happens to be close to equilibrium. Therefore, the second and higher order terms in equation (54) would
contribute a little to the sum and hence are customarily ignored. Therefore, the following linear relations oprtate,
namely:

s
X,

Ja= ZLabXba Lap = (55)
4

In: the view of operation of these linear relationships CIT is also termed as lincar irreversible thermodynamics (LIT).
Thus the expression of entropy source strength, J;, gets simplified to a quadratic bilinear form, namely:

0, =) LapXaXp 2 0. (56)
a.b

A further simplification is obtained as it has been shown that the Onsager reciprocal relations, namely:
Lop = Lpa &)
are followed too [23, 24] and hence equation (56) further simplifies to,
0, =) LoaX}+2 bf, LycXpX, > 0. (58)
a .
b

Indeed, we are not required to describe herein the entire development of CIT the interested reader is advised to read
the corresponding references cited in the bibliography.

LEA = Close To Equilibrium !

Now we pose a question. Is it true that LEA operates only when system happens to be close to equilibrium? However,
on going through the literature we observe that:

1. In the case of spatially non-uniform systems in a nonequilibrium stationary state the above CIT/LIT description
fits very well and it has been successfully subjected to experimental verifications. Amongst such examples are
thermodiffusion, thermoelectric effects, thermo-mechanical effects and the Saxen’s relations. In such phenomena
validity of equation (58) has been verified [14-21].

2. However, the irreversibility on account of chemical reactions at finite rates has a different story to tell. In a
spatially uniform closed systems the entropy production due to chemical reactions at finite rate, d;S/dt, from
equation (50), is given at global level by,

4> _ g #IT S, (59)
Y7
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3. Though in deriving equation (50) the LEA has been used but equation (59) generated from the former has been
successfully applied to various far away from equilibrium situations. The systems in nonequilibrium that get
covered by equation (59), for example, are right from the initiation to the approach to equilibrium stages of
chemical reactions, chemical oscillations, chemical chaos, etc. In a no stretch of imagination these processes can
be considered as falling within the close to equilibrium category.

A simple demonstration of the validity of equation (59) right from farthest away from equilibrium to close to
chemical equilibrium is as follows. Let us consider a spatially uniform system in which a single chemical reaction is
proceeding at a finite rate. In this case equation (59) reduces to,

&S _ ol dE

= 20, 60
dt T dr 60

Now it can be easily shown that an exponential relation exists between the rate of reaction, d& /dt, and its thermody-
namic driving force, & /T, which reads as,

d§ —
& =Ry (1-c/T) 61
dr 4 ¢ 61
where Ry is the rate of forward reaction and R is the universal gas constant. Notice that equation (61) is not a linear
relationship between d& /dt and <. However, when the given chemical reaction approaches close to equilibrium the
relationship of equation (61) takes the following linear form, namely:

eq
a5 Ry o 62)
dt R T

where ]Rj? is the rate of the forward reaction at chemical equilibrium.

The above analysis reveals that the said LEA is accepted to take a drastically different stands in spatially non-uniform
and uniform systems. The reasons behind it are not clear. On the other hand, in sixties of the previous century a new
dimension to the validity of LEA has been invented. Inadvertently, it is a non-thermodynamic one, namely based on the
physics and/or mathematics of the processes. In other words, it is the constitutive theory driven consideration, namely
the parabolicity versus hyperbolicity of the constitutive equations that describe the time evolution of the system. This
aspect is the subject matter of the next subsection.

Parabolicity/Hyperbolicity Argument

In the beginning of sixties of the preceding century a new thermodynamic framework got developed which is termed
as Extended Irreversible Thermodynamics (EIT) [25, 26]. In EIT it is claimed that their framework is the legitimate
extension beyond LEA. Let us compare the following two Gibbs relations:

ds du dv

- = r7ilz=471 63
dr atl Pa (63)
ds _1du _qy dv dq

L S T & Ay P 64
dr atl P P (64)

In the preceding two equations the latter one is termed as extended Gibbs relation of EIT and the former one is the
Gibbs relation wherein LEA is believed to be obeyed. In equation (63) the heat flux density, q, is not an explicit
thermodynamic variable and the entropy production due to the existence of heat flux is given by,

as=q-v(%) >0. (65)

Whereas, in EIT, the heat flux density, g, is an additional thermodynamic variable and the entropy production due to
the existence of heat flux to the lowest order approximation reads as,

1
0= 77379420 (66)
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where A is the heat conductivity. The question that obviously arises is - what is the physical difference between close
to equilibrium prescribed by LEA and the lowest order approximation involved in equation (66)?
The another limitation of LEA that is spelled out in EIT texts is that in CIT the linear Fourier law, namely:

q=—AVT (67)

operates that produces an infinite speed of spatial heat propagation. This is so because on using equation (67) and
the corresponding internal energy balance equation appropriate in this case, the following parabolic partial differential
equation for the propagation of temperature is obtained namely:
aT A
at  pe,

vir (68)

where p is the mass density and ¢, is the specific heat capacity. On the other hand, one obtains a hyperbolic equation
of telegraphers type, namely:

T L9T_ 4

o2 ' It pe,

on using the Maxwell-Cattaneo-Vernotte (MCV) equation [27, 28], for heat flux, namely:

vir (69)

’cj—? — _(q+AVT) (70)

and the internal energy balance equation expressed as,

du aT .
pz = pey (E)v = —divq. (71

Notice that, in deriving above parabolic equation (68) one uses the time dependent equation (71) and assumes the
validity of Fourier law, equation (67), during time evolution of the system. But there is no experimental proof to
support this assumption. The clinching argument in favour of hyperbolic equations is customarily produced on the
basis of finite/infinite speeds of wave propagation of the fluxes. But this then side tracks the question whether the
Fourier law is at all valid during time evolution of a system in certain nonequilibrium sitnations.

Infinite/Finite Speed Of Propagation Argument
Consider equation (68) whose one dimensional version reads as:

ar A *T 9T

dt  pc, IxF o
where x is the thermal diffusivity. Equation (72) is parabolic in nature. The implication of parabolicity is that
the sudden application of a temperature difference would give rise to an instantancous rise to the finite heat flux
everywhere in the system. That is, it predicts heat propagation at infinite speed. It indicates that for the time evolving
nonequilibrium states the Fourier law is not perhaps valid. In EIT, pains are taken to emphasize that the Maxwell-
Cattaneo-Vernotte equation based derivation produces equation (69), which is hyperbolic in nature and hence the
problem of infinite speed does’nt arise. To appreciate how equation (69) produces finite speed of propagation of
temperature waves let us consider the onc dimensional version of it, namely:

Pr o _ 2T

(72)

o T T2 73
From equation (73) the speed of the temperature wave, V, is obtained as:
V=/0)"?  where x=(A/cp) (74)
Moreover, for monatomic dilute gas the Kinetic Theory provides us the following relationship [29], namely:
A = (5pkg/2m)T (75)
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therefore from equations (74) and (75) we notice that as A — 0, x — 0 and 7 — 0 and vice versa. Hence, V always
remains finite. That is the problem of infinite velocity of temperature waves gets overcome. For T = 0 equation (70)
reduces to Fourier law that according to equation (74) demands infinite speed of propagation of heat (temperature)
waves.

In this way, the problem of infinite speed of second sound gets amicably solved as equation (69) assigns a finite speed
to heat waves. But we need to remind us that we have still used # = «({7T,v) in deriving equation (69). Whereas, in EIT
it is argued that the production of equation (69) by using MCYV equation, the way it is depicted above, does suggest
that q needs to be taken as an additional thermodynamic variable. Of course, there are other compelling reasons
to do so particularly the Grad’s solution of Boltzmann integro-differential equation that produces corresponding
nonequilibrium distribution function [30, 31] in which the nonequilibrium contribution gets expressed in terms of
the existing heat flux.

In view of this crucial assertion in EIT one should have used u = u(7',v,q) instead of u = u(T,v) in deriving the
corresponding temperature equation, but so far it has not been attempted. However, now we have undertaken this
exercise in the case of rigid body heat conduction. In this exercise we have used MCV equation (70), u = u(T,q) and
the corresponding internal energy balance equation. The steps of this exercise involves the manipulation of the internal
encrgy balance equation as depicted below,

du_ aT du aqy _ .
() (30 ()

and then on combining it with MCV equation (70) the result is the following non-parabolic complex equation, instead
of equation (69), for the heat propagation, namely:

AT AT A _,. 2ha Aa , @A IVT
Tﬁ E_pcvv T ‘Ev(VT) —(,‘_vq a[ =0 (77)

where we have used aq = (du/dq) 1., 85 a first approximation. However, one also gets a non-parabolic equation of
heat propagation on using « = u(T,q), the Fourier law and the internal energy balance equation (76), that reads as:
ai? d(VT)

ar A,
EwpchTJr cchT' ot

=0. (78)

Thus from the above demonstration we see that if q is used as an additional thermodynamic variable then the use of
both linear and nonlinear equations of heat conduction produce corresponding non-parabolic equations of temperature
waves. Therefore, the hyperbolicity and/or the non-parabolicity of the constitutive equations is not a sufficient reason
to consider that it is the case of breakdown of LEA.

Another demonstration of non-validity of Fourter law during time evolution of a system is based on the principle of
minimum production of entropy. This is described in the next subsection.

Argument Based On The Principle Of Minimum Production Of Entropy

Yet another demonstration of non-validity of Fourier law for nonequilibrium states other than the NSS is that of
Lampinen [32]. In the hope that the NSS corresponds to the minimum production of entropy he used Euler-Lagrange
method of variational calculus [33] to minimize entropy production in one dimensional heat conduit using Fourier law
of heat transfer and the expression of entropy production given by CIT (c.f. equation (50)) [14], namely:

1
oszq-V(F) >0. (79)

On using the one dimensional version of equations (79) and (67) we obtain for the rate of entropy production, 22, for
the whole heat conduit, the following expression,

L1 [aT\?
P = AL | 12 (a—) dx >0 (80)
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where A is the uniform cross-sectional area of the heat conduit of length L. The minimum production of entropy, &2,
is obtained by Euler-Lagrange method of variational calculus [33] by imposing:

L1 /aT\?
6[[0 ﬁ(g) dx}—O. (81)

But on solving equation (81) Lampinen obtained the following expression [32] of temperature profile at NSS; namely:
T(x) = To(Ti/ To)"" (82)

It is not the same expression the one that is obtained from equation (72) at NSS, namely:
T(x) =To+(T — To}(x/L) (83)

where, 77 and Ty are the temperatures of heat reservoirs {7 > Tp) between which the heat conduit of the length L
is kept. We recall that equation (83) exactly matches with the experimental temperature profile. Thus the result of
minimizing the rate of entropy production is equation (82), which simply means that on the perturbed path about a
NSS one cannot use Fourier law. Moreover, it also hints at the non-validity of entropy production expression equation
(79) given by CIT if it is not the case of NSS.

On the other hand, when we replace the Fourier law by the MCV equation in the preceding analysis, that is retaining
the expression of entropy production given by equation (79) provided by CIT, it too does’nt produce the right result
for the temperature profile at NSS. The expression obtained is:

T(x) = /(T2 ~T2) (x/L) + T2- (84)

Thus the above analysis demonstrates that on perturbed path about an NSS the equation (79), that is the CIT given
expression of entropy production, is not valid. However, on using EIT given expression of o, equation (66), and MCV
equation (70) on the virtual perturbed path and then minimization of entropy production rate, &2, produces the correct
temperature profile along the length of the heat conduit at NSS, namely equation (83).

A Thermodynamic Argument

The CIT given expression of entropy source strength for heat conduction is equation (79), namely:

Gszq-V(%) =0

As argued above the Fourier law is not valid for nonequilibrium states other than the NSS, let us examine how good is
the MCV equation to study the entropy evolution with time. Thus on substitution of equation (70), the MCV equation,
into equation (79) we obtain,
A T dyg
6= — (VT + —— -VT. 85
= 13 (VT)Y + 2 (85)

Now, if we isolate the rigid body instantancously from its environment, its entropy will vary with time as,

ds
— = | odV 86
7o 80

The solution of one dimensional version of the preceding equation was obtained earlier {26] and the result is the non-
monotonic increase of entropy depicted in the FIGURE 1 by dashed curve. However, this result is not in conformity
with the second law of thermodynamics.
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Source: Lebon et al [26]

FIGURE 1. Evolution of entropy based on the Classical Irreversible Thermodynamic Theory during the equilibration of an
isolated system when use is made of Cattaneo’s equation is given by the dashed curve. The evolution of entropy using EIT and

GPITT descriptions is represented by the solid curve.
The Options At Our Disposal

From the preceding discussion the conclusion is that when a nonequilibrium state is other than the NSS not only the
Fourier law but also the entropy production given by CIT are not valid. In view of this demonstration now there are

two options, namely:
1. Expand the domain of LEA to include all those nonequilibrium situations, irrespective of from far away to the
close to equilibrium conditions, that would demand the inclusion of additional thermodynamic variables over and

above the ones offered by the traditional Gibbs relation.
2. Shun altogether the postulation of LEA and find out some other acceptable requirement obtained explicitly from

the laws of thermodynamics, particularly the zeroth and second laws of thermodynamics.
At this juncture we also cite present author’s earlier investigations [38, 39] based on the kinetic theory as well
as the macroscopic thermodynamic considerations. These studies clearly establish that the LEA is an ill conceived

concept and hence needs to be abandoned. Therefore, in the following we are presenting the results of our efforts in
conformity with the second choice. The present author has developed a thermodynamic framework named Generalized

Phenomenological Irreversible Thermodynamic Theory (GPITT) [34-37] wherein no postulation of LEA is required
hence it fits well with the second choice spelled out above. This involves first to clearly understand the domain of the

operations of thermodynamics, legitimization of temperature function in nonequilibrium and then generation of the

entropy function in nonequilibrium for spatially non-uniform systems.

BRIDGMAN’S CONJECTURES

As stated above we need to understand clearly the domain of the operation of laws of thermodynamics. In this
exercise the conjectures made by Bridgman help us [40, 41]. Bridgman concludes that the “Universe of the Operations
of Thermodynamics is determined by the instrumental operations of laboratory”. Therefore, his assertions are that for
the laws of thermodynamics, particularly the zeroth and the second laws, to hold there are lower bounds on:

1. the size of the system. The lowest size that belongs to the domain of thermodynamics can be appreciated by the
fact that at NTP, say hydrogen gas, houses about 10'? molecules in a cube having its edges of 0.001 mm length.

In solids this size would be even much smaller and will depend on the density of the material.
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2. the time scale of observations.

Below these lower bounds one enters into the natural fluctwational domain. In the view of above keen observations
Bridgman asserts that,

“the universe of operations (instrumental) of thermodynamics is itself a sub-group of all the operations
which we can now perform, including operations of all scales of magnitude and time".

Let us now exemplify the above dictums of the operations of thermodynamics. The second law of thermodynamics
states that heat cannot flow on its own from lower to the higher temperature direction. This means that there is
a mechanism by which, when two bodies are brought into a diathermal contact they correctly sense each other’s
temperature. In view of this, the following well known thermodynamic inequatity concerning the heat transfer between

two rigid bodies, namely:
dg {1 1
=l =1z 87

dt (Tz Tl) 0 @

where dQ is the amount of heat exchanged by the system 2 with system 1 and T’s are their temperatures, holds good
only for time duration of measurements df = Typopm, Where Tpe.r, is the minimum time needed to sense the temperature
of a given body by another body when the two are brought in a diathermal contact [36, 42].

Therefore, we must know the minimum time duration of the said diathermal contact in which the bodies cor-
rectly sense each other’s temperature. Below this time scale the second law of thermodynamics ceases to hold. A
recent modeling experiment also supports [43] Bridgman’s conjectural assertions®. In other words, such short time
durations of measurements fall in the natural fluctuational domain. That is, the above identified minimum time dura-
tion T;perm demarcates the domains of measurements based on the time duration of observations Ar = dtf = 7 as follows,

% > T 2 Tperm  corresponds to the “Universe of operations of thermodynamics”

T < Tiherm corresponds to the natural fluctational domain.

This then implies that the same restriction holds for Clausius’ inequality in the cyclic form, equation (3), namely:

dQ
—= < 0.
J TR
wrr
That is dQ of the preceding inequality is the amount of heat that the device exchanges during the time duration
T 2 Tiherm |36, 44] with its thermally interacting surroundings.
Now we proceed in the next section to legitimize temperature in nonequilibrium.

TEMPERATURE IN NONEQUILIBRIUM

There exist a good number of proposals to define temperature in nonequilibrium. For example, EIT [45] fosters the
idea of nonequilibrium temperature mainly influenced by the kinetic theory perception. However, it is being claimed
that it is distinctly different in its physical contents than the one adopted for the local equilibrium states. On the other
hand, there is a proposal of contact temperature in nonequilibrium [46--48] which requires the use of a hypothetical
heat reservoir (by its definition it is devoid of a heat flux). In this proposal that heat reservoir is identified which on
making a diathermal contact with the given nonequilibrium system does not produce heat flux across the surface in
contact. Hence the temperature of the given system in nonequilibrium according to say equation (87) gets assigned to
that of the so identified heat reservoir. Another proposal is that of the present author [35] wherein a generalized zeroth

3 Wang et al have demonstrated [43] that there does exist the lowest limit to the system size as well as to the time duration of an observation made.
Their results of the same experiment show that at colloidal particle size scale the second law of thermodynamics is not obeyed even if the time
duration of observations is extended well beyond several seconds.
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law of thermodynamics has been framed that takes care of the necessity of thermal equilibration for sensing the correct
temperature. It reads as,

“Three tiny volume elements are instantly and simultaneously isolated from the respective nonequilibrium
systems and in the same instant action they are brought into diathermal contacts as closed rigid systems, 1
with 2 and 2 with 3. If within the short time interval of sensing of the thermal interactions it is found that 1
is in momentary thermal equilibrium with 2 and 2 is with 3 then 3 is also in momentary thermal equilibrium
with 1. The momentary thermal equilibrium means that if the volume elements possessed the heat fluxes then
they remain unaffected during the minimum short period of thermal interactions and if no heat flux existed,
both such nonequilibrium and the equilibrium states included, no heat flux gets generated during the said
diathermal contact. The making of a diathermal contact between the tiny volume elements one of which
having a heat flux and the other one without it is not forbidden”.

This statement is the nonequilibrium counterpart of the Zeroth Law of Thermodynamics which uniquely identifies
the thermodynamic temperature at local level when the system is out of equilibrium irrespective of close to or far
away from equilibrium. Also notice that no distinction between the physical contents of temperature in equilibrium
and in nonequilibrium arise. Finally, we coincide this temperature function, legitimized by the generalized zeroth law
of thermodynamics for systems in nonequilibrium, with the Kelvin scale of temperature.

Now we are well equipped to develop a nonequilibrium thermodynamic description. In the following section we
have chosen to describe the steps of the development of GPITT [34-37].

GPITT

Now we consider spatially non-uniform systems and hence we are starting with the Clausius inequality of equation
(3) and follow the similar steps that we have followed on using equation (30) in section entitled nonequilibriom and the
entropy function. Thus in the present context Clausius’ uncompensation function, N, gets defined, by using equation

(3), as
= ﬁ{ () fr(;)d:d”'o (88)

then N is treated as an independent quantity to express it as,

N= }( X (89)

From equation (89) we have
dN >0 as N>0 90

The positive definiteness of dN uniquely retains the unidirectionality of time’s arrow during the irreversible evolution
of the system.
On combining equations (88) and (89) we obtain

1 dQ dN
,?{[T 0 i + ]dt 0. 91
irr

As cyclic integral of equation (91) vanishes we obtain

as_ 1 do v
dt  T(t)dt dt

92)
Thus we see that in equation (92) § is the entropy of a nonequilibrium state. In the limit of N — 0, we have S(of a

nonequilibrium state) — S(of an equilibrium state). Now as dN /dt > 0, from equation (92) we obtain:

d_Q_
1) dr

ds >
dar T

93)
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which is nothing else but the explicit differential form of the Clausius inequality, equation (4), in time rate form.
However, equation (92) contains T,(r) hence the first term on its right hand side cannot be transformed as such to a
local level description for a spatially non-uniform systems. For that purpose let us express the said term as,

P odQ Q(A,1)
T,(¢) dt =A T T(A) aa o9

where Q(A,?) is the heat flux density at the surface area coordinate A and at time ¢, dA is the differential area vector
on the surface of the system, A is the total surface area of the closed system and T'(A,t) is temperature at A and ¢ [35].
Now on applying Gauss theorem we obtain,

1 dQ . { q(r,1) 1
== —div | —/—= V| ——=)|dV 95
AOF [ v (T(r,t) 900V 7y ©)
that reduces to, 1 dg )
— = | ——divq dV. 926
T.(¢) dt / 7 (%6)
Vv
The other two terms of equation (92) get easily transformed to
ds ds
= _ = 97
dt Pa v ©7
Vv
dN dy
— = —dV 98
ar ) P ©8

wherein we have used the standard fluid dynamical inter-conversions, namely:

S=]pst, szp,/l/dV, etc. (99)
v 1

where p is the mass density and s, .47, etc. are the per unit mass quantities at a given position and time ?.
On substituting equations (96)-(98) into equation (92) we obtain at the local level,

ds 1 dAy
L, iy 1
pdr TdJV‘I+P dr (100)

Notice that 4.4 /dt < 0. Next the simple fluid dynamical internal energy balance equation of equation (47) is used,
namely:

du dv
— = —divq—pp— sV 101
p o ="dva—pp—-+I1:Vu (101)
Now on combining equations (100} and (101) we obtain
ds 1| du dv day
Pa=T ["E”"I“H'V“]*P?‘ (102)

The steps leading to quantify d.4” [36, 37] first involves rearranging equation (102) as,
d.y ds ldu pdv
di dt Tde Tdt

p[d(sT—u—pv) dT dp 1
= = |— 55— 4v—= =I1:V 103
T [ dt Sa TVa |t (103)

however, as sT —u — pv = —% (the Gibbs function), equation (103) reads as,

AN p[ 4% dT dp
gy _ P 4 e L8P b v
T [ a T VatP "] (104

153



Thus our problem reduces to identify a proper expression of %, which basically determines the chemical interactions.
Recail that in equilibrium thermodynamics the Gibbs function, G, is given by [4],

G=Ynu  (atgivenT and p) (105)
k

that takes care of the existing chemical interactions. The differentiation of equation (105) produces,

dG=Y ndu +Y wdn +Y pdn,. (106)
k k i

in which the last two terms describe the processes of chemical conversions and the matter exchange.

On the other hand, in the case of nonequilibrium, in order to use equation (104) in an experimental setup one is
required to define ¢ function appropriately. Its expression obviously will depend on the type of irreversibility involved.
However, in nonequilibrium following processes may occur, namely:

1. Chemical reaction (dé/ar)
2. Matier diffusion Jo)
3. Heat conduction ()]
4, Momentum transfer (IT)

Spatially Non-uniform Systems

Herein for the sake of simplicity of demonstration we consider an ideal monatomic gas in a spatially non-uniform
system having irreversibility only on account of heat transfer. From kinetic theory of non-uniform gases [29] we learn
that the population in translational quantum states in presence of heat and/or momentum fluxes is different from that
given by Maxwellian distribution function. And when such a system is detached from the source of temperature
gradient and/or velocity gradient the fluxes die fast and the population in translational quantum states becomes
Maxwellian. It means that in nonequilibrium the chemical potentials in various translational quantum states are not
equal whereas in absence of these fluxes they have identical values.

In Kinetic theory the heat flux density, q, is given by

1
q =/5mC2C fde (107)
where m is the mass of the monatomic gas molecule, C is the chaotic or peculiar velocity given by
C=c—u (108)

where c is the velocity of a molecule and u is the barycentric velocity at that position, and f is the distribution function.
Therefore, in presence of a heat flux we have,

Ho# Mo #F B =
whereas in equilibrium (in absence of heat flux} we rigorously have ,

nuC:-u'Cr:su g ="

With this background we define appropriately the Gibbs function, ¥, as,

1
4G = ;/prCdc (109)
and the mass fraction X as,
_f
X = " (110}



where # is the local level number density of molecules. Notice that we have adopted C 8 aper molecule quantity
and hence to have % as a per unit mass quantity we have the factor 1/m on the right hand side of equation (109). On
combining equations (109) and (110) we obtain:

1 on<u> <pg>
g_mn/ﬂcfdc_ mn m

where < gt > is the average value of Gibbs function per molecule. Now in kinetic theory to obtain an expression of f
in nonequilibrium one solves the Boltzmann integro-differential equation [29], namely:

of . of
Sr+C- 2= I(1) (112)

where J{f|f) is the Boltzmann collisional integral given by,

(111)

AN = [Uir = £i)gote,2)dade

where (g, Q) is the collision cross section that depends on the relative velocity g = |¢; — ¢| and the scattering solid
angle Q. The primes and indices in the distribution function have the usual meaning, namely, f; = f(¢{,r,?) is the
distribution function of particle 1 after collision, etc.

Recall that there are two standard methods namely that of Chapman-Enskog and that of Grad. In both of them f is
solved around local Maxwellian, £, which by definition is a function of « and p. Indeed, by using solutions obtained
by them, one obviously incorporates the corresponding kinetic theory tenets into the thermodynamic description. To
have our thermodynamic expressions free of such incoherencies one needs to find out a direct method to measure x .

(o)
However, the non-availability of such a method, at present, forces us to use Grad’s solution of Boltzmann integro-
differential equation.
In Grad’s 13-moment solution [30, 31}, we have
F=rO01+a) (113)
and on ignoring viscous effects we have for the nonequilibrium contribution, &, the following expression,
2m 1 5
b= _—— | -m*-ZkT)C-q 114
SpIT? (2"’ 2 ) 4 (19

On using the same assumption as that is involved in equation (113) we propose for He the following expression,
namely:
e = +k,TIn(1+®). (115)

In this setup u®, the chemical potential, is that for the state of no heat flux and is given by [49]:

" _ 91
W] =k Tin L—nﬁ/m : (116)

Now we substitute equation (115) into equation (109) that produces,

p@ =k Tn l

4 = ifp(")fdc+£ff1n(1+¢)dc
mn mn
(0 T
- “—ffdc+kﬂ—jf In(1 4+ @) de
mn mn
(0}
= L%-M/f In(1+ P} de. 117
m mn
To solve equation (117) we expand In(1 + @) in a Taylor series,
@2

In(1+®) = — -+ (118)
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Now assume that the system is not far away from equilibrium that gives the following approximation, namely:
In(1+®) =d. (119)
Hence on substituting equation (119) into equation (117) we obtain,
u“’
G~ ] fddc (120)

and on substituting the expression for ® of equation (114) in equation (120) yields,

7;1(0) k,T 5 k,T m
gm7+ (5pk2T2) (/2 CCfdc) q———(pk T) (/Cfdc) (12D

Obviously, the average of peculiar velocity, C, is zero, hence the last term on the right hand side of equation (121)
vanishes leaving,

(0) 2
g=H"4
m  Snapk,T
where we have used the kinetic theory definition of heat flux, namely equation (107). In the derivation of corresponding
Gibbs relation we need to substitute an expression of d% /dt in equation (104). The required expression is obtained
from equation (122) as,

q-9 (122)

d¢  d(p©/m 2 dT 2 d 4 d
ay @™/ )_ 2q2_7—2q2 ar q_j. (123)
dt dt Snpk,T dt  Snk,Tp dt  Sapk,T ~ dt
Next we substitute equation (123) into equation (104), and then extract the corresponding Gibbs-Duhem equation,
namely:
d(u© /m) 2 dT 2 dp
—_ = - —_— =0 124
i s ) a U s ) (124)
that produces the operative expression of the rate of change of uncompensation function as,
dA& 4p dq
- _ it 125
P Snpk,T? T (125)
Next we substitute equation (125) into equation (102) that yields,
1
ds_ldu pdv 4 dq 126

i Tdt 'Tdi Smpk,T2 Y dt

which is nothing else but the extended Gibbs relation of EIT. Only difference between the two is, that in the numerator

of coefficient of the last term on the right hand side of equation (126) instead of the numeral 4 there in EIT they have

2. Notice that at no stage of the development upto equation (126) there gets incorporated beyond LEA constraint and

hence it is not in conformity with EIT. Recall that the EIT is claimed as the beyond LEA thermodynamic description.
Now recall the Clausius-Duhem inequality, equation (53), namely:

d .
pzj +div]; =0, 2 0.

In the present case, on combining the corresponding version of equation (101) (that is by dropping out the term
describing viscous dissipation) with equation (126) yields the following entropy balance equation, namely:

. {q 1 4p dq
2 _gdiv( 2 V= . 127
pdt V(T)+q (T) Snpk, T2 1 (127
Hence on comparing equation (127) with equation (53) we obtain,
q
_ 3 12
Js T (128)



1 4p dq
Gs_q'V(T)_—WSnpkBTzq'dt > 0. (129)
Equation (129) clearly reveals that there are two mechanisms of entropy production one originates from the heat
transfer across the boundaries and the other operates by an internal mechanism, which is controlled internally by the
collisions amongst the molecules within the tiny volume element.

In a NSS as the heat flux and other system properties remain time invariant the last term in equation (129) describing
collisional mechanism drops out (as dq/dt = 0), therefore, the expression for o, simplifies to equation (79), namely:

1

which is the traditionally well known expression of entropy production of CIT. This clearly reveals that CIT holds only
for NSS.
It is amusing to note that when the heat flux varies according to the Maxwell-Cattaneo-Vernotte (MCV) equation

(70) [27, 28], namely:

dq

—=—q—AVT

o T4

the equation (129) simplifies as,

1 4p
g = q-V|= — - AVT
s 1 (T)+5n’cpkBT2q (@+2vT)
1 4p 2 4p A
= ——=q- VT -VT. 130
2 4 + Sntpk,T? 9 Sntpk,T? 1 (130)
However, only if
AL LI (131)
Sntpk,
equation (130) reduces to the expression given by EIT for o;, namely,
4p 9 1
o5 = = >0. 132
* Sntpk,T? 9 }.Tzqz (132)
This means that, the relaxation time T in this case is given by,
4mA
= 133
* 7 5k, (133

where p = mn has been used. The above GPITT development clearly reveals that equation (126) is not restricted to
the extent it appears in EIT. The EIT formalism does not reveal that in a time evolving system there operates two
mechanisms of entropy production that for the first time revealed GPITT through equation (128). On the other hand,
the EIT is obtained as one special case of GPITT as equation (132) reveals.

At this point it is important to stress that though we finally end up in generating EIT type extended Gibbs relation
but without getting attached the beyond LEA qualification,

Open System Features

Recall that in the beginning of this presentation we have spelled out that as one attempts to deal the interior local
tiny pockets they inherently are equipped with the open system features. The above derivation does take care of it. Let
us consider equation (101) in which the so called heat flux density, q, appears. It does include the contribution from
the matter diffusion if non-uniformity in concentrations of system components exists. In this case the classical heat
flux, Q, gets quantified [16, 50] as follows,

Q=q—) Jiky (134)
k

where J; is the diffusion flux density of the component k and A is the partial enthalpy. Hence, not only we are not

required to generate a local level version of Clausius’ inequality for open systems but also it is not possible to do so as
in equation (100) 4.4 /dt has no definite sign.
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COMPLEX SYSTEMS IN NONEQUILIBRIUM

The above described GPITT methodology of developing a nonequilibrium thermodynamic framework clearly
demonstrates that the quantification of irreversibility in the last step demands an appropriate quantification of the Gibbs
function, ¢. Moreover, this exercise has to be undertaken keeping in view the source of irreversibility and complexity
of the system. For example, in the natural evolution of a system in nonequilibrium consisting of macromolecules, ¢.g.
enzymes, polymers, ctc. the non-thermal effects do play a major role. Their physicochemical properties are governed
by their internal configuration. Hence, these internal configurational states have to be considered as different entities.
Thus if € is identified as the distinguishing parameter of various internal configurational states of a macromolecule
then the Gibbs function, ¥, gets quantified as,

@ — f Uexede (135)

where the chemical potential, g, is identified as a per unit mass quantity and x, are the mass fractions of the internal
configurational states of the macromolecules.

The substitution of the preceding expression of ¢ in equation (104) produces following expression of the local level
uncompensation function, namely:

dA  p [ dfpexede dT  dp
N i ' A i b SR R ¥ IT: Vu|. 136
=7 [ — stV tp u (136}

Now on extracting the following Gibbs-Duhem equation, namely:

dar dp dite
— — 137
STV + i xede =0 (137)

from equation (136) reduces it to,
a8
p——=T" - Vu—T]pE

Next on substituting equation (138) into equation (102) produces the following Gibbs relation, namely:

ds _ldu pdv 1 dxg

- Ta Tta TS a (139)
The finer details of the Gibbs relation, equation (139), can only be obtained after arriving at the appropriate expressions
for ue and x; in terms of €, the internal configurational parameter, and further on the functional dependencies of U
and x; on other system parameters, such as p, p, q, I, relaxation time of physical fluxes, conductivity, coefficient
of viscosity, etc. Or in other words, by using the constitutive equation of x, and an appropriate expression for fio
rationally proposed via say x.. Again notice that on the right hand side of equation (139) the last summational term
appears because of the existence of imbalance in corresponding chemical interaction. This we elaborate as follows.

At equilibrium the chemical potentials of various internal configurational states are equal, that is we have,

e e (138)

Mgt = Megir = Hgm = --+++ =u (140)
whereas in the case of nonequilibrium these chemical potentials are not equal, that is we have,
Her 7 Men 7 fem # - (141)

Hence, we have in equation (139) the non-zero last integrational term on its right hand side, namely:

d
f peﬁds £0 (142)
which in equilibrium vanishes as chemical potential term comes out side of the sign of integration, namely:
d d
- de =p—(1) = 14
use [ xede = u(1) =0 (143)
Thus equation (143) describes the complete balance of the corresponding chemical interactions at equilibrium, whereas

equation (142) quantifies the existing imbalance of corresponding chemical interactions, which is the root cause of
nonequilibrium.
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THERMODYNAMIC REVELATIONS

The above presentation has clearly revealed the following facts, namely:

1. The GPITT derivation establishes heat flux density as an additional thermodynamic variable for nonequilibrium
situations even in the case of close to equilibrium situations. Notice that this is not the result of any postulation
but we have arrived at it through an a b initio handling of laws of thermodynamics. Indeed, the above discussed
outcome is not surprising because as in EIT herein too we have developed the GPITT framework by borrowing
the relevant expressions from the kinetic theory. However, it would be interesting to see whether one would obtain

the same resuits if alternative expressions for x C and i C become available but are not based on kinetic theory.

2. Also GPITT has revealed that the existence of heat flux itself is a manifestation of existing imbalance in chemical
interaction within the system as the heat flux in equation (126) appears on quantifying % function the latter
basically describes the chemical interaction. Thus it establishes that the thermodynamic irreversibility is all about
the imbalances in corresponding chemical interactions [36].

3. From the above described GPITT steps we find that at no stage we have invoked or were required to postulate the
so called LEA. In fact, there is no demand at all 1o resort to the conjectural postulation of LEA and hence beyond
LEA too.

4. Instead what has been demanded is df = T 2 Typepm, that is the minimum time required for the measuring gadget
to get equilibrated with the local pocket of the system to produce a correct value of the property being measured.
At the molecular level this much time is required for each molecule of the local pocket of the system to have
undergone at least one collision.

5. Thus instead of postulation of LEA, adopting CIT (and inventing LIT within it}, then looking beyond LEA - that
for example produces EIT, etc. - it is straightforward to follow the dictums spelled out by Bridgman regarding
the “universe of operations of thermodynamics” and then develop nonequilibrium thermodynamic framework by
using Clausius’ inequality. The one representative example of this procedure has been described in this presen-
tation that develops GPITT framework. The adopted approach described in this presentation reveals that there
is no room to have different nonequilibrium thermodynamic frameworks. But the current scenario is altogether
different. We see that a good number of nonequilibrium thermodynamic frameworks are prevailing over in the
contemporary literature besides those discussed above, for example, we have Rational Thermodynamics [51],
Keizer’s Nonequilibrium Statistical Thermodynamics [52], Finite-Time Thermodynamics [53], Thermodynamics
of Driven Systems [54], Mesoscopic Non-Equilibrium Thermodynamics [55, 56], GENERIC formalism [57],
Nonequilibrium Thermodynamics with Hidden/Internal Variables [58—60], etc.

6. From thermodynamic point of view the irreversible processes are the ones which possesses an arrow of time. In
view of this universal observation coupled with the second law of thermodynamics Eddington [61] has asserted
that Time’s arrow is the sole property of entropy. However, a simple correction to this far reaching assertion is
needed and we assert that it should read as - Time’s arrow is the sole property of entropy production and thereby
of entropy function [42].

ENTROPY FUNCTION BASED ON STATISTICAL CONSIDERATIONS

In the view of above discussion it is but natural to expect that the entropy definition based on statistical considera-
tions would also have corresponding implications that we proceed to describe below in brief.

Entropy In Information Theory

The information theory entropy, Sy, reads [62, 63], as follows:

S[ = —kBElenPj (14'4)
J

where P; is the probability of the j-th event. This entropy would coincide with that given by the second law of
thermodynamics on meeting the demand of the minimum time duration of measurements, namely, df = T 2 Tnerm.

159



This is so because in the time period df = T 2> Typepm the value of P; would be different than that for the time duration
df = T < Typerm- In the latter case the said probability would be a natural fluctuating function in time.

Entropy In Kinetic Theory

For the identical reasons the kinetic theory distribution function, f, say of equation (113), imbibes the same property
of natural fluctuations in the domain df = T < Ty and hence it would compute a fluctuating heat flux, q, though the
mathematical form of the equation remains the same, namely:

I
q= f SmCC £ de (145)

where f7# s the distribution function in the natural fluctuational domain and is the solution of Boltzmann integro-
differential equation, equation {112)
of

af
E‘Fc'gwd'(flf)

for such a short time durations.

CONCLUDING REMARKS

The purpose of the subject matter covered, some what in details, in this presentation was to make the reader aware
of the existing inconsistencies and certain basic flaws in the field of nonequilibrium thermodynamics and arrive at
the possible solutions of them. Of course, our discussion to large extent revolves around very basic thermodynamic
aspects that normally are brushed aside terming as being of pedagogic level. But if we have to use the new mathematics
tool, the Lie admissibility of irreversibility, to streamline the subject matter of nonequilibrivm therrnodynamics it is
essential to ensure that the existing ambiguities at no stage of the development get a chance to creep in.

In the above stated pursuit there could be a demand to have a freshly defined entropy function, which in the limit
of reversibility should culminate into the Clausius entropy given by dS = dQ,.,/T in equilibrium. For this purpose
it would be worth examining whether the universal inaccessibility principle formulated by the present author in the
nineties of the previous century [34, 64] can serve us or else we would be required to develop a new definition of
entropy commensurate with the laws of thermodynamics.

Indeed, the end result that we wish to arrive at is to have a single nonequilibrium thermodynamic framework as
there exists only one thermodynamic framework of equilibrium states. Let us be optimistic.
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Abstract. Far-reaching pioneering discoveries of Santilli's Lie-admissible theory and
genomathematics are extending significantly the scope and applicability of Lie analysis,
algebra and operator methods, opening new areas of applications leading to essential
advances and broadening the scope of models in Physics, Chemistry, Cosmology and in
development of new cleaner energy technologies. These new universal mathematical and
especially algebraic and operator structures and methods become increasingly important
in all branches and levels of modern physics from experiments to fundamental research.
This article is devoted to foundations of Santilli’s Lie-admissible theory and genomathe-
matics.
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1 Introduction

In a series of works, R. M. Santilli has presented rather diversified conceptual, theoretical
and experimental elements suggesting a reinspection of the validity of special relativity
for interior dynamical problems at large, and the scattering region in particular [114].
The central problem mathematically is in the development of appropriate isoscattering
theory which would include the construction of a covering of the Minkowskian geome-
try, the Lorentz-Poincaré symmetry and special relativity into forms more effective for
interior conditions. In his No Reduction Theorems, Santilli rigourously established the
impossibility of a consistent reduction of interior to exterior conditions (see [114] and
references there). Thus one has to investigate systems that are generally nonlinear in the
wave function, nonlocal of integral character, and noncanonical or nonunitary in their
time evolution, which requires development of fundamentally new mathematical concepts
and tools.

Lie’s theory plays fundamental role in Mathematics and Physics. Santilli identified
several important limitations of the conventional Lie theory for the treatment of systems
beyond the local-differential, Hamiltonian and canonical-unitary conditions. Furthermore,
Santilli made a fundamental proposal that this requires new fundamental generalizations
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of key structures and concepts of mathematics. The new fundamental mathematical
structures and notions, introduced by Santilli under names of iso-, geno- and hyper-
mathematics, are motivated by the need of generalized, Hermitian, non-Hermitian and
multi-valued units, respectively. The resulting iso-, geno- and hyper-Lie theories based on
the new mathematics have been extensively used for the description of nonlocal-integral
systems with action-at-a-distance Hamiltonian and short-range-contact non-Hamiltonian
interactions in reversible, irreversible and multi-valued conditions, respectively. Moti-
vated by another physics observation that the conventional, iso-, geno- and hyper-Lie
theories are unable to provide a consistent classical representation of antimatter yield-
ing the correct charge conjugate states at the operator counterpart, Santilli outlined
also another novel mathematics under the names of isodual conventional, iso-, geno- and
hyper-mathematics, which constitute anti-isomorphic images of the original mathematics
characterized by negative-definite units and norms.

In order to broaden Lie’s theory, Santilli proposed in 1967 in [68] the first known
deformation of Lie algebras in the physics literature with the two-parameter deformed

commutator product
(A,B)=px AxB—-gx BxA, (1)

where p # Lq are non-zero scalars, A, B are matrices of the same dimension, and A x B
is the conventional associative product. For p # ¢ the Lie algebras axioms, the skew-
symmetry and Jacobi identities, are not valid. At the same time Santilli made important
discovery that such new bracket products yield Lie-admissible and Jordan-admissible al-
gebras in the sense that their attached antisymmetry and symmetric algebras are Lie and
Jordan, respectively. The corresponding Lie-admissible generalization of Heisenberg’s
equations for the dynamical evolution of a Hermitian operator A in infinitesimal and
finite forms are

ix‘i—f:(A,H)szAxH—quxA, (2)
A(t) — eHqutx'i x A(O) x e—ixtquH- (3)

In 1978, Santilli [71] proposed the most general possible Lie-admissible and Jordan-
admissible deformations-mutations of Lie algebras with product

(AB)=AxRxB-BxSxA=A<B—B>A, (4)

“where R, S, R+ S are now fixed nonsingular operators with an arbitrary, nonlinear and
nonlocal functional dependence on any needed quantity. Mathematically, these brackets
provide a very general way of defining algebras with a bilinear composition containing
as particular cases associative, Lie, Jordan, supersymmetric, flexible and many other
classes of algebras. In [71], Santilli initiated a joint Lie-admissible and Jordan-admissible
covering of Lie’s theory in its various branches, including the lifting of the universal
enveloping algebra with generalized Poincaré-Birkhoff-Witt theorem, Lie algebras, Lie’s
(transformation) groups and the representation theory. The general products (4) yield the
following Lie-admissible and Jordan-admissible deformations-mutations of Heisenberg’s
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equations proposed in [73]:

ix B =(AH) =AxRxH-HxSxA=A<H—H>A, (5)
A(t) — eHxSxtxi % A(O) % efz'xthxH’ (6)
R=4t (7)

as the foundation of Hadronic Mechanics for the representation of the most general pos-
sible open, nonconservative, irreversible and single-valued systems with potential inter-
actions represented by the nonconserved Hamiltonian H, and contact nonpotential, non-
linear, nonlocal-integral and nonunitary interactions represented by the operators R, S.
The generalized dynamical equations (5), (6), (7) if formulated on conventional Hilbert
spaces over conventional fields turned out to verify the Theorems of Catastrophic Math-
ematical and Physical Inconsistencies of Noncanonical and Nonunitary Theories because
not preserving over time the basic units of measurements, the observability of physical
quantities, the numerical predictions, etc. The inconsistency theorems emerge whenever
one leaves noncanonical or unitary time evolutions, and since no possibility of bypassing
them with the Lie’s theory are known, they also provide important motivation for further
mathematical research [112].

The first major advance in the resolution of the above inconsistencies occurred af-
ter decades of additional research in 1993 with the discovery of the genonumbers and
genofields [87], namely, fields with a fixed order of all multiplications to the right (rep-
resenting motion forward in time) and an arbitrary right and left generalized unit called
genounit for the ordering to the right, n > m = n x § x m, I> = §!, and with the
corresponding ordering of all multiplications to the left (representing motion backward in
time) with related genounit for the ordering to the left n < m = n x R x m, <j= R,
where the word ” genotopy” [71] was used in the Greek meaning of inducing new axioms.
A breakthrough occurred in the mathematical memoir [95] of 1996 with the discovery of
the new genodifferential calculus to the right or to the left. The first invariance over time
of deformations-mutations of Lie algebras was proved in paper [101] of 1997. The most
developed up to date axiomatic structure of Lie-admissible formulations was achieved in
memoir {112] of 2006 that also presented the first known connection between mechanics
and thermodynamics, by showing that the irreversibility of thermodynamical laws origi-
nates at the ultimate level of nature, in full confirmation of the No Reduction Theorems.
Such excessive mathematical complexities are needed for the consistent treatment of ir-
reversible scattering processes, but could be beyond the reach of most phenomenologists.
Thus the restriction of these initial studies to reversible scattering processes, and then
the passage to the more complex irreversible events only subsequently was suggested in
[114] as a way to move forward. The initial restriction to reversible processes eliminates
the need of the time ordering of all products, with consequential major simplification of
the formalism. From the viewpoint of applied mathematics, the restriction to reversible
scattering processes permits the preservation of Lie’s axioms, despite the admission of
nonlinear, nonlocal and noncanonical or nonunitary effects.

Already in 1978 in {71], Santilli identified the following particularization of the Lie-
admissible and Jordan-admissible product (4):

[A:B] = AS\(B - B%A = AX T(.’L‘, U3£:w1 ¢'7 31% ) xB—Bx T(IB, U:fa‘”? ¢:a¢: ) X A-:
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A~ 1 >
T(z,v,&,w,%,00,...)

where f(x,v,f,w,i,!;,azb,...) and T(a:, v, &, w, Y, 0, ...) are the isounit and the isotopic
element at the foundation of the mathematics in [114], and have the same functional
dependence on local variables (coordinates, speeds, other parameters, ete.). Such products
do verify Lie’s axioms. Such deformations of Lie algebras were called isotopic by Santilli
[71]. In the same paper [71], Santilli proposed a step by step isotopic generalization
of Lie’s theory that has remained structurally unchanged to this day {except for the
subsequent reformulation on isospaces over isofields), and it is today known as the Lie-
Santilli isotheory (6, 12, 13, 14, 29, 30, 31, 35, 48, 56, 117].

The main idea of isotheory is that of preserving unchanged the generators of a given
Lie symmetry and changing instead all their operations in an axiom-preserving way (as a
condition to have an isotopy) [71]. The implementation of this idea require the lifting of
the conventional associative product A x B into the axiom-preserving isoassociative form
A x T x B = AxB that, in turn, implies the lifting of the Lie product [A.B] into the
axiom-preserving form [112].

This seemingly elementary idea has important implications for the scattering theory.
By recalling that the generator of a Lie symmetry represents conserved quantities, the
preservation of the generators in the transition from the conventional to the isotopic scat-
tering theory implies the preservation of all conventionally conserved quantities. However,
the appearance of the isotopic element T in the product itself implies that said preserva-
tion occurs under nonlinear, nonlocal and noncanonical or nonunitary internal effects, thus
warranting a reinspection of the data elaboration via the conventional linear, local and
unitary scattering theory. Moreover , first important steps towards all-sided investigation
of far-reaching implications of Santilli's Lie-isotopic Theory for cosmology, gravitation
and relativity are made in [6, 81, 82, 83, 84, 110, 113]. These investigations indicate
exciting possibilities and need for expanding of future research in this direction both in
the development of fundamental theory and methods, and in numerical simulations and
experiments.

bl

R=8S=T=T">0, {(z,v,6,w,%,0¢,..) =

1.1 Lie-Santilli isotopies of associative and Lie algebras

As previously mentioned, as early as 1967, in the pioneering contribution [68] Santilli
considered the two-parametric deformations (mutations) of the Lie commutator bracket
in an associative algebra, (A, B) = pAB — qBA, where p and g are scalar parameters
and A and B are elements in the associative algebra (typically algebra of matrices or
linear operators). In 1978, Santilli {71, 72, 73] made another bold step and extended it
to “operator-deformations” of the Lie product as follows (A, B) = APB — BQA, where
P and ( are fixed elements in the underlying associative algebra. This seemingly simple
generalization of the bracket has fundamental significance for applications since clearly
elements P and @ can now be dependent on as many as needed in the model or possibly
even infinitely many parameters or unknown variables.

The motivation from physics side for introducing such non-associative generalizations
of the bracket multiplication came from attempts to resolve certain limitations of con-
ventional formalism of classical and quantum mechanics. Subsequently, in numerous
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works including articles and books by Santilli and other authors, the evolution equations
based on such deformed brackets, physical applications and consequences of introducing
such generalized models have been investigated. The deformations of the commutator
bracket multiplication introduced by Santilli in investigations on foundations of classi-
cal and quantum mechanics and hadronic physics, have reappeared in many incarnations
both in Mathematics and Physics. In [14, 71, 72, 73, 75, 77, 101, 107, 112, 117] fur-
ther progress have been made in investigation of the models based on introduction of
such non-associative deformed commutator bracket multiplications instead of commuta-
tor (Lie) bracket multiplication, their bi-module type generalizations (genoalgebras) as
well as for a review of relation with other appearances of so deformed commutator brack-
ets in physics and mathematics, for example in contexts related to quantum algebras,
quantum groups, Lie algebras and superalgebras, Jordan and other classes of algebras.

While motivation for introduction and investigations of such brackets and generaliza-
tions of corresponding models is coming from physics side, the new algebraic and analytic
structures and problems arising in connection to such modified brakets and associated op-
erations have definitely independent interest also for various parts of Mathematics ranging
from algebra and commutative and noncommutative geometry to topology, differential ge-
ometry, functional analysis, operator theory and operator algebras, differential equations
and numerical analysis.

The Santilli’s products (A, B) = APB — BQA with arbitrary P and @ are not anti-
symmetric in general except when P and @ are specially interrelated within the under-
lying algebra. The products A xg B = AQB are clearly associative since (AQB)YQC =
AQ(BQC). Therefore, in the case when P = (), the Santilli’s bracket product (A4, B) =
AQB — BQA, being exactly the commutator bracket for the associative product A xg B,
satisfies the skew-symmetry and Jacobi identity for Lie algebras. So the associative alge-
bras with the modified products A xg B = AQB are Lie admissible algebras. Moreover,
since

< A, B >= (A, B)—(B, A) = (APB—BQA)—(BPA—AQB) = A(P+Q)B—B(P+Q)A,

the general Santilli’s deformed commutator products (A, B) = APB — BQA define Lie
admissible algebras.

Any associative algebra is Lie admissible since the commutator bracket on any as-
sociative algebra satisfies axioms of a Lie algebra. Santilli has considered also so called
isotopies of associative and Lie algebras. Algebraic problems can be formulated as follows.

¢ How can associative products in associative algebras be modified to yield as general
as possible Lie admissible algebras?

e Can any Lie admissible algebra be obtained by such modifications from some asso-
ciative algebra?

Such modifications of associative and corresponding Lie algebras where called isotopies of
associative and Lie algebras. In [71, 72, 73, 75, 101, 107, 112], several general isotopies of
associative products and associated Lie products have been identified. The most general
of all presented there isotopies of a product for elements in an associative algebra A over
a field K is given by

z *y = awrwlwyw,
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where @ € K,w € A,w? — w # 0, and T is some extra element. The product * is
associative if w? = w and T € A. Santilli allows T to be some extra element outside
A. Then a special care is needed on algebraic side in order to make involved objects
and maps to be properly defined. If a(w){x){w)T{w)(y}(w) is not identified with some
element of A, then the new product * is taking values in some generally non-associative
algebra Ap generated, as a linear space over K, by elements 2 € A and formal expressions
of the form 1\ TrTxs...2n 1Tz, € ATATA.. . ATA for zy,...,x, € A for integers
n > 2, whatever these expressions mean. With a K-bilinear product on Ar defined for
T, 21 Ty Y1y ooy Ym € A by

(t1TzoTzs. .. 2yt T N TyeTys - - Y 1 TYm) =
1Tz Txs .. T T (o)) TTy3 - . - Y1 T Yo,

(1 Tz Txs ... xp1Txy) = (221) T2 T2y . .. 201 T2y,
(rTzolzsy. ..y Tz = 20TxsTxy . . .2y \T{xH1),

in particular, u(zTy) = (vz)T(y), (zTy)v = ()T (yv), w(zTy)v = (uz)T(yv) hold for

u, Z,y,v € A. Then the expression z +y = a(w)(z)(w)T(w)(y)(w) yields again an element

from Ay for x,y € Ay, and we get the product * on the algebra Ay. H now w? = w,

then x satisfies the associativity condition z * (y * z) = (r x y) * 2 on Ar. Indeed, for
T = Tz T xs.. ¢ Tz, y = WTYTYs - Y1 Tym and 2z = 2T 2T 2. .. 2, 1T 2,
using w? = w, one gets

zx{y*z) = a(wlz1Tz2Tx3. .. Tpn 1Tz {w)T(w)

(a{w)(1Ty2Tys - . - yn1Tym ) (w)T(w)
(217297123 . .. 2y Tz (w)){(w)

= a*(w) (&1 Tx2Tzs ... tp1Txn)(w)T
(W)W TyTys - Yo 1Tym)(w)T (w)
(71T 20T 23 . . . 21 Tz ) (w)

= a{w){a{w)(@1TxTxs. .. Tn 1T, (w)T(w)
(1 TwTys - Yu1 Tym) (W) (w) T (w)
(21722723 . .. 21 T2 ) (w)

= (z*xy)*z
Let a(s) = wsw for all s € Ap. If w? = w and T € A, then

a(s * t) = w(s * t)w = wlawswTwtw)w =
a(w(wsw)wTw(wtw)w) = awa(s)wTwa(t)w = a(s) * aft)

which means that in this case e is not just a linear map, but also an algebra endomorphism.
One may show also that this associative algebra is also hom-associative with the twisting
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map o:

alz)* (y*2) = aw(wrzw)wTwlewywTwzw)w

[

awzwTw{ewywTwzw)w

= zx(yxz)=(z*xy)*z
aw(awzwTwyw)wTwzw

aw(awrwTwyw)wTw(wzw)w
= (z *y) * a2).

The other fundamental algebraic issue tackled by Santilli is imbedding of the scalar
field into the algebras over this filed. If an algebra A over the field K with a unit 1x
has a unit 14, then there is a canonical imbedding of the field into the algebra given by
t4:c> clyfore € K. Also one has 1,z = z1 4 = z. If the multiplication in Ay is defined
as ¢ x y = Ty (corresponding to @ = 1g and w = 1,) then one still would like to have
La, *x = x * 14, = x, which can be written as 14,7z = 2714, = z. Thus, if T has left
and right inverse 71, then 1,4, = T—!. Also the canonical imbedding of the field into the
new algebra yields i4..(1x) = 1gla, = 1x7! and more generally i, (c) = cla, = T~ 1
for ¢ € K. These elements form a field inside Ay with the unit [ = 1xkT~!. This field K
is called isofield. Santilli noticed that dependence on T of the new unit in the isofield,
caused by the changed product in the algebra, is not just some complicating curiosity,
but advantageous phenomena that opens new vast fundamental opportunities in physics,
differential geometry, tensor calculus and beyond. This is because, while the unit 1k
in the scalar field K is fixed, 7 and thus the unit / in the isofield K can be chosen to
depend on the non-linear functionals or expressions in some other parameters, functions,
their derivatives, integrals, etc., in physics having interpretation as time, position, speed,
momentum, acceleration, mass, energy, etc. This dependence may be well highly non-
linear. Santilli has made an effort in systematic analysis of how the new algebra structures
and introduction of isofield K and parameter dependent isounits effect the equations of
motion, time evolution and other basics of Hamiltonian and quantum mechanics. These
first steps open a huge field for further research in many directions of interest both in
physics and mathematics.

2 Santilli’s extensions of Lie Theory

Lie’s theory is fundamental for the virtual entire contemporary mathematics and physics
[46]. Identification of the limitations and possible generalizations of Lie’s theory suitable
for treating broader physical conditions has been addressed in [68, 69, 70, 71, 72, 73, 74,
76, 77, 78, 79, 80, 87, 88, 89, 96, 97, 99, 100, 101, 102, 104, 105, 106], [10, 27, 28, 32, 33,
34, 39, 37, 38, 39, 47, 118, 119, 120, 124, 125], [4, 5, 7, 15, 16, 17, 18, 19, 21, 22, 24, 25, 45,
a0, 51, 52, 58, 59, 60, 61, 62, 63, 64, 65] monographs {29, 30, 31, 117], and also a number
of publications pertaining to applications and experimental verifications [2, 3], [108, 109,
8, 9, 40, 41, 42, 43, 50, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 98|.

In Physics the first important instance of appearance of Lie’s theory is that of equations
for continuous differentiable operator evolution on a Hilbert space H over a field F =
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F(a,+, x) of conventional numbers (real, complex or quaternionic) with conventional
sum +, (associative) product x, additive unit 0 and multiplicative unit I:

A(w) = U x A(0) x UT = e 5 A(0) x ™, (8)
dA

z% =AxX~-XxA= [A,X]operatm'a (9)

X xw _ [e—inX]T,X = XT,'w cF (10)

The classical counterpart in terms of vector-fields on the cotangent bundle (phase space)
with local chart (r*,p), K =1,2,3, over F is

A(w) = U x A(0) x Ut = e~wx@X/0r)x@/00) » A(0) x @/ Ix@X/ope) - (17)

Z_A — a_/i X a—X - a_)i. X % = [A:X]dassical- (12)
w  Or Opr, OrF  Opg

An interconnecting map is given by the conventional or symplectic quantization. When
the parameter w represents time, (8), (9), (10) are the celebrated Heisenberg equations
of motion, while (11) and (12) are the classical Hamilton equations. These objects and
equations are in the core of the characterization via Lie’s theory of classical and operator
branches of physics.

From Mathematics side, the operator family defined by (8) serves as a main build-
ing block for transformation Lie groups (linear operator representations of abstract Lie
groups). Namely, the transformations from a general transformation Lie group, typically
dependent on many parameters linked to the dimension of the underlying manifold of a
Lie group, can be built from the one-parameter subgroups using the main properties of
the exponential function of operators with respect to composition. The product of expo-
nentials of commuting operators can be expressed as an exponential of their sum precisely
as for ordinary exponential function on numbers at least formally. Commuting families of
operators and their exponentials and other functions are of central importance in Physics
and Mathematics in many ways, but are however far from being enough, as the majority
of interesting Lie groups are non-commutative. However, even for non-commutative Lie
groups, the one-parameter groups still may be used as building blocks, using more compli-
cated formulas such as Campbell-Baker-Hausdorfi-Dynkin formula, Zassenhaus formula,
Hadamard formula, Lie-Trotter, Trotter-Kato formulas, etc. From the point of view of
Lie theory, such formulas can be interpreted as aiming at establishing correspondence be-
tween elements in Lie algebras and Lie groups. For all these formulas an important issue
in Mathematics and in applications in Physics and Engineering, is how to handle the con-
vergence of series and limit operations in such formulas. When the formulas are applied
to finite-dimensional matrices or bounded operators, the convergence issues can be often
resolved in some pleasurable ways. Many important operators (observables) in Physics
and Engineering involving differential operators are unbounded and partially defined in
the sense of being defined only on some subspaces of the Hilbert or Banach spaces. For
such operators convergence issues and thus applicability of the above mentioned formu-
las involving infinite operator series and iterated operator commutators is a subject of
intensive investigations important both in Physics and in Mathematics and constituting
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one of the main challenges for further development of Lie theory and its applications.
Attempts of formally computing with divergent series leads to serious consequences and
contradictions both in Mathematics and in applications.

These issues from Lie theory turn into even more interesting and to large extent open
directions for the Santilli’s vast generalizations of Lie theory. In brief these open directions
(problems) can be formulated as follows:

¢ What are the suitable modifications of the Campbell-Baker-Hausdorff-Dynkin for-
mulas, Zassenhaus formula, Hadamard formula, Lie-Trotter, Trotter-Kato formulas
and similar formulas when the Lie bracket products are replaced by Santilli’s gen-
eralizations?

o How the convergence issues can be tackled in these formulas when applied to oper-
ators?

Santilli’s generalizations of Lie products through the deforming elements (operators) may
involve as many further parameters or variables as needed. Thus solutions of these two
open problems have to take into consideration dependence on these parameters.

If X is self-adjoint X = XT, then U = **% and U~! = ¢=**** are unitary

UxU'=U'xU=1, (13)

and the following ”invariance” laws for units, products and eigenvalue equations hold

I-UxIxU=I=1, (14)
AxBoUx(AxB)xUT=(UxAxUNYx (UxBxUN) =4 x B, (13)
Hx|p>=Ex|p >3 UxHx|p>=(UxHxUY)x(Ux>)=H x| >= (16)
UxEx|yp>=E x|y > F =E. (17)

In this sense the Lie’s theory at least on the level of unitary representations possesses
invariance for units, products and eigenvalues. Typically this kind of conditions arise
in theoretical physics models to assure consistency at the fundamental level with those
basic laws of physical systems and their observations which are concerned with expected
preservation of some physical quantities throughout the evolution of the physical systems
of some class.

Despite the above mathematical and physical consistency of Lie’s theory with typical
"invariance” properties of basic physical quantities or their observations, Lie’s theory by
no means is enough to represent the totality of systems existing in the universe. Moreover,
there are many engineering problems, models and systems where such invariance proper-
ties are not necessary, but where clearly approaches based on Lie theory or generalizations
of Lie theory such as those proposed by Santilli are required for further progress.

Returning to Physics, according to Santilli, the inspection of structures (8), (9), (10)
and (11), (12) reveals that, in its conventional formulation, Lie’s theory can only rep-
resent isolated-conservative-reversible systems of point-like particles with only potential-
Hamiltonian internal interactions, because the point-like structure is demanded by the
local-differential character of the underlying topology; the isolated-conservative character
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of the systems is established by the fact that the brackets [A, B] of the time evolution
are totally antisymmetric, thus implying conservation laws of total quantities; the sole
potential character is established by the representation of systems solely via a Hamilto-
nian; and the reversibility is established by the fact that all known action-at-a~distance
interactions are reversible in time (i.e., their time reversal image is as physical as the
original one); all admissible interactions are represented via time-independent potentials
in the Hamiltonian, resulting in manifestly reversible systems. Motivated by this insight,
Santilli initiated a long term research program aiming at generalizations (liftings) of Lie’s
theory suitable for the representation of broader physical systems.

The first lifting proposed by Santilli was for representing open—nonconservative Sys-
tems, that is, systems whose total energy H is not conserved in time, ¢22 e H £ 0, because of
interactions with the rest of the universe [68, 69]. This is one of the important instances
where introducing brackets which are not totally antisymmetric become important. Mo-
tivated by this Santilli, as far as we know, was the first to propose in 1967 as fundamental
object the simultaneous (p — g)-parametric deformations of Lie commutator brakets and
respective operator and classical evolution equations of physical systems:

Alw) = U x A(0) x Ut = e™*PX x A(0) x ¢ 0% x — X1 (18)
dA
ad—_prxX g x X x A= (A, X)operator: (19)
w

where p, q and p + g are non-zero parameters, with classical counterpart [70]:
Alw) = U x A(0) x Ut = ¢ wxax(@X/0r%)x(8/dps) A(0) x xp*(@/0rF)x(9X[0py) (20)

dA BA o oX BX 0A
dw 3’r’° Ok ok B

Such modifications of algebras and related operator representations and systems of equa-
tions involving such deformed commutator brackets became known in more recent times
as g-deformations both in Mathematical Physics and Mathematics literature and arise in
many different contexts.

The highly fruitful idea of simultaneous deformations of brakets and evolution equa-
tions, have lead Santilli to another fundamentally important and also in a sense un-
avoidable insight, that physical models based on such generalized deformed brakets and
equations require new understanding and in many cases substantial generalizations of un-
derlying algebraic and analytic structures, thus insisting on development of new notions,
methods and directions in algebra, analysis, geometry and other parts of Mathematics.
While some of the abstract structure was already slowly but definitely emerging within
Mathematics often with limited or no relation to Physics, many of the structures and
notions suggested by Santilli were new even from Mathematical side at the time of their
introduction; and certainly the physical motivation, intuition and open problems brought
out by Santilli was a novel and fundamental input both on Physics and Mathematics side.

The investigations on Lie admissible algebras were still in their infancy at the time of
[68] with only handfull of publications on Lie-admissible algebras and mostly only in the
mathematical literature (for example, the simple search in MathSciNet/Mathematical
reviews database on ”Lie admissible” in the search field ” Anywhere” and before 1967

(A X)dasszcal (21)
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produces just 9 publications including [68]). So, introduction by Santilli of the new
classes of Lie admissible algebras via deforming Lie algebras brackets and recognizing the
fundamental significance of the Lie-admissible algebras, generalizations of Lie algebras
and related non-associative structures for Physics as well as testing boundaries of their
applicability in Physics contexts have been a pioneering and highly nontrivial and original
advance made ahead of its time. The (p — g)-parametric deformations (18), (19), (20),
(21) achieve at least one of the basic desired physical objectives, the possibility of not
conserved total energy and other physical quantities enabling i% =(p—q)xHxH#NO.

The next major advance was made by Santilli in [71, 72, 73] in 1978 with the in-
troduction of the most general (P — @Q)-operator Lie-admissible theory by considering
the following vast simultaneous generalization of the brackets and operator and classical
evolution equations of Physical systems:

A(w) =U x A(0) x Ut = ™XX*@ » A(0) x e PX X = xT p =, (22)
dA -
z&-T—E:AxPxX—XxQxAz(A,X)opemtm., (23)

where P, (), and P + (} are non-singular operators such that P — @ characterizes Lie
brackets, with classical counterpart [71, 72, 73]

A(’LU) =0 x A(O) x Ut — e—mx(aXfari)xQ}x(B/Bpk) % A(O) w ewx(afari)xP;(BXfapj)’ (24)

dA 0A . 0X X . 0A
%ﬁxp}xa_pj%XQ;X%:(A,X)CLMMML (25)

Among motivating basic features achieved by this generalization are that the Lie-
admissible structure is preserved under nonunitary transforms and that the structures
(22), (23) constitute the most general possible transformations admitting an algebra in
the infinitesimal form. It turns out that the product (A;B) is jointly Lie-admissible and
Jordan-admissible with the attached Lie and Jordan algebras being more general than the
conversional ones. Santilli proposed also a particularization of the above Lie-admissible
theory, the Lie-isotopic theories [71, 72, 73, 74, 77] in which the brackets do verify the Lie
axioms, but are more general than the conventional versions:

A(w) = U x A(0) x Ut = &X>Txw » A(0) x ¢ #<TX T = 1, (26)
dA .
zazAxTxXﬁXxTxA:[A,X]WatO,., (27)
and classical counterpart [71, 72, 73, 74, 77):
Afw) = W< OXIOTIX@1B05) 5, A(Q) < &= WOIR)XTIx(OX/or) (28)
A i X O 22 X s (29)

— = —= XTI X — — —
dw  Irt 7 9p;  ort
These Santilli’s Lie-isotopic theories too are nonunitary-noncanonical, and the application
of additional nonunitary-noncanonical transforms preserves the Lie-isotopic character.

dp

7
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The transformations (26), (27), (28), (29) are the most general ones admitting a Lie
algebra in the brackets of their infinitesimal versions.

Santilli’s Lie-admissible and Lie-isotopic theories (18),(19)-(28), (29) constitute sig-
nificant conceptual advance and excellent subject for further Mathematical research of
high interest for engineering and development of new numerical computational tools and
methods.

In the transition from unitary to nonunitary theories, "invariance” properties of uni-
tary evolution (14), (15), (17) typically are replaced by the following "noninvariances”:

UxUl=U"xU #£ 1,

I s UxIxU=I#1,
AXB—->Ux{(AxB)x U=
(UxAxUNx(UxUNIx(UxBxUN=AxTxB,T=(UxU)",

Hx|p>=Exp>3UxHx|[p>=UxHxUN)x (UxUNY1Ix(Ux|¢p>)=
HXxTx | >=UxEx>=E x|¢ > E +E.

Santilli pointed out that all the theories with a nonunitary structure have the following
drawbacks when it comes to their applications in physics. He call them ”inconsistencies”.
They have been studied in detail in {23, 26, 49, 66, 103, 107, 116] and following Santilli
can briefly be described as follows:

1) nonunitary theories do not have invariant units of time, space, energy, etc., thus
lacking any physically meaningful applications to measurements (for which the in-
variance of the basic units is a necessary pre-requisite);

2} nonunitary theories do not preserve in time the original Hermiticity of operators,
thus having no physically acceptable observables;

3) nonunitary theories do not have invariant conventional and special functions and
transforms, thus lacking unique and invariant numerical predictions; nonunitary
theories viclate probability and causality laws; nonunitary theories are incompatible
with Galilei’s and Einstein’s relativities; and suffer from other serious shortcomings.
Similar inconsistencies exist at the classical level.

Santilli also pointed out that corresponding mathematical inconsistencies also occur
[103, 107] in the sense that nonunitary theories are generally formulated on a conventional
metric or Hilbert space defined over a given field which, in turn, is based on a given unit I,
but the fundamental unit is not left invariant by nonunitary transforms. From the general
fundamental theoretical Physics point of view, those arguments might be interpreted
as limiting the scope of applications of such Lie-isotopic and Lie-admissible theories in
Physics due to nonunitary structure at the operator level with a noncanonical structure at
the classical counterpart. In models of concrete physical systems or observations however
such general "no-go” arguments might be a different issue from the issue of applicability.
It should be noted that the above inconsistencies also hold for any other theory departing
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from Lie’s theory, yet formulated via conventional mathematics, such as deformations,
Kac-Moody algebras, superalgebras, etc.

Based on analysis of the underlying mathematical reasons for the above general ”in-
consistancies”, Santilli came to an important conclusion, that the only possibility to reach
invariant formulations of generalized Lie theories was that of constructing new mathemat-
ics. In the subsequent numerous publications, Santilli and other researchers both from
Mathematics and from Physics communities, made substantial progress on extending all
the essential aspects of conventional mathematics, such as numbers and fields, vector
and metric spaces, algebras and groups, geometries, etc. This has shown however to be
not enough to achieve invariance. The problem remained in the ordinary differential cal-
culus until Santilli finally achieved invariance following suitable liftings of the ordinary
differential calculus in [97] in 1996.

In Lie-Santilli Isotheory, the conventional n-dimensional unit I = diag(1,1,...,1) of
Lie’s theory in its matrix representation is lifted into an isounit which is a real, nowhere
singular and positive-definite n x n-dimensional matrix / which may have functional
dependence on time ¢, coordinates r = (r*), momenta p = (p), k = 1, 2, 3, wave functions
3, or any other needed variables or parameters,

it rp, ) = % A1 (30)

This is done in such a way that the new isounit fits with the Santilli’s modification of the
Lie’s commutator product by element 7.

This seemingly cosmetic change turns out to be of pivotal fundamental nature not
only from Physics but also from Mathematics point of view. This is because, in order
for the new unit, isounit, to fit well with other structures and operations on place of the
ordinary constant unit, adjustments must be done in most of the underlying mathemat-
ical structures and operations. The development of these new mathematical structures,
concepts and theory received the special name, Isomathematics.

Here it should be mentioned that from the point of view of Physics the correctly
chosen unit or more specifically its dependence of necessary parameters have fundamental
significance which yields then the suitable choices of the products and other algebraic and
analytic structures participating in basic equations. That is an interesting situation, since
in algebra and the whole Mathematics, it is the products and other algebraic structures
and operations that are introduced in the first place and are the main objects of study.
For a given algebraic structure like for example a ring or an algebra or a semigroup
one then defines what is ment by a unit and asks important question of whether there
exists such unit element with respect to this structure, whether such element is unique
if exists, etc. Many very important for physics and other applications of mathematics
associative algebras or groups for example do not have a unit. Often this is related to
such important properties of spaces as non-compactness. For example, the continuous
real-valued functions on the real line decaying to zero at infinities form an associative
and commutative algebra with respect to point-wise multiplication but do not contain
any unit element since the only possible candidate of such a unit element, the constant
function equal to 1 everywhere does not belong to the algebra since it does not decay to
zero at infinities. There are many ways of adjoining a unit to such an algebra without
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unit. Often adjoining a unit has a close connection to compactifying spaces associated to
an algebra such as subspaces of the dual space.

What are the relations between different ways of adjoining the unit to an algebra
and the Santilli’s approach of simultaneous modification of the unit and the algebraic
structure?

This is an interesting and to larger extent open question which if mathematically
properly investigated can lead to important insights in Santilli’s Lie isotopic theory and
shed light on its important interrelations with deep questions in Topology, Functional
Analysis and Algebra.

Recall that in any associative algebra the unit, if exists, is unique. Thus in order to
keep the same elements but to have a different unit, the multiplication need to be medified,
thus defining a new algebra structure on the same set of elements. The isoassociative
product, the lifting of the associative product A x B, for which 7 is the left and right
unit, can be defined as follows:

Ax B3 AXB=AxTxB, IxA=AxI=A. (31)

By now many basic fundamental mathematical structures and results have been lifted
in Lie-Santilli isotheory into their isotheory counterparts including among others, the
lifting of fields into the isofields of isonumbers [87], of functions into isofunctions and
of transforms into isotransforms [88, 89, 97}; isotopic lifting of the ordinary differential
calculus into the isodifferential calculus [97], as well as the isotopic lifting of conventional
vector, metric and Hilbert spaces, such as lifting of Euclidean space into the isoeuclidean
spaces with isocoordinates and isometric over the isoreals, or lifting of the Hilbert space
with inner product over the complex numbers into the isohilbert space with isoinner
product over the isocomplex field [88, 89]; the isotopic lifting of geometries and topologies
[104), and the isotopic lifting of Lie’s theory including universal enveloping associative
algebras and the Poincaré-Birkhoff-Witt theorem, Lie’s first, second and third theorems,
Lie’s groups, transformation and representation theory, etc.

The Lie-Santilli isotheory has the desired feature of being form invariant under nonuni-
tary transforms. An arbitrary nonunitary transform on a Hilbert space H over a field F
can be uniquely written as the isounitary transform on lifted space F¢ over lifted F:

VxVi=T£1,V=VxTV?
VxVi=VxVi=VikV =],

with the isoinvariance laws

AAAAAA

AAAAAA ~ A

VXHXVIRVX|¢p >= H' x| >=
VXEX|)p >= E'x|y/ > E' = E.
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Isomathematics achieves the invariance of the numerical values of the isounit, isoproduct
and isoeigenvalues, thus regaining the necessary conditions for physical applications. Since
isohermiticity coincides with the conventional hermiticity, all conventional observables of
unitary theories remain observables under isotopies. The preservation of Hermiticity-
observability in time is then ensured by the above isoinvariances. Based on this and
further detailed analysis Santilli established the resolution of inconsistencies of nonunitary
theories [101]. The Lie theory and the Lie-Santilli isotheory might be considered as
coinciding at the abstract level [71, 72, 73, 97]. Despite this mathematical similarity,
the physical implications of the Lie-Santilli isotheory are far-reaching, as it permitted a
structural generalization of the fundamental dynamical equations of classical and quantum
mechanics, superconductivity and chemistry into new disciplines called isomechanics [68,
69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 87, 88, 89, 96, 97, 99, 100, 101, 102, 104, 105, 106]
isosuperconductivity and isochemistry [3]. These new disciplines preserve the physical
content of the old theories such as the total conserved quantities, and at the same time
allow to add internal nonhamiltonian effects represented by the isounit. These effects have
applications in various fields such as unification theories of electroweak and gravitational
interactions [100], structure models of the strongly interacting particles hadrons [99] and
their far-reaching applications including the prediction of novel, clean subnuclear energies.

3 Lie-Santilli Genotheory and Genomathematics

Lie-Santilli isotheory preserves the totally antisymmetric character of the classical and
operators Lie brackets. This makes it difficult to use it for a representation of open-
nonconservative systems. In particular, the fundamental problem of the origin of the
irreversibility of macroscopic reality does not admit quantitative treatment via the Lie-
Santilli isotheory.

Santilli has made a revolutionary suggestion on how to resolve this fundamental in-
sufficiency by requesting for the broadening of the Lie-Santilli isotheory into a form with
neither totally antisymmetric nor totally symmetric brackets. The achievement of an
invariant formulation led to a new mathematics [71, 72, 73] called genomathematics.

The main idea of genomathematics is the selection of two different generalized units,
genounits with respect to the ordered multiplication to the right or to the left. The first
genounit I~ is for the ordered multiplication to the right A > B (a forward genoproduct).
The second genounit <7 is for the ordered multiplication to the left A < B (backward
genoproduct) [71, 72, 73, 97, 101]. More precisely,

. 1 . . .
I>=§, A>B=AxSxB, I">A=A>1I" = A, (32)
.1 . . .

<I=E’ A<B=AxRExB, “IT<A=A<“[=A, (33)
A=A", B=RB! R=35" (34)

The important point made by Santilli is that together with introduction of such left
and right genounits with respect to ordered products from the left and from the right it is
natural and often necessary both from the side of Physics and Mathematics to go further
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and modify all number, algebraic and analytic structures in suitable ways. In this sense
the genomathematics in a broad sense involves among other things:

1} lifting of isofields IF(a, §, x) into the forward and backward genofields F> (@>, +~, >)
and <F(<¢,< 4, <) with forward and backward genonumbers
& —axI?, “a=Ixa
and related operations [87];

2) lifting of isofunctions f (r) on I into the forward and backward genofunctzons (7))
and <f(<#) on F> and <F, respectively, such as X~ = (eX”*R) x [> and é¥ =<

I x 5% , with consequential genotopies of transforms and functional analysis at

large [88, 89, 97];

3) lifting of the isodifferential calculus into the forward and backward genodifferential
calculus with main forward rules d>#>% = [P xdf>*, d>p7 = T xdp7, 67 /677> =
871 x 8/0r>1, 9> 977 = St x 8/0p7, 6777 (6777 = 6% = 6% x I7, ete., and
corresponding backward rules obtainable via conjugation (see [97] for details);

4) lifting of isotopologies, isogeometries,etc. into the dual forward and backward geno-
topic forms;

5) lifting of the Lie-Santilli isotheory into the genotheory, including the genotopies of
the various aspects, such as universal enveloping associative algebras for ordered
product to the right and to the left, etc. [74, 77, 88, 89, 97].

Within these more general mathematical structures, the Lie-Santilli genotheory ex-
tension of Physics basic evolution equations can be expressed as follows [97, 101]:

A('LU) AzX > A(O) -—tw<<X
[erxwa x I>] % S % A(O) x R X [<I X e;iWXRXX], (35)

PN

A N - N n N “ N ~ - " -
i =A<X-X>A=AxRxX - Xx8xA=(AX)oerators  (36)
w

<X =X ER=6 (37)
with the corresponding classical counterpart {97, 88, 89].
Lie-Santilli genotheory has important property of being form invariance. A pair of

nonunitary transforms on H over C can always be identically rewritten as the genounitary
transforms on a genohilbert spaces over genocomplex fields:

VxVI£LLV=VxBPVxVI =<V <<V =<Vl <y =<] (38)
WxWH£1LW=W> xS WxW=W>>W>=Ww>>Ww>=]> (39)
with the forward genoinvariance laws [99)]:
PP =Ww>r>wt=1 (40)
A>BsW>>A>B)>Wt=4> P, (41)
B> |>=F > |>=Ex|>sW>>H >|>=H> > | >=
W>>E>>|>=Ex|>, (42)
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with corresponding backward and classical counterparts. These genoinvariance laws can
be interpreted also as providing invariance of the numerical values of genounits, geno-
products and genoeigenvalues permitting physically consistent applications.

Lie’s theory, while being at the foundation contemporary physics nevertheless needs
substantial extension and modifications for many important classes of Physical systems.
Lie-Santilli genotheory has permitted an additional structural generalization of classical
and quantum isomechanics, isosuperconductivity and isochemistry into their genotopic
coverings.

The Lie-admissible theory provides the operator representation of open systems in
which the nonconserved Hamiltonian and other quantities are Hermitian and thus ob-
servable. In other treatments of nonconservative systems the Hamiltonian is generally
nonhermitean and, therefore, not observable. The broader classical and operator genothe-
ories represent open-nonconservative systems, as desired, because now the total energy
H is not conserved {4 = H x (R— 8) x H # 0, while at the same time the notion of
genohermiticity on 9> over ™ coincides with conventional Hermiticity. Genotheories
have also permitted a resclution of the historical problem of the origin of irreversibility
via its reduction to the ultimate possible layers of nature, such as particles in the core
of a star. The invariant genotopic formulations of Newton’s equations can be found in
[97]; Hamilton’s equations with external terms in [97]; quantization for open-irreversible
systems in [97, 101]; operator theory of open-irreversible systems in [101].

The product A< B—B>A=AxRxB-BxSxAR# S is typically non-Lie on
conventional spaces over conventional fields. However, antisymmetry and Lie properties
can be recovered when formulated on the bimodule of the respective envelopes to the left
and to the right, {<.A .A>} in the sense that the numerical values of A < B=Ax Rx B
with respect to <I = 1/R are the same as of A > B = A x § x B computed with respect
to I* = 1/ (see [97, 101]).

From the Mathematics side, looking at the Santilli’s genomathematics in connection
to the theory of bimodules and their deformations or from the point of view of the the-
ory of bialgebras, quasi-bialgebras and their deformations, brings new insights and opens
new exciting research directions. Santilli’s genomathematics looks deep into bimodule
structures and related categories in the sense that modifications concern not only the
bimodule left and and right action or related products structures, but also the coeffi-
cient number fields and subsequently all structures involving them if bimodules are built
on linear spaces over fields. These modifications of total structure are deeply concerned
with the need of consideration and modifications of corresponding left and right units,
especially apparent in the bimodule structures coming from algebra product structures.
The importance of the study of modifications of units has been specially emphasized by
Santilli also because it has profound implications in Physics. Such total simultaneous
deformations of all structures are yet to be studied properly in Mathematics and in the
theory of bimodules in particular. The most relevant in this context results on isomor-
phisms, homomorphisms, deformations, tensorproducts, twistings of bimodules in general
and for special classes of bimodules are concerned for the most part with modifications
and classifications of parts of the structures related to the actions or the products or the
coproducts, without modifying the units and the basic number fields. In the theory of
bialgebras and quasi-bialgebras the units and co-units play more central role as insep-
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arable part of the bialgebra structure. Hence the changes and description of units and
counits are always a part of study in the theory and examples of bialgebras when consider-
ing mappings, deformations, twistings, tensor products, classifications and other contexts
involving families of bialgebras. The possibility or necessity of changes in the coefficient
field of the underlying linear space has not been much considered in this context. Also, in
bialgebras, the dual operations and in particular coproducts and counits, are always part
of the bialgebra structure and are requested to obey various compatibility conditions with
the algebra structures, restricting the possibilities of introducing bialgebra structures on
the top of a given algebra structures.

Bialgebras and quasi-bialgebras provide interesting structures and examples for fur-
ther studies in context of Santilli’s genomathematics. Extensions of the theory of bimod-
ules with emphasize on Santilli’s genomathematics is an interesting and important from
Mathematics and applications point of view and to large extent open direction for further
research.
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Abstract

In this paper, we report three tests providing additional experimental confirmations of
the recently achieved and verified Intermediate Controlled Nuclear Fusions (ICNF). Thanks
to various chemical analyses performed by independent laboratories, the first test established
the ICNF of silica from carbon and oxygen; the second test confirmed the preceding results;
and the third test established the ICNF of oxygen from helium and carbon.

PACS 25.70.Jj, 24.10., 25.70.-z

1. Introduction

Following decades of studies for the prior development of mathematical, physical and
chemical formulations as structurally irreversible over time as the energy releasing
processes that have to be described (see review [1] and general presentations [2]),
and as a result of extensive tests and experimentations conducted for years, in the
preceding paper [3] we released, apparently for the first time, experimental evidence
on the “existence” of Intermediate Controlled Nuclear Fusions (ICNF) whose primary
features are the following:

1) Lack of emission of harmful radiations (such as n, p, «, etc.) and lack of
release of radioactive waste. This fundamental feature is achieved by conceptually
and technically restricting the syntheses to light, natural and stable elements.

2} Control of the fusions via multiple means. This second important feature is
achieved via the control of power, temperature, pressure, flow and other engineering
means.



Figure 1: A view of the author with the equipment used for the synthesis of nitrogen
from carbon and deuterium [3] showing from the r.h.s.:. the Miller Dimension 1000 AC-DC
converter; the pressure bottle of 99.99 pure deuterium; and the carbon steel, 12”7 x 24”
schedule 80 hadronic reactor.

3) Intermediate character between the so-called hot and cold fuions, in the sense
that the used temperature has values in between the high temperatures of the hot
fusion and the low temperature of the cold fusion.

ICNF are achieved via the use of specially constructed, high pressure, steel ves-
sels known as hadronic reactors because conceived and constructed via the laws of
hadronic mechanics and chemistry [1,2]. Their main function is that of delivering a
DC electric arc between suitably selected electrodes submerged within a suitably se-
lected gas at pressure. Under the condition that, for selected electrodes, the gas does
allow ICNF, it is called hadronic fuel. All tests herein considered deal with hadronic
tuels suitably selected to achieve ICNF when traversed by a DC arc between carbon
electrodes.



In particular, paper [3] presented the following ICNF
D(2,1,1%,2.0141) + C(12,6,07,12.0000) + TR —

— N(14,7,1%,14.0030) + AE, (1a)
AE = (Eear + Bgeuw) — Erigr = 0.0111 u, (1b)

where TR stands for the trigger, namely, an external action (such as instantancous
increase in pressure) forcing exposed nuclei at mutual distances of 1 fm against their
repulsive Coulomb forces, at which occurrence the strongly attractive nuclear force is
activated between the two nuclei and their fusion is inevitable under the principles of
ICNF reviewed below. The reader should note that ICNF (1) verifies all conceivably
possible nuclear and other laws.

As described in detail in Ref. [3], ICNF (la) was achieved via a schedule 80
carbon steel hadronic reactor of 1ft x 2ft (see Figure 1) filled up with the hadronic
fuel given by pure deuterium gas at 100 psi (following pulling out of a vacuum) that
was traversed by a DC electric arc between commercially available graphite electrodes
powered by a 50 kW DC-AC converter built by the U. S. company Miller Electric. The
test had to be systematically interrupted following a maximum of 2 min operation
to prevent melt-down of the equipment. Independent chemical analyses, done by the
Oneida ORS Laboratories on samples of the interior gas before and after the activation
of the arc, measured a macroscopic percentage of nitrogen after the activation of the
arc that did not exist before, thus establishing its synthesis. The nitrogen synthesis
so detected was independently confirmed by the heat produced that was definitely
bigger than that provided by the 50 kW AC-DC converter.

ICNF (1a) was selected among a variety of possibilities to prevent wasteful aca-
demic discussions on the excess heat in the event interior combustion had been al-
lowed. In fact, the interior gas, that was confirmed as being 99.99 % pure deuterium,
positively cannot experience any combustion when traversed by a DC arc. Therefore,
the heat measured in excess of the heat produced by the arc can solely be explained,
on serious scientific grounds, as originating from ICNF (1).

ICNF (1a) was also selected among a considerable variety of possibilities to pre-
vent wasteful academic discussions on the absence of harmful radiations. In fact,
we have the synthesis of a light, natural and stable element, the nitrogen, from two
ligher, natural and stable elements, the deuterium and the carbon, Therefore, when
synthesis (1) occurs, there is no possibility whatsoever, not even remote, to produce
harmful radiations or release radioactive waste as routinely expected by the commu-
nity in nuclear fusions. In the event syntheses (1a) do not occur, there is equally the
impossibility of producing harmful radiations or releasing radioactive waste because
the energy of the 50 kW AC—D_chp_nverter is about one billion times short of the
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Figure 2: A view of the participants in the verification. [4], showing from the left: G. West
(IBR), R. M. Santilli (IBR), T. Kuliczkowski {(PGTTI), L. Ying (PGTI), M. Rodriguez (IBR),
R. Brenna (PGTI}, and C. Lynch (IBR). The picture also shows the used equipment.

energy needed to fracture the deuterium and/or the carbon nuclei for the production
of the harmful radiation and waste expected by the physics community in the field.

Following the appearance of paper [3], the author requested nuclear physicists
Robert Brenna, Theodore Kuliczkowski and Leong Ying of Princeton Gamma
Tech Instruments to conduct independent verifications or dismissals of the results
presented in Ref. [3]. Following extensive and detailed tests via the use of the same
equipment and same set up of tests [3], the indicated nuclear physicists released paper
[4] (see also ref. [5]) confirming all main results of Ref. [3], including: the synthesis
of nitrogen from deuterium and carbon; the excess heat over that produced by the
AC-DC converters; and the complete absence of harmful radiations or radioactive
waste,

Refs. [3,4,5] have essentially confirmed the following Santilli’s Principles of ICNF
(see Refs. [2] for extensive studies):

PRINCIPLE 1: Need to achieve a controlled exposure of nuclei. Nuclei are naturally
protected by their electron clouds, as well known. Consequently, no nuclear fusion is
conceivably possible or otherwise plausible without the systematic exposure of nuclei
as an evident necessary preparatory step for their fusion. This is the reason the author
dedicated decades of research for the new chemical species of Santilli magnecules (see
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Figure 3: A conceptual view of the simplest possible example of the new chemical species
of Santilli magnecule which is a necessary prerequisite for all ICNF studied in this paper.

the review in Ref. [1] or Vol. IV of Refs. [2] and original literature quoted therein).
This new species is schematically represented in Figure 3 for the simplest possible bi-
atomic case, and clearly shows the controlled exposure of nuclei via the polarization
of the orbitals into toroids permitted by DC electric arc. The same picture shows
the maintenance of said polarization via couplings. In the author’s opinion, the most
important scientific contribution by R. Brenna, T. Kuliczkowski and L. Ying in Refs
[4] has been the experimental confirmation of the ewistence of Santilli magnecules, not
only for their evident independent chemical value, but also as a necessary prerequisite
for fusion.

PRINCIPLE 2: The need to achieve the correct spin coupling. Following the exposure
of nuclei, no controlled fusion is conceivably possible, or otherwise plausible, with-
out the additional systematic control of spin couplings. In fact, triplet couplings of
spin notoriously cause strong repulsive forces in which case fusions can at best be at
random. Ref. {3} established the second necessary condition for truly controlled fu-
sions, the achievement of systematic spin couplings either of planar singlet or of azial
triplet type. Another illustration of the fundamental character of Santilli magnecules
for IONF is visually represented in Figure 3 with the automatic achievement of the
axial triplet coupling of nuclear spins (same spin direction for nuclei along the same



symmetry axis).

PRINCIPLE 3: Use the minimal possible energy required by conservation laws, called
“threshold energy.” A reason stressed by the author for the inability by hot fusions to
achieve systematic and controlled nuclear fusions (following half a century of research
and the expenditure of over one billion dollars) is the use of excessive energies under
which the control of the fusion is practically impossible due to inevitable instabilities
and to the extreme technological difficulties for their control. Similarly, the author
has stressed that a reason for the inability by cold fusions to achieve systematic
and controlled fusions has been the use of insufficient energies, e.g., as needed for
a systematic exposure of nuclei. These two opposite extremes illustrate the third
principle of ICNF according to which, in order to avoid uncontrollable instabilities,
following the achievement of the configuration of Figure 3 via the implementation of
Principles 1 and 2, the fusion reactor must operate at “threshold energy,” namely, the
minimal possible energy needed to push the two nuclei at a mutual distance of 1 fm
against their repulsive Coulomb forces, with the consequential activation of nuclear
forces, at which activation fusion is simply unavoidable under the indicated premises.

2. Review of the New Tests
In this paper, we report three tests providing additional experimental confirmation
of the preceding results [3,4,5]. It should be stressed to prevent misconceptions,
that as it was the case for the preceding tests, the sole objective at this time of the
tests reported below is that of confirming the “existence” of systematic and
controlled nuclear fusions without harmful radiation or waste. Any expecta-
tion of “measurements” of heat produced, flow, temperature gradient and other data
would be grossly premature at this time since the equipment could only be operated .
for a few minutes due to excessive production of heat. Also, the achievement of mea-
surements will require the investment of millions of dollars for the construction of a
hadronic reactor suitable to operate for the sufficient long time needed for meaningful
measurements. Under these understandings, the new tests can be reported as follows:

TEST 1.
the main objective of this test was the experimental confirmation of the existence of

the following new ICNF
0(18,8,0%,17.9991) + C(12,6,0%,12.0000) + TR —
— Si(30,714, 01,29.9737) + AE, (2a)
AFE =0.0254 u, (2b)

that also verifies all possible nuclear laws. The test was suggested by the fact that,
during the years of experimentation on ICNF, the author has systematically seen a
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Figure 4: A picture of the hadronic reactor used in Tests 1, 2, 3.

“whitish powder” on the edge of carbon electrodes that is somewhat suggestive of the
synthesis of silica.

For the test of ICNF (2a), the author and his technicians Chris Lynch, Michael
Rodriguez, Gene West, Donald Roch, Ray Jones and Jim Alban constructed
in early 2010 a new, hadronic reactor with automatic controls of the arc and main
functions. as depicted in Figures 4, 5 and 6. This is the first automatic hadronic
reactor for ICNF since it creates and controls automatically the DC arc, but also
monitors all main features, including power, temperature, pressure, flow, trigger,
and other features with automatic shut off in the event of any malfunction. The
reactor essentially consists in an internal, carbon steel, schedule 80, cylindrical vessel
1 ft x5 ft filled up with the desired gaseous hadronic fuel and traversed by a DC arc
between carbon electrodes. The internal chamber is then completed with an external
water jacket used to cool -down the reactor and for the production of steam. An
AC-DC converter was used with 100 W maximal power, although actual uses were
restricted to 50 kW for safety. The reactor is then completed with a variety of sensors
for internal as well as external temperature, pressure and other data connected to the
automatic controls.

Following over one year of tests, verifications and tuning to assure the proper
operation and safety of the reactor, on April 11, 2011, with the assistance of the
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Figure 5: A view of the production of steam during test 3.

above indicated technicians, the author pulled a vacuum from the interior chamber
of the reactor, that was subsequently filled up with commercially available oxygen at
100 psi pressure. The reactor was then operated for six minutes, at which time there
was a violent increase in the production of steam out of the cooling jacket (see Figure
5) that forced the shut down of the reactor for safety.

After cooling off, the reactor was open and solid samples of the electrodes were
sent for independent chemical analysis by Princeton Gamma Tech Instruments on a
comparative basis with a solid sample of the same electrodes before the activation of
the arc. These analyses, entirely reported in Ref. [6], establish the distinct
detection of silica following the activation of the DC arc that, under the
above conditions, confirm the synthesis in laboratory of silica via ICNF
(2a). Note that no sample of the interior gas was taken because its analysis would
have no impact on the desired verification, the latter dealing with a solid.

We should add that, as it was the case for all preceding tests, no measurable
radiation was detected in the outside and no radioactive waste was detected in the
inside of the hadronic reactor following its opening up after cooling. The various
detectors used for radiations have been described in detail in Refs. [3,4] and their
identification is ignored hereinafter to avoid repetitions.



TEST 2.

The controlled fusion of oxygen and carbon into silica was done because particularly
important for environmental reasons since it is the premise for the use of the green
house gas COqy as a hadronic fuel for the production of clean energy. In fact, a
hadronic reactor can be filled up with CO, at pressure; the DC arc will be quite
efficient in its separation into oxygen and carbon; part of the separated oxygen and
carbon will evidently combust and produce CO that, in the presence of oxygen and
an arc, reproduce again CO,, thus recovering in great part the energy used for the
separation of CO;. However, jointly with the conventional combustion at a loss for
the energy balance, the hadronic reactor will produce a net positive energy output
due to the fusion of oxygen and carbon into silica. Test 1 described above and the
second test here considered confirm the possible use of C'Os as hadronic fuel for the
production of energy without harmful radiation or waste via the indicated processes.

However, the use of oxygen in a hadronic reactor is very dangerous because it is
known that virtually all substances, including metals, ignite when exposed to oxygen
at high temperature. In fact, the local temperature at the tip of the DC arc when hit-
ting the cathode is estimated as being, locally, of the order of 10°C. Even though such
a temperature decreases quite rapidly with the distance from the arc, it nevertheless
causes a rapid increase in the temperature of the oxygen. This essentially implies the
achievement of high oxygen temperatures in a matter of minutes at 100 ps: pressure,
and in seconds at higher pressures, at which value combustion of most substances
exposed to oxygen is expected.

Following the adoption of due safety precautions, and in view of the indicated
environmental relevance, the author and his technicians repeated Test 1 on April 14,
2011 for the specific intent of verifying or disproving results [6]. This second test
was done under exactly the same conditions and setting of Test 1, thus without any
modifications, to prevent variations. As predicted from carbon powder accumulated
in the preceding Test 1, the internal oxygen achieved metal combustion temperature in
about three seconds of operations, at which time an external metal fitting measuring
pressure ignited and the operation has to be instantly interrupted. Nevertheless,
despite its shortness, the test was sufficient to secure sample of “glassy-type small
droplets” formed in the top of the cathode that were sent to Princeton Gamma Tech
Instrumnents for study. The resulting analyses, reported in full in Ref. [7],
confirmed for the second time the synthesis of silica from oxygen and
carbon via ICNF (2a) via a comparison of the solid samples of Test 2 with those
of the electrodes prior to the activation of the arc.

We should add again that, as it was the case for all preceding tests, no measurable
radiation was detected in the outside and no radioactive waste was detected in the
inside of the hadronic reactor following its opening up after cooling.



Figure 6: A view of the scorched carbon cathode following test 3.

TEST 3.
Following the successful synthesis of silica and its confirmation, among a variety of
possible additional syntheses, the author selected Test 3 the ICNF of helium and

carbon into the oxygen according to the rules

C(12,6,0F,12.0000) + He(4,2,0%,4.0026) + TR —

~ 0(16,8,0715.9949) + AE (3a)
AE =0.0077 u (3b)

which synthesis also verifies all possible nuclear laws.

The test was done by the author and the above identified technicians on April
15, 2011, along lines similar to the preceding ones. The interior of the reactor was
cleaned, and various components replaced; a vacuum was pulled out of the interior
chamber; the reactor was filled up with commercial grade helium at 100 psi; a sample
of the interior gas was taken following due flushing and marked Hel; the reactor was
activated for about six minutes and then shut off because of excessive increase of the
produced steam from the water jacket; a sample of the interior gas was then taken
and, again after flushing, marked He2; and the two samples Hel, He2 were sent
to the Oneida ORS Laboratories for chemical analyses. the results, reproduced
in full in Ref. [8] with main results reported in Figure 7, confirm the
synthesis of helium and carbon according to ICNF (3) because, as one can
see, the oxygen content decreased from 117 ppmv in Hel to a non-detectable amount



in He2 but the CO increased from a non-detectable amount in Hel to 4.24% in He2,
an increase solely possible from the synthesis of oxygen in the interior of the reactor.

We should indicate that, following test 3, samples of the electrodes were sent
to Princeton Gamma Tech Instruments for comparative analysis with the sample
electrode not exposed to the arc. The analysis was done because, following the test,
the top of the cathode acquired a “glassy-type” appearance suggesting the possible
synthesis of silica following that of the oxygen as per Tests 1 and 2. The results of
the analyses, reported in full in Ref. [9] , show complete absence of silica in Test 3,
and the production instead of a large peak of Fluorite that could originate from the
melting of some internal plastic component of the hadronic reactor. Jointly we also
note the increase of CO, from non-detectable in Hel to 914 ppmv in He2.

The latter negative result establishes that the double nuclear synthesis, first of
helium and carbon into oxygen and then of orygen and carbon into silica, “cannot”
be controlled. In fact, during the first step, the oxygen is synthesized at the tip of
the DC arc when hitting the carbon in the cathode surface. The ensuing large local
production of heat as per value (3b) rapidly expels the synthesized oxygen from the
DC arc, thus preventing any additional nuclear synthesis. The creation of CO is
then consequential due to the great affinity of carbon and oxygen which is at the
foundation of our lives.

Needless to say, the peak reported in analyses [9] for F(19,9,1/27) could have in-
terpretation other than the aboce indicated melt down of internal plastic components
of the reactor, such as the ICNF of O(18,8,0%) and H(1, 1,1/2%). Similarly, inspec-
tion of analyses [8] reveals the increase of the percentage of a number of elements.
Of course, these increases are expected from the heat produced by the arc and the
consequential conventional release of gases from the various substances composing
the hadronic reactor, although some of the new elements could be the result, at least
in part, of additional ICNF. The study of these possibilities requires additional tests
with related analyses and they are planned for release in future presentation.

We should add again that, as it was the case for all preceding tests, no measurable
radiation was detected in the outside and no radioactive waste was detected in the
inside of the hadronic reactor following its opening up after cooling.

3. Concluding Remarks.
The preceding tests [3,4,5] and the additional tests presented in this paper have
completed the author’s intent Phase I consisting in establishing the “existence” of
ICNF without harmful radiations or waste, and provided the necessary credibility
for the transition to Phase II consisting in the construction of a prototype hadronic
reactor producing clean electric energy in excess of that used.

Despite these promising results, the author would like to caution the reader against
easy expectations of rapid achievement of Phase III, consisting in commercially avail-
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able new clean energies, due to the complexity of the engineering problems to be solved
for extended use, as well as the large investments needed for their achievement.
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Abstract

The significant advantage of the multitime maximum principle is
its applicability to control problems involving multitime-varying situ-
ations in engineering, economics and biology. Generally, in the multi-
tire control theory, the evolution parameter is multidimensional.

Motivated by developments and problems in a number of disci-
plines including Quantum Chemistry, Information and Optics, the
theory of Control of Quantum Systems has emerged. For multitime
quantumn contro] systems, the state may be the density matrix or the
pure state vector. In alternative the constraints must be the mul-
titime dynamics of the evolution PDE operator, i.e., the multitime
Schrédinger PDEs. Our paper is the first which studies and solves
such problems via optimal deformations. The general cost is of Bolza
type including a multiple integral or a mediate path independent curvi-
linear integral and the dynamics (constraint) is described by the con-
trolled Schrédinger PDEs. In this way the control theory itself is been
enriched by new models and paradigms.

Mathematics Subject Classification 2010 49K 20, 81V10,
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PACS: 02.30.Yy, 03.65.-w, 11.30.-j
Key words: multitime maximum principle, multitime Schrédinger
PDEs, quantum electrodynamics, quantum mechanics.

1 Control Problems in
Quantum Mechanics

Quantum mechanics present many specific difficulties, coming from
the environment of the quantum system. Usually, one deals with an
isolated quantum system whereas this is never the case and one has
to take into account the environment of this quantum system [1}-{9],
[15], [16].

It is of major interest to investigate the behavior of a quantum
system under the effect of an external force, usually due to an ez-
ternal electric field. Trying to describe the possible behavior of the
system leads to a single-time control problem, the control variable act-
ing through a potential in the equation, this potential coming from the
external electric field. This question is important in quantum chem-
istry when one tries to break molecules or create new molecules. At
the scale of a molecule or of an atom, in the non relativistic case, the
basic constraint PDEs to be considered are the Schrodinger equations.
The environment can usually be described by microscopic or macro-
scopic Mazwell PDFs., Up to now, very few works have been done on
the coupled Schridinger-Mazwell systems and this could be a very im-
portant new subject either for single-time or multitime control theory.
On the other hand, control of (isolated) Schrodinger equations has
been extensively studied in the last years, but still many important
questions remain unsolved.

Our goal is to apply the tools and methods of Multitime Control
Theory [17]-{22] in the analysis and design of scientific and engineering
applications of Quantum Systems (see also [10], [11]). Section 2 intro-
duces the variational Schrédinger PDEs and the adjoint Schrédinger
PDEs. Section 3 formulates and proves a multitime maximum prin-
ciple for a quantum control problem consisting in a multiple integral
action and the Schrédinger PDEs as constraints and proposes quan-
tum control problems containing the modified Boltzmann-Shannon
entropy functional. Section 4 formulates and proves a multitime max-
imum principle for a quantum control problem consisting in a mediate
curvilinear integral action constrained by the Schrodinger PDEs. Sec-
tion 5 underlines some contributions of Prof. Dr. Ruggero Maria
Santilli to Hadronic Mechanics, Hadronic Chemistry, Mathematics.
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2 Multitime adjoint Schrodinger PDE
systems

We consider two linear PDE systems associated to a nonlinear PDE
system, whose solutions determine either an interior product or a par-
tial interior product of type (1,p)-tensor. They are called adjoint
{dual) systems if the associated interior product or the {1, p)-tensor are
conservation laws (first integral, respectively zero divergence). Two
nonlinear PDE systems are called adjoint (dual) systems if their asso-
ciated linear variational systems are adjoint {(see also [12]}.

Let us start with the multitime Schrédinger PDEs as controlled
evolution law

apk
e
where u(t,z) = (u*(¢,z)), a = 1,...,q is the control variable. This

PDE system has solutions if and only if the complete integrability
conditions
(CIC)
O(Hoy*) O(Hay*) 0u® _ O(Hpy*)
Oz’ ous ot Baxd

are satisfied. These determine the set of admissible controls

——_(t,z) = =1 Ho(ult, D))" (t,x), k=1,2,3; a=1,..,m

, OUHg*) Bu®
o Ha? + Hop! + =5 o~ o2
U= {u-,): BT x R = U| u(-) is measurable and satisfies CIC).

The multitime Schrédinger evolution law is linear and unitary (norm
preserving) on account of the self-adjointness of H,. Indeed,

u«m z)|[? = ( (t, ), $(t, 7))

= (faHa&(t,x),J(t,x)) + ($(t, 2), —iHat(t, 7))
= —i (HoW(t, 2), (¢, ) + i ($(¢, ), HaB(t, 7)) =0,

i.e., the function [|¢(¢,z)||? is a first integral.
Let ¥*(¢,z;¢) be a differentiable variation of ¥*(t, z), i.e.,

¢k

Spo (b 33€) = =L Ho(u(t, 2))$"(t, 5;), $7(2,2;0) = 95 (¢t, z),

where € = (%), o = 1,...,m. Denoting 3% = %}g(t,x; 0), we find the
infinitesimal deformation PDEs or the variational Schrédinger PDEs

k
(VS) 558 (t:3) = —i Hg(u(t, ))ya (¢, 2).
These determine the multitime dual (adjoint) Schridinger PDEs

(45) P 1,2) = § Ha(ult, 2)pi0,2)
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whose solution p = (pf) is called the costate matriz. The PDE systems
(VS) and (AS) are adjoint (dual) in the sense of constent interior
product of solutions, i.e., the scalar product pgyﬁ is a first integral.

Of course, taking the trace, we can define the costate matriz p :
Qor — R*™, p = (pg), as the solution of the divergence adjoint PDE
system (trace of (ADJ))

%(t,m) = i Ha(ult, 2))pR (8, ).

But than, the PDEs systems (23') and (24) are adjoint {dual) in the
sense of zero total divergence of the tensor field Q@F = pgyg produced by
their solutions. The divergence dual PDE system (24} has solutions
since it contains n PD¥Es with nm unknown functions pff. We can
select a solution of the gradient form p{ (¢, z) = %;(t, x).

3 Quantum Control Systems with
Bolza Type Cost as Multiple Integral

In the case of quantum control systems, the state may be the density
matriz, the pure state vector or the evolution operator. Here we refer
to optimal control problems for the pure state when the parameter of
evolution t = (t,...,#™)} is multidimensional. Similar considerations
can be made in the other cases.

Let dt = dt' A...Adt™, dz = dz' Adx® Adx® be the volume elements
and

L(t, 9, x),ult,z))dt Adx

be an (m + 3)-form of class C?. Suppose that the general cost is of
Bolza type written as a sum between a terminal term and a multiple
integral

Q) = HT. D) + [

T

fﬂ L(t, B¢, 7), ult, ))dt d.

We add the dynamics constraint described by the controlled completely
integrable Schridinger PDEs

%{t,m) — i Ho(ult, 2))(t, z), 90, 5) = olz), o =1,...m,

where u(zx,t) is the time-dependent electric field A model for the
Schrédinger operators H, can be

1 .
Hy =co(t)H, H = —§v2 +V(z) — AL (tyub(t, ),

where H is the standard Schrédinger operator, V{z) is an external
potential and *%Ve is the kinetic energy operator (atomic units: h =
1,m=1,e=1).
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3.1 Solution via Lagrange multipliers

We introduce a costate variable or Lagrange multiplier matriz p = (pf)
and a new Lagrangian

L(t, 9t 2), ult, z), p(t, 7)) = L(t, 92, 7), ult, @)

k
+pf(t,) (%t‘%(t, z) +iHa(u(t,m))wk<t,x)) .

The foregoing P E-constrained optimization problem is changed into
another optimization problem

max Q(u(") _f f Lt (¢, 7), u(t, ©))dt dz

Dy
subject to
u(t,z) €U, p(t,x) € P, t € Qor, T € Dyyay, ¥(0, ) = 4p(z),
where the set P will be defined later. The control Hamiltonian
H(t, 9(t, ¢), ult,2), p(t, )} = Lt $(t, ), u(t, 7))
+ipf {6, @) Halult, ) 9*(¢, @),

l.e.
Bwk
H=L-pF 5 Ita {(Legendrian duality}),

allows to rewrite this new problem as

max /
ul) JD

subject to

H{L, (¢t ¢ t wk dtd
S, (62 utt,2),plt ) + 92 G ) deda

TOET

u(t,z) € U, p(t,z) € P, t € Qor, T € Dyyzr, ¥(0,2) = ().

Suppose that there exists a continuous control 4(¢, z) defined over
the hyper-parallelepiped Qqr % Dy 5, with 4(¢, z) € Intlf which is an
optimumn point in the previous problem. Now consider a variation

u(t, zy€) = a(t, z) + eh{t, z),

where A is an arbitrary continuous vector function. Since dft,z) €
Int & and a continuous function over a compact set is bounded, there
exists e, > 0 such that u(t, z;¢) = 4(t, z) + eh(t, z) € IntU, V|e| < €.
This ¢ is used in our variational arguments.

Define the deformation (¢, x;€) as the (m + 3)-sheet of the state
variable corresponding to the control variable u(t, z; €}, ie.,

o

a Z(t,z;€) = —i Hy(u(t, 7€) (8, 73 €), V(t, 2) € Qor x Dyour
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and ¥(t, z;0) = (¢, z). For |¢| < €, we introduce the deformed La-
grangian .
Lt ¥(t, z;€),ult, z;€),p(t, T))
= H(t, W{t, z; €), ult, z; €), p(t, 7)) + pE(E, 9:) (t T;€),

the functional
F‘tf)up(m 6) /QOT E(taﬁ(ta x; e),u(t,m;e),p(t, -T))dt

and the function

Q= [ Fy,(weods.

T

Since the control u(t, r;€) is admissible, it follows that the function
1/_;'(t, x;€) is admissible. On the other hand, the control @(t, ) must be
optimal. Therefore Q(e) < @Q(0), V|¢| < €.

To evaluate the multiple integral

k
[ w0 4z e,

SQor

we integrate by parts, via the divergence formula

a o OVF
(pk'#')k) - + Px 8;&0 H

obtaining
9 9
/ ) (,jf (t.ide = [ [ otk Gz

Opi; k
- htd N ¢ .
- e (L B)Y (@5 €)dt

Now we apply the divergence integral formula

8
fszw pa ROV (73 €))dt = _[ag Sagpi (t, 2)¥* (t, 2 ) (t)do,

oT

where (n?(t)) is the unit normal vector to the boundary 82yp. Sub-
stituting, we find

CRIMEHS

:/ ( (t, ¥(t, z; €), ult, T; €), plt, T)) — A(t T (t, z; e)) dt,
2ot

Q@ = [

Toe

(ij;up (:E, E) + jf;ﬂm" 66!,31)}:: (t:' $)¢k (t’ €T3 G)T’Lﬁ (t)do-) de

Differentiating with respect to ¢, it follows

31’?) k
= Hor — Wwo{t, z; €)dt dx
ijomT /(;()T ( "i’)k 8ta ( )
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+ Huah®(t, z)dt dz

DIUIT Qor
w0 dapl, @)t (1o do
D:coa:rr oT

Evaluating at € = 0, the expression of Q'(0) is

L P
fDWT /ﬂw (?W (t, ¥ (t, ), 4t z), p(t, 7)) — %) ¥F(t, z; 0)dt dz

+ / Hua(t, Bt 2), 6(t, ), p(t, ) )ho(t, 2)dt de

D"‘“D"”T

[ st et a0’ (o de,
J:(]ZT
where 1,«.'_;(t, x) is the (m + 3)-sheet of the state variable corresponding
to the optimal control 4(t, z).
Using the idea of the adjoint PDE system, we define P as the set
of solutions of the boundary value problem
Opi

a;(tv :B) = H'q')k (ts J(t,a:),ﬂ(t, m),p(t,x)), Vt € QOT: Vr € D:L‘{)IT
(4)

dappPi(t, ) ()| 50 — 0{orthogonality or tangency).
We need '(0) = 0 for all h{t,z) = (h®(¢,z)). Therefore

Hauo(t, P(t, ), &t T), p(t,z)) = 0, Vi € Qor, VT € Dy (5)
Moreover, the Schrédinger PDEs can be rewritten

k
T () = — 5 (60,2, 8(0,2), P& 7)), V€ S, Ve € Dy
(6)

Remarks. (i) The algebraic system (5) describes the critical
points of the Hamiltonian with respect to the control variable. (ii) The
PDFESs (4) and (6) and the condition (5) are Euler-Lagrange PDE's
associated to the modified Lagrangian.

Summarizing, we obtain a multitime mazimum principle similar to
the single-time Pontryaguin maeximum principle.

Theorem 1. (multitime maximum principle; necessary
conditions ) Suppose that the problem of mazimizing the functional
Q(u(-})) subject to the Schridinger PDE constraints (2) has an in-
terior solution @(t) € U which determines the (m + 3)-sheet P(t, z).
Then there exists a C' costate p(t, ) = (p{(t,z)) defined over ¥t €
Qor, Ve € Dgyg,. such that the relations (4), (5), (6) hold.

Remark If the optimal control 4(t, ) € U is not an interior point,
then instead of critical point condition we have

H(t, (¢, 7). alt, ), p(t, ) = min H(t, §(t, ), u, p(t, 2)).
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3.2 Same problem in terms of real functions
and choice of cost functional

Of course, both the state ¢ and the matrices —iH,(u) are complex
functions. To transform the problem in terms of real functions, we
need to write

i =Yg + i1, —iHa(u) = Ra(u) + ily(u),

where ¥r and ¥; are real n-dimensional vectors and R, () and I, (u)
are real n x n matrix functions of the control u, with R,(u) skew
symmetric and I,(u) symmetric. Placing these data into the previous
PDEs and separating the real and the imaginary parts, we obtain

%ff (t,2) = Ra(ult,2))dr(t, x) — In(u(l, 2))d1(t, )
01 1,2) ~ Tnfult, ) Fr(t,5) + Rulult, )1(0,9).

Introducing the variable X = (¢ (s ¥ YT and the matrix
i) — | Bale) —Ia(u)
Ha(u) - ( Ia(u) Rﬂ(u) ¥

we can write the constraint PDEs, describing the dynamics, only using

real quantities as

X -
% = Ha(u)X.

The matrices H,(u) are skew symmetric and symplectic for every u,
i.e., they belong to so(2n) N sp(n). Implicitly the cost can be written
as

J(u()) = (T, X (T)) + j f L(t, X(8), ult, z))dt da,

IO“’T

for appropriate functions ¢ and L.
A first cholce of the cost functional in the molecular control is the
laser electric field fluency

J(u()) = k ] / \[alt, )| Pdt dz, k>0,

:DDIT

which measure the energy of the electric field in the multitime interval
[0,T]. A second choice is a cost of the type (electric energy of defor-
mation

uls)) =k 5"ﬂ<—(t z), 8Z(t z) > dtde, k>0,
D:cn:r:T QU'P 8f’

which filters the high frequency components of the control field.
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When emphasis is placed on the final state, one can minimize a
cost functional of the form

1 k
- <0> f/'
2 ¢,+2 D

Cla ok
=¥ 0¢+2[D

EQTT

/ \|u(t, )2t d
Qor

LT T

/ (e, =)|Pdt de, k> 0,
Qor

where O is a negative definite Hermitian matrix. For example, we can
choose the matrix O = —qbfw}r, if 17 is the desired state.

3.3 Open problem
Let X = Li{Qr X Dyyar) with Lebesgue measure. Study multi-

time optimal control for quantum systems endowed with the modified
Boltzmann-Shannon entropy functional

B(§(-,-) = —% fD fnm» [, 2)||? In |[(t, 2)|)? dt dz.

EprT
Show that the functional B : X — R is concave, nowhere continu-
ous (but lower semicontinuous), and has a unique subgradient, when

||#(t, z)]| > 0 almost everywhere, namely (1 +In ||z/7(t,a:)||) (t, ).

4 Quantum Control Systems with
Bolza Type Cost as Mediate
Curvilinear Integral

In the case of quantum control systems, the state (z) may be the
density matrix, the pure state vector or the evolution operator. Here
we refer again to optimal control problems for the pure state when
the parameter of evolution ¢ = (¢1,...,#™) is multidimensional. Similar
considerations can be made in the other cases.

Let La(t,'lﬁ(t, ), u(t, z))dt™ be a C? and closed 1-form. Suppose
that the general cost is of Bolza type written as a sum between a fer-
minal term and a multiple integral from a path independent curvilinear
integral

sy =s g+ [ (f | Lult B0, ul )" da:

zpTT

We add the dynamics constraint described by the controlled com-
pletely integrable Schrodinger PDEs

2% (t,2) =~ Ha(u(t, 2)B(1,7), (0,2) = ole) @ =1,..,m.
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4.1 Solution via Lagrange multipliers

We introduce a costate variable or Lagrange multiplier vector p = (p;)
and a new Lagrangian 1-form

Lalt, ¥t ), ult, ©), p(t, 2)) = La(t, ¥(t, x), ult, 7))
k

+pk(ta 37) (%%; (tv g:) +1 Ha(u(ta m))q'[;k(t’ l‘)) .

The foregoing P E-constrained optimization problem is changed into
another optimization problem

max J(u() = [

o) ( /rw Lalt, ¥(t, 7), ult, :c))dt“) dzx

TQTP

subject to
u(t,z) €U, p(t,z) € P, t € Yor, & € Dyyer, ¥(0,z) = P(z),
where the set P will be defined later. The control Hamiltonian 1-form
Ha(t, B(t, 2), ult, 2), p(t,2)) = Lalt, $(t, ©), ult, z))
+ipy(t, ) Ho(u(t, 2))"(t, z),
ie.,
o e .
He = Lo — pr ey {Legendrian duality),
allows to rewrite this new problem as

max J(u())

- ok
= / j (’Ha(t, P(t, x),ul(t, z), p(t, ) +pk(t,:r)W(t,3:)) dt* dzx
D.’L‘[):I':T FU'T

subject to
ult,z) €U, p(t,x) € P, t € Qor, © € Dugey, ¥(0,7) = ¢(z).

Suppose that there exists a continuous control @(t, z) defined over
the parallelepiped Qor X Dy with (¢, ) € Intf which is an opti-
mum point in the previous problem. Now consider a variation

u(t, z;€) = 4(t, z) + eh(t, ),

where h is an arbitrary continuous vector function. Since @(t,z) €
Int{ and a continuous function over a compact set is bounded, there
exists e, > 0 such that u(t,z;€) = a(t,z) + eh({,z) € Int U, V|e| < €.
This ¢ is used in our variational arguments.

Define the variation §(t,z;€} as the (m + 3)-sheet of the state
variable corresponding to the control variable u(i, z; €), ie.,

—

20 (t3€) = 4 Holulty 23 )0, 76, V(6 ) € Qo % D

212



and J(t,.?:; 0) = z,Z;(t, z). For |e¢| < €, we define the variation La-
grangian 1-form

Lalt, (8, ; €}, ult, 73 €), p(t, 2))
k

= ch(t: ﬁ(t,m; E)vu(tvx; 5):p(t: I)) + pk(ta Z) %

oa (L TiE),

and the function
J(€) = f f Lo(t,(t, 23 €), ult, z; €), p(t, £))dt* dz.

Since the function u(t, z;€) is admissible, it follows that the function
&(t, z; €) is admissible. On the other hand, the control @(t, z) must be
optimal. Therefore J(e) < J(0), Vie| < €.

To evaluate the curvilinear integral

f Pt :c) (t = )dt®,
Cor

we integrate by parts. Using

ad J 7
@(Pkd}k) PRk i Bfa ,
we obtain
3¢k . o d k . o
Tor pk(tv x)%(t,x, é)dt - ‘/'1"0;[- %(pk(ta Q?W (t: T3 6))dt
Opy, E . o
fOT 9t —(t, 2)Y" (¢, x; €)dt”.
Obviously,

[ o or(¥ 5 0d = a0,z DL,

Substituting, we find that J{€) is given by

/onz /FOT ( (t, %(t, z; €), ult, z; €), p(t, 7)) — pj@b’“(t,x;e)) At dx

+f etz

z()"T

Differentiating with respect to ¢, the expression of J'(¢) is

> 5,
L Haget, 500, utt,2:0),p(t,2)) — oAl s )™

RIEH

+j;D f Heoea (£, 1!)(15 z;€), ult, x;€), p(t, 2))h% (¢, z)dt%dx

zQET
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+ fD (pu(t, )0 (t, 25 €))L de.

ToTT

Evaluating at ¢ = 0, we find

J'{0) = [ f [Hopr — %]y’}f(t,ﬂ:;o)dt”’dz
Dn:UmT Loy ot

+f 'Hauaha(t,:r:)dtadﬂr +/ (pk(ta $)¢f(t!$; 0))|0Td$=
D:r:DzT 1-\O'T D

-
where ¥(t, x) is the {m + 3)-sheet of the state variable corresponding
to the optimal control 4(t, x).

Having in mind the idea of the adjoint PDE system, we define P
as the set of solutions of the boundary value problem

DO (1) = Hogo (6,508, 2), (1, 2) 96, 2), (D) =0, (@

Vit € Q()T, V& € DIOIT'
We need J'(0) = 0 for all h(¢,z} = (h%(t, z)). Therefore

Hewe (t: ﬁ(ta -T)aﬁ(t: x)ap(t: :L')) = Oa Vi€ QOT: Vz € Dwoa:T‘ (5)
Moreover, the Schrédinger PDEs can be rewritten

IHo
Oy,

(t,’t/;(t, x),u(t, z), p(t, x)), Yt € Qor, Y2 € Dypprp.
(6)

Remarks. (i) The algebraic system (5) describes the critical
points of the Hamiltonian 1-form with respect to the control variable.
(ii} The PDEs (4) and (6) and the condition (5) are Euler-Lagrange
PDEs associated to the new Lagrangian 1-form.

Summarizing, we obtain a multitime mazximum principle similar to
the single-time Pontryaguin marimum principle.

Theorem 1. (multitime maximum principle; necessary
conditions ) Suppose that the problem of mazimizing the functional
J(u(-)) subject to the Schrodinger PDE constraints (2) has an in-
terior solution @(t) € U which determines the (m + 3)-sheet P(t, x).
Then there exists a C? costate p(t,z) = (p(t,z)) defined over Vt €
Qor, Yz € Dyyer such that the relations (4), (5), (6) hold.

Remark If the optimal control 4(t, #) € U is not an interior point,
then instead of critical point condition we have

Halt, o(t, 2), ilt, ©), p(t, 7)) = min Ha(t, P(t, ), u, plt, z)).

‘é"t‘g(t,iﬂ) = —

4.2 Same problem in terms of real functions
and choice of cost functional

Of course, both the state ¢ and the matrices —iH,(u) are complex
functions. To transform the problem in terms of real functions, we
need to write

% =Yg + iy, —iHo(u) = Ro(u) + il (u),

214



where ¥ and ¥ are real n-dimensional vectors and R, (u) and I, (w)
are rcal n» x n matrix functions of the control u, with R,{(u) skew
symmetric and I,(u) symmetric. Placing these data into the previous
PDEs and separating the real and the imaginary parts, we find

D88 (1,2) — Raful 2)) Bt 2) — Lot )11, )

0L (1,5) — Lo(ult, )t ) + R(u(ts ) r(t, ).

Introducing the variable X = ( Rﬂb NT and the matrix

- Ro(u) —Iy(u)
H u) = LY [+ ,
af) ( T(w)  Ralu)
we can write the constraint PDEs, describing the dynamics, only using

real quantities as

gt—X = H(u)}X.

The matrices fl’a(u) are skew symimetric and symplectic for every wu,
i.e., they belong to so(2n) N sp(n). Implicitly the cost can be written

as a mediate curvilinear integral
T =d@x@)+ [ ([ Lat.X(0),ut, )" da,
OT
for appropriate functions qb and L,.
A first choice of the cost functional in the molecular control is the
laser electric field fluency

T(u()) = kf (f Hua(t,:c)szt“) dz, k > 0,

:a:owT

20"‘"1

which measure the energy of the electric field u = (uq) = (2,) in the
multitime interval [0,T] x [zg,z7]. A second choice is a cost of the

type
Ju() =k

A third choice is a cost of the type

Oty
J{u(- =kf ( 3P <« 2224 ), ﬁtsr: >dt'f)d:z,k>(}.
wn=kf ([, 07 < G G

The second and the third choices filters the high frequency compo-
nents of the control field.

When emphasis is placed on the final state, one can minimize a
cost functional of the form

1 k .
5<O0>y +§fD (/FT (£, )| [Pt )dm

xO:cT
= —w+o«p + (f Jua (t, x)||2dt") dzx, k>0,
2 )zowT Cor

where O is a negative definite Hermitian matrix. For example, we can
choose the matrix O = —@bfv,b}', if 17 is the desired state.

Ju.
6F < t,x), t,z) > dt'*) d
D:c():c'r ( TCor ata ( x) 31:'8 ( :E) -
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5 Santilli Contribution to the Science

Following the discovery of the appropriate irreversible covering of the
20th century mathematics, Prof. Dr. Ruggero Maria Santilli [12]-[14]
passed to the construction of

(1) corresponding coverings of physical theories such as special rel-
ativity and quantum mechanics, as well as their verification, when
applicable, in particle physics, nuclear physics, astrophysics and cos-
mology. 'The new disciplines are today known under the name of
hadronic relativity and mechanics and includes a step-by-step lifting
of all aspects of conventional theories into broader scientific vistas;

(2) an irreversible covering of quantum chemistry, today known
as Santilli Hedronic Chemistry, and also consists in a step-by-step ir-
reversible covering of all various aspects of quantum chemistry, with
impressive experimental verifications, such as the first numerically ex-
act representation from un-adulterated first principle of the binding
energy and other features of the Hydrogen, Water and other molecules;

{3) searching for fuels with a new chemical composition other than
that of molecular character, subject to the condition of allowing a. full
combustion, as an evident pre-requisite to achieve true improvement
in combustion (see, magnegases and Santilli magnecules).

Santilli underlined that the only serious hope for mankind to achieve
the much needed new clean energy is to surpass special relativity,
quantum mechanics and quantum chemistry. The multitime quantum
mechanics is a particular case of the hyper-dimensional branch of the
theory of Hadronic Mechanics of Professor Santilli.
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ABSTRACT. In this paper we pay attention to the key role of the iden-
tity as a map to construct new mathematical structures. We present an
overview on new results on top spaces. An overview on complete semi-
dynamical systems as a generalization of dynamical systermns is presented.

Keywords: Isounit, Top space, Complete semidynamical System.
PACS: 02, 89

1. INTRODUCTION

In this paper we assume that S is a set of Santilli’s isounits, i.e. S is a
nonempty set. with a binary operation

*: 9x 85 =10

with the following conditions:
(1) f I € S, then there exists 1 € S such that I*x1=1x1=1;

(2) For given I € S there exists ™! € Ssuch that [~ =1 %] =1.

An element of S is called a Santilli’s isounit.
Let (E,+, x) be a ring, and let I € § be given. Then
E(I)={ex I : e € E} with the addition

11 BE(I) x E(I) > E(I)

(e1 x I,eax I)rs (e1+e) x I
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and the multiplication
x : BE(I) x E(I) — E(I)
(e1 x I,ex x I)— (e1 xeg) x [
is a ring.
Moreover the mapping
p: E— E(I)
e—exl

is a ring isomorphism. So mathematically and physically E and E(I) are the
same. But the difference will appear if £ be a ring with the identity 1. In
this case the identity of F{I) is 1 x I, and physically it may present different
perspective. For example if F is the real numbers ring R, and 5 is the set
of rational numbers, then R(—2) has different direction with R. So by an
algebraic isomorphism we deduce two different geometrical perspectives, and
this is one of the main points of isotheory [9, 10, 11]. If fact we can change
an Euclidean right-handed system to an Euclidean left-handed system only
with an algebraic isomorphism. For example R(1) x R(1) is a right-handed
system and R{—1) x R(1) is a left-handed system. So with axiom preserving
isomorphisms we can deduce two different structures.

In isotheory isounits are constant functions. To construct a geometric uni-
fied theory we presented the notion of generalized group in 1999 {3}. We
can construct a generalized group via replacing the concept of identity as a
constant function with a function which is not necessary constant. In fact a
generalized group is a semigroup ¢ with the following additional two condi-
tions:

(i) For each x in G there exists a unique z in 7" such that zz = zz = z, we
denote z by e(x) (existence and uniqueness of identity).

(ii) For each z in G there exists y in G such that ry = yr = e(z) (existence
of inverse).

To combine this notion with manifold structure we presented top spaces as a
generalization of Lie groups in 2002. In section 2 we present an overview on
new results on top spaces. As an application a generalization of fundamen-
tal group is considered. Complete semi-dynamical systems via generalized
vector fields are studied.

2. TorP SPACES

Top spaces are generalization of Lie groups [4]. In this paper we begin
with a top space and then by it we will construct an upper top space for it.
Let us to recall the definition of a top space [4, 5].

A top space is a smooth manifold T (not necessary connected) admitting an
operation called multiphication, subject to the set of rules given below:
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(i) (zy)z = x{yz) for all z,y,z in T (associative law).

(ii) For each x in T" there exists a unique z in T such that zz = zz = z, we
denote z by e(z) (existence and uniqueness of identity).

(iii) For each « in T" there exists y in T such that zy = yxr = e(x) (existence
of inverse).

(iv) The mapping my : T' — T is defined by mi(u) = v~ ! and the mapping
meo: T x T — T is defined by ma(ui, u2) = ujug are smooth maps.

T is called a normal top space if it also satisfies the following condition. (v)
e{zy) = e(x)e(y) for all z,y € T

The properties (i), (ii), and (iii) imply that T is a completely simple semi-
group {1].

Example 2.1 The n-dimensional Euclidean space R™ with the product

n$1+zn:yz’ n$n+§:yi
i=1

((:Elv'":‘Tn)r(ylv"':yn))'_—”)( nz':l 1oy n- )

is a top space which is not a Lie group with this product.

Theorem 2.1 [4] If X and Y are smooth manifolds, G is a Lie-group,

and s : Y x X — G is a smooth mapping, then the Rees matrix semigroup

P = X xGxY with the multiplication (z, g, v)(z’, ¢, ¥') = (z, gs(y, )¢, ¥')

is a top space.

If T is a top space then T" = U Ty where T,y = {s € T : e(s) = e(l)}.
teT

Moreover for each t € T', T,y with the differentiable structure and product

of T is a Lie group.

Let T and S be two top spaces and let f : T' — S be an algebraic homo-

morphism, ie., f(zy} = f(z)f(y) for all z,y € T. Then f(e(x)) = e(f(x))

and f : T,(z) — Se(f(a)) 18 & group homomorphism, where z € T'. The kernel

of f defined by Kerf = U ker f; where f; is the restriction of f on Ty

teT
[6]. We will use of this notion to present a generalization of the notion of

fundamental group as the kernel of covering map of an upper top space of
a given top space. We will show, the persistence of this structure under the
isomorphisms of top spaces.

In this section we assume that for all ¢ € T', the set T,y is a connected set
8. )

I (Teqey, pr,e(t)) is a universal covering space of (T, e(t)), then 1oy is
a Lie group with the multiplication mi;(f;, £2) with £1,¢; € Te(t) such that
promiiy(£1, 2) = my(pe(1), pi(£2)) where m, is the restriction of m on Ty X
Tos)-

Let T be the disjoint union of Te(t) where t € T. Then we define the product
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 on T x T such that pgom(3, 1) = m(p,(8), p(£)) and mle(s), e(t)) = e(st).
Theorem 2.2. [7] 7 determines uniquely by the above equalities.
Theorem 2.3. [7] (T, ) is a top space.

The straightforward calculations show that

The mapping p : T — T defined by p(f) = p;(%) is a homomorphism of top
spaces.

The pair (T, p) is called the upper top space of T.

3. A GENERALIZATION OF FUNDAMENTAL GROUPS

We begin this section with the following theorem.
Theorem 3.1. [7] If (T, p) and (3, ¢) be two upper top spaces of a top space
T, then Kerp is isomorphic to Kerg.
We now define the main notion of this section.
Definition 3.1. If (f‘, p) is an upper top space of T then the Kerp is called
the MF-semigroup of 1.
The next theorem shows that MF-semigroups are generalization of funda-
mental groups.
Theorem 3.2. [7] If T' is a top space and D is the MF-semigroup of it then

o

D is isomorphic to U T1(Te(s), e(t)) where 71(Te(y), e(t)) is the fundamen-
tee(T)

o
tal group of T(;, with the base point e(t), and U denotes the disjoint union.
Definition 3.2. If T and U are two top spaces, then a mapping f: T —- U
is called an isomorphism if it is an algebraic isomorphism and a C*° diffeo-
morphism.
Two top spaces are called isomorphic if there is an isomorphism between
them.
Theorem 3.3. {7} Let D and E be MI'-semigroups of top spaces T" and U
respectively. Moreover let T and U be isomorphic top spaces. Then D and
E are isomorphic semigroups.

4. GENERALIZED VECTOR FIELDS

Generalized vector fields are means for creation of parameters for new
dynamics. In a special case there is a physical history behind this notion.
In fact if one considers a manifold in a vector space with a physical vector
field then the restriction of physical vector field to that manifold will be a
generalized vector field on that manifold. So a generalized vector field on a
manifold may not be tangent to it.

For the definition of a generalized vector field we assume that T and M are
two C™! manifolds, and T(T) is the tangent bundle of T. We are assuming
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that V : 7" — M and ¢ : T(1") —» M are C" maps.

Definition 4.1 [6] (V, M, ) is called a C” generalized vector field on T if
for all p € T, there exists a C! map « : (—¢,¢) — T (for some € > 0) so that
a(0) = p and V{a(t)) = ¥(a’(t)). o is called a generalized integral curve
passing through p.

« may not be unique. For example if M = R™, ¢ = 0 and V = 0 then there
exists a lot of generalized integral curves.

One can imagine a generalized vector field as a source which is a manifold
as a subset of another manifold.

Example 4.1 Let T = 8!, M = R?, o(x,y) = (z, ~y,z + 1) and V(z,y) =
(—y, -z, —y + x), then (V,R3,4) is a C™ generalized vector field on S*.

If (V, M, ) is a C" generalized vector field then there exists a vector field V
(may not be unique) such that ¥ o V = V.

Definition 4.2 A generalized vector field (V, M, %)) is called a left invariant
generalized vector field on 7' if there exists a left invariant vector field V on
T such that YoV =V.

Example 4.2 Let T be the top space which is introduced in example 1.3.
Moreover let V : T — R? and 9 : R® — R* be defined by V(z,y,2) =
(—y,z,—y,z —y) and ¥(x,y, 2) = (z,y + z,x + 2,z + y) respectively. Then
(V,R%,%) is a left invariant generalized vector field.

Let V be a vector field corresponding to a generalized vector field (V, M, )
on a top space T'. Moreover let 1 be a one-to-one mapping,.

Then for all g € T we can define »¥ : M — M in the form:

P ={ 00 2 o

Lemma 4.1 [6] For all g € T, the mapping 79 is well-defined.

Theorem 4.1 [6] Let V be a vector field on a top space T corresponding to
a C" generalized vector field (V, M, ), and let 79 be the mapping which is
defined by (1). Then

oV =Volg forallgeT;

ii) If V is a left invariant vector field, then ¥{({ly)«(V(t)) = (n9 o V)(2), for
all g, t € T.

Theorem 4.2 [6] With the assumptions of theorem 4.1, the set

(M,{n? : ¢ € T'}) has the following properties:

i) 79 0% = 9% for all g1, g € T

ii) For all m € M there exists 59 such that m is a fixed point of n?.
Corollary 4.1 [6] In theorem 4.2 if T is a Lie group, then (M, {79 : g € T})
is a dynamical system on M.
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5. A GENERALIZATION OF DYNAMICAL SYSTEMS

If T is a Lie group, then corollary 4.1 implies that {9 : ¢ € G} is
a dynamical system on M. So property (i) of theorem 4.2 can be replaced
with the existence of identity mapping in the definition of dynamical systems.
Hence properties (i) and (ii) can be a base for the definition of systems which
time values of their evolution operators are members of a completely simple
semigroups. These systems make a special category which is a sub-category
of the category of semi-dynamical systems.
Let G be a completely simple semigroup and D = {n9 : g € G} be a family
of maps from a set M to M, then we have the following definition.
Definition 5.1 {6] (M, D,G) is called a complete semi-dynamical system
if:
1) n9 o =919 for all g1, g2 € G;
ii) For all m € M there exists g € G such that m is a fixed point of #9.
We use the abbreviation CSS instead of “complete semi-dynamical system”.
Example 5.1 Let G be a completely simple semigroup and

D::{gog:gag:G — G and gEG}.

r — gz

Then (G, D,G) is a CSS.

We know that the set G, := {g € G : e(g) = e(a)} where a € G, with the
multiplication of G is a group. The following theorem shows that CSSs are
the generalization of dynamical systems.

Theorem 5.1 [6] Let (M, D,G) be a CSS and suppose that there exists
a € (G such that: for all m € M there exists g € G, so that ¢9(m) = m.
Then (M, D, G,) is a dynamical system.

Corollary 5.1 [6] Let (M, D,G) be a CSS and let G be a group. Then
(M, D,G) is a dynamical system.
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Abstract. Experiments were conducted to confirm measurernents by Santilli [1] of an /afermediate Controlled Nuclear
Fusion (ICNF) process without harmful radiations. For this purpose we used a steel reactor chamber pressurized with
deuterium gas and sparked with carbon electrodes. Thermal measurements on the chamber were analyzed and compared
with the total measured energy input to determine excess heat production. Mass spectroscopic analysis were performed
on gas samples extracted before and after ignition to verify the formation of magnecular clusters {(essentially consisting
of clustered molecules) formed as by-products of the intermediate nuclear fusion process. The exterior of the chamber
were monitored throughout these experiments with radiation detectors to assess if any harmful radiation were emitted
into the environment. These experiments are the precursor to the construction and testing of larger scaled hadronic
reactors.

Keywords: Ruggero Santilli, intermediate Controlled Nuclear Fusion
PACS: 28.90.+i

INTRODUCTION

Controlled tests of the ICNF process without harmful radiations were repeated at the facility of the
Institute for Basic Research in Tarpon Springs by a technical team from Princeton Gamma-Tech
(PGT). The main diagnostic tools used to characterize the hadronic reactor were supplied by PGT,
including the temperature transducers and radiation detectors.

The hadronic reactor is fabricated from a 12-inch outer diameter steel tube with welded end flanges.
Two steel plates are bolted to both ends to seal the chamber. A stationary anode is located from one
endplate, and a moveable cathode from the other endplate. The electrodes can be changed by opening
the chamber to replace the anode and cathode. For the tests described in this article, the electrodes were
carbon graphite. The terminals were attached to a Miller Electric Dimension 1000 AC-DC converter,
and regulated during the experiments at nominally 40VDC and 900A. A wattmeter was used to
determine the exact power consumed by the generator during each experimental run. The temperature
of the reactor tube and endplate were monitored with platinum resistive sensors.
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Figure 1. Photograph of the opened hadronic reactor

The main concern with any nuclear process intended for energy generation is the potential for
harmful radiations. Fission reactors produce considerable amount of all the deadly forms such as alphas
(*He’"), betas (¢), neutrons (n) and gamma-rays (y). Alpha and beta particles can cause the most
damage to living cells, but by their very nature of being highly ionizing means they also have very
short travel paths, and unless ingested are not of environmental concerns. Neutrons and gamma-rays
are considerably more penetrative and therefore more of a harmful environmental radiation to consider.
The SAM940 {2] radiation detector consists of a sodium iodide scintillator for identifying sources of
gamma-rays and a proportional counter filled with a rare isotope of helium (*He) for neutron detection.
The detectors were factory calibrated with potassium (**K) for gamma-rays and californium (***Cf) for
neutrons. Radioactive background levels of the research facility were surveyed with the SAM940, and
the instrument then placed in close proximity to the hadronic reactor to constantly monitor any
potential harmful radiations emitted during the fusion process.

H

Figure 2. Photograph of PGT’s model SAM94( gamma-ray and neutron detector

DEUTERIUM CARBON FUSION

The fusion of deuterium and carbon by the ICNF process to form nitrogen can be described using
Hadronic Mechanics [3] with the following balanced equation:

TR+H(2,1,1%,2.0141) + C (12, 6,0, 12.0000) - N (14,7, 17, 14.0030) + AE,,,, (1)
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whereby the first symbol contained within the brackets represent the atomic number of the isotope
species, the second symbol the nuclear charge, the third symbol the nuclear angular momentum with
parity, and the final fourth symbol representing the atomic mass unit {amu),

The trigger {TR) mechanism to initiate the reaction process is the electric arc that polarizes the
carbon and hydrogen atoms to form magnecular clusters. On the atomic distances between the axially
coupled atoms, the extremely strong magnetic fields generated by the arc toroidally deform the atomic
orbitals and thereby exposing the nuclei from their electronic clouds. The close proximity of the bare
nuclei leads to the nuclear fusion with the generation of excess heat (AEp.). The mass difference
between the fusion product ("*N) and the parent nuclei (*H, '*C) is 0.0111amu or the energy equivalent
of 10.339MeV.

The hadronic reactor is pressurized with pure deuterium gas by first evacuating with a mechanical
vacuum pump the chamber and then backfilling with the gas from a supply bottle. Gas samples were
taken before and after each initiated reaction, and sent to an independent laboratory [4] for spectra
vapor analysis.

Each experimental run was started close to ambient temperature of nominally 25°C, with the electric
arc powered for 2 minutes. The wattmeter measured an average power consumption of 1550W hr,
which equates to an energy input of 54MIJ. A total of 3 runs were performed at varying starting
pressures of 100, 75 and 50psi. For the 100psi tests, gas samples before {A) and after (B} was taken.
The reactor chamber was then purged and refilled with pure deuterium, and a gas sample (C) was taken
at a starting pressure of 75psi. After the reaction process at 75psi, a gas sample (D) was extracted. The
reactor was then allowed to cool back to ambient and the pressure reduced to 50psi for another
reaction, and a final gas sample (E) taken.

Summary of the gas samples extracted from the hadronic reactor;
A) 100psi Before fusion

B) 100psi After fusion

C) 75psi Before fusion

D) 75psi After fusion

E) 50psi After fusion

RESULTS

Gas Spectra Analysis

Deuterium is non-combustible, and there were also negligible amount of oxygen contained in the
hadronic reactor for any other combustion processes to have occurred. Hence if there were no hadronic
chemistry or fusion processes taking piace then we would expect to observe similar vapor spectra for
the samples taken before and after initiation by the electric arc. The following chart shows the analyzed
mass spectra for the 5 gas samples, the reported values are in parts-per-million (ppm) by volume.

amu A B C D E
2 (Hp) 288,163 185,549 141,308 158,837 201,992
3 49,815 438,891 04,969 461,037 1,031,783
4 (Dy) 12,648,080 12,342,540 11,357,960 11,013,180 10,311,080
5 332 933 223 840 1,771
6 13,260 12,020 10,532 9,793 9,018




7 - - 190 186 161
8 - - - - -
11 - - - - 40
12 4,850 9,025 620 19,668 32,411
13 449 400 60 454 1,089
14 57,902 11,191 104,309 118,343 125,036
15 1.875 1,578 653 1,644 3,369
16 24,627 16,952 34,481 26,993 54,958
17 2,269 12,165 4,479 23,534 155,606
18 (Ar, H,0) 10,248 104,140 18,576 186,414 679,276
19 3,242 8,594 2,823 13,890 174,468
20 8,302 71,458 9302 114,013 182,857
21 - 729 - 1216 2315
22 222 159 - 197 222
23 - - - - -
24 182 218 - 161 1,025
25 633 240 - 61 323
26 2,838 1,408 245 1,103 4415
27 873 878 - - 3,145
28 (Ny) 536,530 125,200 884,507 1,148,545 1,301,279
29 4334 2,548 6,463 10,666 14,491
30 3,618 5,306 5,526 10,963 22,688
31 178 1,601 343 2,034 7.569
32 (0,) 111,498 13,475 205,287 17,979 42,656
33 139 483 201 622 3,539
34 577 1,449 1,134 2.197 3,429
35 - 225 - 236 933
36 - 1,848 142 2.840 4,621
37 - 79 - - 207
38 - 119 - 100 161
39 308 433 104 161 328
40 5,857 563 10,687 11,468 11,465
a1 209 328 80 183 436
12 197 317 102 246 654
43 113 295 - 188 732
44 (CO,) 14,262 13,828 1,848 14,241 13,508
45 199 265 - 212 282
46 98 159 - 121 308
47 ; - R R -
43 - - - - 99
50 111 208 - 101 317
51 107 218 - 61 2,740
52 109 295 - 207 459
53 - 107 - - 102
54 . 176 - 101 273
55 - 185 - - 141
56 - 208 - 128 306
57 - - - - 40
58 - - - - 140
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60 - - - 81 121
67 - - - - -
69 - - - - 391
71 - - - - -
77 - 137 - 65 -
78 306 464 100 238 243
79 - 115 - - -
81 - 60 - - -
82 - 132 - 81 130
83 - 60 - 40 131
84 - 472 - 396 734
91 - 162 - - -
101 - - - - 711

The spectral analysis indicates a reduction in the amount of deuterium following each reaction. At
100psi (A—B) the decrease was approximatety 2.5%, and at 75psi (C—D) it was 3%. The decrease in
the amount of nitrogen in the 100psi data can be misleading, since the evolved nitrogen can be trapped
in clustered magnecules as indicated by the existence of higher mass entities in the spectral data
following all the reactions. These previously unknown higher mass magnecules are further evidence of
the hadronic chemistry taking place.

Elemental Microanalysis

Samples of deposits on the surface of the graphite electrodes were removed for material
characterization in a Scanning Electron Microscope (SEM) using an Energy Dispersive Spectroscopy
(EDS) x-ray detector [5]. The detector is a liquid-nitrogen cooled lithium-drifted silicon crystal biased
to operate as a semiconductor junction. X-rays liberate electron-hole pairs in the junction, and the
amount of charge collected is proportional to the x-ray energies. The electron beam striking the
samples generates electronic excitation, and it is the decay of these electronic shells that emits the
characteristic x-ray energies unique to each element.

The EDS detector is a PGT’s model L810133 mounted to an ISI Super ITIA SEM. The samples
were epoxied to a helder placed directly in line with the electron beam. The long vacuum insulated
endcap housing the Si{Li) crystal is inserted into the SEM chamber in close proximity to the sample.

Fluorescence x-rays scattering off the target sample and entering the endcap through a thin-walled
pelymer window are identified by the EDS detector system.

Carbon

\

\ Nitrogren
——

Figure 3. Elemenial spectra of deposits on graphite electrode
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The elemental microanalysis spectra taken on the surface deposits of the graphite electrodes show a
prominent x-ray peak at 277e¢V (carbon K,). There is a small adjacent peak at 392eV, which is the
nitrogen K, x-ray that is noticeable above the general background level. Since the SEM chamber is
under vacuum, then the detected nitrogen must exist in some non-gaseous form, possibly within
clustered magnecules [6].

Thermal Analysis

Platinum resistive temperature sensors were securely fastened to the surfaces of the steel chamber’s
central tube and one of the endplates. Temperature readings were noted down each minute after the
electric arc was powered up to produce a thermal profile of the hadronic reactor. A thermal Finite
Element Analysis (FEA) was simulated [7] for the reactor to estimate the expected temperature rise if
the only source of heat came from the electric arc. Comparison curves of the measured thermal profiles

against the FEA computed values at 5MJ, 5.5MJ and 6MJ energy inpuis are shown below.
140 4
120 |

100 4

80

Temp {celsius)

60 — Measured Temp
5.0MJ Input Temp
—— 5.5MJ Input Temp

40 4
— 6.0MJ Input Temp

20

T T T T T T T T T T T
1] 10 20 30 40 50

Time {minutes)
Figure 4. Thermal profiles of tube
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Figure 5. Thermal profiles of endplate

The data indicates the generated excess heat AEy,,, of approximately 0.5MJ above the total injected
energy input of 5.4MJ from the electric arc. From equation (1) we note that each reaction releases
around 10MeV of fusion energy, hence if we assume all the excess heat is through the ICNF process,
then this is equivalent to the generation of roughly 10'® or a micro-mole of fusion produets.

Radiation Analysis

The SAM940 sodium iodide scintitlator detector is self-calibrating at the potassium (¥K) ener%y of
1.461MeV. The helium (*He) proportional counter was factory calibrated against a californium (2*Cf)
neutron source. For safety and security reasons the source is embedded in wax and locked inside a steel
vault. Opening the vault door and placing the SAM940 instrument approximately a meter from the
source, we were able to detect average neutron levels of 0.8 counts per second (cps). With the vault
door closed and the instrument removed from the vicinity, the background leveis fell to less than
0.03cps.

Compared 1o normal background leveis there were no emitted gamma-rays or neutrons detected
emanating from the hadronic reactor during the fusion process occurring within the chamber.

09:03:10 87.4 gCPS
.03 nCPS
41,3 nSv

r |-
Shr
Z; 1k 10k

Figure 6. SAM940 Gamma and neutron detection
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CONCLUSION

The resuits taken from the experimental runs conducted on the hadronic reactor indicates some form
of exothermal reaction taking place that produced clusters of higher mass components. Since chemical
reactions and combustion cannot have occurred in a pure deuterium environment, the conclusion leads
to an indication of the process described as /ntermediate Controfled Nuclear Fusion without harmful
radiations.
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I. FISHER INFORMATION

Measurement in quantum mechanics is described in a statistical way. For this reason, we discuss in
this paper mutual relation of the formalism of quantum mechanics and mathematical statistics.

First, we discuss the Fisher information — a very important quantity appearing in mathematical
statistics. In the most simple form, it can be introduced as follows (see e.g. [1-18]).

We start with the normalization condition for the probability density p(x) = |¥(x)|?, where ¢ is the

wave function
/ pder=1.

Here, integration is performed from the minus infinity to plus infinity. For the sake of simplicity, we
assume also that p has the property

lim z%p=0, n=01,2 (1)

T—+Foo

Therefore, we limit ourselves to discussion of the so-called bound states.
Now, we perform integration by parts in the normalization condition and get

[(z - ’-‘)P]:O:,oo — [(3:— a)% dzr =1,

where a is an arbitrary real number. Taking into account condition (1} we get the starting point of the
following discussion

*Electronic address: skaladkarlov.mff.cuni.cz
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Further, we make use of the Schwarz inequality for the inner product (u,v) = [u*vdz of two complex
functions u and v '

{u, up(v,v) > |(u, v)|". (2)
Putting

1 8p

uw=(x—a})/p, v= f@:ﬂ

and using Schwarz inequality (2) we get

fio-arne 32

where the second integral is called the Fisher information 7

= [5(5) o

This inequality is usually written in the form

/(:l’: —a)pdz I > 1. (3)

This result is very general and does not depend on the concrete meaning of the variable z.

Interpretation of the last inequality is similar to that of the uncertainty relations in quantum mechanics
since for given I the integral [{z — a)?pdz cannot be smaller than 1/7 and vice versa. The minimum of
the integral [(x — a)?pdz is obtained for a = fzpdz. In a more general form, it is is possible to derive
the so-called Rao—Cramér inequalities [19-21].

II. WAVE FUNCTION
The wave function ¢ can always be written in the form
p = lia=s)/n, @
where sy and s» are real functions and # is the Planck constant. It follows from here that

p=[p|? = e 22/,

Therefore, the Fisher information can be written in the equivalent form [7-11, 13, 17, 18]

_ 3p 4 dsy\? — 252/

II1. KINETIC ENERGY

Using Eq. (4) for the wave function we can write the quantum-mechanical kinetic energy T in the form
[7-11, 13, 17, 18]

/(331/6$ 832/637) —282/?‘Ld

2m

Therefore, kinetic energy can be written as a sum of two terms

T=T 415,
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where

P 2
- f (951 /8z)ze,2sz/ndm1 7= L
2m 8m

The first part of the kinetic 7} is analogous to the classical kinetic energy given by the expression
Tetass = (VS)2/(2m) known from the Hamilton-Jacobi theory.
‘The second part of the kinetic energy

R
~ 8&m

is proportional to the Fisher information I. Due to T3, the kinetic energy of the bound states cannot
equal zero. Therefore, the Fisher information plays very important role in quantum mechanics.

T

IV. HEISENBERG UNCERTAINTY RELATIONS

As above, we write the wave function % in form (4). The Heisenberg uncertainty relation for the
coordinate & and momentum p has the form [22]

(A=) (80)) = 7.
where
(Azy?) = f (@ — (@) pltde, ((Ap)?) = [ (5 — (3))v|*de,

p = —ih{8/0x) and ()} denotes the usual quantum-mechanical mean value.
Analogously to the kinetic energy, {(Ap)?) can be split into two parts {7-10, 13, 15-18]

{(Ap)*) = ((Ap1)*) + ((Ap2)?),

(omyy = [ (G- <‘g—$>)2%

(@ = [ (%)26232,%_

Similarly to the first part of the kinetic energy T1, ((Ap:)?) can be interpreted within generalization
of classical mechanics in which the classical momentum p = 385/9x, where S is the classical action, is
replaced by ds,/0z and the probability density p = |9 = e~2%2/% is introduced.

The second part
2
(ar) = [(G2) eias

is, analogously to T4, proportional to the Fisher information 7

1/8p\* 4 dsa\? _, 4
I: - — = — — sz/fi e— 2_
[3(3) 4= [ (52) eooman= 5 amap

For {(Ap1)?) = 0 (for example for real wave functions), the Heisenberg uncertainty relation

where

and

hZ

(A (ap)) = T,

is equivalent to inequality (3) with ¢ = (z).
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V. EKLEIN-GORDON EQUATION

In physics, we have to take into account not only the probability density p but also the probability
density current j describing the motion in space. For this reason, we introduce generalized spatial and
time Fisher informations I and I} [13, 17, 1§]

o LR () Joomn [ e
=0 =0
and
y_ 4 °°/ 351\ | (95:\"] _pum fmfaw
I = 52 .[;:o 57 + ot e dzdt = L, ot dxdt.

Since there are no potentials in the last two Fisher informations, they correspond to a free particle.

To describe physical phenomena in a way independent of the choice of the concrete inertial system,
we require that the combined space-time Fisher information equals a real constant K independent of the
state of the investigated system

I;’
+I!=K,
=
where ¢ is the speed of light and the sign in front of the spatial Fisher information I can be either + or
—. By considering two cases of a particle in rest and a particle with very large kinetic energy it can be
shown that [13, 17, 18]

K>0
and the minus sign in the last equation has to be taken

IH "
c—2 —I =K.
In this way, the correct signs of the metric of the special relativity and the relativistic invariance of the
theory is obtained.
The last equation can be then written in the form

S Gl - 15

This functional must be independent of ¢

Oz
oo 1 96p* & Boy* 8¢ 'K
f”/(cz 5 B aa;%‘—&“” dzdt + c.c. = 0,

z rf}(

2 —
s WK )d edt =

where § denotes the variation. Performing integration by parts with respect to ¢ in the first term and
with respect to z in the second one and assuming that variations dv and &¢* equal zero at the borders
of the integration region we have

o0 . 82 1 82 ﬁzK
ft:of(w) (@Mc?@_ )¢da:dt+cc = 0.

The condition that this equation has to be fulfiiled for arbitrary values of &4 and d4* yields the equation
of motion
9 18 K
(_____AM)w_U_

Introducing the rest mass my
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and generalizing to three dimensions we obtain the well-known Klein-Gordon equation

1 &2 2.2
Ao T Ny 0.
c? g2 h
Dirac equation and many other equations of motion of physics can be obtained in a similar way [3-6, 13,
17, 18].

VI. TWO NEW UNCERTAINTY RELATIONS

Now we show that the Heisenberg uncertainty relation can be replaced by two stronger uncertamty
relations [13, 15-18, 23].
First, we take

w=Ar/p, v= (%Z—l — <%>)\/ﬁ

Then, the Schwarz inequality yields the first uncertainty relation

(@ = [ [ ar (G- (20 errernaa] o)

Here, the function ds, /9% corresponds to the classical momentum 45/8x and the relation has the usual
meaning known from mathematical statistics: the product of variances of two quantities is greater than
or equal to the square of their covariance. Depending on the functions s, and sy, the square of the
covariance of the coordinate and momentum at the right-hand side can have arbitrary values greater
than or equal to zero.

The second uncertainty relation can be obtained in an analogous way for

wmsn o= (-3

(@) r) > | [ o (52— (22))erras]

The right-hand side of this relation can be simplified

with the result

2
(B (o) 2 % ©

This uncertainty relation follows from the Schwarz inequality in a similar way as the first one, however,
the covariance (u, v} is in this case constant and equals %/2 > 0 independently of the concrete form of
the function s;. We note also that this relation is for (x} = a equivalent to inequality (3) for the Fisher
information.

We see that the Heisenberg uncertainty relation can be replaced by two more detailed uncertainty
relations. Uncertainty relation (5) can be understood as the standard statistical inequality between the
coordinate z and momentum represented by the function p = s, /8x. Uncertainty relation (6) can
be understood as the standard statistical inequality, too. However, because of the specific form of the
covariance (u,v} which equals /2 independently of the function so, the left-hand side of this relation
must be greater than or equal to /4.

We note that the sum of uncertainty relations (5) and (6) is equivalent to the so-called Robertson-
Schrodinger relation for the coordinate and momentum. The Heisenberg uncertainty relation can be
obtained from the sum of the uncertainty relations by neglecting the first term on its right-hand side.
Therefore, two new uncertainty relations are stronger than the corresponding Heisenberg and Robertson-
Schrodinger uncertainty relations {24-26).

For general discussion of this approach see [7-10].
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VII. EXAMPLE: FREE PARTICLE

We assume that the wave function of a free particle is at time ¢ = 0 described by the gaussian wave
packet [17, 18, 23]
1 e—mz/(2a2)+ikx

"I[}(ma 0) = \/m

with the energy
S
T Ama?® | 2m

where ¢ > 0 and k are real constants. By solving the time Schridinger equation we get

1~ iht
maZ

1
'ﬂb(Ivt) =
VoV fit ()

hiz? hi?
X exp{ —

2
(z — %) i{karm Im
2a? [1 + (‘ma2 J 1+ (m:ﬂ

The corresponding functions s; and s; equal

htx®  _ hk
— o= ht
s1{x,t) = hk 21 BmaTk 2™ — harctan —,
1+ (ma2 ma
nlo (z-2e)® 1
sa(x,t) = 3 mm 57— In
a? [1-!— (m ] a/my/ 1+ (maz)

As it could be anticipated, the mean momentum and the mean coordinate have the form

(B = <%>=hk, (x)=~ﬁ£t.

The mean square deviations of the coordinate and momentum are given by the equations
At \° rie?

4 () | amr) - —

ma® 2m2ab [1 + (m) ]

(Az)?) =

and

hQ
202 [1+ (;24)°)

{(Ap2)*) =

The left-hand side and the right-hand side of uncertainty relation (5} have the same value

(82 (B = (e (G2 - <f’9—x>)> - X

"Therefore, the first uncertainty relation (5} is fulfilled with the equality sign.
Calculating the left—hand side of uncertainty relation (6) we obtain
52
(A (Ap)?) = -

and see that the second uncertainty relation (6) is fulfilled with the equality sign, too.
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VIII. EQUALITY SIGN

The equality sign in uncertainty relations (5) and (6) is obtained if the functions s; and s are quadratic
functions of z of the form p(t)z% + g(t)x + r(¢), where real coefficients p(t), g(t) and r{¢} can depend on
time [17, 18, 23]. All functions s; and s given in our example fulfill this condition.

It is worth to notice that this condition for the first uncertainty relation is independent of the form
of the function s;. Therefore, the equality sign in this relation can be achieved for much larger class of
the wave functions than in case of the Heisenberg or Robertson—Schridinger uncertainty relations. It is
interesting not only from theoretical but also from the experimental point of view.

IX. STANDARD COMMUTATION RELATIONS

Now we return back to the normalization condition for the wave function

JRT

Performing integration by parts and assuming z|%|? — 0 for £ — +oc we get

/ (8¢*¢+¢ Qp)d:n=A1.

Multiplying this equation by —¢ we obtain the equation [11, 13, 17, 18, 23]

][(aﬂ/)) ( 8#’) (_ig—i))*:cw] dm=2i[z%e"2”2dz=i.

The resulting equation
/ [(mb)* (— ‘%) (_i_a¢) :r:u';] dz = 1.
Or

contains the operator —i(8/0zx) which appears here as simple mathematical consequence of integration
by parts applied to the normalization condition and indicates validity of a more general operator equality

[+, —i(8/0z)] = .

Except for the factor h determining the choice of units, this commutation relation agrees with the com-
mutation relation

o
[z, p] = ih.

between the coordinate z and momentum operator = —f(8/8z) known from quantum mechanics.

It is seen that existence of the commutation relation for the coordinate and momentum in standard
quantum mechanics is closely related to the existence of the normalized probability distribution p(x)
and relation p = ||, Similar commutation relations should appear in any statistical theory formulated
analogously to that discussed above.

X. PROBABILITY DENSITY CURRENT

Now we discuss the probability density current j [11, 13, 17, 18, 23]. As in continuum mechanics, we
assume

i=pv,
where v is "velocity”. We have in the Hamilton-Jacobi theory

_ Vs

)
m
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where S is the Hamilton action and m is the mass. By analogy with these expressions we can take in
quantum mechanics

Then we get
._ R : is1 /hys isi/hy 4
i=—1 =iV ) V(Vpe™ ) +iVp/2),
where p = e~ %*2/"_ Using the wave function in the form ¥ = \/pe*'/* we obtain the well-known result

i= o [V - V).

XI. DEFORMED COMMUTATION RELATIONS

Now we make an attempt to find prescription for the probability density and inner product that would
lead to the deformed commutation relation in the form

pel|—i(8/0z)] - q[-i(8/dx)]z =,

where p > 0 and ¢ > 0 are real numbers. For the sake of simplicity, we put & = 1 here. We assume the
normalization condition for the probability density p(x) in the usual form

jpdz= 1.

Performing integration by parts and assuming zp — 0 for x — +oo we get

This equation containing the first derivate with respect to x is the starting point of the following discus-
sion.
In standard quantumn mechanics, we use the relation

p= |l
Now, let us try a bit more general expression
p= ¥l [¢7.

Repeating similar procedure as above we get

é g
/ [q:vé')—;pl —p%(:gl;pl) [P+ e = — 1.

This result indicates that
qz(d/0z) — p(8)0x)r = 1
or
pz|[—i(8/0z)] — q[-i(3/3x)]x = i.

Thaus, the probability density p = |%|P {1|? leads to the deformed commutation relation p z[—i(8/8z)} —
g[-i(8/0z)]z = i.
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or

However, an attempt to define the corresponding inner product in the form

(o, ) = / ] ede

(p:¥) = fe"i“g“’lsol”ei“g“’ltblqdw

fails since these formulas do not obey the usual mathematical properties of the inner product.

It is seen that this naive approach fails and that a more systematic theory has to be used (see [27, 28]

and references therein).

XII. CONCLUSIONS
¢ Statistical description of measurement can be used as the starting point for formulating consistent
physical theories. It is especially valid for quantum mechanics and quantum theory in general.

¢ The complex wave function v carries information on the probability density p = |1/|* and probability
density current j = h/(2mi)[¢* Vi — Vy*y|.

o The Fisher information depending on the form of the probability density p or the envelop of the
wave function is an important part of the kinetic energy.

¢ The Fisher information appears also in the uncertainty relations.
¢ The Fisher information can be used to find equations of motion.

» It is possible to derive two uncertainty relations that are stronger than the Heisenberg uncertainty
relation. In these relations, classical and quantum descriptions are separated.

e Standard commutation relations can be obtained from the normalization condition [ pdx = 1.

e Our attempt to get mathematical structure of quantum mechanics with deformed commutation
relations in a similar way as it can be done for standard quantum mechanics has not been succesfull.
It must be done in a more systematic way as in the papers of prof. R.M. Santilli (see e.g. [27, 28]).
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Abstract. From a Twin Universe perspective, it is proposed that stellar nuclear fusion powered by anti-matter can
account for the negative-energy pressure {Dark Energy) that drives our preseni-day accelerated cosmic expansion. In the
mirror twinned universe all processes are duplicated but with reverse negative polarity. Both the Positive and Negative
Universes exist on the opposing surfaces of a topological two-dimensional membrane and therefore shares the same
experience of a stretching membrane.

Keywords: Dark Energy Twin Universes Anti-Matter
PACS: 95.36.+x

INTRCDUCTION

Using thermodynamic conservation principles the cosmos existing as a pair of identical anti-paraliel
universes has been proposed [1]. Parameterization of negative quantities can be formulated in terms of
Santilli’s isodual theory of antimatter [2]. The isoduality leads to four directions of time, depending on
whether motion is forward or backward and occurs in the future or in the past. In our Positive Universe
where all quantities have positive values, matter and anti-matter exists in forward direction of time and
attractive gravity. In the reverse Negative Universe with negative quantities, the duplicate matter and
anti-matter states must exists in a backward time direction and with repulsive gravity. The proposed
twin universes model postulate all contents and processes of each universe have equal magnitude but
opposite polarity, including energy-mass that in the anti-parallel universe the production of anti-matter
particles from stellar nuclear fusion produces the necessary gravitational repulsion to drive the cosmic
expansion. Since both universes reside on the topological surfaces of a shared membrane, the effective
stretching of this commeon cosmic membrane will be observed as expansion in our side of the universe.

STELLAR NUCLEAR FUSION

Stellar nucleosynthesis is the process of nuclear reactions taking place in stars to build heavier
elements. The net mass of fused nuclei is smaller than the sum of the components, with the loss mass
released as electromagnetic energy according to Einstein’s famous mass-energy equivalence
relationship:

F=m¢ ()

Newton’s law of universal gravity states that the force between two point masses {m;,m;) a distance
T apart is given by the following equation:
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F= G%— (2)

If we assume that the masses are of equal magnitude m=m,;=m,, and the area mass density
condensing on the two-dimensional membrane p,, = m/mr?, then the gravitational force of acceleration
produced by one point mass on the other is given by:

a=z=Gp, 3)
Energy Production In Stars

The observable universe is composed of 70% hydrogen, and the proton-proton {p-p} chain reaction
is the predominant thermonuclear fusion process that converts hydrogen nuclei into helium in stars
with masses up to that of the Sun.

4'H - *He +2¢" + 2v,

Aleng with the formation of a pair of positrons and neutrinos, 26.7MeV of energy is released,
equivalent to a mass of 4.8x10%%kg.

For more massive stars, another reaction process is also important that of the carbon-nitrogen-
oxygen {CNO) cycle. In the main CNO-I reaction the carbon can be considered a catalyst in converting
hydrogen into helium with the carbon being reformed at the completion of the following cycle:

IZC — I3N — 13C N l4N S ISO s ISN N IZC

As with the p-p cycle, the total released of energy is 26.7MeV due to the mass difference between
the fusion of the hydrogen parents to form the helium daughter.

Stretched Universal Membrane

If we assume that the cosmos is uniformly distributed with point-like stars, the vast empty
intersteltar space would produce minimal gravitation contraction on the membrane upon which our
positive universe resides. If we further assume that an identical negative universe resides on the
opposite side of the same membrane, and all quantities and processes are duplicated but in opposite
poiarity. The stars in the positive universe would undergo the standard nuclear fusion processes that
release large amount of electromagnetic waves into the empty space. Consider the same processes on
the reverse side of the membrane, whereby the equivalent release of energy condenses out as point
masses with negative energy and hence repulsive gravity.

For simplicity of computation, we will assume that the release of solar energy from the various
chain reactions condense out as two equal point masses that occupy the volume of the fused helium
nuclei ~2x10"°m. With a gravitational constant value of G=6.67428x10"'m*kg"'.s™, the gravitation
repulsive acceleration is approximately 1.6x10°m.s This repulsive force of gravity moves at the
speed of light (¢=299,792,458m.s "), so the stretched membrane will expand at a rate of:

Ur = ?MG‘O_”T 4)
A
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Inputting the model values, the estimated cosmic expansion rate U~5x107"%s". Multiplying this

quantum scale of repulsive expansion over an astronomical distance of a Mega-parsec
(Mpc=3.0857x10"’m) gives a cosmological expansion rate of 160km.s' . Mpc™'. Even with this simple
model the computed value for the rate of expansion is in reasonable agreement with the present-day
measured Hubble constant. Alternatively by interpreting with this simple model, the current Hubble
constant of ~70km.s”.Mpc™" would equate to an average simulated helium fusion energy release of
11.7MeV or equivalent mass density py~16kg.m™.

COSMIC HISTORY

Using the basic expansion model defined, the history of the twin-universe cosmos can be predicted
in the following Table 1.

TABLE 1. Cosmological history of expanding twin universes

Timeline Content of Universes Cosmic Expansion Rates
Planck epoch Pure energy in positive universe. Point source grows to Planck size
0to 10 Pure mass in negative universe. (1=4x10°m) at infinite rate.
Inflation Energy in positive universe. me~10%%kg
10% t0 1075 Formation of divided matter at to~10%m

exponential rate in negative Ug~10's"!

universe. (~10""km.s" Mpc™)
Matter Formation of baryons and leptons m, increases
condensation in positive universe. m. decreases

Star formation

Extinction

Energy waves dilute matter in
negative universe.

Present-day structure of observed
positive universe.
Fusion energy drives expansion in
negative universe.

Steady state in positive universe.
Steady state in negative universe,

r maintain constancy
U, decreases

m~10"kg
~10"°m
U~10"%"
(~100km.s™ Mpc™)

m. and m. constant
r constant
U=0

SUMMARY

The Twin Universe model predicts that the complete cosmos exists as a ten-dimensional entity with
two identical but anti-parallel four-dimensional space-time {energy-entropy) universes residing on the
opposing surfaces of a two-dimensional common membrane. Quantities and processes on both sides of
the universes are duplicated but of reverse polarity. In the Positive Universe the fusion reactions within
stars release vast quantities of energy into the expanse of space as electromagnetic waves. In the
reverse Negative Universe the same fusion energy condenses as point masses with negative quantity
(repulsive gravity) that stretiches out the common membrane producing the observable accelerating
expansion of the entire cosmos. A summary of the dual processes on the two mirrored sides of the
universes are listed in Table 2.

247



TABLE 2. Cosmic processes on both sides of the twin universes

Positive Universe Negative Universe
Fusion generates energy waves Fusion generates matter particles
Aftractive gravity Repulsive gravity
Measured Hubble’s constant Computed Universal expansion rate
H~ 71km.s".Mpc” U, ~ 160km.s™ Mpc

The model further predicts that Dark Matter and Dark Energy constitute half of the missing
observable energy-mass in the cosmos. Present experimental measurements estimate the percentage of
Dark Matter at 23% and Dark Energy at 73%. However, there are proponents that claim both are the
same component of Dark Fluid [3], and hence if the differing effects are producing a double-counting
of the same unobserved material, then the actual percentage may indeed be 50%.
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Abstract. Here in the cradle of Vedic wisdom and Mandala Cosmogony it appears doubly befitting to attempt a wider
reflection upon the profound existential and epistemological matters on the agenda. Then, touching upon the subject of
structural being as such, there is a rich Oriental-Hellenic canon of its origination and maintenance in the immanent phase
transition between Straight and Round; the two antipodes of perfect endlessness. This process can be described by the
original Lie groups and algebras as a transformation from a cubical to a spherical symmetry space by a single rectilinear
unit root vector quantity spanned over the respective hybridized Lie algebra neighbourhoods and acting there by itself as
an instantly expanded three-dimensionally space-filling digital holographic operator and matenialization in complete
faithfulness to the ancient as well as modem directions, notably, as a direct realization of these, Santilli’s new
mathematics and hadronic mechanics. In particular, his reduction of matter to protons and electrons provides a master
code and key to the distributed universal inflation of the evolution of the maximal mutual penetration neutron complex
with the possible transformations and differentials thereof, all covered by hadronic mechanics and forming the further
irreducible pivotal origin of the phase transition which in successive self-similar cycles of its space-filling, Bohr-layered
loop motif without any contradictions gradually assumes the guantum mechanical patterns, paths and happenings of its at
that stage irreversible exterior/collective dynamics. This unification holds fascinating Mandala, that is, cosmographical
implications, which in modern terms point at the advancement of high-precision computerized holographic animation
with important basic science exploration as well as nanotechnology application potentials.

Keywords: Atom Honeycombs, Flementary Particle Spectroscopy, Euclidean Space, Hadronic Mechanics, Information
Systems, Iso-, (Geno- and Hypermathematics, Lie Algebra Realization, Mass Numbers, Nanotechnology, Periodic
System, Phase Transition, Quantum Computing, Quark-angle, Regular Solids, Truncated Octahedron.
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INTRODUCTION

As, in all modesty, a rather rational and productive researcher in a closely related sphere of Natural History,
namely Medicine, where 1 have been able to contribute to some significant advances over a range from e.g.
molecular oncology to preventive medicine, medical informatics and international public health (search Trel!
in Pubmed for credentials); and, moreover, as the writer of 2 comprehensive review in the dedicated scientific
literature on professor Santilli’s innovative hadronic mechanics with its many invaluable spin-offs'; and, finally, as
a cross-disciplinary colleague having heavily derived from this pioneering chef d’ocuvre in my structural
reproductions of the elementary particle and atomic symmetries encompassed therein: it is only now, after
digesting the full purport of his New Sciences for a New Era® that the actual width and importance of his truly
Renaissance achievement stand clear for me.

He, and his work, pose no less than a bold and lasting postmodern reconstruction of the entire core of theoretical
Physics engaged with the nature and processes of matter at the fundamental level, and in that do not challenge or
replace, but on the contrary enrich and re-conciliate the classical and quantum mechanical understandings and
formulations of the field. Hence, “conventional quantum mechanics is exactly valid in the exterior problem of
hadrons in vacuum” while hadronic mechanics is unmiquely engaged with the laws and propertics “in the
structure of hadrons rather than in their collection” by “physically consistent solutions via a non-unitary

image of Schrodinger’s equation...as a non-unitary covering of quantum mechanics”.?

249



It thus goes deeper, inio the particles themselves, from the outside observation of which in “the distinction
between exterior and interior dynamical problems” > quantum mechanics simply does not apply, while Santilti’s
genuinely intrinsic iso-, geno- and hypermathematics contribute to a systematic operative inventory allowing the
ultimate constitutional “reduction of matter to protons and electrons”. ? The penetrating formulas and equations to
that end are far beyond the grasp of the present account which is confined to the legacy and directions that they
hold for an ordinary geometrical realization of the elementary particle and ensuing spectroscopy, likewise founded
upon the only finally stable, proton and electron moieties of which, therefore, all other states must be sequential
transformations and differentials thereby automatically preserving symmetry and, since “the size of wave packets
and/or charge distributions of all particles is about 1 fm” 2 also relative volume. There thus exists a faithful
structural model of Santilli’s grand synthesis, providing a veritable bit kit for piecemeal nanotechnological
assembly as well as discrete digital computer animation from the very ground level, and of such high resolution,
exhaustiveness, exaciitude and flexibility so as to present a both cost- and product-effective complement to
expensive back-tracking particle colliders in the further exploration and clarification of matter.

It is felt that the large current interest and importance of the information technology utilities motivate some extra
focussing upon them in the following. For terminological and conceptual adequacy then quoting the leading state-
of-the-art article, Quantum Information Matters, the physical entity “entropy...by Bolzmann’s constant... is a form
of information...about the microscopic motions of atoms and molecules”™. *  This generic identity between
information and matter was utilized to formulate the “universal quantum simulator”™ in effect a direct processor of
quantum mechanics and thereby not only a substrate but virtual substance and “evolution of...the quantum
mechanical aspects of matter” (Ib.).

In equivalence, “the classical digital computers” by their “individual classical bits” (1b.) should be equally fit to
generate the classical aspects of maiter at the very fundamental microscopic level. The present work, utilizing also
the most classical, inherently digital mathematical principles and methods of the regular solids, demonstrates that
this is indeed the case, all the way from the elementary particles to the atoms and molecules and onwards, and that
important entanglement with quantum computing exists at critical junctions. While these processes from the quite
reasonable and lasting resulis can only be comprehended as in effect the bottomline universai holographic
mechanism, the transactions likewise have a great applied value since they can be freely zoomed up to a hitherto
lacking computet/physical model program for real structure animation of the matter microcosm.** This builds upon
the fact which already Max Planck in his 1901 paper on blackbody radiation” “established that the universe was, at
bottom, digital” and thereby, and by equivalent discrete ground eigenvector bits, just as much an information
system as a material system. In today’s technological framework (and common parlance), cosmos is a computer,
then, of which, however, there are two principal kinds: “the classical digital computer” and the “quantum
computer”(Ib.). Both process a basic one-dimensional infinitesimal generator, in essence a unit straight line. In the
quantum computer this unit vector representation of “the digital nature of the universe” is as “a collection of
electron spins...or qubits...in entangled state”, that is, a superposition of the arrows of up to “a billion billion spins”,
whereas in the classical computer it is realized as “a sequence of bits” (Ib.) of fixed inclination, customarily set as
orthogonal. This has radical consequences when a phase transition can only act out as an angular deviation of the
dense bundle, thus disrupting its simultancous stepwise evolution from a parallel to a dispersed rearrangement,
thereby distributively ballooning, as it were, the instant inflation of universe’ from the sudden outset snap
detonating everywhere.

The principal difference between quantum and classical computers makes their respective general “evolution”
different, too: “the individual classical bits™ unable to generate quantum mechanics, whereas the quantum computers
are nol fit to animate and explore ordinary matter. Here, digital holography is the classical information system
upgrade for not only simulating but realizing the natural structures of the world. Quite remarkably, this wide-open
option has not been tested out before, and all the way from the smallest digital bit scale yields unprecedented results
of the whole elementary particle spectroscopy and onwards"****? to ultimately at critical junctions even converge
with and enrich the quantum computing version. Since the theoretical and philosophical fundamemals were
thoroughly reviewed (Ib.), the present report will focus on the descriptive results and computer appllcatlons which
in accord with classical principles as well as modern nanotechnology show that the observed Universe can be
extensively and exhaustively formed by the real information elements, internal symmetries, transformations and
transitions, and thereby performed serial self-assembly of the system itself.

The ancient idea of primordial form as an immanent self-operator of material reality is today meeting up with
advanced thinking in other distinct fields of basic science. As Johansen succinctly formulates it specifically in
“information...comprehended in its most...elementary sense...the method is to systematically unfold...what is
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enfolded in information as such”.**** Another prominent exponent of this renewed kind of quite profound self-
referential understanding bearing upon both the classical and quantum information realm is the Universal Nilpotent
Computational Rewrite System (NUCRS)?, where “the only requirement for defining the entire quantum
mechanical apparatus relating to physics...is to specify its creation operator”, which in the appropriate form in that
case “corresponds to the infinite square roots of -1 » ¥

And most important and pioneering of such “alternative systems of units” at the root and expansion of
fundamental processes, “where they can relate by a 1:1 mapping to the overal} structure... is...the negative unit (or
iso-Minkowskian) system developed by Santilli'?, with its powerful applications in both physics and pure
mathematics™®, where in linear sequence the formulas perform what form does by conformity. And other instances
of digital units are spin matrices, infinitesimal generators and the binary numbers, and when similarly “distilling the
free_form natural laws™*® down to the origin of many classical functions in ordinary space, the extracted, further
irreducible eigen-operators at the bottom are the ordinary partial derivatives dx, 8y, &z, and hence, as in the present
case, t4h;: infinitesimal straight line that already Plato and his forbearers and followers used to reconstruct the
world.™

METHODS

The old idea that space and matter are two sides of each other and made by the same stuff has recently been
revived in a four-dimensional, “loop quantum gravity" version™ and in computer terms correspond to the screen and
processor parts which in a liquid crystal makeup are united so that they completely match and fulfil each other. The
holographic screen of the real three-dimensional Cosmos is obviously the re-confirmed flat, i.e. cubical, Euclidean
space. This has even been referred to as the physical “canvas” % and its rigid crystal composition was first explicitly
surveyed by Ptolemy™’ from the fact that its building element, the straight line, can span no more than three linearly
independent space axes (Fig 1).

+Y

/
-

Y

FIGURE 1. Say, that there comes a straight line out from one’s closed eyes leaving in the forward direction +Z).
Then it must also endlessly extend towards one from behind, and there must be such lines infinitesimally tight over
all the void’s reach, because a linearly independent such axis can alse come from below and rise up (+Y), or
from the one side and leave on the other (+X), all of them together thereby spanning the endless
Cartesian co-ordinate system and between them enclosing the infinitesimal cubical cigenvector bit of the matrix

A +X

%
Y

+7

Also Aristotle (384 — 322 BC) thought that the world is three-dimensional and that the formations in it are
timeless, their simultaneous strands interpunctated by successive smallest steps which both as cause and effect mark
the moments of the sequence as well as of the interaction cone of the advancing front of apparent now. At any scale,
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the consequential Cartesian eigen-coordinate system (Fig. 2} and the realizations within it are therefore both ‘Godel-
immunized’ and ‘Popper-ratified’ since defined and constituted and sensu strictu falsified solely by themselves.

FIGURE 2. a) The
Cartesian coordinate
system spans the three-
dimensional  Euclidean
space in eight cubical
segments. What is the
constitution of a local
part {?} in any of
them? b) Regardless
of size it retains the
Cartesian representation.
¢) Hence, the smallest
composite space portion
is a Lie neighbour-
hood of eight indivis-
ible ground unit CuBits.

s

The cubical constitution of the cosmic holographic screen holds quite interesting pure mathematical powers, e.g.
on-line realisation of the complete Diophantine equation space and instant solutions of Fermat’s Last Theorem and
Beal’s conjccture“'s'zz’ﬁ'm”, but has no dynamic function or action per se in its absolutely still, absolute zero deep-
frozen state thermodynamically as well as informatically. The orthogonally criss-crossing straight line geodesics cut
out a dense matrix of minuscule cubical eigenvecior pixel cells, or cuBits®, equally narrow as the relative shortness
of the infinitesimal straight line bit along all sides, and this division also defines the coastant fraction of cells
concurring in each step of the continuous outlining. Since the whole mesh is simultaneous this consecutive
progression can be imagined as an one-dimensionally advancing front continuing over any direction closely side by
side, but if there is a coherent and thereby volume-occupying phase transition bending into the parallel line array,
this will immediately repel and cumulatively force the transition process to an even dispersion all over the block so
that the origins and evolution of its thus distributed instant universal inflation are just like the vapour of the
primordial electron/Hydrogen cloud. Its individual drops are therefore disconnected from each other, continuously in
one single moment filling their own basins according to the volume allotted to these by the remaining sheets of the
one-dimensional outlining of the holography screen. The further evolution will then be determined by the secondary
perturbations of these domains by collisions and other processes in the cloud; just like in the actual Universe, too.

The computer processor and process alike from where it originates in a Lie neighbourhood (Fig.s 2,3) is
precisely the phase transition, or ‘trigger’z, as such, which is both unique and general since performed between
the antipodal varieties of endless extension, namely, absolute straight and absolute round, or, as Aristotle put it:

FIGURE 3. The hybridization
of the unitsphere within the
cubical Lie neighbourhood
sets up an interstice, in
the universal iteration of
which the basic, tetra- and
octahedral regular solid phase
transition is  immanent

“gverything that comes to be comes into being from its contrary...and passes away likewise...by the action of the
contrary into the contrary” and “if there is a contrary to circular....a straight line must be recognized as having the
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best claim to that name”.** In consequence, it is, like the original Lie algebras'™™, a transformation process between

infinite surfaces, employing in its course just its own irreducible eigen-element, the unit straight line, which is
operative both as a direct structural building bit and an impulse/information as well as logical/computational digit,
and has a deep philosophical underpinning as the nilpotent eigenvector of Anything At All, or, technically speaking,
as the obligate isodual contrast of the more philosophically unambiguous category of Nothing Whatsoever.*>*>*
The virtual phase motor of the cardinal transition “between the Pliicker line geometry and a geometry whose
elements are the space’s spheres”l6'43, and which twists the straight line bits of the unit cube (Fig.s2,3) into the
spherical symmetry orientation, is the SU(3) root space lodged in the real three dimensions at hand (Fig. 3), as here
shown in about same scale and orientation as its neighbourhood encasement (Fig. 4). It is composed of two flat A,

1643

. ‘y ;

FIGURE4 Real form three-
dimensional  spherical Lic al-
gebra neighbourhood with dupli-
cated A; root space diagrams

diagrams accommodated in the unit sphere, bringing the representation from the complex to the parent, ordinary
three-dimensional space according to the canonical coset decompesition SO(3) x O(5) of SU(3). But it is not just a
representation, it is a concrete machinery for elementary physical vector currents and operations happening in and
breeding the dynamic universe.

RESULTS

I. The Baryons
Tt is seen that the spherical symmetry A, root vectors (Fig. 4) from the mutual centre connect to a global lattice
that is 60° skewed to the horizontal and vertical planes, and non-commutating with the latter. The correspondence to
the quark three-dimensionality in the observed clementary particle spectroscopy is apparent and the close
coincidences persist with all attributes of this, Fig. 5 summarizes the virtual ‘binary phase motor’ transformation

FIGURE 5. Spherical root vector space whose
neutral isospin vectors coincide with Cartesian
X and Z axes (a) but whose thereby charged,
¢ isospin axes (b} sct up a non-commutalive
quark matix with unit side (¢), continuing
in the global interstice as space-filling
regular tetra- and octahedrons, (d) none of
which can fill the space separately due Lo dif-
ferent side length in lateral and bottom planes.
It is secn that it is the vertical side that is non-
commutating with the cubical framework, so
that it is this virtual fall of the phase transition
which from its first extra-nucleon evolution
cycle becomes more and more irreversible.

system set up hy the A; axes of the unit sphere domain assigned to the Nucleon® relative to the straight space axes,
and providing a faithful “cightfold eightfold™ three-dimensional version of the plane Gell-Mann lattice diagram.



The diagonal A, so called charged ¢ isospin root vectors (Fig. 5 a), connect also outside the sphere to an
endless polygonal lattice (Fig. 5 b,c), skewed to the orthogonal Euclidean co-ordinate axes and thus, as
mentioned and in perfect compliance also with Santilli’s understanding of “quarks (as) purely mathematical
representations of a unitary symmetry”? (here by coset decomposition), from a shared origin span a quark space
matrix aberrant to the cubical arrangement and so directly providing the still rectilinear phase transition of this
turned to the spherical symmetry. As discussed more in detail later it is quite significant that the charged 7 isospin
vectors adjoin throughout space into an infinite continuous mesh of unit sides (Fig. 6), which is then the runner for
the one-dimensional electron step distribution into atoms and larger coherent portions in a cyclically cumulative
course with all the apparition of the likewise bit-by-bit sequential orbital model including quantum indeterminacy
and related evasive behaviour at any in comparison vastly broader probing feasible with current instruments.

FIGURE 6. A dissection of a portion
in the first and second cxtranucleon
layer of the charged ¢ isospin root
vector lattice, showing that it connects
as octahedron sides without involvement
of any ncutral oot vector elements

Regarding the impenetrable nucleon, this infinitesimal, i.e. absolutely smallest sphere can of course not be further
shrunk itself, nor can its complementary form of endlessness be effectively changed. But when impacted it can be
shape transformed and then by necessity preserving both volume and, isomorphic to colour, spheroidal symmetry.
Fig. 7 illustrates this in the basic baryon states, i.e. the A”, X *0 and A" transformations which come out just as

Lateral Frontal Horizontal

Vit st Wi ? vz

© Erik Trell

FIGURE 7. The p-n, A, £ *% and A" transformations, preserving volume and symmetry
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in realily, and the same applies to all other states as exemplified by the ensuing =, (1385)"%, and A(1405)"

Fig. 8. Since described in detail earlier>*""'"**¥2? it suffices to re-emphasize that it is exactly the Gell-Mann
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FIGURE 8. The =, £(1385)"%, and A(1405)" transformations

eightfold way in the real three dimensions instead of two and therefore an “eightfold cightfold way™*>1"° because
the (diagonally into anti-versions mirrored) transformations may occur in any of the Cartesian space segments.
Considering that all observed baryon particles and resonances in the A, Z, AN, E, Qand also full charmed
series' "% are directly and reproducibly retrieved with just and no more than the actual states, channels, angular
momentums, charge levels and precise mass numbers, and moreover in a faithful three-dimensional realization of the
accepted eightfold way according to the original Lie prescriptions, the results are true and lasting and it is
remarkable, too, that they are projected over the regular solid space axes and sides (Fig.s 7.8).

To reach the transformation, the same root vector steps as in the Gell-Mann supermultiplet diagrams and the
observed spectroscopy alike are taken, leading to new endpoints for an ellipsoidal reconfiguration of the parent state,
whereby the masses (given in MeV) according to the quark pressure formula, Ap = IVAx, come out reciprocally
to the proton mass by the minor semiaxis length. In fig. 7, the plane graphs show the channels and the major semiaxis
endpoints arrived at in the A%, =% and A hypercons with lengths to the origin given by the root expression,
and further that also the charge levels are retrieved exactly and exhaustively as in reality. The global, quark-skewed
hexagonal spherical root space lattice is shown in the p-n transposition and (the equatorial plane of) the volume-
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preserving ellipsoidal reconfiguration is shown in the A" state. 1t is to be reemphasized that albeit exemplified here
only for the basic baryon multiplets of the Eightfold Way, the exact methods, as reported elsewherg*>% ! 1922732
exhaustively, precisely and reproducibly comprise and yield all other observed u.d,s as well as charmed baryons and
their channels, electromagnetical charges, J* levels and mass numbers by faithful real geometrical rendition of the
most well-established physical theories, and thus stand forth in the natural history records as lasting scientific facts
confirming and advancing the established state of the art.

Table 1 shows the detailed correspondences in case of the masses in the basic baryon supermultiplets.

Table 1. Lambda, sigrma, defta, xi, sigma) 1385} lambdu] 14053, xi} 1330} and omega hyperons.
Masses calewlated according to formula: 938.28 - 1iminor semniuxis

e M

Sermaxss SRS Caleulated QObserved
A" 1 yi 115 8 (1156
AR 160804 0.168591 {1898 11894 - 1197
4t V3 e 12348 1230 ~12%
a0 1.975 L 0.7616 13185 1314.9--1320.3
Lagsy e AT - J4T8 08790678 135221385 1383 —13%6
A(1408)" N \‘f’ 3 1403 1405 +3
Z{153n 106 06134778 15295 1528 134
' 2.505 - 2.51 0.561 - 0.560% 167151677 1672 - 1674

* Minor serhiaxis changed in the ransformation {c).

Equatorial planes of all these also esthetically very pleasing and harmonic volume-preserving ellipsoid
transformation bodies are illustrated in Fig. 9.
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FIGURE 9. Plane illustration of the lowest mass numbcr baryons in the order
in which they are obtained both in the holographic lattice and in reality. The
resulting major and minor semiaxis lengths (minor semiaxis by in 7)are shown

256



II. The Mesons

The mesons likewise appear in the root vector framework just as in reality as differentials between hadron states
there. Their spatial shape is explicitty given by the ordinary geometric representation of the established (symmetric)
SU(2) x U(1) (antisymmetric) product group of the weak force (Ib.), so that they come out as polyhedrons, tco,
albeit not equilateral in all their extensions and therefore unsustainable in the universal lattice, which has the
structure of a space frame (Fig. 10), in whose build and transitions the mesons and leptons form the permutation

FIGURE 10. (adapted from Wikipedia) Simplified space frame roof with
half-octahedron highlighted. A space frame or space structure is a lruss-
like, lightweight rigid structure whose geometry is most ofien based on the
Platonic solids. The simplest form is a horizontal slab of interlocking
AR square pyramids. A stronger purer form is composed of interlocking tetrahedral

'l"s PART and octahedral crosspieces in which all the struts have unit length, More

ot A‘.’}'--' technically this is referred to as an isotropic vector matrix or in a single
unit width an octet truss. More complex variations change the lengths of the
struts to curve the overall structure or may incorporate other geometrical shapes

set of all possible bits and their building block assemblies in the methodical construction and deconstruction of the
system. This becomes clearer in the following, starting with the neutral and charged pions which emerge naturally
as the first differential elements of the cubical and hexagonal half-parts of the lattice, respectively. In Fig. 11 the
neutral pion is shown, assuming the shape of a right circular cone segment with base area 1/4 of the unit Proton
equatorial plane and length of spinning top generatrix 3' 50 that the mass expression of the enclosure of this ground
neutral transformation step according to the aforementioned canonical group equation is 1/4 x 938.27 x 113" =

135.4 MeV in comparison with the measured value of 135.0 MeV.

FIGURE 11. (a) A neutral
¢ isospin root vector is in-
clinated 90° to adjacent
neutral isovector doublets
in the lattice. Between each
other they form a circle
sector amounting to one
quarter of the equatorial
plane of the proton. (b) The
distance to the next neutral
SO{2) counterpart of the
SU{2), isospin planes in
the transition lattice is 3'2

a)

ofl) e

b)

The charged pion comes equally straight out in the faithful transition lattice as an oblique circular cone,
wrapped between state transformations in the hexagonal half-part since happening between state transformations in
the hexagonal lattice moiety where it occupies a base area of 1/6th of the proton equatorial plane with average
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generatrix length of (5/4)" so that the mass number is 1/6 x 938.27 x 1/(5/4)'> MeV = 139.9 MeV versus the
observed 139.6 MeV (Fig. 12).

FIGURE 12. The charged
pion takes place in the lattice
as the primary diffcrential en-
closure of single-step transfor-
mations to/from charged hadron
states, covering a conical base area
176" of the size of the proton
equatorial plane centered along an
180° (muonic) root vector
sequence and with an (average)
generatrix  length of  5/4"

Again is noted an unprecedented identity between reality and replication also when it comes to exhaustiveness; no
other varieties at the respective levels occurring in any of the systems. And the same correspondences according to
the unmistakable scientific directions continue in all other mesons as exemplified in the next basic states (Fig. 13);

since long then by any probability testing and other rigorous authenticity criteria surpassing the slightest possibility
of a chance coincidence.

wi7gda ws{r83)

@ Enk Trell

FIGURE 13. Chart of (a) charged kaon; (b) K" short and K° long; (¢) n; (d} p(770}; (e) two forms of w(783)
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1t is striking and convincing that polyhedral root space elements, both differential and equilateral, are so in double
sense straightforwardly involved and that it is possible to exactly and exbaustively match the observed elementary
particle spectroscopy by classical regular solid metamorphoses. Table 2 exemplifies the mass number calculations
according to the SU(2) x 1/U(1) Lie algebra relation of the weak interactions, and the parallclism in every regard;

also chargewise and channelwise is manifest.

Table 2. Basic mesons calculated and observed mass numbers (MeV)

a 1/4 x 938.27 x 1/3"2 1354  135.0
v 1/6 x 938.27 x 1/(5/4)'* 1399  139.6

K* 938.27/4 x 1/3'2 + 938.27/4 x 1/3'% + 938.27/6 x 1127 492.0 4927

K% 938.27/(4 x 1/2'%) + 938.27/(8 x 1/2'% 4976  497.67
K’ 938.27/(8 x 1/2"%) + 938.27/(8 x 1/2'%) + 938.27/(8 x 1/2'"Y) 4976  497.67

1 938.27/6 + 938.27/6 + 938.27/4 547.33 548.8 +0.6
p(770) (938.271/2"3/(3/4)'” or (938.27 x 231317 766.1  768.3 0.5
o(783) 938.27/4 + 938.27/4 + 938.27/6 + 938.27/6 7819  781.95+0.14

And it continues in the entire plethora of mesonic differentials and transformations over the whole spectrum of
towering hadrons up to charmed (Fig. 14) and bottom and even top flavours.'”'®

L ateral Frontal Hoerizontal

gl ol gl o (PN

K' e ptet At K™ n® a0 et Aty
KKK et At kTt n® et At
K™ K0t Ko &?
xk*n®n® Pl o

FIGURE 14. The identity between reality and animation exemplified by the charmed D’ and its D"
antiparticle equally many fevels out in the lattice as in practice.”” All channels can be retrieved
(only a sample shown here), spanning SO(2) planes along the vertical axis tentatively assigned to
D°, and the horizontal axis assigned to its antiparticle. The area in the first case is & x 4/2 x 212
or 1t x 2/2 x 2(2"3)/2; both 2" larger than Proton equatorial plane. With distance to next D’ =
172", the mass number is 2"% x 1/(1/2"%) x 0,93827 GeV = 1.88 vs the recorded = 1.86 GeV.In
the antiparticle the spheroidal area equals the Proton and with interdistance % gives the same result.



II1. The Leptons

The mesons have been faithfully replicated here as spinning residual volumes comprising the additive partial
differentials of the involved transformations between all hadron states, very much like bubbles bursting to smaller
bubbles before they end up in a spray of linear jets. The latter are the (except the muon) further irreducible, stable
structural and differential beams of the real elementary particle spectroscopy as well as of the transition lattice where
they appear in exhaustive parallel array, too: i.e., the leptons.

Paradoxically, despite their plain one-dimensionality and limited number of states, the leptons stand forth as the
perhaps most elusive of the elementary particles. Their antisymmetric Lie algebra is U(1), whose geometric
isomorphism is the ordinary real line, the composed length of which may accordingly vary. However, already in the
existing wave model it is at the limes level put together by infinitesimal derivatives which are straight unit bits
meaning that, innermost, the lepton scalar world function emerges as digital. So is likewise the case in the regular
solid tattice. The infinitesimal straight line digit, or ‘pixel’ is immediately embodied in the uniform, sole ingredient
unit root vector element of either neutral or charged inclination, whose iteration is everything that constitutes the
lattice and the hence eigen-spacefilling geodesics there. That close matches with the leptons are indeed manifest in it
is therefore not surprising in regard of the regular solids’ (slightly oxymoronic) ‘unique universality’, but nonetheless
truly remarkable. In fact, the leptons weave the extra-nucleon world, and with such extreme simplicity that is has
been overlooked for that very reason.

Starting with the particulate leptons, there are two principal ways of connecting the needle-like sharp charged root
vectors of same sign, here exemplified by the positive muon and the positron, viz., in the first case, by 90-180° turns
(Fig. 15 a-c), and, in the second case, 60-120" turns (Fig 15 d,e).

FIGURE 15. Cores of (in this case positively charged) lepton geodesics over nucleon surface

The first alternative forms plane or helical orbits from, over and outside of the nucleon surface with a unit
scale length in all varieties of (2m x 2”2) or (2rnx 2x]/2”2) and resulting mass number 1/(2m x 2”2) x 938.27 =
1/(2n x 2x1/2'%) x 938.27 = 105.59 MeV in comparison with the measured muon” mass of 105.66 MeV. In the
second alternative, a three-winged orbit can be tied together (Fig 15b) and leads out of the nucleon surface, so that it
is natural to associate it with the positron/electron trajectory. The circutar orbital length of the ground rosetie is easy
to calculate as 3 x (27 x 1/2'%) in unit gauge, but it is well known that one has to multiply with the fine structure
constant, 137.035986.., to obtain the first, in this case ‘Mercedes star’ three-pronged circumference, so that the
ground state positron/(mirrorjelectron mass number comes out as 1/(137.035986 x 3 x 2m x 1/2'%) x 93827 =
0,514 MeV in comparison with the recorded 0,511 MeV.

However, there are problems with the orbital model, for instance, in terms of the then alien, empty region under
and between its rings. For consistency, a truly spacefilling distribution is wanted. Being a sequence of unit steps
there would be no difference in principle in relation to the orbital model, which, as mentioned, is also composed of
iterated infinitesimal straight line intervals. And there exists such possibilities which can be patched together to
larger structures in a hierarchically periodic fashion just as in modern nanotechnologicat self-assembly.*” One of
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them is the truncated octahedron which is a composite space-filling Archimedean solid that already Kepler saw as
fundamentally engaged in the cosmographical architecture.*>® The truncated octahedron distribution of a full
positron/electron turn may follow from the only spacefilling sequence of the charged root vector lattice, namely
(Fig.s 5d,6), a twelve-step, two-tetrahedrons/one octahedron triple cotl node, or ‘rosette’, generated by the
distributed local quantum fluctuation of the six free corners of the unit cube conjugating their twelve sides into the
coherence of the spherical root vector lattice, as shown below in one variety of a twelve-step loop returning to the
origin as a veritable casting-on stitch of the web (Fig. 16).

FIGURE 16. The figure shows a continuous
outtining of the spacefilling one octahedron/
two-tetrahedrons root vector lattice coming
back to the origin and thus a closed loop.
Only the charged root vectors are involved.

FIGURE 17. Another,
open  loop, allowing a
spacefilling continuous,
e.g. helical path by the
charged root vectors
alone. Each (quarter) turn
consists of six two-side
corners which are present
also in the ground cube.

Fig 17 demonstrates another alternative where the tetrahedral rosette wings turn 90" around the corner enabling
a variety of continuous patterns and also (Fig. 17b) that it consists only of (equally} charged root vector steps.
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Fig. 18 sketches how 152 such 12-step Electron rosettes in Bohr orbital layering may fill, by in all 1852 charged
root vector steps (half) a truncated octahedron, so that the inertia/fmass is 1/1852 x 938.27 = 0.514 MeV in
comparison with measured 0,511 MeV. Before coming back to this projected primary electron cloud of the
Hydrogen ion and its onward atomic and Periodic Table expansions, the remaining leptons; the photon and the
muon and electron/positron neutrinos and antineutrinos (tau is not included here) will be briefly considered. They
occur as one-dimensional differentials, e.g., when a larger differential slice such as the neutral pion decays like an
imploding bubble into two y.s (Fig. 19).

FIGURE 19. Example, in the rotating top differen-
tial neutral pion, how photons are generated when
root vectors in e.p. particle decay or Brehms-
strahlung bendings within same charge plane
snap back to their space axes selling up a zig-zag
ripple between them of infinite length, thus zero
mass and amplitude/frequency also determinable

The charged pion regularly decays into a muon and a muon neutrine and these channels also appear in the root
vector lattice (Fig 20). The neutrino is a straight momentum vector of infinite length and conveying no charge which
is carried on by the muon {compare fig 15 a.c). The inertia of the endless antisymmetric O(1) neutrino trajectory
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And this extensive correspondence of nothing more, nothing less and all the same persists in the metastable
muon, which outside of the nucleon is destined to bend its 90-180" surface track into the extranuclear lattice course
of the electron/positron thus setting up a muon neutrino and electron antineutrino (Fig. 21).

-
r

! FIGURE 21. Example {compare Fig 15 ¢) how a
: transition of, in this case, the muon into the ciectron
geodesics leaves straight forward Bra/backward Ket
momentum vectors corresponding ¢ muon neutrino
and electron antineutrino, respectively, both end-
lessly extending over successive space latlice inter-
vals and hence of 1/w = zero mass and nil amplitude

. s
P
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Table 3 summarizes the results in the leptons accounted for here.

Table 3. Basic lepton calculated and observed mass numbers (MeV)

et /(27 x 2'7) x 938.27 or 1/(27 x 2x1/2"%) x 938.27 10559  105.66
ot 1/(137.035986 x 6m x 1/2%) x 938.27 0514 0.511

£ otid 1/(152 x 12) % 938.27 0514 0.511

¥ /o0 x 938.27 0 0 (<3x107)
Vpe. Mo x93827 0 0 (<17 - 35)

IV. Atomic Expansion

As an experienced and rational Natural History researcher in a closely related field of descriptive Science dealing
with morphology and structural composition and function (see Pubmed for credentials), 1 feel quite safe when stating
that what has been presented so far establishes beyond doubt that it is possible to disclose a classical spaceframe
structure for the double stringed elementary particle spectroscopy, in which the nucleon holds pivotal position, the
mesons are the pylon sections and the leptons their beam and suspension elements. The warp, the string, the knots,
the pattern; all comply, but how to weave the tapestry: the Atom that is ten thousand times larger? It must be by
filling it by the same stuff because spacefilling goes with the provision of three dimensions alone where the self-
referential filament is the sole thread available and allowed. This holds aiso when there are more dimensions because
our distinct Universe still consists only of itself and then also consummates itself and as the three spatial dimensions
in it are linearly independent the situation prevails. Since the spaceframe grid is infinitesimal at the elementary
particle threshold, there are no loopholes, and the expansion must go on by it, so the atom can only be a periodical
enlargement of its arrangement in order to accommodate in the global coherence.

With the leptons all elementary particles are reproduced by an instantaneous principal phase transition where the
electron cloud in one variety pursued here comes out as a spacefilling mesh segment of defined, second-order regular
solid form, This truncated octahedron module can be seen as a diagonal cube (Fig. 22) possible to tessellate into
different shapes which, in turn, may self-template into cyclically larger portions of same or modified form fo go on

FIGURE 22, The electron module is
surrounded by other modules in the
sccond-generation  global lattice, and
thus doubly bound to its segmental shape
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filling space in a three-dimensional Tetris way, and, at any such stage, to combine with each other in various full-
packing conformations. Fig. 23 shows that the diagonal arrangement allows accommodation of separately counter-
spinning modules with corresponding implications for the formation of larger regions in a cyclical mushrooming
way.

FIGURE 23. The electron module can
be accommodated with other modules and
also with continuous expansions of itself

There is nothing different from the orbital model in that regard, under one crucial provision: that the continuous
transition lattice can also be continuously delineated. Fig. 24 shows that this is indeed the case under a Fermion
half-spin rotation around the forward diagonal axis bringing the end of the line one charged root vector step and

. FIGURE 24. One possible, nel
Py i e i Fermion continuous sequence of
il .‘ - singlet rosettes in  Hydrogen

-f'_, . electron module connecting with

};ﬁf "= - e s 5 likewise Fermion proton root

; k -~ . vector al the origin forming
= B e i S the net Boson Hydrogen atom.

{ — o, " The module tiers correspond to
\ T sl " sy I N a the Bohr orbital shell and hold
\ ‘ ;| same numbers of rosettes as the
1 electrons there; also inthe P to

S levels where higher amounts
have not been seen in rcality.

one or two (or at lowest quantum, Bose-Einstein Condensate state zero) neutral space axis steps from the origin
which, not taking part in the electron formation, appears as the reciprocal pivot, each point of which is 1852 times
longer lasting than the electron with proportionately higher inertia and consequential mass number: 1852 x 0.514 =
938.27 MeV. The advantage is that the distribution solid can be used as structural bricks, and this double cast of the
electrons as “wave functions or transition matrix elements” is in line with recent Hydrogen ground state research®
and the instant material “modular building block™® nature of the electron is pending in modern nanotechnology,
molecular biology etc.
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Fig. 25a illustrates the complex of one electron module linking with the proton in an upper Cartesian segment
and so matching the Hydrogen atom. At this stage the deep relation to hadronic mechanics and its reduction of matter
to, and from, the proton and electron becomes apparent, because the complex persists in the successive levels of
peretration, from the union in the nucleon domain via the muon trajectory and decay channels over its surface to
the continuously spacefilling module expansions outside, whose first cycle is depicted in the figure.

Fig. 25b shows that the opposite end of the proton-electron complex is free to bind with another open-ended ion,
here a second H into the H; molecule (Fig. 25 b). It is a variety of “nested polyhedra...which can in turn be put
together in spatial arrangements”, e.g. “helicoidal progression™’; in the present case creating the Bohr orbit

signature of the singlet nodes in the forward planc. And when instead under strong pressure two Hydrogen ions

FIGURE 25. a) Horizontal plane
projection of single extranucleon
module with open end and so
realizing H. b) When two H
ions are linked end-to-end (or
side) the H, molecule is formed

will fuse so that one is pushed a step upwards, still rooting with the upper proton pole in the nucleon and the other
with the under and thereby also the in-between neutrons’ space axis points are involved, a two-module truncated
octahedron honeycomb is generated (Fig. 26), closing the ground (K) sheet of lattice intersections and therefore very
stable so as to faithfully realize the Helium atom.

FIGURE 26. Honeycombs
of truncated octahedrons
and of the Helium atom

In that way the singlet sites can be dragged in under an expanding central boundary as nucleon centres of
consecutively larger honeycombs, which thereby are templated in steps and constellations of the pertodical system
and onwards to further self-similar spacefilling, for instance, of crystalline lattices, deposits, rocks, planets etc.
Exemplifying the mechanism only in the first three atoms from the next (L) sheet, the Lithium honeycomb is
variably triangular with one free end for molecular coupling whereas the square or rhombic Beryllium can
combine with two atoms/ions/complexes and Boron with three (Fig. 27).

FIGURE 27. The Lithium
{one Module in L sheet),
Beryllium (2 L modules)
and Boron (3 modules)
Electron Honeycombs,

Not illustrated, Carbon can permutatively couple/chain with four inctuding itself, whereas Nitrogen holds five of
the L positions and so has three to offer; Oxygen then two, and Fluorine very strongly one; and when the L. shell is
filled a new saturated and hence stable atom, Neon, is established.
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And so it continues and the correspondences are so extensive, and also non-trivial, that there can be little doubt
that it is along these principles that matier will be ultimately reconstructed in forthcoming nanotechnology. For
instance, when one considers the situation meeting individual Hydrogen ion electron modules in the interior of large
stars, it is easy to imagine how the enormous forces there squeeze out their coils to crisscross meandering half-turn
cords twisting around each other so that when the physical conditions get less intense they cycle by cycle regain their
shape, now caught in the atomic bouguet corresponding to the number of modules wrung together. Exactly where an
observation instrument head-on intercepts such a cross-section is a matter of quantum indeterminacy and probability
statistics. And so far the reproductions here only comprise the first extranucleon level, or quantum state of the
elements. This is the sitvation prevailing in the Bose-Einstein condensation but according to the aforesaid also at the
other extreme of the temperature scale™ where the Hydrogen electron modules merge with each other into the fusion
cascade.

Therefore, it is group-theoretically relevant and interesting that as an inverse at the other, zero Kelvin end of the
temperature range, the charged root vector suit runs back into empty space, that is, into the rectilinear lattice moiety
by the same route it appeared. This can only be by a honeycomb singlet, which can come so close whereas larger
constellations are too distanced. But also in the singlets there is a difference, first exhibited by the Fermion
Hydrogen ion which comes back ¥ step along the projection planes away from the origin so that retrograde access o
the Euclidean space is blocked as it were, whereas the larger Boson Helium will come at +1 and so hitting the
entrance; which Hydrogen can do by pairing.* Similarly, the Fermion Lithium settles at 1% + 1% = 3, while the
Boson Beryllium arrives at 2 at once...and so on in the same patiern as observed in experiments throughout the
periodic system.*! Apart from supporting the faithfulness and pertinence of the regular solid scheme it also illustrates
that perfect precision, which after all characterises clarified physical reality*®, can only run through all magnitudes
of this if generated already at the outset by the not only perfect but categorical precision of an absolutely unique and
universal quantum phase transition; the only that exists per se by itself and thus guaranteeing its perpetuation,

The Bose-Einstein condensate stage is also interesting because of its intermediary state at the entry of the
channel between interior and exterior so that the experimental observations are paralleled and even aided by the
hadronic mechanical and present faithful structurai charts of the route of partial reversibility at the threshold.

V. Stacking the Atom Hives

When proceeding from the singlet honeycombs to the atoms there is a cyclical expansion of the respective basic
motif which can be described as a stacking of exponentially larger boxes in a Tettis-like manner, each generation
templated by the previous along adapted route that worked in the preceding ones so that the single electron geodesics
remains unbroken. The number of generations is then, as cause and effect, temperature-dependent. From just one at
both the hot and cold extremes, it increases towards the logarithmic mean which for many reasons would be around
where water flows and life is formed, and where, as also in other quantum levels, the equal Avogadro pressure of
equally many atoms (in gaseous state) reflects the different number of root vector steps in their completion. Fig. 28
shows the principle in a horizontal plane projection towards three cycles in the Hydrogen atom stacking, and it is
seen that it does not take many cycles before the cross-section is zoomed up ten-thousand-fold as is also the ratio
between the actual elementary particles and atoms,

FIGURE 28. Schematic equatorial
plane projection of first three
self-similar cycles of electron
module in the Hydrogen atom
as well as of the vertically
doubled (Fig. 26) Helium atom
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Interestingly, then, the atom region is cutlined by the Electron cloud which is spacefilling and in thal sense
complying with the quantum mechanical fact that there is a probability of finding the single electron anywhere in the
cloud, and that it is the instrumentation interaction that determines the recorded features of it; notably its size. As
commonly regarded it is “a pointlike particle — that is, a particle with no measurable dimension.. However, a rather
compelling case can be made for an opposing viewpoint: namely, that the Electron is in fact a large particie which
contains an embedded point-like charge”.™ This complies well with the findings here that at the bottomline stage all
elementary particles are of the same size order since spanned by the same digital bit. its length, as stated in hadronic
mechanics, too’, is that of the Proton radius (= 0.8768 fm).

Here, the transition matrix of the Electron cloud has been approximated with the truncated octahedron, but other
continuous polygonal realizations are possible, too, and perhaps more likely to more clearly account for the nucleon.
That also the large-scale arrangement of matter in the flat Universe follows a polyhedral plan is supported even on
the galactic level™' | and seems to consist of the same mix of octahedrons and tetrahedrons that appear already on
the infinitesimal plane in the present scheme (Fig.s 5d, 16, 17).

Single as well as fused in honeycomb and molecular aggregates, the modules heap up the joint structural
architecture as veritable Lego pieces, patching together already at the infinitesimal level every three-dimensional real
shape from their consecutive own and composed combinations. This does not mean that they are some static wire
bundles, but the second-generation, 2%? periodical partition of the continuous space-filling charged root vector
lattice (Fig.s 5,6) into the first self-similar extra-nuclear segment of the global transition matrix. lts cutline
may be distended im, for instance, accelerations, but then the surrounding modules, whether occupied or empty
at the moment, will, too, and the apportioned volume share remains preserved.

One possible sequential ordering of the electron singlet subunits (Fig. 24) rmuns through the (here) upper
Cartesian segment from its origin and returns in the one below, and so graduvally shifts the proton one unit step down
and changes the module progression to the opposite direction so as to describe a virtual cross-section rotation with
Bohr orbital signature. And when in larger atoms their respective nuclear hub extends over a larger domain of
singlets, which in turn magnify their (sometimes isotopically varying) constellation to the honeycomb they co-
ordinate, the interstitial charged and neutral root vector content in them will manifest as the corresponding atomic
number of protons and neutrons.

For instance, since the electron geodesic is wrapped throughout the entire atom it matches the “quantum
superposition. ..qualitative picture of all possible electron paths conspiring together™ with correspondingly low
probability of hitting it in a particular infinitesimal interaction cone. And the propagation of the atoms themselves
when they occupy their consecutively inflated domains would be determined by their template form so that highly
symmetrical shapes, like the noble gases, would proceed in one-dimensional curves and accordingly be gaseous
while sharply bent honeycomb modules, like Lithium, regardless of its low weight would go into dense, net two- or
three-dimensional convolutions so as to be solid (until heated/excited so that it starts to boil into orbit). And since the
offset *caps’ that the honeycombs’ collective truncation leaves at the top contain the abandoned central isospin
vectors there will be a reciprocal nucleus, always with as many charged, proton roots as the atomic number, while the
Neutrons can be more numerous reflecting the lateral displacements possible under acceleration™, e.g. in ''Li.

DISCUSSION

Obviously, these rough sketches as well as all other atoms leave a lot of further, but rewarding, work to be done.
Nonetheless it can be discerned that they represent a general procedure from which the full inorganic realm and its
likewise regularly polygonal macroscopic minerals and crystals can be reconstructed with all the attributes of the
periodic system. It has been a very condensed survey, focussed on the reproducible descriptive results. It stops at the
atom stage, but can be extended over molecules and larger compounds to the cosmological scate. ™' Like many
other current models, it is a lattice system, however, almost embarrassingly simple in comparison. Therefore, the
verbal report tends to assume a slightly surrealistic ring so that is has been aimed at an illustrative account hopefully
catching some of the ideas behind.

Yet, it has been said that there is a crisis in today’s physics™ so that the merit lies in the concrete, up-to-date
information and namotechnology outcome as well as in the eminent ‘hack to the future’ legacy: such as the eightfold
way, the Lie groups and algebras, the Lie-admissible hadronic mechanics, the Diophantine equations and, first and
not least, the ancient regular solids, of which in the inorganic field here dealt with only the static cube of the
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geocentrically inferred space matrix and the tetrahedron and the octahedron of the dynamic brew of fire and air’,
respectively, are employed. They can all be formed by successive straight line steps from the infinitesimal stage;
rendering them genuine solids, and returning as well to the solid mathematical basis of Santilli’s hadronic
mechanics and its profound synthesis in consistent linear equations of matter from protons and electrons
alone - meaning also that at the physical gronnd nothing else exists or even needs to exist - meaning, finally, that
universe is filled entirely by its own substance with its interior hyperonic and pion transformations and differentials,
via surface muonic and mesonic to increasing sequential levels rising over intermediary Bose-Einstein condensate
stages to the collective dynamics of there unchallenged quantum mechanics.

This central generation and maintenance of all matter from the interior imposes a law-bound isotrophic
distribution at the origin, so that when the “trigger’” elicits, the immediately spread transition is evenly distributed
through space at once satisfying itself by it: and we have the riddle of the instantaneous inflation throughout the
whole Cosmos solved by parts. Since Lie-admissibility is inherent, indeed a conditio sine qua non in hadronic
mechanics, an ordinary Lie algebra geometrical representation is an open consequence as realised here by structural
linear geodesics in the nilpotential fall between the two principal phases of infinity.

The straight line is a direct structure