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Abstract 
  

In the quiver of hyperstructures Professor R. M. Santilli, in early 90’es, tried to 
find algebraic structures in order to express his pioneer Lie-Santilli’s Theory. 
Santilli’s theory on ‘isotopies’ and ‘genotopies’, born in 1960’s, desperately needs 
‘units e’ on left or right, which are nowhere singular, symmetric, real-valued, 
positive-defined for n-dimensional matrices based on the so called isofields.These 
elements can be found in hyperstructure theory, especially in Hv-structure theory 
introduced in 1990. This connection appeared first in 1996 and actually several 
Hv-fields, the e-hyperfields, can be used as isofields or genofields so as, in such 
way they should cover additional properties and satisfy more restrictions. Several 
large classes of hyperstructures as the P-hyperfields, can be used in Lie-Santilli’s 
theory when multivalued problems appeared, either in finite or in infinite case. 
We review some of these topics and we present the Lie-Santilli admissibility in 
Hyperstructures.  
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1.  Introduction 
 

In T. Vougiouklis, “The Santilli’s theory ‘invasion’ in hyperstructures” [24], there is 
a first description on how Santilli’s theories effect in hyperstructures and how new 
theories in Mathematics appeared by Santilli’s pioneer research. We continue with new 
topics in this direction.  

Last years hyperstructures have applications in mathematics and in other sciences as 
well. The applications range from biomathematics -conchology, inheritance- and 
hadronic physics or on leptons, in the Santilli’s iso-theory, to mention but a few. The 
hyperstructure theory is closely related to fuzzy theory; consequently, can be widely 
applicable in linguistic, in sociology, in industry and production, too. For all the above 
applications the largest class of the hyperstructures, the Hv-structures, is used, they 
satisfy the weak axioms where the non-empty intersection replaces the equality. The 
main tools of this theory are the fundamental relations which connect, by quotients, the 
Hv-structures with the corresponding classical ones. These relations are used to define 
hyperstructures as Hv-fields, Hv-vector spaces and so on. Hypernumbers or Hv-numbers 
are called the elements of Hv-fields and they are important for the representation theory.  

The hyperstructures were introduced by F. Marty in 1934 who defined the hypergoup 
as a set equipped with an associative and reproductive hyperoperation. M. Koskas in 
1970 was introduced the fundamental relation β*, which it turns to be the main tool in 
the study of hyperstructures. T. Vougiouklis in 1990 was introduced the Hv-structures, 
by defining the weak axioms. The class of Hv-structures is the largest class of 
hyperstructures.  

Motivation for Hv-structures: 
The quotient of a group with respect to an invariant subgroup is a group. 

The quotient of a group with respect to any subgroup is a hypergroup. 
The quotient of a group with respect to any partition is an Hv-group. 

The Lie-Santilli theory on isotopies was born in 1970’s to solve Hadronic Mechanics 
problems. Santilli proposed a ‘lifting’of the n-dimensional trivial unit matrix of a 
normal theory into a nowhere singular, symmetric, real-valued, positive-defined, n-
dimensional new matrix. The original theory is reconstructed such as to admit the new 
matrix as left and right unit.  

According to Santilli’s iso-theory [14], [8] on a field F=(F,+,⋅), a general isofield != 
!(a,+,×)  is defined to be a field with elements a=a×1, called isonumbers, where a∈F, 
and 1 is a positive-defined element generally outside F, equipped with two operations + 
and × where + is the sum with the conventional additive unit 0, and × is a new product  

a× b: = a×T×b,   with  1=T-1,  ∀a, b∈!             

called iso-multiplication, for which 1  is the left and right unit of !, 



1×a = a×1 = a , ∀a∈!              
called iso-unit. The rest properties of a field are reformulated analogously. 

The isofields needed in this theory correspond into the hyperstructures were 
introduced by Santilli & Vougiouklis in 1996 [15], and called e-hyperfields. They point 
out that in physics the most interesting hyperstructures are the one called e-
hyperstructures which contain a unique left ant right scalar unit.  

 
2.  Basic definitions on hyperstructures  
 

In what follows we present the related hyperstructure theory, enriched with some 
new results. However one can see the books and related papers for more definitions and 
results on hyperstructures and related topics: [2], [4], [17], [18], [19], [20], [23], [31], 
[33].  

In a set H is called hyperoperation (abbreviated: hope) or multivalued operation, any 
map from H×H to the power set of H.  Therefore, in a hope  

⋅ : H×H→(H): (x,y)→ x⋅y�H 

the result is subset of H, instead of element as we have in usually operations. 
In a set H equipped with a hope  ⋅ :H×H→ P(H)-{∅},  we abbreviate by  

WASS the weak associativity:   (xy)z∩x(yz)≠∅, ∀x,y,z∈H  and by  

COW the weak commutativity:   xy∩yx≠∅, ∀x,y∈H.   

The hyperstructure (H,⋅) is called Hv-semigroup if it is WASS and it is called Hv-
group if it is reproductive Hv-semigroup, i.e. xH=Hx=H, ∀x∈H.  The hyperstructure 
(R,+,⋅) is called Hv-ring if (+) and (⋅) are WASS, the reproduction axiom is valid for (+), 
and (⋅) is weak distributive to (+):  

x(y+z)∩(xy+xz) ≠ ∅,    (x+y)z∩(xz+yz) ≠ ∅,   ∀x,y,z∈R. 
An Hv-structure is very thin iff all hopes are operations except one, with all 

hyperproducts singletons except one, which is set of cardinality more than one.  
The main tool to study all hyperstructures are the fundamental relations β*, γ* and 

ε*, which are defined, in Hv-groups, Hv-rings and Hv-vector spaces, respectively, as the 
smallest equivalences so that the quotient would be group, ring and vector space, 
respectively [17], [18].  

A way to find fundamental classes is given by analogous to the following:  

Theorem 2.1 Let (H,⋅) be Hv-group and U all finite products of elements of H. Define 
the relation β by setting xβy iff {x,y}⊂u, u∈U. Then β* is the transitive closure of β. 



Let (R,+,⋅) be Hv-ring, U all finite polynomials of R. Define γ in R as follows:  xγy iff 
{x,y}⊂u  where  u∈U. Then γ* is the transitive closure of γ.  

An element is called single if its fundamental class is singleton. 
The fundamental relations are used for general definitions. Thus, to define the Hv-

field the γ* is used [17], [18]: A Hv-ring (R,+,⋅) is called Hv-field if R/γ* is a field. In 
the sequence the Hv-vector space is defined.  

Let (F,+,⋅) be Hv-field, (V,+) a COW Hv-group and there exists an external hope 

⋅ : F×V→P(V ): (a,x)→ ax 

such that,  ∀a,b∈F and  ∀x,y∈V, we have 

a(x+y)∩(ax+ay)≠∅,   (a+b)x∩(ax+bx)≠∅,   (ab)x∩a(bx)≠∅, 
then V is called an Hv-vector space over F. In the case of an Hv-ring instead of Hv-field 
then the Hv-modulo is defined. 

In the above cases the fundamental relation ε* is the smallest equivalence rsuch that 
the quotient V/ε* is a vector space over the fundamental field F/γ*.  

Let (H,⋅), (H,*) be Hv-semigroups defined on the same set H. (⋅) is called smaller 
than (*), and (*) greater than (⋅), iff there exists an  

f∈Aut(H,*)  such that  xy⊂f(x*y), ∀x,y∈H. 

Then we write ⋅≤* and we say that (H,*) contains (H,⋅). If (H,⋅) is a structure then it is 
called basic structure and (H,*) is called Hb-structure. 
The Little Theorem. Greater hopes than the ones which are WASS or COW, are also 
WASS or COW, respectively. 

The definition of Hv-field introduced a new class of hyperstructures: 

The Hv-semigroup (H,⋅) is called h/v-group if the quotient H/β* is a group.    
In [20] the ‘enlarged’ hyperstructures were examined if an element, outside the 

underlying set, appears in one result. In enlargement or reduction, most useful in 
representations are Hv-structures with the same fundamental structure.   

The Attach Construction. Let (H,⋅) be an HV-semigroup and v∉H. We extend (⋅) into  
H=H∪{v}  as follows:  x⋅v=v⋅x=v, ∀x∈H,  and  v⋅v=H. 

Then (H,⋅) is an h/v-group where  (H,⋅)/β*≅Z2  and v is single element.  
We call the hyperstructure (H,⋅) attach h/v-group of  (H,⋅).  

Definitions 2.2 Let (H,⋅) be a hypergroupoid. We say that remove h∈H, if simply 
consider the restriction of (⋅) on H-{h}. We say that h∈H absorbs  h∈H  if we replace h, 
whenever it appears, by h. We say that h∈H merges with h∈H, if we take as product of 



x∈H by h, the union of the results of x with both h and h, and consider h and h as one 
class, with representative  h.   

The uniting elements method was introduced by Corsini & Vougiouklis [3]. With this 
method one puts in the same class more elements. This leads, through hyperstructures, 
to structures satisfying additional properties. The uniting elements method is the 
following: Let G be algebraic structure and  d  be a property, which is not valid and it is 
described by a set of equations; then, consider the partition in G for which it is put in the 
same partition class, all pairs that causes the non-validity of  d. The quotient G/d is an 
Hv-structure. Then, quotient out the Hv-structure G/d by the fundamental relation β*, a 
stricter structure  (G/d)/β*  for which the property d is valid, is obtained. 

An application is when more than one properties are desired then:  

Theorem 2.3 [18] Let (G,⋅) be a groupoid, and  F={f1,…, fm, fm+1,…, fm+n } be a system 
of equations on G consisting of two subsystems   Fm={f1,…,fm} and  Fn={fm+1,…, fm+n}. 
Let σ, σm be the equivalence relations defined by the uniting elements procedure using 
the systems F and Fm resp., and let σn be the equivalence relation defined using the 
induced equations of Fn on the grupoid   Gm= (G/σm)/β*.  Then   

(G/σ)/β* ≅ (Gm/σn)/β*. 
In a groupoid with a map on it, a hope is introduced [22]:  

Definitions 2.4 Let (G,⋅) be groupoid (resp., hypergroupoid) and  f:G→G  be map. We 
define a hope (∂), called theta and we write ∂-hope, on G as follows 

x∂y= {f(x)⋅y, x⋅f(y)}, ∀x,y∈G.  (resp. x∂y= (f(x)⋅y)∪(x⋅f(y), ∀x,y∈G) 

If (⋅) is commutative then (∂) is commutative. If (⋅) is COW, then (∂) is COW. 

Motivation for a ∂-hope is the map derivative where only the product of functions is 
used. Thus for two functions s(x), t(x), we have s∂t={s′t, st′} where (′) is the derivative. 

A large class of hyperstructures based on classical ones are defined by [18]: 

Definition 2.5 Let (G,⋅) be groupoid, then for every P⊂G, P≠∅, we define the following 
hopes called P-hopes:   ∀x,y∈G 

P: xPy=(xP)y∪x(Py),    Pr: xPry=(xy)P∪x(yP),    Pl: xPly=(Px)y∪P(xy). 

The (G,P), (G,Pr) and (G,Pl) are called P-hyperstructures. The usual case is for (G,⋅) 
semigroup, then  

xPy=(xP)y∪x(Py)=xPy 

and (G,P) is a semihypergroup.  
 



3.  Representations. Hv-Lie algebras. 
 

Representations of Hv-groups, can be faced either by Hv-matrices or by generalized 
permutations [18], [20], [31].  

Hv-matrix (or h/v-matrix) is called a matrix with entries elements of an Hv-ring or 
Hv-field (or h/v-field). The hyperproduct of Hv-matrices A=(aij) and B=(bij), of type 
m×n and n×r, respectively, is a set of m×r Hv-matrices, defined in a usual manner:  

A⋅B = (aij)⋅(bij) = {C=(cij)�cij∈⊕Σaik⋅bkj }, 
where (⊕) is the n-ary circle hope on the hypersum: the sum of products of elements is 
considered to be the union of the sets obtained with all possible parentheses. In the case 
of 2×2 Hv-matrices the 2-ary circle hope which coincides with the hypersum in the Hv-
ring. Notice that the hyperproduct of Hv-matrices does not nessesarily satisfy WASS. 

The representation problem by Hv-matrices is the following:  

Definition 3.1 Let (H,⋅) be Hv-group, (R,+,⋅) be Hv-ring and MR={(aij)�aij∈R}, then any  

T:H→MR: h→T(h)  with  T(h1h2)∩T(h1)T(h2)≠∅,  ∀h1,h2∈H, 

is called Hv-matrix representation If T(h1h2)⊂T(h1)T(h2), then T is an inclusion 
representation, if  T(h1h2)=T(h1)T(h2),  then T is a good representation.  If T is one to 
one and good then it is a faithful representation. 

The main theorem of representations of Hv-structures is the following:       

Theorem 3.2 A necessary condition in order to have an inclusion representation T of an 
Hv-group (H, ⋅)  by n×n  Hv-matrices over the Hv-ring (R,+, ⋅) is the following: 
For all β*(x), x∈H there must exist elements aij∈H, i,j∈{1,...,n} such that 

T(β*(a))  ⊂   { A = (a′ij ) � a′ij ∈ γ* (aij ),  i,j∈{1,...,n} } 

Therefore, every inclusion representation  T:H→MR: a T(a)=(aij)  induces an 
homomorphic representation T* of H/β* over R/γ* by setting  T*(β*(a))=[γ*(aij)], 
∀β*(a)∈H/β*,  where the element  γ*(aij)∈R/γ*  is the ij entry of the matrix  T*(β*(a)).  
Then T* is called fundamental induced representation of T. 

The helix hopes can be defined on any type of ordinary matrices [33], [34]: 

Definition 3.3 Let A=(aij)∈Mm×n be matrix and s,t∈N, with 1≤s≤m, 1≤t≤n. The helix-
projection is a map st:Mm×n→Ms×t:A→Ast=(aij), where Ast has entries 

aij = { ai+κs,j+λt� 1≤i≤s, 1≤j≤t  and  κ,λ∈N, i+κs≤m, j+λt≤n } 

Let  A=(aij)∈Mm×n, B=(bij)∈Mu×v  be matrices and  s=min(m,u), t=min(n,v).  We define 
a hyper-addition, called helix-sum, by 



⊕ : Mm×n×Mu×v→P(Ms×t):(A,B)→A⊕B=Ast+Bst=(aij)+(bij)⊂Ms×t 

where  (aij)+(bij)= {(cij)=(aij+bij) ⎢aij∈aij  and  bij∈bij)}. 
 

Let A=(aij)∈Mm×n, B=(bij)∈Mu×v and s=min(n,u). Define the helix-product, by 

⊗: Mm×n×Mu×v→P(Mm×v): (A,B)→A⊗B=Ams⋅Bsv=(aij)⋅(bij)⊂Mm×v 

where   (aij)⋅(bij)= {(cij)=(∑aitbtj) ⎢aij∈aij  and  bij∈bij)}. 
The helix-sum is commutative, WASS, not associative. The helix-product is WASS, 

not associative and not distributive to the helix-addition.  
Using several classes of Hv-structures one can face several representations. Some of 

those classes are as follows [18], [19], [7]: 

Definition 3.4 Let M=Mm×n, the set of m×n matrices on R and P={Pi:i∈I}⊆M. We 
define, a kind of, a P-hope P on M as follows 

P: M×M→P(M): (A,B) APB={APt
iB: i∈I }⊆ M 

where Pt is the transpose of P.  P is bilinear Rees’ like operation where instead of one 
sandwich matrix a set is used. P is strong associative and inclusion distributive to sum: 

AP(B+C) ⊆ APB+APC, ∀A,B,C∈M. 
So (M,+,P) defines a multiplicative hyperring on non-square matrices.  
Definition 3.5 Let M=Mm×n be module of m×n matrices on R and take the sets 

  S={sk:k∈K}⊆R,  Q={Qi:j∈J}⊆M,   P={Pi:i∈I}⊆M. 

Define three hopes as follows 

S: R×M→P(M): (r,A)→rSA = {(rsk)A: k∈K}⊆ M 

Q+: M×M→P(M): (A,B)→AQ+B = {A+Qj+B: j∈J}⊆ M 

P: M×M→P(M): (A,B)→APB = {APt
iB: i∈I}⊆ M 

Then (M,S,Q+,P) is a hyperalgebra on R called general matrix P-hyperalgebra. 
The general definition of an Hv-Lie algebra is the following [26], [31], [16]:  

Definition 3.6 Let (L,+) be Hv-vector space on (F,+,⋅),  φ: F→F/γ*, canonical map and  
ωF={x∈F:φ(x)=0},  where 0 is the zero of the fundamental field F/γ*.  Similarly, let ωL 
be the core of the canonical map φ′: L→L/ε* and denote by the same symbol 0 the zero 
of L/ε*. Consider the bracket hope (commutator): 

[ , ] : L×L→ P(L): (x,y)→ [x,y] 
then L is an Hv-Lie algebra over F if the following axioms are satisfied: 



(L1)    The bracket hope is bilinear, i.e. ∀x,x1,x2,y,y1,y2∈L  and  ∀λ1,λ2∈F 

[λ1x1+λ2x2,y]∩( λ1[x1,y]+λ2[x2,y])≠ ∅,  [x,λ1y1+λ2y]∩(λ1[x,y1]+λ2[x,y2])≠∅ 

(L2)    [x,x]∩ωL≠ ∅,  ∀x∈L 

(L3)    ([x,[y,z]]+[y,[z,x]]+[z,[x,y]])∩ωL ≠ ∅,   ∀x,y∈L 
 
4.  The Santilli’s:  e-hyperstructures, iso-hyper theory. 
 

The e-hyperstructures where introduced in [15], [25] and where investigates in 
several aspects depending from applications [5], [6], [16], [31].  

Definition 4.1 A hyperstructure (H,⋅) which contain a unique scalar unit e, is called e-
hyperstructure. In an e-hyperstructure, we assume that for every element x, there exists 
an inverse  x-1, i.e.  e∈x⋅x-1∩x-1⋅x.        

Definition 4.2 A hyperstructure (F,+,⋅), where (+) is an operation and (⋅) a hope, is 
called e-hyperfield if the following axioms are valid:  (F,+) is an abelian group with the 
additive unit 0,  (⋅) is WASS, (⋅) is weak distributive with respect to (+), 0 is absorbing 
element: 0⋅x=x⋅0=0, ∀x∈F, there exist a multiplicative scalar unit 1, i.e. 1⋅x=x⋅1=x, 
∀x∈F, and ∀x∈F there exists a unique inverse x-1, such that  1∈x⋅x-1∩x-1⋅x.  

The elements of an e-hyperfield are called e-hypernumbers. In the case that the 
relation: 1=x⋅x-1=x-1⋅x, is valid, then we have a strong e-hyperfield.  

Definition 4.3 Main e-Construction. Given a group (G,⋅), where e is the unit, we define 
in G, an extremely large number of hopes (�) as follows:   

x�y={xy, g1, g2,…}, ∀x,y∈G-{e}, and g1, g2,…∈G-{e} 

g1, g2,… are not necessarily the same for each pair (x,y).  (G,�) is an Hv-group, it is an 
Hb-group which contains the (G,⋅). (G,�) is an e-hypergroup. Moreover, if for each x,y 
such that  xy=e, so we have  x�y=xy, then  (G,�) becomes a strong e-hypergroup. 

The proof is immediate since for both cases we enlarge the results of the group by 
putting elements from the set G and applying the Little Theorem. Moreover it is easy to 
see that the unit e is unique scalar element and for each x in G, there exists a unique 
inverse x-1, such that  1∈x⋅x-1∩x-1⋅x.  Finally if the last condition is valid then we have  
1=x⋅x1=x-1⋅x,  so the hyperstructure (G,�) is a strong e-hypergroup.   

Example 4.4 Consider the quaternion group Q={1,-1, i,-i, j,-j, k,-k} with defining 
relations   i2=j2=-1,  ij=-ji=k.  Denoting  i={i,-i}, j={j,-j}, k={k,-k} we may define a 
very large number (∗) hopes by enlarging only few products. For example, (-1)∗k=k, 
k∗i=j and i∗j=k. Then the hyperstructure (Q,∗) is a strong e-hypergroup. 



Construction 4.5 [31], [32]. On the ring (Z4,+,·) we will define all the multiplicative 
h/v-fields which have non-degenerate fundamental field and, moreover they are,  

(a)  very thin minimal,    
(b)  COW (non-commutative),     
(c)  they have 0 and 1, scalars.  

We have the isomorphic cases: 2⊗3={0,2} or 3⊗2={0,2}. The fundamental classes are  
[0]={0,2},  [1]={1,3} and we have  (Z4,+,⊗)/γ*≅(Z2,+,·). 

Thus it is isomorphic to (Z2×Z2,+). In this Hv-group there is only one unit and every 
element has a unique double inverse.  

We can also define the analogous cases for the rings (Z6,+,·),  (Z9,+,·), and (Z10,+,·). 
  
In order to transfer Santilli’s iso-theory theory into the hyperstructure case we 

generalize only the new product  ×  by replacing it by a hope including the old one [15], 
[27], [29], [32] and [1], [5], [6], [13], [14], [21], [24]. We introduce two general 
constructions on this direction as follows: 

Construction 4.6 General enlargement. On a field F=(F,+,⋅) and on the isofield  
!=!(a,+,×)  we replace in the results of the iso-product 

a× b=   a×T×b,     with  1 = T-1 

of the element T by a set of elements Hab={T,x1,x2,…} where x1,x2,…∈!,  containing T, 
for all  a×b for which  a,b∉{0,1} and  x1,x2,…∈!-{0,1}. If one of  a, b, or both, is 
equal to 0 or 1, then Hab={T}. Therefore the new iso-hope is 

a×b = a×Hab×b= a×{T,x1,x2,…}×b, ∀a,b∈!          

!=!(a,+,×) becomes isoHv-field. The elements of ! are called isoHv-numbers or 
isonumbers. 

More important hopes, of the above construction, are the ones where only for few 
ordered pairs (a,b) the result is enlarged, even more, the extra elements xi, are only few, 
preferable one. Thus, this special case is if there exists only one pair (a,b) for which    

a×b=  a×{T,x}×b,   ∀a,b∈! 
and the rest are ordinary results, then we have a very thin isoHv-field. 

The assumption Hab={T}, a or b, is equal to 0 or 1, with that xi, are not 0 or 1, give 
that the isoHv-field has one scalar absorbing 0, one scalar 1, and ∀a∈!  one inverse.   

A generalization of P-hopes, used in Santilli’s isotheory, is the following [5], [28], 
[31]: Let (G,⋅) be abelian group and P a subset of G with #P>1. We define the hope (×P) 
as follows: 



         x⋅P⋅y = {x⋅h⋅y ⎪h∈P}    if   x≠e  and  c≠e 
     x×Py  =                       
   x⋅y                                 if   x=e   or  y=e 

we call this hope Pe-hope. The hyperstructure (G,×P) is abelian Hv-group. 

Construction 4.7 The P-hope. Consider an isofield !=!(a,+,×) with a=a×1, the 
isonumbers, where a∈F, and 1 is positive-defined outside F, with two operations + and 
×, where + is the sum with the conventional unit 0, and × is the iso-product 

a×b : =   a×T×b,     with  1 = T-1,  ∀a,b ∈ !                          

Take a set P={T,p1,…,ps}, with p1,…,  ps∈!-{0,1}, define the isoP-Hv-field, 
!=!(a,+,×P), where the hope ×P as follows: 

            a×P^×b = {a×h^×b⎪h^∈P^}  if   a ≠ 1  and  b ≠ 1    
   a×P b:=                
                   a×T^×b                                    if   a = 1  or  b = 1 

The elements of  ! are called  isoP-Hv-numbers.  

Remark. If P={T,p}, that is that P contains only one p except T. The inverses in isoP-
Hv-fields, are not necessarily unique.  

Example 4.8 Non degenerate example on the above constructions:  
In order to define a generalized P-hope on !7=!7(a,+,×), where we take P={1,6}, 

the weak associative multiplicative hope is described by the table: 
 

× ! ! ! ! ! ! ! 

! 0 0 0 0 0 0 0 

! 0 1 2 3 4 5 6 

! 0 2 4,3 6,1 1,6 3,4 5,2 

! 0 3 6,1 2,5 5,2 1,6 4,3 

! 0 4 1,6 5,2 2,5 6,1 3,4 

! 0 5 3,4 1,6 6,1 4,3 2,5 

! 0 6 5,2 4,3 3,4 2,5 1,6 

 
The hyperstructure !7=!7(a,+,×) is commutative and associative on the product 

hope. Moreover the β* classes on the iso-product × are {1,6}, {5,2}, {3,4}. 



5.  The Lie-Santilli’s admissibility. 
 

Another very important new field in hypermathematics comes straightforward from 
Santilli’s Admissibility. We can transfer Santilli’s theory in admissibility for 
representations in two ways: using either, the ordinary matrices and a hope on them, or 
using hypermatrices and ordinary operations on them [10], [11], [12], [14], [16] and [7], 
[9], [30], [31], [34]. 

Definition 5.1 Let L be Hv-vector space over the Hv-field (F,+,⋅), φ:F→F/γ*, the 
canonical map and ωF={x∈F:φ(x)=0}, where 0 is the zero of the fundamental field 
F/γ*. Let ωL be the core of the canonical map φ′:L→L/ε* and denote by the same 
symbol 0 the zero of L/ε*. Take two subsets R,S⊆L then a Lie-Santilli admissible 
hyperalgebra is obtained by taking the Lie bracket, which is a hope:  

[ , ]RS : L×L→P(L): [x,y]RS= xRy–ySx= {xry–ysx�r∈R, s∈S} 
Special cases, but not degenerate, are the ‘small’ and ‘strict’ ones:   

(a)  When only S is considered, then  [x,y]S= xy–ySx= {xy–ysx�s∈S}  

(b)  When only R is considered, then  [x,y]R= xRy–yx= {xry–yx�r∈R}  
(c)  When R={r1,r2} and S={s1,s2} then   

[x,y]RS= xRy–ySx= {xr1y–ys1x, xr1y–ys2x, xr2y–ys1x, xr2y–ys2x}. 

(d)  We have one case which is ‘like’ P-hope for any subset S⊆L:  

 [x,y]S =  {xsy–ysx� s∈S} 
On non square matrices we can define admissibility, as well: 

Construction 5.2 Let (L=Mm×n,+) be Hv-vector space of m×n hyper-matrices on the Hv-
field (F,+,⋅), φ:F→F/γ*, canonical map and ωF={x∈F:φ(x)=0}, where 0 is the zero of 
the field F/γ*. Similarly, let ωL be the core of φ′:L→L/ε* and denote by the same 
symbol 0 the zero of L/ε*. Take any two subsets R,S⊆L then a Santilli’s Lie-admissible 
hyperalgebra is obtained by taking the Lie bracket, which is a hope:     

[ , ] RS: L×L→P(L): [x,y]RS=xRty–yStx. 

Notice that    [x,y]RS=xRty–yStx={xrty–ystx�r∈R and s∈S} 
Special cases, but not degenerate, is the ‘small’:   

    R={r1,r2} and  S={s1,s2} then  

[x,y]RS=xRty–yStx={xr1
ty–ys1

tx,xr1
ty–ys2

tx,xr2
ty–ys1

tx,xr2
ty–ys2

tx} 
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