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Abstract

In the preceding Papers I and II, we have: introduced various arguments
suggesting nonunitary coverings of the conventional unitary scattering; out-
lined the problematic aspects of nonunitary theories; presented the novel iso-
mathematics allowing an invariant isounitary reformation; and specialized to
scattering processes the isotopic branch of hadronic mechanics comprising the
isotopies of Lies theory. special relativity and quantum mechanics. In this
paper we present a solution of the Dirac legacy indicated in Paper II, namely,
a nonunitary-isounitary scattering theory without divergencies ab initio indi-
cated by one of the authors to Dirac prior to his death. Joint elaborations of
measured quantities (cross section, scattering angles, etc.) via the conventional
and isotopic scattering theories are presented in subsequent works to identify
the expected implications in final experimental results of nonlinear, nonlocal
and nonpotential effects in high energy scattering processes. As indicated in
paper I, the presentation is restricted to reversible scattering processes, because
the treatment of irreversible processes requires the yet broader Lie-admissible
covering of the Lie-isotopic formulation.
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1. Identification of the Isounit.
1.1. Introduction. In the preceding Refs. [1,2], herein indicated as Papers I and
II, respectively, in which:

1) We presented various mathematical, theoretical and experimental arguments
suggesting a re-inspection of the elaboration of measured quantities (cross sections,
scattering angles, etc.) via the conventional, unitary, Hamiltonian scattering the-
ory due to expected nonlinear, nonlocal and contact-nonpotential effects beyond the
representational capabilities of quantum mechanics;

2) We pointed out that the sole possibility for a quantitative representation of
the above effects, collectively called in these papers non-Hamiltonian effects, is the
existing from the class of unitary equivalence of quantum mechanics, thus bringing
again into focus past attempts at a nonunitary generalization of quantum scattering
theories;

3) We then recalled the Theorems of Catastrophic Mathematical and Physical In-
consistencies of Noncanonical and Nonunitary Theories (Refs. [6-12] of Paper I)
that have established the lack of invariance over time of units of measurements, the
inability of predicting the same numerical values under the same conditions at dif-
ferent times, violation of causality and other inconsistencies under nonunitary time
evolution;

4) We then introduced the elements, specialized to the scattering problem, of the
novel isomathematics that has been specifically constructed for the invariant treat-
ment of non-Hamiltonian effects and the resolution of the Inconsistency Theorems
via the isounitary reformulation of nonunitary scattering theories; and

5) we finally presented the elements, also specialized to the scattering problem,
of the isotopic branch of hadronic mechanics including the invariant deformations-
isotopies of Lie’s theory, special relativity and relativistic quantum mechanics, with
emphasis on Dirac’s pioneering work in the field.

We are now sufficiently equipment to initiate the presentation of the proposed
covering nonunitary-isounitary scattering theory beginning with the identification of
the all fundamental isounit.

To prevent major misrepresentations of the content of this paper, that often re-
main undetected by renowned experts in quantum mechanics but non-experts in
the covering hadronic mechanics, serious readers are suggested to acquire a technical
knowledge of Papers I and II, hereon tacitly assumed, with particular reference to iso-
functional analysis, isodifferential calculus, regular and irregular isorepresentations,
regular and notions notions of spin, regular and irregular Dirac-Santilli isoequations,
Dirac’s generalization of Dirac’s equation, and related aspects.

1.2. Main Conditions. As indicated in paper II, the isotopic branch of hadronic
mechanics, also known as isomechanics, was built for the representation of the deep
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mutual penetration of the wavepackets and/or charge distributions of particles as
occurring in the scattering region of Figure I.2. These conditions are of contact char-
acter, thus having zero range, and are expected as being nonlinear (in the wavefunc-
tions), nonlocal (of integral type), and nonpotential (that is, not representable with a
Hamiltonian). These non-Hamiltonian interactions are structurally beyond any pos-
sible representation by quantum mechanics due to its strictly linear, local-differential
and potential-Hamiltonian character.

In view of these insufficiencies, the representation of the scattering region is done
via two operators, the conventional Hamiltonian H as currently used in scattering
theories, and Santilli’s isounit Î or isotopic element T̂ = Î−1, for the representation
of all non-Hamiltonian interactions and effects.

Following studies for decades, the isounit has been selected over any other alterna-
tive representations of non-Hamiltonian interactions because it is the only one assur-
ing the crucial invariance over time, i.e., the characterization of the same numerical
values under the same conditions at different times. After all, whether conventional
or generalized, the unit is the fundamental invariant of all theories.

The main requirements for the isounit (or isotopic element) are the following (see
Refs. [3] for detailed studies):

CONDITION I: Positive-definiteness.

Î(t, r, p, E, ξ, ω, ψ, ∂ψ, ...) = Î†(t, r, p, E, ξ, ω, ψ, ∂ψ, ...) =

1/T̂ (t, r, p, E, ξ, ω, ψ, ∂ψ, ...) > 0. (1.1)

This condition is sufficient to assure the preservation of the original axioms under
isotopic liftings at all levels, with consequential local isomorphism between the Hilbert
space and the Hilbert-Santilli isospace, the Lorentz-Poincaré (LP) symmetry and the
Lorentz-Poincaré-Santilli (LPS) isosymmetry, quantum mechanics and isomechanics,
etc.

CONDITION II: Elimination of quantum levels,

Limr�1fmÎ(t, r, p, E, ξ, ω, ψ, ∂ψ, ...) = ~,

Limr�1fmT̂ (t, r, p, E, ξ, ω, ψ, ∂ψ, ...) = 1/~. (1, 2)

This condition assures the existence of a unique and unambiguous limit under which
hadronic mechanics recovers quantum mechanics for all mutual distances of parti-
cles bigger than 1 fm, e,g,. for mutual distances bigger than the size of particles
wavepackets. Also, Hamiltonian interactions remain fully valid inside the scattering
region. Hence, the above condition clarifies the fact that isomechanics essentially
provides expected corrections to quantum treatments in the scattering region (only).
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A primary function of condition (1.2) is to illustrate the main feature of hadronic
mechanics, the absence of conventionally quantized energy levels within a hyperdense
hadronic medium. Conceptually, this condition is illustrated by the evident impossi-
bility that an electron in the core of a star (or, equivalently, in the interior of a high
energy scattering region) cannot possibly have the same quantized levels as occurring
when orbiting in vacuum around the nucleus in the hydrogen atom. The isounit then
represents the integro-differential deviations from conventional quantum levels caused
by the medium.

Physically, condition (1.3) is illustrated by the so-called “screened Coulomb poten-
tials” used in quantum chemistry, namely, the multiplication of the Coulomb potential
V = e2/r by an arbitrary function, V ∗ = f(r)e2/r that has resulted in being necessary
for a numerically exact representation of the mutual penetration of valence electron
pairs in molecular structures. However, in so doing, it is evident that the screened
potential no longer admits the quantum energy levels of the conventional potential,
as studied in detail in monograph [4].

CONDITION III: Elimination of quantum divergencies,

||Î|| � 1, ||T̂ || � 1. (1.3)

As it is well known to experts in the field, the above condition assures that all per-
turbative and other series that are divergent (or weakly convergent) for quantum
mechanics are turned into strongly convergent series in the covering hadronic me-
chanics.

In turn, this important feature, whose achievement escaped the best minds of 20th
century physics, implies numerical differences between the sum of divergent quantum
series (turned into convergent forms via cut-off, arbitrary parameter of unknown phys-
ical origin, and other manipulations) and the naturally convergent hadronic series.
Moreover, these differences are expected to produce numerical differences between the
elaboration of experimental data via scattering and isoscattering theories, a feature
well known to experts in hadronic mechanics since the early 1980 (see Section 1 of
paper I and references quoted therein), but often ignored by particle physics to their
peril. Note that conditions (1.3) are fully compatible with conditions (1.2), as shown
by all realizations assumed later on.

1.3. Explicit Realization. All isounits used in experimental verifications of
hadronic mechanics to date (see Refs. [3d]) have emerged as verifying quite nat-
urally Conditions I, II and III that, therefore, are not subsidiary constraints, but
seemingly natural occurrences.

Inspired by these experimental verifications, particularly for the representation
of the Cooper pair and valence bonds [5], one can see the adoption of the following
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realization of the isounit for the relativistic isoscattering theory

Î = Diag.(n2
1, n

2
2, n

2
3, n

2
4)× eN×

ψi(x)

ψf (x)
×
∫
d4x×ψi†(x)×ψf (x)

, (1.4)

where
nµ = nµ(t, r, p, E, ξ, ω, ψ, ∂ψ, ...) > 0, µ = 1, 2, 3, 4, (1.5)

where:
1) The characteristic quantities nk, k = 1, 2, 3 provide the first known represen-

tation of the generally nonspherical and deformable shape of the scattering region
normalized to the values nk = 1, k = 1,m2, 3 for the sphere;

2) The characteristic quantity n4 provides the first known representation of the
density of the scattering region (i.e.m the ratio between its energy and its volume)
normalized to the value n4 = 1 for the vacuum; and

3) the first known representation of the inhomogeneity of the scattering region is
provided by a functional dependence of the characteristic quantities, e.g., on the local
coordinates, while the first known representation of the anisotropy of the scattering
region is provided, e.g., by different values of space and time characteristic quantities.

It should be indicated that the characteristic quantities have an explicit functional
dependence when formulated in the interior of the scattering region, but they are
generally averaged into constants when inspected from the outside, an assumption we
shall tacitly make hereon.

It is easy to see that isounit (1.4) naturally verifies Conditions I, II, III. Addition-
ally:

A) The integral
∫
d4x× ψi†(x)× ψf (x) represent the intended nonlocal character

of the scattering region as well as the verification of limits (1.2);
B) The ratio between initial and final wavefunctions, ψi/ψf , characterizes the in-

tended nonlinear character of the scattering theory (with the possibility of additional
embedding of nonlinear terms);

C) N is an isorenormalization constant to be identified later on;
and the exponential character of the isounit originates at the primitive Newtonian
level (see Section II.3.2. In fact, the exponential character of the isounit emerged
when turning nonconservative non-Hamiltonian Newtonian systems into an identical
isotopic form, and this feature persists under operator formulations.

Alternatively, on mathematical grounds, one can see the emergence of the expo-
nential structure of the isounit from the isodifferential of Section I.3.4. In this case,
the use of the expressions of the type Î = eA(r) implies the cancellation between T̂
and Î in the additive term, namely, r × T × dÎ = r × ∂rAdr.

It is hoped the reader can see that, besides all the arguments presented in Papers
I and II, the LP symmetry cannot possibly be exact for the scattering region under
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the sole admission of its nonspherical, inhomogeneous and anisotropic character, in
favor of the exact universal LPS isosymmetry. The isotopies of quantum mechanics
of paper II and of the scattering theory presented in this paper, then follow rather
inevitably.

2. Elements of Isoscattering Theory.
2.1. Isoscattering Amplitude. By assuming a knowledge of the content and
terminology of Papers I and II, we can now expeditiously proceed with the formulation
of the desired isoscattering theory. For clarity, we shall write most of the formalism in
its projection on conventional spaces so as to show the differences with conventional
formulations.

An important difference between the quantum and isotopic scattering theory is
the assumption in the following. The conventional scatering theory assumes the speed
of light in vacuum c and related LP symmetry as being unchanged in the hyperdense
medium inside the scattering region. By contrast, the isoscattering theory assumes
that the speed of light in the interior problem is the local avriable C = c/n4 = c× b4

with universal LPS isosymmetry. However, when the scattering problem is studied
on the Minkowski-Santilli isospacetime over the isoreals, the speed of light in the
interior problems remains indeed that in vacuum, as recalled in Section II-2. These
views imply that the characterization of the density of the scattering region indicated
earlier is given by the index of refraction n4 = 1/b4, a notion absent in quantum
theories.

The isoscattering theory alsop assumes that the geometry in the interior of the
scattering region is mutated by its medium. This mutation is represented with the
transition from the Euclidean space E(r, δ,R over the reals R characterizing the
vacuum (intended as empty space), to the Euclid-Santilli isospace Ê(r̂, δ̂, R̂ over the
isoreals R̂ characterizing the hyperdense medium inside the scattering region.

Additionally, we assume the conservation of the volume of the scattering region in
the transition from the conventional to the isotopic treatment that can be expressed
by the condition

Det δ̂ = (b2
1 × b2

2 × b2
3) = (b1 × b2 × b3)2 = 1 (2.1)

However, it should be stressed that this condition can be easily relaxed later on, e.g.,
in the transition from low to high energy scattering in which the scattering volume
definitely is not preserved. We finally assume for simplicity that the characteristic
b-quantities have been averaged to costants because the scattering region is inspected
from the outside.

The above assumptions require the replacement of the conventional spherical co-
ordinates with the isospherical form (3.36), including the lifting of conventional angles
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into the isoangles

θ̂ = θ × Îθ, φ̂ = φ× Îφ, Îθ = b3, Îφ = b1 × b2, (2.2)

In the simple case here considered, we then have the following trivial identities be-
tween isodifferentials and differentials

d̂θ̂ = b−1
3 × d(θ × b3) = dθ, d̂ψ̂ = (b1 × b2)−1 × d(φ× b1 × b2) = dφ (2.3)

But we have the expression

d̂ ˆcosφ̂ = ˆsinφ̂× d̂φ̂ = (b1 × b2)−1 × sin(φ× b1 × b2)× dφ, (2.4)

that illustrates nontrivial departures between conventional and isotopic treatments
despite the simplest possible assumptions made above.

The solid isoangle is evidently given by

d̂Ω̂ = d̂θ̂ × d̂ ˆcos(φ̂) =

= (b1 × b2)−1dθ × dφ× sin(φ× b1 × b2), (2.5)

with isointegral

Ω̂ = Ω× ÎΩ = Ω× (b1 × b1 × b3)−1 =

∫̂ ∫̂
d̂θ̂ × d̂φ̂× ˆsinφ̂ =

= b−1
3 ×

∫ ∫
dθ × dφ× sin(φ× b1 × b2), (52.6)

and final expression

Ω = (b1 × b2)×
∫ ∫

dθ × dφ× sin(φ× b1 × b2), (52.7)

that also illustrates the differences between conventional and isotopic treatments de-
spite the preservation of the scattering volume (but not necessarily of the surface).

The isoscattering amplitude f̂(θ̂, ψ̂) can be defined in its most elementary form
via the expression

ei×k×z +
f̂(θ̂, φ̂)

r̂
×̂ei×k×r, (2.8)

where ei×k×z and ei×k×r are the conventional incoming and scattered waves because
we have assumed the exact validity of quantum scattering theories outside the scat-
tering region.
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The projection of Eq. (2.8) on a conventional Euclidean space can be written

ei×k×z +
f̂(θ × b3, φ× b1 × b2)

r
× ei×k×r, (2.9)

where we assume the reader is aware that the isodivision in Eq. (2.8) allowing the
replacement of r̂ with r.

The isodifferential cross section is then given by

d̂σ̂− = |f̂(θ̂, φ̂)|2×̂d̂Ω̂, (2.10)

and the total cross section assumes the form

σ =

∫̂
d̂σ̂ =

∫̂
|f̂(θ̂, φ̂)|2×̂d̂Ω̂ =

∫
|f̂(θ̂, φ̂)|×dΩ. (2.11)

As recalled in Section I.1, the cross section is a number that, as such, is inde-
pendent from the selected elaboration. The novelty of the isoscattering theory is the
mutation of the scattering amplitude, whose implications will be elaborated below.

2.2. Isoscattering Matrix. According to our assumptions of Section I.2, the initial
and final states, |i >, |f >, respectively, are defined on a conventional Hilbert space
H over a conventional quantum field C, as denoted by the lack of ”hat” in these states.
However, by central assumption, their interconnection is done via isomechanics on the
Hilbert-Santilli isospace Ĥ over the isofield of complex isonumbers Ĉ with isoinner
product (3.15) of Paper I and isounit (1.4). Therefore, the isoscattering matrix is
defined by (see Ref. [6b], Chapter 12, for a review of earlier works and references)

< i|×̂Ŝ×̂|f > = < i| × T × Ŝ × T × |f >, (2.12)

with basic isounitarity property

< i| × T × (Ŝ × T × |f >) = (< i| × T × Ŝ†)× T × |f > (2.13)

namely
Ŝ×̂Ŝ† = Ŝ×̂Ŝ = Î , (2.14)

or
Σf Ŝfi × Tik × Ŝfk = δ̂ik = Î × δik, (52.15)

expressing the conservation of probability on isospace over isofields.
It should be indicated that the isoscattering matrix is an isomatrix, namely, its

elements are isonumbers n̂ = n× Î. Consequently, the isotopic element in the isoinner
product (5.11) can be eliminated with the reduction of type (4.35a)

Ŝ = S̃ × Î (2.16)
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under which we can regain the conventional form

< i| × T × Ŝ × T × |f > = < i| × S̃ × |f > . (2.17)

However, the nontrivial character of the isoscattering theory is that the reduced
matrix S̃ is nonunitary,

S̃ × S̃† 6= I. (2.18)

as it is the case also for Eq. (5.14). The latter property is crucial to guarantee
the exiting put of the class of unitary equivalence of quantum scattering theories
and, in its absence, novelty would only be illusory. Note that without the isotopic
formulation, nonunitary scattering theories would be inconsistent [6=11].

The isotransition probability that states |i > are turned into the states |f > is
then given by

P̂fi = Ŝ†fi × T × Ŝfi = (S̃†fi × S̃fi)× Î , (52.19)

with evident total isoprobability

P̂tot = Σf Ŝ
†
fi × T × Ŝfi. (2.20)

2.3. Isopropagators. We now construct the isotopic image of quantum propagators,
here called isopropagators, and then compare the resulting isoseries with a conven-
tional expansion. We maintain the conventional assumption of the Hamiltonian being
composed by two parts,

H = H0 +H1, (2.21)

and consider the Schrödinger-Santilli isoequation (4.14) under the simplified assump-
tion that the isounit of time is 1, namely, that time is not lifted, t̂ = t,

i× ∂tψ̂(t, r) = [H0(r, p) +H1(r, p)]× T (t, r, p, ψ, ∂ψ, ...)× ψ̂(t.r). (2.22)

To avoid the venturing of superficial technically unsubstantiated perceptions (to their
peril), readers should be aware that the isoscattering theory allows the consistent
inclusion, for the first time to our knowledge, of nonlinear effects, inclusion that
would imply basic inconsistencies for conventional scattering theories indicated in
reference to Eq. (4.15).

Additionally, the isoscattering theory allows the verification of causality via an
irreversible treatment of irreversible scattering processes via the use of the broader
genomathematics [15,16], a condition also impossible for quantum scattering theo-
ries, with the understanding that the proper treatment of irreversibility requires the
covering Lie-admissible genoscattering theory.
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The isopropagator Ĝ(t, r; t′r′) is then defined by

i× ∂tĜ(t, r; t′, r′)− (H0 +H1)× T × Ĝ(t, r; t′, r′) = δ̂(t′ − t)× δ̂3(r′ − r), (2.23)

where δ̂3 and δ̂ denotes the Dirac-Myung-Santilli isodelta function of hadronic me-
chanics (Section 3.5).

Recall that quantities with an isoscalar structure show the factorized isounit when
projected on conventional spaces, such as ĝ = g × Î. In this case we have the
simplification of the isoproduct of an isofunction by another quantity ĝ×̂A = g× Î ×
T × A = g × A.

However, the isodelta is an isodistribution and, as such, it does not admit the
factorization of the isounit, as it is the case for the isodifferential. Since the isodelta
has no factorization of the isounit, the same holds for the isopropagator Ĝ(t, r; t′, r′).

Assuming that Ĝ0(t, r; t′, r′) is the isopropagator for H0, we then have

Ĝ(t, r; t′, r′) = Ĝ0(t, r; t′, r′)+

+

∫ ∫
dt′ × d3r′ × Ĝ(t, r; t1, r1)× T ×H1(t, r)× T × Ĝ0(t, r; t′, r′). (2.24)

2.4. Convergent Isoexpansions. At this point, we subject Eq. (5.24) to a power
isoexpansion in terms of H1 as in the original case [1], however, without the con-
ventional restriction that the interacting term H1 is small. By recalling that the
formulation is on Ĥ, we have the expression

Ĝ(t, r; t′, r′) = Ĝ0(t, r; t′, r′)+

+

∫ ∫
dt′ × d3r′ × Ĝ0(t, r; t′, r′)× T ×H1(t1, r1)× T × Ĝ0(t, r; t1r,1 )+

+

∫ ∫
dt′ × d3r′ × Ĝ0(t, r; t1, r1)× T ×H1(t1, r1)× T × Ĝ0(t1, r1; t′, r′)+

+

∫ ∫
dt′ × d3r′ × Ĝ0(t, r; t1, r1)× T ×H1(t1, r1)×

×T × Ĝ0(t1, r1; t2, r2)× T ×H1(t2, r2)× Ĝ0(t2, r2; t′, r′) + ... (2.25)

Similarly, by assuming that ψ̂0(t, r) is the isoeigenfunction of H0,

i× ∂tψ̂0(t, r = Ho × T × ψ̂0(t, r), (2.26)

we have the isoexpansion for the wave isofunction

ψ̂(t.r) = ψ̂0(t, r)+
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+

∫ ∫
dt1 × d3r1 × Ĝ0(t, r; t1, r1)× T × ψ̂0(t1.r1) + ... (2.27)

We now assume for t→ −∞

ψ0(t, z) = ψi(t, r)e
i×k×r (2.28)

Then we have the expression

ψ̂(t.r) = ψ0(t, r)+

+

∫ ∫
dt1 × d3r1 × Ĝ0(t, r; t1, r1)× T × ψ0(t1.r1) + ... (2.29)

and we have the explicit form of the isoscattering matrix

Ŝfi = Î + i×
∫
dt′ × d3r × ψ0(tt′, r′)† × T ×H1(t′, r′)× ψ0(t′, r + ... (2.30)

It is evident that all the above expansions are strongly convergent, not only be-
cause the isotopic eleent verifies the condition

|T | � |H1|. (2.31)

but also because the isopropagator no longer admits the divergence of the conventional
propagator for t = t′, r = r′, thus confirming a main objective of this paper.

2.5. Prediction of Mini-Black-Holes. Let us consider the isogravitational content
of the isoscattering theory outlined in Section 2.5 of Paper II. Recall the identification
of the conventional Riemannian metric, such as the Schwartzschild metric in the
coordinates (θ, φ, r, t) , with the isometric η̂ in the very structure of the isogamma
matrices, Eqs. (2.35) of Paper II,

ds2 = r2(dθ2 + sin2dθ2 + dφ2) + (1− 2×M
r

)−1 × dr2−

−(1− 2×M
r
× dt2 ≡ T̂sch × η ≡ η̂, (2.32)

which is represented with gravitational isounit and isotopic element

T̂sch = Diag.[1, 1, (1− 2×M
r

)−1, (1− 2×M
r

)], (2.33a)

Îsch = Diag.[1, 1, (1− 2×M
r

), (1− 2×M
r

)−1]. (2.33b)
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We also recall that the conventional Dirac equations represents an electron in
vacuum, as well known, while the isotopically lifted equation represents the same
electron when immersed within a hyperdense hadronic medium.

It is then easy to see that the isoscattering theory predicts the possible creation of
mini black holes under sufficiently high energies, as evident from the singularities of
isometric (2.32) that now constitutes the actual metric of the scattering region.

Needless to say, there is no possibility to predict at this stage of the knowledge
the threshold of energy density needed to trigger a mini-black-hole, and this explains
the importance of lifting the scattering theory into a form admitting of a quantitative
representation of the energy density of the scattering region.

Recall that, for the conventional scattering theory, the metric for the scattering
region is the conventional Minkowski metric, thus without any predictive capacity for
mini-black-holes. Consequently, the above prediction of the isoscattering theory and
related isoline element (2.32) is sufficient to illustrate the need for serious caution and
scrutiny before embarking in extremely high energy scattering experiments based on
insufficient quantum methods that can at best produce controversial results.

3. Isotopies of Feynman’s Diagrams
without Divergences
3.1 Conventional Feynman Diagrams We are now equipped to tackle a central as-
pect of our research, the isotopies of Feynman’s diagrams, first studied by Animalu [7]
and here referred to as iso-Feynman diagrams. These isotopies require a re-inspection
in this paper because originally conducted without the use of isomathematics, thus
having the shortcomings of Refs. [6-12] of Paper I.

We begin by recalling the main features of conventional Feynman diagrams. then
construct their isotopic images, and outlining the rules for computing isoscattering
cross-sections from iso-Feynman diagrams.

As is well-known (see, e.g., Ref. [8]), Feynman’s diagrams (also called path-integral
technique in QED) comprise a representation of fundamental elementary particles
(e.g., electrons e−), their antiparticles (e.g. positrons e+), and their annihilation into
two photons, e.g.,

e− + e+ → γ + γ, (3.1)

in which: the electron e− is represented by a ”point” moving forward in time and
the positron e+ by another ”point” moving backwards in time; the pair annihilates
at the intersection of the lines joining the two point-particle trajectories as shown
in Figure 1(a)); the emitted photons are represented by wiggly lines radiating away
from the point of annihilation, and Figure 1(b) represents Coulomb interactions via
virtual photon exchange.
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Figure 1: Conventional Feynman’s graphs for: (a) e−e+ → γ + γ annihilation into
two photons; (b) e−− e+ Coulomb interaction via ”virtual” photon exchange; and (c)
nonunitary representation of non-Hamiltonian interactions of extended wave packets
due to overlapping in the annihilation process (3.1) or the’ model of the fusion process
e+ + e− → π0

The scattering cross-sections is then calculated by following a number of Feyn-
man rules designed to reproduce, at the lowest order, classical results found with
conventional quantum mechanics. The full power of the method is realized, however,
in calculating the radiative corrections and higher order terms and, as we shall see
in this section, corrections from non-Hamiltonian forces activated in the hadronic
scattering region.

3.2. The Problem of Antiparticles in Feynman’s Diagrams. As indicated in
paper I, Section 2, in these initial studies we shall continue to use the 20th century
formalism for antiparticles. Nevertheless, the reader should be aware of the novel
isodual theory of antimatter that has achieved the first known axiomatically consis-
tent representation of antimatter at all levels, from Newtonian mechanics to second
quantization, while being equivalent to charge conjugation in its operator form.

The new theory of antimatter has been motivated by clear insufficiencies of the
classical theories of the 20th century, such as the absence of any differentiation be-
tween neutral matter and antimatter, problematic aspects in the classical treatment
of charged antiparticles (because their operator image is a conventional “particle,”
rather than the needed charge conjugated “antiparticle”), and other problematic as-
pects requiring a resolution on serious scientific grounds.

The map from matter to antimatter at all levels is performed by an operation called
isoduality, represented with the upper symbol d, essentially given by anti-Hermiticity,
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that must be applied, for consistency, to all possible quantities and their operations.
Consequently, a central feature of the isodual theory is that all physical quantities of
antimatter are measured with negative units, thus including negative units of time,
energy, linear momentum, etc.

The above formulation of antimatter resolves the known uneasiness in Feynman’s
use of motions backward in time, because a motion backward in time referred to a
negative unit of time is as causal as motion forward in time referred to a positive unit
of time.

Additionally, this feature renders fully causal the negative energies of Dirac’s
equation when, again, referred to a negative unit, and provides a new interpretation
of Dirac’s equation as directly representing an electron-positron pair at the level of
first quantization without any need for the ”hole theory” or second quantization,
because the isodual theory of antimatter holds at the classical level, let alone for first
quantization [9].

Additionally, these studies have identified a new fundamental symmetry of space-
time, called isoselfduality (essentially the invariance under anti-Hermiticity as verified
by the imaginary unit i ≡ id), that essentially providing a deeper representation of the
invariance of a particle-antiparticle pair under charge conjugation. This new symme-
try is verified by the l.h.s. of Eq. (3.1), since (e− + e+)d = e+ + e−, but it is violated
in the r.h.s. because γd 6= γ.

This new spacetime symmetry (that could be verified by our entire universe in the
event made up of matter and antimatter in equal amounts) suggests the verification
of the same symmetry in the r.h.s. of Eq. (3.1). This has been achieved in Ref. [9]
via the differentiation between the conventional photon γ emitted by matter and the
isodual photon γd emitted by antimatter. The latter is predicted as being physically
different than that emitted by matter, e.g., because repelled by the gravitational field
of matter and having other experimentally verifiable features that may initiate, in
due time, the new field of experimental antimatter astrophysics.

As a result,. the new isodual theory of antimatter replaces Eq. (3.1) with in the
following isoselfdual invariant reaction [9]

e− + e−d → γ + γd, (3.2)

where ed ≡ e+ since isoduality is equivalent to charge conjugation.
It is evident that the above occurrence requires, alone, a re-inspection of the entire

formulation of the Feynman’s diagrams that we cannot possibly achieve in these first
papers to prevent a prohibitive length and that has to be deferred to a subsequent
study.

3.3 Isotopies of Feynman Diagrams. Figure 1(c) represents the proposed isotopic
image of non-Hamiltonian interactions of extended wave packets due to overlapping,

15



as predicted by hadronic mechanics since its inception, e.g., for model of theπo synthe-
sis from electrons and positrons, the synthesis of neutrons from protons and electrons,
or the synthesis of hadrons at large from lighter particles (see the excellent review by
Kadeisvili [10]).

In terms of the isounit Î and isotopic element T̂ , here indicated as Îst and Tst for the
carrier space of a relativistic hadronic mechanics, the correspondence between free-
particle Feynman propagators in conventional relativistic theory and their isotopic
image in hadronic mechanics, can be characterized as follows:

[SF (x) = (γµpµ+im)∆F (x)] −→ [ŜF (x̂) = (η̂µνst ×γ̂µ×p̂ν+i×m̂)×Tst×∆̂F̂ (x̂)], (3.3a)

[∆F (x) =

∫
d4p

(2π)4

e−px

p2 −m2 + iε
] −→ [∆̂F (x̂) =

∫
d4p

(2π)4

e−p×Tst×x

p̂2̂ − m̂2̂ + i× ε̂
] (3.3b)

with corresponding expression in momentum 4-vector space:

[SF (p) = (γµpµ +m)∆F (p2) =
γµpµ +m

p2 −m2 + iε
] −→

[ŜF (p̂) = (η̂µνst ×γ̂µ×p̂ν+i×m̂)×Tst×∆̂F (p̂2) =
(η̂µνst × γ̂µ × p̂ν + i× m̂)× Tst

p̂2̂ − m̂2̂ + i× ε̂
] (3.4)

3.4. Isotopic Inclusion of Electromagnetic interactions. In the presence of an
external electromagnetic field, the solution of the (regular) Dirac-Santilli isoequation
takes the form

Ψ̂ = ψ̂(x̂) + ê×̂
∫̂
d̂4x̂′×̂Ŝf (x̂− x̂′)×̂γ̂.̂Â(x̂′)×̂Ψ̂(x̂′)

= ψ̂(x̂) + ê×̂
∫̂
d̂4x̂′×̂Ŝf (x̂− x̂′)×̂γ̂.̂Â(x̂′)×̂ψ̂(x̂′)

+ê2̂×̂
∫̂
d̂4x̂′

∫̂
d̂4x̂′′×̂Ŝf (x̂− x̂′)×̂γ̂.̂Â(x̂′)×̂ψ̂(x̂′)×̂Ŝf (x̂′ − x̂′′)×̂γ̂.̂Â(x̂′′)×̂ψ̂(x̂′′) + ...

(3.5)
This leads to a formal definition of the Feynman-Animalu isopropagator either as a
series:

Ŝ ′f (x̂, x̂′) = Ŝf (x̂− x̂′) + ê×̂
∫̂
d̂4x̂′′×̂Ŝf (x̂− x̂′′)×̂γ̂.̂Â(x̂′′)×̂Ŝf (x̂′ − x̂′′) + ... (3.6)

or as an integral equation:

Ŝ ′f (x̂, x̂′) = Ŝf (x̂− x̂′) + ê×̂
∫̂
d̂4x̂′′×̂Ŝf (x̂− x̂′′)×̂γ̂.̂Â(x̂′′)×̂Ŝ ′f (x̂′, x̂′′). (3.7)
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Figure 2: Correspondence between the Feynman graphs for fermion-fermion interac-
tion vertex with boson emission in 1st and 2nd quantization schemes in QED and
the isotopic images for the boson-boson interaction vertex with single fermion spin
emission in HM.
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Figure 3: Feynman Graphs/Rules and their Isotopic Images
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Figure 4: Continuation of Figure 5
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where γ̂.̂Â(x̂′) ≡ η̂µνst × γ̂µ× Âν(x̂′) and Âν(x̂′) is the iso-electromagnetic field 4-vector
potential given by the corresponding iso-gauge principle[xx].

To elaborate the basic physical concepts in terms of Feynman diagrams for electron
scattering with an electromagnetic field in interior dynamical conditions, we show in
Figure 4 the two characteristic differences in 1st and 2nd quantization schemes. The
iso-scattering matrix is given in first quantization scheme by

Ŝf,i = limt→∞

∫̂
d̂3x̂×̂ψ+ŝ′

p̂′ ×̂Ψŝ
p̂ (3.8)

andΨŝ
p̂ is the exact solution given as in Eq.(6.5) by

Ψŝ
p̂(x̂) = ψ̂ŝp̂(x̂) + ê×̂

∫̂
d̂4x̂′×̂Ŝf (x̂− x̂′)×̂γ̂.̂Â(x̂′)×̂Ψ̂ŝ

p̂(x̂
′) (3.9)

with the iso-normalization∫̂
d̂3x̂×̂ψ̂+ŝ

p̂ (x̂)×̂ψ̂ŝ′
p̂′

(x̂) = δ̂ŝŝ′×̂δ̂3(p̂− p̂′) (3.10)

Note that the correspondence principle in 1st quantization scheme involves a lifting
of the Coulomb vertex in QED into the approximate Yukawa vertex in hadronic
mechanics, and additionally involves the lifting from Bose-Einstein to Fermi-Dirac
statistics in 2nd quantization scheme, i.e., mutation of spin under sufficiently high
energies.

The correspondence between Feynman graphs/rules and their isotopic images for
computation of contributions to the S-matrix in QED of spin- particles are summa-
rized in the Figures 5, 6, as well as the rules:

(1)
∫̂
d̂4p
2π4 for each internal line.

(2) Overall sign (−)L+P where L is the number of closed electron loops and P is
the permutation of the external particles.

(3) Phase space of final particle involves d3p... ; and
(4) Flux of particles is V V1−V2

(2π)6
.

3.5. Concluding remarks. Lagrange, Hamilton, Jacobi and other founders of
mechanics stated that nature cannot be entirely reduced to potential interactions
solely representable with quantities we call today Lagrangians and Hamiltonians,
for which reason they wrote their celebrated analytic equations with external terms
representing interactions not admitting a potential energy (for historical references
and comments, see Refs. [11]).

Due to the successes of purely Lagrangian and Hamiltonian theories, such as
special relativity and quantum mechanics, the external terms were removed from the
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analytic equation in the mainstream physics of the 20th century, thus abstracting all
events in the universe to potential interactions among point-like particles moving in
vacuum, an abstraction that was also implemented for the scattering theories.

However, the No Reduction Theorem of paper I, Section 2, has confirmed the
historical legacy of Lagrange, Hamilton and Jacobi, by establishing in particular that
the nonlinear, nonlocal and nonpotential interactions represented with external terms
necessarily originate at the ultimate level of nature, that of deep mutual penetration
and overlapping of particles, thus requiring a broadening of the scattering theory for
their inclusion.

At any rate, the rigorous implementation of the axioms of quantum mechanics
without ad hoc manipulations, and their inherent point-like abstraction of particles,
essentially reduce most scattering process among charged particles to Coulomb in-
teractions. This causes uneasiness in the conventional explanation of multi-particle
productions via second quantization, since the latter events are clearly visible in de-
tectors, thus expected as being interpreted at the semiclassical level, let alone that of
first quantization.

Mutatis mutandae, the admission of any particle dimension of the same order
of magnitude of the scattering region, causes their deep mutual overlapping, with
consequential need to include in scattering processes precisely the nonlinear, nonlocal
and nonpotential interactions originated by Lagrange,. Hamilton and Jacobi, since
these contacts effects are unavoidable for the dynamics of extended particles.

Predictably, the inclusion of external terms in the analytic equation has dramatic
implications since it causes the loss of most conventional mathematical and physical
knowledge. In fact, the brackets of the time evolution of Hamilton’s equation with
external terms violate the conditions to characterize an algebra, let alone causes the
loss of all Lie algebras (see Refs. [6] for their analysis at the foundation of hadronic
mechanics).

This occurrence mandated very laborious efforts lasted for decades to construct
basically new mathematics and mechanics capable of incorporating Lagrange’s and
Hamilton’s external terms. The sole representation of the historical external terms
achieving invariance over time was their classical representation via Santilli’s isounit
and related isotopic element that can be presented in these concluding remarks in their
original as well as ultimate meaning. This scenario explains the delay of decades prior
to being in a position of addressing the scattering problem.

The reasons for a nonunitary-isounitary broadening of conventional unitary scat-
tering theory have been indicated throughout these papers and need not be repeated
here. The possible significance of the former theory over the latter can solely be
established in subsequent papers over a significant period of time.

Hence, we can conclude these remarks by bringing to the attention of the curious
reader that the ultimate origin of the new isoscattering theory rests indeed the histori-
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cal legacy of Lagrange and Hamilton on the external terms of their celebrated analytic
equations, which terms, following their popular suppression in the 20th century, have
re-emerged in all their historical, mathematical and physical relevance.
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