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Introduction

20th century mathematics underlying mainstream physical and chemical theories is local-differential, thus
solely permitting the representation of point-like masses. The Italian-American scientist R. M. Santilli
accepted such a mathematics for the representation of particles when the masses are at large mutual distances,
thus allowing point-like approximations, as it is the case for the atomic structure. Santilli then identified clear
limitation of 20th century mathematics for the representation of extended charge distributions or
wavepackets in conditions of partial or total mutual penetration, as it is the case for the synthesis of the
neutron from a proton and an electron in the core of a star; for the structure of nuclei, stars and black holes; for

the molecular bond of two identical valenceelectrons in singlet coupling; and other composite systems.

When at the Department of Mathematics of Harvard University in the late 1970s, Santilli developed a series
of new mathematics for the representation of extended charge distributions or wavepackets when in condition
of partial or total mutual penetration, resulting in:

1. The novel, single valued- isomathematics for the representation of composite matter-systems reversible
over time of with extended constituents at short mutual distances;

2. The novel, single valued genomathematics for the representation of composite matter-systems or reactions
irreversible over time with extended constituents at short mutual distance;

3. The novel multi-valued hypermathematics for the representation of biological matter-systems.

Additionally, Santilli constructed their anti-Hermitean isodual images for the representation of
corresponding antimatter-systems in conditions of increasing complexity. These varieties of new
mathematics are today collectively addressed by the name of hadronic mathematics, in view of their
applications. The special issue of AIMP on the Foundations of Hadronic Mathematics shall review the above
novel mathematics and present new advances for the use in subsequent special issues devoted to its

applications.

For more information about the Special Issue, please pay a visit to the following website:
http://www.sciencepublishinggroup.com/specialissue/122013
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Abstract: In this paper, we outline the various branches of hadronic mathematics and their applications to corresponding
branches of hadronic mechanics and chemistry as conceived by the Italian-American scientist Ruggero Maria Santilli. According
to said conception, hadronic mathematics comprises the following branches for the treatment of matter in conditions of
increasing complexity: 1) 20th century mathematics based on Lie’s theory; 2) IsoMathematics based on Santilli’s isotopies of
Lie’s theory; 3) GenoMathematics based on Santilli’s formulation of Albert’s Lie-admissibility; 4) HyperMathematics based on a
multi-valued realization of genomathematics with classical operations; and 5) HyperMathematics based on Vougiouklis H,
hyperstructures expressed in terms of hyperoperations. Additionally, hadronic mathematics comprises the anti-Hermitean images
(called isoduals) of the five preceding mathematics for the description of antimatter also in conditions of increasing complexity.
The outline presented in this paper includes the identification of represented physical or chemical systems, the main
mathematical structure, and the main dynamical equations per each branch. We also show the axiomatic consistency of various
branches of hadronic mathematics as sequential coverings of 20th century mathematics; and indicate a number of open
mathematical problems. Novel physical and chemical applications permitted by hadronic mathematics are presented in
subsequent collections.

Keywords: Santilli [somathematics, Genomathematics, Hypermathematics

1. 20th Century Mathematics, Mechanics nm=nxmlxn=nxl=nvnefF ()
and Chemistry Measurement units of time, energy, etc. all positive
Ordinary functional analysis f(r) € F,
1.1. Represented Systems Ordinary differential calculus

Single-valued, closed-isolated, time-reversible systems of Gsmventinnal Eieitcoty

point-like particles moving in vacuum solely under action at a X0, X1 = X X X; = X; X X, == Ci’} X X @)
distance Hamiltonian interactions, such as the structure of .
atoms and molecules. A(w) = eX*Wxl x A(0) x e=HWxX, ©)
1.2. Main Mathematical Structure Euclidean geometry and topology
Basic unit E(@,6,1),r= "),k =123,8 =Diag.(1,1,1), (6)
I=+1 (1 r2=rixéyxri=ri+rf+r}€F, @)
Basic numeric fields n = real, complex, quaternionic Minkowskian geometry
numbers

M@, D:x = (xM),u=1.234,x*=t, 8)
F(n,x,1),n )
n = Diag.(+1,+1,+1,~c?), )
Basic Associative product
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xZ=at X xx¥ =x2+x?+x3-t%c?€F, (10)

Riemannian geometry

R(xg(x)):ix=(#*),u=1234x"=¢t, (11)
x2=xtxg(x)y Xx " €F 11
x?=xtxg(x),Xx'€F (12)
Symplectic geometry.
w = dr* Adp, (13)
1.3. Dynamical equations
Newton equation
mx 2~ FS4(t,1,v,) = 0, (14)
Variational principle
§A =6 [(p, xdr¥ —H x dt) = 0. (15)
Hamilton’s equations without external terms
k
Hilbert space H over C with states |¢) > over ( ()
Expectation value of a Hermitean operator A
<A>=< Y| xAX | >€C, an
Heisenberg equation
ix=[AH =AxH~-HXxA, (18)
Schrédinger equations
HX[Yp>=Ex|¢p > (19)
pX[Y>=—ixadlp> (20)
Dirac equation
" Xy Xpy—ixmxc) x| >=0. (21)
url=vxn +ruxy =2xmn,, (@)

Comments and References

The literature on 20th century mathematics, mechanics and
chemistry is so vast and so easily identifiable to discourage
discriminatory partial listings.

2. Isomathematcs, Isomechanics and
Isochemistry

2.1. Represented Systems [1-5]

Single-value, closed-isolated, time-reversible system of
extended-deformable particles with action at a distance
Hamiltonian and contact non-Hamiltonian interactions, such
as the structure of hadrons, nuclei and stars, in the valence

Outline of Hadronic Mathematics, Mechanics and Chemistry as Conceived by R. M. Santilli

electron bonds and other systems.
2.2. Main Mathematical Structure s [1-5]
Santilli IsoUnit | and isotopic element T
I=Iiwpap,....)=1/7"pa,....) >0, (23)
Santilli IsoFields

F(ag Na=nxT, (24)
Santilli isoproduct
ARM=AxTxMEF, (25)
IRA=AaKI=AvAEF, (26)
Representation  via the isotopic element of
extended-deformable particles under non-Hamiltonian
interactions
. 101 1 DI,
T = Diag. (%'E'E) x el rp.8%..) (X))
IsoCoordinates # = r x [ € F,
IsoFunctional analysis f( #)= f(#) x I € F,
IsoDifferential Calculus
df =dr+rxTxdl, (28)
8@ _ 7, 0f0)
5 I' ar ' (29)

Santilli Lie-Isotopic Theory
X X)) = X; R X; — X; R X; == Cl(r,p,...) X Xi,, (30)

A(w) = eXWXiRQ A( Q)R g~DxwxX, [€}))
Santilli Iso-Euclidean Geometry

E@8,D,8(rp,29,...) =T, p2,...)x 6, (32)
T = Diag.(1/n?,1/n,1/n3), (33)
ff=fisz&jwf=(%+%+%)xieﬁ. (34)

Santilli Iso-Minkowskian Geometry
M(z9,D% =@ u=1234x=t, (35)
A0, ,..) =T0yP,...) Xy, (36)
T = Diag.( 1/n?1/n3,1/n,1/n3), (37

P 2 2 2 2
=R, 2 = G+ 2+ -2 xTeF, (38)
2 4

n} n§

'See Santilli’s curriculum
http://www.world-lecture-series.org/santilli-cv

Prizes and Nominations
http://www.santilli-foundation..org/santilli-nobel-nominations htmnl
and scientific archive
http://www.santilli-foundation.org/news.htmnl
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Santilli Iso-Riemannian Geometry

R& §,D:g=Txv...)xg), (39)
o2 g
x2=(%+f§1+%—%’*)xieﬁ, (40)
Santilli Iso-Symplectic Geometry
@ = di* A dp, (41)

2.3. IsoDynamical IsoEquations s [1-5]

Newton-Santilli IsoEquation

m 9%—FSA(t,r,p) =m xi—:—FS”(t,r,p) -

FVS4(t,7r,p,...) =0, (42)

IsoVariational principle

SA=8] (@ RdFF-ARdD=0. (43)
Hamilton-Santilli IsoEquations
ark _38Gp) dpy _ _ RGP
at ~  9pr ' At ark ’ (44

Iso-Hilbert space A over C with states |i > over the
isofield €2

IsoExpectation value of a Hermitean operator A on A
<A>=<{P|RAR|Pp>el (45)

Heisenberg-Santilli IsoEquation

Q
By

PP S ~ ~ A ~

=[AH =ARA-ARA=4AxT{,...)x

AP ~-A@ ) xTWh,..)xA  (46)

iR

l

3%

£

Schrédinger-Santilli IsoEquation

~

AR >=H0ED) xT@,0p,..)x|[P>=ER P >=
Ex|)>, 47)

(48)

A

PRI|Y>= 1R 0P >= =i x [ x 3| >,

?As shown in the seminal paper [6] of 1982, but vastly ignored for the past four
decades, isomechanics formulated on iso-Hilbert spaces over isofields eliminates
the divergencies of quantum mechanics and related scattering theories. This
important feature is primarily due to the fact that, for all physical and chemical
applications worked out to date, the isounit [ = 1/ > 0 must have a large value
of the exponential type (27) and, consequently, the isotopic element T must have a
very small value. This occurrence eliminates the singularity of the Dirac delta
“distribution” when lifted to the Dirac-Myung-Santilli delta "isofunction" as shown
by the realizaton of the type

1 400
8r-n) = 7 f elktr=10) g,

with 7 = %. N « 1. Similarly, pertnrbative and other series with Hermitean
~Ta

operators that are divergent or slowly convergent in quantum mechanics can be
lifted into isoseries of the type

w(ATH — HTA

AW)=T[+ %

that are manifestly convergent forw > 1 but T « w.As shown by A. O. E.
Animalu and R. M. Santilli in five papers published proceedings [25], the above
lack of divergences carries over to the covering of the scattering theory known as
isoscattering theory, by therefore achieving numerical results without the use of
infinities for the renormalization of divergent series.

Dirac-Santilli IsoEquation

A R P, R P, —IRMRE) R [Psi >=0.  (49)

{?u:i'\v} = ?y % P+ B X ?u =2% ﬁﬂv =2X ﬁ,uv: (50)
2.4. Comments and References

As it is well known, the local-differential calculus of 20th
century mathematics can solely represent a finite set of
isolated dimensionless points. In view ofthis structural feature,
Newton formulated his celebrated equations (14) for massive
points, resulted in a conception of nature that was adopted by
Galileo and Einstein, became the dominant notion of 20th
century sciences, and was proved to be valid for classical or
quantum particles moving in vacuum at large mutual distances,
such as for our planetary system or the atomic structure.

However, when bodies move within physical media, such as
for a spaceship during re-entry in our atmosphere or for a
proton in the core of a star, point-like abstractions of particles
became excessive, e.g., because a macroscopic collection of
point-particles cannot have entropy (since all known
Hamiltonian interactions are invariant under time reversal),
with consequential violation of thermodynamical laws and
other insufficiencies.

Besides the clear identification of these insufficiencies, the
first historical contribution by the Italian-American scientist
Ruggero Maria Santilli (see Footnote 1) has been the
generalization of 20th century mathematics into such a form
to admit a time invariant representation of extended, and
therefore  deformable particles under  conventional
Hamiltonian as well as contact non-Hamiltonian interactions,
with implications for all quantitative sciences.

The above central objective was achieved in monographs [1]
originally written by Santilli during his stay at MIT from 1974
to 1977 (where they appeared as MIT preprints). Monographs
[1] were then completed by Santilli during his stay at Harvard
Universityfrom 1977 to 1982 under DOE support, and
released for publication only following the delivery at Harvard
of a post Ph. D. seminar Course in the field.

The representation of extended-deformable bodies moving
within physical media was achieved via an axiom-preserving
lifting, called isotopy, of the conventional associative
product AB = A x B between generic quantities 4, B (such as
numbers,functions, matrices, operators, etc.) into the
formA X B = A x T x B, Eq. (25). Conventional interactions
are represented via conventional Hamiltonian, while actual
shape and non-Hamiltonian interactions are represented via
realization of the quantity T, called isotopic element, of the
type (27).

Santilli then achieved in monographs [1] the
axiom-preserving isotopies of the various branches of Lie’s
theory, e.g., Egs. (30), (31,) including their elaboration via the
initiation of the isotopies of functional analysis. In particular,
Santilli showed that the isotopies of the rotational
symmetry SO(3) characterized by isotopic element (27) do
represent extended, generally non-spherical and deformable
bodies. Finally, Santilli proved in Vol. II of Ref. [1] the
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significance of his Lie-isotopic theory by showing that it
characterizes the Birkhoffian covering of classical
Hamiltonian mechanics and its “direct universality" for the
representation of all possible, non-singular, generally
non-Hamiltonian Newtonian systems in the frame of the
experimenter, which direct universality was subsequently
proved to hold also for isotopic operator theories. The above
advances were formulated on an ordinary numeric field.

Subsequently, Santilli discovered in 1993 [2] that the
axioms of numeric fields with characteristic zero do not
necessarily require that the basic multiplicative unit is the
trivial number +1, since said axioms admit arbitrary
generalized units, today called Santilli isounits, provided that
they are positive-definite and are the inverse of the isotopic
element, [ = l/T > (0. This second historical discovery
identified new numbers today known as Santilli isoreal,
isocomplex and isoquaternionic numbers of the First (Second)
kind when the isounit is outside (an element of) the original
field. This discovery prompted a flurry of reformulation over
Santilli isofields of all preceding isotopies, including most
importantly the reformulation of Santilli’s Lie-isotopic theory.

Despite the above momentous advances, Santilli remained
dissatisfied because the isotopic formulations of the early
1990s were not invariant under their time evolution, thus
being unable to predict the same numerical values under the
same conditions at different times. Since the entire 20th
century mathematics had been isotonically lifted by the early
1990s, Santilli was left with no other choice than that of
reinspecting the Newton-Leibnitz differential calculus by
discovering that, contrary to a popular belief in mathematics
and physics for some four centuries, the differential calculus is
indeed dependent on the basic multiplicative unit. In this way,
Santilli achieved in memoir [3] of 1996 the third historical
discovery according to which the ordinary differential
calculus needs generalizations of the type (28), (29) whenever
the isounit depends on the local variable of differentiation.
This discovery signaled the achievement of mathematical
maturity of isomathematics that permitted numerous advances
in physics and chemistry as well as novel industrial
applications.

All in all, Santilli has written about 150 papers on the
isotopies of all various aspects of 20th century mathematics.
These contributions are reported in monographs [4] of 1995
that remain to this day the most comprehensive presentation
on isotopies. In the subsequent series of monographs [5] of
2008, Santilli introduces the names of Hadronic Mathematics,
Mechanics and Chemistry which have been adopted for this
review due to their wide acceptance.

Numerous authors have made important contributions in
Santilli isomathematics, among whom we quote: the
mathematician H. C. Myung who initiated (with R. M. Santilli)
[6] the isotopies of Hilbert Spaces, including the momentous
elimination of the divergencies of quantum mechanics under
sufficiently small values of the isotopic element T; the
mathematicians D. S. Sourlas and G. T. Tsagas [7] who
conducted in 1993 the first comprehensive study of the
Lie-Santilli isotheory; the theoretician J. V. Kadeisvili [8] who

Outline of Hadronic Mathematics, Mechanics and Chemistry as Conceived by R. M. Santilli

presented systematic studies of Santilli’s isotopies of 20th
century geometries and relativities; the mathematician
Chun-Xuan Jiang [9] who conducted in 2001 systematic
studies of Santilli IsoNumber Theory; the mathematicians R.
M. Falcon Ganfornina and J. Nunez Valdes who wrote in 2001
the now historical, first mathematically rigorous treatment of
Santilli isotopies [10], and the historical achieved isotopology
[11] which provides the ultimate mathematical structure of the
Newton-Santilli isoequations (42) for extended-deformable
particles under Hamiltonian and non-hamiltonian interactions
achieved in memoir [3]; the mathematician S. Georgiev who
wrote one of the most monumental and important
mathematical works in scientific history [12], by showing that
Santilli’s IsoDifferential Calculus implies a variety of fully
consistent coverings of 20th century mathematics; the
mathematician A. S. Muktibodh [13] who presented the first
lnown generalization of Santilli isonumber theory for the case
of characteristic p # 0; the physicists I. Gandzha and J.
Kadeisvili who presented in 2011 [14] a comprehensive
review of Santilli isomathematics and its applications in
physics and chemistry; plus additional seminal advances
presented in the subsequent papers of this collection.

3. Genomathematics, Genomechanics
and Genochemistry

3.1. Represented Systems s [1-5]

Single-valued, time-irreversible system of
extended-deformable particles under action at a distance
Hamiltonian and contact non-Hamiltonian interactions, as
occurring in nuclear reactions, biological structures and
chemical reactions.

3.2. Main Mathematical Structure s [1-5]
Santilli Forward GenoUnit
P =P @>r>,p>,a”,9>,0%9%>,....) = 1/T> > 0, (51)
Santilli Backward GenoUnit
<T=<ICr<p a<9<0%Y,....)=1/<T >0, (52)

Condition for time-irreversibility

P < (53)
Forward GenoFields

F>@>,>,7),7”> =nx > (54)

Backward GenoFields
PR, <D, <A=<Ixn, (55)

Forward GenoProduct
A> M =Aa>xT>xM> € F>, (56)
P>a”=a">P=a"vA> P> 7
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Backward Genoproduct
“A<<m=Ax<Tx<me<F,

f<sfi==A<<[=<Av <AeF,

(58)
(59

Representation of forward extended-deformable particles
under non-Hamiltonian interactions

7> = Diag. (;%,é,nigf x el Erpadv..)” (60)
Forward GenoCoordinates
P> =rx[>ef>, (61)
Backward GenoCoordinates
“p=<[xreF, (62)
Forward GenoFunctional analysis
@) = F(P>) x > € B>, (63)
Backward GenoFunctional analysis
SR = FCP) x<Te< P, (64)
Forward GenoDifferential Calculus
7> =dr +rxT> x df, (65)
Backward GenoDifferential Calculus
<d<f =dr+rx<Txd<f, (67)
SOFCER _< p o 5CH (68)

<8<f a<r '

Santilli Lie-Admissible Theory
X5X) =X <X;—X; > X; = Cht,rp,...) X X, (69)
A(w) = 8w > A(0) < g-ixwxX, (70)

Santilli Forward Geno-Euclidean Geometry

E>(#,8%,P),8>tr.p,...) = (67 ,...) X 6,
(71)

P2 =2l s 85 > 7> e F?, (72)

8> *= 5"> tranp (73)
Santilli Backward Geno-Euclidean Geometry

<E(<f.< S;< Dl <8(t:7‘.p.¢.---) =< T(t‘r‘ p, Ip"") X

s, (74)
<§7¢ =<i p «< Sij << pe< F, (75)
<é~" < transp 6" (76)

Santilli Forward Geno-Minkowskian Geometry ( 4=

1,2,3,4)
B> &>, 97, 7): 87 = F0), a0 =t 7
7> (x,9,...) =T>(x,,...) Xn, (78)
272 =87 >, > 27 € P, (79)
7'7\> * ﬁ> transp (80)

Santilli Backward Geno-Minkowskian Geometry (pu =
1,2,3,4,)

FER<ASD: <= @F), <x,=<t, @8
<hi(x,v,...) =<T(xv,...) X, (82)
SR =M R <M, <V RES E, (83)
<fj g<transp 4 (84)
Santilli Forward Geno-Riemannian Geometry
@6, P g7 =T>(x,v,...) X g(x), (85)
2= > g7, >8> e 7, (86)
§> # g>transp (87)
Santilli Backward Geno-Riemannian Geometry
SRCER=g<D: <g=<T(v,...)xg(x), (88)
X2 =H R Gy <<V ERES E, (89)
<g w<transp g (90)
Santilli Forward Geno-Symplectic Geometry
&> = d>PK A> d>py 1)
Santilli Backward Geno-Symplectic Geometry
<C’l5 =< a<.r"< R< d<ﬁk (92)

3.3. GenoDynamical GenoEquations s [1-5]

Newton-Santilli Forward GenoEquation

azv>

>
m- > =

— F>SA(t,7,p) = [m X %‘ti]> — FS%>(¢,7,p) —
F¥$4>(t,7,p,...) = 0, (93)

Newton-Santilli Backward GenoEquation

< < 5= ~4F (t,7,p) =
=< [m X %]_m F(t,r,p)—<N4F(t,7,p,...) = 0, (94)
Forward Geno Variational principle
SR =8 @ > PPk — B > d78) = 0. 95)
Backward Geno Variational principle

<6<A =< 55 [ (S <= ASPR—<] << d<E) = 0. (96)
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Forward Hamilton-Santilli GenoEquations

ark 3H(7,P) ap A (.P)
G =t =151

EE o

Backward Hamilton-Santilli GenoEquations

dark  BH(.P) ap 6 (#.p)
Fr=50 St =—t5a1 09

9Pk

Forward Geno-Hilbert space /> with states |{)> > over the
isofield ¢>
GenoExpectation value of a Hermitean operator 4 on 4>
<A >=<P| < &> P> >e 99
Heisenberg-Santilli GenoEquation’

d

)

IR==AMN=A<A-A>A=Ax<T@W,...) x

A(#,p) - HEp) x T>@,...) x 4 (100)

Q
™

Forward Schrédinger-Santilli GenoEquation

B> > > >= B>, 9) x T>@, 6%,...) x |§> >= E> >
[}> >= E> x [> >, (101)

P> > [P >=—> > Z > >= —i x > x ;| >, (102)
Backward Schrédinger-Santilli GenoEquation

<<P| << H =< | x<T@P,89,...) x< H{FP) =
<< 1P| << E =<< | x< E, (103)

<P <<Pp=-<P| <<i<5fd=—ix<<P|fax<I
(104)

Forward Dirac-Santilli IsoEquation

@* > Pz > py — 1= >M> > 6>) > |psi> >= 0. (105)
Tt = Tu R P + 9 R 9,0 = 2> > i3, (106)

Backward Dirac-Santilli GenoEquation
<SPl < (P, <P, <Y <1 << 7R << &) = 0. (107)
Pt} =[P X%+ 7 K9] =<2<fjy =
2 X< 1)y, (108)

3.4. Comments and References

As it is also well known, all 20th century mathematical,
physical or chemical formulations are reversible over time.
Following research over half a century initiated during his Ph.
D. studies at the University of Torino, Italy, in the mid 1960s
[15, 17-23,4,5], R. M., Santilli has made the additional

By including the multi-valued (Section 4) and hyperstructural formulations
(Section 5), Lie-admissible equations (100) are so broad that it will take centuries
for their generalizations. For this reason,Santilli has requested in his will that his
tombstone should have the engraving

iA=A<H-H>A
below his name.

Outline of Hadronic Mathematics, Mechanics and Chemistry as Conceived by R. M. Santilli

historical discovery of the first and only known, axiomatically
consistent, generalization of 20th century mathematics as well
as of its covering isomathematcs into a form embedding
irreversibility over time in ordered forward and backward
units, in corresponding ordered forward and backward
products and, consequently, in all subsequent mathematical
structures, resulting in the new mathematics nowadays known
as Santilli forward and backward genomathematics with
corresponding physical and chemical theories for the
representation of irreversible processes.

Since the reversibility over time of 20th century theories
can be reduced to the invariance under anti-Hermiticity of the
Lie product between Hermitean operators, [a,b] = ab —
ba = —[a, b]", Santilli presented in 1967 [15] the first known
(p, q)-deformation of the Lie product (a, b) = pab — qba,
where p, q are scalars and the product ab is generally
non-associative. Following an intense search in European
mathematical libraries, Santilli discovered that the new
product verifies the axiom of Lie-admissibility by the
American mathematician A, A, Albert [16] in the sense that
the attached anti-symmetric product [a,b] = (a,b) —
(b, a) verifies the axioms of a Lie algebra.

Since spaceship during re-entry are notoriously irreversible
over time, Santilli was invited by the Center for Theoretical
Physics of the University of Miami, Florida, under NASA
support, where he moved with his wife Carla and newly born
daughter Luisa inAugust 1967, and published a number of
additional works in Lie-admissibility, including the first
known Lie-admissible generalization of Hamilton and
Heisenberg equations [17,18], nowadays considered at the
foundation of hadronic mechanics and chemistry, as well as
the first and only known Lie-admissible formulation of
dissipative plasmas surrounding spaceships during reentry
[19].

Santilli then spent seven years , from 1968 to 1974, at the
Department of Physics of Boston University, and then three
years, from 1974 to 1977, at MIT, during which tine he wrote,
in his words, Phys.. Rev of career-oriented papers nobody
reads. InSeptember 1977, Santilli joined Harvard University
and was invited by the DOE to study irreversible processes
because all energy releasing processes are irreversible over
time. In April 1978, Santilli published under his DOE support
his most important mathematical contribution [20] (see also
monographs [21]) in which he achieved a Lie-admissible
covering of the various branches of Lie’s theory, Egs. (69),
(70), including the most general known time evolution whose
brackets characterize an algebra, Eqs. (1000). It should be
indicated that the isotopies of Lie’s theory outlined in the
preceding section were derived by Santilli as a particular case
of the broader Lie-admissible theory of Ref. [20], and then
published in monographs [1].

Subsequently, Santilli discovered in paper [2] of 1993 that
the axiom of a numeric field, besides admitting a
generalization of the multiplicative unit, also admit the
restriction of the associative product to an ordered form to the
right and, separately,to the left. In this way, Santilli discovered
two additional classes of new numbers, today known as
Santilli forward and backward genoreal, genocomplex and
genoquarternionic numbers. In the seminal memoir [3] of



American Journal of Modern Physics 2015; 4(5-1): 1-16 7

1996 Santilli discovered two additional coverings of the
ordinary differential calculus and of its isotopic covering,
today known as Santilli forward and backward
genodifferential calculi, Egs. (65) to (68). Santilli called a
genotopy [20] the lifting of isomathematics into ordered
formulations to the right and to the left in the Greek sense of
inducing a covering of Lie’s axioms, Egs. (69), (70).

As it is well known, thousands of papers have been
published beginning from the late 1980s on the so-called
g-deformations of Lie algebras with product (a,b) = ab —
gba which are an evident particular case of Santilli
Lie-admissible product [15]. Whatit is lesser known, or not
admitted, all q-deformations did not achieve invariance over
time, thus being aftlicted by serious inconsistencies, since
they consisted of non-unitary theories formulated via the
mathematics of unitary theories. Santilli solved this problem
in 1997 by achieving the first and only known invariant
formulation of g- as well as of (p, q)-deformations [22].

We should indicate that Santilli’s conception of a genotopic
lifting of his preceding isomathematcs (indicated in Section 2
by “hat" on symbols plus the “arrow of time") is necessary to
achieve a consistent representation of irreversibility because
point-like particles can only experience action-at-a-distance
interactions that are reversible over time. Therefore, a simple
genotopy of 20th century mathematics based on the
conventional associative product would be axiomatically
inconsistent. Consequently, to represent irreversibility it is
first necessary to lift 20th century mathematics into
isomathematcs, with consequential representation of
extended-deformable particles via realizations of type (27) so
that extended particles can experience non-Hamiltonian
interactions needed for irreversibility. It is then necessary to
add irreversibility via the ordering of all products. It should
also be indicated that, when formulated via time-dependent
isounits, isomathematics can becomes genomathematics via
the identifications [(t,...) = [f(t,...) = P, I(-t,...) =
ft(=t,...) =<1,I(t,...) # I(—t), and the judicious addition
of ordered products,

Systematic studies on the Lie-Admissible treatment of
irreversible systems were presented in memoir [3] and
monographs [4]. Santilli’s subsequent memoir [23] of 2006
remains to this day the most comprehensive presentation of
Lie-admissible treatments of irreversibility at the classical and
operator levels. Monographs [5] of 2008 presented an update.
Paper collection [24[ presents all available independent
contributions in Lie-admissibility up to [1984. The
Proceedings of the Third International Conference on
Lie-admissible Treatment of Irreversible Systems [25] present
numerous additional independent contributions as well as
references for the five Workshops on Lie-Oadmissible
Algebras organized by Santilli at Harvard University, and for
the preceding two international conference in
Lie-admissibility, the first at the Université d’Orleans, France,
in 1981 and the second at the Castle Prince Pignatelli, Italy, in
1995 (see also the general review [14] and large literature
quoted therein).

As itis well known, there exists a large number of papers on
Lie-admissible algebras within the context of non-associative

algebras (see Tomber’s Bibliography [26] listing all
significant papers in the field up to 1986). It should be
indicated that, regrettably, these studies have no connection
with Santilli genomathematics since the latter deals with the
irreversible generalizations of all aspects of 20th century
mathematics.

4. Classical Hypermathematcs,
Hypermechanics and Hyperchemistry
4.1. Represented Systems s [1-5]

Multi-valued, time-irreversible systems of extended
-deformable particles or constituents under the most general
known Hamiltonian and non-Hamiltonian interaction, as

occurring for multi-valued universes or the structure of the
DNA.

4.2. Main Mathematical Structure s [1-5]
Basic HyperUnits and HyperProducts
P={iz3,..3=1/S

= (h<LSh. )=

(109)
(110)

Forward and Backward HyperProducts

A>B={Ax8 xB,AxS,xB,AxS83xB,...},I”>
A=A>P=4Ax1, (11)

A<B={AXR xB,AxhatR, xB,Ax R3 xB,...}<I <
A=-A<<[=1Ix4, (112

A =A%,B =Bt R =5t 113)

Classical hypermathematcs then follow as for
genomathematcs with multi-valued units, quantities and
operations.

4.3. Classical Hyper-Dynamical Equations s [1-5]

The same as those for genomathematics, but with
multi-valued hyperunits, quantities and operations.

Comments and References

The multi-valued three-dimensional (rather than
multi-dimensional) realization of genomathematics outlined
in Section 4 emerged from specific biological needs. The
Australian biologist C. Illert [27] confirmed that the shape of
seashells can indeed be represented in a three-Odimensional
Euclidean space as known since Fourier’s time, but proved
that the growth in time of a seashell cannot any longer be
consistently represented in a conventional, three-dimensional
Euclidean space, and achieved a consistent representation via
the doubling of the three reference axis.

Santilli [27,28] confirmed Illert’s findings because the
conventional Euclidean geometry has no time arrow and,
consequently, cannot consistently represent a strictly
irreversible system, such as the growth of seashells.
Additionally, Santilli proved thathis geno-Euclidean geometry,
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Eqgs. (71) to (73), is equally unable to represent the growth in
time of seashells despite its irreversible structure, however, an
axiomatically consistent and exact representation of the
growth of seashells was possible via the multi-valued
realization of the forward geno-Euclidean geometry, thus
beginning to illustrate the complexity of biological structures.

The multi-valued, rather than multi-dimensional character
of classical hypermathematics is indicated by Santilli as
follows [28] We perceive the growth of a seashell specifically
in three dimensions from our Eustachian lobes. Therefore, an
irreversible mathematics suitable to represent the growth of
sea shells must be perceived by us as being in three
dimensions. However; lllert has shown the need to double the
three Cartesian axis. Classical hypermathematics has been
conceived and structured in such a way that the increase of the
reference axes is complemented by a corresponding
multi-valued hyperunit in such a way that a classical
hyper-Euclidean geometry, when seen at the abstract level,
remains indeed three-dimensional as necessary to achieve
representation of biological structures compatible with our
sensory perception.

5. Hope Hypermathematics,
Hypermechanics and Hyperchemistry

Represented Systems

The most complex known multi-valued, time-irreversible
requiring extremely large number of data, such as the DNA
code [31-35].

Comments and References

Despite the preceding structural generalization of 20th
century mathematics, Santilliremained dissatisfied in view of
‘the complexity of nature, particularly of biological entities
because advances in the structure of the DNA are indeed
possible via classical hypermathematics, as we shall see in the
third collection of this series dedicated to chemistry (e.g., via
Santilli hypermagnecules), but any attempt at representing the
DNA code via any of the preceding mathematics can be
proved to be excessively restrictive due to the volume,
complexity, diversification and coordination of the
information.

Therefore, Santilli approved one of the most important
mathematicians in hyperstructures, T. Vougiouklis from
Greece, and asked for his assistance in further generalizing the
preceding mathematics via hyperstructures defined on
hyperfields, as necessary for applications implying
measurements, and formulated via hyperoperations (called
“hope") permitting the needed broadening of the
representational capability.

The above contact lead to the hypermathematics indicated
in this section as presented in Refs. [29-33] which is based on
Vougiouklis H, hyperaxioms and which mathematics, in
Santilli’s words, constitutes the most general mathematics that
can be conceived nowadays by the human mind.

Outline of Hadronic Mathematics, Mechanics and Chemistry as Conceived by R. M. Santilli

6. Isodual Mathematics, Mechanics and
Chemistry
6.1. Represented Systems

Single-valued, closed-isolated, time-reversible systems of
classical and operatorpoint-like antiparticles moving in
vacuum solely under action at a distance Hamiltonian
interactions, such as the stricture of antimatter atoms and
antimatter molecules [2,36-43].

6.2. Main Mathematical Structure [2,36-43]
Basic isodual unit
1% = -1t = -1, (114)
Isodual numeric fields
Fe(m%,x%,1%),n% =n x 14,0 x4 m?
=n%x (1%)_; x m? € F4,
n? = isodual! real, complex, quatern.! numbers, (115)

Isodual functional analysis

o) =frY) x 14 € F4 (116)
Isodual differential calculus
d%rd = (1)t x dr? = dr, (117)
LreD g AD, (118)
Santilli Isodual Lie theory
[Xu X;1¢ = (X, X X;—X; x X)) == —Ci’} X Xy, (119)
A% (w?) = eI xd 44(0) x ez X, (120)
Santilli isodual Euclidean geometry
E4(4, 69,14, 74 = (rdk), k = 1,23,
6¢ = Diag.(-1,-1,-1), (121)

@28 = pdi x5, x@ pdl = (rf + 13 +7) X 14 e F¢, (122)

Santilli Isodual Minkowskian geometry (# = 1,2,3,4,)
MA(x, 04, 1%): x4 = (), x% = ¢ = t x 19 = ~t, (123)
n? = Diag. (—-1,-1,~1, +c%4), (124)

x924 = (x# X7, X x¥)? = (¢ + x5 + x2 -t c®)x1% €
F4, (125)

Isodual Riemannian geometry, Santilli Isodual Symplectic
Geometry.

6.3. Isodual Dynamical Equations [2,36-43

Newton-Santilli [sodual Equation
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dd
m? x4 %:_a _ FdSA(td' rd,vd) =0, (126)

Isodual Variational Principle
§94% = 62 [*(pf x? ddrk — He x¢ d%t?) = 0. (127)
Hamilton-Santilli Isodual Equations without external terms

ddrdk _ ade(rd'pd)‘

ddp;(i _ ade(rd‘pd)
dded adp;(i ’

adtd —  gdpdk !

(128)

Isodual Hilbert space H? over C with states |1p? >= —<
) over C¢
Expectation value of a Hermitean operator A

< A4 >=< ] x A% X |ip >€ Cim (129)
Heisenberg-Santilli Isodual Equations

4 xt SE S A = (AxH - Hx A4, (130)
Schrédinger-Santilli Isodual Equations

HYE x4 [Pt >=E9xd [pd >=~Ex [y > (13D

p? x? |p? >= +i¢ x¢ 9, |yp? > (132)

Dirac-Santilli Isodual Equation
@™ x4 yd x? pd + i x4 m® x? ¢?) X |t >= 0. (133)
{Y/u YV}d = (Yu XV + Yau X Y,u)d =29 x4 ﬂ;‘fw (134)

Comments and References
In addition to the the study of irreversible processes and the

representation of extended-deformable particles, during his Ph.

D. studies of the md 1960s Santilli was interested to ascertain
whether a far away galaxy is made up of matter or of
antimatter. He soon discovered that none of the mathematics
and physics he had learned during his graduate studies was
applicable for a quantitative study of the problem considered
since, at that time, antimatter was solely represented in second
quantization, while the study of far away antimatter galaxies
requested their representation at the purely classical and
neutral level. In this way, Santilli initiated a solitary scientific
journey that lasted for half a century.

This occurrence created one of the biggest imbalances in
scientific history because matter was treated at all possible
levels, from Newtonian mechanics to second quantization,
while antimatter was solely treated in second quantization.
The imbalance originated from the fact that special and
general relativities had been conceived decades before the
discovery of antimatter and, therefore, they had no possibility
of representing antimatter at the classical and neutral (as well
as charged) level.

It should be stressed that the ongoing trend to extend the
application of special and general relativities to the classical
treatment of antimatter is afflicted by a number of serious
inconsistencies, such as the impossibility to achieve a
consistent representation of neutral antimatter, the

impossibility to reach a consistent representation of
matter-antimatter annihilation (evidently due to the lack of a
suitable conjugation from matter to antimatter), violation of
the PCT theorem and other inconsistencies that remain
generally ignored.

Being an applied mathematician by instinct and training,
Santilli knew that the imbalance was the result of a purely
mathematical insufficiency because the transition from matter
to antimatter is an anti-homomorphism. Consequently, the
description of antimatter required a mathematics which is
anti-homomorphic to conventional mathematics.

Santilli dedicated a decade to the search of the needed
mathematics for antimatter. Following an additional extended
search done at the Department of Mathematics of Harvard
University under DOE support in the early 1980s, Santilli
concluded that a mathematics suitable for the joint classical
and operator treatment of antimatter did not exist and had to
be constructed.

In the early 1980s, Since he had introduced the
isoproduct A X B = Ax TB,T > 0, Eq. (25). Consequently,
it was natural to introduce its negative-definite counterpart
which he called isodual and denoted with theupper index ¢,
namely AR?B=AxT8,T%=(THt<0 While
constructing the isotopies of 20th century mathematics
presented in Section 2, Santilli initiated the construction of
their isodual image but published no paper in the new
mathematics for over a decade.

This caution was due to the fact that, despite the lack of any
visible mathematical inconsistency, Santilli remained
skeptical on a mathematics based on a negative-definite
product is afflicted by known physical inconsistencies, such as
the violation of causality for negative time, energies and other
physical quantities.

A breakthrough occurred in paper [2] of 1993. During the
achievement of the broadest possible realizations of the
abstract axioms of a numeric field (of characteristic zero),
Santilli discovered that realizations with negative-definite
units were simply unavoidable. This lead to the discovery of
additional new numbers, today known as Santilli isodual real,
isodual complex and isodual quaternionic numbers occurring
for /4 = —1, Eq. (14), with isodual products (5), which are at
the foundation of the isodual mathematics of this section and
the additional numbers known as Santilli isodual iso- and
isodual geno-real, complex and quaternionic numbers which
are at the foundation of the isodual isomathematics and
isodual genomathematics of Sections 7 and 8m respectively
[2].

The discovery of isodual numbers is truly historical in our
view due to its far reaching implications. In fact, the discovery
established the existence of the desired isodual mathematics
as an anti-isomorphic image of 20th century mathematics for
the representation of antimatter. Additionally, the discovery
permitted the resolution of the problems of causality for
negative values of physical quantities.

To avoid insidious inconsistencies generally not seen by
non-experts in the field, the isodual map must be applied for
consistency to the fofality of quantities and their operations.
This lead to Santilli’s conception of antimatter as possessing it
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negative-definite physical quantities for time, energy,
momentum, frequency, etc, but such negative values are
referred to negative units of measurements. Consequential a
theory with negative time referred to negative units of time is
as causal as our reality with a positive time referred to positive
units, and the same holds for all other physical quantities.

Following the resolution of these basic issues, Santilli
published in 1994 his first paper [36] specifically devoted to
the isodual representation of antimatter. In mathematical
memoir [3] of 1996, Santilli achieved the first isodual
mathematical and physical representation of antimatter. In
paper [37] of 1998, Santilli achieved his first goal of the early
1960s, namely, a consistent classical representation of neutral
(as well as charged) antimatter.

By the early 1990s, Santilli had shown that isodual
mathematics represents all available experimental, data on
antimatter at the classical and operator level. Hence, he
initiated the second phase of his studies, namely, the
identification of new predictions for subsequent experimental
verification.

A breakthrough occurred at the 1996 First International
Conference on Antimatter help in Sepino, Italy [38]. By that
time, Santilli had shown that the only conceivable
representation of neutral antimatter required the conjugation
of the sign of all physical quantities (jointly with the
corresponding conjugation of their units of measurements).
Since photons are neutral, the application of the same
principle to light implies light emitted by antimatter, that
Santilli called isodual light, is physically different than light
emitted by matter in an experimentally verifiable way, e.g.,
because antimatter light is predicted to be repelled by a matter
gravitational field.

Santilli then passed to a deeper geometric study of the
gravitational field of antimatter. As indicated earlier, general
relativity was formulated decades before the discovery of
antimatter and, therefore, had no clue for the representation of
the gravitational field of antimatter bodies. In Ref.[39] of 1998,
Santilli conducted an in depth geometric study of antimatter,
and in monograph [40) of 2006, Santilli completed the
gravitational study of antimatter via the isodual Riemannian
geometry.

All these studies concluded with the prediction of
gravitational repulsion (antigravity) between matter and
antimatter at all levels of analysis, from the isodual
Newton-Santilli equations (26) to isodual second quantization.
These aspects will be studied in the second collection of this
series dedicated to hadronic mechanics.

Thanks to all the above advances, Santilli was finally in a
position to address his original main aim of the 1960s, namely,
ascertain whether a far away galaxy is made up of matter or of
antimatter. The preceding studies had established that the light
emitted by antimatter must have a negative index of refraction
that, as such, require concave lenses for its focusing.
Consequently, Santilli secured the construction of a
revolutionary telescope with concave lenses. About fifty years
following his original aim, Santilli finally published in 2013
[41[ measurements of the night sky with his new telescope

Outline of Hadronic Mathematics, Mechanics and Chemistry as Conceived by R. M. Santilli

showing images that can be solely due to light with a negative
index of refraction which light, in turn, can solely originate
from far away antimatter stars or galaxies (see also the two
independent confirmations [42,43]).

An intriguing aspect that should be of interest to pure
mathematicians is the conclusion of these studies illustrating
the power of new mathematics, to the effect that none of the
large numbers eof telescopes available nowadays can detect
antimatter starsor galaxies since they all have convex lenses.
Similarly, as humans evolved in a matter world, we will never
be able to see antimatter with our eyes since our cornea is
convex and, as such, it will disperse antimatter light all over
the retina.

Needless to say, isodual mathematics and its application to
antimatter have implications so intriguing that are stimulating
the participation of a large number of scientists as we shall
report in the second collection of this series

7. Isodual Isomathematics, Isodual
Isomechanics and Isodual Isochemistry

7.1. Represented Systems [2,36-43

Single-value, closed-isolated, time-reversible system of
classical or operator extended-deformable antiparticles with
action at a distance Hamiltonian and contact non-Hamiltonian
interactions, such as the structure of antimatter hadrons, nuclei
and stars, in the antimatter valence electron bonds and other
antimatter systems.

7.2. Main Mathematical Structure[2,36-43
Basic Isodual IsoUnit
1% = 1rd, pd, ad, 4,2 0%94,....) = 147474 < 0, (135)
Basic Isodual IsoFields

Fi(ad,Re, 1) 4d = n x [¢, 7 R4 md = A4 x T4 x 4 €

Fe, (136)

Isodual IsoCoordinates 72 = r x [ € F4,

Isodual IsoFunctional analysis f4(74) == f(7#%) x [? €
£,

Isodual IsoDifferential Calculus

dir? =dr —r? x T4 x di4, (137)
34fAE) _ pa 4 fUED
sard = 14X T (138)
Santilli Isodual Lie-Isotopic Theory
X0 X)% = X, R X; — X; R X))4 == =CE(r,p,...) X Xy,
(139)

Atw?) = éé{dxwdxid d Ad(od) %d é;idxwdxxd. (140)
Santilli Isodual Iso-Euclidean Geometry

Bi#4,64,1%),64(rd, p%, 0 ,...) =
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Pd(pd, pd
7¢ = Diag. (1/n},1/n3,1/n3)*,

a%,94,...) x 8, (141)
(142)

- . ~ -~ 7 2 2 2 £ i
P = (# RSy RENT = Ca gt x It e PO (43
1 n; N3

Santilli Isodual Iso-Minkowskian Geometry (u = 1,2,3,4)

429,44, [2): 2% = (29), 24 = 19 =t x 19, (144)
A¢xd,pd,...) = Pdxdyd,..) xy, (145
T4 = Diag. (1/n2,1/n,1/n3,1/n3)%, (146)

~ 2 2 2 2
pd2d _ (& A Qevyd o (KL X2 X 284d
R = (RF Ry X RY) ——(n—§+é+f§-—-t nﬁ) X

2 e Fe, (147

Santilli Isodual Iso-Riemannian Geometry

RA2%,§%,1%): g% = T9(x%,v4,...) x g(x), (148)
2= R4yl _Inixe P, (149)

Santilli Isodual Iso-Symplectic Geometry
o4 = drdk A dpg (150)

7.3. Isodual IsoDynamical IsoEquationf2,36-43

Newton-Santilli Isodual IsoEquation

4 oq %94
md dad_fd_FdSA(lepd) J—
(m x 228 — FO5A (r,pd) — FaNSA(rd,pd, ) = 0 = 0,
(151)

Isodual IsoVariational principle

SdAd = §d r (Be 4 od Jdpatrdk — gd Kd d"dfd) =0¢ =
0. (152)

Hamilton-Santilli Isodual IsoEquations
adfdk adﬁd(r "d) apk _ 5dﬁd(1‘!d‘ﬁd) 53
T = gagg 0 g = tza o (133)

Isodual iso-Hilbert space A% over C with states [)¢ >=
—< | over ¢
Expectation value of a Hermitean operator 4

<A >=<P|RALR|P >e C? (154)
Heisenberg-Santilli Isodual IsoEquation
14 R4 d?hatAdoverditt = [A )2 = (ARA-ARA)? =

'G)
Q»
= X)
L/
X

(AxT@,8P,...) x A, p) - A, ) x (3,

A4, (155)
Schrédinger-Santilli Isodual IsoEquation

(AP >)? =< P4 R ¢ = (AF,p) x T, P,...) x
[P >)? = —< 9| R4 B4 = —< 9| x B4, (156)

(B R 1P >)? =< P R% Bpa = —i x< P4 R 35, (157)
Dirac-Santilli Isodual IsoEquation

[ R7, R, —iKRMRE) R |Psi >)2 =0. (158)

{?;u}'v} = (Pu Xy +H X }’u)d =2¢%9 Tluw (159)

Comments and References

See monograph [40] with particular reference to the use of
the isodual isomathematics for the achievement of a grand
unification of electroweak and gravitational interactions
inclusive of matter and antimatter.

8. Isodual Genomathematics, Isodual
Genomechanics and Isodual
Genochemistry

8.1. Represented Systems [2,36-43

Single-valued, time-irreversible system of
extended-deformable antiparticles under action at a distance
Hamiltonian and contact non-Hamiltonian interactions, as
occurring in antimatter nuclear reactions, antimatter biological
structures and antimatter chemical reactions.

8.2. Main Mathematical Structure [2,36-43

Backward Isodual GenoUnit

[P = i>d(t>1'>, p>d' a>d'¢>d‘ 6>d1,’)>d, )= 1/T>d >
0, (160)
Forward Isodual GenoUnit
<df —<d i(<dr’<d p'<d a'<d 1p'<d a<dw' c) = 1/<drf- S
0, (161)
Condition for time-irreversibility
Pax <af (162)

Backward Isodual GenoFields
F>d(ﬁ,>d >, i>d) A>d = n % i>d,ﬁ>d >d T?l>d =774 x
724 x m>% e >4, (163)

Forward Isodual GenoFields

<Af(<df,<<df), <df=<d [xp <dfcd <dp =
—<d f x<d P x<d 7 €<¢ P, (164)
Backward Isodual GenoCoordinates
P24 =y x [>d g >4, (165)
Forward Isodual GenoCoordinates
<dp —<d [y g<d f, (166)
Backward Isodual GenoFunctional analysis
f>d(f‘>d) = f(?“>d) x [>4 g F>4, (167)
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Forward Isodual GenoFunctional analysis

<df"(<d7¢) = f(<d7'\.) x<dfed f (168)
Backward Isodual GenoDifferential Calculus
d>4>d = dr 4+ r x 7> x d>2, (169)
5>df>d(,a>d) af>d(f>d)
W=i>d X S (170)
Forward Isodual GenoDifferential Calculus
<4d<dp = dr 4+ r x<¢ T x d<?f, a171)
<d5<df(<df>) —<dd ix a<df(<d,a) (172)

<dz<dp g<ds ?

Santilli Isodual Lie-Admissible Theory

KX = (X, <X; ~ X > X)) =
—C (7, p e, .Y X Ky, (173)

Ad(wd) = éi(;wxi >d A(O) <Zd é~ixwxx’- (174)
Santilli Backward Geno-Euclidean Geometry

Bra(7> >4, Py §>d(t,7,p,1h,...) =

>4, r,p,,...) x 8, (175)

,,':>de = (,r">di >d Ssd > .f\.>dj =€ F>d, (176)
T>d * 'f>d transp (177)

Santilli Forward Isodual Geno-Euclidean Geometry

<dE(<d7A';<d 8;<d f). <d3(tl rl p' 'll), . ') =<d T‘(t' T, p' w' Tt
8, (178)
<d2dp _<di p o<d §; < <Wpe<dF, (179
<dfp <d transp (180)

Santilli Backward Isodual Geno-Minkowskian Geometry
(ﬂ = 1525314)

M>d(f>d,ﬁ>d’1‘>d): £>d = (£>du)' xid =>4, (181)
74 ,...) =T ,...) X7, (182)
g>a2d = p>di >d ad 5d g>dv g f>d, (183)
ﬁ>d * ﬁ>d transp (184)

Santilli Forward Isodual Geno-Minkowskian Geometry
(mu = 112;314)

<dM(<d£'<d ﬁ'<d i). <d£ = (i.\[,t)' <dx4 —<d t, (185)
<4h(x,v,...) =<4 T(x,v,...) X1,

<dp<d2d <dp p d

(186)
<dﬁuv <d  <vg e<d F, (187)
<d.,"\ __#_<d transp ﬁ (188)

Santilli Backward Isodual Geno-Riemannian Geometry
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R4 (@74, g>4, P g7 = T>%(x,v,...) x g(x), (189)

£2d2> . ,>dpd g\isl >d >dv ¢ fi>d (190)
T>d * T>d transp (191)

Santilli Forward Isodual Geno-Riemannian Geometry

SAR(F42< 9,54 <dg =<4 T(x,v,...) x g(x), (192)
pedd Sdp <l <Agy, <t <WRe P, (193)

<dg\ ¢<d transp g (194)

Santilli Backward Isodual Geno-Symplectic Geometry

63>d = d’">drﬂ,>dk ;\‘>d &>dﬁ§d (195)
Santilli Forward Isodual Geno-Symplectic Geometry
<Az =<d d<dip<d p<d Ci<dﬁk (196)

8.3. Isodual GenoDynamical GenoEquations [2,36-43

Newton-Santilli Backward Isodual GenoEquation

@%>% _ rsdsa - d4v154
apa — 2Pt p) = mx P -

FS4>d(t, 7, p) — F¥$4>4(t,7,p,...) = 0, (197)

ﬁl>d

Newton-Santilli Forward Isodual GenoEquation

<d7’r‘l <
3<% <qsa <d
~<dg<a; F(t,r,p) =<¢[mx
dv

By <dSAE (2,7, p)~<WNAF(t,7,p,...) = 0, (198)

) X

Backward Isodual Geno Variational principle

§>44>d = §>d [ >d Bt > d>ap>dk - fd >
&>df>d) = (. (199)

Forward Isodual Geno Variational principle

<df<df —<d p<d f”‘ (<9p, <<@ d<dph_<df] <<d g<dpy =
0. (200)

Backward Isodual Hamilton-Santilli GenoEquations

a>dp>dl EEIGED) &>d;’j>d 30(7:9)
d>dg>d =E s 245 [a>df>d] = —[T}Zd. (201)

Forward isodual Hamilton-Santilli GenoEquations

<dg<dek 4 BHGH)
<dg<ds ~

<da<dﬁ Eﬁ(f,ﬁ)
apy, 1 <dhatd<’¢;f] =" 5ok 1 (202)

Heisenberg-Santilli IsoDual GenoEqutions
IR =AM =A<A-A>A=4x<T(,0),...)x
A(#,8) — AF,9) x T>@,89,...) x 4 (203)
Schrddinger-Santilli Backward Isodual GenoEquations

74 >4 1> >= B>2(p, 5) x T>4(p, 0,...) X [P> >=
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B> 5a (P4 >= B4 x |74 >, (204)

P> |74 >= =P > 4P >=—i x 7 x 0:(7¢ >,
(205)

Schrddinger-Santilli Forward Isodual GenoEquations

<Pl <t <H =<4 P| x<d T, d,...) x< HF p) =

<S4 3h| << B =<<@ )| x<4 E, (206)

<di <d

<<d Pl<<d p = —<d P| <4 545 =

—i x<<d j|<dg x<d | (207)

Dirac-Santilli Backward Isodual IsoEquation
(nn>duv >d }',\u>d >d g2 _d > > > Cn>d)

> |psi>? >= 0. (208)

FipY e = [uR P+ 7 K7l = 224 > 25, (209)
Dirac-Santilli Forward Isodual GenoEquation

<<d 1/1A|< (<4p, <<d fu<d <dwj_<ped <djcd <g

= 0. (210)

Ut} =<2 [P R Py + Py RPu] =% 2 < iy
=2 x<d Dyvs (211)

Comments and References

See memoir [20] which constitutes the most comprehensive
study of antimatter in irreducible conditions available at this
writing.

9. Isodual Classical and Hope Isodual
Hypermathematics

Isodual Hyper-Formulations are generally considered to be
part of the Hyper-Formulations of Section 4 and 5 because the
classification of ordered sets of hyperunits includes isodual
realizations, as illustrated in the paper [44] and references
quoted therein.

10. Simple Method for the Construction
of Regular Hadronic Mathematics

10.1. Introduction [4.5]

Hadronic formulations are called regular when the
structure quantities Cj; of Santilli’s Lie-Isotopic algebras, Egs.
(3), Lie-admissible algebras, Egs. (69) (zzz) and their isoduals,
Egs. (119-, (139), are constant. When the structure quantities
are functions of the local variables C i’}(t, r,p,9,09,...),
hadronic formulations are called irregular.

In this section, we shall review a very simple method for the
construction of regular hadronic formulations via the mere use
of non-unitary transformations of the corresponding

)
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conventional formulations, We shall then review the
axiomatic consistency of hadronic formulations by showing
that Santilli iso-, geno-, hyper-units and their isoduals are
invariant under the transformations, thus implying the crucial
invariance over time of extended-deformable shapes and their
non-Hamiltonian interactions that are invariantly represented
precisely nwith such generalized units.

No method exists to our knowledge at this writing (June
2015) for the construction of irregular hadronic formulations
via maps of conventional formulations and, therefore,
irregular hadronic formulations characterize a new axiomatic
structure still mostlyunexplored.

10.2. Simple Construction of Regular Iso-Formulations

[4.5]

A simple method has been identified in Refs. [4,5] for the
construction of the Lie-Santilli isotheory, all its underlying
isomathematics and all physical methods This method is
important because it permits a simple implementation of
conventional models into their isotopic covering without the
need for advanced mathematics. The method consists in:

(i) Representing all conventional potential interactions with
a Hamiltonian H(r,p) and all extended-deformable shapes
and their non-Hamiltonian interactions and effects with
Santilli’s isounit [(r, p,y, 3, ./..);

(ii) Identifying the latter interactions with a nonunitary
transform

Uxut=rF=1 (212)

and

(iii) Subjecting the totality of conventional mathematical
and physical quantities and all their operations to the above
nonunitary transform, resulting in expressions of the type

[-»T=UxIxUt=1T, (213)

a-»d=UxaxUt=axUxUt=axl,a€F, (214)
et o Uxer xUt =xel* = (eHT)x [, (215)

AXB->Ux(AXB)xUt=WUxAxUY) x (Ux
UH-1x (UxBxU" =A4ARB, (216)

[X0.X;1 - U % [XX;] x UT = [Xii:Xj] = U x (Cfj x X;) X
Ut = Ci R By = €l x R (217)

<Y X > U x< | x [ >x Ut =<9 x Ut x (U x
UNIxUX P> (UxUD) =<P| R P >x1, (218)

Hx|p>>UxHXp>)=UXHxU x(Ux
UN™x (Ux [y >) = AR P >,etc. (219)

Note that serious inconsistencies emerge in the event
even ’one’ single quantity or operation is not subjected to the
above non-unitary map. In the absence of comprehensive
liftings, we would have a situation equivalent to the
elaboration of quantum spectral data of the hydrogen atom
withisomathematics, resulting in large deviations from reality.
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The construction of isodual iso-formulations is simply done
via Santilli’s isodual map, namely, via the simple
anti-hermitean image of the above isotopic formulations.

10.3. Axiomatic consistency of Iso-Formulation [4.5]

Let us recall that Santilli’s central assumption is the
representation of extended-deformable shapes and their
non-Hamiltonian interactions via the isounit. Therefore, any
change of the numerical value of the isounit implies the
inability to represent the same system over time, besides
activating the Theorem of Catastrophic Mathematical and
Physical Inconsistencies of Non-Canonical and Non-Unitary
Theories when formulated via the mathematics of
conventional canonical and unitary theories,respectively [23].

It is easy to see that the application of an additional
nonunitary transform

wWxwt#], (220)

to the preceding expressions causes their lack of invariance,
with consequential activation of the theorem of catastrophic
inconsistencies. This is due to the change of the value of the
basic isounit under additional non-unitary transformations

I-l"=wxIxwt=], (221)

However, any given nonunitary transform can be identically

rewritten in the isounitary form [3]
Wxwt=[ w=Wx 7“1/2’ (222)
WxWt=WWt=wtxw =1, (223)

under which we have the invariance of the isounit and
isoproduct [7]

[-P=WRIRWt =1, (224)
ARB->WRUAKBKWt=WxTxAxTxWhH x
PxXWHIXTXxWXD)IxWxTxBExTxWh =

AxWHxTxW) IxB =AxTxB =4RE, etc.
(225)

from which the invariance of the entire isotopic formalism
follows.

Note that the invariance is ensured by the numerically
invariant values of the isounit and of the isotopic element
under non-unitary-isounitary transformations,

I-0=1i,

(226)

AXB-A'R'B'=A'"XB', (227)
in a way fully equivalent to the invariance of Lie’s theory and
quantum mechanics, as expected to be necessarily the case due
to the preservation of the abstract axioms under isotopies. The
resolution of the inconsistencies for non-invariant theories is
then consequential.

The proof of the invariance of Santilli
iso-formulations is an interesting exercise for non-initiated
readers.

isodual’
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10.4. Simple Construction of Regular GenoMathematics
and its IsoDual [4.5]

An important feature of the Lie-Santilli genotheory is its
Jform invariance under the appropriate geno-transformations
in a way fully similar to the invariance of the mathematical
and physical structures of quantum mechanics under unitary
transformations.

This feature can be shown via a pair of non-unitary
transformations

VxVt£ILWxWtLVxWtL,WxVt21, (228)

under which we have the characterization of the forward and
backward genounits and related genoproduct

I->VXIxW?t=]>eqno (229)
AXB-VXx(AXxB)xWt=4>>B> (230)
I->WxIxV=<], (231)
AXB WX (AXxB)xV =<A<<B/ (232)

10.5. Axiomatic Consistency of GenoMathematics and its
Isodual [4.5]

It is easy to see that the above dual non-unitary
transformations can always be identically rewritten as the
geno-unitary transforms on geno-Hilbert spaces over complex
genofields,

VxVt£1,V=VxRY2y x
Yt =<P << Pt =<Pt <<V =<1, (233)

WXWY£ LW =W>x8Y2 xwt=w>> W>t =
w>t > w> =1>, (234)

under which we have indeed the following forward
geno-invariance laws [3j]

P =w>>P>wt=7 (235)

ASB-W>>UA>B)>Wt=4>F8, (236)
B> |>=F>>|>=Ex|>>W>E>|>=80">
| >'=W>>E>>|>=Ex|>, (237)

with corresponding rules for the backward and classical
counterparts.

The above rules confirm the achievement of the invariance
of the numerical values of genounits, geno-products and
geno-eigenvalues, thus permitting physically consistent
applications.

The invariance ofthe isodual geno-formulations can then be
proved via the isodual map applied to the above procedure.

11. Open Mathematical Problems

Among a predictable large number of basic open problems,
we list for the interested readers the following ones:
# Study methods to transform nonlinear models on
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conventional spaces into isolinear models on isospaces over
isofields;

# See whether simple solutions of isolinear equations on
isospaces over isofields provide at least 4" solution of their
nonlinear projection on conventional spaces over
conventional fields;

# Study the removal of divergencies in quantum mechanics
and scattering theories (Footnote 2) by isomechanics on an
iso-Hilbert space over an isofield.

# Study the regular and irregular isorepresentations of the
Lie-Santilli isotheory;

# Study Santilli isoMinkowskian geometry via the
machinery of the Riemannian geometry, yet lack of curvature
39);

# Study the Lie-admissible theory in Santilli’s sense, that is,
as a generalization of Lie’s theory elaborated via
genomathematics;

# Study Santilli geno-Euclidean, geno-Minkowskian and
geno-Riemannian geometries where irreversibility s
embedded in the non symmetric character of the metric [23];

# extend the Tsagas, Ganformina-Nunez isotopology to the
genotopic form and their isoduals.

Research funds are available from the R. M. Santilli
Foundation for partial support of research in the above listed
and related open problems in hadronic mathematics.
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Abstract: We study Santilli’s isomathematics for the generalization of modern mathematics via the isomultiplication
a R a=abT andisodivision a £ b = %f, where the new multiplicative unit [ # 1 is called Santilli isounit, 7] = 1, and T is

the inverse of the isounit, while keeping unchanged addition and subtraction, , In this paper, we introduce the isoaddition
aTh=a+b+0 and the isosubtraction a=bh = a — b — 0 where the additive unit 0 # 0 is called isozero, and we study
Santilli isomathem,atics formulated with the four isooperations (¥, <,%,%£). We introduce, apparently for the first time, Santilli’s
isoprime theory of the first kind and Santilli’s isoprime theory of the second kind. We also provide an example to illustrate the

novel isoprime isonumbers.

Keywords: Isoprimes, [somultiplication, Isodivision, Isoaddition, Isosubtraction

1. Introduction

Santilli [1] suggests the isomathematics based on the
generalization of the multiplication x division + and
multiplicative unit 1 in modern mathematics. It is
epoch-making discovery. From modern mathematics we
establish the foundations of Santilli’s isomathematics and
Santilli’s new isomathematics.
isoprime theory of both first and second kind and isoprime
theory in Santilli’s new isomathematics.

L.1. Division and Multiplican in Modern Mathematics
Suppose that
ara=a"=1, (1)

where 1 is called multiplicative unit, 0 exponential zero.
From (1) we define division + and multiplication x

a+b=%,b;=0,axb=ab, ©)
a=ax(a+a)=axa’=a (3)

We study multiplicative unit 1

axl=a,a+l1=a,1+a=1/a 4)

We establish Santilli’s .

(+1)n - 1’ (+l)a/b = 1, (_l)n = (—1)", (“l)a/b = (_l)n/b (5)

The addition +, subtraction —, multiplication x and
division + are four arithmetic operations in modern
mathematics which are foundations of modern mathematics.
We generalize modern mathematics to establish the
foundations of Santilli’s isomathematics.

1.2. Isodivision and Isomultiplication in Santilli’s
Isomathematics

an

We define the isodivision % and isomultiplication x [1-5]
which are generalization of division + and multiplication x in
modern mathematics.

0=0, (6)
where [ is called isounit which is generalization of
multiplicative unit 1, 0 expeoenential isozero which is

generalization of exponential zero.
We have

a;b=1‘-;1,b=o,a>“<b=ar‘b, )

Suppose that
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a=a%(ata)=akad’ =afi=a. €))
From (8) we have
7 =1 ©9)

where T is called inverse of isounit 7 .
We conjectured [1-5] that (9) is true. Now we prove (9). We

study isounit i

akl=a, atl<a, I3a=a’=1/a, (10)

@I = LD = L1 = Iy D = p¥T (D

Keeping unchanged addition and subtraction, (+, -, %,+)
are four arithmetic operations in Santilli’s isomathematics,

which are foundations of isomathematics. When [ =1 , it is
the operations of modern mathematics.

1.3. Addition and Subtraction in Modern Mathematics

We define addition and subtraction

x=a+b, y=a-b (12)
a+a-a=a (13)
a-a=0 (14)

Using above results we establish isoaddition and

isosubtraction

1.4. Isoaddition and Isosubtraction in Santilli’s New
Isomathematics

We define isoaddition + and isosubtraction =.

atb=a+b+c, atb=a-b-c, (15)
a=at+ata=a+c-c,=a (16)

From (16) we have
¢ =c (17)

Suppose that ¢ =c, = 0,

where 0 is called isozero which is generalization of addition
and subtraction zero
We have
aib=a+b+0, a2b=a-b-0 (18)
When 0=0 , it is addition and subtraction in modern
mathematics.

From above results we obtain foundations of santilli’s new
isomathematics

R=xPx, +=+0+; t=xl+, 2=-0-jakb=abT,atb=a+b+0;

Q

aka=d'T,ata=2a+0;ata=I=l,a2a=-0=0;TI =1.

(%, 2,%,%) are four arithmetic operations in Santilli’s new
isomathematics.

Remark, aX(b+c)=ax(b+c+ 6) , From left side we have
ax(b¥c)=axb+ax++axc)=ax(b+++c)
=ax(b+ 0+ c), where ¥ =0 also is a number.
ax(b2c)=a%(b-c-0).From left side we have
ax(b2c)=axb-ax2-axc)
=ax(b-2-c)=ak(b-0-c) , where 2=0 also is a
number.

It is satisfies the distributive laws. Therefore +,2,% and
% also are numbers.

It is the mathematical problems in the 21st century and a
new mathematical tool for studying and understanding the law
of world.

o a s A A a N
+b=Z[’a:b=a..b-0;a=axa+a=a,a=a+a2a=a;

(19)

2. Santilli’s Isoprime Theory of the First
Kind

Let F(a,+,x) be a conventional field with numbers a

equipped with the conventional sum a+bEF
multiplication abEF and their multiplicative unit 1EF .

Santilli’s isofields of the first kind F = F(4,+,%) are the
rings with elements

a

a=al (20)
called isonumbers, where aE F , the isosum
G+b=(a+b)l 1)

with conventional additive unit 0 =07 = 0,a+0=0+a=a,

V4EF and the isomultiplications is

a%b = aTh = alTh] = (ab)! . (22)
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Isodivision is

(23)

Q>
b >
S
]
>
> i

We can partition the positive isointegers in three classes:
(1)The isouniti 1 ;

(3)The isoprime numbers: i, é, 3, '7,- ..

Theorem 1. Twin isoprime theorem

A

B=P+2. (24)

Jiang function is

Jy(@)=II(P~2) =0, (25)

whre w= 2I'IPP is called primorial,

"

Since J,(w) = 0, there exist infinitely many isoprimes P

such that }A’, is an isoprime.
We have the best asymptotic formula of the number of
isoprimes less than N

Jy(@w N

7,(N,2) ~ N
2(,2) ¢*(w) log’ N

(26)

where

A A

BB =

>

2o

+d, B =B +3%d o b =B+ (k-D3d, (B, d) = ].

¢(w) = 2ISIP(P -1).

Let [=1.From (24) we have twin prime theorem

R=P+2 27
Theorem 2. Goldbach isoprime theorem
N=P+B (28)
Jiang function is
L@=ne-2ynL£zl.o (29)
3sP N p_2

Since J,(w)= 0 every isoeven number N greater than

4 isthe sum of two isoprimes.

We have
w (W, 2)~ @) N (30)
¢°(w) log" N
Let [=1.From (28) we have Goldbach theorem
N=PR+P, 31

Theorem 3. The isoprimes contain arbitrarily long
arithmetic progressions. We define arithmetic progressions of
isoprimes:

(32)

Let 7 =1.From (32) we have arithmetic progressions of primes:

R.B, =P +d,P, = R +2d,+, P, = B+ (k=1)d, (B, d) =1.

We rewrite (33)

B=25-K P =(G-DRh-(j-2)R3s sk

Jiang function is

Jy(@) = P -1 - 5P, (39)

x(P) denotes the number of solutions for the following
congruence

,,Ii[(j -1)g, - (j-2)g,] = 0(mod P), (36)

(33)

(34)

where ¢, =1,2,---,P-1;q,=1,2,.-,P-1.

From (36) we have
Jz(w)=3IPI (P=DIL(P-1)(P-k+1)=0. 37
We prove that there exist infinitely many primes £ and

&, such that 7,---,B, areall primes forall k=3.
We have the best asymptotic formula

7 (N,3)=[{(j-DP, ~(j-2)B =prime,3 s j < k,B, P, < N}

Theorem 4. From (33) we obtain

@t N1 A e e 23V I (38)
2¢F(w) logt N 22P<k(P-1)f" kP (P-1)" log"* N’
B=R+b-R, P =R+(j-3)H-(j-3)R.4sjsk (39)
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Jiang function is

J(@) = 0P =P, (40)

x(P) denotes the number of solutions for the following
congruence

11ig, +(j-3)g, ~(j -] = Omod P), (41)

where ¢, =1,2,---,P-1,i=1,2,3.
Frome (41) we have

J, ()= gspllk_l)(P ) “ _rgsP(P DIP=-1? = (P-2)k-3)]=0. (42)
We prove there exist infinitely many primes £,,F,and P We have the best asymptotic formula
such that F,,---,F, are all primes forall k=4,
N4 . . ined< i<k P.P.P J (@)t N
7w (N, 8) =|[{P, +(j=3)P, ~(j -3)B, = prime,4 = j < &k, R, P, P, = N} i@ TN
_1 pe3 P[(P-1 - (P-2)(k-3)] N® 43)
6 25P<(k-1) (P -1)}2 G-psp (P-1)" logt N
The prime distribution is order rather than random. The = where
arithmetic progressions in primes are not directly related to
ergodic theory, harmonic analysis, discrete geometry and _ =2 )
combinatorics. Using the ergodic theory Green and Tao prove X(P)= P
there exist arbitrarily long arithmetic progressions of primes -1 it Pl

which is false [6,7,8,9,10].
Theorem 5. Isoprime equation

B =P+2=PRi+2. (44)
Let [ be the odd number. J iang function is
P-1.0. (45)

Jr(@) =11 (P—2)Ir

-
AiP-2

Since J,(w) = 0, there exist infinitely primes £, such that
P, is aprime.

We have
my(N,2) 208 N (46)
¢ (w) log" N
Theorem 6. Isomprime equation
B =By +2=Pl+2. 47
Let [ be the odd number. J iang function is
(48)

Jy(@) = II(P-2- X(P)),

atrb= (a/b)f, a =ak--

Theorem 7. Isoprime equations
B =P 4+6,P, =P +12,P, =P* +18 (51)

Let 7 =1.From (51)we have

-2
If (——3—{-) = -1, there infinitely many primes £ such that

P, is a prime. If (:-g—]—)=1,./2(3)=0 , there exist finite

primes £, suchthat P, isa prime.

3. Santilli’S Isoprime Theory of the
Second Kind

Santilli’s isofields of the second kind £ = F* (a,+,%x) (that

is, aEF isnotliftedto 4 =al) also verify all the axioms of
a field.
The isomultiplication is defined by
akb=alb. (49)

We then have the isoquotient, isopower, isosquare root, etc.,

% a (ntimes) = a”(TA)"'l,ai’2 =a?(H)"”. (50)

B =P +6,B, =P +12,P, =P’ +18,  (52)

Jiang function is
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(@) =2 [[P-4-(CD-(D- (D) =0, (I

where (_7?), (_T?) and (_72) denote the Legendre symbols.

Since J,(w)= 0, there exist infinitely many primes £
suchthat P, P, and P, are primes.

3
(N2~ 2w N (54)
84" (w) log" N
Let T =5. From (51) we have
P, =5R*+6,P, =5F +12,P, =5F* +18.  (55)

Jiang function is
~30. -15. -10
J, () = 871511)(1’-4—(-7)—)_(7)-(—}-)—-)) »0. (56)

Since J,(w)= 0, there exist infinitely many primes A
such that P,, A, and P, are primes.

We have
”“(N’Z)N%%mg]\jﬁ (57
Let T =7.From (51) we have
P, =TR +6,P, =TR +12,P,=TR* +18.  (58)
We have Jiang function
J,(5)=0. (59)

There exist finite primes £ such that P,, P, and P, are

primes.
Theorem 8. Isoprime equations

P, = B} 430, = P} +60,P, = P! +90, P, = P +120. (60)
Let T'=7.From (60) we have
By, =TP? +30,P,=TP? +60,P, = TP +90, P, = 7B +120 (61)

Jiang function is

7,(N,3)=|{B, B, : B, P, < N; P, = prime}| ~

Theorem 10. Isoprime equation
P =P%(P} +b)~b (70)
Let T=11] iang functionis

Ja(a))=kl1}sp(P2-3P+3+x(P));=O (71

—210j

—F_)) =0, (62)

4
Jz(a))=48]£IP(P—3——Z (

=

Since J,(w)= 0, there exist infinitely many primes £
such that P, A, P, and P, are primes.

We have
”SW’”""{'%%& =@
Let 727 bethe odd prime. From (60) we have
B =P +30(k -1),k = 2,3,4,5. (64)
Jiang function is
Jy(@) =8 IL(P=5-2(P)=0.  (65)

. 4 307
If PIT, x(P)=4; x(P)=), (%) otherwise.
J=1
Since J,(w)= 0, there exist infinitely many primes A
such that P, B, P, and P, are primes.

We have
4
m (N2~ DY N _ (66)
16¢° (w) log” N
Theorem 9. Isoprime equation
P, =P,%(P +b)-b. (67)

Let T=1 Jiang function is

J (@)= kgsP(Pz +3P+3-4(P)) =0, (68)

where x(P)=-P+2 if P|b; x(P)=0 otherwise.

Since J;(w)= 0, there exist infinitely many primes F
and P, suchthat P, isalso a prime.

The best asymptotic formula is

J, (@) N

oo N (69)
4¢° (w) log' N

where y(P)=P-2 if P|b; x(P)= (——;) otherwise.

Since J;(w) =0, there exist infinitely many primes £
and £, suchthat P, is also a prime.
The best asymptotic formula is
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m,(N,3)= (B, B, : B, P, < N; P, = prime}| ~

Theorem 11. Isoprime equation

P = PP +1)-1. (73)
Let T=1. Jiang function is
S(@)= 1‘;1},(192 ~3P+4)=0 (74)

Since J,(w) =0, there exist infinitely many primes F
and P, suchthat P is also a prime.
The best asymptotic formula is

7,(N,3)={R,P, : B,P, = N; P, = prime}}

2
- éﬁgfg{g"ﬁ (75)
4. Isoprime Theory in Santilli’s New
Isomathematics
Theorem 12. Isoprime equation
B =PRiP =PB+P+0. (76)
Suppose 0=1.From (76) we have
B =P+P+1. (77)
Jiang function is
Jy(w) = 3ISIP(PZ ~3P+3)=0. (78)

Since J,(w) =0, there exist infinitely many primes A
and P, suchthat P, isalso a prime.
We have the best asymptotic formula is

J=a k(b ie)ia, 3(b,20)=al® +c¢+0)+0+a,/T(h,~c,-0).

If =1 and 0=0,then y=7.

Let 7=2 and 0=3 .
isomathematical subequation

From (85) we have the

P =2a/(b +c +3)+3+a,/2(b,~c, -3). (86)

Let 7=5 and 0=6 .
isomathematical subequation

From (85) we have the

Py =5a,(b+c,+6)+6+a,/5(b,~c,-6). (87)

-]3 (Cl))(l) N2 (72)
66° (@) log® N
2, (N,3) ~ 2w _N (79)

2¢°(w) log® N~
Theorem 13. Isoprime equation
B =(BRi)X(B22)+ P, =T[R ~2+0)*]+P +0 (80)

Suppose T=6 and 0=4.From (80) we have

P, =6(P*-36)+P, +4 (81)
Jiang function is
Jy(w) = 3HP(P2 —3P+2)=0. (82)

Since J;(w) =0, there exist infinitely many primes £
and P, suchthat £ isalso a prime.
We have the best asymptotic formula is

2
my(N,3)~2@D8 N (g
4¢°(w) log' N
5. An Example
We give an example to illustrate the Santilli’s
isomathematics.
Suppose that algebraic equation
y=ax(b +¢)+a, +(b,-c,) (84)

We consider that (84) may be represented the mathematical
system, physical system, biological system, IT system and
another system. (84) may be written as the isomathematical
equation

(85)

Let 7=8 and 0=10 . From (85) we have the
isomathematical subequation

Py =8a,(b +c, +10)+10+a,/8(h, —c, ~10) (88)

From (85) we have infinitely many isomathematical

subequations. Using (85)-(88), T and 0 we study stability
and optimum structures of algebraic equation (84).
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Abstract: In this article are given definitions definition for measurable is-functions of the first, second, third, fourth and fifth
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and the inverse. They are given conditions for the isotopic element under which the corresponding is-functions are measurable.
It is introduced a definition for equivalent iso-functions. They are given examples when the iso-functions are equivalent and
the corresponding real functions are not equivalent. They are deducted some criterions for measurability of the iso-functions of
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1. Introduction a=al
Genious idea is the Santilli’s generalization of the basic With isoproduct
unit of ‘quantum mechanics into an integro-differential . . . L
operator [ which is as positive-definite as +1 and it depends axb =arb = a;?b; . ab% = ab.
of local variables and it is assumed to be the inverse of the
isotopic element T If a# 0, the corresponding isoelement of i will be
X 1 denoted with @~ tor I \ 4.
+1>0-I(t,r,p,a,E, ) = 7 >0 With Fg we will denote the field of the is-numbers @ for
which a € R and basic isounit /3.
and it is called Santilli isounit. Santilli introduced a In [1], [3]-[12] are defined isocontinuous isofunctions and
generalization called lifting of the conventional associative  isoderivative of isofunction and in [1] are proved some of
product ab into the form their properties. If D; is an isoset in Fg, the class of

R isofunctions is denoted by FCp and the class of
ab - azb = aTh - \ . . : =
isodifferentiable isofunctions is denoted by FCp, , with the

Called isoproduct for which same basic isounit [ = -;:, it is supposed
. 1. R 1 ,
IAaz%Ta=afI=a’r?=a TGCI(Dl),T>OlTLDl.

For every element a of the field of real numbers, complex Here Dy is the corresponding real set of D,. Iff > an

numbers and quaternions. The Santilli isonumbers are defi ~independent variable, then the corresponding lift is T if f
ned as follows: for given real number or complex number or  is real-valued function on D, then the corresponding lift of
quaternion a, first kind is defined as follows
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= (t075) @)
T(x) T(x)

and we will denote it by f™M.
In accordance with [1], the isodifferential is defined as
follows

d() = T(x)d().

Then
d®) = T(d®@) = T()d (75) = T() (% -
T (x) T (x)
?Z(x) dx ( T(x))dx"

a(7®) = 1@ (@) = T (12) =
(r@ - 52 dx.

In accordance with [1], the first is-derivative of the is-
function £ is defined as follows

1 d(fw)
d(fr@®) 7d@ = i@

_ T — £ () T"(x)
T2(x) = xT ()T (x)

(M @)2 =

When T(x) = 1, then

(@)’ =rw.

Our aim in this article is to be investigated some aspects of
theory of measurable iso-functions. The paper is organized as
follows. In Section 2 are defined measurable iso-functions
and they are deducted some of their properties. In Section 3
is investigated the structure of the measurable iso-functions.

2. The Definition and the Simplest
Properties of Measurable Is-Functions

We suppose that A is a given point set, T: 4 — R,
T(x) >0 for every x€A, T, >0 be a given constant,
f:A — R bea given real-valued function. With f we will
denote the corresponding is-function of the first, second,
third, fourth and fifth kind More precisely,

LI =® = ), when f is an is-function of the first

T(
kind.
2. fx) =fAx) = %2, when z=— ‘1“( 5 € Aforx € A, whenf
is an is-function of the second kind.
(i)

tx) = }(3) = &/ X i ig~
3. f(x) = (%) T T € Aforx € A, when fis an is
function of the third kind.
4. fx) =fA\(x) = f(xT(x)), when xT(x) €A for x€A,

when f is an is-function of the fourth kind.
= fVv = X o
5.t =f ® f('r()) T(.x_)EAfoerA, when f is
an is-function of the fifth kind.
Fora € A with A(f > a) we will denote the set

A(f>a)={xeA:f(x)>al}

We define the symbols A(f >a), A(f =a), A(f < a),
A(a < f < b) and etc., in the same way.

If the set on which the is-function f is defined is
designated by a letter C or D, we shall write C(f>a) or
D(f>a).

Definition 2.1. The is-function £ is said to be measurable if

1. The set A is measurable.

2. Theset A(f > a) is measurable for all a € A.

Theorem 2.3. Let £ be a measurable is-function defined on
the set A. If B is a measurable subset of A, then the is-
function £ (x), considered only forx € B, is measurable.

Proof. Let a € R be arbitrarily chosen and fixed. We will
prove that

B(f >a) =B nA(f > a). )

Really, let x € B(f > a) be arbitrarily chosen. Then x € B
and f(x)>a. Since B € A, we have that x € A. From x € A
and f(x) > a it follows that x € A(f > a) . Because
x € B(f > a) was arbitrarily chosen and for it we get that it
is an element of the set B N A(f > a), we conclude that

B c (f > a) cBNA(f > a). )

Let now x € BNA(f > a) be arbitrarily chosen. Then
x€B and x € A(f >a). Hence x €B and f(x) >a.
Therefore x € B(f > a). Because x € B NA(f > a) was
arbitrarily chosen and we get that it is an element of B(f >
a), we conclude that

BNA(f > a) c B(f > a).

From the last relation and from (2) we prove the relation
.

Since the iso-function f is a measurable function on the set
A, we have that A(f > a) is a measurable set. As the
intersection of two measurable sets is a measurable set, we
have that B N A(f > a) is a measurable set. Consequently,
using (1), the set B(f>a) is measurable set. In this way we
have

1. B is a measurable set,

2. B(f > a) is a measurable set for all a € R.

Therefore the iso-function f , considered only for x € B, is
a measurable is-function.

Theorem 2.4. Let £ be defined on the set A, which is the
union of a finite or denumerable number of measurable sets
Ag, A= Ui A,. If f is measurable on each of the sets 4,
then it is also measurable on A.

Proof. Let a € R be arbitrarily chosen. We will prove that
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A(f > a) = U A > ). 3)

Let x € A(f > a) be arbitrarily chosen. Then x € 4 and
f(x) > a. Sincex€Aand A = Uy A, there exists k such
that x € A, . Therefore x € A, and f(x) > a . Hence,
x€Ax(f>a) and x€ U, A (f>a) . Because x€
A(f > a) was arbitrarily chosen and for it we get that it is an
element of U, A, (f > a) , we conclude that

A(f > a) c U4, (f > a). 4)

Let now y € Uy Ak(f > a) be arbitrarily chosen. Then
there exists 1 such that y € A,(f>a). From here x € 4; and
f(y) >a. Hence, y€A=UgA4, and f(y)>a
Consequently € A(f > a) . Because y € Uy Ax(f > a) was
arbitrarily chosen and for it we get that it is an element of
A(f > a) we conclude that

A >a)c UAk(f > a).
4

From the last relation and from (4) we prove the relation
3)-

Since the union of finite or denumerable number of
measurable sets is a measurable set, using that the sets
A(f > a) are measurable, we obtain that A and A(f > a)
are measurable sets. Therefore f is a measurable is-function.

Definition 2.5. Two is-functions f and §, defined on the
same setr A, are said to be equivalent if

u(A(F = §)) =0.

We will write

f~3g.
Remark 2.6. There is a possibility f + g and in the same
timef ~ §.
Let
A=[L2],f(x)=x9x =x+1,
=1 4++1+ 4x? ]
T(x) = ———— ,x€A.
2x

Then

. f*g.

On the oth-1+er hand,
fo0 x

A T R vy
X
2x? 2x2(1 + VI F4x7)

T _14+Vitaz (ViTae-1)(Vitae-1)
214V 4x%) 141 + 4x2
- ! e

4x

9" (x) = g(xT(x)) = xT(x) + 1
x—1+m+1_—1+m+1

2x 2
1+VIFa?
i —
We have that
u(A(f™ # g%)) = 0
Or

M~ gh

Remark 2.7. There is a possibility f ~ g and in the same

“time f + §. Let

A=[12],f(x) =gx) =x2,T(x) =x + 1,x € A
Then
f~g
On the other hand,

A = F(xT () = 2*T2(x) = x*(x + D%, g¥(x) =

2

(_L) . S
g Fo)) T P2(x) (e+1)?

Then
%2
f"(x) = g"(x) =1 xz(x + 1)2 = W =1 (x + 1)4
=1 x=0¢A.
Therefore
u(a(fr =g") =0,
Hence,
u(A(fr = gM) = 1.
Consequently

fr~g".
Proposition 2.8. The fuAnctions f and g are equivalent if

and only if the functions f* and g™ are equivalent
Proof. We have

wAf+g)=0 e y(A(jT—r#:%))=0

o u(a(fm = gv)) =o.

Definition 2.9. Let some property P holds for all the points
of the set A, except for the points of a subset B of the set A. If
= 0, we say that the property P holds almost everywhere on
the set A, or for almost all points of A.

Definition 2.10. We say that two is-functions defined on
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the set A are equivalent if they are equal almost everywhere
on the set A.

Theorem 2.11. If f(x) is a measurable is-function defined
on the set A, and if f ~ §, then the is-function §(x) is also
measurable.

Proof. Let

B:= A(f;tg),D::A\B.

Because f ~ § we have that

u(a(f=g)=0

oruB = 0.

Since every function, definite on a set with measure zero is
measurable on it, we have that the is-function § is
measurable on the set B.

We note that the is-functions f(x) and §(x) are identical
on D and since the isO-function £ is measurable on D, we get
that the is-function § is measurable on D.

Consequently the is-function § is measurable on

BuD=A.

Theorem 2.12. If the is-function f(x), defined on the set A,
is measurable, then the sets

A(f 2 a)A(f = a) A(f < @), A <)

Are measurable for alla € R.
Proof. We will prove that

Afza) =Tz A(f>a-2). ©)

Really, let x € A(f = a) be arbitrarily chosen. Then x € A
and f(x) = a. Hence, for every n € N we have f(x) >a —
%. Therefore

x €I, A (f >a —i)

Because x € A(f = a) was arbitrarily chosen and for it we
obtainx € [[7-; 4 (f >a-— %),
We conclude that

AF = a) c[I%, A (f >a —-j;) (6)

Let now x € [[n=1 4 (f >a —;11-) be arbitrarily chosen,

Then x € A (f >a- %) for every natural number n. From
here x € A and

~

1
f&x)>a- =
For all natural number n. Consequently
| lim f(x) = 1i !
tim ) 2 Jim (a=2)

or

fx)=a

and x € A(f = a) . Since xE]‘[‘,ﬁ=1A(f>a"%) was

arbitrarily chosen and we get that x€A(f=a), we
conclude

ﬁA(f>a—%) cA(f2a).
n=1

From the last relation and from (6) we obtain the relation
(5).

Because the intersection of denumerable measurable sets is
a measurable set, using the relation (5) and the fact that all

sets A (f >a-—- %) are measurable for all natural numbers n,

we conclude that the set A(f > a) is a measurable set.
The set A(f = a) is a measurable set because

A(f =a)=A(f =)\ A(f > a).
The set A(f < a) is measurable set since
A(f <a)=A\A(f > a).
The set A(f < a) is measurable since
A(f <a)=A\A(f 2 a).
Remark 2.13. We note that if at least one of the sets
A(f 2 a)A(f =a),AFf <), A(f < a)

Is measurable for all a € R, then the iso-function f is
measurable on the set A.

Really, let A(f = a) is measurable for all a € R. Then,
using the relation

AF > a) =TIz 4(f 2a-2) ™

we obtain that the set A(f > a) is measurable for all @ € R.
IfA(f < a)) is measurable for all a € R, then using the
relation

A(f > a) = A\A(f <a),

we get that the set A(f > a) is measurable for all a € R.
If A(f < a) is measurable for all a € R, then using the
relation

A(f>a)=4\A(f < a),

We conclude that the set A(f > a) is measurable for all
a€R.

Theorem 2.14. If f(x) = ¢ = const for all points of a
measurable set A, then the is-function f(x) is measurable.
Proof. For all a € R we have that

Af>a)=Aifc>aand A(f >a)=0ifc<a.

Since the sets A and @ are measurable sets, then A(f > a)
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is measurable for all a € R, Therefore the is-function f(x) is
measurable.

Definition 2.15. An is-function f(x) defined on the closed
interval [a, b] is said to be a step is-function if there is a finite
number of points

a=ay<a; < <apy<ap=>

Such that f(x) is a constant on (a;ai) , =
0,1,2,-,n—-1.

Proposition 2.16. A step is-function is measurable.

Proof. Let f(x) is a step is-function on the closed interval
[a, b]. Let also,

a=ay<a;<a; < <1<, =b

be such that f(x) is a constant on (a;@i41) » i =
0,1,2,--,n—1. From the previous theorem we have that
f(x) is measurable on (a;,a;44), i =0,1,2,,n. We note
that
the sets {a;},i = 0,1,2,
Therefore the is-function
f(x) is measurable on {a;}, i = 0,1,2,
using that

,n. From here,

[a,b] = U(al. aw) U{al}

i=0

We conclude that the is-function f (x) is measurable on [a,
b].

Theorem 2.17. If the is-function £ (x), defined on the set A
is measurable and ¢ € R, ¢ # 0, then the is-functions

1. f(x) +c,

2. cf (x),

3. |fGo)|

4. f2(x),

1

5. f_(;s,

are also measurable.

Proof. Let a € R be arbitrarily chosen. The assertion
follows from the following relations.

LA(f+c>a)=4A(f > c—a).

2.4(cf>a)=Aa(f>2) if o0, A(cf>a)=
A (f < %) if ¢<0.

3.A(f|>a)=4 if a<0, A(|f|>a)=A4(>a)u
A(f < —a)ifa>0.

4. A(f? > a) = Aifa<0, [
ifa=>0.

5.A(%>a) =A(f>0)nA(f<3) it a0, A(%>
a) =A(f”>0)u(A(f< 0na( <§)) if  a<0,
A (% > a) = A(f > 0) if a=0.

Definition 2.18. An is-function f, defined on the closed

interval [pa, b], is said to be is-step is-function, if there is a
finite number of points

A(f* > a) = A(f|> Vo)

,n — 1, are sets with measure zero.

a=a0<a1<"'<an_1<an=b,

such that

fx) =

=,X € [a;,a;41), ¢; = const, i = 0,1,- -1

T()

Theorem 2.19. Let T(x)>0 for every x € [, b] and T(x) is
measurable on [a, b]. Let also, T(x) is an iso-step is-function
on [a, b]. Then f(x) is measurable on [a, b].

Proof. Let

a=agg<a; < <agy<a,=Dh,

be such that

f(x) = =, x € [a;, a41) ¢; = const,i = 0,1,+,n — 1.

7‘()

From the last theorem it follows thatﬁ—) is a measurable
is-function on [a; @;41), i = 0,1,2,---,n — 1. Fromn-1 here

and from

n-1

[a,b] = U[ai' a;41) U {b}.

i=0

Since {b} is a set with measure zero, we conclude that the
is-step is-function f is measurable on [a, b].

Definition 2.20., Let M be a subset of the closed interval [a,
b). The function @4 (x) =0 for x € [a,b)] \ M and @y =1
for x € M, is called the characteristic function of the set M.

Theorem 2.21. If the set M is a measurable subset of the
closed interval A=[a, b], then the characteristic function
@ () is measurable on [a, b].

Proof. The assertion follows from the following relations.
Alpy >a)=0 if a=1l, Alpy>a)=M if 1>a>
0,A(py > a) = A if a<0.

Definition 2.22. Let M be a subset of the set A=[a, b] The

iso- function @y (x) =0 if x € A\M and @y = T(x)- if

x € M, will be called characteristic is-function of the set M.
Theorem 2.23. Let T'(x) be a measurable function on A=[a,
b], M be a measurable subset of A. Then the characteristic is-
function @y, (x) of the set M is measurable.
Proof. Let a € R be arbitrarily chosen. Then

APy > a) = (A\M)(0 > a)UM (m > a),

From here, using that the sets (A\ M)(0 > a) and

M (_T?) > a) are measurable sets, we conclude that A(Q, >

a) is a measurable set, Because the constant a was arbitrarily
chosen, we have that the characteristic function @, is a
measurable is-function.

Theorem 2.24. Let f and T are continuous functions on the
closed set A. Then the is-function f(£) is measurable.

Proof. Let a € R be arbitrarily chosen. Since every closed
set is a measurable set, we conclude that the set A is a
measurable set.
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We will prove that the set A(f M < a) is a closed set.
Let {x,)%-, be a sequence of elements of the set A(f™ <
a) such that
i =
71!_1'2) Xn = Xo,
Since A(f™ < a) is a subset of the set A we have that
{xn)7-1 € A. Because the set A is a closed set, we obtain that

Xo € A. From the definition of the set A(f™ < a) we have
that

fxa) <a

f/\(fn) = T(xn) =

Hence, when n - oo, using that f and T are continuous
functions on the set A, we get

lim fA(%,) = lim f) _ fx)

now Plx,)  Txo)

i.e., xg € A(f™ < a). Therefore the set A(f™ <a)is a

= fA(#) < a,

closed set. From here, the set A( f M < a) is a measurable set.

Because the difference of two measurable sets is a
measurable set, we have that the set

A(f™ > a) = A\NA(FM < a)

Is a measurable set.

Since a € R was arbitrarily chosen, we obtain that the is-
function of the first kind ™ is measurable.

Theorem 2.25. Let f and T are continuous functions on the
closed set A. The the is-functions

FA, £ @), £, fY(x)

are measurable on A.
Theorem 2.26. If two measurable is-functions f and § are

defined on the set A, then the set A(f > §) is measurable.
Proof. We enumerate all rational numbers

Ty, Ty, Ty, o
We will prove that
A(f > 8) = U (A >m) nA@ <m)). @
Let
x € A(f > g)
Be arbitrarily chosen. Then
x €A F() > dk).
There exists a rational number 7, such that
Fx) >n, > §x).
Therefore

x € Aand f(x) > r;x € Aand 1y, > §(x),

i.e.,
x € A(f >n)x € A(G <70
Consequently
x€A(f >n)NnA@G <7
And

x € U (A(f >n)NAG < r,()).
k=1
Because x € A(f > g‘) was arbitrarily chosen and for it
we get
x € Ug=q (A(f > rk) NA(G< rk)), we conclude that
A(f>9) cupi (AF>n)nAa@<m).  ©)
Let no

xe| (4 >n)na@<m)
k=1

be arbitrarily chosen. Then there exists a natural k so that

x € A(f > 1) NA(G <1

Hence,
x € A(f > 1) x € A(G <)
Then
x €A, f(x) >, m < §x)
or
x €A F()>1 > d0).
Therefore
x € A(f > 9).
Because

el J(aF >n)na@<mw)
k=1

Was arbitrarily chosen and for it we get that x € A( f> g),
we conclude that

U (A(f >n)NAG < rk)) c A(f > 9).
k=1

From the last relation and from the relation (9) we get the
relation (8).

Since f and § are measurable iso-functions on A, we have
that the sets

A(f > ), A <m0
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are measurable sets for every natural k, whereupon the sets

A(f>n)nA@G <n)

Are measurable sets for every natural k.
Therefore, using the relation (8), we obtain that the set
A(f > §) is aa measurable set.
Theorem 2.27. Let f(x) and §(x) be finite measurable is-
functions on the set A. Then each of the is-functions
L f(x) = g(x),
2. f(x) + g(x),
3. ; ()G (x),
). p A
4, Easlfg(x) # 0 onA,
Is measurable.
Proof.
1. Let a €R be arbitrarily chosen. Since §(x) is
measurable, then a + §(x) is measurable. From here
and from the last theorem it follows that the set

A(f) —g(x) >a) = A(f(x) > a+ §(x))

Is measurable. Because a € R was arbitrarily chosen,
we conclude that the function f(x)— §(x) is
measurable.

2. Since § is a measurable is-function, we have that the
function —§ is a measurable is-function. From here
and from 1) we conclude that the is-function

f+a=Ff-d

s measurable,
3. We note that

f@g() =20 + @) ~2(F@ - 4)". (10)

Since f(x) and g(x) are measurable iso-functions,
using 1) and 2) we have that

F@) + §Gx)and f(x) — §(x)
Are measurable is-functions, Hence the is-functions

(Fe0 +80)% (Fx) — §@)°

Are measurable, whereupon

1. 2
2 (@) +9() and 5(700) - 56"

Are measurable. From here, using 1) and (10), we
conclude that f (x)§(x) is measurable.
4. Since §(x) is measurable and §(x) # 0 on A, we

have that the is-function —— is measurable. From

§(x)

here and from 3) the is-function
f) o1

SIS =T\X) s

gx) 7 )g(x)

Is measurable.
Theorem 2.28. Let {fn(x)}::):1 be a sequence of

measurable is-functions defined on the set A. If

limp e fn (@) = F(x) (11)

Exists for every x € A, then the is-function f(x) is
measurable.,

Proof. Let a € R be arbitrarily chosen. For n,k,m € N we
define the sets

o
o 1
Appi=A (f;C >a+ .';)'Bm,n = l_IA"‘""
k=n

We will prove that
A(f > a) = UpmBmn (12)
Let
x €A(f > a)
Be arbitrarily chosen. Then
x € Aand f(x) > a.
Hence, there is enough large natural number m, such that

A 1
f(x)>a+m—1.

Using (11), there are enough large natural numbers k and
m such that

2 1
fe() > at—,

i.e., X € Am,k'

From here, it follows that there is enough large n so that
X€E€Apy for every k=n, ie., x €B,, and then x €
Um,n Bm,Tl'

Since x € A(f > a) was arbitrarily chosen and we get that
it is an element of the set U, ,, B, ,, We conclude that

A(f > a) C Um,an,n- (13)

Let now x € Uy By be arbitrarily chosen.
Then, there are m,,n € N so that

©o
X € Bmz.m = l—l Amz,'ﬁ

=nq
or
fkl(x) >a +m—12’ forVk =2 n,.
Hence,
lim f =) ( + ! )
kllinoo ki(x) _k:—znoo a my
or
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R 1
fxX)za+—>a.
my

Therefore
x € A(f > a).

Since x € Uy By n Was arbitrarily chosen and for it we
obtain x € A(f > a), we conclude that

UB’"'" c A(f > a).

From the last relation and from (13) it follows the relation
(12).

Since f, (x) are measurable, we have that the sets Apy, are
measurable for every m, k € N, hence B,,, are measurable
for every m,n € N and then, using (12), the set A(f > a) is
measurable. Consequently the is-function f is measurable.

Theorem 2.29. be a sequence of measurable is-functions
defined on the set A. If

liMpoe fu(x) = f(x) (14)

Exists for almost everywhere x € 4, then the is-function
f(x) is measurable.

Proof. Let B be the subset of A so that the relation (14)
holds for every x € B. From the previous theorem it follows

that the is-function f (x) is measurable on the set B.
We note that

u(A\B) = 0.

Therefore the is-function f(x) is measurable on A\ B.

Hence, the is-function f(x) is measurable on A.
Let

T.T:A-(0,0),f,f:A- R,

0<q
Then

LA () = B0 ) = £,

n(xTh
2. i) = D fhy) =
If

< T,00),T(x) < q,for x € A,n € N.

LT ()
‘i‘(x)

xT,(x), xT(x), x € 4,

3. fn(jc\) =_(M.). f( )_ (T(X))

T(x) BTN
If

X x
1,00 Ty ™ %

4 f20x) = fu(x T (), £ = F(xT (),
If

xT, (), xT(x), x € A,

5. @ = fu(755) FY0 = f (7%5)
If

X X
—, =, X€EA
Tn(x) " T(2)

3. The Structure of the Measurable Is-
Functions

Theorem 3.1. (is-Lebesgue theorem for is-functions of the
first kind) Let there be given a sequence {f,(x)}n=; of
measurable functions on a set A, all of which are finite

almost everywhere. Let also, {'T"n(x)}:_ , be a sequence of
measurable functions on the set A,

0<q <T(x) < q,

For all natural numbers n and for all x € A, where q; and
q are positive constants. Suppose that

lim £ = £,
lim T, () = T(x)

Almost everywhere on the set A, and f(x) is finite almost
everywhere on A,

GpsTH<q
For all x € A. Then

limpA(|f0(2) - fA@)| 2 0) = 0

Forall ¢ = 0.

Proof. We will note that the limit functions f(x) and T'(x)
are measurable and the sets under consxderatlons are
measurable.

Let
A= A(|f| = o),
B, := A(|fy] = o),
C=Af,»f)
D:=BuU B, |V C.
(Ue)
Since

uB =0,pC =0,uB, =0,
using the properties of the measurable sets, we have that
uQ = 0.
Let

fi f

Zl
kTU)

=~

Ak(U) - A(
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Ru@) = | 4.
k=n

M= ﬁ R, (o).
n=1

We have that

R, (o) o Ry(0) D -
Hence,

lim p Ry (0) = pM.

Let us assume that x, € Q. Then, using the definition of
the set Q , we have

fk(xo)

noes Tk (%0)

_ flxo).
T(xo)

Since
0<q < Tn(x)ﬂ'(x) < G2 k=1,2,m,
we have that

fikxo) fo (xo)
Tu(x0) Talxo)”

fexo)
'R (xo)

and their limit

f ().
T(xo)

are finite.
Therefore there is an enough large natural n such that

fie(xo) f(xo).l <o
7A‘k(xo) T(xo)

for every k = n. Thenxy € A, (c), k = n, where x, € R,(0)
and from here x, € M.

Consequently M c Q.

Because uQ = 0, from the last relation, we have that
uM =0, i.e.,

lim,_,, R,(6) =0,
and since
An(o') c Rn(O'),
limR,(c) =0
n—-o00
or
limpA(|fN(£) - fA@) 2 0) = 0.

As in above one can prove the following results for the
other kinds of is-functions.

Theorem 3.2. (is-Lebesgue theorem for is-functions of the
second kind) Let there be given a sequence {f,(x)}n=1 of

measurable functions on a set A, all of which are finite
almost everywhere. Let also, {Tn(x)}:=1 be a sequence of
measurable functions on the set A,

0<g; <Th(x) S g

For all natural numbers n and for all x € 4, where g, and
@, are positive constants. Suppose that

lim £,G2) = £(2)
}LLnolt’Tn(x) = T(x)

Almost everywhere on the set A, and f(x) is finite almost
everywhere on A,

G < T(x) £q
Forall x € A. Then

limpA([f2(0) = Fr0] 2 o) =0

forallog = 0.

Theorem 3.3. (is-Lebesgue theorem for is-functions of the
third kind) Let there be given a sequence {f,,(x)}%-; of
measurable functions on a set A, all of which are finite

almost everywhere. Let also, {Tn(x)}:= 1 be a sequence of
measurable functions on the set A,

0<q <Ta(®)<gq,

For all natural numbers n and for all x € A, where g, and
q, are positive constants. Suppose that

lim £,G) = £,
T]ll_)n;Tn(x) = T(x)

Almost everywhere on the set A, and f(x) is finite almost
everywhere on A,

<T@ <q
For all x € A. Then

limpA(|f (8)-F @)|20)=0

forallo = 0.

Theorem 3.4. (is-Lebesgue theorem for is-functions of the
fourth kind) Let there be given a sequence {f;(x)}5=, of
measurable functions on a set A, all of which are finite

almost everywhere. Let also, {7‘,,(x)}:=1 be a sequence of
measurable functions on the set A,

0<q <Th(x)<q

For all natural numbers n and for all x € 4, where g, and
q, are positive constants. Suppose that

lim fu(0) = £(x),
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limT,(0) = 1)

Almost everywhere on the set A, and f(x) is finite almost
everywhere on A,

1 = T(x) £4q;
For all x € A. Then
limpA(1f () = fA ()| 2 0) =0

Forallo = 0.

Theorem 3.5. (is-Lebesgue theorem for is-functions of the
fith kind) Let there be given a sequence {f;,(x)}n=; of
measurable functions on a set A, all of which are finite

almost everywhere. Let also, {'fn(x)}:___l be a sequence of
measurable functions on the set A,

0<q <Th(x) <q,

For all natural numbers n and for all x € 4, where g, and
g, are positive constants. Suppose that

lim £, (x) = f(x),
lim T(x) = T(x)

Almost everywhere on the set A, and f(x) is finite almost
everywhere on A,

g < T(x) < qp
For all x € A. Then

limpA(R () = @)l 2 0) = 0

forallo = 0.
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Abstract: The establishment of isomathematics, as proposed by R. M. Santilli thirty years ago in the USA, and contributed to
by Jiang Chun-Xuan in China during the past 12 years, is significant and has changed modern mathematics. At present, the
primary teaching of mathematics is based on the simple operations of addition, subtraction, multiplication and division; a middle
level teaching ofmathematics takes these four operations to a higher level, while the university teaching of mathematics extends
them to an even higher level. These four arithmetic operations form the foundation of modern mathematics. Santilli
isomathematics is a generalisation of these four fundamental operations and heralds a great revolution in mathematics. HIn this
paper, we study the four generalized arithmetic operations of isoaddition, isosubtraction, isomultiplication and isodivision at the
primary level of isomathematics. The material introduced here should be readily understandable by middle school pupils and
‘university students.Santilli’s isomathematics [1] BBis based on a generalisation of modern mathematics. Isomultiplication is
defined by a X a = abT, isodivisionby a< b = %f, where [ # 1 is called an isounit; T/ = 1, where T is the inverse of the

~ S A~

isounit. If addition and subtraction remain unchanged, (¥,3,%,¥)are the four arithmetic operations in Santilli’s
isomathematics[1-5]. Isoaddition a¥b = a + b + 0 and isosubtraction a¥b = a + b + 0, where 0 # 0 is called the isozero,
together with the operations of isomultiplication and isodivision introduced above, form the four arithmetic
operations(¥, =,%X,%) in Santilli-Jiang isomathematics[6]. Santilli [1] suggests isomathematics based on a generalisation of
multiplication x, division +, and the multiplicative unit 1 of modern mathematics. It is an epoch making suggestion. From
modern mathematics, the foundations of Santilli’s isomathematics will be established.

Keywords: Santilli-Jiang Math, Isomultiplication, Isodivision, Isoaddition and Isosubtraction

1. Division and Multiplication in Modern axl=a,a+l=a,1+a=1/a *

Mathematics (+1)n - 1’ (+l)a/b - 1’ (_l)n i (_l)n’ (_l)a/b - (_l)n/b (5)

Suppossitirat Addition +, subtraction -, multiplication x, and division +
are the four operations forming the foundation of modern
mathematics. The modern mathematics is generalised to
where 1 is the multiplicative unit and 0 is exponent zero. establish the foundations of Santilli-Jiang isomathematics.

From (1), division + and multiplication x are defined by

a+a=a’ =1 (1

2. Isodivision and Isomultiplication in

a
g Ryt A0 ol =0 @ Santilli’s Isomathematics

a=ax(@a+a)=axa’=a 3) Isodivision #and isomultiplication x [1 — 5], which are
generalisations of the division + and multiplication x of
Now consider the multiplicative unit 1, modern mathematics, are now defined.
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0=0 6)
where 7 is called the isounit and is a generalisation of the

multiplicative unit 1 and 0 is the isoexponent zero which is a
generalisation of the exponent zero 0. Then,

a$b=f%,b¢0,a>?b=af’b 0)
It is seen that

a=ak(ata)=axd’ =afi=a ®)

from which it follows that

i =1 O)
where 7 is the inverse of the isounit 7 .
The isounit i has the following
properties[5,p93-95,isoexponents]:
akl=a ail=a Tia=a'=1/a (10

@I =L, @D = LD =D =i A

With addition and subtraction unchanged, (+, -, %,+) are

the four arithmetic operations in Santilli’s isomathematics and
these form the foundations of Santilli isomathematics, When

I=1, the operations revert to being those of the modern
mathematics.

3. Addition and Subtraction in Modern
Mathematics

A A

x=xTx, ¥=+0+

These are defined by
x=a+bandy=a-b (12)
ata—-a=a (13)
a—a=0 (14)

Isoaddition and isosubtraction may be established using
these results.

4, Isoaddition and Isosubtraction in
Santilli-Jiang Isomathematics

Isoaddition + and isosubtraction = are defined by

atb=a+b+c, arb=a-b-c, (15)
sLa=arata=a+c -c,=da (16)

Then, from (16), it follows that
¢ =c, 17

Suppose that ¢, =c, = 0, where 0 is called the isozero
which is a generalisation of the zero 0 of addition and
subtraction[6]. Hence,

aib=a+b+(), a2b=a-b-0 (18)

When 0=0 , these equations are the usual laws of addition

and subtraction of modern mathematics.

From the above results, the foundations of Santilli-Jiang
isomathematics are readily established:

T=xl+, £=—6—;aib=abf,aib =a+b+0;

A a-x A A A
a+b=zl,a=b=a—b—0;a=axa+a=a,a=a+a¢a=a;

aka=dT,ata=2a+0;a%a=I=la2a=-0=0;71 =1.

Here (4,2,%,+) are the four arithmetic operations in
Santilli-Jiang isomathematics.
Remark:

ax(bic)=ak(b+c+0)
From the left-hand side, it follows
ax(b¥c)=akb+axi+akc)=ax(b+++c)
=ax(b+0+c),

where +=0 is anumber also.
Again,

19

ak(b2c)=ak(b-c-0)
From the lefi-hand side of this relation, it is seen that

ax(bzc)=axb-axz-axc)
=ax(b-2-c)=ax(b-0-c),
where 2=0 isanumber also.
The distributive laws are satisfied and +,2,%, % are

numbers.
This Santilli-Jiang isomathematics therefore, provides a
new mathematical tool for studying the mathematical
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problems of the 21* century and helping in the understanding
the mysteries of our universe.

5. An Illustrative Example

Consider the algebraic equation

J=a k(b tc)ta 2 (b, 2c) =a17A‘(b1 + +6)+(A)+a2 /T, -c, -0)

If 7=1 and 0=0 then y=7.

Let =2 and 0=3 .
isomathematical subequation

From (21) we have the

P =2a(b +c, +3)+3+a,/2(b,-¢c,-3). (22)

Let =5 and 0=6 .
isomathematical subequation

From (21) we have the

P, =5a,(b+¢c,+6)+6+a,/5(b,~c,~6) (23)

Let 7'=8 and 0=10 .
isomathematical subequation

From (21) we have the

¥y =8a,(b +¢, +10)+10+a, /8(b, —c, ~10) (24)

Therefore, (21) has infinitely many isomathematical

subequations, Using (21) - (24), 7 and 0, the stability and
optimum structure of the algebraic equation (20) may be
studied.

y=a,x(b+¢)+a,+(b,-c) (20)

(20) may represent a mathematical system, physical system,
biological system,cryptogram system, IT system, or some
other system. It may be written as the isomathematical
equation

@n
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Abstract: We present the largest class of hyperstructures called H,-structures. In H,-groups and H,-rings, the fundamental
relations are defined and they connect the algebraic hyperstructure theory with the classical one. Using the fundamental relations,
the H,-fields are defined and their elements are called hypernumbers or H,-numbers. H,-matrices are defined to be matrices with

entries from an H,-field. We present the related theory and results on hypermatrices and on the Lie-Santilli admissibility.

Keywords: Representations, Hope, Hyperstructures, H,-Structures

1. Introduction to Hypermathematics,
the H,-Structures

Hyperstructure is called an algebraic structure containing at
least one hyperoperation. More precisely, a set H equipped
with at least one multivalued map -: HxH — P(H), is called
hyperstructure and the map hyperoperation, we abbreviate
hyperoperation by hope. The first hyperstructure was the
hypergroup, introduced by F. Marty in 1934 [25], [26], where
the strong generalized axioms of a group wrere used. We deal
with the largest class of hyperstructures called H,-structures
introduced in 1990 [40],[44],[45] which satisfy the weak
axioms where the non-empty intersection replaces the
equality.

Some basic definitions:

Definitions 1.1 In a set H with a hope -: HxH—P(H), we
abbreviate by WASS the weak associativity: (xy)zNx(yz)=J,
Vx,y,2EH and by COW the weak commutativity: xyNyx=(J,
Vx,yEH.

The hyperstructure (H,-) is called H,-semigroup if it is
WASS and is called H,-group if it is reproductive
H,-semigroup:

xH=Hx=H, VxEH.

The hyperstructure (R,+,") is called H,~ring if (+) and (-) are
WASS, the reproduction axiom is valid for (+) and (*) is weak
distributive with respect to (+):

x(ytrz)N(xy+xz)=J, (x+y)zN(xz+tyz)=J, Vx,y,zER,

For definitions, results and applications on H,-structures,
see books [44],[4],[10],[12] and papers [6],[7].[8].[9].[11],
[17],[18],[19],[22],[24],[46]. An extreme class is defined as
follows [41],[44]: An H,-structure is very thin iff all hopes are
operations except one, with all hyperproducts singletons
except only one, which is a subset of cardinality more than one.
Thus, a very thin H,-structure is an H with a hope (*) and a pair
(a,b)EH2 for which ab=A, with cardA>1, and all the other
products, are singletons.

The main tools to study hyperstructures are the so called,
fundamental relations. These are the relations f* and y* which
are defined, in H,-groups and H,-rings, respectively, as the
smallest equivalences so that the quotient would be group and
ring, respectively [38],[40],[44],[48],[49]. The way to find the
fundamental classes is given as follows [44]:

Theorem 1.2 Let (H,') be an H,-group and let us denote by
U the set of all finite products of elements of H. We define the
relation B in H as follows: xBy iff {x,y}Cu where u€U. Then
the fundamental relation B* is the transitive closure of the
relation f.

The main point of the proof is that B guaranties that the
following is valid: Take elements x,y such that {x,y}Cu€U
and any hyperproduct where one of these elements is used.
Then, if this element is replaced by the other, the new
hyperproduct is inside the same fundamental class where the
first hyperproduct is. Thus, if the ‘hyperproducts’of the above
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B-classes are ‘products’, then, they are fundamental classes.
Analogously for the y in H,-rings.

An element is called single if its fundamental class is a
singleton.

Motivation for H,-structures:

1. The quotient of a group with respect to an invariant
subgroup is a group.

2. Marty states that, the quotient of a group with respect to
any subgroup is a hypergroup.

3. The quotient of a group with respect to any partition is an
H,~group.

In H,-structures a partial order can be defined [44].

Definition 1.3 Let (H,"), (H,®) be H,-semigroups defined
on the same H. (*) is smaller than (®), and (®) greater than (*),
iff there exists automorphism fEAut(H,®) such that
xyCf(x®y), VxEH.

Then (H,®) contains (H,') and write -<s®, If (H,") is structure,
then it is called basic and (H,®) is an Hy-structure.

The Little Theorem [26]. Greater hopes of the ones which
are WASS or COW, are also WASS and COW, respectively.

The fundamental relations are used for general definitions
of hyperstructures. Thus, to define the general H,-field one
uses the fundamental relation y*:

Definition 1.4 [40],[43],[44]. The H,-ring (R,+,) is an
H,-field if the quotient R/y* is a field.

The elements of an H,-field are called hypernumbers. Let
wo* be the kernel of the canonical map and from H,-ring R to
R/y*; then we call it reproductive H,-field if:

x(R-0*) = (R-0*)x = R-0*, VXER-0*.

From this definition a new class is defined [51],[56]:

Definition 1.5 The H,-semigroup (H,") is called h/v-group if
the H/p* is a group.

AnH,-group is called cyclic [33],[44], if there is an element,
called generator, which the powers have union the underline
set, the minimal power with this property is the period of the
generator. If there exists an element and a special power, the
minimum one, is the underline set, then the H,-group is called
single-power cyclic.

To compare classes we can see the small sets. To enumerate
and classify H,-structures, is complicate because we have
great numbers. The partial order [44],[47], restrict the problem
in finding the minimal, up to isomorphisms, Hy-structures. We
have results by Bayon & Lygeros as the following [2],[3]: In
sets with three elements: Up to isomorphism, there are 6.494
minimal Hy-groups. The 137 are abelians; 6.152 are cyclic.
The number of H,-groups with three elements is 1.026.462.
7.926 are abelians; 1.013.598 are cyclic, 16 are very thin.
Abelian H,-groups with 4 elements are, 8.028.299.905 from
which the 7.995.884.377 are cyclic.

Some more complicated hyperstructures can be defined, as
well. In this paper we focus on H,-vector spaces and there
exist an analogous theory on H,-modules.

Definition 1.6 [44],[50]. Let (F,+,") be an H,-field, (M,+) be
COW H,-group and there exists an external hope

FxM—P(M): (a,x)—ax,

such that, Va,b&F and Vx,yEM we have
a(xty)N(axtay)=d, (a+b)xN(ax+bx)=J, (ab)xNa(bx)=J,

then M is called an H,-vector space over F.

The fundamental relation g* is defined to be the smallest
equivalence such that the quotient M/g* is a vector space over
the fundamental field F/y*. For this fundamental relation there
is an analogous to the Theorem 1.2.

Definitions 1.7 [51],[53],[55]. Let (H,-) be hypergroupoid.
We remove hEH, if we consider the restriction of () in the set
H-{h}. We say that h€H absorbs h€H if we replace h by h and
h does not appear in the structure. We say that hEH merges
with h€H, if we take as product of any x€H by h, the union of
the results of x with both h, h, and consider h and h as one class,
with representative h, therefore the element h does not
appeared in the hyperstructure.

Let (H,) be an H,-group, then, if an element h absorbs all
elements of its own fundamental class then this element
becomes a single in the new H,-group.

Theorem 1.8 In an Hy-group (H,"), if an element h absorbs
all elements of its fundamental class then this element
becomes a single in the new H,-group.

Proof. Let hEf*(h), then, by the definition of the ‘absorb’, h
is replaced by h that means that f*(h)={h}. Moreover, for all
xEH, the fundamental property of the product of classes

B*(x):B*(h) = B*(xh) becomes B*(x)-h = B*(xh),

and from the reproductivity ([44] p.19) we obtain x-h=p*(xh),
VxEP*(x). This is the basic property that enjoys any single
element [44].

Remark that in case we have a single element then we can
compute all fundamental classes.

A well known and large class of hopes is given as follows
[331,[371.[39],[44],[20]:

Definitions 1.9 Let (G,’) be a groupoid, then for every
subset PCG, P=, we define the following hopes, called
P-hopes: Vx,yEG

P: xPy= (xP)yUx(Py),
P.: xPry= (xy)PUx(yP), P;: xPyy= (Px)yUP(xy).

The (G,P), (G,P,) and (G,Py) are called P-hyperstructures. In
the case of semigroup (G,): xPy=(xP)yUx(Py)=xPy and (G,P)
is a semihypergroup but we do not know about (G,P;) and
(G,P). In some cases, depending on the choice of P, the (G,P;)
and (G,P)) can be associative or WASS.

A generalization of P-hopes is the following [13],[14]: Let
(G,’) be abelian group and P a subset of G with more than one
elements. We define the hope xp as follows:

xxpy = x-Py= {x-h-y| heEP} if x=e and y=e
x-y if x=e or y=e

we call this hope, P.-hope. The hyperstructure (G,xp) is an
abelian H,-group.
A general definition of hopes, is the following [57],[58]:
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Definitions 1.10 Let H be a set with n operations (or hopes)
®1,0,...,®, and one map (or multivalued map) f:H—H, then
n hopes 91,9,,...,d, on H are defined, called d-hopes by putting

xdy = {fx)®yy, x@ifly)}, Yx,yEH, i€(1,2,...,n)
or in case where ®; is hope or f is multivalued map we have
xdy = (f()@y)U(x@if(y)), Yx,yEH, i€(1,2,...,n}

Let (G,") groupoid and f;:G—G, i€l, set of maps on G. Take
the map f,:G->P(G) such that fi,(x)={fi(x) |i€I}, call it the
union of the fi(x). We call the union d-hope (9), on G if we
consider the map f,(x). An important case for a map f, is to
take the union of this with the identity id. Thus, we consider
the map f=fU(id), so f(x)={x,f(x)}, YXEG, which is called
b-d-hope, we denote it by (9), so we have

xdy = {xy, f(x)y, xf(y)}, VX,yEG.

Remark If ®; is associative then 9; is WASS. If d contains
the operation (*), then it is b-operation. Moreover, if f:G—P(G)
is multivalued then the b-d-hopes is defined by using the
fix)={x}Uf(x), YXEG.

Motivation for the definition of d-hope is the derivative
where only multiplication of functions is used. Therefore, for
functions s(x), t(x), we have sat={s't,st'}, (') is the derivative.

Example. For all first degree polynomials gi(x)=a;x+b;, we
have

£10g> = {a1a)x+a by, a12x+byay},

so it is a hope in the set of first degree polynomials. Moreover
all polynomials x+c, where ¢ be a constant, are units.

There exists the uniting elements method introduced by
Corsini—-Vougiouklis [5] in 1989. With this method one puts in
the same class, two or more elements. This leads, through
hyperstructures, to structures satisfying additional properties.

Definition 1.11 The uniting elements method is the
following: Let G be an algebraic structure and let d be a
property, which is not valid. Suppose that d is described by a
set of equations; then, consider the partition in G for which it
is put together, in the same partition class, every pair of
elements that causes the non-validity of the property d. The
quotient by this partition G/d is an H,-structure. Then,
quotient out the H,-structure G/d by the fundamental relation
B*, a stricter structure (G/d)B* for which the property d is
valid, is obtained.

An interesting application of the uniting elements is when
more than one property is desired, because some of the
properties lead straight to the classes. The commutativity and
the reproductivity property are easily applicable. The
following is valid:

Theorem 1.12 [44] Let (G,") be a groupoid, and

F= {fls---9 fms fm+la-~~a fm-\Ln}
be a system of equations on G consisting of two subsystems

Fm= {fb-‘-afm} and Fn= {fm+ls~ vy fm+n}-
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Let 6, o,y be the equivalence relations defined by the uniting
elements procedure using the systems F and Fy, respectively,
and let o, be the equivalence relation defined using the
induced equations of F; on the grupoid Gy, = (G/6,,)/p*. Then

(Glo)/B* = (GulGn)/B*.

i.e. the following diagram is commutative

P O
G ——» G/g, ——» Gy

|
GG

GGy
9 l l P
(Gioyp* = (Gylo B

From the above it is clear that the fundamental structure is
very important, and even more so if this is known from the
beginning. This is the problem to construct hyperstructures
with desired fundamental structures [44].

Theorem 1.13 Let (S,7) be a commutative semigroup with
one element w&S uch that the set wS is finite. Consider the
transitive closure L* of therelation L defined as follows: xLy
iff there exists zES such that zx=zy .

Then <S/L*,o>/B* is finite commutative group, where (°) is
the induced operation on classes of S/L*,

For the proof see [5],[44].

An application combining hyperstructures and fuzzy theory,
is to replace the ‘scale’ of Likert in questionnaires by the bar of
Vougiouklis & Vougiouklis [69],[70],[21],[27]:

Definition 1.14 In every question substitute the Likert scale
with the ‘bar’ whose poles are defined with ‘0’ on the left end,
and ‘1’ on the right end:

0 1

The subjects/participants are asked instead of deciding and
checking a specific grade on the scale, to cut the bar at any
point they feel expresses their answer to the question.

The use of the bar of Vougiouklis & Vougiouklis instead of
a scale of Likert has several advantages during both the
filling-in and the research processing. The final suggested
length of the bar, according to the Golden Ratio, is 6.2cm. The
hyperstructure theory, offer innovating new suggestions to
connect finite groups of objects. These suggestions are
obtained from properties and special elements inside the
hyperstructure.

2. Hyper-Representations

Representations (abbreviate by rep) of Hy-groups can be
faced either by generalized permutations or by H,-matrices
[34],[36],[391,[43],[441,[52],[541,[66]. Reps by generalized
permutations can be achieved by using translations [42]. We
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present an outline of the hypermatix rep in Hy-structures and
there exist the analogous theory for the h/v-structures.

Definitions 2.1 [44],[66] H,-matrix is a matrix with entries
elements of an H,-field. The hyperproduct of two H,-matrices
A=(a;) and B=(b;), of type mxn and nxr respectively, is
defined, in the usual manner,

AB = (&) (by) = { C= (c}) | ciEDZaicby },

and it is a set of mxr Hy-matrices. The sum of products of
elements of the H,-field is the union of the sets obtained with
all possible parentheses put on them, called n-ary circle hope
on the hyperaddition.

The hyperproduct of Hy-matrices does not satisfy WASS.

The problem of the H,-matrix reps is the following:

Definitions 2.2 For a given Hy-group (H,*), find an H,-field
(F,+,), a set Mg={(ay)| a;€F} and a map T: H->Mgp:h—T(h)
such that

T(hih))NT(h;)T(h,) = &, Yhy,h,€H.

The map T is called H, -matrix rep. If T(h;h,)CT(h;)T(hy),
Vhy,h,EH, then T is called inclusion rep. T is a good rep if
T(h;hg)=T(h;) T(hp)={T(h) | h&h;h,},¥hi,h,EH. If T is one to
one and good then it is a faithful rep.

The problem of reps is complicated since the hyperproduct
is big. It can be simplified in cases such as: The H,-matrices
are over H,-fields with scalars 0 and 1. The H,-matrices are
over very thin Hy-fields. On 2x2 H,-matrices, since the circle
hope coincides with the hyperaddition. On H,-fields which
contain singles, which act as absorbings.

The main theorem of reps is the following [44],[52]:

Theorem 2.3 A necessary condition in order to have an
inclusion rep T of an H,-group (H,) by nxn H,-matrices over
the H,-field (F,+,") is the following:

For all classes B*(x), xEH there must exist elements a;EH,
i,je{1,...,n} such that

T(*(@)) C {A=(a'y) | a'y€ ¥*(ay), iJE(1,...n}}

Thus, every inclusion rep T:H—=Mg:a—->T(a)=(a;) induces a
homomorphic rep T* of the group H/B* over the field F/y* by
setting

T*(B*(a)) = [v*(ay)], VB*(a)EH/P*,

where v*(a;)ER/y* is the ij entry of the matrix T*(B*(a)). T*
is called fundamental induced rep of T.

Denote tro(T(x)) = v*(T(x;)) the fundamental trace, then the
mapping

Xr: H = Fiy*: x-->Xr (x) = trg (T(x)) = t1T*(x)

is called fundamental character.

Using special classes of Hy-structures one can have several
reps [52],[66]:

Definition 2.4 Let M=M,,,, be vector space of mxn matrices
over a field F and take sets

S={sik€K} CF, Q={Qy;jET} C M, P={P;:i€l} C M.

Define three hopes as follows
S: FxM—P(M):(r,A)—rSA={(rs;)A: kEK}C M
Qs MxM—P(M):(A,B)->AQ,B={A+Q;+B: JEJ}C M
P: MxM—P(M):(A,B)—APB={AP'B: i€l}C M

Then (M,S,Q,,P) is a hyperalgebra over F called general
matrix P-hyperalgebra.

The bilinear hope P, is strong associative and the inclusion
distributivity with respect to addition of matrices

AP(B+C) C APB+APC, YA B,CEM

is valid. So (M,+,P) defines a multiplicative hyperring on
non-square matrices.

In a similar way a generalization of this hyperalgebra can be
defined considering an H,-field instead of a field and using
H,-matrices instead of matrices.

In the representation theory several constructions are used,
one can find some of them as follows [43],[44],[ 52], [54]:

Construction 2,5 Let (H,*) be H,-group, then for all (®) such
that x®yD{x,y}, Vx,yEH, the (H,®,) is an H,-ring. These
H,-rings are called associated to (H,") H,-rings.

In rep theory of hypergroups, in sense of Marty where the
equality is valid, there are three associated hyperrings (H,®,’)
to (H,"). The (®) is defined respectively, Vx,yEH, by:

type a: x®y={x,y}, type b: x@y=p*(x)UB*(y), type c: x@y=H

In the above types the strong associativity and strong or
inclusion distributivity, is valid.

Construction 2.6 Let (H,) be an Hy-semigroup and
{v1,...,va)NH=0, an ordered set, where if vi<v;, when i<j.
Extend (*) in H=HU{v;,vs,...,v, } as follows:

X'Vi= VX = Vi, VitV = vpv = v, Vi< and
vi'vi = HU{v,,..,vi.1 }, VXEH, iE{1,2,...,n}.

Then (H,,) is an Hy-group, called Attach Elements
Construction, and (H,,")/B*=Z,, where v, is single [51],[55].

Some problems arising on the topic, are:

Open Problems.

a. Find standard H,-fields to represent all Hy-groups.

b. Find reps by H,-matrices over standard finite H,-fields
analogous to Z,,.

c. Using matrices find a generalization of the ordinary
multiplication of matrices which it could be used in H,-rep
theory (see the helix-hope [68]).

d. Find the ‘minimal® hypermatrices corresponding to the
minimal hopes.

e. Find reps of special classes of hypergroups and reduce
these to minimal dimensions.

Recall some definitions from [68],[16],[32]:

Definitions 2.7 Let A=(a;;)EMp.n be mxn matrix and s,tEN
be natural numbers such that 1<ssm, 1<t<n. Then we define a
characteristic-like map est: Mp,,n—>M;, by corresponding to
the matrix A, the matrix Acst=(a;) where | <iss, 1sjst. We call
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it cut-projection of type st. We define the mod-like map st:
MM,y by corresponding to A the matrix Ast=(a;) which
has as entries the sets

8= {Bissjon | 1siss,1sjst and €, AEN, i+xssm, j+ht=n}.
Thus we have the map
8t Mipun—> Mg A—>Ast=(ay).

We call this multivalued map helix-projection of type st. So
Ast is a set of sxt-matrices X=(x;) such that x;Eaj;, Vi,j.

Let A=(2;j)EMmxn, B=(b;)EM,,, matrices and s=min(m,u),
t=min(n,u). We define a hope, called helix-addition or
helix-sum, as follows:

@ MipanXMywy—>P (M)t
(A,B)—>A@B=Ast+Bst=(a;)+(bj) C Msx
where
(a)+(by)= {(cp)= (aj+by) | aEa; and byEby}.

And define a hope, called helix-multiplication or helix-
product, as follows:

®: M XMuy=P(Muns): (A,B)—>A@B=Ams-Bsv=(ay)-(by;)C
Mll‘leQ

where
(alj)(blj)= {( cij)=(2ai(b(j) l aijeaij and biijij}-

Remark. In My, the addition of matrices is an ordinary
operation, therefore we are interested only in the ‘product’.
From the fact that the helix-product on non square matrices is
defined, the definition of the Lie-bracket is immediate,
therefore the helix-Lie Algebra is defined [62], as well. This
algebra is an H,-Lie Algebra where the fundamental relation
g* gives, by a quotient, a Lie algebra, from which a
classification is obtained.

For more results on the topic see [16],[32],[61],[62].

In the following we denote E;; any type of matrices which
have the ij-entry 1 and in all the other entries we have 0.

Example 2.8 Consider the 2x3 matrices of the following
form,

A= EyticBy) By tEn;, B kEg+Ep+Ess, VREN.

Then we obtain A, ®A;={ Axn,Ar+1,Brir,Bas1}

Similarly, B®Ay={B«,B.+1}, Ax®B;=B2=B®Ba.

Thus the set {A«Ba|xAEN} becomes an H,-semigroup
which is not COW because for k=\ we have

B®B; =B, = B, =B,®B,,
however
(A®ADN(A)B®AL) = { A, B}, Vi, AEN.

All elements B, are right absorbing and B, is a left scalar,
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because B1®A,=B,,, and B;®@B;=B,, A, is 2 unit.

3. Hyper-Lie-Algebras

Lie-Santilli admisibility

The general definition of an H,-Lie algebra over an H,-field
is given as follows [61],[62]:

Definition 3.1 (L,+) be H,-vector space on H,-field (F,+,"),
@:F—F/y* the canonical map and owF={xEF:@(x)=0}, where 0
is the zero of the fundamental field F/y*, Moreover, let o be
the core of the canonical map ¢’: L—L/g* and denote by the
same symbol O the zero of L/g*. Consider the bracket
(commutator) hope:

[,]:LxL—PL): x,y)—>[xy]

then L is called an H,-Lie algebra over F if the following
axioms are satisfied:
(L1) The bracket hope is bilinear, i.e.

PaxiHAax2,y N [x1,y FAalx2,y]) = O
Myt AaylNaxy  HAz[x.ya]) = D,
VX, X1,X2,,¥1,¥2<L and Ay, A,EF
(L2) [xx]Nwy, = &, YXEL
(L3) (%.lys2]T+ [y [zx]1+ [z, [x.y]DNoL = T, Vx,yEL

Example 3.2 Consider all traceless matrices A=(a;)EM,,s,
in the sense that a;;+ a»=0. In this case, the cardinality of the
helix-product of any two matrices is 1, or 2} , or 25 These
correspond to the cases: a;;=a;; and a,;=an, or only a;;=a;3
either only ay=a,;, or if there is no restriction, respectively.
For the Lie-bracket of two traceless matrices the
corresponding cardinalities are up to 1, or 2, or 2'%, resp. We
remark that, from the definition of the helix-projection, the
initial 2x2, block guaranties that in the result there exists at
least one traceless matrix.

From this example it is obvious the following:

Theorem 3.3 Using the helix-product the Lie-bracket of any
two traceless matrices A=(a;;), B=(b;)EMuxn, m<n, contain at
least one traceless matrix.

Last years, hyperstructures have a variety of applications in
mathematics and other sciences. The hyperstructures theory
can now be widely applicable in industry and production, too.
In several books [4],[10],[12] and papers [1],[11],[17],[23],
[31],[35],[50],[671,[70] one can find numerous applications.

The Lie-Santilli theory on isotopies was born in 1970’s to
solve Hadronic Mechanics problems. Santilli proposed [28] a
‘lifting’ of the trivial unit matrix of a normal theory into a
nowhere singular, symmetric, real-valued, new matrix. The
original theory is reconstructed such as to admit the new
matrix as left and right unit. The isofields needed in this theory
correspond into the hyperstructures were introduced by
Santilli and Vougiouklis in 1996 and they are called
e-hyperfields [29],[30],[59],[60],[64].[13],[14],[15] which are
used in physics or biology. The H,-fields can give
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e-hyperfields which can be used in the isotopy theory for
applications.

The IsoMathematics Theory is very important subject in
applied mathematics. It is a generalization by using a kind of
the Rees analogous product on matrix semigroup with a
sandwich matrix, like the P-hopes. It contains the classical
theory but also can find easy solutions in different branches of
mathematics. To compare this novelty we give two analogous
examples: (1) The unsolved, from ancient times, problems in
Geometry was solved in a different branch of mathematics, the
Algebra with the genius Galois Theory. (2) With the
Representation Theory one can solve problems in Lie
Algebras and to transfer these in Lie Groups using the
exponential map, and the opposite. One very important thing
of the IsoMathematics Theory is that admits generalizations,
as well. Two very important of them are the following;: First, is
the so called Admissible Lie-Santilli Algebras [28],[30],
[621,[65] by using again a kind of Rees sandwich product.
Second, is that one can extend this theory into the multivalued
case, i.e. into Hy-structures.

Definitions 3.4 A hyperstructure (H,*) containing a unique
scalar unit e, is called e-hyperstructure. We assume that Vx,
there is an inverse x™, i.e. ex:x'Nxx. A hyperstructure
(F,+,"), where (+) is an operation and (*) is a hope, is called
e-hyperfield if the following are valid:

(F,t) is abelian group with the additive unit 0, (-) is WASS,

() is weak distributive with respect to (+), 0 is absorbing:
0-x=x-0=0, VXEF, there exist a multiplicative scalar unit 1, i.e.
1-x=x-1=x, VxEF, and VxEF there exists a unique inverse x,
such that 1€x-x"'Nxx.

The elements of an e-hyperfield are called e-hypernumbers.
In the case that the relation: 1=x-x"'=x""x, is valid, then we say
that we have a strong e-hyperfield.

A general construction based on the partial ordering of the
H,-structures:

Construction 3.5 [13],[14],[15],[30] Main e-Construction.
Given a group (G,'), where e is the unit, then we define in G, a
large number of hopes (®) by extended (+), as follows:

X®y={xy’gbg2’- . '}5 VX,YEG'{e}s and g1, 825.. EG'{C}

Then (G,®) becomes an H,-group, in fact is Hy-group
which contains the (G,). The H,-group (G,®) is an
e-hypergroup. Moreover, if ¥x,y such that xy=e, so we have
x®y=xy, then (G,®) becomes a strong e-hypergroup.

Definition 3.6 Let (H,,+,) be the attached, by one element,
H,-field of the H,-semigroup (H,"). Thus, for (H,"), take an
element v outside of H, and extend (-) in H=HU{v} by:

x-v=v-x=v, v-v=H, VxEH.

(H,,") is an Hy-group, called Attach Elements Construction,
and (H,,,")/B*=Z,, where v, is single. If (H,") has a left and right
scalar unit e then (H,,+,) is an e-hyperfield, the attached
H,-field of (H,").

Remark. The above main e-construction gives an extremely
large class of e-hopes. These e-hopes can be used in the
several more complicate hyperstructures to obtain appropriate

e-hyperstructures. However, the most useful are the ones
where only few products are enlarged.

Example 3.7 Take the finite-non-commutative quaternion
group Q={1,-1, i, j,-j, k,-k}. Using this operation one can
obtain several hopes which define very interesting e-groups.
For example, denoting i={i,-i}, j={j,-j}, k={k,-k} we may
define the (*) hope by the Cayley table:

" 1 1 i i j - k X
1 1 -1 i A j 5 K X
-1 -1 1 - i 5 j k k
i i - -1 1 k k4 i
A - i 1 -1 x  k i -
j i 5 x k -1 1 i -
- 5 i k K 1 -1 -i i
k k k i 4 - i -1 1
x  k  k 5 i i ] 1 -1

The hyperstructure (Q,*) is strong e-hypergroup because 1
is scalar unit and the elements -1,i,-1,j,-j,k and -k have unique
inverses the elements -1,-i,i,-j,j,-k and k, resp., which are the
inverses in the basic group. Thus, from this example one can
have more strict hopes.

In[30],[62],[65] a kind of P-hopes was introduced which is
appropriate to extent the Lie-Santilli admissible algebras in
hyperstructures:

The general definition is the following:

Construction 3.8 Let (L=Mp,,,+) be an Hy-vector space of
mxn hyper-matrices over the H,-field (F,+,°), :F—=F/y*, the
canonical map and ag={xEF:p(x)=0}, where 0 is the zero of
the fundamental field F/y*, o, be the core of the canonical
map ¢":L->L/e* and denote again by 0 the zero of L/g*. Take
any two subsets R,SCI, then a Santilli’s Lie-admissible
hyperalgebra is obtained by taking the Lie bracket, which is a
hope:

[9] RS: LXLQP(L): [x:y]RS=XRty~yStx'

Notice that [x,y]rs=xR'y—yS'x={ r'y~ys'x | rER and s€S}.
Special cases, but not degenerate, are the ‘small’ and
‘strict’:

(@) R={e} then [x,ylrs = xy—yS'x = {xy—ys'x | s€S}
(b) S={e} then [x,ylgs = xR'y—yx = {xr'y—yx | rER}
(c) R={ry,r,} and S={s,,s,} then
[.¥lrs = XR'y-yS'x =

i, t t, f, t, 1. 1 t
{xr;'y=ys,'%, Xri'y=ysy X, XI2 Y-ys1 X, XI2 Y—yS; X}

4. Galois H,-Fields and Low Dimensional
H,-Matrices
Recall some results from [63], which are referred to finite

H,-fields which we will call, according to the classical theory,
Galois Hy-fields. Combining the uniting elements procedure
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with the enlarging theory we can obtain stricter structures or
hyperstructures. So enlarging operations or hopes we can
obtain more complicated structures.

Theorem 4.1 In the ring (Z,,+,"), with n=ms we enlarge the
multiplication only in the product of elements 0-m by setting
0®m={0,m} and the rest results remain the same. Then

(Zn9+9®)/’Y* &= (Zm7+9.)'

Proof. First we remark that the only expressions of sums
and products which contain more, than one, elements are the
expressions which have at least one time the hyperproduct
0®m. Adding to this special hyperproduct the element 1,
several times we have the equivalence classes modm. On the
other side, since m is a zero divisor, adding or multiplying
elements of the same class the results are remaining in one
class, the class obtained by using only the representatives.
Therefore, y*-classes form a ring isomorphic to (Zg,+,").

Remark. In the above theorem we can enlarge other
products as well, for example 2-m by setting 2@m={2,m+2},
then the result remains the same. In this case the elements 0
and | remain scalars, so they are refered in e-hyperstructures.

From the above theorem it is immediate the following:

Corollary 4.2 In the ring (Z,,+,"), with n=ps where p is a
prime number, we enlarge the multiplication only in the
product of the elements 0-p by setting 0®p={0,p} and the rest
results remain the same. Then the hyperstructure (Z,,+,®) is a
very thin H~field.

The above theorem provides the researchers with H,-fields
appropriate to the rep theory since they may be smaller or
minimal hyperstructures.

Remarks 4.3 The above theorem in connection with Uniting
Elements method leads to the fact that in H-structure theory it
is able to equip algebraic structures or hyperstructures with
properties as associativity, commutativity, reproductivity. This
equipment can be applied independently of the order of the
desired properties. This is crucial point since some properties
are easy to be applied, so we can apply them first, and then the
difficult ones. For example from an H,-ring we first go to an
H,-integral domain, by uniting the zero divisors, and then to
the H,-field by reaching the reproductivity.

Construction 4.5 (Galois H,-fields) In the ring (Z,,+,"), with
n=ps where p is prime, enlarge only the product of the
elements 2 by p+2, i.e. 2(p+), by setting 2®(p+2)={2,p+2}
and the rest remain the same. Then (Z,,+,®) is a COW very
thin H,-field where 0 and 1 are scalars and we have:

(Zn9+s®)/'Y* = (Zp9+a')'

Proof. Straightforward.

Remark 4.6 Galois Hv-fields of the above type are the most
appropriate in the representation theory since the cardinality
of the products is low. Moreover, one can use more
enlargements using elements of the same fundamental class,
therefore, one can have several cardinalities. The low
dimensional reps can be based on the above Galois Hv-fields,
since they use infinite Hv-fields although the fundamental
fields are finite.
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1. Introduction

In 1942, Albert [1] introduced the concept of isotopy of
algebras: Two algebras (4,, -) and (4, *) over a field X are
said to be isofopic if there exist three regular linear
transformations £, g and 4 from 4, to 4, such that

f(u) * g(v)=h(u- v), forallu, vEA,. (1)

The algebra 4, is then said to be isotopic to the algebra 4,

or, equivalently, 4, is an isotope of A;. The triple @ = (£, g, h)
is an isotopy or isotopism between both algebras 4; and 4,. If f
= g = h, then this is indeed an isomorphism. Ifthe elements of

A; and 4; coincide, then the isotopism Ois said to be principal
if 1 is the trivial transformation /d, that is, if (1) =I1d(u)=u, for
all uE 4. In this case, the algebra 4, is said to be a principal
isotope of A;. In his original paper, Albert proposed the
question as to whether a principal isotope of a Lie algebra is
Lie. In this regard, he proved that a principal isotope 4, of a
Lie algebra 4; with respect to a principal isotopism (f, g, Id) is
a Lie algebra if and only if, for all 4, v, w €4,, it is verified
that

Jw) - g(v) =-fv) - g(w). @
S gv))-gw) - ffw)g(w) g(v) —fiw g(f(v)-g(w)=0. 3)

In 1944, Bruck [2] introduced the concept of isotopically
simple algebra as a simple algebra such that all their isotopic
algebras are simple. He proved in particular that the Lie
algebra of order »n - (n-1)/2, consisting of all skew-symmetric
matrices over any subfield of the field of all reals, under the
Lie product [y, v] =u -v—v - u, is isotopically simple. Further,
the Lie algebra of order n - (n — I) consisting of all

skew-Hermitian matrices in any field R(i) (where R is a
subfield of the reals and i = - /), under the multiplication [,
v]=u+v—v - u,is anisotopically simple algebra over R.

More recently, in 1978, Santilli [3] generalized the
associative product u - v between Hermitian generators of the
universal enveloping associative algebra by considering the
new product

u*v=uy-T-v “)

where T is a positive-definite operator called the isotopic
element, which can indeed depend on distinct factors

T=T(xxx" ..., 41 5)
The product
[uv]=u*v—v*uy (6)

preserves the Lie axioms and is called the Lie-isotopic product.
The application to Lie’s theory (enveloping algebras, Lie
algebras and Lie groups) that emerges from this new product
is the so-called Lie-Santilli isotheory (see [3, pp. 287-290 and
329-374] and also [4-9]).

In the development of the isotheory, Santilli extended the
unit of the ground field to the generalized unit or isounit

I=1(xx" X, 0pyt) =T ©)
He defined then the isonumbers
wu=u*I(xxx"..,u71), forall u EA. )
and the isoproduct

[wv]=u*v—v*uy ©)]
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This isoproduct constitutes the Lie product of an
isomorphic Lie algebra of 4 whenever the isounit / is constant.
In any other case, this determines a generalization of the
classical notion (2) of isotopism. In order to analyze this fact,
the authors [10] reinterpreted in 2006 the dependence on
distinct factors of the isounit [ as a family of classical Bruck’s
isotopisms. This reinterpretation became clearer shortly after
[11] once the attention was focused not on isotopisms of
algebras, but on isotopisms of partial quasigroups.

The term quasigroup was introduced in 1937 by
Haussmann and Ore [12] to denote a nonempty set Q endowed
with a product -, such that if any two of the three symbols u, v
and w in the equation u - v = w are given as elements of O, then
the third is uniquely determined as an element of Q. Its order
is the cardinality of the underlying set, that is, the number of
elements of the quasigroup Q. This is said to be a loop if it
contains a unit element, that is, there exists an element e £Q
suchthate *u = u e = uforall u €Q. Every associative loop
is indeed a group. The multiplication table of a quasigroup of
order n is a Latin square of order n, that is, an n x n array with
elements chosen from a set of » distinct symbols such that
each symbol occurs precisely once in each row and each

column (see Figure 1).
2 3 4 1
3 4 1 2
4 1 2 3
1 2 3 4

Figure 1. Latin squave of order 4.

A partial Latin square of order n is an n x n array with
elements chosen from a set of » distinct symbols such that
each symbol occurs at most once in each row and each column
(see Figure 2). It constitutes the multiplication table of a finite
partial quasigroup (Q, ) of order n. Let u, v €Q. The product
u - v is then an element of Q or it is undefined. This last case is
denoted as u - v = @. By abuse of notation, it is also considered
that u - @ =0 - u = @, for all u € Q and hence, the partial
quasigroup is associative if (u-v) -w=u-(v-w), forally, v w
EQ. Itis a partial loop if there exists an element e € Q such
thate -u =u - e & {u, @} for all u £Q and there does not exist
an element e’ # e such that e’ - 4 = u or u - ¢’ = u. Every
associative partial loop constitutes a partial group.

1

2 4

3

4 3

Figure 2. Partial Latin square of order 4.

In 1943-44, Albert [13, 14] together with Bruck [15]
extended the definition of isotopy from algebras to
quasigroups. Particularly, two quasigroups (Q,, -) and (02 %
of the same order are said to be isotopic if there exist three
bijections f, g and 4 between their sets of elements such that

S *g(v) =h(u-v), foralluy, v €Q,.

The definition can be naturally extended to partial

(10)

quasigroups once it is considered A1) = @. The triple O = (1,
g h) is said to be an isotopism between Q,; and O, and it is

denoted O, = Q,6. If O, = Q,, then the isotopism O is said to
be an autotopism of Q, and f; g and 4 are permutations of the
elements of Q, The set of autotopisms of a (partial)
quasigroup censtitutes, therefore, a group with the
component-wise composition of permutations.

In 2007, the authors [11] introduced the concept of Santilli
isotopism between partial quasigroups. Specifically, an

isotopism © = (f, g, h) between two partial quasigroups (Q, *)
and (Q, *) is said to be a Santilli isotopism if there exist three
elements iz i, and j; in O, such that

Sw=u- i; gw)=u- igand h(w)=u: iy, for allu&P,. (11)

The triple (i; ig, i) is denoted by S(6,0,). If 0, = O, then

the isotopism Ois said to be a Santilli autotopism of Q;.

In [11], there were exposed several properties of the set of
partial quasigreups having a Santilli autotopism that fixes at
least one of the symbols. An exhaustive study of Santilli
autotopisms is, however, currently required. This paper is
established as a first contribution in this regard. In Section 2,
some new general properties of the set of Santilli isotopisms of
(associative) partial quasigroups, partial loops and partial
groups are analyzed. In Section 3, a classification of the
Santilli autotopisms of groups of order n < 6 is explicitly given.
Remark that, even if the number of quasigroups is lnown for
order up to 11 [16, 17], that of partial quasigroups is only
known for order up to four [18, 19].

2. Santilli Autotopisms

From now on, every partial quasigroup of order n is
considered to be formed by the set of elements {7,..., n}). The
set of isotopisms of partial quasigroups of order n is then
denoted as I, = S, x S, x S,,, where S, is the symmetric group on
{1, ..., n}. The set of fixed symbols in a permutation & € S, is
denoted as

Fix(m) = {fu €{1,...n} such that z(u)=u}. (12)

Let @ €1, and let SQ(6), SL(6), SAQ(6) and SG(6) be,
respectively, the sets of partial quasigroups, partial loops,

associative partial quasigroups and partial groups that have &
as a Santilli autotopism. The next results are satisfied.
Lemma 2.1. Let 8= (f, g, h) €1, and (Q, -) €SQO(6) be

such that S(@Q)= (i iy #). Then, iy = g(i). As a
consequence,

(ip -G i) = (ij) - (i ip), foralli, j €. (13)

Proof. Given v& Q, let u €Q be such that f{u)=v. Then,
v iy =h(v) = h(flw) = h(u ir) = fiw) - g(is) = v - &(ir) and the
result holds from the fact that Q is a partial quasigroup and 4(v)
EQ.

Proposition 2.2. Let 6= (f g, h) €], and (Q, ;) ESQ(6) be
such that S(6,Q)= (i, iy, i}). If h = f, then if E Fix(g).

Proof. The result follows straightforward from Lemma 2.1
and the fact of being 7 = f.
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Lemma 2.3. Let 6 = (f, g h) & I, If there exist two
permutations a, £ €{f, g, h} suchthata(ug) = f(ug) for some u,
€Q, thena = 4.

Proof. Let (Q, -) be apartial quasigroup in SO(6) and let i,
ig€Q besuch thata(u) = u - izand f(u) = u - igfor allu €Q.
Particularly, u - i, = a(ug) = B(uy) = up - ig. This product is not
undefined because a(uy) € Q. Since Q is a partial quasigroup,
it must be then i, = ig and hence, a = f.

Proposition 2.4. Let 6 = (£, g, h) €1, be such that Fix(g) =
@. Then, flw) # h(w) for all u€ Q.

Proof. Let u& Q be such that f{u) = h(u). From Lemma 2.3
it must be /= A. Thus, from Lemma 2.1, it is iy = i, = g(i;) and
hence, iy EFix(g), which is a contradiction.

Lemma 2.5. Let 8= (f, g, h) €1, and (Q, ) ESQ(6) be
such that S(6,0)= (is i, iy). If there exists uy € Q such that
h"(g(ug)= g(f"(uy) for some positive integer m, then iz €
Fix(g"). As a consequence, if Fix(g") = O for some positive

integer m, then 4" (g(w)# g(?"(w)), for allu €Q.
Proof. Let m be such that h™(g(uo))= g(f"(uo)) for some ug

€ Q. It is then f"(up) - g"(iy) = h™(uo - iy) = h™(g(ug))=
g(f"(ug))= f™(ug) - iz This product is not undefined because
h™(g(ug)) € Q. Since Q is a partial quasigroup, it must be then
iy € Fix(g"). The consequence is immediate.

Lemma 2.6. Let © = (f g h €& I, be such that
|Fix()| - |Fix(g)| - |Fix(h)| >0. Let (Q, -) €SQ(6) be such that
S(6,0)= (i ig, iy). If there exist ug € Fix(f), wo EFix(h) and a
& {f, g h} such that a(ug) = wo, then i,E Fix(g). Furthey, ifi;&
Fix(g), then g(u) € Fix(h) for all u& Fix(f).

Proof. It is satisfied that up - i, = a(ug) = wo = h(wp) =
h(uy - ig)=flug)glia) = up - g(iy). Since wy € Q and Q is a
quasigroup, it must be i, € Fix(g). Let us suppose now that i,
&€ Fix(g) and let us consider an element u & Fix(f). Then g(u)
=u-ig = flu) ' g(iy) = h(u - i)=h(g(u)) and hence, g(u) €
Fix(h). '

The next three results deal with the set of partial loops SL(6)
having a Santilli isotopism @ in their autotopism group.

Proposition 2.7. Let 6= (£, g, h) € L,and (Q, -) ESL(6) be
a partial loop with unit element e. Then, S(6,0) = (f(e), g(e),
g(fte))).

Proof. Let S(60) = (is i, iy. The result follows
straightforward from Lemma 2.1 and the fact that z(e) € Q.
Hence, n(e) = e - i,= iy, forallx €{f, g}.

Lemma 2.8. Let © = (f g h) € I, If there exists a
permutation = € {f; g, h} such that Fix(z) # O, then & = Id.

Proof. Let (Q, ) ESL(6) and S(6,0)= (ij iy, iy). Let w E{f,
g h} and uy € Q be such that m(uy) = u,. Since uy = uy- i, the
element i, is the unit element of the partial loop. Let u & Q.
Since n(u) €0, itis w(u) = u - i, = u and hence, = = Id.

Lemma 2.9. Let ©= (£, g, h) €1,and (Q, -) ESL(6) be a
partial loop with unit element e. If e &€ Fix(/") for some
positive integer m, then 4" = ¢”, Similarly, ife € Fix(g™), then

h m =f'".

Proof. Let us suppose that e & Fix(") for some positive
integerm. Letu €Q. Itisg"(w) =e-g" W) =/"(e) - g"(w) =
h"(e - u). Since g"(u) €Q, itmust be e - u = u and hence, g" ()
= K"(u). The last assertion follows analogously.

We focus now on the set S4Q(6) of associative partial
quasigroups having a Santilli autotopism in their autotopism
group.

Proposition 2.10. Let @ = (£ g, h) € 1,. If SAQ(6) # O,
thenh =g °f.

Proof. Let (Q, -) € SAQ(6) and S(6,0)= (is iy iy). From
Lemma 2.1, we know that i, = g(i;). Hence, for allu €0, itis
verified that A(w) = u - iy=u - gl =u - (ip-ig) = (u-iy) i,
=g(fw)).

Lemma 2.11. Let 8= (%, g, h) €1, be suchthat SAQ(6) # D
and let m < n be a positive integer. Then

a) SAQ(6) CSA0(E").

b) SAQ(©) = SAQ((f, g™, h+f")).

Proof. Let (Q, ) ESAQ(6) be such that S(6,0)= (i iy, iy)
and let m < n be a positive integer. Then

1. The isotopism 6" is an autotopism of (Q, -) because
W't -v) =" (ftw) - gw) = ... =f'(w) - g"(v), forall u,
v € Q. Since the quasigroup (Q, ) is associative, this is
indeed a Santilli autotopism for which S(6",0)= (if", ig",
«m
in')-

2. The isotopism (f;, g /", h +f") is an autotopism of (Q, -)
because A" (u - v) = h((u - v) - if") = h(u - (v - if")) =
h(u - ") = ftw) - g("(v), for all u, v € Q. Since the
quasigroup (Q, ) is associative, this is indeed a Santilli
autotopism for which S(( g «/", h -f"),Q) = (", if" - iy,
if" - iy). Hence, SA0(6) C SAQ((f, g °f" hf")).

Let us consider now an associative partial quasigroup
(0, NESAQ((, g °f", h°f")) such that S((f; g °/". h °f"), Q") =
(i1, iz i3). It is then verified that @ is a Santilli autotopism of
(Q’, *) because, since /' =Id, it is h(u *v) = h({f' (u *v)) =
h (" (u *v)) = h(" (u * £ (v) = flw) *8(" ("™ (v)) =) *
g(’'®) = flw) * g(v), for all u, v €Q’. Further, S(6,0) = (i,,
ir*i, "™, is*i,"™™). Hence, SAQ((f, g °f", h °S")) S SAQ(6).

In general, given a positive integer m < n, it is not true that
SAQ(8") C SAQ(6). Thus, for instance, the isotopism & =
((1234), (1234), (13)(24)) is a Santilli autotopism of the
associative quasigroup whose multiplication table is the Latin
square exposed in Figure 1. Nevertheless, even if the
isotopism & = ((13)(24),(13)(24),1d) is a Santilli autotopism
of the associative partial quasigroup whose multiplication

table is exposed in Figure 3, this is not contained in S4Q(6).

3 1
4 2
1 3
2 4

Figure 3. Partial Latin square of order 4.

Let us finish with a result about the set SG(6) of partial
groups having a Santilli isotopism in their autotopism group.
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Theorem 2.12. Let 8 = (f, g, h) €1,. If SG(6) # O and
Fix() #0, theng = hand f= Id

Proof. The result follows straightforward from Lemma 2.8
and Proposition 2.10.

corresponding autotopism group. The multiplication tables of
the elements of these sets are described in Figures 4-12.

1 2 2 1

2 1 1 2

Figure 4. Partial Latin squares related to A>.

3. Santilli Autotopisms of Partial Groups : > 3 3 N y 2 3 I
of Order n < 4 : i ; ! 53’; i’ : ; §
_ The results that have been exposed in Section 2 can be taken Figure 5. Partial Latin squares related to A,
into account in order to determine explicitly the set of Santilli
isotopisms that are autotopisms of partial groups of a given 1121344112133 al1]2F213]4l1
der. To thi d, that two isotopi 6,=(f, g h 2|13 1411J1|213 144112313 ]14]1]2
order. To this en \'zve say that two ISO'OplSmS = (1, &1 ' ), AVESEE PEEETESE SECEERES FEBRERE
and 6,=(f, g2 hy) in I, are equivalent if f; = ”{’, anc}q ther; exnsnfs 411 213K3 411120213 4101|2134
itive i < hthatg, =g, ° dhy=h °fi".
a positive integer m < such that g, = g “/," and 5, 1 Figure 6. Partial Latin squares related to A,.
From assertion (b) in Lemma 2.11, it is verified that S4Q(6,)
= SAQ(6,). To be equivalent is then an equivalencerelationin 1112 13 483 111412082411 ]3§41312]1
) . 214111380112 i3{414 13121103 ]1141}2
the set J,. Let {6] denote the equivalenceclassof OEL,. We Y311 T4 T2 4 73 211801 1213 140214113
expose in Table 1 these equivalence classes for Santilli 413 2110214113831 1412011213124
autotopisms of partial groups of order n < 4. We focus on the Fi B ] olated
case of non-trivial isotopisms, that is, those that do not gure 7. Partial Latin squares related 1o B
coincide with (1d, 1d, 1d). ‘ 1]2[3]4f2]14 30413 1123142711
Table 1. Santilli autotopisms of partial groups. § ‘1‘ ; ? i § ‘? ; ? ; § 114 ; ? ‘1‘ §
n 1] SG(©) 431234221 [4]3])1]2]3]4
2 {g:l,zz’l 21),2()1,21;1))]] Ay Figure 8. Partial Latin squares related to C,.
3 [(123), (123), (132)]
[(132), (132), (123))] 11213140121 {4]|313 /41112413 :12]1
[(1d, (123), (123))] A; 2 11141301 12i{314041i3]2 (183 1411]2
[(d. (132), (132)] 3 (41112040312 1011213140211 ]4]3
4 [(1234), (1234), (13)24))] 4 1321 )3]a4}j1{2)2}1]4]3]1 12314
[(1432), (1432), (13)(24))] ; i ; .
[((13)24), (1234), (1432)] A, Figure 9. Partial Latin squares related to D,.
[(1d, (1234), (1234)]
[(d, (1432), (1432)] 12 211 e 2=
[(1243),(1243), (14)23))] 112 2
[(1342), (1342), (14)(23))] 314 43 3 : 413
[(14)23), (1243), (1342)] By 413 314 2 214
[(1d, (1243), (1243)] Figure 10. Partial Latin squares related to E..
[(1d, (1342), (1342)]
[(1324), (1324), (12)(34))]
[(1423), (1423), (12)(34))] ; i ; 2 i ; i ;
[(12)(34), (1324), (1423)] Cy 3 1 3 1 3 1 3
[(Id, (1324), (1324)] 4 2 4 212 4 2 4
[(1d, (1423), (1423)]
[((12)(34), (13)(24), (14)(23)] Figure 11. Partial Latin squares related to F.
[((12)(34), (14)(23), (13)(24)]
[((13)(24), (12)(34), (14)(23)] Da 1 4 14 4|1 4 1
[((13)(24), (14)(23), (12)(34)] 2 3 213 312 3 2
[((14)(23), (12)(34), (13)24)] 3 2 3|2 213 2 3
[((14)(23), (13)(24), (12)(34)] 4 1 4 |1 14 1 4
[((12)(34), (12)(34), 1d] Cy. Dy, Ba
[(1d, (12)(34), (12)(34)] e Figure 12. Partial Latin squares related to G,.
[((13)(24), (13)(24), 1d] Ay Dy Fs
[(1d, (13)(24), (13)(24)] P
[((14)23), (14)(23), 1d] B, Dy Gs Acknowledgements
h 14,

[(Id, (14)(23), (14)(23)]

We indicate for each class /6] in Table 1 the set SG(6) of
partial groups that have all the isotopisms of the class in their
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1. Introduction

We deal with the largest class of hyperstructures called
H,-structures introduced in 1990 [23],[26], which satisfy the
weak axioms where the non-empty intersection replaces the
equality.

Basic definitions:

Definitions 1.1 In a set H equipped with a hyperoperation,
which we abbreviate it by hope -:HxH—P(H), we abbreviate
by WASS the weak associativity: (xy)zNx(yz)=9J, Vx,y,zEH
and by COW the weak commutativity: xyNyx=J, Vx,yEH.

The hyperstructure (H,") is called H,-semigroup if it is
WASS and is called H,-group if it is reproductive
H,-semigroup: xH=Hx=H, Vx€H. (R,+,") is called H,-ring if
(+) and () are WASS, the reproduction axiom is valid for (+)
and (*) is weak distributive with respect to (+):

x(y+2)N(xy+xz)=D, (x+y)zN(xzt+yz)=DJ, Vx,y,ZER.

For more definitions and applications on H,-structures, see
books [26],[2],[8] and the survey papers [6],[25],[30]. An
extreme class is the following [26]: An H,-structure is very
thin iff all hopes are operations except one, with all
hyperproducts singletons except only one, which is a subset of
cardinality more than one. Therefore, in a very thin
H,-structure in a set H there exists a hope (-) and a pair
(a,b)EH? for which ab=A, with cardA>1, and all the other
products, with respect to any other hopes (so they are
operations), are singletons,

The fundamental relations p* and y* are defined, in
H,-groups and H,-rings, respectively, as the smallest
equivalences so that the quotient would be group and ring,
respectively [22],[23],[26],[27],[28],[35]. The way to find the
fundamental classes is given by analogous theorems to the
following:

Theorem 1.2 Let (H,) be an H,~group and let us denote by
U the set of all finite products of elements of H. We define the
relation B in H as follows: xBy iff {x,y}Cu where u€U. Then
the fundamental relation B* is the transitive closure of the
relation f.

The main point of the proof of this theorem is that B
guaranties that the following is valid: Take two elements x,y
such that {x,y}Cu€U and any hyperproduct where one of
these elements is used. Then, if this element is replaced by the
other, the new hyperproduct is inside the same fundamental
class where the first hyperproduct is. Therefore, if the
‘hyperproducts’of the above B-classes are ‘products’, then,
they are fundamental classes. Analogously for the y in
H,-rings.

An element is single if its fundamental class is a singleton.

Motivation for H,-structures:

We know that the quotient of a group with respect to an
invariant subgroup is a group.

Marty states that, the quotient of a group with respect to any
subgroup is a hypergroup,

Now, the quotient of a group with respect to any partition is
an H,-group.

Definition 1.3 Let (H,"), (H,®) be H,-semigroups defined on
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the same set H. () is smaller than (®), and (®) greater than (*),
iff there exists automorphism

f=Aut(H,®) such that xyCf(x®y), YxEH.

Then (H,®) contains (H,-) and write -s®. If (H,") is structure,
then it is basic and (H,®) is an Hy-structure.

The Little Theorem [26]. Greater hopes of the ones which
are WASS or COW, are also WASS and COW, respectively.

The fundamental relations are used for general definitions
of hyperstructures. Thus, to define the general H,-field one
uses the fundamental relation y*:

Definition 1.4 [23],[26],[27]. The H,-ring (R,+,’) is called
H,-field if the quotient R/y* is a field.

Let o* be the kernel of the canonical map from R to R/y*;
then we call reproductive H,-field any H,-field (R,+,") if the
following axiom is valid:

x(R-0*) = (R-0*)x = R-0*, VXER-0*.

From the above anew class is introduced [31],[38]:

Definition 1.5 The H,-semigroup (H,) is called h/v-group if
the H/B* is a group.

Similarly the h/v-rings, h/v-fields, h/v-modulus, h/v-vector
spaces etc, are defined. The h/v-group is a generalization of
the H,-group since the reproductivity is not necessarily valid.
Sometimes a kind of reproductivity of classes is valid, i.e. if H
is partitioned into equivalence classes o(x), then the quotient
is reproductive xo(y)=o(xy)=o(x)y, YxEH [31].

An H,-group is cyclic [17],[26], if there is element, called
generator, which the powers have union the underline set, the

minimal power with this property is the period of the generator.

If there exists an element and a special power, the minimum
one, is the underline set, then the H,-group is called
single-power cyclic.

To compare classes we can see on small sets. The problem
of enumeration and classification of H,-structures, or of
classes of them, is complicate in H,-structures because we
have great numbers. The partial order in H,-structures,
introduced in [26], restrict the problem in finding the minimal
H,-structures, up to isomorphism. We have results recently by
Bayon & Lygeros as the following [1],[13]:

In sets with three elements: Up to isomorphism, there are
6.494 minimal H,-groups. The 137 are abelians; the 6.152 are
cyclic. The number of H,-groups with three elements, up to
isomorphism, is 1.026.462. The 7.926 are abelians; 1.013.598
are cyclic. 16 are very thin. Abelian H,-groups with 4
elements are, 8.028.299.905, the 7.995.884.377.

Definitions 1.6 [25],[26],[38] Let (R,+,") be H,-ring, (M, +)
be COW H,-group and there exists an external hope:

RxM—P(M): (a,x)—ax,
such that, Va,bER and Yx,yEM we have
a(x+y)N(ax+ay)=J, (a+b)xN(ax+bx)=J, (ab)xNa(bx)=J

then M is called an H,-module over R. In case of an H,-field F
instead of H,-ring R, then the H,-vector space is defined.
The fundamental relation £* is defined to be the smallest

equivalence such that the quotient M/g* is a module (resp., a
vector space) over the fundamental ring R/y* (resp. the
fundamental field F/y*), The analogous to Theorem 1.2, is:

Theorem Let (M,+) be Hy-module on the H,-ring R. Denote
by U the set of all expressions consisting of finite hopes either
on R and M or the external hope applied on finite sets of
elements of R and M. Define relation € in M as follows: xgy iff
{x,y}C u where ueU.

Then the relation €* is the transitive closure of the relation
€.
Definitions 1.7 [28],[29],[38]. Let (H,) be hypergroupoid.
We remove h€H, if we consider the restriction of (*) in the
H-{h}. We say that h€H absorbs hEH if we replace h by h and
h does not appear in the structure. We say that hEH merges
with h€H, if we take as product of any x€H by h, the union of
the results of x with both h, h, and consider h and h as one class,
with representative h, therefore the element h does not

appeared in the hyperstructure.

Let (H,") be an H,-group, then, if an element h absorbs all
elements of its own fundamental class then this element
becomes a single in the new H,-group.

Definition 1.8 [35],[37] Let (L,+) be H,~vector space over
the field (F+,), ¢:F—F/y*, the canonical map and
op={xEF:p(x)=0}, where 0 is the zero of the fundamental
field F/y*. Similarly, let @ be the core of the canonical map ¢':
L—L/e* and denote by the same symbol O the zero of L/g*.
Consider the bracket (commutator) hope:

[,]:LxL—=P(L): (x.y)=[x.y]

then L is an H,-Lie algebra over F if the following axioms are
satisfied:
(L1) The bracket hope is bilinear, i.e.

Max A2,y 1N [x1,y]HAe[x2,y]) = &
XAy rthay N x,yil+halx,y2]) = B,
VX,X1,X2,Y,¥ 1,¥2EL and A, ,EF
(L2) [x,x]Nay = B, VXEL
(L3) %[y, 2]y, [zx]]+ [z, [x.y]])DNoy, = B, Vx,yEL

A well known and large class of hopes is given as follows
[17],[21]:

Definitions 1.9 Let (G,') be a groupoid, then for every PCG,
P=, we define the following hopes, P-hopes: Vx,yEG

P: xPy= (xP)yUx(Py),
Pr: xPry= (xy)PUx(yP), Pi: xPly= (Px)yUP(xy).

The (G,P), (G,P,) and (G,P)) are called P-hyperswuctures.
For semigroup (G,"), we have xPy=(xP)yUx(Py)=xPy and
(G,P) is a semihypergroup but we do not know about (G,P,)
and (G,P)). In some cases, depending on the choice of P, the
(G,P,) and (G,P)) can be associative or WASS.

A generalization of P-hopes is the following [9], [10]:

Let (G,’) be abelian group and P a subset of G with more
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than one elements. We define the hope xp as follows:
xxpy = x'Py= {xhy | heP} if x=e and y=e
x'y if x=e or y=e

we call this, P.-hope. The (G,xp) is an abelian H,~group.

A general definition of hopes, is the following [32],[35],
[36),[37]:

Definitions 1.10 Let H be a set with n operations (or hopes)
®1,®,...,®, and one map (or multivalued map) f: H—=H, thenn
hopes 9,,03,...,0, on H are defined, called 9-hopes, by putting

xdy = {f{x)®y, x&if(y)}, Vx,yEH, i€{1,2,...,n)
or in case where ®; is hope or f is multivalued map we have
xdiy = ((x)@y)U(x®if(y)), Vx,yEH, i€{1,2,...,n}

Let (G,") groupoid and f;:G—G, i€l, set of maps on G. Take
the map fu:G—P(G) such that f,(x)={f(x) |i€I}, call it the
union of the fi(x). We call the union d-hope (8), on G if we
consider the map f,(x). An important case for a map f; is to
take the union of this with the identity id. Thus, we consider
the map f=fU(id), so f(x)={x,f(x)},¥YxEG, which is called
b-d-hope, we denote it by (9), so we have

xdy = {xy, f(x)'y, xf(y)}, Vx,yEG.

Remark. If ®; is associative then 9; is WASS. 1f 9 contains
the operation (*), then it is b-operation. Moreover, if f:G—P(G)
is multivalued then the b-d-hopes is defined by using the
fix)={x}Uf(x), YXEG.

Motivation for the definition of 9-hope is the derivative
where only multiplication of functions is used. Therefore, for
functions s(x), t(x), we have sot={s't,st'}, (') is the derivative.

Example. Take all polynomials of first degree gj(x)=ajx+b.
We have

2102, = {ajax+arhy, ajax+biay},

so it is a hope in the set of first degree polynomials. Moreover
all polynomials x+c, where ¢ be a constant, are units.

In hyperstructures there is the uniting elements method.
This is defined as follows [3],[26],[28]: Let G be a structure
and d be a property, which is not valid, and d is described by a
set of equations. Consider the partition in G for which it is put
together, in the same class, every pair of elements that causes
the non-validity of d. The quotient G/d is an H,-structure. The
quotient of G/d by B*, is a stricter structure (G/d)B* for which
d is valid.

2. Matrix Representations

H,-structures are used in Representation (abbr. by rep)
Theory. Reps of H,-groups can be considered either by
generalized permutations or by H,-matrices [18],[20],[24],
[251,[26],[38]. The reps by generalized permutations can be
achieved by using left or right translations. We present here
the hypermatrix rep in H,-structures and there exist the
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analogous theory for the h/v-structures.

Definitions 2.1 [20],[26] H,-matrix is called a matrix with
entries elements of an H,-ring or H,-field. The hyperproduct
of two Hy-matrices A=(a;;) and B=(by), of type mxn and nxr
respectively, is defined, in the usual manner,

A'B = (aj)(by) = { C=(c;) | ciEPZay-by },

and it is a set of mxr Hy-matrices. The sum of products of
elements of the H,-field is the union of the sets obtained with
all possible parentheses put on them, called n-ary circle hope
on the hyperaddition,

The hyperpreduct of H,-matrices does not necessarily
satisfy WASS.

The problem of the H,-matrix representations is the
following:

Definitions 2.2 Let (H,-) be an H,-group. Find an H,-ring or
an H,-field (F,+,"), a set Mg={(a;) | ;ER} and a map

T: H—>Mg: h—T(h)
such that
T(hihy)) NT(hy)T(hy) = J, Vhy,h,EH.

T is an Hy-matrix rep. If the T(h;h,)CT(h;)T(h,), Vhy,h,€EH
is valid, then T is an inclusion rep. If T(hshy)=T(h;)T(hy)=
{T(h) |h€h,h,}, Vhy,h,EH, then T is a good rep and then an
induced rep T* for the hypergroup algebra is obtained. If T is
one to one and good then it is a faithful rep.

The problem of reps is complicated because the cardinality
of the product of H,-matrices is very big. It can be simplified
in special cases such as the following: The H,-matrices are
over Hy-fields with scalars 0 and 1. The H,-matrices are over
very thin Hy-fields. On 2x2 H,-matrices, since the circle hope
coincides with the hyperaddition. On H,-fields which contain
singles, then these act as absorbing.

The main theorem of reps is the following [20],[25],[26]:

Theorem 2.3 A necessary condition in order to have an
inclusion rep T of an H,-group (H,*) by nxn Hy-matrices over
the H,-rind or H,-field (F,+,") is the following:

For all classes B*(x), xEH there must exist elements a;EH,
ij€{l,..,n} such that

T(B*(2)) C { A= (2y) | a'si€r*(ay), 1JE€{1,....n} )

So every inclusion rep T:H->Mg:a—T(a)=(a;) induces a
homomorphic rep T* of the group H/B* over the field F/y* by
putting T*(B*(2))=[y*(ay)], VB*(a)EH/B*, where the
v*(a)ER/Y* is the ij entry of the matrix T*(B*(a)). T* is called
fundamental induced rep of T.

Denote try(T(x))=y*(T(x;)) the fundamental trace, then the

mapping

Xr:H — Riy*: x—=X7 (x) = trg (T(x)) = tr'T*(x)
is called fundamental character. There are several types of
traces.

Using several classes of H,-structures one can face several
reps [26],[29],[301,[38]:
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Definition 2.4 Let M=M,,,, be a module of mxn matrices
over aring R and take sets

S={s:k€K}CR, Q={Qu;j&I}CM, P={P;:iEl}CM.
Define three hopes as follows

S: RxM—P(M): (1,A)—rSA= {(rs)A: kEK}C M
Q+: MxM—P(M): (A,B)—~AQ.B= {A+Q;+B: jEJ}C M

P: MxM—P(M): (A,B)—APB= {AP'B: i€[}C M

Then (M,S,Q,,P) is a hyperalgebra over R called general
matrix P-hyperalgebra.

The hope P, which is a bilinear map, is a generalization of
Rees’ operation where, instead of one sandwich matrix, a set
of sandwich matrices is used. The hope P is strong associative
and the inclusion distributivity with respect to addition of
matrices

AP(B+C)C APB+APCVA,B,CEM

is valid. Thus, (M,+,P) defines a multiplicative hyperring on
non-square matrices.

In a similar way a generalization of this hyperalgebra can be
defined considering an H,-ring or an H,-field instead of'a ring
and using H,-matrices instead of matrices.

Definition 2.5 Let A=(a;),B=(bj)EMu.m, we call (A,B)
unitize pair of matrices if A'B=I,, where I, denotes the nxn
unit matrix.

The following theorem can be applied in the classical
theory [37],[38].

Theorem 2.6 If m<n, then there is no unitize pair.

Proof. Suppose that n>m and that

m

AB= (cy)s 5= Zamby .
k=l

Denote by A, the block of the matrix A such that A,=
(2;j)EMpxm, i.e. we take the matrix of the first m columns.
Then we suppose that we have (A,)B,, = I, therefore we
must have det(Ap)=0. Now, since n>m, we can consider the
homogeneous system with respect to the ‘unknowns’
blmem-- 3 bmn

m
Cin= Z awbr =0 fori=1,2,...,m.
k=1

From which, we obtain that b;=bs=...=bp,= 0, since
det(An)=0. Using this fact on the last equation, on the same
unknowns,

m

Chn™ Z Qb =]
k=1

we have 0=I, absurd. =

We recall some definitions from [18],[20],[25].

Definition 2.7 Let (G,’) hypergroupoid, is called set of
fundamental maps on G, a set of onto maps

Q={ q: GxG—G: (x,y) —*°—> z| zExy ).
Any subset Q,CQ defines a hope (°5) on G as follows
xey = { z| z= q(x,y) for some q€Q }

°s <+, and QyCQ,,, where Q, is the set of fundamental maps
with respect to (o). A Q,CQ for which every Q,CQ, has ()
associative (resp. WASS) is called associative (resp. WASS).
A hypergroupoid (G,") is g-WASS if there exists an element
q.EQ which defines an associative operation (°) in G. Remark
that for H,-groups we have Q= .

If G is finite, cardG=| G| =n, it is -WASS with associative
q.€Q. In the set K[G] of all formal linear combinations of
elements of G with coefficients from a field K, we define an
operation (+):

(fi+h)(e)=fi(e)+fxAe), V2EG.1,LEK[G]

and a hope (*), the convolution,

firh= (£t = DS 1(*)f2(¥), q€Q).

q(x.y)=g

(K[G],+,*) is a multiplicative H,-ring where the inclusion
distributivity is valid, which is called hypergroupoid
H,-algebra.

For all q€Q, g€G, we have

|Q|= (w))» | =1q7(@)] s n*n+1

(x)inGxG

and ) [q'(e)=n"

ginG

The zero map f{x)=0 is a scalar element in K[G].

In the representation theory several constructions are used,
some of them are the following [26],[28],[ 29],[30]:

Constructions 2.8 Let (H,’) be H,-group, then for all (®)
such that x®yD({x,y}, Vx,yEH, the (H®,) is an H,-ring.
These H,-rings are called associated to (H,") H,-rings.

In rep theory of hypergroups, in sense of Marty where the
equality is valid, there are three associated hyperrings (H,®,)
to (H,"). The (®) is defined respectively, Vx,yEH, by: type a
x®y={x,y}, type b x®y=p*(x)UP*(y), type ¢ x®y=H.

In the above types the strong associativity and strong or
inclusion distributivity, is valid.

Let (H,) be Hy-semigroup and {vi,...,v,}NH=0, an
ordered set, where if vi<v;, when i<j. Extend (") in
H,=HU{v},v,,...,v, } as follows:

XVEVrX=V, Vv vy, Vi< and
vivi=HU{vy,..., v}, VXEH, i€{1,2,...,n}.

Then (H,,') is an Hy-group (Attach Elements Construction).
We have (H,,")/B*=Z, and v, is single.

Some open problems arising on the topic of rep theory of
hypergroups, are:

Open Problems.
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a. Find standard H,-rings or H,-fields to represent all
H,-groups by H,~matrices.

b. Find reps by Hy-matrices over standard finite H,-rings
analogous to Z,.

c. Using matrices find a generalization of the ordinary
multiplication of matrices which it could be used in H,-rep
theory (see the helix-hope [40]).

d. Find the ‘minimal’ hypermatrices corresponding to the
minimal hopes.

e. Find reps of special classes of hypergroups and reduce
these to minimal dimensions.

3. Helix-Hopes and Applications

Recall some definitions from [40],[16],[11]:

Definition 3.1Let A=(a;)EM,,., be an mxn matrix and
s,t&N be natural numbers such that 1sssm, 1stsn. Then we
define a characteristic-like map cst: Mpu—>Msa by
corresponding to the matrix A, the matrix Acst=(a;;) where
I=iss, lsjst. We call this map cut-projection of type st. In
other words Acst is a matrix obtained from A by cutting the
lines, with index greater than s, and columns, with index
greater than t.

We can use cut-projections on several types of matrices to
define sums and products, however, in this case we have
ordinary operations, not multivalued.

In the same attitude we define hopes on any type of
matrices:

Definition 3.2 Let A=(a;)EMp,, be an mxn matrix and
s,tEN, such that 1<s<m, 1<t<n. We define the mod-like map st
from M, to Mg by corresponding to A the matrix Ast= (a;)
which has as entries the sets

8 = {Binsjon | Isiss, 1sjst. and KAEN, i+kssm, j+Atsn}.
Thus we have the map
st My Mg: A—>Ast = (a;j).

We call this multivalued map helix-projection of type st.
Thus Ast is a set of sxt-matrices X=(x;;) such that x;;Eay, Vi,j.
Obviously Amn=A. We may define helix-projections on
‘matrices’ of which their entries are sets.

Let A=(a;;)EMmx, be a matrix and s,tEN such that 1<s<m,
Istsn. Then it is clear that we can apply the helix- projection
first on the columns and then on the rows, the result is the
same if we apply the helix-progection on both, rows and
columns. Therefore we have

(Asn)st = (Amt)st = Ast.

Let A=(a;;)EMmx be matrix and s,tEN such that 1sssm,
I <t<n. Then if Ast is not a set of matrices but one single matrix
then we call A cut-helix matrix of type sxt. Thus the matrix A
is a helix matrix of type sxt, if Acst= Ast.

Definitions 3.3 (a) Let A=(a;)EMpe, and B=(b;j)EM., be
matrices and s=min(m,u), t=min(n,u). We define a hope,
called helix-addition or helix-sum, as follows:

Hyper-Representations by Non Square Matrices. Helix-Hopes

®: Muo XMy > P(Msr):
(A,B)—AaB=Ast+Bst=(a;)+(b;)C Msx,
where
(a)+( by)= {(c5)= (aj+by) | a2y and byEby).

(b) Let A=(a;)EMp, and B=(b;)EM,,, be matrices and
s=min(n,u). We define a hope, called helix-multiplication or
helix-product, as follows:

®: MinnXMyy > P(Minu):
(A,B)—>A®B=AmsBsv=(a;)'(0;)C Mumx»
where
(@3)-(by)= {( c;)=(Zauby) | ayiSay and byEby}.

The helix-addition is an external hope since it is defined on
different sets and the result is also in different set. The
commutativity is valid in the helix-addition. For the helix-
multiplication we remark that we have A B=Ams'Bsv so we
have either Ams=A or Bsv=B, that means that the helix-
projection was applied only in one matrix and only in the rows
or in the columns. If the appropriate matrices in the helix-sum
and in the helix-product are cut-helix, then the result is
singleton.

Remark. In M,,,, the addition of matrices is an ordinary
operation, therefore we are interested only in the ‘product’.
From the fact that the helix-product on non square matrices is
defined, the definition of the Lie-bracket is immediate,
therefore the helix-Lie Algebra is defined [36],[37], as well.
This algebra is an H,-Lie Algebra where the fundamental
relation g* gives, by a quotient, a Lie algebra, from which a
classification is obtained.

In the following we restrict ourselves on the matrices M,
where m<n. We have analogous results in the case where m>n
and for m=n we have the classical theory. In order to simplify
the notation, since we have results on modm, we will use the
following notation:

Notation. For given kEN-{0}, we denote by «k the
remainder resulting from its division by m if the remainder is
non zero, and «=m if the remainder is zero. Thus a matrix

A=(aa)EMpnn, m<n is a cut-helix matrix if ay=aq,
Vi, AEN-{0}.

Moreover let us denote by I;=(c,y) the cut-helix unit matrix
which the cut matrix is the unit matrix I,,. Therefore, since
[,=(8.a), where 8, is the Kronecker’s delta, we obtain that,
Vx,\, we have cy=8q.

Proposition 3.4 For m<n in (Mp,,,®) the cut-helix unit
matrix I:=(c,y), where cg=0y, is a left scalar unit and a right
unit. It is the only one left scalar unit.

Proof. Let A,BEM,,,, then in the helix-multiplication, since
m<n, we take helix projection of the matrix A, therefore, the
result A®B is singleton if the matrix A is a cut-helix matrix of
type mxm. Moreover, in order to have A®@B=Amm'B=B, the
matrix Amm must be the unit matrix. Consequently, I.=(c,,),
where cg=8y, Vx,AEN-{0}, is necessarily the left scalar unit



American Journal of Modern Physics 2015; 4(5-1); 52-58 57

element,

Now we remark that it is not possible to have the same case
for the right matrix B, therefore we have only to prove that
cut-helix unit matrix I is a right unit but it is not a scalar,
consequently it is not unique.

Let A=(a,,)EMyx and consider the hyperproduct A®I,. In
the entry kX of this hyperproduct there are sets, for all 1<x=<m,
1<A=n, of the form

Ealcscsk = Eaxs&x: 303 8

Therefore A®I3A, YVAEM,,,.. B

In the following examples of the helix-hope, we denote Ej
any type of matrices which have the ij-entry 1 and in all the
other entries we have 0.

Example 3.5 [38] Consider the 2x3 matrices of the
following form,

AFEn+KE, +Egy+Egy, Be=KEp+Egp+Eps, YKEN.
Then we obtain A, ®Ay={Acir> Art1,Bxa,Basi}-
Similarly we have B.®Ay={B,Bs+1}, Ax®By=B,=B,®B,.

Thus {A,Ba | ,AEN} becomes an H,~semigroup, not COW
because for k=A we have B, ®B,=B,=B,=B,®B,, however

(AK®A}‘)0(AX®A,¢) = {AK+;‘,B,¢+}‘}#®, VK,}»EN .

All B, are right absorbing and B, is a left scalar, because
B:®A;=B,.; and B,;®B;=B,. The A; is a unit.
Example 3.6 Consider the 2x3 matrices of the forms,

AK?\,::EI 1+E13+KE21+E22+7\E23, VK,)&EZ.

Then we obtain Ag®A«={ AxrsxttArtsart Abrs it Akrs i)

Moreover  As®@An={AwispssAcrsirArprssAcigan)s SO
Av®ANA®AG={Axesan ), thus (®) is COW,

The helix multiplication (®) is associative.

Example 3.7 Consider all traceless matrices A=(a;;)EMa.,
in the sence that a;;+ a,=0. In this case, the cardinality of the
helix-product of any two matrices is 1, or 2°, or 2% These
correspond to the cases: aj;;=a;3 and ay;=ay;, or only a;;=a;;
either only aj;=a,s, or if there is no restriction, respectively.
For the Lie-bracket of two traceless matrices the
corresponding cardinalities are up to 1, or 2% or 2%
respectively. We remark that, from the definition of the
helix-projection, the initial 2x2, block guaranties that in the
result there exists at least one traceless matrix.

From this example it is obvious the following:

Theorem 3.8 The Lie-bracket of any two traceless matrices
A=(a;;), B=(b;)EMm., m<n, contain at least one traceless
matrix. :

Last years hyperstructures there is a variety of applications
in mathematics and in other sciences. Hyperstructures theory
can now be widely applicable in industry and production, too.
In several books and papers [2],[4],[5].[7],[8].[10],[12],
[191,[26].[331,[39] one can find numerous applications.

The Lie-Santilli theory on isotopies was born in 1970’s to

solve Hadronic Mechanics problems. The original theory is
reconstructed such as to admit the new matrix as left and right
unit. Isofields needed in this theory correspond into the
hyperstructures were introduced by Santilliand Vougiouklis in
1996 and they are called e-hyperfields [9],[14]1,[15],[33], [36].
The H,-fields can give e-hyperfields which can be used in the
isotopy theory for applications.

Definitions 3.9 A hyperstructure (H,’) which contain a
unique scalar unit e, is called e-hyperstructure, where we
assume that Vx, there exists an inverse x”', so e€xx'Nxx. A
hyperstructure (F,+,'), where (+) is an operation and (*) is a
hope, is called e-hyperfield if the following are valid:

(F,t) is abelian group with the additive unit 0, (-) is WASS,

() is weak distributive with respect to (+), 0 is absorbing:
0-x=x'0=0, VXEF, exist a scalar unit 1, i.e. 1'x=x'1=x, VXEF,

VXEF there exists unique inverse X!, s.t. 1€xx'Nx"x.

The elements of an e-hyperfield are called e-hypernumbers.
In the case that the relation: 1=x'x"'=x""x, is valid, then we say
that we have a strong e-hyperfield.

A general construction based on the partial ordering of the
H,-structures:

Construction 3.10 [6],[36], Main e-Construction. Given a
group (G,"), where e is the unit, then we define in G, a large
number of hopes (®) by extended (-), as follows:

x®y = {xy, g1, g2,-..}, VX,yEG-{e}, and g), g,...EG-{e}

Then (G,®) becomes an H,-group, in fact is Hy-group
which contains the (G,"). The H,-group (G,®) is an
e-hypergroup. Moreover, if Vx,y such that xy=e, so we have
x®y=xy, then (G,®) becomes a strong e-hypergroup.

An application combining hyperstructures and fuzzy theory,
is to replace the scale of Likert in questionnaires by the bar of
Vougiouklis & Vougiouklis [41]:

Definition 3.11 In every question substitute the Likert scale
with ‘the bar’ whose poles are defined with ‘0’ on the left end,
and ‘1’ on the right end:

0 1

The subjects/participants are asked instead of deciding and
checking a specific grade on the scale, to cut the bar at any
point they feel expresses their answer to the question.

The use of the bar of Vougiouklis & Vougiouklis instead of
a scale of Likert has several advantages during both the
filling-in and the research processing [41]. The suggested
length of the bar, according to the Golden Ratio, is 6.2cm.
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Abstract: In this paper, we hope to initiate due scientific process on some of the historical criticisms of Einstein gravitation
expressed by Einstein himself as well as by others. These criticisms have remained widely ignored for one century and deal with
issues such as: the apparent lack of actual, physical curvature of space due to the refraction of star-light within the Sun
chromosphere; the absence of a source in the field equations due to the electromagnetic origin (rather than the charge) of
gravitational masses; the lack of clear compatibility of general relativity with special relativity, interior gravitational problems,
electrodynamics, quantum mechanics and grand unifications; the lack of preservation over time of numerical predictions inherent
in the notion of covariance; and other basic issues. We show that a resolution of these historical doubts can be apparently
achieved via the use of the novel isomathematics and related iso-Minkowskian geometry based on the embedding of gravitation
in generalized isounits, with isodual images for antimatter. Thanks to half a century of prior research, we then show that the
resulting new theory of gravitation, known as isogravitation, preserves indeed Einstein's historical field equations although
formulated on the iso-Minkowskian geometry over isofields whose primary feature is to have null isocurvature. We then show
that isogravitationallows: Einstein field equations to achieve a unified treatment of generally inhomogeneous and anisotropic,
exterior and interior gravitational problems; the achievement of a clear compatibility with 20th century sciences; the achievement
of time invariant numerical predictions thanks to the strict invariance (rather than covariance) of gravitation under the
Lorentz-Santilli isosymmetry; the apparent achievement of a consistent representation of the gravitational field of antimatter
thanks ti the isodual iso-Minkowskian geometry; the apparent achievement of a grand unification inclusive of electroweak and
gravitational interactions for matter and antimatter without known causality or structural inconsistencies; and other advances. We
then present, apparently for the first time, the isogravitational isoaxioms characterized by the infinite family of isotopies of
special relativity axioms as uniquely characterized by the Lorentz-Santilli isosymmetry which are applicable to both exterior and
interior isogravitational problems of matter with their isodual for antimatter. We finally show, also for the first time, the apparent
compatibility of isogravitation with current knowledge on the equivalence principle, matter black holes and other gravitational
data.
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violated, special relativity is at best approximately valid, and
often it is completely inapplicable (rather than violated), in the
sense that it produces no quantitative description at all, as it is
the case for the synthesis of the neutron from the hydrogen in
the core of a star for which any use of Dirac’s equation has no
scientific meaning [5].

By contrast, the author has stated various times that Einstein
general relativity [6] is a scientific religion at this writing
because of historical insufficiencies, some of which identified
by Einstein himself, such as lack of clear compatibility of
general relativity with special relativity, interior gravitational
problems, electrodynamics, quantum mechanics and grand

1. Introduction

The author has stated several times in his writings that the
theory developed by Lorentz [1], Poincaré [2], Einstein [3],
Minkowski [4] and others, known as special relativity, has a
majestic axiomatic structure and an impeccable body of
experimental verifications under the conditions clearly stated
by Einstein, namely, for: A) point-particles and
electromagnetic waves; B) propagating in vacuum; and C)
when referred to an inertial reference frame.

Whenever any of Einstein’s conditions A), B), C) are
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unifications, which insufficiencies have remained
unaddressed by the "mainstream physics" for one full century,
let alone resolved in peer reviewed journals [7] (see also the
view by the late J. V. Kadeisvili [8] and papers quoted therein).

In this paper, the author reports half a century-of research
toward a resolution of the historical insufficiencies of general
relativity via the use of a basically new mathematics and its
ensuing new physical vistas in the origin of gravitation,
besides its description, for the exterior and interior
gravitational problems of matter and antimatter.

It should be noted that the literature accumulated in the field
is very large. To avoid a prohibitive length, we only list the
references of direct relevance to the problems addressed. A
comprehensive presentation and list of references up to 2011
is available in the independent general review [41] with the
suggestive title of New Sciences for a New Era.

2. Historical Insufficiency of General
Relativity

2.1. First Historical Insufficiency of General Relativity:
Ignoring the Refraction of Star-light Passing Through
the Sun Chromosphere, with Consequential Lack of
Evidence that Space is Actually, Physicallys Curved

As it is well known, the conjecture of an actual, physical,
curvature of space was inferred from the 1.75 arc-second
"bending” of star-light passing near the Sun. Half of this value,
0.87 arc-seconds, is known to be due to a purely Newtonian
attraction of light.

To see it, we first recall that for Newton gravitation to be
"universal" it must also attract light, and that the source of
gravitation is the energy of a body since mass is a measure of
our ignorance on inertia. Hence, the author always wrote
Newton’s equation in the identical form in terms of the energy
rather than mass

mm, EE, g
F=g 2 —G'T—Z,G=F. (l)

The calculation of the 0.87 arc-seconds deviation caused by
Newton gravitation of star light passing near the Sun surfaceis
then a good exercise for graduate students in physics by
computing the energy equivalence E; = mc? of the Sun, and
using the energy E, = hv for a given frequency of visible
light.®

The remaining 0.87 arc-seconds deviation have been known
for a century, not to be due to the curvature of space, but to the
refraction of sta-light when passing through the Sun
chromosphere (see, e.g., Ref. [10] and references quoted
therein). Additionally, the refraction of light passing through
gaseous media is inherent in the experimental confirmations
of Santilli IsoRedShift (IsoBlueShift) of light traveling
through cold (hot) gases [11-15] (see Figures 1, 2, 3).

Irrespective of the above, the conjecture of curvature of
space has been unable to represent without ambiguities truly
basic gravitational events, such as the free fall of masses that
has to be necessarily along a "straight" radial line, the weight
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of bodies in a gravitational field, and other basic events that
are clearly represented by Newton gravitation.

Figure 1. According to the first and perhaps most important unresolved
historical criticism of Einstein gravitation, Sunset is a visual evidence of the
lack of actual, physical, curvature of space because we still see the Sun at the
horizon, while inreality it is already below the horizon due to the refraction of
light passing through our atmosphere. Exactly the same refraction without
curvature of space occurs for star-light passing through the Sun
chromosphere, in which case the only "bending of light" is that due to
Newton's gravitation in a flat space (see Section 2). Note that Einstein
gravitation cannot represent light refraction because it requires a locally
varving speed of light within a medium, first with increasing and then
decreasing density. Hence, the representation of refraction via the curvature
of space violates visual evidence, physical laws and experimental data
[111-15]. To achieve a credible proof that the bending of Star-light passing
near the Sun is "evidence" of the curvature of space, Einstein supporters have
to prove that star-light passing through the Swn chromosphere does not
experience refraction. The impossible existence of such a proof'is readily seen
from the fact that Einstein gravitation was solely aimed at a description of
"exterior gravitational problems in vacuum," while the propagation of
star-light within the Sun chromosphere is strictly an "interior gravitational
problem" treated later on in Section 5. lts description via the Riemannian
geometry is beyond any realistic possibilities due to the need for a metric
P ing a dependence on coordi x, as well as density y, temperature
T, frequency w, etc. g = g(x, 11,7, w,...) (see Sections 5-11 below).

Despite one century of studies, the "actual” orbits of planets
in our Solar system have not been represented in an accurate,
unique and time invariant way via Einstein gravitation, while
they are exactly and unambiguously represented by Newton’s
gravitation and Kepler’s laws. In fact, calculations based on
the Riemannian geometry of the actual orbits of planets,
besides not being unique due to the non-linearity of the theory,
are generally different than physical orbits, and are not the
same over time (see below).

1t should also be indicated that a concrete visualization of
the curvature space require an increase of the number of space
dimension. In fact, the curvature in a two-dimensional
Riemannian space can only be seen in three dimensions, as
well known. Consequently, a concrete visualization of the
curvature of space in three dimensions requires the
implausible assumption of a fourth space dimension.

Needless to say, gravitational waves [6] crucially depend on
the curvature of space represented via the Riemannian
geometry. Until we dismiss in peer reviewed journals the
mathematical, theoretical, experimental and visual evidence
against the curvature of space, studies on gravitational waves



American Journal of Modern Physics 2015; 4(5-1): 59-75 61

may well remain in suspended animation.

It goes without saying that a critical inspection of the
conjecture of curvature of space creates great emotions in
colleagues who have spent their research life on curved spaces.
Yet, serious appraisals should be voiced only after identifying
the huge limitations caused by curvature and only after
inspecting the vast advances permitted by novel theories of
gravitation on a flat space treated with the appropriate novel
mathematics (Section 5).

2.2. Second Historical Insufficiency of General Relativity:
Ignoring the Electromagnetic Origin of the Mass, with
Consequential Invalidation of Einstein’s Reduction of
Gravitation to Pure Curvature Without Sources

As it is well known, the contribution to gravity of the total
electric and magnetic field of a body is of the order of 10730
or smaller. Consequently, following the assumption of the
curvature of space, Einstein was forced to avoid any source in
the r.h.s. of his field equations and reduce gravitation to pure
geometry according to the the celebrated equations

Gi]' = Rl] == gl]R/z = 0! 11] = 1i21314' (2)

In 1974, the author identified the electromagnetic origin of
the mass via the full use of quantum electrodynamics,
including advanced and retarded treatments, and showed that
such an origin requires the necessary presence in the r.h.s. of
the field equations of a source first order in magnitude,
irrespective of whether the body is charged or neutral [16],

Gjj = Rjj — g;R/2 = kTjj eim» 3)

where k is a unit-dependent constant, and the terms "first
order in magnitude" are referred to the condition of entirely

representing the gravitational mass of the body considered
(16]

Mgray = [ Toodv. 4

The most skeptical physicist should admit that the mass of
the electron is of entire electromagnetic origin. Therefore,
field equations (2) are insufficient to represent the
gravitational field of the electron in favor of Egs. (3)-(4).

But then, the same skeptical physicist should admit that
exactly the same conclusion holds for the positronium, namely,
the gravitational mass of the positronium is of entire
electromagnetic origin despite the total charge and magnetic
moment being null. Therefore, Einstein’s field equations (2)
are insufficient for the representation of the gravitational field
of the positronium in favor of broader Egs. (3)-(4).

Paper [16] essentially extended the above known reality to
the m%-meson under the assumption of being a bound state of
a charged constituent and its anti-particle. Paper [16] then
extended the results to all masses with null total charge and
null total magnetic moments. The inclusion of gravitational
contributions from total electromagnetic characteristics was
trivial.

ATMOSPHERE

Figure 2. The "blood red moon" (top view) during a Lunar eclipse is an
additional visual evidence of the lack of curvature of space because Sunlight
reaches the Moon even when it should be in total darkness (bottom view).
Note that for both Sunsets and Lunar eclipses the entire spectrum of Sunlight
is redshifted without relative motion, merely due to loss of energy by light to a
cold medium (IsoRedShift). Note also that we are dealing with "direct
Sunlight” traveling in empty space for which scattering and other
interpretations have been dismissed in peer refereed journals [11-15]. Note
Sfinally that the "blood red moon" confirms the view by Einstein, Hubble,
Fermi, Zwicky, Hoyle, de Broglie and others on the lack of expansion of the
universe because, when our Sun is seen millions of light years away, we
merely have the replacement of Earth’s atmosphere with very cold
intergalactic gases under which the entire spectrum of visible Sunlight will
appear redshified without any relative motion [11-15].

In defense of Einstein, we have to recall that, contrary to his
followers, Einstein always expressed serious doubts of field
equations (2), for instance, by calling theirr.h.s. A house made
of wood, compared to the 1.h.s. which he called 4 house made
of marble. 1t is unfortunate for scientific knowledge that
Einstein’s own doubts have remained vastly ignored in the
"mainstream literature" in gravitation.

We should also recall that, according to Ref. [16], the
characterization of the inertial mass of a body requires the
additional inclusion of all possible short range (e.g., weak and
string) interactions, resulting in the need for an additional
source in the r.h.s. of the equations whenever considering
interior gravitational problems

Gii = Rij - gin/Z = leij,elm + szij,shortranger ®)
such that (c=1)
Mipert = f (TOO,elm i+ TOO,shortrange)dV (6)

Consequently, the inertial mass is predicted as bigger than
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the gravitational mass [16] (c=1)
Minert > Mgrav @)

The expectation is that serious scientists will admit our lack
of final experimental resolution on the relationship between
the exterior gravitational and the interior inertial mass.

Besides the incontrovertible need for a source of first order
in magnitude, the structure of Egs. (5)-(6) is mandated by the
fifth identity of the Riemannian geometry, the forgotten Freud
identity [17] (see also the recent treatment by the late
mathematician H. Rund [18]) which establishes the need on
purely mathematical grounds of a source of first order in
magnitude in the r.h.s of the field equations according
precisely to Egs. (5)-(6).

In fact, the source term of the Freud identity can be
decomposed into a term with null trace, (evidently, the
electromagnetic term), and a term with non-null trace
(evidently, the source for short range interactions), thus
providing a geometric confirmation of Egs. (5)-(6).

We should indicate that the problem of a source in the
gravitational field equations has been debated at length in the
literature (see, e.g., Ref. [6]), although for its interpretation as
a stress-energy tensor, or for other interpretations, while
generally ignoring its electromagnetic origin.

Interested scholars should be aware of various claims in the
literature that Einstein’s gravitation verifies the Freud identity.
These claims are based on the admission indeed of a source of
electromagnetic nature, but restricted to the the total
electromagnetic characteristics, thus violating condition (4) by
a missing factor of 10%° or so.

Additionally, and perhaps more importantly, the Freud
identity requires a source of first order in magnitude also for
bodies with null total electromagnetic characteristics, thus
confirming the lack of compliance of Einstein gravitation with
the Freud identity.

Remember that gravitational waves are crucially dependent
on Einstein’s reduction of gravitation to pure geometry, Egs,
(2) [6]. However, physical and geometric needs mandate their
extension to Egs. (3), (4), for which gravitational waves
cannot even be formulated, to our best knowledge at this
writing.

Therefore, by noting the lack of independent addressing of
the issues for the last four decades since the appearnce of
paper [16], the theoretical prediction of gravitational waves
will remain in suspended animation until the additional
problem of theelectromagnetic origin of the gravitational mass
is dismissed in refereed publications.

Again, the author has experienced over decades huge
emotional reactions by colleagues at the instant of examining
Einstein’s reduction of gravitation to pure geometry, Eq. (2),
without any in depth inspection of the advances permitted by a
source term as in Egs. (3)-(4). In a nutshell, the alternative
between Egs. (2) and (3), (4) bolls down to the belief of the
existence of local infinities in the universe or not. Egs, (2) do
admit these local infinities, while covering Egs. (3), (4)
recover all main results of Egs. (2) except replacing local
infinities with large, yet finite values (Section 5 and
Subsection 5.10 in particular).

Rudiments of IsoGravitation for Matter and its IsoDual for AntiMatter

Figure 3. A view of a Solar eclipse showing no "bending of light" because the
Newtonian attraction of light by the moon is extremely small and there is no
refraction due to the lack of lunar atmosphere. The faint luminescence at sea
level is due to the diffraction of light in our atmosphere. In conclusion, final
claims of "bending of light due to curvatwre of space" must be based on star
light passing tangentially on a body without atmosphere or chromosphere and
be proved to be greater than the Newtonian attraction.

As a final note, the reader may have noted the lack of use of
the mathematical terms "tensors" or "oseudotensors" and the
use instead of the physical term "source." This is due to the
fact that the clear physical content of the forgotten Freud
identity is often dismissed on ground of purely mathematical
differences in nomenclatures and personal mathematical
interpretations without serious physical implications.

2.3. Third Historical Insu [ficiency of General Relativity:
Abandoning the Majestic Lorentz and Poincaré
"Invariance" of Special Relativity in Favor of the
"Covariance" of General Relativity with Consequential
Lack of Prediction of the Same Numerical Values under
the Same Conditions at Different times

In our view, the above is perhaps the biggest insufficiency
of Einstein gravitation because it implies the inability of
gravitation to have time invariance, here referred to the
prediction of the same numerical values under the same
conditions at different times, while such a crucial requirement
is verified by Galileo relativity and Einstein special relativity
because of their Galilei and Poincare’ symmetries,
respectively.

In turn, the lack of time invariance establishes the lack of
final character of all claims of "experimental verification of
general relativity" [9] due to the absence of a physically
consistent dynamical evolution.

In fact, "experimental verifications" of general relativity are
done in ad hoc selected coordinate systems generally with no
connection to the frame of the experimenter, thus prohibiting
final experimental values, not only because said systems are
different among themselves, but also because the needed
experimental frame is generally not necessarily achievable via
covariance.
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Figure 4. A typical repi tion of the claimed curvature of space caused by
the gravitational field of a mass, which representation has been adopted for
one full century. The historical, yet unresolved criticism is that the notion of
physical curvature in one dimension requires a bigger dimension for its
identification. In fact, the physical interpretation of the mathematical
Riemannian curvature in two dimension can only be identified in three
dimension as clearly illustrated by the above figure. Therefore, the additional
historical criticism of Einstein gravitation that needs to be addressed is that
the physical identification of the mathematical Riemannian curvature in three
dimensions, as needed for realistic models of gravitations, requires four space
dimensions that do not exist, thus confirming the lack of physical evidence for
the actual physical curvature of space depicted in Figure 1, 2, 3. In any case,
Einstein supporters are requested to illustrate with concrete geometric
example the physical curvature needed for realistic models, not in two
dimensions as done for one century, but in three dimensions.

Under the lack of invariance, general relativity could at best
offer a kind of "polaroid picture" of gravitation [7,8]. However,
such a static view of gravitation is dismissed by mathematical,
physical, visual and experimental evidence on the lack of
existence of the actual curvature of space.

Additional rather serious objections against published
claims of "experimental verifications of Einstein gravitation"
[9] stem from the fact that numerical predictions are, by far,
not unique and/or unambiguous due to the non-linearity of the
field equations. In fact, for any claim of "experimental
verification" [9] we can assume a different PPN
approximation with different expansions and show dramatic
divergences with physical realities [7,8].

The lack of time invariance of Einstein’s gravitation
identifies an additional impossibility for gravitational waves
to exist because any serious experimental verification should
not only detect gravitational waves, which has been
impossible for half a century despite the use of large public
funds, but said gravitational waves should change in time
without any change of the source, which is a blatant physical
impossibility.

In defense of Einstein we should indicate that, once the
Riemannian geometry is assumed for the representation of
gravitation, no symmetry of the line element is possible for
technical reasons similar to those of the historical Lorentz
problem. We are here referring to Lorentz inability to achieve
the invariance of the locally varying speeds of light of his time,
that within physical media C = c/n, due to insurmountable
technical difficulties in attempting to use Lie’s theory for
non-linear systems.

This is yet another case in which the author has experienced

pre-judgments by colleagues mainly due to decades of
research with covariance in gravitation without a serious
inspection of qualified alternative views. In reality, serious
judgments can only be expressed after a technical knowledge
of the huge possibilities for further advances in gravitation
permitted by alternative invariant theories (Section 5).

Figure 5. \ Another illustration of the insufficiencies of the one century old
assumption that planets moving around the Sun in our Solar system actually
move along a real, physical curvature of space. The historical criticism is that
the above representation is purely mathematical because, to actually sense
curvature in a three-dimensional space, the planet should move in a fort space
dimension that does not exist.

2.4. Consequences of the Historical Insu [ficiencies of
General Relativity: Incompatibility of Gravitation with
Special Relativity, Interior Gravitational Problems,
Electrodynamics, Quantum Mechanics, and Grand
Unifications

There comes a point in the life of a scientist in which
realities have to be admitted. The Riemannian geometry does
indeed admit a unique and unambiguous reduction to the
Minkowskian geometry via tangent, limit and other
procedures.

However, it has been known for a century that general
relativity does not admit a clear and unambiguous limit to
special relativity of the type according to which special
relativity uniquely and unambiguously admits a limit into the
Galilei relativity. As one among many impossibilities, there
exists no consistent limit of the covariance of general
relativity into the fundamental Poincaré invariance of special
relativity. The inconpatibilities that follow are then endless.

Another serious insufficiency is that the description by
general relativity of "exterior gravitational problems" in
vacuum is incompatible with "interior gravitational problems"
that dominated the scientific scene in gravitation until the
advent of Einstein’s theory (e.g., Schwartzchild wrote two
papers, one on the exterior and one on the interior
gravitational problem [6], the second one being vastly
ignored).

This is a serious incompatibility because its resolution
prohibits the use of the Riemannian geometry due to the need
of a geometry not only without curvature, but also (as
indicated in Fig.l) with a metric having a dependence on
coordinates x, as well as density p, temperature T, frequency
o, etc. g=g(x,1L,T,0,...) (see Section 5 for details).

Another aspect that should be admitted to prevent exiting
from physical reality is the irreconcilable incompatibility
between Einstein gravitation and electrodynamics to such an
extent that [16]:
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2A) Either one assumes Einstein’s gravitation as being valid,
in which case electrodynamics must be revised from its
foundations so as to eliminate the electromagnetic origin of
the mass, or

2B) One assumes electrodynamics and its inherent
origination of the gravitational mass as being valid, in which
case, Einstein gravitation must be revised from its
foundations.

Yet another reality that has to be faced following one
century of wide oblivion, is that Einstein’s gravitation is
incompatible with quantum mechanics as conventionally
understood, (that is, a unitary theory on a Hilbert soace) for
several reasons. The reason most important in our view is that
a gravitational theory formulated on a Riemannian space is
necessarily non-canonical at the classical level (variationally
non-self-adjoint [20]).

Therefore, any consistent "quantization” of Einstein
gravitation must be non-unitary, with the consequential
activation of the Theorems of Catastrophic Inconsistencies of
Non-Canonical and Non-Unitary Theories [19] and ensuing
loss of physical value, e.g., due to the violation of causality
laws.

The moment of truth also implies the admission that
Einstein gravitation is incompatible with grand unified
theories, if nothing else, because of failed attempts o [6]ver
one full century, beginning with the failed attempt of unifying
gravitation and electromagnetism by Einstein himself.

2.5. Problems to be Solved for an Axiomatically Consistent
Grand Unification

Following studies on grand unifications for decades, the
incompatibilities of a grand unification of Einstein gravitation
with electroweak interactions are the following (see, later on
monograph [40]):

2.1. The physical consistency of electroweak interactions on
a flat Minkowski space cannot be salvaged when joined to a
theory on the curved Riemannian space because the
insufficiencies of'the latter carry over to the former;

2.]1. Within a grand unification, the covariance of Einstein’s
gravitation carries over to electroweak interactions, by
therefore destroying their gauge invariance and,consequently,
the very structure of electroweak interactions;

2 111 Electroweak interactions represent both particles and
antiparticles, while Einstein gravitation solely represent
matter, thus rendering any grand unification technically
impossible and catastrophically inconsistent if attempted.

We should mention a recent trend of extending the
applicability of special and general relativities to the cl/assical
representation of antimatter. Serious scholars should be
alerted that this trend is afflicted by serious inconsistencies,
such as the impossibility of admitting the annihilation of
matter and antimatter precisely due to the lack of a
conjugation in the transition from matter to antimatter,
violation of the PCT theorem and other inconsistencies.

Another reality that should be faced by serious scholars
in the field is that a consistent representation of the
gravitational field of antimatter cannot be achieved by
Einstein gravitation and a new theory must be constructed

Rudiments of IsoGravitation for Matter and its IsoDual for AntiMatter

from its mathematical foundations.

3. Rudiments of IsoMathematics

The most important lesson the author has learned in fifty
years of research is that the protracted lack of resolution of
physical problems is generally due to the use of insufficient
mathematics, rather than to physical issues.

We believe that this is precisely the case for gravitation,
namely, all problems treated above are caused by the use of an
excessively insufficient mathematics, that based on the
differential calculus that dates back to the Newton-Leibniz
times. Only after the achievement of a more adequate
mathematics, open physical problems can be quantitatively
and effectively addressed.

To see the case, note that for a theory of gravitation to resist
the test of time, it is expected to possess an invariance similar
to that of the Poincaré symmetry in special relativity so as to
predict the same numerical values under the same conditions
at different times.

The best known way to achieve an invariant theory of
gravitation is via the use of Lie’s theory. But the latter theory
solely applies to linear systems. The necessary non-linearity
of gravitation then precludes any realistic possibility of
achieving an invariance via the use of 20th century
mathematics.

The above occurrence forced the author to construct the
isotopies (intended as axiom-preserving) of 20th century
applied mathematics [20], today known as isomathematics,
that was initiated by when author was at the Department of
Mathematics of Harvard University in the late 1970s under
DOE support.

Isomathematics is based on the isotopic lifting of the
conventional associative product AB between generic
quantities A, B (such as numbers, functions, matrices, etc.)
into the isoproduct [19b]

AR B =ATB ®

where the quantity T, called the isotopic element, is positive
definite but otherwise posses an arbitrary functional
dependence on all needed local quantities, such as time t,
coordinates r, velocities v, accelerations a, density p,
temperature T, frequency ®, wavefunction y, etc. T =
Ttrv,a,110,y,....) > 0.

Product (8) was introduced for the primary intent of
achieving an invariant representation of interior dynamical
problems referred to extended, non-spherical and deformable
particles moving within physical media, which is notoriously
impossible via 20th century mathematics, but possible via
isomathematics (see below for examples).

Therefore, isomathematics was suggested for the primary
intent of achieving a generalization of Lie’s theory into a form
applicable for the first time to non-linear, non-local and
non-Hamiltonian systems (that is, variationally non-
self-adjoint systems not representable with a Hamiltonian
[20a]).

A systematic isotopic lifting of the various branches of Lie’s
theory was presented in monograph [20b]. The resulting
theory is today known as the Lie-Santilli IsoTheory, and it is
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based on the isoalgebra (the isotopues of Lie’s second
theorem)

X X)) = X R X = X; R X; = X,TX; — X, TX; = iC§Xe (9)

and their integration into a finite isogroup here illustrated for
simplicity via the one dimensional time evolution with the
Hamiltonian X = H

A(t) = eXTtA(0)eitTX (10)

with evident non-linear, non-local and non-Hamiltonian
characters due to the presence of the isotopic element in the
exponent.

In Vol. [20b], the author then presented a concrete
realization of the Lie-Santilli isotheory given by the
Birkhoffian  generalization of classical ~ Hamiltonian
mechanics and its “direct universality,” namely, the
representation of all infinitely possible, well behaved,
non-Hamiltonian systems directly in the frame of the
experimenter.

However, the new mechanics activated the Theorems of
Catastrophic  Inconsistencies of Non-Canonical and
Non-Unitary Theories when formulated via the mathematics
of canonical and unitary theories, respectively [19].
Therefore, while visiting at the JINR in Dubna, Russia, the
author was forced in 1993 [21] to reinspect the historical
classification of numbers and discovered that the abstract
axioms of a numeric field do not necessarily require that the
basic multiplicative unit is the number +1, since they also
admit realizations with arbitrary positive-definite units,
provided that the associative product is lifted accordingly.

This lead to the discovery of new numbers, today known as
Santilli isonumbers, with an arbitrary positive-=definite unit,
called Santilli isounit, which is the inverse of the isotopic
element of isoproduct (8)

it,rv,aunt,v,....)=17¢rvant,v,9,.....) (11)

Applied mathematics was then reformulated on isofields.
Yet, the fundamental invariance under the time evolution
remained elusive. This forced the author to lift the
Newton-Leibniz differential calculus into the form today
known as Santilli IsoDifferential Calculus first presented in
mathematical memoir [22] of 1996, with basic isodifferential

df = dr + rTdf (12)
and related isoderivative
aﬁh(r) _ iaﬁ(r) 13)

o ar '’

where the realizations F = FI,# = 71, etc. are necessary for
the values to be isonumbers.

The isodifferential calculus permitted the achievement of
maturity for mathematical, physical, and chemical
developments, with ensuing numerous scientific as well as
industrial applications. Isomathematics is today referred to the
isotopies of the ftotality of 20™ century mathematics
formulated via isofunctional analysis, isodiufferential calculus,

isoalgebras, isosymmetries, isogeometriesc, etrc., on Santgilli
isofields.

A comprehensive presentation of isomathematics for
physicists has been provided by the author in monographs [23].
A presentation of isomathematiccs for mathematicians is
available in monograph [23] by R. M. Falcon Ganfornina and
J. Nunez Valdes, while a monumental work on the
isodifferential calculus and its bimplications for all of
mathematics is available in the five monographs [25] by S.
Georgiev.

4. Rudiments of IsoMechanics

The primary physical application of isomathematics is the
isotopic lifting of Newton’s equations, first presented in Ref.
[22]

<D

M R == = F5¢(t,r,v). principle (14)

| S

today known as the Newton-Santilli IsoEquations.

Eqgs. (14) allow the first known representation of the actual
extended shape of bodies, for instance, via the isounit for the
velocities

itt,r,v,a,1,7,0,....) = Diag. (n?,n%,nde’,
ng =m(trv,a,0,17,v,....) >0,

=t vant,....)>0k=123 (15

as well as the representation of  non-Hamiltonian
(variationally non-self-adjoint [20]) forces via the exponent of
the isounit (15) and their embedded in the isodifferential
dp= d(vl) in such a way that only Hamiltonian
(variationally self-adjoint [20]) forces appear in the r.h.s. of
the equations.

In view of these features, the Newton-Santilli isoequations
for non-Hamiltonian systems admit the first known
representation via isoaction principle [22]

SA=[@pRdr-ARD =0 (16)
thus permitting the first known use of the optimal control
theory for the shape, e.g., of a wing moving within a fluid.

In turn, the availability of the isoaction principle has
allowed the isotopic lifting of classical Hamiltonian
mechanics into its covering Hamilton-Santilli isomechanics
with basic isotopies of the conventional Lagrange and
Hamilton equations here ignored for brevity as well as of the
Hamilton-Jacobi-Santilli isoequations [22,23]

dA 04 dA
.\—,\+ﬁ=0, —~~p=0, =—=0 (17)
at or ap

Still in turn, the availability of the latter isoequations has
permitted the first known, axiomatically consistent, unique
and unambiguous, operator map of non-Hamiltonian systems
into a covering of quantum mechanics introduced in 1978
under the name of hadronic mechanics [20], with
Schrddinger-Santilli Isoequations [22]



66 Ruggero Maria Santilli:

Q»
=

~

ix

|

Q>
o~

= H(A‘ﬁ)T(tlrlplulrjvplp,-..)IIJA =

=ERP =E, (18)
related isolinear momentum
. o o0
pRYP = -1k z—= —il =, 19)
pXY . oF
and their isounitarily equivalent Heisenberg-Santilli

isoequations [20,23] for the isotime evolution of an operator
A inthe infinitesimal form

iR = (AH=ARA-ARA=
= AT(trT'Pr#,T;V;V)u--~)H(f;p'\) -

-B@ DT, 7D, 0,7, 0,9,..)A4, 20)

and integrated finite form (10), where the "hat" denotes
formulation on an iso-Hilbert space over the isofield of
isocomplex numbers [23].

For readers not familiar with the field, we should recall that
hadronic mechanics is a non-unitary "completion” of quantum
mechanics much along the celebrated argument by
Einstein-Podolsky and Rosen (see later on Ref. [36]).
However, non-unitary theories formulated on a conventional
Hilbert space over a conventional field violate causality [9,19].
Hence, the reformulation of non-unitary theories via
isomathematics is crucial for the mathematical and physical
consistency of hadronic mechanics at large and its
isomechanical branch in particular (see monographs [23] for a
comprehensive presentation).

We should also mention that hadronic mechanics eliminates
the divergencies of quantum mechanics because the value of
the isounit (15) is generally very big. Consequently, the value
of the isotopic element T is very small, thus permitting the
conversion of divergent or weakly convergent quantum series
into strongly convergent isotopic forms via the systematic use
of isoproduct (8). Additionally, the functional dependence of
the isotopic element is unrestricted, thus allowing the removal
of the singularity of the Dirac delta distributions under isotopy,
which feature persists for the isotopies ofthe scattering theory.
The absence of divergencies is particularly important for
approximate solutions of exterior and interior dynamical
problems, as well as of non-linear gravitational equations
when reformulated in terms of isomathematics.

Finally, the non-initiated reader should be aware that
quantum mechanics and hadronic mechanics coincide at the
abstract level by conception and construction to such an
extent that they can be expressed via the same symbols and
equations, merely subjected to different realizations.
Following decades of research in the field, we believe that the
above features are iportant to assure consistency and causality
of hadronic mechanics and its applications.

Rudiments of IsoGravitation for Matter and its IsoDual for AntiMatter

5. Rudiments of IsoGravitation for
Matter

5.1. Elementary Formulation of IsoGravitation

The main result of the studies in gravitation herein reported
is that the conjecture of the actial curvature of space is the
dominant origin of all problematic aspects of Einstein
gravitation, including all its incompatibilities with 20th
century sciences, besides being disproved by visual,
mathematical and experimental evidence (Figure 1-5).

Therefore, the main objectives of the studies herein
reported are: A) the reformulation of Einstein field equations
via a basically new geometry admitting the invariance of line
elements without curvature; B) show the compatibility of said
reformulation with 20th century sciences; and C) provide at
least preliminary experimental verifications.

Following decades of preparatory research on the new
isomathematics and isomechanics, isogravitation for matter
was presented for the first time at the 1992 Marcel Grossmann
Meeting in Gravitation [26] via the following elementary
rules:

RULE 5-I: Decompose any non-singular Riemannian
metric g(x) in (3+1)-dimensions into the product of the the
Minkowski metric 7 = Diag.(1,1,1,—1) and the 4Xx
4-dimensional gravitational isotopic element Tgr(x)

1)

where the positive-definite character of T‘g,. (x) is assured by
the topology of the Riemannian space;

RULE 5-1I: Assume the inverse of the isotopic element as
the gravitational isounit

g(x) = Ty (x)n

Ipp(x) = 1/Tpr (x) > 0 (22)
RULE 5-1II: Reformulate the totality of Einstein gravitation
into such a form admitting f.(x) as the correct left and right
unit at all levels, including numbers, functional analysis,
differential calculus, geometries, Christoffel symbols, etc.

As we shall see, the above simple rules will allow
maintaining Einstein's field equations including its primary
verifications, although formulated on a new geometry over
new fields with null curvature.

5.2. Minkowski-Santilli IsoSpace

The spacetime of isogravitation verifying the above
conditions is given by the infinite family of isotopies of the
Minkowski space first introduced by the author in Ref. [26] of
1983 for the classical profile and Ref. [27] of the same year for
the operator counterpart, and it is today known as the
Minkowski-Santilli IsoSpace.

Consider the conventioinal Minkowski space M(x,#,I)
with spacetime coordinates x = (xi),i = 1,2,3, 4, metric
n = Diag.(1,1,1,—c?) and unit I = Diag.(1,1,1,1). The
Minkowski-Santilli isospace is denoted # (%, 7, f), and it is
characterized by the infinite family of isotopies for which
coordinates are lifted into isocoordinates (a necessary
condition for their value to be isonumbers) [26]



American Journal of Modern Physics 2015; 4(5-1): 59-75 67

x->%=xf (23)

the Minkowski metric is lifted into the infinite family of
isometrics

n-i=T,n (24)

the Minkowski unit is lifted into the isounits with related
isotopic elements

Lo T 0,1,...) =

= Diag.(n},n3,n3,n$) >0 ,n; >0, (29
?gr(t:r,p,u,‘t,w,ll),...) =
111 1
= Diag.(,—,—,—) >0, (26)
ni'ng’'n}’'nj

and line Minkowski element into the infinite family of isoline
elements

fz = fi 52 gij 52 5C\j = (xiﬁijxf)f =
2 2 2 2
X X X c
G S B LY 27)
ny n; n3 ny

where: & = #l is a condition is a condition to have correct
isomatrices, that is, matrices whose elements are isonumbers;
one should note the multiplication of the isoline elements by
the isounit which is also a necessary condition forf the line
element to be isonumbers; and we have ignored for simplicity
the exponential factor in the isounits and isotopic elements
representing non-Hamiltonian interactions as in Eqgs. (15) (see
Refs. [23] for the full treatment).

The n-quantities are called the characteristic guantities of
the gravitational field and they are illustrated in the
verifications below. Readers are suggested to exercise caution
for the popular interpretation of the n-quantities as being "free
parameters" since this would literally imply that, for instance,
the terms characterizing the Schwartzchild metric are "free
parameters."

It is easy to see that the projection of the isoline element (27)
in conventional spacetime is the most general possible
symmetric (thus diagonalized) and non-singular line element
in (3+1)-dimensions, thus including as particular cases all
possible Minkowskian, Riemannian, Fynslerian and other line
elements (it should be noted that non-symmetric line elements
for the geometric representation of irreversible gravitational
events require the broader Lie-admissible genomathematics
[19,23])

5.3. Minkowski-Santilli IsoGeometry

The geometry of isospace M(é,7,[) was first studied in
memoir [28] of 1998 and it is today known as the
Minkowski-Santilli isogeometry. Its first important feature is
the admission of the entire machinery of the Riemannian
geometry, such as covariant derivative, Christoffel symbols,
etc. merely reformulated in terms of the isodifferential

calculus, Egs. (12)-(13).

This is evidently due to the fact that, unlike the Minkowski
metric 7, its isotopic covering # admits the most general
possible functional dependence, under the sole condition of
positive-definiteness of the isotopic element, Eq. (26).
Regrettably, an outline of the new geometry would be
excessively advanced for the elementary character of this
presentation.

The second important feature of the Minkowski-Santilli
isogeometry is that of being isoflat, that is, its curvature is
identically null when elaborated via isomathematics and
defined over isofields.

An elementary way of seeing the second features is to note
that, under isotopies, we have the mutation of the
Minkowskian coordinates while the corresponding unit is
mutated by the inverse amount,

X
X = Rl = é (28)

Iy - ik = Tl,zc, (29)
thus preserving the original flatness.

In any case, isotopies must preserve the original axioms by
central condition and technical realization. This means that,
when properly treated, the isotopies of the Minkowski space
must preserve the original flatness despite the dependence of
the isometric on local coordinates.

5.4. Lorentz-Santilli IsoSymmetry

Thanks to the prior construction of the Lie-Santilli
isotheory [20], the universal isosymmetry of all possible
isoline elements (27) was constructed for the first time in only
one page of Ref, [26]; it is today called the Lorentz-Santilli
isosymmetry; it is characterized by the original symmetry plus
the isotopic element (26); and can be written for
isotransformations in the (3, 4)-plane (see Refs. [23] for the
general case)

N
2 = plxd - f2x4, (30)
Ny
N
xr4 . y[xq- — ﬁ__f_xB] (31)
where
1 5 v/ng
Ty’ (32)

~>
il
2
[y
1
=
N

As one can see, it is evident that the Lorentz-Santilli
isosymmetry is locally isomorphic to the original symmetry
by conception and realization. It is also evident that this local
isomorphism is crucial for achieving compatibility of
isogravitation with 20th century theories and for attempting a
consistent grand unification of gravitation and electroweak
interactions, as outlined below.

Following the original isotopies of the Lorentz symmetry
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[26,27], systematic studies were done by the author on the
isotopies of all most significant spacetime and internal
symmetries. In fact, Ref. [29] was devoted to the isotopies
0(3) of the rotational symmetry O(3) to achieve the
invariance of all topology preserving deformations of the
sphere; Refs. [30,31] were devoted to the isotopies SU(2) of
the SU(2) spin symmetry; Ref. [32] presented for the first
time the isotopies P(3.1) of the Poincaré symmetry P(3.1)
with the first proof of the universal invariance of all possible
non-singular, Riemannian line elements; and Ref. [33] was
devoted to the isotopies P(3.1) of the spinorial covering of
the Poincaré symmetry P(3.1). Independent papers [34,35]
confirmed the universal character of the Lorentz-Santilli
isosymmetry for the invariance of all infinitely possible
symmetric line elements in (3+1)-dimensions.

5.5. IsoGravitational IsoEquations

Another important feature of isogravitation is that of
preserving Einstein’s field equations (2), although necessarily
extended to forms (3)~(6) and reformulated on the
Minkowski-Santilli isogeometry without curvature.

Along these lines, we have the isoequations for exterior
gravitational problems

Gij=Rij—8,RDRR/2 =

=kR Tij,elm(jc\l ﬁ)'

~
)
=
<
X)

where £ =#f, = I and the matrices #, known as the
Dirac-Santilli IsoGamma matrices, are given by

. 170 g
Vk='-( 6‘),

nk =0y
1 12x2 0
Po=i— 44
Ya lTl4( 0 —szz)' ( )
with anti-isocommutation rules [25]
{?u:?v} = ?uTst?v + ?stt?u = Zﬁuv,sch (45)

As one can see, Egs. (43) did indeed succeed in embedding
gravitation in the Dirac equation, for which reason Santilli
proposed the name of the Dirac-Schwartzchild IsoEquation
[25]. It’s expected physical relevance is evident, e.g., as the
first description on scientific records of an electron within an
intense gravitational field in the surface of the Sun or near the
event horizon of a black hole.

In closing, we would like to honor the memory of Einstein,
Podolsky and Rosen [36] for their view on the "lack of
completeness of quantum mechanics” which was instrumental
for the birth of hadronic mechanics and its applications. In fact,
operator isogravitation can be defined as an invariant
non-unitary, axiom-preserving completion of relativistic
quantum mechanics.

[,R0, +1RMRE) R = (70, + ime)Pp =0
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under the condition

Mgray = f Too,elm(f) R dp (34

where one should note the dependence of the source on
isocoordinates and  isovelocities, as typical for
electromagnetic source.

Consequently, the isometric is equally dependent on
isocoordinates and isovelocities, Z(%,9) =#(%,?)[ , a
property forbidden by the Riemannian geometry but readily
permitted by the Minkowski-Santilli isogeometry due to the
unrestricted functional dependence of the isometric.

We also have the broader isoequations for the interior
isogravitational problem

Gy =Ry — &,(E.7.9,8,4.%8,9,..)XR/2 =

. iy T
lion = Diag.[L1, (1 -2, 1- =17 (4
or with the isogravitational characteristic quantities
. T,
nf=1-2 pf= (-0 (42)

where one should note the suggestive reformwhere one should
note the suggestive reformulation of gravitational singularities
in terms of the zeros of the space component of the isounit.
We now consider the isotopies of the Dirac equations
introduced in Ref. [33], now called the Dirac-Santilli
IsoEquations, and specialize then to the Schwartzchild metric

(43)

5.6. Compatibility of IsoGravitation with 20th Century
Theories

The compatibility of isogravitation with 20th century
sciences is direct and immediate. The compatibility of
isogravitation with special relativity is immediately
established by the fact that its universal isosymmetry is locally
isomorphic to the conventional Poincaré symmetry. The
compatibility of the physical laws of isogravitation with those
of special relativity is then an immediate consequence.

The compatibility of isogravitation with the interior

gravitational problem is established by the completely

unrestricted functional dependence of the gravitational
isometric. The compatibility of isogravitation with
electromagnetism is established by the electromagnetic origin
of the gravitational mass appearing in Egs. (33).

The compatibility of isogravitation with quantum
mechanics is inherent in the very notion of isotopies and it is
used at the foundation of the very proposal of isogravitation
[25]. The compatibility of isogravitation with grand
unifications will be discussed in Section 7.

5.7. IsoGravitational IsoAxioms

The isotopies of the axioms of special relativity, today
known as IsoAxioms, were initiated by Santilli in paper [26] of
1983; they received a first systematic formulation in
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monographs [37] of 1991; and they were finalized in
monographs [23] of 1995 jointly with the discovery of the
isodifferential calculus (see Ref. [41] for an independent
review).

In works [23,26,37], the isoaxioms were specifically
conceived and technically developed for quantitative
treatments of relativistic interior dynamical problems, such as
for the propagation of light within gaseous media (Figure 1),
in which application they have received numerous
experimental verifications (see, e.g., Refs. [11-15] and general
review [41]).

The isoaxioms presented in Refs. [23,26,37] had no
gravitational content. The application of the isoaxioms for a
representation of gravity is presented for the first time in this
paper under the proposed name of [IsoGravitational
IsoAxioms.

The presentation of this subsection is the most general
possible for both the exterior and the interior gravitational
problems characterized by a non-singular, symmetric
isometric in (3+1)-dimension. This general formulation is
merely achieved without any specification of the functional
dependence of the isometric. In the verifications of the
isogravitational isoaxioms of the next subsection, we will be
forced to specify the isoaxioms to exterior or interior
gravitational problems.

The first implication of the isotopies of special relativity is
the abandonment of the speed of light in vacuum as the
maximal causal speed in favor of a covering geometric notion.
This is necessary for isogravitation because light is expected
not to propagate within the hyperdense media inside planets or
stars.

This occurrence is easily seen by specializing the isoline
element (27) to the isolight isocone [23, 37]

2 2
X c
2= 2=y, (46)
ng - n

thus leading to the maximal Causal Speed V4, of IsoAxiom
5.1 below.

The remaining isoaxioms can be uniquely and
unambiguously identified via a procedure parallel to the
construction of the axioms of special relativity from the
Poincaré symmetry [23,37].

The reader should be aware that isogravitation is generally
inhomogeneous and anisotropic for both exterior and interior
problems, as evidently intrinsic in the fact that the
characteristic quantities n; ofisoelement (27) generally have
different values for different space directions.

These features are necessary for a more realistic
representation of exterior and interior gravitational fields of
planets such as Earth. Inhomogeneity and anisotropy are then
easily represented thanks to the arbitrary functional
dependence of the characteristic quantities of the
Minkowski-Santilli isogeometry.

A consequence of the inhomogeneity and anisotropy of
isogravitation is that the isoaxioms are presented for one given
direction in space, hereon denoted with the sub-index k, since
the change of space direction generally implies a change in the

explicit value of the characteristic quantities.
ISOAXIOM 5.I: The maximal causal speed in a given space
direction k within an isogravitational field is given by
Ny

V, =c—
max,k " ’

)

ISOAXIOM S5.1I: The local isospeed of light within an
isogravitational field is given by
. _C
= ™ (48)
where c is the speed of light in intergalactic spaces w
where c is the speed of light in intergalactic spaces without
any gravitational field.
ISOAXIOM S5.11I: The addition of isospeeds in the

k -direction within an isogravitational field follows the
isotopic law

vy /M + V2 /g
VigVo R NS
+ 1,kV2,k g

2 ni

Veot = 49)

ISOAXIOM 5.1V: The isodilatation of isotime, the
isocontraction of isolengths, theiso variation of mass with
isospeed, and the mass-energy isoequivalence principle follow
the isotopic laws

At' =7 Ot, (50)
A =T A, (51)
m =y, m, (52)
n2
E = mV2,, = mc® n—'zc (53)

4

where 7 and § have values (32).
where 7 and f have values (32).

ISOAXIOM 5.V: The frequency isoshift of light propagating
within an isogravitational field in the k-direction follows the
Doppler-Santilli isotopic law

A v/

We = WoTk [1 imcos zx]
where w, is the experimentally measured value, w, is the
value at the origin, and we have ignored for simplicity the
isotopies of trigonometry (see Refs. [23] for brevity).

A technical understanding of the isoaxioms requires a
technical knowledge of isomathematics. In fact, the isoaxioms
presented below are given by their projection from the
Minkowski-Santilli isospace over an isofield with isounit (25)
into the conventional Minkowski space over a conventional
field with isounit 1.

A main feature is that, when the isoaxioms are represented
on isospace over isofields, they coincide with the conventional
axioms of special relativity by conception and technical
realization. In particular, the maximal causal speed V., # ¢
solely occurs in the projection of the isoaxioms on Minkowski

(59
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space because, at the isotopic level, the maximal causal speed
is ¢ for all possible isogravitational problems.

5.8. Verification of IsoGravitation for Exterior Problems
without Source

It It is important for the self-consistency of this paper to
initiate the appraisal of isogravitation via its application to the
exterior gravitational problem without source in order to
verify that Einctein field equations (2) can indeed be
consistently formulated on a Minkowski-Santilli isospace.

In fact, all consistent experimental verifications of general
relativity also apply to isogravitation without source because,
for its own conception and technical realizations, isotopic
liftings preserve all original numerical values (for brevity, see
ref. [23b] with particular reference to the proof that the
maximal causal speed on Minkowski-Santilli isospaces on
isofields is the conventional speed of light in vacuum c).

In particular, it is easy to see that Einstein's Equivalence
Principle [6,9] is maintained in its integrity for various
independent reasons. First of all, the projection of
isogravitation on the conventional Riemannian space over a
conventional field coincides with Einstein gravitation with
consequential trivial validity of Einstein';s Equivalence
Principle.  Additionally, the Equivalence Principle
independently holds on the Minkowski-Santilli isospace over
isofields by very conception of isotopies [23]. The verification
of other serious experimental verifications of Einstein
gravitation follows in the same way.

To verify the above general lines, let us assume the
Schwartzchild metric (39) as a good approximation of the
isometric for isoequations (33) for the case without source,
and present the results for appraisal by interested readers.

Note that, under said assumption, we have the homogeneity
and isotropy of the isogravitational field, thus eliminating the
selected space direction $k$ of the general isoaxioms.

Note that, under said assumption, we have the homogeneity
and isotropy of the isogravitational field, thus eliminating the
selected space direction k of the general isoaxioms.

Let us begin by recalling values (42) of the characteristic
quantities for the Schwartzchild metric for which
vV ny

n c
_ v 1
1=Ten/r (1 —Tsen/T) a

(2% I+

_ r/c
(1 - rsch/r)z'
and consequential expressions for the isogamma (32)

R 1 1 1
‘y= Az: 92= r = ni
Ji-p 1-% J1-5 3

(55)
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1

- Y2 1 2
\[1 (1—Tsch/7') (C (1"Tsch/7'))

1

= —_—

[ w2
(1-rscn/r)*
1
PR— (56)
(1-7sch/T)?
From the above values, we have the maximal causal speed

in an isogravitational field

c=cnd=c(1-rschr) (58)

which evidently tends to zero at the event horizon.

We believe that this occurrence is a significant confirmation
of isogravitation because it provided a most effective,
quantitative representation of the impossibility of matter to
escape from a black hole.

Similarly, we have the expression for the isospeed of light

Tsch

= (58)

A C —_ 1
é= —— c(
which also tends to zero at the event horizon and expectedly
thereafter.

We believe that this is another supporting feature of
isogravitation because the speed of light decreases for about
100,000km/sec when propagating within water. It is then
logical to assume that the speed of light is null when reaching
the densest conceivable medium in the universe. The null
value at the event horizon is also an effective way to represent
the impossibility for light to escape from a black hole.

It should be noted that the conventional speed of light ¢ is |
an invariant under the Lorentz-Santilli isosymmetry and
related isogravitation because, e.g., the isosum of two light
speeds ¢ does not reproduce ¢ as it is the case for special
relativity.

However, isospeed (58) is indeed an isoinvariant because
the isosum of two light isospeeds does indeed yield the light
isospeed,

) (59)

The reader should be aware of the fact that isogravitation
predicts that the speed of light ¢ in intergalactic spaces
without any gravitational field is "bigger" then the speed of
light &4.+n measured on Earth, although for a very small
amount,

A c Tsch
Cearth = Tl_4 =c(l- i:‘) <gc (60)

By using isospeeds away from the observer, and values (42),

we can write the first order approximation
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At
v/c (61)

- (1—7'5(:)1-/-;'_)-E

At' = AtP =~

which recovers the conventional time dilation of special
relativity at a given distance r. However, the value of At
within a gravitational field (grav) is predicted to be smaller
than that for special relativity (sr),

At'gy g < AT, (62)
in such a way that time tends to zero at the event horizon, in
full agreement with the behavior of the time component of the
Schwartzchild metric (39),

Lim, o4t =0 (63)
Similarly, we have the isolength isocontraction
4¢ v/c
A = — = 0] — —— (64)
? (1 - rsch/r)z
which recovers the length contraction of special

relativitywhich recovers the length contraction of special
relativity for a given distance 7. However, the value of 4¢' in
the presence of a gravitational field is predicted to be bigger
than that of special relativity

88 gy > B8, (65)

in such a manner that 6t' tends to infinity at the event horizon

Lim, g df = o (66)

also in full agreement with the space component of the
Schwartzchild metric (39).

We also have from isoaxiom (52) the isovariation of mass in
an isogravitational field

m m
m = 3

=
1 v2n
cZn?

illustrating the prediction based on the Schwartzchild
metricthat the mass tends to zero at the event horizon.

(67)

v2/c2

,J T Arscnir)?

Similarly, from the energy equivalence (53), we have in the
vicinity of the event horizon

m
———— 4
1-— v2 /c?
(A-Tscn/r)*

T
xc?(1 —%")4 ~

[ § S
E'=m'Vije =

2 (1 B Tsch/ T)6
(1 - rsch/r)z - U/C'
illustrating the prediction that the energy isoequivalence of a

particle tends to zero at the event horizon much faster than that
for the mass.

(68)

= mc

We believe that the above features are an important
verification of the isoaxioms for various reasons. Firstly, the
expectation that Newton’s inertia and other laws are valid
within a black hole is nowadays rejected by the vast majority
of scientists. Secondly, any expectation that particles may
experience inertia when constrained within the densest
medium in the universe without any possibility of motion, is
manifestly illogical. Thirdly, and perhaps most importantly,
the limitation for the divergent increase of mass and energy
within a black hole appears to be an important mechanism set
by nature to prevent the achievement of infinite mass under
which one single black hole would swallow the entire
universe.

It should be stressed to prevent misrepresentations that the
null limit of the mass at the event horizon is similar to the
singularity of the Schwartzchild metric and solely occur for
the case of field equations (2) without source. As indicated in
the next subsection, the presence of a source of first order in
magnitude, Eq. (4), appears to avoid both the null value of the
mass and the singularity at6 the event horizon by turning them
into more realistic finite values.

For IsoAxiom 5.V, we have the Doppler-Santilli isoshift of
the frequency of light within an exterior isogravitational field
for the simple case of null aberration in the space k-direction

v Tsch
We = wo[l iz:(l ——'Sf—)]'

(69)
clearly showing Santilli isoRedShift [11,37], namely a redshift
of the entire spectrum of visible light without any relative
motion between the light source and the origin of the
gravitational field.

The energy lost by light for the isoredshift when traversing
a gravitational field is expected to be one of the continuous
sources of energy needed for the Cosmic Background
Radiation to exist in view of its weakness, in addition to the
energy originating from the de-excitation of hydrogen atoms
in intergalactic spaces when hit by light [11-15] which
appears to be an additional source of the energy needed to
maintain in time the Cosmic Backgrtound Radiation [11-15].

Note also that all frequencies of visible light become
identically null at the event horizon. This feature is necessary
for compatibility with the null value of the speed of light at the
event horizon, thus confirming the plausible expectation that
the conventional notion of electromagnetic waves becomes
meaningless within the densest media existing in the universe.
Needless to say, the energy lost by light to the event horizon is
absorbed by the black hole.

In conclusion, to our best understanding at this writing, the
predictions of isogravitational isoaxioms for matter appear to
be supported by the behavior of the isotopic reformulation of
the Schwartzchild metric, although more studies are evidently
needed to achieve any conclusion due to the complexity of the
problem and our rather limited final knowledge of black holes.

5.9. Verification of IsoGravitation for Exterior Problems
with Source

As indicated earlier, the Schwartzchild metric (39) has a
just place in the history of gravitation because it achieved for
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the first time a geometric understanding of gravitational
singularities, besides other advances.

However, the Schwartzchild metric remains a first
approximation of a rather complex physical reality because
local infinities cannot exist in the universe as a condition for
its continued existence.

Following decades of studies on the covering of the
Schwartzchild metric suitable to avoid local infinities, the
author has found no other consistent approach than that
allowed by a first-order electromagnetic source in the r.h.s. of
the field equations according to Egs. (33).

This raises the question as to whether Einstein's
Equivalence Principle also holds for exterior isogravitation
with a source. Einstein supporters quickly voice their opinion
that this is not the case for the intent of invalidating
isogravitation. However, serious science is far from these
unsubstantiated personal opinions because the problem is
rather complex indeed and, to avoid a prohibitive length, it
will be studied by the author in a subsequent paper.

At this moment, we limit ourselves to the indication that,
apparently, the introduction of a source in the gravitational
field equations implies numerical contributions in the
verification of the Equivalence Principle well within
experimental errors. Consequently, the introduction of a
source does not invalidate the Equivalence Principle on
serious scientific grounds until proved so with detailed
calculations published in serious refereed journals.

The needed solution is scheduled for detailed studies in a
subsequent paper. For the completeness of this paper, we limit
ourselves to indicate that an approximate solutions of Egs. (33)
can be written

ds? =r%(df? + sin*d6? + d¢?) +
Tsen + S(r,v)
- - )

N=1l2.2
€t

+(1

Tsen + S(1,v) _

—( -2 T e =

r
= Toon X 0 = fsens (70)
with characteristic quantities
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whose limit for » = 0 (rather than for r = sch) is such to
avoid local singularities, e.g., of the type

~
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=N #0, N<oo, (72)

and the numerical value of N evidently requires the
consideration of a specific black hole.

It then follows that isogravitational isoequations (33) witha
first-order electromagnetic source recover all main historical
results achieved by the Schwartzchild’s metric, with the
elimination of singularities that are not expected to exist in
nature.

As a first illustration, the expected behavior of the isotime
isodilation (61) acquires the form

Li At' = Li ar
My a0 R LMy~ <
(1-27
at
= NZ >0, (73)

thus eliminating the singularity in time of the Schwartzchild
metric (39)
Similarly, for the isolength isocontraction we have

D
Lim,_oA® =~ Lim,_oAP(1 — 5)2 =

= N2AL < o, (74)

thus eliminating jointly the .local singularity of the
Schwartzchild metric for the space component.

Similar corrections occur for the remaining physical
quantities studied in the preceding subsection, as the reader
can verify.

Note the truly crucial role of the first-order nature of the
electromagnetic source, that is, such to represent the entire
gravitational mass, Eq. (34). In fact, the standard
consideration of the total electromagnetic characteristics of a
body leaves Schwartzchild’s singularities completely
unaffected since their contribution to the gravitational field is
of the order of 10~39 or less.

In conclusion, we can state that the inclusion in the r.h.s. of
the field equation of a first order source of electromagnetic
character, essentially along Einstein’s own intuition, besides
achieving compatibility of gravitation with electrodynamics,
does indeed offer realistic possibilities of avoiding local
infinities in the universe, with ensuing significant advances in
various gravitational problems.

3.10. Verification of IsoGravitation for the Interior Problem

Contrary to isogravitation, Einstein gravitation cannot even
formulate interior gravitational problems in any realistic way,
e.g., due to the inability to represent a locally varying speed of
light. In this case there is the loss of credibility for Einstein
supporters who even mention experimental verifications of
Einstein gravitation, for the evident reason that we have no
direct experimental tests in the interior of the Sun or planet.

The interior character of the Doppler-Santilli isolaw has
been extensively studied in Refs. [11-15]. We hereby limit
ourselves to consider the interior gravitational case of light
passing through the Sun chromosphere.

In this case, the characteristic n -quantities have a
functional dependence on the speed v, the distance d
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covered within the physical medium, etc. thus admitting the
expansion in the travwersed distance d by light within the
medium

nyn, =1+
n c
2 ~14+-Hd, (75)
ny v
where H is the Hubble constant with resulting
Doppler-Santilli isoshift law [11]
we = wy[1 + ve(1 + Hd)) (76)

Measurements [11-15] have established that, for a
sufficiently dense chromosphere (or for a sufficiently long
travel d in a thin atmosphere), the conventional Doppler term
is ignorable, e.g., for the case of earth’s rotation, and the
Hubble term becomes dominant, resulting in the Hubble law
for the cosmological shift

z=+Hd

(77

which is uniquely and unambiguously characterized by the
Poincaré-Santilli isosymmetry.

We hereby add, apparently for the first time, the extended
version of the Doppler-Santilli isolaw within a transparent

physical medium with the inclusion of a strong
isogravitational, field from isoaxiom (64)
v Y
we = woll +~(1— s:") + Hd). (78)

As one can see, the isoredshift caused by isogravitation in
the vicinity of the event horizon is dominant over all others, as
expected.

We believe that the above features provide a significant
additional verification of isogravitation at large, and of its
isoaxioms in particular.

In conclusion, we can safely state that isogravitation does
indeed allow meaningful models of interior gravitational
problems that are notoriously impossible for Einstein
gravitation.

It should be noted that these interior gravitational models
are reached via the same axioms of exterior problems under
the uncompromisable condition that the metric has an
unrestricted finctional dependence on all possible interior
local variable, which dependence is solely admitted at this
writing by isogeometries.

6. Rudiments of IsoDual IsoGravitation
for AntiMatter

Despite all the above advances, attempts at an axiomatically
consistent grand unification of electroweak and gravitational
interaction continued to be inconsistent and not worth their
presentation in a scientific paper, because Einstein gravitation,
as well as isogravitation, solely apply for matter-bodies, thus
preventing any consistent unification with electroweak
theories that are bona-fide theories of particles and

antiparticles,

A solution of the latter problem required the construction of
yet another new mathematics, specifically conceived for the
classical representation of neutral (or charged) antimatter-
bodies.

The transition from matter to antimatter required the new
mathematics to be anti-isomorphic in general and
anti-Hermitean in particular, to isomathematics, as a condition
to be consistent with charge conjugation and experimental
data, including matter-antimatter annihilation.

Following numerous failed attempts, when being at he
Department of Mathematics of Harvard University in the early
1980s, the author finally succeeded in identifying the needed
mathematics, called isodual mathematics and denoted with the
upper symbol ¢,

In view of the above aspects, Santilli constructed the
isodual image of 20th century mathematics and quantum
mechanics under the condition of admitting the isodual unit

(79

at all its mathematical and physical levels [40].

The above studies remained grossly insufficient to initiate
studies on possible grand unifications due to the need of the
anti-isomorphic image of isomathematics for antimatter
whose need emerges even stronger from the model of
isogravitation presented in this paper.

The latter mathematics was built via the systematic
application of the following isodual map

j(turup:ll'T.V;w: ---) g id =
=[(=tt, —rt, —vt, —at, —uf, =1, v, —t,..)  (80)

to the totality of quantities and the totality of their operations
used for matter.

The resulting new mathematics is today known as Santilli
isodual isomathematics and includes isodual isonumbers,
isodual isofunctions, isodual isodifferential calculus, isodual
isoalgebras, isodual isogeometries, etc. (see monograph [40]
for a comprehensive study and Ref. [41] for an independent
general review).

Following the construction of the isodual isomathematics it
was necessary to construct the isodual image of classical and
operator theories, with particular reference to the isodual
Lorentz-Santilli isosymmetry and the axiomatically consistent
classical representation of the gravitational field of neutral (or
charged) antimatter-bodies. The compatibility of the emerging
isodual theory of antimatter with experiental data was assured
by the equivalence of the isodual map with charge conjugation
(for brevity, one may inspect monograph [23]).

7. Rudiments of IsoGrandUnification

In our view, a most important implication of the search for
axiomatically consistent grand unifications is the shift from
the description of gravitation to a study of its origin. In fact,
Ref. [16] is crucially dependent on the abandonment of the
standard "unification" of gravitation and electromagnetic
interactions in favor of their "identification" under appropriate
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field equations.

Ref. [16] also submitted experiments for the possible
laboratory creation of a measurable gravitational field that
appears feasible nowadays thanks to the availability of highly
sensitive detectors, such as those based on neutron
interferometry.

Only following the above scientific journey the author was
finally in a position to present at the 1997 Marce! Grossmann
Meeting in Gravitatio, a grand unification of electroweak and
gravitational interactions with the inclusion of matter and
antimatter at all classical and operator levels [38] (see also Ref.
[39)).

The emerging grand unification essentially consistent in the
embedding of gravitation in the gravitational isounit of
electrostatic interactions under the universal isospinorial
covering P(3.1) of the Poincaré-Santilli isosymmetry
P(3.1) the selected isotopic image of the selected gauge
symmetry g for matter and their isodual for antimatter

S ={P(3.1) x G} x {P4(3.1) x G4 81

which is the isosymmetry of the Dirac-Santilli isoequations
(43) [33] and which, rather intriguingly, emerges as the
isosymmetry of the universe at the limit of equal amounts of
matter and antimatter (see monograph [40] for brevity).

Of course, we do not know whether the abovegrand
unification is verified in nature, but we believe that the studies
reported in this paper have provided at least much needed new
vistas in gravitation [41] for further advances by interested
colleagues.

To follow Albert Einstein teaching for powerful
self-criticism, we note that the dynamics of test masses in a
gravitational field is fully reversible in time. By contrast, the
dynamics of a black holes is strictly irreversible over, since we
are dealing with a one way absorption of matter and light.

By remembering that isomathematics and related
isomechanics are reversible over time, \, a more accurate
description of black holes may require a covering of
isogravitation constructed via genomathematics with a
Lie-admissible (rather than a Lie-isotopic) structure and
related genogeometries with non-symmetric genometrics as a
condition to embed irreversibility in the ultimate
mathematical and physical structures [19,23].

All in all, the studies presented in this paper confirm that
physics is a discipline that will never admit final theories.
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1. Introduction

As it is well known, 20th century applied mathematics at
large, and the Lie theory in particular, can only represent
point-like particles moving in vacuum (exterior dynamical
problems), resulting in a body of methods that have proved to
be effective whenever particles can be effectively abstracted
as being point-like, such as for the structure of atoms, and
crystals, particles moving in accelerators, and many other
systems.

An important feature of exterior problems is that, being
dimensionless, point-like particles can only experience
action-at-a-distance, potential and, therefore, Hamiltonian
interactions, which Hamiltonian character is a central
condition for the very applicability of Lie’s theory.

It is equally well known that point-like abstractions of
particles are excessive for extended, non-spherical and
deformable particles moving within a physical medium
(interior dynamical problems), as it is the case for the structure
of hadrons, nuclei and stars since their constituents are in a
state of mutual penetration of their wavepackets and/or charge
distribution,

An important feature of the finite size of particles in interior

conditions is that they experience conventional
action-a-distance, Hamiltonian interactions, as well as
additional contact, non-potential and, therefore,
non-Hamiltonian interactions, with the consequential

inapplicability of 20th century applied mathematics at large,
and of Lie’s theory in particular.

In a series of pioneering works [1-11], R. M. Santilli has
constructed a new mathematics, today known as Santilli
IsoMathematics, for the representation of extended,
non-spherical and deformable particles under Hamiltonian as
well as non-Hamiltonian interactions, which new mathematics
has seen contributions by numerous important mathematicians
(see, e.g. Rfs., [12-21]).

In this note, the author would like to bring to the attention of
the mathematical community the need for further studies on
the central branch of isomathematics, namely, the Lie-Santilli
IsoTheory [1], since the latter provides the only known time
invariant methods for the lifting of the various applications of
the conventional Lie theory from exterior to interior
conditions.

In particular, the attention on the

we focus
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IsoRepresentations of the Lie-Santilli IsoAlgebras which have
been classified into regular and irregular, depending on
whether the structure quantities of the isocommutation rules
are constant or functions of the local variables.

Besides Santilli’s works, no study on the isorepresentation
theory of the Lie-Santilli isoalgebras is on scientific record to
our best knowledge, with consequential limitations on
important applications, such as the search for much needed,
new nuclear energies without the release of harmful radiations
and other equally important applications outlined in Section 5.

It should be indicated that Santilli’s pioneering works signal
the historical transition from the notion of massive point,
introduced by Newton, and adopted by Galileo and Einstein,
to a new generation of physical and chemical theories
representing particles as they are in the physical or chemical
reality. This historical advance has so many implications for
all of quantitative sciences that it has been referred to as
characterizing New Sciences for a New Era in the title of Ref.
[21].

2. The Lie-Santilli IsoTheory

Let L be an N -dimensional Lie algebra on a Hilbert
space H over a field F(n,x,1) with elements n given by
real, complex and quaternionic numbers, associative product
hereon denoted nm =nxm&EF, and multiplicative unit 1.

Let the generators of L be given by Hermitean operators
X,,k=1,2,..,N, on H over F. Let & be the universal
enveloping associative algebra characterized by the
infinite-dimensional set of ordered monomials according to
the Poincaré-Birkhoff-Witt Theorem.

Let the Lie algebra L be isomorphic to the
anti-symmetric algebra attached to the enveloping algebra
L with ensuing Lie’s theorems and commutation rules.

Let G be the Lie transformation group characterized by L .

In pioneering works done in 1978-1983 at the Department
of Mathematics of Harvard University under DOE support, R.
M. Santilli [1] proposed the axiom-preserving isotopies of
20th century applied mathematics at large, and of the Lie
theory in particular, via the following isotropy of the
associative product

X RX; =X, xTxX; 1)

where T, called the isotopic element, is solely restricted to be
positive-definite, but otherwise possesses an arbitrary
dependence on local variables such as time t, coordinates r,
velocities V, density H, temperature T, index of refraction
8, frequency ®, wave functions ¥, etc.

The fundamental significance of Santilli’s infinite class of
isotopies (1) of the associative product is that they permit the
representation of the actual extended, and deformable shape of
the body considered under Hamiltonian interactions
represented via the conventional Hamiltonian, and contact
non-Hamiltonian interactions via realizations of the isotopic
element of the type

= ; 1 1 1 - T
T =Diag. (5,7, x o™ ropnbed) @)

where nf = ni(t, v, 11,68, w, P,...) 1k = 1,2,3, represents,
in this case, the deformable semi-axes of the considered
ellipsoid, and T is a positive-definite function representing
all interactions not representable with the Hamiltonian.

Following the above basic assumptions, Santilli passed in
monographs [1] to the construction of the isotopies of the
various branches of Lie’s theory over a conventional field F,
and illustrated its significance via the Birkhoffian
generalization of Hamiltonian mechanics which achieves
"direct universality" for the representation of all possible
(regular) non-Hamiltonian Newtonian systems directly in the
frame of the experimenter. The resulting new theory is today
known as the Lie-Santilli IsoTheory.

Following the above seminal advances, Santilli discovered
that the original formulation [1] of the isotopies does not
predict the same numerical values under the same conditions
at different times (hereon referred to as time invriance),
because the time evolution is non-unitary on H over F.

In summer 1993, while visiting the Joint Institute for
Nuclear Research in Dubna, Russia, Santilli [2] discovered
that the abstract axioms of a numeric field do not necessarily
require that the basic unit be the number 1, since the
multiplicative unit can be an arbitrary, positive definite
quantity { irrespective of whether an element of the original
field F or not, under the condition that it is the inverse of the
isotopic element

=17, 3)

and all possible associative products are lifted into form (1)
under which | is the correct left and right multiplicative unit
for all elements of the set considered

IRX=XKI=XvXelL O)

This lead to the discovery of new fields, today known as
Santilli isofields F(A,R,T) with isoreal, isocomplex and
isoquaternionic isonumbers i =mnXI,n € F equipped with
the isoproduct ihat x i =nxmx 1€ F[2].

Subsequently, Santilli discovered that, despite the
reformulation over an isofield, the Lie-Santilli isotheory was
still unable to achieve the crucial time invariance of the
numerical prediction.

Following various trials and errors, while studying at the
Institute for Basic research, Castle Prince Pignatelli in Italy,
Santilli [3] discovered in 1995 that, contrary to a popular
belief in mathematics and physics for centuries, the
Newton-Leibnitz differential calculus depends indeed on the
assumed basic multiplicative unit because, in the event such
unit has a functional dependence on the differentiation
variable, the conventional differential must be generalized
into the isodifferential

di =T xd[rxI(r,...)]=dr+rxTxdi(,...), (5

with ensuing isoderivative
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af () af ()
T i X 7 (6)

where, for consistency, f is an isofunction with the
structure f=fx7] and # is the isovariable with the
structure # = r X ] as an evident condition to have values in
the isofield F.

The discovery of isofields and of the isodifferential calculus
signed the achievement in memoir [3] of mathematical
maturity in the formulations of the isotopies of 20th century
applied mathematics at large, and of the Lie-Santilli isotheory
in particular, which maturity stimulated seminal, advances in
mathematics as well as in physics and chemistry, including
novel industrial applications indicated later on.

Nowadays, the Lie-Santilli IsoTheory is referred to the
infinite family of isotopies of Lie’s theory as defined in
memoir [3], namely, formulated on an iso-Hilbert
space H over an isofield F with iso-Hermitean
generators Xy, k = 1,2,..., N, with all possible products lifted
into the isoassociative form (1) and multiplicative isounit (3),
the elaboration beng done via the isofunctional analysis and
the isodifferential calculus.

A rudimentary outline of the Lie-Santilli isotheory
comprises the following main branches [3,9]:

2.1) The  wuniversal enveloping  isoassociative
isoalgebra & with infinite-dimensional isobasis given by the
ordered isomonomials of the Poincaré-Birkhoff-Witt-Santilli
isotheorem

X Xi X X i S e )

with related isoexponentiation

a ? R. o
&X =] +%+£§‘.‘{.+ - (eXx‘i‘) x| = fX(eTXX) 8)
and other isofunctions;
2.2) The Lie-Santilli isoalgebras

L=§& ©
with isocommutation rules

XoX)=X; RX; - X; R X; = CE R X, (10)
where C'i'j = Ci’j x [ are the isostructure quantities of T with
values in F;

2.3) The Lie-Santilli isogroups G with structure for the one
dimensional case ()

A(W) = éﬁiw% { A(ﬁ) R é(—ii’Wi’H) =
an

where § = H x [ is an isomatrix, namely, a matrix whose
elements are isoscalars. The remaining aspect of the
Lie-Santilli isotheory can be then constructed via axiom
preserving isotopies of the totality of the conventional
formulations with no exception known to the author.
Following the achievement in memoir [3] of a consistent
formulation of the isotopies, Santilli applied the isotopies of
Lie’s isotheory them to a number of physical and chemical

= gHXTxwxi A(0) x e ixwx]TxH
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problems that cannot be even formulated with conventional
Lie theory due to the need to represent of extended bodies
under non-Hamiltonian interactions (see applications [6.7.8]
with corresponding independent verifications and industrial
applications [12,13,14], monograph [9] for a general treatment
of the Lie-Santilli isotheory, and monographs [10,11] for
applications in physics and chemistry, respectively).

In the author’s view, Santilli’s most salient achievement has
been, not only the transition from the massive points of
Newton, Galileo and Einstein theories to extended bodies, but
also their representation under the most general (but
non-singular)  known  non-linear, non-local and
non-Hamiltonian interactions in a way as invariant as
Hamiltonian formulations are.

This historical result was achieved via the embedding of all
non-Hamiltonian quantities in the generalized unit of the
theory because, whether conventional or generalized, the unit
is indeed the basic invariant of any theory.

3. Classification of IsoRepresentations

The isorepresentations of Lie-Santilli isoalgebras are
classified into [4,5,9]:

3.1) Regular isorepresentations occurring when the Cosof
rules (5) are constant; and

3.2) Irregular isorepresentations occurring when the Cog
ofrules (5) are functions of local variables.

We should recall that "structure functions" are impossible
for Lie’s theory, and they are solely possible for the covering
Lie-Santilli isotheory, by therefore establishing the non-trivial
character of Santilli isotopies.

4. Regular IsoRepresentations

Let us recall that a given Lie algebra admits an infinite
family of isotopies because a point-like particle in vacuum
admits an infinite number of generalizations to extended
particles moving within physical media.

Let us also recall that the extended shape of a particle and
its non-Hamiltonian interactions are represented by the basic
isounit or, equivalently, by the isotopic element [2].

Therefore, the transition from the conventional
representations of a Lie algebra to the isorepresentation of the
covering Lie-Santilli isoalgebras represents extended particles
moving within physical media under conventional
Hamiltonian interactions, as well as the most general known
non-linear, non-local and non-Hamiltonian interactions.

Consider a given Lie algebra L and one of its
representations. Santilli [4,5,9] has identified a simple method
for the construction of the infinite family of regular
isorepresentations of the Lie-Santilli covering [, of L
based on non-unitary transformations of the original Lie
formulation. The method consists in:

4.1) Identifying the extended character of the particle
considered and its non-Hamiltonian interactions represented
via Santilli’s isounit.
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4.2) The identification of a non-unitary transform
representing said isounit according to the rule

UxUt=T] (12)

where

UxUt =1, 13)

4.3) The application of the above nonunitary transform to
the totality of the mathematics underlying the original
representation of L , thus including numbers, spaces,
algebras, geometries, symmetries, etc, with no known
exception.

The bove method is illustrated by the transformations:

I-T=UxIxUt =17, (142)

n-oA=UxnxUt=nxUxUt=nxi €k, ,neF, (14b)

ed s Uxet xUt=TxeMd = (eATyx[, (l4c)
AXBoUX(AXxB)xUt=WxAxU) x
(UxUHTxWUxBxUH)=A%B, (14d)
[XuX;] > U x [xX] x U = [£0%;] =
Ux(ChxX) xUt=CkRR =Ckx K (14e)

<Y X Y>> Ux<y| x [P >xUT =<

Y XUt X (U x U IxUxX [P >x U xUH =<

Y| R [P >x, (14f)
Hx|Yy>->UxHX|Yp>) =
(UXHXUDXUXxUNIXWUX[p>) =
AR >,etc. (14g)

As an illustration, Santilli considered in Refs. [4,5] the
two-dimensional irreducible representation of the SU(2) Lie
algebra, which is given by the known Pauli matrices.

The regular isorepresentations of the Lie-Santilli
isoalgebras SU(2) can be constructed via the infinite family
of non-unitary transformations with representative example

&, = U x o, x U, (152)
—(tX 01 0 )
U_( 0 ixg,)
t = —iX g, 0 )
vt=(T5" ig) (15b)
gi=m=2 (150)
92

where conditions (15¢) is necessary for the isounitarity of the
algebra and the 8 ’s are well behaved nowhere null functions.
The application of transformations (14) yields the regular

Pauli-Santilli isomatrices [4,5,9]

R 0 g%)
g4 = )
1 (gzz 0

. _( O —ixg%)
Uz_(ixg% 0 !

2
A gi O
%= ( 0 g%)

isomorphic to the

(16)

with isoalgebra
conventional SU(2) algebra

608]1=8xTx8—GxTx&=2xix¢j X8, (17)

and consequential preservation of the conventional

eigenvalues for spin 1/2
G2 >=(6,XTX 8 486, xT X6+

+GXTXG)XTX|P>=3x|P>, (18a)

G R[P>=8,xTx [P >=+1x P>, (18b)

Despite the apparent triviality, Santilli’s isotopies of the
SU(2) -spin algebra are not trivial because they introduce a
new degree of freedom in the conventional spin 1/2 given by
the non-singular, but unrestricted parameter (or function) A?
of Egs. (15¢).

In turn, this new degree of freedom has permitted a number
of novel applications, such as [4,5,9]: the reconstruction of the
exact isospin symmetry in nuclear physics which was believed
to be broken by weak interactions; the achievement of a
concrete and explicit realization of hidden variables in
quantum mechanics via the degrees of freedom A’?; and
rather seminal implications for local realism (see Ref. [5] for
brevity).

S. Irregular IsoRepresentations

Santilli has additionally constructed in Refs. [4,5] the
following example of irregular isorepresentation of the

Su@) spin algebra

. 0 g%)
6 = ,
1 (gz2 0

0 —i x g?
62'_‘(- 2 : gl);
i X g3 0

&z(wxglz 0 )
3 0 wx g3/

(19)

which are known as the irregular Pauli-Santilli isomatry, and
cannot any longer be constructed via non-unitary
transformations of the Pauli matrices, and.

The irregular character of isomatrices (19) is established by
the appearance of structure functions in the isocommutation
rules
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[G1)8,] = i X W™ X §3,[8,)63] = i x w X &y,

[658,] =ixwXxdy, (20)
with the characterization of the following mutation (in

Santilli’s words) of the SU(2) -spin eigenvalues
FER P >=
(GLXTXG+GHXTXG+86XTXG)XTX|P>=

=2 +w?)x [P >, (21a)

GRIWP>=GXTX|P>=1wx [P >w # 1, (21b)

In essence, Santilli’s irregular isorepresentation of SuE)

characterize a generalization of the conventional constant
values of spin 1/2 into locally variable spin isoeigenvalues.

Rather than being a mathematical curiosity, the above spin
mutation is expected to be important for a consistent
representation of the spin of an electron, e.g., under the
immense pressures, densities and temperature in the core of a
star.

6. Independent Studies

Numerous mathematicians have made seminal
contributions to the Lie-Santilli isotheory, among whom we
quote: C-X, Jiang has conducted comprehensive studies [15]
on the isonumber theory at the foundation of the Lie-Santilli
isotheory; D. S. Sourlas and G. T. Tsagas have conducted the
first comprehensive study of the Lie-Santilli theory [16],
although prior to the discovery of isonumbers [2]; J. V.
Kadeisvili has studied in detail the Lie-Santilli isotheory [17]
following its formulation as in memoir [3]; R. M. Fal ¢ on and
J. N. Valdés [18] have presented the most rigorous formulation
to date of Santilli’s isotopies; T. Vougiouklis [19] has
developed the hyperstructural formulation of the Lie-Santilli
isotheory which is the broadest possible formulation
achievable with current mathematical knowledge; and S.
Georgiev [20] has produced one of the most monumental
works in mathematics showing the implications for all of
mathematics of the isodifferential calculus which is nowadays
called the Santilli-Georgiev isodifferential calculus. A
comprehensive review with a large list of contributions has
been produced by I. I. Gandzha and J. Kadeisvili, in
monograph [21] with the suggestive title of New Sciences for a
New Era.

7. Open Problems

The author has no words to recommend the study of regular
and irregular isorepresentations of Lie-Santilli isoalgebras,
with particular reference to the identification of a method for
the construction of irregular isorepresentation parallel to that
for the regular case of Section 4. The proposed study is
important for a number of applications, such as:
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7.1. Reconstruction of Exact Symmetries

Santilli has shown in Ref. [9] that the breaking of
conventional spacetime and internal symmetries is the
outcome of insufficient mathematics. because broken
symmetries can be reconstructed as being exact at the
covering isotopic level under the preservation of the
conventional structure constants. This reconstruction has a
number of important epistemological as well as technical
implications. It is sufficient to note the reconstruction of parity
under weak interactions or the maintaining of Einstein’s
abstract axioms of special relativity for interior conditions to
illustrate the implications at hand. Their systematic study can
be best done via the study of the isorepresentation of
Lie-Santilli isoalgebras.

7.2. Invariant Representation of Hubble’s Law

The regular Lorentz-Santilli isosymmetry has permitted an
invariant derivation of the Hubble law on the cosmological
redshift z=Hd via the mere admission that light loses energy
to the cold intergalactic medium without any need for the
hyperbolic conjecture of the expansion of the universe via the
assumption z = Hd - v/c [6,12]. It is important to verify this
occurrence via the study of the regular isorepresentations of
the Lorentz-Santilli isosymmetry due to its implications for all
of cosmology, since the elimination of the expansion of the
universe will likely require the revision of all our
cosmological knowledge.

7.3. Synthesis of the Neutron from the Hydrogen

In the author’s view, the most important application and
verification of isomathematics has been Santilli’s exact and
invariant representation at both the non-relativistic and
relativistic levels of all characteristics of the neutron in its
synthesis from the hydrogen (see review [21]). Such a
synthesis is notoriously impossible for the conventional
Hilbert space and related mathematics, e.g., because the rest
energy of the neutron is bigger than the sum of the rest
energies of the proton and the electron (a pure anathema for
quantum mechanics); the Dirac equation, which is so effective
for the representation of the electron orbiting around the
proton in the hydrogen atom, becomes completely ineffective
for the representation of the same electron when "compressed”
(according to Rutherford) inside the proton; and for other
reasons. The representation of the neutron synthesis was
crucially dependent on the assumption of the proton and the
electron as being isoparticles, that is, isounitary irreducible
representations of the Galileo-Santilli or the Lorentz-Santilli
isosymmetry whose study is evidently fundamental for true
advances in particle physics, as well as in the structure of stars.

7.4. Nuclear Constituents as Extended Particles

One of the most important applications of isomathematics is
the quantitative prediction of new nuclear energies without the
release of harmful radiations (see review [21]). This
prediction is based on the invariant representation of nuclear
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constituents as being extended and deformable charge
distributions. Such a representation has been instrumental for
the first achievement of the exact representation of nuclear
magnetic moments and spin [7,10]. This new conception of
the nuclear structure requires the representation of protons and
neutrons as isoparticles. It is evident that important advances
in nuclear physics and new clean energies will be curtailed
until there are systematic studies on the isorepresentations of
the Lie-Santilli isosymmetry.

7.5. Elimination of the Divergencies of Quantum Mechanics

Some of the biggest insufficiencies of quantum mechanics
in particle physics are due to the singular character of Dirac’s
delta distribution at the origin, with ensuing divergencies of
perturbative series that requiring the achievement of
numerical results via the unreassuring subtraction of infinities.
Santilli [9,10] has shown that isotopies of Dirac’s delta
distribution into a function without singularities at the origin.
Additionally, in all known applications the absolute value of
the isotopic element (2) is very small, with the consequential
capability of turning divergent or slowly convergent quantum
series into rapidly convergent ones (see the infinite series of
isomonomials (8) for comparison). Due to the implications of
these features for all quantitative sciences, it appears
recommendable that they are confirmed and further developed
via the study of the isorepresentation of the Galileo-Santilli or
Lorentz-Santilli isosymmetries.

7.6. Electron Valence Bonds

According to the axioms of quantum mechanics and
chemistry, two valence electrons, rather than forming any
molecular bond, should repel each other due to the Coulomb
repulsion of their equal charges F = ke’ /1" \which becomes
extremely strong at the distances 107%em o valence bonds.
Santilli [11] has achieved a strongly attractive force between
two electrons in singlet valence coupling via the admission
that their wavepackets is in condition of total mutual
penetration, resulting in non-Hamiltonian interactions
represented with isotopic elements of type (2). In view of the
predictable advances for all of chemistry, it is important to
verify Santilli’s strong valence bond via the study of the
regular isorepresentations of the Lorentz-Santilli isosymmetry
characterizing the valence electrons.

7.7. Nuclear and Chemical Reactions

The preceding applications can be sufficiently treated via
regular isorepresentations since they deal with systems of
extended particles assumed as being isolated from the rest of
the universe. Santilli [9,10,11] has pointed out the
insufficiency of the regular isorepresentations for nuclear and
chemical reactions because they are irreversible over time, a
feature that can only be represented via structure functions

it explicit time dependence of the type
a?t""% G 6‘—3,3 . Therefore, advances on much needed
new energies without harmful radiation and on clean burning
fuels will crucially depend on the availability of mathematical

studies on irreducible isorepresentation of Lie-Santilli
isoalgebras.

Due to their relevance, the R. M. Santilli Foundation has
research funds for the writing of papers on the
isorepresentations of the Lie-Santilli isotheory and their
applications.
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Introduction

In continuation of the-new mathematics discussed in the preceding special issue entitled Foundations of
Hadronic Mathematics, we recall that the Italian-American scientist R. M. Santilli proposed in 1978 the
construction of a covering of quantum mechanics called hadronic mechanics, which is solely valid at mutual
distances of one Fermi while recovering quantum mechanics identically and uniquely at larger mutual
distances. By using the novel iso-, geno- and hyper-mathematics and their isoduals the Hadronic mechanics is
divided into isomechanics, genomechanics and hypermechanics for the representation of single-valued,
reversible, single-valued irreversible and multi-valued irreversible matter-system or reactions, respectively,
with corresponding isodual for antimatter composite systems or reactions.

Thanks to the collaboration of numerous physicists, hadronic mechanics has now received applications and
experimental verifications in classical mechanics, particle physics, nuclear physics, astrophysics, cosmology
and other fields. The special issue of the ATMP entitled the Foundations of Hadronic Mechanics shall review
some of these applications and present new advances that can potentially stimulate the birth of new
technologies. It should be indicated that novel technologies solely predicted by hadronic mechanics have
reached industrial applications, such as Thunder Energy Corporation, a U. S. publicly traded company with
stock symbol TNRG, that has developed the first laboratory synthesis of neutrons from a hydrogen gas and is
now entering into production and sale of the related equipment.

For more information about the Special Issue, please pay a visit to the following website:

http://www.sciencepublishinggroup.com/specialissue/122014
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Abstract: In this paper, we outline the various branches of hadronic mathematics and their applications to corresponding
branches of hadronic mechanics and chemistry as conceived by the Italian-American scientist Ruggero Maria Santilli. According
to said conception, hadronic mathematics comprises the following branches for the treatment of matter in conditions of
increasing complexity: 1) 20th century mathematics based on Lie’s theory; 2) IsoMathematics based on Santilli’s isotopies of
Lie’s theory; 3) GenoMathematics based on Santilli’s formulation of Albert’s Lie-admissibility; 4) HyperMathematics based ona
multi-valued realization of genomathematics with classical operations; and 5) HyperMathematics based on Vougiouklis H,
hyperstructures expressed in terms of hyperoperations. Additionally, hadronic mathematics comprises the anti-Hermitean images
(called isoduals) of the five preceding mathematics for the description of antimatter also in conditions of increasing complexity.
The outline presented in this paper includes the identification of represented physical or chemical systems, the main
mathematical structure, and the main dynamical equations per each branch. We also show the axiomatic consistency of various
branches of hadronic mathematics as sequential coverings of 20th century mathematics; and indicate & number of open
mathematical problems. Novel physical and chemical applications permitted by hadronic .mathematics are presented in
subsequent collections,

Keywords: Santilli [somathematics, Genomathematics, Hypermathematics

1. 20th Century Mathematics, Mechanics mm=nxmlxn=nxl=nvnefF ()

and Chemistry Measurement units of time, energy, etc. all positive
Ordinary functional analysis f(r) € F,

L.1. Represented Systems Ordinary differential calculus

Single-valucd, closed-isolated, time-reversible systems of ~ Conventional Lie theory -
pf)int-like pan’ticles.moYing in vacuum solely under action at a [Xi X1 = X; X X; = X; x X; == Ci}j' X Xp, 4
distance Hamiltonian interactions, such as the structure of _
atoms and molecules, A(Ww) = XWXl x A(0) X e=xwxX, (5
1.2. Main Mathematical Structure Euclidean geometry and topology

Basic unit E(r,6,1),r = (r%),k = 1,2,3,8 = Diag.(1,1,1), (6)

. I =+1 1) r2=rixéyxri=rl+ri+r¢€F, Q)

Basic numeric fields n = real, complex, quaternionic Minkowskian geometry

numbers
MQen D:ix = (xf),p =1,23,4,x* =t, (8)
F(n,x,1),n )]

n = Diag.(+1,+1,+1,~c?), )
Basic Associative product
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X2 =t X1y X2 = a2+ xf +xi -t €F, (10)

Riemannian geometry
RO, g(x),Dix = (x*),u=1234,x*=t, (1)
x2=x# X g(x)y XX¥ EF 1n
x2=xt X g(x)yy XxV EF (12)
Symplectic geometry.
w = dr¥ Adp, 13)
1.3. Dynamical equations
Newton equation
m x 22~ FSA(t,r,v,) = 0, (14)
Variational principle
80A =6 [(py x dr¥ —H x dt) = 0. 15)
Hamilton’s equations without external terms
Hilbert space H over C with states |1 > over (C)
Expectation value of a Hermitean operator A
<A>=<Y|xAX|Pp >, an
Heisenberg equation
iXZE=[AH] =AxH~HXA, (18)
Schrédinger equations
Hx|Yp>=Ex|p> 19
pXhp>=—ixad|p> (20
Dirac equation
M Xy, Xp,—ixmxec) X[ >=0. (21)
wrnl=vxn +ruxy =2xn,. (22

Comments and References

The literature on 20th century mathematics, mechanics and
chemistry is so vast and so easily identifiable to discourage
discriminatory partial listings.

2. Isomathematcs, Isomechanics and
Isochemistry

2.1, Represented Systems [1-5]

Single-value, closed-isolated, time-reversible system of
extended-deformable particles with action at a distance
Hamiltonian and contact non-Hamiltonian interactions, such
as the structure of hadrons, nuclei and stars, in the valence
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electron bonds and other systems.
2.2. Main Mathematical Structure s [1-5]
Santilli IsoUnit { and isotopic element T
I=Iirpay,...)=1/Trpaw...) >0 23)
Santilli IsoFields

P@R N A=nx], 4

Santilli isoproduct
ARM=AxTxmeF, (25)
IRA=aRl=nvAeF, (26)

Representation  via  the isotopic  element of
extended-deformable particles under non-Hamiltonian
interactions :

3 . 1 1 1 PO
T = Dlag.(;i-,;%“,;g) x efrp# 0¥ (27)

IsoCoordinates# = r x [ € F,

IsoFunctional analysis f(#) = f(#) x [ € F,

IsoDifferential Calculus

dif =dr+rxTxdl, (28)
9 _ ¢, 3
S =Ix=52 29)

Santilli Lie-Isotopic Theory
XOX] =X, KX, — X; R X; == CK@.p,...) X X, 30)

A(w) = X WXL R A(0) R g~DXWxX, €2))
Santilli Iso-Euclidean Geometry

E@8,D,8rp2¢,..)=Trp2..)%x6 (32
T = Diag. (1/n?,1/n,1/n3), (33)
=P, R = %+%+%)xieﬁ', 34)

Santilli Iso-Minkowskian Geometry
M@E5,D: 2= @Y u=12347%x =t (35)
Alew...) =T@Y,...)xn, 3e6)
T = Diag.(1/n%,1/n3,1/n},1/n3),  (B37T)

5 _ PO I 2 %
£2 = 2K Ry, R = é+é+é-—t E)xieﬁ, (38)

!See Santilli’s curriculum
http://www.world-lecture-series.org/sautilli-cv

Prizes and Nominations
http://www.santilli-foundation.org/santilli-nobel-nominations.html
and scientific archive
http://www.santilli-foundation.org/news.html
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Santilli Iso-Riemannian Geometry

1?(52, GD:g=T@v...)xgk), (39)
911, 922, 933 _ 8
( 11 n222 + 33 nLg) % i E F' (40)
Santilli Iso-Symplectic Geometry
@ = drk A dp, 41
2.3. IsoDynamical IsoEquations s [1-5]
Newton-Santilli IsoEquation
m —E—FSA(t,r,p) mx - F5A(t,r,p) —
F”SA(t.r.p,-.-) =0, (42)
IsoVariational principle
=8 @ Rdfk-ARdb)=0. (43)
Hamilton-Santilli IsoEquations
ark _3a@p) dby _ _ 3RGED)
T~ & a9

Iso-Hilbert space H over C with states ) > over the
isofield (2

IsoExpectation value of a Hermitean operator 4 on

<A>=<P|RAR P >e (45)

Heisenberg-Santilli IsoEquation

-

,\&A

R = M =ARA-ARA=4xT@{,...) x

BA,p9) ~AFD) X T@p,..)x A  (46)
Schrddinger-Santilli IsoEquation

AR >=HEP) x TP, 8p,..) x [§>=ER P >=

Ex|P>, (CY))

AR >= IR PP >=—ixTx P>  48)

2As shown in the seminal paper [6] of 1982, but vastly ignored for the past four
decades, isomechanics formulated on iso-Hilbert spaces over isofields eliminates
the divergencies of quantum mechanics and related scattering theories. This
important feature is primarily due to the fact that, for all physical and chemical
applications worked out to date, the isounit £ = 1/F > 0 must have a large value
of the exponential type (27) and, consequently, the isotopic element ? must have a
very small value. This occurrence eliminates the singularity of the Dirac delta
“distribution” when lifted to the Dirac-Myung-Santilli delta "isofunction” as shown
by the realization of the type

) 1 (kT(r~70)
- = — 7=7o.
r—r) erf_,, ¢ dk,

with P = r—_’%. N « 1. Similarly, perturbative and other series with Henmnitean

operators that are divergent or slowly convergent in quantum mechanics can be
lifted intoisoseries of the type

Aw) =1+ W!ATH H?A!

that are manifestly convergent forw>1 but T « w.As shown by A. O. E.
Animalu and R. M. Santilli in five papers published proceedings {25], the above
lack of divergences carries over to the covering of the scattering theory known as
isoscattering theory, by therefore achieving numerical results without the use of
infinities for the renonnalization of divergent seties.

Dirac-Santilli IsoEquation
@ Rp, P,
Tt} =V R + 9, K =

2.4, Comments and References

—iRMRE) R |Psi >= 0.

ﬁ?ﬁ#v=

“9)

2 X fjyuy, (50)

As it is well known, the local-differential calculus of 20th
century mathematics can solely represent a finite set of
isolated dimensionless points. In view of'this structural feature,
Newton formulated his celebrated equations (14) for massive
points, resulted in a conception of nature that was adopted by
Galileo and Einstein, became the dominant notion of 20th
century sciences, and was proved to be valid for classical or
quantum patrticles moving in vacuum at large mutual distances,
such as for our planetary system or the atomic structure.

However, when bodies move within physical media, such as
for a spaceship during re-entry in our atmosphere or for a
proton in the core of a star, point-like abstractions of particles
became excessive, e.g., because a macroscopic collection of
point-particles cannot have entropy (since all known
Hamiltonian interactions are invariant under time reversal),
with consequential violation of thermodynamical laws and
other insufficiencies.

Besides the clear identification of these insufficiencies, the
first historical contribution by the Italian-American scientist
Ruggero Maria Santilli (see Footnote 1) has been the
generalization of 20th century mathematics into such a form
to admit a time invariant representation of extended, and
therefore  deformable  particles under  conventional
Hanmiltonian as well as contact non-Hamiltonian interactions,
with implications for all guantitative sciences.

The above central objective was achieved in monographs [1]
originally written by Santilli during his stay at MIT from 1974
to 1977 (where they appeared as MIT preprints). Monographs
[1] were then completed by Santilli during his stay at Harvard
Universityfrom 1977 to 1982 under DOE support, and
released for publication only following the delivery at Harvard
of a post Ph, D. seminar Course in the field.

The representation of extended-deformable bodies moving
within physical media was achieved via an axiom-preserving
lifting, called isotopy, of the conventional associative
product AB = A X B between generic quantities 4, B (such as
numbers,functions, matrices, operators, etc.) into the
formA X B = A x T x B, Eq. (25). Conventional interactions
are represented via conventional Hamiltonian, while actual
shape and non-Hamiltonian interactions are represented via
realization of the quantity 7, called isotopic element, of the
type (27).

Santilli then achieved in monographs [1] the
axiom-preserving isotopies of the various branches of Lie’s
theory, e.g., Egs. (30), (31,) including their elaboration via the
initiation of the isotopies of functional analysis. In particular,
Santilli showed that the isotopies of the rotational
symmetry SO(3) characterized by isotopic element (27) do
represent extended, generally non-spherical and deformable
bodies. Finally, Santilli proved in Vol. I1 of Ref. [1] the
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significance of his Lie-isotopic theory by showing that it
characterizes the Birkhoffian covering of classical
Hamiltonian mechanics and its “direct universality" for the
representation of all possible, non-singular, generally
non-Hamiltonian Newtonian systems in the frame of the
experimenter, which direct universality was subsequently
proved to hold also for isotopic operator theories. The above
advances were formulated on an ordinary numeric field.

Subsequently, Santilli discovered in 1993 [2] that the
axioms of numeric fields with characteristic zero do not
necessarily require that the basic multiplicative unit is the
trivial number +1, since said axioms admit arbitrary
generalized units, today called Santilli isounits, provided that
they are positive-definite and are the inverse of the isotopic
element, [ =1/T > 0. This second historical discovery
identified new numbers today known as Sawtilli isoreal,
isocomplex and isoquaternionic numbers of the First (Second)
kind when the isounit is outside (an element of) the original
field. This discovery prompted a flurry of reformulation over
Santilli isofields of all preceding isotopies, including most
importantly the reformulation of Santilli’s Lie-isotopic theory.

Despite the above momentous advances, Santilli remained
dissatisfied because the isotopic formulations of the early
1990s were not invariant under their time evolution, thus
being unable to predict the same numerical values under the
same conditions at different times. Since the entire 20th
century mathematics had been isotonically lifted by the early
1990s, Santilli was left with no other choice than that of
reinspecting the Newton-Leibnitz differential calculus by
discovering that, contrary to a popular belief in mathematics
and physics for some four centuries, the differential calculus is
indeed dependent on the basic multiplicative unit. In this way,
Santilli achieved in memoir [3] of 1996 the third historical
discovery according to which the ordinary differential
calculus needs generalizations of the type (28), (29) whenever
the isounit depends on the local variable of differentiation.
This discovery signaled the achievement of mathematical
maturity of isomathematics that permitted numerous advances
in physics and chemistry as well as novel industrial
applications.

All in all, Santilli has written about 150 papers on the
isotopies of all various aspects of 20th century mathematics.
These contributions are reported in monographs [4] of 1995
that remain to this day the most comprehensive presentation
on isotopies. In the subsequent series of monographs [5] of
2008, Santilli introduces the names of Hadronic Mathematics,
Mechanics and Chemistry which have been adopted for this
review due to their wide acceptance.

Numerous authors have made important contributions in
Santilli isomathematics, among whom we quote: the
mathematician H. C. Myung who initiated (with R. M. Santilli)
[6] the isotopies of Hilbert Spaces, including the momentous
elimination of the divergencies of quantum mechanics under
sufficiently small values of the isotopic element T; the
mathematicians D. S. Sourlas and G. T. Tsagas [7] who
conducted in 1993 the first comprehensive study of the
Lie-Santilli isotheory; the theoretician J. V. Kadeisvili [8] who
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presented systematic studies of Santilli’s isotopies of 20th
century geometries and relativities; the mathematician
Chun-Xuan Jiang [9] who conducted in 2001 systematic
studies of Santilli IsoNumber Theory; the mathematicians R.
M. Falcon Ganfornina and J. Nunez Valdes who wrote in 2001
the now historical, first mathematically rigorous treatment of
Santilli isotopies [10], and the historical achieved isotopology
[11] which provides the ultimate mathematical structure of the
Newton-Santilli isoequations (42) for extended-deformable
particles under Hamiltonian and non-hamiltonian interactions
achieved in memoir [3]; the mathematician S. Georgiev who
wrote one of the most monumental and important
mathematical works in scientific history [12], by showing that
Santilli’s IsoDifferential Calculus implies a variety of fully
consistent coverings of 20th century mathematics; the
mathematician A. S. Muktibodh [13] who presented the first
known generalization of Santilli isonumber theory for the case
of characteristic p # 0; the physicists I. Gandzha and J.
Kadeisvili who presented in 2011 [14] a comprehensive
review of Santilli isomathematics and its applications in
physics and chemistry; plus additional seminal advances
presented in the subsequent papers of this collection.

3. Genomathematics, Genomechanics
and Genochemistry

3.1. Represented Systems s [1-5]

Single-valued, time-irreversible system of
extended-deformable particles under action at a distance
Hamiltonian and contact non-Hamiltonian interactions, as
occurring in nuclear reactions, biological structures and
chemical reactions.

3.2. Main Mathematical Structure s [1-5]
Santilli Forward GenoUnit
P = P@>r>,p>, 0>, 9>, 0%9,....) = 1/F> > 0, 51)
Santilli Backward GenoUnit
<P =<I(<rS pLasS9%Y,...) = 1/<7 >0, (52)

Condition for time-irreversibility

= <I (53)
Forward GenoFields

FP>@>,>,P),8> =nx > (54

Backward GenoFields
PR, <D, <a=<Ixn, (55)

Forward GenoProduct
A>M =/ xT>xm> e f, (56)
P>a>=a>>P =a>va>€F” (57)
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Backward Genoproduct
“A<<M="ax<Tx<mef, (58)
ST<<A=A<<[=<Av <aeF, (59)

Representation of forward extended-deformable particles
under non-Hamiltonian interactions

T> = Diag. (nz, 2,—;>xer(t”"/’a"” 2 (60)
Forward GenoCoordinates
P> =rx1>ef>, (61)
Backward GenoCoordinates
p=<fxre<f, (62)
Forward GenoFunctional analysis
@) = fF>) x> e B>, (63)
Backward GenoFunctional analysis
<SP = FEA) x<Te< B, (64)
Forward GenoDifferential Calculus
P>+ =dr +rxT> xdf>, (65)
RO
Backward GenoDifferential Calculus
<A<t =dr+rx<T xd<I, (67)
S IE R
Santilli Lie-Admissible Theory
XOX) = Xi < X; = X; > X; = Cli(t,7p,,...) X Xy (69)
A(w) = 85X > 4(0) < EmixwxE, (70)

Santilli Forward Geno-Euclidean Geometry

E>(#>.,6%.17).8>(t.r.p.p...) =T>(t,r.ph,...) X &
(71

P =725 82 5 72 e P, (72)
5> 2 §> tranp (73)

Santilli Backward Geno-Euclidean Geometry
SECASESD, <8t.rp,...)=<T(trpP...)x
s (19
<2 =<tp << §; < #ESF, 75)
<§ #<transp § (76)

Santilli Forward Geno-Minkowskian Geometry (u =

1,2,3,4)
7> (8>,%>,1): 2> = (#74),x7 = t>, (77)
@) =120 p,..) X, (78)
222 =22 > 4y, > 2> € F, (79)
ﬁ> # ﬁ>transp (80)

Santilli Backward Geno-Minkowskian Geometry (u =
1,2,34)

SMCRHSD: <g=@*), <x, =<t (@1
<hv,...) =<Txv,...) X1, (82)
<2 =< 2 << f, <V RES F, 83)
<p g<transy 5 (84)
Santilli Forward Geno-Riemannian Geometry
R>(2>,8%.7): 5% =T>(x,v,...) X g(x), (85)
22 =3>> g7, >8> € £, (86)
§> = g> transp 387
Santilli Backward Geno-Riemannian Geometry
SRC2<g<D: <g=<T(xv...)xgx), (88)
<p<2 =<u g << G <<vz ek, (89)
<g g<transp g (90)
Santilli Forward Geno-Symplectic Geometry
@ = >R Ppy 1)
Santilli Backward Geno-Symplectic Geometry
<@ =< d<P<AR< d<Py 92)

3.3. GenoDynamical GenoEquations s [1-5]

Newton-Santilli Forward GenoEquation

- a>o> »
M > — P4t r,p) = [m X 547 = F* (t,,p) -
FNSA>(t r,p,...) = 0, (93)
Newton-Santilli Backward GenoEquation
< 2 = ~<SAE(t,7,p) =
=< [m x Z]~<4F (t, 1, p) =<V4F (t,7,p,..) = 0, (94)
Forward GenoVariational principle
A =86 7 7 > PPk -7 > 1) = 0. 99)

Backward GenoVariational principle

<E<A=<8[ (%P << A<k —<H << d<t) = 0. 96)
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Forward Hamilton-Santilli GenoEquations

ark _ rsg (f,ﬁ)1>
Gt =t bk

(A PP)y>

[dPr1> =
=Tk 1

TR o7

Backward Hamilton-Santilli GenoEquations
<@k _ _<[08(D)

Forward Geno-Hilbert space > with states |1)> > over the
isofield >
GenoExpectation value of a Hermitean operator 4 on A

99)

<&t BB,
at ~  apy ¥

<A >=<<P| <A > P> >e(
Heisenberg-Santilli GenoEquation®
i?%é= ADH=A<A-A>4=4x<T@,...) X
R@.8) - A, p) x T>(&,...) x 4 (100)
Forward Schrédinger-Santilli GenoEquation

B> > [§> >= B>, 5) x P>, 89,...) x |§> >= £> >
[$> >= E> x [{§> >, (101)

P> > [P >=~1> > Z P> >= —i x [* x 8,18 >, (102)
Backward Schrédinger-Santilli GenoEquation

<< P| << B =<<1| x< T, 0P,...) x<H@D) =
<< 9P| << B =<<9| x<E, (103)

<SP <P =—<<P| <<1<Fd = —i x<<P|Fa x<T
(104)

Forward Dirac-Santilli IsoEquation

@ > 7 > 07 — 2 > W > ) > |psi> >= 0. (105)
Y = Wu R + 7 R 9] = 2> > 13, (106)

Backward Dirac-Santilli GenoEquation

<P < (Spy <SP <<t << 71 << &) = 0. (107)

a A o

v+ Py X Pl =<2 <<ﬁuv =
2 %<, (108)

<{?u:?v} =< D”\u R

3.4. Comments and References

As it is also well known, all 20th century mathematical,
physical or chemical formulations are reversible over time.
Following research over half a century initiated during his Ph.
D. studies at the University of Torino, Italy, in the mid 1960s
[15, 17-23,4,5], R. M., Santilli has made the additional

By including the multi-valued (Section 4) and hyperstructural formulations
(Section 5), Lie-admissible equations (100) are so broad that it will take centuries
for their generalizations. For this reasou,Santilli has requested in his will that his
tombstone should have the engraving

iA=A<H—-H>A
below his name.
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historical discovery of'the first and only known, axiomatically
consistent, generalization of 20th century mathematics as well
as of its covering isomathematcs into a form embedding
irreversibility over time in ordered forward and backward
units, in corresponding ordered forward and backward
products and, consequently, in all subsequent mathematical
structures, resulting in the new mathematics nowadays known
as Santilli forward and backward genomathematics with
corresponding physical and chemical theories for the
representation of irreversible processes.

Since the reversibility over time of 20th century theories
can be reduced to the invariance under anti-Hermiticity of the
Lie product between Hermitean operators, [a,b] = ab —
ba = —[a, b]*, Santilli presented in 1967 [15] the first known
(p, q)-deformation of the Lie product (a, b) = pab — qba,
where p, q are scalars and the product ab is generally
non-associative. Following an intense search in European
mathematical libraries, Santilli discovered that the new
product verifies the axiom of Lie-admissibility by the
American mathematician A, A, Albert [16] in the sense that
the attached anti-symmetric product [a,b] = (a,b) —
(b, a) verifies the axioms of a Lie algebra.

Since spaceship during re-entry are notoriously irreversible
over time, Santilli was invited by the Center for Theoretical
Physics of the University of Miami, Florida, under NASA
support, where he moved with his wife Carla and newly born
daughter Luisa inAugust 1967, and published a number of
additional works in Lie-admissibility, including the first
known Lie-admissible generalization of Hamilton and
Heisenberg equations [17,18], nowadays considered at the
foundation of hadronic mechanics and chemistry, as well as
the first and only known Lie-admissible formulation of
dissipative plasmas surrounding spaceships during reentry
[19].

Santilli then spent seven years , from 1968 to 1974, at the
Department of Physics of Boston University, and then three
years, from 1974 to 1977, at MIT, during which tine he wrote,
in his words, Phys.. Rev of career-oriented papers nobody
reads. InSeptember 1977, Santilli joined Harvard University
and was invited by the DOE to study irreversible processes
because all energy releasing processes are irreversible over
time. In April 1978, Santilli published under his DOE suppoit
his most important mathematical contribution [20] (see also
monographs [21]) in which he achieved a Lie-admissible
covering of the various branches of Lie’s theory, Egs. (69),
(70), including the most general known time evolution whose
brackets characterize an algebra, Eqs. (1000). It should be
indicated that the isotopies of Lie’s theory outlined in the
preceding section were derived by Santilli as a particular case
of the broader Lie-admissible theory of Ref. [20], and then
published in monographs [1].

Subsequently, Santilli discovered in paper [2] of 1993 that
the axiom of a numeric field, besides admitting a
generalization of the multiplicative unit, also admit the
restriction of the associative product to an ordered form to the
right and, separately,to the left. In this way, Santilli discovered
two additional classes of new numbers, today known as
Santilli forward and backward genoreal, genocomplex and
genoquarternionic numbers. In the seminal memoir [3] of
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1996 Santilli discovered two additional coverings of the
ordinary differential calculus and of its isotopic covering,
today known as Sawtilli forward and backward
genodifferential calculi, Egs. (65) to (68). Santilli called a
genotopy [20] the lifting of isomathematics into ordered
formulations to the right and to the left in the Greek sense of
inducing a covering of Lie’s axioms, Egs. (69), (70).

As it is well known, thousands of papers have been
published beginning from the late 1980s on the so-called
g-deformations of Lie algebras with product (a,b) = ab —
gba which are an evident particular case of Santilli
Lie-admissible product [15]. Whatit is lesser known, or not
admitted, all q-deformations did not achieve invariance over
time, thus being afflicted by serious inconsistencies, since
they consisted of non-unitary theories formulated via the
mathematics of unitary theories. Santilli solved this problem
in 1997 by achieving the first and only known invariant
formulation of q- as well as of (p, q)-deformations [22].

We should indicate that Santilli’s conception of a genotopic
lifting of his preceding isomathematcs (indicated in Section 2
by “hat" on symbols plus the “arrow of time") is necessary to
achieve a consistent representation of irreversibility because
point-like particles can only experience action-at-a-distance
interactions that are reversible over time. Therefore, a simple
genotopy of 20th century mathematics based on the
conventional associative product would be axiomatically
inconsistent. Consequently, to represent irreversibility it is
first necessary to lift 20th century mathematics into
isomathematcs, with consequential representation of
extended-deformable particles via realizations of type (27) so
that extended particles can experience non-Hamiltonian
interactions needed for irreversibility. It is then necessary to
add irreversibility via the ordering of all products, It should
also be indicated that, when formulated via time-dependent
isounits, isomathematics can becomes genomathematics via
the identifications [(t,...) = ft(t,...) = > [(~t,...) =
ft(=t,...) =< L I(t,...) # [(—t), and the judicious addition
of ordered products.

Systematic studies on the Lie-Admissible treatment of
irreversible systems were presented in memoir [3] and
monographs [4]. Santilli’s subsequent memoir [23] of 2006
remains to this day the most comprehensive presentation of
Lie-admissible treatments of irreversibility at the classical and
operator levels. Monographs [5] of 2008 presented an update.
Paper collection [24[ presents all available independent
contributions in Lie-admissibility up to [1984. The
Proceedings of the Third International Conference on
Lie-admissible Treatment of Irreversible Systems [25] present
numerous additional independent contributions as well as
references for the five Workshops on Lie-Oadmissible
Algebras organized by Santilli at Harvard University, and for
the preceding two international conference in
Lie-admissibility, the first at the Université d’Orleans, France,
in 1981 and the second at the Castle Prince Pignatelli, Italy, in
1995 (see also the general review [14] and large literature
quoted therein).

As itis well known, there exists a large number of papers on
Lie-admissible algebras within the context of non-associative

algebras (see Tomber’s Bibliography [26] listing all
significant papers in the field up to 1986). It should be
indicated that, regrettably, these studies have no connection
with Santilli genomathematics since the latter deals with the
irreversible generalizations of all aspects of 20th century
mathematics.

4. Classical Hypermathematcs,
Hypermechanics and Hyperchemistry

4.1. Represented Systems s [1-5]

Multi-valued, time-irreversible systems of extended
-deformable particles or constituents under the most general
known Hamiltonian and non-Hamiltonian interaction, as
occurring for multi-valued universes or the structure of the
DNA.

4.2. Main Mathematical Structure s [1-5]
Basic HyperUnits and HyperProducts

P={55,..)=1/5 (109)

D=L bk ) =3 (110)

Forward and Backward HyperProducts

A>B={Ax8 xB,AxS$, xB,AxS85xB,..},I” >
A=A>P=4x1, (11)

A<B={AXR;xB,AxhatR, x B,Ax% Ry xB,...}<[ <
A=-A<<[=1x4, (112)

A=AtB =Bk =25t (113)

Classical hypermathematcs then follow as for
genomathematcs with multi-valued units, quantities and
operations.

4.3. Classical Hyper-Dynamical Equations s [1-5]

The same as those for genomathematics, but with
multi-valued hyperunits, quantities and operations.

Comments and References

The multi-valued three-dimensional (rather than
multi-dimensional) realization of genomathematics outlined
in Section 4 emerged from specific biological needs. The
Australian biologist C. Illert [27] confirmed that the shape of
seashells can indeed be represented in a three-Odimensional
Euclidean space as known since Fourier’s time, but proved
that the growth in time of a seashell cannot any longer be
consistently represented in a conventional, three-dimensional
Euclidean space, and achieved a consistent representation via
the doubling of the three reference axis.

Santilli [27,28] confirmed Illert’s findings because the
conventional Euclidean geometry has no time arrow and,
consequently, cannot consistently represent a strictly
irreversible system, such as the growth of seashells.
Additionally, Santilli proved thathis geno-Euclidean geometry,
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Egs. (71) to (73), is equally unable to represent the growth in
time of seashells despite its irreversible structure, however, an
axiomatically consistent and exact representation of the
growth of seashells was possible via the multi-valued
realization of the forward geno-Euclidean geometry, thus
beginning to illustrate the complexity of biological structures.

The multi-valued, rather than multi-dimensional character
of classical hypermathematics is indicated by Santilli as
follows [28] We perceive the growth of a seashell specifically
in three dimensions from our Eustachian lobes. Therefore, an
irreversible mathematics suitable to represent the growth of
sea shells must be perceived by us as being in three
dimensions. However, lllert has shown the need to double the
three Cartesian axis. Classical hypermathematics has been
conceived and structured in such a way that the increase of the
reference axes is complemented by a corresponding
multi-valued hyperunit in such a way that a classical
hyper-Euclidean geometry, when seen at the abstract level,
remains indeed three-dimensional as necessary to achieve
representation of biological structures compatible with our
sensory perception.

5. Hope Hypermathematics,
Hypermechanics and Hyperchemistry

Represented Systems

The most complex known multi-valued, time-irreversible
requiring extremely large number of data, such as the DNA
code [31-35].

Comments and References

Despite the preceding structural generalization of 20th
century mathematics, Santilli remained dissatisfied in view of
the complexity of nature, particularly of biological entities
because advances in the structure of the DNA are indeed
possible via classical hypermathematics, as we shall see in the
third collection of this series dedicated to chemiswy (e.g., via
Santilli hypermagnecules), but any attempt at representing the
DNA code via any of the preceding mathematics can be
proved to be excessively restrictive due to the volume,
complexity, diversification and coordination of the
information.

Therefore, Santilli approved one of the most important
mathematicians in hyperstructures, T. Vougiouklis fiom
Greece, and asked for his assistance in further generalizing the
preceding mathematics via hyperstructures defined on
hyperfields, as necessary for applications implying
measurements, and formulated via hyperoperations (called
“hope") permitting the needed broadening of the
representational capability.

The above contact lead to the hypermathematics indicated
in this section as presented in Refs. [29-33] which is based on
Vougiouklis H, hyperaxioms and which mathematics, in
Santilli’s words, constitutes the most general mathematics that
can be conceived nowadays by the human mind.

Outline of Hadronic Mathematics, Mechanics and Chemistry as Conceived by R. M. Santilli

6. Isodual Mathematics, Mechanics and
Chemistry

6.1, Represented Systems

Single-valued, closed-isolated, time-reversible systems of
classical and operatorpoint-like antiparticles moving in
vacuum solely under action at a distance Hamiltonian
interactions, such as the stricture of antimatter atoms and
antimatter molecules [2,36-43].

6.2. Main Mathematical Structure [2,36-43]
Basic isodual unit
1% = ~1F = ~1, (114)
Isodual numeric fields
Fimd,x4,19),n% =n x 1¢,n? x4 m?
=ntx (19)_, x m¢ € F,

d

n® = isodual! real, complex, quatern. ! numbers, (115)

Isodual functional analysis

fArD = FrY x 14 e F? (116)
Isodual differential calculus
ddrd = (1)! x dr? = dr, (117)
Santilli Isodual Lie theory
(X0 Xj1? = (Xi X X; = X x X)? == ~C}j X Xy, (119)
Ad(we) = WX x4 42(0) x@ ez WX, (120)
Santilli isodual Euclidean geometry
F4(@,6%,1%),r¢ = (rk),k = 1,2,3,
6% = Diag.(-1,-1,-1), (121)

P2 = i 5, ed pdi = (rf + 1f +1d) x 14 € F4, (122)

Santilli Isodual Minkowskian geometry (4 = 1,2,3,4,)
MA(x?, 4, 19): 29 = (), x4 = t¢ =t x 1% = —t, (123)
n® = Diag.(~1,—1,—1, +c%%), (124

x%d = (gt X, xxV) = (xf +xF +xf —t3 ) x 1? €
F4,(125)

Isodual Riemannian geometry, Santilli Isodual Symplectic
Geometry.

6.3. Isodual Dynamical Equations [2,36-43

Newton-Santilli Isodual Equation
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d d_”__ ~ FasA(pd (126)

mé x %) =0,

Isodual Variational Principle
%4 = 67 [*(pf x¢ a4rdk — g x4 44¢?) = 0. (127)
Hamilton-Santilli Isodual Equations without external terms

dadypdk _ ade(rd’pd) ddpz _

941z pd
aded ~  gdpfl 7 gqded T T

adydk !

(128)

Isodual Hilbert space H? over € with states |1p¢ >= -<
| over €4
Expectation value of a Hermitean operator A

< A% >=< | x A4 X [ >€ C%m (129
Heisenberg-Santilli Isodual Equations

d xd LA d“ =[AHY=(AXH-HxA)4, (130
Schrddinger-Santilli Isodual Equations

HE x@ |yt >=E4 xd [y? >=-Ex[p> (131

p® x® [P >= +i% x4 34, |p? > (132)

Dirac-Santilli Isodual Equation
@™ x4 2 x4 pg +i% x4 m? x% ¢?) x [¢ >= 0. (133)
W = G X1 + 1w x )% = 24 x4k, (134)

Comments and References
In addition to the the study of irreversible processes and the

representation of extended-deformable particles, during his Ph,

D. studies of the md 1960s Santilli was interested to ascertain
whether a far away galaxy is made up of matter or of
antimatter. He soon discovered that none of the mathematics
and physics he had learned during his graduate studies was
applicable for a quantitative study of the problem considered
since, at that time, antimatter was solely represented in second
quantization, while the study of far away antimatter galaxies
requested their representation at the purely classical and
neutral level. In this way, Santilli initiated a solitary scientific
journey that lasted for half a century.

This occurrence created one of the biggest imbalances in
scientific history because matter was treated at all possible
levels, from Newtonian mechanics to second quantization,
while antimatter was solely treated in second quantization.
The imbalance originated from the fact that special and
general relativities had been conceived decades before the
discovery of antimatter and, therefore, they had no possibility
of representing antimatter at the classical and neutral (as well
as charged) level.

It should be stressed that the ongoing trend to extend the
application of special and general relativities to the classical
treatment of antimatter is afflicted by a number of serious
inconsistencies, such as the impossibility to achieve a
consistent representation of neutral antimatter, the

impossibility to reach a consistent representation of
matter-antimatter annihilation (evidently due to the lack of a
suitable conjugation from matter to antimatter), violation of
the PCT theorem and other inconsistencies that remain
generally ignored.

Being an applied mathematician by instinct and training,
Santilli knew that the imbalance was the result of a purely
mathematical insufficiency because the transition from matter
to antimatter is an anti-homomorphism. Consequently, the
description of antimatter required a mathematics which is
anti-homomorphic to conventional mathematics.

Santilli dedicated a decade to the search of the needed
mathematics for antimatter. Following an additional extended
search done at the Department of Mathematics of Harvard
University under DOE support in the early 1980s, Santilli
concluded that a mathematics suitable for the joint classical
and operator treatment of antimatter did not exist and had to
be constructed.

In the early 1980s, Since he had introduced the
isoproduct AR B = Ax TB,T > 0, Eq. (25). Consequently,
it was natural to introduce its negative-definite counterpart
which he called isodual and denoted with theupper index ¢,
namely AX?B=AxT4B,7%=THt<0 While
constructing the isotopies of 20th century mathematics
presented in Section 2, Santilli initiated the construction of
their isodual image but published no paper in the new
mathematics for over a decade.

This caution was due to the fact that, despite the lack of any
visible mathematical inconsistency, Santilli remained
skeptical on a mathematics based on a negative-definite
product is afflicted by known physical inconsistencies, such as
the violation of causality for negative time, energies and other
physical quantities.

A breakthrough occurred in paper [2] of 1993. During the
achievement of .the broadest possible realizations of the
abstract axioms of a numeric field (of characteristic zero),
Santilli discovered that realizations with negative-definite
units were simply unavoidable. This lead to the discovery of
additional new numbers, today known as Santilli isodual real,
isodual complex and isodual quaternionic numbers occurring
for 14 = —1, Eq. (14), with isodual products (5), which are at
the foundation of the isodual mathematics of this section and
the additional numbers known as Santilli isodual iso- and
isodual geno -real, complex and quaternionic numbers which
are at the foundation of the isodual isomathematics and
isodual genomathematics of Sections 7 and 8m respectively
[2].

The discovery of isodual numbers is truly historical in our
view due to its far reaching implications. In fact, the discovery
established the existence of the desired isodual mathematics
as an anti-isomorphic image of 20th century mathematics for
the representation of antimatter. Additionally, the discovery
permitted the resolution of the problems of causality for
negative values of physical quantities.

To avoid insidious inconsistencies generally not seen by
non-experts in the field, the isodual map must be applied for
consistency to the fotality of quantities and their operations.
This lead to Santilli’s conception of antimatter as possessing 1t
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negative-definite physical quantities for time, energy,
momentum, frequency, etc, but such negative values are
referred to negative units of measurements. Consequential a
theory with negative time referred to negative units of time is
as causal as our reality with a positive time referred to positive
units, and the same holds for all other physical quantities.

Following the resolution of these basic issues, Santilli
published in 1994 his first paper [36] specifically devoted to
the isodual representation of antimatter. In mathematical
memoir [3] of 1996, Santilli achieved the first isodual
mathematical and physical representation of antimatter. In
paper [37] of 1998, Santilli achieved his first goal of the early
1960s, namely, a consistent classical representation of neutral
(as well as charged) antimatter.

By the early 1990s, Santilli had shown that isodual
mathematics represents all available experimental, data on
antimatter at the classical and operator level. Hence, he
initiated the second phase of his studies, namely, the
identification of new predictions for subsequent experimental
verification,

A breakthrough occurred at the 1996 First International
Conference on Antimatter help in Sepino, Italy [38]. By that
time, Santilli had shown that the only conceivable
representation of neutral antimatter required the conjugation
of the sign of all physical quantities (jointly with the
corresponding conjugation of their units of measurements).
Since photons are neutral, the application of the same
principle to light implies light emitted by antimatter, that
Santilli called isodual light, is physically different than light
emitted by matter in an experimentally verifiable way, e.g.,
because antimatter light is predicted to be repelled by a matter
gravitational field.

Santilli then passed to a deeper geometric study of the
gravitational field of antimatter. As indicated earlier, general
relativity was formulated decades before the discovery of
antimatter and, therefore, had no clue for the representation of
the gravitational field of antimatter bodies. In Ref.[39] of 1998,
Santilli conducted an in depth geometric study of antimatter,
and in monograph [40) of 2006, Santilli completed the
gravitational study of antimatter via the isodual Riemannian
geometry.

All these studies concluded with the prediction of
gravitational repulsion (antigravity) between matter and
antimatter at all levels of analysis, from the isodual
Newton-~Santilli equations (26) to isodual second quantization.
These aspects will be studied in the second collection of this
series dedicated to hadronic mechanics.

Thanks to all the above advances, Santilli was finally in a
position to address his original main aim of the 1960s, namely,
ascertain whether a far away galaxy is made up of matter or of
antimatter. The preceding studies had established that the light
emitted by antimatter must have a negative index of refraction
that, as such, require concave lenses for its focusing.
Consequently, Santilli secured the construction of a
revolutionary telescope with concave lenses. About fifty years
following his original aim, Santilli finally published in 2013
[41[ measurements of the night sky with his new telescope

Outline of Hadronic Mathematics, Mechanics and Chemistry as Conceived by R. M. Santilli

showing images that can be solely due to light with a negative
index of refraction which light, in turn, can solely originate
from far away antimatter stars or galaxies (see also the two
independent confirmations [42,43]).

An intriguing aspect that should be of interest to pure
mathematicians is the conclusion of these studies illustrating
the power of new mathematics, to the effect that none of the
large numbers eof telescopes available nowadays can detect
antimatter starsor galaxies since they all have convex lenses.
Similarly, as humans evolved in a matter world, we will never
be able to see antimatter with our eyes since our cornea is
convex and, as such, it will disperse antimatter light all over
the retina.

Needless to say, isodual mathematics and its application to
antimatter have implications so intriguing that are stimulating
the participation of a large number of scientists as we shall
report in the second collection of this series

7. Isodual Isomathematics, Isodual
Isomechanics and Isodual Isochemistry

7.1, Represented Systems [2,36-43

Single-value, closed-isolated, time-reversible system of
classical or operator extended-deformable antiparticles with
action at a distance Hamiltonian and contact non-Hamiltonian
interactions, such as the structure of antimatter hadrons, nuclei
and stars, in the antimatter valence electron bonds and other
antimatter systems.

7.2. Main Mathematical Structuref2,36-43
Basic Isodual IsoUnit J
[ = fa(rd, pe, g, .8 9%, ) = 14/474 < 0, (135)
Basic Isodual IsoFields

Fe(ad,R2,19), 714 = n x 4,42 R4t = A¢ x T4 x Al €
B, . (136)

Isodual IsoCoordinates #% = r x fd € £4,

Isodual IsoFunctional analysis f4(7¢) == f(#%) x [% €
Fd,

Isodual IsoDifferential Calculus

dird = dr —r? x T x dfd, 137
3979 _ ta y 0S4
el (138)
Santilli Isodual Lie-Isotopic Theory
XoXj)e =X R X; - X; R XD == ~Cli(r,p,...) X Xy,
(139)

A% (wd) = g¥Hwixi ga gagdy ga g=ixwixx? (140)
Santilli Isodual Iso-Euclidean Geometry

Ed(.;,\d’ 6"d, fd)’ 8d(rd, pd, ad’ P,...) =
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P(rd, pd ad, o,
74 = Diag. (1/n%,1/n3,1/n3)%,

) % &, (141)

(142)
P2 = (2 8y R = G+ D Dyt x e B4, (143)
1

Santilli Isodual Iso-Minkowskian Geometry (u = 1,2,3,4)

M(24,74,[9): 82 = (2%),2¢ =t =t x[?, (144)
A4 Yd,..) = T4 yd,. ) xg, (145)
79 = Diag. (1/n2,1/n,1/n3,1/n3)%, (146)

d3d _ (gp Qe = (¥ B 20
2 (BF Rijyy R 2Y) (n§+n§+n§ t ni) X
[t e B4, (147)

Santilli Isodual Iso-Riemannian Geometry

R(24, g4, 1Y): g% = T4 (x4, v4,...) X g(x), (148)
ded — (911 922 +9L:— .‘_Jég)d % i‘d € ﬁd’ (149)
Santilli Isodual Iso-Symplectic Geometry
& = dpdk Ad dpt (150)
7.3. Isodual IsoDynamical IsoEquation|2,36-43
Newton-Santilli Isodual IsoEquation
. dtod
md Rd T FdSA(Td,pd) J—
(m X )d FdSA(Td,pd) —_ FdNSA(rd'pd’ _'_) — Od =0,
(151)

Isodual IsoVatiational principle

N d ~ N
§eA% = 84 [~ (¢ K¢ dthatr® — F¢ %% 3484 = 0% =

0. (152)
Hamilton-Santilli Isodual IsoEquations
adpdk _ 5dgd(74d,ﬁd) &ﬁk gdgd(fd'ﬁd)
aTtd T T pdpg ' aded gapae + (153)

Isodual iso-Hilbert space A% over € with states |)% >=
—< 9| over €@
Expectation value of a Hermitean operator 4
< A% >=<P| R AL R P >e ¢? (154)
Heisenberg-Santilli Isodual IsoEquation

¢ R4 d%hatA%overddtd =

(A x (. 89,.

A

[AHY=@ARA-ARA)?

) x A, p) — AE9) x T, 9, )x
A4, (155)

Schrédinger-Santilli Isodual IsoEquation

(AR P >)* =< % %2 AL = (AF,B) x T, ,...) X
1h >)¢ = ~< | KL = —< 2| x B4, (156)

BRI >)* =< P4 R G0 = —i x< P4 K 8%, (157)
Dirac-Santilli Isodual IsoEquation

[ %7, KB, ~ 1R MK E) K psi >)* =0 (158)

[?;u}'v} = (Yu KPy+7 R YM)d =29 R4 77uv/ (159)

Comments and References

See monograph [40] with particular reference to the use of
the isodual isomathematics for the achievement of a grand
unification of electroweak and gravitational interactions
inclusive of matter and antimatter.

8. Isodual Genomathematics, Isodual
Genomechanics and Isodual
Genochemistry

8.1. Represented Systems [2,36-43

Single-valued, time-irreversible system of
extended-deformable antiparticles under action at a distance
Hamiltonian and contact non-Hamiltonian interactions, as
occurring in antimatter nuclear reactions, antimatter biological
structures and antimatter chemical reactions.

8.2. Main Mathematical Structure [2,36-43

Backward Isodual GenoUnit

> = i>d(t>r>, p>d' a>d' ¢>d‘ a>dw>d, . _) = 1/T>d >
0, (160)
Forward Isodual GenoUnit
<df =<d f(<dr‘<d p'<d a‘<d ¢‘<d 6“*1/),. . ) = 1/<dT >
0, (161)
Condition for time-irreversibility
>4 ¢  <df (162)

Backward Isodual GenoFields
ﬁ>d('~>d >, i>d) ﬁ>d =nx i>d ~>d >d m>d — ﬁ>d
7‘>d x > € F>4, (163)

Forward Isodual GenoFields
<dz

<Ap(<dp < <d [y <df =<d [y, <df <d A =
=<d f x<d P x<d 7 e<d F, (164)

Backward Isodual GenoCoordinates

P> =7 x [>d e >4, (165)
Forward Isodual GenoCoordinates
<dp=<dfxre@F, (166)
Backward Isodual GenoFunctional analysis
FPAP>d) = f(7>2) x [>4 € f>4, (167)
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Forward Isodual GenoFunctional analysis

<df(<df) = f(<d‘f') x<d f Ed F (168)
Backward Isodual GenoDifferential Calculus
P>4p>d = gr 4 x P>Ax dP4,  (169)
Frap>agp>dy af>dp>d)
W‘=Pd xaf_>d' (170)
Forward Isodual GenoDifferential Calculus
<dd<dp =gdr +rx<ePxqd<df, . (171)
—<45<af(<af)‘ _<dd fy a<dp(<dp) an)

<dg<dp g<dp !

Santilli Isodual Lie-Admissible Theory
KoX)® = (X < X —X; > X;)% =
—CEh rph YY) X X (173)
A% (W) = 855w >4 4(0) <&y a=0WXX, (174)
Santilli Backward Geno-Euclidean Geometry

E>d(7ﬂ.>d‘ 6“>d‘j>d)‘ 5>d(t,r,p,1p,.. ) =

>4, 7,p,9,...) X 8, (175)

242 = (7241 54 f2d 5 24 =g F>4, (176)
T>d o P>dtransp 177

Santilli Forward Isodual Geno-Euclidean Geometry

<dE(<d79‘<d 8'<d I)' <d8(t, 7, p'w' .. ) —<d T(t, 7, p‘w‘ .

8, (178)
<dZdp —<di p «<d gij <d <djpgdF, (179)
<dT ¢<d transp T (1 80)

Santilli Backward Isodual Geno-Minkowskian Geometry
(x=1234)

ﬁ>d(f>d‘ﬁ>d‘i>d): £>d = (£>du)‘x4>d = t>d, (181)
0 p,...) =>4, 1,...) X1, (182)
f>d2d — >an sd 77;3 >d g ¢ p>d’ (183)
ﬁ>d * ﬁ>d transp (184)

Santilli Forward Isodual Geno-Minkowskian Geometry
(mu=1,2,3,4)

<dfj(<dg<d 7,54 D: <dz =), <dy, =<d ¢, (185)
<af(x,v,...) =<¢ T(x,v,...) X1, (186)
<dp<d2d _<dp % <d <vg €<d F, (187)

2 <d."7\”v <d
(188)

<da Y
0] ¢<d transp 1

Santilli Backward Isodual Geno-Riemannian Geometry

) X
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Re>4, >4 Ay, 574 = 1>4(x,p,...) X g(x), (189)
f>d2> o >dpd 5;75 Sd y>dv g f>d (190)
P>d o p>dtransp (191)

Santilli Forward Isodual Geno-Riemannian Geometry
<AR(RAZ<G<Af):  <eg =<d P(x,v,...) X g(x), (192)

<dp<d2d _<dp f od <dg = d
- v

Gu
<d ﬁ ¢<d transp g

<dvg e<d [, (193)
(194)

Santilli Backward Isodual Geno-Symplectic Geometry

ﬁ>d = a>d7¢.>dk 7\‘>d d>dﬁ’?d (195)
Santilli Forward Isodual Geno-Symplectic Geometry
<d&)\ =<d &<dl7a<d 7\<d d‘<dp’\k (196)

8.3. Isodual GenoDynamical GenoEquations [2,36-43

Newton-Santilli Backward Isodual GenoEquation

>dp>d d
> e — P54 (t,7,p) = m x S

FSA>d(t,7,p) — FN4>4(t,7,p,...) = 0, (197)

g

Newton-Santilli Forward Isodual GenoEquation
<d7’ﬁ_ <

<dg<dp
~agza; —AF (6 p) =< [m X

g_’s_]__<dSAF(t‘ r,p)=SAF(t,r,p,...) =0, (198)
Backward Isodual Geno Variational principle

§>4p>a = g>a >d @B > d>ap>ak _grd 5
a>df>d) =0, (199)

Forward Isodual GenoVariational principle

<df<d § =<d §<d fA (<9 <<@ ddpk_<dff <<d &<d£)

0. (200)
Backward Isodual Hamilton-Santilli GenoEquations
a>d-fl>dl _ 5H(f,ﬁ) &>dﬁ>d _ 3”(?"',}’7‘)
Pt = Fap, P tgsapdl = —Hm 1% (20D

Forward isodual Hamilton-Santilli GenoEquations
<da<dﬁk

<dg<dak _<a 30D -
<dpatd<df

FH(F.B)
<dg<dg 7 1 ] = _<['_"_‘]: (202)

ark

Heisenberg-Santilli [soDual GenoEqutions
i?%—?: AD)=4A<A-0>A4=4x<T®,8P,...) x
A, 8) - HE,5) x T>@,d9%,...) x 4 (203)
Schrédinger-Santilli Backward Isodual GenoEquations
P4 >4 | >= 148, p) X P> (B, 09,...) X [P >=
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£~ >d W}">d >= 4 x |1ﬁ>d >, (204)

p28 > [P >= 4 > G2 >=~i x P x [P >,
(205)

!
Schrédinger-Santilli Forward Isodual GenoEquations

<<d | <t <A =< | x<ATGP,AT,...) xS AGP) =
<<d f| << B =<<¢ | x<? E, (206)
<<d .J)‘I<<d p=—<<d ’/’AI <d <dpgd <df =
—i x<<d 1|54 x<d | (207)
Dirac-Santilli Backward Isodual IsoEquation
(ﬁ>duv >d )';;d >d ﬁid —PPds s é>d)
> |psi”? >= 0. (208)
PP Y =R P+ 7 7 =222 > 38, (209
Dirac-Santilli Forward Isodual GenoEquation
<<d ‘I’Al< (S9p, <<, <d  <dmvp_<pod <djyd <p
= 0. (210)
<UPip} = [P R + 9 RPu] =<2 2 <%y
=2 x4, (211)

Comments and References

See memoir [20] which constitutes the most comprehensive
study of antimatter in irreducible conditions available at this
writing.

9. Isodual Classical and Hope Isodual
Hypermathematics

Isodual Hyper-Formulations are generally considered to be
part of the Hyper-Formulations of Section 4 and 5 because the
classification of ordered sets of hyperunits includes isodual
realizations, as illustrated in the paper [44] and references
quoted therein.

10. Simple Method for the Construction
of Regular Hadronic Mathematics

10.1. Introduction [4.5]

Hadronic formulations are called regular when the
Structure quantities Ciij of Santilli’s Lie-Isotopic algebras, Egs.
(3), Lie-admissible algebras, Egs. (69) (zzz) and their isoduals,
Eqgs. (119-, (139), are constant. When the structure quantities
are functions of the local variables C L’j (t,7r.p,9,09,...),
hadronic formulations are called irregular.

In this section, we shall review a very simple method for the
construction of regular hadronic formulations via the mere use
of non-unitary transformations of the corresponding

)
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conventional formulations. We shall then review the
axiomatic consistency of hadronic formulations by showing
that Santilli iso-, geno-, hyper-units and their isoduals are
invariant under the transformations, thus implying the crucial
invariance over time of extended-deformable shapes and their
non-Hamiltonian interactions that are invariantly represented
precisely nwith such generalized units.

No method exists to our Wnowledge at this writing (June
2015) for the construction of irregular hadronic formulations
via maps of conventional formulations and, therefore,
irregular hadronic formulations characterize a new axiomatic
structure still mostlyunexplored.

10.2. Simple Construction of Regular Iso-Formulations

f4.5]

A simple method has been identified in Refs. [4,5] for the
construction of the Lie-Santilli isotheory, all its underlying
isomathematics and all physical methods This method is
important because it permits a simple implementation of
conventional models into their isotopic covering without the
need for advanced mathematics. The method consists in:

(i) Representing all conventional potential interactions with
a Hamiltonian H(r,p) and all extended-deformable shapes
and their non-Hamiltonian interactions and effects with
Santilli’s isounit | @0, 09,./..);

(ii) Identifying the latter interactions with a nonunitary
transform

UxUt=[=#1] (212)

and

(iii) Subjecting the fotality of conventional mathematical
and physical quantities and all their operations to the above
nonunitary transform, resulting in expressions of the type

I-T=UxIxUt=1T, (213)

a-»ad=UxaxUt=axUxUt=axl,aeF (214)
eA_,UXeAXU'I'=iXe?xﬁ=(eﬁxT)in (215)

AXB->UX(AXBYx Ut =WUxAxUY) x Ux
Ut x (UxBxU"=4%B, (216)

[Xu X1 - U X [X X1 x Ut = [R,%] = U x (C{ x X)) ¥
Ut = Ck 8 = €k x &, (217)

<Y X Y>> Ux<P| x| >Sx Ut =< | x Ut x (U x
UD™IXUX Y >x (UxUY) =<P| R P >xT, (218)

HX[p>->UXxHX|p>)=UxHxUYx U x
UH™x (U X [p>) =HR P >, ete. (219)

Note that serious inconsistencies emerge in the event
even ’one’ single quantity or operation is not subjected to the
above non-unitary map. In the absence of comprehensive
liftings, we would have a situation equivalent to the
elaboration of quantum spectral data of the hydrogen atom
with isomathematics, resulting in large deviations from reality.
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The construction of isodual iso-formulations is simply done
via Santilli’s isodual map, namely, via the simple
anti-hermitean image of the above isotopic formulations.

10.3. Axiomatic consistency of Iso-Formulation [4.5]

Let us recall that Santilli’s central assumption is the
representation of extended-deformable shapes and their
non-Hamiltonian interactions via the isounit. Therefore, any
change of the numerical value of the isounit implies the
inability to represent the same system over time, besides
activating the Theorem of Catastrophic Mathematical and
Physical Inconsistencies of Non-Canonical and Non-Unitary
Theories when formulated via the mathematics of
conventional canonical and unitary theories,respectively [23].

It is easy to see that the application of an additional
nonunitary transform

Wxwt#l, (220)

to the preceding e)(pressions causes their lack of invariance,
with consequential activation of the theorem of catastrophic
inconsistencies. This is due to the change of the value of the

basic isounit under additional non-unitary transformations
foP=wxIxwt=l, (221)

However, any given nonunitary transform can be identically
rewritten in the isounitary form [3]

Wxwt=[ w=wx7fu,
WxWt=WWt=WIRW =1,

under which we have the invariance of the isounit and
isoproduct [7]

(222)
(223)

[>T =WRISW =1,

ARB-WRKUAKB)KWH =W xTxAdxTx W) x
XY IXTPxWXxD)IxWxTxBxTxWh) =
AXWIXPxW) ' xB =A'xTxB =4A'RB, etsc.

(225)

(224)

from which the invariance of the entire isotopic formalism
follows.

Note that the invariance is ensured by the numerically
invariant values of the isounit and of the isotopic element
under non-unitary-isounitary transformations,

I-F=i
ARXB-ARB =4'RP,

(226)
(227)

in a way fully equivalent to the invariance of Lie’s theory and
quantum mechanics, as expected to be necessarily the case due
to the preservation of the abstract axioms under isotopies. The
resolution of the inconsistencies for non-invariant theories is
then consequential.

The proof of the invariance of Santilli
iso-formulations is an interesting exercise for non-initiated
readers.

isodual’
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10.4. Simple Construction of Regular GenoMathematics
and its IsoDual [4.5]

An important feature of the Lie-Santilli genotheory is its
Jform invariance under the appropriate geno-transformations
in a way fully similar to the invariance of the mathematical
and physical structures of quantum mechanics under unitary
transformations.

This feature can be shown via a pair of non-unitary
transformations

VxVt 2 LWxWt=L VWt WxVts], (228)

under which we have the characterization of the forward and
backward genounits and related genoproduct

I 5V xIxWt =] egno (229)
AXB-VX@AxB)xW'=4>>B> (230)
I->WxIxV =</, 231)
AXB~»WX(AXB)xV=<A<<B/ (232)

10.5. Axiomatic Consistency of GenoMathematics and its
Isodual [4.5]

It is easy to see that the above dual non-unitary
transformations can always be identically rewritten as the
geno-unitary transforms on geno-Hilbert spaces over complex
genofields,

VxVt#1,V=<VxRY2V x
Pt =<P << Pt =<pt <<P =<] (233)

WxWt# LW =W>x§V2,w xwt=W>>W> =
Wt > w> =1~ (234)

under which we have indeed the following forward
geno-invariance laws [3]

Poi?=w>>Ps>swt=0,

A>SB-oW>>A>B)>Wt=4>8,

(235)
(236)

B> |>=F>>|>=Ex|>>W>>0>>|>=0">
| >'=W>>E>>|>=Ex|>/, (237

with corresponding rules for the backward and classical
counterparts,

The above rules confirm the achievement of the invariance
of the numerical values of genounits, geno-products and
geno-eigenvalues, thus permitting physically consistent
applications,

The invariance of the isodual geno-formulations can then be
proved via the isodual map applied to the above procedure,

11. Open Mathematical Problems

Among a predictable large number of basic open problems,
we list for the interested readers the following ones:
# Study methods to transform nonlinear models on
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conventional spaces into isolinear models on isospaces over
isofields;

# See whether simple solutions of isolinear equations on
isospaces over isofields provide at least &" solution of their
nonlinear projection on conventional spaces over
conventional fields;

# Study the removal of divergencies in quantum mechanics
and scattering theories (Footnote 2) by isomechanics on an
iso-Hilbert space over an isofield.

# Study the regular and irregular isorepresentations of the
Lie-Santilli isotheory;

# Study Santilli isoMinkowskian geometry via the
machinery of the Riemannian geometry, yet lack of curvature
[39);

# Study the Lie-admissible theory in Santilli’s sense, that is,
as a generalization of Lie’s theory elaborated via
genomathematics;

# Study Santilli geno-Euclidean, geno-Minkowskian and
geno-Riemannian geometries where irreversibility is
embedded in the non symmetric character of the metric [23];

# extend the Tsagas, Ganformina-Nunez isotopology to the
genotopic form and their isoduals,

Research funds are available from the R. M. Santilli
Foundation for partial support of research in the above listed
and related open problems in hadronic mathematics.
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Abstract: Beginning with studies in the 1980s at the Department of Mathematics of Harvard University, the Italian-American
scientist R. M. Santilli discovered new realizations of the abstract axioms of numeric fields with characteristic zero, based on an
axiom-preserving generalization of conventional associative product and consequential positive-definite generalization of the
multiplicative unit, today known as Santilli isonumbers [1], and the resulting novel numeric fields are known as Santilli isofields.
By remembering that 20th century mathematics was formulated on numeric fields, their generalization into isofields stimulated a
corresponding generalization of all of 20th century mathematics and its application to mechanics, today known as Santilli
isomatheatics and isomechanics, respectively, which is used for the representation of extended-deformable particles moving
within physical media under Hamiltonian as well as contact non-Hamiltoian interactions. Additionally, Santilli discovered a
second realization of the abstract axioms of a numeric field, this time with arbitrary (non-singular) negative definite generalized
unit and related multiplication, today known as Santilli isodual isonumber [1] that have stimulated a second covering of 20th
century mathematics and mechanics known as Santilli isodual isomathematics and isodual isomechanics. The latter methods are
used for the classical as well as operator form of antimatter in full democracy with the study of matter. In this paper, we present a
comprehensive study of Santilli's epoch making discoveries of isonumbers and their isoduals along with their application to
isomechanics and its isodual for matter and antimatter, respectively.
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. It was Enrico Fermi, [3] beginning of chapter VI, p.111 said
L. Introduction “..... there are some doubts as to whether the usual concepts of
geometry hold for such small region of space." His inspiring

As it is well known, modern mathematics has a strong . ;
doubts on the exact validity of quantum mechanics for the

foundation on number theory, algebraic structures such as

groups, rings, algebra, vector spaces and related methods have
found vast applications in all quantitative sciences. More
general structures like groupoids, semigroups, monoids,
quasigroups and loops were also being studied in 20th century,
although their applications in quantitative sciences are under
development. The detailed consolidated account of these
generalized structures is found in Survey of Binary Systems
by R.H.Bruck [2].

While the scientific discoveries and mathematical
knowledge were moving hand in hand, towards the end of
20th century there were few mathematically unexplained
physical phenomena in Quantum Physics and Quantum
Chemistry. These new physical situations could not be
faithfully described by the existing mathematical structures
and called for more generalized mathematical structures.

nuclear structure led to the genesis of the whole new kind of
generalized mathematics, called isomathematics and
generalized mechanics, called as Hadronic mechanics.

In fact, the prevailing Newtonian and Einsteinian
‘Dynamical systems’ called as 'Exterior Dynamical systems’
which are characterized as ‘local’, ‘linear’ ‘Lagrangian’ and
‘Hamiltonian’ could not accommodate these obscure
situations. Thus it was the pressing demand of time to
Jformulate new mathematical theory which could deal with the
obscure phenomena and develop a new physical theory. This
stupendous task was taken up by the Italian-American
theoretical physicist Ruggero Maria Santilli, President of
Institute for Basic Research, Palm Harbor, Florida, USA and
did the pioneering work by defining axiom-preserving,
nonlinear, nonlocal and noncanonical isotopies of
conventional mathematical structures, including units, fields,
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vector spaces, transformation theory, algebras, groups,
geometries, Hilbert spaces etc. while at Department of
Mathematics of Harvard University in the early 80°s. Prof,
Santilli has rightly said;

“There can not be really new physical theories without

really new mathematics, and there can not be really
new mathematics without new numbers”.

The founders of analytic mechanics, such as Lagrange,
Hamilton [4] and others classified dynamical systems in to
two kinds. First one is the ‘Exterior Dynamical system’ and
the second one is the more complex but generalized ‘Interior
Dynamical system’.

However, over a period of time the the above distinction
was abandoned preventing the identification of limitations of
the prevailing mathematical and physical theories. One can
easily notice that Lies Theory is exactly applicable to the
exterior dynamical systems. It was Prof, Santilli who at the
Department of Mathematics of Harvard University, for the
first time, drew the attention of the scientific community
towards the crucial distinction between exterior and interior
dynamical systems and presented insufficiencies of prevailing
mathematical and physical theories by submitting the
so-called axiom-preserving, nonlinear, nonlocal, and
noncanonical isotopies of Lie's theory [S] under the name Lie
Isotopic theory. Further generalization as Lie-admissible
theory [6,7] was also achieved by him,

Exterior Dynamical Systems: In this system Point-like
particles are moving in a homogeneous and isotropic vacuum
with local-differential and potential-canonical equations of
motion. These are linear, local, Newtonian Lagrangian and
Hamiltonian. Conventional Mathematical structures such as
Algebras, Geometries, Analytical Mechanics, Lie Theory can
faithfully represent these systems.

Interior Dynamical Systems: In this system we consider
extended non-spherical deformable particles moving within
non-homogeneous anisotropic physical medium. These are
non-linear, non-local, non-Newtonian, non-Lagrangian and
non-Hamiltonian. The mathematical structures needed to
describe these systems are most general possible which are
axiom preserving; non-linear and non-local formulations of
current mathematical structures.

During a talk at the conference Differential Geometric
Methods in Mathematical Physics held in Clausthal, Germany,
in 1980, Ruggero Maria Santilli submitted new numbers based
on certain axiom preserving generalization of the
multiplication, today known as isotopic numbers or
isonumbers[1] in short. This generalization induced the
so-called isotopies of the conventional multiplication with
consequential generalization of the multiplicative unit, where
the Greek word “isotopy" from the Greek word ' tODO
/00 " implied the meaning “same topology” [8,9].
Subsequently, Ruggero Maria Santilli submitted a new
conjugation, under the name isodualizy which yields an
additional class of numbers, today known as /isodual
isonumbers [1).

The discovery of isonumbers was made with the specific
need of quantitative representation of the transition from
Exterior Dynamical Systems to Interior Dynamical System.

It should be quite clear that there can not be new numbers
without new fields. This led Santilli to define *Isofield’ which
is the first new algebraic structure defined by him. This
concept of ‘Isofield’ further led to a plethora of new
isoalgebraic structures and a whole new ‘Isomathematics’
which is a step further in Modern Mathematics. Subsequently,
‘Isomathematics’ has grown in to a huge tree with various
branches like ‘Isofunctional Analysis’, ‘Isocalculus’,
‘Isoalgebra’, isocryptography etc.

Prof. Santilli attracted great attention from academic
community at Chinese Academy of Sciences during a
workshop in China on August 23, 1997. Since then Prof
Santilli and his associates in various countries around the
world have produced numerous papers, monographs,
conference proceedings which cover approximately 10,000
pages of research work.

Today Number theory has advanced as an important branch
of axiomatized mathematics with highly sophisticated
applications in the Modern world of computer science and
information technology. After some advances in 19th century
due to Gauss [10], Abel [11], Hamilton [4], Cayley [12],
Galois [13] and others, major important advances were made
during 20th century which included axiomatic formulation,
the algebraic number theory [14].

The classification of all normed algebras with identity, over
reals, in view of the previous studies by Hurwitz[15], Albert
[16], and N.Jacobson [17] may be expressed in the following
important Theorem.

Theorem 1.1. All possible normed algebras with
multiplicative unit over the field of real numbers are given by
algebras of dimension 1 (real numbers), 2 (complex numbers),
4 (quaternions), and 8 (octonians).

In this comprehensive presentation of the development
of ’Isonumber theory’ we cover the following important
aspects of fundamental importance as formulated by Prof. R.
M. Santilli [18], [1].

Starting with the brief background of the origin of ’isounit’
and isofield, we present the theory of isonumbers,
pseudoisonumbers, “hidden numbers" and their isoduals.
Genonumbers, pseudogenonumbers and their isoduals are also
of fundamental importance. We will study the isotopies and
isodualities of the notions of numbers, fields and normed
algebras with unit ref.[1]. In short, in this paper we are going
to study the properties of isonumbers and their isoduals [1].

In his study Santiili has taken into account the four normed
algebras over reals as given in the above theorem. The isotopic
lifting of these algebras give rise to isotopies of normed
algebras with multiplicative unit of dimension 1,2,4 and 8
which includes realization of ’isoreal numbers’, *isocomplex
numbers’, ‘isoquaternions’ and ’isooctonions’. Isodualities of
these structures give isodual isonumbers.

The mathematical non-triviality of these structures is
evident due to lack of unitary equivalence of isotopic and
genotopic theories to conventional ones, non-applicability of
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trigonometry and some other aspects. On the other hand, the
physical non-triviality of these structures emerges from the
fact that this theory of isonumbers is at the foundations of
Li-isotopic theory used successfully to study nonlinear,
nonlocal, and nonhamiltonian dynamical systems. The more
general Lie-admissible theory emerges from the more general
genonumbers.

In a nutshell, the theory of isonumbers is at the foundation
of current studies of nonlinear-nonlocal-nonhamiltonian
systems in nuclear, particle and statistical physics,
superconductivity and other fields.

1.1. Origin of Isonumbers

The concept of ‘Isotopy’ plays a vital role in the
development of this new age mathematics ref. R. H. Bruck [2]
and [19].

The first and foremost algebraic structure defined by
Santilli is ‘isofield’. Elements of an isofield are called as
‘isonumbers’. The conversion of unit 1 to the isounit 1 is of
paramount importance for further development of
‘Isomathematics’.

The reader should be aware that there are various
definitions of “fields" in the mathematical literature [20], [21],
[22] and [14] with stronger or weaker conditions depending on
the given situation. Often “fields" are assumed to be
associative under the multiplication.

i.e.

ax(bxc)=(axb)xc Vab,cEF

We formally define an isofield [23], [24] as follows.
Definition 1.1 Given a “field" F , here defined as a ring with
with elements a,b,c..., sum a+b , multiplication ab ,
which is commutative and associative under the operation of
conventional addition + and (generally nonassociative but)
alternative under the operation of conventional multiplication

x and respective units 0 and 1, “Santilli’s isofields" are
rings of elements a = al where a are elements of F and
1=T"isa positive- definite nxn matrix generally outside
F equipped with the same sum a+b of F with related
additive unit 0=0 and a new multiplication axb=arh,
under which 1=T"" is the new left and right unit of F in

which case F satisfies all axioms of the original field.
T is called the isoelement. In the above definitions we
have assumed “fields" to be alternative, i.e.

ax(bxb)=(axb)xb, (axa)xb=ax(axb) Va,bEF
Thus, “isofields" as per above definition are not in general

isoassociative, i.e. they generally violate the isoassociative
law of the multiplication, i.e.

ax(bxé)=(axb)xé Yabeek

+
2

but rather satisfy isoalternative laws.

The specific need to generalize the definition of “number”
to ‘real numbers’, complex numbers, ‘quaternions’ and
‘octonians’ suggested the above definition. The resulting new
numbers are ‘isoreal numbers’, isocomplex numbers,
‘isoquaternions’ and ‘isooctonians’ respectively, where
‘isooctonians’ are alternative but not associative.

The ‘isofields’ F = F(a4,+,x) are given by elements

a, l;,é... characterized by one-to-one and invertible maps
a—>a of the original element a€F equipped with two
operations (+,x), the conventional addition + of F and a
new multiplication x called "isomultiplication" with
corresponding conventional additive unit 0 and a
generalized multiplicative unit 1, called “multiplicative
isounit" under which all the axioms of the original field F
are preserved.

Santilli has shown that the transition from exterior
dynamical system to interior dynamical system can be
effectively represented via the isotopy of conventional
multiplication of numbers a and & from its simple possible
associative form axb in to the isotopic multiplication, or
isomultiplication for short, as introduced in [8].

The lifting of the product ab=axb of conventional
numbers in to the form

axb=axTxb )

denoted by x=xTx, where T is a fixed invertible quantity
for all possible a,b called isotopic element.
This isomultiplication then lifts the conventional unit 1

defined by Ixa=axl=a to the multiplicative isounit i
defined by

1Xa=ax1=a,where 1=T" (2

Under the condition that 1 preserves all the axioms of 1
the lifting 1-1 is an isotopy, i.e. the conventional unit 1

and the iso unit 1 (as well as the conventional product axb
and its isotopic form axb ) have the same basic axioms and

coincide at the abstract level by conception. The isounit 1is
so chosen that it follows the axioms of the unit 1 namely;
boundedness, smoothness, nowhere degeneracy, hermiticity

and positive-definiteness. This ensures that the lifting 1— 1

is an isotopy and conventional unit 1 and the isounit i
coincide at the abstract level of conception.

Thus, the isonumbers are the generalization of the
conventional numbers characterized by the isounit and the
isoproduct as defined above.

The liftings @—~a, and x —x can be used jointly or
individually.

It is important to note that unlike isotopy of multiplication
x — x , the lifting of the addition +—>+ implies general
loss of left and right distributive laws. Hence the study of such
a lifting is the question of independent mathematical
investigation.
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The first generalization was introduced by Prof. Santilli
when he generalized the real, complex and quaternion
numbers [23], [24] based on the lifting of the unit 1 into

isounit 1 as defined above. Resulting numbers are called
isorealnumbers, isocomplex numbers and isoquaternion
numbers.

In fact, this lifting leads to a variety of algebraic structures
which are often used in physics. The following flowchart is
self explanatory.

Isonumbers  —
Isotransformations —
Isosymmetries —
etc.

The isounit is generally assumed to be outside the original
field with all the possible compatible conditions imposed on it.
For rudiments of isomathematics reader can refer to [1, 6, 7,
25].

The lifting of unit / to isounit I may be represented as,
I— I(t,r,r',p,T,z,u,sz,azp,awT,...) . where ¢t is time, r
is the position vector, p is the momentum vector, 3 is the

Isofields  —
Isoalgebras —
Isorepresentations —

Isospaces —
Isogroups —
Isogeometries

wave function and ' are the corresponding partial

differentials. The positive definiteness of the isounit I is
assured by, i(t,r,t‘,p,T,y',zﬁT,azp,az/rf,...)=%>O where

T is called the isotopic element, a positive definite quantity.
The isonumbers are generated as, #=nx7, n=0,1,2,3,....

Isofields are of two types, isofield of first kind; wherein the
isounit does not belong to the original field, and isofield of
second kind; wherein the isounit belongs to the original field.
The elements of the isofield are called as isonumbers. This
leads to number of new terms and parallel developments of
conventional mathematics.

2. Isounits and Their Isoduals

As stated earlier, the isonumbers and their product can first
be introduced as the generalization of conventional numbers
by equations (1) and (2) as above.

Prof. Santilli further, introduced isodual isonumbers [26, 217,
28] by lifting the isounit into the form

1% a=ax? 1 =a,where 1¢:=-

td

3)

called the isodual isounit following lifting of iso
multiplication defined in (1) into the isodual multiplication
called isoduality as

axb—a¥X bi=axT" xb=-axTxb=-axb whereT" =-T (4)

The isodual isonumbers were first conceived as
characterized by isodual multiplication (4) with respect to the

multiplicative isodual isounit 17 = -1.

The significance of isonumbers and isodual isonumbers lies
in fulfilling the specific physical needs refs [18, 29, 30, 31] as
given below;

+ In the exterior dynamical system ordinary particles
moving in the vacuum are characterized by
conventional numbers.

« In the interior dynamical system ordinary particles
moving in the physical medium are characterized by
isonumbers.

«  Inthe exterior dynamical system ordinary antiparticles
moving in vacuum are characterized by isodual
numbers.

In the interior dynamical system the antiparticles moving in

the physical medium are characterized by isodual isonumbers.

Interpretation of customary characterization of antiparticles
via negative-energy solutions of Dirac’s equations behave in
an un-physical way when interpreted with respect to the same
numbers and unit 1 of particles, forcing various hypothetical
assumptions and postulates, where as, reinterpretation of
antiparticles with same negative energy solutions when
interpreted as belonging to the field of isodual numbers
behave in a fully physical way ref [1]. This treatment of
antiparticles with isodual numbers also leads to intriguing
geometrical implications which predict another universe,
called as isodual universe, interconnected to our universe via
isoduality and identified by the isodualities of Riemannian
geometry and their isoduals refs.[31, 24, 32]. Thus, the isodual
theory emerged from the identification of negative units in the
antiparticle component of the conventional Dirac equation and
the reconstruction of the theory with respect to this new
negative unit. Hence isoduality provides a mere
reinterpretation of Dirac’s original notion of antiparticle
leaving all numerical predictions electro-weak interactions
essentially unchanged.

In view of the definition of an isofield [1], we can say that
an isofield is an additive abelian group equipped with a new
unit (called isounit) and isomultiplication defined
appropriately so that the resulting structure becomes a field.

If the original field is alternative then the isofield also
satisfies ~ weaker isoalternative laws as  follows.
ax(bxby=(a%b)kb and ax(a%b)=(a%a)xb.

We mention two important propositions by Santilli.

Proposition 2.1. The necessary and sufficient condition for
the lifting (where the multiplication is lifted but elements not

the elements) F'(a,+,x) — ﬁ‘(a,+,§)’;( = xTx,i =7-!

to be an isotopy (that is for ﬁ' to verify all axioms of the
original field F) is that T is a non-null element of the
original field F .

Proposition 2.2. The lifting (where both the multiplication
and the elements are lifted)

F(a+,x) —> F(4,+,%),a=ax1,x=xTx,i=T"

A

constitutes an isotopy even when the multiplicative isounit 1
is not an element of the original field.

The above proposition guarantees the physically
fundamental capability of generating Plank’s unit ¥ of

~

quantum mechanics into an integro-differential operator 1
for quantitative treatment of nonlocal interactions [33].
As the first application of the isotopies of numbers Santilli
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considers the set S =<in>, the set of all purely imaginary
numbers. This set is not closed (i =—1€&.S). On the other
hand, the same set S represented as S(A,+,%X) with

n=in constitutes an isofield. i.c. it verifies all the axioms of
a field including closure under isomultiplication because
T=i" and Axm=inxim=inm€ES .

This illustrates an important fact that, even when a given set
does not constitute a field, there may exist an isotopy under
which it verifies the axioms of a field. .

As stated earlier the lifting of + to + does not
necessarily produce an isotopy of a given field. This lifting
does not preserve the distributivity in the resulting set as stated
in the following proposition 2.3.

A A A

Proposition 2.3 The lifting F(a,+,x)—>ﬁ'(a,+,x)
where

A A

d=axl, {=+K+ 0=-K=-Kx],
x =xTx, =71
an element of the original field ' and T is an arbitrary
invertible quantity, is not an isotopy for all nontrivial values of

the quantity K = 0, because it preserves all the axioms of
proposition 2.1 except the distributive law.

Based on the failure of distributivity Santilli defines
“pseudoisofields" as follows.

Definition 2.1 Let ¥ (8,+,%) be an isofield as defined

where K is

above. Then the “pseudoisofields” F(d,4,%) are given by

the images of F (4,+,%) under all possible liftings of the

additon +—>+=+K+ additive  isounit

6= —I& = -Kxi,K # 0 in which case the elements @

are called the “pseudoisonumbers".

For the algebra of isonumbers and isodual numbers readers
are advised to refer [1, 34].
Images of field, isofield and pseudoisofield under the

, with

change of sign of the isounit 1 — id = —] is called the
Isotopic conjugation or isoduality ref. [28, 29, 30].
Definition 2.2 Let F'(a,+,x) be a field as per definition

1.1. Then the isodual field F' d(ad,+,xd) is constituted by
the elements called “isodual numbers"

a’ =axl’=-q (%)

defined with respect to the “isodual multiplication" and
related “isodual unit"

x?=xl9x==x, 19=-1. (6)

Definition 2.3 Let F(a,+,X) be an isofield as per

definition 1.1. Then the isodual isofield F?(a,+,X") is
constituted by the elements called “isodual isonumbers"

¢ =ax19 = ~g° x1 ™

where a° is the conventional conjugation of F (e.g.

complex conjugation) defined in terms of the “ isodual
isomultiplication"
! =xTx=-%, T9=-T. (8)

Definition 2.4 Let F(a,+,X) be a pseudofield
F (&,-?—,)A() as per definition 2.1. Then the “isodual

pseudofield" F' (fld,-?-d ,f(d) is given by the image of the’
original isofield under isodualities (6) and (7) plus the
additional isoduality

0—>07=-0 ©
and its elements 4“ are called “isodual pseudonumbers.
2.1. Classes of Isofields

Kadeisvilli [35] classified isounits into five primary classes

according to their usefulness.

« CLASS I: Isounits:- These are the isounits when they are
sufficiently smooth, bounded, nowhere singular,
Hermitian and positive-definite. This class is of primary
use in physics for characterization of ordinary particles
moving in interior physical conditions. This class
represents the isotopy of the conventional unit.

« CLASS II: Isodual Isounits:- They are same as isounits
except that they are negative-definite. Isodual isounits
are used in physics to characterize antiparticles via
reinterpretation of the negative energy solutions of
Dirac’s equation [31, 36]. They represent isodual isotopy
according to isodual conjugation.

« CLASS III: Singular Isounits:- These ocgur when
isounits are considered as a divergent limit, 1 = +c,
These are used to represent gravitational collapse into a
singularity and other limit conditions ref.[37, 23].

« CLASS 1V: Indefinite Isounits :- This class represents
isounits which are sufficiently smooth, bounded,
nowhere singular, Hermitian and can smoothly
interconnect positive definite with negative definite
values. These are particularly used in mathematics.

« CLASS V: General Isounits, when they are solely
Hermitian:- This is the most general class which includes
preceding ones and permits a large variety of additional
realizations including those in terms of discrete
structures, discontinous functions, distributions etc.

Isofields can be classified according to the isounits as

defined above. They are;

1. Isofields.

2. Isodual isofields.

3. Singular isofields.

4. Indefinite isofields.

5. General isofields.

The following four fundamental numbers are generated

depending upon the isofield we consider;

1. (a) Ordinary numbers: real numbers R(7,+,x) ,
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Cle+x)
0(g,+,x) andoctonians O(0,+,x) whichare used
in the characterization of particles in vacuum.

complex  numbers quaternions

(b) Isonumbers: isoreal numbers R(7,+,X) , isocomplex
numbers C(C,+,X) , isoquaternions ((q,+,x) and

O(6,+,%) used for the
characterization of particles within the physical media.

(c) Isodual numbers: isodual real numbers R? (nd ,+,><d ),
c’ (cd ,+,xd) , isodual

and

isooctonians which are

isodual complex numbers

ded | d
(", +x7)
Od(od,+,xd) which are used in the characterization of

antiparticles in vacuum.
(d) Isodual isonumbers:

RY(A +,%7)

éd(éd,+,§d) Jisodual isoquaternions Qd G ,+,%%) and

quaternions isodual  octonians

isodual isoreal numbers

,isodual isocomplex numbers

isodual isooctonians O?(6%,+,X?) which are used for the

characterization of particles within the physical media.
2. Genofield is the generalization of isofield with the
selection of an ordering of the multiplication to the left
or to the right and applied for the more general
Lie-admissible branch of hadronic mechanics.
Pseudofields, and
4. Pseudogenofields are the further generalization based
on lifting of addition which relaxes at least one axiom
of conventional fields, and which do have applications
in other fields.

5. Hyper numbers can be
hyperstructures ref.[35].

had

constructed  from

2.2, Isospaces

Let S(x,g,R(n,+,x)) be a metric (or pseudo metric)

n-dimensional space with local coordinates X and

(Hermitean) metric g = gJr over the field of reals

R(n,+,x) . Then the isospace ;§(x, g”,]%(n,+,§<)) first
introduced in [38] is characterized by;

8(x,8,Rn,+,%): g=Txg,

R=xT, 1=T"" 1o
Also the isodual isospace [28] is given by;
89(x, g R (n’ +.%)): g9=T"xg=-Txg,
% =xT9%=-xTx, 19=-1. (11)

Note that isospaces S'(x, g,ﬁ(n,+,§<)) coincide with
S(x,g,R(n,+,x)) at the abstract

conception. Spaces have the most general known curvature
and integral character owing to the arbitrariness in the isotopic

spaces level of

element T . The isometries ¢ =7 x g have the most

general possible, nonlinear,
dependence in all variables,

g=g(x) = g=T(,x,x%,..)xg(x) = g(t,x, %,%,..).(12)
The isospaces which are most important for physical and
mathematical applications are isoeuclidean spaces

E(x,é",f{) , isominkowski spaces M (x,ﬁ,]%) and

isoriemanian spaces R(x,g,R) . These are the foundations

of the representation of nonlinear, nonlocal, and noncanonical
interior systems in nonrelativistic and gravitational interior
problems [31, 23].

Also, pseudaisospaces can be defined as the images

S (x,g,l%(n,-?—,ﬁ)) of the original space characterized by

nonlocal, noncanonical

further + > +=+K+, 0->0=-K
Subsequently, isodual pseudoisospaces are also defined.

lifting

2.4. Isoalgebras

The concept of isoalgebra was fundamental in the correct
description of interior dynamical systems. As conventional
numbers constitute normed algebras with unit, isoalgebras
were defined to represent isonumbers ref. [21, 8, 39]. An

A4,B,C...

isomultiplication € over an isofield F (a,+,x) with

~

isovector space U with elements and

elements a,b,c and isomultiplication axb with

multiplicative isounit 1=7T s called (associative or
nonassociative) isoalgebra when it satisfies right and left
scaler and distributive laws;

(ax A)OB=AO(axB)=ax (40 B). (15)

(A%a)OB=AO(B%a)=(40)Bxa (16)
AC = AG &C,
OB+C)=AOB+A40 a7

(B+C)OA=BOA+CHA

4,B,CeU _ 4 a,b,ceF.

A

for all the elements
Note that the isoalgebra U/ may contain the matrices
where as the iso field ﬁ' can contain ordinary numbers.
The isoalgebra (} is an isodivision algebra if the equation

Axx =B always admits a solutionin U, for nonzero A.
Isonorm can be defined in the following manner;

Let &, be an “isobasis" of U over the isofield
F(a,+,%). Then the generic element AE U can be written
as A= Zk=1...,mn" xé, , with »n €F and

& =Zké'" ©e, =1. The isonorm of U in the isobasis

considered, is then given by;
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A S, .
A=( Z n2)2x1=( Z nxn ) x1EF

(18)
k=1...m k=1..,m
The isoalgebra 0 is said to be isoassociative if}
AOBOC)=(4O0B)OC,V4,B,CEU 19)
(isoassociative law)
and
A2OB=AOUOB),AOB =(4OB)OB 0)

(isoalternative laws)

”

The isoalgebra U is said to be Lie-isotopic when the

isoproduct e satisfies Lie-algebra axioms
(anticommutativity and Jacobi laws) in the following form;

AOB=ATB-BTA, A,T,B,etc.=assoc. (21)

It is said to be lie-admissible when the antisymmetric
bracket product is;

[4;B]=AOB-BOA (22)
and is Lie-isotopic as in the realization;
AOB=ARB-BSA. 23)

We shall be mainly interested in the isoassociative
isonormed algebras with isounit 1 which can be extended to
isoalternative algebras in order to include isooctonians.

Extension of U and U under the pseudofield

F(a,+,x) implies loss of distributive laws and hence do not

remain algebras in the real sense, however, we call them
pseudoisoalgebras ref.[39].

2.5. Isoreal Numbers and Their Isoduals

2.5.1. Real Numbers
Real numbers constitute a one-dimensional
associative and commutative algebra U (1) ref.[1].
Real numbers are realized ref.[8] as a one-dimensional real
Euclidean space E,(x,,R(n,+,x)) which represents a

normed

straight line with origin at 0, local coordinates X, metric

d =1, additive unit 0 and multiplicative unit 1. Another
characterization of real numbers is defined by the
isomorphism of the reals R(n,+,x) into the commutative

one-dimensional multiplicative group of dilations G(1)
defined by;

x'=nxx, n€ER(n=+x), x,xEE(x,0,R). 24)

The basis is given by

e=1 25)
with the norm defined by
1
|n|=(nxn)? >0 (26)
and
|nxn'|={n|x|n'|. 27

2.5.2. Isodual Real Numbers
Isodual Real numbers constitute a one-dimensional isodual

associative and commutative normed algebra U (1) which
is anti-isomorphic to U(1) ref.[1].
Isodual real numbers are the conventional numbers #

defined with respect to the isodual unit 19 = -1 The isodual
conjugation of real numbers is then written as

n=nxl—n? =nx1? = -n. (28)

Note that, such a sign inversion occurs when the isodual
real numbers are projected in the field of conventional real
numbers. As a result, all the numerical values change sign
under isoduality.

The one-dimensional real isodual

E‘(x, 0, R'(n ,+x")) is a
conventional additive unit 0, and isodual multiplicative unit
1“=-1. The RY (n” ,+,x%) represents the Euclidean
space E‘(x,89, R? (n,+,x%)) . Also, the isodual
dilations are defined by

Euclidean space

straight line, with

¥=n'x! x=nxx (29)

This establishes an isomorphism between R?(n%,+,x%)

and the isodual group of dilations G* (1) (the conventional

group reformulated according to the multiplicative unit ld).
Santilli points out that E,(x,&,R) and E(x,87,R")
are antiisomorphic and the same property holds for G(1)

and G/(1) . Also, the isodual dilations coincide with

dilations as defined above. Santilli further says that "this could
be the a reason for the lack of detection of isodual numbers
until then." ref.s [38, 27, 28).

In the isodual case, the isodual basis is given by
e =17 (30)
with isodual norm

1

|nf=(nxn)? x1 Hn|x1==|nj<0  GD

satisfying the axioms
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| xa' [ = n? | x| 0| (32)

2.5.3. Isoreal Numbers
Isoreal numbers constitute a one-dimensional, isonormed
isoassociative and isocommutative isoalgebra

U =U(1) ref[1].

Isoreal numbers are the numbers 72 = nx1 ofan isofield
of Class I, with isomultiplication defined by x=xTx and
isounit 1=T"'>0, generally outside the original field
R(n,+,x) . These can be represented as the isoeuclidean
spaces El,l(x’ 5,1%(ﬁ,+,§()) with 8=T8 , over
ﬁ(ﬁ,+,§<) the isotopes of conventional one-dimensional

Euclidean spaces E,(x,d,R).
Some of the important remarks are as follows.
. The conventional Euclidean space E,(x,d,R) and

its isotopic covering I:Z'U(x,él\,f@) are locally

isomorphic due to the joint liftings & — 8=Tx6
and 1> 1=T",

" ~ A
- E/ ,(x,6,R) isnot a Riemannian space because of

the intrinsic dependence of the isometric & on the
derivatives X, X,... as well as the fact that the basic

unit is not the conventional quantity 1.
«  However, E‘l’l(x,é,fi) is a simple, yet bona-fide
space [24], because
3=Tx5= é(t,x, X,X%,...), where the Ilocal

dependence is generally nonlinear, nonlocal and
noncanonical in all variables.

isoriemannian

In fact, the one-dimensional isospace Eu(x,é,R)

represents a one-dimensional generalization of conventional
straight line, called as isoline. This is because of its
intrinsically nonlinear, nonlocal and noncanonical metric

3(t,x,%,%,...) with
1= i(t, X, %,%,...). Then Iél(ﬁ,i\-,ﬁi) can be realized via

isodilations on E,(x,d,R) as;

multiplicative isounit

!

x'=Axx=nxx, (33)

which is isodual dilation and represents one-dimensional
isogroup of isodilations é(l) same as the group G(1)

realized with respect to isounit i.
Again, the isobasis is given by
é=1 (34)

with isonorm defined as;

1

= (rx )2 x1 = | x (35)

which is the conventional norm only rescaled to the new unit
1. We then also have

s =A%)

| (36)

~y
n

2.5.4. Isodual Isoreal Numbers
The isodual isoreal numbers are the realization of the
one-dimensional isodual, isonormed, isoassociative and

isocommutative isoalgebra U’ )=U (1) reffi).
These are the isodual numbers

ﬁ"=nxid, 19=-1 37

in the isodual isofield ]’él"](ﬁdﬁ,x‘j) .These correspond to
EA,"l (x,éd,jéd) the isoeuclidean space of Class II

Eldl (x,0 I R“) of dimension one with isodual isodilations

=% x (38)

coinciding with dilations (24). This also characterizes an
isomorphism  isodual isoreal numbers with the

one-dimensional isodual isogroup éd(l) . The underlying
isomorphism
E}(x,8", R (n",+,x")) =
Ejf, (0,87 R, 4,%7))
implies the éd(l) =G(1)-

The isodual isobasis is defined by ’
¢ =1 (39)
The isodual isonorm
"ﬁd”d =(nx n)% x4 = —"ﬁ" (40)
verifies the axioms
i 5w =] s D

2.6. Isocomplex Numbers and Their Isoduals

2.6.1. Complex Numbers
Complex numbers constitute a two-dimensional, normed
associative and commutative algebra U (2) ref[1].
Complex numbers ¢ = Hy+ ni where 1, and n, are
real numbers and 7 is an imaginary unit, are represented in a
Gauss plane which is a realization of two-dimensional
Euclidean space E,(x,d, R(n,+,x)) satisfying
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x*=x'8,x,=x] +x; ER(n,+) 42)

whose group of isometries is one dimensional Lie Group
O(2), the invariance of the circle. Hence, complex numbers

can be represented via fundamental representation of O(2)

as follows.

A one-to-one correspondence between complex numbers
and points in the Gauss plane can be obtained by following
dilative rotations

2 = (x, + x,0) = coz=(ny +ni)o(x, + x,i) 43)
and multiplication
coz =1y, 1) o (X, %,) = (HyX, — WX, HyX, +1X;) (44)

which preserve all the properties of a field.
Representation of a complex number via matrices has the
following form

_ [ mxi
c=nyx Il +mxl = , (45)
mxi  n

where
(46)

which are well known as the identity and fundamental

representation of 0(2).
Norm can also be defined as

1 1
|c|=|n, +n, xi=(Detc)? = (n2 +nt)2 47

Also, the identification of basis in terms of matrices is
e, =1, and e, =1,.

2.6.2. Isodual Complex Numbers
Isodual complex numbers constitute a two-dimensional
isodual, normed, associative and commutative algebra

U?(2) anti-isomorphicto U(2) ref[1].

Isodual complex numbers are given by
C'={(d", X)X =i =it =exi'=€,26C) (49)
where C is the complex conjugation. Thus, given a complex
number C =, +n Xi, its‘ isodual is given by
¢ =—c=n +1 xi=-ny-n xi =-n, +n xi€C’. (49)

Considering the group of isometries, the one-dimensional
isodual Lie group O%(2) ie. the image of O, under the
liing [ = diag.(1,1)— I = diag.(-1,-1) of the

two-dimensional isodual Euclidean space

d . .
E," (x,6/, R (n” ,+,x?)) with basic invariant
2d _ isd _ . §d, —.2d 2 _

¥ =x'0x=x0x,=x" +x,

d d — 2 2 do.d d
XXX +x, % x, ==x =%, ER(n”,+,x7)

(50)

isodual complex numbers can be characterized by the

isorepresentation of O (2).

Now, the image of the conventional plane under isoduality
is the isodual Gauss plane. Also, a one-to-one correspondence

between the points P = (X;,,) and complex numbers can
be defined by isodual dilative rotations as

2 =0 +x,xi) =¢' o z=(—n, +1 xi)* (x4 +x, 1) (51)
following the multiplication rules

¢?of 2 =(—”0,n1)°d (x5 %,) =

(52)
(=ny x X, X1 X Xy, =1y X X, + B X X,)

which preserve all the properties of a field.
Isodual transformations form an isodual group G“(2)
G(2) Even the one-to-one

correspondence between complex numbers and Gauss plane
continues under isoduality.
Matrix representation of isodual complex numbers can be

defined as
X
K ), (53)

mxi -n,

id=‘1 0 z=0 —i
Lo <1)" (- o0

with the isodual unit and isodual representations of
0?(2) respectively.

The
le? |

antiisomorphic  to

-n
d . . 0
¢! =nf ng’+n{’x1{1=(

(54)

norm  can  be defined as
=|-ny +n xi|":=

1 1
[Det,(c!xTH2 xid = (¢ x? c?)2 x il

which may be written as

isodual

|c?|'= (ch)xi{f =(nl + nf)xig (55)
and verifies the axioms
lchoc [ = 1! x? | ['ERY, ¢, EC?.(56)
The isodual basis in terms of matrices is given by

(57)



26 Arun S. Muktibodh: Studies on Santilli’s [sonumber Theory

2.6.3. Isocomplex Numbers
Isocomplex numbers constitute a two-dimensional,
isonormed, isoassociative and isocommutative isoalgebras

over the isoreals U @) =U Q) ref[1].
In this case we consider the isofield of isocomplex numbers

/\

C={@G,+R)|%=xTx,1=T" 6 =cxi,

58
cEC(c,+,%)} (58)

withe generic element ¢ = ﬁo + ﬁl x I . Here we need the

two-dimensional  isoeuclidean space of class I,
E, (x, 0, R(s,4+,%) . Themost important realization used in

the physical literature has the diagonalized and
positive-definite isotopic element and isounit

T = diag.(b?,b2),1 = diag.(b7,b;),b, > 0,k =1,2.(59)

with basic isoseparation

R (60)
=i, k=1,2,3.

The group of isometries of this space is the Lie group
0(2) = 0O(2)
multiplicative isounit 1= diag (b2,b;*) which provides
the invariance of all possible ellipses with semiaxes
a=b>b=b"
the circle x2 =)C,2 +x22 €R(n,+,x) . Thus, isocomplex
numbers are characterizable via fundamental representation of
0(2).

Isocomplex

, the group constructed with respect to the

as the infinitely possible deformation of

numbers ¢ =(A,,”,) can also be
characterized to be the set of points P =(X,,X,) on the
isogauss plane on Em(x, 3, ]A?(ﬁ,+,;<)) .

In fact, a one-to one correspondence between isocomplex

numbers C(¢,+,X) and the points on the isogauss plane can

be defined via following isodilative isorotations
z'=(x, +x,xi) =5z (61)

characterized by the isomultiplication defined as

¢oz=(Ry,7)8(x,x,)=

1 N a N
=([(n, xxp) x1= A% x (1, x 1) x 1], [(13, x x,) X1 + (13, x x,)x1]),
with

A= DetT = b xb? (62)

Isocomplex numbers also admit following two-by-two
matrix representation.

€= nyxig +mi =

1

1y x b2 ixmxbExA 2 (63)
ixnxbExA 2 ny x b2
where
=i, (bfz 0 ] i =A—§[ 0 ixb,zj )

0 b? ixb 0

and
A =DetT = b’b; (65)

which characterize the isounit and the fundamental

(adjoint)representation of 0(2) respectively.
The set of matrices (63) is closed under addition and
isomultiplication. Also, each element possesses the isoinverse

-

&l =¢"x1 (66)

where ¢™' istheordinary inverse. As aresult, S(&,+,%) is
an isofield with the local
.SA'(5,+,>'Z)=CA'(5,+,>A<) . We note that the one-to-one
correspondence between complex numbers and Gauss plane is
preserved under isotopy. It is important know that the

realization of complex numbers as matrices is not unique.
The isonorm is defined as

isomorphism

lél| = [Detr @ x T)]% x Iy =3 + An,z)% xip ~ ©D)
which readily verifies the axiom
ase=exJeler. eeed. (68)
The isobasis is given by
& =1, ¢&=1. (69)

2.6.4. Isodual Isocomplex Numbers

The isodual isocomplex numbers constitute a
two-dimensional, isodual, isonormed, isoassociative and
isocommutative isoalgebras over the isodual isoreals

U7 (2) = U (2) ref[1].
Now the isodual isocomplex numbers are defined as
4 ={(@7,+.x7)| 6= €17, x? = xT9%,T"

. (70)
=-T,1 =77 ceC(c,+x)}
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. . ~ A Ad od A A .
with generic element ¢=n'+ ng xio = -ny+nxi
Here we need a two-dimensional isodual isoeuclidean space

5dcd , ad . .
E,‘zz(x,éd,Rd (n“,+,%x“)) with the realization

T = diag (-b%,-b2),1% =

i - ) an
diag (-b;",~b;"),b, > 0,k =1,2,
with basic isoseparation
X =(x'6%x)x1" = (x,d;xj)xi" =
(-x,b%x, - xzbfxz)xi" € R +,x1), (72)

whose group of isosymmetries is the isodual isoorthogonal
group 0¢(2)"0“(2).

The isodual isogauss plane is defined as the set of points
P=(%,x,) on El,z (x,09, R (7?,+,%7))  which
characterize the isocomplex numbers ¢ = (—ﬁo, n).

The correspondence between the isodual isocomplex

numbers C¢ (5d,+,xd) and the isodual gauss plane can be
made one-to-one by the isodual isodilative isorotations

Z'=(x +x,%xi) =0z (73)

having rule for multiplication as

889 2= (A, 7)o (x,,%,) = (74)
1

=[(-n, xxo)xi +A5x(n1 xxz)xi],
[(-# xxz)xi+(n1 xxl)xi].

Isodual isoguass planes characterizes isodual isofield. Also
the isodual isotransformations forms an isodual isogroup

GY(2)=~G“(2).
Isodual isocomplex numbers also admit the following
two-by-two matrix representation.

& =p9d I e < 1 =

1
~Hy x b2 ixm xbixA 2 (73)
1
ixnyxbi %A 2 ~y x by

where

L (76)

This satisfies isomultiplication rule (74) characterizing the

isodual isounit and fundamental representation of O (2).
The set of matrices representing isodual complex numbers

S (5‘1 ,+,x?) ,is closed under addition and isomultiplication,
Each element possesses the isodual isoinverse

@ =@ =1, a7

As a result we get a local
S +,x") =~ C4 (84 +,x7).

Now, the isodual isonorm can be defined as

isomorphism

L 1
[l = (Deta @ xT)2 x iy = (n2 +an?)2 x 14, (78)

which verifies

Héd Sd érd ;(d

) i oalld oA nd ~
=“cdl lc"’“ erR!, ¢¢4ed. (19

The isodual isobasis is given by

Aad _yd ~Ad d
e =1, e, =1 80)
2.7. Isoquaternions and Their Isoduals
2.7.1. Quaternions
Quaternions constitute a normed, associative,

non-commutative algebra of dimension 4 over reals U(4)
ref-[1].

Quaternions g€ ((g,+,x) admit a realization in the
complex Hermitean plane E, (2,8, C) with separation

E,)(2,0,C): 2?7z 2787 =772+ 27727,

81)
d?7=6

with basic (unimodular) invariant SU(2) . Hence
quaternions have a fundamental representation SU(2) by
Pauli’s matrices.

Quaternions () can be realized as the pairs of complex

numbers, g =(c;,¢,) , gEQ and ¢,¢c,EC with

multiplication o Hermitean dilative rotation on

E,(2,6,C) whichleaves z¥z invariantis given by

11

o 1 2 12
Z'=¢oz +c,0z°, z

=_F,0z2' +Goz*, (82)

where the dilation is represented by Cjo¢ +C,0c, =1.

These transformations form a group G(4) . This group is
associative but noncommutative resulting into a one-to-one
correspondence with quaternions.

Quaternions can be represented via matrices over the field
of complex numbers C(c,+,x) as
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C C
— 1 2
= - - (83)
G G
with
€, =0y +nyXI, ¢, =N +n,xi (84)
The matrix g admits the representation
q =nyx 1, + 0 xi; +n, xi, + 1y X (85)
where 1y,i,1,,1; arethePauli’s matrices
1 0 0 i
10 = s il = . ’
0 1 i 0
(86)
_ 0 1) i 0
i, = L, =
ool-1 077 o -
with fundamental relations
i, xi, =—g,.xi, n=#m, nm=123. (87)

where &, is the tensor of rank three. The norm of the
quaternion can be defined as

1 1
lgl=(gta)? = (Y n})?, (88)
k =123
satisfying
lg°d Hqlx|dER, ¢,9'EQ (89)
The basis is defined by
e=1, e,=i, k=123. (90)

2.7.2. Isodual Quaternions
Isodual quaternions constitute an isodual four-dimensional,
normed associative and noncommutative algebra over the
isodual reals U?(4) which is anti-isomorphic to U “4)
ref.[1].
Isodual g €0%(q,+,x") can be

represented via the isodual Hermitean Euclidean space
do d
E)(z

= (_Z—lzl

quaternions

,8%,CY (e 4 x ) (2782 )< 1
! ©1)
-222)xI“ER".

Isodual complex numbers can also be realized via pairs of

isodual complex numbers as
d _.d .~dy d d d d d
=(c,c29),9" €Q’, cf,c; €ECY.

Also, the isodual Hermitean dilative rotation on

Ej(zd,éd,cd(cd,+,xd)) leaving invariant z?78%z*
is given by

2 = cld od 1 __Ed od zzd,
92)
2 (
2% =l ol g1 gl o
where the dilation is represented by the value
—d =d d d
gl 48, ol cd = -1.
These transformations form an associative but
. . d . .
noncommutative isodual group G“(4) which is in
one-to-one correspondence with isodual quaternions

/(g +x).

As a result there is a matrix representatlon of isodual
complex numbers over the field of isodual complex numbers

c (cd,+,xd) as

d —
C -~C.
d_14 2
9= 4 =a 93)
c, G
under the condition
I= ¢l = —n, 4, xi (94
¢ Ry +nyXI, ©, n +n, )
—d _ o _
where ¢ 1 !

We can represent q

d _ _d -d d .d d_d .d _
g =ny x I +n! x* il +nd x i +nd x4 i =

= =y x Lo+ ny xi; + 1, xi, + 1y % 1 95)
where i’s are the Pauli’s matrices. Note that Pauli’s matrices
change sign under isoduality although their product with
isodual numbers is isoselfdual.

Isodual norm is then defined as

|4 [ [Dete (¢ xTHx1* = (- Y ByixE 09

£=0.1,23
satisfying
lg" " I'Hg" X 1g" IER",
q9'.9" €0".
The isodual basis is defined as
ef =1, el =i, k=123 (98)

2.7.3. Isoquaternions
Isoquaternions constitute a four-dimensional, isonormed,
isoassociative, non-isocommutative isoalgebra over the
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isoreals U @D =U@), ref[1].
Isoquatrnions éEQ(é,+,§) can be represented using
two-dimensional, complex Hermitean isoeuclidean space of

class I, E1)2(2,5,C),2k = zk,ﬁk =0,2',0=Td=9;

1

on the isofield C (C,+,%) with real separation given by

21& =702 + 2%22%, St=6>0, (99)

with basic isotopic element and isounit
T = Diag.(b?,b%), 1= Diag.(b7%,b;%),b, > 0, (100)

The (unimodular) invariance group of this space is the
Lie-isotopic group SU(2) . Isoquaternions can also be
characterized by fundamental representation of SU(2)
algebra. . A Hermitean isodilative isorotation on
E,,(2,0,C(E,+,%)) is givenby

2'=058' 46,85, 37 =-¢4,65" 4855, (101
where the dilation is represented by the value

¢, 8¢, +¢, 08¢, = 1. Representation of isoquaternions into
two-by-two matrices on C(C,+,X) is characterized by the
isorepresentations of the Lie-isotopic algebra SU(2) ref.
[40, 41, 42]. These can be expressed in terms of the basic

isounit
A B2 0
I=1,=" _2 102)
0 b
and fundamental representation of SU 2) as
i 2 1 2
. (0 i R
h=az| B g eaz| O B
ib? 0 -b2 0
(103)

1(.,2
A -~ ib 0
h=a2|" 7
0 -ib"

Note that the matrices above satisfy the properties of
isotopic image
1

Ly =A 2g,.bL, nem

N
o

Iy

nm=1,2,3, A=5b2,

(104)

and hence are closed under commutators, which is a necessary
condition for the existence of an isotopy. This results into a

Lie-isotopic SU (2) algebra

~

PRI P S S S U (105)
[lnﬁlm Flyol, —t, 00, -2A -

Isoquaternions can be represented in the form

g=nl, +ni +n,i, +mi, =

i 1
(mb* + A 2inbl) A 2(~n, +in )b}
1

(n,b;” = A 2insb])

1 (106)
A 2(n, +in))b?

Note that the set S(g,+,X is a four dimensional vector

space over the isoreals R(7,+,%) which is closed under the
operation of conventional addition and isomultiplication and

hence, is an isofield. Thus, S(§,+,%) = Q(é,tﬁ) .
The isonorm of the isoquaternions is defined as follows

1
la]| = [Detz (@D ko, (107)

and may be written as

"un =[n + A + 2 +nD)|L,,  (108)
and then
lasal=lalxlgler 4.4.2€0  (109)
The isobasis is defined as
é =1, &.,=i, k=123. (110

2.7.4. Isodual Isoquaternions
The isodual isoquaternions constitute a four-dimensional,
isodual, isonormed, isoassociative, non-isocommutative

isoalgebra over the isodual isoreals 0 @) =U'4) ref
[1].

The isodual isoquaternions §° € Qd (G4,+%") by a
two-dimensional isodual complex Hermitean isoeuclidean
space of class II over the isodual isocomplex field as

Ef,(7,87,C (4 4,50y : 57 26727

Z—Id ;Ed zld +Z—-2(I ;(d sz = __z-lbIZZl _Z-2b2222'

(111)

having basic isodual isotopic element and isodual isounit
T* = Diag (~b?,~b?),1’ = Diag.(~b*,-b7%) (112)

having invariance as the isodual Lie-isotopic group SU“ . An

isodual Hermitean isodilative isorotation on
d ;ad od ANdy d | ad -
E,,(2°,07,C%(c",+,x")) is given by

a ad ad sld =d ad _2d
2 =g 8?2 g6 29, (113)
512(1’ =é£f ad fld +Eld gd 22(1’

where dilation is represented by
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~d /\d

A d Ad
¢ o c1 +c2 46,7 =1

Isodual Isoquatermons can also be realized as the isodual
isorepresentation of SU (2) and can be written as

I'\d_ dAa'"d
q no +n] X ll +n2 X 12 +n3
=Ny + il + 0,0, L =

1
(~nb” + A 2in,b?)

1
A 2(~n, +in)b?
(-n, ’:11)1 (114)

1 L
A2(m, +in)b2  (-nb* - A 2inb})

1@",+,x?) is an
1G4 = 0% (G, +X).

The isodual isonorm is defined as

Note that the set of all the matrices

isofield and hence

1
4= [Det(GT )P 1, =

~d
=[-n3 -A(} +n + 0D,  (115)
d d
"d Ad '\ld ~d ad d
“fal s er
éd’éld,gd EQd
The isodual isobasis is defined as
ad 2 ~ 2
&' =1 &l =i, k=123. 117

2.8. Isooctonians and Their Isoduals

2.8.1. Octonians

Octonians constitute and eight-dimensional normed,
non-associative and non-commutative , alternative algebra
U(8) over the field of reals R(n,+,x).ref,{20, 21].

Octonians 0€(0(0,+,x) can be realized as
two-dimensional ~ quaternions 0=(q,,q,)  with
multiplication rules

/ [ !
000 =(g,9,)°( =
9,,9.)°(4,,9>) 118)

(@ °0+9,°%,~F,°9, + T, ° 9,)-

The antiautomorphic conjugation of an octonian is defined
as

; 0 =(q,,—q,)- (119)

The norm of an octonian is defined as

i

lol=(@-0) =g, |+|q,, (129

with the basic axioms

looo'=o|x|0'EER, 0,0€E0. (121)

It is important to note that Octonions do not constitute a
realization of the abstract axioms of a numeric field and,
therefore, they do not constitute numbers as conventionally
known in mathematics due to the non-associative character of

their multiplication (see ref. [1]).

2.8.2. Isodual Octonians
The isodual octonians constitute an eight-dimensional
isodual, normed, non-associative, and non-commutative

U’@®)
R +,x%) ref. [1].

Isodual octonians are defined as

algebra over the isodual real numbers

d _,.d _d
=(4-9:) (122)
. d, d d .
over the isodual reals R“(n“,+,x ) . The isodual
multiplication of isodual octonians is defined by
d d d
0’0" =(q/,q3)" (g, 4") =
qx aqz ‘I1 9 (123)

—d d _d
).

(g * % ql qz ,Q1 o ‘b +4q, ° q,

The isodual antiautomorphic conjugation of an octonian is
defined as

(41 P’ ) ) (124)

The isodual norm of an octonian is defined as
> 25
lol=(@0)* =|q,|+14, (125)

with the basic axioms

|od od Old =l Od Id ><d Iold |dERd, Od,o,d EO.(126)

2.8.4. Isodual Isooctonians
Isodual isooctonians form an eight-dimensional isodual,
isonormed, non-isoassociative, non-isocommutative, but

isoalternative isoalgebra U* ®)=U’(®)
isodual isofield RY (A% +,x"), ref. [43].

Isodual isooctonians 67 €0 (6,+,X?) can be defined

over the

ad A

as the pair of isoquaternions 0! =(q, .9, ) over the

~d Ad

isodual isoreals Rd( ) with the multiplication rule

nd od sd o ond A nd A dy_
(2 ‘(‘]d‘hd)"d(ql'daqz' )=

(131)
A ad » ndnd o d
(‘11 °‘Il ‘41 & ‘h’da‘hd o ‘Iz’d +‘11d 3 4,")
The isodual isoantiautomorphism is defined as
d _vd _ad
=(q".~4;) (132)
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The isodual isonorm is defined as

d L d
6| =" ot 6y2 <1 =gt +

7 EED)

which readily verifies

e
Hadedald”: d

ol x4

d » N
a"’ll er?, &,07ed’. (134)

Again it is important to note that Isodual isooctonians do
not constitute arealization of the abstract axioms of a numeric
field and, therefore, they do notconstitute numbers as
conventionally known in mathematics due to the
non-associative character of their multiplication (see Ref. [1]).

3. Grand Unification of Numeric Fields

Isotopic generalization has brought about a grand
unification of the conventional numbers into one single,
abstract notion of isonumber. It is important to note that the
unification of all numbers was conjectured by Prof. Santilli in
numerous publications through out his research for many
years. Finally it was proved by Kadeisville, Kamiya and
Santilli ref.[40]. The following theorem is the main result in
this regard.

Theorem 3.1. Let F(a,+,x) be the fields of real numbers,

complex  numbers and  quaternions,  respectively,
Fl(a%,+,x}) the isodual fields, a’=ax1’=-a the
isofields, and x°:=x1x=-x, 1°=-1, the isodual
isofields as defined in the preceding section. Then all these
fields can be constructed with the same methods for the
construction of F(a, +,X) Sficom F¢ (éd,+,>?d), under the
relaxation of the condition of positive-definiteness of the
isounit, thus achieving a unification of all the fields, isofields
and their isoduals into the single, abstract isofield of Class 111,
denoted by R.

3.1. Hidden Numbers of Dimension 3, 5, 6, 7

Based on the historical problem ‘The four and eight square
problem and division algebras’ ref[21], Prof. Santilli
conjectured the possibility of ‘Hidden numbers’ of dimension
3, 5, 6 and 7°. The numbers studied by Santilli, namely, reals,
complex, quaternions and octonians are the solution of the
following problem.

2 2 2 2 2 2\ =
(af +a; +...+a,)x(b] +b, +...+b,) =
2 2 2
AT +4;+...+ 4,

with

Ak = chrs X ar X bs

s

(135)

where all the a’s, b’s and c¢’s are elements of a field
F(a,+,x) with conventional operations + and x. It is

well known that the only possible solutions of the problem are
of dimension 1, 2, 4 and 8. These facts are in corporated in the
theorem 1.1, restated here

Theorem 3.2 All possible normed algebras with
multiplicative unit over the field of real numbers are given by
algebras of dimension 1 (real numbers), 2 (complex numbers),
4 (quaternions), and 8 (octonians).

The question posed by Santilli: Is ‘Does the classification
according to above theorem persist under isotopies,
pseudoisotopies and their isodualities ?° or ‘Is it incomplete ?°
First, we investigate this problem for isotopies of the
multiplication. The above problem, equation (135) is
reformulated under the isotopies of the multiplication as
follows.

The isotopic lifting of the multiplication

x=>x=xTx]1—=1=T"

(136)
transforms the problem (135) in to
(a}2+a,f2,+...+a,21)>"<(bl2+b22+...+b3)= (137)
A + A7 +o A2
with
4, =D €y % a, Xb, (138)

rs

where all the a’s, b’s and c¢’s are elements of an isofield

F(a,+,x) in which 1 is an element of the original field,
can be simplified to the conventional operations as

(@ +a}+..+a)x (b} +b +...+b}) =

(139)
TPx(A} + A +...+ A7)

with

Ak=T2chkl'sxal'sz' (140)

Comparing the original problem and its isotopic conversion
as formulated above, we observe that the reformulation of the
problem is same as the original problem and hence the isotopic

lifting and isoduality of the field F(a,+,x) —> F(a,+,X)
does not change the solution of the problem. As the result we
get the following theorem.

Theorem 3.3. All possible isonormed isoalgebras with
multiplicative isounit over the field of the isoreals are the
isoalgebras of dimension | (isoreals), 2 (isocomplex), 4
(isoquaternions), and 8 (isooctonians) and the classification
persists under isoduality.

Further, lifting of addition gives the third formulation which
is pseudoisotopic type

+—=3=4Kk, 0>0=-K, K=Kx1 (41
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under which Q37), (138) can be written over the
pseudoisofield F'(a,+,X) as

2y =
n) (142)

with

/’ik = ZAkrs Q&r X bs = (E:ckrsarbs)i = Ak Xi (143)

s r.s

This can be written in the conventional operations as

(@ +a3 +...+a)1+(m-DKIT

(B + 0% +...+6D)1+ (n-1)K1]=
=(A]2+A22+...+A:)i+(n—1)Ki, ﬁk:Aki (144)

The solution to (144) of dimension other than 1,2,4,8 under
the pseudoisofield F (ﬁ,@,ﬁ) was envisaged by prof.Santilli
as a conjecture under the loss of the needed axioms of a field,
such as distributive laws.

It was found that the solution do exist, but under the loss of
number of axioms of the original field, in addition to the loss
of distributivity. We consider a representative example of
“Hidden numbers" of dimension 3 as follows

(12 +22 +3%) % (52 + 62 + 77) =122 + 247 + 307 (145)
Note that also the condition on A, is true, that the

elements in the r.h.s can be written as the combinations of the
elements on the Lh.s as

12=2x6, 24=2x5+42x7, 30=3x3+3x7.(146)

Hence we can rewrite the problem as

[(12 +2% +3)1+ 2K ]T[(5% + 6% + 7)1 + 2K1]

R (147
=(12% + 24 +309)1+2K1

which on simplification gives a quadratic equationin K as

4K* +246K -80=0 (148)

with solution

K=0.325... (149)

Thus the solution exists, but is not an integer. This implies
the loss of closure under isoaddition for the case of integers.
However, the closure can be regained if the original field is
enlarged to include all real numbers. The issue whether such
solutions do indeed form a pseudoisofield is open for the
mathematicians.

As algebras of dimensions higher than 8 are not alternative
[21], also, as this property persists under isotopies and

pseudoisotopies, leads to the fact that formulations (137 )and
(142) are restricted to dimensions 1 s 8.

Prof. Santilli ref.[1] identified following open problems
with regards to the notion of isofields.

Investigative study of “number with singular unit", i.e.
isofields of classI'V whichare at the foundations of the
isotopic studies of gravitational collapse.

. The study of isofields of characteristic p = 0, to see
whether new fields and therefore new Lie-algebras are
permitted by isotopies.

Author of this article has defined ‘Iso-Galois fields’ ref.[44]
which are basically finite isofields essentially of nonzero
characteristic. As predicted by Santilli these isofields have
important applications in Cryptography, Genetics, Fractal
geometry etc.

The study of the integro-differential topology
characterized by isofields with local differential
structure and integral isounits.

3.2. Genonumbers and Their Isoduals

We have seen that the two degrees of freedom due to
isotopic lifting of addition and multiplication give rise to
isofields and pseudoisofields respectively. These fields are at
the foundation of the Lie-isotopic theory [8, 9, 45].

Also, there exists a third degree of freedom caused by the
ordering of the above operations which leads to further
generalization of a field which is at the foundation of
Lie-admissible algebras [8, 9, 18].

Givena field F(a,+,x) ofordinary numbers with generic
elements a,b,c... , with addition a+b=b+a and
multiplication @xb, we can define the following,

Genoaddition: Addition of @ to p from the left,
denoted by g+~ b and addition of b to @ from the right
denotedby < +p are called genoadditions.

Genomultiplication: Multiplication of @ times 4 from
the left denoted by gx” p, and multiplication b times @
from the right a“xb are
genomultiplications.

It is worthwhile to note that ordering of multiplication is
fully compatible with its basic axioms, such as commutativity
for real and complex numbers, associativity for quaternions,

and alternativity for the octonions. In the case of real and
complex numbers we will have

denoted by called

ax’ b=bx"a, a“xb=b"xa (150)

The identity of multiplication from left and right can be
different and hence two genomultiplications can very well be
differenti.e.

ax b=a xb (151)

with realization,
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ax” b:=aRb, a“xb:=aSh, R=S, (152)
where R and S are fixed isotopic elements, called the
genotopic elements. These are sufficiently smooth, bounded
and nowhere singular (not necessarily Hermitean) outside the
original field.

The left and right generalized genounits can be defined in
the following manner

axb (153)

1=T"

Note that all the axioms and properties of the original field
are preserved under the mentioned left or right multiplication
and multiplicative units under the appropriate ordering for all
the dimensions 1,2,4,8. This procedure leads to new fields

called as genofield denoted by ﬁ >(5>,+,§<>) (right
genofield) or <F (Fa,+,°%)  (left genofield) or

<F “(Ca,+,"X7). Also, isodual genafields are defined by
the antiautomorphic conjugations

(154)

R—R' =-R S—-8'=-§ (155)

denoted by < > ( <5 <">d).

Note that isofields are the particular case of genofields
where the genotopic elements coincide. i.e.

~ >d < /\>d <n d ~ A
CFTCE AR Yoy = F(A4%). (156)
R-S mutation of the Lie product: is defined as
(4,B)= ARB-BSA (157)

which is Lie-admissible via the attached antisymmetric
product

[4,B)=(4,B)~ (B, A)= ATB - BTA,T = R~ S (158)

which is Lie-isotopic.
The lifting [4, B] = [4, B] is called an isotopy. The
lifting [4,B] — (4,B) is called a genotopy, ref. [8, 1].

The Lie-isotopic algebras are defined by one single isotopy
ofthe enveloping associative algebra and related unit

AB=AxB—> AXB=ATB, 1—1=T". (159)

For the consistent formulation of Lie-isotopic algebras they
must be defined over an isofield F(a,+,X) with isounit
1=7".

Note that for the conventional multiplication x there is no
ordering as 17 ="1=1. The above ordering can be defined

A
for isomultiplication X wherein we can have different
isounits.

The Lie-admissible algebras can be generated by two
different isotopies of the original associative algebra using left
and right isounits with corresponding isotopies as

AB - ARB:=Ax" B, 1—=1"=R", (160)
BA—BSA=B x4, 1-"1=8". (161
which must be defined over the genofields

<F (5@ ,+,"%”) with isounits 1. Here, the isounits
related with the left andright isomultiplication are dis joint and
can indeed be Hermitean and real-valued, which admit
Kadeisville classification into classes I. II, ITII, IV and V.
However, in physics the isounits (left and right) used have a
real physical significance when they are inter-related by a

Hermitean conjugation as
> (<1)1~

This representation of the genounits (and hence genofields)
provides approximation of irreversibility ref.[18].
Itis importantto note that conventional addition admits no

(162)

== 0 = 0. However, the ordering
exists for the isoaddition +=+K+ as + ="+ with
K~ == K . But there is loss of distributive law for the

resulting genofield under genoadditions 5.
All the above discussion leads to a broadest generalization
of the existing theory of numbers through
1. pseudogenofields ~F>(<4”,"4”,X”) defined via
genotopies of all aspects of conventlonal fields
F(a,+,x) and
2, isodual

meaningfulorderingas 07

pseudogenafields

577 <557 <g
<F” (< <t < ) defined via isoduality of

pseudogenoﬁelds.
This new generalization of the conventional numbers leads
to the following categorization of numbers:
+  Conventional numbers of dimension 1,2,4,8 and their
isoduals;
«  Isonumbers of the same dimension and their isoduals;
+  Genonumbers of the same dimensions and their
isoduals;
«  Pseudoisonumbers of the same dimension and their
isoduals;
Pseudogenonumbers of the same dimension and their
isoduals;
“Hidden pseudoisonumbers" of dimension 3,4, 5,7 and
their osoduals;
“Hidden pseudogenonumbers" of dimension 3,4,5,7
and their isoduals.
Note that each of these can be defined for the fields of
characteristic 0 or for p = 0.
In addition to above generalization, we can have an ordered
set of values for the multiplicative unit such as
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4
1" ={2, 3 ,0,...} defined as applicable or to the right or left.

This possibility leads to the new numbers called as
hyper-Santillian numbers. These include hyper-real, hyper
complex, hyper-quaternion numbers which have vast
applications in biological sciences.

In the further generalization, the multiplicative unit can
very well have non-zero negative values. This leads to a new
class of numbers called iso-dual Santillian numbers. This
further leads to a new kinds of conventional iso-dual numbers
called as iso-topic isodual numbers, geno-topic iso-dual
numbers and hyper-structural isodual. These numbers have
applications for antimatter.

The above generalization of the conventional numbers
gives us, in all, eleven classes of new numbers namely, the
iso-topic numbers, genotopic to the right and left, right and
left hyper-structural numbers, iso-dual conventional numbers,
iso-dual iso-topic numbers, iso-dual geno-topic to the right
and left numbers and hyper-structural iso-dual to the right
and left numbers. Each class is applicable to the real, complex
and quaternion numbers where each of the applications have
infinite number of possible units.

4. Applications and Advances

Quantum mechanics was sufficient to deal with ’Exterior
Dynamical systems’ which are liner, local, lagrangian and
hamiltonian. The main purpose of formulating the new
generalized mathematics was to deal with the insufficiencies in
the modern mathematics to describe ’Interior Dynamical
systems’ which are intrinsically non-linear, non-local,
non-hamiltonian and non-lagrangian. The axiom-preserving
generalization of quantum mechanics which can also deal with
non-linear, non-local non-hamiltonian and non-lagrangian
systems is called the Hadronic mechanics. The mechanics; built
specifically to deal with *hadrons’ (strongly interacting particles)
ref. [18]. Prof. Santilli, in 1978 when at Harvard University,
proposed 'Hadronic mechanics’ under the support from U. S.
Department of Energy, which was subsequently studied by
number of mathematicians, theoreticians and experimentalists.
Hadronic mechanics is directly universal; that is, capable of
representing all possible nonlinear, nonlocal, nonhamiltonian,
continuous or discrete, inhomogeneous and anisotropic systems
(universality), directly in the frame of the experimenter (direct
universality). In particular the hadronic mechanics has shown
that quantum mechanics is completely inapplicable to the
synthesis of neutron [46], as mass of the neutron is greater than
the sum of the masses of proton and electron (called "mass
defect") of which it is made. In this case quantum equations are
completely inconsistent. Hadronic mechanics has achieved
numerically exact results in the cases in which quantum
mechanics results are not valid. For further details of isonumber
theory we recommend refs. [47, 1, 48, 46, 49].

As far as mathematics is concerned, one of the major
applications ofisonumber theory is in Cryptography, ref. [50].
Cryptograms can be lifted to iso-cryptograms which render
highest security for a given crypto-system. Isonumbers,

hypernumbers and their pseudo-formulations can be used
effectively for the tightest security via new disciplines,
isocryptology, genocryptology, hyperciyptology,
pseudocryptology etc. More complex cryptograms can be
achieved using pseudocryptograms in which we have the
additional hidden selection of addition and multiplication to the
left and those to the right whose results are generally different
among themselves. Yet more complex pseudocryptograms can
be achieved in which the result of each individual operations of
addition and multiplication is given by a set of numbers [50].
Santillian iso-crypto systems have maximum security due to a
large variety of isounits which can be changed automatically
and continuously, achieving maximum possible security needed
for the modern age banking and other systems related with
information technology.

Reformulations of conventional numbers to the most
generalized isonumbers and subsequently to genonumbers and
hypernumbers led to a vast variety of parallel developments in
the conventional mathematics including hyperstructures [51]
and its various branches such as ’iso-functional analysis’ ref
[35], iso-calculus ref[52], iso-cryptography [50] etc.

Iso-Galois fields [53], Iso-permutation groups [54, 53] have
been defined by this author, which can play an important role
in cryptography and other branches of mathematics where
finite fields are used. Investigations are underway.

Isomathematics can also explain complex biological
structures and hence has applications in Fractal geometry.
Further applications in Neuroscience and Genetics can
provide new insight in these disciplines.
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Abstract: In 1920 H. Rutherford conjectured that neutron is a compressed hydrogen atom in the core of the stars. W, Pauli
noted that such synthesis of neutron violates the conservation of the angular momentum. Therefore, E. Fermi proposed emission
of massless particle, called "neutrino". However, RM. Santilli more recently noted that, even though the angular angular
momentum would be conserved, the neutrino hypothesis does not allow non-relativistic quantum mechanics to be valid because
the rest energy of the neutron is bigger than the sum of the rest energies of the proton and electron, under these conditions
Schrodinger equation becomes inconsistent. Similarly, Santilli showed that relativistic quantum mechanics is also inapplicable
(rather than violated) because, even though exactly valid for the electron at large distance from the proton in the hydrogen atom,
the celebrated Dirac's equation is clearly inapplicable for the representation of electron when immersed inside the proton. In this
paper, we study Santilli's decades of mathematical, theoretical and experimental research, first for the construction of the
covering hadronic mechanics, and then the resulting numerically exact and time invariant representation at the non-relativistic
and relativistic levels of "all" chararcteristics of the neutron in its synthesis from a proton and an electron. In particular, we show
that, within said covering context, the representation of proton as an extended particle implies the existence of an orbital angular
momentum of the electron within the hyperdense proton which is totally non-existence for quantum mechanics, under which the
total angular momentum is conserved without any need for the conjectural neutrino. We finally study Santilli's suggestive
hypothesis of the "etherino" as a longitudinal impulse (rather than particle) from the ether as a universal substratum that delivers
missing energy for the synthesis of the neutron.

Keywords: Neutron, Binding Energy, Isoelectron, Hulthen Potential, Lie-Santilli Isoalgebras

massless particle, named neutrino (v) or absorption of

antineutrino (¥) . The particle reactions as per proposed
In 1920, Rutherford [1] submitted the hypothesis that theory of weak interaction are given by

hydrogen atoms in the core of stars are compressed into new

neutral particles having the size of the proton that he called

neutrons (Figure 1), according to the synthesis

1. Introduction

pr+te —n. 0]

The existence of the neutron was confirmed in 1932 by
Chadwick [2]. However, Pauli [3] noted thatthe spin 1/2 of
the neutron cannot be represented via a quantum state of /
proton and electron, each having spin 1/2 . Fermi [4] Frolan
adopted Pauli's objection and, he then developed the theory of
weak interactions according to which the synthesis of the  Figure 1. A schematic view of the the deep overlapping of the wavepackets of
neutron is characterized by either the emission of a neutral and electrons into hyperdense medium of proton with singlet coupling.
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pr+e —n+v, or )
D e +V —n. 3)

However, Santilli [5-7] has dismissed the Fermi's version of
synthesis of neutron on following grounds:
1. the sum ofthe rest energies of the proton and of the
electron,

m, +m, =938.272MeV +0.511MeV 4)
=938.783MeV (

is smaller than the rest energy ofthe neutron,

m, = 939.565MeV )

with positive energy (binding energy) difference of 0.78
MeV,

2. Schrddinger equation does not admit positive binding
energy for quantum bound states when electron totally
immersed within the hyper-dense medium inside the
proton structure,

3. classical theory of antimatter requires that the
anti-neutrino has a negative energy, although, eq.(3) is
needed positive energy to supply the missing energy,
0.78 MeV,

4. neither, antineutrino can deliver the 0.78 MeV needed
for the neutron synthesis because the cross section of
former with electron or proton is null, and

5. the proton and the electron are the only experimentally
discovered stable massive particles. Hence, emission
of neutrino in neutron formation does not have any
relevance. Moreover, it cannot be directly detected.

2. Hadronic Energy

The only bound state of a proton and an electron predicted
by quantum mechanics is the hydrogen atom, with smallest

orbit (Bohr's orbit) of the order of 1~ cm. Santilli's hadronic

mechanics has identified the existence of an additional bound
state when the electron orbits within the proton structure at

distances of the order of 1()"'*cm or less. The difference

between these two bound states is depicted in "Figure 2".

Remarkably, Santilli has proved that the hadronic state is
one and only one, the neutron, and its first excited state is the
Hydrogen atom which is formed when the electron leaves the
proton structure, thus recovering all conventional quantum
states. In this sense, the energy levels of the hydrogen atom
are the excited states of the neutron.

The mutual overlapping of the charge distribution or
wavepackets of electron and proton leads to new interactions
of contact type. However, it is not possible via conventional
quantum mechanics to represent these new interactions for
various reasons, such as:

1. quantum mechanics can only represent particles as
dimensionless point masses; quantum mechanics has a
local-differential structure ruling out any consistent
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treatment of the nonlocal integral interactions;

2. quantum mechanics can only represent interactions
derivable from a local potential, while contact
interactions of the type required to be considered
herein can be represented with anything except a
potential or a Hamiltonian.

HYOROGEN ATOM # . :
ki o |
o =
o' ®

HEUTRON g

@ |
= s —
5

. ?‘? 22
12 2
g5 E%

Figure 2. A schematic comparison of Bohr's orbit and hadronic structure
identified by Santilli.

In this event, Santilli's isomechanics is ideally suited for a
quantitative study of the neutron synthesis because, in
addition to all interactions characterizing the hydrogen atom,
it allows the new interactions caused by deep mutual
penetration of the constituents. This method has been used by
Santilli in numerous applications. Santilli [5-8] obtained an
isoequation for the neutron by isotopically lifting of
Schrédinger equation introducing additional potential term of
Coulomb nature that reads as,

iprxp><T—£+e—T xy(r)
m r r (6)
= Exg(r)
with isounit,
T=UxIxU'=1/T>0. )

The suitable isounit to represent the two particle
penetration (now termed as an isoelectron), is defined as,
with isounit,

T = Diag(n2 ), (1), (1), 7 (1))
x Diag(n*(2),n (2),7 ).} (2)) @®)
xexp(@ [9)x [ (03], x D) )

where the two diagonal matrices represent the shapes
(assumed to be spheroids) and the densities of the particles
considered, while the last term represents the
non-Hamiltonian interactions. For spherical point-like charge
particle, such as electrons, the diagonal matrices get reduced
to 1. Next, the evaluation of the volume integral into a
constant,

N =[], xy (@), dr ©)
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and the expansion of the isoexponent up to the second term,
yields,

}zeNx”’/”7==1+Nx¢/& (10)
Tae™ L1 Nxyly an
Pt (Pt tim 7=

[T>1, |T|<<1,r!£1;rj}'"[ 1. (12)

In above equations 4 and (4 behave respectively as

i/l:que_br (13)

Y ~0Ox(1-e™)/r (14)

where P and ( are constants and b is inverse of
hadronic horizon, r, . Using eqs.(13) and (14), the isotopic
element depicted in eq.(11) reads as
~ ~ e-—br
T=1-Nxy/y=1-rxVy———-,
Yy "d-e™)

where ¥, = NP/Q . Now, by introducing Hulthen potential,

15)

Vuiinan = Vo

—~br (1 6)

where V; is the Hulthen's constant, the isotopic element can
be written as

Tal=Nxy /i =1-rxVy,... a7

Further, at small distances, the Hulthen potential behaves
like Coulomb potential,

v
VHullhan ~ _b_o . (18)

X

which is very strong as the quantity 5 inthe denominator
is of the order of 1(0~**cm, thus resulting the multiplicative
factor of the order of 10'*. As a result, inside the hadronic

horizon, the Coulomb potential is absorbed by the Hulthen
potential, thus we can write

2 2
e 7oz
r 2 ¥ )
e . ze
g’Tx(IMrXVHmhen)_T (19)
-br
= yx—
(1-¢?)

where z=1 and V =€V,

Using eqs.(6) and (19), Santilli obtained the nonrelativistic
radial isoequation of the hadronic two-body structure model
that reads as

e—br (20)
1-¢™”

+ —m—(E,,b +V

pue qu?(r) =0

where E,, ishadronic binding energy. Assuming the change
of variable, x=1-¢" , €q.(20) can be written as

I:x(l—x)%zz—]S(x)

d 1)
_ 1/2 a 2 =
[(2|A| +1)dx +f ]S(x) 0
where
- ml,
2 2,252
neb @2)
4 w b £ <0,
The solution of eq.(21) is then given by
G,(x)
_ kf[n-lj n+k+2/d]” - l}ck 23)
= \k =1 k
with isonormalized isoeigenfunction
1/2
. r(2)4]” +3)
wr)= n
r(3)r(2/4] @4)
-br
X l_e_ e'l"‘llzbr
r

the expression for hadronic binding energy is then obtained as

w_ Volk, T
|E,, E E™ =ﬁ[—nl--n] . (25)
2

The boundary conditions demand that k,>n . This

indicates the finite value of eigenvalues for Hulthen potential.
This is in concurrence with the hadronic bound state. Further,
for an isoparticle to be bounded inside the hadronic horizon

b, its wavelength, A must be proportional to the horizon
itself, and we shall write

1

2k b (26)

where & is a positive quantity that must be constant for a

stationary state. Next the hadronic kinetic energy E,, is
given by
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~2 2 212
E, =& KO @7)
2m 2m

Now, from eqs.(22) and (27), we have
V, =2k,E,. (28)

Hence, the hadronic total energy of the hadronic bound
state is given by

E, =2E, +2E, ~E,
=2k, [1 ~(k -1 bey. 29)

where ¢, is the speed of light in vacuum, and note that the
last approximation holds for hadronic bound states where the
rest energy is insignificant with respect to the kinetic energy.
Thus, at this point we obtained the expression for the total
energy of the two-body hadronic bound state which is depend
on two unknown quantities, kK, and £, ., To achieve a
numerical solution, we now introduce second expression, the
meanlife, 7 of the unstable hadron

o = wfiof .,

(30)
where @ is the fine structure constant. By using the above
expressions, we can write

172

(kz—l)I‘B(kz—l)+2}

YO\ —
3!1“[5(@ -1)+2] @31)
3/2
ol
(48)

The meanlife of the hadronic bound state then becomes

A 4 (kz - 1)3

L 2
48(137)° K

be, (32)

Thus, we obtained a system of two equations in terms of
two unknown quantities k, and £, total rest energy, £, ,

the meanlife, 7 and the charge radius, R, of the two-body
hadronic bound state, that it is reproduced identically below:

E
1- -1 2~ _Lwm
k‘[ (k. -1) ] 2hbe, @

(k,-1) _48(137)’ -
k, 47bc, '

G4

On substituting 4=10"*, 7' =107 and E, =939 in
eqs.(33) and (34), we extract

k=26, k=1+0.81x10" =1, (35)
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For admissible state, n =1, we further have

b _peo, (36)
n
Vv, k
E,=--2x|2_n|~0 37
hb 4kzx(n J (37

Thus, this proves that the in nonrelativistic approximation
the hadronic binding energy is insignificant. Further, the
numerical value of the hadronic kinetic energy is obtained as

E,, = khbc, = 6.63x107 MeV =0 (38)

which is also insignificant. The reason for being very small
hadronic binding energy and ignorable in first approximation
is due to the fact that contact resistive forces have no potential
energy. The main physical origin of hadronic structure is the
contact, zero-range, interaction due to the complete
immersion of one wavepacket within the other.

Finally, Santilli arrives at the following result namely the
total hadronic energy of the neutron is primarily characterized
by the rest energy of the proton and the isonormalized rest
energy of the isoelectron,

2
me c(]

E,=E, + Ehr,é =E, + 7 (39)
=938.272+1.293 =939.565MeV

where ©° =0.3952 is a geometrization of the departure of
the interior of hadrons from our space-time. Since the proton
is not mutated in this first approximation as per our
assumption, have

b =b,=b =1, (40)
0.511

=gt =p = —=0.3952 41

o =ng =0, 1.293 (41)

o=n, =b"=0.6286. 42)

Notice that the above value for the characterization of the
density of the neutron coincides with the experimental value
of the density of the fireball of the Bose-Einstein correlation.

3. The Neutron Spin

The conceptual interpretation of the observed spin 1/2 of
the neutron, for the first, was successfully explained by
Santilli as follows. Considering the initiation of Rutherford's
process of compression of the isoelectron within the proton in
singlet coupling, it is evident that, as soon as the penetration
begins, the isoelectron is trapped inside the hyperdense
medium inside the proton, thus resulting in a constrained
orbiting motion of the isoelectron that must superpose on the
proton spin (FIGURE 2). Santilli stresses that the proton is not
mutated because it is 2000 times heavier than the electron, and
that the coupling must be in singlet for stability. This implies
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that, for the case of the neutron structure, the spin of the
electron is also not mutated, However, the angular momentum
of electron is mutated inside the hadronic sphere. The needed
mutation of the quantum into the hadronic angular momentum
is trivially given by the nonunitary transforms

Uxut=7=L = f=o @3)

2

The mutation is supported by the isotopic invariance of the
Hilbert space. Nonunitary lifting of angular momentum, in
this case, reads

m | xLyx | l,myx I
= Ux[{,m|xLx|1,m)|xU"

1 (“4)
=({,m|2xLs ><2|[,m)x—2—,

In order to represent the spin of neutron Santilli (1990) used
irregular isorepresentations of Lie-Santilli isoalgebras [9-11],
namely, isorepresentations characterized by
nonunitaryisounitary transforms for the generators different
than those for the product. This difference is rather natural for
the structure of the neutron, since the basic nonunitary
transform for the rest energy has already been selected for
calculation of binding energy. This irregular isopresentation

of S‘O(3) based on the the isodifferential calculus and
isolinear momentum is given below [9-11]:

[73]-[3:5, )0 4
[;,-ZZ; j] =38, =1x8,=p9, (46)
PPm@d) = xid+)n@,p), @D
L3x¥1(8,8) = pxmx ¥ii(8,9), (48)
m=Ll-lys=l. (49

Notice that the isotopic lifting of the integer value of the
angular momentum, /=1,2,3,... into the value px/,
where, again, = 1,2,3...., the value i1=0 being excluded
by boundary conditions, © being a variable depending on

the local conditions. For the study of the neutron spin on the
line of hadronic mechanics, Santilli selected the following

two-dimensional irregular isorepresentation of SU(2):

~ 0 ~ -1
I =(gll j, T:(gll (il) (50)
0 g» 0 g

51
A~ 1 0 —ig? GD
Jr==
2\ig;, 0
[3002]=i0
1 AV (gl 0 (52)
==
2720 g
A aal A A aa A A~
JsXIJ,S>=JaxT|J,s=t;IJ,S) (53)
In this case, Santilli [9-11] has selected the

two-dimensional irregular isorepresentation of .§I_\/(2) and
then computed the total angular momentum of the neutron

model, h= (P+,e )hm as,

~orb At 1 A
J,=J,+L: +Ji: =—+p-— 54
n p 2 p 2 ( )
resulting in the values anticipated above, namely:
o= 1 A=1 (55)
2’ '

It shows that the spin of the isoelectron is not mutated and
the angular momentum is mutated in such a way that the
isoelectron is merely carried out by the proton spin.

4. The Neutron Magnetic Moment

In view of the hadronic orbiting motion of isoelectron, the
magnetic moment of the neutron was generated by Santilli by
considering the following three contributions,

Uy = /“:’ _‘u;rb +;"l’;inl (56)

The observed values of magnetic moment of neutron and
proton are respectively,

e e
=-~1.9% S, =2.Tx
b 2m,c, o 2m,,c, 7
Now, on rearranging magnetic moment of neutron as
U, ==-19x ¢
2m c,
b e (58)
=2.7x -4.6x ,
2m,c, 2m ¢,

and comparing with €q.(56), we obtain following identity:

orbital intrinsic — 4 6 X

A + U =

2m,c,’ 9
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This is equivalent to

il pimrinse -2.5x107e
’ ’ 2mc, (60)
=-25x10%pu,.

orbital

From eq.(60), Santilli derived the desired value of, A ,
that is

M = (142.5%10%) x 4. (61)

The small value of the total magnetic moment of the
isoelectron is fully compatible with the null value of its total
angular momentum.

S. Santilli Aetherino Hypothesis

Santilli replaces the neutrino as a physical particle in our
space-time with a longitudinal impulse originated by the ether
as a universal substratum that he calls "etherino" [12]. In this
view, all physical quantities missing in the neutron synthesis,
such as energy and spin, are delivered by said impulse.

A particular motivation for the etherino hypothesis is due to
the evident difficulties in accepting that neutrino now
believed to have mass could traverse entire planets and stars
without appreciable scattering. By contrast, this difficulty is
resolved by the propagation of a longitudinal impulse in the
universal substratum because it would underlie matter.

Additionally, the replacement of the neutrino with the
etherino appears to preserve the experimental evidence in the
field because what is today detected and interpreted as a
"neutrino scattering” could in reality be due to the scattering
of the longitudinal impulse with targets.

Hence, the etherino hypothesis appears to resolve some of
the insufficiencies of the neutrino conjecture, may eventually
resulting to be fully compatible with available experimental
data, and is already stimulating rather intriguing research on
superluminal communications, that are the only possible for
interstellar contact [12] due to evident insufficiencies of
electromagnetic waves for galactic distances.

6. Don Borghi Experiment on the
Synthesis of Neutrons

The first experiment on the synthesis of neutrons from
protons and electrons was conducted by Carlo Borghi, C.
Giori and A. Dall'Olio in the 1960 at the CEN Laboratories in
Recife, Brazil [13], [14]. Hydrogen gas at fraction of 1 bar
pressure was obtained from the electrolytical separation of
water and was placed in the interior of a cylindrical metal
chamber (called klystron) and kept mostly ionized by an
electric arc with about 500 V and 10 mA. Additionally, the gas
was traversed by microwaves with 10s frequency. Suitable
materials which are vulnerable to nuclear transmutation when
exposed to aneutron flux, were placed exterior of the chamber.
Following exposures of the order of days or weeks, the
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experimentalists reported nuclear transmutations that were
based on the observed neutron counts of up to 104 cps. Don
Borghi experiment has been strongly criticized by academia
onpuretheoretical grounds without the actual repetition of the
tests. Note that experiment makes no claim of direct detection
of neutrons, and only claims the detection of clear nuclear
transmutations.

To verify the claim of Don Borghi's experiment, Santilli
repeated this experiment in large number of laboratories and
institutions the world over.

7. Santilli Experiment on the Synthesis of
Neutrons

Santilli conceived his experiment [15], [16] as being solely
based on the use of an electric arc within a cold (i.e., at
atmospheric temperature) hydrogen gas without any use of
microwave at all. Three different klystrons were
manufactured, tested and used for the measurements. The
specifications of detectors were used for measurements are
given below:

1. A detector model PMI703GN manufactured by
Polimaster, Inc., with sonic and vibration alarms as
well as memory for printouts, with the photon channel
activated by CsI and the neutron channel activated by
Lil.

2. A photon-neutron detector SAM 935 manufactured by
Berkeley Nucleonics, Inc., with the photon channel
activated by Nal and the neutron channel activated by
He-3 also equipped with sonic alarm and memory for
printouts of all counts. This detector was used to verify
the counts from the preceding one.

3. A BF3 activated neutron detector model 12-4
manufactured by Ludlum Measurements, Inc., without
counts memory for printouts. This detector was used
to verify the counts by the preceding two detectors.

Electric arcs were powered by welders manufactured by
Miller Electric, Inc., including a Syncrowave 300, a Dynasty
200, and a Dynasty 700 capable of delivering an arc in DC or
AC mode, the latter having frequencies variable from 20 to
400 Hz.

Klystron-I was cylindrical and sealed, of about 6" outside
diameter and 12" height, made of commercially available,
transparent, PolyVinyl Chloride (PVC) housing along its
symmetry axis a pair of tungsten electrodes. The electrodes
gap was controllable by sliding the top conducting rod
through the seal of the flange. The klystron cylindrical wall
was transparent so as to allow a visual detection of arc. After
initiation of DC arc there was no detection for hours. However,
shaking of klystron the neutrons were detected in a systematic
and repetitive way. The detection was triggered by a
neutron-type particle, excluding contributions from photons.
However, these detections were anomalous, that is, they did
not appear to be due to a flux of actual neutrons originating
from the klystron. This anomaly is established by the repeated
"delayed detections," that is, exposure of the detector to the
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klystron with no counts of any type, moving the detector away
from the klystron (at times for miles), then seeing the
detectors enter into off-scale vibrations and sonic alarms with
zero photon counts.

Klystron-II was a rectangular, transparent, made up of PVC
of dimension. This klystron was small in size than earlier one
to avoid implosion caused by combustion with atmospheric
oxygen. This test was conducted only once because of
instantaneous off-scale detection of neutrons by all detectors
which led to evacuation of the laboratory. Hence, this test was
not repeated for safety.

Klystron-III was cylindrical made up of carbon steel pipe
with 12" outer diameter, 0.5" wall thickness, 24" length and 3"
thick end flanges to sustain hydrogen pressure up to 500 psi
with the internal arc between throated tungsten electrodes
controlled by outside mechanisms. This test was conceived
for the conduction of the test at bigger hydrogen pressure
compared to that of Klystron 1. The test was conducted only
once at 300 psi hydrogen pressures because of instantaneous,
off-scale, neutron detections such to cause another evacuation
of the laboratory.

The main purpose of Santilli's of conducting these tests was
to establish the production of neutron-type particles via a DC
arc within a hydrogen gas. He has experimented identical tests
with other gases, but no meaningful counts were detected
other than hydrogen. No neutron, photon or other radiation
was measured from electric arcs submerged within liquids.
Hence, the reported findings appear to be specific for electric
arcs within a hydrogen gas under the conditions stated above.

8. The Don Borghi-Santilli Neutroid

Santilli [5,15] excludes that the entities produced in the
tests with Klystron I are true neutrons for various reasons,
such as:

1. The anomalous behavior of the detector, in the case of
the 15 minute delay, namely the self-activated
detection indicates first the absorption of "entities"
producing nuclear transmutations that, in turn release
ordinary neutrons.

2. The environment inside stars can indeed provide the
missing energy of 0.78 MeV for the neutron synthesis,
but the environment inside Klystron-I cannot do the
same due to the very low density of the hydrogen gas.

3. The physical laws of hadronic mechanics do not allow
the synthesis of the neutron under the conditions of
Klystron-I because of the need of the trigger, namely,
an external event permitting the transition from
quantum to hadronic conditions. In fact, the tests with
Klystrons-II and III do admit the trigger required by
hadronic mechanics. However, Santilli did not discard
that the "entities" produced in the tests with
Klystrons-II and III are indeed actual neutrons, due to
the instantaneous, off-scale nature of the neutron
alarms in clear absence of photon or vibrations.

In view of above reasons, Don Borghi [13], [14] submitted
the hypothesis that the "entities" are neutron-type particles

called "neutroids". Santilli adopted this hypothesis and
presented the first technical characterization of neutroids with
the symbol, 77 and the characteristics in conventional
nuclear units, 4=1,Z2=0,J =0, amu=0.008 . Hence,
Santilli assumed that in Klystron-I, he producedthe following
reaction precisely along Rutherford's original conception

p* +e” —7(1.0,0,1.008) (62)

where the value J =0 is used for the primary purpose of
avoiding the spin anomaly in the neutron synthesis as
indicated above and the rest energy of the neutroids is
assumed as being that of the hydrogen atom.

9. Interpretation of Don Borghi and
Santilli Experiments

In Don Borghi's and Santilli's experiments the various
substances placed in the exterior of the klystrons did indeed
experience nuclear transmutations. If we discard the Don
Borghi's klystron and Santilli's Klystron-I to produce actual
neutrons, then the main question arises from where the
neutrons originated and detected. Evidently, only two
possibilities remain, namely, that the detected neutrons were
actually synthesized in the walls of the klystrons, or by the
activated substances themselves following the absorption of
the neutroids produced by the klystrons. Considering the
neutrino hypothesis has no sense for the neutron synthesis for
various reasons, Santilli [5, 15] assumes that the energy, spin
and magnetic anomalies in the neutron synthesis are
accounted for by their transfer either from nuclei or from the
aether via his etherino hypothesis

7(1.0,0,1.008) + a — n(1.0,0,1.008). (63)

Assuming the binding energy of a neutroid is similar to that
of an ordinary nucleon (since neutroids are assumed to be
converted into neutrons when inside nuclei, or to decompose
into protons and electrons, thus recovering again the nucleon
binding energy), Santilli indicates the following possible
nuclear reaction for one of the activated substances in Don
Borghi's tests

Au(197,79,3/2,196.966) + ii+ a

> 4u(198,79,2,197.972), ©4)

produces known nuclide, hence it indicates that neutrons were
synthesized by the activating substances themselves on
absorption of neutroid. The nuclear reaction with steel wall of
the klystron,

Fe(57,26,1,57.935) +fi+a

— Fe(58,26,1,57.941), 65

yields an unknown nuclide, Fe(58,26,1,57.941) because
the known nuclide is Fe(58,26,0,57.933) . This indicates
that the neutrens in Don Borghi experiment were not
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synthesized in the walls of his klystron. Eq.(2) also allow an
interpretation of some of Santilli detections [5], [15], with the
understanding that the anomalous behavior of the detectors,
such as the delayed neutron counts, requires special studies
and perhaps the existence of some additional event not clearly
manifested in Don Borghi's tests.

To initiate the study, Santilli considered the first possible
reaction inside the klystron

H(1,1,1/2,1.008) + i +a
> H(1,1,1,2.014), (66)

delivers ordinary deuteron on coupling of hydrogen atom and
neutroid. This indicates neutrons cannot be originated inside
the klystron-I. Next, Santilli considered following nuclear
reactions with the polycarbonate of Klystron-I wall
containing about 75 percent carbon and 18.9 percent oxygen

C(12,6,0,12.00) +7/i+a
— C(13,6,1/2,13.006) (67)
— C(13,6,1/2,13.006) + 7,

0(16,8,0,16.00) + /i +a

- 0(17,8,1/2,17.006), (68)

do not give conventional activation processes. Thus, in
Santilli's experiment too, it does not appear that the detected
neutrons are synthesized by the walls of klystron. The above
analysis leads us to the only remaining possibility that in
Santilli tests, the neutrons are synthesized by the detectors
themselves. To study this possibility, Santilli considered the
reaction using Li-activated detectors,

Li(7,3,3/2,7.016)+fi+a
— Li(8,3,2,8.022) (69)
— Be(8,4,0,8.005) + e~ — 2a,

that behaves fully equivalent to detection of neutriods or
neutrons. This indicated that neutrons detected in Santilli
experiment were synthesized by the substance used for
detection after absorption of neutriods.

10. Concluding Remarks

It is observed that Santilli's discovery of hadronic
mechanics appropriately represents, at both non-relativistic
and relativistic levels, "all" characteristics of neutron
according to Rutherford's conjecture of its synthesis from
hydrogen atom in the core of a star. A first implication of the
studies is that the orbital motion of the electron within the
hyperdense proton allows the conservation of the total angular
momentum without any need for the conjecture of the
hypothetical neutrino. Another important implication is the
dismissal of quarks as the actual physical constituents of the
neutron since the proton and the electron cannot "disappear"
at the time of the neutron synthesis to be replaced by the
hypothetical quarks, and then "reappear” at the time of the
neutron decay. We show that, besides the above mathematical
and theoretical studies, Santilli has provided numerous

Santilli Synthesis of the Neutron According to Hadronic Mechanics

experimental verification of the laboratory synthesis of the
neutron from a hydrogen gas in support of Rutherford's
historical hypothesis.
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Abstract: In this paper, we outline the inapplicability (rather than the violation) of quantum mechanics for the representation
of the synthesis of the neutron from the Hydrogen atom in the core of a star, and we outline the corresponding inability of
quantum mechanics for a consistent representation of all characteristics of the deuteron as a two-body state of one proton and
one neutron in its ground state. We then outline the first representation of all characteristics of the neutron achieved by R. M.
Santilli via a a generalized two-body bound state of one proton and one electron in conditions of total mutual penetration
according to the laws of hadronic mechanics, thus implying the mutation of particles into isoparticles under the Lorentz-
Santilli isosymmetry. We then outline the first representation of all characteristics of the deuteron also achieved by R. M.
Santilli via a generalized three-body bound state of two isoprotons and one isoelectron, including the first known exact and
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Keywords: Neutron, Deuteron, Hadronic Mechanics

thus it obviously follows that the proton and neutron spins
are parallel: 8, +s, =1/2+1/2=1_ On the other hand, its
high stability is to the tune of 2.2 MeV. The stability of

1. Introduction

The nucleus of deuterium is called a deuteron and it

contains one proton and one neutron, whereas the far more
common hydrogen nucleus contains no neutron. The isotope
name is formed from the Greek deuterons meaning “second",
to denote the two particles composing the nucleus. Thus
Deuteron is normally considered as the combination of
proton and neutron and thus it is considered as a two body
system by quantum mechanical bound state. It is the simplest
bound state of nucleons and therefore gives us an ideal
system for studying the nucleon-nucleon interaction. In
analogy with the ground state of the hydrogen atom, it is
reasonable to assume that the ground state of the deuteron
also has zero orbital angular momentum L = 0. However the
measured total angular momentum is J =1 (one unit of h/2 1)

deuteron plays a very important part of the existence of the
universe.

The structure of deuteron and its physical properties were
first proposed by Santilli [l, 2]. Although Deuteron is a
simple molecule, quantum mechanics has been unable to
explain its different properties like the spin, magnetic
moment, binding energy, stability, charge radius, dipole
moment, etc. The magnetic moment of deuteron was for the
first time represented exactly by Santilli [3]. Also for the first
time the notion of isoproton and isoelectron was introduced
by Santilli [4, 5], which was further elaborated by him [6, 7].
He made Rutherford’s conjecture of neutron a quantitative
description based on his Hadronic Mechanics [8-10]. Santilli
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under the covering laws of Hadronic Mechanics has
demonstrated and established that all nuclei and therefore all
the matter at large are supposed to be composed of protons
and electrons in their isoprotons and isoelectrons realization
characterized by Lorentz-Santilli isosymmetry [4, 5, 8]. The
conception of nuclei as quantum mechanical bound states of
proton and neutron remains valid but only as a first
approximation. Thus, Santi]li’s reduction of the neutron to a
hadronic bound state of a proton and an electron suggests the
reduction of all nuclei and, therefore, all matter in the
universe, to protons and electrons. However, on technical
grounds, the constituents of nuclei are given by protons and
electron in their form mutated by contact non-Hamiltonian,
thus nonunitary interactions called isoprotons and iso-
electrons [5, 11] (for further details see [6, 7] and technically
defined as isounitary irreducible representations of the
Lorentz-Poincare-Santilli isosymmetry.

Hadronic mechanics not only allows the reduction of a
nuclei into (iso) protons and (iso) electrons, but also achieves,
for the first time, a numerically exact and invariant
representation of various nuclear data beyond any dream of
representation via quantum mechanics.

For the sake of some sort of continuity we start in the next
Section with a very brief description of neutron structure
based on Santilli hadronic mechanics and then would devote
all succeeding Sections to hadronic mechanics of deuteron as
developed by Santilli.

2. A Brief Review of Neutron Structure
Based on Santilli’s Hadronic
Mechanics

In the history of science Santilli for the first time
quantified the Rutherford conjecture that a neutron is indeed
a compressed hydrogen atom using his hadronic mechanics.
The main motivation to develop corresponding hadronic
mechanics has been the inadequacy of quantum mechanics to
arrive at experimentally established properties of neutron e.g.
its spin, magnetic moment, its stability within nucleus (an
isolated neutron is unstable having half life of about 10 min),
etc. For the details of all these aspects can be found in [8-10].
However, herein we recall only the main features of Santilli’s
quantification of neutron structure and synthesis to illustrate
the continuity of nuclear structure from neutron to deuteron
according to hadronic mechanics.

In order to make Rutherford’s conjecture a quantitative one
he proposed a model in which the wave packets of an
electron and a proton mutually overlap to form a dynamic
union such that electron revolves around proton as shown in
Figure 1.

In other words, the proton and the electron are actual
physical constituents of the neutron in our space-time, not in
their conventional quantum mechanical states, but in
generalized states due to the total penetration of the wave
packet of the electron within the hyperdense proton, for
which Santilli has suggested the names of "isoproton, “here

\

denotedp* , and “isoelectron," here denotedé™, these new
states are technically realized as irreducible isorepresentation
of the Lorentz-Poincaré-Santilli isosymmetry. In this way he
studied the representation of “Rutherford’s compression" of
the Hydrogen atom into a neutron inside a star via a non-
unitary transform of the conventional structure of the
Hydrogen atom (HA).

Proton

Flectron |

Figure 1. A conceptual view of Rutherford’s compression of the electron
inside the hyperdense proton in singlet coupling (necessary for stability),
resulting in the constrained orbital angular momentum of the electron under
which the total angular momentum of the electron is zero and the spin of the
neutron coincides with that of proton.

Thus the mutated electron and proton as shown in Figure 1
are termed as isoelectron and isoproton respectively. The iso-
prefix stems from the need of Santilli isomathematics [12] to
describe the process of the said mutation. The said mutation
gets mathematically expressed as,

4 A

HA =(p" e )gy = 0= (P & )iy 6}

where subscripts QM and HM stands for the horizons of
quantum mechanics and hadronic mechanics respectively.
From the model of Figure 1 it is evident that the dimensions
of interaction between isoelectron and isoproton are of 1 fin
or less. But to maintain an electron within such a short
nuclear volume very strong attractive force is needed because
the conventional electrostatic attraction at such a short
distances turns out to be grossly inadequate. This then
indicated that an external trigger is operating that forces an
electron to penetrate within the hyperdense medium of a
proton. This in hadronic mechanics has been quantified
through corresponding Hulthén potential, which produces
very large attractive force compared to the conventional
electrostatic force.

The reader is advised to refer to the references cited herein
for the details of the Rutherford-Santilli model of neutron
and its synthesis both in Stars and in laboratory.

3. Santilli’s Structured Model of
Deuteron as a Hadronic Bound State
of Two Protons and One Electron

Santilli considerd deuteron as a hadronic bound state of
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two protons and one electron verifying the laws and
symmetries of hadronic mechanics. According to him:
1. The deuteron is a stable light, natural isotope that, as
such, is reversible over time.
2. Thus Santilli assumes the quantum mechanical structure
less of the deuteron (denoted as d ")

d=(p’, n)QM 2

as valid in first approximation, and reduces the deuteron to
two protons and one electron according to the structure:

— (At A~ A+

d= s€ ,P )HM (3)

In the above equation all the constituents are isoparticles,
namely, two iso- protons and one isoelectron. Their iso-
character has been depicted by (* ) over the symbols.

3. Contrary to expectations, contact interactions generate a
special version of restricted three body system that
admits an exact analytic solution.

In this communication we intend to review the
insufficiencies of quantum mechanics for a quantitative
representation of experiential data on the deuteron and then
review their exact and invariant representation via Santilli’s
isomechanics and underlying isomathematics.

3.1. Insuyfficiencies of Quantum Mechanics to Adequately
Describe the Structure of Deuteron

3.1.1. Quantum Mechanics has been Unable to Represent
or Explain the Stability of the Deuteron

/ fremme
[
L Ankng e
Fleveran
Panvesn \
Viveon

Figure 2. Three body model of the deuteron.

This problem might be also due to unavailability of the
technical literature of quantitative numerical proofs that,
when bonded to a proton, the neutron cannot decay, as an
evident condition for stability. Thus the stability of the
deuteron has been left fundamentally unexplained by
quantum mechanics till date. Santilli illustrated the inability
by quantum mechanics to represent the stability of the

deuteron, since the neutron is naturally unstable and,
therefore, the deuteron should decay into two protons, an
electron and the hypothetical antineutrino. Even today, no
reason is known that why neutron should become stable
when coupled to a proton. Santilli represented three body
model of the deuteron and its stability as shown in Figure 2.

3.1.2. Quantum Mechanics has been Unable to Represent
the Spin 1 of the Ground State of the Deuteron

According to quantum mechanics the most stable bound
state of two particles is with the opposite spins and hence
should have SPIN ZERO. No such state has been detected in
the deuteron. Thus quantum mechanics has been unable to
represent the spin 1 of the ground state of the deuteron. This
is illustrated in Figure 3.

Figure 3. Figures above represent the impossibility of quantum mechanics to
represent the spin 1 of the deuteron in a way compatible with its size. First
Jigure explains how spin 1 can solely be achieved with a triplet coupling in
which case no stable nucleus is conceivable due to very strong repulsive
Jorces at the distance of nuclear forces. Thus only stable state is the singlet
but in this case the total angular momentum is zero, in disagreement with
experimental evidence.

3.1.3. Quantum Mechanics has been Unable to Reach an
exact Representation of the Magnetic Moment of the
Deuteron

It has been observed that non-relativistic quantum
mechanics misses 0.022 Bohr units corresponding to 2.6% of
the experimental value. Relativistic corrections reduce the
error down to about 1% but under highly questionable
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theoretical assumptions, such as the use for ground state of a
mixture of different energy levels that are assumed to exist
without any emission or absorption of quanta as expected by
quantum mechanics. The situation becomes worst for the
magnetic moments of heavier nuclei.

3.1.4. Quantum Mechanics has been Unable to Identify the
Physical Origin of the Attractive Force that Binds
Together the Proton and the Neutron in the Deuteron

Since the neutron is neutral, there is no known electrostatic
origin of the attractive force needed for the existence of the
deuteron. The only Coulomb force for the proton-neutron
system is that of the magnetic moments, which force is

REPULSIVE for the case of spin 1 with parallel spin.

Therefore, a “strong" force was conjectured and its existence

was subsequently proved to be true.

3.1.5. Quantum Mechanics has also been Unable to Treat
the Deuteron Space Parity in a Way Consistent with
the Rest of the Theory

The experimental value of the space parity of the deuteron
is positive for the ground state, because the angular
momentum 7 is null. However, nuclear physicists assume for
the calculation of the magnetic moment of deuteron that the
ground state is a mixture of the lowest state with L = 0 with
other states in which the angular momentum is not null. This
produces incompatibility of these calculations with the
positive parity of the ground state.

3.2. Inferences

Thus from above discussion we can infer that, after about
one century of research, quantum mechanics has left
unresolved fundamental problems even for the case of the
smallest possible nucleus, the deuteron, with progressively
increasing unresolved problems for heavier nuclei. Following
these insufficiencies, any additional belief on the final
character of quantum mechanics in nuclear physics is a sheer
political posture in disrespect of the societal need to search
for a more adequate mechanics.

Not only quantum mechanics is not exactly valid in
nuclear physics, but the very assumption of neutrons as
nuclear constituents is approximately valid since neutrons are
composite particles. Therefore, the main objective of this
chapter is the identification of stable, massive physical
constituents of nuclei and their theoretical treatment that
admits in first approximation the proton-neutron model,
while permitting deeper advances.

The replacement of protons and neutrons with the
hypothetical quark is mathematically significant, with the
clarification that, in Santilli’s view, quarks cannot be
physical particles because, as stresses several times by
Santilli, quarks are purely mathematical representations of a
purely mathematical symmetry realized in a purely
mathematical internal unitary space without any possible
formulation in  our spacetime (because of the
O’Rafearthaigh’s theorem).

Consequently, quark masses are purely mathematical

parameters and cannot be physical inertial masses. As also
stressed several times, on true scientific grounds, inertial
masses can only be defined as the eigenvalues of the second
order Casimir invariant of the Lorentz-Poincaré symmetry.
But this basic symmetry is notoriously inapplicable for the
representation of quarks because of their particular features.
Therefore, quark “masses" cannot have inertia. Additionally,
Santilli points out that the hypothetical orbits of the
hypothetical quarks are excessively small to allow an exact
representation of nuclear magnetic moments via their
polarization. In fact, various attempts have been made in
representing magnetic moments when reducing nuclei to
quarks with the result of bigger deviations from experimental
data than those for the proton-neutron structure. Similar
increases of the problematic aspects occur for all other
insufficiencies of quantum mechanics in nuclear physics.
Consequently, the reduction of nuclei to quarks will be
ignored hereon because of its excessive deviation from solid
physical foundations as well as experimental data.

In conclusion, quarks can indeed be considered as
replacements of protons and neutrons, with the understanding
that nuclei made up of quarks cannot have any weight, since,
according to Albert Einstein, gravity can solely be defined for
bodies existing in our spacetime.

4. Deuteron and Hadronic Mechanics

It is evident from the above facts that quantum mechanics
has been unable to treat the deuteron space parity, in a way
consistent with the rest of the theory [1, 8, 10]. Thus quantum
mechanics has not been able to solve fundamental problems
even for the case of the smallest possible nucleus, the
deuteron, with progressively increasing unresolved problems
for heavier nuclei.

4.1. Deuteron Structure

The nuclear force solely applies up to the distance of 10
B cm, which distance coincides with the charge radius of
the proton as well as the electron wavepacket, and that the
sole stable orbit for the two protons under contact strong
interactions is the circle. The size of the deuteron then forces
the charge distribution of two protons as essentially being in
contact with each other. It can be said that the electron is
totally immersed within a proton, expectedly exchanging its
penetration from one proton to the other.

Now the spin of the deuteron in its ground state is 1; the
spin of the protons is 1/2; the spin of the isoelectron is 1/2;
and that the mutated angular momentum of the isoelectron is
-1/2. So Santilli assumed the structure of the deuteron as
being composed of two un-mutated protons with parallel
spins rotating around the central isoelectron to allow the
triplet coupling of protons, and then the two coupled particles
in line have an orbital motion around the isoelectron at the
center, resulting in the first approximation in the following
hadronic structure model of the deuteron [2].

d= (01,87, o @)
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Thus, proton is the only stable particle and neutron is
unstable, comprising of proton and electron. Santilli assumed
that nuclei are a collection of protons and neutrons, in first
approximation, while at a deeper level a collection of
mutated protons and electrons. It has been proved that a
three-body structure provides the only known consistent
representation of all characteristics of the deuteron, first
achieved by R. M. Santilli. Thus Coulomb and contact
attractive forces in pair-wise singlet couplings proton-
isoelectron are so strong to overcome Coulomb repulsion
among the two protons and form a bound state that is
permanently stable when isolated, as already established for
the valence bond and Cooper pairs of identical electrons.

Volodymyr Krasnoholovets has tried to resolve the above
anomalies in his recent paper [13]. He analyzed the problem
of the deuteron from the viewpoint of the constitution of the
real space that he developed. He concluded that the nucleus
does not hold the electrons in the orbital position and
polarized inertons [14-16] of atomic electrons directly
interact with the nucleus. He also analyzed the problem of
the motion of nucleons in the deuteron, which takes into
account their interaction with the space and concluded that
nucleons in the deuteron oscillate along the polar axis and
also undergo rotational oscillations. In other words, the
nucleons execute radial and rotationally oscillatory motions.
Trying to account for the reasons for nuclear forces, he has
analyzed major views available in the literature including
quantum field theories, hadronic mechanics, and even the
Vedic literature.

R. M. Santilli in 1998 provided the consistent
representation of all the characteristics of the deuteron using
its three body model [2] that involves isomathematics based
methods of hadronic mechanics. His hadronic mechanics
method explains the strong attraction between protons and
neutrons via the Hulthén potential concept [17]. Thus the
hadronic mechanics:

1. could successfully explain the experimental value of

spin 1 of the deuteron;

2. offered the exact and invariant representation of the

total magnetic moment of the deuteron;

3. provided a physical insight into the deuteron size and

charge.

4.2. Size of Deuteron

It has been observed experimentally that the proton has the
following values for the charge radius and diameter (size)

R,= 08x 10 B =0.8 fm; Dp = 1.6 fm. Whereas, the value

of the size of the deuteron given in literature is: D, = 4.31 fm.

Structure model represented by equation 4 does indeed
fully justifies the above data in accordance with Figure 4. In
fact, the above data indicate that the charge radii of the two
protons are separated by approximately 1.1 fm, namely, an
amount that is fully sufficient, on one side, to allow the
triplet alignment of the two protons as in the upper part of
Figure 4 and, on the other side, to generate contact nonlocal
effects firom the penetration of the wave packet (here referred
to the square of the probability amplitude) of the central

spinning electron within the two peripheral protons.

Figure 4. Represents the structure of the deuteron as a restricted three body
of two un-mutated protons (due to their weight) and one mutated electron.
The top view uses the very effective “‘gear model" to avoid the highly
repulsive triplet couplings, while the bottom view is the same as the top view,
the particles being represented with overlapping spheres.

4.3. Representation of the Stability of the Deuteron

As indicated earlier, the lack of a quantitative
representation of the stability of the deuteron when composed
by the stable proton and the unstable neutron has been one of
the fundamental problems left unsolved by quantum
mechanics in about one century of research.

By comparison, protons and electrons are permanently
stable particles. Therefore, structure model equation (4)
resolves the problem of the stability of the deuteron in a
simple, direct, and visible way. The deuteron has no unstable
particle in its structure and, consequently it is stable due to
the strength of the nuclear force.

In fact, as shown below, the Coulomb and contact
attractive forces in pair-wise singlet couplings proton-
isoelectron are so “strong" to overcome Coulomb repulsion
among the two protons and form a bound state that is
permanently stable when isolated, as already established for
the valence bond and Cooper pairs of identical electrons.

4.4. Deuteron Charge

Model given by equation 4 represents the deuteron positive
charge +e. This is due to the fact that hadronic mechanics
generally implies the mutation of all characteristics of
particles, thus including the mutation of conventional charges
Q, and so that mutated charge of the deuteron constituents

Q. =ae, Q =be, Q,=ce (5)

where a, b, ¢ are positive-definite parameters, and e is the
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elementary charge. These mutations are necessary for
consistency with other aspects, such as the reconstruction of
the exact isospin symmetry in nuclear physics. However,
these mutations are only internal, under the condition of
recovering the conventional total charge +e for the system as
a whole, as it is the case for closed non-Hamiltonian systems.
Consequently, the charge mutations are subject to cancelation
in such a way to yield the total charge +e, i.e.,

Q;=(a+b+c)e=e;a+b+c=1 6)

However, the mutations of the charge is expected to be
quite small in value as being a second order effect ignorable
at a first approximation, the deuteron structure does not
require the mutual penetration of the charge distribution of
protons.

4.5. Representation of the Deuteron Spin

According to quantum mechanics the most stable state
between two particles with spin 1/2 is the singlet, for which
the total spin is zero. Thus for the ground state of the
deuteron as a bound state of a proton and a neutron should
have spin zero. This is exactly contrary to the experimental
value of spin 1. When the deuteron is assumed to be a three-
body bound state of two protons with an intermediate
electron, hadronic mechanics achieves the exact and invariant
representation of the spin 1 of model represented by equation
4,

It can be seen that the electron is trapped inside one of the
two protons, thus being constrained to have an angular
momentum equal to the spin of the proton itself. In this case,
with reference to Figure 4 the total angular momentum of the
isoelectron is null. Thus the ground state has null angular
momentum, the total angular momentum of the deuteron is
given by the sum of the spin 1/2 of the two isoprotons.

According to quantum mechanics fractional angular
momenta are prohibited because they violate the crucial
condition of unitarity, with consequential violation of
causality, probability laws, and other basic physical axioms.

For hadronic mechanics, the isotopic lifting and of the spin
S and angular momentum L of the electron when immersed
within a hyperdense hadronic medium are characterized by

ST |8) = (PS)(PS+1)|8) @)
§,T18)==(Ps)|3) ®)
*T)8) = (QL)(QL +1)| &) ©)

Q,T18) ==(QL)| &) (10)

where S=1/2 L =0,1,2,- where P and Q are arbitrary
(non-null) positive parameters and isotopically lified S and
L are § and {, respectively.

Santilli introduced the above isotopy of SU(2)-spin to
prevent the belief of the perpetual motion that is inherent
when the applicability of quantum mechanics is extended in

the core of a star.

In fact, quantum mechanics predicts that an electron
moves in the core of a star with an angular momentum that is
conserved in exactly the same manner as when the same
electron orbits around proton in vacuum, thus an electron in
the core of a star can only have a locally varying angular
momentum and spin as represented by Egs. 7 - 10.

In case of the isoelectron in the deuteron, we have the
constraint that the orbital angular momentum must be equal
but opposite to that of the spin:

R 1 . P -
S=(P)'§=—L=Q, Q=_—2'a Jzot=0 (11)

The exact and invariant representation of the spin 1 of the
ground state of the deuteron then follows according to the
rule

+S =1

p2

Jg=8§ 12

pl

Now suppose that the quantum mechanical angular

momentum operator L has expectation value 1, then

(a|L|a)=1 (13)

Under isotopic lifting the above expression easily acquires
the value 1/2 for T=1/2, { =2.

@|TLT|ay=1/2 (14)
However, in this case the isounit is given by i=1/T=2.
Therefore, when the isoeigenvalue of the angular momentum
is properly represented as an isonumber (an ordinary number
multiplied by the isounit), one recovers the original value 1.
@|TLT |81 =1 (15)
thus recovering causality and other laws.

It should be noted that there is no violation of Pauli’s
exclusion principle in this case since that principle only
applies to “identical" particles and does not apply to protons
and neutrons, as well known (more explicitly, one of the two
protons of Eq. 4 is in actuality the neutron since it has
embedded in its interior, the isoelectron).

4.6. Magnetic Moment of Deuteron

The experimental values of magnetic moment of deuteron
and its constituents are:

L = O8TSkch  _ 2795782¢h ]
¢ 27M, ¢ ot 4mM, ¢ (16)
and
eh eh M, 938272 ¢h

YT ImMe 4nMc M,

0511 4aM,c
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=1.836x10° —ch
47M ¢

P
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We know that deuteron is in its ground state with null
angular momentum and there is no orbital contribution to the
total magnetic moment from the two protons. Thus the exact
and invariant representation of the total magnetic moment of
the deuteron is then given by:

¢h
by = 2up + gy = 2%2,792 4J'ﬂMpC * Pore
ch
=0.8754
4nMpc ®
by, =0.8754—_ 5584
: 47M, ¢ 47M, e
M
= 4709—3 47090 M.
4mM ¢ deM,c M,
. h
=-8.621x10" —=_ = ~ K. 1
4J'LM P l“"c,orb l""e’S!»’"" ( 9)

€

In the above equation, missing contribution is provided by
the total magnetic moment of the isoelectron. The latter
numerical value is given by the difference between the orbital
and the intrinsic magnetic moment that is very small (per
electron’s standard) since the total angular momentum of the
isoelectron is indeed small. Also note the correct value of the
sign because the isoelectron has the orbital motion in the
direction of the proton spin. But the charge is of opposite
sign.

Thus the direction of the orbital magnetic moment of the
isoelectron is opposite to that of the proton, as represented in
equation 4. The small value of the total magnetic moment of
the isoelectron for the case of the deuteron is close to the
corresponding value for the neutron.

4.7. Deuteron Force

The assumption that the deuteron is a bound state of a
proton and a neutron does not provide any explanation for
physical origin of the nuclear forces. Quantum mechanics
provides mathematical description of the attractive force via
number of potentials, although none of them admits a clear
physical explanation of the strong attraction between protons
and neutrons. Santilli has always tried to generalize quantum
mechanics for nuclear physics by providing fundamentally
different notions and representations by using hadronic
mechanics principles.

We have seen that Model represented by equation 4
permits a clear resolution of this additional insufficiency of
quantum mechanics via the precise identification of two
types of nuclear forces, the first derivable from a Coulomb
potential and the second of contact type represented with the

isounit. On the inspection of Figure 4 we see that the
constituents of deuteron are in specific configuration such
that there we have short range pair-wise opposite signs of
charges and magnetic moments with long range identical
signs of charges and magnetic moments. Thus it implies that
the net attractive Coulomb force in the deuteron is
determined by the following expression of potential:

2 2

SV SN TS
0.6fm 12fm 0.6fm 1.2fm

(20)

In addition, the constituents admit an attractive force not
derivable from a potential due to the deep penetration of their
wavepackets in singlet pair-wise couplings, which force is
the same as that of the two identical electrons in the Cooper
and valence pairs, the structure of mesons, the structure of
the neutron, and can be represented via the isounit:

i= GXp(F(r)IwI ) xp} (r)dar) Q1)

The projection of the above force chracterizes a strongly
attractive Hulthen potential, that behaves at short distances
like the Coulomb potential, thereby absorbing the latter and
resulting in a single, dominating, attractive Hulthen well with
great simplification of the calculations. Thus it can be seen
that besides the above potential and contact force, no
additional nuclear force is needed for an exact and invariant
representation of the remaining characteristics of the
deuteron, such as binding and total energies. It can be proved
that the isoelectron is not restricted to exist within one of the
two protons, because there lies a 50% isoprobability of
moving from the interior of one proton to that of the other
proton. Therefore, the proton-neutron exchange is confirmed
by model given by equation 4.

4.8. Deuteron Binding Energy

We know that quantum mechanics is a purely Hamiltonian
theory in the sense that the sole admitted forcers are those
derivable from a potential. So direct and immediate
consequence is the impossibility of quantitative
representation of the deuteron binding energy. The the
experimental binding energy of deuteron is

E, =-226MeV 22)
that is, a representation via equations, rather than via the
existing epistemological arguments. Thus the mathematics
underlying quantum mechanics, being local differential, can
only represent the proton and the neutron of model as being
point-like particles. As a result of this fact quantum
mechanics admits no binding energy at all for the Deuteron,
including the absence of binding energy of Coulomb type,
because the neutron is abstracted as a neutral massive point.
The lack of a quantum mechanical binding energy for the
Deuteron persists even under the assumption that the
Deuteron is composed of six hypothetical quarks because
attractive and repulsive contributions between the
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hypothetical quarks of the proton and those of the neutron
cancel out, resulting in ne force acting at all between the
proton and the neutron, irrespective of whether attractive or
repulsive.

Model given by equation 4, under the covering laws of
hadronic mechanics has permitted the achievement of the
first quantitative representation of the binding as well as the
total energy of the Deuteron in scientific history, thus
illustrating the validity of Santilli’s original proposal of 1978
(18] to build the covering hadronic mechanics.

According to hadronic mechanics, the binding energy is
mainly characterized by forces derivable from a potential
since the contact forces due to mutual wave-overlapping of
wave packets have no potential energy. Hence, the binding
energy of the deuteron is due to the potential component of
the deuteron binding force given by equation 20. This can be
verified by using known values of charges and magnetic
moments for the two electron-proton pairs of the deuteron
and their mutual distances.

Now, Hadronic mechanics also permits the exact and
invariant representation of the total energy of the deuteron,
that is direct verification of model given by equation 4.

Now 1 amu = 941.49432 MeV gives,

M

P

- .w. =1.00727663 amu

M, = 0511MeV

e

=548597x10* amu

The mass of a nucleus with A nucleons and Z protons
without the peripheral atomic electrons is characterized by

M, e = My, = ZxM, +15.73xZ7? x10amu ~ (23)
and thus for deuteron
M, =2.1035amu =1875.563 MeV 24)

The iso-Schrédinger equation for model given by equation
4 can be reduced to that of the neutron, under the assumption
that the isoelectron spends 50% of the time within one proton
and 50% within the other, thus reducing model (equation 4)
in first approximation to a two-body system of two identical
particles with un-isorenormalized mass given by

M =937.782 amu (25)

The main differences are given by different numerical
values for the energy, meanlife and charge radius. Thus
Santilli derived the structured equation of the deuteron as a
two-body nonrelativistic approximation

d= (f’pf’f )hm (26)

L V2 _ vy _XP(=I/R)
2M.,

1-exp(-r/R)

J B=Elp) @7

E, =2E;-|E|=1875MeV (28)
) =202 | &) o’E;/h = 29)
R, =432x10"cm (30)

The above equations admit a consistent solution reducible
to the algebraic expressions as for the case of Rutherford-
Santilli neutron,

k,=1, k=25 @31
It is worth neting that, in the above model, the deuteron
binding energy is zero,

- kz -1 '
E V( i, J =0 32)
because all potential contributions have been included in the
structure of P and, for the binding of the two Pan p(i(tential
forces have been absorbed by the nonlocal forces and "2 has
now reached the limit value of 1 (while being close to but
bigger than 1). It has been observed that a more accurate
description can be obtained via the restricted three-body
configuration of Figure 4. This model gives an exact solution.
The model can be constructed via a nonunitary transform of
the conventional restricted three-body Schrédinger equation
for two protons with parallel spin 1/2 and one isoelectron
with null total angular mopen s per Figure 4 with
conventional Hamiltonian R —w\fm‘ , where ‘?C"“' is
given by equation 20. The nonunitary transforms then
produces an additional strong Hulthén potential that can
absorb the Coulomb potential resulting in a solvable equation.

4.9. Electric Dipole Moment and Parity of Deuteron

It is well known that the electric dipole moment of the
proton, neutron and Deuteron are null. The preservation of
these values by hadronic mechanics is assured by the general
property that axiom-preserving lifting preserves the original
numerical values, and the same holds for parity. The positive
parity of the deuteron is represented by hadronic mechanics
via the expression

Isoparity = (-1)" (33)
~ The value for unperturbed deuteron in its ground state
L=L=0 1 should be ted Shat on one hand, the parity of
the deuteron is positive *~~ "/, while on the other hand, in
order to attempt a recombination of deuteron magnetic
moments and spin, the unperturbed deuteron is assumed as
being a mixture of different levels, some of which have non-
null values of L | thus implying the impossibility of a
positive parity.

Thus Santilli has shown that the isotopic branch of
nonrelativistic hadronic mechanics permits the exact and
invariant representation of “all" the characteristics of the
deuteron composed of two isoprotons and one isoelectron, at
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the same time resolving all quantum insufficiencies spelled
out in the main text above.

4.10. Reduction of Matter to Isoproton and Isoelectrons

It is evident that, following the reduction of the neutron to
a proton and an electron and the reduction of the deuteron to
two protons and one electron, Santilli has indeed achieved
the important reduction of all matter to protons and electrons,
since the reduction of the remaining nuclei to protons and
electron is consequential, e.g., as a hadronic bound state of
two mutated deuterons represents Helium nucleus.

We would like to close our discussion by indicating
Santilli’s additional astro- physical contribution given by the
fact that the so-called “neutron stars" are in reality an
extremely high density and high temperature fluid composed
by the original constituents of the star, protons and electrons
in their isoprotons and isoelectrons realization, in conditions
of deep mutual penetration under the laws of hadronic
mechanics.

5. Conclusion

As it is well known, the local-differential structure of
quantum mechanics solely permits the representation of
plarticles as being massive points. This abstraction has been
proved to be effective for the representation of the structure
of atoms, since the atomic constituents are at very large
mutual distances compared to the size of charge distributions
or wave packets of particles.

As shown by R. M. santilli in mathematical and physical
details, the insufficiency of quantum mechanics to represent
the characteristics of the neutron in its synthesis from the
hydrogen atom in the core of a star are due precisely to the
insufficiency of the representation of the proton and electron
as massive points.

In fact, the representation of the proton as an extended
charge distribution of 1fin radius has permitted the
representation of all characteristics of the neutron as a
compressed hydrogen atom in the core of stars [8]. As an
illustration, the anomalous magnetic moments of the neutron
is readily represented by a contribution which is impossible
for quantum mechanics, but intrinsic in the very conception
of hadronic mechanics, namely, the contribution from the
orbital motion of the electron when totally compressed inside
the proton.

The same advances have shown that the characteristics of
the electron change in the transition from isolated conditions
in vacuum to the condition of total penetration within the
hyperdense proton.

This difference has been quantitatively and invariantly
represented by Santilli via, firstly, the transition from Lie’
theory to the covering lie-Santilli isotheory, and, secondly,
via the transition from particles to isoparticles, namely, the
transition from irreducible unitary representations from the
conventional Lorentz symmetry to those of the covering
Lorentz-Santilli isosymmetry. An exact and time invariant
representation of all characteristic of the neutron as a

generalized bound state of one isoproton and one isoelectron
then follow.

Following, and only following the achievement of a
constant, exact and invariant representation of the structure
of the neutron Santilli has applied the results to the structure
of the deuteron conceived as a three-body generalized bound
state of two isoprotons and one isoelectron [2].

This has permitted the exact and invariant representation
of all characteristics of the deuteron, with intriguing
implications, such as the reduction of all matter in the
universe, to protons and electrons in various dynamical
conditions.

As an illustration, Santilli’s astrophysical contributions
finds their root in the fact that the so-called “neutron stars"
are in reality an extremely high density and high temperature
fluid composed by the original constituents of the star,
protons and electrons, in conditions of deep mutual
penetration under the laws of hadronic mechanics.

Needless to say, a virtually endless list of intriguing open
problems have emerged from the above new vistas in nuclear
physics,m among which we mention: the need to reexamine
from its foundation the notion of nuclear force due to the
emergence of a component not derivable firom a potential
whose control may lead to new clean nuclear energies; the
implications of Santilli’s deuteron structure on the natural
radioactivity elsewhere; the exact and invariant representation
of the spin and magnetic moments of all nuclei; and others.
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Abstract: In order to render this paper minimally self-sufficient, we review and specialize the main structure of the
isomathematics to nuclear constituents as extended and deformable charge distributions under linear and non-linear, local and
non-local and Hamiltonian as well non-Hamiltonian interactions; we then review and specialize for the nuclear structure the main
laws of the isotopic branch of hadronic mechanics known as isomechanics; we review and specialize the method for turning
quantum mechanical nuclear models for point-like nucleons into covering isomechanical models for extended and deformable
constituents under the most general known realization of strong interactions; we then review and specialize to nuclear structures
the consequential notion of isoparticles; we then review the ensuing, first known, numerically exact and time invariant
representation of the magnetic moments of stable nuclides; we then review the structure of the neutron as a bound state according
to isomechanics of an isoproton and an isoelectron; and we finally review the ensuing three-body structure of the Deuteron. Via
the use of the preceding advances. We then present, apparently for the first time, a numerically exact and time invariant
representation of the spin of stable nuclides, firstly, via their approximation as isotopic bound states of isodeuterons, isoneutron
and isoprotons, and secondly, via their reduction to isobound states of isoprotons and isoelectrons. Some observations on the
nuclear configurations so obtained have also been presented in the case of the first model and in view of the second option we
have identified in isoelectrons the nuclear glue which tightly holds isonucleons of stable nuclide in the atomic nucleus in the
preferred orientation of their intrinsic spins. In Appendix A, we provide a technical review specialized for the first time to nuclear
physics of the Lie-Santilli theory and its main application to the notion of isoparticles as isoirreducible isounitary
isorepresentations of the Lorentz-Poincaré-Santilli isosymmetry.
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This paper is dedicated to the memory of Enrico Fermi who:

expressed doubts as to whether conventional geometries apply
to the structure of particles; supported the introduction of the
size of nucleons for basic advances in nuclear physics;, and
suggested that the anomalous magnetic moment of nuclei may
be due to the deformation of their charge distributions under
the strong nuclear forces [1), all visions that are quantitatively
studies in this paper.

1. Introduction

In the authors view, quantum mechanics is exactly valid for
the atomic structure, but it is only approximately valid for the

nuclear structure because quantum mechanics achieved a very
accurate representation of atomic data, compared to the
known inability by quantum mechanics to achieve an accurate
representation of nuclear data, thus supporting the historical
argument by Einstein, Podolsky and Rosen according to which
quantum mechanics is “incomplete" [2].

A first reason for the above dichotomy is the fact that the
mathematics underlying quantum mechanics (including the
local-differential calculus, functional analysis, Hilbert spaces,
Lie algebras, etc.) can only represent a finite number of
isolated point-particles moving in vacuum, which conditions
areknown as characterizing exterior dynamical problems. The
abstraction of particles into dimensionless points is evidently
effective for the atomic structure due to the large mutual
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distances of the atomic constituents, but the same abstraction
is ineffective for the nuclear structure because nuclear
constituents consist of extended charge distributions in
conditions of partial mutual penetration, which conditions are
known as characterizing broader interior dynamical problems
(Figure 1).

Figure 1. A conceptual rendering (top view) of the abstraction of the nuclear
structure as a sphere with isolated point-particles in its interior which is
necessary for the applicability of the mathematics underlying quantn
mechanics, namely, the local-differential calculus with related Hilbert spaces
and Lie's theory. By contrast (bottom view), the nuclear structure consists of
hyperdense, extended charge distributions in conditions of partial mutual
penetration, as one can verify by the fact that nuclear volumes are generally
smaller than the sum of the volumes o fthe constituent protons and neutrons.
1In the authors view, the inability by quantum mechanics to achieve an exact
representation of nuclear data is due to the evident insufficiency of the
abstraction of the nuclear structure depicted in the top when compared to the
physical reality of the bottom view. This first insufficiency establishes the
Jfundamental need of a basically new mathematics for the representation of
extended charge distributions as they occur in the nuclear reality (Section 2).

A second reason for the above dichotomy is that the
fundamental symmetries of non-relativistic and relativistic
quantum mechanics, the Galileo and Poincaré symmetries
respectively, are solely valid for a Keplerian system, namely,
for a system of particles orbiting around a heavier center, as it
is the case indeed for atomic structures. By contrast, as
stressed in the recent literature, nuclei do not have nuclei and,
therefore, the symmetries valid for systems of point particles
with a Keplerian nucleus cannot possibly be exactly valid for
structurally different systems of extended particles without a
Keplerian nucleus (Figure 2).

A third reason for the above dichotomy is that none of the
20™ century sciences, including quantum mechanics and
special relativity, can represent Fermi’s historical hypothesis
that the deviations of the values of nuclear magnetic moments
from the predictions of relativistic quantum mechanics are due
to deformations of the charge distributions of protons and
neutrons (nucleons) when under the strong interactions of a

nuclear structure, with consequential alteration (called in this
paper mutation) of their intrinsic magnetic moments (Figure
3). This insufficiency is evidently due to the fact that
dimensionless points cannot experience deformations.
Therefore, a mathematics which can solely represent
dimensionless points is structurally unable to represent the
deformation of extended charge distributions as they occur in
thenuclear reality.

A fourth reason for the above dichotomy is the fact that
dimensionless points can only experience interactions at a
distance, thus derivable firom a potential (interactions
technically known as variationally self-adjoint [3a]). In view
of this basic feature, recent representations of the strong
nuclear force have reached un-reassuring limits, such as a
Hamiltonian with forty or so potentials, without the desired
achievement of an exact representation of nuclear data. In the
authors view, it is necessary to complement these
conventional studies with the admission that the interactions
between extended charge distributions under conditions of
partial mutual penetrations are of contact type, thus not being
derivable from a potential (interactions technically known as
variationally non-selfadjoint [3a]). Consequently, it is
recommendable to ascertain whether some of the potential
components of nuclear Hamiltonians should be replaced with
non-Hamiltonian representations.

KEPLERIAN CENTER

LACK OF KEPLERIAN CENTER

Figure 2. A conceptual rendering of the second impossibility for quantum
mechanics to be exactly valid for the nuclear structure, which is given by the
Jact that the basic symmetries of non-relativistic and relativistic quantum
mechanics, the Galileo and Poincaré symmetries respectively, only apply for
Keplerian systems of particles orbiting around a heavier nucleus. By contrast,
R. M. Santilli has stated several times in his writings that “nuclei do not have
nuclei," thus implying a necessary breaking of said fumdamental symmetries,
with consequential lack of exact character of non-relativistic and relativistic
quantum mechanics for the nuclear structure. The same breaking is confirmed
by numerous additional evidences, such as the fact that the partial mutual
penetration of nucleons in a nuclear structure implies the presence of contact
interactions not representable with a Hamiltonian, thus implying the
inapplicability of the entire Lie theory, let alone of Lie s symmetries, due to its
strictly Hamiltonian character. This second insufficiency establishes the need
for a covering of Lie's theory for the construction of the symmetries of systems
of extended particles without Keplerian nuclei under Hamiltonian as well as
non-Hanmiltonian internal forces (Section 2 and Appendix A).
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A fifth reason for the above dichotomy is that quantum
mechanics is certainly effective for the description of nuclear
fissions due to the effective representation of the fission debris
as point particles, but quantum mechanics has proved to be
ineffective for the achievement of nuclear fusions for all the
above indicated reasons, plus the fact that nuclear fusions are
structurally irreversible over time while quantum mechanics
is structurally reversible, hence the need for a covering of
quantum mechanics that can represent extended charge
distributions with Hamiltonian and non-Hamiltonian
interactions in generally irreversible conditions.

Inthis paper, we shall briefly outline decades of research by
one of us (R. M. Santilli) [3-33] for: the construction of a
generalization of 20" century mathematics suitable to
represent extended particles (Figure 1); the generalization of
Lie’s theory for the construction of symmetries of systems of
extended particles without Keplerian center under
Hamiltonian and non-Hamiltonian internal forces (Figure 2);
the representation of Fermi’s historical hypothesis on the
deformability of nucleons; and the consequential, first known,
exact and time invariant representation of nuclear magnetic
moments (Figure 3).

e

Is &

Figure 3. A third insufficiency of quantum mechanics for nuclear structures is
given by the historical prediction by Enrico Fermi [1] that the anomalOus
values of nuclear magnetic moments is due to deformations of the charge
distribution of protons and neutrons when under the strong interactions of the
nuclear structure, with consequential alteration of their conventional
magnetic moments. In fact, a quantitative treatment of Fermi’s teaching
requires the use of the deformation theory which is known to be incompatible
with quantum mechanics. This third insufficiency establishes the need that the
novel mathematics and Lie’ theory for extended charge distributions should
be constructed in such a way to be compatible with the deformation theory
“ab initio" (Section 2 and Appendix A).

Since the advances considered here [3-33] are only known
to a restricted number of experts, and they are generally
unknown to the nuclear physics community, in order to render
minimally understandable the advances presented in this paper,
it has been necessary to: outline in Section 2 the novel
mathematics (known as isomathematcs for the reversible case
and genomathematics for the irreversible form); outline in
Section 3 the corresponding invariant branches of hadronic
mechanics (known as isomechanics and genomechanics
respectively); outline in Section 3.1 the non-relativistic
nuclear isomechanics; outline is Section 3.2 the relativistic
nuclear isomechanics; outline in Section 4 a simple
construction of iso- and gene-mechanics; outline in
subsequent sections the exact and time invariant

representation of nuclear magnetic moments (Section 5), the
test of spinorial symmetry by neutron interferometry (Section
6), and then outline the emerging new structure of the neutron
(Section 7), deuteron and nuclei at large (Section 8). Above all,
it has emerged as recommendable to formulate advances [3-33]
in a form directly applicable to nuclear physics, rather than
leaving such an adaptable to the imagination of non-initiated
readers.

We shall then present, apparently for the first time, the
achievement of an exact and time invariant representation of
the spin of stable nuclide which, thanks to the above advances,
is compatible with the mutation of the intrinsic magnetic
moments of nucleons, and then indicate the implications of
these advances in nuclear physics for basically new,
environmentally acceptable forms of nuclear energies. For the
sake of self sufficiency of this presentation we start with a
very brief description of stable and unstable nuclides in
Section 9, a brief description of new and old vistas of nuclear
forces with the earlier conjectural assertions of the stability of
nucleons in Section 10. In Section 11 we have developed
notations to represent isoneutrons and isodeuterons. We have
presented in Section 12 two models of nuclear configuration,
namely (i) considering isodeuterons, isoneutrons and
isoprotons as isonucleons (Section 12.1) and (ii) isoprotons
and isoelectrons as isonucleons (Section 12.2). These nuclear
configurations were written down in a way to be
commensurate with the experimental nuclear spins and
tabulated in Section 13 for both the nuclear models stated
above. We have also presented our observations in Section 14
on these nuclear configurations with an idea to provide the
facts about the isonucleons within the nuclides that would help
in developing corresponding theories of nuclear stability and
generate new explanations of other nuclear properties
(Sections 14.1 and 14.2). In the second model of nuclear
configuration arrived at in this paper we propose, apparently
for the first time, that the isoelectrons serve as the nuclear glue
that tightly holds the nuclear isoprotons together in the atomic
nucleus (Section 14.2). For the sake of ready reference we
have also presented the Lorentz-Poincaré-Santilli
Isosymmetry and its characterization of isoparticles in
Appendix A.

2. Elements of Iso-Mathematics and
Geno-Mathematics

The first known time-invariant representation of extended
and deformable charge distributions in interior dynamical
conditions was proposed by Santilli in the early 1980s [3b] via
the isotopic (in the sense of being axiom-reserving) lifting of
the associative product 4B between generic quantities
(numbers, functions, matrices, operators, etc.) into the form,
todays known as Santilli isoproduct,

AB= AB— ATB= A% B 6]

where T is solely restricted to be invertible, but otherwise
possesses an arbitrary dependence on local variables such as:
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time ¢, coordinates *, velocities V,density # ,temperature
7, index of refraction £, frequency @, wave functions ¥,
etc., T= f(t,r,v,u,r, P,wY,...).

When 7 is positive-definite and invariant under
time-reversal f — -, it is called isotopic element, and when it
is positive-definite (or merely Hermitean) but non-invariant
under time reversal, it is called the genotopic element.

The representation of extended and deformable charge
distributions is then immediately achieved via realizations of
T ofthe type [3]

T= Diag.(—lz—,—li-,.l_z,_l_z_J P @)
mon n

where: 1, =n,(t,r,v, 4,7,0,w0,9,...),k =1,2,3, represent, in
this simple case, the deformable semi-axes of a nucleon
assumed for simplicity to be an ellipsoid; #,=p
characterizes the density of the nucleon considered; all
quantities #,,4 =1,2,3,4  called characteristic quantities of

the nucleon considered, are normalized to the value #, =1

for exterior conditions in vacuum; I'(®,..) is a positive
definite finction or operator characterizes all non-linear
interactions not representable’ with the conventional
Hamiltonian; and the integral in the exponent of Eq. (2) tends
to zero at mutual distances of particles much bigger than their
charge radius (about 1fm =10~" cm), thus implying the limit

lim 7=1,
r>»1fn (3)
for which
lim (Ax B)= AB.
r»lfm( ) *

When 7 verifies the conditions
T(t,.) =T1(t,..) = T(=t,.) =T1(=t,...) 5)

itis called the isotopic element, while under the verification of
the conditions

T(t,.)=T1(t,..) » T(=t,..) = T1(~1,...) (6)

T is called the genotopic element. Conditions (5) characterize
the use of isomathematics, while conditions (6) characterize
the use of the broader genomathematics. The most important
mathematical difference is that the conventional Lie theory
with historical product between Hermitean operators

[4,B]= AB- BA, Q)

at the foundations of quantum mechanics is lifted in the former
case into Santilli Lie-isotopic theory with basic product

[4)B]= AXB~B% A= ATB- BT4, ®

while in the latter case Lie’s theory is lifted into the broader
Santilli Lie-admissible theory with covering product

(A% B)= AT(~t,..)B-BT(1,,,,)A= ARB-BS4, 9

R=R', S=5' R=S, (10)
according to conceptions, formulations and terminologies first
introduced by Santilli in Ref. [3b].

It should be indicated from the upset the importance of
conditions (5) and (6) for nuclear physics. In fact, conditions
(5) characterize a stable nuclide composed by extended
nucleons when isolated from the rest of the universe, thus
being reversible over time. By contrast, conditions (6)
characterize irreversible nuclear reactions, such as nuclear
syntheses.

In fact, as it is well known, the time reversibility of quantum
mechanics is ultimately due to the invariance of the Lie
product under anti- Hermiticity (for hermitean operators A and

B)

[4,B] = - [4,B]. (11)
It is then easy to see that isomathematics and its ensuing
physical formulations are also time reversal invariant due to
the invariance of the Lie-Santilli isoproduct under anti

Hermiticity,
[42B] = - [4}B]". (12)

By contrast, genomathematics and its related physical
formulations are irreversible over time precisely because
Santillis  Lie-admissible product violates, by central
conception, the invariance under anti-Hermiticity

(43 B) = - (43 B)". (13)

Monograph [3b] presented the lifting of most 20™ century
applied mathematics via the systematic lifting of all products
into the isotopic form (1), although all liftings were
formulated on conventional numeric fields.

Since this paper deals with magnetic moments and spins of
stable, thus reversible nuclides, we shall mainly use
isomathematics under basic conditions (5). However, it is
recommendable for the non-initiated reader to know that that
the extension to irreversible nuclear processes is immediate,
thus being recommendable when applicable.

Subsequently, Santilli discovered that the emerging
formulations were not invariant over time, that is, they failed
to predict the same numerical values under the same
conditions at different times. In order to resolve this basic
insufficiency, Santilli re-examined in 1993 [4] conventional
numeric fields F(n,%1) with classification of numbers 7
into real, complex or quaternionic numbers 7, conventional
associative product nm=nxm€EF and basic multiplicative
unit 1, Ixn=nxl=n VnEF,

In this way, Santilli [4] discovered that the axioms of
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numeric field also admit solution with an arbitrary basic unit  ,

under the conditions that: 1) all numbers are lifted in the
isonumbers

n—~>n=nl; (14)
2) all products are lifted into the isoproduct (1),
(15)

nm— nxm= nlTm;

and 3) the conventional unit 1 of 20th century numeric field
is lifted into the isounit under the sole conditions of being
positive-definite and being the inverse of isotopic element 7 ,
1

I= (16)

~

Under these conditions all axioms of a numeric field are

verified and [ is the correct left and right multiplicative unit,

Ixn=nxl=n VnEF. a7

Under conditions (4), ] is called Santilli isounit, while
under broader conditions (5) it is called Santilli genounit [4].
This lead to the discovery of new numeric fields F'(#,%, /)

called isofields under conditions (4) and genofields under
conditions (5) with corresponding novel isoreal, isocomplex
and isoquaternionic numbers and general, genocomplex and
genoquarternionic genonumbers 7 = nJ -

Following the discovery of isonumbers and genonumbers,
all theories originally formulated on conventional fields [3]
where lifted into formulations defined over isofields and
genofields [5, 6], but the crucial time invariance of the
numeric predictions was still missing.

Inorderto resolve this impasse, Santilli reinspected in 1995
the Newton-Leibnitz differential calculus and discovered that,
contrary to popular beliefs in mathematics and physics for
centuries, the Newton-Leibnitz differential calculus depends
on the assumed basic multiplicative unit because, in the event
said unit has a functional dependence on the differentiation
variable, the ordinary differential dr must be generalized
into the form first introduced in memoir [7]

= Td[ri(F,..)] = dr + rTdi(F,...), (18)
and called isodifferential under conditions (4) and

genodifferential under conditions (5), with corresponding
isoderivatives (and genoderivatives) [7]

¥ _
or

af(') 31(r )

+ FHT 1l (19)

where, for consistency, coordinates and functions must be
isoscalars, that is, have values in g with structures
Fou)y F(Fo) = FFDIE ). (20)

It should be stressed that the representation of nuclear

F=ri

magnetic moments and spin presented in this paper depends
crucially on a non-potential component of the nuclear force
due to partial mutual penetration of the charge distribution of
nucleons, which non-potential components is represented
precisely via the isodifferential calculus and, therefore, with
the novel additional terms in the r.h.s. of Egs. (18) and (19).
In memoir [7] Santilli introduced a third broader
mathematics under the name of hypermathematics which is
given by a covering of genomathematics when the genounit is
multi-valued (rather than multi-dimensional), e.g. of the

ordered type i={il,i2,...,i,,} where 7 can assume an

arbitrarily larger values such as n=10" as needed for
biological structures.

The discovery of the generalized differential calculus
signed the achievement in memoir [7] of mathematical
maturity in the generalizations of 20" century applied
mathematics at large, that stimulated seminal advances in
mathematics (see representative monographs [8-11]) as well
as generalized physical and chemical theories, including novel
industrial applications indicated below.

The above studies lead to the following chain of generalized
mathematics:

1. IsoMathematics, which is used for the representation of
stable and isolated, thus time-reversible nuclei
composed by extended nucleons in conditions of partial
mutual penetration and is characterized by the lifting of
the totality of 20™ century applied mathematics in such a
way to admit a positive-definite and time-reversal
invariant isounit (5) at all levels of treatment.

2. GenoMathematics, which is used for the representation
of time-irreversible nuclear reactions and it is
characterized by a dual lifting of the totality of 20th
century mathematics in such a way to admit a
positive-definite time-noninvariant genounit (6) at all

)=1/7(@,..)
characterizes motion forward in time, and its time
reversal image f(—t,...)=1/f‘(—t,,..)
motion backward in time, irreversibility over time being
assured by inequivalent forward and backward genounits

I,y = I(-¢,

The knowledge of the above distinct mathematics is
important for researchers to prevent the use of time
non-invarijant isounits that may eventually imply irreversible
contributions for the structure of isolated and stable nuclei,
with evident inconsistencies.

Important independent contributions on the foundations of
isomathematics and genomathematics can be found in
monographs [8-11] and in their bibliographies.

The main methodological problems for the representation
of nuclear magnetic moments and spins are the following:

2.I: The representation of the deformation of the charge
distribution of protons and neutrons when members of a
nuclear structure and the ensuing mutation of their intrinsic
magnetic moments according to Fermi’s historical hypothesis
[2]. This first central problem was solved by Santilli via the
use of the isotopies of the rotational symmetry [12], as

levels of treatment, one genounit, f(t,..

characterizes
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reviewed in the next section and in Appendix A.

2.II: The representation of the mutation of the intrinsic
magnetic moments of nuclear constituents in a way
compatible with the conventional ten conservation laws of
total physical quantities (the conservation of the total angular
momentum, total linear momentum, the center of motion, and
the total energy), which must hold for all isolated bound states
of particles. This problem was solved by Santilli by showing
the isotopies of the Lorentz and of the Poincaré symmetry
[15-17] do verify indeed said conventional total conservation
laws because in the lifting of Lie’s theory into the Lie-Santilli
isotheory the generators of Lie algebras (that represent said
conservation laws) remain unchanged, and only their products
liffted for the representation of extended shapes and
non-Hamiltonian interactions.

2.I1I: The representation of the spin of stable nuclides in a
way compatible with mutation of the magnetic moments of
protons and neutrons under strong nuclear interactions. This
problem will be solved, apparently for the first time in this
paper, by showing that the isotopies of the SU(2) -spin
symmetry do indeed admit a “hidden" degree of freedom
directly connected to the mutation of spin.

The central physical notion used in this paper for the
solution of the above problems and for the characterization of
extended-deformable nuclear constituents in conditions of
partial mutual penetration is that of isoparticle, specialized to
isoprotons, isoneutron and isoelectrons.

The understanding of the notion of isoparticle and,
therefore, of this paper, requires at least some knowledge of
the central branch of isomathematics used for the derivation of
the new notion of isoparticle, which is given by the isotopies
of Lie’s theory, originally proposed by Santilli in monograph
[3b], including the isotopies of universal enveloping
associative algebras, Lie’s theorem and Lie’s transformation
groups.

Among a rather large literature in the field, Santilli’s papers
specifically devoted to the notions of isoparticle are given by
the isotopies of: the rotational symmetry O(3) [12]; the
SU(2) spin symmetry [13, 14]; the Lorentz symmetry
0(3.1) inclassical [15] and operator [16] forms; the isotopies
of the Poincaré symmetry P(3.1) [17]; the spinorial
covering of the Poincaré symmetry [18]; and the isotopies of
the Minkowskian geometry [19]. The notion of isoparticle was
then studied in details in Refs. [20-23].

In view of these advances, the isotopies of Lie’s theory are
today called the Lie-Santilli isotheory (see independent
studies [24-33]).

Due to its fundamental character for the exact and time
invariant representation of magnetic moments and spins, the
notion of isoparticle will be reviewed in detail in Appendix A.

3. Elements of Nuclear IsoMechanics and
GenoMechanics

The non-unitary covering of quantum mechanics was
proposed under the name of hadronic mechanics by R. M.

Santilli in monograph [3b] of 1981 (see page 112 for the
proposal of the name of the new mechanics.) The original
proposal comprised two branches, the isotopic branch with
Lie-isotopic structure (8) and in the genotopic branch with
Lie-admissible structure (9).

A fundamental contribution to hadronic mechanics (which
is fully valid nowadays) was provided in paper [34] of 1982 by
the mathematician (late) H. C. Myung and R. M. Santilli via
the isotopies and genotopies of the Hilbert space (today
known as the Hilbert-Myung-Santilli isos pace and genos pace
respectively) and the indication that hadronic mechanics
removes the divergencies of quantum mechanics via the
isotopies of Dirac Delta “distribution" (today lnown as the
Dirac-Myung-Santilli isodelta “function” and the fast
convergence of isotopic series (see, e.g., Ref. [35]).

These initial studies were formulated on a conventional
field and elaborated via the conventional differential calculus.
Hadronic mechanics achieved a mature formulation only
following the discovery of the novel isonumbers and
genonumbers [4] in 1993 and of the isodifferential and
genodifferential calculus [7] in 1996 (see monographs [22] for
a general presentation of hadronic mechanics, including the
fundamental notion of iso- and geno-particles).

With the passing of time, the above indicated two branches
of hadronic mechanics acquired the names of isomechanics
and genomechanics, respectively. Since these names have
received a rather wide acceptance by the physics community,
they have been adopted in this paper.

The reader should be aware that hadronic mechanics has a
variety of applications in disparate fields all dealing with
interior dynamical problems. The main reference for the
specialization of isomechanics to nuclear physics is given by
memoir [26] of 1998, while the main reference for
genomechanics is given by memoir [37] of 2006.

Since hadronic mechanics at large, as well as isotopic and
genotopic branches are essentially unknown to the nuclear
physics community, it appears recommendable to provide in
this section an elementary review specialized to nuclear
physics sufficient for the understanding of the derivation of
exact and invariant magnetic moments and spins, with the
understanding that an in depth study of memoirs [35, 36] is
essential for serious knowledge.

3.1. Elements of Non-relativistic Nuclear IsoMechanics

Non-relativistic nuclear isomechanics is characterized by
the lifting of Planck’s constant # into a 3x3 -dimensional,
positive-definite space isounit [4, 7]

h— I, =1/T, = Diag.(n?,n? ,n?)> 0 1)

where the quantities 7,k =1,2,3 : represents ab initio the
semiaxes of the extended-deformable shape of nucleons when
members of a nuclear structure (see the 1.h.s. of Figure 3); are
normalized to the perfect sphere n> =1 in empty space; are
restricted to be positive-definite and time-reversal invariant;
and possess an unrestricted functional dependence on all
needed local variables (see Section 1)
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nt =nk(, 79, 4,7, 0,0,4,..)> 0, where the “hat" denotes
the referral to infernal variables, while variables without a
“hat" refer to those of the external observer.

Note that we have ignored in Eq.(21) for simplicity the
multiplicative exponential term representing internal
non-linear, non-local and non-Hamiltonian interactions as in
Eq. (2) since this term can be embedded into the »? via their
simple redefinition.

Assumption (21) implies that all possible products AB of
conventional nuclear formulations (including the product of
numbers, functions, matrices, etc.) have to be lifted to the
isoproduct [4],

AB— A%B = AT.B. (22)
with Lie-isotopic structure (8) [4].

Assumptions (21) and (22) also implies that conventional
numeric fields F(n,%,1) are lifted into isofields F(5,%,1;)
with isonumbers 7 = ni, [4].

Note that, in the event the characteristic quantities #'s
depend on time in a way not invariant under time-reversal,
instead of the single unit (21) and product (22) for action to the
right and to the left, we would have the genoproduct and
genounit for motion forward in time [36]

AB— A> B=AT(,.)B, I’ =1/T(,..), (23)
and the genoproduct and genounit for motion backward in
time

AB=» A< B= AT(~1,..)B, T(1,..) = T(~1), I =11T(=1,..) (24)

with Lie-admissible structure (9).

Therefore, the use of time-reversal non-invariant quantities
n.,k=1,2,3 for the study of a stable, time-reversal invariant
nuclear structure would imply the inclusion of un-warranted
irreversible contributions that should solely be admitted for
irreversible nuclear reactions [36].

Nuclear isomechanics is additionally characterized by the
lifting of time ¢ into the isotime

Iy

I (25)

tint t

1=t

a
—_— =
ext t

where ¢,, is the time of the external observer, f, is the
intrinsic time in the interior of nuclei, and f, is different than

f, , both dimensionally and numerically.
The representation of nuclear magnetic moments and spins
has been achieved in the above stated paper via the simpler

case in which i; =1 and the sole use of the time of the

external observer =1, .
ignored for simplicity.
Nevertheless, the non-initiated reader should be aware that,
on strict technical grounds, isomechanics implies that the time
inthe interior of nuclei is generally different than the external
time [22].
The carrier isospace of isocoordinates r = rf,. is given by

Consequently, isotime will be

the Euclid-Santilli isospace [7] E(f,é,f) with isometric

5= f;é where 0 = Diag.(1,1,1) the conventional
Euclidean metric, with isoline element
PP=p b, % =T 8 ), =
2 2 2
[ R Dol P
—( ‘2+—%-+—%-J1, (26)
non m

where one should keep in mind that the elements of the
isometric must be isonumbers as a condition for the isoline
element to be anisoscalar with valueintheisoreal isofield R .

The understanding of nuclear isomechanics requires the
knowledge that the isotopies map ellipsoids on conventional
Euclidean space into the perfect sphere in the Euclid-Santilli
isospace. This is due to the fact that the deformation of the

semiaxes 1, —>1/n’ is done with the joint inverse
deformation of the isounit 1, — #; , by therefore yielding the

original value of the perfect sphere 1, in isospace.

The reconstruction of the perfect sphere in isospace is
essential for the isomorphism of the Lie-Santilli isorotations

O@3) with the conventional rotations O(3) under the

central condition of including the deformation theory
(Appendix A).

The isooperator isospace is given by the
Hilbert-Myung-Santilli isospace [34] H defined on isofields
of isocomplex isonumbers C with isounit (21), isostates

|$(,7)) and isoinner isoproduct

@ 1219y, = @ 1T\, @7)

isonormalization

AR YA A (28)

and isoexpectation values for an iso-Hermitean isooperator,

0,

D =@ 13ORIPL =@ ITOL 1P, (29)
with particular properties
B9y =195 @ IKL%I9E =T, (30)

confirming that fr is the correct isounit of the theory.

The dynamical equations of non-relativistic nuclear
isomechanics are given by the Schrédinger-Santilli
isoequationon H over C [3,7]

A%y = AEp)T6p,09,..) 1) =
= EX|¢py=E|)

1%, |9)
@31

the isolinear isomomentum, introduced for the first time in
memoir [7] following the discovery of the isodifferential
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calculus
PRIy =i %0, |9) = ~il0; |9), (32)

the Heisenberg-Santilli IsoEquation in the infinitesimal
version [3, 7]

%"= =[01H]1= 0% A- A% 0= 0T A-ALO (33)

2|

the integrated version to a finite transform (see Refs [22, 36]
for the correct formulation in isomechanics)

o) = vt =gy, (34)
UU' =1, (35)

and the isocommutation rules
(i3B1=85. 1hshI=li51=0. GO

where the “hat" on operators denotes their definition on {
over ¢

3.2. Elements of Relativistic Nuclear Isomechanics

Relativistic nuclear isomechanics is characterized by the
lifting of Planck’s constant # into a 4x4 -dimensional,
positive-definite, thus diagonalizable isounit (see Refs. [22]
and the memoir [44])

h—1=1/T = Diag.(n?,n,n},n?)>0 (37)
where: the #,k=1,2,3 continue to represent deformed
nucleons; 7, is a geometrization of the hyperdense medium
inside nucleons’ the characteristics quantities

n,,#=1,2,3,4 are subjected to the normalization for the
vacuum n; =1; the multiplicative exponential term as in Eq.

(1) is absorbed by the 7, which have an arbitrary functional

dependence on local internal variables solely subjected to be
invariant under time reversal.

Assumption (35) implies that the totality of all products
AB of relativistic nuclear isoformulations are lifted into the

isoproducts 4% B= ATB defined on isofields [(%,%,1).

Again, care must be exercised in the study of stable nuclei
in order to prevent the transition from isomechanics to
genomechanics that occurs whenever the characteristic

quantities ®, are notinvariantunder time reversal.

Let M(x,m,1) be the conventional Minkowski space with
coordinates x=( 300 1 =) , metric
n = Diag.(1,1,1,-¢*) and unit = Diag.(1,1,1,1). Then, the
relativistic isospace of the isocoordinates x = xI is given by
the Minkowski-Santilli isospace A:[(fc,ﬁ,f) [15, 19] over the
isofield of isoreal isonumbers R with isometric

A R AL
n:Tn:Dldg.(;%‘,E,—z,——z—Jl, (38)

m
where the multiplication by [ is necessary for the elements
of'the isometric to be isoscalars, with isoinvariant

(39)

It is evident that, according to then original conception [15],
the isotopies of the Minkowski space represent locally varying
speeds of light C =c/n, , with consequent mutation of the
conventional light cone, which features have been shown in
memoir [38] to be compatible with the abstract axions of
special relativity.

However, non-initiated readers should be aware that the
isotopies reconstruct the perfect light cone in isospace )f
including ¢ as the maximal causal speed. This is due to the
fact that the speed of light is mutated in the value ¢ — ¢* / n?
while the corresponding unit is mutated by the inverse amount
1, = n, thus preserving the maximal causal speed ¢ in

isospace A7 over the isofield R .

By linearizing the second order isoinvariant of the
Poincaré-Santilli isosymmetry P(3.1) as in the conventional
case (see Appendix A), one reaches the fundamental equations
of relativistic nuclear isomechanics which is given by the
Dirac-Santilli isoequation [18]

A

3, b, +i % mXC) X |P(&) =

= (=il™ 7,8, +imC)|P(£) = 0. (40)
which clearly illustrate the lifting of Plank’s constant (35)
when compared to the conventional equation, where the
Dirac-Santilli isogamma matrices have a structure

A 1 0 On'k A 1 12x2 0
== L T pmi— ., @
e (-—crk 0) Vs lm( o -, @

with anti-isocommutation rules

.50 =0,09, + 7,77, =2, 42)

Note in Eq. (38) the replacement of the speed of light ¢
with the isospeed C = c/n, . This is necessary because ¢ is
no longer invariant under the Poincaré-Santilli isosymmetry,
while C is indeed invariant (Appendix A).

It should be indicated that the above formulation of the
Dirac-santilli isoequation is solely based on the isotopies of
spacetime without the isotopies of the spin of nucleons, since
such an isotopy is sufficient for the derivation of nuclear
magnetic moments and spins.

For a general study of the Dirac-Santilli isoequation,
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including the mutation of spacetime and spins as well as in
regular and irregular realizations, we refer the interested
reader to memoir [36].

The following comments are now in order:

3.1. By conception and construction, nuclear isomechanics
is solely valid within regions of space of the nuclear radius
(the order of 1 fin), because at larger distances the isounit
recovers the convectional Planck’s constantand, consequently,
isomechanics recovers quantum mechanics uniquely and
unambiguously (see Figure 4),

3.2. Also by conception and construction, nuclear
isomechanics preserves the axioms of quantum mechanics and
merely realize them via a broader mathematics. In fact,
isomechanics and quantum mechanics coincide at the abstract
realization-free level, to such an extent that they be expressed
via the same equations only subjected to different realizations.

3.3. The name "hadronic mechanics" was suggested by
Santilli [3b] for the representation of “hadrons" at large, thus
including the representation of protons and neutrons.
Consequently, nuclear isomechanics has been specifically
constructed for the study of the nuclear stricture, while its
covering genomechanics has been constructed to study
nuclear reactions.

am

10" o >
1M

A 4

Figure 4. A central feature of hadronic mechanics verified by all its branches
is that the new mechanics is solely valid at distances of the order of

1 fin=10""cm because at larger distances it recovers quantum mechanics

uniquely and unambiguously since at larger distances the isounit recovers
Plancks constant.

3.4. As it is well known, non-linear interactions (here
referred to nonlinearity in the wave-functions) cannot be
consistently represented via quantum mechanics since, in this
case, they can be solely represented with a Hamiltonian
H(r, p,%p), with the ensuing violation of the superposition
and other laws. Consequently, quantum mechanics cannot
consistently define nuclear constituents under non-linear
terms of the nuclear force. By contrast, nuclear isomechanics
can consistently represent non-linear terms in the nuclear
force because all non-linear contributions are embedded in the
isounit (or the isotopic element), by therefore maintaining the
superposition principle on isospace over isofields.
Additionally, nuclear isomechanics reconstructs linearity on
isospaces over isofields with evident computational
advantages.

3.5. The elementary review of this section has been
necessarily incomplete to avoid excessive length. Therefore,
interested readers are suggested to study memoir [36] for more

technical details and monographs [22] for a comprehensive
presentation. Particularly important is the acquisition of
technical knowledge on properties such as: iso-Hermiticity
coincides with conventional Hermiticity, as a result of which
all observables of quantum mechanics remain observable for
nuclear isomechanics; nuclear isomechanics eliminates the
divergencies of quantum mechanics because all products of
divergent series are lifted into the form given in Eq. (22)

where the absolute value of the isotopic element f’r is very

small (see the negative sign of the exponent of Eq. (1); nuclear
isomechanics is a “completion” of quantum mechanics
according to the Einstein-Podolsky-Rosen argument, thus
providing a concrete and explicit realization of “hidden
variables" A via the isotopic element 7; ; and other important
properties [22, 36].

3.6. The replacement of Planck’s constant # into the
integro-differential operator [ is a representation of the
expectation that, when nucleons are represented as expended
charge distributions in conditions of partial mutual penetration,
the energy exchange is at least in part continuous. However,
the deviations from discrete energy exchanges in nuclear is
very small due to the very small absolute value of the isotopic
element 2. By contrast, the deviation of quantized energy
exchanges for a proton in the core of a star are expected to be
finite due to its total immersion with a hyperdense hadronic
media for which quantized energy exchanges cannot be even
defined.

4. Simple Construction of Isomechanics
and Genomechanics

For the benefit of experimental nuclear physicists, it is
important to note that any given quantum mechanical nuclear
model can be lifted via an elementary procedure into the
corresponding isomechanical form, by therefore performing
the transition from the point-like abstraction of nucleons, to
extended-deformable nucleons under potential as well as
contact non-potential interactions.

Isomechanics is a structurally non-unitary theory when
formulated on a conventional Hilbert space over a
conventional numeric field, Eq. (35), while quantum
mechanics is unitary. Therefore, the novel isomechanical
contributions due to the extended-deformable character of
nucleons as well as to the non-potential component of the
nuclear force can be represented, from Eq. (21), with a
non-unitary transform of the type

o ’ t
UU" = I = Diag.(n, ,n%,n,g,ng)xgr(hm)jr yar @3)
It is then easy to see that the application of the above
non-unitary transform to the “totality” of the formalist of a
quantum nuclear model characterizes its isomechanical
formulation in its entirety

[—=[=UxIxU'=1/T, (44a)
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n—=n=UxunxU'=nxUxU'! =

=nxIEF, nEF, (44b)

¢! = Uxe® xU' = [xe = (A yx ], (44¢)

AxB = Ux(AxB)xU' =
=UxAxUNYxUxU'Y'xUxBxU')= A% B, (44d)

[X,,X,]1 = Ux[XX,]xU" =
=[X,1X,1=Ux(Cix X, )xU" =C} %X, =
=GxX,, (44e)
Wixly) = Ux@|x|yp)xU" =
=@ |xU'x(UxU"Y ' xUx|y)x(UxU") =
=G |X|9)xd, (441)
Hx|y) = Ux(Hx|y)) =
=UxHxUYxUxU)" x(Ux|p)) =
= Hx|),ete. (44g)

It is easy to see that the application of an additional
non-unitary transform causes the lack of time invariance of the
isounit

Wxwt a1, (45a)

IA—>IA’=foxW‘L¢i, (45b)

with consequential lack of invariance of the numeric
predictions, with activation of the catastrophic inconsistencies
[37], as well as the loss of the represented system.

However, any given nonn-unitary transform can be

identically rewritten in the isounitary formon { over C
wxWt=1, w=wxP", (46)
WxWt=Wswt =W xw =1, “7)

under which we have the invariance of the isounit and
isoproduct [22, 36, 37]

(482)

=(W><7A‘x;1xf'xﬂ‘/')x(f‘xﬁ”)"xf‘x(l/f/x
xT)™ x(foxéxYA”xW7)=

= ;I'x(lff/'i'xfxl/f/)_lxl}'= A'xTxB' = A% B etc. (48b)

from which the invariance of the entire isotopic formalism
follows.

Note that the invariance is ensured by the numerically
invariant values of the isounit and of the isotopic element

under isounitary transforms,

~

J-TIs=l, (49a)

AXxB—= A'X'B'=A'xB', (49b)
in a way fully equivalent to the invariance of quantum
mechanics, as expected to be necessarily the case due to the
preservation of the abstract axioms under isotopies. The
resolution of the inconsistencies for non-invariant theories is
then consequential.

It should be indicated that the above lifting of quantum into
isomechanical models solely apply for the so-called regular
representations of the Lie-Santilli isotheory (see Appendix A),
that can be essentially expressed as representations preserving
the conventional value of the spin, thus being sufficient for
nuclear constituents.

Howsoever, the reader should be aware of the existence of
irregular representations of the Lie-Santilli isotheory (see also
Appendix A), which can be indicated as realizations of the
axioms causing anomalous values of the spin, as expected for
a proton when in the core of a star subjected to enormous
pressures under which the very definition of conventional spin
is technically flawed.

The lifting of a quantum mechanical nuclear model into the
covering genomechanical version can be equally done via an
elementary procedure, by performing the transition from
time-reversible description to an irreversible one when
applicable, e.g., for nuclear reactions.

Recall that genomathematics represent irreversibility by
embedding the direction of time in the most ultimate
quantities, the unit and related product. Therefore, the creation
of a time ordering requires fwo different non-unitary
transforms

UU s I, WWh =1, UW! =1, (50)

Then Planck’s constant can be lifted in the form applicable
for motion forward in time
h=1—1 =Um"=1/T >0, (51)

with corresponding lifting of all products AB into the
ordered genoproduct to the right

AB— A>B=AT’B, (52)
and lifting of 7 for motion backward in time
h=1-<1=wiu’ =1/ T>0, (53)

and corresponding lifting of all quantum products into the
form ordered to the left

AB — A< B= A°TB. (54)

The irreversible character of the representation is then
assured by the different values of the forward and backward
genounits, with consequential incoherence of the related
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geno-Hilbert spaces (see memoir [37] for details).

S. Exact and Invariant Representation of
Nuclear Magnetic Moments

Following the preparatory advances outlined in the
preceding sections [3-37], the representation of Fermi’s
historical hypothesis on the representation of nuclear
magnetic moments via the deformation of the charge
distribution of nucleons (Section 1), becomes direct and
immediate.

The first exact and time invariant representation of the
anomalous magnetic moment of the Deuteron (where the term
“anomalous" refers to deviations from quantum predictions)
was achieved by R. M. Santilli in 1993 while visiting the
JINRT in Dubna, Russia, and was presented at the local
International Symposium Deuteron-1993 [39]. The results
were then extended to the representation of the anomalous
magnetic moments of all stable nuclides in memoir [36] of
1998.

Let us recall from Refs. [2] that the magnetic moment of
nucleons can be expressed in terms of their spin

u=g°S+g"'L (55)

where the & ’s are the spin and orbital gyro-magnetic factors
7

with values in unit of nuclear magnetons for protons and
neutrons

N

gp= 5.585nm, g',5;= - 3.826nm,

(56)

g =1 g =0 (57)

By assuming that L =0 forthe ground state, the quantum
mechanical (qm) prediction of the magnetic moment of the
Deuteron is given by

U = g8 +g5s=10.879, (58)
while the experimental value is given by ’
uy? =0.857, (59)

thus implying a deviation of 0.02 nm in excess between the
prediction of quantum mechanics from experimental values.

It should be stressed that the “small" character of the
deviation 0.02 nm may be misleading because it refers to the
smallest nucleus, with increasingly embarrassing deviations
for heavier nuclei, thus establishing the need for the exact and
invariant representation of all nuclear magnetic moments, and
not only that for the deuteron (Figure 5).
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Figure 5. On rigorous scientific grounds, a theory can be considered as being “exactly valid" for given physical conditions when it represents the entirety of the
experimental data from unadulterated first principles. In this figure we reproduce the so-called “Schmidt limits" representing minimal and maximal values of
nuclear magnetic moments. h the authors view, the Schmidt limits are a direct representation of the “deviations" of quantum mechanics from nuclear
experimental data because they represent the deviation from quantum predictions for the simplest possible nucleus, the Deuteron, with increasingly embairassing
deviations for heavier nuclei. The achievement of an exact and invariant representation of nuclear magnetic moments according to Fermi s teaching (Section 1)
has been a main motivation for the construction of the new isomathematics and isomechanics, as shown in Section 5.
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Attempts at the achievement of an exact representation of
the anomalous magnetic moment of the Deuteron have been
attempted for about one century via the use of quantum
mechanics without any result that will resist the test of time.

The first attempts have been done by using an ad hoc
combination of orbital angular momenta L = 0 of the proton
and the neutron. However, the assumption L =0 is in
contradiction with the experimental evidence that the isolated
Deuteron is in its ground state and, therefore, the orbital
angular momenta of its constituents mustbe L=0.

Numerous additional attempts have been done via
relativistic corrections and relativistic field theory, by
achieving the needed exact representation of the Deuteron
magnetic moment with the introduction of arbitrary
parameters or special form factors, thus, without deriving the
needed value from first adulterated principles.

Additionally, it should be indicated that the reduction of
protons and neutrons to the hypothetical quarks creates
additional problems and solves none, because the hypothetical
orbits of the hypothetical quarks inside nucleons are too small
to admit a hypothetical polarization suitable for the
representation of the Deuteron magnetic moment.

In conclusion, in 1993 the exact representation of the
magnetic moment of the simplest nucleus, the Deuteron, let
alone those of heavier nuclei (see Figure 5) had remained
elusive because the proposed representations have
contradictions or manipulations that will not resist the test of
time.

In this way, Fermi’s historical hypothesis acquires its full
light when represented via isomathematics and isomechanics.
The central conceptual and technical notion of nuclear
isomechanics is that the constituents of nuclei are
“isoparticles” (Ref. [40] and Appendix A), namely, ordinary
particles experience a mutation of their “intrinsic"
characteristics when in conditions of partial penetration of
their charge distributions (and/or wavepacket) as occurring in
the nuclear structure, with ensuing exposure to the strong
nuclear force."

The first intrinsic characteristics of particles experiencing a
mutation under nuclear conditions is that of their intrinsic
magnetic moments. Its explicit expression can be easily
derived from the Dirac-Santilli isoequation (40) by repeating
the corresponding procedure for the quantum case, yield the
following mutation of the intrinsic magnetic moment in the
transition from particles to isoparticles (see Ret. [39] as well
as, for more details, Ref. [18])

~s _ My

H =—U, (60)
@

where: (is) stands for isomechanics; we consider the magnetic
moment along its symmetry axis, as usual; 7, is the

! The condition of partial mutual penetration of the charge distributions of protons
and neutrons when nuclear constituents, can be easily derived by comparing the
experimental values of nuclear volumes with those of protons and neutrons.

deformed semiaxis in the third direction; and #n, a
geometrization of the hyperdense medium inside nucleons.
We should note the use the upper symbol /i , rather than

4 , since the latter indicates elements of isofields because the

use of the symbol £ would indicate the transition from a
scalar to an isoscalar (Section 2), which is merely given by the
multiplication of the conventional magnetic moment and the
isounit,
= [, (61)
Due to the lack of impact to numerical values, the above
isoscalar extension will be ignored hereon for simplicity.

From Eq. (60), we have the following mutation of the
quantum mechanical magnetic moment ( # )

rols ~ ~5 n, 5

A5 =85+ 8,5 =He)5, + &) ©2
where we have assumed for simplicity that the mutations of
the charge distributions of the proton and the neutron are the
same, since they have essentially the same volume and the
same hyperdensity.

The numeric value of #, has been the subject of extensive
phenomenological and experimental studies via the
Bose-Einstein correlation and other particle experiments,
resulting in the value (see Refs. [41-44] and Eqgs. (6.1.101),
page 864, Vol. IV of monographs [23])

n, = 0.654, n? = 0355, (63)

Consequently, under the numeric value of the third
semiaxes

n, = 0.670, n? = 0.449, (64)
we reach the following numerically exact and time invariant
representation of the anomalous magnetic moment of the
Deuteron according to isomathematics and isomechanics

iy = §iS+ £55=0.857nm (65)
where we should note the use of slightly different numerical
values than those used in the original derivation [39] due to
advances occurred since 1993.

Asonecan see, the proton andthe neutron are mutated from
perfect spherical shapes when in vacuum under sole
action-a-distance electromagnetic interactions, to a oblate
charge distributions when constituents of the Deuteron, as
expected in view of their high rotational conditions.

Note that the deformability of nucleons under strong
interactions does not imply the alteration of their volume due
to their hyperdense character: By assuming that the original
semiaxes are normalized to 1, we then have the restriction on
the numeric value of the remaining semiaxes
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i 1 1
___+__+_=3,
A (66)

under which we obtainthe value of the remaining semiaxes of
the oblate spheroid under the evident identification

ny=n,=1.635, n’ =n; =2.574 ©67)

Even though the above values are certainly not suggested to
be final, we can state that isomathematics and isomechanics
provides the first known numerical values of the semiaxes of
the proton and the neutron when constituents of the Deuteron,
in a way compatible with the numerically exact and time
invariant representation of the anomalous magnetic moment
of the Deuteron (Figure 6).

As indicated earlier, the extension of the above
representation for the Deuteron was extended to all stable
nuclei in memoir [36] via the general isomechanics
representation of nuclear magnetic moments [36).

=3 [—;Z“—(gﬁkﬂgﬁﬁ)} + 2 [f‘(gfks‘“g“)]’

k=l,.,7 .
where we have assumed that: all nucleons as nuclear
constituents nuclei have the same hyper density geometrized
by n,; the deformation of the charge distributions may vary
with the increase of the constituents; and anomalous orbital
contributions may eventually emerge for heavier nuclei.

The verification that Eq. (68) provides indeed a
representation of the magnetic moment of all stable nuclei will
be shown in a subsequent paper. At this moment we merely
limit ourselves with the representation later on of the magnetic
moment light stable nuclei. The following comments are now
in order:

5.1. Representation (65) is invariant over time because the
mutation of intrinsic magnetic moments, Eq. (61) is a
consequence of the Dirac-Santilli isoequation (which is
invariant under the Poincaré-Santilli isosymmetry (Refs.
[15-18] and Appendix A).

5.2. As one can see, representation (65) does not require the
mutation of the spin of nuclear constituents because the sole
mutation of the Minkowski spacetime into isospace (39)
underlying the Dirac-Santilli isoequaiton (40) has been
sufficient. This does not exclude extreme physical conditions,
such as those at the core of stars that may require the mutation
also of'the spin.

5.3. As clearly shown by Eq. (62), the mutation of the
intrinsic magnetic moment of nucleons under their
conventional value of the spin creates the problem of the
intrinsic compatibility of the approach. This problem is solved
in Appendix A, where we show that the degree of freedom of
regular isotopies of the SU(2) spin identified in Refs. [13, 14]
can represent indeed the mutation of spin, thus achieving full
compatibility under isomathematics and isomechanics

Figure 6. A conceptual rendering of the oblate shape of the proton and the
neutron when constituents of the Deuteron in its ground state achieved, for the
first time to our kmowledge, by nuclear isomechanics from the anomalous
magnetic moment of the Deuteron, with values of the semiaxes

n; =0.449, n} =n; =2.574 (see Section 5). It should be stressed that the
construction has been done along the conventional conception of the

Deuteron, namely, with the proton and the neutron with parallel s pinsin order
to represent the spin j of the Deuteron. However, quantum mechanical axioms

predicts that the sole stable bound state between two particles with spin 1/2 is
the singlet with antiparallel spins, since couplings with parallel spins are
predicted to be hight'y imstable due to strong “repulsive” forces. Therefore, in
Section 8 we shall first review the structure of the Deuteron according to
nuclear isomechanics with a representation of the spin 1 without structural
inconsistencies, and then provide a more accurate representation of the
magnetic moment of the Deuteron.

(68)

k=l,...4-Z o
between mutation of intrinsic magnetic moments and
conventional values of spins.

54. We should indicate that value (63) for the
geometrization of the hyperdense medium inside nucleons has
been derived via experimental data on different events, such as
the fireball of proton-Antiproton annihilation in the
Bose-Einstein correlation, while direct experimental data for
nucleons are not available at this writing. Therefore, it is
possible that value (63) and, consequently, value (64), may
need revisions following direct test on the density of the
medium inside nucleons.

6. Test of the Spinorial Symmetry Via
Neutron Interferometry

It is evident that the deformability of protons and neutrons
under sufficient external forces requires a direct experimental
verification. The ideally suited test is the so-called 47
neutron interferometric experiment which consists of (see
Figure 7): a thermal neutron beam which is first coherently
split into two beams by a perfect crystal; one of the two split
beams passes through the gap of an electromagnet with the
magnetic field calibrated to such the value 7,496 G causing
two complete spin flips (720° from which the name 47) of
the neutron on account of its intrinsic magnetic moment
-1.913148 +0.000066 4, The two beams are then
coherently recombined. Various analysis are then conducted
between the original beam and the recombined one.

When electromagnet gap is empty and, therefore, the split
neutron beam travels in empty space, all known tests confirm
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the achievement of two complete spin flips in full agreement
with quantum mechanics. However, in order to avoid stray
fields, the electromagnet gap is filled up with Mu-metal or
other heavy metal sheets. In the latter cased, the test
essentially provides a test of the spinorial symmetry of
neutrons under the intense electric and magnetic fields in the
vicinity of Mu-metal nuclei, without any appreciable
contributions from the strong interactions of Mu- metal nuclei.

The rather bizarre history of this fundamental test can be
summarized as follows. The Austrian neutron interferometric
experimentalist H. Rauch and his Austrian associate A.
Zeilinger participated to the 1981 Third Workshop on
Lie-Admissible Formulations, and presented preliminary
results of a 47 neutron interferometric experiment that was
going on via thermal neutron beams available at the nuclear
facilities in Grenoble, France.

In particular, Rauch and Zeilinger reported at said 1981
meeting that they were not measuring 720° rotations, by rather
the following values of minimal and maximal rotations [45]

6,., =715.87°, 6,

e = 119.67°, 6, =712.07° (69)
which evidently do not contain 720°. In particular, Rauch and
Zeilinger reported an angle of rotation systematically smaller
then that expected, a feature referred to as the angle

slow-down effect and expected to be due to a decrease of the

intrinsic magnetic moment of the neutron under the strong
fields of the Mu-metal nuclei.

The Austrian theoretical physicist G. Eder [46] who also
attended the indicated 1981 workshop by presenting a
Lie-admissible mutation of the rotational symmetry
representing the decrease of the intrinsic magnetic moment of
the neutron under the considered conditions inagreement with
data (69).

Based on these studies, Santilli [47] presented at the same
1981 workshop the notion of Lie-admissible mutation of
elementary particles (also called genoparticles under strong
nuclear interactions considered as external\ (which is a
condition to sue the irreversible Lie-admissible formulations).
It should be noted that the Lie-isotopic notion of isoparticle
presented in this paper is an evident particular case of the
notion of genoparticles presented in 1981.

Immediately following the announcement of the above
studies, H. Feshback, then chairman of the Department of
Physics at MIT, strenuously opposed the completion of the
47 neutron interferometric experiment by Rauch and
Zeilinger. the opposition, first by Feshback and then by his
world wide collective was such that Rauch was prohibited the
access at his own laboratory in Grenoble and was, therefore,
prohibited its completion (see Refs. [48] and their three
volumes of documentations).
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s for the past half a century, the 47 neutron interferometric spinorial symmetry

experiments described in Section 6 [ 45-51]. The lack of resolution of this experiments due to political obstructions [48 ] is one of the reasons fueling the growing
view according to which we are currently eyewitnessing one of the biggest scientific obscurantism in the history of mankind.

Subsequently, Rauch was offered the position of Director of
the Atominstitut in Wien, Austria, while Zeilinger was invited
for a one year stay at MIT after which he received a chair in
physics at an Austrian university.

Following the above events in the early 1980s, the 47z

neutron interferometric experiment was occasionally repeated,
but either without heavy metal sheets in the electromagnet gap,
by splitting the gap into two opposite contributions or in other
versions essentially assuring the verification of the exact
spinorial symmetry.
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To our best knowledge, the current situation (October 2015)
is the following. On one side, Rauch and Zeilinger have
dismissed measurements (69) and claim the exact validity of
the 4x symmetry (without any systematic experimental
resolution on record), as reported by D. Kendellen [49] (see
also book [50]).

By contrast, Santilli [S1] claims that; 1) an accurate and
unbiassed comparative analysis of the original and the
recombined neutron beams show clear deviations from 4z
rotations of at least 1%, even though the neutrons are solely
exposed to electromagnetic interactions, thus expecting bigger
deviations under nuclear strong interactions; 2) the
deformability of the neutron is such a fundamental physical
problem to require a systematic repetition of the 4x tests;
and 3) Nowadays, the experiment can be repeated for a
multiple of two complete rotations, with ensuing resolutory
results (see Ref. [51] for details).

In the authors opinion, a reason for the incredible ¢ hostility
by the nuclear physics community against this fundamental
experiment is the lack of technical knowledge of the
Lie-Santilli isotheory according to which their fear of the
violation of the "spinorial" symmetry in the 4 tests has no
technical foundations because the experiment here considered
deals with the deformation of the charge distribution of the
neutron while fully preserving its spin 1/2 . In fact, the
authors believe that the very name "spinorial" symmetry
experiment is erroneous and misleading, since the
Fermi-Dirac character of the neutrons remains fully valid
under a deformation of their charge distribution (Appendix A).

In the final analysis, the serious scientist should keep in
mind that perfectly rigid bodies solely exist in academic
environments but they do not exist in nature. Therefore, the
serious scientific issue is the measurement of the deformation
of the charge distribution of neutrons for given sufficiently
strong external forces, with the understanding that the
deformability itself should be outside credible doubts.

7. The Synthesis of the Neutron from the
Hydrogen

Asitis well known, stars initiate their life as an aggregate of
Hydrogen. The first nuclear synthesis in the core of a star is
that of the neutron from the Hydrogen atom according to the
historical reaction [2]

ptte = n+v (70)

Deuterium, Tritium and other nuclei are synthesized only
following the synthesis of the neutron. It is then evident that
the understanding of the first and most basic synthesis of the
neutron is crucial for a deeper understanding of the subsequent
nuclear syntheses.

Unfortunately, the synthesis of the neutron is vastly ignored
even at the most important Ph. D. courses in nuclear physics
because it is incompatible with quantum mechanics and
special relativity. This is due to the fact that the rest energy of
the neutron is bigger than the sum of the rest energies of the

proton and of the electron, as established by the known data

E,=938272MeV, E, =0.511MeV, E, =939.565MeV, (71a)

E, -(E, + E,)=0.782MeV >0, (71b)

Under these conditions, the Schrédinger equation does not
yield physically consistent results due to the need for a
“positive binding energy" resulting in a “mass excess" thatare
beyond any descriptive capacity of non-relativistic quantum
mechanics.

Synthesis (70) is also incompatible with special relativity
and relativistic quantum mechanics because the conventional
Dirac equation, which is so effective for the description of the
electron orbiting around the proton in the Hydrogen atom,
becomes completely ineffective for the description of the
same electron when “compressed” inside the proton in the
core of a star according to Rutherford.

The proposal to build a non-unitary covering of quantum
mechanics under the name of hadronic mechanics, including
its isotopic and genotopic branches, was submitted in
monograph [3b] precisely for the achievement of a
quantitative representation of the synthesis of the neutron
from the Hydrogen, and then apply the results to other nuclear
syntheses.

Following decades of preparatory research [3-51], a
numerically exact and time invariant representation of all
characteristics of the neutron in its synthesis form the
Hydrogen atom was achieved at the non-relativistic level via
the Schrodinger-Santilli isoequation (31) in Refs. [52-54], and
at the relativistic level via the Dirac-Santilli isoequations (40)
in Refs. [18, 54].

The first laboratory synthesis of the neutron from a
Hydrogen gas was done by the Italian priest-physoicist Don
Carlo Borghi and his associates in the mid 1960s [55]. Santilli
conducted comprehensive tests for the laboratory synthesis of
the neutron from the Hydrogen reported in Refs. [56-60]. The
above body of scientific knowledge is now used by the U. S.
publicly traded company Thunder Energies Corporation for
the industrial production of a Thermal Neutron Source (see the,
e.g., Ref[61] video [62]. Excellent reviews of the
mathematical, theoretical and experimental aspects for the
synthesis of the neutron from the Hydrogen are available in
Refs,[63, 64].

The following comments are in order:

7.1. Refs. [52-64] imply that the proton and the electron are
actual physical constituents of the neutron, although in their
mutated form known as “isoproton” and “isoelectron” [40]
(see Appendix A). In fact, one of the necessary condition to
achieve a numerical representation of all characteristics of the
neutron in its synthesis from the Hydrogen is that the electron
rest energy is mutated according to a mechanism today known
as isorenormalization.

It should be indicated that these results turn the conjecture
of undetectable and unconfinable “point-like" quarks to a
mathematical abstraction of the structure of hadrons because
the proton and the electron are the only massive permanently
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stable particles detected to date. As such, they cannot
“disappear” (sic) at the time of the neutron synthesis to be
replaced by the hypothetical quarks. Additionally, at the time
of the neutron decay, quarks cannot “disappear” (sic) while the
emitted proton and electron “reappear”(sic).

The name “hadronic mechanics™ was suggested in Ref. [3b]
precisely to permit a basically new structure model of all
unstable particles with actual physical constituents, generally
given by massive physical particles produced in their decay
with the lowest mode. Advances along these lines have been
reported in memoir [43].

It should be stressed that this new structure model of
hadrons is not in conflict with the standard model of
elementary particles because quarks remain necessary for its
elaboration, although in their true scientific meaning of being
purely mathematical representations of a purely mathematical
internal symmetry formulated in a purely mathematical
complex-valued unitary space.

We merely return to the teaching of all classifications that
have historically required fwo different but compatible models,
one model for the classification into families, and a diffierent
model for the structure of each element of a given family. The
same historical teaching is confirmed by the fact that, in the
transition from the classification to the structure of atoms
there was the need for a new mathematical and physical
theories. Similarly, in the transition from the classification of
hadrons to their structure there is also the need for new
mathematics and physical theories for the reasons indicated in
Sections 1 - 3.

As a final comment, the serious scholar should be made
aware of potentially large environmental and societal
implications in abandoning the conjecture of the hypothetical
and unconfinable quarks as actual physical constituents of
hadrons in favor of physical particles in their isotopic form.
For instance, the admission of the isoelectron as a physical
constituent of the neutron allows the conception and
experimental study of a number of basically new clean nuclear
energies, originally proposed in Refs. [65] and currently under
study at Thunder Energies Corporation as well as at other
companies. By contract, the admission of the hypothetical
quarks as the physical constituents of hadrons prohibits such
possible environmentally large advances.

7.2. Refs. [52-64] imply that the neutrino does not appear to
exist as physical particles, thus creating the intriguing
problem of seeking alternative conceptions.

In his studies of synthesis (70), Enrico Fermi [1] had no
other choice than that of representing the proton as a
dimensionless point, resulting in the consequentially
necessary hypothesis of the “neutrino” (meaning “little
neutron” in Italian).

Thanks to the availability of the novel isomathematics
(Section 2), in Refs. [52-64] we were able to represent the
proton in its actual shape and dimension. This permitted the
discovery of a new angular motion and related magnetic
moment for the constrained rotation of the isoelectron when
compressed in the hyperdense medium inside the proton
(Figure 8), which new angular momentum is completely

absent when the proton is abstracted as a dimensionless
particle.

Electron ‘ Proton

Figure 8. A basic novelty in Samtilli’s synthesis of the neutron from the
Hydrogen atom is the appearance of a constrained angular motion of the
electron when totally immersed within the hyperdense proton. This orbital
motion eliminates the need for the emission of the lypothetical neutrino; is
solely permitted by the representation of the proton as extended according to
hadronic mechanics; and did not exist during Fermis time since quantum
mechanics can solely represents the proton as a massive point [52-63].

In turn, the constrained orbital motion of the isoelectron
inside the proton must be equal to the proton spin (evidently to
prevent that the extended wave-packet of the isoelectron
moves within and against the hyperdense medium inside the
problem), resulting in a null total angular momentum of the
isoelectronin synthesis (70) as a result of which the spin of the
neutron coincides with the spin of the proton.”

The conclusion is that studies [52-64] eliminate any
possibility for the production of a neutrino in synthesis (70). In
fact, the emission of a neutrino would violate, rather than
verify, the conservation of the total angular momentum since
the spin 1/2 ofthe neutrino is represented by the constrained
orbital angular moment of the isoelectron inside the proton.
Additionally, reaction (70) already misses 0.782 MeV for
the synthesis of the neutron. Any need for the additional
energy to produce the hypothetical neutrino would cause
catastrophic inconsistencies.

In a nutshell, Enrico Fermi did salvage the conservation of
the angular momentum in the synthesis of the neutron with the
hypothesis of the neutrino, but he did not salvage quantum
mechanics and special relativity in the same synthesis.

7.3. Refs. [52-64] have the intriguing implications of
implying the apparent return to the “continuous creation" in
the universe as the most plausible way at this moment to
explain the missing 0.782 MeV for the synthesis of the

2 1t should be recalled that half-odd-integer angular momenta are prohibited in
quantum mechanics because they violate the unitarity of the theory, but they are
fully allowed for the covering isomechanics precisely in view of its non-unitary
structure (see Refs. [18, 22, 52-54] and Appendix A).
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neutron firom the Hydrogen atom.

One of the biggest mysteries in the synthesis of the neutron
from the Hydrogen is the origin of the missing 0.782 MeV
(assuming that the neutrino does not exist, otherwise the
missing energy would be much bigger). This energy cannot be
provided by therelativekinetic energy between the proton and
the electron because at that energy value their cross section is
virtually null, thus prohibiting any synthesis.

Additionally, the missing energy of 0.782 MeV cannot be
provided by the star because, at the initiation of nuclear
syntheses, stars synthesize up to 10° neutrons per second.
The assumption that the missing energy is provided by the star
would then imply that the star Joses about 10° MeV per
second, under which conditions a star would never initiate the
majestic event of producing light.

In an attempt to initiate the solution of this mystery, Santilli
has suggested that the missing energy of 0.782 MeV is
provided by space conceived as a universal substratum with a
very high energy density. via a “longitudinal impulse" (rather
than a particle) submitted under the name of “etherino”" with
the symbol “a" (from the Latin aether), thus implying the
replacement of the quantum mechanical reaction (70) with the
isomechanical reaction [66]

pr+a+e —n, 72)
where one should note the need for the energy carrying
impulse to be in the left (rather than the right) of the reaction,
and that the use in the left of the antineutrino would increase
the missing energy due to its negative energy state [ Joc. cit.].

It should be noted that the historical hypothesis of the
neutrino was essentially dismissed by the lack of detection of
the “solar neutrinos" (namely, neutrinos emitted by the Sun
during its synthesis of the neutron), according to which our
particle laboratories should be traversed by an extremely large
flux of neutrinos none of which has been detected with such
evidence to be acceptable by the scientific community at large.

The advent of the standard model has produced additional
reasons for the dismissal of neutrinos since the standard model
requires a variety of different neutrinos without clear physical
differences, all neutrinos being assumed to have a mass. It is
now widely accepted that particles with mass simply cannot
traverse nuclei, planets and stars with a very small of no
scattering, thus mandating a basically new interpretation of
physical reality.

The hypothesis of the etherino has been submitted because
of a possible resolution of these insufficiencies via a more
realistic interrelation of experimental data. In fact, the
traversing to nuclei, planets and stars without appreciable
scattering is more plausibly interpreted by the etherino rather
than by the neutrino, since the former refers to a longitudinal
impulse propagating through the universal substratum, while
the latter is assumed to be a massive particle that should
traverse without appreciable scattering hyperdense media
inside nuclei, planets and stars.

We should also clarify that a number of claimed
“experimental verifications" of the neutrino do not refer to the

direct detection of the neutrino which is impossible, but refer
to the detection of ordinary particles predicted as being
emitted under the neutrino hypothesis. The point is that the
emission of exactly the saime particles is predicted by the
etherino and perhaps other hypotheses. Finally, we should
indicate that the claimed “experimental verifications” of the
neutrino hypothesis are based on very few events out of
billions of events, thus lacking the credibility needed to resist
the test of time.

In summary, the lack of existence of the neutrino as a
physical particle emitted in the synthesis ofthe neutron creates
one of the most fascinating scientific problems in history, that
of the possible continuous creation in the universe (see, e.g.,
the historical paper [67]), since the missing energy for the
neutron synthesis is “created” in the core of stars in the sense
that it is acquired from the universal substratum. In turn such a
fascinating problem has implications for virtually all
quantitative sciences, including lack of expansion of the
universe due to loss of energy by galactic light to the
intergalactic medium [68], possible future interstellar travel at
arbitrary speeds whose energy source would be permitted by a
universal substratum with very high energy density [38], and
other intriguing open problems.

8. Three-Body Structure of the Deuteron
According to IsoMechanics

There comes a moment in the life of a serious scientist at
which physical realities have to be admitted, no matter how
against preferred doctrines, as a condition not to exit from the
boundaries of science.

The physical reality here referred to is that despite more
than half a century of attempts, quantum mechanics has failed
to achieve a constant representation of the structure of the
simplest nucleus, the Deuteron, with embarrassing deviations
for heavier nuclei, in view of the following insufficiencies
[69]:

8.1. Quantum mechanics has been unable to represent the
stability of the Deuteron. As it is well known, the neutron is
naturally unstable when isolated. Therefore, quantum
mechanics has failed to explain how the neutron becomes
permanently stable when bonded to the proton in the structure
of the Deuteron.

8.2. Quantum mechanics has been unable to achieve a
consistent representation of the spin 1 of the ground state of
the Deuteron. The basic axioms of quantum mechanics
require that the stable bound state of one proton and one
neutron is the singlet with total spin zero, while the spin ofthe
Deuteron is 1. For the intent of maintaining quantum
mechanics, 20" century nuclear physics has assumed a
combination of orbital states requiring excited conditions
which are in direct contradiction with the physical evidence
that the spin 1 occurs for the Deuteron in its “ground” state.

8.3. Quantum mechanics has been unable to identify the
physical origin of the attractive force binding the proton and
the neutron in the Deuteron. Since the neutron is neutral, there
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is no known electrostatic origin of the attractive force needed
for the existence of the Deuteron, while their magnetostatic
force is “repulsive” in their triplet coupling. As a result of
these occurrences, a "strong" force was conjectured for the
bond of nuclear constituents [2] and its existence was
subsequently confirmed. Nevertheless, the physical origin of
the strong nuclear force has remained unidentified by quantum
mechanics to this writing.

8.4. Quantum mechanics has been unable to achieve a
consistent representation of the Deuteron space parity.
According to experimental evidence, of the space parity is
positive for the deuteron in its ground state because the
angular momentum is null, while the quantum mechanical
representation of the spin 1 of the Deuteronrequires excited
orbital states, resulting in an additional direct conflict between
quantum predictions and experimental realities.

8.5. Quantum mechanics has been unable to reach an exact
representation of the magnetic moment of the Deuteron, as
discussed in Section 5.

Following the achievement of the non-relativistic and
relativistic presentation of the structure of the neutron as a
bound state of one isoproton and one isoelectron (Refs. [51-54]
andSection 7), Santilli proposed in Part V of monograph [69]
the structure of the deuteron according to isomechanics as a

Proton

three body bound state of two isoprotons in triplet coupling
and one isoelectrons withy null total angular momentum
which is exchanged in between the two isoprotons as a kind of
isogluon, hereon referredto as the “iso-Deuteron” (see Figure
9).

The new three-body structure model of the Deuteron
achieves a numerically exact and time invariant representation
of all characteristics of the Deuteron, including its binding
energy, charge radius, stability, spin, parity, etc., which
representation is hereassumed asknown for brevity from Ref.
[69] (see also the excellent reviews [33, 70]).

The conceptual and, therefore, the most important reasons
for the proposal of the iso-Deuteron were several [69]. The
first origination is that the reduction of the Deuteron to
protons and electrons (although in a mutated form) sets clear
Sfoundations for stability since the proton and the electron are
the only stable massive particle known to mankind.

The second origination of the iso-Deuteron is that the spin
| of the Deuteron is direct evidence that it is a “three-body,”
rather than a two-body state, because the configuration of two
nucleons in triplet coupling, which is necessary for the
representation of the spin 1 in the ground state, can only be
achieved in a consistent way via the addition of a third particle
with null total angular momenta as in Figure 9.

r' Kroton

! 28t

Figure 9. A schematic view fiom Part V of Ref. [69] on the structure of the Deuteron following the reduction of the neutron to a hadronic bound state of an
isoproton and an isoelectron. Note from the top view that the two isoprotons are in triplet coupling, while the isoelectron with null total angular momentum is
exchanged between them, thus allowing the first known representation of the spin 1 of the Deuteron in its true ground state.
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The third origination of the iso-Deuteron is that
isomathematics and isomechanics are the only known methods
achieving an explicit and concrete strongly “attractive” force
in the Deuteron structure. In the transition from quantum
mechanical to isomechanical nuclear models via the
non-unitary transform of Section 4, and realization of the
isotopic element of type (1), there is the emergence of a
strongly attractive Hulthén potential (see Ref, [69] for details)
originating from the partial mutual penetration of the
deformed charge distributions of the constituents. Note that in
the structure of the iso-Deuteron there is no repulsive
electrostatic force due to the continuous exchange of the
isoelectron between the two isoprotons.

Particularly significant for this paper is the deeper
representation of the anomalous magnetic moment of the
Deuteron which is permitted by its three-body isotopic
structure. In Section 5, we presented a first representation of
the magnetic moment of the Deuteron based on its
representation as a bound state of an isoproton and an
isoneutron in triplet coupling to represent the spin 1 (see
Figure 9).

However, as also indicated in Section 5, this representation
is basically insufficient because the triplet coupling of Figure
3 generates strongly repulsive forces under which no stable
bound state is possible. Santilli’s three-body model of the
iso-Deuteron allows an exact and time invariant
representation of the magnetic moment without any known
inconsistencies, which is essentially given by the muted
magnetic moments of the two isoproton, plus a contributions
from the isoelectron (see Ref, [69] for details).

This section concludes the review of past advances in
nuclear physics permitted by isomathematics and
isomechanics that are necessary for an understanding of the
numerically exact and time invariant representation of the spin
of stable nuclides presented in the following sections.

9, Stable and Unstable Nuclides

Notice that deuteron is the simplest neuclide having one
proton and one neutron and is stable. However, we see that it,
in fact, is an isonuclide. When we survey the elements of the
periodic table we find that out of 289 primordial nuclides 254
are stable ones. The stability of nuclides depends also on
evenness or oddness of its atomic number Z , neutron number
N and, consequently, of their sum, the mass number 4 .
Oddness of both Z and N tends to lower the nuclear
binding energy, making odd nuclei, generally, less stable. This
fact we have depicted [71] in Table 1.

However, in this paper, we are presenting, apparently for
the first time, a structure model of stable nuclides of the first
three rows of the periodic table, hereon called stable
isonuclides, as bound states of extended, thus deformable
isoprotons and isoelectrons according to the laws of hadronic
mechanics, under the condition of recovering in first
approximation the conventional structure model of nuclides as
quantum mechanical bound states of point-like protons and

neutrons.

We shall then show, also apparently for the first time, that
the reduction of nuclides to isoprotons and isoelectrons allows
the first known achievement of an exact representation of the
spin of all stable nuclides.

Table 1, Even and odd nucleon numbers. A is the atomic
mass number, Z is the atomic number, N is the number of
neutrons in the nucleus, EE is the even-even proton-neutron
combination, OQ is the odd-odd proton-neutron combination,
EQ is the even-odd proton-neutron combination and OF is the
odd-even proton-neutron combination.

A Even Odd Total
Z,N EE 00 EO OE
Stable 148 5 53 48 254
153 101
Long-lived 22 4 4 5 35
26 9
All primordial 170 9 57 53 289
179 i 110

Next we will indicate without treatment that the reduction
of nuclides to isoprotons and isoelectrons puts the foundations
for an exact representation of the magnetic moment of all
nuclides for studies to be presented in a subsequent paper. We
shall also indicate, for studies in a subsequent paper, that the
transition of the nuclear structure from that in terms of
point-like protons and neutrons to that in terms of is extended,
thus deformable isoprotons and isoelectrons offeers realistic
possibilities for studying basically new forms of clear nuclear
energies.

10. Old and New Vistas in Nuclear Forces

For the semi-quantitative discussion conventionally one
uses the following expression of nuclear binding energy,
namely:

BE
MeV

= 931.4(Z xmy +(A=Z)xm, - M) (73)

where my; and m, are the masses on amu scale of hydrogen
and neutron respectively and M is atomic mass on amu
scale of the given element. Notice that the mass of electrons
has not been included separately in the above expression
because it remains included in 7, . The standard plot of
binding energies of all nuclides is shown in Figure 10.
Glasstone [72] further asserts that the nuclear binding
energy is the result of (R—n), (n- p*)and ( p* - p* ) forces
operating within the nucleus. The experimental data on the
nuclear scattering and correspondence of binding energies of
the identically same mass number elements (isobars) it was
concluded that the magnitudes of (#-n), (n-p*) and

(p* - p") forces of attraction are almost equal [72].

In view of the above assertion it was expected that the
diproton and the dineutron nuclei should be stable as deuteron
is a stable nucleus (which consists of one proton and one
neutron). But so far neither of the former two particles have
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been detected as stable particles. However, in proton-proton
chain reaction it is suspected that a di-proton is formed in the
first step which immediately disintegrates into two protons

(>99.99 %) and to deuteron plus B* (<0.01%) (however

75

the measurement of corresponding half-lives could not
succeed) [73]. Of course, it is certain that there is no nucleus
made up only of two neutrons because it doesn’t constitute a
chemical element.
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Figure 10. Binding Energy per nucleon as a function of mass number of stable nuclides.

On the other hand, the existence of a strong attraction
between the pair (n— p*) is exemplified by the stability of
deuteron and the stable nuclides He-4, Li-6, B-10, C-12, N-14,
0O-16, Ne-20, Mg-24, Si-28, S-32, Ar-36 and Ca-40, they all
have equal number of protons and neutrons. Besides these
nuclides in other stable nuclides we do have neutrons and none
of the neutrons disintegrates. The stabilization of neutrons in a
nucleus is a subject matter of nuclear physics and the 20%
century attempts to explain the said stability are based on
quantum mechanics but a satisfactory quantum mechanical
description still eludes [18, 22, 23, 33, 36],

The reader may very well notice that the structures of
neutron and deuteron that Santilli had proposed, which we
have described in briefin Sections 7 and 8 respectively, in fact,
are in the form of isoneutron and isodeuteron respectively.
These structures involve the mutual deep but partial
penetration of the wave packets of electron and proton(s) (c.f.
Figures 8 and 9). Thus the quantum mechanical perception of
these particles as the point particles has been replaced by the
respective tiny but finite size particles all well within the
hadronic horizon. However, when we go beyond deuteron the
size of the nucleus grows but less significantly (the standard
cube root formula [74] estimates the nuclear radius of 1.25 fin
for hydrogen nucleus to 4,275 fm for calcium-40 nucleus.
Thus the nucleons have increased 40 times but the nuclear
radius has increased only 3.4 times).

Therefore, on the lines of the structure of a neutron and a
deuteron proposed by Santilli we hereby, apparently for the
first time, propose that,

1. an atomic nucleus is composed of nucleons as particles

of'tiny volume of hadronic dimensions,

2. the wave packets of nucleons penetrate mutually but

partially that produces strong nuclear force and

3. the said mutual penetration of wave packets between

heteronucleons perhaps produces very strong attractive
force compared to that between homonucleons.

This is what has been indicated in Section 1 and shown in
Figure 1, that is — the nucleons within a nucleus are in a state
of mutual but partial penetration of their wave packets. Thus
all nucleons in a nucleus, in fact, are the isonucleons, namely
isoneutrons, isodeuterons, isoelectrons and isoprotons.

Of course, one needs to investigate and evaluate
quantitatively the magnitude of nuclear forces so generated
via the methods of hadronic mechanics but at this juncture we
consider that it would be profitable first to generate nuclear
configuration of stable nuclides as if the nucleus of all stable
nuclides are composed of isonucleons, which is likely to
present enough ground for carrying out the detailed
investigation of the corresponding quantitative haronic
physics. Indeed, we have presented in Section 3 a brief
description of Santilli’s initial work on nuclear isomechanics
and genomechanics.

In the following Section 11 we will see that there are two
options for developing nuclear configuration. The first one,
the model-I, is through the isodeuterons, isoneutrons and
isoprotons as the building nucleons and the second option, the
model-II, is through the isoprotons and isoelectrons as the
building nucleons, both of them are easily interconvertible.
We will also discuss the advantages and limitations of each.



76 Anil A. Bhalekar and Ruggero Maria Santilli:

Exact and Invariant Representation of Nuclear Magnetic Moments and

Spins According to Hadronic Mechanics

11. Notations for Representation of
IsoNeutronand IsoDeuteron

In order to develop the nuclear configuration of nuclides the
first logical option is offered by the fact that the deuteron is a
stable nuclide similar to a proton. In Section 8 we have
described that the deuteron is a hadronic bound state of an
isoneutron and an isoproton. But as described in Section 7 the
neutron is indeed an isoneutron, which is a hadronic bound state
of one isoproton and one isoelectron. However, the isoneutron
is an unstable nuclide, which decays radiatively by £~
emission with half-life 0of 614.6 s [75] (In 1967 experiment the
half-life of free neutron was recorded as 10.8 min [76]). But
when it makes a union with an isoproton its instability vanishes
altogether. Hence in this hadronic choice we have developed
nuclear configuration of stable nuclides commensurate with the
observed nuclear spin using isodeuterons, isoneutrons and if
required used isoprotons. However, recall that each isodeuteron
is made up of 2 isoprotons of parallel spin and one isoelectron
ofzero spin, and the isoneutron consists of one isoproton of half
spin and one isoelectron of zero spin hence it is easy to convert
the nuclear configuration of the first choice into the one in terms
of isoprotons of 1/2 spin, isoprotons of -1/2 spin and
isoelectrons of zero spin, that is our second choice. However,
we can directly write the nuclear configuration in the second
choice just by choosing correct number of isoprotons with 1/2
and -1/2 spin commensurate with the experimental nuclear spin,
because isoelectron doesn’t contribute to the nuclear spin.

A simple notation to represent Santilli’s isoneutron, 71, is as
given below as a compressed hydrogen atom, namely:

ha= (', (B (1) =0), =i(t) 9

where ha denotes the hydrogen atom; 9™ denotes
quantum mechanics; p* denotes the conventional proton;
e~ denotes the conventional electron; Am denotes hadronic

A

mechanics; p* denotes the isoproton; &~ denotes an

isoelectron; J isthe spinand ¢ denotes spin 1/2. The total
angular momentum of the isoelectron is null because the
particle is constrained to rotate within the hyperdense proton
in singlet coupling, thus acquiring a value of the orbital
angular momentum equal but opposite to its spin (Figure 8).

Similarly, the notation of an isodeuteron, 7 , is obtained as
. given below, namely:

d(J=?)=(P+(T)5”(l)) (ﬁ*(T),é'(J=0),f7+(T))hm
=dw=n=d(11) 75)

where | denotes the spin -1/2. The spin 1 of the isodeuteron

is because of two up spins, 11, of two isoprotons.

The stability of deuteron gets excellently explained by the
Santilli iso-deuteron model, Eq. (75). Namely, as the structure

—
qm

(ﬁ+ ( 1 ) e (J= 0))“ is unstable, there is a natural tendency
m

of the bound electron in ( pt (T),é" J=0),p* (T))hm to get

released from the grip of its isoproton to which it is bound at
the given instant of time, but no sooner it succeeds in getting
released it immediately gets trapped into the hyper-dense
medium of the other very closely placed proton. This is how
isodeuteron enjoys its stability against radioactivity. This
interpretation of nuclear stability and instability reasonably
good.

In the next Section 12 we consider only the stable nuclides
of periodic table up to the atomic number 82.

12. Proposed Nuclear Configuration of
Stable IsoNuclides

We adopt 5X,(J)=X(4,Z,J) to represent nuclides,
where X represents the symbol of the chemical element, A
is the mass number i.e. the total number of protons and
neutrons, Z is the atomic number i.e. the total number of
protrons, N is the total number of neutrons, and J is the
nuclear spin. Obviously (4-Z) is the total number of
neutrons, /V , in the nucleus. Notice that we have incorporated
nuclear spin, J , in the conventional representation of nuclide.

In this paper we propose, apparently for the first time, the
extension of Santilli isodeuteron to all stable nuclides under

the proposed name of IsoNuclides with the symbol }’ XN(J ).

Notice that in this notation we have still retained the symbols
A,N,Z because it would be easy to correlate with
conventional description.

Now as stated in preceding sections there are two options
for developing nuclear configuration of nuclides.

In the model-1the adopted working rule is that we are bound
by the requirement of producing that nuclear configuration
which predicts correctly the experimental nuclear spin. Our
method is further based on the observed stability of an
isodeuteron that indicates that the isonucleons of a nuclide
first prefer to adopt the isodeuteron structures and in this way
the unaccounted neutrons and protons stay in the nucleus as
isoneutrons and isoprotons with appropriate spin orientation.

In the model-1I we fix the number of isoelectrons equal to
the number of neutrons (because in a nucleus an isoelectron
with null spin is carried into through the neutron as isoneutron)
and obviously the number of isoprotons of a nucleus equals to
the mass number, A, of the nuclide. Thus our method is then
to choose the number of isoprotons with spin 1/2 and -1/2 that
correctly predicts the experimental nuclear spin of the nuclide.

12.1. Isodeuteron, Isoneutron and Isoproton as Constituents
of Atomic Nuclei. Model-1

In this first option with the guidelines described above in
this Section 12 we note that gf_\lel(o) can be readily

interpreted as a hadronic bound state of an isodeuteron and an
isoproton in singlet coupling (perhaps necessary for stability).
Accordingly it gets represented as under,
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$He,(1/2)=(d(11), * (4))
= (24, ﬁ*(-1/2))hm (76)

Notice that in this isonuclide there we have one separate
isoproton and two mutated protons as isoprotons in the form of

d(11).

Similarly, g Iflez (0) can be readily interpreted as a hadronic

bound state of two isodeuterons in singlet coupling, namely,

3 Hez )= ( )
id,

=(34 1>,2d1( 1))

Along the same linens, s fJia( 1) can be readily interpreted

an

as a hadronic bound state of 4 He,(0) and one isodeuteron

2d,(1)

giun{g ﬁez(ox%élla)] (78)

hm

and similarly for the remaining stable nuclides (see Table 2).
For the isotopic structure model of ;£i4(3 /2) we have

the more complex model

TLi,(3/2) = (;ﬁez(o), 24, (1), ;9(1/2)) (79)

hm

Therefore, we can symbolically write the nuclear
configuration of stable isonuclies as under,

X () =[5Cd,(D), x,(d,(-1),
%A1/ 2)), x,(i(-1/2)),

xs(p"(1/2)), x,(p* (<1/2))] (80)

where X denotes the isonuclide, X,’s are the number of the

isonuclear or nuclear species depicted in the braces next to
them. Notice that in this model-I in any nucleus the isoprotons
would be in the form of isoneutrons, isodeuterons and
remaining as separate isoprotons hence if the atomic number
of a nuclide demands more protons than those accounted by
isodeuterons and isoneutrons (the striking example is that of
He-3, c.f. Eq. (76) they will be separate mutated proptons (i.e.
the isoprotons). In view of this in above expression (80) the
last two terms on the right hand side account for the separate
isoprotons that are demanded by its atomic number, Z

In this way the expression ofthe atomic mass number, 4 , is
obtained as,

A= 25 + 2%, + Xy + X, + X5 + X (€1))
the atomic number, Z , is given by,
Z =X+ Xy + X+ X (82)

Therefore, obviously the number of nuclear neutrons, NV, is
given by,

N=A-Z =X +X,+ X +X, (83)

Whereas, the total number of isoprotons Py , get computed

as,

Ppr = 2, + 2, + X3 + X + X5 + X

84)
and the total number of isoelectrons, - | get computed as,

By =x+x +x+x, (85)

It is no wonder that NV = E;- because with each isoneutron

there is associated one isoelectron. Moreover, the nuclear spin
J gets computed as,

1 1 1
=X =Xy + =X ==X, + =X ——2—x6

86
2° 2 2 (80)

Therefore, the isonuclide, ’Z‘)A(N(J) , gets reduced to

A

isoprotons, p*and isoelectrons, ¢~ , that gets expressed as,

1%,()= Py, B ®7)
12.2. Isoprotons and Isonelectrons as Constituents of
Atomic Nuclei. Model-11

Recall that all nuclear protons are indistinguishable
whereas the isoprotons of the nuclear isoneutrons too remain
indistinguishable because the isoneutrons have a natural
tendency to get converted to protons. Therefore, we cannot
label which proton out of the available nuclear protons at a
given instant of time is actually bound to an isoelectron. In this
way there must be on an average at a given moment of time a
fixed number of isoprotons and the same number of
isoelectrons, and remaining number of nucleons are the
protons and are equal to the atomic number of the chemical
element. However, in view of the housing of all protons and
neutrons in extremely small nuclear volume (see also Section
10) there must be at least partial mutual penetration of wave
packets of protons besides in addition to that with the wave
packets of electrons that describe the isoneutron and
isodeuteron. Hence all nuclear protons and neutrons taken
together need to be treated as an assemblage of isoprotons and
isoelectrons. Of course, the mutual penetration of wave
packets of protons and the mutual penetration of wave packets
of electrons and protons would definitely produce diffierent
hadronic effects hence needs to be quantitatively investigated
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by the tools of hadronic mechanics. Therefore, in this model-I1
we treat every nucleon of a nucleus an isonucleon.
Thus the counter part of Eq. (80) in this case would read as,

1%, (D =[2x (5 (112) 25, (p*(-112),
x (5 (112)),%, (5 (-1/2),
% (57 (1/2)),x,( 5 (-1/2)),

@+, +3,+2,)(670)] (88)
which gets simplified to,
1K, (N =[@x+x+x)(p7(112)),
@x +x,+3)(P*(-1/2),
(5 +3%,+3%,+2,)(670)] (89)

where the number of isoprotons with spin 1/2, P(1/2), is
given by,

P(1/2) = 2x, +x, +x,, (90)

number of the isoprotons with spin -1/2, P(-1/2), is given
by,

P(-1/2)=2x, + x, + x;, 1)

and number of the isoelectrons with spin 0, E(0)= N, is
givenby,

E@Q) = x, +x, +x, +X,. 92)

Alternatively, we can directly express g)? y(J) as
follows,

3%, () =[P(1/2),(-1/2),E(0)] (93)

where P(1/2)+P(-1/2)=A and Z=P(1/2)+P(-1/2)-N .
Since, all nuclear spins are null or positive numbers we have
PA1/2)>P(-1/2).

We would like to stress that the methods of writing nuclear
configuration described above are entirely general that make
no distinction between stable and unstable nuclides. However,
with the above adopted notations we are now well equipped to
build the nuclear configuration of stable nuclides as

isonuclides ;)A( » /), that we present in the next Section 13.

13. Hadronic Mechanics Based
Configuration of Stable Nuclides

In this paper we are primarily presenting the nuclear
configuration of the stable nuclides. The nuclides of atomic

number higher than 82 are all radioactive therefore we have
developed the nuclear configuration up to the chemical
element Pb. Now onwards we will use the short hand notation
of an isoneutron and an isodeuteron given in the extreme right
hand side of Egs. (74) and (75 ), namely A( t) and d(11)

respectively. Moreover, henceforth all nuclear protons would
be treated as isoprotons whether the wave packet of any one of
them penetrates with that of an isoelectron or not. This is so
because as discussed in Section 10, in view of the extremely
small size of atomic nuclei, all nuclear protons indeed get
transformed to isoprotons.

13.1. Nuclear Configuration of Stable Isotopes as
Isonuclides. Model-1

The observed stability of deuteron does indicate that the
stable nuclides first prefer to have the isodeuteron structure
from the available number of neutrons and protons. Whereas
the remaining unaccounted neutrons and protons stay in the
nucleus as isoneutrons and isoprotons.

Thus we have followed a nuclear version ofthe Aufbautype
principle with the requirement that the resulting nuclear
configuration should correctly predict the observed nuclear
spin of each isotope of the elements. We are presenting in
column 3 of Table 2 the so arrived at nuclear configuration of
the stable isonuclides up to the element Pb of the periodic
table along with the observed nuclear spin (in colum 5) against
each isonuclide for the ready reference. All the nuclear spins
reported now onwards are taken from the Ref. [80] unless
otherwise other sources are cited.

13.2. Nuclear Configuration of Stable Isotopes as
Isonuclides. Model-11

The nuclear configuration in terms of isoprotons and
isoelectrons that replicate the observed nuclear spin is easy to
write. We first write number of isoelectrons equal to the
number of neutrons, N, in the nucleus and then write the
number of isoprotons equal to the mass number, 4, of the
nuclide, which then is distributed in up and down spin
isoprotons so that the net spin of the combination equals the
experimental nuclear spin.

Equivalently, on realizing that each isodeuteron has two
isoprotons of same spin and one isoelectron of null spin,
and the isoproton of each isoneutron has the same spin as
that of the latter. The total number of nuclear isoelectrons is
given by the sum of the number of isodeuterons and
isoneutrons in a given isonuclide. The nuclear
configuration of the model-II has been listed in the column
4 of Table 2. Notice that the nuclear configuration in this
option of all nuclei correctly predicts the respective
observed nuclear spin.
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Table 2. Nuclear configuration of stable, primordial and very long lived isonuclides for nuclear model-I and model-I1
;::::::; z Isonuclides of Chemical Elements  Nuclear Configuration Model-I :;:,c;:: ;]C onfiguration Nuclear Spin, J
\H,(12) Proton . .
2
1 (not an isonuclide) g (1) » (1) :
’,ﬁl(l) (isodeuteron) ‘;(“) ZP'(T)"A’—(H) 1
. - 25+ (1).5 (1)
3 He,(112) ()7 (V) &(t1) 12
2
. . s 25 (1).25" (V)
;ﬁez(O) d(t1)s d(iy) = [zHez(O)] 2 (1) 0
" ~ 4 (1)25° (4)
0]
3 “Li,() ’He’()}’ () 36-(14) 1
I 2(an) s (1).25' (1)
185,01 2He2(0)], a(11) .a(1) (1) 312
. . oo |, 24(11), () 6b(1)35"(4) )
3Bej(3/2) 21‘[82 s y 5é'(1l) 3 2
o . 89" (1).25" ()
08,(3) {mez(m},w(ﬁ) sé-(11) 3
5
; 341 4 75 ()45 (1)
u3.60) 2[2He2(0)], d(11).a(1) (1) 32
2|4fie,@ |, d(t1), d(4
s - a0 469
2,0 A 6&-(t1) 0
6 =3 2He2(0)]
. , 75" (1)65" (1)
13667(1/2) 3 zHez(O)], n(T) 7é“(ﬂ,) 12
A . 85" (1).65" (1),
48, 3{;}16’(0)]’ () 7% (1) 1
7
A - ,. 85’(1)371"(&),
N 4
5K _ar2) 3{21{%«»], a(tt), afy) (1) 12
3[4, | M), au .
. [ He, )] a( ) d( ) 8p‘(1),8p*(¢), .
16
°0,(0) - 4[;{{52(0)} 8&-(14)
8 ) . . 11p* (1).68" (4);
‘;69(5/2) 3[2He2(0)],2d(ﬁ), n(T) o (11 52
\ S8 95"(1).95" (4)-
A 4|4 2(0)},’11‘,n‘|,
50,0 [ e (). i 10°(14) 0
A ; ~ 10]3+(1),9£)+(l)5
9 A 4[; z(0)}, dm), Ay 172
lgFlo(llz) He ) ( ) 10@-(1”
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Atomic Isonuclides of Chemical Elements  Nuclear Configuration Model-I I;;I:(:zr-;lconﬁgi;;ation Nuclear Spin, J
Number, Z
[ fe (0)] ). ol 105" (1).10"(4), 0
2 Re,, 0 ] 5[% (o)] 106-(11)
N R ]
X 4]t fie.cor |, 2M), A4 3
e, (32) e 200 7
A s ()7 1),
5 N Ae H h T * h l’ 0
2 Re, O R R
) ; 13p° (1107 (1), 32
1 i a , G2 5[;“’(0)}’ 1441 12(1)
5\: 2(0)]9 d(TT)S ( ) 125&-(1&),121‘?(&)’ 0
0 ) i
12 " ; 15p*(1).105*(4), 512
2¥g (512 [steco] 240 15 (14
A n 13ﬁ+(1‘),13ﬁ‘(t), 0
% Mg 1, (0) 6{;””(0)]’ ). i) 145°(1)
165 (1),115* (4).
N d 5/2
13 f; /[\\] N (5/2) 5 l:z Hez(o) jl s 3 (TT) (L) 14&’(1‘&)
6[ ﬁez(O)] d(“)s d(“) 14;,*(1),14;3*“), 0
28 Qs 0) &
1a Si 1, (0 - 7{415{3 (0)] l4e (N)
14 o ; 15" (1).145° (1), 12
ORI LI 121
155°(1),155" (1),
A ‘fie s 1), 0
08 . (0) 7[2“2“”} A1) 165-(11)
. 16£.+(1~),15i7'(l),
‘Ao ,dmM), 12
15 1P (0) 7[2}{ 2(0)] A t6é-(14)
7[;1%2(0)}’ ), 16* (1).165*(4). 0
A
i;sm (0) = 8[‘1% (0)] 16é-(ﬂ)
ooy 5 (1),155*(4).
16 A ‘fe ,24d\1), nld 18 (T),15P ( 32
58 (/2) 7[2“ 2‘0)] an). ) 176 (1)
e ) ;
48, (3/2) 8[;}“’(0)]’ ).

185°(14)
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Atomic
Number, Z

17

18

19

20

Isonuclides of Chemical Elements  Nuclear Configuration Model-I I:/[l::;::;]c onfiguration Nuclear Spian
R . . 185*(1).187" (4).
8., (312) 8[3““(0)]’2”“)’2"“) 206°(1) ’
; am, wr) (1)167°(4) 312
$C1,G1) 8[:Hez<°>]’ ’ 1 (1))
8[;ﬁ )}, at),24(1) 205 (1).175* (4), 3
A
3 C1,,3/2) () 26°(14)
8[“%:‘0)}’ d(t), 4w 185* (1).185* (1),
36 4 ) 0
T Ar,,(0) _ 9[;}%2(0)] 18°(14)
1 aa) s 195" (1).195*(4),
A 9|4 fie , a1 , nld 0
* Ar,, (0) [2** @) (1), 44) 20°(14)
\ R 205*(1),205 (1),
ft Ary, (00 9[:151%(0)1’2"(1)’2"(” 22;((13) " 0
T 215 (1).18* (4),
N e, dM), At 32
igI(ZO(3/2) 9[2[{ 2(0)‘ a{ ) ( ) 20&'(1\,”
1 - . 24p*(1).16p* (4
K, (@) 3[:}%2(0) 3 ), 24(1) zxe;p-((w)) " !
9[ ﬁez(m} dm),24(1), 25" (1),195*(4),
4R, (3/2) 25 (1) i
A4)
9[ fie ‘0)] ). 4 205*(1),20*(4)
A ’ ’ 0
20 Ca 5 (0) ] 10[;}%,(0)] 208 (14)
) R 21 (1), 219 (4),
82,0 ofsteo ] A0 AGL 0
) . . 25 (1).189° (1),
4 éaza (7/2) 9[;He1(0):| 8 2d(M)’ 3 n(T) 235"(”) 72
10 -; ﬁezw)} , 2ﬁ(T), 2p*(1).225"(4).
1 Cayy (0) y & (1) :
2()
10 ';ﬁez(o)] ,34(1), 2 (1).23p* (1) 0
A
;g Cayg (0) 3 ;l( J,) 26?(”)
LY a(a (1)
 Cayy (0) IOL’HGZ(O)]"‘"(T)’[l"(” 26¢-(11) 0
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Isonuclides of Chemical Elements  Nuclear Configuration Model-I Model-11 Nuclear Spin, J
Number, Z
9l;ﬁez<o>],3a(n), 267 (1):195"(4): "
21 458c. (7/2) 2467 (1
219024 2;'(1)’ ﬁ(l) e( )
o L 2p (1)235 (4): 0
‘;g"fiz,,(O) 11{2He2(0)], A1), a(t) (1)
lOl:ﬁez(o)} 23(”), 2615*(1)’21;’*(1)’ 5/2
47 A, -
Ti,s (5/2) 256 (14
e 2i() ) "
24p(1).245" (1): 0
A - 24
2 i, (0) “lm%(o)]’znm’ i) 266°(14)
10[: ﬁe2<0>} 24(11), 28 (1).217 (1) mn
a9 A e
Tiy, (7/2) 276 (14
22 27 4;'(1)’ ﬁ(l) ( )
25;‘,‘(1),2513‘(1),
N n 3n 0
5 Tiy 0 “[2”"2(0)}3"“)’ U )
9 ;ﬁez(O)},sé(n), 313 (1), 19 (4), 6
50 %) .
V., (6) 276 (1)
5 o sil1), i) y
. . 2 (1).27°(4): 12
1 0 (712) ll{zﬂe@} a(t1), s(t) 26 (1)
=y 25 (1)255 (1) :
523 (/:\r26(0) 12 [;Hez(O)} * n(T) ’ n(l) 26¢ (T l)
A 2 (1):265" (1), 0
2 Cry ) 12[’“’(0)]’2"(”’2"“) 22 (11)
24 285+ (1).255 (1), 3
A /)
32361‘29(3/2) 12{:}{62(0)]’4"(1)’ a(s) 206" (1)
A 27 (1):275 (4): 0
52‘1(/3\1330 0) lzleez(o)}’h(T)’“(l) 306 (14)
12 2ﬁez(°)]a a(t1), 30" (1).257" (1): 512
25 $ M, (5/2) 306 (14
2 30 4n(1), ﬁ(l) ( )
\ . 27p (1).276 (4): 0
$ By (0) 13{’ ez(O)} ). 4l 286 (1)
. 2 (1).285° (1) 0
5 ey, (0) ‘3[2**&2(0)}’2"(’)’2"(” 306 (14)
26 R 207 (1).285" (4): 2
2 B, (12) 13{2He2(0)],3"(1),2"(l) 16 (11)
A 20p(1).295 (1): 0
st fo, (0) 13\:2He2(0)}, 3a(t),34(4)

326 (14)
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27
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29

30

31

32
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Isonuclides of Chemical Elements

Nuclear Configuration Model-I

Nuclear Configuration o

Model-II

;3 6032 (7/2)
% Ny, (0)
% Niy, (0)
9 Ni,, (3/2)
2 i, (0)
% N, (0)

& Cu,, 3/2)

% Cu,, 3/2)

% 70, (0)
% 7n, (0)
9 7n,, (5/2)
% 7144 (0)

% 7133 (0)

9 Gay, 3/2)

" Gay 3/2)

" Geys (0)

2 e, (0)

13[; ﬁez(o)], (1),

33p*(1).260" (1),
24 (11)

295° (1), 295" (1),

30" (1)
305°(1).30" (1),
3¢ (11)

31p*(1).316* (1),
34é (1)
32p

)
)
336 (14)
)
i

(1)32 ().
(t4

t)

335" (1).30p*(4).
346 (14)

36e”

s (1) 1),
366 (14)

7 (1) (1)
408-(14)

3sp*(1).355° (1)
386°(14)
365" (1).365" (1),
40é-(14)

|
2p*(1),295° (V).

83

Nuclear Spin, J

712

3/2

32

32

32
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Atomic Isonuclides of Chemical Elements  Nuclear Configuration Model-I azﬂ::;fonﬂgumﬁon Nuclear Spin, J
Number; Z a1p*(1),325* (4)
A . ’ : 9/2
7.8e, O 16{"“’2@] 241 e (11)
. ) e 375 (1).375" (1), 0
TR ) U R R
R 385" (1),385" (4), 0
% Gey, (0) 16[2“%(0)}’6”“)’6"“) 445 (1)
16[;1%2(0)], a(11) 395°(1).365" (1), 3
33 ” As,, 3/2) 426 (14
33 A8y, 5ﬁ(f),4ﬁ(l) e( )
. 3775 (1).375 (1), 0
186, () ”[’ "2(0)}’3"“)’3"(” 0é-(14)
) 38 (1),38° (4), 0
%S, (0) 17[2}{%(0)}, 44(t), 4a(s) 426 (1)
A 3977 (1)385" (4). 12
w0 V]S e
34 . 305+ (1),395" (1) 0
s o))
. 40p* (1) 40p (4) 0
#8e,, ©) ‘7[’“2(0)]’6"(”’6"(” a6 (11)
oy gy a1t (t) a4,
o4 744 0
e ©) oo} 70156
17{;}”{%(0)], an). 415 (1).387* (1) 32
94 N
Br,, (3/2) . 445
35 BT, 5"(1‘),4”(11) (H)
35 ;
17{; ﬁez(o)] E) d(TT)s 42p'(1);39p+(‘l’)’ 3/2
8l A 5
Br, (3/2) R X 465°(1)
35 DYy 6"(1‘),5"“) ( )
18[;ﬁez<o)],3r‘r(1),3 30 (1), 395" (1), 0
K, (©) . 425(1)
n l)
ls[gﬁe,(O)]’4ﬁ(T)’4 40p(1).405*(4) 0
9 Rpy (0) (1) 445 (M)
36 ;
18[;;%2(0)] ,5i(t),s 41" ().415 (4), 0
2R, (0) (1) 466 (M)
18{11%2(0)} 104(1), a6p (1)370° (1). 912
2Ry, O12) 476 (1)

(1)
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14. Some Observations

The purpose of presenting the nuclear configuration in
terms of isonucleons in this paper is to make available
adequate ground so that one can attemptto (i) develop atheory
of nuclear stability and (ii) acquire understanding of other
nuclear properties of the stable nuclides. In Table 2 we have
proton as the first entry and 278 stable, primordial and very
long lived isonuclides up to and including atomic number 82
of the periodic table. Beyond Pb all elements are radioactive.
There are two elements namely Tc (Z=43) and Pm ( Z = 61)
having no stable isotopes, that has also been mentioned in
Table 2. The columns 3, 4 and 5 of Table 2 depict respectively
the hadronic mechanics based nuclear configuration of models
I and II, and experimental nuclear spin of the isonuclide. In the
present Section 14 we summarize our observations on them.

14.1. Nuclear Configuration of Model-1

14.1.1. Proton

In Table 2 there are two entries corresponding to Z=1. They
are the isotopes of hydrogen, the first element of the periodic
table.

Thus, }HO , in fact, is the proton, the fundamental particle,

which is a stable particle. For its description no hadronic
mechanics is required, hence it is not an isonuclide.

14.1.2. Isodeuteron
Hydrogen of mass number 2 is conventionally termed as
deuterium. Its nucleus, indeed, is an isonucleus hence it is

termed as isodeuteron that gets represented as fﬁl . We
represent this system in our proposed notation as,

H:n=1,p*=1}>

[(5 (1) =00 (1)) ]

= tH,(1)=d(11), stable, /=1  (94)
How the nuclear spin of value 1 for isodeuteron originates
gets easily understood from Figure 9.

14.1.3. Other Stable Isonuclides of Table 2

All the stable isonuclides of Table 2 beyond hydrogen are
the combination of isodeuterons and isoneutrons except He-3
which consists of an isodeuteron and an isoproton.

L Stable Isonuclides with Null Nuclear Spin

Out of total 0f278 isonuclides of Table 2 there we have 163
isonuclides having nuclear spin of 0. From this group 9
isonuclides consists only of all spin paired isodeuterons, and

they can be considered as possessing 1, 3, 4, 5, 6, 7, 8, 9 and 10

4Be,(0) centers. Notice that the number 2 is notoriously

missing in this list. That corresponds to the isonuclide 3ge,(0)

that we know is unstable and instantaneously disintegrates to
a-particles. The same observation in terms of isodeuterons
speaks as follows. Recall that the isodeuteron is a stable
combination of isonucleons. However, two isodeuterons in the
singlet coupling are also stable, which actually is the
a-particle. Next on addition of one isodeuteron to it there we
form an isonuclide of Li-6, which also is a stable isonuclide.
But on further adding one more isodeuteron with total nuclear
spin zero we obtain Be-8 isonuclide which is unstable. Thus
we see that three isodeuteron in low spin state is stable but the
four isodeuteron in zero spin state is unstable (But notice that
in the case of stable Be-9 there we have two parallel spin
isodeuterons coupled with one isoneutron of opposite spin. It
means that the addition of one isoneutron to Be-8 forces one
spin paired isodeuterons to assume parallel spin and itself
combines to them with opposite spin that imparts stability to
Be-9 with net nuclear spin of 3/2.). However, the next stable
isonuclide is B-10 consisting of 5 isodeuterons. But in this
case there we have two spin paired isodeuterons and three
unpaired ones, ironically which is not a combination of
2a-particles and one isodeuteron similar to Li-6. The next
stable isonuclide is C-12 that consists of 6 isodeuterons in the
spin paired state, which is equivalent to strongly bound
combination of 3a-particles. It is surprising that the
combination of 2a-particles is unstable but the combination of
3a-particles is stable one. Here onwards 4 to 10a-particles
combination are all stable ones.

The remaining 154 isonuclides with null nuclear spin
consist of even number of isodeuterons and even number of
isoneutrons and they are all spin paired. Notice that not only
the isoneutrons get stabilized but also the zero spin
di-isoneutrons are getting stabilized in the environment of
zero spin isodeuterons. Amongst them from Ca-42 and
onwards we have the combination of di-isoneutrons and
isodeuterons. The number of spin paired di-isoneuterons
continuously increases and rises ultimately to 22 innumber in
the case of Pb-208 that consists 0f 82 spin paired isodeuterons.
Recall that a dineutron is not a stable entity but 22 spin paired
di-isoneutrons of Pb-208 in the presence of 41 a-particles are
stable. We need to investigate further what interactions are
responsible for this extraordinary stability. However, we also
need to take into account the nuclear configuration of adjacent
unstable isonuclide. For example, Ca-40 and Ca-42 are both
stable but Ca-39 and Ca-41 are unstable nuclides and Ca-43 is
stable one. The nuclear configuration commensurate with the
observed nuclear spin of Ca-39 and Ca-41 respectively are:
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9[;‘1%2(0)],@*(?), i(11)

and

s[gﬁez(o)],wm),ﬁ(@)

They both are unstable nuclear configurations. Thus in
going from Ca-39 to Ca-40 the nuclear configuration
transforms as

o e (1(1)
V
9[‘;1"{e2(0)],&(ﬂ),&(u) = 10[2 ﬁxez(O)]

That is, in Ca-39 last pair of an isodeuteron and a proton are in
high spin state but on the availability of one more isoneutron
in case of Ca-40 not only one additional isodeuteron gets
formed but also both the isodeuterons get spin paired,
imparting stability.

Whereas in going from Ca-40 to Ca-41 the nuclear
configuration transforms as

xo[;ﬁez(m] - 8[§ﬁe2(0)},4c?(ﬂ),ﬁ(l)

That is, 2a-particles out of 10 in Ca-40 become 4 spin
unpaired isodeuterons on the availability of an additional
isoneutron in the case of Ca-41 and at the same time the
additional isoneutron orients its spin opposite to that of the
isodeuterons and the result is nuclear instability of Ca-41.
Next we observe that when w e add one isodeuteron to Ca-41
to form Ca-42 strikingly the four spin unpaired isodeuterons
ofthe former isonuclide as well as the two isoneutrons get spin
paired to form Ca-42, a stable isonuclide.

Further, on going from Ca-42 to Ca-43 we see from Table 2
that one o-particle out of 10 of Ca-42 gets spin unpaired
providing two isodeuterons and simultaneously the spin
paired isoneutrons of Ca-42 become spin unpaired to form
three spin unpaired isoneutrons of Ca-43. Still Ca-43 is a
stable isonuclide. Moreover, the reason of the nuclear stability
of Ca-44 seems to be the same as that of Ca-42 because in the
former we have one spin paired di-isoneutron whereas in the
latter case we have two spin paired di-isoneutrons.

It seems firom the above observations that the spin pairing of
the isonucleons is not the only parameter that determines the
nuclear stability. Other factors need to be identified. This
would get further substantiated by considering the stable
isonuclides with non-zero nuclear spin in next subsection.

1I. Stable Isonuclides with Non-zero Nuclear Spin
Moreover, there are 104 stable isonuclides (in addition to
isodeuteron) in Table 2 with non-zero nuclear spin. All have
the combination of isodeuterons and isoneutrons except He-3,
which consists of one isodeuteron with both its spins up and an

isoproton with spin down.
1. Notice that in Table 2 there we have highest nuclear spin

of 7 (Lu-176). There also we have isonuclides with
nuclear spins 6 (V-50), 5 (La-138) and 9/2 (Ge-73, Kr-83, .
Sr-87, Nb-93, In-113, In-115 and Hf-179). That is even
though the spins are parallel the isonuclides are stable.

2. Also we notice that three parallel spin isodeuterons in the

environment of a-particles are also stable they are B-10,
K-40 (it also has 2 parallel spin isoneutrons) and Sc-45
(it also consists of one parallel spin isoneutron and one
spin zero di-isoneutron).

. In addition to these parallel spin high spin states there we

have various combination of parallel spin isodeuterons
combined with parallel or opposite spin isoneutrons
resulting in the intermediate nuclear spins from 1/2 to
7/2.

. As we know that an isolated single isoneutron is unstable

but it gets stabilized in the form of an isodeuteron on the

one hand but on the other hand it also gets stabilized in

the environment of spin paired isodeuterons. This is the
case of the nuclear spin of 1/2 ofthe isonuclides due only
to a single isoneutron. From Table 2 we find that-

a) in the cases of C-13 and Si-29 we have a single
isoneutron in the environment of 3 and 7a-particles
and both the isonuclides are stable.

b) Another set of stable isonuclides with a single
isoneutron consist of Fe-57, Se-77, Sn-115, Sn-117,
Sn-119, Te-125, Xe-129, Xe-131, Yb-171, W-183,
Os-187, Hg-199 and Pb-207. These isonuclides offer
the environment of spin paired isodeuterons along
with the spin paired isoneutrons to the last isoneutron
resulting in the stability of the last isoneutron.

. Another set of stabilized single isoneutron is in

combination with high spin state of isodeuterons in the

environment of a-particles. We list them as follows.

(a). The cases of a single isoneutron in the environment
of a-particles along with a single isodeuteron are of
two types. The high spin (that is the net nuclear spin of
3/2) statesare Li-7, B-11, Na-23, CI-35 and K-39. The
low spin (that is the net nuclear spin of 1/2) stable
isonuclides are N-15, F-19 and P-31.

(b).The cases of a single isoneutron in the environment
of «o-particles along with two parallel spin
isodeuterons are also of two types. The high spin (that
is the net nuclear spin of 5/2) stable states are O-17
and Mg~25. The low spin (that is the net nuclear spin
of 3/2) stable states are Be-9, Ne-21 and S-33.

(c). The cases of a single isoneutron in the environment
of a-particles along with three parallel spin
isodeuterons are two in number. The high spin (that is
net nuclear spin of7/2) state is Sc-45 and the low spin
(that is net nuclear spin of 5/2) state is Al-27.

(d). We have already seen in Section 14.1.3.1 that spin
paired isoneutrons get stabilized in the environment of
a-particles. Now we find that the combination of one
isodeuteron and one isoneutron also get stabilized in
the environment of o-particles when accompanied by
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the zero spin di-isoneutrons. The corresponding
isotopes with high spin (the net nuclear spin of 3/2)
are Cl-37, K-41, Cu-63, Cu-65, Ga-71, As-75, Br-79,
Br-81, Tb-159, Ir-191, Ir-193 and Au-197. Whereas
the low spin (the net nuclear spin of 1/2) isonuclides
are Y-89, Rh-103, Ag-107, Ag-109, Tm-169, T1-203
and T1-205.

(e). We have seen above that K-40 is a stable isonuclide.
Herein di-isoneutron of spin 1 is getting stabilized in
the environment offered by o-particles and three
parallel spin isodeuterons. Three parallel spin
isoneutrons get stabilized in Ca-43 that offers the
environment of e -particles and two parallel spin
isodeuterons.

(f). We also see that up to the net 9 parallel spin
isoneutrons get stabilized in the environment of 36
a-particles and 13 di-isoneutrons in the case of Hf-179
whereas in the case of Ge-73 the 9 parallel spin
isoneutrons get stabilized in the environment of 16
a-particles, no isodeuterons are required for this
stabilization.

We have described above certain representative
observations but on closer scrutiny of Table 2 we can spell out
many more observations. However, the main task of
presenting the nuclear configurations of Table 2 has been to
provide ample facts that would provide base to evolve a
comprehensive theory of nuclear stability against radioactivity
and find out the factors that lead to nuclear instability.

While attempting to explain the nuclear stability we
definitely need to consider unstable isonuclides in the
immediate vicinity of the stable isonuclides along with their
nuclear configurations commensurate with their observed
spins. For example let us consider the cases of stable Nb-93
and In-113. We know that Nb-92 and Nb-94 are unstable
isotopes and their experimentally observed nuclear spins are 7
and 6 respectively whereas that of Nb-93 it is 9/2. That is
Nb-93 lies in between the higher nuclear spin isotopes. The
nuclear configuration of Nb-92 is

19[;ﬁe2(0)}3[3(11)],@(?)'%(&)} [a(t)]

that on adding one isoneutron changes to

20{31%2(0)},[3(? 1]2[a(1)a(4)], 7La(1)]

That is the addition of one isoneutron forces two
isodeuterons out of three parallel spin isodeuterons to get spin
paired and simultaneously itself gets spin paired with one
isoneutron leaving 7 parallel spin isoneutrons. The outcome is
the stable Nb-93. Now to this stable isotope on adding one
isoneutron it forces one pair of spin paired isoneutrons to
become spin unpaired resulting in total number of 10 parallel
spin isoneutrons. The resultant nuclear configuration obtained
is

zo[;ﬁxez(m}[&(ﬁ)], [(1)a(4)]. 10[4(1)]

which is unstable Nb-94.
Similarly, in the sequence In-112, In-113 and In-114 the
nuclear configuration transforms as

2 e |[at ()]

!
24[31“{%(0)],[3(11)], a[a(1)a(s)]. 7[A(1)]
!
24[;}3&2(0)}[&(n)],s[ﬁ(ﬂﬁ(l)}

Notice that in this sequence spin 1 states are unstable and
9/2 spin state is a stable one.

The above described are a few representative examples but
they adequately pose the kind of challenge we need to
undertake in order to explain nuclear stability/instability. One
may think that an answer may be found through developing
corresponding shell model and corresponding magic numbers.

In order to check if magic numbers play any role in nuclear
configuration throughisoneucleons we have also compiled the
nuclear configuration in terms of isodeuterons as the only
constituent and depicted in Table 3.

Table 3. Isonuclides composed only of isodeuterons

Nuclear Configuration I:):] uclide Isodeuterons and Nuclear Nuclear Magnetic dipole Nuclear Electric Quadrupole
ZXN (J ) Stability / Instability Moment g/ pp Moment Q/eb
Q(M) Isodeuteron 1 (odd) stable 0.85743823 +0.00286
[3( ) T),Q(H)] ; ﬁez(o) 2 (even) stable 0 N/A
[d(t).d(ss)]. dm) 0 2,1 (0dd) stable 0.8220473 -0.00083
A
2[&'(”),3(“):[ EB%(O) 2, 2 (even) unstable 0 N/A

=2 gI,-\Iez(O):|
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. . Iso:luclide Isodenterons and Nuclear  Nuclear Magnetic dipole Nuclear Electric Quadrupole

Nuclear Configuration gXN(J ) Stability / Instability Moment g/ pp Moment Q/eb

[ (TT)";(LL)]’ 104 2, 3 (odd) stabl 1.8006448 0.08472

R . 3) , 3 (0dd) stable . X

dm).a(m).dm) -

3[d(M),l;'(H):| lg 66(0) 2, 4 (even) stable 0 N/A
sla(t)d)]. A g 2,5 (odd) stable 0403761 0.0193
4[&(1‘1),&“&)} 1368(0) 2, 6 (even) stable 0 N/A
aa(1).a(u)]

. 18 ﬁ (0) 2, 6, 1 (odd) unstable N/A N/A
d(TT) 99

5[‘;'(“),&(”)} 1281:}“'10(0) 2, 6, 2 (even) stable 0 N/A
a[a(1).d(w)],

;1(1‘1‘) ;i(ﬁ) (}(M) ﬁﬁa“(B) 2, 6,3 (odd) unstable 1.746 N/A
o[d(11).d(w)] 2t © 2, 6,4 (even) stable 0 N/A
s[d(1).a(w)].

dm) , dr)  dn) 530,9 2, 6,5 (0dd) unstable N/A N/A
d).dm)

7[d(t T),l}( W] 288 0) 2, 6, 6 (even) stable 0 N/A
7 [d J d( M) 08 () 2,6, 6,1 (odd) unstable N/A N/A
8[d(tt).d 1)] 28,0 2, 6, 6,2 (even) stable 0 N/A
8[d(11).d(14))

n( ) ’ p( ‘L) %f} 6I17(0) 2, 6, 6, 2 (even) unstable 0 N/A
od(t1).d(44)] 36r,, ) 2,6,6,4 (even) stable 0 N/A
Platr)ali) 2, 6, 6,5 (odd) unstabl 1371 N/A
N N K 384 3) , 6, 5 (odd) unstable .

dt).dftr), d(11) 19Kig(

10 [z}( t 1),3(“)] 386620(0) 2, 6, 6, 6 (even) stable 0 N/A
ofd(11).d(14)].

09n 2, 6, 6, 6 (even) unstable 0 N/A

i(t). (4 st

11 [1}(1 f),t}( | l)] %"/l\“izz © 2, 6, 6, 8 (even) unstable 0 N/A
nfd(tt).a(u)).

ﬁ(T) , f’(l) 4263(\/23 ) 2,6, 6, 8 (even) unstable 0 N/A

l2|:t}(1‘1‘),6}(ll):| ‘556:24 () 2, 6,6, 8,2 (even) unswable 0 N/A
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From the column 3 of Table 3 we learn that the stable
nuclides consists of odd number i.e. 1, 3, 5, 7 and 9, and even
number ie. 2, 6, 8, 10, 12, 14, 16, 18 and 20 isodeuterons. We
also notice that there are no nuclides, stable or unstable, with
17, 21 and 23 isodeuterons this we have depicted in Table 3 by
including C1-34 (consisting of 16 spin paired isodeuterons and
spin paired one isoneutron and one isoproton), Sc-42
(consisting 0f20 spin paired isodeuterons and spin paired one
isoneutron and one isoproton) and V-46 (consisting 0f22 spin
paired isodeuterons and spin paired one isoneutron and one
isoproton). All of them are unstable isonuclides. The nearest
stable isonuclides are ClI-35 (consisting of 16 spin paired
isodeuterons, and one each isodeuteron and isoneutron with
parallel spins), Sc-45 (consisting of 18 spin paired
isodeuterons, two spin paired isoneutrons and parallel spin 3
isodeuterons and one isoneutron) and V-51 (consisting of 22
spin paired isodeuterons, and parallel spin one isodeuteron
and 5 isoneutrons) respectively (can be seen in Table 2).

Thus, the column 3 of Table 3 doesn’t appear to point out
the existence of a system of magic numbers for isodeuterons
when housed in a nucleus. Moreover, in Table 3 we have also
depicted the nuclear magnetic dipole and electric quadrupole
moments [77, 78] in columns 4 and 5 respectively. That
reveals the nonspherical nuclear charge distribution in the case
of non-zero nuclear quadrupole moments.

14.2. Nuclear Configuration of Model-I1

In this model we treat atomic nuclei as constituted of
up-spin isoprotons, down-spin isoprotons and null-spin
isoelectrons. The column 4 of Table 2 list nuclear
configuration of all stable nuclides in terms of these
isonucleons. The striking feature of these nuclear
configuration is that the number of isoelectrons, [E(0), is
equal to the number of neutrons (c.f. Egs. (84) and (91)) and in
this sense we may say that the isoelectrons have replaced
neutrons.

Traditionally the nuclear stability is described by the ratio
N/Z (number ofneutrons to atomic number) and it is argued
that this ratio increases from value 1 at lower atomic numbers
to 1.537 in the case of Pb-208 (the last stable nuclide) because
with the increase of atomic number the nuclear charge
increases, which results in tremendous increase in repulsive
force amongst nuclear protons. This repulsion gets minimized
by the presence of neutrons. At higher atomic number the
neutrons in a nuclide need to out number protons to attain
nuclear stability, hence the said ratio increases up to 1.537 for
Pb-208. Of course, there is a limitation on the effectiveness of
neutrons to overcome the nuclear repulsive force otherwise by
mere increase of number of neutrons all nuclide could have
been stabilized. Hence, other explanation of nuclear stability
were looked for. That resulted in postulation of a host of new
subatomic particles. In layman’s language scientists were
looking for a nuclear glue which is responsible for tightly
holding nucleons together within an atomic nucleus.

With this background we now interpret the stability of an
isodeuteron in terms of the ability of an isoelectron to

effectively hold two isoprotons together. Hence, we are in a
position to say that the isoelectron acts in this case as an
effective nuclear glue that holds tightly two isoprotons
together. In view of this interpretation we now, apparently for
the first time, hypothesize that in all stable nuclides their
isoelectrons act as effective glue that tightly hold their
isoprotons together in the nucleus, of course, with appropriate
distribution of up and down spins amongst isoprotons. We
caution the reader that the isoelectrons as nuclear glue has
entirely different base than what the nuclear glue is described
in the conventional nuclear physics. In the present model we
have not postulated any new subatomic particle. Our proposal
is that the conventional electrons and protons get transformed
respectively to isoelectrons and isoprotons by way of mutual
partial penetration of their wave packets in view of their very
close proximity and that acts as the nuclear glue.

In view of the réle of the nuclear glue played by
isoelectrons we hereby propose that instead of N/Z ratio it
would be more appropriate to use the ratio E(0)/Z to
qualitatively describe nuclear stability.

Of course, the proposal of nuclear configuration in terms of
isoprotons and isoelectrons with latter as the nuclear glue,
opens up new vistas for further investigations on the topics of
nuclear stability and understanding of all other nuclear
properties.

The nuclear configuration of nuclides of model-1I are listed
in column 4 of Table 2. The observations and analysis of these
nuclear configurations are described in Section 14.2.1.

14.2.1. Observations and Analysis of Nuclear Configuration
of Model-IT

In the model-1I we view the nucleus as a pool of isoprotons

with the isoelectrons immersed in it. In light of this we are
presenting our preliminary visualization of only a few
nuclides of lower atomic numbers and for the time being we
are postponing our analysis ofhigheratomic number nuclides.

1. In the case of isodeuteron there we have one
isoelectron and two isoprotons (both with up spin).
Hence the isoelectron acts as a solitary nuclear glue
that tightly holds both the up spin isoprotons. The
most obvious geometry of these three isonucleons is
linear that perfectly matches with the structure
proposed by Santilli (see Figure 9). Thus oblate
elliptical shape of isodeuteron described in Figure 6
perfectly matches with the present description. It
seems that the zero spin isodeuteron is energetically
unstable hence even if it is formed in some nuclear
transmutations that gets quickly converted to the spin
1 isodeuteron.

2. The next entry in Table 2 is He-3 with the nuclear spin
1/2. It is the case of a pool of 3 isoprotons and in that
one isoelectron is immersed. The obvious minimum
energy geometry is the one in which the isoelectron is
at the center of an equilateral triangle and the three
isoprotons situated at the vertices of it. Again in this
casetoo the shape would be elliptical due to its overall
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spinning motion. He-3 with nuclear spin of’3/2 has not
been observed so far, which must be energetically
unstable nuclide. Therefore, even if it is formed in
some nuclear transmutations it gets quickly
transformed to He-3 of 1/2 spin. Thus we learn that the
low nuclear spin state He-3 is the preferred one.
Moreover, when we add one down spin isoproton to an
isodeuteron nucleus we get He-3 nucleus but we see
that this addition does not disturbed the nuclear
stability of, though the geometry changes from linear
to planner.

Just for comparison with He-3 nuclide let us consider
H-3 (triton) nuclide, The latter nucleus too possesses 3
isoprotons with the net spin of 1/2 but consists of 2
isoelectrons. The minimum energy arrangement would
be trigonal-bipyramidal in that the two isoelectrons
occupy axial positions above and below the horizontal
plane of symmetry. However, in this arrangement the
penetration of wave packets of isoelectrons into those
of isoprotons would not be as deep as one isoelectron in
He-3 achieves. This perhaps leads to instability. It
decays with B~ emission to the stable He-3 nuclide
and its half life is 12.329 y that is it is not highly
unstable nuclide. This is understandable because by
emission of one isoelectron a stable He-3 geometrical
arrangement is achived.

The He-4 nuclide is the case of a pool of 4 isoprotons
and immersed in it are two isoelectrons. The minimum
energy shape in this case would be that of an
octahedron in which isoelectrons occupy the two
diagrammatically opposite axial positions and 4
isoprotons occupy the remaining 4 vertices. The spins
of isoprotons would be alternately up and down so that
the net nuclear spin is null. The charge distribution
would be spherically symmetric in view of the
repulsion between axial isoelectrons.

The Li-6 nuclide is a case of a pool of 6 isoprotons and
3 isoelectrons immersed in it. The minimum energy
shape seems to be the two trigonal-pyramids in a
staggered geometry with 6 isoprotons at the vertices.
All the 3 isoelectrons occupy axial positions and out
of them one is at the center holding tightly both the
trigonal pyramids. The observed spin 1 originate from
the one up spin isoproton on each side of the central
isoelectron. If one isoelectron is added to Li-6
arrangement described herein then we will have to
house 2 isoelectrons atthe center of the axial position.
An equally probable geometry could be one He-4
arrangement and one isodeuteron moiety oriented
above one of the axial isoelectrons such that the
isodeuteron moeity and the axial isoelectrons of He-4
moiety form a straight line. Such an arrangement
would not be stable because of the strong electrostatic
repulsion between two central isoelectrons. The
resultant nuclide would be He-6. However, it has two
decay paths with half life of 806.7 ms. One is the
obvious decay to Li-6 just by getting rid of the extra

electron and in the second path simultaneously an a

-particle is emitted, the daughter nuclides are a
deuteron and He-4 nuclides.

The Li-7 nuclide is a case of a pool of 7 isoprotons
and 3 isoelectrons immersed in it. The obvious
minimum energy geometry would be having two H-3
trigonal-bipyramids fiised by one isoproton at the
center such that its wave packet simultaneously
allows penetration of wave packets of two adjacent
central isoelectrons on its left and right hand sides.
The observed spin 3/2 is because of the two up spin
isoprotons on each trigonal plane and one up spin
isoproton of the fusing isoproton. If we add one
isoelectron to Li-7 the resultant nuclide would be
He-7, which decays to He-6 by neutron emission
which in turn decays by two simultaneous paths to
Li-6 and He-4 along with a deuteron by A~
emission,

The case of Be-8 is unique. It has a pool of 8
isoprotons and 4 isoelectrons immersed in it. The
minimum energy shape would be two compressed
octahedrons in the staggered orientation one above the
other. Thus the four vertices of each octahedron would
be alternately occupied by up and down spin
isoprotons and the two axial vertices of each
octahedron are occupied by one isoelectrons each.
However, in this way middle two isoelectrons would
come close to each other hence this arrangement
cannot sustain itself. As a result of it the two
octahedrons get separated. This is the reason why
Be-8 is not a stable nuclide disintegrating to
a-particles. If we add 1 isoelectron to Be-8 the
resultant nuclide would be Li-8 which in turn
disintegrates to Be-8 by B~ emission with half life of
840.3 ms.

The Be-9 nuclide is a case of a pool of 9 isoprotons
and 5 isoelectrons immersed in it. The obvious
minimum energy geometrical arrangement of
isonucleons consist of 2 H-3 trigonal-bipyramids
fused by the triagonal planar geometry of He-3 in a
staggered orientation with respect to both the
trigonal-bipyramids. The observed spin of 3/2 is due
to the spin 1/2 of one He-3 and two H-3 geometries.
Notice that the wave packet of the isoelectron of the
central He-3 geometry will be effectively shielded by
the wave packets of its three isoprotons hence the
wave packets of the isoelectrons of both the H-3
geometries oriented towards the central H-3 geometry
wold penetrate into the wave packets of the central
H-3 isoprotons. This seems to impart stability to Be-9.
If we add 1 isoelectron to Be-9 nuclide the resultant
nuclide would be Li-9 which disintegrates by two
paths to Be-9 and Be-8 along with a neutron with the
halflife of 178.3 ms.

The B-10 is the case of a pool of 10 isoprotons and 5
isoelectrons immersed in it. The minimum energy
packing of isonucleons would be two He-4 type
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octahedrons in the staggered orientation one above the
other and one isodeuteron fusing them so that 2 central
isoprotons and five axial isoelectrons are in a straight
line. The spin 3 of B-10 originates from 8 up spin
isoprotons 3 in each octahedron plus two in the fiising
isodeuteron leaving two down spin isoprotons one
each in the octahedron geometry. If we add one
isoelectron to B-10 nuclide the resultant nuclide
would be Be-10 nuclide which disintegrates back to
B-10 by B~ emission with half life of 1.39x10° y.

10. The B-11 is the case of a pool of 11 isoprotons and 6
isoelectrons immersed in it. The minimum energy
packing of the isonucleons would be 2 He-4 structures
in staggered orientation and the remaining 3
isoprotons and 2 isoelectrons linearly and alternately
coupled acts as the fusing chain of the two octahedral
structures. The nuclear spin of 3/2 is due to 3 up spin
central isoprotons. If we add one isoelectron to the
B-11 nuclide the resultant nuclide would be Be-11
which partly decays back to B-11 and partly to Li-7
and o-particle by B~ emission with half life of 13.81
s.

The above presented visualization of isonucleons in
nuclides appears to be satisfactorily reasonable. We would
extend the work on the same lines for all stable and unstable
nuclides.

15. Concluding Remarks

In this paper, we have reviewed the numerous
insufficiencies of quantum mechanics for the representation of
the structure of stable nuclides, and the ensuing greater
insufficiencies for the representation of the structure of
unstable nuclides and nuclear reactions at large due to their
structural irreversibility over time compared to the strict
reversibility of quantum mechanical axions.

We have pointed out that the origin of the insufficiencies
rests primarily in the mathematics of quantum mechanics,
rather than in its axioms, due to its local-differential character
with consequential abstraction of nuclear constituents as being
point-like particles, compared to the evident need for the
nuclear structure to represent nucleons as they are in the
nuclear reality : extended charge distributions.

We have then reviewed the rudiments of the novel
isomathematics which has been constructed precisely for the
representation of nuclei as being composed by extended
constituents in conditions of partial mutual penetration, thus
resulting in the most general known interactions of linear and
non-linear, local and non-local as well as Hamiltonian and
non-Hamiltonian type.

We have then reviewed the rudiments of the covering of
quantum mechanics known as isomechanics specifically
formulated for the nuclear structure, by stressing that it
essentially consists in an axiom-preserving “completion” of
quantum mechanics along the historical argument by Einstein,
Podolsky and Rosen, which is solely valid at one fermi
distances while recovering quantum mechanics uniquely and

identically for bigger distances.

We have then reviewed the use of the above new
formulations for the first and only achievement on scientific
records of an exact and time invariant representation of the
magnetic moments of stable nuclei via the implementation of
Fermi’s historical hypothesis that the charge distributions of
protons and neutrons is deformed whenthey are members of a
nuclear structure, with a consequential deformation of their
intrinsic magnetic moments (see Figures 8 and 9 for neutron as
isoneutron and deuteron as isodeuteron respectively).

The conceptual and technically most dominant aspect of the
above advances is that the admission of contact, non-linear,
non-local and non-Hamiltonian interactions causes alterations
of the intrinsic characteristics of particles called
isorenormalizations that are simply beyond any possible
quantitative treatment via 20™ century knowledge.

Consequently, we reviewed in the Appendix A the
rudiments of the covering of Lie’s theory known as the
Lie-Santilli isotheory which has been specifically constructed
for the invariant treatment of systems  with
extended-deformable constituents with the most general
known interactions.

The most prominent salient part of the Appendix A is the
review of the Lorentz-Poincaré-Santilli isosymmetry and its
characterization of isoparticles, with particular emphasis in
the  characterization of nuclear constituents as
extended-deformable isoparticles.

We finally review the use of all the above knowledge for the
first and only known numerically exact and time invariant
representation of all characteristics of the neutron in its
synthesis from the hydrogen atom as being composed by one
isoproton and one isoelectron, with the consequential
representation of all characteristics of the deuteron as being
composed by two isoprotons and one isoelectron.

By using the above advances, we then present, apparently
for the first time, two exact and invariant representations of
the nuclear spin of the stable nuclides. The model-1is based on
nuclear structures composed by isoprotons, isoneutrons and
isodeuterons as isonucleons and the model-II is based on the
final reduction of nuclides to isomechanical bound states of
the respective isoprotons and isoelectrons.

In the former model we have considered that with the
available neutrons and protons of the nuclide they first prefer
to have the stable isodeuteron structure and the remaining
nucleons stay as isoneutrons and isoprotons in the nucleus. In
doing so the rule followed is that the so generated nuclear
configuration should correctly reproduce the experimental
nuclear spin of the given nuclide. Thus in Table 2 we have
listed nuclear configuration of all stable nuclides up to the
atomic number 82, that is up to Pb-208. Then we have
analyzed these nuclear configurations and presented our
observations in terms of the number of isodeuterons (both
their low spin and high spin combinations) and their réle in
stabilization of various combination of spin paired and/or
parallel spin isoneutrons. We have tried to look if these nuclear
configurations indicate corresponding magic numbers but the
data in Table 3 fail to provide any indication. However, it
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seems that unless we systematically compare the nuclear
configuration based on model-I of neighbouring unstable
nuclides about the stable nuclides considered in Table 2 we
may not be able to throw much light on the factors responsible
for nuclear stability/instability. Indeed, our data of Tables 2
and 3 of model-I has opened up an entirely a new line of
research in the fields of nuclear stability/instability and
nuclear magnetic moments including nuclear electric
quadrupole moments.

Whereas in arriving at the model-Il we have first
reinterpreted the stable structure of an isodeuteron in the sense
thatthe isoelectron of it acts as a nuclear glue that tightly holds
its two isoprotons. This proposal of isoelectrons acting as the
nuclear glue we have, perhaps for the first time, extended to all
stable nuclides. There we have assumed that a given nuclide
consists of a pool of isoprotons and the isoelectrons are
immersed in it, which in essence is the model-1I of this paper.
The working rule is that the number of isoelectrons is equal to
the number of neutrons in the nuclide and the number of
isoprotons is equal to the mass number of the nuclide. Next
these isprotons are distributed in two groups of up and down
spins in such a way to correctly predict the experimental
nuclear spin of the given nuclide. The resulting nuclear
configurations of all stable nuclides are listed in the column 4
of Table 2. Herein we have presented our preliminary
observations on the so developed nuclear configuration. Of
course, we have so far analyzed only a very few light nuclides
in terms of geometrical arrangements of isoprotons and
isoelectrons of H-2, H-3 (unstable), He-3, He-4, Li-6, Li-7,
Be-8 (unstable), Be-9, B-10 and B-11 nuclides. Our assigned
geometrical arrangements of isonucleons seem to provide
reasonably  satisfactory  rational = behind  nuclear
stability/instability. Particularly the reason of instability of
H-3 and Be-8 so obtained seems to be rationally correct and
encouraging.

The remarkable feature of both the models of nuclear
configuration presented in this paper is that we need not to
invent nuclear particles other than the basic subatomic
particles, namely electrons, protons and neutrons.

Moreover, as stated in the main text of this paper the
methods of writing nuclear configuration of a nuclide in both
the models are equally applicable to unstable nuclides too
hence while dealing with the nuclear stability/instability one
can easily write down nuclear configurations of neighbouring
unstable nuclides about a given stable one with identically the
same rules as those we have followed in the case of stable
nuclides and then attempt to rationalize nuclear
stability/instability meaningfully.

Both the models promise new vistas of nuclear physics that
lays a foundation of carrying out further investigations based
on hadronic mechanics to strengthen our knowledge of
nuclear physics.
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Appendix A

The Lorentz-Poincaré-Santilli
Characterization of IsoParticles

IsoSymmetry and its

A.1 Definition of IsoParticles

The 20™ century definition of particles is that of unitary
irreducible representation of the Lorentz-Poincaré (LP)
symmetry on a Hilbert space over the field of complex
numbers. This definition implies that all interactions are
derivable from a potential and representable with a
Hamiltonian as a central condition for the very applicability of
Lie’s theory at large, and that ofthe LP symmetry in particular.
In turn, the local-differential mathematics underlying Lie’s
theory implies that the particles are abstracted as being
point-like, as it is evident from the restriction of the
interactions to actions-at-a-distance.

A central aim of this paper is the representation of nuclear
constituents as they are in the physical reality, namely,
extended, non-spherical and deformable charge distributions
according to the representation of Eq. (1) which is structurally
non-Hamiltonian, in the sense that it cannot be represented
with a Hamiltonian, thus requiring a new quantity other than
the Hamiltonian. In order to achieve a time invariant
rc:,presentation, isomathematics selects Santilli isounit Eq. (37),
[=1/T>0 forthe representation of the new interactions.

Additionally, the comparison of experimental data on
nuclear volumes with those on the volume of protons and
neutrons, establishes that, when they are members of a nuclear
structure, protons and neutrons are in conditions of partial
mutual penetration of their charge distributions.

These data imply the emergence of new nuclear interactions
that are non-existence in the 20" century notion of particles,
which are given by non-linear (in the wave functions),
non-local (of integral and other type) and variationally
non-selfadjoint [3a]. The latter interactions are also not
representable with a Hamiltonian and can be invariantly
represented with the exponent in the isotopic element, Eq. (1),
or in the isounit.

The above basic assumptions imply the applicability of the
Lie-Santilli isotheory [3b, 7, 22, 24-33] at large that was
constructed precisely for the representation of
non-Hamiltonian systems under the most general known
linear and non-linear, local and non-local and Hamiltonian as
well as non-Hamiltonian interactions,

Finally, the above basic assumptions imply that the
universal symmetry for the non-relativistic treatment of
isolated and stable nuclei is the Galileo-Santilli isosymmetry
[21, 22], while that for the relativistic treatment is the
Lorentz-Poincaré-Santilli isosymmetry [12-23]. We can,
therefore, introduce the following:

DEFINITION A.1 [18, 21, 22]: A non-relativistic
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(relativistic) isoparticle is an isounitary, isoirreducible
isorepresentation of the Galileo-Santilli
(Lorentz-Poincaré-Santilli) isosymmetry on a

Hilbert-Myung-Santilli isospace over a Santilli isofields.

Within the context of this paper, whenever nuclear
constituents are called “protons" and “neutrons" we refer to
their quantum mechanical characterization as point-like
particles under sole action-at-a-distance,
potential-Hamiltonian interactions. Nuclear constituents
according to this paper must necessarily be isoparticles at
large, and isoprotons, isoneutron and isoelectrons in particular.
In this Appendix we provide a summary characterization of
relativistic isoparticles, while the particular case of
non-relativistic isoparticles is referred to Refs. [18, 21] for
brevity.

It should be stressed that a technical knowledge of the
notion of isoparticle can solely be acquired from the study of
Refs. [18, 21, 22]. In particular, a necessary pre-requisite for a
technical characterization is the knowledge of Kadeisvili
isofunctional analysis [22] we cannot possibly review to
prevent excessive length.

A.2 The Lie-Santilli IsoTheory

The main branches of the Lie-Santilli isotheory can be
outlined as follows (see the original proposal [3a] for the
isotopies of enveloping algebras, Lie algebras and Lie group;
Ref. [7] for their upgrading in terms of the isodifferential
calculus over isofields; the final formulation in Ref. [22]; and
Refs. [24-33] for independent studies):

Universal Enveloping Isoassociative Algebras

Let E=E(L) be the universal enveloping associative
algebra of an N -dimensional Lie algebra L with ordered
(Hermitean) generators X,,k=1,2,..,N , and attached
antisymmetric algebra isomorphic to the Lie algebra,

[E(L)] =L overafield F (of characteristic zero), and let
the infinite-dimensional basis 1, X, , X,xX,, is j... of
E(L) be characterized by the Poincaré-Birkhoff-Witt

theorem. We then have the following:
THEOREM A.1 [3b, 7]: (Poincaré-Birkhoff-Witt-Santilli

X2 %,1-%,

theorem): The isocosets of the isounit and of the standard
isomonomials

I X X5 isj; XX 53K 1sjsk.., (AD)

form an infinite dimensional basis of the universal enveloping
isoassociative algebra E‘(i) (also called isoenvelope for
short) of a Lie-Santilli isoalgebra f .

The first application of the above theorem, also formulated

in Ref. [3b] and then reexamined by various authors, is a
rigorous characterization of the isoexponentiation, i.e.,

é\ii‘i&,\" =
=T+ wk X1+ R XY G % X) 1214 ...=
- ix(eixwaxX) = (eixwxXxT)xi’ (A.2a)
i=ixI,v=wxl€F. (A2b)

where quantities with a “hat" are formulated on isospaces
over isofields and those without are their projection on
conventional spaces over conventional fields.

The non-triviality of the Lie-Santilli isotheory is established
by the emergence of the isotopic element 7 directly in the
exponent, thus ensuring the desired generalization, thus
establishing “ab initio" that while Lies theory can solely
characterize linear, local-dofferential and Hamiltonian
systems, the covering Lie-Santilli isotheory characterize the
most general known non-linear, non-local and non-canonical
or non-unitary systems.

LIE-SANTILLI ISOALGEBRAS.

As it is well known, Lie algebras are the antisymmetric

algebras L =~[&(L)]” attached to the universal enveloping
algebras £(L) . This main characteristic is preserved although

enlarged under isotopies as expressed by the following:
THEOREMA.2 [3b, 7] (Lie-Santilli Second theorem): The
antisymmetric isoalgebras j attached to the isoenveloping

algebras E(ﬁ) verify the isocommutation rules.

N A oA
ij—ijX,.—

=X, xT(x,v,¢&, a),1//,61,0,...)ij —Xj xT(x,v,E,0,9,0¢,..)x X, =

= é;(X,V,E,waw,aw,.--)i)%k = C,f(x,v,é‘,a),z/',az//,...)xXk,,

where T is the projection of the isotopic element 7 on a
conventional space over a conventional field, and the C ’s,
called the “structure isofunctions" of 7 , generally have an
explicit dependence on local variables, and are restricted by
the conditions (Lie-Santilli Third Theorem)

[X, 5 X,1+[X, 5 X,]1=0, (Ada)

X3 X, 10 X I+, 5 X, 15 X, 1+[1X, S X, 15 X, 1=0. (A4b)

(A3)

It was stated in the original proposal [3b, 7] that all
isoalgebras 7 are isomorphic to the original algebra L for
all positive-definite isotopic elements. In other words, the
isotopies cannot characterize any new Lie algebras because all
possible Lie algebras are known from Cartan classification.
Therefore, Lie-Santilli isoalgebras merely provide new
non-linear, non=local and non=canonical or non-unitary
realizations of existing Lie algebras.

LIE-SANTILLI ISOGROUPS.

Under certain integrability and smoothness conditions
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hereon assumed, Lie algebras L can be “exponentiated” to
their corresponding Lie transformation groups G and,
vice-versa, Lie transformation groups G  admit
corresponding Lie algebras L when computed in the
neighborhood of the unit 7.

These basic properties are preserved under isotopies
although broadened to the most general possible,
axiom-preserving nonlinear, nonlocal and noncanonical
transformations groups according to the following:

THEOREM A3 [3b, 7] (Lie-Santilli isogroups): The

isogroup characterized by finite (integrated) form G of
isocommutation rules (1.12) on an isospace S‘(f, ﬁ‘) over an
isofield £ with common isounit j=1{/7>( is a group
mapping each element $=§ into anew element 'S via

the isotransformations

¥'=g(W)kE, 3,5'ES, WEF, (A.5)

withthe following isomodular action to the right:
1) The map §>‘<SA‘ into § is isodifferentiable V8EG;
2) [ is the left and right unit

[%g=g%i=g, VEEG; (A6)
3) the isomodular action is isoassociative, i.e.,
£ X(& %)= (8% 8,)%3, ¥§,8,€G; (A7)

4) in correspondence with every element g(ﬁ;)EGA there

3 S

is the inverse element g~' = g(-%) such that

£(0) = g% a(-w) = J; (A8)

5) the following composition laws are verified

BONXEOV) = ()R (V) = g+ W), YEEG, WEF; (A9)
with corresponding isomodular action to the left, and general
expression

§(ﬁ1) - Héfiﬁ'k)fk )2 é(O) )/Z né—fiﬁ'k,\;k , (A_ 1 0)
* k

Another important property is that conventional group
composition laws admit a consistent isotopic lifting, resulting
in the following

THEOREM A4 [3b, 7]
(Baker-Campbell-Hausdorff-Santilli theorem):

(A.lla)

IS NS ¢ AKX
(exEe")y=e,

X=X+ X, +[X 2 X, V34 (X, - X,)o1X, X, 12 +.... (A11b)

Let Gl and GZ be two isogroups with respective isounits

il and iz . The direct isoproduct él x éz is the isogroup of

all ordered pairs

(gpgz): éleGlnézEGv (A'12)
with isomultiplication I
(épéz);((é;,é;)=(é1;<§1”é2iég)’ (A.13)

total isounit (/,,/,) and inverse @r h 842y,
The following particular case is important for the isotopies of
inhomogeneous groups. Let (G be an isogroup with isounit |

and éa the group of all its inner automorphisms. Let é: bea
subgroup of é& with isounit f*, and let A(g) be the image
of $€G under é&. The semi-direct isoproduct éié: is
the isogroup of all ordered pairs (8.A)%(8°,A%) with total
isounit

I =IxI’.

tot

(A.14)

The studies of the isotopies of the remaining aspects of the
structure of Lie groups is then consequential. It is hoped the
reader can see from the above elements that the entire
conventional Lie theory does indeed admit a consistent and
nontrivial lifting into the covering Lie-Santilli formulation.

A.3 Classification of Lie-Santilli IsoTheories

The Lie-Santilli isotheories are classified into [7]:

3.1) Regular isotheories when the C ’s of rules (A.3) are
constant; and

3.2) Irregular isotheories when the C ’s of rules (A.3) are
functions of local variables.

We should recall for the benefit of concrete applications in
nuclear physics that all regular Lie-Santilli isotheories can be
constructed via the application of a non-canonical or
non-unitary transformation to the totality of the conventional
Jormulation of Lie's theory, according to the rule of Section 4.

From now on, except for an illustration in Section 16.13, we
should solely consider regular realizations of the Lie-santilli
isotheories because amply sufficient for nuclear applications,
although the use of irregular realizations appear to be
necessary for astrophysical applications.

We should also recall that "structure functions" are
impossible for Lie’s theory, and they are solely possible for the
covering Lie-Santilli isotheory, by therefore establishing the
non-trivial character of Santilli isotopies.

A.4 The Fundamental Theorem on IsoSymmetries

As recalled in Section 16.1, the fundamental symmetries of
the 20" century physics characterize point-like abstractions of
particles in vacuum under linear, local and potential
interactions, and are given by the Galilei symmetry G(3.1)
for non-relativistic treatment, the Lorentz-Poincaré symmetry
P(3.1) or relativistic formulations, the rotational symmetry
0Q3) ,the SU(2) symmetries and others.
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A central objective of hadronic mechanics is the broadening
of these fundamental symmetries to represent extended,
non-spherical and deformable particles under linear and
non-linear, local and non-local and potential as well as
non-potential interactions in such a way to preserve the
original symmetries at the abstract level as a necessary
condition to maintain the conventional total conservation laws
forisolated stable systems.

This central objective is achieved by the following property
first proved by Santilli in Ref. [22b]:

THEOREM A.5: Let G be an N-dimensional Lie
symmetry of a K-dimensional metric or pseudo-metric space
S(x,m,F) over afield F

G: ¥ =Aw)xx, ¥y =AW)xy, x,yES, (A.153)

' =Y xATxmxAx(x-p) = (x - y)' xmx(x-y), (A.15b)

AT (w)xmx A(w) = m. (A.15c)

Then, all infinitely possible isotopies G of G acting on
the isospace S’(f,ﬁ:!,ﬁ) , M=hmx] =(TA;"xm,q)xf
characterized by the same generators and parameters of G
and the infinitely possible, common isounits [ =1/7>0
leave invariant the isocomposition

G: x'=[\(w)xx, y’=A(w)xy, x,yE.§, (A.16a)

(' =y x At x il x Ax(x - y)= (x - ) x4 x (x - y) (A.16b)

ATy x i x AGP) = .

(A.16¢)

and all infinitely possible so constructed isosymmetries ¢

are locally isomorphic to the original symmetry G .

For a proof of the above theorem, one may inspect Section
1.2, Vol. IT of Ref. [22].

To achieve a technical understanding of the Lie-Santilli
isotheory and its applications in nuclear physics, the reader
should note that, while a given Lie symmetry G is unique as
well known, there can be an infinite number of covering
isosymmetries (G with generally different explicit forms of
the transformations due to the infinite number of possible
isotopic elements.

In fact, systems are characterized by the Hamiltonian H
in the conventional scattering theory with trivial unit
I = Diag.(1,1,...,1) . In this case, changing the Hamiltonian
implies the referral to a different system, but the symmetry
transformations remain the same. In the isoscattering theory,
systems are characterized by the Hamiltonian H plus the
isotopic element 7" . In this case, changing the isotopic element
implies the referral to a different system as well as the
characterization of generally different transformations due to
the appearance of the isotopic element in the very structure of
the isosymmetry.

Note also that all possible isosymmetries can be explicitly
and uniquely constructed via the sole knowledge of the

conventional symmetry and the isotopic element (1). in fact,
as implied by Theorem A.5, the existence of the original
symmetry plus the condition ] > ( ensure verification of the
integrability conditions for the existence of finite
transformations, a property hereon tacitly implied.

Recall that all quantities that are Hermitean in quantum
mechanics are iso-Hermitean in hadronic mechanics as one
can verify via Eq. (29), to such as extent that Hermiticity and
iso-Hermiticity coincide at the abstract realization-firee level,

X=X (A17)

The following property is then crucial for the physical
consistency ofthe nuclear applications of hadronic mechanics,
particularly the isomechanical models of closed-isolated
stable nuclei:

THEOREM A.6 [22]: Physical quantities that are
Hermitean and conserved in quantum mechanics remain
iso-Hermitean and iso-conserved in isomechanics.

The proof of the theorem can be easily done via the local
isomorphism of conventional Lie algebras L and their
isotopic covering [ since isotopies do not change the
generators, and merely generalize their associative products.

Recall that the basic space time symmetries, the Galileo and
the Lorentz-Poincaré symmetries, characterize ten total
conservation laws for the total linear momentum P , the total
angular momentum J , the tonal energy H , the uniform
motion of the center of mass M .

Theorem A.6 then assures that all total-external quantities
that are conserved for quantum mechanical models remain
conserved for their coveringisomechanical form achieved via
the rules of Section 4.

A.5 The Minkowski-Santilli IsoGeometry

Let M(x,n,I) be the conventional Minkowski space over
the field of real numbers R , with
x=(")=(" 0,2 =10, 1u=1,2,3,4 ,
n = Diag.(1,1,1,~¢*) , unit = Diag.(1,1,1,1) and line
element

coordinates
metric

(=) = (F-5)' =
=[O =3+ 0 =3 + (5 =3 = (4, -1,)° 1, (A.18)

Asitis well known, the Lorentz-Poincaré symmetry, hereon
denoted P(3.1), leaves invariant the above line element and
constitutes the ultimate structural foundations of special
relativity because it permits the unique and unambiguous
characterization of its basic axioms and physical laws for
exterior problems of point-particles moving in vacuum,

The fundamental isospace of relativistic isomechanics is the

Minkowski-Santilli isospace [15] A:[(J?,ﬁ,i) over the

A

isoreals R , with isocoordinates £ = xJ, isometric from Eq.
(37)is
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aam a1 11
n=Tn, TzD’ag(_z‘>_{"Ta“‘TJ’ (A.19)
mon Ay
isounit / =1/7 > 0, and isoline element
(£-9) =
[G-3) &7, %(3- ) ]=

. 2 2 2 227,
=[(«‘1 ‘2}’1) +(J‘z “zyz) 2 1 —2,1’3) _(’1“’22) c :I[’(A'ZO)
n n3 n3 ng

where the isometric characteristic quantities 4, are

positive-definite but have otherwise an unrestricted functional
dependence on all needed quantities, such as space-time
coordinates X , velocities V , accelerations @ , energy E,
distance d , frequencies @, temperature 7 , wavefunction

¥, their derivatives 0¥ , etc.

n,= ”!,(x,v,a, E,d,w,r,w,aws---) >0,4=1,2,3,4, (A.21)

Isoprotons 1soneutrons and isoelectrons are defined on
isospace M Cx, 1],] ) over the isoreals. As one can see,

isometric (A.19) is the most general possible metric with
signature (+,+,+,=~), thus including as particular case the
Riemannian, Fynslerian, Minkowskian and other possible
metric.

The Minkowski- Santllll isogeometry [19] is the geometry

of isospace M (x, 1, I ) and can be conceptually identified

as the Riemannian geometry reformulated with respect to the
isofields of isoreals because the isometric is indeed dependent
on local coordinates, thus requiring the machinery of the
Riemannian geometry, such as Christoffiel symbols, covariant
derivatives, etc., although reformulated with respect to
isomathematics.

The intriguing part of the Minkowski-Santilli isogeometry
is that it has zero curvature as necessary from the local
isomorphism of isospace M (x, 7, 7 ) with the conventional
space M(x,7,1) . It should be stressed that the lack of
curvature was a necessary prerequisite for the construction of
the symmetry of isoinvariant (A.20) (see Refs. [22] for
details).

A.6 The Lorentz-Poncaré-Santilli IsoSymmetry

Following the prior construction of the isotopies of Lie’s
theory [3b], the universal isosymmetry of all infinitely
possible isoline elements (A.19) was first identified by Santilli
in 1983 [15], subjected to systematic studies in Refs. [15-19],
and presented in a systematicw ay in monographs [21, 22],
resulting in a new isosymmetry today lnown as the
Lorentz-Poincaré-Santilli isosymmetry (LPD) and denoted

with the symbol £(3.1) .

The isosymmetry 13(3.1)

isotransformations on Minkowski-Santilli
isoreals

can be defined as the
isospaces over

P = AWRE ¥ =3+ AF,.), (A.222)

AT%AHRA = Axhix Al = IxHx], (A.22b)
where we shall preserve the symbol X of ordinary
multiplications hereon, under the isomodularity condition

Det (A) = (A.23)

where the quantity ;1 is identified below and = wx f
represents isoparameters.

The regular isoconnected component of the LPS
isosymmetry P°(3.1) is characterized by the condition

Det A=+1, (A29)

and can be written

P°(3.1)=803)xT3.1)xD, (A25)
where D is the 11" dimensionality of the LPS isosymmetry
identified below.

By expanding the preceding finite isotransforms (A.22) in
terms of the isounit, the regular LPS isoalgebra is
characterized by the conventional generators of the LP algebra
and the isocommutation rules [21, 22, 25]

[ uv Jaﬂ] =
= i(ﬁva‘]ﬁy - r],urz‘]ﬂv - nvﬂ‘]qu + 7:}yﬁjav)’ (A'26a)
[ /tv 3 ] =ix (ﬁya X ‘Pv - ﬁl'ﬂ x P.u )’ (A'26b)
[, R1=0 (A26¢)

The iso-Casimir isoinvariants of 13(3. 1) aregivenby [ loc.
cit]

C =1(x,..), (A27a)

C,= PP =P %P* = P“xfj, x P' =
=B %8y X B = pyx gy xF, (A27b)
Co=W" =W, 5", W, = £, ST P?,  (A27c)

and they are at the foundation of classical and operator
isorelativistic kinematics [43).

It is easy to prove that the LPS isosymmetry is locally
isomorphic to the conventional LP symmefry. It then follows
that the isotopies increase significantly the arena of
applicability of the LP (as well as any Lie symmetry) by lifting
the Minkowskian spacetime (A.18) to all infinitely possible
isospacetime (A.20).

Note that isolinear isomomenta isocommute, Egs. (4.26c),
that is, they commute in isospace over isoreals, but they do not
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generally commute when projected in the ordinary Minkowski
space. This occurrence is a clear confirmation of a nonlinear
structure of isorelativity with rather deep gravitational
implications not considered in this paper.

Yet, this property is significant because it appears, for the
first time to our knowledge, the possibility of identifying a
possible gravitational component in the structure of nuclei, as
studied preliminarily in Refs. [79].

The isoirregular LPS isoalgebra is characterized by
structure functions, thus no longer being locally isomorphic to
the conventional LP symmetry. The study of the irregular
realization is left to the interested reader for brevity.

By using the original generators of the LP symmetry, the
isotopic element (37) and Lie-Santilli isotheory, regular LPS
isotransformations can be easily identified as outlined below.

A.7 Regular IsoRotations

The regular isorotations, first presented in Ref. [12], and
then treated in details in Refs. [22] via isofunctional analysis
in general, and isotrgonometric functions in particular. Since

the isounit [ = Diag(n} ,nzz,nf) is positive-definite, the

isosymmetry §O(3) is locally isomorphic to the

conventional rotational symmetry O(3) (Figure 11).

Isorotations provide the technical characterization of the
deformation of protons and neutrons when members of a
nuclear structure under strong interactions. In their projection
on an ordinary Euclidean space, isorotations can be written in
the (1-2)-plane (see Ref. [22] for the general case).

X =x cos[[6(nn,)™"'] -

2
-x* %sin[@(n, xm)™], (A.28a)
2
r n2
x¥ =5 Zsin[0(nn,) "1+
n
+x% cos[B(nn,) '], (A.28b)

The isomorphism of 50(3) ~0(3) is due to the fact that

ellipsoid deformations of the semiaxes of the perfect sphere
are compensated on isospaces over isofields by the inverse
deformation of the related unit

X

Figure 11. It was popularly believed in the 20" centuny physics that the
Lorentz symmetry is broken for locally varying speeds of light within physical
media, here represented with a wiggly light cone. the Lie-Santilli
isosymmetries have restored the exact validity of the Lorentz symmetry for all
possible subluminal and superluminal speeds, thus confirming the
preservation of the abstract axioms of special relativity for interior dynamical
problems [15, 22].

Radius 1, ——>1/n,f, Unit 1, —->n,f. (A.29a)

. f ;25 +pf_ (A.29b)
resulting in the reconstruction of the perfect sphere on
isospace called the isosphere, (A.29b), with consequential
reconstruction of the exact rotational symmetry.

A.8 Regular Lorentz-Santilli IsoTransformations

The regular Lorentz-Santilli (LS) isotransforms were first
identified in Ref. [15] and then studied in details in
monographs [22]. Their elaboration also requires the use of
the isofunctional analysis we cannot possibly review in this
paper for brevity. It is easy to prove from the positive-definite

character of the isounit / =Diag.(nf, n,n, nf) that the

$0(3.1) s
isomorphic to the conventional symmetry SOB3.1) (Figure
11).

The LS isotransformations are at the foundations of the
relativistic results of this paper as well as of their invariance
over time. They were first derived in Ref. [15] 0f 1983 and can
be presented projected in the conventional Minkowski
(3-4)-plane (see monograph [22b] for the general case)

Lorentz-Santilli  isosymmetry locally

=%, X =, (A.30a)
X = ;?[f - /%xiaﬁj, (A.30D)
n,
vl o4 A M 3
X y[x -Bx—x J, (A.30c)
n
where
A_Vs /’73
p= ) (A3la)
¢,/ n,
.1
y= \/1_:7§—2— (A31b)

It should be indicated that the main aim of Ref. [15] was the
solution of the historical Lorentz probem, namely, the
achievement of the universal symmetry for locally varying
speeds of light within physical media C =c/n,. Since this

problem is highly non-linear, its solution could not be derived
via the conventional Lie’s theory. For this reason, Santilli
conducted decades of studies for the generalization of Lie’s
theory into a form valid for nonlinear systems, first presented
in monograph [3b], as a prerequisite for the solution of
Lorentz’s historical problem.

The isomorphism .§O(3.])=SO(3.1) is due to the
reconstruction of the exact light cone on isospace over

isofields called the light isocone. In fact, jointly with the
deformation of the light cone
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2 2
X5 c

x2 =x§ . =0—>—';"—t2—“=0,
n

(A32)

we have the corresponding inverse deformations ofthe units,

dy=1—=>l=n d,=1-1,=n, (A.33)
thus reconstructing the original light cone on isospaces over
isofields.

The reader should be aware that the above reconstruction
includes the preservation on isospace over isofields of the
original characteristic angle of the conventional light cone,
namely, the maximal causal speed on isospace over isofields is
the conventional speed of light C in vacuum [22].

A.9 Regular IsoTranslations

The regular isotranslations 7'(4) were first studied in Ref.
[16] and then studied in details in monographs [22]. and can
be expressed in their projection in the conventional
Minkowski space with the following lifting of the
conventional translations x* = x* 4+ g ,M=1,23,4, and

a” constants,

X =x"+ 4" (a,..), (A.34)

where

A" =d"(n} +a[n 5 P)/11+.), (A.35)
and there is no summation onthe & indices.

Notethe high nonlinearity of the isotranslations. This is due
to the fact that the above expressions are the projection in the
conventional spacetime since, when written on a
Minkowski-Santilli isospace over isofields,
isotransformations coincide with conventional translations.

A.10 Regular IsoDilations and IsoContractions

The regular isodilations and isoContractions D(1) were
first identified in Ref. [16] and then studied in details in
monographs [22]. They constitute a basically new spacetime
symmetry with vast implications, e.g., for grand unified
theories [71], and can be expressed via the transformation

A—f =wh [ I =wl, (A.36)
with ensuing invariance
(51 %" )i = [x" (W' )% ] (wxI)=
= (1, )x I, WER. (A.37)

It was popularly believed in the 20" century that the LP
symmetry was O -dimensional. The above invariance
establishes that, instead, the LPS isosymmetry as well as the
LP conventional symmetry are 11 -dimensional.

A.11 Regular IsoInversions
The regular isoinversions are given by [22b]

AXX =7X = (=rtc), (A.38a)

TXX=71TX = (r,~IC). (A.38b)
where /T and T are the conventional space and time
inversion operators.

A.12 Regular 5U(Q2) IsoSymmetry

In this section we provide the solution, apparently for the
first time, of a central problem for the consistent and time
invariant representation of nuclear magnetic moments via the
deformations of the charge distributions of nucleons with
consequential mutation of their intrinsic magnetic moment,
under the consetvation of conventional, values of the spins.

By remembering the lack of uniqueness of the isounits and
related isotopic element, the simplest regular two-dimensional

irreducible isorepresentations of SU (2) are characterized
by the lifting of the two-dimensional complex-valued unitary
space with metric = Diag.( 1,1) into the isotopic image [12,
15, 22]

I = Diag(R2,n?), T = Diag.(1/n2,1/n}), (A.392)
8=Tx6= Diag(1/n®, 1/ i2), (A.39b)
Det 8 =(n,n,)? =1, (A.39)

The basic non-unitary transform (43) of Section 4 us then
given by

" 2 -2 O
Uxut=f=|"™ 02 , =" T (A409)
" 0

U= ixn, 0 Ut = —ixn, 0 (A40b)
0 ixn)’ 0 —ixm )’ '

here the n°’s are well behaved nowhere null functions,
resulting in the regular Pauli-Santilli isomatrices [ loc. cif]

The related lifting of Pauli’s matrices are then given by the
Regular Paili-Santilli isomatrices [13, 14]

=)

o, —8, =Uxo, xU", (A41a)
5=[0 n} 5 =[ 0 ~in}
Pl oo) TP o0 )
2
N ny 0
o, = . A.41b
) o

Another realization of the regular hadronic spin 1/2 is given
by non diagonal nonunitary transforms [ loc. cit.].
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0 n 0 n

U= , Ut= .
(nz 0] v (nl OJ’

i= l’lf 0 j;= n{z 0
0 n)’ 0 n*)’

with corresponding alternative version of the regular
Pauli-Santilli isomatrices,

N 0 nan, R 0 -inm,
5 = , = ,
gm0 % xnn, 0

5 = n 0

o »)

or by more general realizations with Hermitean non diagonal
isounits I [15b].

All regular Pauli-Santilli isomatrices verify the following
isocommutation rules and isoeigenvalue equations on H
over C

(A43)

[616,1=
=616, - 6,16, =2i, 0, (A.442)

G519 =
(6T %6, +5,Tx3, + 6,Tx8,)T |y =3x|h),  (A44b)
Gy % |9y = Gy x Tx |y = =Ix|9h), (Ad4c)

thus preserving conventional structure constants and
eigenvalues for spin 1/2 under non-Hamiltonian/nonunitary
interaction, while adding the degree of freedom
n =4, m=A", (A.45)
That indeed is fully compatible with the mutation of
intrinsic magnetic moments of spin 1/2 particles, Eq. (60).
Additionally, the regular Pauli-Santilli isomatrices provide
an explicit and concrete realization of hidden variables, with
intriguing implications for local realism studied in detail in ref.
[14]. In turn, the above aspect confirm the origination of
isomechanics as a concrete and explicit realization of the
“incompleteness” of quantum mechanics according to
Einstein, Podolsky and Rosen [1].

A.13 Irregular Su (2) IsoSymmetry

As indicated throughout this paper, there appears to be no
need for a mutation of the spin of nuclear constituents to
achieve an exact representation of nuclear magnetic moments
and spins.

Nevertheless, the issue persists as to whiter a proton in the
core of a star should have the same spin when member of a
nuclear structure. Santilli has introduced the irregular
isotopies of the SU(2) spin precisely for future studies of
this important problem for the structure of stars.

One illustrative example of irregular Pauli-Santilli
isomatrices is given by [12-14]

6 = 0 n 5 = 0 -ird
o) ik o0 )
. _[wri 0
%=1 , |
wh)

where w is the mutation parameter; with isocommutation
rules and eigenvalue equations

(A.46)

[6,.6,1=iw"'5,, [5,,8,]= iwsd,,
[G,,0,]=isw5,, (A.A473)

%Py =
(BT, +5,T 5, + 5,TG,)T|P) =2+ w)x|f), (A.47b)
Gx|$)y =S|y =2w|P), wal, (A47¢)

Additional examples of irregular Pauli-Santilli isomatrices
can be found in Refs. [12-14].

The assumption of a mutated spin in hyperdense interior
conditions evidently implies the inapplicability (rather than
the violation) of the Fermi-Dirac statistics, Pauli’s exclusion
principle and other quantum mechanical laws, with the
understanding that, by central assumption, non-Hamiltonian
bound states of particles as a whole must have conventional
total quantum values. Therefore, we are here referring to
possible internal exchanges of angular momentum and spin

always in such a way as to cancel out and yield total
conventional values.

A.14 IsoRelativity Iso Axioms

As shown in this paper, a numerically exact and time
invariant representation of nuclear magnetic moments and
spins has required the isotopies of 20" century mathematics,
with ensuing isotopies of quantum mechanics into
isomechanics.

Interested readers should be aware that the above isotopies
imply the inapplicability of special relativity for the nuclear
structure in favor of a covering relativity known as
isorelativity [15, 21-23]. The central aim of special relativity
is the invariance ofthe speed of light in vacuum. A central aim
of isorelativity is the invariance of local varying speeds of
light C=c/n, within physical media as shown in Appendix
A8.

A rudimentary knowledge of the covering relativity is
important to prevent major misrepresentations of the results of
this paper as well as in possible further advances because the
the appraisals of the new nuclear structure provided by
isomechanics via special relativity would be equivalent to the
appraisal of the results by special relativity via Newtonian
mechanics.

The isotopies of the axioms of special relativity, today
known as Isodxioms, were initiated by Santilli in paper [15] of
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1983; they received a first systematic formulation by Santilli
in monographs [21] of 1991; they were finalized in
monographs [22] of 1995 jointly with the discovery of the
isodifferential calculus; and their experimental verifications
were presented ion Refs. [23].

Inthis paper we specialize, apparently for the first time, the
isoaxioms for the isomechanical structure of stable and
isolated nuclei whose constituents are isoparticles. The
gravitational formulation of the isoaxioms of Reg. [71] should
be kep in mind because it offiers, also apparently for the first
time, the possibility of addressing the origin of gravitational
field in the structure of nuclei.

The first implication of the isotopies of special relativity is
the abandonment of the speed of light in vacuum as the
maximal causal speed in favor of a covering geometrization of
physical media. This occurrence is easily seen by specializing
the isoline element (27) to the isolight isocone [23, 37]

R 2 2
it = (x—g-zz 0—2] =0, (A.48)
n, ny
thus leading to theMaximal Causal Speed V., of [soAxiom
5.1 below.
The remaining isoaxioms can be uniquely and

unambiguously identified via a procedure parallel to the
construction of the axioms of special relativity from the
Lorentz-Poincaré symmetry.

Another departure from 20th century views is that
isoaxioms refer to generally inhomogeneous and anisotropic
physical media, as it os typically the case of the medium
within spinning charge distributions.,, Therefore, the
isoaxioms are formulated below for a generic space direction
k )

ISOAXIOM A. I: The maximal causal speed in a given
space direction % in the interior of nuclei is given by

= D
Vma.\',k I

4

(A.49)

ISOAXIOM A. II: The local isospeed of light is given by

e==X (A.50)
ny

where c is the speed of light in vacuum.
ISOAXIOM A. III: The addition of isospeeds in the &
-direction follows the isotopic law

Vi /ny, + Vakin,
tork

(A.S1)

5
VieVar By

¢ n

1+

ISOAXIOM A. IV: The isodilatation of isotime, the

isocontraction of isolengths, the variation of mass with

isospeed, and the mass-energy isoequivalence principle follow
the isotopic laws

A'=7, AL, (A.52a)
Al =7, AL, (A.52b)
m =y, m, (A.52¢)
2
E=mV2_ =mc :—; (A.52d)
4

where ¥ and /§ have values (32).

ISOAXIOM A. V: The frequency isoshift of light
propagating within a nucleus in the £ -direction follows the
Doppler-Santilli isotopic law

w, = w,j, {1 RRZL ail (A.53)
cln,

where w, is the frequency experimentally measured in the

outside, w, is the frequency at the origin inside a nucleus,

and we have ignored for simplicity the isotopies of

trigonometry (see Refs. [23] for brevity).

It should be stressed that in the above formulations as well
as in the next section we present the isoaxioms in their
projection on the conventional Minkowski space. while their
technical treatment requires the full use of the various
branches of isomathematcs, including the formulation of the
isoaxioms on a Minkowski-Santilli isos; ace over an isofield.

A main feature is that, when the isoaxioms are represented
on isospace over isofields, they coincide with the conventional
axioms of special relativity by conception and technical
realization. In particular, the maximal causal speed ¥, = ¢
solely occurs in the projection of the isoaxioms on Minkowski
space because, at the isotopic level, the maximal causal speed
is ¢ for all possible isogravitational problems.

A.15 Predicted Implications of the IsoAxioms for the
Nuclear Structure

In this final section, we identify the most important
predictions of isorelativity [15, 21, 22] emerging as a
consequence of our exact and invariant representation of
nuclear magnetic moments and spins, and present their
preliminary appraisals by soliciting comments from interested
colleagues.

Isoaxioms clearly imply two different representations of the
nuclear structure, the first is the representation of nuclear
characteristics as measured from outside observer here
indicated with the subindex “ext," and the second
representation is that in the interior of nuclei here indicated
with the subindex “int."

These two representations are necessary for the evident
reason that the exterior observer is assumed as being in
vacuum thus obeying conventional relativity axioms while the
second representation occurs within hyperdense physical
media, here assumed as obeying the covering isorelativity
axioms.

A first implications of isorelativity is that the time of the
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exterior observer is not necessarily the same as that in the
interior of nuclei. In fact, by recalling the isodilation and
isocontraction of Appendix A.10, we can write the identity

A

t1=t,1

ext int"1*

(A.54)

Since for the nuclear structures considered in this paper
I,=n} <1 as in Eq. (63), one can see that the interior time

evolution of nucleons is predicted to be ‘faster" than that of
an outsider observer:

Note that at the abstract realization-fiee level there is no
distinction between interior and exterior times as typical for
all isotopies [22] since Eq. (A.54) can be written

t=i (A.55)

where f is an ordinary scalar, while / is an isoscalar
(Section 2). Therefore, !, and ¢, are the projection ofEq.
(A.55) in our spacetime.

For the case of distances, we can write the corresponding
differentiations between external and internal distances
according to the isotopic law

~

Vol = Vo il (A.56)

ext

Since the space isounits are generally smaller thanone from
Egs. (64), one can see again that space distances perceived in
the outside observer are predicted to be bigger than the actual
distances in the interior.

Intriguingly, isolaw (A.56) is verified in ordinary water
where, as we all know, dimensions perceived from the
outsider are bigger than those actually occurring within water
(Figure 12). Therefore, our argument is that, since isolaw
(A.55) is verified in a medium with relatively big density such
as water, the possibility of a similar occurrence in much denser
media such as nuclei deserves due scientific process.

Figure 12, This picture illustrates the representation by isorelativity of the
known effect that dimensions in water appears as being bigger then their
actual dimensions when seen fro an outside observer, thus warranting the
studly of the corresponding effect within nuclei.

Next, the speed of light in vacuum € has no mathematical
or physical meaning for isorelativity and, in particular, it is not
invariant under the time evolution. The sole mathematically
and physically accepted quantity is Lorentz locally varying
speedC=c/n,.

In fact, the relativistic sum of two ordinary speeds of light

does not yield the speed of light within physical media such as
water and the same is expected within nuclei. By contrast, the
isorelativistic sum of two locally varying speeds of light does
indeed yield the local speed of light according to isoaxioms
111,

- _clm+eln, _ ¢
for

2 2
¢ /ny n,

(A.57)

L cin

In particular, one should note that a necessary condition for
the isorepresentation of nuclear magnetic moments is that the
local speed of light in the interior of nuclei is bigger than that
in vacuum, see Eq. (64). This is a confirmation of the similar
condition for C > ¢ which is necessary for the synthesis of
the neutron from bthe hydrogen (Section 7).

Yet another prediction of isorelativity according to
isoaxioms A. 1V isthat the energy isoequivalent according to
isoaction (4.52d) is “bigger" than that described fiom the
outside. This is a typical occurrence for all structure models of
hadrons, nuclei and stars according to iksomathematics, and it
is nowadays known as isorenormalization.

Consequently, in considering the structure model of nuclei
as isobound states of isoprotons and isoelectrons, the reader
should be aware that the rest energy of the isoelectron is
isorenormalized to a minimum value of 1.293 MeV in the
first approximation of ignoring Coulomb interactions, with
bigger predicted values of the rest energy of the isoelectrons
when including Coulomb interactions (due to the Coulomb
attraction between isoprotons and isoelectrons).

As an illustration, a necessary condition for the
achievement of an exact representation of the synthesis of the
neutron from the hydrogen is that (by ignoring coulomb
interactions) the isoremnormalized rest energy of the electron
is 1.293 MeV.

Finally, we mention the prediction of isorelativity according
to which the frequency of the photons emitted by nuclei and
measured in the outside is bigger than that at the point of
emission in the interior ofg nuclei. This additional effiect is due
to the isoblueshift, namely, the acquisition of energy by
photons from hot environments without any relative motion,
which was predicted by Santilli in 1992 [21], and
experimentally verified in hot gases in 2010 [80] (see Refs.
[68] for a comprehensive bibliography).
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1. Introduction

The ever increasing demand for good quality of livelihood
has ultimately culminated in increasing global energy demands.
The demand can be met conventionally by either molecular
combustion or nuclear fission. The former is achieved by
combustion of fossil fuel or hydrogen which produces large
amount of green house gases as well as depletes breathable
oxygen from the environment. The latter does not generate
green house gases or depletes breathable oxygen but creates
large amount of radioactive wastes. Moreover, the shielding
from the high energy ionizing and non-ionizing radiations is
cumbersome and expensive. The handling of the highly
radioactive wastes posses environmental as well as security
threat. Thus, handling of these wastes requires great deal of
safety requirements. There are several ways that are used to
curb the either menace such as using better furnace design,
improvising fuels and additives for molecular combustion or
improvising filel geometry and reactor design for efficient
nuclear fission. In either case the perilous waste products are
not completely eliminated. Although there are energy sources
that have zero emissions like the energy harnessed from
renewable sources like solar, wind, tidal, geo-thermal, wave,
ocean-thermal and so on but are mainly time and location
dependent. Hence cannot be universally employed for
harnessing energy or power generation.

On the other hand, the nucleus of an atorn has always been
considered to be the source of unlimited energy since its
discovery in 1911 by Ernest Rutherford [1]. The basic nuclear
processes are of two types viz., fission and fusion. Both these
processes generate large amount of energy which can be
conveniently harnessed for useful work. The fission reaction is
exoergic and criticality can be attained easily but fusion is
endoergic and achieving criticality is comparatively difficult.
Hence fission has been extensively explored for destructive as
well as constructive work.

The unlimited source of the atomic nucleus due to fission
process was initially exclusively exploited for destructive
purpose. However, post World War II the focus shifted more
towards constructive work. Attention was turned to the
peaceful and directly beneficial application of nuclear energy.
In the course of developing nuclear weapons the Soviet Union
and rest of the Western world had discovered range of new
technologies. Scientists also realized that the tremendous heat
produced in the process could be tapped either for direct use or
for generating electricity. It was also clear that this new form of
energy had tremendous potential for the development of
compact long-lasting power sources which could have various
applications.

The world's first artificial nuclear reactor was Chicago Pile-1.
It was a research reactor. Its construction was a part of the
Manhattan Project. It was carried out by the Metallurgical
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Laboratory, University of Chicago under the supervision of
Enrico Fermi, alongwith Le6 Szildrd (discoverer of the chain
reaction), Martin Whittaker, Walter Zinn and George Weil [2,
3]. The first man-made self-sustaining nuclear chain reaction
was initiated in Chicago Pile-1 on December 2, 1942. The
apparatus was described as a crude pile of black bricks and
wooden timbers by Fermi. The pile contained large amount of
graphite (771,000 Ibs) and uranium (80,590 Ibs of uranium
oxide and 12,400 Ibs of uranium metal). The pile was in the
form of flattened ellipsoid measuring 25 feet wide and 20 feet
high. The neutron producing uranium pellets were separated
from one another by graphite blocks in the pile. Some of the
frree neutrons produced by the natural decay of uranium were
absorbed by other uranium atoms, causing nuclear fission of
those atoms and the release of additional free neutrons. The
graphite between the uranium pellets was neutron moderator
that thermalized neutrons, increasing fission cross-section. The
control rods were of cadmium, indium (for preventing
uncontrolled chain reaction) and silver (measuring the flux).
Unlike the modern reactors, it lacked radiation shield or cooling
system.

The first nuclear reactor to produce electricity by fission was
the Experimental Breeder Reactor-Ior Chicago Pile-4 designed
and operated by Argonne National Laboratory, Idaho, USA
under the supervision of Walter Zinn. This LMFBR went
critical in December 1951. It produced 0.8 kW in a test run on
December 20, 1951[4] and 100 kW of electrical power the
following day, [5] having a design output of 200 kW of
electrical power.

With advancement of technologies, the modern fission
reactors have high energy output but have disadvantages such
as enrichment of fuel and / or moderator; disposal of high
energy radioactive waste and cumbersome shielding from high
energy ionizing radiations. Thus, the energy harnessed is not
completely green. On the other hand fusion process does not
generate large amount of nuclear waste and if nuclei combine at
threshold energy then the chances of crossing the fission barrier
and emission of ionizing radiation are reduced considerably.

2. Nuclear Fusion

The nuclear fiision has always been considered the holy
grail of unlimited clean energy. The reason for this is probably
the thermonuclear reactions taking place in the sun and other
stars [6]. In this case, nuclear fusion is achieved by using
extremely high temperatures. The average kinetic energy of
the combining nuclei increases proportionately with
temperature. The temperature is determined by Lawson
criteria [7] as given by expression 1.

12 kT

Z, (o) M

nrp 2 L=

where, n , 7, , E, and k, are particle density,
confinement time, energy of charged fusion product and
Boltzmann constant respectively.

The quantity 7/ov) is a function of temperature with an
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absolute minimum. Replacing the function with its minimum
value provides an absolute lower limit for the product nz; .

This is the Lawson criterion. At the temperature predicted by
the Lawson criterion the energy of the colliding particles
confined within the plasma are high enough to overcome the
Coulomb barrier and chances of fusion increases. The
colliding nuclei are confined within the plasma by
gravitational or magnetic or inertial confinement. The
controlled thermonuclear fusion reactions take place in an
environment allowing some of the resulting energy to be
harnessed for constructive purposes. Since this reaction takes
place at very high temperature, so is popularly known as Hot
Fusion. The major drawback is that it is not self sustaining and
compound nucleus undergoes fission leading to formation of
radioactive wastes. This is because the atomic electron clouds
are completely stripped off. Kinetic energies of the colliding
nuclei are increased to overcome the coulombic barrier and
the energy attained by the compound nucleus is generally
higher than the fission barrier which results in fission reaction
or nuclear decay as prominent exit channels.

Fleischmann, Pons and Hawkins [8] in the year 1989
reported their historic but the most debatable findings. They
observed unusual excess heat in the electrolysis of heavy
water using deuterium loaded palladium electrodes. This they
presumed to be due nuclear fusion reaction. Since the reaction
taking place is at low temperature, they termed it as cold
fusion on similar terms as hot fusion. Cold fusion or low
energy nuclear fusion is known to occur under certain
conditions in metal hydrides. It produces excess heat and
nuclear ash such as helium, charged particles and sometimes
very low level of neutrons. In certain cases the host metal has
been found to be transmuted into other elements. The cold
fusion reaction has been reported with palladium, titanium,
nickel, some superconducting ceramics and so on. It has been
observed due to varied triggers like ultrasonic waves, laser
beam, electrical current. The major explanation for this
phenomenon is reported to be the induction of electrostatic
pressure to the reacting nuclei within the lattice of the metal.
This environment is difficult to achieve and hence the
phenomenon is non-reproducible. This could be due to
insufficient energy required to expose the atomic nuclei from
within the covering atomic electron cloud.

2.1. Nuclear Processes and Quantum Mechanics

Quantum mechanics is based on Galilei and Poincaré
symmetries [9]. They are applicable only for Keplerian
“systems, where the various particles orbit around a centrally
located nucleus, such as planets around central star / sun or
electrons around nucleus. However, quantum mechanics is
not applicable in understanding interaction between those
particles which lack such symmetries like interaction between
two electrons in a sigma bond or lateral overlap as in n-bonds.
The Hamiltonian nature of quantum mechanics restricts the
understanding of nuclear forces. Hence, to represent the
nuclear force with a potential up to 35 different potentials
have been added without achieving the required exact
representation. The linear, local and Hamiltonian character of
quantum mechanics is effective for the classification of



American Journal of Modemn Physics 2016; 5(2-1): 119-130 121

hadrons under their point-like approximation, but is
inadequate for structure related problems due to expected
nonlinear, nonlocal and non-Hamiltonian effects occurring
within the hyper dense media inside hadrons.

Thus, Prof. Santilli [10] states: According to the standard
model, at the time of the neutron synthesis from protons and
electrons inside a star, the permanently stable protons and
electrons simply disappear from the universe to be replaced
by conjectural quarks, and then the proton and the electron
simply reappear at the time of the neutron decay. These beliefs
are simply repugnant to me because excessively irrational,
thus showing the conduction of particle physics via academic
authority, rather than scientific veritas.

The quantum theory fails to explain the following even for
the simplest nucleus of deuterium [9, 10]-

1. The spin 1 of deuterium since quantum axioms require
that the single stable bound state of two particles with
spin Y%, (proton and neutron) must be the singlet state
with spin zero.

2. To represent the magnetic moment of deuterium.

3. The stability of unstable neutron when coupled to
proton in a nucleus (e.g. deuterium).

Ty, of neutron = 15 minutes.

4. Quantum Mechanics is inapplicable for explaining the
synthesis of neutron from a proton and an electron as
occurring in stars because; in this case the Schrédinger
equation becomes inconsistent.

It is unsuitable for all processes that are irreversible over
time, like nuclear fusions, because quantum mechanics is
reversible over time, thus admitting the time reversal event
which violates energy conservation, causality and other basic
laws.

2.2. Hadronic Mechanics

Quantum mechanics was conceived for the study of
interactions among particles at large mutual distances which
is represented with differential equations defined over a finite
set of isolated points. It does not have the scope for the study
of the additional nonlocal-integral interactions due to mutual
wave overlapping. These interactions are defined over an
entire volume and cannot be effectively approximated by their
abstraction into finite number of isolated points. Thus, the
same cannot be derived from a Hamiltonian or their
derivatives [9].

Thus, Prof. Santilli has founded more fundamental theory

Hadvonic Fuels
1

of the universe, named after the composite nuclear particle
hadron as Hadronic Mechanics. Hadronic mechanics was
formulated as an extension of quantum mechanics,
encompassing its insufficiencies for the study of the
additional nonlocal-integral interactions due to mutual wave
overlapping. Thus the range of hadronic, quantum and
classical mechanics can be depicted as in Figure 1.

Valid for inter-particle
distance within 1 fm

Valid at atomic Macroscopic
level of distances & bodiesin metion
structure

<10 cm 5103~ 10 cm 210 cm

Newtonian
Mechanics

Hadronic
Mechanics

Quantum
Mechanics

Figure 1. Various range of validity for Hadronic, Quantum and Newtonian
Mechanics.

The emergence of strongly attractive force for deeply
overlapping particles is one of the fundamental contributions of
hadronic mechanics. There are varied instances where hadronic
mechanics could satisfactorily explain the interactions such as
quantitative treatment of neutron synthesis from protons and
electrons (as occurring in stars), nuclear fusion, explanation of
nuclear structure, strong nuclear binding energy, strong
interaction betweentwo electrons in a sigmabond, formation of
magnecular bonds, formation of cooper pair in superconductors,
and so on. Thus, hadronic mechanics could provide a
quantitative treatment for the possible utilization of
inextinguishable energy contained inside the neutron and
formation of light nuclei. In other words, the study of new clean
energies and fuels that cannot even be conceived with the 20"
century doctrines and other basic advances can be done with the
new sciences. So, hadronic mechanics is rightly called as new
sciences for new era [10].

The modern day demand of clean, cheap and abundant
energy source can be fulfilled by changing the approach from
quantum mechanics to hadronic mechanics to hadronic
chemistry. In view of this, Prof. Ruggero Maria Santilli
proposed various types of new non-nuclear as well as nuclear
fuels. Non-nuclear fuels are basically magnecules that show
magnecular combustion similar to conventional molecular
combustion albeit cleaner, greener and with higher calorific
values probably due to stored magnetostatic energy within the
magnecules [12, 13]. The hadronic fuels are summarized in
Figure 2.

.

I
Non-nuclear Type

(Magnecalar Combustion)

MagneGas =
Magnellydrogen

MagneWater

HadronicOxygen Reactor

Hy-Fuels

Nuclear Type

|

Intermediate Controlled
Nuclear Synthesis

Itadronic Nitvogen fteactor

I
Particle Type Energy

|i Stimulated Neutron Decay

Dou ble Beta Decay

Hadronic Lithium Reactor

RadroniclleHumReactor

Figure 2. The classification of various hadronic fuels.
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2.3. Nuclear Type Hadronic Fuels

The nuclear fizels proposed by Prof. Santilli under hadronic
mechanics are controlled nuclear reactions (fusion as well as
fission) without ionizing radiations and radioactive waste.
The nuclear fission could be adequately explained by
quantum mechanics by considering the fragments as point
mass. However, the same theory fails to explain nuclear
fusion because considering the reacting nuclei as point mass is
impractical [10]. Nucleus is a hyper dense medium containing
protons and neutrons. Since neutrons are made up of protons
and electron, hence Prof. Santilli projects nucleus of an
element as collection of mutated protons and electrons. The
basic assumptions [11,12] proposed by Prof. Santilli are-

1. Nuclear force: Nuclear force was initially considered to
be derived completely from a potential. So it was
represented with a Hamiltonian. However, Prof.
Santilli assumed that nuclear force is partly of
action-at-a-distance, potential type that can be
represented with a Hamiltonian and partly is of contact,
non-potential type that cannot be represented with a
Hamiltonian. This assumption implies that the time
evolution of nuclear structure and processes is
essentially of non-unitary type. So the use of hadronic
mechanics is mandatory as it is the only known
axiomatically consistent and time invariant non-unitary
formulations of nuclear structures and their processes.

2. Stable nuclei: Nuclei have no nuclei of their own and
are composed of particles in contact with each other
having mutual penetration of about 10 of their charge
distributions shown in Figure 3. So, the nuclear force is
expected to be partially of potential and partially of
non-potential type, with ensuing non-unitary character
of the theory, and related applicability of hadronic
mechanics.

Figure 3. Schematic representation used by Prof. Santilli to illustrate that
nuclei have no nuclei of their own and are composed of particles in contact
with each other.

Let A be the time evolution of a Hermitean operator in the
infinitesimal and  finite  forms  derived  from
Heisenberg-Santilli Lie-isotopic equations proposed in 1978
by Prof. Santilli for stable, reversible, interior dynamical
problems.
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fj-’f—= [A~ H]=ATH - HTA @
A ()= exp(HTH)A(0)exp(~ iTH)

where the Hermitean Hamiltonian
2
H:{H +V(r) represents all possible nuclear forces truly

derived from potential V (r);

Isotopic element T represents all contact non-potential
interactions allowing the nuclear structure with all
constituents in actual contact with each other, and the simplest
possible realizations oftype

T =exp (—-1‘“(‘1') / p 'f(l')l,'['l')d:ir) >0 (3)

which recovers quantum mechanics when there is no
appreciable overlapping of the wavefunctions 1+ of nuclear
constituents; and the inverse of isotopic element

1-3>0 )

represents the basic, right and left unit of the theory at all
levels, non-zero values of T depicts non-Hamiltonian
interactions (presence of contact).

The stability of the nucleus (reversibility over time) is
represented by the identity of the basic iso-unit to the right and
to the left, namely, for motions forward and backward in time.

3. Unstable nuclei and nuclear fusion: According to the
Heisenberg-Santilli Lie-admissible equations for the
time evolution of Hermitean operator 4 in their
infinitesimal and finite forms

i%=(A;H)=ARH—HSA )

where H is Hermitean representing the non-conserved total
energy
genotopic elements R and S represents the non-potential
interactions.

Irreversibility is depicted by the different values of the
genounit for forward (f) and backward (b) motions in time
# 1 =

©)

W=

Here, the Lie-admissible branch of hadronic mechanics is
ideally suited to represent the decay of unstable nuclei as well
as nuclear fusions, since both are irreversible over time.

4. Neutron synthesis: Rutherford’s conjecture on neutron
as a compressed hydrogen atom was experimentally
verified later by Don Borghi’s experiment. It is also
well-known that synthesis of neutron from the
compressed hydrogen gas is precursor to synthesis of
all natural elements in a star. So, the synthesis of the
neutron is the most fundamental nuclear synthesis. As
shown in Figure 4 (a) the original drawing used by Prof.
Santilli to illustrate the physical difference between the
hydrogen atom and neutron synthesis from proton and
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electron. The figure 4 (b) depicts the additional
non-linear, non-local and non-potential interactions due
to deep wave overlapping of proton and electron in

(a)

HYDROGEN ATOM

NEUTRON

Electron @ Proton

123

neutron which is otherwise absent in hydrogen atom.
This non~Hamiltonian character requires a non-unitary
extension of quantum mechanics.

g

S

(b)

Proton

Flecteon

Figure 4. (a) Original drawing used by Praf. Santilli to illustrate the physical difference between the hydrogen atom and neutron. (b) additional non-linear,
non-local and non-potential interactions due to deep wave overlapping of proton and electron in neutron.

Consequently, Prof. Santilli quantified neutron synthesis
using hadronic mechanics as

p tate —n

where ‘a’ is Santilli’s etherino which is a conventional
Hilbert space the transfer of 0.782 MeV and spin 1/2 missing
in the neutron synthesis from the environment to the neutron
structure.

The etherino disappears at the covering level of hadronic
mechanics and the neutron synthesis on a iso-Hilbert space
over an iso-fields. Finally, the missing 0.782 MeV energy
required for the synthesis of the neutron is provided by the
environment. For instance, a star would not start producing
light due to huge amount of energy needed for the synthesis of
large number of neutrons. Thus, it was concluded that for
continuous creation of neutron in the universe the missing
energy is provided by the ether as a universal substratum.

5. Nuclear Structure: Prof. Santilli assumes the unitary
classification of baryons as valid, but introduces new
structure models of each member of the baryonic
family with physical constituents that can be produced
free, thus being detected in the spacetime. Resolution
of historical objections is merely achieved by assuming
that, when in interior conditions (only), barionic
constituents obey hadronic mechanics and symmetries
with subsequent mutations (denoted by hat) of their
intrinsic characteristics. Proton is assumed to be an
elementary stable particle without known structure and
neutron to be an unstable narticle comprising of a
proton p and an electron € in mutated conditions
due to their total mutual immersion and resulting
synthesis

~

n= (p+’é~ )hm

As a result, it is assumed that nucleus is a collection of
protons and neutrons in first approximation, while being at a

@®

-

deeper level it is a collection of mutated protons and electrons.

2.3.1. Controlled Nuclear Synthesis (CNS)

The hot fusion or cold fusion reactions are difficult to
achieve. The high temperature required for hot fusion and
random occurrence of cold fusion limits their use for
economic energy output. One of the major successes of
hadronic mechanics and iso sciences is their ability to obtain
industrial realization of fusion reactions without any ionizing
radiations. These reactions are controlled as well as have
intermediate energy requirements than hot or cold fusions
hence are called as controlled nuclear synthesis (CNS) or
intermediate controlled nuclear synthesis (ICNS). Controlled
Nuclear Synthesis (CNS) are given by systematic energy
releasing nuclear fusions whose rate of synthesis (or of energy
output) is controllable via one or more mechanisms capable
of performing the engineering optimization of the applicable
laws [11, 12].

There are various physical laws which are to be obeyed by
all nuclear fusions to occur in a systematic way rather than in
a random way. The CNS is governed by Santilli's laws for
controlled nuclear synthesis [11, 12]:

1. The orbitals of peripheral atomic electrons are
controlled such that nuclei are systematically exposed.
Nuclei are shielded by the electron cloud. It is obvious
that nuclear synthesis between two atoms is impossible
at low energies because the electron cloud restricts
approachability of the interacting nuclei. This law
explains the inability of the cold fusions to achieve
energy output of industrial significance because in this
case the energy necessary for systematic exposure of
nucleus from electron cloud is low. This law also
emphasises the need for the proposed intermediate
synthesis in which the first energy requirement is
precisely the control of atomic clouds.

. CNS occurs when nuclei spins are either in singlet
planar coupling or triplet axial coupling. This law
shows the structural difference between quantum and
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hadronic mechanics. The constituents of a bound state
of two quantum particles must be point-like to avoid
structural inconsistencies such as local-differential
topology. As a result, as per quantum mechanics singlet
and triplet couplings are equally possible. However,
when the actual extended character of the constituents is
taken into account, it is clear that triplet planar
couplings of extended particles at short distances are
strongly repulsive, while singlet planar couplings are
strongly attractive. Planar means that the two nuclei
have a common median plane and axial means a
common axial symmetry as shown in figure 5. This law
was the basis to build hadronic mechanics via gear
model. In fact, the coupling of gears in triplet (parallel
spins) causes extreme repulsion, while the only possible
coupling of gears is in singlet (antiparallel spins). The
emergence of strongly attractive force for the singlet
planar or triplet axial couplings is one of the
fundamental contributions of hadronic mechanics to
fusion processes since such a force is totally absent for
quantum mechanics, while it appears naturally in all
spinning and deeply overlapping particles.

Figure 5. Schematic representations of the only two stable couplings
perniitted by hadronic mechanics for nuclear synthesis; the singlet planar
coupling (4) and the triplet axial coupling (B). All other spin configurations
have been proved to produce strongly repulsive forces under which no CNS is
possible.

3. The most probable CNS are those occurring at threshold
energies and without the release of massive particles or
ionizing radiations. In other words, CNS occurring at
threshold energies are green in nature as they do not
emit ionizing radiations or ejectiles. The threshold
energy mostly hinders fusion reaction. If the energy is
lower than the threshold energy then industrially
meaningful nuclear syntheses is not possible as in case
for cold fiisions, although random synthesis may occur
due to tunnelling effect. On the other hand, if the energy
of the interacting nuclei is higher than the threshold
energy then the excess energy is reflected as excitation
energy of the resulting compound nucleus. Thus,
excitation energy of the compound nucleus is directly
proportional to the energy of the interacting nuclei. The
excitation energy is dissipated by emission of gamma

Hadronic Nuclear Energy: An Approach Towards Green Energy

photon or particles or fission of the resulting compound
nucleus as shown in figure 6.

¥ Prompt
garmma rays

Compound

nucleus
7 Decay

/ gamma rays

Radioactive
nucleus

Incident X .

neutron () Excited nucleus
e

Charged Target

patticle nucleus

Photon Stable

nucleus

Figure 6. Formation of compound nucleus having high excitation energy.

The calculations based on hadronic mechanics indicate
that the probability of a nuclear synthesis with the
release of neutrons is much smaller than that of
synthesis without the emission of massive particles.
This law has been verified by ICNS data and also it
appears to be verified by nuclear syntheses
spontaneously occurring in nature. However, this does
not mean that CNS with secondary emission is
impossible. This only suggests that the nuclear synthesis
could be green which was earlier unimaginable.

4. CNS requires trigger, an external mechanism that forces

exposed nuclei to come in fim range (hadronic horizon).
All nuclei are positively charged, thus repel each other
at distances bigger than one Fermi. Nuclear synthesis is
impossible without overcoming the coulombic
repulsion that brings nuclei inside the hadronic horizon.
Inside the hadronic horizon, the preceding laws are
verified (particularly second law on spin couplings).
The synthesis is inevitable due to the activation of the
strongly  attractive  hadronic  forces  (typical
non-potential interaction) that overcome the repulsive
Coulomb force.

Considering the Fleishmann-Pons electrolytic cell in
purview of Santilli’s Law of CNS, it is clear that this cell does
verify the conservation of the energy, angularmomentum and
has a trigger characterized by the electrostatic pressure
compressing deuterium inside the palladium. However,
Fleishmann-Pons electrolytic cell does not verify first law
(control of atomic clouds to expose nuclei) and second law
(control of spin couplings). Here the nuclear spin couplings
occur at random; there is lack of identified mechanism for
systematic exposure of the interacting nuclei and optimization
of the verified laws. Consequently, nuclear syntheses occur at
random, preventing economic values of the energy output.
Thus, it is evident that for nuclear synthesis of economic value
to occur all the above laws should be verified.

2.3.2. Magnecules: A Precursor for Nuclear Synthesis
Magnecules proposed by Prof. R. M. Santilli is a novel

chemical species that have at least one magnecular bond

between two atoms or radicals or molecules. The atoms are
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held together by magnetic fields originating due to toroidal
polarization of the atomic electron orbits [13, 14]. The
rotation of the electrons within the toroid creates the fifth field
force, the magnetic field, which cannot originate for the same
atom if the conventional spherical electron distribution in
orbitals is a physical reality. When two such polarized atoms
are sufficiently close to each other and in north-south
north-south alignment, the resulting total force between the
two atoms is attractive as shown in Fig.7.

Figure 7. Conceptual depiction of an elementary magnecule comprising two
identical or different atoms whose bond is entirely of magnecular character,
namely, originating from opposing polarities North-South-North-South of the
toroidal distributions of orbitals, as well as the polarization of nuclear and
electron magnetic moments.

Thus, the simple principle of synthesizing magnecules is
similar to the magnetization of a ferromagnet where the orbits
of unbounded electrons are polarized. The added beauty of
magnecules is that the nucleus is systematically exposed and
the two nuclei can approach each other without appreciable
columbic barrier. The internuclear distance is governed by the
bond energy of the magnecular bond. The nuclei of the
interacting atoms approach more closely than in case of
conventional molecular bond allowing the required singlet
planar or triplet axial coupling for nuclear synthesis. Thus,
when a trigger brings the two nuclei within 1 fm range
(hadronic horizon) the fusion becomes inevitable and a new
nucleus is formed. Since the parent nuclei are not having high
energy the resulting daughter nuclei also does not possess
high excitation energy, consequently there is no nuclear
emission. Thus the process is green.

Thus, the ICNS proposed by Santilli are of the generic type
[11,12]

N/(A,,Z,,31,u)+N,(A,,Z,,052,u,)+ TR

~>N,(A,,Z,,]3,u,)+Heat
where A, +A,=A,, Z +Z,=Z,,
J,+J,=J;, P,+P,=P,

)

A is the atomic number
Z is the nuclear charge
J? is the nuclear angular momentum with parity

u is the nuclear energy in amu units

TR is trigger mechanism (high voltage DC arc in hadronic
reactor) and mass defect is observed in form of heat

Nuclear synthesis via green mechanism is known to occur
silently in nature [11]). This can be verified from the
chemical analyses of about one hundred million years old
amber sample. The trapped air bubbles showed 40%
nitrogen, whereas the current percentage of nitrogen in
atmosphere is approximately 80%. Other chemical analyses
verify the above analysis that the increase of nitrogen in our
atmosphere has been gradual.

According to Prof. Santilli, these data indicate the natural
synthesis of nitrogen from lighter elements. The most
probable mode of nitrogen synthesis in nature seems to be
initiated by lightning as quantitative explanation of thunder is
impossible by conventional chemical reactions, thus requiring
nuclear syntheses. Numerical explanation of thunder requires
energy equivalent to hundreds of tons of explosives that
simply cannot be explained via conventional processes due to
the very small cylindrical volume of air affected by lightning
and its extremely short duration of the order of nanoseconds.
However, the nitrogen syntheses by lightning provide
numerical explanation of thunder as well as the gradual
increase of nitrogen in the atmosphere. Among all possible
syntheses, the most probable one results in being the synthesis
of nitrogen from carbon and deuterium.

According to Prof. Santilli, these data indicate the natural
synthesis of nitrogen firom lighter elements. The most
probable mode of nitrogen synthesis in nature seems to be
initiated by /ightning as quantitative explanation of thunder
is impossible by conventional chemical reactions, thus
requiring nuclear syntheses. Numerical explanation of
thunder requires energy equivalent to hundreds of tons of
explosives that simply cannot be explained via conventional
processes due to the very small cylindrical volume of air
affected by lightning and its extremely short duration of the
order of nanoseconds. However, the nitrogen syntheses by
lightning provide numerical explanation of thunder as well
as the gradual increase of nitrogen in the atmosphere.
Among all possible syntheses, the most probable one results
in being the synthesis of nitrogen firom carbon and
deuterium.

C(12,6,0*,12.0000) + D(2,1,1" ,2.0141)
+TR — N(14,7,17,14.0030) + AE
AE = 0.0111amu = 10.339MeV

(10)

However, the amount of deuterium present in the
atmosphere is negligible to justify thunder quantitatively.
Here, Prof. Santilli emphasizes the synthesis of neutrons by
lightning from protons and electrons.

The neutron synthesis is expected to be a pre-requisite for
the synthesis of deuterium in atmosphere which in turn
synthesizes nitrogen which justifies energy of the thunder
quantitatively. The same synthesis has been reproduced in
laboratory quantitatively by Prof. Santilli using hadronic
reactor.
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2.4. Synthesis of Nitrogen from Carbon and Deuterium by
ICNS

The fusion reaction/nuclear synthesis taking place in
hadronic reactor using deuterium as fuel and carbon electrode
have shown to yield clean energy without formation of any
radioactive species or ionizing radiations [15, 16]. This
synthesis is of industrial importance because it yields 10"
BTU of energy per hour which is equivalent to 10*° ICNS per
hour. The electric arc of the hadronic reactor polarizes carbon
and hydrogen atoms by forming C x H x H magnecule, having
triplet axial spin coupling. Under a suitable trigger (either
high DC voltage or any other suitable means) the magnecule
CxHxH yield a nucleus with A=14, Z=8, I’=1". However, this
is impossible as O (14, 8) has spin J =0 and any other nucleus
of the above mentioned type does not exist.

So, Prof. Santilli postulated that the nature synthesizes a
neutron from proton, electron and etherino as

CxHxH—C(12,6,0)+2xp* +e” +a
— C(12,6,0) + H2,1,1) = N(14,7,1)

an

Other Examples of ICNS
(i). Synthesis of Silicon from Oxygen and Carbon

0(18,8,0%,17.9991) + C(12, 6, 0*,12.0000)
+TR -> Si(30, 14,0*%,29.9737) + AE (13)
AE = 0.0254u

This nucleosynthetic reaction verifies all conservation laws.
The controlled fusion of oxygen and carbon into silica was
done using CO, (green house gas) as hadronic fuel for the
production of clean energy [11]. The whitish powder formed
on the edge of carbon electrodes of the hadronic reactor
suggests synthesis of silica. Hadronic reactor was filled up
with CO, at pressure. The DC arc efficiently separates it into
0O, and C. O, and C burns to produce CO which in the
presence of oxygen and an arc, reproduces CO,.Thus
recovering the energy used for the separation of CO,.
However, along with the conventional combustion, the
hadronic reactor produces a net positive energy output due to
the fusion of oxygen and carbon into silica [17].

Figure 8. Semi-quantitative chemical compositions of the used electrodes were obtained using an Amray Scanning Electron Microscope equippedwithan iXRF
energy dispersive spectrometer (SEM-EDS) by Constellation Technology on 15" October 2013. The elements detected were aluminium, silicon, calcium, chlorine

and iron which were initially absent or if present were in trace amount.

(ii). Synthesis of Oxygen from Carbon and Helium

C(12,6,07,12.0000) + He(4, 2, 0°,4.0020)
+TR — 0(16,8,07,15.9949) + AE (12)
AE =0.0077u

This nucleosynthetic reaction also verifies all conservation
laws. Here, the interior of the reactor was cleaned, and various
components replaced. A vacuum was pulled out of the inner
chamber and the reactor was filled up with commercial grade
helium at 100 psi. It was found that oxygen content decreased
to a non-detectable amount but the CO increased from a
non-detectable amount to 4.24%.

The formation of CO depicts synthesis of oxygen at the tip
of the DC arc hitting the carbon in the cathode surface. The
resulting large local heat rapidly expels the synthesized
oxygen from the DC arc, preventing any additional nuclear
synthesis. However, high affinity of carbon and oxygen
results in formation of carbon monoxide.

(iii). Synthesis Silver from Palladium and Hydrogen

Pd(106,46,0%,105.9034)+H(l, 1, 1/2,1.0078)
+TR — Ag(107,47,1/2" ,106.90509)

This nucleosynthetic reaction depicts the basic difference
between pre-existing studies on cold fusion and the proposed
ICNS. In this reaction palladium 106 is used as cathode and
reactor is filled with hydrogen at a certain pressure.

If cold fusion occurs, then fusion reactions should take
place inside the palladium cathode. However, the engineering
implementation of the new CNS laws inside the palladium
electrodes is virtually impossible, thus explaining the reason
for the lack of its consideration in the industrial research.
According to Prof. Santilli the nuclear fusions may occur in
such conditions at random, thus preventing the controlled
energy output necessary of industrial relevance.

Thus, albeit this reaction verifies conventional nuclear
conservation laws but is not of industrial relevance owing to
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its random nature.
2.5. Santilli Hadronic Reactors

Hadronic reactors are the upgraded hadronic refineries
originally designed by Prof. Santilli [11]. They use
magnecular fuels for production of heat that can be used for
power generation. The reactors house trigger mechanisms like
high voltage DC arc or pressure impulse, etc as shown in Fig,
9 to facilitate controlled nuclear synthesis. Hadronic reactors
can withstand higher pressure as compared to the hadronic
refineries.

Heal Exchange I } Automatic Carbon Feeder
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o

Figure9. Schematic diagram of hadronic reactor based on an upgradation of
the hadronic refineries showing emphasis on the production and use of a
magnecular fitel in the latter; to the production and use of heat in the former.

These reactors are named based on the product or the fuel
used. Hadronic nitrogen reactor is the most primitive type of
hadronic reactor.

2.5.1. Hadronic Nitrogen Reactor

The reactor is filled with D, gas at 3,000 psi and is
re-circulated through graphite electrodes. The trigger
mechanism is by pulse DC arc of 100,000 V, 5 mA and other
means. The heat is dissipated by the external heat exchanger.
The heat is due to the nucleosynthetic reaction between
deuterium and carbon occurring in reactor

C(12,6,07,12.0000)+ D(2,1,17,2.0141)+

(1s)
TR — N(14,7,17,14.0030)

2.5.2. Hadronic Oxygen Reactor

It is one of the simplest reactors as the reaction does not
require spin polarizations for conservation of the angular
momentum. So the reactor is similar to the one shown in Fig.
5 housing carbon electrodes. The vessel is filled up with a
50-50 mixture of oxygen 16 and helium at 3,000 psi, which is
re-circulated through 50 kW electric arc to create magnecules
ofthe type O He. The trigger is DC pulses of 100,000 V and
5 mA, or by impulse pressures or other mechanisms. The heat
produced is dissipated by the external heat exchangers,

Nucleosynthetic reaction occurring in the reactor

0(16,8,07,15.9949) + H(2,1,1°,2.0141)
+TR — F(18,9,1°,18.0009) + AE (16)
AE = 0.0081u = 7.545MeV

The instability of F(18, 9, 1*,18.0009) results in secondary
process

F(18,9,1°,18.0009) + EC —

a7
0(18,8,1%,17.9991) +1.656 MeV

Thus the total energy output per synthesis is equivalent to
9.201 MeV 1.30x10"°BTU.

If 10* syntheses occur per hour then amount of green
energy yielded would be substantial.

2.5.3. First Hadronic Lithium Reactor

First lithium reactor is the same as that of the oxygen reactor.
The only difference is that the vessel is filled with 50-50
mixture of hydrogen and helium gases at 3,000 psi. The
mixture is also recirculated through a 50 kW electric arc that
creates magnecules H He. The trigger is given by a high
voltage pulse DC current or impulse pressure or other
mechanism.

Nucleosynthetic reaction occurring in the reactor is

H(2,1,1%,2.0141) + He(4,2,0*,4.0026) +
TR -» Li(6,3,1*,6.0151)+ AE (18)
AE=0,0016u=2.50x10"°BTU

2.5.4. Second Hadronic Lithium Reactor

It is more complex than the first hadronic lithium reactor
because of the need of lithium nuclei and a beam of protons
with opposite polarization to avoid random reactions. The
current technology allows a variety of engineering realizations
of the needed polarization where a proton beam with down
polarization enters a chamber of lithium with up polarization.
Both polarizations are achieved via magnetic fields. The
efficiency of the hadronic reactor depends on the geometry of
the proton beams, the lithium chamber as well as required
trigger.

Nucleosynthetic reaction occurring in the reactor

Li(7.3,3/2 *,7.0160) + H(1,1,1/2 *,1.0078) +
TR — 2x He(4,2,0°,4.0026)+ AE (19)
AE=2.74x10"BTU

Assuming efficiency of 10" per minute one mole of lithium
would produce energy equivalent to 1.7 x 10° J hour™.
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Figure 10. Schematic view of singlet (antiparallel) spin coupling required to
synthesize helium from deuterium.
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2.5.5. Hadronic Helium Reactor

It is one of the most difficult as it requires the application of
a trigger to two different beams of deuterium gas with
opposite spin polarizations as depicted in Fig. 10. The reactor
as shown in Fig. 11 is a metal vessel that houses two parallel
but separate electric arcs with opposing polarities so as to
produce opposite polarizations of the deuterium gas. The flow
of the gas through said arcs from opposite directions creates
the superposition of the beams in the area located between
said arcs with spin couplings as shown in Fig, 11. The trigger
seems to be the impulse pressure.
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Figure 11. Schematic representation of hadronic reactor for nucleosynthesis
of helium.
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The nucleosynthetic reaction is-

D(2,1,1" 1,2.0141)+D(2,1,1" {,2.0141)

(20)
+TR > He(4,2,0* T,4.0026)+ AE

2.6. Particle Type Hadronic Energy: Stimulated Decay of
Energy

antineutrino 71
]
S
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neutron \

proton

Figure 12. Schematic representation of stimulted neutron decay.

Hadronic nuclear energy can also be obtained by fission
reactions or decay of stable nuclei. Theoretically any stable
nuclei can be disintegrated into its nuclear constituents by
photons having higher energy than the binding energy of the
nuclei to be disintegrated. With higher stable nuclei the energy
of the photons required to disintegrate also increases. The low

binding nuclei like %H and ZBC are well-known to

undergo photo-disintegration with 2.22 MeV and 2.62 MeV
photons respectively [1]. Similarly, stimulated decay of
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neutrons as represented in Fig. 12 is also a well-known
phenomenon. The prediction and its quantitative treatment
can be done by hadronic mechanics.

According to Prof. Santilli, neutron is an unlimited source
of energy because it decays releasing highly energetic
electron and neutrino that can be easily trapped with a metal
shield. 1t is known that an isolated neutron is highly unstable
and has half life of approximately15 minutes. However, as a
constituent of nuclei, it shows high stability which has been
attributed to a strong nuclear force of attraction. The neutron
shows stimulated decay as

TR +n-—->p* +f~ 21)

where pB— has spin zero for the conservation law of the
angular momentum. B~ can also be considered either as an
electron and a neutrino or as an electron and an antietherino
with opposing spin 2. However, this difference is irrelevant
for the stimulated decay of the neutron.

When a resonating photon hits a nucleus, it excites the
isoelectron inside a neutron irrespective of whether the photon
penetrates or not inside the neutron. The excited isoelectron
leaves the neutron structure, thus causing its stimulated decay.
This is due to the fact that hadronic mechanics predicts only
one energy level for the proton and the electron in conditions
of total mutual immersion (as incase of neutron). Range of
hadronic mechanics is given by the radius of neutron that is 1
fm. Thus, the excited isoelectron excites the proton and
reassumes its conventional quantum features when moving in
vacuum.

Numerous additional triggers are predicted by hadronic
mechanics such as photons with a wavelength equal to the
neutron size. Here, the whole neutron is excited, rather than
the isoelectron in its interior, but the result is always the
stimulated decay.

Double Beta Decay
In this typical example of double decay first reaction is
stimulated and the second is spontaneous [11].

7.(0,0,1)+ N(A, Z,J) -
N(A,Z+1,1+1)+p7(0,-1,0)
NA,Z+1,J+1) -
N(A,Z +2,1+2)+p(0,-1,0)

@2)

The original isotope should admit stimulated decay of at
least one of its peripheral neutrons via one photon with a
resonating frequency verifying all conservation laws of the
energy, angular momentum, etc. The new nucleus formed
should undergo spontaneous beta decay so that with one
resonating photon there is production of two electrons whose
kinetic energy is trapped with a metal shield to produce heat.
The original isotope is metallic so that, following the emission
of two electrons, it acquires an electric charge suitable for the
production of a DC current between the metallic isotope and
the metallic shield. The energy balance is positive. The initial
and final isotopes are light, natural and stable elements so that
the new energy is clean (since the electrons can be easily
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trapped with a thin metal shield), and produce non-radioactive
waste.
E.g. double beta decay of the Mo(1 00, 42, 0)

7,(0,0,1) + Mo(100, 42, 0)
—Te(100,43,1) +B7(0,-1,0)
Tc(100,43,1) —
Ru(100,44,0)+B(0,~1,0)

23)

Mo(100, 42, 0) is naturally stable with mass 99.9074771
amu. Tc(100, 43) has mass 99.9076576 amu and is naturally
unstable with spontaneous decay into Ru (100, 44, 0) and half
life of 15.8 s. Ru (100, 44) is naturally stable with mass
99.9042197 amu. Although the mass of Mo(100, 42, 0) is
smaller than that of Tc(100, 43, 1), yet the conservation of
energy can be verified with a resonating frequency of 0.16803
MeV (obtained for n=1/7) where n is normalization contant.

But the mass of the original isotope is bigger than that of
the final isotope for a value much bigger than that of the
resonating photon, with usable hadronic energy (HE) power
nuclear reaction

HE = M(100, 42) - M(100, 44) -
E(r) - 2xE(e)
=3034-0.184-1.022MeV
=1.828MeV

(24)

where Santilli subtracts the conventional rest energy of the
two electrons because it is not usable as a source of energy in
this case.

Under the assumptions of using a coherent beam with
resonating photons hitting a sufficient mass of Mo(1 00, 42, 0)
suitable to produce 10%° stimulated nuclear transmutations per
hour, we have the following:

Hadronic production of heat :

2x10?° MeV/h= 3x10* BTU/h, (25)
Hadronic production of electricity :

2x10% e/h = 200C/h=55 mA. (26)

3. Applications of Hadronic Nuclear
Energy

3.1. Intermediate Controlled Nuclear Synthesis

1. Green power generation source

ICNS can be industrially exploited for power generation.

Since there are no ionizing radiations or particular
emissions, it is green and can be used for sustainable
development.
2. Synthesis of heavy and super heavy elements

Synthesis of heavy elements particularly of the seventh
period is conventionally done by bombarding two heavy
nuclei. The reacting rather bombarding nuclei have high
energy to overcome the coulombic barrier. This results
in high excitation energy of the resulting daughter

nuclei which is often higher than the fission barrier.
Thus, fission is one of the pre-dominant exit channel.
However, if ICNS is used then the nuclei of the
participating atoms can be exposed in controlled
manner as well as can be brought near each other to a
considerable extent without initiating coulombic
repulsion. This is due to magnetic bond in the
participating nuclei which in this case are magnecules
rather than mere atoms or ions. The trigger mechanism
then pushes the participating nuclei within hadronic
radius where fusion is inevitable. Consequently
formation of heavy nucleus takes place. Converting
heavy nucleus into respective magnecules requires high
magnetic field and would be a costly affair. However,
the daughter heavy nuclei produced would be
considerable stable making the synthesis green and
viable.

Stable heavy daughter nuclei formed would allow study
of'its actual chemical characteristic instead of predicting
on the basis of periodic table and spectroscopic studies.

3.2. Particulate Type Nuclear Energy

1. Green power generation source
Stimulated decay of neutron and double beta decay can
be used for power generation. The by product is electron
which can be stopped with a metal sheet. This results in
a clean and green power source.

2. Recycling of nuclear waste
It may also be used for recycling of nuclear waste
generated due to existing conventional nuclear energy
facility by stimulated neutron decay using photon with
resonating frequency (or energy) of 1.294 MeV.

4. Conclusion

ICNS seems to be more promising than hot or cold fusion in
terms of reproducibility and energy input to output ratio. The
successful achievement of ICNS with industrial relevance
depends on the proper selection of the hadronic fuel. The
hadronic fuel is mainly due to-

a) The original and final nuclides are light, natural and

stable isotope.

b) The nuclear syntheses cause no emission of ionizing

radiations.

c) The energy produced AE is much bigger than the total

energy used by the equipment for its production.

Stimulated beta decay and double beta decay also seems to
be promising prospect for green power generation. Apart from
power generation, ICNS and stimulated decay holds
promising prospect for synthesis of heavy elements and
recycling of nuclear wastes respectively.
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