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Preface

Hyperstructures represent a natural exténsion of classical algebraic struc-
tures and they were introduced in 1934 by the French mathematician
F. Marty [79]. Since then, hundreds of papers and several books have been
written on this topic. A recent book on hyperstructures [27] points out
on their applications in fuzzy and rough set theory, cryptography, codes,
automata, probability, geometry, lattices, binary relations, graphs and hy-
pergraphs. The books published till now on hyperstructures deal especially
with hypergroups. That is why we think that a book on hyperring theory
is a necessity, especially for the new researchers on this topic, for Ph.D.
students who need & material on hyperrings. Hyperrings have been also
the starting point for the study of hypermodules, which were considered by
P. Corsini, C.G. Massouros, G.G. Massouros and others.

The presented book is conmiposed by eight chapters. Af the beginning,
we recall some notions and basic results on ring theory, that we shall ex-
tend to the context of hyperrings. The second chapter is about algebraic
hyperstructures, their history and some basic results especially on some im-
portant classes of hypergroups. The following cliapters are about several
types of hyperrings. We can consider several definitions for a hyperring, by
replacing at least one of the two operations by hyperoperations.

A well known type of a hyperring, called the Krasner hyperring, is
obtained by considering the addition as a hyperoperation, such that the
structure (R, +) is & canonical hypergroup, a structure which is analyzed
in the second chapter. Then we consider the multiplication as a hyper-
operation and we obtain the so-called multiplicative hyperrings, presented
in the fourth chapter. Finally, if both addition and multiplication are hyper-
operations, then we obtain general hyperrings, studied in the fifth chapter.



Speaking about hyperrings, we must recall several names of the mathe-
maticians who have introduced and given an important development to this
notion. After M. Krasner, who gave his name of an important class of hyper-
rings, we have to mention D. Stratigopoulos, who wrote one of the first Ph.D.
thesis on hyperrings; namely on Artinian hyperrings, J. Mittas who studied
in depth the Krasner hyperrings, T. Vougiouklis and M. De Salvo who consi-
dered general hyperrings, R. Procesi and R. Rota, who introduced the mul-
tiplicative hyperrings. T. Vougiouklis and S. Spartalis analyzed H,-rings,
C.G. Massouros studied especially hyperfields and G.G. Massouros men-
tioned some interesting of applications of hyperrings to automata. Other
mathematicians gave a contribution to this theory and they are mentioned
in each chapter together with several of their main results on this topic.
Another hyperstructure that can be obtained from a ring, by replacing the
associative law by a weak associative law is analyzed in the sixth chap-
ter. They are called H,-rings and were introduced by Vougiouklis. In the
seventh chapter, we corisider commutative rings that can be obtained from
hyperrings. This is & new connection between rings and hyperrings. For
each type of hyperrings, we analyze the quotient structure, the fundamen-
tal relation and polynomials. In the last chapter, we present an outline of
applications of hyperstructures in chemistry and physics.

There are many new research directions on which the presented research
can be continuated. Our book contains only a background on hyperrings,
that can be useful to everybody who wishes to do research on this topic.

We thank to Prof. Piergiulio Corsini, Prof. Thomas Vougiouklis, Prof.
Jan Chvalina and Lecturer Dr. Sarka Hoskova for their suggestions and
help in providing us some necessary material for this book.

We thank to Mrs. Elena Mocanu for her help in the latex processing of
this book.

The Authors
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Chapter 1

Introduction to rings

1.1 Introduction

Any book on Abstract Algebra will contain the definition of a ring. It will
define a ring as a set endowed with two operations, called addition and mul-
tiplication, satisfying a collection of axioms. These axioms require addition
to satisfy the axioms of an abelian group, while multiplication is associative
and the two operations are connected by the distributive laws. A ring is
therefore a setting for generalizing integer arithmetic. Familiar examples of
rings such as the real numbers, the complex numbers, the rational numbers,
the integers, the even integers, 2 x 2 real matrices, the integers modulo m
for a fixed integer m, will almost certainly be given in an Abstract Algebra
book, as well as many beautiful theorems on rings. What will be probably
missing are the reasons for which these particular axioms have been sin-
gled out for a such intensive study. What motivates this abstract definition
of a ring?

Richard Dedekind introduced the concept of a ring. The word ring has
the origin in the German word Zahlring (=number ring). The term ring
(Zahlring) was coined by David Hilbert in [53]. The first abstract definition
of a ring was given by Fraenkel {of set-theory fame) in a 1914 paper entitled
“On zero divisors and the decomposition of rings” [50]. The Fraenkel’s de-
finition meant to encompass both commutative and noncommutative rings.
He considered integers modulo m, matrices, p-adic integers, and hypercom-
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2 Bijan Davvaz and Violeta Leoreanu-Fotea

plex number systems as examples of rings. The Fraenkel’s aim was to do
for rings what Steinitz had just (1910) done for fields, namely to give an
abstract and comprehensive theory of commutative and noncommutative
rings. Of course he was not successful (he did admit that the task here
is not so “easy” as in the case of fields). The undertaking to subsume the
structure of both commutative and noncommutative rings under one theory
was too ambitious. Among the main concepts introduced in Fraenkel’s pa-
per are “zero divisors” and “regular elements”. Fraenkel considered only
rings which are not integral domains (i.e. rings with zero divisors) and dis-
cussed divisibility for such rings. A great part of the paper deals with the
decomposition of rings in direct products of “simple” rings (not the usual
notion of simplicity), see [9]. Fraenkel’s definition of a ring is almost the
definition that we use nowadays. He defined a ring as “a system” with
two abstract operations, that he named addition and multiplication. The
system is a group with respect to one of the operations (addition). The se-
cond operation (multiplication) is associative and it is distributive over the
first. The two axioms give the closure of the system under the operations,
and there is the requirement of an identity in the definition of the ring.
The commutativity of the addition does not appear as an axiom but it is
proved! Similarly, other elementary properties of a ring such as a - 0 = 0;
a(=b) = {—a)b = —(ab), and (~a)(—b) = ab are proved. There are two
“extraneous” axioms, dealing with “regular” elements in the ring, which
derive from an otherwise modern definition, given by Sono in a 1917 pa-
per entitled “On congruences” [117]. Sono’s is a very modern and abstract
paper, which discusses about cosets, quotient rings, maximal and mini-
mal ideals, simple rings, the isomorphism theorems, and composition series
(see [9]). Although Fraenkel’s and Sono’s papers were not in the mainstream
of contemporary ring theoretic studies, they were significant since the rings
are studied as independent, abstract objects, not just as rings of polyno-
mials, as rings of algebraic integers, or as rings (algebras) of hypercomplex
numbers.

Ideals were firstly proposed by Dedekind in 1876 in the third edition
of his book. They are a generalization of the concept of an ideal number
developed by Ernst Kummer. Later, the concept was expanded by David
Hilbert and especially by Emmy Noether. The ideal concept generalizes
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some important properties of integers like “even number” or “multiple of 3"
in an appropriate way. An ideal can be used to construct a quotient ring in
a similar way as a normal subgroup can be used to construct a factor group
in group theory. The order ideal concept in order theory is derived from the
ideal notion in ring theory.

Prime numbers were generalized to prime ideals by Dedekind in 1871.
A prime ideal is an ideal which contains the product of two elements only
if it contains one of the two elements. For example all integers which are
divisible by a fixed prime p form a prime ideal of the ring of integers. This
trend which consists in looking at ideals rather than at the elements marks
an important stage in the development of the ring theory. The decomposi-
tion of an integer into the product of powers of primes has an analogue in
rings where prime integers are replaced by prime ideals. On the other hand,
powers of prime integers are not replaced by powers of prime ideals but
rather by “primary ideals”. Primary ideals were introduced by Lasker in
1905, in the context of polynomial rings. (Lasker was World Chess Cham-
pion from 1894 to 1921.) Lasker proved the existence of a decomposition of
an ideal into primary ideals but the uniqueness of the decomposition was
proven by Macaulay only in 1915,

In ring theory, one can study prime ideals instead of prime numbers,
one can define coprime ideals as a generalization of coprime numbers, and
one can prove a generalized Chinese remainder theorem for ideals. In the
Dedekind domains, which form an important class of rings in number theory,
one can even obtain a version of the arithmetic fundamental theorem: in
these rings, every nonzero ideal can be uniquely written as a product of
prime ideals.

Despite of the abstract definition of a ring, the study of rings of polyno-
mials, rings of algebraic integers, and rings of hypercomplex numbers repre-
sents an important topic of algebra. In the 1920s, two master algebraists
Noether and Artin have transformed these subjects into powerful, abstract
theories. The Noether’s two seminal papers of 1921 and 1927 extended and
abstracted the decomposition theories of polynomial rings on the one hand
and of the rings of integers of algebraic number fields and algebraic func-
tion fields on the other hand, to abstract commutative rings which satisfy
the ascending chain condition, that we call now Noetherian rings. More
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exactly, Noether showed in the 1921 paper, entitled “Ideal theory in rings”,
that the results of Hilbert, Lasker, and Macauley on primary decomposition
in polynomial rings hold for any (abstract) ring which satisfy the ascending
chain condition. Thus, results which seemed inextricably connected with
the properties of polynomial rings were obtained from a single axiom!

Commutative ring theory has its origins in algebraic number theory, al-
gebraic geometry, and invariant theory, and has in turn been applied mainly
to these subjects. In 1921, Emmy Noether gave the first axiomatic system
of the commutative ring theory in her fundamental paper Ideal Theory in
Rings. : :

In her 1927 paper, “Abstract development of ideal theory in algebraic
number fields and function fields”, she discussed about the Dedekind and
Dedekind-Weber results on the decomposition of ideals as unique products
of prime ideals in rings of integers of algebraic number fields and function
fields in the setting of abstract rings respectively. In particular, she charac-
terized abstract commutative rings in which every nonzero ideal is a unique
product of prime ideals.

A ring is called commutative if its multiplication is commutative. Com-
mutative rings resemble familiar number systems, and various definitions for
comrnutative rings are designed to recover properties known from the inte-
gers. In the commutative ring theory, numbers are often replaced by ideals,
and the definition of prime ideal tries to capture the essence of prime num-
bers. Infegral domains generalize another property of the integers and can
be used as the proper realm to study divisibility. Principal ideal domains
are integral domains in which every ideal can be generated by a single ele-
ment, which is another property shared by the integers. Euclidean domains
are integral domains in which the Euclidean algorithm can be carried out.
Important examples of commutative rings can be constructed as rings of
polynomials and their factor rings.

Noncommutative rings resemble rings of matrices in many respects.
Following the model of algebraic geometry, attempts have been made re-
cently to define noncommutative geometry based on noncommutative rings.
Noncommutative rings and associative algebras (rings that are also vector
spaces) are often studied via their categories of modules.

Nowadays, ring theory is a fertile meeting ground for group theory
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(group rings}, representation theory (modules), functional analysis (opera-
tor algebras), Lie theory (enveloping algebras), algebraic geometry (finitely
generated algebras, differential operators, invariant theory), arithmetic (or-
ders, Brauer groups), universal algebra (varieties of rings), and homological
algebra (cohomology of rings, projective modules, Grothendieck and higher
K-groups).

1.2 The abstract definition of a ring and some
examples

In this section, the definition of a ring and numerous examples are given.
A ring is a two-operational system and these operations are usually called
eddition and multiplication.

Definition 1.2.1. A nonempty set R is said to be a ring if in R there are
defined two binary operations, denoted by + and - respectively, such that
for all a,b,c in R:

(1) a+b=b+a,
(2) (a+b)+c=a+(b+c),
(3) there is an element 0 in R such that a + 0 = a,
(4) there exists an element —a in R such that a + (—a) =0,
(5) (a-8)-c=a-(b-c),
)

(6) - is distributive with respect to +, l.e., z-(y+2) =2z -y+ -z and
la+y) z=2-y+y-z

Axioms 1 through 4 merely state that R is an abelian group under the
operation -+. The additive identity of a ring is called the zero element. If
a € R and n € Z, then na has its usual meaning for additive groups.

If in addition:

(7) a-b=b-aforall a,bin R,
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then R is said to be a commutative ring. If R contains an element 1 such
that

(8 lra=a-1l=aforallaein R,

then R is said to be a ring with unit element.

If Ris a system with unit satisfying all the axioms of a ring expect
possibly @ + b= b+ a for all ¢,b € R, then one can show that R is a ring.

For any two elements a, b of a ring R, we shall denote a + (—b) by a ~ b
and for convenience sake we shall usually write ab instead of a - .

Before going on to work out some properties of rings, we pause to exa-
mine some examples. Motivated by these examples we shall define various
special types of rings which are of importance.

Example 1.2.2. {Some examples of commutative rings)

(1) Each of the number sets Z, Q, R and C forms a ring with respect to
ordinary addition and multiplication.

(2) For every m € Z, {ma | a € Z} forms a ring with respect to ordinary
addition and multiplication.

(3) The set Z, is a ring with respect to addition and multiplication
modulo n.

(4) We say that a ring R is a Boolean ring (after the English Mathe-
matician George Boole) if 22 = z for all z € R. A Boolean ring is
commutative. Let X be a set and A, B be subsets of X. The sym-
metric difference between two subsets A and B, denoted by AA B, is
the set of all z such that either € A or z € B but not both. The set
P(X) of all subsets of a set X is a ring. The addition is the symmetric
difference & and the multiplication is the set operation intersection .
lts zero element is the empty set, and its unit element is the set X.
This is an example of a Boolean ring.

(5} Let Z[¢] denote the set of all complex numbers of the form a+bi where
a and b are integers. Under the usual addition and multiplication
of complex numbers, Z[¢] forms a ring called the ring of Gaussian
integers.
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(6)

(7)

The set of all continuous real-valued functions defined on the interval
[a,b] forms a ring, the operations are addition and multiplication of
functions.

A polynomial is a formal expression of the form
p(z) =ag+ a1z + ... + Gpo 127 + apz",

where ag,...,a, € R and z is a variable. Polynomials can be added
and multiplied as usual. With these operations the set R[z] of all
polynomials is a ring. In fact, given any commutative ring R, one can
construct the ring R[z]| of polynomials over R in a similar way.

We define now the ring of polynomials in the n-variables z;,...,z,
over R, R[xy,...,x,), as follows: let Ry = [z1], Ry = Rilzal,..., R, =
Rp_1lz,). R, is called the ring of polynomials in x4, ..., &, over R.

Let R be a commutative ring with unit element and denoted by R|[[z]]
the set of all formal power series over the ring R. Then R[[z]] is a ring
with addition and multiplication defined by

oo 00 00
Z ai:Ui + Z bilﬁi = Z(a,; + bi)mi,
i=0 i=0 =0

5] 60 00

Zaifﬁi . Zb,‘.’ﬁi = ZC,;.’Ei,

i=0 i=0 i=()

: n
where ¢, = Zaibnai. The ring R|[z]] is called the ring of power
i=0
series.

Let R be a commutative ring with unit. A nonempty subset § of R is
called a multiplicative subset if 0 ¢ S and s1, 8, € 5 implies 5182 € 5.
Let R x S be the set of all ordered pairs (r, s) where r € Kand s € .
In R x S we define now a relation as follows: (ry, s1) ~ (re, s2) if and
only if there exists s € § such that s(r1ss — syr3) = 0. The relation ~
is an equivalence relation on R x S. Let [r, s] be the equivalence class
of (r, s} in Rx S, and let S~! R be the set of all such equivalence classes
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[r,s] where r € Rand s € §. The quotient set S™!R is a commutative
ring with unit under addition and multiplication defined by

[r1, 1] + [r2, 89] = [r18o+ 728,818,
[?"1,-91] : [?"2,82] = [?”1?“2,3182],

for all 1,7, € R and s1,5, € S. S™'R is usually called the ring of
fractions of R. In the special case in which R is the ring of integers,
the S™'R so constructed is, of course, the ring of rational numbers.

Example 1.2.3. (Some examples of noncommutative rings)

(1)

(@)

(4)

One of the smallest noncommutative rings is the Klein 4-ring (R, +, ),
where (R, +) is the Klein 4-group {0, a, b, ¢} with 0 the neutral element
and the binary operation - given by the following table:

| 0 a b c
0(0 0 00
all a 0 a
b0 b 0O b
c|0 ¢ O ¢

The set M, (R) of all n x n matrices with entries from R forms a ring
with respect to the usual addition and multiplication of matrices. In
fact, given an arbitrary ring R, one can consider the ring M, (R) of
n x n matrices with entries from R.

If G is an abelian group, then End(G), the set of endomorphisms
of G, forms a ring, the operations in this ring are the addition and
composition of endomorphisms.

Let §2 consist of all complex valued functions f of real variable z such
that

/_ 1 @)ldz < oo,

oo
{1 is an additive abelian group with respect to the ordinary addition.
We consider the binary operation x called convolution,

h=fx*g,
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where (f * g)(z) is defined by the equation

(f = g)(z) = f " Flo — ().

It can be shown that if f and g are in €2, then h is also in £ (it follows
from Fubini’s theorem in analysis). The remaining axioms are easy to
verify and we conclude that € is a ring with respect to the ordinary
addition + and convolution *. This ring lacks a unit element.

Let (7 be a group and R a ring. Firstly, we define the set R[G] to be
one of the following: ‘

o The set of .a,ll formal R-linear combinations of elements of G.

-» The set of all functions f : G — R with f(g) = 0 for all but finitely

many g in G.

No matter which definition is used, we can write the elements of R[G]

in the form Z agg, with all but finitely many of the a, being 0, and

geG
the addition on R|G] is the addition of formal linear combinations or

addition of functions, respectively. The multiplication of elements of
R[G] is defined by setting

(Z agg)(z bph) = Z (agbr)gh

geG he& g.heG

If R has 4 unit element, this is the unique bilinear multiplication for
which {1g)(1h) = (1gh). In this case, G is commonly identified with
the set of elements 1g of R[G}. The identity element of & then serves
as the 1 in R[G]. Tt is not difficult to verify that R[G] is a ring. This
ring is called the group ring of G over R.

Note that: If R and G are both commutative (i.e., R is commutative
and G is an abelian group), then RG] is commutative.

This last example is often called the ring of real guaternions. This ring
was firstly described by the Irish mathematician Hamilton. Initially
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it was extensively used in the study of mechanics; today its primary
interest is that of an important example, although still it plays key
roles in geometry and number theory.

Let ¢} be the set of all symbols ag +a11 -+ a7 +ask, where all the num-
bers a9, a;, a2 and as are real numbers. Define the equality between
two elements of ) as follows: ag+ayi+ asj +azk = by +byi +byj + bak
if and only if ag = by, a1 = by, ay = by and ag = by. We define the
addition and multiplication on @ by

(ag+a1i+a2j+a3k) (bg +b1i+bgj+b3k)
(a0 +bo) + (a1 + b1)i + (az + ba)j + {ag + ba)(n
(@0 + a1i + asj + agk) - (b + b1i + baj + b3k)
(aobo — by — asby — 61,353) + (aob1 -h a1bg + azbg — asby)i
+(aoby + asbo + asby — a1b3)j + (aphs + asbo + atby — ashy k.

It is easy to see that () is a noncommutative ring in which 0 = 0 +
0i+ 07+ 0k and 1 =1+ 0i 4+ 0j + 0k are the zero and unit elements
respectively. Note that the set {1, -1,i, —i, j, —j, k, ~k} forms a non-
abelian group of order 8 under this product.

(7) (Differential operator rings). Consider the homogeneous linear diffe-
rential equation a,{z)D™y + ... + a;{z) Dy+ap(x)y=0, where the so-
lution y{x) is a polynomial with complex coefficients, and also the
terms a;(z) belong to Clz]. The equation can be written in compact
form as L(y)}=0, where L is the differential operator a,(z)D" + ... +
ar(z)D+ag(z), with D = £, Thus the differential operator can be
thought as a polynomial in the two indeterminates x and D, but in
this case the indeterminates do not commute, since D(zy(z)) = y(z)+
zD{y(z)), yielding the identity Dz = 14 2D. The repeated use of
this identity makes possible to write the composition of two differential
operators in the standard form ag(z) + a1(z)D + ... + an(z) D™, and
we denote the resulting ring by C[z][D].

We wish to be able to compute in rings in the same manner in which we
compute with real numbers, keeping in mind always that there are different.
It may happen that ab # ba, or a does not divide b. To this end we mention
some preliminary results, which assert that certain something we should
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like to be true in rings are indeed true.

Preliminary results 1.2.4. Let R be a ring. Then

(1) Since a ring is an abelian group under +, there are certain things we
know from the group theory background, for instance, —(—a) = @ and
—(a+b)=—a—bforall a,bin R and so on,

(2) )a=a0=0forallain R,
{(3) (—a)b = a{-b) = —(ab) for all a,bin R,
(4) (—a)(—b) =abfor all a,bin R,
(5) (na)b= a(nb) = n(ab) for alln € Z and a,bin R,
(6) (Z at-) (Z bj) =D i1 2_jer aibj for all a;, b; in R.
i=1 =1
Moreover, if R has a unit element 1, then

(7) (-1)a= —aforalla € R,
@) D=1

1.3 Some special classes of rings

In dealing with an arbitrary ring R there may exist nonzero elements o
and b in R, such that their product is zero. Such elements are called zero-
divisors.

Definition 1.3.1. A nonzero element @ is called a zero-divisor if there
exists a nonzero element b € R such that either ab= 0 or ba = 0.

Example 1.3.2. As examples of such rings, we have

(1) In the ring Zg we have 2-3 = 0 and so 2 and 3 are zero-divisors. More
generally, if n is not prime then Z,, contains zero-divisors.
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(2) Consider the ring R of all order pairs of real numbers (a,b). If (a,b)
and (c,d) are two elements in R, we define the addition and multi-
plication in R by the equalities: (a,b) + (¢,d) = (a + ¢,b + d) and
(a,b) - (e,d) = (ac,bd). Then R is a ring. The zero element is (0, 0)
and the ring has zero-divisors.

Definition 1.3.3. A commutative ring is an infegral domain if it has no
zero-divisors.

The ring of integers, is an example of an integral domain. It is easy to
verify that a ring R has no zero-divisors if and only if the right and left
cancellation laws hold in R.

Definition 1.3.4. If the nonzero elements of a ring R form a multiplicative
group, i.e., R has unit element and every element except the zero element
has an inverse, then we shall call the ring a skew field or a division ring.

Definition 1.3.5. A field is a commutative division ring.
The inverse of an element e under multiplication will be denoted by a™.

Example 1.3.6.
(1) If p is prime, then z, is a field.
(2) Q, R and C are examples of fields whereas Z is not:

(3) In Example 1.2.2 (9), let R be an integral domain and S = R\{0}.
Then S7'R = F is a field. F is usually called the field of fractions.

(4) Consider the set {a+bx | a,b € Zy} with z a “indeterminate”. We use
the arithmetic addition modulo 2 and multiplication using the “rule”
z? = z + 1. Then we obtain a field with 4 elements: {0,1,z,1 + z}.

{5) Consider the set {a + bz + cz? | a,b,c € Zy}, where we now use the
rule z* = 1+ x. This gives a field with 8 elements: {0,1,x,1 + z,2?,
1+ 2%,z + 2% 1+ + 2%}

(6) Consider the set {a+ bz |a,b € Z3} with arithmetic modulo 3 and the
“rule” 2 = ~1 (s0 it is similar as the multiplication in C). Then we
get a field with 9 elements: {0,1,2,2,1+x,2+ z,2z,1 + 22,2 + 2z}.
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More generally, using “tricks” like the above ones, we can construct a
finite field with p* elements for any prime p and positive integer k. This is
denoted by GF(p*) and it is called the Galois Field named after the French
mathematician Evariste Galois.

The ring of quaternions is a division ring which is not a field. Many
other examples of noncommutative rings exist, for instance see the following
example.

Example 1.3.7. Consider the set M = { [ a_g g
are conjugates of a,b. M ig a ring with unit under matrix addition and
T4y u+iv
—Uu+w T—1y

| a,b € C}, where @, b

multiplication. If A = ] is a nonzero matrix in M, then

T — 1ty U +1v
e T R SR T S N T S T S
N U — T+ iy

2+ +ui+v? 22yt e 4P

Hence M is a division ring, but is not commutative, since

olle Sl <)

Clearly, every field is an integral domain, but, in general, an integral
domain is not a field. For example, the ring of integers is an integral domain,
but not all nonzero elements have inverse under multiplication. However,
for finite domains of integrity, we have the following theorem.

Theorem 1.3.8. Any finite ring without zero-divisors is a division ring.

Proof. Let R = {z,29,...,2,} be a finite ring without zero-divisors and
suppose that a{s 0) € R. Then az;, azs, ..., az, are all n distinct elements
lying in R, as cancellation laws hold in R. Since a € R, there exists z; € R
such that @ = az;. Then we have a(z;a — a) = a® — a® =0, and so z;0 = a.
Now, for every b € R we have ab = (az;)b = a(z;b), hence b = 2;b and
further ba = b{z;a) = (bz;)a which implies that & = bx;. Hence z; is the
unit element for R and we denote it by 1. Now, 1 € R, so there exists c € R
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such that 1 = ac. Alsoa(ca—-1}=(acla—a=a—a=0,andsoca=1.
Consequently, R is a division ring. |

Corollary 1.3.9. A finite integral domain is a ﬁel'd.

By a famous theorem of Wedderburn, “every finite division ring is a
field”. Therefore we can say that “any finite ring without zero-divisors is a
field.

Definition 1.3.10. Let R be a ring. Then D is said to be of finite charac-
teristic if there exists a positive integer n such that na = 0 for all @ € R.
If no such of n exists, R is said to be of chamcterzstzc 0 I R is of finite
characteristic, then we define the characteristic of R as the sujallest positive
integer n such that na =0 for all a € R. ! ‘

The characteristic of Z, is equal to n, whereas Z, @, R and C are of
characteristic 0.

Basic results 1.3.11.
(1) Any finite field is of finite characteristic. However, an integral domain
may be infinite and with a finite characteristic.

(2) The characteristic of an integral domain with unit element is either
Zero or a prime number, .

(3) If D is an integral domain and if na = 0 for some ¢ # 0 in D and
some integer n s 0, then D is of finite characteristic. Note that, it is
not true for an arbitrary ring; it is enough to consider the ring Z; x Z.

(4) Let R be a ring with unit element. Then the characteristic of R is
equal to n if and only if n is the least positive integer such that n-1 = 1.

1.4 Subrings, ideals and quotient rings

In the study of groups, subgroups play a crucial role. Subrings, the ana-
logous notion in ring theory, play a much less important role than their
counterparts in group theory. Nevertheless, subrings are important.

Definition 1.4.1. Let R be aring and S be a nonempty subset of R, which
is closed under the addition and multiplication in R. If S is itself a ring
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under these operations then S is called a subring of R; more formally, S is
a subring of R if the following conditions hold:

a,b€ §impliesthat a —b€ Sanda-b e S.
Example 1.4.2.

{1) For each positive integer n, the set nZ = {0,%n,+2n,+3n,...} is a
subring of Z.

{2} Z is a subring of the ring of real numbers and also a subring of the
ring of polynomials Z[X].

(3} The ring of Gaussian integers is a subring of the complex numbers.

(4) The set A of all 2 x 2 matrices of the type , where a,b and ¢

a
b
are integers, is a subring of the ring M(Z).

(5) The polynomial ring R|[z] is a subring of R[[z]].

(6} If R is any ring, then the center of R is the set Z(R)={z € R | zy=yz,
Vy € R}. Clearly, the center of R is a subring of R.

Let R be a ring and S be a proper subring of it. Then there exists the
following five cases:

R and S have a common unit element.

e R has a unit element but S does not.
B and 5 both have their own nonzero unities but these are distinct.

R has no unit element but S has a unit, element.

Neither R nor S have unit element.

Example 1.4.3.
(1) The ring Q@ and its subring Z have the common unit element 1.

(2) The subring S of even integers of the ring Z has no unit element.
Actually, the only subring with unit of Z is Z.
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(3) Let S be the subring of all pairs (a,b) of the ring Z x Z for which the
operations + and - are defined component by component. Then S and
Z X Z have the unities (1,0) and (1, 1), respectively.

(4) Let S be the subring of all pairs (a, 0} of the ring R={(a, 2b) | a,beZ}
(operations are defined component by component). Now § has the
unit element (1,0) but R has no unit element.

(5) Neither the ring {(2a,2b) | a,b € Z} (operations are defined compo-
nent by component) nor its subring consisting of the pairs (2a, 0} have
unit element.

In group theory, normal subgroups play a special role, they permit us
to construct quotient groups. Now, we introduce the analogous concept for
rings.

Definition 1.4.4. A nonempty subset [ of a ring R is said to be an ideal
of R if '

(1) Iis a subgroup of R under addition,
(2) for every a € I and r € R, both ar and ra are in 1.

Clearly, each ideal is a subring. For any ring R, {0} and R are ideals of
R. The ideal {0} is called the trivial ideal. An ideal I of R such that [ # 0
and I # R is called a proper tdeal. Observe that if R has a unit element and
1 is an ideal of R, then / = R if and only if 1 € /. Consequently, a nonzero
ideal I of R is proper if and only if 7 contains no invertible elements of R.
It is easy to see that the intersection of any family of ideals of R is also an
ideal.

Example 1.4.5.

(1) For any positive integer n, the set nZ is an ideal of Z. In fact, every
ideal of Z has this form, for suitable n.

(2) Let I be the set of all polynomials over B with zero constant term.
Then 1 is an ideal of Riz].
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(3)

(4)

(5)

Let R be the ring of all real-valued functions of a real variable. The
subset S of all differentiable functions is a subring of R but not an
ideal of R.

Let f € Q[m] Then the set {fg | g € Q[z]} is an ideal of Q[z}. In fact,
every ideal, though not every subring, of @[z} has this form.

Let
a b ¢
R= d e f||abedefez
00 g

then R is a ring under matrix addition and multiplication. The set
. 0 0
R= 00 y||zyez
000

Let R be a ring and let M,{R) be the ring of matrices over R. If I is
an ideal of R then the set M, (I) of all matrices with entries in [ is an
ideal of M,(R). Conversely, every ideal of M,(R) is of this type.

is an ideal of E.

Let m be a positive integer such that m is not a square in Z. If
R = {a+ +/mb | a,b € Z}, then R is a ring under the operations
of sum and product of real numbers. If p is an odd prime number,
consider the set I, = {a + +/mb | ple and p|b}, where a + /mb € R.
Then I, is an ideal of R. '

For ideals Iy, I; of a ring R define I + I to be the set {a+b| e € L1,
b € I} and I}1, to be the set {Zaibi |n€ezt a; € h,b € IQ}.

i=1

Then I + I; and I I> are ideals of R.

Let R be an arbitrary ring and let a1, as, ...a,, € K. Then the set of
all elemerits of the form

m m m m i
E Za; + E 5;a; + E a;t; + E E Ui kQiVik | »
i=1 i=1 i=1 i=1 \i=l
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where m, z;,n; € Z, 8i,ti, Uik, vyx € R, is an ideal. In fact it is the
smallest ideal of R which contains ay, a9, ...a,,. Hence it is called the
ideal generated by ay,ag, ...Qp.

If R is commutative and has a unit element, the above set reduces to
the set {a171+ 022+ ...+ @mrm | 73 € R}. We denote this ideal briefly
by (a1,a3,...am). If m = 1 the ideal {a;) is called the principal ideal
generated by a;. In particular, (1) = R.

(10) The subset E of Z|x] composed by all polynomials with even constant
term is an ideal of Z[z]. In fact £ = (x,2) and it is not principal.

(11) Let X be a nonempty set and P(X) denotes the ring of power set of
X. Then a nonempty subset I of P(X) is an ideal of P(X) if and
only f PLAUB)C Iforall A, Bel

(12) Let R be a commutative ring and let A be an arbitrary subset of R.
Then the annihilator of A, Ann(A) ={r € R|ra={ifor all a € A}
is an ideal. 3

Lemma 1.4.6. Let R be a commutative ring with unit element whose only
ideals are the trivial ideal and K. Then R is a field.

Proof. In order to prove this lemma, for any nonzero element ¢ € R we
must find an element b € R such that ab = 1. The set Ra = {za | z € R}
is an ideal of R. By our assumptions on R, Ra = {0} or Ra = R. Since
O0#a=1-a¢€ Ra, Ra # {0}, and so Ra = R. Since 1 € R, there exists
b€ Rsuch that 1 =ba. &

Definition 1.4.7. (Quotient ring). Let R be a ring and let I be an ideal
of R. In order to define the quotient ring, we consider firstly an equivalence
relation on R. We say that the elements a,b € R are eguivalent, and we
write @ ~ b, if and only if a — b € 1. If a is an element of R, we denote the
corresponding equivalence class by [a}. The guotient ring of modulo I is the
set R/I = {[a] | @ € R}, with a ring structure defined as follows. If [a], /o]
are equivalence classes in R/I, then

[} + o] = [a+b] and [d] - [8] = [ab).
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Since [ is closed under addition and multiplication, it follows that the ring
structure in R/I is well defined. Clearly, a + I = [q].

Example 1.4.8. Let us present some quotient rings.
(1) z/6z = {6Z,1+ 6Z,2 + 6Z,3 + 62,4 + 6Z,5 + 6Z}.

(2) We consider the ring of polynomials R[x] with real coefficients and
{(x? + 1) generated by z° + 1. Then

R[z]/{z* + 1) = {ax + b+ {z* + 1) | a,b € R}.

(3) If R =2Z[z,y] and I = (z*,4* + 1), then every element of R/ has the
form a + bz + cy + dzy + I, where a.b,c,d € Z.

1.5 Ring homomorphisms and isomorphisms

In this section, we consider one of the most fundamental notions of ring
theory-“homomorphism”. The homomorphism term comes from the Greek
words “homo”, which means like and “morphe”, which means form. In our
presentation about rings we see that one way to discover information about
a ring is to examine its interaction with other rings using homomorphisms.

Just as a group homomorphism preserves the group operation, a ring
homomorphism preserves the ring operations.

Definition 1.5.1. A mapping ¢ from the ring R into the ring R’ is said to
be a (ring) homomorphism if

(1) pla+b) = pla) + o(b),

(2) ¢lab) = pla)p(b),
for all a,b € K.

If ¢ is a ring homomorphism from R to R', then ¢(0) = ¢ and ¢(—a) =
—(a) for every a € R.

A ring homomorphism ¢ : B — R’ is called an epimorphism if ¢ is
onto. It is called a monomorphism if it is one to one, and an somorphism



20 Bijan Davvaz and Violeta Leoreanu-Fotea

if it is both one to one and onto. A homomorphism ¢ of a ring R into itself
is called an endomorphism. An endomorphism is called an automoerphism if
it is an isomorphism. The rings R and R’ are said to be isomorphic if there
exists an isomorphism between them, in this case, we write R & R’

Before going on we examine these concepts for certain examples.

Example 1.5.2.

(1) For any positive integer n, the mapping & — & mod n is a ring homo-
morphism from Z onto Z,.

(2) Let I be an ideal of a ring R. We define ¢ : R — R/I by p(a) = a+7
for all a € R. Then ¢ is an epimorphism. This map is called a natural
homomorphism.

(3) Let Z(+/2) be the set of real numbers of the form m + nv2 where
m,n are integers; Z(+/2) forms a ring under the usual addition and
multiplication of real numbers. We define ¢ : 2{v/2) — z{+/2) by
p(m +n+v2) = m —ny/2. Then ¢ is an automorphism.

Preliminary results 1.5.3. Let ¢ be a homomorphism from the ring R to
the ring R'. Let S be a subring of R, I an ideal of R and J an ideal of R'.

(1) @¢(S) = {w(a) | a € 5} is a subring of R

(2) If p is onto, then @(I) is an ideal of R’

(3) o H{J)={r € R|y(r) € J} is an ideal of R.
(4) If R is commutative then ¢(R) is commutafive.

(5) If R has a unit element 1 and ¢ is onto, then ¢(1) is the unit element
of R

(6) If ¢ is an isomorphism from R to R', then ¢! is an isomorphism from
R to R.

Now, we introduce an important ideal that is intimately related to the
image of a homomorphism.
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Definition 1.5.4. If ¢ is a ring homomorphism of R into R/, then the
kernel of ¢ is defined by {z € R | ¢(z) = 0}.

Corollary 1.5.5. If © is a ring homomorphism from R to R, then kery
is an tdeal of R.

Theorem 1.5.6. A ring homomorphism ¢ from R to R' is one to one if
and only if kerp = {0}.

We are in a position to establish an important connection between ho-
momorphisms and quotient rings. Many authors prefer to call the next
theorem the Fundamental theorem of ring isomorphism.

Theorem 1.5.7. (First isomorphism theorem). Let ¢ : R — R’ be a
homomorphism from R to R'. Then R/kerp = ¢(R); in fact, the mapping
1. Rikerg — o(R) defined by ¥(a+kery) = ¢(a) defines an isomorphism
from R/keryp onto ¢(R). Moreover there is a one to one correspondence
between the set of ideals of R and the set of ideals of R which contain keryp.
This correspondence can be achieved by associating with an ideal J in R/,
the ideal I in R defined by I = {z € R| p(z) € J}. With I so defined, R/T
is isomorphic to R'/J.

We go on to the next isomorphism theorem.

Theorem 1.5.8. (Second isomorphism theorem). Let I and J be two ideals
of a ring R. Then (I+ J)/I = J/(INJ).

Finally, we come to the last of the isomorphism theorem that we wish
to state.

Theorem 1.5.9. (Third isomorphism theorem). Let J and J be two ideals
of a ring R such that J C I. Then R/I = (R/J)/(1/J).

Example 1.5.10.

(1) Z2/nZ = Z,.
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(2) Let R = {[{_l_b 2] |a,b€R}. We define vp : R — C by

—b a
isomorphic to the field of complex numbers.

() ({ a b ) = a + bi. Then % is an isomorphism and so R is

(3) Let R be the ring of all real valued continuous functions defined on
the closed unit interval. Then I = {f € R| f(1) = 0} is an ideal of
R. One can shows that R/I is isomorphic to the real field.

Lemma 1.5.11. Let R be a ring with unit element 1. The mapping ¢ :
Z — R given by w(n) = nl is a ring homomorphism.

Corollary 1.5.12. If R is a ring with unit element and the characteristic of
Risn >0, then R contains a subring isomorphic to Z,,. If the characteristic
of R is 0, then R contains a subring isomorphic to Z.

Proof. The set S = {nl | n € Z} is a subring of B. Lemma 1.5.11 shows
that the mapping ¢ from Z onto S given by ¢(n) = nl is a homomorphism,
and by the first isomorphism theorem, we have Z/kerp = §. But, clearly
kerp=nZ. So § =2, ifn >0, whereas S=Z/ < 0> Zifn=0 &

Corollary 1.5.13. If F is e field of characteristic p, then F contains a
subfield isomorphic to Z,,. If F is a field of characteristic 0, then F contains
e subfield isomorphic to Q.

Proof. By Corollary 1.5.12, F' contains a subring isomorphic to 2, if F has
characteristic p and F' has a subring S isomorphic to Z if F' has characte-
ristic 0. In the latter case, let K = {ab™! | a,b € S,b # 0}. Then K is

isomorphic to Q. B '

1.6 Maximal ideals and prime ideals

In this section, we define some special ideals of a ring and we give some
important results about them. Firstly, we begin with the definition of ma-
ximal ideal of a ring.
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Definition 1.6.1. A proper ideal M of R is said to be a mazximal ideal of
Rif whenever U isanideal of Rand M CUC RthenU=Mor U =R.

Exarﬁple 1.6.2. Examples of maximal ideals.
(1) In a division ring, < 0 > is a maximal ideal.
(2) In the ring of even intégers, < 4 > is a maximal ideal.

(3) In the ring of integers, an ideal nZ is maximal if and only if n is &
prime number,

(4) The ideal {z* + 1) is maximal in R[z].

(5) Let R be the ring of continuous functions from R to R. The set
M={feR| f(0) =0} is a maximal ideal of R.

Zorn’s lemma is a form of the axiom of choice which is technically very
useful for proving existence theorems. For instance, from Zorn’s lemma it
follows directly that every ring has a maximal ideal.

Theorem 1.6.3. If R is a commutative ring with unit element and M 1s
an ideal of R, then M is a mazimal ideal of R if and only if R/M is a field.

Proof. Suppose that M is a maximal ideal and let a € Rbut a € M. 1t
suffices to show that a + M has a multiplicative inverse. Consider

U={ar+b|reRbe M}

This is an ideal of R that contains M properly. Since M is maximal, we
have 7 = R. Thus 1 € U, so there exist ¢ € R and d € M such that
l=ac+d Thenl+ M =ac+d+M=ac+M={a+ M)(c+ M)

Now, suppose that R/M is a field and U is an ideal of K that contains M
properly. Let a € U but a € M. Then a + M is a nonzero element of R/M
and so there there exists an element b+ M such that (a+M)(b+M) = 1+ M.
Since @ € U, we have ab € U. Also, we have 1 —ab € M C U. So
1 ={1— ab) + ab € U which implies that U = R. ®

The motivation for the definition of a prime ideal comes from the inte-
gers.
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Definition 1.6.4. An ideal P in a ring R is said to be prime if P # R and
for any ideals A, B in R
ABCP = ACPorBCP

The definition of a prime ideal excludes the ideal R for both historical
and technical reasons. The following corollary is a very useful characteriza-
tion of prime ideals.

Corollary 1.8.5. Let R be a commutative ring. An ideal P of R is prime
if P = R and for any a,b € R

ab€E P = a€ FPorbeP

Example 1.6.6. Examples of prime ideals.

(1) A positive integer n is a prime number if and only if the ideal nZ is a
prime ideal in Z.

(2) In the ring Z{z] of all polynomials with integer coefficients, the ideal
generated by 2 and z is a prime ideal.

(3) The prime ideals of Z x Z are {0} x Z, Z x {0}, pZ X Z, Z X gZ, where
p and g are primes.

(4) If R denotes the ring C[z, 3] of polynomials in two variables with com-
plex coeflicients, then the ideal generated by the polynomial
y?—z3—z—1 is a prime ideal. Also the ideals <0 > C<y—2z—1>
C «<z—2,y~ 3> are all prime.

(5) In z[z,y, 2], the ideals < 2 > C < z,y > C < 2,9,z > are all prime,
but none is maximal.

Theorem 1.6.7. If R is a commutative ring with unit element and P is an
tdeal of R, then P is a prime ideal of R if and only if R/P is an integral
domain.

Proof. Suppose that R/P is an integral domain and ab € P. Then
(a+P)b+P) =ab+P =P Soeithera+P =Porb+P = P
that is either a € P or b € P. Hence P is prime.
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Now, suppose that P is prime and (a + P)}(b+ P) =0+ P = P. Then
ab € P and thereforea € Porbe P. Thusoneof a+ P or b+ Pis zero. A

Theorem 1.6.8. Let R be a commutative ring with unit element. Each
maximal ideal of R is a prime ideal.

Proof. Suppose that M is maximal in R but not prime, so there exist
a,b € Rsuch that a ¢ M, b € M but ab € M. Then each of the ideals
M+ < a > and M+ < b > contains M properly. By maximality we obtain
M+ < a>= R = M+ < b >. Therefore RP==(M+ < a >)(M+ < b >)
CMt<a>M+M<b>+<a><b>C MCR Thsisa
contradiction. W

Definition 1.6.8. The radical of an ideal I in a commutative ring K,
denoted by Rad(/) is defined as

Rad(I) = {r € R| r™ € I for some positive integer n}.

Intuitively, one can think that the radical of I is obtained by taking all
the possible roots of elements of 1. Had(!) turns out to be an ideal itself,
containing I. The above definition is equivalent to: The radical of an ideal
I in a commutative ring R is

Rad)= ] P
P e Spec(R)
ICP

where Spec(R) is the set of all prime ideals of R.

Lemma 1.6.10. If J, 11,..., I, are ideals in a commutative ring R, then

(1} Rad(Rad(J)) = Rad(J),

(2) Rad(L,....I,) = Rad (ﬁ Ii) = ﬁ Rad(F;)..

Example 1.6.11. In the ring of integers
(1) Rad(12z) =2z M 3Z = 6Z,
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(2) let n = p™..pF where p;’s are distinct prime numbers. Then we have
Rad(nZ) = {(p1,..., pr)-

The concept of a maximal ideal in a commutative ring leads immediately
to the very important notion of a Jacobson radical of that ring.

Definition 1.6.12. Let R be a commutative ring. We define the Jacobson
radical of I, denoted by Jac(R), as the intersection of all the maximal
ideals of R.

We can provide a characterization for the Jacobson radical of a commu-
tative ring.

Lemma 1.6.13. (Nakayama's lemma). Let R be a commutative ring, and
let v € R. Thenr € Jac(R) #f and only if for every a € R, the element
1 —ra s an invertible element of R.

1.7 Noetherian rings

Noetherian rings are named after Emmy Noether who made many contri-
butions to algebra. Towards the end of this chapter, we shall establish some
basic facts about Noetherian rings.

Definition 1.7.1. Let R be a ring. Then R is said to be a Noetherian ring
when it satisfies the equivalent conditions:

(1) R satisfies the ascending chain condition for ideals, i.e., whenever
hHhShC.CLC C..

is an ascending chain of ideals of R, then there exists £ € N such that
Iy = Iy forall i e N;

(2) every nonempty set of ideals of R has a maximal member with respect
to the inclusion.
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Principal ideal domains are integral domains in which every ideal can
be generated by a single element.

Lemma 1.7.2. Every principal ideal domain is a Noetherian ring.

Example 1.7.3.
(1)} Z is a Noetherian ring.
(2) If F'is a field then Fiz] is a Noetherian ring.

(3) If R is a division ring then the ring M,{R) of all n X n matrices over
R is a Noetherian ring.

Basic results 1.7.4.

(1) Let R be a ring and I be an ideal of R. Then R is a Noetherian ring
if and only if 7 and R/I are Noetherian rings.

(2) A commutative ring R is Noetherian if and only if every ideal of R is
finitely generated.

(3) (Hilbert’s basis theorem). If R is a commutative Noetherian ring with
unit element, then so is R[z].

By the following example, we show that a subring of a Noetherian ring
is not necessary Noetherian.

T

Example 1.7.5. Let 5= Za,-:ci | e;€Q, n€N, agez}. Then S is a sub-
=0

ring of Q{z]. The strictly ascending chain < z >C < z/2 >C<z/4> ..

of ideals of S does not stop.

Definition 1.7.6. Let R be a ring. Then R is said to be an Artinian ring
when it satisfies the equivalent conditions:

(1) R satisfies the descending chain condition for ideals, i.e., whenever
JohkL2D..2h2d 2.

is an descending chain of ideals of R, then there exists & € N such
that J, = Jiy; forall i € N;
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(2} every nonempty set of ideals of R has a minimal member with respect
to the inclusion.

Example 1.7.7. Consider the set Z(p*) of all rational numbers between 0
and 1 of the form m/p®, where p is a fixed prime number, m is an arbitrary
positive integer and n runs through all nonnegative integers. Then Z(p™)
is an abelian group under addition modulo 1. Z(p*™) can be endowed with
a ring structure by defining ab = 0 for all a,b € Z(p™). Then Z(p™) is an
Artinian ring.

The Hilbert’s basis theorem fails to hold for Artinian rings. Also, a
subring of an Artinian ring is not necessary Artinian.

By a chain of prime ideals of a ring R we mean a finite strictly increasing
sequence Fy C P C ... C PB,; the length of the chain is n. We define
dimension of R as the supremum of the lengths of all chains of prime ideals
in R. Theorem 1.7.8 is a well known theorem in commutative ring theory.

Theorem 1.7.8. Let R be a commutative ring with unit element. Then R
s an Artinian ring if and only if it is a Noetherian ring with zero dimension.



Chapter 2

Algebraic hyperstructures

2.1 What algebraic hyberstrut:tur-es are?

Algebraic hyperstructures are a suitable generalization of classical algebraic
structures. In a classical algebraic structure, the composition of two ele-
ments is an element, while in an algebraic hyperstructure, the composition
of two elements is a set. More exactly, if H is a nonempty set and P*(H) is
the set of all nonempty subsets of H, then we consider maps of the following
type:

fi: Hx H— P*(H),

where ¢ € {1,2,...,n} and n is a positive integer. The maps f; are called
(binary) hyperoperations. For all z,y of H, fi(z,y) is called the (binary)
hyperproduct of x and y. An algebraic system (H, fi,..., f) is called a
{binary) hyperstructure. Usually, n =1 or n = 2.

Under certain conditions, imposed to the maps f;, we obtain the so-called
semihypergroups, hypergroups, hyperrings or hyperfields. Sometimes, ex-
ternal hyperoperations are considered, which are maps of the following type:

h:Rx H — P*(H),
where R # H. Usually, R is endowed with a ring or a hyperring structure.

An example of a hyperstructure, endowed both with an internal hyper-
operation and an external hyperoperation is the so-called hypermodule.

29
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A binary structure (H, f) endowed with only one internal hyperoperation
is called a hypergroupoid. Hypergroups play an important role among hy-
pergroupoids. Several kinds of hypergroups have been intensively studied,
such as: regular hypergroups, reversible regular hypergroups, canonical hy-
pergroups, cogroups, cyclic hypergroups, associativity hypergroups. The
situations that occur in hyperstructure theory, particularly in hypergroup
theory, are often extremely diversified and complex with respect to the clas-
sical ones. For instance, there are homomorphisms of various types between
hypergroups and there are several kinds of subhypergroups, such as: closed,
invertible, ultraclosed, conjugable.

One of the first books, dedicated especially to hypergroups, is “Prole-
gomena of Hypergroup Theory”, written by P. Corsini in 1993 [23]. Another
book on “Hyperstructures and Their Representations”, by T. Vougiouklis,
was published one year later [133]. On the other hand, algebraic hyper-
structure theory has a multiplicity of applications to other disciplines: geo-
metry, graphs and hypergraphs, binary relations, lattices, groups, fuzzy sets
and rough sets, automata, cryptography, codes, median algebras, relation
algebras, C-algebras, artificial intelligence, probabilities and so on. A re-
cent book on these topics is “Applications of Hyperstructure Theory”, by
P.Corsini and V. Leoreanu, published by Kluwer Academic Publishers in
2003 {27]. Finally, we mention here another important book for the ap-
plications in Geometry and for the clearness of the exposition, written by
W. Prenowitz and J. Jantosciak [104]. Some particular generalizations of
hyperstructures have been also considered and we mention here three of
them. H.S. Wall [143] introduced hyperoperations, for which for all z, ¥
of H, the hyperproduct f(z,y) contains not necessarily distinct elements
@1, ..., k. In other words, each element a; can occur in f(z,y) with a cer-
tain multiplicity, which means that a; can occur one or two or more times
in f{z,y). Moreover, a set of conditions of regularity are considered to be
satisfied. Such hypergroups, called Wall-hypergroups, have applications in
physics, especially in atomic physics, in harmonic analysis.

‘A second kind of generalization consists in considering n-ary hyper-
operations, instead of binary hyperoperations, where n > 3. In other words,
we consider maps of the following type: '

fHx. xH— P(H)



HYPERRING T'HEORY AND APPLICATIONS 31

This study was introduced by B. Davvaz and T. Vougiouklis [42] and studied
then by them and other mathematicians in different contexts.

In the third generalization, for all z,y of H the image f(z,y) is a fuzzy
set on H, instead of a subset of H. This generalization has been considered
especially by Iranian mathematicians, and we mention here B. Davvaz,
M.M. Zahedi, R. Ameri, R.A. Borzooei, but also by T. Kehagias.

Algebraic hypertructures represent a field of algebra of major attraction
and productive of many significant results in algebra. There are a lot of
topics about hyperstructures, which can be in depth analyzed and there
also are open problems and new connections to other fields that can be
explored more in the future.

2.2 A historical development of algebraic
hyperstructures

The hypergroup notion was introduced in 1934 by a French mathematician
F. Marty [79], at the 8th Congress of Scandinavian Mathematicians. He
published some notes on hypergroups, using them in different contexts:
algebraic functions, rational fractions, non commutative groups.

Around the 40’s, the general aspects of the theory, the connections with
groups and various applications in geometry were studied in France by
F. Marty, M. %‘rasner, M. Kuntzmann, R. Croisot, in U.S.A. by M. Dresher,
0. Ore, W. P énowitz, H.S. Wall, J.E. Eaton, H. Campaigne, L. Griffiths,
in Russia by A. Dietzman, A. Vikhrov, in Italy by G. Zappa, in Japan by
Y. Utumi.

Over the following two decades, other interesting results on hyperstruc-
tures were obtained, for instance, in Italy, A. Orsatti studied semiregular
hypergroups, in Czechoslovakia, K. Drbohlav studied hypergroups of two
sided classes, in Romania, M. Benado studied hyperlattices.

The theory knew an important progress starting with the 70’s, when its
research area enlarged. In France, M. Krasner, M. Koskas and Y. Sureau
investigated the theory of subhypergroups and the relations defined on hy-
perstructures; in Greece, J. Mittas, and his students M. Konstantinidou,
K. Serafimidis, S. Ioulidis and C.N. Yatras studied the canonical hyper-
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groups, the hyperrings, the hyperlattices, Ch. Massouros obtained impor-
tant results about hyperfields and other hyperstructures. G. Massouros, to-
gether with J. Mittas studied applications of hyperstructures to Automata.
D. Stratigopoulos continued some of Krasner ideas, studying in depth non-
commutative hyperrings and hypermodules. T. Vougiouklis, L. Konguetsof
and later S. Spartalis, A. Dramalidis analyzed especially the cyclic hyper-
groups, the P-hyperstructures and the representation of the H,-structures.

Significant contributions to the study of regular hypergroups, complete
hypergroups, of the heart and of the hypergroup homomorphisms in general
or with applications in Combinatorics and Geometry were brought by the
Italian mathematician P. Corsini and his group of research, among whom we
mention M.de Salvo, R. Migliorato, F. de Maria, G. Romeo, P. Bonansinga.

Also around 70’s, some -connections between hyperstructures and or-
dered systems, particularly lattices, were established by T. Nakano and
J.C. Varlet. Around the 80’s and 90's, associativity semyhypergroups were
analyzed in the context of semigroup theory by T. Kepka and then by
J. Jezec, P. Nemec and K. Drbohlav, and in Finland by M. Niemenmaa.

In U.5.A., R. Roth used canonical hypergroups in solving some problems
of character theory of finite groups, while S. Comer studied the connections
among hypergroups, combinatorics and the relation theory. J. Jantosciak
continued the study of join spaces, introduced by W. Prenowitz, he con-
sidered a generalization of them for the noncommutative case and studied
correspondences between homomorphisms and the associated relations.

In America, hyperstructures have been studied both in U.S.A. (at Char-
leston, South Carolina — The Citadel, New York-Brooklyn College, CUNY,
Cleveland, Ohio — John Carroll University) and in Canada (at Université
de Montréal).

A big role in spreading this theory is played by the Congresses on Alge-
braic Hyperstructures and their Applications.

The first three Congresses were organized by P. Corsini in Italy. The
contribution of P. Corsini in the development of Hyperstructure Theory has
been decisive. He has delivered lectures about hyperstructures and their ap-
plications in several countries, several times, for instance in Romania, Thai-
land, Iran, China, Montenegre, making known this theory. After his visits
in these countries, hyperstructures have had a substantial development.
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Coming back to the Congresses on Algebraic Hyperstructures, the first
two were organized in Taormina, Sicily, in 1978 and 1983, with the names:
“Sistemi Binari e loro Applicazioni” and “Ipergruppi, Strutture Multivoche
e Algebrizzazione ‘di Strutture d’Incidenza”. The third Congress, called
“Ipei‘gruppi, altre Strutture Multivoche e loro Applicazioni” was organized
in Udine in 1985. _

The fourth congress, organized by T. Vougiouklis in Xanthi in 1990,
used already the name of Algebraic Congress on Hyperstructures and their
Applications, also known as AHA Congress. After 1990, AHA Congresses
have been organized every three years. Beginning with the 90’s Hyperstruc-
ture Theory represents a constant concern also for the Romanian mathe-
maticians, the decisive moment being the fifth AHA Congress, organized in
1993 at the University “Al.L.Cuza” of Tasi by M. Stefanescu. This domain
of the modern algebra is a topic of a great interest also for the Romanian
researches, who have published a lot of papers on hyperstructures in na-
tional or international journals, have given communications in conferences
and congresses, have written Ph.D. theses in this field.

The sixth AHA Congress was organized in 1996 at the Agriculture Uni-
versity of Prague by T. Kepka and P. Nemec, the seventh was organized in
1999 by R. Migliorato in Taormina, Sicily, then the eighth was organized in
2002 by T. Vougiouklis in Samothraki, Greece. All these congresses were
organized in Europe. Nowadays, one works successfully on Hyperstructures
in the following countries of Europe:

¢ in Greece, at Thessaloniki (Aristotle University), at Alexandropoulis
{Democritus University of Thrace), at Patras (Patras University),
Orestiada (Democritus University of Thrace), at Athens;

e in Jtaly at Udine University, at Messina University, at Rome (Univer-
sita’ “La Sapienza”), at Pescara {D’Annunzio University), at Teramo
{Universita’ di Teramo), Palermo University;

e in Romania, at lasi (“Al.l. Cuza” University),_Cluj (“Babes-Bolyai”
University), Constanta ( “Ovidius” University);

¢ in Czech Republic, at Praha (Charles University, Agriculture Univer-
sity), at Brno (Brno University of Technology, Military Academy of
Brno, Masaryk University), Olomouc {Palacky University);
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e in Montenegro, at Podgorica University.

Let us continue with the following AHA Congresses.

The ninth congress on hyperstructures, organized in 2005 by R. Amerl
in Babolsar, Iran, was the first of this kind in Asia. In the past millenniums,
Iran gave fundamental contributions to Mathematics and in particular, to
Algebra (for instance Khwarizmi, Kashi, Khayyam and recently Zadeh),
many scientists have well understood the importance of hyperstructures, on
the theorefical point of view and for the applications to a wide variety of
scientific sectors.

Nowadays, hyperstructures are cultivated in many universities and re-
search centers in Iran, among which we mention Yazd Unjversity, Shahid
Bahonar University of Kerman, Mazandaran University, Kashan Univer-
sity, Ferdowsi University of Mashhad, Tehran University, Tarbiat Modarres
University, Zahedan (Sistan and Baluchestan University), Semnan Univer-
sity, Islasmic Azad University of Kerman, Shahid Beheshti University of
Tehran, Center for Theoretical Physics and Mathematics of Tehran, Zanjan
{Institute for Advanced Studies in Basic Sciences). Iranian mathematicians
have especially studied hyperstructures in connections with Fuzzy Sets and
Rough Sets.

Another Asian country where hyperstructures have had success is Thai-
land. In Chulalornkorn University of Bangkok, important results have been
obtained by Y. Kemprasit and her students Y. Punkla, S. Chaoprakhoi, N.
Triphop, C. Namnak on the connections among hyperstructures, semigroups
and rings.

There are other Asia centers for researches in hyperstructures. We
mention here India (University of Calcutta, Aditanar College of Arts and
Sciences, Tiruchendur, Tamil Nadu), Korea (Chiungju National University,
Chiungju National University of Education, Gyeongsang National Univer-
sity, Jinju}, Japan (Hitotsubashi University of Tokyo), Sultanate of Oman
(Education College for Teachers), China (Northwest University of Xian,
Yunnan University of Kunming)}.

Hypertructures have been also cultivated in Germany, Netherlands, Bel-
gium, Macedonia, Serbia, Slovakia, Spain, Uzbekistan, Australia. The tenth
AHA Congress was held in in Brno, Czech Republic in the autumn of 2008.
It was organized by Sérka. Hogkovd, at the Military Academy of Brno.
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More than 700 papers and some books have been written till now on
hyperstructures. Many of them are dedicated to the applications of hy-
perstructures in other topics. We shall mention here some of the fields
connected with hyperstructures and only some names of mathematicians
who have worked in each topic:

Geometry (W. Prenowitz, J. Jantosciak, and later G. Tallini),
Codes (G. Tallini),

Cryptography and Probability (L. Berardi, F. Eugeni, S. Innamorati,
A. Maturo), _

Automata (G. Massouros,-J. Chvalina, L. Chvalinova),
Artificial Intelligence (G. Ligozat),

Median Algebras, Relation Algebras, C-algebras (S. Comer),
Boolean Algebras (A.R. Ashrafi, M. Konstantinidou),

Categories (M. Scafati, M.M. Zahedi, C. Pelea, R. Bayon, N. Ligeros,
S.N. Hosseini, B. Davvaz, M.R. Khosharadi-Zadeh),

Topology (J. Mittas, M. Konstantinidou, M.M. Zahedi, R. Ameri,
S. Hogkova),

Binary Relations (J. Chvalina, 1.G. Rosenberg, P. Corsini, V. Leo-
reanu, B. Davvaz, S. Spartalis, I. Chajda, S. Hogkova, 1. Cristea, M. De
Salvo, G. Lo Faro},

Graphs and Hypergrdphs (P. Corsini, 1.G, Rosenberg, V. Leoreanu,
M. Gionfriddo, A. Iranmanesh, M.R. Khosharadi-Zadeh),

Lattices and Hyperlattices ( J.C. Varlet, T. Nakano, J. Mittas, A. Ke-
hagias, M. Konstantinidou, K. Serafimidis, V. Leoreanu, 1.G. Rosen-
berg, B. Davvaz, G. Calugareanu, G. Radu, A.R. Ashrafi),
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o Fuzzy Sets and Rough Sets (P. Corsini, M.M. Zahedi, B. Davvaz,
R. Ameri, R.A. Borzooei, V. Leoreanu, 1. Cristea, A. Kehagias, A. Ha-
sankhani, I. Tofan, C. Volf, G.A. Moghani, H. Hedayati),

o Intuitionistic Fuzzy Hyperalgebras (B. Davvaz, R.A. Borzooei,
Y.B. Jun, W.A. Dudek, L. Torkzadeh),

o (Generalized Dynamical Systems (M.R. Molaei} and so on.

Another topic which has aroused the interest of several mathematicians,
is that one of H,-structures, introduced by T. Vougiouklis and studied then
also by B. Davvaz, M.R. Darafsheh, M. Ghadiri, R. Migliorato, S. Spar-
talis, A. Dramalidis, A. Iranmanesh, M.N. Iradmusa, A. Madanshekaf. H,-
structures are a special kind of hyperstructures, for which the weak asso-
ciativity holds.

Recently, n-ary hyperstructures, introduced by B. Davvaz and T. Vou-
giouklis, represent an intensively studied field of research.

Therefore, there are good reasons to hope that Hyperstructure Theory
will be one of the more successful fields of research in algebra.

2.3 The hypergroup of Marty

Now, it is time to present the hypergroup notion, introduced by Marty [79].

Definition 2.3.1. Let H be a nonempty set and o : H x H — P*(H) be
a hyperoperation. The couple (H, o) is called a hypergroupoid.

For any two nonempty subsets A and B of H and x € H, we define

AoB = U aob, Acz=Ac{z} and zoB={z}oB.
acAbeB

Definition 2.3.2. A hypergroupoid {H, o) is called a semihypergroup if for
all a,b,c of H we have (aob)oc=ao(boc), which means that

U woc= U ao.

uEaoch vEboe
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Definition 2.3.3. A hypergroupoid {H, o) is called a quasthypergroup if for
alaof H wehaveao H=Hoa=H.

The above condition is also called the reproduction ariom.

Definition 2.3.4. A hypergroupoid (H, o) which is both a semihypergroup
and a quasthypergroup is called a hypergroup.

Now, we look at some examples of hypergroups.

Example 2.3.5.

(1) If H is a nonempty set émd for all z,y of H, we define zoy = H, then
(H,o) is a hypergroup, called the total hypergroup.

(2) Let (S,-) be a Semigroup and let P be a nonempty subset of S. For
all z,y of S, we define z oy = Py. Then (5,0} is a semihypergroup.
If (S, ) is a group, then (S, o) is a hypergroup, called a P-hypergroup.

(3) If G is a group and for all z,y of G, < z,y > denotes the subgroup
generated by z and y, then we define zoy =< 2,y >. We obtain that’
(G, o) 1s a hypergroup.

(4) If (G, ) is a group, H is a normal subgroup.of G and for all z,y of G,
we define z oy = zyH, then ((, o) is a hypergroup.

(5) Let (G,-) be a group and let H be a non-normal subgroup of it. If we
denote G/H = {zH | z € G}, then (G/H, o) is a hypergroup, where
for all zH,yH of G/H, we have zH o yH = {zH | z € zHy}.

(6) If (G, +) is an abelian group, p is an equivalence relation in &z, which
has classes T = {z, —z}, then for all Z,7 of G/p, we define To§ =
{z ¥y, z—y}. We obtain that (G/p, o) is a hypergroup.

(7) Let D be an integral domain and let F be its field of fractions. If we
denote by U the group of the invertible elements of D, then we define
the following hyperoperation on F/U: for all Z,§ of F/U, we have
ZToy = {Z | Iu,v) € U? such that z = ur + vy}. We obtain that
(F/U,0) is a hypergroup.
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(8) [113] Let R be a binary relation on a nonempty set H. An element
z of H is called an outer element of R if there exists h € H such
that (h,2) € R? and an inner element of R otherwise. We define the
following hyperoperation on H: for all z,y of H, we have z oy =
{z € H| (z,2) € Ror (y,2) € R}. The hypergroupoid (H,o) is a
hypergroup if and only if the following conditions hold: R has full
domain and full range, R C R? and (a,z) € R? implies (a,z) € R,
whenever z is an outer element of R.

(9) [23] Let T = (H, {A;}ier) be a hypergraph, i.e., 4; € P*(H) for all
i€ land| A = H. Set E(z) = | | A:. We define the following

: ief TEA;
hyperoperation on H: For all z,y of H, we have zoy = E{z)U E(y).

'The hypergroupoid (H, o) is a hypergroup if and only if for all z, y of
H,wehave rozor\zozx Cyoyoy.

(10) Let (L, A, V) be a lattice with a minimum element 0. If for all @ € L,
F(a) denotes the principal filter generated from a, then we obtain a
hypergroup (L, o), where for all a,b of L, we have ao b= F(a A b).

(11} [17] Let (L, A, V) be a modular lattice. If for all z,y of L, we define
roy={2€L|zVe=aVy=yVz}, then (L, o) is a hypergroup.

(12) [130] Let (L, A,V) be a distributive lattice. If for all z,y of L, we
define zoy = {2z € L | Ay < z < zVy}, then (L, o) is a hypergroup.

(13) [24] Let H be a nonempty set and p: H — [0,1] be a function. If
for all z,y of H we define zoy = {z € L | u(z) A p(y) < u(z) <
w{z) v u(y)}, then (H, o) is a hypergroup.

{14) [25] Let H be a nonempty set and R be an equivalence relation in
H, such that for all z of H, the equivalence class R(z) of z has at
least three elements. For any subset A of H, R(A) denotes the set

U R(z), while R(A) denotes the set U R(z). The couple
R{x)NA#D R(z)}CA
(R(A),R{A)) is called a rough set. If for all z,y of H, we define
roy= R({z,y)\R({z,y}), then {H,0) is a hypergroup.
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(15) [24] Let H be a nonempty set and p, A be two functions from H to
[0,1]. For all z,y of H we define zoy = {u € H | u(x) AXz) A ply) A
Aly) £ ulu) AA(u) and p(u) v Mu) < p(@) VA(Z) V u(y) v A(y)} The
hyperstructure (H, o) is a commutative hypergroup.

(16) Define the following. hyperoperation on the real set R: for all z € R,
rzoz = z and for all different real elements z,y, = o ¥ is the open
interval between z and y. Ther (R, o) is a hypergroup.

Some of the above examples are join spaces, which constitute an impor-
tant class of hypergroups.  Join spaces have been introduced by
W. Prenowitz [103] and used by him and J. Jantosciak [104] to rebuild

several branches of geometry.

Remark 2.3.6. A hypergroup for which the hyperproduct of any two
elements has exactly one element is a group. Indeed, let (H,0) be a hyper-
group, such that for all z,y of H, we have |z oy| = 1. Then (H,0) is a
semigroup, such that for all a,b in H, there exist x and y for which we have
a=bozand a =yob. It follows that (H,o) is a group.

And now, some words about subhypergroups.

Definition 2.3.7. A nonempty subset K of a semihypergroup (H,-) is
called a subsemihypergroup if it is a semihypergroup.

In other words, a nonempty subset K of a semihypergroup (H,o0) is a
subsemihypergroup if K o K C K.

Definition 2.3.8. A nonempty subset K of a hypergroup (H,o) is called
a subhypergroup if it is a hypergroup.

Hence, a nonempty subset K of a hypergroup (H, o) is a subhypergroup
ifforallaof K wehaveac K =Koa=K.

There are several kinds of subhypergroups. In what follows, we in-
troduce closed, invertible, ultraclosed and conjugable subhypergroups and
some connections among them.

Among the mathematicians who studied this topic, we mention F. Marty,
M. Dresher, O. Ore, M. Krasner who analyzed closed and invertible subhy-
pergroups. M. Koskas considered another type of subhypergroups, which
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are complete parts and that we present in Paragraph 2.5. Later Y. Sureau
has studied ultraclosed, invertible and conjugable subhypergroups. Corsini
has obtained important results about ultraclosed and complete parts. Also,
Leoreanu has studied and obtained other interesting results on subhyper-
groups.

Let us present now the definition of these types of subhypergroups. Let
(H, 0) be a hypergroup and (K, o) be a subhypergroup of it.

Definition 2.3.9. We say that K is: |

o closed on the left (on the right) if for all ky, k; of K and z of H, from
ki € zoky (ki € kg o, respectively), it follows that 'F K;

e invertible on the left (on the right) if for all z,y of H, ffrom reEKoy
(z € yo K), it follows that y € K oz (y € z o K, respectively);

o ultraclosed on the left (on the right) if for all z of H, we have
KozN(H\K)oz =0 (xoKNzo(H\K)=0);

¢ conjugable on the right if it is closed on the right and for all z € H,
there exists ' € H such that ' oz C K.

We say that K is closed (invertible, ultraclosed, conjugable) if it is closed
(invertible, ultraclosed, conjugable respectively) on the left and on the right.

Example 2.3.10.

(1) Let (A,0) be a hypergroup, H = AUT, where 7' is a set with at least
three elements and ANT" = @. We define the hyperoperation ® on H,
as follows: '

if (z,y)€ A%, thenz®y==zoy;

if(z,t) EAx T, thenzQt=1Qr =1t

if (tl,tg) ET xT, thent) Rty =t @1t = (A U (T\ {fl,tg}).
Then (H,®) is a hypergroup and (4, ®) is an ultraclosed, non-conju-
gable subhypergroup of H.

(2) Let (A, o) be a total hypergroup, with at least two elements and let
T ={t;}icn such that ANT =0 and ¢t; # t; for i # j. We define the
hyperoperation ® on H = AUT as follows:
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if (z,y) € A%, then z ® y = A;

if{z,t) EAXT,thenz@t=t®z=(A\{z}hUT;

if (ti,tj) €T x T, then t@ ® tj = t:‘, ®t; = AU {t,;+j}.
Then (H, ®) is a hypergroup and (A, ®) is a non-closed subhypergroup
of H.

(3) Let us consider the group (Z,+) and the subgroups S; = 2Z, where
i € N. For any = € z\ {0}, there exists a unique integer n(z}, such
that = € Sp(z) \ Sn(z)+1. Define the following commutative hyperoper-
ation on Z \ {0}:

if n(x) < n(y), then zoy =2 + Spyy

if n(z) = n{y), then z oy = Spm) \ {0}

if n(z) > nly), then zoy =y + Sp(y)-
Notice that if n(z) < n(y), then n{z + y) = n(z). Then (Z\ {0},0) is
a hypergroup and for all i € N, (S;\ {0},0) is an invertible subhyper-
group of Z \ {0}.

Other examples can be found in [23].

Lemma 2.3.11. A subhypergroup K is invertible on the right if and only
if {z o K}reg 15 a partition of H.

Proof. If K is invertible on the right and z € ro KNyo K, then z,y € 20K,
whence zo K C zoK and yo K C z0 K. It follows that zo K = zo0 K = yo K.
Conversely, if {zo K },cp is a partition of H and z € yoK, then zoK C yoK,
whence z 0o K = yo K and so we have z € y o K = z o K. Hence, for all =
of H we have £ € z o K. From here, we obtain that y e yo K =zo K. &

The following theorems present some connections among the above types
of subhypergroups.

If A and B are subsets of H such that we have H = AUB and ANB = {),
then we denote H = A& B. :

Theorem 2.3.12. If a subypergroup K of a hypergroup (H,¢) is ultraclosed,
then it is invertible.

Proof. First we check that K is closed. For ze K, we have KNzo(H\ K)=0
and from H = zo KUzo(H\K), we obtain zo(H\ K) = H\ K, which means
that K o (H\ K) = H\ K. Similarly, we obtain (H\ K)o K = H\ K,
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hence K is closed. Now,we show that {z o K },cq is a partition of H.
Let ye zoKNzo K. It follows that yc K C zo K and yo (H\ K) C
zoKo(H\K) = zo(H\K). From H = zoK®zc(H\K) = yoK®yo(H\K),
we obtain zo K = yo K. Similarly, we have zo K = yo K. Hence {zoK}cn
is & partition of H, and according to the above lemma, it follows that K is
invertible on the right. Similarly, we can show that K is invertible on the
left. m

Theorem 2.3.13. If a subhypergroup K of a hypergroup (H,o) is inver-
tible, then it 1s closed.

Proof. Let k1,ks € K. Ifk; € 20ky CzoK, thenz e ko K C K.
Similarly, from k; € kyoxz, weobtainz € K. &

We denote the set {e € H | dz € H, such that z € zoeUeoz} by I,
and we call it the set of partial identities of H.

Theorem 2.3.14. A suhypergroup K of a hypergroup (H, o) is ultraclosed
of and only if K is closed end I, C K.

Proof. Suppose that K is closed and I, € K. First, we show that K is
invertible on the left. Suppose there are z; v of H such that z € K oy and
y& Kox. Hencey € (H\ K)oz, whencez € Ko (H\ K)oz = (H\ K)oz,
since K is closed. We obtain that I, (H\ K} # 0, which is a contradiction.
Hence K is invertible on the left. Now, we check that K is ultraclosed on
the left. Suppose there are ¢ and z in H such thata € KozN(H\ K)ouz.
It follows that x € K o q, since K is invertible on the left. We obtain
a€ (H\K)oz S (H\K)oKoa=(H\K)oa,since K is closed. This
means that I, N (A \ K) $ 0, which is a contradiction. Therefore K is
ultraclosed on the left and similarly it is closed on the right.

Conversely, suppose that K is ultraclosed. According to Theorems 2.3.12
and 2.3.13, K is closed. Now, suppose that I, N (H \ K) # {#, which means
that there is e € H \ K and there is z € H, such that x € eoz, for instance.
We obtain z € (H\ K)oz, whence Koz C (H\ K) oz, which contradicts
that K is ultraclosed. Hence [, C K.

Theorem 2.3.15. If a subypergroup K of a hypergroup (H, o) is conjugable,
then it is ultraclosed. '

Proof. Let z € H. Denote B=zoc K Nzo(H\ K). Since K is conjugable
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it follows that K is closed and there exists £’ € H, such that 2’ oz C K.
We obtain
zoB =ro{zoKNzo(H\K))
: CKnz'ozxo(H\K)
CKNKo(H\K)
CKN{H\K)=0.

Hence B = (0, which means that K is ultraclosed on the right. Similarly,
we check that K is ultraclosed on the left. B

Finally, we give some ideas about hypergroup homomorphisms. Seve-
ral types of homomorphisms have been considered since the first papers on
" hypergroups (for instance, by M. Dresher, O. Ore, M. Krasner, J. Kuntz-
mann) and later by M. Koskas. However, the first explicit construction of
hypergroup homomorphisms was given by P. Corsini [19]. A unified theory
of various types of homomorphisms was given by J. Jantosciak [60]. Some
other types of homomorphisms and connections among them were studied
by V. Leoreanu [73]. There are more than 10 types of hypergroup homomor-
phisms. A detailed presentation of all these homomorphisms, connections
between them and various examples can be found in {23].

We present here some more important types of homomorphisms.

Definition 2.3.16. Let {H;,0) and (Haz, *) be two hypergroupoids. A map
f: Hy — Hj, is called '

o a homomorphism if for all z,y of H, we have f{zoy) C f(z)o f(y);
¢ a good homomorphism if for all z, y of H, we have f(zoy) = f(x)xf(y);

s a very good homomorphism if it is good and for all z,y of H, we have

flz/y) = f(z)/fly) and flz\y) = f(z)\f{y), where z/y={z € H |
zezoytandz\y={u € H |y € zou};

e an isomorphism if it is a homomorphism, and its inverse f~! is a
homomorphism, too.

Let us explain why the above definition is used for a hypergroup homo-
morphism. Define the following ternary relation on a hypergroupoid (H,o):

(x,y.2) R if z€exoy.
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Hence, we can associate a model (H, R) with any hypergroupoid (H,o).
According to the model theory, a homomorphism between two such models
(H1, R1) and (Hy, Ry), is a map f : H; — H,, such that if (z,y,2) € Ry,
then (f(z), f(y), f(z)) € Ry. In other words, f is a model homomorphism
if 2 € z oy implies f(z) € f(z) o f(y), which means that f is a model
- homomorphism if f(zoy) € f(x)* f(y) for all z,y of H.
Example 2.3.17. [19] First, we consider the following hyperoperation
defined on an abelian totally ordered group (G,-, <) as follows: z oy =
{Z +y,|z — ¥|}. We denote this hypergroup by H(G) and we call it the
sd-hypergroup. L
(1) The map - !
0 if nis‘even
f:H{(Z) — H(Z), defined by f(n) = { 1 ifn is-_odﬁ%
“is a homomorphism, but it is not a good homomarphism.

(2) Consider the group Z X Z ordered lexicographically. The map
f:H(Z x2Z) — H(Z x Z), defined by f(m,n) = |(2m — n,m — 2n)|
is a very good homomorphism.

Theorem 2.3.18. A bijective homomorphism of semihypergroups is an
isomorphism if and only if it is good.

Proof. 1f f : Hi — Hy is an isomorphism of semihypergroups, then for all
z,y of Hy, we have

FU =)+ f() = f=)* f(y)
= fH @) o W)
= f(zoy).

Conversely, suppose that f is good. For all 2’=f(z), y'=f(y) of H,, we have
[ *y) = U fz)* fy)
= fHf(zoy))

=fHz)ofy) m
Definition 2.3.19. Let (H;,0) and {H,, *) be two hypergroupoids. A map
f: Hy — Hj is called
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o a 2-homomorphism if for all z,y of H, we have

FHf@) > f)) = T {f(moy));

e an almost strong homomorphism if for all x,y of H, we have
F7H (@) f(w)) = F7H(f (@) o £ (F ()

Theorem 2.3.20, If f . Hy — H, is a very good homomorphism, then f
is both a 2-homomorphism and an almost strong homomorphism.

Proof. Since f is a homomorphism, for all z,y of Hy, we have f~1(f(z)) o
YY) € FH(f(z) * f(y). Indeed, for all a,b of Hi, such that f(a) =

f(z) and f(b) = f(y), we have f(aob) C f(a) * f(b) = f(x) = f(y). Hence
aob C fY(f(a)xf (b)), foralle € f~}(f(z)) and b € f~(f(y)), which means

thatf~!(f(z))o S (f(v))  F71(f(z)* f(y)). Now, let z € f~(f(z)*f(y)).
We have f(z) € f(x)* f(y), whence f(y) € f(z)\f(2) = f(z\z). It follows
that there exists ¥’ € z\z, such that f(y) = f(i/). Weobtain z €z oy C

FH(#H=) o f7H(F(y)), and so f7H(f(z) * fly) C FH(f(@)) o fH(f(y) ™
Definition 2.3.21. Let (H;,0) and (Ha, %) be two semihypergroups. A

homomorphism f : Hy — H; is called strong on the left if for all 2,y of H,
the following implication holds:

f(z) € f(z) = f(y) = 3z’ € H such that f(z) = f(z'), z€ 5 oy.
Similarly, we define a strong on the right homomorphism. A strong homo-
morphism is a strong on the left and right homomorphism.

Theorem 2.3.22. Any strong homomorphism is almost strong.

Proof. Let f be a strong homomorphism. Let z € f~*(f(z) * f(y)), which
means that f(z) € f(z) % f(y). Hence there exists ' € H such that

f(z) = f(a'), z € 2’0y, whence 2 € f}(f(z)) oy C f71(f(=)) e f7H(F(¥)).

Therefore, f is an almost strong homomorphism. W

2.4 Join spaces, canonical hypergroups
and polygroups

There are many classes of hypergroups, which have aroused a major interest.
We mention here some of them: regular hypergroups, regular reversible hy-
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pergroups, cancnical hypergroups, join spaces, polygroups, complete hyper-
groups, cambiste hypergroups, cogroups, associativity hypergroups, cyclic
hypergroups, P-hypergroups, 1-hypergroups and others. In this section, we
shall shortly present three classes of hypergroups: join spaces, canonical
hypergroups, and polygroups.

Join spaces were introduced by W. Prenowitz and then applied by him
and J. Jantosciak both in Euclidian and in non Euclidian geometry. Us-
ing this notion, several branches of non Euclidian geometry were rebuilt:
descriptive geometry, projective geometry and spherical geometry. Then,
several important examples of join spaces have been constructed in connec-
tion with binary relations, graphs, lattices, fuzzy sets, rough sets.

In order to define a join .space, we need the following notation: If a,b
are elements of a hypergroupoid (H,o), then we denote a/b = {z € H |
a € xob}. Moreover, by A/B we intend the set U afb.

acAbeB

Definition 2.4.1. A commutative hypergroup (H,o) is called a join space

if the following condition holds for all elements a, b, ¢, d of H:
a/bNe/d# 0 = aodnNboc#0.

Definition 2.4.2. A join space (H, o) is called geometric if there exists

z € H such that zoz = {z} = z/z.

Some important examples of join spaces were presented in the above
paragraph (see Examples 2.3.5. {11), (12}, (13), (14), (16)). We give here
some-other examples (see [23]).

Example 2.4.3.
(1) Let (L, A, V) be a distributive lattice. If for all a,b of L we define

aob={zel|z=(anb)V(anz)V(bAg)},

then (L, o) is a non geometrical join space in which every element is
an identity. The above hyperoperation can be considered in a more
general context, that one of a median semi-lattice. A median semi-
lattice is a meet serni-lattice (S, A}, such that the following conditions
hold:
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- o Every principél ideal is a distributive lattice;
o Any three elements of S have an upper bound whenever each
pair of them has an upper bound.

(2) Let V be a vector space over an ordered field F. If for all a,b of V we
define

aob={da+pb|A>0,pu>0 A+p=1}

then (Vo) is a join space, called an affine join space over F.

(3) Let G = (V,E) be a connected simple graph. We say that a subset A
of V is eonvex if for all different elements a,b of A, we have that A
contains all points on all geodetics from a to b. Denote by (a,;b) the
least convex set containing {a,b}. A convex set P is called prime if
V\ P is convex. Finally, G is called a strong prime conver intersection
graph if:

e For any convex set A and any point z, which does not belong to
A, there exists a prime convex set P, such that AC P,z € V\ P;

e For any {(a,b), {¢,d) such that (a,b) N {c,d) = @, there exists a
convex prime set P such that (a,b) C P and (¢,d}) C V \ P.
If G satisfies the above two conditions and for all different elements
a,b of V we define e o b = (a,b) and a 0 a = q, then (V,0) is a join
space.

(4) Denote by )a, b( an open real interval. We define the following hyper-
operation on the Cartesian plane R?: for all different elements

(z1,22), (41, y2) of R, we have (z1,22)0(y1, y2)={(21, 22) | 21€)T1, Ta(
and zz €)xa,y2(} and for all element (zy,z2) of R, we have
(z3,29) © {21,22) = {@1,22). Then (R?, o) is a geometric join space,

not provided with identity elements.

(5) Let G = (V, E) be a connected simple graph. We define the following
hyperoperation on V: for all different elements z,y of V', we have
zox = z and zoy is the set of all points z € V, which belong to some
paths v : z —y. Then {V,0) is a non-geometric join space in which
every element is an identity.
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If N is a closed subhypergroup of a join space H and {z,y} C H, then
we define the following binary relation: zJyyifzo NNyo N # 0.

Theorem 2.4.4. Jy is an equivalence relation on H and the equivalence
class of an element a is Jy(a) = (ao N)/N. In particular, Jy(a) = N for
alla € N.

Proof. Clearly, Jy is reflexive and symmetric. Now, suppose that a o N N
boN#Pand bo NNcoN # (. It follows that b € {ao N)/N N {co N)/N
and since (H,o) is a join space, we obtain @ o N Nco N # B, which means
that aJyc. Hence, Ju is also transitive, and so it is an equivalence relation
on H. We check now that for all a € H we have Jy(a) = (a0 N)/N. If
d € Jn(a), thendo NNao N # (), hence there exist v €Eaoc N and m e N
such that v € d o m, whence it follows that d € v/m C (ao N)/N. We
obtain Jy(a) € {(ao N)/N. Now, let'y € (ao N)/N. Then there exist
v €aoN and m € N, such that 4 € yom, whence yoN(iao N # 0, which
means that y € Jy(a) and so, (a0 N)/N C Jy(a). Clearly, if @ € N, then
Jn(a) = N, since N is closed. B :

Canonical hypergroups are a particular case of join spaces. The struc-
ture of canonical hypergroups was individualized for the first time by M.
Krasner as the additive structure of hyperfields. In 1970, J. Mittas was
the first who studied them independently from the other operations. In
1973, P. Corsini analyzed the sd-hypergroups, which are a particular type
of canonical hypergroups and in 1975 Roth used canonical hypergroups
in the character theory of finite groups. W. Prenowitz and J. Jantosciak
emphasized the role of canonical hypergroups in geometry, while J.R. Mc-
Mullen and J.F. Price underlined the role of a generalization of canonical
hypergroups in harmonic analysis and particle physics. Some connected
hyperstructures with canonical hypergroups were introduced and analyzed
by P. Corsini, P. Bonansinga, K. Serafimidis, M. Kostantinidou, J. Mit-
tas, De Salvo. We mention here some of them: strongly canonical, i.p.s.
hypergroups, quasi-canonical hypergroups (also called polygroups), feebly
(quasi)canonical hypergroups.

Let us see now what a canonical hypergroup is.

Definition 2.4.5. We say that a hypergroup {H, o) is canonical if
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(1) it is commutative,

(2) it has a scalar identity (also called scalar unit), which means that

dee H V€ H zoe=eozx =12,

(3) every element has a unique inverse, which means that for ell z € H,
there exists a unique 7! € H, such that e c zox ' Nzl o,

(4) it is reversible, which means that if € y o z, then there exist the
1

inverses y~! of y and 27! of z, such that z €y loz and y €z o271

Clearly, the identity of a canonical hypergroup is unique. Indeed, if ¢ is

a scalar identity and ¢’ is an identity of a canonical hypergroup (H, o), then
we have e Ee v e = {€'}.

Some interesting examples of a canonical hypergroup is the following
ones (see [23]).

Example 2.4.6.

(1) Let C(n) = {eo,€1,---, Ckfn) }, Where k(n) = n/2 if n is an even natural
number and k{n) = (n — 1}/2 if n is an odd natural number. For all
es,€; of C(n), define g,0e; = {e,, €, },where p = min{s+t,n—(s+1)},
v =|s —t|. Then (C(n),o) is a canonical hypergroup.

(2) Let (8,T) be a projective geometry, i.e., a system involving a set S of
elements called points and a set T of sets of points called lines, which
satisfies the following postulates:

o Any lines contains at least three points;

o Two distinct points a,b are contained in a unique line, that we
shall denote by L(a,b); .

e If a b c,d are distinct points and L{a,b) N L(c,d) # @, then
L{a,cyn L{b,d) # 0.
Let e be an element which does not belong to S and let §' = SU {e}.
We define the following hyperoperation on S":

o For all different points a,¥ of S, we consider a o b=L(a,b)\{a,b};
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¢ If o € 5 and any line contains exactly three points, let a o a={e},
otherwise a 0 a={a,e};

eForallace &, wehaveeoa=aoe=a.
Then (S’,0) is a canonical hypergroup.

In what follows, we present some basic results of canonical hypergroups.

Theorem 2.4.7. If (H,o) is a canonical hypergroup, then the following
implication holds for all x,y,z,t of H:

zoyNzot#D = zoz l1Ntoy™ #0.

Proof. Let u € zoyMNzot. Since H is reversible, we obtain u™! € z71ot™1,
whence uou™! C zoyoz ot If eis an identity of H, we obtain
e€(zoz )o(tey 1)1, Hence there exists an element v€xo2"'Ntoy™ . W

Theorem 2.4.8. A commutative hypergroup is canonical if and only if it
is a join space with a scalar identity.

Proof. Suppose that (H, o) is a canonical hypergroup. For all a,b of H we
have a/b = aob™!. Then the implication = follows by the above theorem.

Conversely, let us check that the inverse of an element is unique. Let
e be the scalar identity. If e € aobNaoc, then a € e/bNe/fe, whence
it follows that eccMNeob # §, hence b = ¢ = a~!. Let us check now the
reversibility of . We have a € bocif and only if b € a/c. From e € bod™!
we obtain b € e/b™!, hence ao b~ Meoc s B, which means that ¢ € ao b1,
Therefore, H is canonical. W

Theorem 2.4.9. If (H,0) is a join space and N is a closed subhypergroup
of H, then the quotient (H/Jy,®) is a canonical hypergroup, where for all
a,bof H/Jy, we have @@ b= {C|c€aob}.

Proof. First, we check that the hyperoperation & is well defined. In other
words, we have to check that if a;Jyas and z € H, then for all z € a, oz,
there exists w € ap o z, such that zJyw. Indeed, from a;Jyas, it fol-
lows there exist m,n of N and v of H, such that v € a;omNazon. If
z € a; oz, then we have a; € z/xNv/m, hence z o N Nvox # @, whence
zoNNNoayox # ). It follows that there exists w € ay o z, such that
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zJnw. Therefore the hyperoperation & is well defined. Since (H, o) is a join
space, it follows that (H/Jy,®) is a join space, too. Moreover, notice that
N is a scalar identity for (H/Jy,®), and according to the above theorem,
we obtain that (H/Jy,®) is a canonical hypergroup. B

Definition 2.4.10. A subhypergroup K of a canonical hypergroup (H,0)
is called a canonical subhypergroup of H, if it is a canonical hypergroup with
* respect to the hyperoperation o of H.

Theorem 2.4.11. Let K be a commutative hypergroup, such that the fol-
lowing conditions hold for ell z,y,z of K:

(1) (z/y) oz =(zo2)/y,
(2) z€(y/y)ox,
(3) z/(y/2) C{zoz)/y.

Then there exists a canonical hypergroup H such that K is o noncanonical
subhypergroup of H.

Proof. Let K’ be a set, such that K N K’ = § and there exists a bijective
map f : K — K'. For all z of K, we denote f(z)=a'. If T C K, then we
shall write 7" instead of f(T'). For all z,y of K, we define ' ®y' = f(zoy).
Then (K',®) and (K o) are isomorphic hypergroups. Let e be an element,
such that e @ KUK'. We define a canonical hypergroup structure on the set
H = KU K'U {e}, such that K and K’ are noncanonical subhypergroups
of H. For all 2,y of H, we denote the hyperproduct of £ and y in H
by (z o y)g. Similarly, for all z,y in K and all 2,3 in K', we denote
(z o y)x and (2’ o y')x Tespectively. Moreover, for all z,y in H (in K,
in K’) we denote theset { € H (z € K, z € K') | z € zoy} by (z/y)n
((z/y)k, (x/y)x respectively). For all different elements z,y of K, we
consider (zoy )y = (Y ox)y = (z/y)xkU(Y /2 ) s and (zox')g = (z'oz)n =
(z/x)g U{x' /2" )k U{e}. Wehave (zoy)p = (zoy)k, (2’ oy )p=2"@Y"
It follows that e is a scalar identity in H and for all z of K, 2’ is the inverse
of z. In what follows, we consider the steps:

(1) For all z,y of K we have (z/y' )k = (z/¢)n.
Indeed, {(z/y)p = {h € H|z € hoy}t={ke K|z €koy}U
{K' € K' |z € K oy} and we use then that KN K" = 0.
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(2) For all z,y of K we have z oy = {2/y')k.
Indeed, (z/y )k ={k € K|z €koy}={keK|xek/yt=xo0y.
From (1), (2) and according to the definition, we obtain

(3) For all z,y of K we have (zoy)y = (z/¥)n.

Now, let us check that (H, o) is a quasihypergroup. Let z and y be elements
of H. If x and y are both in K or both in K’, then there exists z € H,
such that z € y o 2, since K and K’ are hypergroups. Suppose now that
x is arbitrary of K and g’ is arbitrary in K’. Let ¢/ € 3y o 2’. Then
y € (V/x Vg C v oz, whence K/ C H ox. Moreover, if w € z oy, then
rew/yCwoy andso, z € Hoy.

In order to check that (H,o) is a canonical hypergroup, we still have to
verify: the associativity of ¢ and the fact that H is reversible.

Let (z,y,2) € K x K' x K.
(a) Suppose = # .

(i) Let 2’ € ¥/ 0 2’. We have zo (y 02') = U EARE U z/h).
h ey oz’ heyo:z
Denote by B the right side of the above equality. On the other hand,

(zoy) oz = (/2 )k o 2') U ((z/y)k o 2'). But ((y//2')gr 0 2) =
(/) 0 ) = ((¥ o #')/2" ). Moreover, {(z/y)x o 2')p =
(z/v)k/z)x D {'/(x/y)y ). For all z,y of K we have z € hoy

- if and onmly if ' € A' o 3 and then (x/y)}. = (z'/y')k. Notice that if
H is a hypergroup with identity, such that each element has a unique
inverse, then is reversible on the right if and only if for all z,y of H,
we have z oy = z/y. On the other hand for all z,y, z of a commu-
tative hypergroup H, we have (z/y)/z = z/(y o z). Hence, we obtain
(z/y)o2 )y = (x/(yo2))k U(2'/(2'/y' )k ) k. According to condition
(3) of the statement, the Jast term is contained in ((#' o 3/')/2} k.

(ii) f 2’ € ¥’ 02 then z o (y 0 2') = B U {e}. We have the equivalences
eyor = reyor & zcz/yandsoec (zoy)oz
b) Now, suppose that z = y.
P

(i) Ha' Q:coz,thenwehave (xo:r) = ( / ) )H (' /2" g o2
U(eoz’). Moreover, zo(z'oz') U U (z/h)K), but

h€xoz
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(i)

(z' /2w 0 2 )y = ({2’ [z g 0 2" )k = ((&' 0 2")/2") k. On the other
hand,

(z/2)k 0 Vg = ((z/x)x/2)i U (Z'/(@' /2 )i )i
= (z/(xoz))x U {Z/('/2) k),

According to condition (3) of the statement, we have (2'/(z'/2")x' ) C
((z' o 2')/x") k1, s0 We have to show only that 2’ € zo(z'02'). By con-
ditions (1) and (2) of the statement, we have z' € ((2/2")g 0 2" ) =
(£ 02) /2 ) S zo(r' o).

If 2’ € ' 02, then we have e € x o (2’ 0 2'}. Since z € z o z, it follows
that z € z/z and so e € (zoz') o 2.

Now, we consider (z,y',2) € K x K' x K.
(c) Suppose x # y # z.

{)

(ii)

If #'¢fy oz, then we obtain zo(y'oz)=((y'/ 2" )xox)gU((2/y)kox) k and
{(xoy'Yor=((¢/ /2 ) koz)y U ((z/y)xoz)y and according to condition
(1), we have ((2/y)xow)x=((z02)/y)k=((z/y)xoz)k=((x/Y)KOZ) .
Moreover, (4 /2/)sr/ 2)n=((y'{2')10/ Y U (2/ (4 /&' ). Sinee in
any commutative hypergroup for all z,y, z we have (z/y)/z=z/(yoz),
it, follows that {({(//2 )k /2" )k = (¥ /(z' 0 2'))k. So we obtain
((y'/2")k 0 2y = (y'/ (2" © "))k U {{2/(y/7)k) k. By condition (3)
of the statement, it follows that ((z/(y/z)x)x C ((z 0 z)/y)k. On
the other hand, (('/2')r o z)n = (/)i /7' ) U ((2/(y/ )k )k,
and by condition (3), we obtain ((z/(y/z)x)x € ((z o z)/y)x and

(/2N /2w = ( (&' 0 )}k = (¥ [ 2 ) /2 ) -

Suppose now that ' € ¢ o z. Then we have ¢ € z o (y o 2), but we
also have z € ' /y/, whence 2’ € z/y and so we obtain e € (zoy') oz

(d} If & = y # z, then we distinguish the following cases:

(i)

Suppose that 2’ & z’' o z. Then we have

ro(z'oz) = (zo(x/2\k)pU(zo(z/2)k)m,
(roz)or = ((&/a)x02)m U((@/a )k o2 U{2).
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According to condition (1}, we have

(xo (z/z)i)m = (zo (z/1)k )k = ((2/x)K 0 2)k = ((z/2)K © 2)m.
Moreover

(@o (/2 )k = (&) )k [2")ie U ((2/ (/2 )i )k

= (&) )i /5 )k U ((3/(2/ 2}k ) k-
On the other hand,
(@) o2 = (/2O (3 /)i
= (/') /2 )k U (2/(z/2) K )R-

We also have ((2'/2")x /2 )k = (@' /(2" 0 @V = (& /2 kr /2 Vs
Notice that both of the terms (x o 2') oz and zo (z' o z) are contained
in ((z o z)/z) which is a common term both in ((z/(z/z)x)x and
((z/{z/x)k}K). We still have to show that z € z o (z' ¢ 2), but we
obtain this in a similar way, as in the cases (b) and (c).

(ii) Suppose now that z' € 2’ 0 2. Then e € z o (2/ 0 z). We also have
z € z'/z', whence 2’ € z/z. It follows that ¢ € (z 0 z") 0 2.

(e) Finally, if # = z, then we obtain (zoy')oxz = (Y ox)ox =20 (¥ 0 2).
To show that H is reversible, it is sufficient to consider the following
cases:

(i) If (2,k,y) € K3 thenz € koy impliesy € z/k Cz ok’

(i) If {(z,k',y) € K x K'x K, thenz € K’ oy implies y € z/k' =z 0k
and z € K oy implies £’ € z/y Czoy. W

Example 2.4.12.
(1) We can consider the following hypergroup (K, o):
K={zylandzozr =y, whiltroy=yoz=yoy={z,y}.

The conditions (1}, (2) and (3) of the above theorem are satisfied,
so we can construct a canonical hypergroup H, such that K is a
noncanonical subhypergroup of it.
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(2) If K is a nonempty set and for all z,y of K we define z oy = {z,y},

- then the conditions (1), (2) and (3) of the above theorem are satis-

fied, and so there exists a canonical hypergroup H, such that K is a
noncanonical subhypergroup of it.

Quasicanonical hypergroups were introduced by P. Corsini and later,
they were studied by P. Bonansinga and C. Massouros. They satisfy all the
conditions of canonical hypergroups, except the commutativity. Later, S.
Comer introduced this class of hypergroups independently, using the name
of polygroups. He emphasized the importance of polygroups, by analyzing
them in connections to graphs, relations, Boolean and cylindric algebras.
Another connection between polygroups and artificial intelligence was con-
sidered and analyzed by G. Ligozat. Some of these results are exposed
in [27]. The double cosets hypergroups are particular quasicanonical hy-
pergroups and they were analyzed by K. Drbohlav, D.K. Harrison and S.
Comer.

Similar as for canonical hypergroups, the subhypergroups of a quasi-
canonical hypergroup are not necessarily quasicanonical.

Theorem 2.4.13. Let H be a quasicanonical hypergroup {polygroup) with
n elements and S be a subhypergroup of H, which is not quasicanonical. If
n is odd, then consider k = (n — 1}/2, while if n in even, then consider
k= (n-—2}/2. Then S has at mazimum k elements.

Proof. Let n = 2k + 1 and suppose S has k + 7 elements, where ¢ > 0. Then
the cardinality of H\ Sis |[H\ S| =2k +1—-%k —i <k On the other
hand, for all z of S, we have that =1 € H \ S and if ¢ is the identity, then
e € H\ S. From here, we obtain |H\ S| > k+i+ 1> k+ 2, which is
absurd. Let us consider now n = 2k + 2. Suppose again that S has k + ¢
elements, where i > 0. Similarly as above, we obtain that |H \ S| < k+2,
which is absurd. ®

Now, we present some constructions of polygroups.

Example 2.4.14. Classical polygroup constructions.

(1) Double coset algebra. Suppose H is a subgroup of a group G. Define
a system

G//H=<{HgH |ge G}, H ">
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where (HgH) '=Hg 'H and (HgiH)*(HgoH)={Hg hg.H | heH}.
The algebra of double cosets G//H is a polygroup introduced in
(Dresher and Ore [47]). In [8], Ben-Yaacov studied polygroups and
the blow-up procedure. He obtain a structure theorem for coreless
polygroups as a double quotient space G//H, and a polygroup chunk
theorem. A polygroup is called chromatic if it is isomorphic to the
color algebra of some color scheme. Chromatic polygroups have the
nice property that they are exactly the polygroups which have a faith-
ful representation as a regular polygroup of generalized permutations.

Prenowitz algebras. Suppose that G is a projective geometry with a
set P of points and for p # ¢, suppose that P denoted the set of all
points on the unique line through p and ¢. Choose an object T ¢ P
and form the system

PG=<PU{I},-,I,_1>
where 2! =z and [-z=z-I =z forall z € PU{I} and for p,q € P,

_ | ma\{p,q} ifp#g
p'q‘{{p,f} it p=g.

P is a polygroup (Prenowitz [103]).

Extensions of polygroups by polygroups. In [15], extensions of poly-
groups by polygroups were introduced in the following way. Suppose
that A =< A,.,¢,7'> and B =< B,-,e,”' > are two polygroups
whose elements were renamed so that AN B = {e}. A new system
A[B] =< M, ,e,’ > called the extension of .4 by B is formed in the fol-
lowing way: Set M = AUB andlete! =¢, 2/ =271, exz =zrxe =2
for all z € M, and for all 2,y € M \ {e}

-y ifx,ye A
N ifzeB yeA
Txy=1{ y ifeed yeb
Ty ifz,ye B, y#z!
r-yUA ifzyeB y=z"t

In this case A[B] is a polygroup which is called the extension of 4
by B.
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(4)

Conjugacy class polygroups. In dealing with a symmetry group two
syminetric operations belong to the same class if they present the same
map with respect to (possibly) different coordinate systems where one
coordinate system is converted into the other by a member of the
group. In the language of group theory this means the elements a,b
in a symmetric group G belong to the same class if there exists a
g € G such that o = ghg™!, i.e., a and b are conjugate. The collection
of all conjugacy classes of a group G is denoted by G and the system
< G,*,{e},”1 > is a polygroup where e is the identity of G and the
product A * B of conjugacy classes A and B consists of all conjugacy
classes contained in the elementwise product AB. This hypergroup
was studied by Campaigne [10] and by Dietzman [45].

Now, we illustrate some constructions using Dihedral group Dy. This
group is generated by'a counter-clockwise rotation r of 90° and a hor-
izontal refiection h. The group consists of the following 8 symmetries:

{1 =0 r =g =t hhr=d k?*=uvh=f}.

Dihedral groups occur frequently in art and nature. Many of the
decorative designs used on floor coverings, pottery, and buildings have
one of Dihedral groups as a group of symmetry. In the case of Dy
there are five conjugacy classes: {1},{s}, {r.t},{d, f} and {h,v}. Let
us denote these classes by Ci, ..., Cs respectively. Then the polygroup
54 18

* |G G| Cg Cy Cs

Ci|C G| G Cy Cs

Co|CoiCi| C3 | Cy | G

Ca |Cs|Cs|C1iCa| G5 Cy

Ca|Ca|Cal G5 |C,Co| Cs

Cs|Cs|Cs| Ca | C5 |GG
As a sample of how to calculate the table entries, consider Cs - C3.
To determine this product, compute the elementwise product of the
conjugacy classes {r,tH{r,t} = {s,1} = (1 U C,. Thus Cs - C3 consists
of the two conjugacy classes Cy, Co.

Character polygroups. Closely related to the conjugacy classes of a fi-
nite group are its characters. Let & = {x1, X2, .-, X&} be the collection
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of irreducible characters of a finite group G where x; is the trivial char-
acter. The character polygroup G of G is the system < G, #, x1,”} >
where the product y; # x; is the set of irreducible components in the
elementwise product x;x;. The system G was investigated by R. Roth
[112] who considered a duality between G and G.

Before calculating D, we need to know the five irreducible characters
of Dihedral group Dy. These are given by the following character ta-

ble. (since characters are constant on conjugacy classes it is usual to

list only the conjugacy classes across the top of the table.)

Ci C C3 Cy (s
xi: 1 1 1 1 1
Xn . 1 1 -1 1 -1
yz: 1 1 -1 -1 1
xe: 1 1 1 -1 =1
s 2 —2 0 0 0

We illustrate the calculation of the polygroup product of two charac-
ters by considering xs * x5. The pointwise product of ys with itself
yields the following (non-irreducible} character:

Ci G C3 Cy G
X5X5 1 4 4 0 0 0

This character can be written as a sum of irreducible characters in
exactly one way: xsxs = X1 + X2 + x5 + xa. This is indicated by the
entry in the lower right hand corner of the polygroup table for D,. In
general the polygroup product of two characters y; * x; tell which are
the irreducible characters in the product x;x;, but not the multiplicity.
Using i in the place of the character x; the polygroup D, is

123 4 5
1/1 2 3 4 5
2121 4 3 o
313 41 2 5
4(4 3 2 1 )
5|5 56 5 5 1,2,3,4.
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2.5 Complete hypergroups

Regular and strongly regular relations

By using a certain type of equivalence relations, we can connect semi-
hypergrotps to semigroups and hypergroups to groups. These equivalence
relations are called strong regular relations. More exactly, starting with a
(semi)hypergroup and using a strong regular relation, we can construct a
(semi)group structure on the quotient set. A natural question arises: Do
they also exist regular relations? The answer is positive, regular relations
provide us new (semi)hypergroup structures on the quotient sets.

Let us define these notions. First, we do some notations.

Let (H, o) be a semihypergroup and R be an equivalence relation on H.
If A and B are nonempty subsets of A, then

ARPB means that Ya € A,3b € B such that aRb and
vb' € B,da’ € A such that o' Rb;

ARB means that Va € A,Vbh € B, we have aRb.
Definition 2.5.1. The equivalence relation R is called

(1) regular on the right (on the left) if for all z of H, from afth, it follows
that (a0 z)R(bo ) ((x o a)R(z o b) respectively);

(2) strongly regular on the right (on the left) if for all z of H, from afih,
it follows that (a o z)R{(b oz} ((z 0 a)R(z o b} respectively);

(3) R is called regular (strongly regular) if it is regular (strongly regular)
on the right and on the left.

Theorem 2.5.2. Let (H.o) be a semihypergroup and R be an equivalence
relation on H. '

(1) If R is regular, then H/R is a semihypergroup. with respect to the
following hyperoperation: T@F={Z}z€x oy},

(2) If the above hyperoperation is well defined on H/R, then R is regular.
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Proof. (1} First, we check that the hyperoperation ® is well defined on
H/R. Consider T=7Z7 andJ =7;. We check that T® 7 = 77 @ 7;. We
have zRz; and yRy,. Since R is regular, it follows that (z o y)R(z; o ),
(z1 0 y)R(z: o y;) whence (z o y)R(z; o 11). Hence for all z € g oy, there
exists z; € x; oy such that zRz;, which means that Z = z7. It follows that
I®Y C Ty @7 and similarly we obtain the converse inclusion. Now, we
check the associativity of ®. Let T, %,z be arbitrary elements in H/R and
U € (T®TY)RZ. This means that there exists T € T®F such that T € T®7Z.
In other words, there exist v; € z oy and u; € v o z, such that vRv; and
uwRu;. Since R is regular, it follows that there exists us € vi02 C zo(yo2z)
such that u;Ruz. From here, we obtain that there exists uy € y o z such
that u €Ezouy Wehave T=T = €TQW CT® (® ). It follows
that (ZT®7) ®Z.C T ® (¥ ®Z). Similarly, we obtain the converse inclusion.

(2) Let aRb and z be an arbitrary element of H. If v € ac 2, then
WEAGRT=bRT={0|vEbox}. Hence, there exists v € bo z such that
uRv, whence (a o x)R{bo z). Similarly we obtain that R is regular on the
left. m

Corollary 2.5.3. If (H,0) is ¢ hypergroup and R is an equivalence relation
on H, then R is regular if and only if (H/R,®) is a hypergroup.

Proof. If H is a hypergroup, then for all z of H we have Hoz =20 H = H,
whence we obtain H/R®T =T ® H/R = H/R. According to the above
theorer, it follows that (H/R, ®) is a hypergroup. B

Notice that if R is regular on a (semi)hypergroup H, then the canonical
projection m : H — H/R is a good epimorphism. Indeed, for all z,y of
H and Z € w(z o y), there exists 2/ € z oy such that Z = z/. We have
Z=2 €T®Y=n(z)® m(y). Conversely, if Z € 7(z) ® 7(y) =T ® 7, then
there exists 2; € z oy such that Z=7%7 € n(z o y).

Theorem 2.5.4. If (H,¢) and (K, *) are semihypergroups and f : H — K
is a good homomorphism, then the equivalence p’ associated with f is reqular
and @ : f(H) — H/p!, defined by p(f(x)) = T, is an isomorphism.

Proof. et hyp’hy and a be an arbitrary element of H. If u € hy o a, then
flu) € flhoa) = f(h) x fa) = f(he) * f(a) = f{ha o a).
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Then there exists v € hy 0 a such that f{u) = f(v), which means that uo'v.
Hence, p’ is regular on the right. Similarly, it can be shown that p/ is
regular on the left. On the other hand, for all f(z), f(y) of f(H), we have

o(flz)* f(y) = e(flzoy)) ={Z|z € 2oy} =T®F = p(f(z)) ® (S (¥}).

Moreover, if o(f(z)) = »(f(y)) then zp’y, so ¢ is injective and cleatly, it
is also surjective. Finally, for all 7,5 of H/p/ we have

(@Y =y '({Zizexoyl) ={f(z)|z€z0y}
= [(zoy) = f(a)« f(y) = ¢ (&) * 7' (@)

Therefore ¢ is an isomorphism. &

Theorem 2.5.5. Let (H,c) be a semihypergroup und R be an equivalence
relation on H.

(1) If R is strongly regular, then H/R is a semigroup, with respect to the
following operation: T@T={Z |z € xoy};

(2) If the above operation is well defined on H/R, then R is strongly re-
gular. :

Proof. (1) For all =,y of H, we have {z o y)R(z oy). Hence, T® 7 =
{Z | 2 € xoy} = {Z}, which means that T ® 7 has exactly an element.
Therefore, (H/R,®) is a semigroup. _

(2) If aRb and « is an arbitrary element of H, we check that (aox)R(boz).
Indeed, for allu € aoz and all v € box we have T = a®QT = bQT = T, which
means that wRv. Hence, R is strongly regular on the right and similarly, it
can be shown that it is strongly regular on the left. B

Corollary 2.5.6. If (H, o) is a hypergroup and R is an equivalence relation
on H, then R is strongly reqular if and only if (H/R,®) is a group.

Proof. 1t foliows from the above theorem and Remark 2.3.6.

Theorem 2.5.7. If (H, o) is a semihypergroup and (S5, %) is a semigroup
and f : H — S is a homomorphism, then the eguivalence ol associated
with f is strongly regular.
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Proof. Let ap’b, z € H and u € a o z. Tt follows that

flu) = fla)* f(z) = f(b) * f(z) = f(box).

Hence for all v € boz, we have f(u) = f(v), which means that up?v. Hence
¢’ is strongly regular on the right and similarly, it is strongly regular on the
left. ® :

The fundamental relation

This relation has an important role in the study of semihypergroups and
especially of hypergroups.

Definition 2.5.8. Let (H,o) be a semihypergroup and n be a nonzero
natural number. We say that

n
T,y if there exists a1, as,...,a, in H, such that {z,y} C Hai.

=]

Let g = U Bn. Clearly, the relation /5 is reflexive and symmetric. Denote
nzl

by * the transitive closure of 8.

Theorem 2.5.9. 5" is the smallest sirongly regular relation on H.

Proof. We show that:
(1) A is a strongly regular relation on H;
(2) If R is a strongly regular relation on H, then 8* C R.

(1) Let af*b and = be an arbitrary element of H. It follows that there
exist Lo = a,%1,...,T, = b such that for all ¢ € {0,1,...,n — 1} we have
Zifziy1- Let uy € aoz and u; € boz. We check that uy 3 us. From z;8z;4,
it follows that there exists a hyperproduct P, such that {z;, 2,41} C F, and
soz;01 C Fyog and x4y oz C P, oz, which means that z; o 28z, o z.
Hence for all i € {0,1,...,n—1} and for all s; € z;0x we have 5;8s;.1. If we
consider s = u; and s, = uy, then we obtain u;8*u;. Then §* is strongly
regular on the right and similarly, it is strongly regular on the left.

(2) We have 8, = {(z,z) | z € H} C R, since R is reflexive. Suppose
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that #,_; C R and show that 8, € R. If a8,b, then there exist T, .y T

- n—1

n
in H, such that {a,b} C H z;. Hence, there exists u, v in H Z;, such that

i=1 =1
a € uox, and b € voz,. We have uf,_;v and according to the hypothesis,
we obtain uRv. Since R is strongly regular, it follows that aRb. Hence
B, € R. By induction, it follows that § C R, whence §* C R. #

Hence the relation 3* is the smallest equivalence relation on H, such
that the quotient H/3* is a group.

Definition 2.5.10. §* is called the fundamental relation on H and H/G
is called the fundamental group.

Complete parts

Complete parts were introduced and studied for the first time by
M. Koskas [69]. Later, this topic was analyzed by P. Corsini [22] and
Y. Surean [128] mostly in the general theory of hypergroups. M. De Salvo
studied complete parts from a combinatorial point of view. A generalization
of them, called n-complete parts, was introduced by R. Migliorato. Other
hypergroupists gave a contribution to the study of complete parts and of the
heart of a hypergroup. Among them, V. Leoreanu analyzed the structure
of the heart of a hypergroup in her Ph.D. Thesis.

We present now the definitions.

Definition 2.5.11. Let (H,o) is a semihypergroup and A be a nonempty
subset. of H. We say that A is a complete part of H if for any nonzero
natural number n and for all ay, ..., a, of H, the following implication holds:

Aﬂﬁai%@ = ﬁaigA.
i=1 i=1

Theorem 2.5.12. If (H, o) is a semihypergroup and R is o strongly regular
relation on H. then for all z of H, the equivalence class of z is a complete
part of H.

Proof. Let a4, ..., a, be elements of A, such that

Emﬁaq%@.
=1
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T
Then there exists y € Hai, such that yRz. The homomorphism

i=1
7 : H — H/R is good and H/R is a semigroup. It follows that n(y) =
L3 T (3
mz)=mw (H ai) = Hw(ai). This means that Hai cz. m

i=1 i=1 i=1
If Ais a subset of H, denote by C(A) the complete closure of A, which

is the smallest complete part of A, that contains A.
Denote K1(A) = A and for all n > 1 denote

P p
Ko (A)= {:EEHEP €N, 3(hy, ... hy) € H” 1w €[ [ hi, Kn(A) 1 Hhﬁe@} .
=1

=1

Let K(A) = | J Ka(4).
n>1
Theorem 2.5.13. We have C(A) = K(A).
Proof. Notice that K(A) is a complete part of H. Indeed, if we suppose
B P
K(A)n Hmi # {, then there exists n > 1, such that K,(A4) N Hzi = 0,
i=1 . i=1
which means that H:cz- C Knt1(4).
i=1
Now, if A C B and B is a complete part of H, then we show that

K(A) C B. We have K;(A) C B and suppose K,(4) C B. We check that
Kn11(A) © B. Let z € Kny1(A), which means that there exists a hyper-
P

r P
product H:ci, such that z € H:ci and K,(4) N H:cz # 0.

=1 ‘ i=1 i=1

f7] 14

Hence BN H;r:i < (), whence Ha:i C B. We obtain z € B. Therefore,
=1 i=]

C{A)=K(A). m

Theorem 2.5.14. If x is an arbitrary element of a hypergroup {H, o), then

(1) For alln > 2 we have K, (Ky(z)) = K,11(z).
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(2) The next eguivalence holds: z € K,(y) <= y € Ka(z).
Proof. (1) We check the equality by induction. We have

q q
Ky(Ka(z)) ={z€H]3q€N*‘,H(q1, . ag)EHT: zeH a;, Ko(x) ﬂHaﬁé(B}

Suppose that K,_1(Kz2(z)) = Kn(z). Then

Kn(K2($))
={z € H|3q‘_e N*, 3(ay, ...,aq)EHY : zeHa,,, Ko 1 (K(2)) ﬂHaﬁé@}

8 =t

= n+1(x)'
(2) We check the equivalence by induction. For n = 2, we have

T e Kz(y)

={z€H|3qu*,El(a ag) € HY: zeHa,,Kl mHaﬁém}

=1

Hence {y,:r:} - ﬁai, whence y € Ky(z).
Suppose tha‘é=’clhe following equivalence holds:
€ Kn(y) &= y<€ Kya(z)
and we check E K.(y) = y € K,{z). If:c € K,(y) then there exists
H a; with = € H a; and there exists v € H a; N K,1(y). It follows that

€ Ks(z) and y e K,_1(v). Hence y € Kn 1(K2( )) = K,(z). Similarly,
we obtain the converse implication. R

Corollary 2.5.15. The binary relation defined as follows:
Ky < 3n>1, z € K,(y)

is an equivelence relation.
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Theorem 2.5.16. The equivalence relations K and 8* coincide.

Proof. 1f xfy, then z and y belong to the same hyperproduct and so,
T € Ky(y) C K(y). Hence § C K, whence #* C K. Now, if we have
zKy and z # y, then there exists n > 1, such that 2K, .y, which means
that there exists a hyperproduct P, such that z € Py and P, N K, (y) # 0.
Let z; € P N Ky(y). Hence zfz;. From z; € K,(y) it follows that
there exists a hyperproduct P, such that z; € P, and P, N K,_1(y) # @.
Let zp € P N Knoq(y). Hence z18z; and 75 € K,_1(y). After a finite
number of steps, we obtain that there exist z,_;, z, such that z,_; 5z, and
Tn € Ko (n-1y(¥) = {y}. Therefore z3*y. &

Theorem 2.5.17. If B is a nonempty subset of H, then we have

c(B) = c).

beB

Proof. Clearly, for all b € B, we have C(b) € C(B). On the other hand,
C(B) = U Kn(B). We shall prove by induction. For n = 1, we have

n>l
Ki(B) = B = | Ki(b). Suppose Ko(B) C | JKalb). If 2 € Kpin(B)
beB be B
then there exists a hyperproduct P, such that z € P and K,(B)N P # @,

whence there exists b € B such that K,(b) N P # 0. Hence z € K,y (b).
We obtain K,41(B) C U Ko y1{b). Therefore, C{B) = U C(b). m

beB beB
The heart of a hypergroup

The notion of a heart of a hypergroup is directly connected to the fun-
damental relation on that hypergroup.

Definition 2.5.18. Let (H,o) is a hypergroup and consider the canonical
projection ¢z : H — H/3*. The heart of H is the set wy = {r € H |
wu(z) = 1}, where 1 is the identity of the group (H/8*, ®).

We shall prove that the heart of a hypergroup (H,0¢) is the smallest
complete part subhypergroup of H. First, we show that

Theorem 2.5.19. wy 5 a complete part of H.
Proof. We consider the following steps:
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(1) For all nonempty subset A of H, we prove that wgy o A = Aowy =
vi (pn(A)). If v € pi'(pr(A)) then there exists a € A such that
er{y) = wpl{a). On the other hand, there exists v € H such that
y € aou. It follows that ¢y (y) = vr{a) ® ¢u(u), whence pg{u) = 1.
Hence v € wy and so, y € A owy. Therefore o' (pn(A4)) € Aowg.
Conversely, if z € A o wy then pg(2) € pr(A) ® pulwh) = pu(4),
whence z € ;' {pr(A)).

(2) For all nonempty subset A of H, we prove that wyoA=Aowy=C(A).
Indeed, we have z€¢g' (pr(A)) if and only if there exists a € A such
that z3*a, which means z € K(a) = C(a). Hence vg'(pn(A)) =
U C(a) = C(A). From here we obtain:

acA
(3} A nonempty subset A of H is complete if and only if wy o A = A,

(4) We have wy o wy = wgy, which means that wy is a complete part
subhypergroup of H. &

Notice that if A and B are nonempty subsets of H, such that one of them
is a complete part, then Ao B is a complete part, since wgo Ao B = Ao B.

Theorem 2.5.20. Any complete part subhypergroup K of (H, o} is invert-
ible.

Proof. Let y € K oxz. We obtain og(y) = pr(k) ® pu(z) for some
k € K. Since ¢x(K) is a subgroup of (H/3*, ®), it follows that pg(z) =
(er(k) " @vr(y)=er(K)@on(y)=¢r(Koy). Hence z € vy (pu(Koy)) =
C(Koy) = Koy. Therefore, K is left invertible. Similarly, it can be shown
that K is right invertible. B

Denote the class of all complete parts subhypergroups of H by CPS(H).
We obtain the following:

Theorem 2.5.21. wy = ﬂ K.
KeCPS(H)
Proof. Since wy € CPS(H), it follows that ﬂ K C wyg. Now, we

KeCPS(H)
show that for all K € CPS(H) we have wy C K. Let z € wy. Since
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K owyg = K, it follows that there are a,b in K, such that b € aoz C
K oz, BSince K is invertible, it follows that + € K ob = K. Hence
Wy Q; r\ K. nm

: KeCPS(H)

Theorem 2.5.22. Any complete part subhypergroup K of (H, o) is ultra-
closed.

Proof. First of all, K is closed since it is invertible. On the other hand, for
all z € K, there exists e € H such that € zoe. From here, we obtain that
e € wy. Moreover, there exists ' € H such that e € 2’ o z. Since wy is a
complete part, it follows that ' oz Cwy. Denote B=zo K Nzo(H\ K).
We obtain

z'oB C z'o(zoKNwo(H\K)) C wgoKNwgo(H\K) C KNKo(H\K) = 0.

since K is closed. Hence B = @, which means that K is ultraclosed on the
right. Similarly, it is ultraclosed on the left. m

Using the hypergroupoid associated with a binary relation, defined by
I.G. Rosenberg, we characterize the class of all semihypergroups for which
the relation is transitive. (see [74]).

To each binary relation K on a nonempty set H, a partial hypergroupoid
(H,og) is associated [113], as follows:

V(z,z) € H*, zogzx={y€ H|(z,y) € R}, zogz=zogalUzopz.

From here, we obtain zopzogpz = U aopalUzopx. By adirect check,

acToRe
it follows:

Theorem 2.5.23. Let R be a relation on H, such that R C R®. Then R is
transitive if and only if for allz € H, we have zor T ogx = T oR .

Theorem 2.5.24. Let (H, o) be o semihypergroup. The relation B is tran-
sitive if and only if for all x of H, we have C(z) = Ky(x).

Proof. First, denote by Pr(H) the set of all hyperproducts of H. According
to the above theorem, the relation § is transitive if and only if forall z € H,
Togxogx =1xozx. We have

zogrogr={t € H|te Ky(z), a € Ko(z)} U Ka(z) = K3(z) U Ko(z).
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Hence 3 is transitive if and only if for all z € H, we have Kj(z)U Ka(z) =
K»(z), which means that for all z € H, we have K3(z) C Kz(z). We show
that for every positive integer n, K,y C K, (z). Indeed, if we suppose that
K(z) C K,_1(z) where s € Z*, then

K3+1($) = U{Po S PT’(H) | P() ﬂKs(m) ?é @}
C KPR € Pr(i) | Pon K,o_1(z) # 0} = K. (z).

Since C(z) = U Ki(x), it follows that 5 is transitive if and only if for all
tezt

r of H, we have C(z) = Ky(z). In other words, / is transitive if and only

if for all z of H, Ka(x) is a complete part of H. &

Theorem 2.5.25. If (H, 9) is a hypergroup, then for all © of wy, we have
Ko(z) =wpy.

Proof. Clearly, for all x of wg, we have Kz(z) C wy. Now, it is sufficient to
show that Ko(z) is a complete part of H. Suppose v € Ky(z) N P, where
P € Pr(H). We check that P C Ka(x). There exists Py € Pr(H) such
that z € P, v € P, P. Ou the other hand, there exists e € wy, such that
P € Poe. Moreover, there are a,b in wy, such that z € voa, e € box.
We have

PCPoeCPoboxCPobovoaC PoboFPyoa= Py € P.(H)
zeEvoaC PoaC PoeoaCC PobozoaCPoboFyea=PF.

Hence P C Ky{z).

Corollary 2.5.26. If (H,o) is a hypergroup, then the relation 5 is an
equivalence relation on H.

Proof. We check that for all z € H, we have Ki(x) C Ko(z). Let y € Ks{x).
Then there exists z€ H and there exist P, Q in Pr(H), such that {y,z} C P,
{z,z} € Q. Hence ¢n(y) = pu(z) = pg(z). There exist u,e € wy such
that y € zowu, z € xoe. By the above theorem, we obtain u € K»{e) and so
there exists T € Pr(H) such that {u,t} CT. Wehavey € Qou S QoT
andz € xoe C QoT. Hence y € Ky(x), since z,y belong to the same
hyperproduct. Therefore, 3 is transitive, so it is an equivalence relation. B
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Definition 2.5.27. Let (H,o) and (H’.*) be hypergroups and let
f ¢ H — H' be a homomorphism. The kernel of f is the set K(f) =
{ze H| flz) €wn}.

Theorem 2.5.28. The kernel K(f) of a hypergroup homomorphism
f+ H — H' is a complete part subhypergroup of H. Moreover, it has
the property: for all z in H, we have z o K(f) = K{f) o x, which means
that K(f) is a normal subhypergroup of (H,0).

Proof. First, we show that if K’ is a closed subhypergroup of (H’, *), then
JHK'} is a closed subhypergroup of (H,o). Indeed, if z€f~'(K") then
from t€zo f~1(K") it follows that f(t)ef(z)* f(f~1{K")) C flz)xK' C K',
whence t € f~1(K’), hence z o f~Y(K') C f~1(K'). Now, if u € f1(K"),
then there exists v in H, such that u € zov, whence f(u) € f(z)* f(v) and
since K’ is closed, we obtain v € f~!(KX"). Hence, u € zo f (K"}, and so we
have f~*(K") C zo f~1(K"). Similarly we show that for all z in H, we have
JTUK") = f7Y(K') o 2. Therefore, f~1(K") is a subhypergroup of (H, o).
Clearly, it is a closed subhypergroup. It follows that f~}wp') = K(f) is a
closed subhypergroup of {H,0). Now, we show that wy C K(f). If z and
e are elements of H, such that © € zoe¢, then e € wy. The element e is
called a partial identity for x. Let u be an arbitrary element of wy. Then
we have ufe, which means that « and e belong to the same hyperproduct
in H. Then f(u) and f(e) belong to the same hyperproduct in H’. But
f(e) is a partial identity for f(z), so f(e) € wy. Hence f(u) € wyy, whence
u € f~Hwgy) = K(f). In other words, we have wy C K(f) and so K(f)
is a complete part subhypergroup of H. Finally, we check that for all z in
H, we have K(f)ox Czo K(f). y e K(f)ox, then f(y) € wy: * f(z),
whence @i (f(y)} = v (f(2)). Let z be such that y € z o 2. We obtain
o (f{y)) = emw(f(x)) ® pu(f(2)), whence pp/(f(z)) = 1 which means
that f(z) € wp- and so z € K(f). Hence y € z o K(f). Similarly, it follows
the converse inclusion. Therefore, K(f) is a normal subhypergroup of H. B

In the end of this section we present another important ciass of hyper-
groups: complete hypergroups. We present some interesting properties of
this class of hypergroups, for instance we show that any complete hyper-
group has at least an identity and any element has an inverse. In other
words, any complete hypergroup is regular.
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If (H, o) is a semihypergroup and A is a nonempty subset of H#, then we
denote the complete closure of A by C(A).

Theorem 2.5.29. Let (H,0) be a semihypergroup. The following conditions
are equivalent:

(1) forallz,y € H and foralla€ zoy, Cla)=zo0y,
(2) forallz,ye H, C(zoy)=zoy,

Proof. (1==2): We have C(zoy) = U Cla)==zoy.
agxroy
(2==1): From a € zoy, we obtain C(a) C C{zcy) = zoy. This means
that C(a) Nz oy # 0, whence z oy C C(a). Therefore, Cla)=zoy. ®

Definition 2.5.30. A semihypergroup is complete if it satisfies one of the
above equivalent conditions. A hypergroup is complete if it is a complete
semihypergroup.

Corollary 2.5.31. If (H,o) is a complete semihypergroup and T is the
equivalence class of ¢ with respect to the equivalence relation 3, then either
there exist a,b € H such that 5*(z) = aob or §*(z) = {z}.

Theorem 2.5.32. If (H, o) is a complete hypergroup, then

1) wg={e€ H: Yo € H x € xoeNeor}, which means that wy 1s the
set of two-sided identities of H.

(2) H is regular (i.e. H has at least an identity and any element has an
inverse) and reversible.

Proof. {1) lf u € wy, then for all a € H, we have a € C{a) = aowy = aou.
Similarly we have a € u o a, which means that u is a two-sided identity
- of H. Conversely, any two-sided identity u of H is an element of wy, since
o(u) = 1.

(2) Let a,a’, 0" be elements of H and e be a two-sided identity, such that
eca ocaNaoca’ Then, doa=wyg=aca” andaoca Caca oaoca” C
gowgoa =wyoaoa” = wy, hence aoad’ = wg, so a' is ar inverse of a.

Moreover, if a € bo ¢, then wy = a' oa C a’ eboc, so for any inverse ¢
of c, we have ¢ Cwgod Cdobocod =a obowy = a ob. Similarly,
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from here we obtain & € cod/, and so ¥’ oa C coa’ oa = C{c), whence
¢ € C{¢) =¥V oa. In a similar way, we obtain b€ aoc'. B

Definition 2.5.33. A hypergroup (H,o) is called flat if for all subhy-
pergroup K of H, we have wg = wy N K.

Theorem 2.5.34. Any complete hypergroup is flat.

Proof. Let H be a complete hypergroup and let K be a subhypergroup H.
Wehavews NK ={e€ K: Vac H z€cozNzoe} Cwk.

Moreover, y € Ck(z) = yBxr = yBwz = y € Cy(z), which means
that Cx(z) C Cr(x). Clearly, wy N K # 0. If x € wy N K C wg, then
Ck(r) = wg,Cy(z) = wy. Hence wg C wy whence wg C wy N K. Hence,
wrg=wygNK. &

Corollary 2.5, 35 IfK isa subhypergmup of a complete hypergroup (H, o),
then wx = wy.

Proof. Set x € wg N K. We have wy = C(zoxz) =x02 C wy N K, whence
wg C wy M K, then we apply the above theorem. Hence, wy=wy. B

Theorem 2.5.36. Let H, H' be complete hypergroups and f : H — H' be
a good homomorphism. Then we have f(wy) = wh.

Proof. Let z € wy. Then x 0z = wy, whence f(z)o f(z) = flwy). On
the other hand, f(z) is an identity of H’, since z is an identity of H, which
means that f(r) € wy. Hence, wy;, = f(z) o f(z) = flwgy). W



Chapter 3

The hyperring of Krasner

The more general structure that satisfies the ring-like axioms is the hy-
perring in the general sense: (R,+,:) is a hyperring if + and - are two
hyperoperations such that {R,4) is a hypergroup and - is an associative
hyperoperation, which is distributive with respect to +. There are different
notions of hyperrings. If only the addition + is a hyperoperation and the
multiplication - is a usual operation, then we say that R is an additive hy-
perring. A special case of this type is the hyperring introduced by Krasner
[70]. Also, Krasner introduced a new class of hyperrings and hyperfields:
the quotient hyperrings and hyperfields. In a long list of papers, Mittas
studied firstly the hyperfield’s additive part, i.e., the canonical hypergroup,
as he has named it, and then, the hyperfield itself.

Throughout this chapter, by a hyperring we mean a Krasner hyperring.

3.1 Definition and constructions of Krasner
hyperrings

We give first the definition of a Krasner hyperring and a Krasner hyperfield.

Definition 3.1.1. A Krasner hyperring is an algebraic structure (R, +,-)
which satisfies the following axioms:

(1) (R,4+) is a canonical hypergroup, i.e.,

73
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(i) for every z,y,2 € R, z+ (y + 2) = (z + ) + 2,

iii) there exists 0 € R such that 0 + z = {z} for every z € R,

(iv) for every z € R there exists a unique element ' € R such that
0€x+1; .
(We shall write —z for ' and we call it the opposite of x.)

)

(ii} for every z,y € R, z+y=y+ =z,
i)
)

(v} 2€zx+yimpliesy€ —z+zandz €z —y;

(2) (R,-) is a semigroup having zero as a bilaterally absorbing element,
e,z 0=0-2=0. '

(3) The multiplication is distributive with respect to the hyperopera-
tion +. : -

The following elementary facts follow easily from the axioms: —(—z) ==z
and —(z+y) = —x—y, where —A = {—a | a € A}. Also, foralla,b,c,d € R
we have (a+b) - (c+d)Ca-c+b-c+a-d+b-d. In Definition 3.1.1, for
simplicity of notations we write sometimes zy instead of z - y and in (iii),
0+ 2z =z instead of 0+ z = {z}.

A Krasner hyperring (R, +, ) is calied commutative {with unit element)
if (R, ) is a commutative semigroup (with unit element).

Definition 3.1.2.

(1) A Krasner hyperring is called a Krasner hyperfield, if (R\ {0},-)isa
group.

(2) A Krasner hyperring R is called a hyperdomain if R is a commutative
hyperring with unit element and ab = 0 implies that a = 0 or b = 0
‘for all a,b € R.

. Some students of Krasner, namely Jean Mittas and D. Stratigopoulos
have studied hyperrings and hyperfieids. Other names can be also quoted in
this topic with interesting contributions: P. Corsini, B. Davvaz, C. Massou-
ros, A. Nakassis, T. Vougiouklis, T. Konguetsof, A. Dramalidis, 8. Spartalis,
G. Pinotsis, Y. Kemprasit, M. Stefanescu, V. Leoreanu, R. Ameri and many
others. We pick up from their papers some constructions of hyperrings.
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Example 3.1.3.

(1)

Let R = {0,1,2} be a set with the hyperoperation + and the binary
operation - defined as follow:

Then (R,+, ) is a hyperring,

The first construction of a hyperring appeared in Krasner’s paper (70]
and it is the following one: Consider (F,+,} a field, G a subgroup of
(F*,-) and take F'/G = {aG | a € F'} with the hyperaddition and the
multiplication given by

aG @ bG = {cG | ¢ € aG + bG},
a(G © b(G = abG.

Then (F/G,&,®) is a hyperring. If (F,+,-) is a unitary ring and G
is a subgroup of the monoid (F*,-) such that ¢G = Gz, forall z € F,
then (F/G,&,©) is a hyperring with identity.

Let {A,+,) be a ring and N a normal subgroup of its multiplicative
semigroup. Then the multiplicative classes T = zN {z € A) form a
partition of R, and let A = A/N be the set of these classes. If for all
%5 € A, we define

Toy={zZ|z€T+y}, and T+xYy=T"7,
then the obtained structure is a hyperring.
Let R be a commutative ring with identity. Weset R = {7 = {z, —z} |

z € R}. Then R becomes a hyperring with respect to the hyper-
operation Z& 7 = {z T y, = — y} and multiplicationT®§ =T~ ¥.
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(5) (Inspired by Lyndon [76, 77]) Let (G, -) be a group, H = GU{0,u, v},
where 0 is an absorbing element under multiplication and u,v are
distinct orthogonal idempotents, with

a'0=0.-a=10,
u? =,
v? =,

uv = vu = (),
ug=gu=u, gv =vg=vforallg e G

If we define the hypersum on H by
a+0={a}foralla+#0,

a+a={a0}foralaecH,
a+b= H\{a,b 0} for all a,b € H\ {0} and a # b,

then (H,+,-) is a hyperring.
(6) [2] If (L,A,V) is a relatively complemented distributive lattice, then
we define a structure of hyperring on L, by taking:
adb:={ceLiarb=ahc=bAc}
a-b:=aVbforallabe L.
(7) [93. 125] Let (G,-) be a finite group with m elements, m > 3, and
define a hyperaddition and a multiplication on H = G U {0}, by:

a4+ 0=0+a={a}forall a € H,
ata={a0}forallaed,
a-+b=>b+a=H\{a,b} forall a,bec G,a#b,
a&0=0forallac H,
a®b=a-bforallabed.

Then (H,4,®) is a hyperring.
(8) [125] If (H, <,+) is a totally ordered group, then

zr®z={teH|t<z}forallze H,
z®y={max{z,y}} forall z,y € H, z # y,

defines a structure of canonical hypergroup on H. If (H,+,-) is a
totally ordered ring (for example R} then (H,®,-) is a hyperring.
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(9)

(10)

[81] Let (H,+,-} be a hyperfield. If we define a new hyperoperation
on H, as follows:

a®db=(a+b)U{a,b}, ifa#t —b, abe H,
a®(—a)=H for all a € H\ {0},
aPdp0=0@a=aforalacH,

then (H,®,-) is a new hyperfield. If (H,+,-) is a field then a @ b=
{a,b,a+ b}, fora#b, a,bec H*.

Let R be a hyperring and let S be a multiplicatively closed subset of
R such that 0 € 8. The relation ~ is defined on R x S as follows:
{a,s) ~ {b,t) if and only if there exists u € S such that uta = usb.
This is an equivalence relation on the set R x 5. The equivalence class
of (a,s) is denoted by a/s and we let S™*R be the quotient set. On
S~1R, the hyperoperation @ is defined by

ta + sb
st

a b ¢
E@E*{EE“H‘HSZ’}“’

and the multiplication defined in the standard way. One can easily

verify all conditions of Definition 3.1.1. We prove only condition (v).

2 x zt 4 ys ,
Suppose that - € — @ % = ty . Then there exists v € xt + ys
T 8

z v
such that — = e Hence there exists v € S such that uzst = urv.

r ]
Thus uzst € ur(zt + ys) = urzt + urys, and so urzt € uzst — urys
and urys € —urzt + uzst. Therefore

r urtx _ uzst —urys _ uzst  urys oz oy
s urts urts " urts urts 1 t
and
—-r =z
YeZgl
t s T

Therefore S™'R is a hyperring.
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3.2 Hyperideals, quotient hyperrings

and homomorphisms
Definition 3.2.1. Let (R, +, ) be a hyperring and A be a nonempty subset
of B. Then A is said to be a subhyperring of Rif (A, +, ) is itself a hyperring.

The subhyperring A of R is normal in R if and only itr+A—zCA
for all x € R.

Definition 3.2.2. A subhyperring A of a hyperring R is a left (right)
hyperidealof Rifr-a € A (a-r€ A)forallr € R, a € A. Aiscalled a
hyperideal if A is both a left and a right hyperideal.

It would be useful to have some criterions for deciding whether a given
subset of a hyperring is a left (right) hyperideal or not. This is the purpose
of the next lemma.

Lemma 3.2.3. A nonempty subset A of a‘ hyperrz’ng”.R zs a left (right)
hyperideal if and only if

(1) a,be A impliesa—bC A,
(2) ecA reRimply»-ae A (a-r€ A).
Definition 3.2.4. Let 4 and B be nonempty subsets of a hyperring R.
e The sum A+ B is defined by

A+B={z|r€a+bforsomeac A, be B}

e The product AB is defined by

AEB = {ximEZaibhazEA,b.ieB,nEZ*}.

i=1

If A and B are hyperideals of R, then A + B and AB are also hyperideals
of R.

The following two corollaries are obtained directly from definitions.
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Corollary 3.2.5. Let A be a normal hyperideal of R. Then
() (A+z)+(A+y)=A+z+y forallz,ye R,
(Y A+z=A+y forallyce A4z

Corollary 3.2.6. Let A and B be hyperideals of o hyperring R with B
normal in K. Then

(1) AN B is a normal hyperideal of A,
(2) B is a normal hyperideal of A+ B.

In what follows, we present the isomorphism theorems in the context of
hyperings.

Definition 3.2.7. If A is 8 normal hyperideal of a hyperring R, then we
define the relation

r = y(modA) if and only if z -y A#0.

This relation is denoted by zA*y.
Lemma 3.2.8. The relation A* 1s an equivalence relation.

Proof. (1) Since 0 € z —z N A for all z € R, it follows zA*z, ie., A" is
reflexive. (2) Suppose that Ay then there exists z € z — y N A which
implies —z € y —x and —z € A, which means that yA4*z, and so A" is
symmetric. (3) Let zA*y and yA*z where z,y,z € R. Then there exist
cczx—yNAandbey—2NA Sorx€a+yand —z € —y+b. Hence
r € y+a, —z € b—y which imply that z—~ 2 C y+a+b—y. Sincea+bC A
and A is normal, it follows y+ a+b—y € A. Therefore z — 2N A # 0,
hence zA*z, and so A* is transitive. B

Let A*(x) be the equivalence class of the element z € R.

Lemma 3.2.9. If A is a normal hyperideal of R, then A+ z = A*(x) for
allz € K.

Proof. Suppose y € A+x then there exists a € A such that ¢ € a+z, which
implies e € y—z and so y — M A % §. Thus A+ C A*(z). Similarly we
have A*(z) CA+z. B
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Lemma 3.2.10. Let A be a normal hyperideal of R. Then for all ¢,y € R
and forall z€x+y, we have A+z+y=A+z.

Proof. Suppose that z € z+y. It is clear that A+ 2 € A+ 2+ y. Now, let
a € A+ +y, by condition (v) of Definition 3.1.1, we get y € —(A+z)+a
ory€ A—z+a,andsox+y Cz+ A—z+a. Since A is normal, we
obtain £ +y C A + a. Therefore for every z E z+y, wehave z € A+a
which implies that a € A+ z. W

.The next two corollaries are fundamental.
Corollary 3.2.11. For allz,y€R, we have A*(A*(z)+A*(y))=A*(z)+AYy).
Proof. The proof follows easily from Lemma 3.2.10. m
Corollary 3.2.12. For all x,y € R, we have AN A*(z - y)) = A*(z - y).

Proof. Clearly, we have A*(z-y) C A*(A*(z-y)). Now let a € A*(A*(z-y)).
Then there exists b € A*(z - y) with ¢ € A*(). So aA* and bA*z - y which
imply aA*z - y. Hence a € A*(z-y). B

Proposition 3.2.13. Let R be o hyperring and A be a normal hyperideal
of R. We define the hyperoperation @& and the multiplication © on the set
of all classes [R : A*| = {A*(z) | z € R}, as follows:

A(z) @ A™y) = {A"(2) |z € A*(z) + A*(y)},
A z) 0 AYy) = A*(z-y).

Then [R : A*] is a hyperring.
Proof. This follows from Corollary 3.2.11, Corollary 3.2.12 and Definition
3.1.l.m

Definition 8.2.14. Lét R; and R, be hyperrings. A mﬁpping w from R;
into K is said to be a good (strong) homomorphism if for all a,b € R,

pla+b)=pla)+o(b), wla-b)=pla) ¢(b) and ¢(0)=0.

Clearly, a good homomorphism ¢ is an isomorphism if ¢ is one to one
and onto. We write R =2 R, if By is isomorphic to R,.

Because R; is a hyperring, 0 € a — a for all a € R;, then we have
¢(0) € pla) + p(—a) or 0 € ¢(a) + w(—a) which implies that p(—a) €
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—p(a) + 0, therefore p(—a) = —p(a) for all a € R;. Moreover, if ¢ is
a good homomorhism from R; into Ra, then the kernel of ¢ is the set
kergo = {x € Ry | p{z) = 0}. It is trivial that kery is a hyperideal of R;,
but in general it is not normal in R;.

Corollary 3.2.15. Let ¢ be a good homomorphism from Ry into Ry, Then
@ is one to one if and only if kerp = {0}.

Proof. Let y,z € Ry be such that ¢(y) = (z). Then ¢(y) — ¢ly) =
o(z) — @(y). It follows that ¢(0) € @(z — y), and so there exists z € 2 — y
such that 0 = p(0) = (). Thus, if kery = {0}, z =0, whence y = z.

Now, let z € kery. Then ¢(x) = 0 = ¢(0). Thus, if ¢ is one to one, we
conclude that x = 0. B

We present now the first isomorphism theorem.

Theorem 3.2.16. (First isomorphism theorem). If ¢ is e good fiomo-
morphism from R, into Ry with the kernel K, such that K is a normal
hyperideal of Ry, then |Ry : K*| & Imyp.

Proof. We define p : [B; : K*] — Imp by setting p(K*(z}) = o(z) for
all z € R;. We prove firstly that p is well-defined. Suppose that zK™y. So
there exists z € z — yMN K. Consequently, ¢(z) = 0 and (z) € p{z) —(y).
Thus ¢(z) = ¢(y). Clearly pis onto. To show that p is one to one, suppose
that (z) = ¢{y). Then 0 € ¢(x — y), and so there exists = € x — y with
z € kery. Therefore z — y N K # § which implies that K*(z) = K*{y}, and
so p is one to one. Moreover,

p(K*(z) @ K*(y))

p({K*(2) | z € K*(z) + K*(y)})
{p(2) | z € K*(z) + K*(y)})
o(K*(z ))+90(K*( ) =p(z)+ e(y)
p(K*(z)) + p(K"(y}),

p(K*(z- y)) oz y) = elz) o)
p(K*(z)) - p(K*(y)),

and p{K*(0)) = ¢(0) = 0. Therefore p is an isomorphism. W

1

p(K™(z) © K*(y))

Using Lemma 3.2.9, we can put [R : A*|={A+ z | z€R} and then we
have
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Corollary 3.2.17. If A is a normal hyperideal of R, then
(A+z)d(A+y)={A+2z|zez+y}
Proof. Using Corollary 3.2.5 and Lemma 3.2.10 we have

(A+z)@ (A+y) ={A+c|ceA+z+A+y)
={A+c/ceA+z+y}
={A+cic€A+z z€x+y}
={A+zlzez+y} n

We are now in a position to state and prove the second and third iso-
morphism theorems in hyperrings.

Theorem 3.2.18. (Second isomorphism theorem). If A and B are hy-
perideals of a hyperring R, and B is normal in R, then [A : (AN B)Y] =
[A+ B: B*.

Proof. Clearly, B is a normal hyperideal of A+ B; Consequently, we can
consider [A+ B : B*]. Define p: A — [A+ B : B*] by pla) = B + a.
p is a strong homomorphism. For all B+y € [A+ B: B*,y € A+ B,
there are @ € A, b € B, such that y € a + & Thus, by Lemma 3.2.10,
B+y=B+4+a+b=DB+a=p(a). This shows that p is also onto. If we
establish that kerp = AN B, then we shall obtain that [A : (AN B)*] =
[A+ B : B*], since AN B is a normal hyperideal of A. For any a € A, we
havea € kerp <= pla})= B+ B+a=B<>acB<=a€ ANB
(since a € A). This yields kerp = AN B, whence it follows the thesis. ¥

Theorem 3.2.19. (Third isomorphism theorem). If A and B are normal
hyperideals of a hyperring R such that A C B, then [B : A*] is a normal
hyperideal of [R: A*] and [[R: A*] : [B: AY]| = [R: B*].

Proof. We leave to reader to verify that [B : A*] is a normal hyperideal of
[R: A*]. Moreover, p : [R: A*]~—[R : B*| defined by p(A+z)=B+z is a
strong homomorphism from [R:A*] onto [R:B*] such that kerp=|B:A*]. m

Definition 3.2.20. Let R be a commutative ring with unit element, A
be a subhyperring of R and 7 be a hyperideal of A. Then 7 is said to be
R-regular if I NU({R) # 0, where U(R) is the set of all invertible elements
in R. )
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At the end of this section we provide a general method for simplifying
the study of hyperrings by decomposing a hyperring into more manageable
hyperrings. The motivation comes from a venerable result of number theory
often called the Chinese Remainder Theorem. Given my, ..., ¢, 1, ..., ¢ in
N where my,...,m, are pairwise relatively prime, one can find some n € N
such that n = n;(modm,) for 1 < ¢ < ¢. In other words, the Chinese
Remainder Theorem says that if my,...,”n; are pairwise relatively prime

t

then the canonical homomorphism zZ — HZ/ m,Z is onto. A domain A is
said to satisfy the Chinese Remainder Tﬁeérem when, for a finite number
of integral ideals A;,..., A, of A and elements z; € A, 1 <4 < n such
that z; = z;(modA; + A;), 1 < 1,j < n, there exists a solution of the
system of congruences z = z;(mod4;), 1 < i < n. It is well known that
a domain A satisfies the Chinese Remainder Theorem if and only if A is a
Priifer domain. Now, we will consider the Chinese Remainder Theorem for
hyperrings.

Definition 3.2.21. Let A be a subhyperring of a hyperring R. We say
that the Chinese Remainder Theorem holds for A with respect to R if the
following condition is valid:

For all normal hyperideals A,..., 4, of A, such that at most two are
not R-regular and for all elements z, ..., 2, € A, the system of congruences
z = z;(modA;) admits a solution z € A if and only if z; = z;(modA4; + A;)
for all i # j.

Theorem 3.2.22. Let R be a hyperring and let A be a subhyperring of R.
If
(1) (Va,b,e,de R) {a,b} Cc—d =>abec—d,

(2) L+{MNN)=(L+ Myn(L+N) for all hyperideals L, M,N of A
if at least one of them is R-regular,
then A satisfies the Chinese Remainder Theorem with respect to I.

Proof. We shall prove this theorem by mathematical induction. First,
suppose that n=2. Since z,=z3(modA;+A,), then (z;—22) N (A1+A2) # 0
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and so there exists z € (z; — @) N (A; + Ay) which implies that
z € (1 — 22) N (a1 + a2) for some a € A; and as € As. Now, we have

z€a1+a2'==>a2€—a1+z
=rax € —a1+ I — T2
= 0+ T2 C —01 + 2] ~Ty+ To
== g + 29 C &1 + {(~25 — a; + Zo)
= ag+1x; Cx;+ 4.

Therefore if we consider {y € ap + 2, then ty € 21 + A; and so there exists
a; € Aj such that tq € z1+a}. Now, we have ay € {g—x; and a} € —z;+1;.
Hence (o — z2) N Az # 0 and (fp — 1) N Ay # 0. Therefore tg = zo(modAs)
and tp = z1(modA,), i.e., ty is a solution of the system.

Now, let z=z;(modA;) for i=1, ..., k+1 be such that z;=z;(modA;+A;)
i# jand 1 < 4,5 < k+ 1. Suppose that there exists y € A such that
y = z;(modA;) for T < i < k. We consider the following system of con-
gruences:

k
z = y(mod[ ) A;)

i=1
T = Zpq(modAgL).

It is easy to see that any solution z of this system satisfies also the system
r=xzi{modd;)) 1<i<k.

In order to solve the first system of two congruences it suffices to show that

5
Y= $k+1(m0d((ﬂ Ai) + A1)

i=1

By the condition (2) we have

k k
(m Ai) + A1 = ﬂ(Ai + Ak1)-

1=1 t=1

Since y = z;{(modA;) for 1 < i < k, there exists 2, € (y — x;) N A4; for
1 €4 <k Since zpp1 = zi(modAg, + Ai) for 1 < ¢ < k, there exists
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t; € ($k+1 — 35'1) N (Ak+1 + Al) Hence —z; € —xp11 +t; and §; € Apa + A;
Also, we have

YEZ+3; C 24 (Thyr — ) = (2 — ) + L1 © (A + Agyr) + Zpan

Therefore there exists ¢; € A; + Ag_; such that y € ¢; + Tp4y for 1 £ i <k,
and 80 ¢; € y — Try1. Now, we set ¢ = ¢1...¢; and we obtain

k
¢ € [ (A + Axsa).

i=1

Moreover, using the condition (1} we have ¢ € y — zi41 and hence

k
e (y - mk+1) M (ﬂ Ai + Ak+1)

i=1

k
Y= Tigl (mod (Ak+1 + mAi))
i=1

which completes the proof of the theorem. W

which implies that

3.3 Special hyperideals

Definition 3.3.1. Let X be a subset of a hyperring R. Let {A; | i € J} be
the family of all hyperideals in R which contain X. Then ﬂ A; is called the

ied.
hyperideal generated by X. This hyperideal is denoted by < X >. If X =
{zy,79,...,x,}, then the hyperideal < X > is denoted < z1,%s, ..., 2, >.

Theorem 3.3.2. Let R be a hyperring, a € R and X C R. Then

(1) The principal hyperideal < a > s equal to the set

m
{t|t era.—+-as+na—f—k(a—a)-{-Zriasi, r.s,r,8 € Rmez®

= and n,k € Z}.
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(2) If R has a unit element, then

<a>={t|tckla—a) +ZT1'05¢'= T & € Rom,k ez}
=i
(3) If a is in the center of R, then
<a>={t|t€ra+na+klo—a), re R,necz},

where the center of R is the set {x € R | zy = yx for all y € R}.

(4) Ra={ra|r € R} is a left hyperideal in R and aR = {ar |r € R} is
a right hyperideal in R. If R has o unit element then a € aR N Ra.

(5) If R has a unit element and a is in the center of R then Ra= (a) =aR.

(6) If R has a unit element and X is included in the center of R, then

<X>={t|te) ra, rn€Ra;eX, mez)
i=1
FProof. The proof is straightforward. m

Definition 3.3.3. A proper hyperideal M of R is a mazimal hyperideal of
R if the only hyperideals of R that contain M are M itself and R.

Proposition 3.3.4. Let R be a commutative hyperring with a unit element
and let I be a proper hyperideal of R. Then there exists a mazimal hyperideal
of R containing I.

Definition 3.3.5. A proper hyperideal P of a hyperring R is called prime
if for every pair of hyperideals A and B of R ,

AB C Pimplies AC Por BC P.

Lemma 3.3.6. Let R be a commutative hyperring. A hyperideal P of R is
prime if P # R and for everya,b € R

ab & P impliesae P orbe P.
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Proposition 3.3.7. If R is a commutative hyperring with a unit element,
then each mazimal hyperideal M of a hyperring R is a prime hyperideal.

Proof. Let z,y € R be elements such that zy € M and © € M. The set
M+zR=U{a+b|a e M be xR} is a hyperideal of R containing both
M and zR. Therefore we have z € M +zR and z ¢ M. Hence we conclude
that 1 € M +zR, and so 1 € a + zr for some a € M and r € R. Therefore
we obtainy cy(a+ar)=ya+yzr CM+ M C M Henceyc M. B

Proposition 3.3.8. Let R be a commutative hyperring with a unit element.

(1) Let M # R be a hyperideal of R. Then M is mazimal if and only if
R/M is a hyperfield.

(2} Let P # R be a hyperideal of R. Then P is prime if and only if B/P
is a hyperdomain.

Proof. The proofs are similar to the proofs of Theorems 1.6.3 and 1.6.7. &

For a hyperring R we define the Jacobson radical J(R) of R as the
intersection of all maximal hyperideals of R. If R does not have any maximal
hyperideal, then we define J(R) =

Proposition 3.3.9. Let R be a commutative hyperring with o unit element
and I be a hyperideal of R. Then I C J(R) if and only if every element of
1+ 1 is invertible.

Proof. Let I C.J(R) and suppose that there exists z € 1 + I such that z is
not invertible.iiClearly = € 1 + a for some a € /. Since z is not invertible,
there exists a maximal hyperideal M such that z € M. But z € 1 +a
implies that 1 € 2 —a C M, which is a contradiction. Hence every element
of 1+ I is invertible.

Conversely, suppose that any element of 1+1 is invertible but I € J(R).
Thus I € M for some maximal hyperideal M of R. Then there exists
a € I\ M. Therefore < M,a >= R. So1 € m+ra for some r € R
and m € M, hence m € 1 —ra € 1+ 1. Thus m is invertible, which is a
contradiction with maximality of A/. R

Corollary 3.3.10. Let R be a commutative hyperring with a unit element
and U(R) be the set of all invertible elements in R. Then an elementa € R
belongs to J(R) if and only if 1 —ba CU(R) for allb € R.
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Definition 3.3.11. Let R be a hyperring. A finite chain of n normal
hyperideals Ao,Al, vy Ap1 of R

R=A{]:)A1D...:)An=0

is called a composition series of length n for R provided that [A;.; : A]
is simple (i = 1,...,n), ie., if each term in the chain is maximal in its
predecessor. ‘

We shall consider a generalization of the Jordan-Holder theorem for
hyperrings.

Theorem 3.3.12. (Jordan-Holder Theorem). If a hyperring R has a com-
position series, then any two composition series for R are equivalent.

Proof. If R has a composition series, then denote by c(R) the minimum
length of such series for R. We shall prove by induction on ¢{R). Clearly, if
¢(R) =1, there is nothing to prove. So assume that ¢(R) =n > 1 and that
any hyperring with a composition series of smaller length than » has all of
its composition series equivalent. Let

R=A;DA;>.. DA, =0 (1)
be a composition series of length n for R and
R=By>2B,>..O0B,=0 (1II)

be a second composition series for R. If A} = B, then by induction hy-
potheses and since ¢(A;) < n—1, if follows that the two series are equivalent.
So we may assume that A; # B;. Then since 4, is a maximal hyperideal
of R, we have A, + B, = R, so

(R:A]]=[A1+ B : A]) 2 [B: (AN By,
and
[R . B” = [Al + Blli Bﬁ = [A] ! (A1 ﬂBl)*].

Thus A;MB; is maximal in both A; and B;. Now, A;MB; has a composition
series
A1ﬂ312003013...30k=0.
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So
AADCDC;D..0C,=0 and BiDC D01 D...2C=0,

are composition series for A; and B;. Since ¢(A4,) < n, every two composi-
tion series for A; are equivalent, so the two series

R=A03A13...3An=0 and R=A DA DCD..00C =0,

are equivalent. In particular, k < n — 1, so clearly ¢(B;) < n. Thus by our
induction hypothesis, every two composition series for B; are equivalent.
Thus the two series

R=By>BD>..0oB,=0 and R=BuDBi:)CoD...DCk=O,
are equivalent. Since
[R:Aj] = (B :C3] and [R: B =[4;:Cgl:

thus the series (I) and (II) are equivalent. W

The mapping ¢ : R — 57'R given by ¢(a) = a/1 is a good homomor-
phism. If I is a hyperideal of R, then () = ST' T ={{ e ST'R|i €],
s € S} is also a hyperideal of S7'R. S7'I is called the extension of I in
S=1R. Note that r/s € S7'T need not imply that r € I, since it is possible
to have a/s =r/s withe €T and r € 1.

The proofs of the following theorems are straightforward and they are
left to the reader.

Theorem 3.3.13. Let S be o multiplicative subset of o hyperring R. If I
and J are ideals in R, then

(1) SMI+J) =8+ 5,
(2) S7HIJ) = (571)(571),
(3) S~YInJ)y=85"1UnS 1.
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Theorem 3.3.14. Let I be o hyperideal of a hyperring R. Then SN #0
if and only if S711 = S'R.

Theorem 3.3.15. Let ¢ : R —> SR be the natural homomorphism and
let I be a hyperideal in R. Then

(1) I €= H(S7H).

(2) If I = ¢™YJ) for some hyperideal J in ST'R, then S~ = J. In
other words every hyperideal in S™'R is of the form 81 for some
hyperideal I in R.

(3) If P is a prime hyperideal in R and SN P = {, then S™1P is a prime
hyperideal tn S71R and o™ Y(STIP)=P. m

Theorem 3.3.16. Let S be a multiplicative subset of a hyperring R. Then
there 15-a one to one correspondence between the set U of prime hyperideals
of R, which are disjoint with S and the set V of prime hyperideals of S~'R,
given by P —s §71P,

Let R be a hyperring and P a prime hyperideal of R. Then § = R\ P is
a multiplicative subset of R. The hyperring of fractions S™'R is called the
localization of R at P and is denoted by Rp. If I is a hyperideal of R, then
the hyperideal S7'7 in Rp is denoted by Ip.

Theorem 3.3.17. Let P be a prime hyperideal in a hyperring R.

(1) There is a one to one correspondence between the set of prime hyper-
ideals of K which are contained in P and the set of prime hyperideals

of Rp, gwen by Q — Qp.
(2) The hyperideal Pp in Rp is the unigue mazimal hyperideal of Rp.

Let R be a hyperring and A be a subhyperring of R. For a multiplica-
tively closed subset S of A we can form the large hyperring of quotients
Al ={r € R| (3s € 8) zs € A}. In fact Ajg is a subhyperring of R
and A C Agg. For a hyperideal I of A its large extension is defined as
the set [[JAjgy = {¢ € R | (3s € §) zs € I} which is a hyperideal of
Ag. If § = A\P, for a given prime hyperideal P of A, then we shall
write App; instead of Ap4p). It is evident that the following equality holds:
([PlApmNnA=P.
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3.4 Hypervaluations

In this section, all hyperrings are commutative and we define a hypervalua-
tion on a commutative hyperring. For thig, as in the classical case we need
a mapping from R onto an ordered group G. If the element oo € G, then
we define a-o0 = oc-a =0oc-o0 = oo > a for all @ € G. Then some
interesting results concerning this concept are proved.

We say that an arbitrary group G is partially ordered by < if (G, <) is
a poset in which a < b implies ga < gb and ag < bg for all g € G. We see
that if @ < o’ and b < ¥ then ab < a't’. Consequently, G has a submonoid
P ={g€G|1< g} called the positive cone. The following properties are
straightforward, writing P~! for {a~! | a € P}

(1) PP~ =A{1},
(2) If < is a total order then PU P-1 = G.

Proposition 3.4.1. If (7 is a totally ordered group, then Gy = G U {o0}
5 a hyperring with the hyperoperation & having the following properties:

() a<b = a®b={a} foralla,be Gy,
(2) apa={g€ G| a <y},
and the multiplication a ©b=a Vb forall a,b € G.

Proof. This proposition is due to Nakano {see [91]). Nakano showed in [91]
that this structure is an m-ring. Notice that in m-ring, we don’t have the
conditions (ili} and (iv) in Definition 3.1.1, and instead of condition (v),
we have a € b® ¢ = b € a ® c. Therefore it is enough to show that the
conditions (iii}, (iv) and (v) hold. If we set 0 = oo, then a @ 0 = a. Since
0ecada={g€ Gy |a< g}, then a = —a. Hence clearly the condition
(v) of Definition 3.1.1 holds. B

The symbol oo will be usually adjoined to an ordered group G in such
away that a-oco =00-a=00-0c =00 > a for all @ € G. As above, we
denote G = G U {o0}.

Definition 3.4.2. Let R be a hyperring. By a hypervaluation on R we
mean a map u from R onto G, where G is a totally ordered abelian group
G, such that the following conditions are satisfied:
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(1) u(0) = oo,

(2) u(zy) = p(z) - u(y) for all z,y € R,

(3) u(—z) = p(z) for all z € R,

4) zex+y = wu(z) > min{p(z), u(y)} for all z,y,z € R.

Lemma 3.4.3. In (4) we have u(z)=min{p(z), p(y)} whenever p(z)7#u{y).

Proof. Suppose that z € 2 + ¥, u(z) > min{u(z), p(y)} and u(z) < uly),
then p(z) > p(z). Since z € z+ y, we have € z — y and so

p(z) 2 min{p(z), w(—y)} = min{u(z), u(y)} > uiz)

which is a contradiction. B

If 4: R— Go = GU{oo} is a hypervaluation, we say that (R, u,G)
is a hypervaluated hyperring.

Proposition 3.4.4. Let (R, i, G) be a hypervalued hyperring. We set
Ri={ze R|px)>1} and P*={ze R|u(z)>1}.
Then

(1) R* is a subhyperring of R,
(2) P* is a prime hyperideal of R¥,
(8) The set u~'(oo) is a prime hyperideal of R contained in P*.

Proof. (1) Let z,y € R*. We must show that « —y .C R* and zy € R For
every z € £ —y we have p(z) > min{u(x), p{~y)} = min{u(z), u(y)} > 1
and so z € B*. Hence z — y C R*. Also, we have u(zy) = p(z)p(y) > 1
thus zy € R*.

{2) Clearly, P* is a hyperideal of R*. Therefore we show that P* is a
prime hyperideal of R*. Let z,y € R* be elements such that zy € P* and
x & P* Since x € R* and « € P*, then u(z) = 1. From zy € P*, we have
u(zy) > 1 and so 1 < p(zy) = p(z)u(y) = u(y) which implies that y € P*,

(3) Suppose that z,y € p~'(c0) and r € R. Then u(z)=p(y)=occ. For
every z € x — y we have p(z) > min{u(z), u(y)} = oo, and so u(z) = o
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or z € p~*(oo) which implies that £ — y € p (o). Also, we have
p(rz) = p{r)u(z) = u(ryoo = oo which implies that 7z € g~ 1(oo). There-
fore 171(00) is a hyperideal of R. Now, let z,¥ € R be elements such that
xy € pu~t(oo) and z & p~'(c0). Then u(zy) = oo and p(z) # oc. Since
uzy) = piz)uly) = oo, we get u(y) = oo or y € p~!(oc). Thus p~*(oo) is
a prime hyperideal of R. Clearly we have p~(c0) C P*. B

‘We say that y is a nontrivial hypervaluation if u(R) # {co}.

The class of hypervalued hyperrings has many properties which are si-
milar to the corresponding properties of the class of Manis valuation rings.
In what follows we present some of these common properties.

Proposition 3.4.5. Let R be a hyperring, let A be a subhyperring of R and
let P be a proper prime hyperideal of A. Then the following statements are
equivalent:

(1) (Vo€ R\ A)(Jy e P)ay € A\ P,

(2) there exists a hypervaluation p : R — Gy such that R* = A and
Pr=P.

Proof. (2 = 1) If an element x belong to the set R\ A, then u(z) < 1
and therefore p(z) # oo; i.e., u(z) € G. Thus we have p(z)™! = u(y) for
some y € K. Further, we get 1 < p{z)™! = pu(y); i.e., y € P* = P. Finally
w{zy) = plx)u(y) = 1 and therefore zy € R¥ \ P~

(1 = 2) Let us notice that (1) implies the following property:

(Vr,ye R)zye P = z€PoryeP.

Now, for each x € R we set (P : z)p = {# € R | 3z € P}, and then we
define the equivalence relation ~ by

x ~yif and only if (P:z)g= (P :¥)r

We denote the equivalence class of an element z € R by u(z). We define
the multiplication on the set R/ ~ by p{z) - p(y) = p(zy). One can prove
that the set G = {u{z) | z € R} \ {u(0)} is a totally ordered group with
respect to the above defined multiplication where the ordering is given by

p(z) < p(y) if and only if (P:z)p C(P:y)r
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- Moreover, we take 4(0) = oco. It can be proved that i is a hypervaluation.
Indeed, let z € z+y and let pu(z) < u(y). Firstly, suppose that u(z) < u(z);
ie, zu &€ P and uz € P for some u € R. We show that yu € P. Suppose
that yu € P. Then

weE{z+yu=zu+yu € P+ P C P;

e, zu € P, which is a contradiction. From the assumption p(z) < p(y) we
conclude that yt € P and 2t € P for some ¢t € R. Thus we obtain ot yu =
zu -yt € P and so we have xt € P or yu € P, which is a contradiction. In
the same way we obtain a contradiction in the case u(z) < p(z). Thus we
have proved that p(z) = u(z) for all z € z +y, if u(z) # uly).

If u(z) = p(y), we must show that u(z) > u(z) forany z € z + v, ie.,
{fueR|ure P} C{ueR|uze€ P} Letwu € Rand ur € P. Since
p(z) = p(y) we have uy € P and uz € ur+uy C P+ P C P. Hence
(P:z)g C(P: 2)g, 1.e., u(z) < p(z). The rest of the proof may be done
easily and it is left to the reader. ®

In Proposition 3.4.5, the pair {A, P) is called a hypervaluation pair of R.

Proposition 3.4.6. Let R be a hyperring and let u : R — G4 be a
nontrivial hypervaluation on R. Then we have

(1) p7!(o0) = {z € R| (Vy € R\R*) zy € R*},

(2) If P is a prime hyperideal of R* such that P C P* and P € p~(o0),
then p~{oo) C P.

Proof. (1) Let © € R be an element such that u(z) = oo and y € R\ R*.
Then we have u(xy) = p(z)u(y) = oo, and hence zy € R*. Now, let us
suppose that for an element x € R and for every y € R\ R* we have zy € R*.
Then p(r) = co. Infact, if p(z) < 1, we can take y = z € R\ R* and deduce
that p(zy) < 1, i.e., zy € R*. So we consider the case 1 < pu(z) < oc. If
p(z) > 1, we take y € R such that p(y) = u(z)™! < 1 and u(y?) < uly).
Therefore, it follows that zy* ¢ R* and ¢* € R\ R*, which is a contradiction.
Finally, if p(z) = 1, take any y € R\ R*, and hence u(zy) < p(z) = 1.
Then it follows that zy ¢ R* and y € R\ R¥*, a contradiction. Thus we can
conclude that u(z) = oc.
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(2) Let P be a prime hyperideal of R* and let # C P* be such that
P ¢ ptoc). Take p € P with u{p) < oo and let n € u~'(o0). Then
u(p)~! = p(z) for some x € R\ R*. It is immediate that nz € P*. Further,
we have

peR\PCRN\NP = zpn=azn-peP'PCP = nckh,
since zp € P. Therefore, we obtain that u=*(cc) C P. B

Proposition 3.4.7. Let R be a hyperring and let p : R — G« ond
A R — Hy be nontrivial hypervaluations on R. Then R* = R» and
Pt = P* if and only if A = f o u for some order preserving isomorphism
f:Go — Hy.

Proof. Let us suppose that R* = R* and P* = P* We set f(p(z)) = Alz)
for every u(z) # oo and f{oog) = oop. This definition is cofrect, since
cog # fi(z) = pu(y) implies Mz) = A(y) # oom. In fact, u{y)™! € G, and
hence i(y)~* = u(z) for some z € R. Thus we have

1= p(z)pu(y) ' = plaip(z) = Tz € R*\ PP =R\ P* = Alzz)=1.

Analogously, from 1 = u{z)u(y)™" and u(y)u(z) = plyz), it follows that
Mz)My) # oop. Finally from Proposition 3.4.6 it follows that p~*(cog) =
X Y(ooy). It is easy to see that f is a homomorphism. In fact, if u(z) <
p(y) then A(z) < A(y). Otherwise, we obtain A(y) < A(z) < oo, and so
AMy)™! = A(z) for some z € R. Furthermore, 1 < A(x)A(y)™! = p{z)p(2)
implies that zz € R = R*, and hence 1 < u(zz). But A(z) = A(y) ™" # o0
implies that j2(z) # oo. Therefore, yz € R*\ P, and so yz € R*\ P¥ ie.,
1 = p(yz). From 1 < p(zz) it follows that u(y) = u(z)~! < p(z). Thus, we
obtain p(y} < p(z), which is a contradiction.
It remains to prove that the following property holds:

(Va,b € G) fla+b) = fla)® f(b).

Since a + oog = e in G and a; + ooy = ay in H, it suffices to consider
the case a,b € G. Let a.b € G and z,y € R be such that ¢ = p(z) and

b= u(y). Then f(a)+ f(b) = flu(z)) + flu{y)). Therefore, if p(z) < u(y)
we have AMx) < A(y), and hence

) + ply) = Flulx)) = Mz) = flul) + f(uy).
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If u(z) = pu(y) then A(x) = A(y), and so the set f(u(z)+ u(y)) is equals

{f(ul2) | () = u(2)} = {A(2) | M2) £ Al2)} = Mz} + Aly),

as required. |

3.5 The existence of non-quotient hyperrings

'The existence of non-quotient hyperrings and hyperfields plays a very impor-
tant and quite determinative role in the independence, self sufficiency and
further development of the theory of hyperrings and hyperfields. The exis-
tence of such hyperrings and hyperfields was proved in [80, 81, 82]. More-
over the construction methods used there endowed this theory with new
interesting classes of hyperrings and hyperfields. The results of this para-
graph were obtained by C.G. Massouros, G.G. Massouros and A. Nakassis
[80, 81, 82, 83, 93}

Let (R,+,-) be a ring and G a subset of R. G is called a multiplicative
subgroup of R if and only if (G,-) is a group. Moreover, if G is such that
R = RG and rG = Gr for all v in R, then G is called a normal subgroup
of R. We remark that only rings with an identity element admit normal
subgroups. As we have already mentioned, a normal subgroup G of R in-
duces an equivalence relation P in R and a partition of R in equivalence
classes which inherits a hyperring structure from R. Hyperrings obtained
via this construction are called quotient hyperrings and are denoted by R/
or by R/P. The following results answer to the questions:

{1) Are all hyperrings embeddable in quotient hyperrings?

(2) Are all hyperrings generated by a set of orthogonal idempotents, em-
beddable into quotient hyperrings?

(3) Are all primitive hyperrings embeddable into quotient hyperrings?
(4) Are all hyperfields embeddable in guotient hyperrings?
Actually, as we have already mentioned, one can generalize the notion

of a quotient hyperring as follows: Assume that P is an equivalence relation
in R and for each r in R, P(r) is the equivalence class to which r belongs.
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Assume that for all @ and b in R, P(a)P(b) is a subset of P(ab). Let R/P
be the set of all equivalence classes in R and for each subset X of R let the
P-closure P(X) of X be the set of all equivalence classes that intersect X.
Clearly the multiplication in R induces an associative multiplication in R/P
provided that the product of any two classes P(a) and P(b) is defined to be
the P-closure of the set in R. Similarly, R’s addition induces a commutative
hyperoperation @ in R/P provided that one defines P(a) & P(b) to be the
P-closure of the set P{a)} + P(b) in R. If P is such that (R/P,®,-) is a
hyperring (as a rule it is not), then R/P is called a partition hyperring.
One can verify that (R/P,©,-) is a hyperring if and only if P satisfies the
following conditions:

P(0) is a bilateral ideal of R such that for every ¢ in R, a + P(0) is a
subset of P(a),

(ii) for every a in R, P(—a) = —P(a),

(iii) P is such that @ is associative and the multiplication in R/P is left
and right distributive over &.

Clearly, condition (iii) is a restatement of the problem and it would be inte-
resting to derive conditions on P that ensure that (R/P, @, ') is a hyperring.
Under this light, the Krasner’s original construction can be seen as a proof
of the fact that if. P is induced by a normal subgroup G, then R/ P inherits a
hyperring structure from R. In the next section, we shall show that there are
hyperrings that are not embeddable in partition hyperrings and that there
are partition hyperrings that are not embeddable in quotient hyperrings.
It turns out though, that the class of partition hyperfields and the class of
quotient hyperfields are one and the same.

Massouros introduced a hyperring which is not isomorphic to a quotlent
hyperring because it contains more than one right unit (a quotient hyperring
R/G has a single unit, the G’s image). Nevertheless, a quotient hyperring
R/G can have subhyperrings that do not contain the G’s image. Thus, such
a subhyperring H could contain more than one unit, either on the left or
on the right (evidently, not both). Indeed, the Massouros’ idea construct
was to consider a ring A with an identity element 1, and to define a ring
R = AzA, in which the addition is defined component by component and
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the multiplication via the following rule: {a,b)- (c,d) = (a{c+ d), b(c + d)).
If we set now G = {(1,0),(—1,0)}, then G is not a normal subgroup of
R (it fails to satisfy rG = Gr for all r in R). Nevertheless, G induces an
equivalence relation P in R such that R/P inherits a hyperring structure
from R. We observe that rG = —rG in R/P and R/P has more than one
right unit (all G with r = (a,b) and a+b = 1).

As we have already mentioned, the existence of multiple units from
the right shows that the hyperring in question is not isomorphic either to
quotient hyperrings or to quotient subhyperrings that contain the image of
the normal group which induces the hyperring structure. But, there exist
quotient subhyperrings that do not contain a unit element and the above
construction is embeddable in a quotient hyperring. Indeed, assume that for
every semigroup S and every ring A, A[S] is the semigroup ring from S over
A, i.e., the set of all mappings from S to A that have finite support. This
set can be endowed with a ring structure where the algebra of a semigroup
over a field is defined. Indeed, for any two such functions f and g it suffices
to define

(f + g)(8) = f(s) + g(s) for every s in S, and

(fo)(r) = Zf(s)g(t) where r € 5 and (s,t} ranges over all pairs such
that st =r.

We observe that for every subsemigroup 1" of S, the elements of A[T]]
can be identified with the elements of A[S] whose support is a subset of
T, ie., that A[T] can be isomorphically embedded in A[S]. Let X be a
left zero semigroup (which means that zy = z for all z and y in X) of
at least two elements, let X¢ be the smallest semigroup with an identity
element e, that contains X, and assume that A has an identity element 1,
such that 1+ 1 is not zero. We observe that A is isomorphic to A[{e}] and
can be isomorphically mapped into A[X® (identifying each o in A with the
function that maps X to {0} and e to a); therefore, F = {—1,1} is a normal
subgroup of A[X*®]. If Y is any two-element subset of X, then we have:

o A[Y] is isomorphic to Massouros’ ring and isomorphic to a subring of
A[X®] (Y is a subsemigroup of X¢),

e F' induces a partition of A[Y] such that A[Y]/F is isomorphic to a
subhyperring of A[X¢]/F,
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o AlY]/F is isomorphic to Massouros’ hyperring.

We remark that F' is not embeddable in AlY]. But, if ¢ maps ¥ onto
{0,1}, then F introduces in A[Y] the same partition as {—g,g} in A[Y]
and this group is isomorphic to the group that Massouros used in order to
partition A[Y]. In what follows we propose to use the following symbols
and terminology:

(1) H* will represent a hyperring whose elements are 0*,a",0", ....

(2) R/P will represent a partition hyperring (it is assumed that P is such
that R/P inherits a hyperring structure from R).

{3) If H' is a subhyperrring of R/P, we denote its elements by ¢/,a’, ¥, ...
If H* and H' are isomorphic, then we assume that the images of
0%,a*,b%, ... are 0/, a’, ¥, ..., respectively. We notice that o’ can also be
seen as & subset of K since it is a P equivalence class.

(4) An equivalence P is said to be induced by a group G, if and only if
the classes of P are of the form rG and G is a multiplicative subgroup
of R. '

The next two propositions link the cardinality of a* @ b* to the cardina-
lity of b as a subset of R (clearly, it is assumed that H* is embeddable in a
partition hyperring, R/P). They are a blueprint for constructing counter-
examples and for proving non-embeddability in partition hyperrings. The
second proposition is, after all, a “counting lemma” and therefore it provides
& natural method for constructing counterexamples.

Proposition 3.5.1. If P is an equivalence relation that induces a hyperring
structure in R/ P, then I = P(0) 4s an tdeal of R. Furthermore, a+1 is a
subset of P(a) for every a in R end P induces a partition P* = P/I over
R*= R/I. Finally, R/P and R*/P* are isomorphic hyperrings.
Corollary 3.5.2. If a hyperring H* is embeddable in o partition hyperring
R/P, then we can assume without loss of generality that P(0) = {0}.

Proposition 3.5.3. Assume that a hyperring H* is embeddable in a par-
tition hyperring R/ P for which P(0) = {0} and assume that there are two
elements a* and b* in H*, such that for every ¢* € a* @ b*, ¢* & (—¢") and
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b* & (—b*} have only 0* in common. Then the cardinality of b cannot exceed
the cardinality of a* ® b*. (Clearly, ¥ is the image of b* and when we speak
about its cardinality, we view VY as a subset of R).

Proof. Indeed, if a is an element in a' and if ; and b, are distinct elements
of ', then a + b, and a + by belong to different equivalence classes in R/P.
Therefore, there is an injection from & into &’ & ¥ in R/P, and as a result
there is an injection from ¥ into ¢* @ b*. This injection is not always a
surjection because the element a of a’ is arbitrary, but fixed.

In the case when P is induced by a group (7, we obtain that aG + b =
(a+bG)G. Therefore, the mapping we described in the above proof is onto.

Corollary 3.5.4. Under the assumptions in Proposition 2.5.8, if P is
induced by a group, then b and o* & b* have the same cardinality.

Now, we shall see how the above propositions can be used in the con-
struction of counterexamples. Proposition 3.5.3 and its corollary can be
used in the construction of hyperrings that are not embeddable in quotient
hyperrings.

Proposition 3.5.5. There are partition hyperrings that are not embeddable
in quotient hyperrings.

Proof. Clearly, commutative hypergroups can be seen as hyperrings, where
every product is zero. Let Q be the set of all rational numbers, and let L
be the set of all irreducible fractions of the form k/m withm =1 orm = 2.
Clearly, L is an additive subgroup of @ and, if it is equipped with the type
of multiplication mentioned above (all products zero), then L is a ring. Let
P be defined as follows: i/k dnd j/m are equivalent if and only if either
k=m=2o0ri+4+j=0 Then L/P is a partition hyperring H* whose
elements are 0* = {0}, z* = {(2{ +1)/2 | i =0,-1,1,-2,2,-3,3,...}, and
d* (i) ={—i,i} fori=1,2,....

One can prove that L/P is not embeddable in a quotient hyperring
R/G by the way of contradiction. Indeed, Corollary 3.5.4 can be used
then to prove that for each 4, d'(i) has two elements and their sum is zero.
Furthermore, we can prove by induction that these two elements can be
chosen in such a way that d*(i) = {—id,id} for i = 1,2,.... If L/P were
embeddable into B/G, then z’ would be of the form z' = 2@ for every z in
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x'. It if were also true that z 4+ z = 0, then forevery yin 2/, y +y = 0.
Furthermore, since for every ¢, d*(i) is in z* @ z*, we can prove that the
above d is of the form zy + y; with z, and y; are in 2’. But, d + d is not
zero while, under our assumptions, (z; + 31} + (21 + 1) is. Therefore, if z
is in #', £ + = cannot be zero. -

Furthermore, we observe that since ' + =’ = {0',d'(1),d'(2),...}, z + =
must belong to some d'(i). This ¢ cannot be even, because if i were equal
to 2m, then both z +md and  — md would belong to ¢’ (z* ® d*(m) = z*).
But then, either £+ md or z — md must satisfy t+t = 0, in contradiction to
what we just proved. Thus, there is an m such that z+z isin d'(2m+1). If
& +x = (2m+1)d, then it suffices to take 2z = 2'—md in order to obtain an
element z in 2’ such that z+2 = d. If on the other hand z+z = —(2m+1)d,
one can achieve the same result by taking z = (m + 1)d — z. Thus we can
always assume that the element z we chose satisfies £ + x = d. '

It ensues then that =’ = {-=z,z, —3z,3z, —5z,5z,...}. Indeed, if y isin
z', then either y +y = (2m + 1)d or y+ y = —(2m + 1)d for a well choose
m. In the first instance, it suffices to consider ¢, t = y — (2m + 1)z. In the
second, ¢ = ¢ + (2m + 1)z. In both cases ¢t + ¢ = 0, and we can prove that
¢ cannot belong either to 2’ or to any d'(i), i = 1,2,.... Hence ¢t = 0 and
therefore, 2’ = {—r, =, -3z, 3z, —5z, 5z, ...}.

Finally, we observe that if 2’ = 2G = (3z)G, then ¢ = (3x)g for some
g in G. But, since 2’ = zG, zg must be of the form (2k + 1)z. Thus,
& = 3(2k + 1)z which implies that (3k + 1)d = (6k +2)z = 0. But, 3k +1
is not zero, and if its absolute value is n, then {3k + 1)d belongs to d'(n).
Therefore, the above line of reasoning produces a contradiction and this
implies that H* is not embeddable in a quotient hyperring. &

While the above construction shows quite conclusively that there are
hyperrings that are not embeddable in quotient hyperrings, it leaves open
the possibility that all hyperrings generated by a set of multiplicative idem-
potents may be embeddable in quotient hyperrings.

Proposition 3.5.6. Let T* be a multiplicative group and let H* be the
disjoint union of {0*,u*,v*} and T*. Then H* can be endowed with a hy-
perring structure if one defines an hyperaddition & and a multiplication as
follows:
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(1) for every a® in H*, a* & 0* = 0* @ o = {a*},

(2) for every a* other.than zero, a* & a* = {0*,a*},

(3) for all distinct a* and b*, o” & b* = H*\ {a*,b*,0*}, provided that
neither a* nor b* is 0%,

(4) for every a* in H*, a*0* = 0*a* = 0%,

(B) u*u* = u*, v*'v* =v* and wv* = v*ut = 0",

(6) for every t* in T™, u*t* = t*u* = u* and v*1* = t*v* = v*,

(7) the multiplication of H* and of T* are identical over T*.

The proof of this proposition is quite straightforward, albeit long. The
important part is that we can prove the following proposition using Propo-
sition 3.5.6.

Proposition 3.5.7. If H* is embeddable in o partition hyperring R/P,
then the following assertion hold:

(1) @' U0 and v' U are finite fields, viewed as subsets of R,
(2) u' and v’ are isomorphic to subgroups of T,

(3) the isomorphic images f(u') and f(v') of W and v are normal sub-
groups of T*,

{4} there are homomorphisms from u' onto T*/f(v') and from v onto

T/ f{u).

Before we delineate a proof of the proposition, let us observe that one,
among many, way of constructing hyperrings not embeddable in quotient
hyperrings is to let 7™ have a prime number element ¢ such that ¢ + 1 is
not a power of 2, e.g., ¢ = 5. Indeed, if Proposition 3.5.7 holds then either
u' or v' would be isomorphic to T* and we would have a finite field of g + 1
elements. Since the latter is impossible, we have produced a class of hy-
perrings that are not embeddable in partition hyperrings. A fortiori, they
cannot be embedded in quotient hyperrings.

Proof. 1f H* is embeddable in a partition hyperring R/P, then we could
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use Proposition 3.5.3 to prove that the images v’ and v’ of u* and v* respec-
tively, are finite subsets of R having at most ¢ elements. Moreover, since
w* and v* are multiplicative idempotents, it follows that u’ and v' are mul-
tiplicative semigroups of R. We can construct a semigroup homomorphism
f that maps v'zv’ onto T* by defining f as follows: f(u,v) = t* if and only
if u+ v is a member of ¢’ (as we have already indicated, ¢ is the isomor-
phic image of t* when H* is mapped into a subhyperring of R/P). Since
uw*v* = v*u* = 0* and 0’ has a single element, R’s zero, for any two pairs
(u1,v1) and (ug,vs) from w'zv’, (uy + v1)(uz + v2) is equal to wyuz + vive.
Therefore, f(uyug,vive) = f(ug,v1)f(uz,v2) and f is 4 semigroup homo-
morphism from w'zv’ onto T*.

Now, let (ug,vp) be a multiplicative idempotent in v'zv’ (such an idem-
potent exists because w'zv’ is finite). Then, if u = up, then we obtain a
homomorphism f(ug,v) that maps v’ into a subset f(v") of T*. Similarly,
if v = vy, then we obtain a homomorphism f(u,ve), that maps ' into a
subset f(u) of T*. It is elementary then to check that f(uo,v) and f(u,vo)
are injections and all finite semigroups of a group are groups. It ensues that
v, v and ¥'zv’ are multiplicative groups and that f is a group homomor-
phism from w'zv’ onto 7. It follows also that (ug,vp) is the unity of u'zv’
and that {up}zv’ and wz{v} are normal subgroups of w'zv’. Then u' is
jsomorphic to w'zv' /{up}zv’ and v’ is homomorphic to T*/ f{v'). Similarly,
v’ is homomorphic to T*/f(u'). It is easy now to check that v’ U {0} and
v' U {0} are finite fields (' and v' are finite groups, ' + ' = v’ U {0}, and
v+ v = v/ U {0}, We notice also that if the cardinality of T* is a prime
number g, then either @' or v’ is isomorphic to T*. Indeed, if f(u'} is not
T*. it must be equal to {e*}, where ¢* is the identity of 7. But then,
the finite group v’ is isomorphic to f(v'), which is a subgroup of T, and
homomorphic to 7*/{e*} and the only way this can happen is if ¢’ has g
elements.l

A similar construction can be used in order to show that there exist
hyperfields that are not embeddable into partition hyperrings. Given that
each hyperfield is an irreducible and faithful module over itself, it follows
that there are primitive rings that are not embeddable into partition hyper-
fields. Indeed, let 7= be any finite group of m > 3 elements and define a
hyperfield structure over H* = T* U {0+}, as follows:
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(1) a*0* = 0*a* = 0*, for every a* in H*,
(2) ¥ =0"®a" = {a*}, for every a* in H*,
(3) a* & a* = {a*,0*}, for every a* in T*,

(4) a*@b* =b"@a* =T"\ {a*,b*} for every ¢* and b* in T, provided
that a* and b are distinct.

Structures that satisfy such properties are not very uncommon. Indeed, it
suffices to consider the field of complex numbers € and the multiplicative
group R* of all nonzero reals, in order to obtain a quotient hyperfield C/R*
that has properties (3) and (4). We can prove the following result:

Proposition 3.5.8. If the above constructed H* is embeddabl}e in a partition
hyperring R/ P, and if H' is the isomorphic image of H*, then the following
statements hold:

(1) The isomorphism maps the unit e* of T* onto a finite multiplicative
subgroup of R that will be called €' in what follows,

(2) If Hy is the subset of R that corresponds to H', then ¢ and P induce
the same partition on Hi,

(3) €' U{0} is a field of rn—1 elements while H; is a field of m(m—2)+1 =
(m —1)? elements.

Notice that if (1)-(3) hold, then we can choose 7™ in such a way that H*
cannot be embeddable in a partition hyperring. Indeed, all finite fields are
commutative, their cardinality is a power of a prime, and the multiplicative
group of their nonzero elements is cyclic. One can choose then either m or
the structure of T* in such a way that H* is not embeddable into a partition
hyperring.

Proof. By Proposition 3.5.3, all nonzero elements of H' correspond to finite
subsets of R having m — 2 elements or less. Let H, be the union of all these
subsets. We start by observing that ¢’ is a finite set multiplicatively closed,
without divisors of zero (e'e’ = ¢’). Furthermore, we have ' & ¢’ = {¢/,(0'}
and so if  and y are distinct elements of ¢/, then z — y is in €. It follows
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that for every a in €', the mappings z —— azr and = — za are injections
from €' into e’. Therefore, ¢’ is a group. The same reasoning can be used
for Hy \ {0}. Since H'\ {0} is isomorphic to T, H; \ {0} has no divisors
of zero and is multiplicatively closed. If x and y are distinct elements of
H,, z — y belongs also to H; and we deduce that for every a in H; \ {0}
the mappings z ~-+ ax and z — za are injections. Since H; is finite it
follows that Hy \ {0} is a group, €' is a subgroup of H, \ {0}, and these two
groups share the same identity element e. Let 2’ be any nonzero element
of H'. Since H' is a hyperfield, there is a ¢ such that /2’ = z'y = €' in
H'. It ensues that if y is any element of 3/, then yz’ and z'y are subsets
of ¢ in Hy. The inverse z of y in H; \ {0}, is clearly an element of z’. By
multiplying by = we obtain that z’ is a subset of ze¢’ and ¢’z in Hy. On the
other hand, since z'¢’ = €'z’ = 2’ in H’, it follows that ze’ and 'z must
be subsets of 2’ in H,. Hence ' = ze = ex for some x in 2'. But, if this
property is true for one z in z/, it is true for every & in 2’ (it suffices to
remark that €' is a group). Since P is induced by €’ over Hj, each class in
H) has exactly m ~ 2 elements (Proposition 3.5.3) except of ¢ that contains
only 0. Therefore, H; is a field of m(m — 2) + 1 elements while ¢’ U {0} is
a field (e* @ e* = {e*,0*}) of (m — 2} + 1 elements. A

Non quotient hyperfields

We shall construct a class of hyperfields which contains hyperfields that are
not tsomorphic to quotient ones. The idea there is to take a group G and
to introduce a hyperfield structure over H = G U {0} as follows:

(1) For every hin H, h@ 0 =08 h = {h},
(2} 1 ® g2 = {q1, g2} for every two distinct elements of G,

(3) g g=H\ {g} for every g in G.

One can prove that G can be chosen in such a way that /1 is not embeddable
in a quotient hyperfield. Indeed, we have:

Proposition 3.5.9. If G is not trivial and gg = ¢ for every g in G, then
H is not isomorphic to a quotient hyperfield.
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Proof. This can be proven by the way of contraposition. If H was isormorphic
to a quotient hyperfield F/Q), then

(1) Since gg = e in G, ) contains all squares in ¥ other than zero,

(2) Since for each element g in G, g g = H\ {g}, it follows that ¢} = --Q
and Q+Q=F\ Q.

But, if all squares of F' and their opposites are in ¢}, then we obtain a
contradiction. If the characteristic of F' is not two, then each element of
F is the difference of two squares. If the characteristic of F' is two, then
the sum of two squares is a square. Otherwise, Q + @ cannot be equal to

F\Q =

Finally, one can prove that if a Cartesian product of hyperrings is em-
beddable in a quotient hyperring, then every term of the product which is
a hyperfield must be isomorphic to a quotient hyperfield. Thus, one can
produce hyperrings that are not embeddable in quotient hyperrings.

Therefore, the structures and counterexamples that appeared in this sec-
tion, proved that the theory of hyperrings is not a straightforward extension
of ring theory.

3.6 Semigroups admitting hyperring
structure | .

We say that a semigroup (S,-) admits a hyperring (ring) structure if there
is a hyperoperation {operation) + on S® = § U {0}, such that (5%, +,) is
a hyperring (ring). In [66], Kemprasit and Punkla gave a necessary and
sufficient condition for a set X so that some transformation semigroups on
X admit a hyperring structure.

Example 3.6.1. Let G be a group and define d hyperoperation + on G° by
r+0=0+z={z} forall z € G,

z+z=G"{zr} for all z € G\ {0},
z+y={z,y} forall z,y € GO\{0} with a # y.
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We can easily verify (G°,+,-) is a hyperring. From this fact, we conclude
that every group admits a hyperring structure.

Let SR and SHR denotes the class of all semigroups admitting a ring
structure and the class of all semigroups admitting a hyperring structure,
respectively. Then SHR contains SR as a subclass. Semigroups belonging
to the class SR have long been studied, for example see [64, 65]. Kem-
prasit and Punkla characterized some standard transformation semigroups
belonging to SHR.

Let X be an arbitrary set and let

Px = the partial transformation semigroup on X,
Tx = the full transformation semigroup on X,
Ix = the one to one partial transformation semigroup on X,

Gx = the symmetric group on X,
My = the semigroup of all one to one transformations of X,
Ex = the semigroup of all onto transformations of X.

Observe that
Gx € Mx ClIx C Py,
Gx € Mx CTx C Py,
Gx CEx CTx C Px.

The following facts are known. If X contains more than two elements, then
the center of Gy is {1x}, where 1y is the identity map on X. For a € Px;
o? = o if and only if Ima C Doma and za = ¢ for all z € Ima where
Doma and I'ma denote the domain and the image of «, respectively. For
convenience, the following notation will be used.

For distinct a1, az,...,a, € X, let (a1, a2, ..., @,) be the element of Gx

defined by

air1 ifx=aq; forsomeie {1,2,..,n—1},
(1,02, ...,0n)(z) =< a1 ifz=a,,
T otherwise

For AC X, A# (0 and z € X, let A, € Py be defined by DomA, = A and
ImA, = {z}.
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Let X be an arbitrary set and |X| denote the cardinality of X. Firstly,
we notice that if [X| = 0, then all of the previous transformation semi-
groups contain exactly one element. If |[X| =1, Py = Iy & (Z,,+) and
Ty = My = Ex = Gx which contains exactly one element. Hence if
| X| <1, all of these transformation semigroups belong to SR (C SHR).

Theorem 3.6.2. Let S be Px or Ix. Then SESHR if and only #f | X|<1.

Proof. Assume that § € SHR. Then there exists a hyperoperation + on
5° such that (S +,-) is a hyperring, To prove that [X| < 1, suppose
to the contrary. Let a,b € X be such that ¢ # b. The element {a}, of
S maps a in b. Similarly, we can define other elements of S, such that
{a}s and {b},. Since @ # {a}, + {a}s C S, there exists an element a€S
such that o € {a}s + {a}s. Thus {a},a € {a}.({a}s + {a};). But
{a}o({a}a + {a}s) = {a}o + 0 = {a},, so {a},a = {a},. This implies
that a € Doma and aa = a. Consequently, we have a{a}, = {a},. Hence

{a}e € ({a}a+{a}eHa}a Since ({a}a+{a}e){a}s = {a}o+{a}s, it follows

that
0={b}e{a}a € {b}a({a}a + {a}) = 0+ {a}s = {a}a.

This is a contradiction. Hence |X| < 1. The converse follows from what we
have mentioned above. B

Theorem 3.6.3. Tx € SHR if and only if [ X| < 1.

Proof. Assume that Tx € SHR and suppose that |X] > 1. Then there
exists a hyperoperation + on T% such that (7%, +,") is a hyperring. Let us
note that for a, 8 € T%, o = 0 implies that « =0 or # = 0. Let ¢ and b
‘be distinct elements of X and define a, 3 : X — X by

alz) z{ i if z € {a,b}

otherwise
_J b ifz€{a,b}
Alz) = { z otherwise.

Then o, € Tx, a* = a and 3% = 8. It is easy to see that ¢ = a. Thus

w—a=ac—af=ala-p)
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Since 0 € o — o and a # 0, we have 0 € a — 8. Consequently, we have
o = f3 which is a contradiction. As it was mentioned previously, the converse
holds. ®

Theorem 3.6.4. Let S be Mx or Ex. Then § € SHR if and only if X is
finite. '

Proof. 1If X is finite, then S = Gy, so § € SHR since every group is in
SHR.

‘Conversely, assume that S € SHR. In order to show that X is finite,
suppose to the contrary that X is infinite. Let + be a hyperoperation on
89 such that (S°,+,-) is a hyperring. Again, let us note that for o, 8 € 5?,
af = 0 implies @ = 0 or § = (. Since for every a € Gx,

(—lx)a=—(1xa) = —(elx) = a(—1x),

it follows that —1x is in the center of G'x. Since X is infinite, the center of
Gx ts {1x}. Therefore —1x = 1x. Consequently, we have —a = « for all
ac€8,s00€ca+afralacS Next let a and b be distinct elements
of X. Since X is infinite, |X| = |X \ {a,b}| so there exists a one to one
map 7 from X onto X \ {e,b} and a map A from X \ {a,b} onto X. Define
p: X = X by u(a) = u(b) and p(z) = Az) for all z € X \ {e,b}. Then
v € Mx and p € Ex. Denote the transposition map of e and b by (a,b).
Then we have (a,b)y = v and pfa,b) = p.

Case 1. S=My. Since 0 € y+v and y+v=(a,b)y+1xy=((a,b)+1x)7,
we have 0 € ((a,b) + Ix)y. But v # 0, 50 0 € (a,b) + 1x. Then (a,b) is
an inverse of 1x in (5% +4). This is a contradiction since 1y is the unique
inverse of 1x in (8%, +).

Case 2: S=Ex. Since 0 € p4p and p+p=p(a,b)+ulx=p((a,b)+1x),
we have 0 € u((a,b) +1x). But u#0,s00 € (a,b) + 1x. This implies that
(a,b) is an inverse of 1x in (§° +) which is a contradiction because 1x is
the unique inverse of 1x in (S, +).

Therefore the theorem is completely proved. ®
The following two corollaries are obtained from the fact that SRCSHR,

Theorem 3.6.2 and Theorem 3.6.3, respectively and the paragraph before
Theorem 3.6.2.



110 Bijan Davvaz and Violeta Leoreanu-Fotea

Corollary 3.6.5. Let S be Px or Ix. Then S € SR if and only if | X| < 1.
Corollary 3.6.6. T'x € SR if and only if | X| < 1.

We know that Gx € SHR for any cardinality of X and if X is finite
and |X| > 3, Gx € SR. The following theorem shows that the condition
n < 2 is necessary and sufficient for Gx to belong to SR.

Theorem 3.6.7. Gx € SR if and only if | X| < 2.

Proof. Assume that Gx € SR. Let + be an operation on G% such that
(G%,+,-) is a ring. In order to show that |X|<2, suppose to the contrary
that | X|>2. Let a, b and c be distinct elements of X. Then (a, b, ¢)+(a, c)=a
for some o € G%, where (a,b,¢) is a cycle of length 3.

Case 1: a = 0. Then (a,b,¢c} + (a,¢) =0, so

0= ({a,b,¢) + (a,0))(a,c) = (a,b,¢)(a,c) + Ix = (b,c) + 1x
0= (a,c)({a,b,c) + (a,c)) = (a,c)(a,b,c) + 1x = (a,b) + 1x.

These imply that (a,b)+ 1x = 0 = (b,¢) + 1x which is a contradiction since
(a,b) # (b, ¢).
Case 2: a#0. Then (b, c)+1x=({a,b, c)+(a,c)){a, c)=a{a, c), and so

lx 4+ (b,c} = (b,c)((b,c) + 1x} = (b, c)o(a, ¢).

Then we have afa,c) = (b, c)a(a, c). Since o and (a,¢) are in the group
Gy, it follows that (b,¢) = 1x, a contradiction.

- Conversely, assume that | X| < 2. If |X| <1, then Gx € SR. f | X| =2,
it is clear that G% 22 (Z3,-}, 50 Gx € SR. A
We use Theorem 3.6.4 and Theorem 3.6.7 to obtain the following theorem.
Theorem 3.6.8. Let S be Mx or Ex. Then S € SR if and only if | X| < 2.

Proof. Let S € SR. Then § € SHR, so by Theorem 3.6.4, X is finite.
Thus S = Gx. Hence |X| < 2 by Theorem 3.6.7.
Conversely, if |X| < 2, then § = Gy, so0 § € SR by Theorem 3.6.7. B

Now, we characterize multiplicative interval semigroups on R admitting
hyperring structure.
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Proposition 3.6.9.[65] A subset S of R is o multiplicative interval semi-
group on R if and only if S is one of the following types:

[0,6) where 0 <b<1,

(12) (a,b) where —1<a<0<a®<b<1,
(13) [a,b] where —1<a<0<a®<b<1,
(14) (a,b) where —1<a<0<a®<b<1,
(15) [a,b) where —l<a<0<a?<b<l

(1) R,
(2) {0},
3) {1}
(4) (0,00),
(5) [0,00),
(6) (a,00} where a>1,
(7} la,00) where a>1,
(8) (0,b) where 0<b<1,
(9) [0,b]  where 0 <b< 1,
10) (0,8] where 0 <b <1,
)
)

Lemma 3.6.10. If S is a multiplicative interval semigroup on R such that
S C[0,00), then § € SHR.

Proof. By assumption, S is one of types (2)-(11) in Proposition 3.6.9.
Clearly, S € SHR if S is of type (2) or (3). '

Case 1: S is one of types (4), (5} and {8)-(11). Then SY can be con-
sidered as 5% = [0,00) or S = [0,b) or [0,b] for some b > 0 with b < 1.
Define the hyperoperation ¢ on S° by

z@z = [0,z forall z€S5° and
@y = {max{r,y}}  for all distinct z,y e °

Then, (8°,4) is a canonical hypergroup. In order to show that (5%, &, ) is
a hyperring where - is the multiplication on $°, set z,7y, 2 € S°. We have

{z} ify<z,
y@z=1< {y} ifz<y,
[0,y] ify==z
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Butz >0, s0
{zz} ify<z,
zly®z) =+« {zy} ifz<y,
[0,zy] ify=cz.

Since z > 0, we obtain z(y ® z) = zy ® 2.

Case 2: S is of types (6) or (7). Then S = (a,00) or [a, 00} for some
a > 1, s0 S° can be considered as S'U {0} where 0 is the zero real number.
Define the hyperoperation © on S° by

rdzr = 0dx={z} forall z¢e 89,
zdz = [z,o0}U{0} forall z€S§ and,
zdy = {min{z,y}} for all distinct z,y€ S.

Then, (S° &) is a canomnical hypergroup. We claim that (5% @,-) is a hy-
perring where - is a multiplication on S°. Set z,y,z € 8% If x = 0, then
z(y @ z) = {0} = zy ® zz. Assume that z # 0. Then z > a > 1. We have

{z} fy=00r0<z<y,
y&z=<¢ {y} fz=00r0<y< a2z,
[y,00}U{0} f0<y=2

The fact that z > 0 implies

{zz} ify=0o0r0<z<y,
z{y®z) =< {zy} fz=00r0<y<z,
[zy,00) U {0} H0<y=2

Since x > 0, then we have that z{y ® z) = 2y & zz.
Hence the lemma is completely proved. &

Lemma 3.6.11. Let S be a multiplicative interval semigroup on R such
that S ¢ 10,00). Then 5§ € SHR if and only if for everyz € S, —z £ S.

Proof. By assumption, S is one of types (1) and (12) — (15). Then 5% = S.
Firstly, assume that for every z € 8§, —z € §. Define the hyperoperation &
on S by ‘
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zdz={z} for all z € S,
zdy=ydz={z} forall z,y€ S with |y| < |z| and
@ (—z) = |—|z|,|z|] forall xzeS.

Then, (S,®) is a canonical hypergroup. Let z, y, z € 5. Then

il it < 1
{2 if |y| < |zl
®z= :
yes {y} if | 2 < |y},
—lyLlyll ifz=-y
If £ > 0, then z[-|y|, Iyl = [~=lyl, z|yl] = {—|zyl, |zy]], and if z < 0, then
z[—|yl, [yl = [=lyl, —zlyl} = [~|zyl, |ryl). Therefore we have
{zy} if y = z,
£y ® ) = {2} if |y| < |2,
Y — {zy} if |2 < |y,

[—lzyl, [zl if 2 = —y.

So we have z(y @ z) = zy ® zz. Hence (5,®,-) is a hyperring where - is the
multiplication on S. Therefore 5 € SHR.

For the converse, assume that there exists ¢ € S such that —¢ ¢ S.
Then S is one of types (12)—(15). In order to show that S ¢ SHR, suppose
to the contrary that § € SHR. Then there exists a hyperoperation & on
8 such that (5,®,-) is a hyperring where - is the multiplication on S. Set
K={zeS|~—z¢€S} Thence S\ K and there exists ¢ > 0 such that
K =|-eelor K= (—ee). fze S\K, then -z ¢ Sand 0 € x @ y for
some y € 5, so

lecz(z@y)=2"zy and 0 € (z@yly=zy DY
which implies that 22 = y? and hence y = x. This proves that
Dezxpz forall z€ S\ K.

Hence, 0 cay®zy forall ze S\K and y€S5.
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We claim that

for every z € K\ {0}, O¢zd(—z) and
forevery y€ z®(—z), -yeEzd(-2z)

In order to prove this, let z€K\{0}. We have Occz@cz. U 0exd(—z),
then Occz®(—cz) which implies that cx = —cz, a contradiction. Hence
0¢z&® (~x). Next, let y € z® (—z). Then

—zy € (—1*) B2 = 2(z & (—x)).

It follows that —zy = xt for somet € 2@ (—z), 80 —y=t € 2 & {—zx).
Case 1: K = [—e,e]. Hence, there exists y € K such that y > 0 and
y €ed(—e). Then

0 < g <1 and. cy€ced(—ce).

Since (S, ) is reversible, then ~ce € ce B cy. Since 0 < y/e < 1,

0<—C—3—Sc if ¢>0 and

0>%Zc if e<O.

It follows that cy/e € S since S is an interval on R and 0, ¢ € S. Hence
—ce€ce® (Eg)e = (c® e
e

which implies that —ce=te for some t € ¢ & cy/e. Consequently, —e=t € S,
a contradiction.

Case 2: K = (—e,e). Thene ¢ K. Let d € K be such that d > 0. Then
0 < d < e. So there exists z € K such that z > 0 and z € d ® {(~d). Thus
0<z<e.

Subcase i: ¢ > e. Sincec € S,e € S\ K,s0 —e ¢ 5. Since z € df (—d),
ez € ed ® (—ed). Since (S, ®) is reversible, —ed € ed @ ez. If z < d, then
0 <ez/d<e, soez/d €S and hence

ez ez

—edEedd (E) d = (e'@ —5) d
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whence —e € e ® ez/d C S, a contradiction.

Next, assume that 2 > d. Then 0 < ed/z < e. Thus ed/z € K. From
that ez € ed @ (—ed),

e’d € %d(edea (—ed)) = %F—- 3 (—fidi) =ed (ﬁ & (—E§)>

Z z z

which implies that e € (ed/z) © (—ed/z). So —e € (ed/z) & (—ed/z) C S,
a contradiction.
Subcase ii: ¢ < —e. Then —e € S\ K, andsoe ¢ S. Since z € d®{—d),
(—€)z € (—e)d @ (—e)(-—d). Since (S, ®) is reversible, then
ed = {—e}{—d} € (—e)d ® (—e)z = {—ed) ® (~ez).

First, assume that z < d. Then 0 > —ez/d > —e, s0 —ez/d € S. Hence
ez ez
ed € (—ed) @ (—-d—) d= ((—e) ® (——5)) d

whence e € (—e) & (—ez/d) C S, a contradiction.

Next, assume that z > d. Then 0 > ~ed/z > —e. Thus —ed/z € K.
Since (—e)z € (—e)d & (—¢e)(—d), we have

fd € ~2(~ed) & ed) = Lo (—e—z‘i) — (—e)d ((—93!) o f-@) _

z z Z

Consequently, we have that —e € (ed/z) ® (—ed/z).
So e € (edfz) ® (—ed/z} C S, a contradiction.
Hence the lemma is completely proved. B

We note that (R,:} € SR € SHR. The hyperoperation @ defined for
the case S = R makes (R, @, -) is a hyperring which is not a ring.

Now we are ready to state our main result which follows directly from
Lemma 3.6.10 and Lemma 3.6.11.

- Theorem 3.6.12. Let S be a multiplicative interval semigroup on R. Then
S & SHR if and only if either S C [0,00) or for everyz € 5, —xz € S.

By Proposition 3.6.9, Theorem 3.6.12 is equivalent to
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Theorem 3.6.13. A multiplicative interval semigroup S on R belongs to
SHR if and only if S is one of the following types:

(1) R,
(2) {0},
(3) {1},
{4) (0,00},
(5) [0,00),
(6) (a,00) where a>1,
(7) {a,0c) where a>1,
8 (08) where 0<b<1,
(9) [0,8] where 0 <b <1,
(10} (0,b] where 0<b<1,
(11) [0,b) where 0<b<1,
(12) (—c,c) where 0 <? <c<1,
(13) [~¢,¢] where 0<c*<c<1.

Remark 3.6.14. It is easy to show that there are exactly 6 types of additive
interval semigroups on R as follows: R, {0}, (@,0c) where a > 0, [a,00)
where a > 0, (—oc,b) where b < 0, {(—oc, b] where b < 0.

Let S be an additive interval semigroup on R and S # {0}. Then §
has no zero. Thus S° can be considered as S U {—oo} where z + (~o0) =
—oc +x = —oo for all z € S U {—oc}. Hence under the usual order on R
and defining z > —oo for all z € SU {—o0}, we have that S U {~o0} is
a totally ordered set having —oo as its minimum element. If S is of type
(1), (5) or (6), by following the proof of Case 1 of Lemma 3.6.10, we have
5 € SHR. If §is type (3) or (4), we have S € SHR by following the proof
of Case 2 of Lemma 3.6.10.

Therefore every additive interval semigroup on R belongs to the class
SHR.

In the continuation of this section, we let 2’ be the opposite of z in any
hyperring (A, +, ).

Let V be a vector space over a division ring R and n a positive integer.
We denote by Lg(V') and Gr(V) the semigroup of all linear transformations
a : V — V with respect to the composition and the unit group of Lg(V),
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respectively. Then
Gr(V)={a:V — V|« is an isomorphism }.

Let M,(R) and G,{ R) denote respectively the full n X n matrix semigroup
over R and the matrix group of all invertible n x n matrices over K, that
is, Gn(R) is the unit group of M,(R). It is known that if dimpV = n, then

La(V) = M,(R) and Gr(V) = Gn(R).

Since every group is in SHR, we have that G%(V) € SHR.

We know that Lr(V) € SR C SHR with the usual addition +. Then
in the ring (Lr(V),+,), o/ = —a for all o € Lg(V).

If k is any cardinal number such that 0 < k < dimpgV/, then

S = GR(V) L {Oé e IR(V) | dimpIma < k}

is clearly a subsemigroup of Lg(V') containing Gr(V).

We denote the center of R by Z{R). It is clear that for a € Z(R),
aly € Lg(V) where 1y is the identity map on V and aly is defined in the
usual sense, that is, (aly)(v) = a{lyHv) =avforallv € V.

Lemma 3.6.15. Assumne that B is a basis of V. Let a € Lp(V') be such
that af = Ba for all B € Gr(V) and for every v € B, afv) = a,v for some
ay € R. Then there exists a € Z(R) such that o = aly.

Proof. 1t is trivial if B = {. Assume that B # §. In order to show that
a, € Z(R) forevery v € B, let u € B and b € R\ {0}. Define § € Lg(V) by

B bu if v=u,
plo) = v ifve B\ {u}.

Since (B \ {u}) U {bu} is a basis of V, § € Gg{V'). Then af = fa by hy-
pothesis. Thus (Ba)(1)=8(a,u)=(ab)u and (af)(u)=a(bu)=(ba,)u which
implies that a,b = ba,. Hence a, € Z(R).

Next, we shall show that a, = a, for all v,v' € B. If |[B|=1ora, =0
for all v € B, there is nothing to prove. Assume that |B| > 1 and a,, £ 0
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for some w € B. Let z € B\ {w}. Define v € Lg(V) by
z if v =w,
v(v) = apw ifv=z,
v if v € B\ {w,z}.
Since a,, # 0, (B\{w})U{a,w} is a basis of V, s0 v € Gg(V). By hypothe-
sis, ay = ya. Then (va)(w) = y(a,w) = a,z and (ay)(w) = a(z) = a,2.
These imply that a, = a,,. Hence the lemma is proved. B

Lemma 3.6.16. Let o € Lg(V) and assume that aff = Pa for all
B € Gr(V). Then there ezists a € Z{R) such that o = aly.

Proof. Let B be a basis of V. In order to show that for every v € B

a(v) = ayv  for somea, € R,

suppose to the contrary that it is not true. Then there exists u € B such
that a{u) # bu for all b € R. Then afu) # u and {u,a(u)} is linearly
independent. Let B’ be a basis of V containing {u, a(u)}. Consequently,
{u+ a(w)}U(B'\ {a(u)}) is a basis of V. Define § € Lg(V) by

o uteau) ifv=oau),
Blv) = { v ifve B\ {a(u).

Then § € Ggr(V) since {u + a(u)} U (B"\ {«(u)}) is a basis of V. By
hypothesis, af = fa. But (fa){u) = v+ a(u) and (af)(u) = alu), so we
have u = 0, a contradiction. Now, by Lemma 3.6.15, a = aly for some
a€ Z(R). m

Theorem 3.6.17. Let S be a subsemigroup of Lg(V) containing Gr(V).
Assumne that @ is a hyperoperation on S° such that (5°, &, -) is a hyperring.
Then

o =aforallae S oro = —a for all @ € §°,

where o' represent the opposite of o, with respect to ®.

Proof. The result is trivially true if V = {0}. Assume that V # {0}. Since
Gr(V) C 8, 1y € §. Then, for every a € Gg(V') we have

o= (lye) = d = (aly) = all,.
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By Lemma 3.6.16, 1}, = aly for some a € Z(R). Since (1},)? = 1y, we
obtain (aly)? = 1y. If u € V'\ {0} then au = (aly)*(u) = ly(u) = u. We
deduce that a® = 1, so @ = %1 since R is a division ring. Consequently, we
have 0 € 1y & 1y or 0 € 1y & (—1y) which implies that

Oc(ada)forall ac8® or 0€(a®—a) forall a € 5%

Hence the theorem is proved. B

Corollary 3.6.18. Let S be a subsemigroup of M,(R) containing all non-
singular matrices in M,(R). Assume that & is a hyperoperation on S° such
that (S®, @, ) 4s a hyperring. Then

A=AforalAecS8 or A=—AforalAeS

where A’ is the additive inverse of A in (5°,®,-).

We know that Ggr(V) € SHR for any dimension of V. As a consequence,
we have that Ggr(V) € SR only for case dimgV < 1.

Corollary 3.6.19. Ggr(V) € SR if and only if dimgV < 1.

Proof. Since Gr(V) = {0} if dimgV=0 and Gg(V) = R\ {0} if dimgV=1,
we have that Gg(V} € SR if dimgV < 1.

Conversely, assume that Gg(V) € SR and suppose that dimgV > 1.
Let @ be an operation on G%(V) such that (G}(V),®,-) is a ring. By
Theorem 3.6.17,

a@Ga=0 forall aeGY{(V) or
a®{~a)=0 forall ae GR{V).

Let B be a basis of V. By assumption, |B| > 1. Let v and w be distinct
elements of B. Define 7 € Lp(V) by

w if v =,
Blo)=¢ u ifv=1,
v ifve B\ {u,w}.
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Then 8 € Ggr(V), 8 # 1y and 3% = 1y. Since u and w are linearly
independent over R, w % —u, so f # —1y. We have that 1y & 8 # 0 and
1y & (—3) # 0. Then we have

0+ {1y & B)2 Iy & B[ @F

lvefaefdly

I

and

0#(ly@B)(lve(-h) = lva(-fese(-F)
= lyd(-Bafa(-1lv)
Therefore, we obtain a contradiction. Hence the corollary holds. ®
As an immediate consequences of Corollary 3.6.19, we have
Corollary 3.6.20. G,(R) € SR if and only if n=1.

We note here that if dimgV =20, then Lr(V)={0} and Lg(V) \ Gr(V)=0
and if dimgV'=1, then Lp(V) = R and Lg(V)\ Gr(V)={0}.

Theorem 3.6.21. Assume that dimgV > 1 and let S be a subsemigroup of
Lg(V') containing Lr(VY\ Gr(V). If S € SHR, then S = Lg(V).

Proof. Let © be a hyperoperation on S such that (5,4,-) is a hyperring
where - is the operation on S. In order to .show that § = Lp(V), let
a € Lg(V). fa ¢ Ge(V), then o € Lg(V)\ Ggr(V) C S. Suppose that
a € Gr(V). Let B be a basis of V. Then |B| > 2. Let u € B be fixed.
Then {a{u)} is not a basis of V. Let 8,7 € Lg(V) be defined by

Slo) = { a(v) ifve B\ {u},

0 if v =u.

alu) if v=u,
yv) = .
0 if ve B\ {u}.
Then 3,7 € Lg(V)\ Gr(V) C 8,50 3@+ C §. For each w € B, let

Aw € Lg(V') be defined by

w if v =,
/\w(v):{ 0 ifve B\ {w}
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Then A, € S for all w € B, so (8@ 7))\ = BAy & A, for all w € B. We
clearly have
Br =0, (vAuHu)=o(u),
B, (v) = a(v) forall v € B\ {u} and
YAy =0 for all v € B\ {u}.

Consequently, we have
(ﬁ & '7)/\1& = {7/\11.}

‘and
(B = {BA} for all ve B\ {u}.

Let n € § & . Then we have
nAu = YA, and A, = A, for all v e B\ {u}. |
These imply that

) = (M) () = (vAu)(u) = o(u)

and
n(v) = (nA ) (@) = (BA){v) = av) for all v € B\ {u}.

It follows that o = € &~y C S. Hence we prove that S = Lg(V), as

required. B |

As a conse%;uence of Theorem 3.6.21, we have

Corollary 3.6.22. Assume that n > 1 and let S be a subsemigroup of
ML(R) containing all singular matrices in M,(R). If S € SHR, then
S = M.(R).

Now, our purpose is to verify that the direct hmit (inverse limit) of an
SHR direct family (respectively, an SHR inverse family) of SHR semi-
groups is an SHR semigroup. We use the results obtained by V. Leoreanu
(see [75]).

Definition 3.6.23. We say that a family {< H;, o; >};cs of semigroups is
a direct (inverse} family if:

(1) ({,<) is a directed partially ordered set;
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(2) V(i,7) € I?, i j == H,NH; =0

(3) ¥(i,5) € I?, i < j (vespectively, i > 7) there is a homomorphism
of semigroups fi; : H; — Hj, such that if ¢ < j < k (respectively,
i>j>k), then fnfi; = fiand Vi€ I, fi;; = 1p,.

A direct (inverse) family of canonical hypergroups, a direct (inverse)
family of hyperrings, etc. are defined similarly.

Definition 3.6.24. We say that a family of SH R semigroups {{H;, o;) }ic;
is an SHR direct (inverse) family if there is an associated direct (inverse)
Jamily of hyperrings {(H?, @, 0;) }ic1. An SR direct (inverse) family of SR
semigroups is defined similarly. : '

Let {{H;, 0;) }ier be a direct {(inverse) family of semigroups. If (i, §)€1?,
i < jand x; € H;, we set fi;(zx;) = z;. We shall recall the construction of
the direct limit of a direct family of semigroups.

Let H = UH" and we consider the following equivalence relation on H:
i€l

V(x;,yj)eHl % HJ! set _‘L’i r~ yj —— Hk = I, k 2 i, k zj)
such that fix(zi) = fir(y;).

Let H be the set of all equivalence classes on H and for each z € H , let
Z denote the equivalence class of z. -
We define the following operation on H:

Fog=zif Hel, An; €N H;, Iy,egn Hy, 2,620 H;,
such that ;0 Y = zj.

< H,o > is the direct limit of the direct family {< H;,0; >}ier. < H,0 >
18 a semigroup, being the direct limit of a direct family of semigroups.

The direct limit of a direct family of canonical hypergroups, the direct
limit of the direct family of hyperrings, etc. are defined similarly.

Theorem 3.6.25. Let {< H;,0; >}ier be a direct family of semigroups
with the corresponding family {fi; | (1,7) € I?, i < 5} of homomorphisms,
such that Vi € I, 3k € I, k>i : < Hy,o1 > is an SHR semigroup. Set
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K={kel |<Hy,or> is an SHR semigroup}. So, for each k € K, there
exists a hyperoperation &y, on HY such that (HY, @, ox) is a hyperring. If
V(k,b) € K%, k<{, fi is a homomorphism of hyperrings, then the direct
limit of the direct family of semigroups {<H;, 0> }ier 15 a SHR semigroup.
Hence the direct limit of an SHR. direct family of SHR semigroups is an
SHR semigroup.

Proof. First of all, let us notice that {< Hy, o> }rex is an SH R direct family
of SHR semigroups and the direct families of semigroups { <H;, 0;> };er and
{<Hy, 0> trer have the same direct limit < H,o>.

Since {(Hg,ox) rek is an SHR direct family of SHR semigroups, it
follows that the associated family of hyperrings {{HY, ®k, ok) }rek 1s a direct
one, so the family of canonical hypergroups {{H?, ®x}}rex is a direct one,
$00.

Now, we shall prove that the direct limit < "PTO, @ > of the direct family
{< H?, @) >}rex of canonical hypergroups is a canonical hypergroup, too.

We have V(Z, 7} € (FO)?’,

zog={z€H |3keK, JrecznHY, Iyeyn HY,
dze€z2N HY : 21, €2k Bk Y }-

We know that a commutative hypergroup is a canonical one if and only if
it is a join space with a scalar identity.

< FO, & > is a join space, being the direct limit of a direct family of
join spaces.

Moreover, if ey, is the scalar identity of the canonical hypergroup (HY, &),
then & is the scalar identity of < ﬁo, G > _

Indeed, if € B andz e T @ €, then there are t € K, 2z, € 2N HY,
7, € TN HY and ¢, € & N HY such that z € z; $; e;.

There is s € K, s > t, s > k, such that e, = fi,(ex) = fis(e;). Since
Vzy, € Hp, T © er = T it follows that z, @5 e, = T, and since 2 € 7, B &
it follows that z, € z, ®, e,. So, 2, = x,, whence Z = Z. Then VI € FO,
T = ¥ @ &, hence 2% is the scalar identity of < FO,QE > . From here, it
follows that for any p € K, the scalar identity e, of the canonical hypergroup
< HY, @, > belongs to the equivalence class & of e;.
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We denote & = €. Therefore, < FO, ¢ > is a join space with a scalar
. o -0 . .
identity &, hence < H , & > is a canonical hypergroup.

Let us notice now that VI € EO, €oX = Zoé& = & Indeed, since Vk € K,
<H,?, @y, ox> is a hyperring, it follows that Vz; € H}g, €5 O Ly=Ex==T} Of Ck,
where ey is the scalar identity of < HY, @&y >. Hence, oZ=&=Zo&.

Let us notice that Vk € K, e is zero of Hf and € is zero of I

Now, we have to verify only the distributivity of the operation “o” over
the hyperoperation “&”.

Let (Z,5,2) € (H')®. Wehave 1 € Zo (J & 2) &= W € Dz : it =
Tov<«= ki) € K XI: v €y PBrapand uy = z;0;0 < Jt € K,
t>kt>2i:n €@z anduy =200 = I E K, up € 20 (Y Br 2} =
(z: 0 ¥:) De (Tt 01 2;) (since < HP, @;,0; > is a hyperring) <= It € K,
Uy € a; ®; by, where a; = zy 0y and by = x40, 2, <= @ € a @ b, where
a=Fofandb=ZozZ <= € (Tof) @ (To2).

Therefore, < TI_O,QB,O > is a hyperring, which means that < H,o > is
an SHR semigroup. &

Remark 3.6.26. Let {< H;,0; >}, be a direct family of semigroups with
the corresponding family {f; | (4,j) € I*, i < j} of homomorphisms, such
that Vi € I, dk € I, k > i for which < Hy, o > is an SR semigroup.

Set K = {k € I |< H, o > is an SR semigroup}. So, for every k € K,
there is an operation $; on H,E' such that < Hg,@k,ok > is a ring. If
V(k,f) € K%, k < £, fie is a homomorphism of rings, then the direct limit
of the direct family of semigroups {< H;, 0; > }ics is an SR semigroup.

Proof. We have that < TFI—O,EB, o > is a ring, being the direct limit of the
direct family of rings {< HY, @y, op > }rex, whence it follows that < H, 0 >
is an SR semigroup. W
Let {< H;,0; >};e; be an SHR inverse family of SHR semigroups.
Let us consider the following subset of the direct product H = H H;:
o 3
H={pe€ H| fi;(p:) = p;s, Vi > 7} where p = (p;)ies.

If H # (), we define the following operation on H:

— ~2
V(z,y) € H, 20U = (Zi 2 Yi)ier-
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We have [Ty € H. Indeed, if we denote z; = x;0;y;, for every i € I, we have
V(i,j) € I%, i 2§, fis(z) = fig(zi oi i) = fisl@i} o5 fislws) = m5 0545 = 7,
whence Oy = (2;)er € H. < H,O > is called the inverse limit of the
inverse family {< H;, o; >}ie7. Note that, if I has a maximum, then H#D.

Theorem 3.6.27. Let {< H;,0; >}ier be-an SHR inverse family of
SHR semigroups, such that (I,<) has a mazimum. Then the inverse limit

< H,0 >, of the above family, is an SHR semigroup.

Proof. Since {< H;,0; >}ier is an SHR inverse family of SH'R semigroups,
it follows thelmtithere is a corresponding inverse family {< H?,Eﬂi >}ier of
canonical hypergroups. Since I has a maximum, it follows that H # §.

. For every (z,y) Elﬂo)za T = (Zidier, T = (Yi)ier, st TRY = (: By i)ier
and TB§ = FRYN H®. Then < H® @ > is a join space, being the inverse
limit of the inverse family of join spaces {< HY,B; > }ier, such that (I, <)
has a maximum.

Moreover, we shall prove that < H 0 8 > has a scalar identity.

Set s = max/, let e, be the scalar identity of < H? @, > and sef
€= (fsles))jer € H°. ~

Let us notice that if 7 € H°, T = (x;)ics, then Vj € I, z;8; fs;(es) = z;.
Indeed, since =8, e, = T,, it follows that ¥j € I, fs;(zs)T; foies) = foj(xs),
that is z, B, foles) = z;.

Hence, VZ € H®, FWé = {Z € HY | Vi€ I, z € z; 8 fules) = ),
which means that THE = T, whence it follows that € is the scalar identity of
< H® @ >. Since < HY, B > is also a join space, we obtain that < HO @ >
is a canomca.l hypergroup. Notice also that < H,O > is a semigroup, bemg
the inverse limit of an inverse family of semigroups {< H;,0; > }ier.

Let us see now that Vi € H , e = e0x = €. Indeed, if Z = z0&, where
T = (Ti)ier, 2 = (2i)ier, then z; = z; 0; f(e,) = x;, as we have seen above,
80 z = Z. Similarly, it follows that e0f = . N

Let us notice that Vi € I, e; is zero of H? and  is zero of H?,

Concerning to the distributivity of the operation “0” over the hyper-
operation “@”, we have:

for any T = (Zi)ier, ¥ = Wiier, 2 = (Zi)ier - U € TD(YBZ) &= v €
ﬂ H E, 'a: = EDG — Vi ¢ ]7 fsz( ) < Ui Eai Ziy fsi(us) = T 04 fsi(vs)



126 Bijan Davvaz and Violeta Leoreanu-Fotea

(Where 8= m&XI, v = (fsi(vs))iefa U= (fsi(us))ief = Vi€ l, fsi(us) €
xop (Y B 2i) = (zy 0; i) By (2; 0 2;) (since Vi € I, < H? B;,0; > is a
hyperring) <= @ € (zDy) B (z07).
' Therefore, < H“ m,0 > is a hyperring, which means that < H,0 > is
an SHR semigroup. &

Remark 3.6.28. Let {< Hi,0; >}ies be an SR inverse family of SR
semigroups, such that H £ G. Then the inverse limit < H,O > of the above
family, is an SR semigroup, too.

Proof. Let {< H} H;,0; >}icr be an associated inverse family of rings of the
inverse family {< H;, 0; >}ier. Since H # 0, it follows that < HOmO>isa
ring, being the inverse limit of the inverse family of rings {< HY, #;, 0; > }hier-
Hence, < H,0 > is an SR semiring.m

3.7 Hypernear-rings

In the context of canonical hypergroups some mathematicians studied multi-
valued systems whose additive structure are quasicanonical hypergroups. In
[29], Dasic introduced the notion of hypernear-ring in a particular case and
Gontineac [52] called this type of hypernear-ring zero symmetric. A study
of the concept of a hypernear-ring in a general case is done in [52] and [67].
Firstly, we present some fundamental definitions.

Definition 3.7.1. A hypernear-ring is an algebraic structure (R, +, -) which
satisfies the following axioms:

(1) (R, +) is a guasi canonical hypergroup, i.e., in (R, +) the following con-
ditions hold:

(@) e+ (y+2)=(z+y)+zforall z,y,2 € R;
(b) Thereis 0 € Rsuch that z +0=0+z =z for all z € R;

{c) For every z € R there exists one and only one 2’ € R such that
0 € x4 &, (we shall write —z for 2’ and we call it the opposite of z);

(d) zexz+yimpliessy€ —z+zandz €z —y.
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(2) (R,") is a semigroup respect to the multiplication, having an absorbing
element 0,ie,xz-0=0frallz e R But, in general, 0z # 0 for some
z € R
{3) The multiplication is left distributive with respect to the hyperoperatlon
+ie,z-(y+z)=z-y+zx -zforalzyzeR.
A hypernear-ring R is called zero symmetricif Oz = z0 = Oforallz € R.
Note that for all z,y € R, wehave —(~z) = z,0 = -0, —(z+y) = —y—=
and z(—y) = —zy.
Example 3.7.2. Let (H,+) be a hypergroup and let My(H) be the set of

all mappings f : H — H such that f(0) = 0. For all f,9 € My(H) we
define f & g as follows:

fag=1{he My(H)|Vz e H, hiz) € f(z)+glz)}.

Ifh € fodg, then h(0) € f(0) + g(0) = 0, so h(0) = 0. Furthermore,
(f @ g¥(z) = f(z) + g(z). As multiplication we consider the composition of
mappings. Then (My(H),®,-) is a zero symmetric hypernear-ring

Definition 3.7.3. Let R be a hypernear-ring. A nonempty subset S of
R is called a subhypernear-ring if (S,+) is a subhypergroup of (R, +) and
(S,-) is a subsemigroup of (R, -).

Now, we consider the notion of hyper R-subgroup of a hypernear-ring K.

Definition 3.7.4. A two-sided hyper R-subgroup of a hypernea;r—rmg Ris
a subset H of R such that

(1) (H,+) is a subhypergroup of (R,+), ie
(i) a,b € H impliesa+bC H,
(i) o € H implies —a € H,

(2) RHCH,
(3) HRC H.

If H satisfies (1 ) and (2), then it is called a left hyper R-subgroup of R.
If H satisfies (1) and (3), then it is called a right hyper R-subgroup of R.
t

)
Definition 3.7.5. Let (R, +,) be a hypernear-ring,
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(1) The subset Ry = {z R | 0z = 0} of R is called a zero-symmeiric
part of R. '
(2) The subset R, = {x € R | zy =y, Vy € R} is called a constant part
of R.
(3) If R = Ry (respectively, R = R.), we say that R is a zero-symmetric
* (respectively, constant) hypernear-ring, respectively.

Example 3.7.6. Consider the hypernear-ring R = {0,a,b,¢} with the
addition and multiplication tables given below:

+| 0 a b - c ] 0abe
01 {0} {a} {0} {c} 01 0abc
a | {a} {0,a} {b} {c} at 0abdbec
b | {8} {b} {0,a,c} {b,c} b 0abec
¢ | {c} {c} {bc} {0,0,b} c| 0abec

Since R = R,, it follows that R is a constant hypernear-ring.

Lemma 3.7.7. If Oy = y for each y in a hypernear-ring R, then R is a
constant hypernear-ring.

Proof. Take x € R. Then zy = z(0y) = (z0)y =0y =y. B

Lemma 3.7.8. Let (R,+,-) be a constant hypernear-ring. Then R is the
only right hyper R-subgroup of R.

Proof. Let (H,+) be a subhypergroup of (R, +). If HR C H, then we have
OR C H, and so R C H since O0R = R. Thus R is the only right hyper
R-subgroup of B. B

Lemma 3.7.9. Let (R,+,-) be a constant hypernear-ring. If (H,+) is a
subhypergroup of (R, +) then H is a left hyper R-subgroup of R.

Proof. Let (H,+) be a subhypergroup of (R,+). Since zy = y for all
z,y € R, we have RH C H, and so H is a left hyper R-subgroup of 2. &

Proposition 3.7.10. Let R be a hypernear-ring. Then Ry is a zero sym-
metric subhypernear-ring of R.

Proof. Let z,y € Ry and z € & + y, arbitrary. Then we have 0z = 0
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and Oy = 0, and s0o 0z € O{x +y) = Oz + 0y = 0+ 0 = 0. Hence we
obtain z € Ry. This implies that  +y C Ry. From z(—y) = —zy, we have
0(—z) = ~(z0) = -0 =0, for all z € By. This implies that —z € Hy. Also,
we have 0(zy) = (0z)y = Oy = 0, that is., RyRy C Rg. This completes the
proof.m

Now, leﬁ H be a subhypernear-ring of hypernear-ring R. Define the
sets by B; := {0z |z € H} and B := {0r | r € R}.

Theorem 3.7.11. Let H be a subhypernear-ring of hypernear-ring R. Then
we have

(1) By is a two-sided hyper H-subgroup of H,
(2) B, is a left hyper B-subgroup of B.

Proof. (1) Let z,y € B; and 2z € z + y. Then there exists 81,5, € H such
that 2 = 0,y = 0sy. Hence we have z € z+y = 0s1+0s3; = 0(s;+32) C B,
since 8; + so C H. This implies that z +y C B,. Next, let x+ € B;. Then
there exists s € H such that x = 0s. Hence we have —z = —{0s) = 0(—3).
This implies that —z € B, since —s € H. Let a € H and b € B;. Then
there exists z € H such that b = 0z and ab = a(0z) = (a0)z = Ox € H.
Therefore, HB, C B,. Similarly, let a; € H and & € B;. Then there exists
x1 € H such that b; = Oz;. Hence bia; = (0x1)a; = 0(z;a;). Since H is
a subhypernear-ring, we obtain z,a; € H for ay and z; in H. Therefore
biay € B;. This implies that B;H C H. Hence, B, is a two-sided hyper
H-subgroup of H.

(2) Let Or,0s € B and z € Or 4+ 0s. Then, z € 0r +0s = 0(r +5) C B.
Hence we have z € B. Also, we have Or - 0s = 0s since (0r) - (0s} =
((0r)0)s = 0s. Therefore B is a subhypernear-ring and from (i), (B, +) is
a subhypergroup of (B, +). It remains to show that BB, C B;. Let a € B
and b € B;. Then there exists z € H and r € R such that ¢ = 0r,;b = 0z.
Thus ab = (Or) - (0z)} = 0(r0)z = Ox € B,. Therefore, we have BB; C B;.
This completes the proof. &

A subhypergroup A C R is called normal if for all x € R, we have
r+A—-xzCA

Proposition 3.7.12. Let A is a normal subhypergroup of R. Then
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(1) A+z=z+ A foralla € R,
(2) (A+2)+(A+y)=A+z+y forallz,y e R.

Proof. (1) Suppose that y € A+ z. Then there exists a € A such that y €
a+z. Hencey € a+2 = 0+a+x C (z—z)+a+z = z+(—z+a+z) C 2+ A4,
andso A+xCxz+ A Similarlyz+ AC A+ 2.

(2) We have (A+z)+(A+y) = A+(z+A)+y = A+{A+z)+y = Atz+y. W

Theorem 3.7.13. Let R be a hypernear-ring and H be a subhypernear-ring
of R. Then H=(RyNH)+ B; and (RoN H)N B, = {0}.

Proof. We have (RyNH)N B, C ByN B and Ryn B = {0}. Thus (Ry N
H)N B, = {0}. Finally, if a € H, we have 0 € 0a - 0a = 0a — (00)a =
Oa — 0(0a) = 0{a — 0a). So there exists y € a — Oa such that 0 = 0j. Since
a € H, wehave a —0a € H, and so y € H. From y € a — Oa, it follows
that @ € y + 0a. Since a € H then Oa € B;. Since 0 = Oy, then y € Hp.
Therefore, we have a € (Rg NH)+ B.. m

Definition 3.7.14. For an element z of a hypernear-ring R, the (right)
annihilator of z is Ann(z) = {r € R | zr = 0}. For a nonempty subset B of
a hypernear-ring R, the annihilator of B is Ann(B) = N{Ann(z) | z € B}.

Proposition 3.7.15. For any element z of a zero symmetric hypernear-
ring R, Ann(z) is a right R-subgroup of R.

Proof. Certainly 0 € Ann(z). If a,b € Ann(z), then z(a+b) = za+zb =0
so for every ¢ € a + b, we have z¢ = 0 which implies that a + b C Ann(z).
Also, we have z(—a) = —za = —0 = 0 and so —a € Ann(z). On the other |
hand, for r € R and a € Ann(z), we have z(ar) = (za)r = Or = 0 so
ar € Ann(z) which yields Ann(z)R C Ann(z). o '

Proposition 3.7.16. If e is any element of a hypernear-ring R, then
eR = {er | r € R} is a right hyper R-subgroup of R.

Proof. 1t is straightforward. m

Definition 3.7.17. An element e of a hypernear-ring R is an idempotent
ifel=c

Lemma 3.7.18. In a hypernear-ring R, if e € R, then e® = e, so e is an
idempotent.
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Proof. Since each element of a constant hypernear-ring is a left identity, it
follows that it is also an idempotent. B

Theorem 3.7.19. Let e be an idempotent element of a zero symmetric
hypernear-ring R. Then

(1) Ann{e)neR = {0}. -
(2) For oll r € R, there erists a unigue element a € Ann(e) and there
exists a unique element b € eR such that r € A+b. ~

Proof. (1) Let « € Ann(e) NeR. Then z = er for some r € R. So
0=ex =eler) = (ee}r =er =z,

hence Ann(e) NeR = {0}.
(2) For r € R, we have

2

O€er—er=er~ecr=er—e(er)=e(r—er).

So there exists y € r —er such that 0 = ey. From y € r —er, using condition
(d) in Definition 3.7.1, we obtain r € y+er. Since ey = 0, then y € Ann(e).
We set a = y and b = er. Then z € a + b. If we take another a' € Ann(e)
and ¥ € eRwithz € a’ + ¥, thenz € (a+b)N(a' + V). Fromz €a +¥,
wegetd € —a'+z,andso b € —a'+ (a+b) = (—a’ +a) +b Hence
there exists y € —a’ + a such that &' € y + b, and so y € ' — b. Therefore
(—a"+a)N (¥ —b) # 0. Since —a'+a C Ann(e) and & — b C eR and
eRN Ann(e) = @, we obtain ~a’ +a =& — b= {0}. Therefore a = o' and
b=¥t.m

As for any algebraic structure, it is natural to introduce the homomor-
phism notion in the context of hypernear-rings. This is & mapping that
preserves some or all properties of a hypernear-ring. One could summa-
rize a lot of research effort by saying that are considered to be relevant to
hypernear-rings.

Definition 3.7.20. Let I and R’ be two hypernear-rings. Then the map
f: R— R is called a homomorphism if for all z,y € R,

(1) flz+y) = flz)+ fly),
(2) flz-y) = flz)- fly),
(3) f(0)=0.
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If f is one to one and onto, then f is an isomorphism.

Definition 3.7.21. If f is a homomorphism from R into R’, then the kernel
of f is the set kerf = {z € R | f(z) = 0}.
It is easy to see that ker f is a left hyper R-subgroup of R, but in general
it is not normal in R. :
Proposition 3.7.22. Let f: R — R' be a homomorphism of hypernear-
rings. Then the following statements are true.
(1) fff is onto and M is o hyper R-subgroup of R, then f(M) is a hyper
R’ -subgroup of R'. '
(2) If N s a hyper R'-subgroup of R, then f~1(N) is a hyper R-subgroup
of R. ' ' '
(3) f(Ro) C Ry.
(4) f(R.) C R

(5) If f is an isomorphism, then f~! is an isomorphism, too.

Proof. The proof is immediate. W
Definition 3.7.23. A normal subhypergroup A of the hypergroup (R, +) is

(1) a left hyperidelof Rifz-a€ Aforallz € Rand a € A.
(2) a right idealof Rif (z+ A)-y—z-yC Aforallzand y € R.
(3) a hyperideal of Rif (x+ A)-y—z-yUz-AC Aforall z,y and z € R.

" Theorem 3.7.24. Let (R,+,") be a hypernear-ring.

(1) If K is a left hyperideal of Rand L s a left hyper R-subgroup of R,
then L + K is a left hyper R-subgroup of R.

(2} If K is o right hyperideal of R and L is a right hyper R-subgroup of
R, then L+ K is a right hyper R-subgroup of R.

Proof. In each case, L + K = K + L is a subhypergroup which is normal if
L is normal.

()If RLC L and RK C K, then r{l+ k) = vl +7k C L+ K for all
re€ R, l € L and k € K. This completes the proof of (1).
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(2) Now, assume that K is a right hyperideal and K is a right hypef
R-subgroup. Let r€ R, l € L,k € K. Then (I+k)r —Ir C K since K is a
right hyperideal of R. So for some k; € K, we have

(+kr=k+IrCK+LRCK+L.

Hence L+ K = K + L is a right hyper R-subgroup. W

Lemma 3.7.25. Let R be a hypernear-ring, S a subhypernear-ring of R
and H o left (right, two-sided respectively) hyper R-subgroup of R. Then
H NS is aleft (right, two-sided respectively) hyper R-subgroup of R.

Proof. The proof is immediate. B

Let H be a normal hyper R-subgroup of hypernear-ring R. If we define
a relation ' :

z ~y (mod H)if and only if (z —y)NH #@, for all z,y € H,

then this relation is a regular equivalence relation {congruence) on H.

Let p(z) be the equivalence class of the element € H and denote the
quotient set by RE/H. Define the hyperoperation & and multiplication ©®
on R/H by

pla) ® p(b) = {p(c) | ¢ € p(a) + p(b)} and p(a) @ p(b) = p(a - b).

‘Theorem 3.7.26. (R/H,®,®) is a hypernear-ring and it ¢s called a quo-
tient hypernear-ring.

Lemma 3.7.27. Let H be a normal hyper R-subgroup of R. Then
plz)=H+ =z

Proof. Suppose that y € H 4z, then there exists a € H such that y € a+=x,
which implies that ¢ € y — z and so (y —2) N H # @ or y € p(z). Thus
H +z C p{z). Similarly, we have p(z) CH +z. &

Theorem 3.7.28. (First isomorphism theorem). Let f be a homomorphism
from R into R’ with the kernel K such that K is a normal hyper R-subgroup
of R. Then R/H = Imf.

Theorem 3.7.29. Let R be a hypemea%-m’ng and K a normal hyper R-
subgroup of K. Then, the following statement are equivalent:
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(1) K is the kernel of a hypernear-ring homomorphism.
(2) (a+z)y—zy C K forallz,ye R and alla € K.
(3) —zy+(a+2z2)yC K forallz,yc Rand allac K.

Proof. (1==2). Suppose that K is the kernel of a hypernear-ring homo-
morphism f. Then

f(a+ 2y —2y) = (fa) + f(z))f(y) - fl2)f(y) =0

foral z,y € Rand a € K. Hence {a + z)y — 2y C K.

(2=1): For a normal hyper R-subgroup K of R, we consider the quo-
tient hypernear-ring R/K and the natural map 7 : R —= R/K where
m(z) = z + K. Cleatly, we have n(z + y) = w(z) + =(y) and 7(0) = 0.
We show that n{zy) = n(z)n(y), that is, K + zy = (K + z){K +y)
and in order to do this, we need only to show that (K + x){K + y) =
K + zy is a well defined binary operation. We take K +2' = K +
and K +y = K + y. So there are a,b € K such that 2’ € a + z and
y € b+y Hencez'y € (a+2)b+y) = (a+2z)b+ (a+ z)y. Now
gy ~zy C (a+zbp+ (e +2)y —zy) € K+ K C K. This means that
K +z'y = K 4 zy, which in turn means that (K +z)(K +y) = K+ zy is
well defined.

{2==3): For any a € K and z,y € R, we have

gt (et ey ==+ 2y +ayl= —[la+y)(-y) -2y S K

since by (2) {a +y)(—y) — z(~y) C K.
(3=-1): The proof is similar to (2==3). &



Chapter 4

Multiplicative hyperrings

4.1 'The notion of a rhultiplic‘ative hyperring.

The second type of a hyperring was introduced by R. Rota [108} in 1982. The
multiplication is a hyperoperation, while the addition is an operation, that
is why she called it a multiplicative hyperring. Let us give the definition.

Definition 4.1.1. A triple (R, ++,-) is called a multiplicative hyperring if

(1
(2
(3 forallabcERWehavea(b+c)Cab+a cand (b+c)-a C b-a+ca;
(4) for all a,b € R, we have a - (—b) = (~a) - b= —(a-b).

R,+) is an abelian group;

) (

) (R,-) is a semihypergroup;
)

) f

If in (3) we have equalities instead of inclusions, then we say that the mul-
tiplicative hyperring is strongly distributive.

An element e in R, such that for all e € R, we have a €Ea-eNe-a, is
called a weak identity of R.

Let us give some Examples.

Example 4.1.2

(1) Let (R,+,-) be a ring and I be an ideal of it. We define the following
hyperoperation on R: Foralla,b€ R, a*b=a-b+1. Then (R, +,%)
is a strongly distributive hyperring.

135
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Indeed, first of all, (R, +) is an abelian group. Then, for all a,b,c € R,

we have

ax(bxc) = ax(b-c+1) = U ax(b-c+h) = U a-(b-cth)+I =ab-c+]
hel hel

and similarly, we have (a*b)*c = a-b-c+1. Moreover, forall a,b,¢c € R,

wehave a*x (b+c¢)=a-(b+e)+I=a-b+ta-c+I=axb+axc
and similarly, we have (b+ ¢} *a = b+ a + ¢ * a. Finally, for all
a,b€ R, we have a* (—b) =a-(—b)+ = (~a) - b+ T = (—a)*band
~(axb)={(~a-b)+I=(—a) b+1=ax(~b).

Let K be a field and V' be a vectorial space over K. If foralla,b € K
we denote by (a,b) the subspace generated by the subset {a,b} of

.V, then we can consider the following hyperoperation on V: for all

a,b € V,a0b = (a,b). It follows that (V,+,0) is a multlphcatlve
hyperrlng, which is not strongly distributive.

Indeed, the hyperoperation o is associative. For all a,b,¢c € V, we
have (aob)oc= U (z,c)andao(boc) = U (a,zx):
2E(a,b) ze(b,c)

If v € (a0b)oc, then there exists z € aob, v € T o ¢, whence
z=aa+ 8b, v=ctc+ Fcfor some a, &, 3, € K. If wesety=
o/Bb+ B'c, then v = o/aa + y, which means that y € (b,c), v € (a,y)
hence v € ao(boe¢). Thus (aob)oc C ao(boc). Similarly, we
obtain the converse inclusion. Moreover, a o (b+¢) = (a, (b+¢)). If
v € ao(b+c), then there exist o, # € K such that v = aa+ B(b+c),
whence v € (a,b) + (a,¢) =aob+aoc. Finally, for all a,b € V, we
have a o (—b) = (a,—b); (—~a) o b = (—a,b); —(a o b) = —(a,b) and
clearly, (a, —b) = (~a, b) = —(a, b) so we obtain also the condition (4)
of Definition 4.1.1. Notice that (a,0) = (a) and so, (0} =V

Let (R,+, ) be a nonzero ring. For all a,b € R we define the hyper-
operation axb = {a-b, 2a-b,3a-b,...}. Then (R, 4+, *) is a multiplicative
hyperring, which is not strongly distributive. Notice that for all a € R,
we have a* (0 =0+ g = {0}.

In what follows, we give some prbperties of a multiplicative hyperring.
Theseresults were obtained by R. Rota [108], D.M. Olson and V.K. Ward [98].
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Theorem 4.1.3. If (R, +,-) is a multiplicative hyperring, then for all
a,bce R,

a-(b—c}Ca-b—~a-c and (b—c)-a(_:b-a-—c-d.
If(R,+,-) is a strongly distributz’ve, then for all a,b,c € R,
a-(b—cy=a-b—a-c and (b—c)-a=b-a-c-a.

Proof. The statement follows from the conditions (3) and (4) of Definition
41.1. 1

Theorem 4.1.4. In a strong distributive hyperring (R,+,-) , we have
0ca-0and0€0-a, foralla € R.
Proof. The statement follows from the above theorem, by considering b=c. &

Theorem 4.1.5. For a strongly distributive hyperring (R,+,), the fol-
lowing statements are eguivalent:

(1) there exists a € R such that |0-af =1,

(2) there exists a € R such that |a- 0] =1,

(3) 0-0] =1,

(4) Ya,b € R such that |a-b| =1,

(5) (R,+,-) is a ring.
Proof. (2)=(3): Suppose a #0. Foralla € Rwehave0-0=(a—a)-0=
a-0—a-0 and so by (2), it follows that 0- 0 = {0}, whence we obtain (3).

(3)==(4): For alla € R, we have 0-0 = a-0—a-0 and so by (3) it follows
that |a - 0| = 1, otherwise if we suppose that there exist x # y elements of
a-0, then 00 would contain z —y # 0 and 0, a contradiction. On the other
hand, for all a,b € R we have -0 = a- (b—b) = a-b—a-b, whence it follows
that o - b contains only an element. The other implications (4}==>(5) and
(5)=>(2) are immediate. Similarly, the condition (1) is equivalent to (3),

(4), (5). m
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Corollary 4.1.6. A strongly distributive hyperring (R, +,-) is a ring if and
only if there exist ag,by € R such that |ag - by| = 1.

Proof. According to the above theorem, it is sufficient to check that |ag-0|=1.
We have ap-0 = ag (bo — by) = ag.- by — ap * by, whence we obtain that ag- 0
contains only 0. B

As we can see from Example 4.1.2(3), there exist multiplicative hyper-
rings, which are not strongly distributive and for which we have a %0 = {0}
for all a € R.

Definition 4.1.7. A hyperring (R, +,-) is called unitary if it contains an
element u, such that a-u=u-a={a} for alla € R.

We obtain

Theorem 4.1.8. Every unitary strongly distributive hyperring (R, +,-) is
a ring. f

Proof. Tf u is the unit element, then we have u - u = {u} and according to
the above corollary, it follows that R is a ring. M

Theorem 4.1.9. In any multiplicalive hyperring (R,+,), if there are
a,b € R such that |a-b] =1, then 0-0 = {0}.

Proof. Wehavea-0=a-(b—b) Ca-b—a- b= {0}. On the other hand,
0-0=(a—a)-0C a-0-—a-0. But this must also be {0}, sincea-0is a
singleton. M

Corollary 4.1.10. In any unitary multiplicative hyperring (R, +,"), we
have 0 - 0 = {0}.

Definition 4.1.11. Let (R,+,-) be a multiplicative hyperring and H be
a nonempty subset of R. We say that H is a subhyperring of (R, +,-) if
(H,+,-) is a multiplicative hyperring.

In other words, H is a subhyperring of (R,+,:) if H ~ H C H and for
allz,ye H,z-yC H. :

Definition 4.1.12. We say that H is a hyperideal of (R, +,)if H—H C H
and forall z,y € H,re R,z -rUr- -2 C H.
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The intersection of two subhyperrings of a multiplicative hyperring
(R,+,-) is a subhyperring of R. The intersection of two hyperideals of
a multiplicative hyperring (R, +, <) is a hyperideal of K. Moreover, any in-
tersection of subhyperrings of a multiplicative hyperring is a subhyperring,
while any intersection of hyperideals of a multiplicative hyperring is a hy-
perideal. In this manner, we can consider the hyperideal generated by any
subset S of (R, +,-), which is the intersection of all hyperideals of R, which
contain S.

For each multiplicative hyperring (R,+,-), the zero hyperideal is the
hyperideal generated by the additive identity 0. Contrary to what happens
in ring theory, the zero hyperideal can contain other elements than 0. If we
denote the zero hyperideal of R by < 0 >, then we have

(0y = {Z x; + Zyj + sz | each sum is finite and for each i, j, k there

i J k

exist 1y, 85, k, ux € R such that 2, € 7r; -0, 3, €0-55, 2 €t - 0- uy }

Denote by H @ K the hyperideal generated by H U K, where H and K are
hyperideals of (R, 4+, ).

Theorem 4.1.13. If H and K are hyperideals of R, then
HEBK:{h—i—thEH,keK}.

Proof. Denote the set {h+ k| h € H,k € K} by I. Then I is a hyperideal
of R, which contains A and K.

Moreover, if J is a hyperideal of R, containing H and K, then I C J.
Hence we have I = H & K. n

Notice that the above theorem can be extended to an whichever family
of hyperideals. ' '

If we denote by 7 the set of all hyperideals of a multiplicative hyperring
(R,+,-), then (Z,C) is a complete lattice. The infimum of any family
of hyperideals is their intersection, while the supremum is the hyperideal
generated by their union.
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4.2 Homomorphisms between multiplicative
hyperrings

Now, it is natural to speak about homomorphisms.

Definition 4.2.1. A homomorphism (good homomorphism) between two
multiplicative hyperrings (R, +,0) and (R',+',¢') is amap f: R — R
such that for all z,y of R, we have f(z+y) = f(z)+ f(y) and f(zoy) C
f(z) o' fy) (f(zey) = f(z) o f(y} respectively).

Denote by Hom{(R, +,0), (R, +',¢'}) the set of all multiplicative hyper-
ring homomorphisms from (&, +,0) to (R, +/,0)."

Moreover, denote Hom((R, +, ), (R, +,0)) by Hom(R, +, o).

Multiplicative hyperrings that we shall analyze in this paragraph, are
defined as follows (see Example 4.1.2(1)). Let {R,+,) be a ring and I be
an ideal of R. For all z,y of R, we consider zoy = zy+ 1. Then (R, +,0) is
a strongly distributive multiplicative hyperring. For convenience, we shall
denote this multiplicative hyperring by (R,+,1). For I = R, we obtain
zoy= R for all z,y of R and hence for any f: R — R and z,y of R, we
have f(zoy) = f(R) G R = f(x)f(y)+ R = f(z) o f(y). From here, we
obtain the following result, that we shall use later.

Theorem 4.2.2. If (R, +,-) is a ring, then Hom{R,+, R) = Hom(R,+).

In what follows, we characterize the homomorphisms of the multiplica-
tive hyperrings (Z, +, pZ) and (Z,, +, p2,), where p is a prime number and n
is a positive integer. These results were obtained by C. Namnak, N. Triphop
and Y. Kemprasit [94].

First, for a € z, consider the maps g, : Z — Z and hg : Z, — Zn,
defined by g,(z) = az and hz(T) = @z for all z € Z.

Theorem 4.2.3. The map f : Z — Z is a homomorphism of the multi-
plicative hyperring (Z,+,pZ) if and only if there exrists an element a € Z,
such that f = g, and either pla or p|(a —1). -
Proof. Suppose that f is a homomorphism of (Z, +, pZ). Since Hom(Z,+) =
{9a | @ € 2} and Hom(z,+,pz) C Hom(zZ,+), it follows that f = g,, for
some a € Z. From f{101) C f(1)o f(1), we obtain

a+apZ=a(l-1+pZ)=g,(lo1) C ga(l)ogs(l} =aoa=a*+pZ
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This implies that a — a* + apZ C pZ, whence a — a? € pZ. This means that
p|(a — a?), so either p|a or p|(a — 1).

Conversely, suppose that f = g,, for some a € Z and pla or p|(a — 1).
Then p|(a — a?). Let t € Z be such that a® — a = pt. On the other hand,
for all z,y in Z, we have

flzoy) = gulzoy) = azy+ apZ = (a® ~ pt)zy + apZ
C a’zy + pZ = ga(2) 0 guly) = f(z) 0 ().
which means that f is a homomorphism of (Z,+,pZ). &

From the proof of the above theorem, we see that the converse holds if
p is any nonzero integer, which is not necessarily prime.

Corollary 4.2.4. The following statements are true:

(1) Hom(2,+,pZ) = {ga | @ € p2U (pZ + 1)}.
In particular, Hom(Z,+,22) = Hom(Z, +).

(2) 1Hom(Z, +, pZ)| = Xo-

Proof. We obtain (1) from the above theorem and the fact that for ¢ € Z, we
have p|a or p|(a—1) if and only if @ € pZU{pZ+1). Since Z = 22U (22 +1),
it follows that Hom(Z,+,22) = {g. | a € Z} = Hom(Z,+).

(2) For all distinct elements a,b of Z, we have g, # g5, whence
IpZ U (pZ + 1)| = x0, so we have [Hom(Z,+,pZ)| = xo- A

Theorem 4.2.5. Let f: 7y, — Z, . Then the following statements hold:
(1) If p|n, then f is a homomorphism of the multiplicative hyperring
(Zn, +,pZn) if and only if there erists an element a € Z, such that
[ = hz and either pla or p|{a — 1).

(2) If p does not divide n, then f is a homomorphism of (Zn,+,pZys) if
and only if f = hg for all a € Z.

Proof. (1) Suppose that f is a homomorphism of (Z,,+, pZ,). Since

Hom(Z,,+,pZ,) C Hom(Zn, +),
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we have f = hgz for some a € Z. From f(101) C f(1) o f(1), it follows that
a+apl =a(1 1+ pZ,) = ha(101) C ha(T) 0 ha(1) =@ + pZy.

Hence @ — @* + apZ, C pZ, and thus @ — @* = p3 for some s € Z. From
here, we obtain a® — a + ps = nt for some ¢ € Z. Since pin, it follows
pl{a® — a). Moreover, p is prime, so we obtain pla or p|(a — 1). Conversely,
suppose that f = hz for some a E Z and either pla or p|(a — 1) Then
pla{a — 1). Let t € Z be such that a® — a = pt. Tt follows that @ — @ = pi.
If 2,y € Z, then hg(Z oY) = ha(TY + pZ,) = G(FY + pLn) = GTY + apZ, and
hz(T ) o h—(y) = GF 0 G = a2y + pZ,. We have
- f(@oy) =ha(@oy)
= QIy + apZy,
C a’xy + pZy, + apZ,
= a*xy + pZy
= ha(Z} o ha(7)
= f(@) o f(T).
Hence f is a homomorphism of (Z,, +, pZy,).
(2) If p does not divide n, then pZ, = Z,, so
Hom(Zn, +, pZy) = Hom(Zy,, +,Z,) = Hom(Z,,+) = {hz |a € Z}. W
The converse of (1) of the above theorem holds if p is any nonzero integer.
Corollary 4.2.6. The following statements hold:

(1) Hom(Zo, +,pZ0) = {hz | @ € p2U (pZ+ 1)} if p|n and
Hom(Z,,+,pZ,) = {hz | a € Z} = Hom(Z,,+) if p does not divide n;

(2) |Hom(Zn,+, PZa)l = 2n/p if pln and
|Hom(Zn, +, pZ,)| = n if p does not divide n.

Proof. This follows from the above theorem and the fact that for a € Z, we
have pla or p|(a — 1) if and only if a € p2 U (pZ + 1).
(2) Suppose that pjn. Then
Hom{Z,,+,pZ,) ={hz|a€pzU(pz+1)}
= {hg | v € Z} U {h1p | = € 2}
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Since hg # hy for @ # bin Z,, we have {FZ | z € Z} = pZ, and {1+ pz |
T € Z} = pZy = 1+pZy, hence |Hom{Zn, +, pZ,)| = |pZa|+|1+92Z,| = 2n/p.
If p does not divide n, then the assertion follows from (1). ®

4.3 Regular equivalences on a multiplicative
hyperring. Quotient multiplicative
hyperrings.

On this topic, R. Rota, D.M. Olson and V.K. Ward have been worked. We
present here some of their results.

Regular equivalences on a multiplicative hyperring.

Definition 4.3.1. Let (R,+,-) be a multiplicative hyperring and p be an
equivalence relation on R. We say that p is regular (or congruence) if the
following implication holds:

apb, cpd = (a+c)p(b+d) and a - cpb - d,
and p is called strongly regular if the following implication holds:
apb, cpd = (a+c)p(b+d)and a-cpb-d (see 2.5).
According to Theorems 2.5.2 and 2.5.5, we have that
Theorem 4.3.2.

(1) The equivalence relation p is regular if and only if R/ p is a multiplica-
tive hyperring.

(2) The eguivalence relation p is strongly regular if and only if R/p is a
Ting.

Now, let J be a hyperideal of a multiplicative hyperring (R, +,-). We
define the following relation on R:

apih <= b—a€l.
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Theorem 4.3.3. The equivalence relation pr is regular on (R, +,-).

Proof. First, since (R, +) is an abelian group, it follows that p; is an equi-
valence relation which preserves the addition in R. Now, consider ap/b and
cprd. Then b—a, d — ¢ € I. Hence there exist & and &k in I, such that
b=a+hand d=c+ k. Wehave

b-d={a+h)-(c+k)Ca c+a-k+h-¢c+h-kCa-c+ 1

For any z € b-d, there exists y € a-c and t € I, such that z = y+ ¢, which
means that zpry. Similarly, by writing @ = b — h and ¢ = d - k, it follows
that for any y € a - ¢ there exists € b- d, such that yp;z. Moreover, the
equivalence class of 0 is /. W '

Corollary 4.3.4. There exists an one-to-one correspondence between the
set of regular equivalences, for which the equivalence class of 0 is an hyper-
tdeal and the set of hyperideals of a multiplicative hyperring.

Clearly, to any hyperideal 1 we associate the regular equivalence pj.
Conversely, to any regular equivalence, for which the equivalence class of
0 is a hyperideal, we associate the equivalence class of 0. The above two
correspondences are inverses each other.

Quotient multiplicative hyperrings
Let (R,+,-) be a multiplicative hyperring and I be a hyperideal of it.
We consider the usual addition of cosets and the multiplication defined as:
(a+D) b+ ={c+1|c€a-b},
on the set R/I = {a+ 1| a € R} of all cosets of I. Then (R/I,+,*) is a
multiplicative hyperring and it is strongly distributive if R is so.

Theorem 4.3.5. If I is an hyperideal of a multiplicative hyperring (R, +,-),
then for any element a + 1 € R/I, we have [(a+ 1) % (0+ I} = 1.

Proof. If a+1 is an element of R/I, then we have (a+ 1)+ {0+ ) = {z+1 |
x € a-0}. Since 0 € I, it follows that a-0 C I. Hence (a + ) * (0 + I)
contains only the zero element of R/7. W
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Corollary 4.3.6. If (R, +,") is a strongly distributive multiplicative hyper-
ring and I is a hyperideal of R, then R/I is a ring.

Proof. (R/I,+,*)} is a strongly distributive multiplicative hyperring, for
which there exists a hyperproduct of two elements containing only an ele-
ment, hence it is a ring. W

Example 4.3.7. If (R,+,-) is a ring, H is an ideal of it and for all ¢,b
of R, we define a*b = a-b+ H, then (R, +,%) is a strongly distributive
multiplicative hyperring. If I is an ideal of the ring R, such that H C I,
then the quotient R/I of (R, +, %) is a ring. '

The fundamental isomorphism theorem

Let f : Ry — Rs be a good homomorphism of multiplicative hyper-
rings. The kernel of f is the inverse image of < 0 >, the hyperideal gene-
rated by the zero in R,. It is denoted by Kerf. Since the inverse images
of hyperideals are hyperideals, it follows that the kernel is a hyperideal.
Similarly as in ring theory, we have f(< 0 >) €< 0 >, which means that
< 0>C Kerf.

Theorem 4.3.8.(Fundamental isomorphism theorem). Let R and S be
multiplicative hyperrings. If f : R — S is a good epimorphism, then there
exists an tsomorphism R/Kerf = S/ <0 >.

Proof. Let f : R — S be a good epimorphism of multiplicative hy-
perrings. Denote K = Kerf. We define ¢ : R/K — 5§/ < 0 > by
o(r + K) = f(r)+ < 0 >. First, we show that ¢ is well-defined. Let
r+ K = s+ K. Then r — s € K, which implies that f(r) — f(s} =
f(r—3s) €< 0 >. Hence f(r)+ < 0 >= f(s)+ < 0 >. Let us show
now that ¢ is one to one. Suppose that p(r + K) = ¢(s + K). Then
f(ri+ <0 >= f(s)+ < 0 >, whence f(r—s) e<0>andsor—s€ K. On
the other hand, ¢ is onto. Indeed, if s+ < 0 >€ S/ < 0 > then there exists
r € R, such that f(r) = s. We have p(r+ K) = f(r)+ <0 >=5+ < 0>,
Finally, we check that ¢ is an isomorphism. Since f is a good homo-
morphism, it follows that ¢(r + K + s + K) = o(r + K) + ¢(s + K).
Now, if y € w({r + K}s + K)) = {¢{c+ K) | ¢ € rs}, then y =
o(c+ K) = fle)+ < 0 > for some ¢ € rs. We have f(c) € f(r)f(s) and so,
y=flo)+ <0>€ (f(ri+ <0>)(f(s)+ < 0>) = o(r + K)p(s + K).
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Conversely, let y € o{r + K)o{s + K) = (f(r)+ < 0 >)(f(s)+ < 0 >).
Then y = ¢+ < 0 > for some ¢ € f{r)f(s) = f(rs). Hence there
exists z € rs such that y = flz)+ < 0 >= p(z + K). We obtain
y=o(z+ K) e p((r+ K)(s+ K}). Hence ¢ is a good homomorphism. m

Notice that a — b € Kerf = K does not imply that f(a) = f(b), as
in ring theory, since the zero hyperideal may contain more than just zero.
Hence the fundamental isomorphism theorem has not the same form as in
ring theory. Surprisingly, the second and third isomorphism theorems have
a similar form, as in ring theory.

Definition 4.3.9. Let R and S be multiplicative hyperrings. We say that
R is semi-isomorphic to S if there exists a good epimorphism f: R — §
such that Kerf =< 0 >.

’_I‘heorerh 4.3.10. If R is a multiplicative hyperring, then R is semi-
isomorphic to R} < 0 >.

Proof. Define f : R — R/ < 0 > by f(r) = r+ < 0 >. Clearly,
f is a good epimorphism. Since << 0 >>= {< 0 >}, it follows that
Kerf = f7'({< 0 >}). Let r €< 0 >. Then f(r) = r+ < 0 >=< 0 >
implies that r € Kerf. Conversely, if r € Kerf, then f(r) =< 0 >. But
f(r) =7+ <0 >. Hence r €< 0 >. Consequently, Kerf =<0>. &

Corollary 4.3.11. If R is a multiplicative hyperring, such that < 0 >= {0}
in R, then R is isomorphic to R/ < 0 >.

Proof. We show that f : R — R/ < 0 > defined by f(r) = r+ < 0 >,
is one to one. Suppose f(r) = f(s). Then r+ < 0 >= s+ < 0 > and so
r—s € <0> = {0}. Hence r=s. Therefore, R is isomorphic to R/ < 0 >. W

Theorem 4.3.12. (Second isomorphism theorem). If I and J are hyper-
ideals in a multiplicative hyperring R, then I/(INJ) = (I + J)/J.

Proof. Define f: I — (I +J)/J by f(r) =r+ J. For all r;s of I, we have
fr+s)=r+s+J=r+J+s+J=f(r)+ f(s} and f(rs) = {f(c} |
cerst={c+J|cerst=(r+J)s+J)= f(r)f(s). Hence f is a good
homomorphism. In order to show that f is onto, choose r +J € (I+.J)/J.
Thenr=i+jforsomei€l,jeJ. Sofli)=it+J=r—j+J=r+J.
Since < J >= {J} in (I + J)/J
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Kerf=f'N={recl|fir)=J}={rel|r+J=J}=INJ
According to the fundamental isomorphism theorem, we have I/(I N J) =
R/J, where R = (I + J)/J. 8Since < J >= {J} in (I + J)/J and
according to the above corollary, it follows that R & R/J. Therefore
Ianh=I+J)/J. u

Theorem 4.3.13. If I, K are hyperideals in a multiplicative hyperring R,
with K C I, then I/K is a hyperideal in R/K.

Proof. Let a+ K,b+ K be elements of I/K, where a,b are in I. Then
e+ K)—(b+K)=a—-b+ K,sincea—bel Letr+ K € R/K. We
have (r+ K){a+ K) = {c+ K | c€ ra C I'} C I/K. Similarly, we obtain
(a+ K)(r+K)CI/K. m

Theorem 4.3.14. (Third isomorphism thedrern). If I and K are hyperide-
als in a multiplicative hyperring R with K C I, then (R/K)/(I/K) = R/1.

Proof. We define the map f: R/K — R/I by f(r+ K) =r+1. First, we
check that f is well-defined. Indeed, if r+ K =s+ K, thenr—se€ K C [
and so r + 1 = s+ I. Now, we check that f is a good homomorphism. If
r, s are elements of R, then

flr+K+s+K) = f(r+s+K) =r+s+] = r+I+s+] = f(r+ K)+ f(s+K)
fllr+K)(s+K)) = {f(c+K) |cers} = (r+D)(s+]} = f(r+K)f(s+ K).

On the other hand, f is clearly onto. The kernel of f is {r + K € R/K |
r € It = I/K. According to the fundamental isomorphism theorem and
the last corollary, we obtain (R/K)/(I/K) = (R/I)/{I} = R/I.

4.4 Polynomials over multiplicative
hyperrings

In this paragraph, we present the multiplicative hyperring of polinyomials
over a multiplicative hyperring. We use the results obtained by R. Procesi
Ciampi and R. Rota {see [106]).

Let (R, +,-) be a commutative multiplicative hyperring, such that for
all a in R, we have a - 0 = {0}. Moreover, we consider an element z which
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does not belong to 2. By a polynomial in « over R we mean any expression
of the form:

L3
f(z) = aoe® + oz’ + agz® + .. = Zakxk,
ken

where for all k¥ in N, we have ax € K, “+” is a connective and the symbol
* means that only a finite number of a; are nonzero. The degree of f(x)
is mar{k € N | a;, # 0}. Denote the set of all polynomials in z over R by
Rfz]. We define the addition in Rfz], as follows:

Zakx’“ + i: bkiﬂk = Z(ak + bk).’L'k.

keN keN keN

Notice that the symbol + was used for simplicity in three different meanings:
the sum in R, the connective in R{z] and the sum in R[z]. We obtain that
(R[z},+) is an abelian group, for which the zero element is

0% + 02" + 0% + ...

Now, we define a hyperproduct in R[z], that generalizes the usual polyno-
mials product in the following way:

for all f(z) = Z art® and g(z) = Z brz”® elements of R[x], we consider
k=0 k=0

flz)* g(z) = {chmk | e € Z aibj} .
k=0

i+i=k
We obtain the following

Theorem 4.4.1. The hyperstructure (R[z], +,*) is a commutative multi-
plicative hyperring.

Proof. First, notice that the hyperoperation  is commutative. Then, we
check that = is also associative.
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n

Let f(x) = Zakx’“, g(x) = Zbkmk and h(z) = Z: dpx* be elements
k=0 k=0 k=0

of R[zx]. We have

(f(z)*g(z)}xh(z) = {chmk|cke Zat }

i+i=k
ntm+r
{ Z tea® |ty € Z cudy, Cu € Z ab}
utv=k i+i=u
and
mr
J(z)* (g(z) * h{z)) = {chx‘“ le€ Y bid; }
i+j=k

n+m+r
={ Z sk | sp € Z Oy€y, €y € z bidj}-

k=0 utov=k i J=v

Notice that

€ Y ad S Y. Y abid

utov=*k utv=k i+j=u
s € 5 Ay & Z Z aybid;.
utv==Fk utv=k i+j=v
From E E ab;d, = E E aybid;, it follows the associative pro-
u+v=k i4+j=u utv=k i+j=v

perty.
On the other hand, we have

maz(n,m)

(F&)+ @) xhiz) = 3 (ax+b)a* + hiz)

=1

maz{nm)+r
= { Z thk | ty € Z (avu + bu)dv}

k=0 utv=k
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and
f(z) *h(z) + g(z) * h(z)
n+r m4r
={Zth’°|tke Z audv}+{§:skx’“|ske Z bd}
k=0 utv=k _ utv=k

maz(nm)+r

= Y etz |t s e > audy + Z bud,y

k=0 u+v=k utv=k

From Z {Gy + by )d, C Z Gy dy + Z b.d,,, it follows the distributive

utv=k utv=k uto=k
property. Finally, we have

fz)+ x{ztw |t € Zau v}
{niltkwk [ty € — Z aubv}
utv—=k
z) * g(z)).

Similarly we have (—f(z)) * g(z) = —(f(z) * g(z)), which completes the
proof. W

If u is a weak identity for (R, +, -}, then u is a weak identity for (R[z], -+, %),
too.
We can define another hyperproduct in R[z], in order to obtain a mul-

tiplicative hyperring. For all f(z) = Z axz® and g(z) = Z bra® elements
k=0 _ k=0
min{n,m)

of R|z], we define f(z)o g(z) = Z cx2* | cx € agby, p. In this defini-
k=0

tion, the product is made component by component, hence the properties

of o are obtained as a consequence of the analogue in (R, +,-). Thus, the

following theorem holds:
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Theorem 4.4.2. The hyperstructure (R|X],+,0) s a commutative multi-
plicative hyperring.

If u is a weak identity in (R, +, ¢), then we notice that u is not a weak
identiy in (R[z], +,¢) anymore. However, we can construct the polynomial
n

Un(z) = Zumk, where n € N, such that we have f(z) € u,(z) o f(z), for

k=0
m

all f(x)= Zakmk, where m < n.
k=0
The hypothesis a - 0 = {0} for all a, is basic in the construction of a
polynomial multiplicative hyperring. First, we give two examples of multi-
plicative hyperrings, which satisfy this condition.

Example 4.4.3.

(1) Let (R,+,-) be a unitary commutative ring and we define the following
hyperproduct on R:

acb={ab, kab} where k € Z, char R=0 or char R does not divide (k—1).
Then (R, +,0) is a commutative multiplicative hyperring.

(2} Let (R,+,") be a unitary commutative ring, S be one of its unitary
subrings and a5"b = abS for all a,b of R. Then (B, +, 5*) is a com-
mutative multiplicative hyperring, such that for all a of R, we have
aS*0 = 05*a = {0}. Moreover, for all a,b of R, 0 € a5*b and we have
aS*h = {0} if and only if ab = 0.

In what follows, starting from a particular multiplicative hyperring, we
construct a new multiplicative hyperring, satisfying the property: for all a,
we have a - 0 = {0}.

Theorem 4.4.4. If (R,+,0) is a strongly distributive commutative multi-
plicative hyperring and for all a,b € R\ {0}, we definea®@b=aob and
for all o € R, we define a @ 0 = {0}, then (R,4,®) is a multiplicative
hyperring.

Proof. First, we check the associativity of the hyperoperation &.
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If a; b,c € R\ {0}, then we consider the following two situations:
(i)0aob; (ii)0€aoh

(i)

(a®b)® (aOb ®c= Um@c— Uwoc
rcaoch TEaoh
=(aocb)oc=ao(boc)= Uaoy
yEboe

and
@bec)=a®(boc)= Ua@y

yEboe
At this point, we have two possibilities: 0 € bocand O € boec.
If 0 € boc, then for every y € boc, y # 0 we have a® y = a o y and so

U aoy = U a@y.

yeboc yEboc

HOeboce thenboec=000, and so
Ua@y =Ua®y= U a@yUa®0= U aoyU{0}

yeboc y€0ol ¥€000,y#0 y€000,y7#0

=0ocl=boc=ao(boc).

Hence (a®b)®@c=a® (b ®c).

Similarly, we can prove the associativity in the case (ii).

We check now the distributive property. We have the following seven
cases:
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(6) a=0o0rb=0,c=0
(7} a=b=c=0.
We have:

(M{a+bd)®@c=(a+bloc=acct+boc=a®c+bRec.
(2) (a+b)@c=0®c= {0} € —boc+boc=acc+boc=a®c+bRc.
B)(0+b)Rc=bR@c=boc=boc+{0}=0@c+b&ec
) {a+b8)@0={0}=a®@0+bR0.

The cases (5), (6) and (7) are immediate. Finally, if a,b 5 0 then
—(a®b) = —(aob)=(—a)ob=qao(-b)=(~a)®b=a® (-b).

If a =0, then —(0® b) = {0} = 0® (—b). Similarly, for b = 0, we obtain
—(a®0) = {0} = (—a) ®0, and this completes the proof. W

Example 4.4.5. We can start from a well known example of strongly
distributive multiplicative hyperring and apply the above theorem. Let
(R,+,-) be a ring, I be one of its ideals and (R, +,0) be the strongly
distributive multiplicative hyperring, for which acb = ab+1. Thus (R, +,®)
is a multiplicative hyperring, for which we have a@b=ao0bifa,b# 0 and
a®b={0}ifa=0orb=0.

The following theorem provides us a new situation when we obtain a
multiplicative hyperring (R, +,®), such that a ® 0 = {0} for all a of R.

Theorem 4.4.6. Let (R,+,0) be a multiplicative commutative hyperring
such that for alla,b € R\ {0}, 0 € aob. Then (R,+,®) is a multiplicative
commutative hyperring, where for all a,b € R\ {0}, a® b =aob and for
alla € R, a®0={0}.

Proof. In order to prove that & is associative, we need to consider two
different cases: a,b,c € R\ {0} and (e =0 or b =0 or ¢ = 0). In the first
case, we have:

(a®@bl®c =(aob)@ce= U r®c= U Toc
rEach TEaob
(aobjoc=ao(boc)= Uaoy
y&eboc
U a@y=a® (bR c).

yEbRe
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We have used that 0 € aob and 0 € boc. In the second case, we can
suppose that a = 0. We have

tekbed= ] 0oy=1{0}

yEb®C
and
(@b &c={0}®c={0}.

Hence, the associativity holds.
For the distributivity property, we consider all the above seven different
cases. We check only (1) and (2). '

(1) (a+b)®c=(a+blocCacct+boc=a®c+b®c.

(2 (a+d)®@c=08c=1{0} Ca®c+b®c, since, a®c=a0c=
(—b)oc=—(boc)and bRc=boc.

Finally, for all a,b € R\ {0} we have
a®(~b)=ao(~b)=—(ach)=—(a®b), 0&(-b)={0}=—(0cb) =

4.5 Hyperoperations that induce strongly
distributive multiplicative hyperring
structures on an abelian group

The main result of this paragraph is a complete description of hyperopera-
tions that induce a strongly distributive multiplicative hyperring structure
on an abelian group. The following results were obtained by S. Feigelstock
[48, 49]. In these papers, he analyzed also the hyperoperations that in-
duce strongly left distributive muitiplicative hypernear-ring structures on a
group. ‘ '

Denote by SDMH the class of all strongly distributive multiplicative
hyperrings.

Lemma 4.5.1. If (R,+, ) € SDMH, then for alla € R, a-0 is a subgroup
of (R, +).
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Proof. Since a-0=a-{0—-0)=a-0—-a-0 it follows that a - 0 is such
that for all z,y of ¢ -0, we have z — y € a - 0, which means that a-0 is a
subgroup of (K, +). B

Lemma 4.5.2. If (R,+,-) € SDMH, then for all a,b € R, a-b is a coset
ofa-0.

Proof. Letc€ a-b. Forany z € a-b, wehavex —c € a-b—a-b=a-0, which
means that z+a-0=c+a-0. Thereforea-b=a-(b+0)=a-b+a-0=
U z+a-0=c+a-0. Similarly, it can be shown that foralla,b € R, a-b

rEG-D
isacoset of 0-5. W

From this lemma we obtain the following corollary:

Corollary 4.5.3. If (R,+,-) € SDMH, then for all a,b,c,d € R, the sets
a-b and ¢ - d have the same cardinality.

Corollary 4.5.4. If (R,+,-) € SDMH, then for alla,b € R, the seta-b
is a coset of 0- 0.
Proof. a-bisacosetof a-0,and a-0is a coset of 0-0. W

Now, we can establish the main theorem of this paragraph.
Theorem 4.5.5. Let (R,+) be an abelian group, let S be o subgroup of
R, and let f : R — Hom(R,R/S) be a homomorphism. If we define

a b= fla}b) for all a,b € R, then the structure (R,+,-) € SDMH.
Conversely, every (R,+,-) € SDMH is obtained in this manner.

Proof. For all a,b,c € R, we have

a(b+c) = fla)b+c) = f(a)(b) + f{a)(c) = ab+ ac,

(b+cla= f(b+c)a) = {f(b)+ f(c))(a) = ba+ ca and

a{—b) = fla)(—b) = —f(a)(b) = —(ab).
Therefore, (R, +,-) € SDMH. Conversely, let (R,+,-) € SDMH. For all
a € R, consider S = 0-0 and for all a,b € R, define f(a){b) = a-b. Then

fla)(b) € R/S, according to Corollary 4.5.4. Moreover, all a € R, the map
f(a) is & homomorphism. B
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For an abelian group (R, <), denote by Multspyu(R) the set of all
hyperoperations “-” for which (R, +,-} € SDMH. Then the above theoremm
can be restated as follows:

Theorem 4.5.6. If (R, +) is an abelian group, then there is an one-to-one
correspondence between Multgpyp(R) and U Hom(R,Hom(R, R/5)).
S<R

If we denote by Mult.(R) the set of all hyperoperations “-” for which
(R,+,-) 1s a ring, then we obtain the following result:

Corollary 4.5.7. If (R,+) is an abelian group, then there is an one-to-one
correspondence between Mult,(R) and Hom(R, End(R)).



Chapter 5

General hyperrings

5.1 Feeble hyperrings

In this section we introduce a new type of hyperrings. Both addition and
multiplication are hyperoperations, that satisfy a set of conditions. This
definition was introduced by Corsini [20] and he used it in order to define
and study feeble hypermodules.

First, recall that a regular hypergroup (H, o) is a hypergroup which has
at least an identity and any element of H has at least an inverse. In other
words, there exists e € H, such that forallz € H, we have x € zoeNecx
and there exists ' € H such that e € zo 2’ N2 0 z.

In what follows, wy or simply w denotes the heart of the hypergroup
( H, o), ‘

Definition 5.1.1. A hyperstructure (R, +,-) is called a feeble hyperring
(F-hyperring) if (R, ++) is a regular hypergroup and - is a hyperoperation on
R, such that the following conditions hold for all a,b,¢c € R:

(1) a(b+ ¢} C ab+ ac+ wp,

{(2) (a+b)ec Cac+be+wg,

(3) (ab)c C a(be) +wr,

(4) 3(ab)’ C R, (ab) # 0, such that ab+ (ab)’ C wg.

157
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We denote the heart of the hypergroup (R, +) by wg.

Remark 5.1.2. There are hyperstructures which satisfy the above condi-
tions (1), (2), (3), but do not satisfy (4).

Indeed, we can consider the associativity hyperring of the Cayley-Dickson
algebra, defined by the following hyperoperations: z &y = A{z + y),
z oy = A(zy), where A is the associative closure.

Lemma 5.1.3. Ifa,b € R and z,y € ab, then 2 € y + wp.

Proof. First, if ' is an inverse of y, then for any (ab)’ we have i € (ab)'+wp.
Indeed, from ab + (ab)’ G wg, it follows that there exists y* € {(ab)’ such
that y + ¢* € wg. Then for all inverse ¢ of y, we have

Y+y+y CyY+wr=y +wr=y +wr=y €y +wr C (ab) +ws.
Hence '

o+y Cab+ (ab) +wp =2 4+y +yCwp+y= €Y+ wp

On the other hand, if z,y € ab, then 2 + wr =y + wr. A

Lemma 5.1.4. Ifa,b € R and V' is an inverse of b, then for all (ab)’, we
have ab’ + wgr = (ab)’ + wg.
Proof. 1f 0 is an identity of (R, +), then we have a0 C wg. Indeed, if ¢ € R,
then ag C a0+ ag + wg whence wg 2 ag + {ag)’ € a0 + ag + {ag) + wg C
a0 + wg. Then there exists x € a0, z € wg. According to Lemma 5.1.3, we
obtain a0 € wg. On the other hand, we have a0 C ab’ + ab + wg, whence
wg + ab' + ab+ (ab) 2 wg + (ab)', so ab' + wg 2 (ab). If z € (ab)’, then
there exist y € ab',u € wg, such that © € y 4+ u. We obtain y € 2 + wp C
(ab)Y + wg. According to Lemma 5.1.3, we have ab’ C (ab)’ + wg, s0 we
obtain ab' + wg = (ab) + wp. W
Example 5.1.5. Let (H,+) be a commutative hypergroup. We can endow
the set P*(H) of nonempty subsets of H with a hypergroup structure, as
follows: A+ B={C: CC A+ B}.

We denote the set of hypergroup homomorphisms f : H — P*(H) by
F(H). Now we endow F(H) with a feeble hyperring structure, by defining:

f+g={he F(H): h(z) C f(z)+g(z), Va},
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fog={heF(H): h(z)C f(g(z)), Yz},

where f(g(x)) denotes the set U f(y). Notice that we have wp(gy=F(H).
yEg(z)

Example 5.1.6. Let R be a ring and let I be an ideal of R. We define the

following hyperoperations on R:

a@&b=a+b+1 acb=ab+ 1
Then (R,&,0) is a feeble hyperring and for all a¢,b € R, we can take

(aob) = —ab+ 1.

If (R, +,") is a feeble hyperring, then according to Corollary 2.5.6, Theo-
rem 2.5.9 and Definition 2.5.18, (R/wg, ®) is a group, where for all a,b € R
and ¢ € a + b, we have (a + wg) & (b + wg} = ¢ + wg. Moreover, according
to Lemma 5.1.3., for all a,b € R and u € a-b the following operation is well
defined (a 4+ wg) © (b+ wg) = u + wg.

In what follows, we suppose that the feeble hyperring (R, +, ) satisfies
the next conditions:

(1) foralla,b € R we have a +b S b+ a4+ wp;
(2)d1eR: a€a-1+wr, a€l-a+wg,Vas R

Theorem 5.1.7. If (R,+,-) is a feeble hyperring, then (R/wr,®,©) is a
TiNg.

Proof. Let a,b, ¢ be elements of R. According to Lemmas 5.1.3. and 5.1.4,
we have

(a+wr)© (b+wr)®(a+wr) O (c+wg) =ab+ ac+wp = 2+ wpg,
forall z € u+ v, u € ab, v € ac. On the other hand,
(a+wp)©{(b+wr)® (c+wr)) =(e+wr) ©(t+wr) =w+ wg,
for all t € b+ ¢, w € at. Since a{b+¢) € ab + ac+ wg, we obtain
(a+wr)O(b+wr)B{a+wr)®(c+wr) = (a+wr)®((b+wr)B(c+wr)) = wtws,
for all w € a(b+ c).
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- Similarly, we obtain that
(b+wr)O(a+wr)B(ctwr)O(a+wr) = ((b+wr)®(c+wr))®(a+wr) = z+wh,

for all z € (b+ c)a.

Finally, we have

((& +wgr) © (b+wr)) ® (c+wg) = (ab+wg) - (c+ wg)
= (ab)c+wg C a(bc) + wg = (a +wg) - (bc + wg) = (a + wg) - (¥ + wr),
for all ¢ € bec and
(a+wr) - (y +wr) =ay +wp=2+uws,
for all z € ay. Hence,
; a(be) + wg = z + wg,

for all 2 € a(bc), whence
((a+wr)® (b+wr)) @ (c+wr)=(a+wr)®((b+wr)® (c+wr)).
Therefore (R/wg, &, ®) is a ring. W

5.2 A particular type of general hyperings
and hyperskewfields

General hyperrings (also called superrings by J. Mittas [90] ) are the widest
generalization of the concept of a ring. In this paragraph, a special interest
is dedicated to the complete hyperrings and hyperskewfields. Recall that
- complete semihypergroups are semihypergroups for which any hyperproduct
is a complete part. We present here several ways of constructing complete
hyperrings and we prove some properties of hyperideals. These results were

obtained by M. De Salvo [43].
Let us see first what a hyperringoid is.

Definition 5.2.1. A hyperstructure (H,®,©) is called a hyperringoid if
both &, ® are binary hyperoperations.
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Definition 5.2.2. A hyperringoid (H,&,®) is called a hyperring if the
following conditions are satisfied:

{1) (H,®) is a commutative hypergroup;

3 forall z,y,z € H(z@dy) 0z =(202)0y0 2,20 (x@y) =
(z0z)® (zEy);

(4) forall z € H and all u € w(pg), 2O u Cwpg 2 UG .
The hyperring (H,®,®) is called commutative if for all z,y € H,
TOYy=y®r

In what follows, we denote the heart of (H,®) by w and H \ w by H*.

Definition 5.2.3. A {commutative) hyperring {H, ®, ®) s called hyperfield
(hyperskewfield} if H* # @ and (H*, @} is a hypergroup.

If (H,®,®) is a hyperfield, then we denote the heart of (H*,®) by w*.
Definition 5.2.4. Let (,4,©) be a hyperring. If (H,®) is complete,
then we say that H is @ complete. If (H,®) is complete, then we say that

His® compl_tfte and if both (H,&) ,(H,®) are complete, then we say that
H is complete!! -

Examples 5.2.5.

(1) All rings (skewfields} are hyperrings (hyperskewfields). The hyper-
rings (hyperskewfields) which are not rings (skewfields) are called
proper.

(2) Let H = ({a.b}, &, ®), where

& | a b Gral b
al a |ab o |a|ab
b iab b blalab
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(3) The hyperringoid H = ({a,b,c,d, e}, ®,®) defined as follows:

G&lal|b|c|d]e ®lal b c idi e
al a |beibel| d e ala|l a | a |a| a
blbet d | . d| e a blal|be|bc|ld]| e
clbeci d | d| e a clatbelbe|d]| e
d|l d | e | el albc dla d | dla]| d
el e | a| aibc| d elal e e |d]|bec

is a commutative complete hyperring, but it is not a hyperskewfield.
Notice that the subset {a,d} is a hyperideal of H.

(4) The hyperringoid H = ({a,b,c,d},®, ®)} defined as follows:

d| a b c d &l oa b ¢ d
al| a |a,bicd]|ecd a labl|lab|ab]|ab
b |ab|ab)cd]|ecd blabl|ablab]|ab
¢c|ledicd|abiabd clabjab|edjcd
diecdicd|ablab d|ab|ab|cd]|cd

Definition 5.2.6. Let (H,$,®) be a hyperring (hyperskewfield) and let
K be a nonempty subset of it. We say that X is a subhyperring (subhyper-
skewfield) of H if it satisfies the following conditions:

(1) {K,&) is a subhypergroup of (H,®);

(2) (K,®) is a subsemihypergroup of (H,®) ((K*, ®) is a subsemihyper-
group of (H*,®)).

Definition 5.2.7. Let (H,®,®)} be a hyperring and let / be a nonempty
subset of it. We say that I is a left (right) hyperideal of H if it satisfies the
following conditions:

(1) (I,®) is a subhypergroup of (H, &),
(2) forallz € [,ae Ha®z C Iz®aCl).

I is a hyperideal if it is a left and right hyperideal.
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Notice that any hyperring has always two hyperideals: w and H.

Remark 5.2.8. There are not proper hyperskewfields with less than three
elements.

Let H = ({a,b},®,®) be a hyperskewfield. From definition 5.1.3, it fol-
lows that | w |= 1. Set w = {a}. We have a®a = a, adbb = bda = bbdb = a.
Moreover, we have H* = {b}, whence b0 b=b,a0a=aGb=b0a=a.
Therefore, H is the field Z,.

Theorem 5.2.9. Let (H, &) be the total hypergroup. A hyperringoid
(H,®,0) is a hyperring if and only if (H,®) is a commutative hypergroup
andw = H.

Proof. Let H be a hypering. Then w @ H C w. Since (H,®) is the total
hypergroup, we obtain w @ H = H whence w = H. Similarly, we prove the
converse implication. W

Definition 5.2.10. A hyperring (H, @, ®} is called an integral hyperdomain
if for all (z,y) € H?, such that z ®y C w, it follows that z € w or y € w.

Theorem 5.2.11. The ©-complete hyperskewfields are integral hyperdo-
mains.

Proof. Let (H,®,®) be a ©-complete hyperskewfield. Let z &y C w,
Y& w () Smce (H,©®) is a complete semihypergroup, we have two situa-
tions:

(1) Ciaeylz) = {z},
(2) there exist u,v € H, such that Cig e () =u®v.

(1) Since (H*, ®) is a hypergroup, we obtain z ¢ H* and so r € w.

(2) We have {u,v} Nw # 0 since if {u,v} C H* then it would follow
x®y C (uev)ey C H*Gy = H*, which contradicts (). From {u, v}Nw # 0
it followsu®v Cwandsoz €w. B

Theorem 5.2.12. If (H,®,®) is a ©-complete hyperskewfield, then (H,®)
is an extension of (H*, @) and for all x € H*, Cig~ o)(z) = Cipr ey ().
Proof. For all x € H*, there are u,v € H* such that Cigq)(z) = uov,
whence u 0 v = Cig- o) (1 0 v) = Cig~ o)(x). Hence Cg» oy(z) = Ciproy(z). M
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Corollary 5.2.13. If (H,®, ®) is a G-complete hyperskewfield, then (H*, ©)
18 a complete hypergroup.

Proof. According to the above theorem, we obtain: for all a,b € H* and for
allu€aobd,

aoh= C(H*")(a 0b) = Cipro)(u) = Cign ) (1) = Car oy(@ 0 b). M

Theorem 5.2.14. Let (H,®,®) be a ©-complete hyperskewfield. Then for
all a,b,c € H, the following implications hold:

gob=aoc, afw=>{bc}Cw orbffy,c
boa=coa, a¢w={bc} Cw OTbﬁE‘H!o)C-

Proof. There are two possibilities to analyze:
(1) {betnw #b;
(2) {b,c}nNw=19.

(1) Let b € w. Then acb C w and so aoc C w, whence ¢ € w, according
to Theorem 5.2.11.

(2) By Corollary 5.2.13, (H*,0) is a complete hypergroup and so it is
regular. Let o' be an inverse of a in (H*,0). We have ¢/ caob=a'0caoc,
whence w* o b = w* o ¢. Then Cy-o{b) = Cy-oy(c) which means that
Ciare)(b) = Crarop(c)-

Similarly we show the second implication. B

Definition 5.2.15. A hyperring (hyperskewfield) (H,&,0) is called a A-
hyperring (A-hyperskewfield) if the following condition holds:

(A) Yu€cw, VvE H, uov=vou=uw.

Remark 5.2.16. A o-complete hyperring (H, &, o) is a A-hyperring if and
only if there exists (u,v) € (w x HYU{H x w) such that uov =w.

w is an equivalence class modulo Sy, in o-complete A-hyperrings.
Corollary 5.2.17. Let H = {H,&,0) be a o-complete A-hyperskewfield.
Then, for all a,b,c € H, the following tmplications hold:

aob=uaoc, agw="b8y.,
boa=coa, agw==>b0yc.
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Corollary 5.2.18. Let (H,®,0)} be a o-complete A-hyperring such that
for all a,b,c € H, the following implications hold:

acb=aoc, agw=>bfy,0
boa=coa, ad¢w==>b0y,¢c

Then H is an integral hyperdomain.
Proof. Letaob=wand e« ¢ w. Forall u € w, a0b = aou=w, whence
b8[g o, Which means that b € Cpo)(u) =w.

Remark 5.2.19.
(1) If (H,®, o) is a hyperring, such that jw| = 1, then H is a A-hyperring.

(2) Let (H,&,0) be a hyperring such that w = H. Then H is a A-
hyperring if and only if (H, o) is a total hypergroup.

Construction of complete hyperrings

Starting with a ring,we construct a hyperring in the following manner:
Let (R,+,-) be aring and let {A(g)}ser be a family of nonempty sets,

such that:
(1) Vg.g' € R g# g = Alg)NA(g') = 0.
2) g¢ B A(g)l = 1.
Set Hp = U A(g) and define the following hyperoperations @, ¢ on Hp:

gER

Ya,b € Hg, 39,9 € R such that a € A(g), b€ A(¢')-

Seta@b=Alg+9), aob= Algy).
Lemma 5.2.20. For all g,¢' € R, Yu € A(g), Yv € A(¢'), we have:

(1) uev=Alg+7) = Alg) ® Al¢);

(2) wov = Algg) = Alg) ° Alg").



166 Bijan Davvaz and Violeta Leoreanu-Fotea

Theorem 5.2.21. Hpy is a complete A-hyperring.

Proof. Tt is sufficient to check the distributivity and the condition (4) of
Definition 5.2.2.
Let z,y,2 € Hg and let z € A(g), y € Al¢'), z € A(¢"). Then

(zoy)oz=Alg+gloz= |J woz=Al(g+¢)g".
ueA(g+g’)

Moreover,
(zo2)®(yo2)=Algd") @ Ald'g") = Algg" +9'¢") = Allg + ¢')¢").

Hence (z® y)oz = (zoz) & (y o z) and similarly it follows the other
distributive law. On the other hand, w=A(0g) and so Yu € w, Yz € Hg we
have u o =1 c u=A(0g)=w. Therefore, Hy is a complete A-hyperring. B

5.3 Fundamental relations in hyperrings

We analyze here the fundamental relation in the context of general hyper-

rings. Using this, we shall define general hyperfields. The most of the results

presented in this paragraph were obtained by T. Vougiouklis [131], [132].
In what follows, we shall use the following definition:

Definition 5.3.1. A multivalued system {R,+, -} is a (general) hyperring if
(1) (R,+) is a hypergroup;
(2) (R,-) is a semihypergroup;

(3) () is (strong) distributive with respect to (-+), i.e., for all z,y,z in R
wehave z- (y+z2)=z-y+z-zand {(z+y) 2=z 24y 2

in this paragraph, we shall use the term of a hyperring, instead of the
term of a general hyperring, intending the above definition. A hyperring
may be commutative with respect to (+) or {-). If R is commutative with
respect to both {4} and {-}, then we call it a commutative hyperring.

The above definition contains the class of multiplicative hyperrings and
additive hyperrings as well.



HYPERRING THEORY AND APPLICATIONS 167

Example 5.3.2. The set H = {0,1} endowed with the following hyper-
operations is a commutative hyperring.

o1 1o 1
0] 0 |01 00
1101 1 110]0.1

In the above hyperstructures, we introduce an equivalence relation +*,
which is similar to the relation §*, defined in every hypergroup. Using this
relation we obtain a general definition of a hyperfield.

Definition 5.3.3. Let (R, +,-) be a hyperring. We define the relation v as
follows: .

ayb if and only if {a,b} C u where u is a finite sum of finite products of
elements of R.

We denote the transitive closure of v by +*. The equivalence relation
~* is called the fundamental equivalence relation in R. We denote the equi-
valence class of the element a (also called the fundamentel class of a) by
v(a}.

According to the distributive law, every set which is the value of a poly-
nomial in elements of K is a subset of a sum of products in K.

Let U be the set of all finite sums of products of elements of B. We can
rewrite the definition of v* on R as foliows:

ay*b if and only if 32y, ..., zny1 € R with 2y=q, 2p41=b and uq,...,u, € U
such that {z;, zi41} Cu; fori e {1,...,n}.

Theorem 5.3.4. Let (R,+,) be a hyperring. Then the relation 7* is the
smallest equivalence relation in R such that the quotient R/v™ is a ring.
R/~* is called the fundamental ring.

Proof. First, we prove that R/+" is a ring. The product © and the sum &
in R/~* are defined as follows:

Y (@) @ (B) = {7"(c) : ¢ € v (a)+ (D)},

@) @7 (b) = {y"{d}: d € v(a) -7 (B)}.
Let @’ € v*{a),¥ € v*(b). Hence
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a'~*a implies that Jz,, ..., Zme: with 21=d', 2 1=a and vy, ..., U € Y
such that {z;, ;1 Cu; fori € {1,...,m}; ‘

b'y*b implies that 3y, ..., Y4y With y1 = V', ¥py1 = b and vy,...,v, € U
such that {y;,y;41} C v; for j € {1,...,n}.

We obtain :

{Zhzipt+n Cw+v, i €{1,...,m-—1}
Tmt1 + {Uj Vi) © um + 5, J €{1,..,n}.

The sets w; + vi = &, ¢ € {l,..,m — 1} and uy + v; = tpyje1,
j € {1,...,n} are elements of I{. We choose the elements 2, ..., Zmin such
that 2, € z;+ ,¢ € {1,...,m} and zpt; C Tmg1 + ¥i41,7 € {L,...,n}
We obtain {zx,2g1} C th, & € {1,...,m + n — 1}. Hence, any element
z) € Z1+ 1 = o' +V is 4" equivalent to any element zp,yn € Trmg1 + Yna1 =
a+b. Thus, v*(a)@®~*(b) is singleton and we have v*{(a)®y*(b) = v*(c) for all
¢ € v*(a)+~*(b). According to the distributive law, we have u-v € If for all
u, v € Y. Similarly, we obtain v*(a) ® v*(b) = v*(d) for all d € v*(a)-*(b).
Therefore, it is immediate that R/+* is a ring.

Now, let p be an equivalence relation in R, such that R/p is a ring and
let p(a) be the equivalence class of the element a. Then p(a) @ p(b) and
pla) ® p(b) are singletons for all ¢, b € R, which means that for all a,b € R,
for all ¢ € p(a}+ p(b), for all d € p(a) - p(b) we have

pla) & p(b) = p(c), pla) @ pl(b) = p(d).

The ahove equalities are called the fundamental properties in (R/p,&,®).
Hence, for all a,b € R and A C p(a), B C p(b) we have

pla) @ p(b} = pla +b) = p(A+ B) and p(a) © p(b) = p(a-b) = p(A- B).

By induction, we extend the above equalities to finite sums and products.
Now, set u € U, which means that there exist the finite sets of indices J
and I; and the elements z; € R such that:

o= (II=

JjedJ icl;
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For all I;, the set Hmi is a subset of one class, say p(a;). Thus, for all
icl; )
a€ Eaj we have
jed '
e S play) = o (}: ) - ola).

jeJ j&eJ

Therefore, for all z,y € ‘R, zvy implies zpy, whence zv'y implies zpy.
Hence, for all @ € R, v*(a}) € p(a), which means that * as the smallest
equivalence relation in A such that the quotient R/v* is a ring. &

Remark 5.3.5. f u = Z H:t:,; € U then for all z € u ,
jed ‘-".EI_-,'

ry=eY [o][re) ] =)

jed icl;

where & Z and & H denote the sum and the product of classes.

In order to speak about canonical maps, we need the following notion:

Definition 5.3.6. Let R; and R, be two hyperrings. The map f : B; — Ry
is called an tnclusion homomorphism if for all z,y € R, the following con-
ditions hold:

fla+y) C f(z)+ fly) and flz-y) C flz)- fly).

f is called a strong homomorphism if for all z,y € R, we have

fla+y)=flz)+fly) and flz-y)=flz) fly)-

Let R be a hyperring. We denote by 4 and (. the following binary
relations:

zfy if and only if 3z, ..., 2, € R such that {z,y} C 2 ... 2, and

zf,y if and only if Jz,,...,z, € R such that {z,y} C z1 + ... + zn.

We denote the transitive closures of the relations . and 84 by #* and 37,
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and we call §* and 3} the fundemental relations with respect to multiplica-
tion and addition, respectively. For all a € R we denote the corresponding
equivalence classes of a by 8*(a) and 5} (a) and we have

B{a) € 7*(a), Bila) €~ a).
Let us consider the following canonical maps

p:R— R/F, plz)=08"(x),
vyt R— R/By, w4(z) = Bi(z),
¢* R — R/v*, ¢*(z) =~v*(z). e

We notice that the maps ¢, : (R, +) — (R/8,,8), v.: (R, ) — (R/3*,3),
w* (R, +,") — (R/~*,&®,©) are strong homomorphisms. '

We denote by w,, w* the kernels of ¢, ¢*, respectively. If 0 is the zero
element of R/3} or R/v*, then

wy =kerp, ={z € R:yp.(z)=0}
w* = kerp* = {zx € R: ¢p*(z) =0}.

We have w, C w".
Let us see what a hyperideal is in a hyperring.

Definition 5.3.7 Let B be a hyperring. A nonempty subset S of R is called
a hyperideal if following axioms hold:

(1) (S,+) is a subhypergroup of (R, +);
(2) (S -RU(R-5)CS.
Theorem 5.3.8. Let (R,+, ) be a hyperring. Then,
(1) Rw* Cw*, w*R Cw",
(2) If (R,+) is a regular hypergroup, then w* is a hyperideal of R.

Proof. (1) For all € R, © € w*, a € rx we have

e a) = ¢ (rz) = ¢*(r) @ ¢*(z) = ¢*(r) ©0=0.
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(2) If a,b € w* i.e. p*{a) = *(b) = 0 then
p'la+b)=¢a)®y"(h) =07 @0 =0,

soa+b&w. Sﬁpposé that (R,+) is regular and let e be an identity of it.
Then, e € wy Cw*. Set z € w*. Then, for all ' € R, such that e € z + ',
we have o

I=¢"(e}=¢'(z+2) = o (z) ¢ (a') =00 ¢*(2).
So ¢*(z') = 0 whence &’ € w*. Therefore, for all y € w* we have
yee+yClr+a)+y=z+ (' +y)
and from z’ + y € w* we obtain y € z + w*. Hence w* C 7 4+ w*, whence w*
is a subhypergroup of (R,+). B
Theorem 5.3.9. For all additive hyperrings we have v* = .

Proof. In an additive hyperring R, any product of elements of R is singleton.
Hence, for all

uzz Hzr:n,- cld

jeJd iel;

we consider the elements y; = H z; for all j € J and we have u = Zyj.
iel; . Jed

This means that avy*b if and only if aF;b. B

Theorem 5.3.10. Let (R, +,) be a hyperring. Then R/v* and (R/B*)/8%
are isomorphic, where G is the fundamental relation defined in (R/B*, @)
by setting 57(a) & B7(b) = {8'(c) : c € f7(a) + B7(b)}.

Proof. The quotient (RB/3*)/ B, is aring. We denote the equivalence relation
associated with the projection p : R — (R/B3*)/5% by o. Since p is ring
homomorphism, we obtain v*(a} € o(a) for all ¢ € K. On the other hand,
for all z € R we have 3*(z) C v*(z), hence

U »#= | swc U e

Brz)ed=(z)ds (y) 2€8 (z)+8(y) e ()47 (1)
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From the fundamental property in R/v*, for all w € 2 + y we have
v (z) +v*(y) = v*(w), whence

U By

2€87 (x)®B* (v)

Therefore, for every finite set {z; : ¢ € I} of elements of R/3" and for all
w E Z z; we have
i€l
U s

€D Y e B {(m0)

Since " is transitive, for all @ € R we have

ola) = U B7(z) € v (a).

z BH{z)Bg A" (o)
Therefore, o = v*. B

Definition 5.3.11. A hypering (R,+,) is a hyperfield if either R/v* is a
field or w* = R, which means that R/+v* consists only of the zero element.

Theorem 5.3.12. Every hyperring in the sense of Krasner is o hyperfield.

Proof. Let us recall that (R, +,} is a hyperfield in the sense of Krasner,
if (R,+) is a canonical hypegroup, (R \ {0},-) is a group, where 0 is the
scalar identity of (R, +), which is a bilateraly absorbing element of R and
the (strong) distributive law is satisfied. We denote by 1 the unit element
of (R\{0},-). For all 7 € R we have ¢*(r) = ¢*(1-7) = ¢*(1}©¢"(r), hence
¢*(1) is the unit element of (R/9" \ {w*},®). If 1 € w* then we obtain
R = w” since w* is a hyperideal of R. If 1 ¢ w", then *(1) is the unit
element of R/~*. Hence, for all z € R — w” we take the element z7?, such
that

P (1) =g (z-271) = o (z) O (=™),

which means that ¢*(z~1) is the inverse of ¢*(z) in (R/v*—{w*}, ®). There-
fore, R/v* is a field. m
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5.4 The (H, R)-hyperrings

Now, we present a way to obtain new hyperrings, starting with other hy-
perrings (43, 44, 119].

Let (H,o, 0) be a hyperring and let {A4;}icr be a family of nonempty
sets such that:

(1) (R,+,-) is a ring;
(2) AOR = H,;

Let K = U A; and define the following hyperoperations on K:
ich
Ve, yc H z@y==zoy
TOy=H
Vr e A;, Vy&A; suchthat A; x A; # H x A,
x@'y=Ak 1f1+j=k
roOy=Anifi-j=m.
We have w = H and H © K = H = K ® H. The structure (K, ®,®)
is a hyperring. We shall say that K is an (H, R)-hyperring. Denote
R* = R\ {0z}

Remark 4.4.1. If K is an (H, R)-hyperring, then K is commutative if and
only if R is commutative.

Lemma 5.4.2. Let K be an (H, R}-hyperring. Then K is an integral hy-
perdomain if and only if R is an integral domain.

Proof. Let K = U A; and let R be an integral domain. Let z € 4;, y € A;
i€R

and &y = w = H. From the definition of & it follows i = 0g or j = 0p

and so x € H or y € H, which means that K is integral. Similarly, we

obtain the converse implication. B

Theorem 5.4.3. Let (K, ®,®) be an (H, R)-hyperring. If R is o skewfield
(field), then K is a hyperskewfield (hyperfield).
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Proof. We have to check that (K*,©) is a hypergroup. Let {z,y} C K™
Then there exists {i,7} C R* such that z € A;, y € A;. From Lemma 5.4.2,
we have Oy C K*, since R is integral. Moreover, there exists p € R*, such
that i = jp. If z € A,, then y © z = A; 3 z. Similarly, there exists w € K™,
such that £ € w ® y. Henice K is a hyperskewfield. Finally, if R is a field,
then K is a hyperfield. B

By induction on n, we can show that:

Lemma 5.4.4. Let (K, ®,®) be an (H, R)-hyperring, such that K = U A
i€R
Then ¥n € N*\ {1}, Vz1,...,x, € K the following cases are possible:
1B € P(H)\ {0} : ®liz; = B, ’
dpe R: oz, = A,

From Lemma 5.4.4, we obtain the next lemma:

Lemma 5.4.5 Let (K, ®,®) be an (H, R)-hyperring, such that K = U A;.
i€R
Then Vi € R, A, is a complete part of (K, ®) and of (K, ®).
From Lemma 5.4.2 and L.emma 5.4.5, we obtain
Lemma 5.4.6. Let (K, &, ©) be an (H, R)-hyperring, such that K = U A;
i€R
Then
Vie R, Va & A, C(K!@)(G) = Ai;
¥p € R such thatp € R- R, Vb € Ay, Cixe)(b) = Ap;
Vs € R such that s ¢ R- R, Ve € A;, Cixe)(c) = {c}.
Remark 5.4.7. By Lemma 5.4.2 and Lemma 5.4.5, it follows that any
(H, R)-hyperring is a ©—-complete A-hyperring.
Lemma 5.4.8. Let (K, &, ®) be an (H, R)-hyperring. If K is o hyperskew-
field, then: ' '

(1) (K™, ®) is a complete hypergroup;

(2) w* = A,, where u = 1g.
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Proof. (1) It follows from Remark 5.4.7 and Corollary 5.2.13.

(2) Let a € w*. There exist v,w € K* such that o € v & w. From
Lemma 5.4.4, there exists « € R such that v®w = A,. From Lemma 5.4.6,
we have Cix,e)(@) = A, and from Theorem 5.2.12 we obtain w* = A,,. Since
w* is the set of bilateral identities of (K™, ®), we have Vi € R, Va € A,
Ve € Ay, a € a®e and s0 a ®e = A;. Similarly, e ® a = A;. We obtain
U = 1R- [ ]

Theorem 5.4.9. Let (K,®,0) be an (H, R)-hyperring. Then K is a
hyperskewfield (hyperfield) if and only if R is a skewfield (field).

Proof. According to Theorem 5.4.3, it suffices to check only an implication.
Let K be a hyperskewfield. According to Lemma 5.4.8, R is a unitary ring,
so we have to check that any element of R* has a unique multiplicative
inverse. Again, by Lemma 5.4.8, (K*,®) is a complete hypergroup, so it is
regular.

For all i € R* and for all @ € A;, there exists j € R* and @’ € A,
such that a @ ¢’ = o’ ® a = w*. According to Lemma 5.4.8, w* = A,
where 4 = 1p. By the definition of &, we have - j = j i = 1. By the
way of contraposition, suppose that there exists m € B*, m $# j, such that
m-i=1-m= 1lg. By Theorem 5.2.11 and Lemma 5.4.2, it follows that K
is an integral domain and so, fromi-m =1z =177 weobtain j=m. B

Lemma 5.4.10 Let (H,o, (1) be a -complete A-hyperskewfield and let [
be a hyperideal of H. Then I 1s proper if and only if I N1w* = .

Proof. If I Nw* =@, then I # H.
Conversely, let I be proper and by the way of contraposition suppose
there exists # € w* N [. Then, for all u € H, we have two possibilities:

(1) v €w;
(ii) w e H*.
In the case (i}, from {A) it follows u 0z = w and since [ is a hyperideal,

wOx C HOIC I, whence u € w C [
In the case (ii}, we have:

uldzr = 'U,DC(Hm,D)(m) =y0Ow" = C(H*,g)(u) 3 U.

But u0z C I and so u€/. Hence we would obtain H=1, a contradiction. W
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Theorem 5.4.11 If (H,0, O) 4s a [J-complete A-hyperskewfield, then w
is the unique proper hyperideal of it.

Proof. By the way of contraposition, suppose that H has an proper hy-
perideal | # w and let z € I — w. Since H is O-complete, it follows that
there exists an inverse &’ of « in H*, such that z0Oz' = w*. Since I is a
hyperideal, we obtain z 0z’ € TOH C I. So w* NI %, which coniradicts
Lemma 5.4.10. &

Lemma 5.4.12. Let R be ring with the unity v and let (K, $,®) be an
(H, R)-hyperring. If we denote BE((K,®))={ec K | V2eK, zceGzNzde},
then E((K,®)) = A,.

Proof. Let ye A,. Forallz e K,ifz € A;, thenz0Qy=y&oz=A4;, 3z
Hence y € E{(K,®)). Conversely, let e € F((K,®)). Then there exists
jE R, suchthatee A; Let z € Ay. Wehavez € 20e=e® 2z = A; and
50 A, NA; # 0, whence A, = A;. B

Lemma 5.4.13. Let (K,c,0) be a hyperring and let z € K. If we set
I = KOz, then I is a left hyperideal of K if and only if for all y € 1,
Toy=I=ycl

Proof. If u,v € I, then thereexist a,b € K suchthatu € ez, v € bOzx. We
have wov C (a0z)o(bOz) = (ach) Oz C K Ox. Hence I is a subsemihyper-
group of (K,o). Moreover, KOI=KO(K Oz)=(KCK)Oz C KOz=I,
which means that [ is a left hyperideal of K. Conversely, it is immediate. B

Theorem 5.4.14. Let (K, ®,®) be an (H, R)-hyperring and let x € K.
Then K © z is a left hyperideal of K.

Proof. By Lemma 5.4.13, it is sufficient to show that K & z.is a subquasi-
hypergroup of (K,®). If z € H, then K ®z = H = w and w is a hyperideal
of K. Letz e K—H,z € A,. Ifu,v € K ®x, then there exist hy,hs € K
such that u e 1y @z, v E hy @ 2.

We have two possibilities:

(1) hi,he € Hy  (ii) by € A, hg € Ay, and A; X Ay # H X H.

(i) We have u,v € H, so there exists ¢ € H, such that v € v & t. But
KGzoHGOx=Handsot e K ©uzx.
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() Let j-i=kandm-i=p. Thenue Ay andv € A,. Set s =k—p
and let t € A,, We have u € v @ t = A;. Moreover, z € A;_, and we
have 2 © z = A,, whence { € K ® x. Similarly, we show that there exists
teKozrsuichthatuet' @v. B

Theorem 5.4.15. Let R be an integral domain and let (K,©,0) be an
(H, R)-hyperring. Then K is a hyperskewfield if and only if the only proper
hyperideal of K s w.

Proof. By Theorem 5.4.11 and Remark 5.4.7, it follows the implication
H:-” .

Conversely, we show that (K*, ®) is a hypergroup. By Lemma 5.4.2, K
is integral and so Va,b € K*, a @b C K*. Let v € K*. By Theorem 5.4.14,
K © is a hyperideal of K. By Lemma-5.4.12, x € K @ z. Since z ¢ w and
the fact the unique proper hyperideal of K is w, it follows that K ©xz = K
for all z € K™, _

Let a € K*. Then there exists b € K, such that a € b ® = and, by the
definition of &, we have b€ K*. &

From Theorems 5.4.9 and 5.4.15, we obtain:

Corollary 5.4.16. Let R be an integral domain and let (K, &,®) be an
(H, R)-hyperring. Then the following conditions are equivalent.

(1) K is a hyperfield;

(2) R is a field;

(3) the only proper hyperideal of K is w.
Theorem 5.4.17. Let (H,o,0) be a complete hyperring, such that
Biuey = Blw,oy- Then, for allz € H, HOzx is o left hyperideal of H.

Proof. By Lemma, 5.4.13, it is sufficient to show that f{ Ox is a subquasi-
hypergroup of (H,o). Let u,v € HOz. Then there exists hi, hy € H, such
that v € hyOx, v € hoOz. Let ki be an inverse of hy in (H,0) and let
t € (hy o hy)Dz. Then
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vot C (heDz)of{hyohy)Dz
= [hoo (hyo )Tz
= (wohy)Oz
= Clae)(h1) 02
= C,oy(h1) 0z,
Hence :
(T)Ot)ﬂ(C(H,D)(hl)DIE)?é@ (*)
We show that v ot is a complete part of (H, 0). Let Oz N (vot) # (.
Then there exists o € [OHz;, o € vot. Let v € Ollz;. We have aﬁE‘H’D)fy,
whence a7 Since Cigoy() = vot, we have v € vot and so volt
is a complete part of (H, O). Moreover, there exist r,s € H, such that
Cig,0y(h1) = rOs since (H, O) is complete.
From (x), we obtain Cig,o){(hi)0z = (rOs)0x S vot and since u €
Ciar,oy(h1) C, it follows that H Oz is a right subquasihyperg,roup of (H,o).
Similarly, we show that H Oz is a left subquasihypergroup of (H,o). m
.

5.5 (H,HypR)-Hyperrings !

The hyperrings introduced in this paragraph generalize (H, R}-hyperrings,
studied in Section 3.4. We consider R a hypering, instead of a ring. Then,
we study guotients of such structures, with respect to two-sided hyperideal.
These results were obtained by Mahmoud [78].

Let (H,*,0) and (R,+,-) be hyperings, such that (R, +) has a unique
identity, denoted by 0. Moreover, suppose that 0 is a two sided absorbing
element. Let {4;}:cx be a family of nonempty sets, such that for all 4, jeR,
2#_}, AiﬁAj=m and Ag"—‘=H

Set K = U A; and define the hyperoperations & and @ on K as follows:

icR
V(z,y) € H?, z@y=1zxy, 2Qy=1x0y,

Viz,y) € Aix A £ B s @y =Ags= | A s0y=Ay=J A

tEi+i teij

Theorem 5.5.1. (K,®,©) is a hyperring.
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Proof. First, notice that (K,4) is a hypergroup. Indeed, for all x € 4;,
y € A;, z € A, we have

(z®y)®z = APz = U Az = U Ay = U Ay = 28(ySz)

teit+j we(i+i+r wei+{j+r)
and ‘ '
sokK =|Jrok=JAy= J 4= 4
keK j€R tei+j,jeR tci+R
= |J A4=Kez={JA=K
teR+i teR

Similarly, we check that the hyperoperation © is associative. Finally, it is
easy to check that ® is distributive with respect to &. Therefore, (K, &; ®)
is a hyperring. B
Definition 5.5.2. The hyperring (K, &, ®) is called (H, Hyp(R))-hyperring
with support K = U A;

i€R ,

We say that {K,®,®) is commutative if both (I, *,0) and (R, +, ) are

comrautative.

Remark 5.5.3. If i,u,j € Rsuch that z € A; and z € A,y theni € u+7.
Indeed, z € Ayy; implies z € (J,c,; As, which means that there exists
r € u+ j, such that © € A,.. So i =, whence i € u+ j.

Theorem 5.5.4.  If (K,®,®) is ¢ (H, Hyp(R))-hyperring with support
K= U A;, then K /v;. and R/~}, are isomorphic.

i€R
Proof. Let a € K. If a € A,, then denote a by a,. Let z; € Vi (a,), where
x; € Ay, t € R. Then there exist z,, € A, ,....2%,,, € A,,., such that
Zp, = Bty Zroy, = Gp and for all 4 € I, = {1,....,n}, there exists y,, € A, ,
where t;, € R, j; € In,, and m; is a nonzero natural number, such that

{zf'i:zf'i+l}g® Z ® H Y5, =A T ( 1 tji)’ i€ I,

mi;EM jiEImi mEM Fi€lm;
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According to Remark 5.5.3., we have

{Tl'!ri-i—l}g Z H t'i ) 2’EJ[:".L .

miEM i Gfmi

In other words, 71 € ¥*(rps1), which means that t € 4%(r). Hence, there is
an isomorphism o : K/v; — R/vh, vilar) — vp(r). &

Corollary 5.5.5. If (R,+,-) is a ring, then K/~j, is tsomorphic to R.

Definition 5.5.6. Let (K, ®,®) be a (H, Hyp(R))-hyperring. An element
z' € K is called an oppositeof r e K f and only if H Cz @2’ Na’ & x.

Definition 5.5.7. A hypering (R, +, ) is called regular if (R, +) is regular.

Theorem 5.5.8. Let (K,®,0) be a (H, Hyp(R))-hyperring and F be a
nonempty subset of K. If (R, +,-) is a regular hyperring, then F is a hyper-
ideal of K if and only if F = U A; where FE is a hyperideal of R.
icE
Proof. If Fis a hyperideal of K, then H = F® H C F, since 0 is a two
sided absorbing element. Let x € F'\ . Then there exists i € R — {0}
such that z € A;. Forall y € H, we have x Py = A, C F. Since R
is regular, it follows that there exists an inverse i’ of i. If z € Ay, then
T®z = A = Useipo Ar, hence H € 2 @ 2. This means that z is an
opposite of z in K and since (F, @) is a subhypergroup of (K, &) it follows
that z € F. Therefore, Ay = z & y C F, whence there exists a nonempty
subset F of R, such that F = U A,
i€E

Let ¢,7 € E. Then, there exist z € A,, y € A4, such that s By =
Aiv; € F. Hence i + j C E, which means that £+ E C E. Hence, (E,+)
is a regular subhypergroup of (R,+). In a similar way, we can show that
i+ E=FE=FE+i. o

We still have to check that if 1 € E,7 € R\ {0}, then i -7 C E. For all
€A, CFy€A wehave z ©y = A;; C F, which means that i-j C E.
Therefore, F is a regular hyperideal of E.

Conversely, let F' = U A;, where E is a regular hyperideal of R. If

icE
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z € F,k € K then there exist i € E,r € Rsuch that z € A;,k € A,. Hence,
zOk=A;,andsincei-r C Eweobtainz Ok = UAtQ UAt:F.

teir teE
Finally, let ¢ be an opposite of ¢ in E. Then H C A;4+ C F. Moreover,

any ' € Ay is an opposite of z in F, since H C Ay =z ® 2’. By an
immediate check, we obtain F@ F C Fand 2 F = F = F @ z for all
z € F. Therefore, F' is a regular hyperideal of K. R

Theorem 5.5.9. If F' = J,cz Ai is a hyperideal of K and E is an invertible
subhypergroup of (R, +), then F' is an invertible subhypergroup of (K, ®).
Proof. Let a € F &b, where b ¢ F. Hence b € A; for some j € R\ E. Then
a € U A, implies that a € A; for some : € E + j. Since E is invertible
teE+j '
in R, it follows that j € F + 4, whence b € U A, = F & a, which means
reE+4i
that F' is an invertible subhypergroup of (K, ¢). ®
In what follows, we shall use the next theorem of immediate check.

Theorem 5.5.10. Let K be a hyperideal of (R, +,-), such that K is an
invertible subhypergroup of (R,+). Then (R/K,e,0) is a hyperring, where
for all z,y € R we have

(z+K)o(y+K)={z+K: z€z+K+y+ K} and
(x+ K)o (y+ K)={w+K |w € (z+K) - (y+K)}={w+K | w E.:c-y}.

Recall that a map f: A — B is a homomorphism between the hyper-
rings (A, +, ) and (B, ®, @) ifforall z,y € A, we have f(z+y) C f(2)®f(y)
and f(zy) C flz) © fly).

Theorem 5.5.11. Let (R, +,") be a hyperring, (K, &, ®) be a (H, Hyp(R))-
hyperring. Let F' be a hyperideal of K and E be the corresponding hy-
perideal of R, i.e. F = UAi‘ Moreover, suppose that F is an inver-
tible subhypergroup of (R,lf)j. Then there is a hyperring homomorphism
P (K/F,8,0) — (R/E e, 0).

Proof. According to the above theorem, (K/F,e,0) and (R/E, e 0) are
hyperrings. For all z, ye K, there exist 4,7 € R such that z€A;, y€A; and
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zeFeweF) = ] A,
tei+E+j+E
@ FoyeF) = |J 4= |J A

wei-j+E we{i+E) (j+E)

Define ¢ : (K/F,8,0) — (R/E,e,0) by (z@& F)={r+E: r €i+E}. We
have Y[{(z@F)e(y®F)|={t+E : t € i+ E+j+E}=(i+E)o(j+E) C (B F)
o )(y® F). Similarly, we have ¥[(z & F)o(y @ F)) CY(zd Flov(y & F).
Therefore, v is a hyperring homomorphism. W

5.6 Hyperring of series and hyperring
of polynomials

In this paragraph we construct a hyperring of series and a hyperring of
polynomials over a general hyperring. Then we mention some properties of

series hyperrings and polynomial hyperrings. The results presented in this
paragraph were obtained by B. Davvaz and A. Koushky [39].

First, we do some notations. Let K be a general hyperring.

(1) A series with coefficients in R is an infinite sequence (ag, @1, ..., Gn, -..)
in which all a; belong to R. The set of all series with coefficients in
R will be denoted as usual by R[[z]}. Two series (ag, @1,..., Gn,...) and
(bo, b1, ..., b, ...) are equal if and only if a; = b; for all non-negative i.

(2) The addition is defined by

(a'01 ay, . Qp, ) 2 (b{)?bl? ey b?’la "-)={(601 C1y -5 Cn, ) | cp&ay + bk}

(3) The multiplication is defined by

(ao,al, vy O,y ...)@(b@,bl, ey O, ...)={(Co, Clyney Cny ) I CL< Z ai-bj}.

iki=k
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. o0
The element f = (ag,ay, ..., @y, ...} is frequently written f = Z a,z". This
n={)
notation is very convenient for dealing with the calculations, although it is
purely formal. S

We consider R, R, and R, commutative hyperrings and (R, +), (R;,+)
and { Ry, +) regular hypergroups.

Lemma 5.6.1. &, defined above are well defined hyperoperations.
Theorem 5.6.2. (R[[z]],®,®) is a general hyperring.
Proof. It is easy to see that &,® are associative. Let us check that

" (R|]z]], &) is a quasihypergroup. For all f € R[[z}]], we show that
f & Rfz]) = R[[]).

o oo -

Suppose that f = Z a;z and g = Z biz'. Since (R, +) is regular, we can
i=0 i=0

assume that d; is an inverse of q;. We define

f=d+aiz+ @z’ +..+dz" + ...,
and we have f @ f C f @ R[lz]]. Since &, is an inverse of a;, there exists an
identity e; € a; + a;. If we set

e=eq+e1T -+ e’ + ... + et + ...,

then we obtain e € [ @ f (in general, e is not unique). On the other hand
f @ g C R[[z]], whence f & (f & g) C f & Rl[iz]]. Therefore

gc€esgC(feaflog=Ffa(feq < fe R[],

and so R[jz}]] € f & R|[z]]. Hence R[[z]] = f & R[[z}]. Now, we check
the distributivity of @ with respect to &. For simplicity of notations,

00 ¢ 9]
we shall write EAkazk instead of {Z cxzt | ¢ € Ak}. Suppose that

k=0 k=0
o0

[= iaixi’ g = ibixf and h = icﬁ;! Then, g@® h = Z(bi + &)zt
=0 i=0 =0

i=0
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and so f © (g @ h) = ao - (bo + co) + [a0 - (b + 1) + a1 - (bo + o]z
ot Jao (b +em) + a1 (bmor +mo1) + oo+ - (bo + co)]z™ + ... Also, we
have (f©¢)® (fOh) = (ao-bo+ag-co)+ (a0 by +a1-by+ag-c1+ a1~ oo+
+(ag b+ a1 brpe1 4 oo+ G bo+ 80 Co A1 Crm1 -G - )T
Since R is commutative, we obtain f @ (g h) = (f©g) & {(f ©h), and in
the similar way, we get (f @ g) @h = (fOh)® (g©h). Thus, (R][z]],®,®)
is a general hyperring. W
Theorem 5.6.3. If g : Ry — R: is a strong homomorphism, then g in-
duces a strong homomorphism § : Ri[[z]] — Ra[[z]].

Proof. We define ﬁ(z a,ra:") = Z gla;)z*. Obviously, § is well defined. .

i=0 i=0

o0 o0
Suppose that f = Z a;z', h = Z biz* are two arbitrary elements of Ry[z]].

=0 =0
Then, f& h= {chmi | c; € ai-+~b1}, and so
=0
gUeh) = {Zg ¢i)z' ICIEaz-{-b}
=0
On the other hand §(f) = Zg(a@)cci and g(h) = Zg(bg-):ti which imply
i=0 =0
that
309 = {3 da' 1d€ ola) +al0) | = (> as' e gle)
: i=0

=0

= {Zg(ci):c" | ¢ € a; + bz}.
i=0
Therefore, we obtain §(f & h) = g(f) & g(h).
Also, we have f O h = {Zcix’; | ¢; € Z @y - bl} and so

=0 ketl=i

g(foh)= {chtmicyEZak b;}

k+l=i
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On the other hand,

g{fyog(h)
= {Zdixi | d; € Z g(ak)-g(b;)} = {Zdiwi | di € Z g(ak-b;)}
=0 ot L= i=0 k+l=i
{Zdﬂ: | d; Eg(z ay, * b,}={Zg(c,-):ci|ci€ Zak-b;}.
ko= i=0 k=i

Therefore, we get g(f) ® g(h) = §(f © h) and the theorem is proved. B

Let R[z] denote the set of all polynomials {ag,a, ..., @n,...) of R such
that g; = 0 except a finite number of indices 7. Then, we have
Theorem 5.6.4. Rlz| is o subhyperring of R|[z]].

The hyperring R[z] is calied the hyperring of polynomials over R. The
natural mapping ¢ : R — Rlz] where ¢){a} = a is a strong homomorphism.

Theorem 5.6.5. If¢ : R — R/v* is the canomca,l map, then the map
0 Rlx] — (R/7"){z] defined by ¢ (Z a;T ) Z'y a;)x is a strong

i=0 i=0
homomorphism.

Proof. Suppose that f = Zaim“ and g = Zb,;xi are two arbitrary ele-
i=0 i=0
ments of R[z], then

B(fdg =14 ({Zc,m | e Eaﬁ—b}) = {Zn:'y*(ci)aﬂciEa,;—t—bi}

i=()

- ny*(ci):c"” for all ¢; € a; + b;,
i=0

and
T

o(f Zv (a)2' &' Zv = (e @ v (b))’

=0

—Z'y (a; + by)x' —qu ci)rt forall ¢ € a; + b

i=0
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Also, we have

ofog) = ({Zcm GE D - bz}) =Zi:7*(cf)$

k=i

for all ¢; € Z a - b

k=1

and

8(f) ©8(g) Z'}' a;)z' @ Z'Y
_ZA;:: A= Z( *(ax) @ 7" (Br))

k=1
ZZAiJ;i: Ai'—")f*(z ﬂk'bz)
' fepl=i
—27 ci)zt for all ¢ € Zak b

k4l=i

Therefore, ¢ is a strong homomorphism. W

Corollary 5.6.6. The following diagram is commutative, i.e., 8¢ = ¥/'p.

R Riz]

o “ e

R/y* —= Riz}/v*




Chapter 6

H,-rings

6.1 H,-groups

H,-structures were introduced by Vougiouklis at the Fourth AHA congress
(1990)[132]). The concept of a H,-structure constitutes a generalization of
the well-known algebraic hyperstructures (hypergroup, hyperring, hyper-
module and so on}. Actually some axioms concerning the above hyper-
structures such as the associative law, the distributive law and so on are
replaced by their corresponding weak axioms. Since the quotients of the H,-
structures with respect to the fundamental equivalence relations (3%, v*, €*,
ets.) are always ordinary structures.

Since then!/the study of H,-structure theory has been pursued in many
directions by T. Vougiouklis, B. Davvaz, S. Spartalis, A. Dramalidis, S.
Hoskova, and others. We invite the reader to consult the references for an
in depth exposition of the theory and its applications.

Definition 6.1.1. The hyperstructure (H,-) is called an H,-group if
(1) z-(y-z)N(z-y)-z#@forall z,y,z € H,
(2) a-H=H-a=Hforalla€ H.

A motivation to study the above structures is given by the following
examples:

187
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Example 6.1.2.

(1) Let (G,-) be a group and R an equivalence relation on G. In G/R
consider the hyperoperation © defined by Z07 = {Z| z € T-7}, where
T denotes the equivalence class of the element z. Then (G,®) is an
H,-group which is not always a hypergroup.

(2) On the set Z, consider the hyperoperation & defined b}} setting
0@m = {0,m} and 2@y = z+y for all (z,y) € z2,,— {(0,m)}. Then
(Zonn, @) is an H,-group. & is weak associative but not associative.

(3} Consider the group (z",+) and take m,y,...,m, € N. We define a
hyperoperation & in Z" as follows:

{m4,0,...,0) & (0,0, ) {(m1,0,...,0},(0,0, ..., 0)},

(0,?’1’51,...,0) (0,0, {(0 my,. .,0 (0,0, O)}

(0,0,...,m,) & (0,0, .. )={(0,0,...,mn), 0,0,...,0)},
and & = + in the remaining cases. Then (Z", &) is an H,-group.

Definition 6.1.3. Let (H;,-), (Hz, *) be two H,-groups. A map f: Hy — Hy
is called an H,-homomorphism or a weak homomorphism if

fle-y)0fl)= fly) #0 forall z,y € H;.
f is called an inclusion homomorphism if
flz-y) € flz)» fly) forallz,ye H,.
Finally, f is called a strong homomorphism if

flz-y) = fz)* fly) forall z,y € Hy.

If f is onto, one to one and strong homomorphism, then it is called an
wsomorphism. Moreover, if the domain and the range of f are the same
H.,~group, then the isomorphism is called an automorphism. We can easily
verify that the set of all automorphisms of H, defined by AutH, is a group.

Several H,-structures can be defined on a set H. A partial order on
these hyperstructures can be introduced, as follows:
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Definition 6.1.4. Let (H,-), (H,*) be two H,-groups defined on the same
set H. We say that (-) less than or equal to (x}, and we write - < *, if there
is f € Aut(H,x) such that -y C f(z xy) foral z,y € H.

If a hyperoperation is weak associative then every greater hyperoperation,
defined on the same set is also weak associative. In [136], the set of all H,-
groups with a scalar unit defined on a set with three elements is determined
using this property. :

Let (H,-) be an H,-group. The relation #* is the smallest equivalence
relation on H such that the quotient H/#* is a group. 5* is called the
fundamental equivalence relation on H.

If U denotes the set of all finite products of elements of H, then a relation
£ can be defined on H whose transitive closure is the fundamental relation
3. The relation @ is defined as follows: for z and y in H we write z3y if
and only if {z,y} C u for some u € Y. We can rewrite the definition of 8*
on H as follows:

a3*b if and only if there exist z;,..., 2,01 € H with 21 = a, 2,41 = b
and ui, ..., un € U such that {z;,z;1} Cu; (i=1,..,n).

Suppose that 3*(a} is the equivalence class containing @ € H. Then the
product & on H/3* is defined as follows:

B*(a) ® 57 (b) = {£*(c)| c € f*(a})- 57 (b)} forall a,be H.

It is not difficult to see that 5*(a)} @ §*(b) is the singleton {#*(c¢)} for all
¢ € #*(a) - F*(b). In this way H/F* becomes a group.

Now, we define a very large subclass of H,-structures as follows:

Definition 6.1.5. An H,-structures H is called an H,-structure if there
exists at least a subset A of H, such that the hyperoperations of H are
operations on A and A becomes an ordinary structure, endowed with these
operations. A will be called a b-structure and its operations are called
b-operations. Obviously, any Hp-structure may contain more than one b-
structure.

Examples (2,3) in Example 6.1.2, are Hy-groups.
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6.2 H,-rings and some examples
Definition 6.2.1. A multi-valued system (R, -+, ) is an H,-ring if
(1) (R,+) is an H,-group,
(2) (R,-) is an H,~semigroup,

(3) (-) is weak distributive with respect to (-+), i.e., for all z,y,2 in R we
have

(o (y+2)N(zy+z2)£0 and ((6+y)-HNia-2+y-2) 20

An H,-ring may be commutative with respect either to (+) or (). If H is
commutative with respect to both (+) and (-}, then we call it a commutative
H,-ring. If there exists u € Rsuch that z-u=wu-z = {z} forall z € R,
then u is called the scalar unit of R and it is denoted by 1.

Example 6.2.2. Let (R,+,") be a ring and . : R — [0, 1] be a function.
‘We define the hyperoperations #, ®,* on R as follows:

rWy = {t| u(t) = plz +y)}
z@y={t| plt) = plz- -y},
zxy=yxz={t] p(x) <pult) <p(y)}, G wlz) < ply).

Then (R, *,%), (R, *,®), {R,*,4), (R,W,x*), and (R,¥,®) are H,-rings.

Definition 6.2.3. An H,-ring (R, +,-) is called a dual H,-ring if (R, -, +)
is an H,-ring. If both (+), () are weak commutative then R is called a
weak commutative dual H,-ring.

Proposition 6.2.4. If (H,*) is an H,-group, then for every hyperoperation
(o) such that {z,y} Cxoy forall z,y € H, the hyperstructure (H,*,0)
is a dual H,-ring.

Proof. First we prove that (H,#,0) is an H,-ring. For every z,y,z in H,
we have

{ztU(y*z)Czo(y=2)
{zxz)U(z*2)U(y*2)U(y+*2)={z,y}+{z,2} C(zeoy)*(zoz)
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therefore y x z C (zo (y*x2))N((zoy) * (z o 2)) # 0. Thus the left and
similarly the right weak distributivity are valid and the rest axioms can be
easily verified.
Now, we prove that (H,o,*) is an H,-ring. For every z,y,z in H, we

have

(z*xy)U(zxz)=xx{y,2} Cz*(yoz)

(z*y)U{zx2) C(zxy)o(r*z)
therefore (z * y) U {z*2) C {zx(yo2))N{{z*xy)o (z*2)) # B. So, *
is a left weak distributive with respect to o and the rest axioms are easily
verified. B

Proposition 6.2.5. Let (H, +) be an H,-group with a scalar zero element 0.
Then for every hyperoperation © such that

{z,9} Cxoy forallz,y in H\ {0}, z00=00z=0 forallz in H,

the hyperstructure (H,+,3) is an H,-ring.

Proof. For every nonzero elements z,y, z in H, we have
y+2Co+))N{(zoy) +(xoz)#0.

Moreover, if one of the elements z, ¥, 2 is zero, then the strong distributivity

is valid. The rest of the weak axioms are also valid. W

Propositioh 6.2.6.[46]. We define the following three hyperoperations on

the set R™, where R is the set of real numbers:

TPy = {r(m-}-y)\ TE [011]}a
m®y={m+r(y—x)[ e [071]}>
rey={z+ryl rel0,1]}

Then the hyperstructure (R™, %, 0) is a weak commutative dual H,-ring where
*,0 € {D,0,}.
Proof. 'The associativity:

1) We have

z®(y@z)={rz+rmy+rmz|r,me(0,1]}
(z®y)®z={tnc+iny+itz|t,n€(0,1]}
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Fr=t=0then {0} C(z® (y®2)N(zdy)&z) Im=n=1
then

{r(m+y+z)lr.e [0,1]} ={tlz+y+=z)]|tel0,1]}

| Crae))n(zay)®:2).
We claim that for all m,n € [0,1) and for all ,t € (0, 1] the following
assertion is valid:

t®{yp2)£(zPy)d 2.

Indeed, if there exist m,n € [0,1) and r,t € (0,1} such that we have
the equality in the above condition to be hold, then r = tn, rm = in,
rm = t which imply rm = r, tn = {. Som = n = 1, which is a
contradiction. :

We have

zoyoz)={1-rz+r(l-my+rmzir,mée|[0,1]}
(zey)©z={{t —t)(1 —n)z+t(1 —n)y+nz|tnel01]}

We claim that the above two sets are equal. Let r,m € [0,1]. Then
we have

(1-n)l—-t)=1-rtl-n)=r(l—m), n=rm
if and only if
1—-rm)(i1-t)=1-r {{l—rm)=7(l—m), n=rm.

It is obvious that n = rm € [0,1]. Now, we shall prove that ¢ € [0,1].
If rm =1 then r = m = 1, so we obtain n = 1 and 0t = 0 which is

valid for all ¢t € [0, 1]. If rm 5 1 then we have t = M and 7 % 1

m
orm # 1. Let m ## 1, then 0 < rm < 1, so we have 1 ~ rm > 0. Now,
from r < 1 we obtain

r—rm<1l—rm <

Obviously, r(1 —m) > 0,s0t > 0.

Let n,t € [0,1]. Using the same technique, we can easily show that
r,m & [0,1].
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(3) We have

ze(yez)={c+ry+rmzir,me[0,1]}
(zey)ez={z+ny+tz|t,ne(0,1]}

By setting r =n and rm = t we obtain re(yez)C(zrey)ez
The commutativity: For the first two hyperoperations we have:
zoy=[0z+yl=[0y+z]=yodz and zOy=[ry =ly.2=yoz
For the third one, we have

zey={z+ry|re(0,1]} and yez={mz+y|mel0,1]}.

The above two sets have common elements for all x,y € ", only in the case
r=m=1. '
The reproduction axiom: We can see easily that, for all x € R®

TBR"=R"&zr=R", tCR"=R"®2z=R", zeR"=R" ez =R".
The distributivity: The following assertions hold for all z,y,z € R™.

(z@@e))n(zoy) e (ze2))#0,
(zoy)e)n(z@2)e(y®2) #0,
Doz =(z@y) O (xd2),
(zoOy@2=(z02)&{y©2),

(@ (yez))N((zDy)e(z&z) #0,
(($°y)®2)ﬂ(($®2) (y@z) #0,
ooz ={(z0y)0(r02),
(zoyCz)={202)0(y©z),
(zoe))n((zoy @ (zoz) #0,
((z@y)02)N{(z0z)8 (O ))#,
(zoyez))n((zoy)e{zo2))#0
((zoey)@2)N((z02)e(yo2)) #0,
((zo(yoz))N((zoy)e(zez))#0,
(zoy)sz)N((zez)e(yez))#0,
ze{y©z)=(rey) O (ze2),
(z@ylez=(zez)O (ye2),
(zo(y@2))N((zey) @ (zez)}#0,
(z@y)ez)N((zez)@(yez)) # 0.

?
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Among the 9 cases, we shall prove here the last one. The rest of them can
be proved in a similar way :

ze(y®z)={x+mty+mtz|m,tcl0,1]},
(xoz)®(yez)={2rz+rny+rkz|rnkel01]}

Ifm=n=k=0andr=1then {z} C(ze(y@2))N((xey)d (zez)).
Also, (z@y)ez)N{(zez)® (yez)) # 0, forall z,y,z ER™ W

Now, we present some general constructions which can be useful in the
theory of representations of several classes of H,-groups.

Let (H,o) be a hypergroupoid; by Ay we mean the diagonal of the
Cartesian product H x H, i.e,, Ay = {|z,2] | z € H}. Let us define a
mapping D : H — HxHby D(z) = [z, z| forallz € H,1e, Oy = D(H).

Lemma 6.2.7. Let (H,0) be a hypergroupoid. Define o hyperoperation *
on the diagonal Ay as follows:

[z, 2] % [y,y] = D(zoyUyoz)={ju,u] |[u € zoyUycz}
for any pair [z, ), [y, y] € Du. Then the following assertions hold:

(1) For any hypergroupoid (H, o) we have that (A, #) ts @ commutative
hypergroupoid.

{2) If (H,o) is a weakly assoctative hypergroupoid, then the hypergroupoid
(Lg,*) s weakly associative as well.

(3) If (H,0) is a quasihypergroup, the the hypergroupoid (L g, +) satisfies
also the reproduction axiom, i.e., it is a quasthypergroup.

{(4) If (H,o) is associative, then the hypergroupoid (Ag,*) is weakly as-
sociative (but not associative in general).

Proof. The assertion (1) follows immediately from the above definition of
the hyperoperation *.
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(2) Suppose that {z, 7], [y,4],[2,2] € Ag. Then

([, 2] * [y, y]) * [2, 21

=D(royUyoz)*|z,2] = (D(xoy)UD(yoxz))*iz 2
= (D(zoy)*[2,2))U(D(yox) % [2,2])

= ( U [u, u] *[z,z}) U ( U [U,v]*[z,z]>

ucroy vEyex

= ( U D(uozUzou)) U(U D(vozUzév))

ueroy veEYyor

- ( U D(uoz))u( U D(zou))U( U D(voz))U(U D(zoua

UETOY UETOY vEYOT vEyor

=D(U uoz)UD(U zou)UD( U voz)UD(U zou)
uETOY uETOY vEYor vEYOT

=D{zoyoz)UD(zozoy)UD(yozoz)UD(zoyoxz)
=D(zoyozUzoyox)UD(zozoylUyoxoz).

On the other hand

[z, 2] = (fy, y) = [2,2]) = (2. 2] * [y.9]) = 2. 2]
D{zoyozUzeczoyUyozozJzoyoz)
DizoyozUzoyox)UD(zozoyUyozox).

Thus ([z, z]*[y, y])*[z, z]N]z, 2)*({y, y]*[z, 2]) 2 D(zoyoz)uD(zoyox) # 0.
(3) Let z € H be an arbitrary element. Then 1o H = H = H oz and we

have

l,z]x Ay = U([x,m]*[y,y]): U D(zoylUyoz)

yeH yEH

- (U D(moy)) U (U D(yom)) =D(U$oy) UD (U yox) |

yeH yeH yeHd yeH

= D(zoHYUD(Hoz) = D(H) = Ag.



196 Bijan Davvaz and Violeta Leoreanu-Fotea

Since a semihypergroup is also weakly associative, the assertion (4) fol-
lows from (2). B

Let (R, +,-) be an H,-ring. We define the hyperoperations ¢ and © on the
diagonal D(R) = Ag by

[z, 2] @ ly,y] = {[w, ] | v € (s +y) Uy + B)},

[,2] © [y,9] = {[v,v] [v € (z-y) U (¥ x)}
for all z,y € R. Then we have:
Proposition 6.2.8. Let (R,+,) be an H,-ring. Then (D(R),®,®) is a
commutative H,-ring.

Proof. According to Lemma 6.2.7, we obtain that (D(R), @) is a commu-
tative weakly associative hypergroupoid satisfying the reproduction axiom,
thus it is a commutative H,-group. Similarly, (D(R),®) is a commutative
H.,-semigroup. Thus it remains to prove that

lz,2] © ([y, 9] @ [z, 2]) N [z, 2] © {y, o)) @ ([z, 7] @ [2,2]) # 0
for arbitrary elements z,y,z € R.

Indeed, we have [y, ¥] & [z, 2] = {[u,u] | u € (y + 2} U (2 +y)} and

[z,2) © ([y, 4] ® [2,2]) = U [z,2] © |u,v]

we{y+z)U{z+y)

= ( U [z, zi @[u,u]) U( U [55,35}@[”1“])

UEY+2 uezty

= ( U {[UaUH”Eiﬂ'uUu'iﬂ}) U( U {[v,v]lvEx-uUu-:::})

uEy+z uEz+yY
={[v,v]|v €T (y+ &)} UM(z,y,2),

where M(z,y,2) = U {lv,v] |v€u-z}U U {[v,v] jv€z - uUu-z}.
UEY+z uEz+y
On the other hand,

[z, 2} © [yl ={lv.v] [vez-yUy =}
={[v,v]lvez -yt U{lv,0] |v €y 2},
[z,2) @ {z,2] = {[v,v] jvex- 2} U{{v,v] |vE 2z a}
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and then
([z,2] © [y, y]) ® ([z, 2] © [z, 2])
= ({lv, ] vez-y} U{[v, v]|vea-2}) & ({[v, v]|v€z-z} U {[v, v]jvey-z})
= ({{v, vllvez-y} & {[v, v]|ver-2}) U ({{v, v]jve€x-y} & {jv, v]lvez-z})
U ({{v,vllvey-z} & {lv, viivez-2z}) & ({{v, v]jvey -z} U {fv, v]jvez - z})

=( U [U,U]@[u,u])u( U [fu,v]@[u,u])
U( U [U,v]@[u,u])u( U [v,v]@{u,u])

= U {t,|te(w+u)U(u+v)}UK(z,y 2),
where

K{z,y,2) =

( U [v,v] @ [u,u])u( v, v] ® [u,u])u( U [v,2] & [u,u])

Now, we have

(e, 2] © [y, o) & ([z, 2] © [2,2])

:( g [t,t]|teu+u})u( U [t,t}|t€u+v})UK(m,y,z).

vEx-y

wexr-z weEr-oz

From (z-y+z-z)Na-{y+z) # 0, it follows that [to, to) € {[v,v] | v € z-(y+2)}
for some tg € z -y + x - 2, thus

{lv,v] |vex-(y+2)}n{tt]|tez - y+x 2z} #0,
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consequently the sets [z, 2] ©([y, ¥]®(z, 2]) and ([z, z|C[y, ¥])B([z, 2] @[z, #])
have a nonempty intersection. M

From the above proof, it follows that only one (right or left) of the weak dis-
tributivity laws for (R, +, -} ensures the weak distributivity of (D(R), ®, ®).

Definition 6.2.9. Let By, Ry be two H,-rings. The map f: K1 — Ha is
called an H,-homomorphism or a weak homomorphism if, for all z,y € R;
the following conditions hold:

fle+y) N (f(z}+ f(y)) # 0 and f(z-y) N flz) fly) # 0

f is called an inclusion homomorphz’sm if, for all 2,y € R, the following
relations hold:

flz+y) C flz)+ f(y) and f(z-y) C flz)- fly)-

Finally, f is called a strong homomorphism if for all z,y in K, we have

flz+y) = f@)+ f(y) and f(z-y) = F(z)- fy)-

If R, and Ry are H,-rings and there exists a strong one to one and onto
homomorphism from Ry to Ry, then R, and R, are called isomorphic.

Corollary 6.2.10. Let (R,+,-) be an Hy-ring and rp(z) = [z, 2] € D(R)
for any x € R. Then the mapping rr : (R, +,") — (D(R),&,®) is an
mncusion homomorphism of H,-rings.

Theorem 6.2.11. For any pair of H,-rings (R, +,-), (S,+,-) and for
any inclusion H,-ring homomorphism f : (R,+,.) — (S, +, ) there exists
ezactly one inclusion homomorphism ¢ : (D(R),8,0) — (D(S),®,0)
such that the diagram

18 commutative.
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Proof. Consider an arbitrary inclusion homomorphism f : B — & and
define ¢ : D(R) — D(S) as the restriction of the mapping fxf : RxR —
§x S onto D(R) € Rx R, ie, v = (f x f)ipm, hence ¢([z,z]) =
[f(z), f(z)] for any z € R. Now, we have

Wz, 2zl @y, y]) =v{lu,u]jvez+y)Uy+2)}
={[f(u), flw)]|ve(z+y)U(y+a)}
={[v,v] |v € flz+y)U f(y+ z)}
C {[v,v}| v e (flz)+ f¥) U (Flw) + flz))}
= [f(z) + fw)] © [f{y) + f(@)]
= ¢([z, z}) & ¥(ly, ¥])

for any elements z,y € R and similarly ¥/(|z, ] ®[y, ¥]) C ¥([z, z]) %[y, ¥]),
which is obtained as above. . Now, we show that the above diagram com-
mutes.

“Let us suppose that f : R — § is an inclusion homomorphism. Then
evidently ¢ : D(R) — D(S) is an inclusion homomorphism as well. For
an arbitrary r in R, we have

(rso fz) =rs{f(x)) = [flz), f(z)] = (f x )lz,2)
= ¢([z,z]) = o(r ()) (Y orr)(T),

and so rgo f = ¢ org. Now, let g : D(R) — D(S) be an inclusion

homomorphism such that rg o f = gorg. Since rg : R — D{R) and
: § —= D(S) are bijections, there exist the maps r3' : D(R) — R and

rsl : D(S) — S. Then, we obtain

Y =Y oidpnr) =’¢bo’rﬁor§1 = 'rgofor;ll = gorRorgl =goidpry=g.- B

From the above results we obtain the following theorem.

Theorem 6.2.12 Let H, R be the category of all H,-rings and their inclu-
sion homomorphisms and AH,R be its full subcategory of all commutative
H,-rings. Then there exists the functor ¢ : H,R — AH,R defined by

¢(Ra+a ) = (D(R)?GB:@)’ ¢(f) = ?!’ fOT' any (Ra+r') € Ob(HvR)=

and any morphism [ € Mor(H,R), f : (R,+,-} — (S,+,) is e reflec-
tor; more precisely the pair (rp, (Ag, ®,®)) is an AH,R-reflection for any
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(R,+,-) € Ob(H,R). Thus AH,R is a reflective full subcategory of the
category H,R.

6.3 Fundamental relations in H,-rings

In what follows, we focus our attention on the 5* and +* relations defined
on H,-rings. Notice that two kinds of 5* relations can be defined on H,-
rings. We denote them by 37 and #*. They are 3* relations with respect
to addition and multiplication, respectively. If (R, +,-) is an H,-ring, then
the relations 5, and S are defined as follows: SO

zf,y if and only if there exist 21, ..., 2, €R such that {z,y}Cz + ... + 24,
xfy if and only if there exist z,..., 2, €R such that {z,y}Cz1 ... 2.

(% and B are the transitive closures-of the relations 4, and 8 Note that
the quotient hyperstructures with respect to 35 and §* are H,-rings. In
this section, the fundamental relations defined on an H,-ring are studied.
Especially, some connections among different types of fundamental relations
are obtained.

Definition 6.3.1. Let (R, +,-) be an H,-ring. We define 7* as the smallest
equivalence relation such that the quotient R/~* is a ring. " is called the
fundamental equivalence relation and R/~* is called the fundamental ring.
An H,-ring is called an H,-field if its fundamental ring is a field.

Let us denote the set of all finite polynomials of elements of R over N
by Y. We define the relation v as follows:

zvyy if and only if {z,y} C u, where v € .
Theorem 6.3.2. The fundamental equivalence relation v* is the transitive

closure of the relation .

Proof. Let 5 be the transitive closure of the relation v. We denote the
equivalence class of a by F(a). First, we prove that the quotient set R/%
is a ring. The sum & and the product © are defined in R/% in the usual

manner.;
Ya) @7(b) = {7(c} | c € Y(a) +7(b)},
Ya} ©7(b) = {7(d) | d € ¥(a) - 5(b}}-



HYPERRING THEORY AND APPLICATIONS 201

Take o' € ¥(a) and b € 5(b). Then, we have a'7a if and only if there exist
L1y, Tmp1 With 21=a', Tpi1=a and uy, ..., um €Y such that {z;, zia} C
(i = 1,..,m), and &b if and only if there exist 1, ..., Yns1 With y1 = ¥,
Yns1 = b and vy,..., vy € U such that {y;,y;11} Cv; (7 =1,...,n). Now, we
obtain

{33,',.1'1'4_1} + 1 Q U + g (% = ]., ey T — 1),

Tm+1+ (Y5 Yir1} Sum+v; (G=1,..,n).
The sums u;+v,=¢; (i=1,...,m—1) and v +v;=tpi;1 (§=1,...,n) are poly-
nomials and so ¢, € U for all k € {1, ..., m+n—1}. Now, pick up the elements
21, Zmyn Such that 2 € z; + 4 (i = 1,...,m) and zmy; € Topyr + Vi
(j = 1,..,n). Hence, we obtain {z, 21} G tx (k= 1,...,m+n-~1).
Therefore, every element z; € z; +y; = a' + b is ¥ equivalent to every
element Zmin € Tmy1 + Ynt1 = @+ b. Thus, F(a) ® F(b) = F(c} for all
¢ € §(a) + 7(b). In a similar way, it is proved that 5(a) @ 7(b) = ¥(d) for
all d € y(a) - ¥(b). :

The weak associativity and the weak distributivity on R guarantee that
the associativity and distributivity are valid in the quotient R/%. Therefore,
R/7 is a ring.

Now, let o be an equivalence relation on R such that R/o is a ring. De-
note the equivalence class of a by o(a). Then, o{a) ® o(b) and o(a) © o (b}
are singletons for all a,b € R, i.e., a{a) @ o(b) = o(c) for all ¢ € o{a) + o(b)
and o(a) ® o(b) = o(d) for all d € o{a) - o(b). Thus, for every a,b € R and
A Co(a), B Co(b) we can write

o(a) & o(b) = o(a+b) = (A + B) and o(a) @ olb) =co(a-b)=0c(A- B).

By induction, we extend these equalities on finite sums and products. So,
for every u € U and for all z € u we have o(x) = o{u). Therefore, for every
a € R,

x € J(a) implies z € o(a).

Since ¢ is transitive, we obtain that
z € v(a) implies z € o(a).

This means that the relation 7 is the smallest equivalence relation on R
such that B/% is aring, i.e., Yy=7*. B
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Definition 6.3.3. We define the 4}, 73 relations as the transitive closures
of the relations vq, 2 respectively, which are defined as follows:

vy if and only if there exist a;€ R and I, K finite sets of indices such that

{z,y}C ) (H ai)

keK \igl;

and 2.y if and only if there exist b; € R and J,, § finite sets of indices

such that
Azyy ] ij).

s€8 \jeJ;
In a multiplicative H,-ring, the addition is an operation, while in an
additive H,-ring, the multiplication is an operation.

Proposition 6.3.4.
(1) R/} is a multiplicative H,-ring.
{(2) R/~ is an additive H,-ring.

Proof. We prove only (1) and similarly (2) can be proved. The sum of
the classes is :

(@) @) = {1](2) | 2 € 11 (@) + ()}

In the definition of +{, expressions of the type v = > ([]) are used. In
the definition of @, the element z belongs to the sums v of the above type,
which means that z belongs to a sum of products. In other words, all the
elements z are in the same 7] class. So, the sum of 4]-classes is a singleton.
Therefore, B/~} is a multiplicative H,-ring. B

Note that the 7] classes are greater than the §* classes. Actually, the
1 is not the smallest equivalence relation such that (R/~, &) is a group.
In order to see this, consider a multiplicative H,-ring R. Then R/3} = R,
but R/~{ is not isomorphic to R.

Proposition 6.3.5. For all additive H,-rings, we have v{ = 5. For all
multiplicative H,-rings, we have 5 = g*.



HyPERRING THEORY AND APPLICATIONS 203

Proof. We present the proof for a multiplicative H,-ring R. In this case,
every sum of elements of R is singleton. Therefore,

H Z bj) = Hds, where d, = ij.

s€S \jeJ, s€s8 J€Jds
This means that zy;y if and only if z5*y. &
Using the above propositions, it follows that (R/v{)/v3=(R/v1)/5" is a
multiplication H,-ring and (R/v3)/vi=(R/v3)/3; is an additive H,-ring.

Theorem 6.3.6. Let (R,+,-) be an Hy-ring. Then R/vy* = (R/3%)/83,
where (% is the fundamental relation defined in (R/3*,W) by setting
Br(a) @ Br(b) = {B'(c) | c € B(a) + B(b)}.

Proof. The quotient of the additive H,-ring (R/3*, 4, ®) with respect to 3},
is a ring. Let us denote the equivalence relation associated to the projec-
tion ¥ : R — (R/3*)/3% by o. Since 17 is a ring homomorphism, then we
obtain v*(a) C &(a) for all @ € R. On the other hand, since §*(z) C v*(x)
for all z € R, we have '

U s== U sxec U &
Br(z)e B (z)wp*(y) z€8 (z}+8"(w) zE€7* (w)+v* ()
From the fundamental property in (R/v*, ®, @), we know that v*(z) &v*(y)
is a singleton, so v*(x) & v*(y) = v*(w), where w € z +y. Therefore,
U 8*(z) € v*(w), where w € z +y.
e (z)ep* (z)wB* (y)
Consequently, for every finite sum of elements in R/3*, we have
U #*(z) € " {w), where w € Zwi.
zEHﬂ}:,-e; B (s} el
Moreover, since ~* is transitive, we have
ala) = U 8*(z) C*(a)foralla € R.
{z](8(=)) B2 (B8-(a))}
Therefore, c =~*. W
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Theorem 6.3.7. If (H,¢) is an H,-group, then for every hyperoperation v
such that {z,y} C avy for all z,y € H, the hyperstructures (H,0,v) and
(H,v,¢) are H,-rings.

Proof. Every hyperoperation v that satisfies the condition of hypothesis is
weak associative, weak commutative and H/4* is a singleton. Moreover,
every element z € H is a unit element, ie., y € avy Nyvz for all y € H,
and every element ¢ € H is symimetric with respect to the unit z, ie.,
T € vy Nyve.

In order to prove that (H, ¢, v) is an H,-ring we need only to prove the
weak distributivity on the left. For every z,y, z in H we have

zv(yoz) 2 {z} U (y02)

and

(zvy)o(zvz) 2 {z,y}o{z, 2} = (20z) U (20%) U (yoz) U (y02),
therefore, y0z C [zv(y0z)|N[(zvy)0(zvz)] # @. Thus, the left and similarly
the right weak distributivity are valid.

Similarly, we need to prove the weak distributivity on the left for (H, v, ¢).
For every z,y,x in H we have

20(y2) 2 70{y, 2} = (woy) U (202)
and
(moy)v(202) 2 (x0y) U (202).
So the left distributivity is valid, because

(z0y) U (202) C [20(yvz)] N [(z0y)v(202)] # 0.
H,-rings (H,v,¢) and (H, ¢, v) are called associated H,-rings. B

In the theory of representations of the hypergroups in the sense of Marty,
there are three types of associated hyperrings (H, @, -} with the hypergroup
(H,-). The hyperoperation & is defined, respectively, for all z,y in H, as
follows:

type a: z@y = {z,y},
type b: z @y = ['{z) UG (y),
typec zSy=H.
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In all the above types, the strong associativity and strong or inclusion dis-
tributivity are valid. However, in H,-structures there exists only one class
of associated H,-rings instead of three types.

Theorem 6.3.8. Let (H ,+) be an H,-group with a scalar zero element 0.
Then, for every hyperoperation & such that

(a9} Ca oy for all 2,y in 1\ {0},
z@0=0®zx=0 forallz in H,
the hyperstructure (H, +,®) is an H,-ring.

Proof. For every nonzero elements z,y,z in H, we have
y+zCr@w+2)]N[(z®y) +(z®2)] #0.
Moreover, if one of the elements z, y, z is zero, then the strong distributivity

is valid. The rest of the weak axioms are also valid. W

Theorem 6.3.9. Let (H,:) be an Hy,-group. Take an element 0 € H and
denote H' = H U {0}. We define the hyperoperation + as follows:

0+0=0, 0+z=H=x+40, z4+y=0 forall z,y € H,
and we extend the hyperoperation - in H' by putting
0:0=0-2=2-0=0 forallz € H.

Then, the hyperstructure (H',+,-) is an H,-field with H'[~* = Zy, where 0
is an absorbing and (0} is a singleton.

Proof. From the definition it is clear that 0 is an absorbing element. The
hyperoperation + is (strongly) associative because if in any triple (z, y, z) of
elements of H' there are one or three nonzero elements, then their hypersum
is 0; in the other cases, the result is H.

The - is weak associative because 0 is an absorbing and (H,") is an H,-
group. The strong distributivity of 4+ with respect to - is valid, because the
only one nonzero case is for x,y € H in which we have

z-0+y)=0+y)-z=2-04+z - y=0-z4+y-z=H.
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Finally, one can check that 4*(0) is a singleton and that there are only two
fundamental classes in H'. Thus, (H',+,-) is an H,-field and H' /7*=Z,. &

Notice that if the H,-group (H, -} is strongly associative, then (H', +,-)
is a hyperfield instead of an H,-field; moreover, the strong distributivity is
valid.

Since v*(0) is a singleton, the H,-fields of this type are very useful. This
happens always in an H,-group H, that we need to represent, for which
the cardinality of the hyperproducts of the elements is equal to a power of
cardH. On the other hand, the representations are normally of lower di-
mension and cardH is a small number. The H,-groups of constant length,
such as the P-hypergroups, can be also represented on these H,-fields.
~ Now, one can prove the following theorem. There is no need to check
if the weak axioms are valid since they are obvious. Notice that non-
degenerate fundamental rings or fields, which are desired actually, are ob-
tained using this construction.

Theorem 6.3.10. Let (R,+,) be a ring and J be an ideal. Then we can
define two Hy-operations B and O greater than + and -, respectively, for all
z,y in R as follows:

tByCax+y+J and 2Oy Cay+ J

Then, the hyperstructure (R, 8, D) is an H,-ring for which the fundamental
ring R = /v* is a subring of R/J.

Notice that the maximum of the above hyperadditions, i.e. zBy =
x +y+ J, is a P-hyperoperation so that the H,-ring (R,8®,) can be a
P-H,-ring (see Section 6.4). Remark that for any maximal ideal J, one
obtains R/y* = R/J. This construction leads to an enormous number of
H,-rings. Let us point out that if the products of the ring R are enlarged,
then all hyperproducts with any cardinality can be represented and the
main theorem of this theory is not trivial.

6.4 H,rings endowed with P-hyperoperations

In this paragraph, we study a wide class of H,-rings obtained from an
arbitrary ring by using P-hyperoperations. We use the results obtained by
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S. Spartalis [120, 122].
Let (R,+,-} be a ring and P}, P, be nonempty subsets of R. We shall
use of the following right P-hyperoperations:

tPly=z+y+ P, zPy=zyP; forallz,y € R.

We denote the center of the semigroup (R,-) by Z(R).
Theorem 6.4.1. If0 € P, and P, N Z(R) # 0, then (R, P}, P5) is an
H,-ring called a P-H,-ring or an H,-ring with P-hyperoperations.
Proof. The proof is straightforward. ®

Let J be an H,-ideal of (R, P}, Py). Since 0 € RP;JNJP;R C J and
P, =0P}0 C J, we have JPyx = J +z = zP;J for all z € R. Moreover,

the addition & and the multiplication © between classes are defined in a
usual manner:

(JPiz) & (JPy) = {JP 2| z € (JPIo)P{(JPIy)} = {J +z + 9},

(JPz) o (JPfy) = {J+wlwe (JPfz)Py(JPy)} = {J +w| w e ayP}.
Theorem 6.4.2. If (R, Py, P}) is a P-H,-ring and J is an H,-ideal, then
(R/J,®,0) is a multiplicative H,-ring.

Proof. Obviously, (R/J,®) is an abelian group. Moreover, (R/J,®) is an
H,-semigroup, because © is well defined and for all z,y, 2z € R, we have

(JPIZ) O [(JPry) © (JPr2)] = {J + v | v € zyzPaPa},
(JPz)® (JRy) @ (JPt2) = {J+ulu € zyPazFa}.

But, since 2P, N PyzPy # §, it follows that the multiplication is weak
associative. Finally, '

(JPr2) O [(JPry) @ (JPy2)] ={J+v|v€aly+2)P}
C{J+u|u€azyby+z2P}
= [(JPrz) o (JPry)] @ [(JPz) © (JPrz)].

In the same way, the right distributivity is proved and so (R/J,®,®) is a
multiplicative H,-ring. W
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Theorem 6.4.3. Let (R, Py, Pf) be a P-H,-ring over the ring (R, +,)
and J be an ideal of the ring R, containing P. Then (R/J,®,®) is a mul-
tiplicative H,-ring, which is a P-H,-ring.

Proof. 1t is easy to see that J is an H,-ideal of (R, P}, P}). So, accor-
ding to the previous theorem, (R, P}, P;) is a multiplicative H,-ring. On
the other hand, consider the quotient ring (R/J, +,-) and take L, = {J},
Lo={J+a|a€ P} Then,forall z € R, we have

(J+$)L2L2= {J+U|UE$P2P2},
Ly(J+z)Ly = {J+w|we Pah}.

Since for all z € R, zP,P, N Pax Py # {, it follows that
(J + m)Lsz n LQ(J + ZC)LQ # (D

Consequently, since .J is the zero element of R/J, from The&fem 6.4.1 it fol-
lows that (R/J, L%, L3) is a P-H,-ring over the ring (R/J,+,-). Therefore,
the hyperoperation © is the P-hyperoperation Lj and & is the degenerate
P-hyperoperation L]. ®

Theorem 6.4.4. Let (R, P}, P}) be a P-H,-ring and J be an H,-ideal of
R. If H is an Hy-subring of R containing Py, then HP}J/J 2 H/HN J.

Proof. It is easy to see that H,J are subgroups of (R, +) and so HP}J =
H + J and H N J are two groups containing P;. Since

(HE;J)Pj(HF;) = (H + J)(H + J)P, C HHP, +J

we have that (HP}J, P}, Py) is an H,-subring of (R, P{, P}). Moreover,
J,J N H are H,-ideals of the H,-rings H P}J and H respectively. On the
other hand, the quotients

HPJ)J={J+z|ezeH} and HHHNJ={{HNJ}+y|ye H)}

are multiplicative H,-rings. We consider the bijectibn map f: HP}J/J —
H/HNJ such that J+ 2z~ (HNJ)+z. The map f is a homomorphism,
since for all z,y € K, we have
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fllrzp J+y)=f(J+z+y)=(HNH+z+y= f(J+z)D f(J +v),
fitz o J+y)=f(J+s|seayPl)={(HNJ)+s]| s € zyP}
=f(J+z)0 f(J+y)

Consequently, f is an isomorphism. B

Theorem 6.4.5. Let J, K be two H,-ideals of the P~ H,-ring (R, P}, Fy).
If JCK, then (R/J)/(K/J)2 R/K. .

Proof. The quotients R/J, K/J and R/K are multiplicative H,-rings and
K/J is an H,-ideal of (R/J,®,®). Indeed, K/J C R/J and for all z € K,
y € R, we have

(J+z)e(J+y)={J+z|ze€zPy} CK/J

Therefore, K/J © R/J C K/J. Similarly, R/J ® K/J C K/J. On the
other hand, ((R/J)/(K/J),¢,*) is a multiplicative H,-ring, where ¢ and *
are the usual addition and multiplication of classes. Now, we consider the
map f : (R/J)/(K/J) — R/K such that (K/J)&® (J +z) — K +z.
Since, for all x,y € R,

(K/HhYe(J+z)={(K/D)&(J+y)

= {Jt+zjzeK+z}={J+w|weK+y}

=y-rzekK '

= K+r=K+y

it follows that f is well defined and one to one. Obviously, it is onto, so it
remains to prove that f is a homomorphism. Indeed, for all z,y € R we
have
SN e (J+z)o (KT} {J+y)
=f{{K/No(J+2)|J+ze(K/Nha{J+z)a (K/J)e (J+yn})
=f(K/J&(J+z+y)=K+r+y=(K+z)d(K+y)
= f((K/J)@ (J+z) e F(K/J) & (J+y))
and '
UK/ @ (J+z) x(K/J) & (J + y)]
=f{KE/Ne(J+w)|J+we(J+z)O{J+y)}]
= f{(K/DY & (J+w)|wezyP} ={K+w|we zPy}
=(K+z)0® (K+y) K/ De(J+z)o f(K/T) o (J+y)).

Hence [ is an isomorphism. &
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Theorem 6.4.6. Let R, A be rings, f € Hom(R, A) and (R, Pt, P;) be an
H,-ring with P-hyperoperations. Then the following assertions hold:

(1) If (A,L},L3) is an H,-ring such that f(F) N Ly # @, then
[ (R, Pf,Py) — (A, Ly, L3) is an H,-homomorphism.

(2) If f(P)NZ(A) # 0, then f : (R, P}, P5} — (A, f(P)", f(P2)*) s a
strong homomorphism.
A partz'cula'r case: f: (R, Py, Py — (Imf, f(P)*, F(P2)").

Proof. (1) For all z,y € R we have

faPry) = fz) + f(y) + F(P) and f(2)Lif(y) = f(z) + f(y) + Ls.

From the hypothesis it follows that 0 € P, and so

= J(0) € f(P)N Ly and f(zP7y) N f{z)L1f(y) # 0.

Moreover, the condition f(zFyy) N f(z)L:f(y) # @ holds obviously. Hence
f is an H,-homomorphism.

(2) The structure (A, f(P1)*, f(P2)*) is an H,-ring, because 0 € f(P,)
and f(P) N Z(A) # 0. The H,-homomorphism f is strong, since for all
z,y € R, we have

HzPly) = f(z) + fv) + f(7) = f(=) f(P)" Flw),
f&Ry) = f(@) f{y)f(P) = f(2) f () f(y)-

In the particular case when f is the H,-homomorphism from (R, Py, Py)
to (Imf, f(P)*, f(P2)*), from P> " Z(R) % @, we can deduce easily that
f(PyNZ{Imf) # 0. Hence, (2) is valid. ®

Proposition 6.4.7. Let (R, Py, Py) be an H,-ring with P-hyperoperations.
If o € Z(R), then the translation of the semigroup (R,-) by a:

foiz — ax

18 a multiplicatively strong homomorphism from (R, L], {aPRy)*} to(R, P, P5),
where 0 € L, € R.
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Proof. First, we can observe that the structure (R, L3, (aFP»)*) is an H,-ring
because 0 € Ly and aPy N Z(R) # B. Moreover, for all z,y, z € R, we have

folzLliy) = a(z+y+ L) = az+ay+al; and fo(z) P} fo(y) = ax+ay+ P
and since 0 € aly N By, it follows that

fa(zLiy) 0 fol@) P} fa(y) # 0.

Moreover,
folz(aPy)y) = a(zyaPr) = (ox)(ay) Py = ful2) F; faly)-

Hence, f, is a multiplicatively strong homomorphism. B

Proposition 6.4.8. Let (R, P}, P3) be an H,-ring with P-hyperoperations
and a € Z(R). If the element « is simplificable and reproductive in (R, -)
then for each subset L, of R such that al, = P, we have

(R: LL (QP2)*) = (Ra Pl*v P;)
Proof. Let us consider the translation of the semigroup (R,-) by «
fo (R, LY, (aP)) — (R, P}, Fy),  folz) = az,

which is a multiplicatively strong homomorphism of H,-rings. Moreover, [,
is additively strong because, for all z,y € R,

folzLly) = az + oy + aly = ax + ay + Pi = fo(2) P} fo(y).

Finally, according to the hypothesis, the map f, is one to one and onto,
hence f, is an isomorphism of H,-rings. B

Suppose that the conditions of Proposition 6.4.8 hold and P, = F;.
Therefore, every translation of the sets Py, P, by a € Z(R) gives an iso-
morphism of H,-rings, ie., (R, (aPy)*, (aP)*) & (R, P, 7). In case the
H,-ring (R, P}, P3) is derived from a ring with unit 1, we obtain the fol-
lowing isomorphism: (R, (—P))*, (—F)*) = (R, Pf, P5), since —1 satisfies
the hypothesis of Proposition 6.4.8 and (—1)*P; = P.
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Now, we calculate the number of H,-rings with P-hyperoperations, which
can be constructed starting from a finite ring ( R, +, ). By Proposition 6.4.7,
it follows that this number can be substantially reduced, because some of
these H,-rings are isomorphic.

Proposition 6.4.9. Let (R,+,") be a ring with cardR = n, n > 1 and
cardZ(R)=m. The number of H,-rings (R, P}, P}) is at most 2°~1(27—27—™),

Proof. The number of the subsets P, of R, which satisfy the condition
0 € P, is 2*~1. The number of the subsets P, of R, which satisfy the con-
dition P, N Z(R) # 0, is 271 + 22 4 _ 4 9n~m — 9 . 9"~™ Hence, the
number of H,-rings is at most 2*~1(2* — 2»~™), m

If - is commutative , the above number is 227~1 — an—1

Proposition 6.4.10. If (R, +,-) is a commutative ring with nonzero di-
wsors and cardR = n, n > 1, then the number of hyperrings (R, P}, Py)
which are not rings is at'most 5- 21 —n — 4.

Proof. First of all it is easy to check that the structure (R, Fy) is a hyper-
group. Moreover, because of the commutativity of the multiplication, we
have

TPy (yPs z) = zyzPo Py = (zPjy) Pz,

for all z,y,z € K. The necessary and sufficient condition for the validity
of the inclusion distributivity is RP,P, C P;. We suppose that there exist
P, Py C R, P,#R, satisfying the previous condition. Then, for any p, €/,
pa € Py, p1 # 0 # po, the condition Bpypy C P, is valid and so, there exist
a,b € R, a # bsuch that apsp; = bpyp;. Therefore, (a — b)papr = 0, ie.,
P1 Or po is a zero divisor, which is a contradiction. Hence, the only cases,
in which the condition of distributivity is satisfied, are 4 = R, P, = {0}
and P, = {0}. Therefore, the number of hyperrings (R, Py, P;) is at most
(2" —1427—142""1)~2 = 5-27"1 4, because the hyperrings ( R, {0}, {0}*)
and (R, R, {0}*) are calculated twice. Finally, the number of hyperrings
which are not rings is at most 5-2°"! —n — 4. & ‘

We remark that the following facts are also valid.

e There are 2" — 1 hyperrings of the form (R, R*, P;), where P, C R,
because R*y = R holds for all z,y € R.
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e There are 2" — n — 1 multiplicative hyperrings (R, {0}*, P5) in the
sense of Rota, where P C R. Indeed, the hyperoperation {0}* of each
hyperring of the above form is the addition + of the ring (R, +,-).
Moreover, we have (—z)Pyy = —(zP5y) = =P (—y).

o If - =0, where zoy = 0, for all z,y € R, then the number of H,-rings
is at most 2°7!, because (R, P},0) = (R, Py, {0}*).

Example 6.4.11. In the case of the ring (Z,,+,-}, where p is a prime
number, there are at most 227~1 — 201 H__rings, from which 52" 1—n ~4
are hyperrings, that are not rings. In the particular case p = 3 we have 28
H,-rings. Observe that 13 H,-rings are hyperrings which are not rings. We
have the following isomorphisms:

(23, {0}, {1}7) = (23, {0}", {2}"),

(23,{0}*, {0, 1}*) = (25,{0}", {0, 2}"),

(3,10, 1}", {0% = (2, {0,2)", {0}"),
}

)

)
(25,0, 1}, {1}") = (5, {0, 2}*, {2}"),
(23, {0,1}",{2}") = (25, {0, 2}", {1}"),
(25, {0, 11", {0,1}") = (24, 0,2)", {0,2)"),
(z3,{0,1}",{0,2}") = (25,{0,2}", {0, 1}* )
(235{0 1} {]' 2} ) Z3,{0 2} {1 2}
(Z {0 1} ZS) = (2'35{0:2}*=Z§)9
(Z37Z‘3’{1} ) (Z3,Z§,{2}*),
(ZB’Z:S': {0 1} ) (Z3=Z§v{0’ 2}*)'

So, the number of H,-rings is reduced to 17 and observe that 9 of them are
hyperrings which are not rings.

Example 6.4.12. We consider the finite field (F,+,) and suppose that
cardF = p™, where p is a prime number, p > 2, n > 1. Consequently, if we
consider the translation of F' '

fa-tp: x> atbz, for all a,b € R\ {0},

then we have f,-1;(a) = b. Using Proposition 2.4.8, we obtain the following
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isomorphisms between H,-rings with P-hyperoperations:

(F, {0}, {a}") = (F, {0}, {b}"),
(F, F,{a}*) = (F, F*, {b}"),

(F, {0}, {0,a}") = (F, {0}*,{0,B}"),
(F’ F*1 {0’ a}*) = (Fi F*? {01 b}*)i

So, the number of H, rings (R, P}, Py) is at most 22" =1 - 2°"=1 _ 4(p" — 2).

Theorem 6.4.13. Let (R, Py, P3) be an H,-ring with the P-hyperoperations
P, Py over the ring (R,+,-). Consider the subgroup < P, > of (R,+) ge-
nerated by P;. Then for all a in R, we have 5} (a) =< P, > +a and R/B}
s a multiplicative H,-ring with the inclusion distributivity.

Proof. We denote the fundamental class of @ € R by 5} (a) and any hy-

*

persum with respect to the Py by Z Let ¢ € R and =z € f5(a). Then,
there exist 21, ..., Zn+1 and there are y; € R and the finite sets of indices /;,
i=1,...,n such that

*
{zi, i1} C Zyj fori=1..n.
jek;

Set u; = Zyj and s; = cardl;. Then, {z,2z.} C u; + (s — 1) P, for
Jjel
i=1,...,n. Therefore, fori=1,...,n — 1 we have
Zit1 € (i + (8 — 1) P1) N (wiy + (8551 — 1) P1)

and so u; € zip1 — (8 — V)P
Consequently, u; € w41 + (8;47 — 1)P) — (s; — 1) P;. We obtain

U eun+(32+33+...+sn—n+1)P1—(31—|—5_2+...-£—sn_1~—n+1)P1.

But 2,11 € U + (8n — 1) P, 80 Up € 2,41 — (5, — 1) Py,
Moreover, z; € u1 + (s, — 1}P1. Thus, we have

21 €+ {s1+82+ .. +8—n)P—(s1+ 82+ ... +5, —n)P.
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Finally, z € (81 + 82+ ...+ 5, —n)(Py — ). This means that z €< P1 > +a,
so 31 C< P > +a. '

Now, let a € R and take x €< P, > +a. Then, there exists s € N such
that z € S(Pl - .Pl) +a. So {RT,CL} Q S(Pl - Pl) +a= G.P;(—Pl)Pf(—Pl)
which means that z37}. Therefore, we proved that 8} (a) =< P; > +a. The
sum & and the product ® of the elements of R/3} are defined in the usual
manner, and {R/3%,4) is a group. Moreover, the weak associativity of ®
is valid. Finally, for all z,y,z € R, we have

Bi(z) ® (B1(y) w 81(2)) = Bilz) ® Bily + 2)
= {Bi(u) [w € (< Py > +2)(< P > +y + 2)Pa).

On the other hand,

(B3(z) ® Bi(y)) ¥ (Bi(z) ® A1.(2))
= {ﬁi('u) | v e (< P> +IL')(< P> +y)P2}

W{gi(w) | w e (< P > +z)(< P > +2) B}
={ﬁ1(v+w)iv+w6 (< P >+.’L’)(< b >+y)P2

+{< Py > +z)(< Py > +2) P2}

Consequently, the inclusion distributivity is valid. m

Let (R, P}, Ps) be an H,-ring with the P-hyperoperations P, Py over
the ring (R, +,-) such that RP, C P2. Denote the set of all finite polynomi-
als of elements of R by A. Then, for every a; € A, { € N, there exist r; € R,
I; finite set of indices, Py; € P(P,), j € I; and s; € N such that

a; =715+ szj + 555,
Jel
where s;,P, = P+ ... + P;.
i, v’
Theorem 6.4.14. Let (R, Py, P§) be an H,-ring with the P-hyperoperations
P, Py over the ring (R,+,-). If RPy C Py and < Py, P, > is the subgroup
of (R,+) generated by Py U Py, then for allz € R, v*(x) C< P, Py > +z.

Proof. Let z € R and y € 4*(z). Then there exist z3,..., 2my1 € R with
21 =1V, Zme1 = & and ay, ..., @y € A such that {z;, 241} Cai, (1 =1,...,m}.
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Then, for i = m, we have x = 2,4, € 1y + Z By +s,P. Sor, €
J€Im
z 4+t (—P2) + s (—P1), where t,, = cardl,,. Moreover, for all i = 1,...,m,
we have
z‘i;i-i e (7"1; -+ Z sz + Sipl) N (’n"',;+1 + Z ng -+ 31’+1P1)
Jjel; J€lina
and hence T € T+ ti+1-P2 + t,:('—PQ) + Si+1P1 + S,;(—Pi), where tH-l =
cardiiiy, t; = cardl;,. We obtain y = 21 € z +t(P, — P2) = s(P, — P),
wheref = {14+ ...4+1m, t; = cardl;, i € {1,...,m}, s = 51, ..., 8. This means
that y € 2+ < P, > + < P >. Hence, v*(z) C< A, P, > +z. B
Theorem 6.4.15. Let (R, P, Fy) be an H,-ring with the P-hyperoperations
P}, P} over the unitary ring (R,+,-). If P, is a right ideal and < P, > is
the subgroup of (R,4) generated by Py, then R/v* = R/(< P > +P).
Proof. Suppose that z € R. From the previous theorem, we have that
7 (z) C< P, P, > 4z. Since P is a subgroup of (R, +), it follows that
Tz) C< Py > +Py+ .

Conversely, for all z €< P, > +P, + z there exist po € B and n € N
such that z € z + py + n(P — P). Moreover, p; € Po = 1P;1 and so

7 {z,z} C fo(lP{l)Pf(—Pl)Pl*...Pl*(—Pl.)
where Py(—P,) appears n times. Hence v*(z) =< P, > +P, + 2. B
Corollary 6.4.16. If (R,+,) is a ring and Ps is a right ideal, then for all
multiplicative P — Hy-rings over R, we have R/~* = R/ Ps.

Proof. Suppose that (R, Py, Py) is a multiplicative P — H,,-ring over the ring
(R,+,-). Then, cardP, = 1 and since the necessary and sufficient condition
for the weak distributivity is 0 € P, we have P; = {0}. From the previous
theorem, it follows that R/v* = R/P,. B

6.5 (H,R)-H,rings

In this section, we introduce the following new structures [121]:
Let (H,*,0) be an H,ring, (R,+,") be a ring with the zero element
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denoted by 0 and {4;}icr be a family of nonempty sets indexed in K such
that Ag = H and for all ¢,j € R, i # j, A; N A; = 0. Moreover, for all A;;
i € R* there exists a set of indices I; and a unique family { B}, }xez, such that
B, C A; and U By #0. Set K= U A; and consider the hyperoperations

_ kel; i€R
#, © defined in K as follows:

V(z,y) € H, e @y =y, 2@y=2x0Y,

H if ij =0
V(z.y) € A x A A H? oy = Ay, 2Oy =9 | Be ifij £0.
kely;

It is clear that (K, ®) is an H,-group. Moreover, (K, ®) is an H,-semigroup
since the hyperoperation o is weak associative and for all (z,y,z) € Ay %
A; x A, # H*, we have

(1) if i = 0 = § (similarly, if ¢ = 0,7 # 0 # r), then 2 ® (y © 2) C

(zOy)Oz=1;
(2) if j = 0 =r (similarly, if r =0, #0# j), then H =20 (y©2) 2
(zoYy) ©z

(3)ifi=0=r,then (o H=2z0 o NN{(zCy)Oz=Hoz)#
(4)if j=0,i#0#£r, thenzo(yC2)=H=(20y) Oz
(5) fi£0£j£0#T thenz O (y@2)N{zOY) Oz #0.

Finally, the weak distributive law is verified and so (K, ®, @) is an H,-ring.

Definition 6.5.1. The previouse H,-ring (K, ®,®) is called (H, R) — H,-
ring with the support K = U A

icR
Theorem 6.5.2. If v* is the fundamental equivalence relation in K, then
K/v* = R.

Proof. Let a € K. Then there exists r € R such that ¢ € A,. In order to
determine v*(a), we consider z € 4*(a). Then, there exist 2,..., zn41 € K
such that z; = , zns1=0 and u; € U, i € {1, ...,n} such that {z, ziy1} C us,
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(i =1,...,n). Moreover, it is clear that for all u; € U, i = 1,...,n there ex-
ists an appropri&te r; € R, such that u; C A;,. Consequently, A,, = A,,_,,
i=1,. — 1, because z;;1 € A, N A,,,,. Hence, {z,a} C A,, = A, and
S0 ¥ (a C Ay

Conversely, let y € A,. If r € R*, then we consider u € H, w € Ar, and
we have {y,a} € u® w = A,. Hence yy*a, ie., y € v*{a). Ifr-O then
we have {y,a} C u@w =H, ie,yen (a) Therefore A; € v*(a) and
consequently, 7*(a) =

Finally, the map f : K /7" — R such that f(A;) =1 is an isomorphism
andso K/y*=R. &

We denote the kernel of the canonical map ¢x : K — K/v" such that
¢x(z)=7"(z) by wi. According to the previous theorem, for all i€ R, z€ A;,
we have v*(r) = A; and hence, we can write K/v* = {¢x(4;) | i € R}.
Consequently, wy = H.

Now, we consider the {H;, R;)-H,ring (K;,®,®) with the support
K| = U A; and the (Hy, Ry)-H-ring (K, 8, @) with support Ky = U G;.

i€l FER,
We prove the following theorems:

Theorem 6.5.3. If f: K1 — Ky is an inclusion homomorphism, then
(1) f(y(=)) € v (f(x)) for allz € K.
(2) We define the induced homomorphism f*: K1 /v — Ky/v* of f by
(pr: (2)) = ¢, (f ()
(3) f(H) € Ha.
Proof. (1) Let z € v*(z) = A;, i € R. Then, for y € A;, z € A;_;, we have
f(z) € f(v'(2)) = fly® 2) C F(y) B f(2) = v*(f(2)).

Therefore, f(v'(z)) Cv*(f(x}).

{(2) The map f* is well defined. In fact, if ¢, (z) = dx,(y), then zv'y
and so f(»’ﬂ)’f*f(y), le., ¢K1(f($)) = ¢K2(f(y)) ‘and hence f*((ibK] (:U)) =
f*(¢x,(y)). Moreover, f* is a homomorphism, because for all z,y € K,
Z€ETPY, wE€ Oy, we obtain

f*(qbK: (.’L‘) + ¢K2(y)) = f*(¢K1 (Z)) = ¢K2( ( )) QSKz(f(w) B f(y))
= ¢x, (f (@)} + 0, (F(¥)) = [ (. (@) + (b, (v))
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and

For (@) - bi,(y)) = [ (¢x, (W) = ¢x,(f () = 1, (f(2) D f(y)
= ¢1,(f(2)) - . (f () = [* (@10 (2) - F*(0rx (W),

(3) From (1) and (2) it follows that f(z) = ¢y (f*(¢k, (z))). Therefore,
if z € H and Og, /., O, are the zero elements of the rings K1 /v*, Ka/7*,
respectively, then '

f(',l") S d’i’;(f*(ﬁfﬁ/’r*)) = Cb;{]é((—)Kz/W') = H21
which implies that f(H;) C H,. B
Theorem 6.5.4. If Ky = Ky, then H) & Hy and Ry = Rs.

Proof. From the previous theorem it follows that for all z € K, f(v*(z)) =
v*(f(z)) and f* is a homomorphism. Therefore, Ky/v* & K;3/v*. Conse-
quently, from Theorem 6.5.2, we obtain B; = R;. Next we consider the
map g : Hy — Hs defined by g(z) = f(z). The map g is well defined, one
to one and onto. We show that it is a strong homomorphism. In fact, for
all (z,y) € H?, we obtain

glzxy) = flzdy) = flz)Bfly) = g(z) *2 g(y),
glzory) = flxoy)= flz) 3 f(y) = g(x} 02 g(y). W
Theorem 6.5.5. If g. H; ~— Hy, f : Ry — R3 are homomorphisms and

for alli € R}, cardA; < cardGyyy, then there is an additively strong and
one to one homomorphism from K to K.

Proof. Let i € R} and let F; = Fi(A;, Gs)) be the set of all the one to one
maps from A; to Gyuy. If {Bilrer,, {Batse I,y @re the families of subsets of
A; and Gy, respectively, then we denote

Ff =< hpwy € B | by (U ch) n| {J Boj#90
kel; SEIJr(,-)

and we consider the map

_ _ | a(z) itre H,
b I{l — K2 S f(ﬁ) o { hf(i}(a:) where hf(i) € Fi* ifz & Ai # Hl.
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The map t is well defined and one to one. We will show that it is an

additively strong homomorphism.
If (z,y) € H?, then

trx@y) = glx*y) = g(z) %2 gly) = t{z) Bi{y)
Hz O y) = g(z o1 y) = g(z) 02 gy) = t(x) T t{y)..

If (z,y) € A; x A; # H?, then
t(x ®y) = UAirs) = Gra+y) and H2) BE(y) = Graari) = Givs)-

In order to check the multiplications, we notice that:
If ij = 0, then t(z © y) = g(H:) = Hy and t(z) B t(y) = Gyyj) = He.
If i #0, then t(z® y) = Ry U B,), where B, C Ay,
TEI,'J'
CH@)Bt(y)= |J Bm,  where Bn G Gy

mEI“J‘

Since hyj) U B. N U By | # 0, it follows that

reli; mElf(j)

tzoy)Ntz)Dty) #0. W

6.6 The H,ring of fractions

It is well-known that if S is a multiplicatively closed subset of a commutative
ring R, then there is a natural way to define the ring of fractions of R
with respect to S. This ring is denoted by §7'R and the detail of its
construction is given in Example 1.2.2 {(9). A natural question that arises,
is the following one: how the H,-ring of fractions can be defined? In this
section, our aim is to answer the above question and obtain some properties
of the H,-ring of fractions. We use the results obtained by M.R. Darafsheh
and B. Davvaz [2§].

Throughout this section, R is a commutative (general) hyperring with
a unit denoted by 1. Recall that a hyperstructure (R, +,-) is a hyperring
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if (R,+) is a hypergroup, (-) is an associative hyperoperation and the dis-
tributivity is valid, that isz- (y+2)=z-y+z-2, (z+y)-z=z-2+y 2
for all z,y,z € R. Under the above conditions, we define the H,-ring of
fractions of K.

Definition 6.6.1. A nonempty subset S of R is called a strong multiplica-
tively closed subset (s.m.c.s.) if the following axioms hold:

()18,
(2) a-8S=85 a=Sforallac§.

Now, as we have indicated earlier, suppose that R is a commutative hy-
perring with scalar unit. Furthermore we assume that S is a s.m.c.s. of R
Let M be the set of all the ordered pairs (r,s) wherer € R, s € S. For
AC Rand B C S, we denote the set {(a,b)la € A, b € B} by (A, B). We
define the following relation ~ on P(M):

(A,B) ~ (C,D) if and only if there exists a subset X of S such that
X-A-DY=X-(B-C).

Lemma 6.6.2. ~ is an eguivalence relation on P(M).

Proof. Obviously ~ is reflexive and symmetric. To verify that ~ is tran-
sitive, we assume (Aj, By) ~ (As,By) and (Ag, B2) ~ (As, Bs), where
(A, B;) € P(M), 1 <1 < 3. By definition of ~ there exist the sub-
sets X; and X3 of § such that

X1-(A1-By)=X1- (A~ By), ()

Xz (As-By) = Xo- (As- B).  (II)

Multiplying both sides of (11) by X;.By we get X; - Xo- Ay - B3 - By =
Xng'Ag'BQ‘Bl which implies that Xg'(Xl'Ag‘Bl)'Bg = Xl'Xg'A;g'Bg'Bl.
Using (I), we obtain Xy - (X; - Ay - By) - Bg = X3 - X2+ As - By - By which
implies that (Xl : X2 B Bg) : (A] . Bs) = (Xl . Xg ' Bg) : (Ag . B}) If we take
X = X;- Xy By, then X - (4; - B3) = X - (A3 - B;) which implies that
(Al,Bi) ~ (Ag, B3) |

We consider the restriction of the relation ~ on M. We obtain the
following two corollaries.
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Corollary 6.6.3. For (r,s),(r1,s1) € M, we have (r,s) ~ (r1,51) if and
only if there exists A C S such that A- (r-s;}=A-(r1-3).

Corollary 6.6.4. ~ is an equivalence relation on M.

In M, the equivalence class containing (r, s) is denoted by [r, s] and we
denote the set of all the equivalence classes by S~!R.

In P(M), the equivalence class containing (A, B) is denoted by || A, B ||
We define:

<AB»= |} {la,blla € ALk € By}
(Ai,.B1)ell4,B|

Now, we define the following hyperoperations on S™!R,

[r1,81] W [ro, 80] = U {[r,s]|r € A,s € B}
(AB)E|ir1-sz+ra-s1,81-82| )
= &Lry-S+7ry-8,8 S 2,
[r1,81] ® [r2,82] = J {[r,s]lr € A,s € B}
(A, B)E|[r1-rz,51-92|
= K77y, 88,
Lemma 6.6.5. W and ® defined above are well-defined hyperoperations.
Proof. Suppose that [r1, 81] = [a1,41] and [rg, s5] = [ag,tg] Then there exist
subsets A and B of S such that
A-rl-t1=A-a1-sl (I)
B'Tg't2=B‘(12'52. (II)

Multiplying (I) by B-sg-t2 and (II) by A-¢;-s; we obtain A-B-51-89-13-01 =
A-B . sg-toty-rpand A - B sy -8y -ty-ag=A-B-s)-1; 151y Adding
the above equalities, we obtain

A-B-(Sl'SQ'(tz'(ll-l-tl‘az))”—=A-B'(t1'tz'(Sg'Tl'i-Sl'T'g)).

Therefore || r1 - s2+ 72 81,81 82 ||=| a1 - ta + az - t1,¢; - ta || which implies
that
KTy S+ 7re 81,81 8 =L ay -ty +ag-t,t -t >,
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hence ¥ is well defined.
Now, multiplying (1) with (II} we obtain A - B - (ry - 72} - (&1 - t2) =
" A-B-{ay-ag) (sy-52) and 50 || 71 - 72,81 - 82 ||=| a1 - ag,t) - t2 || which
implies that - '
KL ry T, 510 g =K ay - g, by -y >,

therefore ® is well defined. B
Corollary 6.6.6. Forallr € R, s € S, we have € 1,5 >=<r-5,8-8>.

Theorem 6.6.7. (S™'R,\d,®) is an H,-ring, that we shall call the H,-ring
of fractions.

Proof. If [ry, 81, [ra, 52}, [r3, 53] € S™'R, then we have:

{[?",S] |T & T (SQ'83)+(?"2'83+’f'3'82)‘81,8681'(82'83)}
- [rla 31] 7 ([?"2, 52] & [T3’Sél)1

{lr,s] |7 € (r1-sa+72-51)83+73(s1-82),8 € (51-52) - 83}
C ([r1, 1) W [rg, 82]) W [rs, 53).

Since R is associative and distributive, we obtain that (S™'R,W) is weak
associative. The weak distributivity of (S~' R, ®) can be proved in a similar
way.

Now, we prove the reproduction axioms for (S7'R, ).

For every [r,s],[r1,s1] € SR, we have s € S,s5; € S and then by
the definition of S there exists s; € S such that s € 51 - s3. On the
other hand, since reproduction axioms hold for the additive law in R, we
obtain 7y - 85 + (87 + 1)R = R. Therefore, there exists ro € It such that
7 € r1- 894 81 - T9 + 7o which implies that r € 7 - 53+ (ra +12- s3) - 57 where
1 € 83 s;. Therefore, there exists a € ro+ry- 33 such that r € 7y - s9+a- 81
Hence

{T, 8] € [7’1,81] e [(1., 82] = 71 -8+ a-81,5 5 >

which implies that S™1R C [rq, s1]&/S™' R, therefore S71R = [r1, s1]wS™'R.
Finally, we prove the weak distributivity of @ with respect to . We have
{|r,s]|r € s1-71+(ro-83+89°73), 8 € 81-51-(82-83)} C {11, 81] ®{{re, s2]W(ra, s3]),
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by Corollary 6.6.6, and hence

{[r,s]|7€(ri-ra)-(s1-83)+ (r1-73)  (51-82),5 € (81-82) - (81~ 83)}
C ([r1,81] ® [ra, s2]) W ([r1, 51] @ [r3, 53]).

Therefore,

[r1.51) ® ([r2, 52) © {rs, s3]) OV (fr1, 81) & [r2, 82]) W ([r1, 81] ® [rs, 83]) # O

and in the similar way we obtain
(([r1, 81} ¥ [r2, 52]) & [r3, s3]} 13 ((Ir1, 1] ® [r3, s3]} W ([, 52] ® [r3, 83])) # @

thus, (S7'R, 4, ®) is an H,-ring. W

Theorem 6.6.8. Let R, and Ry be two commutative hyperrings with scalor
unit and S be a s.m.c.s. of Ry and let g : Ry — R, be a strong homomor-
phism of H,-rings such that g(1) = 1. Then g induces an H,-homomorphism
g: S7IR) - g(S) Ry by setting

g([r, s]) = [g(r), 9(s)].

Proof. It is clear that g(S) is a s.m.c.s. of Ry. First, we prove that
G is well defined. If [r,s] = {ry, s;] then there exists A C S such that
A-r-s8 = A.r;-s which implies that g(A -7 -s) = g(4-7r - s) or
g(A) - g(r) - g(s1) = g(A4) - g(r1) - g(s). Since g(A) C ¢(5), we obtain

[9(r), 9(s)] = lg(r1), g(s1)] or G{ir, s]) = G([r1. s1]). Thus, 7 is well defined.
Moreover, g is an H,-homomorphism because we have

{la,8] |a € g(ri-sa+7r2-51),0 € g(s1-82)} CG([r1, 81] W [ra, 52])
and
{la,blla € g(r1)-g(s2)+9(ra)-9(51),b € g(s1)-g(s2)} C F([r1, s1])wG([r2, s2]).

Therefore,

gllry, 1] @ [r, 82]) M (G([r1, 51]) W G([r2, 52])) # 0
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and similarly we obtain

g(ir1,81) @ [r2, 82]) N (G([r1, 81]) ®§(f?2, s2])) # 0,

which proves that g is an H,-homomorphism. m

Definition 6.6.9. Let R be an H,-ring. A nonempty subset I of R is called
an H,-ideal if the following conditions hold:

(1) (I,+) is an H,-subgroup of (R, +),
(2) I'-RCRand R-1C I
An H,-ideal I LiL bﬂled an-H,-isolated ideal if it satisfies the following axiom,
e Forall X C 1Y C Sif (M,N) €| X,Y ||, then M C .

Lemma 6.6.10. If I is an H,-isolated ideal of R, then the set S71I =
{ia,s] |a € I,s € S} is an H,-ideal of S"'R.

Proof. First, we prove that (S~11,W) is an H,-subgroup of (S™'R, ). For
every [a1, 51), {az, 52) € S7'1, we have

a1, 51] & [az, 821 = U {la, s]|la € A, s € B}.

(A,B)El|ay-sz+az 51,8122

From ay,a, € I we obtain a, - 59 4+ ay - 57 C I and since [ is an H,-isolated
ideal of R, it follows that A C I. Therefore, {1, 51] W [az, 52] € S7'1.

Now, we prove the equality S~'1 = [ay, 5;]® 571, for all [ay, 5] € S7'1.
Suppose that [a,s] € S7', a € I. Since s, € S, there exists s, € S such
that s € s1-5,. Moreover, since I is an H,-ideal, we have a;-so+(s;+ 1} = I.
Hence there exists a; € I, such that a € ay - 55 + 8 - az + a; and so
a € a;-s3+(ag+as-83) 81, whence 1 € 83-8;. So there exists b € ap+ay-53
such that @ € a; - 8o + b - 83, therefore [a,s] € las, 5] W [b, so] implying
ST Cla, 1] W ST

It remains to prove the second condition of the definition of an H,-ideal.
In order to do this, suppose that [a,t] € $7'I and [r,s] € ST R. Then

etlelnsl=  |) A{lyleeAyeB)

(A,B)e|la-rt-s|
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Since ¢ € I and [.is an H,-isolated ideal of R, we have a -7 C I and so
A C 1. Consequently [a, ] ® [r,s] C S 1. Therefore, 511 is an H,-ideal
of STIR. m

Lemma 6.6.11. If I, J are two H,-isolated ideals of R, then
(1) S7YInJy=8711In§1J,
2) SYI-J)=8"1T®S51J,
(3) STHI+J)C S WS,

Proof. The proof is straightforward and is omitted. ®

The natural mapping : R — S™'R, where y(r) = [r, 1], is an inclusion
homomorphism.

Theorem 6.6.12. Let I be an H,-isolated ideal of R. Then SN 1 # 0 if
and only if S~ = S—R.

Proof. Ift € SN I, then [t,f] = [1,1] € S71I. Therefore, for every [r,s] €
S7'R, we have [1,1} ® [r,s] C S7'I. From [r,s] € [1,1} ® [r, s] we obtain
[r,s} € 5711 and this prove that S7'R C §~17.

Conversely, assume that S~ = S7'R. If we consider the natural in-
clusion homomorphism ¢ : R — S7IR, then (1) = [1,1]. On the other
hand, ¥(1) € S~ R, consequently %(1) € $~11 and so ¢(1) = [a, 5] for some
a€1,s € 5. Now, we have [1,1] = [a, 5], therefore, there exists A C S such
that A-s =A-a. Since A-sC SandA-aC 1, wegetIﬂS#@. |

Theorem 6.6.13. Let I be an H,-isolated ideal of R. Then the following
assertions hold:

(1) ISy (57,
(2) If I =4~ Y(J) for some Hy-ideal J of S7'R, then S~1] = J.

Proof. The proof of (1} is obvious. In order to prove (2), let I = ~1(J)
where J is an Hy-ideal of §7'R. Then [r,s] € S~/ implies r € I and so
¥(r) = [r,1] € J. Therefore, [1,s] ® [r,1] C J. Since [r,s] € [1,s] ® [r, 1],
we obtain [r, s] € J which implies that $~*J C J. Now, let [r,s] € J. Then
P(r) = [r,1] € [r,1] ® [s,8] = [r,s] @ [s,1] C J. Therefore r € =1(J) =1,
hence [r,s] € S7'1, and this proves that J C S~'/. &
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Definition 6.6.14. Let A be a commutative H,-ring. An H,-ideal P is
called an H,-prime ideal of A, if a-b C P impliesa € Por b€ P.

Theorem 6.6.15. If P is an H,-isolated prime ideal of R such that
SN P=f, then S~1P is an H,-prime ideal of ST'R and ¥~(S™1P) = P.

Proof. By Lemma 6.6.10, S7!P is an H,-ideal of S~'R. Now, we check
that S~'P is prime. If [r,s] ® [r1,] C S™'P, then {[b,so] | b € r -1y,
53 €8-51} CL T 1,55 >C §P. It follows that for every b € r -1y,
83 € §- 8 there exists @ € P and t € S such that [b, so] = [a,t]. Therefore,
there exists a subset A of S such that A-b-t=A-a-5;. Since A-a-sp C P,
we have A-b-t C P. Now, for every z € A-t we obtain -6 € P. Since
A-tC Sand SN P =0, it follows that z ¢ P and so b € P. Consequently
r.ry C P which implies that r € P or r; € P. Therefore, [r,5] € S”1P or
[1"1,31] e S-1p.

On the other hand, by Theorem 6.6.13, we have P C ¢~ 1(S™1P).

Conversely, assume that r € ¢~}(S~!P). Then, ¢)(r} € S™'P and since
Y(r) = [r,1], there exists a € P,t € S such that [r,1] = [a,?]. Therefore,
there is a subset A of § such that A-r-t=A-a. Since A-a C P, we have
A7 {C P. Now,foreveryz € A-t, weobtainz-r C P. Since A-t C S5,
it follows that x € P and so, r € P. Therefore, " }(S"1P)=PF. m

Lemma 6.6.16. For every a € S, v*(a) is invertible in R/v*.

Proof. Since 1 € R, then v*(1) € R/~*. Now, for every v*(z) € R/v*, we
have v*(2) ©® y*(1) = v*(1) ® v*(z) = ¥*(z), i.e. v*(1} is the identity of the
ring R/+*. On the other hand, by the definition of S, for every a € S there
exists b € S such that 1 € a-b = b-a. Therefore, v*{1) = v*(a-b) = v*(b-a)
and so v*(1) = v*(a) ®v*(b} = ~v*(b) ©® v*(a) which implies that v*(b) is the
inverse of v*(a). W

Theorem 6.6.17. If all subsets A of S are finite polynomials of elements
of B over N, then there exists an H,-homomorphism f : ST1R — R/¥*
such that f1p = , i.e., the following diagram is commutative.

R v S-R

N A

R/
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Proof. We define f : ST'R — R/~* by setting f([r,s]) = v*(r) © v*(s)~".
First, we prove that f is well defined. If [r,s] = [ry, s1], then there exists
A C Ssuch that A-7-s1=A-r,-sand so ¢(A-7-51)=p(A-r;-s) which
implies that v*(A4) ©@ v*(r) © v*(s1)=7"(A4) ®v*(r1) ® v*(s). By hypothesis
v*(A) = 7¥°(a) for every a € A, so we obtain v*(a) © Y*(r) @ v*(s1)
= 7*(a) © v (r1) © v*(s).

Multiplying the above relation by v*(a)~' @ v*(s) "' ®v*(s1)~!, we have
TH(r) ©y*(s)™! = v*(r1) ©@¥*(s1)7. Therefore, f([r,s]) = f(fr1, s1]). Thus,
f is well defined. Moreover, f is an H,-homomorphism, because we have

Y(r1-sg+ 12 81) O (51 82) 71 € f{[r1, s1)] @ [ra, 53}),

(v (r)) ©7* (1)) & (7" (r2) © ¥ (82) ") = F{[r1, $1]) ® f(lra, s2]),

TH(r1-r2) @Y (51 82)7F € f([r1, 81]) @ [r3, 82]),

(v (r) @7 (1)) © (v*{r2) © v*(s2)1) = f([r1, 51]) ® F([ra, 82]).
Finally, it is clear that fyy = . B

Let v} be the fundamental equivalence relation on S~'R and let U,
denotes the set of finite polynomials of elements of S~'R over N.

Theorem 6.6.18. There erists @ homomorphism h: Rfv* — S™'R/~t.

Proof. We define h(v*(r)) = 4;([r,1]). First, we prove that k is well defined.
Suppose that v*(r1) = v*(r2), so ryy*ry. Hence there exist 21, ..., Tme1 € R;
U1, .oy Um € U With 21 = 1y, Zmy1 = ra such that {z;, 2,3} Cug,i=1,...,m
which implies that

{[.’.Ci, 1], [.TI,‘.H, 1]} §<< Uq, 1 s b{g.

Therefore, [ry,1]v:[ra,1] and so ¥i([r1,1]) = ~!([r2,1]). Thus, h is well
defined. & is a homomorphism, because

Ry (@) @ v (6) = h{(y"(c)) = 7([¢, 1)) for all ¢ € v*(a) +7"(b)

and

h(v(a)) ® R(v*(8) =7:([e,1]) & 7;(1b, 1)
=7 ([d,s]) for all {d, s] € vi([a, 1]) & v ([b, 1]).
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Thus, setting d =¢ € a+ b, s = 1, we obtain
| h(7*(a) @ 7" (b)) = h(v"(a)) & h(7"(b))-
Similarly, we obtain
h(v*(e) © ¥ (8)) = h{v*(a)) © h(7*(B)).
Therefore, h is a homomorphism of rings. ®

Corollary 6.6.19. The following diagram is commutative, i.e., .90 = hy
where p and @, are the canonical projections.

R f—g-1R

: I

Ry — s S IR/

Corollary 6.6.20. If ¢ : R — R/~* is the canonical projection, then the
map 8 : STIR — @(S) Y R/v*) defined by 8([r,s]) = iv*(r),v*(s)} is an
H,-homomorphism.

Corollary 6.6.21. The following diagram is commutative, i.e., O = ¢nep.

R v S-1R
wl l"

R/Y Y (SR

6.7 Rough sets in a fundamental ring

In this paragraph, we present a connection between rough sets and H,-rings.
We use the results obtained by B. Davvaz [30].

Let (R,+,-) be an H,-ring. For a subset A C R we define two approxi-
mations of A relative to the fundamental equivalence relation v*:

Y(A)={z € R[7"(z) CA} and ¥(4)={z e K|y (z)nA#0}.
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The set v*(A) is called the v*-lower approrimation of A, and the set
¥*(A) is called the v*-upper approzimation of A. In the following propo-
sition, we collect the basic properties of the approximations of A, which
follow directly from their definitions.

Proposition 6.7.1.
(1) 7*(4) € A C7*(A).
(2) 7(7*(A4)) = 1*(A) and 7*(v*(4)) =7 (A).

The difference W) = 7*(A) — 7*(A4) is called the v*~boundary region of

A. In the case when v*(A) = 0 the set A is said to be ~*-ezact; otherwise
A is y*-rough.

Proposition 6.7.2. If A and B are nonempty subsets of R, then
(1} ¥*(A) +7*(B) S (4 + B).
(2) ¥*(A)-7(B)) S¥(4- B).

Proof. We prove only (1), because the proof of (2) is similar to (1). Suppose
that ¢ is an element of ¥*(4) +y*(B). Then, ¢ € a+b where a € y*(A) and
b € v*(B). Thus, there exist the elements z,y € R such that z € v*{a) " A
and y € 4*(b) N B. Therefore,

z+yC (e +7*b) Sy (at )

Sincex+y C A+ B, wehavex +y C v*{a+b)N(A+ B) and so v*{a+b)n
(A+ B) # @. Therefore, for every ¢ € a + b we have v*(c) N (A+ B) # @
which implies that ¢ € 4*(A+ B). Therefore, a +b C 7*(A+ B). Thus, we
have

T(A)+T(B) CT(A+B) m

There exists another way to characterize a rough set by a membership
function.
For any A C R, we define a rough membership function as follows:

ANy ()]

palz) = @)
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where | | denotes the cardinality of a set. By the definition, the elements in
the same equivalence class have the same degree of membership. One can
notice the similarity between a rough membership function and a condi-
tional probability. The rough membership value p14(x) may be interpreted
as the probability of z belonging to A given that x belongs to an equivalence
class.

The following proposition collects the basic properties of the rough mem-
bership functions.

Proposition 6.7.3. The rough membership functions of the form pa have
the following properties:

(1) pa(z) =1 4f and only if z € v*(A),

(2) pale) =0 if and only if & € (49,

———

(3) 0 < palz) < 1 f and only if = € 7(A),
(4) palz) =1 - pae(z),

(5) paus(z) = maz{pa(z), us(z)},

(6) pars(z) = min{pa(z), ps(z)}.

The lower and upper approximations can be presented in an equivalent
form as shown below. Let A be a nonempty subsets of R. Then,

7' (4A) = {v'(z) € R/y" | v*(z) € A}
and
T{A) = {v'(z) € R/y" | v'(z) N A # B).

We can interpret these sets as subsets of the fundamental ring RB/v* of
an H,-ring K.

Proposition 6.7.4. Let A and B are nonempty subsets of R. Then the
following assertions:

(1) 7(AUB) =7 (A) u7(B).
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(2) v(ANB) =y(4)N1"(B),

(3) A C B implies v*

2 =2

(4) A C B implies
(5) (AU (B) S v (AUB),

(6) (AN B) C 7(A) N ~(B).

Proof. ‘
(1) v (z)ev(AUB) <= +*(x)N(AUB)#D
= (Y{=}nA)U(r(z)NB)# 0
=y ()NA£D or V()N B#D
= 7 (z) € v(A) or v{(z) €y(B
= 7 {(z) € T (A)U(B).
Thus, v (AU B) = v*(A) U v*(B).

(2) Y (z) ey (ANB) += v (x

Thus, v*(AN B) = v*{A) Ny B).

(3) Since A € B if and only if AU B = B, by (1) we obtain v*(B) =
YA U B) = v*(A) U~*(B). This implies that v*(A4) C v*(B).

(4) Since A C B if and only if AN B = A, by (2) we obtain v*(4) =
(AN B) =~*(A) N~*(B). This implies that v*(4) C v*(B).

(5) Since A C AUB and B C AUB, by (4) we obtain v*(A) C v*(AU B)
and v*(B) C v*(A U B), which yields v*(A) U~+*(B) C+*(AU B).

(6) Since ANB C A and ANB C B, by (3) we obtain v*(A N B)
and v*(A N B) C v*(B), which yields v*(AN B) C v*(A4) n~*(B).

“(4)

S
n
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In what follows, we denote the identity of the group (R/v*, ®) by wr,
too.

Theorem 6.7.5. If A is an H,-subgroup of (R, +), then v*(A) is a subgroup
of (R/7", ).

Proof. First, we show that wp € v (A Since A is an H,-subgroup of
(R, ), then for every a € A we have a + A = A. Therefore, a € a + A
and so there exists b € A such that a € a + b which implies that v*(a) =
(o + b) = v*(a) ® v*(b). Therefore, v*(b) = wg and 5o b € wg N A which
implies that wg MA # 0. Therefore wg € v*(A).

___ Now, suppose that v*(z),v*(y) € v*(A). We show that v*(z} & v*(y) €
v*(A). We have v*(z) N A # 0 and +*(y) N A # @ whence there exist
a€v*(z)NAand be v (y)NA Thus,a €v*(z), a€ A, bev(y), be A
and so

a+bC 7y (z)+7(w) S (e +y) =7 (2) &Y ().

For every c € z + y we have v*(¢) = 7*(z) @ v*(y). Therefore, we obtain
a+bC~*(c) and a + b C A.

Therefore, 7*(c)NA # 0 which yields v*(c) € 7*(A) or y*(z)®7*(y) € v*(A).

Finally, if v*(z) € v*(A) then we show that —y*(z) € 7*(A). Since
wg N A # @, then there exists r € wrp N A and since v*(z) N A # @,
then there exists y € v*{z) N A. By the reproduction axiom we obtain
r € y+A. Then there exists a € A such that » € y+a which implies
that 4*(r) = v*(y) ® v*(a). Since r € wg then ¥*(r) = wp. Therefare,
wr = V() ® v (a) = v*{(z) ® vy*{(a) which yields v*(a) = —y*(x). Since
a € A and a € v*(a) then v*(a) N A # 0 and so v*(a) € v*(A). Therefore,
v*(A) is a subgroup of (R/~*,®). ®

Lemma 6.7.6. If A and B are nonempty subsets of R, then

v {A) d4*(B) Cv*(A+ B).
Proof. We have

(A erB) ={y (a)®7()| ()
{7r(a) & ()
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Therefore, (y*(a) + v*(b)) N (A + B) # 0. Since v*(a) +v*(b) € v*(a + b)

we obtain '
Y{a+b)N{A+ B)#0.

Thus, v*(a+b)=7"(a)&7" (b)€y*(A+R) and so v*(A)dv*(B)Cy* (A+B). B

Lemma 6.7.7. If A is a nonempty subset of R and B 1s an H,-ideal of R,

then

7(A) © v (B) € 7v*(B).
Proof. We have
Aoy (B) ={8 > (@ or®)l () A, v ®) € 7(B)}
Finite

=& Y (r@oy®)v@nA£s, v (6) N B £0).

Ffinite

Therefore, v*(a) - v*(b) N A- B # . Since v*(a) - v*(b) C v*{a - b) we obtain
Y(a-b)NA-B#0
Since B is an H,-ideal of R, we have A- B C B and so
Y(a-byNB#d

Thus, v*(a-b) = v*(a)©y*(b) € v*(B). Since B is an H,-subgroup of (R, +),
then v*(B) is a subgroup of (R/+*,®), therefore & Z T'(a) ® (b)) €

finite

v*(B) and so v*(4) ©v*(B) €+*(B). m
Coroliary 6.7.8. If A and B are H,-ideals of R, then

7*(A) ® y(B) C y*(A) N y(B).

Theorem 6.7.9. If A is an H,-ideal of R, then 1*(A) is an ideal of R/~*.

Proof. Suppose that A is an H,-ideal of R. Then {7y*(A),®) is a subgroup
of (R/v*,®). Notice that v*(R) = R/v*. Then we have

Ry © v (A)=7(R) @9 (4) € v*{A),
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TA)OR/Y =1 (A)o(R)Cr(4) =
Definition 6.7.10. Let A, B and C be H,-ideals of R. The sequence

of strong homomorphisms A 4, B % (s said to be ezact if for every
z € A,

go f(iL') & wg.

Theorem 6.7.11. Let A L5 B %5 C be an ezact sequence of H, -idenls
of R. Then, the sequence

7 (4) = 7(B) = 7 (C)
is an eract sequence of ideals of R/~* where
F(v*(a)) = 7" (f(a)) for alla € A,
G(v* (b)) = 7" (g(b}) for allb € B.

Proof. First, we prove that F is well defined. Suppose that 7*(a)=~*(b)
then there exist z1,..., Tm41 and uy, ..., Uy, € U with z; = @, Tpy1 = b such
that

{zyzin} Cw,y i=1,..,m

which implies that
(), [ (1)} € flwg), i=1,...,m

Since f is a homomorphism and u; € I we obtain f{u;) € ¢. Therefore,
f(a)y*f(b) which means that F(v*(a)) = F(v*(b)). On the other hand if
v*(a) € v*(A), then v*{a) N A # § and so there exists b € v*(a) N A. Thus,
by*a and b € A which yield f(b)y*f(a) and f(b) € B. So f(b) € v*(f(a))
and f(b) € B whence v*{(f(a)) " B # @ and so v*(f(e)) € y*(B) which
means that F(vy*{(a})) € v*(B). Thus, F is well defined. Similarly G is well
defined.
Now, we show that F is a homomorphism. We have

Flv'(a)® (b)) = F(v'(atd)
=7 (fla+b))

v (f(a) + f(B))

v(fla)) © v (f(B))

F(v*(a)) @ F(v'(b))

i
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Fy*(@) o)) =F(v'(a-b)

= F(v(a)) © F(y*(b))

Therefore, F' is a homomorphism. Similarly, (G is a homomorphism.
Finally, it is enough to show that /mF' = Ker(G. We have

v*(b) € ImF = F(v*(a)) = +*(b) for some a € A
=7 (f@)) =v(b)
= G(v"(f(a)) =G(y"(v))
=> 7" (9(f(a))) = G(v*(b))
= G(v"'(b)) € v"{(wr)
= G(v"(8)) = 7" (9(b)) Cwr
= G(7*(b)) =wr -
== v*(b} € KerG

and so ImF C KerQ.
Conversely, we can show that KerG C ImF. Therefore, ImF=KerG. &

6.8 H,-group rings

In an H,-group, several convolutions can be defined. In this paragraph,
we present a convolution and obtain an H,-group ring. We use the results
obtained by S. Spartalis, A. Dramalidis and T. Vougiouklis [123]. Examples
and applications in known classes of hyperstructures are also investigated.

Definition 6.8.1. Let (H,-) be a hypergroupoid. The following set is called
a set of fundamental maps on H with respect to - :

©=1{0:H x H—"" H | §(z,y) € z-y}.
Any subset @, C © define a hyperoperation o, on H as follows:

zo,y={z|z=0{(zx,y) for some § € B,}.
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Obviously, o, < - and ©, C &,,, where &, denotes of the fundamental
maps on H with respect to o,. A set ©®, C © is called associative (res-
pectively weak associative) if and only if for every subset 8, C &, the
hyperoperation ¢, is associative (respectively weak associative). A hyper-
groupoid (H,-) will be called B-WASS if there exists an element 6, € ©
which defines an associative operation o in H.

e For every f € © we have 1 < {67 1(g)| < n*’—n+1for all g € H where
8~1(g) is the inverse image of g. However, for every § € © we have

167 ()] = .

geH

o If (H,-) is ©-WASS, then every greater hypergroupoid is ©-WASS.
e All Hy-groups are ©-WASS.

e Any Hy-semigroup, which has a b-structure with the property H® = H
is ©-WASS. -

e If (H,-} is an H,-group containing a scalar, then all the maps
f: HxH — H with f(z,y) € zy for all 2,y € H, are onto,
i.e., f € ©. Indeed, if s is a scalar, then f(s, H) = H.

Example 6.8.2. An example of a type of b-semigroups is defined as follows:
Fix an element s € H. We define the product o by setting:

:coy={ s fx#y

r ifx=y.
Then H o H = H and ¢ is associative, since

z ifz=y=2

($Oy)oz=mo(yoz)={ s otherwise.

Definition 6.8.3. Let (H,-) be ©-WASS with |G| = n and §, € © be asso-
ciative. Let F be a field and F|H] be the set of formal linear combinations
of elements of H with coeflicients from F. In F{H| the ordinary addition +
can be defined by setting

(f1+ f2)(g) = f1lg) + folg) for all g € H and f, f2 € F|H].
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Furthermore, consider the hyperproduct * , called convolution, defined for
every fi, fo of F[H] as follows:

f1*f2={f9|fa(9)= Z filz 968}

8(z.y)=g
Theorem 6.8.4. The structure (F[H),+,*) is o multiplicative H,-ring
where the inclusion distributivity is valid. -
Proof. Obviously, (F[H],+) is a group. Let fi, fe, f3 € F[H]. Then

(fl*f2)*f3={f9ffa Z fi(@) f2(u); 969}*f3

Oz y)=u

={f¢|f¢(g) > X Ak faz)f’@e@}afﬂo

wlu2)=g 0zy)=u

where fp (g Z Z fi{z) faly) fg(Z) On the other hand,

8o (u,2)=g 8o (z,1)=u

fix(fox f3) = { | folg) = Z Z filz)fa(y) fa(2); 8¢ € @} > Jo.

plzv)=g 8(y.z)=v

where fo (g} = Z Z filz) f2(y) fa(z). Since 8, is associative.
fo(z.0)=g 8, (y,z)=v

Thus, (f1 *x f2) * fan fi*x (fa* f3) % 8. Now, for the left distributivity,

we have

fix(fo+ fs) —{fe|fe Z f()] f2+f3)(y)] 96@}

0(z.y)=g

{fﬂ | folg) = Z [filz} foly) + frlz} faly)); 6 € 9}

8(z,y)=g
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and

hxfatfixfs =<1 1(9)= Z h(z)faly); pE®

plz.y)=g

+ fol fol@) = > f@)fa(y); p€©

plzy)=g

= Foo=Fot fol foolg) = D Hl2)faly)

plz.y)=g

+ D hln)fs(s) pp€®

plra)=g

Thus, fi*(fo+ f3) C fi*fa-+ fi+ fs, which is the left inclusion distributively.
Similarly, the right inclusion distributivity is valid. R

Definition 6.8.5. The above H,-ring is called a hypergroupoid H,-algebra
or an H,-group ring.

Given a hypergroupoid ( H, ) one can define an H,~-group ring by “enlar-
ging” the hyperoperation - as follows: Take any * on H such that (H, ) is
©-WASS hypergroupoid then take the union ¢ = -U#, i.e., 20y=(zy)U{z*y)
for all z,y € H. An H,-group ring is defined on (H, ¢).

The most important condition in order to define the H -group ring is the
©-WASS condition. Therefore, in what follows we focus on our attention
on classes which satisfy the ©-WASS condition.

Now, we prove the following theorem.

Theorem 6.8.6. In every H,-group ring (F[H}, +,*) we have

(M) *fa=—(fixf2) = fix(=S2), forallfr,fa€ F[H].

and there exists an absorbing element.
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Proof. For every fi, fo € F[H}, we have

—hHh*fa ={fs|f9 Z (—fi)(x) faly); 66@}

He,y)=h

{ —fo | fo(h Z fl(ivfz 96@}

—(f1 % f2).
Take the element fo € F[H] such that fy(h) =0, for all h € H. Then, for
" every f € F[H] we have

Jfoxf ={f9|fa Z fola) f 96@}

(zy)=h

={fo| fo(h) =0, he H, § 8}
= fo-

Therefore, fy is the absorbing element. m

Example 6.8.7. Consider the Hy-group (Zs,®) which has the b-group
(Z3,+) and the non-singleton products are: 11 = {0,1}, 2@®2 = {0,1,2}.
The 0 is scalar. Therefore, every map 8 : 22 — Z3 with 8(z,y) €z D y, is
an element of ©. Thus, |©| = 2-3 = 6 and we see © = {8, 65,03,84, 85,05}
Then, for all # € ©, we have

6(0,0)=0, (0, T)=0(T,0)=T, 8(0,2)=6(2,0) = 3, 6(1,2)=0(Z, T)=D,

and

8;(1,T)=0, 6;(2,2)=0; 65(T,1)=0, 0,(2,2)=T; 63(1,1)=0, 65(2,2)=2;
04(T, 1)=1, 64(2,2)=0;65(1, T)=1, 65(2,2)=T;65(1,T)=T, 65(2,2)=2
Every hyperproduct of elements of F[Zs] has at most 6 elements. Let

r,s € F[Z3], then
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For every § € ©, we have to calculate 9 products of the form r{z)s(y) in
order to obtain tg.

te,(0) = 7(0)s(0) + 7(1)s(2) + r(2)s(1) + r(1)s(I) + r(2)s(2),
to, (1) = r(0)s(1) + r(1)s(0),

te,(2) = r(0)s(2) +r(2)s(0),

te,(0) = r(0)s(0) + r(1)8(2) + r(2)s(1) + r(1)s(1},

te;(1) = r{0)s(1) + r(1)s(0) + r(2)s(2),

te,(2) = r(0)s(2) + r(2)s(0),

t6,(0) = 7(0)s(0) + r(1)s(2) + r(2)s(1) + r(1)s(1),

to,(1) = r(0)s(1) +r(1)s(0),

te,(2) = r(0)s(2) + r(2)s{0) + r(2)s{2)

and similar for the ty,, {5, to,-

Example 6.8.8. Consider the Hy-group (Zpy, ®) defined in Example 6.1.2.
(2). Then, & has only two elements © = {#),65}. For all § € ©, we have
8z, y} = =+ y if (z,y) # (0,7) and 6,(0,m) = 0, 6,(0,7) = ™. The map
B, leads to the known convolution on (Zm,,+). For every element g # 0

and m, the sum ty, (g9} = Z r{z)s(y) has mn elements. Moreover,
01(z,u)=g
b= ) (o))
61({z,y)=0

is a sum of mn + 1 terms of the form r(z)s(y) and

to (M) = Y r(z)s(y)

8 (z,y) ="
is a sum of mn — 1 terms of r(z)s(y).

Let (H,0) be an H,-group, (G, +) be a group with the zero element 0,
{A; }icc be a family of non empty sets with Ay = H and A;NA; = @, for all
i,j € G,i# 7. Set K = U A; and consider the hyperoperation @ defined
in K as follows: =

_ [ zoy if(z,y) € H?
m@y”{Aiﬂ- if (z,y) € A; x A; # H2
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Then, (K, ®) becomes an H,-group. which is called an (H, G)-H,-group. Tt
is easy to see that K/3* = G.

Theorem 6.8.9. If cardA; = n for alli € G and (H,o) is ©-WASS, then
(K,0) is ©-WASS. Moreover,
card®g > (n))™ lcardOy,

where m = cardG.

Proof. We consider & family of one to one maps {p, };c¢ such that p; : H—A;,
i # 0 and pp is the identity map. Notice that all these maps are also onto.
Take # € @ which defines an associative operation - and consider the
mapping &' : K x K — K which defines the operation ¢ in K, as follows:

0y = pigs(p; " (2) 'pfl(y)) for all z € A;,y € A;.

"This mapping is, obviousely, onto, so it remain to prove that ¢ is a.ssdciative.
Suppose that (z,y,2) € A; x A; x A, we have

z0(y02) = 0P Py (y) - p71(2))
= Pirgnlpr () - (07 () - 71 (2))] = (zoy)oz.

Therefore, (K,®) is ©-WASS. Now, we remark that the number of the
families p;, ¢ € G, i # 0 of bijective maps is (n!)™~!. Therefore,

card®g > (n)™ card®y. B

Theorem 6.8.10 Let (K, -) be ©-WASS such that cardA; = 1, for alli % 0.
Then, for all 6 € O which define an associative operation ¢ in K, there
exists an element x € H such that

yoxr = = xQy, for alZyEH,
20w =z, for all (z,w) € A, x A, # H? for whichr +s = (.

Proof. Take (z,w) € A, xA,; # H? for which r-+s = 0 and set zow =x € H.
Then, for all y € H,

yor = yo{zow) = (yoz)ow = 20w = 7.
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Similarly, ¢y = z. This element z is unique, because if there exists another
element z’ such that (u,v) € A, x A, % H® with p+ ¢ = 0 and wv = &',
then z = z¢0zx' = 2'. B

Note that in the above theorem, the operation induced by the restriction
of 0 to H x H is weak associative. This means that (H, o) is ©-WASS.

From the above theorem we obtain the following construction.

Theorem 6.8.11. Let (H,0) be such that there exists an associative ope-
ration O on H and a special element x € H such that 20y = « = yOx
for ally € H. Then there exists a ©-WASS (H,G)-H,-group (K, ®) with
cardA; =1 for alli € G, 1 # 0.

Proof. Consider the extension of ¢ to K for which 20w = z for all
(z,w) € Ay x Aj # Hwithi+j =0 Itis easy to check that this op-
eration is associative on K. B

In the case of the (H, G)-H,-groups with cardA; = 1, for all i € G\ {0},
the cardinality of the set of onto maps

KxK—K: (z,y)—z€x0y

. 2_
is less or equal to n™+" !, where n = cardH and m = cardG.

Definition 6.8.12. Let {S;}ic; be a pairwise disjoint family of H,-semi-
groups where [I| > 1. We define a hyperoperation @, called an S-hyper-
operation on the set S = U S; as follows:

el

2@y = my for all (3, ) € 57,
x; ®.’L‘j = S;' U Sj for all (a:i,a:j) € S-,; X Sj, i #]

Then, the hyperstructure (5, ®), called an S-construction, is an H,-group.

" Let {Si}ie; be a family of pairwise disjoint sets, where cardl > 1. On
S; we consider the total hyperoperation ab = S;, for all a,b € S; or the least
incidence hyperoperation ab = {a,b}, for all a,b € S5;. In each case, we
obtain the S-construction (S, ®).

In what follows, we consider the finite case. Let cardi=n and cardS;=s;,
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¢ € I and suppose that for each ¢ € I, S; is a group or a groupoid with the
associated set of fundamental maps @; # §. Let ©; be the set of fundamental
maps on S with respect to ®. We ontain

i<j

card© = 2 H(sé + 5;).

il
In the particular case when S; = {z;}, ¢ € I, the S-construction coincides
with the incidence operation and we obtain cardl = n, we have

card® = 2 . 2n-1),
Theorem 6.8.13. If each one of the following conditions is valid:
(1) S; is a group for alli € I;
(2) S; is a semigroup such that S? = S; for alli € I;

(3) Ewvery S; has a scalar element;
then every map S x S — 8 (z,y) = z € xy is onto.
Proof. Tt is clear. B

Theorem 6.8.14. For each one of the cases of Theorem 6.8.13, we have

i< 2
card® = (H (ni + nj)?iinj) .

hiel
Proof. 1t is clear. W

In the particular case when S; = {z;}, the S-construction concides with
the incidence operation and we obtain card® = 241,

Theorem 6.8.15. Every S-construction, where (S,-) is an Hy-semigroup
with a b-semigroup S;, is ©-WASS.

Proof. Suppose that the b-operation of (S;,-) is o. Consider the operation
® on S, where ® coincides with o on S; and

5;®s;=8;08 =s; for 8; €5, 5; €5; and i j.

The operation ® guarantees that © # @ and it is easy to check that it is
associative. B .



Chapter 7

Commutative rings obtained
from hyperrings

The commutativity of the addition in rings is connected to the existence of
the multiplication unit. If e is the unit in a ring then for all elements a,b

we have
(a+bllete)=(at+blet+(at+be=at+bta+d,

(a+b{et+e)=alet+e}+ble+e)=a+at+b+b
Soa+b+at+b=a+a+b+bwhence b+ a = a+b. Therefore, when we
consider a hyperring (R, +,-), the hyperoperation (+) is not commutative
and there is not a multiplication unit. So the commutativity, as well as the
existence of the unit, it is not assumed in the fundamental ring. Of course,
we know there exist many rings without unit. Sometimes, we need that the
fundamental ring is commutative with respect to both sum and product,
that is, the fundamental ring is an ordinary commutative ring. We use
the results obtained by B. Davvaz, T. Vougiouklis, S.M. Anvariyeh and S.
Mirvakili [5, 41, 87, 88).

7.1 a*-relations

We begin this paragraph with the following definition:
Definition 7.1.1. Let R be a hyperring. We define the relation a as
follows:

245
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ray < IneN, k,.. k) €N Joes, and [Hzi,...,zi,) € B%,
do; € 8, (i =1, ...,n)] such that

n k; n
= Z (H .Tij) and y€ ZAa(i)a

i=1 \j=1 i=1

k:
where 4; = H Tigy()-
j=1
The relation o is reflexive and symmetric. Let o* be the transitive
closure of @. Then

Lemma 7.1.2. o® is a strongly regular relation both on (R,+) and on

(R,-).

Proof. Clearly o is an equivalence relation. In order to prove that it is
strongly regular, it is enough to show that

z+aqyta, a+raa+y,

ra = = =
Y {.’C-aay~a, a-rea-y,

for every a € R. If zay, then 3n € N, 3(k;,...,k,) € N*, Jo € §, and
[FHza1, ... Tk, ) € B¥, Jo; € 8, (i = 1,...,n)] such that

ka(a)

. K kg’ n
zey. (H xij) and y € Z 11 zotous r
i=1 \j=1 i=1 \ j=1

and so

ka (i)
2

n k; n
z+al (Z (H Sﬂfj)) +a and y+aC Z H Lo (i), (1) +a.
j=1

==l \j=1 i=1

Now, let kpy1 = 1, Tny1 1 = @, Opq1 = id and 7 be the permutation of S,
such that

i} =0(i) Vi=1,...,n and 7(n+1)=n+1.
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Thus
n+l [/ Ky ntl ke
r+al Z (H xij) and y+aC Z H To(i)o, ()
i—1 =1 i=1 j=1

Therefore for all u € z+a and v € y + a, we have uav. Thus z+a @ y +a.
In the same way we can show that a + z @ a + y. It is easy to see that

:c-l—a?y—l—a and a—i—:cﬁa-%y.

Now, notice that

n ki . n ko(i)
z-aC (Z (H :t:,-j)) ca and y-aC H Lo (i) p () - Q.
\i=1 \j=1 i=1 \ j=1

which yields that

ko (s)

n ki n
T aC Z ((H .?L',jj) ' {l) and y-a C Z H ma(i)go(i)(j) -
=1 j=1 i=1 j=I

Weset ki =k, + 1, Ty = a and we define

m(r)=o;(ry (Vr=1,.. k) and 7(k;+1) =k +1.
Hence 7 € Sy, (i = 1,...,n). Thus
n ko)

. k; n |
r-aC Z H Tij and y-aC Z H Lo (i) 15009
i=1 \ j=1 i=1 \ j=1

Therefore for all w € z-a and v € y - a, we have uov. Thus m-a;x“_"-;y-a
anda-za*a-y. M

Theorem 7.1.3. The gquotient R/a* 1s a commutative ring.
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Proof. We define & and ® on R/a* in the usual manner:

o*(a) @ a*(b) = {a*(c) | c € a*(a) + a*(b)}],
a*(a) ® o*{b) = {a*(d) | d € a*(a) - a*(b)}.

Let a’a*a and ¥a*b. Then we have

data <= Jai,...,0p41, =0, Gpy=a such that a,0a.41 (r=1,..,p),
ba*h <= b, '.'-;bq+1) by = b", bq-{-l = b such that bsabsH (S =1,.., q),

and so
Qr & Qryy < aanN: a(kv"la reny krnr)GNnra do € Snr and [a(xrila "',mf‘ikri)eeri’
30,4 € Sk, (i =1,...,n,)] such that

fr ki Kro(i)
ar € Z (H x‘"ij) »oand gy € Z H Tro(i)ows(i) |
1

i=1 \j=I

b, o bs+1 <= dm, €N, H(tsla ey tsms)ENmsa EITESms and [3(951‘1: ey ysit,,-)ERtSia
A7, € 8y, (1 =1,...,m,)] such that

s toi s"(.‘
b, € Z (H ym-j) and by € 2 H Ysr(i)7er (s (9)

Therefore, we obtain -

a, + by C Z (H :.cm) + i (ﬁ ym) ,

i=l1 \j=1

| Ty ki my t1;
ary1+b C Z (H Tra z)cm(a)) + Z (H Jhﬁ) '

i=1 \j=1 i=
and

Nr kra(z] Mga tai
i1 + b Y | T Srotvorin | + D (H ym-) ’
i=1 = =1 \Jg=1
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Ty kro(z‘} Mg tsr(i)
Op+1 + b‘9+1 g Z 1__[ xro(i)oro(i)(j) + Z H y"T(i)Tsf{i)(j)
’ i=1 J=1 =1 i=1 '

Now, we choose the elements ¢y, ..., ¢,+q such that

¢ €ar+ b (T' =1, ---ap)a
Cpts € Gpy1 +bey1 (5=1,...,9),

and using the above inclusions we get c,ac,.;. Therefore, every element
¢y € a1+b;=a'+b' is a*-equivalent to every element ¢piq € Gpyy +hg1=a-+b.
Therefore,

a*(a) @ a*(b) = a*(c), Ve € a*(a)+ a*(b).
In a similar way, it is proved that

a*(a) @ (b)) = a"(d), Vd€o’(a) o (b).

The associativity and distributivity on R guarantee that the associativi-
ty and distributivity are valid for R/a*. Suppose that o is the permuta-
tion of Sy such that ¢(1) = 2. For every ¢ € 1 -+ 23, a € 1 - T2 and
Y € Loy + Togz), b € Toqy - To), We have zay and acab. Thus za™y and
ao*h, and so

a*(z1) ® a*(12) = a*(z) = *(22) B &’ (1),
o*(z1) ® o (22) = *(a) = a*{(22) ® a*(z1).
Therefore R/a* is a commutative ring. B

Notice that we use the Greek letter o for the relation studied in this
paragraph, because a corresponds to the letter “a” from abelian.

Theorem 7.1.4. The relation o* is the smallest equivalence relation such
that the quotient R/a* is a commutative ring.

Proof. Let 8 be an equivalence relation such that R/# is a commutative
ring and let ¢ : R — R/ be the canonical projection. If zay then there
exist n € N, (ki, ..., k,) € N*, o € S, and there exist (i, ..., Zi,) € B* and
0; € 8, {1 =1,...,n) such that

n ko (i)

n ki
r e Z (H xij) and y € Z H To(i)ogmy(@) |
i=1 \j=1 je=1

i=1
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whence

n kg(() .
To(ioei ()
]

n ki
¢(“)"—‘®Z(®H“’ﬂ) and ()=o) [&]]

j=1 s=1 i=1

By the commutativity of R/f, it follows that ¢(z) = ¢(y}. Thus zay implies
that zfy. Finally, let za*y. Since € is transitive, we obtain

T €a'(y) = z€by).

Therefore o* C 8. W

Let (R,+,-} be a hypérring. Then we define the relations " and ", on
R as follows:

™ i
Iy < 3n €N, J(z,....,2,) € R*, do €8, : :r:EHzi, yGHz,,(i),

i=] =1

m m
$P+y < dme€ N, E(yla ---:ym) € Rm’ dre Sm: T € Zyi) yE Zy'r(i)-
=1 =1

We denote the transitive closures of T and T, by I and I, respec-
tively. The equivalence relation I'™ was introduced on hypergroups and
semi-hypergroups by Freni [51]. We have I'" UT C o*.

Theorem 7.1.5. For all additive hyperrings we have o* =T% .

Proof. In an additive hyperring R, every product of elements of R is a
singleton. Thus, for every .

ki .
we can consider the elements ¢; = H;c,;j (¢ =1,..,n) of R, for which we
=1

have A = Z Y. This means that aa*b if and only if aI% 5. W

i=1
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Since the Krasner hyperring is an additive hyperring, it follows that
the above theorem can be applied to those hyperrings.

Let (R,+,-) be a hyperring. We can consider the additive hyperring
(R/T*, W, ®), where

I*(a) W () = {T*(c) | ¢ € T*(a) + *(b)},
I*(a) ®T*(b) = I*(d) for all d € I'*{a} - T*(b).

Theorem 7.1.6. Let (R,+,-) be a hyperring. Then
Rjo® = (R/TY)/T,.

Proof. Let ¢ : R — (R/I*)/T¢, be the canonical projection. We denote
by @ the equivalence relation associated to y. For every a € R we have
a*(a) C 6(a). On the other hand, since I'*(z) C a*(z) for all z € R, we

have
U Te= U rec U o@=aw

I (z)el™ (z)wl™ (y) zel* @)+ (y) zea* (z)-+a (y)

for all w € z + y. Consequently, we get

U I'(z) C a*{w), where w € Z:c,-,.
zE f:l"*(m,-) ' ’ i=1
i=1
Moreover, since o* is transitive, we have
fa) = 7 U I™(z) Ca*{a) foralla € R.
{z|T*(2) T F*(a}}
Therefore 6 = o*. ®

Lemma 7.1.7. Let Ry and Ry be two hyperrings, a,c € Ry, b,d € K» and
g € 8,. Then

20!

n
a b e Z (H ng,yf,g ) alld C d) S Z H .’L‘T(Z Vo () Yo (i ))

i=1
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if and only if

ki 7(i)
ac Z (H :E,J) , CE&E Z (H xr(z)a.f(,)(_;c}

i=1 F=1

and
kri)

n ki
be Z (H yij) , d€ Z H Yr(iyorn@ | >
i=1 \j=1

i=1 F=1
for some x; € Ry, yi; € Ra.
Corollary 7.1.8. Let Ry and Ry be two hyperrings, of,, o, and ok g,
be o*-relations on Ry, Ry and R; X Ry respectively. Then

(a,b) ag, «r, {c,d) if and only if a o} ¢ and bap, d

Theorem 7.1.9. Let Ry and Ry be two hyperrings, oy , ok, and of g,
be o*-relations on Ry, Ry and Ry X R respectively. Then

(Rl X RZ)/a;thz = Rl/a}h X Rz/a;‘:?'

Proof. We define the map £ : (R, X Ry)/ag, w5, — Ri/of, x Rafap, by

g(a*Rl XRz)(aﬁ b) = (a*R]_ (G‘)J a?{g (b))
By Lemma 7.1.7 and Corollary 7.1.8, it is not difficult to see that £ is an
isomorphism. &

Let ¢ : R — R/a. be the canonical projection and let D(R be the
kernelof ¢. If we denote the zero element of R/a” by 0, then D(R ~1(0).

Lemma 7.1.10. Let R be a hyperring. Then
R-D(R)C D(R) and D(R)- R < D(R).

Proof. For all a € R - D(R) there exist » € R and

z € D(R) such that
a€rz. Soa*(a) =o*rz) =a*(r)@a™(z) =a*(r)®0=0

(
..
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Lemma 7.1.11. If R is a Krasner hyperring, then
a*(0)=0 and o*(—z)=—o'(z)foralz€R.

Proof. 1t is straightforward.

Theorem 7.1.12. If R is a Krasner hyperring, then D(R) is o hyperideal
of R.

Proof. We have 0 € D(R). Let z,y € D(R). Then for every z € z t+ y,
we have o*(z) = o*(z) & o*(y) = D(R) @ D(R) = D(R} which yields that
z € D(R), and so z+y € D(H). On the other hand, since x € D(R), then
there exists —z € Rsuch that 0 €z —z. So - ,

D(R) = o*(0) = a*(z — &) = o*(¢) § o’ (~7) = D(R) @ &*(~z) = o’ (~z),

and hence —z € D(R). &

Let (H,o) be a hypergroupoid. The hyperoperation (o) is called weak
commutative if
roynyoxz#0 forallz,y € H.
We denote the weak commutativity by COW.
A COW hyperring (R, +,-) is a hyperring for which both (+)} and ()
are weak commutative.

Theorem 7.1.13. If R is a COW hyperring, then o* = ™.

Proof By definition, +* is the smallest equivalence relation such that R/~*
is a (fundamental) ring. Since R is a COW hyperring, we have

(z+y)N{y+2z)#0® and z-yNy-z#0 forallz,y € K.

Therefore, there exist a € (z+y) N (y+ z) and b € z-y Ny -z which yield
that

v(a) =7 (z) ® 7' (v) = 7" (v) @ 7*(2),

v(b) =1z} @y (y) =7 (v) O (2),
that is R/v* is a commutative ring. Since v C «, we obtain v* C o™
Moreover, o* is the smallest equivalence relation on R such that R/o* is a
commutative ring, hence v* = a*. B
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Corollary 7.1.14. Let R be a Krasner hyperring. If R is commutative or
if it has a unit, then ¥v* = o*.

Theorem 7.1.15. Let R be a commutative ring and (A, ¥, ®) be a (H, R)-

hyperring with the support A = U Sy, Then
reR

Afa* 2 R.

Proof. Let a € A. Then there exists ¢ € R such that a € §,. Suppose that
z € a*(a). Then

!
Jday, ..., Gpt1, @1 = @', Gpy1 = @ such that a.ee. (r=1,..,p),

and so In, € N, Ik, ..., ken, ) € N*, o € S, and [HTpir, -, Trity,) € B,
3oy € S, (1 =1,...,n,}] such that

kro'(i)

Ty ki C N |
Gr € Zl: (11 xrij) , and a,4; € Z H Tra(i)a,eeyd) |
- = g=1

=1

From the definition of the hyperoperations @ and © it follows that for ali
r =1,...,p, there exist an appropriate ¢, € R and 7 € 5, such that

e [ s nr kot
> (H a:m-) €S and D | JT 2w | € Seen-
i=1 \ j=1

i=1 \j=1

Since R is commutative we get S;, = Sy, and 80 @, € S, NS,
Consequently, S, = S, (i=1,...,p— 1). Therefore a*(a) C S..
Now, we show that a*(a) = S.. Let 2 € S,.

If c ¢ R\ {0}, then we consider y € H, u € S, for which we have
{z,a} Cydu= S, and so z € o*{a}.

If ¢ = 0, then we consider i € R\ {0} and y € S;, v € §_;, and we
obtain {z,a} C y @ u = H, that is, z € a*(a).
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The map 9 : A/a* — R, where S, — c is an isomorphism. W

Let us denote the kernel of the canonical map ¢4 : A — A/a* by D{A).
According to the previous theorem, for all ¢ € R and z € S, the equality
a*(z) = S. holds and hence A/a* = {¢a(S.) | ¢ € R}. Consequently
D(A)=H.

Theorem 7.1.16. Let Ry, Ry be two commutative ring. We consider the
(Hy, Ry)-hyperring (A1, %1, @) and the (Hy, Ry)-hyperring (As, Wy, ©2) with
the supports A; = U S, and Ay = U Ty. If(: Ay — Ay is an inclusion

ceER; deRa
homomorphism, then

(1) C(od(x)) C 04(C(x)) for all z € Ay.

(2) We can define the (-induced homomorphism. (* : Aj/of — Ag/od
of ¢ by
CH(Pany(e)) = ¢4, ((2))-

(3) ((H1) C Ha.

Proof. Tt is straightforward. ®
Corollary 7.1.17. If A} = A, then H) = Hy and Ry & Rs.

Let (R,+,) be an H,ring. For n € N and (kq,...,k,) € N" and
(Ti1, ., Tig,) € B* (i = 1,..,n)}, we define the set Uiy lTits s D]
as follows:

For 1 <i < n, we can define a k-ary hyperproduct, induced by (-} by
inserting k; — 2 parentheses in the sequence of elements x;, ..., Ti;. Let us
denote such a pattern of k;_y parentheses by p;(z;1, ..., Zir, ) and then we set

Pk, = {pi(Zict1)s - Tiotr)) | @ € Sk, }-
For example, if k; = 3, then we obtain
Fis= {S'Jn : (3%2 - Tig), T - (3553 : $i2)y Tiz - (Ta '$::3), Tip -+ (-’L‘i3 : I:il):

T3 - (SEﬂ '$i2)a Xi3 - (Ew : Sﬂﬂ), (3:1'.1 ’ 5%2) - I3, (331'2 : 5?:'1) + Ti3,
(21~ Tig) - Tia, (Tis - Tir) * Tigy (Tin - Tiz) - Taa, (Tiz - Tz} Tar }-
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Let X; € P, (i =1,...,n). Similarly, we can define an n-ary hypersum can
be defined induced by (4) by inserting n — 2 parentheses in the sequence
of Xy, ..., X, in a standard position. Let us denote such a pattern of n — 2
parentheses by ¢(X1,...X,). Then

Ul o Tits o Tin] = {a(@rqys s Xomy) | Xi € Pigs T € S,
g(Xy, ..., X,) is a pattern}.

Definition 7.1.18. We define the relation oy, x,,.. k) as follows:

T (k. )y > ATi1, ., Tir,) € R¥ (i =1,...,n) and
dA4,B € Z»{-’f(khm,ki)[m“, ..y T, such that z € A, y € B,

3

Now, we define .
&= U Qo (k1. kn)

n,k:1,...,k:n
and let o* be the transitive closure of a.

Lemma 7.1.19. Let (B, +,-) be an H,-ring. Then o* is a strongly regular
relation both on (R,+) and on (R,).

Theorem 7.1.20. Let (R,+,-) be an H,-ring. Then the quotient R/a* is
a commutative Ting.

Proof. The proof is similar to the proof of Theorem 7.1.3. m

Theorem 7.1.21. Let (R,+,-) be an H,-ring. Then the relation o* is the
smallest equivalence relation such that the quotient R/a* is a commutative
ring.

Proof. The proof is similar to the proof of Theorem 7.1.4. ®

7.2 Transitivity conditions of «

In this section, we state the conditions that are equivalent to the transitivity
of the relation a and we characterized the complete hyperring.
If R is a hyperring, then we set:

ap = {(z,z)|z € R}
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and, for every integer n > 1, a,, is the relation defined as follows:

Ta,y < ki k.. kn) € §°, Jo €8, and [I(zs1, ..., Tix,) € R™,
Jo; € Sk, (i = 1,...,n)] such that

. . n ky n
:?:EZ(H:EU) and yEZA‘,(,;),

i=1 \j=1 i=1

ks
where A, = H Tioy(5)-
Obviously, for every n > 1, the relation @, are symmetric, and the
relation o = |, o, is reflexive and symmetric. Let o* be the transitive

closure of a. Then
e o is a strongly regular relation both on (R,+) and on (R, -).
e The quotient R/a* is a commutative ring.

e The relation o is the smallest equivalence relation such that the quo-
tient R/ is a commutative ring.

Lemma 7.2.1. If R is a hyperring and n > 1 then a, C apy.

Proof. If x o,y then 3(ky, ks, ..., ky)EN", 3o € S, and [F(za, ..., Tix, ) ER™,
Jo; € Sk, (i = 1,...,n)] such that

n k; n
e ([zi) and ved A,
i=1

i=l j=1

ki
where A; = H Tig, (5)-
j=1
Tnk, ER and since (R,+) is a hypergroup, it follows that there exist
t,s€R such that zp,, =t +s. Set z; =2y, i = 1,..,n—1, 5 =1,..k,
Fpg =kn, ki =k, i=1,..,n, 00, = Tng, § = 1,k — 1, Tpy; = Tnj,
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s ! _ ' _ P ro_
t= Lok — 1 2, = 4 Tgip, = S 0 = (n,a+ o, 0] = oy,

i=1,..,n, 0}y = On. S50

n+1 k; n+l

T € Z H:c;] and y € ZALJ(I-),
i=1 \ j=1 i=1
ki .
where A; = H:r;a;(j). Therefore z a7 y. W
j=1

Lemma 7.2.2. Ifz o, y then for everya € R, z+a &, y+a and za &, yo
Proof. It is straightforward. m

Now, we determine some necessary and sufficient conditions so that the
relation « is transitive. First, we define the notion of an a-part.

Definition 7.2.3. Let M be a nonempty subset of a hyperring R. We
say that M is an a-part if for every n € N, ¢ = 1,2,...,n, Yk; € N,
V{zi1, ziz, ., 2k, ) € R¥, Vo € §,,,Y0; € §,, we have

n ks n
> (Hza) (M#A0=> AuC M
=1 i=1

ki
where A; = H Zigy(5)-

i=1 _
Proposition 7.2.4. Let M be a nonempty subset of a hyperring R. The
following conditions are equivalent:

(1) M is a a-part of R;
(2) xéM,mayéyeM;
B)rzeMzoaty=>ye M

Proof. (1=2): If (x,y) € R? is a pair such that z € M and = o y, then
In € N, 3(ky,.... k) € N*, 3o € 8, and [F(2i, ..., 2,) € B¥, Jo; € Sk,
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n ks n
(i = 1,...,n)] such that z € Z (H z,;j) ﬂM and y € ZA"{") where
. i=1

i=1 \j=1
ky n

A,;:H Zig,(j)- Since M is a o-part of R, we have ZAG(,-)QM and yeM.
i=1 i=1 :
(2=3): Let {(z,y) € R* be such that z € M and z o* y. Obviously,

there exist m € N and (z = wg, Wi, ..., Wn_1, Wm = y) € B™ such that

=Wy 0 Wy A Wy @ Wy, = Y. Since x € M, we obtain y € M, by

applying (2) m times.

n k; n ki
(3 =1): Let z (H zij) ﬂM #0,and z € Z (H Zij) ﬂM. For
i=1 \j=1 i=1 \j=1

every ¢ € S, and every o; € S, ¢ = 1,2,...,n and for every y € E Aqi)
i=1
ki

where A; = H Zigy(5)» We have zay. Thus ¢ € M and zo*y. Finally, by (3),
j=1

. n . ks
we obtain ¢y € M, where ZA"(“') C M and A; = H Zigy(5)- A
i=1 j:l

Before proving the next theorem, we introduce the following notations.
For every element z of a hyperrring R, set:

(1% kb = {(Zi1s Tizs oo, Tig,) € RFJi = 1,2..,,n}

n ki
To(z) = {[mlﬂ,,k, ..... ko | T E Z (H%)}

i=1 \Jj=1
ki3

Ky
Pn(.’,ﬂ) = U {Z ( :CU'("-)U:,({)(J")) | o€ 8§y, 0y € Ski’ [:‘U]21,k2,..-,kn S Tn(.’f)}
j=1

P) = | Pulo)

From the above notations and definitions, we obtain:
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Lemma 7.2.5. For everyx € R, Plz)={y e R|z a y}.
Proof. For every pair (x,y) of elements of R we have:

ray <— dne N, a(kla sery k’n‘l) € Nny do € Sn[a(zila ---}ziki) € Rkia 30@' € Sk“

n ks n k;
(2=1, caey n)] : .'EEZ (H 33{;') IS ZAQ(Q where A1=H Ziz; ()
i=1 \j=1

i=1 i=1
<= dneN:ye€ Pz

< yePlz) m y

L'
Theorem 7.2.6. Let R be a hyperring. Then the following conditions are
equivalent: :

(1) «a is transitive;
(2) for every z € R,a*(z) = P(zx);
(3} for every z € R, P(x) is an a-part of R.

Proof. (1==2): By Lemma 7.2.5, for every pair (z,y) of elements of R we
have:

y € a'(z) = za'y <= zay < y € P(z).

(2==3): If M is a nonempty subset of R, then M is an a-part of R
if and only if it is a union of equivalence classes modulo a*. Particularly,
every equivalence class modulo o* is an a-part.

(3==>1): Hzayand y oz, then 3(n,m) e NxN, I [z]}, .. . € T,(z),
3 [y}}c’i,kép__,k% €Tn(y), 3o €S, and 37 €8y, oy €8, (i=1,...,n)] and
47 €8, (i=1,..,m)]such that

n kg n m k; m
T e Z (H .I';;j) , Y = ZAG@) M Z (H yij) and z € ZBT@)
=1 \j=1 i=1 i=1 \j=1 i

=1
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ki K
where A; = H:ﬂw,-(j) and B; = Hym(j)- Since P(z) is an a-part of R, we
J=1 F=1
have:
= ki . n m ki
.Z‘EZ (Hmii) ﬂp(l') = ZAU(i} C P(z) = yez Hyi-?" ﬂP(:}:)
= =1 i=1 \j=1

=>ZBT(i)§P($)==>zEP(m)=>EIkEN cz€ P(z)=zaz

i=1
Therefore o is transitive. i

Definition 7.2.7. A hyperring R is said n-complete if V(k1,..., k) € N,
V(Zijy .o Tin;) € R¥ we have

v (Enj (Iill ij

i=1 \j

)i

i=1 j=1

Definition 7.2.8. A hyperring R is said a,-complete if ¥(ky, ..., kn) € N?,
Y(Zijy ey Tik,) € R¥, Vo € Sy, Vo, € S, £ = 1,...,n we have

n ki n
x (Z ( Eij)) = ZAa(i];
=1 \j=l1 i=1

Ky
where Ai = H Tioy(§)-

i=1
Corollary 7.2.9. If R is a commutative hyperring then R is an a,-complete
hyperring if and only if R is an n-complete hyperring .

Proof. Since R is a commutative hyperring then we have ' =a. &

Proposition 7.2.10. A hyperring R is «,-complete if and only if
V(ky, ..., k) EN", V(zij, .y Tit,) € R¥ Vo € 8,,V0; € 8,0 =1,...,n and for
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' n ks n ki
every x € Z (H sc,:j) , we hove a(z) = ZA"(")’ where A; = H:n,-f,,.(j).
i=1 \gy=i j=1

i=1

. n ki
Proof . Suppose that R is a,-complete. From z € Z (H m,;j) it follows

=1 \j=t

that

n k; n
a(z) C U aft) = « (Z (H wij)) = ZAo(i):
. ) i=1

k; == =
ted i (TL, »e =1 \j=1

and so a(z) C ZAU(‘*')'

i=1
n
Now, ify € Z Aoy, then

i=1

Tany = zoy = y € az),

T mn
whence Z Agiy € alz). Hence a(z) = Z Ay
i=1 i=1

~ Conversely, for every {(k,..., ka)EN", (24, ..., Tir,)ER™, 0€8,,, 0,68 ],

n ki n
and for all z € Z (H mz-j) we have a{x) = Z Ag). Hence

=1 \j=1 i=1

o (i (ﬁ zij)) - n U afz) = ZAU(::)-

i=1 \j=1 "
TE Y, ( Hmij)

i=1\ j=1

Therefore R is ay-complete. m
Proposition 7.2.11. If R is an a,-complete hyperring then a = ay.

Proof . Tt is suffices to prove that o C a,. Suppose that zay. Thus Im € N
such that zan,y. If m < n then by Lemma 7.2.1, we have a,, C a,. If
m > n then [3(ky, ..., k) € N*, (zg,...,Tix,) € R%,0 € 8,0, € S| such
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™m k; m k;
that z € Z (H mij) and y € Z Aq(iy, where A; = H Tig,(7y). It follows

i=1 \j=1 =1 i=1
that there exists s € I such that

m ki n—1 k;
se Z (Hmij) and z € Z (Hmij) + 3.
i=n \j=1

i=1l \j=1

n k;
We set Zij = .'Eij,i = 1, ey 12— 1,kn = 1,ann =gs. Hence z € Z (Hzij).

=1 \j=1
By Proposition 7.2.10, for every ¢ € S,,0; € S, = 1,...,n), we have

n ki
yEofzr)= Z Agqy where A; = H.Z't‘oi(j). Hence ro,y. B

i=] 4=1
Proposition 7.2.12. If R is an ay,-complete hyperring then for all
"

[(k1y ... kn)EN, (Tif, ..., Zqr,) € RM,0 € S,,05 € S}, ZA"“) is an
i=1

ks
a-part of R, where A; = Hﬂfz‘a,-(j))-

=1

Proof. We set M = ZAg(iJ. Consider m € N, (k{,...,k},) € N™ and
i=1
ki

(Yigs s Vi) € R* such that Z Hyﬁ-j ﬂM # §. Then there exists

i=1 \ j=1

m [ K %
ac Z Hyz-j ﬂ MU A = Hy"f’i(ﬁ’ then for every o' € Sy, 0; € S
=1 \j=I =1

. m
and for every y € Z Ay, we have a Qm ¥, 50 ¥ € ay(a). By Proposition

i=1

i m kO3
7.2.11, we have y € a(a) =2Ao(i):M: thus Z A;*(i) < EAU(*&):M' n

i=1 1=1 i=1
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7.3 Applications of the ao*-relation
to Krasner hyperrings

Let (R, +,-) be a Krasner hyperring. We can define the relation I as follows:
al'b if and only if {a,b} C u, where u is a finite sum of finite products of
elements of R. The relation v* is the transitive closure of . The operations
& and © are defined on R/v* as follows:

v (@) @7 (b) = v*(c} for all ¢ € v*(a) + (b},
7"(@) © 7" (b) = 7"(ab).

Also, we can define the relation 7 as the smallest equivalence relation such
that the quotient R/} is a group. Let us consider the following relation
on R.

a3.b if and only if there exists (ci, ..., c,)€R" such that {a,b}Cc1+...4+¢cp.

It is clear that 37 = ;. We define the relation a* as the smallest equiva-
lence relation on R such that the quotient R/a*, the set of all equivalence
classes, is a commutative ring. R/a* is called a commutative fundamental
ring. Suppose that o*(a) is the equivalence class of a € E. Then both the
sum W and the product ® are defined in R/a* as follows:

a*(a) W a*(b) = a*(c) forall c€ a*(a)+ a*(b),
o*(a) ® a*(b) = a*(ab).

Recall that the relation o is the following one.
zoy <= 3In €N, ki, ..., k) €N, Jo €58,, Iziy,...,T,) € R* and
do; € 8k, (i = 1,...,n) such that

n ky n
T € Z (Hmi_j) and y € ZA"(‘-")’

i=} \j=1 i=1

ki

where 4; = H Tioy(j)- Also, we can define the relation I' as the smallest
j=1

equivalence relation such that the quotient K/I" is an abelian group. Since
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all Krasner hyperrings are additive, we have I = 8}. The relational no-
tation A =~ B is used to assert that the sets A and B have an element in
common, that is, AN B # §.

Theorem 7.3.1. If (R,+,") is a Krasner hyperring and (R,-) is commu-
tative then we have o* =17 - '

Proof. Every product of elements of R is a singleton in a Krasner hyperring.

n k; k;
Thus, for every A = Z (H :c,-j) we can consider the elements y; = H Tij
i=1

i=1 \j=I

, : n
(i=1,...,n) of R, for which we have 4 = Z ¥ Since the semigroup (R, )

: i=1
is commutative, this means that e if and only if al'; 0. B

Recall that ¢ : R — R/I™ and ¢ : R — R/« be the canonical pro-
jections.

Lemma 7.3.2.The following assertions hold:
(1) wr = ¢ 1 (Og/r-) and D(R) = ¢ (Opjar),
(2) T*(—z) = ~T*(z) and o*(—z) = —a*(z) for all z € R,
(3) T*(0) = Ogyr- and o*(~z) = Og/a--

Proof. 1t is straightforward. m

The next lemma and theorem follow from Lemma 7.1.10 and Theorem
7.1.12.

Lemma 7.3.3. Let R be a Krasner hyperring. Then
R-D(R)C D(R) and D(R)-R C D(R).

Theorem 7.3.4. If R is ¢ Krasner hyperring, then D(R) is a hyperideal
of K.

Theorem 7.3.5. If R is a Krasner hyperring, then D(R) is a normal
hyperideal of R.
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Proof. If y € 2+ D(R)—z then there exists a € D(R) such that y € 2+a—z,

thus 6(y) = 9(a-+a—z) = (&)+6(2)+6(~z) = $(x)+0n/e—4(z) = Oga-
Therefore, we have y € ¢ (0g/or) = D(R). W

Recall that if A is a normal hyperideal of a hyperring, then the relation

A* is defined as follows: ¢ = y(modA) if and only if (z —y) N A # 0 (see
Definition 3.2.7). :

Theorem 7.3.6. If R is a Krasner hyperring and A = D(R) then we have
A* = o™

Proof. Let xA*y. Thus there exists + € A = D(R) such that'z € 2—y and so
a*(z —y) = a*(z) = Op/o+. Hence a*(z) = o*(y) and = o* y, thus A* C o*.
For converse if o*(x) = a*(y) then a*(z—y) = Ogrjo-. So 2~y C D(R) = A,
and therefore z A* y. Thus A* =o*. W

Theorem 7.3.7. If R is a Krasner hyperring and B = wg then we have
(1) B is a normal hyperideal of R,
(2) the equivalence relation B* is equal to the fundamental relation +*.

Recall that if A is a normal hyperideal of a hyperring R, then [R: A*] =
{A*(z) | z € R} is a hyperring.

Remark 7.3.8. If A= D(R) then [R: A*] = R/a" and so [R: A"] is a
commutative ring. If B = wg then [R: B*] = B/v* and [R: B*] is a ring,.

Theorem 7.3.9. Let R be a Krasner hyperring. Then I = D(R)/v* is an
tdeal of the ring S = R/v* and we have S/I & R/a*. '

Proof. Set A=D(R) and B=wp. By Remark 7.3.8, we have [R : B*]=R/~*,
[R: A*]=R/a* and [D(R) : B*|=D(R)/~*. Now, by the third isomorphism
theorem, [A : B*] is a normal hyperideal of [R : B*] and [[R: B*] : [A: B*]]
= [R: A*. But [R: B*] = R/v* is aring and so [4: B*] = D(R)/v* is an
ideal of R/~*. Therefore [R/v*: D(R)/v"] = R/a*. R

The following results are obtained from Lemma 7.1.7, Cofollary 7.1.8
and Theorem 7.1.9.

Lemma 7.3.10. Let Ry and Ry be two Krasner hyperrings, a,c € Ry,
bde Ry and o0 €8,,. Then
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n by n Ers)
(a,b) €Y ( (xij,yij)) and (c,d) € > | [1(@-twore ) ¥rton )
i=1 =t \ j=1

i=1

if and only if

n f Fr

n ki .
a e Z (H xij) y CE Z H Lr(i)o, 4y {4)
=1 \yc1 j-1

=1

and .
n L

ki n
b€ Z (H yt‘a’) , d€ Z H Yr(ior () | -
Jj=1 i=1 \ j=1

i=1
for some z;; € By, yi; € Ra.

Corollary 7.3.11. Let R, end Ry be two Krasner hyperrings, o, o,
and ag, y g, be *-relations on Ry, Ry, and Ry X Ry respectively. Then

a,b) ot ¢,d) if and only if e o}, ¢ and b aj, d.
RixRp Ry Ra

Theorem 7.3.12. Let Ry and R, be two Krasner hyperrings, o, , ok,
and o}, , 5, be o*-relations on Ry, Ry and Ry X Ry respectively. Then

(Ry X Ra)/og, g, ® Bafaf, x Rafag,
Lemma 7.3.13. If A, B are normal hyperideals of Ity, Ry respectively, then
[(R1 % Ra): (A X BY| = [R: A7 x [Rz: B7).

Proof. The proof is straightforward and we omit it. ®

Corollary 7.3.14. If A, B are normal hyperideals of Ry, Ry respectively,
and o}, a8 and o* are the fundamental eguivalence relations on [Ry @ A*],

[R2 : B*] and {(Ry x Rg) : (A x B)*| respectively, then
(R x Ry): (A x B)]/a* = [Ry: A*]/a] x [Ry : B*]/as.
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Proof. The proof is obtained directly from Theorem 7.3.12 and Lemma
7.3.13. m

Definition 7.3.15. Let f be a strong homomorphism from R; to Ry and
let af, a; be the fundamental relations on Ry, Ry respectively. We define

Ferf = {0i(2) | o € Ry, 0}(f(z)) = D(Ry)}.

Lemma 7.3.16. kerf is an ideal of the commutative fundamental ring
Rl / CL‘T .

Proof. Assume that of(z), a;(y) € kerf. Then for every z € x — y we have
ai(z) = aj(z) Wai(—y). On the other hand, we have

a(f(2)) = a3(f(x) + f(~v)) = a3((z)) W o3 (f(~v))
= a3(J{x)) ¥ (~a3(/(4))) = D(R2) ¥ D(Ry) = D(R)

Therefore o} (z) € ker f. Now, for a(r) € Ry/af and a}‘(ml) & kerf we have

ap(f{r-z))=a3(f(r) f(x))=a3(f(r))®a5(f(2))=a}(f(r})}® D(Rz)=D(Ry),
and so af(r) @ of(z) € kerf. Therefore, FerJ is an ideal of Ri/o*. m
Theorem 7.3.17. Let (R,+,-) be a Krasner hyperring such that (R,) be
commutative. Let A, B be two normal hyperideals of R with A C B and let
¢ : [R: A*) — [R: B*] be the canonical map. Suppose that oy, o are the
fundamental equivalence relations on [R: A*|, |R: B*] respectively. Then
([R: A"/ o)/ ker¢ = [R: BY]/aj.
Proof. We define the map
p:[R: A/ — [R: B)ja}
by
pray(A+z)— ag(B+z) (for all z € R).

We must check that p is well-defined, ie., if 2,y € R and o%(A + ) =
o (A -+ y) then aj(B + x) = aj(B + y). Using Theorem 7.3.1, we have
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oy = (I )4 and ap = (I ). Now, (Th)a(A+z) = (I} )a(A + y) if and
only if there exist (A + z1, A+ 29,..., A+ z,) € [R: A*]* and o € S, such

that A—i—:cEEBZA—{—xi andA+yeeaZA+xa(i). We have

i=1 i=1

t=1

@Zﬂ:A+mi={A+z|z€Zn:$,;}.
i=1

n
Therefore, we have A+x = A+ 2z and A+y = A+ 2, for some z; € Zm,-,

i=1
n

z9 € Zm,(i). So there exist ¢ € (z — 2z1) N A and b € (y — 2z2) N A,
i=1

whence € a + z; and y € b+ 2. Hence B+ xz € (B+a)® (B + 2z ) and
B+y€(B+b)&®(B+2). Sincea,be AC B, it follows that B+a = B,
B+b=B8B. SinceB@(B-l—zl):B—}-zl and B@(B+Zz)=B+22,We
have B4z = B+ 2z and B+ y = B + z;. Finally, from

13 n
B+21€{B+ZIZ€Z$¢} and B+ 2z € {B+z|z€2$a{i)},

i=1 i=1

we obtain

1=]

n n
B+ye {B+z|z€2%(n} E®Z(B+ma(i))'

i=1 fe=]

B+ze {B+z|zézwa}=®2(3+$i),
i=1

Therefore (I} }g(B + z) = (I'.)(B + ). This means that p is well-defined.
Moreover g is a strong homomorphism. Indeed, if z,y € K, then

plef(A+z)¥aj{A+y)) =plai(A+z+y))=ap(Btz+y)
=ay{(B+z)Wak(B+y)
= plaa(A+ 7)) ¥ p(a (A +y)),
plaj(A+z)@ai(A+y) = plai(A+zy)) = ap(B+zy)
=ap(B+z)@ag(B+y)
= play(A+2)) ® plai (A +y)),
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and p(D([R : A*])) = p(ai(4)) = a5(B) = D(|R : B*]). Clearly, p is onto.
Now, we show that kerp = ker¢. We have
kerp = {a3(A+3) | play(4+2)) = D(R: B}
= {a4(A+ ) | ap(B +z)=D([R: B’])}
= %A + ) | Th(¢(A + 2)) = D([R : B*))}

Finally, we apply the first isomorphism theorem. B

Theorem 7.3.18. Let R be a Krasner hyperring and ay, ..., G, b1, ..., by € R
m m
such that a; o b; for all j=1,..m. Then for all 3:6255@,- and for all y& Z‘S"bf

i=1 i=1
where §;¢{1,~1} (i={1,...,m}), we have z ay.

Proof. Suppose that a; o b; for all j = 1,...,m. Then there exist n; € N,

(ks1, .o Bin;) € N™ and (zﬁh , Zjik;;) € R¥% and there exist 0; € S,, and
0ji € S, when (i = 1,...,n;) such that
kjai) |
a; € Z H:cj,,l and b; € Z H Tio(i)osmm D | 3
f=1 =1 =1
Therefore
m m [ on f kg m ™ 7 Kot
2w (2 (Mew) | 20> {2 | I ewomnon | |-
3=1 j=1 \i=1 \I=1 j=1 d=1 \i=1 \ i=1

If we rename z;;;'s, then we conclude that there exists n,k; € Nand 7 €8,
and 7; € S, such that :

m n k; m . n
> e ¢ (H fcij) C2 S A,
. ; j=1 i=1

i=1 i=1 \j=1
k,’ m m
where'A,— = H Tig,(;), and so for all z € Z a; and for all y € Z b; we get
j=1 =1 j=1

z o y. Finally, note that if a; o b; then {(—a;) o (—8;). B
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Theorem 7.3.19. Let R be o Krasner hyperring. Then z,y € o*(0) if and
only if there exist A, A', B, B' C a*(z) for some z € R such that (x+ A} = B
and (y+ Ay~ B'.

Proof. Suppose that there exist A, A’ C o*(z) and B, B' € o*(—2z) for some
z € R such that (z+ A) = B and (y + A’) = B’. 'Then we have

(o*(z) @ {o*(a) | a € A}) ~ {o*(b) | b € B},
(") @ {a*(a) |a' € A}~ {o*(¥) | ¥ € B'}.

Therefore, we obtain a*(z)@0*(2) = «*(z) and o*(y) @’ (2) = a(2), which
imply that o*(z) = *(y) = a*(2) ® a*(—2z) = a*(0}. Hence z,y € o*(0).

For the converse, take A = A’ = B = B' = o*(0), then o*(0) € o*(0)
and {z} C o*(0) which imply that (z + o*(0)) C *(0) or (z + A) = A.
Similarly, we obtain (y + A) & A. This complete the proof. B

Ifren andaeRthenm=Za‘

i=1

Theorem 7.3.20. Let R be a finite Krasner hyperring. For every a € R,
there exist r,8 € N such that 0 < s <1, ra = sa and (r — s)a C o*(0).

Proof. Since R is finite it follows that there exist r, s€N such that 0 < s <r
and ra &~ sa. From ra = sa we obtain ¢(ra)=¢(sa), and so ra*(a)=sa*{(a).
Since ra*(a) and so*(a) are the elements of the commutative ring R/a*, we
obtain

(r - s)a"(a) = Ogjer = 0"(0)

which implies that ¢((r — s)a) = o*(0), and so {r — s)a C o*(0). B

Let M be a nonempty subset of a Krasner hyperring R. We say that M is
an a-part of R, if for every n€N, i=1,2, ...,n, VEEN, Y(zi1, 2i2, ..., Zi; ) ER™,
Vo €S, Yo; € Sg,, we have

n k n k;
Z (ﬂ Zij) ~ M= Z‘Ao{i) g M where Ai = Hzim(j}.
i=1

i=1 \j=1 j=1

Let A be a nonempty subset of R. The intersection of all a-parts of R
which contain A is called the a-closure of A4 in R. It will be denoted by
Co(A). We have
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(1) If A is an a-part of R then A+ B, B+ A, AB and BA are a-parts of

R for every B € P*(R).

(2) Let A € P*(R). Then Ais an a-part of Rif and only if A+ D(R) =

(3) If A€ P*(R), then D(R) + A = A+ D(R) = Ca(A).
(4) D(R) is an a-part of R.

Let R be a Krasner hyperring, X =< P*R ) ¥ > be the set of all
nonempty subsets of R endowed with the hyperoperation & defined as fol-

lows:

AYB={CeP*(R)|CC A+ B} forall (4, B) € P*(R)%.

Let Z(R) be the set of all hypersums of elements of R.

Theorem 7.3.21. If (R, +,-) is a Krasner hyperring, then < Z(R), &

18 a Krasner hyperring, too.

Proof. 1t is clear that & is associative. If E = {0}, then for all A €

we have AWE = FW A = A We define the function —I as follows:

n n

| —I: Z(R) — Z(R) ——~I(Z xz-) = Z(—xi).

i=1 i=1

> (R

Now, let X = Zm:x,-, Y= iyi and Z = iz,’ be elements of Z(R)

i=] i=1 i=1
such that X € YW Z. Let z € X and y € Y be arbitrary. Then there exists
z € Z such that x € y + 2. Indeed, if we suppose that for every z € Z we
have x € y+ z then {z} €Y & Z which i 1s a contradiction. From z € y + z,

we obtainy € z—2z, andsoy € Z :c,—{—z —z;) for every y € Y. Therefore

=1 i=1

Y e Xy —I(Z). Similarly, we obtaln Z € —I{Y)w X. Now, we prove that
m i
(Z(R), ) is a semigroup. Suppose that X = Za:i, Y = Z y;, we have

i=1 i=1

Xy = (zm;) - (zy) =3 ay e )

i=1 i=1 i=1
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and 0-X = X-0 = 0 The opera.tlon is d1str1but1ve over the hyperoperation
W, Indeed, if X = Z Zi, Y = Z y; and Z = Z z; are elements of Z(R)

i=1 i=1 i=1
then

X-Y+X-Z= Zvayt—kZmIZz, in (Zy,-l—Zz‘) =X -(Y+2Z2),

i=1 i=1 =1 i=1 i=1

whence X - Y WX -Z = X - (Y9 Z). Indeed, ifA eX -YWX Z then
ACX-Y+X -Z=X- (Y +Z). Hence there exists ' C Y + Z such that
A=X-C. We obtain C € YW Z whence A € X - (Y & Z). Conversely, if
A€ X - (Y9 Z) then there exists B € Y & Z, such that A = X - B. Hence
BCY+Zandso A=X(Y+2Z)=X-Y+X-Z whence A€ X-YWX.Z
Thus < Z(R),H:l,- > is a Krasner hyperring.

Corollary 7.3.22. If A is a subhyperring of R and A belongs to Z(R),
then A is contained in D(R).

The following example show that not all subhyperrings of a Krasner
hyperring R are in Z(R)

Example 7.3.23. Let (R, +, ) be a Krasner hyperring such that + is given
by the following table:

+la b c d
ala b c d
blb a c d
cle ¢ {abd} {cd}
did d {cd} {a,bc}

and the semigroup (A,-) has the following operation: z -y = a for all
z,y € R. It is clear that A = {a,b} is a subhyperring of R, but A ¢ Z(R)

Moreover D(R) = c+d+d=Re > (R).

If Ris a Krasner hyperring, we denote the set of all hypersums A of
elements of R such that C,(A4) = A by Z



274 Bijan Davvaz and Violeta Leoreanu-Fotea

Theorem 7.3.24. Let R be a Krasner hyperring and (x1,...,%,) € B* be
n

such that in S Z(R). Then there exists (y1,...,yn) € R"® such that
=1 Ca ,

Z-Ti"'zyi = D(R).
i=1

i=1

Proof. For 1<j<n, let a; be an element of D(R). Then there exists y,€R
such that a; € z; + y;. Since D(R) is an a-part, we have z; +y; C D(R).
Therefore '

n n—1

sty =DER)+Y zityn=Y @i+ D(R)+ &0+

$=1 i=1 i=1

n—1 n-—-1
=Y @+ DR)=DR)+)_ =,
. i=1 i=1

and so

n-2 n—2

Xn:l‘i + Yp + Yn1 = D(R) + ZJEi + Tpno1+ Yn—1 = D(R) + Z.’Ei.

i=1 i=1 i=1

L3 k)
Going on in the same way, one arrives to Z x; -I—Z y; = D(R)+z1 whence
i=1 i=2

finally

n T

Y zi+> wi=DR)+m+y=DR). w

i=1 i=1
Theorem 7.3.25. Let R be a Krasner hyperring. If R\D(R) is a hyper-
sum, then D(R) is also e hyper-sum.
Proof. Since D(R) is an o-part, so R\D(R) also is an a-part. Now, by
using Theorem 7.3.24, the proof is completed. B :



Chapter 8

Outline of applications
of algebraic hyperstructures

In [27], several of the numerous applications of hyperstructures are pre-
sented, especially those that were found and studied in the last fifteen years.
There are applications to the following subjects: geometry, hypergraphs, bi-
nary relations, lattices, fuzzy sets and rough sets, automata, cryptography,
median algebra, relation algebras, combinatorics, codes, artificial intelli-
gence and probabilities.

In this section, we intend to present some other recent applications of
hyperstructures in chemistry and physics.

8.1 Chemical hyperstructures

In this paragraph, we give some examples of hyﬁergroups associated with
chemistry. These chemical examples are connected to chain reactions and
were considered and analyzed by B. Davvaz and A. Dehghan-Nezhad
{see [37]).

Chain reactions

An atom of a group of atoms, possessing an odd (unpaired) electron, is
called a free radical. Several examples are the following ones:

Cl, CH;, CoHs.

275
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The chlorination of methane is an example of a chain reaction, a reaction
that involves a series of steps and each of them generates a reactive sub-
stance that leads to the next step. Even chain reactions may be widely
different in their details, they all have certain fundamental characteristics
in common.

(1) Cly — 201°
(1) is called a Chain-initiating step.

(2) Cl°+ CHy — HCl+ CHS
(3) CHS + Cly — CHsClL+ CI°

then (2), (3), (2), (3), etec; until the end.
(2) and (3) are called Chain-propagating steps.

4y Cle+Cle — Cly  or
(8) CHY+ CHS — CH3CH;  or

{(6) CHZ + Cl° — CH,3CL
{4), (5) and (6) are called Chain-terminating steps.

During the chain-initiating step, the energy is absorbed and a reactive
particie is generated. In the chiorination of methane, the chain-initiating
step is the cleavage of chlorine into atoms (step 1).

There are one or more chain-propagating steps and each of them con-
sumes a reactive particle and generates another one. In the present reaction,
the chain-propagating steps are the reaction of chlorine atoms with methane
(step 2), and of methyl radicals with chlorine (step 3).

Finally, there are chain-terminating steps, in which reactive particles
are consumed, but they are not generated new particles. In the present
reaction, the chain-terminating steps are the union of two of the reactive
particles, or the capture of one of them by the walls of the reaction vessel.

The Halogens F, CL, Br, and I

The halogens are typical non-metals. Although their physical forms
differ-fluorine and chlorine are gases, bromine is a liquid and iodine is a
solid at room temperature, each of them consists of diatomic molecules:
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F;,Cly, Bro and I, The halogens react with hydrogen and form gaseous
components, with the formulas HF, HCL, HBr, and HI. All of them are
very soluble in water. The halogens react with metals and give halides.

BBy LGy B B f -
During the chain reaction

Heat or Light
eat or Lig 9AB

Az-f-Bg

the molecules As, By, AB occur, whose fragment parts are A%, B°. The ele-
ments of this collection can combine each other. All probable combinations
for the set H = {A°, B, A;, By, AB}, that can be obtained without energy,
can be displayed as follows:

+ A° ' B° Ag By AB

AT A°, Az AY,BY AB AT, An AO,BE.BD,AB A°,AB, Ag, B®
Be A%, B9, AB B, By A%, B°, AB, A - B°, By A°,B° AB, By
Ag A° Ag A°, B° AB, Ay A, Ay A°,B% Ay,B3, AB A%, B° Az, AB
Bo A°,B°, By, AB B°, By AY, B, As, By, AB B°,Ba A¢,B° By, AB
AB A°, AB, Ag, B® A°,BY, AR, By A9, B° Ay, AB A®,B°%, By, AB A® B Ag, By, AE

Theorem 8.1.1. (H,+) is an H,-group.

o N . e .
Proof. Clearly, the reproduction axiom and weak associativity are valid.
As a sample of how to calculate the weak associativity, we illustrate several
cases:

(AB + As) + By = {AB, Ay, A°, B°} + By = {B,, AB, Ay, A°, B°},

{ AB+ (Ag+ By) = AB + {Ag, Bo, A°, B°, AB} = {4,, By, AB, A°, B°},
(AB + A%) + A° = {AB, A% Ay, B°} + A° = {A,, A°, AB, B°},

{ AB + (A° 4+ A°) = AB + {Ay, A°) = {A., AB, A°, B°},
(Ag + B°) + By = {AB, A%, Ay, B°} + By = { By, AB, B°, A°, A,},

{ Ay + (B°+ By) = Ay + {By, B°} = {4;,A°, AB,B°, B;}. &
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Corollary 8.1.2. H; = {A° Ay} and Hy = {B°, By} are only H,-subgroups
of (H,+).

If we consider A= H and B € {F,CL,Br,I} (for example B = I), the
complete reaction table becomes:

+ ue e Hy i HI

H? H?, Hy H®, 1%, HI H®, Hy H® I3,1°, HI HC,HI, Ha, I°
I° He,1° H eI, HO, 1°, HI, Hy I°, Iy He, I°, HI I
Ha H?, Hy HO, I° HI, Iy H®, Hg H?, I° Hy, In, HI H®, 1%, Ho, HI
Iy H°, I, Iy, HY H®, I H°, I, Hy, Iy, HI He, Iy H®, I Iy, HI
HI | H°, HI,Hp,I° | H°, I°,HI, Iz H®,I°,Hy, HI e, I° Hy, HT H?, I°, Ha, Iz, HI

8.2 * e-hyperstructures and their applications

e- hyperstructures are a special kind of hiyperstructures and, in what fol-
lows, we shall see that they can be interpreted as a generalization of two
important concepts for physics: Isotopies and Genotopies. On the other
hand, biological systems such as cells or organisms at large are open and
irreversible because they grow. The representation of more complex sys-
tems, such as neural networks, requires more advances methods, such as
hyperstructures. In this manner, e-hyperstructures can play a significant
role for the representation of complex systems in physics and biology, such
as nuclear fusion, the reproduction of cells or neural systems.

These applications were investigated by R.M. Santilli and T. Vougiouklis
and we mention here some of their results and examples (see [116], [114]).
Firstly, we shall define and analyze several types of e-hyperstructures.

Definition 8.2.1. A hypergroupoid (H,-) is called an e-hypergroupoid if
H contains a scalar identity (also called unit) e, which means that for all
r€EH ze=¢e-z=1.

In an e-hypergroupoid, an element 2’ is called inverse of a given element
re€Hifecz -2/ =20z

Clearly, if a hypergroupoid contains a scalar unit, then it is unique,
while the inverses are not necessarily unique. In what follows, we use some
examples which are obtained as follows: Take a set where an operation “”
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is defined, then we “enlarge” the operation putting more elements in the
products of some pairs. Thus a hyperoperation “o” can be obtained, for
which we have z -y € z oy, Vr,y € H. Recall that the hyperstructures

obtained in this way are H,-structures (see Definition 6.1.5.).

Examples 8.2.2.

(1) Consider the usual multiplication on the subset {1,~1,4, —i} of com-
plex numbers. Then we can consider the hyperoperation o defined in
the following table:

o| 1 |-1¢1 -1
111 )-1¢ i -
S S T T I T O
iji1 o AA]-11 1
55 T T I T T 0 O IS N

Notice that we enlarged the products {—1)-(—1), (—%)-¢ and (=2)-(—1)
by setting (—1)o(—i)={i, —i}, (—i)oi={1,i} and (—i)o(—i)={~1,1}.
We obtain an e-hypergroupoid, with the scalar unit 1. The inverses of
the elements —1,7, —1 are —1, —i, 4 respectively. Moreover, the above
structure is an H,-abelian group, which means that the hyperoper-
ation o is weak associative, weak commutative -and the reproductive
axiom holds.

(2) Consider the set H={f; | i€{1,2,3,4,5,6}} of real functions, defined
from the real open interval (0,1) to (0,1), where fi(z) = z, fo(z)=
(1 - m)_la f3($)=1 - m_ls f4($)=$_11 f5($)=1 -, fs(.’E):lE(l - x)_l'
Let the multiplication on H be the usual composition of functions.
We can obtain a hyperoperation o, given by the following table:

o | filfal|fs| [Ia s fe
Alhlfkl A fa f5 6
Tl el Jal il foofs { Jads | Jos Ju
Fal sl fi| foifo,fo ! fouda | Jats
falfalfs| fe !l N1 fa fa
Fs|flfe| falfasfol N fa
Telfelfa| ol fofa|fsfa| K
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We obtain an e-hypergroupoid, with the scalar unit f;. The inverses

of the elements fs, fz, f4, f5, fo are fs, fo, f4, f5, fo respectively. More-
over, the above structure is an H,-abelian group.

(3} Consider now the finite noncommutative quaternion group
Q:{l,-l,i,-i,j )'j 7ka'k}7
for which the multiplication is given by the following table:

ol 1 |-11i|4]jl-1k|xk
T 11343 -k]|*k
AT 41513 | x[x
T i -4]-1] I k| k|37

k| k| k| 41 ]-1]¢
k| k|k |13 1i14a1]1

Denote ¢ = {i,—i},j = {j,—7} and k = {k,—k}. We can obtain a
hyperoperation o, given by the foliowing tabie:

Sl i A3 i kK
111 i3 |-]k]|%
o S 1 S O T N O O ' A
)1 A=t 1 k| kT 1]
S NS N S T O O IO O O O A
IR T B O S I I A O I A I
-l itk EpT -1 2|1
klk|-k|jl7i¢1]-1]1
k|l-k| kg i1 a1

We obtain an e-hypergroupoid, with the scalar unit 1. The inverses
of the elements —1,¢, —i, §, —j, k, —k are =1, ~i,i, —7, 7, —k, k respec-
tively. Moreover, the above structure is an H,-abelian group, too.

It is immediate the following basic result, that holds for all the above
examples:
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Theorem 8.2.3. The weak associativity is valid for all Hy-structures with
assoctative basic operations.

We are interested now in another kind of an e-hyperstructure, which is
the e-hyperfield.

Definition 8.2.4. A set F', endowed with an operation “+”, which we call
addition and a hyperoperation, called multiplication “”, is said to be an
e-hyperfield if the following axioms are valid:

(1) (F,+) is an abelian group where 0 is the additive unit;
(2) the multiplication - is weak associative;

(3) the multiplication - is weak distributive with respect to +,
e Vr,y.2€F, zly+2)N(zy+22)# 0, (z+y)zN (22 +y2) #6;

(4) 0 is an absorbing element,
te. Ve e F,0-z=2-0=0

(5) there exists a multiplicative scalar unit 1,
ie. Vee F,1-z=2-1=uz,

(6) for every element x € F' there exists an inverse 7

such thaft lez-zlnz -z

The elemeﬁts of an e-hyperfield (F, +, ) are called e-hypernumbers.
Examples 8.2.5.

(1) Starting with the ring zz = {0,
enlarging the product 202 = {1} t
obtain the following table:

,2}, we can obtain a hyperrig by
0 202 = {1,2}. In other words, we

o|01I] 2
G 0|0, 0
T10]1] 2
710|212

The above structure is an e-hyperfield.
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(2) In the above example, only a hyperproduct is not a singleton. These
hyperstructures, for which only a hyperproduct is not a singleton, are
called very thin and they are useful to the theory of representations of
H,~groups by hypermatrices. Hence, a way to obtain a very thin hy-
perstructure is the following one: we take a classical structure and we
choose two elements q, b, then we can enlarge the product a-b. There-
fore, in order to obtain a very thin e-hyperfield we can take a field
and enlarge only one product of two, nonzero and non-unit elements.
This simple change of the operation leads to enourmous changes to the
algebraic hyperstructure, so it looks like a chain reaction in physics.

(3) Another large class of e-hyperfields can be obtained by using H-
structures. For instance, we can take the field of real numbers R,
or the field of complex numbers C or the field of quaternions Q and
then we can enlarge all products of nonzero and nonunit elements by
adding nonzero elements and so we obtain e-hyperfields.

(4) We can use the above method starting from an e-hyperfield or a

operation ¢ given by the following table:

ol |1l 21131425
6lojo| 6] 0010
1[0(1] 2 [ 3 4715
210127 4 10,112.3/45
310(3[0,1/32(053,4
7(0(4(25(05]4,1] 2
5|0]|5]4,5|3,4] 2 | 1

Then (Zg, +, 0) is an e-hyperfield, for which the multiplication is not
closed in Zg —~ {0}.

For the following example, we recall a P-hyperstructure notion, given
more details (see 6.4.).
Definition 8.2.6. Let (G,-) be a semigroup and P C 7, P # §. The
following hyperoperations are called P-hyperoperations:

Vz,y € G, 2P'y = zPy, Py = oyP, zP'y = Pzxy.
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If in a set they are defined P-hyperoperations, then we obtain P-hyper-
structures.

The P-hyperoperation P* is associative, so (G, P*) is a semihypergroup.
If P C Z(G), where Z{@G) is the center of G, then the above three hyper-
operations coincide. P-hyperoperations can be defined in groupoids or hy-
pergroupoids as well, and so we obtain a large class of hyperstructures. We
can also define P-hyperoperations in sets with partial operations. More-
over, in structures with more than one operations, we can define more P-
hyperoperations. . In a P-hypergroup the set of left or right units is . The
set of left inverses of z with respect to the unit py* is py'z ' P! and simi-

larly the set of right inverses of x with respect to the unit py Vig P-1g~1pst.

Example 8.2.7. Let F be a field and P be a set such that 1 € P C F—{0}.
We define the following hypermultiplication: '

zP*y = zPy, Vz,y € F — {0,1} and zP*y = xy otherwise.

For instance, if we take the field Z; of integers modulo 7 and the set
P = {1,3}, then the hypermultiplication P* is given by the following table:

pl0l1]l 213|456
D |0i0] 00|00 |0
T10/1] 2131256
3 10|2]4,516,4(1,3]3,2]5,1
3 10|3642,6(51]|1,3|4,5
7 0 4]1,35/5112.6/6,4]|3,2
5 |0|5|3211,3/6,4|4,512,6
& 0651453226 1,3

Then (Z,+, P*) is an e-hyperfield.

Definition 8.2.8. An e-hypermatriz is a matrix with entries elements of
an e-hyperfield.

We can define the product of two e-matrices in an usual manner: the
elements of product of two e-matrices (a;;), {bi;) are ci; = >, a0 byy, where
the sumn of products is the usual sum of sets.

If we consider the e-hyperfield given in Example 8.2.5(1), then we have:
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31 . 2 1] [2024101 201+101

20 11 ”'ﬁoﬁ—i-ﬁoi 201+001
L2 +1 2+1
[ {1,2}+0 2+0
_[{20} 0
L {L2} 2
_f[207[20)1[00][00
Ut zl2 21222

Moreover, notice that the product of an e-hypernumber with an e-hyper-
matrix is also a hyperoperation. For instance, again on the above hyperfield,
we have '

This remark is useful for the definition of an e-hypervector space.

Definition 8.2.9. Let (F,+,-) be an e-hyperfield. An ordered set a =
(@1,09,...,a,) of n e-hypernumbers of F is called an e-hypervector and
the e-hypernumbers a;, ¢ € {1,2,...,n} are called components of the e-
hypervector a.

Two e-hypervectors are equals if they have equal corresponding compo-
nents. The hypersums of two e-hypervectors a, b is defined as follows:

a+b={(c1,6,..C) i €y + by, 1€ {1,2,...,n}}.

‘The scalar hypermultiplication of an e-hypervector a by an e-hypernumber
A is defined in & usual manner:

rAoa={{c1,¢0,.tn) |G € Xy, 1€ {1,2,...,n}}.
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The set F™ of all e-hypervectors with elements of F, endowed with
the hypersum and the scalar hypermultiplication is called n-dimensional
e-hypervector space. The set of m x n hypermatrices is an mn-dimensional
e-hypervector space.

The next proposition can be easily verified.

Proposition 8.2.10. Let F be an e-hyperfield and F™ be its n-dimensional
e-hypervector space. Then the following assertions hold:

(1) the addiﬁzfve unit is the zero e-hypervector 0 = (0,0,...,0};
(2) Ao (a+:P;) N(Aoa+Aob)#0, VA€ F,Vabe F*

(3) ()\+a)o:c1:ﬁ()\oti+aoa)=,ré®, YA, a € F,Va € F™;
(4) do(aoca)N(A-a)oa#0, VAN a& FVae F";
(5) loa=a, Aoc0=0, VA€ F,Va € F".

Notice that by (A+ «) - a; we intend U t-a;, while A-a;+ o - a; means

teita
U @+

€A, yEQ U

Definition 8.2.11. An e-hyperalgebra over an e-hyperfield (F,4,-) is an
n-dimensional e-hypervector space F7, endowed with a multiplication of e-
hypervectors &, such that (F™, +,®) is an e-hyperring and for all A € F
and all z,y € F", we have

do(zoy)=Nez)Cy=20(Aoy).

The most important example of an e-hyperalgebra is the algebra of nxn
square e-hypermatrices.

As it is well know. Lie's theory is at the foundation of all physical theo-
ries, including classical and quantum mechanics, particle physics, nuclear
physics, superconductivity, chemistry, astrophysics, etc. Despite the mathe-
matical and physical consistency, by no means Lie’s theory can represent
the totality of systems existing in the universe. We conclude the presenta-
tion of e-hyperstructures with the definition of an e-hyper-Lie-algebra.
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Definition 8.2.12. Let (L, +) be an e-hypervector space over an e-hyperfield
(F,+,"). Consider any bracket or commmutator hyperoperation:

[,]:LxL— P(L): (z,y) — [z,y]
Then L is an e-hyper-Lie-algebra over F if the following axioms hold:
(1) the bracket hyperoperation is bilinear, i.e.

vmamls{ﬂ%y?yhyQ € L,Val,QQ,ﬁl,ﬁz € F,
[aliﬂl + szﬂiz,y] N (051 [331,9'] + ﬂz[ﬂﬁz,’y]) # @a
[z, Bisn + Baye] N (Bulz, 1] + Bolz, wo]) # s

(2) Ve € L,0 € [z, z];

3) Vr,y,z€ L,0 € ([.’L", [ya z]] + {y: [z, 2] + [2, [z, y]}).

The most important thing in studying e-hyper-Lie-algebras is to check if
a subset is closed under the Lie bracket. This is so, because the product of
hypermatrices normally has an enourmous number of elements. However,
for some interesting subclasses it is easy to check if they are closed or not.

Examples 8.2.13.

(1) Consider the Lie bracket of the two traceless e-hypermatrices, over
the e-hyperfield given in Example 8.2.5(1):

We obtain - o o o
wm =[] (3338 22)
_[2+{1,2) 0+{1,2}] | 2+0 240
: 2+2 0+2 }_ [{1_,2}+2 {1,2}+2]
-1 5" {1’92}} ‘[{6,21} {@,21}]
_[ L2 {?@}J
| {1,0} {2,1}
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We notice that the Lie bracket of A and B consists of 16 e-hypermatrices
and some of them are not traceless. For example,

Hence the set of traceless e-hypermatrices is not closed.

(2) Now, consider the e-hyperfield based on Z7, where the multiplication
is replaced by the P-hyperoperation given in Example 8.2.7. Take the
following e-hypermatrices:

4, Bl

i
—
—

[annllN o]
[N ]
-

fap ]|
Cal ot

B‘DI !.:.DI
+ +

o O
sl )
}
| —|
S
oy
T+
O oy
<
Sl k)

The Lie bracket of A and B has 15 elements among them 5 are strictly
upper triangular e-hypermatrices. Therefore the set of upper triangu-
lar e-hypermatrices is closed under the Lie bracket hyperoperation.

Now, we connect the above e-hyperstructures to isotopies and geno-
topies. We give now an idea about these topics, which were constructed for
physical needs.

Isotopies can be traced back to the early stages of set theory, where two
Latin squares were said to be isotopically related when they can be made
to coincide via permutations. Since Latin squares can be interpreted as
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the multiplication table of guasigroups, the isotopies propagated to quasi-
groups and then to Jordan algebras. Santilli used the term isotopy from its
Greak meaning of preserving the topology and interpreted them as axiom-
preserving. In fact, the new and old structures are indistingunishable at the
abstract. Nowadays, the term “isotopies” denotes nonlinear, nonlocal and
nonhamiltonian liftings of any given linear, local and Hamiltonian structure,
which preserves linearity, locality and canonicity in generalized spaces over
generalized fields.

The main novelty of the isotopies studied by Santilli with respect to
the preceding ones is the lifting of the trivial n-dimensional unit J =
diag(1,1,...,1) of a conventional theory into a nowhere singular, symmetric,
real-valued, positive-defined and n-dimensional matrix: '

f = (fi,j) = (jj‘,i) = j_l = (f'iaj)—l = (fj,‘i)_1> (‘:.7 = {1:21 '“7“}}

whose elements have a smooth but otherwise arbitrary functional depen-
dence on the local coordinates x, their derivates Z, £, ... with respect to an
independent variable ¢ and any needed additional local quantity,

I= f(ac, i, £ ..).

The original theory is reconstructed in such a way to admit I as the new
left and right unit. Thus, if (F,+, -} is a field of characteristic zero, then
we can construct an isofield F' = (F,+,0), whose elements have the form
G=a-1, where a € F and 1 is a positive-defined element generally outside
F'. The new multiplication o, called isomultiplication is defined as follows:

A ~

va, b, aob=a-1-6.

The element [ = 17! is the left and right unit of . The structure (¥, +,0)
is a new field and it is called an isotope of F, while the lifting F' — F'is called
an isotopy. For instance, we obtain the isofields (R, +, o) of isoreal numbers,
(€, +,0) of isocompler numbers, (Q,+,0) of isoquaternions. Notice that
I"=lo..cl=1 1/1=1.

Sl

n
Genotopies were introduced by Santilli from the Greak meaning of in-
ducing topology and interpreted them as liftings of a given theory verifying
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certain axioms into a form which verifies broader axioms admitting the
original ones as particular cases. The main difference between isotopies and
the genotopies is that the isomultiplication of two isonumbers 4, b has no
ordering, while for the genotopies one must assume an ordering.

The multiplication of two quantities is ordered on the right and it is
denoted by the symbol >, when the first quantity multiplies the second one
on the right, while it is ordered on the left and denoted by the symbol <,
when the second quantity multiplies the first one on the left.

The genotopies are based on the property that the restriction of the
multiplication on the right in an ordered field permits the preservation of all
axioms of a field. We obtain two fields (F>,+,>) and (<F,+, <), based on
the multiplication on the right and on the left respectively. The genotopies
emerge when the multiplication on the right is assumed to be different from
that on the left. Hence we have two different generalized units, one for the
multiplication on the right 7> and one for the multiplication on the left
<]. For isotopies, we have the same isounit I for both isomultiplications.
Isotopies are a particular case of genofields.

If (F,+,) is a field of characteristic zero, then we can construct an
genofield on the right F> = (F> 4,3), whose elements have the form
&> = 41> and are called genonumbem on the right, where a € F and 1>
is a quantity generally outside F' and F'. The new multiplication >, called
genomultiplication on the right is defined as follows:

vabh, 6 >bh=a-Q-b.

The element @ is the left and right unit 1> of 7. In other words, for all
e B> 1S =62 =0 517

A genofield on the left <F = (<F,+, &) is the image of £~ = (13‘ =+, >,
under the replacement of the genomultiplication on the right > with the
genomultiplication on the left: '

with the correspondmg genoumt on the left <[ = P!, ie. for all <@ € F,
we have <1 & <@ =<4=<4 & <L
For P = (} we obtain isotopies.
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The unit [ of the isotopies and the units <I , I of the genotopies
have a realization, e.g. via a given function or matrix. A first class of
e-hyperstructures can be introduced as hyperstructures with hypermultipli-
cation, for which e verifies the weak condition to be a left and a right unit
and this class leads us to isotopies, while a second class of e-hyperstructures
requires the further differentiation of the hypermultiplication on the right
from that on the left and this leads us to genotopies. Hence isotopies and
genotopies represent particular cases of e-hyperstructures. As a remark, we
considered multiplicative hyperfields in order to define an e-hypetfield, since

the sum is not lifted in isotopies. |
S

8.3 Transposition hypergroups of Fredholm
integral operators

Another motivation for the study of hypersiructures comes from physical
phenomenon as the nuclear fission. This motivation and the results of this
paragraph were presented by S. Hoskovd, J. Chvalina and P. Rackova (see
56, [57).

Nuclear fission occurs when a heavy nucleus, such as U235, splits or
fissions into two smaller nuclei. By this fission process we can get several
dozens of different combinations of two medium-mass elements and several
neutrons (as barium Ba'¥! and krypton Kr% and 3 neutrons; strontium
Sr¥, xenon Xe*® and 2 neutrons; lanthanum La'”, bromum Br®" and
2 neutrons; Sn'¥?, Mo'™ and 3 neutrons and so on). The input of this
reaction is always the same, but the result is in general different. The
heavy uranium is bombarded with neutrons and there are about 90 different
daughter nuclei that can be formed. Moreover, two or three neutrons are
released per event. In any fission equation, there are many combinations of
fission fragments, but they satisfy always the requirements of conservation of
energy and charge. Similar situations appear during several nuclear fissions.
The result depends on conditions. Although the input two particles are the
same, the output can be variant. It can differ both in the number of arising
particles and in their kind.

An example when the interaction result between two particles is the
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whole set of particles is the interaction between a photon with a certain
energy and an electron. The result of this interaction is not deterministic.
A photo-electric effect or Coulomb repulsion effect or changeover of photon
onto a pair electron and positron can arise.

Moreover, some ideas leading naturally to hyperstructures come also
from quantum mechanics, quantum optics, quantum cryptography or deve-
lopment of quantum computers. In fact, quantum object can be simulated
in more different states simultaneously. States of quantum object possess
the property that they are not spacely localized. Quantum particles are si-
tuated in many places at the same time and they are coming through several
trajectories simultaneously. Quantum computers give a technology which is
of the great interest worldwide. These computers should be able to provide
extremely quick computation thanks to their possibility to be localized in
more states together. In spite of the fact this technology is developed on
the basis of single-photon sources, it seems to be natural that the theory of
suitable modified hyperstructures can serve as mathematical background in
the field of quantum communication systems.

According to the well known physicist John Archibald Wheeler, one of
the coauthors of the hypothesis of more worlds, the reality is decomposed
in more parallel branches, by the collapse of wave function.

Now, we present shortly some basic ideas concerning a scalable quan-
tum computer chip. A scalable quantum computer chip for atomic qubits
was built for the first time at the University of Michigan, offering hopes
for making a practical quantum computer using conventional semiconduc-
tor manufacturing technology. Exploiting the strange rules of the atomic
world, quantum computers could potentially break top-secret codes and
perform certain kinds of searches more quickly than the conventional com-
puters can. The building blocks of quantum computers are called gubits
or guanturm bits made of atoms or photons. Multiple qubits are connected
via an electrostatic or other suitable interaction in a quantum computer,
similar to how a traditional computer is made by wiring together individual
transistors. Unlike a conventional computer’s bits, which can have values of
either 0 or 1, a qubit can possess value of 0 and 1 simultaneously. The Michi-
gan group of researches chose an individual cadmium ion for their qubit,
held in free space by a number of electrodes inside a postage-stamp-sized
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gallium arsenide semiconductor chip. Additional electric fields are able to
manipulate the position of the ion and laser beams could control the qubit
value in the ion. lons pose an advantage over other potential qubits, such
as photons and electron dots. They are easier to isolate and shield from
external disturbances that can disrupt their operation. An integrated semi-
conductor chip is a markedly different environment for ion qubits, which
were previously held in hand-mad ion traps, that could not be easily scaled
up or mass produced. Making a quantum computer would require scaling
up a single chip, so that it contains enough electrodes to trap many ions
simultaneously.

The description and solution of many problems from technical sciences
and from various fields of applied mathematics use some results and methods
from the theory of linear integral equations. We consider integral operators
that correspond to Fredholm integral equations of the second kind and of
the first kind, as well. Fredholm integral equations can be considered as a
modification of linear equation systems, thus this topic has algebraic roots.

In what follows, we describe a certain construction of transposition hy-
pergroups of integral operators on spaces of continuous functions. Trans-
position hypergroups were introduced and investigated firstly by J. Jantos-
ciak [62], [61]. Many well-known hypergroups forming wide classes as join
spaces, weak cogroups, double coset spaces, polygroups and canonical hy-
pergroups, including ordinary groups and also some geometrically motivated
noncommutative hyperstructures are all transposition hypergroups.

~ Using operators which correspond to Fredholm equations we will con-
struct ordered groups determining transposition hypergroups. Moreover,
using certain subhypergroups of these transposition groups we obtain hy-
perstructures of operator blocks. In particular, by the decomposition of
the group of all Fredholm integral operators of the second kind by its sub-
group of operators of the first kind we obtain a quasihypergroup of operator
blocks.

Definition 8.3.1. An integral equation of the form

() = A / K (2, s)p(s)ds = [(z)

is called a Fredholm integral equation of the second kind, whereas the integral
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equation of the form

f K(z, s)p(s)ds = ()

is called a Fredholm integral equation of the first kind, where z € (a,b); K is
a real or complex valued function, called kernel, f is a function called a free
or an absolute member; ) is a numerical parameter and ¢ is an unknown
function.

It is known that under some conditions, the solution of a Fredholm
integral equation -can be expressed in the form of a sum of Neumann's se-
ries. Usually, Fredholm integral equations with a nondegenerate Lebesgue
square integrable kernel A'{z,s) are considered, i.e. Lebesgue integral

// |K{z,s)|?dzds is convergent, where M = (a,b) x (¢,b) € R X R.
M

We will construct transposition hypergroups on the set of operators of
the type F(A, K, f), with continuous positive functions f, K (absolute mem-
ber and kernel) and a nonzero parameter A

So, we consider operators F()\ K, f): C(a,b) — Cl(a,b)

FOLK, () = A / K (2, s)e(s)ds + F(z), M

where C(a,b) means the set of continuous functions on {a,b) € R.

The mentioned operator oceurs in the construction of a series of func-
tions which approximate the solution of the Fredholm equation of the second
kind.

Definition 8.3.2. A hypergroup (H,-) is called a transposition hypergroup
or a noncommutative join space if it satisfies the transposition axiom: for
all a,b,c,d € H the condition b\ aNc/d # @ implies a-dNb- ¢ # @, where
setsb\a={r e Hlacbh-z},c/d={z € H|ce€x-d} are called left and
right extensions respectively.

Definition 8.3.3. An quasi-ordered semigroup is a triple (G, -, <), where
(G, -} is a semigroup and the binary relation < is a quasiordering (reflexive
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and transitive) on the set G, such that for all z,y,2 € G, the condition
z<yimpliesz-z<y -2, z-z<z .

An ordered (semi)group is a triple (G,-, <), where (G,-) is a (semi)
group and < is a reflexive, antisymmetrical and transitive binary relation
on the set (7, such that for any z,y,2 € G, the condition z < y implies
T-25y 2 22 < z-y Further, ja)c = {z € G| a < z} is called a
principal end generated by a € G.

Now, we obtain the following important lemma:

Lemma 8.3.4. Let (G,-, <) be a quasi-ordered .sengroup We define the
following hyperoperation on G:

#1GXxG— P(@) byaxb=la-b)c={ceCGla-b<z}forallabeq.

(1) Then (G, *) is a semihypergroup which is commutative zf the semigroup
(G, ) is commutative.

(2) If (G, *) is the above defined semihypergroup, then (G, %) is a hyper-
group if and only if for any elements a,b € G there exist ¢, € G such
thata-c<b, ¢ -a<b.

Proof.

(1) We have to verify the associativity law. If a,b,c,z,y € G and 2 < v,
thena r<a-yand z-a < y-a whence [a-y)c C [a-z)c and
[v-a)< Clz-a)c. We have

* (b * c) Ua*:z:-— U a-x)<

zEbxe zElbc)<

=fa-s-9su [J o+ 2)s

z>be

=fa-b-cc=la-b-c)cU |- o)<

y>a-b

= U o= yre

yElab)< yearb

z(a*b)*ca
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since [a-7)< C [a-b:c)< for all z such that z > b-cand [y-¢c)< € [a-b-c)<
for all y such that y > a-b. Hence, (G,*) is a semlhypergroup Clearly,
if the semigroup (G, -) is commutative, then the semihypergroup (G, *)
is also commutative.

(2) If t € G, then the set inclusions £+ G C G, G xt C G hold. We must
prove the opposite inclusions. For any s,t € G there exist ¢,¢’ € G
such that t-¢ < s, ¢’ - £ < 5. From this, we obtain

sEft-e)c N[ t)e =(txec)N{c xt) C (Ut*x) (Um*t)
reG zel
=(t*G)ﬂ(G’*t),

whence G C t* G, G C G *t. So, the reproduction axiom is fulfilled.
Now, if (G, ) is a hypergroup and a,b € G are arbitrary elements,
then b= G = G = G = b, whence

a.eb*G:Ub*t=U[b-t)S,

teG te

which means that a €. [b- ¢)< for an appropriate element ¢ € G, i.e.
b-c < a. Similarly. @ € G * b which implies that ¢ - b < a for an
appropriate element ¢’ € G. B

Remark 8.3.5. If the binary relation < is an ordering, then the commu-
tativity of (G, *) implies the commutativity of (G, -).

Corollary 8.3.6. Let (G,-,<) be an ordered group. Define a hyperepera-
tion x on G, as follows: + : G x G — P (G byaxb=la - D)< ={r € G|
a-b <z} for all elements a,b € G. Then (G,*) is a hypergroup which is
commutative if and only if the group (G, ) is commutative.

In what follows, we shall construct join spaces of operators, based on
ordered groups. Let us denote the sets of continuous functions on J, J X J,
by C(J}, C(J x J) respectively, where J C R is an interval and f(z) # 0
forallz € J.

Proposition 8.3.7. Let J = {a,b). We consider the set F = {F(\ K, f) |
KeCJxJ), feCJ), \#0}, where F(\ K, f) is given by (I). For
any operators F(Ay, K1, 1), F(Xe, Ko, f2) of F, we define
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F(M, Ky, f1) - F(hg, Ka, f2) = F(Ashe, Kofs + Ky, f1f2)

and P, K, 1) < F(xg, Ko, f2)  and only if \y = da, fu(z) = fola) and
Ki(z,8) < Koz, s), for any (z,s) € Jx J. Then (F, -, <) is a noncommu-
tative ordered group.

Proof. Let F(\, Ky, f;) € F for all i = 1,2,3. Then

F(/\laKlsfl) ’ (F()‘Q)KQaf?) ) F()‘31Rr31f3))

= F(A, K1, fi) - F(Aods, Ksfo + Ko, fofs)

= F(MXeds, Ksfafi + Kofi + Ky, f1faf3)

= F(Mhg, KoL + Ky, f1f2) - F(As, K3, f3)

= (F(M, Ky, f1) - F(Qa, Ky, f2)) - F(Xs, K3, f3),

which means that the binary operation - is associative. Moreover, for any
operator F(A, K, f) € F we have

F()\,K,f)F(lO,l) ZF()\,K,f):F(l,O,l) F("K:f)a

thus the operator F'(1,0,1) is the unit of the semigroup (F, ).

On the other hand, for any operator F(\, K, f) € F we have A 5 0 and
flz) > 0for all z € J C R. Then the operator F(1/A, —K/f,1/f) is well
defined and belongs to F. Moreover,

FOUA=K/f,1/ ) FOK, f)=F(1,0,1)=F(X K, f}- F(1/)\, K/ {,1/]),

which means that F(1/\,—K/f,1/f)} is the inverse of F(), K, f). Hence
(F,-) is a group. Clearly, the binary operation - is noncommutative on F.

From the definition of the relation < it follows that this relation is
reflexive, antisymmetrical and transitive on F, hence the pair (F, <) is
an ordered set.

It remains to verify the compatibility of the ordering < with the binary
operation - on F. Let F(A;, K1, f1), F(Ao, K3, f2) € F be integral operators,
such that F(\, K1, f1) < F(Aq, Ky, f2) and F(A, K, f) € F be an arbitrary
operator. Then 0 < fi(x) = folz), M = A # 0, Ki(z,s) < Ka(z,s) for
any (z,s) € (a,b) x {(a, b), which implies that
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AA1 = Mg,

f(Z) filz) = fl=z)folz),

Ki(z,s)f(z) + K(z,5) < Ky(z,8)f(z) + K(x,8),
K(ﬂ:,s)fl(ﬂ?) + I{I(x’ S) S K(mas)fQ(‘,ﬂ) + KQ('T’S)

for each (z,s) € J x J. Hence

FILMK, f)-F(AL Ky fy) = FOMELf+ K ff)
F(Ahg, Kof + K, f f2)
F

()\a I(a f) ) F(/\% K21f2)

IRV

d
PO KL ) (FOLK ) = FOuN K f + K, fif)
F(AﬁAa Kf2 + K2)f2f)
F

(Mg, Ka, fa) - F(M\ K, f).

Consequently, (F, -, <) is a noncommutative ordered group. B

WAl

We apply the construction of a hypergroup from Lemma 8.3.4. onto
this considered concrete case of integral operators, as follows. We define
the following hyperoperation on F: for all F{(A;, Ky, f1), F(Ae, Ka, f2) € F,

F(, Ks, fi) * F{a, Ko, f2)

= {F(’\sj{wf) = -7: [ F()‘laKl:fl) ' F()\2:K’27f2) S F()\“K-sf)}
={FAK,f) €F | F(\Xg, Kofs + Ky, fif2) S F(A K, f)}

= {F(MAe, K, f1]2) | Kalz, 8) fu(x) + Ki(z,s) < K(x,8), (z,8) € J x J}.

By Proposition 8.3.7 and Lemma 8.3.4 we obtain:

Proposition 8.3.8. Let J = (a,b) C R and =+ F x F — P*(F) be
the above defined binary hyperoperation. Then the hypergroupoid {F, %) is
a noncommautative hypergroup satisfying the transposition ariom, so il is a
transposition hypergroup.

Now, we use the foliowing construction for groups of integral operators.

Lemma 8.3.9. Let R be an equivalence relation on en arbitrary set §.
For all z,5 € S we define a hyperoperation * : S x S — P*(§) as follows:
z*y = TUY, where T,7 are the equivalence classes of x,y respectively. Then
(S,%) is a join space.
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Proof. Notice that (5, ) is a commutative hypergroup. Indeed, if z, 'y, z€S,
then

Tx{y*z) =ax(GUZ)=(z*xg)U(z*3)

= (Um*t) U (Ux*u) =(ZUg) U(EU2)
=;EU§U2=EU§:U§=z*(3:*y)=(:c*y).*z

Notice that the reproduction axiom holds. Indeed,

:c*S=S*m=Ut*:c=U:E*f=S.

teS tes

For u, vESwehaveu/v—{$€S|u€m*v}—u if u and v are not in
the relation R, otherwise u/v =

1t remains to check the transp081tion axiom, i.e. if u/vMz/t # 0, then
uxtMu*z # 0, which means that (2UZ)N(TUZ) 5 §. Suppose that u/v = i
and z/t = Z. We have 4N 2z # 0, thus & = z. Hence u* t N v * 2 % {I. Now,
suppose that u/v =14 and 2/t = 5. We have Z = . Hence uxtNuv 2z # {.
The remaining cases can be verified in a similar way. B

In what follows, we obtain two groups of Fredholm integral operators.
The first group is the following one: Let F;, F» be subsets of F formed by
integral operators of the form F(1, K, f), F{(), K, 1) respectively.

Lemma 8.3.10. (F1,+), (Fa,-) are normal subgroups of the group {F,-).
Proof. Let F{1,K, f), F(1,K, fi) € F; be arbitrary operators. Then

F(laKzf)'FWI(laKlyfl) =F(13Kaf)'F(]-:'_Kl/flal/.fl)
=F(1,K - Kif/fi,f/h) € F,

whence (F3,-) is a subgroup of the group (F, ).
- Similarly, for F(A K, 1), F()\ K,1) € F», we have

F(O K, 1)-FYX\ K, 1) F()\ K1) F(1/A,
F(MA, K K1) e

—K, 1)
J’:'

So, (F2,+) is a subgroup of the group (F,-), too.
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Now, let F{\, K, f) € F, F(1,Ky, f1) € F1. Then

FOLK, f)-F(1,Ky, f1)- FTHA K f)
=F(\E f+ K, [Nh) F(X-K/f,1/f)
= F(I,Klf— K(fl - 1),f1) e Fi..

Therefore, the subgroup (J1,-) is a normal subgroup of the group (F, ).
Analogously, if F(\, K, f) € F, F(\ K,1) € F, then
F(AK f)- FOLK, 1) -FY\K.f)
= F(\Kf,1) e F.
Hence (Fs,-) is a normal subgroup of the group (F,-), too. B
The second group of Fredholm integral operators is obtained as follows:
We consider the set G= {F(\, K, f) | A#0, K#0} for arbitrary {z, s)€JxJ,
K e C{JxJ), feC(J). We define

F(A, Ky, fi) © F(Ag, Ko, f2) = F(A e, K1 Kq, MELf + £,
where K(z,s) = K(z,z).
Lemma 8.3.11. (G, ®) is a noncommutative group.
Proof. Firstly, we check the associativity law. Let F(\, Ki, f;) € G, for
i=1,2,3. Then
(F(A, K1, 1) © F(d, K2, f2)) © F(%a, Ky, f)
= F(MAg, K1Ko, WK1 f2 + f1) © F(As, K3, fs)
= F{MAods, K1 Ko K5, MAc K1 Ko fs + MKy fo + f1)
= F(Mdohg, K1 KoKa, MK (AeKafs + f2) + 1)
= F(M, K1, f1) © (F(ohs, KoKs, Ko fs + fa)
= F(M, K1, f1) © (F(Do, Ka, f2) © F(2s, K3, f3)).
Moreover, for any operator F'(\, K, f} € G we have
FINK e F(1,1,00= F(\K, f)=F(1,1,00 6 FI\L K, f).

Finally, if F(A, K, f) € G is an arbitrary operator, then its inverse is the
operator F~Y(\ K, f) = F(A™',1/K,—A" f/K). Therefore, (G, @) is a
group, which is clearly noncommutative. ®
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Now, we describe the left and right decompositions of the group (G, ®),
determined by its subgroup (Go, ®), which are created by the left and right
translation of this subgroup:

LG)={F(\K,[)©G | F(\K,f) €G},
The corresponding equivélence relations are:
EL'_‘{(F(’\hKl:fI):F(A2)K2:f2))eng|F_l(A1:Kl:fl)G)F()\Q;K2;f2)EGO}a
Er={(F(A1, K1,f1), F(Xa, Ka,f2)) EGXG|F(Xg, K3, f2)OF ™  (Ay, K1, f1)€Go}-

Clearly, we have F(Ay, K1, f1)ELF ()2, K, f2) if and only if there exists
F(l,K,O) € gO: such that F(/\l, Kl,fl) O] F(l,K,O) = F()\g,Kg,fQ), 80

F(A, KKy, fi) = F(ho, Ky, fo)
whence Ay = Ay, KK = K3, fi = f, hold. Whereas
F(A, K1, fi) BrF (Ao, Ko, f2) if and only if F(Ag, Ko, f2)=F (A, KKy, K’fl)

for a suitable F(1,K,0} € Qg, i.e. there exists F'(i,K,0) € Gy such that
Ky=Khky, =X, fo=Kf1.

Now, we describe the decomposition of the group (F,-) determined by
its subgroups (F1,-} and {F, ).

As it was mentioned above the subgroup (F1,-) is normal in (F,-), so
the left and right decompositions are equal:

-F/R]:l =,’F/L,7:1={f1F()\,K,f)=F()\,I(,f)}—1 | F(A!K:f) Ef}
The corresponding equivalence relation is:

By = {(F(A, Ky, f1), F(ha, Ko, fo))€F x F I F7H A, Ky, 1) F(e, Ks, f2)
€ ‘Fl or F(/\zaKZsz) ' F—l()\laKlyfl) € -7:1}

Clearly, we have F(Ay, Ky, f1) E1 F(Aq, Ky, f2) if and only if there exists
F(I’K’f) = Fl such that F(/\27 ’2:f2) = F(]-:K, f) ’ F(/\lnk’lafl)a which
means that Ky = K1 f + K, Ay =Xy, fo=ffi. '
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On the other hand, the subgroup (3, ) is also normal in (F,-), so the
left and right decompositions are equal.

FipFo=F1Fs={Fs - FINK,f)=F(\K,f)- F2 | F(A\ K, f) € F}.
Here, the corresponding equivalence relation is:

By = {(F{M, K1, f1). (o, Ko, L))EFXF | FH M, Ky, f1)-F{A2, Ko, f2)
£ Fyor F(/\Q,Kg, fg) . F_l()\l, Kl,fl) € .7:2}

Clearly, we have F(\1, Ki, fi} B2 F(Ag, Ky, fo) if and only if there exists
F()\,K, 1) = ’f'-g such that K2 = Kl + K, /\)\1 = )\Q,fg = f]. The above
obtained decompositions G/rGo, G /1Go, F /rF1=F /151,

F [nFo= F [LF» make possible to construct certain hypergroups.

Theorem 8.3.12. The hyperstructures (F, *;) for i = 1,2 and (G, *)
are join spaces, where
zvy=xzUy if Z,7€F/F,
zxy=rUg if .’B,ﬂeg/Lg@.
Proof. 1t follows by Lemma 8.3.9. &
In what follows, we consider

G = {FINK, ) IAERA>0,K € CL{J x J)}.

We define a binary hyperoperation on the factor set L(G, ). Recall that
for all 7,5 € L(G), we put '

2e7={F\K )| FOLK, f) = F(up, Ky, fr) © FQu, K, fa),
F(A, K1, /1) €2, F(e, Kz, fo) € 7}
Then for all 7 € L(G+) we define
zxg={z€ LG 2Nz o7 # 0}
Note that this is an usual construction in algebraic hyperstructure theory.

Proposition 8.3.13. The hypergroupoid L(G.),*) is a quasi-hypergroup
with the following properties:



302 - Bijan Davvaz and Violeta Leoreanu-Fotea

(1) For all z € L{(G,) we have T * Go = {Z}, i.e. Gy is the right unit of
(L{G}),*) and Z € Gy + T.

(2) If 2, € L(Gy) are blocks (eguivalence classes) with the representing
operators F(A, Ky, f) € Z, F(u, Py, g) € § such that f,g € C.(J) we
have

749 = {[FOw KPR | K,P€Cu(J x J), he ClJ), h> f},
where by [ | we mean the block with representing operator -.

Proof. Let T € L(G,) be an arbitrary block and let F(\K,f) € %
be its arbitrary represemting operator. For all F(1,P,0) € Gy we have
FILK, YO F(1,P,0)=F(A\KP,f) €z, thus T © Gy C Z. Then

TxGo={2|2e L(G}), 2Nn{Z G G) # 0} = {z}.

Moreover F(1,P,0) ® F(\,K,f) = F()\ KP,Pf). Since any function
U € C4{J x J) can be represented in the form U = K P with the fixed
function K given above, it follows that the set Gy ® 7 is a union of some
blocks of G/Gp.-If P = 1 we obtain F(XA K, f} € Gy @ &, consequently
e gg ¥ I

Ler us denote ¢={{F'(A\u, KP, h)] | K, PeC.(J x J), heC(J}, h > f}.
Let 2 € T+, where £ € L{Gy). Then z = [F(§,U,»)], where £ = Ay,
U = KP for suitable K, P € C.{J x J) and ¢ = Mg+ f > [ since
MKg > 0 on J, which implies that Z* § C ¢. Suppose that [F(£,U, ¢)] € ¢.
Then £ = Au and there exist K, P € C,(J x J) such that U = K| P,
moreover ¢ is a continuous functions on J, f(z) < ¢(z) for any z € J.
Consider a function K | J x J — R defined in the following way: Denote
P(z) = (p(z) — f(z))/g(z) for z € J. Since ¢ is a positive function, it
follows that 7 is well defined and it is also positive and continuous on
the segment .J. Hence v € C,(J). Define K(z,s) = ¥(z)/\, z,s € J
We have K{zy,s) = K(zy,s) for all zy,zp € J, if 7, # 5 # 39, i.e. the
function K is continuously extended from the diagonal J x J in such a
way that K is constant on the segments s = s, 2 = ¢, ¢t € J Thus K €
Ci(J x J) and F(M\K, f) EL F(\ Ky, f), ie. F(MK,f} € Z. Define a
function Pg JIxJ—= R by P = (Klpl)/K = U/I\, Then F(,LL,PQ,Q) =BT
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and we have [F(€, U, 0)] = [F(M, K Po, g+ )] = [F{0, KPp, \Kg+ )] =
[FOLK, f) © F(u, P, g)] € T+, thus ¢ C T x §j. Therefore, the equality
Z*§=¢ holds. B

We recall the following definition, that we shall use in what follows.
Definition 8.3.14. A subhypergroup (S, -) of a hypergroup (H,-) is called

(1) closedif a/bC S and b\a C S foralla,b € S,

(2) invertible if a/bM S # O implies b/aN S # 0, and b\ a NS # 0 implies
a\bNS#Pforalabe H,

(3) refleziveif a\ S = S/a for all a € H,

(4) normalifa-S=5-aforall € H. |

Note that the notion of a subhypergroup, and each of the properties
for a subhypergroup in the above definition is self-dual. In a transposi-
tion hypergroup, a closed and normal subhypergroup is reflexive. Thus in a
transposition hypergroup, an invertible and normal subhypergroup is closed
and reflexive. Now, we are going to verify that the subhypergroupoid (Fi, *)
of the transposition hypergroup (F, #) has the properties mentioned above.
In the proof we will need next lemma.

Lemma 8.3.15. Let F(M, K1, f1), F{he, Kz, f2) € F be arbitrary opera-
tors, i.e., elements of the hypergroup (F,*). Then

(1) F(\, K1, f1)/F(Re Kz, f2) = {F(M/ 2, K, 1] f2) | K(z,8)
< Kl(.’E,S) - K2($,8)f1(.’13)/f2(m), (m,s) & ']}’

(2) P, Ko, o)\ F{\, K1, fi) = {F M/, K, i/ f2) | K&, 6)
< (Ki{z,8) = Ka(z,8))/ folz), (2. 5) € J}.
Proof. (1) Using that the function f» is positive and Ay # 0, for all operators
F()\l,Kl, fl),F(/\Q, Kg, fg) € F we obtain that

F(A1, Ky, f1)/ F(A2, Ka, [2)

={POK, ) | F(\ Ky 1) € FOLVK, ) Fdg, Ky, fo)}
={F(AK, f) | P(M, K1, h) 2 F(\L K, f) - F(M, K, o)}

{FOK, )| F(\ K1, f1) 2 FOXg, Kof + K, ffo}}
{F(M/2a, K, f1/f2) | K < K1 — K2 f1/ fo}

[FOuf2a, K, A1/ f2) | K(z,5) < Ky(2,8) — Ka(w, 8) fi(z)/ [2(x) }-
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(2) We have

F(Ag, Kz, fo) \ F(A1, Ky, f1)

={F(\ K, f)| F(\, Ky, () € FQOg, Ka, f2) * F(L K, )}
={F(\ K, f}| F(M, K1, fi) 2 F(g, Ky, fo) - F(A K, )}

= {F(\K, f) | F(M, Ky, f1) 2 F(QeA K fa+ Ko, fof )}
={F(M/X, K, i/ f2) | K < (K1 — K3}/ fo}

= {F(M/r, K, i/ o) | K(z,5) £ (K1(z,s) — Ka(z,5))/ fo(z)}. W

Theorem 8.3.16. The subhypergroupoid {F,*) is a closed, invertible,
reflerive and normal subhypergroup of (F, x).

Proof. Firstly, notice that the subhypergroupoid (F;, *) is a subhypergroup,
since it satisfies the axiom of reproduction, i.e.,

FsxFi=F xF=F foral F=F(1,K, f)€F.

Clearly, F'(1, K, f)*F, C Fy. In order to prove that 7; C F(1, K, f)*Fi,
let us recall that

F(l:K:f)*fl ':'F(lﬂva)*{FQ(la-'K%fb)}
= JIHFQ, KL, fof | Kaf + K < K1},

Ky fo

For any F3(1, K3, f3) € F; let us choose fo = f3/f and K> < (K3 — K)/7.
Then F3 € F'x F; C Fx F;. The second equality F; x F = F, can be proved
analogously. Now it is enough to show that the subhypergroup (Fi, ) is
invertible and normal, because invertibility and noermality implies closeness
and reflexivity 