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Abstract: In order to render this paper minimally self-sufficient, we review and specialize the main structure of the 

isomathematics to nuclear constituents as extended and deformable charge distributions under linear and non-linear, local and 

non-local and Hamiltonian as well non-Hamiltonian interactions; we then review and specialize for the nuclear structure the main 

laws of the isotopic branch of hadronic mechanics known as isomechanics; we review and specialize the method for turning 

quantum mechanical nuclear models for point-like nucleons into covering isomechanical models for extended and deformable 

constituents under the most general known realization of strong interactions; we then review and specialize to nuclear structures the 

consequential notion of isoparticles; we then review the ensuing, first known, numerically exact and time invariant representation of 

the magnetic moments of stable nuclides; we then review the structure of the neutron as a bound state according to isomechanics of 

an isoproton and an isoelectron; and we finally review the ensuing three-body structure of the Deuteron. Via the use of the preceding 

advances. We then present, apparently for the first time, a numerically exact and time invariant representation of the spin of stable 

nuclides, firstly, via their approximation as isotopic bound states of isodeuterons, isoneutron and isoprotons, and secondly, via their 

reduction to isobound states of isoprotons and isoelectrons. Some observations on the nuclear configurations so obtained have also 

been presented in the case of the first model and in view of the second option we have identified in isoelectrons the nuclear glue 

which tightly holds isonucleons of stable nuclide in the atomic nucleus in the preferred orientation of their intrinsic spins. In 

Appendix A, we provide a technical review specialized for the first time to nuclear physics of the Lie-Santilli theory and its main 

application to the notion of isoparticles as isoirreducible isounitary isorepresentations of the Lorentz-Poincaré-Santilli isosymmetry. 

Keywords: Hadronic Mechanics, Nuclear Magnetic Moments, Nuclear Spins 

 
PACS: 21.10. Hw; 21.30.-x; 21.60. De; 21.30. Fe 
This paper is dedicated to the memory of Enrico Fermi who: 

expressed doubts as to whether conventional geometries apply 

to the structure of particles; supported the introduction of the 

size of nucleons for basic advances in nuclear physics; and 

suggested that the anomalous magnetic moment of nuclei may 

be due to the deformation of their charge distributions under the 

strong nuclear forces [1], all visions that are quantitatively 

studies in this paper. 

1. Introduction 

In the authors view, quantum mechanics is exactly valid for 

the atomic structure, but it is only approximately valid for the 

nuclear structure because quantum mechanics achieved a very 

accurate representation of atomic data, compared to the known 

inability by quantum mechanics to achieve an accurate 

representation of nuclear data, thus supporting the historical 

argument by Einstein, Podolsky and Rosen according to which 

quantum mechanics is “incomplete" [2]. 
A first reason for the above dichotomy is the fact that the 

mathematics underlying quantum mechanics (including the 

local-differential calculus, functional analysis, Hilbert spaces, 

Lie algebras, etc.) can only represent a finite number of isolated 

point-particles moving in vacuum, which conditions are known 

as characterizing exterior dynamical problems. The abstraction 

of particles into dimensionless points is evidently effective for 

the atomic structure due to the large mutual            
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distances of the atomic constituents, but the same abstraction is 

ineffective for the nuclear structure because nuclear constituents 

consist of extended charge distributions in conditions of partial 

mutual penetration, which conditions are known as 

characterizing broader interior dynamical problems (Figure 1). 

 

 
Figure 1. A conceptual rendering (top view) of the abstraction of the nuclear 

structure as a sphere with isolated point-particles in its interior which is 

necessary for the applicability of the mathematics underlying quantum 

mechanics, namely, the local-differential calculus with related Hilbert spaces 

and Lie’s theory. By contrast (bottom view), the nuclear structure consists of 

hyperdense, extended charge distributions in conditions of partial mutual 

penetration, as one can verify by the fact that nuclear volumes are generally 

smaller than the sum of the volumes of the constituent protons and neutrons. In 

the authors view, the inability by quantum mechanics to achieve an exact 

representation of nuclear data is due to the evident insufficiency of the 

abstraction of the nuclear structure depicted in the top when compared to the 

physical reality of the bottom view. This first insufficiency establishes the 

fundamental need of a basically new mathematics for the representation of 

extended charge distributions as they occur in the nuclear reality (Section 2).  

A second reason for the above dichotomy is that the 

fundamental symmetries of non-relativistic and relativistic 

quantum mechanics, the Galileo and Poincaré symmetries 

respectively, are solely valid for a Keplerian system, namely, for 

a system of particles orbiting around a heavier center, as it is the 

case indeed for atomic structures. By contrast, as stressed in the 

recent literature, nuclei do not have nuclei and, therefore, the 

symmetries valid for systems of point particles with a Keplerian 

nucleus cannot possibly be exactly valid for structurally 

different systems of extended particles without a Keplerian 

nucleus (Figure 2). 
A third reason for the above dichotomy is that none of the 20

th
 

century sciences, including quantum mechanics and special 

relativity, can represent Fermi’s historical hypothesis that the 

deviations of the values of nuclear magnetic moments from the 

predictions of relativistic quantum mechanics are due to 

deformations of the charge distributions of protons and neutrons 

(nucleons) when under the strong interactions of a nuclear 

structure, with consequential alteration (called in this paper 

mutation) of their intrinsic magnetic moments (Figure 3). This 

insufficiency is evidently due to the fact that dimensionless 

points cannot experience deformations. Therefore, a 

mathematics which can solely represent dimensionless points is 

structurally unable to represent the deformation of extended 

charge distributions as they occur in the nuclear reality. 
A fourth reason for the above dichotomy is the fact that 

dimensionless points can only experience interactions at a 

distance, thus derivable from a potential (interactions 

technically known as variationally self-adjoint [3a]). In view of 

this basic feature, recent representations of the strong nuclear 

force have reached un-reassuring limits, such as a Hamiltonian 

with forty or so potentials, without the desired achievement of 

an exact representation of nuclear data. In the authors view, it is 

necessary to complement these conventional studies with the 

admission that the interactions between extended charge 

distributions under conditions of partial mutual penetrations are 

of contact type, thus not being derivable from a potential 

(interactions technically known as variationally non-selfadjoint 

[3a]). Consequently, it is recommendable to ascertain whether 

some of the potential components of nuclear Hamiltonians 

should be replaced with non-Hamiltonian representations. 

 
Figure 2. A conceptual rendering of the second impossibility for quantum 

mechanics to be exactly valid for the nuclear structure, which is given by the 

fact that the basic symmetries of non-relativistic and relativistic quantum 

mechanics, the Galileo and Poincaré symmetries respectively, only apply for 

Keplerian systems of particles orbiting around a heavier nucleus. By contrast, R. 

M. Santilli has stated several times in his writings that “nuclei do not have 

nuclei," thus implying a necessary breaking of said fundamental symmetries, 

with consequential lack of exact character of non-relativistic and relativistic 

quantum mechanics for the nuclear structure. The same breaking is confirmed 

by numerous additional evidences, such as the fact that the partial mutual 

penetration of nucleons in a nuclear structure implies the presence of contact 

interactions not representable with a Hamiltonian, thus implying the 

inapplicability of the entire Lie theory, let alone of Lie’s symmetries, due to its 

strictly Hamiltonian character. This second insufficiency establishes the need 

for a covering of Lie’s theory for the construction of the symmetries of systems of 

extended particles without Keplerian nuclei under Hamiltonian as well as 

non-Hamiltonian internal forces (Section 2 and Appendix A).  



58 Anil A. Bhalekar and Ruggero Maria Santilli:  Exact and Invariant Representation of Nuclear Magnetic Moments and 

Spins According to Hadronic Mechanics 

A fifth reason for the above dichotomy is that quantum 

mechanics is certainly effective for the description of nuclear 

fissions due to the effective representation of the fission debris 

as point particles, but quantum mechanics has proved to be 

ineffective for the achievement of nuclear fusions for all the 

above indicated reasons, plus the fact that nuclear fusions are 

structurally irreversible over time while quantum mechanics is 

structurally reversible, hence the need for a covering of 

quantum mechanics that can represent extended charge 

distributions with Hamiltonian and non-Hamiltonian 

interactions in generally irreversible conditions. 
In this paper, we shall briefly outline decades of research by 

one of us (R. M. Santilli) [3-33] for: the construction of a 

generalization of 20
th

 century mathematics suitable to represent 

extended particles (Figure 1); the generalization of Lie’s theory 

for the construction of symmetries of systems of extended 

particles without Keplerian center under Hamiltonian and 

non-Hamiltonian internal forces (Figure 2); the representation 

of Fermi’s historical hypothesis on the deformability of 

nucleons; and the consequential, first known, exact and time 

invariant representation of nuclear magnetic moments (Figure 

3). 

 
Figure 3. A third insufficiency of quantum mechanics for nuclear structures is 

given by the historical prediction by Enrico Fermi [1] that the anomalous 

values of nuclear magnetic moments is due to deformations of the charge 

distribution of protons and neutrons when under the strong interactions of the 

nuclear structure, with consequential alteration of their conventional magnetic 

moments. In fact, a quantitative treatment of Fermi’s teaching requires the use of 

the deformation theory which is known to be incompatible with quantum 

mechanics. This third insufficiency establishes the need that the novel 

mathematics and Lie’s theory for extended charge distributions should be 

constructed in such a way to be compatible with the deformation theory “ab 

initio" (Section 2 and Appendix A).  

Since the advances considered here [3-33] are only known to 

a restricted number of experts, and they are generally unknown 

to the nuclear physics community, in order to render minimally 

understandable the advances presented in this paper, it has been 

necessary to: outline in Section 2 the novel mathematics (known 

as isomathematcs for the reversible case and genomathematics 

for the irreversible form); outline in Section 3 the corresponding 

invariant branches of hadronic mechanics (known as 

isomechanics and genomechanics respectively); outline in 

Section 3.1 the non-relativistic nuclear isomechanics; outline is 

Section 3.2 the relativistic nuclear isomechanics; outline in 

Section 4 a simple construction of iso- and gene-mechanics; 

outline in subsequent sections the exact and time invariant 

representation of nuclear magnetic moments (Section 5), the 

test of spinorial symmetry by neutron interferometry (Section 6), 

and then outline the emerging new structure of the neutron 

(Section 7), deuteron and nuclei at large (Section 8). Above all, 

it has emerged as recommendable to formulate advances [3-33] 

in a form directly applicable to nuclear physics, rather than 

leaving such an adaptable to the imagination of non-initiated 

readers. 
We shall then present, apparently for the first time, the 

achievement of an exact and time invariant representation of the 

spin of stable nuclide which, thanks to the above advances, is 

compatible with the mutation of the intrinsic magnetic moments 

of nucleons, and then indicate the implications of these 

advances in nuclear physics for basically new, environmentally 

acceptable forms of nuclear energies. For the sake of self 

sufficiency of this presentation we start with a very brief 

description of stable and unstable nuclides in Section 9, a brief 

description of new and old vistas of nuclear forces with the 

earlier conjectural assertions of the stability of nucleons in 

Section 10. In Section 11 we have developed notations to 

represent isoneutrons and isodeuterons. We have presented in 

Section 12 two models of nuclear configuration, namely (i) 

considering isodeuterons, isoneutrons and isoprotons as 

isonucleons (Section 12.1) and (ii) isoprotons and isoelectrons 

as isonucleons (Section 12.2). These nuclear configurations 

were written down in a way to be commensurate with the 

experimental nuclear spins and tabulated in Section 13 for both 

the nuclear models stated above. We have also presented our 

observations in Section 14 on these nuclear configurations with 

an idea to provide the facts about the isonucleons within the 

nuclides that would help in developing corresponding theories 

of nuclear stability and generate new explanations of other 

nuclear properties (Sections 14.1 and 14.2). In the second model 

of nuclear configuration arrived at in this paper we propose, 

apparently for the first time, that the isoelectrons serve as the 

nuclear glue that tightly holds the nuclear isoprotons together in 

the atomic nucleus (Section 14.2). For the sake of ready 

reference we have also presented the Lorentz-Poincaré-Santilli 

Isosymmetry and its characterization of isoparticles in 

Appendix A. 

2. Elements of Iso-Mathematics and 

Geno-Mathematics 

The first known time-invariant representation of extended 

and deformable charge distributions in interior dynamical 

conditions was proposed by Santilli in the early 1980s [3b] via 

the isotopic (in the sense of being axiom-reserving) lifting of the 

associative product AB  between generic quantities (numbers, 

functions, matrices, operators, etc.) into the form, todays known 

as Santilli isoproduct,  

ˆ ˆ= =AB AB ATB A B               (1) 

where T̂  is solely restricted to be invertible, but otherwise 

possesses an arbitrary dependence on local variables such as: 
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time t , coordinates r , velocities v , density  , temperature 
 , index of refraction  , frequency  , wave functions  , 

etc., ˆ ˆ= ( , , , , , , , ,...)T T t r v      . 

When T̂  is positive-definite and invariant under 

time-reversal t t , it is called isotopic element, and when it is 

positive-definite (or merely Hermitean) but non-invariant under 

time reversal, it is called the genotopic element. 

The representation of extended and deformable charge 

distributions is then immediately achieved via realizations of 

T̂  of the type [3]  

† 3( ,...)

2 2 2 2

1 2 3 4

1 1 1 1ˆ = . , , , drT Diag e
n n n n

  
 
 
 

       (2) 

where: = ( , , , , , , , ,...), =1,2,3,k kn n t r v k     represent, in 

this simple case, the deformable semi-axes of a nucleon 

assumed for simplicity to be an ellipsoid; 4 =n   characterizes 

the density of the nucleon considered; all quantities 

, =1,2,3,4n  , called characteristic quantities of the nucleon 

considered, are normalized to the value = 1n  for exterior 

conditions in vacuum; ( ,...)  is a positive definite function 

or operator characterizes all non-linear interactions not 

representable with the conventional Hamiltonian; and the 

integral in the exponent of Eq. (2) tends to zero at mutual 

distances of particles much bigger than their charge radius 

(about 131 fm = 10 cm), thus implying the limit  

1 fm

ˆ =1,lim
r

T                   (3) 

for which  

 
1 fm

ˆ = .lim
r

A B AB
              (4) 

When T̂  verifies the conditions  

† †ˆ ˆ ˆ ˆ( ,...) = ( ,...) = ( ,...) = ( ,...)T t T t T t T t        (5) 

it is called the isotopic element, while under the verification of 

the conditions  

† †ˆ ˆ ˆ ˆ( ,...) = ( ,...) ( ,...) = ( ,...)T t T t T t T t         (6) 

T̂ is called the genotopic element. Conditions (5) characterize 

the use of isomathematics, while conditions (6) characterize the 

use of the broader genomathematics. The most important 

mathematical difference is that the conventional Lie theory with 

historical product between Hermitean operators  

[ , ] ,A B AB BA                  (7) 

at the foundations of quantum mechanics is lifted in the former 

case into Santilli Lie-isotopic theory with basic product  

ˆ ˆˆ ˆ[ , ] = = ,A B A B B A ATB BTA


            (8) 

while in the latter case Lie’s theory is lifted into the broader 

Santilli Lie-admissible theory with covering product  

ˆˆ ˆ ˆ( ) = ( ,...) ( ,,,,) = ,,A B AT t B BT t A ARB BSA        (9) 

† †= ,  = ,  ,R R S S R S            (10) 

according to conceptions, formulations and terminologies first 

introduced by Santilli in Ref. [3b]. 
It should be indicated from the upset the importance of 

conditions (5) and (6) for nuclear physics. In fact, conditions (5) 

characterize a stable nuclide composed by extended nucleons 

when isolated from the rest of the universe, thus being 

reversible over time. By contrast, conditions (6) characterize 

irreversible nuclear reactions, such as nuclear syntheses. 
In fact, as it is well known, the time reversibility of quantum 

mechanics is ultimately due to the invariance of the Lie product 

under anti-Hermiticity (for hermitean operators A and B)  

†[ , ] [ , ] .A B A B                (11) 

It is then easy to see that isomathematics and its ensuing 

physical formulations are also time reversal invariant due to the 

invariance of the Lie-Santilli isoproduct under anti Hermiticity,  

†[ , ] [ , ] .A B A B
 

              (12) 

By contrast, genomathematics and its related physical 

formulations are irreversible over time precisely because 

Santilli’s Lie-admissible product violates, by central conception, 

the invariance under anti-Hermiticity  

†( , ) ( , ) .A B A B
               (13) 

Monograph [3b] presented the lifting of most 20
th

 century 

applied mathematics via the systematic lifting of all products 

into the isotopic form (1), although all liftings were formulated 

on conventional numeric fields. 
Since this paper deals with magnetic moments and spins of 

stable, thus reversible nuclides, we shall mainly use 

isomathematics under basic conditions (5). However, it is 

recommendable for the non-initiated reader to know that that 

the extension to irreversible nuclear processes is immediate, 

thus being recommendable when applicable. 
Subsequently, Santilli discovered that the emerging 

formulations were not invariant over time, that is, they failed to 

predict the same numerical values under the same conditions at 

different times. In order to resolve this basic insufficiency, 

Santilli re-examined in 1993 [4] conventional numeric fields 

( , ,1)F n   with classification of numbers n  into real, complex 

or quaternionic numbers n , conventional associative product 

=nm n m F   and basic multiplicative unit 1, 

1 = 1 =  n n n n F    . 
In this way, Santilli [4] discovered that the axioms of numeric 

field also admit solution with an arbitrary basic unit Î , under the 

conditions that: 1) all numbers are lifted in the isonumbers  



60 Anil A. Bhalekar and Ruggero Maria Santilli:  Exact and Invariant Representation of Nuclear Magnetic Moments and 

Spins According to Hadronic Mechanics 

ˆˆ = ;n n nI                  (14) 

2) all products are lifted into the isoproduct (1),  

ˆˆ = ;nm n m nTm               (15) 

and 3) the conventional unit 1  of 20th century numeric field is 

lifted into the isounit under the sole conditions of being 

positive-definite and being the inverse of isotopic element T̂ ,  

1ˆ =
ˆ

I
T

                    (16) 

Under these conditions all axioms of a numeric field are 

verified and Î  is the correct left and right multiplicative unit,  

ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ= =     .I n n I n n F               (17) 

Under conditions (4), Î  is called Santilli isounit, while 

under broader conditions (5) it is called Santilli genounit [4]. 

This lead to the discovery of new numeric fields ˆ ˆˆˆ( , , )F n I  

called isofields under conditions (4) and genofields under 

conditions (5) with corresponding novel isoreal, isocomplex 

and isoquaternionic numbers and general, genocomplex and 

genoquarternionic genonumbers ˆˆ =n nI . 

Following the discovery of isonumbers and genonumbers, all 

theories originally formulated on conventional fields [3] where 

lifted into formulations defined over isofields and genofields [5, 
6], but the crucial time invariance of the numeric predictions 

was still missing. 

In order to resolve this impasse, Santilli reinspected in 1995 

the Newton-Leibnitz differential calculus and discovered that, 

contrary to popular beliefs in mathematics and physics for 

centuries, the Newton-Leibnitz differential calculus depends on 

the assumed basic multiplicative unit because, in the event said 

unit has a functional dependence on the differentiation variable, 

the ordinary differential dr  must be generalized into the form 

first introduced in memoir [7]  

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ= [ ( ,...)] = ( ,...),dr Td rI r dr rTdI r        (18) 

and called isodifferential under conditions (4) and 

genodifferential under conditions (5), with corresponding 

isoderivatives (and genoderivatives) [7]  

ˆ ˆˆ ˆˆ ˆ ˆ( ) ( ) ( ,...)ˆ ˆˆ= ( ) ,
ˆ ˆ ˆˆ

f r f r I r
f r T

r rr

  


 
       (19) 

where, for consistency, coordinates and functions must be 

isoscalars, that is, have values in F̂  with structures  

ˆˆ ˆˆ ˆ ˆ ˆ ˆ= ( ,...),  ( ,...) = ( ,...) ( ,...).r rI r f r f r I r       (20) 

It should be stressed that the representation of nuclear 

magnetic moments and spin presented in this paper depends 

crucially on a non-potential component of the nuclear force due 

to partial mutual penetration of the charge distribution of 

nucleons, which non-potential components is represented 

precisely via the isodifferential calculus and, therefore, with the 

novel additional terms in the r.h.s. of Eqs. (18) and (19). 
In memoir [7] Santilli introduced a third broader mathematics 

under the name of hypermathematics which is given by a 

covering of genomathematics when the genounit is 

multi-valued (rather than multi-dimensional), e.g. of the ordered 

type 
1 2

ˆ ˆ ˆ ˆ= { , ,..., }nI I I I  w here n  can assume an arbitrarily 

larger values such as 50= 10n  as needed for biological 

structures. 

The discovery of the generalized differential calculus signed 

the achievement in memoir [7] of mathematical maturity in the 

generalizations of 20
th

 century applied mathematics at large, 

that stimulated seminal advances in mathematics (see 

representative monographs [8-11]) as well as generalized 

physical and chemical theories, including novel industrial 

applications indicated below. 
The above studies lead to the following chain of generalized 

mathematics: 
1. IsoMathematics, which is used for the representation of 

stable and isolated, thus time-reversible nuclei composed 

by extended nucleons in conditions of partial mutual 

penetration and is characterized by the lifting of the 

totality of 20
th

 century applied mathematics in such a way 

to admit a positive-definite and time-reversal invariant 

isounit (5) at all levels of treatment.  
2. GenoMathematics, which is used for the representation of 

time-irreversible nuclear reactions and it is characterized 

by a dual lifting of the totality of 20th century mathematics 

in such a way to admit a positive-definite 

time-noninvariant genounit (6) at all levels of treatment, 

one genounit, ˆ ˆ( ,...) =1/ ( ,...)I t T t  characterizes motion 

forward in time, and its time reversal image 
ˆ ˆ( ,...) = 1/ ( ,...)I t T t   characterizes motion backward in 

time, irreversibility over time being assured by 

inequivalent forward and backward genounits 
ˆ ˆ( ,...) ( ,...)I t I t  .  

The knowledge of the above distinct mathematics is 

important for researchers to prevent the use of time 

non-invariant isounits that may eventually imply irreversible 

contributions for the structure of isolated and stable nuclei, with 

evident inconsistencies. 

Important independent contributions on the foundations of 

isomathematics and genomathematics can be found in 

monographs [8-11] and in their bibliographies. 

The main methodological problems for the representation of 

nuclear magnetic moments and spins are the following: 
2.I: The representation of the deformation of the charge 

distribution of protons and neutrons when members of a nuclear 

structure and the ensuing mutation of their intrinsic magnetic 

moments according to Fermi’s historical hypothesis [2]. This 

first central problem was solved by Santilli via the use of the 

isotopies of the rotational symmetry [12], as reviewed in the 
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next section and in Appendix A. 
2.II: The representation of the mutation of the intrinsic 

magnetic moments of nuclear constituents in a way compatible 

with the conventional ten conservation laws of total physical 

quantities (the conservation of the total angular momentum, 

total linear momentum, the center of motion, and the total 

energy), which must hold for all isolated bound states of 

particles. This problem was solved by Santilli by showing the 

isotopies of the Lorentz and of the Poincaré symmetry [15-17] 

do verify indeed said conventional total conservation laws 

because in the lifting of Lie’s theory into the Lie-Santilli 

isotheory the generators of Lie algebras (that represent said 

conservation laws) remain unchanged, and only their products 

lifted for the representation of extended shapes and 

non-Hamiltonian interactions. 
2.III: The representation of the spin of stable nuclides in a 

way compatible with mutation of the magnetic moments of 

protons and neutrons under strong nuclear interactions. This 

problem will be solved, apparently for the first time in this paper, 

by showing that the isotopies of the (2)SU -spin symmetry do 

indeed admit a “hidden" degree of freedom directly connected 

to the mutation of spin. 
The central physical notion used in this paper for the solution 

of the above problems and for the characterization of 

extended-deformable nuclear constituents in conditions of 

partial mutual penetration is that of isoparticle, specialized to 

isoprotons, isoneutron and isoelectrons. 
The understanding of the notion of isoparticle and, therefore, 

of this paper, requires at least some knowledge of the central 

branch of isomathematics used for the derivation of the new 

notion of isoparticle, which is given by the isotopies of Lie’s 

theory, originally proposed by Santilli in monograph [3b], 

including the isotopies of universal enveloping associative 

algebras, Lie’s theorem and Lie’s transformation groups. 
Among a rather large literature in the field, Santilli’s papers 

specifically devoted to the notions of isoparticle are given by 

the isotopies of: the rotational symmetry (3)O  [12]; the 

(2)SU  spin symmetry [13, 14]; the Lorentz symmetry (3.1)O  

in classical [15] and operator [16] forms; the isotopies of the 

Poincaré symmetry (3.1)P  [17]; the spinorial covering of the 

Poincaré symmetry [18]; and the isotopies of the Minkowskian 

geometry [19]. The notion of isoparticle was then studied in 

details in Refs. [20-23]. 
In view of these advances, the isotopies of Lie’s theory are 

today called the Lie-Santilli isotheory (see independent studies 

[24-33]). 
Due to its fundamental character for the exact and time 

invariant representation of magnetic moments and spins, the 

notion of isoparticle will be reviewed in detail in Appendix A. 

3. Elements of Nuclear IsoMechanics and 

GenoMechanics 

The non-unitary covering of quantum mechanics was 

proposed under the name of hadronic mechanics by R. M. 

Santilli in monograph [3b] of 1981 (see page 112 for the 

proposal of the name of the new mechanics.) The original 

proposal comprised two branches, the isotopic branch with 

Lie-isotopic structure (8) and in the genotopic branch with 

Lie-admissible structure (9). 
A fundamental contribution to hadronic mechanics (which is 

fully valid nowadays) was provided in paper [34] of 1982 by the 

mathematician (late) H. C. Myung and R. M. Santilli via the 

isotopies and genotopies of the Hilbert space (today known as 

the Hilbert-Myung-Santilli isospace and genospace 

respectively) and the indication that hadronic mechanics 

removes the divergencies of quantum mechanics via the 

isotopies of Dirac Delta “distribution" (today known as the 

Dirac-Myung-Santilli isodelta “function" and the fast 

convergence of isotopic series (see, e.g., Ref. [35]). 
These initial studies were formulated on a conventional field 

and elaborated via the conventional differential calculus. 

Hadronic mechanics achieved a mature formulation only 

following the discovery of the novel isonumbers and 

genonumbers [4] in 1993 and of the isodifferential and 

genodifferential calculus [7] in 1996 (see monographs [22] for a 

general presentation of hadronic mechanics, including the 

fundamental notion of iso- and geno-particles). 
With the passing of time, the above indicated two branches of 

hadronic mechanics acquired the names of isomechanics and 

genomechanics, respectively. Since these names have received 

a rather wide acceptance by the physics community, they have 

been adopted in this paper. 
The reader should be aware that hadronic mechanics has a 

variety of applications in disparate fields all dealing with 

interior dynamical problems. The main reference for the 

specialization of isomechanics to nuclear physics is given by 

memoir [26] of 1998, while the main reference for 

genomechanics is given by memoir [37] of 2006. 
Since hadronic mechanics at large, as well as isotopic and 

genotopic branches are essentially unknown to the nuclear 

physics community, it appears recommendable to provide in 

this section an elementary review specialized to nuclear physics 

sufficient for the understanding of the derivation of exact and 

invariant magnetic moments and spins, with the understanding 

that an in depth study of memoirs [35, 36] is essential for serious 

knowledge. 

3.1. Elements of Non-relativistic Nuclear IsoMechanics 

Non-relativistic nuclear isomechanics is characterized by the 

lifting of Planck’s constant  into a 3 3 -dimensional, 

positive-definite space isounit [4, 7]  

2 2 2

ˆ ˆ 1 2 3
ˆ ˆ  = 1/ = .( , , ) > 0r rI T Diag n n n        (21) 

where the quantities 
2 , =1,2,3kn k : represents ab initio the 

semiaxes of the extended-deformable shape of nucleons when 

members of a nuclear structure (see the l.h.s. of Figure 3); are 
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normalized to the perfect sphere 
2 = 1kn  in empty space; are 

restricted to be positive-definite and time-reversal invariant; 

and possess an unrestricted functional dependence on all needed 

local variables (see Section 1) 
2 2 ˆ ˆ ˆˆ ˆ ˆ ˆ= ( , , , , , , , ,...) > 0k kn n t r v      , where the “hat" denotes the 

referral to internal variables, while variables without a “hat" 

refer to those of the external observer. 
Note that we have ignored in Eq.(21) for simplicity the 

multiplicative exponential term representing internal non-linear, 

non-local and non-Hamiltonian interactions as in Eq. (2) since 

this term can be embedded into the 2

kn  via their simple 

redefinition. 
Assumption (21) implies that all possible products AB  of 

conventional nuclear formulations (including the product of 

numbers, functions, matrices, etc.) have to be lifted to the 

isoproduct [4],  

ˆ
ˆˆ  = .rAB A B AT B               (22) 

with Lie-isotopic structure (8) [4]. 
Assumptions (21) and (22) also implies that conventional 

numeric fields ( , , )F n I  are lifted into isofields ˆ
ˆ ˆˆˆ( , , )rF n I  

with isonumbers ˆ
ˆˆ = rn nI  [4]. 

Note that, in the event the characteristic quantities n s  

depend on time in a way not invariant under time-reversal, 

instead of the single unit (21) and product (22) for action to the 

right and to the left, we would have the genoproduct and 

genounit for motion forward in time [36]  

>ˆ  > = ( ,...) ,  =1/ ( ,...),AB A B AT t B I T t      (23) 

and the genoproduct and genounit for motion backward in time  

< ˆ  < = ( ,...) ,  ( ,...) ( ),  =1/ ( ,...)AB A B AT t B T t T t I T t      (24) 

with Lie-admissible structure (9). 
Therefore, the use of time-reversal non-invariant quantities 

, =1,2,3kn k  for the study of a stable, time-reversal invariant 

nuclear structure would imply the inclusion of un-warranted 

irreversible contributions that should solely be admitted for 

irreversible nuclear reactions [36]. 

Nuclear isomechanics is additionally characterized by the 

lifting of time t  into the isotime  

ˆ
ˆˆ=   =ext int t

t t t t I               (25) 

where extt  is the time of the external observer, intt  is the 

intrinsic time in the interior of nuclei, and ˆ
tI  is different than 

ˆ
rI , both dimensionally and numerically. 

The representation of nuclear magnetic moments and spins 

has been achieved in the above stated paper via the simpler case 

in which ˆ
ˆ = 1
t

I  and the sole use of the time of the external 

observer = extt t . Consequently, isotime will be ignored for 

simplicity. 

Nevertheless, the non-initiated reader should be aware that, 

on strict technical grounds, isomechanics implies that the time 

in the interior of nuclei is generally different than the external 

time [22]. 

The carrier isospace of isocoordinates ˆ
ˆˆ = rr rI  is given by 

the Euclid-Santilli isospace [7] ˆˆ ˆˆ( , , )E r I  with isometric 

ˆ
ˆ ˆ= rT   where = .(1,1,1)Diag  the conventional Euclidean 

metric, with isoline element  

2̂

ˆ
ˆ ˆ ˆˆ ˆˆ ˆ ˆ= == ( ) =i j i k j

ij i kj rr r r r T r I    

22 2

31 2
ˆ2 2 2

1 2 3

ˆ= r

rr r
I

n n n

 
  

 
                 (26) 

where one should keep in mind that the elements of the 

isometric must be isonumbers as a condition for the isoline 

element to be an isoscalar with value in the isoreal isofield R . 

The understanding of nuclear isomechanics requires the 

knowledge that the isotopies map ellipsoids on conventional 

Euclidean space into the perfect sphere in the Euclid-Santilli 

isospace. This is due to the fact that the deformation of the 

semiaxes 
21 1/k kn  is done with the joint inverse deformation 

of the isounit 
21k kn , by therefore yielding the original value 

of the perfect sphere 1k  in isospace. 

The reconstruction of the perfect sphere in isospace is 

essential for the isomorphism of the Lie-Santilli isorotations 

ˆ (3)O  with the conventional rotations (3)O  under the central 

condition of including the deformation theory (Appendix A). 

The isooperator isospace is given by the 

Hilbert-Myung-Santilli isospace [34] H  defined on isofields 

of isocomplex isonumbers C  with isounit (21), isostates 

ˆˆ ˆ| ( , )t r   and isoinner isoproduct  

ˆ ˆ
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ| | = | | ,rr rI T I                    (27) 

isonormalization 

ˆ ˆ
ˆˆ ˆ ˆ| | =r rI I                    (28) 

and isoexpectation values for an iso-Hermitean isooperator, Q̂ ,  

ˆ ˆ ˆ ˆ
ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ= | | = | |r r r rQ Q I T QT I                 (29) 

with particular properties  

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ| = | ,  | | = .r r r rI I I I                  (30) 

confirming that ˆ
rI  is the correct isounit of the theory. 

The dynamical equations of non-relativistic nuclear 

isomechanics are given by the Schrödinger-Santilli isoequation 

on H  over C  [3, 7]  

ˆ ˆ
ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ| = | = ( , ) ( , ,...) | =rt

i H H r p T            
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ˆ ˆ ˆ ˆ= | = |E E                      (31) 

the isolinear isomomentum, introduced for the first time in 

memoir [7] following the discovery of the isodifferential 

calculus  

ˆ ˆ ˆ
ˆ ˆˆˆ ˆ ˆ ˆ ˆˆ | = | = | ,r r rp i iI                (32) 

the Heisenberg-Santilli IsoEquation in the infinitesimal version 

[3, 7]  

ˆ ˆ

ˆ ˆ
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ= [ , ] = =

ˆˆ
r r

dQ
i Q H Q H H Q QT H HT Q

dt

      (33) 

the integrated version to a finite transform (see Refs [22, 36] for 

the correct formulation in isomechanics)  

ˆ ˆ ˆ ˆˆ ˆ†ˆ ˆ( ) = (0) = (0) ,HTti itTHQ t UQ U e Q e       (34) 

† ,UU I                  (35) 

and the isocommutation rules  

ˆ
ˆˆ ˆ ˆ ˆ ˆ ˆ[ , ] = ,  [ , ] = [ , ] = 0.i j ij i j i jrr p I p p r r         (36) 

where the “hat" on operators denotes their definition on Ĥ  

over Ĉ   

3.2. Elements of Relativistic Nuclear Isomechanics 

Relativistic nuclear isomechanics is characterized by the 

lifting of Planck’s constant  into a 4 4 -dimensional, 

positive-definite, thus diagonalizable isounit (see Refs. [22] and 

the memoir [44])  

2 2 2 2

1 2 3 4
ˆ ˆ  =1/ = .( , , , ) > 0I T Diag n n n n       (37) 

where: the 
2 , =1,2,3kn k  continue to represent deformed 

nucleons; 4n  is a geometrization of the hyperdense medium 

inside nucleons’ the characteristics quantities , =1,2,3,4n   

are subjected to the normalization for the vacuum 
2 = 1n ; the 

multiplicative exponential term as in Eq. (1) is absorbed by the 

n  which have an arbitrary functional dependence on local 

internal variables solely subjected to be invariant under time 

reversal. 

Assumption (35) implies that the totality of all products AB  

of relativistic nuclear isoformulations are lifted into the 

isoproducts ˆ =A B ATB  defined on isofields ˆ ˆˆˆ( , , )I n I . 

Again, care must be exercised in the study of stable nuclei in 

order to prevent the transition from isomechanics to 

genomechanics that occurs whenever the characteristic 

quantities n  are not invariant under time reversal. 

Let ( , , )M x I  be the conventional Minkowski space with 

coordinates
1 2 3 4= ( , , , = )x x x x x t , metric 

2= .(1,1,1, )Diag c   and unit = .(1,1,1,1)I Diag . Then, the 

relativistic isospace of the isocoordinates ˆˆ =x xI  is given by 

the Minkowski-Santilli isospace ˆ ˆˆˆ( , , )M x I  [15, 19] over the 

isofield of isoreal isonumbers R  with isometric  

2

2 2 2 2

1 2 3 4

1 1 1ˆ ˆˆ = = . , , , ,
c

T Diag I
n n n n

 
 

 
 

       (38) 

where the multiplication by Î  is necessary for the elements of 

the isometric to be isoscalars, with isoinvariant  

2̂ ˆˆ ˆ ˆ ˆˆ ˆ ˆ= = ( ) =x x x x x I   

     

22 2 2
231 2

2 2 2 2

1 2 3 4

ˆ= ,
xx x c

t I
n n n n

 
    

 
         (39) 

It is evident that, according to then original conception [15], 

the isotopies of the Minkowski space represent locally varying 

speeds of light 4= /C c n , with consequent mutation of the 

conventional light cone, which features have been shown in 

memoir [38] to be compatible with the abstract axions of special 

relativity. 

However, non-initiated readers should be aware that the 

isotopies reconstruct the perfect light cone in isospace M̂  

including c  as the maximal causal speed. This is due to the fact 

that the speed of light is mutated in the value
2 2 2

4/c c n , while 

the corresponding unit is mutated by the inverse amount 
2

4 41 n , thus preserving the maximal causal speed c  in 

isospace M̂  over the isofield R̂ . 

By linearizing the second order isoinvariant of the 

Poincaré-Santilli isosymmetry (3.1)P  as in the conventional 

case (see Appendix A), one reaches the fundamental equations 

of relativistic nuclear isomechanics which is given by the 

Dirac-Santilli isoequation [18]  

ˆˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) | ( ) =p i m C x

         

ˆ ˆ ˆ ˆ ˆ= ( ) | ( ) = 0.iI imC x

               (40) 

which clearly illustrate the lifting of Plank’s constant (35) when 

compared to the conventional equation, where the 

Dirac-Santilli isogamma matrices have a structure  

2 2

4

2 24

ˆ 001 1
ˆ ˆ= ,  = ,

ˆ 00

k

k

kk

I
i

In n


 







   
   

   
   (41) 

with anti-isocommutation rules  

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ{ , } = = 2 ,T T            
        (42) 

Note in Eq. (38) the replacement of the speed of light c  with 

the isospeed 4= /C c n . This is necessary because c  is no 

longer invariant under the Poincaré-Santilli isosymmetry, while 

C  is indeed invariant (Appendix A). 
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It should be indicated that the above formulation of the 

Dirac-santilli isoequation is solely based on the isotopies of 

spacetime without the isotopies of the spin of nucleons, since 

such an isotopy is sufficient for the derivation of nuclear 

magnetic moments and spins. 
For a general study of the Dirac-Santilli isoequation, 

including the mutation of spacetime and spins as well as in 

regular and irregular realizations, we refer the interested reader 

to memoir [36]. 
The following comments are now in order: 
3.1. By conception and construction, nuclear isomechanics is 

solely valid within regions of space of the nuclear radius (the 

order of 1 fm), because at larger distances the isounit recovers 

the convectional Planck’s constant and, consequently, 

isomechanics recovers quantum mechanics uniquely and 

unambiguously (see Figure 4). 

3.2. Also by conception and construction, nuclear 

isomechanics preserves the axioms of quantum mechanics and 

merely realize them via a broader mathematics. In fact, 

isomechanics and quantum mechanics coincide at the abstract 

realization-free level, to such an extent that they be expressed 

via the same equations only subjected to different realizations. 
3.3. The name "hadronic mechanics" was suggested by 

Santilli [3b] for the representation of “hadrons" at large, thus 

including the representation of protons and neutrons. 

Consequently, nuclear isomechanics has been specifically 

constructed for the study of the nuclear stricture, while its 

covering genomechanics has been constructed to study nuclear 

reactions. 

 
Figure 4. A central feature of hadronic mechanics verified by all its branches is 
that the new mechanics is solely valid at distances of the order of 

131 fm = 10 cm
 because at larger distances it recovers quantum mechanics 

uniquely and unambiguously since at larger distances the isounit recovers 
Planck’s constant.  

3.4. As it is well known, non-linear interactions (here referred 

to nonlinearity in the wave-functions) cannot be consistently 

represented via quantum mechanics since, in this case, they can 

be solely represented with a Hamiltonian ( , , )H r p , with the 

ensuing violation of the superposition and other laws. 

Consequently, quantum mechanics cannot consistently define 

nuclear constituents under non-linear terms of the nuclear force. 

By contrast, nuclear isomechanics can consistently represent 

non-linear terms in the nuclear force because all non-linear 

contributions are embedded in the isounit (or the isotopic 

element), by therefore maintaining the superposition principle 

on isospace over isofields. Additionally, nuclear isomechanics 

reconstructs linearity on isospaces over isofields with evident 

computational advantages. 

3.5. The elementary review of this section has been 

necessarily incomplete to avoid excessive length. Therefore, 

interested readers are suggested to study memoir [36] for more 

technical details and monographs [22] for a comprehensive 

presentation. Particularly important is the acquisition of 

technical knowledge on properties such as: iso-Hermiticity 

coincides with conventional Hermiticity, as a result of which all 

observables of quantum mechanics remain observable for 

nuclear isomechanics; nuclear isomechanics eliminates the 

divergencies of quantum mechanics because all products of 

divergent series are lifted into the form given in Eq. (22) where 

the absolute value of the isotopic element ˆ
ˆ
rT  is very small (see 

the negative sign of the exponent of Eq. (1); nuclear 

isomechanics is a “completion" of quantum mechanics 

according to the Einstein-Podolsky-Rosen argument, thus 

providing a concrete and explicit realization of “hidden 

variables"  via the isotopic element ˆ
ˆ
rT ; and other important 

properties [22, 36]. 

3.6. The replacement of Planck’s constant  into the 

integro-differential operator Î  is a representation of the 

expectation that, when nucleons are represented as expended 

charge distributions in conditions of partial mutual penetration, 

the energy exchange is at least in part continuous. However, the 

deviations from discrete energy exchanges in nuclear is very 

small due to the very small absolute value of the isotopic 

element 2. By contrast, the deviation of quantized energy 

exchanges for a proton in the core of a star are expected to be 

finite due to its total immersion with a hyperdense hadronic 

media for which quantized energy exchanges cannot be even 

defined. 

4. Simple Construction of Isomechanics 

and Genomechanics 

For the benefit of experimental nuclear physicists, it is 

important to note that any given quantum mechanical nuclear 

model can be lifted via an elementary procedure into the 

corresponding isomechanical form, by therefore performing the 

transition from the point-like abstraction of nucleons, to 

extended-deformable nucleons under potential as well as 

contact non-potential interactions. 
Isomechanics is a structurally non-unitary theory when 

formulated on a conventional Hilbert space over a conventional 

numeric field, Eq. (35), while quantum mechanics is unitary. 

Therefore, the novel isomechanical contributions due to the 

extended-deformable character of nucleons as well as to the 

non-potential component of the nuclear force can be represented, 

from Eq. (21), with a non-unitary transform of the type  

† 3( ,...)† 2 2 2 2
1 2 3 4

ˆ= = .( , , , )
dr

UU I Diag n n n n e
  

       (43) 
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It is then easy to see that the application of the above 

non-unitary transform to the “totality" of the formalist of a 

quantum nuclear model characterizes its isomechanical 

formulation in its entirety  

†ˆ ˆ= =1/ ,I I U I U T            (44a) 

† †ˆ = = =n n U n U n U U      

ˆ ˆ=  ,, ,n I F n F                (44b) 

ˆ ˆˆ ˆ† ˆ ˆ= = ( ) ,A A T A A Te U e U I e e I            (44c) 

†( ) =A B U A B U      

† † 1 † ˆ ˆˆ= ( ) ( ) ( ) = ,U A U U U U B U A B          (44d) 

†[ , ] [ ] =i j i jX X U X X U    

† ˆˆ ˆ ˆˆ= [ , ] = ( ) = =k k

i j ij k ij kX X U C X U C X


     

ˆ= ,k

ij kC X                      (44e) 

†| | | | =U U           
† † 1 †= | ( ) | ( ) =U U U U U U          

ˆˆ ˆ ˆ= | | ,I                     (44f) 

| ( | ) =H U H       
† † 1= ( ) ( ) ( | ) =U H U U U U         

ˆ ˆ ˆ= | , .H etc                   (44g) 

It is easy to see that the application of an additional 

non-unitary transform causes the lack of time invariance of the 

isounit  

† ,W W I                    (45a) 

†ˆ ˆ ˆ ˆ= ,I I W I W I                (45b) 

with consequential lack of invariance of the numeric predictions, 

with activation of the catastrophic inconsistencies [37], as well 

as the loss of the represented system. 
However, any given nonn-unitary transform can be 

identically rewritten in the isounitary form on Ĥ  over Ĉ   

† 1/2ˆ ˆ ˆ= , = ,W W I W W T              (46) 

† † †ˆ ˆ ˆ ˆ ˆˆ ˆ= = = ,W W W W W W I              (47) 

under which we have the invariance of the isounit and 

isoproduct [22, 36, 37]  

†ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ= = ,I I W I W I                (48a) 

†ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) =A B W A B W      

† † 1ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ= ( ) ( ) (W T A T W T W T W          

1 †ˆ ˆ ˆ ˆ ˆ ˆ) ( ) =T W T B T W       

† 1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ= ( ) = = , .A W T W B A T B A B etc             (48b) 

from which the invariance of the entire isotopic formalism 

follows. 
Note that the invariance is ensured by the numerically 

invariant values of the isounit and of the isotopic element under 

isounitary transforms,  

ˆ ˆ ˆ,I I I                  (49a) 

ˆ ˆ ˆ ,A B A B A B                    (49b) 

in a way fully equivalent to the invariance of quantum 

mechanics, as expected to be necessarily the case due to the 

preservation of the abstract axioms under isotopies. The 

resolution of the inconsistencies for non-invariant theories is 

then consequential. 
It should be indicated that the above lifting of quantum into 

isomechanical models solely apply for the so-called regular 

representations of the Lie-Santilli isotheory (see Appendix A), 

that can be essentially expressed as representations preserving 

the conventional value of the spin, thus being sufficient for 

nuclear constituents. 
Howsoever, the reader should be aware of the existence of 

irregular representations of the Lie-Santilli isotheory (see also 

Appendix A), which can be indicated as realizations of the 

axioms causing anomalous values of the spin, as expected for a 

proton when in the core of a star subjected to enormous 

pressures under which the very definition of conventional spin 

is technically flawed. 
The lifting of a quantum mechanical nuclear model into the 

covering genomechanical version can be equally done via an 

elementary procedure, by performing the transition from 

time-reversible description to an irreversible one when 

applicable, e.g., for nuclear reactions. 
Recall that genomathematics represent irreversibility by 

embedding the direction of time in the most ultimate quantities, 

the unit and related product. Therefore, the creation of a time 

ordering requires two different non-unitary transforms  

† † †,  ,  ,UU I WW I UW I           (50) 

Then Planck’s constant can be lifted in the form applicable 

for motion forward in time  

> † >ˆ ˆ= = =1/ > 0,I I UIW T         (51) 

with corresponding lifting of all products AB  into the ordered 

genoproduct to the right  

>ˆ> = ,AB A B AT B             (52) 

and lifting of  for motion backward in time  

< † <ˆ ˆ= = =1/ > 0,I I WIU T         (53) 

and corresponding lifting of all quantum products into the form 

ordered to the left  
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< ˆ< = .AB A B A TB              (54) 

The irreversible character of the representation is then 

assured by the different values of the forward and backward 

genounits, with consequential incoherence of the related 

geno-Hilbert spaces (see memoir [37] for details). 

5. Exact and Invariant Representation of 

Nuclear Magnetic Moments 

Following the preparatory advances outlined in the preceding 

sections [3-37], the representation of Fermi’s historical 

hypothesis on the representation of nuclear magnetic moments 

via the deformation of the charge distribution of nucleons 

(Section 1), becomes direct and immediate. 
The first exact and time invariant representation of the 

anomalous magnetic moment of the Deuteron (where the term 

“anomalous" refers to deviations from quantum predictions) 

was achieved by R. M. Santilli in 1993 while visiting the JINRT 

in Dubna, Russia, and was presented at the local International 

Symposium Deuteron-1993 [39]. The results were then 

extended to the representation of the anomalous magnetic 

moments of all stable nuclides in memoir [36] of 1998. 
Let us recall from Refs. [2] that the magnetic moment of 

nucleons can be expressed in terms of their spin  

= S Lg S g L                   (55) 

where the g ’s are the spin and orbital gyro-magnetic factors 

with values in unit of nuclear magnetons for protons and 

neutrons  

5.585nm, 3.826nm,S Sg gp n          (56) 

= 1,  = 0.L L

p ng g                   (57) 

By assuming that = 0L  for the ground state, the quantum 

mechanical (qm) prediction of the magnetic moment of the 

Deuteron is given by  

= = 0.879,qm S S

D p ng S g S              (58) 

while the experimental value is given by ’ 

= 0.857,exp

D                    (59) 

thus implying a deviation of 0.02 nm in excess between the 

prediction of quantum mechanics from experimental values. 
It should be stressed that the “small" character of the 

deviation 0.02 nm may be misleading because it refers to the 

smallest nucleus, with increasingly embarrassing deviations for 

heavier nuclei, thus establishing the need for the exact and 

invariant representation of all nuclear magnetic moments, and 

not only that for the deuteron (Figure 5). 

 
Figure 5. On rigorous scientific grounds, a theory can be considered as being “exactly valid" for given physical conditions when it represents the entirety of the 

experimental data from unadulterated first principles. In this figure we reproduce the so-called “Schmidt limits" representing minimal and maximal values of nuclear 

magnetic moments. In the authors view, the Schmidt limits are a direct representation of the “deviations" of quantum mechanics from nuclear experimental data 

because they represent the deviation from quantum predictions for the simplest possible nucleus, the Deuteron, with increasingly embarrassing deviations for heavier 

nuclei. The achievement of an exact and invariant representation of nuclear magnetic moments according to Fermi’s teaching (Section 1) has been a main motivation 

for the construction of the new isomathematics and isomechanics, as shown in Section 5.  
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Attempts at the achievement of an exact representation of the 

anomalous magnetic moment of the Deuteron have been 

attempted for about one century via the use of quantum 

mechanics without any result that will resist the test of time. 
The first attempts have been done by using an ad hoc 

combination of orbital angular momenta 0L   of the proton 

and the neutron. However, the assumption 0L   is in 

contradiction with the experimental evidence that the isolated 

Deuteron is in its ground state and, therefore, the orbital angular 

momenta of its constituents must be = 0L . 
Numerous additional attempts have been done via relativistic 

corrections and relativistic field theory, by achieving the needed 

exact representation of the Deuteron magnetic moment with the 

introduction of arbitrary parameters or special form factors, thus, 

without deriving the needed value from first adulterated 

principles. 
Additionally, it should be indicated that the reduction of 

protons and neutrons to the hypothetical quarks creates 

additional problems and solves none, because the hypothetical 

orbits of the hypothetical quarks inside nucleons are too small to 

admit a hypothetical polarization suitable for the representation 

of the Deuteron magnetic moment. 
In conclusion, in 1993 the exact representation of the 

magnetic moment of the simplest nucleus, the Deuteron, let 

alone those of heavier nuclei (see Figure 5) had remained 

elusive because the proposed representations have 

contradictions or manipulations that will not resist the test of 

time. 
In this way, Fermi’s historical hypothesis acquires its full 

light when represented via isomathematics and isomechanics. 

The central conceptual and technical notion of nuclear 

isomechanics is that the constituents of nuclei are “isoparticles" 

(Ref. [40] and Appendix A), namely, ordinary particles 

experience a mutation of their “intrinsic" characteristics when 

in conditions of partial penetration of their charge distributions 

(and/or wavepacket) as occurring in the nuclear structure, with 

ensuing exposure to the strong nuclear force.
1 

The first intrinsic characteristics of particles experiencing a 

mutation under nuclear conditions is that of their intrinsic 

magnetic moments. Its explicit expression can be easily derived 

from the Dirac-Santilli isoequation (40) by repeating the 

corresponding procedure for the quantum case, yield the 

following mutation of the intrinsic magnetic moment in the 

transition from particles to isoparticles (see Ref. [39] as well as, 

for more details, Ref. [18])  

4

3

= ,is n

n
                   (60) 

where: (is) stands for isomechanics; we consider the magnetic 

                                                             
1
 The condition of partial mutual penetration of the charge distributions of protons 

and neutrons when nuclear constituents, can be easily derived by comparing the 

experimental values of nuclear volumes with those of protons and neutrons. 

moment along its symmetry axis, as usual; 3n  is the deformed 

semiaxis in the third direction; and 4n  a geometrization of the 

hyperdense medium inside nucleons. 

We should note the use the upper symbol  , rather than ̂ , 

since the latter indicates elements of isofields because the use of 

the symbol ̂  would indicate the transition from a scalar to an 

isoscalar (Section 2), which is merely given by the 

multiplication of the conventional magnetic moment and the 

isounit,  

ˆ ˆ= ,I                     (61) 

Due to the lack of impact to numerical values, the above 

isoscalar extension will be ignored hereon for simplicity. 

From Eq. (60), we have the following mutation of the 

quantum mechanical magnetic moment (  )  

 4

3

= =is S S S S

D p n p p n

n
g S g S g S g S

n
          (62) 

where we have assumed for simplicity that the mutations of the 

charge distributions of the proton and the neutron are the same, 

since they have essentially the same volume and the same 

hyperdensity. 
The numeric value of 4n  has been the subject of extensive 

phenomenological and experimental studies via the 

Bose-Einstein correlation and other particle experiments, 

resulting in the value (see Refs. [41-44] and Eqs. (6.1.101), page 

864, Vol. IV of monographs [23])  

2

4 4= 0.654,  = 0.355,n n             (63) 

Consequently, under the numeric value of the third semiaxes  

2

3 3= 0.670,  = 0.449,n n             (64) 

we reach the following numerically exact and time invariant 

representation of the anomalous magnetic moment of the 

Deuteron according to isomathematics and isomechanics  

= = 0.857nmis S S

D p ng S g S            (65) 

where we should note the use of slightly different numerical 

values than those used in the original derivation [39] due to 

advances occurred since 1993. 
As one can see, the proton and the neutron are mutated from 

perfect spherical shapes when in vacuum under sole 

action-a-distance electromagnetic interactions, to a oblate 

charge distributions when constituents of the Deuteron, as 

expected in view of their high rotational conditions. 
Note that the deformability of nucleons under strong 

interactions does not imply the alteration of their volume due to 

their hyperdense character. By assuming that the original 

semiaxes are normalized to 1 , we then have the restriction on 

the numeric value of the remaining semiaxes  
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2 2 2

1 2 3

1 1 1
= 3,

n n n
               (66) 

under which we obtain the value of the remaining semiaxes of 

the oblate spheroid under the evident identification  

2 2

1 2 1 2= = 1.635,  = = 2.574n n n n          (67) 

Even though the above values are certainly not suggested to 

be final, we can state that isomathematics and isomechanics 

provides the first known numerical values of the semiaxes of the 

proton and the neutron when constituents of the Deuteron, in a 

way compatible with the numerically exact and time invariant 

representation of the anomalous magnetic moment of the 

Deuteron (Figure 6). 

As indicated earlier, the extension of the above representation 

for the Deuteron was extended to all stable nuclei in memoir [36] 

via the general isomechanics representation of nuclear 

magnetic moments [36]. 

 
Figure 6. A conceptual rendering of the oblate shape of the proton and the 
neutron when constituents of the Deuteron in its ground state achieved, for the 

first time to our knowledge, by nuclear isomechanics from the anomalous 

magnetic moment of the Deuteron, with values of the semiaxes 
2 2 2

3 1 2= 0.449,  = = 2.574n n n  (see Section 5). It should be stressed that the 

construction has been done along the conventional conception of the Deuteron, 
namely, with the proton and the neutron with parallel spins in order to represent 

the spin 1 of the Deuteron. However, quantum mechanical axioms predicts that 

the sole stable bound state between two particles with spin 1/2 is the singlet with 

antiparallel spins, since couplings with parallel spins are predicted to be highly 

unstable due to strong “repulsive" forces. Therefore, in Section 8 we shall first 
review the structure of the Deuteron according to nuclear isomechanics with a 

representation of the spin 1 without structural inconsistencies, and then provide 

a more accurate representation of the magnetic moment of the Deuteron. 

   4 4

=1,..., =1,...,3 3

= ,is S L S L

N pk pk nk nk

k Z k A Zkp kn

n n
g S g L g S g L

n n




   
     

    
                      (68) 

where we have assumed that: all nucleons as nuclear 

constituents nuclei have the same hyper density geometrized by 

4n ; the deformation of the charge distributions may vary with 

the increase of the constituents; and anomalous orbital 

contributions may eventually emerge for heavier nuclei. 

The verification that Eq. (68) provides indeed a 

representation of the magnetic moment of all stable nuclei will 

be shown in a subsequent paper. At this moment we merely 

limit ourselves with the representation later on of the magnetic 

moment light stable nuclei. The following comments are now in 

order: 
5.1. Representation (65) is invariant over time because the 

mutation of intrinsic magnetic moments, Eq. (61) is a 

consequence of the Dirac-Santilli isoequation (which is 

invariant under the Poincaré-Santilli isosymmetry (Refs. [15-18] 

and Appendix A). 
5.2. As one can see, representation (65) does not require the 

mutation of the spin of nuclear constituents because the sole 

mutation of the Minkowski spacetime into isospace (39) 

underlying the Dirac-Santilli isoequaiton (40) has been 

sufficient. This does not exclude extreme physical conditions, 

such as those at the core of stars that may require the mutation 

also of the spin. 
5.3. As clearly shown by Eq. (62), the mutation of the 

intrinsic magnetic moment of nucleons under their conventional 

value of the spin creates the problem of the intrinsic 

compatibility of the approach. This problem is solved in 

Appendix A, where we show that the degree of freedom of 

regular isotopies of the SU(2) spin identified in Refs. [13, 14] 

can represent indeed the mutation of spin, thus achieving full 

compatibility under isomathematics and isomechanics between 

mutation of intrinsic magnetic moments and conventional 

values of spins. 
5.4. We should indicate that value (63) for the geometrization 

of the hyperdense medium inside nucleons has been derived via 

experimental data on different events, such as the fireball of 

proton-Antiproton annihilation in the Bose-Einstein correlation, 

while direct experimental data for nucleons are not available at 

this writing. Therefore, it is possible that value (63) and, 

consequently, value (64), may need revisions following direct 

test on the density of the medium inside nucleons. 

6. Test of the Spinorial Symmetry Via 

Neutron Interferometry 

It is evident that the deformability of protons and neutrons 

under sufficient external forces requires a direct experimental 

verification. The ideally suited test is the so-called 4  neutron 

interferometric experiment which consists of (see Figure 7): a 

thermal neutron beam which is first coherently split into two 

beams by a perfect crystal; one of the two split beams passes 

through the gap of an electromagnet with the magnetic field 

calibrated to such the value 7,496 G causing two complete 

spin flips (720° from which the name 4 ) of the neutron on 

account of its intrinsic magnetic moment 

1.913148 0.000066 N  . The two beams are then coherently 

recombined. Various analysis are then conducted between the 

original beam and the recombined one. 

When electromagnet gap is empty and, therefore, the split 

neutron beam travels in empty space, all known tests confirm 
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the achievement of two complete spin flips in full agreement 

with quantum mechanics. However, in order to avoid stray 

fields, the electromagnet gap is filled up with Mu-metal or other 

heavy metal sheets. In the latter cased, the test essentially 

provides a test of the spinorial symmetry of neutrons under the 

intense electric and magnetic fields in the vicinity of Mu-metal 

nuclei, without any appreciable contributions from the strong 

interactions of Mu- metal nuclei. 
The rather bizarre history of this fundamental test can be 

summarized as follows. The Austrian neutron interferometric 

experimentalist H. Rauch and his Austrian associate A. 

Zeilinger participated to the 1981 Third Workshop on 

Lie-Admissible Formulations, and presented preliminary results 

of a 4  neutron interferometric experiment that was going on 

via thermal neutron beams available at the nuclear facilities in 

Grenoble, France. 
In particular, Rauch and Zeilinger reported at said 1981 

meeting that they were not measuring 720° rotations, by rather 

the following values of minimal and maximal rotations [45]  

o o o= 715.87 ,  = 719.67 ,  = 712.07min max aver       (69) 

which evidently do not contain 720°. In particular, Rauch and 

Zeilinger reported an angle of rotation systematically smaller 

then that expected, a feature referred to as the angle slow-down 

effect and expected to be due to a decrease of the intrinsic 

magnetic moment of the neutron under the strong fields of the 

Mu-metal nuclei. 
The Austrian theoretical physicist G. Eder [46] who also 

attended the indicated 1981 workshop by presenting a 

Lie-admissible mutation of the rotational symmetry 

representing the decrease of the intrinsic magnetic moment of 

the neutron under the considered conditions in agreement with 

data (69). 
Based on these studies, Santilli [47] presented at the same 

1981 workshop the notion of Lie-admissible mutation of 

elementary particles (also called genoparticles under strong 

nuclear interactions considered as external (which is a condition 

to sue the irreversible Lie-admissible formulations). It should be 

noted that the Lie-isotopic notion of isoparticle presented in this 

paper is an evident particular case of the notion of genoparticles 

presented in 1981. 
Immediately following the announcement of the above 

studies, H. Feshback, then chairman of the Department of 

Physics at MIT, strenuously opposed the completion of the 4  

neutron interferometric experiment by Rauch and Zeilinger. the 

opposition, first by Feshback and then by his world wide 

collective was such that Rauch was prohibited the access at his 

own laboratory in Grenoble and was, therefore, prohibited its 

completion (see Refs. [48] and their three volumes of 

documentations). 

 
Figure 7. A schematic view of one of the most fundamental experiments for the past half a century, the 4  neutron interferometric spinorial symmetry experiments 

described in Section 6 [ 45-51]. The lack of resolution of this experiments due to political obstructions [48] is one of the reasons fueling the growing view according 

to which we are currently eyewitnessing one of the biggest scientific obscurantism in the history of mankind.  

Subsequently, Rauch was offered the position of Director of 

the Atominstitut in Wien, Austria, while Zeilinger was invited 

for a one year stay at MIT after which he received a chair in 

physics at an Austrian university. 
Following the above events in the early 1980s, the 4  

neutron interferometric experiment was occasionally repeated, 

but either without heavy metal sheets in the electromagnet gap, 

by splitting the gap into two opposite contributions or in other 

versions essentially assuring the verification of the exact 

spinorial symmetry. 
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To our best knowledge, the current situation (October 2015) 

is the following. On one side, Rauch and Zeilinger have 

dismissed measurements (69) and claim the exact validity of the 

4  symmetry (without any systematic experimental resolution 

on record), as reported by D. Kendellen [49] (see also book 

[50]). 
By contrast, Santilli [51] claims that; 1) an accurate and 

unbiassed comparative analysis of the original and the 

recombined neutron beams show clear deviations from 4  

rotations of at least 1% , even though the neutrons are solely 

exposed to electromagnetic interactions, thus expecting bigger 

deviations under nuclear strong interactions; 2) the 

deformability of the neutron is such a fundamental physical 

problem to require a systematic repetition of the 4  tests; and 

3) Nowadays, the experiment can be repeated for a multiple of 

two complete rotations, with ensuing resolutory results (see Ref. 

[51] for details). 
In the authors opinion, a reason for the incredible c hostility 

by the nuclear physics community against this fundamental 

experiment is the lack of technical knowledge of the Lie-Santilli 

isotheory according to which their fear of the violation of the 

"spinorial" symmetry in the 4  tests has no technical 

foundations because the experiment here considered deals with 

the deformation of the charge distribution of the neutron while 

fully preserving its spin 1/ 2 . In fact, the authors believe that 

the very name "spinorial" symmetry experiment is erroneous 

and misleading, since the Fermi-Dirac character of the neutrons 

remains fully valid under a deformation of their charge 

distribution (Appendix A). 
In the final analysis, the serious scientist should keep in mind 

that perfectly rigid bodies solely exist in academic 

environments but they do not exist in nature. Therefore, the 

serious scientific issue is the measurement of the deformation of 

the charge distribution of neutrons for given sufficiently strong 

external forces, with the understanding that the deformability 

itself should be outside credible doubts. 

7. The Synthesis of the Neutron from the 

Hydrogen 

As it is well known, stars initiate their life as an aggregate of 

Hydrogen. The first nuclear synthesis in the core of a star is that 

of the neutron from the Hydrogen atom according to the 

historical reaction [2]  

  p e n                     (70) 

Deuterium, Tritium and other nuclei are synthesized only 

following the synthesis of the neutron. It is then evident that the 

understanding of the first and most basic synthesis of the 

neutron is crucial for a deeper understanding of the subsequent 

nuclear syntheses. 
Unfortunately, the synthesis of the neutron is vastly ignored 

even at the most important Ph. D. courses in nuclear physics 

because it is incompatible with quantum mechanics and special 

relativity. This is due to the fact that the rest energy of the 

neutron is bigger than the sum of the rest energies of the proton 

and of the electron, as established by the known data  

= 938.272 MeV,  = 0.511 MeV,  = 939.565 MeV,p e nE E E   (71a) 

( ) = 0.782 MeV > 0,n p eE E E          (71b) 

Under these conditions, the Schrödinger equation does not 

yield physically consistent results due to the need for a “positive 

binding energy" resulting in a “mass excess" that are beyond 

any descriptive capacity of non-relativistic quantum mechanics. 
Synthesis (70) is also incompatible with special relativity and 

relativistic quantum mechanics because the conventional Dirac 

equation, which is so effective for the description of the electron 

orbiting around the proton in the Hydrogen atom, becomes 

completely ineffective for the description of the same electron 

when “compressed" inside the proton in the core of a star 

according to Rutherford. 
The proposal to build a non-unitary covering of quantum 

mechanics under the name of hadronic mechanics, including its 

isotopic and genotopic branches, was submitted in monograph 

[3b] precisely for the achievement of a quantitative 

representation of the synthesis of the neutron from the 

Hydrogen, and then apply the results to other nuclear syntheses. 
Following decades of preparatory research [3-51], a 

numerically exact and time invariant representation of all 

characteristics of the neutron in its synthesis form the Hydrogen 

atom was achieved at the non-relativistic level via the 

Schrödinger-Santilli isoequation (31) in Refs. [52-54], and at 

the relativistic level via the Dirac-Santilli isoequations (40) in 

Refs. [18, 54]. 
The first laboratory synthesis of the neutron from a Hydrogen 

gas was done by the Italian priest-physoicist Don Carlo Borghi 

and his associates in the mid 1960s [55]. Santilli conducted 

comprehensive tests for the laboratory synthesis of the neutron 

from the Hydrogen reported in Refs. [56-60]. The above body 

of scientific knowledge is now used by the U. S. publicly traded 

company Thunder Energies Corporation for the industrial 

production of a Thermal Neutron Source (see the, e.g., Ref.[61] 

video [62]. Excellent reviews of the mathematical, theoretical 

and experimental aspects for the synthesis of the neutron from 

the Hydrogen are available in Refs.[63, 64]. 
The following comments are in order: 
7.1. Refs. [52-64] imply that the proton and the electron are 

actual physical constituents of the neutron, although in their 

mutated form known as “isoproton" and “isoelectron" [40] (see 

Appendix A). In fact, one of the necessary condition to achieve 

a numerical representation of all characteristics of the neutron in 

its synthesis from the Hydrogen is that the electron rest energy 

is mutated according to a mechanism today known as 

isorenormalization. 
It should be indicated that these results turn the conjecture of 

undetectable and unconfinable “point-like" quarks to a 
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mathematical abstraction of the structure of hadrons because the 

proton and the electron are the only massive permanently stable 

particles detected to date. As such, they cannot “disappear” (sic) 

at the time of the neutron synthesis to be replaced by the 

hypothetical quarks. Additionally, at the time of the neutron 

decay, quarks cannot “disappear” (sic) while the emitted proton 

and electron “reappear”(sic). 
The name “hadronic mechanics” was suggested in Ref. [3b] 

precisely to permit a basically new structure model of all 

unstable particles with actual physical constituents, generally 

given by massive physical particles produced in their decay 

with the lowest mode. Advances along these lines have been 

reported in memoir [43]. 
It should be stressed that this new structure model of hadrons 

is not in conflict with the standard model of elementary particles 

because quarks remain necessary for its elaboration, although in 

their true scientific meaning of being purely mathematical 

representations of a purely mathematical internal symmetry 

formulated in a purely mathematical complex-valued unitary 

space. 
We merely return to the teaching of all classifications that 

have historically required two different but compatible models, 

one model for the classification into families, and a different 

model for the structure of each element of a given family. The 

same historical teaching is confirmed by the fact that, in the 

transition from the classification to the structure of atoms there 

was the need for a new mathematical and physical theories. 

Similarly, in the transition from the classification of hadrons to 

their structure there is also the need for new mathematics and 

physical theories for the reasons indicated in Sections 1 - 3. 
As a final comment, the serious scholar should be made 

aware of potentially large environmental and societal 

implications in abandoning the conjecture of the hypothetical 

and unconfinable quarks as actual physical constituents of 

hadrons in favor of physical particles in their isotopic form. For 

instance, the admission of the isoelectron as a physical 

constituent of the neutron allows the conception and 

experimental study of a number of basically new clean nuclear 

energies, originally proposed in Refs. [65] and currently under 

study at Thunder Energies Corporation as well as at other 

companies. By contract, the admission of the hypothetical 

quarks as the physical constituents of hadrons prohibits such 

possible environmentally large advances. 
7.2. Refs. [52-64] imply that the neutrino does not appear to 

exist as physical particles, thus creating the intriguing problem 

of seeking alternative conceptions. 
In his studies of synthesis (70), Enrico Fermi [1] had no other 

choice than that of representing the proton as a dimensionless 

point, resulting in the consequentially necessary hypothesis of 

the “neutrino” (meaning “little neutron” in Italian). 
Thanks to the availability of the novel isomathematics 

(Section 2), in Refs. [52-64] we were able to represent the 

proton in its actual shape and dimension. This permitted the 

discovery of a new angular motion and related magnetic 

moment for the constrained rotation of the isoelectron when 

compressed in the hyperdense medium inside the proton (Figure 

8), which new angular momentum is completely absent when 

the proton is abstracted as a dimensionless particle. 

 
Figure 8. A basic novelty in Santilli’s synthesis of the neutron from the 

Hydrogen atom is the appearance of a constrained angular motion of the 

electron when totally immersed within the hyperdense proton. This orbital 

motion eliminates the need for the emission of the hypothetical neutrino; is 

solely permitted by the representation of the proton as extended according to 

hadronic mechanics; and did not exist during Fermi’s time since quantum 

mechanics can solely represents the proton as a massive point [52-63].  

In turn, the constrained orbital motion of the isoelectron 

inside the proton must be equal to the proton spin (evidently to 

prevent that the extended wave-packet of the isoelectron moves 

within and against the hyperdense medium inside the problem), 

resulting in a null total angular momentum of the isoelectron in 

synthesis (70) as a result of which the spin of the neutron 

coincides with the spin of the proton.
2 

The conclusion is that studies [52-64] eliminate any 

possibility for the production of a neutrino in synthesis (70). In 

fact, the emission of a neutrino would violate, rather than verify, 

the conservation of the total angular momentum since the spin 

1/ 2  of the neutrino is represented by the constrained orbital 

angular moment of the isoelectron inside the proton. 

Additionally, reaction (70) already misses 0.782  MeV for the 

synthesis of the neutron. Any need for the additional energy to 

produce the hypothetical neutrino would cause catastrophic 

inconsistencies. 
In a nutshell, Enrico Fermi did salvage the conservation of 

the angular momentum in the synthesis of the neutron with the 

hypothesis of the neutrino, but he did not salvage quantum 

mechanics and special relativity in the same synthesis. 
7.3. Refs. [52-64] have the intriguing implications of 

implying the apparent return to the “continuous creation" in the 

universe as the most plausible way at this moment to explain the 

missing 0.782 MeV for the synthesis of the neutron from the 

Hydrogen atom.  

                                                             
2
 It should be recalled that half-odd-integer angular momenta are prohibited in 

quantum mechanics because they violate the unitarity of the theory, but they are fully 

allowed for the covering isomechanics precisely in view of its non-unitary structure 

(see Refs. [18, 22, 52-54] and Appendix A). 
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One of the biggest mysteries in the synthesis of the neutron 

from the Hydrogen is the origin of the missing 0.782 MeV 

(assuming that the neutrino does not exist, otherwise the 

missing energy would be much bigger). This energy cannot be 

provided by the relative kinetic energy between the proton and 

the electron because at that energy value their cross section is 

virtually null, thus prohibiting any synthesis. 
Additionally, the missing energy of 0.782 MeV cannot be 

provided by the star because, at the initiation of nuclear 

syntheses, stars synthesize up to 
5010  neutrons per second. The 

assumption that the missing energy is provided by the star 

would then imply that the star loses about 
5010  MeV per 

second, under which conditions a star would never initiate the 

majestic event of producing light. 
In an attempt to initiate the solution of this mystery, Santilli 

has suggested that the missing energy of 0.782 MeV is provided 

by space conceived as a universal substratum with a very high 

energy density. via a “longitudinal impulse" (rather than a 

particle) submitted under the name of “etherino" with the 

symbol “ a " (from the Latin aether), thus implying the 

replacement of the quantum mechanical reaction (70) with the 

isomechanical reaction [66]  

  ,p a e n                  (72) 

where one should note the need for the energy carrying impulse 

to be in the left (rather than the right) of the reaction, and that the 

use in the left of the antineutrino would increase the missing 

energy due to its negative energy state [ loc. cit.]. 
It should be noted that the historical hypothesis of the 

neutrino was essentially dismissed by the lack of detection of 

the “solar neutrinos" (namely, neutrinos emitted by the Sun 

during its synthesis of the neutron), according to which our 

particle laboratories should be traversed by an extremely large 

flux of neutrinos none of which has been detected with such 

evidence to be acceptable by the scientific community at large. 
The advent of the standard model has produced additional 

reasons for the dismissal of neutrinos since the standard model 

requires a variety of different neutrinos without clear physical 

differences, all neutrinos being assumed to have a mass. It is 

now widely accepted that particles with mass simply cannot 

traverse nuclei, planets and stars with a very small of no 

scattering, thus mandating a basically new interpretation of 

physical reality. 
The hypothesis of the etherino has been submitted because of 

a possible resolution of these insufficiencies via a more realistic 

interrelation of experimental data. In fact, the traversing to 

nuclei, planets and stars without appreciable scattering is more 

plausibly interpreted by the etherino rather than by the neutrino, 

since the former refers to a longitudinal impulse propagating 

through the universal substratum, while the latter is assumed to 

be a massive particle that should traverse without appreciable 

scattering hyperdense media inside nuclei, planets and stars. 
We should also clarify that a number of claimed 

“experimental verifications" of the neutrino do not refer to the 

direct detection of the neutrino which is impossible, but refer to 

the detection of ordinary particles predicted as being emitted 

under the neutrino hypothesis. The point is that the emission of 

exactly the same particles is predicted by the etherino and 

perhaps other hypotheses. Finally, we should indicate that the 

claimed “experimental verifications” of the neutrino hypothesis 

are based on very few events out of billions of events, thus 

lacking the credibility needed to resist the test of time. 
In summary, the lack of existence of the neutrino as a 

physical particle emitted in the synthesis of the neutron creates 

one of the most fascinating scientific problems in history, that of 

the possible continuous creation in the universe (see, e.g., the 

historical paper [67]), since the missing energy for the neutron 

synthesis is “created” in the core of stars in the sense that it is 

acquired from the universal substratum. In turn such a 

fascinating problem has implications for virtually all 

quantitative sciences, including lack of expansion of the 

universe due to loss of energy by galactic light to the 

intergalactic medium [68], possible future interstellar travel at 

arbitrary speeds whose energy source would be permitted by a 

universal substratum with very high energy density [38], and 

other intriguing open problems. 

8. Three-Body Structure of the Deuteron 

According to IsoMechanics 

There comes a moment in the life of a serious scientist at 

which physical realities have to be admitted, no matter how 

against preferred doctrines, as a condition not to exit from the 

boundaries of science. 
The physical reality here referred to is that despite more than 

half a century of attempts, quantum mechanics has failed to 

achieve a constant representation of the structure of the simplest 

nucleus, the Deuteron, with embarrassing deviations for 

heavier nuclei, in view of the following insufficiencies [69]: 
8.1. Quantum mechanics has been unable to represent the 

stability of the Deuteron. As it is well known, the neutron is 

naturally unstable when isolated. Therefore, quantum 

mechanics has failed to explain how the neutron becomes 

permanently stable when bonded to the proton in the structure 

of the Deuteron. 
8.2. Quantum mechanics has been unable to achieve a 

consistent representation of the spin 1  of the ground state of 

the Deuteron. The basic axioms of quantum mechanics require 

that the stable bound state of one proton and one neutron is the 

singlet with total spin zero, while the spin of the Deuteron is 1 . 

For the intent of maintaining quantum mechanics, 20
th

 century 

nuclear physics has assumed a combination of orbital states 

requiring excited conditions which are in direct contradiction 

with the physical evidence that the spin 1  occurs for the 

Deuteron in its “ground” state. 
8.3. Quantum mechanics has been unable to identify the 

physical origin of the attractive force binding the proton and the 

neutron in the Deuteron. Since the neutron is neutral, there is no 
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known electrostatic origin of the attractive force needed for the 

existence of the Deuteron, while their magnetostatic force is 

“repulsive” in their triplet coupling. As a result of these 

occurrences, a "strong" force was conjectured for the bond of 

nuclear constituents [2] and its existence was subsequently 

confirmed. Nevertheless, the physical origin of the strong 

nuclear force has remained unidentified by quantum mechanics 

to this writing. 
8.4. Quantum mechanics has been unable to achieve a 

consistent representation of the Deuteron space parity. 

According to experimental evidence, of the space parity is 

positive for the deuteron in its ground state because the angular 

momentum is null, while the quantum mechanical 

representation of the spin 1  of the Deuteron requires excited 

orbital states, resulting in an additional direct conflict between 

quantum predictions and experimental realities. 
8.5. Quantum mechanics has been unable to reach an exact 

representation of the magnetic moment of the Deuteron, as 

discussed in Section 5. 
Following the achievement of the non-relativistic and 

relativistic presentation of the structure of the neutron as a 

bound state of one isoproton and one isoelectron (Refs. [51-54] 

and Section 7), Santilli proposed in Part V of monograph [69] 

the structure of the deuteron according to isomechanics as a 

three body bound state of two isoprotons in triplet coupling and 

one isoelectrons withy null total angular momentum which is 

exchanged in between the two isoprotons as a kind of isogluon, 

hereon referred to as the “iso-Deuteron” (see Figure 9). 
The new three-body structure model of the Deuteron achieves 

a numerically exact and time invariant representation of all 

characteristics of the Deuteron, including its binding energy, 

charge radius, stability, spin, parity, etc., which representation is 

here assumed as known for brevity from Ref. [69] (see also the 

excellent reviews [33, 70]). 
The conceptual and, therefore, the most important reasons for 

the proposal of the iso-Deuteron were several [69]. The first 

origination is that the reduction of the Deuteron to protons and 

electrons (although in a mutated form) sets clear foundations 

for stability since the proton and the electron are the only stable 

massive particle known to mankind. 
The second origination of the iso-Deuteron is that the spin 1  

of the Deuteron is direct evidence that it is a “three-body,” 

rather than a two-body state, because the configuration of two 

nucleons in triplet coupling, which is necessary for the 

representation of the spin 1  in the ground state, can only be 

achieved in a consistent way via the addition of a third particle 

with null total angular momenta as in Figure 9. 

 
Figure 9. A schematic view from Part V of Ref. [69] on the structure of the Deuteron following the reduction of the neutron to a hadronic bound state of an isoproton 

and an isoelectron. Note from the top view that the two isoprotons are in triplet coupling, while the isoelectron with null total angular momentum is exchanged 

between them, thus allowing the first known representation of the spin 1 of the Deuteron in its true ground state.  
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The third origination of the iso-Deuteron is that 

isomathematics and isomechanics are the only known methods 

achieving an explicit and concrete strongly “attractive" force in 

the Deuteron structure. In the transition from quantum 

mechanical to isomechanical nuclear models via the 

non-unitary transform of Section 4, and realization of the 

isotopic element of type (1), there is the emergence of a strongly 

attractive Hulthén potential (see Ref. [69] for details) 

originating from the partial mutual penetration of the deformed 

charge distributions of the constituents. Note that in the 

structure of the iso-Deuteron there is no repulsive electrostatic 

force due to the continuous exchange of the isoelectron between 

the two isoprotons. 
Particularly significant for this paper is the deeper 

representation of the anomalous magnetic moment of the 

Deuteron which is permitted by its three-body isotopic structure. 

In Section 5, we presented a first representation of the magnetic 

moment of the Deuteron based on its representation as a bound 

state of an isoproton and an isoneutron in triplet coupling to 

represent the spin 1  (see Figure 9). 
However, as also indicated in Section 5, this representation is 

basically insufficient because the triplet coupling of Figure 3 

generates strongly repulsive forces under which no stable bound 

state is possible. Santilli’s three-body model of the iso-Deuteron 

allows an exact and time invariant representation of the 

magnetic moment without any known inconsistencies, which is 

essentially given by the muted magnetic moments of the two 

isoproton, plus a contributions from the isoelectron (see Ref. 

[69] for details). 
This section concludes the review of past advances in nuclear 

physics permitted by isomathematics and isomechanics that are 

necessary for an understanding of the numerically exact and 

time invariant representation of the spin of stable nuclides 

presented in the following sections. 

9. Stable and Unstable Nuclides 

Notice that deuteron is the simplest neuclide having one 

proton and one neutron and is stable. However, we see that it, in 

fact, is an isonuclide. When we survey the elements of the 

periodic table we find that out of 289 primordial nuclides 254 

are stable ones. The stability of nuclides depends also on 

evenness or oddness of its atomic number Z , neutron number 

N  and, consequently, of their sum, the mass number A . 

Oddness of both Z  and N  tends to lower the nuclear binding 

energy, making odd nuclei, generally, less stable. This fact we 

have depicted [71] in Table 1. 

However, in this paper, we are presenting, apparently for the 

first time, a structure model of stable nuclides of the first three 

rows of the periodic table, hereon called stable isonuclides, as 

bound states of extended, thus deformable isoprotons and 

isoelectrons according to the laws of hadronic mechanics, under 

the condition of recovering in first approximation the 

conventional structure model of nuclides as quantum 

mechanical bound states of point-like protons and neutrons. 
We shall then show, also apparently for the first time, that the 

reduction of nuclides to isoprotons and isoelectrons allows the 

first known achievement of an exact representation of the spin 

of all stable nuclides. 

Table 1. Even and odd nucleon numbers. A  is the atomic mass 
number, Z  is the atomic number, N  is the number of neutrons 
in the nucleus, EE is the even-even proton-neutron combination, 
OO is the odd-odd proton-neutron combination, EO is the 
even-odd proton-neutron combination and OE is the odd-even 
proton-neutron combination.  

A  Even Odd Total 

,Z N  EE OO EO OE  

Stable 148 5 53 48 254 

 153 101  

Long-lived 22 4 4 5 35 

 26 9  

All primordial 170 9 57 53 289 

 179 110  

Next we will indicate without treatment that the reduction of 

nuclides to isoprotons and isoelectrons puts the foundations for 

an exact representation of the magnetic moment of all nuclides 

for studies to be presented in a subsequent paper. We shall also 

indicate, for studies in a subsequent paper, that the transition of 

the nuclear structure from that in terms of point-like protons and 

neutrons to that in terms of is extended, thus deformable 

isoprotons and isoelectrons offers realistic possibilities for 

studying basically new forms of clear nuclear energies. 

10. Old and New Vistas in Nuclear Forces 

For the semi-quantitative discussion conventionally one uses 

the following expression of nuclear binding energy, namely:  

 H= 931.4 ( )
MeV

n

BE
Z m A Z m M          (73) 

where Hm  and nm  are the masses on amu scale of hydrogen 

and neutron respectively and M  is atomic mass on amu scale 

of the given element. Notice that the mass of electrons has not 

been included separately in the above expression because it 

remains included in Hm . The standard plot of binding energies 

of all nuclides is shown in Figure 10. 
Glasstone [72] further asserts that the nuclear binding energy 

is the result of ( n n ), ( n p ) and ( p p  ) forces 

operating within the nucleus. The experimental data on the 

nuclear scattering and correspondence of binding energies of 

the identically same mass number elements (isobars) it was 

concluded that the magnitudes of ( n n ), ( n p ) and 

( p p  ) forces of attraction are almost equal [72]. 

In view of the above assertion it was expected that the 

diproton and the dineutron nuclei should be stable as deuteron is 

a stable nucleus (which consists of one proton and one neutron). 
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But so far neither of the former two particles have been detected 

as stable particles. However, in proton-proton chain reaction it 

is suspected that a di-proton is formed in the first step which 

immediately disintegrates into two protons ( > 99.99 %) and to 

deuteron plus  
 ( < 0.01 %) (however the measurement of 

corresponding half-lives could not succeed) [73]. Of course, it is 

certain that there is no nucleus made up only of two neutrons 

because it doesn’t constitute a chemical element. 

 
Figure 10. Binding Energy per nucleon as a function of mass number of stable nuclides. 

On the other hand, the existence of a strong attraction 

between the pair ( n p ) is exemplified by the stability of 

deuteron and the stable nuclides He-4, Li-6, B-10, C-12, N-14, 

O-16, Ne-20, Mg-24, Si-28, S-32, Ar-36 and Ca-40, they all 

have equal number of protons and neutrons. Besides these 

nuclides in other stable nuclides we do have neutrons and none 

of the neutrons disintegrates. The stabilization of neutrons in a 

nucleus is a subject matter of nuclear physics and the 20th  

century attempts to explain the said stability are based on 

quantum mechanics but a satisfactory quantum mechanical 

description still eludes [18, 22, 23, 33, 36]. 

The reader may very well notice that the structures of neutron 

and deuteron that Santilli had proposed, which we have 

described in brief in Sections 7 and 8 respectively, in fact, are in 

the form of isoneutron and isodeuteron respectively. These 

structures involve the mutual deep but partial penetration of the 

wave packets of electron and proton(s) (c.f. Figures 8 and 9). 

Thus the quantum mechanical perception of these particles as 

the point particles has been replaced by the respective tiny but 

finite size particles all well within the hadronic horizon. 

However, when we go beyond deuteron the size of the nucleus 

grows but less significantly (the standard cube root formula [74] 

estimates the nuclear radius of 1.25 fm for hydrogen nucleus to 

4.275 fm for calcium-40 nucleus. Thus the nucleons have 

increased 40 times but the nuclear radius has increased only 3.4 

times). 
Therefore, on the lines of the structure of a neutron and a 

deuteron proposed by Santilli we hereby, apparently for the first 

time, propose that,  
1. an atomic nucleus is composed of nucleons as particles of 

tiny volume of hadronic dimensions, 
2. the wave packets of nucleons penetrate mutually but 

partially that produces strong nuclear force and  
3. the said mutual penetration of wave packets between 

heteronucleons perhaps produces very strong attractive 

force compared to that between homonucleons. 
This is what has been indicated in Section 1 and shown in 

Figure 1, that is — the nucleons within a nucleus are in a state of 

mutual but partial penetration of their wave packets. Thus all 

nucleons in a nucleus, in fact, are the isonucleons, namely 

isoneutrons, isodeuterons, isoelectrons and isoprotons. 
Of course, one needs to investigate and evaluate 

quantitatively the magnitude of nuclear forces so generated via 

the methods of hadronic mechanics but at this juncture we 

consider that it would be profitable first to generate nuclear 

configuration of stable nuclides as if the nucleus of all stable 

nuclides are composed of isonucleons, which is likely to present 

enough ground for carrying out the detailed investigation of the 

corresponding quantitative haronic physics. Indeed, we have 

presented in Section 3 a brief description of Santilli’s initial 

work on nuclear isomechanics and genomechanics. 
In the following Section 11 we will see that there are two 

options for developing nuclear configuration. The first one, the 

model-I, is through the isodeuterons, isoneutrons and isoprotons 

as the building nucleons and the second option, the model-II, is 

through the isoprotons and isoelectrons as the building nucleons, 

both of them are easily interconvertible. We will also discuss the 

advantages and limitations of each. 
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11. Notations for Representation of 

IsoNeutronand IsoDeuteron 

In order to develop the nuclear configuration of nuclides the 

first logical option is offered by the fact that the deuteron is a 

stable nuclide similar to a proton. In Section 8 we have 

described that the deuteron is a hadronic bound state of an 

isoneutron and an isoproton. But as described in Section 7 the 

neutron is indeed an isoneutron, which is a hadronic bound state 

of one isoproton and one isoelectron. However, the isoneutron is 

an unstable nuclide, which decays radiatively by  
 emission 

with half-life of 614.6 s [75] (In 1967 experiment the half-life of 

free neutron was recorded as 10.8 min [76]). But when it makes 

a union with an isoproton its instability vanishes altogether. 

Hence in this hadronic choice we have developed nuclear 

configuration of stable nuclides commensurate with the 

observed nuclear spin using isodeuterons, isoneutrons and if 

required used isoprotons. However, recall that each isodeuteron 

is made up of 2 isoprotons of parallel spin and one isoelectron of 

zero spin, and the isoneutron consists of one isoproton of half 

spin and one isoelectron of zero spin hence it is easy to convert 

the nuclear configuration of the first choice into the one in terms 

of isoprotons of 1/2 spin, isoprotons of -1/2 spin and 

isoelectrons of zero spin, that is our second choice. However, 

we can directly write the nuclear configuration in the second 

choice just by choosing correct number of isoprotons with 1/2 

and -1/2 spin commensurate with the experimental nuclear spin, 

because isoelectron doesn’t contribute to the nuclear spin. 

A simple notation to represent Santilli’s isoneutron, n̂ , is as 

given below as a compressed hydrogen atom, namely:  

    ˆ ˆ ˆ= ( , ) , ( = 0)qm
hm

ha p e p e J n           (74) 

where ha  denotes the hydrogen atom; qm  denotes quantum 

mechanics; p
 denotes the conventional proton; e  denotes 

the conventional electron; hm  denotes hadronic mechanics; 

p̂
 denotes the isoproton; ê  denotes an isoelectron; J  is 

the spin and   denotes spin 1/2. The total angular momentum 

of the isoelectron is null because the particle is constrained to 

rotate within the hyperdense proton in singlet coupling, thus 

acquiring a value of the orbital angular momentum equal but 

opposite to its spin (Figure 8). 

Similarly, the notation of an isodeuteron, d̂ , is obtained as 

given below, namely: 

         ˆ ˆ ˆ( = ?) = , , ( = 0),
qm hm

d J p n p e J p       

 ˆ ˆ( =1) =d J d                       (75) 

where   denotes the spin -1/2. The spin 1 of the isodeuteron is 

because of two up spins,  , of two isoprotons. 

The stability of deuteron gets excellently explained by the 

Santilli iso-deuteron model, Eq. (75). Namely, as the structure 

  ˆ ˆ, ( = 0)
hm

p e J   is unstable, there is a natural tendency 

of the bound electron in     ˆ ˆ ˆ, ( = 0),
hm

p e J p     to get 

released from the grip of its isoproton to which it is bound at the 

given instant of time, but no sooner it succeeds in getting 

released it immediately gets trapped into the hyper-dense 

medium of the other very closely placed proton. This is how 

isodeuteron enjoys its stability against radioactivity. This 

interpretation of nuclear stability and instability reasonably 

good. 

In the next Section 12 we consider only the stable nuclides of 

periodic table up to the atomic number 82. 

12. Proposed Nuclear Configuration of 

Stable IsoNuclides 

We adopt X ( ) = X( , , )A

Z N J A Z J  to represent nuclides, 

where X  represents the symbol of the chemical element, A  

is the mass number i.e. the total number of protons and neutrons, 

Z  is the atomic number i.e. the total number of protrons, N  is 

the total number of neutrons, and J  is the nuclear spin. 

Obviously ( )A Z  is the total number of neutrons, N , in the 

nucleus. Notice that we have incorporated nuclear spin, J , in 

the conventional representation of nuclide. 

In this paper we propose, apparently for the first time, the 

extension of Santilli isodeuteron to all stable nuclides under the 

proposed name of IsoNuclides with the symbol ˆ ( )X
A

Z N
J . Notice 

that in this notation we have still retained the symbols , ,A N Z  

because it would be easy to correlate with conventional 

description. 

Now as stated in preceding sections there are two options for 

developing nuclear configuration of nuclides. 
In the model-I the adopted working rule is that we are bound 

by the requirement of producing that nuclear configuration 

which predicts correctly the experimental nuclear spin. Our 

method is further based on the observed stability of an 

isodeuteron that indicates that the isonucleons of a nuclide first 

prefer to adopt the isodeuteron structures and in this way the 

unaccounted neutrons and protons stay in the nucleus as 

isoneutrons and isoprotons with appropriate spin orientation. 
In the model-II we fix the number of isoelectrons equal to the 

number of neutrons (because in a nucleus an isoelectron with 

null spin is carried into through the neutron as isoneutron) and 

obviously the number of isoprotons of a nucleus equals to the 

mass number, A , of the nuclide. Thus our method is then to 

choose the number of isoprotons with spin 1/2 and -1/2 that 

correctly predicts the experimental nuclear spin of the nuclide.  

12.1. Isodeuteron, Isoneutron and Isoproton as Constituents 

of Atomic Nuclei. Model-I 

In this first option with the guidelines described above in this 
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Section 12 we note that ^3
2 1

(0)He can be readily interpreted as a 

hadronic bound state of an isodeuteron and an isoproton in 

singlet coupling (perhaps necessary for stability). Accordingly 

it gets represented as under, 

    ^3
12

ˆ ˆ(1/ 2) = , He
hm

d p   

 2
1 1

ˆ ˆ(1), ( 1/ 2)
hm

d p        (76) 

Notice that in this isonuclide there we have one separate 

isoproton and two mutated protons as isoprotons in the form of

 d̂  . 

Similarly, ^4
22
(0)He can be readily interpreted as a hadronic 

bound state of two isodeuterons in singlet coupling, namely, 

    
^4

22
ˆ ˆHe (0) = ,

hm
d d   

 2 2
1 1 1 1

ˆ ˆ(1), ( 1) .
hm

d d           (77) 

Along the same linens, ^6

33
(1)Li  can be readily interpreted as 

a hadronic bound state of ^4
22
(0)He and one isodeuteron 2

1 1
ˆ (1)d   

^ ^6 24
3 1 13 22

ˆ(1) (0)= , (1)Li He
hm

d
 
 
 

          (78) 

and similarly for the remaining stable nuclides (see Table 2). 

For the isotopic structure model of ^7
3 4(3 / 2)Li  we have the 

more complex model  

^^ 27 4
1 123 24

ˆ(0) ˆ(3 / 2) = He , (1), (1/ 2)Li
hm

d n
 
 
 

  (79) 

Therefore, we can symbolically write the nuclear 

configuration of stable isonuclies as under, 

2 2

1 1 1 2 1 1
ˆ ˆˆ ( ) = [ ( (1)), ( ( 1)),X

A

Z N
J x d x d   

3 4
ˆ ˆ( (1/ 2)), ( ( 1/ 2)),x n x n   

5 6
ˆ ˆ( (1/ 2)), ( ( 1/ 2))]x p x p           (80) 

where 
^
X  denotes the isonuclide, ix ’s are the number of the 

isonuclear or nuclear species depicted in the braces next to them. 

Notice that in this model-I in any nucleus the isoprotons would 

be in the form of isoneutrons, isodeuterons and remaining as 

separate isoprotons hence if the atomic number of a nuclide 

demands more protons than those accounted by isodeuterons 

and isoneutrons (the striking example is that of He-3, c.f. Eq. 

(76) they will be separate mutated proptons (i.e. the isoprotons). 

In view of this in above expression (80) the last two terms on the 

right hand side account for the separate isoprotons that are 

demanded by its atomic number, Z. 

In this way the expression of the atomic mass number, A , is 

obtained as,  

1 2 3 4 5 6= 2 2A x x x x x x               (81) 

the atomic number, Z , is given by,  

1 2 5 6=Z x x x x                   (82) 

Therefore, obviously the number of nuclear neutrons, N , is 

given by,  

1 2 3 4= = .N A Z x x x x              (83) 

Whereas, the total number of isoprotons p̂ , get computed 

as,  

ˆ 1 2 3 4 5 6= 2 2
p

x x x x x x               (84) 

and the total number of isoelectrons, ê , get computed as,  

ˆ 1 2 3 4=e x x x x                 (85) 

It is no wonder that ˆ= eN  because with each isoneutron 

there is associated one isoelectron. Moreover, the nuclear spin 

J  gets computed as,  

1 2 3 4 5 6

1 1 1 1
=

2 2 2 2
J x x x x x x             (86) 

Therefore, the isonuclide, ˆ ( )X
A

Z N
J , gets reduced to 

isoprotons, p̂
and isoelectrons, ê , that gets expressed as,  

 ˆˆ
ˆ ( ) = ,X

A

eZ pN
J               (87) 

12.2. Isoprotons and Isonelectrons as Constituents of Atomic 

Nuclei. Model-II 

Recall that all nuclear protons are indistinguishable whereas 

the isoprotons of the nuclear isoneutrons too remain 

indistinguishable because the isoneutrons have a natural 

tendency to get converted to protons. Therefore, we cannot label 

which proton out of the available nuclear protons at a given 

instant of time is actually bound to an isoelectron. In this way 

there must be on an average at a given moment of time a fixed 

number of isoprotons and the same number of isoelectrons, and 

remaining number of nucleons are the protons and are equal to 

the atomic number of the chemical element. However, in view 

of the housing of all protons and neutrons in extremely small 

nuclear volume (see also Section 10) there must be at least 

partial mutual penetration of wave packets of protons besides in 

addition to that with the wave packets of electrons that describe 

the isoneutron and isodeuteron. Hence all nuclear protons and 

neutrons taken together need to be treated as an assemblage of 
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isoprotons and isoelectrons. Of course, the mutual penetration 

of wave packets of protons and the mutual penetration of wave 

packets of electrons and protons would definitely produce 

different hadronic effects hence needs to be quantitatively 

investigated by the tools of hadronic mechanics. Therefore, in 

this model-II we treat every nucleon of a nucleus an isonucleon. 
Thus the counter part of Eq. (80) in this case would read as, 

   1 2
ˆ ˆ ˆ( ) = 2 (1/ 2) ,2 ( 1/ 2) ,X [A

Z N
J x p x p    

   3 4
ˆ ˆ(1/ 2) , ( 1/ 2) ,x p x p    

   5 6
ˆ ˆ(1/ 2) , ( 1/ 2) ,x p x p    

 1 2 3 4
ˆ( ) (0) ]x x x x e               (88) 

which gets simplified to, 

 1 3 5
ˆ ˆ( ) = (2 ) (1/ 2) ,X [A

Z N
J x x x p   

 2 4 6
ˆ(2 ) ( 1/ 2) ,x x x p    

 1 2 3 4
ˆ( ) (0) ]x x x x e               (89) 

where the number of isoprotons with spin 1/2, (1/ 2) , is given 

by,  

1 3 5(1/ 2) = 2 ,x x x               (90) 

number of the isoprotons with spin -1/2, ( 1/ 2) , is given by,  

2 4 6( 1/ 2) = 2 ,x x x               (91) 

and number of the isoelectrons with spin 0, (0) = N , is given 

by,  

1 2 3 4(0) = .x x x x                (92) 

Alternatively, we can directly express X ( )A

Z N J  as follows,  

 ˆ ( ) = (1/ 2), ( 1/ 2), (0)X
A

Z N
J         (93) 

where (1/ 2) ( 1/ 2) = A   and = (1/ 2) ( 1/ 2)Z N   . 

Since, all nuclear spins are null or positive numbers we have

(1/ 2) > ( 1/ 2) . 

We would like to stress that the methods of writing nuclear 

configuration described above are entirely general that make no 

distinction between stable and unstable nuclides. However, with 

the above adopted notations we are now well equipped to build 

the nuclear configuration of stable nuclides as isonuclides 

ˆ ( )X
A

Z N
J , that we present in the next Section 13. 

13. Hadronic Mechanics Based 

Configuration of Stable Nuclides 

In this paper we are primarily presenting the nuclear 

configuration of the stable nuclides. The nuclides of atomic 

number higher than 82 are all radioactive therefore we have 

developed the nuclear configuration up to the chemical element 

Pb. Now onwards we will use the short hand notation of an 

isoneutron and an isodeuteron given in the extreme right hand 

side of Eqs. (74) and (75 ), namely  n̂   and  d̂   

respectively. Moreover, henceforth all nuclear protons would be 

treated as isoprotons whether the wave packet of any one of 

them penetrates with that of an isoelectron or not. This is so 

because as discussed in Section 10, in view of the extremely 

small size of atomic nuclei, all nuclear protons indeed get 

transformed to isoprotons.  

13.1. Nuclear Configuration of Stable Isotopes as Isonuclides. 

Model-I 

The observed stability of deuteron does indicate that the 

stable nuclides first prefer to have the isodeuteron structure 

from the available number of neutrons and protons. Whereas the 

remaining unaccounted neutrons and protons stay in the nucleus 

as isoneutrons and isoprotons. 
Thus we have followed a nuclear version of the Aufbau type 

principle with the requirement that the resulting nuclear 

configuration should correctly predict the observed nuclear spin 

of each isotope of the elements. We are presenting in column 3 

of Table 2 the so arrived at nuclear configuration of the stable 

isonuclides up to the element Pb of the periodic table along with 

the observed nuclear spin (in colum 5) against each isonuclide 

for the ready reference. All the nuclear spins reported now 

onwards are taken from the Ref. [80] unless otherwise other 

sources are cited.  

13.2. Nuclear Configuration of Stable Isotopes as Isonuclides. 

Model-II 

The nuclear configuration in terms of isoprotons and 

isoelectrons that replicate the observed nuclear spin is easy to 

write. We first write number of isoelectrons equal to the number 

of neutrons, N , in the nucleus and then write the number of 

isoprotons equal to the mass number, A , of the nuclide, which 

then is distributed in up and down spin isoprotons so that the net 

spin of the combination equals the experimental nuclear spin. 
Equivalently, on realizing that each isodeuteron has two 

isoprotons of same spin and one isoelectron of null spin, and 

the isoproton of each isoneutron has the same spin as that of 

the latter. The total number of nuclear isoelectrons is given 

by the sum of the number of isodeuterons and isoneutrons in 

a given isonuclide. The nuclear configuration of the model-II 

has been listed in the column 4 of Table 2. Notice that the 

nuclear configuration in this option of all nuclei correctly 

predicts the respective observed nuclear spin.  
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Table 2. Nuclear configuration of stable, primordial and very long lived isonuclides for nuclear model-I and model-II 

Atomic 

Number, Z 
Isonuclides of Chemical Elements Nuclear Configuration Model-I 

Nuclear Configuration  

Model-II 
Nuclear Spin, J 

1 

1

1 0H (1/2)  
Proton 

(not an isonuclide) 
 p    p   1/2 

2

1 1

^
H (1)

 
(isodeuteron)  d̂      ˆ ˆ2 ,p e    1 

2 

3

2 1

^ ( )1/2He   d̂  ,  p̂   
   

 

ˆ ˆ2 , ,

ˆ

p p

e

 



 


 1/2 

4

2 2

^ ( )0He   d̂  ,  d̂     4

2 2

^ ( )0He
 
 
  

 
   

 

ˆ ˆ2 ,2 ,

ˆ2

p p

e

 



 


 0 

3 

6

3 3

^ ( )1Li  
4

2 2

^ ( )0He
 
 
  

,  d̂    
   

 

ˆ ˆ4 ,2 ,

ˆ3

p p

e

 



 


 1 

7

3 4

^ ( )3/2Li  
4

2 2

^ ( )0He
 
 
  

,  d̂   ˆ, n    
   

 

ˆ ˆ5 ,2 ,

ˆ4

p p

e

 



 


 3/2 

4 9

4 5

^ ( )3/2Be  
4

2 2

^ ( )0He
 
 
  

, 2  d̂  ,  n̂    
   

 

ˆ ˆ6 ,3 ,

ˆ5

p p

e

 



 


 3/2 

5 

10

5 5

^ ( )3B  
4

2 2

^ ( )0He
 
 
  

, 3  d̂    
   

 

ˆ ˆ8 ,2 ,

ˆ5

p p

e

 



 


 3 

11

5 6

^ ( )3/2B  2 4

2 2

^ ( )0He
 
 
  

,  d̂   ˆ, n    
   

 

ˆ ˆ7 ,4 ,

ˆ6

p p

e

 



 


 3/2 

6 

12

6 6

^ ( )0C  

2 4

2 2

^ ( )0He
 
 
  

,  d̂  ,  d̂   

  3 4

2 2

^ ( )0He
 
 
  

  

   

 

ˆ ˆ6 ,6 ,

ˆ6

p p

e

 



 


 0 

13

6 7

^ ( )1/2C  3 4

2 2

^ ( )0He
 
 
  

,  n̂    
   

 

ˆ ˆ7 ,6 ,

ˆ7

p p

e

 



 


 1/2 

7 

14

7 7
N̂ ( )1  

3 4

2 2

^ ( )0He
 
 
  

,  d̂    
   

 

ˆ ˆ8 ,6 ,

ˆ7

p p

e

 



 


 1 

15

7 8

^ ( )1/2N  
3 4

2 2

^ ( )0He
 
 
  

,  d̂  ,  n̂    
   

 

ˆ ˆ8 ,7 ,

ˆ8

p p

e

 



 


 1/2 

8 

16

8 8

^ ( )O 0  

3 4

2 2

^ ( )0He
 
 
  

 d̂  ,  d̂     

  4 4

2 2

^ ( )0He
 
 
  

 

   

 

ˆ ˆ8 ,8 ,

ˆ8

p p

e

 



 


 0 

17

8 9

^ ( )O 5/2  
3 4

2 2

^ ( )0He
 
 
  

, 2  d̂  ,  n̂    
   

 

ˆ ˆ11 ,6 ,

ˆ9

p p

e

 



 


 5/2 

18

8 10

^ ( )O 0  
4 4

2 2

^ ( )0He
 
 
  

,  n̂  ,  n̂    
   

 

ˆ ˆ9 ,9 ,

ˆ10

p p

e

 



 


 0 

9 19

9 10

^ 1( /2)F  
4 4

2 2

^ ( )0He
 
 
  

,  d̂  ,  n̂    
   

 

ˆ ˆ10 ,9 ,

ˆ10

p p

e

 



 


 1/2 
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Atomic 

Number, Z 
Isonuclides of Chemical Elements Nuclear Configuration Model-I 

Nuclear Configuration  

Model-II 
Nuclear Spin, J 

10 

20

10 10

^ ( )0Ne  

4 4

2 2

^ ( )0He
 
 
  

,  d̂  ,  d̂     

5 4

2 2

^ ( )0He
 
 
  

  

   

 

ˆ ˆ10 ,10 ,

ˆ10

p p

e

 



 


 0 

21

10 11

^ (3 )/2Ne  
4 4

2 2

^ ( )0He
 
 
  

, 2  d̂  ,  n̂    
   

 

ˆ ˆ12 ,9 ,

ˆ11

p p

e

 



 


 3/2 

22

10 12

^ ( )Ne 0  
5 4

2 2

^ ( )0He
 
 
  

,  n̂  ,  n̂    
   

 

ˆ ˆ11 ,11 ,

ˆ12

p p

e

 



 


 0 

11 23

11 12

^ (3 )/2Na  
5 4

2 2

^ ( )0He
 
 
  

,  d̂  ,  n̂    
   

 

ˆ ˆ13 ,10 ,

ˆ12

p p

e

 



 


 3/2 

12 

24

12 12

^ ( )0Mg  

5 4

2 2

^ ( )0He
 
 
  

,  d̂  ,  d̂     

6 4

2 2

^ ( )0He
 
 
  

 

   

 

ˆ ˆ12 ,12 ,

ˆ12

p p

e

 



 


 0 

25

12 13

^ ( )5/2Mg  
5 4

2 2

^ ( )0He
 
 
  

, 2  d̂  ,  n̂    
   

 

ˆ ˆ15 ,10 ,

ˆ13

p p

e

 



 


 5/2 

26

12 14

^ ( )0Mg  
6 4

2 2

^ ( )0He
 
 
  

,  n̂  ,  n̂    
   

 

ˆ ˆ13 ,13 ,

ˆ14

p p

e

 



 


 0 

13 27

13 14

^ (5 )/2Al  
5 4

2 2

^ ( )0He
 
 
  

, 3  d̂  ,  n̂    
   

 

ˆ ˆ16 ,11 ,

ˆ14

p p

e

 



 


 5/2 

14 

28

14 14

^ ( )Si 0  

6 4

2 2

^ ( )0He
 
 
  

,  d̂  ,  d̂     

7 4

2 2

^ ( )0He
 
 
  

 

   

 

ˆ ˆ14 ,14 ,

ˆ14

p p

e

 



 


 0 

29

14 15

^ ( )1/2Si  
7 4

2 2

^ ( )0He
 
 
  

,  n̂    
   

 

ˆ ˆ15 ,14 ,

ˆ15

p p

e

 



 


 1/2 

30

14 16

^ ( )0Si  
7 4

2 2

^ ( )0He
 
 
  

,  n̂  ,  n̂    
   

 

ˆ ˆ15 ,15 ,

ˆ16

p p

e

 



 


 0 

15 31

15 16

^ ( )0P  
7 4

2 2

^ ( )0He
 
 
  

,  d̂  ,  n̂    
   

 

ˆ ˆ16 ,15 ,

ˆ16

p p

e

 



 


 1/2 

16 

32

16 16

^ ( )0S  

7 4

2 2

^ ( )0He
 
 
  

,  d̂  ,  d̂     

8 4

2 2

^ ( )0He
 
 
  

 

   

 

ˆ ˆ16 ,16 ,

ˆ16

p p

e

 



 


 0 

33

16 17

^ ( )3/2S  
7 4

2 2

^ ( )0He
 
 
  

, 2  d̂  ,  n̂    
   

 

ˆ ˆ18 ,15 ,

ˆ17

p p

e

 



 


 3/2 

34

16 18

^ ( )3/2S  
8 4

2 2

^ ( )0He
 
 
  

,  n̂  ,  n̂    
   

 

ˆ ˆ17 ,17 ,

ˆ18

p p

e

 



 


 0 



 American Journal of Modern Physics 2016; 5(2-1): 56-118 81 
 

Atomic 

Number, Z 
Isonuclides of Chemical Elements Nuclear Configuration Model-I 

Nuclear Configuration  

Model-II 
Nuclear Spin, J 

36

16 20

^ ( )3/2S  
8 4

2 2

^ ( )0He
 
 
  

, 2  n̂  , 2  n̂    
   

 

ˆ ˆ18 ,18 ,

ˆ20

p p

e

 



 


 0 

17 

35

17 18

^ ( )3/2Cl  
8 4

2 2

^ ( )0He
 
 
  

,  d̂  ,  n̂    
   

 

ˆ ˆ19 ,16 ,

ˆ18

p p

e

 



 


 3/2 

37

17 20

^ ( )3/2Cl  

8 4

2 2

^ ( )0He
 
 
  

,  d̂  , 2  n̂  ,

 n̂    

   

 

ˆ ˆ20 ,17 ,

ˆ20

p p

e

 



 


 3/2 

18 

36

18 18

^ ( )0Ar  

8 4

2 2

^ ( )0He
 
 
  

,  d̂  ,  d̂     

9 4

2 2

^ ( )0He
 
 
  

 

   

 

ˆ ˆ18 ,18 ,

ˆ18

p p

e

 



 


 0 
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 0 

195

78 117

^ ( )1/2Pt  

39 4

2 2

^ ( )0He
 
 
  

, 20  n̂  ,  

19  n̂    

   

 

ˆ ˆ98 ,97 ,

ˆ117

p p

e

 



 


 1/2 

196

11878

^ ( )0Pt  

39 4

2 2

^ ( )0He
 
 
  

, 20  n̂  ,  

20  n̂    

   

 

ˆ ˆ98 ,98 ,

ˆ118

p p

e

 



 


 0 

198

12078

^ ( )0Pt  

39 4

2 2

^ ( )0He
 
 
  

, 21  n̂  ,  

21  n̂    

   

 

ˆ ˆ99 ,99 ,

ˆ120

p p

e

 



 


 0 
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Atomic 

Number, Z 
Isonuclides of Chemical Elements Nuclear Configuration Model-I 

Nuclear Configuration  

Model-II 
Nuclear Spin, J 

79 197

79 118

^ ( )3/2Au  

39 4

2 2

^ ( )0He
 
 
  

,  d̂  ,  

20  n̂  , 19  n̂    

   

 

ˆ ˆ100 ,97 ,

ˆ118

p p

e

 



 


 3/2 

80 

196

80 116

^ ( )0Hg  

40 4

2 2

^ ( )0He
 
 
  

, 18  n̂  ,  

18  n̂    

   

 

ˆ ˆ98 ,98 ,

ˆ116

p p

e

 



 


 0 

198

80 118

^ ( )0Hg  

40 4

2 2

^ ( )0He
 
 
  

, 19 ,  

19   

 0 

199
80 119

^ ( )1/ 2Hg  

40 4

2 2

^ ( )0He
 
 
  

, 20 ,  

19   

 1/2 

200
80 120

^ ( )0Hg  

40 4

2 2

^ ( )0He
 
 
  

, 20 ,  

20   

 0 

201
80 121

^ ( )3 / 2Hg  

40 4

2 2

^ ( )0He
 
 
  

, 22 ,  

19  

 3/2 

202
80 122

^ ( )0Hg  

40 4

2 2

^ ( )0He
 
 
  

, 21 ,  

21   

 0 

204
80 124

^ ( )0Hg  

40 4

2 2

^ ( )0He
 
 
  

, 22 ,  

22   

 0 

81 

203
81 122

^ ( )1 / 2Tl  

40 4

2 2

^ ( )0He
 
 
  

, ,  

20 , 21   

 1/2 

205
81 124

^ ( )1 / 2Tl  

40 4

2 2

^ ( )0He
 
 
  

, ,  

21 , 22   

 1/2 

82 

204
82 122

^ ( )0Pb  

41 4

2 2

^ ( )0He
 
 
  

, 20 ,  

20   

 0 

206
12482

^ ( )0Pb  

41 4

2 2

^ ( )0He
 
 
  

, 21 ,  

21   

 0 

207
12582

^ ( )1/2Pb  

41 4

2 2

^ ( )0He
 
 
  

, 22 ,  

21   

 1/2 

 n̂ 

 n̂ 

   

 

ˆ ˆ99 ,99 ,

ˆ118

p p

e

 



 



 n̂ 

 n̂ 

   

 

ˆ ˆ100 ,99 ,

ˆ119

p p

e

 



 



 n̂ 

 n̂ 

   

 

ˆ ˆ100 ,100 ,

ˆ120

p p

e

 



 



 n̂ 

 n̂ 

   

 

ˆ ˆ102 ,99 ,

ˆ121

p p

e

 



 



 n̂ 

 n̂ 

   

 

ˆ ˆ101 ,101 ,

ˆ122

p p

e

 



 



 n̂ 

 n̂ 

   

 

ˆ ˆ102 ,102 ,

ˆ124

p p

e

 



 



 d̂ 

 n̂   n̂ 

   

 

ˆ ˆ102 ,101 ,

ˆ122

p p

e

 



 



 d̂ 

 n̂   n̂ 

   

 

ˆ ˆ103 ,102 ,

ˆ124

p p

e

 



 



 n̂ 

 n̂ 

   

 

ˆ ˆ102 ,102 ,

ˆ122

p p

e

 



 



 n̂ 

 n̂ 

   

 

ˆ ˆ103 ,103 ,

ˆ124

p p

e

 



 



 n̂ 

 n̂ 

   

 

ˆ ˆ104 ,103 ,

ˆ125

p p

e

 



 


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Nuclear Configuration  
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Nuclear Spin, J 

208
12682

^ ( )0Pb  

41 4

2 2

^ ( )0He
 
 
  

, 22 ,  

22   

 0 

 

14. Some Observations 

The purpose of presenting the nuclear configuration in terms 

of isonucleons in this paper is to make available adequate 

ground so that one can attempt to (i) develop a theory of nuclear 

stability and (ii) acquire understanding of other nuclear 

properties of the stable nuclides. In Table 2 we have proton as 

the first entry and 278 stable, primordial and very long lived 

isonuclides up to and including atomic number 82 of the 

periodic table. Beyond Pb all elements are radioactive. There 

are two elements namely Tc ( = 43Z ) and Pm ( ) having 

no stable isotopes, that has also been mentioned in Table 2. The 

columns 3, 4 and 5 of Table 2 depict respectively the hadronic 

mechanics based nuclear configuration of models I and II, and 

experimental nuclear spin of the isonuclide. In the present 

Section 14 we summarize our observations on them.  

14.1. Nuclear Configuration of Model-I 

14.1.1. Proton      

In Table 2 there are two entries corresponding to =1Z . They 

are the isotopes of hydrogen, the first element of the periodic 

table. 

Thus, , in fact, is the proton, the fundamental particle, 

which is a stable particle. For its description no hadronic 

mechanics is required, hence it is not an isonuclide. 

14.1.2. Isodeuteron 

Hydrogen of mass number 2 is conventionally termed as 

deuterium. Its nucleus, indeed, is an isonucleus hence it is 

termed as isodeuteron that gets represented as . We 

represent this system in our proposed notation as, 

2

1 1H : =1, =1}n p   

 

    (94) 

How the nuclear spin of value 1 for isodeuteron originates 

gets easily understood from Figure 9. 

14.1.3. Other Stable Isonuclides of Table 2 

All the stable isonuclides of Table 2 beyond hydrogen are the 

combination of isodeuterons and isoneutrons except He-3 

which consists of an isodeuteron and an isoproton.  

I. Stable Isonuclides with Null Nuclear Spin 
Out of total of 278 isonuclides of Table 2 there we have 163 

isonuclides having nuclear spin of 0. From this group 9 

isonuclides consists only of all spin paired isodeuterons, and 

they can be considered as possessing 1, 3, 4, 5, 6, 7, 8, 9 and 10 

^4
2 2
Be (0) centers. Notice that the number 2 is notoriously missing 

in this list. That corresponds to the isonuclide ^8
4 4
Be (0)  that we 

know is unstable and instantaneously disintegrates to α-particles. 

The same observation in terms of isodeuterons speaks as 

follows. Recall that the isodeuteron is a stable combination of 

isonucleons. However, two isodeuterons in the singlet coupling 

are also stable, which actually is the α-particle. Next on addition 

of one isodeuteron to it there we form an isonuclide of Li-6, 

which also is a stable isonuclide. But on further adding one 

more isodeuteron with total nuclear spin zero we obtain Be-8 

isonuclide which is unstable. Thus we see that three isodeuteron 

in low spin state is stable but the four isodeuteron in zero spin 

state is unstable (But notice that in the case of stable Be-9 there 

we have two parallel spin isodeuterons coupled with one 

isoneutron of opposite spin. It means that the addition of one 

isoneutron to Be-8 forces one spin paired isodeuterons to 

assume parallel spin and itself combines to them with opposite 

spin that imparts stability to Be-9 with net nuclear spin of 3/2.). 

However, the next stable isonuclide is B-10 consisting of 5 

isodeuterons. But in this case there we have two spin paired 

isodeuterons and three unpaired ones, ironically which is not a 

combination of 2α-particles and one isodeuteron similar to Li-6. 

The next stable isonuclide is C-12 that consists of 6 

isodeuterons in the spin paired state, which is equivalent to 

strongly bound combination of 3α-particles. It is surprising that 

the combination of 2α-particles is unstable but the combination 

of 3α-particles is stable one. Here onwards 4 to 10α-particles 

combination are all stable ones. 

The remaining 154 isonuclides with null nuclear spin consist 

of even number of isodeuterons and even number of isoneutrons 

and they are all spin paired. Notice that not only the isoneutrons 

get stabilized but also the zero spin di-isoneutrons are getting 

stabilized in the environment of zero spin isodeuterons. 

Amongst them from Ca-42 and onwards we have the 

combination of di-isoneutrons and isodeuterons. The number of 

spin paired di-isoneuterons continuously increases and rises 

ultimately to 22 in number in the case of Pb-208 that consists of 

82 spin paired isodeuterons. Recall that a dineutron is not a 

stable entity but 22 spin paired di-isoneutrons of Pb-208 in the 

presence of 41 α-particles are stable. We need to investigate 

further what interactions are responsible for this extraordinary 

stability. However, we also need to take into account the nuclear 

configuration of adjacent unstable isonuclide. For example, 

Ca-40 and Ca-42 are both stable but Ca-39 and Ca-41 are 

unstable nuclides and Ca-43 is stable one. The nuclear 

configuration commensurate with the observed nuclear spin of 

 n̂ 

 n̂ 

   

 

ˆ ˆ104 ,104 ,

ˆ126

p p

e

 



 



= 61Z

1

1 0H

2
11 H

    ˆ ˆ ˆ, ( = 0),
hm

p e J p    
  

 2

1 1
ˆH (1) , stable, =1d J  
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Ca-39 and Ca-41 respectively are:  

   
^4

2 2
ˆ( )0 ˆ9 , ,He p d 

  
 

 

and  

   
^4

2 2
ˆ( )0 ˆ8 ,4 ,He d n

 
  

 
 

They both are unstable nuclear configurations. Thus in going 

from Ca-39 to Ca-40 the nuclear configuration transforms as  

   
^4

2 2
ˆ( )0 ˆ9 , ,He p d 

  
 

 

 

   
^ ^4 4

2 22 2
ˆ ˆ( ) ( )0 09 , , 10He Hed d

   
     

   
 

That is, in Ca-39 last pair of an isodeuteron and a proton are in 

high spin state but on the availability of one more isoneutron in 

case of Ca-40 not only one additional isodeuteron gets formed 

but also both the isodeuterons get spin paired, imparting 

stability.  

Whereas in going from Ca-40 to Ca-41 the nuclear 

configuration transforms as  

   
^ ^4 4

2 22 2
ˆ( ) ( )0 0 ˆ10 8 ,4 ,He He d n

   
     

   
 

That is, 2α-particles out of 10 in Ca-40 become 4 spin 

unpaired isodeuterons on the availability of an additional 

isoneutron in the case of Ca-41 and at the same time the 

additional isoneutron orients its spin opposite to that of the 

isodeuterons and the result is nuclear instability of Ca-41. Next 

we observe that when we add one isodeuteron to Ca-41 to form 

Ca-42 strikingly the four spin unpaired isodeuterons of the 

former isonuclide as well as the two isoneutrons get spin paired 

to form Ca-42, a stable isonuclide. 

Further, on going from Ca-42 to Ca-43 we see from Table 2 

that one α-particle out of 10 of Ca-42 gets spin unpaired 

providing two isodeuterons and simultaneously the spin paired 

isoneutrons of Ca-42 become spin unpaired to form three spin 

unpaired isoneutrons of Ca-43. Still Ca-43 is a stable isonuclide. 

Moreover, the reason of the nuclear stability of Ca-44 seems to 

be the same as that of Ca-42 because in the former we have one 

spin paired di-isoneutron whereas in the latter case we have two 

spin paired di-isoneutrons. 
It seems from the above observations that the spin pairing of 

the isonucleons is not the only parameter that determines the 

nuclear stability. Other factors need to be identified. This would 

get further substantiated by considering the stable isonuclides 

with non-zero nuclear spin in next subsection.  

II. Stable Isonuclides with Non-zero Nuclear Spin 
Moreover, there are 104 stable isonuclides (in addition to 

isodeuteron) in Table 2 with non-zero nuclear spin. All have the 

combination of isodeuterons and isoneutrons except He-3, 

which consists of one isodeuteron with both its spins up and an 

isoproton with spin down.  
1. Notice that in Table 2 there we have highest nuclear spin of 7 

(Lu-176). There also we have isonuclides with nuclear spins 

6 (V-50), 5 (La-138) and 9/2 (Ge-73, Kr-83, Sr-87, Nb-93, 

In-113, In-115 and Hf-179). That is even though the spins 

are parallel the isonuclides are stable. 
2. Also we notice that three parallel spin isodeuterons in the 

environment of α-particles are also stable they are B-10, 

K-40 (it also has 2 parallel spin isoneutrons) and Sc-45 (it 

also consists of one parallel spin isoneutron and one spin 

zero di-isoneutron). 
3. In addition to these parallel spin high spin states there we 

have various combination of parallel spin isodeuterons 

combined with parallel or opposite spin isoneutrons 

resulting in the intermediate nuclear spins from 1/2 to 7/2. 
4. As we know that an isolated single isoneutron is unstable 

but it gets stabilized in the form of an isodeuteron on the 

one hand but on the other hand it also gets stabilized in the 

environment of spin paired isodeuterons. This is the case of 

the nuclear spin of 1/2 of the isonuclides due only to a 

single isoneutron. From Table 2 we find that- 
a) in the cases of C-13 and Si-29 we have a single isoneutron 

in the environment of 3 and 7α-particles and both the 

isonuclides are stable. 
b) Another set of stable isonuclides with a single isoneutron 

consist of Fe-57, Se-77, Sn-115, Sn-117, Sn-119, Te-125, 

Xe-129, Xe-131, Yb-171, W-183, Os-187, Hg-199 and 

Pb-207. These isonuclides offer the environment of spin 

paired isodeuterons along with the spin paired isoneutrons 

to the last isoneutron resulting in the stability of the last 

isoneutron.  
5. Another set of stabilized single isoneutron is in 

combination with high spin state of isodeuterons in the 

environment of α-particles. We list them as follows.  

(a). The cases of a single isoneutron in the environment of 

α-particles along with a single isodeuteron are of two types. 

The high spin (that is the net nuclear spin of 3/2) states are 

Li-7, B-11, Na-23, Cl-35 and K-39. The low spin (that is the 

net nuclear spin of 1/2) stable isonuclides are N-15, F-19 

and P-31.  
(b).The cases of a single isoneutron in the environment of 

α-particles along with two parallel spin isodeuterons are 

also of two types. The high spin (that is the net nuclear spin 

of 5/2) stable states are O-17 and Mg-25. The low spin (that 

is the net nuclear spin of 3/2) stable states are Be-9, Ne-21 

and S-33.  
(c). The cases of a single isoneutron in the environment of 

α-particles along with three parallel spin isodeuterons are 

two in number. The high spin (that is net nuclear spin of 7/2) 

state is Sc-45 and the low spin (that is net nuclear spin of 

5/2) state is Al-27.  
(d).We have already seen in Section 14.1.3.1 that spin paired 

isoneutrons get stabilized in the environment of α-particles. 

Now we find that the combination of one isodeuteron and 


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one isoneutron also get stabilized in the environment of 

α-particles when accompanied by the zero spin 

di-isoneutrons. The corresponding isotopes with high spin 

(the net nuclear spin of 3/2) are Cl-37, K-41, Cu-63, Cu-65, 

Ga-71, As-75, Br-79, Br-81, Tb-159, Ir-191, Ir-193 and 

Au-197. Whereas the low spin (the net nuclear spin of 1/2) 

isonuclides are Y-89, Rh-103, Ag-107, Ag-109, Tm-169, 

Tl-203 and Tl-205.  
(e). We have seen above that K-40 is a stable isonuclide. Herein 

di-isoneutron of spin 1 is getting stabilized in the 

environment offered by α-particles and three parallel spin 

isodeuterons. Three parallel spin isoneutrons get stabilized 

in Ca-43 that offers the environment of -particles and 

two parallel spin isodeuterons.  
(f). We also see that up to the net 9 parallel spin isoneutrons get 

stabilized in the environment of 36 α-particles and 13 

di-isoneutrons in the case of Hf-179 whereas in the case of 

Ge-73 the 9 parallel spin isoneutrons get stabilized in the 

environment of 16 α-particles, no isodeuterons are required 

for this stabilization.  
We have described above certain representative observations 

but on closer scrutiny of Table 2 we can spell out many more 

observations. However, the main task of presenting the nuclear 

configurations of Table 2 has been to provide ample facts that 

would provide base to evolve a comprehensive theory of 

nuclear stability against radioactivity and find out the factors 

that lead to nuclear instability. 
While attempting to explain the nuclear stability we 

definitely need to consider unstable isonuclides in the 

immediate vicinity of the stable isonuclides along with their 

nuclear configurations commensurate with their observed spins. 

For example let us consider the cases of stable Nb-93 and 

In-113. We know that Nb-92 and Nb-94 are unstable isotopes 

and their experimentally observed nuclear spins are 7 and 6 

respectively whereas that of Nb-93 it is 9/2. That is Nb-93 lies in 

between the higher nuclear spin isotopes. The nuclear 

configuration of Nb-92 is  

       
^4

2 2
ˆ( )0 ˆ ˆ ˆ19 ,3 , , 8He d n n n

 
              

 
 

that on adding one isoneutron changes to  

       
^4

2 2
ˆ( )0 ˆ ˆ ˆ20 , ,2 , 7He d n n n

 
              

 
 

That is the addition of one isoneutron forces two isodeuterons 

out of three parallel spin isodeuterons to get spin paired and 

simultaneously itself gets spin paired with one isoneutron 

leaving 7 parallel spin isoneutrons. The outcome is the stable 

Nb-93. Now to this stable isotope on adding one isoneutron it 

forces one pair of spin paired isoneutrons to become spin 

unpaired resulting in total number of 10 parallel spin 

isoneutrons. The resultant nuclear configuration obtained is  

       
^4

2 2
ˆ( )0 ˆ ˆ ˆ20 , , , 10He d n n n

 
              

 
 

which is unstable Nb-94. 
Similarly, in the sequence In-112, In-113 and In-114 the 

nuclear configuration transforms as  

     
^4

2 2
ˆ( )0 ˆ ˆ24 , ,7He d n n

 
         

 
 

 

       
^4

2 2
ˆ( )0 ˆ ˆ ˆ24 , , 4 , 7He d n n n

 
              

 
 

 

     
^4

2 2
ˆ( )0 ˆ ˆ24 , ,8He d n n

 
         

 
 

Notice that in this sequence spin 1 states are unstable and 9/2 

spin state is a stable one. 
The above described are a few representative examples but 

they adequately pose the kind of challenge we need to undertake 

in order to explain nuclear stability/instability. One may think 

that an answer may be found through developing corresponding 

shell model and corresponding magic numbers. 
In order to check if magic numbers play any role in nuclear 

configuration through isoneucleons we have also compiled the 

nuclear configuration in terms of isodeuterons as the only 

constituent and depicted in Table 3. 

Table 3. Isonuclides composed only of isodeuterons 

Nuclear Configuration Isonuclide  X̂
A
Z N J  

Isodeuterons and Nuclear 

Stability / Instability 

Nuclear Magnetic dipole 

Moment / N   
Nuclear Electric Quadrupole 

Moment Q/eb 

 d̂   Isodeuteron 1 (odd) stable 0.85743823 +0.00286 

   ˆ ˆ,d d  
 

 ^4
2 2

( )0He  2 (even) stable 0 N/A 

   ˆ ˆ,d d  
 

,  d̂   6
3 3

^ ( )1Li  2, 1 (odd) stable 0.8220473 -0.00083 

2    ˆ ˆ,d d  
 

 

8
4 4

^ ( )0Be  

^4
2 2

( )02 He
 

  
  

  

2, 2 (even) unstable 0 N/A 






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Nuclear Configuration Isonuclide  X̂
A
Z N J  

Isodeuterons and Nuclear 

Stability / Instability 

Nuclear Magnetic dipole 

Moment / N   
Nuclear Electric Quadrupole 

Moment Q/eb 

   ˆ ˆ,d d  
 

, 

 d̂  ,  d̂  ,  d̂   

10
5 5

^ ( )3B  2, 3 (odd) stable 1.8006448 0.08472 

3    ˆ ˆ,d d  
 

 12
6 6

^ ( )0C  2, 4 (even) stable 0 N/A 

3    ˆ ˆ,d d  
 

,  d̂   14
7 7

^ ( )1N  2, 5 (odd) stable 0.403761 0.0193 

4    ˆ ˆ,d d  
 

 16
8 8

^ ( )0O  2, 6 (even) stable 0 N/A 

4    ˆ ˆ,d d  
 

 

 d̂   

18
9 9

^
( )F 0  2, 6, 1 (odd) unstable N/A N/A 

5    ˆ ˆ,d d  
 

 20
1010

^ ( )0Ne  2, 6, 2 (even) stable 0 N/A 

4    ˆ ˆ,d d  
 

, 

 d̂  ,  d̂  ,  d̂   

22
11 11

^ ( )3Na  2, 6, 3 (odd) unstable 1.746 N/A 

6    ˆ ˆ,d d  
 

 24
12 12

^ ( )0Mg  2, 6, 4 (even) stable 0 N/A 

4    ˆ ˆ,d d  
 

, 

 d̂  ,  d̂  ,  d̂  ,  d̂  ,

 d̂   

26
1313

^ ( )5Al  
2, 6, 5 (odd) unstable N/A N/A 

7    ˆ ˆ,d d  
 

 28
14 14

^ ( )0Si  
2, 6, 6 (even) stable 0 N/A 

7    ˆ ˆ,d d  
 

,  d̂   30
1515

^ ( )1P  2, 6, 6, 1 (odd) unstable N/A N/A 

8    ˆ ˆ,d d  
 

 32
1616

^ ( )0S  
2, 6, 6, 2 (even) stable 0 N/A 

8    ˆ ˆ,d d  
 

, 

 n̂  ,  p̂   

 

34
1717

^ ( )0Cl  
2, 6, 6, 2 (even) unstable 0 N/A 

9    ˆ ˆ,d d  
 

 36
1818

^ ( )0Ar  2, 6, 6, 4 (even) stable 0 N/A 

8    ˆ ˆ,d d  
 

, 

 d̂  ,  d̂  ,  d̂   

38
19 19

^ ( )3K  
2, 6, 6, 5 (odd) unstable 1.371 N/A 

10    ˆ ˆ,d d  
 

 40
2020

^ ( )0Ca  
2, 6, 6, 6 (even) stable 0 N/A 

10    ˆ ˆ,d d  
 

, 

 n̂  ,  p̂   

42
2121

^ ( )0Sc  
2, 6, 6, 6 (even) unstable 0 N/A 

11    ˆ ˆ,d d  
 

 44
2222

^ ( )0Ti  
2, 6, 6, 8 (even) unstable 0 N/A 

11    ˆ ˆ,d d  
 

, 46
2323

^ ( )0V  
2, 6, 6, 8 (even) unstable 0 N/A 
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Nuclear Configuration Isonuclide  X̂
A
Z N J  

Isodeuterons and Nuclear 

Stability / Instability 

Nuclear Magnetic dipole 

Moment / N   
Nuclear Electric Quadrupole 

Moment Q/eb 

 n̂  ,  p̂   

 

12    ˆ ˆ,d d  
 

 48
2424

^ ( )0Cr  2, 6, 6, 8, 2 (even) unstable 0 N/A 

 

From the column 3 of Table 3 we learn that the stable 

nuclides consists of odd number i.e. 1, 3, 5, 7 and 9, and even 

number i.e. 2, 6, 8, 10, 12, 14, 16, 18 and 20 isodeuterons. We 

also notice that there are no nuclides, stable or unstable, with 17, 

21 and 23 isodeuterons this we have depicted in Table 3 by 

including Cl-34 (consisting of 16 spin paired isodeuterons and 

spin paired one isoneutron and one isoproton), Sc-42 

(consisting of 20 spin paired isodeuterons and spin paired one 

isoneutron and one isoproton) and V-46 (consisting of 22 spin 

paired isodeuterons and spin paired one isoneutron and one 

isoproton). All of them are unstable isonuclides. The nearest 

stable isonuclides are Cl-35 (consisting of 16 spin paired 

isodeuterons, and one each isodeuteron and isoneutron with 

parallel spins), Sc-45 (consisting of 18 spin paired isodeuterons, 

two spin paired isoneutrons and parallel spin 3 isodeuterons and 

one isoneutron) and V-51 (consisting of 22 spin paired 

isodeuterons, and parallel spin one isodeuteron and 5 

isoneutrons) respectively (can be seen in Table 2). 
Thus, the column 3 of Table 3 doesn’t appear to point out the 

existence of a system of magic numbers for isodeuterons when 

housed in a nucleus. Moreover, in Table 3 we have also depicted 

the nuclear magnetic dipole and electric quadrupole moments 

[77, 78] in columns 4 and 5 respectively. That reveals the 

nonspherical nuclear charge distribution in the case of non-zero 

nuclear quadrupole moments. 

14.2. Nuclear Configuration of Model-II 

In this model we treat atomic nuclei as constituted of up-spin 

isoprotons, down-spin isoprotons and null-spin isoelectrons. 

The column 4 of Table 2 list nuclear configuration of all stable 

nuclides in terms of these isonucleons. The striking feature of 

these nuclear configuration is that the number of isoelectrons, 

, is equal to the number of neutrons (c.f. Eqs. (84) and (91)) 

and in this sense we may say that the isoelectrons have replaced 

neutrons. 
Traditionally the nuclear stability is described by the ratio 

 (number of neutrons to atomic number) and it is argued 

that this ratio increases from value 1 at lower atomic numbers to 

1.537 in the case of Pb-208 (the last stable nuclide) because 

with the increase of atomic number the nuclear charge increases, 

which results in tremendous increase in repulsive force amongst 

nuclear protons. This repulsion gets minimized by the presence 

of neutrons. At higher atomic number the neutrons in a nuclide 

need to out number protons to attain nuclear stability, hence the 

said ratio increases up to 1.537 for Pb-208. Of course, there is a 

limitation on the effectiveness of neutrons to overcome the 

nuclear repulsive force otherwise by mere increase of number of 

neutrons all nuclide could have been stabilized. Hence, other 

explanation of nuclear stability were looked for. That resulted in 

postulation of a host of new subatomic particles. In layman’s 

language scientists were looking for a nuclear glue which is 

responsible for tightly holding nucleons together within an 

atomic nucleus. 
With this background we now interpret the stability of an 

isodeuteron in terms of the ability of an isoelectron to 

effectively hold two isoprotons together. Hence, we are in a 

position to say that the isoelectron acts in this case as an 

effective nuclear glue that holds tightly two isoprotons together. 

In view of this interpretation we now, apparently for the first 

time, hypothesize that in all stable nuclides their isoelectrons 

act as effective glue that tightly hold their isoprotons together in 

the nucleus, of course, with appropriate distribution of up and 

down spins amongst isoprotons. We caution the reader that the 

isoelectrons as nuclear glue has entirely different base than what 

the nuclear glue is described in the conventional nuclear physics. 

In the present model we have not postulated any new subatomic 

particle. Our proposal is that the conventional electrons and 

protons get transformed respectively to isoelectrons and 

isoprotons by way of mutual partial penetration of their wave 

packets in view of their very close proximity and that acts as the 

nuclear glue. 
In view of the rôle of the nuclear glue played by isoelectrons 

we hereby propose that instead of  ratio it would be more 

appropriate to use the ratio  to qualitatively describe 

nuclear stability. 
Of course, the proposal of nuclear configuration in terms of 

isoprotons and isoelectrons with latter as the nuclear glue, opens 

up new vistas for further investigations on the topics of nuclear 

stability and understanding of all other nuclear properties. 
The nuclear configuration of nuclides of model-II are listed in 

column 4 of Table 2. The observations and analysis of these 

nuclear configurations are described in Section 14.2.1.  

14.2.1. Observations and Analysis of Nuclear Configuration 

of Model-II 

In the model-II we view the nucleus as a pool of isoprotons 

with the isoelectrons immersed in it. In light of this we are 

presenting our preliminary visualization of only a few nuclides 

of lower atomic numbers and for the time being we are 

postponing our analysis of higher atomic number nuclides.  
1. In the case of isodeuteron there we have one isoelectron and 

two isoprotons (both with up spin). Hence the isoelectron 

acts as a solitary nuclear glue that tightly holds both the up 

spin isoprotons. The most obvious geometry of these three 

(0)

/N Z

/N Z

(0) / Z



104 Anil A. Bhalekar and Ruggero Maria Santilli:  Exact and Invariant Representation of Nuclear Magnetic Moments and 

Spins According to Hadronic Mechanics 

isonucleons is linear that perfectly matches with the 

structure proposed by Santilli (see Figure 9). Thus oblate 

elliptical shape of isodeuteron described in Figure 6 

perfectly matches with the present description. It seems that 

the zero spin isodeuteron is energetically unstable hence 

even if it is formed in some nuclear transmutations that gets 

quickly converted to the spin 1 isodeuteron. 
2. The next entry in Table 2 is He-3 with the nuclear spin 1/2. It 

is the case of a pool of 3 isoprotons and in that one isoelectron 

is immersed. The obvious minimum energy geometry is the 

one in which the isoelectron is at the center of an equilateral 

triangle and the three isoprotons situated at the vertices of it. 

Again in this case too the shape would be elliptical due to its 

overall spinning motion. He-3 with nuclear spin of 3/2 has not 

been observed so far, which must be energetically unstable 

nuclide. Therefore, even if it is formed in some nuclear 

transmutations it gets quickly transformed to He-3 of 1/2 spin. 

Thus we learn that the low nuclear spin state He-3 is the 

preferred one. Moreover, when we add one down spin 

isoproton to an isodeuteron nucleus we get He-3 nucleus but 

we see that this addition does not disturbed the nuclear 

stability of, though the geometry changes from linear to 

planner. 
3. Just for comparison with He-3 nuclide let us consider H-3 

(triton) nuclide. The latter nucleus too possesses 3 isoprotons 

with the net spin of 1/2 but consists of 2 isoelectrons. The 

minimum energy arrangement would be trigonal-bipyramidal 

in that the two isoelectrons occupy axial positions above and 

below the horizontal plane of symmetry. However, in this 

arrangement the penetration of wave packets of isoelectrons 

into those of isoprotons would not be as deep as one isoelectron 

in He-3 achieves. This perhaps leads to instability. It decays 

with emission to the stable He-3 nuclide and its half life is 

12.329 y that is it is not highly unstable nuclide. This is 

understandable because by emission of one isoelectron a stable 

He-3 geometrical arrangement is achived. 
4. The He-4 nuclide is the case of a pool of 4 isoprotons and 

immersed in it are two isoelectrons. The minimum energy 

shape in this case would be that of an octahedron in which 

isoelectrons occupy the two diagrammatically opposite axial 

positions and 4 isoprotons occupy the remaining 4 vertices. 

The spins of isoprotons would be alternately up and down so 

that the net nuclear spin is null. The charge distribution would 

be spherically symmetric in view of the repulsion between 

axial isoelectrons. 
5. The Li-6 nuclide is a case of a pool of 6 isoprotons and 3 

isoelectrons immersed in it. The minimum energy shape 

seems to be the two trigonal-pyramids in a staggered 

geometry with 6 isoprotons at the vertices. All the 3 

isoelectrons occupy axial positions and out of them one is at 

the center holding tightly both the trigonal pyramids. The 

observed spin 1 originate from the one up spin isoproton on 

each side of the central isoelectron. If one isoelectron is added 

to Li-6 arrangement described herein then we will have to 

house 2 isoelectrons at the center of the axial position. An 

equally probable geometry could be one He-4 arrangement 

and one isodeuteron moiety oriented above one of the axial 

isoelectrons such that the isodeuteron moeity and the axial 

isoelectrons of He-4 moiety form a straight line. Such an 

arrangement would not be stable because of the strong 

electrostatic repulsion between two central isoelectrons. The 

resultant nuclide would be He-6. However, it has two decay 

paths with half life of 806.7 ms. One is the obvious decay to 

Li-6 just by getting rid of the extra electron and in the second 

path simultaneously an -particle is emitted, the daughter 

nuclides are a deuteron and He-4 nuclides. 
6. The Li-7 nuclide is a case of a pool of 7 isoprotons and 3 

isoelectrons immersed in it. The obvious minimum energy 

geometry would be having two H-3 trigonal-bipyramids 

fused by one isoproton at the center such that its wave packet 

simultaneously allows penetration of wave packets of two 

adjacent central isoelectrons on its left and right hand sides. 

The observed spin 3/2 is because of the two up spin 

isoprotons on each trigonal plane and one up spin isoproton 

of the fusing isoproton. If we add one isoelectron to Li-7 the 

resultant nuclide would be He-7, which decays to He-6 by 

neutron emission which in turn decays by two simultaneous 

paths to Li-6 and He-4 along with a deuteron by 

emission. 
7. The case of Be-8 is unique. It has a pool of 8 isoprotons and 4 

isoelectrons immersed in it. The minimum energy shape 

would be two compressed octahedrons in the staggered 

orientation one above the other. Thus the four vertices of each 

octahedron would be alternately occupied by up and down 

spin isoprotons and the two axial vertices of each octahedron 

are occupied by one isoelectrons each. However, in this way 

middle two isoelectrons would come close to each other hence 

this arrangement cannot sustain itself. As a result of it the two 

octahedrons get separated. This is the reason why Be-8 is not a 

stable nuclide disintegrating to α-particles. If we add 1 

isoelectron to Be-8 the resultant nuclide would be Li-8 which 

in turn disintegrates to Be-8 by emission with half life of 

840.3 ms. 
8. The Be-9 nuclide is a case of a pool of 9 isoprotons and 5 

isoelectrons immersed in it. The obvious minimum energy 

geometrical arrangement of isonucleons consist of 2 H-3 

trigonal-bipyramids fused by the triagonal planar geometry of 

He-3 in a staggered orientation with respect to both the 

trigonal-bipyramids. The observed spin of 3/2 is due to the 

spin 1/2 of one He-3 and two H-3 geometries. Notice that the 

wave packet of the isoelectron of the central He-3 geometry 

will be effectively shielded by the wave packets of its three 

isoprotons hence the wave packets of the isoelectrons of both 

the H-3 geometries oriented towards the central H-3 geometry 

wold penetrate into the wave packets of the central H-3 

isoprotons. This seems to impart stability to Be-9. If we add 1 

isoelectron to Be-9 nuclide the resultant nuclide would be Li-9 

which disintegrates by two paths to Be-9 and Be-8 along with 

 
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a neutron with the half life of 178.3 ms. 
9. The B-10 is the case of a pool of 10 isoprotons and 5 

isoelectrons immersed in it. The minimum energy packing of 

isonucleons would be two He-4 type octahedrons in the 

staggered orientation one above the other and one isodeuteron 

fusing them so that 2 central isoprotons and five axial 

isoelectrons are in a straight line. The spin 3 of B-10 

originates from 8 up spin isoprotons 3 in each octahedron plus 

two in the fusing isodeuteron leaving two down spin 

isoprotons one each in the octahedron geometry. If we add one 

isoelectron to B-10 nuclide the resultant nuclide would be 

Be-10 nuclide which disintegrates back to B-10 by 

emission with half life of 1.39  y. 
10. The B-11 is the case of a pool of 11 isoprotons and 6 

isoelectrons immersed in it. The minimum energy packing of 

the isonucleons would be 2 He-4 structures in staggered 

orientation and the remaining 3 isoprotons and 2 isoelectrons 

linearly and alternately coupled acts as the fusing chain of the 

two octahedral structures. The nuclear spin of 3/2 is due to 3 

up spin central isoprotons. If we add one isoelectron to the 

B-11 nuclide the resultant nuclide would be Be-11 which 

partly decays back to B-11 and partly to Li-7 and α-particle by 

emission with half life of 13.81 s. 
The above presented visualization of isonucleons in nuclides 

appears to be satisfactorily reasonable. We would extend the 

work on the same lines for all stable and unstable nuclides. 

15. Concluding Remarks 

In this paper, we have reviewed the numerous insufficiencies 

of quantum mechanics for the representation of the structure of 

stable nuclides, and the ensuing greater insufficiencies for the 

representation of the structure of unstable nuclides and nuclear 

reactions at large due to their structural irreversibility over time 

compared to the strict reversibility of quantum mechanical 

axions. 
We have pointed out that the origin of the insufficiencies rests 

primarily in the mathematics of quantum mechanics, rather than 

in its axioms, due to its local-differential character with 

consequential abstraction of nuclear constituents as being 

point-like particles, compared to the evident need for the 

nuclear structure to represent nucleons as they are in the nuclear 

reality: extended charge distributions. 
We have then reviewed the rudiments of the novel 

isomathematics which has been constructed precisely for the 

representation of nuclei as being composed by extended 

constituents in conditions of partial mutual penetration, thus 

resulting in the most general known interactions of linear and 

non-linear, local and non-local as well as Hamiltonian and 

non-Hamiltonian type. 
We have then reviewed the rudiments of the covering of 

quantum mechanics known as isomechanics specifically 

formulated for the nuclear structure, by stressing that it 

essentially consists in an axiom-preserving “completion" of 

quantum mechanics along the historical argument by Einstein, 

Podolsky and Rosen, which is solely valid at one fermi 

distances while recovering quantum mechanics uniquely and 

identically for bigger distances. 
We have then reviewed the use of the above new formulations 

for the first and only achievement on scientific records of an 

exact and time invariant representation of the magnetic 

moments of stable nuclei via the implementation of Fermi’s 

historical hypothesis that the charge distributions of protons and 

neutrons is deformed when they are members of a nuclear 

structure, with a consequential deformation of their intrinsic 

magnetic moments (see Figures 8 and 9 for neutron as 

isoneutron and deuteron as isodeuteron respectively). 
The conceptual and technically most dominant aspect of the 

above advances is that the admission of contact, non-linear, 

non-local and non-Hamiltonian interactions causes alterations 

of the intrinsic characteristics of particles called 

isorenormalizations that are simply beyond any possible 

quantitative treatment via 20
th

 century knowledge. 
Consequently, we reviewed in the Appendix A the rudiments 

of the covering of Lie’s theory known as the Lie-Santilli 

isotheory which has been specifically constructed for the 

invariant treatment of systems with extended-deformable 

constituents with the most general known interactions. 
The most prominent salient part of the Appendix A is the 

review of the Lorentz-Poincaré-Santilli isosymmetry and its 

characterization of isoparticles, with particular emphasis in the 

characterization of nuclear constituents as extended-deformable 

isoparticles. 
We finally review the use of all the above knowledge for the 

first and only known numerically exact and time invariant 

representation of all characteristics of the neutron in its 

synthesis from the hydrogen atom as being composed by one 

isoproton and one isoelectron, with the consequential 

representation of all characteristics of the deuteron as being 

composed by two isoprotons and one isoelectron. 
By using the above advances, we then present, apparently for 

the first time, two exact and invariant representations of the 

nuclear spin of the stable nuclides. The model-I is based on 

nuclear structures composed by isoprotons, isoneutrons and 

isodeuterons as isonucleons and the model-II is based on the 

final reduction of nuclides to isomechanical bound states of the 

respective isoprotons and isoelectrons. 
In the former model we have considered that with the 

available neutrons and protons of the nuclide they first prefer to 

have the stable isodeuteron structure and the remaining 

nucleons stay as isoneutrons and isoprotons in the nucleus. In 

doing so the rule followed is that the so generated nuclear 

configuration should correctly reproduce the experimental 

nuclear spin of the given nuclide. Thus in Table 2 we have listed 

nuclear configuration of all stable nuclides up to the atomic 

number 82, that is up to Pb-208. Then we have analyzed these 

nuclear configurations and presented our observations in terms 

of the number of isodeuterons (both their low spin and high spin 
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combinations) and their rôle in stabilization of various 

combination of spin paired and/or parallel spin isoneutrons. We 

have tried to look if these nuclear configurations indicate 

corresponding magic numbers but the data in Table 3 fail to 

provide any indication. However, it seems that unless we 

systematically compare the nuclear configuration based on 

model-I of neighbouring unstable nuclides about the stable 

nuclides considered in Table 2 we may not be able to throw 

much light on the factors responsible for nuclear 

stability/instability. Indeed, our data of Tables 2 and 3 of 

model-I has opened up an entirely a new line of research in the 

fields of nuclear stability/instability and nuclear magnetic 

moments including nuclear electric quadrupole moments. 
Whereas in arriving at the model-II we have first 

reinterpreted the stable structure of an isodeuteron in the sense 

that the isoelectron of it acts as a nuclear glue that tightly holds 

its two isoprotons. This proposal of isoelectrons acting as the 

nuclear glue we have, perhaps for the first time, extended to all 

stable nuclides. There we have assumed that a given nuclide 

consists of a pool of isoprotons and the isoelectrons are 

immersed in it, which in essence is the model-II of this paper. 

The working rule is that the number of isoelectrons is equal to 

the number of neutrons in the nuclide and the number of 

isoprotons is equal to the mass number of the nuclide. Next 

these isprotons are distributed in two groups of up and down 

spins in such a way to correctly predict the experimental nuclear 

spin of the given nuclide. The resulting nuclear configurations 

of all stable nuclides are listed in the column 4 of Table 2. 

Herein we have presented our preliminary observations on the 

so developed nuclear configuration. Of course, we have so far 

analyzed only a very few light nuclides in terms of geometrical 

arrangements of isoprotons and isoelectrons of H-2, H-3 

(unstable), He-3, He-4, Li-6, Li-7, Be-8 (unstable), Be-9, B-10 

and B-11 nuclides. Our assigned geometrical arrangements of 

isonucleons seem to provide reasonably satisfactory rational 

behind nuclear stability/instability. Particularly the reason of 

instability of H-3 and Be-8 so obtained seems to be rationally 

correct and encouraging. 
The remarkable feature of both the models of nuclear 

configuration presented in this paper is that we need not to 

invent nuclear particles other than the basic subatomic particles, 

namely electrons, protons and neutrons. 
Moreover, as stated in the main text of this paper the methods 

of writing nuclear configuration of a nuclide in both the models 

are equally applicable to unstable nuclides too hence while 

dealing with the nuclear stability/instability one can easily write 

down nuclear configurations of neighbouring unstable nuclides 

about a given stable one with identically the same rules as those 

we have followed in the case of stable nuclides and then attempt 

to rationalize nuclear stability/instability meaningfully. 
Both the models promise new vistas of nuclear physics that 

lays a foundation of carrying out further investigations based on 

hadronic mechanics to strengthen our knowledge of nuclear 

physics. 
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Appendix A 

The Lorentz-Poincaré-Santilli IsoSymmetry and its 

Characterization of IsoParticles 

A.1 Definition of IsoParticles 

The 20
th

 century definition of particles is that of unitary 

irreducible representation of the Lorentz-Poincaré (LP) 

symmetry on a Hilbert space over the field of complex numbers. 

This definition implies that all interactions are derivable from a 

potential and representable with a Hamiltonian as a central 

condition for the very applicability of Lie’s theory at large, and 

that of the LP symmetry in particular. In turn, the 

local-differential mathematics underlying Lie’s theory implies 

that the particles are abstracted as being point-like, as it is 

evident from the restriction of the interactions to 

actions-at-a-distance. 
A central aim of this paper is the representation of nuclear 

constituents as they are in the physical reality, namely, extended, 

non-spherical and deformable charge distributions according to 

the representation of Eq. (1) which is structurally 

non-Hamiltonian, in the sense that it cannot be represented with 

a Hamiltonian, thus requiring a new quantity other than the 

Hamiltonian. In order to achieve a time invariant representation, 

isomathematics selects Santilli isounit Eq. (37),  

for the representation of the new interactions. 

Additionally, the comparison of experimental data on nuclear 

volumes with those on the volume of protons and neutrons, 

establishes that, when they are members of a nuclear structure, 

protons and neutrons are in conditions of partial mutual 

penetration of their charge distributions. 

These data imply the emergence of new nuclear interactions 

that are non-existence in the 20
th

 century notion of particles, 

which are given by non-linear (in the wave functions), non-local 

(of integral and other type) and variationally non-selfadjoint 

[3a]. The latter interactions are also not representable with a 

Hamiltonian and can be invariantly represented with the 

exponent in the isotopic element, Eq. (1), or in the isounit. 
The above basic assumptions imply the applicability of the 

Lie-Santilli isotheory [3b, 7, 22, 24-33] at large that was 

constructed precisely for the representation of non-Hamiltonian 

systems under the most general known linear and non-linear, 

local and non-local and Hamiltonian as well as 

non-Hamiltonian interactions, 
Finally, the above basic assumptions imply that the universal 

symmetry for the non-relativistic treatment of isolated and 

ˆ ˆ=1/ > 0I T
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stable nuclei is the Galileo-Santilli isosymmetry [21, 22], while 

that for the relativistic treatment is the 

Lorentz-Poincaré-Santilli isosymmetry [12-23]. We can, 

therefore, introduce the following: 
DEFINITION A.1 [18, 21, 22]: A non-relativistic (relativistic) 

isoparticle is an isounitary, isoirreducible isorepresentation of 

the Galileo-Santilli (Lorentz-Poincaré-Santilli) isosymmetry on 

a Hilbert-Myung-Santilli isospace over a Santilli isofields. 
Within the context of this paper, whenever nuclear 

constituents are called “protons" and “neutrons" we refer to 

their quantum mechanical characterization as point-like 

particles under sole action-at-a-distance, potential-Hamiltonian 

interactions. Nuclear constituents according to this paper must 

necessarily be isoparticles at large, and isoprotons, isoneutron 

and isoelectrons in particular. In this Appendix we provide a 

summary characterization of relativistic isoparticles, while the 

particular case of non-relativistic isoparticles is referred to Refs. 

[18, 21] for brevity. 
It should be stressed that a technical knowledge of the notion 

of isoparticle can solely be acquired from the study of Refs. [18, 
21, 22]. In particular, a necessary pre-requisite for a technical 

characterization is the knowledge of Kadeisvili isofunctional 

analysis [22] we cannot possibly review to prevent excessive 

length. 

A.2 The Lie-Santilli IsoTheory 

The main branches of the Lie-Santilli isotheory can be 

outlined as follows (see the original proposal [3a] for the 

isotopies of enveloping algebras, Lie algebras and Lie group; 

Ref. [7] for their upgrading in terms of the isodifferential 

calculus over isofields; the final formulation in Ref. [22]; and 

Refs. [24-33] for independent studies): 
Universal Enveloping Isoassociative Algebras 

Let  be the universal enveloping associative 

algebra of an -dimensional Lie algebra  with ordered 

(Hermitean) generators , and attached 

antisymmetric algebra isomorphic to the Lie algebra, 

 over a field  (of characteristic zero), and let 

the infinite-dimensional basis , ,  of 

 be characterized by the Poincaré-Birkhoff-Witt theorem. 

We then have the following: 

THEOREM A.1 [3b, 7]: (Poincaré-Birkhoff-Witt-Santilli 

theorem): The isocosets of the isounit and of the standard 

isomonomials 

  (A.1) 

form an infinite dimensional basis of the universal enveloping 

isoassociative algebra  (also called isoenvelope for short) 

of a Lie-Santilli isoalgebra . 

The first application of the above theorem, also formulated in 

Ref. [3b] and then reexamined by various authors, is a rigorous 

characterization of the isoexponentiation, i.e.,  

 

 

         (A.2a) 

             (A.2b) 

where quantities with a “hat" are formulated on isospaces 

over isofields and those without are their projection on 

conventional spaces over conventional fields. 
The non-triviality of the Lie-Santilli isotheory is established 

by the emergence of the isotopic element  directly in the 

exponent, thus ensuring the desired generalization, thus 

establishing “ab initio" that while Lies theory can solely 

characterize linear, local-dofferential and Hamiltonian systems, 

the covering Lie-Santilli isotheory characterize the most general 

known non-linear, non-local and non-canonical or non-unitary 

systems. 

LIE-SANTILLI ISOALGEBRAS. 

As it is well known, Lie algebras are the antisymmetric 

algebras  attached to the universal enveloping 

algebras . This main characteristic is preserved although 

enlarged under isotopies as expressed by the following: 

THEOREM A.2 [3b, 7] (Lie-Santilli Second theorem): The 

antisymmetric isoalgebras  attached to the isoenveloping 

algebras  verify the isocommutation rules. 

 

 

                         (A.3) 

where  is the projection of the isotopic element  on a 

conventional space over a conventional field, and the ’s, 

called the “structure isofunctions" of , generally have an 

explicit dependence on local variables, and are restricted by the 

conditions (Lie-Santilli Third Theorem) 

           (A.4a) 

 (A.4b) 

It was stated in the original proposal [3b, 7] that all 

isoalgebras  are isomorphic to the original algebra  for all 
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positive-definite isotopic elements. In other words, the isotopies 

cannot characterize any new Lie algebras because all possible 

Lie algebras are known from Cartan classification. Therefore, 

Lie-Santilli isoalgebras merely provide new non-linear, 

non=local and non=canonical or non-unitary realizations of 

existing Lie algebras. 

LIE-SANTILLI ISOGROUPS. 

Under certain integrability and smoothness conditions hereon 

assumed, Lie algebras  can be “exponentiated" to their 

corresponding Lie transformation groups  and, vice-versa, 

Lie transformation groups  admit corresponding Lie 

algebras  when computed in the neighborhood of the unit 

. 

These basic properties are preserved under isotopies although 

broadened to the most general possible, axiom-preserving 

nonlinear, nonlocal and noncanonical transformations groups 

according to the following: 

THEOREM A.3 [3b, 7] (Lie-Santilli isogroups): The 

isogroup characterized by finite (integrated) form  of 

isocommutation rules (1.12) on an isospace  over an 

isofield  with common isounit  is a group 

mapping each element  into a new element  via 

the isotransformations 

        (A.5) 

with the following isomodular action to the right: 

1) The map  into  is isodifferentiable ; 

2)  is the left and right unit  

           (A.6) 

3) the isomodular action is isoassociative, i.e.,  

      (A.7) 

4) in correspondence with every element  there is 

the inverse element  such that  

          (A.8) 

5) the following composition laws are verified  

 (A.9) 

with corresponding isomodular action to the left, and general 

expression  

      (A.10) 

Another important property is that conventional group 

composition laws admit a consistent isotopic lifting, resulting in 

the following 
THEOREM A.4 [3b, 7] (Baker-Campbell-Hausdorff-Santilli 

theorem):  

          (A.11a) 

 (A.11b) 

Let  and  be two isogroups with respective isounits 

 and . The direct isoproduct  is the isogroup of all 

ordered pairs  

         (A.12) 

with isomultiplication  

        (A.13) 

total isounit  and inverse . 

The following particular case is important for the isotopies of 

inhomogeneous groups. Let  be an isogroup with isounit  

and  the group of all its inner automorphisms. Let  be a 

subgroup of  with isounit , and let  be the image of 

 under . The semi-direct isoproduct  is the 

isogroup of all ordered pairs  with total isounit  

             (A.14) 

The studies of the isotopies of the remaining aspects of the 

structure of Lie groups is then consequential. It is hoped the 

reader can see from the above elements that the entire 

conventional Lie theory does indeed admit a consistent and 

nontrivial lifting into the covering Lie-Santilli formulation. 

A.3 Classification of Lie-Santilli IsoTheories 

The Lie-Santilli isotheories are classified into [7]: 
3.1) Regular isotheories when the ’s of rules (A.3) are 

constant; and 
3.2) Irregular isotheories when the ’s of rules (A.3) are 

functions of local variables. 
We should recall for the benefit of concrete applications in 

nuclear physics that all regular Lie-Santilli isotheories can be 

constructed via the application of a non-canonical or 

non-unitary transformation to the totality of the conventional 

formulation of Lie’s theory, according to the rule of Section 4. 
From now on, except for an illustration in Section 16.13, we 

should solely consider regular realizations of the Lie-santilli 

isotheories because amply sufficient for nuclear applications, 

although the use of irregular realizations appear to be necessary 

for astrophysical applications. 
We should also recall that "structure functions" are 

impossible for Lie’s theory, and they are solely possible for the 

covering Lie-Santilli isotheory, by therefore establishing the 

non-trivial character of Santilli isotopies. 

A.4 The Fundamental Theorem on IsoSymmetries 
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As recalled in Section 16.1, the fundamental symmetries of 

the 20
th

 century physics characterize point-like abstractions of 

particles in vacuum under linear, local and potential interactions, 

and are given by the Galilei symmetry  for 

non-relativistic treatment, the Lorentz-Poincaré symmetry 

 or relativistic formulations, the rotational symmetry 

, the  symmetries and others. 

A central objective of hadronic mechanics is the broadening 

of these fundamental symmetries to represent extended, 

non-spherical and deformable particles under linear and 

non-linear, local and non-local and potential as well as 

non-potential interactions in such a way to preserve the original 

symmetries at the abstract level as a necessary condition to 

maintain the conventional total conservation laws for isolated 

stable systems. 
This central objective is achieved by the following property 

first proved by Santilli in Ref. [22b]: 
THEOREM A.5: Let  be an N-dimensional Lie symmetry 

of a K-dimensional metric or pseudo-metric space  

over a field ,  

   (A.15a) 

 (A.15b) 

             (A.15c) 

Then, all infinitely possible isotopies  of  acting on 

the isospace ,  

characterized by the same generators and parameters of  and 

the infinitely possible, common isounits  leave 

invariant the isocomposition  

    (A.16a) 

† † †ˆ ˆˆ ˆ( ) ( ) ( ) ( )x y m x y x y m x y           (A.16b) 

†ˆ ˆˆ ˆ ˆ ˆ( ) ( ) .w m w m               (A.16c) 

and all infinitely possible so constructed isosymmetries  are 

locally isomorphic to the original symmetry . 

For a proof of the above theorem, one may inspect Section 

1.2, Vol. II of Ref. [22]. 
To achieve a technical understanding of the Lie-Santilli 

isotheory and its applications in nuclear physics, the reader 

should note that, while a given Lie symmetry  is unique as 

well known, there can be an infinite number of covering 

isosymmetries  with generally different explicit forms of the 

transformations due to the infinite number of possible isotopic 

elements. 

In fact, systems are characterized by the Hamiltonian  in 

the conventional scattering theory with trivial unit

. In this case, changing the Hamiltonian 

implies the referral to a different system, but the symmetry 

transformations remain the same. In the isoscattering theory, 

systems are characterized by the Hamiltonian  plus the 

isotopic element . In this case, changing the isotopic element 

implies the referral to a different system as well as the 

characterization of generally different transformations due to 

the appearance of the isotopic element in the very structure of 

the isosymmetry. 

Note also that all possible isosymmetries can be explicitly 

and uniquely constructed via the sole knowledge of the 

conventional symmetry and the isotopic element (1). in fact, as 

implied by Theorem A.5, the existence of the original symmetry 

plus the condition  ensure verification of the integrability 

conditions for the existence of finite transformations, a property 

hereon tacitly implied. 

Recall that all quantities that are Hermitean in quantum 

mechanics are iso-Hermitean in hadronic mechanics as one can 

verify via Eq. (29), to such as extent that Hermiticity and 

iso-Hermiticity coincide at the abstract realization-free level,  

              (A.17) 

The following property is then crucial for the physical 

consistency of the nuclear applications of hadronic mechanics, 

particularly the isomechanical models of closed-isolated stable 

nuclei: 
THEOREM A.6 [22]: Physical quantities that are Hermitean 

and conserved in quantum mechanics remain iso-Hermitean 

and iso-conserved in isomechanics. 
The proof of the theorem can be easily done via the local 

isomorphism of conventional Lie algebras  and their 

isotopic covering  since isotopies do not change the 

generators, and merely generalize their associative products. 

Recall that the basic space time symmetries, the Galileo and 

the Lorentz-Poincaré symmetries, characterize ten total 

conservation laws for the total linear momentum , the total 

angular momentum , the tonal energy , the uniform 

motion of the center of mass . 

Theorem A.6 then assures that all total-external quantities 

that are conserved for quantum mechanical models remain 

conserved for their covering isomechanical form achieved via 

the rules of Section 4. 

A.5 The Minkowski-Santilli IsoGeometry 

Let  be the conventional Minkowski space over 

the field of real numbers , with coordinates

, metric

, unit  and line 

element  

 

 (A.18) 

As it is well known, the Lorentz-Poincaré symmetry, hereon 

denoted , leaves invariant the above line element and 

constitutes the ultimate structural foundations of special 
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relativity because it permits the unique and unambiguous 

characterization of its basic axioms and physical laws for 

exterior problems of point-particles moving in vacuum. 
The fundamental isospace of relativistic isomechanics is the 

Minkowski-Santilli isospace [15]  over the isoreals 

, with isocoordinates , isometric from Eq. (37) is  

     (A.19) 

isounit , and isoline element 
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(A.20) 

where the isometric characteristic quantities  are 

positive-definite but have otherwise an unrestricted functional 

dependence on all needed quantities, such as space-time 

coordinates , velocities , accelerations , energy , 

distance , frequencies , temperature , wavefunction 

, their derivatives , etc.  

 (A.21) 

Isoprotons, isoneutrons and isoelectrons are defined on 

isospace  over the isoreals. As one can see, 

isometric (A.19) is the most general possible metric with 

signature , thus including as particular case the 

Riemannian, Fynslerian, Minkowskian and other possible 

metric. 

The Minkowski-Santilli isogeometry [19] is the geometry of 

isospace  and can be conceptually identified as 

the Riemannian geometry reformulated with respect to the 

isofields of isoreals because the isometric is indeed dependent 

on local coordinates, thus requiring the machinery of the 

Riemannian geometry, such as Christoffel symbols, covariant 

derivatives, etc., although reformulated with respect to 

isomathematics. 

The intriguing part of the Minkowski-Santilli isogeometry is 

that it has zero curvature as necessary from the local 

isomorphism of isospace  with the conventional 

space . It should be stressed that the lack of curvature 

was a necessary prerequisite for the construction of the 

symmetry of isoinvariant (A.20) (see Refs. [22] for details). 

A.6 The Lorentz-Poncaré-Santilli IsoSymmetry 

Following the prior construction of the isotopies of Lie’s 

theory [3b], the universal isosymmetry of all infinitely possible 

isoline elements (A.19) was first identified by Santilli in 1983 

[15], subjected to systematic studies in Refs. [15-19], and 

presented in a systematicw ay in monographs [21, 22], resulting 

in a new isosymmetry today known as the 

Lorentz-Poincaré-Santilli isosymmetry (LPD) and denoted with 

the symbol . 

The isosymmetry  can be defined as the 

isotransformations on Minkowski-Santilli isospaces over 

isoreals  

          (A.22a) 

       (A.22b) 

where we shall preserve the symbol  of ordinary 

multiplications hereon, under the isomodularity condition  

                   (A.23) 

where the quantity  is identified below and  

represents isoparameters. 

The regular isoconnected component of the LPS 

isosymmetry  is characterized by the condition  

                   (A.24) 

and can be written  

           (A.25) 

where  is the 11
th

 dimensionality of the LPS isosymmetry 

identified below. 
By expanding the preceding finite isotransforms (A.22) in 

terms of the isounit, the regular LPS isoalgebra is characterized 

by the conventional generators of the LP algebra and the 

isocommutation rules [21, 22, 25]  

 

     (A.26a) 

     (A.26b) 

             (A.26c) 

The iso-Casimir isoinvariants of  are given by [ loc. 

cit]  

              (A.27a) 

 

       (A.27b) 

  (A.27c) 
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isorelativistic kinematics [43]. 
It is easy to prove that the LPS isosymmetry is locally 

isomorphic to the conventional LP symmetry. It then follows 

that the isotopies increase significantly the arena of applicability 

of the LP (as well as any Lie symmetry) by lifting the 

Minkowskian spacetime (A.18) to all infinitely possible 

isospacetime (A.20). 
Note that isolinear isomomenta isocommute, Eqs. (A.26c), 

that is, they commute in isospace over isoreals, but they do not 

generally commute when projected in the ordinary Minkowski 

space. This occurrence is a clear confirmation of a nonlinear 

structure of isorelativity with rather deep gravitational 

implications not considered in this paper. 
Yet, this property is significant because it appears, for the first 

time to our knowledge, the possibility of identifying a possible 

gravitational component in the structure of nuclei, as studied 

preliminarily in Refs. [79]. 
The isoirregular LPS isoalgebra is characterized by structure 

functions, thus no longer being locally isomorphic to the 

conventional LP symmetry. The study of the irregular 

realization is left to the interested reader for brevity. 
By using the original generators of the LP symmetry, the 

isotopic element (37) and Lie-Santilli isotheory, regular LPS 

isotransformations can be easily identified as outlined below. 

A.7 Regular IsoRotations 

The regular isorotations, first presented in Ref. [12], and then 

treated in details in Refs. [22] via isofunctional analysis in 

general, and isotrgonometric functions in particular. Since the 

isounit  is positive-definite, the 

isosymmetry  is locally isomorphic to the conventional 

rotational symmetry  (Figure 11). 

Isorotations provide the technical characterization of the 

deformation of protons and neutrons when members of a 

nuclear structure under strong interactions. In their projection 

on an ordinary Euclidean space, isorotations can be written in 

the (1-2)-plane (see Ref. [22] for the general case).  

 

          (A.28a) 

 

            (A.28b) 

The isomorphism of  is due to the fact that 

ellipsoid deformations of the semiaxes of the perfect sphere are 

compensated on isospaces over isofields by the inverse 

deformation of the related unit  

 

 
Figure 11. It was popularly believed in the 20th century physics that the Lorentz 

symmetry is broken for locally varying speeds of light within physical media, 

here represented with a wiggly light cone. the Lie-Santilli isosymmetries have 

restored the exact validity of the Lorentz symmetry for all possible subluminal 

and superluminal speeds, thus confirming the preservation of the abstract 

axioms of special relativity for interior dynamical problems [15, 22].  

       (A.29a) 

            (A.29b) 

resulting in the reconstruction of the perfect sphere on isospace 

called the isosphere, (A.29b), with consequential reconstruction 

of the exact rotational symmetry. 

A.8 Regular Lorentz-Santilli IsoTransformations 

The regular Lorentz-Santilli (LS) isotransforms were first 

identified in Ref. [15] and then studied in details in monographs 

[22]. Their elaboration also requires the use of the isofunctional 

analysis we cannot possibly review in this paper for brevity. It is 

easy to prove from the positive-definite character of the isounit 

 that the Lorentz-Santilli 

isosymmetry  is locally isomorphic to the 

conventional symmetry  (Figure 11). 

The LS isotransformations are at the foundations of the 

relativistic results of this paper as well as of their invariance 

over time. They were first derived in Ref. [15] of 1983 and can 

be presented projected in the conventional Minkowski 

(3-4)-plane (see monograph [22b] for the general case)  

             (A.30a) 
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           (A.30c) 
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where  

               (A.31a) 

               (A.31b) 

It should be indicated that the main aim of Ref. [15] was the 

solution of the historical Lorentz probem, namely, the 

achievement of the universal symmetry for locally varying 

speeds of light within physical media . Since this 

problem is highly non-linear, its solution could not be derived 

via the conventional Lie’s theory. For this reason, Santilli 

conducted decades of studies for the generalization of Lie’s 

theory into a form valid for nonlinear systems, first presented in 

monograph [3b], as a prerequisite for the solution of Lorentz’s 

historical problem. 

The isomorphism  is due to the 

reconstruction of the exact light cone on isospace over isofields 

called the light isocone. In fact, jointly with the deformation of 

the light cone  

       (A.32) 

we have the corresponding inverse deformations of the units,  

      (A.33) 

thus reconstructing the original light cone on isospaces over 

isofields. 
The reader should be aware that the above reconstruction 

includes the preservation on isospace over isofields of the 

original characteristic angle of the conventional light cone, 

namely, the maximal causal speed on isospace over isofields is 

the conventional speed of light  in vacuum [22]. 

A.9 Regular IsoTranslations 

The regular isotranslations  were first studied in Ref. 

[16] and then studied in details in monographs [22]. and can be 

expressed in their projection in the conventional Minkowski 

space with the following lifting of the conventional translations 

 and  constants,  

               (A.34) 

where  

       (A.35) 

and there is no summation on the  indices. 

Note the high nonlinearity of the isotranslations. This is due 

to the fact that the above expressions are the projection in the 

conventional spacetime since, when written on a 

Minkowski-Santilli isospace over isofields, isotransformations 

coincide with conventional translations. 

A.10 Regular IsoDilations and IsoContractions 

The regular isodilations and isoContractions  were 

first identified in Ref. [16] and then studied in details in 

monographs [22]. They constitute a basically new spacetime 

symmetry with vast implications, e.g., for grand unified theories 

[71], and can be expressed via the transformation  

           (A.36) 

with ensuing invariance  

 

           (A.37) 

It was popularly believed in the 20
th

 century that the LP 

symmetry was -dimensional. The above invariance 

establishes that, instead, the LPS isosymmetry as well as the LP 

conventional symmetry are -dimensional. 

A.11 Regular IsoInversions 

The regular isoinversions are given by [22b]  

              (A.38a) 

             (A.38b) 

where  and  are the conventional space and time 

inversion operators. 

A.12 Regular  IsoSymmetry 

In this section we provide the solution, apparently for the first 

time, of a central problem for the consistent and time invariant 

representation of nuclear magnetic moments via the 

deformations of the charge distributions of nucleons with 

consequential mutation of their intrinsic magnetic moment, 

under the conservation of conventional, values of the spins. 
By remembering the lack of uniqueness of the isounits and 

related isotopic element, the simplest regular two-dimensional 

irreducible isorepresentations of  are characterized by 

the lifting of the two-dimensional complex-valued unitary space 

with metric  into the isotopic image [12, 15, 22]  
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    (A.40a) 

  (A.40b) 

here the ’s are well behaved nowhere null functions, resulting 

in the regular Pauli-Santilli isomatrices [ loc. cit] 
The related lifting of Pauli’s matrices are then given by the 

Regular Paili-Santilli isomatrices [13, 14]  

           (A.41a) 

 

              (A.41b) 

Another realization of the regular hadronic spin 1/2 is given 

by non diagonal nonunitary transforms [ loc. cit.].  

      (A.42) 

with corresponding alternative version of the regular 

Pauli-Santilli isomatrices,  

 

              (A.43) 

or by more general realizations with Hermitean non diagonal 

isounits  [15b]. 
All regular Pauli-Santilli isomatrices verify the following 

isocommutation rules and isoeigenvalue equations on  over 

  

 

        (A.44a) 

 

   (A.44b) 

        (A.44c) 

thus preserving conventional structure constants and 

eigenvalues for spin  under non-Hamiltonian/nonunitary 

interaction, while adding the degree of freedom  

                (A.45) 

That indeed is fully compatible with the mutation of intrinsic 

magnetic moments of spin  particles, Eq. (60). 
Additionally, the regular Pauli-Santilli isomatrices provide 

an explicit and concrete realization of hidden variables, with 

intriguing implications for local realism studied in detail in ref. 

[14]. In turn, the above aspect confirm the origination of 

isomechanics as a concrete and explicit realization of the 

“incompleteness" of quantum mechanics according to Einstein, 

Podolsky and Rosen [1]. 

A.13 Irregular  IsoSymmetry 

As indicated throughout this paper, there appears to be no 

need for a mutation of the spin of nuclear constituents to achieve 

an exact representation of nuclear magnetic moments and spins. 
Nevertheless, the issue persists as to whiter a proton in the 

core of a star should have the same spin when member of a 

nuclear structure. Santilli has introduced the irregular isotopies 

of the  spin precisely for future studies of this 

important problem for the structure of stars. 
One illustrative example of irregular Pauli-Santilli 

isomatrices is given by [12-14]  

 

             (A.46) 

where  is the mutation parameter, with isocommutation 

rules and eigenvalue equations  

 

            (A.47a) 

 

  (A.47b) 

      (A.47c) 

Additional examples of irregular Pauli-Santilli isomatrices 

can be found in Refs. [12-14]. 
The assumption of a mutated spin in hyperdense interior 

conditions evidently implies the inapplicability (rather than the 

violation) of the Fermi-Dirac statistics, Pauli’s exclusion 

principle and other quantum mechanical laws, with the 

understanding that, by central assumption, non-Hamiltonian 

bound states of particles as a whole must have conventional 

total quantum values. Therefore, we are here referring to 

possible internal exchanges of angular momentum and spin 
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always in such a way as to cancel out and yield total 

conventional values. 

A.14 IsoRelativity IsoAxioms 

As shown in this paper, a numerically exact and time 

invariant representation of nuclear magnetic moments and spins 

has required the isotopies of 20
th

 century mathematics, with 

ensuing isotopies of quantum mechanics into isomechanics. 
Interested readers should be aware that the above isotopies 

imply the inapplicability of special relativity for the nuclear 

structure in favor of a covering relativity known as isorelativity 

[15, 21-23]. The central aim of special relativity is the 

invariance of the speed of light in vacuum. A central aim of 

isorelativity is the invariance of local varying speeds of light 

 within physical media as shown in Appendix A.8. 

A rudimentary knowledge of the covering relativity is 

important to prevent major misrepresentations of the results of 

this paper as well as in possible further advances because the the 

appraisals of the new nuclear structure provided by 

isomechanics via special relativity would be equivalent to the 

appraisal of the results by special relativity via Newtonian 

mechanics. 
The isotopies of the axioms of special relativity, today known 

as IsoAxioms, were initiated by Santilli in paper [15] of 1983; 

they received a first systematic formulation by Santilli in 

monographs [21] of 1991; they were finalized in monographs 

[22] of 1995 jointly with the discovery of the isodifferential 

calculus; and their experimental verifications were presented 

ion Refs. [23]. 
In this paper we specialize, apparently for the first time, the 

isoaxioms for the isomechanical structure of stable and isolated 

nuclei whose constituents are isoparticles. The gravitational 

formulation of the isoaxioms of Reg. [71] should be kep in mind 

because it offers, also apparently for the first time, the 

possibility of addressing the origin of gravitational field in the 

structure of nuclei. 
The first implication of the isotopies of special relativity is 

the abandonment of the speed of light in vacuum as the maximal 

causal speed in favor of a covering geometrization of physical 

media. This occurrence is easily seen by specializing the isoline 

element (27) to the isolight isocone [23, 37]  

         (A.48) 

thus leading to the Maximal Causal Speed  of IsoAxiom 

5.1 below. 

The remaining isoaxioms can be uniquely and 

unambiguously identified via a procedure parallel to the 

construction of the axioms of special relativity from the 

Lorentz-Poincaré symmetry. 

Another departure from 20th century views is that isoaxioms 

refer to generally inhomogeneous and anisotropic physical 

media, as it os typically the case of the medium within spinning 

charge distributions., Therefore, the isoaxioms are formulated 

below for a generic space direction , 

ISOAXIOM A. I: The maximal causal speed in a given space 

direction  in the interior of nuclei is given by  

,
4

= ,k
max k

n
V c

n
                 (A.49) 

ISOAXIOM A. II: The local isospeed of light is given by  

                      (A.50) 

where  is the speed of light in vacuum. 
ISOAXIOM A. III: The addition of isospeeds in the 

-direction follows the isotopic law  

            (A.51) 

ISOAXIOM A. IV: The isodilatation of isotime, the 

isocontraction of isolengths, the variation of mass with isospeed, 

and the mass-energy isoequivalence principle follow the 

isotopic laws  

                 (A.52a) 

                (A.52b) 

                 (A.52c) 

            (A.52d) 

where  and  have values (32). 

ISOAXIOM A. V: The frequency isoshift of light 

propagating within a nucleus in the -direction follows the 

Doppler-Santilli isotopic law  

            (A.53) 

where  is the frequency experimentally measured in the 

outside,  is the frequency at the origin inside a nucleus, and 

we have ignored for simplicity the isotopies of trigonometry 

(see Refs. [23] for brevity). 
It should be stressed that in the above formulations as well as 

in the next section we present the isoaxioms in their projection 

on the conventional Minkowski space. while their technical 

treatment requires the full use of the various branches of 

isomathematcs, including the formulation of the isoaxioms on a 

Minkowski-Santilli isos; ace over an isofield. 
A main feature is that, when the isoaxioms are represented on 

4= /C c n

2 2
2̂ 2

2 2

4

ˆ = = 0,k

k

x c
x t

n n

 
 

 

maxV

k

k

4

ˆ =
c

c
n

c

k

1, 2, /

, 2
1, 2, 4

2 2

/
= .

1

k k k n
k

tot k

k k

k

v n v
V

v v n

c n





ˆ=  ,kt t 

1ˆ=  ,k
 

ˆ=  ,km m

2

2 3

2

4

= = k

max

n
E mV mc

n

̂ ̂

k

4

/
ˆ= 1 cos

/

k

e o k

v n

c n
   

 
 

 

e

o



 American Journal of Modern Physics 2016; 5(2-1): 56-118 115 

 

isospace over isofields, they coincide with the conventional 

axioms of special relativity by conception and technical 

realization. In particular, the maximal causal speed  

solely occurs in the projection of the isoaxioms on Minkowski 

space because, at the isotopic level, the maximal causal speed is 

 for all possible isogravitational problems. 

 

A.15 Predicted Implications of the IsoAxioms for the Nuclear 

Structure 

In this final section, we identify the most important 

predictions of isorelativity [15, 21, 22] emerging as a 

consequence of our exact and invariant representation of 

nuclear magnetic moments and spins, and present their 

preliminary appraisals by soliciting comments from interested 

colleagues. 
Isoaxioms clearly imply two different representations of the 

nuclear structure, the first is the representation of nuclear 

characteristics as measured from outside observer here 

indicated with the subindex “ext," and the second representation 

is that in the interior of nuclei here indicated with the subindex 

“int." 
These two representations are necessary for the evident 

reason that the exterior observer is assumed as being in vacuum 

thus obeying conventional relativity axioms while the second 

representation occurs within hyperdense physical media, here 

assumed as obeying the covering isorelativity axioms. 
A first implications of isorelativity is that the time of the 

exterior observer is not necessarily the same as that in the 

interior of nuclei. In fact, by recalling the isodilation and 

isocontraction of Appendix A.10, we can write the identity  

                 (A.54) 

Since for the nuclear structures considered in this paper 

 as in Eq. (63), one can see that the interior time 

evolution of nucleons is predicted to be “faster" than that of an 

outsider observer. 
Note that at the abstract realization-free level there is no 

distinction between interior and exterior times as typical for all 

isotopies [22] since Eq. (A.54) can be written  

                    (A.55) 

where  is an ordinary scalar, while  is an isoscalar (Section 

2). Therefore,  and  are the projection of Eq. (A.55) in 

our spacetime. 

For the case of distances, we can write the corresponding 

differentiations between external and internal distances 

according to the isotopic law  

                  (A.56) 

Since the space isounits are generally smaller than one from 

Eqs. (64), one can see again that space distances perceived in 

the outside observer are predicted to be bigger than the actual 

distances in the interior. 
Intriguingly, isolaw (A.56) is verified in ordinary water 

where, as we all know, dimensions perceived from the outsider 

are bigger than those actually occurring within water (Figure 

12). Therefore, our argument is that, since isolaw (A.55) is 

verified in a medium with relatively big density such as water, 

the possibility of a similar occurrence in much denser media 

such as nuclei deserves due scientific process. 

 
Figure 12. This picture illustrates the representation by isorelativity of the 

known effect that dimensions in water appears as being bigger then their actual 

dimensions when seen fro an outside observer, thus warranting the study of the 

corresponding effect within nuclei. 

Next, the speed of light in vacuum  has no mathematical 

or physical meaning for isorelativity and, in particular, it is not 

invariant under the time evolution. The sole mathematically and 

physically accepted quantity is Lorentz locally varying speed

. 

In fact, the relativistic sum of two ordinary speeds of light 

does not yield the speed of light within physical media such as 

water and the same is expected within nuclei. By contrast, the 

isorelativistic sum of two locally varying speeds of light does 

indeed yield the local speed of light according to isoaxioms III,  

            (A.57) 

In particular, one should note that a necessary condition for 

the isorepresentation of nuclear magnetic moments is that the 

local speed of light in the interior of nuclei is bigger than that in 

vacuum, see Eq. (64). This is a confirmation of the similar 

condition for  which is necessary for the synthesis of 

the neutron from bthe hydrogen (Section 7). 

Yet another prediction of isorelativity according to isoaxioms 

A. IV is that the energy isoequivalent according to isoaction 

(A.52d) is “bigger" than that described from the outside. This is 

a typical occurrence for all structure models of hadrons, nuclei 

and stars according to iksomathematics, and it is nowadays 

known as isorenormalization. 
Consequently, in considering the structure model of nuclei as 
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isobound states of isoprotons and isoelectrons, the reader should 

be aware that the rest energy of the isoelectron is 

isorenormalized to a minimum value of MeV in the 

first approximation of ignoring Coulomb interactions, with 

bigger predicted values of the rest energy of the isoelectrons 

when including Coulomb interactions (due to the Coulomb 

attraction between isoprotons and isoelectrons). 
As an illustration, a necessary condition for the achievement 

of an exact representation of the synthesis of the neutron from 

the hydrogen is that (by ignoring coulomb interactions) the 

isoremnormalized rest energy of the electron is 1.293 MeV. 
Finally, we mention the prediction of isorelativity according 

to which the frequency of the photons emitted by nuclei and 

measured in the outside is bigger than that at the point of 

emission in the interior ofg nuclei. This additional effect is due 

to the isoblueshift, namely, the acquisition of energy by photons 

from hot environments without any relative motion, which was 

predicted by Santilli in 1992 [21], and experimentally verified 

in hot gases in 2010 [80] (see Refs. [68] for a comprehensive 

bibliography). 
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