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PUBLISHER’S FOREWORD

Marius Sophus Lie
(December 17, 1842 - February 18, 1899)

is, undoubtedly, the most famous name in the mathematics and physics of
this century and, also unquestionably, is the most famous Norwegian
scientist of all times.

Therefore, it has been a privilege for the Hadronic Press to publish in this
special issue of Algebras, Groups and Geometries the only known
English translation of Lie’s celebrated Doctoral Dissertation. The
appearance of this publication in the occasion of the 100-th anniversary of
Lie’s death is particularly significant.

We have no words to express our appreciation to: Professor Erik Trell of -
the University of Linkdping, Sweden, for conducting the translation and
illustrating in a subsequent article the importance of Lie’s original
conception in contemporary physics; Professor Jeremy Dunning-Davies
of the University of Hull, England, for assisting in the linguistic control of
the translation; Professor Ruggere Maria Santilli for illustrating in a
separale article the importance of preserving the abstract Lie axioms in the
most advanced possible ongoing broadenings of Lie’s theory as a
necessary condition for consistency in physical applications; various
Editors and Authors of Algebras, Groups and Geometries for their
invaluable contribution to this important project.

G. C. Gandiglio January 15, 1999
President

Hadronic Press, Inc.

Tarpon Springs

Florida, USA
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MARIUS SOPHUS LIE’S DOCTORAL THESIS
OVER EN CLASSE GEOMETRISKE TRANSFORMATIONER

English Translation by Erik Trell!

Commentary by Erik Trell! and Ruggero Maria Santilli2
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Abstract

Marius Sophus Lie discovered and developed the whole mathematical
chapter of the continuous transformation groups and related algebras.
Their quintessential importance for modern mathematics and physics is
well known, but would be even greater had not, instead of more faithful
surface geodetical representations, a closed central orbit/standing wave
model been chosen, in which case the theory becomes “mystically fit to
describe mathematically” the ultimate layers of the universe. The origin
and relation of Lie’s groups and algebras to spherical geometry were
outlined in Lie's celebrated Doctoral Thesis Over en Classe Geometriske
Transformationer at the University of Christiania (now Oslo) in 1871.
This memoir presents the English translation of Lie’s Doctoral Thesis by
one of us (E.T.) together with a few biographical notes and
epistemological comments.

Copyright © 1998 by Hadronic Press Inc., Palm Harbor, FL 34682, U.S.A.
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Introduction

Marius Sophus Lie (pronounced Lee) (Fig. 1) was born on the 17th of
December, 1842, in Nordfjordeid in the Bergen episcopate on the west coast of
Norway. His first graduation was as a public school teacher in 1865; not until a
couple of years later was his mathematical creativity awakened under the
influence of, above all, Poncelet and Pliicker; and from there "his genius was

developed at an astonishing exuberance and vigour™.!

After only a few years work, "he had for ever tied his name to a string of new

ideas and. theories of the most far-reaching importance"], initially mostly within
geometry and the principles of differential equations. In the latter field, already
during his first eruptive period he enriched mathematics with a wealth of new
material, that required all his remaining life to develop and deepen.

Starting from a series of early outlines he advanced an entirely new
mathematical subject, the theory of the transformation groups: "a heroic feat
that makes an epoch in the history of mathematics. Already his initial works

reveal that he is a borm mathematician".! In 1869 he delivered the first draft of
his "imagindrteori” (Christiania videnskabs-selskabs forhandlinger), where the
germ of many of his later discoveries was laid down. The work drew attention
and acclaim, and the same year he received a scholarship for studies in Berlin,
Gottingen and Paris (where he was imprisoned for a month in Fontainebleau
and barely escaped execution on suspicion of being a German spy in the then
ongoing war).

While in France he published (Comptes rendus de 1’Academie des sciences,
vol. LXX, 1870) his disclosure of the spherical geometry ("one of the most
beautiful discoveries in modern geometry”, according to Darboux). After his
return home in 1871, he received a university stipend and later the same year
obtained the Ph. D. degree for the here translated thesis, Over en Classe
geometriske Transformationer, where he "shed light upon a hitherto unforeseen

connection between the metric and projective properties of space”.! In many
respects this thesis is transitional both in an historical and epistemological sense
in Lie’s oeuvre and accordingly should be the suitable reintroduction in
relation to the classical roots and direct physical applications at which its
translation here aims.

In 1872, when Lie applied for a professorship in Lund, Sweden (then in union
with Norway), the Norwegian parliament created a post as extra

! K.V. Hammer, whose compendium on Lie (1912) is followed here.
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ordinary professor at the Christiania (now Oslo) University. In 1886 he was
offered and accepted a chair at the university of Leipzig. In the meantime he
had grown to be one of the most prominent mathematicians of his time. He
developed his ideas in a whole sequence of dissertations, published partly in
Gattingische gelehrte Anzeigen (1870-74), Matematische Annalen, Leipzig
(1871 and onwards) and other international journals, and partly in Christiania
videnskabs-selskabs forhandlinger —and, mainly, Archiv for mathematik og
naturvidenskab, which became his domestic forum par preference. Its first
issue (January, 1876) was opened by his pioneering treatise, Theorie der
Transformationsgruppen, the prelude of a long succession of works in which
the new subject is evolved to an entire system, revolutionising a vast area of
mathematics and which in origin, exposition and completion in every detail, is
exclusively Lie's own achievement. :

Fig. 1. Photo of Marius Sophus Lie

In 1883, Picard drew the French mathematicians’ attention to Lie’s new
theories, and each year, while Lie was in Leipzig, Ecole normale supérieure
sent its best students to him. Paralle] with his elaboration of the transformation
group theory, he developed their applications and other of his basic
conceptions, inter alia the important study of minimal surfaces in Classification
der Fldchen nach der Transformationsgruppe ihrer geodiitischen Curven (Univ-
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progr. Christiania, 1879).  Gradually, however, the transformation groups
absorbed his thoughts and he therefore set out to give them an altogether new
rendition, in which all problems that had emerged in the meantime -were to be
included. In collaboration with his student, Friedrich Engel, he undertook the
edition of his gigantic main opus, Theorie der Transformationsgruppen, printed
in three volumes 1888-93 in Leipzig, and also (with H. Scheffer) his lectures:
Vorlesungen iiber Differentialgleichungen mit bekannten infinitesimalen
Transformationen (1891) and Vorlesungen iiber continuerliche Gruppen mit
geometrischen und anderen Anwendungen (1893).

From 1895, increasing ill-health disturbed his plentiful flow of production, and
_contributed to his decision to return to his homeland, where a professorial
honorarium of 100,000 Norwegian Crowns (and release of lecture duties) had
been granted to him by the parliament. However, when he was finally able to
leave Lepizig, in 1898, he was terminally ill (with pernicious anaemia, now
perfectly curable by vitamin B9 supply, but then ascribed to "restless mental

exhaustion" by his titanic labour burden). He died on the 18th of February,
1899, in Christiania. No biography is written, but there is a bibliography of his
printed works (Fr. Engel, Bibliotheca Mathematica, ser. 3, vol. I, Leipzig,
1900) and there is also a register of his posthumous manuscripts (C. Stérmer,
Christiania videnskabs-selskabs forhandlinger, 1904).

Some remarks on the translation and transcription of his thesis into English
may be warranted. First a linguistic one; three words in the Norwegian
language for sphere: "Klot", Kugle" and "Sphzre", he used interchangeably
and may at places have slightly different connotations such as reference to
earlier, mainly German works. This also applies to the word "Complex" which
often relate to a set or collection or array of quantities. Other examples are
"Avbildning" which may mean representation, projection, mapping, as well as
transformation. "Krumnings-Curver” ("Krumning" = curve) may appear to be
a tautology but is a specification that mainly causes the translational problem:
curved curves, or bent, or rounded (as here chosen) curves? Abbreviations like
F and f ("flade" = surface) stem from the respective Norwegian word.

The terminology might at places have a slightly archaic ring, and the general
episternological perspective to bear in mind is of course the temporal one. His
work was performed and his thesis written well before the days of centrally
oriented Rutherford and Bohr orbital models, relationally one-dimensional
Schridinger equations and other present elementary particle theory and practice
(one cannot help musing that had the experimental discoveries and projections
taken another sequence it might have been natural to apply the Lie groups and
algebras in their direct form). The mathematical foundations were likewise
primordial, their chef d’oeuvres being Cartesius' co-ordinate geometry and
Pliicker's straight line algebra. These underpinnings, of the time as well as of
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space and conceptions, are important to consider (and also throw some light
upon the philosophical tenor of his work).

One may say that the gist and meaning are in the ideal, the logical; undistracted
by later representation theory largely founded upon initial experimental records
and their pioneer, yet permanented interpretations - which are concentric,
relating to planetary orbits, one-dimensionally extended waves, quantum wells
etc. Lie’s own primary realisations were clearly associated with surfaces, of
which there are many references in his thesis. For instance: "When x y z and X
Y Z are perceived as point co-ordinates for r and R, one can say, that by a
transformation of this kind is defined a correspondence between two spaces’
surface-elements and nota bene the most general'..."always defines a
reciprocal ~ correspondence  between the two  spaces'  surface
elements”...."always determines a transformation that turns surfaces that
touch each other in like surfaces" (§ 6, n. 16).

We have, from two complementary approaches, arrived at the critical need of
reintroducing the primary Lie groups and algebras; and both approaches have
mathematical and biophysical compartments. One is tempted to allude: "for the
one, who has immersed himself in the spirit of Lie’s work, there is a
fundamental defect in the idea to import precipitations and trajectories on the
virtual germ membrane of the space to a concentric confinement in the inside of
the film". Whereas on the surface of an arbitrary manifold there are arbitrary
positive and negative regions, which are fully equivalent and interchangeable,
the singular introjection of them to the origin of the co-ordinate system also
annuls this commensurability. This unfortunate anomaly is the root of the
1sotopic theory which re-establishes full solvability and is thus Lie-admissible
in a double sense.

The bio-physical terminology applied above was not accidental. Only recently,
by the advent and advancement of refined nano-technology, sweep-electron
microscopes etc., has it become evident that physics appears and behaves quite
classically and Renaissance-like even at the finest level of resolution, and that
events, arrays, particles, filaments generate, align, emerge on surfaces,
monolayers, growth strata....and that phenomena like folding of proteins,
racemic forms, parity and many others cannot readily be explained in a centre-
of-mass reference, or indeed in a space whose co-ordinate axes do not assume
the properties and structures by and of the reciprocal elements (one may com-
pare, for instance, foot-note 1 of § 9, n. 24 :....."the sphere (X, Yo, Zg, Hy)
is the image of the axes of the linear complex at hand.”). That is, a “shape

space”! is like shaped itself, which is another of the true Lie group and algebra
implications.  All of these actal physical facts can only be

1 See L. Holm and C. Sander. Science 273, 595 (1996).
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consistent with and enabled by external, "complex-cones" or “cone-
intersection-complexes” as defined by Lie (e.g. § S, n. 15), and which are
genuinely differential, geodetic front functions, and not centrally closed orbital
ones. Such is the complementary re-entry to Lie's original works and concepts,
as further leading to exact reproduction of elementary particle symmetries and a
novel, iso-unit expansion proof of Fermat's last theorem.

One also has to submit to the fact that in the ideal, "hyperbolic" space of the
- mind, albeit a co-ordinate, a point is an infinitesimally, actually unimaginably
small locus, it can yet harbour an infinity of projections, tangents, crossings
onto, into and through itself. Hence, in the "philosophical reflections on the
nature of Cartesian geometry", that were natural for Lie, it is indeed so that "as
element for the geometry of the space can be used what-so-ever a curve that is
dependent on three parameters”, that is, X, y, and z in the most basic of cases.
There remains a congruence, a reciprocity, equivalence, even identity between
the elements as well as the spaces. But as mentioned, the latter condition has
been overlooked in later representation theory, where even sectored
neighbourhoods thus tend to be centred, i.e., mapped "onto a neighbourhood

of the origin of RN“.]

Lie’s exploration took place in the familiar ordinary Cartesian space, the
altogether robust primary appearance of which we have no reason to doubt up
to this very day, and whose ground representation, also in the Lie groups and
algebras, is the well-known rectilinear one - the x,y and z co-ordinates that
span our real world. Their own static mathematical projection and elements
would be the straight, Pliicker line complexes, from which the Lie extension
virtually submerges to the surface of the sphere - or vice versa. It is in that
sense, too, a differential mathematics, a transition between space forms, from
the straight to the round, and what characterises and monitors such an all-
pervasive process.

Marius Sophus Lie presented his thesis on the 12th of June, 1871, at the
philosophical faculty of the Royal Norwegian Frederiks University in
Christiania (Fig. 2). The ensuing translation may illuminate some of the
aforesaid, and place his work in its proper frame and position. As mentioned it
reflects a transitional stage between his early ideas and later expansion and
refinement of them. It is also a basic work, straightforward to comprehend and
trace in its bearings. Therefore, it may serve as a source document for the
universal scientist to contemplate in a meta-analysis way.

! See R. Gilmore. Lie Groups, Lie Algebras and Some of Their Applications, pp. 35-
36. (John Wiley & Sons, New York, London, Sydney, Toronto, 1974)
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Over a Class of geometrical Transformations.1

The rapid development of geometry in our century stands, as is well known, in
an intimate dependence on philosophical reflections upon the nature of
Cartesian Geometry - reflections, which are expounded in their most universal
form by Pliicker in his oldest works.

For one, who has immersed himself in the spirit of Pliicker’s works, there is
nothing fundamentally new in the idea, that as element for the geometry of the
space can be used any curve that is dependent on three parameters. When
none-the-less no one, as far as I know, has realised this thought, the

ground must probably be sought in that no advantage that might result from
this was seen.

I have been brought to a general study of the said theory by my finding that,
through a particularly remarkable transformation, the theory of main tangential
curves can be brought back to that of rounded curves.

Following Pliicker's trail I discuss the equation system:
[F,(xyzXYZ)=0, F,(xyz XY Z) =0],

which in one meaning, later to be explained, defines a general reciprocity
between two spaces. When in particular the two equations are linear in relation
to each system's variables, a projection is obtained by which to each space's
points correspond in the other space the lines of a Pliicker Line-complex. The
simplest among the class of transformations I obtain in this way is the well-
known Ampereish, which hereby is shown in a new light. In particular I
study the aforementioned projection, upon which I found a - as it appears to
me - fundamental relation between the Pliicker line geometry and a spatial
geometry whose element is the sphere.

While 1 was occupied with the present thesis I have been standing in a vivid
exchange of thoughts with Pliicker's pupil, Dr. Felix Klein, to whom 1 owe
many ideas, more, no doubt, than what by quotation I am able to indicate.

I will also notify that this work has many points of contact with my works over

!

The most important aspects of the present thesis I reported to Christiania Science
Association in July and October 1870. One may also compare a note of Mr Klein
and me in the Berlin Academy's "Monatsbericht" 15 December, 1870.
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the imaginaries of plane geometry. When I am not letting these relations be
exposed in my narrative here, it is partly because I consider it incidental, and
partly that I don't wish to deviate from the customary language of

mathematics. !

First Section
Over a new Reciprocity of Space
§ 1.
Reciprocity between two planes or two spaces.

l. The Poncelet-Gergonne reciprocity theory can, as is well known in
respect of plane geometry, be derived from the equation:

X(@x +byy+c¢)) + Y(ax + by +¢y) +(ax +by+¢5)=0 (1)
or by the equivalent:
xkalx +a,Y +233) +y(b;X+b,Y + by} +(c, X +¢,Y +¢3)=0

provided that one interprets (x,y) and (X,Y) as Cartesian point co-ordinates for
two planes.

If, namely, one uses the term, conjugate, of two points (x,y) and (X,Y),
whose co-ordinate values satisfy equation (1), one can say that, to a given
point (x,y), conjugate points (X,Y) form a straight line that can be perceived as
corresponding to the given point.

When all points of a given straight line have a mutual conjugated point in the
other plane, their corresponding straight lines go through this common point.

The two planes are thus mapped into each other by equation (1) in such a way
that to the points of the one plane correspond the straight lines of the other

! Guided by the theories expounded in the present thesis, Mr Klein in a recently

published note (Gesellschaft d. Wissensch. zu Gottingen, 4 March 1870) brought the
Pliicker ideas one step forward in that he showed, that the Pliicker line geometry - or
by my transformation the corresponding sphere geometry - in a remarkable way
manifests itself as an illustration of the metric geometry between four variables.
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plane. To points of a given line A correspond the straight lines that go through
A’s image point.

But herein lies just the principle of the Poncelet-Gergonne reciprocity theory.

One considers now in the one plane a polygon whose corners are:
(Py» P,---P,), and in the other plane the polygon, whose sides: (S, §,...8)

correspond to these points. From what we have said follows also that the last-
mentioned polygon's corners: (8,8, (S, S,)...(S,.; S,) are projection points
of the given sides: (p, p,) (p, P3)..-(p,.; P,). that thus the two polygons stand
in a reciprocal relation.

By a limit transition one is brought from here to a consideration of two curves ¢
and C, that correspond to each other in such a way that the tangents of the one
project themselves as the points of the other. Two such curves are said to be
reciprocal relative to equation (1).

2. Pliicker! has based a generalisation of the above presented theory on the
interpretation of the general equation:

Flx,y X,Y]=0 (2)

Those to a given point (x,y) [or (X,Y)} conjugated points (X,Y) [or (x,y)] now
form a curve C [or c], which is produced by equation (2), when in the same
(x,y) [or (X,Y)] are regarded as parameters, (X,Y) {or (x,y)] on the contrary
as running co-ordinates.

By equation (2) the two planes are thus projected into each other in such a way,
that to the points of the one plane unambiguously correspond the curves of a
certain curve-net in the other.

Quite as before it is understood, that to points of a given curve ¢ [or C)
correspond the curves C (or ¢) that go through the given image point.

To a polygon of curves ¢ (¢, ¢,...c.) correspond n points: (p) Py---p,) Which
pairwise lie upon those curves C: (p, p,) (p, P3)---(p,.; P,), whose image
points are corners of the given curvilinear polygon. Eventually one is here also

brought to a consideration of curves ¢ and X in the two planes, that stand in
such a mutual relation to each other, that to the points of the one correspond the

! Analytisch geometrische Entwickelungen. T.I. Zweite Abth.
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curves ¢ [or C] that envelope the other. In general this reciprocity relation is not
complete, though, inasmuch as adjunct forms usually appear.

3. Pliicker! bases the general reciprocity between two spaces on the
interpretation of the general equation:

F(xyz XYZ)=0.

When F is linear in respect of each system's variables, the Poncelet-Gergonne
reciprocity between the two spaces' points and planes is obtained.

In the present thesis and especially in the first section of the same, I aim at
studying a new reciprocity of space, which is to be considered side-ordered to
Pliicker s, and that is defined by the equation system:

FixyzXYZ)=0
Fyo(xyzXYZ)=0,

where (xyz) and (X Y Z) are perceived as point co-ordinates of two spaces
rand R.

§ 2.

A space curve, that depends upon three parameters can be chosen as the
element of the geometry of the space.

4. The transformation of geometric postulates that is founded upon the
Poncelet-Gergonne or the Pliicker reciprocity can - as Gergonne and Pliicker
have emphasised - be seen from a higher point of view, which we here want to
state, because the same applies to our new reciprocity.

The Cartesian geometry, namely, translates any geometric theorem into an
algebraic one and thus of the geometry of the plane renders a faithful
representation of the algebra of two variables and likewise of the geometry of
space a representation of the algebra of three variable quantities.

Now Pliicker in particular has directed attention to the circumstance that to
Cartesian analytic geometry is attributed a double conditionality.

Descartes produces a system of values of the variables x and y at a point in the
plane; he has, as one uses to express it, chosen the point as the element of the

! Although I am unable to provide a quotation, I believe that it is correct to attribute
this reciprocity to Pliicker, :
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geometry of the plane, while with the same justification one could use the
straight line or any curve at all depending upon two parameters. Now - as
regards the plane - the geometrical transformation that is founded upon the
Poncelet-Gergonne reciprocity can be perceived as consisting of a
transition from a point to a straight line as element, and likewise the
Pliicker plane reciprocity in the same sense rests upon the introduction of a
curve depending upon two parameters as the element of the geometry of the
plane.

Further, Descartes produces a quantity-system (x,y) by the point in the
plane whose distance from two given axes equals x and y, he bhas
among the unlimited manifold of possible co-ordinate systems chosen a
definite one.

The progress that geometry has made in the 19th century depends to a large
part upon the fact that these two conditions in Cartesian analytic geometry have
been clearly recognised as such, and it is accordingly close at hand to exploit
these important facts even more.

5. The in the following presented new theories are founded upon the fact,
that one can choose any space-curve which depends upon three parameters as
the element of the geometry of the space. If, for instance, one remembers that
the equations of the straight line in space contain four essential co-ordinates,
one realises that the straight lines that meet a given condition may be used as
the element of a geometry of the space, which - like the ordinary one - gives a
faithful representation of the algebra of three variables.

Hereby, however, a certain line-system - the Pliicker line-complex - is
distinguished, and it is as a consequence of this seen that a certain
representation of this kind can have only a limited utility. If, however, it
concerns a study of the space relative to a given line-complex, it may be
particularly suitable to choose the straight lines of this complex as space-
element. As is well known, in the metric geometry, the infinitely distanced
imaginary circle and as consequence hereof the straight lines that intersect the
same are marked out, and therefore there might a priori be some grouns to
suppose that, as regards the treatment of certain metric problems, it might be
advantageous to introduce these straight lines as element.

It is to be emphasised that when we, for instance, have just said that it is
possible to choose the straight lines of a line-complex as space-elements, this is
something different, something more particular if one so likes, than those ideas
that lie as a ground for Pliicker's last work: "Neue Geometrie des Raumes,
gegriindet auf die Betrachtung der geraden Linie als Raum-Element". Pliicker
had already drawn attention to the fact that it is possible to create a
representation of an algebra that embraces an arbitrary number of variables in
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that one namely introduces a figure that depends upon the necessary number

of parameters as element. Especially he emphasised!, that the space-line has
four co-ordinates, that by choosing the same as space element one thus obtains
a geometry for which the space has four dimensions.

§ 3.

Curve complex. New geometric representation of partial differential equations
of the first order. The main tangent-curves of a line-complex.

6. Pliicker has used the expression line-complex to denote the collection
of the straight lines, that satisfy a given condition, and which thus depend upon
three unspecified (undetermined) parameters. By analogy herewith, in the
following, by curve-complex 1understand an arbitrary system of space-curves
¢, whose equations:

fi(xyz abc)=0, fro(xyzabec)=0 3)

contain three essential constants.

On differentiation of (3) with respect to x y z and elimination of a, b, ¢
between the two new and the initial equations a result is obtained of
the form:

f(xyz dxdydz)=0 4)

If here X, y, z are perceived as parameters, dx, dy, dz on the other hand as
direction-cosines, each point in the space defined by (4) is associated with a
cone, namely, the collection of tangents to those complex-curves ¢, that go
through the point in question. These cones I call elementary complex-cones;
further 1 use the designation: elementary complex-direction to denote an
arbitrary line-element (dx dy dz) that belongs to a complex-curve c. The
collection of the to a point corresponding elementary complex-directions
generate the to the point associated elementary complex-cone.

To a given system (3) or - as one may also say - to a given curve-complex
correspond a definite equation: [f = O}, on the other hand [f = 0] , through
the mentioned operations, can be derived from an unlimited manifold of
systems (3).

! Geometrie des Raumes. n. 258. (1846).
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If namely one chooses an arbitrary relation of the form:
Vixyzdxdydza)] =0,
where 0. denotes a constant, and represents

erixyzaBy=0, gixyzafy=0
the integral of the simultaneous system:
f=0, y=0,

it is evident, that also [@ = 0, ¢, = 0] by differentiation relative to x, y, z and

elimination of , B, y leads to: (f=0).

Any curve of this new complex: [@ = 0, ¢y = 0] is enveloped by curves c,
inasmuch as its elements are all complex-directions.

7. A partial differential equation of the first order between x, y, z is,
according to Monge, equivalent to the following problem: to find the general
surface which in each of its points touches a cone associated with the point in
question and whose general equation in plane co-ordinates is produced by just
the given partial differential equation.

Lagrange and Monge have led this problem back to the determination of a
definite curve-complex - the so called characteristic curves - inasmuch as they
have shown, that one always gets an integral surface by adjoining to a surface a
collection of charactenistic curves each of which intersects the nearest
preceding one.

One may note that the equation:
f(xyz dx dy dz) =0,

which the characteristic curves, according to the aforesaid determine, is to be
considered as equivalent to the partial differential equation itself, inasmuch as
both these equations are the analytic definition of the same three-fold infinity of
cones.

8. A general geometric interpretation of partial differential equations of the
first order between xyz is obtained by showing that the task: finding the
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general surface which at all its points has a three-point contact with a curve of a
given curve-complex - whereby it is implied, however, that the said curve is
not in its whole extension residing upon the surface - finds its analytic
expression in a partial differential equation of the first order. When, further:

fixyz dxdydz) =0

is the equation, that the characteristic Curves determine, any curve-complex
whose equations satisfy (f = 0) will stand in the said geometrical relation to the
given partial differential equation.

One considers that a complex of curves c is given, which satisfies (f = 0) and
analytically expresses the requirement that a surface [z= F(x y)] at each of its
points has a three-point contact with a curve ¢, without, however, excluding
the possibility of an even more intimate contact. 1t is easy to see that to

determine z a partial differential equation of the second order (62 = 0) is

obtained.! But any surface which is generated by infinitely many ¢, apparently
satisfies (87 = 0), and hence its general integral with two arbitrary functions is

known. By analytical deliberations of great simplicity - albeit formally of
some breadth - I intend to show that the partial differential equation of the first

order (8 = 0), that corresponds to (f = 0), satisfies (85 = 0). When now
apparently (8; = 0) in general is not included in the aforementioned integral,

(8 = 0) is a singular integral of (§, = 0).
The equation: [f(x y z dx dy dz) = 0] gives by differentiation:
fedx + fydy + f,dz + £g,d2x + fy,d2y + £4,d22 = 0, (6)

whereby (dx dy dz d?x d2y d2z) are to be regarded as belonging to an
arbitrary curve, that satisfies: (f = 0). In particular (6) is valid for [8; = 0)'s
characteristic curves, and in that we denote these by an index, we obtain:

fe %+ Fay d2x) 4. = 0.

Now remarking that any curve that touches one of (8; = 0)'s integral

] (82 = 0) has the form: [A(rt - 52) + Br+ Cs + Dt + E = 0]. One may compare with

a dissertation by Boole in Crelles Journal. Bd. 61.
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surfaces: (U = 0) satisfies the equation:
@dx-l—fl—ygdy + 93U =, (7

that further any curve, that by (U = 0) has a three-point contact, in addition
fulfills the relation:

2
d U

2 dUy 2
'd_z(dx) +....(5;" dx....=0, (8)
X

it is seen, that any characteristic curve, that lies upon (U = 0), satisfies (7) as
well as (8).

But at each of its points (U = 0) touches the associated cone of the system:
(f = 0), and thus apply the equations:

fm:p%g, fay = pdd_;f, th:p% ,

in which p denotes an undetermined proportionality factor. Thus the
accentuated equation (8) transforms into the following

p[—’(dx ] + [f"dxl q2x1+... ]= 0.

But we know, that:
Podxy+... + f dxp+... =0

and hence is:

2
p[d_lz_J +_.']: Fx][dx1+...]
i

or by exclusion of the now unneccesary index:
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d*u

2
——dx 4 ]l = fdx+. ..
P dx2 ] Afl

Now, however,

du ;2 . dU 42 dU _ 2
p[.&__dx+ dydy t g dzz]_[Fdde+..].

and thus the equation:
d2

du 2 . dU 2, du 47U 4,02 _
P[dxdx+ dyd)’+dzd22+dx2(x)+....]—

= fy dx + fy dy + f, dz +fg, d2x + fyy d2y + fg, d%2,
whose right and left parts thus simultaneously vanish.

Our expansions show, that any curve, that satisfies (f = 0), and that touches
one upon (U = 0) lying characteristic curve with the said surface has a three-

point contact; (8] = 0) is thus a singular integral of (8 = 0).
Finally we show that () = 0) does not allow any other singular integral.

On an integral surface 1 of (8 = 0), every point is namely associated with a

direction - the respective, three-point-contacting ¢'s tangent. If it is now
implied, that I is not generated by a manifold ¢, so goes through each point of 1
two converging ¢, that both touch upon the surface in the point in question. But
in consequence, I in each of its points is contacted by the corresponding

elementary complex-cone; I satisfies the equation: (81 = 0).

9. Corollary. The determination of the most general surface that in each of
its points has an - not upon the surface lying - main tangent, belonging to a
given line-complex, depends upon the solution of a partial differential equation
of the first order, whose characteristic curves are enveloped by the complex’s
lines. The said curves appear in this case as main tangent-curves on the integral
surfaces.
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We present an independent geometrical proof of this corollary.

The partial differential equation, whose characteristics are enveloped by a given
line-complex’s lines, is according to Monge's theory the analytic expression of
the following problem: to find the most general surface which at each of its
points touches the complex-cone corresponding to the point. But when a
curve's tangents belong to a line-complex, the same osculation-plane is the
tangent plane to the corresponding complex-cone, and thus our characteristic
curves' osculation plane is the tangent plane for all integral surfaces which
contain the curve at hand. Here a couple of further remarks are required,
which, however, may be a repetition of what we have said before.

Any line-complex determines, according to the above-mentioned, a complex of
curves that are enveloped by the line-complex's lines, and which have the
property to be main tangent-curves on any surface that is generated by a
system of these curves, each of which intersects the preceding. This complex
of curves we in the following designate the line-complex's main tangent-
curves.

I owe Mr. Klein the acknowledgement, that the congruence of straight lines,
that Pliicker calls a line-complexe's singular lines, belong to the said curve-
complex. If the given complex is formed by a surface's tangents [or by the
straight lines that intersect a curve], then all the lines of the line-complex are
singular lines and hence also main tangent-curves.

§4
The equation system : Fi(xyz X YZ)=0, Fy(xyz X Y Z) = 0, determines

a reciprocity between two spaces.1
10.  We begin a study of the spatial reciprocity determined by the equations:
Fiixyz XYZ)=0

&)
Fy(xyz XYZ)=0

when in the same (x y z) and (X Y Z) are perceived as point co-ordinates of
two spaces r and R.2

)
2

One compares this paragraph with § 1.

Things, that belong to the spacer, we as arule denote by small letters; on the
other hand versals are used for everything belonging to R.
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When the term conjugated is used of two points, whose co-ordinate values
(x y z) and (X Y Z) satisfy the relations (9), one can say, that the to a given
point (x y z) conjugated points (X Y Z) generate a curve C, which is
formulated by (9), when in the same (x y z) are regarded as parameters,
(XY Z) on the other hand as running co-ordinates.

To the curves of the space r, thus unambiguously correspond the curves C of a
definite curve-complex in R, and likewise appears in r a complex of curves c,
which stand in the same relation to R's points.

A curve c's points have a mutual conjugated point in R, and in consequence
their corresponding cuirves C go through this mutual point,

The two spaces are thus mapped by the equation system (9) into each other in
such a way, that to each space’s points unambiguously correspond in the other
the curves of a definite complex. When a point describes a complex-curve, the

complex-curve corresponding to the point turns round’ the image-point of the
intersected one.

11. It is now possible to show, that the equations (9) determine a general
reciprocity between figures in the two spaces and especially between curves
that are enveloped by complex-curves ¢ and C.

When two curves of the one complex have a mutual-point - which is obviously
not so in general - their imagepoints lie upon a complex-curve. Note in
particular, that two endlessly close-lying complex-curves, which intersect each
other, project themselves as two points whose infinitesimal connection-line is
an elementary complex-direction. -

One now considers a curve ¢ in r, that is enveloped by curves ¢, and all curves

C that correspond to 6's points. Two consecutive of these C would, after what
we have just said, intersect each other, and thus their collection determines an

envelope-curve Z.

It is further apparent, that when a point runs through X, the corresponding ¢
will envelop a curve 67, and it can be shown that 6! is precisely the originally
given curve ©.

One may namely consider on the one hand a curved polygon formed by

1

The term, "turns round" is unfortunate inasmuch as, of course, a turn associated by a
change of form is meant. .
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complex-curves (¢ ¢, C5...c,), whose corners are (¢ ¢y) (€p¢3)...(cpy € -
and on the other hand the imagepoints of the curves c: (P, P,...P_), which
obviously pairwise: (P P,) (P, P)...(P_ , P.) lie upon complex-curves c,
those, namely, which correspond to the corers of the given polygon. The new

polygon in R and the given one thus stand in a fully reciprocal relation to each
other.

By a limit transition one obtains in the two spaces curves, which are enveloped
by complex-curves c and C, and which stand in such a mutual relation to each
other, that to the points of the one correspond the complex-curves that envelope
the other.

A curve enveloped by complex-curves is thus projected in a double sense as
another, likewise by complex-curves enveloped curve, which we say is the
rendered reciprocal relative to the equation system (9).

One may also notice that elementary complex-directions (dx dy dz) (dX dY dZ)
arrange themselves pairwise as reciprocals, and that thus two rounded lines
enveloped by complex-curves, that touch upon each other, are transformed in
the other space as curves that stand in the same mutual relation.

12, Also between other space-forms equations (9) determine a
correspondence, which, however, in general is not a complete reciprocity.

A given swrface f's points are, namely, projected in R as a double infinity of

curves C; as a curve-congruence, whose focus-surface! is F. Likewise
correspond to F's points a congruence of curves ¢, whose focus-surface, as we
will later see, contains f as reducible part.

The elementary complex-cones whose apex-points lie upon the surface f,
intersect the corresponding tangent-planes of this in n straight lines - by n is
understood the said complex-cones' order - and thus in each point of f
determine n elementary complex-directions. The continuous succession of
these directions forms an f n-fold enveloping curve set, which is all enveloped
by complex-curves c. The geometric locus for this curve-collection's reciprocal
curves, or, as we may also say, collection of image-points of the ¢, which
touch upon f, forms the focus-surface F.

I In analogy with the terminology used for line-congruences, I understand by

this curve-congruence's focus-surface: the geometric locus for intersection-points
between infinitesimally close-lying curves C. If the curve-congruence is thought of
as defined by a partial linear differential equation, its focus-surface is just what in
general one calls the differential equation's singular integral. -
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In order to prove this, one remembers, that two infinitesimally close-lying,
each other intersecting curves C project themselves as two points, whose
infinitesimal connection-line is an elementary complex-direction. Now there go
from a point py on f, n complex-directions, and thus Pg's image-point Cj is
intersected at n points of the adjacent C, which belong to our curve-congruence
earlier considered - in those n points, namely, which correspond to the n
complex-curves x, which touch the surface f in the point Py F's points are thus

the image of the ¢ that touch f.

When now f has a general location in the spacer, a c, that touches f in a point,
will in general not have more contacts with the same. But all these ¢ form a
congruence in which each c¢ touches the focus system in N points - by N is
understood the order of the elementary complex-cones in R -, and thus, as said

above, our congruence's focus-system decomposes in f and a surface ¢, which
is touched by each ¢ in (N-1) points.

If thus the correspondence determined by equations (9) between surfaces in r
and R is to be a complete reciprocity, it is necessary and sufficient that n and N
both equal 1. In general, the reciprocity-relation is incomplete inasmuch as
analogous operations on the one hand transform f in F, and on the other, F in

the collection of f and .

The above deliberations are also valid, when f, and as a consequence
hereof, F are surface-elements; if f is infinitesimal in one direction alone, the
same is the case with F.

One considers finally a curve k, which is not enveloped by complex-curves c,
together with the surface F, that is generated by all C, which correspond to k's
points. The points of a ¢ are transformed to the through C's image-point going
curves ¢, and thus correspond to F's points the collection of curves c, that
intersect k. The interrelation between k and F is thus a double one.

Equations (9) which map the two spaces into each other, transform the
according to the above-mentione given spaceforms to new ones that stand in a
reciprocal relation to the given ones, and can thus serve to transform
geometrical theorems and problems. For a special form of the equations (9) we
will make important uses of this transformation-principle later on.

§5

/3. Legendre has given a general method to - in the language of modern

! One compares also: Pliicker, Geometrie des Raumes. § 2. (1846).
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geometry - transform a partial differential equation between point co-ordinates
Xyz into a differential equation between plane-co-ordinates t, u, v, or - as
one may also say - between point-co-ordinates t, u, v, of a space, that stands in
a reciprocal relation to the given one.

When the curves ¢ are introduced as elements of the space r, it is in a similar
way possible to transform a partial differential equation between x, y, z into a
differential equation between the new space-element's co-ordinates X Y Z,
whereby one may also interpret X, Y,Z as point-co-ordinates of the space
R, - a notion that will prevail in our exposition.

Hence, given an arbitrary partial differential equation of the first order between

X, ¥, z and all surfaces y that generate a so called "integral complet” of the
same, one should bear in mind, that any other integral surface f can be

represented as envelope of single-infinitely many .

One considers further in the space R all surfaces ¥ and ® which correspond to
the surfaces y and f. We will soon show, that any F is the envelope-surface of
single-infinitely many ‘P, that thus the surfaces F satisfy a partial differential
equation of the first order, for which all ¥ form an "integral complet”.

Two given surfaces in r, which possess a mutual surface-element, namely
project themselves in R as surfaces which touch each other, and likewise
surfaces that possess infinitely many mutual surface-elements are transformed
in surfaces, which like the given one touch each other along a curve.

This provided, one considers an integral surface f; and all single-infinitely
many \, that touch the same along a characteristic curve, and finally the

corresponding Fy and W, It is clear that Fy is touched by each ¥, along a
curve, and Ky, thus is the envelope-surface of all ¥,

14. A particular interest is offered by the fact that the partial differential
equation, that i1s transformed, is precisely that, which is determined by the
complex-curves ¢ (compare § 3); in that case it can be shown, that the
corresponding differential equation between X, Y, Z is decomposed into
two equations, of which one is just that which corresponds to the complex-
curves C.

Consider an integral surface by the given differential equation between x y z,
and all to the surface f's points corresponding complex-cones. These cones
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after § 4 in each point of f determine n complex-directions, of which in casu
two coincide; thus the in § 4 on the surface f considered collection of curves,
which are enveloped by complex-curves ¢, decompose into f's characteristic
curves and a curve-system, that covers f (n-2)fold.

The curve-congruence in the space R corresponding to f's points thus has a
focus-system, which is decomposed into two surfaces, of which the one - that

we are calling @ - is touched by each ¢ in two coinciding points, while (n-2)

contact-points fall upon the other. The surfaces @ thus satisfy the partial
differential equation that, after the theorem in § 3, are determined by the
complex-curves C.

Now noting, that @ is the geometric locus for the reciprocal curves of f's
characteristic curves, it is seen that the two integral surfaces f, and f,, which

touch each other along a characteristic curve k, are transformed into two
surfaces @, and @,,which touch each other along k's reciprocal curve; k is
namely enveloped by complex-curves c.

The characteristic curves for the two partial differential equations which, after
§ 3, are determined by the curve-complexes ¢ and C, are reciprocal curves
relative to the equation-system (9).

/5. The theorem just stated gives the following general method for the
transformation of partial differential equations of the first order.

One determines after the customary method the equation:
f(xyzdx dy dz) =0,

which the given partial differential equation’s characteristics satisfy, and
choose an arbitrary relation of the form:

Y(xy zdx dy dzX) = 0,
where X denotes a constant. The simultaneous system:
f=0,y=0
be integrated in the form:

FixyzXYZ)=0. Fy(xyzXY2Z),
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where Y and Z are the constants introduced by the integration.
By differentiation and elimination one obtains a relation of the form:

F3(X'YZdX dY dZ) =0,

which we regard as an equation for the characteristic curves of a definite partial
differential equation:

dzZ
F,(X Y Zgg 39)=0.

Our earlier expansions show that (Fq4 = 0), that is_ derived of (F3 = 0)

according to the ordinary rules, and the given partial differential equation stand
in such a mutual interrelation, that if the one can be integrated, so is the other
also open for treatment.

One may draw from this general conclusions on the reduction in degree of
partial differential equations of the first order, defined by a complex of curves,
the order of which is given.

Thus, for example, any partial differential equation of the first order, that is
defined by a line-complex (§ 3), may be transformed into a partial differential

equation of the second degree.!

Likewise, any partial differential equation, defined by a cone-intersection-
complex, can be transformed into a differential equation of the 30th degree.?

§ 6.

Over the most general transformation that turns surfaces that touch each other
into similar surfaces.

/6. In the study of partial differential equations, an important role is played
by transformations that can be expressed in the form:

X=F1(xyzpq),Y=F2(xyzpq), Z=F3(xyzpq).

This reduction is due to the fact that each line of a line-congruence touches the focus-
system in 2 points (§ 4, 12).

The number 30 comes up as product of 6 and (6-1); 6 is the number of points, in
which the focus-system of a focus-intersection-congruence is touched by each focus-
intersection. :
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By p and q one as usual understands the partially derived: dz/dx, dz/dy;
likewise P and Q denote dZ/dX and dZ/dY.

In the following we would consider the instance where the functions F 1» Fa
and F; are chosen in such a way that P and Q also only depend of (x y z pq:

P=F,xyzpq), Q=Fs(xyzpq).

In that we imply that, from the above 5 equations, a relation between XYZP
Q) cannot be derived, note also that each separate quantity (x y Zp q) can be
expressed as a function of (X Y ZP Q).

Whenxy zand X Y Z are perceived as point co-ordinates for r and R, one
can say, that by a transformation of this kind is defined a correspondence
between the two spaces’ surface-elements, and nota bene the most general. We
will show, that these transformations fall into two distinct, side-ordered

classes, of which the one’! corresponds to the Pliicker reciprocity, while the
other corresponds to the by me propounded reciprocity.

By elimination of p, g, P and Q between the five equations:

X=F], Y=F2, Z=F3, P=F4, Q:FS

two essentially different situations may occur. Either only an equation between
(xyzX'Y Z) is obtained, or two relations exist between these quantities. (The
existence of three mutually independent equations between the two spaces'
point-co-ordinates requires the transformation in question to be a point-
transformation.)

But it is known, that the equation:
FixyzXYZ)=0

always defines a reciprocal correspondence between the two spaces’ surface-
elements; and likewise I have in the foregoing shown, that the equation-system:

Fi(xyzXY2)=0, F,(xyz2X Y 2)=0

always determines a transformation, that turns surfaces, that touch each other
in like surfaces.

1 Compare: Du Bois-Reymond, Partielle Differential-Gleichungen. 75- 81.
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Hereby my proposition is proved.

At this point I will draw attention to the fact that these transformations possess
the remarkable ability to project an arbitrary differential equation of the form:

[A(rt - s2) + Br+ Cs + Dt + E = 0], in which A, B, C, D depend only on x, y,
z, p, q into an equation of the same form. Inasmuch as the given equation
satisfies a general first integral, the same is of course also the case with the new
equation. (Compare Boole's thesis in Crelle's Journal Bd. 61).

Second Section

The Pliicker Line-Geometry can be transformed
into a Sphere-Geometry

§7.
The two curve-complexes are line-complexes.

17. When we imply that the equations, that map the two spaces into each
other, are linear in relation to any system variables:

0= X(a]x+b]y+clz+d]) + Y(a2x+b2y+czz+d2) + Z(a3x+b3y+c3z+d3) + (a4 +...)
(10) {
0= X(al)wBlywl z+81) + Y(a2x+[32y+y21+82) + Z(a3x+33y+731+83) + (u4x+B4y+y41+54).

the points conjugate to a given point in the other space obviously generate a

straight line. The two curve-Complexes are Pliicker line-complexes!, and in
consequence the equations (10) determine a correspondence between r and R,
that possesses the following characteristic properties:

a) To each space's points correspond unambiguously the lines of a line-
complex in the other.

b) When a point describes a complex-line, the corresponding line in the
other space turns around the intersected'’s image-point.

¢} Curves that are enveloped by the two complexes' lines, arrange
themselves together pairwise as reciprocals in such a way that the tangents

1 Regarding the theory of line-complexes I assume as known: 1) Pliicker, Neue

Geometrie des Raumes, gegriindet auf etc....1868-69; 2) Klein, Zur Theori der
Complexe.....math. Annalen. Bd. 1. :
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of each correspond to the points of the other.

d} To a surface f in the space r is associated a surface F in R for two
reasons. On the one hand, F is the focus-surface of the line-congruence whose
image is f; on the other F's points correspond to those of f's tangents which
belong to the line-complexes in r. '

e) On the surfaces f and F just mentioned all curves arrange themselves
together pairwise, conjugated in such a way, that to one upon f [or F] lying
curve's points correspond in the other space a line-surface, which contains the
conjugated curves and after the same touches F [or f].

f) To a curve upon f, which is enveloped by the line-complexes lines,
corresponds as conjugated a likewise by complex-lines enveloped curve on F,
and these curves are reciprocal curves, in the sense stated under (c).

Any one of the equations (10) determines an an-harmonic correspondence
between points and planes in the two spaces, and thus each of our line-
complexes may be defined as collections of an-harmonically corresponding
planes’ intersection-lines - or as an-harmonically corresponding points'
intersection-lines. But the complex of the second degree here defined is
according to Mr. Reye identical to the line-system that initially Binet has
considered as the collection of a material body's stationary revolution-axes and
that later on numerous mathematicians, especially Chasles and Reye, have
studied. _

When the constants in equations (10) are particularised, the two complexes can
either get a special status - they may for example coincide, the case of which
Mr. Reye has treated in his "Geometrie des Lages, 1868", second part, in that
he simultaneously set forth the equations obeying (a) and (b) - or they may
themselves be particularised. Without entering a discussion of all the possible

special-varieties, I wish to stress the two most important degenerations:

Both complexes can be special, linear. This case leads to the well-known
Ampere's transformation, which can thus be regarded as dependant upon the
fact that one introduces as space-element, instead of the point, the collection of
straight lines which intersect a given line.

The one complex may degenerate into the collection of straight lines, that

1 Lie, "Reprisentation der Imaginzren etc. Christiania Vidensk.-Selskab 1869.

Februar og August”. The in the mentioned dissertation's §§ 17 and 27-29 treated
spatial transformation is identical to the one, I treat in the present Paragraph.
In § 25 I explicitly stress the first of the degenerations here reported.
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of each correspond to the points of the other.

d) To a surface f in the space r is associated a surface F in R for two
reasons. On the one hand, F is the focus-surface of the line-congruence whose
image is f; on the other F's points correspond to those of f's tangents which
belong to the line-complexes in r.

e) On the surfaces f and F just mentioned all curves arrange themselves
together pairwise, conjugated in such a way, that to one upon f [or F] lying
curve's points correspond in the other space a line-surface, which contains the
conjugated curves and after the same touches F [or f].

f) To a curve upon f, which is enveloped by the line-complexes lines,
corresponds as conjugated a likewise by complex-lines enveloped curve on F,
and these curves are reciprocal curves, in the sense stated under (c).

Any one of the equations (10) determines an an-harmonic correspondence
between points and planes in the two spaces, and thus each of our line-
complexes may be defined as collections of an-harmonically corresponding
planes’ intersection-lines - or as an-harmonically corresponding points'
intersection-lines. But the complex of the second degree here defined is
according to Mr. Reye identical to the line-system that initially Biner has
considered as the collection of a material body's stationary revolution-axes and
that later on numerous mathematicians, especially Chasles and Reye, have
studied.

When the constants in equations (10) are particularised, the two complexes can
either get a special status - they may for example coincide, the case of which
Mr. Reye has treated in his "Geometrie des Lages, 1868", second part, in that
he simultaneously set forth the equations obeying (a) and (b) - or they may
themselves be particularised. Without entering a discussion of all the possible

special-varieties, I wish to stress the two most important degenerations: !

Both complexes can be special, linear. This case leads to the well-known
Ampere's transformation, which can thus be regarded as dependant upon the
fact that one introduces as space-element, instead of the point, the collection of
straight lines which intersect a given line.

The one complex may degenerate into the collection of straight lines, that

! Lie, "Reprisentation der Imaginzren etc. Christiania Vidensk.-Selskab 1869.

Februar og August". The in the mentioned dissertation's §§ 17 and 27-29 treated
spatial transformation is identical to the one, I treat in the present Paragraph.
In § 25 Texplicitly stress the first of the degenerations here reported.
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intersect a given cone-section. In that case, the other complex is a general linear
complex. I here wish to mention, that Mr Noether (Gotting. Nachr. 1869) has
Just reported a projection of the linear complex in a point-space, which is
identical to the one we consider here. The fundamental notion for us: that each
space contains a complex, whose lines are mapped as the other space's curves,
is not expressed in Mr. Noether's brief note. - It is this degeneration that we
wish to study in the following, under the condition that the fundamental cone-
intersection is the infinitely distanced imaginary circle.

18. We have found that the two curve-complexes are line-complexes, when
the transformation-equations are linear in respect of any variable system,
and we are hereby led to investigate whether this sufficient condition is
necessary.

When the one complex is a general line-complex, the corresponding curve-
complex’s elementary complex-cones must be decomposed in cones of the
second degree. The proof (§4, 12) of this lies in the fact that a line-
congruence's lines touch the focus-surface in two points. When the one
complex is a special line-complex, the corresponding curve-complex's
elementary complex-cones in the other space are decomposed into plane
bundles.

Thus, when both complexes would be line-complexes, the elementary
complex-cones in both spaces must decompose into cones of the 2nd or 1st
degree. But when a line-complex's cones always decompose, the complex

itself is reducible,! and thus it is shown that, when two line-complexes
are transformed into each other in the previously stated way, either both
must be of 2nd degree, or the one a special complex of 2nd degree
and the other linear, or both special linear complexes. All these three
cases are represented by the equation-system (10), and we wish indicate
that  (10) defines the most general mutual transformation of two line-
complexes.

When, namely, both complexes are of 2nd degree, it can be shown, that the
singularity-surface cannot be a curved surface.

From each point of the surface in question emanate two plane bundles, whose
lines project in the other space as a straight line's points. It follows that all lines
of one bundle correspond to one and the same point in the other space.

But the collection of lines which do not have an independent mapping cannot

] I don't know of any proof of this proposition, which, however, is reported to me as
certain.
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form a complex, at the most a congruence or a number of congruences. When,
however, the collection of plane ray-bundles which emanate from all points of
a curved surface necessarily form a complex, our proposition, that the
‘singularity-surface cannot be a curved surface, is proved.

When two 2nd degree complexes are transformed into each other - in which
case neither of them can be a special complex - in both the singularity-surface
must consist only of planes, and in consequence both systems are such as
those Binet first examined.

When a 2nd degree complex and a linear complex are transformed into each
other, two cases are conceivable: the 2nd degree complex could be formed by
lines, which intersect a conesection - this occasion according to the aforesaid
actually exists -; the 2nd degree complex could consist of all a 2nd degree
surface's tangents. I have through considerations, that have something in
common with those I use in § 12, proved that this second case does not exist;
because I could in that event, from the fact that a linear complex can be turned
into itself by a three-fold infinity of linear transformations permutable between
themselves deduce, that the same must be the case with the 2nd degree surface,
which, however, is not how the matter stands.

§ 8.

Reciprocfty between a linear complex and the colletion of straight lines, which
intersect the endlessly distanced imaginary circle.

19.  In the following we subject to a closer study the equation system:

- = - i 1
2BZZ X 2A(x+1Y) .
i= V-1 (11)
1 : - 1
~x-1Y)z =y .
75 ¢ )z =y A 2o
which is linear relative to both variable systems, and which after § 7 determines
a correspondence between two line-complexes. First we wish to seek these
complexes' equations in the Pliicker line co-ordinates.

Pliicker writes the straight line's equations in the form:

IZ=Xx-p, SZ=Yy -G,
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where he considers the five quantities: r, p, s, 0, (16 - sp) as line-co-ordinates.
The equations (11) thus reproduce, provided that one perceives X, Y, Z as
parameters in the same, the system of straight lines, whose co-ordinates satisfy
the relations:

r= —%Z, p=21—A (x + 1Y),

= L o(x-i = L
S= 2B (x lY)a 0= 27\.AZ ’

which by elimination of X, Y and Z give as our complex's equation:

AAG +Br=0 | (12).
The line-complex in the space r is thus a linear complex and it is a general
linear complex which - as one may notice - contains the xy-planes endlessly

distanced straight line.

To determine the line-complexes in R, one replaces the system (11) by the
equivalent:

Kzﬁ z 'szAZ)Z: X- (AX+B_Zy')

li gg Z+2xBAz)Z= Y- IT(AX_ B—Z_)’

which, by combination with the equations of the straight line in R:
RZ=X-P, sZ=Y-X (13)

give:

AA B y
= - —— = AXx B- N
R 5 27\AZZ , P +535

Sz'li )23 z +21BAZ) ’ 2:11 (Ax ) B%’) ’
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and thus is found as equation of the line-complexes in R:

RZ+82+1 =0 (14)
According to (13), however:

= » S=d ;
R =dX, iz S=dY, iz
and as a consequence, (14) can also be written in the form:

dX? + dY? + dZ2 =0. (15)

The line-complexes in R are thus formed by the imaginary straight lines, whose
length equals zero, or as one may also say, of those lines that intersect the
endlessly distanced imaginary circle. .

The equations (11) transform the two spaces into each other in such a way that
to r's points correspond in R the imaginary straight lines whose length equals
zero, while R's points transform as the lines of the linear complex (12).

One sees that, when a point runs through a line of this linear complex, the cor-
responding straight line in R describes an infinitesimal sphere - a point-sphere.

20.  According to the general theory for reciprocal curves, as expounded in
§ 4, one can, when a curve is known, by simple operations find the image-
curve that is enveloped by the other complex's lines. Now Lagrange has
engaged himself with the most general determination of space-curves whose
length equals zero, whose tangents thus possess the same property. He has
found these curves' general equation, and thus it is by the aforesaid also
possible to specify general formulas for the curves whose "tangents belong to a
linear complex.

In order not to depart from our aim we will not enter here into a closer
consideration of the simple geometrical relations that occur between reciprocal

curves in the two spaces. !

Our earlier expositions of the correspondence between surfaces in the two
spaces are now somewhat modified thereby, in that all congruences of straight

I When the given curve of length equalling zero has an apex, the corresponding curve

in the linear complex has a stationary tangent. On the whole, stationary tangents
occur as ordinary singularities, when curves are perceived as line-generations, that
is, as enveloped by a given line-complex's lines.
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lines, which intersect the endlessly distanced circle possess a mutual focus-
curve - namely, that circle - and that furthermore a line-congruence's straight
lines only touch the focus-surface in two points.

Because if one imagines a surface F given in R, and that f is the geometric
locus for the points in r that correspond to F's tangents of length zero, then
also, inversely, F is the complete geometric locus for the imagepoints of the
straight lines in the linear complex (12), touching f.

On the other hand, the case stands as in the general instance, when a surface ©
of general location in r is given, inasmuch as the straight lines of the linear

complex (12) which touch @, in addition envelope another surface y, @'s so
called reciprocal polarity relative to (12).

The above mentioned line-system transforms in R as a surface @, that
obviously is the focus-surface for two congruences - firstly for the collection of

straight lines, of length zero that correspond to ¢'s points - secondly for the
other collection of the lines that stand in the same relation to y's points.

@'s tangents of length equal to zero thus decompose into two systems, or as

one can also say: @'s geodetic curves of length equalling zero form two distinct
sets.

En passant we note that the determination of the curves that are enveloped by
the straight lines of a congruence belonging to a linear complex, according to
our general theories can be traced back to the searching out on the image-
surface F of the geodetic curves, whose length equals zero. For these curves
are reciprocal between each other (17, f) relative to the equation system (11).

21.  Inthe following we will make use of the ensuing theorems a few times:

a. A surface F of n™ order, which contains the endlessly distanced
imaginary circle as p-double line is the image of a congruence, whose order,

and in consequence also class, equals (n - p).!

An imaginary line of length equal to zero namely intersects F in (n - p) points

! I will at this occasion express an, as it seems, nowhere explicitly articulated, but

none-the-less for any one mathematician, who deals with line-geometry,well-known
lemma: For a congruence that belongs to a linear complex, the order is always
equal to the class.
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which lie in the finite space, and thus are always given (n - p) lines of the
image-congruence, that run through a given point - or that lie in a given plane
in the space r.

b. A curve C of ' order, which intersects the infinitely distanced circle in
p points, is projected in r as a linesurface of the (2n - )" order.

A straight line of the linear complex (12) namely intersects the
mentioned linesurface in as many points as the number of - not infinitely
distanced - mutual-points between the curve C and an infinitesimal sphere.

§9.
The Pliicker line geometry can be transformed into a sphere-geometry.

22.  In this paragraph we establish a fundamental relation that takes place
between the Pliicker line-geometry and a geometry whose elements are the
space's spheres.

Because equations (11) transform the space r's straight lines into the space R's
spheres, and that for a double rendition (12).

On the one hand the straight lines of the complex 1,, which intersect a given
line 1;, and thus likewise the same's reciprocal polarity 1, relative to (12),

transform according to an earlier lemma (21,b) as a sphere's points; on the
other hand the lines 1, and 1,'s points are transformed into this sphere's

rectilinear generatrices.

By the following analytic expositions one can find the relations, that take place
between 1, and l,'s line-co-ordinates X', Y', Z' and radius H".

When
pz=Xx-1, Oz=y-§

are the line 1) [or l,'s] equation, and it is remembered that the linear complex
(12)'s straight lines can be expressed by:

A 1 .
—-ﬁZz: X-ﬁ(X+1Y)

1 : _ 1
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it is seen, that one must eliminate x y z between these four lines in order to
subject the just mentioned lines to the condition of intersecting 1;. One hereby

finds the following relation:

[Z-(AGA-By), 1)) + [X-(Ap+Bs)]? + [Y- i(Bs-Ap)]? =

[ANo+B)), 1]2 (16)

between these linear parameters (X, Y, Z) or, as one may also say, between the
imagepoints' co-ordinates.

The immediate interpretation is that this equation confirms what we have said
above, and in addition yields the following formulas:

X'=Ap +Bs 1Y'=Ap - Bs
(17)
Z =AAG-B) 1 iH'=7@.A0+B/7Lr
or the equivalent
=1 oy 1 .
P=_ (X +iY") = (X-iY
5K i $ 2B(X‘ iY")
(18)
o=l (ztH) —_AziH)
2AA 2B

In which one may without disadvantage exclude the sphere-co-ordinates
X'Y'Z'H's accents, in that for our perception the space R's points are
spheres, whose radius equals zero.

The formulas (17) and (18) show, that a straight line in r transforms as an
unambiguously determined sphere in R, while to a given sphere correspond
two lines in r:

(X, Ya Z’ + H) (X, Y, Z, - H):

which are each other's reciprocal polarities relative to the linear complex:

H=0=AAc+B/r, (12)
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(17) and (18) evidently express, when H is defined as zero, the unambiguous
association between the complexe (12)'s straight lines and the space R's point-
spheres.

A plane - that is, a sphere, whose radius is infinitely large - projects as two
straight lines (1, and 1,), which intersect the xy-planes endlessly distanced

straight lines, and according to the above are 1, and 1,'s points the projection of

those imaginary lines in the given plane, which go to the same's endlessly
distanced circle-points.

Note in particular, that to a plane, touching the endlessly distanced imaginary
circle, corresponds a line of the complex (H = 0) parallel to the xy plane.

23.  Twolines!; and A J» which intersect each other, transform as spheres,
between which contact takes place.

For I, and A,'s polarities relative to (H = 0) also intersect each other, and in

consequence the mentioned spheres have two mutual generatrices. But 2nd
degree surfaces, whose intersection-curves consist of a conesection and two
straight lines, touch each other in three points - the section-curves double-

points. I and A's image-spheres thus have three contact points, of which two,

however, imaginary and infinitely distanced, in ordinary parlance do not come
Into question.

Analytically our theorem is proved in the following way:

The condition for the intersection between the two lines:

rIZ=X-]I [22=X-p2
S]Z=y~01 522=Y"02

is known to be expressed by the equation:
(r) - 12)(0 - 69) - (P - py)(s; - 5) =0,
which by use of (18) gives: |

(X) - X2+ (Y, - Y2 +(Z, - 2% + (iH, - iH,)2 = 0,

- which proves our statement.
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Our theorem shows, that the collection of the straight lines, which intersect a
given, transforms as all spheres, that touch a given, and in consequence we
know the special linear complex's projection.

Conversely, corresponding to two spheres, which touch each other, there are
two line-pairs, whose mutual relation is such that each line of the one pair
intersects a line of the other.

24.  The general linear complex's transformation. The general linear
complex is produced by the equation:

(po-mO)+mr+no+pp+qs+t=0, (19)

which by use of (18) is found to be the equation of the corresponding "linear
sphere-complex":

[X2+Y2+272.H2) +MX +NY+PZ+QH+T=0.!

Here M, N, P, Q, T signify constants that depend upon m, n, p, q, t, while
X, Y, Z, H are to be considered as - non-homogeneous - sphere co-ordinates.

The last équation determines, as one easily sees, all spheres that intersect the
image-sphere of the complexes (19) and (H = 0)'s linear mutual-congruence
under constant angle.

If these complexes are simultaneous invariants equalling zero, or the two
complexes, as Klein puts it, lie in involution, the constant angle is right.

To spheres, which intersect a given sphere under constant angle, correspond in
the space r those straight lines of two linear complexes that are each other's
reciprocal polarities relative to (H = 0).

In particular it should be noted that the spheres, which intersect a given one
orthogonally, transform as the straight lines of a linear complex, lying in
involution with (H = 0).

1

This equation can be posed under the form:
(X-X)? + (Y-Y)2 4 (Z-Zp)? + (iH-iHy)? = C,2
in which we perceive X, Yo, Z, Hg, C, as non-homogeneous co-ordinates

of the linear complex. Mr Klein has drew my attention to the fact, that the sphere
(Xo» Yoo Zg. Hp) is the image of the axes of the linear complex at hand.
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Now given a linear complex, whose equation has the form:

ar+bs+cp+do+e=0, (20)

the corresponding relation between X, Y, Z, H is also linear, and thus the
linear sphere-complex in question is generated by all spheres, which intersect a
given plane under a given angle.

This one may also conclude from the fact that the complex (20) contains the xy-
plane's infinitely distanced straight line, that thus the same's mutual-
congruence with (H = 0) possesses directrices, which intersect this line.

When the complexes (20) and (H = 0) lie in involution, (20)'s lines transform
as all spheres which intersect a given plane orthogonally, or, equivalently, as
the spheres whose centres lie in a given plane.

The following four complexes:

X =0=Ap +Bs Z=0=RAc- B/ 1
iY =0=Ap-Bs H=0=XAc+By, r

lie, as one easily sees, pairwise in involution and furthermore contain, as
mutual line, the xy-planes infinitely distanced line.

The special linear complex: (Const = (), that is generated by all lines parallel
with the xy-plane in association with the four general linear complexes (X =
0)(Y =0) (Z =0) (H =0), thus forms a system, that is to be perceived as a
degeneration of Mr. Klein's 6 fundamental-complexes. In analogy with the fact
that, above we have introduced X, Y, Z, H as non-homogeneous co-ordinates
of a geometry with four dimensions, the element of which is the sphere, these
quantities can also be used as non-homogeneous line-co-ordinates.

It is of interest to note, that the linear complexes, whose equation is:

H= %Ac + By, r=Const,,

and which according to the equation-form touch each other after a special linear
congruence, whose directrices have joined themselves in the xy-plane's
endlessly distanced line, transform as a set of sphere-complexes, which are
characterised thereby, that all spheres of the same complex have equally large
radii.
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25.  Various projections. A surface f and all its tangents in a given point
project themselves as a surface F and all spheres that touch the same in a given
point.

A line lying upon f as a sphere, that touches F along a curve.
When f is a linesurface, F is a sphere-envelope - a tube-surface.

If in particular f is 2 2nd degree surface and as consequence thereof contains
two systems of rectilinear generatrices, in two ways F may be perceived as a
sphere-envelope, and it is significant that in this manner weobtain the most
general surface, which possess this property (the cyclide).

A developable surface transforms itself in the envelope-surface of a set of
spheres, of which two consecutive ones always touch each other - that is to
say, in an imaginary linesurface, whose generatrices intersect the infinitely
distanced imaginary circle. These line-surfaces are, one knows, Jjust those that
Monge characterises by their possessing only one system of rounded curves.

26. It is known that the immediate consequence of the Pliicker
understanding, that when (1, =0) and (I, = 0) are the equations for two linear

complexes,
L +) 1,=0,

provided that i signifies a parameter, represent a set of linear complexes,

which contain a mutual linear congruence. Our projection-principle transforms
this theorem into the following:

The spheres K, that intersect two given spheres S 1 and S, under given angles,
V, and V, stand in the same relation to infinitely many spheres S. There are,

corresponding to the said line-congruence's two directrices, two S, which are
touched by all K.

The variable line complex: (I, + pl, = 0) intersects the complex (H = 0) along a

linear congruence, whose directrices describe a 2nd degree surface - the
average of the three complexes: ,=0,1,=0, H=0, and in consequence the

just mentioned spheres S envelop a cyclide, which, by the way, in this case is
degenerated into a circle, after which all S intersect each other.

Here we also wish to draw attention to the fact that our sphere-projection
allows the deduction of corresponding sphere-groups from interesting
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discontinuous line-groups, and vice versa. For example, from the well-known
theory for the 3rd degree surface's 27 straight lines we derive the existence of
groups of 27 spheres, of which each touches ten of the others.

On the other hand, for example, sphere-columns yield strangely discontinuous
arrangements of a linear complex's lines.

§ 10.
Transformation of particulars concerning spheres in line-problems.

27.  In this paragraph we wish to solve a few well-known problems
concerning spheres, in that we consider the corresponding line-problems by
our transformation-principle.

Problem 1. How many spheres touch four given spheres?

The four spheres transform in four line-pairs (1; A,)(1; Ay)(13 A3)(1, Ay), and

the corresponding line-problem is thus to find the lines, which intersect four
lines, chosen in such a way among the 8 stated, that one line is taken by each
pair.

The lines 1 and A can be arranged in 16 distinct groups of four:

................

in such a way, that each group only contains one line of each pair. These 16
groups are, however, pairwise generated by lines, that are each other's
reciprocal polarities relative to (H = 0), and in consequence also two associated

groups' transversal-pairs (t] tp) (T] Tp) are each other's polarities relative to

(H = 0). The four last-mentioned lines are thus projected as two spheres, and
in consequence there exist 16 spheres, arranged in 8 pairs, that touch the four
given.

Problem 1. How many spheres intersect four given spheres under four given
angles?

The spheres, which intersect a given sphere under the same angle, project
themselves as those straight lines of two linear complexes, which are each
other's reciprocal polarities relative to (H = 0). One thus has to consider four
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pairs of complexes (1; A)(1, A,)(13 A3)(14 A,), and the problem is to find the

lines, that belong to four of these complexes, which are chosen in such a way,
that one of each pair is taken.

Four linear complexes have two mutual-lines, and thus as solution one obtains,
by following the same method as we used in the preceding problem's
treatment, 16 spheres that are arranged in 8 pairs.

Our problem is simplified, when one or more of the given angles are right,
insofar as a given sphere's orthogonal-spheres transform as the lines of one
complex lying in involution with (H = 0) (n.24). When all angles are right, the
question is how many mutual-lines four with (H = 0) in involution lying
complexes have. There are two such lines, which are each other's reciprocal
polarities relative to (H = 0), and in consequence there is only one sphere, that
intersects the four given orthogonally.

Problem IlI. To construct the spheres, that intersect five given spheres under
the same angle. :

Our transformation-principle turns this problem into the following: to find
the linear complexes, which contain a line of each of five given line pairs

(11 '\Arl) ------ (15 )\15)1

These 10 lines can be arranged in 32 different groups of five, in such a way,
that each group contains one line of each pair: -

Ul l3141s) A A3 Ay hg)

-------------------

by which, however, note that pairwise these groups are each other's reciprocal
polarities relative to (H = 0). Each group gives a line-complex and, in all, 32
pairwisely conjugated linear complexes are thus obtained, which transform as
16 linear sphere-complexes. The 16 spheres, each of which is intersected under
constant angle by the mentioned system's spheres, are our problem's
solutions.

Two line-groups like:

contain four mutual lines, and thus the two corresponding linear complexes
intersect each other after a linear congruence, whose directrices d, and d, are
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the mentioned four lines' transversals.

But the complex (H = 0) intersects that congruence along a 2nd degree surface,
which is the image of a circle - the average-circle between two of the sought
spheres, but likewise between d; and d,'s image-spheres. These last spheres

can also be defined by the fact that they touch four of the five given spheres
and thus one can, by the just stated construction, determine a number of circles
upon an arbitrary one of the spheres searched for.

On each of the 16 spheres that intersect five given under the same angle, five
circles can be constructed, provided that one can construct the spheres, which
touch the five given.

§ 11
Relation between rounded curves' and maintangent-curves' theory.

28.  The transformation considered in the foregoing gains particular interest
due to the following, in my opinion important theorem:

To a surface F's rounded curves given in R correspond in r line-surfaces which
touch the image-surface f along maintangent-curves.

The surface f's tangents transform into spheres that touch F, and the idea is
thus that, to fs maintangents, correspond F's main-spheres. This is also the
case.

Because f is intersected by a maintangent in three coinciding points, which
shows that three consecutive generatrices of the maintangent's image-sphere
touch F. But such a sphere intersects F along a curve, which in both's point of
contact has an apex, and this is just characteristic of main-spheres.

When it is now further considered that this apex's direction is tangent to a
rounded curve, it is seen that two consecutive points of a maintangent-curve on
f project as two lines, which touch F in consecutive points of the same
rounded curve. To f's maintangent-curves, perceived as point-creations, thus
correspond imaginary linesurfaces which touch F along a rounded curve.

But curves on f and F arrange themselves pairwise together as conjugated in
such a way (n. 17, e) that the one's points are images of lines, which touch the
other surface in points of the conjugated curve, and thus our theorem is
proved.

The two ensuing examples can be regarded as a verification of this proposition.
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A sphere in R is the image of a linear congruence, as whose focus-surface the
two directrices are to be perceived. Now as is well-known any curve on a
sphere is a rounded curve, and in reality the directrices also appear as
maintangent-curves on  any line-surface that belongs to a linear
congruence. - A hyperboloid f in the space r gives in R a surface, which in two
ways can be perceived as a sphere-envelope. Now the line-surfaces in the
complex (H= 0), touching f after its maintangent-curves, that is to say, after its
rectilinear generatrices, are themselves 2nd degree surfaces, and in
consequence the cyclide F's rounded curves are circles.

As an interesting consequence of our theorem the following may be
contemplated.

Kummer's surface of the first order and class has algebraic maintangent-curves
of the 16th order, which generate the complete contact-average between the
respective surface and linesurfaces of the 8th order.

Kummer's surface is namely the focus-surface for the general line-congruence
of 2nd order and class, which projects - provided it belongs to (H = 0) - as a
fourth degree surface which contains the infinitely distanced circle twice
(n. 21, a).

But Mr. Darboux and Moutard ! have shown, that the last mentioned
surface's curvelines are curves of the 8th order, which intersect the infinitely
distanced imaginary circle in 8 points, and thus these line transform as
linesurfaces of the 8th order (n. 21, b).

Finally, if it is remembered, that these linesurfaces’ generatrices are
doubletangents to the Kummer surface, our theorem's correctness is realised.?

It is evident, that also the Kummer surface's degenerations, e.g.: the
wavesurface, the Pliicker complex-surface, the Steiner surface of the 4th order

and 3rd classj, a linesurface of 4th degree, the 3rd degree linesurface....have
algebraic maintangent-curves.

29.  Mr Darboux has shown that on an arbitrary surface in general a
curveline located in the finite space can be determined - the touching-curve with
the imaginary developable, which is circumscribed simultaneously around the
given surface and the infinitely distanced imaginary circle.

Comptes rendus. Year 1864.
Klein and Lie. Berliner Monatsbericht. 15 Decbr. 1870.
Clebsch has determined the Steiner surface's maintangent-curves.
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As a consequence hereof it is in general possible to identify one maintangent-
curve on the focussurface of a congruence belonging to a linear complex - the
geometric locus of the points, for which the tangentplane likewise is the plane
associated with the linear complex.

The infinitely small spheres, which touch F, namely consist of F's points in
connection with the above stated imaginary developables, and in consequence
the straight lines of the complex (H = 0), which touch the imagesurface f,
divide into two systems - one system of doubletangents, and on the other hand
the collection of lines that touch f in the points of a definite curve. But this
curve is, as the projection of an imaginary linesurface that touches F along a
rounded curve, one of {'s maintangent-curves.

However, this determination of a maintangent-curve is rendered illusory, when
not the congruence, but the focus-surface - or, more correctly, a reducible part
of the same - is conditionally stated. For on a surface, as a rule only a finite
number of points exist, whose tangentplane moreover is the plane which is
associated with the said point by a given linear complex.

Itis of interest to note, that a linesurface, whose generatrices belong to a
linear complex, contains infinitely many points, for which the
tangentplane in addition is the plane assigned by the linear complex. The
collection of these points generates, by simple operations - differentiation and
elimination -, a determinable maintangent-curve.

But Mr. Clebsch has shown, that when a maintangent-curve is known upon a
linesurface, the others can be found by squaring.

The determination of maintangent-curves upon a linesurface belonging to a
linear complex depends only on squaring.

In that we use our transformation-principle on the mentioned theorem of Mr
Clebsch as well as on the deduced consequence, we obtain the following
theorems:

When upon a tubesurface (sphere envelope) a rounded curve which is not
circular is known, the others can be found by squaring.

Single-infinitely many spheres, that intersect a given sphere S under constant
angle, envelope a tubesurface upon which a curveline can be defined, and the
others thus determined by squaring.

That one can find a rounded curve upon the tubesurface mentioned in the last
theorem, is apparent also from the fact that the tubesurface intersects S under
constant angle. But this section-curve must be one of the tubesurface's rounded
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curves by the known lemma: When two surfaces intersect each other under
constant angle, and the section-curve is a rounded line on the one surface, it
must also be so on the other; but on a sphere all curves are rounded lines.

§12.
Correspondence between transformations of the two spaces.

30.  Our projection can, according to n. 16, be expressed by five equations,
which determine an arbitrary quantity of the two groups:

(xyzpq) XYZPQ),

as function of quantities of the other group. If now the one of the two spaces is
subjected to an, e.g., transformation, by which surfaces that touch each other,
are turned into similar surfaces, the corresponding transformation of the other
space will possess the same property. The mentioned transformation of r
can namely be expressed by five equations between X1 ¥1» 21, P1» qp and

X2, Y2, 22, P2, Q7 - the indices 1 and 2 refer to the space r's two states - and

these relations are turned by aid of the transformation-equations between
(xyzpqg)and (X Y ZP Q) to relations between X1, Y1, Zy, Py, Qp)and

(X9, Yg, Z9, Py, Qy), which proves our proposition.

In that we restrict ourselves to linear transformations of r, we find between
the . comresponding transformations of R: all movements (translation-
movement, rotation-movement and the helicoidal movement), semblability-

transformation, transformation by reciprocal radii, parallel transformation’ - by
that is understood transition from a surface to its parallel-surface - a reciprocal

transformation studied by Mr. Bonnet? etc., which all, corresponding to linear
transformations of r, possess the property of turning rounded curves into
rounded curves. We finally prove, that to the general linear transformation of r
correspond the most general transformation of R, by which rounded lines are
covariant curves.

31.  When we now firstly consider such linear point-transformations of r, to
which correspond linear point-transformations of R, it is evident, that we can
only find such transformations of R, by which the endlessly distanced
imaginary circle remains unchanged, and inversely it is also true that we obtain
all of these.

Bonnets “dilatation.”

Comptes rendus. Many times in the 50-ies.
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For as we know, such a linear point transformation of R on the one hand turns
straight lines which intersect that circle into similar lines; on the other hand
spheres into spheres, and thus the corresponding transformation of r is at the
same time a point- and line-transformation, that is: a linear point
transformation, which was to be proved.

The general linear transformation of R, that does not distort the
infinitely distanced imaginary circle, contains 7 constants and can, as is
well known, be composed by translation- and rotation-movements in
combination ~ with  semblability-transformations. ~The  corresponding
transformation of r, that obviously also depends upon 7 constants, can be
characterised so that it turns a linear complex (H = 0) and one determined by
the same lines - the xy-planes’ infinitely distanced line - into itself. One could
also define this transformation so that it turns a special linear congruence into
itself.
By analytical considerations one can in the following way determine the linear
point-transformation of r corresponding to a transformation-movement of R. A
translation-movement is expressed by the equations:
X1= X2+A; Y1=Y2+B; Zl =22+C; Hl =H2,
which by using the formulas (17) give:
1= 1p+a; $1=89+b; p1=ppt+c; O01=0y+d.
On insertion of these expressions in a straight line's equations:
NZ1=X1-P1r $121=Y1- Oy
are obtained as definition of the mentioned transformation of r:
Z1= 23, X} =Xg+azy+C, ¥y = yp+bzy +d.

Likewise it is easy to determine analytically the transformation of r
corresponding the to a semblability-transformation of R. For the equations:

X]= sz; Yl =mY2; Zl =m22; Hl = mI-12
give, by using (17):

= mrp; pP)=mpy; §i =msy; Oy =m0Gy,
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which define a linear transformation of r that can also be expressed by:
Z]= 22; Xl =mx2; y] =my2 .

But these last relations define a linear point-transformation that can be defined
so that two straight lines retain their places.

By geometric consideration we will show, that also rotation-movements of R
metamorphose into transformations of the just stated kind. Let A be the
rotation-axis and M and N the two points of the imaginary circle not distorted
by the rotation. It is evident, that all imaginary lines, that intersect A, and that
go through M or N, retain their position under the rotation, and in
consequence the same is the case with these lines' imagepoints, which form
two straight lines paralle] with the xy-plane.

32, Transformation by reciprocal radii of the space R transforms points into
points, spheres into spheres and finally straight lines of length equal to zero
into similar lines; the corresponding transformation of r is thus a linear point-
transformation, that turns the complex (H = 0) into itself. When one further
notes that transformation by reciprocal radii lets a definite sphere's
points and rectilinear generatrices maintain their position, it is realised, that
the corresponding point-transformation does not distort two straight lines'
points.

Mr Klein! has drawn our attention to the fact that the just mentioned
transformation can be perceived as composed of two transformations relative to
two linear complexes lying in involution, of which in casu (H = 0) is one,
while the other corresponds to the collection of spheres which intersect the
fundamental-sphere of the given transformation by reciprocal radii.

According to the above it is evident, that to a surface D, which through a
transformation by reciprocal radii is turned into itself, corresponds in the space
r one to (H = 0) belonging congruence, which is its own reciprocal polarity
relative to a linear complex lying in involution with (H = 0). The focus-surface
(f) of the said congruence is thus its own reciprocal polarity relative to both the
stated linear complexes, and in consequence the collection of f's
doubletangents generally decomposes into three congruences, of which the two
relationally belong to (H = 0) and the complex lying in involution with the
same.

33.  Onme now considers all line-transformations of r, by which straight

! Zur Theorie . . . math. Annalen, Bd. Ii.
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lines, that intersect each other are turned into similar lines!, and on the other
hand the corresponding transformations of R, which possess the property to
turn spheres into spheres, spheres that touch each other in similar spheres.

By the stated line-transformation, the collection of a surface f 1's tangents is
turned into all of another surface fy's tangents, and especially f;'s main-
tangents go over into f5's maintangents - this irrespective of whether the line-
transformation is a point-transformation or a point-plane-transformation.

By the corresponding transformation of R, the threefold infinity of spheres,
that touch a given surface F; is tuned into the collection of spheres, standing

in the same relation to the other surface F5, and especially F{'s main-spheres
are transformed into F5's main-spheres. A simple consequence hereof is that
F,'s and Fy's arcuate-lines correspond to each other in the sense that when in
an arbitrary relation:

®(X; Y] Z; P; Q) =0,

which is valid along one of F's rounded lines, are inserted X1Y121 P Qs
values at X2 Yo Zy Py Q», an equation is obtained, that is valid for one of
- Fy's rounded curves.

I will now show, that any transformation of R of the form:

m+n
X =F (%% %8 ¢ h
Xy dYy X3 dX™ . dy,n
dm+n 22

Y1=F2 (X2Y2Z2 ................ dxzm e )
)

m+n
d Z,y

Z,=F YoZny oo
1 3(X22Z2 m)

Here are, as we know, two cases to be considered, insofar as lines, that go through
a point, can either be transformed in similar lines, or in lines that lie in a plane.
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which turns an arbitrary surface's rounded lines into rounded lines for the new
surface, through my transformation corresponds to a linear transformation
of r.

The proof can be straightforwardly reduced to demonstrating that when a
transformation of r turns an arbitrary surface's maintangent-curves into
maintangent-curves of the transformed surface, straight lines that intersect each
other must be turned into similar lines by the same.

Firstly, the transformation in question must turn straight lines into straight
lines, follows from that the straight line is the only curve, which is
maintangent-curve on any surface that contains the same.

Further, to straight lines that intersect each other, must correspond lines of the
same relative mode, can be deduced from the fact that the developable surface
is the only linesurface, which possesses the property, that through each of its
points runs only one maintangent-curve - that thus our transformation must
turn developable surfaces into developable surfaces.

Our proposition is thus proved.

One may note that, corresponding to the two essentially different kinds of
linear transformations, exist two distinct classes of transformations, for which
rounded curves are covariant curves.

When one chooses among the stated transformations of R those which are
point-transformations, the most general point-transformation of R, by which
rounded lines are covariant curves, is obtained, a problem that Liouville
first solved. That hereunder equivalence in the smallest parts is maintained,
follows by the fact that infinitesimal spheres are transformed into infinitesimal
spheres.

Parallel-transformation is known to turn rounded lines into rounded lines, and
it is in reality easy to verify that the corresponding transformation of r is a
linear point-transformation.
For the equations:

X1= Xz; Yl =Y2; Zl =ZQ; Hl =H2+A

transform (compare our considerations over translation-movement n. 37 )
into relations of the form:

1= 19, x1=x2+u22+b; y1=y2+c22+d.




34.  Mr. Bonnet has many times considered a transformation, which he
defines by the equations:

22=i22'\/1+P22+ Q% 5 X =Xp+PaZy; Yy=Yo+ G2y,

whereby the two indices refer to the given and the transformed surfaces.

Mr. Bonnet shows that this transformation is reciprocal - in the sense, that
twice applied it brings back the given surface, that it transforms curvelines into
curvelines, that finally the following two relations:

g1= in, H1= -iCz ((!)

find place, provided that Hyand Hy signify curve-radii for corresponding
points, that further {; and {, are z-ordinates for the corresponding curve-
centres.

The Bonnet transformation is, as we will soon show, the image of a
transformation of r relative to the linear complex:

Z+iH = 0.
Because, remembered that (X = 0) (Y = 0) (Z = 0) (H = 0) pairwise lie in

involution, it is found, that the co-ordinates of the straight lines, that are each
other's polarities relative to [Z + iH = 0], fulfil the relations:

X1= X2; Y] =Y2; Zl =iH2; Hl = -i22 . (ﬁ)
But these formulas determine a pairwise correspondence between all spheres of
the space when X, Y, Z, H are interpreted as sphere-co-ordinates. This is just

the same as the Bonnet transformation.

Because a surface F's mainspheres are transformed hereunder into a surface

F»'s mainspheres, and hence we recover Bonnet's formulas (o). When one

further considers F generated by point-spheres, the equations (B) define F; as

an envelope of spheres, whose centres lie in the plane (z = 0), in that the
equation (Hy = 0) draws (Z = 0) after itself as a consequence. In reality we

are hereby carried to precisely the geometric construction described by Mr.
Bonnet.
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Concluding remarks

Thus ends Marius Sophus Lie's thesis - and starts his deeper exploration of the
new chapter he founded. The aim here has been to present his well-spring opus
for a wider scientific community and to retain thereby also the direct and
pristine voice of his own formulations. They may at times sound somewhat out
of date, but they are not - they are just original. There are numerous examples,
which hardly need to be recollected. At large and in detail, we recognise basic
concepts and notions also of the modem versions and terminology, which,
however, as so often in superspecialising science, have been ‘alienated in
efforts of technical rationalisation and diversification - to virtual
unintelligibility, not only for the laymen but for fellow scientists as well.

But an even more serious departure is the distancing from the real world, from
the robust practicability that signifies Lie's thesis. It deals with the very
existence, with authentic geometry both in a logical and substantial sense: in
descriptive terms of what is essentially possible and hence absolutely
necessary. Mind's dimensionalities and scope are endless, but when it is here a
structural matter of, for instance, actual spheres coming into reciprocal physical
being and continuous, i.e. space-filling and non-overcrossing, functioning,
there has to be a synthesis. It can be seen quite concretely that infinitesimal
projections of them, be they imaginary or tangible, distribute into "16 spheres,
which are arranged in eight pairs" (§ 10, n. 27, problem II): virtually on the
surface of the four northern and four southern both Cartesian and Lie algebra
Aj in R3 hemispheral space sectors as each of them further bi-sected by the

hexagonal symmetry axes therein. Then, the clock works and is free to wind
out the ensuing mathematical dimensions by cyclically regenerating expansion

over the equally rendered and folded space extensions.!

This is a significant aspect of the Lie groups and algebras, otherwise they
would not apply at all to manifested physics. In science, returning to the
sources has always proven to be a good plan, and in doing so one not
exceptionally finds that the message is divergent from the present-day account.
When we go back with rational sincerity and interest to the primordial Lie
groups and algebras we see, that it may not be they that are "mystically fit to

describe mathematically"? the elementary particles and their patterns and
behaviour. Rather it may be the quite subtle and ingenious but undeniably also
disconnected, secondary adoption and application of them that makes the
current elementary particle iconography arguably more mystical than fit.

] Compare E. Trell. Hadronic Journal Supplement 12, 217-40, 1997,

2 M. Carmeli. Group Theory and General Relativity. Representations of the Lorentz

Group and their Applications to the Gravitational Field. (NY, McGraw-Hill, 1977)
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Abstract

Despite outstanding achievements, the Gell-Mann/Neeman eightfold model of
elementary particle spectroscopy still remains with open problems, such as a
direct representation of energy levels/mass numbers, or a direct inclusion of
antiparticles. In this paper we show that these insufficiencies can be resolved by
formulating the eightfold model via the original theory of geometriscke
Transformationer of Marius Sophus Lie. By using the canonical orthogonal
coset decomposition of SU(3), we obtain a double eightfold representation
consisting of two ordinary Cartesian coordinate quadrants, in each of which the
Gell-Mann/Neeman eightfold way acts, by directly reproducing the mass
spectroscopy of particles and directly including antiparticles. All transitions and
channels are clearly identified and, importantly, the masses are directly and
amply retrieved from the pertaining ellipsoidical domain transformation as
reciprocally proportional to the minor semiaxis contraction in relation to the
proton ground state. Not only the baryons, but also the mesons and leptons as
well as more exotic elementary particles, such as the bottom flavour, and the W
and Z gauge vector bosons, are generated and here exemplified. In
conclusion, the use of the original Lie’s theory provides strong support of
the standard SU(3) model via the achievement of more complete data. On
the philosophical level the implications are likely far reaching. Taking
place between and on surfaces instead of in the center, and being in that
sense projective and observer-related, our findings entail a truly
relativistic-dualistic, rather than monistic description of reality.

Copyright © 1998 by Hadronic Press Inc., Palm Harbor, FL 34682, U.S.A.
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Introduction

Present elementary particle and theoretical physics remain firmly founded
upon Marius Sophus Lie’s (pronounced Lee) continuous transformation
groups and algebras - but not the real primary ones! This remarkable
situation is rooted in the fact that his pertaining Ph.D. thesis, "Over en
Classe geometriske Transformationer” ', has remained un-translated from
the, per se rich and comely Norwegian language, and therefore in a sense
both contains and keeps the ordinary geometrical prescriptions by which
current physics would have looked different - and quite familiar at the
otherwise consolidated nanoscale of natural sciences today.

This has become apparent to me (who by linguistic kinship was able to read
his thesis already when as a cardiologist I attempted to reproduce the full
three-dimensional electrocardiographic potential distribution by rotational
transformations of chestwall and other external recordings) as well as
during the English thesis translation’ to professor Santilli (who by his
ingenious, per definition Lie-admissible isotopic mathematics® in the
meantime kept Lie’s flame alive in the flat complex space of the special
unitary representation where for the usual irrational reasons it has been kept
on reduced light since elementary particle physics and related cosmology®*
comparatively recently were established).

- The paradox is that the special unitary representations are beyond doubt true
in a circumscribed algorithm sense - but their isolated root-space diagram
deficient both philosophically and physically: in the former monistic, self-
referential, and in the latter hence centred and singular. This is apparent also
in the cosmological expansion as manifested by the (etymologically Nordic)
Big Bang scenario towards that extremity of the scale. ‘

But the original Lie, basically real-structural geometrical representation is
dualistic, double, three-dimensional, and surfacial - and in fact the forbear of
the unitary groups and algebras, whose non-compensated spatial flatness
and centredness are caused by the bi-dimensionality and polar projection of
the complex numbers. This might be illuminated both principally and
methodologically by the ensuing series of quotations from his thesis:

”The rapid development of geometry in our century stands, as is well known,
in an intimate dependence on philosophical reflections upon the nature of
Cartesian Geometry - reflections, which are expounded in their most universal
form by Pliicker in his oldest works. For one, who has immersed himself in
the spirit of Pliicker’s works, there is nothing fundamentally new in the idea,
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that as element for the geometry of the space can be used any curve that is
dependent on three parameters. When none-the-less no one, as far as 1
know, has realised this thought, the ground must probably be sought in
that no advantage that might result from this was seen.”

"I have been brought to a general study of the said theory by my finding that,
through a particularly remarkable transformation, the theory of main
tangential curves can be brought back to that of rounded curves.

Following Pliicker's trail I discuss the equation system:

(F1(xyzXYZ)=0, Fy(xyz XYZ)=0},

which in one meaning, later to be explained, defines a general reciprocity
between two spaces. When in particular the two equations are linear in relation
to each system's variables, a projection is obtained by which to each space's
points correspond in the other space the lines of a Pliicker Line-complex.....In
particular I study the aforementioned projection, upon which I found a - as it
appears to me - fundamental relation between the Pliicker line geometry and a
spatial geometry whose element is the sphere.”

Methods
Also the methods are best reintroduced in Lie’s own words:

" The Cartesian geometry translates any geometric theorem into an algebraic
one and thus of the geometry of the plane renders a faithful representation of
the algebra of two variables and likewise of the geometry of space a
representation of the algebra of three variable quantities.”

"The in the following presented new theories are founded upon the fact, that

one can choose any space-curve which depends upon three parameters as
the element of the geometry of the space.”

"When xyzand XY Z are perceived as point co-ordinates for r and R, one
can say, that by a transformation of this kind is defined a correspondence
between the two spaces’ surface-elements, and nota bene the most general.”
"It is known, that the equation:

FxyzXYZ)=0




- 450 -

always defines a reciprocal correspondence between the two spaces’ surface-
elements; and likewise 1 have in the foregoing: shown, that the equation-
system:

FixyzXYZ)=0, Fo(xyzXYZ)=0

always determines a transformation, that turns surfaces, that touch each other
in like surfaces”.

"We establish a fiundamental relation that takes place between the Pliicker line-
geometry and a geometry whose elements are the space's spheres.”

" When f is a linesurface, F is a sphere-envelope”.

“If now the one of the two spaces is subjected to an, e.g., transformation,
by which surfaces that touch each other, are turned into similar surfaces, the
corresponding transformation of the other space will possess the same
property...In that we restrict ourselves to linear transformations of r, we
find between the corresponding transformations of R: all movements
(translation-movement, rotation-movement and the helicoidal movement),
semblability-transformation, transformation by reciprocal radii, parallel
transformation - by that is understood transition from a surface to its
parallel-surface - a reciprocal transformation studied by Mr. Bonnet etc.,
which all, corresponding to linear transformations of r, possess the property
of turning rounded curves into rounded curves.”

Of course this is an extremely pruned selection of the simplest of the quite
subtle and profound theorems and lemmas in the thesis. But it may visualise
the contours of a “double rendition” '* in ordinary real space where there is
mutual reciprocity, both in the “transition” '** between rectilinear Pliicker
and rounded Lie geometries, and in the likewise doubly isomorphic
transformations on the “envelope” '* of either of these fulfilling the same
analytical (that is, geodetic feasibility) conditions.

Hence, what might be called tangential surface events are generated,
analogous to precipitations on germinal membranes, monolayers, films etc.
where structure may first be seen to appear in neighbouring branches of the
natural sciences today, like microbiology and chemistry.*® This is a
categorical difference between the currently applied unitary and the original,
real orthogonal Lie algebras relating to the elementary particle spectroscopy,
and of which Gilmore has provided the most lucid graphical exposition
(Figures 1 - 2).5
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The ground plan has an ordinary geometrical, rotationally symmetric
SO(3) x O(5) composition (Fig. 2), which, again documenting that the
results are supporting and saluting the established theories, actually is parent
to SU(3) although in the latter-day reverse order referred to as the canonical
involutive automorphism, or orthogonal coset decomposition of this.5’
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Fig. 2 a-b Full SO(3) x O(5) Lie transformation diagram. The five-
dimensional, perpendicular and diagonal Cartesian projective space
axes inside the unit "endlessly distanced sphere”'? outline a duplicated
a, "eightfold way” ® root space diagram by which the unit t isospin
(and sphere radius) transition steps from any of their end-points on
the surface conduct the SO(3) volume- and sphercidal symmetry-
preserving domain transformations (From Gilmore and Trell)
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The figure shows the full SO(3) x O(5) transformation system on either
surface, where O(5) corresponds to the perpendicular and diagonal
projective axes of the Cartesian reference space. It is seen that their
extensions inside the ground unit sphere form a duplicated A, root space
diagram. Thus, the flat “eightfold way”® ¢ isospin unit step ladder, or
‘switch-board’ of state shifts is expanded to a three-dimensional lattice
(Fig. 3) along which by exactly the same procedure the initial
transformations are carried out on the domain surface in any of the four
northern and four southern, Cartesian neighbourhood hemisphere segments
linearly independent of each other.

Fig. 3 Graphical representation of (a) SO(3) x O(5) root space,
(b-c) three-dimensional transition lattice by unit length pion (and lepton)
vector elements there, and (d) some of the basic supermultiplet
transitions originating by eightfold way steps by these from the
projective surface in one of the four northern perpendicular Cartesian
co-ordinate segments (further bisected by diagonal symmetry axis).
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A, is, of course, the root space diagram of SU(3) in its complex number
formulation. However, when transferred 1:1 to the real space and numbers it
becomes flat and self-centred because it lodges the duplicity inside itself.

This deficiency therefore afflicts the otherwise perfectly accurate eightfold -
way method.® Tt is followed here when tracking down channels and modes
along the same pion and other unit transferences displayed there as well as in
the observations. But by the full Lie representation, the previously combined
electromagnetic and gravitational, "hypercharge” axis is decomposed into its
two, basically perpendicular semiaxes, of which the ¢ isospin vector, just as
in the prototype eightfold way® constituting also the alternatingly and
opposingly positive, negative and neutral (horizontal) lattice (or
quark/antiquark) sides, always remains confined to discrete Q levels.

The mass is already implied to be associated with the semiaxis
simultaneously liberated “in the plane perpendicular to the lines of
electromagnetic flux”.® The length to the surface of the new by SO(3)
determined volume-invariant spheroidal transformation’s elongated major
semiaxis (a) set up by the new ¢ isospin vector can always be calculated.
The reciprocally contracted minor semiaxis length (b and ¢ in a symmetric
ellipsoid, ¢ if b is taken over from the previous state) can equally easily be
obtained from the unit gauge preservation condition.

And this enables the exact mass calculation as 1/c x 938.27 MeV, that
is, inversely proportional by both the “quark pressure” formula,

Ap = h/Ax

and the domain curvature straightening to the mass carried by the Proton, all
semiaxes = 1, perfectly round unit spheroid*'*'? according to the accepted
theoretical understanding that all transformation “properties are attributable
to this nonperturbative ground state” .’

Results

Besides providing an overview of the faithful “eightfold eightfold way” of
real form Lie transformations, Fig. 3 also exemplifies basic operations and
resulting state reproductions in one arbitrary of the eight Cartesian space
segments.




- 454 -

It is seen that the transitions are in the outward direction and hence distinct in
each space segment. There is therefore' separate room in opposing segments
for antiparticle: events. That does not hinder full particle domains, i.e. the
baryons, to be Wegl—reﬂected in a free such diametrical sector of their space
co-ordination.”'"" But surface differentials as well as the single lattice
steps and envelopes between the domain transformations that primarily take
place in the separate segments are naturally cut off (but may themselves
continue from or be transformed) there.

The Baryons
By these simple rules it is possible to virtually extemporise the elementary
particle spectroscopy, and since detailed results of the basic baryon

supermultiplets’'®'?, the A'®"', 7", N and A'"'? resonances, the basic
mesons and leptons'®'? as well as the charmed hadrons* have already been
reported, only a condensed, mainly figure and table rhapsody of them is

recapitulated here, giving more attention to the bottom mesons and the Z

and W gauge vector bosons which, remarkably enough, the direct Lie
representations also cover more than hundred years postponed.

The basic baryon supermultiplets are surveyed in Table 1 and Figures 4-5.

The table first summarises the obtained major semiaxis lengths of all the
basic baryon supermultiplets as well as the consequential, volume-
preserving length of the minor semiaxis changing in the transformation,
easily obtained in the unit scale from the equation (axbx ¢) = 1 and giving
the mass number as I/c x 938.27 MeV. As seen, there is extremely good
correspondence with the available observational data.™'!?

Table 1 Survey of the basic baryon supermutiplets

Mass

Major Minor

semiaxis semiaxs Calculated Observed
7° J2 i 11538 1156
PR 160804 0.788591 11898 1189.4-1197
4%t J3 N 12348 1230 ~1236
o 19718 0.7H6 13185 1314913213
21385 %" AN - /475 0.679-0.678 138221385 1383 1386
A(1405)° NA M1 1403 1405 %5

5
2(1530)% \/7.06 0.6134778 1529.5 1528 1534
Q- 2.505-2.5} 0.561 - 0.560* 1673.5--1677 1672 -1674

* Minor sémiaxis changed in the transformation {c}.

The figures illustrate how in an arbitrary Cartesian space segement and
exactly matching the channel spectrum observed in reality, the eightfold
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way, unit f isopspin steps are taken, and the root expression of resulting
major semiaxis length to the centre or poles (or focal point) of parent states.

Laterai Frontal Horizontal

0y

A\
Vinteuie Vit

Fig. 4 Graphs of basic, p-n, A, £ and A supermultiplet transitions
(like in ensuing figures, except 8, 11 and 12, plane projections are shown)
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Fig. 5 Graphs of the basic Z, £(1385) and A(1405) supermultiplet transitions
(here and elsewhere occasionally too much size-reduced number in root signs is 4)
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Table 2 summarises the same findings in the A resonances.'®

Table 2 Survey of the basic A resonances
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No illustration of the A series is given here. Instead, the well confirmed

% resonances’(+#xx/x#x in particle properties review'*) are outlined (Fig.6).
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Fig. 6 Graphical reproduction of main members of £ resonance series.
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In fact, all the £ resonances and their masses and J® numbers can be
accurately reproduced’, but for matters of brevity only the graph but no
table of the channels and trigonometric major semiaxis calculation of
the better verified members was shown. In exchange, a tabular account of
the N and A resonance series" is given below (Table 3) without illustration.

Table 3 N and A resonances, @ and ¢ semiaxes and computed masses (MeV)

Stale Major semi Minor semi- Mass Expres-
axis axis ¢ sion (MeV)
N*0.(-) ] ! 938.28
A(1232) *=+0- V3 VAT 1234.8
N( 1440) vE /176 1468.5
N(1520) 2 2.6131 0.6186 1517
b il V177 1526
N(1535) V7 VT 1526
A(1620) V3 0.5774 1625
N(1650) 2 V9.5 V193 1647 .
b V10 /1710 1669
N( 1675) V10 V110 1669
N(1680) 2 V1025 V171025 1679
b 2.5495 0.5547 1691
N(1700) V10,8284 V1710.8248 1702
A(1700)a V10 V0 1669
b V10.8284 V1710.8248 1702
N(1710) V- 0.5774 - 0.5 1630 - 1876
N(1720) V13 VU3 1781
A( 1900} 2002 0.5 1876
A(1905) V16 NS 1878
A(1910) VT VT 1905
A(1920) VI8 VI8 1932
A(1930) V1866 V1718.66 1950
A(1950} 2.7321 0.4816 1948
N(2190) 3 0.4387 2140
N(2220), N(2250) V& 0.4082 2298
A(2420) VT 0.3780 2482
N(2600) 2 0.3536 2654
A(2750). A(2950) /3 or O 13 2815
N(3030) VSor /10 0.3162 2967
A(3230) 2 0.2887 3250




Even the Charm baryons and their extra degree of projection freedom, their
channels and masses and other properties can be adequately reproduced.®
Only the graphs will be recapitulated here (Fig. 7).
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The Mesons
Also the mesons manifest “the very nice distinction between quarks and
antiquarks via Lie’s original approach” in a quite concrete way. '*

Here the pions and the ensuing, most basic (#.d.s) mesons, i.e. KT, KO,

K? M, p(770) and @(783)"'° will be described (fig. 8).
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Fig. 8 Graphical reproduction of basic mesons
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The resPective real forms of the SU(2) x U(1) product group assigned to the
mesons'>'® appear as differential elements on and from the surface between
transforming baryons, thus definitely within separate Cartesian co-ordinate
segments. Their gauge theory product group is SU(2) x U(1), whose real
form projections are summarised in the figure.

The SU(2) plane counterpart is spanned by opposingly alternate ¢ isospin
vectors which thus exhibit the prescribed quark-antiquark relation to each
other. Being the symmetric element the mass contribution of the plane is
proportional to its fraction of the proton equatorial plane area, whereas the
counterpart of the antisymmetric U(1) translation vector, being the distance
to the next same projection from the parent surface, contributes to the mass
inversely to its length. Computed and actual masses are shown in Table 4.

Table 4 Mass calculations of pions and other basic (u,d,s) mesons (and leptons)

=0 M4 x 93827 x VS 135.4 135.0

at 116 & 938.27 x /Y 5/4 139.87 139.57

Kt (9382704 x UYTI) + (938274 x 1 3) 4 (938276 x WV TTT) 492.0 493,65

xg 938.27/(4 x V' I73) + 938.27/(8 x ¥ 172) 491.6 497.67

K 938.22/(8 = VT7) + 9382748 x VI7D) + 938218 x VITT) €976 497.67

n (933.27/6) + (938.27/6) + (938.27/4) 547.33 548.810.6
p(170) (938. 21V IVIR or (93827 x vV I)IV3 766.1 168.310.5
w(783) 938.27/4  + 93B.27/4 + 938.27/6 + 938.27/6 7819 781.95:0.14
nt 12 x V) x 93827 or 1(2x x 2V 173} x 938.21 105.59 105.66

¢! 1/(137.035966 x 6x x v 172) x 9338.27 0.514 0.511

v lea 3 93327 0 0 (< 17-35)
Y I/oe x 93827 0 0 (<310

It is evident that they are differential surface events spanning own volumes
which can be inflated by further transformations but always departed further
and further out in the periphery of the lattice segment. A plethora of
permutations are possible which remarkably encugh correspond to the
equally abundant, observed spectroscopy.™"

Nowhere is this more evident than in the Charm and Bottom mesons,
which may appear far-fetched, bordering to fantastic, in the Lie
representation; but not more so than - and matching - the factually observed
modes and channels and their gauge field theory explanations including for
each of them a corresponding extra “degree of freedom.”'® Since the
charmed mesons have been reported separately*'®, only two, somewhat
diminished graphs of D*, D°and D° are shown here (Fig. 9 a-b).
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Fig. 9a-b Real Lie image of D*, D* and D°

The further dimensionality of the Bottom flavour deserves a somewhat
more extensive consideration. Something extra obviously happens with the
first Bottom mesons that can bring about their great jump in energy so
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immediately or closely upon the D mesons.” Much speaks in favour of that
it is a reflection of one or both of the weak, quark-antiquark 180spin root
VeCtors to genuine semiaxes in elliptic or circular SU(2) planes. It is clearly a
new degree of freedom and the large mass increase of the Bottom mesons
becomes comprehensible, and also that they can evolve from the D
isomultiplet almost directly or by single pion steps.

The latter, and a recorded A,* < p-BO reaction are sketched in Fig. 10 a-b.

L.ateral Frontal
VA N
__.,/ v
Frontal Horizontal

\ 1'

Fig. 10 a-b Real Lie image of the B Bottom mesons, modes and channels
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B* (B obtained by charge conjugation)™ is visualized by the D%1* mode. It
produces a f isospin vector of length = 1 at a distance = 4 from the end-
point of the other weak isospin vector (Fig. 10 a). When both are reflected
to elliptic semiaxes, these are aligned in the electromagnetic charge plane and
span a surface area of (1)-1-4. The distance to surrounding B* states is
(0.5)'”. The mass is then 4 x 1/(0.5)"* x 0.93827 GeV = 4(2)'" x 0.93827

GeV = 5.30 GeV, or just the actual mass of = 5.28 GeV."

In B, three varieties are shown (Fig. 10 b). In the DYD° - n*n" modes the
elliptic semiaxes are (0.5)"?and 4, and 1 and 2(2)"%, and the distance to the
-neighbours = 0.5. The mass calculations are (0.5)'? x 4 x 1/0.5
4(0.5)' x 2 = 2(8)"*x 0.93827 GeV, and 1x22)” x 1/0.5

2(8)" x 0.93827 GeV = 5.30 GeV. In the At channel it is likewise
2x (2)"x 1/0.5 = 4(2)'* x 0.93827 GeV = 5.30 GeV.

The BO antiparticle is recaptured as a degeneracy in the horizontal plane and
caused by one semiaxis = 4 and the other = 1, or both semiaxes = 2, and
distance to the next SU(2) plane of the same kind = (0.5)'? Fig. 10 b).
Both give masses=4x 1 x (2)" x 0.93827 or 2 x 2 x (2)"* x 0.93827

GeV % 5.30 GeV in comparison with the ® 5.28 GeV in reality."

The leptons

The leptons are contrived as one-dimensional wave sections, packets, and
orbits. Their symmetries are governed by the simple U(1) group'*"’, the real
forms of which in R3 can only be straight or curved lines; put together, and

thus not restricted to unit length, by iterations of the r isospin vectors or the
difference vectors between them in the geometrical representation of the
SU(3) root space.”"

Interesting similarities between the leptons and the quarks have been noted
since long.” Both may be truly elementary and genuinely point-like so that
there is only one dimension left for their geodesics. The lepton masses are
already considered to be inversely proportional to these, for example, the
orbital wavelength or path distance in the electron.

Fig. 11 shows the direct counterparts of the root vector sequences of the
muon and the electron/positron geodesics in the transformation lattice.
Especially "the muon has remained a mystery" and "the question 'why does
the muon weigh?' has remained unanswered”.?
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Fig. 11 a-f Vector trains of e and ut geodesics in real Lie representation space

Here it is seen that one type of orbits in and around the nucleon domain can
be established by quite straightforwardly repeating adjoining ¢ isospin root

vectors of equal charge sign and inclinated 90 - 180° to each other (Fig. 11
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a-c). All have a length of 27 x (2)"* and consequential mass number =

127 x (2)') x 938.27 MeV = 105.59 MeV, so that indeed in every
respect the muon with actual mass 105.66 MeV" is reproduced.”"!

Further it is seen that the difference between an electron and muon trajectory
is that of turning into a 60° or 120° adjoining ¢ isospin root vector sequence
instead of a perpendicular one (Fig. 11 d-f). The difference can be projected
as straight angular momentum-like vectors in the same electromagnetic
charge plane; one set up by the new, electron/positron root vector alignment,
and one corresponding to the abandoned muon (not shown). It is also how
the muon decays into the electron/positron by "a typically weak
interaction"”, involving both the muon-associated peutrino and the electron-
associated anti-neutrino."” Their continuations result in straight lines within
unchanged electromagnetic charge planes. Such rectilinear neutral current
trajectories would be very hard to catch in a recording device and would be

of infinite length with consequential mass number = 1/60 x 38.27 MeV = 0.

The Y counterparts, e.g. in the R0 decay, are analogous but assume a
sinusoidal form. Their iterations would accordingly be easier to record but

still of infinite length with mass 1/00 x 938.27 MeV =0.

As mentioned, the electron/positron is retrieved in the 600-1200 ¢ isospin
root vector sequences (Fig. 11 d-f). This is the most "natural” orientation in
the A, root space and, like in the muon, various types of closed or helical
orbits can be generated; either "three-jet propeller” or "Mercedes”
configurations (Fig. 11 d-e) as reported in high energy electron-positron
annihilations”, or a more likely six-pointed course around the nucleon
region (Fig. 11 f). The length of all trajectories can be calculated as

3 x 21 x (1/2)'?. However, since the electron circulates at a distance outside
the nucleus expressed by multiples of the fine structure constant?, the

actual path length of the ground orbit is 137.035986 x 3 x 21 x (1/2)"2,

with mass equivalent of 1/(137.035986 x 3 x 2r x (1/2)'®) x 93827 =
0.5137 MeV, which is again precisely as the real electron/positron with

mass ® 0.51]1 MeV. "

The W and Z gauge vector bosons

Moreover, the T heavy lepton and its neutrino adjuncts (not shown), and the
W and Z gauge vector bosons can be identified in the faithful structure
diagrams. The latter will be illustrated, also to demonstrate the far-reaching
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identities between the complete real Lie representation, and reality and theory
alike (fig. 12 a,b).

Fig. 12 a-b. W and Z gauge vector collection in ful Lie SO(3) x O(1) domain

There is agreement that the vector bosons represent the whole gauge field,
including particles and antiparticles (from the collision of which they may
reciprocally be created). Hence, recapitulating the full SO3) x O(5)
embodiment and the gauge vector elements in the same (Fig. 3 a-d), two
crystal-like collections and arrangements of all of these come up in the
spherical domain, one with main diagonal co-ordination (Fig. 12 a), and one
with a somewhat more probable-looking, orthogonal alignment (Fig. 12 b).

When fully split up .alon'g the diagonal symmetry axes of the orthogonal
complementary subspace in the SU(3) geometrical automorphism (Fig. 7a),
there would be a predominant release of charged ¢ isospin root vectors and

associated neutrinos, and also some Y. The partition is in the horizontal
planes so that the decays would assume a charge isodoublet distribution.
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Counting and summing up the generated vector quantities in this type of
polyhedral division of colliding proton and anti-proton domains yield in each
of them 32 charged ¢ isospin vectors of length = 1; 4 neutral ¢ isospin
vectors of length = 1; 2 y axes of length = (2)"?, and 8 diagonal symmetry
axes of the complementary subspace of length = (2)'"2. The binding/splitting
energy of the unit vectors should equal the proton mass of 0.93827 GeV,

whereas in the (2)" axes it should be 1/(2)'? x 0.93827 GeV.

This gives 36 x 0.93827 + (10 x @)Y x 093827 GeV =
43.071 x 0.93827 = 40.4123 GeV. Adding the same amount from the

other moiety in the reaction gives 2 x 40.4123 GeV = 80.82 GeV, which
perfectly suits with the recorded 80.6 + 0.4 GeV in W*."*

The Z9 boson is more common. The mass is currently determined at =
91.16 GeV from the peak energy at which proton-antiproton annihilation
collisions may result in swarms of charged lepton pairs (e'¢ 3.2%,

WY 3.4%, TT 33%, e'u*2 %), their associated neutrinos (19 %),
¥’s (2.8-3.7 %) and hadrons/antihadrons of all known flavours (70.9 %)."

Fig. 12 b shows that a cleavage along the horizontal and vertical Cartesian
symmetry planes in a proton/anti-proton gauge vector lattice pair releases
2 x 32 charged ¢ isospin axes of unit length and corresponding to weak
isospin vector or lepton/antilepton pairs, 2 x 4 neutral t isospin axes of unit
length; and 2 x 8 horizontally and, including the y co-ordinates, 2 x 6
vertically inclined symmetry axes of length 1 and (2)", respectively.

They either come out by themselves as neutrinos or ¥ or combine with 7
isospin root  vectors to meson states. The total mass summation

amounts to 2(44 + 6 X(2)”2) x 0.93827 GeV = 90.53 GeV, which fits
within 0.7 % with the decided value of Z° at 91.16 GeV. '?

Discussion

Can also the Top, or in alternative terminology, Truth be reached by the real
Lie algebras? Preliminary data is that it can, but this is beyond the scope of
the present paper, which aims at recapitulating some of the straightforward
but entirely faithful graphical executions of the original Lie transformations
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and how extensive and exact a correspondence with reality and theories alike
they exhibit.

As noted, even the "distinction between quarks and antiquarks...comes out
very nicely™ and “does not appear that clearly in the conventional treatment
of SU(3)".'** In the present geometrical reproductions both the alternate
and opposing quark/antiquark root vector extensions in and of separate
Cartesian space segments and adjoining quark/antiquark ¢ isospin root

vectors of the meson SU(2) plane counterparts are quite evident and
complementary.

Furthermore, the "formulation is deeply linked to Dirac's equation in which
particle and antiparticles do appear jointly. Finally, the connection appears to
be squarely representable via isoduality™, which is in remarkable agreement
with observations of both Clebsh and Lie.?

And it incorporates and preserves both gauge - unit volume - and flavour -
spheroidal symmetry - and is in consequence in full accord also with
quantum chromodynamics. When expressed as probability of chance
coincidence (in which terms, for instance, new particle events are often
Jjudged to be confirmed at the odds ratio of one to a few thousands), the
present findings, in extra regard of the spectroscopic correspondences,
would therefore seem to be in effect infinitely well verified.

And they are fully and immediately reproducible, and should accordingly be
of utility and value in exploratory structural research of both individual and
collective properties, preferably by further development and application of
computer technigues. ™'""? Mathematically, though, I have to agree that the
exercises are rather simplistic.

But on the philosophical plane, where 1 am a bit better oriented and which
Lie and his contemporaries considered essential to Mathematics'?, they
might be of significance in indicating a way out of the monistic cul-de-sac
which current elementary particle and theoretical physics seem to have
entered during this century. As may have appeared in the foregoing, Lie’s
original continuous transformations are principally dualistic, a transition
between and onto category spaces. This reminds very much of archaic ideas
and notions like, for instance, the Yin-Yang whirl and later Aristotle’s prime
mover" - and remains the perhaps only imaginable realistic system where the
perpetually rephrased cosmological dilemma “how a sort of spark in the
primordial nothingness could have set off the Big Bang” ** has a natural
resolution.
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Abstract

After reviewing the basic role of Lie's theory for the mathematics and physics of
this century, we identify its limitations for the treatment of systems beyond the
local-differential, Hamiltonian and canonical-unitary conditions of the original
conception. We therefore outline three sequential generalized mathematics
introduced by the author under the name of iso-, geno- and hyper-mathematics
which are based on generalized, nonsingular, Hermitean, non-Hermitean and
multi-valued units, respectively. The resulting iso-, geno- and hyper-Lie
theories, for which the new mathematics were submitted, have been extensively
used for the description of nonlocal-integral systems with action-at-a-distance
potential and contact nonpotential interactions in reversible, irreversible and
multi-valued conditions, respectively. We then point out that conventional, iso-,
geno- and hyper-Lie theories are unable to provide a consistent classical
tepresentation of antimatter which yields the correct charge conjugate states at
the operator counterpart. We therefore outline yet novel mathematics proposed
by the author under the names of isodual conventional, iso-, geno- and hyper-
mathematics, which constitute anti-isomorphic images of the original
mathematics characterized by negative-definite units and norms. The emerging
isodual generalizations of Lie's theory have permitted a novel consistent
characterization of antimatter at all levels of study, from Newton to second
quantization. The main message emerging after three decades of investigations is
that the sole generalized theories as invariant as the original theory, the sole
admitting physical applications, are those preserving the original abstract Lie
axioms, and merely realizing them in broader forms.

Copyright © 1998 by Hadronic Press Inc., Paim Harbor, FL. 34682, U.S.A.
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1. Majestic Consistency of Lie’s Theory.

Since I was first exposed to the theory of Marius Sophus Lie [1i during my
graduate studies in physics at the University of Torino, Italy, in the 1960’s,
[ understood that Lie's theory has a fundamental character for the virtual
entire contemporary mathematics and physics.

I therefore dedicated my research life to identify the limitations of Lie’s
theory and construct possible generalizations for physical conditions broader
than those of the original conception. In this paper I outline the most
salient aspects of this scientific journey (as representative references, see my
original papers in the field {3], mathematical studies [4], physical studies [5],
monographs [6], applications and experimental verifications [7-10]).

Let F' = F(a,+, x) be a field of conventional numbers a (real, complex
or quaternionic numbers) with conventional sum +, (associative) product
X ) additive unit 0 and multiplicative unit I. When formulated on a Hilbert
space H over F, the physically most important formulation of Lie’s theory
is that via connected transformations of an operator A on H over F in the
following finite and infinitesimal forms and interconnecting conjugation

A(w) = U x A(0) x Ut = &**¥ x A(0) x e™w*X, (1.1a)
idAjdw = Ax X = X x A= [A, X]operator (1.18)
e X = [emwx X)X = X1 weF, (1.1¢)

with classical counterpart in terms of vector-fields on the cotangent bundle
(phase space) with local chart (r*,p), k = 1, 2, 3, over F

A(’UJ) = U % A(O) % Ut — e»wx(@X/ark)x(B/E’pk) % A(O) N ew(@,’ar")x(a){/apk)’
(1.2a)

dA  0A 080X 0X 0OA
= — = [A, X]classicala (I'Zb)

dw ot “Op, ot Ope

and unique interconnecting map given by the conventional or symplectic
quantization.

As it is well known, Lie’s theory is at the foundation of the mathematics
of this century, including topology, vector and metric spaces, functional
analysis, differential equations, algebras and groups, geometries, etc.
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As it is also well know, Lie’s theory is at the foundation of all physical
theories of this century, including classical'and quantum mechanics, parti-
cle physics, nuclear physics, superconductivity, chemistry, astrophysics, etc.
In fact, whenever the parameter w represents time t, Eqs. (1.1) are the
celebrated Heisenberg equations of motion in finite and infinitesimal form,
while Eq.s (1.2) are the classical Hamilton equations, also in their finite and
infinitesimal forms. Characterization via Lie's theory of all classical and
operator branches of physics then follows.

A reason for the majestic consistency of Lie’s theory most important
for physical applications is that of being form invariant under the trans-
formations of its own class. In fact, connected Lie groups (1.1a) constitute
unitary transforms on H over F,

UxUl=U'xU=1, (1.3)

under which we have the following invariance laws for units, products and
eigenvalue equations

I-UxIxUl=0 =1, (1.4a)

AxB - Ux(AxB)xU'= (UxAxUNYx(UxBxU') = A'xB', (1.4b)
Hx|h >= Ex|p >— UxHx[p >= (UxHxUNx(Ux|p >) = H'x|¢f) >=
UxEx|Yy>=E x| > E =E. (1.4¢)

with corresponding invariances at the classical level here omitted for brevity.

It then follows that Lie’s theory possesses numerically invariant units,
products and eigenvalues, thus verifying the necessary condition for physi-
cally consistent applications.

2. Initial Proposals of Generalized Theories.

Despite the above majestic mathematical and physical consistency, by no
means Lie’s theory can represent the totality of systems existing in the
universe. In fact, inspection of structures (1.1) and (1.2) reveals that,
in its conventional formulation, Lie’s theory can only represent isolated-
- conservative-reversible systems of point-like particles with only potential-
Hamiltonian internal interactions. In fact, the point-like structure is de-
manded by the local-differential character of the underlying topology; the
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isolated-conservative character of the systems is established by the fact that
the brackets {A, B] of the time evolution are totally antisymmetric, thus
implying conservation laws of total quantities; the sole potential character
is established by the representation of systems solely via a Hamiltonian;
and the reversibility is established by the fact that all known action-at-a-
distance interactions are reversible in time (i.e., their time reversal image
is as physical as the original one, as it is the case for the orbit of a planet).
All admissible interactions are represerited via time-independent potentials
V in the Hamiltonian H = p?/2m + V| resulting in manifestly reversible
systems.

I therefore initiated a long term research program aiming at general-
izations (I called liftings) of Lie's theory suitable for the representation of
broader systems.

The first lifting I proposed as part of my Ph.D. thesis [3a,3b] back in
1967 is that for the representation of open-nonconservative systems, that
is, systems whose total energy H is not conserves in time, idH/dt # 0,
because of interactions with the rest of the universe. This called for the
formulation of the theory in such a way that its brackets are not totally
antisymmetric. In this way I proposed, apparently for the first time in 1967,
the broader (p-q)-parametric deformations (known in more recent times as
the g-deformations),

A(w) = U x A(0) x Ut = e®*PX x A4(0) x e7™*X ¥ = Xt (2.1a)

idAfdw=px Ax X —gx X x A= (A, X)operator, (2.1b)

where p, q and p+ / — q are non-null parameters, with classical counterpart
[3¢]

A(’LU) = U x A(O) % [Jt —~wXgx{8X/8r¥)x (8/5px) XA(O) % ewxpx(@/ar")x(a}(/apk),

(2.20)
dA _ BA 90X 80X 04

A _ 04 OX 98 (A X dassiont, 2.2
dw prrkxapk qxarkxapk (A X)etossica - (2.20)

Prior to releasing papers [3a] for publication, I spent about one year in
European mathematical libraries to identify the algebras characterized by
brackets (A, B) which resulted to be Lie-admissible according to Albert [2]




-477 -

(a generally nonassociative algebra with product (A, B) is said to be Lie-
admissible when the attached algebra with antisymmetric product [A, B] =
(A, B) - (B, A) is Lie). At the time of proposal {3a] only three papers had
appeared in Lie-admissible algebras and only in the mathematical literature
(see Ref. [3a)).

The (p, q)-parametric deformations (2.1), (2.2) did indeed achieve the
desired objective. In fact, the total energy and other physical quantities are
not conserved by assumption, because idH/dt = (p - q)xH x H # 0.

In 1968 I emigrated with my family to the U. S. A, where I soon dis-
covered that Lie-admissible theories were excessively ahead of their time
because unknown in mathematical, let alone physical circles. Therefore, for
a number of years I had to dedicated myself to more mundane research
along the preferred lines of the time.

When I passed to Harvard University in 1978 I resumed research on
Lie-admissibility and proposed the most general possible (P, Q)-operator
Lie-admissible theory according to the operator structures [3d]

A(w) = % A(O) X UT — eiwxXXQ % A(O) % e»iwxPxx,X _ XT,P — Qt,
(2.3a)
dA/du=AXPxX-XxQxA= (A3 X) operators (2.3b)

where P,Q, andP + [/ — () are non-singular matrices {or operators) such that
P-Q characterizes Lie brackets, with classical counterpart [3d]

A(w) — UXA(O)XU]: — e—wxx(@X/Br‘)xQ;x(c’)/apk)XA(O)Xewx(@/@r*)xP}(ax/apj),

(2.4a)
dA 0A pi 0X 00X y Q; % 6_’4 = (A, X)ctassical- (2.4b)

dw or 1% Bp, T Br Bp;

A primary motivation for generalizations (2.3) and (2.4) over (2.1) and
{2.2) is that the latter constitute nonunitary-noncanonical transforms. The
application of a nonunitary transform to Egs. (2.1) then yields precisely
Egs. (23) with P=p x (Ux U} and Q = q x (U x Ut~} as we shall
see better below. The application of any additional nonunitary transform
then preserves the Lie-admissible structure. A similar case occurs for the
classical counterpart.
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Additional studies established that structures. (2.3) constitute the most
general possible transformations admitting an algebra in the infinitesimal
form. In particular, the product (A;B) results to be jointly Lie- and Jordan
admissible, although the attached Lie and Jordan algebras are more general
than the conversional forms.

The latter generalized character permitted me to propose a particular-
ization of the above Lie-admissible theory I called Lie-isotopic [3d,3r] , in
which the brackets did verify the Lie axioms, but are more general then the
conventional versions, with operator formulation

A(w) = U x A(0) x U = X7 . 4(0) x e™™*T*X T = hatT*, (2.5a)

idA/dw=AXT x X =X XT X A=A X|operators  (2.5b)

and classical counterpart [3d,3r]]

Alw) = e™W<OXITIXTIX0/30s) 5 4(0) < ¢=w(@IBIXTXOX/Or) () 6g)

dA 0A . 0X  0X . 0A
— = XTI X — — — X T} x — = [A]X cal- 2.6b
dw 0rt " 77 8p; o T 7T Gp; (A X Jtassica (2.6)
As one can see, the latter theories too are nonunitary-noncanonical, and
the application of additional nonunitary-noncanonical transforms preserves
the Lie-isotopic character. This establishes that transformations (2.5), (2.6)
are the most general possible ones admitting a Lie algebra in the brackets

of their infinitesimal versions.

3. Inconsistencies of Initial Generalizations.
Following the proposals of theories (2.1)-(2.6), I discovered that, even though
mathematically intriguing and significant, the above Lie-isotopic and Lie-
admissible theories had no physical applications. This is due to the fact
that all the broader theories considered have s nonunitary structure at the
operator level with a noncanonical structure st the classical counterpart.
In the transition from unitary to nonunitary theories, invariances (1.4)
are turned into the following noninvariances,

UxUlt=U'xU#1, (3.1a)
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[-UxIxUl=I#] (3.18)
AxB—-Ux(AxB)xUl=
(UxAxUN)x (UxUN) ' x(UxBxUY=AxTxB,T=(UxUH",

(3.1¢)
Hx[ >= ExX|t) >= UxHx|p >= (UxHxUNx(UxU") I x(Ux|p >) =
HXTx[W>=UxEx|p>=E x| > E #E, (3.1d)

It then follows that all theories with a nonunitary structure have the
following physical inconsistencies studied in detail in Refs. [12): 1) nonuni-
tary theories do not have invariant units of time, space, energy, etc., thus
lacking any physically meaningful applications to measurements (for which
the invariance of the basic units is a necessary pre-requisite); 2) nonunitary
theories do not preserve in time the original Hermiticity of operators, thus
having no physically acceptable observables; 3) nonunitary theories do not
have invariant conventional and special functions and transforms, thus lack-
ing unique and invariant numerical predictions; nonunitary theories violate
probability and causality laws; nonunitary theories are incompatible with
Galilei’s and Einstein’s relativities; and suffer from other serious shortcom-
ings. Similar inconsistencies exist at the classical level.

Corresponding mathematical inconsistencies also occur [12f,12g]. In fact,
nonunitary theories are generally formulated on a conventional metric or
Hilbert space defined over a given field which, in turn, is based on a given
unit I. But the fundamental unit is not left invariant by nonunitary trans-
forms by conception. It them follows that the entire mathematical structure
of nonunitary theories becomes inapplicable for any value of the parameters
different than the initial values.

It should be noted that the above catastrophic inconsistencies also hold
for any other theory departing from Lie’s theory, yet formulated via con-
ventional mathematics, such as deformations, Kac-Moody algebras, super-
algebras, etc. [12].

After systematic studies I realized that the only possibility to reach
invariant formulations of generalized Lie theories was that of constructing
new mathematics specifically conceived for the task at hand.

Since no other mathematics was available for the representation of the
broader theories here considered, as a physics I had to initiate long and
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laborious mathematical studies in constructing the new mathematics, as a
pre-requisite for conducting physical research.

Predictably, the task resulted to be more difficult than I suspected. In
fact, after having lifted all the essential aspects of conventional mathematics
(such as numbers and fields, vector and metric spaces, algebras and groups,
geometries, etc.) 3s] into the needed broader form, I continued to miss the
crucial invariance.

Insidiously, the problem resulted to exist where I was expect it the least,
in the ordinary differential calculus. It was only in memoir [3i} of 1966
that I.finally achieved invariance following suitable liftings of the ordinary
differential calculus. The reader is therefore warned that all papers on Lie-
isotopic and Lie-admissible theories prior to memoir [3i] have no consistent
physical applications because they lack invariance.

The invariant liftings of Lie’s theory which resulted from these efforts
can be summarized as follows.

4. Lie-Santilli Isotheory.

The main idea [3d] is the lifting the conventional, trivial, n-dimensional unit
[ = diag. (1, 1, ..., 1) of Lie’s theory into a real-values, nowhere singular
and positive-definite n x n-dimensional matrix 7, called isounit (where the
prefix ”iso-” means "axiom-preserving”), with an unrestricted functional
dependence on time t, coordinates r = (r*), momenta p = (pi), k = 1, 2,
3, wavefunctions 1, and any other needed variable,

I = diag.(1,1,..,1) = I(t,r,p,0,.) = 1/T # I. (4.1)

The applicable mathematics, called isomathematics, is the lifting of the
totality of conventional mathematics (with a well defined unit), without any
exception known to me, into a new form admitting I , rather than I, as the
correct left and right unit. This calls for:

1) The lifting of the associative product A x B amon g generic quantities
A, B (such as numbers, vector-fields, operators, etc.) into the form, called
isoassociative product, for which I is indeed the left and right unit,

AxB—o AXB=AxTx B [xA=AxxI=4; (4.2)

2) The lifting of fields F' = F(a,+, x) into the isofields ' = F(a, +.X)
of isonumbers & = a x I (isoreal, isocomplex and isooctonionic numbers)
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with isosum a+b = (a + b) x I, isoproduct axb = (a x b) x I, isoquotient
/b= (a/b) x hatl, etc. (see [3h] for details) ;

3) The lifting of functions f( ) on F into ésofunctions f( ) on F', such as
the isoezponentiation 64 = [+ A/1+AXA/2+.. = (e D) x [ = [ x (T4,
and related lifting of transforms into isotransforms (see [3i,3s] for details);

4) The lifting of the ordlnary differential calculus into the zsodzﬁerentzal
calculus, with basic rules di* = I ik % dit, dpy, = Ti » x dp; (because r* and py
are defined on isospaces with isometrics inverse of each other), isoderivatives
8/67 =TI % 8/873, 6/6py, = It x 8/0p;, 67 671 = 61 = 0% X I, ete.(see
3i] for detalls)

5) The lifting of conventional vector, metric and Hilbert spaces into their
isotopic images, e.g., the lifting of the Euclidean space E(r, ¢, R) with local
coordinates r = (r*) and metric § = Diag. (1,1,1) into the isoeuclidean
spaces E(7,8, R) with isocoordinates # = 7 x I and isometric 6 = T x §
over the isoreals R, or the lifting of the Hilbert space H with inner product
< | x| > xI over the complex field C into the isohilbert space H with
isoinner product < |X| > xI over the isocomplex field C; etc. (see [3s] for
details).

6) The lifting of geometries and topologies into their corresponding iso-
topic images (see [3n] for details);

7) The isotopic lifting of all various branches of Lie’s theory, such as the
liftings of: universal enveloping associative algebras (including the Poincaré-
Birkhoff-Witt theorem), Lie’s algebras (including Lie’s first, second and
third theorems); Lie’s groups, transformation and representation theory,
etc.

The main operator formulation of the Lie-Santilli isotheory can be writ-
ten

() = X% A(0) ke =

5 ) x emtwxTxhatX) o f oy o xt = (4.3a)

idAjdi = AXX ~ XX A=AxTx X ~XxTxA=[4X]oerator, (4.3b)
hateiX x 1 = (e™V0xX )dagger (4.3¢)

with classical counterpart

fl(u”)) — e-wx(aX/ar*)x CIEAN /i(()) w(a/ar")x(BX/apk) (4.4(1)
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dA aA dX 86X .04

X = o Yo =

di ik ap,  Or%  0Opy
[ 94 L X 0X 0X BA]
ork ~ dp,  Ork 8 Dk

and unique interconnecting map called isosymplectic quantization [3s].

A most salient feature of the Lie-Santilli isotheory is that it is form in-
variant under all possible nonunitary transforms, thus achieving the funda-
mental physical objective indicated earlier. In fact, an arbitrary nonunitary
transform on H over F can always be uniquely written as the isounitary
transform on H over F,

] = [A X]dasszcah (4'4b)

~

VxVi=T£1V=VxT2vxvi=Vivt=0is0 =1 (45
under which we have the isoinvariance laws

I -VxixVi=F=] (4.6a)
AXB — VX (AxB)xVi = (V%A%V‘)%(V%B%W):A’%B’ (4.6b)

AAAAA

VXEx|) >= E'XW >,E’=E, (4.6¢)

with corresponding isoinvariances for the classical counterpart.

As one can see, isomathematics achieves the invariance of the numeri-
cal values of the isounit, isoproduct and isoeigenvalues, thus regaining the
necessary conditions for physical applications.

It is easy to prove that isohermiticity coincides with the conventional
Hermaticity. As a resulf, all conventional observables of unitary theo-
ries remain observables under isotopies. The preservation of Hermiticity-
observability in time is then ensured by the above isoinvariances. Detailed
studies conducted in Ref. [3]] established the resolution of all inconsistencies
of nonunitary theories.

By comparing Egs. (1.1)-(1.2) and (4.3)-(4.4) it is evident that the
Lie theory and the Lie-Santilli isotheory coincide at the abstract level by
conception and construction [3d,3i]. In fact, the latter can be characterized
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by ”putting a hat” to the totality of quantities and-operations of Lie’s theory
with no exception known to me (otherwise the invariance is lost).

Despite this mathematical similarity, the physical implications of the
Lie-Santilli isotheory are far reaching. By recalling that Lie's theory is at
the foundation of all of physics, Eqs. (4.3) and (4.4) have permitted a struc-
tural generalization of the fundamental dynamical equations of classical and
quantum mechanics, superconductivity and chemistry into new disciplines
called isomechanics (3] isosuperconductivity (7] and isochemistry [8]. These
new disciplines essentially preserve the physical content of the old theo-
ries, including the preservation identically of the total conserved quantities,
but add internal nonhamiltonian effects represented by the isounit that are
outside any hope of representation via Lie’s theory.

In turn, these novel effects have permitted momentous advances in var-
ious scientific fields, such as the first axiomatically consistent unification of
electroweak and gravitational interactions [3k,3q].

An illustrative classical application of the Lie-Santilli isotheory is the
representation of the structure of Jupiter when considered isolated from the
rest of the Solar system, with action-at-a-distance gravitational and other
interactions represented with the potential V in the Hamiltonian H and
additional, internal contact-non-Hamiltonian interactions represented via
the isounit I.

An illustrative operator application is given by novel structure models of
the strongly interacting particles (called hadrons) for which the theory was
constructed [3j]. In turn, the latter application has far reaching implications,
including the prediction of novel, clean subnuclear energies.

5. Lie-Santilli Genotheory.

The main insufficiency of the Lie-Santilli isotheory is that it preserves the
totally antisymmetric character of the classical and operators Lie brack-
ets, thus being unsuited for a representation of open-nonconservative sys-
tems. In particular, despite the broadening of unitary-canonical theories
into nonunitary-noncanonical extensions, the fundamental problem of the
origin of the irreversibility of our macroscopic reality does not admit quan-
titative treatment via the Lie-Santilli isotheory because the latter theory
is also is structurally reversible (that is, the theory coincides with its time
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reversal image for reversible Hamiltonians and isounits).

The resolution of this insufficiency required the broadening of the Lie-
Santilli isotheory into a form whose brackets are neither totally antisym-
metric nor totally symmetric. In turn, the achievement of an invariant
formulation of the latter theory requires the construction of a new mathe-
matics I suggested back in 1978 [3d] under the name of genomathematics
(where the prefix ”geno” now stands for ” axiom-inducing”).

The main idea of genomathcmatlcs is the selection of two dzﬁerent gener-

alized units called genounits, the first 1> for the ordered multiplication to the
right A > B, called forward genoproduct, and the second <[ for the ordered
multiplication to the left A < B, called backward genoproduct, according to
the general rules [3d,31,3]]

PP =1/8,A>B=Ax8xB[>>A=A4A>1 =4 (5.1a)
<I=1/RRA<B=AxRxB<[<A=4A<<[=4, (5.1b)
A=Al B=B' R=_4 (5.1¢)

The broader genomathematics is then given by: '

1) The lifting of isofields £ (&,4» ><) into the forward and backward
genofields £>(a>,+>,> >) and <F(<¢,< 4, <) with forward and backward
genonumbers &> = a x [> and <3 =< I X a, and related operations [3h];

2) The lifting of isofunctions f(#) on F into the forward and backward
genofunctions F>(7>) and <f( #) on F> and <F, respectiovely, such as
X7 = (eX7*Ry x [> and X =< J x e$*“X with consequential genotopies
of transforms and functxonal analysis at large [3i,3s];

3) The lifting of the isodifferential calculus into the forward and back-
ward genodzﬁerentml calculus with main forward rules i I>"
dr>, d>p7 = % dp7, & 15> = = §?7 x /8>3, 6>/3> = S>‘ X
a/6p7, 8>T>1/’8> P27 = (5> e &% x I> , etc., and correapondmg backward
rules easﬂy obtainable via conjugation (see {31] for details);

4) The lifting of isotopologies, isogeometries,etc. into the dual forward
and backward genotopic forms; and

5) The lifting of the Lie-Santilli isotheory into the genotheory, including
the genotopies of the various aspects, such as universal enveloping associa-
tive algebras for ordered product to the right and to the left, etc. [3i,3r,3s].
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The explicit realization of the Lie-Santilli genotheory can be expressed
via the following finite and infinitesimal forms with related interconnection
(at a fixed value of the parameter w, thus without its ordering) [3i,31)

A(h) = eX7>0 5 A(0) < ez X =

[ %w 5 2] % § x A(0) x R x [<] x eztwxRx¥), | (5.2a)
idAjdb=A<X-X>A=

AxRx X=X x5 x A= (A )operator, (5.2b)

X=X E=§ (5.2¢)

dA _ oA _<ox x> A
di <H<kp <5k<ﬁ 5> 7>k 3>33k>
0A 9 BX] [8X o 0A
ark  Opx ork " Ope
with unique interconnecting map called genosymplectic quantization [3s).
A most important feature of the Lie-Santilli genotheory is its form in-
variance. This can be seen by noting that a pair of nonunitary transforms on

H over C can always be identically rewritten as the genounitary transforms
on genohilbert spaces over genocomplex fields,

] X I = (A)X) dassical (5.3b)

VxVI £ 1V =< UxRV2 VXV =<V << V1 =<V <<V =< |, (5.40)

WxWH£1,W=W>x§2WxWh=Ww>> W =W > Ww> = >,
(5.4b)
under which we have indeed the following forward genoinvariance laws [3j]

PP =W>>r>wt=]> (5.5a)
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A>SBoW>>(A>B)>Wt=4'> B, (5.5b)
B> |>=E>>|>=Ex|>=W>> B> |>=H>>|>=
W> > E>> | >=Ex|>, (5.5¢)

with corresponding rules for the backward and classical counterparts.

‘The above rules confirm the achievement of the invariance of the numer-
ical values of genounits, genoproducts and genoeigenvalues, thus permitting
physically consistent applications.

By recalling again that Lie’s theory is at the foundation of all of con-
temporary science, the Lie-Santilli genotheory has permitted an additional
structural generalization of classical and quantum isomechanics, isosuper-
conductivity and 1sochemlstry into thelr genotoplc covermgs

Intriguingly, the product A < B—~B > A = Ax Rx B~ BxSxA R+8,
is manifestly non-Lie on conventional spaces over conventional fields, yet it
becomes fully antisymmetry and Lie when formulates on the bimodule of
the respective envelopes to the left and to the right, {<A, A} (explicitly,
the numerical values of A < B = Ax R x B _computed with respect to
<] = 1/R is the same as that of A > B = A x § x B when computed with
respect to /> = 1/8) [3i,31].

A primary feature of the broader classical and operator genotheories is
that it represents open-nonconservative systems, as desired, because now
the total energy H is not conserved in our spacetime, idH /dt H x (f% -
S)x H # 0. Yet, the notion of genohermiticity on H> over C coincides with
conventional Hermiticity. Therefore, the Lie-admissible theory provides the
only operator representation of open systems known to this author in which
the nonconserved Hamiltontan and other gquantities are Hermitean, thus
observable. In other treatments of nonconservative systems the Hamiltonian
is generally nonhermitean and, therefore, not observable.

More importantly, genotheories have permitted a resolution of the histor-
ical problem of the origin of irreversibility via its reduction to the ultimate
possible layers of nature, such as particles in the core of a star. The in-
terested reader can find the invariant genotopic formulations of: Newton’s
equations in Ref. [3i]; Hamilton's equations with external terms in Ref. [3i);
quantization for open-irreversible systems in Ref. [3i,3l}; operator theory of
open-irreversible systems in Ref. [3]].
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6. Lie-Santilli Hypertheory.

By no means genotheories are sufficient to represent the entirely of nature,
e.g., because they are unable to represent biological structures such as a
cell or a sea shell. The latter systems are indeed open-nonconservative-
irreversible, yet they possess a structure dramatically more complex than
that of a nonconservative Newtonian system. A study of the issue has
revealed that the limitation of genotheories is due to their single-valued
character.

As an illustration, mathematical treatments complemented with com-
puter visualization [10] have established that the shape of sea shells can
be well described via the conventional single-valued three-dimensional Eu-
clidean space and geometry according to the empirical perception of our
three Eustachian tubes. However, the same space and geometry are ba-
sically insufficient to represent the growth in time of sea shells. In fact,
computer visualization shows that, under the exact imposition of the Eu-
clidean axioms, sea shells first grow in time in a distorted way and then
crack.

Illert [10] showed that a minimally consistent representation of the sea
shells growth in time requires siz dimensions. But sea shells exist in our en-
vironment and can be observed via our three-dimensional perception. The
solution of this apparent dichotomy I proposed {10] is that via multi-valued
hypermathematics essentially characterized by the relaxation of the single-
valued nature of the genounits while preserving their nonsymmetric char-
acter (as a necessary condition to represent irreversible events), according
to the rules [3i,3t)

P={i71,12,.)=1/8, (6.1a)
A>B={Ax8xB, Ax8xB,Ax8;xB, . },]>>A=A> > = AxI,
) - ) (6.1b)
<l = {0, I5..} = 1/R, (6.1c)

A< B={AxRixB, AxhatRyxB,AxRsxB, .}l < A= A< [=1IxA, .
o (6.1d)
A=A B=B"R=25" (6.1¢)

All aspects of the bimodular genotheories admit a unique, and signifi-
cant extension to the above hyperstructures and their explicit form is here
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omitted for brevity (3i,3t]. The expression of the theory via weak equalities
and operations was first studied by Santilli and Vougiouklis in Ref. [11].

7. Isodual theories.

Mathematicians appear to be unaware of the fact that, contrary to popu-
lar beliefs, the totality of contemporary mathematics, including its isotopic,
genotopic and hyperstructural liftings, cannot provide a consistent classical
representation of antimatter. In fact, all these mathematics admit only one
quantization channel. As a result, the operator image of any classical treat-
ment of antimatter via these mathematics simply cannot yield the correct
charge conjugate state, but it merely yields a particle with the wrong sign
of the charge.

The occurrence should not be surprising because the study of antimat-
ter constitutes one of the biggest scientific unbalances of this century. In
fact, matter is treated at all possible mathematical and physical levels, from
Newton’s equations and underlying topology, all the way to second quanti-

zation and quantum field theories, while antimatter is solely treated at the
level of second quantization. However, astrophysical evidence suggests quite
strongly the existence of macroscopic amounts of antimatter in the universe,
to the point that even entire galaxies and quasars could eventually result
to be made up entirely of antimatter.

The only possible resolution of this historical unbalance is that via the
construction of a yet new mathematics, specifically conceived for a consis-
tent classicalrepresentation of antimatter whose operator counterpart yields
indeed the correct charge conjugate states.

Recall that charge conjugation is anti-homomorphic, although solely ap-
plies at the operator level. It then follows that the new mathematics for
antimatter should be, more generally, anti-isomorphic and applicable at all
levels of study. ’

After a laborious research, I proposed back in 1985 [3g] the isodual math-
ematics, namely, mathematics constructed via the isodual map of numbers,
fields, spaces, algebras, geometries, etc..

The isodual conventional mathematics is characterized by the simplest
conceivable anti-isomorphic map of the unit into its negative-definite form,

I>0-~-I=1%<0, (7.1)
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under which we have the transformation law of a generic, scalar, real-valued
quantity
Alw) » A%w?) = —A(~w), (7.2)

with reconstruction of numbers, fields, spaces, algebras, geometries, quan-
tization, etc. in such a way to admit /¢, rather than I, as the correct left
and right unit.

The isodual map characterizing the broader isodual iso-, geno- and
hyper-mathematics is instead given by

j(fa 7‘:aﬁ: QA ) - -jt(—-fT, ""ffs "ﬁf) _,J)T’ ) = fd(ida fdaﬁdt zjjd’ ), (73)

and consequential reconstruction of the entire formalism to admit /¢ as the
correct left and right new unit.

The above map is not trivial, e.g., because it implies the reversal of the
sign of all physical characteristics of matter (and not only of the charge). As
such, isodual theories provide a novel intriguing representation of antimatter
which begins at the primitive classical Newtonian level, as desired, and then
persists at all subsequent levels, including that of second quantization, in
which case isoduality becomes equivalent to charge conjugation [3m).

The most general mathematics presented in this paper is the isoselfd-
ual hypermathematics (3i], namely, a hypermathematics that coincides with
its isodual, and is evidently given by hypermathematics multiplied by its
isodual. The latter mathematics has been used for one of the most gen-
eral known cosmologies 3p] inclusive of antimatter as well as of biological
structures (as any cosmology should be), in which the universe: has a multi-
valued structure perceived by our Eustachian tubes as a single-valued three-
dimensional structure; admits equal amounts of matter and antimatter (in
its limit formulation verifying Lies conjugation (1.1c)); removes any need for
the "missing mass”; reduces considerably the currently believed dimension
of the measured universe; possesses all identically null total characteristics
of time, energy, linear and angular momentum, etc.; eliminates any singu-
larity at the time of creation. '

8. Simple Construction of Generalized Theories.
Unpredictably, the need for new mathematics has been a major obstacle
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for the propagation of the generalized Lie theories outlined in this paper in
both mathematical and physical circles.

I would like to indicate here that all generalized Lie theories, all their
underlying new mathematics and all their applications can be uniquely and
unambiguously constructed via the following elementary means accessible
to undergraduate students.

First, isotheories can be constructed via the systematic application of
the following nonunitary transform

UxUt=T1WUxUHY?t =1, (8.1)

to the totality of the original formalism with no exceptions.

In fact, transform (8.1) yields the isonumbers U x n x Ut = n x I the
isoproduct, U x (Ax B)yx Ut = (Ux Ax U") x (Ux Ut)~ 1><(UxB><U*) =
A' x T'x B' = A’XB'; the correct isofunctions, such as U x eX x Ut = X
and the correct expression of all other aspects, including the Lie-Santilli
isotheory and its underlying basic theorems.

Once the isotopic structure has been achieved in this way, its invariance
is proved via the reformulation of nonunitary transforms in the isounitary
form (4.5), with consequential invariance of the isotheory as in Eqgs. (4.6).

‘The construction of the Lie-Santilli genotheory is equally elementary,
and requires the use, this time, of two nonunitary transforms

UxUt I WxW £LUxWH=1> WxUt =<1 (8.2)

to the totality of the original formalism, again, without any exceptions.

In fact, transforms (8.2) yields the correct form of forward and backward
genonumbers, e.g., U x n x Wt = n x I, the correct form of the forward
and backward genoproduct, genofunctions and genotransforms, including
the correct structure and representation of the Lie-Santilli genotheory. Once
reached in this way, the invariance is proved by rewriting the nonunitary
transforms in their genounitary version (5.4). Genoinvariant laws (5.5) then
follow.

The Lie-Santilli hypertheory can be constructed and proved to be invari-
ant via the mere relaxation of the single-valued character of the genounits.
The explicit construction is is here omitted for brevity [3t]).
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Finally, the isodual Lie theory can be easily constructed via the system-
atic application of the anti-isomorphic transform

UxUl=-I=1I° (8.3)

to the totality of the original formalism with no exceptions.

This yields isodual numbers, fields, products, functions, etc. The isod-
ualities of isotopic, genotopic and hyperstructural theories can be similarly
constructed via the anti-isomorphic images of the preceding transforms.

Note that the above methods is useful on both mathematical and physi-
cal grounds. On mathematical grounds one can start from one given struc-
ture, e.g., the representation of the conventional Poincaré symmetry and
construct explicitly all infinitely possible irreps of the Poincaré-Santilli iso-,
geno- and hyper-symmetries as well as their isoduals [3,4).

The methods is also useful for the ongoing efforts to unify all simple
Lie groups of the same dimension in Cartan’s classification (over a field of
characteristic zero) into one single isogroup, whose study has been initiated
by Gr. Tsagas and his group [4].

On physical grounds, the method presented in this section is also par-
ticularly valuable to generalize existing applications of Lie’s theory via the
appropriate selection of the nonunitary transform representing the missing
characteristics or properties, e.g., the representation of a locally varying
speed of light.

9. Ultimate Significance of Lie’s Axioms.

A unitary Lie group has the structure of a bi-module in both its finite and
infinitesimal forms with an action from the left U> = ¢**% and an action
from the the right <U = e~"*¥ interconnected by Hermitean conjugation
(1.1c) [3e]. Egs. (1.1) can then be written

Alw) =U” > A(0) << U = ™ > A(0) < e7W, (9.1a)
WdAfdt =A< X -X> A, (9.1d)
U= (U>MX=x" | (9.1¢)

In the Lie case both products A < B and A > B are evidently conven-
tional associative products, A < B = A > B = A X B, resulting in Lie’s
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bimodule. However, axiomatic structure (9.1) does not require that such
products have necessarily to be conventionally associative, because they
can also be isoassociative, thus yielding the Lie-Santilli isotheory. Moreover,
axioms (9.1) do not require that the forward and backward isoassociative
products have to be necessarily the same, because they can also be differ-
ent, provided that conjugation (9.1c) is met. In the latter case the axioms
yield the Lie-Santilli genotheory with an easy extension to the hypertheory
via multi-valued realizations. Isodual theories emerge along similar lines
because axioms (9.1) do not necessarily demand that the underlying unit
be positive-definite.

It then follows that the axiomatic consistency and invariance of the gen-
eralized theories studied in this paper can be inferred from the original
invariance of Lie’s theory itself, of course, when treated with the the math-
ematics leaving invariant the basic units. The only applicable mathematics
are then the iso-, geno-, and hyper-mathematics and their isoduals.

In conclusion, by looking in retrospect some three decades of studies on
the topics outlined in this paper, the emerging most important message is
that the sole invariant classical and operator theories are those preserving
the abstract Lie axioms, Eq.s (1.1) and (1.2), and merely providing their
broder realizations treated with the appropriate mathematics.
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Abstract.

In a recent paper [28] published in Letters in Mathematical Physics, C. Morosi and
L. Pizzocchero study certain implications of Lie algebras equipped with the product
they call “twisted Lie product” (L, N] = LAN - NAL. In these comments we point
out that the above product was first introduced by R. M. Santilli in 1978 [30,31,50)
as the foundation of his systematic, axiom-preserving isotopies of Lie’s theory,
today known as Lie-Santilli isotopic theory [3,20,23,63]. We then point out that, as
formulated in [28] via cohventional spaces and fields, the emerging theory is
generally nonlinear, nonlocal and noninvariant, thus possessing a number of
physical drawbacks. We finally point out that, when formulated on certain
generalized spaces over generalized fields, the results of paper {28} can be
identically written in a form verifying the conditions of linearity, locality and
invariance, thus resolving said problematic aspects by therefore permitting rather
intriguing mathematical and physical advances. These Comments were submitted
to Letters in Mathematical Physics to establish a record of the correct paternity of
the algebra studied in the paper by Morosi and Pizzocchero [28] in the journal of its
publication, but they were rejected, by the editors even though admitted in as being
“certainly correct”.

Copyright © 1998 by Hadronic Press Inc., Palm Harbor, FL 34682, U.S.A.
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[n the recent paper (28] published in Letters in Mathematical Physics, C. Morosi
angd L. Pizzocchero study a Lie algebra of skew-symmetric nxn-dimensional matrices
L. N, ..., equipped with the ' twisted ' Lie product (Eq. (2.1), p. 119)

[L,N], = LAN - NAL. (1)

where A is a symmetric nxn matrix which remains fixed for all commutators. By

preserving the assumptions and symbols of ref. (28] for brevity, we present hereon the
following comments:

1) Product (1) was first introduced by R. M. Santilli in 1978 [30,31] as part of his
systematic studies (see the representative papers [33-48] and monographs [49-56)) of
certain axiom-preserving liftings of the various branches of Lie's theory (enveloping
algebras, Lie algebras, Lie groups, transformation and representation theories, etc.)
today known as Lie-Santilli isotopic theory or isotheory for short (see ref.s [1-29]
and [57-63], particularly independent monographs (3,20,23,63] and large bodies of
references quoted therein).

2) Even though mathematically impeccable, when formulated via conventional
spaces and fields, the studies of ref. [28] are generally nonlinear, nonlocal and
noninvariant (as specified below), thus having a number of physical drawbacks
studied by Santilli [31,48,54], Lopez (24}, Jannussts et al. [12,13], Schuch [57,58], Kadeisvili
[14,15), Tsagas and Sourlas [59,60), and others.

The loss of linearity originates from the fact that, besides the conditions of
being nowhere degenerate and symmetric with well behaved elements, the lif ting of
the product [L, N] = [L, NI, implies no restrictions on the functional dependence of the
fixed quantity A which can therefore depend on the local coordinates r,
wavefunctions, their derivatives and other locat variables, A = Alr, t, ¢, ¢, ...). Brackets
[L, Ny therefore characterize a theory which is nonlinearity non only on the
coordinates, but also in the wavefunctions and their derivatives [54]. In turn, such
nonlinearity tmplies the loss of the traditional linearity of Lie's theory with physical
implications, such as the lack of consistent applications to composite systems in view
of the loss of the superposition principle studied by Santilli {48,54], and other
problematic aspects studied by Schuch [57,58).

The loss of locality originates from the fact that the quantity A is generally
outside the original algebra and, as such, its element can also admit nonlocal
realizations, e.g., those of integral type expressing in classical mechanics the
dependence of resistive forces from the surface o of the body via a kernel §
representing the local medium in which motion occurs, A = Ajexpln jj 0doF(o, )}, or
operator realizations characterized by volume integrals on the region of wave-
overlappings, e.g., A =4, exp[nf d3rlrdr)). In turn, the latter occurrence implies the
loss of the traditional local-differential topology of Lie’s theory as studied by Tsagas
and Sourlas [59,60], with physical implications such as problematic aspects such as
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general loss of causality as studied by Santilli [48,54].

The loss of invariance was studied in details by Santilli since the original
proposal [31] (see [46] for a recent mathematical study). It can be first studied for
operator realizations of the theory, the classical counterpart via vector-fields on
manifolds being an evident consequence. Let 3C be a conventional Hilbert space with
states [¢ >,|® >, .., and Inner product < ¢ | ¢ > over a conventionat field Olc,+x) of
complex numbers ¢ with the usual sum + and product . It is then easy to see that the
group structure admitting of product (1) in the neighborhood of the unit is nonunitary
because of the general lack of commutativity of A with the generator of the algebra
ie.[31,54]

JEAY Ut #r. (2)

U-=
and, as such, it implies the following problematic aspects:
2.A) The unit of ref. [28] (here referred to that of the enveloping associative
algebra) is not invariant under the group action,

I = 1'=urul =1, (3)

with consequential lack of unambiguous applications to measurements evidently due
to the possible variation in time of stationary units of measures during the
measurements process itself;

2.B) The ‘twisted’ associative product of ref. [28} is also not invariant,

LAN - ULANU = 1"k, A = X=ullavyl, (4)

with consequential lack of invariance of basic mathematical operations defined on it,
such as exponentiation, and loss of acceptable physical laws derived via the
exponentiation, e.g., uncertainties;

2.C) The ‘twisted’ Lie product of ref. [28] is also not invariant,

[LN]y =LAN - NAL = UI[L N Ul =LAN - NAL, 0

with consequential lack of invariant dynamical equations;

2D) When formulated on 3C over C, structure (1) does not admit an invariant
Hermiticity, i.e., an operator Q which is Hermitean at w = 0, Q = Q', is no longer
Hermitean under g,

(<olaQu>=<oliQale>), o - o =alola=d, @

thus lacking physically acceptable observables (a property also Known as Lopez’s
lernma (24]); ‘ ‘
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2E) The numerical predictions of structure (1) on conventional Hilbert spaces
over conventional fields are not unique and not invariant. For additional problematic
aspects one may consult ref.s [12,13,24,48,54,57,58).

3) Santilli [30-56] constructed the isotopies of Lie’s theory for the primary
purpose of bypassing the above problematic aspects. His fundamental assumption is
the isotopy of the basic, n-dimensional unit | = Diag. (1, 1, .., 1} of the enveloping
algebra E(L) of a Lie algebra L into an nxn-dimensional, nowhere singular and
Hermitean matrix with an arbitrary, generally nonlinear and nonlocal functional
dependence of its elements,1 =(r, t, §, 8y, ... ) =17. The lifting [ = 1 is constructed in
such a way to be the the inverse of the lifting of the associative product {30,31,50], i.e.,

I = MUt ea.0=1, LN - LXN=LAN, 1 =41 @

under which conditions 1 is indeed the correct left and writ unit of the new envelope ¢,
called isounit, while A is called the isotopic elementThe above fundamental
assumption assure ab initio the local isomorphism £ ~ ¢ for all positive-definite A
(although not so for realization of A with different signature [53]). The above
assumption also ensure that the new unit is in the center of the new enveloping
algebra, thus being invariant as we shall see. By comparison, in ref. [28] only the
associative product is lifted, LN = LAN, while the original unit 1 is preserved, thus
being no longer in the center of the new envelope.

The joint liftings of the unit and of the associative product then require, for
consistency, the lifting of the totality of mathematical formulation of Lie’s theory,
with no exception known to this author. As an illustration we here indicate:

3a) The lifting of the base fields of {real, complex of quaternionic} numbers
F(n+X) into Santilli’s isofields F = F{n,%X) [39] with isonumbers, i.e. numbers with an
arbitrary unit, i = nl equipped with the isosum and isoproduct

ntm=(n+m)l, AaxXm =(nxm)1, (8)

and related operations, additive unit 0 = 0 and multiplicative unit 1  I. Despite its
simplicity, the lifting F = F is mathematically nontrivial, as illustrated by the fact that,
e.g., the number 4 becomes prime under the isounit T = 3 (see ref.s [39,53] for some of
the revisions of number theory required by arbitrary units).

3b) The lifting of metric spaces, e.g., the Euclidean space E(r,8,R), r = {rK), k = I, 2,
3, 8 = Diag. (I, 1, 1) over the reals R{n+x) into Santilli’s isoeuclidean spaces [34) E =
ErAR), T =1l, A = A8l = B), over the isoreals R = R(A,#%) with isotopic interval

(- 1oP = G- %8y % (=T =[(r -0 8 (r =¥ NeR.  (9)

The nontriviality of the isotopy is illustrated by the arbitrary functional dependence of
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the isometric &(r, t, ...) admitting as a particular case all possible 3-dimensional
nowhere singular metrics, including evidently the Riemannian metric, yet the space is
isoflat, that is, it verifies the condition of flatness on the isospace E over the isofield R
(because of the evident local isomorphism E ~ E) (53] In fact, the component of a
Riemannian metric g(r) truly representing curvature, the term A(r) in the factorization
glr) = Alr)s = 8, is now referred to a unit which is its jnverse, 1 = [A(OT), thus
eliminating curvature itself while preserving the Riemannian metric unchanged, an
occurrence with rather intriguing novel possibilities in classical and quantum
indicated later on. .

3c) The lifting of continuity (studied by Kadeisvili [14,15], topology (studied by
Tsagas and Sourlas [59,60)), differential caiculus (studied by Santilli [46)), and of
functional analysis at large (53], here referred to for brevity to the quoted literature.

3d) The lifting of the Hilbert space 3C over C into the Myung-Santiili isohilbert
space 3 {29] with isostates | § >,|d >, ..., isoinner product and normalization [53]

<HlA|F>1el, < Al|P>=1, (10)
and related isounitarity conditions
0x0" = oT%Q =1, (1)

3e) The lifting of conventional transforms on E over R into the isotransforms
on E over R [30,53]

T T 0XT, (12)

and the lifting of all remaining aspects, e.g., conventional and special functions and
transforms (see 53] for brevity).

The Lie-Santilli isotheory can now be outlined as being characterized by:

3-1) The universal enveloping Isoassociative algebra E(L) with infinite-
dimensional basis expressed in terms of the finite-dimensional ordered basis X = (X 1)
of Hermitean generators Xy of L (isotopic Poincare~Birkhoff-Witt theorem 30,50}

with unique and unambiguous isoexponentiation

& XY e X (X (Xw) 214 = e A e

The nontriviality of the lifting is illustrated by the appearance of a matrix A with
nonlinear—integral terms in the exponent.

3-11) The 1soalgebra L ~ [}(L)]” characterized by the same basis of L but now re-
interpreted as an isovector space over isofields with Lie-Santilli second theorem lloc.
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cit.]
where the C’s are now structure functions.

3~111) The (connected) isogroup g characterized by the isounitary transforms on
3C over € and related isogroup laws {ioc. cit.]

g 0= XWagFXAW (XA, (16a
0GR O = O+ W), OH) 5 OF) = 00) = 1. (16b)

3-1V) The isotransformation theory
)T, (17)

3-V) The isorepresentation theory; etc.

It is easy to see that the Lie-Santilli isotheory is isotinear, i.e., it verifies the
conditions of linearity in isospace over isofields, while its projection on conventional
Spaces over conventional fields ts generally nonlinear as in ref. [28]. In particular, all
nonlinear terms are embedded in the unit of the theory, thus admitting a fully valid
superposition principle, with consequential axiomatically correct treatment of
composite systems (see [54] for operator details).

Similarly, the isotheory is isolocal in the sense of verification the condition of
locality in isospace over isofields, while again its projection on conventional spaces is
generally nonlocal-integral. Again, the result is reached by embedding all nonlocal
terms in the unit. The theory therefore admit a fully causal description of nonlocal
interactions, as one can see from the isomorphism of the isotopic and conventional
one-dimensional groups of time evolutions (see also [54] for brevity).

Finally, the Lie-Santilli isotheory can be readily shown to be invariant under the
action of its own isogroups. In fact, any nonunitary operator W admits the identical
isounitary realization

W= WAY2 wwl = wxwl = wiew =1, (18)

under which: the fundamental isounit is invariant, 1 = 1’ = Wx&1% W1 =1 (namely, its
matrix elements are numerically unchanged in the chart considered); the
Isoassociative product is invariant LXN = WXLANRW! = L' % N (je., again, the quantity
A Is numerically unchanged), the Lie-Santilli products is consequentially invariant; the
notion of Isohermiticity on 3¢ over € coincides with the conventional one, X! = XT,
and it is indeed invariant; the numerical predictions are unique and invariant; etc. (see
ref.s (54] for brevity). '
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The above properties imply: invariant units of measurements as necessary for
Physically effective measurements; uniqueness and invariant physical laws;
Hermiticity-observability at all times; uniqueness and invariance of numerical
predictions; etc. (54l In other words, the Lie-Santiili theory preserves all the physical
characteristics of the conventional theory, without any known exclusion (again, for
positive~definite A).

We should also recall [54] that isotopic formulations can be uniquely and
unambiguously constructed from the conventional ones via nonunitary transforms
wwl=11 provided that they are systematically applied to the totality of the
original mathematical structure. On the contrary, any partial application of the
nonunitary map leads to the problematic aspects identified earlier.

In fact, under a nonunitary map WW! =1, A = (WwWI"! the original unit |
becomes Santilli’s isounit T with the correct Hermiticity property, I -1 = wiw! =11,
the conventional numnbers n become isonumbers n = WnW! = fi = nl with the correct
isooperations; metric spaces acquires the structure of Santilli’s isospaces with the
correct isocoordinates r = T = WrW! = 11, and isoinvariant 2 € R = 12 = Wrew! =
(wrtwhwwirlsiwrwh) = (F8,s1 € R; the originat assoclative product acquires the
isoassociative form, also with the correct Hermiticity property, LN = WLNW! = L' X' N’
=L AN, A=(WWI =171 = A the Lie product and group then acquire the Lie-Santilli
form; the Hilbert space becomes the isohilbert space, | > = Wiy >, < b|= < o W, < |
U>=>W<o|U>W =<d|A[d>] e ete. (see 54] for details).

The above derivation of isotopic theories also assures the preservation of
conventional physical laws under a broader nonunitary structure, an occurrence we
cannot review here for brevity [46,54] with predictably intriguing and novel physical
applications indicated below.

Note that the conventional and isotopic formulations coincide at the abstract
realization-free level by conception and construction for all positive-definite isotopic
element A. For this reasons Santilli insists that his isotoples do not characterize new
theories, but merely new realizations of conventional abstract axioms (53 54).

Intriguingly, the reader should be aware that Santilli introduced the isotopies as
a particular case of yet broader maps known as genotopies [30] in which the
generalized units are no longer Hermitean, 1 » ]T, with the emergence of the covering
Lie-admissible algebras. In turn, the genotopies have resulted to be a particular case of
still broader multivalued hyperstructures with a left and right hyperunit, in which the
generalized units are characterized by an ordered set of nonhermitean elements, 1 =
1P PR N S A 53

Mathematically the isotopies are nontrivial. e.g., because they permit the turning
of nonlinear systems into identical isolinear forms, or they permit the unification of
all possible, simple, n-dimensional Lie algebras (over a field of characteristic zero) in
Cartan’s classification into one single, simple, Lie-Santilli isoalgebra of the same
dimension. Its study has been initiated by Tsagas and Sourlas [61,62] via the use of one
individual basis for all compact and noncompact simple algebras of the same
dimension and the use of isounits with different signature. The isotopies also permit
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intriguing mathematical advances in functional analysis, differential calculus,
geometry, topology, etc., which are now no longer restricted to the simplest possible
unit essentially dating back to biblical times, but are formulated instead for arbitrary
(well behaved) units with an evident broadening of-their representational capabilities.

The physical nontriviality of the isotopies is also evident from their broader
structure. In addition to the representation of all Hamiltonian interactions, the
isotopies can represent nonlinear, nonlocal-integral and nonpotential-nonhamiltonian-
nonunitary effects. This permits nove! applications, i.e., applications beyond any
possibility of quantitative treatment via conventional formulations.

Among a considerable number of applications in various fields available in the
literature, it may be significant for the interested reader to mention: the isotopies O(3)
of the rotational symmetry O(3) [36,37) originally applied to the lifting of Euler's
theorem on rigid bodies with a fixed point into a form applicable to deformable
bodies with a fixed point; the isotopies SO(2) of the SU(2+-spin and isospin symmetry [4()
with the reconstruction of the exact isospin symmetry in nuclear physics; the isotopies
P(3.1- of the Poincare’ symmetry P{3.1) [41] with the identification of the universal
symmetry of gravitation or of locally varying speeds of electromagnetic waves within
physical media; the isotopies of the spinorial covering of the Poincare’ symmetry [44)
with a quantitative representation of the synthesis of the neutron as occurring in stars
at their formation, via the use of protons and electrons only; the isotopies SO(3) of the
SU(3) symmetry, first sturdied in ref. [25), and today used as the foundation of the
isoquark theory 43] i.e., a theory preserving all conventional quantum numbers, (from
the evident isomorphism SO(3) ~ SU(3)) yet admitting an exact confinement with an
identically null probability of tunnel effects (from the incoherence of 3 and 3¢ when
interconnected by a suitable nonunitary transform), the isotopies of the Cooper pair in
superconductivity [1], with the first-explicit form of attractive interaction among the
two identical electrons in remarkable agreement with experimental evidence; the first
exact-numerical representation of nuclear magnetic moments under conventional
angular momentum and spin [42}, as permitted by the nonunitary structure of the
theory; the isotopies of gauge theories [7,8,30} a novel operator form of gravity
verifying the same axioms of rejativistic quantum mechanics [45} an exact
representation of the available experimental data on the anomalous behavior of the
meanlives of unstable hadrons with energy (4,5} a representation of the Bose-Einstein
correlation as due to the nonlocality of the p-p-fireball under the exact Poincare-
Santilli isosymmetry P(3.1) (38] in remarkable agreement with experimental evidence [6}
representation of the large difference in cosmological redshift between certain quasars
and their associated galaxy when physically connected on grounds of photon
spectrometry [2,27}; isotopies of the unitary scattering theory for the representation of
nonunitary effects predicted in deep inelastic scattering, which was initiated in ref. [26]
and continued in ref. [54); and various other applications.
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Abstract

In this paper we study, apparently for the first time, the foundations of
Santilli’s isonumber theory of the second kind, which is characterized by the
axiom-preserving isotopic lifting of the unit via an element of the original
field, with compatible lifting of multiplication, while the elements of the
original field remain unchanged. In particular, we study the iosgroup, the
isodivisibility, the prime number theorem of isoarithmetic progressions, the
isocongruences, etc. We introduce a new branch of number theory called
Santilli’s isoadditive prime theory of the second kind. We prove about fifty
theorems including the prime twins theorem, the Goldbach’s theorem, k-
tuples of primes, (py +1)*+1, (p1+1)*+1, (p1+1)%+1, (p1+1)16+1, (1+
2), (143}, (1+4), Rényi’s theorem, etc., by using the arithmetic function
Jn(w). We present a generalization of Euler’s proof for the existence of
infinitely many primes. Finally, we disprove the Riemann’s hypothesis.
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1 Introduction

In the seminal works(1,2; Santilli has introduced a generalization of real, comlex
and quaternionic numbers @ = n,c, g based on the lifting of the unit 1 of con-
ventional numbers into an invertible and well behaved quantity with arbitrary
functional dependence on local variables

1 - I(t,z,2,--) =1/T # 1. (1.1)
while jointly lifting the product ab = a x b of conventional numbers into the form
ab — a* b= alb, (1.2)

under which [ = 1/7 is the correct left and right new unit
Iva=T"Ta=axf=alP'=q (1.3)

for all possible ¢ = n, ¢, g.

Since the new multiplication a * b is associative, Santilli has then proved
that the new numbers verify all the axioms of a field. )

Let F(a, +, x) be a conventional field with numbers a = n, ¢, ¢ equipped
with the conventional sum a + b € F, product ab = a x b € F, additive unit
0 € F and their multiplicative unit 1 € F. The above liftings were then called
wsotopicin the Greek sense of being axiom-preserving. The prefix iso is then used
whenever the axioms are preserved.

Definition 1.1. Santilli's isofields of the first kind £ = F(&,+, ) are the
rings with elements

i=al (1.4)
called isonumbers, where @ = n,c,q € F, [ = I/j’his a well behaved invertible
and Hermitean quantity outside the original field / = 1/T ¢ F and of is the
multiplication in F' equipped with the isosum

a+b=(a+b)] (1.5)

with conventional additive unit 0 = (] = 0,a+0=0+a= 4, & € F and the
isoproduct R . L )

a*b=aTb=alTbl = (ab)], (1.6)
under which [ = l/T is the correct left and right new unit (f*& =axfl=a Vae

-

Fy called isounit. ‘ '
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Lemma 1.1. The isofields Fla, +, %) of Def.1.1. verify all the axioms of
a field. The lifting F — F'is then an isotopy. All operations depending on the
product must then be lifted in ¥ for consistency.

The Santilli’s commutative isogroup of the first kind

d'=al, ¢"=0, dfraT=dl=f=7T"141
@=al, =0t drat==F=T141

6P = aff, aP=qil, o T=&6=f=T13£1.

. ab=aiThi = abl = ab.
2= ofTh % = a/b?1.

where i 1s called an isounit, T'is called an isoinverse of I &% is called an 1soinverse
of ab; (a *) is called the Santllh’s commutative isogroup of the first kind.

Lemma 1.2. Sentilli’s isofields of the second kind F = F(a,+, *) (that is,
a € F is not lifted to & = al) also verify all the axioms of a field, if and only 1f
the isounit is an element of the original field. ’

I=1TeF (1.7)
The i1soproduct is defined by
axb=albe F (1.8)
Definition 1.2. Isodual isomultiplication is defined by
$ = xTIx = —x, T¢= T (1.9)
We then have isodual isoproduct

a b= aT% = —aTb ~ (L.10)

The Santilli’s commutative isogroup of the second kind

af=a, a”f=a"1f2, a'val=ad=f=1p # 1.

=T, o ?=a"P, frat=a=]=7" # 1.




......

ol xbf = alb, ol b1 =ab'f = a/b.

where 7 is called an 1sounit; T an isoinverse of [ : a~b an isoinverse of as; (ab, ¥)
the Santilli’s commutative isogroup of the second kind. The following examples
are devoted to an exposition of the simplest properties of isomultiplications.

Ezample 1:

0 = aluail = a%(ff’)';',tzgr2 = 0ol Paall? = a%(T)%,as% = alxa 1 = a%(T)%.
Frample 2:

a“37\2 = (;L"f * a“{f2 = a'f/\2 * a“i’/\2 * a"m = a,"5 * a175 = a"%(f)%,

Ezample §:
GLE%—“—‘al‘ﬁ*a{/\3 =a%*a%*a%*a%*a%= j*a“l% :a%(f)la,
Ezample 4:

0 3 = 02 40175 - @B s =178 4 =78 4 T8 o~Taail® = s (1)%
Ezample 5:

a2 — a1/2 % 0,1/2 * al/z * al/? — a3 * a—-I — a2T_
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Ezample 6:

-
.

.. ——— -~ e~ —.r—-. — —— l N
@ = g4 x g1/ g1/ = af* a4 = g1/2 4 g1/4 — a4(I)

Ezample 7:
ai‘;‘/'5 = a273 X a:;/\’ =atx 0,173 = aléa“(ff‘)%
Ezample 8:
a—f/?s = a“175 * a{ﬁ' =al % a’776 = a'%(f)%.
Ezample 9:

al/A2 * blT3 * c{T5 = a%b%c%(ff')iw.
Let a = b = ¢, we have a®'/% = a3 (7).
Ezample 10:

a'/? bﬁ?3 * ci‘/\5 * lee = a%b%c%dé({f’)zl?.

Let a = b= ¢ = d, we have a¥® = ad(T)3

Ezample 11: .
ar = alla *a2/3 = afT = Q.
Ezample 12:
e s )
Ezample 18:
alxbt= (%)21". a? x b8 = o2b72]2,

Ezample 14:
a*y§+b*y+c: a(yT)2+b(yT)+c.
Example 15:

as * yﬁ + ag * yi tar* y+ap= aa(yif")3 + ag(yilh’)2 + al(y[f") + ag.




~514-

Lemma 1.3. Santilli’s isofields of the third kind F = F(Z,-{—,:&) (that is
a=pi* .- pin € F is lifted to a= p?* % ... % p:":; € F) verify all the axioms of a
field if and only if the isounit is an element of the original field

a 1
I==¢kF
T

The isoproduct is defined by

(@)% = @0 # 1

((5)3,*)}5 called the Santilli’s commutative isogroup of the third kind.

Santilli’s isonumber theory of the third kind is, without doubt, a very fas-
cinating subject. Although it is the novel elementary mathematical system, the
study of their properties has provided generations of mathematicians with prob-
lems of unending fascination. A fascinating example:

8=87%, 2+46=2+6F, 3+5=8, 4+ 4=8T.

Recently we make many of calculations and discover the Santilli’s commu-
tative isogroup of the first kind, the Santilli’s commutative isogroup of the second
kind and the Santilli’s commutative isogroup of the third kind.

In previous paper [3] we study Santilli’s isonumber theory of the first kind
based on isofields F' = F(d,+,*). In this paper we study Santilli’s isonumber
theory of the second kind based on isofields F = ﬁ‘(a,—}—, %).

2. Foundations of Santilli’s Isonumber Theory

By lifting F(a,+, x) — ﬁ’(a,—k, *) we study Santilli’s isonumber theory of the
second kind.

We can partition the positive integers into four classes:

1. The unit: 1,

2. The isounit: [ or ’f’,

3. The prime numbers: 2,3,5,...,

4. The composite numbers: 4,6,8,....
The Santilli’s isonumber theory of the second kind is primarily concerned with
isodivisibility properties of integers.
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Definition 2.1. Definition of isodivisibility. We say that a nonzero mnteger
a isodivides an integer b, if there exists an- integer ‘¢ such that ¢ x ¢ = alc =
b, ¢ = bi/a. If a isodivides b, we write ajb = a|fb. Then we have alb or alI Ifa

does not isodivide b, we write a ,{'b = a fbI. Then we have a fband a fI.
The following theorem gives the key properties of isodivisibility.

Theorem 2.1.

(1) K @ is a nonzero integer, then ala = alal.

(2) faisan mteger then 1|a = 1lad.

(3) If alb = albI and b|c = blcl, then a|c = alef

(4) If alb = aIbI and c is a nonzero integer, then aclbc = aclbc] and

a|bc = albc:]

(5) ¥ a]b = a|b] and a|c = alcl, then for all integer m and n we have

(mb +ne) = aII(mb + nc)

(6) If alb = aIbI and bja = blaf, then a = +b and | = 1.

(1) If alb = a|bl and @ and b aze positive integers, then a > b, a < |
“and a|/for e > [,a < band afb.

Definition 2.2. If d divides two integer a and b, then d is called a common
divisor of a and b. The number d is called the greatest common divisor (ged) of a
and b and is denoted by (a,b). If (a,b) = 1, then @ and b are said to be relatively
prime.

Theorem 2.2. The prime number theorem for isoarithmetic progressions

EiK)=w*K +a=wTk+a, (2.1)
wherek:O,l,Z,...;(wT,a):l.Wehave
1 N '
(V) = —— 1+0(1)), 2.2
() = S (L4 0() (22)

where 7,(N) denotes the number of prime in E,(K) < N and ¢(wT) Euler’s
¢-function.

Santilly’s isoadditive prime problems:

Pr=2xpr+1=2Tp+1, pa=4drp+1=4Tp +1. . (23)
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Let 7' = 1, we have
' P2=2pm+1, ps=4p+1. ‘ (2.4)

They cannot all be prime, for at least one of the three is divisible by 3.
There ex:st no 3-tuples of primes except py =3, p, =7, p3 =13. Let T' = 2,
and [ = 1 we have

pa=4dpi+1, ps=8p+1. (2.5)

There exist no 3-tuples of primes.
Let T =3 and [ = 3, we have

p2=6p; +1,ps = 12p; + 1. | (2.6)

There exist infinitely many 3tuples of prlmes 9, 31, 61; 13, 79, 157; 23,
139, 277; 61, 367, 733;

=P +pr+ps+1)2 +1=T(p +ps+ps + 1) + 1. (2.7)
Let T = {Tl,...,ff’n} and I = {f},...,I,}. In (2.7) there are n additive prime

equations. Every equation has an isounit.
Fermat-Santills equations[4):
4yt =1 (2.8)

From(2.8) we have ) _
mn+yn:(1)n—la (z,9) = 1. (2.9)

For n > 3, (2.9) has no rational solutions.
Pell-Santilli equations:
2l —pxy? = £1. (2.10)

By Santilli’s isonumber theory we can extend the additive prime equations and
Diophantine equations.

Definition 2.3. Given integers a,b,m with m > 0. We say that a is
isocongruent to b modulo m and we write

a =b (mod m). - (2.11)
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If m isodivides the difference a — &, the number m is called the modulus of iso-
congruence. The isocongruence (2.11) is equivalent to the isodivisibility relation

mi(a—-b):m | f(a»b). (2.12)
Ifm }(a — b) we write
a % b (mod m), (2.13)

and we say that e and b are nonisocongruent (mod m).

Theorem 2.3. The isocongruence is an equivalence relation:

(1)aZa (mod m) (reflexivity)
(2) ¢ = b (mod m) implies b2 a (mod m) (symmetry)
(3) @ £ b {mod) andb = ¢ (mod) implies a £ ¢(mod m) (transitivity)
Definition 2.4. The quadratic isocongruence

2?Eq (mod p), (2.14)

where p is an odd prime.Let (J,p) = 1 so we can cancel 1. (2.14) can be written
as

?=nf (mod p). (2.15)
If congruence (2.15) has a solution and we say that n is a quadratic residue mod
p and we write ("77) = 1, where ("71) is Legendre symbol. If (2.15) has no solution

we say that n is a quadratic nonresidue mod p and we write (1‘;}) = -1,

Theorem 2.4. .

DOET = o (mod p). (2.16)
i=1

When (f,p) = 1, we can cancel J. (2.16) can be written as

n

)" z; = a (mod p). (2.17)

=1

where p is an odd prime.
(2.17) has exactly Ja(p) + (—1)" solutions, where J,(p) = &=2 "p" =) Ty
pla and (2.17) J.(p) solutions if p fa. .
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Theorem 2.5.
z?+m2+...+mn—§a(mod ). (2.18)
When (,p) = 1, we can cancel 1,(2.18) can be written as
22+ Iz + ... +2,) = fa (mod p). (2.19)
(2.19) has exactly J,.(p) — (~1)* solutions if (%f) =1 and (2.19) Ja(p) + (-1)"

solutions if (“{) = —1 and pla.
3. Santilli’s Isoadditive Prime Theory

Definition 3.1. We define the arithmetic progressions{5,6]
By (K) = wK + pa, (3.1)

where K =0,1,2,...;
w= T[] p (@,pa) = 1;

2<p<pi
pi<pa:p1ap2a"'ap¢(w)=w+1;b¢(w): Z 1= H (p—"l)
(Pa,w) =1 3<p<pi
1< a<élw)

$(w) is Euler’s ¢-function.
For every Ep.(K), there exist infinitely many primes.We have

1 N
Tpa(N) = mm(l +0(1)), (3.2)

where 7,,(N} denotes the number of primes p < N in E,_ (K). Since Tpa (N) 1s
independent of p,, the primes seem to be equally distributed among the ¢(w)
reduced residue classes mod w, and (3.2) is a precise statement of this fact.

We deal with the prime twins: p, = p; + 2. It can be written as the form of
the arithmetic progressions

By ia(K) = By (K) +2. (33)
We define the arithmetic function of the prime twins
Bw)= 3 1= ]] (p-2). (3.4)
(Pa +2w) =1 3<pLpi
1<ag Hw)
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Since Jy(w) < $(w), it is a generalization of Euler’s ¢ function ¢(w). Since (pa +
2,w) = 1,(3.3) has the infinitude of the prime twins.
Let p; = 3. From (3.1) we have

Ey(K)=6K+5, E(K)=6K+71, (3.5)

where K =0,1,2,... , :
From (3.4) we have J,(6) = 1. From (3.5) we have one subequation of the
prime twins

Since (7,6) = 1, (3.6) has the infinitude of the prime twins.
Let p; = 5. From (3.1) we have

Ep.(K) = 30K + pa, (3.7)

where K =0,1,...; pa = 7,11,13,17,19,23,29, 31.
From (3.4) we have J,(30) = 3. From (3.7) we have three subequations of
the prime twins

Elg(K) = Eu(K) + 2, Elg(K) = E17(K) + 2,‘E31(K) = Egg(K) + 2 (38)

Since (pq + 2,30) = 1, every subequation has the infinitude of the prime twins.
The prime twins seem to be equally distributed among the J,(30) reduced residue
classes mod 30. It is a generalization of Direchlet’s theorem. For Jy(w) — oo
as w — oo, there exist infinitely many subequations of the prime twins, every
subequation has the infinitude of the prime twins. By using this method and
Santilli’s isonumber theory we found the new branch of number theory: Santilli’s
1soadditive prime theory.

By lifting F(a,+, x) — F(a,+,*) from (3.1) we have isoarithmetic pro-
gressions

Epo(K)=w* K + po = wT'K + pg. (3.9)
Let T = w™ . From (3.9) we have

E,.(K) = w™K + pa, (3.10)

where

Pi < Pa =p1a~"ap¢(w"‘) :wm+1; ¢(wm) = Z 1 =wm—-l¢(w)-
(powm™)=1 .
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Theorem 3.1. If there exist infinitely many primes p; (forj = 1,...,n—1)
such that the absolute values of polynomials f;(p;) (fori = 1,...,k — 1) are all
prime, then f;(p;) must satisfy two necessary and sufficient conditions:

(I) Let fi(p;) be k — 1 distinct polynomials with integral coefficients irre-
ducible over the integers.

(II) There exists an arithmeric function J,(w™), that is to separate the
number of k-tuples of subequations from (3.10). It is also the number of solutions

of -
(H fi(pa,')awm) =1, ' (311)
i=1
where 1 € a; < ¢(w™), j=1, ..., n—1.
Since Jo(w™) < ¢ (w™), Ju(w™). can be expressed as the form
¢g§') 4’(“’2'") 1
Ja(wW™) = [ — ]
apw1=1 ap =1 ( f;:ll fi(paj)’wm)
= l* VN T (p— 1)~ H(p)), (3.12)
3<pspi

where H(p) is the number of solutions of congruence

k-1 |
I1 fi(g;) = 0 (mod p), (3.13)

=1

g;=1,2,...,p—1;3=1,...,n—1.

Since (p — 1)*! = (P"l)";(~1)" + (p;l)""ll;.(~1)ﬂ—l

, Jn(w™) can also be ex-
- pressed as the form

AT CE T § Ry i G S PR

3<p<pi P

where x(p) =0,=%1,...
In the same way as in Ref.[3] we can derive the best asymptotic formula

T (N,n) = [{p; : p; < N, fi(p;) = prime}|

k-1 Jn(wm)(wm)k—l N1

= [T (deg fi)™" x 7= D)igmeEz(om) (1ogN)n+k—2(1+ o(1)).  (3.15)
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We have [3
[ ] Jn(wm)(wm)k—l _ Jn(w)wk“l
prti=t(wm)  grth2(w)

Substituting (3.16) into (3.15) we have

(3.16)

k-1 w wk-—-] -1
m(M,m) = [ (de £ x j’iquzwk-z(w) (logIXf (L 0(). (317

We prove that m(N,n) is independent of m. (3.17) can be written as the form

(N, n) = Ju(w)t, - (3.18)
where
k-1 wk—-an-l
ty = E(deg £i)7 x = 16 o8 N)n+k_2(1 +0(1)). (3.19)

t1 denoting the number of k-tuples of primes in one k-tuple of subequations. ¢,
can be applied to any k-tuple of subequations and is called the common factor
in Santilli’s additive prime theory. ¢, =0if N < w, ¢; # 0 if N > w similar to
(3.1). t1 # 0 implies that there exist infinitely many prime solulions. If J,(w) = 0
then 7 (N,n) = 0,there exist finitely many k-tuples of primes. If J,(w) — co as
w — oo,then there exist infinitely many k-tuples of prines. It is a generalization
of Euler proof of the existence of infinitely many primes.
Let n = 2 and k = 1. From (3.19) we have

N
¢(w)log N

It is the prime number theorem of the arithmetic progressions.
Since k = 1, we have Jy{w) = ¢(w). Substituting (3.20) into (3.18) we have

t = (1+0(1)). (3.20)

N_a1+oq. (3.21)

m(N.2) = log N

It is the prime number theorem. .

(3.17) is a unified asymptotic formula in the Santilli’s iscadditive prime
theory. To prove it is transformed into studying the arithmetic functions J,(w).
By using the J,(w) we prove the following Santilli’s isoadditive prime theorems:
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Theorem 3.1.1. P2 =axp; +b=alp + b, where (af’,b) =1 and 2|eTb.

We have
' -1
A= ¥ 1= 11 k-2 I] E=5 #o,
(aTpa + bw) =1 3<p<pi plaf‘b .
1< o € g(w)
1 N

7o N,2) = 2 (1- ) (1+ 0(1)).

’ 3<p<pi (p—1)2 pgb log* N )

Since Jy(w) #= 0, there exist infinitely many primes p; such that p, is also a
prime. Let @ = 1, it is the prime twins theorem. :

Therem 3.1.2.

p2:a*dpl+N=af’dp1'+N=~aTP1+Na

~

Let @ = T = 1. We have the Goldbach’s theorem: p, = N — P1-
We have

-1
Jz(w) = Z 1= H (p __.2) p___z ;é 0,
(N=pa,w)=1 3<p<p; . pINPT
1< a<éw)
' 1 -1 N
m(N,2)=2 J[ (1~ )T 2 (1+0(1)).

sépgm (P 1) gy p-2log’ N

Since Jy(w) # 0, every even number greater than 4 is the sum of two primes.
It is the simplest theorem in Santilli’s isoadditive prime theory.

Theorem 3.1.3. p, = p? +p+1= Tpf + py + 1, where 7T is an odd.

Since Ja(w) # 0, there exist infinitely many primes p, such that p, is slso a
prime.

Let T = 1. we have

Dw)= > 1= J] (e-2-x(») #0,

(Pd +pa+1,w)=1 3<p<pi
1 <a < é(w)
where x(3) = 0; x(p) = 1 if p = 1(mod 3), x(p) = —L if p = —1 (mod 3),
Jo(ww N
2¢%(w) log®? N

7r2(N,2) =

(1+0(1)).
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a2 "

Theorem 3.1.4. po = (p + 1) +1=T(p, +1)* + 1.
Since Jp(w) # 0, there exist infinitely many primes p; such that P2 1s also a

prime. )
Let T' = 1, we have
o) = =TT (p-2-(0F) 0
(e +1)2 4 1,0)=1 3<pspi
1< a < o(w)
Jo(ww N
N,2) = 14 0(1)).
m2(N,2) 2¢2(w)10g2N( +0(1))

Theorem 3.1.5. p, = p? +2= sz? + 2, where 7' is an odd.
Since Jy(w) # 0, there exist infinitely many primes p; such that p, is also a
prime.

Let T = 1. We have
Bw)= 3 1= ]I (-2-x(p)#0,

(P +2,w) =1 3<p<pi
1<agéw)

where x(p) = 2 if 25 = L(mod p); x(p) = ~1if 25~ # 1(mod p); x(p) = 0

otherwise.
Jg (w)w N

ma(M,2) = ¢ (w) log® N

(1+0(1)).

<o
—

-

Theorem 3.1.6. p; = (p; +1)* + 1.
If Jo(w) # 0, then there exist infinitely many primes p, such that p, is also
a prime.

Let T = 1. We have
Jo(w) = > 1= TI] (p-2-x(p) #0,

((Pal+ 1t )) =1 3<p<pi '
where x(p) = 3 if p = 1(mod 8); x(p) = ~1 if p # 1(mod 8),

Jo(w)w N
15 (w) m(l + 0(1)).

7‘-2(N12) =
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Theorem 3.1.7. p;, = p'i’ + 2, where T is an odd.

Since Jy(w) # 0, there exist infinitely many primes p; such that p, is also a
prime.

Let 7' = 1. We have

hwy= Y 1= J] (p—2-x(p) #0,

(p?,. + 2 w)=1 3<rspi
1<agéw)
where x(p) = 4 if 255 = 1(mod p); x(p) = —1 if 25 % 1(mod p); x(p) = 0
otherwise, hw) N
N,2) = 222X 14+ 0(1)).
7r2( b) ) 5¢’2(W) 10g2 N( + ( ))

Theorem 3.1.8. p, = (p; + 4)é + 4 where T is an odd.

Since Jy(w) # 0, there exist infinitely many primes p, such that p, is also a
prime.

Let T = 1. We have

D)= > 1= ]I (p-2-x(p) #0,

(Pa+8)8 +4,0)=1 3<pLpi
1 Segdw)
where x(p) = 5if (4)F = (=1)"" (mod p); x(p) = ~1if (4)* % (~1)%" (mod p);
x(p) = (1) 7 otherwise.
Jz(w)w N
N,2) = ‘

Theorem 3.1.9. p, = p? + p’;’ + 1.
Since Jy(w) # 0, there exist infinitely many primes p; such that p, is also a
prime.

Let T = 1. We have
Lw)= 3 1= J] -2-x(p) #0,

(o8 4+ +1,0)=1 3<pspi
1<a < 8w

where x(3) = 0; x(p) = 5if p = 1(mod 18); x(p) = ~1 otherwise.
_ {w)w N

m(N, 2) (1+0(1)).

"~ 6¢2(w) log* N
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Theorem 3.1.10. p; = p! + 2, where T is an odd.

Since Jy(w) # 0, there exist infinitely many primes p; such that P2 1s also a
prime.

Let T' = 1. We have

Rw)= 3 1= J] (p-2-x(p) #0,

(PL +2,w)=1 3<pspi
1 £a < ¢(w)

where x(p) = 6 if 257 = 1(mod p); x(p) = -1 if 25 # 1(mod p); x(p) = 0
otherwise.

Theorem 3.1.11. p, = (p; + 1)8 + 1.

Since Jp(w) # 0, there exist infinitely many primes p; such that P2 1s also a
prime.

Let T' = 1. We have
Jr(w) = > 1= 1] (p-2-xlp) #0,

=] 3$PSP-

where x(p) = 7 if p = 1(mod 16); x(p) = —1 if p # 1{mod 16),

Theorem 3.1.12. p, = (p; + 1)1’é + 1.
Since Jy(w) # 0, there exist infinitely many primes p, such that p, is also a

prime. )
Let T = 1. We have
Ja(w) = > 1= J] (p-2-x(p) #0
((Pa+ )16 41,0y =1 3<p<pi
1<'a < ¢w)
where x(p) = 15 if p = 1(mod 32); x(p) = ~1 if p # 1{mod 32),
N
ra(N,2) = 2800 Ny gy,

" 16¢%(w) log® N
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Theorem 3.1.3. p3 = p‘;’ +pi’ +p? +p1 + 1, where 7' is an odd.

Since Ja(w) # 0, there exist infinitely many primes p; such that p, is also a
prime.

Let T' = 1, we have

Sr(w) = ) 1= ][ (@-2-x(p)) #0.

(b4 + 55 +pE 4+ pa +1,w) =1 3<p<pi
1 €a g ¢w)

where

x(5) = 0; x(p) = 3 if p = 1(mod §); x(p) = —1 if p # 1(mod 5),

J(ww N
4¢*(w) log* N

?z(N,Q) = (1+0(1)).

Theorem 3.1.14. p, =2%p, + 1, p3=4%p, +.1.
Ja(w) # 0if 3|T; Jy(w) =0 if 3 JT.

Let T = 3, we have

${w) 9
Jo(w) = ~ = 2 -3)#£0
2(w) ; (6Pa + 1,w) + (12p, + 1,w) 55]‘;L;(z9 ) #
Here [ ] denotes the greatest integer,
J(w)w? N
N,2) = 1 1)).
7r3( ) ) ¢3(w) 10g3 N( + 0( ))

Theorem 3.1.15. py = 3% p; + 2, ps = 2% p; + 3, where 7' is a prime
gerater than 3.

Since Jy(w) # 0, there are infinitely many 3-tuples of primes.

Let T = 1, we have

$(w) 2

Jo(w) =a§=jl G 2] e 73.0) =67$gm(p—3)#0.
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Jo(w)w? N
#(w) log® N
Theorem 3.1.16. p, =30 % p, +1, ps =60+ p; — 1.

Since Jo(w) # 0, there are infinitely many 3-tuples of primes.
Let T = 1, we have

7!'3(N, 2) =

(14 0(1)).

#(w) D)

Ja(w) = ;}; (30pq + L,w) + (60ps — L,w) | 751,1?'_(”“ 3)#0,
m(N,2)= 29 I o))

$*(w) log’N

_Theorem 3.1.17. p, = p; + 4, ps = p} + 4, where T is an odd and
3 NT +4).

Since Jy{w) # 0 there are infinitely many 3-tuples of primes.

Let T' = 1, we have

é(w) 9

H= L e ge) - 2L e 0T Ao

Jo(w)w? N

WS(N’Z) = 2¢3(w) 10g3 N(l + O(l))

Theorem 3.1.18. p, =p; + 2, ps = p% + 30, where 7' is a prime greater
than 5.

Since Jy(w) # 0, there are infinitely many 3-tuples of primes.

Let T' = 1, we have

- Elmrias 2 b= (5)
2(“’)—0:1 (P +2,w) + (p2 + 30,w) = s ?)— — __1_9_ £0,
r,2) = 2ol T o).

2¢3(w) log® N

Theorem 3.1.19. p, = p? +1, p3 = pf + 3.
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Jo(w) # 0if 3|(T — 4); Jo(w) = 0 otherwise.
Let T = 4, we have -

Jo(w) = d)‘(i) [ : ]

(4P% + L,w) + (472 + 3,w)

2=l -3
ma(V,2) = 2T N gy

44%(w) log® N

Theorem 3.1.20. p, =2xp; + 1, p3 =6%p; + 1, py=8x*p, + L.
Since J3(w) # 0, there are infinitely many 4-tuples of primes.
Let T =1, we have

#lw) 3
Jz(W) B aZ::I (2pa + lsw) + (6pa + l’w) + (Spa + l’w)
= T o-9#0
ru(N,2) = 20 N oay)

¢*(w) log'N

Theorem 3.1.21 p; =2 p; + 1, ps = 3xp1 +2, ps = 4 * p; + 3, where T
1s a prime greater than 3.

Since Jy(w) # 0, there are infinitely many 4-tuples of primes.

Let T = 1, we have

$(w) 3
) = 2 (2P + 1,w) + (3pa + 2,w) + (4pa + 3,w)
= Il _(P —-4) #0.
74(N,2) = Jz(w)wa N (1+ 0(1))'

¢t (w) log*N
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Theorem 3.1.22. p, =30%p; + 1, p3=60%p; +1, py = 90 *p, + 1.
Since Jy(w) # 0, there are 1nﬁmte1y many 4-tuples of primes.
Let T =1, we have

#(w) 3

Jo(w) = El 0 7T 0) =8751;£p._(19~4) # 0.

Jo(w)w® N

D= ) e N

Theorem 3.1.23. p, = pl + 30, ps = P1 + 60, py = p? + 90,
where T, is a prime greater than 5.
Let T =1, we have

Jz(“’)z%[ e ]

a1 pi + 30i,w)
-2 I (-0-(37) - (37)- (7)) #o
ra(V,2) = 2@ N o0y,

8¢%(w) log' N

Theorem 3.1.24. p, = pi* + 30, p3 = pi* + 60, pq = p‘;’ + 90, where 7' is a
prime greater than 5.

Since J(w) # 0, there are infinitely many 4-tuples of primes.

Let T' = 1, we have

d(w) ‘ '
Jz(w):Z[ - )}=s T (4= x(0) = xa(0) - x6(0)) #0.

a=1 Pa + 304w 7<ppi

-1
where x;(p) = 2 if B‘-Lr = 1(mod p); xi(p) = -1if B; = # 1(mod p), B, =
30, B; = 60, By = 90; x(p) = 0 otherwise.

Jo(w® N
2144 (w) log® N

m4(N,2) = (14 0(1)).
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Theorem 3.1.25. p, =2*xp1+ 1, pa=6%p+ 1, py=8x%p, +1, ps =
12 % py + 1.

Since Ji(w) # 0, there are infinitely many 5-tuples of primes.

Let T' = 1, we have

S(w) 1
7 = 2 | G T Tw) (e 7 100) (B T 1) (12 7 L)
“Lo-o
ro(N,2) = BTy oy,

¢*(w) log® N

Theorem 3.1.26. p, =30*p; +1, p3=60%p; +1, py =90xp, +1, ps =
120 * py + 1.

Since Ja(w) # 0, there are infinitely many 5-tuples of primes.

Let T' =1, we have

$(w) 4
) = & St T <8 AL P9 20
_ Jz(b))w4 N
WS(N:2) - ¢5(w) logsN(l + 0(1))‘

Theorem 3.1.27. p, = p? +30, p; = p? 460, ps = pi" +90, ps = pg + 120,
where 7' is a prime greater than 5.

1f J(w) # 0, then there are infinitely many 5-tuples of primes.

Let T =1, we have

Jz(w):—d"(ﬁ)[q : ]

i:l(pg + 307’) U))

=87<I-‘£ (p——5—2(~§0)——(—;5)~(~;0))760
s(N,2) = f;;‘jzz) logN(HO( )).
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Theorem 3.1.28. p, = p? +30, p3 = p‘;‘+60, Py = p% +90, ps = p‘i’ + 120,
where T is a prime greater than 5.

If Jo(w) # 0, then there are infinitely many 5-tuples of primes.If Jo(w) =0,
then there are no 5-tuples of primes.

Let T' = 1, we have J2(7) = 0. then there are no 5-tuples of primes.

Theorem 3.1.29. py=4#*p +1, p3=6%p1+1, ps=10%p; +1, ps =
12%py 4+ 1, pg =16 %p; + 1.

Since Jp(w) # 0, there are infinitely many 6-tuples of pnmes
Let T' = 1, we have

Jz(w) =
é(w) A 1
2
ozt L(4Pa + 1,w)(6pa + 1,w)(10p, + 1,w)(12p, + 1,w)(16p, + 1,w)
= Il (~-6)#0.
7<p<pi -
Jo(w)w® N

To(N,2) = T o (14 0().

Theorem 3.1.30. p, = 30*p; +1, p3 = 60*p;, + 1, P4—-90*P1+1 Ps =
120 p1 + 1, ps = 150 * py + 1.

Since Jy(w) # 0, there are infinitely many 6-tuples of primes.
Let T = 1, we have

(w) 5 '
1) = 3 | s =¢ I -0 40
ro(V,2) = 2 N Loy,

$8(w) log® N

Theorem 3.1.31. p, p1+30 p3~p1+60 p4-—p1+90 Ps =
P1 +120. pg = pl + 150, where 7" is a prime greater than 5.

If J(w) # 0, then there are infinitely many 6-tuples of primes.
Let T =1, we have

0= X e

a=1

1 (P2 + 304, w)
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- I (50)-(5)-(51) - (57)) e

Jz (w )0.’5 N
32¢%(w) log® N

Tl's(N, 2) =

(1+0(1)).

Theorem 3.1.32. p, =pl+30 P3 = p1+60 Py = p1+90 Ps =
p1 +120, p = pi + 150, where T is a prime greater than 5.

If Jo(w) # 0, then there are infinitely many 6-tuples of primes.
Let T' = 1, we have

P(w) 5 5
Jo(w) =) [ Tl 1 300 w)} =8 ] (p—-ﬁ-—;x;(p)) #0

a=1 7<p<pi

. 2=1 it
where xi(p) = 3if B;* = (~1)"7 (mod p), x(p) = ~11fB,< '
Bl = 30, .Bz = 60 B3 = 90, .B4 = 120, B5 = 150, X,(p) = (

(~1)*F (mod p),

L) otherwise,

8 LW'HL

Jo(ww® N
1024¢%(w) log® N

m6(N,2) = (14 0(1)).

Theorem 3.1.33. p; = p, * p, + b, where (T, b) =1 and 2|T.

We have
; $w) Sw) l 1 } ) p—1 'O
s3(w) = g;l mzzl Frope 1 6.0)) 96(‘”)351;%(?" ) p]prTz # 0,
m(h9)= 11 (- P22 (14 001)).

This is three primes theorem called (1+2). It is the best asymptotic formula.
Theorem 3.1.34. py = N — py * py, Jo(w) = 0if (N, T) > 1; Js(w) # 0 if

(N, T) =1,
Let T = 1, we have

d(w)  é(w) -
)= ¥ [t =) 11 -2 T2 #0

3<p<p; piN

N "‘Pa,Pa;,w)

=1 ay=1
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mo(N,3) = | {p1,p2 : p1,p2 £ Nyps = [N — p1pa|} |
= 1] (1~( ! 2') p-1 N (1+ O(1)).

3<p<pi p-1) ANP T 2 log’ N

This is three primes theorem called (1+2).

Theorem 3.1.35. ps = (p1 + p,)? + b, where b is an odd and 3 T +b).

We have
@=3 3 1 ’
Ja(w) = [ = }:‘- ('P -3p+3—-x(p 0,
T aa=1 og=1 (T(pa, +Pa7)2 + ba“)) 3<gp.‘ ( )) 7

where x(p) = (p - 2) if p|T8; x(p) = (p - 2)( Z) otherwise,

Js(wjw N?
4¢%(w) log® N

m5(N,3) = (1+0(1)).

Theorem 3.1.36. ps = (p, + p,)° + 3, where 3 T

Since J3(w) # 0, there exist infinitely many primes p; and p, such that p,
is also a prime.

Let T = 1, we have

$(w) 4’(213) 1 2
= (*-3p+3—x(p 0
azz:l ap =1 (pm + Pa )3 + 3,(.4)) 3§lp—£p; ( )) # 3

where x(p) = 2(p—2) if 3" = 1(mod p); x(p) = ~(p~2) if 35" # 1(mod p); x(p) =
0 otherwise,

J3(wlw N?
64°(w) log® N

m3(N,3) = (1+0(1)).

Theorem 3.1.37. p; = (p + pz)a + 1.

If J3(w) = 0, then there are finitely many prime solutions. If J3(w) # 0,
then there are infinitely many prime solutions.

Let T' = 1, we have

#(w) J(w) 1

=2 X

= I #*-3p+3-x(p) #0,

o=t arm1 L((Pay +Pa: ) + Lw) | 5ope,
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where x(p) = 3(p — 2) if p = 1(mod 8); x(p) = —(p - 2) if p # 1 (mod 8).

_ J3 (w)w N2

7l’2(Na3) - 8¢3(W) logsN

(1+0(1)).

Theorem 3.1.38. p; = p, pg + b, where (T, b) = 1 and 2|T'.
Since J3(w} # 0 there exist infinitely many prime solutions.
- Let T = 1, we have

y é(w) d(w) 1 , p— 1
)= 022=1 ogs:l [(pa,p?,, + b:“’)l - ¢(W)35££p:(p = Ej 7o
_ Js(w)w N2

ma(W,3) = 4¢3(w) log® N

(1+0(1)).

Theorem 3.1.39. p; = p; * p3 + b, where (T',b) = 1 and 2|T'.
Since J3(w) # 0, there are infinitely many prime solutions.
Let T = 1, we have

$(w) S(w) 1 p - 1
JS(w) - agr;l 021 [(palpgz + b’w)] B ¢(w) 3S]I;£P-’(p B 2) :ll’—l{;]_ # >
_ Ja{wlw  N?

m(N,3) = 64%(w) log® N

(1+ 0(1)).

Theorem 3.1.40. p; = p, *pg + b, where ('f", b) =1 and 2|7.
Since J3(w) # 0, there are infinitely many prime solutions.
Let T =1, we have

Jalw) = . = w -2 —_ 0,
3(w) 3_:,1 2; (Per P2, +b"‘")l &( )3512?;(? ) Lp—2 #
_ Ji(w)w N?

ma(N,3) = 84%(w) log® N

(14 0(1)).
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Theorem 3.1.41. ps = p; * py * p3 + b, where (T,b) =1 and 2|ff'b.
Since Jy(w) # 0, there are infinitely many prime solutions.
Let T =1, we have

#o) 9(u) ow) 1
el

B Z Z Z Palpagpa;"l'b,w)

o3=1 =1l ay=l

_ p-1
=¢'w) II (»-2) 270

3<p<pi plb

1

1 p—1 N?
m(N,4) =3 L- 1+ 0(1)).
« ) 33511;£p.'( (p"‘l)z) olb p—2 10g4N( ())

1t is the four primes theorem called (14-3). It is the best asymptotic formula.

Theorem 3.1.42. py = N — P1% P2 * 3.
Jy(w )—Olf(NT)>1 Jo(w )#Olf(NT)-—l
LetT—-l we have

) d(w) ¢w) : 1

P>

ag=l =l (N"'pmpaapasaw)

= ¢*(w) (p~2)Hp—1

3<pspi plb p—2

T3 (N, 4) = | {p1,p2,P5 : p1, P2, 3 < N, ps = [N = pipspal} |

1 p-1 N3
1 1+0(1
3<p<pi (p - 1) |Np 2 lo g N( ( ))

# 0,

ol —
—
—~
!

It is the four primes theorem called (143). It is the best asymptotic formula.

Theorem 3.1.43. py = p; * py + p3 + b, where T' and b are both odds or
both evens.

Since Jy(w) # 0, there are infinitely many prime solutions.

Let 7' =1, we have

) $(w) o) 1

Jaw) = 35 3

az=1 az=1 ay=1 (palpﬁz + Pa; + b)w)
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= ]I (M*x(p))#&

3<pSpi P
where x(p) = p - 2if pib ; x(p) = ~1if p fb.
. 3
ra(N,4) = 22 Ny oy

T B¢t (w) log* N

Theorem 3.1.44. p, = p; % pg + p3 + b, where T' and b are both odds or
both_evens.

Since Jy(w) # 0, there are infinitely many prime solutions.

Let T = 1, we have

(W) b(w) (w) 1
[(pmp?,z + Pay + b,w)]

az=1ay=1 ap=1

= 11 (——(p“;)4"1*x(p))¢o,

3<pspi
where x(p) =p —2if plb; x(p) = ~-1ifp fb.

m3(N, 4) = fz‘*;:"():) 102;N(1 +0(1)).

Theorem 3.1.45. p; = (py +ps +ps — 1)i +1, ps = (py+p2+ps+ 1)5 + 1.
Let T = 1, we have '
Jo(w) =

Hw) F(w) ~d(w) 1
L=l Lay=1 Lay=1 [((Pol+p02+pa3—1)2+l,w)((po,l+p¢.2+p03-1~1)2+1,w)

= (e ) o,

3<p<pi P
where x(p) = (1 +2(=1)")(p* — 3p + 3),
ry(V ) = 2O N 60y

T 4¢d(w) log® N
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Let T = 4, we have
Ja(w) =

$(w) (W) ~o(w) 1
Eaazl Ea2:1 Zcq::l [(4(1901“*'?02 +p03"1)2+1a“’)(4(Pa1+Pa2+P03+1)2+1,W)

= II (=11 x(p)) #0,

3<pLpi P
where x(5) = 25, x(p) = (1 +2(~1)%")(p? — 3p + 3),

_ J4(U))&)2 ]VS
ma(N,4) = 4¢5(w) log N

(1+0(D).
Since Jy(w) 5 0, there exist infinitely many prime solutions.

Theorem 3.1.46. ps = p, * p, * ps * ps + b, where (T,b) =1 and 2|Tb.
Since Js(w) # 0, there are infinitely many prime solutions.
Let T' = 1, we have

H) ) #w) B g

Bw) =3 X > X

ag=1as=1laz=1 a;=1 (pa;pagpagpm + b’w)

= $(w PSR Sl

=¢w) I e-2 1= #0
_ J5(w)w N4

7.‘-2(]\[75) - 24¢)5((U) logsN(l + O(l))‘

It is the five primes theorem called (14+4). It is the best asymptotic formula.

Theorem 3.1.47. p; = N — p, * Py * P3 * Py.
Js(w) =0 if (T,N)>1; Js(w) #0if (T,N) = 1.
Let T =1, we have

$(w) d(w) d(w) S(w) 1

Jsw) =2 3 3.

as=1az=1a;=1 a=1 (N = Pa, ParPazPay @)

=¢w II (o-2) 1225 #0,

3<p<pi pIvP T
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7T2(N,5) |{P1aP2,P37P4 P1:P2,P3: P4 S N,ps = lN P1P2P3P41}|
1 p—1 N*¢
T 12 I1 ( (p— )Hp 210gN (1+00):

3<p<pi
It is the five primes theorem called (1+4). It is the best asymptotic formula.
Theorem 3.1.48. ps = p; + p2 + pg * pi, where T' is an odd.

Since Js(w) # 0 there are infinitely many prime solutions.
Let T = 1, we have

Z: Z= Zz: Z= (Pay + Pay + Paspa,aw)]
zss:z[oISp.((p 1p)0+1+p 2)#0

ey Js(w)w Nt .
7T2(]\»5) = 1449’55(0.)) log5 N(l - O(l))

Theorem 3.1.49. ps = p; + p; + pg * pi + b, where b 1s an even and T is
an odd. ’

Let 7' = 1, we have

Js(w)= ), > Z:I{ l ]

= ((p~1) +1~X(P))#0‘
3<p<p P
where x(p) = 1 if p fb; x(p) = —(p —2) if plb.
(V) = S S o),

Theorem 3.1.50. ps = p; + p2 * (p3 + p4) + 2.
Since Js(w) # 0, there are infinitely many prime solutions.
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Let T = 1, we have

$(w) d(w) $w) w)

9=X Y% ¥ o ]

cg==1 ag=1laz=1 aj=1 Pas + pou) + 2’(‘))

=TI (___(p—1)5+1_1)#0.

3.<.PSP.' P
.}5(0)) N“
2465(w) log® N

(N, 5) =

(14+0(1)).

‘Theorem 3.1.51. p, = py *py * + -+ * p_1 + b, where (b,’_f‘) =1 and 2|bf’.

We have
- ¢(w) $(w) 1
Ja(w) = _
oq-1=1 ay=1 (Tn&me ***Paney T b’w)
=¢""w) ]I (p-2) H
3<p<pi pITb
y) 1 -1 Nmt
m(N,n) = 1 (- )12 (1+0(1)).

(n—-l)!aSpSm (p—1)? pmp——2 log" N
Let n = 2, 1t is the prime twins theorem.
Theorem 3.1.52. p, = N —py *py x5 p_y.

Ja(w) = 0if (N,T) > 1; Ju(w) # 0if (N,T) = 1.
Let T' = 1, we have

4;(‘_5) Sw 1
Qnoy=1 aanzl (N = pay - **Pan-1rW)

n-—-2 p-l
=¢""*w) II (»-2) m#O,

3<p<pi pIN

Wz(N,n) = |{P1,"',Pn—1 PPy Pa-1 S N>Pn = |N"P1"'Pn51|}[

: pol N, 0(1)).

Do

= ’ 1-— — e
(n—1)! 3<];:£p;( (p— 1)2) AP —2 log" N
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It is the Rényi’s theorem. Let n = 2, it is the Goldbach’s theorem, see theorem
3.1.2.

Note. All sieve methods obtain only the upper estimates, but the lower
estimates are more difficult{7]. Unfortunately, it turns out there is no method
which will give such a formula for general sifting function. Jn(w) is a precise
sifting function. The Santilli’s isoadditive prime theory will take the place of all
sieve methods.

4. A Disproof of the Riemann’s Hypothesis®

Let s = ¢ + ti, where ¢ and ¢t are real, i = /1. We have the Riemann’s zeta
function 1

((8) = H ']_Ti'v , (41)
P P’
where p ranges over all primes.
~ In 1859 Riemann [9] stated that nontrivial zeros of ((s) all lie on the line
o = 1/2 called the Riemann’s hypothesis. In 1990 Hilbert listed the problem
of proving or disproving the Riemann’s hypothesis as one of the most important
problems confronting twentieth century mathematicians. To this day it remains
unsolved. The arithmetic (sifting) function J,(w) is able to take the place of the
Riemann’s hypothesis and the generalized Riemann’s hypothesis.

Theorem 4.1. For |{(3)| = 0, we have v
N{(0.5+ti) < N(0.4 + ti) < N(0.3 + ti), (4.2)

where N{0.5 + #) denotes the number of nontrivial zeros of (0.5 + ti) with ¢t >
0, N{0.4+%:) the number of nontrivial zeros of ((0.4+%i) with ¢ > 0, N(0.3+3).
the number of nontrivial zeros of ((0.3 + ¢:) with ¢ > 0. The nontrivial zeros of
the Riemann’s zeta function {(s) are independent of the real part o = 1/2, but
may well depend on the imaginary part ¢.

Proof . From (1) we have

A o_ma-Ly= g
C(S) - I;I(l p,) R€ , (4‘3)
where
R=HRm Rp=\/_@f%bﬁ’l+.p%;, : (4.4)
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-y __sin(tlogp)
6=, 6,=rtan?—nl .
el p° — cos(tlog p)

¢(s) = 0 if and only if Re {(s) = 0 and Im ((s) = 0, that is R = co. From (4.4)
we have that if cos(tlogp) < 0 then R, > 1 and if cos(tlogp) > 0 then R, < 1.
If

(4.5)

cos(tlogpy) > 0, ---, cos(tlogp,) > 0, (4.6)

we have p, < e¥p; and tlogp, < tlogp, + .
If ‘
cos(tlogp;) < 0, ---, cos(tlogp,) < 0, (4.7)

we have p, < e’ p; and tlogp, < tlogp, + .

cos(tlogp) is independent of the real part o, but may well depend on prime
pand imaginary part t. We write m,(t) for the number of primes p satisfying
cos(tlogp) > 0, m.(t) for the number of primes p satisfying cos(tlogp) < 0.

For cos(tlogp) > 0 we have

1> Rp(14t) > R,(0.5 + ti). (4.8)

- I my(t) is much greater than m_(¢;) such that R(0.5 + ¢,7)=min. From (4.4),
(4.5) and (4.8) we have for given ¢,

minR(oy +41¢) > minR(1 + £1¢) > minR(0.5 + t17) > minR(og + t17) — 0, (4.9)

9(0’1 -+ t12) = 6(1 + tll) = 9(05 -+ tll) = 9(02 -+ tl’&) = COI].St, (410)

where ¢y > 1 and 0 < oy < 0.5.
Since |{(s)| = % from (4.9) we have

max|((oy + 14)| < max|((1 4 £17)| < max|{(0.5 + ¢,7)| < max|¢(oy + £17)] — oo.

(4.11)
For cos(tlogp) < 0 we have

1 < Ry(0.5 + ti) < Rp(0.4 + ti) < Ry(0.3 + ti). (4.12)

If m_(t1) is much greater than m_ (¢;) such that R(0.5 + ¢;4) = max.

From (4.4), (4.5) and (4.12) we have for given ¢,

maxR(o; + t¢) < maxR(0.5 + ¢12) < maxR(0.4 + ¢,7)
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< maxR(0.3 + $17) < maxR(oy + t17) — o0, (4.13)

where oy > 0.5 and 0 < 0, < 0.3.
Since |((s)| = % from (4.13) we have

min|((oy + ty3)| > min|¢(0.5 + t;7)| > min|¢(0.4 + #,7)|

> min[¢(0.3 + t1¢)| > min|((coy + £,4)| — 0. (4.15)

From (4.15) we have that if [((0.5 + ¢;4)| = 0 then [((0.4 + t,4)| = 0 and if
¢(0.4 + t2i)| = 0 then |((0.5 + 52} = 0 or |((0.5 + £53)] # 0. Therefore we have
N(0.4 + ti) > N(0.5 4 t7). If |¢(0.4 + t12)} = O then !¢(0.3 + ;)| = 0 and if
1€(0.3 = t57)| = 0 then |((0.4 + ¢5¢)] = 0 or [((0.4 + t,i)| # 0. Therefore we have
N(0.3 4 ti) > N(0.4 + ). Q.E.D.

Corollary 4.1. If |((01 + t:1¢)] = min, where oy > 1, then [((0.5 + i)] =
min. If {{(o1 + t;4)| #min then |((0.5 + £1¢)| # min. " For example, we study
the nontrivial zeros of ((0.5 + ¢1), where ¢,=43.327073, 60.831779, 75.704691,
79.337375, 88.809111, 92.491899 and 95.870634 [10]. Since |¢(1+¢,4)| # min [10],
(0.5 + t4¢)] # min, that is [((0.5 + t14)] # 0. Both ((1 + ¢i) and ¢(0.5 + t3)
have the same geometrical diagram (8]. In studying ((1 + #i) we follow that
there are the finite nontrivial zeros of {(s) on the critical line ¢ = 1/2. Since
[((1 + 14.1347254)] ~ 0.3 < |((1 + ti)! with t > 15 {10], by using the first zero of
1¢(0.5 + 14.1347257)| = 0 we study the nontrivial zeros of ((s). For example, if
(01 +14.1347254)| # 0, where 0.5 < 01 < 1, then i((oy +ti)| # 0 with ¢ > 0 and
if [({oy + 14.1347257)| = 0, then |((o; + ti)] with ¢ > 0 has the finite nontrivial
zeros.

Using above methhod we may also disprove the generalized Riemann’s hy-
pothesis that nontrivial zeros of L-function all lie on the line o0 = 1/2. Note.
It was proved that ((1 +¢i) # 0 by employing the trigonometric inequality
3+4cosb + cos26 > 0. We disprove the Riemann’s hypothesis and the general-

ized Riemann’s hypothesis by using the trigonometric functions cos(t log p) < 0.
We define [9]

Clo+Ti) = ——;locr —_——— | (4.16)

where C'(o + T'4) is the number of the cycles of {(s) in 0 < 0,0 <t < T, or the
number of [((s)| = max see (4.11) or the number of |((s)| = min see (4.15).
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We have
C(0.3+Ti)=C(0.5+T:) =C(10+T7) = C(o + T4). (4.17)

Brent[11] gave a computation which shows that the Riemann zeta function ((s)
has exactly 75,000,000 cycles with the zeros and nonzeros in the region 0 < t <
32,585,736 and o = 0.5.
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to Prof. R.M.Santilli for invaluable critical suggestions and encouragements in
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Abstract

In this paper we study the axiom-preserving isotopies of fields, metric
spaces, algebras and groups first constructed by R. M. Santilli [in ref.[2] (and
then studied in more details in ref.[3,4,5]), as well as the isotopies of manifolds
first constructed by Tsagas and Sourlas in ref.[6,7] via a conventional topology
and isodifferential calculus, and then formulated via an integro-differential
isotopology and isodifferential calculus by Santilli in the recent memonr[5]. In
particular, in this paper we generalize the infinitesimal motions on Riemannian
manifolds to isoriemannian manifolds. The significance of the generalization is
pointed out.

Copyright © 1998 by Hadronic Press Inc., Palm Harbor, FL 34682, U.S.A.




1. Background notions on isotopies

The main idea of the isotopies studied by R. M. Santilli [2-5] is the
lifting of the trivial n-dimensional unit I=diag(1, 1, ... , 1) of a conventional
theory into a nowhere singular, symmetric, real-valued, positive-definite and
nxn invertible matrix I=(I,~’) =T =(T, "),i,j=1,2, .. .,n, whose components
have a smooth functional dependence on the local coordinates x, their
derivatives X,X,..., with respect to an independent variable 1 and any need
additional local quantity,

I - f‘——f(t,x,x,f,...), x =—— and so on. ‘ (1)

Since the new and old structures are indistinguishable at the abstract,
realization-free level by construction, the lifting is a particular form of isotopy.

The fundamental isotopies are those of real field R. Let R=R¢x,+,.) be
the field of real numbers x.

Definition 1.1{3]: “Santilli’s isofields” R= R(J?,+,*) are rings with elements
=x1, called “isonumbers” where x € R and ‘1 is a positive-deﬁnite
element generally outside R, equipped with two internal operations + and *
where + is definite by the conventional sum of R as follows:

+#(2,9) > 249 = (x4 )i | a2

H

and « is a new multiplication definite by

~

(5,0 > p=2TH, T =1 , (1.3)
called “isomultiplication”, which is such that I is the left and right unit of R,

[*% =3+ =%, V% e R, (14
called “isounif”. Under these assumptions R isa field, i.e., it satisfies all
properties of R in their isotopic form:

1. The set R is closed under addition, %+ yeR, V%, JeR,

~

2. The addition is associative, X+ (J+2)=(x+p)+2, Vi,y.2 eR,

3. There is an element 0 = 0 , called “additive unit” such that
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2+0=0+%=%VieR, ,
For each element £ e R , there is an element - % € R , called the “opposite
of % ” which is such that %+(-%) = 0,
5. The addition is commutative £+ j = y+%, V%,peR,

b

6. The set IR is closed under isomultiplication, £*j e IR, V%,) € R,

7. The isomultiplication is generally non-isocommutative £* y # j*x, but
isoassociative, X*(p*Z)=(i*p)*5, Vi,j.7eR,

8. The quantity 1 in factorization # = x1 is the “multiplicative isounit” of R
as per Eq.s (1.4),

9. For each element X € R, there is an element £~ € R, called the “isoinverse

of ¥ ”,whichissuchthat 3™ =x"*x=],

10. All elements' £,7,7 € R verify the right and left “distributive laws”
wx(p+s)=ixpains, (R4ppz=nsejus (1.5)

We therefore have the isofield R isoreal numbers . Since R preserves by
construction all axioms of R, it is called an isorope of R and the lifting
R = R is called an isotopy. All conventional operations dependent on the

multiplication on R are generalized on R, thus yielding isotopies of powers,

quotients, square roots, etc. These isotopic operations are however such that |
preserves all the original axiomatic properties of 1, i.e.,
i A

| A~ .
I =irlecai=], 12=] %:1 etc. (1.6)

n-times

|

The mathematical and physically most important implication of
isofields is that they imply, for evident consistency, corresponding isotopies of
all quantities definite over conventional fields. The second significant
application of the isotopies is the lifting of the conventional vector and metric
spaces, first presented in paper [2]. Let E”(x,5,R) be the n-dimensional
Euclidean space, with local chart x=¢x k), k=12, ... ,n, and n-dimensional metric

tensor & =|0, | = diag(l,1,...,1),and distance between two points x,y € E”
Y
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(x=3)%1=(x = y))8, (x/ —y) ) e R ~ (17)

over the real field R, where the convention on the sum of repeated indices is
assumed hereon.

Definition 1.2[2):  “Sawtilli’s isoeuclidear spaces” E‘"(i,é:,f?) are n-

dimensional metric spaces defined over an isoreal isofield R = R(X,+,*) with

A

‘an n-dimensional isounit I, equipped with the * isometric”

A

§=(8,)=tt,x,%%.)8, T =1, - | S (18)

where & is the conventional Euclidean metric, local chart in contravariant and
covariant forms

~

=850 =T/6,x'1, x* e, (1.9)
and “isoseparation” among two points %,y € E"
(%-9)2 =[(J€’—ﬁi)é:i,(.ff—j-l")]feﬁ (1.10)

The “isoeuclidean geometry” [4]is the geometry of the isoeuclidean spaces.
The same apply for the definition of isominkowskian, isoriémannian and other
isospaces and of related geometries.

2. Isomanifolds

The notion of an n-dimensional isomanifold was first -studied by
Tsagas and Sourlas [6,7]. Their study is referent to M(!@), rather than to

M(fi) because of the use of the conventional topology t (i.e. a topology with

the conventional n-dimensional unit I). The extension to A:](}?) of M(I:E)
with the isotopology 3 is introduced first time by R. M. Santilli.[5]. For all
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additional aspects of isomanifolds and related topological properties we
referred the interested reader to R. M. Santilli [5].

Let M be an n-dimensional manifold with local coordinates x = (x")
over the real field R. Let M denote the isotopic images of M with local

coordinates % =(%*) over the isoreal isofield R with isounit 1. For

-~

simplicity we shall ignore the isounit in the definition %=x.I because it
cancels out in the isomultiplication with any quantity Q,
$*Q=x.T'TQ = xQ. The isodifferential calculus on M is defined as an

isotopic lifting of the conventional differential calculus on M under the
condition of preserving the original axioms and properties of the ordinary
differential calculus on M. :

Definition 2.1[5]: The “first order isodifferential” of the local isocoordinates
£* on an isomanifold M of dimension n are given by:

it =1% (%, %, %,..)dx', @)

where the expression di* are defined on M while the corresponding
expression 1“.dx' are the projection on M. Let /(%) be a sufficiently smooth

isofunction of isocoordinates %* on A .Then the “isoderivative” at the point
0 =(g*) e M is given by

NS 65 . 3 1(x) " +di*)-7(g")
f(q )= Ak =Tk Ao = ISyl Ak
ox :?":@" ox £k=(§k d# -0 dx
3 f(%) 2 f(x)

where is computed on M and 'fk’ is the projection on M. An

!

o %
isofunction f(f) is said to be C*® at £ when it is oo - isodifferentiable at £.
The above definition and the axiom-preserving character of the

isotopies then permit the lifting of the various properties of the conventional
differential calculus. We here mention for brevity only the following isotopic
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properties. The “isodifferentials” of an isofunction of isocoordinates x* on
M are defined according to the respective rules

3F sy BF -

df(') = Zopedit = =T
___Aiaﬁf'k'\l _;__“,éf k__ﬁf‘. k’
—Tk axlTledx - xidx *axidex

where the last expression originate from the fact that the contraction is in
isomanifolds.

The moutrinality of the 1sod1fferent1al calculus illustrated by the fact
that isoderivatives commute on M, c9 a” = ﬁ &, , but not in their projection on

M éﬁj =T, ﬁ,Tj o”s ;eTj QT,. 0” (30”;
3. Isovectqr Fields on Isomanifolds

Let M be an isodifferentiable Santilli- Sourlas -Tsagas isomanifold of
dimension n over the isoreal numbers R with n-dimensional isounit i=(f’ )

Let D"( ) be the isoalgebra of all isodifferentiable isofunctions on M.
Every isoderivation on D"(M ) is called “isovector field” on M. If X isan

isovector field on - M , then X has the following properties:
a. AA’:IA)"(AA/I)—» DO(M), )?:f—) X(f)
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The set of isovector fields on Af , denoted by D! (A;/) is turned into a
Lie-Santilli algebra [6,8] over D"( ) by the following operations:
i. sum of two isovector fields: if X,YeD'(M), then X+'Y eD'(M)
definite by
X+P:Do (%) > Do (1), (X+Y)f——>(X+Y)(f) /f’(f)+}7(f)

ii. isoscalar multiplication (the external operation): if f elA)"'(M ), and

- A

X e D'(M), then f*X definite by:
— Frx:Do(M)~ Do(a), [R5 (/%) (8)=F*x(8), (3
iii. - second internal operation (Lie-Santilli bracket): On D' ( #7) we define a
second interal operation, denoted by [ 3], as follows: | |
(-0 (M)x D (#) » D' (#1), (5E(£.7) > [£:91= 27— FiR

where T is the inverse of the isounit 1 of the underlying isofield R.
It can be easily proved that the Lie-Santilli bracket satisfies the following
relations:

a. [X;V]=-[V3X), so [K3X]=0

L L (3.4)
b [X5[Vs Z0+[V5[Z5 X1)+[Z5[X5¥])=0

Hence D! (M) becomes a Lie algebra over D? ( /\;f) .

The moutrinality of the Lie-Santilli isotheory is that it is nonlinear,
nonl-ocal and non-Hamiltonian on M, yet it reconstructs linearity, locality and

comonicity on M. Also note that relations (3.4) are valid on M but yet
necessarily are their projection on M .

4. Isomappings Between Isomanifolds

Let M and N be two differentiable isomanifolds. The mapping ¢ of M
onto N, that 1s,
¢:M >N, ¢:P— §(P)
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is called isomapping. This isomapping ¢ is called differentiable at the point P,
if for every neighborhood U of P, there exists a neighborhood V of the point
& (P such that the isofunction

god eD°(U),VgeD (V).
If the isomapping ¢ is differentiable for all points of M, then ¢ is called

differentiable on the whole M. If ¢ is a homeomorphism then ¢ is called
isohomeomorphism.

Definition 4.1 [8]: Let M be a differentiable isomanifold. A differentiable
ischomeomorphism of M onto M is called differentiable isotransformation
or simply isotransformation.

We consider a differentiable isomapping & of the open interval I ¢ R
into M, that is

G:1- M,d:f el »a(f)e M.
This isomapping is called isocurve on A7. In some cases we consider for the
definition of the isocurve that the isointerval I is closed, that is

I=[a,b1c R, abek. |
This is true under the condition that the isomapping & can be extended to an
open isointerval 11, of R.
If & is a differentiable isocurve on M and if a( ) X, A7) for all 7,
thf:n a is called an integral isocurve of X , Where X is an isovector field on
M.

Theorem 4.1 [8] Let X be an isovector field of the isomanifold M. For

every point Pe M, there exists a unique integral isocurve a( ) of X defined
for |t|(s, where & )0 and such that &(0) = P.

Definition 4.2 [8]: Let ¢ be a differentiable isomapping between two differen-
tiable isomanifolds A and N. Let (U,¢) be an isochart of M and PeU.
From @ we obtain the point ¢(P) e V < §(U). Let D°(U) and . D°(V) be
the isoalgebras of the differentiable isofunctions on U and V respectively. If
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X is an isovector field, then X can be considered as an isolinear operator on
D°(U), that means

2:5°(U)= D (), &7 X(F).
To the isovector )?,. € T,,(M) we correspond the isovector ¥, s € TW’)(N)
defined as an isooperator on De (V) as follows:

Y:D°(V)>D°(V), Vig > ?(Q) :
where F(g) is defined by the relation

}A’(g),;](p) = /‘?(§° ‘fg)p-
Now we have constructed an isomapping, denoted by g/;* p Qf T,,(M )
into T, ,,)(N ) defined as follows:

Bo» :T,,(A%f) = T;(R), 4., :)A(,,A—> bo.(X)=1,,,
This isomapping ¢., is called deArivative of ¢ at the point P. It is easy to show
that the derivative isomapping ¢., is an isolinear mapping.

If §:M—~>N is a differentiable isomapping and X,¥ are C®
isovector fields on M and N, respectively, we say that X and ¥ are p-
related when

§.o(X) =Ty
foreach P e M. If g N— IR isa C* isofunction then
Funlf)= 6o d)= g d)so. (728)26= 5 (524).

Conversely, if this is true for all C* isofunction ¢ g:N IR, then X and ¥
are ¢-related. ‘

Proposmon 4.3 [8]: Let X Y, i=12 be two ¢ -related isovector fields of M

i

and N, respectwely The following relation

([XI,X ))=[7:57,]

holds.
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Proposition 4.4 [8]: Let q’; be isotransformation on M . We set Sf¥= f" ° 43”' ,
where f e D° ( Then,

)
8 (%)= 1. (X) and f*(%x7)=6.(X)r*. % e D'(41).

5. One-Parameter Isotransformation Groups

Let M be a differentiable isomanifold, and Pe M and X bea C®
isovector field on M. If Visan open set containing P and & > 0, then there
is a unique collection of isodiffeomorphims (13,. V- é,-(V)c: M for
|1| < &£ with the following properties:

1. @:(~e.6)xM — M, difined by §{7,P)=4.(P)is C*,

il <&,and g,8,(q) e V then 4., q)= 4.2 8(q ),

3. If g eV, then X isthe tangent isovector at f=0ofthei isocurve

[ — q?,-(q).

Then the family {;5! It e ﬁ} of isodiffeomorphims is called a one-parameter

Lie-Santilli isogroup of isodiffeomorphims of the isomanifold generated by X.
In what follows, we shall often call an isodiffeomorphism of M simply
an isotransformation of M.

If the family {q;, n eI%} is the one-parameter isogroup of

isotransformation of M, then g, is the identity map of A7 and ¢ = g._..
} and Pe M ,

]

Now, for a one-parameter isogroup of isotransformations {¢-
we can define an isovector field on M by

. ldf(gp))
X, f ::{TJ .
I‘=(.)
This isovector field X is called the infinitesimal isotransfomations {&} The

isocurve defined by 0,,(?): éi(p) is an integral isocurve of X such that

6,(0) = p. An isovector field X, which is an infinitesimal isotransfomation of

a one-parameter isogroup of isotransformations of M, is said to be complete.
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If X is complete , then there is only one one-parameter isogroup of
isotransformations which has X as its infinitesimal isotransfomation.

6. Infinitesimal Motions on Isoriemannian Manifolds

Let M be a Riemann manifold over the reals R with local coordinates
x =(x"), k=12, .. n, and nowhere singular, symmetric, real-valued metric
g(x) =(gu.) =g'. Let M denote the isotopic images of M [5]such that M is
defined over the isoreals R with common isounit [ ==(]A,"' ) , local
isocoordinates #=(#)=(x*]), and isometric &(x)=T(r,x.x, ...)g(x). For
isovector fields X and ¥ on A/, define a C* isofunction on A:[by

P—>g,,()‘(f,,f’,,)e1§. This isofunction is denoted by g*'()?,f’). Let

(x,,xz, ,,)be a local isocoordinate system on an open set U and let
g, ,é’,r]’ be the components of g, XY respectively, with respect to the

basis {5 ] of D'(M) Then

4%, Y) (€',7/)i

Let X be a fixed isovector field on . If, for arbitrary isovector ﬁelds
¥,Z on M, .

X[&7.2)] = 8| X3 7). 2) + 8 7.| X5 2)) 6D
holds, then X is called an infinitesimal motion of the isoriemannian manifold

M or isokilling vector field
If we choose ¥ = & ,Z = &, in(6.1), we obtain the system of isodifferential

A

equations for &'
8.0(8)+8,8(E)+8(2,)€ =0, ijk=12,.n (6.2)

X is an infinitesimal motion if and only if the set of components zf "of X s
a solution of the equations (6.2).

The reason why an isovector field X satisfying (6. 2) is called an
infinitesimal motion can be explained as follow.
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We start with a well known definition in the conventional case . Let M
and M* be Riemannian manifolds with Riemannian metrics g and g* ,

respectively. If a differentiable map ® from M to M* satisfies for any point P
of M and any vector u of T, (M) the equality

0.1 = O 63)

then @ calls an isometry from Mto M*.

If a diffeomorphism @ of a Riemannian manifold M onto itself is an
isometry, then @ calls a motion of M. The set of all motions of M forms a
group called the group of motions of the Riemannian manifold M.

For a fixed point p of M for which (6.2) holds for all u e T,.(M), we
have

gqp)((D,u,(D_v) = g,,(u,v) forall u,ve T,(M).

The isotopic lifting of all remaining above aspect as well as the extension to
isoriemannian manifolds will be left for brevity to the interested reader.

Theorem 6.1: Let X be a complete isovector field on an isoriemannian
manifold M. The isovector field X is an infinitesimal motion if and only if
¢ is amotion for each 7 & R.

First we state the following lemma.

Lemma 6.2.[1]: For any given tangent isovector field v at a point p on an
isomanifold M, thereisa C= isovector field X on A such that £ p =V

Proof of the theorem: By the lemma, the isomap D! (’t;!) - Tp ( M) R

X->X » 1s an onto map. Hence, setting qgt = Exp(f * X ), the condition for

¢3,- to be a motion is that

~

8(%.2,)=80(40,7,.80,2).,  a=¢m) (69
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holds for an arbitrary point p of M and arbitrary isovector fields Y,Z.
However, since (¢,.,)qu =(¢;,}’)p and (¢i'):/Z” =(¢,.,Z)p, the equality
above can be written as

&(7.2)( 67 (0) = 4.7, 6.2)»
which means

6'.(2(7.2))-8(4.7.4.2)=0 (6.5)
where ¢7;:D°(U)—» D*(U) is a differentiable isofunction " defined by
$. " (f)=f o4, foranisofunction e D*(U).

Now, let us set

Ai:9.2) =4 (87, 2))+ 84 7.6 ..2) (66)

. Differentiating the first term on the right side
fab

and compute il—fA(f}'} Z)
di” "

of (6.6) with respect to 7 and setting 7 = 0, we get:

~

%[__54‘(8*(9,2)))}. —;xggt[ “(8{7,2)- é(?,z")]
=—!m37((g(¢ )¢ Z)) g{};’ZA))
=u%g(¢~,~.)},¢§.;-2)- )

A2 M) e

and for the second term

=t {(eld7.6.2) -al7.2)

= tim +{g(4..7-7.6..2)+ g(Y¢ 2-2))
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=4t 0410 4.2)- 47, i 2-4.2)
— —g{[%:7),2) - {7, %:2)) (6.8)

= X&(7,2)) - e[ X3 7). 2) - &{7.[ %5 Z]) 6.9)

If . is amotion, then, by (6.5) f(7:¥,Z) =0, so the left side of (6.9) is 0,

and hence X is an infinitesimal motion. '
Conversely, if X is an infinitesimal motion, then by (6.1) and (6.9), for
arbitrary isovector fields ¥ and Z on M we have

Hence, we have

i’; 7.2

d afn s s

—f(#;7,2) =o. (6.10)

di j=b
After some computations we can see that

Hs+58.2)= 477 :9.2) = 7(5:6.7.6..2). (6.11)
If we differentiate this equality with respect to § and set § =0, then, since
d sfn » A » & o
T f(s ¢:.Y, 9 Z) = 0, we have

i=0
dh Ala A AN A AL A A
a;ff(t;}’,Z) -X (i;7,2). (6.12)

On the other hand we have
X(7@:9.2) = X-4::(809.2) + 8(8..7.4,.2))
=—X[¢‘/‘ (7,2} + X[2(4.7.4.2)]. (6.13)

~

Since ¢, X =X, X[4:(2(7,2)] = §-.(X(4(7,2)) and

84.7.6,.2)) = & 6.12:71,6,.2) + §(4,.¥. 4.1 X: 2))




It follows from (6.12) and the fact that X is an infinitesimal motiqn that

X(7G:0.2))= Flist ks 7L 2) + A7, %5 2).
Then for the isofunction f'(f;f’j) satisfies, as an isofunction of f, the

isodifferential equation

C;' A on ~ AL oa -~ A ~ Afa A "~ ~

=/ @8.2)= ~f551 X571, 2) - fi57,1X5 2)). (6.14)
From the definition of f (f ; Y R 2) we can see the following properties:

f@:¥.2)= f(i;2,7)

JEY+V .2y = 7(:7,2)+ f (5,7, 2)

AAAAAAA

Let X,=50:,£, and X=¢X, on U. Then [X; X )=h'X, with
o
B! === . We put fF X, X,) = 7.(7;%) (2 € U). Then
X

and it follows from (6,14) that

df"ﬁi(:"f) =~h'( 3., ®) ], (0:%) - A (4., ®)F,(7:3) (6.15)

for each £ eV and H < &, where V is the a neighborhood of p such that

(V) cU. This shows that, for each % €V, the isofunctions f,(7:%) of 7
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are the solution of (6.15) with the initial condition fjk(ﬁ;f) =0. Obviously, the
isofunctions of / which are identically equal to zero form a solution of (6.15)
with the same initial conditions. Hence by the uniqueness theorem of the
solution of (6.15), we see that f,k(f;.i') =0 for each £ eV and |f|<£. Let
Y=n'X and Z=¢'X, onU. Then
His7.2) = n'(6.:®) ¢ (49) 7, (733

for|/f|<& on ¥ and hence f(f;?,f) =0 on ¥V for|ij<e and for any
¥,Z e D'(U). Then using ( . ) repeatedly, we see that _f(f;)}, Z) =0 for any
In particular, f(7;7,Z)} =0 atpforany 7 € IR andany ¥,Z e D'(U). Since p
is an arbitrar;/ point of M, we get f(f; Y, 2) =0 on M. This proves that (5; is
an isometry for all ¢ e R.

The first significance of our study is that it permits an unrestricted
functional dependence of isoriemann metric and all other quantities, by
therefore broadening the applicability of the theory, e.g., from local-differential
exterior gravitational problems in vacuum, to nonlocal-integral interior
gravitational problems with an arbitrary nonlinearity in the velocities and other
variables. '

Another significance is that the formalism studied in this paper, that for
a positive-definite isounit, is only the first of a chain of possible broader
theories characterized by more general isounits, such as those resulting from
the relaxation of its symmetric character or its assumption as a multi-valued,
ordered set [5]. The latter aspects are contemplated for study in subsequent
papers.
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Abstract

Certain dynamical aspects on one-dimensional spaces can be described via
Santilli’s one-dimensional isodynamical systems which are are characterized by
axiom-preserving maps called isotopies. In this note we discuss discrete one-
dimensional isodynamical systems, isohyperbolicity and isosensitivity.
The isotopic form of Singer’s theorem is also proved. A new isofamily and
a number of one-dimensional isodynamical systems on (-2, +2) are
introduced. Each of these systems is isosensitive and has three
isodiscontinuities, one of them with isozero isoderivative.
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1. Introduction

In 1978 Santilli introduced a new branch of mathematics, called isomathe-
matics, based on maps called isotopies which preserving the axioms of a theory
and have the ability to generalize a unitary, canonical or local theories to thrir
nonunitary noncanonical or nonlocal versions. Santilli has shown that isotopies
have another important property in symplectic geometry, they can change a (lo-
cally) nonhamiltonian system into an isohamiltonian system [5].

In this paper we consider some isotopic properties of discrete one dimensional
dynamical systems. In another paper shall generalize constructions to higher
dimensions.

We us begin by defining isodynamical systems. For this purpose assume
that A4 is an interval of elements of the one-dimensional real Euclidean space
E(X,6,R(n,+,x)) where X, § and R(n, +, x) denote local coordinate, metric
and the set of real numbers respectively. We also assume that f : A « is a
one-dimensional dynamical system. By Santilli’s isotopy of the unit J = 1 of one-
dimensional Euclidean space into the positive isounit J [6] we have an isointerval
A in Santilli’s one-dimensional isoeuclidean space E(X,b {R.(n +, x)) [3,7], with
X=XxI,6=(I)"x68+=4+%=x()x, and R(#, +, %) = {n—nx]
n € R(n,+, x)}, the set of isoreal numbers which is a field under 4 and x [4).

Definition 1.1: A one-dimensional isodynamical _System on Ais a mapping
f: A — defined by f(z) = f(z)x I where & =z x [ € A.

By definition 1.1 the discreteness rests in the dynamical system. So we have
the following three results.

1. pis a fixed point (periodic point) of f if and only if $ = p x [ is a fixed
point (periodic point) of f.

p is called the isofixed point (isoperiodic point) of f

2. The positive isoorbit of the point p € 4, O(p) := {(f)*(p) : n = 0,1,2,...}
is equal to the set {z x [ :z € O(p)} where O(p) is the orbit of p.

3. The iso-w-limit set of the point p € A is defined by @(p) := {£ € A:
There exist a sepuence n; — oosuch that hm §((H)™(p), &) = 0}. It may be

shown that W(p) is equal to theset {zx [ :z € w(p)}, where w(p) is the w-limit
set of p.

Let f be a differentiable map on an open subset of A containing {p} Then
by the deﬁmtlon of isoderivatives [5], the isoderivative of f at p=px1is defined
by the form f (p) = fl(p)x 1.

Definition 1.2: The isofixed point p = p x I of fis called an isohyperbolic
isofixed point if f'(§) # 1. )

It follows that if [ # 1, then an isohyperbolic isofixed point of f is not a
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hyperbolic fixed point for f, and we have the following proposition.
Proposition 1.3: Nonidentity isotopies do not protect hyperbolicity.

2. Isotopic Singer’s Theorem

In this section we restrict isodynamical systems on closed isointervals and
without loss of generality we can assume that A = [-[,[]. The Schwarzian
derivative has an important role in the proof of Singer’s theorem, hence we define
this notion for isomaps.

Definition 2.1: Let f :[~], I] «~ be an isodynamical system of class cs.
Then the isoschwarzian derivative of f at j, denoted by $f(2) is:

§1(8) = 7)1 F () - GI9%(7 @)1 (@)

Proposition 2.2: Let f be an isodynamical system of class C3 and Sf(a:) <0

for all # € [~1,I}. Then §(f*)(2) < 0 for all £ € {~1,1] and all natural number
n.

Proof: Let g be an isodynamical system of class C3. Then

$(fod)(#) = S(fog)(z)x I
[(5)(g(2))g'(2)* + Sg(a)) x I
($H)(a(ENX1g (@) + S4(2) (D).
So the proposition follows by induction.O

Let p € [~1,I] be an isoperiodic isopoint of period N, i.e. N is the smallest
positive integer such that fN(p) = p. Then p is called isostable if |(fN) (p)] < [
where |.| = [8(.,.))/2. : )

Definition 2.3: The isostable manifold of p, denoted by W?*(5), is the set of
points £ such that (f)™(£)->p when m — o0.
 Lemma 2.4: If W*(p) is the stable manifold of p for the mapping f, then
We(p)={zxI:2€W(p)}

Proof:

exl=5eWp) & (fy™&)>p when m — oo
& f™z)x[Spx ] when m — o0
& f™z)—p when m — oo
& zeW(p). O

For the isotopic form of Singer’s theorem we assume that f has the following
properties.
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1. f(0) =
I2. f(:c)<0 for all £ € (0, I)andf(x)>0 for all £ € (- -1,0);
13. $f(%) < 0 for all 2 € [, ]] and 5f(0) = —oo x I is also acceptable.

The statement of the isotopic form of Singer’s theorem follows:

Theorem 2.5: Let f is of class C® and satisfies 11, I2 and 13, then the isostable
manifold of every isostable isoperiodic isopoint contains at least one of the iso-
points ~1I, 0, 1.

Proof. By isotopy we conclude that
A. f satisfies 11 if and only if f(0) =1 ;

B. f satisfies 12 if and only if f'(z) < 0 ; for all z € (0,1) ;
C. f satisfies I3 if and only if $f(z) < 0 ; for all z € [-1,1]. S£(0) = —oo is also
acceptable.

Now by Singer’s theorem W#(p) contains at least one of the points -1, 0, 1.
Hence by lemma 2.4, W*(p) contains at least one of the points —1, 0, . O

3. Isosensitivity

The concept of isosensitivity is similar to that of sensitivity [1]. We have the
following definition.

Definition 3.1: We say that the isodynamical system f A e has isosensitiv-
ity if for all € > 0 there exist C > 0 and a subset B of A with positive Lebesgue
measure satisfying the following condition:

VigeB 3n20&3e Aa(|(f)"G) - (@) >CxT&|s-d] <ex .

Lyapunov exponents have an essential role in the notion of sensitivity. We
now define the isotopic form of the Lyapunov exponent.

Definition 3.2: Let (f)* be an isodifferentiable map on an open subset con-
taining £ € 4 (n=1,2,3,...). If A(2) = lim [log|(( A™V1/a) x I exist, then it
is called the isolyapunov exponent of f at &.

Theorem 3.3: Suppose B is a subset of 4 with positive Lebesgue measure and
the isolyapunov exponents of f on B are positive, then f:A < has isosensitivity.

Proof. Let ¢ > 0 and § € B be given. Let C = 1 and choose n > 0 so long

that . )
(&) = Logl|((f)™) (8)/a) x I or &3 o |((fym)'(2)] x ],
where é#%M(#) = I T x(AX3()) ¢ f (6].
We can now find ng > 0 such that |((f) )(z)l > 1/diamA for all 3 € B,

where diamA i is the diameter of Ain respect of 6.
Hence if |§ — q[ < €x I, then | fro(§) - f"°(q)| > l/dzamAxdzamA =1i.0
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Now we would like to introduce a one-isoparameter isofamily of isomaps on
(=2,2) « such that each of them has three isodiscontinuities, one of them with
isozero isoderivative. For this purpose consider the one-parameter family of maps
on (-2,2) of the form:

Y2+ a)+p if -2<z< -1
folz) = —p(=z)—-p if -1<z<0
# P(z)+ p if 0<z<l1

-p(2-2)-p if 1<z<2

where 1 < g < 2 and % : (0,1) = (=2,0) is 2 C? map which satisfies the
conditions A, B and C
A) ljr?* P(z)=0 and lir(r)l+ P(z) = -2,
B) ]jrg+ P(z)=0 and $< ljrgl P(z) < 2;
L=t rT—1"
C) ¢"(z)>0 for all z € (0,1).
This family was introduced by this auther in {2]. Now we introduce the isotopic

form of this family. ) o
We define the isofamily {f;} of isomaps on (—2,2) by the form:

fal@) = fu(x) x I

Theorem 3.4: There exists o > [ such that f; has isosensitivity for all
I<p< o

Proof. In [2] we have proved that there exists g > 1 such that f] has
isosensitivity when 1 < p < pg, so the theorem follows from theorem 3.3. O
We finish this section by posing some open problems.
1. What is the supremum of the set {fg : fio satisfies the properties of theorem
3.4}7
2. What will happen to the isofamily if we change the condition Iirgl ¥(z) < 2

z—s1"

to the condition lim ¥'(2) = oo ?
z—1"
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