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PREFACE

The primary objective of this volume is to attempt the construction of a covering of the
Galilei relativity which is applicable to nonconservative and Galilei form—noninvariant systems and
which is capable of recovering the Galilei relativity identically at the limit of null nonconservative
forces. We shall then explore the problem of the possible consequential existence of a relativistic
generalization.

Such a task is clearly of a rather delicate nature. In particular, it implies the study of a
possible generalization of Galilei’s relativity ideas which have remained unchanged for centuries
within a Newtonian context.

Almost needless to say, a problem of this nature goes beyond my capabilities as an isolated
researcher. As a result, | will have achieved my objective if | succeed in stimulating the awareness
of our community of basic studies on the need to reexamine the problem of the relativity laws of
Newtonian Mechanics. Equivalently, this volume is an expression of my personal belief that the
Galilei relativity is not expected to be the terminal relativity of the systems of our everyday experi-
ence, that is, generally nonconservative.

- Xl -
Permit me to begin with the following introductory remarks.

(1) THE NEED OF A GENERALIZATION OF THE GALILE! RELATIVITY. The study
of this need was the primary objective of Volume I. The starting point was the experimental evi-
dence that the Newtonian forces are generally nonconservative and form—noninvariant under the
Galilei transformations. The analysis was conducted by using the methodology of the Inverse Pro-
blem in Newtonian Mechanics, that is, the integrability conditions for the existence of a Lagrangian
or a Hamiltonian. The study allowed the identification of the following five classes of Galilei sym-
metry breakings.

I.  Selfadjoint Breaking. This is the conventional classical breaking of any symmetry,
consisting of the addition of a symmetry breaking term to a symmetry —preserving
Lagrangian or Hamiltonian. It was called “selfadjoint breaking’ because, at the
level of the equations of motion, it consists of the addition of form—noninvariant
selfadjoint forces to form—invariant systems.

. lsotopic Breaking. This is a new form of breaking induced by the multiplication
{rather than the addition) of form—noninvariant terms to the form—invariant equations
of motion, in such a way to verify the integrability conditions for the existence of
a Lagrangian or a Hamiltonian. As a result, even though the new systems are equi-
valent to the original ones by construction, they break the Galilean symmetry. It
should be recalled here that this breaking is purely formal on relativity grounds in
the sense that, when the original systems obey the Galilei relativity, the relativity
laws are still applicable to the equivalent system. Nevertheless, the Galilei group is
replaced by a nonisomorphic group which leads to the conventional Galilei conserva-
tion laws (isotopically mapped Galilei group).

i1l.  Semicanonical Breaking. This breaking occurs when some of the acting forces are
nonconservative (nonselfadjoint), but they are such to admit an indirect analytic re-
presentation within the coordinates of the experimental detection {nonessentially
nonselfadjoint systems), and the emerging Lagrangians or Hamiltonians are invariant
under the Galilei group. In this case we have the consequential existence of ten first
integrals (the generators of the Galilei transformations). However, the physical con-
servation laws of the Galilei relativity are lost. In particular, this breaking indicated
the existence of a dichotomy of generators of Galilei transformations versus the physi-
cal conserved quantities which is absent for systems strictly obeying the Galilei rela-
tivity.
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IV. Canonical Breaking. This breaking occurs when some of the acting forces are
nonconservative and form—noninvariant under the Galilei transformations, but still
such to verify the integrability conditions for the existence of an indirect analytic
representation within the coordinates of the experimental detection of the systems.
The existence of a Hamiltonian insures the direct applicability of the cancnical
formalism and, thus, the direct applicability of the Lie algebras as methodological
tools. Neverthelgss, the canonical formalism of the Galilei relativity is not directly

applicable.

V. Nonselfadjoint Breaking. This is the most general breaking identified by the method-
clogy of the Inverse Problem, and it is the breaking which more frequently occurs in
the Newtonian physical reality of the systems of our everyday experience, such as,
particles under drag forces due to friction, damped and forces oscillators, spinning
tops with drag and applied torques, etc. The acting forces are not only nonconservative
and form—noninvariant under the Galilei transformations, but such to violate the inte-
grability conditions for the existence of an indirect analytic representation within the
carrier space of the experimental detection (essentially nonselfadjoint systems). In
this case, not only the Lie algebra of the Galilei group cannot be directly introduced,
but all Lie algebras Joose their direct applicability as a methodological tool in the frame
of the observer.

It should be recalled that the Galilei transformations are the (largest possible linear) transfor-
mations for the transition from one inertial system to another. This property clearly persists also
for breakings | — V. Our analysis is instead centered on the problem of the relativity laws of sys-
tems which are nonconservative and form—nonivariant under the Galilei transformations.

Another contribution of the Inverse Problem, which is relevant for relativity considerations,
is the indirect universality of & Lagrangian or a Hamiltonian, i.e., the existence of coordinates
transformations under which Newtonian systems verify the integrability conditions for an indirect
analytic representation. In fact, given a nonconservative and Galilei—noninvariant system, there
always exists an equivalence transformation to new coordinates in which the systems reduce to the

"free’’ motion by therefore acquiring a Galilei—invariant form.

When a system in its original form violates the Galilei relativity, a conventional attitude is
that of attempting the construction of an equivalent system in new coordinates which is form—
invariant under the Galilei transformations. This attitude is undoubtedly consistent on mathematical

grounds. Nevertheless, its physical consistency was questioned in Volume | because, for instance,
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of the physical inconsistency between the experimentally established nonconservative nature of

the system in the coordinate space of its actual occurrence as compared to the conservative nature
of the equivalent systemin the mathematical space of the new coordinates. Besides, this new co-

ordinate system is generally nonrealizable in the experimental set up (because it generally involves

highly nonlinear and velocity—dependent transformations). Also, the indicated attitude is equival-

ent to its opposite, namely, the transformation of a system which is experimentally established as

obeying the Galilei relativity into a new system in new coordinates which violates this relativity.

It is hoped that the analysis of Volume | has established the need of confronting the pro-
blem of the relativity laws which are applicable to nonconservative and Galilei—noninvariant systems
in the physical frame of their experimental detection. Once this basic problem has been solved,

then we can study the problem of relativity under arbitrary {nonlinear) transformations.

{2) THE COVERING NATURE OF THE INTENDED GENERALIZATION. As stressed in
Volume |, new insights in theoretical physics never “destroy’ previous accomplishments of proved
physical effectiveness. They only implement them in a broader conceptual, physical, and method-
ological context. A generalization of the Galilei relativity would be inconsistent beginning from its
formulation, unless it is a covering of the conventional Galilei relativity. In particular, as recalled in
Section 1.1.2", the conventional Galilei relativity and its generalization must be compatible, in the
sense that there must exist limiting (expansion) procedures of clear physical significance which re-
duce the new relativity to the old {and viceversa). Also, the new relativity must apply to a non-
trivially broader physical context.

Several coverings of the Galilei relativity already exist. The fundamental coverings are those
offered by Einstein Special Relativity and Quantum Mechanics. In. the former case we have a
classical covering of the Galilei relativity for speeds of the order of that of light. In the latter case,
we have a covering of the Galilei relativity of quantum mechanical nature while the admissibie
speed remains nonrelativistic. These two coverings can be considered at the foundations
of two corresponding series of coverings, one of classical and one of quantum mechanical nature.
The methodological context of the former series is that of (classical) Field Theory or of the General
Theory of Gravitation, while that of the second series is Relativistic Quantum Mechanics or Quantum
Field Theory.

The covering of the Galilei relativity which is attempted in this volume is according to none
of these lines. The intended covering is purely classical by assumption and, thus, quantum mechan-
ical generalizations are excluded. Also, the intended covering is purely nonrelativistic, and, thus,
relativistic generalizations are excluded too. As a matter of féct, the novelty of the analysis relies

precisely in attempting a covering of the Galilei relativity which, by central assumption, is different

*All references to sections and formulae of Volume | will be denoted with a prefix I.
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than the existing coverings. This objective is made possible by the nature of the acting forces,
rather than the value of the action functional (as compared to the Planck’s constant) or the

value of speed (as compared to the speed of light).

Figure 1 illustrates the objective under consideration, where SA (NSA) stands for variational
selfadjointness (nonselfadjointness). Note that the figure refers only to the case of flat spaces, that
is, the inclusion of gravitation may imply an additional chain of covering. Note also the preserva-
tion of the local—differential character of the geometry, which will be kept throughout our analysis.
In fact, the case of the still more general (and more realistic) nonlocal systems call for the identifi-
cation of suitable analytic, algebraic, and geometric methods. As such, its inclusion may imply a
conceivable, further chain of coverings. Finally, note that the figure includes a quantum mechanical
generalization. This latter covering will be studied in the next volume, and assumed at the founda-

tion of the structure model of hadrons for which this series of monographs is intended.

To summarize, the covering of the Galilei relativity which is attempted in this monograph
is centered on the extension of the acting forces, from the familiar local, selfadjoint, and Galilei
form—invariant form of current studies, to the most general possible local, nonselfadjoint, and Galilei
form—non—invariant form. This provides the “nontrivially broader physical context” mentioned
earlier.

The compatibility of the classical relativistic and the quantum mechanical nonrelativistic
coverings with the conventional Galilei relativity are provided by the “limiting procedures of clear
physical significance” : v/c=3 O {Inonu—Wigner contraction) and (#action}0 (Correspondence
Principle), respectively. The corresponding, but different, limit for the classical nonrelativistic cover-
ing is: relativity breaking forces = O.

The new covering of the Galilei relativity will therefore be attempted under the uncom-
promisable condition that it coincides vith the conventional Galilei relativity when all relativity
breaking forces are null.

(3) THE METHODOLOGICAL TOOLS OF THE INTENDED GENERALIZATION. As
stressed in Volume I, Newtonian systems with forces derivable from a potential (i.e., systems which
are essentially selfadjoint in the variational sense) can be effectively treated within the context of
Lagrange’s and Hamilton’s equations without exiernal terms. In particular, this implies that the
underlying algebraic structure is a Lie algebra while the underlying geometry is a symplectic geome-
try. These are the well—known and deeply interrelated analytic, algebraic, and geometrical tools
of the conventional Galilei relativity.

In the transition to Newtonian systems which are essentially nonselfadjoint (in the variational
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sense), the situation is different. First, the integrability conditions for the existence of conven-
tional analytic representations within the frame of the experimental detection are violated. This
implies the lack of direct applicability of the conventional canonical tools of the Galilei relativity.
In turn, this implies the lack of direct applicability of Lie algebras in canonical (Poisson) form,
and of the Galilei Lie algebra in particular. Finally, these occurrences imply the corresponding
lack of applicability of the symplectic geometry also when realized via the fundamental (canonical)
t wo—form.

This situation suggests a reinspection of the conventional analytic, algebraic and geometric
tools to see whether there exist generalized formulations which are directly applicable to the con-
sidered broader class of equations of motion, that is, applicable within the coordinate system of
their experimental detection.

On analytic grounds, the most significant possibility of which | am aware is that offered by
the analytic equations originally conceived by Lagrange and Hamilton, those with external terms.
Their direct applicability (i.e., “universality’’) to the considered class of equations of motion is
self—evident. The Lagrangian or Hamiltonian can represent not only the free motion, but also all
the relativity preserving forces, while all the additional, relativity violating forces can be represented
with the external terms. The fact that these broader analytic equations are 2 covering of the con-
ventional equations is also self—evident. And indeed, the former coincide with the latter at the
null value of the external terms. As a result, the use of Lagrange’s and Hamilton's equations with
external terms clearly constitutes a promising analytic context for the intended generalization of the
Galilei relativity.

A new perspective also emerges from an algebraic profile. The brackets of the time evolution
law characterized by the original analytic equations violate the Lie algebra laws. This literally implies
the loss of the Lie algebra as a methodological tool whenever analytic equations with external terms
are considered. Rather than considering it a drawback, | believe that this occurrence is most pro-
mising on methodological grounds. If the indicated analytic brackets violate the Lie algebra laws,
this does not mean that they cannot characterize a more general, well defined, nonassociative algebra.
A study of this problem, as we shall review in this volume, reveals that the analytic brackets induced
by Hamilton’s equations with external terms, when properly written, characterize a Lie—admissible
agebra. Most intriquingly, this algebra results to be a genuine algebraic covering of the Lie algebra.
This is parallel to the fact that Hamilton's equations with external terms characterize an analytic
covering of the conventional canonical equations. As a result of this analytic backing, the Lie—
admissible algebras clearly constitute a promising algebraic context for the intended covering of the

Galilei relativity.

Predictably, a new perspective emerges also from a geometrical profile. In fact, the symplectic
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geometry is deeply linked to the conventional canonical equations and to the antisymmetric char-
acter of the Lie algebras. But the Lie—admissible algebras are not antisymmetric.

The need of a suitable covering of the symplectic geometry then emerges. As we shall see, the con-
struction of this covering appears to be feasible.

To put it in different terms, | do not believe that one can achieve a truly novel covering
of the Galilei relativity without first identifying the coverings of the central methodological tools

of current relativity ideas: the analytic, algebraic, and geometrical tools.

In this monograph, | shall, therefore, first indicate the existence of the coverings of these
methodological tools, and then confront the problem of the generalization of the Galilei relativity
for arbitrary Newtonian systems.

I cannot close this introduction without indicating the existence of a covering of the Galilei
relativity of Lie character, which is presented in Volume Il of my Foundations of Theoretical
Mechanics with Springer—Verlag. | hope that this latter volume will appear in print jointly with
this one of Lie—admissible orientation, because the two coverings are deeply inter—related and
mutually compatible.

Consider our planet Earth. When isolated from the rest of the Solar System, it verifies all
the conventional conservation laws of total quantities. Nevertheless, the internal forces are non—
Hamiltonian. Systems of this type were called in Volume | of closed nonselfadjoint type. Stated
in different terms, total conservation laws, by no means, demand that the internal forces are necessar-
ily of potential and Galilei—form—invariant type. In fact, they can occur under a substantially more
general class of {local) nonselfadjoint forces.

The problem of the relativity which is applicable to closed nonselfadjoint systems is at least
two fold.

A. RELATIVITY FOR THE EXTERIOR CLOSED TREATMENT. One can be first inter-
ested in identifying the relativity for the characterization of the system as a whole when seen from
an outside observer {exterior treatment). In this case, primary emphasis must be given to total con-
servation laws (closure) and their derivability from suitable symmetries. Technical reasons then sug-
gest that the product of the time evolution is, first of all, antisymmetric (to permit the conservation
of the total energy), and, second, it obeys the Jacobi law {to permit integration to a finite time
evolution), i.e., it characterizes a Lie algebra. However, and this is the point of departure from
current studies in the field, the Lie algebra need not necessarily be realized via the simplest possible
product {the Poisson brackets), bt can be realized via the most general possible product {the so—
called generalized Poisson brackets).

The transition from the conventional to the generalized Poisson brackets within a fixed sys-

tem of local variables is called a Lie—isotopy. Hence, the tools for the exterior treatment of
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closed nonselfadjoint systems are called of Lie—isotopic type.

The physical meaning of the transition from the simplest possible realization of Lie algebras
to the most general possible one is the following. In the former case we have a closed system of
point—like constituents with only action—at—a—distance forces, while in the latter case, we have a
closed system of extended i with acti at—a—distance/potential as well as contact/non-

potential forces. Thus, the Lie—isotopy permits the treatment of the constituents as being extended.
This implies the necessary presence of contact interactions for which the notion of potential energy
has no physical basis.

As is well known, the Galilei relativity applies only to closed systems of point—like particles
with potential and Galilei—form—invariant internal forces. It is therefore clear that the Galilei re-
lativity is physically and mathematically unable to characterize the more general class of closed non-
selfadjoint systems.

This latter problem has been studied in detail in my indicated Volume 11 with Springer—
Verlag, resulting in the proposal of a Lis—isotopic generalization of the Galilei relativity.

B. RELATIVITY FOR THE OPEN INTERIOR TREATMENT. The study of the relativity
according to lines (A) does not exhaust, by far, the relativity problem. In fact, a complementary
problem is the identification of the relativity which is applicable to each extended constituent of
a closed nonselfadjoint systems, while considering the rest of the system as external (interior pro-
blem).

It should be indicated from the outset that no meaningful differentiation between the ex-
terior and the interior relativity exists for conventicnal conservative systems. As an example, con-
sider the Solar System which, in Newtonian approximation, is closed and selfadjoint. Then the
same relativity (the conventional Galilei relativity) applies for both the characterization of the SYs-

tem as a whole (exterior problem) as well as that of the center—of—mass trajectory of each constituent

{interior problem).

In the transition to the more general closed nonselfadjoint systems the situation is different,
and the exterior relativity is generally insufficient for the characterization of the interior problem.
This can be seen in a number of ways, e.g., via the fact that the total value of non—Hamiltonian
internal forces must ke null to permit closure (Appendix 1. 1.C). As a result, effects which are

ignorable at the exterior level, are not necessarily so at the level of each constituent.

But this is only the beginning. The stability of a closed selfadjoint system is essentially
based on that of the orbits of the constituents, as evident for the solar system. The stability of
a closed nonselfadjoint system, instead, is achieved under the maximal possible instability of the
orbits of the constituents, as evident from the fact that the Earth as a whole is stable, yet tra-

jectories in its atmosphere are unstable.
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This latter situation permits the formulation of the relativity problem to be confronted

in this volume as consisting of the identification of suitable sy ies of the equati of motion
which can effectively characterize nonconservation laws under unrestricted (local) external forces.
By comparison, the exterior problem consists of the identification of symmetries capable of repre-

senting total conservation laws under non—Hamiltonian internal forces.

But, closed systems are a particular case of the open ones. Thus, the objective of this
valume is to achieve a relativity for local Newtonian systems which, not only is a covering of the
relativity of the conventional conservative systems, but also of its isotopic generalization for closed
nonselfadjoint ones.

The reader should keep in mind that a possible arena of applicability of the covering relativity
{which motivated my efforts) is that of the hadronic structure under the essumption that the strong
forces are not (entirely) derivable from a potential. The analysis of this vdume is therefore an essential
prerequisite to that of Volume i1l of this series in which | shall confront the problems of quantization,
of the explicit construction of a structure mode! of the hadrons, and of the comparison of the pre-
dictions of the theory with the experimental data.

A possible arena of applicability of the intended covering relativity is therefore that of the
strong interactions in general, of course, upon suitable quantization. As recalled in Volume I,
strong and electromagnetic interactions exhibit profound physical differences in the carrier space
of their experimental detection (Euclidean or Minkowski space). According to the contemporary
approach, both the electromagnetic and the strong interactions are derivable from a potential and,
therefore, they belong to the arena of applicability of established relativity. Their differentiation is
attempted through additional degrees of freedom of the strong interactions in the mathematical space
of the unitary internal groups (which is absent for the electromagnetic interactions). One of the
contentions of Volume | is that, perhaps, this is insufficient to achieve a differentiation between these
interactions as it occurs in the physical reality. The analysis of this volume opens the possibility of

differentiating the electromagnetic and the strong interactions through their relativity laws.

According to established knowledge, the electromagnetic interactions are derivable from a
potential, they are strictly Lie in algebraic character; and they obey the established relativity laws.
The analysis of this volume opens the possibility of treating the strong interactions as being analyti-
cally more general of the electromagnetic interactions (i.e., nonselfadjoint); of being Lie—admissible
in algebraic character; and, thus, of obeying Lie—admissible coverings of established laws. This ap-
proach is expected to produce a profound differentiation between these interactions in the physical
space of their experimental detection.

Once the rudiments of the covering of the Galilei relativity will be identified, | shall touch

on the problem of a possible corresponding covering of the Einstein special relativity. The need for
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this latter covering has also been indicated in Volume |. The problem of the existence of this cover-
ing can be reduced to that of the existence of the covering of the Galilei relativity from simple com-
patibility considerations. Besides, contact nonselfadjoint interactions and their Lie—admissible treat-
ment are incompatible with the physical and mathematical structure of Einstein’s special relativity.
if a covering of the Galilei relativity of Lie—admissible type exists, a covering of the Einstein special
relativity of Lie—admissible type must be expected. As a matter of fact, it is conceivable that the
contraction—expansion techniques which interrelate the Galilei and Einstein relativities admit a cor-
responding formulation at the level of their intended coverings.

Predictably, the problems which | shall leave open are t00 numerous to suggest an outline.
Therefore, the reader should not expect the construction of the intended covering relativity up 1o
the maturity and level of sophistication of the established relativities. In essence, the primary objective
of this monograph is to introduce new methodological tools of intriguing possibilities in theoretical
physics, and then to indicate that covering relativities within these broader formulations appear to
exist.

This limited scope is sufficient for the objectives of Volume 111, lrrespective of whether actu-
ally constructed or only identified as possible, any new relativity has always proved to have a deep
impact in our representation of the physical reality. This was the case, in particular, for the Einstein
Special Relativity within the context of the problem of the atomic structure. On grounds of our
current experimental and theoretical knowledge, it is conceivable that a similar situation might eventu-
ally occur for the problem of the hadronic structare.

Also, the reader should not expect that the term {covering) “relativity” used in this volume
has the same meaning as that of the established relativities. As we shall see, the different physical
nature of the systems considered implies an inevitable modification of their “relativity’ context.

The reader should finally be aware of the conceptual attitude which is implemented during
the analysis of this volume. The conventional canonical equations, the Lie algebra structure, and the
symplectic geometry are at the foundations of contemporary theoretical physics. All my efforts are
centered in indicating the existence of suitable generalizations. This attitude is motivated by my

belief that theoretical physics is a science which will never admit terminal descriptions.

December 26, 1977 Ruggero Maria Santilli

Lyman Laboratory of Physics
Harvard Uhiversity

Cambridge, Massachusetts
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NOTE ADDED IN 1982

This volume was written in the last part of 1977, although | released it for printing a num-
ber of years later (1982). This delay is due to several reasons and, most particularly, to the desire
to have this volume in print jointly with Volume |l of my monographs Foundations of Theoretical
Physics with Springer—Verlag (which is also printed in 1982). The advisability of having the two
volumes  printed together is suggested by the fact that the Springer—Verlag volume presents
topics which are prerequisites for the full understanding of this volume. | am referring, e.g., to the
Birkhoffian generalization of the Hamiltonian mechanics and to the Lie—isotopic generalization of
the Galilei relativity presented in the Springer—Verlag volume which, in the final analysis, are necessary
prerequisites for the Birkhoffian—admissible generalization of the Birkhoffian mechanics and the Lie—

admissible generalization of the Lie—isotopic relativity, presented in this volume.

Evidently, several scientific events have occurred in the period 1977—-1982, such as: the
founding of the HADRONIC JOURNAL (1978); the organization of four Workshops on Lie—admissible
Formulations (1978—1981); and the First international Conference on Nonpotential Interactions and
their Lie—admissible Treatment (1982). 1t is also evident that, during the period 1977—1982, there
has been the appearance of several independent contributions by mathematicians and physicists which
have a direct relevance to the problem of the construction of a Lie—admissible relativity. As a
result, these contributions have been invaluable for the achievernent of a better maturity
of this volume. In turn, this has implied an inevitable rewriting of some of its parts.

In essence, Chapter 1 {containing an elementary introduction to Lie—admissible algebras) has
been left unchanged. | have only added,at the end,a list of references of recent studies for a more
advanced knowledge of the topic. Chapter 2 {containing the rudiments of a Birkhoffian—admissible
generalization of the Birkhoffian mechanics) has been completely rewritten as a consequence of the
several writing and rewritings of the corresponding part in the Springer—Verlag monograph dealing
with the Birkhoffian mechanics. Chapter 3 {on the Lie—admissible generalization of basic aspects of
Lie's theory) has been left essentially unchanged, and | have limited myself to the indication of the
most salient contributions in the problem since 1977. Chapter 4 {on the possible existence of a
symplectic—admissible generalization of the symplectic geometry) has been rewritten in several parts.
Finally, Chapter 5 (presenting the conjecture of the Lie--admissible relativities) has been rewritten
in part. The new references have been added to the bibliography of 1977 beginning with call 183.

July 19, 1982
The Institute for Basic Research

Ruggero Maria Santilli

96 Prescott Street, Cambridge, Massachusetts
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CHAPTER 1

LIE-ADMISSIBLE ALGEBRAS



1.1: STATEMENT OF THE PROBLEM

The fundamental relevance of Lie algebras for contemporary
theoretical physics is well known. Within the context of Newtonian
systems with forces derivable from a potential, this relevance
originates from the fact that the brackets of the time evolution
law induced by Hamilton's equations without external terms (the

Poisson brackets), satisfy the Lie algebras laws (or identities,

sometimes also called axioms)

ab +ba =0 Ceteda)

(ab)c + (be)ar + (ca)b=o0, (1.1.1b)

here written in their abstract form. This provides a deep inter-
relation between the analytic and the algebraic approach to the
systems considered.

A central objective of this monograph is to attempt the
identification of an algebraic covering of Lie algebras consisting

of the so-called general Lie-admissible algebras as characterized

by the general Lie-admissibility law

(ab)ec + (bda =+ (ca)b

+(cb)a + (ba) c + (ac) b

(1.1.2)

a (be) + b(ca) + ¢ (ab)

4+ ¢ (ba)+ blac) + a (eb)

here also written it its abstract form. The primitive idea that
general Lie-admissible algebras constitute an algebraic covering
of Lie algebras originates from the properties: (a) general Lie-
admissible algebras contain Lie algebras in their classification
or, equivalently, the Lie algebras are Lie-admissible, and (b)
general Lie-admissible algebras reduce to Lie algebras at the
limit when their product becomes anticommutative.

The physical relevance of the general Lie-admissible algebras
for Newtonian mechanics will be identified as follows. Newton-
ian systems with forces not derivable from a potential can be
represented with Hamilton's equations with external terms. As we
shall see, the generalized brackets of the time evolution law
induced by these broader equations violate the Lie algebra laws
(1.1.1). But, when properly written, they characterize precisely
a general Lie-admissible algebra, i.e., satisfy law (1.1.2). 1In
particular, under certain restrictions, these generalized

brackets characterize the subcalss of flexible Lie-admissible

algebras with laws
(a,b)o\-a(ba):-o) (1.1.3a)

(ab)c + (bcda ~ (ca)b
= o (be) + blca) + c(ab)/

(l.1.35)

where Eg. (l.1.3a) is called the flexibility law and Eg. (1.1.3b),

called the flexible Lie-admissibility law, is a particular form

of Eg. (1.1.2) under the flexibility condition. At the limit of
null forces not derivable from a potential, the generalized

brackets reduce to the conventional Poisson brackets.




We can therefore say that, for the considered broader class
of physical systems, the general or flexible Lie-admissible
algebras are related to Hamilton's equations with external terms
in precisely the same measure as the Lie algebras are related to
Hamilton's equations without external terms. The possible cover-
ing nature of the generalized approach is then supported by the

property that, at the limit of null forces not derivable from a

potential, the analytic and the algebraic approach reacquire their

conventional structures.

The above remarks are intended to indicate that Lie-~admissible

algebras have a fundamental role in our analysis. It is therefore

advisable to first present them in their most natural setting,
the theory of Abstract Algebras. This is the objective of this
first chapter.

The reader should be aware that the brief review of Abstract
Algebras presented in this chapter, even though restricted to
only the branch of this discipline dealing with nonassociative
algebras, is largely insufficient. Our objective is merely that
of presenting those aspects of the theory of Abstract Algebras
which are essential for a proper characterization of the Lie-
admissible algebras as well as for the identification of their
relationships with other nonassociative algebras. To assist the
interested reader, we shall then quote, during the course of our
analysis, a number of relevant references for subsequent study.

The Lie-admissible algebras were identified by A.A. Albert
in a paper of 1948,l but without a detailed treatment. Two

subsequent papers, one by L.M,Weiner of 19572 and one by

P.J. Laufer and M.L. Tomber of 19623 presented an initial treat-
ment of these algebras. Subsequently, R.M. Santilli identified

the significance of these algebras for nonconservative systems as

well as continued the study of their proverties in papers of 1967,4

1968°, 1969% and 1970.7 1In an unpublished note of 1967,% R.M.
Santilli and G. Soliani studied the possible existence of a Lie-

admissible covering of the Bose-Einstein and Fermi-Dirac statistics.

In a letter of 19699 R.M. Santilli and P. Roman studied the possible

statistical implications of Lie-admissible algebras with particular
reference to nonconservative plasmas.
Subsequently, new contributions by mathematicians on Lie-

admissible algebras have appeared in the specialized literature.

H.C. Myung provided additional studies in papers of 1971,10

11,12 and 1976;13 other properties were identified by A.A.

Sagle in a paper of 1971;14 and D.R. Scribner and H. Strade

1872,

studied the Lie-admissible algebras with particular reference to
their relationship with the nodal noncommutative Jordan algebras
in their respective papers of 197115 and 1972.16 The existence
of a thesis by W. Coppage of 196317 concerning the Pierce decom-
position for Lie-admissible algebras has also been lately brought
to my attention.

Additional contributions on Lie-admissible algebras have been
also made by physicists. M. K&iv and J. L8hmus, in a paper of
1972,18 indicated that a particular class of deformations of Lie
algebras is Lie-admissible and worked out the case of a Lie-
admissible deformation of the spin % Pauli algebra. C.N. Ktorides,

19

in a paper of 1975, achieved a generalization of the Poincaré-



Birkhoff-Witt theorem for Lie-admissible algebras. P.P. Srivastava,
in a note of 1976,20 pointed out that a particular form of graded
algebra used in current supersymmetric Bose-Fermi models is Lie-
admissible. Finally, R.M. Santilli in forthcoming papers of 1977-
1978,21-25 by using arguments which are mostly Lie-admissible in
algebraic character, conjectured a possible nonapplicability for
the hadronic constituents of the Pauli esclusion principle and
Einstein special relativity as well as the possibility of inter-
preting unstable hadrons as bound states of suitably selected
massive particles produced in their spontaneous decays.

During the course of the analysis of this volume (for the
classical profile) and that of Volume III (for the gquantum mechan-
ical profile) we shall outline and integrate these contributions
with particular reference to their applicability to classical and
guantum mechanical nonconservative systems for the primary purpose
of attempting a Lie-admissible approach to the hadronic structure.

I would like to take this opportunity to express my apprecia-

tion to C.N. Ktorides for calling Santilli algebra519 the flexible

Lie~admissible algebras.

1.2: ELEMENTAL ASPECTS OF ABSTRACT ALGEBRAS

A ring R is a set of elements a,b,c,... equipped with two
operations, the addition and the multiplication, satisfying the
following properties:

(1) R is an Abelian (i.e., commutative) group under addition,

(2) the multiplication is left and right distributive as well

as associative, i.e.,

o +b = b+a, (1.2.1a)
a(bt+c)=abyac (/- 2.18)
(a+b) c = ac+ be | l-2.1¢)

C1.2.1d)

(ab) ¢ = a (be),

Notice that the multiplication of a ring can be either Abelian
(i.e., ab = ba) or not.

A field F is a set of elements o(,/% ’ 6’,... equipped with
two operations, addition and multiplication, satisfying the
following properties:

(a) the addition is associative and commutative, i.e.,

L+ (pry) = )+, (1.22a)
O/‘f {5 = /5 + of )

There exists an element O ¢F, called the zero element,

(1-2.2b)

such that oA +0 =0 for all ol € F. For each ol eF
there is an element -¢f & F such that of + (- ) = 0.
There exist elements of & F which are different than

the zero element.




(b) The multiplication is associative and commutative, i.e.,

("(/5)0’=°(<(-56”)/ (1.2.3a)
0([5 = B, (1.2.3h)

as well as distributive, i.e.,

oA (p+i) =P <4t (124

The equations of% :/5 and Xd= Fs always admit unique
solutions for of # 0.

A field, in essence, is a special case of a ring. A ring R
is called a division ring if it has a nonzero element and the
equations ax = b and xa = b have unigue solutions for all a,

b & R whenever & # 0, If, in addition, the multiplication is
Abelian, we have a field. Thus, a field is a division ring which
is Abelian under multiplication.

An algebra U is a vector space of elements a,b,c,... over a
field F of elements 0(, (3 B 8’,... equipped with an (abstract)
preduct ab satisfying the laws

a (b+c) = ab+ac, 1-2.55)
(Q.-rb)C = AacC .,.bC, (1258

(O(Q,)bs &L(o(b) :d(ab), (1.2.5¢)

for all a,b,c € U and O(GF.
Throughout our analysis the term "algebra" will be referred

to as a nonassociative algebra,i.e., an algebra which does not necessarily

verifies law (1.2.1d). If this law is verified for all

-

clements of the algebras, we shall specifically refer to an

associative algebra.

The field over which an algebra is defined needs a more
detailed characterization. Let F be a field. If there exists a
least positive integer p such that pol = O for all o’ F, then

we say that F has characteristic p. If no such characteristic

exists, we shall say that the field has characteristic zero. For

instance, the field of real numbers has characteristic zero but
other fields of characteristic different than zero are also
admissible. To be properly defined, an algebra U must be referred

to a field F of specified characteristic p = 0,1,2,...

The only algebras which have a primary physical relevance until now

are those over a field of characteristic zero. This is the case
of Lie algebras in Classical and Quantum Mechanics and will be the
same for the Lie-admissible algebras. Nevertheless, the charac-
teristic of a field cannot be ignored. For instance, the statement
that the Cartan classification provides "all" complex simple Lie
algebras (see next section) is, on strict ground, erroneous, unless
restricted to a field of characteristic zero. And indeed, as we
shall indicate later on, there exist simple Lie algebras over a
field of characteristic p which are outside Cartan's classification.
Notice that the concept of characteristic of a field can be ex~
tended to algebras.

Throughout our analysis, when the characteristic of a field
is not explicitly stated, it will be tacitly assumed to be zero.

A basis B = i bl'bz"" , bn} of a finite-dimensional algebra

U over a field F of characteristic p is an independent subset of U
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which spans U as a vector space. Then every element a &€ U can

be written

a = ey b 0("'6 F’ ({.2.6)‘

where the convention on the sum of repeated indices is assumed
from here on. The algebra U is then said to have dimension n.
The product of U is in this case determined by n3 structure

constants as characterized by the closure rules

b. f:)v = C_‘k b {4.2.7)

by k
A zero algebra U over F is an algebra with nonempty basis where
the structure constants are all identically null.

A division algebra U (as for rings) is a (nonempty) algebra

for which the equations ax = b and xa = b always admit solutions
for a # 0.

The norm of an element a € U with respect to a basis B is

|a | :(;%%.G¥f)2;]? (1.2.8)

A normed algebra is an algebra U with basis B such that
lab] = |alls], (1.2.9)

for all, a,b, & U.
It has been proved that the only possible normed algebras U

over the field of real numbers are41

(I) the complex numbers {(dimension n = 2)

oL e’;/*=0/i
eo:,ﬂ 161——1
o I
ep e'
1 e.
S
e -1
Gfi 4

(IT) the guaternions (dimension n = 4)

o = °{Le; ) 4‘.—_0/-{.,2'3/
e,=4 ,e/=-1,

e_| 1 e, | €. e3J
e'(_ e’L “/l eg —e’_
S, | e, |-e| -1 | &
|

63 63 €2 -€, -1

- 11 -
(1.2.104)

(1.2.1086)

(l.2.10¢)

i
¢. 2. l1a) }

(1-2.06)

(t.2.11¢)
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(I11) the octonions, also called Cayley numbers (dimension

n = 8)

s (1.2.12a)

J

-4 els=-1, (1.2.12b)

Q :o(te;‘ L.:OI{/Z/SI{"/S/é/ 7’
eo

8]
®©
®

)

D |
o)
W
D

W

|

In particular, the complex numbers and the guaternions are
the only possible associative division algebra over the field of
real numbers. The octonions, on the contrary, characterize a
nonassociative normed algebra.

An alternative algebra U over a field of characteristic p is

an algebra satisfying the right and left alternative laws

(1.2.12¢)
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Cbzb = 4(4 b)) ().2"34)
b a’ = (ba)a (1.2.13b)

for all a,b & U. All associative algebras are trivially alter-
native. The only alternative division algebra which is nonassocia-
tive is given by the octonions.

An algebra U over a field of characteristic p is called a

power-associative algebra when

m _m M+ M 2.0k
a a = a , mm=1,2,3,., (-2.14)

for all elements a ¢ U. Then the following identities are

satisfied

Q,ZGL = aa.zl (1-2.15a)

154
02a? = (a2a) & . (1. 2.156)

Conversely, it is possible to prove that, for fields of charac-
teristic zero, identities (1.2.15) imply power-associativity.
It is also possible to prove that alternative algebras are power-
associative.

An element a of a power-associative algebra U over a field F
of characteristic p is called nilpotent when there exists an
integer n such that a” = 0. a nilalgebra is a (power associative)
algebra consisting only of nilpotent elements.

An elemenéSZf an (arbitrary) algebra U is called idempotent
if e2 = e. An idempotent e is called primitive when there exist
in U no orthogonal idempotents a,b (a2=a, b2= b, ab = ba = 0)
such that e = a + b. An idempotent e is called principal when

there exist no idempotent a € U (a2 = a # 0) which is orthogonal
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to e (ae = ea = 0). It is possible to prove that any finite-
dimensional alternative algebra which is not a nilalgebra contains
a principal idempotent.

The commutator of two elements a, and b of an algebra U is

the quantity

(L2. 16
[Albju_=db—ba/ )
and it characterizes the amount by which two elements miss obeying
the commutativity law of multiplication. The anticommutator is

instead given by

bl = h N ba . (/.2./2)
(o] o

The associator of three elements a, b and c of an algebra U

is the quantity

[Alblc]“ = (ab)c — a(bc), (1.2.18)

and it characterizes the amount by which the elements a, b and c
miss obeying the associative law of multiplication.

A number of algebraic laws can be expressed in terms of the
associator. For instance, the right and left alternative laws

(1.2.13) can be written

(1.2.19)

E’w“;bzuso Z:b'“/‘*zu:‘g

The following property

a [blc‘l o"]u+ }:“) blcjud'

= [ab,c, d,}“— [a} be, d]“ + [a,b,cd]q

(1.2.20)

holds for all elements a, b, c and d of an (arbitrary) algebra U.
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The reader should keep in mind that the associator is linear in
each argument.
An algebra U over a field F of characteristic p is called

trace—admissible if there is a bilinear form TK(a,b) called trace-

form, with arguments in U and values in F such that
(1) T(a,b) = T(b,a), (2) Tla b,c) = Tla,bec), (3) Tla,b) =0
if ab is nilpotent or zero, and Tle,e)#0 if e is an idempotent of U.

An algebra U is called commutative when

_ (1-2.20)
Lal bJ“ -’ol

for all elements a,b € U.

An algebra U is called anticommutative when

1.2.29
{ﬂ ) b}u :‘91
for all elements a,b € U.
An algebra U is called flexible when
(1.2.23)

a, b 0{1 =0
[2,b,4], =0,
for all elements a,b € U. The flexibility law can be equivalently

formulated (for fields of characteristic p # 2) in terms of the

law

Z:a)b) C]u'f' [Clbl dju:o' (I-?.Z‘«)

and indeed, from Eg. (1.2.23), we can write
(la+¢)b) (are) = (a+ ) (b(arow)
= (ab) a+(ab)c + (ch)a+ (cb)c (1.2.25)
~ a(ba) —a (be) =c(ba) —c(be)

= (ab)e —a(be) +(cb)a —~c(ba) =0,
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Clearly the flexible law is a covering of both the commutative

and the anticommutative law. For the former case we can write

»(ab)a = (ba)a = a(ba). (1.2.24)

Thus, all commutative algebras are flexible. For the latter case

we can write

(Ab)A :“C’DA)A = a.(bk). (/.2.25)

Thus, all anticommutative algebras are flexible. The concept of

algebraic covering is then completed by noting that there exist
flexible algebras which are neither commutative nor anticommutative
(e.g., the Lie-admissible algebras, see Section 1.4).
The nucleus N of an algebra U is the set of all elements
% & U which verify the associative law of multiplication for

every pair of elements a,b & U
E%,A.blu: T_A,S.b]“ = Ld,b, gzu:'oo

Since the associator is linear in each argument and, from property

(i-2-26)

(1.2.20),

E‘g¢ﬁz;“lh]u
- g‘ [321 A/bzq 1+ Lgt.ﬁz,ﬂlwh

- el
+ [.‘31.,“3-:,"';5],4' L ‘31,32,6]“ y) Judz¢

the nucleus N is an associative subalgebra of U. The center C

(1.2.27)

of an algebra U is the set of all elements in the nucleus N of U

which commutes with all elements a e U,

[C:“]“-: [qlczu:()'

Thus, the center of an algebra U is the méximal commutative and

(1.4.28)

associative subalgebra of U. This definition also applies to
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associative algebras. The field F of an algebra U can also be

its center C.

The Kronecker product PF =U Q@,U' of two algebras U and U*

over a field F is the tensor product U X U' of the vector suaces

U and U' where the product is defined by distributivity and the rule

(a®.a) (b, B) = (M')@F (bh), abeu,dbel’(1.2.29)

If U and U' are finite-dimensional, then (dim PF) = (dim U) x
(dim U'").

The scalar extension UF of an algebra U over F is the

Kronecter product F QQF U. Then, any basis of U over F is also
a basis of UF' Also U is a subalgebra of UF in the sense that
it is isomorphic to 1 QJF U. Notice that the scalar extension Up
of an algebra U may or may not verify the same laws of U.

Let U be an algebra over F with identity e and product ab
satisfying a set of laws. Let ¢ admit an inverse c—l(cc-l=c'lc=e).

Construct the new algebra U* which is the same vector space as U

but equipped with the new product

a*b = Q,Cb, (1.2.30)

for fixed ¢, for all elements a,b & U, and for a given association

(e.g., a*b = (ac)b). U* is called an isotopic extension of U

when the new product a*b obeys the same laws of U; otherwise we

shall call ik a genotopic extension of U. The algebra U* so

constructed will be called an isotope or genotope of U, respectively.

The concept of algebraic isotopy is therefore characterized
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by an invertible law-preserving mapping of the product. The

concept of algebraic genotopy is instead characterized by a

modification of the product of type (1.2.30) or of the more general

type

= ACIO < b("’C)CL /C_=£K¢d, ('.2.31A)

= d pe (] = € 3‘ )
¥ A C : |.~2. a
'S b b d. ) C’d _$\){ d_’ (.

etc.

Notice also that, when U* is an isotope of U, the algebras U and
U* are not necessarily isomorphic. Notice also that the concept
of algebraic genotopy can be interpreted as characterized by an
invertible law-inducing mapping of the product in the following
sense. Let U and U* be two algebras characterized by two non-
equivalent sets of laws, and suppose that these algebras are re-
lated by a genotopic mapping. Then one can say that the genotopic
mapping "induces" the laws of U*. The concept of genotopic mapping
will play a crucial role in our attemnpt to construct a Lie-admis-
sible covering of the Galilei relativity (Chapter 5).

Let A be an associative algebra with product a b over a field
F of characteristic p. The >\—mutation algebra A( M) of A is

the same vector space as A but equipped with the new product
*®
a¥b = Nab 4 (1-X)ba,

where )\ is a fixed element of the field. The new algebra

(1.2.32)

A( M) so constructed is generally nonassociative. Nevertheless,
it shares several important properties with A. Notice that the

concept of >\-mutation is a particular case of that of genotopic
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mapping, trivially, when the element c¢ of rule (1.2.3la) belongs
to the field.

The algchras A()s) are called mutation algebras because they

can reduce to different algebras, depending on the assumed value
of the parameter )\ Clearly, A(l) is isomorphic to A; A(0) is
antiisomorphic to A; and A(%) is isomorphic to the commutative

e
algebra A with product

{A.B}ﬁza b +b a (1-2.33)

However, there is no (finite) value of the parameter )\ capable
of reducing the A( )\ ) algebra to the anticommutative algebra A~

with product

[“lbzasd b - b a 61-9-34)

This lessens the possibilities of physical applications, owing to
the fundamental role of Lie algebras in physics, as recalled in
Section 1.1.

For this reason I introduced in papersd_7

the (A, p )=

mutation algebra A( )\ ;M) of an associative algebra A which is

the same vector space as A but equipped with the new product
- -
a¥b s ha bypba =(>L«,hj(efo~{a,b}ﬁ,(1.2.35)
where )\ = G—+(> and /L\ = @ -F are fixed elements of the
field.

Clearly the algebra A( X ,)*) is a more general realization

of the concept of algebraic genotopy, as compared to that of the

algebra A( > ). In particular, A( >\,/*) is generally nonasso-

ciative. Also, A(1,0) is isomorphic to A; A(0,1) is antiisomorphic
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to A; A(1,1) is isomorphic to the commutative algebra at with
product (1.2.33); A( N ,i- >\ ) is isomorphic to A( )\ ); and, last
but not least, A(l,-1) is isomorphic to the algebra A~ with product
(1.2.34) which is the conventional realization of Lie algebras,
e.g., in Quantum Mechanics (see also the next section). Thus,
unlike the algebras A( >\ ), the algebras A( >\ ,/J..) are capable
of directly reducing to the Lie algebra. The algebras A( >~,/M»)
will play a crucial role in our construction of a Lie-admissible
covering of the Lie algebra.

Despite the indicated differences, the algebras A()\ ) and
Al ;\r)*') share several algebraicvproperties which are
considered in Section 1.4. This occurrence can be anticipated at
this point by noting that the algebras A()\ ) and A( )\,/Q ) are
related by an algebraic isotopy. Assume

! [.2.3¢
T:>\+/L«))\:§\12,/A:/A)1/)\+/ui=i, ( )

Then we can write

7
a¥b= Xabypboa = Az absuzba (1.2.37a)
= Na®b +(l->\')b®a_,
(1.2.378)

apeb b = (}\*VM) A -L>,
namely, the algebra a( >\,)&>) can be interpreted as the isotopic
image A*({ N') of A( A ') whenever >\ # -/4 . As a result, most
of the structure theory of the A( ) mutationalgebras (ideals,
radicals, representations, etc.) can be extended to the
mutation algebra A({ >\/ }A ) R

The following variation of the concept of algebraic genotopy
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is significant for our analysis. Let U be an algebra over a

field of characteristic different than two. Suppose that U, as

a vector spece, contains a subspace S which is closed under anti-
commutator (1.2.17). Let U (S) be the set of all linear combina-
tions of elements of S equipped with the commutator (1.2.16) and
suppose that a linear mapping T of U (S) into S exists. The algebra
U*(U ,S,T) which is the same vector space as U but equipped with

the new product (

1.2.38)
- 1 -
a*b = z(o\b+bo\) + (ab ba)T'

is called bonded to U. The underlying mapping T is called bonding

mapping. Notice that bonding mappings can be extended through

the concept of genotopic mapping (1.2.31b), for instance, to

products of the type

a¥b = )\(abum)-y—/u (ab-ba)T,  (1.2.39)

These algebraic structures are clearly more attractive than
the mutation algebras A( A ) from a physical viewpoint
owing to the presence of the commutator in the product (1.2.38)
or (1.2.39). However, unlike the case of the product (1.2.35)
of the a( }.,/“ ) algebras, the commutator enters into the product
of algebra LL*(U—,S,T) with a bonding mapping as factor.

Another modification of the concept of bonded algebras can
be introduced as follows. Let S be a subspace of an algebra U.
Suppose that S is closed under commutator (1.2.16) and let U+(S)
be the set of all linear combinations of elements of S equipped

with the anticommutator (1.2.17). Suppose also that a linear
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+
mapping T of U+(S) into S exists. Then the algebra otut,s,m

which is the same vector space as U but equipped with the product
a*bh = La,e] + (a,byT (1.2.40)

is also bonded to U. However, the bonding mapping now appears

as a factor to the anticommutator, rather than the commutator,

as for algebras U%U-,S,T). The possible significance of algebras
d%U+,S,T) for our analysis will be indicated in Section 1.5.

Let U be an algebra over a field g and let S1 and S2 be
subspaces of U. We shall denote by Sls2 the space spanned by
the product a;a, for all elements 01 €5, and a, & 5, . A
subspace S of U is called a subalgebra of U if 8§ & S. S is

called a right ideal of U if SU € S, a left ideal of U if

US € S and an ideal of U when it is both a right and left ideal.

An ideal S of U is called a proper ideal when S C U but S # U.

The zero ideal is the ideal consisting of only the zero element.

. M
A nilpotent ideal S is an ideal such that S = 0, where s" denotes the

set of all finite sums of products a -eay under all possible associations.

1
Let R be an ideal of an algebra U over a field F. The

quotient algegra U/R is the vector space cosets with elements

a+tR , a € U, where addition and multiplication are defined as

follows

(a+R)+ (b+R) = (arb) + R
O((A*Q-) = oa + R,
(a +R) (b +R = ab + R

(.2.41a)

(1.2.415)
(1.2-41¢)
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for all a,b ¢ U and p/é F. Clearly the quotient U/R of U so
defined is an algebra.

An involution (also called involuteyy antiauthomorphism of

order two) of an algebra U is a linear operator a -»a for all

a & U satisfying the laws

ab :EZ\- ) X:q,. <I'2.42)

When U has an identity, an involution can be written

- 2.
a+a efF |, 43 =da eF, a +3)

This is the case, for instance, when the elements a are complex

number and the involution a -» a is the operation of complex

conjugation. If the algebra U is an n x n matrix algebra with

elements a = (aiﬂ)' the standard involution in U is defined by
= (A, ro a .. )T 1.2. ¢
a=z(ay) — a'= ()" C12-44)

where T stands for transpose (e.g., when the a's are matrices
with complex elements, a standard involution is the operation of

adjoint). Consider now a diagonal matrix of U

b
D = “y, © (1.2.45)

I J
© M

and suppose that (1) the diagonal elements ti are in the center
of U, (2) the t's admits inverses which are also in the center
of U and (3) the t's are self-adjoint relative to the involution
in U, i.e., t = t. The mapping

a - D"'&L'D (1.2.46)
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is called the canonical involution of the (matrix) algebra U

relative to T. This notion will be used in the next section in

relation to the classification of commutative Jordan algebras.

The literature in Abstract Algebras is rather vast. Without

any claim of completeness, we suggest as first readings text-

books 2°731 as second readings monographs 32742

43-52

and as third

readings the research monographs The reader with a physics

background should be aware that all these references are primarily

devoted to the study of algebras other than Lie algebras. Regret-

tably, no textbook available at this time presents a definition

of Lie-admissible algebras, to the best of my knowledge.
On my more specific grounds, the reader can consult references 53-54
for the classification of normed algebras indicated in this

section. Paper 55 is instructive for the study of power-

associativity, a crucial property for our analysis. For the

A{ A ) algebras see paper.l
56-57

Bonded algebras are studied, e.g.,

Their Lie-admissible character is studied in
58-61

in papers

paper 2 The study of additional papers is recommended
as an introduction to the algebraic profile of the analysis of
this Volume II as well as that of Volume III. Paper is
instructive for the axiomatic approach to Abstract Algebras.

As indicated earlier, the concepts of algebraic isotopy and
genotopy will play a crucial role in our attempt to construct a
covering of the Galilei (and Einstein) relativity. Regrettably,
the concept of algebraic isotopy is generally ignored in currently
available textbooks in Abstract Algebras, with very few exceptions

known to me, such as a monograph by R.H. Bruck of 1958.63 For
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a treatment in the specialized literature on this topic see
paper64.

As R.H. Bruck indicates (loc. cit., Chapter III), the con-
cept of algebraic isotopy is rather old and dates back to the
early stages of set theory. and indeed, the concept was apparently
identified for the first time within the context of the Latin
squares (these are square arrays of n rows and n colums formed
from n distinct objects having the property that each row and

column of the arrays contains each of the n objects only once).

Two Latin squares were called isotopically related if they could

be made to coincide by using permutation. The concept of isotopy

was then extended to guasigroups (a groupoid is a nonempty set G

with of elements a,b ,... equipped with a binary operation ab
such that for every pair of distinct elements a,b &€ G there is a
unique element ¢ = ab € G ; a guasigroup is a groupoid such that
the equation ab = ¢ uniquely determines one element, once the
other two are known). The extension was natural because Latin
squares are the multiplication table of (finite) quasigroups.
This implies the birth of the concept of isotopic mapping, more
generally, of a group as a mutation of its composition law induced
by an element of the group. In turn, this implies the existence
of a corresponding concept'at the level of an algebra, as we shall
indicate in Section 1.5. In the final analysis, as R.H. Bruck
put it, the concept of algebraic isotopy is "so natural to creep
in unnoticed”.

The concept of algebraic genotopy does not appear to be

treated in the mathematicl literature to the best of my knowledge

and it is introduced in my monographs on the Inverse Problem.65
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See also ref5~66'67 This concept is, in essence, a generali-
zation of the concept of algebraic isotopy. To indicate the
significance of this concept for the analysis of these volumes,
it is here appropriate to anticipate that the algebraic-group
theoretical structures of the conventional relativities and those

of my attempted coverings will result to be genotopically related.
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1.3: LIE ALGEBRASY

A Lie algebra L over a field F(of characteristics p) is a
vector space over F with elements a,b,c,... egquipped with the

(abstract) product ab satisfying laws (1.1.1), i.e.,

ab +ha =0, (1.3 1)

Ct\b)c + (he)a +CCA)}D:0’ Cl.3.16)

where Eg. (l.4.la) is called anticommutative law and Eq. (1.3.1b)

is called the Jaccobi law.

A commutative Jordan algebra J over a field F is a vector

space over F with elements a,b,c,... equipped with the product
ab satisfying the laws

ab-ba zo,

(a2 hb) a - AZUOA.):D,

(1.3.24)
(1.3.24)

where Eq. (1.3.2a) is called the commutative law and Eq. (1.3.2b)

is called the Jordan law.

A noncommutative Jordan algebra J over a field F is a .-

vector space over F with elements a,b,c,... equipped with

the product ab satisfying the laws

(ab)o\ —a(ba) =0,
(alb)a - a®(ba) =0,

(1.3.3a)
(1.3.3b)

where Eg. (1.3.3a) is the flexible law (1.2.23) and Eq. (1.3.3b)

is, aqain/the Jordan law.
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The fundamental significance of Lie algebras in physics has
been recalled in Section 1.1. The amount of physical as well as
mathematical literature existing on Lie algebras is so large
to discourage even a partial listing. Particularly inspiring
is the study of the original work by Sophus Lie, e.g., that of

68 1n the following we shall make extensive use of

69

references
a monograph by N. Jacobson.
The commutative Jordan algebras were introduced in a 1933
paper by P. Jordan, J.V. Neuman and E. Wigner. The title of the
paper, “Uber Verallgemeinerung-moglichkeiten de Formalismus der
Quantenmechanik”, indicates the physical inspiration of the
study (see the English translation of ref.7o ). Since that time
Jordan algebras have been subjected to intensive studies from
both a mathematical as well as a physical profile. Within the
former context, the commutative Jordan algebras have reached a
high degree of sophistication which is comparable to that of Lie

71-73 ).

algebras (see, for instance, refs. Within the latter

context the studies are still in progress (see, for instance, the

quantum mechanical treatment of Jordan algebras in ref.74 , and

their application to the hadronic structure ;M ref.75

). In any
case, it does not appear that the Jordan algebras have reached
physical applications comparable to those of Lie algebras, accord-
ing to the present status of theoretical physics. Perhaps, a
different insight is offered by our Lie-admissible approach to
physical systems. 2As we shall see in the next section, a Lie-

admissible algebra can have a well defined "content" not only of a

Lie algebra, but also of a commutative Jordan algebra. As a
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matter of fact, these two algebras sometime appear on eguivalent
footings within the context of the theory of abstract algebras
(not so for the case of classical realizations, as we shall see
in Section 1.5). It is therefore tempting to state that the
problem of the physical relevance of the commutative Jordan alge-
bras does not appear to be resolved as of today. In any case, the
commutative Jordan algebras have stimulated new directions of
algebraic studies. Owing to a number of technical reasons to be
identified later on, the methodology for the treatment of the
Lie-admissible algebras appears to be a symbiosis between that of
Lie algebra and tgat of Jordan algebras, with particular refer-
ence to the noncommutative Jordan algebras. The net result is
that, while the algebraic profile of the conventional approach to
physical systems can be effectively restricted to that of Lie
algebras, the algebraic profile of our generalized approach de=-
mands the study of Lie algebras as well as Jordan algebras of
commutative and noncommutative type.

Of first importance in the study of these algebras is the
realization of the product, in terms of associative product.
Let A be an associative algebra with elements a,b,c... and product
a-b over a field F of characteristic zero. A realization of
the Lie algebra product in terms of the associative product is

given by

[4:53634-5—6“\ . (1:2-4)

This yields the Lie algebra A~ which coincides with A as a vector

space but is eguipped with product (1.3.4). A realization of the
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commutative Jordan algebra product is given by

&4,&)3;:}-2'(@.51.[3.4). (1.3.5)

This characterizes a (commutative) Jordan algebra A+ which coin-
cides with A as vector space but is equipped with product (1.3.5).
A realization of the product of the noncommutative Jordan algebra
o d s s )

J is given by

a¥b = Na.b + -3 b-a. (1.3.¢)

This yields the A-mutation algebra A( A ) of Section 1.2. The
interested reader is suggested to verify that products (1.3.4),
(1.3.5) and (1.3.6) satisfy not only laws (1.3.1), (1.3.2) and
(1.3.3), respectively, but also the fundamental laws (1.2.5) to
qualify as products of an algebra. Notice that the algebras L,
J and J as well as their realizations A , A" ana A( N\ ) are non-
associative. Notice also the difference between products (1.3.4)
and (1.3.5) and the corresponding forms (1.2.16) and (1.2.17).
The former are defined in terms of the associative product a-b
while the latter are defined in terms of an arbitrary product ab
which, as such, is not necessarily associative.

As we shall see in Chapter 3, the Poincaré-Birkhoff-Witt
theorem ensures that every Lie algebra L is isomorphic to a sub-
algebra of some algebra A”. 1In nontechnical language this can be
restated by saying that every Lie algebra can be represented in
terms of product (1.3.4).

The situation for Jordan algebras J and S'is different. In

these cases there is no analecg of the Poincaré~Birkhoff-Witt
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theorem. For instance, a commutative Jordan algebra doc:s not necessa-
arily admit a realization in terms of product (1.3.5). When such

realization exists, we have the so-called special Jordan algebras.

Otherwise we have the so-called exceptional Jordan algebras.

One of the central problems for the study of any algebra is
the problem of classification. This demands the identification
of the radical, the characterization of the semisimple algebras
and their reduction into direct sum of simple algebras. The
problem of classification can then be reduced to that of the iden-
tification of all the simple algebras. The reader should be aware
that these concepts may vary from algebra to algebra and that the
definitions of these guantities which are familiar for Lie alge-
bras do not generally extend to other algebras. 1In the following
we shall restrict ourselves to a review of the essential elements
of the problem of classification. The problem of the radical of
a nonassociative algebra is outlined in more details in Appendix
1.D. The interested reader, however, is urged to study the
quoted literature. For simplicity, our presentation is mainly
restricted to the case of fields with characteristic zero. The
reader should be also aware that the definitions considered, even
for the case of Lie algebras, may have to be suitably implemented
or modified when the case of characteristic different than zero
is considered (and, especially, when the case of characteristic
two is studied).

An algebra U is called simple if and only if the only proper
ideal of U is the zero ideal and U2 # 0. This definition applies

to any (nonassociative) algebra and, thus, also to Lie and Jordan
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algebras. Notice that for any algebra U, 02 is an ideal of U.
However, if U is simple, then U2 = U.
We consider now the notion of radical for an associative
finite-dimensional algebra A.
In this case, if S is an ideal of A and the gquotient
algebra A/S is nilpotent, then A is nilpotent. Also, if Sy and

S, are nilpotent ideals, sl+52 is a nilpotent ideal. These pro-

perties imply the existence of a unique maximal nilpotent ideal

R of A which is called the radical of A. A finite-dimensional
associative algebra A is called semisimple when its radical is
the zero ideal. Of fundamental importance for the classification

of these algebras is the Wedderburn structure theorem

THEOREM 1.3.1: If R is the radical of a finite-

dimensional associative algebra A over a field of

characteristic zero, the guotient algebra A/R is a

semisimple associative algebra. Any semisimple

algebra A is uniquely expressible as the direct sum

of idealssl, SyreeerS i.e.,
m
Fq = §:> ési )
vl

each of which is a simple associative algebra.

(1.3.7)

In the transition to a nonassociative algebra the character-
ization of the radical must be suitably implemented. This is due
to the fact that the nonassociative character of the algebra

renders ambiguous the concept of nilpotency, unless properly
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defined. A (nonassociative as well as not necessarilv power-

associative) algebra U is called a nilpotent algebra if there

exists an integer n such that all possible products of n elements

in U are zero. For instance, an algebra U is nilpotent of degree

3 when albc) = (abjc = 0, in which case all the following properties

rotd (ab) c = (be) a = (ca)h= clab)s (albe)= b(ca)

=(ba)e = (cb)a =Cac)b
(1.3.2)

The derived series of an algebra U is the iterative sequence

uH-u o U uy W w e (1.39)
/ /

P p)

An algebra U is called solvable if U(S) = o for some positive

integer s.

The definition of the radical of an associative algebra does
not extend to the Lie algebras, because these algebras are all
nilalgebras of index two, trivially, from axiom (1.3.12) which

¢l.3.9)

can be written 2
a = o0, ot acl,

Nevertheless, the concept of solvability of a nonassociative
algebra does apply to Lie algebras. And indeed, the radical of a
finite-dimensional Lie algebra L is defined as the unique maximal
solvable ideal of L. A Lie algebra L is called semisimple when
its radical is the zero ideal. Notice that if a Lie algebra L is

L(n) (n-1)

solvable of index n, i.e., = o, themL is Abelian. This

is related to another definition of a semisimple Lie algebra also

¢ (ba) = & (cb) = blac) = o,
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used in the physical literature according to which a Lie algebra
L is semisimple when it contains no Abelian ideal except the zero

ideal. The following fundamental structure theorem then holds.

THEOREM 1.3.2: If R is the radical of a finite dimen-

sional Lie algebra L over a field of characteristic

zero, the quotient algebra L/R is a semismiple Lie

algebra. Any semisimple algebra L can be uniquely

expressed as the direct sum of ideals Sl'SZ""' S _,

n

i.e.,

= = gé = (1.3.1)
t=1

each of which is a simple Lie algebra.

The case of commutative Jordan algebras J can be treated on
equivalent grounds. The concept of solvability as defined above
applies, and the radical of a commutative Jordan algebra J is

the unigue maximal solvable ideal of J. A semisimple algebra J

is again an algebra whose radical is the zero ideal. The following

fundamental structure theorem then holds (p#2 is assumed here).

THEOREM 1.3.3: If R is the radical of a finite-dimen-

sional commutative Jordan algebra J over a field of

characteristic zero, the guotient algebra J/R is a

semisimple commutative Jordan algebra. Any semisimple

algebra J is uniquely expressible as the direct sum of

ideals 51’32”"’ S , i.e.,

n
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Cl-3.12)

each of whichis a simple commutative Jordan algebra.

The case of a noncommutative Jordan algebra J is somewhat
different. The radical in this case is defined as the unique maxi-
mal nil ideal of J. A semisimple algebra J is an algebra,
again, whose radical is the zero ideal. The following fundamental

structure theorem then holds (p # 2,3 is assumed here).

THEOREM 1.3.4: If R is the radical of a finite-dimen-

sional noncommutative Jordan algebra J over a field of

characteristic zero, the quotient algebra J/R is a semi-

simple noncommutative Jordan algebra. Any semisimple

algebra T is uniquely expressible as the direct sum of

ideals Sl’ SZ""’ S , i.e.,

n
~ M (1.3.13)
J = @ Se

isd

each of which is a simple noncommutative Jordan algebra.

The reader should keep in mind that the above theorems are
formulated, specifically, for finite-dimensional algebras over a
field of characteristic zero. Notice that there is no contra-
diction of the definition of radical for a Lie algebra or a
commutative Jordan algebra and that fof an associative algebra,
because, under the condition of associativity, the concepts’ of
nilpotent ideal and that of solvable ideal coincide. Notice also

that the definition of radical of a noncommutative Jordan algebra
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is more in line with that of an associative algebra than that of characteristic p see, for instance, ref. . For
a Lie algebra. For more details see Appendix 1.D. infinite-dimensional Lie-algebras see, for instance,
The results of the studies on the problem of classification ref. 77.

can be summarized as follows.

ITI. CLASSIFICATION OF SIMPLE COMMUTATIVE JORDAN ALGEBRAS

I. CLASSIFICATION OF SIMPLE LIE ALGEBRAS II.A: Algebras over a field of characteristic zero. The
I.A: Algebras over a field of characteristic zero. The problem of the classification of simple algebras can
Cartan classification of all the complex simple Lie in this case be reduced to that of central simple
algebras and the construction of the corresponding algebras, that is, the simple algebras whose centroid
real forms by means of inner and outer involutive is the base field. A central simple commutative
authomorphisms is well known. We have69 Jordan algebra J is called a reduced Jordan algebra

Ls)
if it contains an identity element 1 = = e where
Classical Algebras: A, B, C, D;: s

the e, are (absolutely) primitive orthogonal idem-~

Exceptional Algebras: G E potents and n is called the degree of J. It can be

2¢ Fqr Bgs Byo Ege
shown that any reduced simple commutative Jordan

I.B: Algebras over a field of characteristic p # 0.

algebra J is central simple and that the scalar
The studies on the simple Lie algebras of this type
extension of a central simple commutative Jordan
are still in progress. As an indication we quote
algebra is a reduced simple algebra. Thus, the prob-
the following simple Lie algebras:
lem of classification of simple commutative Jordan

p-dimensional algebras by Witt; algebras J can be reduced to that of reduced simple
p"-dimensional algebras by Zassenhaus; algebras J: of degree n and dimension N over the
npn—dimensional algebras by Jacobson; field F. The following classification then holds.71—73

rpn~dimensional algebras by Kaplansky;

N Degree n = 1. [n this case the reduced simple algebra

(n=1) (p ~1)~-dimensional algebras by Frank; ’
is J = eF, where e is the identity element

Tn, Vm, Lo and L algebras by Albert and Frank;

) of F. The algebras are special.

L(T, 5 , F) algebras by Block.

Degree n = 2. In this case the reduce simple algebras
For a study of Lie algebras over a field of
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N
I

form (x,y) defined over a vector space V(F) such

are those characterized by a symmetric bilinear

that: (a) the bilinear form is non - degenerate
on V(F), (b) there exists an element x & V(F) such
that (x,x) = 1, and (c) the dimension of V(F) is

N <> 2. These algebras are special Jordan algebras.

Degree n 2 3: ILn this case every reduced simple

Jordan algebra Jg is isomorphic to a Jordan algebra
J(Dn,T) where Dn is an alternative algebra (Section 1.2)
which can be associative for n 2 4 and T is a canonical
involution (Section 1.2). The algebra J(Dn,T) is the

vector space

7 (D,,,,T):{x [xeD,, x:T“x:T} (1.3.1%)

where X -» X' is a standard involution in D equipped

with the product

XY = é(X-Y+Y-X). (1-3.15)

The following classification then holds.

(A) Dn is isomorphic to the field F. The involution
T is in this case the identity mapping and
J(Dn,T) consists of n x n symmetric matrices over
F. N =jn(n+l).

(B) D, is isomorphic to the algebra of generalized

complex numbers t over F with basis 1, e,
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e2 = M1, /M # 0 (which contains the algebra

of complex numbers as a particular case. The
involution T is given in this case by a + be —
a - be (e.g., complex conjugation for the case
of complex numbers). J(Dn,T) is given by the
algebra of n x n matrices with elements in &
which are T-Hermitians, i.e., X = T'l x''T
(self-adjoint for the case of complex numbers) .
N = nz.

(C) D, is isomorphic to a four-dimensional algebras

of generalized quaternions GNF) constructed from

that of ordinary quaternion in a way similar to
that of case (B). The elements of J(Dn,T) are
the 2n x 2n T-Hermitian matrices with generalized
guaternions as elements. N = 2n” - n.

(D) b, is isomorphic to the eight-dimensional algebras

of generalized octonions é?(F). The only possible

degree in this case is n = 3 and the elements of
J(D3,T) are 3 x 3 matrices X with the generalized
octonions as elements which are such that X =
T-l*x’ T, with X —» X' being the standard involution
and T being the canonical involution in a(F) .
In this case N = 27,

The algebras (A), (B) and (C) are special simple

Jordan algebras, while the only algebra (D), i.e.,

Jg, is exceptional. This means that product X-Y

of Eq. (1.3.15) is associative for cases (A), (B) and




II.B:
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(C), while it is nonassociative for case (D).

Algebras over a field of characteristic p # 0.

Classification II.A extends to the case of a field

of characteristic p # 2 without the appearance of new
73

algebras. See, for instance, ref. and quoted

papers.

ITII. CLASSIFICATION OF SIMPLE NONCOMMUTATIVE JORDAN ALGEBRAS

IIT.A:

III.B:

Algebras over a field of characteristic zero. The
78,79

following classification holds.

(a) The commutative Jordan algebras of classification
IT.A;

(b) the flexible guadratic algebras with nondegenerate
norm;

(c) the central simple algebras of guasi-associative

type (see next section).

Algebras over a field of characteristic p # 0.

Classification IITI.A also extends to the case
p> 0, p# 2. New simple algebras, however, now

occur. An example is given by the simple nodal

~41,80,81

noncommutative Jordan algebra J which are

such that
(1) every element a € 3‘ can be written in the
form a = o1 + z with o & F and z nilpotent,

(2) The set N of nilpotent elements z is not a
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subalgebra of 3,
(3) The field is (necessarily) of characteristic p > 0.
(4) Slcan be represented as follows. Let Pn be the
truncated polynomial ring in n nilpotent elements
(xl,....,xn), xi = 0, equipped with the partial
differential operator Q/Qxi. Let a-b be the
commutative associative product in Pn- S’is the

same a Pn as vector space but equipped with the

product

Qa . 2b ¢,

(1.3.16)
absa.b* ox: ©OX;

(5) At least one elemnt cij possesses an inverse,
n 2 and
| -
C[)- <3 Lxd, X;‘?Pm (/~3-’7/

Notice that the commutative Jordan algebras appear in the
classification of the noncommutative Jordan algebras. This is
due to the fact indicated in the Section 1.2, that the flexible
law is a covering of the commutative law. Thus, any realization
of the product satisfying axioms (1.3.2) also satisfies axioms
(1.3.3). However, Lie algebras do not appear in the classification
of both the commutative and noncommutative Jordan algebras. This
does not prohibit the existence of interrelations between the Lie
and Jordan algebras. Most intriguing in this respect is the fact
that the exceptional Lie algebras can be related to the exceptional

41,73

Jordan algebras (see refs. and Appendix 1.B).
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1.4: LIE-ADMISSIBLE ALGEBRAS

A Lie-admissible algebral U over a field F(of characteristic

pP) 1is a vector space over F with elements a, b, ¢,... egquipped

withe the (abstract) product ab such that the attached algebra u’,

which is the same vector space as U but equipped with the product

La,bl, =ab-ba (le.t)

is a Lie algebra. Clearly, if ab is associative, product (1.4.1)
characterizes a Lie algebra. Thus, the associative algebras are

the fundamental Lie-admissible algebras. The concept of Lie-

admissibility, however, indicates that a Lie algebra can also be
characterized in terms of a nonassociative product ab, provided
that ab-ba is Lie. This transition from an associative to a non-
associative product ab in the construction of a Lie algebra will
be crucial throughout our analysis of this Volume II and that of
Volume III.

From the viewpoint of the defining laws, Lie-admissible

algebras can be classified as follows.4'5

I. General Lie-admissible algebras. These are all algebras

U over a field F of characteristic p satisfying the
following law, fot [“;blu"‘ Eb/azq =0,
Eq'b'c]u*'ib’c'a]u"‘. [c,q,b]“ (l.4.2)
= [C,b/ A:(u + Zb,q,c]u +]a,c, 5]‘4 ,
for all a, b, ¢ ¢U. Eg. (1.4.2) is the Jacobi law

(1.3.1b) written in terms of the product ab, i.e.,
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[La.%%, <], + [ L6, o], ¢ [Lo67, 0], 0, 04y

and [a,b,c] is the associator, Eq. (1.2.18). Eq.

(1.4.2) will be called the general Lie-admissible law.

II. Flexible Lie-admissible algebras. These are all algebras

U over F satisfying the laws

E-A; bl a‘}d: Cu

[a,bie] + [bc e, [c,a,b] =0, (448)

(14 . ba)

for all a, b, ¢ € U, where Eq. (l.4.4a) is the flexible
law (1.2.23) and Eq. (1.4.4b) is the general Lie-admissi-
ble condition under the flexible law, as it can be
proved by using Eq. (1.2.24). Eqg. (1.4.4b) will be called

the flexible Lie-admissib law.

III. Lie algebras. Under the condition of the anticommutativity

of the product laws (1.4.4) reduce to
ab +ba =0, (l.4.5a)

(A‘)) ¢+ (be)a + (Ca)b=ol (l. &.55)
namely, they reduce to the conventional Lie algebra laws.

LEMMA 1.4.1: Any anticommutative Lie-admissible algebra

is a Lie algebra.

As we shall see during the course of our analysis, the Lie-

admissible algebras constitute an algebraic covering of the Lie




algebras.
respect.

(A7)

(B)

(c)
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The following properties are significant in this

Lie algebras are Lie-admissible. Consider a Lie algebra

L with (abstract) product ab ( = -ba). The attached
algebra L is the same vector space as L but equipped

with the new product

I:AIBJLzab—ba = 2ab (1.4.6)

Thus, every Lie algebra is Lie-admissible. This implies
the important property that, unlike the case of the
commutative and noncommutative Jordan algebras, the Lie

algebras are included in the classification of the Lie-

admissible algebras.

The Lie-admissible laws are a covering of the Lie

algebra laws. The fact that the flexibility law (1.4.4a)
is a covering of the anticommutativity law (1.4.5a) has
been shown in Section 1.2. On similar grounds, one can
see that law (1.4.4b) is a covering of the Jacobi law
(1.4.5b). Thus the flexible Lie-~admissible laws
(1.4.4) are a covering of the Lie algebra laws (1.4.5).
On similar grounds one can see that the geﬁeral Lie-
admissibility law (1.4.2) is a covering of the flexible
laws (1.4.4) and, thus, of the Lie algebra laws (1.4.5).
This implies the important property that the product of

a Lie-admissible algebra is, in general, neither commu-

tative, nor anticommutative nor flexible.

Under suitable realizations of the product, the Lie-
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admissible algebras can directly reduce to Lie algebras.

Consider the { A , ) mutation algebras A(/\,/M ) of
an associative algebra A with product a*b. The product

in A( )\,/M ) is given by Eq. (1.2.35), i.e.,

a¥ b= Aa-b + J b.a (1. 7)

Under the condition A # I} product (1.4.7) is neither
commutative nor anticommutative, i.e., A( )\,/pt) is
neither a commutative Jordan algebra nor a Lie algebra.
Nevertheless, product (1.4.7) satisfies the general Lie-
admissibility condition. Thus, the algebra A(,X ,/A)
is a Lie-admissible algebra. At a closer analysis one
can verify that the product (1.4.7) satisfies the flexible
Lie-admissible. laws, Egs. (1.4.4). Thus A( )s,/k\)
is a flexible Lie-admissible algebra. But
Lian AGp) = A" (1.¢.8)
A-a—L//4-s.-1
and this proves the property considered. A more general
example of the product of a Lie-admissible algebra which
is not flexible, but satisfies limit (1.4.9), will be
given within the context of the classical realizations
of the product (Section 1.5 and Chapter 2). Notice that
the )\ ~-mutation algebras A(.X ) of an associative

algebra A with product (1.2.32), i.e.,

a*b = Na-b g U)boa (b9

are also flexible Lie-admissible algebras. Nevertheless,
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there exists no finite value of the element )\ EF

capable of satisfying our fundamental limit (1.4.8). It

is for this reason that the algebras A( %‘,/A } are pre-
ferable over the algebras A( A ) for our analysis. But

the algebras A(/A ) are a realization of the noncommutative
Jordan algebras. A simple inspection reveals that the
algebras A()\ ,/» ) too are a realization of the noncommu-
tative Jordan algebras, i.e., they satisfy laws (1.3.3).

This implies the important property that not only the Lie

algebras,but also scme noncommutative Jordan algebras

appear in the classification of the Lie-admissible algebras.

Most of our subsequent efforts will be devoted to ap under-
standing of the physical significance of the algebraic occurrences
(AY, (B) and (C). 1In this section we restrict ourselves to an
outline of the known properties of the Lie-admissible algebras. In
the appendices of this chapter we present certain methodological
tools of the theory of Abstract Algebras which can be used for
the study of the Lie-~admissible algebras.

The following class of algebras is crucial to reach a first
understanding of the interplay between the Lie algebras and the
commutative Jordan algebras within the context of the Lie-admissible
algebras.

A Jordan-admissible algebral U over a field F of characteristic

p 1is a vector space over F with element a, b, c... eguipped

with the product ab such that the attached algebras U+, which is

the same vector space as U but equipped with the product
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{a,b%u:é(ab +ba), (l.&.10)

is a commutative Jordan algebra. Clearly, when the product ab

is associative, the above conditions are met for the case of a
special commutative Jordan algebras. Thus, the associative alge-
bras are not only Lie~admissible, but also Jordan-admissible.

From the viewpoint of the algebraic laws the following classifica-

tion holds.4'5

I'. General Jordan-admissible algebras. These are all algebras

U over F satisfying the law (p # 2 is assumed here)

(@*b)a +a (ba?) + (ba®)a ,.4(4\%)1 (1.4.11)
= az(ba) + (A‘Q)o\z-r a2 (ab) +(6a)c\

for all a, b & U which we shall call general Jordan-

admissible law. It is obtained by imposing that pro-

duct (1.4.10) satisfies the Jordan law (1.3.26), i.e.,

%& gf‘f”‘}u, b}u,ﬂ}; {{a,a}w [Lb'“}u}q (1.4.12)

I1'. Flexible Jordan-admissible algebras. These are all

algebras U over F satisfying the laws

(&B)A = a (ba), (1. 4.13a)

(421—")“1‘4\(&2& =a(ba)+allab) (1-4.13b)

for all a, b & U, where Eg. (1.4.13a) is the flexible

law and Eq. (1.4.13b) is the general Jordan-admissible
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law under the flexibility condition (see Appendix 1.A).

We shall call Eq. (1.4.13b) the flexible Joxrdan-

admissible law.

III'. Commutative Jordan algebras. Under the condition of

commutativity of the product, the conditions of Jordan-
admissibility reduce to

Ab :bdk )
(a?b)a = a®(ba),

(1.4 14a)
(1-4.145)

namely, they reduce to the laws of the commutative Jordan

algebras.

LEMMA 1.4.2. Any commutative Jordan-admissible algebra

is a commutative Jordan algebra. Also, any noncommutative

Jordan algebra is a flexible Jordan-admissible algebra.

The theory of the Jordan-admissible algebras is closely
related to that of the Lie~admissible algebras. For instance, the
Jordan-admissible algebras provide an aléebraic covering of the
Jordan algebra. Notice that a Lie algebra is trivially Jordan-
admissible, in the sense that laws (1.4.11) and (1.4.13) are tri-
vially satisfied because a2 = 0 for all elements of a Lie algebra.
Similarly, the commutative Jordan algebras are trivially Lie-
admissible in the sense that they trivially satisfy laws (1.4.2)
and (1.4.4).

We are now in a position to identify the interplay of the

Lie algebras and the commutative Jordan algebras within the
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context of the Lie-admissible algebras. We shall call nontrivial

Lie-admissible algebra a Lie-admissible algebra which is neither

associative nor Lie. The product ab of these algebras is neither
commutative nor anticommutative and, as such, it always admits

the decomposition

ab = L T4, + {a.b], (1-4.15)

This indicates the important property that a nontrivial Lie-
admissible algebra U can jointly be Lie-admissible and Jordan-

admissible and we shall symbolically write

U=u" @ u* Cl-e-1)

where the symbol (8 stands to indicate that the algebras U, U
and U+ coincide as vector space and their products are related
by Eg. (1.4.15). And indeed, the algebras A(,X ,/h ) with product

(1.4.7), i.e.,
ab = p [a,b:{ﬂ + G{q,b}ﬂ (1-4.17)

are precisely of this type, namely, jointly Lie- and Jordan-
admissible. The reader is here suggested to verify that product
(1.4.17) satisfies not only the Lie-admissibility conditions
(1.4.2) and (1.4.4) but also the Jordan-admissibility conditions
(1.4.11) and (1.4.13).

In conclusion, a Lie-admissible algebra U can have a nontri-
vial content not only of a Lie algebra U but alsc of a commutative
Jordan algebra vt. as a result, the study of Lie-admissible
algebras demands the use of both, the Lie and the Jordan algebras,

and cannot be conducted within the context of the Lie algebra alone.
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To elaborate on this aspect, suppose that a nontrivial
Lie-admissible algebra U is finite-dimensional with basis

B = {bl,....,bn} and closure relations
[
b P bl‘ ;THC:L'{ 'b L)

where the c's are the structure constants (Section 1.2). It may

(l.4.19)

happen that the same basis B is also closed, individually, under
the Lie and commutative Jordan product with corresponding closure

conditions and structure constants

- k
L br,b,-jq: Cr by, (1-4-19a)

£
{ b {’ A); §£< = 7 C:j; k)k )

In this case the structure constants of U can be expressed in

(1-4-196)

. - + .
terms of the structure constants in U and U , i.e.,

k

I . ' k /4. 20
WCi = £0G) + 2Gf . (42

An example of this occurrence is here useful. As is known,

the fundamental representations of the SU(n) Lie algebras (here

interpreted as n x n matrices) are closed under both the commutator
and the anticommutator. As a result, these representations pro-
vides an example of rules (1.4.18), (1.4.19) and (1.4.20). The
physical significance of these representations should be recalled.
For the case of the SU(2)-spin algebra the fundamental representa-
tion is given by the Pauli matrices

o A & - _[te (1.4.2
6= 10) 27 . ,g}' 0—1.),
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and they play a central role for the characterization of the

spin %. For the case of the SU(2)-isospin algebra the fundamental
representation is again given by the Pauli matrices, but now acting
in an internal space (the isospin space), and it plays a central
role for the characterization of isotopic doublets, such as that
of the nucleon. Finally, the fundamental representation of the
SU(3) algebra is given by the known Gell-Maww >\—matrices and
plays a central role for the concept of quark, as currently used
for both, for the problem of classification and that of structure
of the hadrons (Volume I). The embedding of the SU(n) Lie algebras
into their SU(n)-admissible covering is one of the fundamental
problems of our analysis and we shall consider it later on in
Chapters 3, 4 and 5 as well as in Volume IXI. At this time let

us only point out that, for the case of the Pauli matrices rules

(1.4.19) became

) f' = ) ! o o= . .
L G-;’ ’ ')?H"‘ i El,'kC; {Q ’ Q}A_ 2(3.." (/ ‘.12)

and rule (1.4.18) can assume the realization

66 = o9, + 2%, 5]

]

(1-4.23)

k
(l&'a( Eiye 4/3 5‘"). ‘S:'n:)q: =y C(il. T

{1

Thus, the A( )\ . M) algebras with basis B = {Gr{} is a finite-

dimensional nontrivial Lie-admissible algebra such that

[HU,/A)I”Q sucz), (1-4.24a)

L AG,p) = SUC2), (1 4.245)

A-Q‘L//uga 4
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[H(A,/,u)]+x j(Da,T), (1.4.24a)

Do | ﬂ(,\.//u) = J (_D3,T)/
)\) )* -5

(1-4.2¢b)

where J(D3,T) is a commutative Jordan algebra of type (B) (Section
1.3) with basis B. The corresponding case of the Gell-Mann
)x—matrices will be studied in Chapter 3.
There exist no awinographof which I am aware which is speci-
fically devoted to the theory of Lie-admissible algebras.
In the following we shall review the results by L.M. Weiner,2

4=7 for the case

P.J. Laufer and M.L. Tomber3 and R.M. Santilli
of flexible Lie-admissible algebras. For conciseness, the interested
reader is referred to the quoted papers for the proof of all state-
ments. Other contributions will be outlined in the appendices.

Let S be a subspace of an algebra U over a field F
which will be assumed of characteristic zero. The commutator

(s) is the set of all elements a & U

space of S, denoted with U
such that [a,bx g = 0 for all b ¢S. Let (a) denote the set of
all scalar multiples of a & U. The first Weiner's result52 can

be stated as follows.

LEMMA 1.4.3: Let a be an element of a flexible Lie-

2
admissible, power associative algebra U. ThenU(a)SE U(a ).

THEOREM 1.4.1: Let U be a flexible, Lie-admissible,
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S a subspace of U. Then U(S) is a subalgebra of U.

If S is a subalgebra of U and b? e S, then S is a

subalgebra of U.

THEOREM 1.4.2: Let U be a flexible, Lie~admissib1el

power-associative algebra such that the attached algebra

U~ is a direct sum of simple Lie algebras U;

hal -
LQ_ = 4ﬂ’ u N

P

(l.4.25)

where the vector spaces Ui of U; are subspaces of U.

ThenU is the direct sum of simple algebras Ui

M:&u;

b=

(I.a.zs)

An element a of a power-associative algebra U generates an
associative and commutative subalgebra U, of U consisting of all
polynomials in a. Under the assumption that U is finite-dimen-
sional, U, is finite-dimensional too. The dimension d of U, is

called the degree of U (with respect to a).

THEOREM 1.4.3: Let U be a Lie-admissible, power-associative

algebra and let U be a simple Lie algebra of degree

three. Then U has degree one.

The above theorem(?y Weinerz)is significant for the embedding

of the 5U(2) algebra into an SU(2)-admissible covering. Let
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i=1,2,3, be the generators of §g(2) = U_, e.g., the Pauli

matrices (1.4.21). A generiL element of U can be written

A s oG PG v &6, ApTEF, (1 4.27)

and its square in U is given by

als N 4Tt SG’»,,,\,)A,JC-F (1. h.28)

Tn this case it is possible to prove that

B)
ol f;(a.)a, , -F(A): = ¢ F (. 4.29)

and this illustrates Theorem 1.4.3, i.e., that the degree of U

in this case, one. Weiner also proved that the function £

of Egq. (1.4.29) is linear.

THEOREM 1.4.4: If U is a power-associative algebra

of degree one, the multiplication in U is given by

ob :i‘ [f(A) b +‘£(b)a\] *Eﬁ; b:(u , f(u),f(b)(— F U-L.')’o)

If, in addition, U is a flexible‘Lie-admissible algebra

and U is simple, then U 22U .

Notice that a basic assumption by Weiner is that the algebra

U is power-associative, besides being flexible Lie-admissible.
In this respect let us note that, even though the commutative
Jordan algebras are power-associative, and thus the U+ content
of decomposition (1.4.15) is power-associative, this is not

necessaily the case for the algebra U. As a matter of fact, the
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condition that a Lie-admissible algebra is power-associative,
is a condition on its U content expressible by the rule
[{A,q,—’]w)q,:(utol (),4,31)

for all a &U.

In their paper of 1962, Laufer and Tomber3 begin with
the illustration of a property which is significant for the theory
of Lie algebras, namely, that an algebra characterized by the
Jordan law alone (without the additional condition of anticommu-
tativity of the product) is not necessaily a Lie algebra. Consider

an algebra U with basis
Bc b, by, by, b1,

bby = byby = bl =b, by =b,,  (14.320)

b, b, = baby

(1.4 32a)

(i-¢.32¢)

i
o=
o
[
o=
n
i
5
o

where all the other products are null. Then, U satisfied the

Jacobi law in the form

al(be) + b(ca) + c(ab):a’ C-4-33)

but not in its equivalent form

(ab) e 4+ (he)a + (ca)b=o, (1-4.3%)

and, thus, U is not a Lie algebra (laws (1.4.33) and (1.4.34)

are equivalent for Lie algebras on account of the anticommutativity
of the product). In particular, the Jacobi law (1.4.33) alone is
insufficient to characterize a power-associative algebra. However,

if laws (1.4.33) and (1.4.34) hold, then
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a:ﬂ - GL?O\ = a qa =0 (”-[f- 3§4) simple Lie algebras, then U is the direct sum of
ey i flexible Lie-admissible algebras.

2 2 2 o (1-4-35b) simple flexibl g

A a = (“ a)a =
M-y (l-4-.356¢) -

AM = a a = o ,m>1 Notice that the condition of semisimplicity of the U~ content

m My éL@-+4ﬁ o (/‘ & 35}1) of U in Theorem 1.4.5 is replaced in Corollary 1.4.5.a by the
Q & = = ’

condition that U~ is a central simple Lie algebra.
The following property3 is important for our analysis. For
10
and the algebra is power-associative (Section 1.2). This again the proof see also ref. .

confirms the fact that a Lie-admissible algebra is power-associa-

tive, provided that certain restrictions on its Lie algebra content THEOREM 1.4.6: Let U be a flexible, Lie~admissible
are satisfied, because both laws (1.4.33) and (1.4.34) are generally power-associative algebra over F. If U is a simple
violated for a Lie-admissible algebra. Lie algebra, then U U .
THEOREM 1.4.5: Let U be a flexible Lie-admissible The above theorem is clearly a gener =zation of Theorem
algebra over an (algebraically closed) field F (of 1.4.4 to the case of arbitrary degree. Notice how the condition
characteristic zero). If U is a semisimple Lie of power-associativity, under the assumptions considered, forces
algebra, then U is a direct sum of simple flexible the Lie-admissible algebra U to be isomorphic to its Lie algebra
Lie~admissible algebras. content U .
The reader should keep in mind that for any Lie-admissible
The central difference between Theorem 1.4.2 and 1.4.5 is algebras U, if U is a simple Lie algebra, U is simple. The
the absence in the latter of the condition of power-associativity. inverse property, however, does not necessarily hold, namely, U
By recalling that a Lie-admissible algebra is not necessarily can be simple, but U can nevertheless possess proper ideals.
power-associative, the latter theorem constitutes a significant We now continue this section with the extension of known
improvement over the former. results of the A( X\ ) mutation algebras to the more general
NN P ) algebras along.a 1967 paper by R.M. Santilli.4
COROLLARY 1.4.5.A: Let U be a flexible Lie-admissible The algebras A( A, » ) can be initially studied within the

algebra over F. If U is the direct sum of central context of the noncommutative Jordan algebras because, as indicated
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earlier, these algebras can be nontrivial Lie-admissible algebras.
To put this aspect in its proper methodological profile, let us
recall that
(a) every noncommutative Jordan algebra is power-associative
and trace-admissible,7e
(b) the radical R of a noncommutative Jordan algebra T
coincides with the radical of the attached commutative
Jordan algebra 3+, ?CD 3+ is semisimple and can be
expressed as the direct sum of simple algebras,78 and
(¢) the only power-associative, simple and trace-admissible
algebras are (1) the noncommutative Jordan algebras,
(2) the guasi-associative algebras and (3) the flexible
algebras of degree two.58
The algebras A( M\ , g ) can therefore be studied within the
context of the so-called quasi-associative algebras. Let U be an
algebra over a field F (of characteristic zero). The algebra U

is called a quasiassociative algebral is there exists a scalar

extension K of F and a quantity )\ in K such that the scalar
extension Uy of U is isomorphic to the A -mutation algebra
A(/\ ) of an associative algebra A. We shall call an extended

guasiassociative algebra an algebra U over F such that, under the

ecalar extensions K of F and Uk of U, there exist two gquantities
) and}; in K such that Uk is isomorphic to the mutation algebras
A( N, p ) of an associative algebra A.

The transition from a guasiassociative to an extended cguasi-
associative algebra and vice versa can be performed through our

concept of algebraic isotopy over a field (Section 1.2). At the
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level of realization of the product this is characterized by
mappings (1.2.31) or (1.2.37), e.g.,

a*h=z ra.b + ] b. a :J\)Za.br(l-X)'zb-a

(1436
- N aob + (-N)boa za¥b . 36a)

T=Xtp, X-’)\”t,,/l,:/ﬂ‘z,}\'-r/“'-"l Ci-4.368)
Thus, the product of A( >\ ) can be turned into that of A{ )* s /LA )

and vice versa through an isotopic mapping. In particular, the
mapping is isotopic in the sense that it is an invertible mapping

of the product which preserves the underlying algebraic laws.

Thus, the laws obeyed by A( }\) and A( }\ ./A) coincide (in the

sense that both algebras are flexible, Lie-admissible and@ Jordan

admissible). The algebraic isotopy

isotopic mapping (1-4.37
ACA) ? )

mk./w

is, however, nontrivial. For instance, a central property of
A{ A) is that the powers its elements coincide with the corres-
ponding powers in A, i.e.,

Q0 = Q,ZI: [). + U—)s)} by, = Q,Zl ,.e,é'c,. (‘"4'38)
A6y A

while this is not the case for A( bY ,/h ), i.e.,
2
= - = (X Q. . (".'3?)
A Aip)a-a = Ot i’ﬁ"’h'

unless >‘ +,M =1, i.e., A( M ,}.») = A{ )N ). Also, the algebras

oo :&La

a({ \ ) verify the property
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[ﬂ br ‘:—Z = (_'—5) [0\' b: C\_( _ b </~4‘-,3‘?4)
) TN » LAG)] (395
S=(2>-1)°,
*® * 2 *
b, ¢ a b ’Ci - {a b,c } (1-4.39¢)
Lé\: Z‘ﬁ()\)?' 57 { ) }H(A). ﬂ('\} ){_ }96\) ﬁ/()k)
&a,bl‘\*_'_é(o\b+b¢)/ (J-4.394)

where O is called the discriminant of A( N ). For A( /\,/b )

we have instead4

= (- fl) La,b,c (I-4.40a)
A-p \
IR '

The above differences between the A( N ) and A( >‘,/u ) algebras

[ﬁ(),/q:(*
(1.4 -4ob)

are irrelevant from the viewpoint of the noncommuative  Jordan

algebras, but they became crucial from the viewpoint of the Lie
algebra and, in particular, for our fundamental limit (1.4.8).

In essence, the isotopic algebra A* of A charcterized by the

roduct
) aoebs(h+tm)a-b (4. 4t)

is the zero algebra for >\ = —/}A . As result, the limit

b QG = b A¥OY) = A7
A - M : X—a—/w

while trivial for the A( )\,‘/A) algebra, constitutes for the

(-b.02)

A% ( X') algebra the highly singular limit of the o -mutation
of a zero associative algebra A* or, equivalently, of the divergent
value of the discriminant (1.4.40b).

In turn, this illustrates

—- 61 —

the reason why the A({ A\ + M) covering of the A( A algebras is
more effective for limit (1.4.42), otherwise the two algegras are
equivalent for % # ~/M - In conclusion, the theory of noncommu-
tative Jordan algebras can be applied to the flexible Lie-admissible
algebras A( )\,/M ) provided that A # -/M . Most of our subse-
quent use of the A( )\,/u ) algebras will be for a nontrivial
covering of a Lie algebra and, thus, for the case )\ # ~/M . The
theory of noncommutative Jordan algebras is therefore applicable.
The ( N ,/» )-mutation algebras can be introduced for an
arbitrary algebra U which is not necessarily associative, i.e.,

according to the product4

(a,b):kaba-/uba) A,/ueF (& 53)

where ab is not necessarily associative. This concept of algebraic
mutation will play a fundamental role in our analysis, particularly
for the problem of the possible existence of a covering of the
Galilei and Einstein relativities. It is therefore useful to
begin our study of the ( )\,/u )-mutation of an arbitrary algebra
U, rather than an associative algebra A. For subsequent use, the

reader should keep in mind that the mapping
U— WO, w

cannot be achieved through an isotopic mapping, because such

(-6 b4)

mapping preserves the algebraic laws by assumption. Nevertheless,
the above mapping can be achieved through our notion of algebraic
genotopy (Section 1.2) because it violates the algebraic laws of

U by construction. And indeed, mapping (1.4.44) is a particular

case of mapping (1.2.31b). Thus, the concept of mutation and that
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l b 4&
of algebraic genotopy are equivalent when restricted to elements ( (4, b)/ o ) = (“ ’ (B/ 6")) , ( )
of the field, with the latter concept being a covering of the
foremr (because, unlike the former, it is applicable also to i.e., A{ >\ o A ) is flexible too. Also, the algebras U and
elements of the algebra). LU( PN . A )] ~ are characterized by the respective product

Let us recall that the power-associativity of an algebra —
P Y g LA‘ij:Ab—bA} (I.- 4. +9a)

(over a field of characteristic zero) is ensured when the follow-
ing relations ’ Lé\,b? W Cx " - (x—/*) Ld,bzq . (_]\4.4?19)
J

— 2
[a,a,a]= 0, E.“,ﬂ,a]uﬂ? (- 4.45)
“ Thus, LU( A . )] ~ is isomorphic to the isotopic image U*  of

holds (Section 1.2). But the associator of an element a ~
U with product

u{ A, ) is proportional to that in U according to the relation -

4 La,b] =afb-b*a  a*bsQ-pab. (-4 - 52)

[a,a,4] (Aip) 2[4, (I-+.46) T ’
)4, A WO = &7 M Yy 0&]“ .

We therefore have the following

THEOREM 1.4.8:4 The mutation algebra U{ X , M) of an

THEQREM 1.4.7:4 The mutation algebra U( ,\ , M) of an algebra U over F is a flexible Lie-admissible algebra
(4

algebra U over a field F (of characteristic zero) is if and only if U is a flexible Lie-admissible algebra.

power-associative if and only if U is power—-associative.

Notice that for A =}, Ul N , A4 ) is trivially flexible and

Notice that for >\ = _/,. , u( /\ 7,« ) is trivially power-— Lie-admissible (in the sense that [U( by . )} “ is the zero Lie
associative. algebra) .
From the relations On similar grounds, U+ and EU( » ,/u )_1 * are characterized

U

((a,b)} ,,) >\? (4(9)4 -+ >\).4 (b“)ar >‘/A a (“b)f}*z‘\(:b“), Ci'l'r.i‘z’t) by the respective products

ab+b (l.&.51a
(a,ta,b)) (nbvba), :

el

)

>\2 a (ba) e a(ab) FAm (bo) a -r)A'Z (4@@1(1-4-#719 { a,b }; =

{o\,b}’;(%

(1.4.13a), then Thus, LU( A ,/(A )] * s isomorphic to the isotopic image ust of U

Ul

AP (Ab-ﬁbo\), (1-4.518)
M) I3

we see that, if the algebra U is flexible, i.e., satisfies Eq.
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with product

{opl= flamerba),

A)‘ L = (kf}*)“b

(1.4.52a)

(I-4.528)

THEOREM 1.4.9:4 The mutation algebra U( A + M) of an

algebra U is a flexible Jordan-admissible algebra if

and only if U is a flexible Jordan-admissible algebra.

From Egs. (1.4.49b) and (1.4.51b) the following identity
A b = ,}_—- (a,b) + _,Z/_‘__. Cb,a) (I-#.SB)
XE—/A'L /tz—- A?.
holds. Thus

4

A 'Y s
THEOREM 1.4.10: If U = U( >\ , M ) is a mutation

algebra of U, then U can be recovered through the

A .
mutation U (o , 3 ) of U with
¥

A .M @. 4.54)

The above theorem has the following consequences for the
case of an associative algebra U = A, As it is the case for
the A( )\ ) algebra,’ if R is a two-sided ideal of 2, (i.e., ab
and ba ¢ R for all b € R and a € U), then {(a,b) and (b,a) &R,
where (a,b) is product (1.4.42)for ab = a-b. It then follows

that the decomposition A = B(D R implies A( A Ve Yy = B{ A . )
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@R A ,/A ). 1In particular, R( >\ ,/M) is solvable (nilpotent)
is R is solvable (nilpotent), and the maximal solvable ideal of
A >\ ,)A ) coincides with that of A. Hence, when U is simple,

A >\ ,/u ) is simple too and if A can be written as a direct sum
of simple algebras, the same occurs for A( >\ ,/u ). If we define
the radical of A( /\ ,/A) as the (unique) maximal solvable idea][
then Theorems 1.3.2 (for the case /\ = - pa ) and 1.3.4 (for the
case ;\ 7 -/u ) implies the following

THEOREM 1.4.11:* If R(A , 4 ) is the radical of a

finite-dimensional mutation algebra A( A s ) Of an
7

associative algebra A over a field F (of characteristic

zero) , the gquotient algebras A( A ¢ pa ) /R{ A s AA )
Soooly BPEE OAEDLLIEAL algel A

is a semisimple mutation algebra. Aan

semisimple alge-

bra A( >\ ,'&) is uniquely expressible as the direct

sum of ideas A, ( A e ) By A e fr oo AL AoM)

m
A(A//") = G% ﬂi('\l/‘") ,

each of which is a simple mutation algebra.

(1.¢.55)

1t should be stressed that the above definition of radical
(and related structure theorem) applies, specifically, for the
mutation algebras A( >\ o A ) of an associative algebra. For
the problem of the definition of the radical for a general Lie-

admissible algebra see Appendies 1.D and 1.E.
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1.5: CLASSICAL REALIZATIONS OF THE LIE-ADMISSIBLE ALGEBRAS

The algebraic structures considered until now are abstract
in the sense that they are dealing with an algebra U as a linear

vector space of unspecified elements a, b,..., product ab

and given algebraic laws (that is, the algebra can be associative,nonasso-

ciative, alternative, flexible, Lie, Lie-admissible, etc.) .

A primary objective of this monograph is to conduct an alge-
braic study of arbitrary Newtonian systems of N particles with
masses MWy, k=1,2,...,N, in the three-dimensional Euclidean space
of their experimental detection with Cartesian coordinates
iEF - irkx'kky'rkz} .

This objective demands the study of the so-called classical
realizations of abstract algebras, namely, the realizations of
the elements of the‘algehras in terms of functions and the reali-
zation of the product in terms of suitably selected brackets.
More specifically, the vector space U of abstract elements a,b,c,

..., can be realized in terms of the Space

U = (B a8, Clhn), oS
A, C ... ¢ cT(R,,)

of functions in time t and the wvariables

far )= [, Pt

phi2ioe, 6N K212, N

CI-S:IA)

(1. 5.1b)

(1.5.2)

J a.,=3(,{j,2

where the variables Py, Can at this time be conceived as
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representing the linear momentum, Pra = M ;ka [as we shall see in
Chapter 4, upon introduction of a suitablé topoclogy, the variables

a’ can be interpreted as local charts of a manifold given, for inst-
ance, by the cotangent bundle T*M equipped with a suitable two-form].
The ground field F will be assumed to have characteristic zero throu-

ghout this section, as well as the remaining chapters of this volume.

We now equip the function spaceqb with the brackets (or

bilinear composition law)

QA APY(ha @B (1.5.34)

ReB = = oW,
SMV c&(Qbﬁ.>; (1.5.35)
(1.5.3¢)

15pv;(ahn¢0/

where condition {1.5.3c) ensures the regularity (and, thus, the
invertibility) of the matrix (S f‘v ) everywhere in the considered
region Rigf the (local) variables (t,a/ ). Continuity conditions
(1.5.1b) and (1.5.3b) are assumed for simplicity (as well as for
geometrical considerations, see Chapter 4). We shall then refer

to brackets (1.5.3) as being of class ¢ ® and reqular. We shall

also call brackets (1.5.3) nontrivial when the va’ tensor
possesses an essential dependence on at least some of the af
variables.

By keeping into accout that brackets (1.5.3) satisfy rules

(1.2.5) identically, i.e.,

6% o (ES + C-) = {q o ES T Q oC )
<Q+B)0C = AoC “f‘BOC,

(1.5-%a)
(1.5-4b)
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@zoa)oa - Qo(doB) - ofo(AoB) (15. 4c)
— (Qoa()oB = 90(8‘”1): (QDB)OD( O

the function spaceﬂL when equipped with brackets (1.3.5), con-

stitutes a classical realization of an abstract algebra U. Let us

recall from Section 1.2 that Egs. (1.5.4a) and (1.5.4b) are the

right and left distributive laws. Strictly speaking, both these

laws must be satisfied by the composition law of a function space
to induce an algebra. If only one of these laws is satisfied, then

the emerging structures are sometimes called left distributive

algebra or right distributive algebra. Clearly, in order not to

lessen its possible physical significance, the classical realizations
of abstract algebras must be both, left and right distributive.
Irrespective of the explicit form of the s M tensor,

brackets (1.3.5) also satisfy the right and left differential laws
AoRC = (ReB)C+ B (AoC),  (1.55a)
ABocC = (RoQ)B +A(BeC),  (15.55)

where BC is the ordinary (associative) product of functions, and

the right and left scalar rule

Ao <0 (1-5-6a)

)

AohR =0, o€F (1.5-¢b)

Differential rules (1.5.5) are significant on both, algebraic

as well as physical grounds. However, scalar rules (1.5.6) are

algebraically restrictive. This is an indication that brackets
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(1.5.3) are not the most general classical realization of the
abstract product of an algebra, and more general realizations
which satisfy the basic algebraic rules (1.5.4) as well as the
differential rules (1.5.5), but violate the scalar rules (1.5.6)
are, at least in principle, conceivable (see, for instance, Weiner's
product (1.4.30) for algebras of degree one). 1In any case, most
of our subsequent analysis will be restricted to classical rea-
lizations of abstract algebras in terms of brackets (1.5.3). It
is therefore significant to identify the necessary and sufficient
conditions for these brackets to characterize the most important
algebras of our analysis, the Lie~admissible algebra.

General Lie-admissibility condition (1.4.2), expressed in

terms of brackets (1.5.3), becomes

(90 B)o( - 90 (BOC) + CBOC)OH - BOCCOF))
+<C oﬂ)*oB - Co(ﬁoB).___ (CoB)ef - co(Ben) (1.5.7)

+ (PofoC = Bo(AoC) +(Roc)oB ~Ae (coB),

This condition must hold for arbitrary elements A,B,C,... of U.
) ~
Thus, it must hold also for A = a’“ , B=ad and C = at. The

lack of derivative with respect to time in brackets (1.5.3) then

yields the following

THEOREM 1.5.1: A necessary and sufficient condition

for nontrivial brackets (1.5.3) to satisfy the general

Lie-admissible condiEion (L.5.7) is that all the

following equations
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@%P“ 5‘(”)@96& (SMV /V/A-)
(577 0) 35 (77 57
(87 e (BT 2=

are identically verified by the S/‘V/ tensor everywhere

in the considered region of the (local) variables.

The above theorem in essence translates the general Lie-
admissibility law into a system of conditions on the sMV  tensor.
When Egs. (1.5.8) areverified, the function spaceﬂLequippcd with
brackets (1.5.3) is a classical realization of a general Lie-
admissible algebra. Notice that Theorem 1.5.1 transforms the
algebraic law (1.5.7) into a (quasilinear) system of first~-order

partial differential equations in the unknown functions S/‘V

Thus, any (class C‘a and regular) solution S/“\/ of Egs. (1.5.8)
characterizes brackets (1.5.3) which are Lie-admissible in the
general sense. Notice also that, unlike the case of ordinary
differential equations, (consistent) systems of partial differen-
tial equations often admit solutions with functional degrees of
freedom. As a result, if equations (1.5.8) are consistent, the
explicit form of the tensor s*V  of the general Lie-admissible
brackets is not expected to be unigue or, equivalently, a family
of general Lie-admissible brackets is expected to exist. 2As we
shall see in Chapter 2, this is precisely the case for Theorem

1.5.1.

(1.5.8)

- 71 -

Flexible Lie-admissible conditions (1.4.4), expressed in

terms of brackets (1.5.3), became

(AoB)oC - Ao (BeC)

(1.5.9a)

+ (CoB)o@ - C o(Pof)=0,

(AoB)o C - Ao (BoC)
-f-(BoC)DQ _Bo(Coﬁ)

(1.5.95)

+(CoR)0o B - C o(RoB)=o0.

By repeating the same argument as that for Theorem 1.5.1 we

reach the following

THEOREM 1.5.2: A necessary and sufficient condition

for nontrivial brackets (1.5.3) to satisfy the flexible

Lie-admissible conditions (1.5.9) is that all the

following equations

Sre 5™, £FPAS VM gpx CENCT

?af af @al

(6'5{3 5(»7)@5 (S,Mﬁ SPP)@S ve CSVp iad S /“E

Dal

\O

@af

are identically verified by the tensor S/‘f everywhere

in the considered region of the (local) variables.

Notice that we have selected the flexible

law in the

(1.5.10

(1.5 lot
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linearized form (1.2.24) rather than in the form (1.4.4a). This
is useful to reach a condition in three generally different
indeces, (e.g., /A, vV and 7 ) rather than in two indeces (e.g.,
/M and v ). The study of the classical realization of law
(l.4.4a) is left as an exercise for the interested reader.

Egs. (1.5.8), (1.5.10a) and (1.5.10b) will be cailed a

classical realization of the general Lie-admissible law, the

flexible law and the flexible Lie-admissible law, respectively.

It is an instructive exercise for the interested reader to
prove the following property. In a way fully parallel to the fact
that Eq. (1.4.4b) is a special case of Eq. (1.4.2) under Eg.
(1.4.4a), the flexible Lie-admissible law (1.5.10b) is a parti-
cular case of the general Lie-admissible law (1.5.8) under the
flexible condition (1.5.10a).

Finally the Lie algebra laws, Egs. (1.4.5), expressed in terms

of brackets (1.5.3), became

Aol + BOQ:O,
(AoB)o C + (BoC)of + (CoR)oB=0.(1.515)

(1.5 //a)

By repeating the same argument as that for the preceding theorem,

we reach the following

THEOREM 1.5.3: A necessary and sufficient condition

for nontrivial brackets (1.5.3) to satisfy the Lie

algebra laws (1.5.11) is that all the following eqguations

VA= (1.5.12a)

/

(w/“’ -
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o7 QSM  grp STt gVPOSTA

0al Coaf 2af

are identically verified_pyﬂﬁhgmsgﬁggr S/“\, everywhere

(1.5.12b)

in the considered region of the (local variables.

The above property is well known.83

It is here only presented
in a different algebraic perspective. When conditions (1.5.12)
are verified, brackets (1.5.3) are generally denoted with the

symbol

AoB =LA, BI* SHYba) = Ut a) (1.5.03)

and called the generalized Poisson brackets. For the case of lack

of explicit dependence of time and under a number of technical
W
implementations (see Chapter 4), a solution sz‘(a) of Egs. (1.5.12)

is called a co-symplectic or Lie form.

It should be here indicated that, in line with our definition
of nontrivial brackets, when the sMV elements are constants,
the above theorems do not apply and the use of the algebraic laws
is requested. The familiar context of conventional canonical for-

mulations is then recovered with the following

COROLLARY 1.5.3.A: A form of the SMVY tensor with

constant elements which is admitted by the Lie algebra

laws (1.5.11) is the fundamental co-symplectic form

[L=™ %) (12 b)) O3
. ) @w 'Zib}) U""“/Ffﬂ) ) -1 3 Y

/i'leBN (1‘5. /4)
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in which case brackets (1.5.13) are the conventional

Poisson brackets

- __(ﬁbﬁ} CL)}KQ (24§~
LABL = = oo

(41.5.15)
“a B 0B 97
TR Qg

A few remarks are here in order. Theorem 1.5.3, 1.5.2, and
1.5.1 essentially provide a hierarchy of classical realizations of
algebraic structures which is fully parallel to the abstract hier-
archy of Lie-admissible algebras of class III, II and I of Section
1.4. The conventional Poisson brackets emerge as the simplest con-
ceivable Lie-admissible brackets in a hierarchy of brackets of in-
creasing methodological needs. As we shall see in Chapter 2, this
hierarchy can be interpreted as the algebraic counterpart of a
corresponding hierarchy of Newtonian forces.

In this section, we are interested in identifying the general
solution of integrability conditions (1.5.12) and (1.5.8). 1In this
way, we shall reach the algebraic foundations of our subsegquent
studies.

For this purpose, it is recommendable to rewrite the fundamental
cosymplectic tensor in a way more suitable for its generalization to

an arbitrary cosymplectic form. Introduce the notation

- 75 —

Fk« ) e

) (1.5./8)
SR I

) B, L 6N

Then, the inverse of matrix { CLJ)AV )

-1
(Cu)w) = le"‘/’“d v = oz nxze (1.5 17)
ey Osvaan

called fundamental symplectic form, can be explicitly written

RS,
Da”

o, RS

v (_5__; (1.s. 1£)
A

The desired expression of the fundamental symplectic/Lie tensor

is then given by

QNQ?{ (D_@’E ’ — ) v
ol DaX l

<_Co*“9) = (z.5.19)
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The use of geometric arguments based on the most general possible

closed and exact two forms, then permit the proof of the following

COROLLARY 1.5.3B: Under sufficient topological conditions

(e.g., those of the symplectic geometry) the general solution

of the Lie algebra laws (1.5.12a) and (1.5.12b), called the

general cosympletic/Lie form, is given by

Crx) O) JZO(PCO\)))

8, - W
0((3 @a”

(ii,E;,;lO¢x)

Reine

(1.5.20b)
@al®

where the covariant form (Jzoqa ) is the general symplectic

form, and the R's are 6N independent, arbitrary functions of

the local variables verifying reqgularity condition (1.5.3c).

The generalized Poisson brackets then admit the explicit form

Jg/}w QB

(a5 (aQ

(t.5.21)
L\ Y @__&

W(D A DR, fﬁ
Sl e O

a P\ sl pg
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The interested reader is encouraged to prove that tensor
(1.5.20) is indeed a solution of Equations (1.5.12) [the proof that
we have the general solution is much more involved because of sub-
tle geometric arguments, as indicated earlier].

The first step of our algebraic hierarchy is now clear. It is

given by the Lie-algebra isotopy

Li_s.zz}

[aB] — [8,R7*

which can be explicitly written, by recalling the regularity of both

the fundamental and the general cosymplectic tensors,

u)f*\) ] JXAVC&) = g};(o\) wtV (l.5.23)

ﬁ }Zg = 6ﬂ2}4€ o3 ol

We now pass to the study, first, of a simple realization of Lie-
admissible laws (1.5.8), and, second, of their general solution. It
is easy to see that the conditions considered restrict only the anti-

symmetric part of the tensor § MV We then have the following

COROLLARY 1.5.1A: A particular solution of the Lie-admis-

sible laws (1.5.8), whose antisymmetric part has constant

elements, is given by




pumny

Q@ e OB DA E;«v(DB st
e Qa7 ot

fied.
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ehrV ey = 0PV EFa) (1.5.24)

v
where QJP is the fundamental cosymplectic/Lie tensor and

t/‘v (a) is an arbitrary (not necessarily regular) sym-

metric temsor

6MV(&) — EVMCA) CI.S,-25)

The Lie-admissible brackets whose antisymmetric part is

given by the Poisson brackets can then be written

(AB) =28 =008

Q“’* Qu (J-5.26)

[A.B]+ {#.B)

and shall be called fundamental Lie-admissible brackets.

The second step of our algebraic hierarchy has now been identi-

It consists of the Lie-admissible genotopy

[ABr] = (#,8) = [487+{aB, (l52)
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that is, of the alteration of the Lie algebras characterized by the

Poisson brackets into the structurally more general Lie-admissible

algebras characterized by brackets (1.5.26).

The use of the preceding results of this section then permits

the following

COROLLARY 1.5.1B: Under sufficient topological conditions

(e.g., those of the symplectic-admissible geometry to be

introduced in Chapter 4), the general solution of the Lie-

admissible laws (1.5.8) is given by

S*ay = J}«NCQ) + Ty U-528)

) N%
where ¢[2' {a) is the general cosymplectic/Lie tensor and

T /*V (a) is an arbitrary (not necessarily reqular)

symmetric tensor

THM — 7Y (1-5.29)

The corresponding brackets, called general Lie-admissible

brackets, can then be written

v @) ‘
(A R)*= QQ =3 CA) B (1.5.30)

QR P, 2B AL )ﬂ’@é g
= Qe ) Qav @,; Q@aY
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acterizes all possible classical realizations of the Lie algebra

— [;(} ES:Z -+ {%I product. The same situation occurs for the flexible and the gen-
- !

eral Lie-admissible algebras.
On similar grounds we have the following

We reach in this way, the last step of our algebraic hierarchy,
THEOREM 1.5.5: Starting from given Lie-admissible brackets

which is given by the Lie-admissible isotopy
(1.5.3) either of Type III or of Type II or of Type I, the

class of all possible Lie-admissible genotopic mappings

/ (_ﬂ| B) (G, 8)* v exhausts the class of all possible Lie-admissible brackets.

3 (1.5.21)
In conclusion, the analysis of this chapter indicates the exis-

= TaBT* + {#,B;*
- [H-'Bl + {4, B?] - T—QaBZ + ‘9' 3 tence of a hierarchy of three classes of Lie-admissible algebras with

/
|
\

\\\ enclosure properties
Type III Type II Type 1
Lie algebras Flexible General
Table 1.5.1 summarizes the essential steps. WNote that the C: Cr (@‘5,32>
. Lie-admissible Lie-admissible
intermediary layer characterized by the realizations of the flexible Lie-
algebras algebras

admissible laws, is not included. 1Its study is left to the inter-

ested reader.
To put it differently, the "degrees of freedom" of each classical

We have therefore the following
realizations of the product are characterized by the isotopic mappings.
THEOREM 1.5.4: For given brackets (1.5.3) which are either The transition from one type to another is instead characterized by the
Lie (Type III), or flexible Lie-admissible (Type II) or gen- genotopic mappings. Notice that both, the isotopic and the genotopic
eral Lie-admissible (Type I), the class of all possible iso- mappings we are here referring to are outside the context of the trans-
topic mappings exhausts the class of all possible solutions formation theory because they occur within a fixed system of local
of Egs. (1.5.8), (1.5.10), or (1.5.12), respectively. variables by construction, The enclosure properties (1.5.31) can be

. ) ) trivially proved by noting that any solution of eith Egs. (1.5.12), or
For instance, starting from the conventional Poisson brackets

(1.5.15) the class of all possible isotopic mappings (1.5.22) char-
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{(1.5.10), 5; (1.5.8) is a solution of the subsequent equations. In
particular, this is one reason why the conventional Poisson brackets
are flexible and Lie-admissible.

To avoid possible misunderstanding, it should be indicated that

Corollary 1.5.3B provides the general solution of Lie-admissible laws

(1.5.8), but not necessarily the general solution of the classical

realization of regular, bilinear, Lie-admissible brackets.

This is due to the assumption of bilinear form (1.5.3a) as the
brackets of the theory, as conventionally used in contemporary mechan-
ics, and which is sufficient for the analysis of this monograph.

However, the reader should keep in mind that more general bi-
linear brackets are conceivable. One example is readily given by

the brackets
AxB = R e “B
PT Qar @Y

+ AB (1.5.23)

{(where, again, AB is the usual product of functions) which, as the
reader can easily see, characterize an algebra, i.e., verify both
the right and left distributive laws as well as the scalar law.

The study of these more general brackets will be left to the
interested reader. Our preference for brackets (1.5.3) is given by
the fact that they admit an exponential form, with consequential
achievement of a (generalized) group structure which is clearly im-
portant for our relativity objectives. The possibility of construct-
ing a corresponding exponentiation for more general brackets, e.g.,

for brackets (1.5.32), has not been studied until now, to my best

knowledge, and it will not be considered in this volume.
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As incidential notes, we give the conditions on the tensor
v o .
s M7’ of (non-trivial) brackets to satisfy other relevant

types of algebras.

The right and left alternative laws (1.2.15) imply that

KD_S._’:./AS(’V._§/*(’@__S_}_N;—D, (1.5.33a)
@al Daf
2Ve s ST rln (1.5-33b)

Qafl @at

The reader should keep in mind that the Lie brackets do not satisfy

these laws.
The power-associativity laws (1.2.15) imply that

(6)‘(’, Ser) O _ 5, (1.5-34a )

Dal

DS p OSSR

QDo Dal> @a*

PEAg
QDal

SVio (1.5.3¢)

The Poisson brackets trivially satisfy these laws because

[?* , aFI =

The general Jordan-admissible law (1.4.11) implies that

Q. [%%‘j‘ (st ) [(s¥+ 57)

@75 (S e S)W)

(1.5:35)
SN*CS.((;\ g P
@a%

The flexible Jordan-admissible

6)‘ d @5\,}'
Qal

laws (1.4.13) imply that

TOSMY SPM_
Da P

C[.S".Béa)
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e R N ety

Da* \Daf Da* (—23;(: (1.5.365)
OSIM AP D SR v
/D - SaP (‘5 + 35 )

Finally, the commutative Jordan algebra laws (1.4.14) imply

are identically verified by the S)"V tensor everywhere in the
o considered region of the local variables.

As we shall see, while (Egs. (1.5.38a) may have nontrivial

solutions (i.e., solutions with non-constant elements), the joint

that sets of equations (1.5.38) severely restrict the possibility for
{. 5-37'4) the existence of nontrivial solutions.
@ /DS}‘/M va Sa(/, /1) 6}‘}450((5@5\/}.. U . 375) On similar grounds, to search for nontrivial brackets (1.5.3)
ol = o s which are jointly flexible, Lie- and Jordan—-admissible, one can
Ds* \ Pa Da? Dal® , :

impose that all the equations
v
gue DS 2TV spe DS | g2 R, (15394)
Ol @al
Jordan algebras is essential for the abstract treatment of Lie- Qa(’ (D a(’ (baf

admissible algebras. 1In Section 1.4 we also indicated the exis- (C_)TP— Sf?)ré_g./:v + <6”€__ S()/“) (‘(%S.\_-;T-f- (Svﬁ- Srv ((gsf 0 (‘5 335)
: a a

As indicated in Section 1.4, the joint study of Lie and

tence of algebras which where jointly Lie-admissible and Jordan

N
admissible,e.a., the mutation algebras A( )\ ,/u ). A fundamental G—)——d (DS /AS() 60(}‘ SJ“( D /DSM)‘S(’V (_l 5 3°C)
: L edd
question of our analysis is whether this property has a counter- @ QA(’ (Dd QA?

» D v
part at the level of the classical realizations of the brackets. - ((;D—S—:()‘ Sx(‘ (6 /M'r“ S)“V')
N A

This problem can be initially studied by demanding that all the

identically verified by the s MV tensor everywhere in the
following equations are & Y o /A v

considered region of the local variables.

‘D \"t ’Zv
@?P_ SPT)(%; (_S/*V_ SV‘)A) 1-(3’“?—- gpM )@af’ (S ) U 5 25 ) Notice that the fléxible condition appears only once and
.5.38a

+ (97— <f” %):t’ (s*-s"7)= o,

in the linearized form (l.5.10a). Egs. (1.5.39b) and (1.5.33c)
are the Lie- and Jordan admissibility conditions, respectively,
under the flexible law. The problem can therefore be formulated

) shH v ~I of el
—_ (D (_5(’ P) (_S /:'l‘ 6 by studying whether, in the class of flexible brackets (1.5.3),
Da* L @al (1.5.38b) , . o "

there exists a subclass which satisfied both conditions (1.5.39b)

@5}*’“ (5’(/3 5(”( o <S’L‘ S)‘) and (1.5.390).
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As we shall see better during the course of our analysis,
while the classical realizations of the Lie-admissible algebras
can be introduced in a way parallel to the abstract treatment
of Section 1.4, the situation is different for the Jordan-admissible
algebras and, thus, for the problem of classical realizations of
Lie~admissible aigebras which are also Jordan-admissible.
An initial understanding of this situation can be reached as

follows. Considered the realization of a Lie algebra L with

(abstract) elements a,b,c,... in terms of the product

[a k], =a.b - b-a, (1-5. 40)

where a-b is associative. The “"symmetrized” version of this pro-
duct, i.e.,

q,'o\,b}n: a.b +b.a (.5 -41)

characterizes a special commutative Jordan algebra J. Consider
now the classical realization of the product T?'BIA' e.g., the

conventional Poisson brackets

AR DR B
[ ]J% 2™ Dbrn

A "symmetrized®” version of these brackets would read

A8 DR DB D7 D13
T TR T

These brackets, however, even though satisfying the commutative

(bﬂ ‘DB
fbhm D2

(1-5-42)

(1.5-43)

law, do not constitute a classical realization of the commutative

Jordan algebras because they violate the Jordan law, i.e.,.

%&G'ﬂ}&'B}ﬁ'ﬂ%& 7 Hp"ﬂ}n/ia»ﬂ}fi}a-_ (1549

This occurrence is, in essence, at the basis of the indicated
difficulties of constructing a classical realization of the Lie-
admissible algebras which is also Jordan-admissible.

Consider, from a broader algebraic profile, the mutation

algebra A( A , pa ) with product (1.2.35), i.e.,

*L = Na.b + ub.a . (1.5 45)

As shown in Section 1.4, these algebras are jointly, flexible
Lie- and Jordan-admissible. A "similar" classical version of pro-
duct (1.5.45) in one space dimension was proposed in ref.6
A¥Rp = N2 2B 20 2B (1.5-46)
@ PP Dp (o2
These brackets are . Lie-admissible, i.e., satisfy laws
(1.5.7) as the reader can verify kv insrection . However, brac-
kets (1.5.46) are not Jordan-admissible because they violate laws
(1.4.13b). In essence, the algebra U+ attached to the algebra U
with product (1.5.4 ) is characterized by the brackets
18,83, - (ver) (2222 3228
"Cu Dz Pp | p 2

which violate the Jordan laws, as it is the case for brackets

(1.5.47)

(1.5.4% . For the case of the algebra U~ attached to U we have
instead the brackets

06,83, - O )@4 2B

B /DH/DB) ((.5-498)
\oz 2p

fap 2
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which do satisfy the Lie algebra laws. Thus, U is Lie-admissible
but not jointly Jordan-admissible.

Notice that brackets (1.5.46) are not flexible, as the reader
can verify by inspection. Also, the structure of brackets (1.5.46),
when extended to more than one space dimension, i.e., the )\ and
)} - terms become matrices, is no longer Lie-admissible. In other
words, the Lie-admissibility of these brackets is dependent on the
one-dimensionality of the space component.

Therefore, the classical realizations of commutative Jordan
algebras, or of the Jordan-admissible algebras, appear to be a non-

trivial task which may demand new insights, e.g., the use of the

bonded algebras U* (U,S,T) with product (1.2.40). This aspect is here

left to the interested reader.

As we shall see in Volume III, the situation is different at a -

quantum mechanical level. And indeed, by recalling that product
(1.5.40) is a gqguantum mechanical realization of the Lie product, it
is conceivable to expect that a quantum mechanical realization of a
Lie-~admissible product could be of type (1.5.45) and, as such, it
characterizes a joint Lie- and Jordan-admissible algebra.

We now close this section with the remark that the notion of

Lie-admissible algebras is at the very foundation of Lie's theory.

In fact, the fundamental Lie rule (see Chapter 3 for detail) is
precisely based on the notion of Lie-admissibility, only expressed

in its simplest possible forn“the associative form
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_ k
LXL ,X)']: Xi X} - X,’ X( = Cl) ><\< CLB-IPS“)
o 0

X[ X}- = ASSoaah'n. L’g-a,,(,o._:gg[,& Qeaﬂqu (l.‘;'l..jc)

However, and quite intriguingly, when considering the realization
of Lie algebras via the Poisson brackets, the underlying algebra turns

out to be a general, nonassociative, Lie-admissible algebra, as evident

from the property that the brackets

Axp = A ©or (1.5.50)

(D ,Z’Ko\ (‘DFK‘\

verify all conditions for the characterization of an algebra; the

algebra is nonassociative because of the property
AxB)x C = A < (Bxc) U551y

and, finally, the algebra is Lie-admissible because of the familiar

form

LQ"Bj?QXB - BxA

N QB e @4

T QM OR, @7‘6}: (1-5.52)

It is not inconceivable that the difficulties for identifying a
classical realization of Jordan and Jordan-admissible algebras may
be due to the nonassociativity of brackets (1.5.50). Also, the non-
associativity of the algebra underlying Poisson brackets, when compared
ko the associativity of the algebra of operators underlying Heisenberg's
equations, is one of the reasons illustrating the lack of achievement

until now of a fully consistent quantization,as we shall see in Volume III.
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NOTE ADDED in 1982

A considerable number of mathematical and physical studies have
been conducted on Lie-admissible algebras since the time of writing
this chapter. All these studies are directly relevant, not only for
the classical analysis of this volume, but also for the quantum me-
chanical profiles of Volume III, as we shall see. These contributions
are scattered throughout the five volumes of the HADRONIC JOURNAL
[Volume 1, (1978) through Volume 5, (1982), as well as in other
Journals. We refer the reader interested in these mathematical studies
to:

- the Bibliography and Index of studies on Lie-admissible
183-185

algebras by Tomber et al

- the Proceedings of the Second (1979) and Third (1980)
186~-187
s

Workshops on Lie-admissible Formulations and

~ the Proceedings of the First International Conference

on Nonpotential Interactions and their Lie-admissible

Treatment (1982)188,

with particular reference to the studies by the following

~ Mathematicians: G. M. Benkart (Univ. of Wisconsin),
D. J. Britten (Univ. of Windsor, Canada), Y. Ilamed
(Soreq Nuclear Research Center, Israel), M. K&8iv and
J. Lbhmus (Acad. Sciences Estonian USSR), H. C. Myung

(Univ. of Northern Iowa), R. H. Oehmke (Univ. of Iowa),
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S. Okubo (Univ. of Rochester), J. M. Osborn (Univ. of
Wisconsin), L. Sorgsepp (Acad. of Sciences Estonian USSR),
M. L. Tomber (Michigan State Univ.), G. P. Wene (Univ. of

Texas at San Antonio) , and others.

Theoretical physicists: G. Eder (Atominstitut, Austria),

R. Mignani (Universitd di Roma, Italy), E. Kapuséik (I.N.F.
Warsaw, Poland), Chun-Xuan Jiang (Peking, China), A. Schober
(I.B.R., Cambridge), J. Kobussen (Universit#t 2Zlrich, CH),

R. Trostel (Technische Universitdt, Berlin, W. Germany),

D. P. K. Ghikas (University of Patras, Greece), J. Fronteau
and A. Tellez-Arenas (Université d'Orléans, France), S. Guiagu
(Université de Québec), J. Salmon (Conservatoire Nationale
Paris), R. M. Santilli (I.B.R., Cambridge), T. L. Gill (Howard

University), and others.

Experimental physics (team leaders): R. J. Slobodrian

(Université Laval, Québec), H. E. Conzett (Lawrence Berkeley
Laboratory), H. Rauch (Atominstitut, Austria), G. Matone

(Ital. Nat. Lab., Italy), and others.
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APPENDIX l.A: ASSOCIATIVE MULTIPLICATION ALGEBRA OF A LIE-

ADMISSIBLE ALGEBRA

In these appendices the symbol U designates a (nonassociative,
abstract) algebra U with elements a,b,c,... and product ab over a
field F of elements A, @ 3 k’,.... and characteristic zero. The
symbols U~ and ut designate the algebras which coincide with U as

vector spaces, but are equipped with the products

[_a, bill‘ = ab - l:cl)
{a'b‘ﬁl&: "li(&b +E‘\),

respectively.

(1.4.1a)
(I.A-1b)

Given an algebra U, we are here interested to construct an
endomorphism of U (as vector space) which characterizes an
associative algebra fﬂU) of linear operators in U. The realization
of U we are interested in is that offered by right and left
multiplications

R,: &~ ab o (1.A.24)

(1.A.2b)

[>® ﬁlb = & £>/

o
L,: a—ba o al,=be,
for all a € U. 1If “Z.(U) and -e(u) are the sets of all right and
left multiplications on U, respectively,‘J{(U) can be defined as
the enveloping associative algebra of JZ(U)LI JZ(U). A generic
element of J(U) can then be written o 3152""Sn where the S8's
are either left or right multiplications and ol ¢ ¥. The product
in J%(U), @.g., RaLb,is associative. The algebra JQ(U) so con=

. o 41,74,73
structed is called the associative multiplication algebra of U.
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Note that
(&R = (6d)b = a (4b) = A(aa(b: aRy, 'o(dzb.—(e“,(r.ﬁ.zq)
albre) = abyacs aRy +a®
a(Re+Ry) SRy, = R+ R

i

a‘ebfc

I

a(ob)

i

& QA‘Q: [2N R“Rb @(AB: ﬁaab

J 7

and similar relations hold for the left multiplication.

Consider first the case when U is an associative algebra A.

Then the associative law (1.2.1lc), i.e.,

EA,‘D,C]ﬁ:O/ 6,94-)

can be written

(1.R.5)

RLC = QbRc
similarly, the equivalent version of the associative law

tc,b,o\lﬂ:o, (1.A.é6)

can be written

Lb :LBLC- (l.4.7)

<

The mapping a >R (a ﬁ>La) is a homomorphism (antihomomorphism)
of the associative algebra A into the multiplication algebra
J%(A) of all linear transformations of A. Thus, it constitutes

a representation of A. If A possesses an identity element,

(1.A.3b)

(l.ﬂ-?c)
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a —a»Ra is a faithful representation because Ra = Rb implies
a = b. This indicates that the enveloping algebras J%(A) of
all linear operations in A provides an effective tool for the
study of associative algebras.

For a nonassociative algebra U the mapping a —» Ra (a —» La)
is not a homomorphism (antihomomorphism). Nevertheless, the
algebra J? (U) is equally useful because of its associative nature.

If U is a Lie algebra L, then laws (1.3.1), i.e.,

sbiba=o, (1.A. £a )

bb)e + (bc)a + (ca)b =0, (1.0.85)

can be written

(1.9 9 )

Ry, = LR, ,Rclﬁ . (1-4.95)

If U is a commutative Jordan algebra J, laws (1.3.2), i.e.,
ab-ba=o, (1.A.104)
(a%h) & = a®(ba), (1.9.10b)
became

Ra =Lla, (-A-lla)

LQ“ (e_ 'Lz -9 C(-ﬂ—”b)
7 (72N Q )
and J%(J) can be expressed in terms of either the right or the

left multiplication only. Law (1.A.10b) can also be written, after
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some manipultations,71
[Re, LT+ TRy, Ry e LR, Ry 22

If U is a power-associative algebra, law (1.2.15a), i.e.,

5. (1-A-13)

1

(1.8.12)

2
O A = Aaa

can be linearized according to the form

[{a’b}u,c]u * [{b'c}u 'a:{u* Z{C'o‘}ul b]u:"l

and expressed as follows

(LA 14)

L—d\bf ba

= (R +La ) (Ry ~L )4 (RyrLy)(Ru-La).
Similarly, law (1.2.15b), i.e.,

3 Cl.A-16)

¢L24,2 = A A ,

&Abfb¢ -

(1.4.15)

can be written

Lai’a: (&“+L*)(ﬂa2+L‘a?‘EAQA)‘ LR /(/..4,/7)

a? “a

Proceeding along the same lines, if U is an alternative
algebra, then laws (1.2.13), i.e.,

[b,a,AZ:o ((-A.1P)

E.a, a ,B]u,: D

can be written

(1.6.19)
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If U is a flexible algebra, then law (1.2.23), i.e.,

[a,ba], =2 (/-A.20)
can be written
Z,-RA/ La]ﬂ_—o (1. 4.21)
Similarly, the linearized flexibility law (1.2.24), i.e.,
r ‘ R.22
La,b,c}u + Lc,b,azu:ol (1.8.22)
becomes
(.A.23
qu‘LLLa rﬂab-ﬁbﬁ,\_ ¢ )
If b = a2 we have in particular
2 2 (1.A.24
[_42~LK:RA3-—Q&, }

Thus, an alternative algebra is flexible.
A necessary and sufficient condition for an algebra U to be

a general Lie-admissible algebra, from law (1.4.2), i.e.,

[a/b,e], + [bc1a], « [ca,b] = [c, b,o\}“f- [ba,<l,+ [a,c. 1, ,Cl-A- 25)

is given byl

Rab_-bs = Lab_ba

(1.8.2¢)
s(Ro-L)(Ry-Ly) - (Ry-1y) (R-LL)
A necessary and sufficient condition for an algebra U to be a
flexible Lie-admissible algebras, from laws (1.4.4), i.e.,
= 1.4.27
L{\’b, 0]: o ) é &)
[2Y
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[<,a,b], + Lbc,a], - [cbal=0 (1.8.274)

is given by5

Z/é.,,LJﬂ o (1.A.224)

(edb_bd = ZQd\) (Eb-l‘b)z. (I‘./q--Zd"b)

If laws (l.A.28) are written in the egquivalent form

Eﬂ,b, Azu:ol (,_A_‘z?&)

L [ T - .29b
La,b,c], - [ba,], -Lac,bl,=0, (I.A-298)
then we have the equivalent multiplication rules

L, b3y =2, (1.4 30a)
Lo\b~ba = LL“/ (RB‘Lb)K. (1.4.30b)

Associative algebras are general and flexible Lie-admissible
algebras. Commutative Jordan algebras are trivially Lie-admissible
in the sense that, Egs. (1.A.26) or (1.A.28) are trivially satis-
fied by Egs. (1.A.11).

A necessary and sufficient condition for an algebra U to be

a general Jordan-admissible algebra, from law (1.4.11), i.e.,

(@B a v a(b) v B )ar ala®®) (o g

= Ouz(bd.] «i-(ab)o\z -+ 42(3\ b) +(bo\)¢xa

is given byl

LR+l ) (R« La)jn: o (1.4.32)
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We now use the right and left multiplications to prove that the

flexible Jordan -admissibility law (1.4.13b), i.e.,

(a?b)a + a(a?) = a2(ba) +a?(ab)

is a subcase of law (1.A.31) under the flexibility condition.5

(1.9, 33)

Law (1.A.23) can be written

Z—aznd-RALa?_:ﬂaz L‘.\‘/—a Ra"/ ([_,4_3#“)

LAI Lﬁ - LA at = ﬂa‘ﬁa - Rg\za\ J (/H.sll-b)

Lol =Ly, =R =R (18309

By summing up, Eg. (1.A.32) becomes, after use of Egs. (1.A.13),
2 (Laf‘ ‘?A ""Lo\l LA - Ea La?. - LA ‘/"a_z):o , (/'4-35)

and it coincideswith Eq. (1.A.33) when rewritten in terms of the
ordinary multiplication, up to the numerical factor two. A neces-
ary and sufficient condition for an algebra to be a flexible

Jordan-admissible algebra is therefore given by5

L—R“’LAYﬁ =0 )

Cl,tq.3£«)

Laz @o‘ -+ LAz_ L‘a\ - faLaz - Z_d L’o\?- o, (Iﬂgé,é)

Associative algebras are general and flexible Jordan-admissible
algebras. Lie algebras are trivially Jordan-admissible in the
sense that Egs. (1.A.32) and (1.A.36) are trivially satisfied by
laws (1.A.9). However, the commutative Jordan algebras are non-

trivial Jordan-admissible.

- 100 -

Without proof we quote in the following certain properties
which can be established through the use of the associative multi-
plication algebra. The characteristic of U is prime to n where

the equation nx = 0 holds if and only if a = 0. U is said of

characteristic prime to zero if it is prime to n for all integers

n> 1.

THEOREM l,A.l:l Let U be a flexible algebra of charac-

teristic prime to 30. Then U is powere~associative if

and only if a2a2 = (aza)a for all a ¢ U.

THEOREM 1.A.2:1 An alternative algebra of characteristic

prime to six is Lie-admissible if and only if it is

associative.

71

THEOREM 1.A.3: Every element of a commutative Jordan

algebra generates an associative subalgebra.

THEOREM 1.A.4:41 An ideal S of an algebra U is nilpotent

if and only if the associative multiplication subalgebra

J} (S) of JQ (U) is nilpotent.

41

THEOREM 1.A.5: The center C of a simple algebra U is

either zero or a field. 1In the latter case U is a

central simple algebra over C.

Notice that Theorems 1.A.4 and 1.A.5 apply to Lie-admissible

algebras.
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APPENDIX 1.B: LIE MULTIPLICATION ALGEBRA OF A LIE-ADMISSIBLE

ALGEBRA

An effective approach in the study of an unknown algebra
is that offered by the use of a known algebra. In Appendix 1l.A
we presented the main ideas in the use of an associative algebra,
i.e., the multiplication algebra, for the study of Lie-admissible
algebras. Clearly, Lie algebras constitutes another signifiéant
alternative for the study of Lie-admissible algebras. As a matter
of act, Lie algebras can be used from more than one profile within
such a context. In particular, the following approaches are sig-
nificant for the analysis of these monographs.

(1) The study of the "Lie algebra content” of a Lie-admissible
algebra U, that is, the attached algebra u~. For an
outline of this approach see Sections 1.4 and 1.5,
Appendices 1.D and 1.E and Chapter 3.

(2) The study of the embedding of a Lie algebra L into a
Lie admissible algebra U such that U-:; L. This approach
is studied in Chapter 3.

{3) The study of the Lie multiplication algebra of a Lie-
admissible algebra. This approach is outlined in this
appendix.

A derivation D in any algebra U is a linear mapping of U into

U satisfying the rule4l

(AB)D = (aD)b+4(bD) (I.B.I)
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The set &) (U) of all derivations of U forms an algebra. This

can be seen from the properties

@b) (b, +D2) = (2B)D, + (4 b)D2 ,  (I1-B.2a)
(Kab)n = & ((aB)D) - [«b) (D), (1.B.2b)

In particular,

(0\b> z(>t,1)23 = (51 Z{)*.021)>5 t+ a4 (b [(D‘BDéK)I(L5,3a)
LDI /Dz]r D‘Dl—DzD' . (‘.B.ab)

Thus, the algebra [;D (Uig- with the product (1.B.3b), where
D1D2is associative, is a Lie algebra.

More generally, let D be a subspace of the associative
algebra J2 of all linear operators of U (as a vector space).

The Lie enveloping algebra28 L(D) of D is the intersection of all

Lie subalgebras J} ” containing D. By using the iterative rules

D =D, ... D, =ID, D] (1-B.4)

the Lie enveloping algebra of D is

oo
LD = @ Dy,
L=
Notice that

[@ g, ::D,z < Dx’+5
LL®,,D,],D,]< [, DD+ [13.21.]

where the last property follows from the Jacobi law. Thus (l'B"é)

(1.B.5)

(1.B.6x)
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[D,,. D, (= | [D.,d] , DsJ

c [Ta D3,D.]+L[2,,D7T,D.7
< LIy, , DT+ L3, )
< D c D,

Lti+ e

().B.¢)

and L(D) is a Lie subalgebra of J? ~.

The realization L(U) of the derivative algebra D(U) we are
interested in is that in terms of the right and left multiplica-
tions (Appendix 1.A). O is a derivation of U if and only if, from

Eg. (1.B.1), one of the following properties
[Qaigz:QAg');
-[,L'Alal‘_' L‘Ag/

hold for all a €U. Thus, L(U) is a subalgebra of the Lie algebra

(1.2.7a)

(1.B.7s)

'Lf} (Ui}— of the associative multiplication algebra of U. The

Lie algebra L(U) so constructed is called the Lie derivative

algebra4l of U.

The explicit form of the derivative D in terms of the right
and left multiplications depends on the algebraic laws of U.

If U is an associative algebra A, from Egs. (1.A.5) and

(1.8.7), i.e.,

&3“ (2 b = G?“ ko I:(Pﬂ~.z~ b~]': o ) L"* L L= ['£>a\ ("ES- é?)'

we have56
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(1.8.9)

L(A) = R(A) © L&) (1.B.l9o)

If U is a Lie algebra L, then in view of Egs. (1.A.9), i.e.,

{QA :—LA Z-_RA,_RbY:‘ (eaip C('B.N)

we have28

D=R, (l.B.12)

i.e., L) - R(ﬂ) (1.B.13)

In this case the mapping a —» Ra is called the adjoint maggingsg

(1.8.1¢)

of a

R, = ad(e)

If U is a commutative Jordan algebra J, in view of Eq.

(L.A.12), i.e.,

[Ra, [Ru, RI(= K. IRy R.]

we have41

(1-B.15)
ZD _ [l@b (Pc] (I.B-lé)
L(T) = [R(A)]™ (1-B.17)

If U is a flexible Lie-admissible algebra (with identity),

in view of Egs. (l.A.23), i.e.,
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[R, (Ry-1y)]= R, (R -Ly) (1.8 .1%a)

[ La, (Ry-Ly)] (].B.15b)

{y
I’\
S
~~
>
o
1
"\
-~
~—

we have
/. EB. ’9
;) C ,)

J(u) = R@)® LIA) (1-B.20)

Thus, the realization of the derivatives of the associative and

the flexible Lie-admissible algebras coincides. The reader should

keep this property in mind for the analysis of Chapter 3 and,
particularly, for the generalization of the Poincare-Birkhoff-Witt
theorem to Lie-admissible algebras.

To the best of my knowledge, the realization of the derivative
in terms of left and right multiplications for the case of a

general Lie-admissible algebra has not been investigated until now.

- (1.8.21)
[[(Ra-ta), (Ry-L0)] = Rige iy~ Fa e

By putting O = Ru - La’ Eq. (1.B.21) can be interpreted as the

Notice that Egs. (1.A.26) can be written

difference of the two expressions

LR, DI=R,g , [La,DI=Liyp

However, in general, these expressions are not individually veri-

(1.B.22)

fied for a general Lie-admissible algebra. Thus, D = Ra - La is

not a realization of the derivation for the algebra considered
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according to the conventional approach.
Lie multiplication algebras L(U) have several important
applications for the study of Lie algebras, Jordan algebras and

28,58,60. For

their relationship. See in this respect reference
instance, it is possible to prove that the Lie exception algebra

G, (Section 1.3) is the derivation algebra L(Jg) of the exceptional
Jordan algebra (octonions or Cayley numbers).

A derivation D of U is called an inner derivation when it is

an element of L(U). The quadratic form

K = T2 (ada) (aelb)

9

(1.B.23)

is called the Killing form.6 The following theorem on Lie algebras

are well known.

69

THEOREM 1.B.1: Let L be a finite-dimensional Lie

algebra over a field F of characteristic zero possessing

a nondegenerate Killing foxrm. Then every derivation D

9

THEOREM 1.B.2:6 Let L be a finite-dimensional Lie

algebra over a field F of characteristic zero, R its

A,
radical and R its nilpotent radical. Then any deriva-

. &
tion P of L maps R into R.

The radical of L was defined in Section 1.3. The nilpotent
radical of L is the radical which contains every nilpotent ideal
of L. The extension of Theorem 1.B.2 to Lie-admissible algebras

has not been worked out until now, to my knowledge. Nevertheless,
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an extension of Theorem 1.B.l exists and reads APPENDIX 1.C: PIERCE DECOMPOSITION OF A LIE-ADMISSIBLE ALGEBRA

41,73 The use of associative and Lie algebras for the study of Lie-
14

THEOREM 1.B.3: Let U be a finite-dimensional

admissible algebras has been outlined in the preceding appendices.
algebra over a field F of characteristic zero with a

Clearly, other algebras which can be effectively used for the study
left (or right) identity and suppose that U is the

of the Lie-admissible algebras are the commutative Jordan algebras.
direct sum of simple ideals Si,‘i.e.,

In this appendix we shall outline the main ideas for this approach.

m
h = @® s, (/-8'24‘) The 1 i
= . € interested reader is however urged to consult the quoted
A=4

Then every derivation of U is inner.

literature for technical details, as well as for further

developments.

. The use of idempotents e(e2 = e) plays a central role in the
The above theorem is applicable to flexible Lie-admissible

study of the associative algebras Alas well as the commutative

algebras. Nevertheless, its extension to the general Lie-admissible n

and their noncommutative generalization 3182

Jordan algebras J
algebra is problematic owing to the lack of knowledge of the reali-

The same approach is inapplicable to the Lie algebras L (because
zation of a derivation in terms of the right and left multiplica- 2

a” = o for all a e L). Nevertheless, the use of idempotents
tions, as indicated earlier. In general, the study of the Lie

becomes again applicable as well as significant for nontrivial
derivative algebra L(U) of a flexible Lie-admissible algebra can

Lie-admissible algebras, i.e., those other than (associative and)
be conducted through a judicious extension of the Lie derivative

Lie. Let U be an algebra of this type over a field F (of charac-
algebra of a noncommutative Jordan algebra. However, the study

teristic zero). The product ab in U is neither commutative nor
of the Lie derivative algebra of a genuine (i.e., nonflexible) ;

anticommutative (Section 1.4). Thus, it admi decomposition
general Lie-admissible algebra demandsa specific study which is (1.4.15) )

.4, , i.e.,

here left to the interested reader. a b = _"_2 L a ,bju + {4' b}q (/ c.la)

La,bl, sab-ba, fa,b} -L(abeba) (-Cib)
where the product [g,b]U characterizes the Lie algebra content
U~ of U, while the product ia,b}u characterizes the Jordan algebra
content U+ of U. It is then evident that the study of U by using

idempotents puts the emphasis in its commutative Jordan algebra
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content. And indeed, all idempotents of U are idempotents of U+
This approach should be compared to that of Appendix 1.B where
the use of the derivations puts the emphasis on the study of U
through a Lie algebra structure.

In this appendix we shall first reinterpret known results
for commutative Jordan algebras J as the attached algebra vt of
a Lie-admissible algebra U and then touch on the problem of their
extension to U.

L . + .
Identities (1.A.12) in U , i.e.,

[!?A,R.,clﬂf [y, QCJ‘Q + LR, K&adﬁso (.c.2)
can be written for ab = ia,§}u+

(da)(be) + (db)(ca)+ (de) (ab)
= [ (b)]a + [el (ca)]b + [d (ab)]c

(l.c.3)

vielding, after some manipulations

(ch (e be + (Q b “?C¢x + (e c ﬁzckgs
= {Qa(bc) TQCR,&Qh "'Rb(ea Qc

Assume that a = b = ¢ = e is an idempotent in ut.
71

(1. C.¢)

)

Then we can

2 r?:’ 3R+ Re=Re (2€-1) (Ro-1) (1.¢:5)

The solutions (0,%,1) of this equation are called the character-
istic roots of Ra. Notice tha, since eRe = e, one of the char-

acteristic roots of Ra must be 1.
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The sets

U*L, (e) = {a/c\e M*/O\Qe——m. L i=o, f,i}, (I.c.¢)

: . + . .
are invariant subspaces of U under R,. The direct sum decomposi-

tion which then emerges

Ut = u*<e>@u ce)@u (e),

41,71,73

(1.¢.7)

is called the Pierce decomposition of U relative to the

idempotent e.
As a simple example, consider the case when v is the commu-

tative Jordan algebra induced by the Pauli matrices (Section 1.4)

-(22), &= (30), s (55) 0¥

A generic element of u* can be written
(ic.9)

o @, &, )
- 49..1‘ Q_'Z_‘L ¢

Introduce now the idempotent

o - 'L.O)
o 4 /-

Then the element a admits the Pierce decomposition

_ o o o 4, a, o ([.C-Il)
Q—<OQ2L>® ag,o)@<0 O)

More generally, Lemma 9.1, page 173 of ref. 71 for commutative

(t.C.1o)

Jordan algebras J can be easily reinterpreted as characterizing

+
the U content of U.

LEMMA 1.C.l: The subspaces UI(e), i=0,%,1, of the
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Pierce decomposition of the commutative Jordan algebra
u* of a Lie-admissible algebra U with respect to the

dempotent e satisfy the properties

w)yeul , @)% (1.c.e)

Utul e ul ulu’ u’ (1.c.128)
Z 2z 7/ z 3/
2
Ulyt=o (u»,;) < U, dU,. lc.ize)

Notice, from the above theorem, that the idempotent element
+ +
e is the identity element of UI and that U0 and U% are Jordan

subalgebras of ut.

Suppose now that U+ has a unit element 1 admitting a decom-

position in terms of pairwise orthogonal idempotents, i.e.,
M
= (ED g . .tz { 1= C(1.c.3
/L o GEL ) £ 63‘, 637:}u y E?[ 1630_}uh 621 ) )

. +
and introduce the subspacesof U

ur

Ll

ut {a{aé u', ae,

cy

i
i

{azaeu*, ae;

(]
0y

The Pierce decomposition of U+ with respect to the idempotents e,

is then given by7l

+ ~ + M +
w" = @ (/('.L. @ U o
ey Oie
S ~n
Tle. + + 2t L *
M,L(ev) = MJ," , (/I}r: (6"-): i@l U i Ua(e)' "/@' M)K y
R

(4] Lk#D (].C.15b)

Q_} ) U.C./lvxa)

“ea':éa'go (—,'C'M‘A)

(1.C.152)
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Let us here recall that any finite-dimensional semisimple
commutative Jordan algebra over a field F (of characteristic zero)

71,73 Thus, decomposition (1.C.15) apply

has a unit element 1.
when U' is semisimple.

1£ Ut is of degree one (Section 1.3), then the unit element
of UI is the only idempotent e. It is possible to prove in this
case that U;(e) (:) UI(e) is contained in the radical of u'. Thus,
when U+ is simple, U+ = UI(e), i.e., U+ = Fe. We recover in this
way the central simple commutative Jordan algebras of degree 1

of Section 1.3.

1f U7 is of degree two, then

- = - . g ‘,.—l
t=e,@e,, {e.el=2,{e efso,i-12
“ (r.c.lé)
In this case UIl = Fel,U;2 = Fe2 and U+ is simple if n 2 2. This

yields for u* the special commutative Jordan algebra which can

be realized as a subalgebra c* attached to a Clifford algebra

71
with symmetric bilinear forms (x,y) = F @ V(F), 73
The case of algebras vt of degree 3 can be studied along
the same lines and, when ut is simple, yields the classification

. . 71,73
of Section 1.3. For details see references

and qﬁoted
papers.

The extension of the Pierce decomposition to noncommutative
Jordan algebras has been studied in the i;;Sting literature. See,

for instance, in this respect, reference .  But a noncommutative

Jordan algebra can be a flexible Lie~admissible algebra. Thus,
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the results can be reinterpreted for our context.
Suppose that U is a flexible Lie-admissible algebra which is
not Lie nor associative. Since idempotents in U coincide with

. R + c s
the idempotents in U , the Pierce decomposition (1.C.7) can be

extended to U according to the rules82
U=u, U, ® U, (1. C47a)
W, - {Q,[ea_.rq_e;_ Ca ceom,2d (I.c.17b)

Instead of enclosures (1.C.12) we now have the weaker forms

chCUu S Ucsu vl U ey, (1.c.19)

similarly, decomposition (1.C.15) extends to U according to
&
U= @ u
L,):O
uoa: iﬂ}ﬁarae:O}/

o = {_q_] eca +ae, = ea.+ea_=2&§,

(l.C.19a)

Cr.c-196)

U (l.c-19¢)
Ui, = {a|eia +ae,zearea =ak =Uo, U.c.17d)
U

vy = {&[ €.a tae, =€;8 +ae,-=a}: U,-L- U-C-/‘ie)

aclyy= eas ]Re,

(l.ca9d)

The extensions of the Pierce decomposition to a general (nonflex-

ible) Lie-admissible algebras has not been investigated until now,

to my knowledge. One difficulty for this extension is due to the
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fact that for a general Lie-admissible algebra the notion of
characteristic roots of the right andleft multiplications must be
subject to a suitable technical implementation. First of all, at
least two identities are needed in the hope of identifying these
characteristic roots. The identity (1.A.26) for the general
Lie-admissibility, i.e.,

Ra.q’f__ Q" L ALQ"A""L’

(4 )% L

= (RupLa)(Ro;-ta) = (R La) (Rei- L)

is therefore insufficient when considered alone. A candidate for

(l.(.Zc’

the second identity is given by power-associativity (notice that
general Lie-admissible algebras are not, in general, power-asso-
ciative). In this case Eq. (1.A.16) can be linearized to the form
ée” ferm (Q'JQ’)' +“)'Q")(Az‘\s + A, Q)
(l.c.21)

= ‘? Ferun [? fam (a7 a; +a; ;) 0\2]‘%)

that is

L
L@\;ai +a,'4\(')6\2 + L(a, ‘lz* 42“,‘)&‘: t (6\14(*6‘«-’“'&,)4;
- (Q'ﬂ': T Lq"')((e“iq't + “z“if L“i“l"“aqi-ﬁaiaaz_ e“z(ea;)

* (R“i * L“i) (R4¢“1+“2“L+Lacé\z+a2“f- {e“f R“; R"“‘re«i)

R L R Ry . L (e
T Th,acatagac T a;’-acaimtﬂ.“ q; “4;4,t 44y

By putting a; = aj in Eg. (1.C.20) and a; = aj = a, in Eq.

(1.C.22) we have
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Rpa . tlaa ((6 4,)(Qa‘»"LQ;)/ (1.€.224)
¢ l
@¢a;)4;:(EQ¢+LQi)<RQfQi R4 -Rq {Q ) Qﬂ[e&.'-
(1.€.22b)
Finally, by putting a; = ewe reach the system5
3
(Re-Le)(Rgiio-1)=0, (l.c.23a)

(Re+Leo)® (R +Le)R

The comparison of the above system with the simple eguation
(L.C.5) indicates the increase in complexity for the extension of
the Pierce decomposition to general Lie-admissible and power-
associative algebras. Studies along these lines are encouraged.
For a specific study 027the Pierce decomposition for Lie-
admissible algebras see ref . For the relation between these

15, 16

algebras and the nodal noncommutative Jordan algebras see refs.

2_ | (Re+t)=zo, (1-¢.23D)
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APPENDIX 1.D: RADICAL OF A LIE-ADMISSIBLE ALGEBRA

A central problem in the study of an algebra is that of
classification. The use of the concept of radical has proved
to be particularly effective in this respect. The first major
breakthrough in the study of algebras by means of radicals was

84 The result was a char-

achieved by E.Cartan in 1894.
acterization of Lie algebras, as recalled in Section 1.3 (see

also Appendix 1.E). The second major breakthrough was achieved
by J.H.M. Wedderburn in the early part of this century.85 This
resulted in the first structure theorem for associative algebras,
as recalled in Section 1.3. These studies were then extended by
several authors to a number of nonassociative algebras, such as
commutative and noncommutative Jordan algebras, flexible algebras,
alternative algebras, etc. Nevertheless, the structure problem
of rather large classes of algebras remained still open. A third
major breakthrough was finally achieved by N. Jacobson in 194586
who identified a concept of radical which is applicable to a
rather large class of rings and algebras.

This appendix is devoted to a brief outline of the problem
of the radical of a nonassociative algebra. Since most of the
literature available is for rings, we shall first review the defi-
nitions of radical for rings and then touch on the problem of
their extension to algebras. For textbooks and monographs with

specific emphasis on the problem of the radical see referenceska-sz

See, however also monographsaz-42. For initial contri-
butions on the problem see, for instnace, papersgz_qy. For more
recent contributions, see, for instance, paperqs— - .
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In a way similar to the corresponding definitions for alge-
bras (Sections 1.2, 1.3 and 1.4), we shall say that a ring R
(Section 1.2) is a zero ring when ab = 0 for all elements a,b € R.
Several other definitions for algebras, particularly those for
ljeft or right ideals, apply to rings too. Similarly, a ring R
is called a simple ring when the only proper ideal of R is the
zero ideal and R2 # 0. An element a & R is nilpotent if a™ = 0
for some integer n. An ideal I of R is a nil ideal if all its
elements are nilpotent and is a nilpotent ideal if 1" = 0 for some
integer n.

Consider an associative ring R, and let S be a non-empty

subset of R. The right ideal of R

@ (S):{d\ “C‘R’ ba=o0 oz.\eeac-S} (LDJ)

is called the right annihilator of S. If R(S) consists of only

one element a, the ideal generated by a is called the principal

ideal. A principle ideal ring R is a ring (commutative under

addition) with identity, such that every ideal is a principal

ideal (e.g., the integers). A maximal right ideal of a ring R is

a right idealM # R such that for any right ideal I of R either
I =Mor I=R. A ring R is called right Artinian when there is
an ideal I in the set ﬁ; of all right ideals of R such that if
I'e CT and I' ¢ I, then I' = I. When the term "right" (or
"left") is omitted, the above definitions imply both right and
left properties.

The nilpotent radical (also called the classical radical or

the Wedderburn-Artin radical) of a ring R is the unigque maximal
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nilpotent ideal of R. This definition originates from a number
of properties, among which the following theorem (where R is asso-
ciative).

THEOREM 1.D.l: Every proper ideal of a ring R with

identity is contained in a maximal ideal of R.

THEOREM 1.D.2: The sum of a finite number of nilpotent

right (left) ideals of a ring R is a nilpotent right

(left) ideal of R.

A ring R is called semisimple when it is at least right (or
left) Artinian and the only nilpotent ideal is the zero ideal.
Notice thatthis definition does not coincide with the conventional
definition of semisimplicity of a ring (where the condition on
the ring of being Artinian is often omitted). Under the above

definition, the following structure theorem holds.

THEOREM 1.D.3: Every semisimple ring R is the direct

sum of a finite number of simple rings.

Wwedderburn Structure Theorem 1.3.1 can be more technically formu-
lated within such a context.
Let R be a ring. A (nonempty) set M is called a left R-module
if M is an Abelian group under addition; for every element a € R
and b £ M, ab &€ M, and
a, (by+be]=a, b, + ‘\,bz, (4,+a2) Bl: q,L,réaé,} (1.0.20)

(a,a2)b, = a, (azh,), (1.0.2b)
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for all ay.a, € R and bl’bZ ¢ M. A module M of a ring is
irreducible when RM # 0 and M has no proper submodule.

The Jacobson radical of a ring R can be defined as the

JR) = N7 (M) ¢.0.3)

where M is an irreducible R-module and cf?(M) is the (right and

quantity44

left) annihilator of M. Thus, the Jacobson radical is not the
nilpotent radical. Instead, it is a broader radical which, as

such, is applicable to a broader class of rings. For instance,

10

the Jacobson radical of a quadratic Jordan ringl J (i.e., the

Jordan ring of qudratic operators) can be interpreted as the
maximal ideal of quasi-invertible elements (an element a € R is

guasi-invertible if l-a is invertible). Thus, if R does not con-

tain the unit element, the Jacobson radical is clearly preferable
over the nilpotent radical. 7
To better identify the difference between the Jacobson and
the nilpotent radical, let us indicate that any definition of
radical must satisfy a number of requirements, among which, most
importantly,
(1) the radical must exist for all rings of the class admitted;
(2) if W is the radical of a ring R, the radical of R/W must
be the zero ideal, and
(3) the radical of an ideal of a ring R must be the intersec-
tion of the ideal and the radical of R.
The nilpotent radical satisfies properties (2) and (3) but

not necessarily property (1). The Jacobson radical, instead,
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satisfies all properties (1), (2) and (3).
It should be here indicated that a rather large number of
radicals have been identified in the specialized literature (see

&7- heo
papers ). such as the Levitzki, McCoy, Bauer, Brown, Amitsur,

95

Nagata radicals, etc. For instance, the Levitski radical of a

ring R is the sum of all semi-nilpotent ideals of R (an ideal is
called semi-nilpotent if every ring generated by a finite set of
its elements is nilpotent). The McCoy radical96 I of a ring R

is the set of all elements a & R such that every M-system
contains an element of I (an M-system of a ring R is the subset of
elements of R such that for all pair c,d & M, there exist an ele-
ment a € R such that cad & M). Under certain conditions (called
minimality conditions) the Levitski and the Jacobson radicals
coincide. However, the McCoy and the Jacobson radicals are
generally different. The selection of one radical versus another
depends on several elements, including the aspect of the structure
theory under study.

The reader should be aware of the care needed in the exten~
sion of the definitions of radical from rings to algebras. The
féllowing approach is effective in this respect. (See, for instance,
reference 44).

Let U be an algebra over a ring K (with identity) which is
commutative under addition. Let M be an Abelian ground under

addition. M is an algebra-U-module if and only if it is a K-module

(as defined above for rings) such that

o (4m) = (da)m = a(«m) (1.0.4)
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for all & €K, a €U and m ¢ M.

THEOREM 1.D.4: If an algebra U is a K-algebra over a

commutative ring K with identity, the nilpotent and

Jacobson radicals of U as algebra and as ring coincide.

In conclusion, the theory of modules (originally developed
outside the area of Abstract Algebras) has resulted to be valuable
for the study of the transition from rings to algebras. In the
absence of this theory (or of some equivalent approach), caution
must be exercised for the extension of the definitions and results
from rings to algebras. This is precisely the case of the general
Lie-~admissible algebras, as we shall comment below.

Let us recall from Section 1.3 that the solvable radical of

a finite-dimensional (nonassociative) algebra U is the unigue

maximal solvable ideal of U, while the nilpotent radical of U is

the unique maximal nilpotent ideal of U. From the definitions of
nilpotency and solvability (Section 1.3) we see that the latter
imply the former. Despite its broader character , the nilpotent
radical is often insufficient to provide a structure theorem, and
additional properties must be included.

As an indication, let us recall that a symmetric bilinear

form <{a,b) , is called an associative form of an algebra U when

Za,bcd = Lab, > (1.D.5)

holds for all a,b,c & U. The following theorem then holds.44
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THEOREM 1.D.5: Suppose that a finite-dimensional

(nonassociative) algebra over a field of character-

istic zero satisfies the following properties:

(a) U possesses a nondegenerate associative form La,b> ;

(b} U contains no nonzero nilpotent ideal.

ThenU is uniguely expressible as a direct sum of a

finite number of ideals U
n
. 1.D. 6
W= @ U, (i.0.6)
e=|
each of which is a simple ideal.

In conclusion, the concept of nilpotent radical produces a
structure theorem, according to the above information, when com-
plemented with the concept of nondegenerate associative form.

Finite-dimensional associative algebras U over F do possess

a nondegenerate associative form and, thus, the nilpotent radical
is sufficient for the Structure Theorem 1.3.1.

Por the case of commutative Jordan algebras J over F we have
<a,by = b2 (R,,) (1.0.7)

where Rab is the right multiplication of ab (Appendix 1.A). 1In

this case it is possible to prove that the associative forms of
semisimple algebras J is always nondegenerate?a’se’so Also, for
commutative algebras the notions of solvability and that of nil=~
potency coincide. Thus, the solvable radical is sufficient for
the Structure Theorem 1.3.3.

For the case of Lie algebras L over F the associative form

is the Killing form (Appendix 1.B), i.e.,
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Caby = ba (ada) (adb) = b (Ra)(RL),  (10.9)

In this case it is possible to prove, by using Cartan's criterion
(see Appendix 1.E), that the Killing form of a semisimple algebra
L is also always nondegenerate.69 Therefore, the concept of sol-

vable ideal is again sufficient for Structure Theorem 1.3.2.

For the case of noncommutative Jordan algebras J the preferred

notion of radical is that of nilpotent radical owing to the property
that the notion of nilpotency implies that of solvability, as re-
called earlier. Technical argu ments then lead to the sufficiency

of the nilpotent radical for Strvccure Theorem 103.4.82

For the case of the mutation algebras A( )\,/A ) the definition
of radical assumed in Section 1.4 is that of the solvable radical
(i.e., the same as that for the A( \ ) algebras). We leave it as
an exercise for the interested reader to prove that the symmetric
form (a,b,) is always nondegenerate for semisimple algebras
A A ,/A ). Thus, the solvable radical is sufficient for Structure
Theorem 1.4.11. Notice thatlhis notion of radical allows the
identification of both Lie as well as commutative Jordan algebras
in the classification of the A( A s M ) algebras.

In the case of a flexible Lie-admissible algebra U a more

suitable notion of radical is that of nilpotent radical, in line
with that of noncommutative Jordan algebras (owing to the relation-
ship between these two algebras indicated in Section 1.4). A
structure theory is then offered by Theorem 1.D.5. It is expected
that a more restrictive structure theorem can be formulated for

these algebras, in line with the Structure Theorem 1.3.4 for
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noncommutative Jordan algebras. For more details see Appendix 1.E.
This completes our identification of the applicability of
known insights on the radical to the Lie-admissible algebras.

The radical of a general (nonflexible) Lie-admissible algebra U

will not be defined in this monograph. This is due to several
technical reasons whose inspection would bring us outside the

scope of this work (e.g., because of the possible inclusion of the
category theory50 and the sheaf theorysz). In essence, the general
Lie~admissible algebras are rather broad algebras indeed. 1In
particular, they are not necessarily power-associative, and they

do not appear to necessarily admit a nondegenerate associative form
(for the semisimple case). Clearly, the Jacobson radical is one

of the best candidates for these algebras. However, the problem
whether this radical (or some other radical) is effective for a
structure theory demands a specific study which is here left to

the interested reader.
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APPENDIX 1.E. CARTAN APPROACH TO LIE-ADMISSIBLE ALGEBRAS

As recalled in Section 1.3 and Appendix 1.D, the Cartan
approach provides a complete classification of all simple finite-
dimensional Lie algebras L over a field F of characteristic zero.
For a methodological treatment of this approach Zi;hin the context
of the theory of Abstract Algebras see reference .

pParticularly significant for our analysis is the fact that
N. Jacobsonlll succeeded in 1966 in extending most of this methodo-
logical context to commutative Jordan algebras J. For an addi-
tional presentation by Jacobson see the monograph.60 More recently,
there have been attempts in extending the Cartan approach to arbi-
trary (nonassociative) algebras (e.g., D.M.Fosterllz). Finally, the

10-13 are particularly significant for our analysis.

studies by H.C.Myung
These studies open the possibility of extending Cartan approach
to Lie-admissible algebras U, owning to the general decomposition

of their product
- ® *
- b
“b* L“nb:(u -+ ‘;—AI }“ }

a¥h - b*a

(1.C-la)

iy

(l-B-1b)

— *
La,bl, )
0¥k + b"a (i-e-1e)

{a, bl ,

where Ia,b} *U characterizes the Lie algebra content U of U and

a¥b = é:a k)/

La,bﬁ *U characterizes the commutative Jordan algebra content U+
of U.

In this appendix we shall (1) reinterpret known results69 on
the Cartan approach for the Lie algebras L as the attached algebra

U~ of a Lie-admissible algebra U, (2) reinterpret the results by
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N. Jacobson on the Cartan approach to commutative Jordan algebras
J as the attached algebra U+ of a Jordan-admissible algebra U,
and (3) reinterpret Foster's results for flexible Lie-admissible
algebras and outline the results by H.C. Myung. This should
provide sufficient material for further investigations on the
Cartan approach to Lie-admissible algebras by interested researchers.
In this appendix we shall only consider finite-dimensional
algebras with unit over a field of characteristic zero.
For a given Lie algebra content U of a Lie-admissible algebra
U one can construct

(a) the derived series U-(n)

o s 2w s (e

> . ou™, w- - e

(b) the central series ™

- - .3 - -
Woouwtauttaut i o wEuu (s

> ... 2u"

o O @

where AB stands for the product [a,b] u of all elements a ¢ A
and b ¢ B, with 8,8 = u"'%) or = v™%, 1 = 1,2,...,n.

The Lie algebra content U  of U is called solvable (nilpotent)

if Un(n) =0 (U™ = 0) for some

positive integer n. In
particular, the sum of two solvable (nilpotent) ideads of U is
solvable (nilpotent). Notice that a nilpotent algebra U~ is also
solvable, but the converse is not necessarily true (e.g., when U

is a two-dimensional non-Abelian Lie algebra). Thus, two radicals



- 127 - - 128 —

of U~ are significant. The solvable radical(pr radical for short) as well as when V = U (as vector space).
of a Lie algebra U is the (unigue) maximal solvable ideal Let S be a subalgebra of a Lie algebra U™ attached to a
of U The nil radical of U~ is the (unique) maximal nilpotent Lie-admissible aléebra U. The norMaiizer N~ of S~ is the set of
ideal of U . It is possible to prove that the nil radical of a all a €U~ such that [8’910 &€ s” for all be S~ . Then N~ is
Lie algebra U~ is contained in the (solvable) radical of U . a subalgebra of U containing S~ and S~ is an idealof N.
Thus the classification of U must be conducted in terms of the A subalgebra S~ of a (finite-dimensional) Lie algebra U~ of
(solvable) radical. a Lie-admissible algebra U (over a field F of characteristic zero)
Of particular importance for such classification is Engel's is called a Cartan subalgebra69 if 8~ is nilpotent and S~ is its
theorem. own normalizer.
THEOREM l.E.l:69 1f the attached algebra U of a Lie- THEOREM l.E.Z:69 Let S~ be a nilpotent subalgebra
admissible algebra U is a (finite-dimensional) Lie of a (finite~dimensional) Lie algebra U~ attached to
algebra, then U~ is nilpotent if and only if ad(a)( = Ra) a Lie-admissible algebra U over a field F (of charac-
is nilpotent for every a € U . teristic zero). Then S is a Cartan subalgebra of U~

if and only if it coincides with the Fitting component

If the attached algebra U admits the interpretation of a U; of U relative to ad(s”).

Lie algebra of linear transformations on a vector space V, the

" Fitting decomposition of V relative to an element T of U is An element a ¢ U is called regular if the dimension m of
given by \/ ( the Fitting null component of U relative to ad(a) ( = Ra) is
_ [.B.¢a -
Vs\o @Yy ) ) minimal. If n = dim(U7), n-m is called the rank of a & U.
uw, aT"= o E
No =9 | ace ) = (1»5'45) 69 -
20 . / THEOREM 1.E.3: If the attached algebra U of a
\Y; nvre Cl-p c . . . )
)T , - o b ) Lie-admissible algebra U (over an infinite field F of
[ =N
where V (Vl) is called the Fitting null (one) one commponent characteristic zero) is a (finite-dimensional) Lie
of V relative to T. Fittings' lemma sfates that Vo and Vl are algebra and a is a regular element of U-, then the
invariant with respect to any element Tof U . Fitting decomposi- Fitting null component U; of U™ relative to ad(a) is

tion (1.F.4) holds for several algebras other than a Lie algebra a Cartan subalgebra of U .
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These properties lead to the known Cartan's criterion for

semisimplicity: if the Killing form (1.D.7) of a (finite-dimensional)
Lie algebra U of a Lie-admissible algebra U (over a field F of
characteristic zero) is non-degenerate, then U~ is semisimple.
Under suitable technical implementations this methodological con-
text leads to Structure Theorem 1.3.2 (easily extendable to the u
algebra of a Lie-admissible algebra U) and the Cartan classification
of simple Lie algebras (Section 1.3). For brevity, we here refer
the reader to monograph.69

We now turn our attention to the commutative Jordan algebra
content u* of a Jordan-admissible algebra U. The notions of
derived series (1.E.2) and central series (1.E.3) can be extended
to U+. The same occurs for the notions of solvability and nil-
potency. Again, the radical of u' is the maximal solvable ideal
of u". Under the assumption that vt ois finite-dimensional, the
following three conditions are then equivalent:

(a) vt is solvable;

(o) vt is nilpotent;

(c) u¥ is a nil algebra.

A generalization of the associator, Eg. (1.2.18), which is

here relevant is the so-called associator of order n, as

defined by the iterative rules

A, Lo 2, -, 447

Q@

° 0w

7

= LA, Lac o an] Aa, Ta

A Ta

PR Q .
Mj L Myt Mgt ) ’ 4‘!,1"‘121"‘131

ml'f"hz-f-’h} = M

Mye ) m,un,,] J

(1.E5)
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where An is the associator of order n;. Any algebra U is called
i

associator nilpotent if there exists a minimum positive odd

integer n, called the index of associator nilpotency, such that

every associator of order n formed with elements of U is null.
Subalgebras and direct sum of associator nilpotent algebras are
associator nilpotent.

The above definition of associator nilpotency has been used
by N. Jacobson111 in his extension of the Cartan's approach to

the commutative Jordan algebras. An algebra of this type is

called almost nil commutative Jordan algebra if vt (has an iden-

tity) and admits the decomposition U+ =FlL @ R+, where R' is a
nil ideal. The first result by Jacobson can be reinterpreted for

the U+ algebras of Jordan-admissible algebras as follows.

THEOREM 1.E.5: A (finite-dimensional) commutative

Jordan algebra U+ attached to a Jordan-admissible

algebra U over an (algebraically closed) field F is

associator nilpotent if and only if it is a direct

sum of ideals which are almost nil algebras.

Let us note, from Section 1l.A, that

T {.E.
C(RaRb"Qab): LC,Q,b]: CQ«}: ( E.6)
Thus, associator nilpotency of index n implies that
© R _ (I.E-7)
Ay, Ay by = ©
for all a;,b; cut. 1f
™ (1.E.®)

(R . ):0 ns= 0,12, ...
a;, s s
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' . +
then a e,U+ is called an associator nilpotent element of U .

The analogue of Engel's theorem reads

THEOREM 1.E.4: A (finite-dimensional) commutative

Jordan algebra u' attached to a Jordan-admissible

algebra U (over an infinite field F) is associator

+ .
nilpotent if and only if every element a € U is

X +
associator nilpotent relative to U .

. +
Suppose that s¥ is an associator nilpotent subalgebra of U .

The Fitting decompositionofu+ can be introduced as follows. The

. . +
set L(U+) of linear transformations in U

A

${ a,b = ‘?“ 62 b -

If a and b belong to an associator nilpotent

@ (L.E.9)
{Alb-k

forms a Lie algebra.

subalgebra s” of U+, then L(U+) is a nilpotent Lie algebra. This

allows the Fitting decomposition of u*

+ + +

u = u ) + u,’_[ a ~

* 4 N +“-( : ) —ele u'%:,s.uob)
Up=(alacut, aurlso, unls (Rpf i), Nedem (W)

Us = Ny, ug,

which is now computed with respect to L(U+).

A Cartan subalgebra111 s*

(1.E.10a)

CI-E.joc)

of a (finite-dimensional) commutative

Jordan algebra u* attached to a Jordan-admissible algebra U (over

a field of characteristic zero) is a subalgebra of the Fitting null

+
0

transformations (1.E.9).

X + ;
component U, of U relative to the Lie algebra L{(U ) of linear
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In the locally quoted paper, Jacobson indicated a signifi-

cant relationship between a Cartan subalgebra of a commutative

+

Jordan algebra U and its Pierce decomposition (Appendix 1.C). 1In

particular he proved that a subalgebra s* of U* is a Cartan subal-

gebra if and only if

+ _ e *
ST 6 M“,

EN]

(1.E.u)

where U;i is given by Eqs. (1C.14a).
An element a & vt is associator regular if Dim (U;) is minimal.
A property corresponding to that of Theorem 1.E.3 can be formulated

as follows

THEOREM 1.E.6: If a is an associator regular element

of a commutative Jordan algebra U+ attached to a Jordan-

admissible algebra U, then U; is a Cartan subalgebra

of U+.

This completes our review of Cartan's approach to the ut
algebras of Jordan-admissible algebras U. Notice that these algebras
U can also be jointly Jordan- and Lie-admissible without affecting
the applicability of the methodological tools. For further elabor-

ation see references 73, 111.

We now reinterpret the results by D.M. Foster112

for (finite-
dimensional) flexible Lie-admissible algebras U (over a field F
of characteristic zero) with elements a,b,c,... and abstract product

ab admitting decomposition (1.E.l). The first notions which are
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here needed are those of solvability and nilpotency. Let us recall
that the definitions of these notions for Lie algebras extend to
commutative Jordan algebras with a simple implementation of the
product. Nevertheless, a generalization of these notions resulted
to be needed to introduce the Cartan approach for the latter alge-
bras, i.e., the notion of associator nilpotency. In the transition
to an algebra whose product is neither anticommutative nor commuta-
tive, additional technical difficulties arise. They are due, for
instance, to the fact that, for Lie algebras, the notions of nil-
potency and right (or left) nilpotency coincide while this is not
the case for the broader algebras under consideration.

The definition of nilpotency for an arbitrary algebra U
assumed by D.M. Foster can be specialized for a flexbile Lie-
admissible algebra U as follows. Let f(al,az,...,an) be a fixed,
multiplinear (i.e., linear in each argument) but otherwise arbitrary
element of U. Let S be a subalgebra of U. Instead of the notion

of central and derived series we introduce the following iterative

series
fk(s) = ia | a €U is a finite sum of elements of the form (/.E.i?«)
k-1 .
f(al,az,...,an), a; ¢ f (S), a; &S, 1« 1511}
f(k)(s) _la l a U is a finite sum of elements of the for

f(al,az,...,an), a; é f(k;l)(s), l<isn}

The subalgebra S of U is called f-nilpotent (f-solvable) if

£'(s) = 0 (f(n)(s) = 0) for some positive integer n. Notice that,
as it was the case for the ordinary notions of solvability and

nilpotency, f-nilpotent subalgebras are f-solvable.

(1.E.12b)

- 134 -

In essence, the notion of f-nilpotency (f-solvability) is
a generalization of the ordinary notion of right (or left) nil-
potency (solvability), i.e., that defined in terms of central
(derived) series. At the same time, the notion of f-nilpotency
(f-solvability) is a generalization of that of associator nilpo-
tency (solvability), i.e., that defined in terms of central (derived)
series of associators. As such, it is suitable for algebras whose
product is neither anticommutative nor commutative. The radical
R of a (finite-dimensional) flexible Lie-admissible algebra U over
a field F (of characteristic zero), can be thus effectively defined
as the maximal f-solvable ideal of U. It is possible to prove
that this ideal is unigue and such that the radical of U/R is the
null ideal.

A second notion which is here needed is that of a nilpotent
element of U. The definition that fn(a,a,...,a) = 0 for some posi-
tive integer n must be excluded because of difficulties in recover-
ing the corresponding definition for the Lie algebra subclass of U.
In turn, this is linked to the need of a suitable definition of
ad (a) of an element a € U. In this latter respect, we define as

the adjoint map of an element a € U the linear transformation in U

a- T(a,a.,..,8,., )= Q(a,q1,...,q4‘_‘) (r.&. 13)

for fixed elements al,az,...,a in U. An element a U is

n-1
called f-nilpotent if T(a ,ai,...,qh% is a nilpotent linear trans-
formation of U. The algebra U is an f-nil algebra if every element

is f-nilpotent. In the following we shall use the notation
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TH ¢ )= S:T la,,...,8,.,) / a; €5§ ) (-E. lka)
Ba = b { be, b(T(a,a, 4_‘/&_))"20}‘ (5. s)

THEOREM 1.E.7: Let U be a (finite-dimensional) flexible

Lie-admissible algebra over a field F (of characteristic

zero). If there exists an element a & U such that:

(1) a ¢ Ba' (2) Ba is a subalgebra of U and

3) u(s(a,a,...,a))™ €M for some positive integer n

qﬁgre M is a maximal subalgebra of U, then Ba = U.

Let us recall that some central properties of the flexible
Lie-admissible algebras are that (a) they contain in their classi-
fication Lie algebras and (b) they can reduce directly into Lie
algebras at the limit when the product becomes anticommutative.

An indication of the recovering of the conventional Lie algebra
notions from Theorem 1.E.7 is then instructive. Suppose that the
algebra U of Theorem L.E.7 is a Lie algebra L. Assume then

f = ab (= -ba). Rule (1.E.13) then recovers the conventional defi-
nition of ad (a) as Ra' property (3) of Theorem 1.E.7 recovers

the conventional property that L(ad(a))n & M where M is a maximal
subalgebra of L, and the theorem results to be a generalization of
the property of Lie algebras according to which if every maximal
subalgebra of a Lie algebra L is an ideal, L is nilpotent.56

Cartan's approach to Lie algebra is essentially based on the
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following properties:
(L-1) A Lie algebra L is nil if and only if it is nilpotent.

(L-2) For all a ¢ L, Ba = ib &L

b(ad(a))® = Oifor some
positive integer n > 0 , is a subalgebra of L con-
taining a,
(L-3) If S is a nilpotent subalgebra of L, ad(S) is nilpotent
and the Fitting null component of L relative to ad(s)
is a subalgebra of L containing S.
A result by D.M. Foster which is particularly significant
for our analysis is that properties (L-1), (L-2) and (L-3) can be

generalized to a rather large class of algebras. An inspection

indicates that they can be generalized to the flexible Lie-admissible

algebras U as well. A function £ on U is called an Engel function
for U when

(U-1) U is £ -nil if and only if it is f-nilpotent,

(U-2) For all a € U, B is a subalgebra of U containing a, and

/7 u, £
(U-3) if § is an f-nilpotent subalgebra of U, Ly f(S) is
. ’

a subalgebra of U containing S.

We are now equipped to introduce a crucial notion. A sub-
algebra S of a (finite-dimensional) flexible Lie-admissible algebra

U over a field F (of characteristic zero) is an f-Cartan subalgebra99

of U if 8 is f-nilpotent with respect to an Engel function f and
coincides with the Fitting null component of U relative to LU(S).

The quantity Ba' a ¢ U, is called an f-Engel subalgebra of U. Ba

is also called minimal f-Engel in U if Bb = Ba for all b € U.

An analog of the Existence Theorem 1.E.3 can be formulated as
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follows (from Theorem 5.2 of reference 112)

THEOREM 1.E.8: If, for an element a of a (finite-

dimensional) flexible Lie-admissible algebra U (over

a field F of characteristic zero), Ba is a minimal

f-Engel function, then Ba is an f-Cartan subalgebra

of U.

For an extension of the concept of regular (or associator
regular) element as well as for additional results also extendable
to flexible Lie-admissible algebras see reference 99.

Notice that in the last part of this appendix we have not
assumed that the algebra U is Jordan-admissible. This assumption
is suggested by the fact indicated in Sectien 1.5 that classical
realization of Lie-admissible algebras U are not, in general,
Jordan admissible. If, however, the algebras U are, in addition,
Jordan-admissible, the indicated properties apply and can be
complemented with additional properties originating from the second
part of this appendix, i.e., that for U+ o

If the algebra U is a mutation algebra A( hN oM ) of an
associative algebra A (Section 1.4), then the notions of f-solvable
radical and solvable radical (as assumed in Section 1.4) are equi-
valent. This is a consequence of Theorem 1.4.10 (the explicit
proof is left as an exercise for the interested reader). As a
result, the notion of radical of a flexible Lie-admissible algebra
U as the unigeu maximal f-solvable ideal of U is a generalization

of the notion of solvable radical of the mutation algebras A( }.,/M ).

- 138 -

Such generalization is needed because the product of a flexible
Lie-admissible algebra need not necessarily be that of A( A ,/,)
(e.g., it can be that of a genotopic mapping of a nonassociative
algebra) .

We now outline some of the studies by H.C. Myungll-l3 on
flexible Lie-admissible algebras. Let us recall that a mapping
a —»0o{(a) of a Lie algebra U~ into the base field F is called a

weight69 if there exists a nonzero element X/ such that

X, (af - @) -a (1-E.15)

for some suitable k. The weights associated with adU_H-, where

H is a nilpotent subalgebra of U, are called root569 of H in U .

Then U~ admits the vector space decomposition

U= Ug@lpe-- o Uj (1-E-1¢]

where U:l is the root space corresponding to the root o and

consists of the set of elements X 4 in U~ such that

X (D -dm) =0

for all h in the (split) Cartan subalgebra H of U-, where Dh is

(1.E,17)

a derivation in U . We also have that

M,:( M—P < 0 if o(+[$ is not a root CI'E'I?“)

if d-+[5 is a root CJ'E“QQ)

Wy tp < Usep

and H is the root space corresponding to the root 0.
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THEOREM 1.E.9:11 Let U be a finite-dimensional,

flexible, Lie-admissible algebra over a field F

(of characteristic # 2). Suppose that U has a

(split) Abelian Cartan subalgebra H which is nil

in U. Then, if dim Uy = 1 for a root & # 0 and

U~ has the center 0, U 2 U.

Let us recall that a Lie algebra U is called classical
when (a) the center of U is 0; (b) U = [U—,U—]U: (¢) U™

has an Abelian Cartan subalgebra H , called classical Cartan

subalgebra, such that
1) U = U,
(1) © U o
(2) if o # 0 is a root, dim Luge u_‘]'= 1
(3) it o and F;, fB # 0, are roots, not a1l O+ (3
are roots.

Then Theorem 1.E.9 implies the following

11

COROLLARY 1.E.9.A: If U is a classical Lie algebra

having a classical Cartan subalgebra which is nil in

U, then Uhk U.

Recall that the Levi factor T of a Lie algebra U is a

semisimple subalgebra of U~ such that U = T—() R , where R~

is the (solvable) radical of U . Even though T may be an ideal
of U, it is not, in general, an ideal of U even when U is a nil

algebra. The following theorem studies certain conditions under

which T  is an ideal of U.
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THEOREM 1.F,.10:11 Consider a finite~dimensional,

flexiblg{ Lig:gdmissible algebra U over a field F

(which is algebraically closed and of characteristic

zero) such that the radical R of U~ is nilpotent in

U. Then a Levi factor T of U™ is an ideal of U if

and only if T has a Cartan subalgebra H  which is a

nil subalgebra of U and [R-,H—I y =.0. Furthermore,

if U is simple, then either U™ is nilpotent or U is

a Lie algebra.

A finite-dimensional algebra U is called a reductive Lie

algebra when it is a completely reducible Lie algebra. This is
the case when the quotient algebra U—/C_, where €~ is the center

of U, is semisimple.

THEOREM l.E.ll:11 Consider a finite-dimensional,

flexible, Lie-admissible algebras U over a field

F (of characteristic zero), such that U is a reduc-

tive Lie algebra. If [p,q]u has a (split) Cartan

subalgebra that is power-associative, nil subalgebra

of U, then [U,U]U is an ideal of U. Furthermore,

if U is simple, then U is either commutative or a

Lie algebra.

The following property is also significant.

THEOREM 1.E.12:11 Consider a finite-dimensional,
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flexible, Lie-admissible algebra U over a field F The following examples worked out by H.C. Myungll are useful

(of characteristic zero) such that U is a reductive to illustrate the above properties.

Lie algebra. Then, if there exists a (split) Cartan Example 1: Let U be of dimension 3, elements x,y,h and
subalgebra H of U~ with h3 = 0 for all h €H , the multiplication table X

center C of U is an ideal of U. Furthermore, if U &X h = % .Y h = ;—_(Ki-l)‘j ; hi=th CI.E-W)
is simple, then it is a Lie algebra. h y = -‘1 (l-e) y , e F , £t 0,1

with all other products being null. Then U is a flexible

The above results are relevant for the problem of a Lie-admissible algebra (the explicit proof is an instruc-
generalization of Lie algebras into nontrivial Lie-admissible tive exercise). The attached algebra U~ is a solvable Lie
algebras. They in essence indicate that any simple, flexible, algebra. H = Fh is a Cartan subalgebra which induces the
Lie-admissible nil algebra of dimension n & 3 is in actuality a Cartan decomposition U = Fh @ Fx = Fy for roots 0, 1 and
Lie algebra. As a result, the nilpotency is a restriétion on the A . The center of U~ is 0 but H is not nil in U.

intended generalization under the indicated conditions. Their

Example 2: Let U be of dimension 4, elements x,y,z,h and
extension to arbitrary dimension n appears to be unknown at this

multiplication table

time. , 2
Along the same lines we have the following properties X 4 = 2+ i— l" s 9% = 2 T2 L‘ / Lt =-z C’E .JD)
xhe-hes tx, ghe-by=-3y
THEOREM 1.E.l3:12 Consider a finite-dimensional,
power-associative, flexible, Lie-admissible algebra with all other products being null. Then, U is a flexible
over a field F (of characteristic zero). Then U is Lie-admissible algebra. An Abelian Cartan subalgebra of u”
a nilalgebra if and only if there exists a Cartan is H = Fh @ Fz. Then the Cartan decomposition of U~ with
subalgebra of U which is nil in U. ‘ respect to the roots 0, 1 and -1 is U = H @ Fx ® Fy. In
13 this case H is a nil subalgebra of U; u3 = 0 for all elements

THEOREM 1.E.14: Consider a finite-dimensional,

of H ; the center C of U is Fz; and U is not a Lie algebra
flexible, Lie-~admissible algebra U over a field F

N nor an associative algebra.
(of characteristic # 2). Suppose that S is a subal-

gebra of U~ and H—“_a Cartan subalgebra of s~. Thens Example 3: Let T  be of dimension 3, elements x,y,h and

is a subalgebra of U if and only if HH <8
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multiplication table appears to be unknown at this time, owing to the need of a prior
X h =% , Y h=-y , XYy = h Cl E.2 ) effective identification of notions such as that of the radical.

_ This study is here left to the interested researcher.
and let U o =T @ Fz be the alebra defined by

25,52 =ds, s el ,2%2, deF (1.£.27)

The U 4 is a flexible Lie-admissible algebra;
Ip oA v Ua(] U = T admits the Cartan subalgebra H = Fh
with h2 = 0; u3u = uzu2 for all u € U_ and the algebra

is power-associative (we tacitly assume characteristic zero)

if and only if

242 - 3%r2 =0 (l-E.23)

namely, if and only if the roots are 0, % and 1.

Notice that is Example 3 the flexible Lie-admissible algebra
is constructed from a Lie algebra. This construction is studied
in details by A.A. Sagle14 for the case when the given Lie algebra
is reductive. For brevity we here refer the interested reader to
the quoted paper and related references.

By keeping into account the content of Section 1.4, we can
conclude by saying that Lie~admissible algebras offer a genuine
possibility of constructing a nontrivial covering of Lie algebras
along lines which will be elaborated in Chapter 3. The case of
flexible Lie-admissible algebras appear to be effectively treatable
with established methods, such as the use of the Lie algebra content
and a generalization of the Cartan decomposition. The extensions

of the results for the case of general Lie-admissible algebra
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CHAPTER 2

BIRKHOFF—ADMISSIBLE COVERING OF
HAMILTON'S AND OF BIRKHOFF'S EQUATIONS
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2.1: STATEMENT OF THE PROBLEM.

The body of methodological tools currently known under the name

Analytic Mechanics was originally conceived for the study of uncon-

strained, conservative, Newtonian systems of N particles in a three-

k ka

dimensional Euclidean space with Carthesian coordinates r = «r

{ rkag k=1,2,...,N, a=%,¥,2,
£ DV
Kﬁ: —(Dtkk

k:l,z‘..'(Nl q:x,b,z_

Q-.1-1)

m T, - EK,U’:,\:%

The part of the mechanics which is essential for joint analytic,
algebraic, and geometric studies is that based on the transformation

of the systems to the equivalent, first-order form
}>ka /"}M 14

Pea = £ ke C2)
145,422

and their representation via the conventional Hamilton's egquations

)iko. -

(2-1.2)

of the contemporary literature, those without external terms

- QK
tka\ = (DPFO\)

‘o‘ _ ok

T T Qo

which we write in the unified notation of Egs. (1.5.2) and (1.5.19)
o = (W

=\

o 4 LV >’ o b
G)H/(D#Fk - _.(DH/(DzK«

H=TG) V&) (2-1.3)

)\:-I,Z, - /GN C‘Z-/-#&)

%'k\ _
t‘;\‘u B -1 O

(2-1.4b)
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(2-/~ 4c)

o ()
¢ J‘}AV _ (75620( __(79 Fzé}
- <“ @l Da

(93*) [ % (2.1 bo)

R5)= (k.2
Ki J /A P

It is well known that conservative systems do not exhaust, by
far, the systems of our Newtonian reality. In fact, to avoid the
validity of the perpetual motion in our environment, one has to ac-
knowledge the existence of a virtually endless variety of forces,

such as

(A) Newtonian and non-Newtonian forces (i.e., forces indepen-

dent and dependent on the acceleration, respectively);

(B) Local and non-local forces (i.e., forces which occur at a

collection of isolated points, or at all points of a surface or a
volume, respectively, in the latter case the forces demand an integro-
differential representation); and

(C) Self-adjoint and non-self-adjoint forces (i.e., forces which

verify or do not verify, respectively, the integrability conditions

for the existence of a potential function).

189

For these aspects we refer the reader to monographses’ and

guoted references (see, in particular, the Introduction of monographlgg).
A very brief outline of the theorems of variational self-adjointhess
is presented in Chapter 2 of the preceding volume of this series.
In this volume we shall study the most general possible, local,
Newtonian, and non-self-adjoint systems which we write in the form
oo fsﬂ . ENSA .
My 20 — ka(tl%_., g) -+ (64%-, + ):0

re

. 5)
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where SA (NSA) denotes the verification (violation) of the integra-
bility conditions for the existence of a potential.

The reader familiar with the guoted literature will recall that
the symbols SA and NSA ultimately represent action-at-a-distance/
potential and contact/nonpotential forces, respectively. By recalling
that points can only interact at a distance, the admission of non-
self-adjoint forces therefore constitutes a first representation of

extended particles. The understanding is that a more adeqguate treat-

ment is provided by non-local/integro-differencial eguations of motion.

In different terms, the primary physical arena of the convention-

al Hamilton's equations is constituted by systems of massive points.

The point-like character of the particles then implies, first, the
locality of the theory, and, second, the .existence of only potential
forces.

The primary physical arena of study of this (and of the next)

volume is constituted instead by systems of extended particles. The

extended character of the constituents then implies the additional
existence of contact forces for which the notion of potential energy
has no physical basis. These forces are generally non-local. Never-—
theless, they can be approximated via power series expansions in the
velocitiesleg, by therefore reaching, as a first treatment, systems
(2.1.5).

The most natural egquations for the representation of systems

(2.1.5) are given by the true Hamilton's equations, those originally

conceived by Hamilton with external terms,
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Ko (DFKK (2.1.6)

Qere

which we write in the unified form

}‘9</22ji;9 ‘_+. 1:T}A (l:,EL)

SR
=
& Coal

(21 7a)

FM _ (21.7s)

O
LAY
f?
JAA

In essence, it appears that (unlike his followers of this cen-
tury) Hamilton was fully aware of the fact that the forces of our
macroscopic environment are generally of non-potential type. He,
therefore, conceived his equations in such a way that the Hamiltonian
represents the total energy, while all nonpotential forces are repre-
sented by the external terms.

For a presentation of the historical legacy of Hamilton and of
its relationship to numerous other legacies of Lagrange, Liocuville,
Jordan, Fermi, Einstein, and others, we refer the interested reader
to Section 2.1 of memoirlgo.

This volume is devoted to the study of local, Newtonian, and
non-self-adjoint systems via the true Hamilton's equations.

In the actuation of this program, a first difficulty soon emerges.
fAs shown in detail in the next section, in the transition from Egs.

(2.1.4) to the historical true form (2.1.7) we have the loss of the
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Lie algebra in the brackets of the time evolution, as well as the
lack of any algebraic structure.

The implications of this finding are rather deep. 1In fact,
while Egs. (2.1.4) can be exponentiated to (the canonical realization
of) a continuous Lie transformation group, this exponentiation does
not appear to be possible for Egs. (2.1.7).

By recalling that the exponentiated form of the canonical equa-
tions (for conservative systems) constitutes the "time-compenent"” of
Galilei's relativity, we immediately see the inability to reach a
covering relativity for systems (2.1.5) if Egs. (2.1.7) are assumed
in their historical form.

Thus, one of our objectives is to identify a suitable reformula-
tion of the true Hamilton's equations which permits their exponentia-
tion to a continuous transformation group. As we shall see, the use
of the Lie-admissible algebras permits the achievement of this ob-
jective in a rather natural way.

For completeness, we indicate here that a generalization of
Hamiltonian mechanics has been recently achieved and called Birkhoffian

189

mechanics. it is based on the following generalization of Egs.
12

(2.1.4) studied in detail by G. D. Birkhoff

al Jz/uv(g) O B (ha) (21 £a)
Coav
JZ,M\): H%%; -?DE% -1 /W/ R+ pe (2. 1.€4)
*

where the function B(t,a) is called the Birkhoffian (owing to consider-
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able differences with the Hamiltonian), and where the tensor J?lfA%ﬁL)
is that of Egs. (1.5.20). The time evolution of Birkhoff's equations
is therefore of Lie character, although of a form structurally more
general than the conventional Hamiltonian form.

In fact, the time evolution of a given function A(a) in the a =

(E'B) variables is given, for the conventional Hamilton's equations,

= 1A, Hl (21.9)

by
q’ QQ emo QAR w )“"%
() QM (Qa?

Qar
425-128

and for Birkhoff's equations by

Ay =2 R 28, = 1A, 82 Q:11o)

where [A,H] and [A,H]* are the conventional Poisson brackets (1.5.15)
and its generalized form (1.5.21), respectively. The transition from
Hamiltonian to Birkhoffian mechanics is therefore a form of Lie alge-

bra isotopy.189

The time evolution of the same function A(a) for Egs. (2.1.7) is

instead given by

\ A
Al =55

_ T 8 Fr
- l_ ‘*I \1.35 + (:)62}4

pv QU
)
Qa’

v Fﬁ) (2-1-1)

ﬁ AxH

The loss of the Lie algebra character is then self-evident, e.g., from
the lack of totally antisymmetric character of "A x H".
It is important to identify the different role of Egs. (2.1.7)

and (2.1.8) in our analysis beginning from these preliminary considera-

tions.
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Consider a local and closed system with non-Hamiltonian internal

forces, and assume that its time evolution is characterized by brack-

ets "A x H" where H is the total energy E A necessary condition

tot”
for consistency is therefore that these brackets are totally anti-
symmetric. In fact, the total energy can be conserved,

\:] = HxH =0 H:Ebae (2:1.12)

J

if and only if "A x H" is antisymmetric. The use of additional argu-
ments regarding the integrability of the(local) time evolution to a
(finite) exponentiated form then identifies the Jacobki law as an addi-
tional condition, thus reaching the Lie algebra laws.

The brackets themselves need not necessarily be the conventional
Poisson brackets. In actuality, their selection would lead to contra-
dictions because the systems are non-Hamiltonian by assumption. 1In
fact, the Lie brackets result to be the most general possible ones,

i.e., the Birkhoffian/generalized Poisson brackets
AxH = LA HT*

One sees in this way that Birkhoff's equations are rather natural-

2.1.13)

ly set for the representation of closed, local, and non-Hamiltonian
systems (even though their use for different systems is possible).
This is the spirit of the presentation of Birkhoff's equations of

monograph189

which will be preserved in this volume.
We pass now to the study of open, local, and non-Hamiltonian
systems, i.e., to systems which cannot be considered as isolated from

their environment or from the rest of the universe. Suppose again

that the time evolution is represented by brackets "A x H" where H is
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now the energy of the (sub) system considered. It is easy to see
that a necessary condition for consistency is now that the brackets

"A x H" are not Lie. 1In fact, the time rate of variation of the

0= hrlt = f() o HeE

can now be non-null if and only if the brackets "A x H" are not to-

energy

(2.1 14 )

tally antisymmetric.
It is easy to see that the true Hamilton's equations permit a
consistent and direct treatment of the case. In fact, for Egs.

(2.1.7), we have
l"i = 'LH , H],‘_O_.E. Fﬁ = (_D_ﬁ F'M—.: ’?._‘“ F:SQ (2.1,19)
a* et &

vielding the time rate of variation of the energy exactly as occurring
in the physical reality.

As a result, the historical equations originally conceived by
Hamilton's will be preferred to Birkhoff's eguations for the treat-
ment of open, local, and non—Hamiltonién systems throughout the analy-
sis of this and of the subsequent volume of this series.

In actuality, we shall identify not only a reformulation of Egs.
(2.1.7) permitting exponentiation, but we shall also seek the form
which more properly generalizes Birkhoff's equations into a Lie-ad-
missible form. We hope in this way to continue the analysis of mono-
i89

graph , by putting the basis for a possible generalization of the

Birkhoffian mechanics we shall call Birkhoffian-admissible mechanics.

The continuity and regularity assumptions which will be imple-
mented throughout our analysis are the following. Newtonian systems

will be defined in a region R of their variables, where the term
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"region" is referred to an open and connected set. All systems will
be assumed to be of class ¢ in R. This implies, in particular,
that the acting forces satisfy this continuity property. Also, all

systems will be assumed to be regular in R, i.e., their functional

determinant
(D(S)Lq — A (2,1.16
W) - | S| @re, urbiuloz £.§)=0 CHO)

will be assumed to be non-null in R (except at a finite number of
isolated zeros). On practical grounds, it will be sufficient to select,
for the region of definition of the systems considered, a point of the
loc;l variables and its neighborhood such that the functional deter-
minant is non-null in it. All Hamiltonians considered, irrespective. of

whether for Egs. (2.1.3), or (2.1.7), will be assumed to be regular,

(2.1.17)

i.e., the determinant
QtH

(R) F ©
O#)CQ(D F)b #

is non-null at least at one point of the local variables (t, P p)
P

and in its neighborhood.

The terminology‘used in Volume I will be preserved during this
work. In addition, we shall also tacitly imply a knowledge of the
terminology of Brikhoffian mechanicslag. For instance, a "Birkhoffian
representation of a Newtonian system"” is referred to the knowledge
of the (6N + 1)-functions Rﬁ and B. Similarly, the "autonomous"”,
"semiautonomous", and "nonautonomous” Birkhoff's equations occur when
R = R(a)/B = B(a), R = R(a)/B=B(t,a), and R=R(t,a)/B=B(t,a), respective-
ly. Also, we shall sometime use the word "vector field" for the New-

P
tonian vector .~ , , with the understanding that the geometric gquantity
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is given by the familiar form (for the autonomous case)
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2.2: THE LACK OF ALGEBRAIC CHARACTER OF HAMILTON'S EQUATIONS

WITH EXTERNAL TERMS.

consider Egs. (2.1.7), with time evolution (2.1.11). As indi-
cated in the preceding section, the lack of totally antisymmetric

character of the brackets
deof . Qa 2N
A pnsl [ B + <= F
(] » EB — QW ] (fbgfa

implies their lack of Lie character.

(2-1.1)

It is easy to see that the brackets are not Lie-admissible. 1In

fact, the attached brackets are given in this case by
AxB - B x4 :(% _oB )F*‘
QDar Coa M
and, evidently, they are not Lie.

(2.2.2)

At a deeper inspection, it is possible to show that brackets

{(2.2.1) do not possess a consistent algebraic structure, i.e., they

do not form an algebra. In fact, for brackets to characterize the
product of any algebra, they must first verify the right and left dis-
tributive law, and the scalar law {(Section 1.5). One can readily see
that brackets (2.2.1) do verify the left distributive law, but they

violate the right distributive law

(F+B)xc = Axc + BxcC
Ax (B+c) = AxB + A x=C

Similarly, they verify the left part of the scalar law, but violate

(2.2.3)

its right part, i.e.,

of x (AxB) = A= ({kB) < («xA)xB

(2. 2.
(‘F}7*13;)>< K =+ AN (;EB wel) + (}}740() x B 2.2-4)
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It is also easy to see that the brackets satisfy the left dif-
ferential law (1.5.5a), but violate the right version of the same

law, Eg. (1.5.5b), i.e.,

(AB)x C= (Axc)B + A (Bxc)
Ax(Be) = (A=B)c + B (fxc)

(2-1. 5)

We can, therefore, conclude by saying that the familiar form of
Hamilton®s equations with additive external terms leads to brackets
which do not characterize a consistent algebraic structure. This situa-
tion indicates that, despite their preservation for over one century,

Hamilton's equations with external terms must be suitably modified to

yield an acceptable algebraic structure .
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2.3: HAMILTON-ADMISSIBLE GENERALIZATION OF HAMILTON'S EQUATIONS

AS THE ANALYTIC ORIGIN OF LIE-ADMISSIBLE ALGEBRAS.

. The new brackets (A,H) are manifestly bilinear and thus, they do
In this section, we shall present a reformulation of Egs. (2.1.7) ! y ! b

. ) verify the right and left distributive laws as well as the scalar
admitting brackets of the time evolution which, first of all, char-
) law as in Eqgs. (1.5.4).

acterize a consistent algebraic structure, and, secondly, that alge-

) ) ) Furthermore, it is equally easy to see that brackets (A,H) are
gra results to be Lie~admissible.

. Lie-admissible. 1In fact, unlike case (2.2.2), the attached brackets
The origin of the lack of consistent algebra for brackets (2.2.1)

3 i . X are now given by
is given by their lack of bilinear character, as manifest in the addi-

(A, #)-(H,A)=2TA, HI (*.3.3)

and they are manifestly Lie.

tive part due to the external term.

The reformulation of Hamilton's equations with external terms
Equations (2.3.1) were called Hamilton-admissible equations in
191,192

which resolves this insufficiency was proposed by Santilli in

191,192 in the dual sense:

and it can be written ref.s

CL’M - 6PVC£’ &)@H(b,a—) peh, 6N @‘:3’“\‘)
= / —T:S:;;T— ! equations (2.1.4) when all non-self-adjoint forces are null; and

ref.s

(1) The generalized equations admit the conventional Hamilton's

MV N v MY (2) The generalized equations possess a Lie-admissible algebraic
MY = wrY o B (ke TSP (2.3.8)
structure.
) o
”(‘()Q Qe -1\ pv pe (}3 o leg_}() The same terminology will be preserved in this volume.
@ o (D,,k ’ =(£.°), :

It should be indicated that a modification of the canonical

equations of the type

@ O Ok
MY (e Yoo (23.14) , @u 2.3.4
(F)=(t ow | o T oo/ \0tmp ) =9 p== , eelR,, (23:4)

. L 162
r ffin in 1962 .
2)3,/8) where & is a constant, was proposed by Du
v nv Cdue b (FPYY =0 (
et w)‘#o(:"—)" OLQ}. (5 ) :/é 0 (:' {)) ( ) The Lie-admissible algebraic character of Egs. (2.3.4) was

with time evolution identified by Santilli in 19696.

BB orvy SO &y

@M @ v (2,3.:1)
G v v
Oh RN R v % - TANT+ A, 1}

‘o ¥ ¢ -() a\o (D()\r‘

The subsequent contributions of 1978, ref.slgl 192

pxesented
a number of generalized equations possessing a Lie-admissible algebraic

structure. Form (2.3.1) is the simplest and most direct one, and it
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will be assumed as the starting grounds of our analysis. The under-
lying brackets (A,H), as characterized by Egs. (2.3.2), are called

the fundamental Lie-admissible brackets (Section 1.5).

By recalling that the fundamental cosymplectic/Lie tensor re-
presents in a unified way all fundamental canonical commutation rules
according to Egs. (1.5.14), the fundamental Lie-admissible tensor
s/"(t,a) also represents the fundamental brackets of the theory ac-

cording to the structure

(tar, a%)) = (=" we)

CLL'«’ ,Lib) (—)ct‘kl Fib)

(\’ca ) ) (> Flfr ; P;’ﬁ)

(23.5)

o) A

MSA
-1 Q: /a:/m.)

3l

in which one sees that different components of the linear momentum

do not generally "commute® [we shall see in Section 2.5 that this is

also the case for the components of the coordinates, which is some-
what reminiscent of gravitational/curvature effects].

As a result of the occcurrence above, the variables rka and Pra
of Egs. (2.3.1) do not span a phase space. They span instead a gener-
alized space we shall call dynamical space, and which will be more

technically identified in Chapter 4 as a symplectic-admissible mani-

fold. The brackets (a)‘,av } will be called fundamental dynamical

brackets.
Egs. (2.3.1) are written in their contravariant form because
it is the form exhibiting the algebraic structure in a direct way.

From regularity properties (2.3.le), we see that the equations admit

also the covariant form

-~ 181 -

oV ) L*(E’CL)

6 (t ac ey =1,2, ... 6 Qo .
v a) Sar S e, ~( 3.6a)

Spo = (1421 o, (2.4
T:NSG o
o -1 = sy J(23-69)
(6/”3 "L""))"“')'Mts v)= 4 o o o

Wpo = (U ), |, b (NP, G360

which is preferable for geometric considerations, as we shall see.

Recall that the covariant tensor of Hamiltonian mechanics

o v
‘éu/u_v _—_—(OQ’) — 2 R)*
12.Y-Nad (0’

, R=(e) c23.7)

characterizes the Lagrange's brackets
&

g/ f} ,[5'§ ;:~(3212ij </ﬂ2)0~o

ok on (2:5-%)

which are related to Poisson brackets by the "inverse property" char-

acterized by 6N independent functions Ak(a)

oM .
= Lh, .1 !Lprk )Qj}( :57 @-2.9)

k=

Along fully equivalent, yet generalized lines, the covariant
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tensor sﬁv(t,a) characterized the generalized brackets

T ekt
A _

S~———

Qs .’

(2.3 lo)
v (kay —
o 7

B

which verify the rules

>

6 o — ]
£ (4, Ae) By =0,
k=1 N—

(2.3.11)

As we shall see in Chapter 4, the tensor s/‘v(t,a) geometrizes
the fundamental Lie-admissible brackets, and will be called the

fundamental symplectic-admissible form.
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2.4: DIRECT UNIVERSALITY OF HAMILTON-ADMISSIKBLE EQUATIONS 1IN

NEWTONIAN MECHANICS.

After having identified the basic equations of our analysis, it
is important to probe their representational capabilities.

Consider the most general possible, open, local, non-self-adjoint
Newtonian systems of the class admitted, which, in their second-order

form, can be written
sA
.o . v .
/]MK)ZK« - ‘gkg ('L"/}“I/z )" F (t‘/z 3):0

- ka ‘
- 2.6.1
k “"121 --. ,f# y, QL::)9~5,2_ ( )

The energy, in this case, is the total energy of the maximdl self-
adjoint subsystem (the sum of the kinetic energy and the potential

energy of all self-adjoint forces),

N . -
( 5 . - . @ o
E - = Z/m"%k. /E_k-}— MU/E,_?Z) (24-1)
=1

From the theorems of the inverse problemss'189

, we know that
the potential function U(t,r,f) can be at most linear in the velocities,
o gan

i.e., it is of the type,

U = a{&cb,g)ék‘ﬂ./z(e,g) (2-4.3)
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Let L be the Lagrangian of the maximal self-adjoint subsystem, i.e.,

L
/_ - = é’“*k)ik’ik"'

Utz %)

and introduce the generalized momenta

L.
b, = ake

A2

- —q/hu,g)

with implicit form in the velocity

)i A

ke ™ im (h“‘ - Q/'“>

(2.4. ¢)

Then, system (2.4.1) can be turned into the equivalent first-

order form

f (t,a)

. 1 — R N
Q. = l,,_;_,ﬁ (¢ o) = ,_;__,i by + L:J’LO'“)/
(2,#.7a)
Va M (}3 + C*;%L))
M LN ka
o = - 4. 7h
L ) WIACOVE G )

O

FERYA
@S

(2.4-7¢)

(24.4)

(2-¢.5)
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1
It is easy to see that the component -, is Hamiltonian,
4

i.e., there exists a Hamiltonian function

i = 2, B B Witz p)

=T+ Wt p) (2-4.2)

under which we have the identities

— Ew/k\)(DH (2 4.9)

4 (1)6\\)

However, it is equally easy to see that the complete system

TR
L
Nevertheless, all possible systems (2.4.7) are Hamilton-admiss-

is not Hamiltonian in the variables considered.

ible, i.e., they always admit a representation in terms of Hamilton-

admissible equations (2.3.1). Equivalently, for all possible systems
(2.4.7), there always exists a Hamiltonian H and a fundamental Lie-

admissible tensor s (t,a), verifying the identities

o v (OB
QaV

follow from the separate properties

I"—‘I}A

- Q. 4. /o)

M vQOU
S swt —,
1 Y

where we have made use of rule (2.3.1d).

R e B

2 = A

SH=T+U
(2-4.1)
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In fact, the needed general solution is pfovided by rules (2.3.11).

We have proved in this simple way the direct universality of the

Lie-admissible algebras in mechanics, i.e., their capability to re-
present all systems of the class admitted funiversality), in the time

and Cartesian coordinates of the experimenter (direct universality).

THEOREM 2.4.1: All possible local, class &°° , unconstrained,

generally nonconservative/non-self-adjoint, Newtonian systems

of N particles in a three-dimensional Euclidean space with local

coordinates rka, k=1,...N, a = x,y,2, in their first-order form

ot = M, ot éy Gte-ten)

(/im /—ML-K (ﬁ“ + e, )
P £ Loy + FU2 Clny ) ) (o-betey)

SA 4 U
r " f’D!il“ S (2- & f2¢)

U\ = O(chén?;) ‘&.h—f-[gk.k (t 2, (2-4-red)

always admit a representation in terms of Hamilton-admissible

equations
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M ok CoHtbey 24134
a8 = > (éﬁ - Y 7 ( 13)

SM = w4 Y (g, ay , =0 (2-4.13)

() @)= (0 e,) oo

h=2 G beborUlhg py  Geny

k:l

whose brackets of the time evolution for functions A{a) in the

space of the a-variables

o COH
@CA) - @__& S (_ha»)(‘) (H H)

Coat
@9 EN(A >‘Qi¢;
= LRl + "\ / 2k

(2.4.1¢)

characterize a Lie-admissible algebra, i.e., verify the Lie-

admissible law

TAe,cl + LB, ¢ Al+[c A BI
_Tesm <LBA [0c8]

(2. /%)

where

[a,8,1= ((8,8),¢) - (p, (8,00) (24
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COROLLARY 2.4.1A: The Hamilton-admissible representations of

Theorem 2.4.1 can always be selected in such a way that:

(1) the variables t and rka represent time and Cartesian

coordinates of the observer;

(2) the function H(t,r,p) represnets the (generally nonconserved)
w5

energy of the system,i.e., the total energy of the maximal

self-adjoint subsystem; and

(3) all nonpotential forces are represented by the symmetric

part of the Lie-admissible tensor s/*v(t,i,g).

We learn in this way a property that will be crucial throughout
our analysis. Consider a conservative, Hamiltonian, system represented
in terms of the conventional canonical equations
ey
Da’

b= Ty + ULz by

o).,\‘— ).A\;
Q=@ @-#.lé)

with exponential law (see next chapter for more detail) .

Lo @k ©

CO0l Qo (2-4.17)

A

(k) = M
)= e a* (oy

The additional presence of nonpotential forces due to the extended

size of the particles can be simply represented by adding a symmetric

. . . v
tensor £tV to the totally antisymmetric Lie tensor Rl ;
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while preserving the local variables and the Hamiltonian. This yields
the Hamilton-admissible equations with corresponding generalized trans-

formation groups (see next chapter)

')A )AV MV (ZZlf_
oL = (?L) -t &/ CZ)m\I /

P R ek ()=

(2.4 18)

(2-4.10)

Ll w*P, %) O#_ 2
( + £P) Sab ax
&0

2t Iy
&)‘*(t}:e (?-4. 1)

In fact, the nonpotential forces are represented precisely by the

departure of the theory from conventional Lie structures, according

to the rule

(FM) = ‘i‘m (_2.4,/9)

v
QDo J F
The transition from the conventional Poisson brackets [A,B] to
the fundamental Lie-admissible brackets (A,H) was called a Lie-

admissible genotopy in Section 1.5. We learn here its physical mean-

ing. In fact, we can say that the genotopy of a Lie algebra into a
Lie-admissible algebra is an algebraic representation of the extended

character of particle—constituents via the admission of contact/
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nonpotential forces.
The explicit verification of the following property is in-

structive.

COROLLARY 2.4.1B: Brackets (2.4.14) characterize a general

Lie-admissible algebra which, in general, is non-flexible and

non-Jordan-admissible.

The covering property of the Hamilton-admissible-equations over

the conventional ones is expressed by the following

COROLLARY 2.4.1C: The conventional Hamilton equations are

admitted by their Hamilton-admissible generalization in the

following two-fold way:

{p) The conventional eguations are recovered identically when

all nonpotential forces are null; and

{B) The conventional equations are preserved in the broader

context as the attached equations, i.e., as the equations

characterized by the antisymmetric component

of the Lie-admissible product (A,H).

Appendix 2.A provides a number of examples of representations
of nonconservative systems with Hamilton-admissible equations.

Theorem 2.4.1 has been formulated for the class of systems of
primary interest for this monograph. However, it should be indicated
that the Lie-admissible algebras appear to have representational capa-
bilities substantially more general than those of Theorem 2.4.1. We

mention, in particular, the representation of the following more
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general systems.

(1)

Direct universality of Hamilton-admissible equations for

non-Newtonian systems. Suppose that the forces

depend explicitly on the accaleration, i.e., the system is
non-Newtonian. Then it can be written in th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>