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the necessary and sufficient conditions (3} for the existence of symmetry
become

oL
— =0 12
o (12)
and first integral {(6b) becomes the Hamiltonian
oL
-/ = Sﬁﬁ — L = const. (13)
For translations in the ¥ coordinate {7 fixed),
F—=ri=r+3dr, (14)
condition (3} becomes
oL
— =0, 15
o (15)

and first integral (6b) is given by the Ath component of the generalized
momentum:

/= g—j = const. (16}
For the case of rotations
PFsri=¢+ 6BuRjrf i=1,2, 7N
condition (3) becomes
R;(g}l'; r+ %r‘f) =0. (18)
Assuming for simplicity a conventional structure for the Lagrangian,
L =1mi2 ~ V(r), (19)
the term
A %r‘f"= Rimi it (20)

is identically null {because of the antisymmetry of A/ and the symmetry of
f.#). Condition (3) then reduces to

oL o
Ri=r = =RiAiF, = 0, (21)

that is, to the condition that the total torque is null. Integral (6b) then
becomes the angular momentum

ol
=R 3 ¥=r'p, —rip, = const (22)
For the case of Galilei's boosts,
F=ri=r+ v, (23)

condition (3) becomes

f oL oL d
v, (r > 6{_,_) £06 =0 (24)
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For a free particle, the condition becomes
d
midv, - F) + ECSG =0, 6G = —mév, ' r, (25)

and first integrals (6b) are given by
I = mr — pt = const. (26)

The reader should keep in mind that these examples are mainly illustra-
tive. For unrestricted Newtonian systems, conditions (15), (16), {21),
and (24) are generally violated. Even when some of them are verified,
the corresponding first integrals do not necessarily represent a physical
quantity, as we shall see in Chart A.11.

Chart A,10 Isotopic Transfdrmations, Symmetries, and First Integrals

As indicated in the text of this appendix, whenever the integrability
conditions of Theorem A.1.1 are verified, a large variety of functionally
different, yet equivalent, Lagrangians exists. They can be constructed
via any of the following means and their combinations:

a)} gauge transformations {Section A.2);
b) isotopic transformations {Section A.2}; and
¢} transformation theory of the local variables (Section A.3).

The degrees of freedom of a Lagrangian are clearly important for the
identification of as many symmetries and first integrals as possible. In
fact, symmetries which are not manifest for one given Lagrangian may be
turned into manifest symmetries for an equivalent Lagrangian.

An example is provided by Lagrangians (15) of Chart A.7 for the particle
with damping. In this case two independent first integrals are needed for
the solution by quadratures. Suppaose that these first integrals have to be
identified via manifest symmetries and Noether's theorem. Knowledge of
only the first Lagrangian, L, = (exp y)4f? is insufficient for this task,
because its only manifest symmetry is that under space transkation. The
problem can be solved by including the second Lagrangian, L, = 7 In 7 — yr,
which is manifestly invariant under translations in time, thus yielding the
needed second first integral.

in this chart we outline the studies by Santilli {(1978c¢ and 1979a) on the
enlargement of the problem of symmetries and first integrals through the
inclusion of isotopic transformations of a Lagrangian within a fixed
system of local variables. The corresponding study of additional gauge
transformations and transformations of local variables is left to the
interested reader.

Consider rule {(A.2.7) for the isotopically mapped Lagrangians, i.e.,

L3(q) = M LA(q), (1)
and let (A7) be the inverse of the matrix (A%) of isotopic functions,
The following property results:

d ) )
E’ =L (q)dgc = L(q)h, h;ykog/ = L X(q)d, 9%
d.gk = hy1kdql. ) (2)
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From the validity of first integrals by virtue of the equations of motion,
we can state the following lemma.

Lemma 1. Functions I.(i, q. §), which are first integrals for one given
Lagrangian L(t, q. ), remain first integrals for all possible isotopically
mapped Lagrangians L¥(t, q, 4).

The considerable alteration of the structure of the Lagrangian under
isotopic transformations on the cne hand, and the preservation of the
first integrals on the other hand suggest the possibility that the same first
integral may be derived from fundamentally different symmetries. To
investigate this possibility, Santilli (foc. eit.) introduced the following
definition.

Definition 1. Two Lie symmetry groups, G, and G, of (infinitesimal
or finite) transformations of the same dimension r are called isotopically
related symmetry groups when they constitute symmetries of two iso-
topically related Lagrangians, L(t, q, ¢) and L*(t, q. §). respectively,
which lead to the same (ordered) set of fitst integrals via Noether's
theorem.

To illustrate this, let us consider the linear harmonic oscillator in three
dimensions. The Lagrangian

L = 3[(mx? + my? + mz?) — (kx? + ky? + kz2)] (3)

possesses a symmetry under the group of rotations G, = $O(3) which
leads, via Noether's theorem, to the conservation of the physical angular
momentum. One of the simplest possible isotopic images of £ is given by

L* = 1[(mx2 — my? + m22) - (kx2 — ky? + kz?)]. (4)

This new Lagrangian is no longer invariant under G,. Yet, the angular
momentum conservation persists for L* Woe then expect the existence
of a new symmetry, G%, which leads to the conservation of the angular
momentum via Noether's theorem. A study of the problem reveals that
the symmetry G?% exists and is given by the Lorentz group in {2 +1)
dimensiens, $O(2.1). This is the manifest symmetry of L* which replaces
S0(3) for the characterization of the angular momentum conservation.
Thus 8SO(3) and SO(2.1) are isotopically related symmetry groups with
respect to the harmonic oscillator. The algebraic structure of the group
isotopy is indicated in Chart 4.2 and turns out to be induced by a structural
change in the Lie product.

As indicated earlier, the Inverse Noether's Problem (construction of
symmetries from first integrals} is still quite controversial. The situation
for isotopically mapped symmetries is different, however, because an
original symmetry G, leading to first integrals /, is assumed to exist. The
Inverse Noether's Problem is, in this case, restricted to the identification
of the symmetry G* leading to /,. The integrability conditions for the
existence of G* result in being always verified under the existence of the
otiginal symmetry G, .

Theorem 1 {Existence Theorem for Isotopicaily Mapped, First-Order
Symmetries). Suppose that an (analytic andregular) Lagrangian L(t, q. §)
admits an r-dimensional symmetry G, of infinitesimal transformations of
the first order with related first integrals I, i =1, 2, ..., r. Then, an iso-
topically mapped Lagrangian L*(t, q, §) always admits a symmetry G¥ of
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infinitesimal transformations also of the first order in the same parameters
leading to the same first integrals.

This theorem is formulated specifically for the first-order case. The
study of its extension to finite transformations is left to the interested
reader. It is sufficient for our analysis to know that finite, isotopically
mapped symmetry groups exist (this is the case for the symmetries SO(3)
and SO(2.1) of the harmonic oscillator).

A simple inspection of the examples of isotopically related symmetries
establishes the following property.

Lemma 2. Two isotopically related symmetry groups are not necessarily
isomorphic. In particular, the isotopic transformations do not necessarily
preserve the Abelian or non-Abelian, compact or noncompact, and semi-
simple or non-semi-simple character of the original symmetry.

This property is sufficient to indicate that the isotopic transformations
of a Lagrangian have a rather profound impact on symmatries, as expected.
In fact, starting from Lagrangian (3) with the non-Abelian, compact, and
semi-simple symmetry group SO(3), its isotopic image can, in principle,
be an arbitrary three-dimensional Lie group, including the Abelian case
(S0(2.1) is still non-Abelian and semi-simple but not compact; yet it is
only one possibiiity).

Intriguingly, these changes in the structure of the symmetries have
their origin in the integrability conditions for the existence of a Lagrangian.
In this way we begin to see some of the implications of the Inverse
Problem beyond those for the computation of a Lagtangian.

A

Chart A.11  Lack of a Unique Relationship between Space—Time
Symmetries and Physical Laws

The existing literature sometimes explicitly states or implicitly assurmes
that conventional physical iaws, such as the conservation of energy,
linear momentum, and angular momentum {and charge), are uniquely
characterized by known space—time symmetries, such as, translations in
time, translations in space, and rotations (and field-theoretical gauge
symmetries), respectively. This belief has been disproved by the Inverse
Lagrangian Problem.

The best way to illustrate the situation is by explicit examples from
Santilli (1978b and 197%a). The examples may also suggest caution in
attributing physical meaning to a given space—time symmetry. The physical
quantities considered are those defined in Chart A.8 and should not be
confused with canonical guantities.

Occurrence 1. When the total physical energy of a system is con-
served, a Lagrangian (for its analytic representation) may violate the
symmetry under translations in time. The total physical energy of the
harmonic oscillator

(F+r, =0 m=A1, k=1 (1)
is conserved. Nevertheless, this system admits a Lagrangian (Example A.1)
L=1%Rcost+ Lr2sint — r¥cost (2}

which is explicitly dependent on time and, as such, violates the sym-
metry under translations in time.
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Occurrence 2. When the total physical energy of a system is not
conserved, a Lagrangian may be invariant under transfations in time. The
linearly damped oscillator

(F+ 9 nsa = 0 (3)
is nonconservative. Thus its total energy decays in time, according to
experimental evidence. Nevertheless, the system admits the Lagrangian

L=Flnf—yr (4)

which does not possess an explicit time dependence and is therefore
manifestly invariant under translations in time.

Occurrence 3. When the total physical linear momentum fs conserved,
a Lagrangian may violate the invariance under translations in space. The
total linear momentum of the system

X— 9+ 2x
( T ) =0, (5)
X+ ¥ Jusa
is conserved, as manifestly expressed by the second equation. Nevertheless,

the system admits the Lagrangian
L=3x2+ 2y + 4y% = x2 (6)

which violates the symmetry under translations in space (trivially, because
it does not depend on the difference of the coordinates alone).

Occurrence 4. When the total physical linear momentum is not
conserved, a Lagrangian may be invariant under transiations in space. The
physical linear momentum of the damped particle is manifestly not
conserved. Nevertheless, the system admits the Lagrangian

L = grtlf? (7)
which is independent of coordinate r and, as such, is manifestly invariant
under translations in space.

Occurrence 5. When the total physical angular momentum is con-
served, a lLagrangian may violate the symmetry under rotations. The
physical angular momentum of the three-dimensional harmonic oscillator

(m?t +£&r)g, =0 (8)
is conserved. Nevertheless, the system admits the Lagrangian
L=1m(x2 - y2 +2) — k(x2 — y2 + z2) (9
r=(xy2

which is manifestly noninvariant under rotations.

Occurrence 6. When the total physical angufar momentum is not
conserved, a Lagrangian may be invariant under rotations. Consider the
motion of a particle in two dimensions in a dissipative medium (a liquid
or a gas) by ignoring action-at-a-distance (conservative) forces:

A
[(") +g(2"’.‘2 o 2"’?2)] —0, r=(p. (10
Y /sa Syy? + xxy = ByR2) |ysa

Owing to the nenlinear dependence of the forces in the velocity, the system
is in highly nonconservative motion. In particular, the physical angular
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momentum M r ¥ mi is nonconserved (as the reader is invited to
verify). Nevertﬁeless the system admits the Lagrangian (Example A.3)

L= exp (g (x2 + yZ))g(ﬂz + y2) (11)
which is manifestly invariant under rotations.

Occurrence 7. The symmetry of a Lagrangian under Galilei's trans-
formations does not necessarily imply the validity of the conventional
conservation laws of total physical quantities (energy, linear momenturn,
etc.). This is a consequence of Occurrences 2, 4, and 6. The illustration of
the additional case of the lack of uniform motion of the center of mass, but
invariance of a Lagrangian under Galilei's boosts, is left to the interested
reader. The implications of the occurrence from a relativity viewpoint is
self-evident. In fact, the mere existence of the symmetry under Gaiilei's
group is not sufficient to establish the validity of Galilei's relativity as
customarily intended in the physical literature, that is, as representative of
physical laws. In turn, this illustrates a number of aspects presented in
these volumes, such as the need of a return ' ad originem.” We are referring
here to the assumption of Newton’s equations of motion and their possible
conservation laws as the physical foundations of the theory, and then the
use of their Lagrangian representations, symmetries, and Noether's
theorem as mathematucal treatments. If the opposite approach is followed
(assumption of symmetries and Lagrangian representations as funda-
mental), the physical content is not ensured. Indeed, all conventional
space—time symmetries of examples 2, 4, and 6 produce first integrals
via Noether's theorem. The point is that these first integrals have no
physical meaning as conservation laws.

The examples above establish the foillowing properties: (1} when
conventional space—time symmetries hold, the conventionally expected
physical laws do not necessarily hold; and (I} when conventional
physical laws hold, the conventionally expected space—time symmetries
do not necessarily exist. The use of the techniques of the Inverse Lagrangian
Problem establishes that the lack of any unique relationship between
space—time symmetries and physical laws is even deeper. In fact, we have
the following property from Santilli (/oc. cit.).

Theorem 1 (Lack of Unique Space, Time, and Space-Time Character
of a Symmetry). The conservation law of a physical quantity cannot
necessarily be derived from a symmetry of unique space, time, or space—
time character.

This property is best illustrated by a specific example. Consider the
harmonic oscillator (1). The conservation of the energy is often believed
to be derivable only via symmetry of pure time character i.e., time transla-
tion (Definition 3 of Chart A.6), This belief is erroneous. Consider La-
grangian {2). Even though the symmetry under time translations is broken,
an isotopic symmetry exists from Theorem 1 of Chart A.11, leading to the
conservation of energy. Explicit calculations show that the symmetry is
characterized by the following transformations (see Example A.7)

H* + p*glu
5*2‘ = L—*G,
= 0L*/dq, H* = p*g — L*, ga=¢gcost+ gsint

5*q=—gs+qé*t, (12)
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in which we see a combination of translations in space and time to produce
the conservation of energy. The interested reader should work out the
isotopic image of the symmetries under translations in space and rotations
of the preceding examples. He will see again the lack of unique space
character for the characterization of the conservation of linear momentum
and angular momentum. The lack of uniqueness of the field theoretical
gauge symmetry for the conservation of the charge has been pointed out
by Santilli (foc. cit.), together with the identification of the field theoretical
extensions of the properties above,58

5¢ Consider a charged scalar particle in interaction with an externaf electro-
magnetic field. The equations are given by

01 (L1 + m3)e eA A% + 2iA,¢"
_|te i =0, {a)
1 o/ \({O0+m2)p eA AP — 2iA, @] |usa)sa
@ = dpfOx, «=01223
and the conserved, physical, charge current is
J* = ie{Fo* — §Hp) + 2eA"Fg. (b)
This conservation law is customarily presented as one which can be derived from
the invariance of the conventional Lagrangian
&L = (] + ieA,) (@™ — ieA*) — m2py (c)
under the (Abelian, in this simple case) gauge transformations
P> =g, . F>F = eep. (d)

To illustrate the fack of uniqueness of the gauge symmetry for the characterization
of the charge conservation, Santilli (1978b and 197%a) constructed the following
isotopically mapped Lagrangian

L = Jeend [FHG] — (m? — e24,A%)] + Je~2omd [ging) — (m2 — 24, AN)].

(e)

The physical charge current {b) is still conserved for #*. Nevertheless, the symmetry
under gauge transformations is now manifestly broken. The lack of unigueness of the
gauge symmetry is of even deeper natute in that it extends to the internal character
of the transformations (lack of participation of the Minkowski coordinates). In
fact, the isotopic image of the gauge symmetry was constructed and can be given by
the transformations

. 2eA*p
X M= x4+ SX“, qu = g:oqj g
Do (F) = () (oo (TSR N
7 b7 @ @y —iew exp(—2iex, A%}

One can see that the conservation law of an internal quantity such as the charge can
he derived via a symmetry which is of mixed space—time and internal character.
Notice that these results extend to the minimal coupling rules. In fact, Lagrangian
(&) represents electromagnetic interactions with a manifest breaking of the minimal
coupling rufe. Incidentally, the appearance of an explicit dependence of Lagrangian
(e} in the Minkowski space-time coordinates fully conforms to physical laws.
In fact, the electromagnetic field is external for system (a), which is therefore open
and exhibits a rate of variation in time of the epergy—momentum tensor. This
space-time non-conservation law is fully reflected in the explicit dependence of
£* in the Minkowski coordinates. Therefore, the invariance of the conventional
Lagrangian % under space-time translations is physically illusory. The nature of the
symmetry breaking is identified in Chart 4,12,
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In semmary, Theorem 1 establishes that not only is the symmetry
capable of representing a given physical law via Noether's theorem not
unique, but the lack of uniqueness actually extends 1o the physical
structure of the symmetry, whether of space, time, or space—time character.

Chart A12 Classification of the Breakings of Space-Time Sym-
metries in Newtonian Mechanics

In the preceding charts we introduced the mathematical notion of
symmetry through the form-invariance of the equations of motion or one
of its Lagrangian representations. We then identified the methods for
constructing first integrals from a known symmetry of a given system.
Finally, we identified a possible physical meaning of the theory—that of
representing physical conservation laws. Our primary emphasis was for
conventional space—time symmetries, such as symmetries under transla-
tions in time, space, rotations, etc.

An unprejudiced inspection of cur Newtonian reality reveals, quite
firmly, that the breaking of conventional space—time symmetries is the rule
and their preservation is the exception. In fact, unless the symmetries
are “broken” in one way or another, we would have oscillators oscillating
forever, spinning tops spinning forever, and satellites orbiting forever,

Tn the transition from these open nonconservative systems to their
closed form, including their environment, total conservation laws are
recovered. Yet the space—time symmetries remain generally broken, as
established by the closed non-self-adjoint systems through the property
that total conservation laws are not first integrals of the equations of
motion {Chart A.8).

It follows that the study of ““broken symmetries’ at large and that of
“Dbroken space—time symmetries” in particular are of fundamental
relevance, mathematically and physically. Some of the problems inherent
in this study are (A) classification of the mechanisms of breaking a given
symmetry; (B) study of the time rate of variation of given physical
quantities, as a generalization of the particular case of conservation; and
(C) search for generalized symmetries which (a) hold when the conven-
tional symmetries are broken, (b) are representative of the rate of variation
of physical quantities, and (c) when conventional conservations are
recovered, recover the conventional ones.

The study of these (and related) problems was initiated by Santilli
{1978c and e) in an attempt to generalize Galilei's relativity for application
to Newtonian systems with unrestricted forces and dynamic conditions.
The study has been continued in the Workshops on Lie-Admissible
Formulations (see the proceedings of 1979 and 1981).

in this chart we review the studies related to Problem (A) only, that is,
the classification of all possible ways in which a given symmetry can be
broken, as presented in Santilli {foc. cit.; see also 1978b and 197%a).

Definition 1. A symmetry of a Lagrangian is said to be physically
exact, or simply exact, not only when the Lagrangian is form-invariant ac-
cording to the mathematical definition of Chart A.6, but also when the first
integrals characterized by Noether's theorem are directly representative of
physical conservation laws. The same symmetry under the same conditions
is said to be physically broken, or broken, when either the original form-
invariance of the Lagrangian or the original conservation laws or both are
no lenger valid.
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The primary emphasis of the definition is on the historical motivation
for the introduction of symmetries in physics—their representation of
physical faws. Mathematical aspects are considered too, of course, but
only subordinated to this physical objective. Notice that, according to the
definition, a given space—time symmetry is broken when it is mathematically
exact but the conventional physical conservation laws are lost. Also, the
same symmetry is broken when the form-invariance is lost but the
conventional physical conservation laws are preserved. Explicit illustrations
of these intriguing occurrences follow.

I. /Jsotopic breaking. Consider a conservative Newtonian system in
Euclidean space which possesses an exact space—time symmetry (ES) G,
a {physical) conservation law /(¢, r, ¥); and a Lagrangian L(r, £), i.e.

G: [m¥F-f(NIE =0 (1a)
. 6‘Lint

Lf= Lfree + Lint' Lfree = %mrz' f= ?r (1 b)

|:/=°’+°’ _+efi50r (1e)

atar e m

as is the case, say, for a Coulomb system in vacuum, where G is given by
the symmetry under translations in time and / is the total energy.

The “weakest possible” (yet instructive) breaking is that for which
the original symmetry is broken {88} in such a way to leave the conserva-
tion law unchanged. This type of breaking is related to the rule of Lagrang-
ian isotopy (Equations (A.2.7)) and occurs when the isotopic functions
are not invariant under the criginal symmetry G. We shall then write

[LE(R1ER = {h(t v, PYIL)]ERISR- (2)

The breaking is called of “isotopic type,” in the sense of Chart A.10, to
stress the fact that n0 actual change of the physical system takes place
(that is, the forces are the same), and the only variations occur in its
mathematical tfreatment.s7

The breaking is instructive particularly for relativity profiles (Problem
A.10). In fact, Galilei’s group G (3.1) is now lost as the symmetry group of
conventional physical laws and is replaced by a different, generally non-
isomorphic (Chart 4.10) symmetry group G* (3.1). This can easily be
illustrated by considering a sufficiently complex isotopy of the Lagrangian
for the free particle, and it shows that, even when Galilei's relativity is
verified, its contemporary formulation is not unigue.

Il. Seff-adjoint breaking. Suppose that system (1) enters a dissipative
medium (say, our atmosphere) by acquiring new forces F (f, r, f). The
originally conserved quantity (say, the energy) is now nc longer constant
in time, but acquires a {non-null) time rate of variation. This is a necessary
consequence of the presence of contact-type forces created by the
medium, and we can write the nonconservation faw

g 9l o F o F s
3 or | at m ot m )

57 A Newtonian example is provided by the time-dependent Lagrangian of the
harmaonic oscillator, Equation {2} of Chart A.11, One can see that the Lagrangian
acquires an explicit time dependence, without affecting the conservation of the
energy, hecause the isotopic function is explicitly dependent on time.
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The loss of the original first integral is sufficient to establish the breaking of
the original symmetry in the physical sense of Definition 1.

The method for the classical breaking of a symmetry, which is used
rather generally in contemporary literature, is given by the addition of a
symmetry-breaking potential in the Lagrangian (or Hamiltonian), i.e.

LB o OLES
ES BS = fES 4 /8BS int _ |nt. 4
LES > | L L3, F= ac & or (4)

When reinspected within the context of the conditions of variational
self-adjointness, this breaking is called "“self-adjoint type” because it
implies the addition of self-adjoint forces to equations (1), and we write

{lm¥ - £(N1§3 - F(t, r. 1)}8F = 0. (%)

However, Newtonian forces are generally not derivable from a potential,
particularly when they are of contact type. Conventional symmetry breaking
(4) is therefore one of the simplest possible mechanisms of symmetry
breaking, and additicnal, more realistic mechanisms exist.

. Semicanonical breaking. The simplest nonpotential forces verify
the integrability conditions of Theorem A.1.1 (non-essentially non-self-
adjoint forces). In this case, mechanism (5) is generalized into the form

i [imi, - 1) — & =0 (6)

The underlying Lagrangian is no longer of conventional type, but rather of
generalized type (Section A.2)

L= Lo (0 DL o(B) + Lo (87, B). )

Often, the forces responsible for the time rate of variation (3) are still
form-invariant under the symmetry G, and the same situation occurs for
the genotopic functions /A,. Under these circumstances, generalized
Lagrangian (7) is still mvanant under G. Yet, the original phy5|ca| meanmg
of the symmetry is lost. This type of breaking is called “"semicanonical ”
in the sense that the canonical formalism of the symmetry can still be
introduced. Yet, it loses the meaning of representing a physical law,

Clearly, semicanonical breakings are still restrictive. Nevertheless, they
occur in a number of cases frequently considered in the literature, particu-
larly when the symmetry breaking forces are approximated by linear
velocity forces.

As an example, suppose that system (1) is a free particle, symmetry G
is under space translation, the conservation law is one of linear momentum,
{ = m¥, and nonconservative extension (6) is given by

{erim[(m)E + WIES, 58 = O, L = e"imimi2, (8)

In this case we have a semicanonical breaking of the space translation
symmetry because L is still invariant under the original symmetry, while
linear momentum m is no longer conserved.58

]NSA

free

58 A field theoretical example of semicanonical breaking of the symmetry under
space-time translations is given by the conventional Lagrangian for the charged
scalar field under an external electromagnetic field, Equation (c) of footnote G6.
The Lagrangian is indeed invariant under space-time translations, but this symmetry
is not representative of the conservation of the energy—-momentum tensor because
the system is open. Notice that we call this type of breaking "semicanonical”
rather than " self-adjoint” because the Lagrangian is of the simplest possible— yet
generalized—type, with &, | being represented by a permutation, as expressed in
Equation (a) of footnote 56. For mare details on this point see Santilli (1977b).
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An additional example is provided by the physical spinning top (the
spinning top with drag torques responsible for the decay in time of the
angular momentum). The drag torques are usually assumed tc depend on
angular velocity alone, therefore preserving the original symmetry under
rotations. Nevertheless, the angular momentum is no longer conserved.
This yields a semicanonical breaking of the symmetry under the group of
rotations SO(3) (see Example A.3).

1V. Canonical breaking. This class consists of systems whose non-
potential forces still permit an indirect Lagrangian representation vet
are no longer form-invariant under the original symmetry. We write

(AL, = )5~ FARIE = O ®

This class of breaking is called “canonical” in the sense that the
canonical formalism can still be introduced (because of the existence of a
Hamiltonian). However, the canonical formalism of the symmetty G
is now inapplicable. The increase in the complexity of the forces therefore
ensures the loss not only of the original conservation law but also of the
original space—time symmetry.59

This type of symmetry breaking is more realistic than the preceding ones
{although still restrictive). In fact, an inspection of system (8) clearly
indicates that a more realistic treatment of the contact forces calls for an
explicit dependence on space (e.g., because of variations in the density of
the medium)

{hit, r. A[{mMF)ES + y(r)F]B5,085 = 0 (10)

which implies a canonical breaking of the space translation symmetry,8°

Similarly, a deeper inspection indicates that drag torques of spinning
tops may depend on the angle of rotation. If the torques verify Theorem
A.1.1, we have a canonical breaking of the symmetry under the group
S0(3), in the sense that tops can stil! be treated via the canonical formalism
(e.g., via the Hamilton—Jacobi equations). Nevertheless, the formalism
breaks down at the specifical level of the SO{3) symmaetry.

V. Essentially non-self-adjoint breaking. This is the most general
mechanism of breaking conventional space—time symmetries which can be
identified via the technigues of the Inverse Problem. In this case the forces
not only break the original symmetry but actually violate the integrability

59 Field theoretical examples of the canonical breaking of the symmetry under
the Lorentz group are given by generalized Lagrangian models of the type

& =m2(’02 + fP;';(P:“ + ((p‘:[,p:u)z +oree,

Despite superficial impressions that terms of the type (¢} ¢™)2 are invariant under
the Lorentz group, the symmetry is broken because the fields themselves, that is,
the solutions of the field equations, do not transform covariantly under the Lorentz
group. Notice that the breaking in this case is canonical and not semicanonical.
Notice also that models of this type are expected as field-theoretical images of
systems {.£3)}, namely, as field theoretical extensions of the contact effects of
mutual wave penetration, with underlying nonlocal interactions approximated by
power-serigs expansions of type (£4) (see footnotes 12 and 14).

8¢ The breaking is canonical because a Lagrangian {and, therefore, a Hamiltonian)
exists by virtue of Corollary A.1.1a.
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conditions of Theorem A.1.1.67 In the language of Definition 4.4.1, we
therefore write

{lm? = £(r)]g3 - F(t r. F)}&sa = O- (11)

The methodological implications of this type of breakings are rather
deep. Not only is the canonical formalism of the original symmetry
broken, but in actuality, the entire canonical formalism is inapplicable
in the focal variables of the experimenter, as established by the lack of
existence of a Hamiltonian. This implies, in particular, the impossibility of
introducing a Lie algebra via the brackets of the time evolution in the local
variables of the cbserver.

In this case the breaking of conventional space-time symmetries in
general and Galilei's relativity in particular are brought to the level of
inapplicability of the mathematical foundations, that is, Lie's theory. This
becomes readily understandable and acceptable if one recognizes that
contact forces in mechanics (whether discrete or continuous, classical or
quantum mechanical, etc.) are not only of nonpotential type, but actually
of nonlocal type.

This is a further indicaticn that the problem of the relativity applicable
in Mewtonian mechanics (no relativistic, gravitational, and quantum
mechanical extensions!) is still fundamentally open at this time. %2

EXAMPLES

Example A.1

All the following Lagrangians and Hamiltonians

L =144 - ¢, (1a)

L¥ =1acost +4q¢° sint — g*°gcost, (1b)
«_ 4 g .2 2

L = Zaarctana — In(g* + ¢, (lc)

¥ =2 4 arctan w — In(¢®> + ¢%), ¢ = const,, (1d)

q q- — 4gc
H =107 + ¢ (19
H¥ = 2 In|q sec 1gqp*], (17)

81 Examples of essentially self-adjoint breakings of the Lorentz symmetry in
field theory are given by equations of the type

(00 + m2)o + gio™* + (pj@*)2 + - =0,

for which the integrability conditions for the existence of an indirect Lagrangian
representation (Santilli (1977a,b,¢)) are inconsistent. In this case, the field equations
are not form-invariant under the Lorentz group (because the solutions are not
compatible with the representations of the group), and, in addition, the canonical
formalism is not directly applicable.

62 This problem is studied in Section 6.3 (see also footnote 19 of the same
section).
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1
H* = 21In|g sec(z gpt — arctan E) ‘, (1g)
q
H¥ = g(tan ¢) sec £|(e” cot 11)°°5* — In(e® cot 1£)°F — 1], (1h)
1 v
P =6—17,p* =E,p* = aL? P =6—Lf‘
aq o4 g ag

represent the one-dimensional harmonic oscillator
i+g=0 m=1  w*=1, 2

that is, they all characterize the same implicit function f = —g. Thus the analytic
equations in all functions (1) admit the same solution; any particular function of
expressions (1) is admissibie for the analytic representation of the system; and the
selection of one representation versus another is therefore a matter of personal
preference or practical convenience.

The example under consideration is intended to illustrate that the techniques of
the Inversc Problem allow the construction, at least in principle, not only of a
Lagrangian (or a Hamiltonian) when they exist but also of alf possible Lagrangians
(or Hamiltonians) for the analytic representation of equivalent self-adjoint forms of
the system considered. These “degrees of freedom” are ther used to study the possible
identification of new first integrals, as well as for other applications (Charts A.6-A.12).

The methods for constructing representations (1) are the following. The trivial
function (la) is that producing the customary direct analytic representation

d oL JL
a _ﬁcj _aq {d + Psa {3}
All other Lagrangians produce an indirect representation; that is, they verify the rule
d éL* JL*
—— — — = [I(t, g, §){§ 4
i oq LIt 4. 4G + Dsalsa )

where, in accordance with Corollary A.1.1a, the quantities I(t, g, §) are first integrals.
For instance, Lagrangians L} and L¥ are constructed via the first integrals

I, =gcost + gsint, (5a)
L=@+4), (5b)

respectively.

Lagrarigians L, L¥,and L% are related by a chain of isotopies according to Equations
{A.2.12). Lagrangians L% and L*" are related, instead, by a Newtonian gauge trans-
formation, rule (A.2.1) or (A.2.3), because

24 d .
I3t L= A arctan S = £ J. dz S arctan < = Clg). 6)
q g dtd, =z z

All Hamiltonians of Equations (1) can be constructed via the Independent Inverse
Hamiltonian Probiem, that is, the methods for computing a Hamiltonian without
any necessary prior knowledge of a Lagrangian (Sections 1.3.8-1.3.12 and Chapter 4).
Hamiltonians H, H¥, and H*' are the Legendre transform of Lagrangians L, L¥, and
L%, respectively. The Hamiltonian corresponding to L¥ and the Lagrangian corre-
sponding to H% have not been given in Equations (1). Notice that the coordinates of
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all Hamiltonians of Equations (1) are the same. Nevertheless, their generalized
momenta are different, even for the case of the gauge transformations, The relationship
between these Hamiltonians is shown in Chapter 5.

The explicit computation of Lagrange’s and Hamilton’s equations with functions
(1) is a truly instructive exercise for the interested student because it permits a knowl-
edge of the structure of these fundamental equations which is often overlocked. We
refer, for instance, to the proper use of the total time derivative appearing in Lagrange’s
equations according to the full structure (#.10), or the crucial role of the theorem on
implicit functions (Theorem L.1.1.1) for the construction of the second-order equations
of motion from (first-order) Hamilton’s equations {(and vice versa). In turn, a sound
knowledge of the structure of Lagrange’s and Hamilton’s equations at the Newtonian
level is almost a necessity before passing to more complex branches of physics, such
as field theory.5®

In closing this example, I would like to express my gratitude to Eugene Saletan
who taught me the possible varieties of admissible Lagrangian representations for a
given system. In particular, the functions L3, L¥Y, H}, Hit, and H¥ were computed
for the first time by Currie and Saletan (1966} via conventional techniques.

Example A.2

The following two-dimensional conservative system (undamped and unforced
oscillators with acceleration couplings)

{mlfjl +miy + kg + kg, =0, (12)
m.dy +mydy + kg, + kg =0,
my € 2
H = det =mm, —m: #0, (1b}
m, Hiy
kiky k. #£0

is self-adjoint, as the reader is encouraged to verify with the use of Equations (4.1.12).
The methods for the construction of a Lagrangian are trivial in this case, yielding
the function

L = 30mdi + mqudy + mpd3) — 3k gl + ko192 + ko g3). @

When system (1) is written in the equivalent kinematic form

ék - ﬁc(Q) = 03 k= 1: 2 (33)

(f;() = i (mckc - mzkﬂ‘h + (mckz — my kc)Q2) (3b)
# \(mky, —mk)q, + (mk, — mk;)g,

mky — mpk. # mk, —mk, (3¢9)

it becomes non-self-adjoint. Thus a Lagrangian for the direct representation of
Equation (3a) via conventional Lagrange’s equations does not exist. Nevertheless,

3 The erroncous way of writing Lagrange’s equations in field theory (pointed out in foot-
note 5 of the Introduction) is often due to lack of sufficient study at the Newtonian level.
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system (3a) can still be directly represented by a variational principle. Indeed, the
following genotopy of the conventional Hamilton’s principle (Section A.2)

15] Tz
5*j aiL = — [ dili ~ f@horod =0 (da)
t 121
S*q* = hfdq, 6q' =en(t)e~ 0 (4b)
. 1 m2 —m‘_.
Ao 4
)=~ (mmc m) 4o)

produces the representation desired.

The example is intended to iliustrate the following aspects.

1. The acceleration couplings are often needed to reach a Lagrangian representa-
tion, in the sense that when they are elimitated via the theorem on implicit functions,
the emerging equations are often non-self-adjoint. This property has been illustrated
here with a conservative system. The reader should therefore expect an even greater
occurrence of the property for non-conservative systems.

2. When the acceleration couplings are used, they necessarily result in a peneralized
structure of a Lagrangian even for conservative systems, with an understanding that
such a generalized structure is necessary for Newtonian systems with non-self-adjoint
forces. Indeed, Lagrangian (2) is of type (A.2.15) because the extra term 4m. g, 4, does
not represent frec motion and cannot be incorporated into the additive term Ly, j,
because of its nonlinearity,

3. The genotopically mapped Hamilton’s principle (4a) does indeed allow the
representation of equations of motion in their non-self-adjoint form, but in a purely
Jformal treatment, in the sense that the Lagrangian, for the case considered, necessarily
remains generalized.

Example A.3

The following equations describe the motion of 2 Newtonian particle in a Euclidean
two-dimensional space with Cartesian coordinates

{mjc' + y(xi? 4+ 2yiy — xp?) = 0, n

mi + y(yp* + 2xiy — i) = 0.
Such a motion is highly nonconservative as a result of nonlinear velocity-dependent
drag forces. The use of Equation (.#.12) confirms the expectation that the system is

non-self-adjoint. The use of Theorem A. 1.1 establishes that the system is non-essentially
non-self-adjoint. A system of genotopic functions is given by

() = exp(% o + yZ))(é 0). @

The corresponding Lagrangian induced by Equation (A.1.10) is
¥ .
L= GXP(; rl)%mrz, r = (x, ¥). (3)

Predictably, this Lagrangian is of the generalized type; that is, it exhibits an essential
multiplicative term to that representing free motion, while the additive interaction
term is, in this case, null (up to gauge as well as isotopic transformations). A methodo-
logically significant aspect of this example is that the orbit of the particle is unstable.
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because of nonlinear velocity-dependent drag forces (e.g., motion in a viscous
medium). Thus the physical angular momentum is not conserved, ie.,

d

EEM——(rxmr);é() (C]
Nevertheless, Lagrangian (3) is invariant under rotations, The example therefore
illustrates semi-canonical breaking of the symmetry under the group of rotations, in

the sense of Chart A.12.

Example A4

The analytic, regular, nonlinear, and nonconservative system
3.2 3wy 12 P Y. =3 ?..3
(34} + @142 + G4 + 41d2)dz — 39291~ 3 d1qz
+ 34y + d2 + DG4 + 34143 + 341 + 460 = O, )
1414, + 16342
+ gy + 4y + DG 8F — 34,83 + 443 — D) =
is non-sclf-adjoint, as the reader can verify. The only possibility (see Problem A.1)
for the existence of a Lagrangian representation in the coordinate and time considered
is that the system is of non-essentially non-seli-adjoint type. In other words, Equation
(1) admits consistent conditions of self-adjointness (A.1.9) in the genotopic functions

IL. A study of these equations confirms that this is indeed the case. One solution in the
genotopic functions is given by

o = gereueo( (1), @

As expected from the Cauchy-Kovalevski Theorem, this solution is analytic too.
Theorem A.1.1 then applies and yields as one Lagrangian
L = e oGy 4] + 1) ®

The study of the possible existence of different genotopic functions, and thus different
Lagrangians, isotopically related to (3) is left to the interested reader.

Notice the need of five functions—four genotopic functions and one Lagrangian—
for the construction of the analytic representation being studied.

Example A5
Darboux’s construction of a Lagrangian in its original formuiation (Darboux, 1854)

is illustrated here for the case of the one-dimensional, non-self-adjoint system

{4 —q)
2

c'j—f(t,q,é)=0, f=2
The problem is to identify a solution L of the second-order quasilinear partial differ-
ential equation
62L L L oL
2 f + A A, Al MY
B 6q dgér  og
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which is consistent (because it verifies the condition of Theorem 2 of Chart A.3).

In this case the characteristic equations can be written

d dg  dg dM
17§ 204-9  2M)
tZ
n &L
= o
The first integrals are
. 2-
tqtz 1 _ u ?g—cj=v; Mt =m= F(u,v)
1

and the solution for M can be written

2, R 1 [{tq—q\ (2
mTL_ Feo 1M-da) 20,
8¢ elt;u, ) ot t t

where F is an arbitrary function of its arguments.
The solution for L is then

1 — p)
Lead =5 J; (z — q)F[(”t_zq); (T‘I - z)] dz

+ C(t, ) + D{t, 9)d.

and the consistency conditions for C and D become

ac  aD 0
o g
Assume now, for simplicity, F = 1, C = D = 0. Then
1 94 ¢
L=— @+ 25—z
224 + B2t

FL 1 PL 1 PL 2% 3. oL
3T oxag £t ag

FTE e

Thus
PL,, FL, PL AL
T gl T ga o
1. 1. 2 3¢ 4§

. . q
Tttt ETET R E

oo
t* t? NsAJsa

It should be stressed that Lagrangian (8a) is not unique.

4

(3)

(6)

9

©)

A comparison of Darboux’s approach with that used in these volumes is instructive.
The problem, according to Equation (A.1.8), is to solve h of the condition of self-

adjointness (A.1.11) for an equivalent self-adjoint form.
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One solution is given by k = 1/t%. This function is well defined on a star-shaped
region centered at the origin because trivially, the star-shaped condition refers only
to the g and ¢ variables. Method (A.1.10) for the construction of a Lagrangian then
applies, yielding Lagrangian (8a).

By recalling that Darboux’s approach is equivalent to that presented here (Problem
A1), in the former we must solve a second-order partial differential equation in a
Lagrangian, while in the latter we must solve a first-order equation in the genotopic
function / and then compute a Lagrangian through integrals (A.1.10). As a result,
when the use of any one of these methods presents technical difficulties, one can
attempt to bypass them by using the other one.

Example A.6.

We shall illustrate here a property (Section A.3) according to which coordinate
transformations can be self-adjoint genotopic, that is, capable of transforming a given
non-self-adjoint system into an equivalent self-adjoint form.

The one-dimensional system of the general second-order form

(@G +dsa =0, q#0, ey
is non-self-adjoint, yet the point transformation
g—q =13q @

turns system (1) into the equivalent self-adjoint form

d d
ex = 0,8 = (@) = % (i) = g + & 3
(@ sa §=-)=_12Wd)=q4+4 3
At the Lagrangian level this case can be expressed as follows
(d aL’ aL') - @)
oy " og) T
dq {d 6L 8L 1 .. .
-[2EZ-D) | -Peara] -0 ©
oq' \dt 8¢ 9q/sa Insa q NSA

L'=47 L=i¢¢

and illustrates Equations (A.3.20). Note the crucial role of the Jacobian in the trans-
formation from a self-adjoint form to an equivalent non-self-adjoint one. Notice that
it is also possible to obtain the Lagrangian representation in the original system by
using Theorem A.1.1 with integrating factors. Thus the use of point transformations
does not broaden the representational capabilities of Theorem A.1.1. Yet, these
transformations are often useful in practical applications, e.g., by turning a system of
partial differential equations {(A.1.9) in one coordinate frame into a possibly more
manageable form in a new coordinate frame.

Example A.7

We study here the relationship between the conservation of the (physical) total energy
and the symmetry under translations in time for the simple one-dimensional harmonic
oscillator

§4g=0, m=0 w=0 ' N
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The transformation under considerations is
to ' =t+ 1, ' (2

where the constant iy, is, at this point, finite. The corresponding transformations of
the g-coordinate is given by

q(t) — q(t) = gqlt — to) &)
The equations of motion is trivially form-invariant under this transformation
4@ + q(t) = §¢) + 4'(¢) G

which, therefore, constitutes a symmetry of the equation of motion.
We now introduce the familiar Lagrangian

L=}~ ) ©)
Its form-invariance is expressed by

. . ar
e =Lg.4) 5 =1 6
Thus, transformation (2} characterizes a finite, exact, noncontemporaneous symmetry
of L.

To use Noether’s Theorem for the identification of the underlying conservation
law, we must restrict transformations (2) to be infinitesimal of the first order. This can
be simply achieved by assuming ¢, = w e 0,. The transformation is of pure time-type.
Noether’s theorem then yields the (first-order) conserved quantity

dL )
I=- (q" i L)W = —H(g, §)w Q)
q .
which represents the physical total energy of the system.
As established in Section A.2, Lagrangian (5) is highly non-unique. Among all
possible isotopically mapped Lagrangians we consider the form (Example A.1)

L* =143 cost + $q°¢" sint — g*gcos ¢ (8a)
%* *
igj;_g ()iﬁg_%, a=4gcost+gsint (8b)
dt o4 dtdg .oq

Since this Lagrangian is now explicitly dependent on time, the original symmetry is
broken without affecting the conservation law of the total energy. This can be proved
by ignoring all Lagrangian representations and verifying the following rule within
the context of the equation of motion
H—%Eﬁa—f—qqﬂqqﬁi) ©)
q

Theorem 1 of Chart A.10 holds and a new symmetry which leads to the same conserva-
tion law exists. This new symmetry can be identified by noting first that the con-
temporaneous variation associated with transformations (2) which, in this case is given
by 61g = —gw and it is the variation appearing in the Noether’s identity for the
original Lagrangian.

We then construct the corresponding (still contemporaneous) variation §,9q
associated with L* via the methods of Chart A.10, which is given by
: 3 -4,
dxd = (t) dlg = a(t) (10
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A solution the {first order) inverse Noether’s problem is then given by

( aL* §
8 o) .
SLe= _L—’:I() = 0t 4, @w (11a)
aL* ¢
1ol "%
1, | 9 _ = N =
6*‘1 - Oﬂ(t) L* w ﬁ(tw q; Q)w (llb)
61g # —¢ Lt (lic)

The symmetry above is of mixed space-time type. This first proves that the conserva-
tion of the total energy is not uniquely associated with the symmetry of the Lagrangian
under translation in time and, second, illustrates Theorem 1 of Chart A.11, namely,
that the isotopical image of the a pure time transformation can be of mixed space~
time type. In fact, for a pure time translation we must have the condition
dlg=—gé% 12)

which is violated by symmetry (11) as expressed by (11c).

Problems

A.1 Prove that the formulation of the Inverse Lagrangian Problem by Darboux
(1891), Douglas (1941), and others,

PL g, PL o PL L
o of’ ToaFed? ToagFe o

is equivalent to that used in these volumes,

dor oL o
Ea_q" Y = [(g — 7). det(h) # 0,

that is, the existence of a solution L(¢, ¢, §) in one approach implies the existence of a
solution L (t,4,4)in the other approach and vice versa, up to equivalence transformations
within fixed local variables, such as the gauge and isotopic transformations of
Section A.2.

A2 Prove Lemma A2.1.

A3 Prove that, if a Lagrangian L admits two different isotopic images according
to the rules

4 ¥L*)* 6(L*')*2“|:h(2,,. d aL*t  aLxt
dt o o [* \dr aF aq Joalsa

felett-5.1)
di 34’ 6g'/salsa)sa
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the following reformulations of Hamilton's principle hold
12 tz 2
] J‘ dr(L*1)*2 = 5*2J. dtL*? = (52! f dtL
51 iy 1

5*2 k — ht_Z}k 5qi, (5*‘2)*1 _ h}lnh?}k 5an

A4 Study the equations of variations of the generalized Lagrange'’s equations
(15) of Chart 5.7. Identify the conditions under which the equations of variations reduce
to an equivalence transformation of Jacobi’s equations (Section 1.3.3)

d BJ aJ
wfts -2

PR i L i &L
=3 5oq " T 2mag " Y agaq 1’

finally, prove for the one-dimensional case that, when the function h is a first integral,
the equations of variations coincide with their adjoint {i.c., are self-adjoint, according to
the terminology of these volumes).

A5 Construct a Lagrangian representation for the non-self-adjoint Bessel
equation (see also Problem 1.2.2)

(8" +tq + (* — n*)glysa =0, 1 #0.
A6 Prove that the genotopic transformations
{h@IeMG + b(D)g + c(t)g]xsatsa = 0
{h[a(D§ + b(D)G + c()g — d()]xsatsa = 0

are verified by functions
b(7)
dt
e p{f a('t)}

hy, = exp{r dt w}, d(t) = j—f.
0

A.7 Prove that the following systems are non-essentially non-self-adjoint, and
compute a Lagrangian representation according to Theorem A.1.1:

b: b.q,
2 I k1fh k1‘1%

b, b.q,
g+ ¢ +2——+—+—=0,
2 g kiq:  kyqi

{ih + 2p(dy < d2)dy - 294192 + 2 = 0,
G2 + 29(gy + 42042 + 2v0190 + 41 =0,

a1+ %’PQ% + 1443 = 0,
4, + 345 + ¥4:45 = 0,
g3 + ds — g1 — g3 =0
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A8 Extend the analysis of Chart A.4 to the case with an explicit dependence on
time.

A9 Consider a free particle in a three-dimensional Euclidean space and the ten
first integrals which can be constructed through the use of the Galilel’s symmetry
(Chart A.9). Prove that only six first integrals are independent.

A.10 Consider a Lagrangidn for the free motion in three-dimensions, L = mi?,
its symmetry under the Galilei group G(3.1), and the related ten conservation laws
Ift, r, ) = 0. Construct an isotopic image L* of L via the techniques of Section A.2,
and then compute the infinitesimal symmetry G*(3.1} of L* which is isotopically related
to G(3.1), that is {Chart A.10), which leads to the same conservation laws I; = 0.
Identify the type of breaking of the original G(3.1) symmetry along the lines of Chart A.12.



References

1314

1871
1890
1891

1893
1894
1895
1896

1904

1905
1906
1918

1922
1926

Pfaff JF: ““Methodus generalis, aequationes differentiarum partialium, nee non
aequationes differentiales vulgares, utrasque primi ordinis, inter quoteunque
variabiles, complete integrandi.” Abh. kgl. Akad. d. Wiss, Berlin 76-136,
(1814-15).

Lie S: Archiv. Math. og Natur. 2, 10.

Forsyth AR : Theory of Differential Equations, Vol. 1, Dover, NY.

Goursat E: Legons sur Plntégration des Equations aux Derivées Partielles du
Premiere Order, Herman, Paris,

Lie S: Vorlesungen uber Differentialgleichungen, Teubner, Leipzig.

Lie S: Theorie der Transformationsgruppen, Teubner, Leipzig.

Darboux G: Legons sur la Théorie des Surfaces. I11° Partie, Hermann, Paris.
Koenigs P: Comptes Rendus 121, 875.

Mayer A: Ber, Ges. Wiss. Leipzig, Phys. Cl, 519.

Lie S: Geomelrie der Beruhrungstransformationen, Teubner, Leipzig.

Lorentz HA : Amst. Proc. 6, 809 and Verl. 12, 986.

Whittaker ET: A Treatise on the Analytic Dynamics of Particles and Rigid
Bodies, Cambridge Univ. Press, Cambridge, England (reprinted in 1963).
Einstein A: Ann. Phys. (NY) 17, 891,

Poincaré H: Comptes Rendus Acad. Sci. 140, 1504,

Forsyth AR : Theory of Differential Equations, Vol. V and VI, Cambridge Univ.
Press, Cambridge, England.

Noether E: Nachr. Akad. Wiss. Goettingen Math. Phys. K1., 235.

Goursat E: Legons sur le Problem de Pfaff, Hermann, Paris.

Ince EL: Ordinary Differential Equations, Dover, England (see the edition of
1956).

359



360 References

1927

1930

1931

1941

1945

1948

1949

1950

1953

1954

1955

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

Birkhoft GD: Dynamical Systems, AMS College Publ,, Providence, RI.

De Donder TH: Théories des Invariants Intégraux, Gauthier-Villars, Paris.
Feraud L: Trans. A.M.S. 32, 817.

Davis DR Trans. A.M.S. 33, 244,

Douglas J: Trans. A.M.S. 50, 71.

Wintner A: The Analytic Foundations of Celestial Mechanics, Princeton Univ.
Press, Princeton, NJ.

Lee HC: Am. J. Math. 67, 321.

van Dungen FH: Bulf Acad. Roy. Belg. Cl. Sci. 31, 659.

Bochner S and Martin WT: Several Complex Variables, Princeton Univ. Press,
Princeton, NJ.

Lanczos C: The Variational Principles of Mechanics, Univ, of Toronto Press,
Toronto, Canada.

Bernstein DL: Existence Theory of Partial Differential Equations, Princeton
Univ. Press, Princeton, NJ.

Goldstein H: Classical Mechanics, Addison—Wesley, Reading, MA.

Pauli W: Nuove Cimento 10, 648,

Petrovskii IG: Lectures on Partial Differential Equations, Interscience, London,
England.

Coddington EA and Levinson N: Theory of Partial Differential Eguations,
McGraw-Hill, New York, NY.

Dedecker P: Caleuwl des Variations et Topologie Algébrigque, Mem. Soc. Roy. Sci.
Liege, XIX.

Havas P: Nuovo Cimento 5, 363.

Bruck RH: A Survey of Binary Systems, Springer-Verlag, Berlin.

Martin JL: Proc. Roy. Soc. London A251, 536,

Nelson E: Aan. Math. 70, 572.

Landau LD and Lifshitz EM : Mechanics, Addison—-Wesley, Reading, MA.,
Hughes JB: Suppl. Nuovo Cimento 20, 89.

Langer RE: Partial Differential Equations and Continuum Mechanics, Univ. of
Wisconsin Press, Madison, W1,

Akhiezer, NI: The Calculus of Variations, Blaisdell, Watertown, MA.
Jacobson, N: Lie Algebras, Wiley, NY.

Bolotin VV: Nonconservative Problems and the Theory of Flastic Stability,
Pergamon Press, Oxford, England.

Flanders H: Differential Forms with Applications to Physical Sciences, Academic
Press, New York, NY.

Gelfand IM and Fomin SV: Calculus of Variations, Prentice Hall, Englewood
Cliffs, NI.

Jost R: Ren. Mod, Phys, 36, 572,

Kerner EH: J. Math. Phys. 6, 1218.

Sternberg S: Lectures in Differential Geometry, Prentice-Hall, Englewood Clifts,
NJ.

Vainberg MM : Variational Methods for the Study of Nonlinear Operators,
Holden Day, San Francisco, CA.

Gunning RC and Rosst H: Arafytic Functions of Several Complex Variables,
Prentice Hall, Englewood Cliffs, NJ.

Pars LA : A Treatese on Analytic Dynamics, Wiley, New York, NY.

Currie DG and Saletan EJ: J. Math. Phys. 7, 967.

Hill RN: J. Math. Phys. 8, 1756.



1968

1969

1970

1971

1972

1973

1974

1975

References 361

Hormander L: An Introduction to Complex Analysis in Several Variables, Van
Nordstrand, Princeton, NJ,

Ballio G: Rend. Ist. Lombardo Sci. Lett. 101, 331.

Goldshmidt H: Ann, Math. 86, 246; and J. Diff. Geom. 1, 269. .
Kilmister CW: Lagrangian Dynamics: Ar Introduction for Students, Plenum,
New York, NY.

Hurst AC: Ann. Phys. 50, 51.

Loomis LH and Sternberg S: Adpanced Caleutus, Addison-Wesley, Reading,
MA,

Tonti E: Variational Principles, Tamburrini, Milano, Italy.

Zicgler H: Principles of Structural Stability, Blaisdell, Waltham, MA.

Carrol RW: Abstract Methods in Partial Differential Equations, Harper & Row,
New York, NY.

Ewing GM: Caleulus of Variations with Applications, Norton, NY,

Garabedian PR: Partial Differential Equations, Wiley, New York, NY.

Prasad SN and Hermann G: Int. J. Sofid Struct. 5, 721.

Rektoris K (Ed.): Survey of Applied Mathematics, M.1.T. Press, Cambridge, MA.
Spencer DC: Bull A.M.S. 75, 179.

Tonti E: (a) Bull. Acad. Roy. Belg. Cl. Sci. 55, 137; and (b} ibidem, 55, 262.
Hagihara Y: Celestial Mechanics, Vol. I, M.1.T., Cambridge, MA.

Leipholz HHE: Stability Theory, Academic Press, New York, NY.
Mittelstaldt K : Klassische Mechanik, Bibliographisches Inst., Mannheim, Wien,
Austria.

Souriau JM: Structure des Systémes Dynamiques, Hermann, Paris.

Spivak M: Differential Geometry, Vol, 1, Publish or Perish, Boston, MA
(additional volumes in subsequent years).

Cartan E: Lecons sur les Invariants Integraux, Hermann, Paris,

Heisenberg W : Physics and Beyond, Harper & Row, New York, NY.
Levy-Leblond JM: In Group Theory and its Applications, Edited by Loebl EM,
Academic Press, New York, NY.

Saletan EJ and Cromer AH: Theoretical Mechanics, Wiley, New York, NY.
Santilli RM and Roman P: Nuove Cimento 2A, 963.

Leipholz HHE: Acta Mechanics 14, 283.

Santilli RM, Romar P, and Ktorides CN: Particles and Nuclei 3, 332.

Gelman Y and Saletan EJ: Nuove Cimento 18B, 53.

Havas P: Acta Phys., Austr. 38, 145.

Sagle A and Walde R Introduction to Lie groups and Lie algebras, Academic
Press, New York, NY.

Santilli RM and Kiorides CN: Phys. Rev. D7, 2447,

Gilmore R: Lie Groups, Lie Algebras, and Some of their Applications, Wiley,
New York, NY.

Leipholz HHE: (a) Mech. Res. Comm. 1, 67; (b) Mech. Res. Comm. 1, 245; and
{c) Ing. Arch. 43, 255. |

Santilli RM: Ann. Phys. 83, 108.

Sudarshan ECG and Mukunda N: Classical Dynamics: A Modern Perspective,
Wiley, New York, NY.

Atherton RW and Homsy GM: St. Appl. Math. 54, 31.

Gasqui I: J. Diff. Geom. 10, 61.

Huseyin K : Nonfinear Theory of Elastic Stability, Nordhoff Int. Publ., Leyden,
The Netherlands.



362 References

1976

1977

1978

1979

John F: Partial Differential Equations, Springer-Verlag, New York, NY.
Lovelock D and Rund H: Tensors, Differential Forms, and Variational Principles,
Wiley, New York, NY.

Caratu G, Marmo G, Simoni A, Vitale B, and Zaccaria F: Nuovo Cimento 31B,
152,

Leipholz HHE: in Buckling of Structures, Proceed. TUTAM Symposium,
Cambridge, Ma, Budiansky B (Ed.), Springer-Verlag, Heidelberg, W. Germany.
Magri F: Ann. Phys. 99, 196.

Dixmier J: Enveloping Algebras, North Holland, New York, NY.

Edelen DGB: Lagrangian Mechanics for Nonconservative and Nownholonomic
Systems, Nordhoff, Leyden (The Netherlands).

Guillemnin V and Sternberg §: Geometric Aymptotic, Am. Math. Soc., Providence,
RI.

Kwatny HG, Massimo FM and Spare JH; IEEE Proc. Joint Aut. Contr. Conf.,
New York 2, 534.

Leipholz HHE: Direct Variational Methods and Eigenvalue Problems in Engineer-
ing, Noordhoff Intern., Leyden, The Netherlands.

Lumsden CJ: On the Dynamics of Biological Ensembles: Canonical Theory and
Computer Simulation, Ph.D. Thesis (unpublished), Univ. Toronto, Toronto,
Canada.

Prigogine I: Nobel Lecture, Stockholm, Sweden,

Santilli RM: (a) Ann. Phys. 103, 354; (b) ibidem, 103, 409; and (c) ibidem, 105,
227

Abraham R and Marsden JE: Foundations of Mechanics, Benjamin/Cummings,
Reading, MA.

Arnold VI]: Mathematical Methods of Classical Mechanics, Springer-Verlag,
New York, NY.

Bahar LY, Kwatney LG, and Massimo FM : Hadronic J. 1, 976.

Engels E: Hadronic J. 1, 465.

Kobussen, JA: Hadronic J. 1, 966.

Kwatney LG, Bahar LY, and Massino FM: Proc. Eng. Found. Conf. on Syst.
Eng. for Power II, Pacific Grove, CA.

Leipholz HHE: (a) Six Lectures on Variational Principles in Structural Engineer-
ing, Univ. of Waterloo, Waterloo, Ontario, Canada; (b) Mech. Res. Comm. 5,
45; and (c) ibidem 5, 355.

Marmo G and Saletan EJ: Hadronic J. 1, 955.

Myung HC, Okubo 8, and Santilli RM : Applications of Lie-admissible Algebras
in Physics, Vols. I and II, Hadronic Press, Nonantum, MA.

Santilli RM: (a) Foundations of Theoretical Mechanics, I, The Inverse Problem
in Newtonian Mechanics, Springer-Verlag, New York, NY; (b) Lie-admissible
Approach to the Hadronic Structure, I, Nonapplicability of Galilei’s and Einstein’s
Relativities ? Hadronic Press, Nonantum, MA ; (¢) Hadrenic J. 1, 223 ; (d) ibidem
1, 574; and (e) ibidem 1, 1279.

Sarlet W and Cantrijn F: (a) Hadronic J. 1, 101; and (b) ibidem 1, 1497,
Thirring W : Classical Dynamical Systems, Springer-Verlag, New York, NY.
Vanderbhauwhede AL: Hadronic J. 1, 1177.

Bahar LY and Kwatney LG: (a) Proc. Seventh Canadian Congr. Appl. Mech.,
Univ. of Sherbrooke, Sherbrooke, Quebec, page 409; and (b) Hadronic J. 2, 238.
Fatic VM and Blackwell WA : (a) Proc. Southeastcon, Roanoke, Va, page 314;



1980

1981

1982

References 363

and (b) in Proceed. 22nd Midwest Symp. on Circuits and Sys., Univ. Penn.,
Philadelphia, PA, page 444.

Broucke R: Hadronic J. 2, 1122,

Eliezer CJ: Hadronic J. 2, 1067.

Fronteau J: Hadronic J. 2, 727.

Lumsden CJ and Trainor LEH: {a) Can. J. Phys. 57,22; and (b} J, Stat. Phys. 20,
657.

Kobusen JA: Hadronic J. 2, 321.

Misra G, Prigogine I, and Courbage M: Proc, N.A.S. USA 76, 3607.

Myung HC and Santilli RM: Hadronic J. 3, 196.

Proceedings of the Second Workshop on Lie-admissible Formulations, Part A:
Review Papers, Hadronic J. 2, 1252; and Part B: Research Papers, Hadronic J.
3, L '

Santilli RM: (a) Phys. Rev. D20, 555; (b) Hadronic J. 2, 1460; and (c) ibidem 3,
440.

Sarlet W: Hadronic J. 2, 91.

Sniatycki J: Geometric Quantization and Quantum Mechanics, Springer-Verlag,
New York, NY.

Tellez—Arenas A, Fronteau J., and Santilli RM: Hadronic J. 3, 177.

Tomber ML et af. Hadronic J. 3, 507.

Kobussen JA: Hadronic J. 3, 79.

Ktorides CN, Myung HC, and Santilli RM: Phys. Rev. D22, 892.

Leipholz HHE: Acta Mecharnica 35, 127.

Lumsden CJ and Trainor LEH: Bull. Math. Bio. 42, 327.

Santilli RM: Hadronic J. 3, 854.

Chernoff PR: Hadronic J. 4, 879.

Eder G: Hadronic J. 4, 2018.

Hojman S: Hadrenic J. 5, 174.

Hojman § and Urrutia LF: J. Math. Phys. 22, 1896

Kapuscik E: Hadronic J. 4, 673.

Lumsden CJ and Wilson EQ: Genes, Mind, and Culture: The Evolutionary
Process, Harvard University Press, Cambridge, MA.

Mignani R: Hadronic J. 5, 2185.

Okubo S: Hadronic J. 4, 608.

Proceedings of the Third Workshop on Lie-admissible Formulations, Part A
Mathematics, Hadronic J. 4, 183; Part B: Theoretical Physics, ibidem 4, 608; and
Part C: Experimental Physics and Bibliography, ibidem 4, 1166.

Santilli RM: (a) Hadronic J. 4, 642; (b) Hadronic J. 4, 1166; and (c) Found Phys.
11, 383.

Schober A: Hadronic J. 5, 214.

Tomber ML ef al.: Hadronic J. 4, 1318, and ibidem 4, 1444,

Benkart GM: Hadronic 1. 5, 431.

De Sabbata V and Gasperini M : Lettere Nuovo Cimento 34, 337,

Huseyin K: Hadronic J. 5, 931.

Mignani R: Hadronic J. 5, 1134,

Myung HC: (a) Hadronic J. 5, 771; and (b) Lie Algebras and Flexible Lie-ad-
missible Algebras, Hadronic Press, Nonantum, MA.

Myung HC and Santilli RM : (a) Hadronic J. 5, 1277; (b) ibidem 5, 1367.



364 References

Oehmke RH: Hadronic J. 5, 518.

Osborn IM: Hadronic J. 5, 904,

Proc. First Internat. Conf. Nonpotential Interactions and Their Lie-Admissible
Treatment, Parts A and.B: Invited Papers; and Part C and D: Contributed
Papers, Hadronic J. Vol. 5, nurnbers 2, 3, 4, and 5.

Sagle AA: Hadronic J. 5, 1546.

Santilli RM : (a) ibidem 5,264 ; (b) Hadronic J. 5, 1194; and (c) “Use of hadronic
mechanics for the fit of the time-asymmetry recently measured by Slobodrian,
Conzett, ct al”, IBR preprint DE-TP-82-9, submitted 10 Phys. Rev. Letters; (d)
Lettere Nuovo Cimento 33, 145; and (e) Lie-admissible approach to the Hadronic
Structure, Il Generalization of Galilei’s and Einstein’s Relativities? Hadronic
Press, Nonantum, Ma 02195.

Schober A (Ed.): Hadronic Mechanics, Volumes I: Foundations, Volume 11:
Lxperimental and Theoretical Indications of the Approximate Character of the
Time-Reversal Symmetry, and Volume I11: Experimental and Theoretical
Indications of the Approximate Character of the SU(2)-spin Symmetry, Hadronic
Press, Nonantum, MA, to be published.

Schober A: Hadronic J. 5, 1140,

Tomber ML: Hadronic J. 5, 360.

Tonti E: Hadronic J. 5, 1404.

Trostel R: Hadronic J. 5, 1023.



Index

Abstract product 68
Acceleration couplings 287, 351
Action-at-a-distance interactions 2
Action functional 15
Algebra 68
Algebraic significance of
self-adjointness 27
Analytic
Newtonian forces 308
Newtonian systems 307
Newtonian vector fields 308
Analytic extension to complex
variables 310
complex analytic 310
mixed type 310
real analytic 311
Approximate Birkhoffian
representations 61
Associative algebra 68
Associative law 68
Atomic Mechanics 112, 199, 253

Baker—Campbell—Hausdorff
formula 168

Bessel equation 347

Birkhoff-admissible equations 97

Birkhoff’s equations 30
antonomous 29
contravariant 31

covariant 3]

degenerate 31

direct universality 354
nonautonomous 31
regular 31
semi-autonomous 31
strictly regular 31
Birkhoff’s tensor 31
Birkhoffian function 30
Birkhoffian gauge transformations 62
Birkhoffian generalization of
Hamilton—Jocobi theory 205
generation function F, form of
equations 207 '
generating function Fs form of
equations 208
Birkhoffian isotopy 62
Birkhoffian Mechanics 132
Birkhoffian realizations of
infinitesimal rotations 180
infinitesimal space translations 180
infinitesimal time evolutions 180
Lie algebras 179
Lie-isotopic groups 181
Birkhoffian representations 46
approximate 61, 108
autonomous 45
direct 46
indirect 46
non-autonomous 45
of electromagnetic interactions 98
of Hamilton’s equations 65
of Newtonian systems 44
semi-autonomous 45

365



366 Index

Birkhoffian time evolution 33
Birkhoffian vector field 44
Breaking of Galilei’s relativity
canonical 347
essentially non-self-adjoint
self-adjoint 345
semicanonical 346
isotopic 345

347

Canonical action 15
Canonical transformations 114, 187
Born counter-reciprocity 194
Born reciprocity 194
Born scaled reciprocity 194
derivation via Holder’s
principle 197
generating functions of 117
identity 194
inversion formulae for 119
scale 194
Canonical one form 17, 81
Cauchy—Kovaleski theorem 312
form 213
Closed form 90
Closed systems 234, 329
non-self-adjoint 235, 333
self-adjoint 331
Conservation law 226, 330
Conservative systems of first, second
and third kind 265
Contact form 84
Contact geometry 29
Contact manifold 84
Contemporaneous
transformations 112
Coordinate-free universality 13
Cotangent bundle 78
Cotangent space 78
Covering mechanics 132

Darboux’s theorem 184, 218
for contact manifolds 185
for symplectic manifolds 184

Darboux transformations
for electromagnetic

interactions 272

Deformability to a curve 89

Deformability to a point 89

Degenerate Lagrangians 125

de Broglie’s wavelength principle 214

Dirac’s Mechanics 125

Direct universality 12

Direct universality of
Birkhoff’s equations 54
(summary 66)

Distributive laws 68

Duffing’s equations 108

Dynamic space 58

Eigenvalue equations 259
isotopic generalization 259
Einstein's frequency principle 214
Energy rate of variation 88
Enveloping algebras 148
Equations of motion
fundamental form 4
general first-order form 18
kinematical form 9
Newtonian vector-field form 18
normal first-order form 18
Equivalent systems 9
Extended point transformations 122
Exterior derivative 78, 89
Exterior problem 256

First integrals 226, 327
First-order variational principle 31
Forces
conservative 2
dissipative 2
dynamical 2
local 2
Newtonian 1
non-self-adjoint 3
non-local in space 2, 91
non-local in time 2
Non-Newtonian 1
non-potential 2
potential 2
self-adjoint 3
Form-invariance 322
Fundamental cosymplectic tensor 16
Fundamental lemma of calculus of
variations 190
Fundamental Lie rule of
associative Lie-admissibility 166
isotopic generalization 172
Fundamental Lie tensor 16
Fundamental symplectic structure 16,
82
Fundamental symplectic tensor 16,
82
Fundamental analytic theorem
for Birkhoffian representations 54



for indirect Hamiltonian
representations 218
for indirect Lagrangian
representations 282
in configuration space 7
in phase space 22

Galilei’s relativity 230
breaking of 233, 344
Lie-admissible generalization 243
Lie-isotopic generalization 243
summary view 250
Galilei’s transformations 230
Gauge transformations
for Birkhoffian formulations 62
for electromagnetic theory 289
for Lagrangian formulations 289
Generalized canonical
transformations 141
generating function 144
necessary and sufficient
conditions 143
Generalized Kronecker symbols 29
Generalized Lagrange’s brackets 26
Generalized Poisson brackets 26
Generalized Weiss principle 143
Genotopic extensions
algebraic significance of 74
of algebras 74
of Lie algebras 74
of Poisson brackets 74
Global treatment
of Birkhoff’s equations 86
of Hamilton’s equations 82
Goldstein’s variational principle
with subsidiary constraints 192

Hadronic generalization of

Schrédinger’s equations 212
Hadronic Mechanics 112, 199, 254
Hadrenic wave packets 211
Hadrons 200, 253, 332
Hamilton’s equations

contravariant 15

covariant 15

self-adjointness of 18

unified form of 15

with external terms 35

without external terms 14
Hamilton’s variational principle 188

non-self-adjoint genotopic

extension 189

Index 367

self-adjointness of 189
Hamiltonian realization of
infinitesimal Lie
transformations 174
infinitesimal space rotations 176
infinitesimal space translations 176
infinitesimal time evolutions 176
Lie algebras 174
Lie transformation groups 174
Hamiltonian representation
of Newtonian systems 43
Hamiltonian vector ficld 43, 84
Hamilton—Jacobi theory 201
Birkhoffian generalization 205
formulation of problem 201
generating function F| form of
equations 202
generating functions F form of
equations 202
with Birkhoffian gauge 203
Heisenberg’s equations 153
Lie-admissible generalization 153,
260
Lie-isotopic generalization
Heisenberg's indeterminacy
principle 214
Homogeneous contact
transformations 122

153, 260

Implicit functions 9
Independent Inverse Hamiltonian
Problem 13
Indirect Lagrangian
representations 282
Indirect universality 12
Indirect universality of
Hamilton’s equations 217
Inner product 80
Integrating factors §
Interactions
action-at-a-distance potential 2
contact nonpotential 2
iocal closed non-self-adjoint 255,
287, 333 ;
local closed self-adjoint 255, 287,
331
nonlocal closed
non-self-adjoint 255
nonlocal open non-self-adjoint 255
Interior problem 256
Invariant relations 227
Inverse Lie Problem 3
Inverse Lie-admissible Problem 5



368 Index

Isotopic extension of algebras 71
algebraic significance 72
of associative algebras 71
of Galilei group 358
of Lie algebras 71
of Lorentz group 73, 159
of non-associative algebras 71
of Poisson brackets 74
of rotation group 73, 159
regular 71
singular 71
Isotopic functions 170
Isotopic generalization of
Galilei’s group 245
Galilei’s relativity 243
Isotopic transformations
of Birkhoff’s equations 62
of Lagrange’s equations 291
Isotopically mapped
associative tensorial algebra 161
Baker-Campbell-Hausdorff
formula 172
enveloping associative algebra 156
“exponential law 171
Lie first theorem 169
Lie second theorem 171
Lie third theorem 171
nonstandard monomials 161
Poincaré-Birkhoff-Witt
theorem 161
standard monomials 161
unit element 162
Isotopically related symmetry
groups 339

.

Jacobi’s equations 357
Jordan algebras 68
Jordan-admissible algebras 69

Kepler system in dissipative
medivm 108

Lagrange’s brackets 26

Lagrange’s equations
regular 9
self-adjointness of 6
with external terms 3
without external terms 5

Lagrangian representation
ordered direct 4
ordered indirect 8

Lie algebras 26, 28

Lie construction of symmetries
of given systems 327

Lie derivative 80

Lie theorems

first 165

isotopic extension 169
second 166

isotopic extension 171
third 166

isotopic extension 171
Lie transformation group 164
composition laws 164
connectivity to identity 164
dimension 164
expenential mapping 167
infinitesimal generators 165
isotopic generalization 169
scalar extension 229
standard generators 165
structure constants 166
Lie-admissible algebras 68, 92
Lie-admissible generalization of
Heisenberg’s equations 153
Lie-admissible group 93
Lie identity isotopic
transformations 143
Lic-isotopic generalization of
Heisenberg's equations 153
Lie-isotopic transformations 127
Lie-isotopic transformation
groups 169
Liouville theorem 83
Lorentz force 4

Massive points 2, 233
Mathieu’s transformations 122
Minimal coupling rule

in field theory 343

isotopic breaking of 343

in Newtonian mechanics 99
Modules

one-sided 183

two-sided 183

Noncanonical time evolution 111
Noncontemporaneous
transformations 112
Newtonian gauge transformations 122
Non-associative algebra 68
Non-self-adjoint extension
degenerate 191



Index 369

of Lagrange’s equations 191 Polycircles 310
Non-self-adjoint genotopic Potential energy 3
transformations 47 Potential operator 318
Non-self-adjoint isotopic Prigogine’s statistics 262
transformations 47 Primitive form " 90

Non-self-adjointness of

Newtonian forces 3

Newtonian systems 7 Quadrature of systems 328
Nonstandard monomials 155
Noether’s theorem

direct 333 Real analyticity 308
for Birkhoffian formulations 240 Reduced canonoid trasformations 145
for Lagrangian formulations 333 Region 8
inverse 334 Regular point 309
Nuclear Mechanics 254 Regularity of

equations of motion 8
Hamiltonian 22

One-forms 79 Hamilton’s equations 22
Ordered direct Lagrangian Lagrange’s equations 9
representations 4 l.agrangian 9

Ordered direct Hamiltonian
representation 22
Schridinger’s equation 210
hadronic generalization 212, 259

Parametric p-forms 89 Scalar laws 68
Particularized first integrals 228 Second-order Lagrangian
Pauli theorem 185 mechanics 109
Pfaffian action principle 32 Self-adjoint genotopic
representation of transformations 47
Birkhoff-admissible - Self-adjoint isotopic
equations 193 transformations 47
representation of Birkhoff™s Self-adjoint transformations
equations 33 Lie character 50
representation of Lagrange’s of first-order systems 49
equations with external symplectic character 50
terms 192 Self-adjointness of
Pfaffian problem 218 Birkhoff’s equations 35
p-forms 79 covariant general form 20
Phase space 38 fundamental form 7
Physical angular momentum 209 - Hamilton’s equations 21
Physical encrgy 56 L.agrange’s equations 6
Physical linear momentum 209 Lorentz force 4
Planck’s constant 214 Newtonian forces 3
Poincaré lemma Singular point 309
direct 90 irregular 309
inverse 90 of first kind 309
Poincaré—Birkhoff—Witt of second kind 309
theorem 156 regular 309
isotopic generalization 161 Standard monimials 155
Point transformations 122, 297 Structure functions 171
of Newtonian systems 299 Symplectic geometry 29, 77
of Newtonian forces 301 Symplectic identity isotopic
of Lagrange’s equations 300 transformations 141

Poisson brackets 16 Symplectic manifold 82



370 Index

Symplectic-admissible geometry 94
Symplectic-admissible manifold 95
Symplectic-admissible two-forms 95
Symplectic-isotopic
transformations 127
Symmetries 226, 321
broken 344
connected 226, 324
contemporaneous 226, 324
discrete 226, 324
exact 344
hadronic generalization 260
infinitesimal 226, 234
Lie construction 323
manifest 226, 321
mixed space-time type 324
nonmanifest 226, 324
of Birkhoff’s equations 238
of Hamilton’s equations 228
of vector fields 226
of Lagrange’s equations 323
pure space type 324
pure time type 324
without gauge 324
Systems
determined 284
essentially non-self-adjoint 24
essentially self-adjoint 24
non-essentially non-self-adjoint 24
overdetermined 284
underdetermined 284

Tangent map 78
Tangent space 78
Tangent vector 77

Tensor 78
Tensor bundle 78
Tensor field 79
Tensorial product 153
Time 135
Newtonian equivalence of space and
time 136
Transformation of
autonomous BirkhofT’s
equations 133
Hamilton’s into Birkhoff’s
equations 131
Hamilton’s into Pfaff’s
principle 131

Universal enveloping associative
algebra 148, 155

Universality 12

Universality of self-adjoint
transformations 52

Unitary transformations 183

Van der Pol equations 104
Variations 190
Variational problems 192
Vector field 79

Wave packet 210
Birkhoffian generalization 211
Weak variations 190
Weak unit element 162
Wedge product 80
Weierstrass analyticity 308



Texts and Monographs in Physics

J. Kessler: Polarized Electrons (1976).

W. Rindler: Essential Relativity: Special, General, and Cosmological, Revised
Second Edition (1977). .

K. Chadan and P.C. Sabatier: Inverse Problems in Quantum Scattering Theory
(1977).

C. Truesdell and S. Bharatha; The Concepts and Logic of Classical
Thermodynamics as a Theory of Heat Engines: Rigourously Constructed upon
the Foundation Laid by S. Carnot and F. Reech (1977).

R.D. Richtmyer: Principles of Advanced Mathematical Physics. Volume 1 (1978).
Volume II (1981).

R.M. Santilli;: Foundations of Theoretical Mechanics. Volume I: The Inverse
Problem in Newtonian Mechanics (1978). Volume II: Birkhoffian
Generalization of Hamiltonian Mechanics (1983).

A. Béhm: Quantum Mechanics (1979).

H. Pilkuhn: Relativistic Particle Physics (1979).

M.D. Scadron: Advanced Quantum Theory and Its Applications Through Feynman
Diagrams (1979).

O. Bratteli and D.W, Robinson: Operator Algebras and Quantum Statistical
Mechanics. Volume I: C*- and W*-Algebras. Symmetry Groups.
Decomposition of States (1979). Volume II: Equilibrium States. Models in
Quantum Statistical Mechanics (1981).

J.M. Jauch and F. Rohrlich: The Theory of Photons and Electrons: The Relativistic
Quantum Field Theory of Charged Particles with Spin One-half, Second
Expanded Edition (1980).

P. Ring and P. Schuck: The Nuclear Many-Body Problem (1980}.

R. Bass: Nuclear Reactions with Heavy Ions (1980).

R.G. Newton: Scattering Theory of Waves and Particles, Second Edition (1982).

G. Ludwig: Foundations of Quantum Mechanics I (1983).

G. Gallavotti: The Elements of Mechanics (1983).

F.J. ¥Yndurain: Quantum Chromodynamics: An Introduction to the Theory of
Quarks and Gluons (1983). '








