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THE PRICE OF NOVELTY

,,,,,,,,,,,,, one of the most influential symphonies even composed,
Beeithoven’s 9-th Symphony in D-minor, was not undersiood by
the public. During izs first two performances in Wien, in
May 1824, the theater was half-empty and
most left before the end.....e.....



Rugpgero Maric Santiili —iv - Theovetical Biology

TABLE OF CONTENTS

PREFACE, vii

Introductory comments, vil

The basic role of irreversibility, viil

Problematic aspects of existing generalizations, ix

The main criteriz for selection of consistent generalized methods, xi
The fmportant role of our sensory perception, xii

The baffling properties of bislogical systems, xiv

ACENOWLEDGMENTS, xvi

L, INTRODUCTION, 1

L.1. Imsufficiencies of contemporary mathemsatical methods for
theoretical biclogy, 1

1.2, Basic requirements for generalized methods, 7

1.3. Cutline of the new methods and guide (o (he lterature, 11

a3

- ELEMENTS OF ISOTOPIC METHODS, 24

1. Mathematical foundaiions, 24

i

2.1.A. Kadelsvili classification, 24

2.1.B. Isofields, 26

2,1.C. Tsospaces, 32

2.1.D. Kadeisvill isocontinuity and Tsagas-Scurlas isotopolegy, 35
2.1.E. Isodifferential calcuius, 38



Ruggero Maria Santilli —v= Theoretical Biology

2.2. Isotopies of differential geometries, 42
2.2,A, Introduction, 42
2.2.B. Basic properties of isoeuclidean geometry, 43
2.2.C. Basic properties of the isodual isoeuclidean geometry, 58
2.2.D. Operations or isovectors and their isoduals, 63
2.2.E. Representation of biological structures as isospheres, 63
22 F. Connection with noneuclidean geometries, 74
Z.3. Isotopies of classical and qguantum methods, 78
2.3.A, Introductory analytic profiles, 78
2.3.B. Isotopic lifting of Newtonian methods, 85
2.3.C. Isotopies of Lagrangian methods, 94
2.3.D. Isotopies of Hamiltonian methods, 97
2.3.E. Isoguantization, 104
2.3.F. Headronic mechanics, 106
2.3.G. Problematic aspects of other generalizations of
quanium mechanics, 113

3. ELEMENTS OF GENCOTOPIC METHODS, 115
3.1, Statement of the problem, 115

3.2. Mathemaiical foundations, 117

3.3, Classical and operater genotopic metheds, 123

4, ELEMENTE OF HYPERSTRUCTURAL METHODS, 132
4.1, Staternent of the problem, 123

4.2, Basic mathematical notlons, 134
4.3, Classical and operator hyperstiructural methods, 137

S. PRELIMINARY APPLICATIONS IN THEQORETICAL
BIOLOGY, 146
. Gutline of main implications, 146

1 R
£

Ui
2

2, Apparent isotopic structure of sea shells, 156

v
L

. Apparent isotopic origin of the valence, 167



Ruggerc Maria Sontilli e Theoretical Biology

S4. Apparent fsotopic nature of correlation, 181
S.5. Additional miscellanecus applications, 188

AFPENDIX A, BLEMENTARY ISOFUNCTIONS, 191

AL Foreword, 191

A.Z, Isopythagorean theorem, 192

AJ. Isotrigonometric funciions, 196

A.4. Isohyperbolic functions, 202

A5, Isoexpoeneniial, isologavithm and other elementary isofunctions, 204

APPEMNDEX B, ISOSPHERICAL COORDINATES, 207
APPENDIX C. ISOTOPIES OF THE ROTATIONAL SYMMETRY, 213

Referemces, 221



Ruggero Marig Sangill - vii~ Theoveical Biclogy

Imtroductory comments. This monograph grew out of my conviction,
originating since the lime of my high school studies, that biclogical systems are
structurally more complex than physical systems, thus requiring more general
mathematical methods Tor their treatment in 8 more effective quantitalive form.

Subsegquently, this monograph was stimulated by my uneasiness in seeing
that contemporary theoretical biclogy is treated via essentially the same methods
used in physics, thus implying their de facto identity.

More recently, the writing of this monograph originated the various seminal
talks I heard at the International Workshop on New [Frontiers in Theoretical
Biology, held al our Instituie, Castle Prince Pignatelli, Molise, ltaly on August 1993,
and, in particular, by the illuminating talk on the problem of irreversibility by H.
Tributsch, Director of the Hahn-Meitner Institute in Berlin, Germany (see the
Proceedings [al.

A simple comparative inspection of biclogical and physical systems confirms
the structurally broader character of the former over ihe latfer. A first, most
evident difference is the intrinsically nonconservaiive character of biclogical
sysiems (because they grow or decay in time), as cempared io the notoricus
censervative characier of physical systems. To comply with evidence, the former
require gquantilative representalions of time-rate-of-variations of their
characteristics (such as size, weight, etc.), which admit as particular case the
Tamiliar conservation laws at ihe Toundation of contemporary physics. It is then
evideni thal methods established for the laller should not expecied 1o be equally
effective for the former. l

Numercus other differences also exist. For instance, biological systems are
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deformable, while physical systems are (generally assumed to bel rigid. Similarly,
biological systems arg composed of constituents, such as cells, in muiual physical
contact among each others, while physical sysiems such as an atomic system, are
made un of particles with action—at-a—distance interactions. It then Tollows that
biological systems are expected to have novel, internal zero-range inferactions
| which are unthinkable in contemporary theoretical physics. Moreover, contact
: interaciions among cells are nonlocai-iniegral because extended over a Tlinite
surface, while physical systerns sre notoriously assumed o be of local—-differential
fype, that is, reducible ic a finite set of isclated points.
All these aspects evidently reguires the identification of new methods, more
general than those of contemporary physics which are more suitable for
guantitative studies of biclogical systems.

The basic rele of irrebersibility. The aspect which ultimalely rendersd
compelling the writing of this monograph is the problem of irreversibility. In fact,
physical systems such as planetary or atomic sysiems, are reversible, ie., their
image under the reversal of the direction of time Is a5 admissible a5 the original
system. On the conirary, all known biclogical sysiems are frreversibie ie., their
image under time reversal cannot occur in reality {e.g, a human would go back to
its embryo under time reversal).

On the other side, the discipline of general use in theoretical biclogy,
guanturn mechanics, is notoriously reversibie. This creates rather serious
problems of internal consistency in current studies of theoretical biology,
particularly in view of the following

NO REDUCTION THREOREM bk Under sufficient topological conditions,
classical, macroscopic, irreversible systems cannot be consistentfy reduced
to a finite collection of particies all in reversible conditions and, vice—versa,
a finfte collection of particies all in reversible conditions cannot consisiently
vield a macroscopic irreversible system.

Staied in a nutshell, the above theorem esiablishes that guanivm mechanics
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simply cannot be assumed fo be exactly valid for the descripiion of the
constituents of all irreversible macroscopic systems.

MNeedless to say, the approximate validity of quantum mechanics under the
conditions considered is bevond question. The point is that such an approximale
character is per se evidence of the exisience of non—quantum-mechanical effects
in biological structures which are precisely the origin of irreversibility.

This occurrence is deeply linked to the preceding ones. All known action—at-
a—distance interactions are reversible. The assumption that biclogical systems are
solely trealable with potential interactions is then incompatible with its irreversible
behaviour.

Vice-versa, the admission of additional contact, zero-range interactions in
the interior of biological sysiems implies their irreversibility because said
interactions are structyrally irreversible for various known reasons, e.g., because
not representable with a Lagrangian or a Hamiltonian.

Similarly, the use of gquantum mechanics in theoretical biclogy implies that
macroscopic systems are not only reversible but also conservative, which is grossly
conirary to evidence. The admission of time-rate—of-variations of total
characteristics requires their representation beginning at the level of each
Diological constituents. The recovering of irreversibility is then conseguential
because time-rate-of—variations are known to be irreversible (technically, they
violate the theorem of detailed balancing) )

The above occurrences establish beyond credible doubls that biological
systerns require methoeds structurally more general than the guantuin mechanical
methods of contemporary physics. In particular, the generalized methods must be
intrinsically nonconservative, irreversible and nonlocal-integral, yet admitting of
the conventional methods as particular cases. In fact, nonconservation laws,
irreversibilily, nonlocality, eic., admii as particular cases conservation laws,
reversibility, locality, eic.

Problematic aspects of existing gemeralizations. Once the need for broader
methods in theoretical biology is admitted, the main issue addressed in this
monograph is their identification.
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In the latter respect the reader should be made aware of (he many
inconsistencies of numercus generalizations of quanium mechanics atiempied
during the second half of ibis century, such as the so—called g-, k- and quantum
deformations, nonlinear theories (ie, nonlinearity in the wavefunctions), and others.
To see this occurrence, recall that, to be really novel, a Tormulations must be
outside the equivalence class of quantum formulations, that is, it must be derivable
from the latter via nonunitary iransforms.

A litany of inconsistencies then follows because all the beautiful axiomatic
properties of quantum mechanics crumble under nonunitary transforms. To begin,
nonunitary fransforms do not leave invariant the basic unit, thus voiding the theory
of any possible application fo actual measurements; the same nonunitary
transforms do not preserve Hermiticity in time, thus voiding the theory of any
observable; no numerical data can possibly be invariant under nonunitary
transforms, thus voiding the theory of any any possible numerical prediction; ete.

Particularly insidious is the use in theoretical biology of nonliner theories.
In fact, they violate the superposition principle as well as other axioms of quantum
mechanics (such as causality). As a resuli, their predictions for composite systems
such as a biclegical structure have ne known scientific value,

Perhaps even more insidisous is the use of other broadening of guantum
mechanics, such as those based on the so-called “imaginary potential” or an
external term. In fact, the latter theories imply the loss, not only of all possible Lie
algebras, but actuaily of all possible algebras in the brackets of the time evolution
(iechnically we have the violation of the right or left scalar and distributive laws).
Under these conditions, statemenis such as "protons and neulrons with spin 1/2”
have ne mathematical or piysical meaning because of the loss of all possibilities do
define spin.

In conclusions, rather voluminous studies conducted in recent decades have
esteblished that any departure from the finear, Jocal and potential characters of
quanium mechanics leads to numerous inconsistencies whenever trealted with
conveniional mathematical methods, eg., conventional fields, conventional vecior
and Hilbert spaces, conventional algebras, eic.
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The main criteria per the selection of consistent generalized methods.
After studving these problems for decades, [ laboriously rediscovered a century old

P

trulh, that there cannol be really new advances in sciences without really new
mathematics.

I attacked the problem when at Harvard University back in the early 1980
under support from the U. 8. Debarment of Energy, by initiatling the study of
Tundamentally novel malthematics, that is, | searched Tor new numbers, new
spaces, new algebras, new geometries, eic., suitable for the objective at hand.

This monograph reports the outcome of my scientific journey which has
apparently resulted in the identificabion of the desired new methods, with the
understanding that [ am 2 theoretical physicist, thus without the necessary iraining
and knowledge in biology. My primary objective is therefore that of presenting the
new methods themselves, with a mere indication of their poiential in theoretical
biclogy. The appraisal of the actual possibilities in biclogy can only be conducied
by biclogists in due time.

It may be of some value to indicate in these intreductory words the main
guiding principie used in the identification of the new methods.

Since the time of my graduate studies in theoretical physics at the University
of Torino, ltaly, in the late 19605, | have been fascinated by the mathematical
beauty, physical consistency and historical successes of quantum mechanics.
Throughout this monograph I therefore assume quantum mechanics [0 be exactiy
valid under the conditions of its original conceplicn and applicability of iis
mathematical structure, systems of particles and their interactions when they can
be well approximated s being point-like under only action—ai—a—distance/potential
interactions (a5 we shall see, this can be reduced to muiuval distances bigger than
the coherent wavelength of each particle pair).

Nevertheless, since the time of my graduate studies 1 perceived clear
irnitations in such an exact applicability, evidently because nature cannot possibly
be all reduced o isolated poinis, owing to the interactions due 10 wave-overlapping
(at mutual distances smaller than the coherant wavelength of each pair) under
which guanium mechanics 1 no longer exact on numercus topological, analyiic,
algebraic geomeiric and other grounds [cl.

[ therefore searched for generalized methods which : 1) preserve the main
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xiomaltic properties of quanium mechanics; 2} are ocuiside its class of equivalent;
and 3) admit the latter as a particular case when the mutuval distances are such to
render ignorable all non—quantum-mechanical effects.

Afier considerable search, the general methods verifying the latter
requirements resulted to be the so—called isotopies which are maps (aiso called
liftings) of any given linear, local, and unitary structure into their most general
possible nonlinear, nonlocal and nonunitary forms, yet capable of reconstrucling
linearity, locallly and unitarity in certain generalized spaces defined over suifably
generalized numbers.

Because of the latter property, the isotoples are axiom-preserving by
conception and realization, that is, whatever properly exists for the original
structure, it also exists for the broader structure. Uniike conventional studies, the
isotopies therefore permit the preservation of the invariance of the unit, the
Hermiticity of all observable, the invariance of numerical predictions, and all other
characierisiics of quanium mechanics, only treated in 2 more general space over
more general numbers.

The ultimate roots of the generalized methods of this monographs therefore
rest on g generalization of the notion of numbers and, at a deeper level, emerge
Trom a generalization of the unit which has remained the value +1 since biblical
times. The broadening of the remaining formulation is merely conseguential.

In my original proposal of 1978 {c] the isotopies were proposed as a particular
case of the socalled genoiopies which are still more general maps such to violate
ihe original axioms in favor of covering properties and, in this sense, they were said
10 be axiom-inducing.

With the passing of time [ discovered that the axiom-inducing character of
the genciopies holds only when projected in conventional spaces over conventional
fields, while the genciopies are also axiom-preserving when defined over
appropriate fields and numbers. In this way, the genotopies became a more general
formulation of the isoiopies. The main noveliy wiith respect Lo isolopies is that
genotopies require an ordering of the multiplication, one o the right and one fo
the left, with consequential ordering of the unil. The genotopies ihen represent
rather naturally Eddingten's "time arrows” and permits a characierization of
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irreversibility at the most ultimate possivle level.

More recenily, thanks to the patience by the mathematician T. Yougiouklis of
the University of Thrace in Xanthi, Greece, in explaining the fopic to me, I became
aware that the multivalued hyperstructures can aiso be formulated in an axiom—
preserving form, thus providing the most general known axiom-preserving liftings
of conventional methods. The main novelly with respect to the genotopies is that
the unit, elements and their operations zre mulii-valued, thus resulting to be
particularly intriguing Tor the representation of nonconservaiive and irreversible
biological systems with complex and locally differentiated internal structures.

In summary, this monocgraph outlines three levels of generalized methods I
have tentatively called isotopies, genotopies and hyperstructures with progressive
methodological characteristics for the representaiion of progressively more
complex biological sysiems.

The important role of our sensory perception. In approaching preliminary
applications of the new methods to biological systems [ discovered that the main
geometric principle had fundamental biological implications which should alsc be
indicaled in these introductory lines.

In essence, our sensory perception of biological structures have indeed
lirmited capabilities, yet they are definitely capable of delecting deviations from
conventionzl siructures. The selection of generalized methods must therefore be
compatible with our senscry perception.

As a concreie example, the visual inspection of a sea shell in our hands is
hased on our three Bustachian tubes which yield our Fuclidean perception of the
object considersd. But, as we shall see, the Euclidean geometry is grossly
insufficient for a consistent representation of the growth of sez shells, e.g., Decause
it is structurally local-differential, conservative and reversible.

The problem therefore emerges of identifying 2 more adequate geometry for
the quanlitative represeniation of sea shells growih in an axiomatically consistent
and invariant way.

Al this point numerous possibilities emerge. First, one can attempts
traditional generalizations, such as Riemannizn, Finslerian, Desarguesian, eic. 1 is
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easy to seec that afl these generalizations have lo be excluded on grounds of our
sensory perception, evidently because our senses are able (o perceive a geomelry
not isomerphic to the Euclidean one.

It i3 af this point that [ realized the isotopic, genotopic and hyperstructural
methods as being uniquely suitable for biclogical structures precisely in view of
their axiomn—preserving characier. [n fact, in inspecting a sea shell in our hands, cur
senses are completely unable to distinguish whether the internal geometry is
EBuclidean or iso-, geno~ or hyper-Euclidean, precisely because the geometric
axioms are the same and only realized in differen{ ways.

In different terms, the restriction of all possible generalized methods to be of
| axiom-preserving character was origingl done on pure grounds of mathematical
} and phenomenological consistency, but later on emerges as possessing much more
| k powerful values via~a-vis the compatibility with our sensory perception.

Once the latter compatibility is established, there is the emergence of an
entirely new scientific horizon of possibilities which may appear to some beyond
the most advanced science fiction, such as causal motion backward in time as
necessary in bifurcations, a new form of locomotion within biological sysiems
which, being based on nonpoteniial interactions, occurs without any Newtonian
force or use of energy, and others, which are presented in this monograph for the
sole attention of biologists with a young mind of all ages.

The baifling properties of biological systems. As a physicist, [ cannot close
ihis preface with an aspect which still bafTles me constderably. Irreversibility is not
a sole feature of biological systems, because if s also a2 general characleristics of

physical sysiems, e.g., those with entropy. In facl, the "No-Reduction Theorem”

quoted earlier was originally formulated [b] Tor physical systems. It implies that
the origin of irreversibility, e.g., in interior gravitationz] problems such a3 quasars,
must be seen at the yltimate particle level el as a result, the isotopic, genotopic and
hyperstructural methods have emerged as being significant also for physics el
ATter a long scientific journey, I stumbled again info my criginal problem of
differentiating biological and physical systems. In fact, rather than being solved by
my studies, the problem is more open than ever, because, even though generalized,
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the same methods still apply to both biological and physical worlds.

This leads in a natural way to doubt as to whether all differences between
biological and physical systems are in reelity so ponderable o admit a
mathematical treatment at all.

I rediscovered in this way another century old truth, that scientific
disciplines wiil never admit final theories.

Ruggero Marla Santilli
Baywood Village, Gulf of Mexico
Palm Harbor, Fiorida, July 1996

Permanent address:

Institute for Basic Research

P.0.Box 1577, Palm Harbor, FL 34682, U.S.A.
fbrrms @pinet.aip.org
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I: INTROBUCTION

1.1: Insufficiencies of contemporary mathematical methods
fior theoretical biology.

The mathematical methods currently used in theoretical biology (see, e.g.,
ref.s [1,2,3) are essentially those of coniemporary classical, quantum and
statistical mechanics which are uliimately reducible to Lic symmetries and their
underlying topologies, geomeiries and mechanics.

With the clear understanding thai these methods have indeed produced
outstanding resulis and are therefore valid for a study of theoretical biology, in
this monograph we point outl a number of insufficlencies which warrant the
study of more general and more adequate methods.

The Tirst, and perhaps most impertant insyfficiency is of basﬂc structural
character. Contemporary mathematical methods have been conceived, developed,
applied and verified for perennial and immuiable conservalive systems, such as a
planetary or atomic sysiern, in which they have achieved outstanding results of
historical proportions.

On the contrary, biclogical siruciures are inherently nonconservative
evidently because they grow in time, and then decay. It then follows thal the
fundamental laws of contemporary physics are noi directly applicable to
biological systems and, if applied withoul care, could iead to contradictions with
reality. This is due to the fact that the entire body of contemporary methods
have been built to represent the stability of the orbits, conservation laws and the
like, while an effective representation of biological sysiems requires the
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representation of the general instability of individual orbils, the {ime-rate—of—
growth (or of decay) of given quantities, and the like.

The second important limitation of contemperary methods for theoretical
biology is that they are reversible in time, that is, their analytic, gcometric and
algebraic structures are time reversal invariant. Their use is therefore prohibited
by the No-Reduction Thecrem reviewed in the Preface, which prevents the
consistent reduction of irreversible sysiems to a collection of reversible ones.

On the contirary, biclogical sysiems are struciurally irreversible, that is,
they reguire mathematical methods which are irreversible irrespective of
whether the Lagrangian or Hamilionian is time-reversal invariant. This is
evidenily due to the fact that the restriction of irreversibility to a long-range
potential simply has no sufficient connection with a reality which is "structurally
irreversible”, that is, irreversible irrespective of the behaviour in time of any
potential.

The remaining and perhaps deeper insufficiencies of coniemporary
mathematical methods for theoretical biology are of fechnical nature. The
ultimate mathematical essence of contemporary Lie’s theory is its topology which
is well known (o be Jocal~differential, that is, il applies in the neighborhood of
a finite set of isolated points. This topological structure re—emerges in
contemporary analytic mechanics, which, as it is well known, il is solely
applicable to the characterization of a finile set of isolaled massive points. As an
example, the representation of Jupiter in its trajeciory in the Solar system
requires its necessary representation as 2 massive point, as originally conceived
by Galileo Galilei.

The same topological Hmitations re—emerge in thelr entirely in quantum
formulations which are notoriously applicable solely for the characterization of
particles, again, as massive or massless points. For instance, it is well known that
protons and neutrons constituting a given nucleus are represenied as points in
first quantization.

Under certain limits of applicability, ihe above poini-like approximation of
extended particles is indeed fylly effeciive for physical systems. AS an cxample,

the actual size, density and mass of Jupiter have no impact in its {rajectory in the
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solar system. Galileo's conception of Jupiler as a massive point is therefore fully
valid, thus providing solid physical foundations for the local-differential topology
and mechanics.

PHYSICAL SYSTEMS

BIOLOGICAL SYSTEMS

Lock of Keplerinn comter

FIGURE 1.1. A schematic view illustrating the profound differences between
physical and diological systems with consequential need for different methods. The
mathematical methods of contemporary theoretical physics have been built for the
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primary purpose of representing conservalive Systerns such as a planetary or an
atomic sysiem and they are reducible to a primitive symmeiry, the celebrated
Galilei symmetry for the nonrelativistic treatment and the Poincaré symmetry
for the relativistic case. A necessary condition for the applicability of these
symmetries and related methods is the presence of the Keplerian nucleus, thai is,
the heaviest particle occupying the center. These sysiems are also stable in time,
thus being characterized by conservation laws of total physical quantitics
{energy, angular momentum, etc.). Finally, the systems are reversible, thal is, their
image under time—reversal is as possible as the origingl system. By comparison,
biological systems, here schernatically represented as a collection of cells, do not
admit any Keplerian nucleus because an arbitrary cell can be at the center, if the
center itself exists at all. The fundamental symmetries of contemporary physics
are not therefore applicable to theoretical biology on this ground alone. Morgover,
biological systems are not stable, in the sense that they either grow or decay, thus
requiring their description via {ime-rates—olf-variations of their own
characteristics (size, shapes, weight, etc). Finally, biological systems are
irreversible, for the evident reason that their under time-reversal does not occur
in our reality. These occurrences establish rather forcefully the need of new
methods specifically conceived for theoretical biology.

By comparison, the representation of biological systems as a finete set of
isolated points i3 rmanifestly insufficient because i would imply that, e.g., the
sanglia of a neural network are dimensionless points, or that a cell is constituted
by isolated points, each cell being connected to the rest of the structure via an
external potential

Even greater technical insufficiencies emerge in a deeper examination of
the applicability of current mathematical methods to theoretical biology. For
insiance, coniemporary geomeiries such as the Buclidean or Minkowskian
geomeliry, can effectively represent only perfecily spherical and perfectly rigid
shapes. This is due to their local rotational symmeiry SO(3) which is well known
ic be a theory of a rigid body solely leaving invariant the perfect sphere. Al any
rate, the very axioms of the Minkowskian geometry have been known te be
incompatible with the deformation theory throughout this entire century.

Again, the above feaiures of contempeorary meihods are indeed effective
for the arena of their conception. For instance, the conception of a proton or 4
neutron as perfectly spherical and perfectly rigid pariicles does indeed constiiute
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an excellent approximation of physical reality. In Tact, their oblateness due to
spin is very smali, and their hyperdense character does indeed render them quite
close 10 a perfectly rigid body.

The same effectiveness in particle physics constitutes clear insufTiciencies
when applied to theoretical biology. To begin, absolute and perfectly spherical
shapes (that is, spherical shapes without protuberances) do not exist in the
biological world. Moreover, the most evident characieristic emerging from a
visual comparison, say, of g metal with a2 human limb is the rigidity of the
former and the structural flexibility of the latter.

It then follows that mathematical methods which are ¢ffective for the
characlerization of the approximate rigidity in the physical world are structurally
insufficient for a guantitative study of the manifesi deformability of biological
siructures and, if applied without sufficient care, may lead to numerical resylts
without connection with the biological reality.

Ancther significant difference between the physical and biological worlds
is that the former is essentially dominated by action—ai-a-dislance interactions
derivable from a potential, as it is typlcally the case of contemporary
theoretical physics. in biological sysiems we have instead the dominance of the
so—called coniact interactions, le, interactions due to physical contact among
atorns, molecules, efc. These interactions have zero~range by conception, and
their representation with a potential has no biological or mathematical meaning.

4s a result, physical systems are representable with a La@mngian or a
Hamilionian within the context of their respective mechanics and their internal
interactions are reducible to exxchanges of photons or other particles. On the
contrary, biclogical systems are not entirely representable by & Lagrangian or g
Hamiltonian owing to the indicated dominance of nonpotential over the poiential
interactions.!

" on technical grounds, contact interactions in thrée dimension are variationally
nonseifadjoing, that is, they viclate the necessary and suificieni conditions for the
existence of a Lagrangian or a Hamiltonian, &5 studied in deiail in monographs [45]. In
certain elementary cases & Lagrangian or g Hamiltonian can be construcied under
coordinate transformations to hypothetical reference frames. However, the latter are not
realizable in laboratory, besides requiring a number of approximations {e.g., of local-
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But, above all, the technical insufficiency of contemporary mathematical
methods for theoretical biology which this author considers the most
fundamental is their Jocal-differential character, while the reality of biological

§ structure is their manifest nonlocal-iniegral character, that is, the need for
| representing systems and their interconnections vig actions in a finite volume
which, as such, is not effectively reducible to & finite number of isolated points.

THE ROLE OF NONLOCAL INTERACTIONS

FIGURE 1.2 Contemporary physical sysiems are generally assumed to be local-
differential, that is reducible to a (inite set of isolated poinis. This assumption is
necessary for the reduction of their interactions to those admitling of 2 potential
energy. Biological sysiems reguire 2 siructurally more general notion of
interactions, hereon called nonlocal-inicgral because they are generally due to the
mutual penctration and overlapping of the wavepackets of parficles, atoms, and
molecules. As such, the latter inferactions cannol be exactly reduced to a finite set

differential iypel. As such, the latter represeniations {which are often called “indirect”)
will be ignored throughout our analysis. No representation of biological will be considered
in this monograph uniess it exists first in the coordinate sysiem of the observer {("direct
representation”).
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of isolated points, Thus confirming again the need in biology of new methods, this
time on topological grounds. A most dominant characteristic of the latter
interactions is that, being also of contact type, they occur without any exchange
of energy. In other words, contact interactions due to wave overlapping remain
of zero-range in the sense that they simply cannot be mediated by particle
exchanges. Nevertheless, their action is felt over a finite distance because their
structure is defined over a finite volume. To put it differently, the search within
purely physical settings of how a cell may influence another is not only bound to
be fruitless, but also highly miopic and eventually misleading, for it is tacitly based
on the complete reduction of biclogical struciures to physical sysiems. The
achisvement of a quantitative representation of the novel nonlocal nonpotential
inferactions is 2 rain objective of this monograph.

The need for nonlocal Tormulations is suflicient, alone, to require a
profound revision of the contemporary mathematical methods. To begin,
nonlocality requires its represeniation beginning atl the level of a new topology.
Second, nonlocality is inherently nonpotential because the addition of an
hypothetical “nonlocal potential” to a Lagrangian or a Hamilionian has no
mathematical or physical sense. Finally, nonlccality is structurally
nonhamilionian, that is, it is beyond the representational capabilitics of a
Hamiltonian (we can technically say that ihe systems are variationally
nonseifadjoint, i.e., they violate the infegrability conditions for their sole
representation via a first-order Lagrengian or a Hamiltonian [4,5). The loss of &
Lagrangian or Hamiltonian character implies the conseguential inapplicability of
the totalily of the mathematical methods of contemporary physics, including
classical and quanturn mechanics, Lie's theory, conventional local-differential
geometries, eic.

1.2: Bastc requirements for generalized methods,

Without any need of uniqueness, in this monograph we shall explore certain
generalizations of confemnpeorary mathematical methods which have been
selected, consirucied and applied Lo verily the following conditions:

1] The new meihods must admii conventional methods as perticular
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cases. Quantitative sciences ¢o not generally advance in disjoini steps, but
instead via a sequence of progressive advances, each cne including the preceding
one as particular case. This historical rule also has clear experimental values. In
fact, if restricts the advances {o new effects over pre-existing knowledge which
must be subjected to experimental verification. Rather than abandoning
contemporary mathematical methods aliogether, we shall assuimne them as our
foundations (se¢ the Preface), and seek their generalization inio a form suitable
for the identification of new effecis cutside the predictive capacities of
conternporary Lagrangian or Hamiltonian, classical and quantum mechanics.

2) The new methods must be siruciurally nenconservaiive. This second
requiremnent essentially restricts the possible generalizations to those capable of
representing fime-rate—of-growth (or of decay) of a given biological quantity. In
particular, the condition requires a suitable structural generalization of the
conventional time evolution laws, whether classical or guanium mechanical,
Since these laws are notoriously characterized by a one—parameter Lie group, the
condition requires an inevitable structural generalization of Lies theory.

3) The new methods must be structurally frreversible. This condifion has
implications much deeper than the preceding ones, inasmuch as it requires first a
noniagrangian or nonhamilionian generalization of contemporary methods, and
then a new conception of time iiself, thal is, The possible differentiation between
our perception of time and the actual time of a biological structure, as we shall
see.

4) The new meihods must represent extended, nonspherical and
deformable bislogical structures with nonlecal-integral inserconnections. The
latter conditions imply Turther resirictions, this time of methodological character
beginning wiilh new nctions of symmeiries of exiended, nonspherical and
deformabie structures, and then passing o new nonfocal—integral fopologies,
geomelries, alpebras and mechanics.

5) The mew metheds must preserve the basic abstract axioms of
conventional methods. This s perhaps the mosi unexpecied condition for the
noninitiated reader. Yet the condition is as important as all preceding ones for
technical rezsons we can study in detail during the course of our analysis and
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applications.
LOCOMOTION IN PHYSICS

LOCOMOTION IN BIOLOGY
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FIGURE 1.3 Another aspect in which fundamenial differences are expected to
ermerge between physical and biological systems is that of lpcomotion, ihat is, the
mechanisms according to which particles move. In physics motion occurs only
upon the application of & Newionian force, as typically the case of rockets. This is



Ruggero Maria Sangilli - 10 - Theoretical Biology

a consequence of the reduction of all possible interactions to those derivable from a
potential. On the conirary, biological sysiems are expecied to admit internal
locomotion without any application of Newionian forces. This is expected 10 be 3
necessary consequence of the exisience of nonpotential interactions within
biological systems {Fig. 1.2). As a first rudimentary illustration, one may think of the
motion of a bhalloon in atmosphere which does indeed move due to contact
interactions also without any potential energy. Another objective of this monograph
is a study of the new locoimnoction as due to nonlocal and nonpotential interactions
which, as such, is considerably more complex than the motion of a balloon in
gtmosphere. As we shall see, all the differences between physical and biclogical
sysiems indicated in these introductory lines appear to be due to different units of
space and time. In this monograph we shall therefore submit the hypoinhesis that
physical and biclogical systems are primarily differentiated by their gecmefries
which, in turn, are differentiated via their units of space and time, rather than
conventional means, such as increase of dimensions, addition of curvature, gic.

At this introductory stage we can indicate that the condition is needed
from the expectation that the complexitics of the biclogical world are
dramatically beyond the simplistic possibilities of human perception. For
instance, when we inspect a sea shell in our hand we perceive it on the basis of
our three Bustachian tubes, mathematicglly represented via the Euclidean
geometry. However, as we shall see, such a geomelry is struciurally unable to
permit a guantitative representation of the growth of sea shells, thus requiring
its structural generalization. At this point, the studies conducied by this author
have indicated that drastic geometric changes from cur perception generally lead
to inconsistencies. The Best solution of this problem known to this author is the
preservation of the basic axioms of the FEuclidean geomelry at the absiract level,
thus essentially reducing the new formulations to more general realizafions of
the same abstract axioms.

This monograph is devoted to an outline of the novel mathematical
methods verifying the above requirements 1)-5) with particular emphasis on their
specialization to biological structures. The presenfation will be intentionally
resiricted to & form as clementary as possible, so as o be understood by a
broader auvdience. Readers primarily interested in mathermnaiical rigor are
suggested to conduct mathematical studies in mathematical Journals.



Ruggero Marig Soniilli - 11 - Theoretical Biology

Finally, readers should not reasonably expect that the new methods and
their applications have achieved the same meaturity as that of conventional
methods [1,2,3]. In fact, the new mathematical methods and their application are
at their first infancy, and so much remains to be done.

1.3: Cutline of the new methods and guide to the primeary

literature.

The studies conducied by this guthor have indicated that generalized
methods verifying conditions 1)-5) of the preceding subsection aie not unique,
and actually constitute a chain of generalized methods of increasing complexity
and methodological capabilitics for the quaniitative representation of biological
structures of increasing compliexity, which have been submitied under the

narmes of
fsviopies < gemotepies C  Rypersiruciures (L.

This monograph is devoled to the presentation of the rudiments of the
above methods and to an illustration of their applications to biological systems.

The isciopies were submitted by R. M. Santiili [6] when at the Department
of Mathematics of Harvard University back in the late 1970's (see monographs [4,5]
for & comprehensive presentation of these Tirst studies and monographs [7-10} for
more recent classical and operator treatments) and they are today called
Santilli’s isoiopies in the independent literature in the field {see monographs [11-
14] and quoled references).

The main idea of the isotopies from which the entire chain (1.L.1) can be
uniquely derived is the generalization of the basic nxn—dimeansional unit [ = diag.
(1, 1, 1,..) of conventional methods into an nxn matrix 1 which i3 well behaved,

nensingular and Hermitean, but whose elemenis otherwise possess an arbitrary,
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generally nonlinear and nonlocal dependence on all needed guantities and their
derivatives, such as the coordinates r = {x, v, z, ..} and wavefunctions Jt, r), their
derivatives of arbilrary order, I, ¥, 8, 0o, as well as the local temperature T, the

local density 1, the local index of refraciion o, etc, and we shall write the map
U=diag (LLL.) — 1= 1uefed e run. =1, (.12

which is called isoiopic lifting or , just lifting Tor short.
As we shall see, 1he preceding lifiing can represent most of aspects 1)-4),
because il introduces the new quantity 1 in addition to the conventional
Lagrangian or Hamiltonian. As such, T can represent extended, nonspherical and
deformable shapes, as we shall see. Similarly, the conventional Lagrangian or
Hamiltonian can represent conservalive terms, while the new quantily 1 can
gpresent nonconservative ef fects. The representation of irreversibility is evident
for 1(t, ...} # 1=, ..) even when the Lagrangian and Hamiltonian are time-reversal
invariant. Finally, the representation of nonlocal effects is also transparent from
integral realizations of 1, as we shall see in the applications.
However, lifting (1.1.2) alone violates condition 5) on the preservation of the
original axioms. In order to verify the latier condition, Szntilli [6] introduced the
additional joint lifting of the conventional associative product AxB = AB among

generic quantities A, B into the new product
A¥B = AB = AXB= AxTxB. (1.1.3)
Under the condition that
1 =171, (1.1.4)

1 is indeed the correct right and left unit of the new theory,

w
.r\)

Tha =1IxTxa =4 = 4% = AxT=T7] {1.1.5)
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in which case {only), 1 is called ihe isounit and T the isotopic element.

it was proved in the same original proposal [6] that an associative algebra £
with unit I, elements A, B, ... and conventional associative product AxB is lifted by
maps (1.1.2) and (1.1.3) in an axiom-preserving way into the new algebra & with
new unit T="T"!, and the new product AXB = AxTxB. In fact, the new product is

as associative as the original one
E: Ax(BxC) = (AxB)xC — E: A%{B%C)=(A%B)%C. (LL8)

Morzover, it was proved in ref. [6] (via the lifting of the Poincaré-Birkhoff—
Witt theorem of universal enveloping associalive algebras) that the original and
new algebra are locally isomorphic under the condition of positive-definiteness 1
> 0, while they are antiautomorphic if T < 0. The new structure £ was then called
isoassociative algebra to indicate the property that the associative law holds at
the isotopic level.

Recall that the basic dynamical eguations Tor the time evolulion of
conventional methods are characterized by the antisymmetric part £ attached to
the associative algebra & wilth familiar product [, Bl = AxB - BxA which
characterizes a Lie algebra, resulting in the time evolution i dA/di = |4, H, where
H is the Hamiltonian, with exponentiated form A(D) = expliHti=<al0)<expl-itH)
constituting a ong—parameter Lig group.

The isotopies permit a step—by—step structural generalizaiions of the above
methodological lines. In Tact, the antisymmetric algebra & attached to the

isoassociative algebra & is given by
[AB] = A%B - B%A, (LL7)

which was proved in ref. [6] o preserve ihe Lie axioms although at the isotopic

level which characierizes an algebra today called Lie-Saniilii isoalgebra [11-141
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The Tundamental dynarnical equations of the isoiopic theory are then given by

the expression in infinitesimal Torm
ida/dt = TATH] = ARI - H% 4 = (L.18)
=AXT, o, 6,10 a0, 080, T, 1, 0, IR H ~ Hx T, 68, 8d, 08, T, 14,1, .0 X A

with exponeniiated form

e —itx Ty
2 e

Al = ( ) AL0)  ( ), {1.1.9
first introduced in memoir [6b], which constitute a Lie-Santiili isogroup [11-14]

The above eguations outline the structural elements of the isotopies of Lie's
theory, Tirst introduced in memoir [6al, today called Lie-Santilli isotheory, and
referred to the isotopies of enveloping algebras, Lic algebras, Lie groups,
representation theory, eic.

The name "isotopies” was selected by Mrs. Carla Santilli and gquoted in
memoirs [6al from its Greek meaning of “preserving configurations” and
interpreted as "axiom preserving”. Today. the isofopies refer fo maps of any
given linear, focal and Hamilionian structure into its most general possible
nenlinear, nonlocal and noncanonical extension which are, however, such to
reconstruct linearity, locality and canonicity on certain generalized spaces over
generalized fields.

In fact, dynamical equations (1.1.8) and (1.1.9) are highly nonlinear, nonlocal
and nonhamiltonian, yet they are isolinear, isolocal and isocanonical, that is,
verifying the conditions of linearity, locality and canonicity in isoiopic spaces, as
we shall see.

In short, the isotopies are based on a generalization of the basic unit of the
conventional methods. This requires for consistency the lifiing of the lotality of

conventional mathematical methods, including numbers, fields, angles,
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differential calculus, irigonometric and hyperbolic Tunctions, special Tunctions
and transforms, vecior, metric and Hilbert spaces, algebras, geomeiries,
mechanics, etc. (4-14] As an example, the use of conventional numbers with unit
+1 and generalized vector spaces with isounit T would imply profound
inconsistencies. As we shall see, the generalizations are quite simple, yet unique
and effective for the intended use.

The reader is therefore alerfed that the inspection and appraisal of the
content of this memoir via conventional mathematical methods leads (o a
number of inconsistencies which are generally undeiected by non—experts in the
field.

The second class of generalized methods, called genoiopies, were also
proposed by Santilli in the same memoirs [6] as a natural generalization of the

isctopies when the isounit is no longer Hermitean,
T =1, (1.1.10)

This implies The dual lifting of the original unit |

P> 1P oad I - 9, ( (LD
with an inierconnecting conjugation
o= () (1L112)
as well as the dual lifting of the product

E:hxB > P ASB = AxR%B,

E: AxB - <. A<B = AxExB, (L1.13)
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under the infercennecting properties
R =g, (1.1.14)
and conditions

=gl 1PeA=aA= A>T,

1l
=
b

4 =gl 4< =4 = <A, (1.1.15)

i
g
i

When (and only when) all the above conditions are met, 17 (<) is called the
forward genounit (backward genounit), and R (&) is called the forward
genolopic efement (backward genotopic element).

In the conventional formulation of Lie algebras, the antisymmetric algebra
£7 with product AXB — BxA is mnade up of two contributions, the first for the
multiplication to the right £7: A=B = AxB and the second for the multiplication
to the left £7: B+A = BxA with Lie product

[A,Bl=A—B -B+«A=A%xB-BRA, (1.1.16)

in which case we have the trivial identity £ =£".

At the isotopic level we have the same occurrence. In fact, the isoanti-
symmetric algebra & with product ARB - BXA is also made up of two
coniributions, the first for the isornuliiplication to the right &7 A—B = A%B and
the second for ihe isomuliiplication to the left £7: BeA = BxA with Lie-Santilli

product

(4,1l =A—-B -B+i=A%B - B¥4a , {1.1.179)

in which case we also have the identity & =%
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The above properties are trivial at the conventional and isotopic levels, bul
they acquire their Tull meaning at the broader genotopic level In fact, The
envelopes £ and & are now replaced by the forward and backward structures
B and <, resulting in the characterization of the product first introduced in
memoir b

(A,B) = A<B - B>A = AXRXxB ~ Bx§x4, (1.1.18)

which characterize a realization of the so-called Lie—admissible algebras
proposed by Albert [20] back in 1948.

The Tundamental dynamical equations of the genclopic theories, first
proposed in memoir [6bl, are then given by

idA/dt = (AH) = A<H-H>A = (L.1.19)
=AxRE LT 8880, T, n, LI H ~ HxSE T, 8, 880, T, 1, m, L) XA

with exponentiated form

ARG -t
AD = (¢ ) AlGY (e

), : (1.1.20)

The above equations are the Tundamental elements of the genctoples of
Lie's theory, first proposed in memoir [6al, today called Lie-Santilli genotheory,
and refer to the genotopies of enveloping algebras, Lie algebras, Lie groups,
representation theory, eic.

As one can see by comparing ihe basic dynamical equations (1.1.8)-{1.1.9)
and (1. 1.19-1.1.20), Santilii’s genolopies are struciurally irreversible, that is, they
are irreversible irrespective of the time behaviour of potentials, Lagrangians,
Hamiltonians, generalized units, and all that. In Tact, it 15 rather natural to
associate the product “>” with motion Torward in time, and the product “<” with
motion backward in time, thus resulting in a represeniztion of irreversibility
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manifesily beifer than that permitied by the isotopies.

The name genoleples was suggested by Mrs. Carla Santilli and submitted
in [6al from the Greek meaning of inducing configuraiion and interpreted as
inducing covering theories. As we shall see, the lifting of the unit I — 1> =g
while jointly lifting the product by the inverse amount, AXB — A>B = AXRxE,
permits the preservation of the original axioms at the abstract level. The
genotopies therefore verify in a natural way &/f conditions 1)-5) of the preceding
subsection, including condition 5), evidently when properly treated, as we shall
see.

To understand the chain of generalized methods (L.1.1) it is important to
point out since these introductory words that the mathematical origin of the
genolopies is the ordering of the product and the differentiation of the product
Io the right A>B from that fo the left A<B, A>B # A<B.

This occurrence can be first illustrated with numbers and then with the
structure of the time gvolution law. Let Rin,+x) be the ordinary field of real
numbers n with sum + and multiplication *. Owing to millennia of use, we are
accustomed o using without distinction either the "multiplication of 2 time 3 o
the right”, 2 — 3, or "the muliiplication of 3 time 2 to the left”, 2<3 because the
resylts are irivially the same, 2—3 = 2«3 = 2x3 = ¢, and the product is
commuiaiive, 23 = 3—-2 = 2«3 = 3«2

Under isotopic lifting the above scenario persists. In fact, we have the
“isotopic multiplication of 2 time 3 to the right”, 2-T—3, and the “isotopic
multiplication of 8 time 2 to the left”, 2-=T—3. The resulis are alsc the same
because of the assumed Hermiticity of T, 273 = 21«3, and the isctopic
product is also commutative, 2= T3 =3->T-2 = 2« T3 = 3+ T2 = 2¢Tx3,

When passing to the more general genotopic level, the ordering appears in

flf

its full nonirivial light, because the genoproduct remains commutative, 2>3
2%Rx%2 = 3>2 = 3xRx2, bul the values of the two ordered products are now
different, 2>3 = 2¢Rx3 = 2<3 = 253, because R = 5.

The fundamental property ideniified by Santilli {see the more receni study
(15} is thai the axioms of a field are preserved even under ihe selection of one
given ordering of the multiplication, that is, the sets Rin,+,—) and Rln,++), where
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the original multiplication % is restricted cither to be to the right or o the left,
respectively, verify individually all axioms of a field (closure, distributive law,
etc.).

This simple property persisis under both isolopies and genotopies and
permits the construction of new rigorous methods of genolopic type which we
shall outline in this memoir and specialize to theoretical biology.

The above comments appear pure numerclogy at a first inspection but
assume their fundamental role when applied to the fundamental content of all
theories, their dynamical evolution. Let us reinspect together the tirme evolution
currently used in all guantiiative science, that characterized by the one-
parameter Lie group of time evolution Gt): expliHxi<A(Q<expl-ith). 1t is evident
that this structure is the result of Iwp ordered actions, ong to the right
expliHD=A{) and one to the left Al0P<exp(~itH), and we shall write

~jtxH

H* 1ixH iHxt
e ®x AQ) % e ) (1.1.21)

G} AlD =e Al e-e =

In fact, the above structure is mathematically called a bimodule.
In the transition to the isotopic law (1.20) we evidently plreserve the above
structure and only realize it in the more general isotopic way

| RE e
-

Gl Al = ¢ — A0} =

-iIxH  iHeT
2 e

= % (D) % {1.1.22)

—iteTxH
e .
The genotopies were submnitted in memoir [6b] precisely on the basis of the above
properiies only generalized with a nontrivial difference of the action from the
write and that o the left

- G —ipReH
G Al = 0T L ) e o VRH (1121)

Another important point needed to minimize possible misrepreseniations is
that ihe genofopies require a dual generalization of the {otality of mathematical
methods, that is, 2 dual formulation of numbers, Tields, angles, irigonomeiric
functions, etc, one per each direction of time.
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As we shall see, a number of relatively "simple” biological structures can be
described with the isclopic methods, while more complex structure require the
more complex genotopic methods.

But quantitative sciences will never admit Tinal theories. The third and
final class of generalized methods considered in this mernoir is that of the
hypersiructures in the Torm recently introduced by Santilli and Vougiouklis [16)
the Tirst day of the International Workshops held at the Institute for Basic
Research in Molise in August 1995, and they will be referred to as the Santilii-
Vougiouklis hyperstructures.

Note that the isounit has one single value and the same occurs for the
genounits Tor each ordering. The main idea of the hypersiructures here
considered is the assumplion of a generalized unit which is 2 finile or Infinite
and ordered or non-ordered set, and we shall write

I - {/E>] = { t‘>1y ]>2, /ﬁ>3, },

; I - { <IE } = [ <’I 15 <II[25 <Aﬁ37 } (1122)
with interconneciing conjugation
(1> = (< , (1.1.23)

as well as the dual lifting of the product
AXB = A>B = Ax{RIxB = {AxB =B AxRyx5B 1},
AxB = A<B = Ax{8}xB = (Ax8xB Aax85xB ], (LL24)
under the conditions (referred to the individual terms of each set)

(P =(rY (Plsa=a=2a>001,
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(<) = (<811 a<{M)=A={<)<A. (1.1.25)

When the above properties are verified under strong equalities [16], the set
{17} ((<1)) shall be called the forward hyperunit (backward hyperunit), and the set
{R} ((8)) shall be called the forward hyperelement (backward hyperelement).

The further broadening of the genotopies then lgad to the fundamental;
dynamical equations of the hypersiructures

ida/dt = (AH) = A<H -H>A = (1.1.26)
= Ax{ R, v, 1,1, &, 80, 80, 7, W, o, ) XH - BB 1, 1, 8, O, 88, 88, T, 1, 10, ) XA,
with exponentiated form

—itx{S}xH

SR 0 x (e ), (1.1.27)

alt) = (

apparently introduced here for the Tirst time.

The above equations indicate the existence of a step—by—step Turther
generalization of Lie's theory, called Lie~-Santilli-Vougiouklis hypertheory, and
refer to the hypergeneralization ol enveloping algebras, Lie algebras, Lie groups,
representation theory, eic. .

The most salient aspect emerging from the comparison of the above
structure is that the product of two numbers, say 2 and 3, vields one single value
for conventional numbers as well as Tor isonumbers and genonumbers, while the
product of two numbers yieids a “sei” of values for Santilli-Vougiouklis
hyperstructures.

This s precisely the desired Teature because it is the most naiural one for
the representation of the growth in biclogical structures, e.g., the mathematical
representation of one cell splitiing into two which then split into four, etc., which
can be represented via forward hyperuniis consisting of 2 set of iwo elemenis
i} = (7,174, ihe backward hyperunit not characterizing a real process, as
necessary Tor Irreversible growth in biclogy.
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Hypersiructures are generally defined without a unit (see, e.g., refs [17-19D,
thus without realistic possibility of applications to actua! measurements (which
evidently require a basic unit for its very conception). The hypersiructures
considered in this memoir, those with a well defined left and right hyperunit,
were submitted for the first time in ref. [16] and are developed further in this
MEMmOoIr,

It is also evident thati the above hyperstructures contain as particular cases
the genotopies which, in turn, contain as particular cases the isofopies which, in
turn, contain as particular case the conventional mathematical methods,
according to g sequence representable via the inclusive chain of units

1C 1 ¢ (77,9 < (7190, (1.1.28)

with corresponding enclosure properties for the (strong) multiplications.

This perspective illustrates the fact that genolopies can be re—interpreted
as the simplest possible realization of the Santilli-Vougiouklis hypersiructures.

To state it in a nut shell, the entire conteni of this memoir is reducible to
one single notion: the generalization of the basic unit 1, which has remained
unchanged since biblical times, intc forms of progressively increasing
complexifies as required by the complexily of the biological systems to Dbe
represented. The memoir merely deals with the identification of ihe mefhods Tor
ihe mathematically consistent handling of such basic notion.

Our task will essentially be that of identifying the basic methods Tor the
correct handling of the new methods. By recalling that conventional methods
include analyiic, algebraic, geomeiric and other profiles, the study of all
necessary aspecis of the new methods will evidently require several different
monographs and a considgerable number of years to wriie them.

[ a situation of this type, we have to make a selection. In this memoir we
shall i;denw y only those aspects which are essential for correct applications, with
pariicular reference io really fundamental notions, that is, the generalized
numbers, angles, elemeniary tunctions, differential calculus and vector spaces.
We shall then Tocus our atlention on the emerging chain of generalized, classical
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and guantum, analytic and geometric methods of isofopic, genotopic and
hyperstructural type which can be constructed via the preceding basic notions.
The applications considered in this memoir are primarily intended to point out
that the geomeiric complexity of biological systems is dramatically beyond the
simplistic capabilities of our limited senses.

The analytic and geometric methods presented in this memoir should be
complemented with a study of the algebraic—group theoretical parts. in fact, the
totality of the applications introduced in Ihis memoir are reducible to primitive
generalized symmetries. For comprehensive study of the Lie-Santilli isotheory we
refer the interested reader to the monograph by Sourlas and Tsagas [13] or to the
readable review by Kadeisvili [21]. An outline of the fundamental isotopies of the
rotational symmetry is presenied in App. C Tor the reader’s convenience. No
review exists at this writing on the more general Lie—Santilli genotheory or on the
still broader Lie-Santilli-Yougiouklis hypertheory.

On historical grounds we should mention that an extensive search
conducted by this zuthor in conjunction of the writing of memoir [6al. The search
indicated that the notion of isotopy is rather old. As Bruck [22] recalls, the notion
can be traced back to the sarly stages of set theory where two Latin squares were
said to be jsofopically reiaited when they can be made to coincide via
permutations. Since Latin square can be interpreted as the multiplication table of
quasigroups, the isotopies propagated to quasigroups and then to Jordan algebras
(see, e.g., McCrimmon [23]). Studies on the isoiopies of the unit; Tields, vector
spaces, Lie's theory end other methods were initiated in [6al. An exhaustive
literature on isofopies up to 1984 can be found in bibliography [24] while
subsequent references can be found in the recent monograph by Lohmus, Paal
and Sorgsepp [14]. As indicated earlier, no prior contributions appear to exist, to
this author best knowledge, on genoctopies prior to memoir [6al and on the
hyperstructures with a unit prior to ref. [16].

While inspecting this memoir, the reader should finally keep in mind that
this author is & theoretical physicist and not a theoretical bivlogisi. The
primary objective of this memoir is that of presenting generalized methods with
a mere indicaiion of their possibilities. The study of rigorous, extensive and in
depih applications to theoretical biology is the task of theoretical biologisis.
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Z: ELEMENTS OF ISOTOPIC METHODS
2.1: Mathemeatical foundations
2.1.A: Kadeisvili classification

All contemporary guantitative sciences are based on the most elementary

possible unit, the number +1, which has remained unchanged since biblical times.

As indicated in Sect. 1, the main idea of the isotopies is the lifting of the

trivial unit 1 of a conventional theory into a nowhere singular, syminetric, real-

valued, Hermitean and N-dimensional matrix 1 = 1) = A ) = 771 = (T ;7! = (1,077},

Lj L 2, .., N, called the isounii, whose elements have a smooth but otherwise

arbitrary funciional dependence on the local coordinates x, their derivatives %,

- with respect to an independent variable ¢ and any needed additional local

guantity, such as local temperature 7, the local density 1, the local index of

‘ refraction n {as well as possible quanturm mechanical quantitics studied later on
| in this section)

[~ MW rmwn .. (2.1.1)

The original theory is then reconsirucied in such a way to admit 1 as the
new left and right unit, as cutlined in this section. This reguires Tor consistency
the lifting of the totality of ihe mathemalical siructure of the original theory,

including fields, metric spaces, Tunctional analysis, algebras, groups, geometries,

etc, The new theory is called an isoiopic image of the old Bbecause the two
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theories are indistinguishable at the abstract, realization—free level by conception
and construction.

Once the simplest possible unit +1 is abandoned in favor of a more general
notion, a considerable richness of the isotopic struciure emerges because of
various different characteristics of the isounit T which are evidenily absent for
the unit +1.

The different structural characteristics of the isounit evidently carry over
to the entire isotopic theory. These different possibilities were classified for the
firsi time by Kadeisvili [25] resulting in what is today called the Kadeisvili
classification of ispiopies according o the following classes:

Class T, occurring for isounits which are well behaved, nowhere singular,
Hermitean and positive definite, T > 0,

Class Ik occurring for isounits which are well behaved, nowhere singular,
Hermitean and negative definite, T < 0;

Class BT, which is the union of Classes [ and II, in which case the isounit
has an undefined signature;

Class IV, which is the union of Classes [, II, IIT plus the admission of
singular isounits, T = 0;

Class ¥V, which is the union of all preceding classes, plus the possibility
that the isounit has arbiirary characteristics, and can therefore be a discreile
quantity, a distribution, 2 step function, a lattice, efc. _

As established in monographs 19-12] the isotopies of Class I (I > 0) have
permitted a novel representation of matter, while those of Class 1! {1<0) have
produced a novel represeniation of antimaiter. No known application of the
isotopies of Class [11 (Isounits with undefined signature} has been identified in
physics uniil now.

The task of this monograph begins with the indication that isofopies
particularly significant for theoretical biology are those of Classes [ and IV. As
we shall see in the applications, this is necessary for a quantitative
representation of the bifurcations and numerous other cases.

As we shall see, the isotopies of Class IIL imply the possibility of
continuously moving from motion forward to motion backward in time. We can
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therefore indicate from these preliminary elements the apparent possibility that
vnder ceriain specifications, biological structures can master the divection of
time. Cne of the objectives of the isoiopies is that achieving a quaniitative
representation of this prediction for its future experimental resolution.

The isotopies of Class IV contain a singularity in the unit by conception
and, as such, they are particularly delicate to handle on mathematical grounds.
This presentation shall therefore be resiricted hereon to the isotopies of Class 11
and consider the possible zeros of the isounit as a separate particular case.

Unless otherwise specified, all isounits and isotopic elements are herecon
assumed to be of Kadeisvili Class 111

2.1.5%: Isoficlds

The fundamential isotopies are those of fields. Let ¥ = (a,+>) be a field
{hereon assumed to have characteristic zero) with elements a, b, .., sum a + b,
muliiplication axb =ab, additive unit §, multiplicative unit [, and familiar
properfics a + 0 =0+ a =2, g%l = 1Xg = g, ¥V a € F, and cihers. We have in
particular: the field Rln,+%) of real numbers n, the field Clc,+%) of complex
numbers ¢, and the field Qlg,+x) of quaternions g.

Definttion 2.0 [15k An “isofieid” F = F@,+%) s a ring with elemenis & =
axl, called “isonumbers’, where a € T, and is a Class [1] isotopic element
generally outside T, equipped with two operations (+, %), where + js the
conveniional sum of ¥ with conventional additive unit 0, and % is a new
muliiplication

H
b4
o
|
[0
X
-
X
=
—
I

AR (2.1.2)

>

called “isornuliplication”, which is such thal | is the Iefi and right uynii
of &,

s
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T%a = a%T =3,V 3 el {2.1.3

called “isounii”. Under these assumptions F is a field, ie, it satisfies all
properties of ¥ in their isclopic form:

I3

B o M

The sei F is closed under addition,a +befF, v 2, beckf.

The addition is comunutative, 2 +5=0+3a,v3, bel,

The addition is associative, 2+ B +¢)=@+B)+¢,va B¢ eF,
There is an element O, called vadditive unit” such that 3 +0=0+ 32
=3,vacfF

For each eiement 3 € I, there is an element — 2 € F, called ihe
“opposite of 3", which is such thata+(-2) = 0;

The set F is closed under isomuliiplication, 386 ¢ F,v3,befF,

The multiplication is generally non-isocommutive, a%b = 5%, but
“isoassociative a%(B%e) = @%bRe, v 3, B, c e &

The qguanitity 1 in the factorization 2 = Xl is the ‘multiplicative
isounii” of & as per Bg.5(1.3)

For each element 3 € ¥, there is an element é—ﬁ € P, called the
“ispinverse”, which is such that éﬁ(éq) = (“a—/ﬁ)ﬁé =1

10.The set T is closed under joint isomultiplication and addition,

oo

bl

b+l el (a+bl)xe e Fvabecel; - (2.1.4)

1. All elementis 3, b, ¢ € F verify the right and left “isodistributive laws”

~

o, (2.1.5)
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When there exisis a least positive isointeger P such that the equation PXa

= 0 admits solution for ail elements a € F, then F is said to have

“isacharacteristic . Otherwise, I is said to have “isocharacteristic zero”,
Unless otherwise stated, ail isofields considered hereon shail be Class i1
isofields of isocharacieristic zero.
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We therefore have the isoficld R(R,+%) of isoreal numbers 1; the isofield
O, +X) of isocomplex isonumbers C; and the isofield Q(q,+%) of isoguaternions
q (see [18] for the iscoctonions). Since F preserves by construction all axioms of
¥, it is called an isotope of F and the lifting F — F is called an isofopy. All
conventional operations dependent on the multiplication on F are generalized on
F(&,+%), thys yielding isotopies of powers, quotients, square roots, eic. These
isotopic operations are however such that T preserves all the original axiomalic
properiies of [, ie., 0 = 1A (n-times) = 1,1 = 1,171 = 1, ete. (see [18] for
details).

Note that the isotopy is restricted to the sum, as indicated by the symbol
fF(a,+ %), because the lifting of a tield into the form Fa+%) inclusive of the
lifting of the sum, such as + — + = + K + with corresponding lifting of the
additive unit 0 » 0=~ K, K > 0, K € F, generally implies the loss of the original
axioms, such as the loss of closure (1.4). Therefore, the 1ifting of the sum is not
an isotopy. Moreover, quaniities which are conventionally finite on Fla,+) as
well as on P(3,+%), such as the exponentiation on F, €@ = [ + a/ll + a?/2 + ., or
that on £, 8% =1 + a/ll + a%a/2 + .. = @11 = 1e™™2), pecome divergent under
the liftings + = ¥ =+ K +, 0 = 0 = —K, K € F [18l. For this reason only the
isotopies of the multiplication are used in applications at this writing (13

Despite its simplicity, the lifting F — F has significant implications in
number theory itself. For instance, real numbers which are conventionally
prime (under the tacit assumption of the unit 1) are not necessarily prime with
respect to a different unit [15]. This illusirates that most of the properties and
theorems of the contemporary number theory are dependent on the assumed
unit and, as such, admit intriguing isotopies. Also, the isolopies permit the
conception of a new generation of cryptograms which are expecied to be
difficult to break becauss of ihe availability of an infinite number of different
units which are nol admitied by the conventional number theory.

it is fmportant to undersiand that an isofield of Class III, Fyp:(a,+%) is the
unit of two isofields, one of Class I F(3,+%) in which the unii is positive-definite
and one of class 111 Fy;(3,+%) in which the isounii is negative-definite,



Ruggero Maoria Santiili -28 - Theoretical Biology

P45 = (G491 >0, Fpa+3,1 <0, (2.1.6)
with interconnecting map called isoduality
1>0 - 19=-1<o, (2.1.7)

and iniroduced for the first time by this author in ref.s [27]. The Class Il isofields
are also written in the literature F9G9+5%) and called isodual isofields with
isodual isonumbers 3% = 2419 = -3, and isodual isoproduct ¥4 = xT0x = - &

Since the two branches are fopologically disjoint, they can be treated
separately. Their continuous union can be studied at the level of Class IV with
the inclusion of the value T =0 which is omitted for brevity.

The iscnorm of an isofield is defined by

) (2.1.8)

where | a | is the conventional norm.,

It is therefore easy to see thal ihe isonorm of isofields of Class [ is
positive—definite, while that of Class [1 is negative definife. This implies that all
rhysical, chemical or biological characieristics which are conventionally
positive, becomes negative~definite when lifted into isodual isofields.

One should keep in mind the compleie equivalence of positive~definite
characteristics referred a positive-definiie unit and negative-definite
characteristics referred to a negative—definite unii. This scemingly irrelevant
property of the theory of isonumbers has rather profound implications,
inasmuch as it implies the full causality of motion backward in time when
referred to a negative time unit, in view of its complete equivalence of our
ordinary perception of motion forward in time which is facitly referred io a
positive—definite unit.

The isotopies therefore permit the discovery of eniire new classes of
numbers and their isoduals, which admit as particuiar case the conventional
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field Fla,+%) as well as a new field, the isodual field FYa%+x9) with isodual

unit 19 = ~1, isodual numnbers ad

, where a represents ordinary numbers, and
isodual multiplication <8 = o,

To prevent misrepresentations of subsequent sections the reader is advised
to get acquainied with the laiter new numbers, such as the isodual real field
Rd(ndmxd) of isodual real numbers nY = ~-n, 0 € R. Since n is an arbitrary real
nurnber, the set of all possible isodual numbers nd coincides with the set of
ordinary numbers. Thus, the distinciion occurs In the uniis and operations.

We finally note that the lifting of the unil and related multiplication
require corresponding liftings of all operations defined on them, such as,
isosguare, isoquare rooi, iscquotient, eic,

W2=3ka=laxa)xl, A = atx¥, 7 = /%1, ete. (219

it is then easy to see {hat the isounit verifies all axiomatic properties of the
cenventional unit, e.g.,

>
®>

= 1%L =1, =1 171 =1, etc (2.1.10)

i

For additional technical studies we refer the reader to ref.s [9,11,151

It may be of future guidance to iniroduce since these introductory lines a
few examples of isounifs used in applications. One of the simplest possible
example is the use of fhe isoumnii for the representation of extended
nonspherical and deformable shapes. ¥or instance, a spheroidal ellipsoids in
three dimension can be represenied via the isounit

1 = digg. (n%, ng%, ng?), (2.1.11)

where the quaniities ﬂkz are sufTiciently well behaved, real valued and positive—
definite Tunciions of local quantities, such as the intensity of external Fields, the
ocal pressure, etc. As we shali see shortly, the Isotopies of the Buclidean space
with the above isounil will indeed characterize all infinitely possible ellipsoids.
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The nexi simplest possible exampie is the representation of systems which
are open-nonceonservative because of exchanges of physical quantities with an
external system. In this case the isounit is a well behaved Tunction of local
quantities admiiting of the value I as a particular case, e.g.,

1= lbxh) -1, (2.1.13)

Isounits of this type permit the representation of continuously decaying angular
moments; particles moving within resistive media under nonhamiltonian but
local-differential forces (see later on); the growth of sea shells; and other
nonconservative systems.

The next class of isounils used in applications is of nonlocal-integral type,
that is, dependent on an integral over a surface or a volume. An illustration is
given by the two elecirons of the Cooper pair in superconductivity which
experience an atiraciive interaction against their repulisive Coulomb force. The
use of the quantum mechanical Coulomb law with conventional unit I = diag. (1,
1, 1) leads to repulsion. On the contrary, as studied in the applications, lifting of
quantum mechanics via the use of the following isounit, called animafy isounil,

12 e J %060 6,0

diag. (1, 1, 1), (2.1.14)
permits a guantitalive interpretation of the attraction among the two identical
electronsg in 2 way which conforms with experimental evidence, where &t and ¢ |
are the wavefunctions of {he two electrons with related spin orientation { and J.
The exponeni then illusirates the type of nonlocality which wez have Dbeen
referring to. Note that when the overlapping of the two wavepackets $j and oy is
no lfonger appreciable, the integral in the exponent of the isounit is null and 1
recovers the conventional unit L

Note also that the notion of action—gt—a—distance potential and related
energy has ne meaning of any nature for the inieractions due to the physical
coniact and overiap of wavepackets. After all, these interactions are zero-range

by conception. As such, contact interactions should be represented in general
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with anything excepi the Hamiltonian. Without any claim of being unique,
contact interactions are represenied in isotopic methods via the isounit.

In generzl, the isounit used in application is a matrix with the dimension of
the used carrier space (two-, three~ and four—dimensions for problems in the
plane, space and space-time, respectively) which is generally nondiagonal whose
glements have a local-differential as well as nonlocal integral dependence on
local physical guantities.

The notion of isonumbers was presented, apparently for the first time, by
this author ai the conference Differential Geomelric Methods in Mathematical
Physics, held at the University of Clausthal, Germany, in 1980. The first
mathematical treatment appeared in ref. [26] of 1982, A systematic study is
available in above quoted ref. [15], while additional studies and applications are
presented in monographs (9,111,

2.1.C: Isospaces

The mathematical and physically most imporiant consequences of isofields
are that they imply, for evident consisiency, corresponding isotopies of alf
guantities defined over conventional figlds. Let E(x,8,R) be an N-dimensional
Euclidean space, with local chart x = 68}, k = 1, 2, ..., N, N-dimensional metric 8 =
diag. (1, 1, ., D) and invariani separation hetween two points x, y € E,

)2_

(i—yP=(x-yl) g, (d-y1) € R, (2.1.15)
1]

over the reals R(n,+%), where the convention on the sum of repeated indices is
assumed herson .

Definition 2.2 (27} An “isoeuclidean space” B&.6,R) is an N-dimensional
metric space defined over an isoreal isofield of Class [T R{fy+%) with an

NxW-dimensional isounit 1, equipped with the "isometric”

D=Txs 1= (2.1.16)
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where & = diag. (1, 1, 1) is the conventional Euclidean metric, local chart in
coriravariant and covariani forms

R= (3R ={xbx1), % =8 i =T 801, xK x e B (2.1.17)
and "isoseparation” among two points X, y € B
(k=32 = [(-Phxsyx(RI-5)1x1 ¢ £ (2.1.18)
The “isoeyclidean geomelry” is the geomelry of {he isocuclidean spaces.

The primary property of the lifting E(x,8R) — E&8,R) is the preservation of
the original geometric axioms, thus characterizing an isotopy. In actuality, E(x,8,R)
and EG,8,R) coincide at the abstract level by construction for all positive~definite
isounits 1 (but not so for isounits of different topelogy [11]). This is due 1o the
construction of the isospaces via the deformation of the metric & into the
isometric & = T8 while jointly the original unit I is deformed in the amount
inverse of the deformation of 8, T = T7!. This mechanism then ensures the
preservation of all original geomelric properties, as studied later on.

Note that the isoseparation %

, Tor consistency, must be an element of the
isofield, thus being isoreal number, that is, must have the struciure of a number
n multiplied by the isounit 1. This isoscalar character is expressed by the

isomultiplication
Ry = (xka)XTX(XKXT) = (xkxxk)ﬂ =nx1. (2119

But the coniraction over the repeated index K is in isospace, we recover in this
way the iscseparation off Def. 2.2,

-

8= (oo ) =T = (R Byand )% (2.1.20)
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Because of the above occurrences, isospaces can be practically treated via
ihe conventional coordinates xX rather than the isotopic cnes %% =« whenever
no confusion arises.

Note that the coordinates of E and £ coincide in their contravariant form,
but not in their covariant form, for which x; = Bkixi and xy = Skixi. Because of
the lalter occurrence, the symbol x will be used for the coordinates of
conventional spaces, while the symbel x will be used for the coordinates of
ispspaces. When writing Blx, ..) we refer 1o the projection of the isometric 8 in
the original space.

Despite its simplicity. the lifting Ex.8,R) —~ E(x,8,R) also has significant
implications. In fact, the funciional dependence of the isounit 1 remains
unrestricted under isotopies. The isometric & therefore has the same dependence
of Tand T, & = 8lx, %, %, &, u, n, ... The isoseparation (2.10) is therefore the most
general possible integro—-differential separation with signature (+, + +).

Isogeomeiries have novel properties which do not appear tc have
propagated as yet into the mathematical literature. For instance, ihe conventional
trigonomeiry on the iwo-dimensional Euclidean space E(x,8R), 8 = diag. (1, 1)
(Gauss plane) is lost under lifting to a two—dimensional Riemannian space
R,g(x),R), bul trigonometry can be reformulated in the two~dimensional isospace
E(800k,%.)8) resulting in the so—called isoirigonometry reviewed in App. A (see
[11], App. 5.C, for additional studies). An intriguing application is the formulation
of the Pythagorean theorem for a triangle with curved sides (because Tor each
given such triangle, there exists an isotopy such thatl its image in isospace is an
ordinary triangle with reciilinear sides).

The isominkowskian space was introduced in paper 128l of 1993 and then
siudied in details in the more recent article [29], and will be studied later on in
this memoir. The isoriemannian spaces and relaled geometry are studied in
detail in monograph [11] and they will not be reviewed for brevity. We only
mention that all possible conventional Riemannian metrics gl are a irivial
particular case of the isceuclidean meiric of the same dimension, glx) €blx, %, &,
T, b, 0, ... Even though the curved profile will not te studied for brevity, the
reader should be aware that isotopic representations of biological struciures
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have a curvature much broader than that of the Riemannian spaces.
It is easy (o se¢ that

Lemmma 2.13 {soeuclidean and ispminkowskian spaces of Class I1f with the
same dimension coincide.

Proof, The conventional (3+ )~dimensional minkowskian space wilh metric
1 = diag. (1, 1, I, —1) is a particular case of the 4-dimensional isoeuclidean space of
Class 11 in which the identity § = 1y is possible due to the indefinile signature of 1,
and the same resull persists under isotopy. g.&.d.

We begin to address in this way the concepiual complexities of the
isospaces and their characteristics of being beyond cur rouiine intuition. In fact,
Einstein’s notion of equivalence between space and time is much enlarged to
include arbitrarily evolution forward and backward in time in a symbiotic
unification of Euclidean, Minkowskian and Riemannian spaces.

The reader can now begin to see the reason why the primary objective of
this memoir is to study the application to theoretical biclogy of the isogeomelries
because, once the geometrical profiles appear meaningful and promising, the
connected analytic and algebraic profiles are mere Consequences.

210z Kedelsvili Isocontinuity and Tsagas-Sourlas isotopology

The notion of jsecontinuity on an isospace was Tirst studied by Kadeisvili
[25] and was shown to be easily reducible to that of conventional continuity
because the isomodufus [T() [of a function T(3) on E&S.R) over R(H,+%) is given
by the conventional modutus | T(%) | multiplied by the positive-definite isounit 1,

[H60 ] = |36

xT >0. (2.1.21)

As an illustration, an infinite sequence T;, Tp, ... is said to be strongly
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isoconvergeni 1o T when
Limg oo g ~ T 1 =0, (2.1.22)
while the isocairchy condition can then be expressed by
[t - T [ < 8=8x1, (2.1.23)

where 8 is real and m and n are greater than a suitably chosen N(8). The isolopies
of other notions of continuity, limiis, series, etc. can be easily constructed [26].
Note that functions which are conventionally continuous are also isocontinuous.
Similarly, a series which is strongly convergent is also strongly isoconvergent.

However, a series which is strongly isoconvergent is nol neccssarily
strongly convergent (ref. {19], p. 271). As a result, a series which is
conventionally divergent can be turned into a convergent fori under a suitable
isotopy. This mathematically trivial properiy has rather important applications,
e.g., for the reconstruction of convergence at the isolopic level

The notion of an N-dimensional isomanifold was lirst studied by Tsagas
and Sourlas 130,311 In this paper we use the Tollowing simplest possible realization
of isomanifolds. Since an NxN-dimensional iscunil is positive—definite, it can
always be diagonalized into the Torm

1 = disg. (b5 0,72 by 2)>0, be>0,k=1,2.,N, (2124

Consider then N isoreal isofields Ry (n,+%) each characterized by the isounit 1y =
bk._2 with (ordered) Cartesian product

RN = Rl X Rz X.o= ﬁ”N . (2.1.25)
Since Ry =~ R, it is eviden! that AN ~ BN, where RY is the Cartesian produci of K

conventional Tields R, +). But the total unii of RY is expression (1.15). Therefore,
one can iniroduce a topoiogy on AN via the simple isotopy of the conventional
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topology on EN,
= (g, BN B, (2.1.26)
where B; represents the subset of R" defined by

~

A&l, o)y iy ,E\lﬂ < ﬂ?li? f]li ) lﬂﬁli ;g € R }. (227)
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As one can see, the above topology coincides everywhere with the
conventional topology T of R" excepi at the isounit 1. In particular, ¥ i5
everywhere local—differential, except at T which can incorporate iniegral terms.
The above structuyre is then called the Tsagas—Sourias isotopology or an

integro—differential topology.

Definition 2.3 (301 4 “topological isospace” HRN) is ihe jsospace of Class
11 8N equipped with the isotopology 7. A “Cartesian isomanifold” NIRM)
is the topological isospace TRY) equipped with a vector structure, an
affine structure and the mapping

TSR~ R, T:a — FB)=3 Vv i ceR. (2.1.28)

An “isceuclidean isomanifoid” WEX S.R)) occurs when ithe N-dimensional
isospace B is realized as the Carlesian product

BBR) ~ Ry xByx .. xRy, (2.1.29)
and equipped with the isotopology T with isounit (1.15).
The exiension of the ahove definition to nondiagonal isounits T can be
triviaily achieved, e.g., by assuming that the individual isounits Ty are positive~

definite NxN-dimensional nondiagonal matrices such to yield the assumed total
unit T via the ordered Cartesian product
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]“11 xq,[zx X/E[N. (2.“;30)

In summary, Tsagas—Soulas isotopology includes the conventional local
coordinate x(t) which represents the trajectory of the center—of-rmass which i3
characterized by conventional local-differential (ie., pootential) terms plus
nonlocal-integral contributions.

For all additional aspects of isomanifolds and related topological properiies
we refer the inierested reader to Tsagas and Sourlas [13,20]. 1t should be noted
that their study is referred to MRY), rather than to MERY) because of the use of
the conventional topology T (ie. a topology with the conventional NxN-
dimensional unit [). The extension to M(E) with the isotopology T is introduced
here apparently Tor the first fime.

The isotopies of Tunctional analysis, called isofunctional analysis, were
introduced by Kadeisvili [25] and cannot possibly be reviewed here for brevity (see
App. A only for the most elementary isofunctions).

21 K¢ Isodifferential calcuius

Let BE(x,8,R) be the ordinary N-dimensional Euclidean space with local
coordinates x = (%), k = 1, 2, .., N, and meiric 8 = diag. (I, 1, 1) over the reals
Rin+x). Let B8R be its isotopic image with local coordinates % = %) and
isometric 8 =T8 over the isoreals R(A,+%). Let the isounit be given by the NxN
matrix of Class 1L T = () = ) = 771 = (1)L = (1! whose elements have &
smooth but otherwise arbitrary functional dependence on the local coordinales,
their derivatives with respect to an independent variable and any needed
additional quantity, 1 =1(x,..). The following properties then hold from Definition
2.2

TR m o = < s =A1ﬁ¢= ;I Dy
X = A 37(1( SKI A il[ 01.} &‘1 T]/ 6 Xj T{ Xi’ ‘:1 8“ 1(9

28

R85 = AT By 0 = % 80%; = $E % = % % 3= 1B 1,
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K ayxd =x 8l = xlxg =, s=T0s, 7 1. (2.1.31)

Let MIEG,8,R) be an isomanifold on E as per Definition 3 hereon referred as
MIE). The isodifferential calculus on M(E) was identified for the first time by
Santilli in the first edition of monograph [12] of 1994 and studied in more details
in the recent papers [21-35] as an isotopic lifting of the conventional differential
calculus on M(E), that is, 2 lifting based on the generalization of the unit T of M(E)
into the isounit 1 of M(E), under the condition of preserving the axioms and
properties of the ordinary differential calculus, including the condition of the
invariance of the isounit (see below).

Definition 2.4: The “firsi—order isodifferentials” of the coniravariani and
covariant coordinates X and %y, on NIE) are given by

61 )A(k = ‘71{].()(, ) dXi » a 3(1{ = Tki(Xq ) dXi s (2][32)

where the expressions 4%% and 4Ry are defined on M(E) while the
corresponding expressions ”L'kidxi and T \dx, are the projections on M(E).
Let Y% be a sufficiently smooth isofunciion on a closed domain DEX) of
contravariant coordinates XX on M(B). Then ihe “iscderivative” at a point
3k € DEK) is given by .

. 210 L WK+ axk) - 2N
LT LT i S PP Y ey

(2.1.33)
where we assume Kadeisviii’s [25) notions of isocontinuily, isolimits and
isoconvergencedt(R)/3%% is computed on WI(E) and T Jofl/ex' is the
projection in M(E). The “isoderivative” of a smooth isofunction T(%) of the
covariant variable y at the point 3y € Dk, ) is given by

216 ok Ty + dxy) — Ty
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(2.1.34)

The above definition and the axiom-preserving character of the isotopies

then permit the lifting of the various aspecis of the conventional differential

calculus. We here mention for brevity the following isotopies: the

isodifferentials of an isofunction of contravariant (covariant) coordinates ¥ (&)
on EX3R) are defined via ihe isoderivatives according to the respective rules

- of Ak Qo j
& M¥eontray. = oo x=Ty o T dxd = arta) |
ot ) .
8 fdgoyar, = @ =15 Tyl dxy = aft); (2.1.35)
%y 9xj

an iteration of the notion of isoderivative leads to the second-order

isoderivatives
1R ) PR ¥l
—_— = T T . = 151K ——— (o sums on k
k2 koK i 2 P
ot ox' ax! 3 %y 8 8x
(2.1.36)
and similarly for iscderivatives of higher order, the isolaplacian on EXSR) is
given by

yol = dlayal =l ek s, 0!, B = 8RN oy = o/axk eic.,

(2.1.37)
and resulis ic be different than the corresponding expression on a Riemannian
space AlxgR) with metric gl =8, 4 =5871/2 3 3728l 5 j

Ao=30% =55

A Tew examples are in order. First nofe the following properties derived
from definitions (2.3) and (2.4),

ol /o) = Bl B/ =8, W/AI=T, B/ =1 @is9)

Next, we have the simple iscderivatives



Ruggero Marie Saniifli ] Theoretical Biology

3 Ry %) o ('8;) 8 (c'gypd) o .
= = T} —t— = T/ 2x! = 2%,
% axt ax!
3 1n %) 8 I ) 1 3R
—— = Ty ! — = , (2.1.39)
ARk ax! TORERS

and similarly for other cases. _
For completeness we mention the (indefinite) isointegration which, when
defined as the inverse of the isodifferential, is given by

}r@ﬁ( = f”ﬁ dx = f@x =X, (2.1.40)

namely, [ = fﬂi‘. Definite isointegrals are formulated accordingly.

The above basic notions are sufficient for our needs at this time. The class
of isodifferentiable isofunctions of order m will be indicated C™.

An important property is that the isodifferential, isoderivative and
isodifferentiation verify the condition of preserving the basic isounit 1.
Mathematically, this condition is necessary to prevent that a set of isofunctions
%), 33), ..., on B&BR) over the isofield R(E,+%) with isounit T is mapped under
isoderivative into a set of isofunctions T(&), g'(%), ..., defined over a different ficld
because of the alieralion of the isounit. Physically, the condition is also
necessary because the unit is a pre~requisite Tor measurements. The lack of
conservation of the unit therefore implies the lack of consistent physical
applications.

As an example, the following aliernative definition of the isodifferentisl
Ak = a (k) =10, 1K )" + 1] ax! = WK axt, (2.1.41)

would imply the alteration of the isounit, T — W 1, thus being mathematically
and physically unacceptable.

Neveriheless, when using isoderivatives on independent isomanifelds, say,
isoderivatives on coordinates and iime, the above rule does not apply and we
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have
B o TR = B3 T 0] = H I x .o e, 0 1. (2.1.42)

Additional properties of the isodifferential calculus will be identified during the
course of our analysis.

Note also that the ordinary differential calculus is local-differential on
M(E). The isodifferential calculus is instead local-differential on MI(E} but, when
projected on M(E), it becomes integro-differential because it incorporates
integral terms in the isounit.

2.2: Isotopies of differemtial geometries
2.2.45 Infroduction.

We are now equipped to study the ceniral methodological tool of this
memoir, the isotopies of the Euclidean gecmetry. For clarity, in this section we
shall study first the isotopies of of Class | {(which preserve the signature (+++) of
the conventional geometry), then those of Class 11 (which changes the signature
into (=, =, =) and finally we shall combine them iogether into Class 11 (For which
the signature is arbifrary).

The geometric isotopies here studied were introduced by this author [28] in
| 1983 under the name of Euclidean—isoiopic geomeiry, or isoeuclidean geometry
for short, as & particular case of the isominkowskian geomefry ouilined in App.
B. Subsequent studies have indicated that there is the smergence of a new
geomeiry because the isotopies preserve ithe original axioms of the flaf
Euclidean geometry, butl alsc embody at the same time curvature and other
features belonging to different geometries.

The above mzin resulis can be anticipated from these introductory lines. In
fact, the iscioples preserve by assumptlion the original geomelric axioms, and
therefore permit the preservation of the conveniional features of the Euclidean
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geometry, such as the definition of angles, the notion of straight, perpendicular
and parallel lines, etc. At the same time, the isometric possesses the most general
possible Tunctional dependence, 8 = 8(t, r, 1, 1), thus including as particular cases
the Riemannian, Finslerian, Labacevskiian, nondesarguesian, or any other possible
noneuclidean geomeiry in the same dimension.

The ultimate meaning of the n—dimensional isoeuclidean geometry of Class
I which will emerge from our studies is that of unifying all possible geometries
with the same dimension and signature. The isceuclidean geometry of Class 111
unifies all possible geometrics of the same dimension irrespective of their
signature. Finally, the iscgecmetries of Classes 1V and V are basically novel and
vastly unexplored af this writing.

The reader should Tinally recall that, while conventional geometries have a
unique formulation, isogeomeiries have a dual formulation, the first in isospace
over isofields and the second via the projection in the original space over
conventional fields. The same dual character pergisis Tor all possible isotopies.

2.2.B: Rasic properties of ispeuclidean geometry.

Let us begin by studying first the axiom-preserving content of the
isceuclidean geometry, with particular atiention to the image under isotopies of
flatness, while curvature and other noneuclidean aspects will be considered later
on.

By conception and construction, the reader should expect no deviation
from the absiract axioms of the Buclidean geomelry under the conditions that
the isounit is positive—definite and the isogeomelry is computed in isospace over
isofields.

However, when the isceuclidean geometry is projected in the conventional
Euclidean space, new geometric Teatures are expected to occur and the same is
the case when [he basic unit <an be of Class greater than L.

As we shall see, the results are ihe same irrespective of whether one
considers the abstract approach by Euclide and Hilbert or the coordinate
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approach by Descaries.

Consider the conventional three—dimensional Euciidean vector space
V(r,eRn+x) with elements 1 (vectors), their composition ror’ (scalar product) over
the Tield R of real numbers n equipped with the conventional addition + and
multiplication * and respective additive unit 0 and multiplicative unit L.

Our first objective is to reconstruct Vi{r,e,R) under isotopies, that is, when
defined over an isofield R(f,+5%) of isonumbers 0 = nx¥l, equipped with the isosum
A+ @ = (n+n)X¥1 with isomultiplication A% = xTxn = { oxn)¥l, equipped with the
conventional additive unit 0 = 0 and a multiplicative isounit T = 77! which is a
positive-definite quantity ouiside the original field R e.g,, 1 is an integral).

Let us begin with the study of the isotopies of the line.

Definition 2.5: An “isofine” is the image of the ordinary line on the reals
under the lifting Rint,x) — &H,+%).

Coordinates on the isoline can be iniroduced as in the ordinary case,
although they are now isonumbers, that is, ordinary numbers muitiplied by the
isounits,

x o= xxl, (2.2.1)
on the isofield B, and are thus called isocoordinates. One can Tirst set up the
isoorigin O = 0 % 1. Then the isopoint on the isoline are arbilrary, positive or
negative isonumbers X. The isodislance among two isopoinis is given by ihe

isoniorm on B (Ch. 1.2}

B =T6-%)] = [x-x)xeTx(x=-x)12x1 (2.22)

and, as such, it is an isonumber.

One of the important implications of the isctopies of the straighi line is
that, even though the axioms are the same, ihe values of the distance among two
points is different for lines and isolines with the same points x and ¥’ fn fact, D/D

~

#land #1
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This seermningly innocuous occurrence has a number of intriguing
mathematical implications and physical applications, such as it permiis the
mathemaltical conceplion of a new propulsion called geomeiric propulsion,
introduced apparently for the first time in ref. [11] which, as we shall see better
later on, is essentially based on the motion of a poini from one isocoordinaies to
another via the alteration of the underlying geomeiry, rather than the actuai
displacement of the point itselff. As we shall see, this properly may have
intriguing and Tar reaching implications in theoretical biglogy.

The study of the remaining properties of an isostraight line is left to the
interested reader.

We now introduce the isotopies of the three—dimensional Euclidean vector
space V{r,+0,Rn,+x.2 We introduce in V a system of Carfesian coordinates,
name a system in which all axes have ihe same (dimensionless) unit +1 and are
perpendicular to each other.3 In this way, the Euclidean vector admit the
familiar components along the three axes r = {x, v, z).

We shall continue {o use our main notation whereby guantitics with the
“hat” are computed in isospace and quantiiies without are computed in their
projection in the original space. The symbol + = + will be used without a “hat”
under isotopies to recall the Tundamental assumption of Ch. 1.2 that the lifting of
the sum implies the divergence of the exponentiation and other undesirable
features.

Definition 2.6 The isotopies of Class I of the three—dimensional Fuclidean
vector space Y(r,roRn+ X)), r =1{x, v, 7}, called the three-dimensional
“ispeuclidean isovector space”, are given by the same original sel of
coniravariant vectors reformulated as “isovectors”t = <1 = {&, ¥, 2} = {x~],

2 Note the different products in a vecior space, the product * € R for numbers and the

product © € ¥ for vectors. Such a difference evidently persists under isotopies.

3 Note that noncartesian coordinate systems also exisi in the literature in which

different axes have difTerent vunits, but they are gll referred io the same fleld and related
basic unit. By comparison, the isocariesian coordinates systems have different units for
different axes whose tensorial product is assumed as the basic unit of the underlying
field. As e result, noncartesian and isocaricsian coordinaie systems are inequivalent.
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v¥i, 21} on isospaces T, +OR80,+X) over ihe isofieid R, +%) with
isounit 1 > 0 of Class [ (Sect. 1.22) equipped with the original sum + and
an isoproduct & =oTe,1=T1 = T4 verifying the following properties
forali possible T, v e Vand 0, I, " e R

DT+ 7 =7 + 7,

AT +7)+ =7+ (v +71)

3) the set V includes the element 0 such thatt + 0 = T,

)

B{n + )T = Aa%T + kT,
)

%t = (n%n
T%r =71%7T =7,
9) the isoproduct is an isonumber, ie, 67 = n = n¥leR,

)6 = nXroHr
+

WTeET #T%7.
The “isceuclidean metric space”, or “isocuciidean space” Tor shorl, is the
isospace BT, +.0,R0,+>) equipped with the “isodistance”

(A)?r")} _ ([FOTOTFP)‘VZXE €R. (2.2.3)

4>

D=

The "isoeuclidean geomeiry” of Class [ is the geomeiry of the isoeuciidean
spaces. Unless explicitly sialed, ithe [erms “isoeuclidean geomelry” are
specificaily referred o the isogeomeiries of Classes I,

As one can see, Hamilton's original conception of “vectors” is merely
reinierpreted as isovectors, that is, vectors belonging to a space in which lhe
original scalar product is deformed by a given amount, @ — & = oTo, where T is
fixed for all possibie r, while jointly the basic unit is deformed by an amount
which is the inverse of the deformation of the scalar product, 1 =1 = T71 4s we
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shall see, this dual lifting permits the preservation of a1l original axioms, The
basic quantity of the Buclidean geometry which remains invariant under lifting is
therefore the quantity:

Length x Unit = Isclength x Isounit . (2.2.4)

The realization of the isoeuclidean spaces of Class [ primarily studied until
now (spring 1996) is that characterized by diagonal isotopic elernents and isounits.
The proof that Definition 2.6. permits the preservation of the Euclidean axioms
therefore exists only for the above particular form which is assumed hereomn.

We therefore study the three—dimensional isceuclidean geomeiry on the
isospace of the same dimension with diagonal Class [ isotopic elements and
isounits, which can be writlen

BESR: = () = (fKx1), By = Bytxl # %1,
B =8l=Txs = (TFx8) =0 8;), & = diag. (L1, 1)
T =Mook = disg (0,5 0,505%) =T>0,1,>0,
T=1"1= diag. (5,72, 0,72 by 2), 8Y = T =88, 3, 8K = g,
P =l gy el )l =
(xb2x + ybly + xbPz)x1 eRA+Y, 14 k=1,23 (225

The most importani differences between the Buclidean and isceuctidean

spaces are the Tollowing. The Buclidean space has the single and unigue basic unit

[ = diag. (I, i) which is the unit of the SO(3) symmetry, and which essentially
implies the same dimensioniess unit +1 for afl axes,
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[, = +1, K=x%Y,z (2.2.6)

Om the contrary, the isoeuclidean spaces have the infinite family of generally
different iscunits T = diag. (b2, b, 2 which are the isounits of the basic SO(3)
symmeiry (see Vol. II), and which implies infinitely many possible, dimensionless
units for each axes which are different among themselves and different than +1,

~

b= b2 T # 2l R L (.27

The above differences have a number of infriguing mathematical
implications studied below and applications studied in the final section. To begin,
the Euclidean "space” is unigue per each dimension, while there exist infinitely
mam possible isoeuclidean “spaces” per each dimension, although they all admit a
single and ynique abstract freatment for the same class.

By recalling from Sect. 2.C that

~ ~ . . I -
72 = 75t = n xTx Tkl = (n x9) =7 =

= (e )xT = (el Byeed) =T, (2.2.8)
we can ignore the isoscalar character of ¥ = x¥1 and use only the coordinates x.

We mention that the isometric 8 could also be writien as an 3%3 isomatrix,
that is, 2 3%3 matrix whose elements are isoscalars

Sij = Tik % 8ki x7. (2.2.9)

In this case however the product of iis elements among themselves and with any
other guantity must be isotopic, thus reproducing again the fundamenial
isoinvarianl (5.2.5e). For (his reason, the isometric elemenis will be hereon
considered to be ordinary scalars 31] and their product with any guantity @, %ij i
%, an ordinary product.

Note that the iscseparation coincides with the conventional separation for
all possible scalar Forms of the isounit. In Tact, in this casc we have
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12 = (rxrk)x] = (riXTXESijxrj)xﬁ =?xtxtl=¢2 (2210

This simple property illusirates the "hidden” character of geometric isctopies, and
provides a reason why they have remained undetected for centuries until
recently, Moreover, it is evident that the "hidden” character persists for arbitrary
isotopic elements, because of the identity of the conventional and isotopic
separation at the abstract level.

The ‘hidden” character of the isceuclidean geomeiry is also at the
foundations of a number of applications to theoretical biology. In fact, it
establishes that these applications are as geometrically sound as the use of the
conventional geometry, thus preferring the isogeometry over the conventional
one for its structurally broader possibilities.

Note also that the possible assumption of the basic invariant Length/Unit,
rather than LengthxUnit, would imply a geometry different than the isogeomeiry
because characterized by the liftings 8 —~ & = 1x8 and I — 1. In this case the
liftings are no longer “hidden” because property (2.52) no longer holds.

The isodisiance between two points P&, ¥, ;) and Py(%, ¥5, Z5) of the
isoeuctidean geometry is the isoscalar

D = 1 {5 -T2 =
z[(Xl_XE)Z blz‘}" ("yl ~ Va2 )2 bgz‘*‘ (21”22)5)32]1/2){,26@9 (Z.2.11)

where | and T, are the isovectors from the origin fo Py and Py, respectively.
A primary implication of the notion of isodistance is that of affering the
conventional Euclidean distance among two points according to the following:

Proposition 2.8: Let dj, be the conventional Euclidean distance beiween fwo
points Py(x|, vq, zj)and Pylxy, yo, 7o), and JeiDys = DoX1 be the corresponding
isoeuciidean distance among two isopoints B, ¥y, 2;) and Py(Ry, o, Z5), % =
% Yy = vl oy = 5l with the same coordinates xy , vy 2. k= L 2, of the
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original poinis. Then
Dyp> dpp Tor detl < 1,
Dy < dyp for detl > 1. (2.2.12)
The above property has a number of intriguing implications. First, the
same object has different sizes and shapes in the Euclidean and isoguclidean

geomeltries, as illustrated in Fig. 2.1

THE SOBOX

FIGURE 2.1. Consider a cube with sides of a given length d which is inspecied from
an outside observer in Euclidean space with geometric unit 1 = diag. (1, 1, 1), and
individual units per each axis [, = +1, k = x, y, z. Suppose that there is a second
observer in the interior of the cube belonging 1o an isceuclidean space with isounit
1=diag. (bl"gg bg_z; bs_%, and individual isounits per zach axis Iy = bk—% k=21,
z. 1t is easy to see that the same object can have for the interior: 1) a volume
arbitrarily smaller or bigger than g° denending on whether det T > | or < |,
respectively (Proposition 5.2.1) ; 2) a shape different than a cube; as well as 3) a
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shape and volume varying in time. In fact, the same k-side has differen{ values
depending on whether referred to the unit [y =+l orly = bk_% resulting in a
volume for the interior observer which is arbitrarily smaller or bigger then that of
the external observer. Also, equal sides for the outside observer are generally
different among themselves when referred to differeni units for different axes, ly
;fiy #ﬁ[z # +1, resuliing in different shapes. Finally, the length of the sides is
constant in time for the outside observer, while it may vary in time for the interior
observer because the individual isounits may depend on time, T =Tg(t, ). To
understand in Tull the implications, the reader should be aware that, when the
isctopies of time of Class 1l are added, the interior observer can be arbiirarily in
the future or in the past with respect to the exterior observer (see Sect. 3). Finally,
if the internal units are aliered during the observation, the exterior observer will
see the isobox moving in space without application of any force (see later on in
this section the geometric propulsion).

As a result of the above peculiar characteristics, far away stars which have
a large distance from Earth when represented in Euclidean space, can have a
distance as small or as large as desired when represenied in isoceuclidean space.
This notion is illustrated with the Tollowing self—-evident property.

Definition 2.7:0 The “geomelric propulsion” is the mathematical
displacement from a point Pyx(, y;, z)) {0 a point Pyxy, yo, 7} here
assumed to be on the same straight line from ihe origin O in Euclidean
space realized via such an isciopy of the underfying Fuclidean geomelry
for which the isodistance DgXI between 0 and Py is such that Dy is
equal to the distance dgy between O and Py (see Fig. 5.2.2 for details), i.e.

DOI =D, %] = doz %7, {2.2.13)
The equation of an isosiraight jsoline is given by ong of the Tollowing forms

%% + bRy +&%%2 +d = (ax + by +rcz+d)xl =0,

0,
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=(z- z)-paglx1=0, (2.2.14)

[RNRd
i
2
i
=
%
[#5)

where 3, B,¢, d € &, a, b, ¢, d € R, p is an (ordinary) real parameier, and ai least one
of the isonumbers 3, b and ¢ is not nuil. The isoline is calied isosiraight because
its derivatives are constant.

Notice the importance for the consistency of the isoeuclidean geometry
that the isocoordinates are isoscalars, i.c., are elements X = x4, ¥ = v, 2 = 2x1 of
the isofieid R. In fact, the use for isocoordinates of of conventionai scalars x, v, 2
would prohibit a consistent delinition of isostraight isoline.

In isovecior notation, the isoline can be represented by

Ty ~ Ty + %8 = (r, - —nglxl, k=123, (2.2.15)
where = %) = (%, §, 2, T is fixed point on the isoline, & = {8y, &y, 83} is the
direction of the isoline itsell’ and n is an arbitrary paramster.

GEOMETRIC PROPULSION

FIGURE 2.2: & schematic view of the geomefric propuision apparenily iniroduced
here for the first time. It is based on the idea of realizing motion between two
points via an isotopic alicration of the underlying geometry, rather (han the
conventional displacement. Consider the Euclidean plane and two poinis Py and Pg
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o & straight line from the origin 0 as in the figure. Let dg and dgy be the
conventional disiances of the points P} and P, from the origin

dOl = (Xl2 + ‘/22+212)1/2, doz = (X22 + y22 + 222 ]1/2, doz >D01. (v

The geometric propulsion of the point P| to Py cccurs under the following steps: 1)
the geomeftry underiying the peint Py is liffed isotopicaily with resulting
isodistance (5.2.9); 2} the isotopy is chosen according to law (5.2.11), ie.,

D01=()(12b]2+ ylzbzz)x'}i = dozxiﬁs {(2)

with simplest possible solution

b12=x22/ x12, '[)22 = yzzlylz, bgz = @2/2112 Det. 1> 1; {3)
and 3) the geometry is then returned to ihe original Euclidean form. Under the
above assumnptions, the projection of the isopoint 81(x), ¥1, Z}) in the Euclidean
plane coincides with Pslxy, yo, 72). The activation and subsequent de-activation of
the isctopy then yield the motion from Py to P;. it should be stressed that the
above geometric propulsion is a purely mathematical notion, here defined for a
point. The possibility of its future realizations is studied in Vols Il and III and
essentially deal with the identification of means which can alier the basic units of
space (end time). The reader should keep in mind the mast intriguing property of
the geometric propulsion, that of being permitied by the Fuclidean axioms
themselves, only realized in a way more general than the usual one. Thus, an
outside observer will simply se¢ the motion from the poini Py to Py without any

" visible change of the geometry or visible means Tor the displacement. As we shall
see in the next section, even more intriguing properties emerge when infroducing
the geometric propulsion in space-time.

It is important to understand that while isoline (5.2.13) is isostraight in
isoeuclidean spaces, it is generally curved when projected in the conventional
space. This properiy can be best inspecied via an ”b]ld trick” of the isotopies, the
reduction of the isospace ET3,R) to a conventional space E(7,8R) possessing the
same invariant. This is readily possible for the values Ty, = 1}.by, under which

rhxy ) = Tlxsy < T (2.2.16)
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It then follows thal the projection of the isostraight isoline (5.2.12a) in a flai
space is given by

axbylt,r, ) vbybylt,r,..) + czbgltr,..) v d =0, (2.2.17)

which is evidently curved.

We therefore expect the existence of the inverse property, that is, given an
arbitrary well behaved surface (5.2.15) in Buclidean space, there always exists an
isotopy under which said surface is mapped into the isostraight isoline in
isospace.

An isopoini in T, +0,R) is a point B(X, ¥, Z) with isocoordinates %, ¥, Z.
Consider now two isovectors from the iscorigin D o the isopoints Py and Py. An
isosegrnent is the portion of an {sostraight line belween two isopoinis.

In other conventional generalizations of the Euclidean metrics 8 — 8, r, 1,
t, ..) the notion of angle is generally lost (as it is the case for the Riemannian
geometry) because of the emergence of the curvature. A peculiarity of the
isoeuclidean geometry is that, despite the most general possible functional
dependence of the isometric, 3 generalized notion of angle can still be introduced.
It is called the isoangle, denoted with the symbol @, and characierized by the
expression on the isoplane z = 0 for simplicity studied in detail in App. A

X0y 7 % + 1 07 g

i50c0S & = — T 5 57 —. (2.2.18)
(Xl blé){l + '}/lbz Y})Z(XQ?DE Hg F ")/2102 y2)

}
which, as one can see, is an ordinary scalar (father than an isoscalar) Because the
isounits cancels oyl in the ratio.

As studied in more details in Ch. 116 of ref. [12] on the isorepresentation of
Lie-Santilli isorotation group O{2), the explicii form of & is given by

a = b ha, (2.2.19)

where ¢ is ihe original angle prior to the isoloples.” This impliss that the

4 . PP N . PN ~ . N N N
* We should indicate that the delinition of iscangle for nondiggonal isometrics is
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angular isctopic element and angular isounits, Tor the case of realization (2.60),
are given respectively by

Ts = by Dby, To = b7 oyt (2.2.20)

The mechanism of isotopies of angles is therefore that a given angle o is
lifted in the amount a — a = Ty, but the unit is lifted by the inverse amount, [
—14 ="T"1, thus allowing the preservation of trigonometric axioms (App. A).

We shall say that two isovectors originating from § to the isopeints P and
b, in the isoplane z = 0 are isoperpendicular when their infersecting isoangle is a
= 90°, which can hold iff

Xl blz)’(g + Y1 bzzyz =0, (222])

and they are isoparallel when their intersecting isoangle is null, @ = O,which can
hold iff

A1 bl2 Yo T Vy b22 93 = (. (2222)
The above two conditions establish the existence of simple yet, unigue and
unambiguous isotopic images of the Buciidean axioms of perpendicularity and

parallelism. It is then easy to prove the Tollowing properties.

Theorem 2.1, The isolopies map perpendicular lines into isoperpendicular
isolines and parailel lines into isoparallel isofines.

By using these resulis, it is possible to prove that the isceuclidean geomeiry
with diagena! Class 1 isounits is expressible via the following main assumptions

(see, e.g., vef. [43], Ch. 2, for a recent study of the conventional Fuclidean axioms).

Iseaxiemt L: There exists one and only one isosiraighi isciine from one

unknown ai this writing.
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sopoint to ancther isopoini.
Isvaxiom HE: An isosegment can be prolonged continuously into an
isostraight line from each end.
Ispaxioms YL: For any given center and isoradius there is one and only
one isosphere.

Ispaxioms 1V All isoright isoangles are eguivalent.

Iseaxioms Vs For each given isosegment between {wo isopoinis there exist

only two isoparalle! lines, one per each isopoini, which are perpendicular
to thatl jsosegment.

RECONSTRUCTION OF ANGLES IN THE ISOPLANE

/ 1 7 S i
\ N \% é{}/
t\ = :/ | }/7\\) R /
i = Y
i v 3 o
\\\/ \\\/ >/ ‘
,( P }
/‘\\ ﬁ/ \b /\\
‘{;\ / ' 7 7 \\
? / \\ 7 (( / x
/o . {4
/g / & / \
i / \l { \k / Y
(A}

(C)
FIGURE 2.3. Diagram (A) depicis the origin of the noiion of angle in the

conventional Euclidean plane from iwo straight intersecting lines, which can be
analytically expressed via the Tarniliar expression
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Xy ¥y ¥ Y Y2
cosa = ) (1)
(xyxp + y1ya) T (xgxg + ypy9)?
XKp¥p ¥ V192 KoXg © Vo ¥a

In the Iransition to the Isoeuclidean plane, straight lines are generally mapped into
curves when defined on the original plane over the conventional field R, as
depicted in Diagram (B}, thus implying the general loss of the notion of angle as
typical in the transition from the Euclidean to the Riemannian geometry. The
isotopies permif the reconstruction of the notion of angle, but only in the isoplane
over isofields, because in the latfer case the original siraight lines are mapped into
isostraight isolines as depicted in Diagram (C). In the latter case, the original angle a
is lifted inio the expression & = bylya called iscangle which is derived from
the underlying Lie-Santilli isosymmetry of the isoplane S0(2) studied in
detail in ref. [10l. Expression (1) is lifted into expression (5.2.16) which evidently
does not characterize coso. any more and it is assumed as the definition of the
isocosd, and studied in App. A.

The lifting of the additional axioms of the Buclidean geometry [loc. c¢it.l is
fefi to the interested reader. Additional axiomaltic properties are studied in App.
A.

[sotopies characterized by nondizgonal isolopic elements are vastly
unknown at this writing. We merely indicale that they imply a structural
alteration of Ihe original geometry more profound than that of dizgonal isotopic
elements. As an illustration, consider the isceuclidean space as in Bg.s (5.2.5) but
with isotopic element V

e,

-

, (2.2.23)

[ ) ow Q-
oo
Q@ =D
S

for which det T = 1. Thus, T is nondiagonal but still of Class I.
[t is easy to see thal in this case the basic isoinvariant (5.2.5d) becomes
identically nulj, ie,

72 = (Pixg xol)x] = (xx + yz —zyl=l= {xx)x=]l, (2.2.24)

namely, the isotopy is regular, thus invertible, yet the isospace is degeneraie and
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reduced Irom three 1o one dimension.

We learn in this way that nondiagonal isotopies can reduce the number of
effective dimensions of the original space. This is the case of isoinvariant (5.2.19)
for which the original dimension is three, with coordinates x, y, z, while the
resulting dimension is one and represented by x, while the coordinates v and z
remain outside the geometry.

One can see in this way additional peculiarities of the "isobox” of Fig. 2.1. In
fact, the alteration of volume and shape of the cube and their variation in time
for the internal observer should be complemented with the additional possibility
that the number of dimensions themselves are changed in lhe inferior. In fact,
for isotopic element (2.65) the external observer perceives a three-dimensional
cube, while the internal observer perceives it as a one—dimensional segment.

The invertible isotopies which alter the dimensionality of the original space
are here called degenerafe Class [ isotopies. Rather than Deing a mere
mathermnatical curiosity, the latter isoiopies have emerge as having iniriguing
possibilities of applications studied in Vols II and III, such as a quantitative
representation of the synthesis of neutrons from protons and electrons only as
occurring in the interior of stars, which is possible under a nondiagonal Class |
isotopy of the four—dimensional space-time of the electron down fo fwo-
dimensions.

Note that no study is available at this writing on the isoaxioms of the
isoeyclidean geometry Tor nondiagonal isounits of Class 1.

2.2.C: Basie properties of the isodual isseuclidean geomelry.

The isoeuclidean geometry of Cless I studied above is suggested for the
characterization of motion forward in time In this subsection we study an
antiautomorphic image of the above geometry which is appropriaie for the
separaie characterization of meotion backward in Hime in a causal way, which s
called isodual isveuclidean geomeiry and resulls to be of Class LI Subsequenily,
we shall combine the above two formulations in 2 single isogeometry of Class I11.
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The isoeuclidean geometry of Class I is used in physics for the
characterization of matter, while iis isodual image of Class II is used for the
characterization of antimatier!9,10] The isogeomeiry ofg Class Il appears to be
the version particularly suitable for applications in theoretical biology.

Even though there are mathematical similarities, the reader should be
aware of considerable differences between ihe isoeuclidean geometry of Class L11
suggested for theoretical biology, and the union of the isogeometries of Classes I
and II used in physics. For these reasons, it is recommendable to study Tirst the
isodual isoeuclidean geometry of Class Il per se, and then study the isogeometry
of Class I11.

As it 33 well known, the mere reversal of the sign of time leads to notorious
and visible problematic aspects, such as the violation of causality, because it
implies that effects can precede their causes. the sole alternative known to this
author for avoiding these problernatic aspects, is the map of the entire geometry
into an antiguiomorphic image.

The sole antiaytomorphic map known to this author which is applicable
beginning at the ciassical Euclidean and isoeuclidean levels is the so—called
isoduality,

T = 19=-1. (2.2.25)
introduced in paper [27] of 1985.

Definition 2.8 [27]: The “isodual isoeuclidean spaces” are given by ihe
isoduals of the original isovectors 1% = - ¢ = (9 39 39 = (%, —, -3},
called “isodual isovectors”, defined on the isodual isospaces T9G%9+39,
R, +3%) over the isodual isofield ROGS +>8) with isodual isounii 19 = -
T < 0 of Class Il (Sect. 1.2.2) equipped with the original sum + and an
isodual isoproduct 8% = 091 = o1de = - 070,19 = (19! < ¢, verifving
the isodual images of properties 1)~14) of Definition 522 here omitted for
brevity. The "isodual isoeuclidean geometry” is the geometry of the isodual
isoeuclidean spaces of Class 1I. The "isceuciidean geomelries of Classes ],

iV and V" are the geomeiries of isospaces with isounits of the
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corresponding classes. Unless explicitly staied, the terms “isoduvai
isoeuciidean geomelry” are referred to that of Class I1.

The construction of the isodual geometry via map (5.2.21) is straighforward.
the isodual isostraight isoline is the infinite set RYAY+%9) with isodual isopoints

ad _

given by the elements A% = w19 = -4 The isodual isocuclidean isospace can be

written for the case of diagonal isodual isounits

Edﬁrd,ad,@;d) : ?fd = { J]l\"k xlld ] = { "‘%‘k ] 5 ?L‘"kd = @dki xd %di == /IE'K s

80 = T9xa = -8 5 = diag. (1, 1, 1), 8%=358 10 = -1 =

k]

7

19 = %, 11,1, .0 = disg (b2 By ~bg?) =-T<0, bd<
$920 = (05 (1) )19 = (= xpy2x - yby%y -2z ) <19 € RY . (2226)

Note Ihat the above isospace admits as a particular case the novel isodual
Fuclidean space which occurs for 19 = 19 = - [, Note also the two sequenitial sieps
for the characterization of the isodual isoinvariang,

?fgd = %dk gdsdk Iy %18 % pd x Ty x4 = (Tk x %) xpd =

(89, 1)x 10 = (=5 el )220, (2227)

thus reproducing isodual isoinvariant (5.2.224).

The isodual isodistance between two isodual isopeints P,%%,9, 5,9 2,9 an¢

P00, 958 2,9 is the negative—definiie isodual isoscalar
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Proposition 2.2: The basic invarianis of the Euclidean or isoeuclidean
geomelries are “isoselfdual’, i.e.., invariant under jsodualitics, i.e,

2= 020 ang 32 = 7020 (2.2.09)

As we shall see, the above mathematically elementary property has
rather important physical implications for the representation of antimatter,
The isodual isostraight fine can be expressed by

a05d3d o pasd gl + 20 2 (gxyx + py + c)x1d = g, (2.2.30)

where 3%, 59, 29 ¢ RS, & given straight line can therefore be also interpreted as
belonging to an isospace as well as to its isodual. As we shall see, this additional
elementary property is evidently exiendable to curves and seems to have
significant application in theoretical biology. In fact it indicates that, even though
an object is perceived as belonging to our Euclidean geometry, and it appear to
evolve with our time it may eventually telong to a structurally more general
geomeiry with an inverted direction of time [30]

The isodual angle is ihe angle between {wo intersecting isodual straight
lines in the isodual Euclidean plane, and ii is simply given by a% = - a. The
isodual isoangle is the angle between two intersecting isodual isostraight isolines,
and can be wrillen

a® = p9ptad = 5. (2.2.31)

We leave for Drevity to the interested reader the definition of
isoperpendicular and isoparallel isodual isostraight isolines, and the isodualities
of the remaining properties of the isocuclidean geometry.

The causal characierization of motion backward in time via the isodual
geomeiry is made possible by the property of Proposition 2.2 and those of the
following:
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Propesition 2.3: The maps from Euclidean Er8R) to the isodual
Euclidean space E%r984RY and from the isceuciidean BEESR) o the
isodual isoeuctidean space ESG93% RY) are antiautomorphic and imply the
change of the sign of all positive—definite quantities.

The above properiies confirm the possibility for isoduality to provide a
representation of motion backward in time in a causal way. In faci, it is gvident
that motion forward in time referred to a positive unit is fully eguivalent,
although antiautomorphic, to motion backward in time referred to a negative
unit. Under these premises, any criticism on the isodual motion backward in
iime applies also to the motion forward in time.

We have studied uniil now the isceuclidean geomelry of Class I and,
separately, the isodual geomeliry of Class 1. These geometries can indeed remain
separate and disjoint in all known physical applications. In Tact, the former is
applied to the representation of matter while the latler represents antimatter,
while no particle is known o be able o transform into its antiparticle and
viceversa. The production of particle—antiparticles pairs from the scatiering of
particles requires the tensorial product of isogeometries of Classes I and [T which
is a separate problem hereln ignored.

The scientific scene in theoretical biology is different inasmuch as
quaniitative representations of certain biological structures, such as sea shells at
bifurcations, {o admit both forward and backward directions of time for ihe
same structure.

As we shall see in Sect. V, ibe lafler occurrence can be best represented
with an isoeuciidean geomeiry of Class 17, hereon referred to as a geometry
with & generalized unit which can be positive as well as negative, Thus permitting
a continuous transformations {rom evolution forward in time to that backward
in time and viceversa.

Tt should be siressed that the most appropriate isogeometry for the latter
purpose would be that of Class IV which admits null isounils. The latter
isogeomeiry is however singular, thus reguiring rather delicate iopological
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methods for its proper handiing. To avoid prohibitive and perhaps premature
technical difficulties, we shall essentially study hereon on the isogeomeiry of
Class IV in which the zeros of the isounils have been removed, which can be
treated separately as the solutions of the equationsT = 0.

We reach in this way a most important difference between the
isogeometries used in physics and the broader geomelries used in theoretical
biology. The former are given by the isogeometries of Class 1 and, separately,
those of Class [, while the latter are given by the isogeometry of Class 1V
consisting of the union plus their continuous interconnection.

The above lines are tacitly implied hereon whenever studies iscdual
theories.

2.2.10: Operations on isovectors and their fsoduals.

We consider now the operations of isovectors in the isceuclidean geometry
with diagonal isounit, Eq.s (2.47). As proved in Ch. 1.3, ref. [11], the basis of a vector
space is not changed under isotopy (up to possible renormalization factors). Let
ey, k=1, 2, 3 be the unit vectors of & three-dimensional Euclidean space E(r,8,R)
directed along the x, v, z axes, and let

g = e x1, : (2.2.32)

be the corresponding isobasis in B{,8,R). Then, 2 isovecior ¥ can be expressed in
isospace

¥ = )‘(él + Yéz + Z%S‘ (2.2.33)

This is another way of expressing the Tact thal the isovecior ¥ is isostraight
in B(,8,R), although its projection in E(r,5,R) is curved. As expected, the operations
on vectors ars preserved under isotopies. In Tact, the Tamiliar scalar preduct of
iwo vectors ¥y =[xy, y;, 2z} and Vy = x5, 3, 29}
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VioVy = X% + Y| yp + 2) 29, (2.2.34)
is now lifted into the expression called isoscalar product
716V, = (%% + y b7 yy + 7, 05725) %1 € Rl . (2.2.35)
Note that the isoscalar product preserves the original axioms, i.e.,
9,80, = 1,69, 7,6(0,+ ) =10,80,+ 9,60, (223)

Moreover, the isonorm on E(1,6,R) is expressible in terms of ihe isoscalar product
via the rule

197 = (P87 %1 eRH+R). (2.2.37)

Thus, the isocosinus of the isoangle Tormed by two intersecting isovectors
can be written as the isolopy of the conventional case
7,67,

IS0C08 8 = e, (2.2.38)
RAEIRA

Also, one can introduce the directional isocosinuses of a vector
isocosa = ¥ /1V], isocosB = 0/, isocos ¥ = ¥5/{9].  (2239)

! % : 2~ ™ PR YR oo H L
Then, we have again the correct lifting of the corresponding conventional
identity

2

b2 isocos® & + by isocos® B+ By isoces”y = 1. (2.2.40)

similarly the vectorial product V, A Vo is liTted in the expression called
isovectorial product '
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VS = Vl A V2 s VSK = Gkij( bi X A b] X2] ) , 1, j, k=1223. (2.2.41)
which satisfies the basic axioms of a vector product

V[/&Vz = ng\Vl, VIA(VQ + V3)= VIF\VZ + V[AV\@. (2.2.42)

Other operations on isovectors can be consirycted accordingly.

The operations on isodual isovectors 79 = - ¥ on isodual spaces £9¢989 R0)
with diagonal isodual isouniis are easily derivable vie the isoduzal map. As an
example, the isodual isoscalar product is given by

Vld 6)(:1 Vz = (—Xl b12 X~ ¥ b22 Yo T g bszlz)xtﬂd € Rd, (2.2.43)

and it is manifestly isoselfcual.
Similarly, the isodual isovector product is given by

ng = Qld /A\d Vz f Vskd = El(ij( TOid }(Hd ) xd ( bjd ijd ) =- V&(' (2.2.44)

It is instructive Tor the interested reader to verify the preservation of
Lagrange’s identify under isotopies among four isovectors A, B, &, B in EE8R)

=

(AAB)G(CAD) = (AG6CIX(BOD) - (BSCIX(ASD). {2.2.45)

!

Other properties can be gasily derived by the interested reader via similar
orocedures.
2.2.5: Representation of biologicsl structures as isospheres.

We now pass to the siudy of anciher important geometric notion of this
analysis, the representation of biological struciures as isospheres in isceuciidean
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spaces. In this section we shall solely study geometrical aspecis and defer the
applications to the last section.

The isosurfaces on the three-dimensional isoeuclidean space (5.2.5) are
given by a strzighforward isotopic image of ordinary curves and, as such, are
reducible to algebraic equations in the coordinates of order higher than the first.

While in ordinary Euclidean space we have a large number of different
surfaces, in the isoeuclidean space we have the dominance of the following

notion:
Defimition 2.9 [15]): The “isosphere” in the three—dimensional isoeuclidean
space B(r,8,R) with diagonal isounit is the isotopic image of the ordinary

sphere with equation

2 =32+ 92+ 2 = R (2.2.46)

ie,
[x D%, 5, 1,1 )% + vyt g, )y + 206t Jz]xd =
= B2 = RxleR, (2.2.47)
where R is an ordinary scaiar. The isosphere Is said to be of Class {, Ii, fil,
IV or V depending on the corresponding class of ihe isounit. The “isodual

isosphere” is the isosphere in the isodual isospace £IGIaARY) with

eguation

020 o gd2d o od2d  pd2d o pd2d (9.2.48)

[ 0290, 1, e 7,0 k8 + 9 02w, Y 2% 62, r, 1,1, ) 20 1% =

= [-xperent . Jx - yoAurn sy - 2bgtn . z]xld =

po2d - p2dyqd ¢ gd (2.2.49)
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The ordinary sphere, hereon written in the form?
r°=(x%+ y2+ 22) = RZx] <R (2.2.50)

is a Irivial particular case of the isosphere of Class 1. The "isodual sphere”
is the image of the sphere under duality with equation

pd2d = 32 - 2 L 2yl =2y @ (2.251)
and it is also a particular case of the isodual isosphere of Class I1.

The verification of the perfect spheridicity of the isosphere in isospace is
important. Recall that, by central assumption, the Buclidean space and related
Cartesian coordinates admit the same unit for all three axes, which is
geometrically expressed by the unit I = diag. (I, 1, 1) of the basic S0O(3) symmetry,
and we shall write

e =1ly = b = +1. (2.252)

Recall that, also by ceniral assumpiion, the isocuclidean space and related
isocariesian coordinates admit differeni units for different axes which can be
expressed via the isounit T = diag. (b;7% by 2 by~ of the basic isosymmetry SO(3)
(Ch. 11.8), and we shall write

~

=02 N =yt = byt E L (2.253)

Recall finally that the original geometric characteristics are preserved under the
above an isotopy, .g., a straight line is mapped into an isosiraight isoline.
5

Note that the formulation requires the redefinition of the ordinary field of real
nurmbers with respect te the unit [ = diag. {1, 1, 1. Such a reformuiation is here necessary
to have the ordinary sphere adimitted as a particular case of the isosphere.
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1t is then easy to see that the perfect sphere in Buclidean space is mapped
into a surface with perfect spheridicity in isospace. In Tact, the semiaxes of the
original sphere S = +1, k = x, v, z, are lifted under isctopy 1o the values §, = bk%
k=%, v,z thus vielding an ellipsoid. Jointly, the unit of each deformed semiaxis
is lifted by the inverse amount, thus restoring the perfect spheridicity in
isospace, with the understanding that the diameter of the original sphere is
changed.

The above occurrence is directly expressed by the basic invariant (5.2.4) of
the isotopic lifting of the Euclidean space realized according to the rules

8 =diag. (1,1, 1) — & = diag. (5,2 b2 ),
[=diag.(, ) — 1= dig(b b2 0572), (2.254)
or, equivalently, by the basic invariant under isolopies:
8x[ = 8xT=Txgx] =8§x[, (2.2.55)

We can now begin to understand the representalion of a hadron as an
isosphere in isospace. Recall that in contemporary particle physics hadrons are
represented as perfectly spherical and perfecily rigid objects, evidently as
necessary conditions not to viclate a pillar of guanium mechanics, the rotational
symmetry SO(3),

The representation of a hadron as an isosphere then includes the perfectly
spherical and rigid cases as trivial subcases and permits the additional
representation of all the infinilely possible signature—preserving deformations of
ihe sphere In such a way to preserve the basic rotational symmetry, as studied in
details in Vol. L. In different terms, the geomelric representation of 2 hadron as
an isosphere permits a single, unified, rotationally invariant characterization of
all possible actual, nonspherical shapes of & hadrons and ali their infinitely
possible deformations due to collisions or externzl feids.

[—

T s easy to prove the following:
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Propesition Z.4: The maps from the sphere to the isodual sphere

=2+ 2o 2)x = B 020 22— 222 ko p2qd | (2256)
and from the isosphere to the jsodual isospheres

2 = (rlxByerl)x T =R > 7920 = (9l xpd) 10 =240 (257)

are antiautomorphic, thus implying the reversal of the sign of all the
original positive—definite characteristics.

The above property evidently permits the characterization of anti-hadrons
as isodual isospheres. Noie that in contemporary particle physics both hadrons
and anti-hadrons are {reated with the same geometry and are thus represented
with the same sphere, resuliing in the same classical characteristics which is
pasically insufficient Tor their distinction.

THE [SOSPHERE

FIGURE 2.4 A schematic view of the perfect sphere in isospace over isofield
iniroduced by this author [15] under the name of isgsphere.  Besides the
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argument presented in the text, the perfect spheridicily can be best proved
via the use of the isospherical coordinates and isotrigonometric functions
of App. A. For the simpler case case of the isocircle of radius one in the
isoplane (%, ¥} with diagonal isotopic element we have the isopolar
coordinates

x = isocos® = by ' cosh, y = isosin® = by 'sinB, B = bybye, (1)

where ¢ is the original angle of the circle prior to the isotopy. In this case
the equation for the isocircle is reduced to the conventional form

T2 =y hlzx +y b22y = [0‘12 j50c052@ + Tg22 isosin? ® =
= cos8 + sin”® = |, (2)

which can be schematically represented as follows

£lr 3,8 Er,5,R) ErsR)

&9‘&‘ i ) g‘gi’a

- % y / T //’Z //
// | W i/ N }

Y ) 5p | y
i / ) \ o i el AN w';/ W
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\ ‘g/j P \&\( 1 %1 & \
/ S| r AN
\%gﬁ’ -{:;;"

namely, the circle is first deformed inte an eflipsoid in the original space and then
reconstrucied as a perfect circle in isospace. Mote that the projection of the
isocircle in the original space can also be represented with the coordinates Ty =
reby, k = 1, 2, on the conventional space E(r8,R) with the self-evident
identities
fé=xb12x+ yb22y5§§4-§?=f‘2‘ (3

Similar results hold for the case of the isosphere via the use of the isospherical
coordinaies outlined in App. B, as well as for the isodual isosphere, as well as for
the iscsphere of Class [11, the latter one requiring the use of the [sohyperbolic
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functions of App. A. We should finally mention that the symmeiry of the
isosphere is the isorotational symmeiry outlined in App. C.

Proposition 2.5: The sphere and the isosphere are isoselfdual
2= (5% - y2 o+ 22ixl o= 020 = (@ g2 g2y g0
P2 = (e Byl )= w3 = 1920 = (gl 0y <102 g2, (2259)
The above property is Imporiant for the observability of antihadrons in our
space. In fact, it establishes that a given sphere cannot be claimed to belong to a
particle or to an antiparticle without additional information, e.g., on charge,
energy, etc. Additional properties of the isosphere will be studied in the next
section and in Yols [1, and 111

The following mathematical properties of the isosphere are self-evident.

Theorem 2.2 [15]: The isosphere of Class [l unifies all the following
gquadrics of the conventional Euclidean space

1) All ordinary sphere

soi): xlxl + ¥+ + 858 = R2
2} All elliptic parabololds (paraboioids with one sheet)
o2 xtxl - x¥x% + 538 = RZ
3y All prolate er oblate ellipsoids

503k x'p2xl + %2028 + xBpf = RE

4y Alll isctopic deformations of the elliptic paraboloids
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so2.1: x'p2xl - 2022 + x3pg? 8 = R

5y All isodaal sphere

5093 —xlxl-x2x2 - 38 = -g2

6) All hyperbelic paraboloid

sodz.0 —xxl v k2@ - 53 = —R2

7y All isodual ellipsoids

s093: - x'p2x - 202 - WFpld = -R2

3) All isoduals deformations of the hyperbolic paraboloid

sodzi: - xlpfxt + P20l -~ Buldd = -R2 (2.2.59)
The isosphere of Class IV unifies all the preceding surfaces plus

9y All possible cones in Euclidean space, ie.,

s0(2.1r  x'xt - x4 88 =g,

so20: x' b2yl - 2022 + P2 = g,

sofz ) —xlxl v %22 - 88 = g,

sofz.: - xlplxl + 2t - 5Pl = 0 (2.2.60)



Ruggero Maria Santilli -73 ~ Theoretical Biology

The isosphere of Class V has not been invesiigated ito date, and it is
expecied Lo permit the formulation of new notions of "spheres”, such as spheres
whose radius is a step function or a laitice.

ISOTOPIC UNIFICATION OF QUADRICS

z

7

o )

FIGURE 2.5: A schematic view of the unification into the isosphere of Class 111 of
prolaie ellipsoid (A), oblate ellipsoid (B), one sheet hyperboloid {C) and two sheets
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hypervoloid (D), plus the related cones and isodual images here omitted for brevity.
All these quadrics are unified inio one, single, unique geomeiric notion in iscspace.

It should be indicated that all physical applications known al this time
are restricted to the isosphere of Class I, which unifies the sphere and all its
ellipsoidical deformations and to the isodual isosphere of Class 11, which
unifies the isodual sphere and all its ellipsoidical deformations). This is due
to the fact that there is no known physical event capable of alfering, say,
ellipsoids into hyperboloids, or viceversa.

Theorem 2.2 essentially states that all quadrics (A)~(D) of Fig. 2.5 have
the shape depicted only when expressed in the conventional Euclidean
space, because when properly represented in isocuciidean space {hey can
all be reduced to perfect circles.

This intriguing property should not be surprising for the reader now
familiar with isotopic liftings. As it was the case for straight lines, (fie
isotopies of a sphere must remain a sphere as a necessary condition for
the achievernent of the isotopies themselves. The unification of the sphere
with all its infinitely possible ellipsoidical deformations then follows, with
evidently broader unifications for higher classes.

One can now understand why distances which are very large in our
perception of the universe in Euclidean space can become rather small in
isospace. In fact, very large distances, say, in a hyperboloid are turned into
relatively touch shorter distances on the isosphere of Class 1L

The reader should Tinally be aware that the unification of all quadrics
into the isosphere is the geometric Toundations of the unification of the
compact S0(3) and non compact SO(2.1) symmeiry into the isosymmeiry
SO(3) submitied by this author since the original proposal. '

2.2.7: Connections with noneuvclidean geome(ries

Recall that ihe isotopies lift the conventional Euclidean meiric & = diag. (1,
1, 1) into the isomeirics & = T8 with a well behaved, but otherwise unresiricied
Tunctional dependence on time t, local coordinaies r and their derivatives of
arbitrary order, 8 = 8(i, r, r, ¥, ..). The first noneuclidean property of the
isoeuclidean geomeiry, apparently presented here for the first time, can be
expressed as follows.
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Lemma 2.2: Isoeuclidean spaces are curved unless the isomeliric is
independeni on the local coordinates, but dependent on fhe remaining
variables, 8 =8(t, t, ¥, ..).
Proof, A4 given n—dimensional isceuclidean space E(r,8,R) admiis the non—
nuil ChristofTel symbols {connection)

‘ 30y & 8y 9 By
Pl = p8U(—— b ¢+ Ty (2.261)
gr” art a7)
which characterize the quantities
, ary ), - .
Rl = —1 - 1k ) opa - pdpd (2.2.62)
Ih gk gl dk qh 1k

representing non—null curvature, which is identicaily null when the isometric is
independent from the local coordinates. .¢.d.

In short, the isoeuclidean geomeiry provides a symbiotic unification of the
Euclidean and Riemannian geomnelries. The curved character of the isoguclidean
geometry has been computed in the projection of the isospace in the original
space. Nevertheless, as we shall sec later on in this chapter, the above curvature
persists even in isospace.

This author must admit that the emergence of curvalure on an isospace
which is isofiat was basically uncxpected and, for this reason, i was identified
for the first time only after some twelve years following the identification of the
isoeuctidean geomeiry [28l. As we shall see, the property is nontrivial, inasmuch
as, when extended io the isctopies of cur space—time, it permits a geometric
unification of gencral and special relativities with ensuing operafor form of
gravity with curvature embedded in the unil of relativistic quantum theories.

The curved character of the isocuclidean geomeiry when projected on
conventional spaces over conventional fields can be studied via the same methods
used Tor the Riemannian geomelry, only referred o & different unil and il will
not be studied here for breviiy.

A few comments are in order on the comparison of the isceuclidean
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geomelry and other noneuciidean geomeiries (see, e.g., ref.s [36,37) and quoted
literature). As well known, Euclid’s Fifth Axiom led to a historical controversy
that lasted for two millennia, until solved by Lobacevski in a rather unpredictable
way, via the introduction of a new, non—Euclidean geomnelry today appropriately
called Lobacevski geomeiry (see lloc. cit.]).

Ag it is alse well known, Lobacevski geometry is abased on certain liftings
of Euclidean expressions, allthough defined on the conventional unii. Thus, the
Lobacevski and isoeuclidean geometries are siruciurally different.

Nevertheless, it is important to understand that the Lobacevski geomneiry
is a particular case of the projection of the isceuclidean geometry in the
Euclidean plane. To sce this point consider the following celebrated
transformations

X + a y(1-a2)
K= e y = — al<l, (2.263)
1+ ax 1 + ax
which have the peculiar properiy of carrying straight lines into straighi lines and
circles into circles (see ref. [28] for details) while keeping ihe unit the same.

Now, the isoeuclidean space E@,8,8) of class 1 in two dimensions can be
equivalently reinterpreied as an ordinary Euclidean plane EF,8R) in the new
coordinaies

¢ = bk, y, LD x, ¥ o= By, )y, (2.2.64)

under which we have the identity

XX +yy =xbZx + yhity (2.2.65)

Ii is then evident that Lobacevski transformations (2.105) are contained as a
particular case of the much larger class of isotransformations (2.107).

The connection between Lobacevski and isocuclidean geometries can
therefore be expressed by saying thai:

A) ihe Lobacevski geomelry identifies “one” particular lifting of the
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Euclidean geomelry preserving siraight lings and circles under the conventional
value of the unit; while

B} the isoeuclidean geometry identifies "an infinite class” of liftings of the
Euclidean geometry which preserve straight lines and circles under a joint
lifting of the unit.

Note finally that the Lobacevski geometry itself can be subjected to an
isoiopic lifting which has not been studied here for brevﬂty.6

Numercus other noneuclidezn geomeiries exist in the literature (besides the
Minkowskian [38], sympleciic [39}, and Riemannian [40] geometries. One
particularly intriguing geometry is the so-called nondesarguesian geomelry
studied by Shoeber 41}, which has a significant connection with these because it
is also capable of representing variationally nonseifadjoint (thai is,
nonhamiltonian) systems. As such, the nondesarguesian geometry is capable of
representing some (although not all of) the conditions presenied in Sect. L.B for
the characterization of biological systems, such as nonconservative character and
irreversible structure.

This latter geometry too is different from the isoeuclidean one, agaim,
because it is based on the conventional unit. However, the underlying mapping
between the Euclidean and nondesarguesian geomeiry is also coniained as a
particular case of the infinite transformations (5.2.72) of the isceuclidean
geometry.

A similar situation also occurs for lhe Finsiarian geometry [40] which is
particularly sulted to represent anysoiropic struciures due to a preferred
direction, which is usually reached via the factorization of such direciion in the
metric itself. As such, the Finslerian geometry is also significant for the
representaiion of anisotropic features in biological structures. However, it is easy
to see thai the Finslerian geomelry are a particular case of the isceuclidean
geomelry, the latter being much broader in siructure and content.

These comments are significant o focus the attention on an additional
reason for our selection of the isceuclidean geomelry over other possible choices,
its "direct universality” that is, its capabilily of incorporating "all” infinitely

6 Note that the Isolobacevki geomeiry is no longer contained as a particular case of the
isoeuclidean geometry hecause the original axioms of the two geometries are different.
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possible maps of the Euclidean geometry, including singular maps for Class IV
and discreie maps for Class V (universality), directly in the coordinates of the
observer (direct universality).

In summary, the geomeiries studied in this section are the following:

1) Isoeuclidean geometry of Class I, used for the characterization of
biological structures evolving forward in fime;

4) Isodual Isceuclidean geometry of Class II, used for the
characierization of biological struciures evolving backward in time.

5) Isogeomelry of Class ITI, used for the characterization of biological
structures requiring time—inversions,

&) Isoeunchidean geometries of Class 1V, used for biclogical siructures
with singularities; and

7) Isoeuciidean geometry of Class V, used Tor the most general possible
isotopic renresentation of biological structures.

2.3: Isotopies of classical and guamtum methods
2.5.A: Introductory analytic profiles

We are now in a position to initizte the study of the third and final class of
| isotopic methods needed for biotogical applications, the isotopies of Newionian,
1 analytic and quantym mechanics.

‘ The fundamental equations of contemporary mechanics are Newionbs
equations for a systern of N particles with non—null masses in the second—-order
form

m, dv, /4t = FML 1, v+ B4 (T, ), 2.5

a=L2..N K=123(=xyz), i, =6n,/di,m,=0,



3,

Ruggero Marig Santilli -~ 79 ~ Theoretical Biology

which are defined in the space
8¢, r, v) = BO<E(r,8,R=E(v,8,R), (2.3.2)

where E(v,8,R) is the tangeni space of E(r,8R), or in their equivalent first-order
(vector-field) form

7

fooaka s a3
fodrte/dt Vea = Bgg /My »
(ap#/at) = | ? = (=H) = < >
dpka /dt / ]FSAka(t, T, p) + FNSAka(t? T, p)
(2.3.3)
which are defined over the space
Sle,r,p) = E{t<Er,6,RI<E(p,8,R), (2.34)

where E(p,8,R) is the cotangent space to E(r,3R).
As it is well known, conventional analytic methods are derivable from the
canonical first—order aciion principle

t { i
8, Lk vide=3 [ lpead =l x, plet) =5 thl *[ R, )b - HE, Bt = g,
R = (R} ={p0), k=15L2.,N p=12.,28. (235

The wvariation of the above aciion then vyields the contemporary
formulation of Lagrange equations along an actual path P°

;o d sl 3L, T, v)
{ — - Y=o, 238
di 8k ok

with corresponding conternporary form of Hamilton's equations in the ynified
notation b = {4 = (r¥, p)
%r dn” o Hi, B
gy — — ——— (P = 0, (237)
Todt atH
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where @), is the familiar exact canonical symplectic iensor (see App. C)

Opsen — gy
(@) = (8, R, - 8,Ry) = , (2.38)
v O

As 1t is also well known, the above methods, and the knowledge of the
canonical action in particular, admit & unigue and vnambiguous map to operator
formulations, resulting in contemporary guanium mechanical formulations.

The fundamental problem addressed in this section is that all the above
classical and quanium methods are structurally insufficient for the
representation of biological systems as outlined in Sect. 1 for numerous
independent reasons, thus establishing the need to seek covering rmethods.

To begin, all contemporary classical and quantum formulations are solely
applicable to local-differential systems, as demanded by the underlying topology
and geometry, while we are primarily interesied in non-local integral systems.

Also, the above methods are solely applicable to particles represented as
perennial and immutable massive poinis, while we are interested in representing
particles as extended, nonspherical and deformable.

Finally, the contemporary Tormulations of Lagrange’s and Hamilton's
equations can only represent a rather small class of Newton's equations (3.1) in
the frame of the experimenter, those verifying the conditions of variational
self-adjoininess 4], while we are primary inlerested in representing well

behaved, but otherwise arbiirary nonpoleniial-nonseffadjoini systems.

| To the author’s best knowledge, all atiempts existing In the litzrature for
the broadening of the above methods are equally insufficient for representations
zlong Conditions 1)-5) of Sect. 1.2. These studies are reporied in detail in

monographs [4-5,7-8,9-10], and can only be outlined here.

" The Tirst broadening of the representational capabilities of the canonical
action is given by the remoeval of the resiriction that the representation occurs in
the local coordinates {i, r, v} of the observer (called direct represeniation), thus
permilting the use of the iransformation theory and the representation of an
equivalent system in another systems of coordinates {t,.r',v) (called indirect
representation).
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Under certain continuily and regularity conditions here ignored for
sirnplicity [4,5], the latter approach does indeed permit the achievement of the so-
called indirect universality, that is, the representation of all possible Newtonian
systems (3.1) (universality) in an eguivalent coordinate sysiems (indirect
universality). This is the Lie-Koening theorem [3] as the anzlytic counterpart of
the Darboux’s theorem of the symplectic geometry.

The first basic insufficiency is that the above indirect universality is
solely applicable to local-differential sysiems, while the Lie—Koening and
Barboux theorems cannot be even Tormulated for nonlocal—integral sysitems.

But even when applicable to local-differential systems, the above indirect
universality has rather serious drawbacks for applications. Firsl, the
transformations needed for the reduction of 2 nonhamiltonian system in a given
frame to a Hamilionian form in another frame are non highly noncanonical and
linear and, as such, the coordinates of the equivalent Hamilionian form are not
realizable in laboratory (as an example, no biological observation can be done in
a frame in which ' = exp{lNrv)).

Also, their nonlinearily implies the loss of the original inertial character of
the reference frame, with conseqguential loss of conventional relativities (in Tact,
the Galilel and Einstein relativities are solely applicable 1o inertial systems, as
well known, thus preventing the use of the Lie—Koening and Darboux Theorems).

The above drawbacks imply the fundamenial condition of our studies
according to which analyiic methods must be selected in such a way to provide
a direct representation, thal is, 4 represeniation in the fixed coordinates of the
observer. Only after the achievement of this representation the use of the
transformation theory may have g physical relevance.

The fundamental analytic problem studied by this author in monographs
[4-5,7-8,9~10) can therefore be formulaied as follows:

Fundamental analytic problem: Identify generalized analytic methods
which perinil direct universality for ail possible well behaved nonlinear,
noniocal and nonhamilionian systems.
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The first solution of the above problem was reached by the originaiors of
analytic dynamics, Lagrange and Hamilton themselves, because they formulated
their celebraied equations, not in the form of current use in the mathematics,
physics and biology, Eq.s (3.6) and (3.7), but that with external terms representing
precisely the forces F'S4 a5 we shall reviewed in Part II1.

According to this historical conception, the funciions today called
Lagrangian or Hamiltonian represent all potential forces, while all remaining
contact—nonpotential forces are represented wilh the external terms. The above
representation of Newlon's equations does indeed verify the crucial requirement
of occurring in the fixed inertial frame of the experimenter, the direct
represeniaiion is manifestly universal, and its construction is iruly simple and
immediate. Unfortunately, analytic equations with external terms are not
generally derivable from a conventional variaiional principle, thus losing the
contemporary analytic character. More seriously, analytic equations with external
terms imply ihe necessary abandonment of Lie’s theory and related symplectic
geometry with consequential major siructural departures from coniemporary
methods, as indicated in Part I11

The Tirst partial solution of the fundamental analytic problem here
considered which preserves the Lie characier of the underlying algebra, with
consequential preservation of the sympleciic geomeiry, was reached by Santilli in
monograph [5] via a step-by-siep generalization of Hamiitonian mechanics called,
Tor certain historical reasons, Birkhoffian mechanics.

The main idea is o lifi the canonical action principle (3.5) inio the most
general possible Tirst-order action of the Pfaffian type

i ,
sh= o [R®VAD* - HE b at] = 0, R = (P ph Q¥ pl),  (239)

oy

which characterizes Birkhorfs equations

( ab” 3 Hii, v
Lo — - je) =0, (2.3.10)
dt apt
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where €, is an exact, nowhere degenerate (and therefore symplectic) tensor
although in its most general possible realization

Q= Ry ~ 3y Ry. (2.3.11)

The conventional Hamilton's equations are an evident particular case for R = R* =
(p, 0), as the reader can verify.

A "Theorem of Direct Universality” was proved in ref. [5], Sect. 4.5,
aecording to which (again under certain topological condilions here ignored)
Pfaffian actions (3.9) can represent all possible analytic, regular and variationally
non-seif-adjoini Newtonian systems (universality) directly in ithe frame of the
experimenter (direct universality).

The above approach permitied the resolution of the major drawbacks in
the use of the historical analytic equations with external terms, the loss of Lie's
theory, the sympleciic geometry and of the action principle. However, subsequent
studied indicate that, despite its generalized character, Birkhoffian mechanics
resulted to be insufTicient for the desired cbjectives.

In Tact, Birkhoffian mechanics can only represen{ locai-differential
systems, due to the sirictly local-differential character of the underlying
symplectic geometry and, as such, it is not suitable for the desired representation
of nonlocal systems. (

Moreover, the operator image of Birkhoffian mechanics resulted 1o be
structurally beyond the guidelines of quanium mechanics (e.g., it would require a
"wave function” ¥(t, r, p) with a necessary joint dependence on r and p which is
outside all teneis of guanium mechanics, see App. 2.8 of ref. [10].

In view of the above insufTiciencies, after completing the rather laborious
task of construction the step—by-siep Birkhoffian generalization of Hamiltonian
mechanics, this author was forced to seek more adequate analytic methods for
the direct representation of well behaved, but otherwise arbitrary, linear and
nenlinear, local and nonlocal and Hamiltonian or nonhamilionian systems.

Such a classical solution was necessary for this author (a particie
physicist) to initiaie gquantitative studies on the historical open legacy due to
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Blochinisev, Fermi and ofhers that the strong interactions have a nonlocal-
integral component due o muival overlapping of the wavepackels and charge
distributions of hadrons. [n fact, all hadrons have approximately the same size
which coincides with the range of the strong interactions, = 1 fm = 10713 e,
thus requiring the necessary condiiion of mufiual penetration of hyperdense
particles, resulting in the most general known nonlinear integro-differential and
nonhamiltonian equations.

In this memoir we review a solution of the Tundamental problem herein
considered along the latter lines, which was submitied Tor the first fime in refs
[32-35], and which is permitied by the isotopies of the differential calculus of
Sect. L1

The most Tundarmental step is the [irst structural generalization of
Newton's equations in Newtfonian mechanics on known scientific record since
their inception in the 1600 Such a generalization is then at the Toundation of
the generalized analyiic and gquantum methods. The limitations of local-
differential and point-like characler are inherent in the very structure of
Newton's equations themselves, thus requiring a resolution at the Newtonian level
and prior to any subsequent analytic or quantum profile.

In Tact, classical Hamiltonian mechanics has been constructed to represent
the conventional Newton's equations and, in turn, guantum mechanics has been
constructed as an operator image of Hamilicnian mechanics. But the applicability
of these mechanics is essentially restricted to local-differential and potential
systemns, while the advancement of knowledge in various disciplines is requesting
the treatment of nonlocal-integral and nonpoteniial systems. 1t then follows that
a possible broadening of coniemporary dynamics must originate {rom iis
foundations, Newton's eguations, which is done in the next section.

Our analysis is sirictly local, owing to the need io identify methods which
are specifically applicable in the given, Tixed, inertial frame of the cbserver. The
mathematical reformulation of the result in the coordinate-free language is left
to interested mathematicians.

7 All other generalizations of Newton's equations are of relativistic, gravitational,
continuous and other types, but none of them is of Newronian characier, that is,
conceived specifically for Mewtonian mechanics.
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2.3.B. Isotopic lifting of Newionian methods

In this section we review the nonlinear, nonlocal and nonhamilionian
isotopies of Mewton's equations as characterized by the isodifferential calculus
and first presented in ref.s [32-351 The isotopies have been selected over a variety
of other possibilities because of their axiom—preserving character as well as of
the consequential broadening of classical and quaniwm mechanics oullined in
subsequent sections.

The contemporary formulation of Newton's equations, which as remained
essentially that originally Tormulated by Newtion in the [800's, requires the
tensorial space S(t,x,v) = E{OXE(lr,8RXEW,8,R) where E(t) is the one-dimensional
space representing time i, E(r,8R) is the conventional three-dimensional
Euclidean space with local trajectories t(t) = {X) = {x, v, z} and E(v.3R) is the
tangent space TE which, at this Newionian level, can be considersd as an
independent space representing the coniravariant velocities v = (v} = ark/at.

Newton's equations Tor one particle of mass m = const. (# 0) moving within
a resistive medium (e.g,, our atmosphere) can then be written

mdvy /dt - FALTY) - FRAL LY =0, k= 1,23(=xy,2, 2312
where SA (NSA) stands Tor variational self-adjoininess (variational non-self-
adjointness), i.e. the verificaiion (violation) of the necessary and sufficient
conditions for the existence of a potential UlL, r, v) originally due to Helmhoitz
(see monograph [7] for historical notes and systematic studies). It should be
recalied that in Newlonian mechanics the potential UL, 1, v) must be linear in ihe
velocities to avoid a redefinition of the mass,

Ult, %, v) = Ui, 0 o + U 0. (2.3.13)

Eq.s (3.11) can then be written
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dvi, 4 28Ul x v 3 UR, x, v 4 MSA
{ m— - . + ~ FMNSA (1, %, v) } =
dt dt avk axk
roodvy o Ult,x)  dv® 8 Uglt, x) NSA
= {m - + ° - FNSAK(R X, V}} =0,
dt axs dt axk
(2.3.14)

namely, they are not in general derivable from Lagrange’s or Hamilton's equations
in the local chart {t, v, v}, as well known (4,5l The extension {o systems ¢f n
particles with masses my, & 0) is straighforward and will be ignored for Drevity.

The Tirst siep in the application of all isotopies is the identification of the
independent variables and related basic generalized units. The independent
variables in Newton's equations are time i, coordinates 1 and velocities v. The
fundamental assumnption for the isotopies of Newton's equations is therefore the
1ifting of the conventional unii +1 for all the above variables inio the following
generalized units

Time isounit: 1, = T,

Space isounit: T, = T,

velocity isounit: 1, = T,7". ' (2.3.15)
For simplicity we assurne hereon 1. =1, = 1, and therefore restrict the

description to that characterized by the isounii of space and time oniy.
The representation space of the desired isciopic image ol Newion's
equations is given by the Kronecker product of isospaces

SLEY = ROEGBREGVAR) , (2.53.16)

with fotal isounit
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1 (2.3.17)

For clarity, we continue to differentiaie the isotime 1, isocoordinaies @)
and isovelocities V() from the original respective quantities i, r¥ and v, with
the following relationships

~ %
r, W=k

Hi

,"Ej=t9 %k = lI"k %k = %ki%i

R R P TR I e (23.18)
Also, we shall continue to ignore throughout this section the isoscalar character
of the coordinates because expressible by the simple factorization of their
respective units which then cancel out in the product, e.g., %0 = (mXI<T=[ = rx{,

Definition 2,10 [32-35F The isotopic lifting of Newions eguations in
isospace 8t,V) of Class i1}, here called “isoiopic Newton equations” , are

given by
o @3 RV 0GE V)
e, v = m - s + - =
dt dt Dk »k
A 000 8 0%
= m - — - — = 0 .
d 31! at are

O T, %) =001 9K + 0,8, 5, {2.3.19)

where m = const (% 0) is the "isotopic mass”, that is, the image of the
Newtonian mass in isospace and one should note the preservalion of the

linearity of isopotential 0 inV¥.
We are now eguipped to prove the Tollowing:

Theorem 2.3 lloc. citt All possible sufficiently smooth, regular, but
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nonlinear, nonlocal—integral and variationally non-self—adjoint Newfon's
eqguations (3.14) always admit in a star-shaped neighborhood ¥8) of a
point {t, r, v) the representation in ferms of the isolopic Newion's
equations (2.3.19)

o avy ¢ oi,T, v o0(, T, ¥)

m - + = (2.5.20)
dt at 3ok ATk
. dv; st r)  dr® g U, 1)
= T { M - : + 0 _ - FNSAi(t, T, V) } =
dt ars di ort

Proof When projecied in the original space S(t, r, v), Eg.s (3.19) can be
written

dlyt ) i 80, T, ¥ (Y
M, ——— - Tp— T ———— + T} o =
dt dt av! 8 x'
. d Vi . a[Ul(fL, r) aUO(L r) . di‘
=m T, T =T — VS T ——+ m T ———v;=0.
dt ars gl dt

Sufficient conditions for identities (3.21) are then then given by

m Ty dv, /dt = mdy, /di,

3t %) aU;{t, x)
T Vi o= v3,
8 x5 88
80t %) 8l L, x)
3 x! %

dii(J@ x, ) ) ) .
BTy = = AR )
dt

which, under the assumed continuity and regularity conditions (see |31 for details)
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always admifs a solution in ihe unknown quantities m, Ty, !, U and 0, for
given equations (3.14). In fact, system {3.21) is overdetermined and the following
solution exists Tor diagonal space isounit and constant time isounit,

T =8 efk(t' o V), 19, = constant >0, (2.3.23)
for which
mTy=m, Ot =10, Ot = Uy,
fel,r,v) = - ! f Ot de FSA (1, 7, v) / v, (3.2.24)

where there are no repeated indices, M is constant and the Tunciions fy are
computed from Eq.s (3.22b). q.e.@

The primary motivations for the consiruction of the isotopic Newton's
equations are expressed by the following properties with self—evident proofs.

Corollary 2.3.A [32-351 The isotopic Newion eguations permii a
represenialion of the aciual nonspherical shape of the body considered
and of all its possible deformations via the generalized unii (or isotopic
element) of the theory.

Eecall that Newton's equalions were based on the Galilean approximaie the
body considered as a massive point. The poini-fike representation of particles
then implied only action-at-a—distance, potential inieractions with conseguential
analytic representations via Hamilton'’s equations as well as under symplectic
map into quanium mechanical formulations,

& tepresenialion of the extended character of particles in conventional
methods is reached in second guantization via the form faciors However, this
representation is restricied to spherical shapes from the fundamental syrmmetry
of quantum mechanics, the rotational symmetry O(3). Moreover, the laiter
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symmelry is known lo be a symmetry of rigid bodies. Form facicrs cannot
therefore represent the deformaiions of perfecily spherical particles under
sufficiently intense external interactions which is studied via other rather
complicated procedures.

A first motivation Tor the studies prasented in this memoir is to introduce a
representation of actual extended, nonspherical and deformable shapes of
particles at the primitive Newtonian level, which then persists under classical
analytic representations as well as under maps to first quaniization.

The isotopic Newton equations do indeed achieve these objectives by
setting the foundations for possible new advances in classical and quantum
treatment of biological structures. The objective is achieved via the new degrees
of freedom of the generalized unit of the theory which are evidenily absent in
the conventional Newtonian, classical and quantum formulations.

As a simple case, suppose that the body considered is a rigid spheroidal
ellipsoid with semiaxes nlzg nzz, n32 = constants. Such a shape is directly
represented by the isotopic element of the theory in the simple diagonal form (see
Sec. 11.2, ie,

T = diag. (n; %, ny%ng %), m = const>0, k=123 T,L=1 (2325

The representation of the shape in isospace 8, T, ¥) is then embedded in the
isoderivatives of the isotopic Wewion equaiions and, when projecied in ihe
conventional space S(t, 1, v) can e wriiten

Cdy 4 Ay el 1)
m Ty - T — . Vo Ty ——— =10, (232
gt a5y B!

namely, the shape terms Ty Yare admitted as faciors.

Note that the represenialion of shape occurs only in iscspace because,
when projecied in the conventional Euclidean space, the shape lerms cancef out
by recovering the conventional poini-iike characier of Newton’s equations. 'This
illustrates the mechanism of ihe isolopy in the representation of shape.
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Moreover, the nonspherical character of the shape emerges only in the
projection in ordinary spaces, because ai the isotopic level ali pariicles are
represented via the isosphere, i.e, the perfect sphere in isospace (Sect. 11.2),

A

12 = (xln2x! + g2 + Fng? ) x e RAD (2.327)

The representation of shapes more complex than the spheroidal eilipsoids is
possible with non—diagonal isounits. The representation of the deformations of
the original shape due to motion within resistive media or other reasons, can be
achieved via a suilable functional dependence of the Tki terms in velocities,
pressure, etc. (see [7-10] Tor various applicaiions in classical and guantum
mechanics).

Corollary 2.3.B: The isotopic Newion equalions permil a novel
representation of nonpotential, variationally nonselfadjoint forces via the
isometric of the underiying geomeiry, according to the ruies

mdvy /6t - FOA(L T v = T md Ty /at, (2.3.28)

while leaving unchanged the represeniation of conventional self-adjoint
forces (excepi for the consiant factor Ty of Uy).

In fact, the non—self—adjoint forces are embedded in the covariant
coordinates in isospace ¥; = Tijvjy where the v; are the covariant coordinates in
conventional space. The novelty therefore lies in the fact thal nonseifadjoini
forces are represenied by ithe isogeomelry ifself, thus providing another
molivation for the isotopies.

The simplicily of representaticn (3.21) should be kept in mind and
compared o the complexiiy of the conventional solution of the inverse problem
of Newtonian mechanics [4,5] i.e, the representation of nonselfadjoint systems
via a Lagrangian or a Hamiltonian, Moreover, under the assumed conditions, the
latter exists in the fixed coordinates (t, r, v) of the observer only Tor a resiricted
class called nonessentiaily nonselfadjoint [loc. cit.], while isorepresentation (3.21)
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always exist in the given coordinates (i, v, v} under the same conditions.
The following examples illustrate isorepresentation (5.21). The equaiion of
the linearly damped particle in one dimension

mdav/at + yv = 0, yeRh+ ¥, v>0, (2.3.29)
admits isorepresentation (3.21) with values
T =g, = g=U, =0, (2.3.30)

where SO is a shape facior, eg, of the spheroidal type (3.25) which s prolate in
the direction of motion. In this way, the isotopic Newton equations represent: 1)
the nonselfadjoint force FNSA - — vv experienced by an object moving within a
physical medium; 2) its extended character (which is necessary for the existence
of the resistive force), and 3) the deformation of the criginal shape (in the case
considered a perfect sphere) caused by the medium.

The equation for the linearly damped harmonic escillator in ong dimension
in the x—axis

m¥+ vz +kx=0, ke Rinw®), k>0, (2.5.31)

admits isorgpreseniation (3.21) with the values
T =8, VVIM g = -k, =0, T =1, (2.3.32)
where SO represents the shape of the body oscillating within a resistive medium.
The interesied reader can construct a virtually endless variety of
isorepresentalions of non-self-adjoint forces. A systematic study will be

conducted elsewhere.

Corollary 2.3.Cs Tae isoiopic Newion egquations permit the
o £ G i
representation of nonlocal-iniegral Torces when compielely embedded in
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the isounit of the theory.

The above occurrence is permitted by Tsagas-Sourlas integro-differential
topology of isomanifolds MI(E) reviewed in Sect. IL1. Consider as an example the
integro—differential equation

mdv/dt + v v2 de do %o, .) =0,  y>0 (2.3.33)

representing an extended object {such as a space—ship during re—eniry in our
atmosphere) with local-differential center—of-mass trajectory r(t) and corrective
terms of integral type due to the shape (surface) ¢ of the body moving within a
resistive medivm, where T is a suitable kernel depending on ¢ as well as on other
variables such as pressure, temperature, densily, etc. The above equation admits
isorepresentation (3.21) with the values

-1
vm 1) ,do Fo, )
T =8¢ Jo ,To= 1 U = Uy= 0, (2.3.34)

where S5 is the shape Tactor, which is admitted by the integro-differential
topology of the isomanifold M(E) because all integral terms are embedded in the
isounit. Similar iscrepresentations can be easily constructed by the interested
reader. u

It should be recalled that the representation of nonlocal-integral terms is
prohibited in Hamilltonian mechanics because the underlying geometry and
topology are local-differential. Moreover, whether in physics or biology,
nonlocal-integral effects are of coniact zero-range type. Their representation
(which can be sometime seen in the literature} via "integral potentials” has no
mathematical or physical sense of any nature.

As a Tinal remark, the reader should be aware that the isonewton’s
equations have been formulated here Tor Class [11, thus including thosse for Class
LT > 0, and those of Class 11,1 < 0. The former are based on a positive-definite
module and, therefore, all characteristics are positive—definiie as in conventional
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siudies. However, the latter are based on a negative-definite norm (Sect. i1.1), thus
implying all negalive—definile characteristics, beginning with fime moving
backward, but also including negative-definite mass, as well as all other
characteristics. Finally, the reader should remember that the map from cne to the
other can be done via the isodual map

Ilt - ’]td = _,IL’ ’[ - ,[d' = _Tl . (2335)
The study of the remaining aspects of isedual Newion's equations is left to the
interested reader.

The isodual Newion's equations can then be written

a%, 4 g ot 999 2%09a9, ¢, ¥9)
md——— - — + = (2.3.36)
il ad gk pikd
dv; o Ut r)  dr’ d UL, 1)
= - Tki{m—— - + , - FNSAiL, r,v)1=0
dt ar® dt ar!

where all operalions are iscdual, including products and division.

2.3.C: Isotopies of Lagrangian methods

We now show Ihe derivability of the isctopic Newion eguations from a
first-order isovariational principle and then study the isciopics of Lagrange’s and
Hamilton's mechanics.

Recall that the canonical action functional (3.5) is called of firsi-order
when its integrand depends on the first-order derivatives (velocities, L = L{t, 1, v}
it is called of second—crder when the infegrand depends on the second—order
derivative (ihe accelerations a), L = L{t, 1, v, a);, and so on.

FPropesitien 2.6: All action functionals of second or higher order in
Euclidean space BEIEFSRIE(v,8,R) whose integrand is sufficienily
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smooth and regular in & star-shaped region D of their variables can
always be identically rewritten as first—order action isofunctionals in
isospace of Class 1[I BOXE[R,8RxE(V,SR) which are bilinear in the
velocities,

R £ 1 .
A= rtl dr &lt, %, v, 8,.) = jﬁtl gt o, % v,
f.= 'é“ m :\}i SU i\/J - Hi&, I):() 81] Vj - UO&‘ %) =
= 4 G - 00 E - 0,0, R, (2337)

In fact, identities {3.35a) are overdetermined because, for each given &,
there exist infinitely many choices of m, T, Tﬁj., Uy and 0, We shall assume that
integral terms are admitted in the integrand provided that they are ail embedded
in the isometric.

The isovariational calculus is a simple extension of the isodifferential
calcylus. In fact, we can write the following isovariation along an admissible
isodifferentiable path P

AP = |, TR(HE — 8 ———) [P) =
! C- T
oty L@ oL
<y Ca—-—— ot (2339
E

where we have used isointegration by paris.
The above variational principle then yields the jsolagrange equations first
introduced in Ref.s [32-35]
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where the explicit expression of the isoderivatives is understood.

The isotopies of the remaining aspects of the calculus of variations (see,
e.g., Bliss [42) with consequential isotopies of ihe optimal control theory are
intriguing and significant for theoretical biology, but ihey cannot be studied here
for brevity.

We shall say that the isotopic Newton equations (3.19) admit a direct
isoanalytic representation in ierms of the isolagrange equations when there
exists one isolagrangian L{i, 7, V) under which all the following identities occur

{ _i_ 3 Lirw) CRVOS MY }gg _

g vk A
dvg 3 0., %) g7l 30, 1) 1 ISOSA
= { m — - -+ )‘ o=
gt %! at 3k
_ dv; ault,r)  ar® 3 Uglt, 1) . N
= Tkl{m——— e e =~ FIAg ) j= 0
at ar’ di ar!
i 9 = 4ok e — 0, 0 =07 K+ O, 1), (2.5.40)

Theorem 2.4 (Direct Universality of Isolagrangian Mechanics) All
possible sufficiently smooih and regular, nonlinear, noniocal and non-
rirsi~order Lagrangian sysiems always admit a direct isorepresenialion in
isospace via the isolagrange equations {2.39) in a star—shaped
neighborhiood of a poini of iheir variabies.

Prook. The universality of the isorepresentation follows from the fact that
conditions (3.22) always admit solution in the ynknown functions, as well as from
the universality of the jscaction. g-e.d.

Recall that Newionian systems are usually referred to systems with local-
differential forces depending al most on velocities. Theorem I11.3.2 includes also
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non-Newlonian forces, e.g., forces of integral type or acceleration—-dependent.
Disconiinuous Newtonian forces, such as those of impulsive type, have been
removed from the theorem because of lack of current knowledge on the topology
of isospaces of Class V with discontinuous isounits, although such an extension is
expecied to exist, and its study ts left to interested readers.

Note The simplicity of the construction of an isclagrangian representation
as compared Lo the complexity of the construction of a conventional Lagrangian
representation 14,5), when it exists.

Again, we have expressed Eq.s (3.39) in their Class III form which is the
union of Class I and II. The equations of the latler class can be written in isodual
isospaces 87 = E9¢IeoGd 59 %0459 8¢ 39)

gd 59 pdpdsd o) a9 199 34 30

— dy -
nd 3 ykd 35kd } Po =,
RV XAy ol T, V)
T i ~X - RS } (po) = 0, (2.3.41)
O@: 3 V( 6 H.n

and they provide a direct analytic representation of ihe isodual Newton's
equations.

2.3.D0. Isotopies of Familtonian methods

We now study the isotopies of the Legendre iransform based on the
isedifferential calculus. For this purpose, we introduce the following
isodifferentials in isospace 8, 7, D) = EEXEGS R=ERSR)

81 = Toa, ar* =1kKarl, a3l/5% = 6ij‘,eu:.g
W = Tilab. 8K =%aph Bp /8Dy = 5, ete. (2342)

with isouniis
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Tp = diag (1,1, T), Tp = diag (T, 1) (2.343)

where the use of ihe isotopic element T, in liew of ihe isounit 1, for the linear
momentum is requested by its contravariant character.

1t should be indicated that, in view of the independence of the variables Py
from T¥, we can introduce a new isounit W = 27! for the isospace B(B,SR) which
is different than the unitT="T"" of isospace BF8R), in which case the total unit
is T, = diag. (I, 1, W). Selection (4.43) is the simplesi possible case with W = T
which is recommendable on geometric grounds [35]. Other alternatives belong the
the problem of the degrees of freedom of the isotopic theories which is not
studied at this time for brevity.

We now introduce the isocancnical momenium via the fTollowing
prescriptions

b = ——— = mv - UL ), (2.3.44)

under the condition of being regular, thus invertible, in a (2N+1)-dimensional
region D of points (i, 7, p)

FPLLEY ,
pet. | ————— | @ = 0. (2.3.45)
pelavl

thus admitting a unique set of implicit functions 9% = %, T, P). The isolegendre
transform of Class [11 can then be defined by [32,34]

AAAAA

(L5 9050 = b LT D) - s 3G D) WLt p) +
0 DI D)+ 00T = pepR/ah - DD ¢ 0D = AT D)
(2.3.46)

We are now equipped Io study the isciopies of Hamilton's principle. By

of
using the unified variables b= (B} ={i% ), & = @ 8 / &, and by
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introducing the notation
R =R, = {p0), p=L2.,2N k=0(2.,N (2.5.47)

the isocanonical principle assumes the Torm along an actual path PO

o T -t
a 10 =8j7[1 iy ark/a - ) () = 8%1 gR, S - 1) By =

z\ﬂn\ AtZM n é‘ " & N %’ i

= "‘y’\tl O\A[[b]pl'gﬁ;j -+ 8V1§5i_ + %I’l&?}(pk V< e H)(po) =
SR - ¢ a VKL |
zjﬁt gl b 18D — {\@k ) ) + — )& 1{P,) =
1 @ %, o @ i i
7 3 L
= g, @SB —— ¢ BE —— (R, A - AE)(,) =
6H acH

1y, MR, ne anv a0
5 )
TN g BV 1 a6H

The above principle vields the isohamilionian eguations of Class 111
introduced in ref s [32-35], which can be writien in conventional notation
i A, T, P apy Sf, T, p)

- =~ —— (2349)
dt By @ 3k

or in uniTled notation

oRe, iy B el

3 C VA o6H
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The above equations can be simply written in the following covariant and
contravariant forms, respeciively,

‘ an A0, 6
| T
& B 3 )
= gV —_— (2.3.51)
N 5

where the quantities

| éROV _ GRQH ONxN _EN)(N \
| (wHV) - ( AhH Y > = f r
| 0 Iy Oy
R 3R,y Oy Lo
apy - v 8 _ NxN - FN=N
b= { == ) o ). (2352
‘ o Inxy Oy

are the conventional covariant and contravariant canonical tensors, respeciively,
which hold in view of the properties of the isodifTerential calculus

3R, /8% = BR°, / obt (1.3.53)

The proof of the following property via the preceding results is then
evident.

Theorem 2.5 (Direct Universality of the Ischamilion Egquations):
Under sufficient smoothness and regularity conditions, ail nonlinear,
norndocal and nonhamilionian first—order systems admit 2 direct
representation in ferins of the isohamilion egualions in isospace in the
local coordinates of the experimenter.

The equivalence of the isolagrangian and ischamiltonian cguations under
the assumed regularity and invertibility of the isolegendre transform can be
proved as in the conventioneal case (see, e.g., 14], Sect. 3.8).
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We now study the Tollowing additional preoperty of isohamiltonian
mechanics which is imporiant for operator maps. The isotopic Hamilton—Jacobi
problem (see, eg., 15}, p. 201 and fT. for the conventional case) is the identification
of an isocancnical transform ynder which the Hamilionian becomes null. The
generating function of such a transform is the isocanonical action itself, resulting
in the end—point contributions

-~ I’ ~ Al - ~ Al ~n t
ah=af y Bk - RE) = [poak - ea] L @ase
6]

with isotopic Hamilton—Jacobi equations

oA 3h

-~ P = 0. (2.3.55)
a1 &k
plus initial conditions dA/87°K = B, °, where T° and p° are constants. The reader can
easily work out the remaining properties of the isohamilionian mechanics (see
also [10]).

Note the abstract identity between the conveniional and isotopic
mechanics Tor all positive—definite isounils. In fact, in this case at the abstract
level there is no distinction between dt and 8t, dr and dF, etc. The isolagrange and
ischamilion equations therefore coincide at the abstract level with the
conventional equations. This illustrates the axiom-preserving character of the
isotopies, this time, at the analytic level.

The connection between the Birkhoffian and the isohamiltornian mechanics
is intriguing. In fact, the Pfaflian action can always be idenlically rewritien as
the isotopic action

N A

o
J rrar - pewan =], PR, - AL Ba),

i

=t 0= H,%=q, (2.3.56)

and the genéral, totally antisymmetric Lie tensor OMY always admits the
Y Y Y

factorization into the canonical Lie tensor oMY and a regular symmetric mairix
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with elements T,V
I

9 nid

i
£

B 1Y, (2.357)

under which Birkhoff's equations coincides with the ischamilion's equations
(3.51b) Tor 1y = 1. As a result, Birkhoffian mechanics is a particular case of the
isohamilionian mechanics.

Despite these similarities, it should be indicated that the isohamilionian
mechanics is considerably broader than the Birkhoffian mechanics. In fact, the
former is based on an action of grbitrary order, while the latler necessarily
requires a first—order gction. Also, the former can represent integral forces, while
the latter cannot (because the underlying geometry, the symplectic geometry in
its most general possible exact realization) only admits local-differential systems.
Finally, ihe former is based on a broader mathematics, the isodiffereniial
calculus, while the latter is based on conventional mathermnatics.

Note that the isotopic Hamilton—Jacobi equations (3.55) imply the properties

9A /3P, =0, k=12 N, (2.358)

which are necessary for a correct isotopy of guantization siudied in the next
section.

By comparison, the Pfaffian principle implies the Tollowing BirkhoiTian
Hamilion-Jacobi equations (studied in detail in [15])

aA 3A 3k
+ Hit,rp =0, - Pylxr p),
8t ark apy

- Q¥ p) =0

(2.359)
Tor which 8A/8p, = 0 and the operator image of fihe theory would imply
waveTunctions” depending on boih r and p indicated in Sect. 11.3.1. As a resulf,
BirkholTian mechanics is not a suilable classical Toundation for the isotopies of
guanium mechanics, and the isohamilicnian mechanics is much preferable.

We should briefly mention that the isohamilionian mechanics provides a
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classical realization of the Lie-Santilli isoalgebras [11-14,21]. Recall that the
conventional classical realization of the Lie product is given by the familiar

Foisson brackets among two functions Alb) and B(b) in the phase space,

3A OB B  8A dA 9B
= N . (2360
apt abY

4, Blpoisson = ‘l
ort  opy ok ap

The Birkhoffian rnechanics characterizes instead the following brackeis
which are still Lie, yel of their most general possible iype in conventional spaces

gver conventional fields [5)

SA oB
L4, Blgjrn, = ——— @M ——, M = [0y ylp, (2.361)
an ab

The isohamiltonian mechanics characlerizes instead the following
isobrackets among isofunctions A(D), B(B) in iscspace Tirst introduced in ref.s [32-

351
8l oA 0B 3B BA
A Blisot, = 3 Tk s =
- Ky
8h OB 8B oA '
=TT T T (2.362)
ot opg ar Dy

which can be written in conventional spaces (from the isotopic character of the
metric in the contraction of the k—indicss)

BA aB B . oA
4, Bligot, = —— Tt rp ) gy —— = —— T p, )8y —
ary ép] ar; apj

(2.363)

As a result, it is easy o sce that isobrackets (3.662) verify the Lie axioms in
isospace but not necessarily in conventional space. Alsg, one should keep in mind
from the comiments at the beginning of this section that we have selected the
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simplest possible isotopies for which the isounits of the independent variables Dy
and 7% are inverse of each other. The use of different isounits Tor p, and s
evidently implies further differences between the isotopic and conventional
brackets.

We should also indicate that the ischamilionian mechanics provides a
classical realization of the Lie-Santilli isogroups or isosymmetries [11-14,211 In
fact, the integrated form of Eq. (3.510) yields the time evolution of a quantity At)
in isospace

oh 3 74 -
AGL) = BXp{i[“:'""Tﬁ:*“ - "—T

1} a0, (2.364)
ar  ap & op

which constitutes a one—parameter Lic-Santilli isogroup, with sirmilar structures
in higher dimensions.

Again, we have presented the isohamilton equations Tin their Class I
version including those of Classes | and II. The latter can be explicit written in
terms of the isodual isohamilton equations

&d BY d @d Hdﬁdq @d)
O - -
@ BB
an” Ak, B ( )
—— e . 2.3.65
R o>

and their provide a direct representation of the isodual newion's equations of
Sect. 11.3.2.

2.3.E. Isoquantization.

Since theoretical biology is today studied at both classical and quanium
tevels [1-3], it is imporiant for compleieness of this memoir to outline the
isotopies of quantum mechanics also known under the name o7 hadronic



Ruggero Maria Saniilli - 105 — Theoretical Biology

mechanics and studied in detail in monographs {9,101,

In this section we study the isotopies of the simplest possible guantization,
called naive iscquantization. The naive quantization is the map of ihe canonical
action functional of Eg. (3.5)

AL ) = kLol 1), (2.3.66)

where fi = [ is the unil of quantum rmechanics, which maps the conventional
Harnilton-Jacobi equations into Schrédinger’s equations for the energy and
momentium,

iall, r) /8t = Ht, 1, p) U, 1),
p Ol 1) = —iaule, 1) / ek, (2.3.66)
with canonical commutation rules in the ynified notation

[by,b,] = b, b, = by, = @y L. b= (% pg ) (2.367)

which are at the foundation of gquantum mechanics, as well known.

Since the generalized action A° is an isotopy of A°, Lhe preceding map musl
also subjected 1o an isolopy. We reach in this way the following naive
isoquantization [32,34]

Lo - -Gt ¢ a8, v o lndd D, h=1, (2368

where 1 is the nonlinear and nonlocal isounit of the isolopic Newton equations
with the additional quanturmn mechanical dependence on the wavefunction and its
derivatives. From the outsel one can iherefore see that hadronic mechanics
represent nonlinear and nonlocal systems.

The application of map (3.68) to Eg.s (3.55) yields: ihe isoschrodinger
equalion in {he energy
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iod/8 =iTad/at = AT = ARG, (2.3.69)
the isoschrédinger cquation in tHe momentium

(Tl o= b kb = -i86/8 = it lal/art, (2.3.70)

i

and the related fundamental isoccommutation rules
mu:ﬁu] - buTE’v - buT@H = mwﬁq b= {% b ! (2371

Note the abstract identity between the conventional and the isotopic
quantization, as illustrated by the preservation of the conventional sympiectic
structure w, in the transition from the conventional commutation rules (3.67) to
the isotopic ones (3.71).

The reader should be aware that rigorous studies conducted via the
isotopies of symplectic quantization by a number of authors have confirmed the
uniqueness of main resulls of this section.

2.3.F: Hadronic mechanics

The covering of guantum mechanics which emerges from the
isoquantization of isohamilionian mechanics, called hadronic mechanics, is based
on the following fundamenial struciures defined Tor isounits of Class 111 [10k

1) Enveloping operator algebra & with generic elemnents A, B, ... (which are
the same polynormnials in r and p of the quantum algebra only written in isospace)
called iscassociative envelope and characterized by the isoassociative product
AXB = AxTB with isoumit T =174

2) The isofields {(E,+%) of isocomplex numbers ¢ = cx], or its isoreal
particularization R(A,+%); and

A~ A

3) The isohiiberi space 3 with isosiaies . §, .., and isoinner product

e
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over
<Pld> = <P|xT|T>1 = 12 [aBxTxde 2@+5), (2.372)

The isotopies of the Schridinger’s representations have been identified in
the preceding section. The isotopies of the Heisenberg representation are
characterized by the ischeisenberg equation for an observable O (first introduced
in memoir [6b] of 1578)

140/ =[Ol = OXA~-AX*xO=0TA-0OTO, (2373
The operator image of the classical Lie—Santilli isobrackets is therefore given by
[A)Bl = A%B -B%B = ATR -~ BTA, {2.3.74)

and constitute the operator realization ¢f the Lie-Santilli isoalgebra [11-14,21],
The exponentiated form of Eqg.s (3.73) yields the time evolution of isostates

rY

O = 0% =13 T0% g c((dHTY 1188 = (IATH 3, (2375)

where we have used lhe isoexponeniiation of App. A, This yields an operator
realization of the Lie-Santilli isogroups with laws (expressed in terms of an
arbitrary isoparameters w)

O & 0w = Olw+ &), O % 0w = 00 = 1. (2.5.76)

It is evidenily impossible to review here the two monographs (9,10] on
hadronic mechanics. We can therefore limit ourselves to an indication of only
some of the basic aspecis.

As a peneral rule, hadronic mechanics preserves all abstraci axioms of
quanfum mechanics by conception and construction,. In facl, quantum and
hadronic mechanics coincide at the absiract level for all isotopies of Class [ for
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whicht=g C=¢ 3
hadronic mechanics to such an extent thai criticisms on the axiomatic struciure

3¢, etc. This suarantees the axiomalic consistency of

of hadronic mechanics uvltimaltely arc criticisms on guanfum mechanics.
Hadronic mechanics merely provides a more general nonlinear, nonlocal and
nonpotential realization of the same quantum axioms.
All quantum notions, rules and properties are therefore preserved by
hadronic mechanics. For instance, it has been shown that all quantitics which
1 are Hermitean for quantum mechanics remain Hermitean for hadronic
mechanics[10l Therefore, all conventionai characteristics which are observables
: for quanium mechanics remain observable under {sotopies. Even ihe explicit
form of the operators representing physical quantitics remain the same (such as
coordinates, momenium, angular momentum, energy, etc.) and only the
operations among them are generalized.
Similarly, hadronic mechanics preserves the notion of unitarity, only
reatized in the more general isounilary faw

oxof = ofx0 =1, (2.577)

Note in particular that any nonunitary iransform can be identicaily
rewrilten in an isounitary form. In fact, any given nonunitary transform Uxyl =
I, can be identically rewritien

UxUl =1 =10 =1, U=0xPV2 yxut = 0xTx0l =1, (2378)
This illustrates that nonunitarity is not an axiomaiic property because il can be

mmade io disappear under isotopies[9l.
The isoexpeciation vaiues of an observable H are given by

J> = EeRn+x, (2.379)

(where one should note the necessiiy, Tor consistency, that all producis are
isotopic) and ihey resulls to be ordinary real numbers® 110]. Moreover, the

8 This is due to the fact thal the isounits in the ratio cancel out, yielding an ordinary
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above iscexpeciation values coincide with the corresponding isoeigenvalues

B%|§> = L%

=B

-

> = (BExT)xTx|§>=Ex|{{> ,Fek, BEeR, (2380

exactly as in the conventional case. Thus, the “numbers” of the theory which are
confronted with experimental verifications are ordinary.

Similarly, the linear character of quantum mechanics (referred to the
algebra of operators on a Hilbert space) is preserved in its entirety under
isotopies, of course, when properly expressed in isohilberi space over an isofield
with all products isotopic. In fact, the transformations must necessarily be
isctopic for consistency, e.g., be of the type

>
>
e

T > 1T=A%x=AxTxI, p—>p =24 (2.3.81)

r@,
It
=
X
3
X
=
ez
M
layd

and, as such, they do indeed verify the condition of linearity in isospace called
isofinearity

g
%>
=>
s
pad
+
3>
30

v
o>

=
~—
tl
=53
5
>
>
3
JF
e
—
oS
>
~gi>

(2.3.82)

for all possible B, M € B, A € &, while its projection in the original space is
nonlinear, ¢.g.,

r'=ATrpog, o= AL R, DD (2.3.83)

As a result, the theory of isooperaiors on the isohilbert space X over £ is also
isolinear. The regaining of localily in isospace, called isolocality, is established by
the facl that the theory is everywhere local except at the unit. Finally, the
regaining of canonicily in isospace, called isocanoniciiy, is established by the
fact that the isoaction A® is of first~order and coincides with the canonical action
A% at the abstract level. The reconstruction of unitarily for nonunitary

transforms when writlen in isospace nhas been indicaied eatlier. The same

number, rather than an isonumber.
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reconstruction also holds for other properties, such as the reconstruction of exact
space-time and internal symmetries when believed to be conventionally broken
[0l

This illusirates the statement in Part I thai the isotopies map linear, Jocal
and canonical structures into the most general possible nonlinear, nonlocal and
noncanonical form and are capable of restoring linearity, locality and canonicity
in generalized spaces over generalized Tields.

We should also indicate that hadronic mechanics is invariant under its own
isounitary transforms, as established by the invariance of the isounit,

1T - v=0%1%x07 =1, (2.3.84)
the invariance of the isoassociative product
A%B - Ox(A%B)%0l = A%p, A =0%A%0 (2.5.85)

with conseguential invariance of the isoschrodinger and isobeisenberg equations,
isoexpectation values, isospecial functions, etce.

Most suggestive is the fact that the isoexpeciation values of the isounit of
Class II] reproduce the conventional number +i

~ ~
¥

<> = < PRI/ <P[*[> =
= <Pl TI R T|Gs /< TxE> = v 1<) 80

This indicates the "hidden” character of hadronic mechanics, which emerges as
being a form of completion of guanium mechanics essentially along ihe
celebrated argument by EBinstein, Podolsky and Rosen. In particular, the
isoeigenvalue equation (3.80) is an explicit and concrete realization of the “hidden
variables”.

The implications of property (3.86) are far reaching. By recalling Trom the
preceding section that the isounit is a generalization of Planclk’s constant,
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property (3.86) implies the preservation of the numerical value of the
uncertainties under isotopies,

Arapzi|<ripll> = th. (2.3.87)

namely, the uncertiainties of the center—of—mass of z particle are the same in
quantum and hadronic mechanics {101,

This establishes that the nonlinear, nonlocal and nonhamilionian effects
represented by Hamiltonian mechanics are “internal” and cannot be deiected via
cenier-of-mass experiments. Aliernatively, the virtual totality of contemporary
experiments s unsuited for the distinction between guanium and hadronic
mechanics because they are notoriously valid for the center—of— mass.

The experimental verification of hadronic mechanics therefore requires
new experiments specifically conceived for measures under “exiernal”
nonlinear, nenjocal and nonhamiltonian interactions, exactly as it was historical
the case Tor the electromagnetic interactions.

The reader should Tinally be aware that the above similarities between
guantum and hadronic mechanics refer to their formal structure, because the
study of actual systems with quanium and badronic mechanics vields
substantizlly different resulis.

This occurrence can be lirst expressed by the fact thal the same
Hamilionian B has basically different eigenvalues in guanium and hadronic
mechanics, as transparent from the presence of the isotopic element in the
EXPressions
F>=HxTxd>=Ex{>, By # E

(2.3.88)
In reality, this is the very reason for which hadronic mechanics was built

Hx§> = Egx|d> — HE

by permiitiing gquantitative applications which are simply noi possible with
gquantum mechanics, such as: the Tirst exact numerical representation of the total
magnetic moment of few body nuclel which, as well known, has escaped

quantum mechanics for aboul one century; or the quantitative representation of
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the synthesis of a neuiron as sceurring inside stars from the sole use of protons
and electrons along Rutherford's historical legacy, which is notoriously impossible
for quantum mechanics; and the interpretation of numerous other phenornena in
nuclear physics, particle physics, statistical physics, astrophysics, gravitation,
cosmology, superconductivity and other fields [10]

The inequivalence of guantum and hadronic mechanics is finally
established by the fact thal the latfer is a nonunitary image of the former, as
established by the fact, e.g, thal a nonunitary image of canonical commutation
rules vields exactly the isotopic rules with the correct Hermiticity of the isclopic
¢lements and isounit,

uxul =1 =1#=1, T=(uxufyt=10=17"

Ux(rxp-pxr)xyUl = FxTxp-pxTxr = 1T, T=Uxrxul (2389
The inequivalence between quantum and hadronic mechanics is then established
by the facl that alf quantum mechanical specira of eigenvalues are altered Dy
nonunitary transforms.

The above property also establishes the noniriviality of hadronic mechanics
while possessing considerabie pragmatic value. In fact, any quantum mechanical
model of biological systems can be easily lified inio ihe isotopic form precisely
via the use of nonunitary transforms with a nonlinear and nonlocal struciure.
The emerging mode! is axiomatically consistent provided that the transforms are
systemnatically appiied lo all aspects, including numbers, fields, states, vector
spaces, inner product, etc,, as outlined in this Part 11

In summary, the isotopic element T of ihe isonewtion equations is
preserved in its entirety at the level of the isohamiltonian representation, and
then persists under isoquantization al the operator counierpart.

This implies that hadronic mechanics preserves all the representational
capabilities of the primitive isonewtorn’s equations, with particular reference {o
the representation of extended, nonspherical and deformable particles with linear
and nonlinear, local and nonioczl and hamilionian or nonhamiltonian
interactions.
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By recalling ihat the isofopic element T can depend explicitly on time in a
time reversal asymmetric way, it follows that hadronic mechanics is indeed an
operator formalism verifying conditions 1)-5) of part L.

Note finally that, unlike the physical case (10}, the above formulation of
hadronic mechanics of Class 1l has the intrinsic possibility of both motion
forward and backward in time all in a Tully causal way.

2.3.G: Problematic aspects of other generalizations of guantum:
mechanics

The reader should be aware that, as studied in detail in [10), several other
generalizations of guantum mechanics exist in the literature which are
mathematically correct, yet possess numerous problemaiic aspects,
insufficiencies or shear inconsistencies in applications.

As a Tlirst example, nonlinearity (usually referred to the wavefunctions in
operator theories) is often realized via a dependence of the Hamiltonian on ¢
according to the generalized equation

iaplt, )/ et = Hlt 1, p ) <ty o), d (2.3.90)

The problemn, is that the above theory violates the principle of superposition, as
well known, thus rendering the theory without practical value for anv composite
system.

Note that systems (3.90) can be identically reformulated in the isotopic
form

il /ot = Hltrp, )& = Ht, r, p)x TW, ) x4, (2.391)

which resolves the above problematic aspects in full, as ensures by ihe
isclinearity of the theory.
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Another generalization is given by the so—called g-deformations of
gquantum mechanics, which are based on the deformation of the associalive
product

AXB = A%B = gxAxXB, (2.3.92)

where g 13 a number, while the original unit is left unchanged. Even though
mathematicaily impeccable, the above generalization is afflicied by drawbacks so
serious to prevent any meaningful application known al this writing. In fact, the
time evolution of g-deformations is generally nonunitary. 11 then follows that g-
deformations: 1) do not possess an invariant unii I, thus being inapplicable to
actual experiment; 2) do not possess observables because Hermiticity can be easily
proved to be non—-preserved in time; 3) do not possess invariant data elaborations
because the g—number becomes an operator under the time evolution of the
theory; etc.

Again, the g—deformations can be identically reformuylaied in an isolopic
form, by merely lifting the unit into the Torm

1=qgl (2.393)

and then subjecting the entire itheory Lo an isoiopic reformulation as studied in
this Sect. If, which resclves ai/ above probiematic aspects, as one can verify.

All other generalizations of quantum mechanics known to this author, that
is, generalized theories which are nonuniiarily equivaleni {o quanfum mechanics,
are afflicied by other equally serious problematic aspects in applications (see [10]
Tor brevity).

The above problematic aspects of other generalizations are the reason why,
after decades of study of the problem, this aythor selecied the isotopies as the
only known methods for resolving structural inconsistencies.
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3: ELEMENTS OF GENOTOPIC METHODS

3.1 Statement of the prololem

All isctopic methods outlings in the preceding analysis admit a simple, yet
unigue and significant genolopic image, that is, a formulation in which the
hermiticity of the basic isounit is relaxed,

1=, (3.1

resulting in fwo different, nxn—dimensicnal, generalized uniis, one used for
motion forward in fime and the other for motion backward in lime, which are
indicated in ihe lterature with the sympols

>, F, ) = 871 e, 1, b, 1,0 = R, (3.2)

For consisient applications, the two generalized units must have an
interconnecting relation which is generally assumed (o be Hermiticity,

(3.9
However, in most applications, the generalized unils are given by real valued

nxn—dimensional nonsingular matrices, in which case the above interconnection
is characterized by transposed,
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== (< (3.4)

We should finally indicaie that in specific applications the inferconnecting map
can be realized via other conjugation, such as the inverse,

™= (arh (3.5)

The isogssociative product ARXB = AxTxB is then lifted into the
corresponding two products

A>B = AxS=B, A<B

AxXRxEB, (36)

for which the quantities 17 and <1 are the corresponding left and right
generalized units

Poh =431 =4, A<l =<A =4, (a7

in which case (only), the quantities 17 and <1 are calied forward and backward
genounits, and the related quantities S and R are called the forward and
backward genolopic elements, respectively.

The emerging classical and guantum genotopic methods verify all
condgitions 1)-5) of Sect. 1.2, provided that the genotopies are applied to each and
every aspect, including: Ticlds, angles, trigonometric and hyperbolic functions,
differential calculus, vector and meiric spaces, alc.

We should insist here that, "mixed methods” comnposed by the genclopic
formulation of certain aspects and conventional Tormulations for others are
afflicted by a number of inconsisiencies which render them unusable for
applications, and which usually remain undetected by non-expert ion the field.

An iltustrative example is given by "mixed methods” given by a genormelric
space defined over conventional Tield. Such a mixture is structurally inconsisient
because it implies a generalized n@nsymmemc metric defined with respect to a
symmeiric unit which is affiicted by a hosi of geometrical problems, besides
being noninvariant in time, thus having no praciical value.
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The main advance of the genctopic over the isctopic methods is an
axiomatic Tormulation of irreversibility, that is, the representation of
irreversibility via methods which are irreversible irrespective of the time-
reversal character of the individual elements, such as the Hamilionian.

In particular, genolopic formulations permit a deeper understanding of
time, as 2 quantity possessing in general four rather than the conventional two
realizations.

While isotopic Tformulaiions are naturally set fo represent total
conservation laws under nonconservative internal effects, genotopic formulations
generally have no conserved guantity, because they have been conceived (o
characterize time-rale—of-varigtions of any given guantity of which
congservation i3 an evident particular case. Genotopies are therefore ideally suited
to represent the nonconservative growth of biological structures as per condition
1) of Sect. 1.2.

The genotopies were Tirst discovered by Santilli in memoir [6B] of 1978 and
then studied in monographs [4-5,78,5-10]. They are ioday generally referred to as
Santilli's genotopies and are referred to a step—by—step generalization of the
isotopic methods of Sect. [1 for nonhermitean units.

Needless to say, to avoid s prohibitive length, in this section we can
only indicate the main lines of genoiopic methods and refer to monographs [9,10)
Tor details.

3.2: Mathematical foundalions

The genotopies are Tirsi classified inio Kadeisvilis Classes {, I, IIf, IV, and
v [25), although now the conditions for each class is referred to the Hermitean
component of the genounits. [n particular, the genotopies particularly important
for theoretical biology, those of Class 111 assumed hereon, are those for which the
Hermitean component of the isounits can be either positive or negative.

The ynderstanding of genotopic methods requires the knowledze that they
are based on generalized numbers, called genonumbers, which are broader than
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the isonumbers of Sect. II. The correct elaboration of the methods therefore
requires their entire referral to genonumbers, although the Tinal numbers to be
experimentally verified result to be ordinary.

The gencnumbers were first indicated by Santilli in memoir [6b] of 1978
and then studied in detail in memoir (151

Let Fla,+,%) be a conveniional field with conventional sum +,
multiplication af = a*f, additive unit 0 and multiplicative unit L. In Sect. IT we
have reviewed a generalization of the mulliplication into the isotopic form o¥g =
axTxB. where both products oxf and a*3 are based on the assumption that they
apply irrespective of whether a multiplies p from the left, or § muliiplies «
from the right. We can therefore introduce the Tollowing:

Definition 3.1: Ordering of the multislication [15F The multiplication of
two numbers o and B is ordered io the right, and dencied a>B, when o
multiplies B to the right, while it is ordered o the lefi, and denoted a<@
when § muliiplies o from the jeft.

Note that the above ordering is compatible with other properties and
axioms of the number theory. As an examnple, If the original field F is
commuiaiive, it remains commutative alier the above ordering. In fact, if ag =
fo, then o>fp = p>a and a<f = B<e. The same cccurrence holds for other
properties, such as associativity while the verification of the lefi and right
distributive laws is evident. Thuys, the definition of isonumbers can be
reformulated under ordering by characterizing Tully accepiable Tields.

We can therefore restricts the definition of of cordinary field to thal
ordered to the left, <Flo,+,<) or that ordered to the right F7{g,+>) and similarly
restrict the isofields to those to the left <F&+.<) and those to the right F(E,+>).
Each of these restricied formulations verifies all axiorns for a field.

The point at the foundations of genotopic methods is that ihe
muliiplications of the same numbers in different orderings can be different, a>p
Bz, while preserving ail axioms of & field [i15] This occurrence implies ihe
existence of a dual generglization of Tields and iscfields, one for ordering to the
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right, vielding the forward genofield of Class 1
(6> 5, & = axT?, (38)

whose elementis a~ are called forward genonumbers, and one to the left, yielding
the backward gencfield of Class {

Pa+<K), <G = <Axa, (3.9)

whose elements <3 are called backward genonumbers, plus the corresponding
isoduais genofields of Class [1

F(g>0 + 50, @t = axP4, 170 = -1, (3.102)
Gt ol <40 = Glxg, 0 = -9, (3.100)

The above genofields are often denoted wilh the unified symbol <F (<6~ +, <)
and <t%<g>d + <%>4) with the understanding that the orderings can solely be
used individually.

The reader should Tinally keep in mind thatl the genofields of Ciass [l
admit as particular cases those those of Classes | and 1.

Note the necessity of an isotopy af — aTR in order to construct the
genotopies. In Tact, the ordering for convenilonal Tields has no practical valye.

Ag it will be evident in the applications, (he product ordered fo the right
can be inferpreted as characterizing motion forward in time, while that ordered
fo the left can represent motion backward in time. In different term, the
ordering of Definition 1I1.1 can represent Zddingtons “arrows of {ime”, and we
have the Tollowing:

Lemma 3.1 {9k An axiomatization of irreversibility in number theory is
given by: A} the ordering of the multiplications to the right and ic the lefi,
representing motion forward and backward in {ime, respectively; B) the
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differentiation of these two multiplications; and C) the assumpiion of an
interconnecting map representing time-reversal.

It is evident that the genotopic methods imply Tour different notions of time

s

Forward genotime V=7, 1= 80,
Conjugaied forward genotime < = 1Y, <1, = R”'= a,

Backward genotime Pi=-p> 1P = -

9

o

Conjugated backward genotime <% = - <, <% = -9 (310

where the quantities <I;” and <1 are the {ime genounits with corresponding
time products written in the unified form <t;” <> <t” and
<GP0 o824 = - 4> oty Note thai the space and time genounits are
structurally different because the former are three—dimensional matrices while
the latler are scalars.

The time genounits can therefore be ordinary complex functions, such as
e, Jr 16 1, ), where £ and ©, are real. The four possible "time arrows” are
then given by

P = il <t = g, YO = ot prity), O = et i), (3.12)

Note that the above four complex "time arrows” are represented by compliex
genounits, while time iiself remains the ordinary real quantity . As we shall see
in the applications, rather than being a mmere mathernatical curiosity, the above
characterizations of time raise iniriguing and novel experimental issues.

The entire theory of isospaces of Sect. 2 admiis a consistent and significant
genotopic covering. Let E(r,3,R) be a conventional Buclidean space and EFSR) its
family of isotopes. Then, we can introduce the following forward and backward
genoeuclidean spaces of Class 111
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PG5 R 87 = g%5, 2 = (& xr) x>, 1° = (3.138)

!
“

BEER <6 = Rxg, rl = (xS e <R, W =R (313D
= (), (3.130)

under which the simplest possibie realization of genounits and genotopic
elements is that via 348 real~valued, nonsymmeiric matrices.

Motion forward in past time ©9;  Motion forward in future time ¢

5 >
0
Motion backward in past time <% Motion backward in future time 9

FIGURE 3.1: A schematic view of the four possible "time arrows” which are
characterized by genotopic methods via four possible genounits interconnected by
complex conjugation and isoduality. Noie that the isotime and iis isodual are a
particular case when the forward and backward genounits coincide. As indicated in
the application a generalization of the current notion of iime appears [o be
necessary for quantitative interpretation of a number of biclogical aspects.

The genoeuciidean geometry 1s the geometry of the genoeuclidean spaces
and it is given Dy a siep-by-siep lifting of the {sceuclidean geometry of Sect. 1.2
whose explicit study is omiftted here for brevity.

The genospaces and genogeometries were iniroduced for the firs? time by
Santilli (see the general study in monographs [7-10).

A most visible difference between genospaces and isospaces is therefore
that the interval in the former is unique, while in the latier we have four
different intervalis, one for the motion forward and one Tor motion backward in

time plus their isoduals which are all contained as particular cases of Class 1L
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Note the preservation of the original geometric gxioms exactly as for fhe
isotopies, despite the Tact that the genometrics are ne longer totally symmetric.
This is permitied by the main mechanistn of genotopies, the deformaiion of the
originally symmetric metric via a nonsyrmetric 3%3 maltrix, 8 — & =R, R =R,
while the original unit is deformed of the inverse amount, 1 = diag. (1, 1, 1) = 17 =
Rl In this way the nonsymmetric component of the genometiric is
“compensated” by the corresponding inverse nonsymmetric component of the
unit, thus preserving the original geometric axioms.

The above occurrence confirms thal the basic invariant Tor isotopic,
genotopic and, as we shall see in the next section, hyperstructural methods is
given by |

length * unit = isolength * isounit = genolengih * genounit . (3.

Note that, as indicated in the preceding subsection, the formulation of
genospaces with nonsymmetric metrics over a conventional field, would yield
gross inconsistencies, such to void any possibility of consistent applications.

The axiomatic characterization of frreversibility via the genotopic methods
now begins to emerge. In fact, conventionzl and isotopic spaces are stiucturally
reversible because their melric is symmeiric, thus having no esiablished
direction in time. On the contrary, genometric have a time direction Dy
conception and realization precisely because of the loss of the symmelric
character.

Lemma 3.2 9 An axiomatization of irreversibility in interior graviiaiion
is provided by ineguivaleni deformations of the modular action to the
right from thal io the left and of relaled meirics under a joini lifting of
the unit per each action characterized by the inverses of said
deformations.

The last imporiant genciopies which need io be indicated a5 basic methods
are those of ihe differential and isodifferential calcutus, resulting in the
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genodifferential calculus, here introduced apparently for the first Uime. It is
based on the forward and backward genodifferentials

Pk = PRart, <k = 9k arl, (3. 14)
with corresponding forward and backward genoderivatives
¥/t =g laset, e/t =Rplasart. (3.15)

which must be used, for consistency, only individually per each time ordering
and with the corresponding ordered multiplications.

The genotopies of the remaining aspecis can be worked out by the
interested reeder via similar methods.

3.3: Classical and operator genotopic dynanical equaiions.

We close this brief outline with the identification of the basic genotopic
dynamical methods and their proper formulations.

The most fundamental dynamical equations of this section are the
genonewlon cquations, here introduced apparently for the first time, which can
be written for motion Torward in time A

a-
~ K PO
m> 4&\ - B F]a(> GL>’ K‘>’ V> ) ? K = X? Vs A 5
Q -
P = T = e (3.16)

are the componentis of the forward velocity.
For consistency, the above equations must be compuied over the forward
genospace

§ 71707 = B0 R7) = B267 87 R7) < B~ 87 /%) (3.17)
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with the seven—~dimensional {ofal forward genounit

Y

Pt = 10 x PPy = R R xR (3.18)

where R¢ a scalar and R is a real-valued nonsymmetric, nowhere degenerate 3%3
matrix and we have assurned for simplicity 17, =17,

To characterize a systems one musk: first select the Torward genounit of
time and of space; second, construct the total Torward carrier space &, and,
third, formulate the theory with the forward genonewion equations.

It is easy to see that the forward genomewton equations are derivable from
the first-order forward genogction

iy
B = J[F ), (3.19)
I

where the forward geno]agmngmn is a conventional Torm only properly wriiten
in forward genospaces, that is, with all products restricted (o the selected
ordering of the genoctopy.

Variztion of the genocaction then vields the Tollowing genoclagrange
equations, introduced here apparently for the first iime,

¥ Prreyy Prers)
- - - : (3.20)
i Bk ¥

which must aiso be defined, for consistency, on the total Torward genospace.
The genccancnical formulations are defined on the total genospace

S50 = BP0 R EPG7 A7 R) « B~ 87 R7), (3.21)
with the seven—dimensional fotal forward genounii
>

ot = '}[t> ::'PLT X7 = RE_L xR xR {3.22)
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where we assume for simplicity 17, = ( Tl>r)"l= as suggested by the contravariant
characier of X and the covariant character of 5.

[t i5 easy to see that, under the necessary conditions for invertibility, the
preceding theory can be equivalently derived via the genolegendre fransforms
into the firsi-order forward genocanonical genoaction

2]
P = [ I e e =
1

¢

- [, e e peEa, (5.230)
I

B =(p",0), B” =(?>,p), (3.230)

wilh ensuing forward genobamiifon equations, here introduced apparently for

the Tirst time,

PPk SO &Py &>
= N ———— L — "*‘:"—k‘—‘ N (3.24)
&> %, &> 5>
or in unified notation
; PR, PR, \ & I A
( - i wealinlonaii 0, . (3.25)
Bb> > Loar

The above equations can be simply written in the following covariant and

conitravariant forms, respectively,

4 b FHL”, )

Wy P el (3.26a)
P> PHE”, 57)
e = WY 7 (3.271)
o> V> ’ ’

where the guantities
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@?R? 5?]3) O\I N ~Laas N
(w,,) = ( %Apv T o o ) = R >, (3.282)
' B Doy Opesy
) &R TR, L Oppy |
(wo) = { S - TR (VRN e
@H‘D aﬁv> _ENxN ONxN

are the conventional covariant (symplectic) and contravariant (Lie) tensors,
respectively, which hold in view of the properties originating from the
genodifferential calcuius

FR>, /= ar%, /ot B = (p0), © ) (r,pl (3.29)

The preservation of the conventional symplectic and Lie structures under
genotopies has truly far reaching implications, on both grounds of pure and
applied mathematics. In fact, it confirms the existence of a consisient step—by—
step genotopic lifting of the entire body of isotopic methods, including the
isosymplectic geometry, and the Lie-Santilli isotheory (that is, including universal
isoassociative algebras, isoalgebras, isogroups, isosyminetries, isorepresentation
theory, etc.) [9,10L In turn, this occurrence ensures the axiomatic consisiency of
the isotopic theories, thus its availability Tor consistent applications.

It is evident that we cannot possibly study these properties in the necessary
detalls here. We merely Himil ourselves to indicate (hat the preservalion of ihe
symplectic structure under genolopies ensures the exisience of a consisient,
unigue and unambiguous genosymplectic guantization.

The latter vesulis can be illustrated via the naive genoguaniization

R (e O I} (U o I | I g (3.30)
under which we have the forward genoschrddinger equations for the
Hamiltonian and for the momentum, respectively,

¥ I, 1) o

j————— =17 ——— = F7 > {70777 = BT xR = (3.312)
Fiite 8t
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) . 8 (7 ) . el
s PP = e = iR ——— (3.31b)
atk ar

The corresponding genotopies of Heisenberg equations are given by the
following genoheisenberg equations introduced for the Tirst time by Santilli in
memoir [6b) of 1978

& Q/f” =(Q,A)=Q<A-A>GQ =
= QxR v, p, b, 0%, 000, )2 A - HxS(Lr, p,p, &, 880, )% Q, (352

whose brackets characterize a Lie-Saniilli genoalgebra,where we have assumed a
knowledge by the reader on the different character of the time evolution in the
transition from the Schrodinger to the Heisenberg representation.

The exponentiated form is given by

iHRt ~itRH
S o < fexp ), (3.33)

e = |
which characterize a Lie=Santiili genogroup (see [$,10] Tor their full expression in
terms of genoproducts).

The fundamental algebraic brackets of the theory

(AB) = 4<B - B>A, {3.34)

are at the foundations of the genolopies and characterize a Lic—admissible
algebra according to the original identification by Albert [44] and the subsequent

definitions by Santilli [6]. ¢

9 albert 144 defined a Lie-admissible algebra as a nonassociative algebra U with
elements 2, b, ... and abstract product ab such ihat the aitached algebra U which has
the same elements & b, ¢, and the new product la, bly = ab - ba, is Lie. This
definition however was proved to be insufficient for applications because such
an algebra U does not necessarily contain a Lie algebra as a2 particular case.
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The emerging operator theory, called genofopies of quantum mechanics,
and known as the Lie-admissibie branch of hadronic mechanics 19,10, are
characterized by the following basic mathematical structures:

1) The forward genoassociative envelope with operators A, &, ..., genounit
1> =R and genoproduct A>B;

2) The forward genofields C7@”,+>) and R0 +>) of forward
genocomplex numbers ¢~ and forward genoreal numbers, respectively;

3) The forward genoeuclidean spaces E>@>th>)xu@>(%>yé>9R>)XE>(@>?S>,R>)
as the basic carrier space and the genohilberi space X7 with forward
genostates {77 5), (> 17, ... and forward genoinner produci

%7 (e = R S @3 ol xR x o) € €, (3.35)

plus the genoiopies of all remaining aspects of the isotopies, such as
isoexpeciation values, isoeigenvalues, eic,, as well as with the backward version
of all preceding formulations (see again volumes [9,10] for brevity).

The above genotopies of guantum mechanics preserve zll the conventional
axiomatic propertics, including Hermiticity, thus observability, eic, o such an
extend that the genooperator and conventional formulations coincide at The
abstract level. This property evidently assures the axiomatic consistency of the
theory {see [10] for details).

The Tundamental difference in applications is that the Hamiltonian is
always conserved for guantum mechanics,

Santilli [6] therefore first modified Albert’s definition of Lie—admissibilily by
adding the condition that U should contain a Lie algebra as a particular case, and
ihen generzlized the definition further fo an algebra U such that U is Lie—
isotopic (rather than Lie) and the algebra U admits a Lie~isotopic algebra as a
particular case. The latter condition is today referred (o as the Lie-Santilli Lie—
admissibility. The abstract product ab in the realization (a, b) = a<b — b>a =
axP=b — b»Sxa, whers axR, Rxb, etc., are associalive producis, verify ihe
conditions for Lie-Santilli admissibility. In fact, ab = {a, b) is nonassociaiive, it
admits as a particular case the Lie—Santilli iscalgebra for R = S, and the attached
aniisymmetric algebra s Lie-Santilli, rather than Lie, [a, bly = (a, b} - (b, a) =
axT=h —bTxg, T=R + 5
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i

PgH/AE = [ H] = HxH - HxH = (, (3.36)

as well as Tor the isotopic theory,

d/at = [ATA] = AxTxA - AxTxA

1]

0, (3.37)

while the same Hamiltonian is not conserved for the genotopic theory by
conception and construction.

jgH/dt = {H,H) = H{R-S)H # 0©. (3.38)

A simple example can be instructive here. Consider a free quantum
mechanical particle with Hamiltonian H, = Jgupoz, m = |, which is evidently
Hermitean cver JC. Suppose now that this particle at a given instant of time €,
enters within a resistive medium, thus losing energy to the medium itself.
Assume the simplest possible decay, the linearly damped one

H=e7tH, = ¢¥yp?. (3.39)
Then a genotopic representation of the above svstem is given by
Ro=-4iyHy L 8= +ivyHL R =9, (3.40)

The Lie-admissibie group of the time evolution of a quantity Q is then given by

1H{t, -t

o) = (e ]>Q("“;0)<{e<é ety )M

} =

eiHOS(’LO—t) =it~ R H

Qlty)e

with general infinitesimal Lie—admissible eguation

idQ/dl = Q<Hy~Hy >0 (3.42)
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and particular form for the energy
1dH, /dt = —ivH, (3.43)

thus providing the desired representation of dissipation.
We therefore have the foliowing

Lemmma 3.3: An axiornatization of frreversibifity via clgssical or quanium
dyvnamical equations is provided by the genotopies of convenlional
equations.

In fact, the dynamical egualions of this section are siruciuraily
irreversibie, thal is, they are irreversible irrespective of the behaviour under
time—reversal of the Hamiltonian as well as of the isounit. To be more specific in
this point (which is rather fundamental for applications), the genotopic equations
are irreversible even when the Hamiltonian and the genounit do not dependent
explicitly on time, thus being time-reversal invariant.

We close this section by indicating (he recent emergence of very serious
problemalic aspects of other formulations of open nonconservaiive systems,
such as their representation via the addition of an "imaginary potential iV 1o the
kinztic energy K in the Hamiltonian, H = K +iB, with dynamical equaﬁons}-o

idg/dt =QoH=0xH - H =g, H = E-iv=H=K+iV, (3.44)

10 The reader should be warned that these equations have no conneciion with the reality
to be represented. In fact, the dissipation is due to forces which are of contact
nonpotential type and thelr representation via a potential of any nature can be e¢asily
proved to represeni a tofally different system. A definite illustration is given by the
trajectory of 2 space-ship during re—eniry in atmosphere which dissipates its kinetic
energy. The representation of such a dissipation via an "imaginary poiential” in the
Hamiltonian can be easily proved to describe a irajectory which has no conneciion of any
<ind with the actual irajectory of ihe space—ship (see monographs 14,5 for detalled studics
of nonpotential forces).
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{e.g., the Cooper pair) and repulsive in triplet coupling.

PHASE I: Noncanonicity, The effects due to mutual penetration of the
wavepackets are beyond the descriptive capability of a Hamiltonizn. As such, they
occur without any need of energy, thus carrying a variety of implications beyond
any physical description {Sect. 5.1).

The above main lines are sufficient for the limited objectives of this
monograph. More defailed studies and applications, e.g., o molecular chains, are
left to the interested biologist.

5.4, Apparent isotopic origin of correlations

Another important aspect where generalized methods are expected to provide
a significant contribution is the quantitative representation of the correlation of
particles, here generically referred to any given relationship among quantum
mechanical or classical pariicles at large muival distances without any
conventional interaction derivable from a polential, e.g., of eleciromagnetic type.

This is another area of theoretical biclogy in which isctopic or more general
methods can provide a rather unigue coniribution. Because of extended use, we
have been accustomed throughout this century Lo resirict all possible interactions
among particles to have polential energy, that is, admitting of a potential which is
added to a Lagrangian or a Mamiltonian. Whether classical or quanium mechanical,
available methods are then restricted to interactions of the lalter type.

Correlations are instead due to interactions which should be represented with
anything except a poleniial or a Lagrangian or a8 Hamillonian because they do not
carry potential energy. As such, they are conceptually and technical cutside the
realistic representational capabilities of conventional methods.

The isotopic, genotopic or hyperstruciural methods are ideally suited for the
preblem considered because corrclations can De represented with the generalized
units, without any need of 4 polential, or a Lagrangian, or 2 Hamillonian.

We can therefore introduce in theorelical biclogy vet another novel notion:
interactions among particles which carry no energy of any kind, vet which produce
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physical effects.

Even though novel in theoretical biology, the notion occurs in a number of
instances in physics, when studied at sufficient depth. The Tirst example is given by
the familiar Pauli exclusion principle according to which iwo electrons in the
same state can "exclude' each other”, i.e, can force cach other to have different
quantum numbers. After a state has been Tilled up, additional electrons are repelled.

It is well know in quantum mechanics that the above mutual exclusion
positively cannoi be represenied with any known inieractions carrying a potential
(because that would dramatically alter the experimentally established spectral
lines). But the Pauli exclusion principle is precisely a case of isotopic correlation,
that is, correlation represented via the isounit, and essentially due to the mutual
wave overlapping of the wavepackets of the electrons which, as worked out in the
preceding subsection, carries no potential energy of any kind (see {101 for details).

Pauli exclusion principle therefore illusirates the existence of a correlation
without any potential energy, in which there is no energy consideration of any
kind. Yet the end resulis are specific and concrete {the exclusion of cerfain
quantum number or the expulsion of additional electrons in a saturated state).

Another example in particle physics is the Bose-Einsiein correlation which
has been experimentally detected in the preton—antiproton annihilation at both high
and low energies. [t may be recommendable to briefly outline the laiter correlation
here because its reformulation in theoretical biology is straightforward.

In the Bose—kinsiein correlation, the p—p first fuse together inio a staie called
the Fireball, which then decays rapidly inlfo various particles whose end resuils are
mesons (obeying the Bose-Einsiein statistics) which, even though at large disiances,
are correlated (for a review of conventionai studies ses, e.g., [47) and Tor its isolopic
study see [48]).

The reasons why generalized methods are expecled {o play & central role for
the Bose-Einstein correlation are multifold. First, there is a rather general
consensus in the scientific community that local-differeniial theories cannot have
correlztion. In fact, if the Tireball is made up of & Tinite set of isolated points, the
final mescns simply cannot be correlated. This tules oul ab inftic the use of

guantum mechanics as exactly applicable in favoer of hadronic mechanics which



Ruggero Maria Sangilli -183 - Theoretical Biology

has been conceived and construcied precisely for the study of nonlocal interactions
{as illustrated in the preceding subsections).

Moreover, protons and antiprotons are not ideal spheres with points in them,
but are instead constituted by some of the densest media measured in laboratory
by mankind until now. Being the result of the mutual penetration of the
hyperdense protons and antiprotons, the fireball is therefore one of the most
general known non—local integral sysiems. But nonlocai—infegral interactions are
nonhamilionian both concepivally and iechnically. 1 then follows again that
quantum mechanics is not expected to be exactly valid because of its central
requirement of representing evervthing with one single quantity, the Hamiltonian.

But even assuming that the above transparent and basic insufficiencies are
by—passes via nol so infrequent machinations to preserve old knowledge (e.g., the
addition the a Hamiltonian of the “nonlocal~integral poleniial” which, as pointed out
in Sect. 2, has no mathematical or physical sense), quantum mechanics still remains
structurally unable to represent correlation in an exact way.

This is due to the limitations of its very axioms as compared to the
experimental evidence of the correlation. As an er&ample, the two-body quantum
mechanical axiom of expeciation value is given by

f

éf E La> \%l

e S | Lo

¢y = _<lal<tp] <nb| i ....... } =

) %mntw o oS ?

i | n,a> ‘

§ | n,bs> |

] '{

!

Lt

= 2y {<kalka>+<kb|kb>), (5.58)

The above expression lacks exactly the cross terms < k, a |k b »
representing The correlation. By comparison, the axiom of iscexpeciation values
of hadronic mechanics is given by (Sect. 2.3.F)
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f |
| La>
U 1 |
&, = <Lal<ibl... <nal<nb] (T) | ... ? -
T — | na> |
ln,b>ﬁ
5

= 2y (<kal Ty [ka>+ <kb| Tyy k> + <ia|Tylpp>) (5.59)
and exhibits precisely the cross terms needed for a description of correlation
from Tirst axiomatic principles.

In current “semiphenomenological models”, these cross terms are
introduced via a number of artificial machinations. However, Tor scientific
objectivity we must admit that these models are, strictly speaking, beyond the

xiom of expectation value, thus confirming the inability of quanturn mechanics
to derive the event in an exact form from first principles.

A systematic study of the correlation via the use of refafivistic hadroric
mechanics on isominkowskian spaces [10] has been conducted in memoir 48] of
which we can only outline here the main lines. First, one can see that the
representation of the correlalion requires a nondisgonal isolopic element.
YVarious arguments derived from experimental data then yield the structure

( Kal Kaz( [ EXUf dAX dﬂbg Q‘Jal ) \
T=SxﬁXK L ) (5.60)
Ko (1 = expfafdlpndp ) Ky

where the K's are parameters, the &'s are the wave Tunctions, S is a shape factor,
that is, a term representing the ex{ended, nonspherical and deformable shape of
the fireball,

[ o
o
ot
—

5= diag (8§, ) = diag. { )%, by, ba?, b7 ), (5.

2

with bk% by, bg®, representing the semiaxes of thefireball and by* representing its

densily, and T is a nonlocal-integral terms representing nonpotential interactions,
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whenever needed.

Note that all quantities appearing in the isolopic element have a direct
physical significance. In fact, S represenis the shape of the Tireball, and it is
numerically determined by the experimental data (see below), § = 1 for the
considered BE correlation, the K-quantities are normalized to 1, and the off-
diagonal terms (which are necessary to have correlation) represent precisely the
nonlinear, nonlocai-nonhamilionian interactions al the origin of the correlation
itself, and are due to the muiual wave—overlapping of the wavepackets of the
proton and antiproton. Note thai when this overlapping is ignorable, the isolopic
element is diagonal and there is no correlation, as expected and desired.

Under the sole approxirnation of that the longitudinal momenium transfer o]
is ignorable, as experimentally established and used in all data elaborations [47],
relativistic hadronic mechanics then uniquely characterizes the correlation for two
mesons expressible via the fwo—points isocorrelation funciion

2 2
&= 1+ (/3T 2 o 0 D (5.69)
2 ! n=12354 B e , :

where ¢; is the momentum transfer, n = diag (7, } = diag. (I, L, I, -1 ) is the
conventional Minkowski metric, fi = §n = diag. { b;% B2, 5% - b2 ) is the
isominkowski metric, and N2 = b12 + b22 + b32 is a Tactor normalized to 3 (which
is the sum of the semiaxes of {he unit sphere). J

By comparison, the semiphenomenological quanium mechanical models
currenily used are of the type

2 2
_ / -
Cp= 1+ Ty Age b IRE (5.63)

where Ay and |y are parameters introduced ad hoc without any indication of their
origin. The point is that the latter parameters are prohibited by the rigorous use of
the quantum mechanical expectation value.

Memoir [48] concludes with the outline of the foliowing resulis permitied by
relativistic hadronic mechanics, none of which is permilted by gquantum
mechanics
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1} Direct representation of the nonlocal origin of the correlation via the
meiric of the underlying geometry;

2) Direct representation of the Tireball as an extended, nonspherical and
deformable entity;

3) Prediction of the maximal and minimal limits of the two-point

EXPERIMENTAL VERIFICATION OF THE BOSE-EINSTEIN
ISOCORRELATION FUNCTION

Nonloca! Correlation Function
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FIGURE 5.7. A reproduction of the main plot done by Mignani and Cardone (49 on
Santilli's isocorrelation function [48] via the use of the experimental data from the
UAl experiments at CERN. [n particular, the plot identified the numerical values of
the isotopic element according to the expression for the b's (which have been
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formulated in a scale invariant way)
by? = 0.267 + 0.054, by” = 0.437 + 0035, bg” = 1661 + 0.023, 42 = 1653 £ 0.015

thus yvielding a very prolate spheroidal ellipsoids. This author would like to indicate
that the above experimental verification of a central aspect of relativistic hadronic
mechanics resulted to be beyond his most optimistic expectations.

isocorrelation Tunction

CyMEk = Hm G SIS IBUE -1 = 1T, gMIn =y
' (5.64)
which have resulted to be verified by experiments.
4)  Prediction of the maximal possible value of the parameter lb42
characterizing the density of the Tireball

P+N%/3-N%07 = 167, b = 233, (5.65)

which also resulted o be verified by independent experiment (on the behaviour of
the meanlives of unstable particles with speed).

6) Reconstruction of the exact Poincare symmeiry at the isoiopic element Tor
the above correlation uvnder nonlinear, nonlocal and nonhamiltonian
interactions.!’ ‘

7) Exact derivation of the two—point isocorrelstion funciion from first
axiomatic principles without the introduction of ad foc parameters, in a way
remarkably in agreement with experimental data (Fig. 5.5)

The application of the above isotopic representation of correlation opens new
intriguing possibilities in theoretical biology contemplated Tor study in subsequent
papers because it is expected to provide a quantiiative representation of effects
whose cause was essentially uvnknown.

17 The interesied reader can verify the exact character of the isorotational symmeiry
0(3) ~ 0{3) outlined in App. C Tor the space component of the fireball The exiension to the
space-lime sefiing including {ranslations is consequential, provided that it is done in
isominkowskian space over the isoreal isofields.
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5.5, Additional miscellaneous applications.

We close this monograph with the mere indication of the possibilitics of the
isotopic, genotopic and hyperstructural methods in theorgtical biology, with
particular reference to some of the coniributions in this volume [50].

The general rule i5 that the isciopies should be applicable only under
sufficient evidence of nonlinear, nonlocal nonhamilionian effects, correlation or
other characteristics which are oulside the representational capabllilty of a
Lagrangian or a Hamiltonian, e.g., the representation of shapes, deTormations, etc.

Also as a general rule, the reader should not expect drastic changes of
existing results, but only the identification of possible, generally small new
contributions and related effects.

Lifting of Hehrenberg-Paviov studies in (501 Here the isotopies can reduce
the inhibition of plasmid duplication o primitive nonlocal effects; the differential
calculus used in the excellent macroscopic description of plasmids number control
can be lifted into the genodifferential calculus (Sect. 3) which naturally provides
an axiomatization of the irreversibility of ihe inhibition while incorporating the
origin of the control itself in the genounil; Tinally the entire resulis can be re~
interpreted via the isogeometries with suggestive novel notions.

Lifting of Tributsch-Pohlmann studies fn [50]. The Jatter studies deal with
classical synergetic mechanisms associated with the absorption and utilization of
photen energy based on microscopic dissipalive processes. As such, the studies are
ideally set Tor their quantitative representation via the gencanalytic equations in
their classical proflile, as a collection of genooperator counierparts for their
microscopic origin, yielding an intrinsic representation of the irreversibility of the
process, as well as a structural represeniation of the pholon absorption, all done via
the generalized unil of the theory.

Lifting of Pohlmann-Tributsch studies in [50] In this case the isotopies of
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Class 11 appear to e particularly attractive on methodological grounds. In fact, the
studies deal with nonlinear Kinetic interpretations of biomoclecular processes.lg As
such, their isctopic lifting s expecied io reproduce linearity in isospace, while
permitting the natural inclusion of noniccal and nonhamiltonian effects. Moreover,
the inclusion of bifurcations is expected to reguire the use of the isolopies of Class
HI with an isounit of time which can be positive or negative. Possible verifications
of the lifting with experimental data would then raise the intriguing issues touched
in Sect. 5.1 regarding a conceivable difference between our perception of time and
the notion of time which may occur in reality in biomolecular processes.

Lifting of Dreismann-Streffer-Larhammear studies in [50]. The lifting of
the latier studies indicates additional possibilities which may be worth an
inspection. In Tact, the studies include long range correlation and can therefore be
an ideal test Tor the isolopic correlation without energy indicated in the preceding
subsection. Moreover, the study address one of the most fundamental problems of
contemporary {heoretical biology, the DNA code. Their hyperstructural lifting is
therefore equally intriguing on various grounds. We assume the reader is familiar
with the fact that fractals are a particular case of the isolopies of Class V, and that
the methods outlined in this memoir imply a sequential, rather infriguing,
structural generalization of crypiography into the iso-, geno- and
hypercryptography (see ref. [10], Ch. 2), the latter being the lifting of conventional
cryptography (which, as well known, is based on the simple unit +1 dating back 1o
biblical times), not only with infiniiely possible units, bui each generalized unit
being multidimensional. In turn, such a study can iliysirate the complexity of the
DINA code indicated since the Abstract.

Lifting of Streffer-Hubner-Drelsmann fn [50] These studies deal with
correlation effects in the double proton transfer in DNA and, as such, are quite
promising for g study of the possible isclopic or genotopic origin of ihe correlation
itself, denending on the desired emphasis on reversibility or irreversibility.

=]

18 51 1 important to recall here that nonlinearity is sufficieni alone fo suggesis brooder
more adequate methods capable of preserving the superposition and other principles
needed for composite systems (Sect. 2.5.G).
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Lifting of Tributsch studies im 150l The reader should be aware that ihe
writing of this memoir was stimulated by a lucid talk on the need for Ihe encrgy o
have an "arrow of time” delivered by Prof. Tributsch at the First International
Workshop on New Frontiers in Theoretical Biology held at the Castle Prince
Pignatelli in August 1995, and by the following discussions. The entire genotopic
formulations of this memoir have been written for the specific purpose of
providing an axiomatic formulation of Prof. Tributsch view, that is, a formulation
which preserve all axiomatic properties of classical and guanium mechanics despite
the presence of an arrow of time, and it is realized, e.g., via the genohamilion
equations (3.26) at the classical level, or the genoschrodinger equations (3.51) at the
operator level.

Additional 1iftings can be identified by the interested reader. Further
comments on isolopies are presented by Illert’s contribution in [50].
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APPENDIY, A: ELEMENTARY ISOCEUNCTIONS
AL Foreword

We indicated in the preceding sections that the notion of angles, the
conventional Pythagorean theorem, the trigonometric and hyperbolic functions
znd other Tamiliar functions are inapplicable under isoiopies for numerous
independent reasons, such as: the loss of the conventional unit 1 in favor of
generalized isounits 1; the inapplicability of the Euclidean distance; the generally
curved character of the lines which prohibit the preservation of conventional
angles; ete.

In this appendix we study the rudiments of the liftings of the Pythagorean
theorem, trigonometric and hyperbolic functions which are applicable under
isotopies. The [sopythagorean Theorem, isotrigonometric and isohyperbolic
functions were identified by Santilli (see, e.g., note [44]) and presented in details
in Appendix 5.C, Yol. I, ref. [9], to which we refer for individual contributions.

The above generalizations are evidently necessary for any calculation or
application to biological systems, by keeping in mind that the use of
conventional Tunctions under isoiopies leads (o numeroys inconsistencies.

In order io render this monograph selfsuiTicient, it appears recommendable
io outline the methods for the consiruction of simple isolfunctions, and leave to
ihe interested reader the construction of ihe corresponding geno— and hyper—
funciions. We shall use the symbols ¥, 4, D, etc. to denote guantities computed in
isospace and x, A, D, etc, to denote their projection in the original space.
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A.Z: Isopythagorean Theorem

Consider a conventional two—dimensional Euclidean space E = E{r,8,R) with
contravariant coordinates r = {r} = (x, y} and metric 8 = diag. (1, 1) over the field
R = R(n,+%) of real nurnbers n with conventional sum + and multiplication * and
respective additive unit 0 and muyltiplicative unit 1. The fundamental notion of
ihis space is the assumption of the basic unit I = diag. (I, 1) which implies the
assumption of the same basic (dimensionléss) unit +1 for both x— and y-axes,
resulting in the familiar Fuclidean distance among two points x, y €

D =[x~ x{x —x0) + (y —ya vy =y 12 € R, (A

The quantity D? = D=D, * ¢ R, then represents ihe celebrated Pythagorean
theorem expressing the hypothenuse D of a right iriangle with sides A and B
according to the familiar law DZ= 4%+ B2

The flat geometry of the plane E{r,8R) permits the iniroduciion of the
trigonometric notion of "angle " between two intersecting straight veclors, and
of "cosinus of «” which, for the case when the vectors initiate at the origin 0 € E
and go to two points Py, v{) and Poky, o), is given by

Xp %t oYY
cos o = L /‘l 2 R (A.2)
Cipxy + ‘/1‘}/2)1 2(%’»2?(2 + Yzyz)l

From the above delinition one can derive the entire conventional trigonometry.
For instance, by assuming that the points are on a circle of unit radius, D = |, Tor
Py(xy, yq) and Py(I, 0) we have cos a = x;,for P({x;, y)) and Py 0, 1) we have sin a =
v, with consequential familiar properties, such as sin“a + cosa = 1, ete.
Consider now the two-dimensional isocuclidean space of Class I, & =
B(r8,R) (Sect. 1.3.3) over ibe isofield R = B+ of isoreal numbers @ = nxX], where
the isounit 1 is & posilive-definite 2x2-mairix whose elemenis have a well
behaved but otherwise arbitrary dependence on time i, the local coordinaies r and
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their derivatives of arbitrary order 1 =1, r, 1, 1, ...).
The realization of E studied in this appendix is the simplest possible one of
Class [, that with diagonal isounit, of the type

BEAR:T = (#K)=(%§)

it

{ Tk } = { X, y }9 %k = Ski %’1 = TK = 8k1r19 (Aﬁa)
§=T o 1,1, .. )8=diag. (b2, 5%), by = bli, 7, 6,1, .00, (A.3b)
T =7 = giag. (072, 1,72), k=12, (A.3c)

The ceniral notion of the isoeuclidean plane is the assumption of new
(dimensicnless) units, the quantities b, for the k-axis and by # for the y-axis.
Thus, not only the unit is now different than +1, but different axes have difTereni
units and, in addition, each of them is a function of the local variables.

Consider now two points Py, 1), By, 95) € EF8R). Then the
conventional distance is (uniquely) generalized into the isoeuclidean disiance
(Sect. 2.2B)

D =lx-x 0% (5 —x) + (y, =y b2y ~y) V&0 2R, (1)

where one should note the final (ordinary) multiplication by T as a necessary
condition for D to be an element of the isofield &.

Despite the visible difference between D and D, all conventicnal noticns in
E are preserved under isotoples provided that they are computed in £ over R. In
this way, we have the notions of isolines, isosiraighi line, isotriangle, isostraight
iriangle, etc. siudied in Sect. 2. We then have the foliowing:

Theorem A.1 (Isopythegorean theorem) 44} The following property
holds in the isoeuclidean plane BIT,8,R) of Class |,

>

jaeg

52 = DD = A2 +

»y)

“=A%E +BR BB, (A.5)
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with projeciion in the conventional plane E(r,8R)
2= [ab&nt A + Bodne BT,  (5C6)

that is, the isosguare of the isohypothenuse of an isoright isotriangle is
the sum of the isosquare of the isosides.

To understand the geometric meaning of the above theorem, we recall that
all isotopic notions have, in general, ifiree different interpretations, the Tirst in
isospace B(i,3,R), the second via the projection in the original space E(r,8R), and
the third in a conventional Buclidean space E(r,8,R) over the conventional reals
Rin,+») whose interval coincides with that in isospace. The latier condition is
easily verified by the assumption

X=xbtny, 9., ¥v=ybllxyiy.), (A7)

?

under which

o)

Lo =% 0" (xp -} + (y =~ y2) b2y = y) 12 =

= (% -5 (% - %)+ (7, -9 {7, - F2) VA (4.8)

The properiies in isospace follow the general rules of all isotopies, that is,
the preservation of all original properties, including their numerical values. Thus,
siraight lines in conveniional space are mapped intc isostraighi isolines in
isospace, 1.e., lines which coincide with their tangeni when computed in isospace;
perpendicular lines in conventional space are mapped inic isoperpendicular
isolines whose angle is indeed 20° when measured in isospace, that is, wilh
respect 10 its own isounit (see below); elc.,

in this sense, a right triangle in the conventional plane remains so in
isoplane, and the conventional Pythagorean Thecrem holds also in isospace.

To understand the rernaining geomeiric meaning we also have to consider
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the projection of Theorem 5.C.1 in the original Euclidean plane. Recall from Sect.
[.5.2 that the isotopic lifting of the circle C in E yields the isocircle T in B which
preserves the original geometric character including the value of the radius.

ISOPYTHAGOREAN THEORERM

Blr5,R) E(r,8R)

FIGURE A.l. A schematic view of the Isopythagorean Theorern, firsi identified in
[44] for an isorignt isotriangle as in Diag (2}, le, a triangle in isoceuclidean plane
£(7,8,8) (isotrianglel with a 90° angle measured wish respect to ifs own isounit
(isoright angle - see below for its identificalion), and iis projection in the
conventional plane Elr,8,8} given by the Diag. (b).

We also recall that isotopic maps are not transilive, in the sense that the
lifting of the circle C on E into the isocircle £ on E is axiom—preserving, but the
projection of the isocircle € on the original space E is nol, being in fact an ellipsg,
because such a projeciion does not imply the return te the original unit [ = diag.

(1, U
By using the reformulation in conventional space &, it is easy (o see that
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lines which are straight in B({,5,R) become curved in EGSR), according to ihe
rule:

hd
S

1 BRY + e =0 -

Ba>

- axb Mxy,.) + by bz_l(t, %y, . =0 8bteR. (A.9)

The projection of the Isopythagorean Theorem in a conventionzl plane then
resulis in the map of & right triangle info a geomelric figure in which the sides
are curved, with one intersection per pair as in Figure AL

A.3: Isotrigonometric functions

Let us use again the convention according to which the symbols &, %, ¥, etc.,
denote quantities computed in isospace E(.5R), the symbols a, x, y, etc,, denote
ihe corresponding quaniities when computed in the plane E(8R), and ihe
symbols a, %, v, etc., denote the projection in the conventional space E(r,8,R).

Suppose that the two points 2%, 7)) and P4X,, Vo) represent isostraight
isovectors initiating from the origin § e E{F,8,R). Let us denote with & the
isoangle between these iwo isovectors 1o be identified below. Consider their
identical reformulation in the conventional space E(8R), in which case the
angle & persists. We can then introduce the conventional cos & in EF,83)

cos 4 = . {(A.10)

with projection in E(r,8,R)

2 2
A X hTxg oy bty
cosq = (A.11)
. , . )
{leile + ylbzzyl )1/2<X2 lexz + oy 022 Yo 32

We now assume that the two points B, ¥) and P4lxo, V) are on the unit
isocircle
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D = (xp2x+ ybly)xl =1, le, (£.122)
xb12x + yb22 y =1, (A.120)

which imply that fory =0, x = ‘bl_l and for x =0,y = by
By assuming the points P\, ¥,) and Pylb, !, 0), we have (for 0 < & < 1/2)

Ccos o = X bl 5 (AMS)
and for the points Py(%;, ;) and P4 0, by 1) we have
sind = y; by (n.14)

Definition A.1 [44]s The “isosinus’, “isocosinus” and ofher isoirigonomeiric
functions on the isceuciidean plane EF,8R) are defined by (for 0 < @ <

/o)
isosin & = by lsin &, (&.15a)
isocos & = by ' cos d, {A.15D)
isosin &
Isolam 0 = = (A.15d)
iS0C0s O
isocos ¢
[0 50 e A (A.15e)
isocos G
isosec @ = 1/ isocosd, isocosecda = |/ isosind. (4.150)

with basic properiy

isocos? & + isosin® @ = b 2isocos? & + Dby Zisosin? & =
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= co & + sinfd = 1, (4.16)

and generai rules for an isosquare isotriangle wiih isosides A andB and
isohypothenuse D as in Diag. (a) of Fig. A.l

A =1Disocosy, B = Disosiny, A/ B = isotan y,etc.  (A.17)

The isoangles have been identified from the representation theory of
isorotations in a plane {(see Vol. 11, Ch. 6, ref. [10]), and resulis to be given by

bl bzﬂ!. = d. (Aﬂg)

where the Tactor by is fixed for all possible isoangles of a given isceuclidean
space. This means that the isofopy of fhe triconometric angles is given by

a — bl [Dz'DL = 6[ 5 (A 19)
with consequential angular isofopic efemeni
Ts = by by = {Det T)2 (4.20)
and angular icounit
1 = by by 2= (Dei.1)V2 (A.21)
where T and 1 are the isoiopic element and isounii, respectively, of the
isoeuclidean plane, Eq.s (3).
Isosngles 4 have a nontinear and integro-differential dependence on the

local coordinates and their derivatives when projecied in the original Euclidean
plane with expression
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a=00%y. %y, . d0dL %y, % 9, L) a, (A.22)

but they have constant values in isospace because measured with respect to the
angle isounit Ty = bl"L bz_l. We reach in this way the following property:

Proposition AL [44]: The isotopies of the plane geometry preserve the
numerical value of the original angles, that is, if’ the original angle is a =
90° s0 is the value of the corresponding isoangie 4 is isospace.

[n fact, a given isolopic deformation of the angle a — Dybya occurs under
the joint inverse deformation of the basic unit | — 1 = bflbz_l, thus leaving the
original numerical value o unchanged.

With respect to Fig. 5.C.1 we therefore have & = 90° and a + § + ¢ = 180°.
However, after the lifting a = 90° — & = 90°, the projection of the latter in the

original plane does nof yield back the angle a = 90°, bui an angle o such that a
byboa = 90° and similarly we have a + B+ v #90° but a + B+ ¥ =bybyla + B + v
180°. It is then easy 1o see that the isotrigonometric Tunctions are periodic as in

It

the conventional case, i.e.,

1

isosinf{a + 2kw) = iscsin &, (A.23a)
isocos (0 + 2%k ) = isocos a, k=123 .. 4 (A.23D)
and preserve the conventional symmetry under the inversion of the angles
is0cos —0 = iS0COS 4,  isosin ~O = — i30SiN G . (A.24)
Similarly, we have the Theorems of Isoaddition [1]
isosin (& +B) = b,”" { isosin & isocos B+ isocos 4 isosin B, {A.253)

isocos (& +B) =102 (b, ? isocos G isccos B + b % iscsin  isosinB)  (4.25h)
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isosin & + isosin B = 21, isosin 3 (G +B) isocos 4+ (& -B). (4.250)
The interested reader can then work out the isotopies of other frigonometric
properties.

We are now equipped to introduce the following

Definition A.2 [44]s The "isopolar coordinates” are the polar coordinates
of the unit isocircle in the isoeuclidean plane £(r3,R), and can be wrilien

X = isocos 4, v = isosin &, (A.26)

with projection in the conventional Euciidean plane Elr,8R)

x = b lcos (bybya), § = byl isosin{b;bya). (A.27)
and property
22+ Q/? = xb2x + ybly =
= b2 isocos® d + byfisosin? & = cos?d + sind = 1. (A.28)

The exponential formulation of trigonomeiric Tunciions also admiis a
simple, yet unigque and effective isolopic image. IU requires the lifting of the
conventional enveloping associative algebras £ and their infinite-dimensicnal
basis with conventional unit [ and product x (ithe Poincaré-Rirkhoff-Witt
Theorem) into the enveloping isoassociative algebras & of Sect. [.4.3 with isolopic
image of the original infinite basis characterized by the isounit T and the isctopic
product % = xTx (the isolopic Poincaré-Birkhof f-Wiii Theorem).

The isolrigonomeiric Tunclions can then be expressed in ferm of the
iseexponentiation according to the rule
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=T+ (ta)/ 11+ (ta)T(ia/2r+ .. =

i’T‘al@L il by)a

— P PR "l —
= Ia}‘@ = (Dibg) x e =

= by lisocos @ + iby ! isosin &, (a.29)
where & denoies isoexponentiation and e conventional exponentiation.

IBOTRIGOMOMETRIC FUNCTIONS ON THE ISOCIRCLE

EGSR) E(r8R)

FIGURE A.2: A schematic view of the isoirigenometric functions on the isocircle
(Sect. 1.5.2), that is, the circle in isospace, Diag. (a), and in its projection in
conventional space, Diag. (o). Isotrigonometry shows thai the the geomeiric
structure of the circle is indeed axiomatic in the sense that it persists under
isotopies. This is illusirated by the preservation under isotopy of the polar
cooridinates on {he conventional circle (Diag. (a))

X = Cos o o~ X = isocosd,

y =sing -~ y = isosind.
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However, the projection of ithe above structure back 1o the conventional! plane
implies the deformation of the circle into the ellipse (Diag. (b)), with deformation of
the polar coordinates

x=cos a — x=0b ‘cos(bbgal,

~

y = sinag - ¥y = b{lsin(blbp_m).

The reader is warned not to attempt the compuiation of isoirigonometric
properties in the conventional Euclidean plane. This is due to the fact that the %
and ¥ isostraight axes in £ are mapped inio curves in E, as depicied in Diag. (b).
Mathematical consistency of the isotrigonometry is then achieved only in isospace.

The interesied reader can then work oui additional properties of the
isotrigonometric functions.

A.4: Isohyperbelic functions

The application of the preceding method to the lifting of the hyperbolic
functions is straighforward, leading to the following:

Defimition A3 [44,9]: The "isohyperbolic functions” on isocuclidean space
£T,8,R) of Class I are given by

isocosh & = b, lcosh (b bya), {A.30a)

isosinh & = by 'sinh (B bya), {4.300)
with basic property
1,2 isocosh? & — by? isosinh? & = 1, (A.31)

and derivation via the isocxponeniialion
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~ G

2 =IH ﬂ&‘a i KDLDZ‘))G‘:

Z(bl bz)“' €

a€

= by lisocosh & + byl isosink @ . (A.32)

The interested reader can then work outl the remaining properties of the
isohyperbolic functions.

We now show the property that the distinction between trigonomeiric and
hyperbolic functions is essentially due to the excessive simplicity of the basic
unit customarily used in contemporary mathematics, while such a distinction is
lost under more general ynits.

In fact, the use of a more general unit under isotopies allows the following
result.

Lemmsa A.1 [44l: Isotrigonometric and isohyperbolic functions lose any
distinction on isocuclidean planes BT3R) of Class ilf

Proof, Assume the realization of the isounits 1 and 1 of Class 11,
T=diag (g Law™), Ty = (g, enl 2 (4.33)

where the Tunctions gy = gl % v, %, ¥, ..) are smooth, real-valued and
nowhere null bul otherwise arbitrarily positive or negative. Then, ihe
isoexponential realization of the isotrigonomeiric funciions (29) and of the
isohyperbolic functions (32) are unified into the form

/2

‘ |
Tse yirz  len gl ta

=Tge = (g g0 . (4.34)
where the isotrigonometric funciions occur when the product g 1122 s positive
and the ischyperbolic functions occur when the same product is negative. 2.,

Lemme | also unifies the convenijonal trigonometric and hyperbolic
functions, the former occurring for T = [ = diag. (1, I) or Dig. (-1, ~1) and the latier
for 1 =diag. (+1, -1) or Diag. (-1, +1), the second alternatives being the isodual of
the Tirst onegs.
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A.5: Isoexpomneniial, isologarithm and other elementary
isofamctions

We close this appendix with the identification of a few additional special
isofunctions.

Definition A4 19l: Let flx) be an ordinary function verifying ihe needed

regularity and continuily conditions on a given closed interval of the real

variable x € R(n,+%). Then the “isoiopic image” 1(x) of 1(x), is a function
of the corresponding closed isointerval of the isoreal number & = vl ¢
i R+ ) generally given by the rule

ISR ER P (A.35)

An example of elementary isofunctions is the isopower on the isofield

R(f,+%)

A

TG = 3 = ¥ %%« . %% (n-times) = Tex. (4.36)

A lesser trivial and most fundamental isofunction is the iscexponentiation
which is the exponentiation in the iscenvelope & with isounit 1 = T and

T

isoprotluct A%R = AxTxB. which is given by the infinite isoseries

Rl I WAV VR

= ix{e Ay =(e Ty | (A.37)

where e 15 the ordinary exponentiation.

It is evident that the isounitary transforms in ischilberi space are
expressible interns of the above iscexponentiation, resuiting in the lime evolution
law for operator isolopic methods (Sect. 1)
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an = 1M % go) % (amiH Yy (4.38)

The isologarithm of an isocnumber a € F(a,+*) on isobasis & = e can be
defined as the quantity ﬂ?}g% a such that

. 10gs 8 .
58 a, (A.39)
with evident {and unique) solution
log, & = 1% fog, . (A.40)

where logea is the ordinary logarithm on basis e of the ordinary number a. 1t is
casy Lo see thal ihe above definition characierizes a correct isolopy because it
preserves all the conventional properties of log &, such as (we ignore in the
following the subscripis & and e for simplicity)

ge =1 Iogl =0, (A4la)
iogh%bh = logh + Bgh, Bza7b = bgd - beh, (A410)
gt = ~1gd, DXza = 1Bgdl, et (A41c)

A similar situation occurs for the isotopy of most, but not all Tunctions,
including determinant, traces, matrices, etc. In fact, two exceptions are given by
the isotopy of the trigonometric and hyperbolic functions studied earlier in this
appendix,

For the isotopies of the remaining elementary and special functions we are
forced to refer the reader to monographs (9,101 The genotopies of elementary and
special functions can be constructed accordingly, by just relaxing the hermiticity
of the isounit, although they require spacial study because of the appearance of
off—diagonal terms in the isounit under the condition of real-valuedness {(or
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diagonal isounits with imaginary terms). The hyperfunctions are compleiely
unexplored ai this writing.

The author hopes to have illystrated in this appendix once more that the
removal of the current restriction of our entire mathematical knowledge to the
irivial unit identified since biblical times, and the use of structurally more general
units, implies a rather vast broadening of all of mathematics, beginning with the
most elementary ones such as angles, and then following with all remaining
structures, permitiing basically novel applications in a variety of fields [10],
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APPENDIX B: ISOSPHERICAL COORDINATES

As it is well know, the polar and spherical coordinates are particularly useful
in theoretical biology. It may then be recommendable to outline in this monograph
for self~sufficiency their isotopic generalizations.

In ref. [10] we have proved that the conventional spherical coordinates in
Euclidean space Elr,8,R)

x =rsinfcosd, vy = rsinBsing, z = rcoss, B.1)
with Tamiliar measure
ds® = ax® + gy?+ dzf = ar? + r2(de? + sin®e d«j)z), (B.2)

imply a number of inconsistencies when used in isospaces B(rdR), such as the
impossibility of separating the radial and angular part in the eguations of motion,
and other problems, which persist in the use of oiher conveniional coordinate
systems, e.g., elliptical.

These occurrences have rendered mandatory the construction of ihe isctopies
of the spherical coordinates, called isospherical coordinales, which are the correct
coordinates Tor isospaces Blr3,2).

We shall present Tirst the simplest possible derivation of the isospherical
coordinates, and then iis more general form as needed Tor the isorepresentation
theory of the isotopic SO(3) symmetry and other applications. Consider ihe three-
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dimensional isocuclidean space B(r,8R) with isometric
8 =T8 8 =diag(l, L1 T =dag(T,T,T,). B.3)
introduce the redefinitions of the Cartesian coordinates
X =T, Y=y, T=zT/, (B.4)

which are such to reduce the isoinvariant in E(r,3R) into an identical form in a
conventional Euclidean space E(r,8,R) # E(r,8,R),

r2=xTXx+yTv},y +zT,z=%xx + yy + ZZ = T2, (B.5)
MNext, we introduce the isospherical angles
2 =T,8, b =TT e, (B.6)
defined to coincide with the original angles prior to the deformation. They are
derivable frorn ihe represeniation theory of the isorotational group ((3) which is
hers omitted for brevity [10].

Under these assurnptions, the isospherical coordinaiies can be first written in
the form {10! (see Fig. B.1)

x =T, sin{T,}6)cos{T, TVJ $) (B.7a)
y =1 T,},"H sin(T,'8)sin (T, T, ¢ ), (B.70)
z=r1T, cos(T, 0), (B.7c)

We can then introduce the simplesi possible form of ihe isomeasure on
£(r,8,R), that in terms of conventional differentials with the isolopic element
independent from the local variables
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ds? = X dx + dydy v gidz =
= dxTydx + dy T, dy + dzT,dz =
= dr? + 12 [T, de + T, Tysmzﬁdd)g] =
= dr® + 2 [a? + (i D) adl ], (B.8)
The expression of the isomeasure for the general case in which the isolopic element
depends on the local variables requires the full use of the differential calculus and,
as such, it is omitied for brevity (see ref. [10]).

The isospherical coordinates in form (B.7) are useful for practical
calculations, although they are not in their most general possible form because
conventional trigonometric Tunctions admil isotopic images. Their formulation in
ierms of the isotrigonometric Tunctions then permits deeper insights.

Recall from Appendix A ihat the isopolar coordinates expressed in terms of
the isotrigonomeiric functions in the iscgauss (x, yi-plane with isotopic element
T = diag. (T, T) are given by

x = risocos §= 1Ty *cos (T, Ty"} Yo, (B.9a)
y =71 isosin$ = Ty”'l“ sinf (T} Ty’i’ Yol , (B.9b)
and verify the isopyihagorean theorem

XTyex +yTyy = 12 (Tyisocos?d + T, isosin® §) = 2. (B.10)

In particular, the isotopic element of the above iscirigonometric functions is
nof that of the isogauss plane, but rather the element T in the iscexponentiation

f%j@ =ﬂq~)@”‘¢' = M}e“@= I (cosé + ising)] =
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= Ty_'% isocos & + 1T, *isosin &, (B.11a)
=TT, Ty =170 (B.111)

The next issue is the appropriate isotrigonometric formulation of the
remaining lerms in 8. At this point there is the emergence of a further degree of
freedorn which is "hidden” in the isofopic theory ilsell and compleiely absent in
guantum mechanics.

By inspecting structure (B.7) one could conclude that the isogauss plane for
the polar angle has the isotopic element T = diag. (T,, ). However, one can also
iniroduce the following redefinition of the isolovic element in three—dimensional
space

Ty = BBy, Ty = ByBy. T, = By, (B.12a)
391 Byy = By B3 .- (B.120)
wilh solution
Bp® = Ty T,/ T}, (B.132)
Bid= Ty T,/ T, (B.120)
Boo® = by bs/ bz, By =bg, (B.130)

3p..3 - 3p. 3 - mimt
Bri"Big” = Bog"By” = T, T
under which we can introduce the general isospherical coordinates

x = T isosin & isocos § =

I

= ﬂ@gg_isiﬂ(ﬁm Bzz@)“B”_l COS(BH Big @, (B.14a)

y = risosin & isosin ¢ =



Ruggero Maria Santilli - 211 - Theoretical Biology

= riByy 'sin (By Bye 0) By Lsin (B Boo}], (B.14b)
z = risocosd = rBy; ! cos {Byj Bog ) (B. 14c)

and iscidentity
XTyx + yTyy + zT,z = (B.15)

= 2 (Boy? By 2 isosin? B cds2 & + Bog® Bys” isosin B isosin? & +

2

2is0c052 B) =12,

* Bz

ISOSPHERICAL COORDINATES

N
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s . Y
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FIGURE B.I: A schematic view of the coordinates of a point on the isosphere in
isoeuclidean space in three-dimension, Eq.s (B.14). 4s one can see, the represeniation
coincides at the absiract level with the conventional one in Eyclidean space with
coordinates (B.1). However, the projection of the former in the space of the latter
exhibits the ellipsoidical character of the isosphere.

Redefinitions (8.14) are important for the isorepresentation theory studied in
ref. {5] because they permit the identification of the values of the isospherical

isofopic efements and isouniis separately Tor the € and ¢ angles
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Tg = BZl Boy = T¢ = BH qu (B.16a)
]@ = Bzﬁ_ﬂBgzﬁﬂ = T(p = B“_HBQ_E, (B.16D)
with evident computational advances.
The “hidden” isotopic degree of freedom in the transition from ihe
Gecomposition '
T = diag (Ty, Ty, T = diag (T, T\) % diag (T, I), (B.17)
to the more general form underlying structure (5.5.14)

T=diag (T, Ty, T,) = dieg. (B1;% B2 x diag (B2 Byy?), (B.182)

Ty = B2228“2g Ty = B222BE22y T, = Bmzv (B.18b)

is also important for numerous applications of ihe isotopies.
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APPENDIX C:[SOROTATIONAL SYMMETRY

As it is well known, the symmetry of the sphere in three—dimensional
Euclidean space E(r,8,R) is the rotational symmeiry O{3). As it is equally well
known, sea shells are believed not to admit a symmetry owing to their nonspherical
shape as well as the increase of the shape itself in time.

In this appendix we outline the jsotopies of the rotational symmetry which
yield the invariance of arbitrary shapes when properiy written in isospace. In turn,
the availability of a basic symmeiry for nonconservative and irreversible systems
permits their reduction to primilive notions.

The isorotational symmeiry O(3) was identified for the first time by this
author [271 in 1985 (see the detailed studies in ref.s [10]. Such a symmetry is possible
following the representation of sea shells in isoeuclidean spaces EF8R) and the
identification of all possible shapes with the isosphere (Fig. 2.4).

Consider the isocuclidean spaces B(,8,8) of Class 1T with isomeiric, isotopic
element and isounit in the diagonal form (were we ignore hereon for simplicity the
isoscalar character of T = rl)

8= T8, T =diag (T, Ty, T Ty = Ty, 0> 0,1 =T L@
The isotopies we are studying characterize the deTormations of the sphere

a

o= plph 452 4 53 5 g .2
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into all infinitely possible three—dimensionzl surfaces

re= KT = el ¢ ety P, rd =inv. 3

Some of the main properties of isorctations can then be expressed as follows:

Theorem C.1 [27,101: The isosymmetries O(3) of ail infinitely possible
deformations of the sphere on the isceuclidean spaces E(r,8R), verify
the Tollowing properties:

1) The groups O(3) consisi of infinitely many different simple
groups corresponding fo the infinitely many possible deformations of
the sphere (explicit forms of the isometric)

2) All isosymmetries O(3) are locally isomorphic to O(3) for positive-
definite isounits or are isomorphic to the isodual 043) for negative-
definile ispunits, and

3) The groups O13) constitule “isotopic coverings” of the conventional
group O(3) in the sense thal:

3.a) The groups O3 are constructed via methods (the Lie—Santilli
theory [6)) structurally more gemeral than ihose of 03 (the
conventional Lie’s theory)

3b) The groups Ol8) represent physical conditions (deformaiions of
fhe sphere; inhomogeneous and anisotropic interior physical media; gic.)
which are broader than those of the conventional symimeiry (perfectly
rigid sphere; homogeneous and isoiropic space; etc.) and

32c) Al groups O8) recover Ql3) identically whenever 1 =1 and
they can approximaie the latter as close as desired forl ~ 1.

It is generally believed in both the mathematical and physical literailure that
ihe rotational symmetry is broken by ellipsoidical deformations of the sphere. This
belief is disproved by the Lie—Santilli theory because of the following:

Corollary C.1.A lloc. citl: The rotational symmeiry is not broken by
ellipsoidical deformations of the sphere, but it is instead exact because of
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the isomorphism O(3) = O(3), provided that it is realized ai the covering
isotopic level with respect fo the isounit T = T

Note that the conventional rotations are indeed no longer a symmetry of the
deformed sphere. Corollary C.1.A therefore focuses the atiention on the difference
between the violation of a symmetry in conventional spaces and its exact validity
for the corresponding isospace. Equivalently, we are here referring to a mechanism
of reconstruction of an exact symimetry in isespace when conventionally broken.

The isorotations can be explicitly writien in Er,8R)

=R ke = RO T, o) r=86L 01 0, R = §7, (C.4)

and therefore result to be intrinsically nonlinear. This is due to the fact that the
Tunctional dependence of the isotopic elemenis is completely unrestricted by the

isotopies. We therefore have the Tollowing

Corollary C.1.B lloc. cit.k While conventional rotations are linear, local and
canonical transformations in E(r,8,R), isorotations are isolinear, isolocal and
isocanonical in B(r,8,R), but nondinear, nonlocal and noncanonical when
projected into E(r,8R)

A fyrther important result is the isolopic generalization of the conventional
Euler'’s theorem on the general displacement of a rigid body with one point fixed
which we can express via the following:

Theorem C.2 lloc. cit.k The general displacement of an elastic body with
one fixed point is an isorotation O(3) of Class I around an axis through the
fixed poini.

The above theorem iflusirates the use of the classical isorotational symmetry
for the characierization of deformable bedies.

A brief outline of the classical isorotational symmeiry is the following. First,
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let us consider the three-dimensional isosuclidean space E(r,5,R). Iis local coordinates are
usually assumed to be contravariani and we shall write T = X}, k = 1, 2, 3. Assume that

the isometric in its natural form has covariant indices
B=06) = diag. (T, Ty Ty). (c.5)
Its contravariant form is then given by

. _ ' _ _ ~ I
(81) = (8;))7 = diag (1, L1y Tt By 89 = 8 (c6)

We consider now the isophase space T+E(r8,R) with local coordinates a = {a"}
= {r, p} =1{x, pk}y M =1 2 .. 6 where the linear momentum py Is contravariani, as usual.
The raising and lowering of the indices therefore follows the rules

ne =8t = TR, R =8N = Ty (hosums). €7

The classical Lie—Santilli brackets then assume the form!®

) 9k aB 5B 3
[A7B] = —— B = 1B =
ar? 3pq arP 3Py
DA l@B oB i BA cs)
= — T - T~ 7 08
ok ap, o 3Py

To identify the Lie-Santilli algebra s0{3), let us compute Tirst the classical

fundamenial isocommutation rules which are readily given byzo

fou el W op) \ /0 1 \
(7 ) =| | | R ) o
Sodps p]l Vo= 0

19 The proof that the above brackeis do indeed verify the Lie axioms although in a
generalized way is based on the isoiopies of the symplectic geomeiry and, as such,. il
canmnoi be reviewed here for brevity (see ref.s [[5] for brevity).

20 These rules require the knowledge of the isoderivatives for which dr,/8r! = 8;; 151
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showing the isotopy I — 1. However, when considering the isocommutation rules
between r; and p; we have

[r;; vl ) pf /6 1 3
( E . : 1A1P] 3) (( >) {c.10)
oyt Ip, . pj] / \ o

4

~
3

Lemma C.1s The classical isocommuiation rules between 1, and py coincide

with the conventional canonical ones.

Next, we introduce the generators of the Lie-isotopic algebra s6(8 which, by
central assumption, are given by the conventional, contravariant generators of
o(3), !

B py = &g ! P (1

The above quantities are called the components of the isofopic angular
momentum to emphasize the fact thal they characierize a gengralized notion
defined on T*E(r,8,R) rather than on T'E,r&R).

In particular, the magnitude of the conventional angular momentum is given
by the familiar expression 32 = Jka = gl Jidy, while the magnitude of the isotopic
angular momentum is given by

J%= Jwg= Fayg = allgey =alary €12)
Next, the Tollowing isocommutation rules are readily compuied

[T nl = Mg, (C.13a)

21 ynlike the operator case to be considered soon, note that the quantities yi and p j here
gre ordinary functions and, thus, they do not require the isotopic product rl*p j- Note also
the subtie but tmportant differences of the indices of 8 =@y, 1= s j and T = (1))
Thug, only the tensor Sij or its inverse 8 used for lowering or raising indices.

22 JQ is i this case an isoscalar, that is, a scalar guaniity in isospace. For this reason it
must be contracted in the form 32 =%,
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[ Jk ;‘ pi } = Ekij p] , (Cle)

angd evidently coincide with the conventional ones.
The desired classical isorotational algebras 6{3) are then given by [27%°

s . [JH] = ek gk (C.14)

namely, the isocommutation rules of s6i8 have the same structure constants as
those for the conventional sof8). This establishes the local isomorphism s8(3) =~ so{3)
ab initio. For different classical realizations one may consult ref.s [9,101

The isocenter of the enveloping algebra ¥ is given by the isomagnitude of
the isotopic angular momentum, @ = g2 , as expected. In fact,

(2701 = 2&Migk gl = o (C.15)

The desired classical isorotational group SO(3) can then be expressed via the
isoexponentiations in terms of the conventional generators and parameters (the
Euler’s angles)

S‘%‘_ £
ke (6) [ E[k: . ,Q,SEE\E

where the exponentials are expanded in the conventional associative envelope £ for
stmpliciiy.

ekmuoq 2OLV(aJk/aaw) (a/aH) 11 == 801 (.16)

Note the true realization of the notion of isotopic [ifting of a Lie symumelry,
consisting of the preservation of ihe origingl generators and paramelers of the
symmeiry, and the isotopic generalization of the struciure of the Lie group itself.

The computation of examples is straighiforward. For instance, a (classical)

23 [gocommutation rules (6.1.14) disprove another popular belief in Lie's theory, that the
compaciness or noncorapaciness of an algebra can be ascertained from the siructure
consiants. In fact, the structure constants 4% are those of the compact SO algebrs,
vet isoalgebra (6.1.14) can represent the noncompact sol2.1) algebra for T = diag. (1, 1, —1).
The latier possibility has been excluded from the physical studies of this and of the
following sections by restricied the isotopic element to be of Class L.
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isoroiation around the third axis is given by [5l

xcosd - y T, 5Ty“smé
= ‘ v’ > ( xTJ‘* “sin®+ ycosd /5

¢

A z
= b d
b=TiTle. (C.18)

It is an insiructive exercise for the interested reader lo prove the invariance of ali
possible deformed spheres under ihe above isotransforms.

We now compuie a general isorotation which brings a point P on the
isosphere to an arbitrary point Q. Its projection in Euclidean space is the
transformation of a poini P on an elfipsoid into another arbitrary point Q of the
same ellipsoid. Such a rotation can be computed via three successive isorotations
{10k

1) An isorotation R(8) of an angle &, =T, Tyé ©) in the (x, y)-plane such that 0 =

. b b
/ X"y / cos® - Ty T, sin® 0 \ f Xy
\ L v
Loy =l T Ty “sin®,  cos® 0 ) y( ¥ | , {C.19)
4 # ! kN /
z’ 0 G 1 z

2) An isorotation R(B,) around the polar axis z of an angle B, = T;@‘Z such that
0= @2 =,

X’ s 0 0

N e X (0
[\ ¥’ ,]f = (\ 0 cosB T, T, “by " sinb, Ly (C.20)
z’ 0 Ty*"& T, sin &, cos ¥, z

3) An isorotation fil,) in the (x, y)-plane with angle 8 = "[[‘X%T\},f@s such that
0=9,=

: ! Y %‘) - ~3 L 5

P [ co;s 5 = Ty (T sind; 0 \/ X y

[T = ¥ e IS i

l\ i j‘} %\\ Ty Ty sin @3 oS 7@3 0 }‘/ \ y //ﬁ (Cc.21)
z’ 0 0 1 7
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We therefore have the general isorofation on the isosphere

= R0 0y 05 % = A XA #ADY K1 = FOY, By, By 1,

’

X lcosh; cos B3 - sin B cos By sin )
< v’ \}’ = ( T, TY—J‘L {sind cosbg + cosb| cosdy sindy)]
z

/

’ [sindy sinbsg]
-1, Ty‘!z (cosd)| sinBg - sind; cosh scoshs)] HTX_%TV% sind) sinds] v g X
[Ty I, X sind; sin Bg + cosh) cosby cosbs] [—Ty_ﬁ"ﬂ"zé cosdy sindyl }} @\\ y >

[ TXJ"TYMJ" sindy cosbyl [cosh,) z
o = T T, B =Tle, =T Tes (.22

The inverse general isorotation is then given by
T = %(’ﬁ—,es,@z'ﬂ—él)*f'. {C.23)

The representation of a decaying angular momentum is notoricusly not
possible with conventional rotations, but it is readily achieved by the isorotations
with a functional dependence of the type Ty * = expl—yt), under which we have

JE o= g YKy j- ‘ {C.24)

* This illusirates the applicability of isorotations, not only for the invariance of the
shape of the sea shells, but also their growih in time.
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or the representation via the addition of an exiernal collision term such as
1dQ/di = QoH = QxH-HxQ + ¢, i + Hf, (3. 45)

The brackets QoH of the preceding equations vioiate the conditions fo
characierize any aigebra. It then follows that the description in dissipative
conditions, say, of “protons and neutrons with spin 1/2” has no mathematical or
physical meaning of any nature, because of the absence in the theory of aii
algebras, let alone the SU(2) Lie algebra needed for the characterization of the spin
1/2 in a meaningful way.

Stmilarly, it is casy to prove that the time evolution of the latter dissipative
equations is nonunitary, Uxt = 1. As a2 resylt, the preceding equations do not
preserve their basic unit, [ = I = UXIXUT = | and, as such, the equations are not
really applicable to experimental measures (which require an invariant unii, as
well known). Moreover, the preceding equations are not invariant under their own
time evolution, as one can readily verify. Therefore any interpretation or
“number” derived via these theories has nc known value of any type for
applications. The reader may consult Sect. 7.2 of ref. [10] for additional
problematic aspects or shear inconsistencies of these alternative formulations of
dissipative systems.

In conclusion, to the best knowledge of this author at this tirme, the
genotopic branch of hadronic mechanics presented in this section is the sole
theory currenily available Tor the description of dissipative or, more generally,
nonconservative systems in a physically and mathematically consistent way.

In any case, aliernative representation of dissipation are manifesily limited,
while genotopic equations are directly universal for all possible nonlinear and
nonlocal and nonhamiltonian nonconservaiive systems (9,101
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4: BELEMENTS OF
HYPERSTRUCTURAL METHODS

4.7: Introduciion

Hyperstructures (see, e.g, [18-19)) are some of the most compiex
mathematical structures conceived by mathematicians until now. Part of their
complexity is due to their virtually endless variety of formulations and
realizations which evidently multiply the difficulties for their selection and
realization into a form suitable Tor applications.

Yet, after due study of the problem, this author believes that the need for
the hyperstructures in theoretical biclogy is simply unavoidable because the
isotopic and genclopic methods are effective up to a cerfain complexity of the
systems considered. As i is the fate of all quantitative sciences, lheoretical
biology will never adimnit & "final theory”. The hyperstructures then emerge as the
most natural avenue for broadening the relatively ”sﬂmpler”‘ isotoples and
genotoples.

Moreover, this author believes that specific praciical problems in
theoretical biclogy will be invaluable in selecting the most effective
hyperstruciure among the large variety of possible ones. It is instruciive here to
vecall that, rather than originating in mathematics and then propagating in the
physics, the isotopic and genotopic methods reviewed in the preceding sections
originaied from specific physical problems and they have only marginally
propagaied into the mathematical literature until now. It is easy to predict a
strnilar occurrence Tor the hyperstruciures.

Along the latler lings, 8 Tundamental condition has already been introduced
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in hypersiructures from specific requirements in applications, apparently for the
first time in the recent paper [16], thai hyperstruciures must possess a well
defined right and left generaiized unit (called hyperunit) io have meaningful
applications. The related hyperstructures are then calied 1-hyperstructures.

Ref. [16] also contains a mathematically rigorous presentation of 1-
hyperstructures which we cannot possibly review here for brevity. This brief
outline is intended lo identify a specific realization of the 1-hypersiructures
suitable Tor initial applications in theoretical biology, while we refer the
mathematically inclined reader to paper [161

Also, paper [16] presented the T-hyperstructures as a generalization of the
isolopies (ie., under the condition of admiiting the isotopies as particular cases),
which is certainly correct and valid as a first approach. In this section we shall
conduct a preliminary study of the broader 1-hyperstructures which admit the
genotopies as particular case.

The latier requirement imposes additional conditions to select one given
hyperstructure realized in explicit form, and leave the remaining possibilities as
well as their abstract formulation for study after gaining sufficient input from
applications.

We finally note that the T-hypersiructures introduced in [16] are based on
siructural generalizations of conventional properties of associativity,
comimutalivily, etc. called weak associalivity, weak commutativity, etc. For
reasons discussed in the applications, it appears advisable to study
hyperstructures preserving the convemntional properties and caklled strong
associativity, etc.. As we shall see, this latler condition appears to be needed for
consisiency of the mathematical models with experimental observation.

In summary, in paper [16] we presenied a particular class of
hyperstructures which: 1) possess a well defined unil; 2) admit the isolopies as
particular case; and 3) are defined in terms of weak operations. [n this section we
shall attempt the identification of hypersiructures whick: 1) admit a well defined
left or right unit; 2) admit the genotopies as 2 particular case; and 3) are defined
in terms of strong operations.

It goes almost without saying that the latter hyperstructures will remain
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vastly unexplored, the expectation of a maturity similar to the preceding isciopies
and genotopies not being realistic at this moment. But thai’s precisely the most
interesting aspect for researchers with young minds of all ages.

4.2: Basic mathemaiical notions

A central mathematical property of the hypersiruciures is that of being
multivalued, that is, products which traditicnally have only one value, may
assume several! difTerent values.

As a simple illustration, all products among numbers considered until now,
whether conventional %, isotopic % or genotopic >, < admit one single value, e.g.
nxm yields one single element of R(n,+%). On the contrary, the hyperproduct of
two numbers, here denoted ©, implies multivaluedness, that is, nom yields a set
of elements of R(n,+x).

This central features of hyperstructure has a clear potential for new
frontiers in theoretical biology, because it is particularly suited to represent, say,
the birth of a new ceil in which the original number of entities was one and the
final number of entities is {wo, which is precisely a realization of the notion of
multivaluedness.

The above muliivaluedness has been resched in the contemporary
literature in hyperstructures [17-19], including paper [16], via
hypermudiiplications while the unit rerains scalar, that is, single-valued, when it
exists.

However, all structural properties studied in this memoir are reducible (o a
orimitive notion of generalized unii. [n order to have a continuily of thought, in
this memoir we introduce instead the forward hyperunit defined as a 7inite and
ordered set

(17} = (21 L1700 ) (4.1)
where the symbol {..} is that at times used in physics o denote a set, in which

each element is a well behaved nowheres null structure such as g forward
genounit (Sect. 3). The Tinite character of the set as well as the ordering of iis
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efernents is evidently importani to avoid un—necessary difficulties.

Let Fla,+x) be a conventional Tield of real, complex or guaternionic
numbers with conventional sum -+, muliiplication x, additive unit ¢ and
multiplicative unit 1. By following the same patlerns as those for isotopies and
genotopies, we define as forward hyperfield the set (FP}{a”), + (), where

@) = ax{”), acF, (4.2)
are the forward hypernumbers equipped with the conventional sum + and
additive unit 0 and the ordered multiplication to the right, called forward
hypermuliiplication

(67 ()P ) = (67 )%(S), Sy % (87, (4.3)
where all equalities are strong hereon, the quantity

(sl =1{stnrt.)strnt .., (4.4)

called the forward hypereiement, is an ordered set of the same dimension of {17)
and such that

(P ix(R) = (L1 .). J (4.9

It is then casy to see that {17} is the correct left and right unit of (£}

(it Ha”) = (a2 1P = (a7), (4.6)
in view of ihe trivial property
{ L1, .. 1% {T‘n[>9]2>y )= {IE[>,/3\_32>9 . (4.7

It follows that the hyperset () verifies all axioms to be a field in a sirong
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form. [n Tact, the hyperset is closed under sum and forward hyperproduct, and
verifies the conventional associative and distributive laws. In short, under the
above assumptions, all properties of fields, isofields and genofields are exiendable
to a multivalued structure without generalizing the original axioms, exactly as
desired.

In summary, the essential character of the hypersiructures, that of
expressing multivaluedness, can indeed be expressed in terms of the hyperunit,
which is ihen reflected in the hypernumbers themselves. The multivaluedness of
the operations i3 8 mere consequence.

Note the insistence in preserving the conventional sum unchanged because
its possible generalizations would imply divergences in exponentiation and other
operations, thus prohibiting practical applications [15].

Once the fundamental structures of ihe unit, number and fields are
identified, all remaining aspects are merely consequential and can be constructed
essentially on ground of mutual compatibility.

We defined a forward hypereuciidean space ihe siruciure over the
forward hyperfield of real hypernumbers, apparently iniroduced here for the
Tirst time,

()67, 67, %)), (%) = Px(P), (87) = (s)x5, (489
(2) = [ I8 < (P < (17 ) < (R>) s

‘ with a corresponding definition Tor backward hypereuciidean space. The
| forward and backward hypereucl;’d@an geomeiries arce the geometries of the
| above hyperspaces and can be constructed via a step-by-step hyperlifting of the
l isogeometries of Sect. 2 which is here left to the interested reader Tor brevity (but
implied in the applications).

The properiy of Euclidean spaces which is preserved under hyperlifiing is
the quantity:

Hyperlength » Hyperunit = invariant . {4.

LN
©
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In fact, once explicitly worked out it reduces to the quaniily Length x Unit x (1, 1,
... Yand, in that sense, the above hypergeometries are axiom-preserving.
The forward hyperdifferential calculus, apparently introduced here for
the first time, can be defined via the forward hyperdifferentials
(@)% = (1K xar, (4.10)
with corresponding forward byperderivatives
| 3>}/ {3 = (s )% a/art, (4.11)
with the corresponding ordered multiplications.
The hyperlifting of the remaining aspecis can be worked out by the
interesied reader via similar methods.
4.3: Hyperstructyral classical and quantum dynamical eguations
The Tirst and perhaps most important implication of the preceding section
is that the above hyperstructures imply a further generalization of the four
genotimes of Seci. 3.2 inte hypertimes of multivalued character for each of the
four oriented directions of the genotimes, according to the outline
Forward hypertime 7 = o), 071 = {570,

Conjugated forward hypertime () = o<1, {9 = (R, D =0,

Backward hypertime e =-07, 02 =

|

!
s

v

Conjugated backward hypertime {0 = - (<), (N¢ = ~ (<Y
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THE NEW NOTIONS OF TvE
ISCOUTIVIE

Motion forward in past time i Motion forward in future time ¢

GENOTIME

Motion forvard in past thme 93 Motion forward in future time ¢

i

0
Motion backward in past time <t%; Motion backward in future thme 9
GENOTIVIE

Motion forward in past time (193 IMation forward in futwre tme {¢7)

>
0

Motion backward in past time (<09 Motion backwerd in future time (19

FIGURE 4.1. A sumnmary view of ihe new notions of iime suggested by the isotopic,
genotopic and hyperstructural methods for biological structures. Eddingion’s "time
arrows” are four and not two. In fact, we have motion forward and backward in
future and pasi times. Their description therefore requires iwo different
conjugations, one for the map of the future inio the past and the other for the map
of motion forward into that backward, cach conjugation being bi~injective, that is,
such thai, when applied twice reproduces the original time. The map of the future
into the past (or viceversal is assumed in this monograph to e given by the

time isoduality t -
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The map interconneciing motion forweard with that backward (or viceversa) is
called

time isoinversion {7 =<y {b)

and it is given by any bi-injective map suitable for the specific mode! at hand, e.g,
complex conjugation, Hermitcan conjugation, etc. The combination of the above
two conjugation then yields the desired four different times, t, td, i {t)° one per
each time arrow.

It is easy 1o see that the conventional time, here writien tx1 where L stands for
the assumed time unit (say, one sec), constiiutes the simplest conceivable
realization. Nevertheless, it is our perceptfion of time and, as such, it does not
necessarily correspond to an inirinsic reality. Moreover, the conventional time
admits the isodual map td = —{, but it is not suitable to characterize the
isoinversion. Finally, our conventional perception of time is structurally reversible
and, as such, not suitable for a quaniitative characterization of the irreversibility
of biological processes.

In view of these insufficiencies, in this monograph we have introduced three
generalizations of the conventional time for biological systems, called isofime,
genotime and hypertime. They all share the property of verifying the same
geometric axiom of our perception of time,

( period of iime ) % (unit ) = invariant |, {©

where the square of the time period originates from iis one—dimensional Euclidean
structure. According to the guidetines of our studies presenied since the Preface,
ihe above requirement i3 necessary because our sensory perceptions, even though
limited, are nevertheless capable of deieciing geomeirically nonisomorphic
realizations.

The first possible generalization meeting the above requirement is the isolime
which we write T = tx4(t, ..}, where 1; stands for the time isounit, ie. the new
numerical value of the unit of time, and it is assumed to be positive-definite, T =
Tml > Q. Despite the alteration of the unit of time, we have an isotopy inasmuch as
we still satisly the basic geomeiric axiom (¢) of conventional time,

i H

{interval of fimel(unit)= [(ip— 17 ) x Tl -1, )1xT =~ 1; Px!

We Tirst learn in this way that our perception of thme must not necessarily be the
actual behaviour of time in biclogical structures, because any other time behaviour
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with an arbitrary positive unit is equally admissible, provided that it is realized via
the isotopic methods, i.2, via isofields, isospaces, etc. The isodual isotime is given
by "td = -t and, as such, it is well defined. In particular, it also satisfies the
geometric axiom (c) of conventional time

(interval of time){unit) = [{ty -t )% Moxly =t )1x1% =ty -t P L,

We learn in this way that motion in past time is fully causal and compatible with
our senses, provided that it is realized with our isodual isctopic methods, i.e., with
the isodual isofields, isodual isospaces, etc. the isoinverse isolime generally
coincides with the isotime, which renders ihe isotopic methods insufficient for
sufficiently deep representiation of irreversibility in biology.

The first axiomatic characterization of irreversibility is permitted by the
forward and backward genotimes 1= = vd7(, ), <t = %1, ..}, which
characierize irreversible processes even when the genounits are not explicitly
dependent on tim_e,? # <1 In this case both isoduality and isoinversions are well
defined, with 17% = <17, and (") = <1 and the basic geometric property (c) is
verified in each of the four arrows

[(tz“tl)‘r‘ﬁ‘>x(‘lz—tl)]>ﬂ> =[(t2“u)><<T>‘(’[2—‘tE)]XQE =
{(“[2—-‘[1))4T‘>dx(t2—‘[1”x]>d =Ht2’“ﬁ?1)>3<de("f2—tl)]x<ﬁd =
= {1y -1y P,

This implies that all four arrows of time are possible in biological structures
because compatible with our perception of time. As we shall see in Ch. 5, this
properiy is important for quantitative representation of bifurcations and other
biclogical processes which require a necessary departures from conveniional
notion ofg time. Note the methodological differences with isotime. In the former
there is no ordering of the product, while the laiter requires the necessary
restriction of all products to the right for moetion forward in time, and all products
to the left for motion backward in time. Thus, on Tigorous grounds, the use of
isolopic methods i3 inapproprizte whenever the isounit is not time-reversal
invariant, I(;, .. = 1=, ..) and the use of genotopic methods is necessary with the
identifications 17 =1(t, ..) and <1 =T{-¢, ...).

The last generalization, that of multivalued forward and backward hypertime
7)) = o170, O (90 = oS, L), is the ultimate, most general possible notion of
time which preserves the basic geometric axiom of time, thus being compatible
with our perception. It is based on the fact thai the curreni, generally tacit
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assurmption of the same time for all components of a biclogical system may well
result 16 be erroneous because of the possible exisience of different internal times
for different componenis of which we essentially perceive their average.

In symmary, the most important notion submitted in this monograph is the
sequential generalizations of our perception of fime into isotime, genotime and
hypertime. In fact, the corresponding new methods and their implications can be
derives from the above generalized times in a unique and unambiguous way.

Note that the above multidimensionality of time is grossly beyond our
intuitions. Yet, it is admitied by the abstract axioms of the Euclidean geometry

and, as such, it cannot be ruled out 2 priory.

We now introduce the hypervelocity
(¥ = {@HP /@) = PN /@), (4.12)
and related carrier hyperspace
(8 )= {EZZ R = (B> 5”87 R7) < (B> J0> 87 8™, (4.13)

where the internal brackets have been omitted for brevity, with related fotal
forward hyperunit

H>ﬁ0t} = ﬁt>} x{,ﬁ>r} S ﬂ>\i} (414)
where we have assumned for simplicity (7} = (7).
The forward hypernewion equations on (87), here introduced apparently

for the firsi time jeintly with the following dynamical equations of this
subsection, can be written

7} —— - BT, 97), k= xy,z, (4.15)
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and are derivable from the forward hyuperaciion

- rot o
(A7) = j ;| 2673 v, (4.16)

where the forward hyperiagrangian is a conventional form only properly
written in forward hyperspaces (that is, with all variables and products
formulated via the preceding hypersiructures).

In addition to all properties of the iscnewton and genonewion equations of
the preceding sections, the above hypernewton eguations have the additional
capability of being multivalued, that is, of performing the transition from one
single “isopariicle” or "genoparticle” to "multivalued hyperparticles”.

More specifically, the mass m in Eqs (4.15) is one yet the eguations
describe a system of particles

{]ﬂﬁl>} = {ml, My, } = {m‘(ﬁ 1>, m2>5E2>, ") {4.17)

The latter property signals the crossing of the threshold of applicability in
the physical world and the entrance within the arena of theoretical biology. In
fact, one single cell can produce a system of cells, but one single parlicle remains
50 in physical systems. H

H pror, Tepper Gill [Howard University, Washington, D.C) is studying the representation
of nuclear fission vig the isotopic methods, which is the physical event closest to the
multiplication of cefls in theoretical hiology. However, the preceding physical case can be
well studied via reducible isounits, that is, isouniis given by the fensorial product of
individual terms

,[ = /T[l xlﬂz

By comparison, the hyperuniis here considered are characterized by a sel

It then foliows that the former iscunit /s noi multivalued, e.g., because the isoexpeciation
values vield one single number. Only the laiter is. As such, the formulations based on the
latter unit are broader than those based on the former. This case also illustrate that the
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We then have the following forward hyperiagrange equations,

@) (I NI

- - , (4.18)
(=) (397K} {5 1K)
Similarly we can introduce the hyperspace and related iotal forward
hyperunit
(& = E710” R % (B2) 87 37) = (B2)0” 87 /), (4.19a)
(P = (P11 = 07 (4.190)
where we assume for simplicity ["h>p} =)7L

We also have the forward hypercanonical hyperaction
i
(A} = [ U R - )] =
1
{
- [, ton s - @, (4.200)
1
(071 = (7). 0), ) = (67, (7)), (4.200)

with ensuing forward hyperhamilton eguations in disjoint form

(P ) @5 ) {10 o)
= , —_— s - 4.21
@ G Gl £
or in unified notation
{9~ BY) Crglitng]
{c.uw} = , (4.22a)

~
(@) &t
selection of a reducible isounit or genounit is intrinsically contained in the formulations
of Sect.s II and [, withoul any need of any additional clarifications, except data
elaborations of specific applications.




Rupgero Maria Saniilli — 144 — Theoreiical Biology

{d>bu> ) {ox ™)
— = (o) ——, (4.220)
{d it
where
togy b = o L Lad, TaWh = oL L) (4.23)
in view of the properties
{9707, /3*) = (8D, /abh) (1, 1, ..} D°={p, 0L (4.24)

The preservation of the conventional symplectic and Lie structures under
the above class of hyperlifting is the most important result of this section. In
fact, it confirms the existence of a consistent step~by-step hyperstructural 1ifting
of the entire body of genolopic methods, including the symplectic geometry, and
the Lie-Santilli iso- and genotheories (that is, including genoalgebras, genogroups,
genosymmeiries, genorepresentations, etc.) (9,10 In turn, this occurrence ensures
the axiomatic consisiency of the hyperstructural methods here selected, thus its
availability Tor consistent applications.

The latier resulis include the exisience of a simple, yel unique and
unambigucus naive Ryperguantization

37 = -0 Lo @ | (4.25)

under which we have the forward hyperschrddinger equations

BN 6) 35 )
i—— = il ——— = P15 (4.262)
(&) Bt
) (27} ) )
P B = -1 ——— = - i{g ) ——— (4.260)
(87%) ar

We finally have the Tollowing forward hyperheisenberg equations
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HP G/ @) = (¢,0n) = A - BB G, (4.27)

whose brackeis
{A,B)=AdB -B)A, (4.28)

are a generalization of Albert-Santilli Lie—admissibility of Sect. 3.3 and confirm
the realistic possibilities for a Turther generalization of the entire Lie theory, this
time of multivalued character.

We finally mention that the operator fiypersiructursal theories are defined
on the forward hyperhilbert space with forward hyperstates { §& ) = ${1”) and
forward hyperinner productover the forward hyperfieid of hypercomplex
numbers

0> (e el = (570 [ a¥ PN 9 BP0 « £, (4.29)

plus the hyperstructural lifting of the remaining aspects of the isolopies and
genotopies of operator formulations which we cannot possible study here.

We shall therefore content ourselves in having identified a possibie
muliivalued generaglization of the isolopic and genotopic methods, and defer
further formal treatments following a verification of their significance for
applications in theoretical biology.
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5 PRELIMINARY APPLICATIONS N
THECORETICAL BIOLOGY

5.1. Outiine of main implications

We [inally iliustrate in this section the applications of isotopic, genoiopic
and hyperstructyral methods to theoretical biology by keeping in mind, as
indicated in Sect. 1, that this author is a theoretical physicisi and, as such, the
objective of this section is that of merely indicating the possibilities of the new
methods. Rigorous and detailed studies in theoretical biology are expected to be
the task of interested theoretical biologisis.

It appears recommendable to bDegin with an ouiline of ithe main
implications in the use of isotopic, genotopic and hyperstructural method as
necessary guidance for the understanding of the subsequent results.

Along the lalier fines, as siated in the abstraci, by far the biggest
difficuities in the applications of the new methods are due o the limitations of
our perception of nature.

To begin, we have our own instinctive perception of iime and, when
investigaling any oiher structure, whether physical, chernical or biological, we
assume instinctively thal they have our own time. Stated differently, we
currently believe that zll possible physical, chemical or biological structures
everywhere in the Universe evolve with our own time, except for relativistic and
oravitational corrections, when applicable.

The Tirst and perhaps most imporiant implication of the new methods can
De cxpressed as follows:

Implications for times Biological structures represented with isofopic,
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genoiopic and hypersiruciural methods generally have their own inirinsic
time which is different than our own perception of time, both in its raic
of flow and in direction, as well as being of progressively increasing
complexity depending on the complexity of the system considered.

To minimize misrepresentations, we should stress that, by no means, we
claim that the above novel time behaviour is true. We only claim that it is an
inevitable conseguence of the use of the new melhods which must be appraised
and proved correct or erroneous in due time.

Assuming that the isotopic representation proves to be correct for certain
biological structures, the additional separaie problem which has to be addressed
and resolve in due time is whether we are referring to a purely mathematical
property or to an actual intrinsic behaviour.

) Yet another understanding to separate science from the adaptation of
science for personal needs, is that the validity for biological siructure of our
perceplion of time also cannot be claimed at this writing as being true. In facl,
the resolution of the problem whether or not biological structures evolve
accerding to a time different than our perception will predictably take
generations of quantitative studies.

To {llustrate the above time implications, when we observe a sea shell or a
iree, It does nol necessarily means that these structures really evolve according to
our perception of time, because they may in reality have a drastically different
ntrinsic time. The same evidently applies also for our own body and, for this
reason, we differentiate between our perception of time, and the intrinsic time
of our own body.

The mechanism according to which biological siructures may have a time
behaviour different than that of our perception is that of the isospecial refativity
of ref.s {27-29] which is based on the alteration of the unit of time, from our
fixed and perennial unit [ = +1 sec, to a well behaved, but otherwise arbitrarily
positive or negative function, the isounit of time

Ij = +lsec>0 — T = function>0or <0, {(5.1)
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under the condition!?

(D = Time intervals )2 x { I = Unit of time) = invariant ). {5.2)

As an itlustration, consider our perception of the very slow growth of
plants. Isotopic methods identily the possibility to be resolved by Tuture studies
that the plant may well grow at a rale much Taster (or much slower) when
treated in its own structure.

Suppose thal our perceplion of a certain growth requires a period of time
with Buclidean invariant 10,000 sec? when reported io our unit of time +1 sec.
Then, if the internal structure of the plant implies an isotime, say, of 1,000 sec,
then the same growth requires only 10 sec,

(D= 10,000 sec®)x (I, =r1sec) = (D = 10sec®)x (1, = 1,000 sec). (5.3)

When genotopic methods are used, we have the emergences of (hree
additional notions of time besides that of our perception, as per Sect. 5.2,

When hypersiructural methods are used, fime becomes mullidimensional
in each of ihe preceding four possible directions (Sect. 4.2), thus exiting the
boundaries of our intuitional capabilities. _

As a final limit of complexity, the DNA code may well imply four
different hypertimes each having infinite dimension.

The reader should be aware that the above new behaviour of time is
structurally beyond Einstein's special and general relativiiies (but is admitted and
guaniitaiively irezlable by our covering isospecial relativity [27-29]) because it
may occur for siructures at rest and in the absence of graviiation, thus
preventing any applicability of relativistic or gravitational corrections.

The scientific credibility of the above possibilities is established by the

12 Recall from Sect. 2.2 that the use of the different inveriant (Period of time) / (Unit of
time} would lead io a different geomelry which is no longer an isofopy, thus preveniing
compatibility with our own percepiion.
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isofopic character of the methods, that is, their capability to preserve the
geomelric axioms of our perceplion of time, and merely provide a different
reafization. 1t is at this point where the selection of isolopic rather than other
methods appear in its Tull light.

It is easy to see that the use of other methods, such as the so—called
deformations, implies generalized structures which are no longer isomorphic to
the original ones. A drastic and perhaps irreconcilable difference would then
emerge beiween our perception and the latter mathematical representations.

As shown in Sect. 2.2, the conventional one-dimensional Euclidean space
E(tRy), representing our perception of time over the field of real numbers
Rt(fz;rYX)y coincides at the abstracl level with iis isolopic, genotopic and
hypersiructural extensions,

Bl R) ~ BILR) ~ B, R ~ (SEXSC <R ). (5.4)

In view of the above identities, we can express at this writing only personal
opinions on the behavior of time of biological struciures one way or another,
but we have no scientific evidence 1o reach definite conclusions.

We can say in an alternative way that the preservation of conventional
axioms permits the interpretation that our perception of time is the projection of
reality in our sensorial sysiems, and this interpretation would apply also for the
multidimensional hypertime which becomes one-dimensional when projected in
our sensorial systems,

The geometric treatment of the above occcurrence has been iliystrated in
sect. 2 via the isobox of Fig. 2.1 which essentially consists of the same object
(the isobox which is now re-inierpreted as any biological structure such as a sea
shell or a iree) which is inspected by two observers, one outside observer here
identified with ourselves, and internal cbserver identified with the intrinsic
behaviour.

The main resuli is that an object can exist ai different preseni or future
times and can have different times flows for the exiernaf and internal observer,
which is precisely the implication reported here.

Note that the above occurrence implies that biclogical structures are
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“time machines”, that is, they are capable of aliering time in both the future and
the pasi. Moreover, the alteration is Tully causal if treated with isotopic methods
because, as shown in Sect. 2, motion forward in time referred to a positive unit +
1 sec is fully equivalent on causal grounds fo motion backward in time referred
to a negative unit —I sec.

Studies of the above causal alteration of time have been conducted at the
relativistic level in monograph [ 10l (which we cannot report here for brevity), and
have shown the capability by biological structures ynder isotopic representation
of performing a closed Inop inside the forward light coneg, ie., the capability of
initiating al one point  in space—time, move arbitrarily forward or backward in
time and then returning Lo ithe original time £

Almost needless to say, we possess today a rigorous mathematical
representaiion of the above behaviour, but we have no clue on how Lhis could
possibly be achieved by biological structures, '

Additional, equaily deep implications are implied by the isotopic, genotopic
and hyperstructural methods in regard to our percepiion of space, with
predictable greater departures from our intuitional capabilities. The main
implications can be expressed as follow:

Tmplications for space: When represenied with isotopic, genofopic and
hypersiructural methods, biclogical structures have iatrinsic space
characteristics which are generally different than those of our exterior
perceplion in regard to shape, dimension as well as behaviour in time.

In essence, we perceive ihe space characierisiics of biological struciures
vig our raiher limited three Eustachian tubes which imply the percepiion of thrse
dimensions represented by the Euclidean space B{r,8R), r = (x, v, 2), with metric 8
= diag. (1, 1,1) over the reals Rln,+x). This percepiion is ultimately reducible to the
Cartesian coordinales x, v, 2 each possessing the same unit +1 cm {or equivalent).

13 1n physics the realization predicied for the above “time machine” is that via the use
of targe positive energies due to matier for motion forward in time and large negative
energles due io antimatier for motion backward in time [10] 1t is evident that the same
interpretation does not apply to biclogical siructures on NUMETCUS COUNLS.
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The isotopies of the above space perceplion have been studied in deiail in
Sect. 2.2, and they imply the structural alteration of the basic unit of space into
the isounits

Iy =+1 = Ty = functions >0or <0, k=a, v,z (5.5)
again under the condition
(L= Length 2% ([ =Unit) = invariani . (5.6)

Recall from Sect. 2.2 that, not only the numerical value +1 is changed, but it
is changed in a different way for different axes, can assume both positive and
negative values, and can vary in time.

The isobox of Fig. 2.2 can then again illustrate the irnplications in space
behaviour. [n fact, whatever shape we perceive from the outside, the inside shape
can be different. In particular, a rather complex shape which is perceived in the
Euclidean geometry can be reduced to the perfect sphere in isospace, the
isosphere of Sect. 2.2.E). In turn, this permits the restoration of a fundamental
symmetry of nature, the rotational symmetry, as being exact Tor arbitrarily
nonspherical shapes (App. C).

Moreover, an object which 1s perceived as very small by us can be very
large in its own isogeometry and viceversa. As an illustration, if an object is 0.03
cm in diameter when referred fo our unit of +1 cm, it can measure 300 cm
under a sultable isotopy of the unit, according to the rule

(003cm?) (+1em?) = (300 cm? ) (0.0001 cm?2). 5.7)

Moreover, the way we perceive the evolufion in time of the shape
considered can be different than the intrinsic one.

It is evident that a much greater departure from our intuition occurs for
The use of genoiopic methods, where we see the appearance of Jour different
shapes, one per each of the foyr different directions of time
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The use of the hyperstructures implies Turther departures from our
intuition because each of ihe four different dimensions becomes
multidimensional, the limii of infinite dimensionality not being excluded for the
most complex possible biological cases, such as the DNA code.

In reality, the reader should be aware that the dimension of an cbject can
be different for the exterior and the interior geomeiry even for the case of
isotopies, as it occurs under nondiagonal isouniis (see the end of Sect. 2.2.b). In
particular, the exterior observer can perceive a solid, three-dimensional object
occupying all three—directions of space, while the internal object can in actuality
be uni-dimensional, as illustrated by the isotopy (2.2.23)-{2.2.24),

In short, ithe decrease of the internal dimensionality is predicted by the
isotopies, while the hypersiructures generally imply an increase of the
dimensionality as perceived by us.

It should be siressed that the above novel behaviour of space is beyond
Einstein’s special and general relativities (but again predicted and guantitatively
treatable by our isospecial relativity 137-29]) because it may occur at rest, thus
independently from any relativistic correciion, and holds without any
congideragtion to curvature, thys in the absence of a gravitational field.

Again, we are merely referring to vnverified predictions of anomalous
space behaviour by cur generalized methods, with the understanding that they
are expecied to be confronted with evidence and resolved in due time.

To express a perscnal opinion, this author is not evidently certain that the
isotopic behavicur in space will eventually result o be correct. Nevertheless, this
author is convinced thal our perception of space is grossly insufficient for
guantitative scientific studies of biological structure.

The limitation of our percepiion of space 15 tHustrated by immersing a
strafght stick in a glass of waler and observing that it is benf at the walter
surface. Now, we all know that the stick is straight. Suppose however, that a
person is shown Tor the st time the straight stick lrnmersed in a glass of water
without removing it from the water. That person will be convinced that the stick
is bent, contrary to physical reamy.M

14 It is intriguing to note that the stick immersed in waler remains straight in ithe
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IT our sensory perception is so transparently limited for so an elementary
case as the above, the same limitations for a more realistic understanding of
biclogical structures then become beyond credible doubts.

CHARACTERIZATION OF CELLS VIiA ISOUNITS
OF SPACE AND TIME

%

7 N
P
Y et

. Iy = Diag (b, 2 bycgg by 2) /fﬂ
_ #

FIGURE 5.1. A schematic view of the characlerization of cells via isounits of space
ang time. The main idea is that physical systems (e.g., those of electromagnetic
typel are entirely represeniable via a Lagrangian or 2 Hamiltonian, that is, they
solely admit interactions derivable {rom a potential. On the contrary, biclogical
systems admiis effects beyond the representational capabilities of a Lagrangian or

isceuclidean represeniation 191 In fact, in this case the isotoplc clermnent is given by the
index of refraction, and the iscangle (App. 4) of the stick with the water surface in the
interior s equal to that ouiside the water. This case has been recalled to indicate again
that conventional geometries apply for the exterior problem in vacuum and the
Isogeomeirics have been conceived and consiructed by this author for interior problems.
Moreover, their interior behaviour has been constructed in such a way io coincide with
the exterior, which is the main properiy for {he scientific credibility of the anomalies
here considerzsd.
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a Hamilionian {otherwise they would be reducible to pure physical processes, as
indicated in the Preface). After investigating a number of aliernatives, this author
subrnits herein the hypothesis of representing the novel biological effects with
peneralized units of space and time. Alternative representations have been
excluded because not compatible with our sensory perception. The characterization
of a biological sysiem therefore requires a conventional (Lagrangian or)
Hamiltonian representing all actions derivable from a potential V, plus the three-
dimensional units of space and the one-dimensional unit of time,

H=K+v, 1= diag. ( b, ’Dyz, bz2 ) 1y o= b[z, {a)

where: K is a "kinetic-type” term, ¥ is the “potential-type term” and the b's are the
characteristic functions of the considered cell with any needed functional
dependence on time, coordinates, density, internal reactions, etc. It is then evident
that the space isounit may describe the actual nonspherical and deformable shape
of the cell considered, e.g., a spheroidal ellipsoid with semiaxes b"xz, "o°y2, b°z‘2, plus
all nonlinear, nonlocal-infegral and nonpotential-nonhamiltonian internal effects
represented by a factorized function T, o, &, ..

15 = diag. (0% 0,7 b,2) = 1g = diag. (032 02 07,2 % T, 1, 9y,

with more complex shapes and internal effects representable with nondiagonal
realizations. The time isounit 1; generally provides a geometrization of the
remaining features, such as density, chemical composition, eic. In general, the
above space-time units are not invariani under time-reversal, in which case they
technically are genounils of space and time. As such, they provide an axiomatic
characterization of the irreversibility of the evolution of the cell considered by
assuming, e.g., for forward and backward uniis and their isoduals
1,7 = ), Gy = U-g ), Pl =S, a =5t

This seis the foundation for the representation of all possible four time arrows
which are all admitied by our sensory perception (Fig. 4.2), thus permiiting
guaniitative representations of bifurcations and other complex events necessarily
requiring negative values of time (see Fig. 5.9), which representation would be
merely impossible via conventional imethods. The emergence of the multivalued
hyperstruciures is simply unavoidable if one reflects a moment on the fact thal
the cells of & complex organism are generally different, thus requiring different
units of space and time. Again, the sole representaiion of the latfer occurrence
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known {0 this author which is compatible with our sensory perception is that via
the hyperstructures with forward hyperunits of space and time {17} = (1,7,
“liggf‘, . L a2a=s 1 and the remaining hyperunits obtzined via isoduality and
isoinversions (Fig. 4.2). This yields & characterization of biological systems as being
structurally more general than any physical sysiem, cquipped with the
representational capabilities necessary for the description of at least some of ithe
complexities of the biological world.

We should also not forget that simple observations of the behaviour of
plants indicate quite clearly the existence of anomalous space behaviors, that is,
space behaviour anomalous with respect o our perception of space. As one
example, among so many, this author has observed a cypress growing underneath
a balcony in his house which growing has now stopped for years without
fouching the overhead balcony, while cypresses arz known to grow up to
towering heights. Similarly, we have all observed plants from ordinary seeds
grown inside botiles which stop their growth without reaching the walls, or the
rather peculiar growth of plants along directions compatible with their
environment. Since plants do not have eyes, the existence of a space behaviour in
biological struciures teyond our perception appears 1o be evident. The only issue
which is open on scientific grounds is its correct quantitative representation.

It is Tinally recommendable to indicate since these preliminary lines the
irnplications ¢f isolopic, genciopic and hypersiructural methods for motion in
space.

Due to use extended through centuries, we have been accustomed to the
Newtonian notion that a particle initially in & point Fy al rest with respect io us
can be put in motion and moved to ancther point P ondy via the application of a
force. The implications of our studies in ihis respect are the following:

Implications for lecomotions Biological structures represenied with
isotopic, genotopic and hyperstructural methods can perform iniernal
motion gccording (o the “geomelric propulsion”, that is, the possibidity of
locomotion from one point to another via the alteration of the geometry
itself, without any application of a Newionian force.
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The above implications have been studied in Sect. 2.2, see, e.g., Fig. 2.2, and
they are essentially yet another consequence of the possible alieration of the
basic units. Consider again the isobox, and suppose that the internal structure is
in condition to alter the unit of the x-axis (only) in an isolopic way. Then the
shape remains unchanged to the ouiside observer. Yet, the box wili move along
the x-axis for the outside observer without any application of Newtonian forces,
while no motion occurs for an interior observer. This is dug to the fact, studied
in Sect. 2.2, that the isolopic change of the unit along the x—axis has allered the
distance of ihie {center of the) isobox from the origin. Motion with respect 1o the
external observer is then consequential.

Even deeper implications are expected in locomotion viz the use of the
genotopic and hyperstructural methods, to such an exlent to coss again the
boundaries of our imagination.

§.2. Apparent isotopic structure of sea shells

We now apply the simplest possible generalized methods, those of isolopic
iype, ¢ one of the simplest possible biological problems, the quantilalive
representation of the growth of sea shells, which has been studied in details in the
recent monographs oy [llert and Santilli [45] ‘

The Tirst point to clarify is that the infinitely possible shapes of sea shells
can all be weil represented in the conventional Euclidean geomeiry without any
need of any generalization of any kind As an examplg, consider the sea shell of
the nipponites mirabili in by Tllert [45], Bq.s (3.27), p. 90)

x =ae 11+ ePcos(2y¢)lcose,
_ . ad @ oo .
y =3¢ [1+ePcos@ye)lsing,

Zﬂbegq)sm(‘yd)L (5.8)
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It is evident that the above shape is indeed Tully Euclidean without any need of
broader geometries.

COMPUTER VISUALIZATIONS OF SEA SHELLS

LT i

FIGURE 5.2: An example of the computer visualization of sea shells studied in llest
l45] the Angaria Delphinius of D. 64. Such a visualization has a rather cruecial
relevance for the studies reported herein. In Tact, we cannot possibly “fabricate” a sea
shell in laboratory according to our theories. The computer visualization is therefore
the only mean available at this writing for verifying the accuracy of any given
represeniation. The isoeyclidean representation of sea shells growth outlined below
does indeed verify this condition, by showing normal growth, while the conventional
Euclidean representation does not.

Generalized methods emerge lo be needed for a rigorous, quantitative
represeniation of the growil) i time of sea shells. In this latter respect, Illert [ioc.
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cit.] noted firsi that the sirict imposition of the Euclidean axioms in three-
dimensional space do not permit such a realistic representation. Santilli [45] then
proved that the desired quantitative representation can be obtained via {he use of
the isoeuclidean geometry.

The argument can be summarized as follows. Let us consider first the
assumption that the growth in {ime of the sea shells can be exactly and
guantitatively represenied via the conventional Euclidean geometry in three
dimensions, as used for ils shape. This representation requires the necessary
enlargement of the pure Buclidean space to the Kronecker product

Sle, & 4) = ElLR) x BESR) =< B8, R}, (5.9)

where: ¢ = {£,(d), &/(0), £} is a vector—value function representing the shape, ¢
is a characieristic angle of growtih of sea shells with simple structure, ¢ = d€/dt
represenis ihe rate of growth, and E(,8,R) is the tangent space to E(r,8R). The
underlying tolal unit is then given by the familiar seven dimensional quantity

Lot = bxdiag. (1, 1, Uxdiag. (1, 1, 1) (5.10)

The imposition of the Fuclidean character of the growth identifies ihe
applicable methods in g rather rigid way. In fact, the methods must be of
Lagrangian type (Sect. 2.2} (with equivalent Hamiltonian form here ignored for
brevity) and, to aveid the impression of a scientific derivation, musi be resiricted
o veril'y the Euclidean axioms. [n particular, the product among two vectors must
ke Buclidean, to avoid inconsistency with the basic assumption, e.g.,

=ExE = &y £ v EE, T EE,, (5.11)

where ® is the ordinary scalar product; the distance among two vectors must be the
familiar form

] e [, - P S R S S S R V) =
Dthr-Hdmn = Hgl)( sz)z ¥ (&!‘/ L,gyi ; (‘le £9,1 Jie, {5.12)
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and the only adrnissible Lagrangians must have the structure
Lo= Ky (gx )+ Ko (x )M + Kgexg)P, (5.13)

The property proved by [llert [loc. cit] is that no represeniation of the sea
shell growth consistent with evidence is possible under these conditions because the
strict and rigid imposition, say, of the Euclidean product would imply in computer
visualization that the sea shell first grow in a distorted way and then would crack.

Santilli [loc. cit] has proved thai the growth is instead in computer
visualization under the assumption that the background geomelry is of
isoeuclidean type (Sect. 2.2). [n the latter case the carrier space is the following
Kronecker product

St E D) = BLRY x EESR) = B8, B), (5.14)
werel = tl, & = €1, § = 4, with related seven—dimensional total unit

Tior = Tp 1T = Ty =dig (1,7, ) x dig. (1,0, 1),

~

T = T gd ) = T x = xy,z, (5.15)

isodifferentials 0t =14dt, 8¢ = 1§, and isoderivatives 3/0t = Tyd/dt, 8/3€ = To/aE.
A Tirst implication of the isocuclidean geomsiry is the generalization of the
scalar product into the following jsoscalar form (Sect. 2.2.D)

~

C BRI T g Y 5Ty & + 5T, 5) el (5.18)

with more general expressions for nondiagonal isounits herein ignored for
simplicity. The conventional distance is then lifted inio the isodistance (Sect. 2.2.B)

= L — P Ty + Gy = &P Ty + (8, - &,7T, 12 B2ip)

[sosuct
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The applicable isolagrangian is then given by

e % . aE . .
5 P Ky (=% + KaEXxEPIT, (5.18)
tdt at

with related isolagrange equation (see Sect. 2.3.c) which are ignored here for
brevity. ‘

The following property is evident from the completely unrestricted
functional dependence of the isounits of space and time as well as their not
necessarily diagonal character.

Lemma 5.1 (see Santilli in [45): The isoeuclidean geomeiry is "directly
universal” for the representation of the growth of sea shells, e, il is capable
of representing the growth of all infinitely possible shapes (universality),
directly in the frames of the observer (direct universality).

As a simple example, the Lagrangian of ref. [45], Eq. (1.36), p. 25, i.e,

NI (5.19)

where € is a characteristic function of the pariicular sea shell considered, is a Clear
particular case of the isclagrangian with simple scalar isounit

N W _ 80
=1 1T=c¢e %ﬁag.(n, i, 1. (5.20)

The isorepresentation of all other models studied by Illert then Tollows and it
is left as an exercise for readers interested in learning isotopic methods.

A few comments are now in order. First, note that the last simplest possible
example is representable with the conventional time unit and the isotopy only of
space. It is nevertheless easy to see the necessity of lifting also the iime unit,
which is expected whenever the three isoscalar producis in the isclagrangian (5.18)
must have difTerent isostructures.
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Moreover, it is possible to see the need for the representation of sea shell
growth for isofopic methods of Class IIT already at this level, as illustrated in Fig.
5.2 in connection with bifurcations. Deeper studies then indicate the need in
actuality of isolopic methods of Class IV because of the expected need to include
the zeros of the isounit 1 = 0 as a necessary condition for a smooth transition frorm
positive 1o negative values of the isounit of time.

Note that the growth of sea shells is sirictly nonconservative and
irreversible. Yet the isoeuclidean geomeltry is sufficient for this simple problem,
by representing irreversibility via a noninvariant time behaviour of the isounit,
TEm] = e,

Nevertheless, the use of the genoeuciidean geometry {Sect. 3) appears to be
technically more appropriate for a deeper axiomatization of irreversipility, This
latter reformulation is left for study to the interested reader.

We should also note that the use of the genogeomeiries is expected to become
unavoidable at bifurcations. In fact, relatively simple bifurcations can be
quantitatively interpreted via three different time evolutions, while more general
bifurcations are expecied to requires four different motions in time, which is
exactly the number of components of our genotime.

Finally, it is important io note that the resulis obtained by Ileri [loc. cit.)
indicate the need for a correct representation of doubling each axis, as illustrated
in Fig. 5.3. This is sufficient evidence for the applicability of the hypersiructural
methods where the isounit is a two~dimensiona! sel.

We finally note that a mathematically more adequate representation of sea
shells requires a discrete theory because, as studied in details in lilert [loc. cit], the
growth of sea shells is not coniinuous but in discreie increments. [t is evidenl that
the latter behaviour can be represented with formulations of the largest possible
Kadeisvili class, those of Class V with an arbitrary generalized unit, thus including
discontinuous or discrete units.

We close this section with an illustration of the alteration of shape in the
transition from an exierior to an intrinsic observer. This will be done by showing
that, as g limii case, an arbitrary shape of a sea shall can be reduced to the
isosphere of Sect. 2.2.E, ie., the perfect sphere in isospace. The reduction is not a



Ruggero Maria Sangilli — 162 — Theoretical Biology

mere mathematical Tormality, because it permits the reduction of sea shells with
arbitrary shapes io an isoshape possessing ihe exact isorotational symmetry O(3) of

App. C.

SEA SHELLS AS “TIME MACHINES”

q)l
aciion from action forward
past to present  through future
time

action back
through fuiuwre
time

FIGURE 5.3. A reproduction of the figure by Illert in {45] p. 95, on sea shell
bifurcations. Their quantifative representation of such bifyrcations, e.g., in a form
which can be visualized in a compuier, requires three contributions: 1) Action
forward from past to present time, 2) ection forward through future time, and 3)
aciion backward from fuiure time. [t appears evident that such a Dehaviour is
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grossly outside the representational capabiliiies of the Euclidean geomeiry. The
isoeuclidean geometry of Class Il permiis instead a quantitalive representation of
the bifurcations because the isounit of time can have arbitrary values, thus being in
the past or in the future, and can be either positive or negative, thus permitting
motion forward or backward in the past and in the future. It is hoped the reader
can see the implications indicated in Sect. 5.1, to the effect that, when we look at a
sea shell in our hands, this does not means that the sea shell is necessarily evolving
with our time because it can evolve in a conceptually and structurally different time.

Consider the hyperbolic clocksprings of the first kind in a plane, ref. [45), Eq.
(3.14), p. 81,

Y
X = ¢ $cosh[(ot+%:?\)®}cos¢,

v = ae H\Q)sinh[(m+-§k)¢]sm¢, (5.21)

It is easy io see thai in ihe isoeuclidean plane E(r3R), 8 = T8, T = diag. (T,,
Ty)i the above surface reduces to the perfect isocircle. In faci, under the values of
the isolopic element

Te=lae " Peoshl{a+in)el? (5.22)

y = lae M(bsmh[(aJrH\)cb]]'Z, u (5.23)

T
the preceding equations reduce to the isopolar coordinates (App. B)
x = T, tcos (T, Ty_{; &),
y= T, sin(,F T, e), (5.24)

and they do indeed describe a perfect circle in isospace, the isocircie

XTex + yTyy = o (T Ty ) + sin? (0, P, ¢) = 1. (5.25)
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HYPERSTRUCTURAL CHARACTER OF SEA SHELLS

FIGURE 5.4: A reproduction of the table by Iiert in [45] p. 11, illustrating the need of
; doubling the number of dimension for a quantiiative inierpretation of sea shells
Z growth, i.e, passing from ihree to six dimensions of space. A deeper study indicates
fhat this occurrence requires in effect the doubling of the dimension of each axis
thus vielding precisely the hyperstruciure wiih two-dimensional hyperunits,
resuliing in the the iotal l4—dimensional hyperunit

-
i
!

Pio) = = Ui )% 0 x Ui b = 00 5 e e o (g Ty

with corresponding 14-dimensional hyperspace
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(80, B = (BLR) I = {BEBR) ) < (BUSE R) ),

and related methodology studied in Seci. 4 (hypernumbers, hyperfields,
hyperdifferential calculus, etc), where the generalized character of each isounit
(rather then the trivial value +1) is expected for the representation of more complex
processes. Note that the particular class of hypergeometries introduced in Sect. 4
coincide af the abstract level with the conventional Euclidean geometry. This yields a
full compatibility between our three-dimensional percepiion of the sea shells and
their possibly arbiirary dimensionality in their own siructures, the above two-—
dimensicnal case being jusi the simplest possible cne. Note also that the
hyperstructures imply 2 multidimensional hypertime, that is, a time which at the
abstract level coincides with our own time, yei possesses (wo separate COMPONENts.
The axiomatization of the irreversible character of the bifurcations ihen requires the
formutation of the hypersiructures as a generalization of the genotopic methods
presented in Sect. 3.

A sirnilar result evidently occurs for the hyperbolic clockspring of the
second kind, tef. [45], Eq. (3.15), p. 81, where we have the interchange of T and Ty.

Along similar lines, it is easy to see that the Lissajous spiral ref. [45], Eg.
(3.27), p. 90, occurring for the nipponites, is indeed a perfect sphere in a three-
dimensional isoeuclidean space. One has o solve the following equations in r and B

Oy e®cos(2vyd)lcosd =

X =ae
= 1[Bgy Lsin (B By @) 1By Leos (B B o)1, -

y —ad™(1+ ePcos2y¢)lsing =
= By lsin (By By 0)[Byy tsin(Byy By o], (

sin(yd) =1 By Lcos (Byy Bpg©) , (5.26)

in which case the shells is represented via the isospherical coordinates (App. B) as
the perfect sphere in isospace
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xTyx +yTlyy + 2T,z =

= 2

= r=( 18222 By 12 isosin? B cos? o + 8222 2

Byg isosin? & isosin® § +

+ By isocos? ) = 12, (5.27)

Simnitar representations hold Tor all other possible shapes of sea shells owing
to the direct universality of the isceuclidean geometry. The above examnples
confirm the geometric unification of all pessible sea shells into the isosphere.

Such a geometric unification permits the identification of the universaf
symimelry of sea shells as being the isoroiational symmeiry O(3) of App. C. In turn,
the application of the isorotations is particularly iniriguing because it permits the
study of interconnections belween sea shells which simply cannot be studied via
the conventional rotational symmetry. This aspect will be studied in a separaie
work.

In closing this subsection, this author would like to disclose thai he did nol
expect the ernergence in the above relatively "simple” problem of the most general
possible formuiations studied in this memoir, the hyperstructural methods of Class
¥, and would like to report here his surprise,

In fact, in the main text of this subsection we have used the isotopic
formulations of Class [ (I > 0). The bifurcation of sea shells have then indicated,
Tirst, the need of formulations of Class III [l >0 or <0}, then the need of genoctopic
} theories Tor a more accuraie axiomatization of time, and then the genoiopic
theories of Class IV {admitting the zeros 1 = 0). Moreover, the multidimensional and
discrete character of the growth of seg shells has indicated the need of the most
general possible methods studied in this memoir, the hypersiructures of Class V
with discrete isouniis. Finally, the possibility of reducing arbitrary shapes of sea
shells to the perfect sphere in isospace illusirates that fhe iofality of the classical
methods studied in this memoir enter, whether directly or indirectly, in fhe
quaniitative represenlation of ihe relatively "simple” growih of sea shells.
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5.3, Apparent isotopic origin of valence

In the preceding subsection we have illusiraied the possibilities in theoretical
biclogy of classical generalized methods. 1t is important now to illustrate the
possibilities for their operator counterpart.

Among various possible applications of the latier type that we believe ic be
truly fundamental for theoretical biclogy is the study of the apparent isotopic
structure of the bonding of atoms info molecules, here generically referred to the
valence. In Tact, the bonding of atoms is a true, ultimate siructure of biology at
large, whether molecular or of other character.

It should be stressed that the scientific value of the currently available
guantum mechanical representation of the valence (see, eg., [1,2,3) is
unguestionable. Nevertheless, quantitative sciences essentially provide successive
approximations of physical, chemical or biological structures. Thus, there are
reasons to expect that the current represeniation of the valence will not resist the
test of time as the final theory and be only the first of deeper representations.

This is due to the following facts. The bonding of atoms info molecules is
essentially realized by the peripheral elecirons. But electrons repel each other
according to guantum mechanics. The reader can therefore see the emergence in
the valence of a fundamental problem: how can electrons, which normally repel
each other, allow the bonding of atorns which requires attraction 7

As we shell see in this subsection, the isofopies of quanium mechanics (Qivi),
also known as hadronic mechanics (HM) outlined in Seci. 2.3.F and siudied in
details in monographs 19,10} do indeed permit a quantitative solution of the above
problem. Such g solution was [irst identified by Santilli in the criginal proposal o
build hadronic mechanics (6b], where he showed that an eleciron ¢ and 2 positron
e’ can form a new bound state in singlet coupling at short distances (of the order
of | fm = 10" %cm) identified with the w° meson and represented with the script w°
= (E_F @Jri)HM" This result was submitied as the first application of hadronic
mechanics. In fact, the sole bound state of an electron and a positron permitted by
quanium mechanics i the positronium = (€7, e” oy

The basic mechanism submitied in memoir [6b] is the nonfocal-integral and
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nonhamilionian character of ihe interactions due to the wave-overlapping of (he
wavepackets of the elecivons and posiirons at distances of the order of their
classical radivs. In fact, these noniocal interactions can be approximated via a
Hulien potential which behaves precisely like a Coulomb potential at sort distances.
But the nonlocal interactions resuited to be stronger than {he Coulomb one al short
distances. [ therefore foliowed that the nonlocal inieractions would dominate over
the Coulomb one in the structure n° = {7y, e’ l)HM'

The main hypothesis submitted in memoir [6al, Sect. 5, was therefore ihat the
isotopies provide a quantitative representation of the transition

Positronium = (€ e g = T = €7 e iy - (5.28)

in a more recent coniribution, Animaly [46] noted that the above nonlocal
interactions at short distances are so sirong to provide a quantitative representation
of the Cooper pair in superconductivity

Cooper Pair = (7, & gy - (5.29)

The latter idea was then studied in details by Animalu and Santilli [43] and shown to
be fully compatible with experimental evidence in superconduciivity.

The application of the above lines to the valence is done in this section
apparently for the first time. By assuming here a technical knowiedge of hadronic
rnechanics, the main results can be outlined as follows.

Consider one eleciron with charge -, spin up and wavefunction ¢4 in the
field of another electron with the same charge —e, spin down and wavefunction
considered as external, [ts Schrédinger equation is given by the familiar expression

1 &?
Hogut, 9, 1) = {—pyp® + —Jlt, 7 = B dylt, v),
2m r
P dylt 1) = =i 8 dylt, 1), (5.30)

where m is the electron rest mass. The above equation represenis repulsion, as well
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known. We are interested in the physical rezlity in which there is afiraction among

identical valence electrons. The turning of attraction into repulsion evidently

requires a new wavefunction hereon denoted §iy(t, 1) and assumed fo be an isostate

of an ischilber! space 3.

3 By recalling that quantum mechanical Coulomb interactions are invariant

‘ under unitary transforms, the only possibility for the map (},‘T - le» is to be
represented by a nonunitary transform § = Uy, vl =uly =15 I, where T has yet
to be determined (see below). This activates ab initio the applicability of hadronic
mechanics because, by conception [6bl and realization [10] ihe latter is a nonunitary
image of the former. The Tirst step of the proposed model is therefore that of
transforming system (5.30) in 4:»{ into a new sysiem in J}T = Ud}T where U is
nonunitary,

U HoouUT WU U gylt, ) = Fgyy, Tdylt, 0) =

] e?
= {1 TD* + — DT = Bdyli,7),
2m T
B Tlylt, o) = =i 70 dylt 1), (5.31)

However, the above system is incompleie for the description of the valence,
because the valence elecirons are not isolated in space, and are instead immersed in
the positive Tield of the nuclei hereon dencted N' and represented by the Tamiliar
term —ze/r. Being external, the latier term is not transformed (i.e., it remains
conventionally quanium mechanical) and therefore it should be merely added to
ihe transformed equations (5.31).

The Tormal equations of the isolopic model of valence here proposed are
therefore given by

I 2 e?
=P TE o+ — 1 —z— Tt =
2m T T
1 2 &
= —FTHT fp ¥ — B —2—ToHo O = Byl 0,

21 r r
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.32)

o

P Tl 1) = = 1T 65 dyli, o) (

In order to achieve a form of the model which can be confronted with
experimental dala, we need an explicit expression of the isounit 1. Among various
possibilities, we here select the simplest possible form called Animaiu’s isounit [46),
which we write here in the form

1o < Ul ey <yl by > op/ By +

-+ Fia 1 71 i /s N N
T = g <L!jfll\)‘i,> i|j| /(!j‘ = E + <(!;,E~idjj,> d)fl\/a:j;l\ -+ vas (533)
under which Eq.s (5.32) can be written
[ A e? R e? o o R
{2—pKTp“T¢T— (z-1) —dy- Z—<¢Tl¢l> (437 ) Gy = Edy
m r

r
(5.34)
Now, it is well known from quantum mechanics that the radial part of ¥ in
the ground state [L = 0) behaves as

)~ 4 R (5.35)
where A is (approximately) consiant and R is the coherence lengih of the valence
pair. The radial solution for J’? also in the ground state is known from Eq.s (5.1.21),
p. 837, vef. [6b] to behave as

Jylr) ~B(1 - eTRy s p, (5.36)

where B is also approximately a constani. The last term in ihe Lhs. of Eqg. (5.34)
therefore behaves like a Hulten poieniial

Vo RAL-TR) v =l <y (5.37)

Rt
A%

After substituting the expression for the isomomenium, the radial
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isoschrodinger equation can be writien

{ 1 , 4, d : ) e? e T/R ( .
Tt = g ) e s Vg e} n{r) = Eyir
2ri dr dr T © 1 -e"T/R T 1

(5.38)
where M is the isofopic mass (ic., the image of m in isospace essentially given by
m multiplied by a scalar which provides a sort of renormalization).

The solution of the above equation is known from Santilli [6b], Sect. 5.1. The
Hulten potentiial behaves at small distances like the Coulomb poieniial,

Vesutten = Yo& RAL- TRy~ v Rar, (5.39)

At distances smaller than the coherent length of the valence pair, Eq. (5.38) can
therefore be effectively reduced to the form

Lo, d 0 e /R
{ - C 7" = Ve 1 ulp) = Byl 5. 40)
2m dr dr | - T/R i f

where V= YR + (z - De? with general solution, boundary condition and related
specirum (ref. [6h], pp. 837-838)

~/R

Pilr) = oF2a+ 1+ 1-q 20+ e _C”/R(lu -r/R

e VT,

le

a=(82-n2)/om>0, g2 =mvRZ/62>n2,

2 MYR? I 5
b=~ - —-n), n=123. (5.41)
4mR2 g

where we have reinstated h for clarity.

Santilli [6al identified the numerical solution of Eq.s (5.38) Tor the hadronic
model w° = (e"}, ¢ Py (in which there is evidently no contribution from the
nuclear field to the cbﬂsfﬁam V), by introducing the parameters

ky =h/2mMRc,, ko= fVRZ/ f, (5.42)
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where ¢, is the speed of fight in vacuum, for which
V =2k ko®hcy /R, (5.43)

and the total enersy of the hadronic stale becomes in the ground stale (which
occurs for n =1 for the Hulten potential)

EBio, w° =2k [ 1 - (ky-1274)heg /B = 2k (1 - €V hey /R .(549)

Isotopic model of the n°. The use of the total energy of the m° (135 MeV), its
charge radius (R ~ 10713 cm) and its meanlife (r ~ 10718 se0), then yields the values
{Eq.s (5.1.33), p. 840, ref. [6b)

Ky =034, €= 4277%1072,  Kkp=1+854%102>1. (545

The experimental verification of the model is established by the fact that it
describes the totality of the characteristics of the w°, such as resi energy, charge
radius, mean life, charge, charge parity, magnetic moment, 2tc. [6bl. In addition, the
model represents the decay with the Jowest rate, n° — = e" + ¢ as a tunnel effect
of the constituenis.

The above struciure model of the w° ideniifies iis constituenis with massive
physical particles which are produced free in the spontancous decays with the
lowest rate. Moreover, the representation occurs in our space~timne only without
any recourse to internal unitary symmetries. Nevertheless, when the separale
problem of classification is considered, ihe addition of uniiary internal
symmetries does permit the achievermnent of compatibility with the unitary model.

The above model has been extended fo all unstable mesons and, more
recently, to unstable baryons, including the first representation on scientific
records of ihe synthesis of the neutron as it initially occurs in siars, from protons
and electrons onlv (because stars at iheir formation are notoriously composed
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solely of hydrogen, have only one baryon, the proton, and no representation is
possible via gquantum mechanical quark models because they would require the use
of at least seven additional baryons which do not yet exist) [9,10]. It should be
siressed that none these models is possible within the context of gquantum
mechanics.

A most interesting feature of the above isotopic struciure model of hadrons
with ordinary massive pariicles as physical consiituents is that it suppresses the
specirum of the Hullen potential down (o only one admissible level, the hadron
considered. This feature was identified since the original proposal [6b] and it is
called the hadronic suppression of atomic specira.

For clarity, it should be indicated that, in reality, the spectrum does indeed
remain infinite. For instance, in the e ~¢~ model the spectrum is composed by the
conventional atomic spectrum of the positronium described by quantum
mechanics (which is recovered identically for non—appreciable overlappings of the
wavefunctions), plus one single additional bound state siructural beyond any
realistic capability of quantum mechanics, which is described by the covering
hadronic mechanics, and represents the w°. Therefore, the remaining mesons are
noi given by excited states of the isotopic w° model, but by different constituents,
eg, n = (¢, &%, € g in which the constituents are again produced free in the
Spontaneous decays with the lowest rate.

The same occurs for the hadronic model n = (p".e hy,; which is manifestly
impossible for guantum mechanics, yeﬂt i3 capable of representing in the covering
hadronic mechanics all characteristics of the nevtron, such as iotal rest energy,
mean life, charge radius, space and charge parity, magnetic moments, elc., as welf
as the decay mode n—p" +¢e” + 1.

The reader should be aware that the novel isotopic structure of the neutron n
= (P+v@_)HM as synthesized in stars is expecied to have significani implications in
theoretical biology, as we hope 1o indicate in some future, more specialized papers.
After all, al the guanturn mechanical level the neuiron preserves iis identity, but a
deeper level its existence is eliminated in favor of protons and electrons under
nonlinear, noniocal and nonhamiltonizn interactions.
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Isotopic model of the Cooper pair. Animalu and Santilli [43] identified the
solution of Eq.s (.5.38) for the Cooper pair by introducing the parameters

kp=efR/ e, ko=KR/ep (5.46)

where € is the iso-Fermi energy of the electron (that for hadronic mechanics).
The total energy of the Cooper pair in the ground state is then given by

where 6 is the Debye temperature.

Several numerical examples were considered in ref. [43l. The use of
experimental data for aluminum (@D =428°K, ep = 116 eV, Te = L18°K) yields the
values

ki=94,  ky=16<102 <. (5.48)
For the case of YBapCugOg—y the model yields [43]
k=132 2% 074 ky=1022 51, (5.49)

where the effective valence z = 27 ~ ¥)/3 varies from a minimum of z = 4.66 for
¥BasCugls.og (Te = 91°K) 1o a maxitmum of z = 4.33 for YBagCuglg 5 (Te = 20°K).
The general expression predicied by hadronic mechanics for ¥ BaZCU306-X is given
by (Eq. (5.15), p. 373, ref. [43)

Te = 3673xzxe 13672 (5.50)

The above model of the Cooper pair ¢id indeed was proved o be Tully
compatible with experimential data on superconductivity {Fig. 5.3), thus establishing
the scientific credibility of the entire approach, including its application to the
structure of ihe 7° meson as well as io the bonding of atoms in molecules.

It should be indicated that the above isotopic model of the Cooper pair has
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self-evident implications in theoretical biology, as we also hope to indicale in some
future paper. ATter all, the model goss ai the very struciure of the molecular
chains.

ISOTOPIC ORIGIN OF THE COOPER PAIR
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FIGURE 5.5: A seproduction of Fig. 10 of ref. [43] illustrating the remarkable agreement
between the predicted dependence of T from the effective valence z of ions (coniinuous
curve) and the experimenial values on the “jellium temperature” for various compounds
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{solid dois).

NUMERICAL VERIFICATIONS

Table 1. YBayCus,Mn,0,
(Afier NL.L. Saini er ol Ine. J. Mod, Phys. B6, 3515 (1992)

£ ¥ 2 T, (theory) T {ewpt)
0.00 $5.92 4.613 88.2 a1
0.03 6.88 4.541 83.5 £56.6
.09 .87 4.447 76.7 79.0
0.15 6.91 4,387 72.% 75.0
0.21 6.92 4,312 67.8 72.0
0.30 6.93 4212 1.3 7.0

Note: T, (theory) = 367 3zexp(-13.6/2). where the effect of replacing Cuy by
Cus.,Mn, is obained by replacing 3 by (3-x)+ 2z =3+ x, which lowers s
effective valence (z) on Cu?® fons w z2=2y/(3+x).

Table 2. GdRay(Cuy. ,Nig 3Oy g
(Afier, Chin Lin e al., Phys. Rev. B432, 2554 (19900

. y=1-4 ¢ T, (heory) T (enpl)
0.000 658 4.640 1.0 91
0.025 6.96 4.527 82.4 79
0.050 6.96 4.819 74.8 71
0.075 6.96 4.316 67.9 65

MNote: T.(theory) = 367,32 enp{~13.6/z), 2= 2y/H1+ z) as discussed in Table 1.
¢ 3 Y /) N/

Teble 3. GéBas(C.,20, 13075
{Afier, Chin Lin @ of., Fys. Rev. B42, 2554 (1950))

£ y=0 z T, Gheory) T, (expt)
0.000 6.96 4,640 921.0 21
0.025 ©.96 4.309 57.4 .34
0.050 6.26 4.009 45.0 <37
0.075 6.96 3.737 36.1 - 35

FIGURE 56. A reproduction of ihe table of p. 378, ref. 143} illustrating the
experimental verification of the prediction of the isoiopic treatment of nonlocality in
supercenduciivity from viewpoinis different than that of Fig. 3.5.
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Isatopic model of atomic bonding. It is easy to see that the use of the above
results yields the following general form of the k-parameters for the case of the
bonding of two aioms

Kk =az V2xign, =g gl2 (5.51)

where A, n and B are numerical constants specific for each atom, and z can be
assumed in Tirst approximation as the average charge of the two nuclei.

[t is also easy to see that: 1) k) < 1, kp > 1, 2) the model can provide the fit of
known binding energies [1,2,3], including the fit for very low energies (because the
ultimate mechanism is that of contact interactions which have no poteniial encrgy,
the energies eniering in the model being mostly kinetick and 3) the model also
produces one single and unique energy level for each bonding.

The application of the above results to specific cases of the bonding of atoms
in molecules is straightforward, and will be done in a more specialized paper.

Ve therefore conclude by saying that hadronic mechanics can indeed
provide a quanlitative representation of the bonding of atoms in molecules in
which the identical valence electrons experience attraction. The ultimate origin of
the representation is given by the noniinear, noniocal and nonhamilionian
inferactions among the valence electrons that is, interaciions which are
conceptually, technically and practically beyond any realistic possibility of
guantum mechanics.

The main mechanism is again the dominance over the repulsive Coulomb
force of the aliractive nonlinear, nonlocal and nonhamilionian interactions ai the
effective valence distance. An importani role is played in the model by the nuclei
which are responsible for the nonfinear character of the model (ie., nortlinearity in
the wavefunction). The nomlocal characier originates from the mutual wave-
overlapping of the electrons at short distances. Finally, the nomnhamilionian
character is due to the fact that the overlapping of the wavepackets is a contact
zero—range interaction for which ithe Hamilionian has 7o concepiual,
rathematical or physical meaning. Note ihat, whenever the wave-overlapping is no
longer appreciable, ie, for <@ |$) > = 0,1 = I, quantum mechanics is recovered
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identically as & particular case, although without attraction.

A comparison of the above nonlocal isotopic model of atomic bonding inio
molecules with conventional quantum mechanical models, such as the densily
functional model the Kohm-Sham model, and others [1,2,3] is now in order.

The most visible and fundamental difference is that fhe isofopic model does
indeed achieve an altractive inleraction among individual pairs of atoms, while
quantum mechanical models achieve attraction on statistical/density matrix form.
As it has been the case for the siructure of the w° and that of the Cooper pair, we
therefore expect the isotopic model to have greaier predictive capacities than
conventional models.

We should also indicate that the isotopic lifting of the density—Tunctional
models, here called isodensity-runctional model,!® is quite simple and it is
expected to be significant, because preserving all conventional characteristics pius
representing nonlinear, nonlocal and nomharmiltonian effects.

With reference (o the outline of hadronic mechanics in Sect. 2.3F, the
fundamenial step of the density—iscfunctional method is the selection of fhe
explicit Torm of the isocunit 7 and isotopic element T, such as Eqg. (5.33), while the
Hamiltonian remains the conventional ong, H = K + ¥, where K is the usual kinetic
energy and ¥V is the sum of the usual terms (see [1,2,3] for details), although these
ferms must now be formulated in isospace, i.e., with all isctopic product ATRE; the
wavefunction (written & to distinguish it from the conventional symbol & because
of different explicit forms) is now an isostaie of an isohilbert space 30 with
isonormalization

<§|Ti§> = 1 (5.52)
the isoexpeciation values of an observabie A are now given by

<h>=<P|TAT|E>; (5.53)

15 e mathematically correct formulalion should be that of the isodensiiy
isofunctional In the following we ignore the isofunctional character for simplicity, and
also because if dees not imply different numerical reaulis.
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multielectrons isostates @(zrl, Iy, ..) are then construcied viz the usual rules; the
isounits 1 and isotopic elements T are now the tensorial products of individual
quantities; the efeciron isodensity is then given by

pr) = f KT (5.54)

where dp is the applicable measure, and it is restricted by the condition

f ple)dr = N, (5.55)

where N is the total number of electrons in the considered volume.

The reader should be aware that the fofality of quanium mechanical
methods must be isofopically lifted for consistency without any exception known
to this author {otherwise there are major inconsistencies, such as lost of invariance,
lack of Hermiticity, etc.). This implies also the lifting of the perturbation theory (see
Ch. 11 of ref. [10] for brevity). The energy change for one-electron in first~order
isoperturbation is then given by

I
]Ekm = j( 0T AV T 8,0 du, (5.56)

i

with isoperturbed wave Tunction
' = B0+ D <O TAV T8O > /EL - EP), (55

and related change in the isodensity functional. The isoiopic lifting of the
remaining aspecis is then conseguential. The isotopies of the remaining aspects ,
such as the Kohn—Sham mode! is then consequential.

The most significant advance in the above isotopic model over the
conventional one is thai the isostates & and W are indeed isostates of an attractive
inferaction among the aioms g5 outlined in this section. Therefore, the isotopies
complement conventional results with such a missing property, and imply the
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alieration of virtually all quantities and expression to account for nomnlinear,
noniocal and nonhamiltonian effects.

One should however keep in mind that the latter effects are non—null only
under appreciable overlapping of the wave packels. Therefore, the isodensify
functional model coincides with the conventionaf model everywhere except gt
distances of the order of the coherence length of the valence elecirons.

Other particle~atomic-molecnlar effecis. Essentially the same mechanism
studied for the Cooper pair is applicable, with due adapiations, to a variety of other
cffects which generally are outside the represeniational capabilities of quanium
mechanics, e.g., because prevenied by a Coulomb barrier.

In all these effects we can distinguish the following three phases:

PHASE I: Neonlinearity. This is the mechanism which activates effects
beyond quanium mechanics. Recall that, according {o our main assumption stated
beginning with the Preface, quantum mechanics is assumed io be exactly valid for
all mutual distances of particles bigger than their coherence wavelength. The
effects here considered therefore need a Irigger mechanism which brings the
particle considered at mutual distances smaller than said coherence wavelength,
and it is generally represenied via nondinearily in the wavefunciions!® As an
illustration, in the Cooper pair the trigger mechanism is given by the Cuprate ions.
In other cases, the trigger mechanism can be given by simple osmolic pressures and
the like.

PHASE 1I: Nomlocality. Once the particles considered have been broib
under conditions of appreciable overlapping of their wavepackels, we have fthe
emergence of attractive or repulsive nonlocal effecis which can be maximized via
the use of axiomatically consistent methods, such as the isolopies, genotoples anc
hyperstructures. In particular, nonlocal effects are atiractive in singlet coupling

16 We assume the reader is now familiar with the fact that nonlinearity is sufficient
alone to Tequire a suitable generalization of quantum mechanics. In fact, conventional
nonlinear quantum mechanical models violate the superposition and other principles
thus being siruciurally unable to represent composite systems such as & biological
structure. The representation of nonlinear effects via the isotopies of guantum
mechanics (hadronic mechanics [10]) permits the regaining of the superposition and other
principles, thus offering the foundations for rigorous quantitative ireatments.



