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Abstract. In this paper, we outline the foundations of the time invariant, non-unitary cover-
ing of quantum chemistry known as hadronic chemistry, we illustrate its validity by reviewing
the exact representations of the binding energies of the Hydrogen and water molecules, and
present new advances.

1 Introduction

Following decades of research, the Italian-American scientist Ruggero Maria Santilli has
achieved a new mathematics (hereon referred to as Santilli’s isomathematics (see the Ap-
pendix and Ref. [1] for the original formulation) that has allowed the formulation of the time
invariant, non-unitary covering of quantum mechanics and, therefore., of quantum chemistry
for broader physical and chemical conditions, respectively.

No doubt quantum mechanics and chemistry have made very fundamental contributions in
understanding atomic and chemical aspects thanks to their “majestic axiomatic structure” (in
Santilli’s words). However, with the advancement of experimental and technological knowl-
edge the increasing limitations of quantum mechanics and chemistry surfaced out. This is the
case particularly because the Schrödinger equation does not admit the exact solutions needed
for the representation of a complex system, thus forcing the use of either the perturbation or
the variational methods [2, 3].

For instance, a good number of 20th century important scientists have characterized quan-
tum mechanics, e.g., as in the following statements:
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1 ) Limitations voiced by Bohr in his philosophical writings:
Anyone who is not shocked by quantum mechanics has not understood it [4].

2 ) Limitations voiced by Einstein in his letter to Max Born, December 12, 1926:
Quantum mechanics is certainly imposing. But an inner voice tells me that it is not
yet the real thing. Quantum theory says a lot, but does not really bring us any closer
to the secret of the Old One. I, at any rate, am convinced that He (GOD) does not
throw dice [5].
He has commented on the “lack of completion” of the theory and referred to it as “a
real black magic calculus”.

3 ) The doubts expressed by Fermi:
Whether quantum mechanics holds in the interior of mesons [6]

4 ) Limitation voiced by Heisenberg:
From the linear character of the theory as compared to the nonlinearity of real physical
world [6]

5 ) Limitation voiced by Einstein, Podolsky and Rosen:
Quantum mechanics is an incomplete theory.
and so on....

From the above statements by renowned 20th century scientists, it is clear that we need
to generalize quantum mechanics and, therefore, quantum chemistry into broader covering
theories for a more accurate description of complex physical systems.

On these lines, right from the stage of his graduate studies (1960s) at the University of
Torino, Italy, Santilli too had fundamental doubts on the final character of quantum mechanics
and chemistry and, therefore, became motivated to construct the covering theories. Although
quantum mechanics provided a representation of the structure of one Hydrogen atom with
incredible accuracy, however when studying two Hydrogen atoms bonded into the Hydrogen
molecule, clear limitations emerge, such as the inability to achieve an exact representation of
binding energies from unadulterated first principles, as well as the limitations get increasingly
compounded for more complex molecular structures.

Recall that -

1. Quantum mechanics and chemistry cannot characterize an attractive force among neutral
atoms of a Hydrogen molecule.

2. Quantum mechanics and chemistry cannot explain why the Hydrogen and water molecules
admit only two H-atoms and not three or more.

3. Characteristics like binding energy, electric and magnetic dipole and multi-pole moments
(and sometimes even their signs) of Hydrogen and other molecules have not been repre-
sented accurately.

4. So called more accurate representations of binding energies are achieved by the “screening
of the Coulomb potential” via the use of an arbitrary multiplicative function of completely
unknown physical or chemical origin,

V (r) =
e2

r
→ V ′(r) = f(r)

e2

r
= UV (r)U †,

UU † = f(r) 6= I.
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However, such a screening occurs with the evident loss of quantized orbits (since the
latter are solely admitted by the Coulomb potential), the evident loss of the fundamental
Galilean symmetry (and consequential inapplicability of the imprimitivity theorem for a
consistent quantization), and other basic insufficiencies.

5. The basic axioms of quantum mechanics and chemistry are known to be reversible over
time, while most chemical reactions are known to be irreversible, thus creating the prob-
lem of constructing covering theories based on irreversible axioms.

and so on.

More so, quantum mechanics and chemistry are structurally linear theories, thus neces-
sitating the representation of complex multi-body systems via the factorization of the total
wave function into its individual components, such as:

ψtotal = ψ1 × ψ2 × · · ×ψn (1.1)

This requires the adoption of superposition principle as a prerequisite for consistency in the
representation of composite systems. However, composite systems like the water molecule are
nonlinear, thus implying the inapplicability of the superposition principle, with consequential
inappropriateness of formulating a consistent factorization of the type:

H(r, p, ψ, · · ·)ψtotal 6= H(r, p, ψ, · · ·)ψ1 × ψ2 × · · ·ψn (1.2)

thus confirming the inability of quantum mechanics and chemistry as the final theories to
represent complex structures.

Additionally, the synthesis of the water molecule from its constituents is a structurally
irreversible process, while quantum mechanics and chemistry are reversible theories, thus
admitting the possibility of spontaneous decay of water molecule into its atomic constituents,
namely (from the time independence of the amplitude and other quantities):

H2 + O −→ H2O
H2O −→ H2 + O

which turns out as a serious drawback of said theories.
Besides all these limitations, quantum mechanics and chemistry admit an additional and

rather crucial, inherent limitation, that of divergent or of poorly convergent perturbation
series. In fact, the representation of the main features of the water molecule and other complex
structures require Gaussian and other methods, all based on expansions whose calculations
require the assistance of computers due to their complexities. The insufficiency here referred
to is given by the fact that the physical and chemical values of final results under divergent or
poorly convergent perturbation series is clearly questionable. Additionally, the time required
for basic calculations using big computers is generally excessive, thus implying clear axiomatic
limitations from the divergent or poorly convergent character of the series.

For these and other reasons, Santilli never accepted the quantum chemical notion of valence
bond. For Santilli, the valence was a merely “nomenclature” without quantitative scientific
content because, to achieve the latter, a valence bond must rationally verify the following
requirements, namely:

1. Represent the force between a pair of valence electrons and its physical or chemical origin.
2. Prove that said force is attractive.
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3. The attractive force should provide a quantitative representation of molecular binding
energies and other molecular data.

It is well known that quantum mechanics and chemistry could never verify the above basic
requirements. On the contrary, according to quantum mechanics and chemistry, identical
electrons repel, and certainly do not attract each other even at very short mutual distances.

Therefore, all these limitations motivated Santilli [7] to construct, first, the covering of
quantum mechanics known as hadronic mechanics, and, subsequently, the corresponding cov-
ering of quantum chemistry known as hadronic chemistry [1] and these names are nowadays
internationally known.

Finally, we should indicate that Santilli conceived hadronic chemistry as a non-unitary
covering of quantum chemistry because the map from the Coulomb to the screened Coulomb
potential is in fact non-unitary, as recalled earlier. Therefore, by conception and construction,
hadronic chemistry admits all infinitely possible screening of the Coulomb law, although
formulated within mathematically, physically and chemically consistent covering axioms.

2 Hadronic Chemistry

2.1 Conceptual Foundations

Santilli notes that the main difference between the structure of the Hydrogen atom and of the
Hydrogen molecule is the appearance in the latter structure of a deep mutual penetration of
the wavepackets of the two valence electrons in singlet couplings. Therefore, Santilli constructs
hadronic mechanics and chemistry via the completeness of quantum mechanics and chemistry
characterized by the addition of the following effects solely valid at distances of the order of
1 fm (only) [1, 8] (see also review [9])

• Nonlinearity - dependence of operators on powers of the wave functions greater than one.
• Nonlocality - dependence on integrals over the volume of wave-overlapping that, as such,

cannot be reduced to a finite set of isolated points.
• Nonpotentiality - consisting of contact interactions caused by the actual physical contact

of wavepackets at 1 fm mutual distance with consequential zero range, for which the
notion of potential energy has no mathematical or physical meaning.

• Non-Hamiltonian structure - lack of complete representability of systems via a Hamilto-
nian, thus requiring additional terms and, consequently,

• Non-Unitarity - the time evolution violating the unitary condition U ×U † = U †×U = I.

Notice that the condition of non-unitarity is necessary, otherwise one would fall back fully
within the class of unitary equivalence of basic axioms of quantum chemistry.

Santilli applied the mathematical structure of hadronic mechanics to chemical systems
thereby achieving results amenable to exact representation of molecular data, precise exper-
imental verifications and novel industrial applications.

In fact, in their important papers of 1999[10] and 2000 [11], Santilli and Shillady have
achieved new models for the structure of Hydrogen and water molecules which, apparently
for the first time,

1. exhibited a basically new, strongly attractive, non-Coulomb force among pairs of valence
electrons in singlet coupling
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2. explained, why these molecules have only two Hydrogen atoms,
3. achieved an exact representation of binding energy from unadulterated first axiomatic

principle,
4. achieved a representation of the electric and magnetic dipoles of the water molecule which

is accurate both in numerical values as well as in the sign, and
5. proved the reduction of computer time by at least a factor of 1000 folds.

2.2 Classification of Hadronic Chemistry

Hadronic chemistry is nowadays a diversified discipline with the following main branches:

• QUANTUM CHEMISTRY: assumed to be exactly valid for all mutual distances of
particles larger than 1 fm = 10−13 cm;

• ISOCHEMISTRY: characterized by a Lie-isotopic, time invariant, axiom-preserving,
non-unitary covering of quantum chemistry formulated over Hilbert-Santilli isospaces over
Santilli isofields for the representation of isolated and reversible chemical structures and
processes;

• GENOCHEMISTRY: characterized by a Lie-admissible, time irreversible covering of
isochemistry formulated on Hilbert-Santilli genospaces over Santilli genofields for the rep-
resentation of irreversible chemical structures and processes;

• HYPERCHEMISTRY: characterized by a multi-valued covering of genochemistry for
the representation of multi-valued organic structures and processes;

• ISODUALS of ISO-, GENO-, and HYPER-CHEMISTRY: characterized by the
isodual (anti-Hermitean) map of iso-, geno-, and hyper-chemistry for the description of
the antimatter chemical structures and processes.

For detailed historical and technical descriptions on hadronic chemistry, the reader is
advised to study the monograph [1] and original papers quoted therein. In the following,
let us first look at the conceptual foundation of isochemical model of molecular bond for
the simplest possible case of the H2 molecule. Since the Hydrogen molecule is stable, thus
reversible, we need to use isochemistry.

2.3 Santilli’s Isochemistry

While quantum chemistry is based on the conventional mathematics of quantum mechanics
(such as Hilbert spaces over conventional numerical fields), hereon referred to as a mathe-
matics based on the conventional left and right unit ~ = 1, isochemistry is based on Santilli’s
isomathematics outlined in Appendix A, and hereon referred to as a mathematics admitting
a positive-definite, but otherwise arbitrary, quantity Î as the left and right unit at all levels.
Conventional action-at-a-distance interactions are represented with the conventional Hamil-
tonian H = H(r, p), while contact non-linear, non-local and non-potential interactions are
represented with the new (multiplicative) unit Î = Î(r, p, ψ, ...) > 0.

By recalling that, besides the Hamiltonian, the unit is a basis invariant for any theory,
Santilli selected the unit for the representation of non-linear, non-local and non-potential
interactions as a necessary and sufficient condition to achieve “invariance over time,” that is,
the prediction of the same numerical values under the same conditions at subsequent times.
Other representations of non-linear, non-local and non-potential interactions are possible, but
they violate the said invariance over time, thus having no known physical or chemical value.
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The additional importance of isomathematics is that of permitting a representation of non-
linear, non-local and non-potential interactions in such a way that the resulting isochemistry
coincides with conventional quantum chemistry at the abstract, realization-free level, thus
illustrating the prefix “iso” used by Santilli in the Greek meaning of being “axiom-preserving.”

By assuming a minimal knowledge of isomathematics as reviewed in Appendix A, let us
begin with the conventional non-relativistic quantum mechanical equation in relative coor-
dinates and reduced mass for two ordinary electrons in singlet coupling (the conventional
Schrödinger’s equation)

H × ψ(r) =

(
p× p
m

+
e2

r

)
ψ(r) = E × ψ(r), (2.1)

where m is the electron mass and × is the conventional (associative) product. The above
equation shows the repulsive Coulomb force between the point-like charges of the valence
electron pair.

But the electrons have extended wavepackets of the order of 1 fm whose mutual pen-
etration, as necessary for the valence bond, causes non-linear, non-local and non-potential
interactions (see Figure 1). Therefore, a term correspondingly needs to be added to the Hamil-
tonian to represent these additional interactions at a short distances. These novel interactions
characterize the foundations of Santilli’s hadronic mechanics and chemistry [6].

Fig. 1 A schematic view of the the deep overlapping of the wavepackets of valence electrons in singlet

coupling resulting in conditions which are known to be non-linear, non-local, and non-potential (due to the zero-

range, contact character of the interactions), thus not being representable via a Hamiltonian (non-Hamiltonian

structure). As a result, the ultimate nature of valence bonds is outside any representational capability of

quantum chemistry. Santilli has build hadronic chemistry for the specific scope of representing the conditions

herein considered of the bonding of valence electrons (see the monograph Hadronic Mathematics, Mechanics

and Chemistry Volume V [8]).

As indicated earlier, the only possibility for a time invariant representation of the bonding
of the H-atoms via valence electron couplings is to exit from the class of unitary equivalence
of quantum chemistry.

Recall that the axioms of quantum chemistry are invariant under a unitary transformation
U × U † = U † × U = I whose value represented by I is the left and right multiplicative unit
of the theory. Therefore, Santilli constructs isochemistry by subjecting all quantities and
equations of quantum chemistry to a non-unitary transformation [1],

U × U † 6= I, U × U † = Î = 1/T̂ > 0, (2.2)



Advances in Hadronic Chemistry and its Applications 371

whose value Î is then assumed as the basic unit of the new theory. For Î to be the correct left
and right multiplicative unit, Santilli introduces the new multiplication A×̂B = A × T̂ × B
between arbitrary quantities A,B (such as numbers, matrices, operators, etc.) under which
Î verifies the fundamental axiom of a unit, Î×̂A = A×̂Î ≡ A for all elements of the set
considered.

Santilli’s isochemistry then get constructed via the simple application of non-unitary
transformation (2.2) to the totality of the quantities and their operators and operation of
quantum chemistry. In fact, the new unit is a non-unitary image of the conventional unit,
i.e. Î = U × I × U †, the new product is in fact the non-unitary image of the conventional
product,

U × (A×B)× U † = Â×̂B̂ = Â× T̂ × B̂, ψ̂ = U × ψ × U †, (2.3)

and so on. Nowadays, Î = 1/T̂ > 0 is called Santilli’s isounit, its inverse T̂ = (U × U †)−1 is
called the isotopic element and the multiplication between any two generic quantities is called
Santilli’s isoproduct. This construction then yields the fundamental equation of isochemistry,
the Schrödinger-Santilli isoequation and related isoeigenvalues,

U × (H × ψ)× U † = (U ×H × U †)× (U × U †)−1 × (U × ψ × U †)
= Ĥ×̂ψ̂ = Ĥ(r̂, p̂)× T̂ (r̂, p̂, ψ̂, ...)× ψ̂

= U × (E × ψ)× U †

= (U × E × U †)× (U × U †)−1 × (U × ψ × U †)
= Ê×̂ψ̂ = E × ψ̂. (2.4)

Note that the mathematically correct predictions of isochemistry are the isoeigenvalues Ê.
But, in view of their structure Ê = E × Î, the isounit cancels out with the isotopic element,
Ê = E× Î × T̂ × ψ̂ = E× ψ̂ and, consequently, the numerical predictions of isochemistry are
given by ordinary numbers E.

Following the construction of isochemistry, Santilli proved its crucial invariance over time
as follows [1]. All non-unitary transforms (2.2) can be identically rewritten in the form U =
Û × T̂ 1/2 which turns non-unitary transforms on a Hilbert space over the field of complex
numbers into isounitary transforms Û×̂Û † = Û †×̂Û = Î thus reconstructing unitarity on the
Hilbert-Santilli isospace over the field of isocomplex numbers.

It is easy to verify that the isounit is invariant under isounitary transforms, Î → Î ′ =
Û×̂Î×̂Û † ≡ Î, which means that the non-linear, non-local and non-potential interactions in
deep wave overlapping of valence electron pairs (that are characterized by Î) are represented
in isochemistry in a way invariant over time. The time invariance of isochemistry is completed
by the invariance of the isoproduct under isounitary transforms, as one can verify [1].

The assumption is that pairs of valence electrons from two different atoms bound them-
selves at short distances into a singlet (mostly, but not totally stable) quasi-particle state
called an isoelectronium which describes an oo-shaped orbit around the respective two nu-
clei. The oo-orbit is suggested to represent the diamagnetic character of the H-H molecule,
thus being in agreement with experimental verifications.

Note that, once two valence electrons are bonded into the isoelectronium, there is no
possibility for bonding additional valence electrons, that explains why Hydrogen- (or water)
molecules admit only two Hydrogen atoms.
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Fig. 2 A view of isochemical model of the Hydrogen molecule at absolute zero degrees temperature without

any rotational degree of freedom, with the Santilli-Shillady strong valence bond between the valence electrons

pair into isoelectronium quasi-particle. Note the oo-shaped orbit of the isoelectronium, thus allowing a repre-

sentation of the diamagnetic character of the H-molecule since, under an external strong magnetic field, the

two H atoms acquire parallel but opposite magnetic polarities with null value of the total magnetic field at

sufficient distances.

source: New Science for a New Era [6]

2.4 Santilli-Shillady Strong Valence Bond (1999)

The fundamental three requirements mentioned in the introduction were achieved by R. M.
Santilli and the American chemist D. D. Shillady in their historical paper [10].

The Limit Case of Stable Isoelectronium

By using the laws of isochemistry, Santilli and Shillady consider the non-unitary transform
of equation (2.1), that reads as,(

1

m
p̂× T̂ × p̂× T̂ +

e2

r
× T̂ − z × e2

r

)
× ψ̂(r)

= E0 × ψ̂(r), (2.5)

where, ψ̂(r) = U × ψ × U † is the isowavefunction and the factor T̂ = (U × U †)−1 in the
first coulomb term originates from the nonunitary transform of equation (2.1), while the
same factor is absent in the second coulomb term because the latter describes the Coulomb
interaction at long distance between proton and electron, hence is conventional. Note that
eigenvalue E0 is different from E of equation (2.1) due to the general noncommutativity of
the Hamiltonian and the isounit.

At this point, Santilli and Shillady introduced the following realization of the fundamental
isounit of hadronic chemistry [1], for the radial component r in the fashion,

U × U † = Î = 1/T̂ = exp

([
ψ/ψ̂

] ∫
ψ̂1↓(r)× ψ̂2↑(r)d

3r

)
= 1 +

[
ψ/ψ̂

] ∫
ψ̂1↓(r)× ψ̂2↑(r)d

3r + · · ·, (2.6)

where ψ and ψ̂ are the solutions of the unitary and nonunitary Schrödinger wave equations,
and ψk, k = 1, 2, are the conventional quantum mechanical wavefunctions of the two electrons.
Correspondingly,
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T̂ ≈ 1−
[
ψ/ψ̂

] ∫
ψ̂1↓(r)× ψ̂2↑(r)d

3r, (2.7)

| Î |� 1, | T̂ |� 1, (2.8)

lim
r�1fm

Î = 1 = T̂ (2.9)

that is, for all mutual distances between the valence electrons greater than 1 fm, the vol-
ume integral of equation (2.6) is null wherein the hadronic chemistry recovers the quantum
chemistry. Additionally, one should note here that the condition of equation (2.8) gets au-
tomatically verified by expressions (2.6) and (2.7) wherein, the explicit form of the isotopic
element T̂ , emerges in a rather natural way as being smaller than one in absolute value,
equation (2.7). This property alone is sufficient to guarantee that all slow convergent series
of quantum chemistry converges faster for isochemistry1 (see sect. 3.4 of reference [12]).

Fig. 3 A schematic unit of the hadronic horizon, namely, of the sphere of radius 1 fm (= 10−13 cm)

outside which quantum chemistry is assumed to be exactly valid, and inside which nonlinear, nonlocal, and

nonpotential effects are no longer negligible, thus requesting the use of hadronic chemistry for their numerical

and invariant treatment.

source: Hadronic Mathematics, Mechanics and Chemistry Volume V [8]

Note also that the explicit form of ψ is of a Coulomb type, thus behaving like

1 For example let us consider a divergent canonical series,

A(k) = A(0) + k × [A,H]/1! + k2 × [[A,H], H]/2! + · · · −→ ∞, k > 1,

where [A,H] = A×H −H ×A is the familiar Lie product, and the operators A and H are Hermitian and

sufficiently bounded. Then under the isotopic lifting the preceding series becomes

Â(k) = Â(0) + k × [A,̂H]/1! + k2 × [[A,̂H ]̂,H]/2! + · · · ≤ |N | <∞,

[A,̂H] = A× T̂ ×H −H × T̂ ×A,

which holds e.g. for the case T̂ = ε × k−1 where ε is sufficiently small positive definite constant. This

shows that the original divergent coefficient are now turned into the convergent coefficients. Therefore,

by permitting fast convergence of perturbative series, all known applications of hadronic mechanics allows

much faster computations. For example, when computer uses iteration method of computation obviously

due to the fast convergence of the series having isotopic element as variable it would take drastically less

steps of iterations.
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ψ ≈ N × exp(−b× r), (2.10)

where,

N =

∫
ψ̂1↓(r)× ψ̂2↑(r)d

3r (2.11)

is approximately a small constant at distances near the hadronic horizon (see Figure 3) of
radius

rc =
1

b
, (2.12)

while ψ̂ behaves like [10],

ψ̂ ≈M ×
(

1− exp(−b× r)
r

)
, (2.13)

with M being also approximately constant within the same range [13].
We then have

T̂ ≈ 1− VHulthén
r

= 1− V0
e−b×r

(1− e−b×r)
, V0 =

(
N2

M
r

)
(2.14)

Here one recognizes the emergence of the attractive Hulthén potential

VHulthén = V0
e−b×r

1− e−b×r
r. (2.15)

But the Hulthén potential is known to behave like the Coulomb potential at short distances
and is much stronger than the latter, that is

VHulthén
r

≈ V0

b
× 1

r
=
N

b
=

1

b
because N → 1. (2.16)

Therefore, inside the hadronic horizon we can ignore the repulsive (or attractive) Coulomb
forces altogether, and write the columbic terms of equation (2.5) as,

+
e2

r
× T̂ − z × e2

r
≈ +

e2

r
×
(

1− VHulthén
r

)
− z × e2

r

= −V ′ × e−b×r

1− e−b×r
, (2.17)

where the new constant V ′ reflects the “absorption” of the repulsive Coulomb potential by
the much stronger attractive Hulthén potential.

In this way, Santilli and Shillady have achieved the strong valence bond for the first time in
the history of chemistry namely a valence coupling between two identical electrons in singlet
coupling with a strongly attractive force.

With the above fundamental development we now proceed, in the following subsections,
to consider and describe the bonding in Hydrogen and water molecules developed by Santilli
and Shillady [10, 11].
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2.5 The Isochemical Model of the Hydrogen Molecule with Stable
Isoelectronium (1999)

The model of isoelectronium therefore gave the clear understanding of the fact that the
Hydrogen molecule admits only two H-atoms and not three or more and the model also gave
the satisfactory reason for the force of attraction between two valence electrons in singlet
coupling. Now herein, we shall see, how this has been successfully utilized to identify the
equation for the structure of the Hydrogen molecule.

According to quantum chemistry, the Hydrogen molecule is a four body system comprising
two protons and two electrons with conventional equation for the molecule at rest, that is,
the two protons are considered at rest as conventionally done [3, 2],(

1

2µ1
p1 × p1 +

1

2µ2
p2 × p2 +

e2

r12
− e2

r1a

− e2

r2a
− e2

r1b
− e2

r2b
+
e2

R

)
× | ψ〉 = E× | ψ〉 (2.18)

where 1, 2 represents the two electrons; a, b represents the two protons; and R is the distance
between the protons as shown in Figure 4. Due to its four body character, the above equation,
does not admit any analytic solution; misses at least 2% of the binding energy ; and predicts
that the Hydrogen molecule is paramagnetic due to the evident independence of the electrons
[10].

Fig. 4 A schematic view of the representation of distances between two H-protons, respective electrons and

distance between protons and electrons.

Therefore, again the task is of subjecting the above model to a nonunitary transform,
using,

U × U † |r≈rc= Î = 1/T̂ 6= I, (2.19)

in which the nonunitary behavior is only at short mutual distances, namely:

rc = b−1 = r12 ≈ 6.8× 10−11cm, (2.20)

and becomes unitary at bigger distances

U × U † |r≤10−10cm 6= I, Îr�10−10cm = I. (2.21)
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Therefore, the isochemical model coincides with the conventional model everywhere except
for small contributions at small distances.

The Hilbert space of systems described by the wave function in equation (2.18) can be
factorized in the familiar form in which each term is duly symmetrized or antisymmetrized,
as

| ψ〉 =| ψ12〉× | ψ1a〉× | ψ1b〉× | ψ2a〉× | ψ2b〉× | ψR〉, (2.22)

HTot = H12 ×H1a ×H1b ×H2a ×H2b ×HR. (2.23)

The nonunitary transform under consideration would act only on the r12 variable while leaving
all other terms unchanged. The simplest possible solution is given by

U(r12)× U †(r12) = Î = exp

[
ψ(r12)

ψ̂(r12)

∫
d3r12ψ̂†1↓(r12)× ψ̂(r12)

]
, (2.24)

where ψ’s represent conventional wavefunctions and ψ̂’s represent isowavefunctions. The
isounitary transform of equation (2.18) showing the short range terms (isochemistry) and
simple addition of long range terms (quantum chemistry) yields the radial equation as,(

− ~2

2× µ1
T̂ ×∇1 × T̂ ×∇1 −

~2

2× µ2
T̂ ×∇2 × T̂ ×∇2

+
e2

r12
× T̂ − e2

r1a
− e2

r2a
− e2

r1b
− e2

r2b
+
e2

R

)
× | ψ̂〉 = E× | ψ̂〉 (2.25)

Again recall here that the Hulthén potential behaves, at small distances, like the Coulomb one,
the isounitary transform of equation (2.18) produces the isochemical model of the Hydrogen
molecule as a four-body system:(

− ~2

2× µ1
×∇2

1 −
~2

2× µ2
×∇2

2 − V ′ × e−r12×b

1− e−r12×b

− e2

r1a
− e2

r2a
− e2

r1b
− e2

r2b
+
e2

R

)
× | ψ̂〉 = E× | ψ̂〉. (2.26)

showing the effect of the Santilli-Shillady strong valence bond of Hulthén type that absorbs
all Coulomb potentials. The equation also explains the reason why the H2 molecule admits
only two H-atoms and provides the exact representation of the binding energy and other
molecular characteristics.

2.6 Exactly Solvable Three-Body Isochemical Model of the Hydrogen Molecule

A fundamental implication of hadronic chemistry is that of restricting the above four-body
model to a three-body structure evidently composed of the two protons at mutual distance
R and the two valence electrons strongly bonded into the isoelectronium quasiparticle. In
particular, the charge radius of the isoelectronium is sufficiently small to permit the values2,

2 In usual quantum chemistry the allowed approximations from Figure 4 are r1a ≈ r2b and r2a ≈ r1b but

since we are dealing at much shorter distances, viz. r12 the approximations of equations (2.27) and (2.28)

are in order.
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r12 ≤ r1a and r1b, r12 ≈ 0, (2.27)

r1a ≈ r2a = ra, r1b ≈ r2b = rb. (2.28)

Moreover, the H-nuclei are about 2,000 times heavier than the isoelectronium. Therefore, the
model of equation (2.26) can be reduced to a restricted three body problem similar to that
possible for the conventional H+

2 ion, but not for the conventional H2 molecule. By recalling
that Hulthén potential behaves at small distances like the Coulomb one and therefore, the
isochemical model of Hydrogen molecule as a three-body system can be written as(

− ~2

2µ1
×∇2

1 −
~2

2µ2
×∇2

2 − V ′ × e−r12b

1− e−r12b

−2e2

ra
− 2e2

rb
+
e2

R

)
× | ψ̂〉 = E× | ψ̂〉. (2.29)

where the system does admit an analytic solution in its restricted form under the assumption
that the isoelectronium is stable. Note also that equation (2.29) is purely quantum chemical
because all distances between the constituents are much bigger than 1 fm.

2.7 Isochemical Model of the Hydrogen Molecule with Unstable Isoelectronium

The stable character of the isoelectronium is crucially dependent on the use of the attractive
Hulthén potential, which absorbs repulsive Coulomb forces at short distances resulting in
attraction. Therefore, the weakening of the Hulthén potential into the Gaussian form of the
type

e−rb

1− e−rb
≈ 1−Ae−br

r
, (2.30)

has the direct consequence of turning the isoelectronium into an unstable state. Where,
the use of above Gaussian form implies the technical difficulty in using the Hulthén potential
e−rb/(1−e−rb). Therefore, an isochemical model of the Hydrogen molecule which is somewhat
intermediary between the conventional chemical bond and the isochemical model with a fully
stable isoelectronium has been studied (For details ref. [8]).

Unstable isoelectronium refers to the period of time in which the two valence electrons
remain within the hadronic horizon of 6.8 × 10−11 cm. The main achievement of this study
is the exact representation of molecular characteristics even for the case of one Gaussian ap-
proximation of equation (2.30). The question whether the isoelectronium is stable or unstable
evidently depends on the amount of instability and its confrontation with experimental data,
e.g. magnetic susceptibility, etc.

Under the above assumption, the model of equation (2.29) has been studied using the stan-
dard method of variational calculations by setting up the matrix algebra form in a nonorthog-
onal basis which has been normalized to one. On carrying out the detailed calculations for
the Gaussian orbital it was evident that the bond length of the three body model is much
shorter than the usual value of 1.4011 Bohr (= 0.74143 Å). Readers may obtain the details
from the references [8, 10]. Thereby the bond length was re-optimized after optimization of
the scaling for each principal shell. The scaling constants and the orbital contractions are of
the order of Angströms at an energy of -7.61509174 Hartrees (= -207.2051232 eV) where the
achievement of an exact representation of the binding energy is studied in detail. While it is
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expected that a collapsed isoelectronium pair would be even more unstable than a collapsed
positronium quasi particle due to the repulsive interaction of the electrons, this three body
model of Hydrogen predicts over 6 Hartrees of added molecular stability and a substantial
decrease in bond length.

Moreover, as indicated earlier, it is possible that the valence electrons bound themselves
into the isoelectronium not in a permanent fashion, but rather in a statistical fashion with
only a percentage of their time in a bonded state, wherein the three-body model is evidently
insufficient. Therefore, a full four-body isochemical model has been reviewed separately in
ref. [8], which also permits the achievement of an exact representation of the binding energy
from the first principles without ad hoc adulteration, known as the Gaussian approximation
of the isochemical model of the Hydrogen molecule as a four body system.

It is also interesting to note that the above model can be used for the study of the bonding
of an H-atom to another generic atom, such as HO, thus permitting, again for the first time,
novel exact calculations on the water as HOH, namely, as two intersecting isotopic bonds HO
and OH, each admitting an exact solution, with possible extension to molecular chains, and
extensions to other molecules.

2.8 The Water Molecule (2000)

Fig. 5 A view of a water molecule H2O at absolute zero degrees of temperature without any rotational

degrees of freedom, showing the H-O-H plane, the angle 1050 between the H-O and O-H dimers and, above

all, the natural occurrence according to which the orbital of the H atoms are not spherical, but of toroidal

character for their coupling with Oxygen, thus providing direct verification of the isochemical model of the

Hydrogen molecule of Figure 2

source: New Science for a New Era [6]

Subsequent to the successful study of the isochemical molecular model of isoelectronium
for Hydrogen molecules in the historical paper of (1999) [10], Santilli and Shillady proposed
their second historical study [11] of hadronic chemistry for the water molecule resulting from
the first axiomatic unadulterated principles of binding energy, sign and values of electric and
magnetic moments and other data.

The hypothesis is that the two valence electrons, one per each pair of Hydrogen and
Oxygen atoms, correlate themselves into a bonded singlet state at a short distance resulting
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in two isoelectronia, one per each H-O dimer. The bonding force between the two H- and O-
atoms was justified by Hulthén force between the two valence electrons in the isoelectronia.
Therefore, the binding energy is characterized by two oo-shaped orbits of isoelectronia around
the H-O-H nuclei; and molecule itself is characterized by two isoelectronia, one per each H-O
dimer. This then renders the system of H-O dimer as being restricted to a three body system
(two protons of Hydrogen and Oxygen atoms respectively and an isoelectronium H-O dimer3)
with an exact solution. The addition of another Hydrogen to the dimer has been proposed as
a perturbation via other means.

The approximation that the H-O-H molecule as being composed of two intersecting iden-
tical dimers H-O with evidently only one O-atom requires a first correction due to the lack of
independence of said dimer. Moreover, in each H-O dimer we shall assume that the Oxygen
appears to the isoelectronium as having only net positive charge +e located in the nucleus.
This evidently requires a second correction which essentially represents the screening of the
other 7 electrons of the Oxygen. That is, the additional H-atom bonded with the first H-O
dimer can be represented via a nonunitary image of the Coulomb law resulting in screening
of Gaussian type

2e2/r −→ 2e2(1± e−αr)/r, (2.31)

where, the double value 2e2 originates from the duality of the bonds in H-O-H; α is positive
parameter to be determined from the data; the sign “-” applies for screened O-nucleus as seen
from an H-electron (because of the repulsion caused by the electron clouds of the Oxygen);
and the sign “+” applies for the screened O-nucleus as seen from the H-nucleus (due to
the attraction caused by said electron cloud). By denoting with the sub-indices 1 and a
to Hydrogen; 2 and b, to Oxygen, and assuming the absence of all hadronic effects, the
conventional quantum chemical representation for above H-O dimer with the Oxygen assumed
to have only one elementary charge +e in the nucleus is given by,(

1

2µ1
p1 × p1 +

1

2µ2
p2 × p2 +

e2

r12
− e2

r1a

− e2

r2a
− e2

r1b
− e2

r2b
+
e2

R

)
× | ψ〉 = E0× | ψ〉 (2.32)

where R denotes the internuclear distance between H and O atoms. Again, as we have seen in
the case of the H2 molecule, here the task is to transform the above model to the nonunitary
settings but only at short mutual distances rc = b−1 = r12 of the two valence electrons
(hadronic horizon), and that should become unitary at relatively larger distances Îr≤10−10cm 6=
I, Ir�10−10cm = I.

Moreover, the assumption that the state and related Hilbert space of systems described
by the wave function in equation (2.32) can be factorized in the familiar form where each
term is duly symmetrized or antisymmetrized,

| ψ〉 =| ψ12〉× | ψ1a〉× | ψ1b〉× | ψ2a〉× | ψ2b〉× | ψR〉, (2.33)

HTot = H12 ×H1a ×H1b ×H2a ×H2b ×HR. (2.34)

3 As described in the following paragraph it is assumed that each isoelectronium sees only one positive charge

located at the nucleus of Oxygen atom.
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The nonunitary transform now shall act only on the r12 variable characterizing the isoelec-
tronium while leaving all other variables unchanged. The simplest possible solution for this
is to propose the isounit of the form,

U(r12)× U †(r12) = Î = exp

[
ψ(r12)

ψ̂(r12)

∫
d3r12ψ̂†1↓(r12)× ψ̂2↑(r12)

]
, (2.35)

where ψ’s represents conventional wavefunctions and ψ̂’s represents isowavefunctions for
which, again the fundamental condition of fast convergence exists as,

| T̂ |=| (U × U †)−1 |� 1. (2.36)

Therefore, by transforming short-range terms (isochemistry) of the isochemical model and
adding un-transformed long range ones (chemistry), we are provided the following radial
equation, (

− ~2

2× µ1
T̂ ×∇1 × T̂ ×∇1 −

~2

2× µ2
T̂ ×∇2 × T̂ ×∇2

+
e2

r12
× T̂ − e2

r1a
− e2

r2a
− e2

r1b
− e2

r2b
+
e2

R

)
× | ψ̂〉 = E× | ψ̂〉 (2.37)

By recalling that the Hulthén potential behaves at small distances like Coulomb one, equation
(2.37) becomes, (

− ~2

2× µ1
×∇2

1 −
~2

2× µ2
×∇2

2 − V ′ × e−r12×b

1− e−r12×b

− e2

r1a
− e2

r2a
− e2

r1b
− e2

r2b
+
e2

R

)
× | ψ̂〉 = E× | ψ̂〉. (2.38)

This model can be subjected to an important simplification. Now, under the assumption
considered herein, the H-O dimer in equation (2.38) can be reduced to a restricted three body
problem similar to that is possible for H+

2 molecule, but not for H2 molecule, accordingly we
have the following equation,(

− ~2

2µ1
×∇2

1 −
~2

2µ2
×∇2

2 − V ′ × e−r12b

1− e−r12b

−2e2

ra
− 2e2

rb
+
e2

R

)
× | ψ̂〉 = E× | ψ̂〉. (2.39)

The above indicated corrections/lifting are due to the screening of the other 7 electrons of
the Oxygen atom and other corrections needed in the “sensing” of the O-nucleus by the
isoelectronium as well as by the H-nucleus, which then yields the isochemical model of the
water molecule in its projection in the conventional Hilbert space over conventional fields,[

− ~2

2µ1
×∇2

1 −
~2

2µ2
×∇2

2 − V ×
e−r12b

1− e−r12b
− 2e2

r2a

−2e2(1− e−αr1b)
r1b

+
e2(1 + e−αR)

R

]
ψ̂(r) = E′ψ̂(r), (2.40)
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where E′ is half of the binding energy of the water molecule, and α is a positive parameter that
needs to be evaluated experimentally. Under the above approximation, plus the assumption
that the isoelectronium is stable, the model (2.40) constitutes the first model of the water
molecule admitting the exact analytic solution from first principle in scientific history. Being
exactly solvable equation (2.40) exhibits a new explicitly attractive “strong” force among
neutral atoms of the H-O dimer, which is absent in conventional quantum chemistry. The
equation also explains the reason why the water molecule admits only two H-atoms. The
model yields much faster convergence of series with much reduced computer times and resolves
many other insufficiencies of quantum theory. Finally, the model is evidently extendable with
simple adjustments to an exact solution of other dimers involving the Hydrogen, such as H-C.

3 Variational Calculations of Isochemical Models

As reviewed in the references [10, 11] the variational methods of hadronic chemistry showed
the capability of the isochemical models to reach an essentially exact representation of ex-
perimental data on the Hydrogen and water molecules, as well as resolving the other issues
of inconsistencies of conventional quantum chemistry.

More so, a greatly detailed, independent studies on the models described in [10, 11] was
conducted by Aringazin et al [14] via exact solution, Aringazin [15] using Ritz variational
method, and by R. Pérez-Enŕıquez, J. L. Maŕın and R. Riera [16]. All of them confirm all
numerical results of Santilli and Shillady [10, 11].

The Aringazin-Kucherenko study [14] of the restricted, three body isochemical model of the
Hydrogen molecule confirms that the isochemical model of equation (2.29) is indeed valid,
but only in first approximation, in accordance with the intent of the original proposal [10].
Using the Born-Oppenheimer approximation, i.e. at fixed nuclei, Aringazin and Kucherenko
[14] calculated the energy levels via the use of recurrence relations and have computed some
27 tables, each with the identification of the minimum of the total energy, together with the
corresponding optimal distances R. Then, they collected all the obtained energy minima and
optimal distances in tabular form. With the fourth order interpolation / extrapolation, the
graphical representation of the tabular data have shown that minimal total energy behaves
as,

Emin(M) ≈ −3.808M

and the optimal distance behaves as

Ropt(M) ≈ 0.517/M.

At M = 2me, one has

Emin(M) = −7.617041 a.u., Ropt(M) = 0.258399 a.u.,

which recover the values obtained in Ref. [10]

Emin = −7.61509174 a.u., Ropt = 0.2592 a.u., (3.1)

to the remarkable accuracy. The conclusion by Aringazin-Kucherenko was that the Santilli-
Shillady restricted three-body model of the Hydrogen molecule is indeed valid as in first
approximation.
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Whereas, Aringazin’s variational study [15] of the four-body isochemical model of the Hy-
drogen molecule uses the application of Ritz variational method to Santilli-Shillady four-body
isochemical model of the Hydrogen molecule in equation (2.26) without the restriction that
the isoelectronium has the dimension of about one Fermi. In particular the objective was
to identify the ground state energy and bond length of the Hydrogen molecule in Born-
Oppenheimer approximation, via a Gaussian screening of the Coulomb potential, as well as
the original Hulthén potential of equation (2.26). The resulting analysis has proved to be quite
sophisticated wherein the Coulomb and exchange integrals were calculated only for Gaussian
screening of the Coulomb potential while for the Hulthén potential Aringazin achieved analyt-
ical results for the Coulomb integrals. The conclusion of Ritz variational treatment is capable
to provide an exact fit of the experimental data of the Hydrogen molecule in confirmation of
the results obtained by Santilli-Shillady [10] via SASLOBE variational approach to Gaussian
model.

An interesting result of the Ritz variational approach to the Hulthén potential studied by
Aringazin [15] is that only some fixed values of the effective radius of the one-level isoelec-
tronium are admitted in the Santilli-Shillady model when treated via the Ritz approach.

Raúl Pérez-Enŕıquez, José Luis Maŕın and Raúl Riera in 2007 [16], gave for the first time
an exact solution for restricted three-body model of the Hydrogen molecule by following
the Ley-Koo solution to the Scrödinger equation for a confined Hydrogen molecular ion, H+

2 .
They obtained for the restricted three-body Santilli-Shillady model the value of the minimum
energy of the ground state of the Hydrogen molecule and have shown that the confined model
to 3-body molecule reproduce the ground state curve as calculated by Kolos, Szalewics and
Monkhorst with a precision up to the 4-th digit and a precision in the representation of the
binding energy up to the 5-th digit.

4 Conclusions

In the preceding sections, we have reviewed Santilli’s covering of quantum chemistry known
as hadronic chemistry with particular reference to its isochemical branch (see [1, 10, 11] and
the recent monographs [6, 8]). We have then reviewed molecular structures based on the
bonding of a pair of valence electrons from different atoms into a singlet quasi-particle state
called isoelectronium that provides realistic hopes to overcome the 20th century insufficiencies
of quantum chemistry thanks to the following results:

1. Exact representation of molecular binding energies from first axiomatic principles without
ad hoc adulteration.

2. An explanation why the Hydrogen molecule has only two Hydrogen atoms.
3. Reconstruction of the superposition principle at the isotopic level, thus permitting an

axiomatically consistent study of composite systems under non-linear, non-local and non-
Hamiltonian interactions. This is achieved by embedding of all non-linear terms in the
isotopic element,

H(r, p, ψ, · · ·) = H0(r, p)T (ψ, · · ·), (4.1)

thus restoring the superposition principles with exact factorization,

H0(r, p)T (ψ, · · ·)ψtotal = H0T (r, p, ψ, · · ·)ψ1 × ψ2 × · · ·ψn, (4.2)

with consequential validity of isochemistry for complex systems.
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4. Reduction of computer time by at least 1000-fold. This is permitted by the fact that the
absolute value of the isounit as in equation (2.6) is much bigger than one and, conse-
quently, the isotopic element is much smaller than one, that turns all slow convergent
series into strong (fast) convergent forms.

5. Admission of a restricted three body structure in the Hydrogen molecule with conse-
quential exact analytic solution that, even though approximate, has nevertheless major
implications for deeper studies of molecular structures at large, such as the study of the
water molecule at the intersection of two exactly solvable dimers OH.

Moreover, hadronic chemistry admits the broader genochemical and hyperchemical models
(not reviewed in this paper for brevity, see [6]) that Santilli respectively developed for the
representation of single-valued irreversible processes (such as the water synthesis from Hy-
drogen and Oxygen), and for multi-valued irreversible biological structures and processes (as
expected in biological structures and events).

To conclude, Santilli isochemistry has indeed resolved most, if not all, of the insufficien-
cies of quantum chemistry for reversible structures and processes by offering an axiomatically
consistent framework for further basic advances. Some of the problems needing further inves-
tigation are:

1. With the advent of the isoelectronium we need to reinterpret the Morse curve of diatomic
molecules.

2. The stability of a diatomic molecule has been interpreted via a three body reaction (see,
for example, Frost and Pearson [17]):

X +X +M −→ X2 +M,

thus suggesting its reinterpretation via the isoelectronium.
3. There is the need to develop an isochemical theory of bond angles, molecular geometries,

double and triple valence bonds and related fundamental aspects.
4. There is also the need to develop the isochemical theory of valence bonds for excited states

as it would be important for a deeper understanding of photochemical and biological
photosynthetic processes, as well as several additional open problems in chemistry and
biology.

5. Finally, there is the need to develop a comprehensive theory of chemical reactions via the
structurally irreversible genomechanics.

5 Appendix

Elements of Santilli Isomathematics.
In an attempt to resolve the scientific insufficiencies of the conventional 20th century theories,
when at the Department of Mathematics of Harvard University in the late 1970s, Santilli
proposed an axiom-preserving generalization of conventional mathematics, today known as
Santilli’s “isotopic” mathematics or the isomathematics a [18, 19] (see also the important
reviews [20] [21]). It should be recalled that the prefix “iso” in the word “isotopic” is used
in the Greek meaning of preserving the original axioms, and the prefix “geno” in the word
“genotopic” is used in the sense of including new axioms.

In this appendix, we can only review the most relevant aspects of isomathematics. The
reader interested in mathematical details of Santilli’s iso- and geno-mathematics should study
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the original references [1, 7, 8, 12, 18, 19]. It should be noted that, in this paper, we only use
Santilli’s isomathematics since we solely consider reversible structures, such as the structure
of the Hydrogen and water molecules. By contrast, Santilli’s broader genomathematics is
necessary for the representation of irreversible processes, such as chemical reactions at large,
that are not considered in this paper.

The lifting of the trivial unit I = +1 into a generalized unit, Î, is the first basic step of
the isomathematics. Thus the lifting of I to N -dimensional isounit is represented as,

I = +1 −→ Î(t, r, ṙ, p, T, ψ, ψ†, ∂ψ, ∂ψ†, · · · · · · ··) (5.1)

where t is time, r is the position vector, ṙ is the velocity vector, p is the momentum vector,
T is the temperature function, ψ is the wave function and ψ† its transpose, and ∂ψ and
∂ψ† are the corresponding partial differentials. The positive definiteness of the isounit, Î, is
prescribed by,

Î(t, r, ṙ, p, T, ψ, ψ†, ∂ψ, ∂ψ†, · · · · · · ··) =
1

T̂
> 0 (5.2)

where T̂ is called the isotopic element a positive definite quantity.
The isonumbers, n̂, are generated as,

n̂ = n× Î , n = 0, 1, 2, 3, · · · · ·· (5.3)

Thus the isonumbers are 0̂, 1̂, 2̂, 3̂, · · · · ··.

The above realization of isonumbers implies,

a0̂ = Î =
1

T̂
> 0 (5.4)

Compare this with the traditional algebra where we have a0 = 1.

Notice that the use of isounit Î constitutes the nonunitary transform. A simple way to
preserve the said nonunitary transform is to express Î as,

U × U † 6= I

Î = U × U † =
1

T̂
> 0 (5.5)

and the Hermiticity of Î is guaranteed by the prescription,

U × U † =
(
U × U †

)†
(5.6)

where the superscript (†) denotes the transpose. Thus it implies that U × U † must be a
positive definite N -dimensional matrix other than the conventional unit matrix and hence it
is no where singular because we then have,

0 < Det
(
U × U †

)
6= I (5.7)

Thus the lifting to isounit gets represented as,
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I = +1 −→ U × I × U † = Î (5.8)

which is the noncanonical-nonunitary transform of the conventional unit.
On the same lines the isoproduct is also a noncanonical-nonunitary transform of the con-

ventional product, that gets illustrated as,

A×B −→ U × (A×B)× U †

=
(
U ×A× U †

)
×
(
U × U †

)−1
×
(
U ×B × U †

)
= Â× T̂ × B̂ = Â×̂B̂ (5.9)

Thus we have obtained the following isotopicliftings, namely:

× −→ ×̂ = ×
(
U × U †

)−1
× = ×T̂ × (5.10)

A −→ U ×A× U † = Â (5.11)

The isoproducts of iso- and conventional quantities get expressed as,

Â×̂B̂ = Ĉ = A× Î × T̂ ×B × Î = (A×B)× Î = C × Î = ÂB (5.12)

A×̂B = A× T̂ ×B (5.13)

Thus Î being a multiplicative isounit we identically have,

Î×̂Â = Â×̂Î = Â (5.14)

Î×̂A = A×̂Î = A (5.15)

Hence, in general we have,
n̂×̂A = n× Î × T̂ ×A = nA

The isoproducts are not necessarily isocommutative

Â×̂B̂ 6= B̂×̂Â

but are isoassociative, namely:

Â×̂
(
B̂×̂Ĉ

)
=
(
Â×̂B̂

)
×̂Ĉ (5.16)

The isosums are given as,

A+̂B = A+B, Â+̂B̂ = Â+ B̂ implying + = +̂ (5.17)

The isosums are commutative and associative

Â+ B̂ = B̂ + Â (5.18)(
Â+ B̂

)
+ Ĉ = Â+

(
B̂ + Ĉ

)
(5.19)

There exists an additive isounit, 0̂, such that,

Â+ 0̂ = 0̂ + Â = Â (5.20)
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where the lifting to isozero, 0̂, is expressed as 0 −→ U × 0 × U † ≡ 0̂, and the negative
isonumber, −Â follows the following relationship with its positive counterpart, namely:

Â+ (−Â) = 0̂ (5.21)

The isoproducts and isosums follow the right and left isodistributive law, namely:

Â×̂
(
B̂ + Ĉ

)
= Â×̂B̂ + Â×̂Ĉ,

(
Â+ B̂

)
×̂Ĉ = Â×̂Ĉ + B̂×̂Ĉ (5.22)

From the above liftings we have,

Ân̂ = Â×̂Â×̂Â×̂×̂ · · · · · ×̂Â×̂Â
= A× Î × T̂ ×A× Î × T̂ ×A× Î × T̂ × · · · · · × T̂ ×A× Î
= AnT̂n−1În = AnÎ (5.23)

An̂ = A×̂A×̂A×̂ · · · · · ×̂A
= A× T̂ ×A× T̂ ×A× T̂ × · · · · · × T̂ ×A

= An
(
T̂
)n−1

= AnT̂ (5.24)

Notice the difference between the result of multiplication to An by Î and T̂ . The isosquareroot
gets depicted as,

Â
1̂
2 = A

1
2 × Î

1
2 (5.25)

But as Î is the isounit we have,

Î 1̂/2 = Î = Î1/2 (5.26)

that gets illustrated as,

Î 1̂/2 =
(
a0̂
)1̂/2

= a1̂/2×̂0̂ = a0̂ = Î (5.27)

Î1/2 =
(
a0̂
)1/2

= a1/2×̂0̂ = a0̂ = Î (5.28)

Thus the iso- and conventional products of isounit, Î gets illustrated in general as,

Î n̂ =
(
a0̂
)n̂

= an̂×̂0̂ = a0̂ = Î (5.29)

În =
(
a0̂
)n

= an×̂0̂ = a0̂ = Î (5.30)

where we have used 0̂×̂n̂ = 0̂ = 0̂×̂n. Hence we have,(
Î
)n

=
(
Î
)n̂

= Î , n = 1, 2, 3, ... (5.31)(
T̂
)n

=
(
T̂
)n̂

= T̂ , n = 1, 2, 3, ... (5.32)

but we have,

Î 0̂ = Î and Î0 = I = 1, T̂ 0̂ = Î and T̂ 0 = I = 1 (5.33)

Moreover, Î being an isounit there we have,
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ÂÎ = Â = A× Î (5.34)

(Compare: A1 = A or AI = A as I = +1).
The lifting of the conventional division to the isodivision is shown as,

A ÷ B −→ U × (A ÷ B)× U †

= U × A

B
× U †

=
U ×A× U †

U ×B × U †
(
U × U †

)
=
Â

B̂
× Î =

A

B
× Î

= Â ÷̂ B̂ = Â /̂ B̂ (5.35)

Thus we have obtained the following nonunitary transform:

÷ −→ ÷̂ = ÷× Î or / −→/̂ = (/)× Î (5.36)

Now the isoinverse is represented as,

Â−Î = Î÷̂ÂÎ =
Î

ÂÎ
× Î =

Î2

A× Î
= A−1 × Î (5.37)

Thus we see that Î being an isounit we correctly have Î × Î = Î and Î ÷ Î = Î.
The isoproduct of an isoquantity with its isoinverse obviously produces isounit, Î, namely:

ÂÎ×̂Â−Î = A× Î × T̂ ×A−1 × Î = 1× Î = Î = Â0̂ 6= I (5.38)

Thus it represents the isorule: anything raised to 0̂ is equal to Î. The same remains true for
the conventional quantities too, namely:

A0̂ = Î = Â0̂ (5.39)

Similarly,
â0 = (a× Î)0 = a0Î0 = 1× 1 = 1 (5.40)

which is the mathematical expression of the rule: anything raised to power 0 is equal to 1.
The isolifting of a complex number, say c, is similar to non-complex number,

c = (a+ i× b) −→ ĉ = c× Î = (a+ i× b)× Î = (â+ i× b̂) (5.41)

where i is the imaginary unit i =
√
−1.

The isonorm is represented as,
|̂Â|̂ =| A | ×Î (5.42)

The isonorm of isoproducts transform as,

|̂Â×̂B̂ |̂ = |̂Â|̂ × |̂B̂ |̂

Now if Î = i, then the isonumber say â transforms as,
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â = a× Î = ai, T̂ = Î−1 =
1

i
= −i (5.43)

that transforms the isoproduct of isoquantities as,

â×̂b̂ = (a× Î)× T̂ × (b× Î) = (ai)(−i)(bi) = abi = abÎ = âb (5.44)

and the isodivision of isoquantities transform as,

â÷̂b̂ = a× Î × (÷)× Î × b× Î = a× i× (÷)× i× b× i = −a
b
× i (5.45)

The isofunctions get represented as,

f̂(r̂) = f(r × Î)× Î , (5.46)

the isologarithm as,
ˆlogêa = Î × loge a,

ˆlogêê = Î , ˆlogêÎ = 0 (5.47)

Other iso-operations on isologarithms are,

ê
ˆlogêâ = â

ˆlogê(â×̂b̂) = ˆlogêâ+ ˆlogêb̂

ˆlogê(â÷̂b̂) = ˆlogêâ− ˆlogêb̂

ˆlogê

(
â−Î
)

= − ˆlogêâ

b̂×̂ ˆlogêâ = ˆlogê

(
âb̂
)

and the isoexponentiation as,

êâ = Î +̂ â/̂1̂! +̂ â×̂â/2̂! +̂ · · · ·· = ea × Î

=

[
1 +

â× T̂
1!

+
â× T̂ × â× T̂

2!
+ · · · · ·

]
× Î

=
(
eâ×T̂

)
× Î = Î ×

(
eâ×T̂

)
(5.48)

The isodifferentiation may be arrived at as follows. One of the transformations for an isodif-
ferential is,

dr = T̂ × dr × Î−→ T̂ × d(r × Î) = d̂r̂; Î = const (5.49)

Now assume Î 6= constant that leads us to,

d̂r̂ = T̂ dr̂ = T̂ d(r × Î) 6= dr (5.50)

Similarly, the isoderivatives get represented as,

∂̂/̂∂̂r̂ = Î × ∂/∂r̂ (5.51)

The isointegration gets obviously represented as,

ˆ∫
= Î ×

∫
(5.52)

and hence we have,
ˆ∫
d̂r̂ = Î ×

∫
T̂ × d(r × Î) = Î ×

∫
dr (5.53)

The isotopiclifting of Schrödinger wave equation may be achieved in two ways:
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1. As adopted in the recent monograph entitled “New Sciences for A New Era” the said
isotopic lifting is described as,

H× | ψ>= E0 | ψ>→ U × (H× | ψ>)× U †

= (U ×H × U †)× (U × U †)−1 × (U× | ψ> ×U †)
= Ĥ × T̂× | ψ̂>= Ĥ×̂ | ψ̂>
= U × (E× | ψ>)× U †

= (U × E × U †)× (U × U †)−1 × (U× | ψ> ×U †)
= Ê×̂ | ψ̂>= E | ψ̂> (5.54)

That is we have arrived at the iso-Schrödinger equation,

Ĥ×̂ | ψ̂>= E | ψ̂> (5.55)

Notice that the involved definition of isowavefunction is.

| ψ̂>= U× | ψ> ×U † (5.56)

and we have not lifted E0 to its iso-counterpart because the new iso-Hamiltonian operator
isooperates on isowavefunction which is bound to produce a different value of correspond-
ing energy eigenvalue.

2. The second option, that has been extensively used in the Hadronic mechanics literature,
is:

H× | ψ>= E0 | ψ> −→ U × (H× | ψ>)

= (U ×H × U †)× (U × U †)−1 × (U× | ψ>)

= Ĥ × T̂× | ψ̂>= Ĥ×̂ | ψ̂>
= U × (E× | ψ>) = E × (U× | ψ>)

= E | ψ̂> (5.57)

In this choice the isowavefunction gets defined as,

| ψ̂>= U× | ψ> (5.58)

and the arguments to use E instead of E0 on isotopiclifting remains the same.

In this paper we have used the first choice.

The isoinner product is defined as,

<ψ̂|̂ φ̂ > = Î

∫
d3r ψ̂† T̂ (r, · · ··)φ̂ (5.59)

and the isonormalization is defined as,

<ψ̂|̂ ψ̂> = Î (5.60)

The isouncertainties are defined in general as,

∆x∆k ≥ 1

2
< Î >, ∆x ≈ a/T̂ 1/2, ∆k ≈ 1/(aT̂ 1/2), I = ~ (5.61)
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