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Abstract

The objects of modern isogeometry, isotopology, like all objects of mod-

ern isomathematics, are sets of elements of arbitrary nature endowed with

some mathematical isostructures, for example, isosymmetry etc. The typ-

ical way to think about isosymmetry is with the concept of a “isogroup”.

But to get a concept of isosymmetry that’s really up to the demands put on

it by modern isomathematics, we need — at the very least — to work with

a “category” of isosymmetries, rather than a isogroup of isosymmetries.

In this article we use Santilli functor for topological isostructures. There

are constructed categories of topological vector isospaces, and topological

isogroups, and some categorical structures on them.

∗This research has been partially supported by the R. M. Santilli Foundation.



1 Introduction

Isomathematics was proposed by Santilli [1] in 1978, and subsequently stud-

ied by numerious pure and applied mathematicians as: S. Okubo, H. Myung,

M. Tomber, Gr. Tsagas, D. Sourlas, C. Corda, J. Kadeisvili, A. Aringazin,

A. Kirhukin, R. Ohemke, G. Wene, G. M. Benkart, J. Osborn, D. Britten,

J. Lohmus, E. Paal, L. Sorgsepp, D. Lin, J. Voujouklis, P. Broadbridge, P.

Chernooff, J. Sniatycku, S. Guiasu, E. Prugovecki, A. Sagle, C. Jiang, R.

Falcon Ganfornina, J. Nunez Valdes, A. Davvaz, S. G. Georgiev and others.

As a result of these efforts, the new mathematics can be constructed via

the systematic application of axiom - preservibg liftings, called isotopies, of

the totality of all structures inthe mathematics: inluding all operators and

their operations, icluding the isotopic lifting of numbers, functinal analysis,

differential calculas, geometries, topologies, Lie theory and others [2–6].

The physical needs for isomathematics have been indicated in [3,4], and

consists in the necessity for a representation of non-Hamiltonian scattering

effects in a form that is invariant over time so as to admit the same nu-

merical predictions under the same conditions at different times. Following

the study of all possible alternatives, the latter condition required the rep-

resentation of non-Hamiltonian scattering effects with an axiom-preserving

generalization of the trivial (positive-deffinite) unit of quantum mechanics

ĥ = 1 into the most general possible (positive-deffinite as a condition to

characterize an isotopy), integro-differential operator Î which is as positive

- definite as +1, functional depending of local variables, that is assumed to

be the inverse of the isotopic element T̂

+1>̂0 −→ Î(t, r, p, a, E, . . .) =
1

T̂
>̂0

and it is called Santilli isounit. Santilli introduced a generalization called

lifting of the conventional associative product ab into the form

ab −→ a×̂b = aT̂ b



called isoproduct for which:

Î×̂a =
1

T̂
T̂ a = a×̂Î = aT̂

1

T̂
= a.

for every element a of the field of real numbers, complex numbers and

quaternions.

The Santilli isonumbers are defined as follows: for given real number or

complex number or quaternion a,

â = aÎ,

with isoproduct

â×̂b̂ = âT̂ b̂ = a
1

T̂
T̂ b

1

T̂
= ab

1

T̂
= âb.

If a 6= 0 the corresponding isoelement of 1

a
will be denoted with â−1 or Î⋌ â.

With F̂R or R we will denote the field of iso-reals. Below we will suppose

that T̂1 ∈ F̂R, T̂1 > 0 is an isotopic element which corresponds of F̂R.

The text is organized and written in a “pedagogical style”, rather than

in a highly economical one. The paper is organized into five sections that

represent natural “clusters” of topics. Following [13] the second section

contains the basic category theory. Following [3–6] in the third section we

present basic notions on Isotopies it also contains more recent research re-

sults obtained in [14, 15] in the realm of Santilli iso-functor and concrete

categories of isogroups and vector isospaces. In order to make the flow of

topics self-motivating, new categorical concepts of isotopology are intro-

duced gradually, by moving from special cases of notions of the category

TOP (with objects all topological spaces and morphisms all continuous

functions between them), the category TopVec of topological vector spaces

and continuous linear transformations and the category TopGrp of topo-

logical groups as objects and continuous homomorphisms as morphisms to

the more general isotopological ones and categorical structures on them.
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2 Basic Notions on Categories

Category theory groups together in categories the mathematical objects

with some common structure (e.g., sets, partially ordered sets, groups, rings,

and so forth) and the appropriate morphisms between such objects [7–13].

These morphisms are required to satisfy certain properties which make the

set of all such relations coherent. Given a category, it is not the case that

every two objects have a relation between them, some do and others dont.

For the ones that do, the number of relations can vary depending on which

category we are considering.

Definition 2.1. A category is a quadruple (Ob,Hom, id, ◦) consisting of:

(Cl) a class Ob of objects;

(C2) for each ordered pair (A,B) of objects a set Hom(A,B) of mor-

phisms;

(C3) for each object A a morphism idA ∈ Hom(A,A), the identity of A;

(C4) a composition law associating to each pair of morphisms f ∈

Hom(A,B) and g ∈ Hom(B,C) a morphism g ◦ f ∈ Hom(A,C);

which is such that:

(M1) h ◦ (g ◦ f) = (h ◦ g) ◦ f for all f ∈ Hom(A,B), g ∈ Hom(B,C)

and h ∈ Hom(C,D);

(M2) idB ◦ f = f ◦ idA = f for all f ∈ Hom(A,B);

(M3) the sets Hom(A,B) are pairwise disjoint.

This last axiom is necessary so that given a morphism we can identify its

domain A and codomain B, however it can always be satisfied by replacing

Hom(A,B) by the set Hom(A,B)× ({A}, {B}).

Example 2.1. The classic example is Set, the category with sets as ob-

jects and functions as morphisms, and the usual composition of functions

as composition.
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2.1 Functors and natural transformations

Definition 2.2. Let X and Y be two categories. A covariant functor

from a category X to a category Y is a family of functions F which as-

sociates to each object A in X an object FA in Y and to each morphism

f ∈ HomX(A,B) a morphism Ff ∈ HomY(FA,FB), and which is such

that:

(FI) F(g ◦f) = Fg ◦Ff for all f ∈ HomX(A,B) and g ∈ HomY(B,C);

(F2) F idA = idFA for all A ∈ Ob(X).

It is clear from the above that a covariant functor is a transformation

that preserves both:

• The domains and the codomains identities.

• The composition of arrows, in particular it preserves the direction of

the arrows.

Definition 2.3. Let X and Y be two categories. A contravariant func-

tor from a category X to a category Y is a family of functions F which

associates to each object A in X an object FA in Y and to each morphism

f ∈ HomX(A,B) a morphism Ff ∈ HomY(FA,FB), and which is such

that:

(FI) F(g◦f) = Ff ◦ Fg for all f ∈ HomX(A,B) and g ∈ HomY(B,C);

(F2) F idA = idFA for all A ∈ Ob(X).

Thus, a contravariant functor in mapping arrows from one category

to the next reverses the directions of the arrows, by mapping domains to

codomains and vice versa. A contravariant functor is also called a presheaf.

So far we have defined categories and maps between them called functors.

We will now abstract one step more and define maps between functors.

These are called natural transformations.

Definition 2.4. Let F : X → Y and G : X → Y be two functors. A

natural transformation α : F → G is given by the following data:
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For every object A in X there is a morphism αA : F(A) → G(A) in Y

such that for every morphism f : A → B in X the following diagram is

commutative
F(A)

αA−→ G(A)

F(f) ↓ ↓ G(f)

F(B)
αB−→ G(B).

Commutativity means (in terms of equations) that the following composi-

tions of morphisms are equal: G(f) ◦ αA = αB ◦ F(f).

The morphisms αA, A ∈ Ob(X), are called the components of the natural

transformation α.

2.2 Forgetful functor

In a category, two objects x and y can be equal or not equal, but they can

be isomorphic or not, and if they are isomorphic, they can be isomorphic

in many different ways. An isomorphism between x and y is simply a

morphism f : x → y which has an inverse g : y → x, such that f ◦ g = idy

and g ◦ f = idx.

In the category Sets an isomorphism is just a one-to-one and onto func-

tion, i.e. a bijection. If we know two sets x and y are isomorphic we know

that they are “the same in a way”, even if they are not equal. But specifying

an isomorphism f : x → y does more than say x and y are the same in a

way; it specifies a particular way to regard x and y as the same.

In short, while equality is a yes-or-no matter, a mere property, an iso-

morphism is a structure. It is quite typical, as we climb the categorical

ladder (here from elements of a set to objects of a category) for properties

to be reinterpreted as structures [7–11].

Definition 2.5. We tell that a functor F : C → C′ define a additional

C−structure on objects of the category C′ if

1. ∀X, Y ∈ Ob(C) the map F : C(X, Y ) → C′(F)X),F(Y )) is injective,
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2. ∀X ∈ Ob(C), Y ∈ Ob(C′) and an isomorphism u : Y → F(X) there

is an object Ỹ ∈ Ob and an isomorphism ũ : Ỹ → X such that

F(Ỹ ) = Y and F(ũ) = u.

Such functor is called a forgetful functor.

3 Basic Notions on Isotopies

3.1 Isotopies of the unit and isospaces

The isotheory is based on the concept of fundamental isotopy which is

the lifting I → Î of the n–dimensional unit I = diag (1, 1, ..., 1) of the Lie’s

theory into an n× n–dimensional matrix

Î =
(
I ij
)
= Î

(
t, x, ẋ, ẍ, ψ, ψ+, ∂ψ, ∂ψ+, ∂∂ψ, ∂∂ψ+, ...

)

called the isounit. For simplicity, we consider that maps I → Î are of nec-

essary Kadeisvili Class I (II), the Class III being considered as the union of

the first two, i. e. they are sufficiently smooth, bounded, nowhere degen-

erate, Hermitian and positive (negative) definite, characterizing isotopies

(isodualities).

One demands a compatible lifting of all associative products AB of some

generic quantities A and B into the isoproduct A ∗B satisfying the proper-

ties:

AB ⇒ A ∗B = AT̂B, IA = AI ≡ A→ Î ∗ A = A ∗ Î ≡ A,

A (BC) = (AB)C → A ∗ (B ∗ C) = (A ∗B) ∗ C,

where the fixed and invertible matrix T̂ is called the isotopic element.

To follow our outline, a conventional field F (a,+,×) , for instance of

real, complex or quaternion numbers, with elements a, conventional sum +

and product a×b
.
= ab, must be lifted into the so–called isofield F̂ (â,+, ∗) ,

satisfying properties

F (a,+, ∗) → F̂ (â,+, ∗) , â = aÎ
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â ∗ b̂ = âT̂ b̂ = (ab) Î , Î = T̂−1

with elements â called isonumbers, + and ∗ are conventional sum and iso-

product preserving the axioms of the former field F (a,+,×) . All operations

in F are generalized for F̂ , for instance we have isosquares â2̂ = â ∗ â =

ÂT̂ â = a2Î , isoquotient â/̂b̂ = (a/b) Î , isosquare roots â1/2 = a1/2Î, ...;

â∗A ≡ aA. We note that in the literature one uses two types of denotation

for isotopic product ∗ or ×̂ (in our work we shall consider ∗ ≡ ×̂).

Let us consider, for example, the main lines of the isotopies of a n–di-

mensional Euclidean space En (x, g,R) , where R (n,+,×) is the real number

field, provided with a local coordinate chart x = {xk}, k = 1, 2, ..., n, and

n–dimensional metric ρ = (ρij) = diag (1, 1, ..., 1) . The scalar product of

two vectors x, y ∈ En is defined as

(x− y)2 =
(
xi − yi

)
ρij

(
xj − yj

)
∈ R (n,+,×)

were the Einstein summation rule on repeated indices is assumed hereon.

The Santilli’s isoeuclidean spaces Ê
(
x̂, ρ̂, R̂

)
of Class III are in-

troduced as n–dimensional metric spaces defined over an isoreal isofield

R̂
(
n̂,+, ×̂

)
with an n×n–dimensional real–valued and symmetrical isounit

Î = Î t of the same class, equipped with the “isometric”

ρ̂ (t, x, v, a, µ, τ, ...) = (ρ̂ij) = T̂ (t, x, v, a, µ, τ, ...)× ρ = ρ̂t,

where Î = T̂−1 = Î t.

A local coordinate cart on Ê
(
x̂, ρ̂, R̂

)
can be defined in contravariant

x̂ = {x̂k = xk̂} = {xk × Î k̂k}

or covariant form

x̂k = ρ̂klx̂
l = T̂ r

k ρrix
i × Î,

where xk, xk ∈ Ê. The square of “isoeuclidean distance” between two points

x̂, ŷ ∈ Ê is defined as

(x̂− ŷ)2̂ =
[(
x̂i − ŷi

)
× ρ̂ij ×

(
x̂j − ŷj

)]
× Î ∈ R̂
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and the isomultiplication is given by

x̂2̂ = x̂k×̂x̂k =
(
xk × Î

)
× T̂ ×

(
xk × Î

)
=

(
xk × xk

)
× Î = n× Î.

Whenever confusion does not arise isospaces can be practically treated

via the conventional coordinates xk rather than the isotopic ones x̂k = xk×Î.

The symbols x, v, a, ... will be used for conventional spaces while symbols

x̂, v̂, â, ... will be used for isospaces; the letter ρ̂ (x, v, a, ...) refers to the

projection of the isometric ρ̂ in the original space.

We note that an isofield of Class III, explicitly denoted as F̂III

(
â,+, ×̂

)

is a union of two disjoint isofields, one of Class I, F̂I

(
â,+, ×̂

)
, in which

the isounit is positive definite, and one of Class II, F̂II

(
â,+, ×̂

)
, in which

the isounit is negative–definite. The Class II of isofields is usually written

as F̂ d
(
âd,+, ×̂

d
)
and called isodual fields with isodual unit Îd = −Î < 0,

isodual isonumbers âd = a × Îd = −â, isodual isoproduct ×̂
d
= ×T̂ d× =

−×̂, etc. For simplicity, in our further considerations we shall use the

general terms isofields, isonumbers even for isodual fields, isodual numbers

and so on if this will not give rise to ambiguities.

3.2 Isofunctions

An isofunction is a isorelation between a isoset of so - called isoinputs and

a isoset of isopermissible so - called isooutputs with the property that each

isoinput is isorelated of exactly one isooutput. An example is the isofunction

that isorelates each isoreal isonumber x̂ to its isosquare x̂×̂x̂. The isooutput

of the isofunction f̂ corresponding to a isoinput will be denoted with f̂∧(x̂).

We will use the notation

f̂ : X̂−̂→Ŷ

and in this context, the isoelements of X̂ are called isoarguments of f̂ , X̂ is

called isodomain of f̂ and Ŷ is called isocodomain of f̂
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Definition 3.1. We will say that the isonumber â is isolimit of the iso-

function f̂ : X̂−̂→Ŷ at the isopoint x̂0, x̂0 ∈ X̂, if for every ǫ̂>̂0̂ there exists

δ̂ = δ̂(ǫ̂) such that from

|x̂− x̂0|<̂δ̂

follows

|f̂∧(x̂)− â|<̂ǫ̂.

We will write

f̂∧(x̂)−̂→x̂−̂→x̂0
â

or
ˆlimx̂−̂→x̂0

f̂∧(x̂) = â.

Let f̂ , ĝ : X̂−̂→Ŷ , x̂0 ∈ X̂ and ˆlimx̂−̂→x̂0
f̂∧(x̂) = â, ˆlimx̂−̂→x̂0

ĝ∧(x̂) = b̂.

Then

1. ˆlimx̂−̂→x̂0
(f̂∧(x̂)± ĝ∧(x̂)) = â± b̂,

2. ˆlimx̂−̂→x̂0
(α̂×̂f̂∧(x̂)) = α̂×̂â for every α̂ ∈ F̂K,

3. ˆlimx̂−̂→x̂0
(f̂∧(x̂)×̂ĝ∧(x̂)) = â×̂b̂,

4. ˆlimx̂−̂→x̂0
f̂∧(x̂)⋌ ĝ∧(x̂) = â⋌ b̂ if b̂ 6= 0̂.

Definition 3.2. An isofunction f̂ : X̂−̂→Ŷ will be called isocontinuous at

the isopoint x̂0 ∈ X̂ if for every ǫ̂>̂0̂ there exists δ̂1 = δ̂1(ǫ̂)>̂0̂ such that

from

|x̂− x̂0|<̂δ̂1

follows

|f̂∧(x̂)− f̂∧(x̂0)|<̂ǫ̂.

Let D ⊂ R. With F̂D we will denote the isoset of the isonumbers â for

which a ∈ D and the corresponding basic unit in it is Î1 =
1

T1

, T1>̂0.

Let T ∈ C1(D), T>̂0 in D. With F̂C
1

D we will denote the isoset of all

isofunctions f̂ for which f ∈ C1(D) and the corresponding basic unit in it
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is Î = 1

T
, the act of the isofunction f̂ ∈ F̂C

1

D on the isovariable x̂ will be

denoted as follows

f̂∧(x̂) = f̂(T1x̂) =
f

T
(T1x

1

T1
) =

f

T
(x)

and if ĝ ∈ F̂C
1

D

f̂×̂ĝ = f̂T ĝ.

Definition 3.3. Let x̂ ∈ D̂. First isoderivative of the isofunctions f̂ ∈ F̂C
1

D

at the isopoint x̂ will be called

(f̂)⊛ := ˆlimĥ−̂→0̂
(f̂∧(x̂+ ĥ)− f̂∧(x̂))⋌ ĥ.

In this case we will say that f̂ is isodifferentiable at the isopoint x̂.

(f̂∧(x̂+ ĥ)− f̂∧(x̂))⋌ ĥ

= f̂(T1(x̂+ ĥ))− f̂(T1x̂))T1
1

h
1

T1

=
( f
T
(x+ h)−

f

T
(x)

)1
h
−→h−→0

f ′(x)T (x)− f(x)T ′(x)

T 2(x)

= f ′(x)
1

T (x)
− f(x)

1

T (x)

T ′(x)

T (x)

= f̂ ′ − f̂×̂T̂ ′×̂
ˆ

(ˆ)I,

consequently the representation of the isoderivative in iso-language is

(f̂)⊛ = f̂ ′ − f̂×̂T̂ ′×̂
ˆ
(ˆ)I. (1)
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3.3 Santilli iso-functor

As we have seen the Santilli’s central idea [3–5] is the generalization of the

fundamental unit of the number theory, from its trivial n-dimensional form

I = diag(1, 1, . . .) to an n-dimensional matrix Î with the general dependence

of all essential variables

I = diag(1, 1, . . .) ⇒ Î = Î(s, x, ẋ, ẍ, ψ, ∂ψ, ∂∂ψ, µ, τ, . . . ) (2)

under the condition of preserving the original axioms of the unit (nonde-

generacy, hermiticity, and positive-definiteness).

The “lifting” I ⇒ Î requires, naturally, for necessary compatibility, a

generalization of the conventional associative multiplication x ◦ y into the

so-called isomultiplication

x ◦ y ⇒ x ◦̂ y := xTy , T = fixed , (3)

where the quantity T is called the isotopic element. Then Î = T−1 is

a correct left and right unit element of the theory with respect the new

multiplication ◦̂ and it is called the isounit.

Definition 3.4. Let X and Y be two categories. A covariant Santilli iso-

functor from X to Y is a family of isofunctions Î which associates to each

object A in X an object ÎA in Y and to each morphism f ∈ HomX(A,B)

a morphism Îf ∈ HomY(ÎA, ÎB), and which is such that:

(FI) Î(g ◦ f) = Îg ◦ Îf for all f ∈ HomX(A,B) and g ∈ HomY(B,C);

(F2) Î idA = idÎA for all A ∈ Ob(X).

It is clear from the above that a covariant functor is a transformation

that preserves both:

• The domains and the codomains identities.

• The composition of arrows, in particular it preserves the direction of

the arrows.
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Definition 3.5. Let X and Y be two categories. A contravariant San-

tilli iso-functor from X to Y is a family of isofunctions F̂ which asso-

ciates to each object A in X an object F̂A in Y and to each morphism

f ∈ HomX(A,B) a morphism F̂ f ∈ HomY(F̂A, F̂B), and which is such

that:

(FI) F̂ (g ◦f) = F̂ f ◦ F̂ g for all f ∈ HomX(A,B) and g ∈ HomY(B,C);

(F2) F̂ idA = idF̂A for all A ∈ Ob(X).

Thus, a contravariant Santilli functor in mapping arrows from one cate-

gory to the next reverses the directions of the arrows, by mapping domains

to codomains and vice versa. A contravariant Santilli functor is also called

a Santilli presheaf. These types of Santilli functors will be the principal

objects which we will study when discussing Santilli quantum isotheory in

the language of topos theory.

Definition 3.6. Given two categories C and D, the collection of all covari-

ant (or contravariant) Santilli functors F : C → D is actually a category

which will be denoted as DC. This is called the category of Santilli functors

and has as objects covariant (or contravariant) Santilli functors and as map

natural transformations between Santilli functors.

3.4 Category of Isogroups

One of the simplest algebraic structures is the structure of a group [13]. A

set G of elements of any kind is said to be a group if a group operation a ◦ b

is defined in it satisfying the following axioms:

G.1◦ For any two elements a and b there exists an element

c = a ◦ b (4)

G.2◦ This operation is associative, that is, for any three elements a, b, c,

(a ◦ b) ◦ c = a ◦ (b ◦ c). (5)

12



G.3◦ There exists a neutral element e, i. e. an element such that for

every element a,

a ◦ e = e ◦ a = a. (6)

G.4◦ For each element a there exists a symmetric element ā such that

a ◦ ā = ā ◦ a = e. (7)

If the group operation a ◦ b is called addition, we write c = a + b and

the element c is called the sum, the neutral element is called zero and is

written as 0, the symmetric element is called the opposite and is written as

−a, and the group is called additive.

If the group operation a ◦ b is called multiplication, we write c = a · b,

or c = ab, the element c is called the product, the neutral element is called

unit and is written as 1, the symmetric element is called the inverse and is

written as a−1, and the group is called multiplicative.

If the group satisfies in addition the axiom

G.5◦. For any two elements a and b

a ◦ b = b ◦ a, (8)

then the group is called commutative or Abelian.

A set of elements endowed with an operation a ◦ b without the proper-

ties G.2◦, G.3◦ and G.4◦ is called a magma. A magma with the property

G.3◦ is called a unital magma, a magma with the property G.2◦ is called a

semigroup. A magma in which the equations a ◦ x = b and x ◦ a = b are

solvable for all a and b is called a quasigroup. A unital semigroup is called

a monoid, a unital quasigroup is called a loop. All these structures (as also

the ones to be introduced yet) are termed infinite, respectively finite, if the

underlying set is infinite, respectively finite.

Groups are algebraic systems with one internal composition law. More

complicated (and hence, richer) systems are obtained if we introduce a sec-

ond internal composition law, which is related to the first.

If, in a set of elements of any kind two operations a+b and ab are defined

such that
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R.1◦ The set is a commutative group with respect to the operation a+b;

R.2◦ The set is a semigroup with respect to the operation ab;

R.3◦ The operation ab is distributive with respect to the operation a+b:

a(b+ c) = ab+ ac, (a + b)c = ac + bc, (9)

the set is called a ring.

A ring in which the set of elements without 0 is a commutative group

with respect to the operation ab is called a field.

Definition 3.7. A map f : G−→G′ between two groups (G, ◦) and (G′,�)

is called homomorphism, if the following property holds:

(∀a, b ∈ G)[f(a ◦ b) = f(a)�f(b)] (10)

Thus a homomorphism “carries” the composition law ◦ on G to the compo-

sition law � on G′. Homomorphisms of groups are well visualized in some

important aspects with the help of two concepts, the image Im(f) and the

kernel Ker(f) of the homeomorphism.

Definition 3.8. If f : G−→G′ is a group homomorphism, then we define:

a)Im(f) = f(a)/a ∈ G (11)

b)Ker(f) = a ∈ G/f(a) = e′ ∈ G′. (12)

It is well known that Im(f) is a subgroup of G′ and Ker(f) is a subgroup of

G.

Definition 3.9. A homomorphism f between two groups G and G′ is called

isomorphism if f is bijective. In the case where G = G′ an homomorphism

f is called endomorphism and an isomorphism is called automorphism.

Definition 3.10. Grp is the category with groups as objects and homo-

morphisms as morphisms.
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Definition 3.11. Let Grp and Ĝrp be two categories.

A Santilli functor I from Grp associates to each object G in Grp category

an object Ĝ in Ĝrp i.e., we reconstruct the elements for each object Ĝ of

the category Ĝrp as

Grp ∋ a−→ â ≡ aÎ ∈ Ĝrp, (13)

where the isounit Î is defined with the help of an invertible element

T : Î = T−1, (14)

called isotopic element, and the new composition law is defined by

(∀ â, b̂ ∈ Ĝrp)[â ◦̂ b̂ ≡ â T b̂]. (15)

satisfying the following axioms:

Ĝ.1◦ For any two elements â and b̂ there exists an element

ĉ = â ◦̂ b̂ (16)

Ĝ.2◦ This operation is associative, that is, for any three elements â, b̂, ĉ

(â ◦̂ b̂)◦̂ ĉ = â ◦̂ (b̂ ◦̂ ĉ). (17)

Ĝ.3◦ There exists a isounit Î, i. e. an element such that for every

element â

â ◦̂ Î ≡ â T Î = â T T−1 = â. (18)

Ĝ.4◦ For each element â there exists a symmetric element â−1 such that

â ◦̂ â−1 = â−1 ◦̂ â = Î . (19)

If the group satisfies in addition the axiom

Ĝ.5◦. For any two elements â and b̂

â ◦̂ b̂ = b̂ ◦̂ â, (20)
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then the isogroup Ĝ is called commutative or Abelian.

And the Santilli functor I from Grp also associates to each morphism

f ∈ HomGrp(G,G
′) a morphism Îf ∈ Hom

Ĝrp
(Ĝ, Ĝ′), if the following prop-

erty holds:

(∀â, b̂ ∈ Ĝ) [f̂(â ◦̂ b̂) = f̂(â) �̂ f̂(b̂)]. (21)

A map f̂ : Ĝ−→ Ĝ′ between two isogroups (Ĝ, ◦̂) and (Ĝ′, �̂) is called

isohomomorphism. Thus an isohomomorphism “carries” the composition

law ◦̂ on Ĝ to the composition law �̂ on Ĝ′. It can be proved easily, that if

Ĝrp is a monoid and also a groupoid for the fixed isotopic element T , with

the above internal composition, it can become a isogroup Ĝ with unit Î.

Definition 3.12. Let I : Grp → Ĝrp and I ′ : Grp → Ĝrp be two Santilli

functors. A natural transformation α̂ : I → I ′ is given by the following data:

For every object A in Grp there is a morphism α̂A : I(A) → I ′(A) in Ĝrp

such that for every morphism f : A → B in Grp the following diagram is

commutative
I(A)

α̂A−→ I ′(A)

I(f) ↓ ↓ I ′(f)

I(B)
α̂B−→ I ′(B).

Commutativity means (in terms of equations) that the following composi-

tions of morphisms are equal: I(f) ⋆ α̂A = α̂B ⋆ I ′(f).

The morphisms α̂A, A ∈ Ob(Grp), are called the components of the

natural transformation α̂.

3.5 Category of Vector Isospaces

A set Ln of elements of any kind, called vectors, is said to be an n-dimensional

vector space if in this set the operations of addition and of multiplication by

scalars, that is real numbers, are defined, satisfying:

V I.1◦ - 5◦ Addition of vectors satisfies axioms G.1−5◦ for a commutative

group;
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V II.1◦ For any vector a and any scalar λ there exists a vector

b = a · λ = aλ (22)

called the product of a by λ;

V II.2◦ Multiplication by 1 does not change a vector:

a · 1 = a; (23)

V II.3◦ Multiplication of vectors by scalars is distributive with respect

to addition of scalars:

a(λ + µ) = aλ+ aµ; (24)

V II.4◦ Multiplication of vectors by scalars is distributive with respect

to addition of vectors:

(a+ b)λ = aλ+ bλ; (25)

V II.5◦ Multiplication of vectors by scalars is associative:

(aλ)µ = a(λµ); (26)

and axioms V III.1◦ - 2◦ of dimension, which are based on the notions of

linear independence and dependence of vectors. Vectors a1, a2, . . . , am are

said to be linearly independent if a linear combination a1λ1 + a2λ2 + . . . +

amλm is equal to zero only if all coefficients λi = 0, and linearly dependent

if there are nonzero coefficients λi such that this linear combination is equal

to zero.

V III.1◦ There exist n linearly independent vectors;

V III.2◦ Any n + 1 vectors are linearly dependent.

If we have chosen n linearly independent vectors e1 e2, . . . , en in Ln, then

each vector can be written as

x =
∑

i

eix
i = eix

i. (27)

The numbers xi are called the coordinates of the vector x, the vectors ei
are called basis vectors. Later we will write the sums (27) only in the last

form and when in our formulas the same upper and lower indices appear we

will always mean summation with respect to these indices.
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Definition 3.13. A subset U of a vector space V is called vector subspace

if it is a subsystem which obeys the axioms of vector space in itself, that is

U is closed under vector addition and scalar multiplication.

Definition 3.14. The notions of Ker(f) and Im(f) are defined by the rela-

tions

a) Ker(f) = [x ∈ V / f(x) = 0 ∈ U ], (28)

b) Im(f) = [f(x) ∈ U / x ∈ V ]. (29)

It easy proved that Ker(f) and Im(f) are subspaces of V and U respectively.

Definition 3.15. Let V and U two vector spaces over the same field F (not

necessarily of the same dimension). A map f : V −→U is called linear

map or linear transformation if the following property is holds:

(∀α, β ∈ F) (∀x, y ∈ V ) [f(αx+ βy) = αf(x) + βf(y)]. (30)

In case V = U , the map f is called linear operator.

Two vector spaces are called isomorphic if there is a bijection between them

that preserves addition of vectors and multiplication of vectors by scalars,

and homomorphic if there is a surjection or an injection between them that

preserves these operations. Isomorphisms of a vector space onto itself and

homomorphisms of a vector space into itself are called automorphisms and

endomorphisms of this vector space respectively. Automorphisms and en-

domorphisms of a vector space are called linear transformations in it.

Definition 3.16. Vectk category consists of vector spaces over a field F as

objects and k-linear maps as morphisms.

From the definition of vector space one can see that we cannot construct an

isotopy of a vector space without first introducing an isotopy of the field,

because the multiplicative unit I of the space is that of the underlying field.

Note that we are lifting of the field, but the elements of the linear space

remain unchanged.
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Definition 3.17. Let Vect and V̂ect be two categories, V be a vector space

over the field F and F̂ be an isofield of F. A Santilli functor I from Vect

associates to each object A in Vect category an object ÎA in V̂ect category

by “isovector space” as the vector isospace V̂ , (which has the same set of

the axioms as for a vector space V ), over the isofield F̂ equipped with a

new external operation ⋄ which is such to verify all the axioms for a vector

isospace, i.e,

V̂ I.1◦ - 5◦ Addition of vectors satisfies axioms Ĝ.1−5◦ for a commutative

isogroup;

V̂ II.1◦ For any vector x and any isoscalar α̂ there exists a vector

(∀ α̂,∈ F̂) (∀ x,y ∈ V) [y = α̂ ⋄ x]; (31)

called the product of x by α̂ ;

V̂ II.2◦ Multiplication by Î does not change a vector:

(∀ x ∈ V ) [Î ⋄ x = x ⋄ Î = x]; (32)

V̂ II.3◦ Multiplication of vectors by isoscalars is distributive with respect

to addition of isoscalars:

(∀ α̂, β̂ ∈ F̂) (∀ x ∈ V) [(α̂ + β̂) ⋄ x) = α̂ ⋄ x+ β̂ ⋄ x]; (33)

V̂ II.4◦ Multiplication of vectors by isoscalars is distributive with respect

to addition of isovectors:

(∀ α̂,∈ F̂) (∀ x,y ∈ V) [α̂ ⋄ (x+ y) = α̂ ⋄ x+ β̂ ⋄ y]; (34)

V̂ II.5◦ Multiplication of vectors by isoscalars is associative:

(∀ α̂, β̂ ∈ F̂) (∀ x ∈ V) [α̂ ⋄ (β̂ ⋄ x) = (α̂ ⋆ β̂) ⋄ x]; (35)

V̂ III.1◦ There exist n linearly independent isovectors;

V̂ III.2◦ Any n+ 1 isovectors are linearly dependent.
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and the Santilli functor I from Vect associates to each morphism f ∈

HomVect(A,B) an continuous linear isotransformation as a morphism Îf ∈

Hom
V̂ect

(ÎA, ÎB):

f̂ : V̂ −→ V̂ ′, (36)

between two vector isospaces V̂ and V̂ ′ over the same isofield F̂ which pre-

serves the sum and isomultiplication, i.e., which is such that

(∀ α̂, , β̂ ∈ F̂) (∀ x,y ∈ V ) [f̂(α̂ ⋄ x+ β̂ ⋄ y) = α̂ ⋄ f̂(x) + β̂ ⋄ f̂(y)]. (37)

4 Category of topological vector isospaces

4.1 Topological vector spaces

A set T of elements is said to be a topological vector space if in it subsets

called closed subsets are singled out and the following axioms are fulfilled:

T.1◦ The union of a finite number of closed subsets is closed;

T.2◦ The intersection of arbitrary many closed subsets is closed;

T.3◦ The whole vector space T is a closed set;

T.4◦ The empty set ∅ is a closed set.

A topological structure also can be defined by means of open sets, which

are complements of closed sets, by means of closures of sets (the closure M

of a set M is the intersection of all closed sets containing M), by means

of interiors of sets (the interior of a set M is the union of all open sets

contained in M), and by means of neighborhoods (i.e. open sets such that

any open set can be represented as a union of these sets).

The elements in topological spaces are called points, and a neighborhood

U containing a point x: is called neighborhood U(x) of this point. A point

x all neighborhoods U(x) of which contain points of a set M different from

x is called a limit point of M .

If the set of neighborhoods in a space T is countable, the space is called

a topological vector space with countable base.
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A topological vector space in which the only closed sets are the whole

space and the empty set is called a trivial vector space. A topological space

in which all subsets are closed is called a discrete vector space.

The most important topological vector spaces are the Hausdorff vector

spaces and regular vector spaces. Hausdorff vector spaces satisfy the axioms:

T.5◦ All points are closed subsets;

T.6◦ Any two points in the space have disjoint neighborhoods.

Regular vector spaces satisfy the axiom T.5◦ and

T.6′ Any point in the vector space and any closed set in this vector

space which does not contain this point have disjoint open sets containing

this point and this closed set, respectively.

The natural topology in the field R, with closed and open sets defined

as in usual real Calculus, can be specified by the countable system of neigh-

borhoods consisting of the intervals with rational ends.

4.2 Categories of topological vector spaces

and isospaces and their subcategories

Definition 4.1. The TopVec is the category with topological vector spaces

as objects and continuous linear transformations as morphisms.

The most important subcategories of the category of topological vector

spaces TopVec are the category of Hausdorff vector spaces HausVec and

the category of regular vector spaces RegVec.

Definition 4.2. The HausVec is the category with Hausdorff vector spaces

as objects and continuous linear transformations as morphisms.

Definition 4.3. The RegVec is the category with regular vector spaces as

objects and continuous linear transformations as morphisms.

The notion of n–dimensional isomanifold was studied by Tsagas and

Sourlas (we refer the reader for details in [5]). Their constructions are
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based on idea that every isounit of Class III can always be diagonalized

into the form

Î = diag (B1, B2, ..., Bn) , Bk (x, ...) 6= 0, k = 1, 2, ..., n.

In result of this one defines a Santilli functor for isotopology τ̂ on R̂n which

coincides everywhere with the conventional topology τ on Rn except at the

isounit Î .

Definition 4.4. Let TopVec and T̂opVec be two categories, T be a topo-

logical vector space over the field F and F̂ be an isofield of F. A Santilli

functor I from TopVec associates to each object T in TopVec category

an object ÎT in T̂opVec category by “isotopological vector space” as the

topological vector isospace T̂ , which satisfy the following axioms:

T̂ .1◦ The union of a finite number of closed subsets is closed;

T̂ .2◦ The intersection of arbitrary many closed subsets is closed;

T̂ .3◦ The whole vector isospace T̂ is a closed set;

T̂ .4◦ The empty set ∅ is a closed set.

and the Santilli functor I from TopVec also associates to each morphism

f ∈ HomTopVec(A,B) an continuous linear isotransformation as a mor-

phism Îf ∈ Hom ̂TopVec
(ÎA, ÎB):

f̂ : T̂ −→ T̂ ′, (38)

between two topological vector isospaces T̂ and T̂ ′ over the same isofield F̂

which preserves the sum and isomultiplication, i.e., which is such that

(∀ α̂, , β̂ ∈ F̂) (∀ x,y ∈ T ) [f̂(α̂ ⋄ x+ β̂ ⋄ y) = α̂ ⋄ f̂(x) + β̂ ⋄ f̂(y)]. (39)

Definition 4.5. Let HausVec and ̂HausVec be two categories, T be a

Hausdorff vector space over the field R and R̂ be an isofield of R. A Santilli

functor I from HausVec associates to each object T in HausVec category

an object ÎT in ̂HausVec category by “iso-Hausdorff vector space” as the

Hausdorff vector isospace T̂ , which satisfy the following axioms:
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T̂H.1◦ The union of a finite number of closed subsets is closed;

T̂H.2◦ The intersection of arbitrary many closed subsets is closed;

T̂H.3◦ The whole vector isospace T̂ is a closed set;

T̂H.4◦ The empty set ∅ is a closed set;

T̂H.5◦ All points are closed subsets;

T̂H.6◦ Any two points in the vector isospace have disjoint neighborhoods.

and the Santilli functor I from HausVec also associates to each morphism

f ∈ HomHausVec(A,B) an continuous linear isotransformation as a mor-

phism Îf ∈ Hom ̂HausVec
(ÎA, ÎB):

f̂ : T̂ −→ T̂ ′, (40)

between two Hausdorff vector isospaces T̂ and T̂ ′ over the same isofield R̂

which preserves the sum and isomultiplication, i.e., which is such that

(∀ α̂, , β̂ ∈ R̂) (∀ x,y ∈ T ) [f̂(α̂ ⋄ x+ β̂ ⋄ y) = α̂ ⋄ f̂(x) + β̂ ⋄ f̂(y)]. (41)

regular vector spaces

Definition 4.6. LetRegVec and R̂egVec be two categories, T be a regular

vector space over the field R and R̂ be an isofield of R. A Santilli functor

I from RegVec associates to each object T in RegVec category an object

ÎT in R̂egVec category as the regular vector isospace T̂ , which satisfy the

following axioms:

T̂R.1◦ The union of a finite number of closed subsets is closed;

T̂R.2◦ The intersection of arbitrary many closed subsets is closed;

T̂R.3◦ The whole vector isospace T̂ is a closed set;

T̂R.4◦ The empty set ∅ is a closed set;

T̂R.5◦ All points are closed subsets;

T̂R.6 Any point in the vector isospace and any closed set in this vector

isospace which does not contain this point have disjoint open sets containing

this point and this closed set, respectively.
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and the Santilli functor I from RegVec also associates to each morphism

f ∈ HomRegVec(A,B) an continuous linear isotransformation as a mor-

phism Îf ∈ Hom ̂RegVec
(ÎA, ÎB):

f̂ : T̂ −→ T̂ ′, (42)

between two regular vector isospaces T̂ and T̂ ′ over the same isofield R̂ which

preserves the sum and isomultiplication, i.e., which is such that

(∀ α̂, , β̂ ∈ R̂) (∀ x,y ∈ T ) [f̂(α̂ ⋄ x+ β̂ ⋄ y) = α̂ ⋄ f̂(x) + β̂ ⋄ f̂(y)]. (43)

The natural isotopology in the field R̂, with closed and open sets defined

as in usual real iso-Calculus [6], can be specified by the countable system

of neighborhoods consisting of the intervals with rational ends.

4.3 Subspaces of topological vector isospaces

A subset of a topological vector isospace where for closed subsets we take the

intersections with closed subsets of this space is called a subisospace. A topo-

logical vector isospace which cannot be divided into two closed non-empty

subsets with empty intersection is called isocontinuous or isoconnected.

A topological vector isospace admitting such a division is called isonon-

connected and consists of isoconnected components.

A topological vector isospace, or a subset of it, is called isocompact if

each infinite subset of it has a limit point. In every covering of a compact

topological vector isospace we can choose a finite covering.

If T̂1, T̂2, . . . , T̂n are topological vector isospaces, the n-tuples {x̂1, x̂2, . . . , x̂n}

consisting of points x̂i in T̂i form a new topological vector isospace, whose

closed sets are sets of such n-tuples for which every point x̂i runs through a

closed subset in T̂i and arbitrary intersections of these sets. This new space

is called the topological isoproduct of the topological vector isospaces T̂i.

24



4.4 Isocontinuous mappings and isohomeomorphisms

A mapping from a topological vector isospace T̂ onto a topological vector

isospace T̂ ′ is called isocontinuous if for each neighborhood V (x̂′) of a point

x̂′ in T̂ ′ there is a neighborhood U(x̂) of the corresponding point x̂ in T̂

such that the images of all points in U(x̂) belong to V (x̂′).

A bijection from T̂ onto T̂ ′ which is isocontinuous together with its

inverse bijection is called a isohomeomorphism; in this case the topological

vector isospaces T̂ and T̂ ′ are called isohomeomorphic. The sets of closed

subsets of two isohomeomorphic topological vector isospaces are mapped

onto each other.

If f̂ is a isocontinuous mapping from T̂ to T̂ ′ and all preimages of points

of T̂ ′ in T̂ are subisospaces isohomeomorphic to a topological vector isospace

Ŝ, the space T̂ ′ is called the quotient isospace of T̂ by Ŝ and is written as

T̂ /Ŝ.

4.5 Categorical structures on topological isospaces

Among the structures on topological spaces we can select that one, which

is compatible with the topology. Let Top be a category of some topological

spaces with a forgetful functor F : Top → Set.

The categories associated with a topological space T ∈ Ob(Top) are as

follows:

– The category T(T ), where Ob(T) is the set of all open subsets of T ,

and Mor(T ′, T ′′)) are all their inclusions.

– The category (pseudogroup) DE, where Ob(DE) is the set of all open

subsets of T , and Mor(T ′, T ′′) are all their homeomorphisms.

Functors PRESH : T → Set are called presheaves of sets on T . Some

of them are called sheaves. Thus we have the inclusions

SH(T ) ⊂ PRESH(T ) ⊂ FUNCT (T,Set).
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A Grothendieck topology on a category is defined by saying which families

of maps into an object constitute a covering of the object when certain ax-

ioms are fulfilled. A category together with a Grothendieck topology on it

is called a site. For a site C one define the full subcategories SH(C) ⊂

PRESH(C) ⊂ FUNCT (C◦,Set). The objects of FUNCT (C◦,Set) are

called presheaves on the site C, and the objects of SH(C) are called sheaves

on C.

For any category there exists the finest topology such that all repre-

sentable presheaves are sheaves. It is called the canonical Grothendieck

topology. Topos is a category which is equivalent to the category of sheaves

for the canonical topology on them.

Hence, the topology is already transfered on a category. So now it is

natural to consider on language of toposes and sheaves in all questions

connected to local properties.

Here we shall not consider local structures on toposes in general, and

we shall restrict ourselves to the consideration of the elementary case of the

category Top.

Definition 4.7. A structure defined by a forgetful functor F : C → Top

is called a local structure if

∀C ∈ Ob(C) and any inclusion map i : U → F(C) of the open subset

U an object Ũ ∈ Ob(C) and a morphism ĩ ∈ Mor(Ũ , C) exist such that

F(Ũ) = U F (̃i) = i. This C−structure Ũ is denoted by C|U and called a

restriction of C on U .

In other words we can restrict ourselves to local structures on open

subsets.

For a local structure F : C → Top and each object X ∈ Ob(Top) there

is the presheaf of categories

T(X)◦ → Cat : U 7→ F−1(U, idU).

Often this presheaf is a sheaf.

26



5 Category of Topological Isogroups

A set of elements is said to be a topological group if

TG.1◦ This set is a group (see (4)–(7));

TG.2◦ This set is a topological vector space (see T.1◦–T.4◦);

TG.3◦ The group operations x → ax, x → xa and x → x−1, where a

is a constant element, are continuous mappings from this topological space

onto itself.

The group and the topological space participating in the definition of

a topological group are called the basis group and the basis space of this

topological group. A topological group is called commutative or noncom-

mutative, additive or multiplicative together with its basis group, and con-

nected or nonconnected, compact or noncompact together with its basis

space. A subset of a topological group is called a topological subgroup if it

is a subgroup of the basis group and a closed subset of the basis space of

the topological group.

Definition 5.1. The TopGrp is the category with topological groups as

objects and continuous homomorphisms as morphisms.

Definition 5.2. Let TopGrp and ̂TopGrp be two categories.

A Santilli functor I from TopGrp associates to each object G in TopGrp

category an object ÎG in ̂TopGrp category as the topological isogroup

Ĝ, i.e., we reconstruct a set of elements for each object Ĝ of the category
̂TopGrp as A set of elements is said to be a topological group if

T̂G.1◦ This set have to be a isogroup (see (16)–(19));

T̂G.2◦ This set have to be a topological vector isospace (see T̂ .1◦–T̂ .4◦);

T̂G.3◦ The isogroup operations x̂ → α̂ ◦̂ x̂, x̂ → x̂ ◦̂ α̂ and x̂ → x̂−1,

where α is a isoscalar, are isocontinuous mappings from this topological

vector isospace onto itself. And the Santilli functor I from TopGrp also

associates to each morphism in TopGrp a isocontinuous homomorphism in
̂TopGrp.
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6 Conclusions

In 1996, Santilli generalized in [16] (pages 24-25) the work of Tsagas and

Sourlas [5] for the case of isofields of second kind. Later, in 2003, R. M.

Falcón and J. Núñez have shown in [17] a possible generalization of Tsagas-

Sourlas-Santilli isotopology, by studying the possibility of working with

fields that cannot be arranged. In that last work the notion of isoorder is

defined and general notions of (iso)topological isospace are also introduced,

to get the definition of isotopology proposed by Tsagas and Sourlas to be a

peculiar case of the ones there proposed. We are thinking in a future to make

a generalization of Santilli fuctor with isodifferentiable isomanifolds which

used in the isodifferential calculus introduced by Santilli in 1996 (see [16]).

That is to say, starting from the generalization of Tsagas-Sourlas-Santilli

isotopology give us a tool to build the theory of isocobordism and then the

isoopological quantum field theory too.
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