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Abstract

In this article we make lift of the basic problem of the calculus of variations in the
isolanguage and deduct the main iso-Euler-Lagrange equations..

1 Introduction

Genious ideas is the Santilli’s generalization of the basic unit of quantum mechanics into
an integro - differential operator Î which is as positive - definite as +1 and it depends of
local variables and it is assumed to be the inverse of the isotopic element T̂

+1 > 0 −→ Î(t, r, p, a, E, . . .) =
1

T̂
> 0

and it is called Santilli isounit. Santilli introduced a generalization called lifting of the
conventional associative product ab into the form

ab −→ a×̂b = aT̂ b

called isoproduct for which:

Î×̂a =
1

T̂
T̂ a = a×̂Î = aT̂

1

T̂
= a.

for every element a of the field of real numbers, complex numbers and quaternions.
The Santilli isonumbers are defined as follows: for given real number or complex number

or quaternion a,
â = aÎ,

with isoproduct

â×̂b̂ = âT̂ b̂ = a
1

T̂
T̂ b

1

T̂
= ab

1

T̂
= âb.

If a 6= 0 the corresponding isoelement of 1
a will be denoted with â−1 or Î i â.
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With F̂R we will denote the field of the isonumbers â for which a ∈ R and basic unit
Î1.

In [1] are defined isocontinuous isofunctions and isoderivative of isofunction and in [1]
are proved some of their properties.

The aim of this article is to be made lift of the basic problem of the calculus of variations
in the isolanguage. In the next section we deduct the main iso-Euler-Lagrange equations.

2 Main results

Here we suppose that L : Rn × Rn −→ R is given smooth function, hereafter called La-
grangian. We introduce the following notations

L = L(q, x) = L(q1, q2, . . . , qn, x1, x2, . . . , xn), q, x ∈ Rn,

DqL = (Lq1 , Lq2 , . . . , Lqn),

DxL = (Lx1 , Lx2 , . . . , Lxn).

Let x, y ∈ Rn and t > 0. Let T̂ ∈ C2([0, t]), T̂ > 0 on [0, t]. We define the set

A = {w ∈ C2([0, t] : w(0) = y, w(t) = x}

and the functional

I(w, T̂ ) =
∫̂ t
0L̂(ŵ∧~(ŝ), ŵ∧(ŝ))×̂d̂ŝ.

Using the introduced isofunctions, iso-differential and iso-integral in [1] we can rewrite the
above functional in the following form

I(w, T̂ ) =

∫ t

0
L
(w′(s)T̂ (s)− w(s)T̂ ′(s)

T̂ 2(s)− sT̂ (s)T̂ ′(s)
,
w(s)

T̂ (s)

) T̂ (s)− sT̂ ′(s)
T̂ 2(s)

ds.

Definition 2.1. The problem
min
w∈A

I(w, T̂ )

will be called basic problem of the iso-calculus of variations of first kind.

Theorem 2.2. Let x ∈ A be a solution of the basic problem of iso-calculus of variations of
first kind. Then x(·) satisfies the iso-Euler-Lagrange equation

−T̂ (s) ddsDqL(x̂∧~(ŝ), x̂∧(ŝ)) +DxL(x̂∧~(ŝ), x̂∧(ŝ))(T̂ (s)− sT̂ ′(s))

+DqL(x̂∧~(ŝ), x̂∧(ŝ))T̂ ′(s) = 0, 0 ≤ s ≤ t.
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Proof. Let v be a smooth function defined on [0, t] and v(0) = v(t) = 0. We define the
function

w(·) = x(·) + τv(·)

for τ ∈ [0, t]. Since x ∈ C2([0, t]) and v is a smooth function then w ∈ C2([0, t]). Also,

w(0) = x(0) + τv(0) = y + 0 = y,

w(t) = x(t) + τv(t) = x+ 0 = x.

Consequently w ∈ A.
From the definition of x(·) we have

I(x(·), T̂ ) ≤ I(w(·), T̂ ).

Now we define the function

i(τ) :=

∫ t
0 L
(
(x′(s)+τv′(s)))T̂ (s)−(x(s)+τv(s)))T̂ ′(s)

T̂ 2(s)−sT̂ (s)T̂ ′(s)
, x(s)+τv(s)

T̂ (s)

)
T̂ (s)−sT̂ ′(s)

T̂ 2(s)
ds.

Because
i(0) = I(x(·), T̂ )

then
i(0) ≤ i(τ) for ∀τ ∈ [0, t].

Therefore the function i has minimum at the point τ = 0. From here it follows that there
exists i′(0) and i′(0) = 0. For i′(0) we have

i′(0) =
∫ t
0

∑n
i=1 Lqi(x̂

∧~(ŝ), x̂∧(ŝ)) (v
′(s)T̂ (s)−v(s)T̂ ′(s))

T̂ 2(s)−sT̂ (s)T̂ ′(s)

T̂ (s)−sT̂ ′(s)

T̂ 2(s)
ds

+
∫ t
0

∑n
i=1 Lxi(x̂

∧~(ŝ), x̂∧(ŝ)) v(s)
T̂ (s)

T̂ (s)−sT̂ ′(s)

T̂ 2(s)
ds

=
∫ t
0

∑n
i=1 Lqi(x̂

∧~(ŝ), x̂∧(ŝ))(v′(s)T̂ (s)− v(s)T̂ ′(s)) 1
T̂ 3(s)

ds

+
∫ t
0

∑n
i=1 Lxi(x̂

∧~(ŝ), x̂∧(ŝ))v(s) T̂ (s)−sT̂
′(s)

T̂ 3(s)
ds

=
∫ t
0

∑n
i=1 Lqi(x̂

∧~(ŝ), x̂∧(ŝ))v′(s) 1
T̂ 2(s)

ds

+
∫ t
0

∑n
i=1(Lxi(x̂

∧~(ŝ), x̂∧(ŝ))(T̂ (s)− sT̂ ′(s))− Lqi(x̂∧~(ŝ), x̂∧(ŝ))T̂ ′(s)) v(s)

T̂ 3(s)
ds.
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After integration by parts in the first term in the last expression and using that v(0) =
v(t) = 0 we get

i′(0) = −
∫ t
0

∑n
i=1

d
ds

(
Lqi(x̂

∧~(ŝ), x̂∧(ŝ)) 1
T̂ 2(s)

)
v(s)ds

+
∫ t
0

∑n
i=1(Lxi(x̂

∧~(ŝ), x̂∧(ŝ))(T̂ (s)− sT̂ ′(s))− Lqi(x̂∧~(ŝ), x̂∧(ŝ))T̂ ′(s)) v(s)

T̂ 3(s)
ds

=
∑n

i=1

∫ t
0

[
− d
ds

(
Lqi

1
T̂ 2(s)

)
+ Lxi

T̂ (s)−sT̂ ′(s)

T̂ 3(s)
− Lqi

T̂ ′(s)

T̂ 3(s)

]
v(s)ds = 0.

Since v was arbitrary chosen smooth function from the last equality we obtain that

− d
ds

(
Lqi(x̂

∧~(ŝ), x̂∧(ŝ)) 1
T̂ 2(s)

)
+ Lxi(x̂

∧~(ŝ), x̂∧(ŝ)) T̂ (s)−sT̂
′(s)

T̂ 3(s)

−Lqi(x̂∧~(ŝ), x̂∧(ŝ)) T̂
′(s)

T̂ 3(s)
= 0 for i = 1, 2, . . . , n.

Now we define the functional

J(w, T̂ ) =
∫̂ t
0L̂
∧(ŵ∧~(ŝ), ŵ∧(ŝ))×̂d̂ŝ.

Using the introduced isofunctions, iso-differential and iso-integral in [1] we can rewrite the
above functional in the following form

J(w, T̂ ) =

∫ t

0
L
(w′(s)T̂ (s)− w(s)T̂ ′(s)

T̂ (s)− sT̂ ′(s)
, w(s)

) T̂ (s)− sT̂ ′(s)
T̂ 2(s)

ds.

Definition 2.3. The problem
min
w∈A

J(w, T̂ )

will be called basic problem of the iso-calculus of variations of second kind.

Theorem 2.4. Let x ∈ A be a solution of the basic problem of iso-calculus of variations of
second kind. Then x(·) satisfies the iso-Euler-Lagrange equation

− d
ds

(
DqL(x̂∧~(ŝ), x̂∧(ŝ)) 1

T̂ (s)

)
+DxL(x̂∧~(ŝ), x̂∧(ŝ)) T̂ (s)−sT̂

′(s)

T̂ 2(s)

−DqL(x̂∧~(ŝ), x̂∧(ŝ)) 1
T̂ (s)

= 0, 0 ≤ s ≤ t.

Let us define the functional

K(w, T̂ ) =
∫̂ t
0L
∧(ŵ∧~(ŝ), ŵ∧(ŝ))×̂d̂ŝ.
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Using the introduced isofunctions, iso-differential and iso-integral in [1] we can rewrite the
above functional in the following form

K(w, T̂ ) =

∫ t

0
L
(w′(s)T̂ (s)− w(s)T̂ ′(s)

T̂ (s)− sT̂ ′(s)
, w(s)

) T̂ (s)− sT̂ ′(s)
T̂ (s)

ds.

Definition 2.5. The problem
min
w∈A

K(w, T̂ )

will be called basic problem of the iso-calculus of variations of third kind.

Theorem 2.6. Let x ∈ A be a solution of the basic problem of iso-calculus of variations of
third kind. Then x(·) satisfies the iso-Euler-Lagrange equation

−T̂ (s) ddsDqL(x̂∧~(ŝ), x̂∧(ŝ)) +DxL(x̂∧~(ŝ), x̂∧(ŝ))(T̂ (s)− sT̂ ′(s))

+DqL(x̂∧~(ŝ), x̂∧(ŝ))T̂ ′(s) = 0, 0 ≤ s ≤ t.

We define the functional

M(w, T̂ ) =
∫̂ t
0L(ŵ∧~(ŝ), ŵ∧(ŝ))×̂d̂ŝ.

Using the introduced isofunctions, iso-differential and iso-integral in [1] we can rewrite the
above functional in the following form

M(w, T̂ ) =

∫ t

0
L
(w′(s)T̂ (s)− w(s)T̂ ′(s)

T̂ 2(s)− sT̂ (s)T̂ ′(s)
,
w(s)

T̂ (s)

) T̂ (s)− sT̂ ′(s)
T̂ (s)

ds.

Definition 2.7. The problem
min
w∈A

M(w, T̂ )

will be called basic problem of the iso-calculus of variations of fourth kind.

Theorem 2.8. Let x ∈ A be a solution of the basic problem of iso-calculus of variations of
fourth kind. Then x(·) satisfies the iso-Euler-Lagrange equation

−T̂ (s) ddsDqL(x̂∧~(ŝ), x̂∧(ŝ)) +DxL(x̂∧~(ŝ), x̂∧(ŝ))(T̂ (s)− sT̂ ′(s)) = 0, 0 ≤ s ≤ t.
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