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Abstract
We submit the viewpoint that, perhaps, some of the controversies

in gravitation occurredduring this century are not due to insufl'icien-
cies of Einstein’s field equations, but rather to insufliciencies in the
mathematics used for their treatment. For this purpose we treat
the same equations with the novel, broader isomathematics and re-
lated isominkowskian geometry for the representation of the gravity
of matter and their anti-isomorphic versions called isodual for the
representation of the gravity of antimatter. We then show an ap-
parent resolution in favor of existing relativities of controversies such
as: the lack of invariance of the basic units of space and time; lack
of compatibility between gravitational and relativistic conservation
laws; lack of meaningful relativistic limit of gravitation; lack of clas-
sical characterization of antimatter via negative energies; and others.
An apparent necessary condition for the resolution of these contro-
versies is the abandonment of the ‘notion of curvature used in this
century in favor of a conceptual and mathematical broader notion.
Available experimental verifications of the isominkowskian geometry
are briefly outlined. The note ends with the identification of the main
elements of the ensuing cosmology, and its intriguing implications.
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1. Introduction.
One of the most majestic achievements of this century for mathemati-
cal beauty, axiomatic consistency and experimental verifications has been
the special theory of relativity (STR)1. By comparison, despite equally
outstanding achievements, the general theory of relativity (GTR)2 has re-
mained afflicted by numerous problematic aspects at both classical and
quantum levels, some of which are considered in these proceedings3“(see
also Refs.3"*3°).

The view submitted in this note is that, perhaps, some of the controver-
sies. in gravitation (as well as in cosmology) are not due to insufiiciencies in
current gravitational theories, but rather to insufliciencies in their mathe-
matical treatment.

More specifically, we argue that oontemporary mathematics (consisting
of conventional numbers and fields, vector and metric spaces, differential
calculus and functional analysis, etc.) has produced an outstanding physical
consistency when applied to relativistic theories. Yet the same mathematics
has produced unsettled controversies when applied to gravitation. '

For an illustration, let us consider the following concrete example. As it
is Well known, the unit I = diag. ([1, 1, 1], 1) of the Minkowskian geometry
representing in a dimensionless form the basic imits of space and time, e.g.,
I = Diag.([1cm,1cm,1cm],1sec).The above basic unit is indeed invariant
under the Poincaré symmetry, as well known. By comparison, we have the
following: _

.Theorem 17'. All classical and quantum theories based on geometries
with non-null curvature (thus including the Riemannian geometry} do not
possess invariant units of space and time, by therefore lacking an-ambiguous
applications to real measurements. ‘

In fact, the transition from the Minkowskian metric 17 = Diag(1, 1, 1, -1)
to a (3+1)-dimensional Riemannian metric g(x) is characterized by a non-
canonical transformation a: —> as’ = U xx, U x U‘ 96 I, for which (by ignoring
the dash) g(:r:) = U X 17 x U‘. Corresponding theories of quantum gravity are
then generally nonunitary when formulated on conventional Hilbert spaces
over conventional complex fields. The lack of the invariance of the basic
units then follows at both the classical and operator levels from the very
definition of noncanonical and nonunitary transforms for all gravitational
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theories with curvature.
Theorem 1 implies rather serious ambiguities in the application of gravi-

tational theories to actual measurements, evidently because we cannot pos-
sibly have a physically valid measure, say, of length, via a stationary meter
varying in time. The hope that the problem is resolved by the joint change
of the entire environment does not resolve the shortcoming because, e.g.,
the impasse remain for measures related to far away objects which, as such,
are independent from our local enviromnent.

We here argue that Theorem 1, is a specific manifestation of the in-
sufficiency of the mathematics currently used for gravitation, because no
corresponding shortcoming exists for flat relativistic theories.

We also argue that the shortcoming of Theorem 1 is at the foundation
in a rather subtle way with a number of controversies in gravitation existing
in the literature. For instance, as we shall see in this note, the achievement
of a formulation of gravity with invariant basic units will automatically pro-
vide a novel unambiguous operator formulation of gravity as axiomatically
consistent as relativistic quantum mechanics. After all, no axiomatically
consistent operator theory of gravitation should be expected without the
invariance of the basic units. *

This paper is devoted to a summary presentation of alternative the-
ories of gravitation and cosmology based on new mathematics under the
condition of preserving Einstein’s field equations and related experimental
verifications, While possessing invariant basic units of space and time. A
comprehensive study is presented elsewhere“.

The preceding literature can be summarized as follows: Refs.4 deal with
the class of mathematical methods used in this study, which are known
under the name of isotopies interpreted in the Greek sense of being axiom-
preserving; Refs.” present the particular isotopies needed for our analysis,
those for numbers and fields, vector and metric spaces, algebras and ge-
ometries, etc.; Refs.7 deal with the image of quantum mechanics under iso-
topics; paperss study the isotopies of the rotational, Lorentz and Poincaré
symmetries; papersg study the isotopic formulation of gravity; papersm ex-
tend the results to antimatter; papers“ present available applications and
experimental verifications; papers“ present other applications and devel-
opments; monographs” present comprehensive and independent reviews;
papers“ deal with the rather serious problems of physical consistency of
q-, k- and other quantum deformations with nonunitary time evolutions
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on conventional Hilbert spaces over conventional fields, such as the lack of
preservation of the original Hermiticity-observability, violation of causality
and probability laws, besides the evident lack of invariant basic units, which
prevent their use for real physical applications; papers“ deal with the cel-
ebrated E-P-R argument which, as we shall see, is directly relevant for our
analysis; papers” deals with the local variation of the speed of light within
physical media, another topic of primary relevance for this analysis; papers"
treat the forgotten Freud identity of the Riemarmian geometry; papers“ by
P. A. M. Dirac present the first isotopies everldone for the Minkowskian
geometry with intriguing connections to this study; and Refs.“ deal with
alternative approaches with significant connections with this study.

The apparently most important result of this analysis is that the iso-
topies of the Minkowskian geometry, first introduced by Santillis“ under the
name of the isominkowskian geometry, characterize the only known geom-
etry which, on one side, preserves the majestic invariance and other prop-
erties of the conventional Minkowskian geometry while, on the other side,
admits (well behaved, symmetric and signature preserving) metrics with ar-
bitrary functional dependence, thus including all infinitely possible Rieman-
nian, Finslerian, non-Desarguesian and other symmetric (3+1)-dimensional
metrics as particular cases.

The above universality of the isominkowskian geometry, when joined
with its unique invariance properties, then voids the use of any other ge-
ometry for physical applications, according to our best knowledge at this
writing.

2. Basic Assumptions of the Isominkowskian Gravity for Matter.
As indicated in Sect. 1, the origin of the majestic axiomatic consistency of
the special relativity is the invariance of the basic unit of the Minkowski
geometry, the quantity I = Diag[(1,1,1),1] = Diag.(I,,It), which is the
unit of the fundamemntal spacetime symmetry, the celebrated Poincaré
symmetry P(3.1). -

The main assumptions of this study, first presented by the author at
mg79“, are given by:

1) factorization of all possible (3+1)-dimensional Riemannian metrics
g(:r) into the Minkowskian metric '

' 9(w) = T(w) >< 11, (1)
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where T(sc) is a 4 x 4-dimensional matrix which is always positive definite
(because of the local Minkowskian character of Riemann);

2) construction of a new mathematics, called for certain technical reasons
isomathematicss, which is based on the following positive-definite, left and
right generalized unit

T(#1) = 1/i'A"(r), (2)
3) formulate the geometry via the above isomathematics, that is, with

respect to the generalized unit l. y .
The above conditions characterize a new geometry, first introduced by

Santillis“ in 1983 under the name of isominkowskian geometry, where the
prefix ”iso” is used to indicate the ”axiom-preserving character”, namely,
the preservation of all original abstract axioms of the Minkowskian geome-
try. In fact, it was shown in the original proposals“ that the joint liftings

ll _') 7l(x> )_ T($, X ll:-I _* : 1/T(x1

preserves all original, abstract, Minkowskian axioms for all positive-definite
matrices T(a:, irrespective of their functional dependence (a basic char-
acteristic hereon assumed) and, as such, they characterize an isotopy;

The isominkowskian characterization of exterior gravitation in vacuum
for matter, or isominkowskian gravity for short, proposed in Ref?“ is then
the formulation based on the above assumptions 1), 2), 3).

Its main characteristic is that of eliminating curvature evidently in favor
of a covering notion to be identified in this paper. This is due to the basic
mechanism of the above assumptions, that is, the formulation of Rieman-
nian metrics g(ac) = T'(:c) >< 17 with respect to a generalized unit l = 1/T'(a:)
which is the inverse of the term T'(a:) truly representing gravitation, the
remaining term 17 being constant and flat. Equivalently, the elimination
of the conventional notion of curvature is established by te validity of the
Minkowskian axioms for all possible Riemannian metrics g(:c).

Rather than being a drawback, the elimination of curvature has permit-
ted rather intriguing and novel advances, such as:

A) The formulation of conventional gravitational theories in a form pos-
sessing invariant units of space and times‘; ~ ,

B) The achievement of a universal symmetry (rather than covariance)
for all possible Riemannian line elements, called by the author isopoincareI
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symmetrys I-A’(3.1), which is locally isomorphic to the conventional symmetry
P(3.1);

C) A novel geometric unification of the special and general relativities“
in which the relativities are differentiated by the unit, rather than by the
metric;

D) A novel operator formulation of gmvity7"9 which verifies the axioms
of relativistic quantum mechanics, thus avoiding the known problems of
axiomatic consistency of conventional quantum gravity;

E) The apparently first, axiomatically consistent inclusion of gravity in
unified gauge theories of electroweak interactions presented at mg89e’9f ;

F) The consequential existence of a basically novel cosmology with rather
intriguing characteristics;

G) The resolution of at least some of the controversies in gravitation
that have afflicted the scientific literature of this century;
and other advances studied later on.

The main objective of this paper is a study of the isominkowskian ge-
ometry underlying the above advances. Such a geometry has been studied
until now solely from the viewpoint of Minkowskian axioms7*8’9. In this
paper we shall show, apparently for the first time, that the geometry also
admits the machinery of the Riemannian axioms, such as connections, co-
variant derivatives, etc., thus resulting to be a symbiotic unification of both,
the Minkowskian and Riemannian geometries. In turn, this will permit us
to identify the covering of the conventional notion of curvature in a space
which is fiat at the abstract level. A detailed presentation is available in
Ref.59.

It appears that the experimental validity of advances A)-G) above is
beyond scientific or otherwise credible doubts because of the preservation
unchanged of Einstein’s field equations and related experimental verifica-
tions. Moreover, the isominkowskian geometry nowadays possesses a num-
ber of additional applications and experimental verifications in fields other
than gravitation, including particle physics, nuclear physics, astrophysics,
superconductivity, chemistry, biology and other fields (see Sect. 12 for an
outline).

It should be noted that this paper is a continuation of paper“ on the
isopoincaré symmetry and provides the foundation of papers9"'9f on the Iso-
Grand-Unification. This study was possible thanks to the achievement of
sufficient maturity of mathematical methods in memoirs”, physical formu-
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lations in memoir" and generalized symmetry principles in memoir“.

3. Isominkowskian Geometry for Matter.
The novel axiom-preserving mathematical methods underlying this study,
the so-called isotopies, are rather old, dating back to the origin of the latin
squares4“, and have been applied to a variety of mathematical structures,
such as the Jordan algebras“ (see Tomber’s bibliography“).

The particular isotopies needed for the isominkowskian geometry are
given by maps, called ’liftings’, of any given linear, local, and canoni-
cal/unitary structure into all possible nonlinear, nonlocal and noncanoni-
cal/nonunitary generalizations which are however capable of reconstructing
linearity, locality and canonicity/unitarity on certain generalized spaces over
generalized fields.

The latter isotopies imply the lifting ofall aspects ofmathematics used in
physics, such as numbers and fields, metric and Hilbert spaces, algebras and
symmetries, geometries, etc. They, were first submitted by Santilli5° back
in 1978, and their mathematical study has been continued by a number of
authors6'13.

The emerging new mathematics, submitted by Santilliu under the name
of isomathematics, has reached operational maturity only recently in memoir
of 1996 due to the lack of form-invariance of the equations of motion of pre-
ceding formulations. The origin of the non-invariance escaped identification
for over a decade because occurring where one would expect it the least, in
the ordinary differential calculus.

In essence, treateses in the differential calculus have no consideration for
the basic unit because it is (tacitly) assumed to be the trivial number I =
+1, thus having a trivially null differential, dI = 0. The actual dependence
of the differential calculus from the assumed unit was first identified. by
Santilli5° on grounds that, whenever the unit has a functional dependence
on the local variables, as it is the case for the generalized unit I (av) of
the isominkowskian gravity, its differential is no longer null, dI 76 0.
Memoir“ therefore constructed the isotopies of the differential calculus, or
isodifierential calculus for short. The achievement of form-invariance and
sufficient maturity for applications was then consequential.

An axiomatically consistent and invariant formulation of the isominko-
wskian geometry is therefore submitted in this paper for the first time,
thanks precisely to the recent identification of the isodifferential calculus.

5e
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The fundamental isotopies of the isominkowskian geometry, first intro-
duced in Ref.“ of 1978, are:

1) The lifting of the unit of conventional theories, I = diag. (1, 1, 1,
1), into a well behaved, nowhere singular, Hermitean and positive-definite
4 x 4-dimensional matrix I whose elements have an arbitrary dependence
on local quantities and, therefore, can depend on the spacetime coordinates
x, their derivatives rt and any other needed variable,

I=DmgflJJJ}»I=Kniw)=Dmg@bgJ§fi)>0 M)
where the diagonal form is always possible (because of the positive-definiteness
of I) and it is hereon assumed.

2) Jointly, all conventional associative products A >< B among generic
quantities A, B (numbers, vector-fields, operators, etc.) must be lifted by
the inverse amount,

AxB~AxB=AxTxBj=T*. (Q
Under these assumptions I is the correct (left and right) generalized unit

of the new theory,

f§<A = A§<I E A,\/A, (6)
in which case (only) I is called the isounit and T is called the isotopic
element.

For consistency, the totality of the original theory must be reconstructed
to admit I as the correct (left and right) unit. Any exception generally
implies inconsistencies which often remain undetected by nonexpert in the
field.

The new product AQB is called isoassociative because it preserves the
original associative character, i.e., A§<(B>?C) : (A§<B)§<C.

Note that we are studying the isotopies with an unrestricted functional
dependence, including nonlinear and/or nonlocal-integral dependence, which
is evidently broader than the dependence needed for the exterior gravitation
in vacuum. As we shall see, the emerging broader formulation is naturally
set for a more realistic description of interior gravitational problems (see
Sect. 5), while preserving the abstract axioms of the exterior problem and
admitting the latter as a simple particular case.
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The explicit construction of the isominkowskian geometry first requires
the lifting of real numbers n and field R = R(n,+, ><A) into the isofleldsd
R = R(fi, —f.§<) which is a ring of elements it =An x I called isonumbers,
equipped with the isosum aim = (n + m) >< I and isoproduct a>‘<m =
a x T x rh = (n x m) x I with consequential simple generalization of
conventional operations (see Ref.“ for brevity).

Note that the additive unit is conventional, (l = 0, it-AHA) = bin = it and
only the multiplicative unit is generalized. As a result, we shall continue to
use the conventional symbol + for the sum and use the new symbol >2 only
for the multiplication. i Q

It is easy to see that R verifies all axioms of a field and, therefore, the
lifting R —> R is an isotoy. In actuality, since we have assumed that I > O,
R and R coincide at the abstract level, as desired. ‘

Next, we need the lifting of the Minkowski space space M = M(:13, r7, R)
with coordinates :0 = (a:”), u = 1,2, 3,4,:1:4 = cot, co being the speed of
light in vacuum, unit I = diag. (1, 1, 1, 1)Aand rrretric 17 f Diag.(1, 1, 1, -1)
over R, into the isominkowskian space M = M(£,rj,R), first introduced
by Santillisa in 1983 and then studied in various works5*:’8'9'1°, which is
characterized by the isocoordinates :2" = :12" X I, isounitl and isometric
IV“, = If x 175,, >< I with isoinvariant over R

<=@- i)2 = (s-i>”>1a..§<<s—@>" = l(w—v)" >< >< <=v- 1/>"1>< f-
: [(501 — y‘) x T11 x ($1 — y1)+(x2-y’) x T22 x ($2 — yz) +

+(w3 — vs) >< Tia >< ($3 — v3) — ($4 -1/4) >< T44 >< ($4 — vi) >< I-(7)
It easy to see that M is locally isomorphic toAM and the lifting M —> M

is also an isotopy, as desired. Thus, M and M coincide at, the abstract
level by conception and construction. As a consequence, the isospace M is
isoflat, i.e., it verifies the axiom of flatness in isospace over the isofields.

Alternatively, we can say that the conventional notion of curvature is no
longer applicable when i) is referred to the generalized unit I, otherwise M
is evidently curved when referred to the conventional unit I owing to the
dependence rj = rj(r, However, the above occurrence is only the result
of a first inspection of the novel isominkowskian spaces and a deeper, more
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appropriate characterization of the applicable notion of curvature will soon
emerge. A

Note that ‘M and R have the same isounit f. The conventional Minko-
wskian setting admitted for j = I is therefore that in which both, the
Minkowski space and the base field have the same unit I = diag. (1, 1,
1,1). This implies a. trivial redefinition of conventional fields hereon tacitly
assumed.

Note also that: the basic invariant of the theory has the structure
[Length]2 _>< [Unz't]2; the isocoordinates can be. used in the form as" (rather
than it‘) and the isometric can be the simplified expression'f),,,, (rather than
NW, = fiw, x T) in view of the simplifications in Eqs. (7); repeated indices
in isospace imply contractions via the isometric, e.g., :65 = a%"§<:ic,, = [x" x
fiw, >< a:"] >< T, while repeated indices between the isotopic element/isounits
and other variables, e.g., TL’ x 17,5 imply an ordinary sum.

Note finally that conventional spaces have only one formulation, as well
known. On the contrary, the isominkowski space has two different formula-
tions, that as an isospace over an isofield and its projection on a conventional
space over a conventional field. This dual formulation will soon be fimda-
mental to understand how Einstein ’s field equations, which are traditionally
formulated on a curved space, can be identically written in a fiat isospace.

1 The isominkowskian ge0metry8'7"7‘ is the geometry of isospaces M. Its
study can be initiated with the notions of: isocontinuity, introduced by
Kadeisvili6“'13b; isomanifold, introduced by Tsagas and Sourlaseb; is0t0p0l-
ogy, introduced by Tsagas-Sourlassb and Santillis‘; isospecial functions and
transforms, introduced by Santilli5f, Aringazin, Kirukhin and Santil1i6f ,
Kadeisvilifia; and other notions (see also the topological studies by Vacaruse,
Aslander and Kelesfif and others).

First, the novel isominkowskian geometry preserves all geometric proper-
ties of the conventional Minkowskian geometry, including the light cone7"8.
The axiom-preserving character of the geometry is so strong that the max-
imal causal speedton M remains the speed of light in vacuum, co. These
Minkowskian aspects are now known and they will be merely indicated for
brevity (one may consult monographs7"7‘ for their detailed study).

A primary objective of this paper is to identify the Riemannian prop-
erties of the isominkowski geometry. The central tool for this task is the
isodifierential calculus5" on 1\;I(a%,/1,R), which is characterized by the is0d-
ificrentials, isodcrivativcs and related properties
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dz" = ig >< dz”, fie, = T; >< <a,,,3,, = 5/as = T; >< 6/8x",
5" = 5/5:0,, = if X 6/6x,,,d:r"/6x" = 65,51,/dz" = fiya X 5:0“/fix” =

77/JV 9 i

A » A A A311:“/6x,, = aw X 0:12.,/62:” = fir". (8)
Note that the original axioms must be preserved for an isotopy. ‘Thus,

the isodifferential calculus is isocommutative, i.e., commutative on M over
R, 30,65 = 353“. However, the same isocalculus is not, in general, commu-
tative in its projection on M over R, evidently because in the latter case
TL’ X 80, X Tf X 65 96 Tf X 6;; X TL‘ >< 80, in view of the functional dependence
of T. l
A lA\lote also the hidden isoqnoticnt5dA/B = (A/B) X f and isoproduct
6X6. Thus, by including the isoquotient, the quantity dd should be more
rigorously written 5X This results in an inessential final multiplication
of the expression considered by f and, as such, it will be ignored hereon for
simplicity.

The entire formalism of the Ricmannian geometry2 can then be intro-
duced in the isominkowskian space via the isodifferential calculus. This
aspect is studied in details elsewhere“. We here mention the: isochrtstofiel
symbols

AA 1 , . A A A , A .
Fr-vflv : 5 X laaflfiv 'l' 8'/'lafi _ aflvav) X I; (9)

isocovartant diflerential

D22” = (22?/’ + 1“"£,>“<X<*>2<13e"; (10)
isocovariant derivative

= 6,)?" + 1“"§,,>‘<)?“; (11)
isocuruature tensor, '

R515 : éfifgw _ 5’YfZ5 + fg6_;<fZ1 — f'§~1>A<1A“’5-16; (12)
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and similarly for all other properties.
The preservation on M, this time, of the Riemannian properties is illus-

trated by the following:

A Lemma 17‘: The isocovariant derivatives of all isometrics on M over
R are identically null, .

7la,6["y E Oaaafl/Y :1a2z3:4- (13)

This illustrates that the Ricci Lemma also holdsunder the Minkowskian
axioms as well as for an arbitrary functional dependence of the metric, evi-
dently when treated with the novel isomathematics. The understanding is
that the same results are simply impossible with conventional mathematics.

A similar occurrence holds for all other properties, including the five
identities of the Riemannian geometry (where the fifth is the forgotten Freud
identity", as studied in details elsewhere!’-‘J.

In summary, the isominkowskian geometry characterizes a new notion
of curvature, that of Eq.s (12), here called pseudocurvature, to illustrate the
fact that conventional curvature is in reality absent because of the structure
of theA basic invariant [Length]2 X [Unit]2 with metric T X 17 referred to the
unit I = 1/T. The term ”pseudocurvature” is also introduced to achieve
epistemological compatibility with a space whose abstract structure is fiat.

4. Classical Exterior Isominkowskian Gravity for Matter.
We are now equipped to present, apparently for the first time, the classical
equations of our isominkowskian formulation of gravity for matter, here
called isoeinstein equations on M over R, which can be written

A A i. A A A A A
Gm, = R,,,, — §XN,,,, X R = k><T,,,,, (14)

where 1‘-,,,, is the source isotensor on ]\;I,§ = % >< f, JV,” = 1),“, x f = gm, X
I,1} = Ic X I and k is the usual constant.

The compatibility of the above equations with available experimental
evidence on gravitation is discussed later on in Sect. 12.

The novel notion of pseudocurvature characterizing the isoeinstein equa-
tions can be best illustrated via the fact that isominkowsline elements co-
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incide with the Minkowskian ones. For instance, the isominkowskian repre-
sentation of Schwarzschild’s gravitation” is given by

- (ls? = dr2 + r2 x (d0? + sin20_ >< d¢2) — alt’ >< cg,
J7» = i, >< at, 111 = f. >< dt,1°, = (1 - 2M/1»)-1,1‘, = 1- 2M/1~, (15)

with an inessential extension to a fully isotopic formalism, inclusive of iso-
products, etc., which is here ignored (because requiring the isotrigonometry5f
we cannot possibly review for brevity). A '

The lack of the conventional curvature in formulation (15) is evident and
this illustrates the notion of pseudocurvature introduced above.

Almost needless to say, isorepresentation (15) is the simplest possible one
introduced here merely for illustrative purposes. In fact, a more adequate
isorepresentation would be that of the Schwarzschild gravity in nondiagonal
form, as available, e.g., in Ref.2f», whose existence is assured by the universal-
ity of the isominkowskian representation of all possible (3+1)-dimensional
Riemannian metrics.

We here assume the reader is aware from R1ef.9°’9f of the necessity of
the elimination of the conventional curvature to achieve an axiomatically
consistent inclusion of gravitation in unified gauge theories, besides the need
to resolve the impasse of Theorem 1.

To be explicit in this fundamental point, the conventional formulation of
Schwa.rzschild’s gravitation cannot be consistently included in unified gauge
theories of electroweak interactions, again, because the former is based on a
curved space, while the latter are based on a flat space. The unification of
Ref.9"’*9f is based on the reduction of the former to the axiomatic structure
of the latter, as manifestly expressed by isorepresentation (15).

Note that the other approach, that of generalizing gauge theories of
electroweak interactions into a form based on a curved spacetime, first of
all, has escaped throughout this century attempts initiated by Einstein and,
second, it is faced with the rather severe problematic aspects of physical
character of all quantum theories of gravity on a curved manifold3“'3°'7"7"14,
including the physical shortcomings of Theorem 1.

Needless to say, no claim of uniqueness is here implied, as standard in
truly scientific inquiries; tother approaches are indeed possible; they have in-
deed been proposed elsewhere“); their study is indeed encouraged; and their

1
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connections with the isominkowskian approach are intriguing, although they
cannot regrettably be studied here for brevity.

5. General Isominkowskian Geometry for Matter.
As stressed earlier, the isotopies leave unrestricted the functional depen-
dence of the isometric. Its sole dependence on the coordinates is therefore a
restriction which has been used so far for a representation of exterior gravi-
tation in vacuum. The above ocurrence has a number of implications which
can be summarized as follows (see monograph” for details).

5.A. Classical Isominkowskian Geometrization of Interior Grav-
itation. In exterior problems, astrophysical bodies can be well approxi-
mated as massive points as a necessary condition for the very applicability
of a local and (first-order) Lagrangian geometry.

Interior problems such as gravitational collapse are not composed by
isolated points, and are more realistically composed by extended and hyper-
dense hadrons in conditions of complete mutual penetration and compres-
sion in large numbers into very small regions of smale. The latter conditions
imply the emergence of the most general conceivable equations which are
arbitrarily nonlinear in all variables, arbitrarily nonlocal and clearly non-
Lagrangian (i.e., violating the integrability conditions for the existence of a
Lagrangian5°).

Independently from the problems caused by the lack of invariance of the
basic units of space and time, the Riemannian geometry cannot possibly
be exactly valid for the latter general conditions, evidently in view of its
strictly local and Lagrangian character. As a consequence, all results on
interior gravitational problems based on the Riemannian geometry (e.g.,
theorems on singularities, black holes, etc.) should be considered only as
an approximation of physiucal reality.

The isominkowskian geometry in its most general possible realization
permits a representation of interior gravitational problems which, when
compared to that permitted by the. Riemannian geometry, is not only invari-
ant, but also more realistic because admitting precisely the desired arbitrary
dependence of the isometric.

In fact, in the general case we have isometrics ii = T(x, zic, X 17 which
can represent interior gravitation problems with a well behaved but other-
wise unrestricted nonlinearity in the velocities and other variables, as well as



-127-

nonlocality (e.g., characterized by surface or volume integrals), as expected
in realistic interior models, e.g., of collapsing stars.

Moreover, the isominkowskian geometry reconstructs linarity, locality
and the (first-order) Lagrangian characters on isospaces over isofields, as
a necessary condition to be an axiom-preserving image of the conventional
Minkowskian geometry, because all possible nonlinear, nonlocal and non-
Lagrangians terms are embedded in the isounit (see monograph" for de-
tails). ’

. Note that the addition of interior gravitational problems occurs without
altering the axioms of the exterior problem in vacuum. This evidently per-
mits a geometric unification of exterior and interior gravitational problems
which are solely differentiated by the functional dependence of the isounit.

5.B. Direct Geometrization ofArbitrary Speeds of Light. As it is
well known, the ”universal constancy of the speed of light” is a philosophical
abstractions, because in the physical reality light has a local speed c = c,,/n,
where n is the familiar index of refraction. As an example, light has a speed
in our atmosphere locally varying with the density, and then different speeds
in water, glasses, oil, etc.

One of the first studies on locally varying speeds of light c < co was con-
ducted Lorentzm“ who, as typical for founders of new insights, also identified
the limitation of its celebrated symmetry (see also the quotation by Pauliml’
of this little known historical work by Lorentz).

More recently, apparent experimental evidence has been identified on
the complementary case c > co, such as the measures of photons traveling
on certain guides at speeds higher than that in vacuum16°'16d; the expul-
sion of matter in astrophysical explosions at speeds apparently higher than
that of light in vacuum16°'16f’169; solutions of conventional wave equations
with arbitrary speedsw”; and other cases (see16i'16j and references quoted
therein).

The above occurrences establish the need for systematic geometric stud-
ies of arbitrary speeds c = co/n of electromagnetic waves, with the speed
co in vacuumas a particular case, which cannot evidently be conducted via
the conventional formulation of the special and general relativities because
they were conceived and developed solely for conditions in vacuum.

The conventional approach of reducing the propagation of light within
physical media to photons moving in vacuum and scattering among molecules



_ 123 _

is no longer credible for various reasons, such as: 1) a classical electromag-
netic wave, say, with one meter in wavelength propagating in our atmo-
sphere cannot be ctredible reduced to photons in second quantization with-
out a prior classica-geometricl representation; 2) the reduction evidently
prevents any quantitative study of superluminal speeds as experiemntally
detected; 3) the reduction eliminates altogether rather crucial physical char-
acteristics, such as the inhomogeneity and anisotropy of physical media
which, as we shall see, have experimentally measurable predictions; and
other insufficiencies.

Our isominkowskian geometry has been conceived precisely for the direct
geometrization of interior conditions“, that is, their representation directly
via the isometric. In fact, the direct geometrization of arbitrary speeds of
electromagnetic waves is simply permitted by the diagonal isotopic element”

A _ “Int. “Ext ‘Int. _ 2Tm, — TM, X Tm‘ ,Tm, — 1/nl,

5:2 = (ac?/nf + mg/ng +x§/n§ - t2 X cf,/ni) X f, . (16)
where there is no summation; Tlf-2”‘ is the conventional, exterior, gravita-
tional isotopic element of the preceding section; n4 = n is the ordinary
index of refraction; and the nfcs emerge from the spacetime sy1mnetriza-
tion of n, e.g., via the use of the conventional Lorentz transforms (or, more
appropriately, their isotopic formulation studied in Sect. 8).

As an illustration, under the assumption of a space isotropy for which
n1 = n2 = n3 = n3 = n,, the interior isominkowskian“ formulation of
Schwarzschild’s metric, Eq.s (15), is lifted into a form whose projection
in ordinary spacetime is given (in the (1+1)-case) by

fimt = Diag.[1/(1— 2M/r) X ng, (1 — 2M/r) X cg/ni] (17)
with evident extension to three space dimensions, thus providing a ”di-
rect geometrization” of local speeds of electromagnetic waves, i.e., its ge-
ometrization directly via the metric.

Moreover, the isominkowskian geometry permits the direct geometriza-
tion of the inhomogeneity of physical media (e.g., due to a local variation of
the density easily represented via a radial dependence of the isotopic element
Tm‘), as well as their possible anisotropy (e.g., due to an intrinsic angular
momentum which creates a preferred direction in the physical medium, and
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not in the underlying vacuum, easily representable via a factorization in
Tm‘ of the preferred direction, or via different values of n, and n4).

The advantage of the above treatment of interior gravitation over con-
ventional lines is then evident, e.g., for more realistic studies of the region
outside gravitational horizons where the speed of electromagnetic waves is
not co, but rather c = co/n4 < co. In fact, the region considered is not
empty, but it is instead filled up with huge and hyperdense chromospheres.

The above direct geometrization of local speeds of electromagnetic waves
is also preferable over the conventional treatment via photons scattering
among molecules for various reasons, such as:

1) the former is purely classical, while the latter is valid only in sec-
ond quantization, thus implying the yet unsolved problematic aspects of
quantum gravity;

2) the former implies a geometrization of the inhomogeneity and anisotropy
of physical media with predicted novel contributions for the redshift (see
later on Sect. 12), while the latter reduces the event to photons scattering
in empty space, thus being manifestly unable to represent the inhomogene-
ity and anisotropy of physical media;

3) The former implies no restriction on the local value of the speed, thus
permitting one of the most important predictions of the isominkowskian
geometry (see Sect. 12), while the latter restricts aprioristically the maximal
causal speed to that in vacuum.

5.C. Isominkowskian Classification ofPhysical Media. Studies on
interior problems5°’7‘ appear to suggest the general rule according to which
physical media alter the geometry of empty space. In fact, no alteration
of the speed of light in vacuum is possible without an alteration of space-
time itself, and the same occurs under the inhomogeneity and anisotropy of
physical media.

The isominkowskian geometrization of physical media was constructed
because: 1) it permits the direct geometrization indicated above; 2) it allows
the preservation of Einstein’s axioms rmder locally varying speeds of light;
and 3) it is ” direct universal” “'°, that is, it applies for all infinitely possible,
signature-preserving deviations from the l\/linkowskian settings (universal-
ity) in the fixed frame of the experimenter (direct universality).

In particular, the isominkowskian geometry has permitted the classifica-
tion of physical media into three different Classes each having three diflerent
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Types (see monograph", Sect. 8.5). In fact, for the case of space isotropy
with n1 = n2 = n3 = n3 = n4, we have the following classification:

Class I: n, = n4; Type 1 n4 = 1, Type 2 n4 > 1, Type 3 n4 <1;
Class II: n, < n4; Type 4 n4 = 1, Type 6 n4 >1, Type 6 n4 <1;
Class III: n, > n4; Type 7 n4 = 1, Type 8 n4 < 1, Type 9 n4 <1.
The above classification is significant because the knowledge of the iso-

minkowskian Class of a given medium permits the identification of some
main characteristics, such as the behaviour of the frequency shift. In fact,
for Clas I we have no change in the conventional Doppler’s shift, for Class II
we have an increase in redshift called isoredshift, and for Class III we have
an increase of the blueshift called isoblueshift (see Sects. 8, 12 and 14 for
more details and monograph" for a comprehensive treatment).

With the understanding that the studies are at their initiation and so
much remains to be finalized, we should also mention that examples of all
nine isominkowskian media have alrady been identified. Type 1 is evidently
the ordinary vacuum; Type 2 characterizes water and other homogeneous
and isotropic media of low density; Type 3 charactrizes the recently identi-
fied superhuninal solutions of wave equationsm‘; Type 4 charactrizes a first
type of anisotropic propagation of light in the universe; Type 5 characterizes
planetary atmosphere or astrophysical chromospheres of low density; Type
6 characterizes a form of superconductivity; Type 7 characterizes a second
form of anisotropioc propagation of light in the universe (complementary to
Type 4); Type 8 characterizes astrophysical chromosphere of high density;
and Type 9 appear to hold universally for all media with a density begimiing
with that of Kaonsu”.

6. Explicit Construction of Classical Isominkowskian Gravity and
its Form-Invariance.
. It is significant to indicate that the above exterior and interior isominkowskian
gravity admits a rather simple construction in all its aspects, including those
of the underlying isomathematics.

Recall from Sect. 1 that Riemannian metrics g(x) are noncanonical im-
ages of the Minkowskian one 1). Recall also that the component of the Rie-
mannian metric g(:r) = T(a:) X 17 truly representing gravitation is precisely
the deviation T(r) from n. The methods here proposed for the explicit con-
struction of the isominkowskian gravity is therefore given by the systematic
application to all aspects of the Minkowskian geometry of a noncanonical

1
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transformation selected in such a way that

Uxw=Jay=yfla¢r, (m)
where t represents transpose.

As a specific example, the construction of the isominkowskian represen-
tation of the Schwarzschild gravity requires the selection of a noncanonical
transformation according to rule (18) where the isounit acquires values (15).

Note that the above rule is applicable for both exterior and interior
gravitational models, and it is readily extendable to nondiagonal realizations
of the metric. As such, the methods herein considered is quite general.
It is easy to see that, when defined on conventional spaces over conven-

tional fields, the noncanonical image ofMinkowski geometry yields precisely
the Riemann geometry. However, such a setting activates Theorem 1, thus
lacking invariant units of space and time.

A necessary condition for the resolution of the above impasse is that
noncanonical transform (18) is applied to the totality of the formalism of the
Minkowskian geometry, beginning with the underlying numbers, and then
passing to spaces, metrics, etc. Then, the emerging structure is precisely
the isominkowskian geometry which, as we shall see shortly, does indeed
resolve the problematic aspects of Theorem 1. _

In fact, under transform (18) we have the following liftings: the triyial
multiplicative unit I of R = R(n,+, X) is lifted into the isounit I -> I =
UXIXU‘; the additive unit ofR remains unchanged, 0 —+ (l = OX UXU‘ = 0;
numbers are lifted precisely into isonumbers n -> it = U X n X Ut = n X I;
the product is precisely lifted into the isoproduct n X m —> a>‘<m = it X
T X rill, where T’ has the correct form T’ = I-1 and the correct symmetry
T = T‘; and, therefore, the original field is lifted into the needed isofield,
R(n>+> X) _I 'l'>

Similarly, the Minkowski invariant is lifted precisely into the isominkowskian
form (7),

1:2 —> ax” = Ux:c2><U‘ = [(r‘XU‘)X(U‘“1xU‘1)X17X(UX:c)]X(UxU‘) =

rxflxa um
which clarifies that the coordinates x on M are lifted into the form U X as
on M and then in the isoform, i.e., multiplied by I.
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It is an instructive exercise for the reader interested in learning the
isotopic techniques to prove that the above noncanonical liftings yield all
remaining aspects of the isominkowskian geometry.

As recalled in Sect. 1, the majectic consistency of the special relativity
originates from its form-invariance, while one of the problematic aspects of
the Riemannian formulation of gravity is its lack of form-invariance, as em-
phasized by Theorem 1. As an example, it is well known that the Minkowski
metric is invariant under the applicable transformation theory, that via
canonical transforms, while the Riemannian metrics are not invariant rm-
der the applicable transformation theory, this time given by noncanonical
transforms.

Another main reason for the construction of the novel isomathematics
and the isominkowskian formulation of gravity is that of resolving the above
impasse and achieving an invariant classical representation of gravity.

In fact, once constructed via the above noncanonical lifting, isominkowskian
gravity is indeed invariant, provided that the transformation theory is formu-
lated via the isomathematics. This essentially requires that any additional
noncanonical transform be written in the isocanonical form

W >< W‘ = fa-);W = W >< T1/2,
WXW‘= vi/>21/i/‘=1/i/'*>“<vi/=f. (20)

Isominkowskian gravity is then form-invariant,

[f -'» i’ = vi/>”<i>“<W‘ = f,
AAA AAAAAAA HIAAI

[AXB -> Wx(AXB)XB _ A XB,

I/I/>A<lll,,,,l/I/t = rim, X = II/';,,,,,etc. (21)

The invariant of all other structures then follows, including the invari-
ance of the isoconnections, covariant isoderivatives, etc. Note that the above
invariance implies not only the preservation of the form, but also the preser-
vation of the numerical value of the isounit. -

The reader should meditate a moment here and note the complete lack
of any similar form-invariance in the Riemannian formulation of gravity on
curved space-time.
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The reader should also note that the above study on form-invariance
is only preliminary. The true form-invariance of the isominkowskian grav-
ity follows from its universal symmetry, the isopoincaré symmetry studied
below. _

Note that the use of noncanonical transforms W X W‘ = I 74 I implies
the transition to different physical systems and, as such, theyfi should not
be considered for the form invariance of a ‘gravity with a given I (otherwise
it would be like attempting to study the form-invariance of Minkowskian
settings with a transformation W X W‘ = I 76 I). '

7. Operator Isominkowskian Gravity for Matter.
As indicated earlier, the isominkowskian formulation of gravity permits a
geometric unification of the special and general relativities into one single
relativity, the isospecial relativity”, where for I = I = diag.(1, 1,1,1) we
have the special and for I = I(ac) we have the general.

One of the implications of such a classical unification is that it permits
the identification of a unique operator counterpart, called operator isogravity
(OIG), as first submitted by Santilli at mg79“. '
It should be indicated from the outset that OIG is structurally different

than the conventional quantum gravity (QG)2° on numerous grounds, e.g.,
because OIG and QG have difierent units, Hilbert spaces, and fields. In
particular, the word ”operator” in OIG is suggested to keep in mind the
differences with ”quantum” mechanics (as it should also be the case for
Q9)-

To identify the explicit form of OIG, we note that the operator image of
the. noncanonical transform (18) is a nonunitary transform on a conventional
Hilbert space H over the complex field C’ = C(c, +, X). The isounit of the
operator theory is therefore assumed to be

I(:r:,p, \r/,a\r, ...) = U >< vi = i*,:i"= (U >< Ul)'1 = Tl = f-1, (22)
where we have indicated the most general possible functional dependence
for the operator case, thus including nonlinearity in the wavefunctions and
its derivatives. The representation of exterior gravity occurs by restricting
the above general functional dependence as per Eqs. (1) and Then,
OIG requires the isotopies of the totality of relativistic quantum mechanics
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(RQM) resulting in a formulation known as relativistic hadronic mechanics
(RHM)7'.

Besides the preceding isotopies R —-> R and M -—> M, RHM is based
on the lifting of the Hilbert space H with states |\II >, |<I> >, and inner
product < <I>|\I/ >5 C(c, +, X) into the isohilbert space”'7' ‘R with isostates,
isoproduct and isonormalization

[|\i1>=U>< |\I/>,|<i>>=Ux|<I>>,...,

<<1>It>=v><<<>|t>Av1=<s|X;r»<|t>Ai,
A <\i|><r><|\t>=1, (23)

defined on the isofield C = O(é, —l, X).
We then have the iso—four—momentum operator

p,,X|\lI >= —i§<5,,|\lI >= —i x T: x 6,,|\i/ >; (24)
and fundamental isocommutation rules

[;t,,,j13,]= U >< [:r:,,,p,,] >< Ul =a,, >< T xp.-p, >< T >< 52,, = 2>“<1v,,, (25)
The (nonrelativistic) isoheisenberg equation, first submitted in Ref.7“,

and the isoschroedinger equation, first submitted in Refs.7°’7", can be written
in terms of the isodifferential calculus of Ref.“

i>“<dA/dt=iXI,><dA/dt=[A,YI]=AxfI}XH—HXT,XA, i=i,><I,,
>:- X it X >= >=

=HXT_,X|\I1>=E>?,|\I/>=(EXI,)XT,X|\II>EEX|\I/>. (26)

Note that the final numbers of the theory are conventional. We also
have the lifting of expectation values, into the form

-ZA$=<\I1|XTXA><T><|\I'>/<\I'|XTX|\II> (27)
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and the compatible liftings of the remaining aspects of RQM here omitted
for brevity (the interested reader may consult Refs.7"7‘).
It has been proved that RHM preserves all conventional properties and

axioms ofRQM(7’l. In particular, isohermiticity coincides with conventional
Hermiticity, HI E Hl, as one can verify. As a result, all quantities which are
originally observables for RQM remain so for RHM. Similarly, the isoeigen-
values of isohermitean operators are isoreal, thus conventional (because of
the identity E>2|\i1 >5 E >< |\ir >).

The reader is here suggested to meditate a moment on the above results
of OIG and compare them with the corresponding difficulties of QG. A
It has also been proved that RHMpreserves all physical laws ofRQM”.

This additional important property can be verified by showing that, via
the use of isocommutators (25) and isoexpectation values (27), the isounc-
ertainties coincide with the conventional uncertainties. It is also easy to
prove the exact preservation of Pauli ’s exclusion principle evidently due to
the preservation of the spin eigenvalue 1/27’. '

5 The reader should here compare the validity of conventional quantum
laws for OIG with the departures from the same implied by the nonunitary
structure of QG. .

In a way fully similar to the corresponding classical case,RHM is form
invariant under non-unitary transforms U X UI = I 74 I, provided that they
are written in the isounitaryformU = IIXT1/2, UXUl = IIXIII = lIlXlI 7
I. In fact, we have the invariance of: the isounit, I —> I’ = f/XIXLII E I,
the isoassociative product , lIX(AXB)XUl = A’XB’; etc; and the same
occurs for all other properties (including causality).

It should be stressed that RHM is not a new theory, but merely a new
realization of the abstract axioms of RQM. In fact, RHM and RQM coincide
at the abstract, realization—free level where all distinctions are lost between
I and I,R and R, M and Mm a.nd ‘H, etc. Yet, RHM is inequivalent to
RQM evidently because the two theories are related by a nonunitary trans-
form. Also, RHM is broader than RQM; it recovers the latter identically
for I = I; and can approximate the latter as close as desired for I ~ I.

Note that RHM is highly nonlinear (in the wavefunctions and their
derivatives) because of the unrestricted functional dependence of the isounit
for which the explicit form of the isoeigenvalue equation reads HXI >=
H(t,r,p) X T(t,r,p,\II,...)| >= E| >. RHM is also nonlocal in the sense
of admitting integral effects, e.g., representing deep wave-overlappings. Fi-
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nally, RHM is nonhamiltonian (and, therefore, nonunitary), in the sense of
admitting novel nonhamiltonian interactions represented by T, besides all
conventional interactions represented by H.

However, RHM is isolinear, isolocal and isohamiltonian", namely, it
reconstructs linearity, locality and unitarity in isospaces over isofields", as
an evident necessary condition to preserve quantum axioms and physical
laws, as well as to achieve abstract unity between RHM and RQM.

The representation of systems via RQM requires the knowledge of only
one quantity, the Hamiltonian H, under the generally tacit assumption h =
1. The representation of systems via RHM requires instead the knowledge
of two quantities, the conventional Hamiltonian H(t, r, p) and the isounit
I(x, p, \I/, ...), where the former represents all action-at-a-distance, potential
interactions, while the latter represent all interactions and effects which are
beyond the representational capability of the Hamiltonian. A

Note that, in view of the unrestricted functional dependence of T, RHM
is directly universal, i.e., capable of representing all infinitely possible (well
behaved) linear and nonlinear, local and nonlocal, and Hamiltonian as well
as nonhamiltonian operator systems directly in the fixed frame of the ex-
perimenter.

Yet another property important for this introductory study is the ax-
iomatic and physical consistency of RHM, as guaranteed beyond scientific
or otherwise credible doubts by the verification of the abstract axioms of
RQM.

The above consistency should be compared with the litany of problem-
atic aspects of other deformations of quantum mechanics, including quan-
tum gravity, as studied in details in Refs“. As an example, conventional
nonlinear theories H(t,r, p, ‘II, X I >= E X | > are known to violate the
superposition principle, thus lacking a physically meaningful application to
composite systems.

By comparison, RHM fully verifies the superposition principle in isospace
over isofields, trivially, because of the reconstruction at that level of lin-
earity, thus permitting, apparently for the first time, physically consis-
tent applications to composite systems under unrestricted nonlinearities.
Moreover, all conventional nonlinear models can be identically rewritten
in the axiomatically consistent isolinear form via the simple re-definition
H(t, 7‘, p, \1/, ...) >< 1 >= H,,(t, 1‘,p) >< :f“(~1r,...) >< | >= E ><| >, i.e., via the em-
bedding of all nonlinear terms in the isounit. A form-invariant description
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of the same is then consequential.
It is easy to see that the entire formulation of RHM_of memoir" can

be specialized into the desired OIG via the mere selection of the desired
gravitational isounit I according to rules (1) and (2). Since the functional
dependence of the latter is unrestricted in RHM, OIG can represent exterior
and interior operator gravity. The study of explicit examples is here left to
the interested reader for brevity.

Note that OIG resolves the historical impasse that has prohibited the
achievement until now of a consistent quantum theory of gravity, the fact
that, on one side, RQM requires a well defined Hamiltonian for the consis-
tent description of physical systems, while gravitation admits an identically
null Hamiltonianz.

By conception OIG does not require the representation of gravity via a
Hamiltonian, and that is the very reason why it was submittedga. In OIG
gravitation is represented via f, while H represents all conventional (e.g.,
electromagnetic) interactions.

An aspect of OIG which is important for this introductory study is
the ”hidden” character of OIG. To see it, let us first note that gravity
is represented again with the unit of the theory which, as such, verifies
all axioms of a unit, ii‘ = = l,.l1/2 l, = l, l§<A _=
AA>A§IA= /l, etc. Moreover, I is the fundamental invariant of the theory,
id!/dt = I§<H - H>‘<i E 0.

The ”hidden character of OIG then follows from the property that the
isoexpectation value of the isounit recovers the conventional quantum unit,

&i$=<\i1|><T><:i"-1><r><|\i1>/<\i/|><:r><|\i/>=1. (28)
It then follows that the proposed OIG is a ”completion” of RQM much

along the celebrated E-P-R argument15"' for which van Neumann’s theorem
and Bell’s inequalitiesl“ do not apply in view of the nonunitary character
of the theory. Alternatively, we can say that OIG is an explicit and concrete
realization of the theory of ”hidden variables” /\ which are actually realized
via the operator T. For a detailed study of these aspects one may consult
Ref.15". i l

Equivalently, the ”hidden” character of OIG can be seen from the fact
that it originates from the following hitherto unknown degrees of freedom of
the Minkowskian and Hilbert spaces (where n is a scalar),

15b
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[a:2><I = (:n"><17,,,,x:c")><I = [J:"X(n'2X1],,,,)X:c"]X(n2><I)= (a:“xfi,,,,x:c")xI

< <I>|x|\II > xI=< <I>|xn‘2><|‘I1 > X(n2><I) =< <I>|xTx|\I/ > xi, (29)

It should not be surprising that the above new symmetries of well known
spaces escaped detection throughout this century, because they required the
prior discovery of new numbers, those with arbitrary units.

In summary, the viewpoint submitted by Santilli at mg79“ is that, per-
haps, an axiomatically consistent operator version of gravity "always" ex-
isted. It did creep in un-noticed because embedded where nobody looked for,
in the "unit" of quantum mechanics.

8. 'The Poincaré-Santilli Isosymmetry for Matter.
All the preceding results at the exterior and interior, as well as classical
and operator levels can be uniquely and unambiguously derived from the
isotopies of the Poincaré symmetry I5(3.1), first identified by Santillis under
the name of isopoincaré symmetry, and today called the Poincaré-Santilli
isosymmetry6'11’12'13. g _

The primary significance of the isosymmetry 15(3.1) for this study is that
of establishing that the fundamental symmetry of the" special relativity also
holds for all possible gravitations, when merely subjected to the broader
isolinear, isolocal and isocanonical realization, thus confirming the achieve-
ment of a mathematically consistent and physically meaningful unification
of the special and general relativities into the isospecial one.

The isosymmetry 15(3.1) is the invariance of isointerval (7)Awhere now
the isotopic element has an unrestricted functional dependence, T = T(a:, p,-
\II, 8\I/, ..), and can be constructed via the isotopies of Lie ’s theory first pro-
posed by Santilli5 via the lifting of universal enveloping algebras, Lie alge-
bras, Lie group, transformation and representation theories, etc., and today
called Lie-Santilli isotheory6’11'12’13. The latter theory essentially consists
in the reconstruction of all branches of Lie’s theory for the generalized imit
I = T‘1. Since I > 0, one can see from the inception that the Poincaré-
Santilli isosymmetry is isomorphic to the conventional one, 15(3.l) z P(3.1)
(see the recent study by Kadeisvilisc).

Note that all simple Lie algebras are known from Cartan’s classifica-
tion. Therefore, the -Lie-Santilli isotheory cannot produce new Lie algebras,
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but only new realizations of known Lie algebras of nonlinear, nonlocal and
nonhamiltonian type,

Moreover, a primary function of the Lie-Santilli isotheory is that of re-
constructing as exact conventional spacetime and intemal symmetries when
believed to be broken. In particular, one of the primary functions of the
Poincaré-Santilli isosymmetry is to establish that the abstract axioms of
the conventional Poincaré symmetry remain exact under nonlinear, nonlo-
cal and nonhamiltonian interactions, evidently when properly treated.

In this section we shall show in particular that, contrary to a rather
popular belief, the rotational, Lorentz and Poincaré symmetry are indeed
exact for all possible gravitational models. As indicated in Sect. .1, the most
important contribution on the isosymmetry I5(3.1) is that of Ref“, with
Refs.8"8f presenting the covering isospinorial syrmnetry. The reason for its
re-inspection in this section is the discovery of the novel isosymmetries (29)
which imply an evident increase of the dimensions with respect to studies
of Riefs.8;,

The operator version of the isosymmetry I:"(3.1) is characterized by the
conventional generators and parameters only reformulated on isospaces over
isofields

X : : {Muv : 51711131/_-'17!/p>Pa}_* X = {Mpu : in X15v_§7vXl5u>13a}>

= {wk} = {(0,'u),a} E R —> if) = w><I 6 R(n,+, >A<),Ic = 1,2, ..., 10,,u,u =
2,3,4.(30).1*‘€

Since the generators of spacetime symmetries represent conventional to-
tal conservation laws, the preservation under isotopies of conventional gener-
ators ensures ab initio the preservation for the isominkowskian formulation
of gravity of conventional total conservation laws.

Isotopic liftings preserve the connectivity properties of the original sym-
metrics". The connected pomponent of 15(3.1) is then given by 15,,(3.1) =
SO(3.1) §<T(3.1), where SO(3. 1) is the connected Lorentz-Santilli isosymmetr )
and T(3.1) is the group of isotranslationssd. 15,,(3.1) can be written via the
isoeazponentiation éA = I + A/1! + A>A<A/2! + '— (e""‘T) >< I characterized
by the isotopic Poincaré—Birkhoj)'—Witt theorem5“'5"13° of the underlying
enveloping isoassociative algebra ~ '

f>0(3.1) = Ant) = 1i,,e**X><w : (n,,a><X*TXw) >< i = /l(w) >< i. (31)
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Note the appearance of the gravitational isotopic element T’(ac, in the
erponent of the group structure. This illustrates the nontriviality of the
lifting and its nonlinear character, as evidently necessary for any symmetry
of gravitation. One should however keep in mind that I5(3.1) is isolinear on
M over Cl’ (i.e., when referred to the isounit I), and that the nonlinearity
emerges only in its projection on M over C (when referred to the conventional
unit I). A

Conventional linear transforms on M violate isolinearity on M and must
then be lifted into the isotransforms

32' = A(a);<X = /1(a) >< rm) >< :2, (32)
which can be written from (31) for computational purposes (only) st’ =
A(w) >< :%.

The preservation of the original dimension is ensured by the isotopic
Baker—Campbell—Hausdor_fi' Theorem5“'5°'13°. Structure (31) then forms a
cpnnected Lie—Santilli isogroup5'6'13 with laws A(w) >2A('lI)') = A(1I2') >2 /l(1D) =
A('zI1 + 'lf1'),A(v"1)>A<A(:-w): A(0) = I(a:) = T‘1.

As one can see, P0(3.1) is noncanonical on M over R at the classical
level and nonunitary at the operator level. As such,'it does not preserve the
conventional unit I. However, }5,,(3.1) is isocanonical at the classical level
and isounitary at ]the operator level. V

This proved Theorem 1 and guarantees the achievement of the primary
objective of this study, a classical and operator formulation of gravitation
with invariant basic units. A -

The use of the isodiiferential calculus on M then yields the Poincaré-
Santilli isoalgebra p,,(3.1)5-13

[M,,,,*1\2r,,,,] =1 >< (am, >< M,,,, - 77,“, >< M,,, - 17,, >< MM + 17,5 >< MW),
A A - A A A A A AA A

lMnv> Pal Z X (nun X P11 771/or X Pu)» lPa>P.@l Os lliw .9/11/(37): (33)

where [A,"B] = A >< T’(m) >< B — B >< T'(a:) x A is the isoproduct (originally pro-
posed in 5”“), which does indeed satisfy the Lie axioms in isospace, as one
can verify. Note the appearance of the Riemannian metric 1),“, = gm, (at), this
time, as the ”structure functions” fi,,,, of the isoalgebra5“. Note also that the
momentum components isocommute (while they are notoriously noncommu-
tative for QG). This confirms the isofiat character of the isominkowskian
gravity, as necessary for a consistent grand unification9“'9f.



-141-

The local isomorphism p,,(3.1) R: p,(3.1) is ensured by the positive-
definiteness of TI’. In fact, the use of the generators in the form M5‘ =
52" >A< 16,, ~ .1?" >215“ would yield conventional structure constants under a gen-
eralized Lie product, as one can verify. The above local isomorphism is
sufficient, per se’, to guarantee the axiomatic consistency of RHM in gen-
eral, and of OIG in particular.

The isocasimir invariants of p0(3.1) are simple isotopic images of the
conventional ones, and can be written

6“’= f(w.p.\I1.@~1/, ...) = liI“‘<:»)1"‘.
0"’ = I32 =a.>‘<r = r" ><ma,

0(4) = vi/,,>‘<vi/(‘,1/i/,, =e,,,,,,, M“”>‘<p". (34)
for exterior gravityg“. _

From them, one can construct any needed gravitational relativistic equa-
tion, such as the isodirac equation

(=,#>2p,,+%>2m)>“<| >= [fi,,,,(x)X')"‘(:z:)xTI’(:z:)xp"—ixmxI(:r)]><T(x)><| >= 0,
{rrr} = r><1f"><r+r><1“"><r = Mr" E 2><g"".r = T.i.42><“Y”>(j3

35where 7” are the conventional gammas and '7" are the isogamma matrices.
Note that the anti-isocommutators of the isogamma matrices yield (twice)

the Riemannian metric g(z), thus confirming the representation of Einstein’s
(or other) gravitation in the structure of Dirac’s equation.

As an illustration, we have the Dirac—-Schwarzschild equation given by
Eqs. (37) with

&,, = (1 - 2M/T)_1/2 >< 7,, >< M4 = (1 - 2M/1~)1/2 >< 14 >< f (36)
although, as indicated in earlier, the use of the nondiagonal representation
in of Ref.” is preferable. Similarly one can construct the isogravitational
version of all other equations of RQM.

The Poincaré-Santilli isotransforms are given by:
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1) Isorotations. The space components S(§(3), called isorotations“,
can be computed from isoexponentiations (31) with theAexplicit form in the
(x,y)—pla.ne (were we ignore again the factorization of I for simplicity)

A1 A1 x_1 A1 x1 A1
az’ = an X cos(Tfi X Tfi x 03) — y x T1,‘ x T2‘; x s1n(T1§1 x Tfi X 03),

. 1 ._i . 1 Al A 1 A 1
y’ = x x T15, X T22’ x sin(Tf1 x T23 x 03) + y x cos(T1’1 X T23 X 63), (37)

(see7‘ for general isorotations in all three Euler angles). Isotransforms (37)
leave invariant all ellipsoidical deformations xx T11 x :z:+y X T22 X y+z X T33 x
z =R of the sphere :1: X a:A+ y X y+ z X z = r. Such ellipsoid become perfect
spheres f2 7 (r*;<aXi) X I, in isoeuclideanspaces(3"'3'2E(1i,6,@),1i f {rt} =
{Tk} X 18,6 = T, X 6,6 = dt(.l_q.'(1,1,1),T, = diag.(T11,T22,T33),I_, = T8—l,
called isospheres. A

_ In fact, the deformation of the semi-axes 1|, —> TH, while the related
units are deformed of the inverse amounts 1;, —> Tkjcl preserves the per-
fect spheridicity (because, as noted in Sect. 3, the invariant in isospace is
[Length]2 X [Unit]2). Note that this perfect sphericity in E‘ is the geometric
origin of the isomorphism 6(3) E 0(3), with consequential preservation of
the exact rotational symmetry for the space—components g(r) of all possible
Riemannian metrics (becomes the isogeodesics are perfect circles).

2) Isoboosts. The connected Lorentz-Santilli isosymmetry S@(3.1) is
characterized by the isorotations and the isoboostss“ which can be written
in the (3, 4)—plane V

1 1 I 1 13, _ 3 _ /\__ x_ 4 .__ ._ ._ A _
at - :1: X s1nh(T3"}, X T43, X v) ~ 1: X T33’ X T}, X cosh(T3‘§ X T44 X v) _

._i .1 A ~
=5/x(:c3—T33? xT4E,x,6x:c4)

Al A_1 _ ._1_ .. . A1 xi$4’ = -$3 >< T3§ >< agl >< T44? >< smh(T3% >< T34 >< v) + $4 >< cosh(T3‘g >< T42, >< v =
A1 x__1 ~

= 'l’X(1"4_Ts§:*.XT445X,3X$3)

32 = 11kXTAl¢1¢X?Jk/C0><Tl14><¢o, 'l'=(1—B2)_%-
Note that the above isotransforms are formally similar to the Lorentz

transforms, as expected from their isotopic character. Isotransforms (38)
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characterize the light isoconelhs, i.e., the perfect cone in isospace M. In a
way similar to the isosphere, we have the deformation of the light cone axes
1,, —> Tm, while the corresponding units are deformed of the inverse amount
1,, —> 'I’,,',,1, thus preserving the perfect cone in isospace.

In particular, the isolight cone also has the conventional characteris-
tic angle, as a necessary condition for an isotopy (the proof of the latter
property requires the use of isotrigonometric and isohyperbolic functionssf
Thus, the maximal causal speed in isominkowski space is the conventional
speed in vacuum co. The identity of the light cone and isocones is the geo-
metric origin of the isomorphism S6(3.1) R5 SO(3.1) and, thus, of the exact
validity of the Lorentz symmetry for all possible Riemannian metrics g(r)
in (3+1)-dimensions.

3) Isotranslations. The isotopies of translations can be written

I __ Aixpxa * A _ " '~I_ Aixpxa " ~__an -_(e )xac-[x+aXA(a:)]XI,p_(e )Xp-p,

A,, =\:i",},§2 + a“ X [2’*,},{2,3a,,,]/1! + (39)
and they are also nonlinear, as expected.

4) Isoselftransforms. Intriguingly, the isotopies identify a new sym-
metry, that of Eqs. (29), which is absent in the conventional case. It is here
called isoselfscalar invariance and it is given by

I—> I'=n2XI,n—> fi='I'L_2X1], (40)

where n is a novel 11-th parameter absent in the presentations of Refss.
Note that, even though n2 is factorizable, the corresponding isosymme-

try is not trivial, e.g., because n2 enters into the argument of the isolorentz
transforms (38). Note also that the isominkowskian representation of grav-
ity is permitted precisely by the latter isoinvariance. In fact, isoinvariance
(29) holds also for the conventional Poincaré symmetry, by introducing in
this way the generalized unit at the foundation of the isominkowskian grav-
ity.

5) Isoinversions. The isodiscrete transforms“ are

1r X ac: (—r,w4),ixm=rx :c= (r,—x4),ir=1r ><f,+=¢>< I, (41)

where 1r, r are the conventional inversion operators. Despite their simplic-
ity, the physical implications of isoinversions are nontrivial because of the
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possibility of reconstructing as exact discrete symmetries when believed to be
broken. This is studied by embedding all symmetry breaking terms in the
isounit, and it has ben already successfully done for tjhe isospin symmetry“,
the Lorentz symmnetrys“, and parity".

Note that the isorepresentations of l5(3.1)7‘ can be easily constructed
from the conventional representations of P(3.l) via the methods of nonuni-
tary transforms indicated in Sect. 8.

The general Poincare’-Santilli isosymmetryis defined as the 11-dimensional
set of isorotations, isoboosts, isotranslations, isoselftmnsforms and isoinver-
sions. The restricted Poincaré-Santilli isosymmetryis defined as the general
isosymmetry in which the isounit is averaged into constants.
It is easy to se that the isolorentz transforms (38) confirm the anomalous

behaviour of the frequency shift for isominkowskian media of Classes I,
II, III, as outlined in Sect. 5.C. In fact, the general expression for the
conventional Doppler shift for 90-degrees aberration is given by to = wo/'7
and can be written in first approximation wA= w,,[1 — (v/co) +

For the isolorentz transforms (38) with Tm, = 1 and n1 = n2 = n3 =
ns, the corresponding isodoppler shift is given by (Ia = we/'7 and can be
written in first approximation o = w,,[1 — (v/co) X (n4/ns) + Therefore,
for Class I (n, = n4) we have (I1 = w, for Class II (n, < n4) we have (D > cu;
and for Class III (ns > n4) we have (I2 < w.

The reader interested in learning the Poincaré-Santilli isosymmetry is
suggested to specialize isolorentz transforms (38) for all nine different types
of isominkowskian media as outlined in Sect. 5.C. in fact, the above cases are
important for the experimental verification of the isominkoskian geometry
(Sect. 12), besides having rather intriguing implications in cosmology (Sect.
14).
9. Direct universality of the Poincaré-Santilli Isosymmetry for
Exterior and Interior Gravitations of matter.
The results of this paper imply the following:

Theorem 2. The 11-dimensional, general, Poincaré-Santilli isosymme-
try on isominkowski spaces over isoreal fields with Well behaved, positive-
deiinite isounits is the largest possible isolinear, isolocal and isocanonical
invariance of isoseparation (7) (universality) in the fixed x-frame of the ex-
perimenter (direct universality).
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The verification of the above invariance is instructive. Note that for any
arbitrarily given (diagonal) Riemannian metric g(x) (such as Schwarzschild,
Ifrasner, etc.2) there is nothing to compute because one merely plots the
Tm, terms of the decomposition gm, = TM, X 1),”, (no sum) in the above
given isotransforms. The invariance of the separation x‘ X g X x is then
ensured. The maximal character of the isosymmetry can be proved as in
the conventional case.

The (2 + 2)—de Sitter or other cases can be derived from Theorem 2
via mere changes of signature or dimension of the isounits. The extension
to positive-definite yet nondiagonal isounit is assured by the method of
nonunitary lifting of Sect. 8 and it will be implied hereon.

Note finally that isosymmetry 13(3.1) cannot be even defined, let alone
constructed in conventional Riemannian spaces (as well as in all their pos-
sible isotopies), thus rendering the isominkowskian formulation of gravity
rather unique for our purposes.

10. The Isospecial Relativity for Matter. r
It may be of interest to indicate in more details that all preceding studias
belong to the so-called isospecial relativity, first submitted by Santillisa in
1983 and then studied in a variety of works5'7'9'1°, which can be defined as
the conventional special relativity only formulated on the isominkowskian
space M over the isoreal field R.

In particular, this implies, by conception and construction, the validity
on isospace over isofield of all axioms and physical laws of the special relativ-
ity, including the constancy of the speed of light co, light cone, time dilation,
space contraction, Doppler shift, etc. (see monograph?‘ for brevity).

A primary reason for the submission of the isospecial relativity is to
disprove a rather popular belief these days that any deviation from conven-
tional settings, such as a speed of light c = c,,/n different than co, implies a
”violation of Einstein’s special relativity”. In fact, the isospecial relativity
reconstructs as exact the special relativity for all possible speeds c different
than co. I

As a matter of fact, the isospecial relativity renders Einstein’s axioms
truly ”universal” in the sense of holding irrespective of whether we have
exterior problems in vacuum or interior problems within physical media.
By comparison, as well known, the conventional formulation of the special
relativity was solely conceived in vacuum, and it remains exact only within
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such a setting.
Yet another objective for the submission of the isospecial relativity is

the geometric unification of the special and general relativities indicated
earlier.

The latter objective was necessary, to our best knowledge at this writ-
ing, to achieve an axiomatically consistent inclusion of gravity in the unified
gauge theories of electroweak interactions9°'°f, as well as to achieve an ax-
iomatically consistent operator gravity“.

The primary motivation for the submission of the isospecial relativity
is however an axiomatically consistent transition from the current linear,
local and potential formulations of particle physics to broader nonlinear,
nonlocal and nonpotential conditions, with specific reference to novel studies
in the structure of hadrons. These latter aspects are not considered in this
paper7s,7t_

11. Apparent Resolution of Some of the Controversies in Gravi-
tation.
The preceding results permit the apparent resolution of some of the contro-
versies that have been lingering in the gravitational literature throughout
this century, thus providing support to the study of gravitation via the novel
isomathematics.

First, we note that Theorem 2 provides a rigorous proof of Theorem
1. In fact, the universal symmetry of gravitation, 15(3.1) does not leave
invariant the basic spacetime unit of the Riemannian formulation of gravity.
Theorem 2 also allows to resolve the shortcoming. In fact, the spacetime
isounit is indeed invariant under the isosymmetry 15(3.1) by conception and
construction.

Theorem 2 also permits the resolution of the controversy whether the
total conservation laws of general relativity are compatible with those of
the special relativity via a mere visual examination.

Recall that the generators of all space-time symmetries characterize total
conserved quantities. The compatibility of the total conservation laws of
the general and special relativities is therefore established by the visual
observation that the generators of the conventional and isotopic Poincaré
symmetries coincide. In fact, only the operations on them are changed in
the transition from the relativistic to the gravitational case.

Yet another controversy which appears to be resolved by our isominko-
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wskian treatment of gravity is the apparent lack of a meaningful relativist
limit in conventional gravitational theories, all limits ofexisting formulations
being primarily of Euclidean character’. In fact, such a limit is now clearly
and unequivocally established by I —> I under which the special relativity
is recovered identically in all its aspects.

The isominkowskian treatment of gravity also permits a resolution of
some of the limitations of conventional gravitational models, such as their
insufficiency to provide an effective representation of interior gravitational
problems. In fact, conventional formulations of gravity admit only a lim-
ited dependence on the velocities, while being strictly local-differential and
derivable from a first-order Lagrangian (variationally self-adjoint5‘). These
characteristics are evidently exact for exterior problems in vacuum.

By comparison, interior gravitational problems, such as all forms of grav-
itational collapse, are constituted by extended and hyperdense hadrons in
conditions of total mutual penetration in large numbers into small regions of
space. It is well known that these conditions imply effects which are arbitrar-
ily nonlinear in the velocities as well as in the wavefunctions and possibly
their derivatives, nonlocal-integral on various quantities and variationally
nonselfadjoint5°'7‘, (i.e. not representable via first-order Lagrangians). It is
evident that the latter conditions are beyond any scientific expectation of
quantitative treatment via conventional gravitational theories.

The isominkowskian formulation of gravity resolve this limitation too
and shows that it is equally due to insufficiencies in the underlying mathe-
matics. In fact, isogravitation extends the applicability of Einstein’s axioms
to a form which is ” directly universal” for exterior and interior gravitations.

As indicated earlier, this extension is due to the fact that the functional
dependence of the metric in Riemannian treatments is restricted to the sole
dependence on the local coordinates, g = g(x), while under isotopies the
same dependence becomes unrestricted, g : g(x, p, ‘II, 6\II....) without alter-
ing the original geometric axioms. This results in geometric unification of
exterior and interior problems, despite their sizable structural differences of
topological, analytic and other characters. The latter unification was stud-
ied in details in ref.” under the isoriemannian geometry and it is studied
with the isominkowskian geometry in this paper for the first time.

Yet another controversy which appears to be resolved by the isominko-
wskian formulation of gravity is the achievement of an axiomatically con-
sistent operator version of gravity, that with: invariance of the basic units;



-148-

preservation of the original Hermiticity at all times; uniqueness and invari-
ance of the numerical predictions; preservation of causality and probability
laws; consistent PCT and other theorems; etc.

Even though far from being a complete theory, our OIG does indeed
offer realistic hopes of achieving such an axiomatically consistent operator
form of gravity, as expected from the validity of the conventional axioms of
RQM.

Yet another resolution of an existing controversy is that related to grav-
itational singularities. This controversy is due to the fact that all existing
studies in the field are based on the conventional Riemannian geometry,
while the same geometry is not expected to be exactly valid under the ex-
treme conditions of gravitational collapse, as indicated earlier.

In fact, the isominkowskian formulation of gravity implies the following
property of self-evident proof.

Theorem 37"”. Gravitational singularities‘ (horizons) are the zeros of
the space (time) component of the isounit. '

The above properties are trivially equivalent to the conventional ones
for Riemannian metrics. The novelty is that the same properties also apply
for an unrestricted functional dependence of the metric, thus including the
missing internal, nonlocal and nonlagrangian effects.
. The isominkowskian reformulation of existing theorems and properties
on gravitational singularities will be done elsewhere.

12. Experimental Verifications and Novel Predictions
It is important to see that theproposed isominkowskian representation of

gravity verifies all available experimental data at both classical and operator
level.

Despite apparent differences, isoeinstein equations (14) numerically coin-
cide with Einstein’s equations both in isospace as well as in their projection
in ordinary spaces.

The preservation in isospace of the numerical value of the conventional
field equations stems from a general property of the isotopies of preserving
all original numerical values7”7‘, as it was illustrated earlier with the preser-
vation of the maximal causal speed co in isospace over isofield. In fact, the
isoderivative (9,, = Ti,’ X 8., deviates from the conventional derivative 5,, by

I
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the isotopic factor T. But its numerical value must be referred to I = 'I"1,
rather than I. This implies the preservation in isospace of the original value
of 6,, and, consequently, of the original field equations. ,

For the case of the projection of Eqs. (14) into ordinary spaces, the isoe-
quations are reducible to the conventional equations multiplied by common
isotopic factors which, as such, are inessential and can be eliminated. In
fact, the isochristoffel symbols (9) deviate from the conventional symbols
by the same factor T (again, because 1) E g), and the same happens with
other terms, except for possible re-definition of the source when needed, thus
preserving again the conventional field equations and related experimental
verifications also in our space-time.

The verification of all experimental data at the operator level by the
isominkowskian gravity is equally incontrovertible. In fact, isogravitational
field equations, such as Eqs. (35), establish the compatibility of OIG with
experimental data in particle physics in view of the much smaller contribu-
tion of gravitational over electromagnetic, weak and strong contributions.

Our unification of the special and general relativities, therefore, appears
to be compatible with experimental evidence at both classical and operator
levels.

The reader should be aware that the isominkowskian geometry also has
a number of applications and experimental verifications in other fields. By
using the isominkowskian ’classification of physical media of Sect. 5.C, we
indicatezz

1) An exact isominkowskian fitn“ of the experimental data on the behav-
ior of meanlife of the K° particle (isominkowskian medium of Type 9) with
energies from 30 to 400 GeV, where the Minkowskian anomaly is predicted
from expected internal nonlocal effects under a conventional behavior of the
center-of-mass;

2) An exact isominkowskian fitnb of the experimental data on the Bose-
Einstein correlation for the two-point-isocorrelation functionm deriving the
correlation from the nonlocality of the p-p fireball (isominkowskian medium
also of Type 9) from, first axiomatic principles without ad hoc ”semiphe-
nomenological approximations” with unknown parameters, and by recon-
structing the exact Poincaré symmetry in isospace under nonlocal interac-
tions;

» 3) An exact confinement of quarks on isominkowskian spaces of Type
91” (i.e., a confinement with an identically null probability of tunnel effects)



- 150-

even in the absence of a potential barrier, which is quite simply permitted
by the isotopies due to the incoherence of the internal and external Hilbert
spaces, under conventional unitary ‘symmetries, conventional quantum num-
bers and conventional experimental data on mass spectra;

4) An exact representation on isominkowskian space of Type 9 of the
synthesis of the neutron as occurring in stars at their formation, from pro-
tons and electrons o1ily8"'8f, which has been able to represent the totality
of the characteristic of the neutron;

5) The apparently first exact representation of total nuclear magnetic
momentsue via isominkowskian media of Type 4, verifying conventional
quantum axioms and physical laws, and representing the lthis century de-
spite all possible relativistic corrections;

6) An exact reconstruction of the SU(2) isospin symmetryse with equal
masses for protons and neutrons in isominkowskian space of Type 9 and
physical masses in conventional spaces;

7) An exact representation of the large difference in cosmological red-
shifts between quasars and their associated galaxies when physically con-
nected according to spectroscopic evidence via the isominkowskian geometriza-
tion of Type 5 of quasars chromospheresl 1f;

8) An exact isominkowskian representation of Type 5 of the internal
quasars redshift and blueshiftng;

9) The achievement of the apparently first attractive force between the
two identical electrons of the Cooper pair in superconductivity in excellent
agreement with experimental data via the isominkowskian geometrization
of the electron pair of Type 5 11";

10) The apparently first achievement of explicitly attractive forces be-
tween the neutral atoms of molecular bonds in chemistrym capable of rep-
resenting the 2by quantum chemistry through this century;

' 11) The apparently first capability of representing main characteristics
of biological structures, such as their irreversibility, time-rate-of-variations
of sizes and shapes, etcnj; and others.

To achieve a technical understanding of the novel isominkowskian ge-
ometry, the reader is suggested to verify the extreme difficulties, if not the
impossibility of achieving the above results with a theory based on conven-
tional mathematics.

Some of the novel predictions of the isotopic grand unification and un-
derlying isominkowskian geometry are the following:
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A) The prediction that the speed of electromagnetic waves is a local
quantity which can be arbitrarily smaller or bigger than the speed in vacuum
depending on local conditions“;

B) The prediction that the inhomogeneity and anisotropy of the media in
which light propagates has a new measurable contribution to the Doppler’s
red- or blue-shiftnfJ19;

C) The prediction of a new isocosmology which is characterized the first
time by a universal symmetry, the Poincaré-Santilli isosymmetry, without
the need for the ”missing mass”, a direct geometrization of the anisotropy
in the propagation of light in the universe, and other features”;

D) The prediction of a new geometric propulsion called isolocomotion“,
in which motion occurs via the reduction of distances due to very large local
amounts of energy without any Newtonian propulsion;

E) A new notion of spacetimes in which the novelty rests in its basic
units, thus implying local notions of space and time different than those of
conventional relativities.

Needless to say, the above novel predictions can be solely resolved via
experiments. "

We here limit ourselves to indicate the differences between the conven-
tional spacetime and isospacetime can be illustrated via the isob0x7” which is
an ordinary cube with two observers, a conventional Minkowskian observer
in the outside and an isominkowskian observer in the inside. The novelty
of isospacetime emerges from the fact that the same object has dramatically
difierent shapes and dimensions for the two observers, evidently in view of
the arbitrariness of the units of the interior observer (which imply differ-
ent dimensions), as well as their differences for different space axes (which
implies different shapes).

The novelty of isospacetime is further illustrated by the fact that the
same object can belong to dramatically different times, both in the future or
in the past. In fact, the isospacetime permits the mathematical formulation
of a fully causal space-time machine7"7‘.

The difference between the conventional and isotopic spacetime then
reaches its climax with the fact that exactly the same object can have dif-
ferent space dimensions for the two observers. This prediction is implicit
in some of the last papers written by P. A. M. Dirac“ who, in his notori-
ous intuitive brilliance, submitted without his awareness one of the firsts,
yet most general possible isotopies of the Minkowskian geometry. Dirac’s
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papers“ of 1971-1972 escaped technical understanding until the advent of
the novel isomathematics, and were studied in details in Ch. 10 of Ref." of
1994.

In essence, Dirac proposed a generalization of his celebrated equation
based precisely on the isogamma matrices of Eqs. (35), in which the isotopic
element T (denoted fi by Dirac) is positive-definite, thus invertible, yet it is
nondiagonal and such to lift the three space dimensional Minkowski space
into an isominkowskian space in only one space dimension according to the
isotopy x2 = (x"x1),,,,Xx")xI —> £2 = (x"xfi,,,,,xx")xI = (—2X:I.'2X:L'4)XI.

As we hope to illustrate in future works, rather than being a mathemat-
ical curiosity, Dirac’s papers“ have an apparently fundamental character in
understanding anomalous conditions of his electron, such as the coupling of
electrons in the Cooper pair in superconductivity or in molecular bondings,
and in other anomalous cases transparently outside any realistic hopes of
quantitative treatment via the conventionak Minkowskian geometry. .

In closing we should also indicated that the isotopies with basic lifting
I —> I(x, \II, = Il constitute only the first step of a chain of generalized
methods(5"). The second class is given by the genotopies5“'5e in which the
isounit is no longer Hermitean. This broader class geometrizes in a natural
way the irreversibility of interior gravitational problems and it has been
used, e.g., for the black hole model of Refs.m'12j.

A third class of methods is given by the (multi—valued) hyperstructures“,
in which the generalized unit is constituted by a set of non-Hermitean quan-
tities. The latter class appears to be significant for quantitative studies of
biological structures with their typical irreversibility and variation of phys-
ical characteristicsnj. in the latter biological conditions the conventional
RQM is manifestly inapplicable due to its reversibility as well as intrinsically
conservative character.

13. Elements of isodual representations of antimatter.
Another structural incompatibility between gravitation and unified gauge
theories, besides that due to curvature studied earlier, is that the latter are
bona fide relativistic theories, thus characterizing antimatter via negative-
energy solutions, while the former characterize antimatter via positive-definite
energy-momentum tensors.

The above structural incompatibility is only the symptom of deeper
problems in the contemporary treatment of antimatter. To begin, matter is
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treated nowadays at all levels, from Newtonian to electroweak interactions,
while antimatter is treated only at the level of second quantization. Since
there are serious indications that half of the universe could well be made up
of antimatter, the need for a more effective theory of antimatter holding at
all levels of study becomes compelling.

At any rate, recall that charge conjugation in quantum mechanics is an
anti-automorphic map. As a result, no classical theory of antimatter can be
axiomatically consistent via the mere change of the sign of the charge, be-
cause it must be an anti-automorphic (or, more generally, anti-isomorphic)
image of that of matter.

The current dramatic disparity in the treatment of matter and antimat-
ter also has its predictable problematic aspects. Since we currently use only
one type of quantization (whether naive of symplectic), it is easy to see that
the operator image of the contemporary treatment of antimatter is not the
correct charge conjugate state, but merely a conventional state of particles
with a reversed sign of the charge.

The view here submitted is that, as it is the case for curvature, the
resolution of the above general shortcomings for antimatter requires a yet
novel mathematics.

Santilli8""° therefore entered into a further laborious search for another
novel mathematics under the uncompromisable condition of being an anti-
isomorphic image of the preceding isomathematics. After inspecting a num-
ber of alternatives, this authors” submitted in 1985 the following map of an
arbitrary quantity Q (i.e., a number, or a vector field or an operator) under
the name of isoduality

Q : Q(:Bip>¢a"') _Ql(_$f1_plv¢l>"')'

When applied to the totality of quantities and their operations of a given
theory of matter, map (42) yields an anti-isomorphic image, as axiomati-
cally needed for antimatter. Moreover, while charge conjugation is solely
applicable within operator settings, isoduality (42) is applicable at all levels
of study, beginning at the Newtonian level.

It is evident that map (42) implies a new mathematics, that with neg-
ative units called isodual mathematicsm, which includesnew numbers, new
spaces, new calculus, new geometries, etc. In reality we have two different
isodual mathematics, the first is the anti-isomorphic image of the conven-
tional mathematics used for exterior problems of antimatter, and the second
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is the anti-isomorphic image of the preceding isomathematics used for inte-
rior problems of antimatter.

Isodualities imply the transition from the conventional space-time units
of matter I = diag(1,1,1, 1) > 0 to their negative images Id = —I < 0.
As a result, under isoduality all characteristics of matter change sign in the
transition to antimatter, thus yielding the correct conjugation of charge, as
well as negative energy, negative energy-momentum tensor, and, inevitably,
negative time.

The historical objections against these negative values are inapplicable,
because they are tacitly referred to the conventional positive units. I In fact,
negative energy and time referred to negative units are fully equivalent,
although antiautomorphic, to the conventional positive energy and time
referred to positive units.

The above characteristics have permitted the construction of the novel
isodual theory of antimatter which holds at all levels of study“). Thus, the
theory begins with the isodual Newton and iso-Newton equations, contin-
ues with the isodual Lagrangian-Hamiltonian and iso-Lagrangian and iso-
Hamiltonian mechanics, and evidently includes the isodual quantum and
hadronic mechanics, at which latter level it results to be equivalent to charge
conjugation for massive particles (see later on for photons)1°°.

Most importantly, the isodual theory of antimatter has resulted in agree-
ment with all available classical and quantum experimental data on anti-
matter, those based on the various interactions except gravitation (for which
there are no experimental data pertaining to antimatter).
It is an instructive exercise for the reader interested in learning the

new techniques to work out the isodualities of the conventional relativistic
field theory (rather than of their isotopies), and show that they essentially
provide a mere reinterpretation of the usually discarded, advanced solutions
as characterizing antiparticles referred to negative units.

Therefore, in our theory, retarded solutions are associated with parti-
cles, advanced isodual solutions are associated with antiparticles, and no
numerical difference is expected in the above reformulation.

It is also recommendable for the interested reader to verify that the isod-
ualities are indeed equivalent to charge conjugation for all massive particles,
with the exception of the photon.

' Isodual theories predict that the antihydrogen atom emits a new photon,
tentatively called by this author the isodual photon, which coincides with the
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conventional photon for all possible interactions, thus including electroweak
interactions, except gravitation [loc. cit.]. This indicates that the isodual
map is inclusive of charge conjugation for massive particles, but it is broader
than the latter.

Isodual theories in general, thus including the grand unification of Ref?‘
and the new’ cosmology of the next section, predict that all stable isodual
particles, such as the isodual photon, the isodual electron (positron), the
isodual proton (antiproton) and their bound states (such as the antihydro-
gen atom), experience antigravity in the field of the Earth (defined as the
reversal of the sign of the curvature tensor). A number of experiments are
under consideration for the resolution of these basic issues.

The reader should also be aware that the isodual theory of antimatter
was born from properties of the conventional Dirac equation

['y" x (p,, — e X A“/c) +i x m] x \II(x) = 0, (43a)

r = ( _‘,’,. 1:). (4%)
4_. I, 0."/—'tX(0 _I8). (430)

As one can see, the negative unit If = Diag.(—1, -1) appears in the very
structure of ')/4. The isodual theory was then constructed precisely around
Dirac’s unit If“)

In essence, Dirac assumed that the negative-energy solutions of his his-
torical equation behaved in an unphysical way because tacitly referred to
the conventional mathematics of his time, that with positive units I, > 0.
Ref.s1° showed that, when the same negative-energy solutions are referred
to the negative units Ifl < 0, they behaved in a fully physical way. This elim-
inates the need of second quantization for the treatment of antiparticles (as
expected in a theory of antimatter begimiing at the Newtonian level), and
permits the reformulation of the equation in the form

[Kr >< (p, - 6 >< A/c) +1 >< m] >< \l/(at) = 0, (44a)

4 Ii.=(,fk 1;). r-“(g 2;). <4-11>)
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. .. .. ~ .. . (I)
{'l';1/‘ll:/ll’ : 277111/a ‘I’ : _'Y4 X ‘I’ = Z X <@d ):

where <I>(x) is now two-dimensional, which is fully asymmtrized between
particles and antiparticles.

As it was the case for the preceding isotopies, the isodual theory of
antimatter also sees its solid roots in two additional novel symmetries, also
unknown until recently, and first presented in memoir”, the first holding
for the conventional Minkowski interval

x2 = (x" X 17,“, X x”) X I= [x" X (—n"2 X 1),”) X x"] X (-n2 X I) '

= (x" X fifu, X x") X Id = xdzd (45)
and the second holding for the Hilbert space

< ¢| X lib > XI =< ¢| X (—n_2) x lib > X(—n2X I) =< ¢| XTdX lw > >€Id),
46

which ensure that all physical laws for matter also hold for antiparticles
under our isodual representation, with corresponding symmetries for the
isodual expressions.

The axiom-preserving lifting of the parameter n to an explicit x-dependence
then yields the isodual isominkowskian treatment of gravity for antimatter
with basic structures

g(r) = T(w) >< n —> 9"(w) = —y(w) = T"'(rv) X" if’, 11 —> if’ = —v., (47<1)

fa) = n‘"<w>1-1 -» Fe) = [i"d<w>1—1. (in)
It should also be recalled that isodualities imply yet another new sym-

metry. A quantity Q is said to be isoselfdualm when it is invariant under
the isodual map (42)

‘\

Q(m>p>¢s _) Qd : _Ql('_xt> ~pl>‘¢l1"') : Q(x:pa lib:
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A property which is fundamental for the isodual theory of antimatter
is that Dirac’s gamma matrices are isoselfdual (from which property the
symmetry itself was derived in the first place). In fact, 7,, —> ')/Z = -7,) = 'y,,.

This property disproves a popular belief held throughout this centmy,
according to which the Poincaré symmetry is the total symmetry of Dirac’s
equations. This belief is disproved becausea non-isoselfdual structure such
as the Poincaré symmetry cannot possibly be the correct symmetry of a
structure which is invariant under isoduality. ,

_ In fact, the correct total symmetry of the conventional Dirac equation
was identified in Ref.1°°, and it is given by the following 22-dimensional
isoselfdual symmetry with underlying isoselfdual geometry and unit

sT,,, = {SL(2.C) >< T(3.1)}x{SL“(2.C"’) Xd T"(3.1)}, (.49a)

Mm = {M(:B, 1), R) >< S_.,,,i,,}£l2{Md($d,11d, Rd) ><d s;%,,,,,}, (4%)

ITO, = {1,,,,, >< I_.,,,,,,}x{I,‘f,,, Xd 1§,,,,,}, (496)
To understand the dimensionality of symmetry one must first recall that

isodual spaces are independent from conventional spaces and so are the
related parameters. The doubling of the conventional dimensionality then
yields twenty dimensions. The additionaltwo dimensions are given by the
novel isoselfscalarity (40) and their isoduals.

The reader should not be surprised that the four invariances (isoself-
scalarity and isoselfduality) remained undetected throughout this century.
In fact, their identification required the prior discovery of new numbers, first
the numbers with arbitrary positive units for isoselfscalarity, and then the
additional new numbers with arbitrary negative units for isoselfduality.

14. Iso-, Geno- and Hyper-Selfdual Cosmologies. As recalled above,in
Ref. 9'3 we submitted the lso-Grand- Unification with the inclusions of gravity
for matter and antimatter which is based on the abstract axioms of the true
symmetry of the conventional Dirac equations, Eqs. (48), in its most general
possible isotopic realization, the Kronecker product of the Poincaré-Santilli
isosymmetry and its isodual with underlying, generalized, isoselfdual spaces
and units.
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. s... = {§L(2.C)>2fi‘(3.1)}x{.‘iLd(2.C“)>2dTd(3.1) = s;.,,,, (sot)

MT0¢ = lldvRdlgdggmn = MT‘ot}»(50b)

jTvt= {f.s>“<f.....}w{i:.’..>“<"f;',...i =i4..- (soc)
In this note we would like to indicate that, in turn, the Iso-Grand-

Unification implies a new cosmology here submitted under the name of
Isoselfdual Cosmology, which can be entirely defined by the above universal
isosymmetry, and exhibits the following main properties:

1,) The proposed cosmology is the only one known to this author which
is characterized by a universal symmetry valid for relativistic and gravita-
tional, exterior and interior, classical and operator, as well as matter and
antimatter systems. In turn, the latter symmetry characterizes an (isoself-
dual) universal metric (To, = n X ijd =’§-0, with unrestricted functional de-
pendence on local spacetime, velocity, density, temperature, and any other
needed variable.

2) The proposed cosmology is isoselfdual (i.e., invariant under isodual-
ity), thus implying as limit conditions equal amounts of matter and anti-
matter in the universe. A novelty here is the treatment of antimatter with
new mathematics possessing negative-definite units. As a result, all char-
acteristics of antimatter (and not just the charge as in other cosmological
models) are opposite to those of matter. Another novelty is that antimatter
belongs to a spacetime physically different than that of matter yet coexis-
tent with the same, hereon referred as matter and antimatter ”warps" (we
use here the term ”warp” rather than ”dimension” because the latter would
be technically inappropriate in view of the identity of the dimension of the
two spaces).

3) The proposed cosmology predicts the possibility for future experimen-
tal identification whether a far away galaxy or quasar is made up of matter
of of antimatter. This possibility is permitted by the predictions that an-
timatter emits a light different than that of matter (the isodual light-of
Ref. 1°‘) which is repelled by the gravitational field of matter. Astrophysical
studies along these lines are under way.
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4) The proposed cosmology predicts a universe with null total physical
characteristics, that is, null total mass, null total energy, null total time,
etc., as measured by one observer made up of matter or, equivalently, of
antimatter. This conception renders meaningless the question of the "age
of the universe”; it removes the huge singularity of the big bang theory
at creation (because total physical characteristics are null before and after
creation); and it permits one of the firsts mathematically consistent repre-
sentations of the creation of the universe. »

5) The proposed cosmology admits a novel notion of local spacetime, the
isospacetime described earlier, according towhich different regions of the
universe generallyhave different space and time characteristics due to difl'er-
ences in the related units, resulting in nine possible different isominkowskian
Types. This renders meaningless the question of ”the age of the matter (or,
separately, antimatter) warp of the universe”, the only physically mean-
ingful questions being ”the average age of the matter (and, independently,
antimatter) warp of the universe” whose infinite value cannot be a priori
excluded.

6) The proposed cosmology predicts speeds c = co/n4 of electromagnetic
waves which depend on the local physical conditions, which are smaller
than the speed in vacuum co for propagation within physical media of
low density such as planetary atmospheres or astrophysical chromospheres
(isominkowskian media of Types 2, 6, 5, 8, and which are bigger than co for
propagation within hyperdense media such as the interior of hadrons or in
the core of stars (isominkowskian media of Types 3, 5, 9)1“, thus admitting
by conception and construction the superluminal speeds of Refs.16.

7) The proposed cosmology can provide a direct geometrization (i.e.,
a representation via the universal metric itself) of any anisotropic and/or
inhomogeneous distribution of light in the universe as established by exper-
imental observations via isominkowskian media of Type 4 or 8.

8) The proposed cosmology predicts a size of the detected universe which
is significantly smaller than that of current viewsnfJ19. This is due to the
isodoppler redshift according to which light exits a galaxy already redshifted.
The argument is that the medium in the interior of galaxies is not ” perfectly
empty” but it is in reality an ordinary physical medium of low density
isominkowskian media of Type 5) because of the presence of dust, particles,
etc. The speed of light within such a medium is then decreased resulting
in the first contribution to redshift (I1 = w,,[1 — v/(co/n4) + with full
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isotopic contribution due to a (necessary) space-time symmetrization £2 =-
w,,[1 — (v/co) X (n4 /n,) + Since n_,.n4 for media of low density, the isotopy
then increases the redshift originating in the interior of the galaxy. As a
result, the inclusion of the physical medium inside a galaxy decreases the
distance of the same from us on a comparative basis with current estimates.
An additional reduction of the size of the universe is possible due the fact
that the intergalactic space itself is a physical medium which, even though
of extremely low density, it is nevertheless expected to yield a measurable
contribution because of the extremely large intergalactic distances, thus
yielding an additional isoredshift. Since no astrophysical information is
currently available on the above media, the isominkowskian geometry can
provide either a small correction to the current estimates of expansion of
the universe or, as a limit case, its elimination altogether. The reader
should also be aware that the isominkowskian geometry predicts for each
cosmological isoredshift the existence of an internal isored- or isoblue-shift
because the effects here considered depends on the frequencyug, that is, the
n’s depend on wo.

9) The proposed cosmology eliminates the need for the "missing mass”.
In fact, the latter emerges because the total energy of the universe is com-
puted under the tacit assumption of the universality of the speed of light in
vacuum with the familiar expression ETD, = MT,,,c§, while the expression
predicted by the proposed cosmology is ET“, = MTG, X c2. The ”missing
mass” is then characterized by MM“, = MT,,(1 — cf,/c2) = M;/~o,(1 — nfi).
As a result, the "missing mass” may imply that the average speed of light
in the universe is bigger than that in vacuum. Such a result should not be
surprising because it essentially confirms all available evidence of superlumi-
nal speeds within hyperdense hadronic matterm, as well as the importance
of considering interior problem in the computation of the average speed c.
Equivalently, we can say that the isominkowskian geometry predicts that
the total energy of each star is bigger than that currently estimated because
of the internal superluminal character of the speed of light (isominkowskian
media of Type 9)1“ with consequential value E = m x c2 bigger than the
value E, = m X cg currently estimated. In turn, this prediction evidently
implies realistic possibility of eliminating the vexing problem of the ”missing
mass”. I

We should also indicate that the isoselfdual cosmology is a particular
case of the broader genoselfdual cosmology, i.e., the cosmology constructed
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with the broader genomathematics and its isodual“. The main difference
is that the universe in the former is closed-conservative, while in the latter
it is open-nonconservative, namely, the genoselfdual cosmology predicts a
continuous creation throughout the universe.

In turn, the genoselfdual cosmology is a particular case of the hyperself-
dual cosmology, namely, a cosmology based on the hypermathematics and
its isodual“. The main difference is that the universe in the former has only
one matter and one antimatter warp while in the latter it admits infinitely
many countable and diflerent, yet co-existing matter and antimatter warps..

The reader with a technical knwovledbe of the iso-, geno- and hyper-
mathematics will note that all the above models of the universe are compat-
ible with our sensory perception. In fact, the abstract geometric axioms of
space remain precisely the Euclidean axioms of our sensory perception, and
they are only realized in their most general possible form. To be specific
in this important point, the axiom-preserving character implies that our
visual observation of _a far away galaxy or quasars, not only does not imply
that it is necessarily made of matter, but also it does not imply that it nec-
essarily belongs to our own matter warp, because it could exist in a warp
different than our own (where, again, we use the term ”warp” because the
”dimensions” remain the same, while the spaces themselves are different).

By remembering that the iso-, geno- and hyper-mathematics have been
also constructed to provide quantitative studies of biological structures and
that isodualities appears to be necessary for quantitative representation of
bifurcations and other aspects in biologynj, we can say that the proposed
iso-, geno- and hyper-selfdual cosmologies have been conceived to represent a
”universe” inclusive of biological structures. As a matter of fact, the inverse
viewpoint appears to be more appropriate, namely, modern conceptions of
the universe should be based on mathematical models primarily applicable
to biological rather than physical systems.

15. Concluding Remarks. Perhaps the most significant result of
this analysis is the identification that, to the author’s best knowledge,
the isominkowskian geometry is the ”only” geometry which is as invariant
as the conventional Minkowskian geometry, yet admits all possible (3+1)-
dimensional Riemannian metrics and all their (symmetric, signature pre-
serving) generalizations to an arbitrary functional dependence, the latter
being requested for more realistic studies of interior gravitational problems.
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Specifically, the ”majestic beauty” of the Minkowskian geometry recalled
Sect. 1 implies the property that, if the geometry yields a given measure,
say, the length 2.5 cm for an object at rest in the observer frame at the
time t = 3.7 sec, the same value 2.5 cm persists at all subsequent times in
the absence of motion (invariance under the time evolution as well as the
syrmnetries of the line element). I

By comparison, Theorem 1 implies that, if the Riemannian, Finsle-
rian, nondesarguesian or other geometries whose metrics have an explicit
x-depemnence predict a given measure, say the length, 2.5 cm for an object
at rest with respect to the observer at the time t = 3.7 sec, =the same
measure is altered at subsequent times without motion, e.g., it may become
25.4 cm at t = 1,231 sec (lack of invariance under the time evolution as well
as the syrmnetries of the line element).
It is easy to see that the same fate also holds for all isotopies of geome-

tries with non-null curvature, such as the isoriemannian and isofinslerian
geometries.

On the contrary, if the isominkowskian geometry predicts a certain mea-
sure, say, 2.5 cm at t = 3.7 sec, the same measure persists at all subsequent
times exactly as it is the case for the conventional Minkowskian geometry.

The understanding of the above occurrence is the best proof of having
understood the ”axiom-preserving” character of the isotopies. In fact, if
given measures are not preserved in time, this is evidence of the incorrect
construction of the isotopies, rather than insufficiencies of the isominkowskian
geometry.

For the case of the isoriemannian, isofinslerian, isonondesarguesian and
other geometries the lack of invariance exists in the original geometries and
merely carries over at the isotopic level.

The ”secret” for the achievement of invariance is quite simple, and
merely consists in the absorption of all functional dependence in the isounit,
that is, invariance is guaranteed only when a given metric with nontrivial
functional dependence g = g(x,v,...) is factorized into the conventional
Minkowski metric, g(x,v,...) = T(x,v,...) X 1), and the unitAis assumed
to be the inverse of the entire deviation from Minkowski, I(x,v,...) =
1/T(x,v, This yields again the fundamental relations of this analysis,
Eqs. (1) and (2) for the isominkowskia.n representation of gravity.

The isoriemannian, isofinslerian, isonondesarguesian and other geome-
tries also have an arbitrary functional dependence, g = g(x, v, However,
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the factorization is done with respect to the original metric g(x, (whether
Riemann, Finsler, etc.), g(x,v,...) = T(x,v, X g(x,v, The isounit is
then constructed as in the preceding case, I = 1/T. The loss of invariance
then follows because inherent inlthe original metric.

Alternatively and equivalently, we can say that invariance is ensured
when the geometry admits a bona-fide ”symmetry” (and not ”covariance")
of the line element. This condition too uniquely selects the isominkowskian
geometry as the only invariant one. In fact, as stressed earlier in the text (as
well as in the literature), the universal Poincaré-Santilli isosymmetry can
be only constructed for the isominkowski space, while no such construction
is possible for the Riemannian, Finslerian and other spaces and all their
infinitely possible isotopies. ,

In the final analysis, one should keep in mind that the isominkowskian
geometry is "directly universal”, in the sense that it admits as particular
cases all conceivable, well behaved (3+1)-dimensional metrics, thus includ-
ing all possible Riemamiian, Finslerian, nondesarguesian and other met-
rics and all their isotopies (universality), directly in the fixed frame of
the experimenter without any need of the transformation theory (direct
universality)11'°. The above direct universality, when joined with its unique
invariance properties, then voids the need for any other spacetime geometry,
to our best understanding at this writing.

We should also indicate that the analysis of this paper has a number of
cormections with various other lines of inquiries presented in these proceed-
ings 3°, which we regret to be unable to point out at this time for brevity,
but which we hope to point out at some future time.

All in all, itiis hoped that this study is another illustration of the fact
that physics is a discipline which will never admit "final theories”. By
following the teaching of the Founders of contemporary knowledge, such as
Schwarzschild’s two articles”, the well known one on the exterior problem
and the little known additional article on the interior problem, we can
additional say that the maturity in the formulation of a new theory is also
given by the joint identification of its limits of applicability.
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