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Abstract

A basic question on Santilli’s isotheory is ”what are the num-
bers?” This question in hyperstructures is ”what are the hypernum-
bers?” We present special classes of the largest class of hyperstruc-
tures, called Hv-structures, which give to this theory a variety of
mathematical models.
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1 Introduction

We deal with hyperstructures called Hv-structures introduced in 1990 by
Vougiouklis [14], which satisfy the weak axioms where the non-empty inter-
section replaces the equality.

Some basic definitions are the following [15]:
In a set H equipped with a hyperoperation (abbreviation: hyperoperation

= hope)

· : H ×H → P (H)− {∅},

we abbreviate by
WASS the weak associativity : (xy)z ∩ x(yz) 6= ∅,∀x, y, z ∈ H and by
COW the weak commutativity : xy ∩ yx 6= ∅,∀x, y ∈ H.
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The hyperstructure (H, ·) is called an Hv-semigroup if it is WASS, it
is called Hv-group if it is reproductive Hv-semigroup, i.e., xH = Hx =
H,∀x ∈ H. The hyperstructure (R,+, ·) is called an Hv-ring if (+) and (·)
are WASS, the reproduction axiom is valid for (+) and (·) is weak distributive
with respect to (+):

x(y + z) ∩ (xy + xz) 6= ∅, (x+ y)z ∩ (xz + yz) 6= ∅, ∀x, y, z ∈ R.

An Hv-ring is called additive if its addition is a hope and the multipli-
cation is an ordinary operation and is called multiplicative if its product is
a hope and addition is an operation.

Motivation for Hv-structures: We know that the quotient of a group
with respect to an invariant subgroup is a group. F. Marty from 1934, states
that, the quotient of a group with respect to any subgroup is a hypergroup.
Finally, the quotient of a group with respect to any partition (or equivalently
to any equivalence relation) is an Hv-group.

In an Hv-semigroup the powers of an element h ∈ H are defined as
follows: h1 = {h}, h2 = h · h, ..., hn = h ◦ h ◦ ... ◦ h, where (◦) denotes
the n-ary circle hope, i.e. take the union of hyperproducts, n times, with
all possible patterns of parentheses put on them. An Hv-semigroup (H, ·)
is called cyclic of period s, if there exists an element h, called generator,
and a natural number s, the minimum one, such that H = h1 ∪ h2... ∪ hs.
Analogously the cyclicity for the infinite period is defined. If there is an
element h and a natural number s, the minimum one, such that H = hs,
then (H, ·) is called single-power cyclic of period s.

Let (H, ·), (H, ∗) be Hv-semigroups defined on the same set H. (·) is
called smaller than (∗), and (∗) greater than (·), iff there exists an f ∈
Aut(H, ∗) such that xy ⊂ f(x ∗ y), ∀x, y ∈ H. Then we write · ≤ ∗ and we
say that (H, ∗) contains (H, ·). If (H, ·) is a structure then it is called basic
structure and (H, ∗) is called Hb − structure.

Theorem 1.1. (The Little Theorem). Greater hopes than the ones which
are WASS or COW, are also WASS or COW, respectively.

So we have posets on Hv-structures. In the problem of enumeration of
classes of Hv-structures we have results by using computers [7]. The partial
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order in Hv-structures restrict the problem in finding the minimal, up to
isomorphisms, Hv-structures.

During last decades hyperstructures seem to have a variety of applica-
tions not only in other branches of mathematics but also in many other
sciences including social studies. These applications range from biomath-
ematics -conchology, inheritance- and hadronic physics, to mention but a
few. The hyperstructure theory is closely related to fuzzy theory; thus,
hyperstructures can now be widely applicable in industry and production,
too.

In several books and papers one can find numerous applications [3],[15].
An new application, which combines hyperstructure theory and fuzzy the-
ory, is to replace in questionnaires the scale of Likert by the bar of Vou-
giouklis & Vougiouklis [23].

Definition 1.1. [12],[15] Let (G, ·) be a groupoid then for every P ⊂ G,
P 6= ∅, we define the following hopes called P-hopes: for all x, y ∈ G

P : xPy = (xP )y ∪ x(Py),

P r : xP ry = (xy)P ∪ x(yP ),

P l : xP ly = (Px)y ∪ P (xy).

The (G,P ),(G,P r) and (G,P l) are called P-hyperstructures. The most
usual case is if (G, ·) is semigroup, then xPy = (xP )y ∪ x(Py) = xPy and
(G,P ) is a semihypergroup but we do not know about (G,P r) and (G,P l).
In some cases, depending on the choice of P, the (G,P r) and (G,P l) can
be associative or WASS. If more operations are defined in G, then for each
operation several P -hopes can be defined.

Definition 1.2. [18] Let H a set with n operations (or hopes) ⊗1, ...,⊗n and
a map (or multivalued map) f : H → H(orf : H → P (H) − {∅}, resp.),
then n hopes ∂1, ∂2, ..., ∂n on H can be defined, called theta-hyperoperations
(theta-hopes and write ∂-hope) by putting x∂iy = {f(x)⊗iy, x⊗if(y)},∀x, y ∈
H, i ∈ {1, 2, ..., n}, in case where ⊗i are hopes or f is multivalued we have
x∂iy = (f(x) ⊗i y) ∪ (x ⊗i f(y)),∀x, y ∈ H, i ∈ {1, 2, ..., n}. If ⊗i is asso-
ciative then ∂i is WASS. A special case for a map f , is to take the union
of this with the identity id. Thus, we consider the map f ≡ f ∪ (id), so
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f(x) = {x, f(x)}, ∀x ∈ G, which is called b−∂−hope, we denote it by (∂),
so we have

x∂y = {xy, f(x) · y, x · f(y)}, x, yG.
Remark that ∂ contains the operation (·), so it is b-operation. Moreover, if
f : G → P (G) is multivalued then the b − ∂-hopes is defined by using the
ff(x) = {x} ∪ f(x),∀x ∈ G.

Motivation for the definition of the theta-hope is the map derivative
where only the multiplication of functions can be used. Thus, for two func-
tions s(x), t(x), we have s∂t = {s′t, st′}, (′) denotes the derivative.

Examples 1.1. (a) For first degree polynomials gi(x) = aix+ bi we have
g1∂g2 = {a1a2x + a1b2, a1a2x + b1a2} so it is a hope. All polynomials
x+c, where c be a constant, are units.

(b) The constant map. Let (G, ·) group and f(x) = a, thus x∂y =
{ay, xa},∀x, y ∈ G. If f(x)=e, then x∂y = {x, y}, the smallest in-
cidence hope.

Properties 1.1. If (G, ·) semigroup: ∀f , the ∂-hope is WASS. ∀f , the
b-∂-hope (∂) is WASS. If f is projection and homomorphism, then (∂) is
associative. If (·) is reproductive then (∂) is also reproductive:

x∂G =
⋃
g∈G

{f(x) · g, x · f(g)} = G.

If (·) is commutative then (∂) is commutative. If f is into the centre of G,
then (∂) is commutative. If (·) is COW then, (∂) is COW. u is right unit
element if f(u)=e, where e a unit in (G, ·). The elements of the kernel of
f, are the units of (G, ∂). Let (G, ·) a monoid with unit e and u a unit in
(G, ∂), then f(u)=e. The x′ = (f(x))−1u and x′ = u(f(x))−1, are the right
and left inverses of x, resp. We have two-sided inverses iff f(x)u = uf(x).

Proposition 1.1. Let (G, ·) be a group then, for all maps f : G → G, the
hyperstructure (G, ∂) is an Hv-group.

Hopes on any type of matrices can be defined [20],[21],[22].
There are methods to enlarge or to reduce hopes [16]:



5

Definition 1.3. Let (H, ·) be hypergroupoid. We remove h ∈ H, if we take
the restriction of (·) in the set H −{h}. h ∈ H absorbs h ∈ H if we replace
h by h and h does not appear. h ∈ H merges with h ∈ H, if we take as
product of any x ∈ H by h, the union of the results of x with both h, h, and
consider h and h as one class.

2 Hv-rings, Hv-fields, Representations

The main tool to study hyperstructures are the fundamental relations β*,
γ* and ε*, which are defined, in Hv-groups, Hv-rings and Hv-vector spaces,
resp., as the smallest equivalences so that the quotient would be group, ring
and vector space, resp. The relation β* was introduced by Koskas in 1970,
the γ*, ε*, by Vougiouklis and he named them Fundamental. A way to find
the fundamental classes is given by theorems as the:

Theorem 2.1. Let (H, ·) be an Hv-group and denote by U the set of all
finite products of elements of H. We define the relation β in H by setting
xβy iff {x, y} ⊂ u where u ∈ U. Then β* is the transitive closure of β.

An element is called single if its fundamental class is singleton.
Analogous theorems for γ* in Hv-rings, ε* in Hv-modules and Hv-vector

spaces, are also proved. he analogous theorem in the case of an Hv-ring:

Theorem 2.2. Let (R,+, ·) be an Hv-ring. Denote by U the set of all finite
polynomials of elements of R. We define the relation γ in R as follows xγy
iff {x, y} ⊂ u where u ∈ U. Then γ* is the transitive closure of the relation
γ.

Definition 2.1. Let (R,+, ·) be ring and f : R → R, g : R → R be two
maps. We define two hopes (∂+) and (∂·), called both ∂-hopes, on R as
follows

x∂+y = {f(x) + y, x+ f(y)} and x∂·y = {g(x) · y, x · g(y)},∀x, y ∈ G.

A hyperstructure (R,+, ·), where (+), (·) are hopes which satisfy all
Hv-ring axioms, except the weak distributivity, will be called Hv-near-ring.
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Proposition 2.1. (a) Let (R,+, ·) ring and f : R → R, g : R → R
maps. The (R, ∂+, ∂·), is an Hv-near-ring. (∂+) is commutative.

(b) Let (R,+, ·) a ring and f : R→ R, g : R→ R maps, then (R, ∂+, ∂·),
is an Hv-ring.

(c) In the group of integers (Z,+) take n 6= 0 a natural. Take f : f(0) =
n, f(x) = x,∀x ∈ Z− {0}. Then (Z, ∂)/β∗ ∼= (Zn,+).

(d) In the ring of integers (Z,+, ·) fix a natural n 6= 0. Take f with
f : f(0) = n, f(x) = x,∀x ∈ Z− {0}. Then (Z, ∂+, ∂·) is an Hv-near-
ring, with (Z, ∂+, ∂·)/γ

∗ ∼= Zn.

(e) In (Z,+, ·) and n 6= 0 a natural. Take f with f : f(0) = n, f(x) =
x, ∀x ∈ Z−{n}. Then (Z, ∂+, ∂·) is an Hv-ring, moreover (Z, ∂+, ∂·)/γ

∗ ∼=
Zn.

Fundamental relations are used for general definitions. Thus we have
[13],[14],[15]:

Definition 2.2. An Hv-ring (R,+, ·) is called Hv-field if R/γ∗ is a field.
The elements of a hyperfield are called hypernumbers. In the special case
when strong axioms are valid then (R,+, ·) is called hyperfield.

In the Proposition 2.1 (e) remark that in the case for n = p, prime, then
(Z, ∂+, ∂·) is an Hv-field.

Using again the fundamental relations we may obtain more general hy-
perstructures [16],[17].

Classifying the several classes of hyperfields similar to hyperrings we
have the following:

Definition 2.3. An Hv-field is additive if the addition is hope and the
multiplication is ordinary operation. An Hv-field is multiplicative if its mul-
tiplication is hope and the addition is ordinary operation.

Several weak properties can take stronger forms as for example x(y+z) ⊂
xy + xz,∀x, y, z ∈ R, instead of the weak distributivity then we have the
inclusion distributivity.
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One can see the enormous number of hyperfields, even in the finite case,
we may obtain by enlarging the ordinary fields by putting in the results of
special couples of special elements more, extra, elements. Then we obtain
Hv-fields where all the weak properties are valid.

Hv-structures are used in Representation Theory. Representations (ab-
breviated by rep) of Hv-groups can be considered by generalized permuta-
tions or by Hv-matrices [13],[15],[17]. Reps by generalized permutations can
be achieved using translations. In this theory the single elements are playing
a crucial role. We present here the hypermatrix rep in Hv-structures:

Definition 2.4. Hv-matrix is called a matrix with entries elements of an
Hv-ring or Hv-field. The hyperproduct of two Hv-matrices (aij) and (bij),
of type m × n and n × r respectively, is defined, in the usual manner, and
it is a set of m × r Hv-matrices. The sum of products of elements of the
Hv-ring is the union of the sets obtained with all possible parentheses put
on them, i.e. the n-ary circle hope on the hyperaddition. The hyperproduct
of Hv-matrices does not necessarily satisfy WASS.

The problem of the Hv-matrix representations is the following :
Let (H, ·) be Hv-group. Find an Hv-ring R, a set MR = {(aij)|aij ∈ R}

and a map

T : H →MR : h 7→ T (h) such that T (h1h2)∩T (h1)T (h2) 6= ∅,∀h1, h2 ∈ H.

The map T is called Hv-matrix rep. If the T (h1h2) ⊂ T (h1)(h2),∀h1, h2 ∈ H
is valid, then T is called inclusion rep. If T (h1h2) = T (h1)(h2) = {T (h)|h ∈
h1h2}, ∀h1, h2 ∈ H, then T is called good rep and then an induced rep T*
for the hypergroup algebra is obtained. If T is one to one and good then it
is a faithful rep.

The problem of reps is complicated because the cardinality of the prod-
uct of Hv-matrices is very big. Bu it can be simplified in special cases such
as the following:

(a) TheHv-matrices are overHv-rings with 0 and 1 and if these are scalars.

(b) The Hv-matrices are over very thin Hv-rings.
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(c) The case of 2×2 Hv-matrices, since the circle hope coincides with the
hyperaddition.

(d) The case of Hv-rings in which the strong associativity in hyperaddition
is valid.

(e) The case of Hv-rings which contains singles, then these act as ab-
sorbings.

The main theorem of reps is the following:

Theorem 2.3. A necessary condition in order to have an inclusion rep
T of an Hv-group (H, ·) by n × n Hv-matrices over the Hv-ring (R,+, ·)
is the following: For all classes β∗(x), x ∈ H there must exist elements
aij ∈ H, i, j ∈ {1, ..., n} such that

T (β∗(a)) ⊂ {A = (a′ij)|a′ij ∈ γ∗(aij), i, j ∈ {1, ..., n}}

So every inclusion rep T : H → MR: a 7→ T (a) = (aij) induces a
homomorphic rep T ∗ of the group H/β∗ over the ring R/γ* by setting
T ∗(β∗(a)) = [γ∗(aij)],∀β∗(a) ∈ H/β∗, where the γ∗(aij) ∈ R/γ∗ is the ij
entry of the matrix T ∗(β∗(a)). Then T ∗ is called fundamental induced rep
of T .

For more results on rep theory one can see [13],[15],[17],[21].

3 The e-hyperstructures

The Lie-Santilli theory on isotopies was born in 1970’s to solve Hadronic
Mechanics problems. Santilli proposed a ”lifting” of the n-dimensional triv-
ial unit matrix of a normal theory into a nowhere singular, symmetric,
real-valued, positive-defined, n-dimensional new matrix. The original the-
ory is reconstructed such as to admit the new matrix as left and right unit.
The isofields needed in this theory correspond into the hyperstructures were
introduced by Santilli and Vougiouklis in 1996 [10] and they are called e-
hyperfields. The Hv-fields can give e-hyperfields which can be used in the
isotopy theory in applications as in physics [8],[9] or biology. We present in
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the following the main definitions and results restricted in the Hv-structures.
This construction is based on the partial ordering of the Hv-structures and
the Little Theorem [4], [5], [10], [11], [19], [20].

Definition 3.1. A hyperstructure (H, ·) which contain a unique scalar unit
e, is called e-hyperstructure. In an e-hyperstructure we normally assume
that for every element x, there exists an inverse x−1, i.e. e ∈ x ·x−1∩x−1 ·x.
The inverses are not necessarily unique.

Definition 3.2. A hyperstructure (F,+, ·), where (+) is an operation and
(·) is a hope, is called e-hyperfield if the following axioms are valid:

(a) (F,+) is an abelian group with the additive unit 0,

(b) (·) is WASS,

(c) (·) is weak distributive with respect to (+),

(d) 0 is absorbing element: 0 · x = x · 0 = 0,∀x ∈ F ,

(e) there exists a multiplicative scalar unit 1, i.e. 1 ·x = x ·1 = x,∀x ∈ F ,
and

(f) for every x ∈ F there exists a unique inverse x−1, such that 1 ∈
x · x−1 ∩ x−1 · x.

The elements of an e-hyperfield are called e-hypernumbers. In the case that
the relation: 1 = x · x−1 = x−1 · x, is valid, then we say that we have a
strong e-hyperfield.

Definition 3.3. The Main e-Construction. Given a group (G, ·), where e
is the unit, then we define in G, a large number of hopes (⊗) as follows:

x⊗ y = {xy, g1, g2, ...},∀x, y ∈ G− {e}, and g1, g2, ... ∈ G− {e}

g1, g2,... are not necessarily the same for each pair (x,y). Then (G,⊗)
becomes an Hv-group, in fact is Hb-group which contains the (G, ·). The
Hv-group (G,⊗) is an e-hypergroup. Moreover, if for each x,y such that
xy = e, so we have x⊗ y = xy, then (G,⊗) becomes a strong e-hypergroup
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The proof is immediate. Moreover one can see that the unit e is a unique
scalar and for each x in G, there exists a unique inverse x−1, such that 1 ∈
x·x−1∩x−1 ·x and if this condition is valid then we have 1 = x·x−1 = x−1 ·x.
So the hyperstructure (G,⊗) is a strong e-hypergroup.

Remark. The above main e-construction gives an extremely large class
of e-hopes. These e-hopes can be used in the several more complicate hy-
perstructures to obtain appropriate e-hyperstructures. However, notice that
the most useful are the ones where only few products are enlarged.

Examples 3.1. Consider the finite-non-commutative quaternion group Q =
{1,−1, i,−i, j,−j, k,−k}. Using this operation one can obtain several hopes
which define very interesting e-groups. For example, denoting i = {i,−i}, j =
{j,−j}, k = {k,−k} we may define the (∗) hope by the table:

∗ 1 -1 i -i j -j k -k
1 1 -1 i -i j -j k -k
-1 -1 1 -i i -j j k k
i i -i -1 1 k -k -j j
-i -i i 1 -1 -k k j -j
j j -j -k k -1 1 i -i
-j -j j k -k 1 -1 -i i
k k k j -j -i i -1 1

-k -k k -j j i -i 1 -1

The hyperstructure (Q, ∗) is strong e-hypergroup because 1 is scalar unit
and the elements -1, i, -i, j, -j, k and -k have unique inverses the elements -1,
-i, i, -j, j, -k and k, resp., which are the inverses in the basic group. Thus,
from this example one can have more strict hopes.

In [4], [5] a P-hope was introduces which is appropriate to obtain e-
hyperstructures:

Construction 3.1. Let (G, ·) be an abelian group and P any subset of G
with more than one elements. We define the hyperoperation ×P as follows:

x×p y =

{
x · P · y = {x · h · y|h ∈ P} if x 6= e and c 6= e

x · y if x = e or y = e
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we call this hope Pe-hope. The hyperstructure (G,×p) is an abelian Hv-
group.

4 Hv-Lie algebras

Definition 4.1. [15],[21],[22] Let (F,+, ·) be an Hv-field, (V,+) be a COW
Hv-group and there exists an external hope

· : F ×V→ P (V)− {∅} : (a, x)→ ax

such that, ∀a, b ∈ F and x, y ∈ V we have a(x + y) ∩ (ax + ay) 6= ∅, (a +
b)x ∩ (ax + bx) 6= ∅, (ab)x ∩ a(bx) 6= ∅, then V is called an Hv-vector
space over F. In the case of an Hv-ring instead of an Hv-field then the Hv-
modulo is defined. In these cases the fundamental relation ε* is the smallest
equivalence relation such that the quotient V/ε* is a vector space over the
fundamental field F/γ*.

The general definition of an Hv-Lie algebra over F is given [11], [21],
[22], as follows:

Definition 4.2. Let (L,+) be an Hv-vector space over the Hv-field (F,+, ·),
take the canonical map φ : F → F/γ* with ωF = {x ∈ F : φ(x) = 0}, 0 is
the zero of F/γ*. Similarly, ωL the core of φ′ : L→ L/ε* and denote again
0 the zero of L/ε*. Consider the bracket (commutator) hope: [, ] : L×L→
P (L) : (x, y) → [x, y] then L is an Hv-Lie algebra over F if the following
axioms are satisfied:

(L1) The bracket hope is bilinear, i.e. ∀x, x1, x2, y, y1, y2 ∈ L, λ1, λ2 ∈ F
[λ1x1 + λ2x2, y] ∩ (λ1[x1, y] + λ2[x2, y]) 6= ∅
[x, λ1y1 + λ2y2] ∩ (λ1[x, y1] + λ2[x, y2]) 6= ∅,

(L2) [x, x] ∩ ωL 6= ∅, ∀x ∈ L

(L3) ([x, [y, z]] + [y, [z, x]] + [z, [x, y]]) ∩ ωL 6= ∅, ∀x, y ∈ L

Now we can see theta hopes in Hv-vector spaces and Hv-Lie algebras:
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Theorem 4.1. Let (V,+, ·) be an algebra over the field (F,+, ·) and f :
V → V be a map. Consider the ∂-hope defined only on the multiplication
of the vectors (·), then (V,+, ∂) is an Hv-algebra over F, where the re-
lated properties are weak. If, moreover f is linear then we have more strong
properties.

Definition 4.3. Let (A,+, ·) be an algebra over the field F. Take any map
f : A→ A, then the ∂-hope on the Lie bracket [x, y] = xy − yx, is defined
as follows

x∂y = {f(x)y − f(y)x, f(x)y − yf(x), xf(y)− f(y)x, xf(y)− yf(x)}.

Remark that if we take the identity map f(x) = x,∀x ∈ A, then x∂y =
{xy − yx}, thus we have not a hope and remains the same operation.

Proposition 4.1. Let (A,+, ·) be an algebra over the field F and f : A→ A
be a linear map. Consider the ∂-hope defined only on the multiplication of
the vectors (·), then (A,+, ∂) is an Hv-algebra over F, with respect to the ∂-
hopes on Lie bracket, where the weak anti-commutativity and the inclusion
linearity is valid.

Let (A,+, ·) be an algebra and f : A → A : f(x) = a be a constant
map. Consider the ∂-hope defined only on the multiplication of the vectors
(·), then (A,+, ∂) is an Hv-Lie algebra over F. If we take a=e, the unit of
the multiplication, then the properties become more strong.

The Hv-structures can be used as models mainly as an organized devise
in other branches of mathematics and for several applied sciences as well.
One application of this type is the realization of the graded classical Lie alge-
bras. These realizations are not only for finite dimensional Lie-algebras but
for infinite dimensional, for example the Kac-Moody Lie algebras, as well
[7], [11], [22]. The main point of the realizations is the hyperproduct of any
two elements to be homogeneous, i.e. to have the same degree. Therefore
the fundamental classes are smaller than the homogeneous subspaces.

5 Isohypernumbers, Genohypernumbers

According to Santillis iso-theory and geno-theory, we have the following
basic definitions [8], [9]:
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Definition 5.1. On a field F = (F,+,×), a general isofield F̂ = F̂ (â, +̂, ×̂)
is defined to be a field with elements â = a × 1̂, called isonumbers, where
a ∈ F , and 1̂ is a positive-defined element generally outside F, equipped with
two operations +̂ and ×̂ where +̂ is the sum with the conventional additive
unit 0, and ×̂ is a new multiplication

â×̂b̂ := â× T̂ × b̂, with 1̂ = T̂−1,∀â, b̂ ∈ F̂ (i)

called iso-multiplication, for which 1̂ is the left and right unit of F̂ ,

1̂×̂â = â× 1̂ = â,∀â ∈ F̂ (ii)

called iso-unit. The rest properties of a field, are reformulated analogously
and there are valid.

Definition 5.2. Genotopies were introduced by Santillis from the Greek
meaning of ”inducing topologies and they contain isotopies as special case.
In isotopies there is no ordering but in genotopies there is. The multipli-
cation of two quantities is ordered to the right and denoted by >, when the
first quantity multiplies the second to the right, while it is ordered to the
left, and denoted by <, when the second quantity multiplies the first to the
left. On a field F = (F,+,×), a genofield to the right F̂> = F̂>(â,+, >̂)
is defined to be a field with elements â> = â> × 1̂>, called genonumbers
to the right, where a ∈ F , and 1̂> is a quantity generally outside F and
F̂ (â,+, ×̂), equipped with two operations + and >̂ where + is the sum with
the conventional additive unit 0, and >̂ is a new multiplication

â>̂b̂ := â× Q̂× b̂, with1̂> = Q̂−1,∀â, b̂ ∈ F̂ (iii)

called genomultiplication to the right, for which 1̂> = Q̂−1 is the left and
right unit of F̂>,

1̂>>̂â> ≡ â>>̂1̂> ≡ â>,∀â> ∈ F̂ > (iv)

called genounit to the right. The rest properties of a field, are reformulated
analogously and there are valid.
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We transfer this theory to hypernhmbers only on the case of isonumbers
and analogously we can transfer this to genonumbers. To transfer this the-
ory into the hyperstructure case we generalize only the new multiplication
×̂ from (i), by replacing with a hope including the old one. We introduce
two general constructions on this direction as follows:

Construction 5.1. The general enlargement. On a field F = (F,+, ·) and
on the isofield F̂ = F̂ (â, +̂, ×̂) we replace in the results of the iso-product

â×̂b̂ = â× T̂ × b̂, with 1̂ = T̂−1

of the element T̂ by a set of elements Ĥab = {T̂ , x̂1, x̂2, ...} where x̂1, x̂2, ... ∈
F̂ , containing T̂ , for all hyperproducts â×̂b̂ for which

â, b̂ /∈ {0̂, 1̂} and x̂1, x̂2, ... ∈ F̂ − {0̂, 1̂}

If one of â, b̂, or both, is equal to 0̂ or 1̂, then Ĥab = T̂ . Therefore the
new iso-hope is

â×̂b̂ = â× Ĥab × b̂ = â× {T̂ , x̂1, x̂2, ...} × b̂,∀â, b̂ ∈ F̂ (iii)

F̂ = F̂ (â, +̂, ×̂) becomes isoHv-field, and the elements of F̂ are called
isoHv-numbers or isonumbers.

Remark 5.1. (a) More important hopes, of the above construction, are
the ones where only for few ordered pairs (â, b̂) the result is enlarged,
even more, the extra elements x̂i, are only few, preferable exactly one.
Thus, this special case is if there exists only one pair (â, b̂) for which

â×̂b̂ = â× {T̂ , x̂} × b̂,∀â, b̂ ∈ F̂

and the rest are ordinary results, then we have a hyperstructure called
very thin isoHv-field [1], [10], [11], [19].

(b) The assumption that Ĥab = {T̂}, if one of â, b̂, is equal to 0̂ or 1̂,
together with the assumption that x̂i, are not 0̂ or 1̂, guarantee that
the isoHv-field has exactly one scalar absorbing element 0̂, one exactly
scalar 1̂, and every element â ∈ F̂ , has exactly one inverse element.
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Construction 5.2. The P-hope. Consider any isofield F̂ = F̂ (â, +̂, ×̂)
with â = a × 1̂, the isonumbers, where a ∈ F , and 1̂ is a positive-defined
element generally outside F, with two operations +̂ and ×̂, where +̂ is the
sum with the conventional additive unit 0, and ×̂ is the iso-multiplication

â×̂b̂ := â× T̂ × b̂, with1̂ = T̂−1,∀â, b̂ ∈ F̂

Take any set p̂ = {T̂ , p̂1, ..., p̂s}, with p̂1, ..., p̂s ∈ F̂ − {0̂}, we define the
isoP-Hv-field, F̂ = F̂ (â, +̂, ×̂P ) where the hope ×̂P is defined as follows:

â×̂P b̂ :=

{
â× P̂ × b̂ = {â× ĥ× b̂|ĥ ∈ P̂} if â 6= 1̂ and b̂ 6= 1̂

â× T̂ × b̂ if â = 1̂ or b̂ = 1̂
(iv)

The elements of F̂ are called isoP-Hv-numbers.

Remark 5.2. The most important of this construction is when P̂ = {T̂ , p̂},
that is that P̂ contains only one p̂ except T̂ . The inverses in isoP-Hv-fields,
are not necessarily unique.

Examples 5.1. Non degenerate examples on definition 3.3 and on con-
struction 3.1 on the small finite field (Z5,+, ·):

1. In the Ẑ5 = Ẑ5(â, +̂, ×̂), where we denote Ẑ5 = {0̂, 1̂, 2̂, 3̂, 4̂}, the weak
associative multiplicative hope is described by the Table 1:

×̂ 0̂ 1̂ 2̂ 3̂ 4̂

0̂ 0̂ 0̂ 0̂ 0̂ 0̂

1̂ 0̂ 1̂ 2̂ 3̂ 4̂

2̂ 0̂ 2̂ 4̂ 1̂ 3̂,2̂

3̂ 0̂ 3̂ 1̂ 4̂ 2̂

4̂ 0̂ 4̂ 3̂ 2̂ 1̂

×̂ 0̂ 1̂ 2̂ 3̂ 4̂

0̂ 0̂ 0̂ 0̂ 0̂ 0̂

1̂ 0̂ 1̂ 2̂ 3̂ 4̂

2̂ 0̂ 2̂ 1̂, 4̂ 1̂, 4̂ 2̂,3̂

3̂ 0̂ 3̂ 1̂, 4̂ 1̂, 4̂ 2̂,3̂

4̂ 0̂ 4̂ 2̂,3̂ 2̂,3̂ 1̂,4̂

Table1 Table2

2. In order to define a generalized P-hope on Ẑ5 = Ẑ5(â, +̂, ×̂), where we
take P̂ = {1̂, 4̂}, the weak associative multiplicative hope is described
by the Table 2. The hyperstructure Ẑ5 = Ẑ5(â, +̂, ×̂), is commutative
and associative on the multiplication hope.
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6 Santilli’s hyper-admissibility

The Lie-Santilli admissibility on square matrices is not faced in this presen-
tation. However we can present this problem on the non-square case. This
problem can be faced in two ways:

1. using ordinary numbers, as real or complex numbers, so using ordinary
matrices and hopes, instead of operations on non-square matrices,

2. using hypernumbers (e-hypernumbers) as entries and the ordinary op-
erations on non-square hypermatrices.

The general definition, is the following [11], [21]:

Construction 6.1. Let (L = Mm×n,+) be a Hv-vector space of m × n
hyper-matrices over the Hv-field (F,+,×), φ : F → F/γ∗, the canonical
map and ωF = {x ∈ F : φ(x) = 0}, where 0 is the zero of the fundamental
field F/γ*. Similarly, let ωL be the core of the canonical map φ′ : L→ L/ε∗

and denote by the same symbol 0 the zero of L/ε*. Take any two subsets
R,S ⊆ L then a Santillis Lie-admissible hyperalgebra is obtained by taking
the Lie bracket, which is a hope:

[, ]RS : L× L→ P(L) : [x, y]RS = xRty − yStx.

Notice that [x, y]RS = xRty − yStx = {xrty − ystx/r ∈ R and s ∈ S}
Special cases, but not degenerate, are the ”small” and ”strict” ones:

• R = e. Then, [x, y]RS = xy − yStx = {xy − ystx/s ∈ S}

• S = e. Then, [x, y]RS = xRty − yx = {xrty − yx/r ∈ R}

• R = {r1, r2}, and S = {s1, s2} then

[x, y]RS = xRty − yStx =

{xrt1y − yst1x, xrt1y − yst2x, xrt2y − yst1x, xrt2y − yst2x}

Remark 6.1. In the above constructions whenever a ”shift” of elements is
needed, as in Santilli’s isotheory [8], [9], then the elements for the subsets
S and R must belong to a set of hypermatrices where a reversibility could
be applied.
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