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1. STATEMENT OF THE PROBLEM

1.1: The main hypothesis. In this paper we study the cosmological quasar redshift and
their internal redshifts and blueshifts via a new geometry, called isominkowskian geometry, which
is constructed as a covering of the Minkowskian geometry for the representation of
electromagrietic waves and extended particles propagating within inhomogeneous and anisotropic
physical media. The complementary isoeuclidean and isoriemannian geometries are also indicated.

Recall that: 1) homogeneity and isotropy of empty space aré the geometric pillars of the
conventional Doppler 1aw; 2) quasars chromospheres are inhomogeneous (because of the local
variation ol the density) and anisotropic (because of the intrinsic angular momentum which
creates a preferred direction in the physical medium, the underlying vacuum remaining
homogeneous and isotropic); and 3) light is emitted in the interior of the quasars and propagates in
their large chromospheres (of the order of millions of radial km) before reaching empty space.

The isominkowskian geometry implies a generalization of the Doppler law, called
isodoppler law, which predicts: 1) a frequency—dependent redshift for inhomogeneous and
anisotropic media of low density such as atmospheres and chromospheres (in which case light Joses
energy to the medium); 2) a frequency-dependent blueshift for inhomogeneous and anisotropic
media of very high densities, such as those in the core of the quasars (in which case light acquires
energy from the medium); and 3) lack of any shift for light propagating in homogeneous and
isotropic media such as water.

Our main hypothesis is that the difference between the cosmological redshift of quasars
over that of the associated galaxies is entirely reducibl to the redshift of light while traveling in
the quasar chromospheres before reaching empty space, thus permitting the quasars to be at rest
with respect to the associated galaxies (or being expelled at small, thus ignorable speeds), while the
internal quasar red/blue/shifts is due to the particular frequency dependence of the redshift itself.
According to this hypothesis, the quasar cosmological redshifts and their internal red/blue/shifts are
due to interior physical characteristics of the quasars and, more specifically, to the inhomogeneity
and anisotropy of their chromospheres, i.€., to the departures from the geometry of empty space.

1.2: Experimental verifications. In this paper we show that the isominkowskian geometry
provides a numerical representation of: 1) the data by Arp [i] on the cosmological redshift of
quasars, thus reducing them at rest with respect to the associated galaxy, as conf irmed by a number
of gamma spectroscopic data establishing the physical connection of the quasars with the
associated galaxy; 1) the data by Sulentic and others see [2] and quoted literature) on the quasar
internal red/blue/shifts; and 111) the redshift of Fraunhofer lines of light from the inhomogeneous
and anisotropic chromosphere of our Sun (see Marmet's studies [3] and vast literature therein).

Moreover, the isominkowskian geometry identifies intriguing interconnections between the
seemingly different data i, I, {1I, and permits the prediction of novel, experimentally verifiable
effects, such as the prediction that the dominance of red of Sun light at sunset is partially (but not
entirely) an isoredshift due to the inhomogeneity and angotropy of our atmosphere. This prediction
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is supported by the fact that the sky at the zenith is not red, in which case the increase in redness at
the horizon would be completely explamable with conventional means (scattering, absorption, etc.).
Instead, the dominance of blue at the zenith and of red at the horizon supports the
isominkowskian geometry.

In this paper we also present of a number of experimental verifications of the
isominkowskian geometry in particle physics which are indirectly, yet significantly related to the
quasar red/blue/shifts, such as the anomalous behaviour of the meanlife of unstable hadrons with
speed whose structure is fully eguivakent to the isodoppler law, the data on the Bose-Einstein
correlation for the UAL experiments at CERN, the anomalous total magnetic moment of few—body
nuclei, and others.

Exterior problem:
Conventional geometries

Interior problem:
Isogeometries

QUASAR EARTH

q>>12g, Av =~ 0

ASSOCIATED GALAXY

Fig. 1. A schematic view on the main hypothesis of this paper (Sect. 1.1) according to the original
proposal (101

Above all, this paper is intended to stimulate the experimental resolution of the now vexing
problem of the quasar shifts via novel direct experiments, such as measure the isoredshift predicted
for light from distant stars passing through the Sun’s chromosphere, or a planetary atmosphere, or
measure the predicted isoredshift component of the Sun’s light at sunset by following a sufficient
number of Fraunhofer lines from the zenith to the horizon.

All these measures, if confirmed, would provide final evidence that a portion (but not
necessarily all} of the cosmological redshift of quasars is of interior geometric character due to the
departures from the homogeneity and isotropy of space caused by the inhomogeneity and
anisotropy in their environment. The separate problem of the cosmological redshift of galaxies is
only briefly considered.

1.3: Connection with alternative theories. Numerous alternative theories (i.e., of non—
Doppler character) have been submitted ‘see [1-3] and review (4) such as Arp's theory of the
creation of matter in the quasars, Marmet theory based on photon scattering, and others. These
iheories are capable of representing the cosmological quasar redshift, although their capability to
represent the internal red/blue/shift and other recent evidence is under study.

The continuation of the study of these alternative interpretations is encouraged here
because each one adds valuable information to the other and, in the final analysis, all quantitative
interpretations may well result to be deeply interconnected.

For instance, Arp’s theory emerges from our studies in a new light because the creation of
matter may uitimately result to be an interplay between matter and antimatter which is prohibited
in conventional geometries, but permitted in our isogeometries because of an inner conjugation
indicated later on. Similarly, Marmet's representation of the data on the Sun’s chromosphere (3] may
essentially result to be an operator counterpart of our classical studies. We regret the inability to
study these interconnections in detail at this time for lack of space.

1.3: A historical distinction. An aspect of fundamental relevance for the studies of this
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paper is the historical distinction between the exterior dynamical problem (i.e., electromagnetic
waves and point-like test bodies moving in the homogeneous and isotropic vacuum), and the
interior dynamical problem (ie., electromagnetic Waves and extended test bodies moving within
inhomogeneous and anisotropic physical media). This distinction was introduced by the f ounders of
analytic dynamics, and kept up to the first part of this century (see, €.8., Schwartzschild's two
papers (4], the fwrst famous one on the exterior problem and the second little known paper on the
interior problem, Or early treatises in gravitation, €.8., ref< 6] the first with a preface by Einstein).

Regrettably, the above distinction was progressively relaxed, up to the current condition of
virtual complete silence in the specialized literature. This is due to the belief that the interior
probleim can be reduced 1o Lo the exterior form, which ts certainly admissible as an approxiation
(see Schwartzchild's |5 insistence on the approximate character of his solution for the interior
|>|’uhlv|n). The pont s thal such a reduction cannot e enacl, as established by the so called No
Reduction Theorenms [7] which prove that an intertor system (such as a satellite during re-entry n
Farth's atmosphere with a monotonically decaying angular momentum) stimply cannot be
consistently reduced to a finite collection of ideal elementary particles each in a stable orbit with
conserved angular momentum.

With the clear understanding that the Minkowskian and Riemannian geometries are exactly
valid in empty space, the above theorems establish their inapplicability (rather than “violation”) for
interior conditions on numerous, independent, topological, analytic, geometric and other grounds.
For instance, interior systems are nonlinear in the velocities (@ missile in atmosphere has a drag
force nowadays proportional 1o the tenth power of the speed and more), nonlocal-integral
(because the shape of the test body directly affects its trajectory, thus calling for integral terms),
and nonpotential (because the notion of potential has no mathematical or physical meaning for
contact interior forces and the systems are variationally nonselfadjoint [7). The inapplicability of
the Minkowskian and Riemannian geometries for these interior conditions is sO evident to require
no additional comment. The only scientif ically meaningful issue is the construction of appropriate
covering geometries specifically conceived for interior conditions.

1.4: Insufficiencies of the conventional interpretation. The conventional interpretation
of quasars redshifts is based on the celebrated Doppler aw

w = wgll-veosa/cly, ¥ = (1-v2/c2TH, (LD

where a is the angle between the direction of light and of motion of the source and Cq is the speed
of light in vacuum. The redshift Aw = ~ Wy < 0, is therefore reduced to the computation of the
speed v of the quasars with respect to Earth (see, e.g., refs [6D. Note that such interpretation is: 1)
purely classical, 2) relativistic without gravitational corrections, and 3) based on the assumption that
light is emitted by the quasars and propagates immediately in vacuum without any effect when
passing through the chromospheres.

The theoretical insufficiencies of law (1.1) for interior conditions are beyond credible
doubts. The homogeneity and isotropy of empty space are known to be the geometric pillars for the
derivation of the law. Its inapplicability for light propagating within inhomogeneous and anisotropic
atmospheres is then unquestionable.

Astrophysical insufficiencies of law (1.1) for the interpretation of the data on quasars
redshift began to emerge with the discovery of the quasars themselves, and then progressively
increased in time [1,2,31. Among the most visible inconsistencies we recall [1oc. cit.] galaxies younger
than their stars, galaxies older than the life of the universe, discrete variations of redshift, quasars
evolving into galaxies, speeds in excess of those permitted by Einsteinian theories, etc.

These and other inconsistencies have now reached such dimension and diversification to
call for a revision of the f undamental geometries used in the description of the universe.

1.5: Bibliographical notes. The isogeometries were constructed by this author to satisfy
the following conditions 1) have a structure which is nonlinear (in coordinates, velocities and any
needed additional quantity), nonlocal-integral (in all needed variables), nonpotential, inhomogeneous
and anisotropic; 2) preserve the axioms of the original geometry at the abstract level so as to permit
a geometric unification of exterior and interior problems; and 3) be coverings of conventional
geometries, thus admitting the latter as particular cases when motion returns to be in vacuum.

The methods for the construction of the isogeometries were proposed by the author back in
1978 [8] when at the Department of Mathematics of Harvard University under DOE support. They are
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called isotopies from Greek terms meanmng -preserving the topology”, and interpreted as axiom-
preserving (the broader genotopies (8] are reviewed for brevity, see in this respect the contribution
by Jannussis (24] in these proceedings). These methods essentially permit nonlinear-nonlocal-
nonhamiltonian, but axiom-preserving generalizations (called liftings) of any given mathematical
or physical structure, as outlined in Sect. 2

[sotopies were first applied to the lifting of classical Hamiltonian mechanics and Lie’s
theory into covering theories (7.8 The first isotopic lifting of the Minkowskian geometry was
proposed is ref. [9] of 1982. The isotopic lifting of the Riemannian geometry was first proposed in
ref. [10] of 1988, jointly with the proposal to elaborate Arp's data [1] (Fig. 1.1). Such elaboration was
subsequently conducted by Mignani in ref. [11] A detailed study of the isogeometries first appeared
in refs [12]. Rer's [13] provide a classical presentation of the isogeometries with ref.s [14] giving the
operator counterpart. Mathematical reviews are available in ref.s [15-17), an independent physical
review is available in ref. [18. A review of the sogeometries is available in ref. [19]. Preliminary, yet
significant vertfications are provided in refs {25-36l. A comprehensive presentation of the content
of this paper is provided in ref. (37] for flat and in ref. [38] for curved isogeometries.

2: BASIC NOTIONS ON ISOTOPIES

2.1: Isotopies of the unit. The f undamental isotopies are the liftings of the n-dimensional

unit 1 = diag. {1, L., 1) of contemporary geometries into an nxn-dimensional matrix 1 whose
elements have the most general possible, nonlinear and nonlocal dependence on time t, coordinates
x, their derivatives of arbitrary order X, %, _, and any needed additional interior quantity, such as the
frequency w of the wave, the local density jt, the local temperature T, the local index of refraction
n, etc. (7.8

{ = diag. (1, Lo — 1=10 x, X, & 0, 1, T, N, ) (2.1)

under the condition (necessary for an isotopy} of preserving the original axioms of L. The above
liftings have been classified into five topologically significant classes called Kadeisvili's Classes |-V
(19,201, In this paper we shall only consider liftings of Kadeisvili's Class | (with generalized units 1
that are smooth, bounded, nowhere degenerate, Hermitean and positive-def inite), which characterize
isotopies properly speaking), and of Class Il (the same as Class I but with negative-definite isounits).
For brevity we shall limit ourselves to brief comments on the remaining Class I11 (the union of Class
I and 11), IV (holding for singular isounits representing gravitational collapse) and V (with arbitrary,
e.g., discrete, isounits).

The isotopies of the unit demand, for consistency, a corresponding, compatible lifting of all
associative products AB among generic quantities A, B, into the isoproduct (8]

AB — A*B = ATB, T=fixed ,JA=Al=A—IxA=A*[= A 1=7"!, (22

whose isotopic character is ensured by the preservation of associativity, A(BC) = (AB)C — AX(B*C) =
(A*B)C. Under the above conditions, T = T Vis called the isounit and T is called the isotopic
element. Note the necessity, e.g., in number theory, of lifting the product whenever the
(multiplicative) unit is lifted and viceversa.

2.2: Tsotopies of fields. The isotopies of the unit [ = 1 and of the product AB — A*B
demand the lifting of conventional fields Fla+x) of real numbers R, complex number C and
quaternions Q with generic elements a, conventional sum + and product axb : = ab, into the so—
called isofields(12]

Faq+s) — Fa+», a=al. a=b=2aTh = @l 1T=T7". (2.3)

with elements a = al called isonumbers, conventional sum + and isoproduct (2.2), under the
condition (again necessary for an isotopy) of preserving the original axioms of F. All operations in F
must be generalized for F. We have isosquares 32 = 344 = ATa = a?l, isoquotient a/6 = (a/0ll,
isosquare roots 3} = af. etc. (see [12,14] for detailed studies).

The above liftings are nontrivial inasmuch as they imply the inapplicability under isotopies
of the entire mathematical formulations of conventional geometries. As an illustration, statements
such as “two multiplied by two equals four” are generally incorrect for isogeometries. In fact, for 1
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= 3 “two multiplied by two equals twelve”, with the understanding that the very notion of integer
number is generally lost in favor of an integro-differential notion. €.g. 9 = 2exp(Nfdxyl(x)o(x)) as for
the Cooper pair of electrons in superconductivity with wavefunctions  and ¢ (see Sect. 5.5).

2.3: Isotopy of metric spaces. Liftings | = 1, AB = AsB and F — F then require the
isotopies of vector, metric and pseudo—metric spaces, evidently because they depend on the field in
which they are defined. In fact, real metric or pseudo—metric spaces Six,g,R) with Hermitean metric
g over R must be subjected to the liftings into the so—called isospaces (first introduced in [9)

SkgR = SxgR, g=Tg 1=T% x=(lgx)leR. (2.4)

under the condition, again, of preserving the original axioms of Sixg.R). In particular, the basis of a
metric (or, more generally, vector) space is preserved under soloples [12], thus including the
preservation of the basts of a Lie algebra. This results i nontinear and nonlocal (in X, X, &, ..}
generalization of the original space, yet such that SHgR ~ Sxg R

We have indicated earlier the loss of conventional numbers under isotopies. When passing
to isospaces, one should keep in mind the loss of conventional functional analysis into a covering
formulation called functional isoanalysis [20]. In fact, the very notion of angle is lost under
isotopies (see next section), thus implying the consequential loss of trigonometry, Legendre
polynomials, etc. in favor of suitable, unique (and intriguing) covering notions [14]

2.3: Lie-isotopic theory. The preceding liftings demand a corresponding compatible
lifting of all branches of Lie’s theory into the so—called Lie-isotopic theory first submitted in (8]
and then studied in ref.s [12-20)). We can here mention only the lifting of the envelope Elg) of a Lie
algebra g and related exponentiation in terms of the original (ordered) basis {X;} of g

o0, XX =), XyeXpe X, i=j=K, -, Lpk=12.,n (2.52)

eE‘W‘X T (W X/ 11+ (W wens21+ = (e X™1=16"™,  (250)

the lifting of Lie algebra g ~ [E(g)]” with familiar Lie theorem, such as the 2-nd theorem [X;, X; ]E =
X Xj-X;X= Cij*X , into the Lie-isotopic algebras g ~ Hg)” with Lie-isotopic theoremdg), e.g.,

é: [X],XJ]E = Xi‘Xj_Xj*Xi =X|TXJ_XJTXI = C]‘Jk(l,x,).(,i,(ﬂ,H,T,n,...)‘xk, (26)

where the Cs, called structure isofunctions, are restricted by the Third Isotopic Theorem [8,16); the
lifting of transformations and related (connected) Lie groups G into the Lie—isotopic transformation
groups (8]

G:x = 0 *x 0w = TTke Ei %W TLe™ ™) = (TTe X ™11, (27b)
00) = 1, O 0W) = O(w)* 06 = 0% + W), O+ 0-w) = 1, (27a)

: MeEX2]=eex3.x3 = xl+x2+[xl,x212/2+l(x,—x),[x,.letlt/ B+, (2.70)

the lifting of the conventional representation theory into the isorepresentation theory of Lie-
isotopic algebras and groups (which is structurally nonlinear, nonlocal and noncanonical);, and other
liftings (13,141
Note the preservation of the Lie algebra axioms by the isotopic product [A, B];_ = ATB - BTA.
Note also the nontriviality of the isotopic theory from the appearance of the nonlinear—-integral
quantity T in its exponentiation (2.7a). We should also note that, even though structurally nonlinear,
nonlocal and noncanonical, the Lie-isotopic theory verifies the axioms of linearity, locality and
canonicity at the isotopic level and, for this reason, it is called isolinear, isolocal and isocanonical.
Note finally that all nonlinear-nonlocal-noncanonical theories always admit an identical
isolinear-isolocal-isocanonical reformulation with evident advantages.
2.5: Iscsymmetries. The Lie-isotopic transformation groups are turned into symmetries of
isospaces, calle¢ isosymmetries, via the following:
Theorem 2.1 [21} Let G be an N-dimensional Lie group of isometries of an m-dimensional,
metric or pseudo-metric, and real or complex space SxgF,F=RorC,

G: x =AW x (x-yMATga(x-y)=( x-ylg(xy), A'gA=Ag Al=g, (2.8
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and T is derived from the deformed metric g = Tg (see the example in the next section). Note also
that there is no need to verify isoinvariance 29) because ensured by the original invariance (2.8).

It is also easy to prove that G = G for all Class [ isotopies (but not so for other Classes for
which in general g ~ [E(g)"» g). This property identifies one of the primary applications of
isosymmetries, the reconstruction of exact symmetries when believed to be conventionally broken.
In fact, in ref.s [21] one can see the reconstruction of the exact rotational symmetry at the isotopic
level O(3) ~ O(3) for all ellipsoidical deformations of the sphere. In ref. [9] one can see the
reconstruction of the exact Lorentz symmetry at the isotopic level O(3.1) ~ 0(3.1) for all signature
preserving (T > 0) deformations of the Minkowski metric f| = Tn. See ref.s [13,14] for the
reconstructicn of additional exact symmetries.

2.6: Inequivalence of the Lie and Lie-isotopic theories. Despite the isomorphism G ~ G,
Lie and Lie-isotopic symmetries are inequivalent on numerous counts, such as: 1) G is customarily
linear-local-canonical, while G is nonhinear-nonlocal-noncanonical; 2) the mathematical structures
underlying G and G (fields, spaces, etc) are structurally different; 3) G can be derived from G via
nonunitary transformations under which

UUl =11, UAB - BAU' = ATB - BTA, T = (WUl =TT, A'= uaUl, B = usul. (2.10)

The above inequivalence also emerges in the isorepresentation theory (14] , e.g., because the
spectra of eigenvalues of the same operator are different in the two theories (due to the necessary
isotopy of eigenvalue equations Hlb> = E¥b> — Hx{b> = HTIb> = £4b> = Elb>, E # E°). Also, weights,
Cartan tensors, etc. acquire a nonlinear-nonlocal-noncanonical dependence on the base manifold,
etc.

2.7: Isodual conjugations and antimatter. The generalization of the unit permits the
identification of a new antiautomorphic conjugation1 — 19 = -1 introduced in [21] under the name
of isoduality. This map implies the exstence of isodual images of all quantities of Class [ (fields,
spaces, algebras, groups, etc.) into corresponding forms of Class [1.

In dparticular. any positive number m or isonumber m = ml is mapped into the isodual
number m% = m19 = - m or isodual sonumber md = ml9 = - M, while the isodual isonorm is
givenby [m{4=(mTm yid = - [m[ and it is negative-definite. The most intriguing properties
of isodual spaces and isodual symmetries is that they describe particles with negative-definite
energy moving backward in time.

Recali that antiparticles originated from the negative-energy solutions of conventional
relativistic equations, although such solutions were abandoned because the behaviour of the
systems was unphysical in our space-time. [sodual spaces and isodual symmetries provide a
fundamentally novel approach because the interpretation of the same negative-energy solution in
isodual spaces is now fully physical (13,14

The isogeometries therefore permit a novel cosmological conception of the structure of the
universe in which, for the limit case of an equal distribution of matter and antimatter, all total
quantities, such as total energy, total time, etc. are identically null (see ref. [38] for brevity).

3: ISOMINKOWSKIAN GEOMETRY

3.1: Isominkowskian spaces. Consider an electromagnetic wave propagating first in empty
space (exterior relativistic problem), then throughout our atmosphere (interior relativistic problem).
As well known, the Minkowski space

Then, the infinitely possible isotopes G of G characterized by the same generators and
parameters of G and new isounits 1 (isotopic elements T), leave invariant the isocomposition
on the isospaces S(xgf.g=Tg1=T7",

G x=Awex (x=yls g As(xy )=ty g x-y), ATgA=Ag AT =121, (2.9)

The above results yield the “direct universality” of the Lie-isotopic symmetries, i.e., their
capability of providing the invariance of all irfinitely possible deformations g = Tg of the original
metric g (universality), directly in the x-frame of the experimenter (direct universality). Note also
the simplicity of the explicit construction of the desired isotransformations via rule (2.7) where w
are the convertional parameters, X are the conventional generators in their adjoint representation
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MxnR): x = xx4), x4 = ct, x2=x n‘_wx" =xlx! 422+ 33 -xdxd n=diag. (1, L, 1, -3

geometrizes the homogeneity and isotropy of empty space and. as such, it is exactly valid for
exterior conditions.

The isominkowski space (first submitted in l9) is intended to geometrize the
inhomogeneity and anisotropy of interior conditions. 1t is constructeé via two simultaneous liftings,
that of the Minkowski metric 1 into the isometrict=Tn of Class 1 and the joint lifting of the unit
of Mix,n,R), 1 = diag. (1, 1, 1, 1), into the 4x4-dimensional isounit 1 = T™!, and we shall write

MRl i= Tk o o dn, 1=T>0 x2 = (i, )T e R ()
Note that isospaces M{xiR) have the most general possible nonlincar-nonlocal -noncanonical
structure because the functional dependence of 7 remains unrestricted. The Isometric can always

be (although not necessarily) diagonalized for Class 1, resulting in woseparation of the type

x2 = x!pjAx, %, ..) x! +x2 byAx, X, ...) ® + 3 bfx, %, .) x3 - x4pAx, %, ..) x4, b, >0, (3.3)

Despite evident structural differences, the joint liftings 7 ~ n=Tnand I -1=T"imply
that the isominkowskian space is locally isomorphic to Minkowskian space, M(x,i,R) =~ M(x,nR)
[9,12,14]. Owing to the positive-definiteness of the isotopic element T, it is easy to see that M(x,7,R)
and M(xn,R) coincide at the abstract level. Exterior and interior descriptions are therefore different
realizations of the same abstract geometric axioms. This is the central geometric property which is
assumed for the description of both, exterior and interior relativistic problems, and which carries
intriguing consequences, as we shall see.

3.2: Characteristic quantities of physical media. The b-quantities (at times also expressed
in the form by, = l/np) are called the characteristic quantities of the medium considered. The
inhomogeneity of the medium can be represented via an explicit dependence of the b’s on the local
density, and the anisotropy can be represented via different values among the b's, the factorization
of a preferred direction of the medium, and other means.

When the local behaviour is needed at one given interior point, one needs the full
nonlinear-nonlccal dependence of the b's. This is illustrated. e.g., by the local speed of light at one
given point when passing though our atmosphere which is given by € = cgbg = Cp/Ny, Where ny =
b[l (the local index of refraction) has a rather complex functional dependence on local quantities.

When the global behaviour throughout a given physical medium is requested, the
characteristic quantities can be averaged into constants, b°, =Aver. (b, ), ornf, = Aver. (ny) =
1, 2, 3, 4. This is evidently the case for the average speed of light throughout our atmosphere ¢ =
o/’ 4, in which case n’4 is the average index of refraction. Kote that b, =b?, = 1 in vacuum.

A first sntuitive understanding of the isominkowski spaces can be reached by noting that
the characteristic functions b, = 1/ny essentially extend the local index of refraction 1/n4 to all
space-time components. Equivalently, by recalling that physical media are generally opaque to light,
the isotopies Mx,nR) = M(x,nR) essentially extend to all physical media the geometric structure
of light in vacuum. In this sense, the characteristic constant b°, geometrizes the density of a given
medium, while the constants b’y geometrize the internal nonlinear-nonlocal effects.

It is evident that different physical media necessarily require different isounits 1. This
occurrence is similar to the need of infinitely possible Riemannian spaces in general relativity in
order to represent the infinitely possible astrophysical masses. The point here is that each mass
admits infinitely possible isounits, trivially, because each mass can be realized in infinitely possible
different densities, sizes, chemical compositions, etc.

3.3: Isominkowskian geometry. It is the geomelry of isospaces Mix,n,R) and possesses
novel characteristics as compared to the conventional geometry. Their understanding requires the
knowledge of the inapplicability mentioned in Sect. 2 of the notion of angles, trigonometry and
functional analysis at large in favor of covering isotopic notions.

To study the main characteristics, let us consider first the isoeuclidean geometry which is
evidently the space-component of the isominkowskian geometry. Consider the isoeuclidean
subspace E(x,5,R) in the 1-2 plane with diagonal isometric ang separation
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ExBRE x2 = xpex e )xt + x2 bAx, %, X, -.) x2 = inv. (3.4)

As one can see, this space is curved in the most general possible form, that is, with curvature
dependent on local coordinates x, velcities <. accelerations %, etc. (see next section). The loss of the
conventional angles then follows from the evident loss of intersecting straight lines.

At this point, the isotopies piay a central constructive role. Recall that the original space is
flat. Its image under isotopy is then isoflat. Similarly, the images of straight lines are isostraight
i.e, verify the axioms of straight lines in Esospace. This implies the possibility of reconstructing
angles under isotopies which is not possible for Riemann. The use of the isotopies of the group of
rotation [21] permits the identification of the unique isotopic image a of a conventional angle a in
£(x,8,R) giver: by a = ab b, This permils the construction of the isotopics of conventional
trigonometry, here called isotrigonometry, which is based on the following isofunctions and related
properties

Isosin@ = by 'sinlab by, lsocosa = b, ' cos (a by by, (3.5)
b,2 isocos? @ + b2 isosi’ @ = coda + sinfa = L (3.5b)

Note the deformation of the argument a — & as well as of the magnitude of trigonometric
functions 1 — bk" which are intriguimg for certain (e.g., nuclear) deformations of potential wells
and wavefunctions [14]. The rest of the isotrigonometry can then be constructed accordingly. The
extension to the three-dimensional izoeuclidean case is consequential and it is omitted here for
brevity [14].

We consider now the hyperbolic isoplane 3-4 with isoinvariant

Mix,7 Rk 2= 3 b32’x. wx JIx3 - x4 b42(x, % % .)x4 = inv. (3.6)

The isotopic image ¥ of a hyperbolic angle ispeed) v is then given by ¥ = vbgby, as provable via the
use of the isorepresentations of O(Lh (12141, with corresponding isohyperbolic functions and
related properties

isosinh v = by !sinh (vbyby, isocosh v = by~! cosh (v b3 by), (3.7a)
ba? isocosh? ¥ - b,? sosink®V = cosh® - sinh?¥ = L. (3.7D)

We are now equipped to indicate a most important feature of the isominkowskian
geometry, the reconstruction at the sotopic level of exact straight lines, perfect circles and
conventional light cones. The loss of the notion of straight line and its reconstruction under isotopy
has been indicated earlier. The preservation of perfect circles can be seen as follows. Recall that, by
conception, isotopies of Class I map the circle into the infinite families of ellipses (3.4) with
semniaxes by 2. But the unit is jointly lifted from [ = diag. (1, ) to1 = diag. (b2 b, . We then have
the deformation of each semiaxis | — bkz with the joint deformation of the unit = bk‘z. The
original circle therefore remains a perfect circle in isospace, while the ellipses emerge only when
the figure are projected in our space (see refs[13,14] for details).

We now outline the preservation of the light cone under isotopy. Let us first recall that, in
the physical reality, the speed of light & not a ~universal constant”, but a locally varying quaniily
with a rather complex functional deperdence on density, index of refraction, etc. As a result, the
“light cone” in interior problems is not a -cone”, but a rather complex hypersurfaces. The
understanding of the isominkowskian geometry requires the knowledge that the "deformed cone” of
the physical reality is mapped into a perfect cone in isospace, called light isocone, and the locally
variable speed is mapped precisely into the original, constant speed of light in vacuum C,. Consider
the isolight cone x* = 0 in the 3-4 plane, £q. (37). Then, the isotrigonometry yields AX = D by sina, At
=D bgsin 4, and

Ax/ At = Db,sina/Dbysina = (bg/b3) ¢y, a = abgby, (3.8

from which we recover the conventional expression in empty space tang a = ¢, = const. This
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occurrence is an expression of the overall unity of physical and mathermatical thought achieved by
isotopic technique because they allow the use of the same light cone for motion in vacuum with
constant speed ¢, and motion in interior conditions with variable speed ¢ = Cyby.

3.4: Isolorentz and isopoincare’ symmetries. Necessary complements of the
isominkowskian geometry are given by the isotopies 0(3.1) and £(3.1) of the Lorentz O(3.1) and
Poincare P(3.1) symmetries, respectively. They were constructed for the first time in ref. [9] via the
Lie-isotopic theory and then studied in details in monographs [13,14] to which we must refer for
brevity. We can only recall the isolorentz transformations here presented for 7 = diag. (g1 822
@33 ~444) With conventional functions for simplicity (rather than isofunctions)

wtl=xl, x'2=x%, (3.9a)
x 3= x3coshilv(fg38qq) P - x¥ a4 (833 844 ) " sinh v (ga3 844 ) Y= yxS-pxh Gon
o N gy G paa) i v gy Baq Wixtcoshlv (st Pyt a i)
W= vheovh /e, vo= L (4ex )

which are castly constructed via cule (2.7) with w = v, X given by the conventional Lorentz
generators in adjoint representation, and T = diag. (g1, €22, 833 g444) > 0. Note the unity and mutual
consistency of the algebraic and geometric isotopies. In fact, the latter predict the hyperbolic angle
V=V (g33g44)l/2 which turns out to be exactly that provided by the Lie—isotopic theory. The
addition of the isorotations and isotranslations is done via similar rules and with similar algebraic-
geomelric consistencies (see [13,14,21] for brevity).

Note that the absolute value is necessary in the definition of ¥, Eq.s (3.9d) because V2=
vkbkzvk >=< 002. This is the first contact we have in this paper with the joint representation of
redshift and blue shift (see below).

As expected, isotransformations (3.9) have the most general possible nonlinear-nonlocal-
noncanonical strueture (in which case they are called general isolorentz transforms) because of the
arbitrariness in the functional dependence of the g, terms, as needed for the form-invariance of
isoseparation (3.3). Yet the isolorentz symmetry is locally isomorphic to the original symmetry, as
expressed by their formal similarities with conventional Lorentz transformations, and confirmed by
Lhe isolopic commutation rules (13,141

Note finally that general isotransforms (3.9) are nonlinear and therefore noninertial, as
expected for interior conditions. Nevertheless, when passing to the outside and studying the global
behaviour via the average of the b’s to constants b°u, they reacquire the conventional linear and
therefore inertial character (in which case they are called restricted isolorentz transforms.

3.5: Isominkowskian classification of physical media. Recall that there is an infinite
variety of interior physical conditions for each given astrophysical mass. This variety is classified
by the isominkowskian geometry into nine different types which play a fundamental role in
practical applications (Sect. 5). Consider for simplicity the global interior cases with space isolropy
b°| = b°, = b’3. We then have the isominkowskian classification into: Type 1 for b’z = by, B= B Y=
¥\, 1 for '3 > by 3> B, ¥ < ) and 11l for b’z < b’y @ < B, ¥ > ). Each of these types is then
divided into three suboases depending on whether by = oo 1, L

Fhe following Flentitieationare known At this wiiting: “Type 1l (hy = hy — D s theretore
cmpty space. Type L2 (hy = by - 1) represents the homogencous and tsotropie water with andes ol
refraction n’” = 'y Ui speed of lght ¢ = et e ype 102 (hy ~ by = D represents ow
inhomogencous and anisotropic atmospheres with low density. Type 1.3 by < by -~ 1) represents the
media of the highest possible densily, such as those in the interior of a star (or, cquivalently, in the
interior of a hadron). Additional identifications are under study, e.g., for conductors (Type 11.1),
superconductors (Type 1.3), intermediately heavy astrophysical atmospheres (Types 1I1.1 and 2), etc.
(13.14].

3.6: Isospecial relativity. The abstract identity between spaces and isospaces M(x,n.R) =~
Mix,7,R) and between symmetries and isosymmetries O(3.1) = 0(3.1), implies the isotopies of all basic
postulated of the special relativity, called isopostulates, originally proposed in [9) and studied in
detail at the classical level in [13] and at the operator level. in [14].

A new relativity for interior conditlions therefore emerges from the isominkowskian
geometry, the isopoincaré symmetry, and the isopostulates, called isospecial relativity 19,13,14L 1Uis
a covering of the special relativity in the sense that: A) it describes structurally more general
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systems (nonlinear—nonlocal—noncanonical systems of the interior problem), B) via structurally
more general methods (isotopic methods), and C) admits the conventional special relativity as a
particular case whenever motion returns to be in vacuum for which bpl = |. Moreover, the special
and isospecial velativities coincides, by construction, at the abstract level. Readers not familiar with
isotopic technijues should therefore be warned that possible criticisms on the isospecial relativity
for interior conditions essentially are criticisms on Lhe conventional relativity in vacuuim.
A significant property of the isospecial relativity in its most general possible formulation of
Kadeisvili Class V is its direct universality in the sense of applying for all possible deformations 0 =
Tnof the Minkowski metric (universality), directly in the frame of the observer (direct universality).
Thas property has significant experimental relevance. As we shall see in Sect 5, numerous
noneinstenian time evolutions exist in the literature which, being different, create evident problems
i thenr experimental test Such problems are climinated by the geomelric unification of all
sectmmgly different Jaws Into @ unigue isotopie law
Another gencial property ol the Bonpechad relativity ol Class L s abstradt wlentity wath
the pencral rehiivity for he isotopie element dependent on the Joval conrdimates only, 1 - (NS
1y - ny) hhi property can he hetter seen from the tact that he sopotiiesie syaunetey Lo the
otopte element P8 cliaactertzes the syonnetoy ol all possthle Reranian etces i) Anoan
ustration, the nonlinear synunetry of the Schwar bzehithd hine clement s given by merely plothing
its gy elements in isosymmetry (3.9). The same holds fro all possible Ricmannian Iine elements. 'The
geometric unification of the special and general relativities then follows. The point important for
this paper is that such unification is a mere basis for broader interior treatments because isotopic i
methods naturally hold for arbitrary dependence Tlx, %, K, O 1, T 1, o)
) 3.7: Isodoppler red/blue/shifts. The prediction of the isospecial relativity most important
for this paper is that light propagating within inhomogeneous and anisotropic media experiences an
alteration of its conventional Doppler’s effect according to the isodoppler law (for a =0)
R . Wo
b= Fuwg=s——— T 1 (3.10
|- v b2 Vi / G Da? o

As one can see, the isospecial relativity has the following predictions: Types L1, 1.2, L3 (empty
space or water) have no deviation from the Doppler shift, as verified in the physical reality in
which light does not lose energy to the medium; Types 1L.1, 11.2, 11.3 (such as our atimosphere) have
an isoredshift, that is, a shift toward the red in addition to the Doppler shift due to the loss of
energy to the medium; and Types IIL1, 111.2, 1113 (such as hyperdense quasars atmospheres or
the interior of hadronic matter) have an isoblueshilt due to the acquisition of energy from Lhe
medium.

In order to reach a form of the isodoppler law applicable to astrophysics, we assume for
simplicity the space-isotropy by = by = bz = b, we recall the dependence of the index of refraction
by from the frequency and assume the factorizability of such a dependence in the B term. We can
therefore write B2 = Bb%/b,?) = alb°2/0° 2 flw), where b° and b7y are constants and flwg) = | is the
factorized frequency dependence. Law (3.10) for the global behaviour of light through quasar
chromosphere can be written in one of the forms

. . Wo
& = H g s e e H
L T (02 /b2 flagg) | ' B

2

n

@2 - w2 = B 12/ b AT 6, & -y ~ — 4 BI2/ b2 logflwg) . B.11D)
The astronomical redshift of quasars is then due to the property for a basic frequency,
usually 4680 A° (2],

B° = (27172 11(wy) = const. > | 3.
4 N lm0=4680 g O >, (3.12)

~he internal red/blue/shift of quasars is then due to the full use of law (3.11a) which shows that
frequencies smaller or bigger than the basic frequency 4680 A° have proportionately different shifls
which are expected to have an approximate Gaussian behaviour owing to the condition f(wo) z 1l
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For the sun’s chromosphere we recall the experimental information (Sect. 5) that the
velocity dependence is restricted to the space components by. In this latter case. the global
averaging must be done on the expression BB resulting in the form K°flwg) = < vzb(v)'?/c_ob“2 >Tlwg),
f(wg) = 1, with isodoppler law
Wg -0

- 2 _ 2 - o
=YW= 0 - W = K Offws), @ - ~ — 3K W, flwg).  (3:13)
) 11 - K flag) l* o o 0 o HWo

The comparison of the above laws with astrophysical data 15 done in Sect. 5.

3.8: Other predictions. The isospecial relativity has a number of other novel predictions
for interior conditions (i.e., predictions not possible for the special relativity) which can be
experimentally tested with contemporary technology. sych as the sodiation kiw fol

T 'Y " T‘()/l I- ik l)‘k) LT h"i‘“ \.\\! } ' 1)

which is confirmed by available experimental data on the behaviour of the meanhfe of unstable
hadrons with speed (Sect. 5), or the isoequivalence law

£=mc=mclb (3.15)

verified by preliminary experiments on the chemical svnthesis of hadrons [36] and other data [36,14].

3.9: Isodual relativities. By recalling the antiautomorphic maps 1 = 9 =-1,and1~19 =
-1 and their characterization of antiparticles (Sect. 2.71. isolopic methods identify four different
relativities: the conventional special relativity on MxnR) with invariant P(3.1) for the description
of particles in vacuumy the isodual special relativity on the isodual Minkowski space Md(x,n,Rd)
with isodual Poincaré symmetry pd(3.1) for the description of antiparticles in vacuum; the
isospecial relativity on isominkowski spaces M{xn.Ri with isopoincare symmetry P(3.1) for the
description of particles within physical media; and the isodual isospecial relativity on the dual
isominkowski spaces MIx,7,RY) with isodual isopoincare symmetry pd(3.1) for the description of
antiparticles in interior conditions.

The working hypothesis in which the total matter is equal to the total antimatter then leads
to a structurally novel view of the universe in which the total energy, the total time and other total
characteristics of the universe (as the sum of those for matter and antimatter) are identically null,
a view confirmed by the isotopies of Riemann [23].

3.10. Connections with the studies by Arp, Sulentic, Marmet, and others. We indicated
in Sect. 1 that Marmet theory [3] can ultimately result to be an operator version of the isodoppler
formulation. A similar interconnection exists with Sulentic studies [2], and with other approaches.

A most intriguing interconnection appears to exist between the isodoppler representation
and Arp’s theory [1] achieving a non-Doppler redshift via the creation of matter. This latter view is
faced with known problematic aspects and understandable resiliency in the physics community
when considered within the context of conventional relativities alone. This scenario is altered by
the isodual reletivities. In fact, conventional relativities represent both matter and antimatter in the
same space-time, with ensuing difficulties for the creation of matter from nothing. In our covering
isorelativities antimatter is represented in a separate 1sodual universe, which is known not to be
isolated from our universe because of the finite transition probabilities between positive— and
negative-energy solutions of conventional relativistic equations. Rather than the creation of
something from nothing, Arp’s theory on the creation of matter acquires a different light in a
cosmology with null total energy, time and other quantities {32] because it may result to be an
interchange of energies between the two universes. We regret the inability to study these
interconnections in more details at this time.

3.11: Applications. Numerous applications of the isospecial relativity are now available at
the classical, operator, statistical and levels [13.14]. In Sect. 5 we shall outline only those
experimental applications which are directly or indirectly related to the quasars red/blue/shifts. It
may be important for an overall view to outline below other applications.

The simplest possible application is a static one. the representation of a straight rod when
penetrating in water [14]. As well known, the rod appears to bend when entering in water, but in the
reality it remains straight. Thus, the angle a of rod berding 1n water measured from the outside
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does not coincide with the physical angle a in the interior of water. This occurrence is directly
represented by the simplest possible case of isoeuclidean geomelry with line element (3.5) in which
by =by= b° owing to the homogeneity and isotropy of water. The value b is then determined by the
relation a = ab’?. In short, the isocuclidean geometry correcls the error in our perception that the
rod is bent by keeping it straight.

The stimplest possible dynamical application 1s the classical relativistic particle i a
resistive medium without polential interactions [13). Consider a free, classical, extended, relativistic
particle with Lagrangian L = mc and Minkowskian geodesic d2M/ds? = 0. The penetration of the
particle within a resistive medium is described by the same Lagrangian although now written in
sonnkowsk i space L= me = me by The Infinitely possible resistive forees due Lo shape, density,
temperature, speed, ete. cannot be represented by central conception with the Lagrangian hecause
they are nonpotential. ‘They are then represented by the mtiitely possible isotopies of the umt 1
I The understanding of the isospecial refativity requities the additional knowledge that the moton
of the extended pacticle i ntertor conditions rematns fully geodesie, e, I Isospace we sHIbiave
AT - 00 i sunary, the two structurally difterent trajectories (one free and the ather with
contact interactions, one lincar-local-potential and the other nonlinear nontocal nonpotental) are
completely untfied, and solely difterentiated by the selection of the unit The potnt s that all
peometle, algebhrate analytie andomsare the same

A deeper inspection soon reveals possibilities of physical applications for the isospecial
relativity which are simply beyond any descriptive capacity of Einsteinian theories [13,14]. In fact,
the isounit of the preceding example admits the factorization 1 =1.diag. 6% %, b2, WA b9,
Thus, the Lagrangian L = mc in isospace can directly represent the actual “nonspherical” shape of
the test body considered, such as a spheroidal ellipsoid wilh semiaxes b°l2. b°22, b°32 (or arbitrary
shapes with a nondiagonal isounit). The term b°, geomeltrizes the density of the test body and the
factor 1, represents the drag force. Such a representation is manifestly impossible with the
conventional relativity even after quantization. But these are the beginning of the capabilities of the
isospecial relativity. A still deeper inspection shows that the same Lagrangian L = mc in isospace
can represent all infinitely possible “deformations” of its original “nonspherical” shape, €..8., via a
dependence of the b°;—quantities on pressure, speed, etc., which is manifestly impossible for
conventional relativities even after first, second or third quantization.

These and other features we cannot report here for brevity (see ref.s [13,14) have permitted
the isospecial relativity to resolve some of vexing problems in contemporary physics, such as the
first achievement of an exact numerical representation of the total magnetic moments of few-body
nuclei [14] which have still remained unexplained in their entirety despite studies over three quarter
of a century. The isotopic treatment is simply given by representing protons and neutrons as
extended and, therefore, deformable. This implies the deformability of their charge distributions
depending on the physical conditions at hand and, thus, of their intrinsic magnetic moments. The
anomalies in total magnetic moments then merely represent the (generally small) deformations of
the constituents in a nuclear structure. The point is that these deformations are simply beyond any
possibitity of the special relativity.

Wwe should also mention the resolution of another vexing problem of contemporary physics
permitted by the isospecial relativity, that of quark confinement [14]. Current trends assume the
same Minkowski and Hilbert spaces for the interior and exterior problems of hadrons. A finile
probability of quarks tunneling free is then inescapable from the uncertainly principle irrespective
of the infinite character of the potential barrier, which is contrary to experimental evidence. Now,
the isotopic SO(3) symmetry is isomorphic to the conventional SU(3), and the quantum numbers of
the two theories are identical, thus rendering the isotopic theory fully compatible with existing
experimental data. Moreover, the use of the conventional relativity for the exterior and the
isospecial one in the interior easily permits the two Hilbert spaces to be incoherent, in which case
the transition probability for free quarks is rigorously proved to be identically null even for
collisions with infinite energy and no potential barrier at all (as hinted by asymptotic freedom).

It is important also to understand that the isospecial relativity is applicable in fields
beyond physics, €.g., in theoretical biology. An unexpected and suggestive application along the
latter lines is in conchology [14). Consider the growth of sea shells with minimal complexity, €.8.,
with one bifurcation [22]. Such a growth can indeed be inspected with our Euclidean perception of
physical reality. Nevertheless, computer simulations show that sea shells should crack during their




growth if strictly represented in our Euclidean or Minkowskian spaces [22]. On the contrary, their
growth is normal if represented in isoeuclidean ¢r iscminkowskian space, that is. with a
conventional Lagrangian over a generalized unit. The representation of the bifurcations themselves
is controversial in Euclidean or Minkowskian spaces because requiring discontinuous
transformations into negative times [22), while the same can be continuously represented via our
isorelativities of Kadeisvili Class 111. Note that the dimension of the the space is not altered. The
generalization is in Lhe structure of the geometry, as azvocated in this paper.

The latter example clearly identified the himitation of our perception of Nature, and
suggests caution before claiming final knowledge bas¢d onour manifestly limited three Fustachian
tubes, not only in biophysics, but also in physics and QT TOPRASIcs

4: ISORIEMANNIAN GEOMETRY

4.1: Isoriemannian geometry and its isodual. The cosmalogical implications of this paper
are studied in the separate paper [38]. We here merely mention that the isotopies and isodualities
apply also to the Riemannian geometry resulting in covering structures admitting in the tangent
space the isominkowskian geometry and its isodual.

4.2: Gravitational isodoppler shifts. The aspect important for this paper is that the
isodoppler shift is also additive to the gravitational redshift as in the relativistic case. Our study of
the quasar red/blue/shifts can therefore be restricted to the isodoppler law (3.11) because the
gravitational treatment would yield conventional gravitational corrections (when appropriate).

4.3: Isogeneral relativity and its isodual. The above studies imply a step-by-step
generalization of Einstein exterior gravitation for test particles in vacuum into a dual form, one
called isogeneral relativity or isogravitation for shert, for interior gravitational problems of
matter, and the other called isodual isogravitation for the interior gravitational problem of
antimatter. The interested reader may consult ref.s 113.35. The aspect important for this paper is
that conventional gravitational theories possess no universal symmetry, as well known. On the
contrary, isogravitation is based on the same symmetr~ at the foundation of the isodoppler law, the
isopoincaré symmetry. Experimental confirmations <{ the isodappler law within physical media
would therefore have direct gravitational and cosmolagical implications.

5: REPRESENTATION OF QUASARS COSMOLOGICAL AND INTERNAL SHIFTS

5.1: Representation of Arp’s data [1]. 1sodcopler law (4.10) was originally submitted by
this author in memoir [10] of 1988 to avoid the violatizn of Einstein’s relativities under Einsteinian
exterior conditions in vacuum, e.g., L0 avoid speeds of matier in vacuum higher then the speed of
light. The main hypothesis of Sect. .l can now be more technically expressed via the
characterization of quasars chromospheres with isomiikowzskian media of Type 11.2 with by = by =
by > by, by < L A > B, ¥ <y and average speed of hght ¢ = gb, = ¢o/n° < Co with consequential
natural redshift & = Yo < w' = yw. The elaboration of Arps sata was then suggested in [10]

Numerical calculations along this proposal were done by Mignani in ref. {11] of 1992 by
confirming that isodoppler’s law (4.11) can indeed reduce the speed of the quasars all the way to that
of the associated galaxies. This was submitted as a hmiting case in which the difference between
the quasars redshift and that of the associated galaxy & entrely of isotopic nature. It is understood
that quasars can indeed be expelled from their associazed gzlaxies. but at Einsteinian speeds v << Cq
This latter case implies a small correction of the b-guzntit<s and can therefore be ignored.

The isotopic elaboration of Arp’s data was conzucted in ref. {1 1] via the relation

by (B + 1P (al =1
B =— = 5 X —— (5.1)
b’ (Aw + D2+ 1 (Al -1+

where Aw' represents the measured Einsteinian redshi?: for zalaxies, and AG’ represents the isotopic
redshift for quasars according to law (4.1 1a), with rest g numerical values [
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GAL. AW QUASAR B AQY
NGC 0.018 uBl 31.91 091
BSOI 20.25 1.46
NGC 470 0.009 68 87.98 1.88
68D 67.21 1.53
NGC 1073 | 0.004 BSOI 198.94 1.94 (5.2)
BSO2 109.98 0.60
RSO 176.73 1.40
NGC 3842 0.020 Qsol 1451 0.34
Qs02 29.75 0.95
Qs03 41.85 2.20
NGC 4419 0.00HG MARK200H 120 our
II NGC S067 0.004Y 30232 B2 1 0.03

The above resulls provide a clear contirmation o the fonpecial relativity and underiying
ominkowsk lan geometrization. tn fact, the data show that all b values are positive and bigger than
one, exactly as predicted by the geometvization of ‘Fype 2.

The wdentfication ol the mdividual values By = = by - and g requires at deast one
additional experimental value, such as the average speed ol light in the (uasar chromospheres
which would evidently fix b°4. Then b°3could be computed from the B-ratios. As an indication, the
assumption for quasar UBI of the average speed of light in its chromosphere ¢ = 0.80 Cg would
yield the value bz = 40.

The problem of the apparent speed of the galaxies is not considered in the above analysis
because it is a separate issue. The reader should be aware that isogeometries imply three
independent corrections to the current estimates of the distance of galaxies from us: 1) A correction
due to a possible isoredshift of light in the interior of the galaxies; 2) Another correction due to the
fact that space can be considered as empty only at the local (say, planetary) level because at
intergalactic distances space itself becomes an ordinary medium (since it is filled up with dust,
elcclromagnetic waves, particles, etc), thus requiring a second, relatively smaller isotopic correction
in the redshift; and 3) The very notion of distance is altered by the isogeometries [37,38.
Intriguingly, each of the above corrections implies a decrease of the current estimates on the
distance of galaxies from us.

Under limiting conditions, these corrections are indeed capable of interpreting the
cosmological redshift itself as being of entirely isotopic origin, thus yielding a new cosmological
conception of the Universe as being unlimited, composed of essentially stationary galaxies of
matter and antimatter and with a number of novel features, such as without any need for ‘the
'missing mass” (from the isoequivalence law (3.15), see ref.s [37,38).

It should be stressed that current data are insufficient to rule out the “big bang” theory, in
which framework the isotopies merely yield corrections to the current estimates on the explosion
of the Universe.

5.2: Representation of Sulentic data [2]. The cosmological redshift represented in ref. [11]
is essentially that of isodoppler law (3.11a) under values (3.12) for a basic frequency such as 4680A°.
The representation of Sulentic [2] internal red/blue/shift requires the full use of law (3.11a) with the
explicit frequency dependence. The assumption of a Gaussian realization of f(w) then leads Lo the
isolopic bekaviour
@2 - w? = K wle Ky lw= wo)z, (5.2)
where k, and k; are positive constants. Numerous fits of the experimental data are then possible. As
an indication, the values k| = 10 and ky = | yield a preliminary, yet meaningful representation of

Sulentic data of Table 4, p. 61, ref. [2]. Note the shift of the center of the Gaussian as indicated by
current data. Needless to say, a more accurate representation can be derived when additional
measures are available such to permit the identification of the function flw).

5.3: Representation of Marmet’s data [3l. The data on the redshift of spectral lines from
the sun’s chromosphere as studied by Marmet (3] and others are some of the most direct
experimental confirmations of the isotopic character of the quasars redshift.



The latter data can be interpreted via essentially the same isodoppler law, only referred to
form (3.13) because of the need of the different average since the sun is moving at low speed with
respect to our laboratory. In fact, in first approximation. iaw (3 :3) reproduces Marmet’s expression
(6), p. 240, ref. [3] identically

0/ A0 = AN/N =~ -2/ Kfw) ~-273x 1072 TN, (5.3)

w=const.
where T is the temperature of the sun’s chromosphere. ar:d N, s the average number of collisions
of photons in a given column density. Note the emergence >f a gzpendence on the frequency which
is expected to be experimentally verifiable and which. if canfirmed, would establish the possibility
of resolving the problem of quasar red/blue/shifls via Specirosc:pic measures on the Sun.

5.4: Representation of timelife behaviour. The 1:»special relativity has additional
experimental verifications indirectly related 1o the quasar red/blue/shifts which, as such, are

significant for this papet The first one Is the isotopie bt avien: (3 14) of the meanhife of unstable
hadions witl speed which, i contirmed, would provide a vlear eribication ol the structure of the
podoppler law (310)

Blochintsey and his school [25] ploneered the hy pothes that the nonlocal mternal effects

expected in the hadronic structure from mutual penetrat:ons of the wavepackets of the
constituents can manifest themselves via departures from the Minkowskian behaviour of the
meanlife of unstable particle with speed, and computed a ceneralized law. The problem was
subsequently studied by several authors [26), resulting in aiditioral different laws.

This author submitted in [9] the isominkowskian geome:rization of the physical medium in
the interior of hadrons with isotopic law (3.14) which was proved by Aringazin [27] to be “directly
universal”, i.e., including all possible generalizations [2526] \1z different expansions in terms of
different parameters and with different truncations.

The first phenomenological verification was provided in calculations [28] on deviations
from the Minkowskian geometry inside pions and kaon: cond:cted via standard gauge models in
the Higgs sector. These phenomenological studies resulted mn the deformed Minkowski metric inside
hadrons 7 = diag. (1 - a/3), (1 = a/3), (1 = a/3), - (1 - a)). which is precisely of the isominkowskian
type with numerical values

| - 379%1073, (5.4a)

[

PIONS 7% b 2=b2=bg2 = | + 12x107° i
v 2

KAONSKE: b7 2=bp2=b%? = | - 2574 5= 1+ 6.1x1074, (5.4b)
Note the change in numerical value of the isotopic element i the transition from pions to kaons,
which is necessary because of the change of the density recall that all hadrons have approximately
the same size, but different rest energies, thus having different densities and different isounits).

The first direct experimental verification was reached tv Aroonson et al. [29] who measured
a clear nonminkowskian behaviour of the meanlife of the k™ in the energy range 30-100 GeV.
Subsequent direct experiments conducted by Grossma- et z. (30] confirmed the Minkowskian
behaviour of the meanlife of the same particle in the diffe-ent energy range 100-350 GeV (see
review [18).

These seemingly discordant experimental measures were proved to be unified Dy the
isominkowskian geometrization of the K°-particle by Carcone ¢ al. [31] via phenomenological plots
of both measures [29,30] in the range 30-350 GeV resulting n the following characteristic b*-values

b2 = b°2 =b°32 = 0.909080 + 0.0004, v,2 = 10020007, (5.5a)
A2 = 0.007, Ab 2 =000, (5.5b)

which are of the same order of magnitude of values (5.3t Measures (5.4b) also confirm the
prediction of the isominkowskian geometry in the range 30-4°C GeV that the b°4 quantity, being a
geometrization of the density, is constant for the particle consiZered (although varying from hadron
to hadron with the density), while the dependence in the velocites rests with the by—quantities.

the latter analysis is important inasmuch as it esta®lishes the possible existence of an
isodoppler sh.ft even for a medium at rest in which < \2/g2> =0, but <v2b(v)2/002b42> #0.

5.4: Representation of Bose-Einstein correlation. 1nother important verification has
been recently achieved via theoretical [32] and experim<nta! 33] studies on the Bose-Einstein’s
correlation. These studies provide a direct verification of the tzsic isominkowskian geometrization
of physical media and, as such, are significant for the quizars red/blue/shifts.
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Evidence establishes that 1 ccrrelation exists for particles interactions when admitting
effective point-like approximations. Tte Bose-Einstein correlation therefore appears to be due
precisely to the extended character of “he wavepacket of particles, which results in an evident
nonlocal structure of the interactxns at very small distances. The use of the isominkowskian
geometrization for the intericr of he t~p fireball results in the two-point Boson isocorrelation
function on Mx,A.R), ref. [32], Eq. (102 p. 122,

B —2/y 2 o 02 102 102 _102
G = 1+ — 2,0 (e T, #) = Diag. (b°}2, b%% %% — 074", (5.6)
2 3 m
where q is the momentum trznsfer and the term K = b2+ by + b°s? is normalized to 3, under the
sole approximation, also assumed :n c-nventional treatments, that the longitudinal and fourth
components of the momentum tranzfer zre very small. Phenomenological studies conducted in [33]

via the Ual data at CERN confirm iy del 5 A) it entirety, and identify the numerical values
W= OUGT 0N, by T AR 0, T W S TP RIS 0.7
These easures have the Tollowieg iiportant fmplications: A) They confirm the nonlocal

nonhamilionian origin of the correlation, which is at the foundation of these studies; B) They
confirm the isominkowskian geometrizat:on for the p-p fireball; C) they provide a numerical value
of b°, for particles of the denzity of the p-p—fireball for use in isoequivalence principle (3.12) (see
below), D, They confirm the capability <f the isotopies of directly representing the nonspherical
shape of the fireball and all its defcrmations; and E) They prove the reconstruction of the exact
Poincare’ symmetry under nonlocal-nonh:zmiltonian interactions.

5.5: Cooper pair in superconductivity. This is a clear physical systems beyond any
realistic capability of Einsteinian theories because it consists of two electrons of the same charge
experiencing an attractive interacticn. arimalu [34] has shown that the use of the isominkowskian
geometry representing the mutual wave—verlapping of the two electron (with isounit given in Sect.
2.2) permits a quantitative interpretat:on -f the attractive interactions in the Cooper pair which is in
excellent agreements with numerous experiments (see [34] for brevity).

5.6: Chemical synthesis of hadrons. The isominkowskian geometry also permits a
speculative, yet intriguing prediction. the cold fusion/chemical synthesis of protons and electrons
into neutrons (plus neutrinos). It is essentially allowed by the rest energy of the electron when inside
the hyperdense medium in the interior of the proton and computed via isoequivalence principle
(3.15) with numerical value b’y = 1533 from data (5.6). This permits a representation of all
characteristics of the neutron [351 This prediction has received a preliminary, yet direct
experimental verification by don Borghi et al [36). If confirmed, the event would permit the
chemical synthesis of all unstable hadrons from lither (massive) hadrons. Moreover, it would permit
the artificial disintegration of unstatle hadrons, such as the artificial disintegration of peripheral
neutrons in a nuclear structure, with realistic possibilities of a new technology, called hadronic
technology, because based on mechanisms in the interior of individual hadrons. See Vol. [1I of ref.s
[14] for other experimental verifications.

5.7: Proposed experiments. A number of experiments have been proposed in classical
mechanics, astrophysics and particle phssics to test the isominkowskian geometry and related
isospecial relativity such as:

Experiment 1 (13} measure the redshift of light from a quasar just before and then after
passing through a planetary atmosphere cr the sun’s chromosphere. The isominkowskian geometry
predicts in this case an additional redshift. The average data (5.2) yield <B°> = 72.78, <A@> = L.15,
<Aw> = 001, thus characterizing the averzge isoshift <AG> - <Aw> = 1.14. The assumptions that
the quasa- atmospheres are 10~ denser thzn the atmosphere of Jupiter (or of Earth), and that the
isotopic eifect is proportional to the density in first approximation, lead to the estimate of the
isoredshift in Jupiter's atmosphere of t:e order of <A“3'Jupner> ~ 1.14x107% which is fully
measurabe. For smaller ratios of the densities of the quasars and planetary atmospheres, the effect
evidently becomes bigger.

Experiment 2 (13} Follew a sufficient number of Fraunhofer lines of sun light from the
zenith to the horizon to see whether or nct the tendency toward the red is in part an isoredshift.
The numerical estimates of the preceding experiment also apply to Earth’s atmosphere, yielding a
measurab e effect.

56



r
t
]
Experiment 3 [14} Finalize the behaviour of the meanlife of unstable particles with speed
(29,301 As indicated earlier, any deviation from Minkowskizn time dilation is 3 confirmation of the
i corresponding isodoppler behaviour for frequencies owing 10 its direct universality [27.
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