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FOREWORD

As it is well known, Isaak Newton had to develop the differential calculus,
(jointly with Gottfried Leibniz), with particular reference to the historical
definition of velocities as the time derivative of the coordinates, v = dr/dt,
in order to b to write his celebrated equation mdv/dt = F (t, r, v), where
a = dv/dt is the acceleration and F (t, r, v) is the Newtonian force acting
on the mass m. Being local, the differential calculus solely admitted the
characterization of massive points. The differential calculus and the notion
of massive points were adopted by Galileo Galilei and Albert Einstein for
the formulation of their their relativities, thus acquiring a fundamental role
in 20th century sciences.

In his 1966 Ph. D. thesis at the University of Turin, Italy, the Italian-
American scientist Ruggero Maria Santilli1 pointed out that Newtonian
forces are the most general known in dynamics, including action-at-a-distance
forces derivable derivable from a potential, thus representable with a Hamil-
tonian, and other forces that are not derivable from a potential or a Hamil-
tonian, since they are contact dissipative and non-conservative forces caused
by the motion of the mass m within a physical medium. Santilli pointed out
that, due to their lack of dimensions, massive points can solely experience
action-at-a-distance Hamiltonian forces.

On this ground, Santilli initiated a long scientific journey for the general-
ization of Newton’s equation into a form permitting the representation of
the actual extended character of massive bodies whenever moving within
physical media, as a condition to admit non-Hamiltonian forces. Being a
theoretical physicist, Santilli had a number of severe physical conditions for
the needed representation. One of them was the need for a representation
of extended bodies and their non-Hamiltonian forces to be invariant over
time as a condition to predict the same numerical values under the same
conditions but at different times.

When he was a member the Department of Mathematics at Harvard Uni-
versity in the early 1980s under support by the U.S. Department of Energy,
Santilli achieved a step-by-step isotopic (that is, axiom preserving) lifting of
the various branches of Lie’s theory based on the generalizion Ji×̂Jj = JiT̂ Jj
of the associative product JiJj of the universal enveloping associative al-
gebra between Hermitean generators Ji, Jj , with consequential generalized
Lie’s second theorem [Jî,Jj ] = Ji×̂Jj − Jj×̂Ji = JiT̂ Jj − Jj T̂ Ji = CkijJk,

1Prof. Santilli’s curriculum is available in from the link http://www.world-lecture-
series.org/santilli-cv
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where T̂ is a fixed positive-definite operator and the C’s can be constants
or, unlike the Lie’s case, can be functions.

Since the generalized product Ji×̂Jj remains associative, and the general-
ized brackets [Jî,Jj ] verify the Lie axioms, Santilli called the operator T̂ the
isotopic element, the product Ji×̂Jj the isoproduct, and the brackets [Jî,Ji]
the Lie-isotopic product. Santilli then proved that the emerging isotopically
lifted Lie theory, today called the Lie-Santilli isotheory, permits the repre-
sentation of the actual extended shapes of bodies as well as all possible (suf-
ficiently smooth and regular) Newtonian forces, e.g., via realizations of the
isotopic element of the type T̂ = Diag.(1/n2

1, n
2
2, n

2
3)Γ(t, r, v, ...), where the

n2
k, k = 1, 2, 3 represent the shape of the body considered and Γ(t, r, v, ...)

represents all non-Hamiltonian forces, the remaining forces derivable from
a potential being representable with a conventional Hamiltonian (for these
early studies, see the two 1978 volumes of Foundations of Theoretical Me-
chanics [16] written at Harvard University and published by Springer-Verlag).

Subsequently, Santilli showed that, when the quantities Ckij are all con-
stants, the isotopies of Lie’s theory can be achieved via a non-unitary trans-
formation of Lie’s theory such as U(JiJj)U

† = J ′i T̂ J
′
j , J

′ = UJU †, T̂ =

(UU †)−1, UU † 6= I, in which case we have the so-called regular isotopies.
However, Santilli showed that, under isotopies (only), the C’s can also be
functions/In this case, the isotopies of Lie’s theory cannot be obtained via
non-unitary or other transforms of the conventional Lie’s theory, are called
irregular isotopies and characterize a bona fine (still mostly unexplored)
new theory (for more recent studies, see the two 1995 volumes of Elements
of Hadronic Mechanics [] published by the Ukraine Academy of Sciences).

Despite these notable advances, Santilli remained inquisitive and self-critical.
In this way, he discovered that his original isotopic formulation of Lie’s the-
ory was not invariant over time because the formulation was non-canonical
at the classical level and non-unitary at the operator level, thus causing
insufficiencies that Santilli called “catastrophic,” such as: the lack of preser-
vation over time of the basic unit +1 and related numeric field; the loss
over time of Hermiticity and, consequently, of observability; the violation of
causality laws, and other insufficiencies.

To attest at Santilli’s commitment to serious science, we should report the
statement in his works that the prestigious Volume II of Foundations of The-
oretical Mechanics had “no physical value.” In this second volume, Santilli
achieved a covering of classical Hamiltonian mechanics with a Lie-isotopic
structure that he called Birkhoffian mechanics for certain historical reasons,
and proved its remarkable “direct universality,” that is, the capability of
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representing all possible Hamiltonian and non-Hamiltonian Newtonian sys-
tems (“universality”) directly in the reference frame of the observer (“direct
universality”). However, the emerging mechanics was non-canonical because
elaborated with the mathematics of Hamiltonian mechanics. Consequently,
in Santilli’s own words: Birkhoffian mechanics elaborated with the mathe-
matics of Hamiltonian mechanics has no physical value because it is unable
to predict the same numerical values under the same condition at different
times.
These basic, self-identified insufficiencies forced Santilli to re-examine the
mathematics originating them, namely, the conventional, 20th century ap-
plied mathematics defined over a numeric field of characteristic zero, thus
including the need for a re-inspection of numbers, functions, metric spaces,
geometries, topologies, etc. The inspiration was the teaching of the his-
tory of science establishing that the protracted lack of solution of physical
problems is generally due to insufficiencies of the used mathematics.
In 1993, when he was visiting the Joint Institute for Nuclear Research in
Dubna, Russia, Santilli had the courage to re-inspect the historical classifica-
tion of numbers into real, complex and quaternionic numbers and discovered
that the axioms of a numeric field do not require the basic multiplicative unit
to be the trivial number +1, since the axioms of a field also admit general-
ized multiplicative units Î provided that: the generalized units are positive-
definite, thus invertible Î = 1/T̂ > 0; conventional numbers n are lifted into
the form n̂ = nÎ; and the conventional multiplication of numbers nm is lifted
into that at the foundation of the Lie-Santilli isotheory, n̂×̂m̂ = (nm)Î so
that the generalized units Î verify the basic axiom Î×̂n = n×̂Î = n for all el-
ements of the set considered. These foundations led Santilli to the discovery
of new numbers, today known as Santilli isoreal, isocomplex and isoquater-
nionic isonumbers (see memoir [43] of 1993 that may represent in due time
one of the most significant mathematical discoveries of the 20th century due
to its implications for all sciences, including new industrial applications).
Santilli’s driving motivation was, again, physical. As indicated above, San-
tilli was looking for an invariant representation of extended masses under
non-Hamiltonian forces. After a number of trials and errors, he selected the
needed representation via a generalization of the basic unit since the unit is
the fundamental invariant of any theory, a solution that we believe will resist
the test of time. In turn, the isotopic lifting of the basic unit forced Santilli to
construct compatible isotopies of conventional numeric fields. Still in turn,
the isotopies of fields stimulated a flurry of studies for the construction of
compatible isotopies of all of 20th century applied mathematics, including
the reformulate over isofields of functional analysis, Lie-Santilli isotheory,



5

metric spaces, geometries, etc.
These isotopies were achieved in the early 1990s thanks also to contributions
by a number of pure and applied mathematicians, including Gr. Tsagas,
D. S. Sourlas, H. C. Myung, C-X. Jiang, J. V. Kadeisvili, A. Aringazin,
A. Kirukin, and others. All these efforts set the foundation of what is
today called Santilli isomathematics, which is referred to the isotopies of the
entirety of 20th century applied mathematics with no exclusion to prevent
insidious inconsistencies that generally remain undetected by non-experts in
the field.
Despite these additional, equally notable advances, Santilli continued to re-
main dissatisfied because, in his strong self-criticism, he proved that the
physically important invariance of the isotopies over time was still missing.
Therefore, Santilli spent years in re-examining the achieved systematic iso-
topies of 20th century applied mathematics in the hope that some of them
was missing, with no avail.
Finally, in 1995, when he was at the Institute for Basic Research, Castle
Prince Pignatelli, Molise, Italy, Santilli had the courage, “out of desper-
ation” in his words, to re-inspect the Newton-Leibniz differential calculus
and discovered that, contrary to a popular belief in mathematics for cen-
turies, the differential calculus generally depends on the basic numeric field
because, whenever the multiplicative unit of the base field depends on the
differentiation variables, the conventional calculus is inapplicable.
In the 1966 memoir [52] published by the Rendiconti Circolo Matematico
Palermo, Santilli introduced the generalized differential d̂r̂ = T̂ d[rÎ(t, r, v, ...)],
which he called isodifferential, and the corresponding generalized derivative
∂̂f̂(r̂)/∂̂r̂ = Î (∂f̂(r̂)/∂r̂, which he called isoderivative, where the lifting
of coordinates r into r̂ = rÎ is necessary for consistency becase their val-
ues must be isonumbers, and the same holds for functions. As one can
see, for Î independent from the differentiation variables or a constant, the
generalized differential and derivatives coincide with the conventional form,
d̂r̂ ≡ dr, ∂̂f̂(r̂)/∂̂r̂ ≡ ∂f(r)/∂r (where, in the latter expression, one should
not forget the insidious isotopy of the fraction), and this may explain the
reason that the isotopies of the differential calculus remained undetected for
centuries until the 1966 memoir [52] (that may also represent in due time
another major mathematical discovery of the 20th century due to its impact
on all sciences).
In this way, thirty years following the identification of the problem in 1966,
Santilli finally achieved the desired structural generalization of Newton’s
equation m̂×̂d̂v̂/d̂t̂ = −∂̂V̂ (t̂, r̂, v̂)∂̂r̂ which achieves direct universality for
the invariant representation of extended bodies moving within physical me-
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dia under the most general known Hamiltonian and non-Hamiltonian forces,
today called the Newton-Santilli isoequation. One should note the repre-
sentation of Hamiltonian forces via the potential V and the embedding of
all non-Hamiltonian forces in the isodifferential calculus (see memoir [52],
Section 2.2, pages 30 to 39 the Theorem of Direct Universality and other
features).
The resulting new calculus, today known as Santilli IsoDifferential Calculus,
or IDC for short, stimulated a further layer of studies that finally signaled
the achievement of mathematical and physical maturity. In particular, we
note: the isotopies of Euclidean, Minkowskian, Riemannian and symplectic
geometries; the isotopies of classical Hamiltonian mechanics, today known as
the Hamilton-Santilli isomechanics; and the isotopies of quantum mechanics,
today known as the isotopic branch of Hadronic mechanics.
The latter structurally important isotopies were identified in memoir [52]
with additional studies provided by a number of pure and applied mathe-
maticians, including (in addition to those mentioned above) R. M. Falcon
Ganfornina, J. Nunez Valdes, T. Vougiouklis, C. Corda, A. Bhalekar, S.
Georgiev, J. V. Kadeisvili, and others. It should be noted that, nowa-
days, thanks to its consistency, isomathematics and related classical and
operator isomechanics have applications and experimental verifications in
classical mechanics, particle physics, superconductivity, chemistry, biology,
statistical mechanics, astrophysics and cosmology (see monographs [34,35]
for extended presentations).
Independently from the above studies, and also when he was at the De-
partment of Mathematics of Harvard University in the early 1980s, Santilli
realized that 20th century mathematics had another major insufficiency for
physical studies, the inability to provide a representation of antimatter at
the classical level beginning with Newton’s equations, because their only
classical conjugation from matter to antimatter was the sign of the charge,
while predicted antimatter asteroids, stars and galaxies have to be assumed
as being neutral. Particularly insufficient for antimatter was the conven-
tional differential calculus due to the absence of any differentiations between
matter and antimatter, due to its independence from the charge.
In this way, while working at the above outlined isotopies of 20th century
applied mathematics specifically intended for the representation of matter,
Santilli conducted parallel studies for the construction of a new mathemat-
ics capable of representing antimatter from Newtonian mechanics to second
quantization. In particular, the needed new mathematics had to be an anti-
isomorphic image of 20th century mathematics as a condition to achieve
compatibility with charge conjugation at the operator level. Again, Santilli
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main objective was physical, namely, the achievement of another generaliza-
tion of Newton’s equations for neutral or charged antimatter masses. Again,
the biggest difficulties for the achievement of such a generalization was the
conventional differential calculus.
After a number of trials and errors, Santilli was forced to achieve the needed
anti-isomorphic character by embedding it in the mathematical foundations,
namely, in the notions of numbers, their multiplication and their unit, after
which the anti-isomorphism of the new mathematics with respect to con-
ventional mathematics was assured.
In 1993, while he was also visiting the Joint Institute for Nuclear Research in
Dubna, Russia, and while re-inspecting the axioms of a numeric field, San-
tilli discovered that, besides the isofields with positive-definite multiplicative
units, the axioms of a field admit additional new fields with negative-definite
multiplicative units (hereon indicated with an upper index d), Id < 0, pro-
vided that the numbers n are lifted to the anti-isomorphic form nd = nId,
where n is a conventional number, and the multiplication of numbers nm is
lifted into the equally anti-isomorphic form nd×dmd = nd× (1/Id)×md =
(nm)Id. This allowed the discovery of yet new solutions of the axioms of a
numeric field, that Santilli called isodual fields in the sense of being conju-
gated in an axiom-preserving way (see paper [43]). Note that isodual fields
are the isoduals of conventional fields and not of isofields. Hence, this first
layer of isodualities can be solely used for the characterization of point-like
antimatter masses.
Despite these additional also notable advances for antimatter, Santilli re-
mained unable to formulate the desired generalization of Newton’s equation
for neural or charged “antimatter massive points,” because of the insuffi-
ciency of the conventional differential calculus. Following the discovery in
paper [43] of the isodual fields, and the discovery in memoir [52] of 1966 of
the dependence of the differential calculus on the assumed basic fields, it was
easy for santilli to introduce yet a new calculus that he called isodual differ-
ential calculus with basic expressions ddrd and ∂dfd(rd)/∂srd after which he
was finally able to write the desired generalized newton equation for anti-
matter md×dddvd/ddtd = F d(td, rd, vd), today known as the Newton-Santilli
isodual equation (see monographs [34.35]).
Santilli]s isodual mathematics is nowadays referred to the anti-isomorphic
image of the entire 20th century applied mathematics characterized by the
isodual map of all possible quantities Q(t, r, v, ...) → Qd(td, rd, vd, ...) =
−Q†(−t†,−r†,−v†, ...) and all their possible operations, thus including the
isoduality of numbers, functional analysis, metric spaces, Lie’s theory, ge-
ometries, topologies, etc. It should be noted that the fundamental unit of
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isodual mathematics is the negative unit Id = −1 at all possible levels.

The emerging new isodual theory of antimatter verifies all known experi-
mental data since the Newton-Santilli equation verifies all known classical
experimental data on antimatter and the representation of all data available
at the particle level is assured by the equivalence of isoduality and charge
conjugation. Note that the isodual time and isodual energy are negative
definite, td = −t, Ed = −E. Their historical inconsistencies are resolved by
the isodual mathematics because said quantities are now referred to isodual
unit, namely, negative-definite unit. In fact, negative-definite time and en-
ergy referred to negative-definite units are as causal as our positive-definite
time and energy referred to positive-definite units.(see Refs. [34.35] for de-
tails, including an identical re-formulation of Dirac’s equation representing
an electron-positron pair without any need for the hole theory).

Figure 1: An overview of Santilli’s fifty year long scientific journey. The
top indicates conventional and generalized mathematics with increasing com-
plexity characterized by multiplicative units of increasing complexity for the
characterization of corresponding complex systems of matter. The bottom in-
dicates anti-isomorphic mathematics with corresponding progressive increase
of complexities characterized by negative-definite multiplicative units for the
representation of systems of antimatter with increasing complexity, which
mathematics are constructed via the isodual map of the preceding mathe-
matics for matter. All these mathematics together referred to as ‘hadronic
mathematics’ because they characterize the various branches of hadronic me-
chanics and chemistry [35].

Santilli isodual isomathematics is the image of isomathematics under isod-
uality. It should be indicated that Santilli also identified the foundation of
two additional yet more general mathematics we cannot possibly review in
this volume called geno- and hyper-mathematics and their isodual geno- and
isodual-hyper-mathematics for the description of more complex systems of
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matter and antimatter, that includes corresponding yet broader generaliza-
tions of Newtonian, Hamiltonian and quantum mechanics (see Figure 1 for
an overview).
In Chapter 1 of this volume we have elected to review Santilli’s scientific
journey, and identify its most important references, in the hope that in-
terested colleagues may be inspired to identify possible alternative routes
and/or additional advances in a large number of still open mathematical
problems.
In chapter 2 we introduce isoreals, basic operations with them and we give
their properties.
In chapter 3 we define sequences of isoreals and deduct their properties.
In chapter 4 we give definitions for four kinds isofunctions and outline their
properties.
In chapter 5 we introduce limit of isofunctions and continous isofunctions.
In chapter 6, we present the first comprehensive study of the IsoDifferential
calculus for the specific intent of showing its non-triviality, as well as the
generation of a series of new properties and methods.
In chapter 7 we reflect the integral calculas in the language of isomathemat-
ics.
In Chapter 8, as appendix, we outline the isodual isomathematics and
present the first comprehensive study of the isodual isodifferential calculus.
The authors would appreciate any comments by interested colleagues. Prof.
Santilli is also available at his email basicresearch@i-b-r.org for additional
technical aspects.

Svetlin Georgiev
Email: svetlingeorgiev1@gmail.com
and
Jerdsay V. Kadeisvili
Email: jvkadeisvili@gmail.com
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Chapter 1

PHYSICAL ORIGIN OF
THE ISODIFFERENTIAL
CALCULUS:

Santilli’s Generalization of Newton’s Equations for Extended
Bodies Moving within Physical Media

1.0.1 The Birth of the Differential Calculus

As it is well known, Isaac Newton [1] had to construct first the modern
version of the differential calculus (jointly with Gottfried Leibniz) in order
to formulate his equations. In fact, Newton had to achieve first the notion
of velocity for a system of n bodies vk, k = 1, 2, ..., n, as the derivative of the
coordinates rk, k with respect to time t

vk =
drk
dt
,

where each coordinate rk is defined in a three-dimensional Euclidean space,
after which notion Newton was able to formulate his celebrated equations

mk
dvk
dt

= Fk(t, r, v), k = 1, 2, ..., n. (1.1)

where: dvk/dt represents the acceleration of the body with mass mk and
Fk(t, r, v) represents the force experienced by the mass mk during its motion.
Newton’s equations were adopted by the founders of analytic mechanics,
resulting in their representation viaLagrange equations [2],

d

dt

∂L(t, r, v)

∂vk
− ∂L(t, r, v)

∂rk
= Fk(t, r, v), (1.2a)

11



12CHAPTER 1. PHYSICAL ORIGIN OF THE ISODIFFERENTIAL CALCULUS:

where L is the Lagrangian

L =
1

2
mkv

2
k − V (t, r, v), (1.2b)

and Hamilton’s equations [3]

drk
dt

=
∂H(t, r, p)

∂pk
,

dpk
dt

= −∂H(t, r, p)

∂rk
+ Fk(t, r, p), (1.3a)

where H is the hamiltonian

H =
p2
k

2mk
+ V (t, r, p), (1.3b)

As one can see, Newton’s forces are partially represented with the potential
V , and the residual forces are represented with external terms.

Newton’s equations (1.1) and their analytic representations via Lagrange’s
equations (1.2) or Hamilton’s equations (1.3) with external terms remained
at the foundation of science until the early 20th century, when the external
terms were removed in order to restrict the systems to a form derivable from
an action principle due to its need for quantization.

1.0.2 The Notion of Point-Like Mass

A feature with historical implications is that Newton’s equations can solely
characterize point-like (dimensionless) masses. This feature is requested by
the mathematical structure of the equations, namely, the differential cal-
culus which. being local (i.e., defined at the points rk) is solely able to
characterize a finite number of dimensionless points. This characteristics
of Newton’s equations has been more recently identified on rigorous mathe-
matical grounds, such as via the well known Euclidean topology. .

The historical implications of the point-like character of all masses is that
it was assumed by Galileo Galilei at the foundation of his celebrated 1963
Dialogus de Systemate Mundi [4]. Therefore, Galileo’s relativity too can
solely characterize systems with a finite number of dimensionless masses.

Albert Einstein had no other choice than that of adopting Newton’s and
Galileo’s notion of point-like masses because the differential calculus was the
only available mathematical method for quantitative representations of our
physical reality at the dawn of the 20th century. Consequently, Einstein’s
special relativity [5] and general relativity [6] too can solely characterize a
finite number of point-like masses.
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1.0.3 Interior and Exterior Dynamical Problems

The Italian-American scientist Ruggero maria Santilli conducted his grad-
uate studies at the University of Torino, Italy, in the 1960s and, since that
time, he has dedicated his research life to the study of interior dynamical
problems, referred to extended, generally non-spherical and deformable bod-
ies and electromagnetic waves propagating within a physical medium. By
contrast, the problems represented by Newton’s mechanics, Galileo’s rela-
tivity and Einstein’s relativities are known as exterior dynamical problems,
referred to point-like masses and electromagnetic waves moving in vacuum
conceived as empty space.

In his Ph. D. thesis, Santilli argued that point-like masses can only expe-
rience acting at a distance forces derivable from a potential because, when
moving within a physical medium, a point-like mass cannot experience any
resistance. Therefore, Santilli initiated a long scientific journey aimed at
the achievement of a quantitative representation of the extended character
of bodies as a pre-requisite for the consistent admission of contact non-
potential forces.

Figure 1.1: An illustration of Santilli’s Theorem ?? according to which an
interior dynamical system (such as a spaceship during re-entry in our atmo-
sphere of this picture), which is irreversible over time and non-conservative,
cannot be consistently decomposed into a finite number of elementary con-
stituents all in reversible and conservative conditions as requested by quan-
tum mechanics. Therefore, Santilli’s Theorem 2.0.1 establishes the need for
a covering of quantum mechanics capable of representing irreversible and
no-conservative conditions at the most elementary level of nature.
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Since the advent of special relativity, it was generally believe that interior
dynamical problems are ”inessential” because they can be reduced to a col-
lection of particles in exterior dynamical conditions. As part of his 1966 Ph.
D. thesis, Santilli proved the following property (see later on monographs
[40] and Fig. 1):

Theorem 1.0.1. Interior dynamical systems within physical media cannot
be consistently reduced to a finite number of elementary particles all in ex-
terior conditions in vacuum and, vice-versa, a finite systems of elementary
particles all in exterior conditions cannot consistently characterize exterior
systems under statistical, thermodynamical or other principles.

The proof was based on the use of Newton’s equations (1.1) with acting
forces not derivable from a potential for an extended body moving within a
physical medium, while all forces acting on elementary particles in vacuum
are derivable from a potential. It is then evident that a collection of the
latter forces cannot reproduce the former.
A parallel proof of Theorem 2.0.1 was based on thermodynamical arguments.
It is well know that Galileo’s and Einstein’s relativities are incompatible
with thermodynamical laws for several technical reasons, such as the fact
that they lack an ”arrow ofd time.” Santilli then proved that the reduction of
interior to exterior systems implies that thermodynamical laws are ”illusory”
since they can be made to disappear by reducing systems to their elementary
constituents, and equally illustory would be the entropy tdespite its ever
increasing character.
In short, Santilli proved that the forces experiences by extended bodies
moving within a physical medium, rather than ”disappearing” evidently
to achieve compatibility with Galileo’s and Einstein’s relativities, originate
instead at the most elementary level of nature.
As an example, Santilli quoted the contact interactions of a spaceship during
re-entry in our atmosphere (Fig. 1) generated by the most general known,
non-linear, non-local and non-potential interactions between the electron
orbitals of peripheral atoms of the spaceship with corresponding electron
orbitals of atmospheric atoms.

1.0.4 Santilli’s Lie-admissible Treatment of Open Irreversible
Systems

While exterior dynamical problems in vacuum are reversible over time (be-
cause Lagrangians and Hamiltonians are time reversal invariant for all p[physically
meaningful potentials), interior dynamical problems are irreversible over
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time, in the sense that their time reversal image violates causality, energy
conservation and other physical laws. Additionally, the most general irre-
versible systems are open in the sense that their total energy is not conserved
due to interaction with other systems that are assumed as being external.
Santilli decided to dedicate his research life to the identification of methods
for the quantitative treatment of irreversible processes in their most gen-
eral open formulation because all energy-releasing processes are open and
irreversible thus not being quantitatively treatable with Galileo’s and Ein-
stein’s relativities. besides, systems that are reversible over time are an
evident particular case of irreversible systems.
During his Ph. d. studies, Santilli was deeply influenced by Lagrange’s
original papers, some of which were written in Italian in Torino and were
available in the library of the University of Torino. In these works, Lagrange
stresses that some of the forces of nature are representable with the quantity
we call nowadays the Lagrangian, and other are not, thus being representable
with external terms in the historical analytic equations (1.2).
Therefore, Santilli conducted extensive studies on the integrability conditions
for the existence of a Lagrangian or a Hamiltonian, also called the conditions
of variational selfadjointness, which he released for publication by Springer-
Verlag later on 9see monograph [16a] when he was at Harvard University
and following the delivering of a seminar course in the field. Thanks to
these studies, santilli could identify Newton’s forces more technically and
write the equations in the form

mk
dvk
dt

= FSAk (t, r, v) + FNSAk (t, r, v, ...).

where SA (NSA) stands for verification (violation) of the integrability con-
ditions to admit a potential. Hence, all SA forces are hereon represented
with a Lagrangian or a Hamiltonikan and all NSA forces were represented
with external terms.
During his intent to study the most general possible open and irreversible
systems, Santilli soon discovered that their representation via the analytic
equations with external terms has serious limitations because the brackets
of the time evolution of a generic observable A characterized by Hamilton’s
equations with external terms

dA

dt
= (A,H) =

∂H

∂rk

∂H

∂pk
− ∂H

pk

∂H

∂rk
+
∂A

∂pk
FNSAk (t, r, v, ...) (1.4)

violate the right scalar and distributivity axioms to characterize an alge-
bra. Being an applied mathematician by instinct, Santilli could not use



16CHAPTER 1. PHYSICAL ORIGIN OF THE ISODIFFERENTIAL CALCULUS:

Lagrange’s and Hamilton’s equations with external terms as the foundation
of an irreversible covering of 20th century reversible theories and, therefore,
he had to search for basically new methods.

By noting that Lie’s theory (see the English translation of Lie’s original
thesis [7]) is at the foundation of 20th century theories, as part of his Ph. D/
thesis Santilli noted that their reversibility over time is due to the invariance
of the Lie product under anti-Hermiticity

[A,B] = AB −BA = −[A,B]†. (1.5)

where A,B are Hermitean and AB is the conventional associative product.
Consequently, Santilli proposed the embedding of Lie algebras into a covering
algebra whose product is neither antisymmetric nor symmetric of the type

(A,B) = λAB − µBA = w[A,B] + z{A,B}, (1.6)

where λ = w + z, µ = −w + z are non-null scalars.

Santilli then spent several months of search in European mathematical li-
braries to identify the type of algebras characterized by his product (A,B)
and finally discovered that it characterized a jointly Lie-admissible and
Jordan-admissible algebra according to the American mathematician A. A.
Albert [8], in the sense that the attached antisymmetric and symmetric
products verify the axioms of a Lie and Jordan algebras, respectively.

It was only following this identification of paternity that Santilli released the
1967 paper [9] for publication. It should be noted that paper [9] is the second
paper following Albert’s paper [8] in Lie-admissible algebras, and paper [9[
is the origination paper of the simpler q-deformations of Lie algebras with
product AB - qBA that appeared decades later.

In 1967 Santilli was invited by the Center for Theoretical Physics of the Uni-
versity of Miami, Coral Gables, Florida, under NASA support in view of his
Lie-admissible studies on irreversibility since spaceship during reentry con-
stitute irreversible systems (Fig. 1). Therefore, Santilli moved in Summer
1967 to the University of Miami where he wrote papers [10.11] proposing the
following parametric Lie-admissible generalization of Heisenberg equations in
its infinitesimal form

i
dA

dt
= (A,H) = λAH − µHA = w[A,H] + z{A,H}, (1.7a)

and integrated form

A(t) = eHµtiA(0)e−itλH . (1.7b)
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Following his stay at the University of Miami, Santilli accepted the posi-
tion of Associate Professor of Physics at the it Department of Physics of
Boston University where he remained until 1974 to teach physics and math-
ematics from prep courses to advanced seminar course and to write ”Phys.
Rev” papers on various open problems of the time. The only paper in Lie-
admissibility written during this period is that of Ref. [12] with P. Roman
on the reformulation of the time evolution of the density matrix of an dis-
sipative plasma with a Lie-admissible structure. This work remains to this
day the sole characterization of dissipative plasma with a consistent algebra
in the time evolution.

Following a stay at the Institute for Theoretical Physics of MIT from 1974
to 1977, Santilli moved to the Lyman Laboratory of Physics of Harvard Uni-
versity to be transferred in 1978 at the Department of Mathematics of the
same university.1 On arrival at Harvard on September 7, 1977, Santilli was
invited by the DOE (then ERDA) to apply for a grant for the Lie-admissible
treatment of irreversible processes because, as indicated earlier, all energy
releasing processes are irreversible, while Galileo’s relativity, Einstein’s rela-
tivities and relativistic quantum mechanics are strictly reversible over time.

Under the backing of the DOE, Santilli resumed full time research on Lie-
admissible formulations and wrote in 1978 two seminal memoirs [13,14], the
first memoir on the status of our knowledge at that time in the Lie-admissible
covering of Lie’s theory (we cannot possibly review here for brevity), and
the second memoir on physical applications of lie-admissible theories. he
also wrote in 1978 monographs [14,16] and other papers.

In memoirs [13], Santilli introduced the the most general known, jointly Lie-
admissible and Jordan-admissible product on a conventional Hilbert space
H over a conventional field of complex numbers C (Sect. 3.7, p. 349, Ref.
[13] and Eq. ( 94.14.11). p. 719, Ref. [14])

(A,̂B) = ARB −BSA =

= (ATB −BTA) + (AWB +BWA) = [A,̂B] + {A,̂B} (1.8)

where R = T +W,S = −T +W are this time operators that, besides being
non-singular, have otherwise an unrestricted functional dependence on all
needed local variables, R = R(t, r, p, ..., S = A(t, r, v, ...).

In the same memoir [13] Santilli proved the direct universality of the algebras
with [product (A,̂B) in the sense of admitting all possible algebras defined

1A recollection of his stay at MIT and Harvard is available in Santilli’s lectures IIA
and IIB of the World Lecture series, http://www.world-lecture-series.org
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over a field of characteristic zero (”universality”) without the use of the
transformation theory (”direct universality”).
In memoir [13] Santilli proposed the construction of a new mathematics for
the quantitative treatment of Lie-admissible formulations under the name of
genomathematics, where the prefix ”geno” was suggested in the Greek sense
of ”inducing new axioms.”
The covering character of lie-admissible algebras was soon noted by S. Adler
who wrote paper [17] immediately following the appearance of memoirs
[13.14] pointing out that supersymmetric and other algebras are indeed a
particular case of Santilli’s Lie-admissible algebras, thus identifying their
irreversibility induced by the symmetric component of the product. Adler’s
analysis remains valid to this day, particularly in view of the physical insuffi-
ciencies of supersymmetric theories, thus suggesting their replacement with
Lie-admissible algebras as for a quantitative study of the essential physical
content, the irreversibility of the systems, recently suggested also by Santilli2

Thanks to the mathematical foundations set forth in the preceding memoir
[13], Santilli proposed in the second memoir [14] the following Operator Lie-
admissible generalization of of Heisenberg equation, also called Heisenberg-
Santilli genoequations in the infinitesimal form (Eq. (4.15.34), p. 746, Re,
[14])

dA

dt
= (A,̂H) =

= ARB −BSA = (ATB −BTA) + (AWB +BWA) =

= [A,̂B] + {A,̂B} (1.9a)

and in the exponentiated form

A(t) = U((t)A(0)W †(t) = eHStiA(0)e−itRH (1.9b)

where the HamiltonianH represents all potential. therefore reversible forces,
S represents all non-potential forces for motion forward in time, R represents
the non-potential forces for motion backward in tine, and irreversibility is
ensure by R 6= S.
Santilli then proposed in memoir [14] the construction of a covering of quan-
tum mechanics based on Lie-admissible equations (1.9) with the name of
hadronic mechanics, under the conditions of recovering quantum mechan-
ics identically for the particular values R = S = I (see, later on, Santilli’s
monographs [34,35] and independent general review [36]).

2See the website announcement http://www.santilli-foundation.org/Announcement-
Super.php
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In Section 5 of the same memoir [14], Santilli illustrated the validity of
hadronic mechanics with the representation of all physical characteristics of
the π0 meson in its synthesis from a positronium (the bound state of an
electron and a positron)

(e−↑ + e+
↓ )J=0 → π0.

This synthesis is impossible for quantum mechanics because the rest energy
of the π0 meson is about 134-times the rest energy of the positronium, thus
requiring a ””positive binding energy” under which quantum mechanical
equations become inconsistent.3

Following the systematic liftings of all main spacetime symmetries,4 Santilli
solved for the first time the problem of the synthesis of the neutron from
the Hydrogen atom inside a star (see review [18])

p+
↑ + e−↓ → n+ ν.

This synthesis constituted the main motivation by Santilli to propose the
construction of hadronic mechanics in memoir [14] since it is the first syn-
thesis inside stars prior to any possible synthesis of natural elements, thus
illustrating again the intent of applying Lie-admissible formulation for ir-
reversible energy releasing processes. The synthesis of the neutron is also
outside any the capabilities of quantum mechanics because the rest energy
of the neutron is 0.782 MeV bigger than the sum of the rest energy of the
protons and of the electron, with ensuing lack ogf p-hysically m,eaningful
solutions of the Schrödinger and Heisenberg equations.
Santilli’s proposal originating from Harvard University to build the novel
hadronic mechanics as a covering of quantum mechanics was an immediate
success that stimulated world wide interest resulting in an estimated number
of over 1, 000 papers, 30 post Ph. D. monographs and about 50 volumes
of conferences proceedings. It is evident we cannot possibly review this
volume of scientific publications and have to restrict ourself to indicate a
few representative publications (see the extended bibliography in Vol. I of
ref.s [34] for partial listing up to 2008).
We should mention the organization and conduction by the mathemati-
cian H. C. Myung and R. M. Santilli of five International Workshops on

3The only bound states admitted by quantum mechanics are those with a ”negative
binding energy” resulting in a ”mass defect” of the bound state for which the rest energy
of the bound state is ”smaller” than the sum of the rest energies of the constituents, as it
is the case for nuclear fusions.

4see website http://www.santilli-foundation.org/LPS-references.php for references all
available in free pdf download
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Lie-admissible Formulations held at Harvard University from 1078 to 197
to 1982 (se representative proceedings [19,20]). In 1981, the physicist J.
Fronteau of the Université d’Orleans, France, and R. M. Santilli organized
the First International Conference on the Lie-admissible treatment of Ir-
reversible systems (see the four volumes of proceedings [21]). Then, over
twenty Workshops on Hadronic mechanics were organized by Santilli and
various other scientists held in the U.S.A, Europe and China (see the rep-
resentative proceedings of the first workshop of 1982 [22]. An excellent
collection of reprinted articles edited by A. Schoeber on irreversibility at the
mechanical, statistical and thermodynamical levels is available in Ref. [23].
Important representative papers of this initial period in the construction
of hadronic mechanics are: the identification by H. C. Myung and R. M.
Santilli of the generalized Hilbert space requested by Lie-admissible dynam-
ical equations [24]; the first known treatment of the irreversibility of nuclear
fusions by R. M. santilli for which scope hadronic mechanics was built for
[25]; the first known Lie-admissible treatment of open statistical systems by
J. Fronteau, r. M. Santilli and A. Tellez-Arenas [26]; and numerous other
important contributions listed in the proceedings.
Following this initial period in the construction of hadronic mechanics, there
were either Workshops on Hadronic Mechanics whose proceedings were pub-
lished by various scientific houses; the Second International Conference on
the lie-0admissible treatment of Irreversible Systems held in 1995 at the
Castle Prince Pignatelli, Molise, Italy, with fifteen volumes of proceedings
published by Hadronic Press; and the Third International, Conference on
the Lie-admissible Treatment of Irreveresioble Systems held in 2011 at the
Kathmandu University, Nepal (see proceedings [27]).
Along a considerable list of additional important contributions during this
second period for the construction of hadronic mechanics, we should quote:
the achievement by R. M. Santilli of the invariance over time of Lie-admissible
formulations in general and q-deformations in particular [28] as well as the
achievement of mathematical and physical maturity for the Lie-admissible
formulation of irreversible systems [29]; the first known Lie-admissible char-
acterization of interior astrophysical systems by [30] J. Ellis, N. E. Mavro-
matos and D. V. Nanopoulos [30]; the first known Lie-admissible formulation
of thermodynamical laws by J. Dunning-Dabvies [31]; the first known stud-
ies of compatibility of lie-admissible mechanics with thermodynamics by
A. Bhalekar (see the recent paper [32[ and references quoted therein); and
the multi-valued hyperstructural formulation of the lie-admissible branch of
hadronic mechanics by R. M. Santilli and the mathematician T. Vougiouklis
which is the most general mathematics that can be conceived by the human
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mind nowadays opening a new scientific era in quantitative treatment of bio-
logical structures, that are notoriously irreversible over time, with particular
reference to the initiation of studies on the DNA code.5

1.0.5 Santilli Lie-Isotopic Representation of Closed Irreveri-
ble Systems

While writing the seminal memoir [13], Santilli realized that the genomath-
ematics needed for the elaboration of Lie-admissible formulations was too
complex for full comprehension by the general physics audience since Lie-
admissible algebras were known at that time only by a few mathematicians
and they had remained essentially unknown in the physics community, de-
spite the need to study irreversible energy releasing processes as presented
in papers [9-12] .

Consequently, Santilli introduce for the first time, also in Ref. [13], a sim-
pler particular case of genomathematics under the name of isomathematics,
where the prefix ”iso” was introduced in the Greek meaning of being ”axiom-
preserving.” Santilli recommended its study and development prior to ad-
dressing full Lie-admissible formulations, a suggestion that remains valid to-
day and which has been adopted in this monograph for the presentation of
Santilli IsoDiifferential Calculus (IDC) as a preparatory ground for broader
studies.

The central physical notion of of isomathematics is that of Santilli’s closed-
isolated non-Hamiltonian/NSA systems, namely, systems that verify the
conventional ten conservation laws (for the conservation of the total en-
ergy, total linear momentum, total angular momentum and the uniform
motion of the center of mass), yet the internal forces are partially SA and
partially NSA. As a consequence, the systems are not representable with a
Hamiltonian or a Lagrangian. hence, closed non-Hamiltonian systems are
irreversible over time.

These new systems were introduced first in memoir [13,14] and then treated
via the conditions of variational selfadjointness in monograph [16b), Section
6.3, Eqs. (6.3.36 and Fig. 2), resulting in the following conditions for the

5Fully in line with the original motivation of the studies recalled earlier, and besides
the scientific advances outlined above, Santilli Lie-admissible treatments of energy releas-
ing, thus irreversible processes has already permitted the development of a number of
new, patented, clean fuels and energies, such as the fuelmagnegas with the new chemical
structure of magnecules developed by the U. S. publicly traded company Magnegas Corpo-
ration (www.magnegas.com), the new nuclear fusions without radiations developed by the
U.S. publicly traded company Thunder Fusion Corporation (www.thunder-fusion.com),
and other new technologies.
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internal non0-conservative forces to allow total conservation laws

Σk=2,..,nF
NSA
k = 0. (1.10a)

Σk=1...,npk ? F
NSA
k = 0, (1.10b)

Σk=1,...,npk ∧ FNSAk = 0, (1.10c)

where one should note that k ≥ 2 since one single particle, when isolated in
vacuum, cannot experience non-Hamiltonian forces.

Figure 1.2: Santilli illustrates closed non-Hamiltonian systems with Jupiter
because it verifies the ten conservation laws of total physical quantities when
considered as isolated from the rest of the universe, yet its interior dynamics
is highly non-conservative as shown by atmospheric vortices with variable
angular momenta, entropy, etc.

The physical problem addressed by santilli for the treatment of closed irre-
versible systems was the identification of an algebra in the brackets of the
time evolution which needs to be antisymmetric as an evident condition to
represent the indicated ten conservation law, yet the algebra could not be
Lie otherwise the represented systems would have no internal NSA forces.

The solution found by Santilli signals the birth of isomathematics, and con-
sists in the assumption in Ref. [13] of the following axiom-preserving, thus
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isotopic, generalization, also called isotopic lifting of the conventional asso-
ciative product into the form today known as Santilli isoproduct between
two generic quantities A,B (numbers, functions, matrices, operators, etc.)

A×B → A×̂B = A× T̂ ×B, T > 0, (1.11)

where T̂ , called the isotopic element, is a positive-definite quantity (number,
function, matrix, operator, etc.) which is fixed for the problem considered,
but otherwise admits an unrestricted functional dependence on all needed
local quantity, T̂ = T (t, r, p, ...) > 0
Via the use of the isoproduct, Santilli then presented, also for the first time in
memoir [13] (see monograph [16a] for extended studies), the isotopic lifting
of all main branches of Lie’s theory, including the isotopies of the universal
enveloping associative algebra, Lie algebras, Lie transformation groups, and
the representation theory, today called the Lie-Santilli isotheory (see the
independent studies [37,38]).
By recalling that Lie’s theory can solely characterize linear, local and Hamil-
tonian systems, Santilli proposed the covering theory for the treatment of
non-linear, non-local and non-Hamiltonian systems, with particular refer-
ence to closed irreversible systems.
We cannot possibly review here the Lie-Santilli isotheory, and can merely
mention that the isotopies ξ̂(L̂) of the universal enveloping algebra ξ(L) of
a Lie algebra L, characterize the Lie-Santilli isoalgebra L̂ ≈ [ξ̂(L̂)]− with
isoproduct

[A,̂B] = A×̂B −B×̂A = A× T̂ ×B −B × T̂ ×A, (1.12)

that evidently verifies the Lie axioms thus confirming its isotopic character.
Thanks to the isotopies of Lie’s theory of memoir [13], Santilli then in-
troduced in memoir [14] the isotopic lifting of Heisenberg’s equations, today
known as the Heisenberg-Santilli isoequations in their infinitesimal form 9see
Eqs. (4.15.59), p. 752, Ref. [14])

i× dA

dt
= [A×̂H −H×̂A = A× T̂ ×H −H × T̂ ×A, (1.13a)

and in the finite form

A(t) = U(t)×A(0)× U †(t) = eHT̂ ti ×A(t)× e−itT̂H , (1.13b)

which were introduced to characterize the isotopic branch of hadronic me-
chanics, also known as isomechanics.
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As one can see, dynamical equations. (1.13) do achieve the intended primary
aims, namely: 1) Representing all potential interactions with the conven-
tional Hamiltonian H; 2) Representing non-potential/NSA interactions with
the isotopic element T ; and 3) verifying all needed conservation law due to
the antisymmetric character of isoproduct (1.12) as a necessary c condition
to represent closed irreversible systems, as it is the case of conservation of
the total energy

i
dH

dt
= [H,̂H] = H×̂H = H×̂H ≡ 0,

The above representation implies that the systems are assumed as being iso-
lated from the rest of the universe. Yet. the systems are generally irreversible
because the isotopic element is generally non-invariant under time-reversal

T (t, ....) 6= T (−t, ....). (1.14)

The above characteristics confirm the possible achievement of compatibility
between isomechanics originally aimed at [23] and thermodynamics recently
under study by A. Bhalekar [32] and others.

1.0.6 Lorentz-Poincaré-Santilli isosymmetry

Thanks to the prior construction in Refs. [13,14,16b] of the isotopies of Lie’s
theory, Santilli solved in paper [39] of 1983 the historical Lorentz problem,
namely, the universal invariance of the locally varying speeds of light within
physical media

C = c/n(t, r, d, τ, ...), (1.15)

where c is the speed of light in vacuum, and n is the familiar index of
refraction with a rather complex dependence on the characteristic of the
medium and light considered and other physical quantities.

As it is well known to historians, Lorentz did achieve the universal invariance
of the constant speed of light c, but failed to achieve the invariance of locally
varying speeds (1.15) because of the insufficiency of Lie’s theory to treat
locally varying speeds of light that constitute non-linear, non-local and non-
Hamiltonian systems.

In essence, Santilli first constructed the isotopies of the Minkowski space
M(x, η, I) with local coordinates x = (xµ), µ = 1, 2, 3, 4, metric η =
Diag.(1, 1, 1,−1),and unit I = Diag.(1, 1, 1, 1), today known as Minkowski-
Santilli isospaces, with line element
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x̂2̂ = xµ(T̂ ρµηρνx
ν = xµη̂µνx

ν =
x2

1

n2
1

+
x2

2

n2
2

+
x2

3

n2
3

− t2 c
2

n2
4

, (1.16a)

T̂ = Diag.(1/n2
1, 1/n

2
2, 1/n

2
3, 1/n

2
4) > 0, (1.16b)

where

nµ = nµ(t, r, v, e, ρ, ω, τ, ...) > 0, µ = 1, 2, 3, 4, (q.17)

where: the n’s are called the characteristic quantities of the medium consid-
ered; n4 is the conventional index of refraction providing a geometrization of
the density of the medium normalized to the value n4 = 1 for the vacuum;
n1, n2, n3 provide a geometrization of the shape of the medium considered
normalized to the values n1 = n2, n3 = 1 for the sphere; the general inhomo-
geneity of the medium is represented by the dependence of the characteristic
quantity on the local variables (e.g., the elevation for the case of our atmo-
sphere); and the general anisotropy of the medium (e.g., the anisotropy of
our atmosphere caused by Earth’s rotation) is represented by different values
of the type n4 6= ns.

6

The identification of the isotopic element (1.16b) and its application of the
Lie-isotopic theory) then permitted Santilli to solve the historical Lorentz
problem in one page of ref. [39], resulting in the generalized transforma-
tions (Eqs. (15) of Ref. [39]), today known as the Lorentz-Santilli (LS)
isotransforms [35-42] which we write in the currently used symmetrized form

x‘1 = x1, x‘2 = x2, (1.19a)

x‘3 = γ̂(x3 − β̂ n3

n4
x4), (1.19b)

x‘4 = γ̂(x4 − β̂ n4

n3
x3), (1.19c)

where

β̂ =
v3/n3

co/n4
, γ̂ =

1√
1− β̂2

, (1.19d)

which leave leaving invariant the isoline element (1.16a), thus providing the
invariance of the varying speeds of light (1.12) (see Ref. [34b] for the general
treatment).

6Scientific caution is suggested before dubbing the n-characteristic quantities as “free
parameters” because that would imply that, e.g., the index of refraction n4 is a free
parameter when in reality it is measured for a given medium, or that the gµµ elements of
the Schwartzchild metric are free parameters, etc.
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A main feature of the LS isosymmetry is that it is isomorphic to the conven-
tional Lorentz symmetry, thus confirming its isotopic character. In reality,
this property is a consequence of the fact that, despite its dependence on all
needed local variables, the Minkowski-isotopic space is locally isomorphic to
the conventional Minkowski space.
Subsequently, Santilli constructed a systematic, step by step isotopic lift-
ing of every aspect of the conventional as well as spinorial covering of the
Poincaré symmetry, resulting in an axiom-preserving covering symmetry to-
day known as the Lorentz-Poincaré-Santilli (LPS) isosymmetry (see Ref.
[41] for complete literature available in free pdf download and monographs
[34] for a comprehensive treatment,) which isosymmetry is at the founda-
tion of the relativistic isomechanics and its various scientific and industrial
applications.
To understand the implications, the reader is suggested to note that the
LPS isosymmetry has achieved, for the first time, the universal invariance of
all possible spacetime elements in (3+1)-dimensions, including Riemannian,
Fynslerian, and other spacetimes with important applications from particle
physics to cosmology indicated later on.

1.0.7 Inconsistencies of Earlier Non-Unitary Theories

Following the above advances, Santilli conducted their in depth critical anal-
ysis by discovering that they had rather serious mathematical and physical
insufficiencies today known under the name of the Theorem of catastrophic
Inconsistencies of Non0canonical and Non-unitary theories Elaborated with
the mathematics of canonical and unitary theories, respectively [42], that we
can summarize as follows

INCONSISTENCY THEOREM 1.2: Non-canonical and non-unitary the-
ories formulated with the mathematics of canonical and unitary theories,
respectively, are mathematically and physically inconsistent.

In essence, time evolution (1.12b) is non-unitary on a conventional Hilbert
space H over the field of complex number C, i.e.

U U † 6= I.

Consequently, said time evolution does not preserve over time the basic unit
and, therefore, does not preserve over time the basic numeric field, with
consequently loss over time of the entire mathematics defined over a field.
Equally serious are the physical insufficiencies under the indicated conditions
because the unit, e.g., of the Euclidean space I = Diag(1, 1, 1) physically
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provides a dimensionless representation of the units of measurements, such
as I = Diag.(1cm, 1cm, 1cm). Consequently, the lack of preservation over
time of the unit physically implies the inability of the theory to predict the
same numerical values under the same conditions at different time, the lack
of preservation over time of Hermiticity with consequential loss of observ-
ables, the violation of causality laws, and other insufficiencies Santilli calls
”catastrophic.”

1.0.8 Isonumbers

Inconsistency Theorem 1.2 established the necessity of constructing the
novel isomathematics via the step-by-step isotopic lifting of all aspect of
mathematics formulated over a field of characteristic zero.

A central problem addressed by Santilli was the identification of represen-
tation of NSA interactions which is invariant over time. After numerous
attempts, Santilli decided to represent NSA forces via an isotopic general-
ization of the multiplicative unit of the theory, because the unit is the basic
invariant of any theory.

This lead to the introduction a generalized multiplicative unit as the inverse
of the isotopic element of Refs. [13,14], today known as Santilli isounit [43],
with explicit realizations in (3+1)-dimensions of the time

Î = Diag.(n2
1, n

2
2, n

2
3, n

2
4) eΓ(t,r,p,ψ,∂ψ,...) = 1/T̂ > 0. (1.20)

that clearly allows the representation of extended, non spherical and de-
formable bodies with shape represented by the characteristic quantities
n2
k, k = 1, 2, 3, the geometrization of the medium in their interior with the

characteristic quantity n2
4 and the representation of NSA interactions via

the exponent Γ, as illustrated below.

Santilli’s hesitation in using the isotopies of the unit was motivated by the
fact that all physically consistent theories must be formulated over a numeric
field as a prerequisite for their experimental verifications, while the isotopies
of of the multiplicative units clearly imply the loss of all numeric fields
known at the time 9early 1900) with the consequential inability to conduct
experimental verification.

Due to his great respect for Gauss, Cayley, Hamilton and the other founders
of the modern number theory, Santilli accepted as final their classification
of numbers into real, complex and quaternionic numbers Octonions be-
ing excluded from the classification due to their violation of the axioms of
associativity of the product.
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As indicated in his writing, Santilli reinspected the historic classification
of numbers ”out of desperation” due to the impending loss of decades of
research. In summer 1993 while visiting the Joint Institute for Nuclear Re-
search in Dubna, Russia, Santilli to discovered that the axioms of a numeric
field do not necessary require that the multiplicative unit is the trivial number
1, since said unit can be an arbitrary non-singular quantity Î.

This observation led to one of the most important mathematical discoveries
of the 20th century with far reaching implications in all sciences: the iso-
topies of numeric fields presented for the first time in Santilli’s paper [43]
of 1993 and subsequently studies by numerous independent authors (see the
monograph by the Chinese mathematician C-X. Jiang [44], the review by
the Italian physicist C. Corda [45] and references quoted therein).

Regrettably, we cannot review Santilli isonumber theory. We merely mention
that, given a numeric field F (n,×, 1) with real, complex or quaternionic
numbers n,m, ..., conventional associative product n × m and basic unit
1, 1 × n ≡ n × I ≡ n ∀ n ∈ F , the ring F̂ (n̂, ×̂, Î), with elements
n̂ = n × Î equipped with the isoproduct n̂×̂m̂ = n × m × Î ∈ F̂ and
multiplicative isounit Î = 1/T̂ , Î×̂n̂ ≡ n̂×̂Î ≡ n̂ ∀n̂ ∈ F̂ , verifies all axioms
of a numeric field and are called Santilli isofields and the elements n̂ are
called isonumbers..

Santilli additionally noted in Ref. [43] that the axioms of a field do not
necessarily require that the new multiplicative unit has to be an element of
the original field. This lead to the classification isofields into isofields of
the first kind when the isounit is not an element of the original field, and
isofields of the second kind when the isounit is an element of the original
field.

The significance of Santilli’s isonumber theory can be illustrated with the
fact that, contrary to a popular belief throughout 20th century mathematics,
prime numbers do not have an absolute meaning because their value depends
on the assumed multiplicative unit. Consider the real isofield R̂(n, ×̂, Î), Î ∈
R for which isonumbers coincide with ordinary numbers because n̂ = n× Î ∈
R. Then, for Î = 3, we have 2×̂3 = 2 and 4 is a prime numbers.

We should also mention that Santilli’s isonumbers have stimulated new
isocryptograms, namely, cryptograms based on an infinite number of pe-
riodically changing multiplicative units, thus not being solvable in a finite
period of time [34a].
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1.0.9 Isofunctions

The discovery of isofields F̂ (n̂, ×̂, Î) required the reformulation of all studies
conducted on isotopies prior to 1993 beginning with the lifting of functions
into isofunctions of the form for a generic variable

f̂(x̂) = [f(x× Î)]× Î , (1.21)

because consistency requires that the dependence must be on variables and
the value of isofunctions must be isoscalars, namely, elements of F̂ .
The birth of isofunctions stimulated a second group of mathematical studies
in addition to those for isofields that we, regrettably, cannot review (see
monograph [34a] for a general presentation with large literature up to 1995).
We merely mention the notion of isoexponential first identified by H. C.
Myung and R. M. Santilli in 1982 [46] via the use of ordinary numbers, and
then finalized by Santilli [34a] in terms of isofunction,

êx̂ = Î + x̂/1! + x̂×̂x̂/2! + ... = [ex̂×̂T̂ ]× Î = Î × [eT̂ ×̂x̂]. (1.22)

which allowed Santilli to achieve maturity of formulation of the isogroups,
e.g., for the one-dimensional case of time evolution (1.12b) that acquires the
mathematically consistent form over isofields

Â(t̂) = êĤ×̂t̂̂i×̂Â(0̂)×̂ê−î×̂tt̂imesĤ (1.23)

with similar expressions for n-dimensional isotransforms.
The isoexponent allowed the lifting of the conventional Dirac’s delta function
δ(r − ro) into the expression introduced in Ref. [46]

δ̂(r̂ − r̂0) =
Î

2π
×̂
∫̂ +∞

−∞
êî×̂k̂×(r̂−r̂0)×̂d̂k̂,= 1

2π
×
∫ +∞

−∞
ei×k×T×(r−ro) × dk,

(1.24a)
T̂ = Σn

k=1ĉk × (r̂ − r̂0)−k, ĉk ∈ Ĉ. (1.24b)

δ̂(r − r0) = δ[T × (r − r0)]. (1.24c)

which lifting was called by M. Nishioka [47] the Dirac-Myung-Santilli (DMS)
isofunction.
The significance of the DMS isofunction is quite remarkable because, as il-
lustrated in Fig. 3, under the suitable selection of the isotopic element, the
DMS isofunction implies the elimination of the singularity of the conven-
tional Dirac delta at t = ro which singularity is the origin for the divergences
in quantum mechanics and quantum, field theory.
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As a matter of fact, Santilli proposed the isotopies of 20th century ap-
plied mathematics by having particularly in mind the absence of divergences
whose eliminations is somewhat arbitrary, thus implying unsettle numerical.
results.

Figure 1.3: A schematic view in the left of the conventional Dirac delta
function δ(r−r0) illustrating its divergence at r0, and a schematic view in the
right of the Dirac-Myung-Santilli isodelta isofunction of hadronic mechanics
δ̂(r − r0), illustrating the absence of the above divergence at r0, a feature
allowing the removal of divergencies of quantum mechanics and quantum
field theory.

Among a number of additional initial contributions in isofunctions, we men-
tion the studies by J. V. Kadeisvili [48,49] of 1992 on the isoanalysis with
particular reference to the Fourier-Santilli isotransforms, and the studies by
A. Aringazin et al [50] on various special isofunctions.

The authors have no words to stress that Santilli’s isotopic theories must
be elaborated with isofunctions due to the emergence of insidious inconsis-
tencies in the use of conventional function that often remain undetected by
non-experts in the field.

1.0.10 Isospaces

Following the isotopies of numeric fields and of functional analysis, the next
isotopies necessary for physical applications were those of isospaces that
were first lifted by Santilli in paper [29] of 1983 and then reformulated in
various subsequent works, yielding the current notion of isospaces charac-
terized by isotopic lifting of conventional (metric or pseudo-metric, compact
or non-compact) spaces when defined over isofields, that Santilli studied
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in great details, including isospaces today called Euclid-Santilli, Minkowski-
Santilli, Riemannian-Santilli and other isospaces (see monographs [34] and
independent review [51).

We merely indicate for completeness that the correctly formulated Mink-
owski-Santilli isospace is given by M̂(x̂, η̂., Î) with isocoordinates x̂ = x× Î,
isometric η̂ = T̂ × η, where η is the conventional Minkowski metric, isounit
Î = 1/T̂ and infinite family of isospacetimes

x̂2̂ = x̂µ×̂η̂µν×̂x̂ν = (xµ × η̂µν × xν)× Î (1.25)

where one should note the final multiplication by the isounit for the projec-
tion of the isospacetime in the conventional Minkowski coordinates for the
value of the isoline element to be an isoscalar.

This seemingly trivial multiplication by the isounit has the deep implica-
tions that the isotopies of the Minkowski spacetime are a kind of a hidden
symmetry of the conventional spacetime due to the identity

x2 = (xµ × ηµν × xν)× I ≡ (x̂µ×̂η̂µν×̂x̂ν)× ≡̂x̂2̂, (1.26a)

Î = 1/T̂ = K ∈ F,K 6= 0. (1.26b)

A technical knowledge of Santilli isospaces is recommended prior to ventur-
ing any mathematical or physical interpretation. For instance, to understand
the axiom-preserving character of the isotopies of the Minkowski space, it is
necessary to know that, despite its deformed appearance, the light isocone
in the (3, 4)-isoplane

x̂2̂ =
x̂2

3

n2
3

− t̂2̂×̂ĉ2̂

n2
4

= (
x2

3

n2
3

− t2c2

n2
4

)× Î = 0, (1.27a)

Î = Diag.(n2
3, n

2
4), (1.27a)

is a perfect cone when properly formulated on M̂(x̂, ×̂, Î),m to such an extent
that the angle of the isocone is the same as that of the conventional cone,
namely, the maximal causal speed on M̂ remains ĉ.

Alternatively, one can see from Eqs. (1.27) that the conventional light cone
id deformed with the characteristic quantities 1/n2

3, 1/n
2
4 to achieve the de-

sired local variation of the speed of light C = c/n4 in a properly symmetrized
way. However, the selected isounit provide the inverse deformations, thus
preserving the exact light cone in isospaces over isofields.
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1.0.11 IsoDifferential Calculus

By the early 1994, all main aspects of mathematics defined over a field of
characteristic zero had been isotopically lifted. Yet, Santilli remained dis-
satisfied because the fundamental dynamical equations, such as Eqs. (1.13)
remained non-invariant over time. Consequently, hadronic mechanic was
unable to predict the same numerical values under the same conditions at
different times, thus being “without physical value” in Santilli’s own words.
Since the discovery of the isonumbers [43], Santilli spent a great effort to
identify the origin of the lack of invariance, without any result. Finally,
during the Second International Conference on the Lie-admissible Treatment
of Irreversible Processes at the Castle Prince Pignatelli, Molise, Italy, Santilli
had the courage to reinspect the differential calculus that had remained
basically unchanged for the past four centuries.
As a result of a critical analysis, Santilli soon discovered that, contrary to a
popular belief in mathematics and physics for centuries, the differential cal-
culus depends on the unit of the assumed basic field because, in the event said
unit is dependent on the differentiation variables, the conventional nations
of differentials and derivatives are inapplicable.
This lead Santilli to another fundamental mathematical discovery of the
20th century, today known as Santilli IsoDifferential Calculus (IDC), which
he first presented in Section 1.5, pages 19-23 of the mathematical memoir
[52] published in 1996. with isodifferential of an isocoordinate r̂7

d̂r̂ = T̂ × d(r × Î) (1.28)

and isoderivative of an isofunction f̂(r̂)

∂̂f̂

∂̂r̂
= Î × ∂f̂

∂r̂
(1.29)

In this way, following the isotopies of Heisenberg equations of 1978 [14],
Santilli finally achieved their invariant formulation only in 1995 thanks to
the use of the isodifferential calculus [52]8

î×̂ d̂Â
d̂t̂

= Â,̂Ĥ = Â×̂Ĥ − Ĥ×̂Â. (1.30)

7It should be noted that Santilli first wrote memoir [52] in 1995 and immediately
thereafter the second edition of monographs [34] reformulated with the IDC, even though
memoir [52] appeared in print one year later than the publication of monographs [34].

8It should be noted that Ref. [52] used the isounit and isotopic element in an inter-
changed form as compared to that of this book which is the notation nowadays widely
used.
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The achievement by hadronic mechanics of invariance over time stimulated
the appearance of a large number of papers in mathematics, physics, chem-
istry, biology, astrophysics and other fields we can only briefly indicate later
on.
Note that, for Î constant or independent from the variable of differentiation,
we have the trivial identities [52]

d̂r̂ ≡ dr, ∂̂f̂

∂̂r̂
≡ ∂f

∂r
(1.31)

thus illustrating the reason for which the limitations of the differential cal-
culus remained undetected for centuries.

1.0.12 Newton-Santilli Isoequations

Finally , after the above laborious scientific journey, Santilli was in a po-
sition to formulate in the mathematical memoir [52] of 1996 (as well as in
monographs [34]) the desired structural generalization of Newton’s equations
for the representation of extended, non-spherical and deformable bodies as
a condition to admit non-conservative/NSA forces when moving within a
physical medium.
The generalized equations are defined on the Kronecker product of Euclid-
Santilli isospaces for time, coordinates and velocities

Ŝ(t̂, r̂, v̂) = Ê(t̂, δ̂tÎt)× Ê(r̂, δ̂r, Îr)× Ê(v̂, δ̂v, Îv), (1.32)

where: Ît = 1/T̂t, Îr = 1/T̂r, Îv = 1/T̂v are the isounits for time, coordinates
and velocities, respectively all generally different among themselves, e.g.,
due to different dimensionalities; t̂ = t×Ît is the isotime, r̂ = (rk×Îr) are the
isocoordinates, v̂ = (vk × Îr) are the isovelocities; δ̂t = T̂t, δ̂r = T̂r × δ, δ̂v =
T̂v × δ are the isometrics for time, coordinates and velocities, respectively;
δ = Diag.(1, 1, 1) is the conventional metric of the Euclidean space; and δ̂t
is evidently one-dimensional to comply with our current notion of time.9

The resulting generalized Newton’s equations are then written in the form
(see Eqs. (2.5), page 31, Ref. [52] and Chapter 1 of Ref. [34]), today called
the Newton-Santilli isoequations

m̂k×̂
d̂v̂k

d̂t̂
= F̂SAk (t̂, r̂, v̂) + F̂NSAk (t̂, r̂, v̂), (1.33)

9It should be noted that the restriction for time being one-dimensional is lifted under
hyperstructural formulations [35].
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By assuming for simplicity Ît = Îr = 1, when projected in our time and
space, and after eliminating redundant terms, the above equations assume
to the simple form (where we ignore the conventional multiplication × to be
in line with the formalism of Newtonian mechanics)

mk
d(vkIk)

dt
= mk

dvk
dt
Îv +mkvk

dÎv
dt

= [FSAk (t, r, v̂) + FNSAk (t, r, v̂)Îv,

By assuming the realization of the isounit Îv in the exponential form, which
is necessary for the generalized equations to be a covering of the conven-
tional; equations.

Îv = Σk=1,2,3Diag.(n
2
ke

Γk(t,r,v), (1.34)

and assuming for simplicity that the nk62 are constants, thus tthey cancel
out from the r.h.s and the l.h.s., the Newton-Santilli isoequations (1.33) rep-
resent identically the conventional Newton’s equations (1.1) via the solutions
of the equations

dΓk
dt

=
1

mkvk
FNSAk , (1.35)

that always exist under sufficient continuity and regularity conditions (see
Theorem ?? of “direct universality” of the Newton-Santilli isoequations in
page 31, Ref. [52]).10

Note the spirit of Santilli’s isotopies of Newton equations, namely, the use of
their lifting solely for the characterization of non-conservative/NSA forces
via the isodifferential calculus. This is a truly crucial feature since it allows,
as indicated below, the achievement of a “directly universal” isoaction prin-
ciple for all (sufficiently smooth and regular) non-conservative/NSA forces
that, in turn allows a unique and unambiguous map into the isotopic branch
of hadronic mechanics, with a resulting new vistas in various scientific fields.

We should mention that Santilli formulated his isotopies of Newton’s equa-
tions via the use of Kadeisvili isocontinuity [48] (see Ref. [52], Section 1.7,
page 23 and ff.). The ultimate maturity of the isoequations is expressed by
the isotopies of the conventional Euclidean topology, known as isotopology,
that was first studied by Gr. Tsagas and D. S. Sourlas in Refs. [53,54] (see
Ref. [52] page 24). Tsagas-Sourlas studies were re-reformulated by Santilli
in Ref. [52] over isofields (because originally formulated over a conventional
field); and the isotopology was finally studied in great mathematical details
by R. M. Falcon Ganfornina and J. Nunez Valdes, first in monograph [55] and

10It should be indicated again that the use in Ref. [52] of the symbols Î and T̂ in
interchanged with that of this chapter that later became of wide adoption.



35

then in memoir [56] specifically devoted to the isotopology, which is there-
fore referred to as the Tsagas-Sourlas-Santilli-Ganfornina-Valdez (TSSGV)
isotopology.
We should also indicate that, far from being trivial, the isotopies of time,
coordinates and velocities have rater deep geometric meanings due to the
general property studied in details in Ref. [34b] that the numerical value of
a physical quantity in our time and space is qt,r is preserved under isotopies

qt,r ≡ q̂t̂,r̂ = qt̂,r̂ Îq, (1.36)

as illustrated in the light isocone, Eq., (1.27) for which the locally varying
speed of light within physical media C = c/n is turned into the speed of light
ĉ on isospace over isofields due to the identity c/n = ĉ = c × Iv, Ic = 1/n
(see Fig. 4 for comments)
It should be finally noted that Eqs. (1.zzz) are only one out a total of seven
generalizations of Newton’s equations introduced by Santilli following the
prior constructions of the underlying mathematics,, and are known today
as Newton-Santilli iso,, geno, hyper-, for the study of matter in conditions
of increasing complexity,and the Newton-Santilli isodual, isodual isotopic,
isodual genotopic and isodual hyperstructural equations for the study of an-
timatter in conditions also of increasing complexity 9see memoir [zzz] and
monographs [zzz] for details) 9see memoir [57] and general treatment in
monographs [35]).

1.0.13 Universal Isoaction Principle
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Figure 1.4: The topological implications of the notions of isotime and iso-
coordinates were illustrated by Santilli [34a] via the drawing of this figure
depicting an observer Oext in our time text and coordinates rext and an ob-
server Ôint in isotime t̂ = tintÎt and isocoordinates r̂ = rintÎr, that observe
the same box from the outside and the inside, respectively. Since the nu-
merical values of time and coordinates are preserved under isotopies, Eq.
(1.36), the internal observer still evolves forward in time, but can exist in
the future or in the past with respect to the external observer, depending on
the value of the time isounit. Under the same condition (1.36), the external
observer sees a cube, while the internal observer can see a much different
structure, again, depending on the coordinate isounit. At the limit, the inter-
nal observer can even see a cathedral under the multivalued hyperstructural
extension of the isotopies [57]. The full understanding of Santilli’s isotopies
requires a knowledge of these topological anomalies including, perhaps more
importantly, the fact that the internal anomalous features are not perceived
by the sensory perception of the external observer due to law (1.36).



Chapter 2

Isoreals

Let F̂R is a set of isoreals with basic isounit Î1 = 1
T̂1

, where T̂1 is positive

real constant.

Definition 2.0.2. We will say that two elements â, b̂ ∈ F̂R are equal and
will write

â = b̂ (2.0.1)

if
a = b (2.0.2)

The relation equality is well defined. Really, if a, b ∈ R and (2.0.1) holds
then

a

T̂1

=
b

T̂1

, (2.0.3)

from where (2.0.2) holds, and the inverse, if (2.0.2) holds then the equality
(2.0.3) is valid, from where (2.0.1) holds.
The equality of the isoreals has the following properties

1. ĝ = ĝ for every ĝ ∈ F̂R,

2. if ĝ = ĥ then ĥ = ĝ for every ĝ, ĥ ∈ F̂R,

3. if ĝ = ĥ and ĥ = l̂ then ĝ = l̂ for every ĝ, ĥ, l̂ ∈ F̂R.

These properties we can consider as direct corrolaries of the properties of
the equality of real numbers therefore their proof we left to the reader.

37
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Definition 2.0.3. A nonempty set F̂R of isonumbers in which are defined
two operations addition + and isomultiplication ×̂ so that

1. ĝ + ĥ = ĥ+ ĝ, ĝ×̂ĥ = ĥ×̂ĝ for every ĝ, ĥ ∈ F̂R,

2. (ĝ + ĥ) + l̂ = ĝ + (ĥ+ l̂), (ĝ×̂ĥ)×̂l̂ = ĝ×̂(ĥ×̂l̂) for every ĝ, ĥ, l̂ ∈ F̂R,

3. ĝ×̂(ĥ+ l̂) = ĝ×̂ĥ+ ĝ×̂l̂ for every ĝ, ĥ, l̂ ∈ F̂R,

4. if ĝ = ĥ and ĥ = l̂ then ĝ = l̂ for every ĝ, ĥ, l̂ ∈ F̂R,

5. ĝ + ĥ+ l̂ := (ĝ + ĥ) + l̂ for every ĝ, ĥ, l̂ ∈ F̂R,

6. the equation ĝ+ r̂ = ĥ, ĝ, ĥ ∈ F̂R are given, r̂ ∈ F̂R is unknown, has a
solution in F̂R,

7. for every ĝ ∈ F̂R is valid only one of the relations ĝ = 0̂ or ĝ 6= 0̂,

8. if ĝ 6= 0̂ the equation ĝ×̂r̂ = ĥ, ĝ, ĥ ∈ F̂R has a solution in F̂R

will be called isoreal isofield.

Below we will consider F̂R as isoreal isofield.

Corollary 2.0.4. Every solution of the equation ĝ + r̂ = ĝ, ĝ ∈ F̂R, is a
solution of the equation ĥ+ r̂ = ĥ, ĥ ∈ F̂R.

Proof. Let r̂ ∈ F̂R is a solution of the equation ĝ+ r̂ = ĝ and ŷ is a solution
to the equation ĝ + ŷ = ĥ. Then

ĥ+ r̂ = (ĝ + ŷ) + r̂ = ĝ + (ŷ + r̂)

= ĝ + (r̂ + ŷ) = (ĝ + r̂) + ŷ = ĝ + ŷ = ĥ.
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Corollary 2.0.5. The equation ĝ + r̂ = ĝ, ĝ ∈ F̂R, has unique solution.

Proof. From the definition of isoreal isofield follows that the considered equa-
tion has a solution r̂ ∈ F̂R. Let us suppose that it has and other one solution
ŷ ∈ F̂R, i.e.

ĝ + r̂ = ĝ, ĝ + ŷ = ĝ.

From Corollary 2.0.3 follows that we have

ŷ + r̂ = ŷ, r̂ + ŷ = r̂,

from here and the definition of isoreal isofield follows that r̂ = ŷ.

Corollary 2.0.6. Let ĝ, ĥ ∈ F̂R. Then the equation ĝ + r̂ = ĥ has unique
solution.

Proof. Let us suppose that the considered equation has two solutions r̂, ŷ,
for them we have

ĝ + r̂ = ĥ, ĝ + ŷ = ĥ,

from where follows that

ĝ + r̂ = ĝ + ŷ.

From the definition for isoreal isofield follows that the equation ĝ + ẑ = 0̂
has a solution. Then

ŷ = ŷ + 0̂ = ŷ + (ĝ + ẑ)

= (ŷ + ĝ) + ẑ = (ĝ + ŷ) + ẑ = (ĝ + r̂) + ẑ

= (r̂ + ĝ) + ẑ = r̂ + (ĝ + ẑ) = r̂ + 0̂ = r̂.
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Consequently for every two isoreals ĝ, ĥ the equation ĝ + r̂ = ĥ has unique
solution. This unique solution will be denoted with ĥ− ĝ and we have

ĝ + (ĥ− ĝ) = ĥ.

From Corollary 2.0.5 follows that the equation ĝ+ r̂ = 0̂ has unique solution
which will be denoted with −ĝ and we have

ĝ + (−ĝ) = 0̂.

The isoreal −ĝ is called isoopposite of the isoreal ĝ.

Corollary 2.0.7. Let ĝ ∈ F̂R. Then

ĝ − ĝ = ĝ + (−ĝ) and − (−ĝ) = ĝ.

Proof.
ĝ + (ĥ+ (−ĝ)) = ĝ + ((−ĝ) + ĥ)

= (ĝ + (−ĝ)) + ĥ = 0̂ + ĥ = ĥ,

in other words ĥ + (−ĝ) is a solution of the equation ĝ + r̂ = ĥ which has,
in accordance with Corollary 2.0.5, unique solution which is denoted with
ĥ− ĝ. Therefore ĥ+ (−ĝ) = ĥ− ĝ.
also,

−(−ĝ) = −(−ĝ) + 0̂ = −(−ĝ) + (ĝ + (−ĝ))

= (ĝ + (−ĝ))− (−ĝ) = (ĝ + (−ĝ)) + (−(−ĝ))

= ĝ + ((−ĝ) + (−(−ĝ))) = ĝ + 0̂ = ĝ.

Corollary 2.0.8. Let ĝ, ĥ ∈ F̂R, ĝ 6= 0̂. Then the equation

ĝ×̂r̂ = ĥ

has unique solution.
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Proof. Since ĝ 6= 0̂, from the definition for isoreal isofield follows that the
considered equation has a solution r̂ ∈ F̂R. Let us suppose that it has other
solution ŷ. Let ẑ is a solution of the equation ĝ×̂r̂ = Î1. Then

ŷ = ŷ×̂Î = ŷ×̂(ĝ×̂ẑ) = (ŷ×̂ĝ)×̂ẑ

= (ĝ×̂ŷ)×̂ẑ = ĥ×̂ẑ = (ĝ×̂r̂)×̂ẑ

= (r̂×̂ĝ)×̂ẑ = r̂×̂(ĝ×̂ẑ) = r̂×̂Î1 = r̂.

Consequently for every ĝ, ĥ ∈∈ F̂R, ĝ 6= 0̂ the equation ĝ×̂r̂ = ĥ has unique
solution which will be denoted with ĥ i ĝ and will be called quotient of ĥ
and q̂ and we have

ĝ×̂(ĥi ĝ) = ĥ.

Corollary 2.0.9. Let ĝ, ĥ ∈ F̂R. Then

1. 0̂ = −0̂,

2. ĝ − 0̂ = ĝ,

3. ĝ×̂0̂ = 0̂,

4. Î1 6= 0̂,

5. (−Î1)×̂â = −â,

6. (−Î1)×̂(−Î1) = Î1,

7. −(ĝ − ĥ) = ĥ− ĝ.

Proof. 1. The isoreals 0̂ and −0̂ are solutions of the equation 0̂ + r̂ = 0̂,
which has unique solution. Therefore 0̂ = −0̂.
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2. Since 0̂ + (ĝ − 0̂) = ĝ then ĝ − 0̂ is a solution of the equation of the
equation 0̂ + r̂ = ĝ, but its solution is ĝ because 0̂ + ĝ = ĝ + 0̂ = ĝ.
Then from Corollary 2.0.5 it has unique solution, therefore ĝ − 0̂ = ĝ.

3.
ĝ×̂0̂ = ĝ×̂0̂ + 0̂ = ĝ×̂0̂ + (ĝ + (−ĝ))

= (ĝ×̂0̂ + ĝ) + (−ĝ) = (ĝ×̂0̂ + ĝ×̂Î1) + (−ĝ)

= ĝ×̂(0̂ + Î1) + (−ĝ) = ĝ×̂(Î1 + 0̂) + (−ĝ)

= ĝ×̂Î1 + (−ĝ) = ĝ + (−ĝ) = 0̂.

4. Since there exists â ∈ F̂R so that â 6= 0̂ then if we suppose that Î1 = 0̂
we will have

â = â×̂Î1 = â×̂0̂ = 0̂,

which is a contradiction. Therefore Î1 6= 0̂.

5.
(−Î1)×̂ĝ = (−Î1)×̂ĝ + 0̂ =

= (−Î1)×̂ĝ + (ĝ + (−ĝ)) = ((−Î1)×̂ĝ + ĝ) + (−ĝ)

= ĝ×̂((−Î1) + Î1) + (−ĝ) = ĝ×̂(Î1 + (−Î1)) + (−ĝ)

= ĝ×̂0̂ + (−ĝ) = 0̂ + (−ĝ) = −ĝ.

6. (−Î1)×̂(−Î1) = −(−Î1) = Î1.

7.
−(ĝ − ĥ) = (−Î1)×̂(ĝ − ĥ) = (−Î1)×̂(ĝ + (−ĥ))

= (−Î1)×̂ĝ + (−Î1)×̂(−ĥ) = −(−ĥ) + (−ĝ) = ĥ− ĝ.

The term positive isonumber is a primary term and its content is determined
by the following axioms

A1 The isozero 0̂ is not positive number.
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A2 If ĝ 6= 0̂ then one of the isonumbers ĝ and −ĝ is positive isonumber.

A3 If the isoreals ĝ, ĥ ∈ F̂R are positive then the isoreals ĝ + ĥ and ĝ×̂ĥ
are positive.

A4 If ĝ, ĥ ∈ F̂R and ĝ is positive and ĝ = ĥ then ĥ is positive isonumber.

Corollary 2.0.10. If ĝ ∈ F̂R and ĝ 6= 0̂ then the isonumbers ĝ and −ĝ can
not be simultaneously positive.

Proof. If ĝ and −ĝ are simultaneously positive then from axiom A3 follows
that their sum is positive, but their sum is the isozero which is a contradic-
tion with the axiom A1.

Definition 2.0.11. The isonumbers which are not positive and are not equal
to the isozero will be called negative.

Corollary 2.0.12. The isonumber Î1 is positive number.

Proof. We have that Î1 6= 0̂. if we suppose that −Î1 is positive then from
the axiom A3 follows that

(−Î1)×̂(−Î1) = Î1

is positive. Therefore Î1 and −Î1 are simultaneously positive, which is a
contradiction. Consequently Î1 is positive.
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Definition 2.0.13. We will say that the isonumber ĝ ∈ F̂R is less than the
isonumber ĥ ∈ F̂R and we will write

ĝ < ĥ

if ĥ− ĝ is positive.

Example 2.0.14. Let T̂1 = 4. Then

3̂×̂x̂+ 4̂ = 5̂ ⇐⇒

3
44x4 + 4

4 = 5
4 =⇒

3
4x+ 1 = 5

4 =⇒

3
4x = 5

4 − 1 =⇒

3
4x = 1

4 =⇒

x = 1
3 =⇒

x̂ = 1
3

1
4 = 1

12 .

Example 2.0.15. Let T̂1 = 5 and let us consider the equation

3̂x̂+ 2̂ = 7̂,

which is equivalent of the equation

3

5

x

5
+

2

5
=

7

5

from where
3
5x+ 2 = 7 =⇒

3
5x = 5 =⇒

x = 25
3 =⇒

x̂ = 25
3

1
5 = 5

3 .
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Exercise 2.0.16. Let T̂1 = 2. Find x̂ such that

1) 2̂×̂x̂ = 4̂, 2) 2̂x̂ = 4̂.

Answer. 1) x̂ = 1, 2) x̂ = 2.

Definition 2.0.17. We will say that the isonumber ĝ ∈ F̂R is less or equal
to the isonumber ĥ ∈ F̂R we will write

ĝ ≤ ĥ or ĝ ≤ ĥ,

if ĥ− ĝ is positive or it is equal to the isozero 0̂.

Corollary 2.0.18. For every two isoreals ĝ, ĥ ∈ F̂R is valid one of the
following relations

1. ĝ = ĥ,

2. ĝ > ĥ,

3. ĝ < ĥ.

Proof. We have two posibilities ĝ = ĥ or ĝ 6= ĥ. If ĝ 6= ĥ then ĝ− ĥ 6= 0̂ and
one of the isonumbers ĝ − ĥ, −(ĝ − ĥ) is positive. If ĝ − ĥ is positive then
we have the second relation, if −(ĝ − ĥ) is positive then we have the third
relation.

Corollary 2.0.19. The isoreal ĝ ∈ F̂R is positive iff ĝ > 0̂.

Proof. Using the definition ĝ > 0̂ iff ĝ − 0̂ = ĝ is positive.
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Corollary 2.0.20. Let â, b̂, ĉ, d̂ ∈ F̂R. If â > b̂ and ĉ > d̂ then

â+ ĉ > b̂+ d̂.

Proof. From â > b̂ and ĉ > d̂ follows that

â− b̂ > 0̂, ĉ− d̂ > 0̂.

Then from axiom A3 follows that

(â− b̂) + (ĉ− d̂) > 0̂. (2.0.4)

Also,

(â+ ĉ)− (b̂+ d̂) = (â+ ĉ) + (−Î)×̂(b̂+ d̂)

= (â+ ĉ) + ((−Î)×̂b̂+ (−Î)×̂d̂)

= ((â+ ĉ) + (−Î)×̂b̂) + (−Î)×̂d̂

((ĉ+ â) + (−Î)×̂b̂) + (−Î)×̂d̂

= (ĉ+ (â+ (−Î)×̂b̂)) + (−Î)×̂d̂

= ((â+ (−Î)×̂b̂) + ĉ) + (−Î)×̂d̂

= (â+ (−Î)×̂b̂) + (ĉ+ (−Î)×̂d̂)

= (â− b̂) + (ĉ− d̂)

From the last expression, from (2.0.4) and axiom A4 we obtain that

(â+ ĉ)− (b̂+ d̂) > 0̂,

from where

â+ ĉ > b̂+ d̂.
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Corollary 2.0.21. 1. If ĝ, ĥ ∈ F̂R and ĝ > ĥ then ĝ+ l̂ > ĥ+ l̂ for every
l̂ ∈ F̂R,

2. If ĝ, ĥ, l̂ ∈ F̂R and ĝ > ĥ and ĥ > l̂ then ĝ > l̂,

3. If ĝ, ĥ, l̂ ∈ F̂R, ĝ > 0̂, ĥ > l̂ then ĝ×̂ĥ > ĝ×̂l̂,

4. If ĝ, ĥ, l̂ ∈ F̂R, ĝ < 0̂, ĥ > l̂ then ĝ×̂ĥ < ĝ×̂l̂.

Proof. 1. We have that ĝ > ĥ iff ĝ − ĥ > 0̂. On the other hand

(ĝ + l̂)− (ĥ+ l̂) = (ĝ − ĥ),

from here and from A4 follows that

(ĝ + l̂)− (ĥ+ l̂) > 0̂,

and therefore ĝ + l̂ > ĥ+ l̂.

2. From ĝ > ĥ and ĥ > l̂ follows that ĝ− ĥ > 0̂ and ĥ− l̂ > 0̂. From here
and 1 follows that (ĝ − ĥ) + (ĥ− l̂) > 0̂. Since

ĝ − l̂ = (ĝ − ĥ) + (ĥ− l̂),

using A4 we conclude that ĝ − l̂ is positive and then ĝ > l̂.

3. We have that ĥ− l̂ > 0̂, therefore ĝ×̂(ĥ− l̂) > 0̂. Because ĝ×̂(ĥ− l̂) =
ĝ×̂ĥ− ĝ×̂l̂ we have ĝ×̂ĥ− ĝ×̂l̂ > 0̂.

4. We have ĥ− l̂ > 0̂ and −ĝ > 0̂. Therefore −ĝ×̂(ĥ− l̂) = −ĝ×̂ĥ+ ĝ×̂l̂ =
ĝ×̂l̂−ĝ×̂ĥ is positive. Consequently ĝ×̂l̂ > ĝ×̂ĥ, from here ĝ×̂ĥ < ĝ×̂l̂.
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Definition 2.0.22. Absolute value or modulus of the isoreal ĝ ∈ F̂R is called
the larger isonumber of the isonumbers ĝ, −ĝ. We will write |ĝ|. From this
definition follows that

1. |ĝ| ≥ 0̂ for every ĝ ∈ F̂R, |ĝ| = 0̂ iff ĝ = 0̂,

2. ĝ ≤ |ĝ|, −ĝ ≤ |ĝ| for every ĝ ∈ F̂R,

3. |ĝ| = | − ĝ| for every ĝ ∈ F̂R.

Theorem 2.0.23. Let ĝ, ĥ, l̂ ∈ F̂R. Then

1. |ĝ + ĥ| ≤ |ĝ|+ |ĥ|,

2. |ĝ − ĥ| ≥ |ĝ| − |ĥ|,

3. ||ĝ| − |ĥ|| ≤ |ĝ − ĥ|,

4. |ĝ×̂ĥ| = |ĝ|×̂|ĥ|,

5. |ĝ i ĥ| = |ĝ|i |ĥ|, ĥ 6= 0̂,

6. |ĝ| < ĥ ⇐⇒ −ĥ < ĝ < ĥ, for ĥ > 0̂.

Proof. 1. If ĝ+ ĥ ≥ 0̂ then |ĝ+ ĥ| = ĝ+ ĥ ≤ |ĝ|+ |ĥ|. If ĝ+ ĥ =< 0̂ then
|ĝ + ĥ| = −(ĝ + ĥ) = −ĝ − ĥ =< |ĝ|+ |ĥ|.

2. Using 1 we have |ĝ| − |ĥ| = |ĝ − ĥ+ ĥ| − |ĥ| = |(ĝ − ĥ) + ĥ| − |ĥ| =<
|ĝ − ĥ|+ |ĥ| − |ĥ| = |ĝ − ĥ|.

3. If |ĝ| − |ĥ| ≥ 0̂ then ||ĝ| − |ĥ|| = |ĝ| − |ĥ| =< |ĝ − ĥ|. If |ĝ| − |ĥ| =< 0̂
then ||ĝ| − |ĥ|| = |ĥ| − |ĝ| =< |ĥ− ĝ| = |ĝ − ĥ|.

4. If ĝ ≥ 0̂ and ĥ ≥ 0̂ then ĝ×̂ĥ ≥ 0̂ and |ĝ×̂ĥ| = ĝ×̂ĥ = |ĝ|×̂|ĥ|. If ĝ ≥ 0̂
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and ĥ ≤ 0̂ then ĝ×̂ĥ ≤ 0̂ and

|ĝ×̂ĥ| = −(ĝ×̂ĥ) = (−Î1)×̂(ĝ×̂ĥ)

= (−Î1)×̂(ĥ×̂ĝ) = (−Î1×̂ĥ)×̂ĝ = (−ĥ)×̂(ĝ)

= |ĥ|×̂|ĝ| = |ĝ|×̂|ĥ|.

If ĝ =< 0̂ and ĥ ≥ 0̂ then ĝ×̂ĥ =< 0̂ and

|ĝ×̂ĥ| = −(ĝ×̂ĥ) = (−Î1)×̂(ĝ×̂ĥ) = (−Î1×̂ĝ)×̂(ĥ) = |ĝ|×̂|ĥ|.

If ĝ =< 0̂ and ĥ =< 0̂ then ĝ×̂ĥ ≥ 0̂ and

|ĝ×̂ĥ| = ĝ×̂ĥ = (−Î1)×̂(−Î1)×̂(ĝ×̂ĥ)

= (−Î1)×̂((−Î1)×̂(ĝ×̂ĥ)) = (−Î1)×̂(((−Î1)×̂ĝ)×̂ĥ)

= (−Î1)×̂((−ĝ)×̂ĥ)

= (−Î1)×̂(ĥ×̂(−ĝ)) = ((−Î1)×̂ĥ)×̂(−ĝ)

= (−ĥ)×̂(−ĝ) = (−ĝ)×̂(−ĥ) = |ĝ|×̂|ĥ|.

5. This assertion follows from the previous statement for ĝ and Î1 i ĥ.

6. If ĝ ≥ 0 then |ĝ| = ĝ and |ĝ| < ĥ is equivalent of the inequality
ĝ < ĥ and since every positive isonumber is greater than every negative
isoreal then |ĝ| < ĥ is equivalent of −ĥ ≤ ĝ = ĥ. If ĝ ≤ 0̂ then |ĝ| = −ĝ
and the inequality |ĝ| < ĥ is equivalent of the inequality −ĝ < ĥ, from
where (−Î1)×̂(−ĝ) > (−Î1) > ĥ or ĝ > −ĥ. Also, since ĝ is negative
isoreal it is less than ĥ, i.e. the considered inequality is equivalent of
the inequality −ĥ < ĝ < ĥ.

Example 2.0.24. Let T̂1 = 2. We will solve the following inequality

3̂x̂− 4̂ > 5̂.
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For this inequality we have

3̂x̂− 4̂ > 5̂ ⇐⇒

3
2
x
2 −

4
2 >

5
2 =⇒

3
2x− 4 > 5 =⇒

3
2x > 9 =⇒

x > 6 ⇐⇒

x1
2 > 66

2 ⇐⇒

x̂ > 3̂.

Example 2.0.25. Let T̂1 = 4. We consider the inequality

5̂×̂x̂− 3̂ < 2̂,

which is equivalent of the inequality

5
44x4 −

3
4 <

2
4 =⇒

5x− 3 < 2 =⇒

5x < 5 =⇒

x < 1 =⇒

x1
4 <

1
4 =⇒

x̂ < 1
4 .

Exercise 2.0.26. Let T̂1 = 5. Solve the inequality

3̂x̂− 2̂ < 4.

Solution. The given inequality is equivalent of the inequality

3

5

x

5
− 2

5
< 4,



51

from where

3x− 10 < 100 =⇒

3x < 110 =⇒

x < 110
3 ⇐⇒

x1
5 <

110
3

1
5 ⇐⇒

x̂ < 22
5 .

Exercise 2.0.27. Let T̂1 = 3. Solve the inequality

3̂×̂x̂− 2̂×̂x− 4 > 5̂.

Answer. x̂ < −17
9 .

Exercise 2.0.28. Let T̂1 = 4. Solve the equation

|x̂| − 3̂x̂ = 5̂.

Solution. The given equation is equivalent of the equation

∣∣∣x
4

∣∣∣− 3

4

x

4
=

5

4
,

from where

|x| − 3
4x = 5 ⇐⇒

x− 3
4x = 5, −x− 3

4x = 5 =⇒

x = 20, x = −20
7 , =⇒

x̂ = 5, x̂ = −5
7 .
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Definition 2.0.29. For x̂ ∈ F̂ |R we define

x̂2̂ = x̂×̂x̂,

x̂3̂ = x̂×̂x̂2̂ = x̂×̂x̂×̂x̂,

· · ·

x̂n̂ = x̂×̂x̂ ˆn−1, n ∈ N,

x̂2 = x̂x̂,

x̂3 = x̂x̂2 = x̂x̂x̂,

· · ·

x̂n = x̂x̂n−1, n ∈ N.

Example 2.0.30. Let T̂1 = 4. Then

3̂3̂ + 3̂2 + 2̂2̂ = 4̂ = 3̂×̂3̂×̂3̂ + 3̂3̂ + 2̂×̂2̂

= 3
443

443
4 + 3

4
3
4 + 2

442
4

= 27
4 + 9

16 + 1

= 133
16 .

Exercise 2.0.31. Let T̂1 = 3. Solve the equation

x̂3̂ + 2̂×̂x̂− 3̂x̂+ 4 = 0.

Solution. We have

x̂2̂ = x̂×̂x̂ = x̂×̂x̂ = x
3 3x3 = x2

3 ,

2̂×̂x̂ = 2
33x3 = 2x

3 ,

3̂x̂ = 3
3
x
3 = x

3 .
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Then the given equation is equivalent of the equation

x2

3
+

2x

3
− x

3
+ 4 = 0

or
x2 + x+ 12 = 0,

which has not solutions in R.

Exercise 2.0.32. Simplify

x̂2̂×̂x̂3̂x̂4×̂x̂5̂.

Answer. x̂1̂0x̂4.

Definition 2.0.33. A nonempty set Â of isoreals will be called bounded
above if there exists a isoreal â such that

ĝ ≤ â

for every ĝ ∈ Â. In this case the isoreal â is called upper estimate of the
set Â.

Definition 2.0.34. A nonempty set Â of isoreals will be called bounded
below if there exists a isoreal b̂ such that

ĝ ≥ b̂.

In this case the isoreal b̂ is called lower estimate of the set Â.

Definition 2.0.35. A nonempty set Â of isoreals will be called bounded if
it is bounded above and bounded below.
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Definition 2.0.36. A nonempty set Â of isoreals will be called nonbounded
if it is not bounded.

Definition 2.0.37. The least upper estimate of the nonempty bounded above
set Â will be called supremum of Â and we will write

supÂ = α̂.

The supremum of the set is characterized with the following two properties:

1. ĝ =< α̂ For every ĝ ∈ Â,

2. for every ε̂ > 0̂ there exists ĥ ∈ Â so that α̂− ε̂ < ĥ.

Definition 2.0.38. The greatest lower estimate of the nonempty bounded
below set Â will be called infimum of Â and we will write

infÂ = β̂.

The infimum is characterized with the following properties

1. ĝ ≥ β̂ for every ĝ ∈ Â,

2. for every ε̂ > 0̂ there exists ĥ ∈ Â so that ĥ < β̂ + ε̂.

Theorem 2.0.39. Every bounded above nonempty set of isoreals has supre-
mum.
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Proof. Let n̂ ∈ F̂N is chosen so that there is not exist a isoelement p̂ ∈ F̂N
so that

n̂ = p̂×̂p̂.

We define the set

Ĥ = {ĥ : ĥ ∈ F̂Q, ĥ > 0̂, ĥxĥ =< n̂}.

Let us suppose that the set Ĥ has a rational supremum, namely, supĤ =
l̂ ∈ F̂Q.

Then for l̂ we have the following possibilities

1. l̂×̂l̂ < n̂,

2. l̂×̂l̂ = n̂,

3. l̂×̂l̂ > n̂.

1. Let l̂×̂l̂ < n̂. Let us consider the isonumber

r̂ = (n̂+ n̂×̂l̂) i (n̂+ l̂).
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For it we have r̂ > 0̂ and

n̂− r̂×̂r̂

= n̂− ((n̂+ n̂×̂l̂)×̂(n̂+ n̂×̂l̂)) i ((n̂+ l̂)×̂(n̂+ l̂))

= (n̂(n̂+ l̂)×̂(n̂+ l̂)) i ((n̂+ l̂)×̂(n̂+ l̂))

−((n̂+ n̂×̂l̂)×̂(n̂+ n̂×̂l̂)) i ((n̂+ l̂)×̂(n̂+ l̂))

= ((n̂+ n̂×̂l̂)×̂(n̂+ n̂×̂l̂)) i ((n̂+ l̂)×̂(n̂+ l̂))

−((n̂+ n̂×̂l̂)×̂(n̂+ n̂×̂l̂))) i ((n̂+ l̂)×̂(n̂+ l̂))

= (n̂×̂(n̂×̂n̂+ n̂×̂l̂ + n̂×̂l̂ + l̂×̂l̂)− n̂×̂n̂− n̂×̂n̂×̂l̂

−n̂l̂×̂n̂− n̂×̂l̂×̂n̂×̂l̂) i ((n̂+ l̂)×̂(n̂+ l̂))

= (n̂×̂n̂×̂n̂+ n̂×̂n̂×̂l̂ + n̂×̂n̂×̂l̂ + n̂×̂l̂×̂l̂

−n̂×̂n̂− n̂×̂n̂×̂l̂ − n̂×̂n̂×̂l̂ − n̂×̂n̂×̂l̂×̂l̂) i ((n̂+ l̂)×̂(n̂+ l̂))

= (n̂×̂n̂×̂(n̂− Î)− n̂×̂l̂×̂l̂×̂(n̂− Î)) i ((n̂+ l̂)×̂(n̂+ l̂))

= (n̂×̂(n̂− Î)×̂(n̂− l̂×̂l̂)) i ((n̂+ l̂)×̂(n̂+ l̂)) ≥ 0̂,

r̂ − l̂ = (n̂+ n̂×̂l̂) i (n̂+ l̂)− l̂

= (n̂+ n̂×̂l̂) i (n̂+ l̂)− (l̂×̂(n̂+ l̂)) i (n̂+ l̂)

= ((n̂+ n̂×̂l̂)− (l̂×̂(n̂+ l̂))) i (n̂+ l̂)

= (n̂− l̂×̂l̂) i (n̂+ l̂) > 0̂,

from where we conclude that r̂ ∈ Ĥ and r̂ > l̂, which is a contradiction with
the definition for supremum.
2. Let l̂×̂l̂ = n̂. Since Î ∈ Ĥ and l̂ = isosupĤ, there exists p̂, q̂ ∈ F̂N such
that l̂ = p̂i q̂ from where we obtain the equality

(p̂×̂p̂) i (q̂×̂q̂) = n̂,
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from here
(p̂×̂p̂) i q̂ = n̂×̂q̂,

which is possible when q̂ = Î. Therefore n̂ = p̂×̂p̂, which is a contradiction
with the definition of n̂.
3. Let l̂×̂l̂ > n̂ and let

m̂ = (n̂+ n̂×̂l̂) i (n̂+ l̂),

and as in the first case we have

l̂ − m̂ = (l̂×̂l̂ − n̂) i (n̂+ l̂) > 0̂

and for every r̂ ∈ Ĥ

m̂− r̂ = (n̂×̂(n̂− Î)×̂(l̂ − r̂)) i ((n̂+ l̂)×̂(n̂+ r̂))

+(n̂− r̂×̂r̂) i (n̂+ r̂) ≥ 0̂,

which is a contradiction again with the definition of supremum.

Theorem 2.0.40. Every bounded below nonempty set of isoreals has exactly
one infimum.

Proof. Let Ĥ is an arbitrary nonempty bounded below set of isoreals. Then
there exists l̂ ∈ F̂R so that l̂ ≤ ĥ for every ĥ ∈ Ĥ. Let us put

M̂ = {−ĥ : ĥ ∈ Ĥ}.

Then M̂ is nonempty set of reals and m̂ ≤ −l̂ for every m̂ ∈ M̂ , i.e. the set
M̂ is a bounded above set. From here and from Theorem 2.0.38 follows that
the set M̂ has supremum α̂. Consequently

1. for every −m̂ ∈ M̂ we have −m̂ ≤ α̂,

2. for every ε̂ > 0̂ there exists −p̂ ∈ M̂ such that −p̂ > α̂− ε̂,

in other words

1. for every m̂ ∈ Ĥ we have m̂ ≥ −α̂,
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2. for every ε̂ > 0̂ there exists p̂ ∈ Ĥ such that p̂ < −α̂+ ε̂,

therefore −α̂ is supremum of Ĥ.

Definition 2.0.41. Sets of isoreals

[â, b̂] = {x̂ ∈ F̂R : â ≤ x̂ ≤ b̂} (2.0.5)

will be called closed intervals.

Definition 2.0.42. Sets of isoreals

(â, b̂) = {x̂ ∈ F̂R : â < x̂ < b̂} (2.0.6)

will be called open intervals.

Definition 2.0.43. Sets of isoreals

[â, b̂) = {x̂ ∈ F̂R : â ≤ x̂ < b̂} (2.0.7)

will be called semiclosed on the left intervals.

Definition 2.0.44. Sets of isoreals

(â, b̂] = {x̂ ∈ F̂R : â < x̂ ≤ b̂} (2.0.8)

will be called semiclosed on the right intervals.
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Definition 2.0.45. The intervals (2.0.5), (2.0.6), (2.0.7), (2.0.8) will be
called finite intervals.

Definition 2.0.46. Infinite intervals are defined as follows

(−∞, â] = {x̂ ∈ F̂R : x̂ ≤ â},

(−∞, â) = {x̂ ∈ F̂R : x̂ < â},

[â,∞) = {x̂ ∈ F̂R : x̂ ≥ â},

(â,∞) = {x̂ ∈ F̂R : x̂ > â}.

We will introduce the following rules

1. â+∞ =∞+ â = +∞ for every â ∈ F̂R,

2. â−∞ = −∞+ â = −∞ for every â ∈ F̂R,

3. ∞+∞ =∞, ∞− (−∞) =∞, ∞×̂∞ =∞, ∞×̂(−∞) = −∞,

4. â×̂∞ =∞, â×̂(−∞) = −∞ if â > 0̂,

5. â×̂(−∞) =∞, â×̂∞ = −∞ if â < 0̂.

Theorem 2.0.47. Every bounded below set of isoelements of FZ has smallest
isoelement.

Proof. Let Â be an set of isoelements of FZ. We suppose that there is not
smallest isoelement in Â. Since Â is bounded below set then there exists

β̂ = isoinfÂ.
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For it we have

1. x̂ ≥ β̂ for every x̂ ∈ Â,

2. for every ε̂ > 0̂ there exists x̂ε̂ ∈ Â such that x̂ε̂ < β̂ + ε̂.

For ε̂ = Î we have that there exists ŷε̂ ∈ Â such that ŷε̂ < β̂ + Î. Since we
suppose that Â has not smallest isoelement then there exists ẑ ∈ Â such
that

β̂ ≤ ẑ < ŷε̂ < β̂ + Î .

From here follows that
0̂ < ŷε̂ − ẑ < Î,

which is a contradiction since in particular we have

ŷε̂ − ẑ ≥ Î .

Theorem 2.0.48. The set F̂N is not bounded above.

Proof. Let us suppose that F̂N is bounded above. Then there exists

α̂ = supF̂N.

For it we have

1. x̂ ≤ α̂ for every x̂ ∈ F̂N,

2. for every ε̂ > 0̂ there exists x̂ε̂ ∈ F̂N such that x̂ε̂ > α̂− ε̂.

In particular, if ε̂ = Î we have that there exists ŷε̂ ∈ F̂N such that

ŷε̂ > α̂− Î .

From where we obtain that
α̂ < ŷε̂ + Î . (2.0.9)

Since ŷ ∈ F̂N, we conclude that ŷ+ ∈̂F̂N. From here and from the definition
of α̂ follows that

ŷε̂ + Î ≤ α̂,
which is a contradiction with (2.0.9).
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Theorem 2.0.49. Let

∆̂Î⊇∆̂2̂⊇∆̂3̂⊇ · · ·⊇∆̂n̂⊃̂ · · ·

be system of closed finite intervals. Then there exists ŷ ∈ F̂R such that
ŷ ∈ ∆̂k̂ for every k̂ ∈ F̂N.

Proof. Let

∆̂n̂ = [ân̂, b̂n̂].

Let also p̂, q̂ ∈ F̂N. For p̂, q̂ we have the following possibilities

1. p̂ < q̂,

2. p̂ = q̂,

3. p̂ > q̂.

If p̂ < q̂ then we have

[âp̂, b̂p̂]⊃̂[âq̂, b̂q̂],

from here follows that

âp̂ ≤ b̂q̂.

If p̂ = q̂, then from the definition of finite closed interval follows that

âp̂ ≤ b̂q̂.

If p̂ > q̂ then

[âq̂, b̂q̂]⊇[âp̂, b̂p̂],

from where

âp̂ ≤ b̂q̂.

Consequently for every naturals p̂, q̂ we have

âp̂ ≤ b̂q̂. (2.0.10)

Let q̂ ∈ F̂N be fixed and p̂ ∈ F̂N runs the all set F̂N. Then from (2.0.10)
follows that the set

Â = {âÎ , â2̂, . . . , âp̂, . . .}
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is bounded above. Then there exists

α̂ = supÂ.

From here follows that for every p̂ ∈ F̂N we have

âp̂ ≤ α̂.

Since b̂q̂ is an above estimate of the set Â and from the definition of α̂ we
have

α̂ ≤ b̂q̂ ∀q̂ ∈ F̂N.

Since q̂ ∈ F̂N was arbitrary chosen then we have for every p̂, q̂ ∈ F̂N

âp̂ ≤ α̂ ≤ b̂q̂.

In particular, for p̂ = q̂ = n̂ ∈ F̂N we get

ân̂ ≤ α̂ ≤ b̂n̂.

Advanced practical exercises

Problem 2.0.50. Let T̂1 = 3, Find x̂ such that

1) 2̂×̂x̂+ 2̂ = 4̂, 2) 2̂x̂+ 2̂ = 5̂.

Answer. 1) x̂ = 1
3 , 2) x̂ = 3

2 .

Problem 2.0.51. Let T̂1 = 5. Solve the inequality

2x̂− 4̂×̂x+ 3×̂x̂ < 2̂.

Answer. x̂ < − 2
15 .

Problem 2.0.52. Let T̂1 = 5. Solve the equation

x̂2̂ − 4̂×̂x̂− 1̂2 = 0.

Answer. x̂1 = 6
5 , x̂2 = −2

5 .

Problem 2.0.53. Simplify

x̂×̂x̂1̂0×̂x̂2x3.
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Answer. x̂1̂2×̂x3.

Problem 2.0.54. Simplify

3̂×̂
(
x̂2̂×̂x̂+ 4̂

)
×̂x̂.

Answer. 3̂×̂x̂3̂ + 1̂2×̂x̂.

Problem 2.0.55. Let T̂1 = 6. Solve the equation in F̂R

3̂×̂(x̂+ 4̂)− x̂2̂ = 4.

Answer. No solutions.

Problem 2.0.56. Let T̂1 = 4. Solve the equation in F̂R

5̂×̂(x̂+ 5̂)− x̂2 = 1.

Answer. No solutions.
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Chapter 3

Sequences of isoreals

Let {T̂n}∞n=1 is a sequence of positive reals.

Definition 3.0.57. Let {an}∞n=1 is a sequence of reals. The sequence{
ân =

an

T̂n

}∞
n=1

will be called sequence of isoreals.

Example 3.0.58. Let {an}∞n=1 = {n2+1}∞n=1, {T̂n}∞n=1 = {n+3}∞n=1. Then

the sequence
{
n2+1
n+3

}∞
n=1

is a sequence of isoreals.

Definition 3.0.59. A sequence of isoreals {ân}∞n=1 will be called

1. bounded above if there exists l̂ ∈ F̂R so that ân ≤ l̂ for every n ∈ N,

2. bounded below if there exists m̂ ∈ F̂R so that ân ≥ m̂ for every n ∈ N,

3. bounded if it is bounded above and bounded below.

65
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Example 3.0.60. Let {T̂n}∞n=1 =
{

1
n

}∞
n=1

, {an}∞n=1 = {n2}∞n=1. Then

ân =
an

T̂n
=
n2

1
n

= n3

is unbounded above sequence.

Example 3.0.61. Let {T̂n}∞n=1 = {n}∞n=1, {an}∞n=1 = {−n2 + 1}∞n=1. Then

ân =
an

T̂n
=
−n2 + 1

n

is unbounded below sequence.

Example 3.0.62. Let {T̂n}∞n=1 = {n3 + 1}∞n=1, {an = n+ 1}∞n=1. Then

0 ≤ ân =
an

T̂n
=

n+ 1

n3 + 1
=

1

n2 + n+ 1
≤ 1.

Therefore the sequence {ân}∞n=1 is a bounded sequence.

Exercise 3.0.63. Let {T̂n}∞n=1 = {sin2 n + 1}∞n=1, {an = cosn}∞n=1. Prove
that the sequence {ân}∞n=1 is a bounded sequence.

Theorem 3.0.64. Let {T̂n}∞n=1 is a bounded above sequence and {an}∞n=1

is a bounded below sequence. Then the sequence {ân}∞n=1 is a bounded below
sequence.

Proof. Since {an}∞n=1 is a bounded below sequence then there exists m ∈ R
such that

an ≥ m for ∀n ∈ N. (3.0.1)

Because {T̂n}∞n=1 is a bounded above sequence then there exists p ∈ R,
p > 0, such that

T̂n ≤ p for ∀n ∈ N.

Therefore
1

T̂n
≥ 1

p
for ∀n ∈ N.
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From here and (3.0.1) it follows

an

T̂n
≥ m

p
for ∀n ∈ N.

Consequently the sequence {â}∞n=1 is a bounded below sequence.

Theorem 3.0.65. Let {an}∞n=1 is a bounded above sequence, {T̂n}∞n=1 is a
bounded below sequence of the positive real p. Then the sequence {ân}∞n=1 is
a bounded above sequence.

Proof. Since {an}∞n=1 is a bounded above sequence then there exists m ∈ R
such that

an ≤ m for ∀n ∈ N. (3.0.2)

Because {T̂n}∞n=1 is a bounded below sequence of the positive real p it follows

T̂n ≥ p for ∀n ∈ N,

from where
1

T̂n
≤ 1

p
for ∀n ∈ N.

From here and (3.0.2) we get

ân =
an

T̂n
≤ m

p
for ∀n ∈ N.

Consequently the sequence {ân}∞n=1 is a bounded above sequence.

Remark 3.0.66. The condition {T̂n}∞n=1 to be bounded below of the positive
real p is essential because if limn−→∞ T̂n = 0 then since {an}∞n=1 is a bounded
above we will have

lim
n−→∞

an

T̂n
= +∞ or lim

n−→∞

an

T̂n
= −∞,

i.e. the sequence {ân}∞n=1 will be an unbounded sequence.



68 CHAPTER 3. SEQUENCES OF ISOREALS

Theorem 3.0.67. A sequence {ân}∞n=1 is bounded if and only if there exists
q̂ ∈ F̂R such that |ân| ≤ q̂ for every n ∈ N.

Proof. 1. Let |ân| ≤ q̂ for every n ∈ N. Then

−q̂ ≤ ân ≤ q̂ ∀n ∈ N.

Since ân ≤ q̂ for every n ∈ N we conclude that the sequence {ân}∞n=1 is
bounded above.

From −q̂ ≤ ân for every n ∈ N follows that the sequence {ân}∞n=1 is bounded
below.

Therefore the sequence {ân}∞n=1 is bounded.

2. Let {ân}∞n=1 is bounded. Then it is bounded above and below. Then
there exist l̂, m̂ ∈ R so that

l̂ ≤ ân ≤ m̂

Let q̂ = max{|l̂|, |m̂|}. Then |ân| ≤ ŝ.

Definition 3.0.68. A sequence {ân}∞n=1 is called unbounded if it is not
bounded.

Exercise 3.0.69. Let {T̂n}∞n=1 =
{

1
n8+7

}∞
n=1

, {an}∞n=1 = {n}∞n=1. Prove

that {ân}∞n=1 is an unbounded sequence.

In other words, a sequence {ân}∞n=1 is unbounded if there exists t̂ ∈ F̂R and
N ∈ N such that for every n ∈ N, n ≥ N , we have

|ân| ≥ t̂.
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Definition 3.0.70. We will say that a sequence {ân}∞n=1 diverges to +∞
if for every M ∈ R, M ≥ 0 there exists N ∈ N such that for every n ∈ N,
n ≥ N , we have

ân ≥M.

Example 3.0.71. Let {an}∞n=1 = {n+ 3}∞n=1, {T̂n}∞n=1 =
{

1
n

}∞
n=1

. We will

prove that the sequence {ân}∞n=1 = {n+3
1
n

}∞n=1 = {n(n + 3)}∞n=1 diverges to
∞.
Really, let M > 0 be arbitrary chosen and fixed. We choose N ∈ N so that

N ≥ −3 +
√

9 + 4M

2
.

Then for every n > N we have

n(n+ 3) ≥M.

From here
ân ≥M for ∀n > N.

Since M > 0 was arbitrary chosen we conclude that the sequence {ân}∞n=1

diverges to +∞.

Exercise 3.0.72. Let {an}∞n=1 = {n2 + 2}∞n=1, {T̂n}∞n=1 =
{

1
n2+3

}∞
n=1

.

Prove that the sequence {ân}∞n=1 diverges to +∞.

Exercise 3.0.73. Let {an}∞n=1 = {n4 + 3}∞n=1, {T̂n}∞n=1 =
{

1
n4+1

}∞
n=1

.

Prove that the sequence {ân}∞n=1 diverges to +∞.

Definition 3.0.74. A sequence {ân}∞n=1 diverges to −∞ if for every P ∈ R,
P ≤ 0 there exists N ∈ N such that for every n ∈ N, n ≥ N , we have

ân ≤ P.
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Exercise 3.0.75. Let {an}∞n=1 = {−n2 − 32}∞n=1, {T̂n}∞n=1 =
{

1
n2+3

}∞
n=1

.

Prove that the sequence {ân}∞n=1 diverges to −∞.

Exercise 3.0.76. Let {an}∞n=1 = {−n + 2}∞n=1, {T̂n}∞n=1 =
{

1
n+3

}∞
n=1

.

Prove that the sequence {ân}∞n=1 diverges to −∞.

Definition 3.0.77. The number a ∈ R is called limit of the sequence
{ân}∞n=1 if for every ε > 0 there exists N = N(ε) ∈ N such that for ev-
ery n ∈ N, n > N we have

|ân − a| < ε.

In this case we will write limn−→∞ ân = a and we will say that the sequence
{ân}∞n=1 is convergent.
In other words the number a is a limit of the sequence {ân}∞n=1 if

lim
n−→∞

an

T̂n
= a.

Example 3.0.78. Let {an}∞n=1 = {n+ 4}∞n=1, {T̂n}∞n=1 = {n+ 5}∞n=1. Then

lim
n−→∞

ân = lim
n−→∞

an

T̂n
= lim

n−→∞

n+ 4

n+ 5
= 1.

Exercise 3.0.79. Let {an}∞n=1 = {2n + 1}∞n=1, {T̂n}∞n=1 = {3n + 5}∞n=1.
Find

lim
n−→∞

ân.

Answer. 2
3 .

Exercise 3.0.80. Let {an}∞n=1 = {3n2 + 4}∞n=1, {T̂n}∞n=1 = {5n2 + 7}∞n=1.
Find

lim
n−→∞

ân.

Answer. 3
5 .
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Theorem 3.0.81. Let the sequence {ân}∞n=1 is convergent to a ∈ R and
a 6= 0. Then there exists N ∈ N such that for every n ∈ N, n > N , we have

|ân| >
|a|
2
.

Also, if a > 0 then there exists N ∈ N such that for every n ∈ N, n > N ,
we have

ân >
a

2
,

if a < 0 then there exists N ∈ N such that for every n ∈ N, n > N , we have

ân <
a

2
.

Proof. Let ε = a
2 . Then there exists N ∈ N such that for every n ∈ N,

n > N , we have

|ân − a| <
a

2
.

From here and from the properties of the modulus we get

a− a

2
< ân < a− a

2
(3.0.3)

for every n ∈ N, n > N .
On the other hand

|ân − a| = |a− ân| ≥ |a| − |ân|.

Consequently for every n ∈ N, n > N , we have

|a| − |ân| <
a

2

or
|ân| >

a

2
.

If a > 0 then |a| = a and from the left hand of (3.0.3) we obtain

ân >
a

2

for every n ∈ N, n > N .
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If a < 0 then |a| = −a and from the right hand of (3.0.3) we obtain

ân <
a

2

for every n ∈ N, n > N .

Theorem 3.0.82. Let limn−→∞ ân = a, limn−→∞ b̂n = b, ân ≤ b̂n for every
n ≥ n0. Then a ≤ b.

Proof. Let us suppose that b < a and let ε = a−b
2 > 0. Then there exists

n1 ∈ N such that for every n ∈ N, n > n1, we have

|ân − a| <
ε

2
, (3.0.4)

and there exists n2 ∈ N such that for every n ∈ N, n > n2, we have

|b̂n − b| <
ε

2
. (3.0.5)

Let N = max{n0, n1, n2}. Then for every n ∈ N, n > N , we have ân ≤ b̂n.
From (3.0.4), (3.0.5) follows that for every n ∈ N, n > N ,

b̂n < b+ ε =
a+ b

2
= a− ε < ân,

which is a contradiction. Therefore a ≤ b.

Corollary 3.0.83. Let limn−→∞ ân = a and let there exists n0 ∈ N such
that ân ≤ b for every n ≥ n0. Then a ≤ b.

Theorem 3.0.84. Let limn−→∞ ân = a, limn−→∞ b̂n = a, and there exists
n0 ∈ N such that ân ≤ ĉn ≤ b̂n for every n ≥ n0. Then limn−→∞ ĉn = a
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Proof. Let ε > 0 is arbitrary chosen and fixed. Then there exists n1 ∈ N
such that for every n ∈ N, n > n1, we have

|ân − a| < ε, (3.0.6)

and there exists n2 ∈ N such that for every n ∈ N, n > n2, we have

|b̂n − a| < ε. (3.0.7)

Let N = max{n0, n̂1, n2}. Then for every n ∈ N, n > N

ân ≤ ĉn ≤ b̂n,

a− ε < ân ≤ ĉn ≤ b̂n < a+ ε =⇒

a− ε < ĉn < a+ ε,

i.e. |ĉn − a| < ε. Consequently limn−→∞ ĉn = a.

Theorem 3.0.85. Let limn−→∞ ân = a. Then limn−→∞ |ân| = |a|.

Proof. Let ε > 0 is arbitrary chosen and fixed. Then there exists N ∈ N
such that for every n ∈ N, n > N , we have

|ân − a| < ε.

From the properties of modulus we have the inequality

||ân| − |a|| ≤ |ân − a|.

Therefore for every n ∈ N, n > N , we have

||ân| − |a|| ≤ |ân − a| < ε.

Consequently limn−→∞ |ân| = |a|.
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Corollary 3.0.86. Let limn−→∞ ân = 0. Then limn−→∞ |ân| = 0.

Theorem 3.0.87. Every convergent sequence {ân}∞n=1 is bounded sequence.

Proof. Let limn−→∞ ân = a and let ε > 0 is arbitrary chosen and fixed.
Then there exists N ∈ N such that for every n ∈ N, n > N , we have

|ân̂ − a| < ε

and since
|ân| − |a| ≤ |ân − a|,

then for every n ∈ N, n > N , we have

|ân| < ε+ |a|.

Let n1 is the smallest number as an element of N such that n1 > n. We put

Â = max{â1, . . . , ân1 , ε+ |a|}.

Then for every n ∈ N we have

|ân| ≤ Â.

Theorem 3.0.88. Let limn−→∞ ân = a, limn−→∞ b̂n = b. Then

1. limn−→∞(ân ± b̂n) = limn−→∞ ân ± limn−→∞ b̂n = a± b,

2. limn−→∞(ân×̂b̂n) = limn−→∞ b̂n×̂ limn−→∞ ân = a×̂b,

3. limn−→∞(ân i b̂n) = limn−→∞ ân i limn−→∞ b̂n = a i b, if b̂n̂ 6= 0,
b 6= 0.
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Proof. 1. Let ε > 0 is arbitrary chosen and fixed. Then there exists
n1 ∈ N such that for every n ∈ N, n > n1, we have

|ân − a| <
ε

2
,

there exists n2 ∈ N such that for every n ∈ N, n > n2, we have

|b̂n − b| <
ε

2
.

Let N = max{n1, n2}. Then for every n ∈ N, n > N , we have

|(ân ± b̂n)− (a− b)| = |(ân − a)∓ (b̂n − b)|

≤ |ân − a|+ |b̂n − b|

< ε
2 + ε

2 = ε.

2. Since the sequences {ân}∞n=1, {b̂n}∞n=1 are convergent then there exist
P,Q ∈ R such that

|ân| ≤ P, |b̂n| ≤ Q ∀n ∈ N.

Let ε > 0 is arbitrary chosen and fixed. Then there exists n1 ∈ N such
that for every n ∈ N, n > n1, we have

|ân − a| <
ε

2P
,

there exists n2 ∈ N such that for every n ∈ N, n > n2, we have

|b̂n − b| <
ε

2Q
.

Let N = max{n1, n2}. Then for every n ∈ N, n > N , we have

|ân×̂b̂n − a×̂b| = |ân×̂b̂n − a×̂b̂n + a×̂b̂n − a×̂b|

≤ |ân×̂b̂n − a×̂b̂n|+ |a×̂b̂n − a×̂b|

= |(ân − a)×̂b̂n|+ |(b̂n − b)×̂ân|

= |ân − a|×̂|b̂n|+ |b̂n − b|×̂|ân|

≤ Q×̂|ân − a|+ P ×̂|b̂n − b|

< Q×̂εi (2Q) + P ×̂εi (2×̂P )

= εi 2 + εi 2 = ε.
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3. There exists n1 ∈ N such that for every n ∈ N, n > n1, we have

|b̂n| > |b|i 2,

therefore for every n ∈ N, n > n1, we have

1 i |b̂n| < 2 i |b|.

There exists n2 ∈ N such that for every n ∈ N, n > n2, we have

|ân − a| < (ε×̂b×̂b) i (2×̂(|a+ b|))

there exists n3 ∈ N such that for every n ∈ N, n > n3, we have

|b̂n − b| < (ε×̂b×̂b) i (2×̂(|a+ b|)).

Let N = max{n1, n2, n3}. Then for every n ∈ N, n > n, we have

|ân i b̂n − ai b|

= |ân×̂b− a×̂b+ a×̂b− b̂n×̂a|i (|b|×̂|b̂n|)

= |(ân − a)×̂b+ a×̂(b− b̂n)|i (|b|×̂|b̂n|)

≤ |(ân − a)×̂b|i (|b|×̂|b̂n|)

+|a×̂(b− b̂n)|i (|b| > |b̂n|)

= (|(ân − a)|×̂|b|) i (|b|×̂|b̂n|)

+|a|×̂|b− b̂n|i (|b|×̂|b̂n|)

< (2×̂|b| > ε×̂b×̂b) i (b×̂b×̂2×̂(|a|+ |b|))

+(2×̂|a|×̂ε×̂b×̂b) i (b×̂b×̂2×̂(|a|+ |b|))

= ε.

Corollary 3.0.89. Let ˆlimn−̂→∞ân = a. Then limn−→∞(α×̂ân) = α×̂a for
every α ∈ R.
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Exercise 3.0.90. Find limn−→∞ ân if

1. an = n+ 1, T̂n = n,

2. an = n2 + 4, T̂n = n,

3. an = 2n2 + n+ 2, T̂n = n2 + 1,

4. an = a0n
k + a1n

k−1 + · · ·+ ak, T̂n = b0n
k + b1n

k−1 + · · ·+ bk, b0 6= 0,

5. an = n+ 1000, T̂n = n2 + 2,

6. an = 2n + 3n, T̂n = 4n,

7. an = 2n+1 + 3n+1, T̂n = 2n + 3n,

8. an = an, T̂n = 1 + an, a ∈ R,

9. an = an, T̂n = 1 + a2n, a ∈ R,

10. an = an − a−n, T̂n = an + a−n, a ∈ R.

Answer.

1) 1, 2) ∞, 3) 2, 4) a0
b0

, 5) 0, 6) 0, 7) 3, 8) 0 for |a| < 1, 1 for |a| > 1, 1
2

for a = 1, for a = −1 the sequence is not defined, 9) 0 for |a| 6= 1, 1
2 for

a = 1, divergent for a = −1, 10) for a = 0 the sequence is not defined, −1
for |a| < 1, 0 for |a| = 1, 1 for |a| > 1.

Definition 3.0.91. The sequence {ân}∞n=1 is called infinite small if it is
convergent and its limit is equal to 0.

Corollary 3.0.92. The sum, subtraction and multiplication of infinite small
sequences of isonumbers is infinite small sequence.
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Theorem 3.0.93. Let {an}∞n=1 is an infinite small sequence and {T̂n}∞n=1

is a bounded below sequence of positive real p. Then {ân}∞n=1 is an infinite
small sequence.

Proof. Since {an}∞n=1 is an infinite small sequence then

lim
n−→∞

|an| = 0. (3.0.8)

Because {T̂n}∞n=1 is a bounded below sequence of positive real p then for
every n ∈ N we have

T̂n ≥ p
1

T̂n
≤ 1

p
.

From here and (3.0.8) it follows

0 ≤ lim
n−→∞

|an|
T̂n
≤ lim

n−→∞

|an|
p

= 0.

Consequently the sequence {ân}∞n=1 is an infinite small sequence.

Theorem 3.0.94. The number a is limit of the sequence {ân}∞n=1 if and
only if it can be represented in the form

a = ân − α̂n,

where {α̂n}∞n=1 is infinite small sequence.

Proof. If ân = a then α̂n = 0. Let ân 6= a and α̂n = ân − a. Then a is limit
of the sequence {ân}∞n=1 if and only if for every ε > 0 there exists N ∈ N
such that for every n > N

|ân − a| < ε ⇐⇒ |αn| < ε.
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Theorem 3.0.95. Let {α̂n}∞n=1 is infinite small sequence and {ân}∞n=1 is
bounded sequence. Then {α̂n×̂ân}∞n=1 is infinite small sequence.

Proof. Since {ân}∞n=1 is bounded sequence then there exists M ∈ R, M > 0
so that for every n ∈ N we have

|ân| ≤M.

Let ε > 0. Then there exists N ∈ N such that for every n ∈ N, n > N we
have

|α̂n| < εiM.

From here for every n ∈ N, n > N we have

|α̂n×̂ân| = |α̂n|×̂|ân| < M×̂εiM = ε.

Definition 3.0.96. A sequence {ân}∞n=1 is called infinite large if for every
M ∈ R, M > 0 there exists N ∈ N such that for every n > N we have

|ân| ≥M.

In other words a sequence {ân}∞n=1 is an infinite large sequence if

lim
n−→
|ân| =∞.

Theorem 3.0.97. Let {an}∞n=1 is a sequence such that the sequence {|an|}∞n=1

is a bounded below sequence of the positive real p, {T̂n}∞n=1 is an infinite small
sequence. Then the sequence {ân}∞n=1 is an infinite large sequence.
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Proof. Since {|an|}∞n=1 is a bounded below sequence of the positive real p
then for every n ∈ N we have

|an| ≥ p.

From here

lim
n−→∞

|ân| = lim
n−→∞

|an|
T̂n
≥ lim

n−→∞

p

T̂n
=∞,

because limn−→∞ T̂n = 0.

Theorem 3.0.98. Let {an}∞n=1 is a bounded sequence, {T̂n}∞n=1 is an infinite
large sequence. Then the sequence {ân}∞n=1 is an infinite small sequence.

Proof. Since the sequence {an}∞n=1 is a bounded sequence then there exists
a constant M > 0 such that

|an| ≤M for ∀n ∈ N.

Because {T̂n}∞n=1 is an infinite large sequence then

lim
n−→∞

T̂n =∞.

From here

0 ≤ lim
n−→∞

|ân| = lim
n−→∞

|an|
T̂n
≤ lim

n−→∞

M

T̂n
= 0.

Theorem 3.0.99. Let {ân}∞n=1 be bounded sequence and {b̂n}∞n=1 be infinite
large sequence and b̂n 6= 0̂ for every n ∈ N. Then the sequence {âni b̂n}∞n=1

is infinite small sequence.
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Proof. Let ε > 0 be arbitrary chosen and fixed. Since the sequence {ân}∞n=1

is bounded then there exists M ∈ R, M > 0 such that for every n ∈ N we
have

|ân| ≤M.

Also, there exists N ∈ N such that for every n ∈ N, n > N

|b̂n| > M i ε

or for every n ∈ N, n > N

1 i |b̂n| < εiM.

Consequently for every n ∈ N, n > N

|ân i b̂n̂| = |ân|×̂1 i |b̂n| < M×̂εiM = ε.

Theorem 3.0.100. Let {|ân|}∞n=1 be bounded below sequence by a positive
isoreal and limn−→∞ α̂n = 0 and α̂n 6= 0 for every n ∈ N. Then the sequence
{ân i α̂n}∞n=1 is infinite large sequence.

Proof. There exists K̂ ∈ F̂R, K̂ > 0 such that for every n ∈ N

ân ≥ K̂.

Let M̂ ∈ F̂R, M̂ > 0. Then there exists N ∈ N such that for every n ∈ N,
n > N we have

α̂n| < K̂ i M̂,

from where for every n ∈ N, n > N we have

1 i |α̂n| > M̂ i K̂,

and

|ân i α̂n| = |ân| > 1 i |α̂n| > K̂ > M̂ i K̂ = M̂.
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Corollary 3.0.101. Let {ân}∞n=1 be infinite large sequence. Then {1 i
ân}∞n=1 is infinite small sequence.

Corollary 3.0.102. Let {ân}∞n=1 be infinite small sequence. Then {1 i
ân̂}∞n=1 is infinite large sequence.

Definition 3.0.103. The sequence {ân}∞n=1 will be called

1. increasing if from n,m ∈ N, n > m follows that ân > âm,

2. decreasing if from n,m ∈ N, n > m follows that ân < âm,

3. monotonic if it is increasing or decreasing.

If the sequence {ân}∞n=1 is increasing it is bounded below because ân ≥ â1

for every n ∈ N.
If the sequence {ân}∞n=1 is isodecresing it is bounded
above because ân ≤ â1 for every n ∈ N.

Theorem 3.0.104. Let {ân}∞n=1 be incresing sequence and bounded above
by M̂ ∈ F̂R then it is convergent.

Proof. Since the set {ân}∞n=1 is bounded above then it has supremum and
let it is â. Then

1. ân ≤ â for every n ∈ N,
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2. for every ε̂ ∈ F̂R, ε̂ > 0, there exists n0 ∈ N such that â− ε̂ < ân0 .

Since â = sup{ân}∞n=1 then â ≤ M̂ .
Then for every ε̂ ∈ F̂R, ε̂ > 0, there exists n0 ∈ N so that for every n > n0

â− ε̂ < ân0 ≤ ân ≤ â < â+ ε̂ =⇒

â− ε̂ < ân < â+ ε̂ ⇐⇒ |ân − â| < ε̂,

from where ˆlimn−̂→∞ân = â.

As in above one can prove

Theorem 3.0.105. Let {ân}∞n=1 be decreasing sequence and bounded below
by P̂ ∈ F̂R then it is convergent.

Corollary 3.0.106. Every bounded monotonic sequence is convergent.

Definition 3.0.107. A sequence {ân̂}∞n=1 is called fundamental if for every
ε̂ ∈ F̂R there exists N ∈ N such that for every m,n > N we have

|ân − âm| < ε̂.

Theorem 3.0.108. If the sequence {ân}∞n=1 is convergent then it is isofun-
damental.

Proof. Let {ân}∞n=1 is convergent to â.
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Let ε̂ ∈ F̂R, ε̂ > 0 is arbitrary chosen and fixed. Then there exists N ∈ N
such that for every m,n ∈ N, m̂, n > N , we have

|ân − â| < ε̂i 2̂, |âm − â| < ε̂i 2̂ =⇒

|ân − âm| = |ân − â+ â− âm|

≤ |ân − â|+ |âm − â|

< ε̂i 2̂ + ε̂i 2̂ = ε̂.

Definition 3.0.109. Every isointerval (p̂, q̂) which contains the isopoint â
will be called isoneighbourhood of the isopoint â.

Definition 3.0.110. An isopoint â will be called condensation isopoint of
the sequence {ân}∞n=1 of elements of F̂R if every isoneighbourhood of â con-
tains incountable many isoelements of {ân}∞n=1.

Theorem 3.0.111. Every bounded sequence has an condensation isopoint.

Proof. Let {ân}∞n=1 be bounded isosequnce. From the definition for bounded
sequence follows that there exists an isoclosed isofinite isointerval ∆̂1 which
contains this sequence. We devide the isointerval ∆̂1 of two equal parts and
will denote with ∆̂2̂ the half which contains uncountable many isoelements

of the sequence {ân}∞n=1. Again we divide ∆̂2̂ of two equal parts and we will

denote that its half with ∆̂3̂ which contains uncountable many isoelements
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of the sequence {ân}∞n̂=1 and etc. In this way we obtain an sequence of
isoclosed isointervals

∆̂1⊇∆̂2̂⊇∆̂3̂⊇ · · ·

and every one of them contains uncountable many isoelements of the se-
quence {ân}∞n=1. Since there exists α̂ ∈ F̂R so that α̂ ∈ ∆̂n for every n ∈ N,
we have that α̂ is an condensation isopoint of the sequence {ân}∞n=1, be-
cause the isolength of ∆̂n decreases to 0 and ∆̂n contains uncountable many
isoelements of the sequence {ân}∞n=1.

Definition 3.0.112. We will say that the sequence {ânk}∞k=1 is an subse-
quence of the sequence {ân}∞n=1 if nk ∈ N for every k ∈ N and

n1 < n2̂ < n3̂ < · · · .

Theorem 3.0.113. Let the sequence {ân}∞n=1 be sequence which is conver-
gent to â. Then every subsequence {ânk}∞k=1 is convergent to â.

Proof. Since the sequence {ân}∞n=1 is convergent then it is bounded. From
here follows that the subsequence {ânk}∞k=1 is bounded sequence. From
here and from the properties of the bounded sequences follows that the
subsequence {ânk}∞k=1 has an condensation isopoint b̂. But this condensa-
tion isopoint will be isoconedensation isopoint for the sequence {ân}∞n=1 and
since it is convergent to â it has only one condensation isopoint. Therefore
â = b̂ and the subsequence {ânk}∞k=1 has unique condensation isopoint â.
Consequently the subsequence {ânk}∞k=1 is convergent to â.
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Definition 3.0.114. We will say that the sequence {ân}∞n=1 is expanded of
two subsequences {ânk}∞k=1 and {âmk}∞k=1 if

{n1, n2, . . .}∪{m1,m2,m3, . . .} = N,

and
{n1, n2, . . .} ∩ {m1,m2,m3, . . .} = Ø.

Theorem 3.0.115. Let the sequence {ân}∞n=1 be expanded of two subse-
quences {ânk}∞k=1 and {âmk}∞k=1 which are convergent to the isopoint â.
Then the sequence {ân}∞n=1 is convergent to â.

Proof. Since every convergent sequence is bounded, then the subsequences
{ânk}∞k=1 and {âmk}∞k=1 are bounded. Therefore there exists two isointervals

[α̂, β̂] and [γ̂, δ̂] such that ânk ∈ [α̂, β̂], âmk ∈ [γ̂, δ̂] for every k̂ ∈ N. From the
properties of the convergent sequences follows that â ∈ [α̂, β̂] and â ∈ [γ̂, δ̂].
Let [p̂, q̂] = [α̂, β̂]∪̂[γ̂, δ̂]. Then ân ∈ [p̂, q̂] for every n ∈ N. Therefore the
sequence {ân}∞n=1 is bounded sequence. Therefore it has an condensation
isopoint b̂.

If we suppose that b̂ < â then for ε̂ = (â− b̂) i 2̂ > 0 the isoneighbourhood
(b̂− ε̂, b̂+ ε̂) contains uncountable many elements of the sequence {ân}∞n=1,
from where follows that outside of the isoneighbourhood (â− ε̂, â+ ε̂) of the
limit of â of the subsequences {ânk}∞k=1 and {âmk}∞k=1 there are uncountable

many isoelements of one of them, which is contradiction. Therefore b̂ ≥ â.
The case b̂ > â leads to a contradiction as in above. Consequently â = b̂.

Therefore we can conclude that the sequence {ân}∞n=1 has unique condensa-
tion isopoint. From here we conclude that it is convergent to â.
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Corollary 3.0.116. Let {ân}∞n=1 and {b̂n}∞n=1 be convergent sequences to
the isopoint â. Then the sequence

â1, b̂1, â2, b̂2, . . .

is convergent sequence to â.

Corollary 3.0.117. Let {ân}∞n=1 be sequence which is convergent to â. Let
also b̂ ∈ F̂R. Then the sequence

b̂, â1, â2, â3, . . .

is convergent sequence to â.

Corollary 3.0.118. Let {ân}∞n=1 be sequence which is convergent to â. Let
also b̂1̂̂b2, . . . ,̂̂ bk ∈ F̂R be finite number of isoreals. Then the sequence

b̂1, b̂2, . . . , b̂k, â1, â2, â3̂, . . .

is convergent sequence to â.

Theorem 3.0.119. From every infinite bounded sequence can be chosen
convergent subsequence.

Proof. Let {ân}∞n=1 be infinite bounded sequence. Then it has condensation
isopoint. Let it will be â. In every isoneighbourhood of â there are uncount-
able many isoelements of the sequence {ân}∞n=1. In (â − 1, â + 1) there are
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uncountable many isoelements of the sequence {ân}∞n=1. Let ân1 will one of
them.
In the isoneighbourhood (â− 1 i 2̂, â+ 1 i 2̂) there are uncountable many
isoelements of the sequence {ân}∞n=1, let ân2̂

, ân2 6= ân1 be one of them and
etc. In this we construct the subsequence {ânk}∞k=1 so that

â− 1 i k < ânk < â+ 1 i k

and since

lim
k−→∞

(â− 1 i k) = ˆlimk−→∞(â+ 1 i k) = â,

we conclude that

lim
k−→∞

ânk = â.

Theorem 3.0.120. Every fundamental sequence of isoreals is convergent.

Proof. Let {ân}∞n=1 be isofundamental sequence. Then for every ε̂ > 0 there
exists N > 0 such that from m,n > N , m,n ∈ N,follows that

|âm − ân| < ε̂.

Let ε̂ = 1 and m1 > n be fixed. Then for every n > m1 we have

|ân − âm1 | < 1,

from here and from the properties of the isomodulus follows that

âm1 − 1 < ân < âm1 + 1 ∀n > m1.

Let

l̂ = min{â1, â2̂, . . . , âm̂1 − 1},

L̂ = max{â1, â2, . . . , âm1 + 1}.

Then for every n ∈ N we have

l̂ ≤ ân ≤ L̂.
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Therefore the sequence {ân}∞n=1 is bounded. Then it has an condensation
isopoint â. We suppose that it has and other one isopoint b̂. With out loss
of generality we can suppose that b̂ > â. Let

0 < ε̂0 < (b̂− â) i 3.

For this ε̂0 we can find n1 > 0 such that for every m,n > n1 we have

|âm − ân| < ε̂0, (3.0.9)

and since â is iscondensation isopoint of the sequence {ân}∞m=1 then there
exists m1 > n1 such that

â− ε̂0 < âm1 < â+ ε̂0.

As in above, there exists N1 > n1 such that

b̂− ε̂0 < âN1 < b̂+ ε̂0.

Because for m1 and N1 we have (3.0.9) then

b̂− â = b̂− ân1 + ân1 − âm1 + âm1 − â < ε̂0 + ε̂0 + ε̂0 = 3×̂ε̂0,

which is a contradiction with the choice of ε̂x0.
Consequently the bounded sequence {ân}∞n=1 has unique condensation iso-
point, therefore it is convergent.

Definition 3.0.121. We will say that +∞ is condensation isopoint of {ân}∞n=1

if it is isounbounded above.

Definition 3.0.122. We will say that −∞ is condensation isopoint of {ân̂}∞n=1

if it is unbounded below.

Using above definitions we can conclude that every sequence of isoreals has
condensation isopoint.
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Definition 3.0.123. Let {ân}∞n=1 be sequence of isorealls. Limit inferior
and limit superior we define as follows

lim infn−→∞ân = limn−→∞(infm≥n âm),

lim supn−→∞ân = limn−→∞(supm≥n âm),

respectively.

If

lim infn−→∞ân =∞,

then

lim
n−→∞

ân =∞.

If

lim supn−→∞ân = −∞,

then

lim
n−→∞

ân = −∞.

The sequence {ân}∞n=1 is convergent if

lim infn−→∞ân = lim
n−→∞

ân = lim supn−→∞ân.

Advanced practical exercises

Problem 3.0.124. Let {T̂n}∞n=1 = {n4 + 5}∞n=1, {an}∞n=1 =
{

1
n2+1

}∞
n=1

.

Prove that {ân}∞n=1 is a bounded sequence.

Problem 3.0.125. Let {T̂n}∞n=1 =
{
n+5
n6+7

}∞
n=1

, {an}∞n=1 =
{

1
n2+1

}∞
n=1

.

Prove that {ân}∞n=1 is an unbounded sequence.

Problem 3.0.126. Let {an}∞n=1 = {n + 2}∞n=1, {T̂n}∞n=1 =
{

1
n+3

}∞
n=1

.

Prove that the sequence {ân}∞n=1 diverges to +∞.

Problem 3.0.127. Let {an}∞n=1 = {n2 + 7}∞n=1, {T̂n}∞n=1 =
{

1
n+3

}∞
n=1

.

Prove that the sequence {ân}∞n=1 diverges to +∞.
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Problem 3.0.128. Let {an}∞n=1 = {−n3 − 2}∞n=1, {T̂n}∞n=1 =
{

1
n2+3

}∞
n=1

.

Prove that the sequence {ân}∞n=1 diverges to −∞.

Problem 3.0.129. Let {an}∞n=1 = {−n2 + 2}∞n=1, {T̂n}∞n=1 =
{

1
n4+1

}∞
n=1

.

Prove that the sequence {ân}∞n=1 diverges to −∞.

Problem 3.0.130. Find limn−→∞ ân if

1. an = b2n − 5bn + 6, T̂n = b2n − 7bn + 10, limn−→∞ bn = 2, bn 6= 2, 5,

2. an = b2n − 6bn + 8, T̂n = b2n − 5bn + 4, limn−→∞ bn = 4, bn 6= 1, 4,

3. an = b4n + 2b2n − 3, T̂n = b2n − 3bn + 2, limn−→∞ bn = 1, bn 6= 1, 2,

4. an = 3b4n − 4b3n + 1, T̂n = (bn − 1)2, limn−→∞ bn = 1, bn 6= 1,

5. an = bkn − 1, T̂n = bn − 1, limn−→∞ bn = 1, bn 6= 1, k ∈ N,

6. an = bkn − 1, T̂n = bln − 1, limn−→∞ bn = 1, k, l ∈ N, bn 6= 1 for odd l,
|bn| 6= 1 for even l,

7. an = 3
√

1 + bn − 1, T̂n = bn, limn−→∞ bn = 0, bn 6= 0,

8. an = k
√

1 + bn − 1, T̂n = bn, limn−→∞ bn = 0, bn 6= 0, k ∈ N,

9. an = 3
√
bn + 1, T̂n = 5

√
bn + 1, limn−→∞ bn = −1, bn 6= −1,

10. an =
√

1 + bn + b2n − 1,T̂n = bn, limn−→∞ bn = 0, bn 6= 0,

11. an =
√

1 + bn −
√

1 + b2n, T̂n =
√

1 + bn − 1, limn−→∞ bn = 0, bn 6= 0,

12. an = 3
√

1 + 2bn+ 1, T̂n = 3
√

2 + bn+ bn, limn−→∞ bnbn = −1, bn 6= −1,

13. an = (n+ 2)n, T̂n = nn,

14. an = (n+ 3)n, T̂n = nn,

15. an = (n+ k)n, T̂n = nn, k ∈ N,

16. an = (n− 1)n, T̂n = nn,

17. an = (n− 2)n, T̂n = nn,

18. an = (n− k)n, T̂n = nn, k ∈ N,

19. an = (n2 − 1)n, T̂n = (n2 − n− 6)n,
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20. an = (n2 − 5n+ 6)n, T̂n = (n2 + 5n+ 6)n,

21. an = (n2 − 4n+ 3)n, T̂n = (n2 + 3n+ 2)n,

22. an = (n2 + n+ 1)n, T̂n = (n2 + 3n+ 1)n,

23. an = (n3 + n2 + 3n+ 1)n, T̂n = (n3 + n2 + 2n+ 1)n.

Answer. 1) 1
3 , 2) 2

3 , 3) −8, 4) 6, 5) k, 6) k
l , 7) 1

3 , 8) 1
k , 9) 5

3 , 10) 1
2 , 11) 1,

12) 1
2 , 13) e2, 14) e3, 15) ek, 16) e−1, 17) e−2, 18) e−k, 19) e, 20) e−10, 21)

e−7, 22) e−2, 23) 1.



Chapter 4

Isofunctions-definition and
properties

Let Î1 = 1
T̂1

be the isounit of F̂R, T̂1 > 0 is a constant.

Let also D, Y , Z ⊂ R be given sets, f be a relation between D and Z,
defined on all D, and T̂ be a relation between D and Y , defined on all D,
T̂ (x) > 0 for every x ∈ D. For x ∈ D we define the operators

x̂ :=
x

T̂ (x)
, f̂(x) :=

f(x)

T̂ (x)
, f∧(x) := f(xT̂ (x)), f̂(x̂) =

f(x̂)

T̂ (x)
.

Then for x ∈ D we have

f̂∧(x̂) =
f

(
T̂ (x) x

T̂ (x)

)
T̂ (x)

= f(x)

T̂ (x)
,

f̂(x̂) =
f

(
x

T̂ (x)

)
T̂ (x)

when x
T̂ (x)
∈ D,

f(x̂) = f
(

x
T̂ (x)

)
when x

T̂ (x)
∈ D,

f∧(x̂) = f
(
T̂ (x) x

T̂ (x)

)
= f(x),

f∧(x) = f(T̂ (x)x) when xT̂ (x) ∈ D.

93
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Example 4.0.131. Let D = R, T̂ (x) = x2 + 1, f(x) = x, x ∈ D. Then

f̂∧(x̂) = f(x)

T̂ (x)
= x

x2+1
,

f̂(x̂) =
f

(
x

T̂ (x)

)
T̂ (x)

=
f

(
x

x2+1

)
x2+1

=
x

x2+1

x2+1
= x

(x2+1)2
,

f(x̂) = f
(

x
T̂ (x)

)
= f

(
x

x2+1

)
= x

x2+1
,

f∧(x) = f(T̂ (x)x) = f((x2 + 1)x) = f(x3 + x) = x3 + x.

Exercise 4.0.132. Let D = R, T̂ (x) = e−x, f(x) = x− 1, x ∈ D. Find

f̂∧(x̂), f̂(x̂), f(x̂), f∧(x), x ∈ D.

Answer.

f̂∧(x̂) = (x− 1)ex, f̂(x̂) = ex(xex − 1),

f(x̂) = xex − 1, f∧(x) = xe−x − 1, x ∈ D.

Exercise 4.0.133. Let D = R, T̂ (x) = x4 + 1, f(x) = 2x+ 1, x ∈ D. Find

f̂∧(x̂), f̂(x̂), f(x̂), f∧(x), x ∈ D.

Answer.

f̂∧(x̂) = 2x+1
x4+1

, f̂(x̂) = x4+2x+1
(x4+1)2

,

f(x̂) = x4+2x+1
x4+1

, f∧(x) = 2x5 + 2x+ 1, x ∈ D.
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Definition 4.0.134. We will tell that in the set D is defined isofunction of
first kind or isomap of first kind if

ŷ := f̂∧(x̂) =
f(x)

T̂ (x)
, x ∈ D,

is a function(map). We will use the notation f̂∧∧.
The element x will be called isoargument of the isofunction of first kind
or isoindependent isovariable, and its isoimage ŷ = f̂∧(x̂) will be called
isodependent isovariable or isovalue of the isofunction of first kind. The set

{f̂∧(x̂) : x ∈ D}

will be called isocodomain of isovalues of the isofunction of first kind. The
set D will be called isodomain of the isofunction of first kind. The function
f(x)

T̂ (x)
will be called isooriginal of the isofunction of first kind.

Example 4.0.135. Let D = R, T̂ (x) = x2 + 1, f(x) = x3 + 1. Then

f̂∧(x̂) =
f(x)

T̂ (x)
=
x3 + 1

x2 + 1
.

Remark 4.0.136. In the last example we saw that if f is a function on D
then f̂∧∧ is a function on D. There is a possibility the original f to be not
a function but the corresponding lift f̂ to be function and the inverse. We
will see this in the following examples.

Example 4.0.137. Let D = [−1, 1],

f(x) =


x2 + 1 for x ∈ [−1, 0],

x+ 2 for x ∈ [0, 1],
T̂ (x) =


1 for x ∈ [−1, 0],

2 for x ∈ [0, 1].

Then f is not a function on D because f(0) = 1 and f(0) = 2. But

f̂∧(x̂) =


x2 + 1 for x ∈ [−1, 0],

x+2
2 for x ∈ [0, 1],
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which is a function on D because f̂∧∧(0̂) = 1.

Example 4.0.138. Let D = [−2, 2], f(x) = x3 + 1, and

T̂ (x) =


2 for x ∈ [−2, 0],

3 for x ∈ [0, 1].

Then f is a function on D, but

f̂∧(x̂) =


x3+1

2 for x ∈ [−2, 0],

x3+1
3 for x ∈ [0, 2],

is not a function on D because f̂∧(0̂) = 1
2 and f̂∧(0̂) = 1

3 .

Exercise 4.0.139. Let D = R, f(x) = 1
x2+1

, T̂ (x) = x2 + 1, x ∈ D.
Determine

1) f̂∧(x̂), x ∈ D,

2) isocodomain of f̂ ,

3) if f is a function on D,

4) if f̂∧∧ is an isofunction on D.

Solution.

1) Using the definition

f̂∧(x̂) =
f(x)

T̂ (x)
=

1
x2+1

x2 + 1
=

1

(x2 + 1)2
.

2) From the previous point we conclude that f̂∧(x̂) ≥ 0 for every x ∈ R,
from here we obtain that the isocodomain of f̂∧∧ is R+.

3) f is a function on D.

4) f̂∧∧ is an isofunction on D.

Exercise 4.0.140. Let D = R and

f(x) =


x+ 1 for x ∈ (−∞, 0],

x+2
2 for x ∈ [0,∞),

T̂ (x) =


x2 + 2 for x ∈ (−∞, 0],

x4 + 5 for x ∈ [0,∞).

Determine
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1) if f is a function on D,

2) If f̂∧∧ is an isofunction on D.

Answer. 1) Yes, 2) No.

Exercise 4.0.141. Let D = [−1, 1] and

f(x) =


x+ 1 for x ∈ [−1, 0],

x+ 2 for x ∈ [0, 1],
T̂ (x) =


x2 + 3 for x ∈ [−1,−1

2 ],

x2 + 4 for x ∈ [−1
2 ,

1
2 ],

x2 + 6 for x ∈ [1
2 , 1].

Determine

1) f̂∧(x̂),

2) if f is a function on D,

3) if f̂∧∧ is an isofunction on D.

Answer.

1) f̂∧(x̂) =



x+1
x2+3

for x ∈ [−1,−1
2 ],

x+1
x2+4

for x ∈ [−1
2 , 0],

x+2
x2+4

for x ∈ [0, 1
2 ],

x+2
x2+6

for x ∈ [1
2 , 1].

2) f is not a function on D, 3) f̂∧∧ is not an isofunction on D.

Exercise 4.0.142. Let D = [0, 3] and

f(x) =



x+1
x2+2

for x ∈ [0, 1],

−1
3 + x for x ∈ [1, 2],

−7
3 + x2 for x ∈ [2, 3],

T̂ (x) =


x2 + 1 for x ∈ [0, 1],

2
3(x2 + 2) for x ∈ [1, 3].

Determine

1) f̂∧(x̂),
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2) if f is a function on D,

3) if f̂∧∧ is an function on D.

Answer.

1) f̂∧(x̂) =



x+1
(x2+1)(x2+2)

for x ∈ [0, 1],

3
2

x− 1
3

x2+2
for x ∈ [1, 2],

3
2

x2− 7
3

x2+2
for x ∈ [2, 3],

2) f is a function on D, 3) f̂∧∧ is an isofunction on D.

Definition 4.0.143. We will tell that in the set D is defined isofunction of
second kind or isomap of second kind if xT̂ (x) ∈ D for every x ∈ D and

ŷ := f̂∧(x) =
f(xT̂ (x))

T̂ (x)
, x ∈ D,

is a function(map). We will use the notation f̂∧.
The element x will be called isoargument of the isofunction of second kind
or isoindependent isovariable, and its isoimage ŷ = f̂∧(x) will be called
isodependent isovariable or isovalue of the isofunction of second kind. The
set

{f̂∧(x) : x ∈ D}

will be called isocodomain of isovalues of the isofunction of second kind.
The set D will be called isodomain of the isofunction of second kind. The

function f(xT̂ (x))

T̂ (x)
will be called isooriginal of the isofunction of second kind.

Example 4.0.144. Let D = [1,+∞), T̂ (x) = x2 + 2, f(x) = x− 1, x ∈ D.
Then

f̂∧(x) =
f(xT̂ (x))

T̂ (x)
=
f(x(x2 + 2))

x2 + 2
=
f(x3 + 2x)

x2 + 2
=
x3 + 2x− 1

x2 + 2
.
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Exercise 4.0.145. Let D = [1,+∞), T̂ (x) = x + 1, f(x) = x2, x ∈ D.
Find f̂∧(x̂), f̂∧(x).

Solution. Using the definition we have

f̂∧(x̂) = f(x)

T̂ (x)
= x2

x+1 ,

f̂∧(x) = f(xT̂ (x))

T̂ (x)
= f(x(x+1))

x+1 = f(x2+x)
x+1

= (x2+x)2

x+1 = x2(x+1)2

x+1 = (x+ 1)x2.

Exercise 4.0.146. Let D = [2,+∞), T̂ (x) = x− 1, f(x) = x3 + x, x ∈ D.
Find f̂∧(x̂), f̂∧(x).

Answer.

f̂∧(x̂) =
x3 + x

x− 1
, f̂∧(x) = x5 − 2x4 + x3 + x.

Exercise 4.0.147. Let f(x) = ax, x ∈ D, a ∈ R. Prove that f̂∧(x) = f(x).

Definition 4.0.148. We will tell that in the set D is defined isofunction of
third kind or isomap of third kind f̂ if x

T̂ (x)
∈ D for every x ∈ D and

ŷ := f̂(x̂) =
f
(

x
T̂ (x)

)
T̂ (x)

, x ∈ D,

is a function(map). We will use the notation
ˆ̂
f .

The element x will be called isoargument of the isofunction of third kind or
isoindependent isovariable, and its isoimage ŷ = f̂(x̂) will be called isode-
pendent isovariable or isovalue of the isofunction of third kind. The set

{f̂(x̂) : x ∈ D}

will be called isocodomain of isovalues of the isofunction of third kind. The
set D will be called isodomain of the isofunction of third kind. The function

f

(
x

T̂ (x)

)
T̂ (x)

will be called isooriginal of the isofunction of third kind.
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Example 4.0.149. Let D = [1, 3], T̂ (x) = x2 + 2x, f(x) = x3 − 1, x ∈ D.
Then

f̂(x̂) =
f

(
x

T̂ (x)

)
T̂ (x)

=
f

(
x

x2+2x

)
x2+2x

=
f

(
1
x+2

)
x2+2x

=
1

(x+2)3
−1

x2+2x
= 1−(x+2)3

x(x+2)4
= −x3−6x2−12x−7

x(x+2)4
.

Exercise 4.0.150. Let D = [1,+∞), T̂ (x) = x, f(x) = x+ 1. Find f̂(x̂).

Answer. 2
x .

Exercise 4.0.151. Let D = [2, 5], T̂ (x) = x + 2, f(x) = x2 + 2x, x ∈ D.
Find f̂(x̂).

Answer. 3x2+4x
(x+2)3

.

Definition 4.0.152. We will tell that in the set D is defined isofunction of
fourth kind or isomap of fourth kind f∧ if xT̂ (x) ∈ D for every x ∈ D and

ŷ := f∧(x) = f
(
xT̂ (x)

)
, x ∈ D,

is a function(map). We will use the notation f∧.
The element x will be called isoargument of the isofunction of fourth kind
or isoindependent isovariable, and its isoimage ŷ = f∧(x) will be called
isodependent isovariable or isovalue of the isofunction of fourth kind. The
set

{f∧(x) : x ∈ D}

will be called isocodomain of isovalues of the isofunction of fourth kind. The
set D will be called isodomain of the isofunction of fourth kind. The function

f
(
xT̂ (x)

)
will be called isooriginal of the isofunction of fourth kind.

Example 4.0.153. Let D = [1,+∞), f(x) = x, T̂ (x) = x2, x ∈ D. Then

f∧(x) = f(xT̂ (x)) = f(x3) = x3.
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Exercise 4.0.154. Let D = [0,+∞), f(x) = x + 1, T̂ (x) = x + 2, x ∈ D.
Find f∧(x).

Answer. x2 + 2x+ 1.

Exercise 4.0.155. Let D = [0,∞), f(x) = x − 2, T̂ (x) = x2 + 1, x ∈ D.
Find f∧(x).

Answer. x3 + x− 2.

Exercise 4.0.156. Let D = R, T̂1 = 4, T̂ (x) = x2 + 2. Find

1̂, 1̂∧∧, 1̂∧, ˆ̂1, 1∧.

Answer.

1̂ =
1

4
, 1̂∧∧ = 1̂∧ = ˆ̂1 =

1

3
, 1∧ = 1.

Definition: An isofunction ĥ of first, second, third or fourth kind with
isooriginal h̃ will be called isoinjection, isosurjection or isobijection if its
isooriginal h̃ is injection, surjection or bijection, respectively.

Example 4.0.157. Let D = R, T̂1 = 2, f(x) = x + 1, T̂ (x) = 3, x ∈ D.
Then f : R −→ R is injection and

f̂∧(x̂) =
f(x)

T̂ (x)
=
x+ 1

3
: R −→ R

is injection, i.e. f̂ : F̂R−̂→F̂R is an isoinjection.

Example 4.0.158. Let D = R, T̂1 = 2, f(x) = 1, T̂ (x) = e−x, x ∈ D.
Then f is not injection, but f̂∧(x̂) = ex is an isoinjection.

Definition: Let â ∈ F̂R and f̂ , ĝ are isofunctions of first, second, third
or fourth kind with isooriginals f̃ , g̃, respectively. Then we define

1) â×̂f̂ := a 1
T̂1
T̂1f̃ = af̃ ,

2) âf̂ := a
T̂1
f̃ ,

3) f̂ ± ĝ := f̃ ± g̃.
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Exercise 4.0.159. Let D = R, f(x) = x− 1, g(x) = x+ 1, x ∈ D, T̂1 = 3,
T̂ (x) = x2 + 1, x ∈ D. Find

1) f̂∧(x̂),

2) ĝ∧(x̂),

3) 2̂×̂f̂∧(x̂),

4) 3̂ĝ∧(x̂),

5) 2̂×̂f̂∧(x̂)− 3̂ĝ∧(x̂).

Solution.

1) Using the definition

f̂∧(x̂) =
f(x)

T̂ (x)
=

x− 1

x2 + 1
.

2) Using the definition

ĝ∧(x̂) =
g(x)

T̂ (x)
=

x+ 1

x2 + 1
.

3) Using the definition and 1)

2̂×̂f̂∧(x̂) = 2
1

3
3
f(x)

T̂ (x)
= 2

x− 1

x2 + 1
.

4) Using the definition and 2)

3̂ĝ∧(x̂) = 3
1

3

g(x)

T̂ (x)
=

x+ 1

x2 + 1
.

5) Using 3) and 4)

2̂×̂f̂∧(x̂)− 3̂ĝ∧(x̂) = 2
x− 1

x2 + 1
− x+ 1

x2 + 1
=

2x− 2− x− 1

x2 + 1
=

x− 3

x2 + 1
.

Exercise 4.0.160. Let D = [−1, 1], f(x) = sinx, g(x) = x, T̂ (x) = x4 + 1,
x ∈ D, T̂1 = 4. Find

1) f̂∧(x̂),

2) ĝ∧(x̂),
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3) 3̂×̂f̂∧(x̂),

4) 2̂f̂∧(x̂),

5) 7̂×̂ĝ∧(x̂),

6) 4̂×̂f̂∧(x̂)− 2̂f̂∧(x̂) + 5̂×̂ĝ∧(x̂).

Answer.

1) f̂∧(x̂) = sinx
x4+1

, 2) ĝ∧(x̂) = x
x4+1

,

3) 3̂×̂f̂∧(x̂) = 3 sinx
x4+1

, 4) 2̂f̂∧(x̂) = 1
2

sinx
x4+1

,

5) 7̂×̂ĝ∧(x̂) = 7x
x4+1

, 6) 4̂×̂f̂∧(x̂)− 2̂f̂∧(x̂) + 5̂×̂ĝ∧(x̂) =
7
2

sinx+5x

x4+1
.

Definition: Let f, T̂ : D −→ R, g : D −→ D, T̂ (x) > 0 for every x ∈ D.
Then we define

f̂∧
(
ĝ∧(x̂)

)
:= f(T̂ (x)ĝ∧(x̂))

T̂ (x)
=

f

(
T̂ (x)

g

(
T̂ (x) x

T̂ (x)

)
T̂ (x)

)
T̂ (x)

= f(g(x))

T̂ (x)
for ∀x ∈ D.

Example 4.0.161. Let D = R, T̂1 = 5, f(x) = x + 1, g(x) = x, T̂ (x) =
x2 + 1, x ∈ D. Then

f̂∧(ĝ∧(x̂)) = f(g(x))

T̂ (x)
= g(x)+1

T̂ (x)
= x+1

x2+1
.

Exercise 4.0.162. Let D = R,T̂1 = 4, f(x) = x − 1, g(x) = 2x + 1,
T̂ (x) = x4 + 1, x ∈ D. Find

1) f̂∧(x̂),

2) ĝ∧(x̂),

3) 2̂×̂f̂∧(x̂)− 3̂ĝ∧(x̂),

4) f̂∧(f̂∧(x̂)),
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5) ĝ∧(ĝ∧(ĝ∧(x̂))),

6) f̂∧(ĝ∧(x̂)),

7) ĝ∧(f̂∧(x̂)).

Solution.

1) Using the definition for isofunction we have

f̂∧(x̂) =
f(x)

T̂ (x)
=

x− 1

x4 + 1
.

2) Using the definition of isofunction we have

ĝ∧(x̂) =
g(x)

T̂ (x)
=

2x+ 1

x4 + 1
.

3)

2̂×̂f̂∧(x̂)− 3̂ĝ∧(x̂) = 2 f(x)

T̂ (x)
− 3

4
g(x)

T̂ (x)

= 2 x−1
x4+1

− 3
4

2x+1
x4+1

= 8x−8−6x−3
4(x4+1)

= 2x−1
4(x4+1)

.

4)

f̂∧(f̂∧(x̂)) = f(f(x))

T̂ (x)
= f(x)−1

T̂ (x)
= x−1−1

x4+1
= x−2

x4+1
.

5)

ĝ∧(ĝ∧(ĝ∧(x̂))) = g(g(g(x)))

T̂ (x)
= 2g(g(x))+1

T̂ (x)
= 2(2g(x)+1)+1

T̂ (x)

= 2(2(2x+1)+1)+1
x4+1

= 2(4x+2+1)+1
x4+1

= 8x+6+1
x4+1

= 8x+7
x4+1

.

6)

f̂∧(ĝ∧(x̂)) = f(g(x))

T̂ (x)
= g(x)−1

T̂ (x)
= 2x+1−1

x4+1
= 2x

x4+1
.

7)

ĝ∧(f̂∧(x̂)) = g(f(x))

T̂ (x)
= 2f(x)+1

T̂ (x)
= 2(x−1)+1

x4+1
= 2x−1

x4+1
.

Exercise 4.0.163. Let D = R, T̂1 = 5, f(x) = 2x + 3, T̂ (x) = x2 + 10,
x ∈ D. Find

A := f̂∧(f̂∧(f̂∧(x̂)))− 2̂×̂f̂∧(x̂) + f̂∧(f̂∧(x̂)).
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Answer. A = 8x+24
x2+10

.

Definition: Let f, T̂ : D −→ R, T̂ (x) > 0, xT̂ (x) ∈ D for every x ∈ D,
g : D −→ D. Then we define

f̂∧
(
ĝ∧(x)

)
:= f(T̂ (x)ĝ∧(x))

T̂ (x)
=

f

(
T̂ (x)

g(xT̂ (x))

T̂ (x)

)
T̂ (x)

= f(g(xT̂ (x)))

T̂ (x)
for ∀x ∈ D.

Example 4.0.164. Let D = R, f(x) = x, g(x) = 2x + 1, T̂ (x) = x2 + 1,
x ∈ D. Then

f̂∧
(
ĝ∧(x)

)
= f(g(xT̂ (x)))

T̂ (x)
= f(g(x(x2+1)))

x2+1

f(g(x3+x))
x2+1

= f(2(x3+x)+1)
x2+1

= f(2x3+2x+1)
x2+1

= 2x3+2x+1
x2+1

.

Definition: Let f, T̂ : D −→ R, T̂ (x) > 0, x
T̂ (x)

∈ D for every x ∈ D,

g : D −→ D. Then we define

f̂∧(ĝ(x̂)) :=
f(T̂ (x)ĝ(x̂))

T̂ (x)
=
f
(
T̂ (x)

g

(
x

T̂ (x)

)
T̂ (x)

)
T̂ (x)

=
f
(
g
(

x
T̂ (x)

))
T̂ (x)

for ∀x ∈ D.

Example 4.0.165. Let D = R, f(x) = x, g(x) = 2x + 1, T̂ (x) = x2 + 1,
x ∈ D. Then

f̂∧(ĝ(x̂)) =
f

(
g

(
x

T̂ (x)

))
T̂ (x)

=
f

(
g

(
x

x2+1

))
x2+1

=
f

(
2x
x2+1

+1

)
x2+1

=
2x
x2+1

+1

x2+1
= x2+2x+1

(x2+1)2
.
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Definition: Let f, g, T̂ : D −→ R, T̂ (x) > 0, xT̂ (x) ∈ D, T̂ (x)g(xT̂ (x)) ∈ D
for every x ∈ D. Then we define

f̂∧(g∧(x)) :=
f(T̂ (x)g∧(x))

T̂ (x)
=
f(T̂ (x)g(xT̂ (x)))

T̂ (x)
for ∀x ∈ D.

Example 4.0.166. Let D = R, f(x) = x, g(x) = 2x + 1, T̂ (x) = x2 + 1,
x ∈ D. Then

f̂∧(g∧(x)) = f(T̂ (x)g(xT̂ (x)))

T̂ (x)
= f((x2+1)g(x(x2+1)))

x2+1

= f((x2+1)(2(x3+x)+1))
x2+1

= (x2+1)(2x3+2x+1)
x2+1

= 2x3 + 2x+ 1.

Definition: Let f, g, T̂ : D −→ R, T̂ (x) > 0, T̂ (x)g(x) ∈ D for every
x ∈ D. Then we define

f̂∧(g(x)) :=
f(T̂ (x)g(x))

T̂ (x)
for ∀x ∈ D.

Example 4.0.167. Let D = R, f(x) = x, g(x) = 2x + 1, T̂ (x) = x2 + 1,
x ∈ D. Then

f̂∧(g(x)) = f(T̂ (x)g(x))

T̂ (x)
= f((x2+1)(2x+1))

x2+1
= (x2+1)(2x+1)

x2+1
= 2x+ 1.

Definition: Let f, g, T̂ : D −→ R, T̂ (x) > 0, g(x)

T̂ (x)
∈ D for every x ∈ D.

Then we define

f̂(ĝ∧(x̂)) :=
f(ĝ∧(x̂))

T̂ (x)
=
f
(g(T̂ (x) x

T̂ (x)

)
T̂ (x)

)
T̂ (x)

=
f
(
g(x)

T̂ (x)

)
T̂ (x)

for ∀x ∈ D.



107

Example 4.0.168. Let D = R, f(x) = x, g(x) = 2x + 1, T̂ (x) = x2 + 1,
x ∈ D. Then

f̂(ĝ∧(x̂)) =
f

(
g(x)

T̂ (x)

)
T̂ (x)

=
f

(
2x+1

x2+1

)
x2+1

=
2x+1

x2+1

x2+1
= 2x+1

(x2+1)2
.

Definition: Let f, g, T̂ : D −→ R, T̂ (x) > 0, xT̂ (x) ∈ D, g(xT̂ (x))

T̂ (x)
∈ D for

every x ∈ D. Then we define

f̂(ĝ∧(x)) :=
f(ĝ∧(x))

T̂ (x)
=
f
(
g(xT̂ (x))

T̂ (x)

)
T̂ (x)

for ∀x ∈ D.

Example 4.0.169. Let D = R, f(x) = x, g(x) = 2x + 1, T̂ (x) = x2 + 1,
x ∈ D. Then

f̂(ĝ∧(x)) =
f

(
g(xT̂ (x))

T̂ (x)

)
T̂ (x)

=
f

(
g(x(x2+1))

x2+1

)
x2+1

=
g(x3+x)

x2+1

x2+1
= 2(x3+x)+1

(x2+1)2
= 2x3+2x+1

(x2+1)2
.

Definition: Let f, g, T̂ : D −→ R, T̂ (x) > 0, x
T̂ (x)

∈ D,
g

(
x

T̂ (x)

)
T̂ (x)

∈ D for

every x ∈ D. Then we define

f̂(ĝ(x̂)) :=
f(ĝ(x̂))

T̂ (x)
=
f
(g( x

T̂ (x)

)
T̂ (x)

)
T̂ (x)

for ∀x ∈ D.
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Example 4.0.170. Let D = R, f(x) = x, g(x) = 2x + 1, T̂ (x) = x2 + 1,
x ∈ D. Then

f̂(ĝ(x̂)) =
f

( g( x
T̂ (x)

)
T̂ (x)

)
T̂ (x)

=
f

( g( x
x2+1

)
x2+1

)
x2+1

=
f

( 2x
x2+1

+1

x2+1

)
x2+1

=
f

(
x2+2x+1

(x2+1)2

)
x2+1

=
x2+2x+1

(x2+1)2

x2+1
= x2+2x+1

(x2+1)3
.

Definition: Let f, T̂ : D −→ R, T̂ (x) > 0 xT̂ (x) ∈ D for every x ∈ D,
g : D −→ D. Then we define

f̂(g∧(x)) :=
f(g∧(x))

T̂ (x)
=
f(g(xT̂ (x)))

T̂ (x)
for ∀x ∈ D.

Example 4.0.171. Let D = R, f(x) = x, g(x) = 2x + 1, T̂ (x) = x2 + 1,
x ∈ D. Then

f̂(g∧(x)) = f(g(xT̂ (x)))

T̂ (x)
= f(g(x(x2+1)))

x2+1
= g(x3+x)

x2+1

= 2(x3+x)+1
x2+1

= 2x3+2x+1
x2+1

.

Definition: Let f, T̂ : D −→ R, g : D −→ D, T̂ (x) > 0 for every x ∈ D.
Then we define

f̂(g(x)) :=
f(g(x))

T̂ (x)
for ∀x ∈ D.

Example 4.0.172. Let D = R, f(x) = x, g(x) = 2x + 1, T̂ (x) = x2 + 1,
x ∈ D. Then

f̂(g(x)) =
f(g(x))

T̂ (x)
=

g(x)

x2 + 1
=

2x+ 1

x2 + 1
.
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Definition: Let f, T̂ : D −→ R, T̂ (x) > 0 for every x ∈ D, g : D −→ D.
Then we define

f∧(ĝ∧(x̂)) := f(T̂ (x)ĝ∧(x̂))

= f
(
T̂ (x)

g

(
T̂ (x) x

T̂ (x)

)
T̂ (x)

)
= f(g(x)) for ∀x ∈ D.

Example 4.0.173. Let D = R, f(x) = x, g(x) = 2x + 1, T̂ (x) = x2 + 1,
x ∈ D. Then

f∧(ĝ∧(x̂)) = f(g(x)) = g(x) = 2x+ 1.

Definition: Let f, T̂ : D −→ R, T̂ (x) > 0, xT̂ (x) ∈ D for every x ∈ D,
g : D −→ D. Then we define

f∧(ĝ∧(x)) := f(T̂ (x)ĝ∧(x))

= f
(
T̂ (x)g(xT̂ (x))

T̂ (x)

)
= f(g(xT̂ (x))) for ∀x ∈ D.

Example 4.0.174. Let D = R, f(x) = x, g(x) = 2x + 1, T̂ (x) = x2 + 1,
x ∈ D. Then

f∧(ĝ∧(x)) = f(g(xT̂ (x)))

= g(x(x2 + 1)) = g(x3 + x) = 2(x3 + x) + 1 = 2x3 + 2x+ 1.

Definition: Let f, T̂ : D −→ R, T̂ (x) > 0, x
T̂ (x)

∈ D for every x ∈ D,

g : D −→ D. Then we define

f∧(ĝ(x̂)) := f
(
T̂ (x)

g
(

x
T̂ (x)

)
T̂ (x)

)
= f

(
g
( x

T̂ (x)

))
for ∀x ∈ D.
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Example 4.0.175. Let D = R, f(x) = x, g(x) = 2x + 1, T̂ (x) = x2 + 1,
x ∈ D. Then

f∧(ĝ(x̂)) = f
(
g
(

x
T̂ (x)

))
= g
(

x
x2+1

)
= 2x

x2+1
+ 1 = x2+2x+1

x2+1
.

Definition: Let f, g, T̂ : D −→ R, T̂ (x) > 0, xT̂ (x) ∈ D, T̂ (x)g(xT̂ (x)) ∈
D for every x ∈ D. Then we define

f∧(g∧(x)) := f(T̂ (x)g(xT̂ (x))) for ∀x ∈ D.

Example 4.0.176. Let D = R, f(x) = x, g(x) = 2x + 1, T̂ (x) = x2 + 1,
x ∈ D. Then

f∧(g∧(x)) = f(T̂ (x)g(xT̂ (x))) = T̂ (x)g(xT̂ (x))

= (x2 + 1)g(x(x2 + 1)) = (x2 + 1)g(x3 + x) = (x2 + 1)(2(x3 + x) + 1)

= (x2 + 1)(2x3 + 2x+ 1) = 2x5 + 4x3 + x2 + 2x+ 1.

Definition: Let f, g, T̂ : D −→ R, T̂ (x) > 0, g(x)T̂ (x) ∈ D for every
x ∈ D. Then we define

f∧(g(x)) := f(T̂ (x)g(x)) for ∀x ∈ D.

Example 4.0.177. Let D = R, f(x) = x, g(x) = 2x + 1, T̂ (x) = x2 + 1,
x ∈ D. Then

f∧(g(x)) = f(T̂ (x)g(x)) = T̂ (x)g(x) = (x2 + 1)(2x+ 1) = 2x3 + x2 + 2x+ 1.

Definition: Let f, g, T̂ : D −→ R, T̂ (x) > 0, g(x)

T̂ (x)
∈ D for every x ∈ D.

Then we define

f(ĝ∧(x̂)) := f
(g(T̂ (x) x

T̂ (x)

)
T̂ (x)

)
= f

( g(x)

T̂ (x)

)
for ∀x ∈ D.
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Example 4.0.178. Let D = R, f(x) = x, g(x) = 2x + 1, T̂ (x) = x2 + 1,
x ∈ D. Then

f(ĝ∧(x̂)) = f
(
g(x)

T̂ (x)

)
= g(x)

T̂ (x)
= 2x+1

x2+1
.

Definition: Let f, g, T̂ : D −→ R, T̂ (x) > 0, xT̂ (x) ∈ D, g(xT̂ (x))

T̂ (x)
∈ D for

every x ∈ D. Then we define

f(ĝ∧(x)) := f
(g(xT̂ (x))

T̂ (x)

)
for ∀x ∈ D.

Example 4.0.179. Let D = R, f(x) = x, g(x) = 2x + 1, T̂ (x) = x2 + 1,
x ∈ D. Then

f(ĝ∧(x)) = f
(
g(xT̂ (x))

T̂ (x)

)
= g(xT̂ (x))

T̂ (x)

= 2xT̂ (x)+1

T̂ (x)
= 2x(x2+1)+1

x2+1
= 2x3+2x+1

x2+1
.

Definition: Let f, g, T̂ : D −→ R, T̂ (x) > 0, x
T̂ (x)

∈ D,
g

(
x

T̂ (x)

)
T̂ (x)

∈ D for

every x ∈ D. Then we define

f(ĝ(x̂)) := f
(g( x

T̂ (x)

)
T̂ (x)

)
for ∀x ∈ D.

Example 4.0.180. Let D = R, f(x) = x, g(x) = 2x + 1, T̂ (x) = x2 + 1,
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x ∈ D. Then

f(ĝ(x̂)) = f
(g( x

T̂ (x)

)
T̂ (x)

)
=

g

(
x

T̂ (x)

)
T̂ (x)

=
2x
T̂ (x)

+1

T̂ (x)
=

2x
x2+1

+1

x2+1
= x2+2x+1

(x2+1)2
.

Definition: Let f, T̂ : D −→ R, T̂ (x) > 0, xT̂ (x) ∈ D for every x ∈ D,
g : D −→ D. Then we define

f(g∧(x)) := f(g(xT̂ (x))) for ∀x ∈ D.

Example 4.0.181. Let D = R, f(x) = x, g(x) = 2x + 1, T̂ (x) = x2 + 1,
x ∈ D. Then

f(g∧(x)) = f(g(xT̂ (x))) = g(xT̂ (x))

= 2xT̂ (x) + 1 = 2x(x2 + 1) + 1 = 2x3 + 2x+ 1.

Definition: Let f̂ and ĝ be isofunctions of first, second, third or fourth
kinds, f̃ and g̃ be their isooriginals, respectively. Then we define isomulti-
plication and multiplication as follows

f̂×̂ĝ = f̃ T̂ (x)g̃ (isomultiplication)

f̂ ĝ = f̃ g̃ (multiplication).

In particular

f̂2 = f̂ f̂ , f̂3 = f̂2f̂ = f̂ f̂ f̂ , . . .

f̂ 2̂ = f̂×̂f̂ , f̂ 3̂ = f̂×̂f̂ 2̂ = f̂×̂f̂×̂f̂ , . . . .

The above defined isomultiplication and multiplication satisfy commutative,
associative and distributive laws.
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Example 4.0.182. Let D = R, T̂1 = 3, f(x) = x2 − x, g(x) = x − 3,
T̂ (x) = x2 + 1, x ∈ D. Then

f̂∧(x̂)×̂ĝ∧(x̂) = f(x)g(x)

T̂ (x)
= (x2−1)(x−3)

x2+1
= x3−4x2+3x

x2+1
,

f̂∧(x̂)ĝ∧(x̂) = f(x)g(x)

T̂ 2(x)
= (x2−x)(x−3)

(x2+1)2
= x3−4x2+3x

(x2+1)2
,

f̂2(x̂) =
f2(x)

T̂ 2(x)
=

(x2 − x)2

(x2 + 1)2
,

f̂ 2̂(x̂) =
f2(x)

T̂ (x)
=

(x2 − x)2

x2 + 1
.

Exercise 4.0.183. Let D = R, T̂1 = 2, f(x) = x − 2, g(x) = 2x + 1,
T̂ (x) = e−x, x ∈ D. Compute

1) f̂∧(x̂),

2) ĝ∧(x̂),

3) A := 2̂×̂ĝ∧(x̂) + 3̂ĝ∧(x̂) + f̂2(x̂) + 2̂f̂∧(x̂)×̂ĝ∧(x̂)− f̂∧(x̂)ĝ∧(x̂) + ĝ2̂(x̂).

Solution.

1) From the definition of isofunction we get

f̂∧(x̂) =
f(x)

ˆT (x)
= (x− 2)ex.

2) Using the definition of isofunction we obtain

ĝ∧(x̂) =
g(x)

T̂ (x)
= (2x+ 1)ex.

3) We have

2̂×̂f̂∧(x̂) = 2
f(x)

T̂ (x)
= 2(x− 2)ex = (2x− 4)ex,

3̂ĝ∧(x̂) =
3

2

g(x)

T̂ (x)
=

3

2
(2x+ 1)ex = (3x+

3

2
)ex,

f̂2(x̂) =
f2(x)

T̂ 2(x)
= (x− 2)2e2x = (x2 − 4x+ 4)e2x,
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2̂f̂∧(x̂)×̂ĝ∧(x̂) = 21
2
f(x)g(x)

T̂ (x)
= (x− 2)(2x+ 1)ex = (2x2 − 3x− 2)ex,

f̂∧(x̂)ĝ∧(x̂) = f(x)g(x)

T̂ 2(x)
= (x− 2)(2x+ 1)e2x = (2x2 − 3x− 2)e2x,

ĝ2̂(x̂) =
g2(x)

T̂ (x)
= (2x+ 1)2ex = (4x2 + 4x+ 1)ex.

Then

A = (2x− 4)ex + (3x+ 3
2)ex + (x2 − 4x+ 4)e2x

+(2x2 − 3x− 2)ex − (2x2 − 3x− 2)e2x + (4x2 + 4x+ 1)ex

= (6x2 + 6x− 7
2)ex + (−x2 − x+ 6)e2x.

Exercise 4.0.184. Let D = R, T̂1 = 3, f(x) = x, g(x) = x+ 1, T̂ (x) = ex,
x ∈ D. Find

1) A := f̂2(x̂)− f̂∧(x̂)ĝ∧(x̂),

2) B := f̂∧(x̂)×̂ĝ∧(x̂),

3) C := ĝ2̂(x̂)− 3̂×̂f̂∧(x̂) + 2̂f̂2(x̂),

4) D := f̂∧(x̂)×̂(2̂×̂f̂∧(x̂)− 4̂ĝ∧(x̂)).

Answer.
1) A = −xe−2x, 2) B = (x2 + x)e−x,

3) C = (x2 − x+ 1)e−x + 2
3x

2e−2x,

4) D =
(

2
3x

2 − 4
3x
)
e−x.

Exercise 4.0.185. Let f̂ , ĝ, ĥ : D̂−̂→Ŷ , â, b̂ ∈ F̂R. Prove that

1) f̂∧(x̂)×̂ĝ∧(x̂) = ĝ∧(x̂)×̂f̂∧(x̂),

2) f̂∧(x̂)×̂(ĝ∧(x̂) + ĥ∧(x̂)) = f̂∧(x̂)×̂ĝ∧(x̂) + f̂∧(x̂)×̂ĥ∧(x̂),

3) â×̂(f̂∧(x̂) + ĝ∧(x̂)) = â×̂f̂∧(x̂) + â×̂ĝ∧(x̂),

4) (â+ b̂)×̂f̂∧(x̂) = â×̂f̂∧(x̂) + b̂×̂f̂∧(x̂).
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Exercise 4.0.186. Let f̂ , ĝ, ĥ : D̂−̂→Ŷ , â, b̂ ∈ F̂R. Prove that

1) f̂∧(x̂)ĝ∧(x̂) = ĝ∧(x̂)f̂∧(x̂),

2) f̂∧(x̂)(ĝ∧(x̂) + ĥ∧(x̂)) = f̂∧(x̂)ĝ∧(x̂) + f̂∧(x̂)ĥ∧(x̂),

3) â(f̂∧(x̂) + ĝ∧(x̂)) = âf̂∧(x̂) + âĝ∧(x̂),

4) (â+ b̂)f̂∧(x̂) = âf̂∧(x̂) + b̂f̂∧(x̂).

Exercise 4.0.187. Let f̂ , ĝ, ĥ : D̂−̂→Ŷ . Prove that

f̂∧(x̂)×̂(ĝ∧(x̂)ĥ∧(x̂)) = (f̂∧(x̂)×̂ĝ∧(x̂))ĥ∧(x̂).

Example 4.0.188. Let D = R, T̂1 = 3, f(x) = x + 1, T̂ (x) = x2 + x + 1,
x ∈ D. Then xT̂ (x) : D −→ D and

f̂(x) = f(T̂ (x)x)

T̂ (x)
= f((x2+x+1)x)

x2+x+1
= f(x3+x2+x)

x2+x+1
= x3+x2+x+1

x2+x+1
.

Example 4.0.189. Let D = [0, 1], T̂1 = 2, f(x) = x2 + 1, T̂ (x) = x2 + 2,
x ∈ D. Then xT̂ (x) does not image D in D and therefore we can not
consider f̂(x).

Exercise 4.0.190. Let D = R, T̂1 = 2, f(x) = x − 2, g(x) = x + 2,
T̂ (x) = e−x, x ∈ D. Find

1) f̂(x) + ĝ∧(x̂),

2) f̂(x)− ĝ(x),

3) 2̂×̂f̂(x) + 4̂ĝ(x).

Solution.

1) We have

f̂(x) = f(T̂ (x)x)

T̂ (x)
= f(e−xx)

e−x = ex(xe−x − 2) = x− 2ex,

ĝ∧(x̂) = g(x)

T̂ (x)
= x+2

e−x = ex(x+ 2).

From here

f̂(x) + ĝ∧(x̂) = x− 2ex + ex(x+ 2) = x+ xex.
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2) We have

ĝ(x) = g(T̂ (x))

T̂ (x)
= g(e−xx)

e−x = ex(xe−x + 2) = x+ 2ex.

From here

f̂(x)− ĝ(x) = x− 2ex − x− 2ex = −4ex.

3) We have

2̂×̂f̂∧(x̂) = 2f(x)

T̂ (x)
= 2(x−2)

e−x = (2x− 4)ex,

also

4̂ĝ(x) = 4
2(x+ 2ex) = 2x+ 4ex.

Therefore

2̂×̂f̂(x) + 4̂ĝ(x) = (2x− 4)ex + 2x+ 4ex = 2xex + 2x.

Exercise 4.0.191. Let D = R, T̂1 = 3, f(x) = 3 − 0x, g(x) = x + 1,
T̂ (x) = 1 + sin2 x, x ∈ D. Find

1) A := f̂∧(x̂)− 2̂×̂ĝ(x),

2) B := f̂ 2̂(x̂)− ĝ∧(x̂) + ĝ(x),

3) C := f̂(x)− ĝ(x).

Answer.

1) A = 1−x
1+sin2 x

− 2x, 2) B = x2−6x+x sin2 x+9
1+sin2 x

, 3) C = 2
1+sin2 x

− 2x.

Example 4.0.192. Let D = R, T̂1 = 3, f(x) = x, g(x) = x − 1, T̂ (x) =
1 + x2. Then

f̂(ĝ(x)) = f(g(T̂ (x)x))

T̂ (x)
= f(T̂ (x)x−1)

T̂ (x)
= T̂ (x)x−1

T̂ (x)

= x− 1
T̂ (x)

= x− 1
1+x2

= x3+x−1
1+x2

,

f̂(f̂(x)) =
f(f(T̂ (x)))

T̂ (x)
=
f(T̂ (x)x)

T̂ (x)
=
T̂ (x)x

T̂ (x)
= x,

ĝ(ĝ(x)) = g(g(T̂ (x)x))

T̂ (x)
= g(T̂ (x)x−1)

T̂ (x)

= T̂ (x)x−2

T̂ (x)
= x− 2

T̂ (x)
= x− 2

1+x2
= x3+x−2

x2+1
.
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Exercise 4.0.193. Let D = R, T̂1 = 2, f(x) = 1 + x, g(x) = x, T̂ (x) =
1 + x4, x ∈ D. Find

1) A := f̂(x) + f̂(ĝ(x)),

2) B := 2̂×̂f̂(f̂∧(x̂)) + ĝ(ĝ(x)),

3) C := f̂(f̂∧(x̂)) + f̂∧(x̂)− ĝ∧(x̂).

Solution.

1) We have

f̂(x) =
f(T̂ (x)x)

T̂ (x)
=

1 + xT̂ (x)

T̂ (x)
= x+

1

T̂ (x)
= x+

1

x4 + 1
=
x5 + x+ 1

x4 + 1
,

f̂(ĝ(x)) =
f(g(T̂ (x)x))

T̂ (x)
=
T̂ (x)x+ 1

T̂ (x)
= x+

1

T̂ (x)
= x+

1

x4 + 1
=
x5 + x+ 1

x4 + 1
.

Consequently

A =
x5 + x+ 1

x4 + 1
+
x5 + x+ 1

x4 + 1
= 2

x5 + x+ 1

x4 + 1
.

2) We have

f̂(f̂∧(x̂)) =
f(f(x))

T̂ (x)
=
f(1 + x)

x4 + 1
=

2 + x

x4 + 1
,

2̂×̂f̂(f̂∧(x̂)) =
2f(f(x))

T̂ (x)
=

2f(x+ 1)

T̂ (x)
=

2(x+ 2)

x4 + 1
=

2x+ 4

x4 + 1
,

ĝ(ĝ(x)) =
g(g(T̂ (x)x))

T̂ (x)
=
g(T̂ (x)x)

T̂ (x)
=
T̂ (x)x

T̂ (x)
= x,

therefore

B =
4 + 2x

1 + x4
+ x =

x5 + 3x+ 4

1 + x4
.

3) We have

f̂∧(x̂) =
f(x)

T̂ (x)
=

1 + x

1 + x4
,

ĝ∧(x̂) =
g(x)

T̂ (x)
=

x

1 + x4
.
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From here

C =
2 + x

1 + x4
+

1 + x

1 + x4
− x

1 + x4
=

3 + x

1 + x4
.

Exercise 4.0.194. Let D = R, T̂1 = 3, f(x) = 2 + x, g(x) = x, T̂ (x) =
1 + x2, x ∈ D. Find

A := f̂(f̂(f̂∧(x̂))) + ĝ(f̂(ĝ(x))).

Answer.

A =
x3 + 2x+ 8

x2 + 1
.

Example 4.0.195. Let D = R, T̂1 = 3, f(x) = x, g(x) = x + 1, T̂ (x) =
1 + x2, x ∈ D. Then

f̂(x)×̂ĝ(x) = f(T̂ (x)x)g(T̂ (x)x)

T̂ (x)
= T̂ (x)x(T̂ (x)x+1)

T̂ (x)

= x(T̂ (x)x+ 1) = x(x3 + x+ 1) = x4 + x2 + x,

f̂(x)×̂ĝ(x) = f(T̂ (x)x)g(T̂ (x)x)

T̂ 2(x)
= T̂ (x)x(T̂ (x)+1)

T̂ 2(x)
= xT̂ (x)(T̂ (x)x+1)

T̂ 2(x)

= x2 + x
T̂ (x)

= x2 + x
1+x2

= x4+x2+x
1+x2

,

f̂ 2̂(x) =
f2(T̂ (x)x)

T̂ (x)
=
T̂ 2(x)x2

T̂ (x)
= T̂ (x)x2 = (1 + x2)x2 = x2 + x4,

f̂2(x) =
f2(T̂ (x)x)

T̂ 2(x)
=
T̂ 2(x)x2

T̂ 2(x)
= x2.

Exercise 4.0.196. Let D = R, T̂1 = 2, f(x) = 2x + 1, g(x) = 3x + 2,
T̂ (x) = x4 + 1, x ∈ D. Find

1) f̂(x), f̂∧(x̂), ĝ(x), ĝ∧(x̂),

2) A := f̂(x)×̂ĝ(x) + 3̂ĝ∧(x̂),

3) B := f̂∧(x̂)×̂ĝ(x)− f̂(ĝ∧(x̂)),

4) C := f̂ 2̂(x̂)− ĝ(x)− 4̂×̂f̂∧(x̂).

Solution.



119

1) We have

f̂(x) = f(T̂ (x)x)

T̂ (x)
= f((x4+1)x)

x4+1
= f(x5+x)

x4+1
= 2x5+2x+1

x4+1
,

f̂∧(x̂) = f(x)

T̂ (x)
= 2x+1

x4+1
,

ĝ(x) = g(T̂ (x)x)

T̂ (x)
= g(x5+x)

x4+1
= 3x5+3x+2

x4+1
,

ĝ∧(x̂) = g(x)

T̂ (x)
= 3x+2

x4+1
.

2) We have

f̂(x)×̂ĝ(x) = f(T̂ (x)x)g(T̂ (x)x)

T̂ (x)
= f(x5+x)g(x5+x)

x4+1

= (2x5+2x+1)(3x5+3x+2)
x4+1

= 6x10+12x6+7x5+6x2+7x+2
x4+1

,

3̂ĝ∧(x̂) =
3

2

g(x)

T̂ (x)
=

3

2

3x+ 2

x4 + 1
=

9
2x+ 3

x4 + 1
.

Then

A = 6x10+12x6+7x5+6x2+7x+2
x4+1

+
9
2
x+3

x4+1
=

6x10+12x6+7x5+6x2+ 23
2
x+5

x4+1
.

3) We have

f̂∧(x̂)×̂ĝ∧(x̂) = f(x)g(x)

T̂ (x)
= (2x+1)(3x+2)

x4+1
= 6x2+7x+2

x4+1
,

f̂(ĝ∧(x̂)) = f(g(x))

T̂ (x)
= f(3x+2)

x4+1
= 2(3x+2)+1

x4+1
= 6x+5

x4+1
,

B = 6x2+7x+2
x4+1

− 6x+5
x4+1

= 6x2+x−3
x4+1

.

4) We have

f̂ 2̂(x̂) = f2(x)

T̂ (x)
= (2x+1)2

x4+1
= 4x2+4x+1

x4+1
,

4̂×̂f̂∧(x̂) = 4 f(x)

T̂ (x)
= 42x+1

x4+1
= 8x+4

x4+1
,

C = 4x2+4x+1
x4+1

− 3x5+3x+2
x4+1

− 8x+4
x4+1

= −3x5+4x2−7x−5
x4+1

.
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Exercise 4.0.197. Let D = R, T̂1 = 4, f(x) = x, g(x) = x + 1, T̂ (x) =
x6 + 1, x ∈ D. Find

1) f̂(x), f̂∧(x̂), ĝ(x), ĝ∧(x̂),

2) A := f̂∧(x̂)×̂ĝ∧(x̂)− f̂(x)×̂ĝ(x),

3) B := f̂ 2̂(x̂)− ĝ3̂(x̂),

4) C := f̂2(x)− f̂(x)ĝ(x).

Answer.

1) f̂(x) = x, f̂∧(x̂) = x
x6+1

, ĝ(x) = x+ 1
x6+1

, ĝ∧(x̂) = x+1
x6+1

,

2) A = x2+x
x6+1

− x8 − x2 − x, 3) B = −x3−2x2−3x−1
x6+1

, 4) C = − x
x6+1

.

Exercise 4.0.198. Let f̂ , ĝ, ĥ : D−̂→Y . Prove

1) f̂(x)×̂ĝ(x) = ĝ(x)×̂f̂(x),

2) f̂(x)ĝ(x) = ĝ(x)f̂(x),

3) f̂(x)×̂(ĝ(x)ĥ(x)) = (f̂(x)×̂ĝ(x))ĥ(x),

4) f̂(x)×̂(ĝ(x) + ĥ(x)) = f̂(x)×̂ĝ(x) + f̂(x)×̂ĥ(x),

5) f̂(x)(ĝ(x) + ĥ(x)) = f̂(x)ĝ(x) + f̂(x)ĥ(x).

Exercise 4.0.199. Let f̂ , ĝ : D−̂→Y , ĥ : D̂−̂→Ŷ . Prove

1) f̂(x)×̂ĥ∧(x̂) = ĥ∧(x̂)×̂f̂(x),

2) f̂(x)ĥ∧(x̂) = ĥ∧(x̂)f̂(x),

3) f̂(x)×̂(ĝ(x)ĥ∧(x̂)) = (f̂(x)×̂ĝ(x))ĥ∧(x̂),

4) f̂(x)×̂(ĝ(x) + ĥ∧(x̂)) = f̂(x)×̂ĝ(x) + f̂(x)×̂ĥ∧(x̂),

5) f̂(x)(ĝ(x) + ĥ∧(x̂)) = f̂(x)ĝ(x) + f̂(x)ĥ∧(x̂).

Exercise 4.0.200. Let D = R, T̂1 = 2, f(x) = x, x ∈ D. Find T̂ (x), x ∈ D
so that

f̂ 2̂(x̂) + 1̂ = x̂.
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Solution. The given equation is equivalent of the equation

f(x)

T̂ (x)
+

1

2
=

x

T̂ (x)

or
x

T̂ (x)
+

1

2
=

x

T̂ (x)
,

from where 1
2 = 0, which is impossible. Consequently ther is not such

isotopic element T̂ (x).

Exercise 4.0.201. Let D = R, T̂1 = 2, f(x) = x, x ∈ D. Find T̂ (x),
x ∈ D, such that

f̂ 2̂(x̂) = x2(x2 + 1).

Solution. The given equation is equivalent of the equation

f2(x)

T̂ (x)
= x2(x2 + 1)

or
x2

T̂ (x)
= x2(x2 + 1),

from where

T̂ (x) =
1

x2 + 1
.

Exercise 4.0.202. Let D = R, T̂1 = 3, f(x) = x, x ∈ D. Find T̂ (x), x ∈ D
so that

f̂(x) = x.

Solution. The given equation is equivalent of the equation

f(T̂ (x)x)

T̂ (x)
= x

or
T̂ (x)x

T̂ (x)
= x

or
x = x.

Consequently every positive function T̂ on D will be satisfied the given
equation.
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Exercise 4.0.203. Let D = R, T̂1 = 8, f(x) = x2, x ∈ D. Find T̂ (x),
x ∈ D so that

f̂(x) = x2(x6 + x3 + 1).

Solution. The given equation is equivalent of the following equation

f(T̂ (x)x)

T̂ (x)
= x2(x6 + x3 + 1)

or
T̂ 2(x)x2

T̂ (x)
= x2(x6 + x3 + x)

or
T̂ (x)x2 = x2(x6 + x3 + 1),

therefore
T̂ (x) = x6 + x3 + 1.

Definition: An isofunction of first, second, third or fourth kind will be
called bounded below if its isooriginal is a bounded below function.

Example 4.0.204. Let D = R, T̂1 = 2, f(x) = x2 + 1, g(x) = x10 + 1,
T̂ (x) = x4 + 1, x ∈ D. Then

f̂∧(x̂) = f(x)

T̂ (x)
= x2+1

x4+1
,

ĝ∧(x̂) = g(x)

T̂ (x)
= x10+1

x4+1
.

The isofunction f̂ is a bounded below isofunction on D and ĝ is not bounded
below isofunction on D̂. The function f is unbounded below function.

Definition: An isofunction of first, second, third or fourth kind will be
called bounded above if its isooriginal is a bounded above function.

Example 4.0.205. Let D = R, T̂1 = 3, f(x) = e−x
2
, g(x) = e2x2, T̂ (x) =

ex
2
, x ∈ D. Then

f̂∧(x̂) = f(x)

T̂ (x)
= e−x

2

ex2
= e−2x2 ,

ĝ∧(x̂) = g(x)

T̂ (x)
= e2x

2

ex2
= ex

2
.
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Then f̂∧(x̂) is a bounded above isofunction on D and ĝ∧(x̂) is unbounded
above isofunction.

Definition: An isofunction of first, second, third or fourth kind will be
called bounded isofunction if its isooriginal is bounded function.

Example 4.0.206. Let D = R, T̂1 = 4, f(x) = x, g(x) = x7 + x, T̂ (x) =
x6 + 1, x ∈ D. Then

f̂∧(x̂) = f(x)

T̂ (x)
= x

x6+1
,

ĝ∧(x̂) = g(x)

T̂ (x)
= x7+x

x6+1
.

Then f̂∧(x̂) is a bounded isofunction on D and ĝ is unbounded isofunction
on D.

Theorem: Let f : D −→ Y is a bounded below function, T̂ : D −→ Y is a
bounded above positive function. Then there exists a constant M such that

f̂∧(x̂) ≥M for ∀x ∈ D.

In other words the considered isofunction of first kind is bounded below.

Proof. Since f : D −→ Y is a bounded below function then there exists
a ∈ R such that

f(x) ≥ a for ∀x ∈ D.

Because T̂ : D −→ Y is a bounded above positive function then there is
b ∈ R, b > 0 such that

T̂ (x) ≤ b for ∀x ∈ D for ∀x ∈ D.

Therefore

f̂∧(x̂) =
f(x)

T̂ (x)
≥ a

T̂ (x)
≥ a

b
= M.

As in above one can prove the following Theorems.
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Theorem: Let f : D −→ Y is a bounded below function, T̂ : D −→ Y is a
bounded above positive function, xT̂ (x) ∈ D for every x ∈ D. Then there
exists a constant M such that

f̂∧(x) ≥M for ∀x ∈ D.

In other words the considered isofunction of second kind is bounded below.

Theorem: Let f : D −→ Y is a bounded below function, T̂ : D −→ Y is
a bounded above positive function, x

T̂ (x)
∈ D for every x ∈ D. Then there

exists a constant M such that

f̂(x̂) ≥M for ∀x ∈ D.

In other words the considered isofunction of third kind is bounded below.

Theorem: Let f : D −→ Y is a bounded below function, T̂ : D −→ Y is a
bounded above positive function, xT̂ (x) ∈ D for every x ∈ D. Then there
exists a constant M such that

f∧(x) ≥M for ∀x ∈ D.

In other words the considered isofunction of fourth kind is bounded below.

Theorem: Let f : D −→ Y is a bounded above function, T̂ : D −→ Y is a
bounded below positive function. Then there exists a constant N such that

f̂∧(x̂) ≤ N for ∀x ∈ D.

Proof. Since f : D −→ Y is a bounded above function then there exists
a ∈ R such that

f(x) ≤ a for ∀x ∈ D.

Because T̂ : D −→ Y is a bounded below positive function then there is
b ∈ R, b > 0 such that

T̂ (x) ≥ b for ∀x ∈ D.
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Therefore

f̂∧(x̂) =
f(x)

T̂ (x)
≤ a

T̂ (x)
≤ a

b
= N for ∀x ∈ D,

i.e. the considered isofunction of first kind is bounded above.

As in above one can prove the following Theorems.

Theorem: Let f : D −→ Y is a bounded above function, T̂ : D −→ Y is a
bounded below positive function, xT̂ (x) ∈ D for every x ∈ D. Then there
exists a constant N such that

f̂∧(x) ≤ N for ∀x ∈ D.

Theorem: Let f : D −→ Y is a bounded above function, T̂ : D −→ Y is
a bounded below positive function, x

T̂
(x) ∈ D for every x ∈ D. Then there

exists a constant N such that

f̂(x̂) ≤ N for ∀x ∈ D.

Theorem: Let f : D −→ Y is a bounded above function, T̂ : D −→ Y is a
bounded below positive function, xT̂ (x) ∈ D for every x ∈ D. Then there
exists a constant N such that

f∧(x) ≤ N for ∀x ∈ D.

Theorem: Let f : D −→ Y is a bounded function, T̂ : D−→Y is a positive
bounded below function. Then there exists a positive constant M such that

|f̂∧(x̂)| ≤M for ∀x ∈ D.
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Proof. Since f : D −→ Y is a bounded function then there exists a ∈ R
such that

|f(x)| ≤ a for ∀x ∈ D.

Because T̂ : D −→ Y is a positive bounded below function then there exists
b ∈ R, b > 0 such that

T̂ (x) ≥ b for ∀x ∈ R.

From here

|f̂∧(x̂)| =
∣∣∣ f(x)

T̂ (x)

∣∣∣ = |f(x)|
T̂ (x)

≤ a
T̂ (x)
≤ a

b = N for ∀x ∈ D.

Corollary: Let f : D −→ Y is a bounded function, T̂ : D−→Y is a positive
bounded function. Then there exists a positive constant M such that

|f̂∧(x̂)| ≤M for ∀x ∈ D.

Theorem: Let f : D −→ Y is a bounded function, T̂ : D−→Y is a positive
bounded below function, xT̂ (x) ∈ D for every x ∈ D. Then there exists a
positive constant M such that

|f̂∧(x)| ≤M for ∀x ∈ D.

Corollary: Let f : D −→ Y is a bounded function, T̂ : D−→Y is a positive
bounded function, xT̂ (x) ∈ D for every x ∈ D. Then there exists a positive
constant M such that

|f̂∧(x)| ≤M for ∀x ∈ D.
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Theorem: Let f : D −→ Y is a bounded function, T̂ : D−→Y is a positive
bounded below function, x

T̂ (x)
∈ D for every x ∈ D. Then there exists a

positive constant M such that

|f̂(x̂)| ≤M for ∀x ∈ D.

Corollary: Let f : D −→ Y is a bounded function, T̂ : D−→Y is a positive
bounded function, x

T̂ (x)
∈ D for every x ∈ D. Then there exists a positive

constant M such that

|f̂(x̂)| ≤M for ∀x ∈ D.

Theorem: Let f : D −→ Y is a bounded function, T̂ : D−→Y is a positive
bounded below function, xT̂ (x) ∈ D for every x ∈ D. Then there exists a
positive constant M such that

|f∧(x)| ≤M for ∀x ∈ D.

Corollary: Let f : D −→ Y is a bounded function, T̂ : D−→Y is a positive
bounded function, xT̂ (x) ∈ D for every x ∈ D. Then there exists a positive
constant M such that

|f∧(x)| ≤M for ∀x ∈ D.



128 CHAPTER 4. ISOFUNCTIONS-DEFINITION AND PROPERTIES

Definition: Let f and g are isofunctions of first, second, third or fourth
kind on D with isooriginals f̃ , g̃, respectively, f̃ = f̃(x), g̃ = g̃(x), x ∈ D.
Then isodivision of f and g we define as follows

f ↗ g(x) :=
1

T̂ (x)

f̃(x)

g̃(x)
, x ∈ D, g̃(x) 6= 0.

Then for x ∈ D, f̃(x), g̃(x) 6= 0, we have(
f ↗ g(x)

)
×̂
(
g ↗ f(x)

)
=

1

T̂ (x)

f̃(x)

g̃(x)
T̂ (x)

1

T̂ (x)

g̃(x)

f̃(x)
=

1

T̂ (x)
.

Example 4.0.207. Let D = R, T̂1 = 3, f(x) = x, g(x) = 2x − 1, T̂ (x) =
x2 + 1, x ∈ D. Then

f̂∧(x̂)↗ ĝ∧(x̂) = 1
T̂ (x)

f̂∧(x̂)
ĝ∧(x̂) = 1

T̂ (x)

f(x)

T̂ (x)
g(x)

T̂ (x)

= T̂ (x)f(x)
g(x)

= 1
x2+1

x
2x−1 = x

(x2+1)(2x−1)
, x 6= 1

2 , x ∈ D,

f̂∧(x̂)↗ ĝ∧(x) = 1
T̂ (x)

f̂∧(x̂)
ĝ∧(x) = 1

T̂ (x)

f(x)

T̂ (x)

g(xT̂ (x))

T̂ (x)

= 1
T̂ (x)

f(x)

g(xT̂ (x))

= 1
x2+1

x
g((x2+1)x)

= x
(x2+1)g(x3+x)

= x
(x2+1)(2x3+2x−1)

, 2x3 + x− 1 6= 0, x ∈ D.

Exercise 4.0.208. Let f, g, T̂ : D −→ R, T̂ (x) > 0, g(x) 6= 0 for every
x ∈ D. Prove

f̂∧(x̂)↗ ĝ∧(x̂) =
1

T̂ (x)

f(x)

g(x)
, x ∈ D.

Solution. For x ∈ D we have

f̂∧(x̂)↗ ĝ∧(x̂) = 1
T̂ (x)

f̂∧(x̂)
ĝ∧(x̂) = 1

T̂ (x)

f(x)

T̂ (x)
g(x)

T̂ (x)

= 1
T̂ (x)

f(x)
g(x) .

Exercise 4.0.209. Let f, g, T̂ : D −→ R, T̂ (x) > 0, xT̂ (x) ∈ D, g(x) 6= 0
for every x ∈ D. Prove

f̂∧(x̂)↗ ĝ∧(x) =
1

T̂ (x)

f(x)

g(xT̂ (x))
∀x ∈ D.
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Exercise 4.0.210. Let f, g, T̂ : D −→ R, T̂ (x) > 0, x
T̂ (x)
∈ D, g(x) 6= 0 for

every x ∈ D. Prove

f̂∧(x̂)↗ ĝ(x̂) =
1

T̂ (x)

f(x)

g
(

x
T̂ (x)

) ∀x ∈ D.

Exercise 4.0.211. Let f, g, T̂ : D −→ R, T̂ (x) > 0, xT̂ (x) ∈ D, g(x) 6= 0
for every x ∈ D. Prove

f̂∧(x̂)↗ g∧(x) =
1

T̂ 2(x)

f(x)

g(xT̂ (x))
∀x ∈ D.

Exercise 4.0.212. Let f, g, T̂ : D −→ R, T̂ (x) > 0, xT̂ (x) ∈ D, g(x) 6= 0
for every x ∈ D. Prove

f̂∧(x)↗ ĝ∧(x̂) =
1

T̂ (x)

f(xT̂ (x))

g(x)
∀x ∈ D.

Exercise 4.0.213. Let f, g, T̂ : D −→ R, T̂ (x) > 0, xT̂ (x) ∈ D, g(x) 6= 0
for every x ∈ D. Prove

f̂∧(x)↗ ĝ∧(x) =
1

T̂ (x)

f(xT̂ (x))

g(xT̂ (x))
∀x ∈ D.

Exercise 4.0.214. Let f, g, T̂ : D −→ R, T̂ (x) > 0, xT̂ (x) ∈ D, x
T̂ (x)

∈ D,

g(x) 6= 0 for every x ∈ D. Prove

f̂∧(x)↗ ĝ(x̂) =
1

T̂ (x)

f(xT̂ (x))

g
(

x
T̂ (x)

) ∀x ∈ D.

Exercise 4.0.215. Let f, g, T̂ : D −→ R, T̂ (x) > 0, xT̂ (x) ∈ D, g(x) 6= 0
for every x ∈ D. Prove

f̂∧(x)↗ g∧(x) =
1

T̂ 2(x)

f(xT̂ (x))

g(xT̂ (x))
∀x ∈ D.

Exercise 4.0.216. Let f, g, T̂ : D −→ R, T̂ (x) > 0, x
T̂ (x)
∈ D, g(x) 6= 0 for

every x ∈ D. Prove

f̂(x̂)↗ ĝ∧(x̂) =
1

T̂ (x)

f
(

x
T̂ (x)

)
g(x)

∀x ∈ D.
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Exercise 4.0.217. Let f, g, T̂ : D −→ R, T̂ (x) > 0, x
T̂ (x)

∈ D, xT̂ (x) ∈ D,

g(x) 6= 0 for every x ∈ D. Prove

f̂(x̂)↗ ĝ∧(x) =
1

T̂ (x)

f
(

x
T̂ (x)

)
g(xT̂ (x))

∀x ∈ D.

Exercise 4.0.218. Let f, g, T̂ : D −→ R, T̂ (x) > 0, x
T̂ (x)
∈ D, g(x) 6= 0 for

every x ∈ D. Prove

f̂(x̂)↗ ĝ(x̂) =
1

T̂ (x)

f
(

x
T̂ (x)

)
g
(

x
T̂ (x)

) ∀x ∈ D.

Exercise 4.0.219. Let f, g, T̂ : D −→ R, T̂ (x) > 0, x
T̂ (x)

∈ D, xT̂ (x) ∈ D,

g(x) 6= 0 for every x ∈ D. Prove

f̂(x̂)↗ g∧(x) =
1

T̂ 2(x)

f
(

x
T̂ (x)

)
g(xT̂ (x))

∀x ∈ D.

Exercise 4.0.220. Let f, g, T̂ : D −→ R, T̂ (x) > 0, xT̂ (x) ∈ D, g(x) 6= 0
for every x ∈ D. Prove

f∧(x)↗ ĝ∧(x̂) =
f(xT̂ (x))

g(x)
∀x ∈ D.

Exercise 4.0.221. Let f, g, T̂ : D −→ R, T̂ (x) > 0, xT̂ (x) ∈ D, g(x) 6= 0
for every x ∈ D. Prove

f∧(x)↗ ĝ∧(x) =
f(xT̂ (x))

g(xT̂ (x))
∀x ∈ D.

Exercise 4.0.222. Let f, g, T̂ : D −→ R, T̂ (x) > 0, x
T̂ (x)

∈ D, xT̂ (x) ∈ D,

g(x) 6= 0 for every x ∈ D. Prove

f∧(x)↗ ĝ(x̂) =
f(xT̂ (x))

g
(

x
T̂ (x)

) ∀x ∈ D.

Exercise 4.0.223. Let f, g, T̂ : D −→ R, T̂ (x) > 0, xT̂ (x) ∈ D, g(x) 6= 0
for every x ∈ D. Prove

f∧(x)↗ g∧(x) =
1

T̂ (x)

f(xT̂ (x))

g(xT̂ (x))
∀x ∈ D.
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Definition: Let f̂ , ĝ : D̂−̂→Ŷ . If for x ∈ D we have ax+ b ∈ D, cx+d ∈ D
for some a, b, c, d ∈ R, then we define

f̂∧ ̂(ax+ b) := f(ax+b)

T̂ (ax+b)
,

f̂∧(ax+ b) := f((ax+ b)T̂ (ax+ b)),

f̂∧(x̂)×̂ĝ∧(âx+ b) = f(x)

T̂ (x)
T̂ (x) g(ax+b)

T̂ (ax+b)
= f(x)g(ax+b)

T̂ (ax+b)
,

ĝ∧(âx+ b)×̂f̂∧(x̂) = g(ax+b)

T̂ (ax+b)
T̂ (x) f(x)

T̂ (x)
= g(ax+b)f(x)

T̂ (x)
,

f̂∧(âx+ b)×̂ĝ∧(ĉx+ d) = f(ax+b)

T̂ (ax+b)
T̂ (x) g(cx+d)

T̂ (cx+d)
,

f̂∧(x̂)ĝ∧(âx+ b) = f(x)

T̂ (x)

g(ax+b)

T̂ (ax+b)
,

f̂∧(âx+ b)ĝ∧(ĉx+ d) = f(ax+b)

T̂ (ax+b)

g(cx+d)

T̂ (cx+d)
,

f̂∧(ax+ b)×̂ĝ∧(cx+ d) = f(T̂ (ax+ b)(ax+ b))T̂ (x)g(T̂ (cx+ d)(cx+ d)),

f̂∧(ax+ b)ĝ∧(cx+ d) = f(T̂ (ax+ b)(ax+ b))g(T̂ (cx+ d)(cx+ d)).

Example 4.0.224. Let D = R, T̂1 = 2, f(x) = x, g(x) = x+1, T̂ (x) = e−x,
x ∈ D. Then

f̂∧(x̂)×̂ĝ(x̂+ 1) = f(x)

T̂ (x)
T̂ (x) g(x+1)

T̂ (x+1)
= f(x)g(x+1)

T̂ (x+1)

= x(x+2)

T̂ (x+1)
= x(x+2)

e−(x+1) = x(x+ 2)ex+1 = (x2 + 2x)ex+1,

f̂∧(x̂− 1)×̂ĝ(x̂+ 1) = f(x−1)

T̂ (x−1)
T̂ (x) g(x+1)

T̂ (x+1)

= x−1
e−x+1 e

−x x+2
e−x−1 = (x− 1)(x+ 2)ex = (x2 + x− 2)ex,

f̂∧(x̂− 1)ĝ(x̂+ 1) = f(x−1)

T̂ (x−1)

g(x+1)

T̂ (x+1)
= x−1

e−x+1
x+2
e−x−1 = (x2 + x− 2)e2x,

f̂∧(x− 1)ĝ(x+ 1) = f(T̂ (x− 1)(x− 1))g(T̂ (x+ 1)(x+ 1))

= f
(
e−x+1(x− 1)

)
g
(
e−x−1(x+ 1)

)
= e−x+1(x− 1)

(
e−x−1(x+ 1) + 1

)
,
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f̂∧(x− 1)×̂ĝ∧(x+ 1) = f(T̂ (x− 1)(x− 1))T̂ (x)g(T̂ (x+ 1)(x+ 1))

= e−2x+1(x− 1)
(
e−x−1(x+ 1) + 1

)
Exercise 4.0.225. Let D = R, T̂1 = 2, f(x) = 2x, g(x) = x + 1, T̂ (x) =
x2 + 1, x ∈ D. Find

1) f̂∧(x̂+ 1)×̂ĝ∧(x̂),

2) f̂∧(x− 1)ĝ(2x+ 2).

Solution.

1) f̂∧(x̂+ 1)×̂ĝ∧(x̂) = f(x+1)

T̂ (x+1)
T̂ (x) g(x)

T̂ (x)
= f(x+1)g(x)

T̂ (x+1)

= (2x+2)(x+1)
(x+1)2+1

= 2 (x+1)2

(x+1)2+1
,

2) f̂∧(x− 1)ĝ∧(2x+ 2) = f(x−1)

T̂ (x−1)

g(2x+2)

T̂ (2x+2)
= (2x−2)

(x−1)2+1
2x+3

4(x+1)2+1
.

Definition: An isofunction of first, second, third or fourth kind will be
called even(odd) if its isooriginal is even(odd).

Definition: An isofunction of first, second, third or fourth kind will be
called increasing, decreasing and monotonic if its isooriginal is increasing,
decreasing and monotonic, respectively.

Example 4.0.226. Let D = R, T̂1 = 4, f(x) = x2, T̂ (x) = x4 + 1, x ∈ D.
Then

f̂∧(x̂) =
f(x)

T̂ (x)
=

x2

x4 + 1

and since
x2

x4 + 1
=

(−x)2

(−x)4 + 1

we conclude that the considered isofunction of first kind is an even isofunc-
tion on D. Also, we have that f is an even function on D.
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Example 4.0.227. Let D = R, T̂1 = 2, f(x) = x4, T̂ (x) = 2+sinx, x ∈ D.
Then

f(−x) = (−x)4 = x4 for ∀x ∈ D,
i.e. f is an even function on D, but

f̂∧(x̂) =
f(x)

T̂ (x)
=

x2

2 + sinx
,

from here

f̂(−x̂) =
f(−x)

T̂ (−x)
=

x4

2− sinx
6= f̂∧(x̂) for ∀x̂ ∈ D̂\{0}.

Consequently the considered isofunction of first kind is not even isofunction
on D.

Exercise 4.0.228. Let D = R, T̂1 = 4, f(x) = x, T̂ (x) = 4 + cosx, x ∈ D.
Check if the corresponding isofunction of first kind is an even isofunction
on D̂.

Answer. No.

Theorem: Let f, T̂ : D −→ Y are even functions. Then the correswponding
isofunctions of first, second, third and fourth kinds are even isofunction.

Proof. Since f, T̂ : D −→ Y are even functions then

f(x) = f(−x), T̂ (x) = T̂ (−x) for ∀x ∈ D.

Therefore the considered isofunction of first kind is an even function.
As in above we can prove our assertion for the isofunctions of second, third
and fourth kinds.

Theorem: Let f, T̂ : D −→ Y are odd functions. Then the corresponding
isofunctions of first and fourth kinds are even isofunctions and the corre-
sponding isofunctions of second and third kinds are odd isofunction..

Proof. We will prove our assertion for the isofunctions of first kind.
Since f, T̂ : D −→ Y are odd functions then

−f(x) = f(−x), −T̂ (x) = T̂ (−x) for ∀x ∈ D.

From here the corresponding isofunction of first kind is an even isofunction.
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Example 4.0.229. Let D = R, T̂1 = 2, f(x) = x, T̂ (x) = x2 + 1, x ∈ D.
Then

f̂∧(x̂) =
f(x)

T̂ (x)
=

x

x2 + 1
, x ∈ D.

From here the corresponding isofunction of first kind is an odd isofunction.

Exercise 4.0.230. Let D = R, T̂1 = 2, f(x) = x2 + x+ 1, T̂ (x) = x4 + 1,
x ∈ D. Check if the corresponding isofunction of first kind is odd or even
isofunction on D.

Solution. For f̂∧(x̂) we have the representation

f̂∧(x̂) =
f(x)

T̂ (x)
=
x2 + x+ 1

x4 + 1
.

From here
(−x)2 − x+ 1

(−x)4 + 1
=
x2 − x+ 1

x4 + 1
.

Therefore the corresponding isofunction of first kind is not even isofunction
on D.

Because
f(x)

T̂ (x)
6= f(−x)

T̂ (−x)
for ∀x ∈ D

then the corresponding isofunction of first kind is not odd isofunction on D.

Exercise 4.0.231. Let D = R, T̂1 = 4, f(x) = x, g(x) = x2, T̂ (x) = x6 +1,
x ∈ D. Check if the corresponding isofunctions of first kind are even or odd
isofunctions on D.

Answer. The corresponding isofunction of f is an odd isofunction on D,
The corresponding isofunction of g is an even isofunction on D.

Theorem: Let f : D −→ Y be an odd function, T̂ : D −→ Y be an even
positive function. Then the corresponding isofunctions of first, second and
fourth kinds are odd isofunctions and the corresponding isofunction of third
kind is an even isofunction.

Proof. We will prove our assertion for the isofunctions of first kind. Since
f : D −→ Y is an odd function then

f(x) = −f(−x) for ∀x ∈ D.
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Because T̂ : D −→ Y is an even function we have

T̂ (x) = T̂ (−x) for ∀x ∈ D.

From here
f(x)

T̂ (x)
=
−f(−x)

T̂ (−x)
= − f(−x)

T̂ (−x)
= ∀x ∈ D.

Consequently the corresponding isofunction of first kind is an odd isofunc-
tion.

Theorem: Let f : D −→ Y be an even function, T̂ : D −→ Y be an
odd positive function. Then the corresponding isofunctions of first, second
and third kinds are odd isofunctions and the corresponding isofunction of
foourth kind is an even isofunction.

Proof. We will prove our assertion for isofunctions of first kind. Since f :
D −→ Y is an even function then

f(x) = f(−x) for ∀x ∈ D.

Because T̂ : D −→ Y is an odd function we have

T̂ (x) = −T̂ (−x) for ∀x ∈ D.

Consequently the corresponding isofunction of first kind is an odd isofunc-
tion.

Example 4.0.232. Let D = R, T̂1 = 2, f(x) = x2 + 1, T̂ (x) = x4 + 1,
x ∈ D. Then for x ∈ D we have

f̂∧(x) = f(T̂ (x)x)

T̂ (x)
= (xT̂ (x))2+1

T̂ (x)
= x2T̂ (x) + 1

T̂ (x)
= x2(x4 + 1) + 1

x4+1
,

f(−T̂ (−x)x)

T̂ (−x)
= (−xT̂ (−x))2+1

T̂ (−x)
= x2T̂ (−x) + 1

T̂ (−x)
,

= x2((−x)4 + 1) + 1
(−x)4+1

= x2(x4 + 1) + 1
x4+1

= f̂∧(x),

therefore the corresponding isofunction of second kind is an even isofunction.

Example 4.0.233. Let D = R, T̂1 = 3, f(x) =, T̂ (x) = x2 + 1, x ∈ D.
Then for x ∈ D we have

f̂∧(x) =
f(xT̂ (x))

T̂ (x)
=
xT̂ (x)

T̂ (x)
= x,

consequently the considered isofunction of second kind is an odd isofunction.
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Example 4.0.234. Let D = R, T̂1 = 4, f(x) = x + 1, T̂ (x) = ex, x ∈ D.
Then for x ∈ D we have

f̂∧(x) =
f(xT̂ (x))

T̂ (x)
=
xT̂ (x) + 1

T̂ (x)
= x+

1

T̂ (x)
= x+ e−x,

f(−xT̂ (−x))

T̂ (−x)
=
−xT̂ (−x) + 1

T̂ (−x)
= −x+

1

T̂ (−x)
= −x+ ex,

from here we conclude that considered the isofunction of second kind is not
even and odd isofunction.

Exercise 4.0.235. Let D = R, T̂1 = 2, f(x) = −x, g(x) = x2, T̂ (x) =
x4 + 1, x ∈ D. Check if the corresponding isofunctions of second kind are
odd or even isofunctions.

Answer. The corresponding isofunction of second kind of f is an odd
isofunction, the corresponding isofunction of second kind of g is an even
isofunction.

Definition: Let w ∈ R, w > 0. An isofunction of first, second, third or
fourth kind will be called ŵ-isoperiodic isofunction if its isooriginal is a w -
periodic function.

Example 4.0.236. Let D = R, T̂1 = 3, f(x) = sinx, T̂ (x) = 2 + sin2 x,
x ∈ D. Then

f̂∧(x̂+ 2π) =
f(x+ 2π)

T̂ (x+ 2π)
=

sin(x+ 2π)

2 + sin2(x+ 2π)
=

sinx

2 + sin2 x

for every x ∈ D. Consequently the considered isofunction of first kind is a
2̂π-isoperiodic isofunction.

Example 4.0.237. Let D = R, T̂1 = 4, f(x) = 1, T̂ (x) = 2 + x2, x ∈ D.
Then if we suppose that there exists w ∈ R, w > 0 so that

f̂∧(x̂+ w) = f̂∧(x̂)

we obtain
f(x+ w)

T̂ (x+ w)
=
f(x)

T̂ (x)
for ∀x ∈ D

or
1

2 + (x+ w)2
=

1

2 + x2
for ∀x ∈ D,



137

from where

(x+ w)2 = x2 for ∀x ∈ D,

which is impossible. Therefore the considered isofunction of first kind is not
isoperiodic isofunction.

Exercise 4.0.238. Let D = R, T̂1 = 2, f(x) = 1+cos2 x, T̂ (x) = 1+cos2 x,
T̂ (x) = 3 + sin2 x, x ∈ D. Check if the corresponding isofunction of first
kind is π̂ - isoperiodic isofunction.

Exercise 4.0.239. Let D = R, T̂1 = 5, f(x) = 2+sin2 x, T̂ (x) = 7+2 sin2 x,
x ∈ D. Check if the corresponding isofunction of first kind is an isoperiodic
isofunction.

Answer. The considered isofunction of first kind is a π - isoperiodic iso-
function.

Theorem 4.0.240. Let f : R −→ R is w1 - periodic function, w1 ∈ R,
w1 > 0, T̂ : D −→ Y is positive w2 - periodic function, w2 ∈ R, w2 > 0. If
there exist k, l ∈ N such that

p := w1k = w2l

then the corresponding isofunction of first kind is a p̂ - isoperiodic isofunc-
tion.

Proof. Because f is w1 - periodic function we have that

f(x+ p) = f(x+ wll) = f(x+ w1) = f(x) for ∀x ∈ R.

Since T̂ is w2 - periodic function we get

T̂ (x+ p) = T̂ (x+ w2l) = T̂ (x+ w2) = T̂ (x) for ∀x ∈ R.

From here
f(x+ p)

T̂ (x+ p)
=
f(x)

T̂ (x)
for ∀x ∈ R.

Consequently the considered isofunction of first kind is p̂ - isoperiodic iso-
function.
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Theorem: Let f : R −→ R be a w1 - periodic function, w1 ∈ R, w1 > 0,
g : R −→ R be a w2-periodic function, w2 ∈ R, w2 > 0 and T̂ : R −→ R be
a positive w3 - periodic function, w3 ∈ R, w3 > 0. If there exist k, l,m ∈ N
such that

p := w1k = w2l = w3m

then if f̂ and ĝ are isofunctions of first kind we have

f̂ ± ĝ, f̂×̂ĝ, f̂ ĝ

are p̂-isoperiodic isofunctions.

Proof. Since f, g, T̂ : R −→ R are w1, w2 and w3 - periodic functions,
respectively, then

f(x) = f(x+ w1) = f(x+ kw1) = f(x+ p),

g(x) = g(x+ w2) = g(x+ lw2) = g(x+ p),

T̂ (x) = T̂ (x+ w3) = T̂ (x+mw3) = T̂ (x+ p)

for every x ∈ R. From here

f̂∧(x̂)± ĝ∧(x̂) = f(x)

T̂ (x)
± g(x)

T̂ (x)
= f(x+p)

T̂ (x+p)
± g(x+p)

T̂ (x+p)
= f̂(x̂+ p)± ĝ∧(x̂+ p),

f̂∧(x̂)×̂ĝ∧(x̂) = f(x)g(x)

T̂ (x)
= f(x+p)g(x+p)

T̂ (x+p)
= f̂(x̂+ p)×̂ĝ(x̂+ p),

f̂∧(x̂)ĝ∧(x̂) = f(x)g(x)

T̂ 2(x)
= f(x+p)g(x+p)

T̂ 2(x+p)
= f̂(x̂+ p)ĝ(x̂+ p)

for every x ∈ R.

Remark 4.0.241. The isofunctions of second, third and fourth kind can
not be isoperiodic isofunction since in the general case for arbitrary w ∈ R,
w > 0, the equality

f(T̂ (x+ w)(x+ w)) = f(T̂ (x)x)

or

f(
x+ w

T̂ (x+ w)
) = f(

x

T̂ (x)
)

is not valid for every x ∈ R, because the isotopic element T̂ can not be
represented in the form T̂ (x) = xg(x) or T̂ (x) = x

g(x) , g(0) 6= 0, cause the
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condition for positiveness of the isotopic element, in our case it should be
valid for every x ∈ R.

Advanced practical exercises

Problem 4.0.242. Let D = R, T̂ (x) = x2 + 1, f(x) = 3x− 2, x ∈ D. Find

f̂∧(x̂), f̂∧(x̂), f(x̂), f∧(x), x ∈ D.

Answer.

f̂∧(x̂) = 3x−2
x2+1

, f̂∧(x̂) = −2x2+3x−2
(x2+1)2

,

f(x̂) = −2x2+3x−2
x2+1

, f∧(x) = 3x3 + 3x− 2, x ∈ D.

Problem 4.0.243. Let D = R, T̂ (x) = ex, f(x) = x, x ∈ D. Find

f̂∧(x̂), f̂∧(x̂), f(x̂), f∧(x), x ∈ D.

Answer.
f̂∧(x̂) = xe−x, f̂∧(x̂) = xe−2x,

f(x̂) = xe−x, f∧(x) = xex, x ∈ D.

Problem 4.0.244. Find f̂∧(x̂) if

1) T̂ (x) = x2 + 1, f(x) = sinx,D = R,

2) T̂ (x) = x2 + 5, f(x) = cosx,D = R,

3) T̂ (x) = x2 + x+ 1, f(x) = tanx,D = R,

4) T̂ (x) = x2 + 2, f(x) = sinx+ 2 cosx,D = R,

5) T̂ (x) = x2 − x+ 1, f(x) = x2 + 2x,D = R,

6) T̂ (x) = x2 − x+ 5, f(x) = x3 + ex, D = R,

7) T̂ (x) = ex, f(x) = e2x, D = R,

8) T̂ (x) = ex + e2x + 2, f(x) = x3 − 1, D = R,

9) T̂ (x) = ex + e−x, f(x) = sinx,D = R,

10) T̂ (x) = 10 + ln2(x2 + x+ 1), f(x) = ex, D = R.
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Answer.

1) f̂∧(x̂) = sinx
x2+1

, 2) f̂∧(x̂) = cosx
x2+5

,

3) f̂∧(x̂) = tanx
x2+x+1

, 4) f̂∧(x̂) = sinx+2 cosx
x2+2

,

5) f̂∧(x̂) = x2+2x
x2−x+1

, 6) f̂∧(x̂) = x3+ex

x2−x+5
,

7) f̂∧(x̂) = ex, 8) f̂∧(x̂) = x3−1
ex+e2x+2

,

9) f̂∧(x̂) = sinx
ex+e−x . 10) f̂∧(x̂) = ex

10+ln2(x2+x+1)
.

Problem 4.0.245. Check if f̂∧(x̂) is an isofunction, where

1) f(x) =


2 for x ∈ [0, 1],

3 for x ∈ [1, 2], ,
T̂ (x) = x2 + 1, D = R,

2) f(x) = sinx, T̂ (x) =


x2 + 1 for x ∈ (−∞, 0],

x2 + 4 for x ∈ [0,∞),
D = R,

3) f(x) =


x2 − 1 for x ∈ [−1, 0],

x2 + 2 for x ∈ [0, 1],
T̂ (x) = cos2 x+ 1, D = [−1, 1],

4) f(x) = x, T̂ (x) = sin2 x+ 4, D = [−2, 2],

5) f(x) = x2, T̂ (x) =


1 for x ∈ [−3, 0],

x2 + 5 for x ∈ [0, 3],
D = [−3, 3].

Answer. 1) No, 2) No, 3) No, 4) Yes, 5) No.

Problem 4.0.246. Let D̂ = [−1, 1], f̂∧(x̂) = x+1
x4+5

, f(x) = x + 1, x ∈ D.

Find T̂ (x), x ∈ D.

Answer. T̂ (x) = x4 + 5.

Problem 4.0.247. Let D = R, f̂∧(x̂) = sinx+ex

x2+1
, T̂ (x) = x2 + 1, x ∈ D.

Find f(x), x ∈ D.
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Answer. f(x) = sinx+ ex.

Problem 4.0.248. Let D = R, f(x) = x2−1, g(x) = x−1, T̂ (x) = x2 + 1,
x ∈ D, T̂1 = 5. Find

1) f̂∧(x̂),

2) ĝ∧(x̂),

3) 2̂×̂(3̂f̂∧(x̂)− ĝ∧(x̂)) + 4̂×̂ĝ∧(x̂).

Answer.

1) f̂∧(x̂) = x2−1
x2+1

, 2) ĝ∧(x̂) = x−1
x2+1

,

3) 2̂×̂(3̂f̂∧(x̂)− ĝ∧(x̂)) + 4̂×̂ĝ∧(x̂) =
9
5
x2+x− 14

5
x2+1

.

Problem 4.0.249. Let D = R, T̂1 = 3, f(x) = x, g(x) = x − 1, T̂ (x) =
x2 + 2, x ∈ D. Find

1) f̂∧(x̂),

2) ĝ∧(x̂),

3) A := f̂∧(f̂∧(x̂)) + f̂∧(ĝ∧(x̂)) + ĝ∧(f̂∧(x̂)),

4 B := 2̂f̂∧(x̂)− f̂∧(ĝ∧(f̂∧(x̂))).

Answer.
1) f̂∧(x̂) = x

x2+2
, 2) ĝ∧(x̂) = x−1

x2+2
,

3) A = 3x−2
x2+2

, 4) B =
− 1

3
x+1

x2+2
.

Problem 4.0.250. Let D = R, T̂1 = 2, f(x) = x+1, g(x) = x, h(x) = x−1,
T̂ (x) = x2 + 1, x ∈ D. Find

A := f̂∧(x̂)×̂(ĝ2̂(x̂)− 3̂×̂ĥ∧(x̂)) + ĥ3(x̂).

Answer.

A =
x7 − 2x6 − 4x5 − 7x4 − 11x3 − 8x2 − 6x− 3

(x2 + 1)3
.
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Problem 4.0.251. Let D = R, T̂1 = 3, f(x) = 1 + x, g(x) = 2 + x,
T̂ (x) = 1 + x2, x ∈ D. Find

A := f̂∧(x̂) + f(x̂) + 2̂×̂ĝ∧(x̂)− ĝ(x).

Answer.

A =
2x+ 3

1 + x2
.

Problem 4.0.252. Let D = R, T̂1 = 3, f(x) = x + 10, g(x) = x, T̂ (x) =
x2 + 1, x ∈ D. Find

A = f̂(ĝ(f̂(ĝ(f̂(ĝ(x)))))).

Answer.

A =
x3 + x+ 30

x2 + 1
.

Problem 4.0.253. Let D = R, T̂1 = 2, f(x) = x − 1, g(x) = x + 1,
T̂ (x) = x4 + 1, x ∈ D. Find

1) f̂(x), f̂∧(x̂), ĝ(x), ĝ∧(x̂),

2) A := f̂ 2̂(x̂)− f̂∧(x̂)×̂ĝ∧(x̂) + f̂(x)×̂ĝ(x).

Answer.

1) f̂(x) = x5+x−1
x4+1

, f̂∧(x̂) = x−1
x4+1

, ĝ(x) = x5+x+1
x4+1

, ĝ∧(x̂) = x+1
x4+1

,

2) A = x10+2x6+x2−2x+2
x4+1

.

Problem 4.0.254. Let D = R, T̂1 = 8, f(x) = x3, x ∈ D. Find T̂ (x),
x ∈ D, such that

f̂ 2̂(x) = −x2.

Answewr. No solutions.

Problem 4.0.255. Let D = R, T̂1 = 2, f(x) = x3, T̂ (x) = 4−sinx, x ∈ D.
Check if f̂ is an even isofunction on D̂.

Answer. No.

Problem 4.0.256. Let D = R, T̂1 = 3, f(x) = x4, T̂ (x) = x10 + 2x2 + 1,
x ∈ D. Check if f̂ is an even isofunction on D̂.

Answer. Yes.
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Problem 4.0.257. Let D = R, T̂1 = 3, f(x) = x4 + x2, g(x) = x3 + x,
T̂ (x) = x4 + 1, x ∈ D. Check if f̂ , ĝ are odd or even isofunctions on D̂.

Answer. f̂ is an even isofunction on D̂, ĝ is an odd isofunction on D̂.

Problem 4.0.258. Let D = R, T̂1 = 3, f(x) = x3, g(x) = x4, T̂ (x) =
x6 + 1, x ∈ D. Check if f̂ , ĝ : D−̂→Y are odd or even isofunctions.

Answer. f̂ is an odd isofunction, ĝ is an even isofunction.

Problem 4.0.259. Let D = R, T̂1 = 3, f(x) = 3 + sinx + cos2 x, T̂1(x) =
4 + cos2(3x), x ∈ D. Check if f̂ : F̂R−̂→F̂R is an isoperiodic isofunction.

Answer. f̂ is 2̂π-isoperiodic isofunction.

Problem 4.0.260. Let D = R, T̂1 = 3, f(x) = 3 + x + sinx, T̂ (x) =
4 + sin2 x, x ∈ D. Check if f̂ : F̂R−̂→F̂R is an isoperiodic isofunction.

Answer. f̂ is not isoperiodic isofunction.

Problem 4.0.261. Let D = [1,+∞), f(x) = x, T̂ (x) = x2 + 1, x ∈ D.
Find f̂∧(x̂), f̂∧(x).

Answer.
f̂∧(x̂) =

x

x2 + 1
, f̂∧(x) = x.
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Chapter 5

Limit of isofunctions.
Continuous isofunctions

Let D ⊂ R and f̂ : D −→ R is an isofunction of first, second, third or fourth
kind and f̃ is its isooriginal.

Definition 5.0.262. The real a will be called left limit of f̂ at x0 ∈ D if it
is left limit of f̃ at x0.

Definition 5.0.263. The real a will be called right limit of f̂ at x0 ∈ D if
it is right limit of f̃ at x0.

Definition 5.0.264. The real a will be called limit of f̂ at x0 ∈ D if it is
limit of f̃ at x0.

145
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Example 5.0.265. Let D = [−1, 1],

f(x) =


x+ 2 for x ∈ [−1, 0]

x+ 4 for x ∈ [0, 1],
T̂ (x) =


1
2 for x ∈ [−1, 0]

1 for x ∈ [0, 1].

Then

f̂∧(x̂) =
f(x)

T̂ (x)
=


2(x+ 2) for x ∈ [−1, 0]

x+ 4 for x ∈ [0, 1].

We have that the limit limx−→0 f(x) does not exists because

lim
x−→0−

f(x) = 2, lim
x−→0+

f(x) = 4.

On the other hand, there exists

lim
x−→0

f̂∧(x̂) = 4.

Example 5.0.266. Let D = [0, 4], f(x) = x2, x ∈ D,

T̂ (x) =


x+ 2 for x ∈ [0, 2]

2 for x ∈ [2, 4].

Then

f̂∧(x̂) =


x2

x+2 for x ∈ [0, 2]

x2

2 for x ∈ [2, 4].

From here, since

lim
x−→2−

f̂∧(x̂) = 1, lim
x−→2+

f̂∧(x̂) = 2,

the limit

lim
x−→2

f̂∧(x̂)

does not exist, also there exists

lim
x−→2

f(x) = 4.
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Theorem 5.0.267. Let x0 ∈ D. Then there exists

lim
x−→x0,x∈D

f̂(x) = a

if and only if there exist f̂(x0 + 0), f̂(x0 − 0) and

f̂(x0 − 0) = f̂(x0 + 0) = a.

Proof. 1. Let there exists limx−→x0,x∈D f̂(x) = a. Then there exist f̂(x0+

0), f̂(x0 − 0) and

f̂(x0 − 0) = f̂(x0 + 0) = a.

2. Let there exist f̂(x0 + 0), f̂(x0 − 0) and

f̂(x0 − 0) = f̂(x0 + 0) = a.

Let also, ε > 0 be fixed. Then there exist δ1 > 0, δ2 > 0, such that
from

|x− x0| < δ1, x < x0, x ∈ D; |y − x0| < δ2, y > x0, y ∈ D,

we have

|f̂(x)− a| < ε, |f̂(y)− a| < ε.

Let

δ = min{δ1, δ2}.

Then from

|x− x0| < δ, x ∈ D,

follows that

|f̂(x)− a| < ε.

In other words

lim
x−→x0,x∈D

f̂(x) = a.
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Theorem 5.0.268. Let f̂ : [a, b] −→ R be monotonic isofunction. Then the
left limit of f̂ exists in every point x0 ∈ (a, b] and the right limit of f̂ exists
in every point y0 ∈ [a, b).

Proof. We will prove the assertion for left limit.

1. Let f̂ is increasing function. From a ≤ x ≤ x0 follows that

f̂(a) ≤ f̂(x) ≤ f̂(x0).

Consequently the isofunction f̂ is bounded on the interval [a, x0).
From here and from continuous principle follows that there exists

supf̂([a, x0)) = α.

From here follows that

1.1. f̂(x) ≤ α for every x ∈ [a, x0),

1.2. for every ε > 0 there exists ẑ ∈ [a, x0) such that α− ε < f̂(z).

Let ε > 0 be arbitrary chosen and let z ∈ [a, x0) is chosen in connection
with 1.2 and let δ = x0 − z. Then from 1.1 and 1.2 and since f̂ is
increasing follows that for every x ∈ [a, x0),

−δ < x− x0 < 0

is equivalent of
z < x < x0

and
α− ε < f̂(z) ≤ f̂(x) ≤ α < α+ ε,

therefore there exists f̂(x0 − 0) and f̂(x0 − 0) = α.

2. Let f̂ is decreasing function. From a ≤ x ≤ x0 follows that

f̂(a) ≥ f̂(x) ≥ f̂(x0).

Consequently the isofunction f̂ is bounded on the interval [a, x0).
From here and from continuous principle follows that there exists

inf f̂([a, x0)) = β̂.

From here follows that
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2.1. f̂(x) ≥ β for every x ∈ [a, x0),

2.2. for every ε > 0 there exists y ∈ [a, x0) such that β + ε > f̂(y).

Let ε > 0 be arbitrary chosen and let y ∈ [a, x0) is chosen in connection
with 2.2 and let δ = x0 − y. Then from 2.1 and 2.2 and since f̂ is
decreasing follows that for every x ∈ [a, x0),

−δ < x− x0 < 0

is equivalent of

y < x < x0

and

β − ε < β < f̂(x) ≤ f̂(y) ≤ β + ε,

therefore there exists f̂(x0 − 0) and f̂(x0 − 0) = β.

Definition 5.0.269. We will say that the number b ∈ R is a limit of the
isofunction f̂ when x −→ ∞ if it is a limit of the isooriginal f̃ when x −→
∞.

Theorem 5.0.270. Let the isofunction f̂ has limit a at the point x0 ∈ D.
Then there exist a neighbourhood U(x0) and a number b > 0 such that for
every x ∈ U(x0) ∩D, x 6= x0, we have

|f̂(x)| ≤ b.

Proof. Let ε ∈ D, ε ∈ (0, 1). Then there exists an neighbourhood U(x0)
such that for every x ∈ U(x0) ∩D, x 6= x0, we have

|f̂(x)− a| ≤ ε < 1,
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and from the properties of the modulus follows that

|f̂(x)| − |a| ≤ 1

for every x ∈ U(x0)∩D, x 6= x0. Therefore for every x ∈ U(x0)∩D, x 6= x0,

|f̂(x)| ≤ 1 + |a| =: b.

Theorem 5.0.271. Let limx−→x0 f̂(x) = b, b 6= 0. Then

1. there exists a neighbourhood U(x0) such that for every x ∈ U(x0)∩D,
x 6= x0, we have

|f̂(x)| > |b|
2
,

2. if b > 0 there exists a neighbourhood U(x0) such that for every x ∈
U(x0) ∩D, x 6= x0, we have

f̂(x) >
b

2
,

3. if b < 0 there exists a neighbourhood U(x0) such that for every x ∈
U(x0)∩D, x 6= x0, we have

f̂(x) <
b

2
.

Proof. 1. Since limx−→x0 f̂(x) = b then for ε = |b|
2 there exists a neighbour-

hood U(x0) such that for every x ∈ U(x0) ∩D, x 6= x0, we have

|f̂(x)− b| < |b|
2
.

From here and from the properties of the modulus follows that for
every x ∈ U(x0) ∩D, x 6= x0, we have

|b| − |f̂(x)| ≤ |f̂(x)− b| < |b|
2
, (5.0.1)
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from where for every x ∈ U(x0) ∩D, x 6= x0, we have

|f̂(x)| > |b| − |b|
2

=
|b|
2
.

2. 3. The second inequality of (5.0.1) is equivalent of :for every x ∈ U(x0)∩
D, x 6= x0, we have

b− |b|
2
< f̂(x) < b+

|b|
2
. (5.0.2)

From here if b > 0, from the left inequality of (5.0.2) we have, for
every x ∈ U(x0) ∩D, x 6= x0,

f̂(x) >
b

2
,

and if b < 0, from the right inequality (5.0.2), for every x ∈ U(x0)∩D,
x 6= x0, we have

f̂(x) <
b

2
.

Theorem 5.0.272. Let φ̂ : D −→ φ̂(D) and limx−→x0 f̂(x) = a,
limx−→x0 φ̂(x) = b and f̂(x) ≤ φ̂(x) for every x ∈ D. Then a ≤ b.

Proof. There exists a sequence {xn}∞n=1 such that xn −→n−→∞ x0 and the
sequnecs {f̂(xn)}∞n=1, {φ̂(xn)}∞n=1 are convergent to a and b, respectively.
Also, we have

f̂(xn) ≤ φ̂(xn).

From here and from the properties of the convergent sequences follows that

a ≤ b.
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Theorem 5.0.273. Let φ̂ : D −→ φ̂(D), ĝ : D −→ ĝ(D) and

lim
x−→x0

f̂(x) = lim
x−→x0

φ̂(x) = a,

and
f̂(x) ≤ ĝ(x) ≤ φ̂(x) ∀x ∈ D.

Then
lim

x−→x0
ĝ(x) = a.

Proof. There exists an sequence {xn}∞n=1 such that xn −→n−→∞ x0 and the
sequnecs {f̂(xn)}∞n=1, {φ̂(xn)}∞n=1 are convergent to a. From here and from

f̂(xn) ≤ ĝ(xn) ≤ φ̂(xn)

follows that there exists limx−→x0 ĝ(x) = a.

Using the definition for limit of an isofunction and using the properties of
the sequences we have the following properties:

Let ĝ : D −→ ĝ(D) and f̂ has isolimit at the isopoint x0 ∈ D. Then

1. limx−→x0(f̂(x)± ĝ(x)) = limx−→x0 f̂(x)± limx−→x0 f̂(x),

2. limx−→x0(f̂(x)×̂ĝ(x)) = limx−→x0 f̂(x)×̂limx−→x0 ĝ(x),

3. limx−→x0(f̂(x)ĝ(x)) = limx−→x0 f̂(x)limx−→x0 ĝ(x),

4. limx−→x0(f̂(x)iĝ(x)) = limx−→x0 f̂(x)ilimx−→x0 ĝ(x), if limx−→x0 ĝ(x) 6=
0,

5. limx−→x0
f̂(x)
ĝ(x) =

limx−→x0 f̂(x)

limx−→x0 ĝ(x) , if limx−→x0 ĝ(x) 6= 0,

6. if |f̂(x)| is bounded below and limx−→x0 ĝ(x) = 0 then limx−→x0(f̂(x)i
ĝ(x)) =∞,

7. if limx−→x0 f̂(x) = a and limx−→x0 ĝ(x) = ∞, then limx−→x0(f̂(x) i
ĝ(x)) = 0.

Exercise 5.0.274. Let D = R+. Find limx−→a f̂
∧(x̂) if
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1. a = 2, f(x) = x2 + 2, T̂ (x) = x+ 3,

2. a = 3, f(x) = x3 + 3, T̂ (x) = x+ 2,

3. a = 1, f(x) = x+ 2, T̂ (x) = x+ 3.

Answer. 1) 6
5 , 2) 6, 3) 3

4 .

Exercise 5.0.275. Let D = R+. Find limx−→a f̂
∧(x) if

1. a = 1, f(x) = x2 + 2, T̂ (x) = x,

2. a = 2, f(x) = x, T̂ (x) = x2 + 1,

3. a = 3, f(x) = x+ 2, T̂ (x) = 2x+ 3.

Answer. 1) 3, 2) 2, 3) 29
9 .

Exercise 5.0.276. Let D = R+. Find limx−→a f̂(x̂) if

1. a = 1, f(x) = x2 + 2, T̂ (x) = x,

2. a = 2, f(x) = x, T̂ (x) = x2 + 1,

3. a = 3, f(x) = x+ 2, T̂ (x) = 2x+ 3.

Answer. 1) 3, 2) 2
25 , 3) 7

27 .

Exercise 5.0.277. Let D = R+. Find limx−→a f
∧(x) if

1. a = 1, f(x) = x2 + 2, T̂ (x) = x,

2. a = 2, f(x) = x, T̂ (x) = x2 + 1,

3. a = 3, f(x) = x+ 2, T̂ (x) = 2x+ 3.

Answer. 1) 3, 2) 10, 3) 29.

Exercise 5.0.278. Let D = [100,∞). Find limx−→∞ f̂
∧(x̂) if

1. f(x) = ln(ex − 1), T̂ (x) = x,

2. f(x) = ln(ex − x2), T̂ (x) = x,

3. f(x) = ln(1 + x), T̂ (x) = lnx,

4. f(x) = ln(x+ ln2 x), T̂ (x) = lnx,
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5. f(x) = ln(x3 + x2 + 1), T̂ (x) = ln(x2 − 2x− 2),

6. f(x) = ln(x+ 2x), T̂ (x) = ln(x− 3).

Answer. 1) 1, 2) 1, 3) 1, 4) 1, 5) 3
2 , 6) ∞.

Theorem 5.0.279. The limit limx−→x0 f̂(x) = a exists if and only if for
every ε > 0 there exists a neighbourhood U(x0) such that for every x1, x2 ∈
U(x0), x1 6= x0, x2 6= x0, we have

|f̂(x1)− f̂(x2)| < ε.

Proof. 1. Let the limit limx−→x0 f̂(x) = a exists and ε > 0. Then there
exists a neighbourhood U(x0) so that for x1 ∈ U(x0), x1 6= x0, we
have

|f̂(x1)− a| < ε

2
,

and for x2 ∈ U(x0), x2 6= x0, we have

|f̂(x1)− a| < ε

2
.

Therefore

|f̂(x1)− f̂(x2)| = |f̂(x1)− a+ a− f̂(x2)|

≤ |f̂(x1)− a|+ |f̂(x2)− a| < ε
2 + ε

2 = ε.

2. Let for every ε > 0 there exists a neighbourhood U(x0) such that for
every x1, x2 ∈ U(x0), x1 6= x0, x2 6= x0, we have

|f̂(x1)− f̂(x2)| < ε.

We fix ε > 0 and Û(x0, δ). Then for every sequence {xn}∞n=1, xn −→n−→∞
x0, there exists N > 0 such that for n > N we have

|xn − x0| < δ.

Let now m,n > N . Then xm, xn ∈ U(x0) and

|f̂(xn)− f̂(xm)| < ε.
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Therefore the sequence {f̂(xn)}∞n=1 is fundametal sequence inD, there-
fore it is convergent. Consequently there exists limx−→x0 f̂(x) = a.

Definition 5.0.280. The isofunction f̂ of first, second, third or fourth kind
will be called continuous at the point x0 ∈ D if its isooriginal is continuous
function at x0.

From the properties of the limit of isofunctions follows the validity of the
following assertions.

Proposition 5.0.281. Let ĝ : D −→ ĝ(D) and f̂ are continuous at x0,
x0 ∈ D. Then

1. f̂ ± ĝ is continuous at x0,

2. f̂×̂ĝ is continuous at x0,

3. f̂ ĝ is continuous at x0,

4. f̂ i ĝ is continuopus at x0 if ĝ(x0) 6= 0,

5. f̂
ĝ is continuopus at x0 if ĝ(x0) 6= 0

Exercise 5.0.282. Let D = [2,+∞). Prove that the isofunctions

f̂∧(x̂), f̂∧(x), f̂(x̂), f∧(x)

are continuous functions if

1. f(x) = x2 + 1, T̂ (x) = ex,

2. f(x) = x, T̂ (x) = ln(x+ 1),

3. f(x) = ln(x+ 2), T̂ (x) = ln(10 + sinx).
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Theorem 5.0.283. Let f̂ is continuous at x0 ∈ D. Then there exists a
neighbourhood U(x0) so that in U(x0)∩D the function f̂ is bounded.

Theorem 5.0.284. Let f̂ is continuous at x0 ∈ D. Then

1. there exists a neighbourhood U(x0) such that for every x ∈ U(x0)∩D,
x 6= x0, we have

|f̂(x)| > |f̂(x0)|
2

,

2. if f̂(x0) > 0 there exists a neighbourhood U(x0) such that for every
x ∈ U(x0)∩D, x 6= x0, we have

f̂(x) >
f̂(x0)

2
,

3. if f̂(x0) < 0 there exists a neighbourhood U(x0) such that for every
x ∈ U(x0)∩D, x 6= x0, we have

f̂(x) <
f̂(x0)

2
.

Theorem 5.0.285. Let f̂ is continuous at x0, x0 ∈ D, and ĝ : f̂(D) −→
ĝ(f̂(D)) is continous at û0 = f̂(x0). Then the function ĝ◦̂f̂ is continuous
at x0. Here ◦̂ is the composition of the isofunctions f̂ and ĝ, defined in
Chapter 2.

Proof. Let ε > 0 be fixed. Since ĝ is continuous at û0 then there exists a
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neighbourhood U(u0) = U(u0, η), η > 0, such that from

|u− u0| < η

follows that

|ĝ(u)− ĝ(u0)| < ε, u ∈ f̂(D).

Since f̂ is continuous at x0 then there exists δ > 0 such that from

|x− x0| < δ, x ∈ D,

follows

|u− u0| = |f̂(x)− f̂(x0)| < η

and from here

|ĝ◦̂f̂(x)− ĝ◦̂f̂(x0)| < ε,

therefore ĝ◦̂f̂ is continuous at x0.

Definition 5.0.286. The isofunction f̂ of first, second, third or fourth kind
will be called discontinuous at x0 ∈ D of first kind if there exist

f̂(x0 − 0), f̂(x0 + 0),

and
f̂(x0 − 0) 6= f̂(x0 + 0).

Definition 5.0.287. The isofunction f̂ will be called discontinuous of sec-
ond kind at x0 ∈ D if one of

f̂(x0 − 0), f̂(x0 + 0)

does not exist. Here are included the cases

f̂(x0 − 0) = ±∞, f̂(x0 + 0) = ±∞.
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Definition 5.0.288. We will say that the isofunction of first second, third
or fourth kind is continuous in D if it is continuous at every its point.

Below we will suppose that K⊆D is compact isoset.

Theorem 5.0.289. Let f̂ : K −→ D is continuous function in K. Then it
is bounded.

Proof. Let u suppose that the isofunction f̂ is nonbounded. Then there
exists a sequence {xn}∞n=1 of elements of K so that

|f̂(xn)| ≥ n. (5.0.3)

From the main properties of the bounded sequences follows that there exists
an subsequence {xnk}∞̂k=1 which is convergent to x0 ∈ K, from here fol-

lows that {f̂(xnk)}∞k=1 is convergent to f̂(x0), which is a contradiction with
(5.0.3).

Advanced practical exercises

Problem 5.0.290. Let D = R+. Find

lim
−→a

f̂∧(x̂), lim
−→a

f̂∧(x), lim
−→a

f̂(x̂), lim
−→a

f∧(x),

if

1. a = 2, f(x) = x+ 4, T̂ (x) = x2 + 2,

2. a = 3, f(x) = x2 + x+ 1, T̂ (x) = x+ 1,

3. a = 1, f(x) = x+ 2, T̂ (x) = x2 + x.

Answer. 1) 1, 8
3 , 13

18 , 16, 2) 13
4 , 157

4 , 37
64 , 157, 3) 3

2 , 2, 5
4 , 4.

Problem 5.0.291. Let D = [5,∞). Find limx−→∞ f̂6∧(x̂) if

1. f(x) = x, T̂ (x) = 2x,
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2. f(x) = x, T̂ (x) = ax, a > 1,

3. f(x) = x2, T̂ (x) = ax, a > 1,

4. f(x) = xn, T̂ (x) = ax, a > 1, n ∈ N,

5. f(x) = xα, T̂ (x) = ax, a > 1, α ∈ R,

6. f(x) = lnx, T̂ (x) = x,

7. f(x) = lnx, T̂ (x) = xα, α > 0,

8. f(x) = lnx, T̂ (x) = xα, α < 0,

9. f(x) = x+ ln2 x, T̂ (x) = x+ 1,

10. f(x) = ln(ex − 10, T̂ (x) = x,

11. f(x) = ln(ex − x2), T̂ (x) = x,

12. f(x) = ln(x+ 1), T̂ (x) = lnx,

13. f(x) = ln(x+ 2x), T̂ (x) = ln(x− 3).

Answer. 1) - 7) 0, 8) ∞, 9)-12) 1, 13) ∞.

Problem 5.0.292. Let D = R+. Prove that the functions

f̂∧(x̂), f̂∧(x), f̂(x̂), f∧(x)

are continuous functions if

1. f(x) = x2 + 10, T̂ (x) = sinx+ 10,

2. f(x) = x6, T̂ (x) = ex,

3. f(x) = sinx+ cos(2x), T̂ (x) = lnx.
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Chapter 6

Isodifferentiable isofunctions

Let D ⊂ R be given set, f : D −→ R is enough times differentiable function,
T̂ : D −→ R is positive and enough times differentiable function. Where
is necessary we will suppose the additional condition xT̂ (x) ∈ D for every
x ∈ D or x

T̂ (x)
∈ D for every x ∈ D so that to be defined the second, fourth

or third kinds isofunctions, respectively.

Definition: For arbitrary isofunction h( of first or second or third or fourth
kind) we define isodifferential d̂ of h in the following way

d̂(h) = T̂ (x)d(h),

where d(h) is the first differential of h.

Using the above definition for the isodifferential of the isofunctions of first,
second, third or fourth kind we have the following representations

161
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d̂
(
f̂∧(x̂)

)
= T̂ (x)d

(
f̂∧(x̂)

)
= T̂ (x)d

(
f(x)

T̂ (x)

)
= T̂ (x)

(
f(x)

T̂ (x)

)′
dx

= T̂ (x)f
′(x)T̂ (x)−f(x)T̂ ′(x)

T̂ 2(x)
dx

=
(
f ′(x)− f(x) T̂

′(x)

T̂ (x)

)
dx,

i.e.

d̂
(
f̂∧(x̂)

)
=
(
f ′(x)− f(x)

T̂ ′(x)

T̂ (x)

)
dx (6.0.1)

d̂
(
f̂∧(x)

)
= T̂ (x)d

(
f̂∧(x)

)
= T̂ (x)d

(
f(xT̂ (x))

T̂ (x)

)
= T̂ (x)

(
f(xT̂ (x))

T̂ (x)

)′
dx

= T̂ (x) (f(xT̂ (x)))′T̂ (x)−f(xT̂ (x))T̂ ′(x)

T̂ 2(x)
dx

= T̂ (x)f
′(xT̂ (x))(T̂ (x)+xT̂ ′(x))T̂ (x)−f(xT̂ (x))T̂ ′(x)

T̂ 2(x)
dx

=
(
f ′(xT̂ (x))(T̂ (x) + xT̂ ′(x))− f(xT̂ (x)) T̂

′(x)

T̂ (x)

)
dx,

i.e.

d̂
(
f̂∧(x)

)
=
(
f ′(xT̂ (x))(T̂ (x) + xT̂ ′(x))− f(xT̂ (x))

T̂ ′(x)

T̂ (x)

)
dx (6.0.2)
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d̂
(
f̂(x̂)

)
= T̂ (x)d

(f( x
T̂ (x)

)
T̂ (x)

)

= T̂ (x)
(f( x

T̂ (x)

)
T̂ (x)

)′
dx

= T̂ (x)

(
f

(
x

T̂ (x)

))′
T̂ (x)−f

(
x

T̂ (x)

)
T̂ ′(x)

T̂ 2(x)
dx

=
f ′
(

x
T̂ (x)

)
T̂ (x)−xT̂ ′(x)

T̂2(x)
T̂ (x)−f

(
x

T̂ (x)

)
T̂ ′(x)

T̂ (x)
dx

=
(
f ′
(

x
T̂ (x)

)
T̂ (x)−xT̂ ′(x)

T̂ 2(x)
− f

(
x

T̂ (x)

)
T̂ ′(x)

T̂ (x)

)
dx,

i.e.

d̂
(
f̂(x̂)

)
=
(
f ′
( x

T̂ (x)

) T̂ (x)− xT̂ ′(x)

T̂ 2(x)
− f

( x

T̂ (x)

) T̂ ′(x)

T̂ (x)

)
dx (6.0.3)

d̂
(
f∧(x)

)
= T̂ (x)d

(
f∧(x)

)
= T̂ (x)

(
f∧(x)

)′
dx

= T̂ (x)
(
f(xT̂ (x))

)′
dx

= T̂ (x)f ′(xT̂ (x))(T̂ (x) + xT̂ ′(x))dx,

i.e.

d̂
(
f∧(x)

)
= T̂ (x)f ′(xT̂ (x))(T̂ (x) + xT̂ ′(x))dx (6.0.4)
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In particular

d̂x̂ = T̂ (x)dx̂ = T̂ (x)d
(

x
T̂ (x)

)
= T̂ (x)

(
x

T̂ (x)

)′
dx

= T̂ (x) T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx

=
(

1− x T̂
′(x)

T̂ (x)

)
dx,

i.e.

d̂x̂ =
(

1− xT̂
′(x)

T̂ (x)

)
dx (6.0.5)

Example 6.0.293. Let D = R, f(x) = x+ 1, T̂ (x) = x2 + 1, x ∈ D. Then

f ′(x) = x, T̂ ′(x) = 2x, xT̂ (x) = x3 + x, x
T̂ (x)

= x
x2+1

,

f(xT̂ (x)) = x3 + x+ 1, f
(

x
T̂ (x)

)
= x

x2+1
+ 1.

Using (6.0.1) we have

d̂
(
f̂∧(x̂)

)
=
(

1− (x+ 1) 2x
x2+1

)
dx

= −x2−2x+1
1+x2

dx.

Using (6.0.2) we get

d̂
(
f̂∧(x)

)
=
(
x2 + 1 + 2x2 − (x3 + x+ 1) 2x

x2+1

)
dx

= x4+x2−2x
x2+1

dx.

Using (6.0.3) we obtain

d̂
(
f̂(x̂)

)
=
(
x2+1−2x2

(x2+1)2
−
(

x
x2+1

+ 1
)

2x
x2+1

)
dx

= −2x3−3x2−2x+1
(x2+1)2

dx.
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Using (6.0.4) we have

d̂
(
f∧(x)

)
= (x2 + 1)(x2 + 1 + 2x2)dx

= (3x4 + 4x2 + 1)dx,

and using (6.0.5) we obtain

d̂x̂ =
(

1− x 2x
x2+1

)
dx = 1−x2

1+x2
dx.

Exercise 6.0.294. Let D = R, f(x) = x− 1, T̂ (x) = ex, x ∈ D. Find

d̂
(
f̂∧(x̂)

)
, d̂

(
f̂∧(x)

)
, d̂

(
f̂(x̂)

)
, d̂

(
f∧(x)

)
, d̂x̂.

Answer.

d̂
(
f̂∧(x̂)

)
= (2− x)dx, d̂

(
f̂∧(x)

)
= (ex + 1)dx,

d̂
(
f̂(x̂)

)
= e−x(1− 2x+ ex)dx, d̂

(
f∧(x)

)
= e2x(x+ 1)dx, d̂x̂ = (1− x)dx.

Definition: For arbitrary isofunction h( of first or second or third or fourth
kind) we define its first isoderivatrve as follows

h~ = d̂(h)↗ d̂x̂ :=
1

T̂ (x)

d̂(h)

d̂x̂
.

For the first isoderivatives of isofunctions of first, second, third and fourth
kind, using (6.0.1)-(6.0.5), when for x ∈ D

1− xT̂
′(x)

T̂ (x)
6= 0,

we have the following representations

f̂∧~(x̂) =
1

T̂ 2(x)

f ′(x)T̂ (x)− f(x)T̂ ′(x)

1− x T̂
′(x)

T̂ (x)

(6.0.6)
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f̂∧~(x) =
1

T̂ 2(x)

f ′(xT̂ (x))(T̂ 2(x) + xT̂ (x)T̂ ′(x))− f(xT̂ (x))T̂ ′(x)

1− x T̂
′(x)

T̂ (x)

(6.0.7)

f̂~(x̂) =
1

T̂ 2(x)

f ′
(

x
T̂ (x)

)
T̂ (x)−xT̂ ′(x)

T̂ (x)
− f

(
x

T̂ (x)

)
T̂ ′(x)

1− x T̂
′(x)

T̂ (x)

(6.0.8)

f∧~(x) =
f ′(xT̂ (x))(T̂ (x) + xT̂ ′(x))

1− x T̂
′(x)

T̂ (x)

(6.0.9)

Example 6.0.295. Let D = [0,∞), f(x) = x, T̂ (x) = x+ 1, x ∈ D. Find

f̂∧~(x̂), f̂∧~(x), f̂~(x̂), f∧~(x).

Solution. For x ∈ D we have

f ′(x) = 1, T̂ (x) = 1, f(xT̂ (x)) = f(x2 + x) = x2 + 1,

f
(

x
T̂ (x)

)
= f

(
x
x+1

)
= x

x+1 .

Then, for x ∈ D, using (6.0.6)-(6.0.9), we get

f̂∧~(x̂) =
1

(x+ 1)2

x+ 1− x
1− x

x+1

=
1

(x+ 1)2

1
1

x+1

=
1

x+ 1
,

f̂∧~(x) = 1
(x+1)2

(x+1)2+x2−x2−1
1− x

x+1
= 1

(x+1)2
x2+2x

1
x+1

= 1
(x+1)2

(x2 + 2x)(x+ 1) = x2+2x
x+1 ,

f̂~(x̂) = 1
(x+1)2

x+1−x
x+1

− x
x+1

1− x
x+1

= 1
(x+1)2

1−x
x+1
1
x+1

= 1−x
(1+x)2

,

f∧~(x) = 1
(x+1)2

(x+1)2((x+1)−x)
1− x

x+1
= 1

(x+1)2
(x+1)2

1
x+1

= x+ 1.
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Exercise 6.0.296. Let D = R, f(x) = 2x+ 1, T̂ (x) = ex, x ∈ D. Find

f̂∧~(x̂), f̂∧~(x), f̂~(x̂), f∧~(x).

Answer.

f̂∧~(x̂) = 1−2x
1−x e

−x, f̂∧~(x) = 1−4x
1−x ,

f̂~(x̂) = e−2x 2−4x−ex
1−x , f∧~(x) = 21+x

1−xe
x, x 6= 1.

Exercise 6.0.297. Let D = R, T̂1 = 2, f(x) = x+1, T̂ (x) = x2 +1, x ∈ D.
Find

A := f̂∧~(x̂) + 3̂×̂f̂~(x̂), x ∈ D.

Solution. For x ∈ D we have

f ′(x) = 1, T̂ ′(x) = 2x,

f(xT̂ (x)) = f(x(x2 + 1)) = f(x3 + x) = x3 + x+ 1,

f
(

x
T̂ (x)

)
= f

(
x

x2+1

)
= x

x2+1
+ 1 = x2+x+1

1+x2
,

f̂∧~(x̂) = 1
(1+x2)2

x2+1−(x+1)2x

1−x 2x
1+x2

= 1
(1+x2)2

(−x2−2x+1)(1+x2)
1−x2 = −x2−2x+1

1−x4 , x 6= ±1,

f̂~(x̂) = 1
(1+x2)2

x2+1−x2x
1+x2

−x
2+x+1

1+x2
2x

1−x 2x
1+x2

= −2x3−3x2−2x+1
(1+x2)2(1−x2)

, x 6= ±1,

3̂×̂f̂~(x̂) = 3 1
(1+x2)2

−2x3−3x2−2x+1
1−x2 = −6x3−9x2−6x+1

(1+x2)2(1−x2)
, x 6= ±1.

Then

A = 1
(1+x2)2

(
−x4−2x3−2x+1

1−x2 + −6x3−9x2−6x+1
1−x2

)
= −x4−8x3−9x2−8x+4

(1+x2)2(1−x2)
, x 6= ±1.

Exercise 6.0.298. Let D = [0,∞), T̂1 = 4, f(x) = x − 1, T̂ (x) = x + 1,
x ∈ D. Find

1) A := f̂∧(x̂) + f̂∧~(x̂),

2) B := f(x̂) + f̂∧~(x),

3) C := f∧(x) + f̂~(x̂),

4) D := f(x̂) + 2̂×̂f∧~(x).
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Theorem: Let f, g, T̂ ∈ C1(D), T̂ (x) > 0 for every x ∈ D. Then for every

x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

f̂ ± g
∧~

(x̂) = f̂∧~(x̂)± ĝ∧~(x̂).

Proof. For every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0, using (6.0.6), we have

f̂ ± g
∧~

(x̂) = 1
T̂ 2(x)

(f(x)±g(x))′T̂ (x)−(f(x)±g(x))T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

= 1
T̂ 2(x)

(f ′(x)±g′(x))T̂ (x)−(f(x)±g(x))T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

= 1
T̂ 2(x)

f ′(x)T̂ (x)−f(x)T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

± 1
T̂ 2(x)

g′(x)T̂ (x)−g(x)T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

= f̂∧~(x̂)± ĝ∧~(x̂).

Theorem: Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, xT̂ (x) ∈ D for every x ∈ D.

Then for x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

f̂ ± g
∧~

(x) = f̂∧~(x)± ĝ∧~(x).
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Proof. For every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0, using (6.0.7), we have

f̂ ± g
∧~

(x) = 1
T̂ 2(x)

(f±g)′(xT̂ (x))(T̂ 2(x)+xT̂ (x)T̂ ′(x))−(f±g)(xT̂ (x))T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

= 1
T̂ 2(x)

(f ′(xT̂ (x))±g′(xT̂ (x))(T̂ 2(x)+xT̂ (x)T̂ ′(x))−(f(xT̂ (x))±g(xT̂ (x)))T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

= 1
T̂ 2(x)

f ′(xT̂ (x))(T̂ 2(x)+xT̂ (x)T̂ ′(x))−f(xT̂ (x))T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

± 1
T̂ 2(x)

g′(xT̂ (x))(T̂ 2(x)+xT̂ (x)T̂ ′(x))−g(xT̂ (x))T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

= f̂∧~(x)± ĝ∧~(x).

Theorem: Let f, g, T̂ ∈ ; C1(D), T̂ (x) > 0, x
T̂ (x)

∈ D for x ∈ D. Then for

x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

f̂ ± g
~

(x̂) = f̂~(x̂)± ĝ~(x̂).

Proof. For every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0, using (6.0.8), we have

f̂ ± g
~

(x̂) = 1
T̂ 2(x)

(f±g)′
(

x
T̂ (x)

)
T̂ (x)−xT̂ ′(x)

T̂ (x)
−(f±g)

(
x

T̂ (x)

)
T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

= 1
T̂ 2(x)

(
f ′
(

x
T̂ (x)

)
±g′
(

x
T̂ (x)

))
T̂ (x)−xT̂ ′(x)

T̂ (x)
−
(
f

(
x

T̂ (x)

)
±g
(

x
T̂ (x)

))
T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

= 1
T̂ 2(x)

f ′
(

x
T̂ (x)

)
T̂ (x)−xT̂ ′(x)

T̂ (x)
−f
(

x
T̂ (x)

)
T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

± 1
T̂ 2(x)

g′
(

x
T̂ (x)

)
T̂ (x)−xT̂ ′(x)

T̂ (x)
−g
(

x
T̂ (x)

)
T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

= f̂~(x̂)± ĝ~(x̂).
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Theorem: Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, xT̂ (x) ∈ D for every x ∈ D.

Then for x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

(f ± g)∧~(x) = f∧~(x)± g∧~(x).

Proof. For x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0, using (6.0.9), we have

(f ± g)∧~(x) = 1
T̂ 2(x)

(f±g)′(xT̂ (x))(T̂ (x)+xT̂ ′(x))

1−x T̂
′(x)
T̂ (x)

= 1
T̂ 2(x)

(f ′(xT̂ (x))±g′(xT̂ (x)))(T̂ (x)+xT̂ ′(x))

1−x T̂
′(x)
T̂ (x)

= 1
T̂ 2(x)

f ′(xT̂ (x))(T̂ (x)+xT̂ ′(x))

1−x T̂
′(x)
T̂ (x)

± 1
T̂ 2(x)

g′(xT̂ (x))(T̂ (x)+xT̂ ′(x))

1−x T̂
′(x)
T̂ (x)

= f∧~(x)± g∧~(x).

Theorem: Let f, g, T̂ ∈ C1(D), T̂ (x) > 0 for every x ∈ D. Then for every

x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

(
f̂∧(x̂)×̂ĝ∧(x̂)

)~
= f̂∧~(x̂)×̂ĝ∧(x̂) + f̂∧(x̂)×̂ĝ∧~(x̂)

+ 1
T̂ 2(x)

f(x)g(x) T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

.
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Proof. For x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

(
f̂∧(x̂)×̂ĝ∧(x̂)

)~
= d̂(f̂∧(x̂)×̂ĝ∧(x̂))↗ d̂x̂ = 1

T̂ (x)

d̂(f̂∧(x̂)×̂ĝ∧(x̂))

d̂x̂

=
d

(
f(x)g(x)

T̂ (x)

)
(

1−x T̂
′(x)
T̂ (x)

)
dx

=

(
f(x)g(x)

T̂ (x)

)′
dx(

1−x T̂
′(x)
T̂ (x)

)
dx

=
(f(x)g(x))′T̂ (x)−f(x)g(x)T̂ ′(x)

T̂2(x)

1−x T̂
′(x)
T̂ (x)

= 1
T̂ 2(x)

(f(x)g(x))′T̂ (x)−f(x)g(x)T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

= 1
T̂ 2(x)

f ′(x)g(x)T̂ (x)+f(x)g′(x)T̂ (x)−f(x)g(x)T̂ (x)

1−x T̂
′(x)
T̂ (x)

= 1
T̂ 2(x)

f ′(x)g(x)T̂ (x)−f(x)g(x)T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

+ 1
T̂ 2(x)

f(x)g′(x)T̂ (x)

1−x T̂
′(x)
T̂ (x)

= 1
T̂ 2(x)

f ′(x)g(x)T̂ (x)−f(x)g(x)T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

+ 1
T̂ 2(x)

f(x)g′(x)T̂ (x)−f(x)g(x)T̂ ′(x)+f(x)g(x)T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

= 1
T̂ 2(x)

f ′(x)g(x)T̂ (x)−f(x)g(x)T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

+ 1
T̂ 2(x)

f(x)g′(x)T̂ (x)−f(x)g(x)T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

+ 1
T̂ 2(x)

f(x)g(x) T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

= f̂∧~(x̂)g(x) + f(x)ĝ∧~(x̂) + 1
T̂ 2(x)

f(x)g(x) T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

= f̂∧~(x̂)T̂ (x)
g

(
T̂ (x) x

T̂ (x)

)
T̂ (x)

+
f

(
T̂ (x) x

T̂ (x)

)
T̂ (x)

T̂ (x)ĝ∧~(x̂)

+ 1
T̂ 2(x)

f(x)g(x) T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

= f̂∧~(x̂)×̂ĝ∧(x̂) + f̂∧(x̂)×̂ĝ∧~(x̂) + 1
T̂ 2(x)

f(x)g(x) T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

.
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Exercise 6.0.299. Let f, g, T̂ ∈ C(D), T̂ (x) > 0, xT̂ (x) ∈ D for every

x ∈ D. Prove that for x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

(
f̂∧(x̂)×̂ĝ∧(x)

)~
= f̂∧~(x̂)×̂ĝ∧(x)+f̂∧(x̂)×̂ĝ∧~(x)+

1

T̂ 2(x)

f(x)g(xT̂ (x))T̂ ′(x)

1− x T̂
′(x)

T̂ (x)

.
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Solution. For x ∈ D and for 1− x T̂
′(x)

T̂ (x)
6= 0 we have(

f̂∧(x̂)×̂ĝ∧(x)
)~

= d̂
(
f̂∧(x̂)×̂ĝ∧(x)

)
↗ d̂x̂

= 1
T̂ (x)

d̂(f̂∧(x̂)×̂ĝ∧(x))

d̂x̂

= 1
T̂ (x)

T̂ (x)d

(
f̂∧(x̂)×̂ĝ∧(x)

)
(

1−x T̂
′(x)
T̂ (x)

)
dx

=
d

(
f(x)g(xT̂ (x))

T̂ (x)

)
(

1−x T̂
′(x)
T̂ (x)

)
dx

=

(
f(x)g(xT̂ (x))

T̂ (x)

)′
dx(

1−x T̂
′(x)
T̂ (x)

)
dx

=
(f(x)g(xT̂ (x)))′T̂ ′(x)−f(x)g(xT̂ (x))T̂ ′(x)

T̂2(x)

1−x T̂
′(x)
T̂ (x)

= 1
T̂ 2(x)

f ′(x)g(xT̂ (x))T̂ (x)+f(x)g′(xT̂ (x))(T̂ (x)+xT̂ ′(x))T̂ (x)−f(x)g(xT̂ (x))T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

= 1
T̂ 2(x)

f ′(x)g(xT̂ (x))T̂ (x)

1−x T̂
′(x)
T̂ (x)

+ 1
T̂ 2(x)

f(x)g
′(xT̂ (x))(T̂ (x)+xT̂ ′(x))T̂ (x)−g(xT̂ (x))T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

= 1
T̂ 2(x)

f ′(x)g(xT̂ (x))T̂ (x)−f(x)g(xT̂ (x))T̂ ′(x)+ 1
T̂2(x)

f(x)g(xT̂ (x))T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

+ f(x)ĝ∧~(x)

= 1
T̂ 2(x)

f ′(x)g(xT̂ (x))T̂ (x)−f(x)g(xT̂ (x))T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

+ 1
T̂ 2(x)

f(x)g(xT̂ (x))T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

+ f(x)ĝ∧~(x)

= f̂∧~(x̂)g(xT̂ (x)) + f(x)ĝ∧~(x) + 1
T̂ 2(x)

f(x)g(xT̂ (x))T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

= f̂∧~(x̂)T̂ (x)g(xT̂ (x))

T̂ (x)
+

f

(
T̂ (x) x

T̂ (x)

)
T̂ (x)

T̂ (x)ĝ∧~(x) + 1
T̂ 2(x)

f(x)g(xT̂ (x))T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

= f̂∧~(x̂)×̂ĝ∧(x) + f̂∧(x̂)×̂ĝ∧~(x) + 1
T̂ 2(x)

f(x)g(xT̂ (x))T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

.
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Exercise 6.0.300. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, x
T̂ (x)

∈ D for every

x ∈ D. Prove that for every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

(
f̂∧(x̂)×̂ĝ(x̂)

)~
= f̂∧~(x̂)×̂ĝ(x̂)+ f̂∧(x̂)×̂ĝ~(x̂)+

1

T̂ 2(x)

f(x)g
(

x
T̂ (x)

)
T̂ ′(x)

1− x T̂
′(x)

T̂ (x)

.

Exercise 6.0.301. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, xT̂ (x) ∈ D for every

x ∈ D. Prove that for every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

(
f̂∧(x̂)×̂g∧(x)

)~
= f̂∧~(x̂)×̂g∧(x) + f̂∧(x̂)×̂g∧~(x)

+ 1
T̂ 2(x)

f(x)g(xT̂ (x))T̂ (x)T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

.

Exercise 6.0.302. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, xT̂ (x) ∈ D for every

x ∈ D. Prove that for every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

(
f̂∧(x)×̂ĝ∧(x)

)~
= f̂∧~(x)×̂ĝ∧(x) + f̂∧(x)×̂ĝ∧~(x)

+ 1
T̂ 2(x)

f(xT̂ (x))g(xT̂ (x)) T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

.

Exercise 6.0.303. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, xT̂ (x) ∈ D, x
T̂ (x)

∈ D

for every x ∈ D. Prove that for every x ∈ D for which 1 − x T̂
′(x)

T̂ (x)
6= 0 we

have (
f̂∧(x)×̂ĝ(x̂)

)~
= f̂∧~(x)×̂ĝ(x̂) + f̂∧(x)×̂ĝ~(x̂)

+ 1
T̂ 2(x)

f(xT̂ (x))g

(
x

T̂ (x)

)
T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

.

Exercise 6.0.304. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, xT̂ (x) ∈ D for every

x ∈ D. Prove that for every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

(
f̂∧(x)×̂g∧(x)

)~
= f∧~(x)×̂ĝ∧(x) + f̂∧(x)×̂g∧~(x).



175

Exercise 6.0.305. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, x
T̂ (x)

∈ D for every

x ∈ D. Prove that for every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

(
f̂(x̂)×̂ĝ(x̂)

)~
= f̂~(x̂)×̂ĝ(x̂) + f̂(x̂)×̂ĝ~(x̂) + 1

T̂ 2(x)

f

(
x

T̂ (x)

)
g

(
x

T̂ (x)

)
T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

.

Exercise 6.0.306. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, xT̂ (x) ∈ D, x
T̂ (x)

∈ D

for every x ∈ D. Prove that for every x ∈ D for which 1 − x T̂
′(x)

T̂ (x)
6= 0 we

have (
f̂(x̂)×̂g∧(x)

)~
= f̂~(x̂)×̂g∧(x) + f̂(x̂)×̂g∧~(x)

+ 1
T̂ 2(x)

f

(
x

T̂ (x)

)
g(xT̂ (x))T̂ (x)T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

.

Exercise 6.0.307. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, xT̂ (x) ∈ D for every

x ∈ D. Prove that for every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

(
f∧(x)×̂g∧(x)

)~
= f∧~(x)×̂g∧(x) + f∧(x)×̂g∧~(x)

+ 1
T̂ 2(x)

f(xT̂ (x))g(xT̂ (x))T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

.

Theorem: Let f, g, T̂ ∈ C1(D), T̂ (x) > 0 for every x ∈ D. Then for every

x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

(
f̂∧(x̂)ĝ∧(x̂)

)~
= f̂∧~(x̂)ĝ∧(x̂) + f̂∧(x̂)ĝ∧~(x̂).
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Proof. For x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

(
f̂∧(x̂)ĝ∧(x̂)

)~
= d̂
(
f̂∧(x̂)ĝ∧(x̂)

)
↗ d̂x̂

= 1
T̂ (x)

d̂

(
f̂∧(x̂)ĝ∧(x̂)

)
d̂x̂

=
d

(
f̂∧(x̂)ĝ∧(x̂)

)
(

1−x T̂
′(x)
T̂ (x)

)
dx

=
d

(
f(x)g(x)

T̂2(x)

)
(

1−x T̂
′(x)
T̂ (x)

)
dx

=

(
f(x)g(x)

T̂2(x)

)′
dx(

1−x T̂
′(x)
T̂ (x)

)
dx

=
f ′(x)g(x)T̂2(x)+f(x)g′(x)T̂2(x)−2f(x)g(x)T̂ (x)T̂ ′(x)

T̂4(x)

1−x T̂
′(x)
T̂ (x)

= 1
T̂ 2(x)

f ′(x)g(x)+f(x)g′(x)−2f(x)g(x)
T̂ ′(x)
T̂ (x)

1−x T̂
′(x)
T̂ (x)

= 1
T̂ 2(x)

f ′(x)g(x)+f(x)g′(x)−f(x)g(x)
T̂ ′(x)
T̂ (x)

−f(x)g(x)
T̂ ′(x)
T̂ (x)

1−x T̂
′(x)
T̂ (x)

= 1
T̂ 2(x)

f ′(x)T̂ (x)−f(x)T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

1
T̂ (x)

g(x) + 1
T̂ 2(x)

f(x) 1
T̂ (x)

g′(x)T̂ (x)−g(x)T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

= f̂∧~(x̂)
g

(
T̂ (x) x

T̂ (x)

)
T̂ (x)

+
f

(
T̂ (x) x

T̂ (x)

)
T̂ (x)

ĝ∧~(x̂)

= f̂∧~(x̂)ĝ(x̂) + f̂(x̂)ĝ∧~(x̂).
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Exercise 6.0.308. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, xT̂ (x) ∈ D for every

x ∈ D. Prove that for every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have(

f̂∧(x̂)ĝ∧(x)
)~

= f̂∧~(x̂)ĝ∧(x) + f̂∧(x̂)ĝ∧~(x).

Exercise 6.0.309. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, x
T̂ (x)

∈ D for every

x ∈ D. Prove that for every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have(

f̂∧(x̂)ĝ(x̂)
)~

= f̂∧~(x̂)ĝ(x̂) + f̂∧(x̂)ĝ~(x̂).

Exercise 6.0.310. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, xT̂ (x) ∈ D for every

x ∈ D. Prove that for every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have(

f̂∧(x̂)g∧(x)
)~

= f̂∧~(x̂)g∧(x) + f̂∧(x̂)g∧~(x).

Exercise 6.0.311. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, xT̂ (x) ∈ D for every

x ∈ D. Prove that for every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have(

f̂∧(x)ĝ∧(x)
)~

= f̂∧~(x)ĝ∧(x) + f̂∧(x)ĝ∧~(x).

Exercise 6.0.312. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, x
T̂ (x)

∈ D, xT̂ (x) ∈ D

for every x ∈ D. Prove that for every x ∈ D for which 1 − x T̂
′(x)

T̂ (x)
6= 0 we

have (
f̂∧(x)ĝ(x̂)

)~
= f̂∧~(x)ĝ(x̂) + f̂∧(x)ĝ~(x̂).

Exercise 6.0.313. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, xT̂ (x) ∈ D for every

x ∈ D. Prove that for every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have(

f̂∧(x)ĝ∧(x)
)~

= f̂∧~(x)ĝ∧(x) + f̂∧(x)ĝ∧~(x).

Exercise 6.0.314. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, x
T̂ (x)

∈ D for every

x ∈ D. Prove that for every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have(

f̂(x̂)ĝ(x̂)
)~

= f̂~(x̂)ĝ(x̂) + f̂(x̂)ĝ~(x̂).
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Exercise 6.0.315. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, xT̂ (x) ∈ D, x
T̂ (x)

∈ D

for every x ∈ D. Prove that for every x ∈ D for which 1 − x T̂
′(x)

T̂ (x)
6= 0 we

have (
f̂(x̂)g∧(x)

)~
= f̂~(x̂)g∧(x) + f̂(x̂)g∧~(x).

Exercise 6.0.316. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, xT̂ (x) ∈ D for every

x ∈ D. Prove that for every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

(
f∧(x)g∧(x)

)~
= f∧~(x)g∧(x) + f∧(x)g∧~(x).

Exercise 6.0.317. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, g(x) 6= 0 for every x ∈ D.

Then for every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

(
f̂∧(x̂)↗ ĝ∧(x̂)

)~
=
(
f̂∧~(x̂)×̂ĝ∧(x̂)− f̂∧(x̂)×̂ĝ∧~(x̂)

)
↗ ĝ2̂∧(x̂)

− 1
T̂ 2(x)

f(x)
g(x)

T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

.

Exercise 6.0.318. Let f, g, T̂ ∈ C(D), T̂ (x) > 0, g(x) 6= 0, xT̂ (x) ∈ D for

every x ∈ D. Prove that for x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

(
f̂∧(x̂)↗ ĝ∧(x)

)~
=
(
f̂∧~(x̂)×̂ĝ∧(x)− f̂∧(x̂)×̂ĝ∧~(x)

)
↗ ĝ2̂∧(x)

− 1
T̂ 2(x)

f(x)

g(xT̂ (x))
T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

.

Exercise 6.0.319. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, g(x) 6= 0, x
T̂ (x)

∈ D for

every x ∈ D. Prove that for every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

(
f̂∧(x̂)↗ ĝ(x̂)

)~
=
(
f̂∧~(x̂)×̂ĝ(x̂)− f̂∧(x̂)×̂ĝ~(x̂)

)
ĝ2̂(x̂)

− 1
T̂ 2(x)

f(x)

g

(
x

T̂ (x)

) T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

.
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Exercise 6.0.320. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, g(x) 6= 0, xT̂ (x) ∈ D for

every x ∈ D. Prove that for every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

(
f̂∧(x̂)↗ g∧(x)

)~
=
(
f̂∧~(x̂)×̂g∧(x)− f̂∧(x̂)×̂g∧~(x)

)
↗ g2̂∧(x)

− 1
T̂ 2(x)

f(x)

g(xT̂ (x))
T̂ (x)T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

.

Exercise 6.0.321. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, g(x) 6= 0, xT̂ (x) ∈ D for

every x ∈ D. Prove that for every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

(
f̂∧(x)↗ ĝ∧(x)

)~
=
(
f̂∧~(x)×̂ĝ∧(x)− f̂∧(x)×̂ĝ∧~(x)

)
↗ ĝ2̂∧(x)

− 1
T̂ 2(x)

f(xT̂ (x))

g(xT̂ (x))

T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

.

Exercise 6.0.322. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, g(x) 6= 0, x
T̂ (x)

∈ D,

xT̂ (x) ∈ D for every x ∈ D. Prove that for every x ∈ D for which 1 −
x T̂
′(x)

T̂ (x)
6= 0 we have

(
f̂∧(x)↗ ĝ(x̂)

)~
=
(
f̂∧~(x)×̂ĝ(x̂)− f̂∧(x)×̂ĝ~(x̂)

)
↗ ĝ2̂(x̂)

− 1
T̂ 2(x)

f(xT̂ (x))

g

(
x

T̂ (x)

) T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

.

Exercise 6.0.323. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, g(x) 6= 0, xT̂ (x) ∈ D for

every x ∈ D. Prove that for every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have

(
f̂∧(x)×̂g∧(x)

)~
=
(
f∧~(x)×̂ĝ∧(x)− f̂∧(x)×̂g∧~(x)

)
↗ g2̂∧(x).

Exercise 6.0.324. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, g(x) 6= 0, x
T̂ (x)

∈ D for
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every x ∈ D. Prove that for every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have(

f̂(x̂)↗ ĝ(x̂)
)~

=
(
f̂~(x̂)×̂ĝ(x̂)− f̂(x̂)×̂ĝ~(x̂)

)
↗ ĝ2̂(x̂)

− 1
T̂ 2(x)

f

(
x

T̂ (x)

)
g

(
x

T̂ (x)

) T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

.

Exercise 6.0.325. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, g(x) 6= 0, xT̂ (x) ∈ D,
x

T̂ (x)
∈ D for every x ∈ D. Prove that for every x ∈ D for which 1−x T̂

′(x)

T̂ (x)
6=

0 we have(
f̂(x̂)×̂g∧(x)

)~
=
(
f̂~(x̂)×̂g∧(x)− f̂(x̂)×̂g∧~(x)

)
↗ ĝ2̂(x̂)

− 1
T̂ 2(x)

f

(
x

T̂ (x)

)
g(xT̂ (x))

T̂ (x)T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

.

Exercise 6.0.326. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, g(x) 6= 0, xT̂ (x) ∈ D for

every x ∈ D. Prove that for every x ∈ D for which 1− x T̂
′(x)

T̂ (x)
6= 0 we have(

f∧(x)↗ g∧(x)
)~

=
(
f∧~(x)×̂g∧(x)− f∧(x)×̂g∧~(x)

)
↗ g2̂∧(x)

− 1
T̂ 2(x)

f(xT̂ (x))

g(xT̂ (x))
T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

.

Definition: We will say that an isofunction of first, second, third or fourth
kind increases(decreases) at the point a if its isooriginal increase(decrease)
at the point a.
An isofunction of first, second, third or fourth kind will be called increas-
ing(decreasing) in D if it increases(decreases) in every point of D.

Example 6.0.327. Let D = R, f(x) = x, g(x) = −x, T̂ (x) = x2 + 1,
x ∈ D. Then f is increasing function in D, g is decreasing function in D,
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the isofunction of first kind

f̂∧(x̂) =
f(x)

T̂ (x)
=

x

x2 + 1

is increasing function in [−1, 1] and decreasing function in (−∞,−1]∪[1,∞).
The isofunction

g∧(x) = g(xT̂ (x)) = g(x3 + x) = −x3 − x

is decreasing function in D.

Theorem: Let f, T̂ : D −→ R, T̂ (x) > 0 for every x ∈ D. Let also the
functions f and T̂ be differentiable functions at the point x0 ∈ D. If

f ′(x0) ≥ (≤)f(x0)
T̂ ′(x0)

T̂ (x0)
(6.0.10)

then the isofunction f̂∧∧ of first kind increases(decreases) at x0.

Proof. Since f and T̂ are differentiable functions at the point x0 we have(
f̂∧(x̂0)

)′
=
( f(x0)

T̂ (x0)

)′
=
f ′(x0)T̂ (x0)− f(x0)T̂ ′(x0)

T̂ 2(x0)
. (6.0.11)

From (6.0.10) because T̂ (x0) > 0 we get

f ′(x0)T̂ (x0)− f(x0)T̂ ′(x0) ≥ (≤)0,

from here, using that T̂ 2(x0) > 0,

f ′(x0)T̂ (x0)− f(x0)T̂ ′(x0)

T̂ 2(x0)
≥ (≤)0.

From the last inequality and (6.0.11) it follows(
f̂∧(x̂0)

)′
≥ (≤)0.

Consequently f̂∧∧ increases(decreases) at the point x0.
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As in above one can prove the following theorems.

Theorem: Let f, T̂ : D −→ R, T̂ (x) > 0, xT̂ (x) ∈ D for every x ∈ D. Let
also the functions f and T̂ be differentiable functions at the points x0T̂ (x0),
x0 ∈ D, respectively. If

f ′(x0T̂ (x0))(T̂ (x0) + x0T̂
′(x0))T̂ (x0) ≥ (≤)f(x0T̂ (x0))T̂ ′(x0)

then the isofunction f̂∧ of second kind increases(decreases) at the point x0.

Theorem: Let f, T̂ : D −→ R, T̂ (x) > 0, x
T̂ (x)

∈ D for every x ∈ D. Let

also the functions f and T̂ be differentiable functions at the points x0
T̂ (x0)

,

x0 ∈ D, respectively. If

f ′
( x0

T̂ (x0)

)
(T̂ (x0)− x0T̂

′(x0)) ≥ (≤)f
( x0

T̂ (x0)

)
T̂ ′(x0)T̂ (x0)

then the isofunction
ˆ̂
f of third kind increases(decreases) at the point x0.

Theorem: Let f, T̂ : D −→ R, T̂ (x) > 0, xT̂ (x) ∈ D for every x ∈ D. Let
also the functions f and T̂ be differentiable functions at the points x0T̂ (x0),
x0 ∈ D, respectively. If

f ′(x0T̂ (x0))(T̂ (x0) + x0T̂
′(x0)) ≥ (≤)0

then the isofunction f∧ of fourth kind increases(decreases) at the point x0.

Definition: We will say that an isofunction of first, second, third or fourth
kind has local extremum(local maximum, local minimum) in a point of D if
its isooriginal has local extremum at the same point.
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Theorem: Let f, T̂ : D −→ R, T̂ (x) > 0 for every x ∈ D. Let also the
functions f and T̂ be differentiable functions at the point x0 ∈ D. If the
isofunction f̂∧∧ of first kind has local extremum at the point x0 then

f ′(x0)T̂ (x0) = f(x0)T̂ ′(x0).

Proof. Because the isofunction f̂∧∧ of first kind has local extremum at the
point x0 then its isooriginal

f(x)

T̂ (x)

has local extremum at the point x0. From here

(
f(x)

T̂ (x)

)′
x=x0

= 0 ⇐⇒

f ′(x0)T̂ (x0)−f(x0)T̂ ′(x0)

T̂ 2(x0)
= 0 ⇐⇒

f ′(x0)T̂ (x0) = f(x0)T̂ ′(x0).

The proofs of the following theorems we left to the reader.

Theorem: Let f, T̂ : D −→ R, T̂ (x) > 0, xT̂ (x) ∈ D for every x ∈ D. Let
also the functions f and T̂ be differentiable functions at the points x0T̂ (x0),
x0 ∈ D, respectively. If the isofunction f̂∧ of second kind has local extremum
at the point x0 then

f ′(x0T̂ (x0)(T̂ (x0) + x0T̂
′(x0))T̂ (x0) = f(x0T̂ (x0))T̂ ′(x0).



184 CHAPTER 6. ISODIFFERENTIABLE ISOFUNCTIONS

Theorem: Let f, T̂ : D −→ R, T̂ (x) > 0, x
T̂ (x)

∈ D for every x ∈ D. Let

also the functions f and T̂ be differentiable functions at the points x0
T̂ (x0)

,

x0 ∈ D, respectively. If the isofunction
ˆ̂
f has local extremum at the point

x0 then

f ′
( x0

T̂ (x0)

)
(T̂ (x0)− x0T̂

′(x0)) = f
( x0

T̂ (x0)

)
T̂ ′(x0)T̂ (x0).

Theorem: Let f, T̂ : D −→ R, T̂ (x) > 0, xT̂ (x) ∈ D for every x ∈ D. Let
also the functions f and T̂ be differentiable functions at the points x0T̂ (x0),
x0 ∈ D, respectively. If the isofunction f∧ of fourth kind has local extremum
at the point x0 then

f ′(x0T̂ (x0))(T̂ (x0) + x0T̂
′(x0)) = 0.

Below with (a, b) and [a, b] will be denoted intervals in R.

Theorem: Let f, T̂ ∈ C([a, b]), f, T̂ ∈ C1((a, b)), T̂ (x) > 0, T̂ (x)−xT̂ ′(x) 6=
0 for every x ∈ (a, b), f(a) = f(b). Then there exists c ∈ (a, b) such that(

f̂∧(ĉ)
)~

= − f(c)T̂ ′(c)

T̂ (c)(T̂ (c)− cT̂ ′(c))
.

Proof. Since f, T̂ ∈ C1((a, b)) and T̂ (x) − xT̂ ′(x) 6= 0 for every x ∈ (a, b)

then there exists
(
f̂∧(x̂)

)~
for every x ∈ (a, b) and

(
f̂∧(x̂)

)~
=
f ′(x)− f(x) T̂

′(x)

T̂ (x)

T̂ (x)− xT̂ ′(x)
(6.0.12)

for every x ∈ (a, b).
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Because f ∈ C([a, b]), f ∈ C1((a, b)), f(a) = f(b), it follows from the Theo-
rem of Rolle that there exists c ∈ (a, b) such that

f ′(c) = 0.

From here, after we put x = c in (6.0.12), we get

(
f̂∧(ĉ)

)~
=
−f(c)

T̂ ′(c)
T̂ (c)

T̂ (c)−cT̂ ′(c)
= − f(c)T̂ ′(c)

T̂ (c)(T̂ (c)−cT̂ ′(c))
.

Theorem: Let f, T̂ ∈ C([a, b]), f, T̂ ∈ C1((a, b)), T̂ (x) > 0, T̂ (x)−xT̂ ′(x) 6=
0 for every x ∈ (a, b), T̂ (a) = T̂ (b). Then there exists c ∈ (a, b) such that(

f̂∧(ĉ)
)~

=
f ′(c)

T̂ (c)
= f̂ ′

∧
(ĉ). (6.0.13)

Proof. Because f, T̂ ∈ C1((a, b)), T̂ (x)−xT̂ ′(x) 6= 0 for every x ∈ (a, b) then

there exists
(
f̂∧(x̂)

)~
and (6.0.12) hold for every x ∈ (a, b).

From T̂ ∈ C([a, b]), T̂ ∈ C1((a, b)), T̂ (a) = T̂ (b) and from the Theorem of
Rolle it follows that there exists c ∈ (a, b) such that T̂ ′(c) = 0. From here,
after we put x = c in (6.0.12) we get (6.0.13).

Theorem: Let f ∈ C1([a, b]), T̂ ∈ C([a, b])
⋂
C1((a, b)), T̂ (x) > 0, xT̂ (x) ∈

[a, b], T̂ (x)− xT̂ ′(x) 6= 0 for every x ∈ [a, b], T̂ (a) = T̂ (b). Then there exists
c ∈ (a, b) such that (

f̂∧(c)
)~

= f ′(cT̂ (c)) = f ′∧(c). (6.0.14)
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Proof. From f, T̂ ∈ C((a, b)), xT̂ (x) ∈ [a, b], T̂ ′(x) − xT̂ (x) 6= 0 for every

x ∈ (a, b), it follows that there exists
(
f̂∧(x)

)~
for every x ∈ (a, b) and

(
f̂∧(x)

)~
=
f ′(xT̂ (x))(T̂ (x) + xT̂ ′(x))− f(xT̂ (x)) T̂

′(x)

T̂ (x)

T̂ (x)− xT̂ ′(x)
(6.0.15)

for every x ∈ (a, b).

From T̂ ∈ C([a, b])
⋂
C1((a, b)), T̂ (a) = T̂ (b), it follows from the Theorem of

Rolle that there exists c ∈ (a, b) such that T̂ ′(c) = 0. From here, after we
put x = c in (6.0.15), we get (6.0.14).

Theorem: Let f, T̂ ∈ C1([a, b]), xT̂ (x) : [a, b] −→ [a, b] is bijection, T̂ (x) >
0, T̂ (x) − xT̂ ′(x) 6= 0 for every x ∈ [a, b], f(a) = f(b). Then there exists
c ∈ [a, b] such that (

f̂∧(c)
)~

= − f(cT̂ (c))T̂ ′(c)

T̂ (c)(T̂ (c)− cT̂ ′(c))
. (6.0.16)

Proof. From f, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], T̂ (x) − xT̂ ′(x) 6= 0 for every

x ∈ [a, b], it follows that there exists
(
f̂∧(x)

)~
for every x ∈ [a, b] and

(6.0.15) hold for every x ∈ [a, b].

From f ∈ C1([a, b]), f(a) = f(b), it follows from the Theorem of Rolle that
there exists c1 ∈ (a, b) such that f ′(c1) = 0. Since xT̂ (x) : [a, b] −→ [a, b] is
bijection we conclude that there exists c ∈ [a, b] such that

c1 = cT̂ (c).

From here, after we put x = c in (6.0.15), we get (6.0.16).
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Theorem 6.0.328. Let f, T̂ ∈ C1([a, b]), x
T̂ (x)

: [a, b] −→ [a, b] is a bijection,

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) 6= 0 for every x ∈ [a, b], f(a) = f(b). Then there
exists c ∈ (a, b) such that

(
f̂(ĉ)

)~
= −

f
(

c
T̂ (c)

)
T̂ ′(c)

T̂ (c)(T̂ (c)− cT̂ ′(c))
. (6.0.17)

Proof. Since f, T̂ ∈ C1([a, b]), x
T̂ (x)

∈ [a, b], T̂ (x) − xT̂ ′(x) 6= 0 for every

x ∈ [a, b], then there exists
(
f̂(x̂)

)~
for every x ∈ [a, b] and

(
f̂(x̂)

)~
=
f ′
(

x
T̂ (x)

)
T̂ (x)−xT̂ ′(x)

T̂ 2(x)
− f

(
x

T̂ (x)

)
T̂ ′(x)

T̂ (x)

T̂ (x)− xT̂ ′(x)
. (6.0.18)

for every x ∈ [a, b].
From f ∈ C1([a, b]), f(a) = f(b), it follows from the Theorem of Rolle that
there exists c1 ∈ (a, b) such that f ′(c1) = 0. From x

T̂ (x)
: [a, b] −→ [a, b] is a

bijection we can choose c ∈ [a, b] such that

c1 =
c

T̂ (c)
.

After we put x = c in (6.0.18) we obtain (6.0.19).

Theorem 6.0.329. Let f, T̂ ∈ C1([a, b]), x
T̂ (x)

: [a, b] −→ [a, b] is a bijection,

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) 6= 0 for every x ∈ [a, b], T̂ (a) = T̂ (b). Then there
exists c ∈ (a, b) such that

(
f̂(ĉ)

)~
=

f
(

c
T̂ (c)

)
T̂ (c)(T̂ (c)− cT̂ ′(c))

. (6.0.19)
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Proof. Since f, T̂ ∈ C1([a, b]), x
T̂ (x)

∈ [a, b], T̂ (x) − xT̂ ′(x) 6= 0 for every

x ∈ [a, b], then there exists
(
f̂(x̂)

)~
for every x ∈ [a, b] and (6.0.18) hold

for every x ∈ [a, b].
From T̂ ∈ C1([a, b]), T̂ (a) = T̂ (b), it follows from the Theorem of Rolle, that
there exists c ∈ [a, b] such that T̂ ′(c) = 0. From here, after we put x = c in
(6.0.18), we get (6.0.19).

Theorem 6.0.330. Let f, T̂ ∈ C1([a, b]), xT̂ (x) : [a, b] −→ [a, b] is a bijec-
tion, T̂ (x) > 0, T̂ (x) − xT̂ ′(x) 6= 0 for every x ∈ [a, b], f(a) = f(b). Then
there exists c ∈ [a, b] such that(

f∧(c)
)~

= 0. (6.0.20)

Proof. Since f, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], T̂ (x) − xT̂ ′(x) 6= 0 for every

x ∈ [a, b] it follows that there exists
(
f∧(x)

)~
for every x ∈ [a, b] and(

f∧(x)
)~

=
T̂ (x)f ′(xT̂ (x))(T̂ (x) + xT̂ ′(x))

T̂ (x)− xT̂ ′(x)
(6.0.21)

for every x ∈ [a, b].
From f ∈ C1([a, b]), f(a) = f(b) and from the Theorem of Rolle it follows
that there exists c1 ∈ (a, b) such that f ′(c1) = 0. From xT̂ (x) : [a, b] −→
[a, b] is a bijection we can find c ∈ [a, b] such that

c1 = cT̂ (c).

After we put x = c in (6.0.21) we get (6.0.20).

Theorem 6.0.331. Let f, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], T̂ (x) > 0, T̂ (x) −
xT̂ ′(x) 6= 0 for every x ∈ [a, b], T̂ (a) = T̂ (b). Then there exists c ∈ [a, b]
such that (

f∧(c)
)~

= T̂ (c)f ′(cT̂ (c)). (6.0.22)
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Proof. Since f, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], T̂ (x) − xT̂ ′(x) 6= 0 for every

x ∈ [a, b] it follows that there exists
(
f∧(x)

)~
for every x ∈ [a, b] and

(6.0.21) hold for every x ∈ [a, b].
Because T̂ ∈ C1([a, b]), T̂ (a) = T̂ (b) and from the Theorem of Rolle it follows
that there exists c ∈ [a, b] such that T̂ ′(c) = 0. After we put x = c in (6.0.21)
we get (6.0.22).

Exercise 6.0.332. Let f, T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x)−xT̂ ′(x) 6= 0 for every

x ∈ D. Prove that
(
f̂∧(x̂)

)~
= 0 if and only if f(x) = cT̂ (x), c = const,

x ∈ D.

Exercise 6.0.333. Let D = [0,∞), T̂ (x) = x2 + 1, x ∈ D. Find

lim
x−→0

f̂∧(x̂)

if

1) f(x) = x2 cosx
cosx−1 , 2) f(x) = ex−e−x

ln(1+x) ,

3) f(x) = ex+1−(1+x)
1
x

x , 4) f(x) = x sin(sinx)−sin2 x
x6

,

4) f(x) = sinx−x cosx
sin3 x

, 6) f(x) = arcsin(2−x)√
x2−3x+2

,

7) f(x) = arcsin(2x)−2 arcsinx
x3

.

Answer.

1) − 2, 2) 2, 3) − e
2 , 4) 1

18 , 5) 1
3 , 6) 0, 7) 1.

Exercise 6.0.334. Let D = [0,∞), T̂ (x) = x+2
x+4 , x ∈ D. Find

lim
x−→∞

f̂∧(x̂)

if

1) f(x) = x+2 lnx
x , 2) f(x) = ex+sinx

x+sinx ,

3) f(x) = x+sinx
x−sinx , 4) f(x) = ln(1+ex)

a+bx , b 6= 0,

5) f(x) = (π − 2 arctanx) lnx, 6) f(x) = arcsin x−a
a cot(x− a),

7) f(x) = lnx ln(1− x), 8) f(x) = (sinx− 1)etanx.
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Answer.
1) 1, 2) ∞, . 3) 1, 4) 1

6 , 5) 0,

6) 1
a , 7) 0, 8) ∞.

Definition: An isofunction of first, second, third or fourth kind will be
called isoconvex(isoconcave) if its isooriginal is convex(concave) function.

Example 6.0.335. Let D = R, T̂ (x) = e−x, f(x) = x2 + x + 1, x ∈ D.
Then

f̂∧(x̂) = f(x)

T̂ (x)
= x2+x+1

e−x = ex(x2 + x+ 1),

(
ex(x2 + x+ 1)

)′
= ex(x2 + x+ 1 + 2x+ 1) = ex(x2 + 3x+ 2),

(
ex(x2 + x+ 1)

)′′
=
(
ex(x2 + 3x+ 2)

)′
= ex(x2 + 3x+ 2 + 2x+ 3)

= ex(x2 + 5x+ 5).

Since x2 + 5x + 5 > 0 for every x ∈ R then the isofunction f̂∧(x̂) of first
kind is an isoconvex isofunction in D.

Exercise 6.0.336. Let D = [1,+∞), T̂ (x) = 1
x+1 , f(x) = x2 + x, x ∈ D.

Prove that f̂∧ is isoconvex isofunction in D.

Definition 6.0.337. Second isoderivative of an isofunction f of first, sec-
ond, third or fourth kind is defined as follows

f2~ = (f~)~,

third isoderivative
f3~ = ((f~)~)~,

and etc.
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Example 6.0.338. Let D = [1,+∞), T̂ (x) = e−x, f(x) = x. Then

f̂∧(x̂) =
f(x)

T̂ (x)
=

x

e−x
= xex,

(
f̂∧(x̂)

)~
= d̂f̂∧(x̂)↗ d̂x̂ = 1

T̂ (x)

d̂f̂∧(x̂)

d̂x̂
= 1

T̂ (x)

T̂ (x)df̂∧(x̂)(
1−x T̂

′(x)
T̂ (x)

)
dx

= d(xex)
(1+x)dx = ex,

((
f̂∧(x̂)

)~)~
= d̂
((
f̂∧(x̂)

)~)
↗ d̂x̂ = 1

T̂ (x)

d̂

(
f̂∧(x̂)

)~

d̂x̂
− 1

T̂ (x)

T̂ (x)d

(
f̂∧(x̂)

)~(
1−x T̂

′(x)
T̂ (x)

)
dx

= d(ex)
(x+1)dx = ex

x+1 .

Definition: Let f is an isofunction of first, second, third or fourth kind,
which is infinite number isodifferentiable in D. For x0 ∈ D the isoseries

f(x0) +
f~(x0)

1!
×̂ ̂(x− x0) +

f~~(x0)

2!
×̂ ̂(x− x0)

2̂
+ · · ·

is called iso- Taylor isoseries of the isofunction f at x0. When x0 = 0 it is
called iso-Macleurin isoseries of f .

Example 6.0.339. Let D =
[
−1

2 ,
1
2

]
, f(x) = ex, T̂ (x) = e−x. Then(

f̂∧(x̂)
)~

= e2x

1−x ,
(
f̂∧(0)

)~
= 1,

((
f̂∧(x̂)

)~)~
= e2x(3−2x)

(1−x)3
,
((
f̂∧(0)

)~)~
= 3,

and the corresponding iso-Macleurin isoseries is

1 + x̂+
3

2
×̂x̂2̂ + · · ·

Advanced practical exercises

Problem 6.0.340. Let D = [0,∞), f(x) = 2x − 4, T̂ (x) = x + 1, x ∈ D.
Find

d̂
(
f̂∧(x̂)

)
, d̂

(
f̂∧(x)

)
, d̂

(
f̂(x̂)

)
, d̂

(
f∧(x)

)
, d̂x̂.
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Answer.

d̂
(
f̂∧(x̂)

)
= 6

x+1dx, d̂
(
f̂∧(x)

)
= 2x+6

(x+1)2
dx,

d̂
(
f̂(x̂)

)
= − 2

x+1 , d̂
(
f∧(x)

)
= (4x2 + 6x+ 2)dx, d̂x̂ = 1

x+1dx.

Problem 6.0.341. Let D = [0,∞), f(x) = 2x, T̂ (x) = 2x+1, x ∈ D. Find

f̂∧~(x̂), f̂∧~(x), f̂~(x̂), f∧~(x).

Answer.

f̂∧~(x̂) = 4x+ 2, f̂∧~(x) = −32x3 − 24x2 + 2,

f̂~(x̂) = 2− 4x, f∧~(x) = 64x4 + 112x3 + 72x2 + 20x+ 2.

Problem 6.0.342. Let D = [0,∞), T̂1 = 4, f(x) = x, T̂ (x) = 2x + 1,
x ∈ D. Find

A := f̂∧(x̂) + f̂(x̂) + f̂∧~(x̂).

Answer. A = 6x2+6x+1
2x+1 .

Problem 6.0.343. Let D = [2,+∞), T̂ (x) = x, f(x) = x2 + 1, x ∈ D.
Prove that f∧ is an isoconvex isofunction in D.



Chapter 7

Isointegrals

Let D = [a, b] and T̂ ∈ C1([a, b]), T̂ (x) > 0 for every x ∈ [a, b].

Definition 7.0.344. Let f̂ be isofunction of first, second, third or fourth
kind. With f̃ we will denote its isooriginal, which is defined and integrable
on [a, b]. Isointegral or isoprimitive of f̂ will be called∫̂

f̂(x)×̂d̂x̂ :=

∫
T̂−1(x)f̃(x)×̂d̂x̂

and iso-Cauchy isointegral of f̂ on [a, b] will be called∫̂ b

a
f̂(x)×̂d̂x̂ :=

∫ b

a
T̂−1(x)f̃(x)×̂d̂x̂.

Below we will suppose that f̂ , ĝ are isofunctions with isooriginals f̃ and g̃,
respectively, which will be supposed defined and integrable on [a, b].

From the definition of isointegral it follows

193
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1) (∫̂
f̂(x)×̂d̂x̂

)~
= d̂
(∫̂
f̂(x)×̂d̂x̂

)
↗ d̂x̂

= T̂−1(x)
d̂
∫̂
f̃(x)×̂d̂x̂
d̂x̂

= T̂−1(x)
T̂ (x)d

∫̂
f̃(x)×̂d̂x̂
d̂x̂

=
d
∫
T̂−1(x)f̃(x)×̂d̂x̂

d̂x̂

=
d
∫
T̂−1f̃(x)T̂ (x)d̂x̂

d̂x̂

=
d
∫
f̃(x)d̂x̂

d̂x̂

= f̃(x)d̂x̂

d̂x̂

= f̃(x) ∀x ∈ [a, b].

2) ∫̂
d̂x̂ =

∫̂
1d̂x̂ =

∫
T̂−1(x)d̂x̂ =

∫
T̂−1(x)T̂ (x)dx̂ =

∫
dx̂ = x̂ ∀x ∈ [a, b].

3) ∫̂
d̂x̂ =

∫̂
1d̂x̂ =

∫
T̂−1(x)d̂x̂

=
∫
T̂−1(x)T̂ (x)dx̂ =

∫
dx̂ = x̂ ∀x ∈ [a, b].

4) ∫̂
d̂f̂(x) =

∫
T̂−1d̂f̂(x)

=
∫
T̂−1(x)T̂ (x)df̂(x)

=
∫
df̂(x) = f̂(x) + C ∀x ∈ [a, b], C ∈ R.

5) For a ∈ F̂R we have for every x ∈ [a, b]∫̂
â×̂f̂(x)×̂d̂x̂ = â×̂

∫̂
f̂(x)×̂d̂x̂.
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Proof. ∫̂
â×̂f̂(x)×̂d̂x̂ =

∫
T̂−1(x)â×̂f̂(x)×̂d̂x̂

=
∫
T̂−1(x) a

T̂1
T̂1f̂(x)T̂ (x)d̂x̂

=
∫
af̂(x)T̂ (x)dx̂

= a
∫
f̂(x)T̂ (x)dx̂

= a
∫
f̂(x)d̂x̂

= a
T1
T1

∫
f̂(x)d̂x̂

= â×̂
∫
f̂(x)d̂x̂

= â×̂
∫
T̂−1(x)f̂(x)T̂ (x)d̂x̂

= â×̂
∫̂
f̂(x)×̂d̂x̂ ∀x ∈ [a, b].

6) For every x ∈ [a, b] we have

∫̂ (
f̂(x) + ĝ(x)

)
×̂d̂x̂ =

∫̂
f̂(x)×̂d̂x̂+

∫̂
ĝ(x)×̂d̂x̂.

Proof. For x ∈ [a, b] we have

∫̂ (
f̂(x) + ĝ(x)

)
×̂d̂x̂ =

∫
T̂−1(x)

(
f̂(x) + ĝ(x)

)
×̂d̂x̂

=
∫
T̂−1(x)

(
f̂(x) + ĝ(x)

)
T̂ (x)d̂x̂

=
∫ (
f̂(x) + ĝ(x)

)
T̂ (x)dx̂

=
∫
f(x)T̂ (x)dx̂+

∫
g(x)T̂ (x)dx̂
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=
∫
f̂(x)d̂x̂+

∫
ĝ(x)d̂x̂

=
∫
T̂−1(x)f̂(x)T̂ (x)d̂x̂+

∫
T̂−1(x)ĝ(x)T̂ (x)d̂x̂

=
∫̂
f̂(x)×̂d̂x̂+

∫̂
ĝ(x)×̂d̂x̂.

For the isointegrals of isofunctions of first, second, third and fourth kind we
have the following representations:

1) isofunctions of first kind

∫̂
f̂∧(x̂)×̂d̂x̂ =

∫
T̂−1(x) f(x)

T̂ (x)
T̂ (x)

(
1− x T̂

′(x)

T̂ (x)

)
dx =

∫
f(x) T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx.

2) isofunctions of second kind

∫̂
f̂∧(x)×̂d̂x̂ =

∫
T̂−1(x)f(xT̂ (x))

T̂ (x)

(
1− x T̂

′(x)

T̂ (x)

)
dx

=
∫
f(xT̂ (x)) T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx.

3) isofunctions of third kind

∫̂
f̂(x̂)×̂d̂x̂ =

∫
T̂−1(x)

f

(
x

T̂ (x)

)
T̂ (x)

T̂ (x)
(

1− x T̂
′(x)

T̂ (x)

)
dx

=
∫
f
(

x
T̂ (x)

)
T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx.

4) isofunctions of fourth kind

∫̂
f∧(x)×̂d̂x̂ =

∫
T̂−1(x)f(xT̂ (x))T̂ (x)

(
1− x T̂

′(x)

T̂ (x)

)
dx

=
∫
f(xT̂ (x)) T̂ (x)−xT̂ ′(x)

T̂ (x)
dx.

Example 7.0.345. Let D = [a, b], a, b ∈ R, a < b, a and b are arbitrary
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chosen, let also f(x) = x2 − x, T̂ (x) = e−x. Then

∫̂
f̂∧(x̂)×̂d̂x̂ =

∫
f(x) T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx

=
∫

(x2 − x) e
−x+xe−x

e−2x dx

=
∫

(x2 − x)(1 + x)exdx

=
∫

(x3 − x)exdx

=
∫

(x3 − x)dex

= (x3 − x)ex −
∫

(3x2 − 1)exdx

= (x3 − x)ex −
∫

(3x2 − 1)dex

= (x3 − x)ex − (3x2 − 1)ex + 6
∫
xexdx

= (x3 − 3x2 − x+ 1)ex + 6
∫
xdex

= (x3 − 3x2 − x+ 1)ex + 6xex − 6
∫
exdx

= (x3 − 3x2 + 5x+ 1)ex − 6ex + C

= (x3 − 3x2 + 5x− 5)ex + C, C ∈ R,

∫̂
f̂∧(x)×̂d̂x̂ =

∫
f(xT̂ (x)) e

−x+xe−x

e−2x dx

=
∫
f
(
xe−x

)
ex(x+ 1)dx

=
∫ ((

xe−x
)2
− xe−x

)
ex(x+ 1)dx

=
∫ (
x2e−2x − xe−x

)
ex(1 + x)dx

=
∫

(x3 + x2)e−xdx−
∫
xdx−

∫
x2dx

= −
∫

(x3 + x2)de−x − x2

2 −
x3

3
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= (−x3 − x2)e−x +
∫

(3x2 + 2x)e−xdx− x2

2 −
x3

3

= (−x3 − x2)e−x −
∫

(3x2 + 2x)de−x − x2

2 −
x3

3

= (−x3 − x2)e−x − (3x2 + 2x)e−x +
∫

(6x+ 2)e−xdx− x2

2 −
x3

3

= (−x3 − 4x2 − 2x)e−x +
∫

(6x+ 2)de−x − x2

2 −
x3

3

= (−x3 − 4x2 − 2x)e−x − (6x+ 2)e−x + 6
∫
e−xdx− x2

2 −
x3

3

= (−x3 − 4x2 − 8x− 2)e−x − 6e−x − x2

2 −
x3

3 + C

= (−x3 − 4x2 − 8x− 8)e−x − x2

2 −
x3

3 + C, C ∈ R,

∫̂
f̂(x̂)×̂d̂x̂ =

∫
f
(

x
T̂ (x)

)
T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx

=
∫
f
(
xex
)

(1+x)e−x

e−2x dx

=
∫ ((

xex
)2
− xex

)
ex(x+ 1)dx

=
∫ (
x2e2x − xex

)
ex(1 + x)dx

=
∫

(x3 + x2)e3xdx−
∫

(x2 + x)e2xdx

= 1
3(x3 + x2)e3x − 1

3

∫
(3x2 + 2x)e3xdx− 1

2(x2 + x)e2x + 1
2

∫
(2x+ 1)e2xdx

= 1
3(x3 + x2)e3x − 1

2(x2 + x)e2x − 1
9

∫
(3x2 + 2x)de3x + 1

4

∫
(2x+ 1)de2x

= 1
3(x3 + x2)e3x − 1

2(x2 + x)e2x − 1
9(3x2 + 2x)e3x + 1

4(2x+ 1)e2x

+1
9

∫
(6x+ 2)e3xdx− 1

2

∫
e2xdx

=
(
x3

3 −
2
9x
)
e3x +

(
−1

2x
2 + 1

4

)
e2x + 1

27

∫
(6x+ 2)de3x − 1

4e
2x

=
(
x3

3 −
2
9x
)
e3x − 1

2x
2e2x + 1

27(6x+ 2)e3x − 6
27

∫
e3xdx
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=
(
x3

3 + 2
27

)
e3x − x2

2 e
2x − 2

27e
3x + C

= x3

3 e
3x − x2

2 e
2x + C, C ∈ R,∫̂

f∧(x)×̂d̂x̂ =
∫
f(xT̂ (x)) T̂ (x)−xT̂ ′(x)

T̂ (x)
dx

=
∫
f
(
xe−x

)
e−x+xe−x

e−x dx

=
∫ ((

xe−x
)2
− xe−x

)
(1 + x)dx

=
∫ (
x2e−2x − xe−x

)
(x+ 1)dx

=
∫

(x3 + x2)e−2xdx−
∫

(x2 + x)e−xdx

= −1
2

∫
(x3 + x2)de−2x +

∫
(x2 + x)de−x

= −1
2(x3 + x2)e−2x + 1

2

∫
(3x2 + 2x)e−2xdx− (x2 + x)e−x +

∫
(2x+ 1)e−xdx

= −1
2(x3 + x2)e−2x − 1

4

∫
(3x2 + 2x)de−2x − (x2 + x)e−x −

∫
(2x+ 1)de−x

= −1
2(x3 + x2)e−2x − 1

4(3x2 + 2x)e−2x + 1
4

∫
(6x+ 2)e−2xdx

−(x2 + x)e−x − (2x+ 1)e−x + 2
∫
e−xdx

=
(
−x3

2 −
5
4x

2 − x
2

)
e−2x − 1

4(3x+ 1)e−2x + 3
4

∫
e−2xdx− (x2 + 3x+ 3)e−x

=
(
−x3

2 −
5
4x

2 − 5
4x−

1
4

)
e−2x − 3

8e
−2x − (x2 + 3x+ 3)e−x + C

=
(
−x3

2 −
5
4x

2 − 5
4x−

5
8

)
e−2x − (x2 + 3x+ 3)e−x + C, C ∈ R.

Exercise 7.0.346. Let D = [1, 2], f(x) = x, T̂ (x) = x2. Find∫̂
f̂∧(x̂)×̂d̂x̂,

∫̂
f̂∧(x)×̂d̂x̂,

∫̂
f̂(x̂)×̂d̂x̂,

∫̂
f∧(x)×d̂x̂.

Answer.

− lnx+ C, −x
2

2
+ C,

1

x
+ C, −x

4

4
+ C, C ∈ R.
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Exercise 7.0.347. Let D = [2, 3], f(x) = T̂ (x) = x2. Find

∫̂ 3

2
f̂∧(x̂)×̂d̂x̂,

∫̂ 3

2
f̂∧(x)×̂d̂x̂,

∫̂ 3

2
f̂(x̂)×̂d̂x̂,

∫̂ 3

2
f∧(x)×d̂x̂.

Answer.

−1, −211

5
, − 19

648
,

2059

7
.

Theorem 7.0.348. Let f, T̂ ∈ C1(D), 1 − x T̂
′(x)

T̂ (x)
6= 0, T̂ (x) > 0 for every

x ∈ D. Then ∫̂
f̂∧~(x̂)d̂x̂ = f̂∧(x̂)

for every x ∈ D.

Proof. For x ∈ D, using the representation of the first isoderivative of iso-
functions of first kind, we have∫̂

f̂∧~(x̂)d̂x̂ =
∫
T̂−1(x)f̂∧~(x̂)d̂x̂

=
∫
T̂−1(x) 1

T̂ 2(x)

f ′(x)T̂ (x)−f(x)T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

×̂d̂x̂

=
∫

1
T̂ 3(x)

f ′(x)T̂ (x)−f(x)T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

T̂ (x)
(

1− x T̂
′(x)

T̂ (x)

)
dx

=
∫ f ′(x)T̂ (x)−f(x)T̂ ′(x)

T̂ 2(x)
dx

=
∫
d
(
f(x)

T̂ (x)

)′
= f(x)

T̂ (x)
= f̂∧(x̂).
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Theorem 7.0.349. Let f, T̂ ∈ C1(D), 1 − x T̂
′(x)

T̂ (x)
6= 0, T̂ (x) > 0 for every

x ∈ D. Then ∫̂
f̂∧~(x)×̂d̂x̂ = f̂∧(x)

for every x ∈ D.

Proof. Using the representation of first isoderivative of an isofunction of
second kind we get∫̂
f̂∧~(x)×̂d̂x̂

=
∫
T̂−1(x) 1

T̂ 2(x)

f ′(xT̂ (x))(T̂ 2(x)+xT̂ (x)T̂ ′(x))−f(xT̂ (x))T̂ ′(x)

1−x T̂
′(x)
T̂ (x)

T̂ (x)
(

1− x T̂
′(x)

T̂ (x)

)
dx

=
∫ (f(xT̂ (x)))′T̂ (x)−f(xT̂ (x))T̂ ′(x)

T̂ 2(x)
dx

=
∫
d
(
f(xT̂ (x))

T̂ (x)

)′
= f(xT̂ (x))

T̂ (x)
= f̂∧(x).

Exercise 7.0.350. Let f, T̂ ∈ C1(D), 1 − x T̂
′(x)

T̂ (x)
6= 0, T̂ (x) > 0 for every

x ∈ D. Prove ∫̂
f̂~(x̂)×̂d̂x̂ = f̂(x̂)

for every x ∈ D.

Exercise 7.0.351. Let f, T̂ ∈ C1(D), 1 − x T̂
′(x)

T̂ (x)
6= 0, T̂ (x) > 0 for every

x ∈ D. Prove ∫̂
f∧~(x)×̂d̂x̂ = f∧(x)

for every x ∈ D.
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Theorem 7.0.352. (integration by parts) Let f, g, T̂ ∈ C1(D), 1−x T̂
′(x)

T̂ (x)
6=

0, T̂ (x) > 0 for every x ∈ D. Then∫̂
f̂∧~(x̂)ĝ∧(x̂)×̂d̂x̂ = f̂∧(x̂)ĝ∧(x̂)−

∫̂
f̂∧(x̂)ĝ∧~(x̂)×̂d̂x̂.

for every x ∈ D.

Proof. Using the main the definition for isointegral, the representation of
the first isoderivative of isofunction of first kind and the representation for
d̂x̂ we get∫̂

f̂∧~(x̂)ĝ∧(x̂)×̂d̂x̂

=
∫
T̂−1(x)f

′(x)T̂ (x)−f(x)T̂ ′(x)

T̂ 2(x)

(
1−x T̂

′(x)
T̂ (x)

) g(x)

T̂ (x)
T̂ (x)

(
1− x T̂

′(x)

T̂ (x)

)
dx

=
∫ f ′(x)T̂ (x)−f(x)T̂ ′(x)

T̂ 2(x)

g(x)

T̂ (x)
dx

=
∫ g(x)

T̂ (x)
d
(
f(x)

T̂ (x)

)
= f(x)

T̂ (x)

g(x)

T̂ (x)
−
∫ f(x)

T̂ (x)

(
g(x)

T̂ (x)

)′
dx

= f̂∧(x̂)ĝ∧(x̂)−
∫ f(x)

T̂ (x)

g′(x)T̂ (x)−g(x)T̂ ′(x)

T̂ 2(x)
dx

= f̂∧(x̂)ĝ∧(x̂)−
∫
f̂∧(x̂)g

′(x)T̂ (x)−g(x)T̂ ′(x)

T̂ 2(x)

(
1−x T̂

′(x)
T̂ (x)

) (1− x T̂
′(x)

T̂ (x)

)
dx

= f̂∧(x̂)ĝ∧(x̂)−
∫
f̂∧(x̂)ĝ∧~(x̂)d̂x̂

= f̂∧(x̂)ĝ∧(x̂)−
∫
f̂∧(x̂)ĝ∧~(x̂) 1

T̂ (x)
T̂ (x)d̂x̂

= f̂∧(x̂)ĝ∧(x̂)−
∫̂
f̂∧(x̂)ĝ∧~(x̂)×̂d̂x̂.
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Exercise 7.0.353. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, 1− x T̂
′(x)

T̂ (x)
6= 0 for every

x ∈ D. Prove∫̂
f̂∧~(x)ĝ∧(x̂)×̂d̂x̂ = f̂∧(x)ĝ∧(x̂)−

∫̂
f̂∧(x)ĝ∧~(x̂)×̂d̂x̂.

Exercise 7.0.354. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, 1− x T̂
′(x)

T̂ (x)
6= 0 for every

x ∈ D. Prove∫̂
f̂~(x̂)ĝ∧(x̂)×̂d̂x̂ = f̂(x̂)ĝ∧(x̂)−

∫̂
f̂(x̂)ĝ∧~(x̂)×̂d̂x̂.

Exercise 7.0.355. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, 1− x T̂
′(x)

T̂ (x)
6= 0 for every

x ∈ D. Prove∫̂
f∧~(x)ĝ∧(x̂)×̂d̂x̂ = f∧(x)ĝ∧(x̂)−

∫̂
f∧(x)ĝ∧~(x̂)×̂d̂x̂.

Exercise 7.0.356. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, 1− x T̂
′(x)

T̂ (x)
6= 0 for every

x ∈ D. Prove∫̂
f̂∧~(x)ĝ∧(x)×̂d̂x̂ = f̂∧(x)ĝ∧(x)−

∫̂
f̂∧(x)ĝ∧~(x)×̂d̂x̂.

Exercise 7.0.357. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, 1− x T̂
′(x)

T̂ (x)
6= 0 for every

x ∈ D. Prove∫̂
f̂~(x̂)ĝ∧(x)×̂d̂x̂ = f̂(x̂)ĝ∧(x)−

∫̂
f̂(x̂)ĝ∧~(x)×̂d̂x̂.

Exercise 7.0.358. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, 1− x T̂
′(x)

T̂ (x)
6= 0 for every

x ∈ D. Prove∫̂
f∧~(x)g∧(x)×̂d̂x̂ = f∧(x)g∧(x)−

∫̂
f∧(x)g∧~(x)×̂d̂x̂.

Exercise 7.0.359. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, 1− x T̂
′(x)

T̂ (x)
6= 0 for every

x ∈ D. Prove∫̂
f̂~(x̂)ĝ(x̂)×̂d̂x̂ = f̂(x̂)ĝ(x̂)−

∫̂
f̂(x̂)ĝ~(x̂)×̂d̂x̂.
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Exercise 7.0.360. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, 1− x T̂
′(x)

T̂ (x)
6= 0 for every

x ∈ D. Prove

∫̂
f̂~(x̂)g∧(x)×̂d̂x̂ = f̂(x̂)g∧(x)−

∫̂
f̂(x̂)g∧~(x)×̂d̂x̂.

Exercise 7.0.361. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, 1− x T̂
′(x)

T̂ (x)
6= 0 for every

x ∈ D. Prove

∫̂
f∧~(x)g∧(x)×̂d̂x̂ = f∧(x)g∧(x)−

∫̂
f∧(x)g∧~(x)×̂d̂x̂.

Theorem 7.0.362. (integration by parts) Let f, g, T̂ ∈ C1(D), T̂ (x) > 0,

1− x T̂
′(x)

T̂ (x)
6= 0 for every x ∈ D. Then

∫̂
f̂∧~(x̂)×̂ĝ∧(x̂)d̂x̂ = f̂∧(x̂)ĝ∧(x̂)−

∫̂
f̂∧(x̂)×̂ĝ∧(x̂)d̂x̂

for every x ∈ D.
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Proof.∫̂
f̂∧~(x̂)×̂ĝ∧(x̂)d̂x̂

=
∫
T̂−1(x)f

′(x)T̂ (x)−f(x)T̂ ′(x)

T̂ 2(x)

(
1−x T̂

′(x)
T̂ (x)

) T̂ (x) g(x)

T̂ (x)

(
1− x T̂

′(x)

T̂ (x)

)
dx

=
∫ f ′(x)T̂ (x)−f(x)T̂ ′(x)

T̂ 2(x)

g(x)

T̂ (x)
dx

=
∫ ( f(x)

T̂ (x)

)′
g(x)

T̂ (x)
dx

= f(x)

T̂ (x)

g(x)

T̂ (x)
−
∫ f(x)

T̂ (x)

g′(x)T̂ (x)−g(x)T̂ ′(x)

T̂ 2(x)
dx

= f̂∧(x̂)ĝ∧(x̂)−
∫
T̂−1(x) f(x)

T̂ (x)
T̂ (x)g

′(x)T̂ (x)−g(x)T̂ ′(x)

T̂ 2(x)

(
1−x T̂

′(x)
T̂ (x)

) (1− x T̂
′(x)

T̂ (x)

)
dx

= f̂∧(x̂)ĝ∧(x̂)−
∫̂
f̂∧(x̂)×̂ĝ∧(x̂)d̂x̂ ∀x ∈ D.

Exercise 7.0.363. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, 1− x T̂
′(x)

T̂ (x)
6= 0 for every

x ∈ D. Prove∫̂
f̂∧~(x)×̂ĝ∧(x̂)d̂x̂ = f̂∧(x)ĝ∧(x̂)−

∫̂
f̂∧(x)×̂ĝ∧~(x̂)d̂x̂.

Exercise 7.0.364. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, 1− x T̂
′(x)

T̂ (x)
6= 0 for every

x ∈ D. Prove∫̂
f̂~(x̂)×̂ĝ∧(x̂)d̂x̂ = f̂(x̂)ĝ∧(x̂)−

∫̂
f̂(x̂)×̂ĝ∧~(x̂)d̂x̂.

Exercise 7.0.365. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, 1− x T̂
′(x)

T̂ (x)
6= 0 for every

x ∈ D. Prove∫̂
f∧~(x)×̂ĝ∧(x̂)d̂x̂ = f∧(x)ĝ∧(x̂)−

∫̂
f∧(x)×̂ĝ∧~(x̂)d̂x̂.
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Exercise 7.0.366. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, 1− x T̂
′(x)

T̂ (x)
6= 0 for every

x ∈ D. Prove∫̂
f̂∧~(x)×̂ĝ∧(x)d̂x̂ = f̂∧(x)ĝ∧(x)−

∫̂
f̂∧(x)×̂ĝ∧~(x)d̂x̂.

Exercise 7.0.367. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, 1− x T̂
′(x)

T̂ (x)
6= 0 for every

x ∈ D. Prove∫̂
f̂~(x̂)×̂ĝ∧(x)d̂x̂ = f̂(x̂)ĝ∧(x)−

∫̂
f̂(x̂)×̂ĝ∧~(x)d̂x̂.

Exercise 7.0.368. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, 1− x T̂
′(x)

T̂ (x)
6= 0 for every

x ∈ D. Prove∫̂
f∧~(x)×̂g∧(x)d̂x̂ = f∧(x)g∧(x)−

∫̂
f∧(x)×̂g∧~(x)d̂x̂.

Exercise 7.0.369. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, 1− x T̂
′(x)

T̂ (x)
6= 0 for every

x ∈ D. Prove∫̂
f̂~(x̂)×̂ĝ(x̂)d̂x̂ = f̂(x̂)ĝ(x̂)−

∫̂
f̂(x̂)×̂ĝ~(x̂)d̂x̂.

Exercise 7.0.370. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, 1− x T̂
′(x)

T̂ (x)
6= 0 for every

x ∈ D. Prove∫̂
f̂~(x̂)×̂g∧(x)d̂x̂ = f̂(x̂)g∧(x)−

∫̂
f̂(x̂)×̂g∧~(x)d̂x̂.

Exercise 7.0.371. Let f, g, T̂ ∈ C1(D), T̂ (x) > 0, 1− x T̂
′(x)

T̂ (x)
6= 0 for every

x ∈ D. Prove∫̂
f∧~(x)×̂g∧(x)d̂x̂ = f∧(x)g∧(x)−

∫̂
f∧(x)×̂g∧~(x)d̂x̂.

Theorem 7.0.372. Let f is integrable function on [a, b], f(x) ≤ 0 for every
x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0 for every x ∈ [a, b], T̂ (x) − xT̂ ′(x) ≤ 0
for every x ∈ [a, b]. Then ∫̂ b

a
f̂∧(x̂)×̂d̂x̂ ≥ 0.
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Proof. Since

f(x) ≤ 0, T̂ (x)− xT̂ ′(x) ≤ 0 ∀x ∈ [a, b]

then

f(x)
(
T̂ (x)− xT̂ ′(x)

)
≥ 0 ∀x ∈ [a, b].

From here and from T̂ 2(x) > 0 for every x ∈ [a, b] it follows that

f(x)
T̂ (x)− xT̂ ′(x)

T̂ 2(x)
≥ 0 ∀x ∈ [a, b].

We integrate the last inequality on [a, b] and we obtain∫ b

a
f(x)

T̂ (x)− xT̂ ′(x)

T̂ 2(x)
dx ≥ 0

which is equivalent of, using the definition for iso-Cauchy isointegral of iso-
function of first kind, ∫̂ b

a
f̂∧(x̂)×̂d̂x̂ ≥ 0.

Exercise 7.0.373. Let f is integrable function on [a, b], f(x) ≤ 0 for every
x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0 for every x ∈ [a, b], T̂ (x) − xT̂ ′(x) ≤ 0
for every x ∈ [a, b]. Then

∫̂ b

a
f̂∧(x̂)d̂x̂ ≥ 0.

Exercise 7.0.374. Let f is integrable function on [a, b], f(x) ≤ 0 for every
x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0 for every x ∈ [a, b], T̂ (x) − xT̂ ′(x) ≤ 0
for every x ∈ [a, b]. Then

∫̂ b

a
f̂∧(x̂)×̂dx̂ ≥ 0.
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Exercise 7.0.375. Let f is integrable function on [a, b], f(x) ≤ 0 for every
x ∈ [a, b], T̂ is integrable on [a, b] T̂ (x) > 0 for every x ∈ [a, b]. Then∫̂ b

a
f̂∧(x̂)×̂dx ≤ 0.

Exercise 7.0.376. Let f is integrable function on [a, b], f(x) ≤ 0 for every
x ∈ [a, b], T̂ is integrable on [a, b], T̂ (x) > 0 for every x ∈ [a, b]. Then∫ b

a
f̂∧(x̂)×̂dx ≤ 0.

Exercise 7.0.377. Let f is integrable function on [a, b], f(x) ≤ 0 for every
x ∈ [a, b], T̂ is integrable on [a, b], T̂ (x) > 0 for every x ∈ [a, b]. Then∫ b

a
f̂∧(x̂)dx ≤ 0.

Exercise 7.0.378. Let f is integrable function on [a, b], f(x) ≥ 0 for every
x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0 for every x ∈ [a, b], T̂ (x) − xT̂ ′(x) ≥ 0
for every x ∈ [a, b]. Then ∫̂ b

a
f̂∧(x̂)d̂x̂ ≥ 0.

Exercise 7.0.379. Let f is integrable function on [a, b], f(x) ≤ 0 for every
x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0 for every x ∈ [a, b], T̂ (x) − xT̂ ′(x) ≤ 0,
xT̂ (x) ∈ [a, b] for every x ∈ [a, b]. Then∫̂ b

a
f̂∧(x)×̂d̂x̂ ≥ 0.

Exercise 7.0.380. Let f is integrable function on [a, b], f(x) ≥ 0 for every
x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0 for every x ∈ [a, b], T̂ (x) − xT̂ ′(x) ≥ 0,
xT̂ (x) ∈ [a, b] for every x ∈ [a, b]. Then∫̂ b

a
f̂∧(x)×̂d̂x̂ ≥ 0.

Exercise 7.0.381. Let f is integrable function on [a, b], f(x) ≤ 0 for every
x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0 for every x ∈ [a, b], T̂ (x) − xT̂ ′(x) ≤ 0,
x

T̂ (x)
∈ [a, b] for every x ∈ [a, b]. Then

∫̂ b

a
f̂(x̂)×̂d̂x̂ ≥ 0.
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Exercise 7.0.382. Let f is integrable function on [a, b], f(x) ≥ 0 for every
x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0 for every x ∈ [a, b], T̂ (x) − xT̂ ′(x) ≥ 0,
x

T̂ (x)
∈ [a, b] for every x ∈ [a, b]. Then∫̂ b

a
f̂(x̂)×̂d̂x̂ ≥ 0.

Exercise 7.0.383. Let f is integrable function on [a, b], f(x) ≤ 0 for every
x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0 for every x ∈ [a, b], T̂ (x) − xT̂ ′(x) ≤ 0,
xT̂ (x) ∈ [a, b] for every x ∈ [a, b]. Then∫̂ b

a
f∧(x)×̂d̂x̂ ≥ 0.

Exercise 7.0.384. Let f is integrable function on [a, b], f(x) ≥ 0 for every
x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0 for every x ∈ [a, b], T̂ (x) − xT̂ ′(x) ≥ 0,
xT̂ (x) ∈ [a, b] for every x ∈ [a, b]. Then∫̂ b

a
f∧(x)×̂d̂x̂ ≥ 0.

Exercise 7.0.385. Let f is integrable function on [a, b], f(x) ≥ 0 for every
x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b].
Then ∫̂ b

a
f̂∧(x̂)×̂d̂x̂ ≤ 0.

Exercise 7.0.386. Let f is integrable function on [a, b], f(x) ≤ 0 for every
x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b].
Then ∫̂ b

a
f̂∧(x̂)×̂d̂x̂ ≤ 0.

Exercise 7.0.387. Let f is integrable function on [a, b], f(x) ≥ 0 for every
x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0, xT̂ (x) ∈ [a, b] for
every x ∈ [a, b]. Then ∫̂ b

a
f̂∧(x)×̂d̂x̂ ≤ 0.

Exercise 7.0.388. Let f is integrable function on [a, b], f(x) ≤ 0 for every
x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0, xT̂ (x) ∈ [a, b] for
every x ∈ [a, b]. Then ∫̂ b

a
f̂∧(x)×̂d̂x̂ ≤ 0.
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Exercise 7.0.389. Let f is integrable function on [a, b], f(x) ≥ 0 for every
x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0, T̂ (x)−xT̂ ′(x) ≤ 0, x

T̂ (x)
∈ [a, b] for every

x ∈ [a, b]. Then ∫̂ b

a
f̂(x̂)×̂d̂x̂ ≤ 0.

Exercise 7.0.390. Let f is integrable function on [a, b], f(x) ≤ 0 for every
x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0, T̂ (x)−xT̂ ′(x) ≥ 0, x

T̂ (x)
∈ [a, b] for every

x ∈ [a, b]. Then ∫̂ b

a
f̂(x̂)×̂d̂x̂ ≤ 0.

Exercise 7.0.391. Let f is integrable function on [a, b], f(x) ≥ 0 for every
x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0, xT̂ (x) ∈ [a, b] for
every x ∈ [a, b]. Then ∫̂ b

a
f∧(x)×̂d̂x̂ ≤ 0.

Exercise 7.0.392. Let f is integrable function on [a, b], f(x) ≤ 0 for every
x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0, xT̂ (x) ∈ [a, b] for
every x ∈ [a, b]. Then ∫̂ b

a
f∧(x)×̂d̂x̂ ≤ 0.

Theorem 7.0.393. Let f and g are integrable functions on [a, b], f(x) ≤
g(x) for every x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for
every x ∈ [a, b]. Then ∫̂ b

a
f̂∧(x̂)×̂d̂x̂ ≥

∫̂ b

a
ĝ∧(x̂)×̂d̂x̂.

Proof. Since

f(x) ≤ g(x), T̂ (x)− xT̂ ′(x) ≤ 0 ∀x ∈ [a, b]
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we get

f(x)(T̂ (x)− xT̂ ′(x)) ≥ g(x)(T̂ (x)− xT̂ ′(x)) ∀x ∈ [a, b]

and because T̂ 2(x) > 0 for every x ∈ [a, b] we obtain

f(x)
T̂ (x)− xT̂ ′(x)

T̂ 2(x)
≥ g(x)

T̂ (x)− xT̂ ′(x))

T̂ 2(x)
∀x ∈ [a, b].

We integrate the last inequality from a to b and we get∫ b

a
f(x)

T̂ (x)− xT̂ ′(x)

T̂ 2(x)
dx ≥

∫ b

a
g(x)

T̂ (x)− xT̂ ′(x))

T̂ 2(x)
dx ∀x ∈ [a, b],

which is equivalent of ∫̂ b

a
f̂∧(x̂)×̂d̂x̂ ≥

∫̂ b

a
ĝ∧(x̂)×̂d̂x̂.

Exercise 7.0.394. Let f and g are integrable functions on [a, b], f(x) ≤
g(x) for every x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for
every x ∈ [a, b]. Prove

∫̂ b

a
f̂∧(x̂)×̂d̂x̂ ≤

∫̂ b

a
ĝ∧(x̂)×̂d̂x̂.

Exercise 7.0.395. Let f and g are integrable functions on [a, b], f(x) ≤
g(x) for every x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for
every x ∈ [a, b]. Prove

∫̂ b

a
f̂∧(x̂)d̂x̂ ≥

∫̂ b

a
ĝ∧(x̂)d̂x̂.

Exercise 7.0.396. Let f and g are integrable functions on [a, b], f(x) ≤
g(x) for every x ∈ [a, b], T̂ ∈ C1([a, b]), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for
every x ∈ [a, b]. Prove

∫̂ b

a
f̂∧(x̂)dx̂ ≥

∫̂ b

a
ĝ∧(x̂)dx̂.
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Exercise 7.0.397. Let f and g are integrable functions on [a, b], f(x) ≤
g(x) for every x ∈ [a, b], T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], T̂ (x) > 0, T̂ (x) −
xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Prove∫̂ b

a
f̂∧(x)×̂d̂x̂ ≤

∫̂ b

a
ĝ∧(x)×̂d̂x̂.

Exercise 7.0.398. Let f and g are integrable functions on [a, b], f(x) ≤
g(x) for every x ∈ [a, b], T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], T̂ (x) > 0, T̂ (x) −
xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Prove∫̂ b

a
f̂∧(x)×̂d̂x̂ ≥

∫̂ b

a
ĝ∧(x)×̂d̂x̂.

Exercise 7.0.399. Let f and g are integrable functions on [a, b], f(x) ≤
g(x) for every x ∈ [a, b], T̂ ∈ C1([a, b]), x

T̂ (x)
∈ [a, b], T̂ (x) > 0, T̂ (x) −

xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Prove∫̂ b

a
f̂(x̂)×̂d̂x̂ ≤

∫̂ b

a
ĝ(x̂)×̂d̂x̂.

Exercise 7.0.400. Let f and g are integrable functions on [a, b], f(x) ≤
g(x) for every x ∈ [a, b], T̂ ∈ C1([a, b]), x

T̂ (x)
∈ [a, b], T̂ (x) > 0, T̂ (x) −

xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Prove∫̂ b

a
f̂(x̂)×̂d̂x̂ ≥

∫̂ b

a
ĝ(x̂)×̂d̂x̂.

Exercise 7.0.401. Let f and g are integrable functions on [a, b], f(x) ≤
g(x) for every x ∈ [a, b], T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], T̂ (x) > 0, T̂ (x) −
xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Prove∫̂ b

a
f∧(x)×̂d̂x̂ ≤

∫̂ b

a
g∧(x)×̂d̂x̂.

Exercise 7.0.402. Let f and g are integrable functions on [a, b], f(x) ≤
g(x) for every x ∈ [a, b], T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], T̂ (x) > 0, T̂ (x) −
xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Prove∫̂ b

a
f∧(x)×̂d̂x̂ ≥

∫̂ b

a
g∧(x)×̂d̂x̂.
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Exercise 7.0.403. Let f is integrable function on [a, b], T̂ ∈ C1([a, b]),
T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Prove∣∣∣∫̂ b

a
f̂∧(x̂)×̂d̂x̂

∣∣∣ ≤ ∫̂ b

a
|f̂∧(x̂)|d̂x̂.

Exercise 7.0.404. Let f is integrable function on [a, b], T̂ ∈ C1([a, b]),
T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Prove∣∣∣∫̂ b

a
f̂∧(x)×̂d̂x̂

∣∣∣ ≤ ∫̂ b

a
|f̂∧(x)|×̂d̂x̂.

Exercise 7.0.405. Let f is integrable function on [a, b], T̂ ∈ C1([a, b]),
T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Prove∣∣∣∫̂ b

a
f̂(x̂)×̂d̂x̂

∣∣∣ ≤ ∫̂ b

a
|f̂(x̂)|×̂d̂x̂.

Exercise 7.0.406. Let f is integrable function on [a, b], T̂ ∈ C1([a, b]),
T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Prove∣∣∣∫̂ b

a
f∧(x)×̂d̂x̂

∣∣∣ ≤ ∫̂ b

a
|f∧(x)|×̂d̂x̂.

Theorem 7.0.407. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every
x ∈ [a, b]. Then

M̂×̂
∫̂ b

a
ĝ∧(x̂)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x̂)×̂ĝ∧(x̂)×̂d̂x̂ ≤ m̂×̂

∫̂ b

a
ĝ∧(x̂)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Proof. Since f is integrable function on [a, b] then it is a bounded function.
Therefore there exist m = infx∈[a,b] f(x), M = supx∈[a,b] f(x) and we have
the following inequalities

m ≤ f(x) ≤M for ∀x ∈ [a, b].
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Since g(x) ≥ 0 for every x ∈ [a, b], from the last inequality we obtain

mg(x) ≤ f(x)g(x) ≤Mg(x) for ∀x ∈ [a, b].

From here and T̂ (x)− xT̂ ′(x) ≤ 0, T̂ 2(x) > 0 for every x ∈ [a, b], we get the
inequality

Mg(x)
T̂ (x)− xT̂ ′(x)

T̂ 2(x)
≤ f(x)g(x)

T̂ (x)− xT̂ ′(x)

T̂ 2(x)
≤Mg(x)

T̂ (x)− xT̂ ′(x)

T̂ 2(x)
,

for every x ∈ [a, b], which we integrate from a to b and we get

M
∫ b
a g(x) T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx ≤

∫ b
a f(x)g(x) T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx

≤M
∫ b
a g(x) T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx,

which is equivalent of

M̂×̂
∫̂ b
aĝ
∧(x̂)×̂d̂x̂ ≤

∫̂ b
af̂
∧(x̂)×̂ĝ∧(x̂)×̂d̂x̂ ≤ m̂×̂

∫̂ b
aĝ
∧(x̂)×̂d̂x̂.

Exercise 7.0.408. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every
x ∈ [a, b]. Then

m̂×̂
∫̂ b

a
ĝ∧(x̂)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x̂)×̂ĝ∧(x̂)×̂d̂x̂ ≤ M̂×̂

∫̂ b

a
ĝ∧(x̂)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.409. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every
x ∈ [a, b]. Then

m̂×̂
∫̂ b

a
ĝ∧(x̂)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x̂)×̂ĝ∧(x̂)×̂d̂x̂ ≤ M̂×̂

∫̂ b

a
ĝ∧(x̂)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).
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Exercise 7.0.410. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every
x ∈ [a, b]. Then

M̂×̂
∫̂ b

a
ĝ∧(x)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x̂)×̂ĝ∧(x)×̂d̂x̂ ≤ m̂×̂

∫̂ b

a
ĝ∧(x)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.411. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every
x ∈ [a, b]. Then

m̂×̂
∫̂ b

a
ĝ∧(x)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x̂)×̂ĝ∧(x)×̂d̂x̂ ≤ M̂×̂

∫̂ b

a
ĝ∧(x)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.412. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every
x ∈ [a, b]. Then

m̂×̂
∫̂ b

a
ĝ∧(x)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x̂)×̂ĝ∧(x)×̂d̂x̂ ≤ M̂×̂

∫̂ b

a
ĝ∧(x)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.413. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every
x ∈ [a, b]. Then

M̂×̂
∫̂ b

a
ĝ(x̂)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x̂)×̂ĝ(x̂)×̂d̂x̂ ≤ m̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.414. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every
x ∈ [a, b]. Then

m̂×̂
∫̂ b

a
ĝ(x̂)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x̂)×̂ĝ(x̂)×̂d̂x̂ ≤ M̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).
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Exercise 7.0.415. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every
x ∈ [a, b]. Then

m̂×̂
∫̂ b

a
ĝ(x̂)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x̂)×̂ĝ(x̂)×̂d̂x̂ ≤ M̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.416. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every
x ∈ [a, b]. Then

M̂×̂
∫̂ b

a
g∧(x)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x̂)×̂g∧(x)×̂d̂x̂ ≤ m̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.417. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every
x ∈ [a, b]. Then

m̂×̂
∫̂ b

a
g∧(x)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x̂)×̂g∧(x)×̂d̂x̂ ≤ M̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.418. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every
x ∈ [a, b]. Then

m̂×̂
∫̂ b

a
g∧(x)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x̂)×̂g∧(x)×̂d̂x̂ ≤ M̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.419. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every
x ∈ [a, b]. Then

M̂×̂
∫̂ b

a
ĝ(x̂)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x)×̂ĝ(x̂)×̂d̂x̂ ≤ m̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).
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Exercise 7.0.420. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every
x ∈ [a, b]. Then

m̂×̂
∫̂ b

a
ĝ(x̂)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x)×̂ĝ(x̂)×̂d̂x̂ ≤ M̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.421. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every
x ∈ [a, b]. Then

m̂×̂
∫̂ b

a
ĝ(x̂)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x)×̂ĝ(x̂)×̂d̂x̂ ≤ M̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.422. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every
x ∈ [a, b]. Then

M̂×̂
∫̂ b

a
ĝ∧(x)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x)×̂ĝ∧(x)×̂d̂x̂ ≤ m̂×̂

∫̂ b

a
ĝ∧(x)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.423. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every
x ∈ [a, b]. Then

m̂×̂
∫̂ b

a
ĝ∧(x)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x)×̂ĝ∧(x)×̂d̂x̂ ≤ M̂×̂

∫̂ b

a
ĝ∧(x)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.424. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every
x ∈ [a, b]. Then

m̂×̂
∫̂ b

a
ĝ∧(x)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x)×̂ĝ∧(x)×̂d̂x̂ ≤ M̂×̂

∫̂ b

a
ĝ∧(x)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).
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Exercise 7.0.425. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every
x ∈ [a, b]. Then

M̂×̂
∫̂ b

a
g∧(x)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x)×̂g∧(x)×̂d̂x̂ ≤ m̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.426. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every
x ∈ [a, b]. Then

m̂×̂
∫̂ b

a
g∧(x)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x)×̂g∧(x)×̂d̂x̂ ≤ M̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.427. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every
x ∈ [a, b]. Then

m̂×̂
∫̂ b

a
g∧(x)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x)×̂g∧(x)×̂d̂x̂ ≤ M̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.428. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every
x ∈ [a, b]. Then

M̂×̂
∫̂ b

a
ĝ(x̂)×̂d̂x̂ ≤

∫̂ b

a
f̂(x̂)×̂ĝ(x)×̂d̂x̂ ≤ m̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.429. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every
x ∈ [a, b]. Then

m̂×̂
∫̂ b

a
ĝ(x̂)×̂d̂x̂ ≤

∫̂ b

a
f̂(x̂)×̂ĝ(x̂)×̂d̂x̂ ≤ M̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).
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Exercise 7.0.430. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every
x ∈ [a, b]. Then

m̂×̂
∫̂ b

a
ĝ(x̂)×̂d̂x̂ ≤

∫̂ b

a
f̂(x̂)×̂ĝ(x̂)×̂d̂x̂ ≤ M̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.431. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every
x ∈ [a, b]. Then

M̂×̂
∫̂ b

a
g∧(x)×̂d̂x̂ ≤

∫̂ b

a
f̂(x̂)×̂g∧(x)×̂d̂x̂ ≤ m̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.432. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every
x ∈ [a, b]. Then

m̂×̂
∫̂ b

a
g∧(x)×̂d̂x̂ ≤

∫̂ b

a
f̂(x̂)×̂g∧(x)×̂d̂x̂ ≤ M̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.433. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every
x ∈ [a, b]. Then

m̂×̂
∫̂ b

a
g∧(x)×̂d̂x̂ ≤

∫̂ b

a
f̂(x̂)×̂g∧(x)×̂d̂x̂ ≤ M̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.434. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every
x ∈ [a, b]. Then

M̂×̂
∫̂ b

a
g∧(x)×̂d̂x̂ ≤

∫̂ b

a
f∧(x)×̂g∧(x)×̂d̂x̂ ≤ m̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).
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Exercise 7.0.435. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every
x ∈ [a, b]. Then

m̂×̂
∫̂ b

a
g∧(x)×̂d̂x̂ ≤

∫̂ b

a
f∧(x)×̂g∧(x)×̂d̂x̂ ≤ M̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Exercise 7.0.436. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], T̂ ∈ C1(D), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every
x ∈ [a, b]. Then

m̂×̂
∫̂ b

a
g∧(x)×̂d̂x̂ ≤

∫̂ b

a
f∧(x)×̂g∧(x)×̂d̂x̂ ≤ M̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂,

where m = infx∈[a,b] f(x), M = supx∈[a,b] f(x).

Theorem 7.0.437. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x̂)×̂ĝ∧(x̂)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ∧(x̂)×̂d̂x̂.

Proof. We have

M̂×̂
∫̂ b
aĝ
∧(x̂)×̂d̂x̂ ≤

∫̂ b
af̂
∧(x̂)×̂ĝ∧(x̂)×̂d̂x̂ ≤ m̂×̂

∫̂ b
aĝ
∧(x̂)×̂d̂x̂. (7.0.1)

From g(x) ≥ 0, T̂ (x)− xT̂ ′(x) ≤ 0 for every x ∈ [a, b] it follows that∫̂ b

a
ĝ∧(x̂)×̂d̂x̂ ≤ 0.

From here and (7.0.1) we get

m ≤
∫̂ b
af̂
∧(x̂)×̂ĝ∧(x̂)×̂d̂x̂∫̂ b
aĝ
∧(x̂)×̂d̂x̂

≤M.
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Let

µ =

∫̂ b
af̂
∧(x̂)×̂ĝ∧(x̂)×̂d̂x̂∫̂ b
aĝ
∧(x̂)×̂d̂x̂

.

Therefore ∫̂ b

a
f̂∧(x̂)×̂ĝ∧(x̂)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ∧(x̂)×̂d̂x̂

Exercise 7.0.438. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x̂)×̂ĝ∧(x̂)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ∧(x̂)×̂d̂x̂.

Exercise 7.0.439. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x̂)×̂ĝ∧(x̂)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ∧(x̂)×̂d̂x̂.

Exercise 7.0.440. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x̂)×̂ĝ∧(x̂)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ∧(x̂)×̂d̂x̂.

Exercise 7.0.441. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x̂)×̂ĝ∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ∧(x)×̂d̂x̂.

Exercise 7.0.442. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),
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T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x̂)×̂ĝ∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ∧(x)×̂d̂x̂.

Exercise 7.0.443. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x̂)×̂ĝ∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ∧(x)×̂d̂x̂.

Exercise 7.0.444. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x̂)×̂ĝ∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ∧(x)×̂d̂x̂.

Exercise 7.0.445. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x̂)×̂ĝ(x̂)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂.

Exercise 7.0.446. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x̂)×̂ĝ(x̂)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂.

Exercise 7.0.447. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x̂)×̂ĝ(x̂)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂.
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Exercise 7.0.448. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x̂)×̂ĝ(x̂)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂.

Exercise 7.0.449. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x̂)×̂g∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂.

Exercise 7.0.450. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x̂)×̂g∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂.

Exercise 7.0.451. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x̂)×̂g∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂.

Exercise 7.0.452. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x̂)×̂g∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂.

Exercise 7.0.453. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x)×̂ĝ∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ∧(x)×̂d̂x̂.
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Exercise 7.0.454. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x)×̂ĝ∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ∧(x)×̂d̂x̂.

Exercise 7.0.455. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x)×̂ĝ∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ∧(x)×̂d̂x̂.

Exercise 7.0.456. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x)×̂ĝ∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ∧(x)×̂d̂x̂.

Exercise 7.0.457. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x)×̂ĝ(x̂)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂.

Exercise 7.0.458. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x)×̂ĝ(x̂)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂.

Exercise 7.0.459. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x)×̂ĝ(x̂)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂.
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Exercise 7.0.460. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x)×̂ĝ(x̂)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂.

Exercise 7.0.461. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x)×̂g∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂.

Exercise 7.0.462. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x)×̂g∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂.

Exercise 7.0.463. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x)×̂g∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂.

Exercise 7.0.464. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂∧(x)×̂g∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂.

Exercise 7.0.465. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂(x̂)×̂ĝ(x̂)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂.
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Exercise 7.0.466. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂(x̂)×̂ĝ(x̂)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂.

Exercise 7.0.467. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂(x̂)×̂ĝ(x̂)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂.

Exercise 7.0.468. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂(x̂)×̂ĝ(x̂)×̂d̂x̂ = µ̂×̂

∫̂ b

a
ĝ(x̂)×̂d̂x̂.

Exercise 7.0.469. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂(x̂)×̂g∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂.

Exercise 7.0.470. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂(x̂)×̂g∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂.

Exercise 7.0.471. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂(x̂)×̂g∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂.
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Exercise 7.0.472. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f̂(x̂)×̂g∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂.

Exercise 7.0.473. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f∧(x)×̂g∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂.

Exercise 7.0.474. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f∧(x)×̂g∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂.

Exercise 7.0.475. Let f and g are integrable functions on [a, b], g(x) ≤ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f∧(x)×̂g∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂.

Exercise 7.0.476. Let f and g are integrable functions on [a, b], g(x) ≥ 0
for every x ∈ [a, b], m = infx∈[a,b] f(x), M = supx∈[a,b] f(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then there exists µ ∈ R
such that ∫̂ b

a
f∧(x)×̂g∧(x)×̂d̂x̂ = µ̂×̂

∫̂ b

a
g∧(x)×̂d̂x̂.
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Theorem 7.0.477. Let f and g are integrable functions on [a, b], T̂ ∈
C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then

(∫̂ b

a
f̂∧(x̂)×̂ĝ∧(x̂)×̂d̂x̂

)2̂
≤
∫̂ b

a
f̂∧2̂(x̂)×̂d̂x̂×̂

∫̂ b

a
ĝ∧2̂(x̂)×̂d̂x̂.

Proof. Let λ̂ ∈ F̂R is arbitrary chosen. Then∫̂ b
a

(
f̂∧(x̂) + λ̂×̂ĝ∧(x̂)

)2̂
×̂d̂x̂

=
∫ b
a (f(x) + λg(x))2 T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx

=
∫ b
a

(
(f2(x) + 2λf(x)g(x) + λ2g2(x)

)
T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx

=
∫ b
a f

2(x) T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx+ 2λ

∫ b
a f(x)g(x) T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx

+λ2
∫ b
a g

2(x) T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx.

(7.0.2)

Let

α =
∫ b
a g

2(x) T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx, β =

∫ b
a f(x)g(x) T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx,

γ =
∫ b
a f

2(x) T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx.

From here and (7.0.2) we get

∫̂ b
a

(
f̂∧(x̂) + λ̂×̂ĝ∧(x̂)

)2̂
×̂d̂x̂ = α2λ2 + 2βλ+ γ.

Since
T̂ (x)− xT̂ ′(x) ≤ 0 for ∀x ∈ [a, b]

and λ ∈ F̂R was arbitrary chose we get that∫̂ b

a

(
f̂∧(x̂) + λ̂×̂ĝ∧(x̂)

)2̂
×̂d̂x̂ ≤ 0
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and the inequality

αλ2 + 2βλ+ γ ≤ 0

is valid for every λ ∈ R. Therefore, using that α ≤ 0, we obtain

β2 ≤ αγ,

from where(∫ b
a f(x)g(x) T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx
)2
≤
(∫ b

a f
2(x) T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx
)( ∫ b

a g
2(x) T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx
)
,

which is equivalent of

(∫̂ b

a
f̂∧(x̂)×̂ĝ∧(x̂)×̂d̂x̂

)2̂
≤
∫̂ b

a
f̂∧2̂(x̂)×̂d̂x̂×̂

∫̂ b

a
ĝ∧2̂(x̂)×̂d̂x̂.

Exercise 7.0.478. Let f and g are integrable functions on [a, b], T̂ ∈
C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then

(∫̂ b

a
f̂∧(x̂)×̂ĝ∧(x̂)×̂d̂x̂

)2̂
≤
∫̂ b

a
f̂∧2̂(x̂)×̂d̂x̂×̂

∫̂ b

a
ĝ∧2̂(x̂)×̂d̂x̂.

Exercise 7.0.479. Let f and g are integrable functions on [a, b], T̂ ∈
C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then

(∫̂ b

a
f̂∧(x̂)×̂ĝ∧(x)×̂d̂x̂

)2̂
≤
∫̂ b

a
f̂∧2̂(x̂)×̂d̂x̂×̂

∫̂ b

a
ĝ∧2̂(x)×̂d̂x̂.

Exercise 7.0.480. Let f and g are integrable functions on [a, b], T̂ ∈
C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≤ 0 for every x ∈ [a, b]. Then

(∫̂ b

a
f̂∧(x̂)×̂ĝ(x̂)×̂d̂x̂

)2̂
≤
∫̂ b

a
f̂∧2̂(x̂)×̂d̂x̂×̂

∫̂ b

a
ĝ2̂(x̂)×̂d̂x̂.

Exercise 7.0.481. Let f and g are integrable functions on [a, b], T̂ ∈
C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then

(∫̂ b

a
f̂∧(x̂)×̂g∧(x)×̂d̂x̂

)2̂
≤
∫̂ b

a
f̂∧2̂(x̂)×̂d̂x̂×̂

∫̂ b

a
g∧2̂(x)×̂d̂x̂.
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Exercise 7.0.482. Let f and g are integrable functions on [a, b], T̂ ∈
C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then

(∫̂ b

a
f̂∧(x̂)×̂g∧(x)×̂d̂x̂

)2̂
≤
∫̂ b

a
f̂∧2̂(x̂)×̂d̂x̂×̂

∫̂ b

a
g∧2̂(x)×̂d̂x̂.

Exercise 7.0.483. Let f and g are integrable functions on [a, b], T̂ ∈
C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then

(∫̂ b

a
f̂∧(x)×̂ĝ∧(x)×̂d̂x̂

)2̂
≤
∫̂ b

a
f̂∧2̂(x)×̂d̂x̂×̂

∫̂ b

a
ĝ∧2̂(x)×̂d̂x̂.

Exercise 7.0.484. Let f and g are integrable functions on [a, b], T̂ ∈
C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then

(∫̂ b

a
f̂∧(x)×̂ĝ∧(x)×̂d̂x̂

)2̂
≤
∫̂ b

a
f̂∧2̂(x)×̂d̂x̂×̂

∫̂ b

a
ĝ∧2̂(x)×̂d̂x̂.

Exercise 7.0.485. Let f and g are integrable functions on [a, b], T̂ ∈
C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then

(∫̂ b

a
f̂∧(x)×̂ĝ(x̂)×̂d̂x̂

)2̂
≤
∫̂ b

a
f̂∧2̂(x)×̂d̂x̂×̂

∫̂ b

a
ĝ2̂(x̂)×̂d̂x̂.

Exercise 7.0.486. Let f and g are integrable functions on [a, b], T̂ ∈
C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then

(∫̂ b

a
f̂∧(x)×̂ĝ(x̂)×̂d̂x̂

)2̂
≤
∫̂ b

a
f̂∧2̂(x)×̂d̂x̂×̂

∫̂ b

a
ĝ2̂(x̂)×̂d̂x̂.

Exercise 7.0.487. Let f and g are integrable functions on [a, b], T̂ ∈
C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then

(∫̂ b

a
f̂∧(x)×̂g∧(x)×̂d̂x̂

)2̂
≤
∫̂ b

a
f̂∧2̂(x)×̂d̂x̂×̂

∫̂ b

a
g∧2̂(x)×̂d̂x̂.

Exercise 7.0.488. Let f and g are integrable functions on [a, b], T̂ ∈
C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then

(∫̂ b

a
f̂∧(x)×̂g∧(x)×̂d̂x̂

)2̂
≤
∫̂ b

a
f̂∧2̂(x)×̂d̂x̂×̂

∫̂ b

a
g∧2̂(x)×̂d̂x̂.
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Exercise 7.0.489. Let f and g are integrable functions on [a, b], T̂ ∈
C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then

(∫̂ b

a
f̂(x̂)×̂ĝ(x̂)×̂d̂x̂

)2̂
≤
∫̂ b

a
f̂ 2̂(x̂)×̂d̂x̂×̂

∫̂ b

a
ĝ2̂(x̂)×̂d̂x̂.

Exercise 7.0.490. Let f and g are integrable functions on [a, b], T̂ ∈
C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then

(∫̂ b

a
f̂(x̂)×̂ĝ(x̂)×̂d̂x̂

)2̂
≤
∫̂ b

a
f̂ 2̂(x̂)×̂d̂x̂×̂

∫̂ b

a
ĝ2̂(x̂)×̂d̂x̂.

Exercise 7.0.491. Let f and g are integrable functions on [a, b], T̂ ∈
C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then

(∫̂ b

a
f̂(x̂)×̂ĝ(x̂)×̂d̂x̂

)2̂
≤
∫̂ b

a
f̂ 2̂(x̂)×̂d̂x̂×̂

∫̂ b

a
ĝ2̂(x̂)×̂d̂x̂.

Exercise 7.0.492. Let f and g are integrable functions on [a, b], T̂ ∈
C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then

(∫̂ b

a
f̂(x̂)×̂g∧(x)×̂d̂x̂

)2̂
≤
∫̂ b

a
f̂ 2̂(x̂)×̂d̂x̂×̂

∫̂ b

a
g∧2̂(x)×̂d̂x̂.

Exercise 7.0.493. Let f and g are integrable functions on [a, b], T̂ ∈
C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then

(∫̂ b

a
f∧(x)×̂g∧(x)×̂d̂x̂

)2̂
≤
∫̂ b

a
f∧2̂(x̂)×̂d̂x̂×̂

∫̂ b

a
g∧2̂(x)×̂d̂x̂.

Exercise 7.0.494. Let f and g are integrable functions on [a, b], T̂ ∈
C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 for every x ∈ [a, b]. Then

(∫̂ b

a
f∧(x)×̂g∧(x)×̂d̂x̂

)2̂
≤
∫̂ b

a
f∧2̂(x̂)×̂d̂x̂×̂

∫̂ b

a
g∧2̂(x)×̂d̂x̂.
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Theorem 7.0.495. Let f is an integrable function on [a, b] and differen-
tiable at x0 ∈ [a, b]. Then the isofunction

F̂ (x) =

∫̂ x

a
f̂∧(t̂)×̂d̂t̂

is isodifferentiable at the point x0 and

d̂
(∫̂ x

a
f̂∧(t̂)×̂d̂t̂

)
↗ d̂x̂

∣∣∣
x=x0

= f̂∧(x̂0).

Proof. We have

d̂
(∫̂ x

af̂
∧(t̂)×̂d̂t̂

)
↗ d̂x̂ = 1

T̂ (x)

d̂

(∫̂ x
a f̂
∧(t̂)×̂d̂t̂

)
d̂x̂

= 1
T̂ (x)

T̂ (x)d

(∫ x
a f(t)

T̂ (t)−tT̂ ′(t)
T̂2(t)

dt

)
(

1−x T̂
′(x)
T̂ (x)

)
dx

=

(∫ x
a f(t)

T̂ (t)−tT̂ ′(t)
T̂2(t)

)′
dx(

1−x T̂
′(x)
T̂ (x)

)
dx

=
f(x)

T̂ (x)−xT̂ ′(x)
T̂2(x)

1−x T̂
′(x)
T̂ (x)

= f(x)

T̂ (x)
= f̂∧(x̂).

From here

d̂
(∫̂ x

a
f̂∧(t̂)×̂d̂t̂

)
↗ d̂x̂

∣∣∣
x=x0

= f̂∧(x̂0).

Exercise 7.0.496. Let f is an integrable function on [a, b] and differentiable



233

at x0 ∈ [a, b]. Prove that the isofunction

F̂ (x) =

∫̂ x

a
f̂∧(t)×̂d̂t̂

is isodifferentiable at the point x0 and

d̂
(∫̂ x

a
f̂∧(t)×̂d̂t̂

)
↗ d̂x̂

∣∣∣
x=x0

= f̂∧(x0).

Exercise 7.0.497. Let f is an integrable function on [a, b] and differentiable
at x0 ∈ [a, b]. Prove that the isofunction

F̂ (x) =

∫̂ x

a
f̂(t̂)×̂d̂t̂

is isodifferentiable at the point x0 and

d̂
(∫̂ x

a
f̂(t̂)×̂d̂t̂

)
↗ d̂x̂

∣∣∣
x=x0

= f̂(x̂0).

Exercise 7.0.498. Let f is an integrable function on [a, b] and differentiable
at x0 ∈ [a, b]. Prove that the isofunction

F̂ (x) =

∫̂ x

a
f∧(t)×̂d̂t̂

is isodifferentiable at the point x0 and

d̂
(∫̂ x

a
f∧(t)×̂d̂t̂

)
↗ d̂x̂

∣∣∣
x=x0

= f∧(x0).

Definition 7.0.499. (isoinetgrable isofunction) When we say that an iso-
function of first, second, third or fourth kind is an isointegrable function on
[a, b] we will have in mind the the isointegral∫̂ b

a
f̂(x)×̂d̂x̂

exists.
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Definition 7.0.500. Let f̂ : [a, b) −→ R is an isointegrable isofunction of
first, second, third or fourth kind in every interval [a, η] ⊂ [a, b) and eventual
unbounded in a neighbourhood of b. Then the isointegral∫̂ η

a
f̂(x)×̂d̂x̂

exists for every η ∈ [a, b). If there exists

lim
η−→b−0

∫̂ η

a
f̂(x)×̂d̂x̂ (7.0.3)

then it is called improper isointegral of f̂ in [a, b] and it will be denoted with∫̂ b

a
f̂(x)×̂d̂x̂.

Definition 7.0.501. Let f̂ : (a, b] −→ R is an isointegrable isofunction of
first, second, third or fourth kind in every interval [η, b] ⊂ (a, b] and eventual
unbounded in a neighbourhood of a. Then the isointegral∫̂ b

η
f̂(x)×̂d̂x̂

exists for every η ∈ (a, b]. If there exists

lim
η−→a+0

∫̂ b

η
f̂(x)×̂d̂x̂ (7.0.4)

then it is called improper isointegral of f̂ in [a, b] and it will be denoted with∫̂ b

a
f̂(x)×̂d̂x̂.
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Definition 7.0.502. Let f̂ : [a,∞) −→ R is an isointegrable isofunction of
first, second, third or fourth kind in every interval [a, η] ⊂ [a,∞). Then the
isointegral ∫̂ η

a
f̂(x)×̂d̂x̂

exists for every η ∈ [a,∞). If there exists

lim
η−→∞

∫̂ η

a
f̂(x)×̂d̂x̂

then it is called improper isointegral of f̂ in [a,∞) and it will be denoted
with ∫̂ ∞

a
f̂(x)×̂d̂x̂.

Analogously, it is defined the improper isointegral∫̂ a

−∞
f̂(x)×̂d̂x̂

and we define∫̂ ∞
−∞

f̂(x)×̂d̂x̂ =

∫̂ ∞
a
f̂(x)×̂d̂x̂+

∫̂ a

−∞
f̂(x)×̂d̂x̂.

From the above definitions it follows that every cases of improper isointegrals
is reduced to (7.0.3), (7.0.4). To consider every one of them simultaneously
we will say the symbol ∫̂ b

a
f̂(x)×̂d̂x̂ (7.0.5)

improper isointegral of f̂ with unique singular point b if

1) f̂ is isointegrable on every [a, η] for every η ∈ [a, b) and f̂ or T̂ (x)−xT̂ ′(x)
is unbounded at b

or

2) f̂ is an isointegrable on [a, η] for every η ∈ [a,+∞).



236 CHAPTER 7. ISOINTEGRALS

Exercise 7.0.503. Prove that the improper isointegral satisfies the linear
property.

Theorem 7.0.504. Let T̂ is positive and differentiable on [a, b]. If f and
T̂ (x)−xT̂ ′(x)

T̂ 2(x)
are integrable on [a, b] then there exists

∫̂ b
af̂
∧(x̂)×̂d̂x̂.

Proof. The proof follows from the fact that the multiplication of two inte-
grable functions is an integrable function.

Exercise 7.0.505. Let T̂ is positive and differentiable on [a, b], xT̂ (x) ∈
[a, b] for every x ∈ [a, b]. If f and T̂ (x)−xT̂ ′(x)

T̂ 2(x)
are integrable on [a, b] then

there exists
∫̂ b
af̂
∧(x)×̂d̂x̂.

Exercise 7.0.506. Let T̂ is positive and differentiable on [a, b], x
T̂ (x)
∈ [a, b]

for every x ∈ [a, b]. If f and T̂ (x)−xT̂ ′(x)

T̂ 2(x)
are integrable on [a, b] then there

exists
∫̂ b
af̂(x̂)×̂d̂x̂.

Exercise 7.0.507. Let T̂ is positive and differentiable on [a, b], xT̂ (x) ∈
[a, b] for every x ∈ [a, b]. If f and T̂ (x)−xT̂ ′(x)

T̂ (x)
are integrable on [a, b] then

there exists
∫̂ b
af
∧(x)×̂d̂x̂.

Definition 7.0.508. The improper isointegral (7.0.5) will be called abso-
lutely convergent isointegral if∫̂ b

a
|f̂(x)|×̂|d̂x̂| <∞.
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Theorem 7.0.509. Let (7.0.5) is absolutely convergent. Then it is conver-
gent.

Proof. ∣∣∣∫̂ b

a
f̂(x)×̂d̂x̂

∣∣∣ ≤ ∫̂ b

a
|f̂(x)|×̂|d̂x̂| <∞.

Theorem 7.0.510. Let the improper isointegrals∫̂ b

a
f̂∧(x̂)×̂d̂x̂ (7.0.6)

and ∫̂ b

a
ĝ∧(x̂)×̂d̂x̂ (7.0.7)

have the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f(x) ≤ g(x), T̂ ∈ C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≤ 0.

Then from the convergence of (7.0.7) it follows the convergence of (7.0.6)
and from the divergence of (7.0.6) it follows the divergence of (7.0.7).

Proof. Since

0 ≤ f(x) ≤ g(x), T̂ (x)− xT̂ ′(x ≤ 0 ∀x ∈ [a, b],

it follows

g(x)(T̂ (x)− xT̂ ′(x)) ≤ f(x)(T̂ (x)− xT̂ ′(x)) ≤ 0 for ∀x ∈ [a, b],

from where

g(x)(T̂ (x)− xT̂ ′(x))

T̂ 2(x)
≤ f(x)(T̂ (x)− xT̂ ′(x))

T̂ 2(x)
≤ 0 for ∀x ∈ [a, b],
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Therefore∫ b

a

g(x)(T̂ (x)− xT̂ ′(x))

T̂ 2(x)
dx ≤

∫ b

a

f(x)(T̂ (x)− xT̂ ′(x))

T̂ 2(x)
dx ≤ 0 for ∀x ∈ [a, b],

or ∫̂ b

a
ĝ∧(x̂)×̂d̂x̂ ≤

∫̂ b

a
f̂∧(x̂)×̂d̂x̂ ≤ 0. (7.0.8)

If ∫̂ b

a
f̂∧(x̂)×̂d̂x̂ = −∞,

then from (7.0.8), it follows∫̂ b

a
ĝ∧(x̂)×̂d̂x̂ = −∞.

If ∫̂ b

a
ĝ∧(x̂)×̂d̂x̂ > −∞,

using (7.0.8), we get

−∞ <

∫̂ b

a
f̂∧(x̂)×̂d̂x̂ ≤ 0.

Exercise 7.0.511. Let the improper isointegrals (7.0.6) and (7.0.7) have
the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f(x) ≤ g(x), T̂ ∈ C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0.

Then from the convergence of (7.0.7) it follows the convergence of (7.0.6)
and from the divergence of (7.0.6) it follows the divergence of (7.0.7).

Exercise 7.0.512. Let the improper isointegrals∫̂ b

a
f̂∧(x)×̂d̂x̂ (7.0.9)

and ∫̂ b

a
ĝ∧(x)×̂d̂x̂ (7.0.10)
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has the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f(x) ≤ g(x), T̂ ∈ C1([a, b]), T̂ (x) > 0, xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≤ 0.

Then from the convergence of (7.0.9) it follows the convergence of (7.0.10)
and from the divergence of (7.0.9) it follows the divergence of (7.0.10).

Exercise 7.0.513. Let the improper isointegrals (7.0.9) and (7.0.10) have
the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f(x) ≤ g(x), T̂ ∈ C1([a, b]), T̂ (x) > 0, xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≥ 0.

Then from the convergence of (7.0.10) it follows the convergence of (7.0.9)
and from the divergence of (7.0.9) it follows the divergence of (7.0.10).

Exercise 7.0.514. Let the improper isointegrals∫̂ b

a
f̂(x̂)×̂d̂x̂ (7.0.11)

and ∫̂ b

a
ĝ(x̂)×̂d̂x̂ (7.0.12)

has the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f(x) ≤ g(x), T̂ ∈ C1([a, b]), T̂ (x) > 0,
x

T̂ (x)
∈ [a, b], T̂ (x)− xT̂ ′(x) ≤ 0.

Then from the convergence of (7.0.11) it follows the convergence of (7.0.12)
and from the divergence of (7.0.11) it follows the divergence of (7.0.12).

Exercise 7.0.515. Let the improper isointegrals (7.0.11) and (7.0.12) have
the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f(x) ≤ g(x), T̂ ∈ C1([a, b]), T̂ (x) > 0,
x

T̂ (x)
∈ [a, b], T̂ (x)− xT̂ ′(x) ≥ 0.

Then from the convergence of (7.0.12) it follows the convergence of (7.0.11)
and from the divergence of (7.0.11) it follows the divergence of (7.0.12).

Exercise 7.0.516. Let the improper isointegrals∫̂ b

a
f∧(x)×̂d̂x̂ (7.0.13)
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and ∫̂ b

a
g∧(x)×̂d̂x̂ (7.0.14)

has the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f(x) ≤ g(x), T̂ ∈ C1([a, b]), T̂ (x) > 0, xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≤ 0.

Then from the convergence of (7.0.13) it follows the convergence of (7.0.14)
and from the divergence of (7.0.13) it follows the divergence of (7.0.14).

Exercise 7.0.517. Let the improper isointegrals (7.0.13) and (7.0.14) have
the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f(x) ≤ g(x), T̂ ∈ C1([a, b]), T̂ (x) > 0, xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≥ 0.

Then from the convergence of (7.0.14) it follows the convergence of (7.0.13)
and from the divergence of (7.0.13) it follows the divergence of (7.0.14).

Exercise 7.0.518. Let the improper isointegrals∫̂ b

a
f̂∧(x̂)×̂d̂x̂ (7.0.15)

and ∫̂ b

a
ĝ∧(x)×̂d̂x̂ (7.0.16)

has the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f(x) ≤ g(xT̂ (x)), T̂ ∈ C1([a, b]), T̂ (x) > 0,

xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≤ 0.

Then from the convergence of (7.0.15) it follows the convergence of (7.0.16)
and from the divergence of (7.0.15) it follows the divergence of (7.0.16).

Exercise 7.0.519. Let the improper isointegrals (7.0.15) and (7.0.16) have
the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f(x) ≤ g(xT̂ (x)), T̂ ∈ C1([a, b]), T̂ (x) > 0,

xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≥ 0.

Then from the convergence of (7.0.16) it follows the convergence of (7.0.15)
and from the divergence of (7.0.15) it follows the divergence of (7.0.16).
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Exercise 7.0.520. Let the improper isointegrals∫̂ b

a
f̂∧(x̂)×̂d̂x̂ (7.0.17)

and ∫̂ b

a
ĝ(x̂)×̂d̂x̂ (7.0.18)

has the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f(x) ≤ g
(

x
T̂ (x)

)
, T̂ ∈ C1([a, b]), T̂ (x) > 0,

x
T̂ (x)
∈ [a, b], T̂ (x)− xT̂ ′(x) ≤ 0.

Then from the convergence of (7.0.17) it follows the convergence of (7.0.18)
and from the divergence of (7.0.17) it follows the divergence of (7.0.18).

Exercise 7.0.521. Let the improper isointegrals (7.0.17) and (7.0.18) have
the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f(x) ≤ g
(

x
T̂ (x)

)
, T̂ ∈ C1([a, b]), T̂ (x) > 0,

x
T̂ (x)
∈ [a, b], T̂ (x)− xT̂ ′(x) ≥ 0.

Then from the convergence of (7.0.18) it follows the convergence of (7.0.17)
and from the divergence of (7.0.17) it follows the divergence of (7.0.18).

Exercise 7.0.522. Let the improper isointegrals∫̂ b

a
f̂∧(x̂)×̂d̂x̂ (7.0.19)

and ∫̂ b

a
g∧(x)×̂d̂x̂ (7.0.20)

has the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f(x)

T̂ (x)
≤ g(xT̂ (x)), T̂ ∈ C1([a, b]), T̂ (x) > 0,

xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≤ 0.

Then from the convergence of (7.0.19) it follows the convergence of (7.0.20)
and from the divergence of (7.0.19) it follows the divergence of (7.0.20).
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Exercise 7.0.523. Let the improper isointegrals (7.0.19) and (7.0.20) have
the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f(x)

T̂ (x)
≤ g(xT̂ (x)), T̂ ∈ C1([a, b]), T̂ (x) > 0,

x
T̂ (x)
∈ [a, b], T̂ (x)− xT̂ ′(x) ≥ 0.

Then from the convergence of (7.0.19) it follows the convergence of (7.0.20)
and from the divergence of (7.0.19) it follows the divergence of (7.0.20).

Exercise 7.0.524. Let the improper isointegrals∫̂ b

a
f̂∧(x)×̂d̂x̂ (7.0.21)

and ∫̂ b

a
ĝ∧(x̂)×̂d̂x̂ (7.0.22)

has the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f(xT̂ (x)) ≤ g(x), T̂ ∈ C1([a, b]), T̂ (x) > 0,

xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≤ 0.

Then from the convergence of (7.0.21) it follows the convergence of (7.0.22)
and from the divergence of (7.0.21) it follows the divergence of (7.0.22).

Exercise 7.0.525. Let the improper isointegrals (7.0.21) and (7.0.22) have
the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f(xT̂ (x)) ≤ g(x), T̂ ∈ C1([a, b]), T̂ (x) > 0,

xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≥ 0.

Then from the convergence of (7.0.21) it follows the convergence of (7.0.22)
and from the divergence of (7.0.21) it follows the divergence of (7.0.22).

Exercise 7.0.526. Let the improper isointegrals∫̂ b

a
f̂∧(x)×̂d̂x̂ (7.0.23)
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and ∫̂ b

a
ĝ(x̂)×̂d̂x̂ (7.0.24)

has the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f(xT̂ (x)) ≤ g
(

x
T̂ (x)

)
, T̂ ∈ C1([a, b]), T̂ (x) > 0,

x
T̂ (x)
∈ [a, b], xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≤ 0.

Then from the convergence of (7.0.23) it follows the convergence of (7.0.24)
and from the divergence of (7.0.23) it follows the divergence of (7.0.24).

Exercise 7.0.527. Let the improper isointegrals (7.0.23) and (7.0.24) have
the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f(xT̂ (x)) ≤ g
(

x
T̂ (x)

)
, T̂ ∈ C1([a, b]), T̂ (x) > 0,

x
T̂ (x)
∈ [a, b], xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≥ 0.

Then from the convergence of (7.0.23) it follows the convergence of (7.0.24)
and from the divergence of (7.0.23) it follows the divergence of (7.0.24).

Exercise 7.0.528. Let the improper isointegrals∫̂ b

a
f̂∧(x)×̂d̂x̂ (7.0.25)

and ∫̂ b

a
g∧(x)×̂d̂x̂ (7.0.26)

has the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f(xT̂ (x))

T̂ (x)
≤ g(xT̂ (x)), T̂ ∈ C1([a, b]),

T̂ (x) > 0, xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≤ 0.

Then from the convergence of (7.0.25) it follows the convergence of (7.0.26)
and from the divergence of (7.0.25) it follows the divergence of (7.0.26).
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Exercise 7.0.529. Let the improper isointegrals (7.0.25) and (7.0.26) have
the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f(xT̂ (x))

T̂ (x)
≤ g(xT̂ (x)), T̂ ∈ C1([a, b]), T̂ (x) > 0,

xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≥ 0.

Then from the convergence of (7.0.25) it follows the convergence of (7.0.26)
and from the divergence of (7.0.25) it follows the divergence of (7.0.26).

Exercise 7.0.530. Let the improper isointegrals∫̂ b

a
f̂(x̂)×̂d̂x̂ (7.0.27)

and ∫̂ b

a
ĝ∧(x̂)×̂d̂x̂ (7.0.28)

has the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f
(

x
T̂ (x)

)
≤ g(x), T̂ ∈ C1([a, b]), T̂ (x) > 0,

x
T̂ (x)
∈ [a, b], T̂ (x)− xT̂ ′(x) ≤ 0.

Then from the convergence of (7.0.27) it follows the convergence of (7.0.28)
and from the divergence of (7.0.27) it follows the divergence of (7.0.28).

Exercise 7.0.531. Let the improper isointegrals (7.0.27) and (7.0.28) have
the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f
(

x
T̂ (x)

)
≤ g(x), T̂ ∈ C1([a, b]), T̂ (x) > 0,

x
T̂ (x)
∈ [a, b], T̂ (x)− xT̂ ′(x) ≥ 0.

Then from the convergence of (7.0.27) it follows the convergence of (7.0.28)
and from the divergence of (7.0.27) it follows the divergence of (7.0.28).

Exercise 7.0.532. Let the improper isointegrals∫̂ b

a
f̂(x̂)×̂d̂x̂ (7.0.29)
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and ∫̂ b

a
ĝ∧(x)×̂d̂x̂ (7.0.30)

has the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f
(

x
T̂ (x)

)
≤ g(xT̂ (x)), T̂ ∈ C1([a, b]), T̂ (x) > 0,

xT̂ (x) ∈ [a, b], x
T̂ (x)
∈ [a, b], T̂ (x)− xT̂ ′(x) ≤ 0.

Then from the convergence of (7.0.29) it follows the convergence of (7.0.30)
and from the divergence of (7.0.29) it follows the divergence of (7.0.30).

Exercise 7.0.533. Let the improper isointegrals (7.0.29) and (7.0.30) have
the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f
(

x
T̂ (x)

)
≤ g(xT̂ (x)), T̂ ∈ C1([a, b]), T̂ (x) > 0,

xT̂ (x) ∈ [a, b], x
T̂ (x)
∈ [a, b], T̂ (x)− xT̂ ′(x) ≥ 0.

Then from the convergence of (7.0.29) it follows the convergence of (7.0.30)
and from the divergence of (7.0.29) it follows the divergence of (7.0.30).

Exercise 7.0.534. Let the improper isointegrals∫̂ b

a
f̂(x̂)×̂d̂x̂ (7.0.31)

and ∫̂ b

a
ĝ(x̂)×̂d̂x̂ (7.0.32)

has the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f
(

x
T̂ (x)

)
≤ g
(

x
T̂ (x)

)
, T̂ ∈ C1([a, b]),

T̂ (x) > 0, x
T̂ (x)
∈ [a, b], T̂ (x)− xT̂ ′(x) ≤ 0.

Then from the convergence of (7.0.31) it follows the convergence of (7.0.32)
and from the divergence of (7.0.31) it follows the divergence of (7.0.32).
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Exercise 7.0.535. Let the improper isointegrals (7.0.31) and (7.0.32) have
the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f
(

x
T̂ (x)

)
≤ g
(

x
T̂ (x)

)
, T̂ ∈ C1([a, b]),

T̂ (x) > 0, x
T̂ (x)
∈ [a, b], T̂ (x)− xT̂ ′(x) ≥ 0.

Then from the convergence of (7.0.31) it follows the convergence of (7.0.32)
and from the divergence of (7.0.31) it follows the divergence of (7.0.32).

Exercise 7.0.536. Let the improper isointegrals∫̂ b

a
f̂(x̂)×̂d̂x̂ (7.0.33)

and ∫̂ b

a
g∧(x)×̂d̂x̂ (7.0.34)

has the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f
(

x
T̂ (x)

)
1

T̂ (x)
≤ g(xT̂ (x)), T̂ ∈ C1([a, b]), T̂ (x) > 0,

xT̂ (x) ∈ [a, b], x
T̂ (x)
∈ [a, b], T̂ (x)− xT̂ ′(x) ≤ 0.

Then from the convergence of (7.0.33) it follows the convergence of (7.0.34)
and from the divergence of (7.0.33) it follows the divergence of (7.0.34).

Exercise 7.0.537. Let the improper isointegrals (7.0.33) and (7.0.34) have
the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f
(

x
T̂ (x)

)
1

T̂ (x)
≤ g(x), T̂ ∈ C1([a, b]), T̂ (x) > 0,

xT̂ (x) ∈ [a, b], x
T̂ (x)
∈ [a, b], T̂ (x)− xT̂ ′(x) ≥ 0.

Then from the convergence of (7.0.33) it follows the convergence of (7.0.34)
and from the divergence of (7.0.33) it follows the divergence of (7.0.34).

Exercise 7.0.538. Let the improper isointegrals∫̂ b

a
f∧(x)×̂d̂x̂ (7.0.35)
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and ∫̂ b

a
ĝ∧(x̂)×̂d̂x̂ (7.0.36)

has the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f
(
xT̂ (x)

)
≤ g(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≤ 0.

Then from the convergence of (7.0.35) it follows the convergence of (7.0.36)
and from the divergence of (7.0.35) it follows the divergence of (7.0.36).

Exercise 7.0.539. Let the improper isointegrals (7.0.35) and (7.0.36) have
the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f
(
xT̂ (x)

)
≤ g(x), T̂ ∈ C1([a, b]),

T̂ (x) > 0, xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≥ 0.

Then from the convergence of (7.0.35) it follows the convergence of (7.0.36)
and from the divergence of (7.0.35) it follows the divergence of (7.0.36).

Exercise 7.0.540. Let the improper isointegrals

∫̂ b

a
f∧(x)×̂d̂x̂ (7.0.37)

and ∫̂ b

a
ĝ∧(x)×̂d̂x̂ (7.0.38)

has the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f
(
xT̂ (x)

)
≤ g(xT̂ (x)), T̂ ∈ C1([a, b]),

T̂ (x) > 0, xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≤ 0.

Then from the convergence of (7.0.37) it follows the convergence of (7.0.38)
and from the divergence of (7.0.37) it follows the divergence of (7.0.38).
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Exercise 7.0.541. Let the improper isointegrals (7.0.37) and (7.0.38) have
the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f
(
xT̂ (x)

)
≤ g(xT̂ (x)), T̂ ∈ C1([a, b]), T̂ (x) > 0,

xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≥ 0.

Then from the convergence of (7.0.37) it follows the convergence of (7.0.38)
and from the divergence of (7.0.37) it follows the divergence of (7.0.38).

Exercise 7.0.542. Let the improper isointegrals∫̂ b

a
f∧(x)×̂d̂x̂ (7.0.39)

and ∫̂ b

a
g∧(x)×̂d̂x̂ (7.0.40)

has the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f
(
xT̂ (x)

)
1

T̂ (x)
≤ g(xT̂ (x)), T̂ ∈ C1([a, b]),

T̂ (x) > 0, xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≤ 0.

Then from the convergence of (7.0.39) it follows the convergence of (7.0.40)
and from the divergence of (7.0.39) it follows the divergence of (7.0.40).

Exercise 7.0.543. Let the improper isointegrals (7.0.39) and (7.0.40) have
the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f
(
xT̂ (x)

)
1

T̂ (x)
≤ g(xT̂ (x)), T̂ ∈ C1([a, b]),

T̂ (x) > 0, xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≥ 0.

Then from the convergence of (7.0.39) it follows the convergence of (7.0.40)
and from the divergence of (7.0.39) it follows the divergence of (7.0.40).

Exercise 7.0.544. Let the improper isointegrals∫̂ b

a
f∧(x)×̂d̂x̂ (7.0.41)
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and ∫̂ b

a
ĝ(x̂)×̂d̂x̂ (7.0.42)

has the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f
(
xT̂ (x)

)
≤ g
(

x
T̂ (x)

)
, T̂ ∈ C1([a, b]), T̂ (x) > 0,

x
T̂ (x)
∈ [a, b], xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≤ 0.

Then from the convergence of (7.0.41) it follows the convergence of (7.0.42)
and from the divergence of (7.0.41) it follows the divergence of (7.0.42).

Exercise 7.0.545. Let the improper isointegrals (7.0.41) and (7.0.42) have
the same singular point b. Let also for every x ∈ [a, b]

0 ≤ f
(
xT̂ (x)

)
≤ g
(

x
T̂ (x)

)
, T̂ ∈ C1([a, b]), T̂ (x) > 0,

x
T̂ (x)
∈ [a, b], xT̂ (x) ∈ [a, b], T̂ (x)− xT̂ ′(x) ≥ 0.

Then from the convergence of (7.0.41) it follows the convergence of (7.0.42)
and from the divergence of (7.0.41) it follows the divergence of (7.0.42).

Theorem 7.0.546. Let the improper integrals (7.0.6), (7.0.7) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≤ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f(x)

g(x)
= A > 0.

Then the isointegrals (7.0.6), (7.0.7) are simultaneously divergent or conver-
gent.

Proof. From limx−→b−0
f(x)
g(x) = A it follows that for every ε ∈ (0, A) there

exists c ∈ [a, b) such that∣∣∣f(x)

g(x)
−A

∣∣∣ < ε ⇐⇒ A− ε < f(x)

g(x)
< A+ ε



250 CHAPTER 7. ISOINTEGRALS

for every x ∈ (c, b), from here, since g(x) > 0 for every x ∈ [a, b), we get

(A− ε)g(x) ≤ f(x) ≤ (A+ ε)g(x) for ∀x ∈ (c, b),

and since
T̂ (x)− xT̂ ′(x) ≤ 0 for ∀x ∈ [a, b),

we obtain the inequalities

(A+ε)g(x)
T̂ (x)− xT̂ ′(x)

T̂ 2(x)
≤ f(x)

T̂ (x)− xT̂ ′(x)

T̂ 2(x)
≤ (A−ε)g(x)

T̂ (x)− xT̂ ′(x)

T̂ 2(x)

for every x ∈ (c, b). After we integrate the last inequalities from c to b we
get

̂(A+ ε)×̂
∫̂ b

c
ĝ∧(x̂)×̂d̂x̂ ≤

∫̂ b

c
f̂∧(x̂)×̂d̂x̂ ≤ ̂(A− ε)×̂×̂

∫̂ b

c
ĝ∧(x̂)×̂d̂x̂

and since the improper isointegrals (7.0.6) and (7.0.7) have unique singular
point at b, from the last inequalities we conclude that they are simultane-
ously divergent or convergent.

Exercise 7.0.547. Let the improper integrals (7.0.6), (7.0.7) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), T̂ (x) > 0,

T̂ (x)− xT̂ ′(x) ≥ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f(x)

g(x)
= A > 0.

Then the isointegrals (7.0.6), (7.0.7) are simultaneously divergent or conver-
gent.

Exercise 7.0.548. Let the improper integrals (7.0.9), (7.0.10) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b],

T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≤ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f(xT̂ (x))

g(xT̂ (x))
= A > 0.
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Then the isointegrals (7.0.9), (7.0.10) are simultaneously divergent or con-
vergent.

Exercise 7.0.549. Let the improper integrals (7.0.9), (7.0.10) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b],

T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f(xT̂ (x))

g(xT̂ (x))
= A > 0.

Then the isointegrals (7.0.9), (7.0.10) are simultaneously divergent or con-
vergent.

Exercise 7.0.550. Let the improper integrals (7.0.11), (7.0.12) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), x
T̂ (x)
∈ [a, b], T̂ (x) > 0,

T̂ (x)− xT̂ ′(x) ≤ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f
(

x
T̂ (x)

)
g
(

x
T̂ (x)

) = A > 0.

Then the isointegrals (7.0.11), (7.0.12) are simultaneously divergent or con-
vergent.

Exercise 7.0.551. Let the improper integrals (7.0.11), (7.0.12) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), x
T̂ (x)
∈ [a, b], T̂ (x) > 0,

T̂ (x)− xT̂ ′(x) ≥ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f
(

x
T̂ (x)

)
g
(

x
T̂ (x)

) = A > 0.

Then the isointegrals (7.0.11), (7.0.12) are simultaneously divergent or con-
vergent.
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Exercise 7.0.552. Let the improper integrals (7.0.13), (7.0.14) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], T̂ (x) > 0,

T̂ (x)− xT̂ ′(x) ≤ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f(xT̂ (x))

g(xT̂ (x))
= A > 0.

Then the isointegrals (7.0.13), (7.0.14) are simultaneously divergent or con-
vergent.

Exercise 7.0.553. Let the improper integrals (7.0.13), (7.0.14) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], T̂ (x) > 0,

T̂ (x)− xT̂ ′(x) ≥ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f(xT̂ (x))

g(xT̂ (x))
= A > 0.

Then the isointegrals (7.0.13), (7.0.14) are simultaneously divergent or con-
vergent.

Exercise 7.0.554. Let the improper integrals (7.0.15), (7.0.16) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b],

T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≤ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f(x)

g(xT̂ (x))
= A > 0.

Then the isointegrals (7.0.15), (7.0.16) are simultaneously divergent or con-
vergent.
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Exercise 7.0.555. Let the improper integrals (7.0.15), (7.0.16) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b],

T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f(x)

g(xT̂ (x))
= A > 0.

Then the isointegrals (7.0.15), (7.0.16) are simultaneously divergent or con-
vergent.

Exercise 7.0.556. Let the improper integrals (7.0.17), (7.0.18) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), x
T̂ (x)
∈ [a, b],

T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≤ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f(x)

g
(

x
T̂ (x)

) = A > 0.

Then the isointegrals (7.0.17), (7.0.18) are simultaneously divergent or con-
vergent.

Exercise 7.0.557. Let the improper integrals (7.0.17), (7.0.18) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), x
T̂ (x)
∈ [a, b],

T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f(x)

g
(

x
T̂ (x)

) = A > 0.

Then the isointegrals (7.0.17), (7.0.18) are simultaneously divergent or con-
vergent.
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Exercise 7.0.558. Let the improper integrals (7.0.19), (7.0.20) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], T̂ (x) > 0,

T̂ (x)− xT̂ ′(x) ≤ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f(x)

g(xT̂ (x))T̂ (x)
= A > 0.

Then the isointegrals (7.0.19), (7.0.20) are simultaneously divergent or con-
vergent.

Exercise 7.0.559. Let the improper integrals (7.0.19), (7.0.20) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], T̂ (x) > 0,

T̂ (x)− xT̂ ′(x) ≥ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f(x)

g(xT̂ (x))T̂ (x)
= A > 0.

Then the isointegrals (7.0.19), (7.0.20) are simultaneously divergent or con-
vergent.

Exercise 7.0.560. Let the improper integrals (7.0.21), (7.0.22) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], T̂ (x) > 0,

T̂ (x)− xT̂ ′(x) ≤ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f(xT̂ (x))

g(x)
= A > 0.

Then the isointegrals (7.0.21), (7.0.22) are simultaneously divergent or con-
vergent.
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Exercise 7.0.561. Let the improper integrals (7.0.21), (7.0.22) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], T̂ (x) > 0,

T̂ (x)− xT̂ ′(x) ≥ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f(xT̂ (x))

g(x)
= A > 0.

Then the isointegrals (7.0.21), (7.0.22) are simultaneously divergent or con-
vergent.

Exercise 7.0.562. Let the improper integrals (7.0.23), (7.0.24) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], x
T̂ (x)
∈ [a, b],

T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≤ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f(xT̂ (x))

g
(

x
T̂ (x)

) = A > 0.

Then the isointegrals (7.0.23), (7.0.24) are simultaneously divergent or con-
vergent.

Exercise 7.0.563. Let the improper integrals (7.0.23), (7.0.24) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], x
T̂ (x)
∈ [a, b], T̂ (x) > 0,

T̂ (x)− xT̂ ′(x) ≥ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f(xT̂ (x))

g
(

x
T̂ (x)

) = A > 0.

Then the isointegrals (7.0.23), (7.0.24) are simultaneously divergent or con-
vergent.
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Exercise 7.0.564. Let the improper integrals (7.0.25), (7.0.26) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], T̂ (x) > 0,

T̂ (x)− xT̂ ′(x) ≤ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f(xT̂ (x))

T̂ (x)g(xT̂ (x))
= A > 0.

Then the isointegrals (7.0.25), (7.0.26) are simultaneously divergent or con-
vergent.

Exercise 7.0.565. Let the improper integrals (7.0.25), (7.0.26) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], T̂ (x) > 0,

T̂ (x)− xT̂ ′(x) ≥ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f(xT̂ (x))

T̂ (x)g(xT̂ (x))
= A > 0.

Then the isointegrals (7.0.25), (7.0.26) are simultaneously divergent or con-
vergent.

Exercise 7.0.566. Let the improper integrals (7.0.27), (7.0.28) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), x
T̂ (x)
∈ [a, b],

T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≤ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f
(

x
T̂ (x)

)
g(x)

= A > 0.

Then the isointegrals (7.0.27), (7.0.28) are simultaneously divergent or con-
vergent.
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Exercise 7.0.567. Let the improper integrals (7.0.27), (7.0.28) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), x
T̂ (x)
∈ [a, b],

T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≥ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f
(

x
T̂ (x)

)
g(x)

= A > 0.

Then the isointegrals (7.0.27), (7.0.28) are simultaneously divergent or con-
vergent.

Exercise 7.0.568. Let the improper integrals (7.0.29), (7.0.30) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), x
T̂ (x)
∈ [a, b], xT̂ (x) ∈ [a, b],

T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≤ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f
(

x
T̂ (x)

)
g(xT̂ (x))

= A > 0.

Then the isointegrals (7.0.29), (7.0.30) are simultaneously divergent or con-
vergent.

Exercise 7.0.569. Let the improper integrals (7.0.29), (7.0.30) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), x
T̂ (x)
∈ [a, b], xT̂ (x) ∈ [a, b], T̂ (x) > 0,

T̂ (x)− xT̂ ′(x) ≥ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f
(

x
T̂ (x)

)
g(xT̂ (x))

= A > 0.

Then the isointegrals (7.0.29), (7.0.30) are simultaneously divergent or con-
vergent.
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Exercise 7.0.570. Let the improper integrals (7.0.31), (7.0.32) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), x
T̂ (x)
∈ [a, b], T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≤ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f
(

x
T̂ (x)

)
g
(

x
T̂ (x)

) = A > 0.

Then the isointegrals (7.0.31), (7.0.32) are simultaneously divergent or con-
vergent.

Exercise 7.0.571. Let the improper integrals (7.0.31), (7.0.32) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), x
T̂ (x)
∈ [a, b], T̂ (x)− xT̂ ′(x) ≥ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f
(

x
T̂ (x)

)
g
(

x
T̂ (x)

) = A > 0.

Then the isointegrals (7.0.31), (7.0.32) are simultaneously divergent or con-
vergent.

Exercise 7.0.572. Let the improper integrals (7.0.33), (7.0.34) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), x
T̂ (x)
∈ [a, b], xT̂ (x) ∈ [a, b],

T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≤ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f
(

x
T̂ (x)

)
T̂ (x)g(xT̂ (x))

= A > 0.

Then the isointegrals (7.0.33), (7.0.34) are simultaneously divergent or con-
vergent.

Exercise 7.0.573. Let the improper integrals (7.0.33), (7.0.34) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), x
T̂ (x)
∈ [a, b], xT̂ (x) ∈ [a, b], T̂ (x) > 0,

T̂ (x)− xT̂ ′(x) ≥ 0 ∀x ∈ [a, b),
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there exists

lim
x−→b−0

f
(

x
T̂ (x)

)
T̂ (x)g(xT̂ (x))

= A > 0.

Then the isointegrals (7.0.33), (7.0.34) are simultaneously divergent or con-
vergent.

Exercise 7.0.574. Let the improper integrals (7.0.35), (7.0.36) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b],

T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≤ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f
(
xT̂ (x)

)
g(x)

= A > 0.

Then the isointegrals (7.0.35), (7.0.36) are simultaneously divergent or con-
vergent.

Exercise 7.0.575. Let the improper integrals (7.0.35), (7.0.36) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], T̂ (x) > 0,

T̂ (x)− xT̂ ′(x) ≥ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f
(
xT̂ (x)

)
g(x)

= A > 0.

Then the isointegrals (7.0.35), (7.0.36) are simultaneously divergent or con-
vergent.

Exercise 7.0.576. Let the improper integrals (7.0.37), (7.0.38) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b],

T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≤ 0 ∀x ∈ [a, b),
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there exists

lim
x−→b−0

f
(
xT̂ (x)

)
g(xT̂ (x))

= A > 0.

Then the isointegrals (7.0.37), (7.0.38) are simultaneously divergent or con-
vergent.

Exercise 7.0.577. Let the improper integrals (7.0.37), (7.0.38) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], T̂ (x) > 0,

T̂ (x)− xT̂ ′(x) ≥ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f
(
xT̂ (x)

)
g(xT̂ (x))

= A > 0.

Then the isointegrals (7.0.37), (7.0.38) are simultaneously divergent or con-
vergent.

Exercise 7.0.578. Let the improper integrals (7.0.39), (7.0.40) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b],

T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≤ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f
(
xT̂ (x)

)
g(xT̂ (x))

= A > 0.

Then the isointegrals (7.0.39), (7.0.40) are simultaneously divergent or con-
vergent.

Exercise 7.0.579. Let the improper integrals (7.0.39), (7.0.40) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], T̂ (x) > 0,

T̂ (x)− xT̂ ′(x) ≥ 0 ∀x ∈ [a, b),
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there exists

lim
x−→b−0

f
(
xT̂ (x)

)
g(xT̂ (x))

= A > 0.

Then the isointegrals (7.0.39), (7.0.40) are simultaneously divergent or con-
vergent.

Exercise 7.0.580. Let the improper integrals (7.0.41), (7.0.42) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b],

x
T̂ (x)
∈ [a, b], T̂ (x) > 0, T̂ (x)− xT̂ ′(x) ≤ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f
(
xT̂ (x)

)
g
(

x
T̂ (x)

) = A > 0.

Then the isointegrals (7.0.41), (7.0.42) are simultaneously divergent or con-
vergent.

Exercise 7.0.581. Let the improper integrals (7.0.41), (7.0.42) have unique
singular point at b. Let also

f(x) > 0, g(x) > 0, T̂ ∈ C1([a, b]), xT̂ (x) ∈ [a, b], T̂ (x) > 0,

x
T̂ (x)
∈ [a, b], T̂ (x)− xT̂ ′(x) ≥ 0 ∀x ∈ [a, b),

there exists

lim
x−→b−0

f
(
xT̂ (x)

)
g
(

x
T̂ (x)

) = A > 0.

Then the isointegrals (7.0.41), (7.0.42) are simultaneously divergent or con-
vergent.
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Theorem 7.0.582. Let T̂ ∈ C1([a, b]), T̂ (x) > 0, |T̂ (x)− xT̂ ′(x)| ≤ M for
every x ∈ [a, b], where M is a positive constant. Then if α < 1 the integrals∫ b

a

1

(b− x)α
T̂ (x)− xT̂ ′(x)

T̂ 2(x)
dx,

∫ b

a

1

(b− x)α
T̂ (x)− xT̂ ′(x)

T̂ (x)
dx

are convergent.

Proof. Since T̂ ∈ C1([a, b]), T̂ (x) > 0 for every x ∈ [a, b], then there exists a
positive constant m such that

T̂ (x) ≥ m, T̂ 2(x) ≥ m for ∀x ∈ [a, b].

Therefore ∣∣∣∫ ba 1
(b−x)α

T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx
∣∣∣ ≤ ∫ ba 1

(b−x)α

∣∣∣ T̂ (x)−xT̂ ′(x)

T̂ 2(x)

∣∣∣dx
≤ M

m

∫ b
a

1
(b−x)αdx = M

m
(b−a)1−α

1−α <∞,

and from here∣∣∣∫ ba 1
(b−x)α

T̂ (x)−xT̂ ′(x)

T̂ (x)
dx
∣∣∣ ≤ ∫ ba 1

(b−x)α

∣∣∣ T̂ (x)−xT̂ ′(x)

T̂ (x)

∣∣∣dx
≤ M

m

∫ b
a

1
(b−x)αdx <∞.

Theorem 7.0.583. Let T̂ ∈ C1([a, b]), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ N > 0
for every x ∈ [a, b]. If α ≥ 1 the integrals∫ b

a

1

(b− x)α
T̂ (x)− xT̂ ′(x)

T̂ 2(x)
dx,

∫ b

a

1

(b− x)α
T̂ (x)− xT̂ ′(x)

T̂ (x)
dx

are divergent.
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Proof. Since T̂ ∈ C1([a, b]) and T̂ (x) > 0 for every x ∈ [a, b], then there
exists n > 0 such that

T̂ (x) ≤ n, T̂ 2(x) ≤ n for ∀x ∈ [a, b].

From here ∫ b
a

1
(b−x)α

T̂ (x)−xT̂ ′(x)

T̂ 2(x)
dx ≥ N

n

∫ b
a

dx
(b−x)αdx =∞,

∫ b
a

1
(b−x)α

T̂ (x)−xT̂ ′(x)

T̂ (x)
dx ≥ N

n

∫ b
a

dx
(b−x)α =∞.

Exercise 7.0.584. Let T̂ ∈ C1([a,∞)), T̂ (x) > 0, |T̂ (x)− xT̂ ′(x)| ≤M for
every x ∈ [a,∞), where M is a positive constant, a 6= 0. Then if α > 1 the
integrals ∫ ∞

a

1

xα
T̂ (x)− xT̂ ′(x)

T̂ 2(x)
dx,

∫ ∞
a

1

xα
T̂ (x)− xT̂ ′(x)

T̂ (x)
dx

are convergent.

Exercise 7.0.585. Let T̂ ∈ C1([a,∞)), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ N > 0
for every x ∈ [a,∞), a 6= 0. If α ≤ 1 the integrals∫ ∞

a

1

xα
T̂ (x)− xT̂ ′(x)

T̂ 2(x)
dx,

∫ ∞
a

1

xα
T̂ (x)− xT̂ ′(x)

T̂ (x)
dx

are divergent.

Exercise 7.0.586. Let T̂ ∈ C1([a, b]), T̂ (x) > 0, |T̂ (x) − xT̂ ′(x)| ≤ M for
every x ∈ [a, b], where M is a positive constant. Then if α < 1 and there
exists

lim
x−→b−0

|f(x)|(b− x)α = A > 0

prove that ∫̂ b

a
f̂∧(x̂)×̂d̂x̂

is convergent.
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Exercise 7.0.587. Let T̂ ∈ C1([a, b]), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ N > 0
for every x ∈ [a, b]. If α ≥ 1 and there exists

lim
x−→b−0

|f(x)|(b− x)α = A > 0

prove that ∫̂ b

a
f̂∧(x̂)×̂d̂x̂

is divergent

Exercise 7.0.588. Let T̂ ∈ C1([a,∞)), T̂ (x) > 0, |T̂ (x)− xT̂ ′(x)| ≤M for
every x ∈ [a,∞), where M is a positive constant, a 6= 0. Then if α > 1 and
there exists

lim
x−→∞

|f(x)|xα = A > 0

prove that ∫̂ ∞
a
f̂∧(x̂)×̂d̂x̂

is convergent.

Exercise 7.0.589. Let T̂ ∈ C1([a,∞)), T̂ (x) > 0, T̂ (x) − xT̂ ′(x) ≥ N > 0
for every x ∈ [a,∞), a 6= 0. If α ≤ 1 and there exists

lim
x−→∞

|f(x)|xα = A > 0

prove that ∫̂ ∞
a
f̂∧(x̂)×̂d̂x̂

is divergent.

Exercise 7.0.590. Let T̂ ∈ C1([a, b]), T̂ (x) > 0, xT̂ (x) ∈ [a, b], |T̂ (x) −
xT̂ ′(x)| ≤ M for every x ∈ [a, b], where M is a positive constant. Then if
α < 1 and there exists

lim
x−→b−0

|f(xT̂ (x))|(b− x)α = A > 0

prove that ∫̂ b

a
f̂∧(x)×̂d̂x̂

is convergent.
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Exercise 7.0.591. Let T̂ ∈ C1([a, b]), T̂ (x) > 0, xT̂ (x) ∈ [a, b], T̂ (x) −
xT̂ ′(x) ≥ N > 0 for every x ∈ [a, b]. If α ≥ 1 and there exists

lim
x−→b−0

|f(xT̂ (x))|(b− x)α = A > 0

prove that ∫̂ b

a
f̂∧(x)×̂d̂x̂

is divergent

Exercise 7.0.592. Let T̂ ∈ C1([a,∞)), T̂ (x) > 0, xT̂ (x) ∈ [a,∞), |T̂ (x)−
xT̂ ′(x)| ≤ M for every x ∈ [a,∞), where M is a positive constant, a 6= 0.
Then if α > 1 and there exists

lim
x−→∞

|f(xT̂ (x))|xα = A > 0

prove that ∫̂ ∞
a
f̂∧(x)×̂d̂x̂

is convergent.

Exercise 7.0.593. Let T̂ ∈ C1([a,∞)), T̂ (x) > 0, xT̂ (x) ∈ [a,∞), T̂ (x) −
xT̂ ′(x) ≥ N > 0 for every x ∈ [a,∞), a 6= 0. If α ≤ 1 and there exists

lim
x−→∞

|f(xT̂ (x))|xα = A > 0

prove that ∫̂ ∞
a
f̂∧(x)×̂d̂x̂

is divergent.

Exercise 7.0.594. Let T̂ ∈ C1([a, b]), T̂ (x) > 0, x
T̂ (x)

∈ [a, b], |T̂ (x) −

xT̂ ′(x)| ≤ M for every x ∈ [a, b], where M is a positive constant. Then if
α < 1 and there exists

lim
x−→b−0

∣∣∣f( x

T̂ (x)

)∣∣∣(b− x)α = A > 0

prove that ∫̂ b

a
f̂(x̂)×̂d̂x̂

is convergent.
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Exercise 7.0.595. Let T̂ ∈ C1([a, b]), T̂ (x) > 0, x
T̂ (x)

∈ [a, b], T̂ (x) −

xT̂ ′(x) ≥ N > 0 for every x ∈ [a, b]. If α ≥ 1 and there exists

lim
x−→b−0

∣∣∣f( x

T̂ (x)

)∣∣∣(b− x)α = A > 0

prove that ∫̂ b

a
f̂(x̂)×̂d̂x̂

is divergent

Exercise 7.0.596. Let T̂ ∈ C1([a,∞)), T̂ (x) > 0, x
T̂ (x)

∈ [a,∞), |T̂ (x) −

xT̂ ′(x)| ≤ M for every x ∈ [a,∞), where M is a positive constant, a 6= 0.
Then if α > 1 and there exists

lim
x−→∞

∣∣∣f( x

T̂ (x)

)∣∣∣xα = A > 0

prove that ∫̂ ∞
a
f̂(x̂)×̂d̂x̂

is convergent.

Exercise 7.0.597. Let T̂ ∈ C1([a,∞)), T̂ (x) > 0, x
T̂ (x)

∈ [a,∞), T̂ (x) −

xT̂ ′(x) ≥ N > 0 for every x ∈ [a,∞), a 6= 0. If α ≤ 1 and there exists

lim
x−→∞

∣∣∣f( x

T̂ (x)

)∣∣∣xα = A > 0

prove that ∫̂ ∞
a
f̂(x̂)×̂d̂x̂

is divergent.

Exercise 7.0.598. Let T̂ ∈ C1([a, b]), T̂ (x) > 0, xT̂ (x) ∈ [a, b], |T̂ (x) −
xT̂ ′(x)| ≤ M for every x ∈ [a, b], where M is a positive constant. Then if
α < 1 and there exists

lim
x−→b−0

|f(xT̂ (x))|(b− x)α = A > 0

prove that ∫̂ b

a
f∧(x)×̂d̂x̂

is convergent.
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Exercise 7.0.599. Let T̂ ∈ C1([a, b]), T̂ (x) > 0, xT̂ (x) ∈ [a, b], T̂ (x) −
xT̂ ′(x) ≥ N > 0 for every x ∈ [a, b]. If α ≥ 1 and there exists

lim
x−→b−0

|f(xT̂ (x))|(b− x)α = A > 0

prove that ∫̂ b

a
f∧(x)×̂d̂x̂

is divergent

Exercise 7.0.600. Let T̂ ∈ C1([a,∞)), T̂ (x) > 0, xT̂ (x) ∈ [a,∞), |T̂ (x)−
xT̂ ′(x)| ≤ M for every x ∈ [a,∞), where M is a positive constant, a 6= 0.
Then if α > 1 and there exists

lim
x−→∞

|f(xT̂ (x))|xα = A > 0

prove that ∫̂ ∞
a
f∧(x)×̂d̂x̂

is convergent.

Exercise 7.0.601. Let T̂ ∈ C1([a,∞)), T̂ (x) > 0, xT̂ (x) ∈ [a,∞), T̂ (x) −
xT̂ ′(x) ≥ N > 0 for every x ∈ [a,∞), a 6= 0. If α ≤ 1 and there exists

lim
x−→∞

|f(xT̂ (x))|xα = A > 0

prove that ∫̂ ∞
a
f∧(x)×̂d̂x̂

is divergent.

Advanced practical exercises

Problem 7.0.602. Let D = [1, 2], f(x) = T̂ (x) = x3. Find∫̂ 2

1
f̂∧(x̂)×̂d̂x̂,

∫̂ 2

1
f̂∧(x)×̂d̂x̂,

∫̂ 2

1
f̂(x̂)×̂d̂x̂,

∫̂ 2

1
f∧(x)×d̂x̂.

Answer.

−2, 21, − 255

1024
, −4054

3
.
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Problem 7.0.603. Investigate for divergence and convergence the isointe-
gral ∫̂ b

a
f̂∧(x̂)×̂d̂x̂

if T̂ (x) = x
x+1 and

1) a = 1
2 , b = 1, f(x) = 1

(1−x)(2x−1) ,

2) a = 0, b = +∞, f(x) = x
(x+1)3

,

3) a = 3, b = +∞, f(x) = 2x
(x2−1)2

,

4) a = 0, b = +∞, f(x) = 1
c2x2+d2

, c 6= 0, b 6= 0,

5) a = 0, b = +∞, f(x) = x
x2+4x+3

,

6) a = 2, b = +∞, f(x) = 3x−1
x2+5x−7

,

7) a = 0, b = +∞, f(x) = x25−x,

8) a = 1, b = +∞, f(x) = lnx,

9) a = 0, b = 1, f(x) = lnx,

10) a = 0, b = 1
2 , f(x) = 1

x ln2 x
.

Answer. !) divergent, 2)-4) convergent, 5), 6) divergent, 7) convergent,
8) divergent, 9), 10) convergent.



Chapter 8

Appendix:Elements of
isodual mathematics

8.1 Isodual reals

Let F = F (a,+, ·) be the field of real numbers a with convenbtional sum +
and convential product ·.
Santlli’s isodual field is the ring F d = F d(ad,+d,×d) with elements given
by isodual reals

ad = −a, a ∈ F,

with associative and commutative isodual sum

ad +d bd = −a+ (−b) = −(a+ b) = (a+ b)d,

(below we will use the notation + instead +d), associative and distributive
isodual product

ad ×d bd = (−a)(−1)(−b) = −(ab) = (ab)d,

additive isodual unit 0d = 0,

ad + 0d = 0d + ad = ad,

and multiplicative isodual unit Id = −1,

ad ×d Id = Id ×d ad = ad.

The proof of the following properties are elementary.

269
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Lemma 8.1.1. lemma1 Isodual fields are fields, i.e. if A is a field, its image
Ad under the isodual map is also a field.

Lemma 8.1.2. lemma2 Fields A and their isodual images Ad are anti-
isomorphic to each other.

Lemma 8.1.2 and Lemma 8.1.2 illustrate the origin of the name ”isodual
mathematics”. In fact, to represent antimatter the needed mathematics
must be a suitable ”dual” of conventional mathematics, while the prefix
”iso” is used in its Greek meaning of preserving the original axioms.

Example 8.1.3. 3d = −3, (−4)d = 4.

Exercise 8.1.4. Compute

A = 3d + (−4)− 5d.

Solution. We have
3d == −3, 5d = −5.

Then
A = −3 + (−4)− (−5) = −7 + 5 = −2 = 2d.

Exercise 8.1.5. Compute

1) A = 2d ×d (−5)d,

2) B = 3d(−2)d ×d 2d + (−4)d.

Answer. 1) A = (−10)d, B = 8d.
All operations of real numbers must be subjected to isoduality when dealing
with isodual numbers. This implies

1) isodual isopowers

(ad)n
d

= ad ×d ad ×d ad ×d · · · ×d ad︸ ︷︷ ︸
n

,

2) isodual powers
(ad)n = adad · · · ad︸ ︷︷ ︸

n

,

3) isodual iso-n-th root

ad
(1/n)d

= − n
√
−a,
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4) isodual n-th root

ad
(1/n)

= n
√
−a,

5) isodual isoquotient

ad/dbd = −a
d

bd
= −−a
−b

= −a
b

= (a/b)d.

6) isodual quotient

ad/bd =
ad

bd
=
−a
−b

=
a

b
= a/b.

Example 8.1.6. Let us compute

A = (3d)2d − 4d ×d 2d.

We have

(3d)2d = 3d ×d 3d = (−3)(−1)(−3) = −9, 4d = −4, 2d = −2,

4d ×d 2d = −4(−1)(−2) = −8.

Then
A = −9− (−8) = −1 = 1d.

Lemma 8.1.7. Isodual fields have a nonnegative definite norm, called iso-
dual norm

|ad|d = −| − a| = −|a| ≤ 0.

Lemma 8.1.8. All quantities that are positive-definite when referred to pos-
itive units and related fields of matter (such as mass, energy, angular mo-
mentum, density, temperature, time, etc.) become negative-definite when
referred to isodual units and related isodual fields of antimatter.

8.2 Isodual sequences

Definition 8.2.1. Let {an}∞n=1 is a sequence of reals. The sequence{
adn = −an

}∞
n=1

will be called isodual sequence.
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Example 8.2.2. Let {an}∞n=1 = {n+1}∞n=1. Then the sequence
{
−n−1

}∞
n=1

is an isodual sequence.

Definition 8.2.3. An isodual sequence {adn}∞n=1 will be called

1. bounded above if there exists ld ∈ F d so that adn ≤ ld for every n ∈ N,

2. bounded below if there exists md ∈ F d so that adn ≥ md for every n ∈ N,

3. bounded if it is bounded above and bounded below.

Example 8.2.4. Let {an}∞n=1 = {n3}∞n=1. Then

adn = −n3

is unbounded below isodual sequence and bounded above isodual sequence.
The sequence {an}∞n=1 is a bounded below sequence and an unbounded above
sequence.

We have the following properties.

1) If {an}∞n=1 is a bounded above sequence then the isodual sequence {adn}∞n=1

is bounded below and the inverse.

2) If {an}∞n=1 is a bounded below sequence then the isodual sequence {adn}∞n=1

is bounded above and the inverse.

3) If {an}∞n=1 is a bounded sequence then the isodual sequence {adn}∞n=1 is
bounded and the inverse.

Definition 8.2.5. An isodual sequence {adn}∞n=1 is called unbounded if it is
not bounded.
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In other words, a sequence {adn}∞n=1 is unbounded if there exists td ∈ F d and
N ∈ N such that for every n ∈ N, n ≥ N , we have

|adn| ≥ t

or

|adn|d ≤ td.

Definition 8.2.6. We will say that a sequence {adn}∞n=1 diverges to +∞ if
for every M ∈ R, M ≥ 0 there exists N ∈ N such that for every n ∈ N,
n ≥ N , we have

adn ≥M.

Definition 8.2.7. A sequence {adn}∞n=1 diverges to −∞ if for every P ∈ R,
P ≤ 0 there exists N ∈ N such that for every n ∈ N, n ≥ N , we have

adn ≤ P.

We have the following properties.

1) If {an}∞n=1 diverges to −∞ then the isodual sequence {adn}∞n=1 diverges
to +∞ and the inverse.

2) If {an}∞n=1 diverges to +∞ then the isodual sequence {adn}∞n=1 diverges
to −∞ and the inverse.

Exercise 8.2.8. Let {an}∞n=1 = {−n4 − 8}∞n=1. Prove that the sequence
{adn}∞n=1 diverges to +∞.

Exercise 8.2.9. Let {an}∞n=1 = {n + 12}∞n=1. Prove that the sequence
{adn}∞n=1 diverges to −∞.
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Definition 8.2.10. The isodual real ad ∈ F d is called limit of the isodual
sequence {adn}∞n=1 if for every ε > 0 there exists N = N(ε) ∈ N such that for
every n ∈ N, n > N we have

|adn − ad| < ε

or
|adn − ad|d > εd.

In this case we will write limn−→∞ a
d
n = ad and we will say that the sequence

{adn}∞n=1 is convergent.
In other words the number ad is a limit of the sequence {adn}∞n=1 if

lim
n−→∞

an = a.

Example 8.2.11. Let {an}∞n=1 =
{
n+4
n+2

}∞
n=1

. Then

lim
n−→∞

adn = − lim
n−→∞

an = − lim
n−→∞

n+ 4

n+ 2
= −1 = 1d.

Exercise 8.2.12. Let {an}∞n=1 =
{

2n+1
3n+5

}∞
n=1

. Find

lim
n−→∞

adn.

Answer.
(

2
3

)d
.
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Theorem 8.2.13. Let the sequence {an}∞n=1 is convergent to a ∈ R and
a 6= 0. Then there exists N ∈ N such that for every n ∈ N, n > N , we have

|adn|d <
( |a|

2

)d
.

Also, if a > 0 then there exists N ∈ N such that for every n ∈ N, n > N ,
we have

adn <
(a

2

)d
,

if a < 0 then there exists N ∈ N such that for every n ∈ N, n > N , we have

adn >
(a

2

)d
.

Theorem 8.2.14. Let limn−→∞ a
d
n = ad, limn−→∞ b

d
n = bd, adn ≤ bdn for

every n ≥ n0. Then ad ≤ bd.

Corollary 8.2.15. Let limn−→∞ a
d
n = ad and let there exists n0 ∈ N such

that adn ≥ bd for every n ≥ n0. Then ad ≥ bd.

Theorem 8.2.16. Let limn−→∞ a
d
n = ad, limn−→∞ b

d
n = ad, and there exists

n0 ∈ N such that adn ≤ cdn ≤ bdn for every n ≥ n0. Then limn−→∞ c
d
n = ad

Theorem 8.2.17. Let limn−→∞ a
d
n = ad. Then limn−→∞ |adn|d = |ad|d.
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Corollary 8.2.18. Let limn−→∞ a
d
n = 0. Then limn−→∞ |adn|d = 0.

Theorem 8.2.19. Every convergent isodual sequence {ân}∞n=1 is bounded
sequence.

Theorem 8.2.20. Let limn−→∞ a
d
n = ad, limn−→∞ b

d
n = bd. Then

1. limn−→∞(adn ± bdn) = limn−→∞ a
d
n ± limn−→∞ b

d
n = ad ± bd,

2. limn−→∞(adn×dbdn) = limn−→∞ b
d
n×d limn−→∞ a

d
n = ad×dbd,

3. limn−→∞(adn/
dbdn) = limn−→∞ a

d
n/

d limn−→∞ b
d
n = ad/dbd, if bdn̂ 6= 0,

bd 6= 0.

Corollary 8.2.21. Let limn−̂→∞ a
d
n = ad. Then limn−→∞(αd×dadn) =

αd×dad for every αd ∈ F d.

Definition 8.2.22. The isodual sequence {adn}∞n=1 is called infinite small if
it is convergent and its limit is equal to 0.
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Corollary 8.2.23. The sum, subtraction and multiplication of infinite small
isodual sequences is infinite small isodual sequence.

Theorem 8.2.24. Let {an}∞n=1 is an infinite small sequence of reals. Then
{adn}∞n=1 is an infinite small isodual sequence.

Theorem 8.2.25. The number ad is limit of the isodual sequence {adn}∞n=1

if and only if it can be represented in the form

ad = adn − αdn,

where {αdn}∞n=1 is infinite small isodual sequence.

Theorem 8.2.26. Let {αdn}∞n=1 is infinite small isodual sequence and {adn}∞n=1

is bounded isodual sequence. Then {αdn×dadn}∞n=1 is infinite small isodual se-
quence.
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Definition 8.2.27. A sequence {adn}∞n=1 is called infinite large if for every
M ∈ R, M > 0 there exists N ∈ N such that for every n > N we have

|adn| ≥M

or
|adn|d ≤Md.

In other words an isodual sequence {adn}∞n=1 is an infinite large isodual se-
quence if

lim
n−→
|adn| =∞

or
lim
n−→
|adn|d = −∞.

Theorem 8.2.28. Let {an}∞n=1 is an infinite large sequence of reals then
the isodual sequence {adn}∞n=1 is an infinite large isodual sequence and the
inverse.

Theorem 8.2.29. Let {adn}∞n=1 be bounded isodual sequence and {bdn}∞n=1

be infinite large isodual sequence. Then the isodual sequence {adn/dbdn}∞n=1 is
infinite small isodual sequence.

Theorem 8.2.30. Let {|adn|}∞n=1 be bounded below sequence by a positive
isodual and limn−→∞ α

d
n = 0 and αdn 6= 0 for every n ∈ N. Then the isodual

sequence {adn/dαdn}∞n=1 is infinite large isodual sequence.
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Corollary 8.2.31. Let {adn}∞n=1 be infinite large isodual sequence. Then
{1d/dadn}∞n=1 is infinite small isodual sequence.

Corollary 8.2.32. Let {adn}∞n=1 be infinite small isodual sequence. Then
{1d/dadn}∞n=1 is infinite large isodual sequence.

Definition 8.2.33. The sequence {adn}∞n=1 will be called

1. increasing if from n,m ∈ N, n > m follows that adn > adm,

2. decreasing if from n,m ∈ N, n > m follows that adn < adm,

3. monotonic if it is increasing or decreasing.

If the sequence {adn}∞n=1 is increasing it is bounded below because adn ≥ âd1
for every n ∈ N.

If the sequence {adn}∞n=1 is decresing it is bounded above because adn ≤ ad1
for every n ∈ N.

Theorem 8.2.34. Let {adn}∞n=1 be incresing sequence and bounded above by
Md ∈ F d then it is convergent.
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Theorem 8.2.35. Let {adn}∞n=1 be decreasing isodual sequence and bounded
below by P d ∈ F d then it is convergent.

Corollary 8.2.36. Every bounded monotonic isodual sequence is conver-
gent.

Definition 8.2.37. An isodual sequence {adn̂}∞n=1 is called fundamental if
for every εd ∈ F d, ε > 0, there exists N ∈ N such that for every m,n > N
we have

|adn − adm|d > εd.

Theorem 8.2.38. If the sequence {adn}∞n=1 is convergent then it is funda-
mental.

Definition 8.2.39. Every isointerval (pd, qd) which contains the isopoint ad

will be called isoneighbourhood of the isopoint ad.
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Definition 8.2.40. An isopoint ad will be called condensation isopoint of the
sequence {adn}∞n=1 of elements of F d if every isoneighbourhood of ad contains
incountable many isoelements of {adn}∞n=1.

Theorem 8.2.41. Every bounded isodual sequence has a condensation iso-
point.

Definition 8.2.42. We will say that the isodual sequence {adnk}
∞
k=1 is an

subsequence of the isodual sequence {adn}∞n=1 if nk ∈ N for every k ∈ N and

n1 < n2̂ < n3̂ < · · · .

Theorem 8.2.43. Let the isodual sequence {adn}∞n=1 be sequence which is
convergent to ad. Then every subsequence {adnk}

∞
k=1 is convergent to ad.

Definition 8.2.44. We will say that the isodual sequence {adn}∞n=1 is ex-
panded of two subsequences {adnk}

∞
k=1 and {admk}

∞
k=1 if

{n1, n2, . . .}∪{m1,m2,m3, . . .} = N,

and
{n1, n2, . . .} ∩ {m1,m2,m3, . . .} = Ø.
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Theorem 8.2.45. Let the isodual sequence {adn}∞n=1 be expanded of two
subsequences {adnk}

∞
k=1 and {admk}

∞
k=1 which are convergent to the isopoint

ad. Then the sequence {adn}∞n=1 is convergent to ad.

Corollary 8.2.46. Let {adn}∞n=1 and {bdn}∞n=1 be convergent sequences to the
isopoint ad. Then the isodual sequence

ad1, b
d
1, a

d
2, b

d
2, . . .

is convergent isodual sequence to ad.

Corollary 8.2.47. Let {adn}∞n=1 be isodual sequence which is convergent to
ad. Let also bd ∈ F d. Then the sequence

bd, ad1, a
d
2, a

d
3, . . .

is convergent isodual sequence to ad.

Corollary 8.2.48. Let {adn}∞n=1 be isodual sequence which is convergent to
ad. Let also bd1, b

d
2, . . . , b

d
k ∈ F d be finite number of isodual reals. Then the

isodual sequence
bd1, b

d
2, . . . , b

d
k, a

d
1, a

d
2, a

d
3̂
, . . .

is convergent isodual sequence to ad.
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Theorem 8.2.49. From every infinite bounded isodual sequence can be cho-
sen convergent isodual subsequence.

Theorem 8.2.50. Every fundamental isodual sequence is convergent.

Definition 8.2.51. We will say that +∞ is condensation isopoint of {adn}∞n=1

if it is unbounded above.

Definition 8.2.52. We will say that −∞ is condensation isopoint of {adn̂}∞n=1

if it is unbounded below.

Using above definitions we can conclude that every isodual sequence of reals
has condensation isopoint.

Definition 8.2.53. Let {adn}∞n=1 be isodual sequence. Limit inferior and
limit superior we define as follows

lim infn−→∞a
d
n = limn−→∞(infm≥n ad

m),

lim supn−→∞a
d
n = limn−→∞(supm≥n ad

m),

respectively.
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If
lim infn−→∞a

d
n =∞,

then
lim

n−→∞
adn =∞.

If
lim supn−→∞a

d
n = −∞,

then
lim

n−→∞
adn = −∞.

The sequence {adn}∞n=1 is convergent if

lim infn−→∞a
d
n = lim

n−→∞
adn = lim supn−→∞a

d
n.

8.3 Isodual functions

Here we will suppose that D ⊂ R.

Definition 8.3.1. We will say that in the set D is defined isodual function
of first kind if from x ∈ D it follows that −x ∈ D and

fd(xd) = −f(−x), x ∈ D,

is a function(map). We will use the notation fddd.
The set

{fd(xd) : x ∈ D}

will be called isodual codomain of isodual values of the isodual function fddd

of first kind. The function −f(−x) will be called isodual original of the isod-
ual function fddd of first kind. The element x will be called isodual argument
or isodual independent variable of fddd and its isodual image fd(xd) will be
called isodual dependent or isodual value of fddd.

Example 8.3.2. Let D = R, f(x) = x2 +x+1. Then from x ∈ D it follows
that −x ∈ D and

fd(xd) = −f(−x) = −
(

(−x)2 − x+ 1
)

= −
(
x2 − x+ 1

)
= −x2 + x− 1.
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Exercise 8.3.3. Let D = [−3, 3], f(x) = x+1
x+5 . Find

fd(xd) + 2f(x).

Solution. Firstly, we will note that from x ∈ D it follows that −x ∈ D.
Also,

fd(xd) = −f(−x) = −−x+ 1

−x+ 5
=
x− 1

5− x
.

Then

fd(xd) + 2f(x) =
x− 1

5− x
+

2x+ 2

x+ 5
=
x2 − 12x− 5

x2 − 25
.

Definition 8.3.4. We will say that in the set D is defined isodual function
of second kind if for x ∈ D we have

fd(x) = −f(x)

is a function(map). We will use the notation fdd.
The set

{fd(x) : x ∈ D}

will be called isodual codomain of isodual values of the isodual function fdd

of second kind. The function −f(x) will be called isodual original of the
isodual function fdd of second kind. The element x will be called isodual
argument or isodual independent variable of fdd and its isodual image fd(x)
will be called isodual dependent or isodual value of fdd.

Example 8.3.5. Let D = R and f(x) = cosx+ sinx. Then

fd(x) = −f(x) = − cosx− sinx, x ∈ D.
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Definition 8.3.6. We will say that in the set D is defined isodual function
of third kind if from x ∈ D it follows that −x ∈ D and

f(xd) = f(−x), x ∈ D,

is a function(map). We will use the notation fd.
The set

{f(xd) : x ∈ D}

will be called isodual codomain of isodual values of the isodual function fd of
third kind. The function f(−x) will be called isodual original of the isodual
function fd of third kind. The element x will be called isodual argument or
isodual independent variable of fd and its isodual image f(xd) will be called
isodual dependent or isodual value of fd.

Example 8.3.7. Let D = [−1, 1], f(x) = ex − sinx, x ∈ D. Then

f(xd) = f(−x) = e−x − sin(−x) = e−x + sinx, x ∈ D.

Exercise 8.3.8. Let D = [−2, 2],

f(x) = x2 + x+ 1, g(x) = x+ 2, h(x) = x− 1, x ∈ D.

Find

A(x) = 2d ×d fd(x)− 3gd(xd) + 2d ×d (f(xd) + hd(x)).

Solution. Firstly we will note that

fdd, fd, gddd, hdd
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are defined in D. Also,

fd(x) = −f(x) = −(x2 + x+ 1) = −x2 − x− 1,

2d ×d fd(x) = (−2)(−1)(−x2 − x− 1) = −2x2 − 2x− 2,

gd(xd) = −g(−x) = −(−x+ 2) = x− 2,

3gd(xd) = 3(x− 2) = 3x− 6,

f(xd) = f(−x) = (−x)2 + (−x) + 1 = x2 − x+ 1,

hd(x) = −h(x) = −x+ 1,

f(xd) + hd(x) = x2 − x+ 1− x+ 1 = x2 − 2x+ 2,

2d ×d (f(xd) + hd(x)) = −2(−1)(x2 − 2x+ 2) = 2x2 − 4x+ 4.

From here

A(x) = −2x2 − 2x− 2− (3x− 6) + 2x2 − 4x+ 4 = −9x+ 8.

Exercise 8.3.9. Let D = [−5, 5], f(x) = x+3
x2+5

. Find

gddd, gdd, gd

such that

gddd ≡ f, gdd ≡ f, gd ≡ f in D.

Solution. We have

x+3
x2+5

−
(
− x+3
x2+5

)
= −−x−3

x2+5
= − xd+3d

−(xd)2d−5d
,

therefore

gd(xd) =
( xd + 3d

−(xd)2d − 5d

)d
.

From
x+ 3

x2 + 5
= −

(
− x+ 3

x2 + 5

)
it follows that

gd(x) =
(
− x+ 3

x2 + 5

)d
.
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Also,
x+3
x2+5

= −(−x)−(−3)
−(−x)(−1)(−x)−(−5) = −xd−3d

−(xd)2d−5d
,

consequently

g(xd) =
−xd − 3d

−(xd)2d − 5d
.

Now we suppose that fddd, fdd, fd, gddd, gdd, gd are defined in D. Then for
x ∈ D we have

1) fd((gd(xd))d) = −f(−(gd(xd))) = −f(−(−g(−x))) = −f(g(−x)),

2) fd(gd(xd)) = −f(−g(−x)),

3) f((gd(xd))d) = f(−(−g(−x))) = f(g(−x)),

4) fd((gd(x))d) = −f(−(−g(x))) = −f(g(x)),

5) fd(gd(x)) = −f(−g(x)),

6) f((gd(x))d) = f(−(−g(x))) = f(g(x)),

7) fd((g(xd))d) = −f(−g(−x)),

8) fd(g(xd)) = −f(g(−x)),

9) f((g(xd))d) = f(−g(−x)).

Example 8.3.10. Let D = R, f(x) = x+ 2, g(x) = x+ 3. Then

fd((gd(xd))d) = −f(g(−x)) = −f(−x+ 3) = −((−x+ 3) + 2) = −(−x+ 5) = x− 5.

Exercise 8.3.11. Let D = R, f(x) = x2 + x, g(x) = x+ 5. Find

fd((g(xd))d).

Solution. We have

fd((g(xd))d) = −f(−g(−x)) = −f(−(−x+ 5))

= −f(x− 5) = −((x− 5)2 + x− 5) = −(x2 − 9x+ 20) = −x2 + 9x− 20.
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Definition 8.3.12. An isodual function of first, second or third kind, defined
in D, will be called bounded below if its isodual original is bounded below in
D.

Definition 8.3.13. An isodual function of first, second or third kind, defined
in D, will be called bounded above if its isodual original is bounded above in
D.

Definition 8.3.14. An isodual function of first, second or third kind, defined
in D, will be called bounded if it is bounded above and below in D.

Definition 8.3.15. An isodual function of first, second or third kind, de-
fined in D, will be called even isodual function if its isodual original is even
function in D.

Definition 8.3.16. An isodual function of first, second or third kind, defined
in D, will be called odd isodual function if its isodual original is odd function
in D.
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Definition 8.3.17. An isodual function of first, second or third kind, defined
in D, will be called ωd ∈ F d, ω > 0, -periodic isodual function if its isodual
original is ω- periodic function in D.

Definition 8.3.18. An isodual function of first, second or third kind, de-
fined in D, will be called monotonic increasing isodual function if its isodual
original is monotonic increasing function in D.

Definition 8.3.19. An isodual function of first, second or third kind, de-
fined in D, will be called monotonic decreasing isodual function if its isodual
original is monotonic decreasing function in D.

Definition 8.3.20. An isodual function of first, second or third kind, de-
fined in D, will be called monotonic isodual function if its isodual original
is monotonic increasing function in D.

8.4 Limit of isodual functions. Continuous isodual
functions

Here we suppose that D ⊂ R, F is an isodual function of first, second or
third kind, defined in D, and with f̃ we will denote its isodual original.
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Definition 8.4.1. The real a will be called left limit of F at x0 ∈ D if it is
a left limit of f̃ at x0.

Definition 8.4.2. The real a will be called right limit of F at x0 ∈ D if it
is a right limit of f̃ at x0.

Definition 8.4.3. The real a will be called limit of F at x0 ∈ D if it is a
limit of f̃ at x0.

Example 8.4.4. Let D = R, f(x) = x2 + 3. Then

limxd−→1d f
d(xd) = limx−→1(−f(−x))

= limx−→1(−((−x)2 + 3)) = limx−→1(−x2 − 3) = −4.

Example 8.4.5. Let D = R, f(x) = x2+4
x2+5

. Then

limx−→1d f
d(xd) = limx−→−1(−f(−x))

= − limx−→−1
(−x)2+4
(−x)2+5

= − limx−→−1
x2+4
x2+5

= −5
6 .

Definition 8.4.6. We will say that the isodual function F is a continuous
at x0 ∈ D if its isodual original f̃ is a continuous function at x0.

Definition 8.4.7. We will say that the isodual function F is a continuous
in D if it is continuous in every point in D.
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Example 8.4.8. Let D = R,

f(x) =


x+ 2 for x ∈ (−∞, 1]

4− x for x ∈ [1,+∞).

Then f is a continuous function at x = 1. But

fd(xd) =


x− 2 for x ∈ (−∞, 1]

−4− x for x ∈ [1,+∞),

which is not continuous ate x = 1 because

lim
x−→1−

fd(xd) = −1, lim
x−→1+

fd(xd) = −5.

Remark 8.4.9. We will note if f , fddd, fdd, fd are defined in D and f is a
continuous function at x0 ∈ D then there is a possibility some of the isodual
functions fddd, fdd or fd to be not continuous at x0 and the inverse.

8.5 Isodual differential calculas

Definition 8.5.1. Isodual differential is defined as follows

dd(·) = −d(·).

Using the above definition we have

1) ddx = −dx,

2) ddxd = −dxd = −d(−x) = dx.

Let F be isodual function of first, second or third kind, defined in D ⊂ R
and its isodual original is differentiable function. Then we have the following
possibilities.
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1) isodual derivative of first kind ddF/dddxd.

2) isodual derivative of second kind ddF/ddxd.

3) isodual derivative of third kind ddF/dddx.

4) isodual derivative of fourth kind ddF/ddx.

5) isodual derivative of fifth kind ddF/ddxd.

6) isodual derivative of sixth kind ddF/dxd.

7) isodual derivative of seventh kind ddF/ddx.

8) isodual derivative of eighth kind ddF/dx.

9) isodual derivative of ninth kind dF/ddxd.

10) isodual derivative of tenth kind dF/dxd.

11) isodual derivative of eleventh kind dF/ddx.

12) isodual derivative of twelfth kind dF/dx.

13) isodual derivative of thirtieth kind dF/dddxd.

14) isodual derivative of fourteenth kind dF/ddxd.

15) isodual derivative of fifteenth kind dF/dddx.

16) isodual derivative of sixteenth kind dF/ddx.

Below we will give explicit expressions of the isodual derivatives for every
class isodual functions.
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8.5.1 Isodual functions of first kind

Here F = fddd. Then for x ∈ D we have

1) isodual derivative of first kind

ddfd(xd)/dddxd = −ddfd(xd)
ddxd

= −−df
d(xd)
−dxd

= −d(−f(−x))
d(−x) = −df(−x)

dx = f ′(−x).

2) isodual derivative of second kind

ddfd(xd)/ddxd = −ddfd(xd)
dxd

= −−df
d(xd)
dxd

= d(−f(−x))
d(−x) = df(−x)

dx = −f ′(−x).

3) isodual derivative of third kind

ddfd(xd)/dddx = −ddfd(xd)
ddx

= −−df
d(xd)
−dx

= −d(−f(−x))
dx = df(−x)

dx = −f ′(−x).

4) isodual derivative of fourth kind

ddfd(xd)/ddx = −ddfd(xd)
dx = dfd(xd)

dx

= d(−f(−x))
dx = −df(−x)

dx = f ′(−x).

5) isodual derivative of fifth kind

ddfd(xd)/ddxd = −dfd(xd)
−dxd = d(−f(−x))

d(−x) = df(−x)
dx = −f ′(−x).

6) isodual derivative of sixth kind

ddfd(xd)/dxd =
−dfd(xd)
dxd

= −d(−f(−x))

d(−x)
= −df(−x)

dx
= f ′(−x).

7) isodual derivative of seventh kind

ddfd(xd)/ddx =
−dfd(xd)
−dx

=
d(−f(−x))

dx
= −df(−x)

dx
= f ′(−x).



8.5. ISODUAL DIFFERENTIAL CALCULAS 295

8) isodual derivative of eighth kind

ddfd(xd)/dx =
−dfd(xd)

dx
= −d(−f(−x))

dx
=
df(−x)

dx
= −f ′(−x).

9) isodual derivative of ninth kind

dfd(xd)/ddxd =
d(−f(−x))

−dxd
=
df(−x)

d(−x)
= f ′(−x).

10) isodual derivative of tenth kind

dfd(xd)/dxd =
d(−f(−x))

d(−x)
= −df(−x)

d(−x)
= −f ′(−x).

11) isodual derivative of eleventh kind

dfd(xd)/ddx =
d(−f(−x))

−dx
=
df(−x)

dx
= −f ′(−x).

12) isodual derivative of twelfth kind

dfd(xd)/dx =
d(−f(−x))

dx
= −df(−x)

dx
= f ′(−x).

13) isodual derivative of thirtieth kind

dfd(xd)/dddxd = −df
d(xd)

ddxd
= −d(−f(−x))

−dxd
= −df(−x)

d(−x)
= −f ′(−x).

14) isodual derivative of fourteenth kind

dfd(xd)/ddxd = −df
d(xd)

dxd
= −d(−f(−x))

d(−x)
= −df(−x)

dx
= f ′(−x).

15) isodual derivative of fifteenth kind

dfd(xd)/dddx = −df
d(xd)

ddx
= −d(−f(−x))

−dx
= −df(−x)

dx
= f ′(−x).

16) isodual derivative of sixteenth kind

dfd(xd)/ddx = −df
d(xd)

dx
= −d(−f(−x))

dx
=
df(−x)

dx
= −f ′(−x).
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8.5.2 Isodual functions of second kind

Here F = fdd. Then for x ∈ D we have

1) isodual derivative of first kind

ddfd(x)/dddxd = −ddfd(x)
ddxd

= −−df
d(x)

−dxd = −d(−f(x))
d(−x) = −f ′(x).

2) isodual derivative of second kind

ddfd(x)/ddxd = −d
dfd(x)

dxd
= −−df

d(x)

d(−x)
= −d(−f(x))

dx
= f ′(x).

3) isodual derivative of third kind

ddfd(x)/dddx = −d
dfd(x)

ddx
= −−df

d(x)

−dx
= −d(−f(x))

dx
= f ′(x).

4) isodual derivative of fourth kind

ddfd(x)/ddx = −d
dfd(x)

dx
= −−df

d(x)

dx
=
d(−f(x))

dx
= −f ′(x).

5) isodual derivative of fifth kind

ddfd(x)/ddxd =
−dfd(x)

−dxd
=
d(−f(x))

d(−x)
= f ′(x).

6) isodual derivative of sixth kind

ddfd(x)/dxd =
−dfd(x)

d(−x)
=
d(−f(x))

dx
= −f ′(x).

7) isodual derivative of seventh kind

ddfd(x)/ddx =
−dfd(x)

−dx
=
d(−f(x))

dx
= −f ′(x).

8) isodual derivative of eighth kind

ddfd(x)/dx = −df
d(x)

dx
= −d(−f(x))

dx
= f ′(x).
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9) isodual derivative of ninth kind

dfd(x)/ddxd =
dfd(x)

−dxd
=
d(−f(x))

−d(−x)
= −f ′(x).

10) isodual derivative of tenth kind

dfd(x)/dxd =
d(−f(x))

d(−x)
= f ′(x).

11) isodual derivative of eleventh kind

dfd(x)/ddx =
d(−f(x))

−dx
=
df(x)

dx
= f ′(x).

12) isodual derivative of twelfth kind

dfd(x)/dx =
d(−f(x))

dx
= −f ′(x).

13) isodual derivative of thirteenth kind

dfd(x)/dddxd = −df
d(x)

ddxd
= −d(−f(x))

−dxd
= − df(x)

d(−x)
= f ′(x).

14) isodual derivative of fourteenth kind

dfd(x)/ddxd = −df
d(x)

dxd
= −d(−f(x))

d(−x)
= −f ′(x).

15) isodual derivative of fifteenth kind

dfd(x)/dddx = −df
d(x)

ddx
= −d(−f(x))

−dx
= −f ′(x).

16) isodual derivative of sixteenth kind

dfd(x)/ddx = −df
d(x)

dx
= −d(−f(x))

dx
= f ′(x).
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8.5.3 Isodual functions of third kind

Here F = fd. Then for x ∈ D we have

1) isodual derivative of first kind

ddf(xd)/dddxd = −d
df(xd)

ddxd
= −−df(xd)

−dxd
= −df(−x)

d(−x)
= −f ′(−x).

2) isodual derivative of second kind

ddf(xd)/ddxd = −d
df(xd)

dxd
= −−df(xd)

dxd
=
df(−x)

d(−x)
= f ′(−x).

3) isodual derivative of third kind

ddf(xd)/dddx = −d
df(xd)

ddx
= −−df(xd)

−dx
= −df(−x)

dx
= f ′(−x).

4) isodual derivative of fourth kind

ddf(xd)/ddx = −d
df(xd)

dx
=
df(−x)

dx
= −f ′(−x).

5) isodual derivative of fifth kind

ddf(xd)/ddxd =
−df(xd)

−dxd
=
df(−x)

d(−x)
= f ′(−x).

6) isodual derivative of sixth kind

ddf(xd)/dxd =
−df(xd)

dxd
= −df(−x)

d(−x)
= −f ′(−x).

7) isodual derivative of seventh kind

ddf(xd)/ddx =
−df(xd)

−dx
=
df(−x)

dx
= −f ′(−x).

8) isodual derivative of eighth kind

ddf(xd)/dx =
−df(xd)

dx
= −df(−x)

dx
= f ′(−x).
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9) isodual derivative of ninth kind

df(xd)/ddxd =
df(−x)

−dxd
= −df(−x)

d(−x)
= −f ′(−x).

10) isodual derivative of tenth kind

df(xd)/dxd =
df(−x)

d(−x)
= f ′(−x).

11) isodual derivative of eleventh kind

df(xd)/ddx =
df(−x)

−d(x)
= f ′(−x).

12) isodual derivative of twelfth kind

df(xd)/dx =
df(−x)

dx
= −f ′(−x).

13) isodual derivative of thirteenth kind

df(xd)/dddxd = −df(xd)

ddxd
= −df(−x)

−dxd
=
df(−x)

d(−x)
= f ′(−x).

14) isodual derivative of fourteenth kind

df(xd)/ddxd = −df(xd)

dxd
= −df(−x)

d(−x)
= −f ′(−x).

15) isodual derivative of fifteenth kind

df(xd)/dddx = −df(xd)

ddx
= −df(−x)

−dx
=
df(−x)

dx
= −f ′(−x).

16) isodual derivative of sixteenth kind

df(xd)/ddx = −df(xd)

dx
= −df(−x)

dx
= f ′(−x).
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8.6 Isodual inetgrals

We suppose that F is an isodual function of first, second or third kind,
defined in D and its isodual original is integrable in D. Then we have the
following possibilities.

1) isodual integral of first kind
∫ d
F ×d ddxd = −

∫
F ×d ddxd.

2) isodual integral of second kind
∫ d
F ×d ddx = −

∫
F ×d ddx.

3) isodual integrals of third kind
∫ d
F ×d dxd = −

∫
F ×d dxd.

4) isodual integral of fourth kind
∫ d
F ×d dx = −

∫
F ×d dx.

5) isodual integral of fifth kind
∫ d
Fddxd = −

∫
Fddxd.

6) isodual integral of sixth kind
∫ d
Fddx = −

∫
Fddx.

7) isodual integral of seventh kind
∫ d
Fdxd = −

∫
Fdxd.

8) isodual integral of eighth kind
∫ d
Fdx = −

∫
Fdx.

9) isodual integral of ninth kind
∫
F ×d ddxd.

10) isodual integral of tenth kind
∫
F ×d ddx.

11) isodual integral of eleventh kind F ×d dxd.
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12) isodual integral of twelfth kind
∫
F ×d dx.

13) isodual integral of thirteenth kind
∫
Fddxd.

14) isodual integral of fourteenth kind
∫
Fddx.

15) isodual integral of fifteenth kind
∫
Fdxd.

16) isodual integral of sixteenth kind
∫
Fdx.

Below we will give explicit expressions of the isodual integrals for every class
of isodual functions.

8.6.1 Isodual functions of first kind

Here F = fddd. Then for x ∈ D we have

1) isodual integral of first kind∫ d

fd(xd)×d ddxd = −
∫

(−f(−x))(−1)(−d(−x)) = −
∫
f(−x)dx.

2) isodual integral of second kind∫ d

fd(xd)×d ddx = −
∫

(−f(−x))(−1)(−dx) =

∫
f(−x)dx.

3) isodual integral of third kind∫ d

fd(xd)×d dxd = −
∫

(−f(−x))(−1)d(−x) =

∫
f(−x)dx.

4) isodual integral of fourth kind∫ d

fd(xd)×d dx = −
∫

(−f(−x))(−1)dx = −
∫
f(−x)dx.

5) isodual integrals of fifth kind∫ d

fd(xd)ddxd = −
∫

(−f(−x))(−d(−x)) =

∫
f(−x)dx.
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6) isodual integrals of seventh kind∫ d

fd(xd)ddx = −
∫

(−f(−x))(−d(x)) = −
∫
f(−x)dx.

7) isodual integrals of seventh kind∫ d

fd(xd)dxd = −
∫

(−f(−x))d(−x) = −
∫
f(−x)dx.

8) isodual integrals of eight kinds∫ d

fd(xd)dx = −
∫

(−f(−x))dx =

∫
f(−x)dx.

9) isodual integrals of ninth kind∫
fd(xd)×d ddxd =

∫
(−f(−x))(−1)(−d(−x)) =

∫
f(−x)dx.

10) isodual integral of tenth kind∫
fd(xd)×d ddx =

∫
(−f(−x))(−1)(−dx) = −

∫
f(−x)dx.

11) isodual integrals of eleventh kind∫
fd(xd)×d dxd =

∫
(−f(−x))(−1)d(−x) = −

∫
f(−x)dx.

12) isodual integrals of twelfth kind∫
fd(xd)×d dx =

∫
(−f(−x))(−1)dx =

∫
f(−x)dx.

13) isodual integrals of thirteenth kind∫
fd(xd)ddxd =

∫
(−f(−x))(−d(−x)) = −

∫
f(−x)dx.

14) isodual integrals of fourteenth kind∫
fd(xd)ddx =

∫
(−f(−x))(−dx) =

∫
f(−x)dx.
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15) isodual integrals of fifteenth kind∫
fd(xd)dxd =

∫
(−f(−x))d(−x) =

∫
f(−x)dx.

16) isodual integrals of sixteenth kind∫
fd(xd)dx = −

∫
f(−x)dx.

8.6.2 Isodual functions of second kind

Here F = fdd. Then for x ∈ D we have

1) isodual integral of first kind∫ d

fd(x)×d ddxd = −
∫

(−f(x))(−1)(−d(−x)) = −
∫
f(x)dx.

2) isodual integral of second kind∫ d

fd(x)×d ddx = −
∫

(−f(x))(−1)(−dx) =

∫
f(x)dx.

3) isodual integral of third kind∫ d

fd(x)×d dxd = −
∫

(−f(x))(−1)d(−x) =

∫
f(x)dx.

4) isodual integral of fourth kind∫ d

fd(x)×d dx = −
∫

(−f(x))(−1)dx = −
∫
f(x)dx.

5) isodual integrals of fifth kind∫ d

fd(x)ddxd = −
∫

(−f(x))(−d(−x)) =

∫
f(x)dx.

6) isodual integrals of seventh kind∫ d

fd(x)ddx = −
∫

(−f(x))(−d(x)) = −
∫
f(x)dx.
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7) isodual integrals of seventh kind∫ d

fd(x)dxd = −
∫

(−f(x))d(−x) = −
∫
f(x)dx.

8) isodual integrals of eight kinds∫ d

fd(x)dx = −
∫

(−f(x))dx =

∫
f(x)dx.

9) isodual integrals of ninth kind∫
fd(x)×d ddxd =

∫
(−f(x))(−1)(−d(−x)) =

∫
f(x)dx.

10) isodual integral of tenth kind∫
fd(x)×d ddx =

∫
(−f(x))(−1)(−dx) = −

∫
f(x)dx.

11) isodual integrals of eleventh kind∫
fd(x)×d dxd =

∫
(−f(x))(−1)d(−x) = −

∫
f(x)dx.

12) isodual integrals of twelfth kind∫
fd(x)×d dx =

∫
(−f(x))(−1)dx =

∫
f(x)dx.

13) isodual integrals of thirteenth kind∫
fd(x)ddxd =

∫
(−f(x))(−d(−x)) = −

∫
f(x)dx.

14) isodual integrals of fourteenth kind∫
fd(x)ddx =

∫
(−f(x))(−dx) =

∫
f(x)dx.

15) isodual integrals of fifteenth kind∫
fd(x)dxd =

∫
(−f(x))d(−x) =

∫
f(x)dx.

16) isodual integrals of sixteenth kind∫
fd(x)dx = −

∫
f(x)dx.
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8.6.3 Isodual functions of third kind

Here F = fd. Then for x ∈ D we have

1) isodual integral of first kind∫ d

f(xd)×d ddxd = −
∫
f(−x)(−1)(−d(−x)) =

∫
f(−x)dx.

2) isodual integral of second kind∫ d

f(xd)×d ddx = −
∫
f(−x)(−1)(−dx) = −

∫
f(−x)dx.

3) isodual integral of third kind∫ d

f(xd)×d dxd = −
∫
f(−x)(−1)d(−x) = −

∫
f(−x)dx.

4) isodual integral of fourth kind∫ d

f(xd)×d dx = −
∫
f(−x)(−1)dx =

∫
f(−x)dx.

5) isodual integrals of fifth kind∫ d

f(xd)ddxd = −
∫
f(−x)(−d(−x)) = −

∫
f(−x)dx.

6) isodual integrals of seventh kind∫ d

f(xd)ddx = −
∫
f(−x)(−d(x)) =

∫
f(−x)dx.

7) isodual integrals of seventh kind∫ d

f(xd)dxd = −
∫
f(−x)d(−x) =

∫
f(−x)dx.

8) isodual integrals of eight kinds∫ d

f(xd)dx = −
∫
f(−x)dx = −

∫
f(−x)dx.
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9) isodual integrals of ninth kind∫
f(xd)×d ddxd =

∫
f(−x)(−1)(−d(−x)) = −

∫
f(−x)dx.

10) isodual integral of tenth kind∫
f(xd)×d ddx =

∫
f(−x)(−1)(−dx) =

∫
f(−x)dx.

11) isodual integrals of eleventh kind∫
f(xd)×d dxd =

∫
f(−x)(−1)d(−x) =

∫
f(−x)dx.

12) isodual integrals of twelfth kind∫
f(xd)×d dx =

∫
f(−x)(−1)dx = −

∫
f(−x)dx.

13) isodual integrals of thirteenth kind∫
f(xd)ddxd =

∫
f(−x)(−d(−x)) =

∫
f(−x)dx.

14) isodual integrals of fourteenth kind∫
f(xd)ddx =

∫
f(−x)(−dx) = −

∫
f(−x)dx.

15) isodual integrals of fifteenth kind∫
f(xd)dxd =

∫
f(−x)d(−x) = −

∫
f(−x)dx.

16) isodual integrals of sixteenth kind∫
f(xd)dx =

∫
f(−x)dx.
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