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Abstract. In 1935, A. Einstein expressed his historical view, jointly with B. Podolsky and N.
Rosen, that quantum mechanics could be “completed” into a form recovering classical determin-
ism at least under limit conditions (EPR argument). In the preceding Paper I, we have assumed
the exact validity of quantum mechanics for point particles in vacuum under linear, local and
potential interactions (exterior dynamical systems) and outlined the basic mathematical and phys-
ical methods underlying the “completion” of quantum mechanics into hadronic mechanics for the
representation of extended particles within physical media (such as such as the constituents of
hadrons, nuclei and stars) under additional non-linear, non-local and non-potential interactions
(interior dynamical systems). In this Paper II, we study the isosymmetries for extended particles in
time-reversal invariant interior conditions; we study the apparent proof by the author that interior
dynamical systems admit a classical counterpart; we review the apparent additional proof by the
author that quantum uncertainties tend to zero with the increase of the density of the medium; and
we provide illustrative examples of the progressive recovering of Einstein’s classical determinism
for extended particles in interior conditions and it’s full recovering for gravitational collapse.

1. INTRODUCTION
1.1. The EPR argument.
As it is well known, Albert Einstein did not accept quantum mechanical uncertainties as
being final, for which reason he made his famous quote “God does not play dice with the
universe.”

More particularly, Einstein believed that “quantum mechanics is not a complete the-
ory,” in the sense that it could be broadened into such a form to recover classical deter-
minism at least under limit conditions.

Einstein communicated his views to B. Podolsky and N. Rosen and they jointly pub-
lished in 1935 the historical paper [1] that became known as the EPR argument.

In view of the rather widespread belief that quantum mechanics is a final theory valid
for all conceivable conditions existing in the universe, objections against the EPR argu-
ment has been voiced by numerous scholars, including by N. Bohr [2], J. S. Bell [3] [4],
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J. von Neumann [5] and others (see Ref. [6] for a review and comprehensive literature).
The field became known as local realism and included the dismissal of the EPR argument
based on claims that quantum axioms do not admit hidden variables λ [7] [8].

1.2. Outline of Paper I.
This paper, and the preceding Ref. [9] (hereinafter referred to as Paper I), are dedi-
cated to the review and upgrade of decades of studies by mathematicians, physicists,
and chemists (see Refs. [10] to [70] and papers quoted therein) on the apparent proof of
the EPR argument via the “completion,” also called isotopic lifting, of quantum mechanics
into the axiom-preserving hadronic mechanics (see the 1995 monographs [28] [29] [30] and
literature quoted therein).

More specifically, in Section I-1.1, we have outlined the EPR argument [1] jointly with
representative objections [2] to [6].

In Section I-1.2, we have outlined the apparent first proof by R. M. Santilli [10] that
interior dynamical systems represented with hadronic mechanics admit classical coun-
terparts.

In the same Section I-1.2, we have outlined the apparent second proof by Santilli [11]
that classical determinism is progressively approached in the interior of hadrons, nuclei,
stars and gravitational collapse as predicted by Einstein.

In support of the plausibility of the EPR argument, in the subsequent Sections I-
1.3 to I-1.7, we have outlined insufficiencies of quantum mechanics for time-irreversible
processes, particle physics, nuclear physics, chemistry, and other fields. We have also
provided various references indicating the apparent resolution of said insufficiencies by
hadronic mechanics.

In Section I-2, we have outlined the Lie-admissible covering of Lie’s theory [12] [13],
with ensuing time-irreversible Lie-admissible brach of hadronic mechanics, also known as
genomechanics, [12] [14] allowing studies on the compatibility of mechanics with thermo-
dynamics, said compatibility being notoriously impossible for quantum mechanics.

Quantum mechanics and the objections against the EPR argument are formulated for
time-reversal invariant systems of exterior dynamical systems. Therefore, in preparation
for the proof of the EPR argument studied in Section 3, we have outlined and upgraded
in Section I-3 the time-reversal invariant Lie-isotopic subclass of Lie-admissible mathemat-
ics, also known as isomathematics, [15] [17] which is used for the representation of time-
reversible invariant interior dynamical systems.

In the same Section I-3, we have devoted particular attention to the “completion” of
conventional Hilbert spaces [18], numeric fields [19] and Newton-Leibnitz differential
calculus [20] into forms defined on volumes, rather than points.

In the same Section I-1.3, we have provided particular attention to the main methods
for the proofs of the EPR argument, namely, the axiom-preserving, isotopic lifting of Lie’s
theory [25], today known as the Lie-Santilli isotheory [37].

Finally, in Section I-4, we have outlined and upgraded the time-reversal invariant iso-
topic branch of hadronic mechanics, also known as isomechanics [29] which provides the
dynamical foundations of the proofs of the EPR argument [10] [11].

1.3. Basic assumptions.
The most dominant aspects underlying the studies here considered are:

1) The validity of quantum mechanics for point-like particles in vacuum with ensuing
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Figure 1: In this figure, we present a conceptual rendering of the tacit assumption underlying

the objections against the EPR argument [2] - [6], namely, the representation of particles as being

point-like because it is solely possible under the differential calculus underlying quantum mechanics,

namely, the representation of particles as isolated points in empty space. A first consequence is

that, being dimensionless, particles can only be at a distance, with ensuing Einstein’s argument on

the need for superluminal interactions to explain quantum entanglement [1]. A second consequence

is that, being at a distance, the sole possible interactions are of linear, local and potential type,

under which assumptions the objections against the EPR argument are indeed valid.

Figure 2: A conceptual rendering of the main assumption of the apparent proofs [10] [11] of the

EPR argument [1], zs in the representation of particles as extended, deformable and hyperdense in

conditions of mutual overlapping/entanglement with ensuing continuous contact at a distance elim-

inating the need for superluminal interactions to explain quantum entanglement. A first implication

is the need, for consistency, of generalizing Newton-Leibnitz differential calculus from its histori-

cal form solely definable on isolated points, to a covering form definable on volumes [?]. Another

implication is the emergence of contact, non-linear, non-local and non-potential interactions that,

being not representable by Hamiltonians, require a structural lifting of the Lie-algebra structure of

quantum mechanics under which the objections against the EPR argument are inapplicable (Section

3). Intriguingly, the “completions” here considered turned out to be of isotopic/axiom-preserving

type, thus being fully admitted by quantum mechanical axioms, merely subjected to a realization

broader than that of the Copenhagen school. The apparent proofs of the EPR argument [10] [11]

becomes an unavoidable consequence of the indicated “completions” (Section 3).
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Figure 3: A conceptual rendering of the central notion used for the study of the EPR argument,

namely, a mathematically consistent representation invariant over time of an extended, deformable

and hyperdense particle, such as a proton, in the interior of a physical media, such as hadrons,

nuclei or stars, under the most general known (non-singular) interactions of linear and non-linear,

local and non- local and potential as well as non-potential type.

linear, local and action-at-a-distance/potential interactions (exterior dynamical problems)
occurring in atomic structures, particles in accelerators, crystals and numerous other sys-
tems in nature (Figure 1);

2) The “completion” of quantum mechanics into hadronic mechanics for the repre-
sentation of extended, therefore deformable and hyperdense particles within physical
media with ensuing, additional, non-linear, non-local and contact/non-potential interac-
tions (interior dynamical problems), occurring in the structure of hadrons, nuclei and stars,
with limit conditions occurring in the interior of gravitational collapse where the inap-
plicability (rather than the violation) of quantum mechanics is already accepted by the
majority of serious scholars (Figure 2, 3).

The central assumption of these studies is the axiom-preserving lifting of the conven-
tional associative product ab = a× b between all possible quantum mechanical quantities
(numbers, functions, matrices, etc.) into the isoproduct [14] [25] (Section 3)

a ? b = a T̂ b, (1)

where T̂ , called the isotopic element, is restricted to be positive-definite, T̂ > 0, but pos-
sesses otherwise an unrestricted functional dependence on all needed local variables.

Refs. [14] [25] constructed an axiom-preserving isotopy of the various branches of
Lie’s theory, resulting in a theory today known as the Lie-Santilli isotheory [37] (Section
I-3.7) with isotopic lifting of lie algebras of the type [10]

[Xî,Xj] = Xi ? Xj −Xj ? Xi = Ck
ijXk. i, j = 1, 2, ..., N. (2)

Following laborious efforts for the achievement of mathematical maturity, Ref. [10]
applied the Lie-Santilli isotheory to the isotopy ŜU(2) of the SU(2) spin with three-dimensional
isoalgebras of type (2) and introduced the realization of hidden variables [7] [8] of the type

T̂ = Diag.(1/λ, λ), DetT̂ = 1. (3)

Ref. [10], therefore establishing that, contrary to objections [2] to [6], the abstract ax-
ioms of quantum mechanics do indeed admit explicit and concrete realizations of hidden
variables.

The proof in Ref. [10] that interior systems admit identical classical counterparts was
consequential (Section 3).
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Figure 4: In the l.h.s. of this picture, we present a conceptual rendering of the structure of nuclei

as a sphere with isolated point-like particles in its interior, which is an inevitable consequence of

the elaboration of quantum mechanics via the conventional differential calculus, resulting in rather

serious insufficiencies in nuclear physics outlined in Section I-1.5. In the r.h.s. of this picture, we

present a conceptual rendering of the representation of nuclei as occurring in the physical reality,

namely, as a collection of extended charge distributions in condition of partial mutual penetration

according to Eq. (4) of isomathematics and related isomechanics, whose resolution of at least some

of the insufficiencies of quantum mechanics have been indicated in Section I-1.5.

Isoproduct (1) also allows a direct and immediate representation of extended particles
in conditions of mutual penetration with realizations of the type (Figure 3) [32]

T̂ = Πk=1,...,NDiag.(
1
n2
1k
, 1
n2
2k
, 1
n2
3k
, 1
n2
4k

)e−Γ,

k = 1, 2, ..., N, µ = 1, 2, 3, 4,

(4)

where n2
1, n

2
2, n

2
3, (called characteristic quantities) represent the deformable semi-axes of

the particle normalized to the values n2
k = 1, ‘k = 1, 2, 3 for the sphere; n2

4 represents the
density of the particle considered normalized to the value n4 = 1 for the vacuum; and
Γ represents non-linear, non-local and non-Hamiltonian interactions caused by mutual
penetrations/entanglement of particles.

The smaller than 1 absolute value of the isotopic element T̂ occurring in all known
applications [25]-[35]

| T̂ | ≤ 1, (5)

permitted Ref. [?] to show that the standard deviations ∆r and ∆p appear to progressively
tend to zero with the increase of the density of the medium, and appear to achieve full classical
determinism in the interior of gravitational collapse, as originally conceived by Einstein.

The initial construction of the isotopies of 20th century applied mathematics with iso-
product (1) defined over conventional numeric fields F (n,×, 1) [25] turned out to be in-
consistent because the underlying time evolution is non-unitary, thus causing the lack of
invariance over time of the traditional basic unit 1, with ensuing inapplicability over time
of the entire field F (n,×, 1).

The above occurrence mandated the construction of isofields F̂ (n̂, ?, Î) [19] [40](Section
I-3.3) with basic isounit

Î = 1/T̂ > 0, (6)
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and isonumbers n̂ = nÎ equipped with isoproduct (1).
Ref. [19] essentially established that the abstract axioms of a numeric field do not require

that the multiplicative unit of the field be the trivial number 1, since said unit can be an
arbitrary quantity with an unrestricted functional dependence on local variables, provided
that said multiplicative unit is positive definite and the field is lifted into a compatible form.

Despite all the above efforts, the ensuing isomathematics was still inapplicable to the
proof of the EPR argument because it lacked the crucial invariance over time, namely,
the prediction of the same interior dynamical systems under the same conditions but at
different times.

The above occurrence forced the construction of the covering of the Newton-Leibnitz
differential calculus into the covering isodifferential isocalculus [20] [43] (Section I-3.6) with
basic isodifferential (Figure 2) [?]

d̂r̂ = T̂ d[rÎ(r, ...)] = dr + rT̂ dÎ(r, ...), (7)

and corresponding isoderivative

∂̂f̂(r̂)

∂̂r̂
= Î

∂f̂(r̂)

∂r̂
. (8)

In essence, Ref. [20] established the inapplicability of the conventional differential
calculus whenever the axioms of numeric fields admit multiplicative units with a depen-
dence on the differentiation variable, with ensuing inapplicability of quantum mechanics,
as well as of the objections against the EPR argument, for interior dynamical systems.

The “completion” of the differential calculus into an isotopic form compatible with ba-
sic isoproduct (1) finally allowed the achievement of invariance over time (Section I-3.9),
thus signaling the achievement of maturity for the apparent proof of the EPR argument
reviewed.

In Section 2 of this paper, we complete the methodological needs by outlining and
upgrading the time-reversal invariant coverings of conventional spacetime symmetries,
known as isosymmetries, which is needed for systems of extended particles in interior
conditions; in Section 3, we review and upgrade the Lie-isotopic SU(2)-spin symmetry
and related proofs [10] [11] of the EPR argument; and in Section 4, we present illustrative
examples. This paper ends with comments and the identification of open problems.

A few comments on terminologies appear to be recommendable.
The word “completion” is used in these studies to honor the memory of Albert Ein-

stein and should not be intended to indicate “final” theories. In fact, isomathematics and
isomechanics admit coverings of Lie-admissible character [12] (Section I-2) that, in turn,
admits coverings of hyperstructural character [42], with additional coverings remaining
possible in due time.

The terms “non-Hamiltonian interactions” are intended to indicate interactions that
are not representable with a Hamiltonian, and are technically identified as interactions
violating the integrability conditions for the existence of a Hamiltonian, namely, the con-
ditions of variational self-adjointness [24].

When dealing with stable and isolated interior dynamical systems, the terms “non-
conservative forces” are strictly referred to internal non-Hamiltonian exchanges verifying
conditions (1-55) for the verification of the ten conventional total conservation laws for
the total energy, momentum, angular momentum and the uniform motion of the center
of mass.
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Figure 5: The l.h.s. of this figure illustrates the Keplerian systems for which space-time symmetries

have been constructed, namely, exterior dynamical systems of point-like particles orbiting in vacuum

around a heavier point-like particle known as t he Keplerian center. The r.h.s. of this figure

illustrates the interior systems for which isosymmetries have been built, namely, systems of extended

particles in conditions of mutual penetration without any Keplerian center.

The terms “physical media” refer to media composed by matter in its various states,
and are often referred to as hadronic media, in the sense that the media are not composed
by empty space, thus requiring the use of hadronic mathematics and mechanics for their
quantitative treatment.

The terms “extended particles” refer to: the wavepacket of elementary particles such
as the electron assumed to be of about 1 fm = 10−15 cm; extended charge distributions
for protons and neutrons when members of a nuclear structure, also assumed to have a
diameter of about 1 fm; and stable nuclei when considering the structure of stars. Due
to its crucial significance for the structure of interior systems, a technical definition of the
notion of ”extended particles” will be given in Section 3 via the notion of isoparticle as
isorepresentations of space-time isosymmetries.

2. ISOSYMMETRIES
2.1. Foreword.
In this section, we study the axiom-preserving “completion” (or isotopic lifting) of con-
ventional space-time symmetries, known as Lie-isotopic symmetries, or isosymmetries for
short, which provide the invariance of stable and isolated (thus time reversible) interior
dynamical systems of extended particles at mutual distances smaller than their size which
occur, e.g., in nuclear structures (Figure 3).

Lie-isotopic symmetries were first introduced by Santilli in the 1978 Harvard Uni-
versity paper [13] as a particular case of the broader Lie-admissible symmetries for ir-
reversible, non-conservative systems [14]. Isosymmetries were then studied in various
subsequent works quoted in this section.

The understanding of this section requires a knowledge of the Lie-Santilli isotheory
(Section I-3.7), which was first formulated in monographs [24] [25] over the field of real
numbers. Isosymmetries were then formulated in monographs [28] [29] with the full use
of isomathematics, including the use isofields [19] [40] and the isodifferential calculus [20]
[43] (see Refs. [37] [45] [46] [?] for works on the Lie-Santilli isotheory, and Ref. [44] for a
general review with applications and experimental verifications).

The assumption at the foundation of isosymmetries is the preservation of the abstract
axioms of 20th century space-time symmetries, and the mere construction of their broadest
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possible realization permitted by isomathematics.
Consequently., criticisms of isosymmetries and their novel implications are de facto

criticisms on 20th century space-time symmetries and their implications

2.2. Inapplicability of space-time Lie symmetries.
A first aspect needed for a direct study of the EPR argument is a knowledge of the “inap-
plicability” (rather than the “violation”) for interior dynamical systems of conventional
space-time symmetries that have been proved to be so effective for exterior dynamical
systems.

Said inapplicability can be first seen from the fact that the Galileo and the Lorentz-
Poincaré symmetries can only provide a non-relativistic and relativistic characterization,
respectively, of Keplerian systems, namely, systems of point-like masses orbiting in vac-
uum around a heavier mass called the Keplerian nucleus [25].

However, interior dynamical systems do not admit a Keplerian structure because nu-
clei hav no nuclei [32] and the same happens for hadrons, stars and gravitational collapse
(Figure 8).

It is then possible to prove, e.g., via the imprimitivity theorem, that the lack of exis-
tence of a Keplerian structure implies the lack of exact validity of conventional space-time
symmetries [25] [29].

On more technical grounds, Lie’s theory is known to be solely applicable to exterior
systems of point-like particles in vacuum with ensuing sole possible, linear, local and
Hamiltonian interactions.

Experimental evidence on interior dynamical systems, e.g., on nuclear volumes com-
pared to the volumes of individual nucleons, establishes that nuclei are composed of
extended charge distributions in conditions of partial mutual penetration/entanglement
with the ensuing existence of additional, non-linear, non-local and non-Hamiltonian in-
teractions under which Lie’s theory is inapplicable.

Hence, the transition of particles from exterior to interior conditions implies the in-
applicability of the SU(2)-spin symmetry with consequential inapplicability of Bell’s in-
equality [3] and other objections against the EPR argument [6] in favor of suitable cover-
ing vistas [10] [11].

In any case, the SU(2) symmetry, while unquestionable effective for exterior dynami-
cal systems, has been unable to provide a consistent representation of the spin of particles
and nuclei, thus warranting the search for a suitable “completion.”

2.3. The fundamental theorem on isosymmetries.
The construction of isosymmetries requires the full use of isomathematics with particular
reference to the Lie-Santilli isotheory formulated on isospaces over isofield and elabo-
rated via the isodifferential calculus (Section I-2.7).

Said construction can be done with the following theorem (for brevity, see the proof
in Section 1.2 , Vol. I of Refs. [35]):

THEOREM 2.3.1: Let G be an N-dimensional Lie symmetry of the line element of a k-
dimensional metric or pseudo-metric space S(x,m, I) over a numeric field F with coordinates
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x, metric m over a numeric field F with conventional unit I,

G : x′ = Λ(w)x, y′ = Λ(w)y, x, y ∈ S,

(x′ − y′)†Λ†mΛ(x′ − y′) ≡ (x− y)†m(x− y),

Λ†(w)mΛ(w) ≡ m. w ∈ F.

(9)

Then, all infinitely possible (non-singular) Lie-Santilli isotopies Ĝ of G on isospace
Ŝ(x̂, M̂ , Î) with isocoordinates

x̂ = xI, (10)

isometric
M̂ = m̂Î = (T̂ ki mkj)Î , (11)

and isounit
Î = 1/T̂ > 0, (12)

over an isofield F̂ with isounit vÎ leave invariant the isoline element of the isospace Ŝ(x̂, M̂ , Î):

Ĝ : x̂′ = Λ̂(ŵ) ? x̂, ŷ′ = Λ̂(ŵ) ? ŷ, x̂, ŷ ∈ Ŝ,

(x̂′ − ŷ′)† ? Λ̂† ? M̂ ? Λ̂ ? (x̂′ − ŷ′) ≡ (x− y)†m̂(x− y),

Λ̂†(ŵ) ? M̂ ? Λ̂(ŵ) ≡ M̂.

(13)

All infinitely possible so constructed isosymmetries Ĝ are locally isomorphic to the original
symmetry G.

The reader should note that, while a given Lie symmetry G is unique as well known,
there can be an infinite number of covering isosymmetries Ĝ with generally different
explicit forms o the isotransformations due to the infinite number of possible isotopic
elements representing the infinitely different internal interactions of extended particles
within physical media.

Note also that all possible isotopic images of a given Lie symmetry can be explicitly
and uniquely constructed via the sole knowledge of the original Lie symmetry and of the
isotopic element T̂ > 0, or of the isounit Î = 1/T̂ , which property shall be hereon tacitly
assumed.

2.4. Isospaces and isogeometries.
As it is well known, the fundamental representation space of relativistic space-time sym-
metries is the conventional Minkowski space M(x, η, I) formulated on the field of real
numbers R with coordinates x = (x1, x2, x3, x4 = ct), metric η = Diag.(1, 1, 1,−1), unit
I = Diag(1, 1, 1, 1) and invariant

x2 = (xµηµνx
ν)I =

= (x2
1 + x2

2 + x3
3 − c2t2)I,

(14)

where the trivial multiplication by the conventional unit I = Diag.(1, 1, 1, 1‘) is done for
compatibility with isomathematics.
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The fundamental isospaces of space-time isosymmetries are given by the infinite fam-
ily of iso-Minkowski isospaces, also called Minkowski-Santilli isospaces, M̂(x̂, Ω̂, Î) formu-
lated on the isofield of isoreal isonumbers R̂. (Section I-3.9), which isospaces were first
introduced by R. M. Santilli in Ref. [22] of 1983 and then treated in details in works ([28]
[29].

Iso-Minkowskian isospaces are characterized by space-time isocoordinates x̂ = xÎ ;
isounit Î = 1/T̂ , isometric

Γ̂ = (T̂ ρµηρν)Î , (15)

(where one should note the necessary structure of an isomatrix [28]), positive-definite
isotopic element (4) representing a system of extended particles in interior dynamical con-
ditions with an restricted functional dependence on local quantities such as coordinates
x, momenta p, energyE, frequency ν, density α, temperature τ , pressure pi, wavefunction
ψ, etc., under the conditions

nµ = nµ(x, p, E, ν, α, τ, π, ψ, ∂ψ, ...) > 0, µ = 1, 2, 3, 4, (16)

Γ(x, p, E, ν, α, τ, π, ψ, ∂ψ, ...) ≥ 0, (17)

T̂ = e−Γ � 1, (18)

Iso-Minkowskian isospaces are characterized by the infinite family of isoinvariants
(I-28) with isotopic element (4) that, for the case of one single extended particle can be
written

x̂2̂ = x̂µ ? Ω̂µν ? x̂
ν = (xµη̂µνx

ν)Î =

= (
x21
n2
1

+
x22
n2
2

+
x23
n2
3
− t2 c2

n2
4
)Î ,

(19)

where the exponential exp−Γ has been absorbed in the characteristic quantities nµ, and
the final multiplication by the isounit is necessary for the isoinvariant to be an isoscalar,
namely, an element of the isoreal isofield [19] (Section I-3-5).

The following aspects treated in Paper I are important for the understanding of the
apparent proof of the EPR argument:

1. The characteristic quantities n2
1, n

2
2, n

2
3, admit the first interpretation as representing

the deformable semi-axes of elementary or composite particles normalized to the values
for the sphere n2

1 = n2
2,= n2

3 = 1,;

2. The characteristic quantity n2
4 admit the first interpretation as representing the den-

sity of the hadronic medium normalized to the value n4 = 1 for the vacuum;

3. The function Γ ≥ 0 provides an invariant representation (Section I-3-9) of all non-
linear, non-local and non-Hamiltonian interactions;

4. Property (18) is verified for all applications of isosymmetries to date [10] to [67].

5. The correct elaboration of iso-Minkowskian isospaces requires the use of the iso-
spherical and isohyperbolic isocoordinates (see Refs. [28] [29]).

6. Isoinvariant (19) provides a unified representation of both exterior and interior
gravitational problems. In fact, K. Schwartzchild wrote in 1916 two important papers, the
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first paper [48] on the exterior gravitational problem which became world famous for its ini-
tiation of gravitational singularities, and the second paper [49] in the interior gravitational
problem which has been vastly ignored, except rare studies (such as that in Section 23.2,
page 609, Ref. [51]). Such an oblivion is essentially due to the fact that Schwartzchild’s
second paper is not aligned with the widespread tendency of reducing masses to point-
like constituents, in which case all differences between exterior and interior gravitational
problems disappear to the detriment of the depth of the gravitational analysis. Readers
should keep in mind the full parallelism between exterior and interior dynamical prob-
lems for particles and gravitation.

7. The exterior gravitational interpretation of isoinvariant (19) is given by the following
identical representation of Schwartzchild’s exterior metric [49]

T̂kk =
1

1− 2M
r

, T̂44 = 1− 2M

r
. (20)

The corresponding interior gravitational representation is given by the following isotopy
of Schwartzchild exterior metric

T̂kk =
1

(1− 2M
r

)n2
k

, T̂44 = (1− 2M

r
)/n2

4. (21)

In view of the arbitrariness of the functional dependence of the characteristic quantities
nµ, it is easy to prove that Schwartzchild’s interior metric [49] is a particular case of the
much broader class of interior gravitational models ( 21).

8. The geometry of the iso-Minkowskian isospaces, first presented by Santilli in Ref.
[23] under the name of iso-Minkowskian isogeometry, contains the machinery of the Rie-
mannian geometry (due to the dependence of the isometric η̂ on the local coordinates
x), although such a machinery is formulated for consistency over isofields [19] and elab-
orated via the isodifferential isocalculus [20] (Section I-3.5). Hence, the isominkowskian
isogeometry can unify exterior and interior problems for both particles and gravitation.

9. Recall that iso-Minkowskian isospaces are locally isomorphic to the conventional
Minkowski space (Refs. [22] [23] and Theorem 2.3.1). Therefore, the iso-Minkowskian iso-
geometry has a null curvature. This is due to the fact that, under isotopic lifting, the con-
ventional Minkowski metric η = Diag.(1, 1, 1,−1) is lifted into a coordinate-dependent
isometric T̂ (x)η = η̂(x) which is identical to any given Riemannian metric

η → η̂(x) = T̂ (x)η = g(x). (22)

Jointly, the original unit of the Minkowski space Î = Diag.(1, 1, 1, 1) is lifted by the inverse
amount

I > 0 → Î(x) = 1/T̂ (x) > 0, (23)

resulting in no actual curvature. The above features have suggested the introduction of
the new notion of isoflat isospace, referred to an isospace that has null curvature when
formulated on isofields, while recovering conventional curvature when formulated on
conventional fields. Readers should be aware that the achievement of the universal sym-
metry of (non–singular) Riemannian line elements studied in the next sections is due pre-
cisely to the isoflatness of the iso-Minkowski isospace since no such symmetry is possible
for a convemtional Riemannian space, as well known.
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Recall that the fundamental representation space of symmetries in 3-space dimensions
is the conventional Euclidean space E(r,×, I with coordinates r = (x1, x2, x3), metric
δ = Diag.(1, 1, 1) and unit I = Diag.(1, 1, 1) on the conventional field of real numbers.

Similarly, the fundamental representation space of isosymmetries in 3-dimensions is
the iso-Euclidean isospace Ê(r̂, δ̂, Î), also called Euclid-Santilli isospace (Refs. [14] [25] [28]
and Section I-3.5) which is the space component of the iso-Minkowskian isospace. As
such, the iso-Euclidean isospace is hereon tacitly assumed to be known.

2.5. Lorentz-Poincaré-Santilli isosymmetries.
2.5.1. Main references. Following, and only following the construction of the isotopies
of Lie’s theory, Santilli conducted systematic studies on the isotopies of the various as-
pects of the Lorentz-Poincaré symmetry for the achievement of the universal invariance
of spacetime isoinvariant (19), including:

1) The classical isotopies ŜO(3.1) of the Lorentz symmetry SO(3.1) [52];
2) The operator isotopies ŜO(3.1) of the Lorentz symmetry SO(3.1) [53];
3)The isotopies ŜO(3) of the rotational symmetry SO(3) [54] [55] [56];
.4) The isotopies ŜU(2) of the SU(2) spin symmetry [10] [57];
5) The isotopies P̂ (3.1) of the Poincaré symmetry P (3.1) [58] [59], which included the

universal symmetry of (non-singular) Riemannian line elements;
6) The isotopies P̂(3.1) of the spinorial covering P(3.1) of the Poincaré symmetry [60]

[61];
7) The isotopies M̂(3.1) of the Minkowskian geometry M(3.1) [23]
A general presentation is available in the 1995 monographs [28] [29] with the full use

of isomathematics, including isofields and isodifferential calculus, with up grades in the
2008 monographs [35].

The resulting infinite family of isosymmetries ŜO(3.1) are known as the Lorentz-Santilli

(LS) isosymmetries while the broader isosymmetries P̂ (3.1) and P̂(3.1) are known as
Lorentz-Poincaré-Santilli isosymmetries (see Refs. [36] [?] [44] and papers quoted therein).

Experimental verifications of LPS isosymmetries for interior dynamical systems are
available in monographs [30] and in Section 3 of the more recent review [62].

In inspecting the subsequent sections, the reader should be aware of the “direct uni-
versality” of the LPS isosymmetries for the considered infinite family of interior dynam-
ical systems [63]), including the treatment of exterior and interior, particle and gravita-
tional problems (Section 4).

2.5.2. Basic definitions. As it is well known, the conventional Lorentz-Poincaré (LP)
symmetry is the symmetry of line element (14) which we rewrite in the form

(x− y)2 = (xµ − yµ)ηµν(x
ν − yν)I =

= [(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 − (t1 − t2)2c2)] I,

η = Diag.(1, 1, 1,−c2), , I = Diag.(1, 1, 1, 1)

(24)

where the exponential component exp−Γ is again embedded for simplicity in the charac-
teristic quantities nµ2.
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The LPS isosymmetry is the universal symmetry of the isoline element (19) in the iso-
Minkowski isospace M̂(x̂, Ω̂, Î) over the isoreal isonumbers R̂ rewritten in the form

(x̂− ŷ)2̂ =
[
(x̂µ − ŷµ) ? Ω̂µν ? (x̂ν − ŷν)

]
=

= [xµ − yµ)η̂µν(x
ν − yν)] Î =

=
[

(x1−y1)2

n2
1

+ (x2−y2)2

n2
2

+ (x3−y3)2

n2
3
− (t1 − t2)2 c2

n2
4

]
Î ,

η̂ = T̂ η, T̂ = Diag(( 1
n2
1
, 1
n2
2
, 1
n2
3
, 1
n2
4
),

nµ = nµ(x, v, a, E, d, ω, τ, ψ, ∂ψ, ...) > O, Î = 1/T̂ > 0.

(25)

2.5.3. Isotransformations. By following Theorem 2.3.1, the isotransformations of the
LPS isosymmetries can be written

x̂′ = Λ̂(ŵ) ? x̂, (26)

where Λ̂(ŵ) = Λ(ŵ)Î , resulting in generally non-linear isotransformations, including iso-
translations of the type

x̂′ = x̂+ Â(x̂, ...), (27)

verifying the following property

Λ̂† ? η̂ ? Λ̂ = Λη̂Λ†. (28)

Under the condition of isomodularity

D̂et (Λ̂) = +Î , (29)

we have the isoconnected LS isosymmetries ŜO
0
(3.1) and the isoconnected LPS isosymme-

tries P̂ 0(3.1).
Consider the conventional generators of the Poincaré symmetry

(Jk) = (Jµν), Pµ, k = 1, 2, 3, 4, 5, 6, µ, ν = 1, 2, 3, 4. (30)

By keeping in mind isoexponentiation (I-16), the isotransformations of ŜO
0
(3.1) can

be written [59]
x̂′ = (êiJkwk) ? x̂ ? (ê−iJkwk) =

=
[
(eiJkT̂wk)x(e−iwkT̂ Jk)

]
Î ,

(31)

and the isotranslations Â(3.1) can be written

x̂′ = (êiPµaµ) ? x̂ ? (ê−iPµaµ) =

=
[
(eiPµT̂ aµ)x(e−iaµT̂ Pµ)

]
Î ,

(32)
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It is evident that the above isotransformations do constitute Lie-Santilli isogroups ac-
cording to Theorem I-2.7.3.

2.5.4. Isocommutation rules. As recalled earlier, the total quantities of an isolated,
stable, interior system must be conserved for consistency.

In order to represent this evidence, the Lie-Santilli isotheory was constructed [25] in
such a way to preserve conventional generators, because they represent total conservation
laws, and isotopically lift their product.

By expanding the preceding finite isotransforms in terms of the isounit, the LPS isoal-
gebra ŝo0(3.1) is characterized by the conventional generators of the LP algebra and the
isocommutation rules [29] [59] (here written in their projection on conventional spaces
over conventional fields)

[Jµν ,̂Jαβ] =

= ı(η̂ναJβµ − η̂µαJβν − η̂νβJαµ + η̂µβJαν),

[Jµν ,̂Pα] = i(η̂µαPν − η̂ναPµ)

(33)

[Pµ̂,Pν ] = 0. (34)

η̂µν = T̂ η = (T̂ ρµηρν) (35)

where one should note the appearance of the structure functions η̂(x, p, E, ν, α, τ, ψ, ....),
rather than the traditional structure constants (Theorem I-2.7.2).

The presence of structure functions η̂ in isocommutation rules (33)-(35), Theorem I-
3.7.2 and the analysis of Section I-3.8 imply the following important property (Section
I-3.8):

LEMMA 2.5.1: LPS isosymmetries cannot be derived via non-unitary transformations of the
conventional LP symmetry.

Despite the above non-equivalence, the property T̂ > 0, the topological structure
(+1,+1,+1,−1) of the isometric η̂ = T̂ η and Theorem 2.3.1 imply that:

LEMMA 2.5.2. All LPS isosymmetries are locally isomorphic to the conventional LP sym-
metry.

Recall from Section I-1 that an important limitation of quantum mechanics for the
study of the EPR argument is the inability to achieve a consistent and effective treatment
of non-linear interactions that are expected in the structure of hadrons, nuclei and stars. In
Section I-4.12 , we have shown that the isotopic“completion” of quantum mechanics into
hadronic mechanics does indeed allow a consistent and effective treatment of non-linear
interactions via their embedding in the isotopic element T̂ .

Due to the unrestricted functional dependence of the isotopic element T̂ and, there-
fore, of the isometric η̂ = T̂ η, it is easy to see that the LPS isosymmetries are indeed
non-linear as a necessary condition to provide the invariance of non-linear dynamical
equations.

Note that isolinear isomonenta P̂µ isocommute on isospaces over isofields, but they do
not commute on conventional spaces over conventional fields, Eqs. (35), thus confirming
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that the LPS isosymmetry is isolinear, that is, linear on isospaces over isofields but generally
non-linear in their projection on conventional spaces over conventional fields.

This important property can be illustrated by recalling the isolinear isomomentum
(I-79) on a Hilbert-Myung-Santilli isospace Ĥ with isostates ψ̂ > over the isocomplex
isonumbers Ĉ

P̂µ ? |ψ̂ >= −iÎ∂µ|ψ̂ > . (36)

Isocommutators (35) on Ĥ over Ĉ can then be explicitly written

[P̂µ,P̂ν ] ? |ψ̂ >= (P̂µ ? P̂ν − P̂ν ? P̂µ) ? |ψ̂ >=

= (−iÎ∂µ)T̂ (−iÎ∂ν)− (−iÎ∂ν)T̂ (−iÎ∂µ)T̂ |ψ̂ >=

= (iÎ∂µ∂ν − iÎ∂ν∂µ)|ψ̂ >= 0.

(37)

By contrast, the projection of the same isocommutators (35) on a conventional Hilbert
spaceH over the field of complex numbers C no longer commutes,

[P̂µ, P̂ν ]|ψ̂ >= (P̂µP̂ν − P̂νP̂µ)|ψ̂ >=

= (−iÎ∂µ)(−iÎ∂ν)− (−iÎ∂ν)(−iÎ∂µ)|ψ̂ >6= 0.

(38)

because, in general, ∂µÎ 6= ∂ν Î , and this proves the isolinear character of the isomomen-
tum.

Besides a direct relevance for the structure of hadrons, nuclei and stars, the above
isolinearity has important implications , such as a new consistent operator form of gravi-
tation , a new grand unification and other advances [34].

The presence of the structure functions in the isocommutation rules, the capability to
provide the invariance under non-linear interactions and other features and applications
outlined in Section 4 illustrate the non-triviality of the Lie-Santilli isotheory.

2.5.5. Iso-Casimir Isoinvariants. The simple direct use of isocommutation rules (33)-
(35) establishes that the iso-Casimir-isoinvariants of p̂00(3.1) are given by [59]

Ĉ1 = Î((t, r, p, E, µ, τ, ψ, ∂ψ, ...) > 0,

Ĉ2 = P̂ 2̂ = P̂µ ? P̂
µ = (η̂µνP

µP ν)Î =

= (
∑
k=1,2,3

1
n2
k
P 2
k − c2

n2
4
p2

4)Î ,

Ĉ3 = Ŵ 2̂ = Ŵµ ? Ŵ
µ, Ŵ = WÎ,

Ŵµ = ε̂µαβρ ? J
αβ ? P ρ,

(39)

and they are at the foundation of classical and operator relativistic isomechanics (Section
I-4) with deep implications for structure models of interior dynamical systems [30].

2.4.6. Isorotations. By using isotransforms (32), the explicit form of the isorotations
ŜO(3), first derived in Refs. [54] [55], can be written in the isoplane (x̂,1 , x̂2) of iso-
Euclidean isospaces Ê(x̂, ∆̂, Î) over the isoreals R̂, here formulated for simplicity in their
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Figure 6: It was generally believed in the 20th century physics that the rotational symmetry
is broken for ellipsoids. Santilli isorotational isosymmetry has restored the exact character
of the rotational symmetry for all possible (topology preserving) deformations of the sphere
[29].

projection on the conventional Euclidean space (see Ref. [29] for the general case)

x1′ = x1 cos[θ(n1n2)−1]− x2 n
2
1

n2
2

sin[θ(n1n2)−1],

x2′ = x1 n
2
2

n2
1

sin[θ(n1n2)−1] + x2 cos[θ(n1n2)−1].

(40)

It was generally believed in the 20th century that the SO(3) symmetry is broken for
ellipsoid deformations of the sphere. By contrast, as shown by isotransforms (40) the
ŜO(3) isosymmetry achieves the invariance of ellipsoids (Figure 6). But SO(3) and ŜO(3)
are locally isomorphic (Theorem 2.3.1). We therefore have the following property [54]
[55]:

LEMMA 2.5.3: The Lie-Santilli ŜO(3) isosymmetry restores the exact character of the ro-
tational symmetry for all ellipsoid deformations of the sphere.

.
This property is due to the fact that the mutation of the semiaxes of the sphere occur

jointly with the inverse ,utation of the related units, thus maintaining the perfect spherical
shape in isospaces over isofields

Radius 1k → 1/n2
k, Unit 1k → n2

k. (41)

Note the crucial role of isonumbers for the reconstruction of the exact rotational sym-
metry because said reconstruction occurs thanks to the isoinvariant by the isounit.

2.5.7. Lorentz-Santilli isotransforms. The infinite family of isoconnected Lorentz-
Santilli (LS) isotransforms ŜO

0
(3.1) on iso-Minkowskian isospaces M̂(x̂, Ω̂, Î) over the

isoreals R̂, first derived by in Ref. [52] of 1983, can be written in the (x̂3, x̂4)-isoplane in
their projection in the conventional l Minkowski space M(x, η, I), as follows (see Ref. [29]
for the general case):
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x1′ = x1, x2′ = x2,

x3′ = γ̂(x3 − β̂ n3

n4
x4),

x4′ = γ̂(x4 − β̂ n4

n3
x3),

(42)

where
β̂ =

v3/n3

c/n4

, γ̂ =
1√

1− β̂2
. (43)

Figure 7: It was generally believed in the 20th century physics that the Lorentz symmetry
is broken for locally varying speeds of light within physical media (here represented with a
wiggly light cone). The Lorentz-Santilli isosymmetry has restored the exact validity of the
Lorentz symmetry for interior dynamical problems [52] [29]

A significant aspect of Ref. [52] is the solution of the historical Lorentz problem, namely,
the invariance of locally varying speeds of light within physical media

C =
c

n4

(44)

In fact, Lorentz first attempted the invariance of the speed of light C = c/n4, but had
to restrict his study to the invariance of the constant speed of light in vacuum c, due
to insurmontable technical difficulties. Santilli has shown that Lorentz’s difficulties were
due to the use of Lie’s theory, because, under the use of the covering Lie-Santilli isotheory,
the invariance of C = c/n)4 was achieved in two pages of the 1983 letter [52].

A second significant aspect of Ref. [52] is the achievement of the first invariant formu-
lation of extended, thus deformable and hyperdense particles, as stated beginning with
the title of the quoted paper.

It was generally believed in the 20th century that the Lorentz symmetry SO0(3.1) is
broken for locally varying speed of light within physical media represented with the wig-
gly circle of Figure 7. Ref. [52] proved that the isosymmetry ŜO

0
(3.1) achieves the invari-

ance of C = c/n4. But SO0(3.1) and ŜO
0
(3.1) are locally isomorphic, thus restoring the
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exact character of the abstract axioms of the Lorentz for all possible values C = c/n4. We
therefore have the following important property [29]:

LEMMA 2.3.5: The Lie-Santilli ŜO
0
(3.1) isosymmetry restores the exact validity of Lorentz’s

axioms for locally varying speeds of light.

This property is due to the reconstruction of the exact light cone on the iso-Minkowskian
isospace over isofields with maximal causal value c, called the light isocone,

x̂2̂ = x̂2
3 + x̂2

4 = 0 (45)

while its projection on the conventional Minkowski space over conventional fields repre-
sents a locally varying speed

x̂2 = (
x2

3

n2
3

− t2 c
2

n4
)Î = 0. (46)

This property is due to the fact that the mutation of the x̂3 and x̂4 isocoordinates occurs
jointly with the inverse mutation of the corresponding isounits, by therefore preserving
the original perfect light cone with c as the maximal causal speed (see the 1966 monograph
[29] for details)

x3 → x3

n3
, I3 = 1 → Î3 = n3

x4 = tc → x4

n4
= t c

n4
, I4 = 1 → Î4 = n4.

(47)

Another significant aspect of Ref. [52] is the achievement of the first known invariance
of non-linear, non-local and non-Hamiltonian interactions thanks to their embedding in
the characteristic n-quantities of the isoinvariant (25).

2.5.8. Isotranslations. In view of their non-linearity, isotranslations in four parameters
aµ can be written in their projection in the conventional Minkowski space [29]

x′µ = xµ + Aµ(a, x, . . .), (48)

and can be written via a power series expansion of the general expression

Aµ = aµ(n−2
µ + aα[n−2

µ ,̂Pα]/1! + . . .), (49)

The understanding of the isotopic completion of 20th century space-time symmetries
requires the knowledge that, when properly written on iso-Minkowskian isospace over
isofields, isotranslations recover their conventional form . [29].

2.5.9. isodilatations. Santilli introduced in Ref. [59] a novel one-dimensional isoinvari-
ance denoted D̂ which is given by the dilatation of the isometric caused by its multiplica-
tion by as parameter w, while the isounit is jointly subjected to the inverse dilatation

Ω̂ = η̂Î → ŵ ? Ω̂ = wη̂Î ′

Î → Î ′ = 1
w
Î .

(50)

under which isoinvariant (25) remain manifestly unchanged.
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In essence, the new symmetry originates from the fact that, for mathematical consis-
tency, isoinvariants must be elements of t isofields, thus having structure (25), namely,
isoinvariants must be given by a conventional invariant multiplied by the isounit.

Ref. [59] showed that, by writing conventional invariants with the multiplication,
in this case, by the trivial unit 1, the new dilatation symmetry persists for conventional
space-time symmetries,

η → η′ = wη, 1 → 1′ =
1

w
1 (51)

The above properties imply the following

LEMMA 2.5.5: The conventional Lorentz-Poincaré symmetry is eleven-dimensional with
structure

P 0(3.1) = so0(3.1)× A(3.1)×D, (52)

and, consequently, the Lorentz-Poincaré-Santilli isosymmetry is also eleven-dimensional with
the structure

P̂ 0(3.1) = ŝo0(3.1) ? Â(3.1) ? D̂, (53)

The above seemingly trivial property has permitted Santilli the study of a new grand
unification of electrioweak and gravitational interactions based on the embedding of
gravitation in the isotopic degree of freedom of the theory [34].

2.5.10. Isoinversions. The isotopic ”completion” of conventional inversions has been
studied in details in Refs. [29] and consists of the isotime isoinversions

τ̂ t̂ = (τ t̂)Î (54)

plus the isospace isoinversions

π̂r̂ = (πr̂)Î (55)

where τ and π are conventional time and space inversions, respectively.
Despite their simplicity, Santilli has shown in Ref. [29] that not only continuous, but

also discrete space-time symmetries can be reconstructed as being exact on isospaces over
isofields when assumed to be broken on conventional spaces over conventional fields..

2.5.11. Isospinorial LPS isosymmetry. Recall that the spinorial covering P0(3.1) of
the connected component of the LP symmetry P 0(3.1) is constructed via the use of the
Dirac gamma matrices. In fact, the conventional generators are realized via suitable com-
bination of Dirac gamma matrices.

By following the same historical pattern, Santilli proposed in the 1995 communication
[60] of the Joint Institute for Nuclear Research, Dubna, Russia (see also the subsequent
paper [61] ) the following eleven-dimensional isotopic “completion” P̂0(3.1) of P0(3.1)

P̂(3.1) = ŜL(2.Ĉ) ? Â(3.1) ? D̂, (56)

with realization of the generators in terms of the Dirac-Santilli isogamma isomatrices
Γ̂µ = γ̂µÎ , Eqs. (I-89)

ŜL(2.Ĉ) : R̂k = 1
2
εkijΓ̂i ? Γ̂j, Ŝk = 1

2
Γ̂k ? Γ̂4,

Â(3.1) : P̂µ,

k = 1, 2, 3, 4, 5, 6, µ = 1, 2, 3, 4.

(57)
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The verification by the above isogenerators of isocommutation rules (33)-(35) is an
instructive exercise for the interested reader. The proof that the Dirac-Santilli isoequations
(I-88) transform isocovariantly under P̂0(3.1) is equally instructive.

2.5.12. Galilean isosymmetries As it is well known, the Galileo symmetry
G(3.1) characterizes the non-relativistic motion of point particles in vacuum, with con-
sequential absence of resistive or non-potential forces (see the vertical line of Figure 8).

The isotopies of the Galileo symmetry are intended to characterize the non-relativistic
motion of extended particles within physical media, by therefore experiencing resistive
non-potential forces (see the wiggly line of Figure 8).

The resulting infinite family of isosymmteries Ĝ(3.1) are here called Galilean isosym-
metries to stress the preservation of the basic axioms of the Galileo symmetry and the
mere construction of the broadest possible realizations permitted by isomathematics.

The Lie-isotopic lifting of the Galileo symmetry were introduced by Santilli in the
1978 paper [12] as a particular case of the covering Lie-Admissible symmetries, also called
genosymmetries, which are intended fo characterize the time rate of variation of physical
quantities.

The first direct study of Galilean isosymmetries was done in Section 5.3, pages 225
on, of the 1981 monograph [25] formulated over conventional fields. These isotopies
were then systematically studies and upgraded in the two 1991 volumes [26] [27]. The
formulation of Galilean isosymmetries with thee full use of isomathemaics was done in
the 1995 monographs [28] [29] with a final study presented in Ref.[31].

The above studies attracted the attention of Abdus Salam, founder and president of
the International Center for Theoretical Physics (ICTP), Trieste, Italy, who invited Santilli
in 1991 to deliver at his Center a series of lectures in the isotopies of the Galileo symmetry
and relativity , said invitation being apparently the last by Salam prior to his death.

During his visit at the ICTP, Santilli wrote papers [64] through [70]. The notes from
Santilli’s lectures were collected by A. K. Aringazin, A. Jannussis, F. Lopez, M. Nishioka
and B. Vel-janosky and published in volume [36] of 1992.

This work is primarily intended for relativistic isosymmetries. Additionally, all pri-
mary applications require relativistic treatments. Therefore, we regret to be unable to
review Galilean isosymmetries to prevent a prohibitive length.

Nevertheless, the reader should be aware that an introductory knowledge of the Galilean
isosymmetries is suggested, e.g., from the readIng of the ICTP papers [64] to [70].

3. APPARENT PROOF OF THE EPR ARGUMENT

3.1. Foreword.
As it is well known, the conventional Pauli matrices σk, k = 1, 2, 3, are the fundamental
(also called adjoint), irreducible unitary representation of the SU(2)-spin symmetry and
play a crucial role for the objections against the EPR argument [2] - [6] .

In this section, we review the isotopic “completion’ of Pauli’s matrices into isomatrces

Σ̂k = σ̂kÎ (58)
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Figure 8: This figure presents a conceptual rendering of the free fall of point-masses in vacuum

studied by Galileo (represented with a straight line), and the free fall of extended masses experiencing

resistive forces from our atmosphere studied by Santilli (represented with a wiggling line) [25] [29]

[36]. It is symptomatic to note that the achievement of the symmetry for exteded masses required

the construction of a covering of the mathematics used for the point masses with particular reference

to the generalization of Newton-Leibnitz differential calculus, from its hiostorical formulation for

isolated point, to a covering formulation for volumes [20].

which constitute the isofundamental, isoirreducible, isounitary isorepresentation of the
Lie-Santilli ŜU(2) isosymmetry and play a crucial role in the apparent proof of the EPR
argument for extended particles within physical media studied later on in this section.

By recalling that the SU(2) symmetry characterizes the spin of point-particles in vac-
uum, the “completed ŜU(2) isosymmetry is intended to characterize the spin of extended
particles within hyperdense media called hadronic spin, such as the spin of an electron in
the core of a star.

The isotopic “completion” of Pauli’s matrices was introduced by Santilli in 1993 while
visiting the Joint Institute for Nuclear Research, Dubna, Russia [57]. Said “completion”
was presented systematically in Refs. [28] [29], used for the apparent proofs of the EPR
argument [10] [11], and they are nowadays known as the Pauli-Santilli isomatrices [44].

In particular, the preceding studies have shown that, unlike the case for the SU(2)

symmetry, the isotopic ŜU(2) isosymmetry admits an explicit and concrete realization of
hidden variables λ [3] [4] via realizations of the isotopic element of type T̂ = Diag.(1.λ, λ)
Eq. )(3).

In this section, we shall review the construction of ŜU(2) isosymmetry and of Pauli-
Santilli isomatrices of regular and irregular type with hidden variables. We shall then
use the methods acquired in this and in the preceding paper [9], for the proof that inte-
rior dynamical systems represented via isomathematics and isomechanics appear to admit
identical classical counterparts [10] (Section 3.7), and to progressively approach the classical
EPR determinism [1] in the stricture of hadrons, nuclei and stars., while achieving the EPR
determinism in the interior of gravitational collapse [11] (Section 3.8).

A first understanding of this section requires a knowledge of the Lie-Santilli isotheory
(Section I-2.7) [25] [29] [37] [45] [46] [48] A technical understanding of this section requires
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a technical knowledge of hadronic mechanics [28]- [30].

3.2. Pauli matrices.
As it is well known (see, e.g., Ref. [71]), the carrier space of the two-dimensional group of
special unitary transformations SU(2) is the two-dimensional complex Euclidean space
E(z, δ, I) with coordinates z = (z1, fz2), metric δ = Diag.(1, 1) and unit I = Diag/(1, 1).

The two-dimensional , fundamental (also called adjoint), irreducible, unitary repre-
sentation of the special unitary Lie algebra su(2) of the SU(2)-spin symmetry is given by
the celebrated Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i1
i1 0

)
, σ3 =

(
1 0
0 −1

)
., (59)

with commutations rules

[σi, σj] = σiσj − σjσi = i2εijkσk (60)

and eigenvalues on a Hilbert space calH over the field of complex numbers C with basis
|b >

σ2|b >= (σ1σ1 + σ2σ2 + σ3σ3)|b >= 3|b >,
σ3|b >= ±1|b > (61)

Among the various properties of Pauli’s matrices, we should recall their uniqueness
in the sense that their expression is invariant under the class of equivalence admitted by
quantum mechanics, that under unitary transformation.

We should also recall that Pauli’s matrices are also fundamental for the structure of
Dirac’s equation, Eq. (I-9) since they appear in the very definition of Dirac’s gamma
matrices, Eqs. (I-89).

3.3. Regular Pauli-Santilli isomatrices
By following Ref. [57], the carrier isospace of the two-dimensional Lie-Santilli isogroup of
isospecial isounitary isotransformations ŜU(2) is the isocomplex iso-Euclidean isospace
Ê(ẑ, ∆̂, Î) with isocoordinates

ẑ = zÎ = (z1, z2) = (z1, z2)Î; (62)

isounit and isotopic element

Î =

(
n2

1 0
0 n2

2

)
= 1/T̂ > o, (63)

T̂ =

(
n−2

1 0
0 n−2

2 ;

)
(64)

isometric

∆̂ = δ̂Î = (T̂ ki δki)Î =

(
n−2

1 0
0 n−2

2

)
Î; (65)

positive-definite characteristic quantities nk with unrestricted functional dependence on
the variables for interior dynamical problems

nk = nk(z, z̄, E, µ, α, τ, ψ, ∂ψ, ...) > 0, k = 1, 2; (66)
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and basic isoinvariant
ẑi ? ∆̂ij ? ˆ̄zj = (ziδ̂ijzj)Î =

= ( z1z̄1
n2
1

+ z2z̄2
n2
2

)Î .
(67)

By also following Refs. [28] [57], the isogroup of regular, isospecial, isounitary, iso-
transformations ŜU(2) leaving invariant isoline element (67), is characterized by the iso-
transforms

ẑ′ = Û(θ̂) ? z = Û(θ̂)T̂ ẑ, (68)

verifying the following conditions [29]:
1. Isounitarity

Û(θ̂) ? Û †(θ̂) = Û †(θ̂) ? Û(θ̂) = Î; (69)

2. Isogroup isoaxioms

Û(θ̂1) ? Û(θ̂2) = Û(θ̂1 + θ̂2),

Û(θ̂) ? Û(−θ̂) = Û(0) = Î , k = 1, 2, 3;

(70)

and
3. Isospecial isounitarity

IsoDetÛ(θ̂) = Î , Det(UT̂ ) = 1. (71)

The latter condition essentially restricts the isogroup ŜU(2) to its isoconnected com-
ponent ŜU

0
(2) , which is hereon tacitly assumed.

The above conditions imply the local isomorphism

ŜU(2) ≈ SU(2) (72)

and the following explicit realization in terms of isoexponential (I-22)

Û(θ̂) = ΠkUk(θk)Î = Πkê
î?Ĵk?θ̂k = Πk(e

iJkT̂ θk)Î ,

Uk(θk) = eiJkT̂ θk , k = 1, 2, 3,

(73)

where Ĵk represents the isogenerators of the Lie-Santilli isoalgebra ŝu(2) verifying the
conditions

IsoTrĴk = 0, T r(ĴkT̂ ) = 0, (74)

and the isocommutation rules

[Ĵî,Ĵj] = Ĵi ? Ĵj − Ĵj ? Ĵi =

= ĴiT̂ Ĵj − ĴjT̂ Ĵi = εijkĴk

(75)

Note that, in accordance with Theorem I-2.7.2, the isorepresentations here considered
are called regular because theycan be constructed via non-unitary transformations of the
conventional su(2) algebra, resulting in the preservation of the conventional structure
constants εijk.
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However, as we shall see in the next section, the isotopies of the su(2) algebra imply
realizations called irregular that cannot be constructed via non-unitary representations of
su(2) [57], in which case the structure constants εijk are replaced by structure functions
with an arbitrary (non-singular) functional dependence on local variables,

Ĉijk = Cijk(z, z̄, E, ν, α, τ, ψ, ∂ψ, ...)Î . (76)

As one can verify, ŝu(2) admits the following iso-Casimir isoinvariant

Ĵ 2̂ = ΣkĴk ? Ĵk =

= Ĵ1T̂ J1 + Ĵ2T̂ J2 + Ĵ3T̂ J3

(77)

The maximal set of isocommuting isooperators is then given by Ĵ3 and Ĵ 2̂.
By again following Ref. [57], in order to compute the explicit form of the isorepresen-

tations of ŝu(2), we introduce the Hilbert-Myung-Santilli isospace Ĥ[18] over the isofield
of isocomplex isonumbers Ĉ [19] with d-dimensional isobasis |b̂dk > verifying isonormal-
ization (I-75),

< b̂dk| ? |b̂dk >=< b̂dk|T̂ |b̂dk >= Î ,

d = 1, 2, 3, ...N, , k = 1, 2, , 3.

(78)

From the local isomorphism ŝu(2) ≈ su(2) we know that the isoeigenvalue equations
have the structure

Ĵk ? |b̂dk >= bdk|b̂dk >,

Ĵ 2̂ ? |b̂dk >= Σkb
d
k(b

d
k +W )|b̂dk >

W = DetT̂ = 1/n2
1n

2
2

, (79)

where W = 1 for regular isorepresentation , otherwise W is an arbitrary function of local
quantities to be identified via subsidiary constraints from the medium in which extended
particles are immersed.

The explicit form of the isorepresentations of ŝu(2) is then given by the simple isotopy
of the conventional case [71]

Ĵ± = Ĵ1 ± Ĵ2,

(Ĵ1)ij = i1
2
< b̂dk| ? (Ĵ− − Ĵ+) ? |b̂dk >,

(Ĵ2)ij = i1
2
< b̂dk| ? (Ĵ− + Ĵ+) ? |b̂dk >,

(J3)ij =< b̂dk| ? Ĵ3 ? |b̂dk > .

(80)

By continuing to follow Ref. [57], we now restrict our attention to the two-dimensional
isofundamental (isoadjoint) isorepresentation of ŝu(2) occurring for d = 2, in which case
we assume

Ĵk =
1

2
σ̂k, k = 1, 2, 3, (81)
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and select the basic isounitary isotransform according to Sections I-2.8 and I-2.9

UU † = f(W ) > 0, W = Det.Î = n2
1n

2
2 (82)

where f(W ) is a smooth function such that f(1) = 1.
By using the above procedure, we have the following regular Pauli-Santilli isomatri-

ces first introduced by Santilli in Ref. [57], Eqs. (3.2) (where the isometric elements are
denoted gkk = n−2

k , k − 1, 2)

Σ̂k = σ̂kÎ ,

σ̂1 = (n1n2)

(
0 n−2

1

n−2
2 0

)
, σ̂2 = (n1n2)

(
0 −in−2

1

in−2
2 0

)
,

σ̂3 = (n1n2)

(
n−2

2 0
0 −n−2

1

)
.

(83)

with isocommutation rules
[σ̂î,σ̂j] = i2εijkσ̂k, (84)

in which the ’regular’ character of the isomatrices is established by the presence of the
conventional (constant) structure constants.

We then have the isoeigenvalues isoequations

σ̂3 ? |b̂2
m >= σ̂3T̂ |b̂2

m >= ± 1
n1n2
|b̂2
m >

σ̂2̂ = (σ1T̂ σ̂1 + σ2T̂ σ̂
+
2 σ3T̂ σ̂3)T̂ |b̂2

m >=

= 3 1
n2
1n

2
2
|b̂2
m >

(85)

showing that the regular Pauli-Santilli isomatrices preserve the conventional structure
constants εijk of Pauli matrices, but exhibit structure (84) with generalized isoeigenvalues
containing two characteristic quantities n2

1, n
2
2,.

It is evident that, under isounimldularity condition (71),

DetT̂ = 1, n1 = 1/n2, (86)

isomatrices (83) reduce to

σ̂1 =

(
0 n−2

1

n−2
2 0

)
, σ̂2 =

(
0 −in−2

1

in−2
2 0

)
,

σ̂3 =

(
n−2

2 0
0 −n−2

1

)
.

(87)

by verifying conventional commutation rules (84) and conventional eigenvalues

σ̂3 ? |b̂2
m >= ±|b̂2

m >

σ̂2̂ ? |b̂2
m >= 3|b̂2

m >

(88)
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In order to search for additional realizations of regular Pauli-Santilli isomatrices, we
now assume the following non-unitary transform

U =

(
n1 0
0 n2

)
= U †, (89)

under which we have the following second realization of regular Pauli-Santilli isomatri-
ces

σ̂k = UσkU
†,

σ̂1 =

(
0 n1n2

n1n2 0

)
, σ̂2 =

(
0 −in1n2

in1n2 0

)
,

σ̂3 =

(
n2

1 0
0 −n2

2

)
.

(90)

It is an instructive exercise for the interested reader to verify that the above isoma-
trices verify the isocommutation rules (84) and conventional isoeigenvalue(99), namely,
the second realization of the Pauli-Santilli isomatrices, Eqs. (873), also admit conventional
structure constants and eigenvalues despite the degrees of freedom permitted by the two char-
acteristic quantities n2

1, n
2
2.

We now assume the following non-diagonal realization of the non-unitary transform

U =

 0 n1

n2 0

 , U † =

(
0 n2

n1 0

)
,

UU † = Î = 1/T̂ > 0

(91)

which characterizes the following third realization of the regular Pauli-Santilli isomatrices

σ̂1 =

(
0 n1n2

n1n2 0

)
, σ̂2 =

(
0 −in1n2

in1n2 0

)
,

σ̂3 =

(
−n2

1 0
0 n2

2

)
,

(92)

It is easy to see that the above third realization of the regular Pauli-Santilli isomatrices
also verify conventional commutation rules (84) and eigenvalues (88).

Note that, while Pauli’s matrices are invariant under unitary transforms, there exist a
number of Pauli-Santilli isomatrices each of which is invariant under isounitary isotrans-
forms (Section I-3.9).

3.4. Irregular Pauli-Santilli isomatrices.
3.4.1. Historical notes. Recall that stars initiate their life as an aggregate of hydrogen.
H. Rutherford [72] conjectured in 1910 that, when the temperature and pressure at the
center of the star reaches certain values, the electron e− is “compressed” inside the proton
p+ resulting in a neutral particle n which is called the neutron according to the reaction
(see Section 4)

e− + p+ → n. (93)
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Rutherford hypothesis was experimentally confirmed by J. Chadwick in 1932 [?], and
the neutron became part of scientific history.

Following the experimental verification that the neutron has the same spin 1/2 of the
electron and of the proton, in an attempt at maintaining the conservation of the angular
momentum predicted by conventional space-time symmetries, E. Fermi [73] suggested
that the synthesis of the neutron occurs with the emission of a hypothetical massless and
chargless particle ν with spin 1/2 according to the reaction widely accepted for about one
century

e− + p+ → n. (94)

After joining Harvard University in September 1977, R. M. Santilli noted that, despite
the salvaging of space-time symmetries and related conservation laws, reaction (95) was
not compatible with quantum mechanical laws [15] [16] because the rest energy of the
neutron En is 0.782 MeV bigger than the sum of the rest energies of the proton Ep and of
the electron Ee,

Ep = 938.272 MeV, Ee = 0.511 MeV, En = 939.565 MeV, (95)

En − (Ep + Ee) = 0.782 MeV > 0. (96)

By recalling that quantum mechanics has an excellent consistency for bound states
with negative potentials causing a mass defect (as it is typically the case for nuclear fusions),
a representation of experimental data (96) via quantum mechanics is therefore impossible
because it would require a positive potential capable of producing a mass excess, which
features imply the loss of physical consistency of Schrödinger equation and quantum
mechanical laws (e.g., because the indicial equation of Schrödinger equation admits no
consistent solutions for positive potential energies, see Table 5 of Ref. [16]).

Various conjectures, aimed at maintaining for the neutron structure the theory so effec-
tive for the hydrogen atom, were proved not to be consistent. For instance, the hypothesis
that the missing energy of 0.782 MeV was carried as a relative energy between the elec-
tron and the proton had to be dismissed because the cross section e − p is so small at
0.782 MeV to prevent any fusion between the electron and the proton.

In the absence of viable hypotheses salvaging quantum mechanics, Santilli interpreted
the above insufficiency as evidence of Einstein’s view that quantum mechanics is not a
complete theory. Therefore, Refs. [15] [16] initiated the search for a “completion” of con-
ventional Lie symmetries and quantum mechanics with particular reference to the central
need: identify a suitable “completion”of Lie’s theory at large and, in particular, of the
SU(2)-spin symmetry for the electron when “compressed” inside the hyperdense proton.

The above 1978 remarks lead to conditions of variational selfadjointness and to the
axion-preserving isotopies of Lie’s theory for variationally non-selfadjoint systems presented
at a post Ph. D. Seminar Course delivered in 1978 at the Lyman Laboratory of Physics of
Harvard University, which Seminar Course in monographs [24] [25] whose content has
been reviewed in Paper I and in the preceding sections of this paper.

The 1995 papers [54] [55] and the ensuing 1963 paper [57] on the regular isotopies
ŜU(2) of the spin symmetry (reviewed in the preceding section) lead to the apparent 1998
proof of the EPS argument [10].

To understand the complexity of the problem of the neutron synthesis and its value
for basic advances, one should note that there exist no consistent quantum mechanical basis
for the emission of the neutrino in synthesis (95) due to the lack of 0.782 MeV for the
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synthesis of the neutron itself, without any possible energy available for the creation of the
neutrino.

In view of the above occurrence, Santilli noted more recently in the 2007 paper [74]
that as a necessary condition to carry the missing 0.782 MeV , a third particle should be
added in the l.h.s. of the reaction for the neutron synthesis, rather in its r.h.s.

This remark lead to the conjecture of the etherino represented with the symbol a con-
ceived as a longitudinal impulse (rather than a particle as conventionally understood)
delivering the missing 0.782 MeV according to the reaction [74]

e− + a+ p+ → n, (97)

which, unfortunately, cannot be studied in this paper for brevity.
The motivation of the studies reviewed in this section stems from the fact that, de-

spite their significance for the EPS argument, regular isotopies of the SU(2) spin symmetry
are insufficient for the characterization of the spin of the neutron in its synthesis from the
hydrogen due to their conventional eigenvalues, while interior dynamical systems at large,
and the neutron synthesis in particular, require alterations (called mutations) of conventional
eigenvalues that can be solely represented via irregular isorepresentations of ŜU(2).

The irregular isorepresentations of the SU(2)-spin symmetry were identified, appar-
ently for the first time, by Santilli in the 1990 paper [75] and used to achieve a non-
relativistic representation of all characteristics of the neutron in its synthesis from the
hydrogen.

In the 1995 paper [61], Santilli presented a relativistic study of ŜU(2) as an isosubal-
gebra of the irregular isospinorial covering of the Lorentz-Poincaré symmetry (Section
2.5.11) and used the results to achieve a relativistic representation of the neutron synthe-
sis.

The above irregular isotopies are particularly significant for the identification of inte-
rior dynamical systems providing concrete illustrations of the validity of the EPR argu-
ment, and can be summarized as follows:

3.4.2. Non-relativistic formulation. The first irregular isotopies of Pauli’s matrices, to-
day known as irregular Pauli-Santilli isomatrices [44], have been introduced in Eqs. (2.32)
of Ref. [75] via the use of the isorepresentations of ŜU(2) worked our in the preceding
papers [54] [55], and are given by

σ̂1 =

(
0 −n1

n2 0

)
, σ̂2 =

(
0 −in1

in2 0

)
,

σ̂3 = 1
n)1n2

(
n2

1 0
0 −n2

2

)
,

(98)

with irregular isocommutation rules

[σ̂î,σ̂j] = 2i
1

n1n2

εijkσ̂k, i, j, k,= 1, 2, 3 (99)

and isoeigenvalues
σ̂3 ? |û >= ± 1

n1n2
|û >,

σ̂2̂ ? |û >= 1
n1n2

( 1
n1n2

+ 2)|û >,
(100)
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It is easy to see that, when the hyperdense medium surrounding the immersed par-
ticle is homogeneous and isotropic, the characteristics quantities can be normalized to
the values n1 = n2 = n3 = 1, in which case isoeigenvalues (100) are conventional. We
therefore have the following

LEMMA 3.1: Irregular isorepresentations of the Lie-Santilli isosymmetry ŝu(2) represent
the inhomogeneity and anisotropy of media in which extended particles are immersed.

Among a number of additional irregular Pauli-Santilli isomatrices with isotopic ele-
ment T̂ in Eq. (64) we quote Eqs. (3.2) of Ref. [10]

σ̂1 = n1n2

(
0 n−2

1

n−2
2 0

)
, σ̂2 = n1n2

(
0 −in−2

1

in−2
2 0

)
,

σ̂3 = n1n2

(
n−2

2 0
0 −n−2

1

)
.

(101)

with irregular isocommutation rules

[σ̂î,σ̂j] = 2i
1

n1n2

σ̂k, (102)

and isoeigenvalues
σ̂3 ? |û >= ± 1

n1n2
|û >,

σ̂2̂ ? |û >= 3 1
n2
1n

2
2
|û >,

(103)

The above isorepresentation appears to be significant when the medium causes a pro-
portional alteration/mutation of both the third component as well as the total value of
the spin of a particle having the value 1/2 in vacuum..

Another example of irregular Pauli-Santilli isomatrices is given by of Eqs. (3.7) of Ref.
[10]

σ̂1 =

(
0 n2

n1 0

)
, σ̂2 =

(
0 −in2

in1 0

)
,

σ̂3 =

(
n2

1

0 −n2
2

)
.

(104)

with irregular isocommutation rules

[σ̂1̂,σ̂2] = 2i 1
n2
1n

2
2
σ̂3, [σ̂2̂,σ̂3] = 2iσ̂1,

[σ̂3̂,σ̂1] = 2iσ̂2,

(105)

and mutated isoeigenvalues
σ̂3 ? |û >= ±|û >,

σ̂2̂ ? |û >= 2
n2
1n

2
2
|û >,

(106)

The above isorepresentation may be useful when the anisotropy and inhomogeneity of
the medium maintain the spin value 1/2 along the third axis, yet they are such to deform
the remaining components.
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Additional example of irregular Pauli-Santilli isomatrices are available from Refs. [10]
and [57], and can be readily constructed by interested readers.

3.4.3. Relativistic formulation. Consider the iso-Minkowskian isospace M̂(x̂, Ω̄, Î)
with isometric

Ω̂ = η̂Î , η̄ = T̂ η,

T̂ = Diag.( 1
m2

1
, 1
m2

2
, 1
m2

3
, 1
m2

4
).

mµ = mµ(r, p, E, ν, α, τ, π, ψ, ...) > 0. µ = 1, 2, 3, 4.

(107)

where the new characteristic quantities mµ have been introduced to avoid confusion with
the previously used symbols nµ.

The relativistic formulation of the irregular isorepresentation of ŜU(2) were derived,
apparently for the first time, in Eqs. (6.4c)-(6.4d) of Ref. [61], and can be written

Jk =
1

2
εkij γ̂i ? γj (108)

where γ̂ are the regular Dirac-Santilli isomatrices (I-89), i.e.,

γ̂k = 1
mk

(
0 σ̂k
−σ̂k 0

)
,

γ̂4 = i
m4

(
I2×2 0

0 −I2×2

)
,

(109)

and σ̂k are the regular Pauli-Santilli isomatrices.
The irregular character of isorepresentation (108) is established by the presence of

structure functions in the isocommutation rules, Eqs, ( 6.4c) of Ref. [61],

[Jî,Jj] = εijk
1

m2
k

Jk, (110)

and in the irregular isoeigenvalues

J3 ? |ψ̂ >= ±1
2

1
m1m2

|ψ̂ >,

J 2̂ ? |ψ̂ >= 1
4
( 1
m1m2

+ 1
m2m3

+ 1
m3m1

)|ψ̂ >
(111)

that, as shown in Ref.[61], permit ra relativistic representation of the spin of the neutron
in its synthesis from the hydrogen.

Again one should note that, when the medium is homogeneous and isotropic, isoeigen-
values (101) are conventional.

Note that the assumption of mutated spin for an extended particle within a hyper-
dense medium implies the inapplicability (rather than the violation) of the Fermi-Dirac
statistics, Pauli’s exclusion principle and other quantum mechanical laws with the under-
standing that said mutations are internal, thus solely testable under external strong inter-
actions, as indicated beginning with the title of Harvard’s 1978 paper [15].
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3.5. Isotopies of hadronic spin and angular momentum.
3.5.1. Historical notes Am electron orbiting in vacuum around the proton in the hy-
drogen atom experiences no resistive forces, thus verifying known symmetries and con-
servation laws.

When the same electron has been “compressed” inside the proton according to Ruther-
ford [?], Santilli [75] argued that the sole possible angular moment is that permitted by
ıconstraints exercised on the electron by the internal medium

Since the electron is about 2, 000 times lighter than the proton, the most stable config-
uration is that for which the electron is “constrained” to orbit with a value of the angular
momentum equal to the proton spin, since any different configuration would imply big
resistive forces (Figure 9).

Needless to say, fractional angular momenta are anathema for the quantum mechani-
cal description of point-particles in vacuum [71].

However, the angular momentum of extended particles immersed within hyperdense
hadronic media can acquire values other than integers, depending on the local physical
conditions of the medium surrounding the particle, such as pressure, density, anisotropy,
inhomogeneity, etc.

The first known quantitative study of constrained angular momenta of extended parti-
cles within hyperdense hadronic media was done at the non-relativistic level by Santilli
in Ref. [75] of 1990 following the preceding isotopies of the rotational symmetry, Refs.
[54] [55]. The study was then extended to the relativistic level in Ref.[61] of 1990.

These studies are crucial for quantitative representations of the synthesis of hadrons
providing apparent verifications of the EPR argument, and can be summarized as follows.

3.4.2. Non-relativistic representation. Recall the central assumption of isosymmetries
according to which conventional generators are preserved (because representing conven-
tional total conservation laws), and only their product is lifted into the isotopic form (1)
(to represent the extended character of the particles and their non-Hamiltonian interac-
tions.

Hence, the definition of the isoangular isomomentum, also called hadronic angular
momentum, on an iso-Euclidean isospace is the same as that of quantum mechanics

Lk = εijkr̂i ? p̂j = εijkripj, (112)

although it is defined on a Hilbert-Myung-Santilli isospace Ĥ with isostates |ψ̂ > on an
isocomplex isofield Ĉ, with isolinear isomomentum Eqs, (I-79), and isocommutation rules
are then given by Eqs. (I-81).

It is then easy to verify the following isocommutation rules for the hadronic angular
isomomentum, Eqs (2.22b) [75]

[Lî,Lj] = iÎεijkLk, (113)

where, as one can see, the characteristics of the medium, represented by the isounit Î ,
enter directly in the isocommutation rules.

The use of the isosperical isoharmonic isofunctions (see Page 240 of Ref. [29] for details)

Ŷ`m(θ̂, φ̂) = UY (θ, φ)U † = T̂−1Y`m(θ, φ),

UU † = Î = 1/T̂ 6= I,

(114)
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where Y`m(θ, φ are the conventional spherical harmonic functions, yields the following
isoeigenvalues, Eqs. (2.25), Ref. [75],

L3 ? Ŷ`m(θ̂, φ̂) = ÎmŶ`m(θ̂, φ̂),

L2̂ ? Ŷ`m(θ̂, φ̂) = Î`(Î`+ 1)Ŷ`m(θ̂, φ̂),

m = `, `− 1, ....,−`, m = 1, 2, 3, ...

(115)

where one can see again the mutation of the eigenvalues caused by the surrounding
medium.

Applications to particle physics then require specific realizations of the isounit Î , such
as the simple assumption of expressions (4) used in Ref. [75]

ρ = |Î| =≈ |eγ|, (116)

where ρ is a function of all possible or otherwise needed local variables of the medium.

3.5.3. Isotopies of non-relativistic spin-orbit coupling. As one can see, isoeigenval-
ues (115) do not allow a representation of the constrained hadronic angular momentum
of the electron when compressed inside the proton (Figure 9).

In view of this insufficiency, Santilli conducted in ref. [?] study of the eigenvalues
of the combined spin and angular momentum of the electron in the indicated interior
conditions.

We consider then the total hadronic momentum

Jtot = L`⊗̂Js, (117)

with corresponding basis |Ŷ ⊗̂û > and isoexpectation values, Eqs. (2.34), Ref. [75],

J3,tot|Ŷ ⊗̂û >= (ρm(`)± m(s)
n1n2

)|Ŷ ⊗̂û >

J 2̂
tot ? |Ŷ ⊗̂û >= (ρ`± s

n1n2
)(ρ`± s

n1n2
+ 1)|Ŷ ⊗̂û >

` = 0, 1, 2, 3, ... s = 0, 1
2
1, 3

2
, ...,

m(`) = `, `− 1, ...,−`, m(s) = s, s− 1, ...,−s,

(118)

Following a laborious journey initiated in 1977, isoeigenvalues (118) finally permitted
Santilli to achieve the desired solution for ` = 1 and s = 1

2
, Eq. (2.36), Ref. [75],

ρ =
1

2

1

n1n2

, (119)

for which the total hadronic angular momentum of the electron in the synthesis of the neutron
is identically null, Jtot = 0, and the spin of the neutron coincides with that of the proton.

More detailed studies pertaining to electric and magnetic dipoles excluded the alterna-
tive J = 1 of eigenvalues (118), as well as total hadronic angular momenta of the electron
other than zero.
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The preceding studies permitted a quantitative non-relativistic representation of the
spin of the neutron in its synthesis from the hydrogen atom. A representation of the
remaining characteristics of the neutron (mass, radius, charge, dipole moments, etc.) is
reviewed in Section 4.5.

3.5.3. Isotopies of relativistic spin-orbit couplings. The hadronic spin Ŝ = SÎ is a
realization of the ŜU(2) isosubalgebra of P̂(3.1) with generators (57), while the hadronic
angular momentum L̂ = LÎ is a realization of the isorotational ŜO(3) isosubalgebra. Their
relativistic formulation on iso-Minkowskian isospace (107) has been first derived in Eqs.
(6.4a) (6.4b), Ref. [61] and are given by

Sk = 1
2
εkij γ̂i ? γ̂j,

Lk = εkij(εkijri ? pj),
(120)

where γ̂k are the Dirac-Santilli isomatrices.
We then have the irregularisocommutation rules

[Sî,Sj] = εkijm
2
kŜk,

[Lî,Lj] = εijkm
2
kLk

(121)

and isoeigenvalues, Eqs, (6.4d) Ref. [61]

Ŝ3 ? |ψ̂ >= ±1
2

1
m1m2

|ψ̂ >,

Ŝ 2̂ ? |ψ̂ >= 1
4
(m−2

1 m−2
2 +m−2

2 m−2
3 +m−2

3 m−2
1 )|ψ̂ >,

L̂3 ? |ψ̂ >= ±m1m2|ψ̂ >,

L̂2̂ ? |ψ̂ >= (m2
1m

2
2 +m2

2m
2
3 +m2

3m
2
1)|ψ̂ >

(122)

The most salient difference between relativistic isoeigenvalues (122) and their non-
relativistic counterparts (155) is that the former admit fractional hadronic angular momenta
while the latter do not.

In fact, for the following values admitted by a homogeneous and isotropic medium
[61]

m1 = m2 = m3 =
1√
2
, (123)

isoeigenvalues (122) become
L̂3 ? |ψ̂ >= ±1

2
|ψ̂ >,

L̂2̂ ? |ψ̂ >= 3
4
|ψ̂ >

(124)

Consequently, isoeigenvalues (122) permit a quantitative representation of the hadronic
angular momentum of the electron as being constrained to be equal to the proton spin [60]
[61] (Figure zzzz).

In this case too, the total hadronic angular momentum of the electron is null because
the only stable hadronic spin-orbit coupling is in singlet, and the spin of the electron can
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be assumed in first good approximation not to be mutated since the electron is about
2, 000-times lighter than the proton.

Hadronic spins, hadronic angular momenta and hadronic spin-orbit couplings were
studied in detail Chapter 6 of in Ref. [29] resulting in Lemma 6.12.1 here reproduced
without proof:

LEMMA 3.2: When immersed within hadrons or nuclei with spin 1/2, an elementary particle
having spin 1/2 in vacuum can only have a null total hadronic angular momentum.

As we shall see in Section 4.6, the above configuration of the synthesis of the neutron
from the hydrogen is an apparent verification of the EPR argument.

3.6. Realization of hidden variables.
As recalled in Section 1.1, the conventional quantum mechanical realization of the Lie
symmetry SU(2) does not allow a consistent representation of hidden variables λ [3] [4].

It is easy to see that, despite the local isomorphism ŜU(2) ≈ SU(2), the Lie-Santilli
isosymmetry ŜU(2) does indeed allow explicit and concrete realizations of hidden vari-
ables thanks to the degree of freedom permitted by the isotopic element (1) in the struc-
ture of the Lie-Santilli isoproduct (2) with realizations of the isotopic element of type (3).

In this section, we review the explicit and concrete realization of regular hidden vari-
ables, namely, realizations that can be derived via non-unitary transforms of theLie al-
gebra su(2), and then review irregular hidden variables, namely, realizations that do not
admit such a simple derivation.

Regular and irregular realizations of hidden variables have been first identified by
Santilli in Ref. [57] of 1993, and then used for the proof of the EPR argument [10] reviewed
in Section 3.7.

Realizations of regular hidden variables are easily provided by Pauli-Santilli isomatri-
ces (83) with the identifications

n2
1 = λ1, n

2
2 = λ2. (125)

yielding the desired realization, Eqs. (3.9), Ref. [57],

σ̂1 = (λ1λ2)

(
0 λ−1

1

λ−1
2 0

)
, σ̂2 = (λ1λ2)

(
0 −iλ−1

1

iλ−1
2 0

)
,

σ̂3 = (λ1λ2)

(
λ−1

2 0
0 −λ−1

1

)
.

(126)

verifying isocommutation rules
[σ̂î,σ̂j] = iεijkσ̂k, (127)

and isoeigenvalue isoequations

σ̂3 ? |b̂ >= ±(λ1λ2)|b̂ >

σ̂2̂ = 3(λ1λ2)2|b̂ >
(128)

We consider now the particular case of Eq. (3), i.e.,

Det.T̂ = 1, n2
1 = 1/n2

2 = λ, (129)
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derivable via the basic non-unitary transformation

T̂ = (UU †)−1 =

(
λ−1 0
0 λ

)
. (130)

In this case, isomatrices (83) become (Eqs. (3.9) of [57])

σ̂1(λ) =

(
0 λ−1

λ 0

)
, σ̂2(λ) =

(
0 −iλ−1

iλ 0

)
,

σ̂3(λ) =

(
λ 0
0 −λ−1

)
.

(131)

It is an instructive exercise for the interested reader to verify that the above realiza-
tion of the regular Pauli-Santilli isomatrices verifies isocommutation rules with the same
stricture constants of the SU(2) algebra

[σ̂i(λ)̂,σ̂j(λ)] = i2εijkσ̂k(λ), (132)

and admit conventional eigenvalues

σ̂3(λ) ? |b̂ >= ±|b̂ >

σ̂(λ)2̂ = 3|b̂ > .

(133)

Consequently. we have the following property [57]:

LEMMA 3.3. Regular Pauli-Santilli isomatrices provide an explicit and concrete realization
of regular hidden variables directly in the spin 1/2 algebra.

Note that, besides being positive-definite, hidden variables have an unrestricted func-
tional dependence on all needed local variables, Eqs. (66).

An example of irregular hidden variables is provided by the ŜU(2) component of the
spinorial covering of the Lorentz-Poincaré-Santilli isosymmetry.

To illustrate this realization, introduce three additional hidden variables for the char-
acterization of isospace (107)

mµ = λµ, µ = 1, 2, 3, 4. (134)

Realization (108) then implies the following irregular Dirac-Santilli isomatrices

γ̂k(λ) = 1
γk

(
0 σ̂k(λ)
−σ̂k 0

)
,

γ̂4 = i
m4

(
I2×2 0

0 −I2×2

)
,

(135)

where σ̂k are the regular or irregular Pauli-Santilli isomatrices, with isocommutation rules

[Si(λ)̂,Sj(λ)] = εijk
1

λk
Sk, (136)
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and isoeigenvalues

S3 ? |ψ̂ >= ±1
2

1√
λ1λ2
|ψ̂ >,

S 2̂ ? |ψ̂ >= 1
4
( 1√

λ1λ2
+ 1√

λ2λ3
+ 1√

λ3λ1
)|ψ̂ >

(137)

Consequently, we have the following property [61]

LEMMA 3.4: The axioms of Dirac’s equation admit up to five generally different, regular or
irregular hidden variables.

Additional realizations of irregular hidden variables can be found in Eqs. (3.11) of Ref.
[57] or can be easily derived from the preceding realization of the Pauli-Santilli isomatri-
ces.

3.7. Apparent admission of classical counterparts.
As it is well known,. Bell’s inequality [3] [4], von Neumann’s theorem [5], and the theory
of local realism at large (see review [6] with a comprehensive literature) are generally
assumed to be evidence of the impossibility of “completing” quantum mechanics into a
broader theory, with ensuing rejection of the EPR argument [1].

Following decades of preparatory works reviewed in Paper I [9] and in the preceding
sections of this paper , Santilli proved in Ref. [10] of 1998 that:

1) Bell’s inequality, von Neumann’s theorem and related studies are indeed valid, but
under the tacit assumption of representing particles as being point-like, with ensuing sole
admission of linear, local and potential interactions (exterior dynamical problems).

2) Bell’s inequality, von Neumann’s theorem and related studies are inapplicable (rather
than being violated) for extended particles within physical media, due to the presence
of additional non-liner, non-local and non-potential interactions (interior dynamical sys-
tems).

3) The latter systems represented with the axiom-preserving “completion” of 20th cen-
tury appleid mathematics into isomathematics and the ensuing “completion” of quantum
mechanics into hadronic mechanics [28]-[30] verify Statement 2 and admit well defined
classical counterparts.

To review the preceding advances, consider two quantum mechanical particles with
spin 1/2 denoted 1 and 2 which verify the SU(2) spin symmetry.

Assume that, as a result of some interaction, the two particles have antiparallel spins
represented in the Hilbert spaceH over the field of complex numbers C. The total state in

ˆcalH is then given by

|S1−2 >=
1√
2

(|S1↑ > ×|S2↓ > −|S1↓ > ×|S2↑ >) (138)

with conventional l normalization

< S1−2|S1−2 >= 1, (139)

where × is the conventional associative product.
Let a1, b1 and a2, b2 be unit vectors along the z-axis of a conventional Euclidean space

E(r, δ, I) for particle 1 and 2, respectively. Introduce the quantum mechanical probability

P (a1, b1) =< S1−2|(σ1 ⊗ a1)× (σ2 ⊗ b1)|S1−2 >= −a1 ⊗ b1, (140)
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where ⊗ is the conventional scalar product,
Then, Bell’s inequality can be written [4] (see Ref. [6] for numerous equivalent formu-

lations)
DQM
Bell = Max|P (a1, b1)− P (a1, b2) + P (a2, b1) + P (a2, b2)| ≤ 2. (141)

and implies the following property:

LEMMA 3.5: Particles in vacuum verifying the Lie symmetry SU(2) admit no classical
counterparts.

PROOF: The classical counterpart of Bell’s inequality is given by

DClassical
Max = Max|a1 ⊗ b1 − a1 ⊗ b2|+ |a2 ⊗ b1 + a2 ⊗ b2| = 2

√
2, (142)

Butt the quantum mechanical value of DQM
Bell is always smaller than its classical coun-

terpart DClassical
Max ,

DQM
Bell < DClassical

Max , (143)

by therefore establishing the impossibility for an SU(2)-invariant system to admit identi-
cal classical images. Q. E. D.

Santilli [10] has shown that inequality (141) is inapplicable for the same particles when
they are in interior dynamical conditions., e.g., when they are in the core of a star or, at
the limit, when they are in the interior of a gravitational collapse.

Considers two extended particles also denoted 1 and 2. Suppose that said particles
verify the regular ŜU(2) isosymmetry with spin 1/2 (Section 3.3), thus implying the elab-
oration via isomathematics (Section I-3) and the verification of the isotopic branch of
hadronic mechanics (Section I-4).

Suppose that the two extended particles with spin 1/2 are characterized by the follow-
ing isotopic elements:

1)
Particle 1 : T̂1 = Diag(λ1, 1/λ1),

Particle 2 : T̂2 = Diag(λ2, 1/λ2),

(144)

with realization ( 83) of the Pauli-Santilli isomatrices.
Suppose that, due to preceding interactions, the two extended particles are in single

overlapping/entanglement thus having opposite spins.
Let Î1 and Î2 be the isounits for particles 1 and 2, respectively. The systems of the

assumed two isoparticles is then characterized by the total isounit

Îtot = Î1 × Î2 =
1

T̂tot
=

1

T̂1 × T̂2

(145)

In this case, the total isostate on the Hilbert-Myung-Santilli isospace Ĥ [18] over the
isofield of isocomplex isonumbers ˆcalC [19] is given by

|Ŝ1−2 >=
1√
2

(|Ŝ1↑ > ×̂|Ŝ2↓ > −|Ŝ1↓ > ×|Ŝ2↑ >) (146)

The lack of validity of inequality (141) for irregular isorepresentations of ŜU(2) is evi-
dent (e.g., because of the anomalous spin isoeigenvalues) and, as such, it is ignored.
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A significant aspect of Ref. [10] is the proof of the inapplicability of inequality (141),
not only for regular isorepresentation of ŜU(2), but also when such isorepresentations are
isounimodular, Eqs. (144).

Let a1, b1, a2, b2 be unit vectors along the z-axis of an iso-Euclidean isospace. Introduce
the isoprobability (Eq. (32.39), page 99, Ref. [29])

P̂ (a, b) =< Ŝ1−2| ? (Σ̂1⊗̂1a)× (Σ̂2⊗̂2b)|Ŝ1−2 > Îtot =

=< Ŝ1−2| ? (σ̂1 ⊗ a)× (σ̂2 ⊗ b)|Ŝ1−2 > Îtot

(147)

with isonormalization (here referred to individual diagonal elements of isotopic elements
and isounits)

< Ŝ1−2| ? |Ŝ1−2 >=< Ŝ1−2|T̂tot|Ŝ1−2 >= Îtot (148)

where: ? is the total isoproduct; ⊗̂k, k = 1, 2, is the isoscalar isoproduct; and we have
used simplifications of the type

Σ̂1⊗̂1a = (σ̂1Î1)(T̂1⊗)a = σ̂1 ⊗ a. (149)

An isotopy of the conventional case yields the following isobasis, Eq. (6.5) of Ref. [10],

|S1−2 >=
1

2

{(
λ
−1/2
1

0

)(
o

λ
1/2
2

)
−
(

0

λ
1/2
2

)(
λ
−1/2
1

0

)}
(150)

The appropriate use of products and isoproducts then yield expression (5.6) Ref. [10],
i.e.,

< Ŝ1−2|T̂tot(σ̂1 ⊗1 a)× (σ̂2 ⊗2 b)T̂tot|Ŝ1−2 >=

= −axbx − ayby − 1
2
(λ1λ

−1
2 + λ−1

1 λ2)azbz

(151)

The continuation of the isotopy of the conventional case, yields the main result, Eq.
(5.8) of Ref. [10], which provides the following isotopic “completion” of Bell’s inequality,

D̂HM
Max = DHM

MaxÎtot =

Max|P̂ (a1, b1)− P̂ (a1, b2) + P̂ (a2, b1) + P̂ (a2, b2)| =

= [1
2
(λ1λ

−1
2 + λ−1

1 λ2)DQM
Bell Îtot.

(152)

with consequential:

LEMMA 3.6. Extended particles within physical media that are invariant under the Lie-
Santilli isosymmetry ŜU(2) admit identical classical counterparts.

PROOF: Isoinequality (141) establishes the lack of universal validity of Bell’s inequality
(128) because the factor 1

2
(λ1λ

−1
2 + λ−1

1 λ2) can have values bigger than one, thus implying

DHM
Max ≥ DQM

Bll . (153)

Consider then a classical iso-Euclidean isospace Ê(r̂, δ̂, Î) representing motion of clas-
sical extended particles 1 and 2 within physical media [29] with isometric elements

δ̂11 = 1, δ̂22 = 1, δ̂33 =
1

2
(λ1λ

−1
2 + λ−1

1 λ2) = 2, (154)
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in which case
DHM
Max ≡ htDClassical

Max , (155)

by therefore establishing that systems of extended particles within physical media ver-
ifying the ŜU(2) isosymmetry admits an identical classical counterpart along the EPR
argument. Q.E.D.

It is an instructive exercise for the interested reader to prove ghat the above lemma
also holds for different isorenormalizations, e.g., Eqs. (171) of next section, with the un-
derstanding that different isorenormalizations imply different isobasis and different hid-
den variable terms in Eqs. (151).

Note the crucial role of hidden variables for the proof of Lemma 3.6. It is an instructive
exercise for interested readers to prove that Lemma 3.6 holds for any other regular, isouni-
modular isorepresentation of the isotopic ŜU(2) symmetry in terms of hidden variables
presented in Section 3.3.

The proof of the lack of applicability of von Neumann’s theorem [5] for extended
particles n interior conditions is elementary. Recall that von Neumann’s theorem is based
on the uniqueness of the eigenvaluesE of a Hermitean operatorH, H|ψ >= E|ψ > under
unitary transformation onH,

UH|ψ > U † = UE|ψ > U † = EU |ψ > U †, UU † = U †U = I (156)

under the tacit assumption of point particles in vacuum.
By contrast, when the same particles is in interior conditions, it is subjected to an

infinite number of different physical different interactions with the medium represented
by the isotopic element T̂ with ensuing isoeigenvalue equation (Section I-4), [9],

abel1H ? |ψ̂T̂ r >= HT |ψ̂T̂ >= ET̂ |p̂siT̂ > (157)

thus establishing that a given quantum mechanical operator H representing the energy
of an extended particle in interior conditions has an infinite number of generally different
isoeigenvalues ET̂ depending on the infinite number of different interior conditions.

Note that, for each given T̂ the isoeigenvalue ET̂ is invariant under isounitary iso-
transformations (Section I-3-9).

3.8. Apparent admission of classical determinism.
Consider a point-like particle in empty space represented in the 3-dimensional Euclidean
spaceE(r, δ, I), where r represents coordinates, δ = Diag.(1, 1, 1) represents the Euclidean
metric and I = Dian(1, 1, 1, ) represents the space unit.

Let the operator representation of said point-like particle be done in a Hilbert spaceH
over the field of complex numbers C with states ψ(r) and familiar normalization

< ψ(r)| |ψ(r) >=
∫ +∞

−∞
ψ(r)†ψ(r)dr = 1. (158)

As it is well known, the primary objections against the EPR argument [2]- [6] were
based on Heisenberg uncertainty principle according to which the position r and the mo-
mentum p of said particle cannot both be measured exactly at the same time.

By introducing the standard deviations ∆r and ∆p, the uncertainty principle is gener-
ally written in the form

∆r∆p ≥ 1

2
h̄, (159)
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which is easily derivable via the vacuum expectation value of the canonical commutation
rule

∆r∆p ≥ | 1
2i
< ψ| [r, p] |ψ > | = 1

2
h̄. (160)

Standard deviations have the known form (see, e.g., Ref. [?]) with h̄ = 1

∆r =
√
< ψ(r)|[ r − (< ψ(r)| r |ψ(r) >)]2|ψ(r) >,

∆p =
√
< ψ(p)| [p− (< ψ(p)| p |ψ(p) >)]2|ψ(p) >,

(161)

where ψ(r) and ψ(p) are the wavefunctions in coordinate and momentum spaces, respec-
tively.

We consider now an extended particle, this time, in interior conditions, e.g., in the
core of a star, classically represented by the iso-Euclidean isospace Ê(r̂, δ̂, Î) with isounit
Î = 1/T̂ > 0, isocoordinates r̂ = rÎ , isometric

δ̂ = T̂ δ, (162)

and isotopic element (4)) under conditions (5).
For simplicity, we assume that the extended particle has no Hamiltonian interactions

due to the dominance of the latter interactions over the former.
Consequently, we can represent the extended particle in the isospace Ĥ over the isofield

Ĉ and introduce the time independent isoplanewave [17]

ψ̂(r̂) = ψ̂(r̂)Î =

= N̂ ? (êî?k̂?r̂)Î = N(eikT̂ r̂)Î ,

(163)

where N̂ = NÎ is an isonormalization isoscalar, k̂ = kÎ is the isowavenumber, and the
isoexponentiation is given by Eq. (I-22) [25].

The corresponding representation in isomomentum isospace is given by

ψ̂(p̂) = M̂ ? êî?n̂?p̂, (164)

where M̂ = MÎ is an isonormalization isoscalar and n̂ = nÎ is the isowavenumber in
isomomentum isospace.

The isopropability isofunction is then given by (Ref. [29] page 99 )

P̂ = <̂| ? |>̂ =< ψ̂(r̂)| T |ψ̂(r̂) > I (165)

that, written in terms of isointegrals (Ref. [28] page 354), becomes

∫+∞
−∞ ψ̂(r̂)† ? ψ̂(r̂) ? d̂r̂ =

=
∫+∞
−∞ ψ̂(r̂)†ψ̂(r̂)(dr + rT̂ dÎ)

(166)

where one should keep in mind that the isodifferential d̂r̂ given by Eqs. (I-29).
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The isoexpectation isovalues of a Hermitean operator Q̂ are then given by [29]

<̂| ? Q̂ ? |>̂ =< ψ̂(r̂)| ? Q̂ ? |ψ̂(r̂) >=

=
∫+∞
−∞ ψ̂(r̂)† ? Q̂ ? ψ̂(r̂)d̂r̂ =

=
∫+∞
−∞ ψ̂(r̂)†Q̂ψ̂(r̂)d̂r̂,

(167)

with corresponding expressions for the isoexpectation isovalues in isomomentum isospace.
Santilli then introduced apparently for the first time in Ref. [11] the isotopic operator

T̂ = T̂ Î = I, (168)

that, despite its seemingly irrelevant value, is indeed the correct operator formulation of
the isotopic element for the “completion” of the isoproduct from its scalar form (1) to the
isoscalar form

n̂2̂ = n̂ ? n̂ = n̂ ? T̂ ? n̂ = n2Î . (169)

In Sections 3.6, 3.7, we have shown that the Lie-Santilli isosymmetry ŜU(2) admits
an explicit and concrete realization of hidden variables that allowed the construction of
identical classical counterparts for interior dynamical systems.

Ref. [11] introduced the isoexpectation isovalue of the isotopic operator

<̂| ? T̂ ? |>̂ =< ψ̂(r̂)| ? T̂ ? |ψ̂(r̂) > Î =

=
∫+∞
−∞ ψ̂(r̂)†T̂ ψ̂(r̂)d̂r̂

(170)

and assumed the isonormalization (again, intended for diagonal matrix elements)

<̂| ? T̂ ? |>̂ =

=
∫+∞
−∞ ψ̂(r̂)†T̂ ψ̂(r̂)d̂r̂ = T̂ .

(171)

Consider then the isostandard isodeviation for isocoordinates ∆r̂ = ∆rÎ and isomo-
menta ∆p̂ = ∆pÎ , where ∆r and ∆p are the standard deviations in our space.

By using isocanonical isocommutation rules (I-81), we obtain the expression

∆r̂ ?∆p̂ = ∆r∆pÎ ≈ 1
2
| < ψ̂(r̂)| ? [r̂̂,p̂] ? ψ̂(r̂) > | =

= 1
2
| < ψ̂(r̂)|T̂ [r̂̂,p̂] T̂ |ψ̂(r̂) > .

(172)

By eliminating the common isounit Î , Ref. [11] achieved the desired result here called
isodeterministic isoprinciple

∆r∆p ≈ 1
2
| < ψ̂(r̂)| ? [r̂̂,p̂] ? |ψ̂(r̂) >=

= 1
2
| < ψ̂(r̂)|T̂ [r̂̂,p̂] T̂ |ψ̂(r̂) >=

∫+∞
−∞ ψ̂(r̂)†T̂ ψ̂(r̂)d̂r̂ = T � 1

(173)
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where the property ∆r∆p � 1 follows from the fact that the isotopic element T̂ has null
value for gravitational collapse (Section I-4-11) values smaller than 1 established from the
fitting of all experimental data dealing with hadronic media such as hadrons, nuclei and
stars [30].

In this way, thanks to a laborious scientific journey initiated at Harvard University
in late 1977, and than to contributions by numerous mathematicians, theoreticians and
experimentalists [10]-[69], Santilli reached the following verification of the EPR argument
[11]:

LEMMA 3.7 (ISODETERMINISTIC PRINCIPLE): The isostandard isodeviations for iso-
coordinates ∆r̂ and isomomenta ∆p̂, as well as their product, progressively approach classical
determinism for extended particles in the interior of hadrons, nuclei, and stars, and achieve
classical determinism at the extreme densities in the interior of gravitational collapse.

PROOF: Define the isostandard isodeviations via the following isotopy of quantum me-
chanical expressions (161) (where we ignore the common multiplication by the isounit)

∆r =
√
< ψ̂(r̂)|[ r̂− < ψ̂(r̂)| ? r̂ ? |ψ̂(r̂) >]2̂̂|ψ(r̂) >,

∆p =
√
< ψ̂(p̂)| [p̂− < ψ̂(p̂)| ? p̂ ? |ψ̂(p̂) >]2̂|ψ̂(p̂) >,

(174)

where the differentiation between the isotopic elements for isocoordinates and isomo-
menta is ignored for simplicity. But the isotopic element represents the interactions of
the particle with the physical medium and tends toward null values for gravitational col-
lapse, Eqs. (I-91) (I-92). Therefore, isosquare in expression (171) implies the expressions

∆r =
√
T̂ < ψ̂(r̂)|[ r̂− < ψ̂(r̂)| ? r̂ ? |ψ̂(r̂) >]2|ψ̂(r̂) >,

∆p =
√
T̂ < ψ̂(p̂)| [p̂− < ψ̂(p̂)| ? p̂ ? |ψ̂(p̂) >]2|ψ̂(p̂) >,

(175)

that approach indeed null value under the indicated limit conditions of gravitational col-
lapse

LimT̂=0∆r = 0,

LimT̂=0∆p = 0,
(176)

Q.E.D..

COROLLARY 3.7.1. Einstein’s determinism according to Lemma 3.7 implies the removal
of quantum mechanical divergencies.

PROOF. Lemma 3.7 is based on values of the isotopic element T̂ being smalelr than 1,
which values imply in turn the rapid convergence of perturbatuve series without diver-
gencies (Section I-4-13).
Q.E.D.

3.9. Isoparticles.
Relativistic, quantum mechanical bound states of point-particles in vacuum studied in
the 20th century have been based on the notion of elementary relativistic particles which
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are technically intended as unitary irreducible representations of the spinorial covering
of the Lorentz-Poincaré symmetry P . Said particles are characterized as points on the
Minkowskian space-time M(x, η, I) and said representations are formulated on a Hilbert
spaceH over the field of complex numbers C.

By recalling that massive points cannot sense contact/resistive forces, the point-like
character of the particles has the important consequence of solely admitting linear, local and
action-at-a-distance/potential interactions that, in turn, can only affect kinematical charac-
teristics, while leaving the intrinsic characteristics of spin, mass, charge, parity, etc. com-
pletely unchanged.

Illustrations of the apparent proof of the EPR argument studied in Sections 3.7 and
3.8 require the use, this time, of bound states of extended particles in conditions of deep
overlapping/entanglement.

In the latter case, the extended character of mutually overlapping particles implies the
emergence of additional on-linear, non-local and contact/non-potential interactions that, in
turn, generally cause the alteration, (called mutation) of the intrinsic characteristics of par-
ticles, in additionl to changes of their kinematical characteristics.

In the hope of preventing the rather instinctive interpretations of the illustrative ex-
amples of the next section with the 20th century notion of particles, we introduce the
following:

DEFINITION 3.9.1. “Elementary relativistic isoparticle” refer defined by isounitary isoirre-
ducible isorepresentations of the spinorial covering of the Lorentz-Poincaré-Santilli isosym-
metry P̂ [61] (Section 2.11) formulated on an iso-Minkowskian isospace M̂(x̂, η̂, Î)[22] with:

1) Space-time isocoordinates x̂ = xÎ;
2) Hadronic linear momentum (I-79);
3) Hadronic angular momentum (121) with isocommutation rules (122) and isoeigenvalues
(123);
4) Hadronic spin (94) with isocommutation rules (96) and isoeigenvalues (97); and
5) Relativistic isoequations (I-87) and (I-88).

The notion of nonrelativistic isoparticle is presented in detail in Ref. [70] and its knowl-
edge is tacitly assumed when dealing with non-relativistic models.

Under editing hereon12-15-19

4. ILLUSTRATIVE EXAMPLES
4.1. Foreword.
Being dimensionless, Newtonian massive points cannot experience any resistive force. By
recalling that Newton’s equation have been the foundations of physics for the past four
centuries, 20th century mainstream physics has been developed without the notion of
resistive force, with ensuing lack of treatment of the pressure exercised by a medium on
a particle in its interior, contrary to clear evidence that a proton in the core of a star is
exposed to extremely big pressures (Figure 9).

In this section, we shall illustrate the fact that, once admitted, interior pressure char-
acterizes standard deviations ∆r̂ and ∆p̂ that, being constrained by said pressure, verify
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Figure 9: In this figure, we present a conceptual rendering of a central notion needed for the study

of the EPR argument, namely, the pressure exercised by hyperdense media on extended particles in

their interior. Such a notion is absent in the mainstream physics of the 20th century due to the study

of point-like particles that, as such, cannot experience any pressure or contact non-Hamiltonian

interaction of any type.

the isodeterministic principle of Lemma 3.9, by progressively approaching classical deter-
minism with the increase of the pressure, up to the achievement of classical determinism
for the interior of gravitational collapse as predicted by Einstein, Podolsky and Rosen [1].

A physically important notion emerging from the examples provided below is that
the EPR argument appears to be verified buy strong interactions because, as indicated by
Santilli in the 1978 Harvard University paper [16], contact non-Hamiltonian interactions
responsible for the synthesis of the neutron and other hadrons are short range, strongly
attractive and non-Hamiltonian (technically identified as variationally non-selfadjoint in-
teractions [24]), thus providing a conceivable, first known, explicit and concrete represen-
tation of strong interactions.

The models outlined in this section were first proposed by Santilli in Ref. [16] in their
time irreversible form, as requested for decaying bound states, thus being elaborated
with the Lie- admissible genomathematics, in which case, the need for a “completion” oif
quantum mechanics is beyond scientific doubt.

However, the objections against the EPR argument [2] - [6] have been formulated for
conventional quantum axioms, thus implying the sole consideration of time-reversal in-
variant states. In this section, we illustrate the need for a “completion” of quantum me-
chanics also for reversal invariant systems, provided that they consist of extended parti-
cles in interior conditions.

Therefore, unstable strongly interacting particles are hereon studied for such a small
period of time to allow their time-reversal invariant approximation.

4.2. Particles under pressure. One of the simplest possible illustrations of
Lemma 3.9 is given by a particle in the center core of a star, thus being under extreme
pressures π from the surrounding hadronic medium in all radial directions (Figure 9).

By ignoring particle reactions in first approximation, the conditions here considered
can be rudimentarily represented for very short period of time by assuming that the func-
tion Γ > 0 of the isotopic element (2) is a constant linearly dependent on the pressure π,
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resulting in a realization of the isotopic element of the type

T̂ = e−wπ � 1, Î = e+wπ � 1, (177)

where w is a positive constant.
Isodeterministic principle (173) for the considered particle is then given by

∆r∆p ≈ 1

2
e−wπ � 1, (178)

and tends to null values for diverging pressures.
The above example illustrates the consistency of isorenormalization (171) because a

constant isotopic element verifies the isonormalization

<̂ψ̂(r̂)|T̂ |ψ̂(r̂) > Î =

T < ψ̂(r̂)| |ψ̂(r̂) > Î =

< ψ̂(r̂)| |ψ̂(r̂) > .

(179)

but not necessarily other isorenormalizations.
Note that we have considered an individual extended particle immersed in a hadronic

medium, rather than the bound state of extended particles in condition of mutual pene-
tration studied in the next sections.

Consequently, isotopic element (177) represents a subsidiary constraint on standard de-
viations caused, as indicated, by the pressure of the surrounding hadronic medium on the
particle considered.

It is easy to see that, since Γ(π) > 0, more complex functional dependence on the
pressure π continue to verify Lemma 3.9.

4.3. Non-relativistic hadronic bound states.
Due to the local character of the conventional differential calculus underlying its dynam-
ical equations, quantum mechanical bound states solely admit point-like particles under
linear, local and potential interactions (technically identified as variationally self-adjoint
interactions [24]), as it is the case for the familiar Schrödinger equation for the bound state
of two point-like particles with Coulomb potential V (r) in a Euclidean space E(r, δ, I)
formulated on a Hilbert spaceH over the field of complex numbers C (where h̄ = 1)

i ∂
∂t
ψ(t, r) = Hψ(t, r) =

[
1
m

Σkpkpk − V (r)
]
ψ(t, r) =

=
[

1
m

Σk(−i∂k)(−i∂k)− V (r)
]
ψ(t, r) =

=
[
− 1
m

∆r − V (r)
]
ψ(t, r) = Eψ(t, r).

(180)

By contrast, hadronic bound states are bound states of extended particles at mutual dis-
tances smaller or equal to the hadronic horizon (Figure 1.13)

R =
1

b
≈ 10−13 cm. (181)
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In such a region, bound states verify hadronic mechanics and are represented with iso-
mathematics (Section I-3) and isomechanics (Section I-4) for the case of time-reversal in-
variant bound states, or genomathematics and genomechanics for time irreversible bound
states (Section I-2).

By using the methods outlined in Paper I and in the preceding sections, hadronic
bound states assumed to be stable in first approximation (thus being time reversal invari-
ant) are characterized by the following main features:

1) The bound states occur between isoparticles, namely, isoirreducible isorepresenta-
tions of the isospinorial covering of the Galileo-Santilli isosymmetry Ĝ for non-relativistic
treatments (Sections 2.5.1 and 3.9) or of the Lorentz-Poincaré-Santilli isosymmetry P̂ for
relativistic treatments (Sections 2.5.11 and 3.9).

2) The representation of the extended character of the isoparticles is done with iso-
products (1) and isotopic elements (4), resulting in iso-Schrödinger equations of type (I-
80), while the deep mutual penetration of the wavepackets and/or charge distributions of
isoparticles generates novel, contact, non-linear, non-local and non-potential interactions
represented by the exponent of the the isotopic element (4) and other means. Note that
the latter interactions are short range, strongly attractive and non-Hamiltonian accord-
ing to all studies conducted to date in the field, thus allowing an initial yet explicit and
concrete realization of strong interactions [16].

3) By recalling that isosymmetries Ĝ and P̂ are all irregular realizations of the Lie-
Santilli isotheory (Sections I-2.7 and 2.5.4), a necessary condition for the invariance of
hadronic dynamical equations under isosymmetries is that contact interactions cannot be
derived via non-unitary transforms of quantum mechanical potentials, thus being basi-
cally new interactions. The physically equivalent property is that, as it is well known,
strong interaction cannot be derived via non-unitary or other known transformations of elec-
tromagnetic interactions and this confirms the necessary irregular character of the Lie-
Santilli theory and hadronic dyamical equations.

Tne notion of hadronic bound states was proposed, apparently for the first time, by
Santilli in the 1978 Ref. [16] and thereafter was extensively studied and applied in various
works by various authors (see the 2001 monograph [33], the 2011 independent review
[44], and papers quoted therein).

We believed it is important to review the derivation of the basic non-relativistic and
relativistic isoequations for hadronic bound states to show their apparent verification of
the isodeterministic principle of Lemma 3.9.

The fundamental non-relativistic, irregular isoequation of a time-reversal invariant hadronic
bound state of two isoparticles at mutual distances of the order of the hadronic horizon
R = 10−13 cm in an iso-Euclidean isospace R̂(r̂, δ̂, Î) formulated on a Hilbert-Myung-
Santilli isospace Ĥ over the isofield of isocomplex isonumbers Ĉ can be written

i ∂̂
∂̂t̂
ψ̂(t̂, r̂) =

[
1
m

Σkp̂k ? p̂k ± V̂ (r̂)− Ŝ(ψ̂)
]
? ψ̂(t̂, r̂) =

=
[

1
m

Σkp̂kT̂ p̂kT̂ ± V (r̂)− S(ψ̂)
]
ψ̂(t̂, r̂) = Eψ̂(t̂, r̂),

(182)

where V̂ (r̂) = V (r̂)Î ; Ŝ(ψ̂) = S(ψ̂)Î represents the novel short range, strongly attractive
force; the value −V̂ (r̂) occurs for bound states with opposite charge (as it is the case for
the synthesis of hadrons reviewed below); and the value +V̂ (r̂) occurs for isoparticles
with the same charge (as occurring for valence electron bonds reviewed below).
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Due to the large representational capabilities of isoequations (182), we use the follow-
ing simplifying assumptions:

1) The isotime is equal to the conventional time, t̂ = tÎt = t, Ît = 1;
2) The orbits of the isoparticles, being extremely small, are assumed to be nearly con-

stant circles, thus implying that the nk characteristic quantities of then isotopic element
(4) can be normalized to the sphere, nk = 1, k = 1, 2, 3;

3) The isotopic element is assumed to be given by to the exponential term of Eq. (4)
with realization of the non-linear, non-local and non-potential interactions of the type (Eq.
(4.7), page 170 Ref. [33])

T̂ = e−Γ = e−Nψ/ψ̂ ≈ 1−Nψ/ψ̂, (183)

where ψ behaves like the solution of quantum equation (180),

ψ(r) ≈ N1e
−br, (184)

, and ψ̂ behaves like the solution of the hadronic equation expected to be of the type

ψ̂ ≈ N2(1− e
−br
r ). (185)

where N1 and N2 are positive normalization constants.
We therefore have the following explicit form of the isotopic element

T̂ = e−Nψ/ψ̂ = e
−W1

e−br

(1−e−br)/r ≈ 1−W1
e−br

(1− e−br)/r
, (186)

exhibiting the Hulten potential

Vhp = W2
e−br

1− e−br
, (187)

directly in the exponent of the isotopic element, where W1 and W2 are normalization
constants.

It should be recalled tat Santilli suggested the use of the Hulten potential tin he 1978
paper [16], Eq. (5.1.6), page 833, as an initial yet explicit and concrete representation of
strong interactions.

Under the above simplifying assumptions, isotopic element (186) verifies the central
condition for the validity of the isodeterministic principle inside the hadronic horizon
(Lemma 3.9), in a way fully compatible with the validity of conventional uncertainties
outside said hadronic horizon

|T̂ | � 1,

Limr�RT̂ = 1.

(188)

Under the above simplified assumptions, and the use of the isolinear isomomentum (I-
79), the projection of isodynamical equation (182) into our Euclidean space can be written
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in the form first derived in Eq. (5.1.9), page 833, Ref [16]

i ∂
∂t
ψ̂(t, r) =

[
1
m

Σkp̂k ? p̂k ?± e2

r
−W2

e−br

1−e−br
]
ψ̂(t, r) =

=
[

1
m

Σk(−iÎ∂k)(−iÎ∂k)± e2

r
−W2

e−br

1−e−br
]
ψ̂(t, r) =

=
[
− Î2

m
∆r ± e2

r
−W2

e−br

1−e−br
]
ψ̂(t, r) =

= Eψ̂(t, r).

(189)

But the Hulten potential behaves like the Coulomb potential at short distances

Vhp ≈ K
1

r
, (190)

where K is a positive constant. Consequently, as noted in the originating paper [16], the
Hulten potential absorbs the Coulomb potential resulting in a short range strongly attractive
force irrespective of whether the Coulomb force is attractive or repulsive.

The dominance of the Hulten potential over repulsive Coulomb forces was identified,
apparently for the first time, by A. O. E. Animalu and R. M. Santilli in the 1995 paper [?]
which presented the first time an explicitly identified, attractive force between the two
identical electrons of theCooper pair in superconductivity. Such a ’charge independence’
of the Hulten potential is here assumed as an additional support of the representation by
strong interactions via contact, short range, non-Hamiltonian interactions.

Property (190) implies the following simplified non-relativistic, irregular isoequation for
time-reversal invariant hadronic bound states

i
∂

∂t
ψ̂(t, r) =

[
− Î

2

m
∆r −W

e−br

1− e−br

]
ψ̂(t, r) = Eψ̂(t, r) (191)

where W is a positive constant renormalized following the absorption of the Coulomb
potential.

The radial equation can then be written (Eq. (5.1.14a), page 836, Ref. [16])[
1
r2

( d
dr
r2 d

dr
) + m̄(EHulten +W e−br

1−e−br
]

= 0,

m̄ = m/ρ, ρ ≈ |Î2|.
(192)

Its solutions were studied in all details (including boundary conditions) in Ref. [loc. cit.],
pages 837-841, and were reduced to the numeric values of two positive constants k1 and
k2 which are the solution of the following equations (Ref. [16], Eq. (

k1[k1 − (k2 − 1)3] = 1
2c
EtotR,

(k2−1)3

k1
= 9×106

3πc
R
τ

(193)

where Etot is the total energy of the hadronic bound state, R is the hadronic horizon
assumed to be equal to its charge radius, and τ is its meanlife.
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The energy spectrum results to be the typical finite spectrum of the Hulten potential

|EHulten| =
1

4R2m̄
(k2

1

n
− n)2 (194)

where n is a positive integer.
Since we have ignored Coulomb interactions and have solely assumed contact inter-

actions represented with the exponent of the isotopic element (4), the value of EHulten is
expected to be zero

|EHulten| =
1

4R2m̄
(k2

1

n
− n)2 = 0, , (195)

because contact interactions do not carry potential energy (this is classically the case for a
ballon moved by winds in our atmosphere).

Therefore, the Hulten potential for consistent hadronic bound states is expected to admit
one single energy level, the ground state. This is due to the fact that all possible excited
states imply radial distances bigger than the hadronic horizon R, with consequential re-
covering of quantum mechanics.

In particular, property ( 195) is solely possible for

k1 > 0, k2 ≥ 1. (196)

The absence of a spectrum of energies was called in Section 6 of Ref. [16] the hadronic
suppression of quantum mechanical energy spectra in order to differentiate the classification
of hadrons into families (which is characterized by energy spectra) from the structure of
each individual hadron of a given classification family.

4.4. Relativistic hadronic bound states
The relativistic counterpart of Eqs. (188) was identified, apparently for the first time, in
Ref. [61] and formulated in in the isoproduct of a real-valued iso-Minkowski isospace for
the orbital motion and a complex valued iso-Euclidean isospace for the hadronic spin

Ŝtot = M̂(x̂, η̂, Îorb) ? R̂(ẑδ̂, Îspin), (197)

resulting in the following irregular extension of the Dirac-Santilli isoequation (I-88) ,

[Ω̂µν ? Γ̂µ ? ∂̂ν + M̂ ? Ĉ − V̂hp]ψ̂(x̂) =

= (−iÎ η̂µν γ̂µ∂ν +mC − Vhp)ψ̂(x̂) = 0,

(198)

where Ŝ = SÎorb represents strong interactions, and the Dirac-Santilli isogamma isomatri-

ces Γ̂ = γ̂Î are given by

γ̂k = 1
nk

(
0 σ̂k
−σ̂k 0

)
,

γ̂4 = i
n4

(
I2×2 0

0 −I2×2

)
;

(199)

where σ̂k are the irregular Pauli-Santilli isomatrices studied in Section 3.4 with the follow-
ing anti-isocommutation rules

{γ̂µ̂,γ̂ν} = γ̂µT̂ γ̂ν + γ̂νT̂ γ̂µ =
= 2η̂µν .

(200)
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where η̂ is the isometric of the orbital iso-Minkowskian isospace.

4.5. Isodeterminism in the structure of mesons.
4.5.1. Insufficiencies of quark conjectures. While the classification of hadrons into
families received a rather general support since tits initiation by M. Gell-Mann in the
1960s [?], the conjecture that the hypothetical quarks are the actual physical constituents
of hadrons has been controversial since their inception. These problematic aspects were
reviewed in detail in the 1979 paper [?] (written at the Department of Mathematics of
Harvard University under DOE support), and can be summarized as follows:

1) The quantum mechanical classification of point-like particles permitted by the SU(3)
model and, more recently, by the standard model, can be assumed to achieve a satisfac-
tory classification of hadrons into families.

2) Quarks purely mathematical representations of a purely mathematical internal uni-
tary symmetry defined on a purely mathematical complex-valued internal space and, as
such, quarks cannot be the actual physical constituents of hadrons for numerous insuffi-
ciencies or sheer inconsistencies, such as:

2A) By recalling that quarks have to be point-like as a necessary condition to maintain
the validity of quantum mechanics in the interior of hadrons, the ensuing conception
of the hyperdense hadrons as ideal spheres with point-particles in their interior is not
realistic;

2B) Quarks cannot be physical particles in our spacetime because they cannot be de-
fined as unitary irreducible representations of the Poincaré symmetry (Section 3.9);

2C) Quarks cannot be rigorously confined inside hadrons (i.e,. confined with a rigor-
ously proved, identically null probability of tunnel effect) due to the uncertainty princi-
ple;

2D) Quarks have not been directly detected under hadron collisions at the extremely
big energies achieved at CERN and at other particle physics laboratories;

2E) The wavepackets of all particles are of the same order of magnitude of the size
of all hadrons. Hence, the hyperdense character of hadrons is due to the total mutual
penetration of the wavepackets of their constituents, resulting in unavoidable non-linear,
non-local and non-Hamiltonian internal interactions under which the SU(3) and other
symmetries cannot be consistently defined (Sections 3, 4).

3) History has thought that the study of atoms (as well as of other natural systems) re-
quired two different yet compatible models, one for the classification of atoms into family,
and a different model for the structure of each atom of a given classification family. Partic-
ularly significant is the fact that the classification of atoms could be achieved via the use
of pre-existing mathematics, while the structure of atoms required new mathematics, such
as the Hilbert spaces, that are completely unnecessary for the classification problem.

In order to resolve the insufficiencies or sheer inconsistencies of the conjecture that
quarks are physical particles, Santilli [loc. cit.] suggested to follow the teaching of history,
and study hadrons via two different models, a conventional model for the classification of
hadrons and a different yet compatible model for the structure of each individual hadron
of a given classification multiplet.

In particular, the classification of hadrons can be effectively done via quantum me-
chanics because individual hadrons can be well approximated as being point- like parti-
cles in vacuum. By contrast, the structure of hadrons requires a necessary “completion” of
quantum mechanics into a covering theory suggested beginning with the title of Ref. [?]
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Figure 10: A reproduction of Table 1, page 429, Ref. [?] used to identify the physical constituents of

mesons in the ’massive’ particles produced free in the spontaneous decays, generally those with the

lowest mode. The “completion” of quantum mechanics into hadronic mechanics, indicated since the

title of Ref. [?], then becomes mandatory for any quantitative treatment of the indicated structure

model.

in view of the unavoidable internal non-linear, non-local and non-potential interactions.

4.5.2. Hadronic structure model of mesons. A primary aim of papers [15] [16] [?] and
monographs [24] [25] of 1978-1979 was the “completion” of quantum mechanics (qm) into
the covering hadronic mechanics (hm) for the specific intent of achieving a representation
of all characteristics of mesons as hadronic bound states of actual, massive, physical parti-
cles produced free in the spontaneous decays with the lowest mode, as illustrated in Table
1, page 429, Ref. [?] (reproduced in Figure 10), according to the following new structure
models for the octet of mesons:

π0 = (ẽ−, ẽ+)hm, (201)
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π± = (π̃0, ẽ±)hm, (202)

K0 = (π̃0, π̃0)hm, (203)

K± = (π̃0, π̃±)hm, (204)

Ks = (π̃−, π̃+)hm, (205)

KL = (K̃−, π̃
+)hm, (206)

where the structural presence of positrons allows the representation of the very short
meanlives of mesons, while all other characteristics can be numerically represented via
the hadronic bound states of Section 4.3.

Structure models (201) - (206) are incompatible with quantum mechanics because the
rest energy of all particles are bigger than the sum of the rest energies of the constituents
(thus requiring positive binding energies, with ensuing mass excesses that are anathema for
quantum mechanics as discussed in Section I.3); quantum mechanical elaborations of the
models cannot account for the spin of the particles; and for other reasons.

Therefore, a necessary condition to prevent misrepresentations is that models (201)
- (2-6) are treated with hadronic mechanics and, most importantly, their constituents
are isoparticles and anti-isoparticles (Section 3.9) hereon denoted with an upper tilde.
Therefore, the elementary constituents of the π0 model (201) are isoelectrons ẽ− and anti-
isoelectrons ẽ+, respectively (called eletons in Ref. [16]); the constituents of the π± model,
Eq. (201) are the iso-meson π̃0 and isoelectrons or isopositrons; etc.

The physical constituents of mesons are assumed to be the massive particles generally
emitted in the spontaneous decays with the lowest mode via tunnel effects after which
isoparticles return to assume conventional features plus possible secondary effects with
the emissions of massless particles.

Note that all models (201)-(206) are two-bod hadronic bound states, thus being fully
represented by Eqs. (192)-(193). Note that models (201)-(206) have a kind of pyramidal
/bootstrap structures, since a given meson appears in the synthesis of subsequent heavier
mesons.Note finally that models (201)-(206) imply the increase of the number of ”elemen-
tary” constituents with the increase of the rest energy, since the π0 has only two elementary
constituents while KL has eight elementary constituents.

Since different structure models are characterized by numerically different isounits,
the compatibility of the above hadronic structure model of mesons with their classifica-
tion is readily achieved at the higher level of the hyperstructural branch of hadronic me-
chanics [29] [42], with the following total multivalued hyperunit

Îtot = {Îπ0 , Îπ± , ÎK0 , ÎK± , ÎS, ÎKL}. (207)

4.5.3. Hadronic structure model of the π0 meson. The characteristics of the π0 meson
are given by:’

1. Rest energy E = 134.96MeV ,
2) Meanlife τ = 0.828× 10−16 s,
3) Charge radius R = 10−13 cm,
4) Null charge and spin.
5) Null electric and magnetic moments,
6) Negative parity; and
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Figure 11: A reproduction of the figure used in Section 5, Ref. [16] to illustrate the hadronic

structure model of the π0 known in the literature as“the gear model” because intended to illustrate

the strongly ”attractive” character of the contact non-Hamiltonian forces for singlet coupling and

their strongly ”repulsive” character for triplet couplings.

7) Primary decay
π0 → γ + γ, 98.85 %, (208)

and they are all numerically and exactly represented by hadronic bound state (192)-(193)
) as a “compressed” form of the positronium (P), resulting in a hadronic bound state (201)
of one isoelectron and one isopositron (Section 5, page 828 on, of Ref. [16])

P = (e−, e+)qm → π0 = (e−, e+)hm, (209)

with numeric solution of the parametric equation (193)

k1 = 0.34, k2 = 1 + 4.27× 10−2 (210)

The above results confirm all expectations indicated in preceding sections, namely,
1) Hadronic spectrum (194) admits one and only one energy level, the π, since all

excited states are those of the positronium;
2) The presence of the antiparticle e+ in the π0 structure (201) explains its very low

meanlife as well as the main decay (208);
3) Isodeterministic conditions (188) are verified by model (201), as a result of which

standard deviations ∆r and ∆p have individual values smaller than one (Lemma 3.9).

4.5.4. Hadronic structure model of µ± and π±. The main characteristics of the muons
µ± are:

1) Rest energy 105, 658 MeV ;
2) Charge radius R = 10−13 cm;
3)) Meanlife τ = 2.19703× 10−6 s;
4) Spin1/2 and elementary charge;
5) Tunnel effect decay

µ± → e− + e± + e+. (211)
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Figure 12: A reproduction of the figure used in Section 5, Ref. [16], to illustrate the hadronic

structure model of the π± mesons, Eq. (202). The top model represents the hadronic structure

model µ± = (e−, e±, e+)hm, while the bottom vie represents the hadronic structure model l π± =

(π0, e±)hm. Both models have three elementary constituents. The main difference is that the orbital

motion of the top model follows has conventional values resulting in a weakly interacting particle

with spin 1/2, while the orbital motion of the bottom model follows irregular hadronic values (Section

3.4), resulting in a strongly interacting particle with spin zero.
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The increase of the number of elementary constituents of π0 by one unit yields a
restricted three-isoparticle model whose orbital motion is conventionally quantized, thus
yielding a hadronic bound state with total angular momentum

Jtot = s1 + s2 + s3 + L1−2 = 1/2 + 1/2− 1/2 + 0 = 1/2. (212)

Consequently, themodel was suggested in Section 5, Ref. [16] as providing the hadronic
structure of muons

µ± = (ẽ−, e±, ẽ+)hm ≡ (π0, e±)hm. (213)

with the representation of all indicated characteristics of the muons via solutions of the
k1 and k2 parameters for Eqs. (193)

k1 = 0.93, k2 = 1 + 8.47× 10−2 (214)

verifying conditions (188)
The main characteristics of the π± mesons are:
1) Rest energy 139.570 MeV ;
2) Charge radius R = 10−15 cm;
3) Meanlife τ = 2.603× 10−8 s;
4) Spin J = 0 and elementary charge;
5) Tunnel effect decay

π± = (ẽ−, ẽ±, ẽ+)hm ≡ (π̃0, ẽ±)hm. (215)

The above features are all represented by the hadronic structure model of the π±

mesons first proposed in Ref. [16]

π± = (ẽ−, ẽ±, ẽ+)hm ≡ (π̃0, ẽ±)hm, (216)

with solutions for the k1 and k2 parameters

k1 = 0.34, k2 = 1 + 3.67× 10−3 (217)

verifying conditions (188).
The main recent advance since the 1978 proposal [16] is the capability of a consistent

representation of the total angular momentum J = 0 of the π± meson thanks to the irreg-
ular SU(2) isosymmetry showing that the hadronic angular momentum of the ẽ−, ẽ+ pair
compressed inside ẽ± is 1/2 with total angular momentum (Sections 3,4 and .3.5m Section
3.5.3 in particular).

Jtot = s1 + s2 + s3 + L1−2 = −1/2 + 1/2− 1/2− 1/2 = 0. (218)

With reference to Figures zzzz and zzz, model (216) is a “compressed” form of the µ±

model (213). The orbital motion of the peripheral electrons is unrestricted in model (213),
yielding a total angular momentum 1/2, Eq. (212). By contrast, the peripheral isoelectrons
and isopositron in model (216) are constrained to orbit inside the central isoelectron or
isopositron ẽ±, thus being forced to have the orbital value 1/2 equal to the spin of the
isoparticle since orbital values different than 1/2 would imply extreme resistive forces
with ensuing excessive instabilities.
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4.5.4. Hadronic structure models of the remaining mesons. It is an instructive exer-
cise for the interested reader to work out the hadronic structure models of the remaining
mesons, Eqs. (203)-(206) with the hadronic suppression of the energy spectrum (195) per-
mitted by solutions (195) with the increase of the k1 value and the decrease of the k2 value
with the increase of the rest energy (see Section 6.2, Ref. [44] for an independent review).

4.6. Isodeterminism in the structure of baryons.
4.6.1. Nonrelativistic representation of the neutron synthesis. Santilli has con-
ducted decades of mathematical, theoretical, experimental and industrial research on the
most fundamental synthesis in nature, that of the neutron as a “compressed” hydrogen
atom (H) in the core of stars [?] according to hadronic mechanics (See Refs. (I-85] to [I-95]
and independent review in monograph [44])

H = (e−, p+)qm → n = (ẽ−, p̃+)hm. (219)

In this section, we limit ourselves to recall that:
1) The excess 0.782 MeV rest energy of the neutron over the sum of the rest energies

of the proton and the electrons, Eqs. (96), cannot be represented via relative e− p kinetic
energy (or other conventional means) because the cross section of the e − p scattering at
1 MeV is virtually null, thus preventing any synthesis (see Section I-4). The only known
way of representing the 0.782 MeV excess energy in the neutron synthesis is via the EPR
“completion” of quantum mechanics into the covering hadronic mechanics [28]-[30], [44].

2) By recalling that there is no energy available in the neutron synthesis for the pro-
duction of a neutrino, the need to achieve the total angular momentum 1/2 of the neutron
from a hadronic hound state of two particles each having spin 1/2 has stimulated sys-
tematic studies on regular and irregular Lie-Santilli isosymmetries [25] [37] (Sections 3,
4).

3) The need to understand the origin of the missing 0.782 MeV energy is stimulating
research expected to last for centuries on the ether as a universal substratum with ex-
tremely high density for the characterization and propagation of electromagnetic waves
and elementary particles, which view renders possible the transmission of the missing
0.782 MeV energy from the ether to the neutron via a longitudinal impulse known as the
etherino (denoted with the symbol ‘a from the Latin aether) [?].

The main characteristics of the neutron are the following:
1) Rest energy 939.565 MeV ;
2) Charge radius R = 10−15 cm;
3) Meanlife τ = 881 s(about 15 m);
4) Spin 1/2;
5) Elementary charge;
6) Anomalous magnetic moment µn = −1.9 e

2mpc
and null electric dipole moment;

7) Tunnel effect decay
n → p+ + e− + ν (or a?). (220)

Experimental tests on the neutron synthesis initiated in the 1960s by don Carlo Borghi
[?] and confirmed by subsequent tests [I-90] - [I-95], have systematically indicated the
existence of an unstable intermedia state called neutroid (indicated with the symbol ñ)
which is completely unidentified by neutron detectors while causing nuclear transmuta-
tions typically triggered by neutron irradiation.
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Hadronic mechanics suggests the following representation of the structure of the neu-
troid

ñ = (ẽ−↓ , p
+
↑ )hm (221)

consisting of (Figure zzz) an isoelectron ẽ− and spin s1 in singlet contact coupling with
a standard proton p+ with spin s2 and orbital motion L1−2 in the ground state. These
assumptions result in a particle with rest energy of about 940 MeV , meanlife τ ≈ 5 s,
charge radius R ≈ 10−13 cm, spin J = 0, and decay ñ→ e− + p+.

Once absorbed by a nucleus N(A,Z, J), the neutroid is transformed by strong inter-
actions into a neutron, resulting in a generally untabulated unstable nucleus according to
reactions of the type,

ñ+N(A,Z, J) → N(A+ 1, Z, J) + ν (or a?) (222)

The above features explain the triggering by undetectable neutroids of conventional
nuclear transmutations typically triggered by neutron irradiations.

Hadronic bound state (222) is clearly impossible for quantum mechanics, but readily
possible for hadronic mechanics due to the combination of strongly attractive Coulomb
and contact forces at mutual distances of the order of 10−13 cm with isotopic elements of
the simple type (177) verifying isodeterministic Lemma 3.9.

Hadronic mechanics represents all characteristics of the neutron as a compressed neu-
troid much similar to the structure of the π± as compressed , µ± (Section 4.5.4), resulting
in the structure

n = (ẽ−↓ , p̃
+
↑ ), (223)

in which both the electron and the proton are mutated into corresponding isoparticles
ẽ−, p̃+ under the assumption that the electron is totally compressed inside the proton
according to Rutherford [?].

The representation of the rest energy, charge radius, meanlife, charge and tunnel ef-
fect decay of the neutron have been first achieved in Ref. [75] Eqs. (2.19), page 521, via
hadronic two-body bound state 192), with solutions of Eqs (193)

k1 = 2.6, k2 = 1 + 0.81× 10−8 (224)

verifying conditions (188) for the validity of isodeterminism inside the neutron and the
validity of conventional uncertainties in its outside.

The representation of the spin 1/2 of the neutron was also achieved for the first time in
Ref. [75], Eqs. (2.22)-(2.37), thanks to the appearance of an orbital motion of the isoelectron
when otally “compressed” inside the proton (which orbital motion is completely non-
existent for quantum mechanics).

The representation of the spin 1/2 is additionally permitted by the isotopies of spin or-
bit couplings for which the hadronic angular momentum of the isoelectron in constrained
to be equal to the spin of the isoproton as a necessary condition to avoid strong instabili-
ties (Figure zzz) according to constraint (119) for which

Jntot = sp + se + Le = 1/2− 1/2 + 1/2 = 1/2. (225)

The representation of the anomalous magnetic moment of the neutron was also rep-
resented for the first time in Ref. [75], Eqs. (2.39)-(2.41), page 526, via the contribution to
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the total angular momentum of the orbital motion of the isoelectron inside the isoproton

µn = −1.9 e
2mpc

= µp + µorbe + µintre =

= 2.7 e
2mpc
− 4.6 e

2mpc
.

(226)

The null value of the electric dipole moment was proved essentially along conven-
tional lines.

4.6.2. Relativistic representation of the neutron synthesis. The relativistic rep-
resentation of all characteristics of the neutron was first achieved in Refs. [60] [61] (see
independent review [44], Section 6.3, page 342 on)via the isosymmetry of the irregular
Dirac-Santilli isoequation (198), namely, the isotopy P̂(3.1) of the spinorial covering of
the Poincaré symmetry (Section 2.5.11) and can be outlined as follows.

Recall that the non-potential hadronic representation of strong interactions (Section
4.3) implies the “absorption” of the Coulomb interactions by the Hulten potential, as
essentially implied by the charge independence of strong interactions.

This feature permits ignoring Coulomb binding energies in first approximation, re-
sulting in a weakly bounded relativistic hadronic structure of the neutron, namely, a state
with a very small binding energy which is typical of all non-potential interactions.

Let structure (221) of the neutroid be represented in the iso-Minkowski isospace M̂(x̂, η̂, Î)
with isometric (19). Assume in first approximation that the isoproton is perfectly spher-
ical for which n1 = n2 = n3 = 1 and assume that the density of the region of neutroid-
proton overlapping is close to that of the vacuum, thus implying the value n4 = 1 result-
ing in an isometric of the type

η̂ = ηe−K = Diag.(1, 1, 1,−1)e−K , K > 0. (227)

The relativistic representation of all characteristics of the neutroid then follows via a
simply isotopy of the relativistic treatment of the hydrogen atom.

In the relativistic treatment of the structure of the neutron, Eq. (223), the isoproton
cannot any longer be assumed to be perfectly spherical and the density of the overlapping
region becomes dominant, resulting in values of the characteristic quantities nµ 6= 1, µ =
1, 2, 3, 4.

In Refs. [60] [61], Santilli assumes that the value of the characteristic quantity n4 repre-
senting the density of the neutron is equal to the corresponding value obtained from the
fit of experimental data via hadronic mechanics of the Bose-Einstein correlation [?] [?].,

n4 = 0.62, b4 =
1

n)4
= 1.62 (228)

where b4 = 1/n4 is the notation used in Refs. [61].
The Lorentz-Santilli isotransforms (42) then imply the following isorenormalization of

the rest energy of the electron, namely a renormalization caused by non-potential interac-
tions (Ref. [61], Eqs. (7.1), page 191)

Ee = mec
2 = 0.511 MeV → Eẽ = me

c2

n2
4

= 1.341 MeV. (229)
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As one can see, the above isorenormalization removes the missing 0.782 MeV energy
in the neutron synthesis when represented on isospaces over isofields, thus rendering
consistent isorelativistic equations.

II should be stressed that the above isorenormalization continues to be based on the
etherino for the delivery of the missing energy to the neutron. Other hypotheses are
welcome, except the use of the neutrino its cross section with electrons and protons is
essentially null, thus preventing any plausible delivery of energy.

The relativistic representation of the spin of the neutron in synthesis (223) was first
achieved in Refs. [60] [61]. Recall from Figure zzz that the spin s1 of isoelectron is opposite
to the spin s2 of the isoproton. The relativistic spin-orbit coupling implies the constraint
that the orbital angular momentum L1 of the isoelectron inside the isoproton be equal to
the isoproton spin,

L1 = s2. (230)

The above identity is manifestly impossible for the spinorial covering of the Poincaré
symmetry P(3.1) and relativistic quantum mechanics, but it is indeed possible for the
covering isosymmetry P̂(3.1). In fact, with reference to Section 3.5.3, Eqs. (122), identity (
230) implies the conditions (Ref. [61], Eqs. (7.2), page 192)

L̂3 ? |ψ̂ >= ±n1n2|ψ̂ >=

= Ŝ3 ? |ψ̂ >= 1
2

1
n1n2
|ψ̂ >,

L̂2̂ ? |ψ̂ >= (n2
1n

2
2 + n2

2n
2
3 + n2

3n
2
1)|ψ̂ >=

= Ŝ 2̂ ? |ψ̂ >= 1
4
(n−2

1 n−2
2 + n−2

2 n−2
3 + n−2

3 n−2
1 )|ψ̂ >,

(231)

admitting the simple solution

n2
k = n =

1√
2

= 0.706, b2
k =

1

n2
k

=
√

2 = 1.415, k = 1, 2, 3, (232)

where b2
k = 1/n2

k is the notation used in Ref. [61].
The relativistic representaiton of the anomalius magnetic moment of the neutrion was

also achueved f or the first time in ref. [61], Eqs. (7.4), page 192. The representation is
again permitted by the contribution due to the orbital motion of the isoelectron inside
the isoproton, and it is given by non-relativistic expression (226) with a more accurate
representation of the orbital contribution.

It should be indicated that the non-relativistic and relativistic structure models of the
neutron presented in this section are mere approximation of a much more complex reality
in which all characteristics of the constituents are mutated, thus including the charge.

4.6.3. Structure and classification of the remaining baryons. A central require-
ment for the consistency of model (223) is that the excited states of the neutron are the
conventional states of the hydrogen atom. This illustrates again the hadronic suppression
of quantum mechanical energy spectra, since the latter are typical for the classification,
rather than the structure of hadrons.

By recalling the condition that the number of elementary constituents of hadrons in-
creases with the increase of the rest energy, the hadronic structure of the remaining baryons
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is reducible to the two isoparticle structures derived from the spontaneous decays gener-
ally with the lowest mode, much along the structure of mesons, resulting in the following
structure models of the octet of baryons [?] (see [44], Section 6.3.J, page 366 for an inde-
pendent review)

p+(938 MeV ) = stable,

n(939 MeV ) = (p̃+, ẽ−)hm,

Λ(1115 MeV ) = (p̃+, π̃−)hm,

Σ+(1189 MeV ) = (p̃+, π̃0)hm,

Σ0(1192 MeV ) = (ñ, π̃0)hm,

Σ−(1197 MeV ) = (ñ, π̃−)hm,

Σ0(1314 MeV ) = (Λ̃, π̃0,

Ξ−(1321 MeV ) = (Λ̃, π̃−)hm.

(233)

by keeping in mind that numerous alternative internal exchanges of isoparticles are pos-
sible while keep constant the total rest energy.

It is an instructive exercise for the interested reader to see that all the above models
verify condition (186) for the lack of hadronic excite states, as well as conditions (188) for
the validity of isodeterministic Lemma 3.9 and related rapid convergence of isoseries.

The compatibility of hadronic structure models ( 233) with the SU(3)-color or more
recent classifications is achieved at the hyperstructural level [29] [42] with the following
ordered hyperunit [?]

Îtot = {Îp, În, ÎΛ, ÎΣ+ , ÎΣ0 , Îσ− , ÎΞ0 , ÎΞ−} (234)

4.4.zzzzzz. Isdeterminism in the pseudoproton synthesis.
4.4.zzzz. Isodeterminism in chemical valence bonds

0.50cm
4.4.zzzzz Isoeterminism in gravitational collapse.
To provide a gravitational illustration, recall that isotopic element (2) contains as partic-
ular cases all possible symmetric metrics in (3 + 1)-dimensions, thus including the Rie-
mannian metric [17].

We then consider the 3-dimensional sub-case of isotopic element (2) and factorize the
space component of the Schwartzchild metric gs(r) according to isotopic rule introduced
in Refs. [?] [?]

gs(r) = T̂ (r)δ, (235)

where δ is the Euclidean metric.
We reach in this way the following realization of the isotopic element

T̂ =
1

1− 2M
r

=
r

r − 2M
, (236)
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Figure 13: This picture provides a conceptual rendering of Rutherford’s synthesis of the neutron

from the hydrogen in the core of stars via the “compression” of the electron inside the hyperdense

proton in singlet coupling in which case the electron is “constrained” to orbit inside the proton with

an angular momentum equal to the proton spin, since other configurations would imply extreme

resistive forces, as shown non-relativistically in Ref. [75] and relativistically in Ref. [61]. It is

evident that this configuration cannot be formulated via quantum mechanics, thus suggesting a

“completion” of conventional spin and angular momentum studied in Sections 3.4 and 3.5.

where M is the gravitational mass of the body considered, with ensuing isodeterministic
isoprinciple

∆r̂∆p̂ ≈ T̂ =
r

r − 2M
⇒r→0= 0, (237)

which confirms the statement in page 190 of Ref. [10], on the possible recovering of full
classical determinism in the interior of gravitational collapse (see Ref. [?], Chapter 6 in
particular, for a penetrating critical analysis of black holes).

It should perhaps be indicated that Refs. [?] [?] introduced the factorization of a full
Riemannian metric g(x), x = (r, t) in (3 + 1)-dimensions

g(x) = T̂gr(x)η, (238)

where T̂gr is the gravitational isotopic element, and η is the Minkowski metric η = Diag.(1, 1,-
1,−1).

Refs. [?] [?] then reformulated the Riemannian geometry via the transition from a
formulation over the field of real numbersR to that over the isofield of isoreal isonumbers
R̂where the gravitational isounit is evidently given by

Îgr(x) = 1/T̂gr(x). (239)

The above reformulation turns the Riemannian geometry into a new geometry called
iso-Minkowskian isogeometry, which is locally isomorphic to the Minkowskian geometry,
while maintaining the mathematical machinery of the Riemannian geometry (covariant
derivative, connection, geodesics, etc.) us fully maintained, although reformulated in
terms of the isodifferential isocalculus [?].

The apparent advantages of the identical iso-Minkowskian reformulation of Rieman-
nian metrics and Einstein’s field equations (see, e.g., Eqs. (2.9), page 390 of Ref. [?]) are:
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1) The achievement of a consistent operator form gravity in terms of relativistic hadronic
mechanics [?] whose axioms are those of quantum mechanics, only subjected to a broader
realization;

2) The achievement of a universal symmetry of all non-singular Riemannian metrics,
which symmetry is locally isomorphic to the Lorentz-Poincaré symmetry, today known
as the Lorentz-Poincaré-Santilli (LPS) isosymmetry [?], and it is notoriously impossible on
a conventional Riemannian space over the reals;

3) The achievement of clear compatibility of Einstein’s field equation with 20th cen-
tury sciences, such as a clear compatibility of general relativity with special relativity via
the simple limit Îgr = I implying the transition from the universal LPS isosymmetry to
the Poincaré symmetry of special relativity with ensuing recovering of conservation and
other special relativity laws [?] [?]; the achievement of axiomatic compatibility of gravi-
tation with electroweak interactions thanks to the replacement of curvature into the new
notion of isoflatness with the ensuing, currently impossible, foundations for a grand uni-
fication [?]; and other intriguing advances.

3. Concluding remarks.

In this paper, we have continued the study of the EPR argument [1] conducted in Ref.
[10] and preceding works, with particular reference to the study of the uncertainties for
extended particles immersed within hyperdense medias with ensuing linear and non-
linear, local and non-local and Hamiltonian as well as non-Hamiltonian interactions.

This study has been conducted via the use of isomathematics and isomechanics char-
acterized by the isotopic element T̂ of Eq. (1) which represents the non-linear, non-local
and non-Hamiltonian interactions of the particles with the medium [15] [17] [18].

The main result of this paper is that the standard deviations of coordinates and mo-
menta for particles within hyperdense media are characterized by the isotopic element
that, being always very small, T̂ � 1, reduces the uncertainties in a way inversely pro-
portional to a non-linear increase of the density, pressure, temperature, and other charac-
teristics of the medium, while admitting the value T̂ = 0 under extreme/limit conditions
with ensuing recovering of full determinism as predicted by A. Einstein, B. Podolsky and
N. Rosen [1].

We can, therefore, tentatively summarize the content of this paper with the following:
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[76] Löve,M. Probability Theory, in Graduate Texts in Mathematics, Volume 45, 4th edi-
tion, Springer-Verlag (1977).

[77] H. Rutherford, Proc. Roy. Soc. A, 97, 374 (1920).

[78] A. O. E. Animalu and R. M. Santilli, “Nonlocal isotopic representation of the Cooper
pair in superconductivity,” Intern. J. Quantum Chemistry Vol. 29, 185 (1995)
http://www.santilli-foundation.org/docs/Santilli-26.pdf

69


