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Abstract. A. Einstein, B. Podolsky and N. Rosen expressed in 1935 their historical view that
quantum mechanics could be “completed” into such a form recovering classical determinism at
least under limit conditions (EPR argument). Following decades of preparatory studies, R. M.
Santilli published in 1998 a paper showing that the historical objections against the EPR argument
(such as Bell’s inequality, von Neumann’s theorem, et al.) are indeed valid for point-like particles
in vacuum under linear, local and potential interactions (exterior dynamical systems), but the same
objections are inapplicable (rather than being violated) for extended particles within hyperdense
physical media under additional non-linear, non-local and non-potential interactions (interior dy-

namical systems) because the latter systems appear to admit an identical classical counterpart
when treated with the isotopic branch of hadronic mechanics and its underlying isomathematics.
In a more recent paper, Santilli has shown that quantum uncertainties of extended particles ap-
pear to progressively tend to zero when in the interior of hadrons, nuclei and stars, and appear to
be identically null at the limit conditions in the interior of gravitational collapse, essentially along
the EPR argument. In this first paper, we review, upgrade and specialize the basic mathematical,
physical and chemical methods for the study of the EPR argument. In the subsequent second
paper, we review the above results and provide specific illustrations of the important vision by
Einstein, Podolsky and Rosen.
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1. INTRODUCTION.

1.1. The EPR argument.
As it is well known, quantum mechanics does not admit classical precision in the mea-
surement of the position or the mutual distance of particles (Figure 1) in view of Heisen-
berg’s uncertainty principle and other physical laws.
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Figure 1: In this figure, we present a conceptual rendering of the sole representation of particles

permitted by the differential calculus underlying quantum mechanics, namely, the representation as

isolated points in empty space which particles, being dimensionless, can only be at a distance, with

ensuing EPR argument on the need for superluminal interactions to explain quantum entanglement

[1].

Albert Einstein did not accept this uncertainty as being final for all possible condi-
tions existing in the universe and made his famous quote God does not play dice with the
universe.

More specifically, Einstein accepted quantum mechanics for atomic structures and
other systems of point-like particles in vacuum (conditions known as exterior dynamical
problems), but believed that quantum mechanics is an “incomplete theory,” in the sense
that it=could admit a “completion” into such a form to recover classical determinism at
least under limit conditions.

Einstein communicated his view to the post doctoral associates, B. Podolsky and N.
Rosen at the Institute for Advanced Study, Princeton, NJ, and all three together published
in the 1935, May 15th issue of the Physical Review paper entitled ”Can Quantum Mechan-
ical Description of Physical reality be Considered Complete?” which paper became known
as the EPR argument [1].

Soon after the appearance of paper [1], N. Bohr published paper [2] expressing a neg-
ative judgment on the possibility of “completing” quantum mechanics along the EPR
argument.

Bohr’s paper was followed by a variety of papers essentially supporting Bohr’s rejec-
tion of the EPR argument, among which we recall Bell’s inequality [3] establishing that the
SU(2) spin algebra does not admit limit values with an identical classical counterpart.

We should also recall von Neumann theorem [4] achieving a rejection of the EPR argu-
ment via the uniqueness of the eigenvalues of quantum mechanical Hermitean operators
under unitary transforms.

The field became known as local realism and was centered on the rejection of the EPR
argument on claims of lack of existence of hidden variables λ [5] in quantum mechanics (see
the review [6] with a comprehensive literature).

Nowadays, the EPR argument is generally ignored in view of the wides-pread be-
lief that quantum mechanics is universally valid for whatever conditions may exist in
the universe without any scrutiny of the limitations and/or insufficiencies of quantum
mechanics in various fields reviewed in this section.
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Figure 2: A conceptual rendering of the main assumption of the apparent proofs [7] [8] of the EPR

argument [1], consisting in the representation of particles as extended, deformable and hyperdense

in conditions of mutual overlapping with ensuing continuous contact at a distance eliminating the

need for superluminal interactions to explain quantum entanglement. Despite its simplicity, the

quantitative treatment of the continuous entanglement here considered required decades of studies

due to the need for a “completion” of the mathematics underlying quantum mechanics, with partic-

ular reference to the “completion” of the Newton-Leibnitz differential calculus, from its historical

form solely defined at isolated points, into a covering form defined on volumes [115]. Intriguingly,

the “completion” here considered turned out to be of isotopic/axiom-preserving type, thus being fully

admitted by quantum mechanical axioms, merely subjected to a realization broader than that of the

Copenhagen school.

1.2. Apparent proofs of the EPR argument.
In Vol. 50, pages 177-190, 1998, of Acta Applicandae Mathematica, R. M. Santilli pub-
lished paper [7] entitled “Isorepresentation of the Lie-isotopic SU(2) Algebra with Appli-
cation to Nuclear Physics and Local Realism,” which paper appears to confirm Einstein’s
view on the existence of a “completion” of quantum mechanics into the isotopic branch
of hadronic mechanics, or isomechanics for short and a “completion” of quantum chem-
istry into a form known as isochemistry. These “completions” are based on a broadening
of applied mathematics known as isomathematics and admit progressive conditions of
particles in the interior of hadrons, nuclei, stars and black holes that appear to recover
classical determinism.

The proof presented in paper [7] was done via the following three main steps:
1.2.1. The proof that Bell’s inequality, von Neumann’s theorems and other similar

objections of the EPR argument [6] are indeed correct, but under the generally tacit as-
sumptions:

A) The point-like approximation of particles moving in vacuum (Figure 1);
B) The sole admission of Hamiltonian interactions [18];
C) The treatment of assumptions A and B via 20th century applied mathematics, in-

cluding Lie’s theory and the Newton-Leibnitz differential calculus;
1.2.2. The proof that the above treatments are not applicable to Einstein’s vision on the

existence of a “completion” of quantum mechanics based on the following assumptions:
A’) The representation of extended, therefore deformable and hyperdense particles

under conditions of mutual penetration/entanglement known (Figure 2) as occurring in
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Figure 3: An illustration of the central objective for the proof of the EPR argument consisting in the

transition from the quantum mechanical representation of the Newtonian notion of massive points

moving in vacuum under linear, local and potential interactions (top view), to the time invariant

representation of extended particles moving within physical media under linear and non-linear, local

and non-local and potential as well as non-potential interactions (bottom view).

the structure of hadrons, nuclei, stars and black holes (systems known as interior dynam-
ical problems);

B’) The emergence under condition A’ of Hamiltonian as well as contact non-Hamiltonian
interactions of non-linear, non-local and non-potential character;

C’) The treatment of assumptions A’ and B’ via isomathematics that, as we shall see in
Section 2, is based on:

i) The axiom-preserving isotopy ab = ab → a ? b = aT̂ b of the associative product ab
between generic quantities a, b (numbers, functions, operators, etc.), where T̂ is a positive-
definite quantity called the isotopic element representing the dimension, deformability
and density of particles;

ii) The ensuing axiom-preserving “completion” of Lie’s theory with isotopic product
[x̂,y] = x ? y − y ? x between Hermitean operators x, y;

iii) The reconstruction of the 20th century applied mathematics into a form compati-
ble with isoproduct a ? b, including most importantly the isotopic lifting of the Newton-
Leibnitz differential calculus from its centuries old definition at isolated points to its def-
inition in the volumes of particles represented by T̂ .

1.2.3. The proof that the Lie-isotopic ŜU(2) algebra with isoproduct [x̂,y] admits limit
conditions with an identical classical counterpart.

More recently, R. M. Santilli completed the above proof in paper [8] by showing that,
under the above indicated conditions, the standard deviations for coordinates ∆r and
momenta ∆p appear to progressively tend to zero for extended particles within hadrons,
nuclei and stars, and appear to be identically null for extended particles within the limit
conditions in the interior of gravitational collapse, essentially along Einstein’s vision.

It should be noted that the above proofs of the EPR argument are centered in the
preservation of the basic axioms of quantum mechanics, only submitted to their broadest
possible realization.

It should be also noted that, under said broadest possible realization, quantum ax-
ioms do admit an explicit and concrete realization of hidden variables embedded in the
structure of the Lie-isotopic product [x̂,y] = xT̂ y − yT̂x, for instance, via realization
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Figure 4: A first illustration of the lack of “completion” of quantum mechanics beyond scientific

doubt is the time reversal invariance of the theory with equal probability for events forward and back-

ward in time. Such a time reversibility is acceptable for atomic structures, particles in accelerators,

crystals and other reversible systems, but it does not allow a consistent physical or chemical repre-

sentation of energy-releasing process, such as the coal burning depicted in this figure. In fact, the

time reversal image of coal burning implies that smoke must reconstruct coal with evident violation

of causality.

T̂ =, Diag.(λ, 1/λ, DetT̂ = 1 [7].

1.3. Insufficiencies of quantum mechanics for irreversible processes.
One of the insufficiencies of quantum mechanics well known since the 1930’s is the inabil-
ity to represent physical or chemical energy releasing processes, such as nuclear fusions,
fuel combustion and other processes.

This is due to the fact that energy releasing processes are irreversible over time (namely,
the time reversal image of the processes violates causality), while quantum axioms were
conceived for and remain solely applicable to systems reversible over time (namely, the
time reversal image of the systems verifies causality), such as atomic structures, particles
in accelerators, crystals and other systems (Figure 4).

It is hoped that the ongoing alarming deterioration of our environment, with the con-
sequential need for new clean energies, illustrate the need for a “completion” of quantum
mechanics for irreversible processes outlined for completeness in Section 2.

It should be indicated that, except for the short presentation in Section 2, this and
the following paper are solely devoted to the apparent proofs of the EPR argument for
reversible interior systems, while the study for the broader irreversible interior systems
is done elsewhere (see Refs. [9] to [83]).

This is due to the that the objections against the EPR argument were formulated for
reversible exterior systems. Consequently, proofs [7] and [8] studied in these papers were
formulated for reversible interior systems.

1.4. Insufficiencies of quantum mechanics in particle physics.
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Figure 5: A conceptual rendering of the synthesis of the neutron as a “compressed hydrogen atom”

in the core of stars according to H. Rutherford [84], which synthesis cannot be represented by

quantum mechanics due to a mass excess and other reasons (see Section 1.4). By contrast, all

characteristics of the neutron in said synthesis have been represented at the non-relativistic and

relativistic levels by the “completion” of 20th century applied mathematics and physics studied in

this paper (Refs. [85] [95]).

Quantum mechanics is justly considered to be exactly valid for the structure of the hydro-
gen atom because it achieved a numerically exact representation of all experimental data
for the system considered.

It is hoped serious scholars will admit that quantum mechanics cannot be considered
as being exactly valid for particle physics because of the known inability to achieve an
exact representation of all experimental data of any given family of particles, despite the
admission of a plethora of hypothetical neutrinos and other ad hoc manipulations.

Additionally, with the exception of the proton, all remaining strongly interacting parti-
cles (hadrons) are unstable, thus characterizing irreversible systems requiring Lie-admissible
formulations for their correct treatment under which Einstein’s lack of completion of
quantum mechanics is beyond scientific doubt.

Finally, quantum mechanics is completely inapplicable (rather than violated) for the
most fundamental synthesis in nature, that of the neutron from a proton and an electron
as occurring in the core of stars [84], with ensuing inapplicability to the synthesis of other
particles, such as that of the π0 meson from the positronium [17].

This is due to the fact that quantum mechanical axioms have been conceived for the
synthesis of particles in which the mass of the final state is smaller than the sum of the
masses of the original constituents, resulting in the well known mass defect caused by
negative potentials.

By contrast, the mass of the neutron En = 939.565 MeV is 0.782 MeV bigger than the
sum of the masses of the proton Ep = 938.272 MeV and of the electron Ee = 0.511 MeV ,
resulting in a mass excess requiring a positive potential for which Schrödinger, Dirac and
other quantum mechanical equations admit no physically meaningful solutions, with
similar cases occurring for the synthesis of other particles [17].

The inability by quantum mechanics to represent the fundamental synthesis of the
neutron in a star is ultimately due to the point-like characterization of particles since it is
mathematically and physically impossible to fuse together two point-like particles (the
proton and the electron) into a third point-like particle (the neutron).
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Figure 6: The mathematics underlying quantum mechanics is local-differential, thus solely admit-

ting a point-like approximation of particles. This figure illustrates the consequential conception

of nuclei as ideal spheres with isolated points in their interior with ensuing insufficiencies beyond

scientific doubt.

In turn, this insufficiency identified the need for the representation of hadrons as ex-
tended, deformable and hyperdense, which representation is at the foundation of the EPR
proof [7].

Another insufficiency of quantum mechanics is its sole capability of representing lin-
ear interactions (i.e., interactions linear in the wave functions). By contrast, the sole
known possibility of achieving a bound state with excess mass is that via the admis-
sion of non-linear interactions for extended particles in conditions of mutual penetra-
tion/entanglement, as it is the case for the electron when totally compressed inside the
proton [16] [17].

In turn, non-linear interactions are crucial for the “completion of the wavefunction”
advocated by Einstein, Podolsky and Rosen [1] as we shall see in Paper II of this series.

It is nowadays known that the above insufficiencies originate from Lie’s theory at the
foundation of quantum mechanics because said theory solely admits linear interactions
[19].

It is hoped that the above insufficiencies illustrate the significance of the “completion”
of Lie’s theory used for the proof of the EPR argument [7].

In fact, only following the achievement of a “completion” of 29th century mathemat-
ical and physical methods for extended, deformable and hyperdense particles in interior
dynamical conditions, R. M. Santiili achieved a numerically exact representation of all—
characteristic of the neutron in its synthesis from a proton and an electron at the non-
relativistic (Refs. [85] to [87]), relativistic (Refs. [88] to [89]) and experimental (Refs. [90]
to [95]) levels (see Sections 2, 3 and Paper II of this series).

1.5. Insufficiencies of quantum mechanics in nuclear physics.
There is no doubt that quantum mechanics has permitted historical achievements in nu-
clear physics.

However, quantum mechanics is only approximately valid in nuclear physics because
of the inability to achieve in about one century a representation of the characteristics of
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Figure 7: A conceptual rendering of nuclei as they occur in the physical reality, i.e., a collec-

tion of extended and hyperdense protons and neutrons in conditions of partial mutual penetration,

with ensuing non-linear, non-local and non-potential interactions beyond any dream of quantitative

treatment via quantum mechanics.

the simplest nucleus, the deuteron, with embarrassing deviations of the prediction of the
theory from experimental data for heavier nuclei, such as the Zirconium [59].

In Santilli’s view, the primary reason for the indicated insufficiency is that the math-
ematics underlying quantum mechanics, with particular reference to the Newton-Leibnitz
differential calculus, imply the conception of nuclei as ideal spheres with isolated points in
its interior (Figure 6) while in the physical reality, nuclei are composed by extended and
hyperdense protons and neutrons in conditions of partial mutual penetration established
by the comparison of nuclear volumes with the constituent volumes [59] (Figure 7).

The inability to represent nuclei as they are in the physical reality implies the inability
to achieve an exact representation of nuclear magnetic moments. In fact, the quantum me-
chanical representation of the anomalous magnetic moment of the deuteron still misses
1 % despite all possible relativistic or quark-based corrections.

Additionally, quantum mechanics misses much bigger percentages of nuclear mag-
netic moments for heavier nuclei (as illustrated in Figure 8).

In turn, the inability to represent protons and neutrons as extended charge distribu-
tions implies the inability to represent deformations under strong nuclear forces, with
related deformation of their angular momenta.

In fact, J. M. Blatt and V. F. Weisskopf state on page 31 of their treatise in nuclear
physics [96]: It is possible that the intrinsic magnetism of a nucleon is different when it is
in close proximity to another nucleon (Figure 9).

The representation of nucleons as extended, thus deformable and hyperdense charge
distributions via the “completion of 20th century mathematics (Section 2) and physics
(Section 3) has permitted the exact representation of the anomalous magnetic moment of
the deuteron [97], as well as of heavier nuclei [98].

It should be noted that the representation of nuclear magnetic moments is presented
in Ref. [7] as an illustration of the implications of the proof of the EPR arguments for
extended particles in interior conditions.

A second insufficiency of quantum mechanics in nuclear physics is the lack of a consis-
tent representation of nuclear spins despite efforts also conducted for about one century.
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Figure 8: A view of the experimental data of nuclear magnetic moments that cannot be exactly

represented by quantum mechanics. Similar insufficiencies exist for nuclear spins.

Figure 9: A conceptual rendering of the deformability of protons and neutrons under strong nuclear

interactions predicted by J. M. Blatt and V. F. Weisskopf [96] as being the origin of the inability

by quantum mechanics to represent nuclear magnetic moments.

Recall that the proton and the neutron have both spin 1/2 and that the only stable
bound state predicted by quantum mechanics between two particles with spin 1/2 is the
singlet with spin 0.

Therefore, quantum mechanics predicts that the deuteron in its ground state must
have spin 0, while experimental data establish that the deuteron has spin 1.

In an attempt of salvaging quantum mechanics, the spin of the deuteron is generally
represented via a combination of excited orbital states which, even though significant,
does not represent the spin 1 of the deuteron in its ground state.

The achievement of the synthesis of the neutron (Refs. [85] to [95]) has permitted a
resolution of the above impasse because the deuteron emerges as being a three-body state
composed by two protons and one exchange electron, with ensuing spin 1 in the ground state
[59].

Subsequent studies by A. A. Bhalekar and R. M. Santilli [100] based on the “comple-
tion” of 20th century mathematical and physical methods have achieved a representation
of the spin of stable nuclei in their bound state.

It should be finally noted that the biggest insufficiency of quantum mechanics in nu-
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Figure 10: This picture depicts the hydrogen molecule at absolute zero degree temperature to illus-

trate the fact that, despite historical achievements, quantum mechanics and chemistry have been

unable to identify the force attracting identical electrons in valence bonds, because the sole admitted

forces are of potential-Coulomb type, thus implying a repulsion in valence bonds with ensuing lack

of a “complete” representation of molecular structures [60].

clear physics is given by the inability to achieve a consistent representation of nuclear
forces in one century of efforts.

This is due to the fact that the sole forces permitted by quantum mechanics are of
potential, thus of action- at-a-distance type, which is solely possible, mathematical and
physical conception for nuclei as ideal spheres with point-like particles in their interior
(Figure 6).

One of the most important applications of the new methods studied in this work is
that of representing nuclear forces as being non-linear, non-local and non-potential forces
due to the mutual penetration/entanglement of the charge distribution of the hyperdense
nucleons. The latter forces have emerged as being strongly attractive thus allowing the
first known initiation of the understanding of the charge independence of nuclear forces
[59].

1.6. Insufficiencies of quantum mechanics in chemistry.
Without doubt, quantum mechanics and chemistry have permitted chemical discoveries
of historical proportions. Hence, the historical and scientific value of quantum chemistry
is out of question.

Yet, it is the fate of all theories to admit, with the advancement of scientific knowledge,
suitable coverings and this is the fate of quantum chemistry as well.

In fact, on strict scientific grounds quantum chemistry is only approximately valid in
chemistry, thus admitting a suitable “completion,” because of the inability in one century
of efforts to achieve an exact representation of molecular experimental data from first
axiomatic principles without ad hoc form factors and other adaptations.

Recall that quantum mechanics has achieved a numerically exact representation of all
experimental data of the hydrogen atom.

By contrast, when two hydrogen atoms are bonded into the hydrogen molecule H2,
quantum mechanics and chemistry still miss the representation of 1 % of the H2 binding
energy, which is not insignificant since it corresponds to about 940 kcal/mole.

An in depth study of the impasse has shown that the above insufficiency is due to
the inability by quantum mechanics and chemistry to represent the attractive force between
identical valence electrons in molecular bonds (Figure 10) because according to basic axioms,
two identical valence electrons must repel each other according to quantum mechanics and
chemistry due to their equal charge [60].
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Figure 11: This picture depicts the hydrogen molecule at absolute zero degree temperature with

the strongly attractive force between identical valence electrons permitted by the representation of

valence pairs as being composed by electrons with extended wavepackets in conditions of mutual

penetration/entanglement with ensuing non-linear, non-local and non-potential interactions that

result to be so strongly attractive [17] to overcome repulsive Coulomb forces [60]. The mutual

distance d of said valence pair approaches Einstein’s classical determinism and achieves it fully

when it is in the interior of black holes [7].

As it had been the case for other problems, the primary difficulty to achieve an attrac-
tive force between identical valence electrons was of mathematical rather than of physical
or chemical character, because quantum mechanics and chemistry solely admit potential
forces that, in this case, can only be of repulsive Coulomb type.

By contrast, the sole possibility of resolving the impasse was the representation of
electrons as extended wavepackets, that when in conditions of mutual penetration at 1 fm
mutual distance, admit contact, non-linear, non-local and non-potential interactions of
Hulten type.

These new interactions result to be so strong to “absorb” repulsive Coulomb forces
resulting in the needed attraction [60] (Figure 11).

The new valence force was first identified in Table 5 of the 1978 paper [17] as respon-
sible for the birth of strong interactions in the synthesis of the π0 meson from an electron
and a positron.

In 1995, A. O. E. Animalu and R. M. Santilli published paper [101] establishing that
the Hulten force of paper [17] is so strong to account for the bond of the two identical
electrons in the Cooper pair of superconductivity.

A generalization of superconductivity based on the new methods was then developed
and it is today known as Animalu isosuperconductivity [102].

In 2000, R. M. Santilli and D. D. Shillady showed that valence electron pairs with
a strongly attractive force, called isoelectronia, permit numerically exact representations
from first axiomatic principles of experimental data on the hydrogen [103] and water [104]
molecule, which representation had escaped quantum chemistry for about one century
(see also review [105]).

The achievement of a new model of molecular structures based on the isoelectronium
valence bond has permitted novel advances in larger molecules whose study has been ini-
tiated by A. A. Bhalekar and R. M. Santilli [106] with intriguing implications, e.g., possible
improvements in the combustion of fossil fuels based on a more accurate representation
of their molecular structure [53].

Additionally, Santilli and Shillady showed that perturbative series of the resulting “com-
pletion” of quantum chemistry converge at least one thousand times faster than the corre-
sponding series of quantum chemistry (see Section 4.13).
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1.7. Implications of the EPR argument.
It is hoped that the preceding sections have indicated the truly vast implications for all
quantitative sciences of Einstein’s view that “quantum mechanics is not a complete the-
ory” [1], thus warranting due scientific process.

In this paper we outline the main aspects of the new mathematical and physical meth-
ods underlying proof [7], with the understanding that a technical knowledge can be solely
achieved via a study of the original literature.

The reader should be aware that the literature accumulated in half a century of re-
search in the field by numerous scientists is rather vast. Consequently, in this paper we
can only quote the most important original contributions and provide comprehensive
references for interested readers.

2. LIE-ADMISSIBLE “COMPLETION” OF 20TH CENTURY
APPLIED MATHEMATICS.

2.1. Foreword.
R. M. Santilli never accepted quantum mechanics as a “complete” theory beginning with
his graduate studies in physics at the University of Torino, Italy, in the mid 1960’s because
quantum axioms are invariant under time reversal, due to the invariance under anti-
Hermiticity of the Lie product between Hermitean operators

[x, y] = −[x, y]†, (1)

and other physical laws.
By recalling the fundamental character of Lie’s theory, it follows that the mathematics

(more than physical laws) underlying quantum mechanics does not allow a consistent
representation of nuclear fusions and other physical or chemical energy releasing pro-
cesses, due to their known irreversibility over time (Figure 4).

2.2. The historical teachings by Lagrange and Hamilton.
In view of the above lack of “completeness” of quantum mechanics, R. M. Santilli initiated
his Ph. D. studies with the reading of the original works by J. L. Lagrange and studying
his true analytic equations, those with external terms [9]

d

dt

∂L(r, v)

∂v
− ∂L(r, v)

∂r
= Fak(t, r, v), (2)

as well as the true Hamilton’s equations, those with external terms [10]

dr
dt

= ∂H(r,p)
∂p

,

dp
dt

= −∂H(r,p)
∂r

+ F (t, r, p),

(3)

where the Lagrangian L and Hamiltonian H were used to represent conservative and
potential, thus notoriously reversible forces, while the irreversibility of nature was repre-
sented with their external forces F .

2.3. The “No Reduction Theorem.”
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The external terms has been truncated in the 20th century sciences on claims that irre-
versible systems can be decomposed into their elementary particle constituents at which
level the validity of quantum mechanics is fully recovered.

However, Santilli proved the following theorem as part of his Ph. D. thesis (see Refs.
[56] [25]).

THEOREM 2.3.1 (No reduction Theorem): A macroscopic time irreversible system cannot
be consistently decomposed into a finite number of quantum mechanical particles and vice
versa, a finite collection of quantum mechanical particles cannot reproduce a macroscopic
irreversible system under the correspondence or other principle.

Consequently, a serious study of irreversible systems requires a return to the true La-
grange’s and Hamilton’s equations, those with external terms.

2.4. The inevitability of the Lie-admissible “completion” of 20th
century science.
As it is well known, the true Lagrange and Hamilton equations cannot be assumed as a
“completion” of 20th century sciences because they are not derivable from a potential.

Additionally, the brackets of the time evolution of an observable Q represented via
Hamilton’s equations with external terms

dA
dt

= (Q,H, F ) =

= ∂Q
∂r

∂H
∂p
− ∂H

∂r
∂Q
∂p

+ ∂Q
∂r
F,

(4)

characterizes the triple system (Q,H, F ) that, in view of the external terms, violate the
right scalar and associative axioms to characterize an algebra as currently understood in
mathematics.

In the absence of a consistent algebra in the brackets of the time evolution, it was not
possible to achieve a “completion” of quantum mechanics via a covering for irreversible
systems.

Hence, Santilli was forced to seek the needed “completion” on algebraic grounds.
Following a year of research in the European mathematics libraries, Santilli did his

Ph. D. thesis in 1965 on the “completion” of Lie algebras into A. A. Albert’s Lie-admissible
and Jordan-admissible algebras [11] with product [12]

(a, b) = pab− qba, (5)

later on known as (p, q)-deformations [13], where p, q, p± q are non-null scalars, and time
irreversibility is assured for p 6= q for which irreversiblity is ensured for p 6= q by the
property (x, y) 6= − (x, y)†.

To achieve a first approximation of Hamilton’s equations with external terms, Santilli
introduced the following parametric Lie-admissible generalization of Hamilton’s equation
[14] [15]

dr

dt
= p

∂H(r, p)

∂p
,

dp

dt
= −q∂H(r, p)

∂r
, (6)

with corresponding parametric Lie-admissible generalization of Heisenberg equation for the
time evolution of a Hermitean operator Q (for h̄ = 1)

i
dQ

dt
= (Q,H) = pQH − qHQ. (7)
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As one can see, all dynamical equations are manifestly irreversible over time, as de-
sired.

2.5. Lie-admissible genomathematics and genomechanics.
In September 1977, Santilli joined the Department of Mathematics of Harvard University
under DOE support during which stay he introduced the most general known realization
of irreversible Lie-admissible algebras (see Refs. [16] to [23]) based on the generalization
and differentiation of the ordinary product ab of arbitrary quantities (numbers, functions,
operators, etc.) into the ordered genomodular product to the right

a > b = aR̂b, (8)

and that to the left
a < b = aŜb, (9)

where R̂, S and R ± S are positive-definite operators with an unrestricted functional de-
pendence on wavefunctions ψ(t, r) and any other needed variables.

The operators R and S were called genotopic element to the right and to the left, re-
spectively, where the prefix “geno” was suggested by Carla Santilli in the Greek sense of
“inducing a new structure” [16].

The new genomodular products permitted the construction of new mathematics known
as genomathematics to the right and to the left, [19] with corresponding “completion” of
quantum mechanics into an irreversible covering known as genotopic branch of hadronic
mechanics or genomechanics for short [19] in which irreversible energy releasing processes
are represented with ordered genomodular product to the right, as it is the case for the
geno-Schrödinger equation or Schrödinger-Santilli genoequation [20]

H > ψ = H(r, p)R(ψ, ...)ψ = Eψ, (10)

while processes characterized by genoproducts to the left are prohibited by causality.
The time evolution of a Hermitean operator Q is given by the Lie-admissible general-

ization of Heisenberg equations, also known as Heisenberg-Santilli genoequations (see, e.g.,
Ref. [107]) first introduced in Eqs. (4.15.34), page 746 of Ref. [17] (see the 2006 general
treatment [24] and the 2016 update [25]) which can be written in the infinitesimal form

idQ
dt

= (Q.H) = Q < H −H > Q =

= QSH −HRQ,
(11)

and the finite form
Q(t) = eHRtiQ(0)e−itSH . (12)

2.6. Universality of Lie-admissible formulations.
The following simple realization of the genotopic elements

S = 1, R = 1− 1
H
K(ψ, ∂ψ, ...),

idQ
dt

= (Q.H) = [Q,H] +QK,
(13)
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where K is a positive-definite operator representing non-Hamiltonian interactions illus-
trates that the Lie-admissible generalization (11) of Heisenberg’s equations constitute an
operator image of Hamilton’s equations with external terms (3) [56].

The double infinity of possible realizations of the genotopic elements R and S then
allows Lie-admissible equations (11) to be “directly universal” for the representation of
all possible (regular) non-linear, non-local and non-Hamiltonian interactions in the sense
of representing all of them (“universality”) directly in the frame of the experimentalism
without the use of the transformation theory (“direct universality”) (for details, see Ref.
[24]).

It should be finally indicated that the original 1978 proposal [16] established the uni-
versality of Lie-admissible algebras because the product (A,B) = A < B − B > A ad-
mit as particular case the product of all possible “algebras” as commonly understood
in mathematics, including Associative, Lie, Jordan, Lie-isotopic, Jordan-isotopic, alterna-
tive, super-associative, super-Lie, super-Jordan, nilpotent, flexible and any other possible
algebra.

2.7. Prediction of new clean nuclear fusions.
Scientific and industrial applications to new clean energies were initiated in the late 1990’s
only following the achievement of maturity in the mathematical and physical methods
needed for the representation of irreversible processes.

The first application was the conception, theoretical elaboration and experimental ver-
ification of the new Intermediate Controlled Nuclear Fusion (ICNF) of light, natural and
stable elements into light, natural and stable elements with smaller mass which occur
without the emission of harmful (e.g., neutron) radiations and without the release of ra-
dioactive waste (see Ref. [26] to [32] for originating papers; Refs. [33] to [40] for indepen-
dent studies and verifications; and Refs. [41] to [52] for laboratory analyses quoted in the
preceding works).

2.8. Prediction of a new clean combustion of fossil fuels.
To illustrate the implications of the lack of “completion” of quantum mechanics for en-
ergy releasing processes, we should note that the current combustion of fossil fuels is
essentially that at the dawn of our civilization, because we essentially strike a spark and
ignite the fuel with known alarming environmental deterioration of our planet.

The achievement of the Lie-admissible representation of energy releasing processes
has permitted the first known conception and initiation of tests for a new principle of
combustion called HyperCombustion which is based on the conventional combustion of
carbon and oxygen dating back to the dawn of our civilization, plus the novel synthesis
of a limited number of nuclei C-12 and O-16 into Si-28 to achieve full combustion of fossil
fuels as well as a significant increase of energy output [53].

2.9. Literature on hadronic mathematics and mechanics.
Due to the prediction of new clean nuclear energies, the connection between irreversible
mechanics and thermo dynamics and other features, the literature on the foundations of
hadronic mechanics is rather vast.

Ref. [54] provides a summary of the complete formalism of hadronic mechanics. Refs.
[55] to [61] provide general presentations of hadronic mechanics. Vol. I of Refs. [61]
contains a comprehensive literature up to 2008 with an upgrade to 2016 in Ref. [25].
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Additional references are available in the reprint volumes [62] [63] and in the proceed-
ings of five Workshops on Lie-Admissible Algebras,, twenty five Workshops on Hadronic
Mechanics, and three international conferences on the Lie-admissible treatment of Irre-
versible Processes whose references are available from Ref. [61]. Representative inde-
pendent papers are available from Refs. [64] to [74] and independent monographs are
available from Refs. [75] to [83].

3. LIE-ISOTOPIC “COMPLETION” OF 20TH CENTURY AP-
PLED MATHEMATICS.

3.1. Foreword.
As it is well known, the objections against the EPR argument (Section 1.1) were formu-
lated for isolated reversible systems of point particles in vacuum with linear, local and Hamil-
tonian interactions called reversible exterior dynamical problems.

Hence, the proof of the EPR argument had to study isolated reversible systems of
extended, therefore deformable and hyperdense particles in conditions of mutual penetra-
tion/entanglement with ensuing linear and non-linear, local and non-local and Hamiltonian
as well as non-Hamiltonian internal interactions. The latter systems are called reversible
interior dynamical problems, and they occur in the structure of hadrons, nuclei, stars and
black holes.

Despite their reversible character, the latter systems could not be studied with 20th
century applied mathematics, including Lie’s theory, due to its strictly Hamiltonian char-
acter. Reversible interior dynamical systems could not be studied with Lie-admissible
formulations due to their irreversible character. Hence, the needed new mathematics had
to be built.

In this section, we review the foundations of the new mathematics for the consistent
representation of reversible interior dynamical systems which was essentially constructed
as a reversible particular case of universal Lie-admissible formulations.

3.2. Isoproduct.
In order to achieve a representation of the latter systems, Santilli introduced in the original
proposal [16] of 1978 the axiom-preserving particular case of genomathematics called
isomathematics, which is characterized by the genoproduct to the right being equal to that
to the left, R = S = T̂ , resulting in the time-reversal invariant isoproduct, (first introduced
in classical realization in Eqs. (3.7.10), page 352 of Ref. [16], introduced in operator form
in Eq. (4.15.46), page 751, Ref. [17] and then studied in details in Ref. [19], Eq. (2), page
71 on)

a ? b = a T̂ b, (14)

where T̂ , called the isotopic element, is a function, matrix or operator solely restricted to
be positive-definite, but possesses otherwise an unrestricted functional dependence on all
needed local variables, such as: spacetime coordinates x = (t, r); linear momentum p; en-
ergy E; frequency ν; density of the medium α; temperature τ ; pressure π; wavefunctions
ψ; their derivatives ∂ψ; and any other needed variable

T̂ = T̂ (x, p, E, ν, α, τ, π, ψ, ∂ψ, ...) > 0, (15)
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where the prefix “iso” was also suggested by Carla Santilli in its Greek meaning of pre-
serving the axions.

The physical significant of isoproduct (14) is illustrated by nothing that it allows “ab
initio” a direct representation of extended, thus deformable and hyperdense particles and
their non-Hamiltonian interactions illustrated in Figure 3 (Section 1.4). This important
task is achieved via simple realizations of the isotopic element of the type (needed for the
neutron synthesis from the hydrogen studied in Section 2.4) [55] [56]

T̂ = Diag.(
1

n2
1

,
1

n2
2

,
1

n2
3

,
1

n2
4

)e−Γ, (16)

with subsidiary conditions

nµ = nµ(x, p, E, ν, α, τ, π, ψ, ∂ψ, ...) > 0, µ = 1, 2, 3, 4,

Γ(x, p, E, ν, α, τ, π, ψ, ∂ψ, ...) ≥ 0.
(17)

The isoproduct also allows a direct representation of nuclei as a collection of extended
nucleons in conditions of mutual penetration/entanglement as presented in Figure 7 and
Section 1.5 with broader realizations of the type (needed to represent nuclear magnetic
moments and spins, or for the achievement of an attractive force between identical va-
lence electron bonds in molecular structures) [57]

T̂ = Πk=1,...,NDiag.(
1
n2
1k
, 1
n2
2k
, 1
n2
3k
, 1
n2
4k

)e−Γ,

k = 1, 2, ..., N, µ = 1, 2, 3, 4.

(18)

In the above realizations of the isotopic element, n2
1, n

2
2, n

2
3, (called characteristic quan-

tities) represent the deformable semi-axes of the particle normalized to the values n2
1 =

n2
2,= n2

3 = 1, for the sphere; n2
4 represents the density of the particle considered nor-

malized to the value n4 = 1 for the vacuum; and Γ represents non-linear, non-local and
non-Hamiltonian interactions caused by mutual penetrations/entanglement of particles.

The mathematical significance of basic assumption (14) is that it requires, for consis-
tency, a compatible “completion” of all aspects of 20th century applied mathematics with-
out any known exception.

This program was initiated in the 1978 proposal [16], continued in the 1981 mono-
graph [19] and completed in numerous works by various mathematicians (see the 1995
monograph [55] for a comprehensive presentation).

Regrettably we cannot provide a technical review of isomathematics to prevent exces-
sive length. Nevertheless, a rudimentary outline of the main aspects of isomathematics
appears to be recommendable for an understanding of proof [7] of the EPR argument.

3.3. Isonumbers.
As it is well known, physical theories are formulated over a field F (n,×, 1) of real, com-
plex or quaternionic numbers n with product nm = n×m and multiplicative unit 1. Said
field remains invariant under the unitary time evolution of quantum mechanics, thus al-
lowing the prediction of the same numerical values under the same conditions at different
times.
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But the time evolutions of hadronic mechanics, such as Eqs. (11), are non-unitary when
formulated on conventional space over a conventional field (not so for isomathematics as
shown below).

This implies the loss over time of the multiplicative unit 1, and consequently, of the
entire numeric field, with ensuing lack of consistent experimental verifications.

To resolve this impasse, Santilli had no other choice than that of reinspecting the his-
torical classification of numbers, by discovering in this way that the abstract axioms of a
numeric field do not necessarily restrict the multiplicative unit to be the number 1, and allow
for unit an arbitrary positive-definite quantity Î provided that the multiplication is redefined
for Î to verify the unit axiom [107].

This lead to “completion” of numeric fields F (n,×, 1 into isofields F̂ (n̂, ?, Î of isoreal,

isocomplex, and isoquaternionic isonumbers n̂ = nÎ with isounit

Î = 1/T̂ > 0, (19)

isoproduct (14), n̂ ? m̂ = (nm)Î , and isounit isoaxiom

Î ? n̂ = n̂ ? Î = n̂, ∀n̂ ∈ F̂ . (20)

Isofields are completed by compatible redefinitions of all numeric operations, such as
isoquotient, isosquare, isosquareroot, etc. [107].

It should be indicated that isofields verify all axioms of a field. Hence, isonumbers are
fully acceptable for experimental verifications [57].

Isofields are classified into those of the first kind (second kind) depending on whether
the isounit Î is (is not) an element of the original field.

In this paper, we shall solely consider isofields of the second kind since the represen-
tation of extended particles and their non-Hamiltonian interactions is achieved via the
isounit or equivalently, the isotopic element.

Paper [107] has stimulated various studies in number theory, among which we men-
tion the study by C-Xu. Jiang [79], A. K. Aringazin [108], C. Corda [109] and others.

3.4. Isofunctions.
As it is well known, a necessary condition for a variable to be measurable is that it is an
element of the base field, and the same holds for functions of said variable.

The implementation of the same rule under isotopic “completion” stimulated the con-
struction of the isofunctional isoanalysis initiated by: J. V. Kadeisvili [110][111]; A. K.
Aringazin, D. A. Kirukhin and R. M. Santilli [112]; Raul M. Falcon Ganfornina and Juan
Nunez Valdes [80]; and others.

We here limit ourselves to indicate: the isotime t̂ = tÎt, isospace isocoordinates r̂ = rÎr,
and the isofunctions of isovariable,

f̂(r̂) = [f(rÎ)]Î , (21)

such as the isoexponentiation

êX̂ = [eX̂T̂ ]Î = Î[eT̂ X̂ ]. (22)

Similar expressions hold for virtually all conventional functions used in applications
[55].
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3.5. Isospaces.
The initial construction of isomathematics [19] was formulated via conventional vector or
metric spaces over conventional fields.

The consistent need to formulate spaces over isofields triggered the isotopic “comple-
tion” of metric spaces into isospaces whose study was initiated by the mathematician Gr.
Tsagas and his school [113]. In turn, these studies triggered the construction of the iso-
topology by R. M. Falcon Ganfornina and J. Nunez Valdes [114], yielding the first known
topology for the characterization of extended particles, known as the Tsagas, Sourlas,
Santilli, Ganfornina and Nunez (TSSGN) isotopology.

Let E(r, δ, I) be the conventional Euclidean space with space coordinates r = (x, y, z),
metric δ = Diag.(1, 1, 1), unit I = Diag(1, 1, 1) and invariant

r2 = (x2 + y2 + z2)1, (23)

where one should note the trivial multiplication by 1 for compatibility with the isotopic
image studied below.

The representation isospace of the non-relativistic proof of the EPR argument is given
by the infinite family of iso-Euclidean isospaces, Ê(r̂, ∆̂, Î)r, first formulated in the 1978
Ref. [16] and treated in detail in Ref. [19] , finalized in 1996 Ref. [115] and extensively
treated in monograph [55].

For the simple realization of the isotopic element

T̂ = Diag.(1/n2
1, 1/n

2
2, 1/n

2
3), (24)

iso-Euclidean isospaces Ê(r̂, ∆̂, Îr) are characterized by: the isocoordinates r̂ = rÎ , the
iso-Euclidean isometric ∆̂ = (T̂ δÎ , and the isospace isounit Îr = 1/T̂ > 0 resulting in the
iso-Euclidean isoinvariant

r̂2̂ = (r̂j ? ∆̂jm ? r̂
m) = (rj δ̂jmr

m)Îr =

= (
r21
n2
1

+
r22
n2
2

+
r23
n2
3
)Îr,

(25)

where we should recall that, for consistency, all scalar quantities have to be elements of
an isofield F̂ .

The above conditions require that: squares must be isosquares r̂2̂ = r̂ ? r̂ = r̂2Îr;
coordinates have to be isocoordinates r̂ = rÎr; to be isomatrices, isometrics must have the
structure ∆̂ = δ̂Îr; and the elaboration requires the use of the isotrigonometric isofunctions
as well as of the isospherical isocoordinates (see Ref. [55] for details).

Let M(x, η, I) be the conventional Minkowski space with spacetime coordinates x =
(x1, x2, x3, x4 = ct), metric η = Diag.(1, 1, 1,−1), unit I = Diag(1, 1, 1, 1) and invariant

x2 = (xµηµνx
ν)I =

= (x2
1 + x2

2 + x3
3 − c2t2)I.

(26)

The isospace for relativistic treatments of extended particles is given by the infinite
family of iso-Minkowski spaces M̂(x̂, Ω̂, Îx) also known as Minkowski-Santilli isospaces, (see
e.g., Ref. [107]) first introduced in Ref. [116] and then treated in details in Ref. [56].
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Figure 12: This picture illustrates the isodifferential calculus [115] via birds flying in close for-

mation without wing interferences, which can be best understood by assuming that birds conceive

themselves as a volume encompassing their wings, rather than a mass concentrated in their center

of gravity as it would be requested by the Newton-Leibnitz differential calculus.

Iso-Minkowskian isospaces are characterized by the isospace-time isocoordinates x̂ =

xÎ ; isounit Î = 1/T̂ , and isometric Ω̂ = η̂Îx = (T̂ η)Îx formulated on the isoreal isonumbers
R̂.

For the simple realization of the isotopic element

T̂ = Diag(1/n2
1, 1/n

2
2, 1/n

2
3, 1/n

2
4), (27)

we have the infinite family of realizations of the isospace-time isoinvariant

x̂2̂ = x̂µ ? Ω̂µν ? x̂
ν = (xµη̂µνx

ν)Î =

= (
x21
n2
1

+
x22
n2
2

+
x23
n2
3
− t2 c2

n2
4
)Î ,

(28)

where the final multiplication by the isounit is again necessary for the invariant to be an
isoscalar.

It should be noted that, in addition to the use of the isospherical isocoordinates, data
elaborations in the iso-Minkowskian isospace requires the use of isohyperbolic isofunctions
(see Ref. [56], Chapters 5 and 6).

Note also that invariant (30) is the most general possible symmetric (non-singular) in-
variant in (3+1)-dimensions, thus including as particular cases all possible Minkowskian,
Riemannian, Fynslerian and all other geometries.

3.6. Isodifferential isocalculus.
Despite the above advances, numerical predictions of isomathematics lacked the crucial
property of invariance over time.

In addition, isomechanics and hadronic mechanics at large, were incomplete due to
the inability to formulate the isotopies and genotopies of the linear and angular momenta
(see next section).

In order to resolve this impasses, Santilli had no other choice than that of reinspect-
ing the Newton-Leibnitz differential calculus, by discovering in this way that, contrary to
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rather popular belief for four centuries, the differential calculus depends on the multiplica-
tive unit of the base field because, when the unit depends on the variable of differentiation,
said calculus has to be “completed” into the infinite family of isodifferentials, e.g., of the
isocoordinates r̂, first formulated in memoir [115] submitted in 1995 and published in
1996 and then treated in details in Refs. [55] [56]

d̂r̂ = T̂ d[rÎ(r, ...)] = dr + rT̂ dÎ(r, ...), (29)

with corresponding isoderivative [114]

∂̂f̂(r̂)

∂̂r̂
= Î

∂f̂(r̂)

∂r̂
. (30)

Following decades of searches, the discovery of the isodifferential isocalculus finally
permitted the achievement of the invariance over time of numerical predictions, the for-
mulation of isolinear and genolinear momenta and signaled the achievement of maturity
for applications and experimental verifications (see Refs. [56] [57] for details).

All novel applications of isomathematics in physics, chemistry and other fields, in-
cluding the proof of the EPR argument [7], originate from the extra term rT̂ dÎ(r, ...) in
isodifferential (29), which is absent in the mathematics for point particles.

The covering character of the isodifferential isocalculus over the conventional calculus
is illustrated by the fact that whenever the isounit is independent from the differentiation
variable or it is a constant, the conventional calculus is recovered uniquely and identically.

It should be indicated that the biggest difficulty in the use of the isodifferential iso-
calculus is of conceptual, rather than of mathematical character, because it requires the
transition from the visualization of the calculus at individual points to volumes (or sur-
faces) represented by the isotopic element T̂ (Figure 12).

By looking in retrospect, it appears nowadays evident that a “completion” of quan-
tum mechanics for the representation of extended particles is fundamentally inconsistent
when formulated via the conventional differential calculus, because of its sole possible
characterization of particles as being point-like.

Consequently, the generalization of the differential calculus into a form defined on
volumes represented by T̂ , rather than defined on coordinate points r, is essential for a
consistent representation of extended particles.

Nineteen years following the discovery of the isodifferential isocalculus for extended
particles, comprehensive studies in the field have been conducted by the mathematician
S. Georgiev in the series of six monographs [83] which consider the broadest possible for-
mulation of the isodifferential calculus, including the case of different isotopic elements
for different isovariables.

3.7. Lie-Santilli isotheory.
In Santilli’s view, the physically most important part of isomathematics is given by the
isotopic “completion” of the various branches of Lie’s theory, today known as the Lie-
Santilli isotheory, which was first formulated in papers [16] [17] of 1978, systematically
studied in monograph [19], finalized in Refs. [55] [56] of 1995 following the discovery of
the isodifferential calculus [115] and recently studied in paper [117].

In this section, we follow the presentation of Ref. [19] of 1981 upgraded into a formu-
lation on isospaces over isofields and elaborated via the isodifferential isocalculus.

21



Let L be a n-dimensional Lie algebra with Hermitean generators Xk, k = 1, 2, ...n
defined on a conventional space over a conventional numeric field. Then, the infinite
family of isotopies L̂ of L are characterized by the following main theorems:

THEOREM 3.7.1 [19]: (Poincaré-Birkhoff-Witt-Santilli isotheorem): The isocosets of the
isounit and of the isostandard isomonomials

Î , X̂k, X̂i ? X̂j, i ≤ j, X̂i ? X̂j ? X̂k, i ≤ j ≤ k, . . . , (31)

form an infinite dimensional isobasis of the universal enveloping isoassociative isoalgebra
Ê(L̂) (also called isoenvelope for short) of a Lie-Santilli isoalgebra L̂.

The first illustration of the above theorem is given by isoexponential isofunction (22)
whose correct derivation requires infinite basis (31).

The appearance of the non-linear, non-local and non-potential isotopic element T̂ in
the exponent illustrates the non-trivial character of the Lie-Santilli isotheory.

THEOREM 3.7.2 [19]: (Lie-Santilli isoalgebras) The antisymmetric isoalgebras L̂ attached
to the isoenveloping algebras Ê(L̂) verify the isocommutation rules

[X̂î,X̂j] = X̂i ? X̂j − X̂j ? X̂i =

= Ĉk
ij(t, r, p, E, µ, τ, ψ, ∂ψ, ...) ? X̂k,

(32)

where the quantities Ĉ are called the structure quantities.

The above isocommutation rules show the axiom-preserving character of the isotopies
in view of their evident verification of the Lie axioms, although via a broader realization.

The Lie-Santilli isotheory is called regular or irregular depending on whether the struc-
ture quantities Ĉk

i,j are isoscalars or isofunctions, respectively.
This classification is important because as shown in the next section, the regular Lie-

Santilli isotheory can be constructed via a well defined transform of corresponding Lie
theory, while irregular Lie-Santilli isotheories are truly new theories verifying Lie’s ax-
ioms without a known map form the conventional formulation.

THEOREM 3.7.3 [19]: (Lie-Santilli isogroups) The isoexponentiated form Ĝ of isocommu-
tation rules (32) defined on an isospace Ŝ with local isocoordinates x̂ over an isofield F̂ with
isounit Î = 1/T̂ > 0 is a group mapping each element x̂ ∈ Ŝ into a new element x̂′ ∈ Ŝ via
the isotransformations

x̂′ = ĝ(ŵ) ? x̂, x̂, x̂′ ∈ Ŝ, ŵ ∈ F̂ , (33)

verifying the following isomodular isoaction to the right:
1) The isomap of ĝ ? Ŝ into Ŝ is isodifferentiable ∀ĝ ∈ Ĝ;
2) Î is the left and right isounit of Ĝ,

Î ? ĝ = ĝ ? Î ≡ ĝ, ∀ĝ ∈ Ĝ; (34)

3) The isomodular isoaction is isoassociative,

ĝ1 ? (ĝ2 ? x̂) = (ĝ1 ? ĝ2) ? x̂, ∀ĝ1, ĝ2 ∈ Ĝ; (35)
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4) In correspondence with every element ĝ(ŵ) ∈ Ĝ with ŵ ∈ F̂ there exists the inverse
element ĝ(−ŵ) such that

ĝ(0̂) = ĝ(ŵ) ? ĝ(−ŵ) = Î; (36)

5) The following composition laws are verified

ĝ(ŵ) ? ĝ(ŵ′) = ĝ(ŵ′) ? ĝ(ŵ) = ĝ(ŵ + ŵ′),∀ĝ ∈ Ĝ, ŵ ∈ F̂ ; (37)

with corresponding isomodular action to the left, and general expression

ĝ(ŵ) =
∏
k

êî?ŵk?X̂k ? ĝ(0) ?
∏
k

ê−î?ŵk?X̂k . (38)

Nowadays, isomathematics is referred to the infinite family of isotopies of 20th cen-
tury applied mathematics, with particular reference to the isotopies of Lie’s theory when
formulated on isospaces over isofields and elaborated via the isodifferential isocalculus.
Isomathematics is then classified into regular and irregular isomathematics depending on
whether the structure quantities Ĉij are isoscalars or isofunctions of local isovariables,
respectively.

It should be indicated that, the proof [7] of the EPR argument uses both regular and
irregular Lie-Santilli isoalgebras.

Since Lie’s theory is at the foundation of the axiomatic structure and applications of
quantum mechanics, the covering Lie-Santilli isotheory predictably stimulated a number
of independent contributions, such as the studies by the mathematicians: D. S. Sourlas
and Gr. T. Tsagas [76], J. V. Kadeisvili [118], T. Vougiouklis [119] and papers quoted
therein.

3.8. Simple construction of regular isomathematics.
A simple method for physicists has been identified in Ref. [120] of 1997 for the construc-
tion of regular isomathematics. The method consists of: 1) Selecting the desired represen-
tation of extended particles with non-Hamiltonian interactions via isotopic elements T̂
of type (16) or (18); 2) Identifying a non-unitary transformation representing the selected
isounit Î = 1T̂

UU † = Î; (39)

3) Subjecting the totality of conventional applied mathematics to the above nonunitary
transform with no known exception, resulting in expressions of the type

I → Î = UIU † = 1/T̂ , (40)

n→ n̂ = UnU † = nUU † = nÎ, n ∈ F, (41)

f(r)→ f̂(r̂) = Uf(r)U †, (42)

eA → UeAU † = ÎeT̂ Â = (eÂT̂ )Î , (43)

AB → U(AB)U † =

= (UAU †)(UU †)−1(UBU †) = Â ? B̂.

(44)

It should be indicated that the above transformations imply the possibility of con-
structing the infinite family of Lie-Santilli isoalgebras via non-unitary transforms of the
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considered Lie algebra. This is possible in view of the transformation of commutation
rules into their covering isocommutator forms,

[A,B]→ U [A,B]U † = [Â,̂B̂]. (45)

This property is evidently important for the construction of the isorepresentation of
regular isoalgebras used for physical and chemical applications.

Note that serious inconsistencies occur, at times without their detection by non-experts,
in the event only one single quantity or operation of 20th century applied mathematics is not
subjected to the above non-unitary map.

We should finally indicate that the proof of the EPR argument used in Ref. [7] is of ’non-
unitary’ character, thus implying that the physical conditions for said proof are outside
the class of equivalence of quantum mechanics.

3.9. Invariance of regular isomathematics.
An additional contribution of paper [120] is the proof that the dimension, shape and density
of extended particles and their non-Hamiltonian interactions are represented by isomathe-
matics in a form invariant over time.

Firstly, Ref. [120] showed that, following the construction of regular isomathematics
via non-unitary transformations (Section 2.2.8), isomathematics is not invariant under ad-
ditional non-unitary transforms, e.g., because of the lack of invariance of the basic isounit

Î → Î ′ = WÎW † 6= Î , WW † 6= I, (46)

with consequential physical inconsistencies since any structural change of the isounit im-
plies the transition to a different physical or chemical system.

However, non-unitary transforms can always be identically rewritten as isounitary
isotransforms according to the rule [56]

WW † = Î , W = Ŵ T̂ 1/2, (47)

WW † = Ŵ ? Ŵ † = Ŵ † ? Ŵ = Î , (48)

under which reformulation we have the following invariance of the isounit of the isotopic
element and of the isoproduct of regular isomathematics [120]

Î → Î ′ = Ŵ ? Î ? Ŵ † ≡ Î , (49)

Â ? B̂ → Ŵ ? (Â ? B̂) ? Ŵ † =

= Â′ ? B̂′ = Â′T̂ B̂′,

Â′ = Ŵ ? A ? Ŵ †). B̂′ = Ŵ ? B̂ ? Ŵ †, T̂ = (W † ? Ŵ )−1.

(50)

The invariance of the entire isomathematics follows. Note that the invariance is en-
sured by the invariant numeric values of the isounit and therefore, of the isotopic element
under isounitary isotransforms,

Î → Î ′ ≡ Î , (51)

24



A ? B = AT̂B → A′ ?′ B′ = A′T̂ ′B′

= Â′ ? B̂′ = Â′T̂ B̂′
(52)

T̂ → T̂ ′ ≡ T̂ . (53)

By noting that, as shown in the next section, the time evolution of the isotopic “com-
pletion” of quantum mechanics is an isounitary isotransform, paper [120] established that
isomechanics is an axiom-preserving ”completion” of quantum mechanics capable of repre-
senting extended particles under Hamiltonian as well as non-Hamiltonian interactions in a
form invariant over time.

In closing, we should recall other generalizations of 20th century mathematics and
their applications, such as the so-called deformations. These generalizations are math-
ematically correct, but physically inconsistent because they violate causality laws (for
brevity, see the Theorems of Inconsistency of Non- Unitary Theories in Vol. I of Refs. [61]).
These inconsistencies arise from a structural generalization of Lie’s algebras and other
quantum laws when formulated on conventional spaces over conventional fields, thus
preventing their reformulation as isounitary theories.

Note that the invariance of isomathematics reviewed in this section implies the veri-
fication of causality on isospaces over isofields in the same way as quantum mechanics
verify causality laws.

4. LIE-ISOTOPIC “COMPLETION” OF QUANTUM MECHAN-
ICS

4.1. Foreword.
In this section, we review the foundation of the isotopic branch of hadronic mechanics, also
known as isomechanics, which is used in the proof of the EPR argument [7].

An important difference between preceding works and the presentation in this section
is that the previous works generally present isomechanics in its projection on conventional
spaces over conventional fields.

By contrast, in this section we put the emphasis in the full formulation of isomechan-
ics, that on isospaces over isofields because important to illustrate that, contrary to oppos-
ing view (Section 1.1), proof [7] of the EPR argument is fully compatible with quantum
axioms, only subjected to a broader realization.

Isomechanics was first introduced via isoproducts defined on conventional spaces
over conventional fields in the 1978 papers [16] [17] and in the 1981 monograph [19];
it first achieved mathematical maturity in the 1996 memoir [115] thanks to the discovery
of the isodifferential isocalculus; isomechanics was finally presented in a systematic way
in monographs [55] [56] [57] with a 2016 upgrade in Section 2 of memoir [25].

Independent studies are available in Refs. [75] to [83]. A comprehensive list of refer-
ences up to 2008 is available in Vol. I of Refs. [61] while a 2016 upgrade is available in
Ref. [25]. We regret the inability of reviewing all important contributions on isomechanics
to prevent an excessive length and are forced to outline only the most salient structural
contributions.

4.2. Iso-Newton isoequations.
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As it is well known, the fundamental equations of mechanics are the historical Newton’s
equations, representing systems of point-particles with Hamiltonian (that is, variationally
selfadjoint, SA [18]) and non-Hamiltonian (variationally non selfadjoint, NSA [18]) forces
[18] defined on a conventional Euclidean space, E(r, δ, I) over the field of real numbersR

mdvak
dt
− F SA

ak (r, v)− FNSA
ak (t, r, v) = 0,

k = 1, 2, 3, a = 1, 2, ..., N, N ≥ 2.
(54)

It is generally believed that Newton’s equations with non-conservative forces can
solely represent open, irreversible systems. In Ref. [19] Section 6.3, Page 236, Santilli
introduced closed non-self-adjoint systems, which are given by systems (54) violating the
integrability conditions for their representation via Lagrange’s or Hamilton’s equations,
yet verifying all ten conservation laws of Galileo relativity under the conditions∑

akF
NSA
ak = 0,

∑
akr · FNSA = 0,

∑
akrF

NSA = 0.

(55)

which conditions are evidently applicable only for N ≥ 2, since the case of one particle
N = 1 is trivial.

The fundamental equations of isomechanics are given by the isotopic “completion”
of Eqs. (54) known as iso-Newton isoequations, which were first introduced in Ref. [115]
immediately following the discovery of the isodifferential isocalculus, and they are also
known as Newton-Santilli isoequations, (see, e.g., Refs. [107] [75] [81]) defined on iso-
Euclidean isospaces Ê(r̂, δ̂, Î) (Section 2.2.5) over isoreal isonumbers R̂ (Section 2.2.3)

m̂a ?
d̂v̂ak

d̂t̂
− F SA

ak (r̂, v̂) = 0. (56)

A first important feature of Eqs. (56) is that of providing the first known consistent
representation of the actual shapes and dimensions of the particles considered via the
isodifferential calculus, with realization of the isotopic element of type (16).

A second important feature of Eqs. (56) is that of representing all potential-(SA) forces
via conventional Newtonian forces F SA(r, v) while representing all non-potential-(NSA)
forces via the isodifferential calculus.

This feature is treated in details in Ref. [115] and can be summarized as follows.
Note that the basic isounit of Eqs. (56) is the isovelocity isounit, Î = Îv. Assume for

simplicity that the isotime is equal to the conventional time,

t̂ = t Ît = 1. (57)

Consequently, from isoderivative (30), we have

d̂v̂

d̂t̂
= Itdv̂/dt̂ = dv̂/dt. (58)
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Consider then the projection of Eqs. (56) in the Euclidean space E(v, δ, I) and use the var-
ious rules of isomathematics (Section 2.2). Then Eqs. (56) can be written in the projected
form (where all multiplications are conventional),

(mÎ)T̂ d̂(vÎ)
dt
− F SAÎ =

= Î[mdv
dt
− F SA] +mvT̂ dÎ

dt
= 0.

(59)

By dividing the above equation with Î > o, one obtains Newton’s equations with the
following realizations of the NSA forces

FNSA(t, r, v) = mvT̂
dÎ

dt
. (60)

In conclusion, the iso-Newton isoequations (56) embed all NSA forces into the isoderiva-
tives by therefore allowing the first known consistent operator image of non-Hamiltonian
forces studied in subsequent sections.

4.3. Iso-lagrangian and iso-Hamiltonian isomechanics.
Iso-Newton isoequations (56) admit a representation in terms of the iso-Lagrange isoequa-
tions first formulated in memoir [115] via the isodifferential calculus, thus being defined
on an iso-Euclidean isospace over the isoreal isofield

d̂

d̂t̂

∂̂L̂(r̂, v̂)

∂̂v̂ak
− ∂̂L̂(r̂, v̂)

∂̂r̂ak
= 0, (61)

where L̂ = LÎ is an iso-Lagrangian, namely, a conventional Lagrangian formulated on
isospaces over isofields thus being multiplied by the isounit to be an isoscalar.

Eqs. (56) also admit the isocanonically isoequivalent isorepresentation in terms of the
iso-Hamilton equations first formulated in memoir [115] on an isophase isospaces over an
isoreal isofield and also known as Hamilton-Santilli isoequations (see, e.g., Ref. [107])

d̂r̂ak
d̂t̂

= ∂̂Ĥ(r̂,p̂)

∂̂p̂ak
,

d̂p̂ak
d̂t̂

= − ∂̂Ĥ(r̂,p̂)

∂̂r̂ak
,

(62)

where Ĥ = HÎ is the iso-Hamiltonian, that is, a conventional Hamiltonian formulated
on an isophase isospace over an isofield.

Note that iso-Hamiltonian isomechanics admits the following time evolution for a
quantity Q̂

d̂Q̂

d̂t̂
= [Q̂,̂Ĥ] =

∂̂Â

∂̂r̂ak

∂̂Ĥ

∂̂p̂ak
− ∂̂Ĥ

∂̂p̂ak

∂̂Q̂

∂̂r̂ak
, (63)

where the brackets [Q̂,̂Ĥ] constitute a classical realization of Lie-Santilli isoalgebras.

4.4. Isovariational isoprinciple.
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Another important feature of Eqs. (56) is that of permitting the first known representation
of variationally non- selfadjoint/non-Hamiltonian systems via an isovariational isoprinci-
ple [115],

δ̂Â = δ̂
∫̂

(p̂ak ? d̂r̂ak − Ĥ ? d̂t̂) = 0, (64)

which representation is notoriously impossible for NSA Newton’s equations, with the
consequential lack of achievement of consistent operator forms of nonconservative forces.

In view of the universality of Eqs. (56), the above isovariational isoprinciple is di-
rectly universal, that is, capable of representing all infinitely possible, regular, time rever-
sal invariant Newtonian systems (54) (“universality”) directly in the coordinates of the
experimenter (“direct universality”).

4.5. Iso-Hamilton-Jacobi isoequations.
Much along conventional analytic procedures, it is easy to prove that isovariational iso-
principle (64) implies the following iso-Hamilton-Jacobi isoequations also called Hamilton-
Jacobi-Santilli isoequations [115] [25] that are at the foundation of the isoquantization re-
viewed in the next section

∂̂Â

∂̂t̂
+ Ĥ = 0, (65)

∂̂Â

∂̂r̂ak
− p̂ak = 0, (66)

∂̂Â

∂̂p̂ak
= 0. (67)

We should recall from Section 2.2.5 that isodynamical isoequations of classical isome-
chanics require two different isofields, the first being the isotime isofield with isounits Ît
and the second being the isovelocity isofield with isounits Îv.

However, the direct universality is already achieved with the sole use of the isoveloc-
ity isounit. Hence, the isotime isounit can be assumed to be 1 without any loss of direct
universality.

For non-relativistic formulations, we shall use isotime in the isodynamical equations
for completeness, with the tacit understanding that, unless otherwise specified, isotime
will be assumed to be equal to the conventional time.

As it will soon be evident, the Hamilton-Jacobi-Santilli isoequations (65)-(67) are truly
fundamental for the construction of operator isomechanics, as well as for the proof of the
EPR argument because said equations have permitted:

1) The achievement from Eqs. (65) of a unique and unambiguous map of classical into
operator isomechanics;

2) The achievement from Eqs. (66) of the first known operator form of the isolinear
isomomentum;

3) The achievement, from Eqs. (67) of an operator isomechanics whose isowave Iso-

functions solely depend on local isocoordinates ψ̂(r̂). This feature is necessary for a con-
sistent isotopic “completion” of quantum mechanics since conventional wave functions
ψ(t, r) do not depend on linear momenta p. Hence, any “completion” of quantum me-
chanics whose wavefunctions also depend on linear momenta would not be an axiom-
preserving map.
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It should be noted that, by comparison, the use of the Birkhoffian mechanics would
imply broader Hamilton-Jacobi-Santilli isoequations (see page 205 of Ref. [19]) with
’wave functions’ depending also on isomomenta, ψ̂(t̂, r̂, p̂), resulting in an operator me-
chanics beyond our current knowledge for quantitative treatments.

4.6. Naive isoquantization.
As it is well known, the conventional “naive quantization” of Hamiltonian mechanics
into quantum mechanics is based on the following map generated by the conventional
Hamilton-Jacobi equations

A =
∫

(pkdx
k −Hdt)→

→ −ih̄logψ(t, r),
(68)

that identifies Planck’s constant h̄ = 1 as the fundamental unit of the theory.
The isotopic lifting of the naive quantization, called naive isoquantization (first iden-

tified by A. E. O. Animalu and R. M. Santilli in Ref. [121]), characterizes the following
map of (classical) iso-Hamiltonian mechanics into (operator) isomechanics via Hamilton-
Jacobi-Santilli isoequation (65) (where the sum over the indices ak is omitted for simplic-
ity)

Â =
∫̂

(p̂ ? d̂r̂ − Ĥ ? d̂t̂) →

→ −iÎLogψ̂,
(69)

with the following fundamental identification of the isolinear isomomentum from Eq. (66)

p̂ ? ψ = −î ? ∂̂rψ̂, (70)

and the equally fundamental, independence of the isowavefunction from the isolinear
isomomentum from Eq. (67)

∂̂p̂ψ̂ = 0, (71)

where we use the notion of isolog ˆlogψ̂ = Î logψ (see [55]).
The above naive isoquantization identifies the central assumption of isomechanics,

namely, the map of Planck’s constant h̄ into an integro-differential operator, the isounit Î ,

h̄→ Î(t, r, p, E, µ, τ, ψ, ∂ψ, ...) > 0. (72)

that, from Section 2.2.8, can be achieved via a non-unitary transform of Plank’s constant
selected in such a way to represent the desired systems, e.g., as in model (16),

h̄ = 1 → ˆ̄h = Uh̄U † = UU † = Î . (73)

The above transform is then restricted by the subsidiary condition that isomechanics
must recover quantum mechanics at mutual distances of particles bigger than their size d

Limr>d/2Î = 1. (74)

Therefore, the studies herein reported assume that isomechanics is solely valid within
the volume occupied by hadrons, nuclei or stars, while quantum mechanics is assumed
to be exactly valid everywhere else (Figure 13).
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Figure 13: An illustration of the central assumption according to which isomechanics is solely valid

within the volume occupied by hadrons, nuclei, stars or black holes, while quantum mechanics is

valid everywhere else thanks to the rapid convergence of isotopic elements, such as Eq. (16), to the

unit value 1.

Note that the structure of the isotopic element (16) permits a smooth transition from
isomechanics to quantum mechanics.

The above condition means that, for the case of the structure of a hadron, isomechanics
is solely valid within a sphere with diameter d ≈ 1fm = 10−15 cn. For the case of the
structure of the deuteron, isomechanics is solely valid within a volume with diameter
d ≈ 2.50 fm; and the same applies for nuclei, stars and black holes.

The main objective of the “completion” of Planck’s constant h̄ into the integro-differential
isounit Î is to represent the expected, generalized, energy exchanges of particles in inte-
rior dynamical conditions (as expected for an electron in the core of a star), which ex-
changes cannot be the same as those occurring when particles moves in vacuum due to
the surrounding pressures and other factors (see paper II for details).

4.7. Iso-Hilbert isospaces.
Another basic notion of isomechanics is its formulation on the iso-Hilbert isospaces Ĥ,
also called the Hilbert-Myung-Santilli isospace (HMS isospace) because first introduced by
H.C. Myung and R.M. Santilli in Ref. [122] of 1982 over a conventional field of complex
numbers C and then formulated on an isocomplex isofield Ĉ in Ref. [115].

HMS isospaces are characterized by (see Ref. [55] for details): isostates ψ̂, with isonor-
malization

< ψ̂| ? |ψ̂ >= Î , (75)

isoexpectation isovalues of an iso-Hermitean operator Â ,

<̂Â>̂ =< ψ̂| ? Â ? |ψ̂ >, (76)

and basic isoidentity
<̂Î>̂ = Î , (77)

where the ”hat” denotes definition on isospace over isofields.
It should be recalled from Ref. [122] that the condition of iso-Hermiticity coincides

with that of Hermiticity. Therefore, all quantities that are observable in quantum mechanics
remain observable in isomechanics (see monograph [56] for details).

4.8. Iso-Schrödinger isorepresentation.
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Recall that the Schrödinger representation is crucially dependent on the realization of the
linear momentum in term of the differential calculus,

pψ(t, r) = −ih̄∂rψ(t, r). (78)

Consequently, the “completion” of quantum mechanics mandated the search for the
“completion” of the differential calculus [115] to achieve a consistent formulation of the
linear momentum such as that of Eq. (70), that we rewrite in the more detailed form on
the Hilbert-Myung-Santilli isospace Ĥ over the isofield of isocomplex isonumbers ı ˆcalC
(with h̄ = 1)

p̂k ? |ψ̂(t̂, r̂) >= −î ? ∂̂r̂k |ψ̂(t̂, r̂) >=

= −iÎ∂r̂k |ψ̂(t̂, r̂) >,

(79)

where: r̂ = rÎ are the isocoordinates on an iso-Euclidean isospace over an isofield, from
which one can derive the iso-Schrödinger isoequation, also called Schrödinger-Santilli isoe-
quation [17] [115]

î ? ∂̂t̂|ψ̂(t̂, r̂) >= Ĥ ? |ψ̂(t̂, r̂) >=

= Ĥ(r, p)T̂ (t, r, p, ψ, ∂ψ, ...)|ψ̂(t̂, r̂ >) =

= Ê ? |ψ̂(t̂, r̂) >= E|ψ̂(t̂, r̂) >,

(80)

where Ê = EÎ is an isoeigenvalue defined on the isoreal isofield R̂, and E is an ordinary
eigenvalue defined on the field of real numbers.

The iso-Schrödinger isorepresentation is completed by the isocanonical isocommuta-
tion rules, solely definable thanks to the isodifferential realization (79) of the isolinear
isomomentum [115]

[r̂î,p̂j]|ψ̂ >= î ? δ̂i.j|ψ̂ >= iδi.j|ψ̂ >, [r̂î,r̂j]|ψ̂ >= [p̂î,p̂j]|ψ̂ >= 0. (81)

Note that the characterization of extended particles at short mutual distances requires
the knowledge of two isoobservables, the conventional Hamiltonian H for the representa-
tion of SA interactions and the isotopic element T̂ for the representation of dimension,
shape, density and NSA interactions.

On more technical grounds, Eq.s (80) are referred to as regular iso-Schrödinger equa-
tions to emphasize, in the sense of Theorem 3.7.2, the fact that they can be derived from
the conventional Schrödinger equation via non-unitary transformations. The broader ir-
regular iso-Schrödinger equation which cannot be derived via non-unitary transformations
due to the addition of strong interactions, are studied in Paper II, Section 4.3., Eqs. (89).

4.9. Iso-Heisenberg isorepresentation.
Non-relativistic isomechanics is additionally based on the iso-Heisenberg isoequations, also
called Heisenberg-Santilli isoequations (first formulated in Eq. (4.15.49), page 752 of the
1978 paper [17] over conventional fields and formulated via the full use of isomathematics
in the 1996 memoir [115]), here written for the iso infinitesimal isotime evolution of an
iso-Hermitean operator Q̂

î ? d̂Q̂

d̂t̂
= [Q̂,̂Ĥ] = Q̂ ? Ĥ − Ĥ ? Q̂ =

= Q̂T̂ (ψ, ...)Ĥ(r, p)− Ĥ(r, p)T̂ (ψ, ...)Q̂,

(82)
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and then in their isoexponentiated form

Q̂(t̂) = êĤ?t̂?̂i ? Q̂(0) ? ê−î?t̂?Ĥ =

= eĤT̂ tiQ(0)e−itT̂ Ĥ ,

(83)

where we have used isoexponentiation (22).
Note the characterization of isoinfinitesimal isoequations (82) via the Lie-Santilli isoal-

gebras (Theorem 3.7.2.) and the characterization of their finite form (83) via the Lie-
Santilli isogroups (Theorem 3.7.3).

Note also that the Lie-isotopic equations (82) (83) are a particular case of the broader
Lie-admissible equations (11) (12), respectively.

4.10. Iso-Klein-Gordon isoequation.
The relativistic isoequations of hadronic mechanics are characterized by the iso-Casimir
isoinvariants of the basic symmetry of the iso-Minkowski isospace-time, the Lorentz-
Poincaré-Santilli isosymmetry studied in paper II.

At this stage of our analysis, we merely consider the following isotopic “comple-
tion” of the second order invariant of the Lorentz-Poincaré symmetry formulated on iso-
Minkowskian isospace M̂(x̂, Ω̂, Î over the isoreals R̂ (Section 2.5)

p̂2̂ = p̂µ ? p̂
µ = (M̂ ? Ĉ)2̂ = (mC)2Î , (84)

where
M̂ = mÎ, (85)

is the isomass, and
Ĉ = CÎ =

c

n4

Î , (86)

is the light isospeed from isoinvariant (26).
By using the isolinear isomomentum (79) isoinvariant (84) characterizes the second

order isoequation of isomechanics known as iso-Klein-Gordon isoequation [123]

p̂µ ? p̂
µ|ψ̂(x̂) >= Ω̂µν ? p̂µ ? p̂ν |ψ̂(x̂) >=

= η̂µν(−iÎ∂µ)T̂ (−iÎ∂ν)|ψ̂(x̂) >=

= −Î η̂µν∂µ∂ν |ψ̂(x̂) >= Î(mC)2|ψ̂(x̂) >,

(87)

also called Klein-Gordon-Santilli isoequation, first introduced with the isodifferential iso-
calculus in Chapter 9 of Refs. [56] and in papers [123] [124], (see also review [25]).

4.11. Iso-Dirac isoequation.
The first-order relativistic isoequation of hadronic mechanics is given by the isolineariza-
tion [124] of isoinvariant (84) and it is called the iso-Dirac isoequation, or Dirac-Santilli
isoequation (see Refs. [115] [56] [123] [124])

[Ω̂µν ? Γ̂µ ? ∂̂ν + M̂ ? Ĉ]|ψ̂(x̂) >=

= (−iÎ η̂µν γ̂µ∂ν +mC)|ψ̂(x̂) >= 0,

(88)
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where the Dirac-Santilli isogamma isomatrices Γ̂ = γ̂Î are given by

γ̂k = 1
nk

(
0 σ̂k
−σ̂k 0

)
,

γ̂4 = i
n4

(
I2×2 0

0 −I2×2

)
,

(89)

where σ̂k are the regular iso-Pauli isomatrices studied in Section 3.3 of paper II, with anti-
isocommutation rules

{γ̂µ̂,γ̂ν} = γ̂µT̂ γ̂ν + γ̂νT̂ γ̂µ =
= 2η̂µν .

(90)

One should note that the anti isoanticommutators of the Dirac-Santilli isogamma iso-
matrices yield the isometric η̂µν of the iso-Minkowski isospace-time (Section 2.5).

Recall that the iso-Minkowski isospace-time includes as particular cases all possible,
non-singular, symmetric space-times, thus including the Riemannian space-time refor-
mulated with isomathematics. In fact, the iso-Minkowskian isometric ηµν admits as a
particular case the Schwartzchild metric via the following simple realization of the iso-
topic element

T̂kk = 1/(1− 2M/r),

T̂44 = 1− 2M/r.

(91)

Additionally, the iso-Minkowskian isometric admits the following combination of the
Schwartzchild metric for exterior gravitational problems and that for interior problems
(see, Eqs. (9.5.18) page 448, Ref. [56]

T̂kk = 1/(1− 2M/r)n2
k,

T̂44 = (1− 2M/r)/n2
4.

(92)

Consequently, the Dirac-Santilli isoequation with realization (91) of the isotopic ele-
ment permits the study of an electron in an exterior gravitational field, while realization
(92) permits the study of electrons in interior gravitational fields.

Relativistic isoequations are far from being mere academic curiosities because, as we
shall see in paper II, they have provided the first and only known relativistic represen-
tation of all characteristics of the neutron in its synthesis from a proton and an electron
[124], none of which characteristics are representable via quantum mechanics. Additional
advances permitted by relativistic isomechanics will be indicated in paper II.

More technically, Eq. (88) is referred to as regular iso-Dirac equations to emphasize,
in the sense of Theorem 3.7.2 , the fact that they can be derived from the conventional
Dirac equation via non-unitary transformations. The broader irregular iso-Dirac equation
which cannot be derived via non-unitary transformations due to the addition of strong
interactions, are studied in Paper II, Section 4.4., Eqs. (97).

4.12. Representation of non-linear interactions.
An important insufficiency of quantum mechanics is the inability to characterize indi-
vidual constituents under non-linear internal forces in view of the inapplicability of the
superposition principle.
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Figure 14: An illustration on the left of the divergence of the Dirac delta distribution at its origin

caused by the point-like approximation of particles, with ensuing divergencies in quantum mechanics.

An illustration on the right of the removal of said divergencies by the Dirac-Myung-Santilli isodelta

isofunction thanks to the representation of particles as extended, with ensuing lack of divergencies

in isomechanics.

In fact, the sole possible, quantum mechanical representation of non-linear interac-
tions is that via the Hamiltonian

H(r, p, ψ, ...)|ψ(t, r) >= E|ψ(t, r) >, (93)

under which the total state |ψ(t, r) > does not admit a consistent decomposition into the
individual states.

It is easy to see that this insufficiency is resolved by isomechanics thanks to the em-
bedding of all non-linear forces in the basic invariant of the theory, the isounit (or isotopic
element).

In fact, the Schrödinger-Santilli isoequation (80) can be explicitly written

Ĥ ? |ψ̂ >= Ĥ(r̂, p̂)T̂ (ψ̂, ...)|ψ̂ >= E|ψ̂ >, (94)

and its total isostate verifies the factorization

ψ̂ = Πkψ̂k, k = 1, 2, ..., N, (95)

called isosuperposition isoprinciple [56].
It is evident that factorization (94) allows the characterization of individual constituents

under non-linear internal interactions, thus permitting new structural models of hadrons,
nuclei, stars and black holes.

4.13. Isostrong isoconvergence.
In all applications to date, the basic isotopic element (16) resulted to have a numeric value
smaller than one

||T̂ || � 1. (96)

This feature has the important consequence that perturbative and other series that are
slowly convergent or divergent in quantum mechanics become strongly convergent under their
isotopic “completion” [56].

To illustrate this important feature, consider a divergent quantum mechanical series,
such as the canonical series

A(w) = A(0) + (AH −HA)/1! + .... =→

→∞, w > 1.
(97)
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But the value of the isotopic element is much smaller than the parameter w. Therefore,
the isotopic ”completion” of the above series

A(w) = A(0) + (AT̂H −HT̂A)/1! + ....→

→ N <∞,
(98)

is strongly convergent.
Specific examples of convergence of isoperturbative isoseries much more rapid than

corresponding quantum mechanical series have been provided in Refs. [103] [104] (see
Section 1.6 for additional comments).

4.14. Removal of quantum divergencies.
As it is well known, the divergencies of quantum mechanics originate from the singularity
existing at the origin of the Dirac delta distribution (Figure 14) which divergence originates
from the point-like approximation of particles.

Another important feature of isomechanics is that of avoiding these singularities as
illustrated by the isotopic image of Dirac’s delta ”distribution”, known as Dirac-Myung-
Santilli isodelta isofunction first introduced in Ref. [122] (see also Nishioka’s studies [125]
to [128])

δ̂(r̂) =
∫̂
êk̂?r̂ ? d̂k̂ =

∫
ek̂T̂ r̂dk̂, (99)

where we have used isoexponentials and isointegrals [56].
As illustrated in Figure 14, the appearance of the isotopic element in the exponent of

the integrant changes a sharp singularity at the origin r = 0 into a bell-shaped function.
In summary, the singularities of quantum mechanics are ultimately due to the point-

like abstraction of particles or equivalently, to the formulation of the differential calculus
at isolated points. Whenever particles are represented with their actual extended size, and
the differential calculus is extended to formulations over volumes, quantum singularities no
longer hold.

4.15. Isoscattering isotheory.
Another important application of isomechanics is the isotopic “completion” of the con-
ventional, potential, scattering theory into the covering isoscattering isotheory studied by
R. Mignani [129] to [131], A. K. Aringazin and D. A. Kirukhin [132], A. O. E. Animalu and
R. M. Santilli [133] and others (see Chapter 12 of Ref. [56]).

Regrettably, we cannot review these studies to avoid a prohibitive length. We limit
ourselves to recall that the potential scattering theory was originally conceived by Feyn-
man and others for the electromagnetic interactions of point-like particles in vacuum.

Its dominant notion is the characterization of interactions via the exchange of point-like
particles.

The historical experimental verifications of the potential scattering theory under the
indicated conditions triggered its use for the scattering of extended hadrons all the way to
their recent very high energies.

The studies herein reported on the covering isoscattering isotheory have indicated that
the consistent representation of hadrons as extended, therefore deformable and hyper-
dense, implies necessary revisions of hadron physics beginning with a “completion” of
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Figure 15: The left view illustrates the scattering of point-particles, with ensuing realization of

interactions via point-particle exchanges, that have been experimentally established for electromag-

netic interactions. The right view illustrates the scattering of extended hadrons at high energy

implying the presence of contact, non-linear, non-local and non-potential interactions in the scat-

tering region. These conditions imply the impossibility of conventional particle exchanges evidently

because of the extremely big density of the scattering regions that may approach the density of black

holes, thus requiring broader scattering theories.

its mathematical foundations, then passing to the “completion” of quantum laws. These
advances then require, for consistency, the “completion” of the potential scattering theory
into a covering theory in which the hyperdense character of the scattering region implies
the presence of non-linear, non-local and non-potential effects preventing any consistent
representation of interactions via the sole exchanges of extended hadrons in favor of cov-
ering vistas (Figure 15).

It should be stressed that the isoscattering isotheory has a Lie-Santilli algebraic struc-
ture, thus being solely applicable to time reversal invariant collisions generally given by
elastic scattering. The study of inelastic scattering of extended hadrons at high energy
requires the broader genoscattering genotheory with the covering Lie-admissible algebraic
structure, which broader theory cannot be considered here for brevity (see Refs. [56]
[133]).

To avoid major misconceptions, it should be indicated that the isoscattering isotheory
cannot change the numeric values of scattering angles, cross sections and other experimen-
tally measured quantities. However, the isoscattering isotheory does require serious revi-
sions of the theoretical interpretation of measured quantities.

In closing, we should recall that rather vast studies have been conducted on non-
unitary scattering theories (see, e.g., Ref. [134] and papers quoted therein).

As it is well known, these studies had to be abandoned because non-unitary theories
violate causality laws. By contrast, the isoscattering isotheory is isounitary on the iso-
Hilbert isospace over an isofield, thus restoring causality (Section 2.9).

This occurrence illustrates again the importance of isomathematics for the verification
of the EPR argument and related applications.

4.16. Geno- and Iso-chemistry.
The Lie-admissible mathematical and physical methods of Section 2 have allowed the
“completion” of quantum chemistry into Lie-admissible hadronic chemistry, also known
as genochemistry [60], which is the first known chemical formulation specifically built
for the consistent treatment of chemical reactions at large and energy releasing chemical
processes in particular.

As it is well known but generally ignored, chemical reactions are generally irreversible
over time, while quantum chemistry is strictly reversible. Hence, the EPR argument on
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the “lack of completion of quantum mechanics” does indeed apply to quantum chemistry.
In addition to a “completion” for chemical reactions, quantum chemistry needs an

additional “completion,” this time, for the achievement of an attractive force between the
identical electrons of valence couplings in molecular structures (Section 1.6).

Since isolated molecules existing in nature are stable, thus being reversible— over time,
and so are their valence electron bonds, there was the need of building the Lie-isotopic
particularization of the Lie-admissible hadronic chemistry which became known as isochem-
istry because based on the isomathematics of Section 3.

Isochemistry did indeed achieve the first known attractive force between identical
electrons in valence couplings [60] in a form permitting the exact representation of exper-
imental data on the hydrogen [103] and the water [104] molecules.

As reviewed in details in Paper II, these studies essentially established that the con-
tact, non-potential interactions occurring in deep mutual penetration/entanglement of the
wavepackets of particles (Figure 2) are strongly attractive, thus being responsible for the
neutron and other hadron syntheses (Section 1.4), as well as for the attractive force between
identical electrons in valence pairs (Section 1.6), thus illustrating the truly fundamental char-
acter of short range, contact, non-potential interactions in the ultimate structure of nature.

5. CONCLUDING REMARKS

In 1935, A. Einstein, B. Podolsky and N. Rosen presented the view that quantum mechanics
is not a complete theory [1] in the sense that the uncertainty of quantum mechanics is
certainly valid for point-like particles in vacuum under sole linear, local and potential
interactions (exterior dynamical systems), yet there could exist limit conditions in nature
achieving classical determinism.

Following decades of preparatory works, R. M. Santilli published in 1998 an appar-
ent proof of the EPR argument [7] for extended, deformable and hyperdense particles in
conditions of mutual overlapping/entanglement under linear and non-linear, local and
non-local and potential as well as non-potential interactions, as occurring in the structure
of hadrons, nuclei, stars and black holes (interior dynamical systems).

In particular, Ref. [7] proved the inapplicability (rather than the violation) of Bohr’s
[2], Bell’s [3], von Neumann’s [4] and other objections against the EPR argument for ex-
tended particles in interior dynamical conditions; proved the existence of hidden variables
[5] for the proper representation of interior systems; showed the existence of limit interior
conditions admitting identical classical counterparts; and presented specific examples of
interior dynamical systems progressively recovering classical determinism in the interior
of hadrons, nuclei, stars and black holes.

More recently, R. M. Santilli completed the above proof in paper [8] by showing that,
under the above indicated conditions, the standard deviations for coordinates ∆r and
momenta ∆p appear to progressively tend to zero for extended particles within hadrons,
nuclei and stars, and appear to be identically null for extended particles within the limit
conditions in the interior of gravitational, collapse, essentially along Einstein’s vision.

In this paper, we have reviewed and upgraded the mathematical, physical and chem-
ical methods used for proof [7], with particular reference to the following aspects:

1) Review and upgrade of the axiom-preserving “completion” of 20th century applied
mathematics for the representation invariant over time of extended particles in interior
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conditions, which “completion” was initiated by Santilli in 1978 [16] when at Harvard
University under DOE support with the proposed name of isomathematics and studied
thereafter jointly with various mathematicians [55];

2) Review and upgrade of the axiom-preserving “completion” of quantum mechanics
and chemistry permitted by isomathematics for the non-relativistic and relativistic de-
scription of extended particles in interior conditions, which “completion” was initiated
by Santilli in 1978 [17] and its study continued thereafter jointly with various physicists
[56];

3) Review and upgrade of the central aspect of the studies herein considered, namely,
the need for a “completion” of the Newton-Leibnitz differential calculus, from its sole def-
inition at isolated points, into a covering form defined in volumes, which “completion”
was initiated by Santilli under the name of isodifferential isocalculus in the 1996 paper [115]
and studied in details by S. Georgiev [83] and other mathematicians. In a second paper,
we review the apparent proofs [7] [8] of the EPR argument and study specific cases of
interior dynamical systems in particle physics, nuclear physics and chemistry that pro-
gressively approach classical determinism, and apparently achieve it under the extreme
conditions in the interior of black holes.

In a possible third paper, we plan to illustrate the far reaching implications of the EPR
argument for all quantitative sciences, as an illustration of Santilli’s view that the lack of
completion of quantum mechanics is Einstein’s most important prediction.
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