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Abstract. Our analysis of time reversal symmetry of various dynamical equations of fluid dynamics including Boltzmann
integro-differential equation reveals that in a good number of cases there are no unique methods to relegate them to the so-
called irreversible category unambiguously though they neither can be grouped into the reversible category. This substantiates
Professor Santilli’s No Reduction Theorem [1-3] that formed a base to develop genomathematics [4]. Hence, we once again
substantiate the assertion of Professor Santilli that the only option commensurate with irreversibility and nonequilibrium
thermodynamics is Santilli’s Lie-Admissible Mechanics.
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INTRODUCTION

Traditionally there are two different ways one establishes irreversibility of a motion. The dynamical irreversibility
is determined and understood using a yard stick of time reversal symmetry. The second yard stick of irreversibility
originates from the second law of thermodynamics (see for example [5]) and also via Boltzmann integro-differential
equation [6]. Indeed, the dynamical reversibility and irreversibility can be worked out in principle both at microscopic
and macroscopic levels of considerations. Whereas the thermodynamic reversibility and irreversibility are determined
at the macroscopic level only. It is believed that these reversibility and irreversibility aspects are well understood
and their mathematical descriptions are seemingly sound. However, still there exist certain ambiguities that would be
presented in this paper. For example, one striking example is that of the following unresolved paradox, the Loschmidt
paradox (J. Loschmidt, Sitzungsber. Kais. Akad. Wiss. Wien, Math. Naturwiss. Classe 73, 128 -142 (1876)). Consider
the case of a non-uniform dilute monatomic gas. Its molecules follow the reversible dynamics, that is these molecules
follow the invariant to time reversal Newtonian equations. But when the time variation of Boltzmann-H function is
computed, which involves the kinetic theory based averaging for all molecules over all velocities, the result is a negative
definite time rate. This is the well known Boltzmann H-theorem. That is the bi-directional dynamics produces uni-
directional evolution. This computed behaviour with time of H-function is then juxtaposed with the law of monotonic
increase of entropy of thermodynamics and then it is proposed that the Boltzmann constant times the negative of this
H-function is equal to Clausius’ entropy. Notice that this approach only side tracks the above paradox but not at all is
its solution.

The purpose of this presentation is to elaborate the ambiguities that result on applying the time reversal symmetry
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test to a good number of well known dynamical equations from fluid dynamics, discuss thermodynamic and dynamical
reversibilities and then conclude that all the existing shortcomings get resolved if one adopts the genomathematics
based dynamics [7].

THERMODYNAMIC REVERSIBILITY

The thermodynamic reversibility gets mathematically described as follows,

dS:dTQﬁ(de):i(_?Q) = dS:d7Q
dU =dQ—pdV = (—dU) = (—-dQ)—p(—dV) = dU=dQ—pdV
dU =TdS—pdV = (—dU) = T(~dS) —p(~dV) = dU=TdS—pdV (1)

Notice that dQ is the differential amount of heat exchanged by the system in the forward direction and (—d(Q) is that
in the reverse direction, but dQ is not the state function. Thus an equilibrium state of a closed system gets described
by any two state functions out of the five offered by dU = TdS — pdV, namely U, S,V, T, p but in this list obviously
dQ doesn’t appear. This is an amazing outcome and demonstrates the tight hold of thermodynamics on the state of a
system in equilibrium [5]. This result is well tested in laboratory.

Thus a thermodynamic reversible path is the one on which a system can be equally carried along forward and
reverse directions that guarantees the system to assume the identically same equilibrium states but in reverse order
on reversing the transition. Notice that this simple and convincing description of reversibility results because no time
parameter is involved in the description.

DYNAMIC REVERSIBILITY

From the above thermodynamic description of reversibility it may look that one cannot have reversibility in dynamical
description. However, in practice if one throws a stone vertically straight up it travels through a succession of positions
upward and while coming down it follows the same succession of heights and positions but in reverse order. This
demonstrates the dynamical reversibility if time factor is ignored. This gets well described by Newtonian equation
say, v =u+ fr, where v and u are the velocities, f is the per unit mass force and 7 is time. The above so-called
dynamic reversibility is usually considered as described well by time reversal symmetry of the preceding equation just
by substituting —¢ for ¢ and its effect is the change of sign of velocities,

o dr f—s—t dr

YSa T A

Hence we have,
v=utfr = —v=—u+f(—t) — v=u+fs 3)

where we have represented (r,u,¢) — (r, —u, —t) as =L, That is the same equation describes equally well the
forward and backward motions and hence it is termed as a reversible equation. But can we say that the dynamic
state of the stone at a chosen height remains identically same for both upward and downward motions. The answer
is a straight no. Because the velocity vectors have opposite directions. It simply means that one needs to devise a
mathematical language to unambiguously represent this distinction. In fact, this problem gets well attended in Santilli’s
gemomathematics [4].

DETERMINATION OF TIME REVERSAL SYMMETRY

Let us consider a few examples of fluid dynamical equations [8] both where the time reversal symmetry test produces
so-called unambiguous results and those ones where the ambiguity is encountered.
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Simple Time Reversal Symmetric Equations

The relation between convective and local time derivatives transforms as:

d d T d d
i~ ™Y T ay T T
d 0
TaTatY

where u is the barycentric velocity.
The Kinetic energy balance equation in Eulerian form transforms as:

dipu? 1,

—_v.|= .

Er <2pu u)—l—pF u
T 8%pu2 1 2

i L v R — (=
L G — v (Goww ) +pF (-
8%pu2 1,
:—V- —_ .

= > <2pu u)+pFu

where F is the body force per unit mass.
The above equations are no doubt time reversal symmetric in the tradionally understood sense but not in the sense
of identical dynamic states as described in section on dynamic reversibility.

Ambiguous to Time Reversal Symmetry Equations

The Lagrangian form of internal energy balance equation in the case of a rigid body reads as:
du
—=-V-J,=-V-
P Ju q

Thus J, is nothing else but the heat flux density, q. Now we have the following time reversal transformation,

du 1, du _ _,du
Par pd(—t) ~Pu
it implies that: —V-q N —(=V-q) which can happen only when: q N —q.
However, one may have another argument, viz. the empirical Fourier law, q = —AVT, would allow the change of the

sign of qonlyif VT changes sign. But the time reversal operation leaves the sign of VT unchanged, therefore, q will
remain invariant on time reversal.

Moreover, in kinetic theory [6, 9, 10] the expression of heat flux is q = p%CZC for a non-uniform monatomic gas,
where C(= ¢ —u) is the chaotic velocity of a molecule and c is the molecular velocity. In view of this definition C

would change its sign on time reversal as the sign of both ¢ and u changes on time reversal. Therefore, q = p%CZC
would change its sign on time reversal.

Furthermore, in classical irreversible thermodynamics (CIT) [11] the entropy source strength, oy, due to heat transfer
is quantified as 6, = - VT ! > 0. Thus if on time reversal q changes its sign then the second law of thermodynamics
appears to stand violated on the time reversed path. Whereas, in extended irreversible thermodynamics (EIT) [12] we
have o, = ﬁqq2 > 0 hence even if q changes sign on time reversed path the second law is not violated. From the above
elaboration one may perhaps assume that, in general q is not time reversal symmetric but it is not an unambiguous
conclusion.

Time reversal symmetry of Boltzmann integro-differential equation
The Boltzmann integro-differential equation for monatomic gas on neglecting body forces reads as [13],
af 9f

§+C'ﬁzj(f|f)
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where f is the distribution function corresponding to the molecular velocity ¢, r is the position vector and J(f|f) is
the Boltzmann collisional integral given by:

1510 = [ [ 15 = Af)go(s. Qdde

where o(g,Q) is the collision cross section that depends on the relative velocity g = |¢; — ¢| and the scattering solid
angle Q. The primes and indices in the distribution function have the usual meaning, namely, f] = f(c/|,r,t) is the
distribution function of particle 1 after collision, etc.
The left hand side of the Boltzmann equation changes sign on time reversal operation, namely:
d d d d d d
oo 1, f £ ( f f>

T Ay T o o S

but the right hand side of Boltzmann equation is obtained as time reversal invariant, namely:

115 = [ [ = ipigote. @ande L a(11r) = [ [(if = fif)sole. Q)asde,

because it does not contain ¢ explicitly.

So far so good but let us analyze it further. On instantaneous time reversal all molecules would reverse their motion
then the distribution functions before collision should become those of after collision and vice versa. However, the
effecting of this time reversal operation does imply f(c, r,7) = f(—c, r,—t). Hence, we would have (f] /' — fif) N
(fif = A1f") = —=(fif = fif). With this insight the Boltzmann equation is obtained as time reversal invariant.

But in essence the time reversal operation means the substitution of —¢ for ¢ without any alteration in the equation.
Thus we see that both the options of time reversal operation have their shortcomings.

With these two options for time reversal symmetry of Boltzmann integro-differential equation, now let us examine
the famous Boltzmann’s H-theoem. Boltzmann defined kinetic theory based H function [6, 13] whose negative is the
kinetic theory definition of entropy function®. Its expressions are,

aps

ps= _kB/f(lnf_ 1)dc, W = —div (psu+Js) + O

where kg is the Boltzmann constant and the entropy flux density, Js, and the entropy source strength, o, are given by,

L:—@/CﬂmﬂJMQ @:—@/Kﬂﬂmﬁc

The entropy source strength, oy, is further mathematically manipulated that produces,

@:i@///@ﬁﬁ>Uﬁbﬁﬁfd&mMM@@“mZO

fh
where ¢ is the center of mass velocity of the colliding molecular pair. The positive definiteness shown in the
preceding equation stems from the fact that if In % > 0 then we have (f{f" — f1f) > 0 and if the former is < O then the

latter is also < O the rest of the terms of the integrands are positive numbers by definition. This is the Boltzmann’s H-
theorem [11]. Now we see that the positive definiteness of the preceding equation is time reversal invariant in both the
above stated options of change or no change of the roles of the distribution functions on time reversal operation.This
is a paradoxical situation because irrespective of the Boltzmann equation is taken time reversal invariant or variant the
H-theorem that results from it is obtained as time reversal invariant.

The purpose of the present adequately detailed description of deriving the time reversal symmetry of dynamic
mathematical descriptions was to highlight the ambiguities in which we are driven to. The present discussion clearly
elucidates it.

3 Actually the H-function has been defined by Boltzmann as,

H:/f]nfdc

which was later related to the entropy function as given in the main text above.
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CONCLUDING REMARKS

The above described elaborations unambiguously surface out the fact that on applying time reversal symmetry test to
various fluid dynamical equations including the Boltzmann integro-differential equation we are led to the ambiguous
results. Indeed, there is a distinction between thermodynamic and dynamic reversibility that is in the former case the
identically same states are encountered on reversing the direction because the state of the system doesn’t depend on
the sign of the exchange differentials. Whereas in the latter case the direction of a vector associated with the system
determines its dynamic state. In view of this we recall the no reduction theorem of Santilli, namely the reversible
molecular dynamics cannot produce macroscopic irreversible description and vice-versa the irreversible macroscopic
motion cannot be reduced to reversible molecular motion of its constituents [1-3]. This then demands a mathematical
apparatus inherited with unidirectionality of the description. This demand is met by Santilli’s genomathematics and
the corresponding mechanics. In Santilli’s genomathematics for forward and backward motions one uses different
multiplying genounits namely, for forward motion it is /> and for the backward motion it is <f and /> #< I. It means
we have separate mathematical descriptions for forward and backward motions as they in reality are not reverse of each
other. That is no time reversal symmetry test is required. Hence, we conclude that the Santilli Lie-admissible mechanics
[1, 3, 14] turns out as an only option for mathematical description of irreversibility and hence for nonequilibrium
thermodynamics too.
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