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1.   Introduction 

All branches of Mathematics are used as models to express problems 

appeared in nature and life. Sometimes these models are used as an 

organized device. The research interests to specify the appropriate topic of 

mathematics to represent the problem. This fact leads to the collaboration 

of researchers from mathematics and applied sciences. A new branch of 

mathematics is the algebraic hyperstructures where in classical algebraic 

structures the multivalued replaces the single valued operations. 

Applications appeared already as in Hadronic mechanics, Biology, 

Conchology, Linguistics, Urban problems. 

The hyperstructures are used in Hadronic Mechanics, more precisely on 

the characterization of matter-antimatter systems. We present some topics 

of hyperstructures related as: Hv-structures including the e-hyperstructures 

(e-hypernumbers, e-hypervector spaces), P-hyperoperations (including a P-

like hyperoperation). The theory of Santilli's iso-mathematics and geno-

mathematics are also presented and a new realization is used to represent a 

part of the Santilli's theory on matter and anti-matter. 



As it is well known, antimatter was solely treated in the 20th century 

via charge conjugation on a Hilbert space where there exists the coordinate 

of the representation space, such as the Minkowski space-time. 

The above approach caused a historical imbalance between matter and 

antimatter, because matter was treated at all known levels, from Newtonian 

mechanics to second quantization, while antimatter was solely treated at 

the level of second quantization. The resolution of this imbalance required 

the construction of a new mathematics, called Santilli isodual mathematics, 

which is constructed via an anti-Hermitean conjugation. The resulting 

isodual theory of antimatter has established a complete democracy in the 

treatment of matter and antimatter with intriguing implications, such as the 

prediction of gravitational repulsion (antigravity) for matter in the field of 

antimatter and vice-versa. Despite their simplicity, the physical and 

mathematical differences between charge and isodual conjugations are 

nontrivial. Under charge conjugation, antimatter is assumed to exist in the 

same spacetime of matter. The isodual conjugation maps, for consistency, 

each quantity used in the representation of matter into its isodual image, 

thus including a necessary conjugation of spacetime with coordinates into 



the novel isodual spacetime with isodual coordinates. This conjugation 

implies that, under isoduality, antimatter exists in a new spacetime which 

is physically distinct from yet coexisting with our spacetime.  

From a mathematical viewpoint, the co-existence of the conventional 

and isodual spacetimes in the same region of space creates a number of 

intriguing problems. It is rather natural to see the matter and antimatter via 

multi-dimensional models. This mathematical formulation is easily seen as 

being unacceptable because our sensory perception deny the existence of 

spacetime bigger than those with four dimensions. The compatibility of the 

complexities of nature with our sensory perception has motivated the 

construction of multi-valued hyperstructures with hyperunits. In its most 

elementary possible formulation expressed via conventional operations, 

matter and antimatter can be represented via a two-valued hyperstructure 

characterized by the multiplicative hyperunit.  

The resolution of the 20
th

 century imbalance between matter-antimatter 

via the isodual theory appears to produce physical evidence for the 

realization in nature of multi-valued hyperstructures with hyperunits, and 

therefore suggesting the mathematical study presented below. 



The Lie-Santilli and Jordan-Santilli isoalgebras verify the attached 

products  

[A,B]*=ATB-BTA   and   {A,B}*=AWB+BWA 

respectively. This was introduced by Santilli in 1978 and it is the most 

general realization of products that are jointly Lie-admissible and Jordan-

admissible 

(A,B) = ARB–BSA = (ATB–BTA)+{AWB+BWA} = 

[A,B]*+{A,B}* = (ATH–HTA)+{AWH+HWA}, R=T+W, S=W-T.     (1.1) 

 On the other side the Santilli’s genomathematics theory try to express 

more complicate structures such as DNA turns into multivalued case 

therefore it lead to the equations  
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We can see all the above equations in the hyperstructure realization. So 

we have to present the related theory and the range that this theory offers 

for the realization or the representation of the iso-geno-theory.  

2.   The hyperstructures 

We deal with Hv-structures introduced in 1990, which satisfy the weak 

axioms where the non-empty intersection replaces the equality.  In a set H 

equipped with a hyperoperation  (abbr. hyperoperation=hope) 

∙ : H H  P(H)-{ } : (x,y)  x∙y  H 

abbreviate by  

WASS: weak associativity: (xy)z x(yz) , x,y,z H  and by  

COW: weak commutativity:   xy yx  ,  x,y H.   

The hyperstructure (H, ) is called Hv-semigroup if it is WASS, it is called 

Hv-group if it is reproductive Hv-semigroup, i.e.  

xH=Hx=H, x H. 



The hyperstructure (R,+, ) is called Hv-ring if both (+) and ( ) are WASS, 

the reproduction axiom is valid for (+) and ( ) is weak distributive with 

respect to (+):  

x(y+z) (xy+xz)  ,     (x+y)z (xz+yz)  ,   x,y,z R. 

Let (H, ), (H,*) be Hv-semigroups defined on the same set H. ( ) is called 

smaller than (*), and (*) greater than ( ), iff there exists an  

f Aut(H,*) such that  xy f(x*y), x,y H. 

Then we write * and we say that (H,*) contains (H, ). If (H, ) is a 

structure then it is called basic structure and (H,*) is called Hb-structure. 

Theorem (The Little Theorem). Greater hopes than the ones which are 

WASS or COW, are also WASS or COW, respectively. 

So we have posets on Hv-structures.  

In several books and papers one can find numerous applications. An 

new application is to replace in questionnaires the scale of Likert by the 

bar of Vougiouklis & Vougiouklis.  



3. Two classes of hopes 

Definition. Let (G, ) be a groupoid, then for every P G, define the 

following hopes called P-hopes:   for all  x,y G 

P : xPy = (xP)y x(Py),     

Pr : xPry = (xy)P x(yP),    

 Pl : xPly = (Px)y P(xy). 

The (G,P), (G,Pr), (G,Pl) are called P-hyperstructures. The most usual case 

is if (G, ) is semigroup, then  

 xPy = (xP)y x(Py) = xPy 

and (G,P) is a semihypergroup but we do not know about (G,Pr) and (G,Pl). 

In some cases, depending on the choice of P, the (G,Pr) and (G,Pl) can be 

associative or WASS. If in the set G, more operations are defined then 

obviously for each one operation several P-hopes can be defined. 

   



Definitions. Let H a set equipped with n operations (or hopes) 1,…, n 

and a map (or multivalued map)  

f: H H (or f:H P(H)-{ }, respectively), 

then n hopes  1, 2,…, n  on H  can be defined, called theta-hopes and we 

write -hope, by putting 

x iy = {f(x) iy, x if(y)},  x,y H,  i {1,2,…,n} 

in case where i are hopes or f is multivalued, we have 

x iy = (f(x) iy) (x if(y) ) , x,y H, i {1,2,…,n}. 

If i is associative then i  is WASS. 

Let (G, ) groupoid and fi:G G, i I, take f :G P(G): f (x)={fi(x) i I}.  

We call union -hopes, on G if we consider the f (x).  A special case is the 

union of f with the identity, i.e.  f = f (id),  so  f(x)={x,f(x)}, x G,  

which is called b- -hope. We denote the b- -hope by ( ), so  

x y = { xy, f(x) y, x f(y) },  x,y G. 



Examples ► Polynomials gi(x)=aix+bi have g1 g2={a1a2x+a1b2,a1a2x+b1a2}, 

so it is a hope. All polynomials x+c, where c be a constant, are units. 

► The constant map.  (G, ) group and f(x)=a, then x y={ay,xa}, x,y G. 

If f(x)=e, then x y={x,y}, the smallest incidence hope.  

Properties.  If (G, ) semigroup: f, the -hope is WASS. f, the b- -hope 

( ) is WASS. If  f  is projection and homomorphism, then ( ) is associative. 

If ( ) is reproductive then ( ) is also reproductive: 

x G= g G{f(x) g, x f(g)}= G,      G x= g G{f(g) x, g f(x)}= G. 

If ( ) is commutative then ( ) is commutative. If f is into the centre of G, 

then ( ) is commutative. If ( ) is COW then, ( ) is COW. u is right unit if 

f(u)=e, e unit in (G, ). The elements of the kernel, are the units of (G, ). 

Proposition. Let (G, ) group then, for all f: G G, the (G, ) is an Hv-group. 

Hopes on any type of matrices can be defined.   

 

 



 

4. The Hv-rings, the Hv-fields and representations 

The main tool to study hyperstructures are the fundamental relations β*, 

γ* and ε*, which are defined, in Hv-groups, Hv-rings and Hv-vector spaces, 

resp., as the smallest equivalences so that the quotient would be group, ring 

and vector space, resp. The relation β* was introduced by M. Koskas in 

1970. The relations γ* and ε*, were introduced by T. Vougiouklis and he 

named them Fundamental.  

 

Theorem. Let (H, ) be an Hv-group and denote by U the set of all finite 

products of elements of H. We define the relation β in H by setting   xβy iff 

{x,y} u  where u U. Then  β* is the transitive closure of  β. 

An element is called single if its fundamental class is singleton. 

Analogous theorems for γ* in Hv-rings, ε* in Hv-modules and Hv-vector 

spaces, are also proved.  

 



Definition. Let (R,+, ) a ring and  f:R R, g:R R  two maps. We define 

two hopes ( +) and ( ), called both theta-hopes, on R as follows 

x +y={f(x)+y,x+f(y)},   x y={g(x) y,x g(y)}, x,y G. 

Propositions  

1.  Let (R,+, ) a ring and f:R R, g:R R maps, then (R, +, ), is Hv-ring. 

2. In (Z,+, ) and n 0 a natural. Take f with f(n)=0, f(x)=x, x Z-{n}. 

Then (Z, +, ) is Hv-ring, moreover, (Z, +, )/γ*  Zn. 

 

Fundamental relations are used for general definitions. Thus we have: 

Definition. An Hv-ring (R,+, ) is called Hv-field if R/γ* is a field. The 

elements of a hyperfield are called hypernumbers. 

 

In the above Proposition (2) we remark that in the special case for  n=p, 

prime, then  (Z, +, )  is an Hv-field. 



Using again the fundamental relations we may obtain more general 

hyperstructures. The Hv-semigroup (H, ) is called h/v-group if H/β* is a 

group. The class of  h/v-groups is more general than the class of Hv-groups.   

Definitions. An Hv-field is called additive if its addition is a hope and the 

multiplication is an ordinary, single valued, operation. An Hv-field is called 

multiplicative if its multiplication is a hope and addition is an operation.  

Hv-structures are used in Representation (abbreviated by rep) Theory. 

Reps of Hv-groups can be considered by generalized permutations or by 

Hv-matrices. Reps by generalized permutations can be achieved using 

translations.  

Definitions. Hv-matrix is called a matrix with entries elements of an Hv-

ring or Hv-field. The hyperproduct of two Hv-matrices (aij) and (bij), of type  

m n and n r respectively, is defined, in the usual manner, and it is a set of 

m r Hv-matrices. The sum of products of elements of the Hv-ring is the 

union of the sets obtained with all possible parentheses put on them, i.e. the 

n-ary circle hope on the hyperaddition. The hyperproduct of Hv-matrices 

does not necessarily satisfy WASS. 



The problem of the Hv-matrix representations is the following: 

Let (H, ) be Hv-group. Find an Hv-ring (R,+, ), a set  MR={(aij) aij R} and 

a map  T: H MR:  hT(h)   with  T(h1h2) T(h1)T(h2) ,  h1,h2 H.  T is 

an Hv-matrix rep. If  T(h1h2) T(h1)(h2), h1,h2 H, then T is an inclusion 

rep.  If T(h1h2)=T(h1)(h2)={T(h) h h1h2}, h1,h2 H, then T is a good rep.  

If  T is one to one and good then it is a faithful rep. 

 The reps problem can be simplified in special cases: 

(a) The Hv-matrices are over Hv-rings with 0 and 1 and if these are scalars.  

(b) The Hv-matrices are over  very thin Hv-rings. 

(c) The Hv-rings contains singles, then these act as absorbings.  

Theorem. A necessary condition to have an inclusion rep T of an Hv-group 

(H, ) by n n Hv-matrices over the Hv-ring (R,+, ) is the following: 

For all classes β*(x), x H there must exist elements aij H, i,j {1,...,n}  

such that 

T(β*(a))     { A = (a ij )  a ij  γ* (aij ),  i,j {1,...,n} } 



5. The e-hyperstructures 

The iso-hyper-fields needed in Lie-Santilli’s theory on isotopies for the 

hyperstructures were introduced by Santilli & Vougiouklis in 1996 and 

they are called e-hyperfields.  

Definition. A hyperstructure (H, ) which contain a unique scalar unit e, is 

called e-hyperstructure. In an e-hyperstructure, x, there exists an inverse 

element  x
-1

, i.e.  e x x
-1

x
-1

x.  The inverses are not necessarily unique.      

Definition. A hyperstructure (F,+, ), where (+) is an operation and ( ) is a 

hope, is called e-hyperfield if the following axioms are valid:  

1.  (F,+) is an abelian group with the additive zero 0, 

2.  ( ) is WASS, 

3.  ( ) is weak distributive with respect to (+), 

4.  0 is absorbing element:  0 x = x 0 = 0, x F, 

5.  there exists a scalar unit 1, i.e.  1 x =x 1 = x, x F, 

6.  x F there exists a unique inverse x
-1

, such that   1 x x
-1

x
-1

x.  



The elements of an e-hyperfield are called e-hypernumbers. In the case 

that the relation: 1=x x
-1

=x
-1

x, is valid, then we have a strong e-hyperfield.  

Definition. The Main e-Construction. Given a group (G, ), where e is the 

unit, then we define in G, a large number of hopes () as follows:   

xy = {xy, g1, g2,…}, x,y G-{e}, and g1, g2,… G-{e} 

Then (G,) becomes an Hv-group, in fact is Hb-group containing (G, ). The 

(G,) is e-hypergroup. If xy=e, x,y, then (G,) is strong e-hypergroup.  

A P-hope which is appropriate to obtain e-hyperstructures is:  

Construction. Let (G, ) be an abelian group and P any subset of G with 

more than one elements. We define the hyperoperation  P  as follows: 

        x P y = {x h y  h P}    if   x e  and  c e 

x Py   =      

                x y                                   if   x=e   or  y=e 

 

we call this hope Pe-hope.   (G, P) is an abelian Hv-group. 



 

6. Hv-Lie algebras 

Definitions. Let (F,+, ) be an Hv-field, (V,+) be a COW Hv-group and there 

exists an external hope  

 :  F V  P(V )-{ } :  (a,x)  ax 

such that, for all a,b in F and  x,y in V we have 

a(x+y) (ax+ay)  ,     (a+b)x (ax+bx)  ,     (ab)x a(bx)  , 

then V is called an Hv-vector space over F. In the case of an Hv-ring 

instead of an Hv-field then the Hv-modulo is defined. The fundamental 

relation ε* is the smallest equivalence relation such that the quotient V/ε* 

is a vector space over the fundamental field F/γ*.  

 

 

 

 



The general definition of an Hv-Lie algebra over F is the following:  

Definition. Let (L,+) be an Hv-vector space over the Hv-field (F,+, ), take 

the canonical map φ: F  F/γ* with  ωF={x F:φ(x)=0}, 0 is the zero of  

F/γ*, ωL  the core of  φ :L L/ε* and denote again 0 the zero of L/ε*. 

Consider the bracket (commutator) hope: 

[ , ] : L L   P(L)-{ }:  (x,y)  [x,y] 

then L is an Hv-Lie algebra over F if the following axioms are satisfied: 

(L1)    The bracket hope is bilinear, i.e. 

 [λ1x1+ λ2x2,y] ( λ1[x1,y] + λ2[x2,y])    

 [x, λ1y1+λ2y] (λ1[x,y1]+λ2[x,y2]) , x,x1,x2,y,y1,y2 L  and  λ1,λ2 F 

(L2)    [x,x]  ωL   , x L 

(L3)   ([x,[y,z]]+[y,[z,x]]+[z,[x,y]])  ωL   ,  x,y L 

 

 

 



7. Santilli’s hyper-admissibility 

The Lie-Santilli admissibility on square matrices can be faced in two ways:  

(a)  using ordinary numbers and hopes for square matrices, 

(b)  using hypernumbers as entries and ordinary operations. 

Definition. Let L=(Mn n,+) be an Hv-vector space of square hyper-matrices 

over (F,+, ), φ:F F/γ*, the canonical map and ωF={x F:φ(x)=0}, where 

0 is the zero of the fundamental field F/γ*.  Similarly, let ωL be the core of 

the canonical map φ :L L/ε* and denote by 0 the zero of L/ε*.  R,S L a 

Santilli’s Lie-admissible hyperalgebra is obtained using the Lie bracket: 

[ , ]RS :   L L  P(L):  [x,y]RS = xRy–ySx = { xry–ysx r R and s S } 

 Special cases, but not degenerate, are the ‘small’ and ‘strict’ ones:   

(a)  R={e}  then  [x,y]RS = xy–ySx = {xy–ysx s S} 

(b) S={e}  then   [x,y]RS = xRy–yx = {xry–yx r R} 

(c) R=S    



Now we transfer the Santilli’s admissibility problem from the introduction:  

The Santilli’s admissibility can be achieved in the following ways: 

►  The use of an Hv-field instead of an ordinary field. 

► The replacement, or enlargement, of the single valued external or   

internal operations on vectors by multivalued ones. 

► The replacement of the selected elements R and S by sets of elements. 

 

(i)  Therefore in Eq.(1.1), 

►   we can use elements λ from an Hv-field or the external operation λA be 

a hope or, of course, both can be used.  

►  we can use elements of an Hv-field or replace R and S (consequently T 

and W) by sets of elements. In the later case, we can use the Pe-hopes. 

 

(ii) The Eqs.(1.2) are already a generalization into the multivalued case. In 

fact this generalization is an Hb-hope since it is an extension of single 

valued operation. However, if we replace  S1,…, Sn  and  R1,…, Rn  by 

sets of elements then we obtain enlarged hopes.  
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