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1 Foreword

Many important advances in science and technology have been generated by
advances in mathematics. Consider, for example, the fundamental importance of
the development of differential calculus for our modern knowledge or the discov-
ery of complex numbers, without which there would be no contemporary elec-
tronics, or quantum mechanics.

By using a language accessible to the general scientific audience, in this paper
we present an introduction to isomathematics, genomathematics and hypermathe-
matics that were initiated by the Italian-American scientist Ruggero Maria Santilli
(Biographical Notes http://www.i-b-r.org/Sir-Santilli-bionotes-05-15-21.pdf) dur-
ing his Ph. D, studies in the 1960’s at the University of Torino, Italy [1]-[3],
continued in the late 1970’s at Harvard University under DOE support [4]-[7],
completed at the Institute for Basic Research, Palm Harbor, Florida [8]-[15], stud-
ied by numerous scholars [16]-[28] at a number of international workshops and
conferences [29]-[37] and recently applied for significant advances [81]-[73] in
mathematics, physics, chemistry and biology that would not have been possible
with 20th century mathematics.

The primary aim of the studies is the representation of microscopic systems,
such as particles, molecules or cells, composed by extended constituents in condi-
tion of partial mutual penetration/entanglement with ensuing conventional/potential
as well as contact/non-potential interactions, said systems having the following
classification for conditions of increasing complexity:

1.1. Closed/isolated, thus time reversal invariant systems, such as stable
nuclei, molecules or cells, that can be represented via the single-valued Santilli’s
Lie-isotooic mathematics [17] [26] also known as isomathematics, where the pre-
fix ”iso” indicates in its Greek meaning the preservation of the abstract axioms of
20th century applied mathematics.

1.2. Open/non-conservative, thus time irreversible systems, such as nu-
clear fusions, chemical combustions or embryos, which can be represented via
the single-valued Santilli’s Lie-admissible mathematics [23] [26], also known as
genomathematics, where the prefix ”geno” indicates in its Greek meaning the gen-
eralization of the abstract axioms of 20th century applied mathematics.

1.3. Biological systems, such as a cell or a DNA, which can be represented via
the multi-valued Santill-Vougiouklis Lie-admissible hyperstructural mathematics
[1]- [10] [45]-[47], also known as hypermathematics for short, where the prefix
”hyper” indicates in its Greek meaning the use of generalized multi-valued oper-
ations.

Following a rudimentary review of the above new mathematics, we present
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intriguing new applications in physics, chemistry and biology.

2 Isomathematics

2.1 Elements of isotopic methods

Isomathematics was initiated in 1978 by R. M. Santilli [4] [5] at Harvard Univer-
sity for the representation of time reversal invariant systems with Hamiltonian plus
contact, zero-range non-Hamiltonian interactions between extended constituents
(particles, molecules or cells). The representation of the additional contact non-
Hamiltonian interactions was achieved via a generalization of the conventional
associative product of a set of elements ξ : {A,B, ...;AB = A × B; 1} into the
associativity preserving, thus isototoic form called isoproduct [5]

A×̂B = A× Ŝ ×B,

A×̂(B×̂C) = (A×̂B)×̂C,
(1)

with compatible generalization of the right and left multiplicative unit 1 of 20th
century mathematics into the form 1̂ = 1/Ŝ called the isounit

1̂×̂A = A×̂1̂ ≡ A ∀ A ∈ ξ, (2)

where the positive- definite quantity Ŝ, called the Santillian [81] [82] [72] [73]
represents the extended size of particles, molecules or cells and their non-Hamiltonian
interactions with realizations for a two-body system of the type

Ŝ = 1/1̂ =

= Σk=1,2Diag.(1/nk, 1/nk, 1/nk, 1/nk)× e−Γ(t,r,p,ψ,...) � 1,

k = 1, 2, Γ > 0,

(3)

where n2
k, n

2
k, n

2
k represent the semi-axes, n2

k the density and Γ the non-potential
interactions of the extended constituents.

Santilli isomathematics [25] is characterized by the isotopies of the totality
of 20th for century applied mathematics with no known exceptions because any
treatment mixing the use of the isoproduct A×̂B with the conventional product
A×B is afflicted by catastrophic mathematical and physical inconsistencies [52].
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As an example, the isoproduct can be obtained via a simple non-unitary trans-
formation of the conventional product

U1U † = 1̂ 6= 1,

U(AB)U † = (UAU †)(UU †)−1(UBU †) = A′×̂B′,

Ŝ = (UU †)−1,

(4)

and the same holds for the map of a conventional theory into its isotopic image.
However, the resulting non-unitary theory is structurally inconsistent when

formulated on conventional spaces over conventional fields [52] and has to be re-
formulated with the full use of isomathematics, beginning with the reformulation
of the non- unitary into an iso-unitary transformation

U = Û × Ŝ1/2,

UU † = Û×̂U † = Û †×̂U = 1̂,

(5)

and then passing to the entire formulation in terms of the isoproduct, isonumbers,
isospaces, isodifferential calculus, etc.

In the following subsections, we present an introduction to the various branches
of isomathemtatics that are needed for correct formulations. At this moment, we
mention the important Lie-Santilli isotheory [5] [17], which includes the isotopies
of an N -dimensional Lie algebra with Hermitean generators ξ : {Xi, Xj ×Xj; 1}

ˆ[Xi, Xj] = Xi×̂X̂j −Xj×̂X̂i = Ck
ij×̂Xk, (6)

and the isotopies of the corresponding Lie transformation group

A (t) = ΠiXk×Ŝ×w
k × A (0)× e−iw×Ŝ×Xk . (7)

As an illustration of the significance of Santilli’s isotopies, we mention that,
for the case in which the parameter w represents an infinitesimal period of time t
and the generatorXk is the HamiltonianH , isotransformation isogroup (4) implies
the Heisenberg-Santilli time evolution [5]

Î
dA

dt
= ˆ[A,H] = A×̂H −H×̂A = AŜH −HŜA, (8)

where conventional potential interactions are represented by the Hamiltonian H ,
while the extended size of the constituents and their non-potential interactions
are represented by the Santillian Ŝ. Note that Eq. (6) is invariant under anti-
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Hermiticity, and therefore, can solely represent variationally nonselfadjoint (VNS)
[4] time reversal invariant systems such as stable nuclei or stable molecules.

We should also note that isomathematics has permitted the progressive recov-
ering of Einstein’s determinism under strong interactions [81] [82], the first known
numerically exact and time invariant representation of nuclear data [95] and nu-
clear stability [96], the first known attractive force between the identical electrons
of a valence bond despite their extreme Coulomb repulsion [13] with ensuing first
known exact representation of molecular data [65] [66], the first known mathe-
matical representation of life [72] and other applications.

Additional applications of isomathematics in physics, chemistry and biology
are outlined in Sections 8, 10 and 11, respectively.

2.2 Classification of isotopies

The characteristics of all possible topologically different isounits, first done by J.
V. Kadeisvili [19] identifies all possible new mathematics:

Class I: the isounity is a positive defined Hermitian matrix.
Class II: the isounity is a negative defined Hermitian matrix.
Class III: includes preceding classes and isounits of undefined sign.
Class IV: includes previous classes and the case 1̂ = 0
Class V: includes the previous classes and isounities with arbitrary character-

istics thus being distribution, functions, et al.

Evidently, all the above isounits have one single value and the same holds for
the isoproduct. Later on, for applications to biology, the above classification has
to be extended to include multi-valued isounits and isoproducts.

2.3 Isofields

As it is well known, experimental verifications of a given theory produce numbers
that, for consistency, have to be elements of the numeric field on which the theory
is defined. The generalization of the basic unit 1 into the isounit 1̂ implies the loss
of conventional fields with ensuing lack of consistent experimental verifications
of isotopic theories.

In 1993, while visiting the Joint Institute for Nuclear Research in Dubna, Rus-
sia, Santilli [42] proved that the abstract axiom of a numeric field do not necessar-
ily require the multiplicative unit to be the number 1 because it can be an arbitrary
quantity 1̂ provided it is invertible. In this way Santilli introduced the new ison-
umbers and isofields that verify all axioms of a numeric field, thus being suitable
for experimental verifications.
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Let F = F (a,+,×, 0, 1) be a field with additive unit 0 and multiplicative unit
1. An ”isofield” F̂ = F̂ (â,+, ×̂, 0, 1̂) [42] (see also monograph [20]) is a ring
characterized by the operations (+,×) where + is the conventional sum with unit
0 and ×̂ is the new multiplication with isounit 1̂ whose elements n̂ = n× 1̂, called
isonumbers, obey the isoproduct

n̂×̂m̂ = n̂× Ŝ × m̂ = (n×m)× 1 = c ∈ F̂ , (9)

where Ŝ = 1̂−1 is the same Santillian of Eq. (9). Consequently, all conventional
operations on numbers are similarly generalized [42] [8] [? ].

It should be noted that, being an axiom-preserving generalization of the stan-
dard number theory, Santilli’s isonumber theory is straightforward, although con-
ceptually it requires a conceptual effort in understanding that, when projected in
our three-dimensional space over the Reals, Santilli’s isonumbers n̂ = n× 1̂ rep-
resent volumes, as evident from the realization of the isounit from Santillian (5)

n̂ = n× 1̂ = nΣk=1,2Diag.(n
2
k, n

2
k, n

2
k). (10)

Rather than being a mathematical curiosity, the indicated conception of ison-
umbers is necessary for the invariant representation of the dimensions, shape and
density of the constituents to such an extent that said feature has to be carried over
at all levels of treatments.

The isofields considered above are of Class I with 1̂ > 0 and are at the foun-
dation of isomathematics. Class II isofields have a negative-definite isounit 1̂ < 0,
characterize the isodual isomathematics for the description of antimatter [15]
which is interconnected with isomathematics by an anti-Hermitean map called
isoduality and indicated with an upper index d, e.g.,

1̂ > 0 → 1̂d = −1̂ < 0. (11)

The isodual isofields F̂ d = F̂ d(n̂d,+, ×̂d) are characterized by isodual num-
bers n̂d = −n̂† and isodual isoproduct with isodual Santillian Ŝd = −Ŝ.

2.4 Isospaces
An Euclidean space E (x, δ, R) with metric δ = Diag.(1, 1, 1) ∈ R is character-
ized by the Euclidean distance as an invariant quantity between two points x and
y over the field of real numbers R

(x− y)2 =
(
xi − yi

)
δij
(
xj − yj

)
∈ R (n,+,×) . (12)

An iso-Euclidean isospace, also called an Euclid-Santilli isospace,[43] Ê
(
x̂, ∆̂, R̂

)
[43] (see also monographs [8] [25]) is an N-dimensional metric space defined on
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a Class III isoreal isofield R̂ (n̂,+, x̂) with an N ×N -dimensional isounit 1̂, iso-
coordinates x̂ = x × 1̂ and isometric ∆ = δ1̂ ∈ R̂ with isodistance between two
isopoints

(x̂− ŷ)2 =
[(
x̂i − ŷi

)
×̂∆̂ij×̂

(
x̂j − ŷj

)]
× 1̂ ∈ R̂, (13)

characterized by the isometric
δ̂ = Ŝ × δ. (14)

An iso-Minkowskian isospace, also called a Minkowski-Santilli isospace first
introduced in the 1983 Ref. [43], is characterized by the isometric Ω̂ = η̂ × 1̂ =
(Ŝ× η)1̂ ∈ R̂ where η is the familiar Minkowskian metric η = (1, 1, 1,−1) and it
is at the foundation of relativistic treatments of systems of extended particles with
potential and non-potential interactions.

Recall that, to characterize metric spaces over the reals, the elements of met-
rics δ and η must be real numbers n ∈ R. Similarly, to characterize isospaces
over the isoreals, the elements of isometrics ∆ and Ω must be isoreal isonumbers
n̂ ∈ R̂.

2.5 Isodifferential calculus
Let us recall that, by the mid 1990’s, the virtual entirety of 20th century applied
mathematics had been isotopically generalized. Nevertheless, the resulting phys-
ical theories were afflicted by serious inconsistencies with particular reference to
the inability to achieve a representation invariant over time of the dimensions,
shape and density of particles, molecules and cells as requested by experimental
verifications.

Following years of trials and errors, Santilli finally identified in 1995 the origin
of the inconsistencies as being due to the use of the conventional Newton-Leibnitz
differential calculus within the context of isotopic theories because the former can
only be defined at isolated points while isotopic theories are conceived to represent
volumes.

This observation led Santilli to the discovery of the isodifferential calculus,
first presented in the 1995 monograph [8], applied in the subsequent monograph
[9] to the generalization of quantum into hadronic mechanics and extensively pre-
sented in the 1996 memoir [44] which, in essence, is a calculus defined on volumes
with evident applications in all quantitative sciences, including engineering.

Let dx be the conventional differential of an Euclidean coordinate x. Santilli
isodifferential calculus is characterized by all possible generalized differentials d̂x̂
of an iso-Euclidean isocoordinate x̂ = x× 1̂(x, ...), whose isounit 1̂ has an explicit
dependence on the local coordinate x, such to verify the limit condition

Lim d̂1̂→1x̂ = dx. (15)
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Let us define as isofunction the quantity f̂(x̂) = f(x̂) × 1̂ with value in F̂ .
Then, an infinite succession f̂1, f̂2, f̂3, ... is strongly isoconvergent to a value f̂
when:

limk→∞ |̂f̂k − f̂ |̂ = 0. (16)

A strongly convergent series is also strongly isoconverging. However, a strongly
isoconverging series is not necessarily strongly converging.

The isofield Ê
(
x̂, δ̂, R̂

)
with coordinates x̂ =

{
x̂k
}
, k = 1, ..., N and iso-

metric δ̂ = Ŝ × δ on the isoreals, admits per isounit a matrix N ×N of class III,

1̂ =
(
Îji

)
= Ŝ−1 =

(
Ŝji

)−1

with line element

x̂iδ̂ijx̂
j = x̂iŜji δjmx̂

m = x̂iδ̂ijx̂j = x̂kx̂k = x̂kx̂
k. (17)

The isodifferentials of first order of covariant and contravariant coordinates
are given respectivey by [8] [44] [24])

d̂x̂k = 1̂ik (x, ...) dxi,

d̂x̂k = Sjk (x, ...) dxi.

(18)

The isodifferentials expressed in this way allow the calculation of the corre-
sponding isoderivatives:

f̂ ′
(
âk
)

= d̂f̂(x̂)

d̂x̂k
|x̂k=âk = Ŝik

df(x)
dxi
|x̂k=âk ,

f̂ ′ (âk) = d̂f̂(x̂)

d̂x̂k
|x̂k=âk = Î ik

df(x)
dxi
|x̂k=âk ,

(19)

which are at the foundation of all applications of isomathematics.
Recall that integration is defined as the inverse of the differentiation, e.g.,∫
dx = x. Consequently, isointegration can be defined as being the isoinverse

of isodifferentiation ∫̂
d̂x̂ = (

∫
1̂)(Sdx̂) = x̂. (20)

Nineteen years later, the mathematician Svetlin Georgiev discovered Santilli’s
isodifferential calculus [44] and published a monumental volume of works in the
field, including eight monographs [24] [25] [26].

2.6 Iso-Euclidean geometry
An isoline [8] [26] is defined as the image of the ordinary line on the reals under
the lifting R (n,+,×) → R̂ (n̂,+, x̂) and the position of its isopoints (images in
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the isospace of the points of the line) is described by the isocoordinates x̂ = Îx
whose isoorigin is 0̂ = Î0

The isodistance from two isopoints is then given by

1̂
(
x̂− x̂′

)
|̂ = 1̂

(
x̂− x̂′

)
× Ŝ ×

(
x̂− x̂′

)
|̂
1
2 × 1̂. (21)

The value of the distance between two points is different for the line and iso-
line. This result leads to a number of intriguing implications in mathematics and
physics such as a newly developed propulsion method called geometric propulsion
[15], which is based on the movement of an isopoint from one isocoordinate to
another by altering the underlying geometry rather than the conventional motion
or the point in space.

Let us consider now the three-dimensional Euclidean vector space V [r,+,�,-
R(n,+,×)]. The Class I isotopies of the three-dimensional Euclidean vector
space, called iso-Euclidean isovector isospaces, are given by the same set of con-
travariant vectors r = (x, y, z) reformulated as ”isovectors”

r = (x, y, z)→ r̂ = r × 1̂ = (x̂, ŷ, ẑ) = (x× Î , y × Î , z × Î). (22)

In the conversion from Euclidean vector space to iso-Euclidean isovector isospace,
the following quantity is invariant [9]:

Length× Unity = Isolength× Isounity. (23)

In the 3-dimensional space, the isounit is a matrix 3× 3

1̂ = Ŝ−1 = Diag
(
b−2

1 , b−2
2 , b−2

3

)
. (24)

Furthermore, isoseparation coincides with conventional separation:

r̂2 =
(
rk × rk

)
× Î =

(
ri × Ŝ × δij × rj

)
× 1̂ = r2 × Ŝ × Ŝ−1 = r2. (25)

If length and unit were invariant, instead of their product, it would be a differ-
ent geometry from the isogeometry, because δ → δ × 1̂ rather than δ → δ × Ŝ.

The isodistance [8] [26] from two points P1 (x1, y1, z1) and P2 (x2, y2, z2) is
the isoscalar

D̂12 = 1̂ (r̂1 − r̂2) |̂ =
[
(x̂1 − x̂2)2 b2

1 + (ŷ1 − ŷ2)2 b2
2 + (ẑ1 − ẑ2)2 b2

3

] 1
2 × Î ∈ R̂

(26)
where r̂1 and r̂2 represent the isovectors from the origin to P1 and P2.

By indicating with d the Euclidean distance between two points and with D̂ =
D×1̂ the corresponding isoeuclidean distance between two isounits, the following
rule is valid:

D > d←→ det1̂ < 1,

D < d←→ det1̂ > 1.

(27)
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Consequently, an object has different dimensions and shape in Euclidean and
Isoeuclidean geometries. An internal observer to the isoeuclidean isospace may
appear to the external observer arbitrarily smaller or larger. Also, the isodimen-
sions can vary in time and can be arbitrarily moved in the future or past of the
external observer, as well as be in motion without the application of any force.

For example [15], the enormous distance of stars in Euclidean space can be
made as small as desired in an isoeuclidean isospace.

The equation of an isoret isoline is given by one of the following forms:

â×̂x̂+ b̂×̂ŷ + ĉ×̂ẑ + d̂ = (a× x+ b× y + c× z + d)× Î = 0,
x̂− x̂1 − p̂× â1 = (x− x1 − pa1)× 1̂ = 0

ŷ − ŷ1 − p̂× â2 = (y − y1 − pa2)× Î = 0,

ẑ − ẑ1 − p̂× â3 = (z − z1 − pa3)× Î = 0,


(28)

with a, b, c, d ∈ R and â, b̂, ĉ, d̂ ∈ R̂.
The representation of an isoline in isovectoral notation is given by

r̂k − r̂1k − n̂×̂â = (rk − r1k − nak)× Î . (29)

The isogeometric propulsion [15] moves a point P1(x1, y!, z1) into a point
P2(x2, y2, z2) which lies on the same line connecting P1(x1, y!, z1) to the origin
by means of the following steps:

1) The geometry underlying point P1 is isotopically raised with the resulting
isodistance to another point P2.

2) The isotopy is chosen according to the law:

D01 =
(
x2

1b
2
1 + y2

1b
2
2

)
× 1̂ = d02 × 1̂, (30)

with the simplest possible solution

b2
1 =

x2
2

x2
1

; b2
2 =

y2
2

y2
1

; b2
3 =

z2
2

z2
1

;Det.1̂ > 1. (31)

3) The geometry is then returned to the original Euclidean form.
The isogeometric propulsion shown here is a purely mathematical notion, al-

though its possible actual realization has been studied by R. M. Santilli [15] via
means which can alter the fundamental units of space and time.

In the iso-Euclidean geometry we can introduce the isoangle â as a general-
ization of the ordinary angle with isotrigonometric isocoordinates [8]

isocosâ =
x1b

2
1x2 + y1b

2
2y2

(x1b2
1x1 + y1b2

2y1 + x2b2
1x2 + y2b2

2y2)
1
2

. (32)
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By introducing the angular Santillian Ŝa = b1b2 and the angular isounit 1̂a =
b−1

1 b−1
2 the formula of the isoangle is given by

â = b1b2a = Ŝaa = 1̂−1
a a. (33)

2.7 Isoaxioms of the iso-Euclidean geometry
The above isogeometric properties allow the identification of the isoaxioms of

the isoeuclidean isogeometry (see also [8] [26]):
Isoaxiom I: There exists one and only one isostraight isoline from one isopoint

to another isopoint.

Isoaxiom II: An isosegment can be prolonged continuously into an isostraight
line from each end.

Isoaxioms III: For any given center and isoradius there is one and only one
isosphere.

Isoaxioms IV: All isoright isoangles are equivalent.

Isoaxioms V: For each given isosegment between two isopoints there exist
only two isoparallel lines, one per each isopoint, which are isoperpendicular to
that isosegment.

2.8 Isodual iso-Euclidean geometries
Class I iso-Euclidean isogeometry is used in physics for characterizing matter [8].

Class II isodual isoeuclidean isogeometry is used in physics for the character-
ization of antimatter [15].

Class III isogeometry seems particularly suitable for applications in theoretical
biology [14].

The reversal of the sign of time on conventional spaces over conventional
fields leads to the violation of causality. The only known alternative to avoid this
problem in the study of antimatter is Santilli’s map [15] of the entire geometry
into an anti-automorphic image called isoduality:

1 −→ 1d = −1. (34)

The isodual iso-Euclidean isospaths are obtained via the the isodual map of
the original isovectors.



Emanuele Velardo

The fundamental invariants of Euclidean or iso-Euclidean geometries are iso-
selfdual, that is invariant under isoduality

r2 = rd2d,

x̂2 = x̂d2d.
(35)

This property has important physical implications for the representation of
antimatter because it implies that its isodual space is hidden but co-existing within
our space.

The equations for isoret and isodual angle are respectively given by:

âd×̂dx̂d + b̂d×̂dŷd + ĉd×̂dẑd + d̂d = (a× x+ b× y + c× z + d)× Îd = 0,

âd = bd1b
d
2a
d = −â.

(36)
Isoduality can represent the movement back in time in a causal way allowing

for the causal representation of antimatter with Dirac’s negative energies. This
representation is also useful for the study of biological structures.

2.9 Representation of biological structures in isospaces
Biological structures can be represented by isospheres in isoeuclidean spaces [14].
The isosphere in a three-dimensional Euclidean space Ê

(
r̂, δ̂, R̂

)
with diagonal

isounity is the isotopic image of an ordinary sphere with equation

r̂2 = x̂2 + ŷ2 + ẑ2 = R̂2. (37)

Similarly the isodual isosphere in space Êd2d
(
r̂d2dδ̂d2dR̂d2d

)
has the equation

r̂d2d = x̂d2d + ŷd2d + ẑd2d = R̂d2d, (38)

of which a particular case is the isodual sphere, namely, the image of the sphere
of Euclidean space

r̂d2d =
(
−x̂2 − ŷ2 − ẑ2

)
× Id = R2 × Id. (39)

The perfect sphericity in Euclidean space is given by

Ix = Iy = Iz = +1, (40)

but in general an iso-Euclidean space admits the property

Ix = b−2
1 6= Iy = b−2

2 6= Iz = b−2
3 6= +1. (41)
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Spinning hadrons are represented as isospherical in the isospace although their
projection on ordinary spaces have an arbitrary shape with a compact topology,
thus including all possible deformations which maintain the basic rotational sym-
metry [9].

Anti-hadrons are instead represented as isodual isospherical because all the
characteristics have changed sign, while conventionally anti-hadrons are repre-
sented with the same geometry used for hadrons, thus being insufficient for their
distinction.

For the simple case of an isocircle of radius 1 in the isoplane, the coordinates
are given by [8]:

x = isocosθ̂ = b−1
1 cosθ̂, (42)

y = isosinθ̂ = b−1
2 sinθ̂, (43)

θ̂ = b1b2θ, (44)

r2 = xb2
1x+ yb2

2y = b2
1isocos

2θ̂ + b2
2isosin

2θ̂ = cos2θ̂ + sin2θ̂ = 1. (45)

The Class I isosphere unifies the sphere and all its ellipsoidal deformations and
the same holds for the Class II isodual isosphere. The Class III isosphere unifies
the sphere and all quadrants. Currently known physical applications are restricted
to class I and II isospheres since there is no known physical phenomenon which
can alter, for example, ellipsoids in paraboloids.

3 Connections with non-Euclidean geometries
The first non-Euclidean property of iso-Euclidean isospace is that it is curved
unless the isometric is independent from local coordinates, but dependent on re-
maining variables δ̂ = δ̂ (t, ṙ, r̈).

In fact a given n-dimensional iso-Euclidean space admits the non-null Christof-
fel symbols [53]

Γlhk =
1

2
δ̂ij

(
∂δ̂kj
∂rh

+
∂δ̂jh
∂rk
− ∂δ̂hk

∂rj

)
, (46)

that characterize quantities such as the curvature tensor

Rj
lh =

∂Γlrh
∂rk

− ∂Γlrk
∂rh

− ΓjqkΓ
q
lh − ΓlqhΓ

q
lk, (47)

which is identically null when the isometric is independent of local coordinates.
It should be noted that the above notion of curvature emerges when iso-Euclidean

spaces are projected on our spaces over conventional fields because, isospaces
over isofields are isoflat due to their topologically equivalence to conventional
spaces.
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The emergence of curvature on an isopath was unexpected, so this feature was
identified 12 years after the identification of the iso-Euclidean geometry. This
property allows a geometric unification of special and general relativities into the
unit of relativistic quantum theories [54].

Lobacevski geometries are projections of iso-Euclidean geometries in the Eu-
clidean space. The following transformations

x′ =
x+ a

1 + ax
, (48)

y′ =
y (1− a2)

1
2

1 + ax
, (49)

map lines into lines and circles into circles. Hence, the Lobacevski geometry is a
special case of the broad class of isotropies.

A similar situation exists for the Minkowskian, Riemannian, symplectic and
other geometries which can all be described as special cases of iso-Euclidean
geometries.

In summary, the geometries studied in this section are the following [8] [9]:
1) Iso-Euclidean geometry of Class I, used for the characterization of biologi-

cal structures evolving forward in time;
2) Isodual Isoeuclidean geometry of Class II, used for the characterization of

biological structures evolving backward in time.
3) Isogeometry of Class III, used for the characterization of biological struc-

tures requiring time-inversions.
4) Iso-Euclidean geometries of Class IV, used for biological structures with

singularities.
5) Iso-Euclidean geometry of Class V, used for the most general possible iso-

topic representation of biological structures.

4 Isotopies of classical methods
The fundamental equations of contemporary mechanics are Newton’s equations
for a system of N particles with non-null masses in the second-order form [4]

ma
dvka
dt

= F SA (t, r, v) + FNSA
ka (t, r, v) , (50)

a = 1, 2, 3...N ; k = 1, 2, 3(= x, y, z); vka =
drka
dt

;ma 6= 0. (51)

But classical and quantum methods are structurally insufficient for the repre-
sentation of biological systems.
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To begin, all contemporary classical and quantum formulations are solely ap-
plicable to local-differential systems, as demanded by the underlying topology and
geometry, while we are primarily interested in non-local integral systems. Also,
the above methods are solely applicable to particles represented as perennial and
immutable massive points, while we are interested in representing particles as ex-
tended, non-spherical and deformable. Finally, the contemporary formulations of
Lagrange’s and Hamilton’s equations can only represent a rather small class of
Newton’s equations.

Fundamental analytic problem: Identify generalized analytic methods which
achieve a direct universality for the representation of all possible well behaved
nonlinear, nonlocal and non-Hamiltonian systems [5].

The first solution to the above problem was achieved by the creators of ana-
lytical mechanics, Lagrange and Hamilton themselves, because they formulated
their famous equations, not in the form currently used in mathematics, physics and
biology, but the one with external terms that represent precisely the forces FNSA,
i.e. the contact forces that cannot be represented by potentials.

It should be recalled that in Newtonian mechanics the potential U(t, r, v) must
be linear in the velocities to avoid a redefinition of the mass,

U (t, x, v) = Uk (t, x) vk + U0 (t, x) , (52)

and the Newton equation becomes{
mdvk

dt
− d

dt
∂U(t,x,v)
∂vk

+ ∂U(t,x,v)
∂xk

− FNSA
k (t, x, v)

}NSA
=
{
mdvk

dt
− ∂U(t,x,v)

∂xs
dvs

dt
+ ∂U0(t,x)

∂xk
− FNSA

k (t, x, v)
}NSA

= 0,

(53)

namely, they are not in general derivable from Lagrange’s or Hamilton’s equa-
tions.

The first step in the application of all isotopies is the identification of the inde-
pendent variables and related basic generalized units. The independent variables
in Newton’s equations are time t, coordinates r and velocities v.

So, we have time isounit, space isounit and velocity isounit

Ît = T̂−1
t , (54)

Îr = T̂−1
r , (55)

with total isounit
Îtot = Ît × Îv × Îr. (56)



Emanuele Velardo

The isotopic lifting of Newton’s equations in isospace Ŝ(t, r, v) of Class III
known under the name of Newton-Santilli isoequations [44] are given by

Γ̂k
(
t̂, r̂, v̂

)
= m̂ d̂v̂k

d̂t̂
− d̂

d̂t̂

∂̂Û(t̂,r̂,v̂)
∂̂v̂k

+
∂̂Û(t̂,r̂,v̂)

∂̂r̂k
=

= m̂ d̂v̂k
d̂t̂
− ∂̂Ûk(t̂,r̂)

∂̂r̂l
d̂x̂l

d̂t̂
+

∂̂Û0(t̂,r̂)
∂̂r̂k

= 0,

(57)

where m̂ is the ”isotopic mass”, the image of the Newtonian mass in the isospace
and d̂ is the isodifferential.

The important properties of Eqs. (57) are their direct universality for the rep-
resentation of all possible Newton’s equations (53) directly in the frame of the
experimenter, and Eqs. (57) are indeed derivable from an isotopic variational
principle [44].

The studies here presented introduce a representation of the actual extended,
non-spherical and deformable forms of particles at the primitive Newtonian level,
which then persists in classical analytical representations as well as in maps up
to the operator form. Newton-Santilli isoequations actually achieve these goals
by laying down the foundations for possible new advances in various fields. The
goal is achieved through the new degrees of freedom of the generalized unity of
theory that are evidently absent in conventional Newtonian, classical and quantum
formulations.

As a simple example, suppose that the body considered is a rigid spheroidal
ellipsoid with semiaxes n2

1, n
2
2, n

2
3 = constants. This form is directly represented

by the Santillian of the theory in the simple diagonal form T̂ = diag (n2
1, n

2
2, n

2
3)

mT̂ lk
dvi
dt
− T̂ lk

d

dt

∂Ul (t, r)

∂vl
vs + T̂ lk

∂U0 (t, r)

∂vl
= 0. (58)

Moreover, the nonspherical character of the shape emerges only in the projec-
tion in ordinary spaces, because at the isotopic level all particles are represented
via the isosphere, i.e., the perfect sphere in isospace

r̂2 =
(
x1n−2

1 x1 + x2n−2
2 x2 + x3n−2

3 x3
)
× Î ∈ R̂

(
n̂,+, ×̂

)
. (59)

The representation of shapes more complex than the spheroidal ellipsoids is
possible with non-diagonal isounits. The representation of the deformations of
the original shape due to motion within resistive media or other reasons, can be
achieved via a suitable functional dependence of the Santillian T̂ ik in velocities,
pressure, etc.

In particular, Newton-Santilli isoequations permit a novel representation of
nonpotential, variationally nonselfadjoint forces of the type

m
dvk
dt
− FNSA

k (t, r, v) = Î lkm
dT̂ jl vj
dt

, (60)
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while leaving unchanged the representation of conventional self-adjoint forces.

5 Isotopies of Hamiltonian mechanics

Newton-Santilli isoequations can be derived from a first-order isovariational prin-
ciple [4] [9].

Â =

∫ t2

t1

L(t, x, v, a...)dt =

∫ t̂2

t̂1

L(t̂, x̂, v̂)d̂t̂, (61)

along an isodifferentiable path

δ̂Â (P ) = ˆ∫
ˆ
1
tt̂2(δ̂r̂k ∂̂

∂̂r̂k
+ δ̂v̂k ∂̂

∂̂v̂k
)L̂(P̂ )d̂t̂ =

=
ˆ∫ t̂2
t̂1

(
∂̂L̂

∂̂r̂k
− d̂

d̂t̂

∂̂L̂

∂̂v̂k

)
L̂
(
P̂
)

(P ) δ̂r̂kd̂t̂.

(62)

By introducing the following isodifferentials into the isospace Ŝ (t, r̂, p̂) =

Ê (t)× Ê
(
r, δ, R̂

)
× Ê

(
p, δ, R̂

)

d̂t̂ = Itdt; d̂r̂
k = Î lkdr

l;
∂rl

∂rj
= δlj; d̂p̂

k = Î lkdp
l, (63)

with isounits

I2 = diag
(
Ît, Î , T̂

)
;T2 = diag

(
T̂t, T̂ , Î

)
, (64)

and the isocanonical momentum

p̂ =
∂̂L̂
(
t̂, r̂, v̂

)
∂̂v̂

= m̂v̂k − Ûk
(
t̂, r̂
)
, (65)

the iso-Hamilton equations, also called Hamilton-Santilli isoequations [17]-[24]
are given by

∂r̂k

∂t̂
=
∂H

(
t̂, r̂, p̂

)
∂p̂k

, (66)

∂p̂k

∂t̂
=
∂H

(
t̂, r̂, p̂

)
∂r̂k

. (67)
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6 Isotopies of quantum mechanics
The isotopy of the simple quantization via a variational principle led Santilli to
the identification of the isotopies of the Schrödinger equations at the foundation
of hadronic mechanics first achieved in he 1983 monograph [5] which can be
reviewed as follows.

Consider the isounitary operator Û which describes the evolution over time of
a hadronic isostate

ψ̂′ = Û×̂ψ̂ = êiĤt×̂ψ̂ = êiHSt × Î×̂ψ̂ = êiĤSt × ψ̂, (68)

Û×̂Û † = Û †×̂Û = Î , (69)

resulting in the Schrödinger-Santilli isoequation

Ĥ×̂|ψ̂ >= Ê×̂|ψ̂ >= E|ψ̂ >, Ê == E1̂ ∈ R̂, E ∈ R, (70)

with isoexpectation values of an observable Ĥ

< Ĥ >=
< ψ̂|×̂Ĥ×̂|ψ̂ >
< ψ̂|×̂|ψ̂ >

. (71)

Note that the same Hamiltonian H has basically different eigenvalues in quan-
tum mechanics (qm) and hadronic mechanics (hm), as transparent from the pres-
ence of the isotopic element in hadronic expressions

H|ψ >= Eqm|ψ > ĤS|ψ̂ >= E|ψ̂ >, Eqm 6= Ehm. (72)

7 Elements of genotopic methods
While isotopic formulations are naturally set to represent total conservation laws
under nonconservative internal effects, genotopic formulations generally admit no
conserved quantity, because they have been conceived [56] to characterize time-
rate-of-variations of a given quantity of which conservation is an evident particular
case. Genotopies are therefore ideally suited to represent the nonconservative
events such as nuclear fusions, chemical combustions or the growth of biological
structures.

Santilli genotopies are based on a further extension of numbers: the genonum-
bers. These are characterized by the two alternating multiplications to the right
and left, denoted by the symbols > and < respectively [56].

The ordering is compatible with other properties and axioms of number theory,
such as commutativity, associativity, etc.
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You can then use ordered fields to the left to represent motion backward in
time <F (a,+, <) and ordered fields to the right to represent motion forward in
time F> (a,+, >).

The genodifferential calculation is based on the following forward and back-
ward genodifferentials

d̂>rk = Î>k l̂drl (73)

<d̂rk =< Îkl dr
l. (74)

The related genotopic elements

∂>

∂rk>
= Slk

∂

∂rl
, (75)

<∂
<∂rk

= Rl
k

∂

∂rl
, (76)

are called the forward and backward Santillians, from which we obtain the Heisenberg-
Santilli genoequations [5] for the representation of the time rate of variation of
observables

idA
dt

= (A,H) = A < H −H > H = A<SH −HS>A,

idH
dt

= H(<R− S>)H) 6= 0.
(77)

8 Element of hyperstructural methods

Hyperstructures are some of the most complex mathematical structures conceived
by mathematicians until now. Part of their complexity is due to their virtually
endless variety of formulations and realizations which evidently multiply the dif-
ficulties for their selection and realization into a form suitable for applications.
The need for the hyperstructures in theoretical biology is unavoidable because the
isotopic and genotopic methods are effective up to a certain complexity of the
systems considered.

A central mathematical property of the hyperstructures is that of being multi-
valued, that is, products which traditionally have only one value, may assume a
series of ordered different values. This central feature of hyperstructure has a clear
potential for new frontiers in theoretical biology, because it is particularly suited
to represent, say, the birth of a new cell in which the original number of entities
was one and the final number of entities is two, which is precisely a realization of
the notion of multivaluedness.
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While the generalized units of isotopies and genotopies are given by simple
single-valued quantities, hyperunits have the form

(I>) = (I>1 (r, t, ṙ, r̈) I>2 (r, t, ṙ, r̈) ...) , (78)

from which we derive the hyperfield
(
F̂>
)

((â>) ,+, (>)) defined from a con-
ventional numerical field F (a,+,×) with elements

(â>) = a× (Î>), (79)

and related hypermultiplication

(α̂>)(>)(β̂>) = (α̂>)× (S1, S2...)× (β̂>), (80)

where the forward hyper-Santillian is given by (S) = (S1(t, r, ṙ...), S2(t, r, ṙ...)...)
.

The forward hyperdifferential calculus, apparently introduced here for the first
time, can be defined via the forward hyperdifferentials with corresponding for-
ward hyperderivatives with the corresponding ordered multiplications.(

d̂>
)
rk =

(
Î>ki

)
× dri. (81)

The first and perhaps most important implication of the hyperstructures is the
generalization of the four directions of time [15] into multivalued forms of the
type

1) Forward hypertime
(
t̂>
)

= t×
(
Î>t

)
;
(
Î>t

)
=
(
Ŝ−1
t

)
2) Conjugated forward hypertime

(
<t̂
)

= t ×
(
<Ît

)
;
(
<Ît

)
=
(
R̂−1
t

)
=(

Î>t

)†
3) Backward hypertime

(
t̂>
)d

= −
(
t̂>
)

;
(
Î>
)d

= −
(
Î>
)

4) Conjugated backward hypertime
(
<t̂
)d

= −
(
<t̂
)

;
(
<Î
)d

= −
(
<Î
)

In addition to the invariant

Length× Unity = Hyperlength×Hyperunity, (82)

another invariant characterizing time in biological systems is given by

(t2 − t1)× T̂ × (t2 − t1)× Î = (t2 − t1)2 × 1, (83)

(t2 − t1)× T̂ d × (t2 − t1)× Îd = (t2 − t1)2 × 1, (84)
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(t2 − t1)× T̂> × (t2 − t1)× Î> =

(t2 − t1)×< T̂ × (t2 − t1)×< Î =

(t2 − t1)× T̂>d × (t2 − t1)× Î>d =

(t2 − t1)×< T̂ d × (t2 − t1)×< Îd =

(t2 − t1)2 × 1.

(85)

By means of hyperunity one can generalize the action as a hyperaction and
define the forward hypernewton equations

(m̂>)

(
d̂>
)

(v̂>k )

d̂t̂>
− (Fk)

(
t̂>, r̂>, v̂>

)
; k = x, y, z. (86)

With an analogous logic, we also arrive at the equations hyperlagrange and
hyperhamilton equations.

9 Applications in physics
As we have seen, the implications of hadronic mechanics in physics are numerous
and can only be examined to a limited extent in this work, including:

9.1. Bohm’s hidden variables
Hadronic mechanhcs was conceived in 1978 [83] (see also the subsequent studies
[5] [9]) to provide explicit and concrete realizatons of Bohm’s hidden variables
[57] [58] via the Santillian S of isoproduct (1) and realizations of type (5) [9] [59]
[60], as a result of which Bohm’s variables are hidden in the associative prod-
uct, by therefore confirming Bohm’s view on the possible recovering of classical
determinism for operator formulations.

9.2. Entanglements
The main objective of hadronic mechanics is the representation of extended wave
packets in conditions of deep mutual entanglements with ensuing non-linear, non-
local and non-potential interactions that, evidently, are not representable via the
Hamiltonian.

R. M. Santilli [61] has first proved the exact character of Einstein’s criticism of
”quantum entanglements” (i.e., the representation of entanglements via quantum
mechanics) because, when the entangled particles are at large mutual distances
r, there is no known interconnecting interaction derivable from a potential V (r).
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In this case, the Hamiltonian of quantum mechanics H = K + V reduces to the
kinetic energyH = K+V = K = Σk=1,2(1/2mk) p

2
k and consequently, quantum

mechanics can only represent entangled particles as being free.
Santilli has then shown that the non-Hamiltonian interactions of particle en-

tanglements admit a full quantitative representation via the Santillian S of the
isoassociative product (1) [61] [73], by therefore achieving a quantitative rep-
resentation of particle entanglements in reversible, irreversible and multi-valued
conditions at the foundation of seminal advances in physics, chemistry and biol-
ogy [62].

9.3. Isorelativities
Isotopies allow axiom-preserving generalizations of Galileo and Einstein special
relativity into broader relativities for the representation of particles in deep mu-
tual entanglement, nowadays known as iso-Galilean and isospecial relativities or
isorelativities for short, that were first proposed by R. M. Santilli in paper [63] of
1983 on the Lorentz-Santilli generalization ŜO(3.1) for extended particles of the
Lorentz symmetry SO(3.1) for point-like particles of special relativity. Santilli
then studied isospecial isorelativity in numerous works, including Refs. [11] [12]
[54] and others.

The basic isoaxioms for the relativistic motion of extended particles in the k-
direction of inhomogeneous and anisotropoic physical media with local density
n4k, are:

ISOAXIOM-I: The speed of light within (transparent) physical media is given by:

Ck =
c

n4k

. (87)

ISOAXIOM-II: The maximal causal speed within physical media is given by:

Vmax,k = c
nk
n4k

. (88)

ISOAXIOM-III: The addition of speeds within physical media follows the isotopic
law:

Vtot,k =

V1k
nk

+ V2k
nk

1 + V1V2
c2

n2
4k

n2
k

. (89)

ISOAXIOM-IV: The dilation of time, the contraction of lengths, the variation of
mass and the energy equivalence within physical media follow the isotopic laws:

t′k = γ̂kt, (90)

`′k = γ̂−1
k `, (91)
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m′k = γ̂km, (92)

Êk = mV 2
max,k = mc2 n

2
k

n2
4k

, (93)

where:

β̂k =

vk
nk

c
n4k

, (94)

and
γ̂k =

1√
1− β̂2

k

. (95)

ISOAXIOM-V: The frequency shift within physical media follows the isotopic
law (for null aberration)

ωk = γ̂
(

1− β̂kcos (α̂)
)
ω. (96)

For experimental verifications of the above isoaxioms in transparent media, in-
cluding the first known causal representation of the superlumuinal electrons orig-
inating the Cherenkov light, see [54] and [62].

Santilli’s isotopic formulation of gravitation, including a geometric represen-
tation of interior and exterior gravitation and their apparent resolution of some of
century-old open problems of Einstein’s general relativity are presented in Sec-
tions 8.2 and 8.3 of [54] (see also the problem of the origin of gravitation outlined
in point 3 of Sect. 9.4).

9.4. Isocosmology
Isoaxiom V has been verified by a series of accurate experiments in Earth’s atmo-
sphere done in the USA and Europe (see [74] and papers quoted therein), where
Einstein’s relativity is inapplicable because the axioms of special relativity require
our space-time to be homogeneous and isotropic, while our atmosphere is inho-
mogeneous and anisotropic, thus implying the inapplicability of the geometrical
foundations of special relativity in favor of the Minkowski-Santilli isogeometry
and related isotopic covering of the Poincaré symmetry P̂(3.1) [53].

The Doppler-Santilli Isoaxiom V admits the expansion for the frequency shift
of light propagating in our atmosphere

∆ω = ±vk
c
±Hkd, (97)

where: Hk is (approximately) a constant; d is the distance covered by light; ±v
c

is the standard Doppler effect, and ±Hd is the new Santilli isoshift describing
the decrease (increase) of the frequency for light propagating within a gaseous
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medium at low (high) temperature without any relative motion between the source,
the medium and the observers.

In particular, the latter effect known as isoredshift (isoblueshift) essentially
consists of the release of energy by light to (acquisition of energy by light from)
the medium, thus requiring no relative motion, and these new effects have re-
ceived a rather wide experimental verification, firstly, for individual laser lights,
and secondly, for the solar spectrum [62].

Santilli’s isoredshift phenomenon is of fundamental importance for our un-
derstanding of nature and the cosmos because it provides a consistent alternative
explanation of the cosmological redshift to the current interpretation via the ex-
pansion of the universe. In fact, said phenomenon suggests that light loses energy
on its way to the solar system due to interaction with the intergalactic medium
mostly composed by extremely cold Hydrogen gas.

Within the indicated experimental setting, the background microwave radia-
tion results to be due to the continuous release by intergalactic Hydrogen of the
energy continuously acquired by intergalactic light during its travel to reach Earth.

Independently from the experimenta verification on Earth [74], Santilli’s isored-
shift representation of the cosmological redshift of galactic light and related cos-
mological isosymmetry P̂(3.∞, also known as Santilli’s isocosmology [64], are
preferable over the representation via the expansion of the universe because the
latter implies the Big Bang theory, namely, a theory with a multitude of problems
still unresolved after decades of studies [110].

It should also be recalled that Einstein, Hubble, Hoyle, Zwicky, Fermi, de
Broglie and other famous scientists died without accepting the expansion of the
universe because the representation of Hubble’s law on the cosmological redshift
of galactic light with the Doppler axiom of special relativity,z = Hd = v

c
(where

now H is Hubble’s constant and d is the travel of galactic light to reach us) implies
a return to the Middle Ages with Earth at the center of the universe due to the
dependence of the redshift from all possible radial directions from Earth [62]
[110].

9.5. Heisenberg s uncertainty principle
R. M. Santilli has addittionally shown that Heisenberg’s uncertainty principle for
electromagnetic interactions is inapplicable for extended nucleons under strong
nuclear interactions by therefore creating the grounds for advances in nuclear
physics that would be otherwise impossible.

Santilli first submitted the hypothesis of the inapplicability of Heisenberg’s
uncertainty principle in nuclear physics in the 1981 paper [75] written at Harvard
University under DOE support because, in view of the strength of nuclear forces,
the standard deviations for nuclear constituents must be smaller than the corre-
sponding deviations for atomic electrons orbiting in vacuum around their nuclei,
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which hypothesis was confirmed in the 1994 paper [76] on the uncertainties under
gravitational collapse. The progressive recovering of Einstein’s determinism with
the increase of the nuclear density was proved in the 2019 paper [77] and elabo-
rated in details in Refs. [78]-[80] (see independent reviews [81] [82]), resulting in
a new principle originally submitted under the name of Einstein’s isodeterminism
[77] and nowadays known as hadronic isodeterminism.

In summary, the recovery of determinism is evidenced by the formula

∆r∆p ' 1
2
< ψ̂ (r̂) | ∗ ˆ[r̂, p̂]∗ |ψ̂ (r̂) >=

= 1
2
< ψ̂ (r̂) |Ŝ ˆ[r̂, p̂]̂S|ψ̂ (r̂) >= 1

2

∫ +∞
−∞ ψ̂ (r̂)† Ŝψ̂ (r̂) d̂r̂ = 1

2
S

(98)

generalising Heisenberg’s uncertainty principle in conditions where quantum
mechanics is unapplicable.

9.6. Pauli’s excliusion principle
An important contribution by R. M. Santilli in need of experimental verification
has been the apparent lack of universal validity of Pauli’s exclusion principle in
physics.

The studies in the field initiated with the 1978 paper [83] written at Harvard
University under DOE support indicating the need for experimental verifications
of Pauli’s exclusion principle beginning with its title. The studies were then con-
tinued in the 1990 paper [84] and completed in the 1998 paper [85] on the gen-
eralized structure of the notion of spin for extended particles under contact non-
Hamiltonian interactions (see also [79]).

The inapplicability of Pauli’s exclusion principle in nuclear physics was read-
ily suggested on axiomatic grounds from the inapplicability of quantum mechan-
ics for nucleons under deep entanglements, with ensuing non-linear, non-local and
non-potential interactions [49], under which conditions there is no possibility of a
consistent formulation of said principle.

The progressive inapplicability of Pauli’s exclusion principle in atomic struc-
tures is predicted from the increase of the entanglement of orbital electrons with
increase of the atomic number due to the experimentally established decrease of
inter-orbital distances.

Said entanglements of orbital electrons cause a structural generalization of
the SU(2)-spin Lie symmetry into the Lie-Santilli ŜU(2)-spin isosymmetry [85]
whose spin for the fundamental representation remains 1/2, but the isostates are
generalized due to an explicit and concrete realization of Bohm’s hidden variables
by the Santillian S which has to be included in all possible products [84], with
ensuing lack of general antisymmetric character of the isostates.

For example, to represent the entanglement of orbital electrons, the antisym-
metric state |ψ(x, y)〉 = Σx,yN(x, y)|x, y〉, N(x, y) = −N(y, x) representing
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Pauli’s exclusion principle on a Hilbert spaceH over the field of complex numbers
C, has to be mapped into the isotopic form |ψ̂(x̂, ŷ)〉 = Σx̂,ŷM(x̂, ŷ)S|x̂, ŷ〉, x̂ =

x1̂, ŷ = y1̂ on an iso-Hilbert isospace Ĥ over the isofield Ĉ, where the isocoef-
ficient M may remain antisymmetric on Ĥ over Ĉ, but the projection of the term
MS on our space-time is, in general, no longer antisymmetric.

9.7. The structure of unstable particles
It should be indicated that, thanks to the new mathematics, relativities and phys-
ical laws, hadronic mechanics has permitted basically new quantitative structure
models of unstable particles which: 1) Have physical constituents produced free
in their decays; 2) Admit mechanisms for the spontaneous character of the de-
cays; and 3) Achieve compatibility with conventional SU(3)-type classifications
of particles, including:

1) The representation of all characteristics of the π0 meson, including charge
radius, mass, spin, charge, magnetic moment, mean life and spontaneous decays,
in which the π0 is a hadronic bound state of an electron e− and a positron e+

(”compressed positronium” down to 1 fm of mutual distances), whose sponta-
neous decay is due to electron-positron annihilation (see the original proposal in
Section 5.1 of the 1978 paper [83], recent update [80] and papers quoted therein).
The π± mesons are characterized by a hadronic bound state of a π0 meson and an
e± electron totally immersed/entangled in its structure, with ensuing Lie-isotopic
angular momentum equal but opposite to the spin for stability and null total an-
gular momentum [83] [80]. The remaining mesons result to be hadronic bound
states of e±, π0 and π± in conditions of total mutual immersion/entanglement.

2) The representation of all characteristics of the µ± leptons, including charge
radius, mass, spin, charge, anomalous magnetic moment, mean life and sponta-
neous decay, in which the µ± leptons are bound states of an electron-positron pair
and an e± at mutual distances bigger than 1 fm, i.e., being such for the ground
state of the angular momentum to be null, resulting in a state with spin 1/2 [83]
[80]. The first and only known numerically exact and time invariant represen-
tation of the anomalous magnetic moment of the muons via relativistic hadronic
mechanics is presented in the recent paper [86]. The structure of the remaining
leptons follows bootstrap guidelines similar to those for mesons.

3) Stars initiate their lives as aggregates of Hydrogen that increase by accre-
tion during their travel in Hydrogen rich intergalactic spaces. When the pressure
in their interior reaches sufficient values, stars synthesize the neutron n as a ”com-
pressed Hydrogen atom” [87], i.e. as an electron e− compressed inside the hyper-
dense proton p+. Thereafter, Stars initiate the synthesis of Deuterons D from a
proton and a neutron, after which they initiate the production of light.
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In view of the above fundamental character, R. M. Santilli dedicated decades
of research to the neutron synthesis and did achieve the first and only known,
exact and invariant representation of all characteristics of the neutron as a hadronic
bound state of an electron and a proton at the non-relativistic and relativistic levels
(see the review in [62] and original references quoted therein).

Jointly, Santilli dedicated an additional decade of experimentations on the lab-
oratory synthesis of the neutron from a commercially available Hydrogen gas [89],
resulting in the production and sale by the U.S. publicly traded company Thun-
der Energies Corporation of the Directional Neutron Source (DNS), namely, an
equipment producing on demand a flux of thermal neurons synthesized from a
Hydrogen gas in the desired direction and with the desired intensity [90].

By recalling that stars initiate their lives as being aggregates of Hydrogen and,
thanks to the new hadronic uncertainty principle, Santilli achieved a rigorous re-
duction of all matter in the universe to protons and electrons in conditions of
increasing complexities, thus requiring more advanced mathematics [44].

Additionally, in his 1974 paper [92] while being in the faculty of the Institute
for Theoretical Physics at MIT, Santilli proved the Poincaré hypothesis that the
exterior gravitational field Gµν = Rµν = 1

2
Rgµν of a neutral massive body is

entirely representable via the electromagnetic tensor T intµν characterized by the
rotating interior changes.

Note that the Poincaré-Santilli origin of gravitation cannot be consistently
studied via Einstein’s general relativity because: the former deals with the interior
gravitational problem while the latter solely deals with the exterior gravitational
problem; the former requires a ”source” of the gravitational field which is prohib-
ited by the latter as a necessary condition io represent gravitation via the curvature
of space; the former entirely reduces the mass/energy of a ”neutral” body to the
interior electromagnetic field Gµν = KT intµν , while the latter do admit the field
Gµν = Rµν = 1

2
Rgµν = K ′TExtµν in the right-hand-side of the field equations, but

only for the total charge of the body whose contribution to gravitational field, e.g.,
of Earth, is of the order of T extµν ≈ 10−35Gµν , thus being ignorable for the study of
the origin of gravitation; and for other insufficiencies of general relativity studied
in works [93] [94].

In view of the above momentous implications, the supporters of the conjecture
that unidentifiable point-like quarks are the physical constituents of the hyper-
dense neutron, to achieve credibility, should prove that at the time of the neutron
synthesis the permanently stable proton and electron disappear to be replaced by
the hypothetical quarks and additionally, at the time of the spontaneous decay
of the neutron, the hypothetical quarks shuld disappear and be replaced by the
permanently stable proton and electron [88].

9.8. The structure of stable nuclei
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Thanks to all preceding mathematical, theoretical and experimental advances,
Santilli additionally achieved the first and only known exact and invariant hadronic
representation of all characteristics of the Deuteron [95], as well as its stability
[96], despite the natural instability of the neutron and the strongly repulsive pro-
tonic Coulomb forces, resulting in a model which is extendable to all stable nuclei
[97].

9.9. HyperFusions
As it is well known, the repulsive Coulomb force between natural, thus positively
charged nuclei, acquires such extreme values at mutual distances of the order of
1 fm to prohibit the achievement of sustainable and controllable nuclear fusions.

To initiate studies toward the resolution of the above Coulomb barrier, Santilli
proposed the synthesis via specially designed hadronic reactors of pseudo-nuclei,
which are hadronic bound states of electrons and nuclei that, for sufficiently small
values of the atomic number, are negatively charged, thus being attracted by natu-
ral positively charged nuclei, resulting in inevitable nuclear fusions called Hyper-
Fusions [98]- [99].

The existence of Santilli’s pseudo-nuclei has been confirmed by experiments
[100] which also provide a disproof of Heisenberg’s uncertainty principle in nu-
clear physics. The sustainable production of excess thermal energy over the used
energy has been independently certified in Refs. [101]-[104] jointly with the lack
of harmful radiations.

10 Applications in chemistry
The application of hadronic mechanics to chemistry has naturally opened the way
to new advances, marking the beginning of ”hadronic chemistry” [13], with new
interpretations and predictions in the field of chemical bonds as well as phenom-
ena such as superconductivity.

10.1. Molecules
Following the achievement of maturity in 1996 of isomathematics [44] and related
isomechanical branch of hadronic mechanics [8] [9], Santilli confronted the cen-
tral open problem of quantum chemistry: the lack of representation in one century
of the attraction between identical electron pairs in valence bonds as existing in
nature, with ensuing lack of a quantitative representation of molecular structures.
In fact, the repulsive Coulomb force between identical electron pairs at valence
mutual distances reaches such astronomical values (of about 230 Newtons) that
cannot be overcome by any existing, quantum chemical valence bond.

Santilli frst wrote a series of papers reviewed from Chapter 4 on of the 2001
monograph [13] on the generalization of the quantum notion of point like particles
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under the Poincaré symmetry P (3.1) into extended isoparticles in deep mutual
entanglement under the spinorial covering of the Poincaré symmetry P̂(3.1) [53],
Santilli then achieved the first and only known attraction between the identical
electrons of a valence pair [13] reviewed in details in Appendix B, resulting in the
new notion of valence bonds called strong isovalence bonds which are character-
ized by very small values of the Santillian S, with ensuing rapid convergence of
perturbative series.

Thereafter, Santilli and the chemist Donald Shillady achieved the first known
exact and invariant representation of binding energies as well as electric and mag-
netic moments of the Hydrogen [65] and water [66] molecules.

10.2. Magnecules
Following the achievement of a quantitative representation of molecular struc-
tures, Santilli confronted a second, century old, open problem in chemistry partic-
ularly important for fuel combustions and clean environmental usages: the rather
general belief that the valence bond and related chemical species of molecules can
represent the bond of all possible clusters existing in the universe.

Following due mathematical, theoretical and experimental studies, after two
centuries of dominance in chemistry by the chemical species of molecules, Santilli
introduced in the 1998 memoir [107] the new chemical species of molecules which
are stable clusters comprising individual atoms (such as H,O,C), dimers (like
H−O,C−H), and conventional molecules (e.g.,H2, C−O,H−O−H) bonded
together by opposing magnetic polarities of toroidal polarizations of atomic or-
bitals, either existing in nature, e.g., in biological structures, or industrially in-
duced in spherical atomic distributions (see [13] and quoted references). Note
that the term ”magnecules” was introduced by Santilli to distinguish them from
conventional ”molecules” as well to emphasize the magnetic origin of their bond.

To substantiate the existence of magnecules, Santilli conducted systematic
measurements on gases created by DC arcs submerged in liquids [107] and the
use of a gas chromatograph-mass spectrometer (GC-MS) equipped with an in-
frared detector (IRD). The key findings from these experiments include the de-
tection of peaks with mass up to 1,000 atomic mass units (a.m.u.) that cannot be
explained via molecular bonds, all detected peaks having no IRD signature against
the existence of distinct IR signatures for molecules.

Additionally, magnecules demonstrated stability at ambient temperatures and
pressures and exhibited properties not accountable via molecular bonds, such as:
anomalous combustion temperatures; anomalous energy content; anomalous ad-
hesion to substances; and other features.

10.3. Liquids
Following the achievement of a quantitative representation of molecular structures
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and the discovery of the new chemical species of magnecules, Santilli confronted
a third, century old, open basic problem in chemistry: the attractive force between
water molecules in their liquid state.

The transition of the water states from liquid to gas indicates that the attrac-
tive force between water molecules ceases to exist at the boiling temperature, by
therefore suggesting that liquid water has a magnecular structure [70] and, more
specifically, that 1000 C is the Curie temperature of the water magnecular bond.

An inspection of the water moleculeH−O−H indicated that the twoH-atoms
of the water molecule have precisely the toroidal distribution of magnecular struc-
tures, thus having magnetic polarities North-South along the two symmetry axes
that can bond with opposite polarities resulting in the conception of liquid water
as a state in which each water molecule is bonded to four other water molecules.

Needless to say, the confirmation of the magnecular structure of liquid wa-
ter would imply that all liquids have the same structure [70]. As an example,
the elementary constituents of ordinary gasoline are gasoline molecules while
the gasoline liquid state would be characterized by magnecular bonds of gaso-
line molecules.

10.4. Magnecular fuels

The above mathematical, theoretical and experimental studies lead to the indus-
trial development and sale by the U. S. publicly traded company Magnegas Cor-
poration and others of a variety of new gaseous fuels with magnecular structure
synthesized from liquid feedstock among which we mention: the new gaseous
fuel magnegas with complete combustion (no combustible contaminants in the
exhaust, i.e., no C-O, no HC, etc.) [13]; the new chemical species of Magne-
Hydrogen whose specific weight and energy content are a multiple those of the
conventional Hydrogen H − H [67]; the new gaseous and combustible form of
water (called by Santilli the HHO gas) which contains all needed oxygen for com-
bustion [68]; and others (for details, see monograph [108]).

10.5. HyperCombustion

The combination of the studies reported in this and in the preceding section lead
Santilli to the proposal of the new hypercombustion [71] which consists in the
clean combustion of fossil fuels via specially designed sparks suitable to activate
the HyperFusions of Sect. 9.9 in parts per millions without harmful radiations,
by therefore multiplying the power output of fossil fuels, whose sole gaseous ex-
haust is Carbon DioXide CO2 that can be collected and recycled into Carbon and
Oxygen via the hadronic reactors of Sect. 9.9.
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11 Applications in biology
The biological studies reported in this section were initiated in the 1990’s by the
Australian conciologist C. Illert [27] with his discovery that the time evolution
of sea shells cannot be consistently represented in the Euclidean space of our
sensory perception because requiring a generalized space with two values for each
coordinate (see Appendix A for details).

Independently from C. Illert, R. M. Santilli introduced in the early 1980’s iso-,
geno- and hyper- mathematics for novel physical advances and proposed in 1994
their applications to biology [14].

Following initial studies by a number of biologists, the next important event
in the field occurred with the first and only known quantitative representation of
life intended as the difference between inorganic and organic molecules by R. M.
Santilli and the Greek mathematician Thomas Vougiouklis [72].

The next significant event has been the application to biology by E. Velardo
and F. Inglese of the lifelong physical studies on entanglements by R. M. Santilli
[111] (see also the related studies on correlations of Appendix C), which studies
have shown that a number of anomalous actions by biological entities, which are
generally considered to be supernatural, can in fact be quantitatively represented
as due to the entanglement of the wave packets of biological constituents.

Additionally, Santilli’s magnecules (Sect. 10.3) have important applications
in biology due to their crucial role for the liquid state of water, and therefore, for
the entire body of a living organism.

Additionally, magnecules have an important role for expected new advances
in other biological aspects. For instance, it has been shown that a human DNA
does not have six billions valence electrons necessary to bond its billion atoms
into a collection of molecules. Consequently, in Santilli’s view, the DNA cannot
be consistently qualified as being a ”molecule” because it appears to have an ex-
tremely complex chemical composition including, of course, molecules, but also
magnecules as outlined in Sect. 10, as well as additional, more complex chemical
species currently under study, such as that of the multivalued ”hypermagnecules”.

Also, A. L. Kalcker has advanced the hypothesis that HHO magnecule plays
a fundamental role in physiology in the oxidation and energy production of the
organism [69].

Needless to say, Santilli’s iso geno- and hyper-mathematics are expected to
have intriguing applications to our notion of time. Consider, for instance, our
instinctive perception of time. When investigating any physical, chemical or bio-
logical structure, we instinctively assume that they have our own time.

Biological structures represented with isotopic, genotopic and hyperstructural
methods generally have their own/intrinsic time which is generally different than
our own perception of time [14], both in its rate of flow and in its direction, as well
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as being of progressively increasing complexity depending on the complexity of
the system considered.

Assume the isotopic representation of certain biological structures. The prob-
lem which has to be addressed and resolve in due time is whether we are referring
to a purely mathematical property or to an actual intrinsic behavior of nature.

For these studies, consider the following isoinvariant [8]

D × It = D̂ × Ît, (99)

where: D is the considered time interval; It is our unit of time (e.g., It = 1 sec);
D̂ and Îf are the corresponding isotopic forms.

From this invariant it is possible to derive the time interval of the organism
considered because, in the event the unit of time becomes an isounit with values
Ît = 10 × It. Then, the intrinsic time flow of the considered biological structure
must decrease tenfold with respect to our time flow as a necessary condition for
the entity to be perceived by our senses as evolving with our time.

The new isomathematics suggests that there are infinite dimensions of time
and that time appears one-dimensional only when projected into our sensory per-
ception.

Studies have shown that isotopic representations of biological structures may
perform a closed loop inside the forward light cone, i.e., the capability of initiating
at one point t in space-time, move arbitrarily forward or backward in time and then
returning to the original time t. The emergence of multivalued hyperstructures is
simply unavoidable if one reflects a moment on the fact that the cells of a complex
organism are all generally different, thus requiring different isounits of space and
time.

A similar argument is valid with regard to space, since space itself can be
different from one organism to another. Thus, the perceived shapes can differ
depending on the observer as well as the dimensions (an object can be perceived
as very small or very large in different isogeometries) [14] and the evolution over
time of the shape goes against our intuition.

For example, an object of 0.03 cm in diameter expressed in a unit of 1 cm
appears to be 300 cm in a unit of 0.0001 cm.

Hyperstructures can cause changes in size such as isotopie, and also an in-
crease or decrease of the same dimensionality. We are not sure of the correctness
of this description but we believe that our perception of space is insufficient for
quantitative scientific studies in biology.

We should also not forget that simple observations of the behavior of plants
indicate quite clearly the existence of anomalous space behaviors, that is, space
behavior anomalous with respect to our perception of space. We have all observed
plants from ordinary seeds grown inside bottles which stop their growth without
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reaching the walls, or the rather peculiar growth of plants along directions com-
patible with their environment. Since plants do not have eyes, the existence of a
space behavior in biological structures beyond our perception appears to be evi-
dent. The only issue which is open on scientific grounds is its correct quantitative
representation.

The implications for locomotion are interesting. Biological structures repre-
sented with isotopic, genotopic and hyperstructural methods can perform internal
motion according to Santilli ”geometric propulsion” [15] that is, the possibility
of locomotion from one point to another via the alteration of the geometry itself,
without any actual motion or application of a Newtonian force.

Appendix A: Isotopic representation of sea shells
C. Illert [27] has shown that a graphic or computer representation of sea shell
growth require multivalued Euclidean spaces subsequently formulated by R. M.
Santilli as hyperspaces [14]. In fact, the use of the Euclidean geometry alone does
not allow to represent sea shell growth because they are first distorted and then
break in computer simulations.

Therefore Illert has shows the possibility of obtaining a correct representation
of sea shell Angaria delphinus by doubling the number of dimensional axes.

The equations describing the shell are:

x = aeαΦ
(
1 + eΦcos (2γΦ)

)
cosΦ, (100)

y = aeαΦ
(
1 + eΦcos (2γΦ)

)
sinΦ, (101)

z = beβΦsin (γΦ) . (102)

The Lagrangian must have a structure of the type:

L = K1 (ψ × ψ)n +K2 (ψ × ξ)m +K2 (ξ × ξ)m . (103)

The growth of the shell is simulated correctly with the isolagrangian:

L̂ =

K1

(
d̂ξ

d̂t
×̂ d̂ξ
d̂t

)n̂

+K2

(
d̂ξ

d̂t
× ξ

)m̃

+K2 (ξ × ξ)p̂
 Î . (104)

Similar representations are possible for all sea shells.

Appendix B: Isotopic representation the valence bonds
Quantum mechanical isotopies (hadronic mechanics) has been able to represent
the attraction between the two identical electrons in valence bonds outlined in
Sect. 10. This result can be reviewed as follows.
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Thanks to the use of hadronic mechanics, Santilli has first shown in the 1978
memoir [83] the existence of a new electron-positron bound state in relation to
positronium (the only bound state predicted by quantum mechanics) which is
identifiable with π0 meson (Sect. 9.7) due to the non-local and non-Hamiltonian
interaction of the wave packets. These interactions can be represented via the Hul-
ten potential, which is predominant over the Coulomb interaction when distances
are very short.

The model therefore provides a quantitative representation of the transition of
the positronium into the π0-meson(

e−↑ , e
+
↓
)
QM
−→ π0 =

(
e−↑ , e

+
↓
)
HM

. (105)

This phenomenon also provides a quantitative representation of the Cooper
pairs in superconducting materials and studies conducted by Animalu and San-
tilli [109] show full compatibility of this hypothesis with experimental tests of
superconductivity.

A Cooper Pair (CP) can then be represented via a structure similar to that of
valence bonds

CP =
(
e−↑ , e

−
↓
)
HM

, (106)

the model has also been able to predict the experimental behavior of the material
Y Ba2Cu3O6, giving further scientific credibility to the model.

The modified Schrödinger equation is then given by(
1

2m
p̂kSp̂

k +
e2

r
Î − z e

2

r

)
Sψ̂↑ (t, r) = Eψ̂↑ (t, r) , (107)

where the term −z e2
r

denotes the potential of the electric field of the atomic nu-
cleus, since the valence electrons are not isolated in space.

An explicit expression of the Santillian was first located in [83] and it is given
by:

Î = i/Ŝ = e−<ψ̂↑|ψ̂↓> ' 1− < ψ̂↑|ψ̂↓ >
ψ↑

ψ̂↓
+ .... (108)

Ŝ = e+<ψ̂↑|ψ̂↓> ' 1+ < ψ̂↑|ψ̂↓ >
ψ↑

ψ̂↓
+ ... (109)

leading to the Hulten potential, which expresses the contact potential:

V0
e−

r
R

1− e− r
R

' V0
R

r
, (110)

with V0 = e2 < ψ̂↑|ψ̂↓ >.
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It is a great achievement that the isotopic model of the pion π0 correctly pre-
dicts all meson characteristics such as resting energy, charge, radius, magnetic
moment and even decay time.

The result becomes all the more remarkable when it has been extended to
unstable mesons and unstable baryons, including the representation of neutron
synthesis from protons and electrons, a process of great importance that occurs in
stars. The new isotopic structure of the neutron n = (p+, e−)HM synthesized in
stars should have significant repercussions also in theoretical biology.

In conclusion, we observe that quantum mechanics can be considered a special
case of hadronic mechanics in which < ψ̂↑|ψ̂↓ >= 0; Î = 1, and occurs when the
superposition of the wave packets of two electrons (at the origin of the non-local
interaction) becomes negligible.

Appendix C: Isotopic representastion of correlations
In particle physics the Bose-Einstein correlation has been experimentally detected
in the proton-antiproton annihilation at both high and low energies. It may be rec-
ommendable to briefly outline the latter correlation because its reformulation in
theoretical biology is straightforward. In the Bose-Einstein correlation, the p− p̄
fuse together into a state called the fireball, which then decays rapidly into vari-
ous particles whose end results are mesons (obeying the Bose-Einstein statistics)
which, even though at large distances, are correlated.

In the 1992 memoir [112], R. M. Santilli has shown that quantum mechanics
cannot consistently represent the Bose- Einstein correlation (see also paper [113])
in view of the following insufficiencies. Protons and antiprotons are not ideal
spheres with points in them, but are instead constituted by some of the densest
media measured in laboratory by mankind until now. Being the result of the mu-
tual penetration of the hyperdense protons and antiprotons, the fireball is therefore
one of the most general known non-local integral systems. But nonlocal-integral
interactions are non-Hamiltonian both conceptually and technically. It then fol-
lows again that quantum mechanics is not expected to be exactly valid for the
Bose-Einstein correlation in view of its central requirement of representing every-
thing with one single quantity, the Hamiltonian.

But even assuming that the above insufficiency is by-passed via not so infre-
quent machinations to preserve old knowledge (e.g., the addition in the Hamilto-
nian of the ”nonlocal-integral potential” (which, has no mathematical or physical
sense), quantum mechanics still remains structurally unable to represent correla-
tion in an exact way.

This is due to the limitations of its very axioms as compared to the experimen-
tal evidence of the correlation. As an example, the two-body quantum mechanical
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axiom of expectation value of the n- point correlation function is given by

Cn =
∑
k

(< k, a|k, a > + < k.b|k, b >, ) (111)

thus lacking the cross terms < k, a|k, b > representing the correlation. By com-
parison, the axiom of isoexpectation values of hadronic mechanics is given by

Ĉn =
∑
k,i,j

(
< k, a|Ŝkk|k, a > + < k.b|Ŝkk|k, b > + < i, a|Ŝij|j, b >,

)
(112)

and exhibits precisely the cross terms needed for a description of correlation from
first axiomatic principles.

In current ”semiphenomenological models”, the cross terms are introduced
via a number of artificial methods which, however, violate the quantum axiom of
expectation values, thus confirming Santilli’s view [112] that quantum mechanics
cannot provide an axiomatically and physically consistent description of the Bose-
Einstein correlation.
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