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Introduction

20th century mathematics underlying mainstream physical and chemical theories is local-differential, thus
solely permitting the representation of point-like masses. The Italian-American scientist R. M. Santilli
accepted such a mathematics for the representation of particles when the masses are at large mutual distances,
thus allowing point-like approximations, as it is the case for the atomic structure. Santilli then identified clear
limitation of 20th century mathematics for the representation of extended charge distributions or
wavepackets in conditions of partial or total mutual penetration, as it is the case for the synthesis of the
neutron from a proton and an electron in the core of a star; for the structure of nuclei, stars and black holes; for
the molecular bond of two identical valence electrons in singlet coupling; and other composite systems.

When at the Department of Mathematics of Harvard University in the late 1970s, Santilli developed a series
of new mathematics for the representation of extended charge distributions or wavepackets when in condition
of partial or total mutual penetration, resulting in:

1. The novel, single valued- isomathematics for the representation of composite matter-systems reversible
over time of with extended constituents at short mutual distances;

2. The novel, single valued genomathematics for the representation of composite matter-systems or reactions
irreversible over time with extended constituents at short mutual distance;

3. The novel multi-valued hypermathematics for the representation of biological matter-systems.

Additionally, Santilli constructed their anti-Hermitean isodual images for the representation of
corresponding antimatter-systems in conditions of increasing complexity. These varieties of new
mathematics are today collectively addressed by the name of hadronic mathematics, in view of their
applications. The special issue of AJTMP on the Foundations of Hadronic Mathematics shall review the above
novel mathematics and present new advances for the use in subsequent special issues devoted to its
applications.

For more information about the Special Issue, please pay a visit to the following website:
http://www.sciencepublishinggroup.com/specialissue/122013
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Abstract: In this paper, we outline the various branches of hadronic mathematics and their applications to corresponding
branches of hadronic mechanics and chemistry as conceived by the Italian-American scientist Ruggero Maria Santilli. According
to said conception, hadronic mathematics comprises the following branches for the treatment of matter in conditions of
increasing complexity: 1) 20th century mathematics based on Lie’s theory; 2) IsoMathematics based on Santilli’s isotopies of
Lie’s theory; 3) GenoMathematics based on Santilli’s formulation of Albert’s Lie-admissibility; 4) HyperMathematics based on a
multi-valued realization of genomathematics with classical operations; and 5) HyperMathematics based on Vougiouklis H,
hyperstructures expressed in terms of hyperoperations. Additionally, hadronic mathematics comprises the anti-Hermitean images
(called isoduals) of the five preceding mathematics for the description of antimatter also in conditions of increasing complexity.
The outline presented in this paper includes the identification of represented physical or chemical systems, the main
mathematical structure, and the main dynamical equations per each branch. We also show the axiomatic consistency of various
branches of hadronic mathematics as sequential coverings of 20th century mathematics; and indicate a number of open
mathematical problems. Novel physical and chemical applications permitted by hadronic mathematics are presented in
subsequent collections.

Keywords: Santilli Isomathematics, Genomathematics, Hypermathematics

1. 20th Century Mathematics, Mechanics mm=nxmlxn=nxl=nvn€F Q)

and C hemistry Measurement units of time, energy, etc. all positive
Ordinary functional analysis f(r) € F,

Ordinary differential calculus

Conventional Lie theory

L.1. Represented Systems

Single-valued, closed-isolated, time-reversible systems of

pf)mt-hke part{cles.moYmg in vacuum solely under action at a X0 X)) = X; X X; — X; x X; == Cilj' X Xy 4
distance Hamiltonian interactions, such as the structure of
atoms and molecules. AW) = eXWXi x A(0) x e~ PWXX, )
1.2. Main Mathematical Structure Euclidean geometry and topology
Basic unit E(r,6,1),r = (r*),k = 1,2,3,6 = Diag.(1,1,1), (6)
I=+1 Q)] rP=rix§;xri=r+r}+rf€F, @)
Basic numeric fields n = real, complex, quaternionic Minkowskian geometry
numbers

M@,n,D:x = (x"),u=1234x*=t, 8)
F(n,x,1),n )
n = Diag.(+1,+1,+1,—c?), )
Basic Associative product
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x2=xtxn,, xx¥=xf+x5+x5—t*c?€F, (10)

Riemannian geometry

R(x,g(x),D:x=(x"),u=1234x*=t, (1)
x2=xt X g(x)y Xx¥ EF (11)
x2=x* X gy Xx” €F (12)
Symplectic geometry.
w = dr¥ Adp, (13)
1.3. Dynamical equations
Newton equation
mx%—FSA(t,r,v,) =0, (14)
Variational principle
A =6 [(pyxdr¥—Hxdt)=0. (15)
Hamilton’s equations without external terms
k
Hilbert space H over C with states Jiy > over (C)
Expectation value of a Hermitean operator A
<A>=<yP|xAX Y >EC(, a7
Heisenberg equation
ixZ=[AH =AxH-HxA, (18)
Schrédinger equations
Hxpp>=Exyp> (19)
pX|p>=—ix3[p> (20)
Dirac equation
M"Y Xy, Xxp,—ixmxc)X|p>=0. 21)
P} =V X1 + VU Xy, =2%X10,, - (22)

Comments and References

The literature on 20th century mathematics, mechanics and
chemistry is so vast and so easily identifiable to discourage
discriminatory partial listings.

2. Isomathematcs, Isomechanics and
Isochemistry

2.1 Répresented Systems [1-5]

Single-value, closed-isolated, time-reversible system of
extended-deformable particles with action at a distance
Hamiltonian and contact non-Hamiltonian interactions, such
as the structure of hadrons, nuclei and stars, in the valence
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electron bonds and other systems.
2.2. Main Mathematical Structure s [1-5]
Santilli IsoUnit [ and isotopic element 7
I=itrpay,..)=1/Trpa,....) >0, (23)
Santilli IsoFields

F@,RD,Ai=nxI, (24)

Santilli isoproduct
ARM=AxXTxmEeF, 25)
[xAa=AKI=nAvAEeF, (26)

Representation via  the  isotopic element of
extended-deformable particles under non-Hamiltonian
interactions

T = Di 111 Lrp.y.8y...)
T = Diag. ("%,ng,ng) X e X))

IsoCoordinates# = r x | € F,

IsoFunctional analysis f(#) = f(#) x [ € F,

IsoDifferential Calculus

df =dr+rxTxdl, (28)
3 _ 5 D) (29)

ar ar’

Santilli Lie-Isotopic Theory

X0 X1 =X X X; — X; X X; == CE(r,p,...) X Xy, (30)

A(w) = XWX R A(0) R 7IxwxX, (€2))

Santilli Iso-Euclidean Geometry
E#6,D,6(rpzy,...)=T(rp29,...) x5 (32)
T = Diag.(1/n%,1/n%,1/n3), (33)

2T A R oAl r2 1} 1 & A
FE=PR6 XM =(F+5+F)xIEF, (34
ny nz3 m3

Santilli Iso-Minkowskian Geometry

M@ 5,D:2 =@ pn=1234x, =t (35)
A, = T@,...) X, (36)
T = Diag.(1/n%,1/n3,1/n3,1/n2), 37

'See Santilli’s curriculum
http://www.world-lecture-series.org/santilli-cv

Prizes and Nominations
http://www.santilli-foundation.org/santilli-nobel-nominations.html
and scientific archive
http://www.santilli-foundation.org/news.html
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Santilli Iso-Riemannian Geometry

R#.§.D:§="Tv,...)xgk), (39)
$2 = (911 4 922 4 933 a4y o |
M=y tigt nz)’”ep' (40)
Santilli Iso-Symplectic Geometry
@ = df* A dp, 1)
2.3. IsoDynamical IsoEquations s [1-5]
Newton-Santilli IsoEquation
= o8P nsa - v _ psa _
mX— F (t,r,p)—mxdt F>4(t, 1)

FNSA(t,r,p,...) = 0, (42)

IsoVariational principle

SA=8[ @eRdrr-ARdD =0 (43)
Hamilton-Santilli IsoEquations
ark _3A@p) apy _ _3A(FH)
at | opg ' dt  ork ’ (44)

Iso-Hilbert space H over C with states |i) > over the
isofield ¢?

IsoExpectation value of a Hermitean operator A on f
<A>=<P|RAR P> (45)

Heisenberg-Santilli IsoEquation

I
By

P

=[AA=ARKA-BRA=AxT®{,...)x
A@p)—HED) xT@p,..)xA  (46)

I X

u
~

Schrodinger-Santilli IsoEquation
AR |§>=HEp) xT@,0h,..)x |[p >=ER | >=
Ex >, @7)

PRIY >= 1R P >= —i x I x 3:] >, (48)

2As shown in the seminal paper [6] of 1982, but vastly ignored for the past four
decades, isomechanics formulated on iso-Hilbert spaces over isofields eliminates
the divergencies of quantum mechanics and related scattering theories. This
important feature is primarily due to the fact that, for all physical and chemical
applications worked out to date, the isounit f = 1/ > 0 must have a large value
of the exponential type (27) and, consequently, the isotopic element T must have a
very small value. This occurrence eliminates the singularity of the Dirac delta
“distribution" when lifted to the Dirac-Myung-Santilli delta "isofunction" as shown
by the realization of the type

b" _ =i e ikf(r—ro)dk
(r=mn) e e ,

)

with T = ;-Er—, N « 1. Similarly, perturbative and other series with Hermitean
~To

operators that are divergent or slowly convergent in quantum mechanics can be
lifted into isoseries of the type

. w(ATH-HTA

AwW) =1 +(_1'__)+

that are manifestly convergent for w > 1 but T « w.As shown by A. O. E.
Animalu and R. M. Santilli in five papers published proceedings [25], the above
lack of divergences carries over to the covering of the scattering theory known as
isoscattering theory, by therefore achieving numerical results without the use of
infinities for the renormalization of divergent series.

Dirac-Santilli IsoEquation

(™ K9, RP, —IRMRE) K |psi >=0.  (49)

{?u:]?v} = ?u X wt+h X }7;1 =2% ﬁuv =2X ﬁuv: (50)
2.4. Comments and References

As it is well known, the local-differential calculus of 20th
century mathematics can solely represent a finite set of
isolated dimensionless points. In view of this structural feature,
Newton formulated his celebrated equations (14) for massive
points, resulted in a conception of nature that was adopted by
Galileo and Einstein, became the dominant notion of 20th
century sciences, and was proved to be valid for classical or
quantum particles moving in vacuum at large mutual distances,
such as for our planetary system or the atomic structure.

However, when bodies move within physical media, such as
for a spaceship during re-entry in our atmosphere or for a
proton in the core of a star, point-like abstractions of particles
became excessive, e.g., because a macroscopic collection of
point-particles cannot have entropy (since all known
Hamiltonian interactions are invariant under time reversal),
with consequential violation of thermodynamical laws and
other insufficiencies.

Besides the clear identification of these insufficiencies, the
first historical contribution by the Italian-American scientist
Ruggero Maria Santilli (see Footnote 1) has been the
generalization of 20th century mathematics into such a form
fo admit a time invariant representation of extended, and
therefore  deformable particles under  conventional
Hamiltonian as well as contact non-Hamiltonian interactions,
with implications for all quantitative sciences.

The above central objective was achieved in monographs [1]
originally written by Santilli during his stay at MIT from 1974
to 1977 (where they appeared as MIT preprints). Monographs
[1] were then completed by Santilli during his stay at Harvard
Universityfrom 1977 to 1982 under DOE support, and
released for publication only following the delivery at Harvard
of a post Ph. D. seminar Course in the field.

The representation of extended-deformable bodies moving
within physical media was achieved via an axiom-preserving
lifting, called isotopy, of the conventional associative
product AB = A X B between generic quantities A, B (such as
numbers, functions, matrices, operators, etc.) into the
form A X B = A X T X B, Eq. (25). Conventional interactions
are represented via conventional Hamiltonian, while actual
shape and non-Hamiltonian interactions are represented via
realization of the quantity T, called isotopic element, of the
type 27).

Santilli then achieved in monographs [1] the
axiom-preserving isotopies of the various branches of Lie’s
theory, e.g., Egs. (30), (31,) including their elaboration via the
initiation of the isotopies of functional analysis. In particular,
Santilli showed that the isotopies of the rotational
symmetry SO(3) characterized by isotopic element (27) do
represent extended, generally non-spherical and deformable
bodies. Finally, Santilli proved in Vol. II of Ref. [1] the
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significance of his Lie-isotopic theory by showing that it
characterizes the Birkhoffian covering of classical
Hamiltonian mechanics and its “direct universality" for the
representation of all possible, non-singular, generally
non-Hamiltonian Newtonian systems in the frame of the
experimenter, which direct universality was subsequently
proved to hold also for isotopic operator theories. The above
advances were formulated on an ordinary numeric field.

Subsequently, Santilli discovered in 1993 [2] that the
axioms of numeric fields with characteristic zero do not
necessarily require that the basic multiplicative unit is the
trivial number +1, since said axioms admit arbitrary
generalized units, today called Santilli isounits, provided that
they are positive-definite and are the inverse of the isotopic
element, / = 1/T > 0. This second historical discovery
identified new numbers today known as Santilli isoreal,
isocomplex and isoquaternionic numbers of the First (Second)
kind when the isounit is outside (an element of) the original
field. This discovery prompted a flurry of reformulation over
Santilli isofields of all preceding isotopies, including most
importantly the reformulation of Santilli’s Lie-isotopic theory.

Despite the above momentous advances, Santilli remained
dissatisfied because the isotopic formulations of the early
1990s were not invariant under their time evolution, thus
being unable to predict the same numerical values under the
same conditions at different times. Since the entire 20th
century mathematics had been isotonically lifted by the early
1990s, Santilli was left with no other choice than that of
reinspecting the Newton-Leibnitz differential calculus by
discovering that, contrary to a popular belief in mathematics
and physics for some four centuries, the differential calculus is
indeed dependent on the basic multiplicative unit. In this way,
Santilli achieved in memoir [3] of 1996 the third historical
discovery according to which the ordinary differential
calculus needs generalizations of the type (28), (29) whenever
the isounit depends on the local variable of differentiation.
This discovery signaled the achievement of mathematical
maturity of isomathematics that permitted numerous advances
in physics and chemistry as well as novel industrial
applications.

All in all, Santilli has written about 150 papers on the
isotopies of all various aspects of 20th century mathematics.
These contributions are reported in monographs [4] of 1995
that remain to this day the most comprehensive presentation
on isotopies. In the subsequent series of monographs [5] of
2008, Santilli introduces the names of Hadronic Mathematics,
Mechanics and Chemistry which have been adopted for this
review due to their wide acceptance.

Numerous authors have made important contributions in
Santilli isomathematics, among whom we quote: the
mathematician H. C. Myung who initiated (with R. M. Santilli)
[6] the isotopies of Hilbert Spaces, including the momentous
elimination of the divergencies of quantum mechanics under
sufficiently small values of the isotopic element T'; the
mathematicians D. S. Sourlas and G. T. Tsagas [7] who
conducted in 1993 the first comprehensive study of the
Lie-Santilli isotheory; the theoretician J. V. Kadeisvili [8] who

Outline of Hadronic Mathematics, Mechanics and Chemistry as Conceived by R. M. Santilli

presented systematic studies of Santilli’s isotopies of 20th
century geometries and relativities; the mathematician
Chun-Xuan Jiang [9] who conducted in 2001 systematic
studies of Santilli IsoNumber Theory; the mathematicians R.
M. Falcon Ganfornina and J. Nunez Valdes who wrote in 2001
the now historical, first mathematically rigorous treatment of
Santilli isotopies [10], and the historical achieved isotopology
[11] which provides the ultimate mathematical structure of the
Newton-Santilli isoequations (42) for extended-deformable
particles under Hamiltonian and non-hamiltonian interactions
achieved in memoir [3]; the mathematician S. Georgiev who
wrote one of the most monumental and important
mathematical works in scientific history [12], by showing that
Santilli’s IsoDifferential Calculus implies a variety of fully
consistent coverings of 20th century mathematics; the
mathematician A. S. Muktibodh [13] who presented the first
known generalization of Santilli isonumber theory for the case
of characteristic p # 0; the physicists I. Gandzha and J.
Kadeisvili who presented in 2011 [14] a comprehensive
review of Santilli isomathematics and its applications in
physics and chemistry; plus additional seminal advances
presented in the subsequent papers of this collection.

3. Genomathematics, Genomechanics
and Genochemistry

3.1. Represented Systems s [1-5]

Single-valued, time-irreversible system of
extended-deformable particles under action at a distance
Hamiltonian and contact non-Hamiltonian interactions, as
occurring in nuclear reactions, biological structures and
chemical reactions.

3.2. Main Mathematical Structure s [1-5]
Santilli Forward GenoUnit
P =1re>r>,p>,a>,¢9>,0%9>,....) =1/T> >0, (51)
Santilli Backward GenoUnit
<T=<ICrp<a<y,50y,....) =1/<T >0, (52)

Condition for time-irreversibility

IEE S | (53)
Forward GenoFields

Pmw>,>,P),a>=nx (54)

Backward GenoFields
<SFCA, <D, <A=<Ixn, (55)

Forward GenoProduct
fA>M=71>xT>xm> eF>, (56)
P>a>=f>>P=a>vi> e F> (57
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Backward Genoproduct
A<<Mm=AxX<Tx<me<F, (58)
f<<Ai=fA<<[==AvV <AeF (59)

Representation of forward extended-deformable particles
under non-Hamiltonian interactions

T>—D1ag & 2'_2'_;>xel"(tfpwalli Nig (60)
Forward GenoCoordinates
> =rx[>ef> 61
Backward GenoCoordinates
<p=<[xre<F, (62)
Forward GenoFunctional analysis
PE)=fE>)x P e F>, (63)
Backward GenoFunctional analysis
fCER) = A x<[e“F, (64)
Forward GenoDifferential Calculus
d>#> =dr+rxT>xdP, (65)
% > x af;:>)' (66)
Backward GenoDifferential Calculus
<d<f =dr+rx<T xd<], (67)
& =15 ¥
Santilli Lie-Admissible Theory
XoX) =X, <X;—X; > X; = Ci(t, 1,0 ,...) X Xy, (69)
A(w) = eXWXE 5 A(0) < e7PWxX, (70)
Santilli Forward Geno-Euclidean Geometry
E>(#>,6>,17),6>(t,r,p,0,...) =T>(t,r,p,9,...) X 6,
(71
P22 =21 > 87 > 77 e P>, (72)
5> # §>tranp (73)

Santilli Backward Geno-Euclidean Geometry

SECH<6<D, <8t r.p,..)=Ttrp¥..)x
' 6, (714)

U =<t << §; < FEF, (75)

< S < transp 8 (76)

Santilli Forward Geno-Minkowskian Geometry ( u =

1,2,3,4)
M>@>,9>,1): 2> = (87H),x) = ¢, (77)
>0, ,...) = T>(x,¢,...) xn, (78)
22 =271 > f5, > 2> € F>, (79)
ﬁ> + 77> transp (80)

Santilli Backward Geno-Minkowskian Geometry (pu =
1,2,3,4)

SMCER<ASD: <2=(@"), <x,=<t, @
“h(x,v,...) =< T(x,v,...) X1, (82)
XL =M< f,, <V REF, (83)
<ﬁ £< transp f (84)
Santilli Forward Geno-Riemannian Geometry
R>#>,8%.): 5> =T>(x,v,...) x g(x), (85)
2>2 =3t > gu, >2> € P>, (86)
g‘> +* g> transp (87)
Santilli Backward Geno-Riemannian Geometry
SRC2<§<D: <g=<T@v,...)xgkx), (83)
<P<2 <P § «< Guv <<Vze<F (89)
<G %<transp g (90)
Santilli Forward Geno-Symplectic Geometry
&> = d>#* R d>py on
Santilli Backward Geno-Symplectic Geometry
<@ =< d<F< A< d<Py 92)
3.3. GenoDynamical GenoEguations s [1-5]
Newton-Santilli Forward GenoEquation
#> > T8 pSA(t,r,p) = [m x &> — F%>(t,7,p) -
FNs4>(t,r,p,...) =0, (93)
Newton-Santilli Backward GenoEquation
< < ot —<SAF(t,7,p) =
=<[mx %]—“AF(t, r,p)—<NSAF(t,7,p,...) = 0, (94)

Forward GenoVariational principle

FA> =8 g > Pk — > > d7%) = 0. 95)

Backward GenoVariational principle

<§<A =< §< fA (P << d<PF—<H << d<i) = 0. (96)
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Forward Hamilton-Santilli GenoEquations

ark.s _ @BGER) s (dPky> _ aﬁ(rp) >
[af] _[ 525k ] ’ [ ] [ ] (97)
Backward Hamilton-Santilli GenoEquations
<@tk _ BA@P) <rdPrq _ aH(‘rp)
=528, <[ =<5 09

Forward Geno-Hilbert space H> with states |)> > over the
isofield >

GenoExpectation value of a Hermitean operator 4 on A
<A >=<<P| < A> > P> >e( (99)

Heisenberg-Santilli GenoEquation’

P

<H-H>A=AXT@,...) x
Y x A (100)

R Y

=AM =
A, p)—HEB) x>, ..
Forward Schrodinger-Santilli GenoEquation

B> > 1§ >= B>(#,p) x T>@, 09, ..
[¥> >= E> x

ix

I

I X P> >=E> >
[¢> >, (101)

P> > [ >=—1> > Z[P> >= —i x > x 3;[> >, (102)

Backward Schrodinger-Santilli GenoEquation

<Pl << B =<< | x<T@,09,...) x<HF,p) =
<< 9P| << E =<< | x<E, (103)

<P <p=—-<P| <i<F I =—ix<<P|Fax<1I
(104)
Forward Dirac-Santilli IsoEquation

B > 97 > py — 17 > M > &) > |psi” >= 0. (105)
Tty = Du X7 + % X9,)” = 27 > 15, (106)

Backward Dirac-Santilli GenoEquation
<P < Py << P <V AT <M << ) = 0. (107)
<{?u:}7v} =< [?u X o+ R ?u] =<2<< ﬁuv =
2 X<y, (108)

3.4. Comments and References

As it is also well known, all 20th century mathematical,
physical or chemical formulations are reversible over time.
Following research over half a century initiated during his Ph.
D. studies at the University of Torino, Italy, in the mid 1960s
[15, 17-23,4,5], R. M., Santilli has made the additional

*By including the multi-valued (Section 4) and hyperstructural formulations
(Section 5), Lie-admissible equations (100) are so broad that it will take centuries
for their generalizations. For this reason,Santilli has requested in his will that his
tombstone should have the engraving

iA=A<H-H>A4
below his name.

Outline of Hadronic Mathematics, Mechanics and Chemistry as Conceived by R. M. Santilli

historical discovery of the first and only known, axiomatically
consistent, generalization of 20th century mathematics as well
as of its covering isomathematcs into a form embedding
irreversibility over time in ordered forward and backward
units, in corresponding ordered forward and backward
products and, consequently, in all subsequent mathematical
structures, resulting in the new mathematics nowadays known
as Santilli forward and backward genomathematics with
corresponding physical and chemical theories for the
representation of irreversible processes.

Since the reversibility over time of 20th century theories
can be reduced to the invariance under anti-Hermiticity of the
Lie product between Hermitean operators, [a,b] = ab —
ba = —[a, b]*, Santilli presented in 1967 [15] the first known
(p, g)-deformation of the Lie product (a, b) = pab — qba,
where p, q are scalars and the product ab is generally
non-associative. Following an intense search in European
mathematical libraries, Santilli discovered that the new
product verifies the axiom of Lie-admissibility by the
American mathematician A, A, Albert [16] in the sense that
the attached anti-symmetric product [a,b] = (a,b)—
(b, a) verifies the axioms of a Lie algebra.

Since spaceship during re-entry are notoriously irreversible
over time, Santilli was invited by the Center for Theoretical
Physics of the University of Miami, Florida, under NASA
support, where he moved with his wife Carla and newly born
daughter Luisa inAugust 1967, and published a number of
additional works in Lie-admissibility, including the first
known Lie-admissible generalization of Hamilton and
Heisenberg equations [17,18], nowadays considered at the
foundation of hadronic mechanics and chemistry, as well as
the first and only known Lie-admissible formulation of
dissipative plasmas surrounding spaceships during reentry
[19].

Santilli then spent seven years , from 1968 to 1974, at the
Department of Physics of Boston University, and then three
years, from 1974 to 1977, at MIT, during which tine he wrote,
in his words, Phys.. Rev of career-oriented papers nobody
reads. InSeptember 1977, Santilli joined Harvard University
and was invited by the DOE to study irreversible processes
because all energy releasing processes are irreversible over
time. In April 1978, Santilli published under his DOE support
his most important mathematical contribution [20] (see also
monographs [21]) in which he achieved a Lie-admissible
covering of the various branches of Lie’s theory, Egs. (69),
(70), including the most general known time evolution whose
brackets characterize an algebra, Egs. (1000). It should be
indicated that the isotopies of Lie’s theory outlined in the
preceding section were derived by Santilli as a particular case
of the broader Lie-admissible theory of Ref. [20], and then
published in monographs [1].

Subsequently, Santilli discovered in paper [2] of 1993 that
the axiom of a numeric field, besides admitting a
generalization of the multiplicative unit, also admit the
restriction of the associative product to an ordered form to the
right and, separately,to the left. In this way, Santilli discovered
two additional classes of new numbers, today known as
Santilli forward and backward genoreal, genocomplex and
genoquarternionic numbers. In the seminal memoir [3] of



American Journal of Modern Physics 2015; 4(5-1): 1-16 7

1996 Santilli discovered two additional coverings of the
ordinary differential calculus and of its isotopic covering,
today known as Santilli forward and backward
genodifferential calculi, Eqs. (65) to (68). Santilli called a
genotopy [20] the lifting of isomathematics into ordered
formulations to the right and to the left in the Greek sense of
inducing a covering of Lie’s axioms, Egs. (69), (70).

As it is well known, thousands of papers have been
published beginning from the late 1980s on the so-called
g-deformations of Lie algebras with product (a,b) = ab —
gba which are an evident particular case of Santilli
Lie-admissible product [15]. Whatit is lesser known, or not
admitted, all g-deformations did not achieve invariance over
time, thus being afflicted by serious inconsistencies, since
they consisted of non-unitary theories formulated via the
mathematics of unitary theories. Santilli solved this problem
in 1997 by achieving the first and only known invariant
formulation of g- as well as of (p, q)-deformations [22].

We should indicate that Santilli’s conception of a genotopic
lifting of his preceding isomathematcs (indicated in Section 2
by “hat" on symbols plus the “arrow of time") is necessary to
achieve a consistent representation of irreversibility because
point-like particles can only experience action-at-a-distance
interactions that are reversible over time. Therefore, a simple
genotopy of 20th century mathematics based on the
conventional associative product would be axiomatically
inconsistent. Consequently, to represent irreversibility it is
first necessary to lift 20th century mathematics into
isomathematcs, with consequential representation of
extended-deformable particles via realizations of type (27) so
that extended particles can experience non-Hamiltonian
interactions needed for irreversibility. It is then necessary to
add irreversibility via the ordering of all products. It should
also be indicated that, when formulated via time-dependent
isounits, isomathematics can becomes genomathematics via
the identifications [I(t,...) = [T(¢t,...) = >, [(-t,...) =
It(=t,...) =< LI(t,...) # I(—t), and the judicious addition
of ordered products.

Systematic studies on the Lie-Admissible treatment of
irreversible systems were presented in memoir [3] and
monographs [4]. Santilli’s subsequent memoir [23] of 2006
remains to this day the most comprehensive presentation of
Lie-admissible treatments of irreversibility at the classical and
operator levels. Monographs [5] of 2008 presented an update.
Paper collection [24[ presents all available independent
contributions in Lie-admissibility up to [1984. The
Proceedings of the Third International Conference on
Lie-admissible Treatment of Irreversible Systems [25] present
numerous additional independent contributions as well as
references for the five Workshops on Lie-Oadmissible
Algebras organized by Santilli at Harvard University, and for
the preceding two international conference in
Lie-admissibility, the first at the Université d’Orleans, France,
in 1981 and the second at the Castle Prince Pignatelli, Italy, in
1995 (see also the general review [14] and large literature
quoted therein).

As it is well known, there exists a large number of papers on
Lie-admissible algebras within the context of non-associative

algebras (see Tomber’s Bibliography [26] listing all
significant papers in the field up to 1986). It should be
indicated that, regrettably, these studies have no connection
with Santilli genomathematics since the latter deals with the
irreversible generalizations of all aspects of 20th century
mathematics.

4. Classical Hypermathematcs,
Hypermechanics and Hyperchemistry

4.1. Represented Systems s [1-5]

Multi-valued, time-irreversible systems of extended
-deformable particles or constituents under the most general
known Hamiltonian and non-Hamiltonian interaction, as
occurring for multi-valued universes or the structure of the
DNA.

4.2. Main Mathematical Structure s [1-5]
Basic HyperUnits and HyperProducts
P={55,...3=1/8, (109)
L= (055, ) =2, (110)
Forward and Backward HyperProducts

A>B={AxS5 xB,Ax5,xB,AxS8;xB,...},[>>
A=A>P=Ax1, (111)

A<B={AxR,xB,Ax hatR, x B,AxR; xB,...}<I <
A=—-A<<[=1Ix4, (112)

A=AYB=B"R=_S§" (113)

Classical hypermathematcs then follow as for
genomathematcs with multi-valued units, quantities and
operations.

4.3. Classical Hyper-Dynamical Equations s [1-5]

The same as those for genomathematics, but with
multi-valued hyperunits, quantities and operations.

Comments and References

The multi-valued three-dimensional (rather than
multi-dimensional) realization of genomathematics outlined
in Section 4 emerged from specific biological needs. The
Australian biologist C. Illert [27] confirmed that the shape of
seashells can indeed be represented in a three-Odimensional
Euclidean space as known since Fourier’s time, but proved
that the growth in time of a seashell cannot any longer be
consistently represented in a conventional, three-dimensional
Euclidean space, and achieved a consistent representation via
the doubling of the three reference axis.

Santilli [27,28] confirmed Illert’s findings because the
conventional Euclidean geometry has no time arrow and,
consequently, cannot consistently represent a strictly
irreversible system, such as the growth of seashells.
Additionally, Santilli proved thathis geno-Euclidean geometry,
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Egs. (71) to (73), is equally unable to represent the growth in
time of seashells despite its irreversible structure, however, an
axiomatically consistent and exact representation of the
growth of seashells was possible via the multi-valued
realization of the forward geno-Euclidean geometry, thus
beginning to illustrate the complexity of biological structures.

The multi-valued, rather than multi-dimensional character
of classical hypermathematics is indicated by Santilli as
follows [28] We perceive the growth of a seashell specifically
in three dimensions from our Eustachian lobes. Therefore, an
irreversible mathematics suitable to represent the growth of
sea shells must be perceived by us as being in three
dimensions. However, lllert has shown the need to double the
three Cartesian axis. Classical hypermathematics has been
conceived and structured in such a way that the increase of the
reference axes is complemented by a corresponding
multi-valued hyperunit in such a way that a classical
hyper-Euclidean geometry, when seen at the abstract level,
remains indeed three-dimensional as necessary to achieve
representation of biological structures compatible with our
sensory perception.

5. Hope Hypermathematics,
Hypermechanics and Hyperchemistry

Represented Systems

The most complex known multi-valued, time-irreversible
requiring extremely large number of data, such as the DNA
code [31-35].

Comments and References

Despite the preceding structural generalization of 20th
century mathematics, Santilli remained dissatisfied in view of
the complexity of nature, particularly of biological entities
because advances in the structure of the DNA are indeed
possible via classical hypermathematics, as we shall see in the
third collection of this series dedicated to chemistry (e.g., via
Santilli hypermagnecules), but any attempt at representing the
DNA code via any of the preceding mathematics can be
proved to be excessively restrictive due to the volume,
complexity, diversification and coordination of the
information.

Therefore, Santilli approved one of the most important
mathematicians in hyperstructures, T. Vougiouklis from
Greece, and asked for his assistance in further generalizing the
preceding mathematics via hyperstructures defined on
hyperfields, as necessary for applications implying
measurements, and formulated via hyperoperations (called
“hope") permitting the needed broadening of the
representational capability.

The above contact lead to the hypermathematics indicated
in this section as presented in Refs. [29-33] which is based on
Vougiouklis H,, hyperaxioms and which mathematics, in
Santilli’s words, constitutes the most general mathematics that
can be conceived nowadays by the human mind.

Outline of Hadronic Mathematics, Mechanics and Chemistry as Conceived by R. M. Santilli

6. Isodual Mathematics, Mechanics and
Chemistry

6.1. Represented Systems

Single-valued, closed-isolated, time-reversible systems of
classical and operatorpoint-like antiparticles moving in
vacuum solely under action at a distance Hamiltonian
interactions, such as the stricture of antimatter atoms and
antimatter molecules [2,36-43].

6.2. Main Mathematical Structure [2,36-43]
Basic isodual unit
12 = -1t = —1, (114)
Isodual numeric fields
F¢(n4,x%,1%),n? = n x 1¢,n? x4 m?

=nd x (19)_, x m? € F4,

n? = isodual! real, complex, quatern.! numbers, (115)

Isodual functional analysis

fir?) =frY)x14eF? (116)
Isodual differential calculus
d%r? = (1)7* x dr? = dr, (117)
i e BT (118)
Santilli Isodual Lie theory
[XuX;14 = (X x X; — X; x X))? == —CE X X, (119)
AT (w?) = e WXt x® 49(0) x4 eg"W*X, (120)
Santilli isodual Euclidean geometry
E%(4,69,1%),r% = (r%*), k = 1,2,3,
§% = Diag.(-1,-1,-1), (121)

rd2d =l 5 x3 Y = (rf + 1 + 1) x 19 € F?, (122)

Santilli Isodual Minkowskian geometry (u = 1,2,3,4,)
M2 (x%,n9,19): x% = (x),x%* = t? = t x 19 = —t, (123)
n% = Diag. (—1,—1, -1, +c%?), (124)

x84 = (xF XN, X xV)? = (xF+x2+x2—t2c)x1%€
F4, (125)

Isodual Riemannian geometry, Santilli Isodual Symplectic
Geometry.

6.3. Isodual Dynamical Equations [2,36-43

Newton-Santilli Isodual Equation
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d,d
mé x4 %’_ _ FdSA(td’Td'vd) =0, (126)

Isodual Variational Principle
5944 = 59 [?(p x4 ddrdk — g xd gatdy = 0, (127)
Hamilton-Santilli Isodual Equations without external terms

adrdk  gdydd ydy
adtd — gdpd

app _ _a%Hlrdp?)
qdid — ~  gdpdk

(128)

Isodual Hilbert space H? over C with states |2 >= —<
| over C4
Expectation value of a Hermitean operator A

< A% >=< | x A% x [¢p >E C%m (129)
Heisenberg-Santilli Isodual Equations

i4 x4 ‘::‘:: =[A4H?=(AxH—-HxA4)4 (130
Schrodinger-Santilli Isodual Equations

HE x4 |Yp? >=E? x4 |y? >=—-Ex|p > (131)

p% x? Y2 >= +i% x? 3| > (132)

Dirac-Santilli Isodual Equation
M x4 yd x4 pd +i? x¥m? x4 c?) x [ >= 0. (133)
W}t = u X1 + vt X )¢ = 2% x93, (134)

Comments and References
In addition to the the study of irreversible processes and the

representation of extended-deformable particles, during his Ph.

D. studies of the md 1960s Santilli was interested to ascertain
whether a far away galaxy is made up of matter or of
antimatter. He soon discovered that none of the mathematics
and physics he had learned during his graduate studies was
applicable for a quantitative study of the problem considered
since, at that time, antimatter was solely represented in second
quantization, while the study of far away antimatter galaxies
requested their representation at the purely classical and
neutral level. In this way, Santilli initiated a solitary scientific
journey that lasted for half a century.

This occurrence created one of the biggest imbalances in
scientific history because matter was treated at all possible
levels, from Newtonian mechanics to second quantization,
while antimatter was solely treated in second quantization.
The imbalance originated from the fact that special and
general relativities had been conceived decades before the
discovery of antimatter and, therefore, they had no possibility
of representing antimatter at the classical and neutral (as well
as charged) level.

It should be stressed that the ongoing trend to extend the
application of special and general relativities to the classical
treatment of antimatter is afflicted by a number of serious
inconsistencies, such as the impossibility to achieve a
consistent representation of neutral antimatter, the

impossibility to reach a consistent representation of
matter-antimatter annihilation (evidently due to the lack of a
suitable conjugation from matter to antimatter), violation of
the PCT theorem and other inconsistencies that remain
generally ignored.

Being an applied mathematician by instinct and training,
Santilli knew that the imbalance was the result of a purely
mathematical insufficiency because the transition from matter
to antimatter is an anti-homomorphism. Consequently, the
description of antimatter required a mathematics which is
anti-homomorphic to conventional mathematics.

Santilli dedicated a decade to the search of the needed
mathematics for antimatter. Following an additional extended
search done at the Department of Mathematics of Harvard
University under DOE support in the early 1980s, Santilli
concluded that a mathematics suitable for the joint classical
and operator treatment of antimatter did not exist and had to
be constructed.

In the early 1980s, Since he had introduced the
isoproduct A X B = Ax TB,T > 0, Eq. (25). Consequently,
it was natural to introduce its negative-definite counterpart
which he called isodual and denoted with theupper index ¢,
namely ARIB=AxT9B,7¢=THt <0 While
constructing the isotopies of 20th century mathematics
presented in Section 2, Santilli initiated the construction of
their isodual image but published no paper in the new
mathematics for over a decade.

This caution was due to the fact that, despite the lack of any
visible mathematical inconsistency, Santilli remained
skeptical on a mathematics based on a negative-definite
product is afflicted by known physical inconsistencies, such as
the violation of causality for negative time, energies and other
physical quantities.

A breakthrough occurred in paper [2] of 1993. During the
achievement of the broadest possible realizations of the
abstract axioms of a numeric field (of characteristic zero),
Santilli discovered that realizations with negative-definite
units were simply unavoidable. This lead to the discovery of
additional new numbers, today known as Santilli isodual real,
isodual complex and isodual quaternionic numbers occurring
for J¢ = —1, Eq. (14), with isodual products (5), which are at
the foundation of the isodual mathematics of this section and
the additional numbers known as Santilli isodual iso- and
isodual geno-real, complex and quaternionic numbers which
are at the foundation of the isodual isomathematics and
isodual genomathematics of Sections 7 and 8m respectively
[2].

The discovery of isodual numbers is truly historical in our
view due to its far reaching implications. In fact, the discovery
established the existence of the desired isodual mathematics
as an anti-isomorphic image of 20th century mathematics for
the representation of antimatter. Additionally, the discovery
permitted the resolution of the problems of causality for
negative values of physical quantities.

To avoid insidious inconsistencies generally not seen by
non-experts in the field, the isodual map must be applied for
consistency to the otality of quantities and their operations.
This lead to Santilli’s conception of antimatter as possessing 1t
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negative-definite physical quantities for time, energy,
momentum, frequency, etc, but such negative values are
referred to negative units of measurements. Consequential a
theory with negative time referred to negative units of time is
as causal as our reality with a positive time referred to positive
units, and the same holds for all other physical quantities.

Following the resolution of these basic issues, Santilli
published in 1994 his first paper [36] specifically devoted to
the isodual representation of antimatter. In mathematical
memoir [3] of 1996, Santilli achieved the first isodual
mathematical and physical representation of antimatter. In
paper [37] of 1998, Santilli achieved his first goal of the early
1960s, namely, a consistent classical representation of neutral
(as well as charged) antimatter.

By the early 1990s, Santilli had shown that isodual
mathematics represents all available experimental, data on
antimatter at the classical and operator level. Hence, he
initiated the second phase of his studies, namely, the
identification of new predictions for subsequent experimental
verification.

A breakthrough occurred at the 1996 First International
Conference on Antimatter help in Sepino, Italy [38]. By that
time, Santilli had shown that the only conceivable
representation of neutral antimatter required the conjugation
of the sign of all physical quantities (jointly with the
corresponding conjugation of their units of measurements).
Since photons are neutral, the application of the same
principle to light implies light emitted by antimatter, that
Santilli called isodual light, is physically different than light
emitted by matter in an experimentally verifiable way, e.g.,
because antimatter light is predicted to be repelled by a matter
gravitational field.

Santilli then passed to a deeper geometric study of the
gravitational field of antimatter. As indicated earlier, general
relativity was formulated decades before the discovery of
antimatter and, therefore, had no clue for the representation of
the gravitational field of antimatter bodies. In Ref.[39] of 1998,
Santilli conducted an in depth geometric study of antimatter,
and in monograph [40) of 2006, Santilli completed the
gravitational study of antimatter via the isodual Riemannian
geometry.

All these studies concluded with the prediction of
gravitational repulsion (antigravity) between matter and
antimatter at all levels of analysis, from the isodual
Newton-Santilli equations (26) to isodual second quantization.
These aspects will be studied in the second collection of this
series dedicated to hadronic mechanics.

Thanks to all the above advances, Santilli was finally in a
position to address his original main aim of the 1960s, namely,
ascertain whether a far away galaxy is made up of matter or of
antimatter. The preceding studies had established that the light
emitted by antimatter must have a negative index of refraction
that, as such, require concave lenses for its focusing.
Consequently, Santilli secured the construction of a
revolutionary telescope with concave lenses. About fifty years
following his original aim, Santilli finally published in 2013
[41] measurements of the night sky with his new telescope

Outline of Hadronic Mathematics, Mechanics and Chemistry as Conceived by R. M. Santilli

showing images that can be solely due to light with a negative
index of refraction which light, in turn, can solely originate
from far away antimatter stars or galaxies (see also the two
independent confirmations [42,43]).

An intriguing aspect that should be of interest to pure
mathematicians is the conclusion of these studies illustrating
the power of new mathematics, to the effect that none of the
large numbers of telescopes available nowadays can detect
antimatter starsor galaxies since they all have convex lenses.
Similarly, as humans evolved in a matter world, we will never
be able to see antimatter with our eyes since our cornea is
convex and, as such, it will disperse antimatter light all over
the retina.

Needless to say, isodual mathematics and its application to
antimatter have implications so intriguing that are stimulating
the participation of a large number of scientists as we shall
report in the second collection of this series

7. Isodual Isomathematics, Isodual
Isomechanics and Isodual Isochemistry

7.1. Represented Systems [2,36-43

Single-value, closed-isolated, time-reversible system of
classical or operator extended-deformable antiparticles with
action at a distance Hamiltonian and contact non-Hamiltonian
interactions, such as the structure of antimatter hadrons, nuclei
and stars, in the antimatter valence electron bonds and other
antimatter systems.

7.2. Main Mathematical Structure[2,36-43
Basic Isodual IsoUnit
%=1, pt,ad,9,20%4,....) = 12/474 < 0, (135)
Basic Isodual IsoFields

FA(Ae,R4, 1), 74 = n x 19,72 R4 = 7l x T4 x @l €

F4, (136)
Isodual IsoCoordinates #4 = r x [4 € F4,
Isodual IsoFunctional analysis f4(#%) == f(#¢) x [? €
Fe,
Isodual IsoDifferential Calculus
d%? = dr —r? x T4 x dI°, (137)
3974 _ sq ,, 3740G%
3dpd L X T (138)
Santilli Isodual Lie-Isotopic Theory
XoX14 =X, RX; - X; RX)? == -C(r,p,..) X Xy
(139)

A¢(w?) = é‘)i(dxwdxid R Ad(0%) k¢ é«gi‘ixwdxxd' (140)
Santilli Isodual Iso-Euclidean Geometry

Ed(‘f‘d, Sd’j‘d)' Sd (T'd,pd, ad'lp‘ . ) —
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Te@r?,pfad,Pd,...) x 8, (141)

Fd = Diag.(1/n§,1/n§, 1/n2)4, (142)
7424 = (PER §;; R )4 = (n +2 + )dxidepd (143)

Santilli Isodual Iso-Minkowskian Geometry (u = 1,2,3,4)

Mz 0 1) 2% = (), 28 =t =t x 9, (144)
A4x4 9%, =T e, ) xy,  (145)
T4 = Diag.(1/n?,1/n3,1/n3,1/n3)4, (146)

2 2 2 2

~d3 SU S A A x x: x c

xd2d — (x R T xV)d _— ( ; } ; z tz z)d X
ny ng nj ng

4 e Fe, (147)

Santilli Isodual Iso-Riemannian Geometry

RAz4, §4,1%): g% = T9(x%,v4,...) x g(x), (148)
2924 = (22 4 1_22224. 933 g“)d x[?eFd, (149)

Santilli Isodual Iso-Symplectic Geometry
¢ = dpak R dpd (150)

7.3. Isodual IsoDynamical IsoEquation[2,36-43

Newton-Santilli Isodual IsoEquation

~d Qd 5‘:172 — FOSA(pd pd) ==

ade !
(m x %)d — FdSA(yd pdy _ paNSA(pd pd |y = od = (),
(151)

Isodual IsoVariational principle
§d4d = §d f"‘ (pd R4 d%hatrdk — g4 R4 ddtd) =04 =
0. (152)
Hamilton-Santilli Isodual IsoEquations

gapdk _ adﬁd('ﬁd,ﬁd) aﬁk
adagd — 3dpd ' gded

’a‘dﬁd(fxd,ﬁd)
adpdk

=+ (153)

Isodual iso-Hilbert space H¢ over C with states |{f¢ >=
—< | over (¢
Expectation value of a Hermitean operator A
<Al >=<P|RAR | >e C? (154)
Heisenberg-Santilli Isodual IsoEquation

9 R4 dehat A%overditd =

(A x T, 09,...

[AA2=(AXRA-ARA?=
)X A, p) — H(#, ) x T($,09,...) x
A)2, (155)

Schrédinger-Santilli Isodual IsoEquation

P xT@W,dy,...) x
—< 99| x E¢, (156)

(AR >)* =<9 %A = (A,
[P >)? = —< ¢ x4 B¢ =

(B RN >)? =< P4 K 0pa = —i x< P4| K 374, (157)
Dirac-Santilli Isodual IsoEquation
(AW RP, R, —IRARE) K |psi >]? =0. (158)

{?u:?v}d = (?[.l. X Wt X ?[.l.)d =24 %4 ﬁzv (159)
Comments and References
See monograph [40] with particular reference to the use of
the isodual isomathematics for the achievement of a grand
unification of electroweak and gravitational interactions

inclusive of matter and antimatter.

8. Isodual Genomathematics, Isodual
Genomechanics and Isodual
Genochemistry

8.1. Represented Systems [2,36-43

Single-valued, time-irreversible system of
extended-deformable antiparticles under action at a distance
Hamiltonian and contact non-Hamiltonian interactions, as
occurring in antimatter nuclear reactions, antimatter biological
structures and antimatter chemical reactions.

8.2. Main Mathematical Structure [2,36-43
Backward Isodual GenoUnit

e = PA>r>, p>d, 0>, p>e, 9>%y>e, ) = 1/T>4 >
0, (160)
Forward Isodual GenoUnit
<df =<d j(<dp<dp<d g <dy<d g<dy ) =1/<dP >
0, (161)
Condition for time-irreversibility
e % <df (162)
Backward Isodual GenoFields
F4(#>4, >, P9), 7% = n x P4, 77 >4 @3> = 474 x

7> x m>? € F>9, (163)

Forward Isodual GenoFields

<d'\ <d <d.z

<dp<dp <<df)  <df=<d[xp 7=
=<d {4 w<d P x<d g e<d £ (164)
Backward Isodual GenoCoordinates
P> =y Pd g f>d (165)
Forward Isodual GenoCoordinates
<dp =<d [xre<dF, (166)
Backward Isodual GenoFunctional analysis
FA#>9) = f(7>4) x P¢ € >4, (167)
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Forward Isodual GenoFunctional analysis

<df(<d'f') - f(<d7'~.) x<d i Ed F (168)
Backward Isodual GenoDifferential Calculus
d>#>4 = dr + r x T>% x d>?, (169)
5>df>d(.f.>d) _ af>d(.f.>d)
3>dp>d - 1>d X af->‘1_—' (170)
Forward Isodual GenoDifferential Calculus
<dg<dp = dr +r x<¢ T x d<¢], a71)
<d5<df(<d.,’a) a<df(<d7a)
<d3<ds =<ad ix—adf ) (172)

Santilli Isodual Lie-Admissible Theory

EpX)? =X <X;—X;>X)? =
—Ca %, v, ph,?,...) X Xy, (173)

AT (w?) = e3FWE >4 A(0) <2, e7DWXE, (174)

Santilli Backward Geno-Euclidean Geometry

E>4(#>9,6>4, >, 6>t r,p, ... =
T>e(t,r,p,¥,...) x 8, (175)
p>d2d — (.f.>di >d Ssd > #>d =g p>4, (176)
T>d * T>d transp (177)

Santilli Forward Isodual Geno-Euclidean Geometry
<Ap(Rdp<ag<d]y, <af(t,r,p,¢,...) =<¢ T(t,r,pV,..
6, (178)
<d’2‘drﬂ. =<di p <d 5 <d <djp e<d F, (179)
<dT ¢<d transp T (180)

Santilli Backward Isodual Geno-Minkowskian Geometry
u=1234)

ﬂ>d(f>d'ﬁ>d' i>d): f>d = (f>d#)’ x:d = t>d, (181)
P40, ,...) = T80 ,...) X1, (182)
£>d2d — £>du >d ﬁig >d £>dv € F>d‘ (183)
ﬁ>d +* 77>d transp (184)

Santilli Forward Isodual Geno-Minkowskian Geometry
(mu =1,2,3,4)

SRR = @), <, =t (185)
Ai(x,v,...) =<4 T(x,v,...) X1, (186)
<dg<d2d _<dp g d <dﬁuv <d <vge<d F (187)

<dﬁ ¢<d transp ﬁ (188)

Santilli Backward Isodual Geno-Riemannian Geometry
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§>d(">d ">d‘i>d): g‘>d — T>d(x’ U,...) X g(x)' (189)
£.>d2> = x>dﬂ.d g\l.>nt,i >d x>dv € P>d (190)
T->d * T>d transp (191)

Santilli Forward Isodual Geno-Riemannian Geometry
<dR(<?2,< g~ 1): ) X g(x), (192)

<dg<d2d _<du g d <dvg e<d F, (193)

<dg —<d Py p, ..
das d
G <

<dg~ __/:<d transp g (194)

Santilli Backward Isodual Geno-Symplectic Geometry

(U\>d = d>d.f.>dk K>d d>dﬁ;d

(195)

Santilli Forward Isodual Geno-Symplectic Geometry

<d(ﬁ —<d d<dl‘f'<d ’R<d d<dp'~k

(196)
8.3. Isodual GenoDynamical GenoEquations [2,36-43

Newton-Santilli Backward Isodual GenoEquation

3>dp>d
~>d %
m=" > =asa

F54>4(t,r,p) — FNS4>4(¢t,r,p,...

—_ F>dSA(t, 7, P) = [m X ;:%]>d —
)=0, (197)

Newton-Santilli Forward Isodual GenoEquation

<dT?l <

<2a<9% _ <qsa d
_<da_<df_< F(t,T,p) =< [mx

2)—<dSAF(t,7, p)—<WNAF(t,1,p,...) = 0, (198)

)X

Backward Isodual GenoVariational principle

> >
d>4t>2) = 0. (199)

a ~ a — >d ~
5>d >d = 5>df (A>d S g>dp>dk

Forward Isodual GenoVariational principle

<d6<dA —<d 5<df (<d A <<d d<d k_<dH <<d d<dt)
0. (200)
Backward Isodual Hamilton-Santilli GenoEquations
a>dp>dl 3R (7.p)
j)"

a (2%¢ aH(rp) d
g>dg>d ]> ’ [a>df§d] [ ]> ’ (201)

Forward isodual Hamilton-Santilli GenoEquations

<dg<dzk <dg<dg,

—<[2492, 202)

_<d 5H(ﬁﬁ)]
3px

<dg<df ~ <dhatd<dt] -

Heisenberg-Santilli IsoDual GenoEqutions

&’| N

iR —(A B =A<H-0>A=Ax<T®,0}P,...) X
A, p) - H@#,p) x T>@,09,...) x 4 (203)
Schrédinger-Santilli Backward Isodual GenoEquations

B4 4 |72 >= B>4(7, p) x 4G5, 04,..) X [ >=
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E>? >4 > >= E>? x [>¢ >, (204)

P72 > |79 >= =129 > 92P> >= —i x [> x 0;|h>¢ >,
(205)

Schrédinger-Santilli Forward Isodual GenoEquations

<<d f| <¢ <H =<<?| x< T(y?, élﬁ,...) x< H(#,p) =
<4 | << E =<<? | x<¢ E, (206)
<<d 12;|<<d }5 = —<<d lﬂ <d <dj <d ,fdé =
—i x<<@ |5 x<?] (207)
Dirac-Santilli Backward Isodual IsoEquation
(ﬁ>duv >d ?u>d >d ﬁid — f>d > ﬁ>d > é>d)
> |psi>? >= 0. (208)
Pty = P R + 7 X907 =279 > 078, (209)

Dirac-Santilli Forward Isodual GenoEquation

<d‘ffl <d <é

<<d l]JI< (<dﬁv <<d V# <d <d“vﬁ—<f <d

=0. (210)

<d{?u:?v} == [}7;1 XPy+ 7 X )7;1] =<d2 << ﬁuv

=2 x4, Q@1
Comments and References
See memoir [20] which constitutes the most comprehensive
study of antimatter in irreducible conditions available at this
writing.

9. Isodual Classical and Hope Isodual
Hypermathematics

Isodual Hyper-Formulations are generally considered to be
part of the Hyper-Formulations of Section 4 and 5 because the
classification of ordered sets of hyperunits includes isodual
realizations, as illustrated in the paper [44] and references
quoted therein.

10. Simple Method for the Construction
of Regular Hadronic Mathematics

10.1. Introduction [4.5]

Hadronic formulations are called regular when the
Structure quantities C,-ij of Santilli’s Lie-Isotopic algebras, Egs.
(3), Lie-admissible algebras, Egs. (69) (zzz) and their isoduals,
Eqgs. (119-, (139), are constant. When the structure quantities
are functions of the local variables Cl-';-(t, oY, 0y,...),
hadronic formulations are called irregular.

In this section, we shall review a very simple method for the
construction of regular hadronic formulations via the mere use
of non-unitary transformations of the corresponding

conventional formulations. We shall then review the
axiomatic consistency of hadronic formulations by showing
that Santilli iso-, geno-, hyper-units and their isoduals are
invariant under the transformations, thus implying the crucial
invariance over time of extended-deformable shapes and their
non-Hamiltonian interactions that are invariantly represented
precisely nwith such generalized units.

No method exists to our knowledge at this writing (June
2015) for the construction of irregular hadronic formulations
via maps of conventional formulations and, therefore,
irregular hadronic formulations characterize a new axiomatic
structure still mostlyunexplored.

10.2. Simple Construction of Regular Iso-Formulations

[4.5]

A simple method has been identified in Refs. [4,5] for the
construction of the Lie-Santilli isotheory, all its underlying
isomathematics and all physical methods This method is
important because it permits a simple implementation of
conventional models into their isotopic covering without the
need for advanced mathematics. The method consists in:

(i) Representing all conventional potential interactions with
a Hamiltonian H(r,p) and all extended-deformable shapes
and their non-Hamiltonian interactions and effects with
Santilli’s isounit [(r, p,y, 0,./..);

(ii) ldentifying the latter interactions with a nonunitary
transform

UxUt=1=#1 (212)

and

(iii) Subjecting the totality of conventional mathematical
and physical quantities and all their operations to the above
nonunitary transform, resulting in expressions of the type

I-I=UxIxUt=1/T, (213)

a-»d=UxaxUt=axUxUt=axl,aeF, 214)

et > UxetxUt =1xeMd = (eAT)x ], (215)
AXB->UXAxXxB)xUt=WxAxU")x U x
UH1x (WU xBxU")=AXB, (216)

[Xu X)) = U x [X,X;] x Ut = [£, %] = U x (CK X X)) ¥
Ut = Ck X Xy = CE x Xy, (217)

<Y| XY >oUx<y| x| >x Ut =< | x Ut x (U x
UNIxUxyp>xUxUN=<P| X [P >x1, (218)

Hx|p>>UXHX|p>)=UxHxU"x U x
UD 1 x (U x | >) = B R >, etc. (219)

Note that serious inconsistencies emerge in the event
even ’one’ single quantity or operation is not subjected to the
above non-unitary map. In the absence of comprehensive
liftings, we would have a situation equivalent to the
elaboration of quantum spectral data of the hydrogen atom
with isomathematics, resulting in large deviations from reality.



14 Richard Anderson:

The construction of isodual iso-formulations is simply done
via Santilli’s isodual map, namely, via the simple
anti-hermitean image of the above isotopic formulations.

10.3. Axiomatic consistency of Iso-Formulation [4.5]

Let us recall that Santilli’s central assumption is the
representation of extended-deformable shapes and their
non-Hamiltonian interactions via the isounit. Therefore, any
change of the numerical value of the isounit implies the
inability to represent the same system over time, besides
activating the Theorem of Catastrophic Mathematical and
Physical Inconsistencies of Non-Canonical and Non-Unitary
Theories when formulated via the mathematics of
conventional canonical and unitary theories,respectively [23].

It is easy to see that the application of an additional

nonunitary transform
wxwt#£1, (220)

to the preceding expressions causes their lack of invariance,
with consequential activation of the theorem of catastrophic
inconsistencies. This is due to the change of the value of the

basic isounit under additional non-unitary transformations
I-1"=wxIxwt=z] (221)

However, any given nonunitary transform can be identically
rewritten in the isounitary form [3]

wxwt=[ w=wxT712
WxWt=wwt=wtxw=1,

(222)
(223)

under which we have the invariance of the isounit and
isoproduct [7]

(224)

ARB->WRUAXB)KWH=WxTxAxTxWhx
TxWHIXTxWxD)IxWxTxBxTxWh) =
AxWHxTxW)I1xB =A'xTxB =4RB etc.

(225)

from which the invariance of the entire isotopic formalism
follows.

Note that the invariance is ensured by the numerically
invariant values of the isounit and of the isotopic element
under non-unitary-isounitary transformations,

I-r=i, (226)

AXB—-A'X'"B'=A'XB, (227)
in a way fully equivalent to the invariance of Lie’s theory and
quantum mechanics, as expected to be necessarily the case due
to the preservation of the abstract axioms under isotopies. The
resolution of the inconsistencies for non-invariant theories is
then consequential.

The proof of the invariance of Santilli isodual
iso-formulations is an interesting exercise for non-initiated
readers.

Outline of Hadronic Mathematics, Mechanics and Chemistry as Conceived by R. M. Santilli

10.4. Simple Construction of Regular GenoMathematics
and its IsoDual [4.5]

An important feature of the Lie-Santilli genotheory is its
Jform invariance under the appropriate geno-transformations
in a way fully similar to the invariance of the mathematical
and physical structures of quantum mechanics under unitary
transformations.

This feature can be shown via a pair of non-unitary
transformations

UxVt2LWxwt 2LV xwt=L,wxvt =1, (228)

under which we have the characterization of the forward and
backward genounits and related genoproduct

I-VxIxWt=]>eqno (229)
AXB-oVxAxXB)xWH=4>>B>  (230)
I->WxIxV =<1, ©31)
AXB->Wx(AxB)XV=<A4<<B/  (232)

10.5. Axiomatic Consistency of GenoMathematics and its
Isodual [4.5]

It is easy to see that the above dual non-unitary
transformations can always be identically rewritten as the
geno-unitary transforms on geno-Hilbert spaces over complex
genofields,

VxVt#£1,V=<"0xRY2V x
Pt =<pP << Pt =<Pt << P =<], (233)

WxWt£1,W=wW>xS12wxwt=w>>w>t=
w>t > w> = 1>, (234)

under which we have indeed the following forward
geno-invariance laws [3j]

Pol”=w>>P>wt=p,

A>SB-W>>UAU>B)>W>t=4>8,

(235)
(236)

B>>|>=E>>|>=Ex|>>W>>H>>|>=0">
| >'=W>>E>>|>=Ex|>, (237

with corresponding rules for the backward and classical
counterparts.

The above rules confirm the achievement of the invariance
of the numerical values of genounits, geno-products and
geno-eigenvalues, thus permitting physically consistent
applications.

The invariance of the isodual geno-formulations can then be
proved via the isodual map applied to the above procedure.

11. Open Mathematical Problems

Among a predictable large number of basic open problems,
we list for the interested readers the following ones:
# Study methods to transform nonlinear models on
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conventional spaces into isolinear models on isospaces over
isofields;

# See whether simple solutions of isolinear equations on
isospaces over isofields provide at least 4" solution of their
nonlinear projection on conventional spaces over
conventional fields;

# Study the removal of divergencies in quantum mechanics
and scattering theories (Footnote 2) by isomechanics on an
iso-Hilbert space over an isofield.

# Study the regular and irregular isorepresentations of the
Lie-Santilli isotheory;

# Study Santilli isoMinkowskian geometry via the
machinery of the Riemannian geometry, yet lack of curvature
[39]

# Study the Lie-admissible theory in Santilli’s sense, that is,
as a generalization of Lie’s theory elaborated via
genomathematics;

# Study Santilli geno-Euclidean, geno-Minkowskian and
geno-Riemannian geometries where irreversibility is
embedded in the non symmetric character of the metric [23];

# extend the Tsagas, Ganformina-Nunez isotopology to the
genotopic form and their isoduals.

Research funds are available from the R. M. Santilli
Foundation for partial support of research in the above listed
and related open problems in hadronic mathematics.
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Abstract: We study Santilli’s isomathematics for the generalization of modern mathematics via the isomultiplication
a X a = abT and isodivision a = b = %f , where the new multiplicative unit [ # 1 is called Santilli isounit, T = 1, and T is
the inverse of the isounit, while keeping unchanged addition and subtraction, , In this paper, we introduce the isoaddition
a¥b=a+ b+ 0 and the isosubtraction a=h = a — b — 0 where the additive unit 0 # 0 is called isozero, and we study
Santilli isomathem,atics formulated with the four isooperations (¥, =,X,%). We introduce, apparently for the first time, Santilli’s
isoprime theory of the first kind and Santilli’s isoprime theory of the second kind. We also provide an example to illustrate the

novel isoprime isonumbers.

Keywords: Isoprimes, Isomultiplication, Isodivision, Isoaddition, Isosubtraction

1. Introduction

Santilli [1] suggests the isomathematics based on the
generalization of the multiplication x division + and
multiplicative unit 1 in modern mathematics. It is
epoch-making discovery. From modern mathematics we
establish the foundations of Santilli’s isomathematics and
Santilli’s new isomathematics. We establish Santilli’s
isoprime theory of both first and second kind and isoprime
theory in Santilli’s new isomathematics.

1.1. Division and Multiplican in Modern Mathematics
Suppose that
a+a=a’=1, (1)

where 1 is called multiplicative unit, 0 exponential zero.
From (1) we define division + and multiplication x

a+b=%,b¢0,axb=ab, )

a=ax(a+a)=axa’=a (3)
We study multiplicative unit 1

axl=ag,a+l=al+a=1/a (4)

)" =L D™ =L ()" = (-1, D" =)™ (5)

The addition +, subtraction —, multiplication x and
division + are four arithmetic operations in modem
mathematics which are foundations of modern mathematics.
We generalize modern mathematics to establish the
foundations of Santilli’s isomathematics.

1.2. Isodivision and Isomultiplication in Santilli’s
Isomathematics

We define the isodivision + and isomultiplication X [1-5]
which are generalization of division + and multiplication % in
modern mathematics.

0%0, (6)

where [ is called isounit which is generalization of
multiplicative unit 1, 0 expeoenential isozero which is
generalization of exponential zero.

We have
a%b=f%,b¢0, akb=alb, (7

Suppose that
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a=aX(ata)=akd® =afl=a. (8)
From (8) we have
fi=1 )

where T is called inverse of isounit / .
We conjectured [1-5] that (9) is true. Now we prove (9). We

study isounit /

aki=a, atl=a, Ita=a"=1"/a, (10)

@ =Gy = LD =iy el =t A

Keeping unchanged addition and subtraction, (+,—, %,+)
are four arithmetic operations in Santilli’s isomathematics,

which are foundations of isomathematics. When / =1, itis
the operations of modern mathematics.

1.3. Addition and Subtraction in Modern Mathematics

We define addition and subtraction

x=a+b, y=a-b (12)
at+a-a=a (13)
a-a=0 (14)

A

K=XTx, +=+0+; +=x[+ ==

atb=

S N RN

aXa=a*T,ata=2a+0,ata=1#1,a2a=-020,TI =1.

(+,2,%,+) are four arithmetic operations in Santilli’s new
isomathematics.

Remark, aX(b+c)=aX(b+c+ 6) , From left side we have
aX(b+c)=aXb+ax++akc)=ax(b+++c)
= aX(b+0+c), where =0 also is a number.
ak(b=c)=aX(b—c—0) . From left side we have
ax(b=c)=axb-aXx>—aXc)
=aX(b-+-c)=aX(b-0-c) , where ==0 also is a
number.

It is satisfies the distributive laws. Therefore +,=,% and
+ also are numbers.

It is the mathematical problems in the 21st century and a
new mathematical tool for studying and understanding the law
of world.

Using above results we establish isoaddition and

isosubtraction

1.4. Isoaddition and Isosubtraction in Santilli’s New
Isomathematics

A

We define isoaddition + and isosubtraction =.

atb=a+b+c, atb=a-b-c, (15)
a=ata*a=a+c-c,=a (16)

From (16) we have
¢ =c (17)

Suppose that ¢, =c¢, = 0,

where 0 is called isozero which is generalization of addition
and subtraction zero

We have
atb=a+b+0, a2b=a-b-0 (18)
When 0=0 , it is addition and subtraction in modern
mathematics.

From above results we obtain foundations of santilli’s new
isomathematics

—0—; akb=abT,atb=a+b+0;

l,a2b=a-b-0;a=aXa*a=a,a=a+a*a=agq;

(19)

2. Santilli’s Isoprime Theory of the First
Kind

Let F(a,+,X) be a conventional field with numbers a

equipped with the conventional sum a+beF ,
multiplication abe F and their multiplicative unit 1€ F .

Santilli’s isofields of the first kind F = F(4,+,X) are the
rings with elements

a=al (20)
called isonumbers, where ae€ F , the isosum
a+b=(a+b)l 1)

with conventional additive unit 0=0/=0,4+0=0+a=a,

Vae F and the isomultiplications is

a%b = aTh=alThl = (ab)] . (22)
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Isodivision is @)= 2131)(P -1.
Y .
a+b=1 3 (23) Let /=1.From (24) we have twin prime theorem
P=P+2 27

We can partition the positive isointegers in three classes:

(1)The isouniti J ; Theorem 2. Goldbach isoprime theorem

AAAAA

e a s N=P+P 28
(3)The isoprime numbers: 2,3,5,7,---. bz (28)
Theorem 1. Twin isoprime theorem Jiang function is
R=P+2. (24) JL@=nr-2nL=l . (29)
3<p PNP_2

Jiang function is
Since J,(@)# 0 every isoeven number N greater than

J(@)=T1(P-2)#0, (25) .
<P 4 is the sum of two isoprimes.
whre o= 2I;IPP is called primorial. We have
Since J,(w)# 0, there exist infinitely many isoprimes p 7,(N,2)~ M_N_ (30)
s ¢’ (@) log* N
such that B, is an isoprime.
We have the bestﬂasymptotic formula of the number of Let I=1.From (28) we have Goldbach theorem
isoprimes less than N
N= P1 + P2 (3 1)
- J,(@w N
7,(N,2) ~ #(@) log? N’ (26) Theorem 3. The isoprimes contain arbitrarily long
arithmetic progressions. We define arithmetic progressions of
where isoprimes:
P,B=P+d P =P+32%d, -, P, =P+(k-D%d,(B,d)=1. (32)
Let =1.From (32) we have arithmetic progressions of primes:
PP, =P+d,P,=P+2d,--,P, =R +(k-1)d,(B,d)=1. (33)
We rewrite (33)
P=2P,-R,P=(j-)F-(j-2)B,3< j<k. (34)
Jiang function is where ¢, =12,---,P-1;9,=12,---,P—1.

J, (@)= 31;[})[(}3_ 12 - 2(P)], (35) From (36) we have

Jy(@)y= T (P-)II(P-1)(P-k+1)#0. (37)
X(P) denotes the number of solutions for the following Ishek k<?

congruence We prove that there exist infinitely many primes F, and
ko ' P, suchthat P,,---,P, areall primes forall £23.
,133[(1 ~Dg, =(j=2)g]= O(mod P), (36) We have the best asymptotic formula

7 (N,3)=[{(j—DP, - (j-2)P, =prime,3< j <k, B, P, < N}

AN I PF? HP"'Z(P—k+1) N?

=— ) (38)
208 (@) log" N 22r<k(P—1)"" k2 (P=1)*  log" N

Theorem 4. From (33) we obtain

P,=P+P,~P, P,=R+(j-3)P,~(j-3)P, 45 j<k. (39)
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Jiang function is

J (@)= (P-1) = 2(P)), (40)

¥(P) denotes the number of solutions for the following

congruence

J ()=

3sP<(k-1) (k=1)sP

We prove there exist infinitely many primes B, P, and P,
such that P,,---, P, are all primes for all k2>4.

iy (N, 9) =[{P, +(j=3)P, —(j=3)R, = prime,4< j <k, R, P, B, <N}| ~

1 Pk—3

}i[qs +(j=3)9, - (j-3)g,1=0(mod P), (41)

where g, =12,---,P-1,i=12,3.
Frome (41) we have

- g 25P<(k-1) (P — ])"’2 (k=1)sP

The prime distribution is order rather than random. The
arithmetic progressions in primes are not directly related to
ergodic theory, harmonic analysis, discrete geometry and
combinatorics. Using the ergodic theory Green and Tao prove
there exist arbitrarily long arithmetic progressions of primes
which is false [6,7,8,9,10].

Theorem 5. Isoprime equation

P,=P+2=PI+2. (44)
Let I be the odd number. J iang function is
P-1
(45)

Jz(a))=31;£(P—2)£|£-}-)—_5¢0

Since J,(w) # 0, there exist infinitely primes B, such that

P, is a prime.

We have
ﬂz(N,2)~i;%)Qlog]Z = (46)
Theorem 6. Isomprime equation
P =(P)Y+2=P[+2. (47)
Let / be the odd number. J iang function is
(48)

Jy(@)= [(P-2-X(P)),

atb=(a/b)l,d" =a%
Theorem 7. Isoprime equations
P,=P*+6,P, =P +12,P,=P*+18 (51)

Let T =1.From (51) we have

-Xa (ntimes) = a" (T)"™, a’ = a”(Iy".

I (P-1)> I (P-D[(P-1)>-(P-2)(k-3)]#0. (42)
We have the best asymptotic formula
J (@)@ N°
64" (w) log* N
P[(P-1)' —(P-2)(k=-3)] N’
(P-D*" log" N 43)
where
2
X(P)= P
-1 if Pl

If (—%1—) = -1, there infinitely many primes P, such that

P, is a prime. If (—_—zl)=l,J2(3)=0 , there exist finite

primes B suchthat P, isa prime.

3. Santilli’S Isoprime Theory of the
Second Kind

Santilli’s isofields of the second kind F = F(a,+,X) (that

is, ae F isnotliftedto a=al ) also verify all the axioms of
a field.
The isomultiplication is defined by
akb=alb. (49)

We then have the isoquotient, isopower, isosquare root, etc.,

(50)

P,=P +6,R =P +12,P, =P +18,  (52)

Jiang function is
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L@ =20(P-4-CH-()-CN#0, (53

where (_TF), (_—;) and (_7?) denote the Legendre symbols.

Since J,(w)# 0, there exist infinitely many primes F,
such that P,, P, and F, are primes.

Jy(@a® N

7z,(N,2)~ — (54)
«(N-2) 8¢* (w) log* N
Let 7'=5.From (51) we have
P,=5P*+6,P,=5P*+12,P,=5P*+18.  (55)
Jiang function is
-30. -15. -10
Jz(a))—87$I'IP(P—4—(—P—)—(T)—(—P—))¢O. (56)

Since J,(w)=# 0, there exist infinitely many primes A

such that P,, P, and F, are primes.

We have
J,(@a&@ N
7, (N,2)~ #——4— (57)
80" (w) log" N
Let 7=7.From (51) we have
P,=7P*+6,P,=7P*+12,P,=7P* +18. (58)
We have Jiang function
J,(5)=0. (59)

There exist finite primes F, such that P, P, and P, are
primes.
Theorem 8. Isoprime equations

P, =P +30,P, =P’ +60,P, = P*+90,P, = P*+120. (60)
Let 7 =7.From (60) we have
P, =7P2+30,P, = 7B +60,P, =7B*+90,P, = 7B +120 (61)

Jiang function is

#,(N,3)=|{P, P, : P, B, < N; P, = prime}| ~

Theorem 10. Isoprime equation

P,=P,X(P*+b)-b (70)
Let T=117 iang function is
J(@)= 35II:ISP(P2 =3P+3+7(P)#0 (71)

J,(®) =481£1P(P—5—Z4: (%));: 0.

J=1

(62)

Since J,(@)# 0, there exist infinitely many primes P,
such that P, P,,P, and P, are primes.

We have
J,(wa' N
7 (N,2)~ —2%—5 : (63)
16¢° (w) log” N
Let 7>7 be the odd prime. From (60) we have
P, = PT+30(k—-1),k=2,3,4,5. (64)
Jiang function is
Jz(a))=87SIIP(P—5—Z(P))¢O. (65)
~ 4 — A'
If PIT, y(P)=4; y(P)=) ( 32TJ ) otherwise.
Jj=l

Since J,(@w)#0, there exist infinitely many primes P,
such that P,, B,,P, and P, are primes.

We have
J(@)a&' N
7[5(N,2)~¥—5-—. (66)
16¢° (w) log” N
Theorem 9. Isoprime equation
P,=P,X(P+b)-b. (67)

Let T=1 Jiang function is

J, (@)= 3599,(1)2 +3P+3—y(P))#0, (68)

where y(P)=-P+2 if P|b; ¥(P)=0 otherwise.
Since J,(w)#0, there exist infinitely many primes P,

and P, suchthat P, is also a prime.
The best asymptotic formula is

Jy(@® N?

n —. (69)
4¢’(w) log" N

where y(P)=P-2 if P

b; ;((P):(_—:) otherwise.

Since J,(w)# 0, there exist infinitely many primes £
and P, suchthat P, isalso a prime.
The best asymptotic formula is
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7,(N,3)=|B.P, : B, P, < N; P, = prime}| ~

Theorem 11. Isoprime equation

P=PX(P+1)-1. (73)
Let 7 =1. Jiang function is
— 2 _
Jy (@)= 3S£ISE(P 3P+4)%0 (74)

Since J,(@)# 0, there exist infinitely many primes A
and P, suchthat B is also a prime.
The best asymptotic formula is

7,(N,3)=|{R, P, : B, P, < N; P, = prime}}

2
~ ‘é;(fz’;‘;’ lo]gva = (75)
4. Isoprime Theory in Santilli’s New
Isomathematics
Theorem 12. Isoprime equation
B=R+P=P+P+0. (76)
Suppose 0=1.From (76) we have
P,=P+P,+1. (77)
Jiang function is
J3(a))=351'£(P2—3P+3)¢0. (78)

Since J,(@)# 0, there exist infinitely many primes A
and P, suchthat F, is also a prime.
We have the best asymptotic formula is

J=a k(b tc)ra, 3k, ~c)=al(b+¢+0)+0+a,/T(b,—c,-0).

If 7=1 and 0=0,then y=7j.

Let 7=2 and 0=3 . From (85) we have the
isomathematical subequation

Py =2a(b +c +3)+3+a,/2(b,—c,-3). (86)

Let =5 and 0=6 .
isomathematical subequation

From (85) we have the

9, =5a(b+c,+6)+6+a,/5(b,—c,—6). (87)

L@o N (72)
6¢°(w) log’ N
7,3~ D@ N (79)

2¢°(w) log’ N
Theorem 13. Isoprime equation
P =(P+2)X(P22)3 P, =T[P*-(2+0)*]+P,+0 (80)

A

Suppose T=6 and 0=4.From (80) we have

B, =6(P*-36)+P,+4 (81)
Jiang function is
J3(a))=3ISIP(P2—3P+2)¢O. (82)

Since J,(w)# 0, there exist infinitely many primes £
and P, suchthat P, is also a prime.
We have the best asymptotic formula is

J (@ 2
2 (N,3)~ B2 N g
4¢°(w) log’ N
5. An Example
We give an example to illustrate the Santilli’s
isomathematics.
Suppose that algebraic equation
y=ax(b+e)ta,+(b,-c) (84)

We consider that (84) may be represented the mathematical
system, physical system, biological system, IT system and
another system. (84) may be written as the isomathematical
equation

(85)

Let 7=8 and 0=10 .
isomathematical subequation

From (85) we have the

v, =8a,(b +c +10)+10+a,/8(b,—c,—10) (88)

From (85) we have infinitely many isomathematical

subequations. Using (85)-(88), T and 0 we study stability
and optimum structures of algebraic equation (84).
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Abstract: In this article are given definitions definition for measurable is-functions of the first, second, third, fourth and fifth
kind. They are given examples when the original function is not measurable and the corresponding iso-function is measurable
and the inverse. They are given conditions for the isotopic element under which the corresponding is-functions are measurable.
It is introduced a definition for equivalent iso-functions. They are given examples when the iso-functions are equivalent and
the corresponding real functions are not equivalent. They are deducted some criterions for measurability of the iso-functions of
the first, second, third, fourth and fifth kind. They are investigated for measurability the addition, multiplication of two iso-
functions, multiplication of iso-function with an iso-number and the powers of measurable iso-functions. They are given
definitions for step iso-functions, iso-step iso-functions, characteristic iso-functions, iso-characteristic iso-functions. It is
investigate for measurability the limit function of sequence of measurable iso-functions. As application they are formulated the
iso-Lebesgue’s theorems for iso-functions of the first, second, third, fourth and fifth kind. These iso-Lebesgue’s theorems give
some information for the structure of the iso-functions of the first, second, third, fourth and fifth kind.

Keywords: Measurable Iso-Sets, Measurable Is-Functions, Is-Lebesgue Theorems

1. Introduction a=al
Genious idea is the Santilli’s generalization of the basic With isoproduct
unit of quantum mechanics into an integro-differential . . A . -
operator [ which is as positive-definite as +1 and it depends axb = aTh = a;Tb; =abz =ab.
of local variables and it is assumed to be the inverse of the
isotopic element T If a+# 0, the corresponding isoelement of i will be
o 1 denoted with 4~ Yor [ \ 4.
+1>0-I(t,7,p,a,E,~-) = F >0 With Fg we will denote the field of the is-numbers & for
which a € R and basic isounit ;.
and it is called Santilli isounit. Santilli introduced a In [1], [3]-[12] are defined isocontinuous isofunctions and
generalization called lifting of the conventional associative  isoderivative of isofunction and in [1] are proved some of
product ab into the form their properties. If D, is an isoset in Fg, the class of

isofunctions is denoted by F"\CD1 and the class of

b £b = aTh . . . . . = .
ab = ax a isodifferentiable isofunctions is denoted by F C,ﬁl, with the

Called isoproduct for which same basic isounit [ = ;1—, it is supposed
. 1, . 1 »
I”a:-’i;Ta:afI:aT'F:a Tec'(Dy),T>0inD,.

For every element a of the field of real numbers, complex Here D, is the corresponding real set of D, . If ,ic 1s an

numbers and quaternions. The Santilli isonumbers are defi ~ independent variable, then the corresponding lift is Ty iff
ned as follows: for given real number or complex number or  is real-valued function on D;, then the corresponding lift of
quaternion a, first kind is defined as follows
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P (0r%) s
- T(x) T T

and we will denote it by fM.
In accordance with [1], the isodifferential is defined as
follows

d() =T)d().

Then
d®) = T(x)d®&) = T(x)d (T( )) T(x) (T_&.)._
Xrg)dx = (1-x53) d,

2(Fr®) =100a (F®) = Tea (1) =
(Fr® -5 ax.

In accordance with [1], the first is-derivative of the is-
function f* is defined as follows

1 4(f®)
(fA(x)) 7d®) = EW

T x) = f)T (x)
- T2(x) — xT()T'(x)

(M @)? =

When T(x) = 1, then
(M®). = r'w.

Our aim in this article is to be investigated some aspects of
theory of measurable iso-functions. The paper is organized as
follows. In Section 2 are defined measurable iso-functions
and they are deducted some of their properties. In Section 3
is investigated the structure of the measurable iso-functions.

2. The Definition and the Simplest
Properties of Measurable Is-Functions

We suppose that A is a given point set, T: 4 —> R,
T(x) >0 for every x €A, T, >0 be a given constant,
f:A— R bea given real-valued function. With f we will
denote the corresponding is-function of the first, second,
third, fourth and fifth kind. More precisely,

LI =1®) = 1% when Fis an is-function of the first

Tx)y
kind.
2. 1x) = PAx) = f(’;f(’)‘”, when =~ € A for x € A, when f

is an is-function of the second kind.

X
3.1x) =t®) = g;é:;) % € A for x € A, when fis an is-

function of the third kind.
4. f(x) = fA(x) = f(xT(x)), when xT(x) €A for xEA,

when { is an is-function of the fourth kind.

5.(x) =fV(x) = (T()) T()(EAforx(EA when f is

an is-function of the fifth kind.
For a € A with A(f > a) we will denote the set

A(f>a)={xeA:f(x)>al}.

We define the symbols A(f > a), A(f =a), A(f < a),
A(a <f< b) and etc., in the same way.

If the set on which the is-function f is defined is
designated by a letter C or D, we shall write C(f>a) or
D(f>a).

Definition 2.1. The is-function £ is said to be measurable if

1. The set A is measurable.

2. The set A(f > a) is measurable for all a € A.

Theorem 2.3. Let f be a measurable is-function defined on
the set A. If B is a measurable subset of A, then the is-
function £ (x), considered only forx € B, is measurable.

Proof. Let a € R be arbitrarily chosen and fixed. We will
prove that

B(f >a) =B nA(f > a). (N

Really, let x € B(f > a) be arbitrarily chosen. Then x € B
and f(x)>a. Since B © A, we have that x € A. From x € A
and f(x)>a it follows that x € A(f >a) . Because
x € B(f > a) was arbitrarily chosen and for it we get that it
is an element of the set B N A(f > a), we conclude that

B < (f > a) € BNA(f > a). @)

Let now x € BN A(f > a) be arbitrarily chosen. Then
x€B and x EA(f >a). Hence x€B and f(x)>a.
Therefore x € B(f > a). Because x € BN A(f > a) was
arbitrarily chosen and we get that it is an element of B( f>
a), we conclude that

BN A(f > a) c B(f > a).

From the last relation and from (2) we prove the relation
1.

Since the iso-function f is a measurable function on the set
A, we have that A(f > a) is a measurable set. As the
intersection of two measurable sets is a measurable set, we
have that B n A(f > a) is a measurable set. Consequently,
using (1), the set B(f>a) is measurable set. In this way we
have

1. B is a measurable set,

2. B(f > a) is a measurable set for all a € R.

Therefore the iso-function f , considered only for x € B, is
a measurable is-function.

Theorem 2.4. Let f be defined on the set A, which is the
union of a finite or denumerable number of measurable sets
Ag, A = UgAg. If f is measurable on each of the sets Ay,
then it is also measurable on A.

Proof. Let a € R be arbitrarily chosen. We will prove that
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A(f > a) = Uy 4 (f > a). (3)

Let x € A(f > a) be arbitrarily chosen. Then x € A and
f(x) > a. Since x € A and A = Uy Ay, there exists k such
that x € A, . Therefore x € A, and f(x) >a . Hence,
x EAk(f > a) and x € UpAy(f >a) . Because x€
A( f> a) was arbitrarily chosen and for it we get that it is an
element of Uy Ax(f > a) , we conclude that

A(f > a) c Up Ax(f > a). (4)

Let now y € U, A, (f > a) be arbitrarily chosen. Then
there exists 1 such that y € A,(f>a). From here x € 4; and
f») >a. Hence, y€EA=Uy4, and f(y)>a.
Consequently € A(f > a) . Because y € Uy Ax(f > a) was
arbitrarily chosen and for it we get that it is an element of
A(f > a) we conclude that

A(f > a)c UAk(f> a).
k

From the last relation and from (4) we prove the relation

3).

Since the union of finite or denumerable number of
measurable sets is a measurable set, using that the sets
Ay(f > a) are measurable, we obtain that A and A(f > a)
are measurable sets. Therefore f is a measurable is-function.

Definition 2.5. Two is-functions f and §, defined on the
same setr A, are said to be equivalent if

u(A(f = 9)) =o.

We will write

P

f~3.
Remark 2.6. There is a possibility f + g and in the same
timef ~ §.
Let
A=[1,2],f(x)=x9x)=x+1,
~1+VITax?
T(x)=——,x€ A
2x
Then

f+g.
On the oth-1+er hand,

_f@®_ x
T(x) —1+Vitdx?
X

B 227 B 2x2(1+ V1 + 4x?%)

S —14+VT+ 42 (VI A2 - 1)(VI+ 4x2 - 1)
C222(14+V1+4x%) 1+VI+4x2
B 4x? B 2 ’

@

gMx) = g(xT(x)) =xT(x) +1
x-1+m+1_-1+m+1

2x 2
_1+V1+ 4x2
=—
We have that
u(a(f™ = gM) =0
Or

fAA ~ g/\.

Remark 2.7. There is a possibility f ~ g and in the same
time f + §. Let

A=[1,2],f(x)=g(x)=x3T(x) =x+1,x € A
Then
f~g
On the other hand,

A = f(xT () = £*T?(x) = x> (x + D% g¥(x) =

() =
IGm) = 2w wor

Then
x2
fAx) =gY(x) & x%(x + 1)? =G+—1)2 o (x+1)*
=1 x=0¢A.
Therefore
I‘(A(f/\ = gv)) =0,
Hence,
u(A(fr = gM) = 1.
Consequently

fh~g".
Proposition 2.8. The fuAnctions f and g are equivalent if

and only if the functions f** and g™ are equivalent
Proof. We have

n(Af #9) =0 ,1(14(%;&%)):0

< u(A(f™ = g™)) =o.

Definition 2.9. Let some property P holds for all the points
of the set A, except for the points of a subset B of the set A. If
= 0, we say that the property P holds almost everywhere on
the set A, or for almost all points of A.

Definition 2.10. We say that two is-functions defined on
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the set A are equivalent if they are equal almost everywhere
on the set A.

Theorem 2.11. If f(x) is a measurable is-function defined
on the set A, and if f ~ §, then the is-function §(x) is also
measurable.

Proof. Let

B=A(f #§),D=A\B.

Because f ~ § we have that
u(a(f=9) =

oruB = 0.

Since every function, definite on a set with measure zero is
measurable on it, we have that the is-function § is
measurable on the set B.

We note that the is-functions f(x) and §(x) are identical
on D and since the isO-function f is measurable on D, we get
that the is-function § is measurable on D.

Consequently the is-function g is measurable on

BubD=A

Theorem 2.12. If the is-function f (x), defined on the set A,

is measurable, then the sets

A(f =z a),A(f = a), A(f < a), A(f < a)

Are measurable for all a € R.
Proof. We will prove that

A(fza) =TI A(f>a-2). )

Really, let x € A(f = a) be arbitrarily chosen. Then x € A
and f(x) = a. Hence, for everyn € N we have f(x) > a—
%. Therefore

x € H;‘;’=1A(f> a—%).

Because x € A(f = a) was arbitrarily chosen and for it we
obtain x € [l5—, 4 (f > a-2),
We conclude that

A(fZa)C]'[,?zlA(f>a—%). 6)

Let now x € [[5-, 4 (f >a —%) be arbitrarily chosen.

Then x € A ( f>a- ;11-) for every natural number n. From
here x € A and

R 1
f@)>a-=
For all natural number n. Consequently
. 1
lim f(x) =2 lim (a - —)
n-o n—co n

or

f(x) >a

and x € A(f = a) . Since xEH“,f=1A(f>a—%) was
arbitrarily chosen and we get that x € A(f > a), we

conclude
ﬁ (f>a——)cA(f>a)

n=1

From the last relation and from (6) we obtain the relation

(5).
Because the intersection of denumerable measurable sets is
a measurable set, using the relation (5) and the fact that all

sets A ( f>a- -11;) are measurable for all natural numbers n,

we conclude that the set A(f = a) is a measurable set.
The set A(f = a) is a measurable set because

A(f =a) = A(f 2 )\ A(f > a).
The set A(f < a) is measurable set since
A(f <a) =A\A(f > a).
The set A(f < a) is measurable since
A(f <a)=A\A(f = a).
Remark 2.13. We note that if at least one of the sets
Afza)A(f=0a)Af <a),A(f <a)

Is measurable for all a € R, then the iso-function f is
measurable on the set A.

Really, let A(f = a) is measurable for all a € R. Then,
using the relation

A(f > a) =TIz A(f 2 a-2) @

we obtain that the set A(f > a) is measurable for all a € R.
If A(f < a)) is measurable for all a € R, then using the
relation

A(f >a) =A\A(f < a),

we get that the set A(f > a) is measurable for all a € R.
If A(f < a) is measurable for all a € R, then using the
relation

A(f>a)=A\A(f < a),

We conclude that the set A(f > a) is measurable for all
a€R.

Theorem 2.14. If f(x) = ¢ = const for all points of a

measurable set A, then the is-function f(x) is measurable.
Proof. For all a € R we have that

A(f>a)=Aifc>aand A(f>a)=0ifc<a.

Since the sets A and @ are measurable sets, then A(f > a)



28 Svetlin G. Georgiev: Measurable Iso-Functions

is measurable for all a € R. Therefore the is-function f(x) is
measurable.

Definition 2.15. An is-function f(x) defined on the closed
interval [a, b] is said to be a step is-function if there is a finite
number of points

a=q;<a;<<a1<a,=b

Such that f (x) is a constant on (a;a;4q) , L=
0,12,--,n—1

Proposition 2.16. A step is-function is measurable.

Proof. Let f(x) is a step is-function on the closed interval
[a, b]. Let also,

a=q<a; <ay<-—+<a1<a,=bh

be such that f(x) is a constant on (a;a;4,) , i=
0,1,2,---,n—1. From the previous theorem we have that
f(x) is measurable on (a;,a;41),i=0,1,2,---,n. We note
that

the sets {a;},i = 0,1,2,---,n — 1, are sets with measure zero.

Therefore the is-function
f(x) is measurable on {a;}, i = 0,1,2,---,n. From here,

using that
n n
(b1 = | Je@wae | | Jta
i=0 i=0

We conclude that the is-function f(x) is measurable on [a,
b].

Theorem 2.17. If the is-function f (x), defined on the set A
is measurable and ¢ € R, ¢ # 0, then the is-functions

1. f(x) +c,

2. cf(x),

3. [f @

4. f2(0),

1

5. 7oy
are also measurable.

Proof. Let a € R be arbitrarily chosen. The assertion
follows from the following relations.

1. A(f+c>a)=A(f > c—a).

2. A(cf >a) = A(f > %) if 0, A(cf>a)=
A(f <§) if c<0.

3.A(f| >a) =4 if a<0, A(|f|>a)=A(f>a)u
A(f <—=a)ifa=0.

4. A(f?* > a) = Aifa<0, |
ifa > 0.

1 2 2 1 . 1

5 A(?>a)=A(f>0)nA(f<;) if a>0, A(?>
a) =A(f>0)u(A(f<0)nA(f<§)) if a0,
A (% > a) = A(f > 0) if a=0.

Definition 2.18. An is-function f, defined on the closed

interval [pa, b], is said to be is-step is-function, if there is a
finite number of points

A(f? > a) = A(|f] > Va)

a=aqy<a;<-<a,.,<a,=h,

such that

fx) = Ai—,x € [a;, a;41), ¢; = const, i =0,1,--,n—1.
T(x)

Theorem 2.19. Let T(x)>0 for every x € [a, b] and T(x) is
measurable on [a, b]. Let also, T(x) is an iso-step is-function
on [a, b]. Then f(x) is measurable on [a, b].

Proof. Let

a=33<2a; < <ap1<a, =bh,

be such that

R C;
fx) = Fl),x € [a;, a;41),¢; = const, i =0,1,--,n— 1.
x

From the last theorem it follows that% is a measurable

is-function on [a; a;44), i = 0,1,2,---,n — 1. Fromn-1 here
and from

n-1

[ab] = | Jiasais) v (8.

i=0

Since {b} is a set with measure zero, we conclude that the
is-step is-function f is measurable on [a, b].

Definition 2.20. Let M be a subset of the closed interval [a,
b]. The function ¢y (x) = 0 for x € [a,b)] \ M and ¢, = 1
for x € M, is called the characteristic function of the set M.

Theorem 2.21. If the set M is a measurable subset of the
closed interval A=[a, b], then the characteristic function
¢@u(x) is measurable on [a, b].

Proof. The assertion follows from the following relations.
Alpy>a)=0 if a=1, A(py>a)=M if 1>a>
0,A(py > a) = A if a<0.

Definition 2.22. Let M be a subset of the set A=[a, b]. The
iso- function §p(x) =0 if x €A\ M and Py =f—(‘x—) if

x € M, will be called characteristic is-function of the set M.
Theorem 2.23. Let T(x) be a measurable function on A=[a,
b], M be a measurable subset of A. Then the characteristic is-
function @y, (x) of the set M is measurable.
Proof. Let a € R be arbitrarily chosen. Then

A(@y > a) = (A\ M)(0 > a)UM (F::T) > a),

From here, using that the sets (4 \ M)(0>a) and

M (% > a) are measurable sets, we conclude that A(Qy >
a) is a measurable set. Because the constant a was arbitrarily
chosen, we have that the characteristic function @, is a
measurable is-function.

Theorem 2.24. Let f and T are continuous functions on the
closed set A. Then the is-function f*(%) is measurable.

Proof. Let a € R be arbitrarily chosen. Since every closed
set is a measurable set, we conclude that the set A is a
measurable set.
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We will prove that the set A(f* < a) is a closed set.
Let {x,}%_, be a sequence of elements of the set A(fM <
a) such that

lim x, = x,,

n—-oo
Since A(f™ < a) is a subset of the set A we have that
{x,)}5_,; € A. Because the set A is a closed set, we obtain that
X, € A. From the definition of the set A(f* < a) we have
that

rnge y _ T (Xn)
f (xn) - T(xn)

<a,

Hence, when n — o, using that f and T are continuous
functions on the set A, we get

ey )G
S = M P T e

= fA (%) < a,

ie., xg € A(f™ < a). Therefore the set A(f™ <a)is a

closed set. From here, the set A(f** < a) is a measurable set.

Because the difference of two measurable sets is a

measurable set, we have that the set
A(fM™ >a) = A\NA(f™ < a)

Is a measurable set.

Since a € R was arbitrarily chosen, we obtain that the is-
function of the first kind f** is measurable.

Theorem 2.25. Let f and T are continuous functions on the
closed set A. The the is-functions

FrE0, F@, G, Y (%)

are measurable on A.
Theorem 2.26. If two measurable is-functions f and § are

defined on the set A, then the set A(f > §) is measurable.
Proof. We enumerate all rational numbers

1,72, 73,
We will prove that
A(f>9) = U (AF > na@ <n)). @)
Let
x € A(f > 9)

Be arbitrarily chosen. Then

x €A, f(x) > §(x).
There exists a rational number 7;, such that

f@) >n > go.
Therefore

x €EAand f(x) > nr;x € Aand r, > §(x),

ie.,
x €A(f >n)x € A(G <n)
Consequently
x€A(f>n)NnA@ <n)
And
x € U (A(f >n)NAQG < rk)).
k=1

Because x € A(f > g) was arbitrarily chosen and for it
we get

x € Uj=1 (A(f > rk) NA(G < rk)) , we conclude that
A(f>9) c U (a(f >m)nA@ <m)). O
Let no

x € U (A(f >n)NA@G < rk))

k=1

be arbitrarily chosen. Then there exists a natural k so that

x EA(f >1)NAG < 7).

Hence,
x € A(f >n)x € A(G <np).
Then
x €A f(x) > 1. 1 < J(x)
or
x €A f(x) > 1 > §(x).
Therefore
x € A(f > §).
Because

X €E U (A(f > rk) NA(G < rk))
k=1

Was arbitrarily chosen and for it we get that x € A(f > §),
we conclude that

U (A(f >n)NA@G < rk)) c A(f > g)f
k=1

From the last relation and from the relation (9) we get the
relation (8).

Since f and § are measurable iso-functions on A, we have
that the sets

A(f>n)AG <m)
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are measurable sets for every natural k, whereupon the sets

A(f>n)NA@G <n)

Are measurable sets for every natural k.

Therefore, using the relation (8), we obtain that the set
A(f > g) is a a measurable set.

Theorem 2.27. Let f(x) and §(x) be finite measurable is-
functions on the set A. Then each of the is-functions

1 fG) = §00),

2. f() + 40,

3. ; (x)g§(x),

(X) .o A

4. 7o if §(x) # 0onA,

Is measurable.

Proof.

1. Let a€€R be arbitrarily chosen. Since G(x) is

measurable, then a + §(x) is measurable. From here
and from the last theorem it follows that the set

Af) - 9@ > a) = A(f(x) > a + g(x))

Is measurable. Because a € R was arbitrarily chosen,
we conclude that the function f(x)—g(x) is
measurable.

2. Since § is a measurable is-function, we have that the
function —§ is a measurable is-function. From here
and from 1) we conclude that the is-function

f+5=F-C9

Is measurable.
3.  We note that

f@3§e) =1(F@ +3@)° -3(F0 - §)". (10)

Since f(x) and §(x) are measurable iso-functions,
using 1) and 2) we have that

f(x) + g(x)and f(x) — §(x)
Are measurable is-functions. Hence the is-functions
(F@ +5@)° (Fe) - )

Are measurable, whereupon

1 . 2 1,
S(F@+3() and 570 - 50’

Are measurable. From here, using 1) and (10), we
conclude that f(x)§(x) is measurable.
4. Since g(x) is measurable and §(x) # 0 on A, we

have that the is-function s measurable. From

a(x)

here and from 3) the is-function
fy . .1

——~=f(X) =

g(x) 4(x)

Is measurable.
Theorem 2.28. Let {fn(x)}:= . be a sequence of

measurable is-functions defined on the set A. If

1My 0 fn(x) = f(x) (11)

Exists for every x € A, then the is-function f(x) is
measurable.

Proof. Let a € R be arbitrarily chosen. For n, k,m € N we
define the sets

. 1 -
Apr =4 (fk >a +E)'Bm'" = HA'"'"'

k=n
We will prove that

A(f > a) = Unm B (12)
Let

x € A(f > a)
Be arbitrarily chosen. Then
x € Aand f(x) > a.

Hence, there is enough large natural number m, such that

flx) > a+mi1.

Using (11), there are enough large natural numbers k and
m such that

,\ 1
fk(x) >a +E,

ie,x € Apg.

From here, it follows that there is enough large n so that
X €Ay for every k=2n, ie., x €B,, and then x €
Um,n Bm,n-

Since x € A(f > a) was arbitrarily chosen and we get that
it is an element of the set U,y ,, By, », We conclude that

A(f > a) € Upmn Bn- (13)

Let now x € Uy By, be arbitrarily chosen.
Then, there are m,,n € N so that

o
X € Bmz,n1 = | | AmZ:kl
k

=nq
or
fkl(x) >a+— forVk = n,.
my
Hence,
lim f; > li ( + ! )
Jim i@ 2 Jim (a+ o
or
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. 1
>a+—>a.
fx)=a — a

Therefore
x € A(f > a).

Since x € Uy Byyn Was arbitrarily chosen and for it we
obtain x € A(f > a), we conclude that

U Bnn € A(f > a).
mn

From the last relation and from (13) it follows the relation
(12).

Since f; (x) are measurable, we have that the sets A,  are
measurable for every m, k € N, hence B,,,, are measurable
for every m,n € N and then, using (12), the set A(f > a) is
measurable. Consequently the is-function f is measurable.

Theorem 2.29. be a sequence of measurable is-functions
defined on the set A. If

limp, e fo(x) = f(x) (14)

Exists for almost everywhere x € 4, then the is-function
f(x) is measurable.

Proof. Let B be the subset of A so that the relation (14)
holds for every x € B. From the previous theorem it follows
that the is-function f(x) is measurable on the set B.

We note that
p(A\B) =0.

Therefore the is-function f(x) is measurable on A\ B.
Hence, the is-function f(x) is measurable on A.
Let

T’m T:A - (05 m)!fnlf:A - R}
0<qg <T,(x),T(x) < q,forx€ A,neN.

Then
10 =20 =43
2. fx) = D pay) = LE7CD
If
xT, (), xT(x),x € 4,
3. fa® = 5’;;5;") f@ = (;;g‘;)
If

X X

.0 T

4. £1@) = LT () A = F(xP @),
If

»

xT, (%), xT(x),x € A,

5. fn x)=fa (7- (x)) fv(x) = f(f'(x))
If

X

X
@ T ¥ €A

3. The Structure of the Measurable Is-
Functions

Theorem 3.1. (is-Lebesgue theorem for is-functions of the
first kind) Let there be given a sequence {f,(x)}n-, of
measurable functions on a set A, all of which are finite

almost everywhere. Let also, {Tn(x)}i1 be a sequence of
measurable functions on the set A,

0<g <T@ <gq

For all natural numbers n and for all x € A, where g, and
q, are positive constants. Suppose that

lim £,00) = £,
lim 7, () = T()

Almost everywhere on the set A, and f(x) is finite almost
everywhere on A,

g <T(x) <q,
For all x € A. Then
limpA(|fN(£2) - Fr @) 2 0) =0

Forallo = 0.
Proof. We will note that the limit functions f(x) and T'(x)
are measurable and the sets under considerations are

measurable.

Let
A= A(lf] = ),
B, = A(lfn] = ),

C=Alfa+f)
D :=BU<UB,,)UC.
n=1
Since

uB =0,uC = 0,uB, =0,
using the properties of the measurable sets, we have that
uQ = 0.
Let
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Ru(@ = | 4o
k=n

M= ﬁ R, (o).
n=1

We have that
R,(0) 2 R,(6) D ---.
Hence,

lim u R, (o) = uM.
n-»00

Let us assume that x, € Q. Then, using the definition of
the set Q , we have

fu(x0) _ [ (X0,

noo Ty (x9) | T(Xo)

Since
0<g; < Tn(x):T(x) < qz k=1,2,n,
we have that

fi(x0) f2(x0) fre(x0)
T1(xo)'T2(xo)' 'Tk(xo)'

and their limit

f (xo).
T(xo)

are finite.
Therefore there is an enough large natural n such that

fre(x0) _ f(xo). <g
Tk(xo) T(xo)

for every k = n. Then x, € Ar(0), k = n, where x, € R,,(0)
and from here x, & M.

Consequently M c Q.

Because uQ = 0, from the last relation, we have that
uM =0, ie.,

lim,_,, R,(¢) =0,
and since
Ay (0) € Ry(0),
rlli-EgR"(a) =0
or
limpA(|f(2) - fA@)| 2 0) = 0.

As in above one can prove the following results for the
other kinds of is-functions.

Theorem 3.2. (is-Lebesgue theorem for is-functions of the
second kind) Let there be given a sequence {f,(x)}x=, of

measurable functions on a set A, all of which are finite
almost everywhere. Let also, {Tn(x)}:= ) be a sequence of
measurable functions on the set A,

0<q <T,(x)<gq,

For all natural numbers n and for all x € A, where g, and
q, are positive constants. Suppose that

lim £,60) = £(x),
lim 7,(0) = 1)

Almost everywhere on the set A, and f(x) is finite almost
everywhere on A,

e <T(x)<q,
For all x € A. Then

lim pA(|f2(x) = fA )| 2 0) =0

forallo = 0.

Theorem 3.3. (is-Lebesgue theorem for is-functions of the
third kind) Let there be given a sequence {f,(x)}r-; of
measurable functions on a set A, all of which are finite

almost everywhere. Let also, {Tn(x)}l1 be a sequence of
measurable functions on the set A,

0<q, <T(®)<¢q

For all natural numbers n and for all x € A, where g, and
g, are positive constants. Suppose that

lim £,(x) = £(2),
lim 7, () = 7(x)

Almost everywhere on the set A, and f(x) is finite almost
everywhere on A,

an<T(x)<q
For all x € A. Then

limpA(|f, (2)-F @)|20)=0

forall o = 0.

Theorem 3.4. (is-Lebesgue theorem for is-functions of the
fourth kind) Let there be given a sequence {f,(x)}n=, of
measurable functions on a set A, all of which are finite

almost everywhere. Let also, {T‘n(x)}:=1 be a sequence of
measurable functions on the set A,

0<gsT(®M=<gq

For all natural numbers n and for all x € A, where g, and
q, are positive constants. Suppose that

lim £,(x) = £(2),
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lim () = 7G)

Almost everywhere on the set A, and f(x) is finite almost
everywhere on A,

q. < T(x) <q
For all x € A. Then
limpA(£A @) = fA@)] 2 0) = 0

Forallo = 0.

Theorem 3.5. (is-Lebesgue theorem for is-functions of the
fifth kind) Let there be given a sequence {f,(x)}%-, of
measurable functions on a set A, all of which are finite

almost everywhere. Let also, {7‘,l(x)}:j=1 be a sequence of
measurable functions on the set A,

0<qg <Th(x) <q,

For all natural numbers n and for all x € A, where g, and
q. are positive constants. Suppose that

lim £,(0) = £(0),
lim 7, () = 7x)

Almost everywhere on the set A, and f(x) is finite almost
everywhere on A,

q, < T(x) <q;
For all x € A. Then

lim pA(I () = f' @] 2 0) = 0

forallo = 0.
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Abstract: The establishment of isomathematics, as proposed by R. M. Santilli thirty years ago in the USA, and contributed to
by Jiang Chun-Xuan in China during the past 12 years, is significant and has changed modern mathematics. At present, the
primary teaching of mathematics is based on the simple operations of addition, subtraction, multiplication and division; a middle
level teaching ofmathematics takes these four operations to a higher level, while the university teaching of mathematics extends
them to an even higher level. These four arithmetic operations form the foundation of modern mathematics. Santilli
isomathematics is a generalisation of these four fundamental operations and heralds a great revolution in mathematics. HIn this
paper, we study the four generalized arithmetic operations of isoaddition, isosubtraction, isomultiplication and isodivision at the
primary level of isomathematics. The material introduced here should be readily understandable by middle school pupils and
university students.Santilli’s isomathematics [1] BBis based on a generalisation of modern mathematics. Isomultiplication is
defined by a X a = abT, isodivisionby a £b = %i ,where [ # 1 is called an isounit; 7/ = 1, where T is the inverse of the

isounit. If addition and subtraction remain unchanged, (-’F, =,X,¥) are the four arithmetic operations in Santilli’s
isomathematics[1-5]. Isoaddition a¥b = a + b + 0 and isosubtraction a¥b = a + b + 0, where 0 # 0 is called the isozero,
together with the operations of isomultiplication and isodivision introduced above, form the four arithmetic
operations(¥, =,X,¥) in Santilli-Jiang isomathematics[6]. Santilli [1] suggests isomathematics based on a generalisation of
multiplication x, division +, and the multiplicative unit 1 of modern mathematics. It is an epoch making suggestion. From

modern mathematics, the foundations of Santilli’s isomathematics will be established.

Keywords: Santilli-Jiang Math, Isomultiplication, Isodivision, Isoaddition and Isosubtraction

1. Division and Multiplication in Modern axl=a,a+l=a,1+a=1/a 4)
Mathematlcs (+1)n = l, (+1)a/b = 1’ (_l)n = (—1)”, (_l)a/b = (_l)a/b (5)
S that
tppose fia Addition +, subtraction -, multiplication x, and division +
a+ra=a"=1 (1) are the four operations forming the foundation of modern
mathematics. The modern mathematics is generalised to
where 1 is the multiplicative unit and 0 is exponent zero. establish the foundations of Santilli-Jiang isomathematics.

From (1), division + and multiplication x are defined by

2. Isodivision and Isomultiplication in

=9 = . .
a+rb= b’ b#0,axb=ab 2) Santilli’s Isomathematics

a=ax(a+a)=axa’=a 3) Isodivision +and isomultiplication X [1 — 5], which are
generalisations of the division + and multiplication x of
Now consider the multiplicative unit 1, modern mathematics, are now defined.
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ata=d"=1#1, 0%0 (6)

where ] is called the isounit and is a generalisation of the

multiplicative unit 1 and 0 isthe isoexponent zero which is a
generalisation of the exponent zero 0. Then,

a%b=i%,b¢0,a>*<b=af‘b %)

It is seen that
a=aX(ata)=axa’=all=a €3]
from which it follows that
Ti=1 ©)

A

where T is the inverse of the isounit 7 .

The isounit 1 has the following
properties[5,p93-95,isoexponents]:
a>A<IA=a, a$i=a, Tia=a'=1*/a 10)

Y =1, @Y = 10 = 1 d eyt =] (D)

With addition and subtraction unchanged, (+,—, % +) are

the four arithmetic operations in Santilli’s isomathematics and
these form the foundations of Santilli isomathematics. When

i =1, the operations revert to being those of the modern
mathematics.

3. Addition and Subtraction in Modern
Mathematics

~ a

K=xTx, +=+0+ +=x]+ 2=

SR
N~

aka=a*T,ata=2a+0;a%ta=1#1,a2a=-0#0;T1=1.

Here (+,+,% %) are the four arithmetic operations in

Santilli-Jiang isomathematics.
Remark:

aX(b+c)=ak(b+c+0)
From the left-hand side, it follows
ax(b+c)=axb+ak++axc)=ax(b+++c)
=ax(b+0+c),

where +=0 is a number also.
Again,

These are defined by

x=a+tbandy=a-b (12)
ata—a=a (13)
a—a=0 (14)

Isoaddition and isosubtraction may be established using
these results.

4. Isoaddition and Isosubtraction in
Santilli-Jiang Isomathematics

A

Isoaddition + and isosubtraction = are defined by

atb=a+b+c, atb=a-b-c, (15)
sa=atata=a+c-c,=a (16)

Then, from (16), it follows that
¢ =c an

Suppose that ¢, =c, = 0, where 0 is called the isozero
which is a generalisation of the zero 0 of addition and
subtraction[6]. Hence,

atb=a+b+0, a2b=a—b-0 (18)

When 0=0 , these equations are the usual laws of addition

and subtraction of modern mathematics.

From the above results, the foundations of Santilli-Jiang
isomathematics are readily established:

—0—; aXb=abT,at+b=a+b+0;

,atb=a-b-0,a=axXa+a=a,a=a+a*~a=a;

(19)
ak(b=c)=ax(b—c-0)

From the left-hand side of this relation, it is seen that
axX(b=c)=aXb—ax+—aXc)
=ax(b-=+-c)= a>2(b—6—c) ,

where <=0 is a number also.

The distributive laws are satisfied and +, =, %, + are

numbers.

This Santilli-Jiang isomathematics therefore, provides a
new mathematical tool for studying the mathematical
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problems of the 21" century and helping in the understanding
the mysteries of our universe.

5. An Illustrative Example

Consider the algebraic equation

P=ax(b+c)ta, t(b,2c,)=aT (b +c +0)+0+a, /T(b,—c,-0)

If 7=1 and 0=0 then y=5.

Let T=2 and 0=3 . From (21) we have the
isomathematical subequation

»=2ab+c¢+3)+3+a,/2(b,—¢c,-3). (22)

Let T=5 and 0=6 .
isomathematical subequation

From (21) we have the

9, =5a,(b+c,+6)+6+a,/5(b,—c,—6) (23)

Let 7=8 and 0=10 .
isomathematical subequation

From (21) we have the

$, =8a,(b,+¢,+10)+10+a, /8(b,—c, ~10) (24)

Therefore, (21) has infinitely many isomathematical

subequations. Using (21) — (24), T and 0, the stability and
optimum structure of the algebraic equation (20) may be
studied.

y=ax+qg)ta,+(b,~-c,) (20)

(20) may represent a mathematical system, physical system,
biological system,cryptogram system, IT system, or some
other system. It may be written as the isomathematical
equation

@1

References

[1] R. M. Santilli, Rendiconti Circolo Matematico Palermo, Suppl.
Vol. 42, 7-82 (1996),\\
http://www.santilli-foundation.org/docs/Santilli-37.pdf

[2] Chun-Xuan Jiang, (1998), Foundations of Santilli’s isonumber
theory, Part I: Isonumber theory of the first kind; Algebras,
Groups and Geometries, 15, 351-393.

[3] Chun-Xuan Jiang, (1998), Foundations of Santilli’s isonumber
theory, Part II: Isonumber theory of the second kind; Algebras
Groups and Geometries, 15, 509-544.

[4] Chun-Xuan Jiang, (1999), Foundations of Santilli’s isonumber
theory, in: Fundamental open problems in sciences at the end of
the millennium, T. Gill, K. Liu and E. Trell (Eds), Hadronic
Press, USA, 105-139.

[5] Chun-Xuan Jiang, (2002), Foundations of Santilli’s isonumber
theory, with applications to new cryptograms, Fermat’s
theorem and Goldbach’s conjecture, International Academic
Press, America- Europe- Asia. MR2004c:11001. (also available
in the pdf file http: / www. i-b-r. org/docs/jiang.pdf)
(http://vixra.org/pdf/1303.0088v1.pdf))

[6] Chun-Xuan Jiang,(2008),Santilli-Jiang isomathematics for
changing modern mathematics,middle school
mathematics(Chinese),Dec.46-48



American Journal of Modern Physics
2015; 4(5-1): 38-46

Published online August 10, 2015 (http://www.sciencepublishinggroup.com/j/ajmp)

doi: 10.11648/j.ajmp.s.2015040501.15
ISSN: 2326-8867 (Print); ISSN: 2326-8891 (Online)

stiencePl
Science Pubfishmg Group

Hypermathematics, H,-Structures, Hypernumbers,
Hypermatrices and Lie-Santilli Addmissibility

Thomas Vougiouklis

Democritus University of Thrace, School of Education, Alexandroupolis, Greece

Email address:
tvougiou@eled.duth.gr

To cite this article:

Thomas Vougiouklis. Hypermathematics, H,-Structures, Hypernumbers, Hypermatrices and Lie-Santilli Addmissibility. American Journal of
Modern Physics. Special Issue: Issue I: Foundations of Hadronic Mathematics. Vol. 4, No. 5-1, 2015, pp. 38-46.

doi: 10.11648/j.ajmp.s.2015040501.15

Abstract: We present the largest class of hyperstructures called H,-structures. In H,-groups and H,-rings, the fundamental
relations are defined and they connect the algebraic hyperstructure theory with the classical one. Using the fundamental relations,
the H,-fields are defined and their elements are called hypernumbers or H,-numbers. H,-matrices are defined to be matrices with
entries from an H,-field. We present the related theory and results on hypermatrices and on the Lie-Santilli admissibility.
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1. Introduction to Hypermathematics,
the H,-Structures

Hyperstructure is called an algebraic structure containing at
least one hyperoperation. More precisely, a set H equipped
with at least one multivalued map -: HXH — P(H), is called
hyperstructure and the map hyperoperation, we abbreviate
hyperoperation by hope. The first hyperstructure was the
hypergroup, introduced by F. Marty in 1934 [25], [26], where
the strong generalized axioms of a group wrere used. We deal
with the largest class of hyperstructures called H,-structures
introduced in 1990 [40],[44],[45] which satisfy the weak
axioms where the non-empty intersection replaces the
equality.

Some basic definitions:

Definitions 1.1 In a set H with a hope -: HXH—>P(H), we
abbreviate by WASS the weak associativity: (xy)znx(yz)=J,
Vx,y,ze H and by COW the weak commutativity: xynyx#J,
Vx,ye H.

The hyperstructure (H,-) is called H,-semigroup if it is
WASS and is called H,-group if it is reproductive
H,-semigroup:

xH=Hx=H, Vxe H.

The hyperstructure (R,+,-) is called H,-ring if (+) and (-) are
WASS, the reproduction axiom is valid for (+) and (-) is weak
distributive with respect to (+):

X(y+2)N(xy+xz)#0, (x+y)zn(xz+yz)#D, Vxy,ze R.

For definitions, results and applications on H,-structures,
see books [44],[4],[10],[12] and papers [6],[71,[8],[91,[11],
[17],[18],[19],[22],[24],[46]. An extreme class is defined as
follows [41],[44]: An H-structure is very thin iff all hopes are
operations except one, with all hyperproducts singletons
except only one, which is a subset of cardinality more than one.
Thus, a very thin H-structure is an H with a hope (-) and a pair
(a,b)e B? for which ab=A, with cardA>1, and all the other
products, are singletons.

The main tools to study hyperstructures are the so called,
fundamental relations. These are the relations f* and y* which
are defined, in H,-groups and H,-rings, respectively, as the
smallest equivalences so that the quotient would be group and
ring, respectively [38],[40],[44],[48],[49]. The way to find the
fundamental classes is given as follows [44]:

Theorem 1.2 Let (H,-) be an H,-group and let us denote by
U the set of all finite products of elements of H. We define the
relation B in H as follows: xBy iff {x,y}cu where ue U. Then
the fundamental relation B* is the transitive closure of the
relation f.

The main point of the proof is that § guaranties that the
following is valid: Take elements x,y such that {x,y}cueU
and any hyperproduct where one of these elements is used.
Then, if this element is replaced by the other, the new
hyperproduct is inside the same fundamental class where the
first hyperproduct is. Thus, if the ‘hyperproducts’of the above
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B-classes are ‘products’, then, they are fundamental classes.
Analogously for the y in H,-rings.

An element is called single if its fundamental class is a
singleton.

Motivation for H,-structures:

1. The quotient of a group with respect to an invariant
subgroup is a group.

2. Marty states that, the quotient of a group with respect to
any subgroup is a hypergroup.

3. The quotient of a group with respect to any partition is an
H,~-group.

In H,-structures a partial order can be defined [44].

Definition 1.3 Let (H,'), (H,®) be H,-semigroups defined
on the same H. (*) is smaller than (®), and (®) greater than (-),
iff there exists automorphism fe Aut(H,®) such that
xycf(x®y), Vxe H.

Then (H,®) contains (H,-) and write -<®. If (H,-) is structure,
then it is called basic and (H,®) is an Hy-structure.

The Little Theorem [26]. Greater hopes of the ones which
are WASS or COW, are also WASS and COW, respectively.

The fundamental relations are used for general definitions
of hyperstructures. Thus, to define the general H,-field one
uses the fundamental relation y*:

Definition 1.4 [40],[43],[44]. The H,-ring (R,+,)) is an
H,-field if the quotient R/y* is a field.

The elements of an H,-field are called hypernumbers. Let
o©* be the kernel of the canonical map and from H,-ring R to
R/y*; then we call it reproductive H,-field if:

x(R-0*) = (R-0*)x = R-0*, Vxe R-0*.

From this definition a new class is defined [51],[56]:

Definition 1.5 The H,~semigroup (H,-) is called h/v-group if
the H/B* is a group.

An H,-group is called cyclic [33],[44], if there is an element,
called generator, which the powers have union the underline
set, the minimal power with this property is the period of the
generator. If there exists an element and a special power, the
minimum one, is the underline set, then the H,~group is called
single-power cyclic.

To compare classes we can see the small sets. To enumerate
and classify H,-structures, is complicate because we have
great numbers. The partial order [44],[47], restrict the problem
in finding the minimal, up to isomorphisms, H,-structures. We
have results by Bayon & Lygeros as the following [2],[3]: In
sets with three elements: Up to isomorphism, there are 6.494
minimal H,~-groups. The 137 are abelians; 6.152 are cyclic.
The number of H,~groups with three elements is 1.026.462.
7.926 are abelians; 1.013.598 are cyclic, 16 are very thin.
Abelian Hy-groups with 4 elements are, 8.028.299.905 from
which the 7.995.884.377 are cyclic.

Some more complicated hyperstructures can be defined, as
well. In this paper we focus on H,-vector spaces and there
exist an analogous theory on Hy-modules.

Definition 1.6 [44],[50]. Let (F,+,-) be an H,~field, (M,+) be
COW H,-group and there exists an external hope

FXM—P(M): (a,x)—ax,

such that, Va,be F and Vx,ye M we have
a(x+y)n(ax+ay)zd, (atb)xN(ax+bx)2d, (ab)xNa(bx)=J,

then M is called an H,-vector space over F.

The fundamental relation €* is defined to be the smallest
equivalence such that the quotient M/e* is a vector space over
the fundamental field F/y*. For this fundamental relation there
is an analogous to the Theorem 1.2.

Definitions 1.7 [51],[53],[55]. Let (H,-) be hypergroupoid.
We remove he H, if we consider the restriction of (-) in the set
H-{h}. We say that he H absorbs he H if we replace h by h and
h does not appear in the structure. We say that he H merges
with he H, if we take as product of any xe H by h, the union of
the results of x with both h, h, and consider h and h as one class,
with representative h, therefore the element h does not
appeared in the hyperstructure.

Let (H,') be an H,-group, then, if an element h absorbs all
elements of its own fundamental class then this element
becomes a single in the new H,-group.

Theorem 1.8 In an Hy-group (H,), if an element h absorbs
all elements of its fundamental class then this element
becomes a single in the new H,-group.

Proof. Let he B*(h), then, by the definition of the ‘absorb’, h
is replaced by h that means that f*(h)={h}. Moreover, for all
x€ H, the fundamental property of the product of classes

P*(x)-B*(h) = B*(xh) becomes B*(x)-h = B*(xh),

and from the reproductivity ([44] p.19) we obtain x-h=p*(xh),
Vxe B*(x). This is the basic property that enjoys any single
element [44].

Remark that in case we have a single element then we can
compute all fundamental classes.

A well known and large class of hopes is given as follows
[331,[371,[39],[44],[20]:

Definitions 1.9 Let (G,-) be a groupoid, then for every
subset PcG, P2J, we define the following hopes, called
P-hopes: Vx,ye G

P: xPy= (xP)yUx(Py),
P:: xPy= (xy)PUx(yP), Pi: xPjy= (Px)yUP(xy).

The (G,P), (G,P,) and (G,P,) are called P-hyperstructures. In
the case of semigroup (G,): xPy=(xP)yUx(Py)=xPy and (G,P)
is a semihypergroup but we do not know about (G,P,;) and
(G,P)). In some cases, depending on the choice of P, the (G,P;)
and (G,P;) can be associative or WASS.

A generalization of P-hopes is the following [13],[14]: Let
(G,-) be abelian group and P a subset of G with more than one
elements. We define the hope X as follows:

xXpy = x-P-y = {x-h-yl he P} if x#e and y=e
x-y if x=¢ or y=¢

we call this hope, P.-hope. The hyperstructure (G,Xp) is an
abelian H,-group.
A general definition of hopes, is the following [57],[58]:
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Definitions 1.10 Let H be a set with n operations (or hopes)
®,,8,,...,8, and one map (or multivalued map) f:H—H, then
n hopes d,,0s,...,0; on H are defined, called d-hopes by putting

xdy = {fx)®yy, x®f(y)}, Vx,yeH, ie {1.2,....n}
or in case where ®; is hope or f is multivalued map we have
xdyy = (f{(x)Qy)U(x®f(y)), Vx,yeH, ie {1,2,...,n}

Let (G,-) groupoid and f;:G—G, i€, set of maps on G. Take
the map f:G—P(G) such that f (x)={fi(x) | iel}, call it the
union of the fi(x). We call the union d-hope (9), on G if we
consider the map f (x). An important case for a map f, is to
take the union of this with the identity id. Thus, we consider
the map f=fU(id), so f(x)={x,f(x)}, Vxe G, which is called
b-0-hope, we denote it by (d), so we have

xdy = {xy, fx)-y, x-f(y)}, Vx,ye G.

Remark If ®, is associative then 0; is WASS. If d contains
the operation ('), then it is b-operation. Moreover, if f:G—P(G)
is multivalued then the b-d-hopes is defined by using the
fix)={x}Uf(x), VxeG.

Motivation for the definition of J-hope is the derivative
where only multiplication of functions is used. Therefore, for
functions s(x), t(x), we have sdt={s"t,st’}, () is the derivative.

Example. For all first degree polynomials g;(x)=a;x+b;, we
have

2,02 = {a;ax+asb,, ajax+bja,},

so it is a hope in the set of first degree polynomials. Moreover
all polynomials x+c, where ¢ be a constant, are units.

There exists the uniting elements method introduced by
Corsini—Vougiouklis [5] in 1989. With this method one puts in
the same class, two or more elements. This leads, through
hyperstructures, to structures satisfying additional properties.

Definition 1.11 The uniting elements method is the
following: Let G be an algebraic structure and let d be a
property, which is not valid. Suppose that d is described by a
set of equations; then, consider the partition in G for which it
is put together, in the same partition class, every pair of
elements that causes the non-validity of the property d. The
quotient by this partition G/d is an H,-structure. Then,
quotient out the H,-structure G/d by the fundamental relation
B*, a stricter structure (G/d)B* for which the property d is
valid, is obtained.

An interesting application of the uniting elements is when
more than one property is desired, because some of the
properties lead straight to the classes. The commutativity and
the reproductivity property are easily applicable. The
following is valid:

Theorem 1.12 [44] Let (G,') be a groupoid, and

F = {fl,' vy fm, fm'*'la' "oy fm+n}
be a system of equations on G consisting of two subsystems

Fm= {fl:'-'afm} and Fn= {fm+17---, fm+n}'
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Let 6, 6, be the equivalence relations defined by the uniting
elements procedure using the systems F and F,, respectively,
and let o, be the equivalence relation defined using the
induced equations of F, on the grupoid G, = (G/6,)/B*. Then

(G/6)/B* = (Gu/cw)/B*.

i.e. the following diagram is commutative

Gio Gylo,
? l l u
{G/o)p* — (G )P

From the above it is clear that the fundamental structure is
very important, and even more so if this is known from the
beginning. This is the problem to construct hyperstructures
with desired fundamental structures [44].

Theorem 1.13 Let (S,) be a commutative semigroup with
one clement we S uch that the set wS is finite. Consider the
transitive closure L* of the relation L defined as follows: xLy
iff there exists ze S such that zx=zy .

Then <S/L*,->/B* is finite commutative group, where (°) is
the induced operation on classes of S/L*.

For the proof see [5],[44].

An application combining hyperstructures and fuzzy theory,
is to replace the ‘scale’ of Likert in questionnaires by the bar of
Vougiouklis & Vougiouklis [69],[70],[21],[27]:

Definition 1.14 In every question substitute the Likert scale
with the ‘bar’ whose poles are defined with ‘0’ on the left end,
and ‘1’ on the right end:

0 1

The subjects/participants are asked instead of deciding and
checking a specific grade on the scale, to cut the bar at any
point they feel expresses their answer to the question.

The use of the bar of Vougiouklis & Vougiouklis instead of
a scale of Likert has several advantages during both the
filling-in and the research processing. The final suggested
length of the bar, according to the Golden Ratio, is 6.2cm. The
hyperstructure theory, offer innovating new suggestions to
connect finite groups of objects. These suggestions are
obtained from properties and special elements inside the
hyperstructure.

2. Hyper-Representations

Representations (abbreviate by rep) of H,-groups can be
faced either by generalized permutations or by H,-matrices
[34]1,[36],[39],[43],[441,[52],[54],[66]. Reps by generalized
permutations can be achieved by using translations [42]. We
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present an outline of the hypermatrix rep in H-structures and
there exist the analogous theory for the h/v-structures.

Definitions 2.1 [44],[66] H,-matrix is a matrix with entries
elements of an H,-field. The hyperproduct of two H,-matrices
A=(a;) and B=(b;), of type mxn and nXr respectively, is
defined, in the usual manner,

A-B = (ay)-(by) = { C= (c;) | cije ®Zay-by },

and it is a set of mxr Hy-matrices. The sum of products of
elements of the H,-field is the union of the sets obtained with
all possible parentheses put on them, called n-ary circle hope
on the hyperaddition.

The hyperproduct of H,-matrices does not satisfy WASS.

The problem of the H,-matrix reps is the following:

Definitions 2.2 For a given H~group (H,-), find an H,-field
(F,+,), a set Mg={(a;) | a;e F} and a map T: H->Mgz:h—T(h)
such that

T(hyhy)T(h)T(hy) # B, Vhyhoe H.

The map T is called H, -matrix rep. If T(h;h,)cT(h;)T(h,),
Vh,h,e H, then T is called inclusion rep. T is a good rep if
T(hihy)=T(h))Thy)={T(h) |he hh,},Vhy,h,eH. If T is one to
one and good then it is a faithful rep.

The problem of reps is complicated since the hyperproduct
is big. It can be simplified in cases such as: The H,-matrices
are over H,-fields with scalars 0 and 1. The H,-matrices are
over very thin H,~fields. On 2x2 H-matrices, since the circle
hope coincides with the hyperaddition. On H,-fields which
contain singles, which act as absorbings.

The main theorem of reps is the following [44],[52]:

Theorem 2.3 A necessary condition in order to have an
inclusion rep T of an H,-group (H,-) by nxn H,-matrices over
the H,-field (F,+,") is the following:

For all classes p*(x), x€ H there must exist elements a;e H,
i,je {1,...,n} such that

T(B*(@)) < {A=(a'y) | 24e v*(@y), ije {1,...n}}

Thus, every inclusion rep T:H—Mg:a—T(a)=(a;;) induces a
homomorphic rep T* of the group H/B* over the field F/y* by
setting

T*(B*(a)) = [v*(ay)], VB*(a)e H/B*,

where y*(a;;)e R/y* is the ij entry of the matrix T*(B*(a)). T*
is called fundamental induced rep of T.
Denote try(T(x)) = y*(T(xy)) the fundamental trace, then the

mapping
X1t H—= Fiy*: x—=Xr (x) = try, (T(x)) = 1 T*(x)
is called fundamental character.
Using special classes of H,-structures one can have several
reps [52],[66]:
Definition 2.4 Let M=M,;x, be vector space of mxn matrices
over a field F and take sets

S={si:ke K} c F, Q={Q;:jeJ} c M, P={P;iel} c M.

Define three hopes as follows
S: FXM—=PM):(1,A)—>rSA={(rsy)A: ke K}c M
Q+: MXM—P(M):(A,B)—>AQ.B={A+Q;+B: je };c M
P: MXM—P(M):(A,B)>APB={AP'B: ic[}c M

Then (M,S,Q.,P) is a hyperalgebra over F called general
matrix P-hyperalgebra.

The bilinear hope P, is strong associative and the inclusion
distributivity with respect to addition of matrices

AP(B+C) c APB+APC, VA,B,Ce M

is valid. So (M,+,P) defines a multiplicative hyperring on
non-square matrices.

In a similar way a generalization of this hyperalgebra can be
defined considering an H,-field instead of a field and using
H,~-matrices instead of matrices.

In the representation theory several constructions are used,
one can find some of them as follows [43],[44],[ 52], [54]:

Construction 2.5 Let (H,-) be H,-group, then for all (@) such
that x®y>{x,y}, Vx,yeH, the (H,®,") is an H,-ring. These
H,-rings are called associated to (H,-) H,-rings.

In rep theory of hypergroups, in sense of Marty where the
equality is valid, there are three associated hyperrings (H,&®,-)
to (H,-). The (@) is defined respectively, Vx,ye H, by:

type a: X®y={X,y}, type b: x@y=p*(x)UB*(y), type c: x®y=H

In the above types the strong associativity and strong or
inclusion distributivity, is valid.

Construction 2.6 Let (H,) be an Hy-semigroup and
{vi,...,va}"H=0, an ordered set, where if v;<v;, when i<j.
Extend (-) in H=HU{v,,v,,...,v; } as follows:

X'Vi = ViX T Vi, ViV = ViV = v, Vi< and
viv; =HU{vy,...,vi.1 }, VxeH, ie {1,2,...,n}.

Then (H,) is an Hy-group, called Attach Elements
Construction, and (H,,)/B*=Z,, where v, is single [51},[55].

Some problems arising on the topic, are:

Open Problems.

a. Find standard H,-fields to represent all H,-groups.

b. Find reps by H,-matrices over standard finite H,-fields
analogous to Z,.

c. Using matrices find a generalization of the ordinary
multiplication of matrices which it could be used in Hy-rep
theory (see the helix-hope [68]).

d. Find the ‘minimal’ hypermatrices corresponding to the
minimal hopes.

e. Find reps of special classes of hypergroups and reduce
these to minimal dimensions.

Recall some definitions from [68],[16],[32]:

Definitions 2.7 Let A=(a;;)€ My, be mxn matrix and s,te N
be natural numbers such that 1<s<m, 1<t<n. Then we define a
characteristic-like map cst: Myx,—Mg by corresponding to
the matrix A, the matrix Acst=(a;;) where 1<i<s, 1<j<t. We call
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it cut-projection of type st. We define the mod-like map st:
Muua—Msx by corresponding to A the matrix Ast=(a;) which
has as entries the sets

8= {Biexsjoae | 1515, 15j<t and A€ N, i+is<m, j+At<n}.
Thus we have the map
St: Mumpa—Mao: A—>Ast=(a;).

We call this multivalued map helix-projection of type st. So
Ast is a set of sxt-matrices X=(x;) such that x;i€ a;;, Vi,j.

Let A=(a;)e My, B=(bjj)€ M, matrices and s=min(m,u),
t=min(n,u). We define a hope, called helix-addition or
helix-sum, as follows:

&: MpaXMupa—P(Mg):
(A,B)—>A@B=Ast+Bst=(2;)(b;)C Mas
where
(@)+( by)= {(ci)= (ai+by) | aye 2 and bye by}

And define a hope, called helix-multiplication or helix-
product, as follows:

®: MmaXMup—PMmx): (A,B)—>A®B=Ams-Bsv=(a;)-(by)c
mev:

where
(a)(by)= {( cy)=(Zaiby) | ae 3 and bye by}.

Remark. In M., the addition of matrices is an ordinary
operation, therefore we are interested only in the ‘product’.
From the fact that the helix-product on non square matrices is
defined, the definition of the Lie-bracket is immediate,
therefore the helix-Lie Algebra is defined [62], as well. This
algebra is an H,-Lie Algebra where the fundamental relation
e* gives, by a quotient, a Lie algebra, from which a
classification is obtained.

For more results on the topic see [16],[32],[61],[62].

In the following we denote E;; any type of matrices which
have the ij-entry 1 and in all the other entries we have 0.

Example 2.8 Consider the 2x3 matrices of the following
form,

A= Ey1+KE;1+Epp+Eas, By KB +Epn+Ess, Ve N.

Then we obtain AK®A;‘={AK+)~,A>~+1,BK+)~,B)~+1}

Similar ly, BK®A1={B +)~,B)~+1}, AK®B)~=B)~=BK®B)~.

Thus the set {AK,BJ x,A€ N} becomes an H,-semigroup
which is not COW because for x#\ we have

B.®B, =B, # B, =B;®B,,
however
(AK®A)V)ﬁ(A)~®AK) = {Aﬁx, Bﬁx}#@, VK,)\.E N.

All elements B, are right absorbing and B; is a left scalar,
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because B|®A;=B;.; and B,®B,=B;, A, is a unit.

3. Hyper-Lie-Algebras

Lie-Santilli admisibility

The general definition of an H,-Lie algebra over an H,-field
is given as follows [61],[62]:

Definition 3.1 (L,+) be H,-vector space on H,-field (F,+,),
©:F—F/y* the canonical map and wr={xe F:¢(x)=0}, where 0
is the zero of the fundamental field F/y*. Moreover, let @, be
the core of the canonical map ¢’: L—L/e* and denote by the
same symbol 0 the zero of L/e*. Consider the bracket
(commutator) hope:

[,]: LXL>PL): (x,y)—[xy]

then L is called an H,-Lie algebra over F if the following
axioms are satisfied:
(L1) The bracket hope is bilinear, i.e.

[axi Az, Y 1N XLy 1+ A %0,y ]) 2 &
XAy 1thaylN(ulxyi]+halx.y2]) # O,
VX,X1,X2,Y,y1,¥2€ L and A, A,€ F
(L2) [x.x]noL # B, Vxe L
(L3) (x.[y.zll*y.[zx][Hz [x.y])ne. # D, Vx,yeL

Example 3.2 Consider all traceless matrices A=(a;;)€ My,
in the sense that a;;+ a,,=0. In this case, the cardinality of the
helix-product of any two matrices is 1, or 2°, or 2°. These
correspond to the cases: a;;=a;3 and a;;=a,3;, or only a;;=a;
either only a,;=a,3, or if there is no restriction, respectively.
For the Lie-bracket of two traceless matrices the
corresponding cardinalities are up to 1, or 2°, or 2'2, resp. We
remark that, from the definition of the helix-projection, the
initial 2x2, block guaranties that in the result there exists at
least one traceless matrix.

From this example it is obvious the following:

Theorem 3.3 Using the helix-product the Lie-bracket of any
two traceless matrices A=(a;;), B=(b;)€ Mpxs, m<n, contain at
least one traceless matrix.

Last years, hyperstructures have a variety of applications in
mathematics and other sciences. The hyperstructures theory
can now be widely applicable in industry and production, too.
In several books [4],[10],[12] and papers [1],[11],[17],[23],
[31],[35],[501,[671,[70] one can find numerous applications.

The Lie-Santilli theory on isotopies was born in 1970°s to
solve Hadronic Mechanics problems. Santilli proposed [28] a
‘lifting” of the trivial unit matrix of a normal theory into a
nowhere singular, symmetric, real-valued, new matrix. The
original theory is reconstructed such as to admit the new
matrix as left and right unit. The isofields needed in this theory
correspond into the hyperstructures were introduced by
Santilli and Vougiouklis in 1996 and they are called
e-hyperfields [29],[30],[59],[60],[641,[13],[14],[15] which are
used in physics or biology. The H,-fields can give
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e-hyperfields which can be used in the isotopy theory for
applications.

The IsoMathematics Theory is very important subject in
applied mathematics. It is a generalization by using a kind of
the Rees analogous product on matrix semigroup with a
sandwich matrix, like the P-hopes. It contains the classical
theory but also can find easy solutions in different branches of
mathematics. To compare this novelty we give two analogous
examples: (1) The unsolved, from ancient times, problems in
Geometry was solved in a different branch of mathematics, the
Algebra with the genius Galois Theory. (2) With the
Representation Theory one can solve problems in Lie
Algebras and to transfer these in Lie Groups using the
exponential map, and the opposite. One very important thing
of the IsoMathematics Theory is that admits generalizations,
as well. Two very important of them are the following: First, is
the so called Admissible Lie-Santilli Algebras [28],[30],
[62],[65] by using again a kind of Rees sandwich product.
Second, is that one can extend this theory into the multivalued
case, i.e. into H-structures.

Definitions 3.4 A hyperstructure (H,-) containing a unique
scalar unit e, is called e-hyperstructure. We assume that Vx,
there is an inverse x', i.e. eexx"'Mx"x. A hyperstructure
(F,+,), where (+) is an operation and (-) is a hope, is called
e-hyperfield if the following are valid:

(F,+) is abelian group with the additive unit 0, (-) is WASS,

() is weak distributive with respect to (+), 0 is absorbing:
0-x=x-0=0, Vxe F, there exist a multiplicative scalar unit 1, i.e.
1-x=x-1=x, Vxe F, and Vxe F there exists a unique inverse x
such that lex-x'nx"x.

The elements of an e-hyperfield are called e-hypernumbers.
In the case that the relation: 1=x-x"'=x""-x, is valid, then we say
that we have a strong e-hyperfield.

A general construction based on the partial ordering of the
H,-structures:

Construction 3.5 [13],[14],[15],[30] Main e-Construction.
Given a group (G,-), where e is the unit, then we define in G, a
large number of hopes (®) by extended (:), as follows:

X®y={XY,g1,&2,---}, VX, y€ G-{e}, and g, g,,...€ G-{e}

Then (G,®) becomes an Hy-group, in fact is Hy-group
which contains the (G,). The H,-group (G,®) is an
e-hypergroup. Moreover, if Vx,y such that xy=e, so we have
x®y=xy, then (G,®) becomes a strong e-hypergroup.

Definition 3.6 Let (H,,*,) be the attached, by one element,
H,-field of the H,-semigroup (H,-). Thus, for (H,-), take an
element v outside of H, and extend (-) in H,=HU{v} by:

xX-v=v-x=V, v-v=H, Vxe H.

(H,,") is an Hy-group, called Attach Elements Construction,
and (H,,")/p*=Z,, where v, is single. If (H,) has a left and right
scalar unit e then (H,,*,”) is an e-hyperfield, the attached
H,-field of (H,').

Remark. The above main e-construction gives an extremely
large class of e-hopes. These e-hopes can be used in the
several more complicate hyperstructures to obtain appropriate

e-hyperstructures. However, the most useful are the ones
where only few products are enlarged.

Example 3.7 Take the finite-non-commutative quaternion
group Q={1,-1, i,-i, j,~j, k,-k}. Using this operation one can
obtain several hopes which define very interesting e-groups.
For example, denoting i={i,-i}, j={j,-j}, k={k,-k} we may
define the (*) hope by the Cayley table:

" 1 -1 i - i 5 k =«
1 1 1 i -i j - k «
-1 | 1 = i - j k k
i i -i i 1 k 3 j
- -i i 1 = « k j =
j j 5 *« k 5 1 i -
5 - j k « 1 < -i i
k k k j - - i -1 1
LSV g & i i T 1 )

The hyperstructure (Q,*) is strong e-hypergroup because 1
is scalar unit and the elements -1,i,-i,j,-j,k and -k have unique
inverses the elements -1,-1,i,-j,j,-k and k, resp., which are the
inverses in the basic group. Thus, from this example one can
have more strict hopes.

In [30],[62],[65] a kind of P-hopes was introduced which is
appropriate to extent the Lie-Santilli admissible algebras in
hyperstructures:

The general definition is the following:

Construction 3.8 Let (L=M_y,,t) be an H,-vector space of
mxn hyper-matrices over the H,-field (F,+,-), o:F—F/y*, the
canonical map and oF={xe F:p(x)=0}, where 0 is the zero of
the fundamental field F/y*, . be the core of the canonical
map ¢":L—L/e* and denote again by 0 the zero of L/e*. Take
any two subsets R,ScL then a Santilli’s Lie-admissible
hyperalgebra is obtained by taking the Lie bracket, which is a
hope:

[]rs: LXL=P(L): [X,y]rs=XR'y—yS'x.

Notice that [x,y]rs=xR'y—ySx={ r'y-ys'x | re R and se S}.
Special cases, but not degenerate, are the ‘small’ and
‘strict’:

(a) R={e} then [x,y]rs = xy-yS'x = {xy-ys'x | se S}
(b) S={e} then [x,ylrs = xR'y-yx = {xr'y-yx|reR}
(c) R={r,,1,} and S={s,,s,} then
[X.yIrs = XR'y-yS'x =
{xr1'y-ysi'%, Xr,'y=ys;X, Xr2'y-ys;'X, Xr, y-ys; X}

4. Galois H,-Fields and Low Dimensional
H,-Matrices

Recall some results from [63], which are referred to finite
H,-fields which we will call, according to the classical theory,
Galois H,-fields. Combining the uniting elements procedure
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with the enlarging theory we can obtain stricter structures or
hyperstructures. So enlarging operations or hopes we can
obtain more complicated structures.

Theorem 4.1 In the ring (Z,,+,-), with n=ms we enlarge the
multiplication only in the product of elements 0-m by setting
0®m={0,m} and the rest results remain the same. Then

(Zn’+5®)/y* = (Zma+>')'

Proof. First we remark that the only expressions of sums
and products which contain more, than one, elements are the
expressions which have at least one time the hyperproduct
0®m. Adding to this special hyperproduct the element 1,
several times we have the equivalence classes modm. On the
other side, since m is a zero divisor, adding or multiplying
elements of the same class the results are remaining in one
class, the class obtained by using only the representatives.
Therefore, y*-classes form a ring isomorphic to (Z,+,").

Remark. In the above theorem we can enlarge other
products as well, for example 2-m by setting 2®m={2,m+2},
then the result remains the same. In this case the elements 0
and 1 remain scalars, so they are refered in e-hyperstructures.

From the above theorem it is immediate the following:

Corollary 4.2 In the ring (Z,,+,"), with n=ps where p is a
prime number, we enlarge the multiplication only in the
product of the elements 0-p by setting 0®p={0,p} and the rest
results remain the same. Then the hyperstructure (Z,,+,®) is a
very thin H,-field.

The above theorem provides the researchers with H,-fields
appropriate to the rep theory since they may be smaller or
minimal hyperstructures.

Remarks 4.3 The above theorem in connection with Uniting
Elements method leads to the fact that in H,~structure theory it
is able to equip algebraic structures or hyperstructures with
properties as associativity, commutativity, reproductivity. This
equipment can be applied independently of the order of the
desired properties. This is crucial point since some properties
are easy to be applied, so we can apply them first, and then the
difficult ones. For example from an H,-ring we first go to an
H,-integral domain, by uniting the zero divisors, and then to
the H,-field by reaching the reproductivity.

Construction 4.5 (Galois H,-fields) In the ring (Z,,*,"), with
n=ps where p is prime, enlarge only the product of the
elements 2 by p+2, i.e. 2:(p+), by setting 2®(p+2)={2,p+2}
and the rest remain the same. Then (Z,,+,®) is a COW very
thin H,-field where 0 and | are scalars and we have:

(Zo,®)y* = (Zp, ).

Proof. Straightforward.

Remark 4.6 Galois Hv-fields of the above type are the most
appropriate in the representation theory since the cardinality
of the products is low. Moreover, one can use more
enlargements using elements of the same fundamental class,
therefore, one can have several cardinalities. The low
dimensional reps can be based on the above Galois Hv-fields,
since they use infinite Hv-fields although the fundamental
fields are finite.
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1. Introduction

In 1942, Albert [1] introduced the concept of isotopy of
algebras: Two algebras (4, -) and (4, *) over a field K are
said to be isotopic if there exist three regular linear
transformations f, g and 4 from A4; to A, such that

f(u) * g(v)=h(u - v), forallu,ve A,. €))

The algebra 4, is then said to be isotopic to the algebra A4,

or, equivalently, A, is an isotope of A;. The triple 8= (f, g, h)
is an isotopy or isotopism between both algebras 4; and 4,. If
= g = h, then this is indeed an isomorphism. If the elements of

A, and 4, coincide, then the isotopism Ois said to be principal
if 4 is the trivial transformation Id, that is, if A(u) =Id(u)=u, for
all ue A;. In this case, the algebra 4, is said to be a principal
isotope of A;. In his original paper, Albert proposed the
question as to whether a principal isotope of a Lie algebra is
Lie. In this regard, he proved that a principal isotope 4, of a
Lie algebra 4, with respect to a principal isotopism (f; g, 1d) is
a Lie algebra if and only if, for all u, v, w € 4, it is verified
that

Jw - g(v) =-1v) - g(w. @
S0 g(v)g(w) - [fw)gw))-g(v) — f(w) g(f1v) gw))=0. (3)

In 1944, Bruck [2] introduced the concept of isotopically
simple algebra as a simple algebra such that all their isotopic
algebras are simple. He proved in particular that the Lie
algebra of order » - (n—1)/2, consisting of all skew-symmetric
matrices over any subfield of the field of all reals, under the
Lie product /u, v] =u - v—v - u, is isotopically simple. Further,
the Lie algebra of order n - (n — ]) consisting of all

skew-Hermitian matrices in any field R(i) (where R is a
subfield of the reals and i* = -7), under the multiplication [,
v]=u - v—v - u, is an isotopically simple algebra over R.

More recently, in 1978, Santilli [3] generalized the
associative product u - v between Hermitian generators of the
universal enveloping associative algebra by considering the
new product

u*v=u-T-v 4)

where T is a positive-definite operator called the isotopic
element, which can indeed depend on distinct factors

T=Tkxxx',...1,7) )
The product
[uv]=u*v—v*u 6)

preserves the Lie axioms and is called the Lie-isotopic product.
The application to Lie’s theory (enveloping algebras, Lie
algebras and Lie groups) that emerges from this new product
is the so-called Lie-Santilli isotheory (see [3, pp. 287-290 and
329-374] and also [4-9]).

In the development of the isotheory, Santilli extended the
unit of the ground field to the generalized unit or isounit

I=1xx’x,..n1) =T ©)
He defined then the isonumbers
u=u*Ixxx’,..,u1), forallu € 4. 8)
and the isoproduct

[uv]=u*v—v*u ©)
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This isoproduct constitutes the Lie product of an
isomorphic Lie algebra of 4 whenever the isounit / is constant.
In any other case, this determines a generalization of the
classical notion (2) of isotopism. In order to analyze this fact,
the authors [10] reinterpreted in 2006 the dependence on
distinct factors of the isounit / as a family of classical Bruck’s
isotopisms. This reinterpretation became clearer shortly after
[11] once the attention was focused not on isotopisms of
algebras, but on isotopisms of partial quasigroups.

The term quasigroup was introduced in 1937 by
Haussmann and Ore [12] to denote a nonempty set Q endowed
with a product -, such that if any two of the three symbols u, v
and w in the equation ¥ - v = w are given as elements of Q, then
the third is uniquely determined as an element of Q. Its order
is the cardinality of the underlying set, that is, the number of
elements of the quasigroup Q. This is said to be a loop if it
contains a unit element, that is, there exists an element e € Q
such thate - u = u - e = u for all u € Q. Every associative loop
is indeed a group. The multiplication table of a quasigroup of
order n is a Latin square of order n, that is, an n x n array with
elements chosen from a set of » distinct symbols such that
each symbol occurs precisely once in each row and each

column (see Figure 1).
2 3 4 1
3 4 1 2
4 1 o 3
1 2 3 4

Figure 1. Latin square of order 4.

A partial Latin square of order n is an n x n array with
elements chosen from a set of » distinct symbols such that
each symbol occurs at most once in each row and each column
(see Figure 2). It constitutes the multiplication table of a finite
partial quasigroup (Q, -) of order n. Let u, v € Q. The product
u - v is then an element of Q or it is undefined. This last case is
denoted as u - v = . By abuse of notation, it is also considered
that u - 0 =@ - u = @, for all u € Q and hence, the partial
quasigroup is associative if (u-v) -w=u-(v-w), forally, v w
€ Q. It is a partial loop if there exists an element e € Q such
thate - u=u-e € {u, O} for all u € Q and there does not exist
an element e’# e such that e’ - ¥ = uw or u - ¢’ = u. Every
associative partial loop constitutes a partial group.

1 1

2 4
3 ; ]

4 3

Figure 2. Partial Latin square of order 4.

In 1943-44, Albert [13, 14] together with Bruck [15]
extended the definition of isotopy from algebras to
quasigroups. Particularly, two quasigroups (Q,, ) and (Q,, *)
of the same order are said to be isotopic if there exist three
bijections f, g and / between their sets of elements such that

S *gv) =h(u-v), forally, v e Q,. (10)
The definition can be naturally extended to partial

quasigroups once it is considered A(@) = @. The triple O = (f,
g h) is said to be an isotopism between Q; and Q, and it is

denoted O, = Q,6. If O, = Q,, then the isotopism 8 is said to
be an autotopism of Q; and f, g and 4 are permutations of the
elements of ;. The set of autotopisms of a (partial)
quasigroup constitutes, therefore, a group with the
component-wise composition of permutations.

In 2007, the authors [11] introduced the concept of Santilli
isotopism between partial quasigroups. Specifically, an

isotopism O = (f, g, h) between two partial quasigroups (Q;, )
and (Q,, *) is said to be a Santilli isotopism if there exist three
elements i; i, and i, in Q; such that

Sw=u- i g(w)=u- iy and h(u)=u- i, for all ue P,. (11)

The triple (i; i, i) is denoted by S(6,0)). If O, = O, then

the isotopism O s said to be a Santilli autotopism of Q;.

In [11], there were exposed several properties of the set of
partial quasigroups having a Santilli autotopism that fixes at
least one of the symbols. An exhaustive study of Santilli
autotopisms is, however, currently required. This paper is
established as a first contribution in this regard. In Section 2,
some new general properties of the set of Santilli isotopisms of
(associative) partial quasigroups, partial loops and partial
groups are analyzed. In Section 3, a classification of the
Santilli autotopisms of groups of order n < 6 is explicitly given.
Remark that, even if the number of quasigroups is known for
order up to 11 [16, 17], that of partial quasigroups is only
known for order up to four [18, 19].

2. Santilli Autotopisms

From now on, every partial quasigroup of order n is
considered to be formed by the set of elements {7,..., n}. The
set of isotopisms of partial quasigroups of order n is then
denoted as 7, = S, x S,x S,,, where S,, is the symmetric group on
{1,..., n}. The set of fixed symbols in a permutation & € S, is
denoted as

Fix(z) = {u € {I,...n} such that z(u)=u}. (12)

Let © € I, and let SQ(6), SL(6), SAQ(E) and SG(6) be,
respectively, the sets of partial quasigroups, partial loops,
associative partial quasigroups and partial groups that have &
as a Santilli autotopism. The next results are satisfied.

Lemma 2.1. Let © = (f, g, h) € I, and (Q, ;) € SQ(6) be

such that S(60)= (i; i, iy). Then, i, = g(iy. As a
consequence,

(iip G ig=(ij) (i forallije Q. (13)

Proof. Given ve Q, let u € Q be such that f{u)=v. Then,
v iy = h(v) = h(f(w) = h(u i) = ffu) - g(ir) =v - g(i) and the
result holds from the fact that Q is a partial quasigroup and A(v)
€ 0.

Proposition 2.2. Let O = (f, g, h) € I, and (Q, ) € SO(6) be
such that S(6,0)= (ij iy, iy). If h = £, then i; € Fix(g).

Proof. The result follows straightforward from Lemma 2.1
and the fact of being 4 = /.
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Lemma 2.3. Let @ = (, g h) € I, If there exist two
permutations a, £ € {f, g A} such that a(u,) = B(u,) for some u,
€ O,thena =p.

Proof. Let (Q, ‘) be a partial quasigroup in SQ(6) and let i,
ige Obe suchthat a(u) = u - i,and f(u) =u -igforallu € Q.
Particularly, u, - i, = a(ug) = B(ug) = u, - ig. This product is not
undefined because a(uy) € Q. Since Q is a partial quasigroup,
it must be then #, = i and hence, a = S.

Proposition 2.4. Let © = (f, g, h) € I, be such that Fix(g) =
A. Then, f(u) # h(u) for all ue Q.

Proof. Let ue Q be such that f{u) = h(u). From Lemma 2.3
it must be = A. Thus, from Lemma 2.1, it is i; = i), = g(i) and
hence, i; € Fix(g), which is a contradiction.

Lemma 2.5. Let ©= (f g, h) € I, and (Q, -) € SQ(6) be

such that S(6,0)= (i; i, iy). If there exists uy € O such that
h"(g(ug))= g(f" (uy)) for some positive integer m, then i; €
Fix(g"). As a consequence, if Fix(g") = @ for some positive

integer m, then A" (g(w)# g(/" (), for all u € Q.
Proof. Let m be such that h™(g(up))= g(f"(u,)) for some uy

€ Q It is then f(u) - g°Gy) = h™(o * i) = h"(e(uo))=
g(f"(uo))= f"(uo) - i,. This product is not undefined because
h™(g(uy)) € Q. Since Q is a partial quasigroup, it must be then
(= Fix(g™). The consequence is immediate.

Lemma 2.6. Let © = (f g h) € I, be such that
|Fix()| - |Fix(g)| - |Fix(h)| >0. Let (Q, ) € SQ(6) be such that
S(6,0)= (is iy, iy). If there exist uy € Fix(f), wy € Fix(h) and a
€ {f; g h} such that a(ug) = wy, then i, Fix(g). Further, ifi;e
Fix(g), then g(w) € Fix(h) for all ue Fix(f).

Proof. It is satisfied that u, - i, = a(ug) = wy = h(wy) =
h(uy - i)=f(ug)-g(iy) = up - g(i,). Since wy € Q and Q is a
quasigroup, it must be i, € Fix(g). Let us suppose now that i,
€ Fix(g) and let us consider an element # € Fix(f). Then g(u)
=u- iy = flw) - g(iy) = h(u - iy)=h(g(w)) and hence, g(u) €
Fix(h).

The next three results deal with the set of partial loops SL(6)
having a Santilli isotopism & in their autotopism group.

Proposition 2.7. Let ©= (£ g, h) € I, and (Q, -) € SL(6) be
a partial loop with unit element e. Then, S(6,0) = (f{e), g(e),
gie).

Proof. Let S(6Q) = (is i, iy). The result follows
straightforward from Lemma 2.1 and the fact that z(e) € Q.
Hence, n(e) = e - i, = i, forall = € {f, g}.

Lemma 2.8. Let © = (f g, h) € I, If there exists a
permutation 7 € {f; g, h} such that Fix(z) # @, then = = Id.

Proof. Let (O, -) € SL(6) and S(6,0)= (is iy, iy). Letw € {f,
g h} and uy € Q be such that z(uy) = u,. Since uy = u, - i, the
element i, is the unit element of the partial loop. Let u € Q.
Since n(u) € Q, it is w(u) = u * i, = u and hence, 7 = Id.

Lemma 2.9.Let ©=(f, g h) € I,and (Q, -) € SL(6) be a
partial loop with unit element e. If e € Fix(f") for some
positive integer m, then 4™ = ¢”. Similarly, if e € Fix(g™), then

A" ="

Proof. Let us suppose that e € Fix(/") for some positive
integerm. Letu € Q. Itisg"(w) =e-g" W) =f"(e) - g"(w) =
h"(e - u). Since g"(u) € Q, it must be e - u = u and hence, g"(u)
= W"(u). The last assertion follows analogously.

We focus now on the set SAQ(6) of associative partial
quasigroups having a Santilli autotopism in their autotopism
group.

Proposition 2.10. Let © = (f g, h) € 1. If SA0(6) + O,
thenh =g °f.

Proof. Let (Q, ) € SAQ(6) and S(6,0)= (i iy iy). From
Lemma 2.1, we know that i, = g(i;). Hence, forall u € Q, it is
verified that h(w) = u - iy=u -gli) =u - (if- i) = (u - i) i,
=g(fw)-

Lemma 2.11. Let 8= (f, g, h) € 1,be such that SAQ(6) # O
and let m < n be a positive integer. Then

a) S40(6) cSAQ(€").

b) SAQ(B) = SAQ((f, g f", h - f")).

Proof. Let (Q, ) € SA0(6) be such that S(6,0)= (i i,, i)
and let m < n be a positive integer. Then

1. The isotopism &” is an autotopism of (0, -) because
Weu-v)=h"(ftw) - gw) = ... =f"(w) - g"(v), for all u,
v € Q. Since the quasigroup (Q, - is associative, this is
indeed a Santilli autotopism for which S(6",Q)= (if", i,",
in").

2. The isotopism (£, g /", h /") is an autotopism of (Q, -)
because A(f"(u - v)) = h((u - v) - if") = h(u - (v - if") =
hu - ") = flw - g(’"(v)), for all u, v € Q. Since the

quasigroup (Q, ) is associative, this is indeed a Santilli
autotopism for which S((f; g «/", h </"),Q) = (if", if" - i,
if" - ip). Hence, SAQ(6) < SAQ((f, g /", h °f")).

Let us consider now an associative partial quasigroup
(Q%)e SAQ((f g °f", h°f")) such that S((f, g °/", h °f").Q) =
(i), iy, i3). It is then verified that O is a Santilli autotopism of
(O, *) because, since f* =Id, it is h(u *v) = h({f* (u *v)) =
(" (w *v) = h("(u * () =fw) * g (" (V) = fw) *
g('™v) =fw * g(v), for all u, v € Q’. Further, S(6,0°) = (i,
i,*; "™, i3*i;"™). Hence, SAQ((f. g °/", h °f")) < SAQ(6).

In general, given a positive integer m < n, it is not true that

SAQ(6G") c SAQ(6O). Thus, for instance, the isotopism 6 =
((1234), (1234), (13)(24)) is a Santilli autotopism of the
associative quasigroup whose multiplication table is the Latin
square exposed in Figure 1. Nevertheless, even if the
isotopism & = ((13)(24),(13)(24),1d) is a Santilli autotopism
of the associative partial quasigroup whose multiplication

table is exposed in Figure 3, this is not contained in S4Q(6).

3 1
4 2
1 3
2 4

Figure 3. Partial Latin square of order 4.

Let us finish with a result about the set SG(6) of partial
groups having a Santilli isotopism in their autotopism group.
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Theorem 2.12. Let © = (f, g, h) € I,. If SG(6) # @ and
Fix() # 0, theng = hand f = Id

Proof. The result follows straightforward from Lemma 2.8
and Proposition 2.10.

3. Santilli Autotopisms of Partial Groups
of Order n <4

The results that have been exposed in Section 2 can be taken
into account in order to determine explicitly the set of Santilli

corresponding autotopism group. The multiplication tables of
the elements of these sets are described in Figures 4—12.

1 2 2 1

2 il 1 1 2

Figure 4. Partial Latin squares related 10 A;.

1 2 3 3 1 2, 2 3 1
2 3 1 1 2 3 3 1 2
3 1 2 2 < 1 1 2 3

Figure 5. Partial Latin squares related to A;.

[0d, AH23), ADR23)]

We indicate for each class /&] in Table 1 the set SG(6) of
partial groups that have all the isotopisms of the class in their

isotopisms that are autotopisms of partial groups of a given 1121314 1 P BT RO R MR e IR P e E
order. To this end, we say that two isotopisms &;= (1}, g5, ;) 2; i ‘; ; ; § i ‘1‘ ‘; ; § i i ‘: ; g
and 6,= (f,, g, hy) in I, are equivalent if f, = f; and there exists RIS l SR N EEEE TR R
a positive integer m <n such that g, = g, °f;" and h, = h; °f;". Fieure 6. Partial Lt rated 104
igure 6. Partial Latin squares related to A..
From assertion (b) in Lemma 2.11, it is verified that SAQ(6,) ’
= SAQ(6,). To be equivalent is then an equivalence relation in |1 i ? ;IT.;’ ; g 2 I ‘2‘ 4|1 /304;3|2]1
2 4 I 26 T 3R A
the set /,. Let [6)] denote the equivalence classof O, We 51 4 [ 28432 1)1 13 31402413
expose in Table 1 these equivalence classes for Santilli A e h 383 aaialrlais e
autotopisms of partial groups of order n < 4. We focus on the ] A '
case of non-trivial isotopisms, that is, those that do not Figure 7. Partial Latin squares related 1o B,
coincide with (Id, Id, 1d). R I EET R
Table 1. Santilli autotopisms of partial groups. g ; ; :: ‘1‘ ; :: ; l :1; g § i { ; :l; i i
“n 6] SG(6) LN PY FELRERR I BN R SR TR
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1. Introduction

We deal with the largest class of hyperstructures called
H,-structures introduced in 1990 [23],[26], which satisfy the
weak axioms where the non-empty intersection replaces the
equality.

Basic definitions:

Definitions 1.1 In a set H equipped with a hyperoperation,
which we abbreviate it by hope -:HXH—P(H), we abbreviate
by WASS the weak associativity: (xy)znx(yz)=Z, Vx,y,ze H
and by COW the weak commutativity: xynyx=J, Vx,ye H.

The hyperstructure (H,-) is called H,-semigroup if it is
WASS and is called Hy-group if it is reproductive
H,-semigroup: xH=Hx=H, VxeH. (R,+,") is called H,-ring if
(+) and (-) are WASS, the reproduction axiom is valid for (+)
and (-) is weak distributive with respect to (+):

x(y+z)N(xy+xz)2d, (x+y)zn(xz+yz)#d, Vx,y,ze R.

For more definitions and applications on H,-structures, see
books [26],[2],[8] and the survey papers [6],[25],[30]. An
extreme class is the following [26]: An H,-structure is very
thin iff all hopes are operations except one, with all
hyperproducts singletons except only one, which is a subset of
cardinality more than one. Therefore, in a very thin
H,-structure in a set H there exists a hope (-) and a pair
(a,b)e H* for which ab=A, with cardA>1, and all the other
products, with respect to any other hopes (so they are
operations), are singletons.

The fundamental relations B* and y* are defined, in
H,-groups and H,-rings, respectively, as the smallest
equivalences so that the quotient would be group and ring,
respectively [22],[23],[26],[271,[28],[35]. The way to find the
fundamental classes is given by analogous theorems to the
following:

Theorem 1.2 Let (H,-) be an Hy-group and let us denote by
U the set of all finite products of elements of H. We define the
relation B in H as follows: xBy iff {x,y}cu where ue U. Then
the fundamental relation B* is the transitive closure of the
relation .

The main point of the proof of this theorem is that f
guaranties that the following is valid: Take two elements X,y
such that {x,y}cueU and any hyperproduct where one of
these elements is used. Then, if this element is replaced by the
other, the new hyperproduct is inside the same fundamental
class where the first hyperproduct is. Therefore, if the
‘hyperproducts’of the above B-classes are ‘products’, then,
they are fundamental classes. Analogously for the y in
H,-rings.

An element is single if its fundamental class is a singleton.

Motivation for H,-structures:

We know that the quotient of a group with respect to an
invariant subgroup is a group.

Marty states that, the quotient of a group with respect to any
subgroup is a hypergroup.

Now, the quotient of a group with respect to any partition is
an H,-group.

Definition 1.3 Let (H,-), (H,®) be H,-semigroups defined on



American Journal of Modern Physics 2015; 4(5-1): 52-58 53

the same set H. (-) is smaller than (®), and (®) greater than (-),
iff there exists automorphism

fe Aut(H,®) such that xycf(x®y), Vxe H.

Then (H,®) contains (H,-) and write -<®. If (H,') is structure,
then it is basic and (H,®) is an Hy-structure.

The Little Theorem [26]. Greater hopes of the ones which
are WASS or COW, are also WASS and COW, respectively.

The fundamental relations are used for general definitions
of hyperstructures. Thus, to define the general H,-field one
uses the fundamental relation y*:

Definition 1.4 [23],[26],[27]. The H,-ring (R,+,) is called
H,-field if the quotient R/y* is a field.

Let @* be the kernel of the canonical map from R to R/y*;
then we call reproductive H,-field any H,-field (R,+,) if the
following axiom is valid:

x(R-0*) = (R-0*)x = R-0*, Vxe R-0*.

From the above a new class is introduced [31],[38]:

Definition 1.5 The H,-semigroup (H,-) is called h/v-group if
the H/B* is a group.

Similarly the h/v-rings, h/v-fields, h/v-modulus, h/v-vector
spaces etc, are defined. The h/v-group is a generalization of
the H,~-group since the reproductivity is not necessarily valid.
Sometimes a kind of reproductivity of classes is valid, i.e. if H
is partitioned into equivalence classes o(x), then the quotient
is reproductive xo(y)=o(xy)=c(x)y, Vxe H [31].

An H,-group is cyclic [17],[26], if there is element, called
generator, which the powers have union the underline set, the
minimal power with this property is the period of the generator.
If there exists an element and a special power, the minimum
one, is the underline set, then the H,-group is called
single-power cyclic.

To compare classes we can see on small sets. The problem
of enumeration and classification of H,-structures, or of
classes of them, is complicate in H,-structures because we
have great numbers. The partial order in H,-structures,
introduced in [26], restrict the problem in finding the minimal
H,-structures, up to isomorphism. We have results recently by
Bayon & Lygeros as the following [1],[13]:

In sets with three elements: Up to isomorphism, there are
6.494 minimal H,~groups. The 137 are abelians; the 6.152 are
cyclic. The number of H,~groups with three elements, up to
isomorphism, is 1.026.462. The 7.926 are abelians; 1.013.598
are cyclic. 16 are very thin. Abelian H,-groups with 4
elements are, 8.028.299.905, the 7.995.884.377.

Definitions 1.6 [25],[26],[38] Let (R,+,:) be H,-ring, (M,+)
be COW H,-group and there exists an external hope:

RxXM—P(M): (a,x)—ax,
such that, Va,be R and Vx,ye M we have
a(x+y)N(ax+ay)=d, (at+b)xN(ax+bx)=d, (ab)xNa(bx)=D

then M is called an H,-module over R. In case of an H,-field F
instead of H,-ring R, then the Hy-vector space is defined.
The fundamental relation €* is defined to be the smallest

equivalence such that the quotient M/e* is a module (resp., a
vector space) over the fundamental ring R/y* (resp. the
fundamental field F/y*). The analogous to Theorem 1.2, is:

Theorem Let (M,+) be Hy-module on the H,-ring R. Denote
by U the set of all expressions consisting of finite hopes either
on R and M or the external hope applied on finite sets of
elements of R and M. Define relation € in M as follows: xgy iff
{x,y}< u where ue U.

Then the relation €* is the transitive closure of the relation
€.

Definitions 1.7 [28],[29],[38]. Let (H,-) be hypergroupoid.
We remove he H, if we consider the restriction of (-) in the
H-{h}. We say that he H absorbs he H if we replace h by h and
h does not appear in the structure. We say that he H merges
with he H, if we take as product of any xe H by h, the union of
the results of x with both h, h, and consider h and h as one class,
with representative h, therefore the element h does not
appeared in the hyperstructure.

Let (H,) be an H,-group, then, if an element h absorbs all
elements of its own fundamental class then this element
becomes a single in the new H,~group.

Definition 1.8 [35],[37] Let (L,+) be H,-vector space over
the field (F,+,-), o:F—F/y*, the canonical map and
oF={xeF:0(x)=0}, where 0 is the zero of the fundamental
field F/y*. Similarly, let o; be the core of the canonical map ¢”:
L—L/e* and denote by the same symbol 0 the zero of L/e*.
Consider the bracket (commutator) hope:

[,]: LXL->PL): (x,y)=[xy]

then L is an H,-Lie algebra over F if the following axioms are
satisfied:
(L1) The bracket hope is bilinear, i.e.

XX,y 1N XL,y 1A [x0,y]) 2 D
XAy rtAayIN(alx,y1+Aa[x,y2]) # G,
VX,X1,X2,Y,y1,y2€ L and A,,A,€ F
L2) [x.x}noL # D, VxeL

L3) (.2l Iy, [2x]1Hz [xy]DNoL # &, Vx,ye L

A well known and large class of hopes is given as follows
[171,[21]:

Definitions 1.9 Let (G,-) be a groupoid, then for every PcG,
P2, we define the following hopes, P-hopes: Vx,ye G

P: xPy= (xP)yux(Py),
P.: xPy= (xy)PUx(yP), Pi: xPiy= (PX)yP(xy).

The (G,P), (G,P,) and (G,P)) are called P-hyperstructures.
For semigroup (G,-), we have xPy=(xP)yux(Py)=xPy and
(G.P) is a semihypergroup but we do not know about (G,P,)
and (G,P)). In some cases, depending on the choice of P, the
(G,P,)) and (G,P)) can be associative or WASS.

A generalization of P-hopes is the following [9], [10]:

Let (G,-) be abelian group and P a subset of G with more
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than one elements. We define the hope X as follows:
XXpy =X-Py= {X-h-y| he P} if x#e and y=e
x'y if x=e or y=¢

we call this, P.-hope. The (G,Xp) is an abelian H,-group.

A general definition of hopes, is the following [32],[35],
[361,[37]:

Definitions 1.10 Let H be a set with n operations (or hopes)
®1,®,,...,®; and one map (or multivalued map) f: H—H, then n
hopes 0,,05,...,0, on H are defined, called 0-hopes, by putting

xdy = {f(x)®y, x&f(y)}, Vx,yeH, ie {1,2,...,n}
or in case where ®; is hope or f is multivalued map we have
xdiy = (fx)&y)U(xeif(y)), Vx,yeH, ie {1,2,....n}

Let (G,') groupoid and f:G—G, i€, set of maps on G. Take
the map f,:G—P(G) such that f (x)={fi(x) | iel}, call it the
union of the fi(x). We call the union d-hope (9), on G if we
consider the map f(x). An important case for a map f, is to
take the union of this with the identity id. Thus, we consider
the map f=fU(id), so f(x)={x,f(x)},Vxe G, which is called
b-d-hope, we denote it by (3), so we have

xdy = {xy, f{(x)-y, x-f(y)}, Vx,ye G.

Remark. If ®; is associative then 9; is WASS. If 9 contains
the operation (-), then it is b-operation. Moreover, if :G—P(G)
is multivalued then the b-d-hopes is defined by using the
f(x)={x}uf(x), VxeG.

Motivation for the definition of d-hope is the derivative
where only multiplication of functions is used. Therefore, for
functions s(x), t(x), we have sdt={st,st’}, (") is the derivative.

Example. Take all polynomials of first degree g;(x)=a;x+b;.
We have

2102, = {a;ax+aby, a;3x+bja,},

so it is a hope in the set of first degree polynomials. Moreover
all polynomials x+c, where ¢ be a constant, are units.

In hyperstructures there is the uniting elements method.
This is defined as follows [3],[26],[28]: Let G be a structure
and d be a property, which is not valid, and d is described by a
set of equations. Consider the partition in G for which it is put
together, in the same class, every pair of elements that causes
the non-validity of d. The quotient G/d is an Hy-structure. The
quotient of G/d by B*, is a stricter structure (G/d)B* for which
d is valid.

2. Matrix Representations

H,-structures are used in Representation (abbr. by rep)
Theory. Reps of H,-groups can be considered either by
generalized permutations or by H,-matrices [18],[20],[24],
[25],[26],[38]. The reps by generalized permutations can be
achieved by using left or right translations. We present here
the hypermatrix rep in H,-structures and there exist the

Hyper-Representations by Non Square Matrices. Helix-Hopes

analogous theory for the h/v-structures.

Definitions 2.1 [20],[26] Hy-matrix is called a matrix with
entries elements of an H,-ring or H,-field. The hyperproduct
of two H,-matrices A=(a;) and B=(b;;), of type mxn and nxr
respectively, is defined, in the usual manner,

A-B = (a;)(by) = { C=(cy) I ciji€ ®Zay-by; §,

and it is a set of mxr H,-matrices. The sum of products of
elements of the H,~field is the union of the sets obtained with
all possible parentheses put on them, called n-ary circle hope
on the hyperaddition.

The hyperproduct of Hy-matrices does not necessarily
satisfy WASS.

The problem of the H,-matrix representations is the
following:

Definitions 2.2 Let (H,-) be an H,-group. Find an H,-ring or
an H-field (F,+,"), a set Mg={(a;) | a;e R} and a map

T: H5>Mg: h—>T(h)
such that
T(hihy))NT(h))T(hy) # &, Vh;,h,e H.

T is an H,~-matrix rep. If the T(h;h,)cT(h;)T(h,), Vh,h,e H
is valid, then T is an inclusion rep. If T(h;hy)=T(h;)T(hy)=
{T(h) | he h;h,}, Vhy,h,e H, then T is a good rep and then an
induced rep T* for the hypergroup algebra is obtained. If T is
one to one and good then it is a faithful rep.

The problem of reps is complicated because the cardinality
of the product of H,-matrices is very big. It can be simplified
in special cases such as the following: The H,-matrices are
over H,-fields with scalars 0 and 1. The H,-matrices are over
very thin H,~fields. On 2x2 H,~matrices, since the circle hope
coincides with the hyperaddition. On H,-fields which contain
singles, then these act as absorbing.

The main theorem of reps is the following [20],[25],[26]:

Theorem 2.3 A necessary condition in order to have an
inclusion rep T of an H,~group (H,-) by nxn H,~matrices over
the H,-rind or H,~field (F,+,") is the following:

For all classes B*(x), xe H there must exist elements a;€ H,
i,je {1,...,n} such that

T(B*(a)  { A= @) | ase v*(ay), ije {1,....n} }

So every inclusion rep T:H—Mg:a—T(a)=(a;;) induces a
homomorphic rep T* of the group H/B* over the field F/y* by
putting  T*(B*(a))=[y*(ay)], VP*(a)eH/B*, where the
v*(a;;)e R/y* is the ij entry of the matrix T*(B*(a)). T* is called
fundamental induced rep of T.

Denote try(T(x))=y*(T(xy)) the fundamental trace, then the

mapping

X1: H = Riy*: x—=X71 (x) = try (T(x)) = tr'T*(x)
is called fundamental character. There are several types of
traces.

Using several classes of H~structures one can face several
reps [26],[29],[301,[38]:
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Definition 2.4 Let M=M,,x, be a module of mXxn matrices
over aring R and take sets

S={si:;ke K}cR, Q={Q;:je J}cM, P={P;:ie [} cM.
Define three hopes as follows

S: RXM—P(M): (r,A)—1rSA= {(rsy)A: ke K}c M
Q:: MXM—P(M): (A,B)—AQ.B= {A+Q;+B: jeJ}c M

P: MXM—P(M): (A,B)—>APB= {AP'B: ieI}c M

Then (M,S,Q..P) is a hyperalgebra over R called general
matrix P-hyperalgebra.

The hope P, which is a bilinear map, is a generalization of
Rees’ operation where, instead of one sandwich matrix, a set
of sandwich matrices is used. The hope P is strong associative
and the inclusion distributivity with respect to addition of
matrices

AP(B+C) c APB+APC VA,B,Ce M

is valid. Thus, (M,+,P) defines a multiplicative hyperring on
non-square matrices.

In a similar way a generalization of this hyperalgebra can be
defined considering an H,-ring or an H,-field instead of a ring
and using H,-matrices instead of matrices.

Definition 2.5 Let A=(a;),B=(b;j)€ Mnxa, We call (A,B)
unitize pair of matrices if A'B=I,, where I, denotes the nxn
unit matrix.

The following theorem can be applied in the classical
theory [37],[38].

Theorem 2.6 If m<n, then there is no unitize pair.

Proof. Suppose that n>m and that

AB= (Cij)a Cii~ Z airby .
k=1

Denote by A, the block of the matrix A such that A,=
(3)€ Mpxm, i.€. we take the matrix of the first m columns.
Then we suppose that we have (Ay)'Bn = I, therefore we
must have det(A,)#0. Now, since n>m, we can consider the

homogeneous system with respect to the ‘unknowns’
bln’me' [RE) bmn:
m
Cin= Za‘ikbkn =0 fori= 1,2,...,m.
k=1
From which, we obtain that b;,=b,,=...=b .= 0, since

det(A,)#0. Using this fact on the last equation, on the same
unknowns,

m
Clm= z ankbla: =1
k=1

we have 0=1, absurd. m

We recall some definitions from [18],[20],[25].

Definition 2.7 Let (G,:) hypergroupoid, is called set of
fundamental maps on G, a set of onto maps

onto

Q ={ g GXG-G: xy) —m z|zexy }.
Any subset Q,cQ defines a hope (°5) on G as follows
Xy ={z | z= q(x,y) for some qe Q }

o5 < -, and Q,CQ,s, Where Q, is the set of fundamental maps
with respect to (°5). A Q,cQ for which every Q,cQ, has (°5)
associative (resp. WASS) is called associative (resp. WASS).
A hypergroupoid (G,-) is q-WASS if there exists an element
go€ Q which defines an associative operation (°) in G. Remark
that for H,-groups we have Q=0 .

If G is finite, cardG=| G | =, it is g-WASS with associative
o€ Q. In the set K[G] of all formal linear combinations of
elements of G with coefficients from a field K, we define an
operation (+):

(fi+h)(g)=fi(g)+fx(g),Vge G.f1,He K[G]

and a hope (*), the convolution,

firh = {fuf@= Y [1(X)f2(¥),qeQ}.

g(x.y)=¢g

(K[G],+,*) is a multiplicative H,-ring where the inclusion
distributivity is valid, which is called hypergroupoid
H,-algebra.

For all ge Q, ge G, we have

lol< H(IWD’ 1<]q'(g)| € n’*n+1

(x,)inGxG

and Y. |q'(e)=n*

ginG

The zero map f(x)=0 is a scalar element in K[G].

In the representation theory several constructions are used,
some of them are the following [26],[28],[ 29],[30]:

Constructions 2.8 Let (H,-) be H,-group, then for all (®)
such that x®y>{x,y}, Vx,yeH, the (H,®,") is an H,-ring.
These H,-rings are called associated to (H,-) H,-rings.

In rep theory of hypergroups, in sense of Marty where the
equality is valid, there are three associated hyperrings (H,®,-)
to (H,-). The (@) is defined respectively, Vx,ye H, by: type a
x®y={x,y}, type b x@y=p*(x)UB*(y), type ¢ x®y=H.

In the above types the strong associativity and strong or
inclusion distributivity, is valid.

Let (H,) be Hy-semigroup and {vi,...,vo,}NH=0, an
ordered set, where if v;<v;, when i<j. Extend (-) in
H,=HU{v,,v,,...,v, } as follows:

XVi=ViX=Vi, Vi ViV Vi=y;, Vi< and
vivicHU{v,,...,vi.1}, Vxe H, ie {1,2,...,n}.
Then (H,,") is an Hy~-group (Attach Elements Construction).
We have (H,, )/B*=Z, and v, is single.
Some open problems arising on the topic of rep theory of

hypergroups, are:
Open Problems.
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a. Find standard H,-rings or H,-fields to represent all
H,-groups by H,-matrices.

b. Find reps by H,-matrices over standard finite H,-rings
analogous to Z,.

c. Using matrices find a generalization of the ordinary
multiplication of matrices which it could be used in H,-rep
theory (see the helix-hope [40]).

d. Find the ‘minimal’ hypermatrices corresponding to the
minimal hopes.

e. Find reps of special classes of hypergroups and reduce
these to minimal dimensions.

3. Helix-Hopes and Applications

Recall some definitions from [40],[16],[11]:

Definition 3.1Let A=(a;)€ Mms be an mxn matrix and
s,te N be natural numbers such that 1<s<m, 1<t<n. Then we
define a characteristic-like map cst: Mp—>Mgy, by
corresponding to the matrix A, the matrix Acst=(a;) where
1<i<s, 1<j<t. We call this map cut-projection of type st. In
other words Acst is a matrix obtained from A by cutting the
lines, with index greater than s, and columns, with index
greater than t.

We can use cut-projections on several types of matrices to
define sums and products, however, in this case we have
ordinary operations, not multivalued.

In the same attitude we define hopes on any type of
matrices:

Definition 3.2 Let A=(a;)€ Mp, be an mXn matrix and
s,te N, such that 1<s<m, 1<t<n. We define the mod-like map st
from Mux, to Mg by corresponding to A the matrix Ast= (a;)
which has as entries the sets

8 = {@s e | 1S0Ss, 1<t and kA€ N, i+xs<m, j+At<n}.
Thus we have the map
5t: Mpa—>Mgx: A—>Ast = (aj).

We call this multivalued map helix-projection of type st.
Thus Ast is a set of sxt-matrices X=(x;) such that x;€ a;;, Vi,j.
Obviously Amn=A. We may define helix-projections on
‘matrices’ of which their entries are sets.

Let A=(a;;)€ Mpxa be a matrix and s,te N such that 1<s<m,
1<t<n. Then it is clear that we can apply the helix- projection
first on the columns and then on the rows, the result is the
same if we apply the helix-progection on both, rows and
columns. Therefore we have

(Asn)st = (Amt)st = Ast.

Let A=(a;;)€ Mpx, be matrix and s,te N such that 1<s<m,
1<t<n. Then if Ast is not a set of matrices but one single matrix
then we call A cut-helix matrix of type sxt. Thus the matrix A
is a helix matrix of type sxt, if Acst= Ast.

Definitions 3.3 (a) Let A=(a;;)€ M and B=(by)e M,y be
matrices and s=min(m,u), t=min(n,u). We define a hope,
called helix-addition or helix-sum, as follows:

Hyper-Representations by Non Square Matrices. Helix-Hopes

®: My XMy —P(Mg):
(A,B)—>A&B=Ast+Bst=(a;;)+(b;)C Mg,
where
(@) by)= {(cq)= (ay+by) | aye a; and bye by}

(b) Let A=(ajj)€ My, and B=(b;)e M, be matrices and
s=min(n,u). We define a hope, called helix-multiplication or
helix-product, as follows:

®: My XMy —>PMpxy):
(A,B)>A®B=Ams-Bsv=(a;) (b;)C May,
where
(a) (by)= {( ciy)=(Zauby) | aze a; and bye by}

The helix-addition is an external hope since it is defined on
different sets and the result is also in different set. The
commutativity is valid in the helix-addition. For the helix-
multiplication we remark that we have AQB=Ams-Bsv so we
have either Ams=A or Bsv=B, that means that the helix-
projection was applied only in one matrix and only in the rows
or in the columns. If the appropriate matrices in the helix-sum
and in the helix-product are cut-helix, then the result is
singleton.

Remark. In M, the addition of matrices is an ordinary
operation, therefore we are interested only in the ‘product’.
From the fact that the helix-product on non square matrices is
defined, the definition of the Lie-bracket is immediate,
therefore the helix-Lie Algebra is defined [36],[37], as well.
This algebra is an H,-Lie Algebra where the fundamental
relation €* gives, by a quotient, a Lie algebra, from which a
classification is obtained.

In the following we restrict ourselves on the matrices My,
where m<n. We have analogous results in the case where m>n
and for m=n we have the classical theory. In order to simplify
the notation, since we have results on modm, we will use the
following notation:

Notation. For given ke N-{0}, we denote by «x the
remainder resulting from its division by m if the remainder is
non zero, and k=m if the remainder is zero. Thus a matrix

A=(ag)EMp, m<n is a cut-helix matrix if ag=aq,
Vx,ie N-{0}.

Moreover let us denote by I.=(c,;) the cut-helix unit matrix
which the cut matrix is the unit matrix I,. Therefore, since
I,=(8), where 8, is the Kronecker’s delta, we obtain that,
VA, we have ¢;=58,.

Proposition 3.4 For m<n in (Mpux,,®) the cut-helix unit
matrix 1.=(c,), where c3=8,, is a left scalar unit and a right
unit. It is the only one left scalar unit.

Proof. Let A,B€ M, then in the helix-multiplication, since
m<n, we take helix projection of the matrix A, therefore, the
result A®B is singleton if the matrix A is a cut-helix matrix of
type mxm. Moreover, in order to have A®B=Amm-B=B, the
matrix Amm must be the unit matrix. Consequently, [.=(c,s),
where c4=8., Vk,Ae N-{0}, is necessarily the left scalar unit
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element.

Now we remark that it is not possible to have the same case
for the right matrix B, therefore we have only to prove that
cut-helix unit matrix I, is a right unit but it is not a scalar,
consequently it is not unique.

Let A=(ay,)€ My, and consider the hyperproduct A®I.. In
the entry A of this hyperproduct there are sets, for all 1<k<m,
1=<0.<n, of the form

2a,Cq) = La:04= a3 A,

Therefore A®L3A, VA€ My, B

In the following examples of the helix-hope, we denote E;;
any type of matrices which have the ij-entry 1 and in all the
other entries we have 0.

Example 3.5 [38] Consider the 2x3 matrices of the
following form,

A=E 1 +KEy +EytEs;, BymKEy tEp+Eys, Ve N,
Then we obtain A, ®A;={A 3, As+1,Bxs1,Br+1}-
Similarly we have B,®A;={B+,By+1}, A(®B;=B,=B,®B;.

Thus {A,,B; | k,.€ N} becomes an H,-semigroup, not COW
because for k) we have B,®B,;,=B,#B,=B,®B,, however

(ABANN(ARBAD = {Acii,Ben}#2D, Vi he N.

All B, are right absorbing and B, is a left scalar, because
B1®A)‘=B)‘+1 and B]®B)~=B)~. The A() is a unit.
Example 3.6 Consider the 2x3 matrices of the forms,

Ao=EutEstKEy+EntAEs;s, Ve Z.

Then we obtain A ®Ay={ A et AxrsprtAits crtsAdts i) -

Moreover  A¢®Ag={AcsirssAcrsitActirsAxiin), SO
AGBANARA 3={ A}, thus (®) is COW.

The helix multiplication (®) is associative.

Example 3.7 Consider all traceless matrices A=(a;)€ My,
in the sence that a;;+ a,,=0. In this case, the cardinality of the
helix-product of any two matrices is 1, or 2°, or 2°. These
correspond to the cases: a;;=a;; and a;;=a,3, or only a;;=a;s
either only ay;=ay;, or if there is no restriction, respectively.
For the Lie-bracket of two traceless matrices the
corresponding cardinalities are up to 1, or 2%, or 2%
respectively. We remark that, from the definition of the
helix-projection, the initial 2x2, block guaranties that in the
result there exists at least one traceless matrix.

From this example it is obvious the following:

Theorem 3.8 The Lie-bracket of any two traceless matrices
A=(a;), B=(b;;)€ Muxn, m<n, contain at least one traceless
matrix.

Last years hyperstructures there is a variety of applications
in mathematics and in other sciences. Hyperstructures theory
can now be widely applicable in industry and production, too.
In several books and papers [2],[4],[5],[7],[8],[10],[12],
[19],[26],[33].[39] one can find numerous applications.

The Lie-Santilli theory on isotopies was born in 1970’s to

solve Hadronic Mechanics problems. The original theory is
reconstructed such as to admit the new matrix as left and right
unit. Isofields needed in this theory correspond into the
hyperstructures were introduced by Santilli and Vougiouklis in
1996 and they are called e-hyperfields [9],[14],[15],[33], [36].
The H,-fields can give e-hyperfields which can be used in the
isotopy theory for applications.

Definitions 3.9 A hyperstructure (H,:) which contain a
unique scalar unit e, is called e-hyperstructure, where we
assume that Vx, there exists an inverse x”, so ee x-x'nxx. A
hyperstructure (F,+,-), where (+) is an operation and (') is a
hope, is called e-hyperfield if the following are valid:

(F,+) is abelian group with the additive unit 0, (-) is WASS,

() is weak distributive with respect to (+), 0 is absorbing:
0-x=x-0=0, VxeF, exist a scalar unit 1, i.e. 1-x=x-1=x, VxeF,

VxeF there exists unique inverse x, s.t. lex-x'nx"x.

The elements of an e-hyperfield are called e-hypernumbers.
In the case that the relation: 1=x-x"'=x""x, is valid, then we say
that we have a strong e-hyperfield.

A general construction based on the partial ordering of the
H,-structures:

Construction 3.10 [6],[36], Main e-Construction. Given a
group (G,'), where e is the unit, then we define in G, a large
number of hopes (®) by extended (-), as follows:

x®y = {Xy, g1, £2,...}, VX,ye G-{e}, and gy, g,,...€ G-{e}

Then (G,®) becomes an H,-group, in fact is H,-group
which contains the (G,"). The H,-group (G,®) is an
e-hypergroup. Moreover, if Vx,y such that xy=e, so we have
x®y=xy, then (G,®) becomes a strong e-hypergroup.

An application combining hyperstructures and fuzzy theory,
is to replace the scale of Likert in questionnaires by the bar of
Vougiouklis & Vougiouklis [41]:

Definition 3.11 In every question substitute the Likert scale
with ‘the bar’ whose poles are defined with ‘0’ on the left end,
and ‘1’ on the right end:

0 1

The subjects/participants are asked instead of deciding and
checking a specific grade on the scale, to cut the bar at any
point they feel expresses their answer to the question.

The use of the bar of Vougiouklis & Vougiouklis instead of
a scale of Likert has several advantages during both the
filling-in and the research processing [41]. The suggested
length of the bar, according to the Golden Ratio, is 6.2cm.
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Abstract: In this paper, we hope to initiate due scientific process on some of the historical criticisms of Einstein gravitation
expressed by Einstein himself as well as by others. These criticisms have remained widely ignored for one century and deal with
issues such as: the apparent lack of actual, physical curvature of space due to the refraction of star-light within the Sun
chromosphere; the absence of a source in the field equations due to the electromagnetic origin (rather than the charge) of
gravitational masses; the lack of clear compatibility of general relativity with special relativity, interior gravitational problems,
electrodynamics, quantum mechanics and grand unifications; the lack of preservation over time of numerical predictions inherent
in the notion of covariance; and other basic issues. We show that a resolution of these historical doubts can be apparently
achieved via the use of the novel isomathematics and related iso-Minkowskian geometry based on the embedding of gravitation
in generalized isounits, with isodual images for antimatter. Thanks to half a century of prior research, we then show that the
resulting new theory of gravitation, known as isogravitation, preserves indeed Einstein's historical field equations although
formulated on the iso-Minkowskian geometry over isofields whose primary feature is to have null isocurvature. We then show
that isogravitation allows: Einstein field equations to achieve a unified treatment of generally inhomogeneous and anisotropic,
exterior and interior gravitational problems; the achievement of a clear compatibility with 20th century sciences; the achievement
of time invariant numerical predictions thanks to the strict invariance (rather than covariance) of gravitation under the
Lorentz-Santilli isosymmetry; the apparent achievement of a consistent representation of the gravitational field of antimatter
thanks ti the isodual iso-Minkowskian geometry; the apparent achievement of a grand unification inclusive of electroweak and
gravitational interactions for matter and antimatter without known causality or structural inconsistencies; and other advances. We
then present, apparently for the first time, the isogravitational isoaxioms characterized by the infinite family of isotopies of
special relativity axioms as uniquely characterized by the Lorentz-Santilli isosymmetry which are applicable to both exterior and
interior isogravitational problems of matter with their isodual for antimatter. We finally show, also for the first time, the apparent
compatibility of isogravitation with current knowledge on the equivalence principle, matter black holes and other gravitational
data.

Keywords: Gravitation, Isogravitation, Antimatter

violated, special relativity is at best approximately valid, and
often it is completely inapplicable (rather than violated), in the

The author has stated several times in his writings that the ~ S¢PS¢ that it produces no quantitative description at all, as it .is
theory developed by Lorentz [1], Poincaré [2], Einstein [3], the case for the synthem.s of the neutron 'from the h}fdrogen in
Minkowski [4] and others, known as special relativity, has a thé core ofa sta.r for which any use of Dirac’s equation has no
majestic axiomatic structure and an impeccable body of scientific meaning [5]. _ ' o
experimental verifications under the conditions clearly stated By contrasF, 'the auth'or has s.tate‘d various times thgt Emgt.em
by Einstein, namely, for: A) point-particles and general relat.1v1ty' [6]‘ is a s.cwnFlﬁc religion at th1§ writing
electromagnetic waves; B) propagating in vacuum; and C) becalfse of hlsForlcal insufficiencies, some of which 1d§gt1ﬁed
when referred to an inertial reference frame. by Einstein himself, such as lack of clear compatibility of

Whenever any of Einstein’s conditions A), B), C) are general relativity with special relativity, interior gravitational
problems, electrodynamics, quantum mechanics and grand

1. Introduction
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unifications, which insufficiencies have remained
unaddressed by the "mainstream physics" for one full century,
let alone resolved in peer reviewed journals [7] (see also the
view by the late J. V. Kadeisvili [8] and papers quoted therein).

In this paper, the author reports half a century of research
toward a resolution of the historical insufficiencies of general
relativity via the use of a basically new mathematics and its
ensuing new physical vistas in the origin of gravitation,
besides its description, for the exterior and interior
gravitational problems of matter and antimatter.

It should be noted that the literature accumulated in the field
is very large. To avoid a prohibitive length, we only list the
references of direct relevance to the problems addressed. A
comprehensive presentation and list of references up to 2011
is available in the independent general review [41] with the
suggestive title of New Sciences for a New Era.

2. Historical Insufficiency of General
Relativity

2.1. First Historical Insufficiency of General Relativity:
Ignoring the Refraction of Star-light Passing Through
the Sun Chromosphere, with Consequential Lack of
Evidence that Space is Actually, Physicallys Curved

As it is well known, the conjecture of an actual, physical,
curvature of space was inferred from the 1.75 arc-second
"bending" of star-light passing near the Sun. Half of this value,
0.87 arc-seconds, is known to be due to a purely Newtonian
attraction of light.

To see it, we first recall that for Newton gravitation to be
"universal" it must also attract light, and that the source of
gravitation is the energy of a body since mass is a measure of
our ignorance on inertia. Hence, the author always wrote
Newton’s equation in the identical form in terms of the energy
rather than mass

mym, G

E\E, g
r2 r2 poy

F=g , G= > (1)

The calculation of the 0.87 arc-seconds deviation caused by
Newton gravitation of star light passing near the Sun surface is
then a good exercise for graduate students in physics by
computing the energy equivalence E; = mc? of the Sun, and
using the energy E, = hv for a given frequency of visible
light. *

The remaining 0.87 arc-seconds deviation have been known
for a century, not to be due to the curvature of space, but to the
refraction of sta-light when passing through the Sun
chromosphere (see, e.g., Ref. [10] and references quoted
therein). Additionally, the refraction of light passing through
gaseous media is inherent in the experimental confirmations
of Santilli IsoRedShift (IsoBlueShift) of light traveling
through cold (hot) gases [11-15] (see Figures 1, 2, 3).

Irrespective of the above, the conjecture of curvature of
space has been unable to represent without ambiguities truly
basic gravitational events, such as the free fall of masses that
has to be necessarily along a "straight" radial line, the weight
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of bodies in a gravitational field, and other basic events that
are clearly represented by Newton gravitation.

Figure 1. According to the first and perhaps most important unresolved
historical criticism of Einstein gravitation, Sunset is a visual evidence of the
lack of actual, physical, curvature of space because we still see the Sun at the
horizon, while in reality it is already below the horizon due to the refraction of
light passing through our atmosphere. Exactly the same refraction without
curvature of space occurs for star-light passing through the Sun
chromosphere, in which case the only "bending of light" is that due to
Newton's gravitation in a flat space (see Section 2). Note that Einstein
gravitation cannot represent light refraction because it requires a locally
varying speed of light within a medium, first with increasing and then
decreasing density. Hence, the representation of refraction via the curvature
of space violates visual evidence, physical laws and experimental data
[111-15]. To achieve a credible proof that the bending of Star-light passing
near the Sun is "evidence" of the curvature of space, Einstein supporters have
to prove that star-light passing through the Sun chromosphere does not
experience refraction. The impossible existence of such a proof is readily seen
Jrom the fact that Einstein gravitation was solely aimed at a description of
"exterior gravitational problems in vacuum," while the propagation of
star-light within the Sun chromosphere is strictly an "interior gravitational
problem” treated later on in Section 5. Its description via the Riemannian
geometry is beyond any realistic possibilities due to the need for a metric
possessing a dependence on coordinates x, as well as density u, temperature
T, frequency w, etc. g = g(x, |, T, w,...) (see Sections 5-11 below).

Despite one century of studies, the "actual" orbits of planets
in our Solar system have not been represented in an accurate,
unique and time invariant way via Einstein gravitation, while
they are exactly and unambiguously represented by Newton’s
gravitation and Kepler’s laws. In fact, calculations based on
the Riemannian geometry of the actual orbits of planets,
besides not being unique due to the non-linearity of the theory,
are generally different than physical orbits, and are not the
same over time (see below).

It should also be indicated that a concrete visualization of
the curvature space require an increase of the number of space
dimension. In fact, the curvature in a rwo-dimensional
Riemannian space can only be seen in three dimensions, as
well known. Consequently, a concrete visualization of the
curvature of space in three dimensions requires the
implausible assumption of a fourth space dimension.

Needless to say, gravitational waves [6] crucially depend on
the curvature of space represented via the Riemannian
geometry. Until we dismiss in peer reviewed journals the
mathematical, theoretical, experimental and visual evidence
against the curvature of space, studies on gravitational waves
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may well remain in suspended animation.

It goes without saying that a critical inspection of the
conjecture of curvature of space creates great emotions in
colleagues who have spent their research life on curved spaces.
Yet, serious appraisals should be voiced only after identifying
the huge limitations caused by curvature and only after
inspecting the vast advances permitted by novel theories of
gravitation on a flat space treated with the appropriate novel
mathematics (Section 5).

2.2. Second Historical Insufficiency of General Relativity:
Ignoring the Electromagnetic Origin of the Mass, with
Consequential Invalidation of Einstein’s Reduction of
Gravitation to Pure Curvature Without Sources

As it is well known, the contribution to gravity of the total
electric and magnetic field of a body is of the order of 10~3°
or smaller. Consequently, following the assumption of the
curvature of space, Einstein was forced to avoid any source in
the r.h.s. of his field equations and reduce gravitation to pure
geometry according to the the celebrated equations

Gj = Ry —g;iR/2=10,i,j =1,2,3,4 Q)

In 1974, the author identified the electromagnetic origin of
the mass via the full use of quantum -electrodynamics,
including advanced and retarded treatments, and showed that
such an origin requires the necessary presence in the r.h.s. of
the field equations of a source first order in magnitude,
irrespective of whether the body is charged or neutral [16],

Gy = Ry — 84R/2 = KTjj eim. (3)

where k is a unit-dependent constant, and the terms "first
order in magnitude" are referred to the condition of entirely
representing the gravitational mass of the body considered
(16]

Mgray = f Toodv. “4)

The most skeptical physicist should admit that the mass of
the electron is of entire electromagnetic origin. Therefore,
field equations (2) are insufficient to represent the
gravitational field of the electron in favor of Egs. (3)-(4).

But then, the same skeptical physicist should admit that
exactly the same conclusion holds for the positronium, namely,
the gravitational mass of the positronium is of entire
electromagnetic origin despite the total charge and magnetic
moment being null. Therefore, Einstein’s field equations (2)
are insufficient for the representation of the gravitational field
of the positronium in favor of broader Eqgs. (3)-(4).

Paper [16] essentially extended the above known reality to
the m®-meson under the assumption of being a bound state of
a charged constituent and its anti-particle. Paper [16] then
extended the results to all masses with null total charge and
null total magnetic moments. The inclusion of gravitational
contributions from total electromagnetic characteristics was
trivial.

Figure 2. The "blood red moon" (top view) during a Lunar eclipse is an
additional visual evidence of the lack of curvature of space because Sunlight
reaches the Moon even when it should be in total darkness (bottom view).
Note that for both Sunsets and Lunar eclipses the entire spectrum of Sunlight
is redshifted without relative motion, merely due to loss of energy by light to a
cold medium (IsoRedShifi). Note also that we are dealing with "direct
Sunlight" traveling in empty space for which scattering and other
interpretations have been dismissed in peer refereed journals [11-15]. Note
finally that the "blood red moon" confirms the view by Einstein, Hubble,
Fermi, Zwicky, Hoyle, de Broglie and others on the lack of expansion of the
universe because, when our Sun is seen millions of light years away, we
merely have the replacement of Earth's atmosphere with very cold
intergalactic gases under which the entire spectrum of visible Sunlight will
appear redshifted without any relative motion [11-15].

In defense of Einstein, we have to recall that, contrary to his
followers, Einstein always expressed serious doubts of field
equations (2), for instance, by calling their r.h.s. A house made
of wood, compared to the L.h.s. which he called 4 house made
of marble. 1t is unfortunate for scientific knowledge that
Einstein’s own doubts have remained vastly ignored in the
"mainstream literature" in gravitation.

We should also recall that, according to Ref. [16], the
characterization of the inertial mass of a body requires the
additional inclusion of all possible short range (e.g., weak and
string) interactions, resulting in the need for an additional
source in the r.h.s. of the equations whenever considering
interior gravitational problems

Gii = Rii — 8y R/ 2= leij,elm + kZTij,shortrange: 5)
such that (c=1)
Mipert = f (Too,elm + Too,shortrange)dV (6)

Consequently, the inertial mass is predicted as bigger than
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the gravitational mass [16] (c=1)
Mipert > mgrav (7)

The expectation is that serious scientists will admit our lack
of final experimental resolution on the relationship between
the exterior gravitational and the interior inertial mass.

Besides the incontrovertible need for a source of first order
in magnitude, the structure of Egs. (5)-(6) is mandated by the
fifth identity of the Riemannian geometry, the forgotten Freud
identity [17] (see also the recent treatment by the late
mathematician H. Rund [18]) which establishes the need on
purely mathematical grounds of a source of first order in
magnitude in the rh.s of the field equations according
precisely to Egs. (5)-(6).

In fact, the source term of the Freud identity can be
decomposed into a term with null trace, (evidently, the
electromagnetic term), and a term with non-null trace
(evidently, the source for short range interactions), thus
providing a geometric confirmation of Egs. (5)~(6).

We should indicate that the problem of a source in the
gravitational field equations has been debated at length in the
literature (see, e.g., Ref. [6]), although for its interpretation as
a stress-energy tensor, or for other interpretations, while
generally ignoring its electromagnetic origin.

Interested scholars should be aware of various claims in the
literature that Einstein’s gravitation verifies the Freud identity.
These claims are based on the admission indeed of a source of
electromagnetic nature, but restricted to the the total
electromagnetic characteristics, thus violating condition (4) by
a missing factor of 103° or so.

Additionally, and perhaps more importantly, the Freud
identity requires a source of first order in magnitude also for
bodies with null total electromagnetic characteristics, thus
confirming the lack of compliance of Einstein gravitation with
the Freud identity.

Remember that gravitational waves are crucially dependent
on Einstein’s reduction of gravitation to pure geometry, Egs,
(2) [6]. However, physical and geometric needs mandate their
extension to Egs. (3), (4), for which gravitational waves
cannot even be formulated, to our best knowledge at this
writing.

Therefore, by noting the lack of independent addressing of
the issues for the last four decades since the appearnce of
paper [16], the theoretical prediction of gravitational waves
will remain in suspended animation until the additional
problem of theelectromagnetic origin of the gravitational mass
is dismissed in refereed publications.

Again, the author has experienced over decades huge
emotional reactions by colleagues at the instant of examining
Einstein’s reduction of gravitation to pure geometry, Eq. (2),
without any in depth inspection of the advances permitted by a
source term as in Egs. (3)-(4). In a nutshell, the alternative
between Egs. (2) and (3), (4) bolls down to the belief of the
existence of local infinities in the universe or not. Egs. (2) do
admit these local infinities, while covering Egs. (3), (4)
recover all main results of Egs. (2) except replacing local
infinities with large, yet finite values (Section 5 and
Subsection 5.10 in particular).
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Figure 3. A view of a Solar eclipse showing no "bending of light" because the
Newtonian attraction of light by the moon is extremely small and there is no
refraction due to the lack of lunar atmosphere. The faint luminescence at sea
level is due to the diffraction of light in our atmosphere. In conclusion, final
claims of "bending of light due to curvature of space" must be based on star
light passing tangentially on a body without atmosphere or chromosphere and
be proved to be greater than the Newtonian attraction.

As a final note, the reader may have noted the lack of use of
the mathematical terms "tensors" or "oseudotensors" and the
use instead of the physical term "source." This is due to the
fact that the clear physical content of the forgotten Freud
identity is often dismissed on ground of purely mathematical
differences in nomenclatures and personal mathematical
interpretations without serious physical implications.

2.3. Third Historical Insufficiency of General Relativity:
Abandoning the Majestic Lorentz and Poincaré
"Invariance” of Special Relativity in Favor of the
"Covariance" of General Relativity with Consequential
Lack of Prediction of the Same Numerical Values under
the Same Conditions at Different times

In our view, the above is perhaps the biggest insufficiency
of Einstein gravitation because it implies the inability of
gravitation to have time invariance, here referred to the
prediction of the same numerical values under the same
conditions at different times, while such a crucial requirement
is verified by Galileo relativity and Einstein special relativity
because of their Galilei and Poincare’ symmetries,
respectively.

In turn, the lack of time invariance establishes the lack of
final character of all claims of "experimental verification of
general relativity" [9] due to the absence of a physically
consistent dynamical evolution.

In fact, "experimental verifications" of general relativity are
done in ad hoc selected coordinate systems generally with no
connection to the frame of the experimenter, thus prohibiting
final experimental values, not only because said systems are
different among themselves, but also because the needed
experimental frame is generally not necessarily achievable via
covariance.
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Figure 4. A typical representation of the claimed curvature of space caused by
the gravitational field of a mass, which representation has been adopted for
one full century. The historical, yet unresolved criticism is that the notion of
physical curvature in one dimension requires a bigger dimension for its
identification. In fact, the physical interpretation of the mathematical
Riemannian curvature in two dimension can only be identified in three
dimension as clearly illustrated by the above figure. Therefore, the additional
historical criticism of Einstein gravitation that needs to be addressed is that
the physical identification of the mathematical Riemannian curvature in three
dimensions, as needed for realistic models of gravitations, requires four space
dimensions that do not exist, thus confirming the lack of physical evidence for
the actual physical curvature of space depicted in Figure 1, 2, 3. In any case,
Einstein supporters are requested to illustrate with concrete geometric
example the physical curvature needed for realistic models, not in two
dimensions as done for one century, but in three dimensions.

Under the lack of invariance, general relativity could at best
offer a kind of "polaroid picture" of gravitation [7,8]. However,
such a static view of gravitation is dismissed by mathematical,
physical, visual and experimental evidence on the lack of
existence of the actual curvature of space.

Additional rather serious objections against published
claims of "experimental verifications of Einstein gravitation"
[9] stem from the fact that numerical predictions are, by far,
not unique and/or unambiguous due to the non-linearity of the
field equations. In fact, for any claim of "experimental
verification" [9] we can assume a different PPN
approximation with different expansions and show dramatic
divergences with physical realities [7,8].

The lack of time invariance of Einstein’s gravitation
identifies an additional impossibility for gravitational waves
to exist because any serious experimental verification should
not only detect gravitational waves, which has been
impossible for half a century despite the use of large public
funds, but said gravitational waves should change in time
without any change of the source, which is a blatant physical
impossibility.

In defense of Einstein we should indicate that, once the
Riemannian geometry is assumed for the representation of
gravitation, no symmetry of the line element is possible for
technical reasons similar to those of the Aistorical Lorentz
problem. We are here referring to Lorentz inability to achieve
the invariance of the locally varying speeds of light of his time,
that within physical media C = c¢/n, due to insurmountable
technical difficulties in attempting to use Lie’s theory for
non-linear systems.

This is yet another case in which the author has experienced

pre-judgments by colleagues mainly due to decades of
research with covariance in gravitation without a serious
inspection of qualified alternative views. In reality, serious
judgments can only be expressed after a technical knowledge
of the huge possibilities for further advances in gravitation
permitted by alternative invariant theories (Section 5).

Figure 5. \ Another illustration of the insufficiencies of the one century old
assumption that planets moving around the Sun in our Solar system actually
move along a real, physical curvature of space. The historical criticism is that
the above representation is purely mathematical because, to actually sense
curvature in a three-dimensional space, the planet should move in a fort space
dimension that does not exist.

2.4. Consequences of the Historical Insufficiencies of
General Relativity: Incompatibility of Gravitation with
Special Relativity, Interior Gravitational Problems,
Electrodynamics, Quantum Mechanics, and Grand
Unifications

There comes a point in the life of a scientist in which
realities have to be admitted. The Riemannian geometry does
indeed admit a unique and unambiguous reduction to the
Minkowskian geometry via tangent, limit and other
procedures.

However, it has been known for a century that general
relativity does not admit a clear and unambiguous limit to
special relativity of the type according to which special
relativity uniquely and unambiguously admits a limit into the
Galilei relativity. As one among many impossibilities, there
exists no consistent limit of the covariance of general
relativity into the fundamental Poincaré invariance of special
relativity. The inconpatibilities that follow are then endless.

Another serious insufficiency is that the description by
general relativity of "exterior gravitational problems" in
vacuum is incompatible with "interior gravitational problems"
that dominated the scientific scene in gravitation until the
advent of Einstein’s theory (e.g., Schwartzchild wrote two
papers, one on the exterior and one on the interior
gravitational problem [6], the second one being vastly
ignored).

This is a serious incompatibility because its resolution
prohibits the use of the Riemannian geometry due to the need
of a geometry not only without curvature, but also (as
indicated in Fig.1) with a metric having a dependence on
coordinates x, as well as density p, temperature 1, frequency
o, etc. g=g(X, 1L, T,0,...) (see Section 5 for details).

Another aspect that should be admitted to prevent exiting
from physical reality is the irreconcilable incompatibility
between Einstein gravitation and electrodynamics to such an
extent that [16]:
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2A) Either one assumes Einstein’s gravitation as being valid,
in which case electrodynamics must be revised from its
foundations so as to eliminate the electromagnetic origin of
the mass, or

2B) One assumes electrodynamics and its inherent
origination of the gravitational mass as being valid, in which
case, Einstein gravitation must be revised from its
foundations.

Yet another reality that has to be faced following one
century of wide oblivion, is that Einstein’s gravitation is
incompatible with quantum mechanics as conventionally
understood, (that is, a unitary theory on a Hilbert soace) for
several reasons. The reason most important in our view is that
a gravitational theory formulated on a Riemannian space is
necessarily non-canonical at the classical level (variationally
non-self-adjoint [20]).

Therefore, any consistent "quantization" of Einstein
gravitation must be non-unmitary, with the consequential
activation of the Theorems of Catastrophic Inconsistencies of
Non-Canonical and Non-Unitary Theories [19] and ensuing
loss of physical value, e.g., due to the violation of causality
laws.

The moment of truth also implies the admission that
Einstein gravitation is incompatible with grand unified
theories, if nothing else, because of failed attempts o [6]ver
one full century, beginning with the failed attempt of unifying
gravitation and electromagnetism by Einstein himself.

2.5. Problems to be Solved for an Axiomatically Consistent
Grand Unification

Following studies on grand unifications for decades, the
incompatibilities of a grand unification of Einstein gravitation
with electroweak interactions are the following (see, later on
monograph [40]):

2.1. The physical consistency of electroweak interactions on
a flat Minkowski space cannot be salvaged when joined to a
theory on the curved Riemannian space because the
insufficiencies of the latter carry over to the former;

2.11. Within a grand unification, the covariance of Einstein’s
gravitation carries over to electroweak interactions, by
therefore destroying their gauge invariance and,consequently,
the very structure of electroweak interactions;

2.111. Electroweak interactions represent both particles and
antiparticles, while Einstein gravitation solely represent
matter, thus rendering any grand unification technically
impossible and catastrophically inconsistent if attempted.

We should mention a recent trend of extending the
applicability of special and general relativities to the classical
representation of antimatter. Serious scholars should be
alerted that this. trend is afflicted by serious inconsistencies,
such as the impossibility of admitting the annihilation of
matter and antimatter precisely due to the lack of a
conjugation in the transition from matter to antimatter,
violation of the PCT theorem and other inconsistencies.

Another reality that should be faced by serious scholars
in the field is that a consistent representation of the
gravitational field of antimatter cannot be achieved by
Einstein gravitation and a new theory must be constructed
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from its mathematical foundations.

3. Rudiments of IsoMathematics

The most important lesson the author has learned in fifty
years of research is that the protracted lack of resolution of
physical problems is generally due to the use of insufficient
mathematics, rather than to physical issues.

We believe that this is precisely the case for gravitation,
namely, all problems treated above are caused by the use of an
excessively insufficient mathematics, that based on the
differential calculus that dates back to the Newton-Leibniz
times. Only after the achievement of a more adequate
mathematics, open physical problems can be quantitatively
and effectively addressed.

To see the case, note that for a theory of gravitation to resist
the test of time, it is expected to possess an invariance similar
to that of the Poincaré symmetry in special relativity so as to
predict the same numerical values under the same conditions
at different times.

The best known way to achieve an invariant theory of
gravitation is via the use of Lie’s theory. But the latter theory
solely applies to linear systems. The necessary non-linearity
of gravitation then precludes any realistic possibility of
achieving an invariance via the use of 20th century
mathematics.

The above occurrence forced the author to construct the
isotopies (intended as axiom-preserving) of 20th century
applied mathematics [20], today known as isomathematics,
that was initiated by when author was at the Department of
Mathematics of Harvard University in the late 1970s under
DOE support.

Isomathematics is based on the isotopic lifting of the
conventional associative product AB between generic
quantities A, B (such as numbers, functions, matrices, etc.)
into the isoproduct [19b]

AX B =ATB ®)

where the quantity T, called the isotopic element, is positive
definite but otherwise posses an arbitrary functional
dependence on all needed local quantities, such as time t,
coordinates r, velocities v, accelerations a, density p,
temperature T, frequency ®, wavefunction v, etc. T =
Ttrv,ante,v,....) > 0.

Product (8) was introduced for the primary intent of
achieving an invariant representation of interior dynamical
problems referred to extended, non-spherical and deformable
particles moving within physical media, which is notoriously
impossible via 20th century mathematics, but possible via
isomathematics (see below for examples).

Therefore, isomathematics was suggested for the primary
intent of achieving a generalization of Lie’s theory into a form
applicable for the first time to non-linear, non-local and
non-Hamiltonian systems (that is, variationally non-
self-adjoint systems not representable with a Hamiltonian
[20a]).

A systematic isotopic lifting of the various branches of Lie’s
theory was presented in monograph [20b]. The resulting
theory is today known as the Lie-Santilli IsoTheory, and it is
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based on the isoalgebra (the isotopues of Lie’s second
theorem)

and their integration into a finite isogroup here illustrated for
simplicity via the one dimensional time evolution with the
Hamiltonian X = H

A(t) = eXTHA(0)eItTX (10)

with evident non-linear, non-local and non-Hamiltonian
characters due to the presence of the isotopic element in the
exponent.

In Vol. [20b], the author then presented a concrete
realization of the Lie-Santilli isotheory given by the
Birkhoffian  generalization of classical Hamiltonian
mechanics and its “direct universality,” namely, the
representation of all infinitely possible, well behaved,
non-Hamiltonian systems directly in the frame of the
experimenter.

However, the new mechanics activated the Theorems of
Catastrophic  Inconsistencies of Non-Canonical and
Non-Unitary Theories when formulated via the mathematics
of canonical and unitary theories, respectively [19].
Therefore, while visiting at the JINR in Dubna, Russia, the
author was forced in 1993 [21] to reinspect the historical
classification of numbers and discovered that the abstract
axioms of a numeric field do not necessarily require that the
basic multiplicative unit is the number +1, since they also
admit realizations with arbitrary positive-definite units,
provided that the associative product is lifted accordingly.

This lead to the discovery of new numbers, today known as
Santilli isonumbers, with an arbitrary positive-=definite unit,
called Santilli isounit, which is the inverse of the isotopic
element of isoproduct (8)

ite,r,v,a,m,t,v,9,....) =1/Tt,r,v,a, 0,7, v, 9,..... ) (11)

Applied mathematics was then reformulated on isofields.
Yet, the fundamental invariance under the time evolution
remained elusive. This forced the author to lift the
Newton-Leibniz differential calculus into the form today
known as Santilli IsoDifferential Calculus first presented in
mathematical memoir [22] of 1996, with basic isodifferential

d# = dr + rTdf (12)
and related isoderivative
aF@#)  AF@)
=f—7 13
rrabdlrre (13

where the realizations F = FI,# = rl, etc. are necessary for
the values to be isonumbers.

The isodifferential calculus permitted the achievement of
maturity for mathematical, physical, and chemical
developments, with ensuing numerous scientific as well as
industrial applications. Isomathematics is today referred to the
isotopies of the totality of 20™ century mathematics
formulated via isofunctional analysis, isodiufferential calculus,

isoalgebras, isosymmetries, isogeometriesc, etrc., on Santgilli
isofields.

A comprehensive presentation of isomathematics for
physicists has been provided by the author in monographs [23].
A presentation of isomathematiccs for mathematicians is
available in monograph [23] by R. M. Falcon Ganfornina and
J. Nunez Valdes, while a monumental work on the
isodifferential calculus and its bimplications for all of
mathematics is available in the five monographs [25] by S.
Georgiev.

4. Rudiments of IsoMechanics

The primary physical application of isomathematics is the
isotopic lifting of Newton’s equations, first presented in Ref.
[22]

. d :
m X I = FS%(t,r,v). principle

D

(14

o>

today known as the Newron-Santilli IsoEquations.

Eqgs. (14) allow the first known representation of the actual
extended shape of bodies, for instance, via the isounit for the
velocities

Itt,r,v,a,u,1,,....) = Diag. (n?,n3,n2)e’,

n, =n(t,r,v,a,1,1,v,....) >0,

r=rirvaptw,...»)>0k=123 (15)

as well as the representation of non-Hamiltonian
(variationally non-self-adjoint [20]) forces via the exponent of
the isounit (15) and their embedded in the isodifferential
do= dwl) in such a way that only Hamiltonian
(variationally self-adjoint [20]) forces appear in the r.h.s. of
the equations.

In view of these features, the Newton-Santilli isoequations

for non-Hamiltonian systems admit the first known
representation via isoaction principle [22]
SA=[@Rdr—AKE =0 (16)

thus permitting the first known use of the optimal control
theory for the shape, e.g., of a wing moving within a fluid.

In turn, the availability of the isoaction principle has
allowed the isotopic lifting of classical Hamiltonian
mechanics into its covering Hamilton-Santilli isomechanics
with basic isotopies of the conventional Lagrange and
Hamilton equations here ignored for brevity as well as of the
Hamilton-Jacobi-Santilli isoequations [22,23]
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Still in turn, the availability of the latter isoequations has
permitted the first known, axiomatically consistent, unique
and unambiguous, operator map of non-Hamiltonian systems
into a covering of quantum mechanics introduced in 1978
under the name of hadronic mechanics [20], with
Schridinger-Santilli Isoequations [22]
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ot v
=A@ )T T, v,,.. )P =
= ER 9 = EY, (18)
related isolinear momentum
- ) o
h K =—i§,\—_—l - (19)
Py a7 3
and their isounitarily equivalent Heisenberg-Santilli

isoequations [20,23] for the isotime evolution of an operator

P

A in the infinitesimal form

~>

X)
Qo
s

—[AA=ARB-ARA=

-

d
= AT(t,r,p, T, v, 0,... )HE D) —

>

BT rp 0, 1,0,9,...)A4, (20)

and integrated finite form (10), where the "hat" denotes
formulation on an iso-Hilbert space over the isofield of
isocomplex numbers [23].

For readers not familiar with the field, we should recall that
hadronic mechanics is a non-unitary "completion" of quantum
mechanics much along the celebrated argument by
Einstein-Podolsky and Rosen (see later on Ref. [36]).
However, non-unitary theories formulated on a conventional
Hilbert space over a conventional field violate causality [9,19].
Hence, the reformulation of non-unitary theories via
isomathematics is crucial for the mathematical and physical
consistency of hadronic mechanics at large and its
isomechanical branch in particular (see monographs [23] for a
comprehensive presentation).

We should also mention that Aadronic mechanics eliminates
the divergencies of quantum mechanics because the value of
the isounit (15) is generally very big. Consequently, the value
of the isotopic element T is very small, thus permitting the
conversion of divergent or weakly convergent quantum series
into strongly convergent isotopic forms via the systematic use
of isoproduct (8). Additionally, the functional dependence of
the isotopic element is unrestricted, thus allowing the removal
of the singularity of the Dirac delta distributions under isotopy,
which feature persists for the isotopies of the scattering theory.
The absence of divergencies is particularly important for
approximate solutions of exterior and interior dynamical
problems, as well as of non-linear gravitational equations
when reformulated in terms of isomathematics.

Finally, the non-initiated reader should be aware that
quantum mechanics and hadronic mechanics coincide at the
abstract level by conception and construction to such an
extent that they can be expressed via the same symbols and
equations, merely subjected to different realizations.
Following decades of research in the field, we believe that the
above features are iportant to assure consistency and causality
of hadronic mechanics and its applications.

Rudiments of IsoGravitation for Matter and its IsoDual for AntiMatter

5. Rudiments of IsoGravitation for
Matter

5.1. Elementary Formulation of IsoGravitation

The main result of the studies in gravitation herein reported
is that the conjecture of the actial curvature of space is the
dominant origin of all problematic aspects of Einstein
gravitation, including all its incompatibilities with 20th
century sciences, besides being disproved by visual,
mathematical and experimental evidence (Figure 1-5).

Therefore, the main objectives of the studies herein
reported are: A) the reformulation of Einstein field equations
via a basically new geometry admitting the invariance of line
elements without curvature; B) show the compatibility of said
reformulation with 20th century sciences; and C) provide at
least preliminary experimental verifications.

Following decades of preparatory research on the new
isomathematics and isomechanics, isogravitation for matter
was presented for the first time at the 1992 Marcel Grossmann
Meeting in Gravitation [26] via the following elementary
rules:

RULE 5-I: Decompose any non-singular Riemannian
metric g(x) in (3+1)-dimensions into the product of the the
Minkowski metric 1 = Diag.(1,1,1,—1) and the 4 X
4-dimensional gravitational isotopic element Tgr )

e2))

where the positive-definite character of Tgr (x) is assured by
the topology of the Riemannian space;

RULE 5-1I: Assume the inverse of the isotopic element as
the gravitational isounit

g(x) = T ()

[jr () = 1/Tpe (x) > 0 22)
RULE 5-11I: Reformulate the totality of Einstein gravitation
into such a form admitting igr (x) as the correct left and right
unit at all levels, including numbers, functional analysis,
differential calculus, geometries, Christoffel symbols, etc.

As we shall see, the above simple rules will allow
maintaining Einstein's field equations including its primary
verifications, although formulated on a new geometry over
new fields with null curvature.

5.2. Minkowski-Santilli IsoSpace

The spacetime of isogravitation verifying the above
conditions is given by the infinite family of isotopies of the
Minkowski space first introduced by the author in Ref. [26] of
1983 for the classical profile and Ref. [27] of the same year for
the operator counterpart, and it is today known as the
Minkowski-Santilli IsoSpace.

Consider the conventioinal Minkowski space M(x,n,I)
with spacetime coordinates x = (xi),{ = 1, 2,3, 4, metric
n = Diag.(1,1,1,—c?) and unit I = Diag.(1,1,1,1). The
Minkowski-Santilli isospace is denoted M(%,%,[), and it is
characterized by the infinite family of isotopies for which
coordinates are lifted into isocoordinates (a necessary
condition for their value to be isonumbers) [26]
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x—-x=xl (23)

the Minkowski metric is lifted into the infinite family of
isometrics

n-of= Tgrn (24)

the Minkowski unit is lifted into the isounits with related
isotopic elements

Iytrpwtwp,..)=

= Diag. (n?,n3,n3,n) >0 ,n; >0, 25)
Tgr(tvr»P;#.T.w,lll,...) ]

= Di 1111 =0 .

= lag-(n%ingxng;ni) ) ( )

and line Minkowski element into the infinite family of isoline
elements

2 2 2 2
Xi X3 X3 2
WrmtwT W 7

where: £ = il is a condition is a condition to have correct
isomatrices, that is, matrices whose elements are isonumbers;
one should note the multiplication of the isoline elements by
the isounit which is also a necessary condition forf the line
element to be isonumbers; and we have ignored for simplicity
the exponential factor in the isounits and isotopic elements
representing non-Hamiltonian interactions as in Eqgs. (15) (see
Refs. [23] for the full treatment).

The n-quantities are called the characteristic quantities of
the gravitational field and they are illustrated in the
verifications below. Readers are suggested to exercise caution
for the popular interpretation of the n-quantities as being "free
parameters" since this would literally imply that, for instance,
the terms characterizing the Schwartzchild metric are "free
parameters."

It is easy to see that the projection of the isoline element (27)
in conventional spacetime is the most general possible
symmetric (thus diagonalized) and non-singular line element
in (3+1)-dimensions, thus including as particular cases all
possible Minkowskian, Riemannian, Fynslerian and other line
elements (it should be noted that non-symmetric line elements
for the geometric representation of irreversible gravitational
events require the broader Lie-admissible genomathematics
[19,23])

5.3. Minkowski-Santilli IsoGeometry

The geometry of isospace M(¢,#,[) was first studied in
memoir [28] of 1998 and it is today known as the
Minkowski-Santilli isogeometry. Its first important feature is
the admission of the entire machinery of the Riemannian
geometry, such as covariant derivative, Christoffel symbols,
etc. merely reformulated in terms of the isodifferential

calculus, Egs. (12)-(13).

This is evidently due to the fact that, unlike the Minkowski
metric 7, its isotopic covering # admits the most general
possible functional dependence, under the sole condition of
positive-definiteness of the isotopic element, Eq. (26).
Regrettably, an outline of the new geometry would be
excessively advanced for the elementary character of this
presentation.

The second important feature of the Minkowski-Santilli
isogeometry is that of being isoflar, that is, its curvature is
identically null when elaborated via isomathematics and
defined over isofields.

An elementary way of seeing the second features is to note
that, under isotopies, we have the mutation of the
Minkowskian coordinates while the corresponding unit is
mutated by the inverse amount,

Xk

X = Rl = - (28)
N

Ik - ik = nﬁ, (29)

thus preserving the original flatness.

In any case, isotopies must preserve the original axioms by
central condition and technical realization. This means that,
when properly treated, the isotopies of the Minkowski space
must preserve the original flatness despite the dependence of
the isometric on local coordinates.

5.4. Lorentz-Santilli IsoSymmetry

Thanks to the prior construction of the Lie-Santilli
isotheory [20], the universal isosymmetry of all possible
isoline elements (27) was constructed for the first time in only
one page of Ref. [26]; it is today called the Lorentz-Santilli
isosymmetry; it is characterized by the original symmetry plus
the isotopic element (26); and can be written for
isotransformations in the (3, 4)-plane (see Refs. [23] for the
general case)

“n
x? =9l - f=x4), (30)
ny
n
x* =Pt — f=x). @1)
ns
where
N 1 v/ng
v= (32)

J_;—_—éz’ 3=C/n4,

As one can see, it is evident that the Lorentz-Santilli
isosymmetry is locally isomorphic to the original symmetry
by conception and realization. It is also evident that this local
isomorphism is crucial for achieving compatibility of
isogravitation with 20th century theories and for attempting a
consistent grand unification of gravitation and electroweak
interactions, as outlined below.

Following the original isotopies of the Lorentz symmetry
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[26,27], systematic studies were done by the author on the
isotopies of all most significant spacetime and internal
symmetries. In fact, Ref. [29] was devoted to the isotopies
0(3) of the rotational symmetry O(3) to achieve the
invariance of all topology preserving deformations of the
sphere; Refs. [30,31] were devoted to the isotopies SU(2) of
the SU(2) spin symmetry; Ref. [32] presented for the first
time the isotopies P(3.1) of the Poincaré symmetry P(3.1)
with the first proof of the universal invariance of all possible
non-singular, Riemannian line elements; and Ref. [33] was
devoted to the isotopies P(3.1) of the spinorial covering of
the Poincaré symmetry P(3.1). Independent papers [34,35]
confirmed the universal character of the Lorentz-Santilli
isosymmetry for the invariance of all infinitely possible
symmetric line elements in (3+1)-dimensions.

3.5. IsoGravitational IsoEquations

Another important feature of isogravitation is that of
preserving Einstein’s field equations (2), although necessarily
extended to forms (3)-(6) and reformulated on the
Minkowski-Santilli isogeometry without curvature.

Along these lines, we have the isoequations for exterior
gravitational problems

Gij = E'-] - éij(fl ﬁ) X ﬁ/i =

=k Tij,elm(iu D),

AUV & o A A AT AT — ralV s 45 : T —
EYRE, R0, +IKRMRE) KYP = (AL 7,0, + ime)P =0

where £ =#I,F =9I and the matrices 7, known as the
Dirac-Santilli IsoGamma matrices, are given by

e 9
YR—nk __a.k 0 )

N 1 (I 0 )
=[— ) 44
Va4 . ( 0 — ]2x2 ( )
with anti-isocommutation rules [25]
{?u:?v} = ?uTst}?v + ?stt}”\u = zﬁuv,sch (45)

As one can see, Egs. (43) did indeed succeed in embedding
gravitation in the Dirac equation, for which reason Santilli
proposed the name of the Dirac-Schwartzchild IsoEquation
[25]. It’s expected physical relevance is evident, e.g., as the
first description on scientific records of an electron within an
intense gravitational field in the surface of the Sun or near the
event horizon of a black hole.

In closing, we would like to honor the memory of Einstein,
Podolsky and Rosen [36] for their view on the "lack of
completeness of quantum mechanics” which was instrumental
for the birth of hadronic mechanics and its applications. In fact,
operator isogravitation can be defined as an invariant
non-unitary, axiom-preserving completion of relativistic
quantum mechanics.

Rudiments of IsoGravitation for Matter and its IsoDual for AntiMatter

under the condition

Mgray = f Too,elm(f) X do (34)
where one should note the dependence of the source on
isocoordinates and  isovelocities, as typical for
electromagnetic source.

Consequently, the isometric is equally dependent on
isocoordinates and isovelocities, E(X, %) =A(X, 7)) , a
property forbidden by the Riemannian geometry but readily
permitted by the Minkowski-Santilli isogeometry due to the
unrestricted functional dependence of the isometric.

We also have the broader isoequations for the interior
isogravitational problem

Gij = ﬁll - éll(f' f', ﬁ, &,[2, f, 6,1[3,) ? ﬁ/? =
T, iy
ln = Diag.[L1,(1~ =), 1-=H7). @)
or with the isogravitational characteristic quantities
'y .
n2=1-=0 2= (1_i:£)-1, (42)

where one should note the suggestive reformwhere one should
note the suggestive reformulation of gravitational singularities
in terms of the zeros of the space component of the isounit.
We now consider the isotopies of the Dirac equations
introduced in Ref. [33], now called the Dirac-Santilli
IsoEquations, and specialize then to the Schwartzchild metric

(43)

3.6. Compatibility of IsoGravitation with 20th Century
Theories

The compatibility of isogravitation with 20th century
sciences is direct and immediate. The compatibility of
isogravitation with special relativity is immediately
established by the fact that its universal isosymmetry is locally
isomorphic to the conventional Poincaré symmetry. The
compatibility of the physical laws of isogravitation with those
of special relativity is then an immediate consequence.

The compatibility of isogravitation with the interior
gravitational problem is established by the completely
unrestricted functional dependence of the gravitational
isometric. The compatibility of isogravitation with
electromagnetism is established by the electromagnetic origin
of the gravitational mass appearing in Egs. (33).

The compatibility of isogravitation with quantum
mechanics is inherent in the very notion of isotopies and it is
used at the foundation of the very proposal of isogravitation
[25]. The compatibility of isogravitation with grand
unifications will be discussed in Section 7.

5.7. IsoGravitational IsoAxioms

The isotopies of the axioms of special relativity, today
known as IsoAxioms, were initiated by Santilli in paper [26] of
1983; they received a first systematic formulation in
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monographs [37] of 1991; and they were finalized in
monographs [23] of 1995 jointly with the discovery of the
isodifferential calculus (see Ref. [41] for an independent
review).

In works [23,26,37], the isoaxioms were specifically
conceived and technically developed for quantitative
treatments of relativistic interior dynamical problems, such as
for the propagation of light within gaseous media (Figure 1),
in which application they have received numerous
experimental verifications (see, e.g., Refs. [11-15] and general
review [41]).

The isoaxioms presented in Refs. [23,26,37] had no
gravitational content. The application of the isoaxioms for a
representation of gravity is presented for the first time in this
paper under the proposed name of IsoGravitational
IsoAxioms.

The presentation of this subsection is the most general
possible for both the exterior and the interior gravitational
problems characterized by a non-singular, symmetric
isometric in (3+1)-dimension. This general formulation is
merely achieved without any specification of the functional
dependence of the isometric. In the verifications of the
isogravitational isoaxioms of the next subsection, we will be
forced to specify the isoaxioms to exterior or interior
gravitational problems.

The first implication of the isotopies of special relativity is
the abandonment of the speed of light in vacuum as the
maximal causal speed in favor of a covering geometric notion.
This is necessary for isogravitation because light is expected
not to propagate within the hyperdense media inside planets or
stars.

This occurrence is easily seen by specializing the isoline
element (27) to the isolight isocone [23, 37]

(46)

thus leading to the maximal Causal Speed 1;,,, of IsoAxiom
5.1 below.

The remaining isoaxioms can be uniquely and
unambiguously identified via a procedure parallel to the
construction of the axioms of special relativity from the
Poincaré symmetry [23,37].

The reader should be aware that isogravitation is generally
inhomogeneous and anisotropic for both exterior and interior
problems, as evidently intrinsic in the fact that the
characteristic quantities n, of isoelement (27) generally have
different values for different space directions.

These features are necessary for a more realistic
representation of exterior and interior gravitational fields of
planets such as Earth. Inhomogeneity and anisotropy are then
easily represented thanks to the arbitrary functional
dependence of the characteristic quantities of the
Minkowski-Santilli isogeometry.

A consequence of the inhomogeneity and anisotropy of
isogravitation is that the isoaxioms are presented for one given
direction in space, hereon denoted with the sub-index k, since
the change of space direction generally implies a change in the

explicit value of the characteristic quantities.
ISOAXIOM 5.1: The maximal causal speed in a given space
direction k within an isogravitational field is given by
Ny
|74 =c—,
max,k c n4
ISOAXIOM 5.1I: The local isospeed of light within an
isogravitational field is given by

(47)

& =—

- (48)

where c is the speed of light in intergalactic spaces w
where ¢ is the speed of light in intergalactic spaces without
any gravitational field.

ISOAXIOM 5.11I: The addition of isospeeds in the
k -direction within an isogravitational field follows the
isotopic law

Vye/ Nk + Vap/my,

Lk,
Vi,kV2,k M
1+=5"0
[ ng

Viote = (49)

ISOAXIOM 5.1V: The isodilatation of isotime, the
isocontraction of isolengths, theiso variation of mass with
isospeed, and the mass-energy isoequivalence principle follow
the isotopic laws

At' = 7y At, (50)
AP =7t AS, (51)
m' =y; m, (52)
ni
E=mll,y =mc®— (53)
Ny

where 7 and B have values (32).
where 7 and # have values (32).

ISOAXIOM 5.V: The frequency isoshift of light propagating
within an isogravitational field in the k-direction follows the
Doppler-Santilli isotopic law
v/n
c/n,
where w, is the experimentally measured value, w, is the
value at the origin, and we have ignored for simplicity the
isotopies of trigonometry (see Refs. [23] for brevity).

A technical understanding of the isoaxioms requires a
technical knowledge of isomathematics. In fact, the isoaxioms
presented below are given by their projection from the
Minkowski-Santilli isospace over an isofield with isounit (25)
into the conventional Minkowski space over a conventional
field with isounit 1.

A main feature is that, when the isoaxioms are represented
on isospace over isofields, they coincide with the conventional
axioms of special relativity by conception and technical
realization. In particular, the maximal causal speed V4 # €
solely occurs in the projection of the isoaxioms on Minkowski

W, = W,V [1 + cos a] (54)
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space because, at the isotopic level, the maximal causal speed
is ¢ for all possible isogravitational problems.

5.8. Verification of IsoGravitation for Exterior Problems
without Source

It It is important for the self-consistency of this paper to
initiate the appraisal of isogravitation via its application to the
exterior gravitational problem without source in order to
verify that Einctein field equations (2) can indeed be
consistently formulated on a Minkowski-Santilli isospace.

In fact, all consistent experimental verifications of general
relativity also apply to isogravitation without source because,
for its own conception and technical realizations, isotopic
liftings preserve all original numerical values (for brevity, see
ref. [23b] with particular reference to the proof that the
maximal causal speed on Minkowski-Santilli isospaces on
isofields is the conventional speed of light in vacuum c).

In particular, it is easy to see that Einstein's Equivalence
Principle [6,9] is maintained in its integrity for various
independent reasons. First of all, the projection of
isogravitation on the conventional Riemannian space over a
conventional field coincides with Einstein gravitation with
consequential trivial validity of Einstein';s Equivalence
Principle.  Additionally, the Equivalence Principle
independently holds on the Minkowski-Santilli isospace over
isofields by very conception of isotopies [23]. The verification
of other serious experimental verifications of Einstein
gravitation follows in the same way.

To verify the above general lines, let us assume the
Schwartzchild metric (39) as a good approximation of the
isometric for isoequations (33) for the case without source,
and present the results for appraisal by interested readers.

Note that, under said assumption, we have the homogeneity
and isotropy of the isogravitational field, thus eliminating the
selected space direction $k$ of the general isoaxioms.

Note that, under said assumption, we have the homogeneity
and isotropy of the isogravitational field, thus eliminating the
selected space direction k of the general isoaxioms.

Let us begin by recalling values (42) of the characteristic
quantities for the Schwartzchild metric for which
v ong
n, ¢

v 1

- 1- rsch/r C(l _rsch/r) B

| D

_ r/c
(A = Ten/T)*
and consequential expressions for the isogamma (32)

1 1 1

2 [_® [[_2m
=

(35)
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_ 1

= —_—

’1 e
(A=rscn/m)*

1
T vic__ (56)
(A=Tscn/T)?
From the above values, we have the maximal causal speed
in an isogravitational field

R

c=cnd=c(1-rschr) (58)

which evidently tends to zero at the event horizon.

We believe that this occurrence is a significant confirmation
of isogravitation because it provided a most effective,
quantitative representation of the impossibility of matter to
escape from a black hole.

Similarly, we have the expression for the isospeed of light
N ¢ Tsch
¢ = o c(1 - ) (58)
which also tends to zero at the event horizon and expectedly
thereafter.

We believe that this is another supporting feature of
isogravitation because the speed of light decreases for about
100,000km/sec when propagating within water. It is then
logical to assume that the speed of light is null when reaching
the densest conceivable medium in the universe. The null
value at the event horizon is also an effective way to represent
the impossibility for light to escape from a black hole.

It should be noted that the conventional speed of light ¢ is |
an invariant under the Lorentz-Santilli isosymmetry and
related isogravitation because, e.g., the isosum of two light
speeds ¢ does not reproduce ¢ as it is the case for special
relativity.

However, isospeed (58) is indeed an isoinvariant because
the isosum of two light isospeeds does indeed yield the light
isospeed,

c/ng+c/ng ¢ Tsch
v, == — = = 1-—
tot,s 148 m c(1--7) (59)
C

The reader should be aware of the fact that isogravitation
predicts that the speed of light ¢ in intergalactic spaces
without any gravitational field is "bigger" then the speed of
light é.4r:n measured on Earth, although for a very small
amount,

T
sch) <c
T

c
Cearth = i— = C(l - (60)

4

By using isospeeds away from the observer, and values (42),
we can write the first order approximation
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At
— 61)

B (A-Tscn/7)?

At' = Aty =

which recovers the conventional time dilation of special
relativity at a given distance r. However, the value of At
within a gravitational field (grav) is predicted to be smaller
than that for special relativity (sr),

At,grav <4ty (62)

in such a way that time tends to zero at the event horizon, in
full agreement with the behavior of the time component of the
Schwartzchild metric (39),

Lim,_scp At =0 (63)
Similarly, we have the isolength isocontraction
A = éﬁ = Af1 — __v_/c_ (64)
14 (1 = Ten/T)?
which recovers the length contraction of special

relativitywhich recovers the length contraction of special
relativity for a given distance r. However, the value of 4¢' in
the presence of a gravitational field is predicted to be bigger
than that of special relativity

B gray > B, (65)

in such a manner that 8t’ tends to infinity at the event horizon

Lim, eendf = o (66)

also in full agreement with the space component of the
Schwartzchild metric (39).

We also have from isoaxiom (52) the isovariation of mass in
an isogravitational field

, m m

m = =
==
(1=rscn/m)*

2 2
1=l
czn2

illustrating the prediction based on the Schwartzchild
metricthat the mass tends to zero at the event horizon.

(67)

Similarly, from the energy equivalence (53), we have in the
vicinity of the event horizon

E=m2, =—
max
h _ v2/c?
A-Tscn/m)*
r
xc2(1- ‘:")4 ~

2 (1 - rSCh. / r)6
(1 = Ten/r)* —v/c’
illustrating the prediction that the energy isoequivalence of a

particle tends to zero at the event horizon much faster than that
for the mass.

=~ mc (68)

We believe that the above features are an important
verification of the isoaxioms for various reasons. Firstly, the
expectation that Newton’s inertia and other laws are valid
within a black hole is nowadays rejected by the vast majority
of scientists. Secondly, any expectation that particles may
experience inertia when constrained within the densest
medium in the universe without any possibility of motion, is
manifestly illogical. Thirdly, and perhaps most importantly,
the limitation for the divergent increase of mass and energy
within a black hole appears to be an important mechanism set
by nature to prevent the achievement of infinite mass under
which one single black hole would swallow the entire
universe.

It should be stressed to prevent misrepresentations that the
null limit of the mass at the event horizon is similar to the
singularity of the Schwartzchild metric and solely occur for
the case of field equations (2) without source. As indicated in
the next subsection, the presence of a source of first order in
magnitude, Eq. (4), appears to avoid both the null value of the
mass and the singularity at6 the event horizon by turning them
into more realistic finite values.

For IsoAxiom 5.V, we have the Doppler-Santilli isoshift of
the frequency of light within an exterior isogravitational field
for the simple case of null aberration in the space k-direction

Tsch

), (69

v
W, = w1 —(1-

clearly showing Santilli isoRedShift [11,37], namely a redshift
of the entire spectrum of visible light without any relative
motion between the light source and the origin of the
gravitational field.

The energy lost by light for the isoredshift when traversing
a gravitational field is expected to be one of the continuous
sources of energy needed for the Cosmic Background
Radiation to exist in view of its weakness, in addition to the
energy originating from the de-excitation of hydrogen atoms
in intergalactic spaces when hit by light [11-15] which
appears to be an additional source of the energy needed to
maintain in time the Cosmic Backgrtound Radiation [11-15].

Note also that all frequencies of visible light become
identically null at the event horizon. This feature is necessary
for compatibility with the null value of the speed of light at the
event horizon, thus confirming the plausible expectation that
the conventional notion of electromagnetic waves becomes
meaningless within the densest media existing in the universe.
Needless to say, the energy lost by light to the event horizon is
absorbed by the black hole.

In conclusion, to our best understanding at this writing, the
predictions of isogravitational isoaxioms for matter appear to
be supported by the behavior of the isotopic reformulation of
the Schwartzchild metric, although more studies are evidently
needed to achieve any conclusion due to the complexity of the
problem and our rather limited final knowledge of black holes.

5.9. Verification of IsoGravitation for Exterior Problems
with Source

As indicated earlier, the Schwartzchild metric (39) has a
just place in the history of gravitation because it achieved for
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the first time a geometric understanding of gravitational
singularities, besides other advances.

However, the Schwartzchild metric remains a first
approximation of a rather complex physical reality because
local infinities cannot exist in the universe as a condition for
its continued existence.

Following decades of studies on the covering of the
Schwartzchild metric suitable to avoid local infinities, the
author has found no other consistent approach than that
allowed by a first-order electromagnetic source in the r.h.s. of
the field equations according to Egs. (33).

This raises the question as to whether Einstein's
Equivalence Principle also holds for exterior isogravitation
with a source. Einstein supporters quickly voice their opinion
that this is not the case for the intent of invalidating
isogravitation. However, serious science is far from these
unsubstantiated personal opinions because the problem is
rather complex indeed and, to avoid a prohibitive length, it
will be studied by the author in a subsequent paper.

At this moment, we limit ourselves to the indication that,
apparently, the introduction of a source in the gravitational
field equations implies numerical contributions in the
verification of the Equivalence Principle well within
experimental errors. Consequently, the introduction of a
source does not invalidate the Equivalence Principle on
serious scientific grounds until proved so with detailed
calculations published in serious refereed journals.

The needed solution is scheduled for detailed studies in a
subsequent paper. For the completeness of this paper, we limit
ourselves to indicate that an approximate solutions of Egs. (33)
can be written

ds? = r?(df? + sin*d6? + d¢?) +

+(1

_ Tsch +1.-S'(T, v))_ldrz _

_ Tscn + S(r,v)
r

-1 Ydt? =

= Tsen X n=E ﬁsch» (70)

with characteristic quantities

Teen + S(1, v
=1_ﬂ7(__2, n? =

_ Tscn +S(r,v) _;
- (1 r ) )

(71

whose limit for r - 0 (rather than for r — sch) is such to
avoid local singularities, e.g., of the type

~

v
Limr—>0(1 - E) =

r/c :
_ TschtSrw)d T
1 r

= Limr_,o [1 -
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=N %0, N <o, (72)

and the numerical value of N evidently requires the
consideration of a specific black hole.

1t then follows that isogravitational isoequations (33) with a
first~order electromagnetic source recover all main historical
results achieved by the Schwartzchild’s metric, with the
elimination of singularities that are not expected to exist in
nature.

As a first illustration, the expected behavior of the isotime
isodilation (61) acquires the form

At
Lim,_ oAt' = Lim, ,——— =
(1-5
é
At

thus eliminating the singularity in time of the Schwartzchild
metric (39)
Similarly, for the isolength isocontraction we have

v
Lim,_ o Af = Lim,_,Af(1 — E)Z =

= N2Af < oo, (74)

thus eliminating jointly the local singularity of the
Schwartzchild metric for the space component.

Similar corrections occur for the remaining physical
quantities studied in the preceding subsection, as the reader
can verify.

Note the truly crucial role of the first-order nature of the
electromagnetic source, that is, such to represent the entire

gravitational mass, Eq. (34). In fact, the standard
consideration of the total electromagnetic characteristics of a
body leaves Schwartzchild’s singularities completely

unaffected since their contribution to the gravitational field is
of the order of 1073? or less.

In conclusion, we can state that the inclusion in the r.h.s. of
the field equation of a first order source of electromagnetic
character, essentially along Einstein’s own intuition, besides
achieving compatibility of gravitation with electrodynamics,
does indeed offer realistic possibilities of avoiding local
infinities in the universe, with ensuing significant advances in
various gravitational problems.

5.10. Verification of IsoGravitation for the Interior Problem

Contrary to isogravitation, Einstein gravitation cannot even
formulate interior gravitational problems in any realistic way,
e.g., due to the inability to represent a locally varying speed of
light. In this case there is the loss of credibility for Einstein
supporters who' even mention experimental verifications of
Einstein gravitation, for the evident reason that we have no
direct experimental tests in the interior of the Sun or planet.

The interior character of the Doppler-Santilli isolaw has
been extensively studied in Refs. [11-15]. We hereby limit
ourselves to consider the interior gravitational case of light
passing through the Sun chromosphere.

In this case, the characteristic n -quantities have a
functional dependence on the speed v, the distance d
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covered within the physical medium, etc. thus admitting the
expansion in the travwersed distance d by light within the
medium

nn =1+
Ny c
—=~1+—Hd, (75)
Ng v
where H is the Hubble constant with resulting
Doppler-Santilli isoshift law [11]
we = wol[1 + ve(1 £ HA)] (76)
Measurements [11-15] have established that, for a

sufficiently dense chromosphere (or for a sufficiently long
travel d in a thin atmosphere), the conventional Doppler term
is ignorable, e.g., for the case of earth’s rotation, and the
Hubble term becomes dominant, resulting in the Hubble law
for the cosmological shift

z=+Hd (77)

which is uniquely and unambiguously characterized by the
Poincaré-Santilli isosymmetry.

We hereby add, apparently for the first time, the extended
version of the Doppler-Santilli isolaw within a transparent

physical medium with the inclusion of a strong
isogravitational, field from isoaxiom (64)
v Tsch
we = wy[l i;(l— - ) + Hd). (78)

As one can see, the isoredshift caused by isogravitation in
the vicinity of the event horizon is dominant over all others, as
expected.

We believe that the above features provide a significant
additional verification of isogravitation at large, and of its
isoaxioms in particular.

In conclusion, we can safely state that isogravitation does
indeed allow meaningful models of interior gravitational
problems that are notoriously impossible for Einstein
gravitation.

It should be noted that these interior gravitational models
are reached via the same axioms of exterior problems under
the uncompromisable condition ‘that the metric has an
unrestricted functional dependence on all possible interior
local variable, which dependence is solely admitted at this
writing by isogeometries.

6. Rudiments of IsoDual IsoGravitation
for AntiMatter

Despite all the above advances, attempts at an axiomatically
consistent grand unification of electroweak and gravitational
interaction continued to be inconsistent and not worth their
presentation in a scientific paper, because Einstein gravitation,
as well as isogravitation, solely apply for matter-bodies, thus
preventing any consistent unification with electroweak
theories that are bona-fide theories of particles and

antiparticles.

A solution of the latter problem required the construction of
yet another new mathematics, specifically conceived for the
classical representation of neutral (or charged) antimatter-
bodies.

The transition from matter to antimatter required the new
mathematics to be anti-isomorphic in general and
anti-Hermitean in particular, to isomathematics, as a condition
to be consistent with charge conjugation and experimental
data, including matter-antimatter annihilation.

Following numerous failed attempts, when being at he
Department of Mathematics of Harvard University in the early
1980s, the author finally succeeded in identifying the needed
mathematics, called isodual mathematics and denoted with the
upper symbol 2.

In view of the above aspects, Santilli constructed the
isodual image of 20th century mathematics and quantum
mechanics under the condition of admitting the isodual unit

=-1 (79)

at all its mathematical and physical levels [40].

The above studies remained grossly insufficient to initiate
studies on possible grand unifications due to the need of the
anti-isomorphic image of isomathematics for antimatter
whose need emerges even stronger from the model of
isogravitation presented in this paper.

The latter mathematics was built via the systematic
application of the following isodual map

i(t,r,p,ﬂ,‘[,v,ll), ---) - id =
—It(—tt, —rt, —vt, —at, —pt, -1t =, -yt (80)

to the totality of quantities and the totality of their operations
used for matter.

The resulting new mathematics is today known as Santilli
isodual isomathematics and includes isodual isonumbers,
isodual isofunctions, isodual isodifferential calculus, isodual
isoalgebras, isodual isogeometries, etc. (see monograph [40]
for a comprehensive study and Ref. [41] for an independent
general review).

Following the construction of the isodual isomathematics it
was necessary to construct the isodual image of classical and
operator theories, with particular reference to the isodual
Lorentz-Santilli isosymmetry and the axiomatically consistent
classical representation of the gravitational field of neutral (or
charged) antimatter-bodies. The compatibility of the emerging
isodual theory of antimatter with experiental data was assured
by the equivalence of the isodual map with charge conjugation
(for brevity, one may inspect monograph [23]).

7. Rudiments of IsoGrandUnification

In our view, a most important implication of the search for
axiomatically consistent grand unifications is the shift from
the description of gravitation to a study of its origin. In fact,
Ref. [16] is crucially dependent on the abandonment of the
standard "unification" of gravitation and electromagnetic
interactions in favor of their "identification" under appropriate
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field equations.

Ref. [16] also submitted experiments for the possible
laboratory creation of a measurable gravitational field that
appears feasible nowadays thanks to the availability of highly
sensitive detectors, such as those based on neutron
interferometry.

Only following the above scientific journey the author was
finally in a position to present at the 1997 Marcel Grossmann
Meeting in Gravitatio, a grand unification of electroweak and
gravitational interactions with the inclusion of matter and
antimatter at all classical and operator levels [38] (see also Ref.
[39D).

The emerging grand unification essentially consistent in the
embedding of gravitation in the gravitational isounit of
electrostatic interactions under the universal isospinorial
covering P(3.1) of the Poincaré-Santilli isosymmetry
P(3.1) the selected isotopic image of the selected gauge
symmetry g for matter and their isodual for antimatter

$={P(3.1) x G} x {P4(3.1) x G%} (81)

which is the isosymmetry of the Dirac-Santilli isoequations
(43) [33] and which, rather intriguingly, emerges as the
isosymmetry of the universe at the limit of equal amounts of
matter and antimatter (see monograph [40] for brevity).

Of course, we do not know whether the abovegrand
unification is verified in nature, but we believe that the studies
reported in this paper have provided at least much needed new
vistas in gravitation [41] for further advances by interested
colleagues.

To follow Albert Einstein teaching for powerful
self-criticism, we note that the dynamics of test masses in a
gravitational field is fully reversible in time. By contrast, the
dynamics of a black holes is strictly irreversible over, since we
are dealing with a one way absorption of matter and light.

By remembering that isomathematics and related
isomechanics are reversible over time, \, a more accurate
description of black holes may require a covering of
isogravitation constructed via genomathematics with a
Lie-admissible (rather than a Lie-isotopic) structure and
related genogeometries with non-symmetric genometrics as a
condition to embed irreversibility in the ultimate
mathematical and physical structures [19,23].

All in all, the studies presented in this paper confirm that
physics is a discipline that will never admit final theories.
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Abstract: As it is well known, 20th century applied mathematics with related physical and chemical theories, are solely
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1. Introduction

As it is well known, 20th century applied mathematics at
large, and the Lie theory in particular, can only represent
point-like particles moving in vacuum (exterior dynamical
problems), resulting in a body of methods that have proved to
be effective whenever particles can be effectively abstracted
as being point-like, such as for the structure of atoms, and
crystals, particles moving in accelerators, and many other
systems.

An important feature of exterior problems is that, being
dimensionless, point-like particles can only experience
action-at-a-distance, potential and, therefore, Hamiltonian
interactions, which Hamiltonian character is a central
condition for the very applicability of Lie’s theory.

It is equally well known that point-like abstractions of
particles are excessive for extended, non-spherical and
deformable particles moving within a physical medium
(interior dynamical problems), as it is the case for the structure
of hadrons, nuclei and stars since their constituents are in a
state of mutual penetration of their wavepackets and/or charge
distribution.

An important feature of the finite size of particles in interior

conventional
as well as

conditions is that they experience
action-a-distance, Hamiltonian interactions,
additional contact, non-potential and, therefore,
non-Hamiltonian interactions, with the consequential
inapplicability of 20th century applied mathematics at large,
and of Lie’s theory in particular.

In a series of pioneering works [1-11], R. M. Santilli has
constructed a new mathematics, today known as Santilli
IsoMathematics, for the representation of extended,
non-spherical and deformable particles under Hamiltonian as
well as non-Hamiltonian interactions, which new mathematics
has seen contributions by numerous important mathematicians
(see, e.g. Rfs., [12-21])..

In this note, the author would like to bring to the attention of
the mathematical community the need for further studies on
the central branch of isomathematics, namely, the Lie-Santilli
IsoTheory [1], since the latter provides the only known time
invariant methods for the lifting of the various applications of
the conventional Lie theory from exterior to interior
conditions.

In particular, we the the

focus attention on
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IsoRepresentations of the Lie-Santilli IsoAlgebras which have
been classified into regulor and irregular, depending on
whether the structure quantities of the isocommutation rules
are constant or functions of the local variables.

Besides Santilli’s works, no study on the isorepresentation
theory of the Lie-Santilli isoalgebras is on scientific record to
our best knowledge, with consequential limitations on
important applications, such as the search for much needed,
new nuclear energies without the release of harmful radiations
and other equally important applications outlined in Section 5.

It should be indicated that Santilli’s pioneering works signal
the historical transition from the notion of massive point,
introduced by Newton, and adopted by Galileo and Einstein,
to a new generation of physical and chemical theories
representing particles as they are in the physical or chemical
reality. This historical advance has so many implications for
all of quantitative sciences that it has been referred to as
characterizing New Sciences for a New Era in the title of Ref.
[21].

2. The Lie-Santilli IsoTheory

Let L be an N -dimensional Lie algebra on a Hilbert
space. H over a field F(n,%,1) with elements n given by
real, complex and quaternionic numbers, associative product
hereon denoted nm =nXme F, and multiplicative unit 1.

Let the generators of L be given by Hermitean operators
X,,k=1,2,..,N on H over F. Let & be the universal
enveloping associative algebra characterized by the
infinite-dimensional set of ordered monomials according to
the Poincaré-Birkhoff-Witt Theorem.

Let the Lie algebra L be isomorphic to the
anti-symmetric algebra attached to the enveloping algebra
L=& with ensuing Lie’s theorems and commutation rules.

Let G be the Lie transformation group characterized by L .

In pioneering works done in 1978-1983 at the Department
of Mathematics of Harvard University under DOE support, R.
M. Santilli [1] proposed the. axiom-preserving isotopies of
20th century applied mathematics at large, and of the Lie
theory in particular, via the following isotropy of the
associative product

X, RX; =X, xTxX; ¢))

where T, called the isotopic element, is solely restricted to be
positive-definite, but otherwise possesses an arbitrary
dependence on local variables such as time t, coordinates I,
velocities V, density M, temperature T, index of refraction
8, frequency , wave functions V¥, etc.

The fundamental significance of Santilli’s infinite class of
isotopies (1) of the associative product is that they permit the
representation of the actual extended, and deformable shape of
the body considered under Hamiltonian interactions
represented via the conventional Hamiltonian, and contact
non-Hamiltonian interactions via realizations of the isotopic
element of the type

PS . 1 1 1 -T
T = Dlag. (_Er_fi_z) X e trvutdwi,..) @)
ni nz ng

where nZ = nZ(t,7,v,,7,6,w,,...) 'k = 1,2,3, represents,
in this case, the deformable semi-axes of the considered
ellipsoid, and T" is a positive-definite function representing
all interactions not representable with the Hamiltonian.

Following the above basic assumptions, Santilli passed in
monographs [1] to the construction of the isotopies of the
various branches of Lie’s theory over a conventional field F,
and illustrated its significance via the Birkhoffian
generalization of Hamiltonian mechanics which achieves
"direct universality” for the representation of all possible
(regular) non-Hamiltonian Newtonian systems directly in the
frame of the experimenter. The resulting new theory is today
known as the Lie-Santilli IsoTheory.

Following the above seminal advances, Santilli discovered
that the original formulation [1] of the isotopies does not
predict the same numerical values under the same conditions
at different times (hereon referred to as time invriance),
because the time evolution is non-unitary on H over F.

In summer 1993, while visiting the Joint Institute for
Nuclear Research in Dubna, Russia, Santilli [2] discovered
that the abstract axioms of a numeric field do not necessarily
require that the basic unit be the number 1, since the
multiplicative unit can be an arbitrary, positive definite
quantity | irrespective of whether an element of the original
field F or not, under the condition that it is the inverse of the
isotopic element

I=1/1, 3)

and all possible associative products are lifted into form (1)
under which | is the correct left and right multiplicative unit
for all elements of the set considered

IRX=XRI=XVX€eL 4

This lead to the discovery of new fields, today known as
Santilli isofields F(A,%,1) with isoreal, isocomplex and
isoquaternionic isonumbers i = n x 1,n € F equipped with
the isoproduct ihat x m=nxmxT € F[2].

Subsequently, Santilli discovered that, despite the
reformulation over an isofield, the Lie-Santilli isotheory was
still unable to achieve the crucial time invariance of the
numerical prediction.

Following various trials and errors, while studying at the
Institute for Basic research, Castle Prince Pignatelli in Italy,
Santilli [3] discovered in 1995 that, contrary to a popular
belief in mathematics and physics for centuries, the
Newton-Leibnitz differential calculus depends indeed on the
assumed basic multiplicative unit because, in the event such
unit has a functional dependence on the differentiation
variable, the conventional differential must be generalized
into the isodifferential

df =T xd[r xI(r,...)] =dr+r x T x dl(r,...), (5)

with ensuing isoderivative
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where, for consistency, f is an isofunction with the
structure f=fx1 and # is the isovariable with the
structure # = r x T as an evident condition to have values in
the isofield F.

The discovery of isofields and of the isodifferential calculus
signed the achievement in memoir [3] of mathematical
maturity in the formulations of the isotopies of 20th century
applied mathematics at large, and of the Lie-Santilli isotheory
in particular, which maturity stimulated seminal, advances in
mathematics as well as in physics and chemistry, including
novel industrial applications indicated later on.

Nowadays, the Lie-Santilli IsoTheory is referred to the
infinite family of isotopies of Lie’s theory as defined in
memoir [3], namely, formulated on an iso-Hilbert
space B over an isofield F with iso-Hermitean
generators Xy, k = 1,2,..., N, with all possible products lifted
into the isoassociative form (1) and multiplicative isounit (3),
the elaboration beng done via the isofunctional analysis and
the isodifferential calculus.

A rudimentary outline of the Lie-Santilli isotheory
comprises the following main branches [3,9]:

2.1) The  universal enveloping  isoassociative
isoalgebra & with infinite-dimensional isobasis given by the
ordered isomonomials of the Poincaré-Birkhoff-Witt-Santilli
isotheorem

LXe Xi X X5 i < iy o @)
with related isoexponentiation
K=+ 24 B = (XN xT=Tx (™) @)

and other isofunctions;
2.2) The Lie-Santilli isoalgebras

L=~¢& )
with isocommutation rules

XoX] =X, RX; = X; R X; = CE R X, (10)
where C‘i'j- = Cl-'j- x I are the isostructure quantities of L with
values in F;

2.3) The Lie-Santilli isogroups G with structure for the one
dimensional case ()

S(-IRWRA) _

A(W) = eAXPRLR A(0) R

= eHxwaxi x A(0) x e—ixwx]‘i‘xH (11)
where = H x [ is an isomatrix, namely, a matrix whose
elements are isoscalars. The remaining aspect of the
Lie-Santilli isotheory can be then constructed via axiom
preserving isotopies of the fotality of the conventional
formulations with no exception known to the author.
Following the achievement in memoir [3] of a consistent
formulation of the isotopies, Santilli applied the isotopies of
Lie’s isotheory them to a number of physical and chemical
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problems that cannot be even formulated with conventional
Lie theory due to the need to represent of extended bodies
under non-Hamiltonian interactions (see applications [6.7.8]
with corresponding independent verifications and industrial
applications [12,13,14], monograph [9] for a general treatment
of the Lie-Santilli isotheory, and monographs [10,11] for
applications in physics and chemistry, respectively).

In the author’s view, Santilli’s most salient achievement has
been, not only the transition from the massive points of
Newton, Galileo and Einstein theories to extended bodies, but
also their representation under the most general (but
non-singular)  known  non-linear, non-local and
non-Hamiltonian interactions in a way as invariant as
Hamiltonian formulations are.

This historical result was achieved via the embedding of all
non-Hamiltonian quantities in the generalized unit of the
theory because, whether conventional or generalized, the unit
is indeed the basic invariant of any theory.

3. Classification of IsoRepresentations

The isorepresentations of Lie-Santilli isoalgebras are
classified into [4,5,9]:

3.1) Regular isorepresentations occurring when the Cosof
rules (5) are constant; and

3.2) Irregular isorepresentations occurring when the Cos
of rules (5) are functions of local variables.

We should recall that "structure functions" are impossible
for Lie’s theory, and they are solely possible for the covering
Lie-Santilli isotheory, by therefore establishing the non-trivial
character of Santilli isotopies.

4. Regular IsoRepresentations

Let us recall that a given Lie algebra admits an infinite
family of isotopies because a point-like particle in vacuum
admits an infinite number of generalizations to extended
particles moving within physical media.

Let us also recall that the extended shape of a particle and
its non-Hamiltonian interactions are represented by the basic
isounit or, equivalently, by the isotopic element [2].

Therefore, the transition from the conventional
representations of a Lie algebra to the isorepresentation of the
covering Lie-Santilli isoalgebras represents extended particles
moving within physical media under conventional
Hamiltonian interactions, as well as the most general known
non-linear, non-local and non-Hamiltonian interactions.

Consider a given Lie algebra L and one of its
representations. Santilli [4,5,9] has identified a simple method
for the construction of the infinite family of regular
isorepresentations of the Lie-Santilli covering |, of L
based on non-unitary transformations of the original Lie
formulation. The method consists in:

4.1) Identifying the extended character of the particle
considered and its non-Hamiltonian interactions represented
via Santilli’s isounit.
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4.2) The identification of a mnon-unitary transform
representing said isounit according to the rule
UxUt=T (12)
where
UxUt#1, (13)

4.3) The application of the above nonunitary transform to
the totality of the mathematics underlying the original
representation of L , thus including numbers, spaces,
algebras, geometries, symmetries, etc, with no known
exception.

The bove method is illustrated by the transformations:

I-I=UxIxU'=1/T, (14a)

n-ofA=UxnxUt=nxUxUt=nxleF,,neF, (14b)

ed > Uxet xUt =[x e™4 = (4T x |, (14c)
AXB-oUX(AXxB)xUt=WUxAxUMx
UxUHIxWUxBxU)Y=A4AKB, (14d)
[X.X] - Ux [XX;]|x Ut = [£;%] =
Ux(CExX)xUT=CE X8 =CEx Xy, (4e)

<Y|X P >SoUX<YP|x [P >x Ut =<
Yl xUtx (U xUD XU >xUxU) =<

PIR P >xT, (149
HXx|Yy>->UXHX|Y>) =
WxHxUHxWUxUHIxWUx|yp>)=
AR >, etc. (14g)

As an illustration, Santilli considered in Refs. [4,5] the
two-dimensional irreducible representation of the SU(2) Lie
algebra, which is given by the known Pauli matrices.

The regular isorepresentations of the Lie-Santilli
isoalgebras ST(2) can be constructed via the infinite family
of non-unitary transformations with representative example

8, = Ux g, x U, (152)
_[(ixXg 0
U‘( 0 ixgz)'
. —iX g, 0 )
U ( 0 _ixg) (15b)
g=m=7 (15¢)
92

where conditions (15c) is necessary for the isounitarity of the
algebra and the £ ’s are well behaved nowhere null functions.
The application of transformations (14) yields the regular

Pauli-Santilli isomatrices [4,5,9]

2
51=(02 gl)l
g; O

. 0 —i X g?
62_(ix 2 ogl)'
92

(16)

with isoalgebra
conventional SU(2) algebra

isomorphic to the

[6,'76}]=6'iXT'X6'j"‘6'jXTX&,:=2XiX£iijé'\k, (17)

and consequential preservation of the conventional

eigenvalues for spin 1/2

B2 P >= (6, XT X6, +8,XxT X6, +

+6; XTXG)XTx [P >=3x[P>, (18a)
G3RXWW>=6XxTx|[p>=+1x > (18b)

Despite the apparent triviality, Santilli’s isotopies of the
SU(2) -spin algebra are not trivial because they introduce a
new degree of freedom in the conventional spin 1/2 given by
the non-singular, but unrestricted parameter (or function) A*
of Egs. (15¢).

In turn, this new degree of freedom has permitted a number
of novel applications, such as [4,5,9]: the reconstruction of the
exact isospin symmetry in nuclear physics which was believed
to be broken by weak interactions; the achievement of a
concrete and explicit realization of hidden variables in

quantum mechanics via the degrees of freedom A’ ; and
rather seminal implications for local realism (see Ref. [5] for
brevity).

5. Irregular IsoRepresentations

Santilli has additionally constructed in Refs. [4,5] the
following example of irregular isorepresentation of the

éU(Z) spin algebra
2
6-1 = ( 02 gl) ’
g9; 0

—ixg?
62=(, 02 lxgl)‘
i X g3 0
X 2
8, =(W 091 0 2). (19)
Wxgz

which are known as the irregular Pauli-Santilli isomatry, and
cannot any longer be constructed via non-unitary
transformations of the Pauli matrices, and.

The irregular character of isomatrices (19) is established by
the appearance of structure functions in the isocommutation
rules
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[51:&2] = l X M’_1 X 53, [&2:53] = l X w X &1,

[5‘3?6‘2] =iX w X 51, (20)
with the characterization of the following mutation (in
Santilli’s words) of the SU(2) -spin eigenvalues

FRP>=
(GrXT X8+ XTXG+6XTXGG)XTX|)>=

=Q2+w?d)x P>, (21a)

GRWP>=6GXTx [P >=+wx | >w = 1, (21b)

In essence, Santilli’s irregular isorepresentation of SU(2)
characterize a generalization of the conventional constant
values of spin 1/2 into locally variable spin isoeigenvalues.

Rather than being a mathematical curiosity, the above spin
mutation is expected to be important for a consistent
representation of the spin of an electron, e.g., under the
immense pressures, densities and temperature in the core of a
star.

6. Independent Studies

Numerous  mathematicians have made seminal
contributions to the Lie-Santilli isotheory, among whom we
quote: C-X, Jiang has conducted comprehensive studies [15]
on the isonumber theory at the foundation of the Lie-Santilli
isotheory; D. S. Sourlas and G. T. Tsagas have conducted the
first comprehensive study of the Lie-Santilli theory [16],
although prior to the discovery of isonumbers [2]; J. V.
Kadeisvili has studied in detail the Lie-Santilli isothegry [17]
following its formulation as in memoir [3]; R. M. Fal ¢ on and
J.N. Valdés [18] have presented the most rigorous formulation
to date of Santilli’s isotopies; T. Vougiouklis [19] has
developed the hyperstructural formulation of the Lie-Santilli
isotheory which is the broadest possible formulation
achievable with current mathematical knowledge; and S.
Georgiev [20] has produced one of the most monumental
works in mathematics showing the implications for all of
mathematics of the isodifferential calculus which is nowadays
called the Santilli-Georgiev isodifferential calculus. A
comprehensive review with a large list of contributions has
been produced by I. I. Gandzha and J. Kadeisvili, in
monograph [21] with the suggestive title of New Sciences for a
New Era.

7. Open Problems

The author has no words to recommend the study of regular
and irregular isorepresentations of Lie-Santilli isoalgebras,
with particular reference to the identification of a method for
the construction of irregular isorepresentation parallel to that
for the regular case of Section 4. The proposed study is
important for a number of applications, such as:
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7.1. Reconstruction of Exact Symmetries

Santilli has shown in Ref. [9] that the breaking of
conventional spacetime and internal symmetries is the
outcome of insufficient mathematics. because broken
symmetries can be reconstructed as being exact at the
covering isotopic level under the preservation of the
conventional structure constants. This reconstruction has a
number of important epistemological as well as technical
implications. It is sufficient to note the reconstruction of parity
under weak interactions or the maintaining of Einstein’s
abstract axioms of special relativity for interior conditions to
illustrate the implications at hand. Their systematic study can
be best done via the study of the isorepresentation of
Lie-Santilli isoalgebras.

7.2. Invariant Representation of Hubble’s Law

The regular Lorentz-Santilli isosymmetry has permitted an
invariant derivation of the Hubble law on the cosmological
redshift z = Hd via the mere admission that light loses energy
to the cold intergalactic medium without any need for the
hyperbolic conjecture of the expansion of the universe via the
assumption z = Hd - v/c [6,12]. It is important to verify this
occurrence via the study of the regular isorepresentations of
the Lorentz-Santilli isosymmetry due to its implications for all
of cosmology, since the elimination of the expansion of the
universe will likely require the revision of all our
cosmological knowledge.

7.3. Synthesis of the Neutron from the Hydrogen

In the author’s view, the most important application and
verification of isomathematics has been Santilli’s exact and
invariant representation at both the non-relativistic and
relativistic levels of all characteristics of the neutron in its
synthesis from the hydrogen (see review [21]). Such a
synthesis is notoriously impossible for the conventional
Hilbert space and related mathematics, e.g., because the rest
energy of the neutron is bigger than the sum of the rest
energies of the proton and the electron (a pure anathema for
quantum mechanics); the Dirac equation, which is so effective
for the representation of the electron orbiting around the
proton in the hydrogen atom, becomes completely ineffective
for the representation of the same electron when "compressed"
(according to Rutherford) inside the proton; and for other
reasons. The representation of the neutron synthesis was
crucially dependent on the assumption of the proton and the
electron as being isoparticles, that is, isounitary irreducible
representations of the Galileo-Santilli or the Lorentz-Santilli
isosymmetry whose study is evidently fundamental for true
advances in particle physics, as well as in the structure of stars.

7.4. Nuclear Constituents as Extended Particles

One of the most important applications of isomathematics is
the quantitative prediction of new nuclear energies without the
release of harmful radiations (see review [21]). This
prediction is based on the invariant representation of nuclear
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constituents as being extended and deformable charge
distributions. Such a representation has been instrumental for
the first achievement of the exact representation of nuclear
magnetic moments and spin [7,10]. This new conception of
the nuclear structure requires the representation of protons and
neutrons as isoparticles. It is evident that important advances
in nuclear physics and new clean energies will be curtailed
until there are systematic studies on the isorepresentations of
the Lie-Santilli isosymmetry.

7.5. Elimination of the Divergencies of Quantum Mechanics

Some of the biggest insufficiencies of quantum mechanics
in particle physics are due to the singular character of Dirac’s
delta distribution at the origin, with ensuing divergencies of
perturbative series that requiring the achievement of
numerical results via the unreassuring subtraction of infinities.
Santilli [9,10] has shown that isotopies of Dirac’s delta
distribution into a function without singularities at the origin.
Additionally, in all known applications the absolute value of
the isotopic element (2) is very small, with the consequential
capability of turning divergent or slowly convergent quantum
series into rapidly convergent ones (see the infinite series of
isomonomials (8) for comparison). Due to the implications of
these features for all quantitative sciences, it appears
recommendable that they are confirmed and further developed
via the study of the isorepresentation of the Galileo-Santilli or
Lorentz-Santilli isosymmetries.

7.6. Electron Valence Bonds

According to the axioms of quantum mechanics and
chemistry, two valence electrons, rather than forming any
molecular bond, should repel each other due to the Coulomb
repulsion of their equal charges F =_kez /T \which becomes
extremely strong at the distances 107 M of valence bonds.
Santilli [11] has achieved a strongly attractive force between
two electrons in singlet valence coupling via the admission
that their wavepackets is in condition of total mutual
penetration, resulting in non-Hamiltonian interactions
represented with isotopic elements of type (2). In view of the
predictable advances for all of chemistry, it is important to
verify Santilli’s strong valence bond via the study of the
regular isorepresentations of the Lorentz-Santilli isosymmetry
characterizing the valence electrons.

7.7. Nuclear and Chemical Reactions

The preceding applications can be sufficiently treated via
regular isorepresentations since they deal with systems of
extended particles assumed as being isolated from the rest of
the universe. Santilli [9,10,11] has pointed out the
insufficiency of the regular isorepresentations for nuclear and
chemical reactions because they are irreversible over time, a
feature that can only be represented via structure functions
\81,1& '511;t C;z(_ptlicis time dependence of the type

yroee y% 77 Therefore, advances on much needed
new energies without harmful radiation and on clean burning
fuels will crucially depend on the availability of mathematical

studies on irreducible
isoalgebras.

Due to their relevance, the R. M. Santilli Foundation has
research funds for the writing of papers on the
isorepresentations of the Lie-Santilli isotheory and their

applications.
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