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APPENDIX 7.A: CONNECTION BETWEEN HADRONIC MECHANICS
AND OTHER GENERALIZED THEORIES

As indicated since the Preface of this volume, hadronic mechanics has a direct
connection with all generalizations of quantum mechanics attempted until now,
with no exception known to this author. This is due to the universality theorems
7.9.1 and 7.9.2 which imply the inclusion of generalizations of nonlinear, nonlocal,
discrete, algebraic, geometric, or any other type.

All existing generalized theories have been conceived and developed in a
way independent from hadronic mechanics. Such independence is here
confirmed as well as supported because of the polyhedric nature of mathematical
and physical inquiries indicated earlier.

At the same time, another aspect of scientific inquiries is the peed to study
inter-relationship among different theories, because of the evidemt scientific
gains reached in the comparison,

Along the latter lines, the primary contribution expected by the
reformulation of a given generalized theory in terms of hadronic mechanics is of
primary physical character, and deals with the identification of the axiomatic
form invariant under time evolution, the applicable physical laws, and the
applicable formalism for the data elaboration, 50 as to reach predictions with the
necessary consistency needed for experimental consideration.52

The axiomatic formulation, the applicable basic laws and the methods for
the data elaboration are studied in Vol. II, jointly with primary applications such
as to the origin of irreversibility, gauge theories, and the iike. In this appendix we
merely illustrate the connection between hadronic mechanics and a few
representative generalized theories.

7.A.1: Hadronic mechanics and q-deformations. Albert's paper [18) of
1948 studied the generalized product

axb=pab-(l-plba, (7.A.1

where ab can be assumed for simplicity to be associative and p is an element of
the Tield, as a realization of the noncommutative Jordan algebra.sss which were

52 The reader should always keep in mind the numerous papers existing in the literature
with noncanonical commutation rules, yet the elaboration of data via conventional
guantum mechanics, whose predictions have no credibility warranting a
consideration for experiments.

%% Those are algebras with product axb » bxa verifying Jordan's axiom (axb)x(axa) =
(ax(bx{axa)) [18].
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of particular interest in the mathematics of the time.

Besides being a realization of noncommutative Jordan algebras, the above
product is Lie-admissible, Jordan-admissible and admits the commmutative Jordan
algebras as a particular case for p =4, but it does not admit Lie algebras for any
(finite) value of p. For this reason, this author introduced [12] back in 1967 as part
of his graduate studies in physics at the University of Torino, Italy, and
apparently for the first time in both mathematical and physical literature, the
generalized product

{a,b) = pab-gba, (7.A.2)

where p and q are elements of the base field or functions, under the name of
(p.g)-mutations of associative algebras. As one can see, product (7.A.2) is Lie-
admissible, Jordan-admissible, admits both Lie algebras and commutative Jordan
algebras as particular cases for finite values of p and q, and constitutes a
realization of the noncommutative Jordan algebras (see ref. {12] for details).

The above initial studies were then expanded by the author [20] in 1978 into

.. the Lie—admissible time evolution (7.9.7), ie,

idA/dt = APH - HQA, (7.4.3)

where P and Q are now unrestricted integro-differential operators, and in the
fundamental Lie—admissible commutation rules {(7.9.10), i.e. ,

(rl7dd) (rl7pp)
(a4 7a") = ( , )= i <§7HV (7.A.4)
(piird) (py,py)

Subsequent studies along Albert’s notion of Lie-admissibility have been reported
in this chapter.

[ndependently from the above, various authors studied in the early 80's a
generalization of canonical commutation rules of the type

{r,p)=r1p-qpr, (7.A.5)

under the name g-deformation®®, and more recently referred in a highly
improper way as quantum groupsﬁ5 {see the recent ref.s [25] and literature

%4 In his original proposal of 1967 [12), this author had intentionally used a term other
than “deformation” (and suggested the term “mutation” because most of the so-called g-
deformations are not “deformations” as conventionally understood in mathematics.
Nevertheless, the terms "q-deformations” are now widely used, and they will be
kept in this volume to avoid confusion.
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contained therein). As one can see, product (7.A.5) is the particular case (0, g} of
the {p, g--mutations (7.A.2), but it is not a particular case of product (7.A.1). As
such, product (7.A.5) is also Lie-admissible, Jordan-admissible, admits Lie and
commutative Jordan algebras as particular case, and it is a realization of the
noncommutative Jordan algebras.

The studies in the field have recently multiplied and extended to various
parts of quantum mechanics, including the q—deformation of the Poincaré
algebra (see, e.g., ref.s [26]). %

The “q—deformations” are an ideal example to illustrate the relationship
between generalized theories and hadronic mechanics. In fact, their
mathematical consistency is impeccable, their independence from hadronic
mechanics is established, e.g., by comparing q-special functions and isospecial
functions (Ch. I.6), and their beauty is undeniable as shown by the number of
researchers attracted to the field.

However, the g-deformations are afflicted by a number of problematic
aspects of a physical nature which cannot be ignored. To identify them, let us
recall that the terms “q-deformations” are now refereed to a variety of
generalized theories ali generally defined at a fixed value of time, such as:

I) Deformation of the enveloping associative algebra Let £(L) be the
universal enveloping associative algebra of a Lie algebra L {(Sect.
1.4.3) with elements A, B, ... and conventional associative product AB
over a field Fla,+x). This first type is characterized by the following
generalization of the associative product ABS7

AB = A*B =qAB, (7.A.8)

where g is an element of the base field {or a function), without the
joint lifting of the basic field as adopted by isotopic theories (Ch.s

55 The use of the terms “quantum groups” is discouraged, and will not be adopted in
these volumes because excessively misleading. In fact, the terms were historically
referred, first, to a structure forming a conventional Lie group and, second, to the
realization of such group in quantum mechanics. The use of the same terms for the g~
deformation is therefore misleading on at least two counts, first, because the g~
deformations do not yield a group as conventionally understood, and, second, because
their structure is incompatible with the very notion of quanturmn of energy.

86 It should be noted that the first Lie-admissible, P-Q-operator deformation of the
Poincare symmetry was introduced by the author in ref. [11] via the notion of Lie-
admissible isobimodules or genomodules,

57 The reader should be aware that the form “qAB” of the product is correct only for g-
numbers or functions and not for q-operators, in which case the product must be
written “AqB”, as done throughout this volume. In fact, if AB is an associative
algebra, the product A%B = qAB with q a fixed operator violates the left scalar and
distributive laws and, as such, it does not constitute any algebra of any kind.
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1.1, and 1.2)

II) Deformation of the Lie product. Let L be a Lie algebra in quantum
mechanical realization on a Hilbert space 3C over a field Fa,+x) with
generators A, B, ..and fundamental commutation rules rp - pr =
i (h = 1). This second type of q-deformation is based on the
generalization of the canonical commutators

Tp-pr = rp -qpr=iflg.) (7.A.7)

which is evidently of type (7.4.5).

III) Deformation of the structure constants.iet L be an n-
dimensional Lie algebra with ordered basis X;, envelope E(L) and
commutation rules [X;, X;l = Cijk X over a field Fla,+x). This third
type of deformations is based on the preservation of the original
product X;X; of §(L} and of the original Lie product XjX; - X;Xjof L,
while deforming this time the structure constants

Xi Xj - X'Xi =C= Cijk Xk = Xi X] - Xj Xi = F‘ijk(q, “)Xk' {7.A.8)

]

where the quantities Fijk are similar to the “structure functions” of
the Lie-isotopic theory (this type includes deformations
characterized by the Hopf aigebras and numerous others)

plus additional deformations, such as those characterized by the combination of
deformed commutators (7.A.7) and conventional Heisenberg equations for the
time evolution,®® the deformation of creation—annihilation operators of the
above Types [, II, 11, etc. (see ref.s [25,26] or brevity).

Again, all the above g-deformations have an impeccable mathematical
consistency and un undeniable beauty. However, when considered for physical
applications they require the necessary use of the dynamical time evolution, in
which case a number of problematic aspects emerge as recently studied by Lopez
[27], such as:

1) General loss of the Hermiticity/observability of the Hamiltonian. As now
familiar from the studies presented in this volume, deformations of the Types I,
t, I1I above generally imply a nonunitary time evolution, as necessary from the
lack of canonicity of the commutation rules, and demonstrable, e.g., via
quantization of the corresponding, classical, noncanonical theories. In turn,
nonunitary time evolutions imply the lifting of the envelope into the isotopic

® This latter class evidently requires two different envelopes, a generalized one for
the characterization of the generalized commutation rules, and a conventional
one Tor the characterization of the conventional time evolution. Even though
mathematically correct, this class multiplies, rather than reduces the physical
problematic aspects discussed below.
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form for all Types I, II, {11,
EAB > . A%B' = ATB, A =UAU,B=UBU', (7.A9)
vul =1=1, T=(uulr!, 1="171, (7.A.9b)

Still in turn, this implies the loss of the Hermiticity/observability of the
Hamiltonian and of other physical quantities because g-deformations are defined
on a conventional Hilbert space ), while the preservation of Hermiticity under
lifting (7.A.4) demands the 6ioz'nt lifting of the base field F = Fp and of the Hilbert
space 3¢ = R (Sect. 1.6.3).5°

2) General loss of the measurement theory. Most g-deformations are
deformations of the basic associative product AB and/or of Planck’s constant h =,
and/or of the structure constants without a corresponding redefinition of the
unit as done in the isotopic theories. Therefore, g-deformations are theories
without a left and right unit which remains invariant under the time evolution.

This occurrence is transparent in lifting (7.A.6) which deforms the product AB
= A*B = qAB = ATB without jointly deforming the unit as done in the foundations
of hadronic mechanics

I = 1=T!=g71. (7.4.10)

The lack of basic unit can also be established for deformations of Types II and
{11, e.g,, under time evolution with ensuing nonunitary structure, and unification
of all envelopes into isotopic form (7.A.4). The loss of the unit then implies the
evident loss of the measurement theory, owing to the necessary condition of the
existence of a well defined, left and right unit for the very concept of
measurement.’?

89 1t should be indicated for clarity that, when nonunitary time evolutions are admitted
also for the Hilbert space, Hermiticity can be preserved. In fact, in this case the
conventional inner product is lifted into the form

<¢le>= [aZroler) = [&dre Ty, o=Vo.¢r=Uy, T = (VU

which is precisely of the isotopic type. However, the correct preservation of
Hermiticity requires the joint lifting of the base field into the isofield with isounit

1="T7L, in which case the correct form of the isoinner product is given by

<ofo>=1/doT Ty,

(and coincides with the original product for T independent of the integration
variables), thus imnplying the entire structure of hadronic mechanics,
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3) General lack of uniqueness of Gaussian distributions and related physical
laws. One of the strengths of quanturn mechanics is the unigueness of its
various formulations {such as the Gaussian) which evidently implies the known
uniqueness of its physical predictions (such as the uniqueness of Heisenberg's
uncertainties, see Sect. 1.6.1). This uniqueness can be mathematically traced to the
uniqueness of the basic unit of the theory, Planck's constant, as well as to the
existence of a right and left unit of the universal enveloping operator algebra E(L).
The general lack of the basic unit then implies that g-deformations do not
possess a consistent formulation of the Poincaré-Birkhoff-Witt theorem which
is applicable at all times. In fact, a necessary condition for the very formulation
of the theorem is the existence and uniqueness of a left and right unit.

This means the lack of existence of a unique, infinite-dimensional basis for
the envelopes of g-deformations and, therefore, the lack of existence of a
unique form of exponentiation. In fact, g-deformations are known for their
variety of "exponentiations” .

The above occurrences add to the mathematical beauty of the theory, but
have rather serious physical consequences, such as the lack of uniqueness of a
Gaussian distribution with consequential lack of uniqueness of the generalized
uncertainties. A similar situation occurs for other physical laws.

It should be stressed that the above occurrences are not referred to different
physical laws for different g-deformations, which would be physically
acceptable, but to different physical laws which can be introduced in each g-
deformation.

4) General loss of special functions under time evolution. As recalled earlier,
g-deformations are formulated at a fixed value of time, and so are their special
functions (Ch. 1.6). But under time evolution the q-number is replaced by the
isotopic operator T. The inapplicability of the g-special functions under time
evolution is then consequential.

From a mathematical viewpoint, this occurrence may be irrelevant. The
physical implications are however rather serious, such as the impossibility of
performing a partial wave-analysis and the like.

5) General loss of Einstein’s axioms. As well known (but not fully identified
in the literature), all g-deformations imply a structural departure from a/ basic
axioms of the special {and general) relativity, as established by the noncanonicity
of the commutation rules, or the nonunitary character of the time evolution, or
the deformation of the structure constants of the Poincare symmetry, etc.

Again, this occurrence can be mathematically intriguing, but it carrier rather

70 We are here intentionali‘,'r silent, as a test of technical knowledge of isotopic techniques
studied earlier, on the need for an axiomatic, form=invariant theory to unify the unit of
the base field with that of the envelope.
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serious physical problems in the compliance with physical reality which must be
addressed prior to any physical application.

Hadronic mechanics offers realistic possibilities of resolving all the above
probiematic aspects while leaving the results of g—deformations fundamentally
unaffected, and this illustrates the relationship between hadronic mechanics and
generalized theories.

In fact, hadronic mechanics does not require any change of the assumed
structural lines of q-deformations (such as the explicit form of g, f{g,..) or Fijk(q.
..} but only their reformulation in the axiomatically correct form which is
invariant under the time evolution of the theory.

The hadronic reformulation of q-deformations is so simple as to appear
trivial. For Type 1 it merely requires the joint lifting of the associative product
and of the basic unit

AB = AsB = AqB, I = 1=q, (7.A.11)

. with consequential reformulation of the theory with respect to isofield, isospaces,
isotransformations, etc.

The reformulation for Type Il was first studied by Jannussis and his
collaborators [28] on conventional fields. That on genofields requires the selection
of one "time arrow” and then the interpretation of the function f(g,..) in rules
(7.A.6) as the genounits for that direction. Jointly, the g-deformation of the
second term in the Lh.s. is not axiomatic and must be lifted into the inverse of
the selected genounit, resulting in the reformulation

r<p - p>£= tRp - pSr =17,

17 =1lg,.)/q, S=q/flg .) R=1g,..)
rp -q pr = iflg.) = or
r<p-p>fg=rRp-pSr=<

91 =flg.)/q S=flg.) R=q/flg,.)

. (7.A.12)
The entire theory must then be reformulated on genofields, genospaces,
genotransformations, etc. of the selected direction of time.

The hadronic reformulation of g-deformations of Type IIl is more complex
owing to their general character. The procedures has however been studied in
detail in this volume and it is applicable to each case considered. The end-result
is that, to achieve an axiomatic formulation for given deformed structure
constants Fijk(q, ..}, one must identify an isotopic element T{(g, ...} such that the
original Lie-deformation is turned into a Lie-isotopic algebra with Fjjk as
structure functions
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The axiomatic reformulation of other q~deformations can be done with one or
the other methods studied in this volume.

The researcher in g~deformations is urged 1o prove the form-invariance of
the above isotopic reformulations under the time evolution of the theory.
Equivalently, to understand the relationship between g-deformations and
hadronic mechanics, one should study the image of all commutators under
nonunitary time evolutions, e.g.,

rp-gqpr =iflg.}  rRp - plgRr=1i1, {7.A.14a)
1 = flg,.JUuUl, R= 1L (7.A.14b)

As a result, starting from the (0,g)-number deformation (7.A.6) at a Tixed value
of timer, one reaches at arbitrary times the general (P,Ql-deformations, that is,
the Lie~admissible equations at the foundations of hadronic mechanics. This
shows the inevitability of the hadronic reformulation even when not desired.

It is equally instructive for the researcher in q-deformation to see that the
above isotopic reformulations resolve aif the problematic aspects indicated
earlier. To begin, hadronic mechanics has been built from the beginning (Sect.
L.1.1) under the condition of possessing a generalized, but well defined left and
right unit 1. As now familiar, this implies a corresponding compatible isotopy of
the base fields and Hilbert space, thus ensuring the Hermiticity/observability of
the Hamiltonian and other operators at all times (Sect. .6.3).

The basic assumptions of hadronic mechanics are centered in fundamental
condition .44.1 that the enveloping algebra (of both the Lie-isotopic and Lie-
admissible branches) must have a well defined left and right unit. This implies
the existence of a generalized Poincare-Birkhoff-Witt theorem (Sect. 1.4.3). The
applicability of the measurement theory is proved in Vol. It by showing that the
correct isoexpectation values of the isounit 1 turns out to be the conventional
Planck value,

<1> = h = L (7.A.15)

As a result, the measurement theory of hadronic mechanics is the conventional
one, as necessary for physical consistency and applicability to actual experiments,
evidently because measures are conducted in our classical frame and, as such,
cannot be modified by theoretical deformations introduced in the microworld.
The Lie-isotopic theory is aiso based on the existence of a unique infinite-
dimensional basis which jmplies the uniqueness of the exponentiation in hadronic
mechanics with consequential uniqueness of the physical laws defined on them.
The applicability of the isospecial functions at all times is evident from the
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studies of Ch. 1.6, because they are constructed for an arbitrary
integrodifferential operator T admitting of T~} as the correct unit, rather than
with respect to a g—number without a unit.

Finally, the most important objective of all the isotopic techniques is the
preservation of Einstein’s axioms under T-integral-operator-deformations and
only their realizations in a nonlinear-nonlocal-noncanonical form as needed for
interior problems. The important point stressed throughout our analysis is that
both the exterior and interior problems are characterized by a unique set of
algebraic—geometric—dynamical axioms.

This is stressed by the local isomorphism between Minkowski and
isorninkowski spaces, or the Poincaré and isopoincaré symmetries

MxnR) =~ NgixdR), P31} ~ Pyal), (7.A.16)

which shouid be compared the corresponding lack of isomorphisms for
conventional q-deformations

MxnR0 #= Mq(x,n,R(, P3.1) Pq(3.l). (7.A.17)

As a final note we shouid indicate that, even after reaching a fully axiomatic
formulation of the Lie-admissible type (7.A.12), there is one additional
problematic aspect requiring consideration. It deals with the relationship between
the R- and S-operators which should be be restricted to verify the conjugation

R =§, ' (5.A.18)

in which case one has a direct applicability to all possible nonconservative
systems. Physical applications for R # R, even though evidently possabie, are
unknown at this writing, to our best knowledge.

Perhaps the best way to see the relationship between q-deformations and
hadronic mechanics is to inspect Vol. Il on the applications to specific physical
problems and Vol. [l on the experimental verification. It is at that stage where
the researchers in gq-deformation can see the inevitability of an axiomatic
reformuiation in order to reach a form acceptable for experimental verifications.

7.A.2: Hadronic mechanics and nonlinear theories. As well known,
nonlinear generalizations of Schrodinger’s equations, here referred to those
nonlinear in the wavefunctions (only), have been proposed since the early stages
of quanturt mechanics, such as the nonlinear equation proposed by E. Fermi [29]
back in 1927

3 1
f—dy =[- — A + Vi) + VTl (7.A.19)
at 2m
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Since that time, the generalizations have been studied by a considerable
number of authors and constitute today a new segment of theoretical physics.
These studies are evidently valuable because they focus the attention on one of
the expected limitations of quantum mechanics for interior dynamical problems
{Sect. 1.1.2), which is precisely the linearity in the wavefunctions.

The issue addressed by hadronic mechanics in Vol. [l is the identification of
methods appropriate for the elaboration of nonlinear equations that is, methods
verifying all the necessary principles, including the superposition principle and
the conventional measurement theory.

More recently, a method for the study of the above type of nonlinear
equations was proposed by S. Weinberg [30] in 1989 which is essentially
characterized by an enveloping algebra U with product

A oA OB
U: AXB = — — , (7.A.20)
oy oy
"Heisenberg-type” equation for a physical quantity Q
idQ/dt = QXH - H%A, (7.A.21)
and “schrodinger’s type” equation
) l oH
j—y = —— Ay ¥ — (7.A.22)
ot 2m

where H is certain functional of s, and ¢y, alt equations being defined over a
conventional Hilbert space 3¢ on a conventional field Fa,+x).

Weinberg's nonlinear theory provides another illustration of the relationship
between hadronic mechanics and generalized theories, this time, from a
viewpoint different than that of the g—deformations.

In fact, the elegance of the theory and its independence from other methods
are evident. Yet the theory is afflicted by a number of problematic aspects which
are, again, of physical nature, as studied in detail by Jannussis, Mignani and
Santilli [31].

The most dominant characteristic of Weinberg’s nonlinear theory is that its
envelope U is a general, nonassociative, Lie-admissible algebra (App. 1.4.A and
Sect. 1.7.3). In fact, product (7.A.20) is nonassociative because

U AX(BX)C) # (AXB)XC; (7.A.23)

it is Lie-admissible because the attached antisymmetric product is Lie
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Q%H - HXQ =Lie, {7.4.24)

and it {s a general Lie-admissible algebra in the sense that it is characterized by
the general law (7.3.1) without verifying simpler versions of the same, such as
that of flexibility.

The immediate consequence is that Weinbergs noniinear theory does not
admit a unit {unless reduced to the trivial case of only one dimension). As a
result, the theory suffers of a number of probiematic aspects somewhat similar
to those of q-deformations, such as [31}

1} 1ack of existence of the measurement theory evidently because of the lack
of existence of the unit

2) lack of weli defined Casimir invariants, evidently because of the lack of
the center of the envelope;

3) lack o the Poincaré-Birkhoff-Witt theorem for the basis of U’

4) lack of a consistent exponentiation, because of the lack of the needed
infinite-dimensional basis;

5) lack of a consistent formulation of space-time symmetries in their finite
(exponentiated) form uniquely derivable fro their Lie algebra;

6) lack of the general equivalence between the “Heisenberg-type” and the
"Schrédinger-type” equations; 3

1 As recalled in Sect. 1.43, the largest nonassociative envelope admitting ordered
monomials and a formulation of the Poincare-Birkhoff-Witt theorem is given by the
flexible Lie-admissible algebras while extreme technical problems exist in the
formulation of the theorem for general Lie-admissible algebras.

72 Note that, by comparison, exponentiations do exist for g-deformations, although they
are not unique.

73 This is a typical area of study of Vol. Il. We here mention the origin of the
problematic aspect which is due, on one side, to the nonassociative character of the
envelope of the "Heisenberg-type” equations (i€, the nonassociativity of the
product AXB,), and the associative character of the modular structure of of the
“Schrodinger-type” equations (i.e,, the associativity of the action Ay, under

which no equivalence is evidently possible. At the same time, a nonassociative
reformulation of the modular action of the “Schrédinger’s type” equation such as
HX{y, to achieve structural equivalence with the envelope of the the "Heisenberg-

type” equation is confronted with large technical problems, because it would
require a nonassociative generalization of Schrodinger’s theory, ie., one for which

AX(BXyy) * (AXB)I%y;.

In summary, the mathematical structures of the Heisenberg-type and
Schrodinger-type equations are inequivalent in Weinberg's nonlinear theory, and
the attempts at rendering them structurally equivalent are confronted with
considerable technical problems which, at any rate, would leave the other
problematic aspects completely unaffected. The above occurrence is rather
synthetically expressed by the so—-called Okubos No-Quantization Theorem [32]
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7) lack of a well defined notion of particles because of the lack of well
defined physical characteristics, such as spin, which evidently require a well
defined Lie algebra, with an envelope possessing a well defined center, with a
unique exponentiation to a well defined group, etc.

Again, the above occurrences do not prevent the theory from being
mathematically definabie. In fact, the occurrences have been called “intrinsic
features” of the theory. The point is that they simply cannct be ignored for
physical applications, '

As it was the case for the q-deformations, hadronic mechanics permit an
axiomatic reformulation of Weinberg's nonlinear theory which, while leaving the
physical content completely unchanged, avoids problematic aspects 1}-7) above.

To understand the occurrence one must distinguish between the nontinear
“equations”represented by the theory, and Weinberg’s nonlinear “theory” per se.
Then, all possible Weinberg’s nonlinear “equations” are an evident particular case
of the isoschrodinger’s equation of hadronic mechanics owing to its direct
universality (Theorem 7.9.1)

3
i—dy = Hit,r, p) T(t, 1, p, o &, &, 0, B, .....) Uy . (7.A.25)
at

As a matter of fact, while Weinberg’s “theory” admits only one particular
class of "equations” nonlinear in the wavefunctions, isoschrédinger’s equations are
much broader because they admit: 1) ali possible nonlinear equations in the
wavefunctions; 2) all possible equations nonlinear in the derivative of the
wavefunctions; as well as 3) all possible equations which are noniocal in the
wavefunctions and their derivatives of arbitrary order.

The resolution of the problematic aspects in the treatment of the same
“equations” then follows from their isotopic representation (7.A.25).

As an incidentai note, one should be aware of the differences in the intended
physical applicability of Weinberg’s nonlinear theory and hadronic mechanics. In
fact, the former has been formulated for what we essentially refer to as the
exterior dynamical problem in vacuum; while the latter has been formulated for
the interjor dynamical problem within physical media.

This point is important to stress that the limitations emerged from
experiments on Weinberg's theory (33] (essentially dealing with atomic structures),
have no bearing of any nature for hadronic mechanics, evidently because they
are not applicable, say, to a proton in the core of a collapsing star. In fact, a
primary nonlinearity of interior conditions is expected to be in the derivative of
the wavefunctions which is absent in Weinberg's theory.

The different origins of the problematic aspects in q—deformations and in
Weinberg's theory should be identified because instructive. All g-deformations
possess a fully associative algebra, with consequential full capability to identify

studied in Vol. I1.
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its correct left and right unit. By comparison, Weinberg’s nonlinear theory is
based on a nonassociative envelope with consequential :mpossrb;hty to define
the right and left unit.

Additional critical inspection of Weinberg’s nonlinear theory can be found in
ref.s [34]. An intriguing reformulation of Weinberg’s theory which avoid some of
the problematic aspects of the original formulation has been proposed by Jordan
[35]. The identification of the algebraic origin of these resolutions is useful to cast
additional light on the issues here considered.

Jordan [loc. cit.] introduces the following generalization of envelope (7.A.20)

0A oB
u*: A*B = — Wi —— (7A26)
awk anj

The commutator (A, Bl ., = A*B - B*A is Lie and, therefore U* remains a general
nonassociative Lie-admissible algebra as in Weinberg's case.

Jordan’s reformulation does however allow the treatment of spin and other
conventional quantum mechanical quantities. This is due to the fact that the
space of functions A, B,... is restricted to those with the structure

A= ij akj ., B = ij bjk' (7)\27}

where the terms in the r.h.s. are interpreted as matrix elements. The commutator
(A, B]U‘ computed in the nonassociative envelope U* is then turned into an
equivalent cornmutator turned into an associative envelope,

[A’B]U‘ = akj Wik bj] - bkj Wik aj| = [A,Bl., {7.A.28)

the correct formulation of the Poincaré-Birkhoff~Witt theorem, space-time
symmetries, exponentiation, Gaussian distribution, etc. is then consequential.

In fact, structure (7.A.28) is a realization of the Lie-isotopic product with an
isoassociative envelope and isotopic element T = (wl ) precisely of the type at the
foundation of hadronic mechanics. More specifi lca]l] , Jordan's transformation of
Weinberg’s nonassociative envelope into an equivaient isoassociative form is
precisely a realization of Lemma 1.4.A.1.

Jordan’s reforrnulation itself is not immune of problematic aspects which are
this time similar to those of the q-deformations (lack of joint isotopy of fields
and Hilbert spaces, etc.).

The important information originating from these occurrences is that
{Fundamental Condition 1.4.4.1), according to current knowledge, physically
meaningful theories should be formulated with respect to an associative
envelope with a well defined left and right unit, as it is the case for quantum
mechanics and its hadronic covering.

There is little doubt that a next generation of theories will likely be based on
nonassociative envelopes, precisely along Weinberg’'s lines [30]. The researchers
interested in these latter lines should however be aware of the rather serious
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technical problems involved, both mathematical {e.g., the Poincaré—Birkhoff-
Witt theorem) and physical (e.g., the equivalence of Heisenberg-type and
Schrodinger-type equations for nonassociative moduli).

7.A.3: Hadronic mechanics and nonlocal theories. Deformations of
quantum mechanics (Sect. 7.A.2) focus the attention on the relevance of
noncanonical theories, while Weinberg's theory of the preceding section focuses
the attention on the relevance of nonlinear theories. The next logical step along
the lines of these volumes is to focus the attention on nonfocal theories.

We assume the reader is familiar with the variety of notions of nonlocality
existing in the literature. Those particularly relevant for these volumes are the
studies initiated by Russian physicists, such as Blochintsev {36] which have
subsequently seen the most comprehensive development by Efimov and his
associates (see monographs [37] and quoted literature).

Most significant for these volumes is the original motivation which
stimulated the studies of nonlocal theories: remove the divergencies which are
inherent in the local in the local character of quantum field theories.

Note that studies [36,37] deal with nonlocal formulations of quantum field
- theory while the studies of these volumes deal with nonlocal formulations of
quantum mechanics. Despite that, the rather intriguing connections and
possibilities for further advances are already identifiable.

Hadronic mechanics can be conceived as a generalization of quantum
mechanics which can remove the singularity of Dirac’s delta function ab initio
precisely via a nonlocal formulation (Sect. [.6.6.4).

The Tield theoretical extension of the isodirac delta function has been
preliminarily studied by Nishioka [38] and, as we shall see in Vol. 11, it does indeed
contains the necessary elements for the possible, future construction of a
nonlocal-isotopic field theory which is also free of singularities ab initio.

Again, all results achieved in ref.s [36,27] remain unchanged in their possible
isctopic reformulation, which essentially provides mere alternative methods for
their treatment.

One point appears to be certain: the conventional local-differential field
theories have reached and surpassed the limits of their applicability. Irrespective
of which theory will eventually result to be more viable, the need for nonlocal-
integral theories is simply beyond credible doubts. We are not referring to ideal
point-like particles moving in vacuum (exterior problem) in which the exact
validity of local field theories is incontrovertible, but to extended wavepackets
moving within those of other particles (interior problem).

At any rate, there exist physical systems simply beyond the descriptive
capacities of local field theories, such as the attractive interaction of the same
electrons of the Cooper pair in superconductivity, which can be quantitatively
interpreted via a suitable nonlocal representation of the overlapping of the
wavepackets of the electrons (Vol. I11). Similar needs for nonlocat theories exist in
nuclear, particle and statistical physics, theoretical biophysics and other
disciplines.
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7.A.4: Hadronic mechanics and and discrete theories. Another field of
research that is currently gaining momentum is at times known under the name
of discrete theories. This area too is quite vast, by encompassing the use of
discrete groups, lattices, discrete calculus, etc. We here focus the attention on
only one aspect, the discrete-time theories which is sufficient to illustrate ail
other discrete theories,

Discrete time theories can be traced back to Caldirola’s studies (39] of 1956.
More recent studies have been conducted by Woif [40] and others {see Vol. I1).

These studies focus the attention on the possibility that time has a discrete

“structure at a sufficiently small scale, a possibility clearly deserving the proper
attention in the mathematical, theoretical and experimental communities.

It was shown by Jannussis and his collaborators {41] that Caldirola’s equations
do have a structure precisely of the Lie-admissible type

plt) - plt—T)

ih——————= HRoplt) - plt) SH, (7.A.29)
T

where T, called Caldirola’s chronon, is a measure the duration the interaction
among particles. The full applicability of hadronic mechanics along universality
Theorem 1.7.9.2 is then completed by noting that the difference in the Lh.s. is a
realization of the isoderivative with discrete isounits {Sect. 1.6.7).

Thus, discrete time theories constitute an intriguing particular case of
hadronic mechanics of Class V. Note that this interpretation permits an intriguing
connection with q~deformations which does not appear to have been sufficiently
- identified in the literature.

By recalling that the basic axioms of quantum mechanics are preserved
under isotopies, and only realizes in a more general way, the above hadronic
reformulation is intriguing indeed because it shows that discrete—time theories
are admitted by the abstract axioms of quantum mechanics itselr,

The above unexpected property will be proved in Vol. Il via the the
isoexpectation value of the isounit <1 > = 1, which applies also for discrete
isounits 1. To put it differently, a discrete structure of time emerges as admitted
by the quantum mechanical axioms, evidently in a more general realization, when
dealing with the microcosm. Nevertheless, when the theory is reduced to
numbers suitable for macroscopic experiments via the isoexpectation values,
such discreteness disappears. In fact, the future resolution of the possible discrete
structure of time requires experiments specifically conceived for that purpose,
whose study has been initiated by Wolf [40].

The current formulation of the discrete-time theories is also afflicted by
problematic aspects of physical character due to the fact that, on one side, they
generalize the structure of quantum mechanics while, on the other side, they
preserve conventional quantum mechanical formulations (conventional
expectation values, conventional physical laws and principles, etc.) in the
elaboration of the theories.
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In effect, the transition from the continuous time of quantum mechanics to
a time with a discrete structure implies a necessary generalization of the
underlying unit of time, from the trivial unit 1 to a generalized unit of
Kadeisvili’s discrete Class V. In turn, this demands, for evident need of
consistency, a step—-by-step generalization of the entire quantum mechanics,
including expectation values, physical laws and data elaboration needed for
experiments.

7.A.5: Hadronic mechanics and other approaches. By no mean the
preceding examples exhaust all possible connections between hadronic mechanics
and ongoing research.

Among a number of additional aspects we shall study in Vol. II, it may be
recommendable to indicate the following ones. Kadyshevsky and his associates
{42] have constructed a generalized quantum field theory with a fundamental
length at small distances which exhibits numerous intriguing connections to q-
deformations, nonlocal field theories, etc. The re-inspection of the above theory
with isotopic methods is significant because it can indicate that a fundamental
length can be reconciled with the very axioms of quantum mechanics, evidently
when realized in a sufficiently general way.

Another intriguing topic is the Lie—admissible re—interpretation of
conventional external electromagnetic interactions, such as the studies by
Studenikin, and others [43]. Even though these studies deal with purely quantum
mechanical settings, their Lie-admissible reinterpretation may be intriguing and
instructive for various reasons. After all, interactions with external fields imply
the nonconservation of the energy or of some other physical quantity of the
particle considered, thus implying the direct applicability of the Lie—admissible
formulations.

Note that the reinterpretation identifies another hitherto unknown
application of the g-deformations (the treatment of open systems due to external
electromagnetic and other fields), when also treated with Lie-admissible
techniques.

The implications of the reinterpretation are nontrivial. Recall that the
electromagnetic interactions verify the Poincare symmetry. Their
reinterpretation as open systems and treatment via the Lie-admissible theory
then permits the construction of the equivalent Poincaré-admissible symmetry
(Sect. 1.7.6). Once such genosymmetry has been established in the known grounds
of electromagnetic interactions, its extension to more complex systems is then
expected, such as to the characterization of a neutron in the core of a neutron
star.

The Bogoliubov method of group variables [44] is yet another field, as
studied, e.g., by Khrustalev and his associates [45}, which is particularly intriguing
for hadronic mechanics. As well known, the method essentially consists of using
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collective group variables which greatly simplify complicated models in field
theory and gravitation. But the method also has a nonlocal structure, and exhibits
a clear connection with the Lie-isotopic branch of hadronic mechanics.

While the independent studies of Bogoliubov methods are evidently
encouraged, their reinterpretation in terms of hadronic mechanics is also
recommendable because of the predictable additional knowledge one can gain in
the process for both approaches.

New bound states of hadrons are recently emerging such as the so—called di—
baryons (see ref.s [46] and quoted literature). Such systems have a particular’
importance for hadronic mechanics because one of its primary objective is the
study of the apparent cold fusion of massive particles into heavier particles (see
ref.s [47} and Yol. 111).

The entire field of hidden variables{(see, e.g., ref. [48) has a direct connection
with hadronic mechanics. In fact, the isoeigenvaiue equations

Hxg = HT{ = Ep*¢ =Epy {7.4.30)

is an explicit and concrete realization of the theory of hidden variables, which are
actually turned into "hidden operators”. This occurrence has rather deep
implications studied in Vol. [I, which lead to the reinterpretation of hadronic
mechanics as a completion of quantum mechanics along the celebrated
Einstein-Podolsky-Rosen argument [49].

Additional related studies of particular interest for hadronic mechanics are
the novel studies on hidden symmetries initiated by Smorcdinsky and Winternitz
[50] and continued by Sissakian, Pogosyan and their associates {51). These studies
too are particularly significant for hadronic mechanics because they permit the
identification of generalized bound states deeply linked to the hadronic bound
states. In fact, the isosymmetries of hadronic mechanics are hidden symmetries.

Yet another topic of particular relevance is the variational method to regain
convergence in perturbative treatments by Sissakian and his collaborators [52). In
fact, as indicated in Sect. 1.6.2, one of the ofxjectives of the isotopies of Hilbert
spaces is precisely that of turning conventionally divergent series into
isotopically convergent ones under the mere selection of isotopic elements such
that | T | < 1. The above variational method can therefore be particularly useful
for the isotopic achievement of convergent series.

The interested reader can find along similar lines the connection between
hadronic mechanics and other topics, such as Berry’s phase, squeezed states, and
others.
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