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PREFACE

OF VOLUMES | AND Ii

Physics is a science that will never admit Zza/ theories . No matter
how autoritative, the generalization of fundamental physical theories
is only a matter of time.

Physics is also a guanrtitative science, that is, requiring mathema-
tically rigorous, quantitative formulations of predictions suitable for
direct experimental verifications.

Finally, physics is a science with an absolute standard of values:
the experimenta! verification. No matter how plausible a new theory
is, it remains conjectural until verified in laboratories. By the same
token, no matter how fundamental and authoritative an existing theory
is, its validity remains conjectural for all physical conditions under
which it has not been directly tested.

Along these lines, the sooner the scientific process is initiated with
the submission of possible generalizations of existing theories ang
their critical examination by independent researchers, the better for
the advancement of physical knowledge.

The author has spent his research life in studying possible classi-
cal and operator generalizations of Gallers relativity, Einsteins
special relatvity and Linsten’s general relativity lor Einsteins
gravitation , for short). The studies were conducted along the
following main lines:

1) Identitation of the ‘phpsical conditions of aﬂeqw'voc:e/ vabidiey™
of conventional relativities;
2) Identification of broader physical conditions under which
possible generalized relativities may be physically relevant;
3) Identification of the generalized mathematical tools needed for



a quantitative representation of the broader physical conditions
considered:

4) Construction of the generalized relativities, including the
identification of their mutual compatibility, implications and
quantitative predictions; and, last but not least,

5) Formulation of specific experimental proposals for the
verification or disproof of the new reiativities.

In particular, this author has studied the above problem, in an
evident preliminary way: a) for each of the Galilean, special and
general profiles; b) for both classical and operator formulations; and c
in regard to the intrinsic compatibility of the emerging generalizations
of Galilei’s, the special and the general relativities, first, independently
at the classical and operator ievel and, then, for the identification of a
map from the classical into the operator formulations.

After an introductory chapter, Yolume I is devoted to the review of
the novel mathematical structures needed for a quantitative treatment
of the broader physical conditions considered.

Volume 1] is devoted to: the construction of the classical
generalized relativities; the study of their mutual compatibility; the
identification of their most important implications; and the proposal of
experiments for their verification or disproof.

The scope of these monographs is to identify the status of the
studies in the field at this writing (Fall 199]), so that the interested
researcher can appraise the new relativities, and participate in their
mathematical-theoretical development or experimental verification.

The understanding of these volumes requires a mind open to the
possibility that Galilei’s relativity, Einstein’s special relativity and
Einstein’s gravitation are not final theories, but only beautiful
foundations for expected more general relativities for more complex
physical conditions in the Universe.

Ruggero Maria Santilli
Box 1577, Palm Harbor, FL 34682 USA
Fali 1991



CHAPTER Ili:
ISOTOPIC GENERALIZATIONS OF
GALILEI'S RELATIVITY

lil.1: STATEMENT OF THE PROBLEM

Galilei's relativity in its contemporary presentation (see, e.g., Levy-
Leblond {1971), or Sudarshan and Mukunda (1974)) is a body of
methodological formulations which, despite their technical advances,
preserves in a remarkable way the original conception by Galilei
(1638), Newton (1687) and other Founding Fathers of representing:

Al particles which can be effectively approximated 25 being
poinr-{ike,

(B} while moving in the inhomaogeneous and &nisolropic vacuun (eaptv
SPACE), under Aclion-al-A-distAnce potentiz/ Interactions;

O under the (comtemporary/ conditions that:
3



=1} All possible speeds v are much smaller than tie speed of
light in vacuum cp;

-2} Al quantum mechanical effects are ignorable (the action
A Is much bigger than the guantum of energy & ; and

-3} AN gravitational effects are absent, In the sense that &l
spaces gre assumed o be 178t

In this chapter we shall study an infinite family of generalizations
of Galilei's relativity, under the name of Gallei-isotopic refativities
or /rsogalilear refstivities for short, for the form-invariant
description of:

A} extended and derormable particles which camnnot be
effectively approximated as being potnt-like;

Bl white moving within & generally Ihomogencous 2nd
anisotropic plysical medium, under conventional poteniial
nteractions, as well as the contact, nonlincar, nonlocal and
nonbamiitonian fnteractions with the mediun itselt:

O} under the additional conditions, as I the conventiongl case,
Lhat:
£-1) Al speeds v are much smaller than the speed of At C, ;

-2 Al gquamtum mechanical effects are jgnorable; and
-3 Al spaces are fiat.

The Galilei-isotopic relativities were originally submitted in Santilli
{1978a), and then formally presented in Chapter & of the monograph
santilli (1982a). Specific studies on the isotopic generalization of the
rotational symmetry were done in Santilli (1985b), and illustrative
examples were presented in Jannussis, Mijatovic and Veljanoski {1991).

All these studies admitted nonlinear and nonhamiltonian internal
forces, but of local-differential character. The extension of the
research to include nonlocal-integral interactions were conducted in
Santilli (1988a), which is the main reference of this Chapter. The
operator formulation of the isogalilean relativities was submitted in
Santilli {1989a), In this chapter we can evidently present only a
summary of the classical profile of this research. The study of the
original literature is therefore recommended for a full technical
knowledge of the novel relativities.

The objective of this chapter is evidently multifold and consists in
the identification, first, of the symmetries of interior systems (IL.1.1} of

4



N particles with nonnull masses m,, a = 1, 2, .., N, with nonlinear,
nonlocal, nonhamiitonian and nonnewtonian! interactions, ie.,
. e T
@ ={ J= "tas.)

Pia
Pia/my
SA 4 pNSA : J‘ NSA .
F ia(r) ot p ) + S0 F ig B2 Po Po)

i=123Fxyz, a=12.,N | =12.6N

{1.1)

when studied as a whole and considered as isolated from the rest of
the universe, namely, under the condition of validity of the
conventiohal, total, Galilean conservation laws.

As we shall see, the Lie-isotopic theory outlined in the preceding
chapter will allow us to: 1} construct an infinite family of isotopes G(3.1)
of the conventional Galilei symmetry G(3.1) capable of providing the
form invariance of systems (1.1); 2) represent the internal nonlinear,
nonlocal, nonhamiltonian and nonnewtonian interactions via their
embedding in the jsunit of the theory; while 3} guaranteeing the
validity of the total conventional Galilean conservation laws because,
by construction, the isosymmetry G(3.1} preserves the generators and
parameters of G(3.1).

In these introductory words we would like to present a few
comments to minimize possible misrepresentations due to extended use
of concepts which, while fully consistent within the exterior dynamical
problem, are intrinsically inconsistent when applied to the different
physical arena of the interior problem.

Let us recall that the most dominant mazkemstica/ notion at the
foundations of the isotopies of Galilei'’s relativity is the generalization
of the trivial unit 1 of the symmetry G(3.1) into the infinitely possible
isounits ift, r, P B ..) of the isosymnmetries. All various mathematical
tools of the theory, such as fields, spaces, algebras, etc., are then
generalized accordingly.

The most dominant p#psica/ notion is that of an extended, and
therefore deformable particle moving within an inhomogeneous and
anisotropic physical medium which is represented precisely by the
isounits 1, as we shall see,

The rirst aspect the reader should therefore keep in mind is that if,
for any reason, the particles considered are point-like, all isotopic

! we assume the reader is familiar with the analysis of Chapter I.
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formulations recover the conventional ones identically via the
reduction 1. = 1. In fact, points can only experience local-differential,
potential, action-at-a-distance interactions without collisions.

The second aspect needed to minimize misconceptions is that
space itself remains perfectly homogeheous aid Isolropic under our
isotopies. Ouvr objective s merely that of representing Lhe
Inhomogenuity (eg., local changes of density) and amisotropy reg.,
preferred direction due to Inirinsic Kngular moments) of plysical
media, a5 established by clear experimental evidence In particular,
such an inhomogenuity and anisotropy is inherent in any nontrivial
isotopy of the unit, 1 = 1. As a result, the reduction 1 = I implies the
recovering of the exact homogenuity and isotropy of empty space.

- A further notion which is foreign to contemporary theories, but
fundamental under isotopies, is the deformability of extended
partic/es. In fact, all conventional space-time symmetries are
symmetries of rigid bodies, as well known. But rigid bodies do not exist
in the physical reality. Thus, the moment the actual extended shape of
an object is admitted, it is necessary for physical consistency to be
able to represent also all its possible deformations.

This is the physical origin of the infinite number of isotopies of
each given conventional space-time symmetry. In fact, the Lie-
isotopic theory permits the representation. of the actual shape of the
particle considered, say, an oblate spheroidal ellispoid, as we shall see,
via an isounit of type 1 = diag. (bl‘z, b2‘2, b3'2), by > 0. Additional
isotopies T = 1" = 1”, etc., then permit the representation of all infinitely
possible deformations of the original shape caused by sufficiently
intense external forces and/or collisions, all this at the purely
classical and nonrelativistic level of this chapter, as we shall see.

By comparison, conventional Lie theories can represent the shape
only after the rather laborious second quantization; they cannot
represent the actual shape itself, but only the remnants of such a
shape via the form factors; and positively no deformation of shape is
admitted, because this would imply the breaking of a pillar of
contemporary theories, the symmetry under rotations.

A further origin of misconception is related to inertial versus
noninertial systems. As well known, the contemporary Galilei’s and
Einstein’s special relativities are intrinsically and fundamentaily linear
and local and, therefore, Jzertig/ theories. Thus, they are applicable,
strictly speaking, only to observers in inertial conditions.

But, inertial systems are a philosophical abstraction because they
do not exist in the physical reality of our Earthly environment, nor are



they attainable in our Solar or Galactic systems.

A primary purpose of our isotopic relativities is precisely that of
achieving generalized relativities which are direc/y applicable (that
is, applicable wrZzour any coordinate transformation) tc zcrus/
experimenters (that is, experimenters in zonirertia/conditions).

We shall of course recover inertial conditions in a variety of ways
{e.g., via the average of the isounit elements to constants, under which
the theory returns to be linear), but only under the strict
understanding that this is done as a mere first approximation.

In the final analysis, the reader should always keep in mind
equations of motion (i.1) and confront them with any temptation to
preserve cld notions. As an example, inertial frames are customarily
used to study the stability of exterior orbits, such as the center-of-
mass orbit of Jupiter in the Solar system, in which case all
nonhamiltonian and nonlocal forces of systems (1.1) are identically null,
and we have the simple equation

av
p = FoAQM) = - —, (1.2)
ar

it is evident that, within the context of such well identified exterior
problem, the inertial approximation of our Earthly observers is fully
valid. '

The systems under study are fundamentally different than the
above, such as a high speed space-ship penetrating Jupiter’'s
atmosphere, for which all forces of systems (1.1) apply

p = FSA(r) + FNSA(I;, Lp. P, + J‘cdc EFNSA{t, rLpp..) (13

The idea of necessarily preserving the inertial character of the
observer while the event considered is under extremely noninertial-
nonconservative conditions has no physical basis.

When considering the system satellite-Jupiter as a closed isolated
system, we will be in a position to regain the inertial character of the
generalized relativities. But, again, this must be considered as a mere
approximation of an intrinsically nonlinear, nonlocal and, therefore,
noninertial setting.

A further reason for possible misrepresentations is that, in the
conventional case, one has only one class of reference frame, the
ideal inertial ones, and ignores all the others. In the isotopic case,
instead, the different physical conditicns imply the necessary

7



existence:of classes of reference frames which are not expected to be
necessarily equivalent.

In different terms, a frame under inertial approximation on Earth is
indeed equivalent to a frame under inertial approximation on Jupiter.
However, a noninertial frame on Earth should not be expected to be
necessarily equivalent to a noninertial frame on Jupiter. One of the
abjectives of the Lie-isotopic theory is precisely that of identifying
the classes of equivalence of nonfnertial frames. For additional
comments, see Fig. 11L.1.1.

CONSTITUENTS FRAME:
GALILEI-ADMISSIBLE
RELATIVITIES

\J

+
*q
OF

O\
NLIOS
RS
RN\ X

»
Ofo

——

S

CENTER-OF-MASS FRAME:
GALILEI-ISOTOPIC
RELATIVITIES

OBSERVER'S FRAME:
GALILEI'S
RELATIVITY

FIGURE IIL.1.1: A schematic view of the three most important frames
and related methodological tools that are recommendable for a
comprehensive description of closed nonselfadjoint systems, such as
Jupiter. First, we have the external, inertial, observer’s frame and
related, conventional, Galilei's relativity which describes the center-
of-mass trajectory. The reader should be aware that, for such a
Galilean setting, Jupiter can only be a structure-less, massive point.
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Second, we have the frame at rest with the center-of-mass of Jupiter
and the retated Galilei-isotopic relativities to be reviewed in Sect. HI6.
In this case, Jupiter is indeed represented as an extended structure
which verifies all external, conventional, total conservation laws and
symmetries; yet it admits nonlinear, nonlocal and nonhamiltonian
internal forces. Finally, we have the frame at rest with respect to one
individual constituent, while considering the rest of the system as
external. In this latter case, we have the broader Lie-admissible
methodology of Appendix ILA. The reasons for their emergence as a
necessary complement of the Lie-isotopic treatment were indicated in
Sect. 1.4, and are essentially related to the closed-conservative
character of the Lie-isotopic formulations, versus the open-
nonconservative character of the Lie-admissible formulations. Since
an individual constituent of a closed interior problem is generally in
nonconservative conditions, the necessary complementarity of the
Lie-admissible algebras follows. The view expressed in this figure can
also be obtained from the viewpoiont of the cfasses of eguivalent
rrames. The external, inertial, observer's frame possesses its own
class of equivalence, evidently given by all possible inertial frames, as
characterized by the Lnesrity and /ocality of the conventional Galilei
relativity. In the transition to the representation of Jupiter's structure
with a nonlinear, nonlocal ané nonhamiltonian interior dynamics, we
need an intrinsically wmonfinear aod ronfoca!/  theory to prevent
excessive approximations of the type of the perpetual mation in a
physical environment. In this latter case, the center—of-mass frame of
the system is wnonfrertis/ because inertial frames do not exist in our
physical reality. The Galilei-isotopic relativities then characterize the
class of noninertial systems that are equivalent to the center-of-mass
frame. It is geometrically possible to show that such (infinite) class
does not contain the frames of individual constituents, because they
generally are in unstable orbits, while the center—-of-mass frame of
the system is giobally stable. In turn, the identification of the class of
frames equivalent to {each) constituent’s frame can be best done via
methods structurally set for nonconservative conditions, such as the
Lie-admissible methods.

Finally, we have the issue of preservation or violation of
conventiona! space-time symmetries for systems (1.1}, As readily

predictable because of extended use, readers may tend to conduct
any conceivable effort to salvage conventional symmetries for

systems {1.1), such as the rotational symmetry O(3), the Euclidean
symmetry E(3), and the Galilei symmetry G(3.1).

It should be stated with clarity that the violation of the symmetries

considered for the systems under study has been proved beyond any
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reasonable {or credible) doubt, and classified into:

Isotoplc, selfadjoint, semicanonical, canonicgl, and essentially
nonselfadjoint breakings (Santili 19528, pp. IH-345)

The technical reasons for the breaking are numerous and of
independent nature. First, one should recall Theorems 1.3.1 and 1.3.2
which prevent the simplistic reduction of nonconservative systems
(1.1) to an idealistic collection of stable elementary orbits. Secand, one
should recall the purely mathematical meaning of idealistic
coordinates transformations intended to search for a highly
noninertial frame under which conventional symmetries may be
preserved, and the other aspects reviewed in Chapter L

Once the reader recognizes the need to represent systems {1.1) in
the experimental r-frame of their detection, numerous, independent
reasons for the violation of the conventional O3), E{8) and G({3.1)
symmetries follow. '

First these symmetries are strictly /oc#/ in topological character,
while systems (1.1) are intrinsically #om/ocs/ Second, the symmetries
considered are strictly Zmezr, while the systems considered are in
the most general possible wzomfinesr conditions. Third, the
conventional symmetries are of strictly fzers/a/ character, while the
systems represented are intrinsically »roinzertial. Fourth, the
conventional symmetries necessarily require a ZJomogeneous and
fsotropfc medium, while the medium of systems {1.1) is intrinsically
inkomogeneous and anisotropic. Fifth, the rotational symmetry o(3]
and its Euclidfean E(3) and Galilean G(3.1) extensions are strictly and
solely a theory for ry/o bodies while the objects considered are
derormable by assumptions. Etc.

Our objectives are those of achieving suitable coverings of the
symmetries O(3), E(3) and G(3.1) which:

1) Provide a direct form-invariant description of systems (1.1};

2) Admit the conventional symmetries as particular cases; and, last
but not least, i

3) Are locally isomorphic to the corresponding conventional
symmetries, by coinciding with them at the abstract, coordinate-free
level.

10



fIl.2: CLOSED NONRELATIVISTIC NONHAMILTONIAN
SYSTEMS

It is.generally believed that the global stability of a composite system
is due to the stability of the individual orbits of its constituents, as it is
the case for the planetary and atomic structures. These systems are
c/losed in the sense that they verify the ten total, Galilean,
conservation laws {when isplated from the rest of the Universe), and
are variationslly selfadjoint (SA), in the sense that the internal
forces verify the integrability conditions for the existence of a
potential (Helmholtz (1887), Santilli (1978a)).

By no means, these systems exhaust all possible composite systems
in our Universe. Another class is provided by closed nonselfadjornt
spstews. These are systems which verify all total, conventional
conservation laws (closedness) as it is the case for any isolated
system; nevertheless, their internal forces are variationally
nonselfadioint (NSA), i.e, they violate the integrability conditions for
the existence of a potential {foc. o/t ).

The latter systems are considerably more complex than the
former. In fact, global stability is achieved, this time, via a collection of
orbits each of which is generally unstable. We merely have internal
local exchanges of energy, linear momentum and other physical
quantities, but in such a way to verify total conservation laws.

An.illustration of the latter systems is provided by an individual
member of the Solar system, such as Jupiter. As one can see (Figure
L1.1.1), its global stability is evident. Equally evident is the instability of
the orbits of its individual constituents. In fact, direct visual
observation via telescopes establishes that Jupiter’s total angular
momentum is evidently conserved, but its internal structure is
characterized by particles with monotonically #sowconserved?
angular momenta, and a similar situation occurs for all other
quantities.

At a deeper analysis, one can see that Jupiter's interior dynamical
equations are nonlinear, nonlocal, nonlagrangian-nonhamiltonian and
nonnewtonian, i.e., are precisely of type (IIL1.1). The inapplicability of
the canonical realizations of Lie’s theory and of the symplectic
geometry then follows.

2 We here make a distinction between dissjpation, which implies only the
decrease of the energy, angular momentum or other physical quantities, and
nonconservation, which implies either the decrease or the increase of physical
quantities depending on the local physical conditions.

11



This establishes the physical foundations of these studies: the
inapplicability of conventional space-time symmetries and relativities
" for the interior dynamical problem of closed nonselfadjoint systems,
with the consequential need to construct structurally more general
symmetries and relativities.

The notion of closed nonselfadjoint systems was introduced,
apparently for the first time, in Santilli (1978b), Sect. 3.4, were the
classical and operator case of the two bodies was worked out. The
notion was then discussed in detail in Santilli (1982a), via the
construction of their space-time Lie-isotopic symmetries and
conventional conservation laws, and the formulation of their Galilei-
isotopic relativities. The systems were then studied from a statistical
viewpoint in Fronteau ez £/ {1979) and Tellez-Arenas ¢f &/ (1979} with
rather intriguing implications, e.g., the possibility of introducing a new
notion of internal irreversibility which is compatible with a reversible
exterior dynamics, exactly as occurring for Jupiter {see the
Appendices of Chapter 1I). Specific classical cases of generalized two-
and three-body systems were studied in Jannussis ef &/ (199]) as
examples of the Galilei~isotopic relativities, where one can find also
generalized Birkhoffian representations.

All the preceding studies were nonlinear, nonhamiltonian and
nonnewtonian, but in their local approximation because of the
assumption of the symplectic geometry as the background geometry.
The extension to nenlocal settings was done in Santilli (1988a) and
{1991a).

The predictable {(and rather intriguing) connections with
Prigogine’s statistics (1968) have remained unexplored as of today, and
are scheduled for subsequent studies.

The implications of closed nonselfadjoint systems are non-trivial,
mathematically and physically.

From a mathematical viewpoint, the systems considered require
the construction of covering analytic, algebraic and geometric
formulations, besides implying a host of intriguing and fundamental,
open mathematical problems (such as the achievement of global
topological stability via local instabilities, see Aringazin ez 2/ {1990)).

From a physical viewpoint, the implications are equally deep
because closed nonselradjoint Systemls require 2 nNecessary
generalization of conventional relativities atr a&ll levels of study,
Galilean, relativistic and gravitational, as well as classical and
quantur mechanicaldy , as we shall see.

In this section we shall outline the notions of closed nonselfadjoint
systems in their most general possible {noniocal) formulation, as well
as the analytic, algebraic and geometric tools for their treatment.

12



Let us begin with a representation of ciosed selfadjoint systems as
vector-fields on a manifold. Let E(r 8, be the conventional Euclidean
space in three-dimension where r = (ry) . k = 1, 2, 3 (= x, y, Z) are the
physical coordinates of the experimenter, and the metric is given by
the familiar form § = diag.(i,1,1) over the reals % Introduce in E(r58) a
system of N particles with nonnull masses m,,a = 1, 2,., N. Let TE(r8,8)

be the cotangent bundle {the conventional phase space) with local
chart {coordinates) a = (a¥) = {rp) = (rka,pka), B =1, 2., 6N, where the
P's are the physical linear momenta, i.e., Pig = MaVia: Vka = fka = dfga
/ dt. For simplicity of notation, all indeces of the coordinates and
momenta will be treated as subindeces, while the distinction between
covariant and contravariant indeces will be kept in T*E(r,8.#).

Then, closed selradjoint systems can be defined as the
Hamittonlan vector-rield

qE Prg/m
a=@M={ ¥ \z-@Heay={ & ? (2.12)
“\ Pka 154(r)
: ), €@ oX; _
e = —at* — - =0, (2.1b)
aalt at

k=123  a=1,23..N K=12.,6N

where the X’s represent the familiar, total, Galilean, conserved
quantities

( %3 =H="T{p + Vi), (2.2a)

(X2, X3, Xg) = (P = Zg Py, (2.2b)
| X5 Xg X7) = My) = 3 1 APy (2.2¢)
| Xg Xy Xg0) = (G) = 2, (m 1ryq = tP, ), (2.2d)

The selfadjoint character of the forces then ensures the direct
applicability of all conventional, canonical, analytic, algebraic and

13



geometric formulations as well known.

The most general possible closed nonselfadpint sysiems are
instead given by the wronlinear, momlocal, nonhamiftonizn and
nonnewtonian vector-fields on T*E(r.38)

i
a=@"-= _ka =T = [, a,4.)) =
Pga
_ Pxa’Ma
FA 0 + F¥A e rpp,.) + Jodo Ak e p.p..) /!
(2.3a)
X ax;
X = ——at + = 0, (2.3b)
aat at

i=1,2,..,10, k=123 a=12,..N, pn=12...,6N,

where the X's are exactly the same as in Eq.s (2.2), and the forces
FSA,(t, r, p) that are still of potential type, but Galilei-noninvariant,

have been incorporated for simplicity in the nonselfadjoint forces.

Systems (2.3) constitute the physical foundations of the studies
presented in this monograph. They provide a primitive, classical and
nonrelativistic representation of the structure of Jupiter (Santilli
{1978a, €), (1982a), (1988a)), as well of a conceivable new structure model
of hadrons (Santilli (1978b, d), Myung ez 4/. (1982), Mignani er &/ (1983)).

Note that, while systems (2.1) are unconstrained, Eq.s (2.3)
characterize a system with subsidiary constraints, in the sense that
conservation laws (2.3b) are now, in general, subsidiary constraints to
vector-fields (2.3a).

Finally, while systems (2.1a) are Galilei-invariant, # wzecesszry
condition for the existence of closed nonselfadjoint systems (2.3) is
thar they are not mvariant under the conventional Galllel symmetry.
This is evident on numerous counts outlined in Sect. IIL1.

It is easy to see that, under sufficient topological conditions
{regularity and analyticity), systems (2.3) are consistent because they
are upderdetermined

Moreover, it is possible to show that spstems (23 admit
unconstrained sofutions In the nonselfadjoint forces ror given
Galilean selradjomt forces. In fact, by incorporating the nonlocal
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forces in FN¥A for simplicity, subsidiary constraints (2.3b) can be
reduced to the following seven conditions in the nonselfadjoint forces
(see Santilli {1982a), p. 236 for details)

NSA NSA
Ea Fa =0, zapax Fa =0, Eara A FaNSA = g, {2.4)

Unconstrained solutions in the nonselfadjoint forces therefore always
exist for N > 1, including the case N = 2, as shown in Appendix IIL.A. The
case N = 1 is impossible because one isclated particle is free and
cannot experience nonselfadjoint forces.

we now outline the methodological tocls for the treatment of
closed nonselfadjoint systems.

ANALYTIC FORMUILAT/ONS. A step-by-step generalization of
Hamiltonian mechanics under the name of Birdhorrian mechanics
resulted to be mecessary for the representation of systems (2.3)
(Santilli (1978a), (1982a, {1988a)). In particular, the new mechanics was
proven to be direct/y universa/ for (regular, local and analytic)
systems (2.3a), namely, a representation of all systems considered
always exists (universality) directly in the a-coordinates of the
experimenter {direct universality).

The analytic representation begins with the construction of the
following first-order Aasfian variational principle in its isotapic form
Sect 117

T2
SA° = s!t dt[Ru(a)éu -Bta)] =
i

= 8.[ tl‘z dt [Rfa) Ty %@ a* - Bit,a)] =0,  (250)

R = (p,0), dett, =0, T=T, wap =12..6N (25b)

where: the Ry and B functions are computed from the given equations
(2.3a) via one of the several techniques in Santilli {1982a); Bit,a) = B(t,,p)
is called the Zir&horiian because it is generally different than the
total energy; and all nonlocal and nonselfadjoint terms are embedded
in the isotopic element T4 which multiplies the canonical value R®.
Principle (2.5} characterizes a particular form of Birkhoff's
equations called the covarizat Hamiton-isotopic eguations (11.7.29),
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ie,

&, ) &V 10 eV = ) (2.68)
L @at = w aja” = ———., 2.6a
nv pa "2V aat
@) - 3R, . RN\ [ Opn Tpa o
)= — - —F)=
g , axh ax¥ B (Tzlnxn Onxn
oT{X,
Opn (Tyjy * Px Joen
_ ap;
= aT ¥ ’ {2.6b)
- (Ti ij +t Pk _a;_)nxn Onxn
i

The contravariant Hamilton-isotopic ternsor has structure {1L.7.30), ie.,

(o' = (wlﬂ’) xTy = 1y x (@) = (@YY =

0!‘1"1’1 (lzlnxn

= - (2.72))

- (Iz)nxn Op1xn

I, = T, 1 = diag. (T, L, Ty 1) = giag. (1, 1), 27v)

orX
| {2.70)

Ip = (T“j + Pk ]
Pi

The contravariznt Hamiiton-isotoplic equations are then given by
Eqs ([1.7.32), ie,
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oH(t, a) { aH(t, a)
ak = Q"w(a) = " o @) ,  (2.8)
aaV 2 daV

which can be written in the disjoint r- and p-coordinates

oH(t, r, p)
I = 1y ij(r’ p—, (2.9a)
aHit, r, p)
ar]-

Pfaffian principle {(2.5) also implies the following JIsoropic
generalization of the Hamilton-/acobi equations

aA°

+ Blta) = 0, (2.10a)
at
aA° ia 9A°
—_— = pIaTl ja' - = {, (2.101))
g 9Pia

which have a predictably important role for the operator formulation
of systems (2.3), as we hope to show in a subsequent work (see the
crucial independence of the isotopic action A° from the momenta
indicated in Sect. 11.7).

The rest of the Birkhoffian generalization of Hamiltonian
mechanics follows. The reader interested in the studies of these
volumes is urged to acquire a technical knowledge of Birkhoffian
mechanics because numerous aspects will be tacitly assumed as
known during the course of our analysis, some of which are rather
insidious. ’

For instance, the computation of the Ry, and B functions from the
equations of motion generally yields nongzutonomous representalions
with Ry = Ru(t,a) and B = B(ta} even when the system does not

dependend explicitly on time. This implies the still more general
Honautonomous Brrkhort’s egquations (11.7.11) which violate the
conditions to characterize an algebra (Appendix ILA).

Nevertheless, let us recall from Sect. IL7 that nonautonomous
representations can be reduced to the sem/autonomous rorm With
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Ry = Ru(a), B =B(ta) via the degrees of freedom of the theory, e.g., the
so-called Zirdhoriian gauge transrormations (11.7.12), ie.,

) aG{t, a)
Ru(a) —Ru(t,a)+ ool R (2.11a)
9G(t, a)
Bta) = Bta) + . (2.11b)
at

Above all, the reader is expected to be familiar with the techniques
of constructing a Birkhoffian representation in which the Birkhoffian
characterizes the total energy as the sum B = H = T{p} + V(r) of the
Kinetic energy T{(p) and the potential energy V(r) of all selfadjoint
forces (recall that the notion of energy has no mathematical or
physical meaning for contact nonselfadjoint forces).

The attentif reader has noted that we have used until now the
simplest possible realization of Birkhoffian mechanics, that of
Hamilton-isotopic type in which the factorized structure w is
canonical.

Such a structure is amply sufficient for our needs for technical
reasons that will be indicated during the course of our analysis.
However, the reader should keep in mind that the general treatment of
closed nonselfadjoint systems requires the use of the full Birkhoffian-
isotopic mechanics as per Definition 1L7.1.

Note that the Birkhoffian-isotopic mechanics Is & covering of
Hamiitonian mechanics In the sense that: 1) the former mechanics Is
based on formulations structurally more general than those ol the
latter; 2} the former mechanics represenls physical conditions
structurally more general than those of the latter- and 3 the rormer

mechanics admits the latter a5 & particular case for R = RC = pg) and
=1

In fact, under values R = R? = (p0), T, = I, the covariant Birkhof{-
jsotopic tensor assumes the familiar covariant canonical form

Oanxan ~13mxan
= o, - c) =
(w,) = (83R% -3, RO ’ {2.12)
13n><3n 03n=<3n

with contravariant canonical form
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031’!*3]] I3nx 3n \

() = (lo [} = (2.13)

ap

- ]3nx3n 03n><3n

The Hamilton-isotopic equations then recover Hamiiton's equations
identically

AT 11 =
Wy d = oy Hita), ak = o av Hita), H=B. (2.14)

and the same holds for all remaining aspects.

Finally, recall that the various aspects of Birkhoffian mechanics
can be constructed via a judicious use of wmomcanonical
transformations of the corresponding aspects of Hamiltonian
mechanics. In particular, Birkhoff’s equations can be constructed via
noncanonical transformations of Hamilton’s equations and the same
occurs for variational principles, Hamilton-Jacobi theory, etc.

As a result, Birkborrs egqustions preserve thelr form under tre
most general possible transrormations, trivially, because they
already have the most general possible form (Sect. 11.8).

These features are important for the subsequent studies of this
volume. ;As an example, we should expect that the isotopic
generalizations G{3.1) of Galilei’s symmetry G(3.1) for systems (2.3) to be
studied later on in this chapter, can be constructed via romcanonical
transformations of G(3.1).

Similarly, the operator image of Birkhoffian mechanics, tentatively
submitied in Santilli (1978b) under the name of ASadronic mecharics,
can be expectedly built via nonunitary transformations of
conventional quantum mechanics, and then preserve its structure
under the most general possible transformations (Santilli (1989)).

ALGEBRAIC FORMULATIONS. The construction of a step-by-
step generalization of the conventional formulation of Lie’s theory
under the name of Lle-isotopic theory is necessary for the treatment
of closed nonselfadjoint systems, as outlined in Sect. 11.6.

The central idea is the generalization of the trivial unit 1 of
current use in both mathematical and physical formulations into the
most general possible unit 1, called isofoprc unit which is nonsingular,
and Hermitean, but possesses an otherwise arbitrary dependence on
all local variables and quantities
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1 = 1ta, 4,..) (2.15)

The generalization of the unit then implies a corresponding
generalization of all major structural aspects of Lie’s theory, from the
theory of universal enveloping associative algebras, to the theory of
Lie algebras, and to the theory of Lie groups. '

It is here sufficient to recall that systems (2.3a) under analytic
representations (2.8) are characterized by the Lie-isotopic algebras
with brackets {11.7.30), ie.,

R A 9B
aal aaV
8A aB dB dA
= — Izij(t, r,p, ...) -_ - /] lzij(t, I‘,p, ..-) =T s (2.16)

ari ap] ari apj

where the isounit is now that of the space T*E{r,8 ) (Sect. 1L.9)
1 = 1, = diag. {Iy, Iy (2.17)

The ‘central problem of this chapter is therefore the study of the
Galilei-isotopic symmertries G(3.1) which, at this preliminary stage,
can be characterized by the Lje-isolopic algebra of Galilean
generators (2.2) with isocommutation rules '

and corresponding Lie-ssotaopic group

w; 0% 1o,V (0X;/8a"] (8/0aM) )

a = {[]j e]§ o*a. {2.19)

where: the {'s are the structure functions (Sect. 11.6); the w's are the
conventional parameters of the Galilei symmetry G(3.1); the
exponentiation is in a conventional associative algebra g, the
transformations are isotopic (Sect. 11.3); and we evidently have an
infinite number of possible structures G{3.1) characterized by an
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infinite number of possible isounits T,.

More specifically, our task is Zo jdentify ihat particv/ar subc/ass
of general spstems (23z) which are invariant snder the Galiler-
isotapic spmmetries G317/ In fact, the isosymmetry G(3.1) will
guarantee, on one side, the nonhamiltonian internal structure from the
generalized structures (2.18) and (2.19), while, on the other side,
ensuring the conservation of the conventional ten total Galilean
quantities, from their preservation as generators of the new
symmetries.

This objective will be studied in a progressive way, by studying
first the isorotational subgroups 6(3) of G(3.1) (Sect. I11.3)}, then the
isoeuclidean subgroups E3) (Sect. I11.4), and finally passing to the full
isosymmetries G(3.1) (Sect. I11.5).

GEOMETRICAL FORMULATI/ONS. The necessary additional

methodological tools for the study of closed nonselfadjoint systems
are evidently of geometrical character. At this first classical and
nonrelativistic stage, systems (2.3) require a particular reformulation
of the symplectic geometry, submitted under the name of spuplectic-
Isotopic geometry or Isosymplectic geometry for short (Sect. I1.9),
for the representation of nonlocal interactions (otherwise the
conventional symplectic geometry in its exact but general formulation
would be sufficient as per the Universality Theorem 11.9.1).

Here, let us merely recall for the readers convenience, that the
basic geometric quantity is the integrand of principle (2.5)
reinterpreted as the oze-isororm on T*Efr8.8), Eq.s (11.8.91}, ie.,

¢y = Ry T, &Y, R = (p,0), (2.20a)
getty=0, Ty = (TyY) = (rPy) =T, (2200)

Its isoexterior derivative on T*Ez(r,sﬁ) then produces the two-isoform
{11.9.92), i.e.,

¢’y = 4%y =
8R'g oty Vien V
= agte (——— 1@ T8 o+ Ry—— TP )32 K32
”1"2{ aaP Ly Ty ™ " o8 111)
= 4o, To% dalt A da”, (2.21)
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which constitutes the desired geometric counterpart of the Lie-

isotopic brackets {2.16).
As a result, the Birkhoffian representation of systems (2.3a) can be

“globalized”, that is, expressed in a coordinate-free form via their
characterization as the Araitonian-Isotopic vector-field

T 1é% = -oH [2.31)

We assume the reader has learned how to compute the isotopic
elements T from 'Fy, and perform the factorization of the canonical
form in both the two-isoform (2.21) and in the corresponding
isobrackets {2.16).

We also assume the reader is aware that we are dealing with the
simplest possible realization of the symplectic-isotopic geometry, that
with the canonical factorization. The study of closed nonselfadjoint
systems via the general form of the geometry, that of Definition I1.8.1
{with the factorized Birkhoffian tensor Q) is here left as an exercise
for the interested reader. :

The primary results of the above methodological formulations are
therefore the following:

I [n the transition Irom closed seliadjornt to clased nonseltadpornt
spstems there Is no need lo abandon conventional anafyiic,
algebraic and geomelric formuiations, because
1z} botlh systems are derivable from & first-order variational
principle;

18/ the contravariant algebraic tensor of both sysiems is Lie;
and

¢/ the covariant geometric tensor of both Systems Is
symplectic.

2/ closed nonselfadjoint systems emerge In their Birkhorfian
representation when one assumes the most general possible
rézfization of the above structures, Whife closed seffadjoint
spstems In thelr Hamiltomian representation emerge when
one assumes the simplest possible fcanonicall realization of
the same structure. And

3} Al distinctions between Birikholffian and Hawmiftonian
rormuigtions {ang, thus, between closed nonseifadzjoint and
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selradjoint systews) cease o exist 8¢ the zbstraci,
reslization-rree level This properiy is evident within the
context or the symplectic geometry, where lhere is no
Leomelric distinction between the conventional and the
Isotopic unit and berween Hamiftonign and Birkhoffian
vector-rields, bur It equaly holds st the algebraic and
anafytic levels see Chap. If, Sect /1.5 /.7 and /19, In
pardeular)

The above properties are sufficient to anticipate our primary
results or, equivalently, to provide advance guidelines for their
achievement.

In fact, Properties 1, 2 and 3 above require that the space-time
symmetries of closed nonselfadjoint systems must be constructed in
such a way to be locally isomorphic to the conventional space-time
symmetries, as a necessary condition for their identity at the abstract,
realization-free level, in a way compatible with the abstract identity
between closed selfadjoint and nonselfadjoint systems and their
methodologies,

Specific examples of two-body and three-body closed
nonhamiltonian systems are presented in Appendix IILA.

11.3: ROTATIONAL-ISOTOPIC SYMMETRIES

In this section we shall present the infinite family of classical isotopic
generalizations O(3) of the rotational symmetry O(3), which will be
formulated in the infinite family of isotopes E(r8.#) of the conventional
Euclidean space E(r5,%) in three-dimension.

our objective is, specifically, the study of the isosymmetries O(3) of
closed nonselfadjoint systems (I11.2.3) in their nonlinear, nonhamiltonian
and nonnewtonian, as well as nonlocal form.

Isosymmetries O(3) were introduced, apparently for the first time,
in Santilli (1978a), then expanded in Santilli (1982a), and finally studied in
details in Santilli (1985b) in their abstract, and therefore nonlinear and
nonlocal version. The classical nonlinear and nonlocal realizations of
0(3) presented in this section were studied in Santilli (1933a) (1991a, b).

Regrettably, we shall be unable to present, for brevity, the
isorepresentation theory of O(3), which has been studied within the
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context of the covering isounitary symmetries SU(2) in Santilli ({1989},
(1991d)) jointly with other liftings of the conventional theory, e.g., the
Iso-tiebshi-Gordon coelficients, etc.

For the reader’s convenience, we shall review first the main
results of the abstract formulation, and then pass to its classical
realization for closed nonselfadjoint systems. A necessary prerequisite
for the understanding of this section is a knowledge of Sect.s II-1 to
i1-9.

DEFINITION [T131 (Santilli (19558} The Trotational Isotopic
groups~ Of3, or “Fsorotational groups, are the /argest possible
Isolinear and isclocgl groups of Isometries of the infinitely
possitle isotopes- E8%) or the three-dimensionz! euclidean
space FnE%), Eq.s (1318 Le,

Ers®) = ErsAl (3.1a)

§ =diag. Iy, = § = T, bF.)8, (3.1b)
det. T#0, T = T, det.5 # 0, 8 =3, @3.10)
g >h=%, 1=11=43" (3.10)
er)=rigyd = (c7n) = 6h)1= (3.1€)

= Grol = 1ed) = K gk HL 8.11)

characterized bp- the right, WOdUIRr-ISOLapIc Iransrorations
r = REpxr = RO)Sr, & = fixed, - (3.2)

where the 8% are the comventionsgl f£uvlers anpgles, whose
elements RB) verify the properties

Rk = RUMR =1, (3.3}

-1

or, egquivalentiy, il =R™, and verily the group-isotopic rufes

Rio) =1 =51 (3.42)
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ROR(D) = RE)RE) = R + 0), (3.4b)
REMR(-0) = 1, (3.4c)

Eguivalently, the isorotational groups O/3] can be defined as the

Isasymmetries of the Infinitely possible deformations of the
sphere representable via the paricviar reslization of the
isometric

§ = diag. (gilvg229g33)a (3.5a)

ré =Ty 84Ty + IpByy Ly + Iy Lyglay=inv. (3.5b)

Isogroups O(3) resulted to be tridimensional simple Lie groups
which can be constructed from the sole knowledge of the isometric §
via the generators and parameters of the conventional rotational
group 0(3).

From Eq. (3.3) it is easy to see that isorotations satisfy the
conditions

det (R§) = z 1. (3.6)

Therefore, G(3) is characterized by a continuous semisimple
subgroup denoted SO(3) for the case det (R8) = +1, and a discrete
invariant part for the case det (R8) = - 1 representing isoinversions
(see below). )

Each one of the infinitely many possible SO{3) subgroups can be
essentially characterized as follows. The abstract, enveloping
associative algebra ¢ of Sect. 11.6 is now realized in the isoform ¢
characterized by the isounit 1, the conventional generators Jk’ k=12,

3, of SO(3) in their fundamental, 3x3 representation, and all their
possible polynomials, resulting in the infinite dimensional basis of the
isotopic Poincaré-Birkhoff-Witt Theorem

ItA

4 T

(3.7
The isocommutation rules of the Lie-isotopic algebra SG(3) of SO(3)
were also studied and shown to be reducible to the form

D Jj]-: 31*3]' - :lj*ji= Jisjj - 3]‘831 =€ijk3k’ (3.8)

kso@): 1, Jx, Ipdj G =) Jpdpdx G =]
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under a suitable redefinition Jy of the generators Ji (see below),

where the tensor Eijk is the conventional totally antisymmetric tensor

characterizing the structure constants of S0(3).
The Lie-isotopic groups S0(3) were obtained via an
isoexponentiation of structure (3.7) in E, resulting in the expression

6@ : k) = .’ 161}*{e|;292}*{e| Jofs, (3.9

&

which can be rewritten in the conventional associative envelope & of
S0(3)
ﬁk&’k)

S0« 8@ = ([T e Wy oy

e
23 |§ k=123 I

:
5@ 11 = 153760 (3.10)

The isorotations can then be written in the simpler form

r = Rlepr = S, (3.11)

which is useful for computational convenience. The understanding is
that the mathematically correct form remains the isotopic form (to
prevent the violation of the linearity condition).

The discrete part is characterized by the Zsoizversions

Prr = Pr = -1, (3.12)

where P characterizes the conventional discrete components of O(3).
The notion of isorotation groups was turned into that of
isarotational symmetries by noting that, under the conditions of

Definition 111.8.1, isotransformations (3.4) leave invariant, by
construction, the separation in E(p8.#) (Theorem 11.8.1), i.e.,

r = & r)i= (! By )= (3.13)
owing to the property
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t
S5 8§85 = 3 (3.14)

which is identically verified for all possible metrics 8 of the class
admitted, plus similar identities for the isoinversions.

The capability for the isorotational symmetries O(3) to leave
invariant all possible ellipsoidical deformations of the sphere, Eq.s (3.5),
then trivially follows from invariance (3.13).

We now outline the classification of all simple isotopes ((3)
conducted also in Santilli (1985b). To begin, consider the metric (3.5a) of
undefined topological structure. By using Eq.s (3.9) or (3.10), it is easy to
compute a general isorotation around the third axis

8§ =diag. (&11: B99: E33), (3.15a)
soslBgley 8] EpleyiEpr)isinlagley gny)l O
83(0) = ';"g11(g11g22)*5m[93(3113'22)*1 cos B3 481 0

0 0 H
{3.151)

The above notion of abstract isorotational symmetry then leads to
the following

LEMMA (7131 Santili floc cit)- The abstract Isotope OfF of
3 with a nowhere singular, Hermitesn and diggonal isomelric
258/ or unspecified signature provides a single geowmetric
unification or aif possible simple, three-dimensional Lie groups
ar Carean’y classiffcation.

This important property provides another illustration of the rather
remarkable possibilities of the Lie-isotopic theory. It can be readily
seen from the fact that the isosymmetry O(3) in realization (3.15)
smoothly interconnects the compacr realizations 0(3) » 0(3) with sig, 3
= (+1+1,+1), to the momcompact realizations O3) = 0(2.1) with sig. § =
(-1,-1,+1). The understanding is that Eq.s (3.15) provide the isotopic
generalization of the corresponding transformations of O{3) and 0(2.1),

rather then the conventional tranformations themselves, For
“additional cases, see Figure I1L3.1.
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0,8 §=8=dig (+1+1+1); | 0o%3): §= -8 = diagt-1,-1,-1)
01(3): Sig. § = (+1,+1,+1); Old(3): Sig. § = (-1,-1,-1)
0,(3): Sig. § = (+1+1-1); 0,9(3): Sig. 8= (111}
05(3): Sig. § = (+1,-1,+1); 039(3): 8ig. & = (-1,+1,-1)
04(3): Sig. 8 = (-1 +141) 04“(3): Sig. 8 = (+1,-1,-1)

OB): § = diag. (g1, E22. £33)

FIGURE I11.3.1: A classification of all possible isotopes 6(3) of 0(3) submitted
in Santilli (1985b). They can be presented via the classification of all possible
underlying isoeuclidean spaces Eir,8,%) or directly, via the classification of all
possible topologies of the isometric §. The first group Oy{3) is the
conventional one. The isotopic theory initiates with the isodual 006(3) as per
Definition 11.3.3 whick can be formulated only via the use of a bona-fide
isounit I = -1 Then eight classes of isotopes follow, each one conftaining an
infinite number of isotopes, grouped into classes connected by isoduality. The
classification of the isotopes O(3) therefore includes, not only the
conventional 0(3) and 0{2.1), but also two infinite classes of nonlinear and
nonlocal realizations of 0(3) and 0(2.1) interconnected by isotopic duality. The
isotope O(3) of the last list of the diagram is the abstract isotope of Lemma
I11.3.1 unifyuing all the preceding realizations.

The possibilities of geometrical unification offered by the Lie-
isotopic theory are therefore remarkable, and expressible via the
following '

CONJECTURE [IL31- The simple, abstract, n-dimensionzl
isotopes Gl uniry in one single gigorithm all possible simple,
nonexceptional Lie algebras of lie same dimension il CRrian's
classification.

Lemma II1.3.1 proves the conjecture for the case n = 3. In Chapter
IV we shall prove it for the case n = 6. The proof for the general case
is left to the interested scholar3.

This completes our studies of the classification of all possible
isotopes of 0(3). The analysis of this volume is restricted hereon only
to the first infinite class of isotopes

def

3 In studying the conjecture one should also keep in mind the “degrees of freedom”
of the isofields expressed by Proposition 11.2.1
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0B3) = 04), sig.§ = (+1,+1,+1), & > 0. (3.16)

We shall therefore consider only the isotopes isomorphic to 0(3) and
ignore all others for brevity. Only the isoduals

693) dfréld(a),sig.s = (-1,-1,-1), § <0, (317)

will be considered later on in this chapter.

The terms “isorotations” or “rotational-isotopic transformations”
are therefore referred to in this volume, specifically, to those
characterized by positive-definite isometrics 8.

By recalling that all nonsingular and Hermitean metrics and
isometrics can be diagonalized, all positive-definite isometrics can
therefore be written in the diagonal form

§ = diag. (b2 b2 bgd), (3.18a)
bg = bylt,r,p,p, .} > 0, (3.18b)

which is assumed hereon as our basic form.

The first physical motivation for the restriction of the isometrics §
to be positive-definite is the following. As well known, matbemalically
we can indeed deform the sphere

e

= ryry + Foy + Igfg > 0, {3.19}
into all infinitely possible compact (ellipsoidical) and nonconpact
{hyperboloid) forms

rﬁ = ri gll r]- Z 0, (3.20) .

which then produce the classification of all possible, compact and
noncompact isotopes reviewed earlier.

However, on physical grounds, a given sphere can only be
deformed into ellipsoids, and there exists no known physical process
capable of turning a sphere into a hyperboloid.

Additional reasons are of geometrical nature, and are motivated by
the intent (see the remarks at the end of Sect. I11.2) of reaching the
unification of isotopic and conventional theories at the abstract,
realization-free level.
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Along these lines, one note that a most salient geometric axiom of
the conventional theory of 0O(3) is the positive-definiteness of its
invariant, Eq.s (3.19). In order to achieve an isotopic theory of 0(3)
capable of coinciding with that of O(3) at the abstract level, one must
therefore preserve the same axiom of positive-definiteness of the
underlying invariant (3.18).

Some of the main properties of isorotations can then be expressed
as follows

THEOREM I1L31 [(Santilli (19858} The groups of (compact)
Isometries Of3) or all infinitely possible ellipsoidical
deformations of the sphere on the isoeuclidean spaces E(nds, #

= g 7 = &1 §> g verity the following properies:

1) The groups O3 consist of lnfinitely many different groups
corresponding to the infinitely many possible deformations of
the sphere fexplicit forms of the isometric 8 Fq. (3153)

2} All isosymmetries Of3) are Jocally isomorphic to O3} under
conditions (315b/ herein assumed: ahd

3 7he groups Of3 constitute “isotopic coverings”™ of O@3) in the
sense hat:

2a) The groups O3 are constructed via methods (the Lie-
isotopic theory) structurally more genmeral than those of 03
{the conventional Lies theorvt

28 The groups 3 represent physical conditions (deformations
of the sphere; mnbomogeneous and anisotropic mrerior phyvsical
media; etc] which are broader than those of the conventionsa!
spmmerry (perrectiy rigid sphere; homogeneous and Isotropic
space; etc) ahd

2¢) All groups /3 recover O3 identically whenever I = I and
ey can approximate the /atter as close as desired ror =1

A first illustration of the nontriviality of the above results can be
expressed via the property (which disproves a rather widespread
belief)

COROLLARY IIL3.1.1 (Santilli (foc. cit)s The rotational symmelry Is
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not broken by elljpsoidical deformations § of the sphere & but it
Is Instead exact, provided thal it is realized at the higher Lie-

Isotopic level with isounit 1 = & 7

The above results essentially confirm the existence of only one
abstract rotational symmetry O(3), and infinitely many different, but
isomorphic realizations. Of these, the conventional symmetry O(3) is
obtained when one selects the simplest possible Lie product AB - BA,
while the infinitely many isotopes G(3) are obtained when one selects
our less trivial Lie-isotopic product AxB — BxA.

In different terms, when the conventional rotations do not
constitute a symmetry of the system considered, this is not sufficient
to imply that the rotational symmetrty is broken, because the
symmetry can be reconstructed as exact at the more general isotopic
level, by embedding all symmetry breaking terms in the isounit, exactly
as done in Definition II1.3.1.

We encounter in this way our first example of reconsiruction of
&1 EXACL Space-lime symmmelry when claimed to be broken. Later on,
we shall encounter the same reconstruction for all remaining
connected space-time symmetries, e.g., for the Galilei symmetry
studied in Section IIL.5, and for the Lorent symmetry studied in the
next chapter.

The same mechanism of isotopic reconstruction of the exact
symmetry is conceivabie also for discrete symmetries, aithough it has
not yet been studied in detail at this writing. We are referring to a
conceivable isotopic reconstruction of the exact parity under weak
interactions {Santilli (1984)), or a conceivable isotopic formulation of the
exact time-reversal invariance of the center-of-mass behavior of
strongly interacting particles with irreversible interior dynamics
{Santilli (1983b)). It should be stressed here that we have merely
mentioned possibilities of the Lie-isotopic techniques which require
predictable additional studies for their resolution.

Note that, for general ellipsoids (3.18) the Totational symmelry” Is
exact, bul the “vonventional rotations” do not constitute 8 Synmelly
any flonger. This and other occurrences will require a suitable
generalization of conventional relativities, even though the underlying
space-time symmetries are locally isomorphic to the conventional
ones (see Sect. IIL8§).

The latter aspect is rendered necessary by the following property.

COROLLARY 1212 (Santilli floc. cit}t While conventionzl
rotations are linear in E(rS%, isorotations are rormally
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Isolinear and isolocal fn EWé#) but gemerally nonlinesr and
nonlocal in Ere#l ie,

r = Riepr = RO S8t r, £ F.0r 8.21)

A further important result is the isotopic generalization of the
conventional £wfer’s theorem on the general displacement of a rigid
body with one point fixed (see, e.g., Goldstein (1950})), which we can
express via the following

COROLEARY I 31.3 (Santilli floc. cit. b The general displacement
or an e/gstic body with ome fixed point Is an Isorotation J0)%7)
around an axis through lhe rived point.

In different terms, isorotations characterize not only a rotation of
a given body, but also, jointly, its possible deformations. Thus, while the
theory of rotations characterizes rigid bodies as well known, the
theory of isorotations characterizes e/astfc bodies The covering
nature of the latter over the former is then evident. For a conceptual
anticipation of conceivable applications to elementary particle
physics, see Sect. 1I1.7.

This completes our review of the abstract treatment of the
isorotational symmetry O(3). We are now sufficienily equipped to study
the classical realizations of the isorotations under the conditions of: 1)
being directly applicable to classical, closed, nonrelativistic,
nonselfadjoint systems (I11.2.3); 2} permitting the achievement of the
conservation of the total angular momentum via the invariance of the
systems under isorotations (without any need of subsidiary
constraints); and 3) allowing the inclusion of nonlocal internal forces.

The first step toward these objectives is the identification of the
physical role of carrier spaces. To begin, let us consider the
isoeuclidean spaces E(r,8%) with a positive-definite, diagonal isometric
8, Eq.s (3.18).

The phase space of the theory is then the cotangent bundle
T*E(r,3,8) in which we introduce N particles with our now familiar local
coordinates

a = @) = lrgy Pya) (3.22)
no=12..6Nk=123FExy2,8a=12.,N

The next step is to equip the space with the one-isoforms (Sect.
11.9)
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é; = R, TyMy da¥ = py, B0y, (8.23a)
R° = (.0, T = (0F) = diag §.9) (3.23b)

which is the fundamental space for the representation of systems
{111.2.3a) via Pfaffian variational principles.

To study the isosymmetries of the systems we have to consider the
isospace T*Eo(r3#) of two-isoforms constructed from one-isoforms

(3.23)
$, = db; =4 e T,%, daP A da¥ =

8b,,2 ab 2
=tloy, bZb2 + (Ry——1p%- R b,?)13a A da¥,

aaV aal (3.24)

where ), is the canonical symplectic tensor, and the isotopic
element To is generally different than 'I"l, with the explicit form

(11.9.04)*
(T ) = (b"2 02 +

abp2 ' ab,> def
w?® 8% R ——= bs% - R’ — b,2)) = diag (6, 6)
P 3a0 daP
(3.25)

The isometric and isotopic element ]2 of '[“"Ez(r,s,ﬂ) can then be
written

4 We introduce here an important notation which deserves a clarification. Recall
from Sect. I1.7 that we have two isospaces with generally different isometrics, the
isospace T-Ei(r §R) for one-isoforms (ie., for the integrands of the variational
principles), and the different isospaces T'Eolr 5% = TE(.G,%) for the two-isoforms
(ie., for the characterization of symmetries and conserved quantities), with
interconnecting rules given precisely by Eq.s (3.15). From hereon, when dealing with
the ‘vharacteristics b-fapctions” of the interior medium, we shall tacitly refer to
T'E, (r8, ) while, when dealing with the ‘characteristics B-fanctions, we shall refer
to 'I“"Eiﬁr 8,8) = T"E(r,6,R). Evidently, when the b's are constants we have by = By, and
T°E4(,8.5%) = T'Eo(r,6.R).

33



TEr88) = TECGH) : r = Iy Gyt r. p, p..) Tjg 11y (3.26a)

1, = ()71 = diag. 671, 67D, (3.26b)

Thus, the actual invariant of the isorotational theory under study
is invariant (3.26a).

By recalling the interplay between geometry and algebras of Sect.
119, the Lie-isotopic brackets of the theory are given by

[A B " Py ® {3.27)
A,Bl = — w E— 3.27
gak & gV
dA -2 dB dB -2 0A
= —-—-—-—Glj (t, r, p,.) - Gl] (t, I, p, ..) _— .
Mia Pja yia 9Pja

our objective is evidently that of reviewing the theory of
isorotations 6(3) via Lie-isotopic brackets (3.27). For clarity, we shall
proceed in stages, and begin with the study first of the case of
constant isometrics

§ = diag. (0,2 b,% bg?, (3.282)
bg = constants > 0, : (3.28b)

for which 'i‘1 = 'T‘2, and the Lie-isotopic brackets (3.27) assume the
simpler form
) aA 9B 3B L 8A
[AB] = - by 2 - by 2 —-, (3.29)
yq 9Pka yq 9Pya

To identify the Lie-isotopic algebra SO(3) characterized by
brackets (3.29), let us compute first the rsumdsmenial Isolopic
commutation rufes which are readily given by

Iryo vyl Iris pj] 0 31

(s ah=| . - oY) = :
[Pl N I'J] [Pl » P]] -8 0
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Next, we introduce the generators of the Lie-isotopic algebra
S6(3) of SO(3) which, by central assumption of Lie-isotopies (Sect. I1.6),
are given by the conventions/ generators of 0(3), ie., by the
components of the angular momentum

J {3.31)

k- kijfi P,

The above quantities are called the components of the Birkioffian
angufar momentym to emphasize the fact that they characterize a
generalized notion because they are no longer defined on T*Ey(r.S.R),
but on 'I““Ezr,&ﬁ). As a result, while the magnitude of the Hamiltonian

angular momentum is given by the familiar expression
J=4J {3.32)

the magnitude of the Birkhoffian angular momentum is instead given by

Py = Ji 3ij Jj =J bkz Iy (3.33)

Note that the interpretation of components (3.31) as isoscalars in &
would imply the expressions (Sect. I1.2)

Jk = ékij * I f:oj = {Ekij r, pj)”l = Jk“l, (3.34)
called the zr/via/ Isotopy (Sect. 11.8) because it does not provide a
generalized invariance, as the reader is encouraged to verify.

Also, the reader should keep in mind that we are dealing with the
classical realization of S0(3), rather than its matrix realization as in
Santilli (1985b). This implies that the generators of the isosymmetries
must be ordinary functions, while quantities (3.34) are matrices.

To compute the isocommutation rules of SO(3), we first compute the
isotopic liftings of the commutation rules between the angular
momentum, and the local variables, resuiting in the expressions

2
[k, r] kl}b r] (3.35a)

Dy Bl = &5 b’ Py, (3.35b)

35



(where there is evidently no summation on the i-index).
The desired isocommutation rules of (compact) isorotational
algebra SO(3) are then given by {Santilli (1988a)},

. . _ k _ -_2
s6(3) : [Ji, Jj] = cij Jk -eijk bk e (3.36)

which, under the redefinition

Jy=byby iz =bybydy ) = by by g, (3.37)

can be written

[J JJ] = € (3.38)

ijk k’

This confirms the existence of a classical realization of the
isocommutation rules of SO(3) possessing the same structure constants
of SO(3). In turn, this confirms the local isomorphism between all
possible isotopes SO(3) and S0(3) in accordance with Theorem IIL3.1.

The isocenter of the enveloping algebra (Sect. 11.6) is given by the

isounit, which is the zero-order isocasimir, co) - i, and magnitude

(3.33) of the Birkhoffian angular momentunm, c® = J2 , as expected. In
fact,

2

K k,J] =2 .J J, = 0 (3.39)

JE 5 = Db Kij 'k %

Note that the isosquare of J has the particular geometrical
significance

={det§)J 2 (3.40)

[y

with intriguing implications in particle physics we hope to indicate at
some future time.

Note also that J2 = Jydy 45 nor an isocasimir of Lie-isotopic

algebra (3.36) or of (3.38), as the reader can verify. This occurrence is
important inasmuch as it confirms the correctness of selection (3.33)
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for the Birkhoffian angular momentum.

The occurrence alsc indicates that expression (3.38) of the
isocommutation rules has a primary matbematica/ significance,
inasmuch as it is formally identical to the conventional commutation
rules. However, the isocommutation rules of direct phpsica/
significance are those in the physical angular moments J, i.e., rules
{3.36).

The desired classical realization of the Lie-isotopic group
structure is readily given via isoexpenentiations of Eq.s (3.36) resulting
in the forms (Santilli (foc iz )

B w15,V (80, 704V} (a/aM)
k=1,2,3e]§

S6(@}:  RE) = [T] 1

def
= ss(e) 1, {3.41)

where the exponentials are expanded in the conventional associative
envelope L.

Note the true realization of the notion of isotopic lifting of a Lie
symmetry, i.e., the preservation of the original generators and
parameters of the symmetry, and the isotopic generalization of the
structure of the Lie group via the liftings 1 = 12.

The computation of examples is straightforward. For instance a
{classical) ZSorotation around the third ax7s is given by {Santilli {/oc
it ))

' = Rleghr = Sgleg)r (3.42)
by
r’l I'1COS(93b1b2) - r2—51n(93b1b2)
Py
!
= r’2 = ri“_Sln(B3b1b2) + r2C05(e3b1b2 .
. bz
rs ry

The proof of the invariance of isoseparation (3.28) under the above
transformation is an instructive exercise for the reader interested in
acquiring a knowledge of isotopic techniques. The computation of
other examples can be readily done via Eq.s (3.41).

Note that the convergence of series (3.41) into finite
transformations of type (3.42) is reduced to the convergence of the

37



original series prior to the lifting, plus sufficient continuity and
regularity conditions on the isounit.

Note also the appearance of the isotopic elements by directly in
the angles of isorotation. This occurrence is useful for the
reconstruction of the exact rotational symmetry according to the rule

. eajﬂam. - af:'IBirIt:.bil)Z’ (3.43)

which has important applications in particle physics (Sect. 111.7)

In different terms, Ihe deformation experienced by the body
considered, and represented by the b-quantities, Is compensated by
the isorotation in such & way that the combinztion of the deformation
and isorotation equals the angle or rigid rotation In this way, the
exact rotational symmetry of a rigid body, the Lh.s. of Eq.s (3.43), is
decomposed into the product of an isorotation and the b—quantities.

This is the realization in Birkhoffian mechanics of the property
that all distinctions between conventional and isotopic symmetries
cease to exist at the abstract, realization/free level.

We now pass to the application of the general theory of
fsoinvariance outlined in Sect. 1.8, to the isorotations of closed
nonselfadjoint systems. For this purpose, we have to verify first that
the J's are indeed the generators of isorotations.

Consider an infinitesimal isorotation 88 around a fixed axis with
unit isovector n = (ni, n,, n3) in Ec3R), ie,

r., (3.44a)

r, = r’k+ Seekijni j

k
Py > P, * 88 Ckij n, pi. {3.44Db)

The isoexponentiation of the above quantities yields the relations

-semey - - .
{e bry g - 8w nd = 280 e (3.45a)

&

{elg-‘se H*J} pk = pk - 86 [nxJ :pk] = pk + &0 Ekij nj pJ, (3.45b).

where the * product is evidently that in E(r.§). This confirms that the
conventional components of the angular momentum are indeed the
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generators of isorotations.

The notion of Itsorofatiorns! symmetry is then given by a simple
isotopy of the conventional one {Definition 11.8.3). In fact a Birkhoifian
B(r, p) is invariant under an isorotation around the n-axis iff it verifies
the invariance property

Bfr,p) = Bf{r+ 80 nAJ,p + 88 nAJ)

-86 nAJ

where A is the vector product computed in T*E(r,8,#), which can hold
iff

B .Bl = 0, k=123, (3.47)

K’
For a more rigorous and general presentation, see Theorems I1.8.2 and
11.8.3.

We reach in this way the rather simple conclusion that =z
Birklrorrign vector-ficld Is Ipvarignr nnder isorolations when
properly written in TE#,88) ie., when all operations of contraction,
power, etc., are properly made with the isometric 8.

Explicitly, the achievement of the O(3) invariance requires, first,
the construction of a Hamilton—isotopic representation characterized

by the temsor wMh® 1,.Y, and then the restriction of the admissible
Hamiltonians to those forms on 1*}22(:-,3,9%) which are invariant under
isorotation, .e.g., of the type

| P., 8. p;
B=H-=Tp + V) - ) Ly RN (3.482)

2m,

r =, 3ijfja| - (3.480)
Finally, note from Theorem 11.8.3, that conditions (347 are
necessary and sufficient ror the complete mvarignce orf nonlinear,
nonfocal, nonkamiftonian and nonnewtonian Ssystems (I/12.33)
represented vig lhe Hamilton—isotopic equations. 7
We now pass to a review of isometrics with a nontrivial functional
dependence, namely, for general Lie-isotopic brackets {3.27) for G =
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Diag. (842 B,% Bg?).

It is easy to see that the isocommutation rules remain structurally
unchanged under the generalization herein considered, with the only
replacement of the b- with the B-quantities, e.g.,

“ = 2 * 0 = 2
[Ji, r].] eijk Bj Ik, [Ji, p]] Eijk Bj Py (3.49)

The general isocommutation rules of the Isorotstional gleebras
SG(3) are then given by

~ _ ) 4 _ 2
sOB): g ,Jj] = cij {, ps - I = Sk By . pddy (3.50)

and provides a first illustration of the suructure functions of the Lie-
isotopic theory {Sect. I1.6). The reformulation of the above algebra to
reach the same structure constants of the conventional symmetry, as
in Eq.s (3.38), is here left as an instructive exercise for the interested
reader. ‘

As one can see, under the condition of positive-definiteness of the
isometric G, all infinitely possible isotopes SO(3) remain isomorphic to
SO(3), by therefore preserving the semisimple and connected
properties of SO(3).

The study of the global/ isocasimir Invariants that is, the
isocasimirs valid everywhere in T*Ez(r,S,s'{), under a nontrivial

functional dependence of the isometric, is involved on technical
grounds, inasmuch as it requires a deeper knowiedge of the
Birkhoffian realization of universal enveloping isoasssociative
algebras and related neutral elements (see the remarks at the end of
Sect. 11.6)..

We shall therefore content ourselves with the identification of the
Jocal Isocasimirs, that is, isocasimirs valid in a (star shaped)
neighborhood of a point a of the local variables a.

It is easy to see that, in this local sense, the isocasimirs of
realization (3.50) persist, i.e., are given by

2
=y, P-2-yea_ (3.51)
2 2
A simple example of a global isocasimir is given when
By = By=By =Blp) T, = B2, 1, = B2, (3.52)
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in which case the magnitnde of the angulal momentum

2 =365 = B) 2 (3.53)

is indeed a neutral element of the Lie-isotopic envelope, as the reader
can verify.

Additional examples will be given when considering specific
physical problems. The case of brackets (3.27) for nondiagonal
isometrics will be studied at some later time.

We close this section with comments on the physical significance
of our isoeuclidean spaces E(r,G#). The first point the reader should
keep in mind is that ZFe experimenter observing mterior dynamical
problewms Is not in E(nGH, but in the physical space E(88)
Therefore, the spaces Ein,G. 5 essentizlly provide a geomelrization of
nterior plysical medis, with the understanding that actual Messures
remain done in the phvsical space Ef,8%)

This dichotomy of geometrical space Efr,8.#) versus physical space
E(r,8%) will appear clear with further studies and applications of the
isotopic relativities. At this point, the following introductory comments
are in order.

The first meaning of the isoeuclidean space E{r.G &) is that of
providing a geometrization of the physical characteristics of the
interior physical media via the B-functions, called characteristics 5-
Junctions Recall that contact nonhamiltonian interior forces have no
effect in the total energy, but only on the local internal exchanges of
energy. These features suggest a geometrization of the interior media
which is such to provide no global effect, exactly along the notion of
closed nonhamiltonian systems.

Moreocever, one of the central objectives of any acceptable theory
for the interior problem is that of representing the inhomogeneous and
anisotropic character of the interior physical media. Our isoeuclidean
spaces achieve these aobjectives m their entirety. In fact, they
represent the Jtmbomogenurty of the interior media via different
values of the elements of the isometrics as well as their dependence
on the locally varying density j(r), temperature T(r), possible index of
refraction n(r), etc.

Bit.r,p, P T, o) # Bolt.r, P DML To I, ) # Balt,r,p P, Tom, )
{3.54)
The sguisciropy can be represented, e.g., via a factorization of
Finsler's type

41



B, = F) Ep, (3.55)

where r represents a preferred direction in the media, such as that of
the intrinsic angular momentum.

Of particular importance is the possibility of averaging the
characteristics B-quantities to constants, via any appropriate
averaging procedure

<| Bt 2. p. b Tom, ) [ > = by = constants> 0. (3.56)

In fact, the characterization of the physical media with the B-
functions is necessary when describing a specific interior trajectory.
However, the averaging of the B-quantities to consiants, Eq.s (3.56), is
sufficient for a global study of interior dynamics, e.g., when studying
Jupiter’s structure from an outside observer, or studying the global
behavior of light propagating within inhomogeneous and anisotropic
atmospheres (Chapter IV},

FIGURE 111.3.2: An illustration of the possibilities of the theory of isorotations
in classical and particle physics: the direct representation of the actual shape
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of a given charge distribution (an oblate spheroidal ellipsoid in the figure), as
well as of all its infinitely possible deformations under sufficiently intense
external fields, collisions or other causes. Note that the isorotational theory
can first represent the actual shape of the considered charge distribution (say,
an oblate spheroidal ellipscid as in the figure), and then its possible
deformations, all this already at a classical level (Santilli (1985b),(1988a)). By
comparison, contemporary theories can indeed reach a representation of the
extended character of particles via the form factors, but, a5 well known: 1) the
representation is achieved only after the rather complex second quantization;
2) the form factors provide only a remnant of the actual shape and cannot
characterize the actual shape itself {at any rate, the representation of non-
spherical shapes would imply the breaking of the conventional rotational
symmetry); and 3) the representation cannot possibly characterize the
deformations of said charge distributions {because, again, the conventional
rotational symmetry refers strictly to rigid bodies and it is broken under the
deformations of the physical reality). The advantage of the isorotations over
the conventional rotations is then evident, In short, fke theory of Sorotations
5 & theory of extended, elastic and deformable bodies; This concept alone is
sufficient to require a suitable isotopy of the conventional relativities which
is best illustrated by the simplest possible case of a free particle obeying the
Galilei-isotopic relativity (Sect. IIL.7).

As a result, the realization of the isorotational symmetry with
characteristic B- constants, Eq.s (3.36) and (3.40}, is fully sufficient for
the global study of closed nonselfadjeint systems, while the more
general form with nontrivial characteristic B-sunctions is primarily
needed for the local internal behavior.

In turn, this illustrates the sufficiency of the isocasimir (3.33) for
the global behavior, as well as provides a physical reason for the lack
of existence of global isocasimirs with nontrivial B~quantities.

A further application of our isospaces is the representation of the
actual shape of the particle considered. Recall that one of the
geometrical meanings of the invariant (3.19) of O(3) is the perfect
sphere. Therefore, one of the geometrical meanings of the
isoinvariants (3.18) is the representations of the actual, generally
nonspherical shape of the particle considered, e.g., an oblate
spheroidal ellispoid, jointly with all its infinitely possible deformations
{see Figure 111.3.2 for more details).

The epistemological implications of the averaging process (3.56)
should be known since these introductory words. Recall from Corollary
I11.3.1.2, that the isotransformations are generally nonlinear and
nonlocal in the physical space E(r,8,8). This is however the case for
characteristics B-functions with a nonlinear and nonlocal dependence
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in their variables. When these B-functions are averaged to constantis,
isotransformations (3.21) reacquire their conventional linear and local
character, with the understanding that the isorotations themeselves
remain generalized, Eq.s (3.42}.

In conclusion, the averaging (3.56) of the characteristics B-
" functions to constants for global Studies of closed nonhamiltonian
systems implies the full recovering of the linearity and locality of the
isotransformations and, thus, the preservation of the conventional
inertial approximation of the observer.

Ii1.4: EUCLIDEAN-ISOTOPIC SYMMETRIES

In the preceding section we have introduced the largest possibile
nonlinear and nonlocal, classical realization of the isorotational
symmetries 0(3) on the Euclidean-isotopic spaces T*Ex(r.8.f).
T*E(r,G.R). In this section we shall generalize the results to present the
infinitely possible isotopic generalizations of the Euclidean group E(3).
For this purpose, consider again system (I1L2.3) of N particles in
isospace T*E(r,G.#), but this time considered with respect to the
coordinate differences r,;, among generic particles a and b, i.e,,

TEESA : () = ), (4.12)

abl 1] ab]

Tgp=Fg ~ Tp # = &l 1 = giagG™L6 Y >0, (41b)
ij =123 ab=12.,N,

where we have kept the notations of the preceding section and the
isometric G has the most general possible nonlinear and nonlocal
dependence on all needed local quantities, such as: coordinates and
their derivaties r, F, ¥, ...; density p of the medium in which motion
occurs; temperature T; index of refraction n; etc.

Since @ is nonsingular and Hermitean, it can always be diagonalized
to the form

& = diag. (B42, By, Ba2), By = Bylt,r, £,¥,p, T, )>0.  {42)
i“ Bp“ B3 k = Bk
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DEFINITION: The “Euclidean-isotopic symmetries™ E(3), also
called “Isoeuclidean sywmmetries.; are the lsrgest possible
nonlinear and nonlocal Lie-isotopic groups or Isometries of
Isoseparations (£18) on T ET.G.5Y

As well known, the conventional Euclidean group E{3) is given by
the semidirect product

E@) = 0(3) ® T({), {4.3)

where: 0(3) is the conventional group of (linear, local) rotations in
T*E(r,8.R),

il

o@3): r = R@r, p = RE)Pp, RIR = RR! = [; {4.4)
T(3) is the conventional group of (linear, local} translations

T@:r=r+1r° p =p {4.5)
and the parameters are given by f{the ordered set)

w=(wg=06,1 k=12..8, (4.6)

namely, they are the conventional Euler’s angles 6 = (6;) and the
conventional translation constants r° = (r°j).
By introducing the (ordered set of) generators

E@3): X =&y =UP, k=128, (4.72)
Yk T Zaekij YaPjer Tk 2, Pra, (4.7b)

the conventional Poisson brackets among functions A, B on T*E(r35.%)

3A 8B 9A @B
[A,.B] = - - (4.8)
Arya OPya 0T P,

yield the familiar commutation rules of the Euclidean algebra



E(3) : [Ji,Jj] = Eijk o [Ji,Pj] = Eijk Py [Pi,Pj] = q,
(4.9)
and the connected component of the Euclidean group

n
EG): & = {l_[k elg[wkw @, Xk) (all)}a ,

To study the structure of the infinite family of possible isotopes
£(3) of E(8), we begin by recalling that the transformation theory on
T*E(r,G.8) is isotopic (Sect. 11.9), i.e., it is formally linear and local in
T*E(r,& A), but generally nonlinear and nonlocal in T*E(r,8%). Also, the
isometrics G enter directly into the exponential structure of the Lie-
isotopic group and this ensures the intrinsic nonlinearity as well as
nonlocality of the theory.

Finally, we recall that the Lie-isotopic brackets in T*E{lr.GR) are
given by Eq.s (111.3.27) for diagonal elements (4.2)

(4.10)

) 3A 3B aA BB
[A] Bl = By 2 - By
ark 3 px apk ark

(4.11)

The following property then holds.

THEOREM [I1£1 (Santilli {1958z} The isoeuclidean Symmetries
£Y3) of isoseparation (£1) on £ G5 possess the Structure

E@ : 63 ® T3), (4.12)

where O3/ Is the isorotational symmetries of Sect. 1113,

0@ : rg = RE)*ry =RE) GIriFuT,..) s (4.13a)

Rlxf = R*R =1 =671, (4.13b)
r, = (ria), i=1,23 =x,v,2), a=12....N,

and T3 is the largest possible group of nonlinear and nonfocal
Isolransigtions
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. ’ = ° —2 CRT)
T3) : Yia Ty T ﬁi {t,r, b, TN, (4.14a)

Pia = P (4.140)
With Birkhorrian realization in TEL,G8 characterized by:

U The same set of parameters (w) = (6;, r’;) or the conven-
tionzl symmetry E(3)

2 the same set of generarors (X )= U, B of the conventional
symmetry Fi3)

3 the Isocommutations rules of the Lie-isolopic algebras

-2

E@: B0 = gy B o (4.15a)
. _ -2
b, Pj] = 13j Py (4.15b)
fPi. Pj] = Q. (4.15¢)
& the Lie-isotopic group structuire '

E@): ewia = RO)TE)*a =

w, o1 Ve x)@)
([T e © 2 ¥ sl E R (4.16)

K e

5 the reslization or the B-~rfunctions

K =B 2 + r°.[B. 2" Py ° o B2 PJ "
B, “trp,..) =B~ + r].{Bi » Pil72 + %y B ,PJ.],Pk)/ I
| (4.17)

and the locai 13'00&5/32?}}' InVariants given by 7

St is appropriate to recall here that the realization of the isoeuclidean symmetry
under consideration is classical, that is, via fwectons in T'Er,6.%). As a result, the
generators and, therefore, the isocasimir invariants, must necessarily be functions,
while the isounit 1, of Eqs (4.18) is a metrix of functions. Thus, only the fawctional
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¢ = 1, ¢® = (pap)1,, ¢@ = ()1, (4.18)

Finally, all the above Inrinitely possible Euclidean-isotopic
symmetries Ef3) resuvlt to be locslly isomorpliic to the
conventional Euclidean symmelry £13/ under the sole conditions
of surficient SHooLBness, nNOnSguiarity and positive-
deriniteness of the Isometics G.

PROOF. By central assumption, the generators and parameters
remain unchanged under isotopy, and only the Lie structure is
generalized in an axioms preserving way. Under these conditions,
isocommutator rules (4.15) follow from the Lie-isotopic brackets (4.11)},
while isotopic group structure (4.16) follows from the exponentiation of
the above brackets according to the rules of Sect. 11.6. Similarly, /feca/
isocasimirs (4.18} follow from their isocommutativity with all generators
(see the comments on the locality of the isocasimirs of Sect. 11L.3).

The isorotational symmetries O(3) were studied in the preceding
section. Therefore, we have to study here only the isotranslations.
They can be written

T(3): r a - 'I‘(r°)mria = {(4.19)

* WP 1y’ @ P.
={Hje o7 lag @, ])(au)},lz*rai=

3
=r, rj[ria,P].]/2! + r°jrk[[ria,Pj],Pk]/3! o
and
Fig = T(r)*pia = {4.20)
o uax v
{ Ha exp[rjm 1Lg (aij) (au)} Pia
=Py * r°j[pia,Pj]/2! + r°jrk[[ria,Pj],Pk]/3! + oo

from wheh Eq.s (4.14) and (4.17) follow.

factors of the isounit in Eqs (4.17) are the correct isocasimirs of the isoeuclidean
symmetries.
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We finally remain with the proof of the local isomorphisms E(3) #
E(3). The local isomorphisms G(3)] =» O(3) have been proved in the
preceding section and shown to hold for all positive-definite
isometrics G. The local ismorphisms T(3) » T(3) then trivially follow
from the preservation of the original Abelian character under
isotopies. QED.

The application of the isoeuclidean symmetry to closed
nonhamiltonian systems (I1.2.3) is a particular case of Theorems 11.8.2
and 11.8.3 here left to the interested reader. '

For future needs, let us consider the global treatment of systems
(11.2.3) under average (I[1.3.56) of the charactereristic B~functions to b-
constants, and let us introduce the redefinitions

W = Eaekij Tia Pja> Py = 2, Pra (4.21a)

Tia = Tia ®p Pia = Pja b; (no sum). {4.21b)

Then, isocommutation rules {4.15) become
E@): D, ,‘3).] = €jjk Jk Ui - Pyl = ik P, IB; ,“Pj] =0, {422)

namely, the structure constants of E(3) and E(3) coincide, thus
illustrating again the local isomorphisms E(8) » E(8).

The study of the classification of all possible isotopes E(3) under
the relaxation of the positive-definiteness of the isotopic element T,

is left to the interested reader.

Intriguingly, this section constitutes a preliminary step for the Lie-
isotopic generalizations £(3.1} of the Poincaré symmetry P(3.1) to be
considered in Chapter 1V.

As a matter of fact, Theorem II1.41 can be easily modified to
produce the infinite family of Lie-isotopic generalizations P(2.1) of the
Poincaré symmetry P(2.1) in (2+1-space-time dimensions, via the mere
assumption

G = Tn, v = diag. (+1,+1,-1), (4.23)
namely, that the isometrics G are the isctopes of the (2+1}-dimensional

Minkowski metric 1), rather thah of the Euclidean metric 8.
These relativistic aspects will be studied in details in Chapter IV.
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1I.5: GALILEI-ISOTOPIC SYMMETRIES

As well known, the conventional Ga/ifer symmetry G(3.1) (see, e.g.,
Levy-Leblond (1971) or Sudarshan and Mukunda {1974)) can be defined
as the largest Lie group of Zwesr snd Jocal transformations leaving
invariant the separations

tg - tp =inv,

t;, - rib) Si]- (rjg = Tjp) =inv. at tz = tp, (5.1}

Lj=12 3(xy2 a=12..N

in SitXT’f‘E(r,s,S%), where ®, represents time, E(r8,#) is the conventional

Euclidean space, and T*E its cotangent bundle (phase space), with

metric § = diag. (1.1,1) over the reals %.
The explicit form of the Galile/ transformalions is given by the

familiar expressions

t =t + t°, translations in time (5.2a)

rig = Tjg + r"i, translations in space (5.21)
K = Tia ¥ tv%,  Gatilel boosts (5.2¢)
'y = R{O) 1y, rotations. {5.2d)

A classical realization of G(3.1) {for the case of all non—null masses,

m, #0,a =1, 2,.., N, herein assumed) is characterized by the (ordered
sets of) parameters

w o= (wp) = 6,5, 1% ), k=12,.10, i=123 (5.3)

and generators

X = (%) = 0j,G, Py H), (5.42)

gy = 2:aeilm Tla Pma’ P = Ea Pig> (5.4b)

G = g (mg rig = "Pyp), H = p;, Py, /2m; + Viryy), (&)
l‘ab= I‘b, i=123 k=12.,10, a,b=12.,N,
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with canonical realization of the Lie algebra G(3.1} via the
conventional Poisson brackets

G(3.1) : [Ji s Jj] = eijk Jk, [Ji . P]-] = Eijk Pk, (5.5a)
b;-6f = € G by HI =0, (5.5b)

[Gi.stI = B M, [G;. H = P, | (5.5¢)

[Pi.Pj = [G;.G] = [Pj,HI = o, 5.5d)

M= Dgmg (5.5¢)

Casimir invariants
c®@=p W=p2-2mH @@= (M- GAP2 (5.6)

and canonical realization of the group structure G(3.1)
. = -] uv
G(3.1): a gw) a = { [ 1 exp [wk w (avxk) (au)]} a (57)
au =3/09al, a = (@ = (ria ,pia), o= 12...8N,

where w’V is the canonical Lie tensor ([11.2.13).

The main lines of the the construction of the infinite family of Lie-
isotopic generalizations G(3.1) of the Galilei symmetry G(3.1), under the
name of the Galilei-isotopic symmetries, were submitted in the original
proposal for the Lie-isotopic theory {Santilli (1978a.c)). A step-by-step
generalization of classical Hamiltonian mechanics , under the name of
Birkholfiah mechan/cs, was subsequently constructed, and the
Galilei-isotopic symmetries were formally proposed in Chapter 6 of
Santilli (1882a) for their most general possible, nonlinear,
nonhamiltonian and nonnewtonian, but local-differential realization.

A comprehensive study for the nonlocal classical realization was
conducted in Santilli (1988a) and (1991b), which constitute the basis of
this presentation.

Examples of closed two- and three-body nonhamiltonian systems
invariant under the Galilei-isotopic symmetry were studied by
Jannussis, Mijatovic and. Veljanoski (199]) {as reviewed in Appendix
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I11.A).

AS now familiar, the starting basis is the infinite number of
isotopes E(r.3.#) of the Euclidean space E(r8%) which is, in turn,
extended to the isocotangent bundle T*E(r8,8). A nonhamiltonian
system of N particles, Eq.s (II1.2.3a), is then considered in such isospace

with the familiar local coordinates a = (ab) = {rgas pka}, =12, ..,6N,

k=1,23(=xy,z,anda=1,2,...,N.
The system is then represented via the Birkhoffian variational
principle (I1.7.23) which essentially introduces one-isoforms on

T*E ,{r,5 )

& = o, x 1Ty = R da”, (5.8a)
R° = (p.0), T, = diag. B,3), (5.8b)
3 = diag. (b12, b22, b32), by = byt r,p, p,..) > 0. (5.8¢c)

The isospaces for the characterization of the symmetries of the
systems are T‘*Ez(é,ﬂ) = T*E(r,GA) characterized by the two-isoform

{11.9.92) which, in their Hamiltonian-isotopic expression, can be written
in the local chart a

&y =l Téua(a...) Wy, ) 82k A da¥ = d[Ty1(a. )R]y dakt,  (5.92)

T, = Diag. (6,6), G = diag. B,% By% B, By >0, (5.9b)

where the methods to construct the isometrics G from 8 are assumed
to be known (see Sect. L9 and the outline of Sect. {11.2).

The Lie algebra brackets characterized by two-forms (5.9) are
given by the now familiar expression in T*E(r,G.#)

B U ey v B -
ABl = — ol —, 5.10a)
aak 20 av
1, = diag. 71,67, (5.10b)

where o#@ is the familiar canonical Lie tensor.
We are now equipped to introduce the following
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DEFINITION L5171 floc cit)- The “peneral (nonlinear, nonlocal
classicall Galilei-isotopic symmetries”; or general isogalifean
spmmetries” Gi31) are given by the Lie-isotopic grou: = of the
most general possible trapstormations on $y x TE4G.:

ta - tp =inv, (5.11a)
(rka~ Tip) Bi?(t 1, p..) (rka - rkb) =inv. atty=tp, (511b)

ta, tp € Ry, ra, rp € T'EGH) (5.11c}

where iy Is an Isotopic lifting of the conventional field %y here
called Tsotime feld”; with explicit structure

# = Rl Y = B4—2(t, r,p..,  Bg>0, (5.12)

TEG G S Is the Isocortangent bundie for sisosymplectic two-
sorarms with isometrics & (5.98) and the four functions B 'y B3
Bg and By beslides being Independent and positive-definite, are
arbitrary nonlinear and nonfocal (eg., rregral] functions on &/
possible, or otherwise needed focal variables and GUANLILIES.
The ‘restricted Isogalilean syvwmetries™ occur when the
characleristic B-quantities are coastants diferent than one

The reason for the additional lifting ® = #; in the trasition from
the isceuclidean symmetries E(3) of the preceding section to the
isogalilean symmetries G(3.1) of this section, will be evident shortly,
although their ultimate meaning will appear in the study of the
nonrelativistic limit of the Poincaré-isotopic symmetries to be studied
in the next chapter.

At this point we merely recall from Sect. 1.2 that the use of the
isotime field does not affect the physical time. In fact, isofields possess
the conventional sum,

ﬁtl + ?2 = (t}. + tz}‘Iz, (5.13)
but have the isotopic multiplication
11 *tz = (titz) jt' (5.14)
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As a result, the multiplication of the isotime by any quantity, say, A, is
conventional, t*A = tA, which justifies the setting of the measurement
theory with respect to the ordinary time.

THEOREM [IL.5.f (Santilli (19783) (19523 (1988a)) The general
nonlinear and nonfocsl classical reaiization of the Galilei-
isotopic for isogalilean) symmetries G(31) on By TEGCH as
per Defipition If1.51, can be written

, t=t+¢t §4"2, iso-time translations (5.15a)
r/ =rj*+ ri ﬁi_z, iso-space translations (5.15b)

4
ry = r; + vV’ Bj"% iso-Galilei boosts (5.15¢)
- r = R@)*r, isorotations, {5.15d)

where the B-runctions are generally noplinegr and nonlocal i

all possible local varigbles and quantities to be Identified
shortly. Mareover, the Galifei-sotopic symmelries G{3.1) are
characterized by the Lie-Isotopic brackets (5.10) underlying the
exact symplectic-isotopic two-forms, with explicit expression

04, 9B aA  _, 3B
K

5 - Bk , (5.16)
3Tkg Pka  dpgs 3 I'ga '

[A°B] =

andg possess the rfoflowing stracevre:
1/ the conventional parameters (5.3 e

w = (wy) = (6;, 5, v°i, ), k=12.10, (5.17)

and the conventional generators (54, but now defined on
Isospace Hy x TELGH), e

i = DSk TPy P T 2P (5.13a)
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Gj =2a(m, 1, ~ tp) (5.18b)

aia
H = py, B 2p,, /2my + Virap) (5.18¢)
el -y Y= - 2 - :
Tap *lra —rpl 2=, - r B A0, - (5.184)

2l the Lie-isotopic ajgebra

gl = -2 _ 9
GB.1: b, J]] Sk Bx [J; . P]] €k Bj “ P (5.19a)
= -2 'B] =

[J G]] B Ok ;. Bl =0, (5.19p)

- -2 -
Gi,P]=8.MB. % [G B] =0, 5.19¢
[G; J] ij M B; G, . B] (5.19¢)
[Pi,P].] = [Gi,Gj] = [p,/B] = 0, (5.194)

3 the Lie-isotapic group

; o1 Y@ x )
6@.1: o= {[TI el e 20 E% @) 1 1obr, (5.20)
£ .

4 the focal isocasiir nvariants
N N L
¢ =1, ¥ = pap - MH 1, (5.21a)

@

67 =MJ - GA P)2 = {(MJ - GAP)G(MJ - GAP) ] 12, {5.21b)

5 the explicit expressions of the S; runctions

ﬁl_z(r°) = Bi'2 + rj[B 2P ]] /204 1o 1y [Bi72 [Pyl [Pyl 7 3+
(5.22a)

o -2 - o o _—'2" ~
+ Vj[Bi .,G]-]/2! + v v, IBi ,Gm],Gn]+....

Bi2v) = B, 2
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(5.22h)
while 3}*2#7 Is the solution of the algebralc equalion

r w?? x1,° (0 H @
w 2 HHV)]}r_

re+ 8 4_2) = {el§ {5.23)

The mrnite ramily of Galiei-isotopic symmetries so consirucied
resuit to be all locally isomorphic to the conventional Galiler
symmetry under ithe conditions of surricient smoothness,
nonsingularity and positive-derinitness of the isounits. Finaffy,
gl fsosymmetries G(31) cen approximate the conventional
symmetry G321 as close as desired whenever lhie Isounits
approsch the conventional unit, and they afl adwit the
conventional Symmetry &s & pardcular case by construction.

PROOF. As now familiar, the Lie-isotopic theory preserves, by
central condition, the parameters and generators of the conventional
symmetries, and this illustrates property 1). The Lie-isotopic algebra
¢(3.1) can then be readily computed via the use of brackets {(5.16), and
this proves property 2). The exponentiation to the Lie-isotopic group
G(3.1) (property 3) then follows uniquely via the use of the general
theory. The validity of the local isocasimirs (5.21) also follows via the
use of the same isocommutators (Property 4).. The application of such
exponentiations to the local coordinates then yields the explicit forms
{5.15) with explicit form (5.22) of the B-functions. Finally, the isounit of

the time isofield, B4 2(t) is provided by the solution of Eq. (5.23). The
local isomorphism G(3.1) % G(3.1) trivially follows from the

isocommutation rules. Q.E.D.
Note that, for 1, = I and B, = 1, one recovers the conventional

Galilei symmetry G{3.1) identically, because in this case By = B4 = 1, thus

recovering the conventional, canonical representation of linear and
local Galilei’s transformations, including the Galilean translations in
time ¢ = t+ t°. However, for 1 # 1, Eq.s (5.23) cannot evidently hold any
longer for t = t + t° The lifting to form (5.15a) then follows. Explicit
examples will be worked out later on.

The preceding results evidently include those for the Euclidean-
isotopic symmetries E(3), as well as of the isorotational symmetries of
the preceding sections.

It is an instructive exercise for the interested reader to prove that
the infinite family of isosymmetries G{3.1) so constructed do indeed
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verify the congitions of Definition II1.5.1 and, in particular, do
constitute isosymmetries of invariants (5.11).

COROCLLARY LS5 14. fn the particular case of constant
Isometrics & we have

STERSR) = RpTRIGH = ReT'EIHA), (5.24a)
g = G = diag. (by2, by2, bg?), by = const. >0 (5.24b)
1, = b4"2 = const. > 0, (5.24c)

Lhe B“—quxmfabs colnclde with the disconal elements of tie
Lsounits,

ﬁi"z(r"}

I

b2 (5.25)

I

B’i-Z(vc') = Bi_z = bi_z, §4_2(t°)

and the general isogalilesn transrormations (515 become linear
and local, e, thev assume the simplified form

U=t+ b2 (5.26a)
ry =1 +orp _ (5.26b)
r’i = ri + ¢ \;°i bi"z, (5.26¢)

r = R «r. (5.26d)

Which are the “restricied Isogalilean transrormalions” of
Definition 11 1

The above properties, whose proof is trivial, have important
implications from a relativity viewpoint. In fact, they imply that the
Galilei~isotopic symmetries can indeed preserve inertial frames, but,
of course, in their linear particularization, e.g., following averaging of
the characteristic B-functions of the interior medium of type (111.3.56).

The problem of the isocasinmirs for the global case requires a study
of the isoscalar extensions of the Galilei-isotopic symmetries,
isoassociative envelopes in classical realization and their neutral
elements. As such, this study will be conducted at some later time.

The application of the Galilei-isotopic symmetries G(3.1) to the
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characterization of closed nonselfadjoint systems can now be formu-—
lated. In fact, Theorems 11.8.2 and 11.8.3 readily yield the following

LEMMA [I151 (Santilfi (1958a). Necessary and sulficient
conditions for the Isoimvariance of closed nonselfzdjoint
systems (1323 under the isogalilean symmetries G2l are that
they can be consistently written in isospace Ry TELGH) and
admit the representation I terms of the symplectic-Isolopic or,
equivalently, Lie-isotoplc representation

7.0 daV .G aH 5272)
w =0 = s 272
wo "z v o G2 v aah
dat 8H
= ™ = MM ) , (5.27b)
dt 20 aav
H = pi, Gjjit. 1. p.) Prp/2my + Virgy) (5.27¢)
Iy = Wia ~ rip) Gijlcp.-) (r}. 2~ Fjok (5.279)

in which case all total quantities (5.18) are not suvbsidiary
constraints, but first integrals of the equations of motion.

It should be understood that the imposition of the Galilei-isotopic
invariance restricts closed nonselfadjoint systems, from the general
class (111.2.3) with subsidiary constraints, to that particular subclass in
which the total quantities are automatically conserved in virtue of the
isosymmetry G(3.1). '

This provides the nonlocal extensions of the nonlinear,
nonhamiltonian and nonnewtonian results of Santilli (1982a).

The classification of all possible isotopes G(3.1) of G(3.1) via the
relaxation of the positive-definiteness of the isounits 12 and “It is a

rather intriguing problem, which we are forced, for brevity, to leave to
the interested reader.

A notion particularly intriguing for the study of the discrete
symmetries and other aspects is the following one derived from
Definition 11.3.3.

DEFINITION FI152 (Santilli 19585) (99/a)f The “Isodvals™ Vel o ¥ )
of the Galiler~isotopic symmetries G{31) on Isospaces
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& <T'ErGH), f, = & 1, f = a1, (5.282)

1 >0 =g @GL6h 6>, (5.28b)
&re given by the isasyme. . fries on e Isodual spaces

TEEGRY,  #°% = 819 &9 = 81,9, (5.292)

1,2 = -1, 1,%=diag (91,647, 6%=-6 (5200

A number of comments are now in order. First, it should be noted that
the notion of duality wmecesssi7/y requires the Lie-isotopic theory,
evidently because it cannot be defined without a generalized notion of
unit.

Second, it is important to see that Jjsoduslity does nor represent
inversions for iso [mversions/ . For this purpose, let us consider the
isoinversions

I =Pr=Pxr=PTr -r, {5.30)

where P is the conventional inversion element and P = P 1 its isotopic
image. It is easy to see that the above inversions coincide with their

isodual. In fact, by introducing the isodual 'I‘d = —T, we have

pdfdr = p19T9r =PITFr =Pr = -r (5.31)

Inversions can indeed be representred via an isotopic lifting but of
type different than that occurring in isoduality, and given by the

particular value TH= - 1, under which we have

i

2 = r*8r = ptTsr = riTilsTir = 2 =
=rtsr=rtsr=r? forTé=-1,1r = -r (5.32)
Third, the following property (which is introduced here apparently
for the first time) is rather simple at the isoalilean level, but has

intriguing implications at the isorelativistic and isogravitational levels
of the subsequent chapters.

59



PROPOSTTION fIL58 1 Al sy:s*téms which are mvariant under the
Isogalilean symmelries are isodua! mvariant.

PROOF. Hamilton-isotopic equations (5.27a) can be written

3H 3 H
Gjpe by - —— =0, Ggipg + — =0 (5.33)

Then, for isogalilean invariant Hamiltyonians (5.27c), we have

HY = pj, Gdij Pjg / 2my *+ V(ed,). (5.34a)
rdab = { (ria ~ Iip ) Gdij (I'ja - rjb) } %, (5.34c)
G¢ = - G, (5.34c)

under which
69 k- AHI /7 Bp = —(Gyy1r; - BH/dpy) =0 (.5.352)

69 Py = 8O 70r = -Gy Py + 8H/dry) = 0 (5.35b)

which, when combioned with the isodual invariance of isoinversions,
Eq.s (5.31), prove the proposition. QED.

In different terms, zfe fnvariance under [soduzlity appears to be &
pasic /aw of nature Independent from their Invariance under
mversions .

We close this section with a few remarks on the problem of the
explicit coustruction of the isogalilean symmelries for a given
Galifer-noninvariant sysiem .

As well known, in the conventional canonical treatment of
mechanics, the Galilei symmetry G(3.1) is preassigned. Physical systems
are then restricted to those which are G(3.1})-invariant. This evidently
results in severe limitations in the class of systems admitted, which are
essentially given by the local and Hamiltonian systems of closed
selfadgjoint type.

In the covering Birkhoffian mechanics, the situation is reversed. In
fact, one considers, first, the equations of motion as provided by the
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experimental evidence, and then searches for their space-time
symmetries.

The Birkhoffian realization of the Lie-isotopic theory has been
conceived also for the explicit construction of the isotopic covering
G(3.1) of G(3.1) from given, G(3.1)-noninvariant equations of motion, with
the consequential, substantial broadening of the class of admitted
systems, while preserving the conventional class as particular case.

The rules for the explicit construction of the covering G(3.1)
symmetries from given equations of motion are rather simple. In fact,
one merely has to write the system considered in the symplectic-
isotopic form (5.28) on $xT*E5(r,G,&). This provides the fundamental
isounit '12 which characterizes the Lie-isotopic structure (5.21) of
G(3.1). The rest of the isosymmetry (5.21) is characterized by the
conventional paramelers Wy and by the conventional generators
X (only properly written in ®<T*Eo(r.G.8).

Note finally that, under a sufficient smoothness of the isounit, the
‘existence and convergence of the infinite expansions (5.21) is
guaranteed by those of the conventional structure (5.7). The reader
should, however, not expect easily summable series (see the examples
of sums into ltraascendentzal functions of the original propoesal in
Santilli {(1978a)).

The first (and perhaps most important) examples of G(3.1}-invariant
systems are the two-body and three-body, closed nonselfadjoint
systems studied in Appendix A. Additional explicit examples will be
given in Section I111.7, when studying the notion of particle

characterized by the G(3.1) isosymmetry.

1.6: ISOTOPIC LIFTINGS OF GALILEI'S
RELATIVITIES

As well known, the Galier relstivity (see, e.g., Levy-Leblond {1971} or
Sudarshan and Mukunda {1974)} is a description of physical systems via
their form-invariance under the Galilei’s symmetry G(3.1} = [04(3)

Tpe@)] * ITye8} x T=(1)}, or, equivalently, under the celebrated Gz/ie/s
Lransrorma tions
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t=t + t°, translations in time, (6.1a)

rj=rj + r°;, translations in space, {6.1b)
rj=rj + t°v°j, Galileiboosts, {6.1c}
.r’=R(B}r, rotations, (6.1d)
¥ = Pr = - r, inversions. : (6.1e) |

The relativity is verified in our physical reality only for a rather
small class of Newtonian systems, called closed selfadjoint sysiems.
These are systems (such as our planetary system) which verify the
conventional total Galilean conservation laws, and admit internal
forces which are local (differential), potential and selfadjoint.

For all remaining Newtonian systems, Galilei’s relativity is violated
according to a number of mechanisms indicated in Sect. IIL.1. In the
final analysis, the limitations-of Galilei’s relativity are inherent in its
mathematical structure. In fact,

1) The /Zimear character of Galilei’s transformations is at variance
with the generally zon/inear structure of the systems of the physical
reality of the interior dynamical problem, as established by
incontrovertibie evidence;

2} The /oca/ (differential) character of Galilei's relativity is at
variance with the generally mon/foca/ (integral) nature of the systems
in our Earthly environment; ang

3) The strictly Hamiltomnisn (canonical) structure of Galilei’s
relativity is at variance with the generally nombami/tonian character
of physical systems of our reality.

An infinite family of Lie-isotopic generahzanons of the Galilei
symmetry, under the name of Galfe/~isotopic SYHMELries G(3.1) has
been presented in the preceding section to represent a broader class
of systems. In particular, we have shown that:

A} The Galilei-isotopic symmetries characterize c/osed noin-
selfadjoint systems  (111.2.3). These are systems (such as Jupiter)
which verify the conventional, total, Galilean conservation laws, while
admittin the additional class of noniocal, nonhamiltonian and
nonnewtonian internal forces.

B} The Galilei-isotopic symmetries possess the structure

6(3.1) = [0gld) @ Tpol®)] x [Tyel®) x Tyeltl], (6.2
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and result to be locally isomorphic to the conventional symmetry

G(3.1) under the positive-definiteness of the underlying isounits, by
admitting the latter as a particular case. In :his sense, G(3.1) provides
an infinite family of Zie-fsotopic coverings - {3.4).

C} All symmetries G(3.1) can be explicitly constructed via the Lie-
isotopic theory, that is, via the use of the same parameters and
generators (conserved quantities) of the conventional symmetry, but
via the most general possible, axiom-preserving realizations of Lie
algebras and Lie groups. In this way, an infinite number of symmetries
((3.1) can be constructed for each given Hamiltonian H = T + V (ie., for
given potential-selfadjoint forces), as characterized by an infinite
number of possible isometrics for the interior space, which represent

the infinitely possible interior physical media.
The isogalilean transformations are defined in the isotopic
generalizations #¢xT*E(r,GA) of the conventional space RgxT*E(rs.R)

of Galilei’s relativity, and are explicitly given by (Sect. 111.5)

t=t+ t ﬁ4'2(t, r.p,.), isotime translations, (6.3a)
ri= r, + Y Ei_z(t, r,p.), isospace translations, (6.3b)
ri=rj + t'v ﬁi_z {t,r,p,..), isogalilei boosts, (6.3¢)
I’ = R} > r = R(O) G(t, r, p,:..) r, isorotations, | (6.3d)

r = P = PTEr,p, )01, isoinversions, (6.3¢)

;I‘ = T8=-T 1219 = -1, isoduality, (6.3f)

whefe the B's are generally nonlinear as well as nonlocal functions of
all Variables, they vary from system to system, and they can be
explicitly computed via the Lie-isotopic techniques for each system.

Theé reader should keep in mind, not only the nontrivial difference
in the functional dependence of isotransformations (6.3) with
transformations (6.1), but also the appearance of the additional isodual
transformations (6.3f) which are not introducved for the conventional
Galilean relativity owing to the restriction of the unit to the trivial
form I = diag. (1, 1,).

It is easy to see that transformations (5.3) leave invariant the
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following isoseparations in $p<T>E(r.G.R)

tg —tp =inv, | e, -r.) Gt ., p..) rjg - Tjp) = inv, (6.4)
ia i B J J

,j=1,2,8=xy.z, ab=12..,N,

the latter one applying for ty = Uy,

In this section we shall study the relativities characterized by the
Galilei-isotopic symmetries- G{3.1) under the name of Galifer~isotopic
relativities or rsagalilean rejfativities for short. The generalized
relativities were first submitted in Santilli {1978a), and then studied in
details for the nonlinear, nonhamiltonian and nonnewtonian but local
case in Santilli (1982a) (see Chapter 6, particularly Definition 6.3.9, p. 243
and ff). The extension to nonlocal systems was reached in Santilli
(1988a).

DEFINITION I8 1 The “zeneral, ronkbnear and nonlocal
Galilei-isotopic relativities™, or “general Isogalilean
refatiuvities” ror short, are given by the form-ravariant
description of physical systems characterized by the infinite
ramily of Galiler-isotopic symmetries 631 on HpTERCH, £ =

fily =disg 7,6, B, =81, >0 1,>07,> 0 and their

sodusl ¢ dﬁﬂj, with corresponding, mnfinite family or general
Isogalilean transformations (53} The “restricted (linear and
local) isagalilean re/slivities™ occur ror diggonal Isomelrics with
constant diggonal efements other than one

The reader should be aware of the umigueness of transrormalions
(6.3) for each given isometric G {up to the degrees of freedom of the
Lie-isotopic theory which are broader than the conventional ones, and
include, e.g., the Birkhortian gauge transiormations, see Sect. 1.7).

The restriction ¢{3.1) » G(3.1) in the above definition should also be
kept in mind. This is due to the fact that, if such restriction is lifted (i.e.,
if the isounits are not necessarily positive-definite), isosymmetries
G(3.1) still formally exist, but they do not qualify for the
characterization of covering relativities. See in this respect the
classification of all possible compact and noncompact isotopes O(3) of
0(3) of Sect. 1113

Finally, one should keep in mind that all our isotopic formulations
have been constructed in such a way to coincide with the original
formulations at the abstract, realization-free level. We should
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therefore expect that the Galilei-isotopic relativities coincide, by
construction, with the conventional relztivity at the coordinate-free
Tovel,

The form-invariant description of physical systems characterized
.¥ the Galilei-isotopic relativities has been studied in the preceding
~gction. We therefore remain here with the problems of:

a) identifying the physical laws characterized by the isogalilean’
relativities;

b) prove their form-invariance under the isogalilean symmemes
$(3.1); and their idodual G9(3.1) and

c) prove their abstract equivalence to the conventional physical
laws.

The above results are expected from the very structure of our
isotopies. Consider the historical &a/iers boosts

Ir.=r.

[T YUY, P; =B+ mv"ii (6.5)

i
which, as well known, apply for the simple case of a particle with
constant speed, under the (often tacit) assumption that motion occurs
in vacuumn.

Suppose now that the partlcie considered is extended and
penetrates within a physical medium at a given instant of time t. Then,
the Galilei transfortmations are evidently inapplicable, e.g., because of
their linearity, locality and Hamiltonian character, while the particle
experiences a drag force that is nonlinear, nonlocal and
nonhamiltonian.

Our generalized transformations

rp=rj + t'v' ﬁiﬁz(t, I, Prh {6.6a)
Pi = p; +mv B2 r,p, (6.6b)

are then applicable to represent the Jeviztions from the original
uniform motion. In particular, Eq.s (6.6) can represent a (monotonic)
increase or decrease of speed depending on the sign of the v°-

parameter (since the B~2-terms are always positive definite). In the
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former case we have the usual drag force caused by motion within the
physical medium. In the latter case we have instead a particle
penetrating a highly turbulent medium which causes an increase of its
speed.

The physical law characterized by the isogalilean boosts IS
therefore the representation of a1 Arbilrary rectjiinear moton, wien
all forces derivable from & potential are null, and the locsl, monoronic
changes {increase or decrezsel of the speed are due to the contact
nonpatential forces origingaling rrom the pliysical medivm.

The important point is that, in the transition from the linear, local
and Hamiltonian transformations {6.5) to their nonlinear, nonlocal and
nonhamiltonian generalizations {6.6) the geometric axioms are
preserved, as established by the local isomorphisims W) = TWY.

" In different terms, recall that our isotopic liftings leave unchanged
(by central assumption) the original generators, that is, they leave
unchanged the existing potential forces. Then, the isotopic liftings
G{3.1) = G(3.1) characterize the transition from the aoriginal, G(3.1)-
invariant system of particles moving in vacuum, to the same sysiem
moving within physical media. The infinite number of isotopes G(3.1) is
needed for physical consistency in order to represent the infinite
variety of different physical media in which the original system can be
immersed.

This identifies property a) above, namely, the generalized physical
laws representing rectilinear motion within physical media.

We now pass to the study of properties b) and c), namely, the form-
invariance of the generalized physical laws (6.6) under G(3.1) and their
axiomatic equivalence to the Galilean laws (6.5).

For this purpose, we note that the laws of the uniform motion in
vacuum is geometrically expressed by the structures

rp —vvy TW)p; = Pi - mv, {6.7a)

TV 13

Mad @G (au),

TV = e (6.7b)

e

namely, the structure of the the Galifean law of uniform motonn s
provided by the right modular (associztive) sction of the finite Galiler
boosts Tv Y on the coordinates and moments.

But isotopic laws (6.6} are geometrically expressed by
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TW°) * ro= rp- VY Ei_z, T »p; = pj - mv’ Bi_?', (6.8a)

(9a)

o, WO OV
) 12 (aVG].)(au)”

T) = {[ elE v 2} 5,8b)

Thus, the structure of the varigble motion within a physical
medium Is characterized by the modular-isotopic (associative-
Isotapic) action of the finite Isogaliler boosts on coordinates and
moments.

But the modular action T{v°} r coincides with the modular-isotopic
action T(v*)r at the abstract, realization-free level by construction.
This shows that he gbsiract sxioms underfying the Galilean unirorm
motion sre preserved By our covering Galifer-isotopic relativities,
and proves property c) above.

The proof of property b) is trivial and merely follows from the
composition law of Lie-isotopic groups

TE)*T ) =T@)*T0E) = T+, (6.9)

Note the unity of physical and mathematical thought between the
generalized and conventional relativities. In fact, we can introduce

only one abstract law of rectilinear motion, say, T[Uulr, with infinitely
many different, but locally isomorphic realizations T{(v°}*r representing
the infinitely many nonuniform motions within different physical media,
and only one canonical realization TV t, representing uniform motion
in vacuum.

The invariance of the physical laws under isoduality G(3.1) = ¢9(3.1)
then follows from Proposition I11.5.1 and the property that the mapping

TaTd=-T implies B2 - B2, thus resulting to be equivalent to the
inversions of the Galilean values {t°, r) = (-t°, —r).

The extension of the above results to other physical laws is
straightforward, and is here left to the interested reader for brevity.

Note that, despite their nonlinearity, &/ Galile/-isotopic
transformations (63 focally coincide with the conventional
ransrormations (6.1) ie. at a given, fixed value T, r, p, ... of the local
variables, we have ’

C 8 2L 5. P,.) =t°=cost, rBj ALT.P.) =r°, (6.10a)
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v 82,7, p,.) = v ° =const, ROl =RE).  (6100)

A similar situation must then hold for the physical iaws, namely, we
can state that the phyvsical laws characterized by our Galiler-isotopic
relativities are locally equivaient to the conventiona! Galilean 1aws.

We have reached in this way the most important physical result of
the analysis of this volume until now, which can be expressed as
follows:

THEOREM 1161 (Santilii (19883} Af] infinitely possible
isogalilean relativities on RpxTE@GH) coincide with the

conventiona! Galifer refativity an .ﬁ';xT*E{' R at the abstraci,

realization-rree flevel, that is, not only 2/ infinitely possible
Isogalifean symumetries G321l cofncide with the conventional
Galilel symmetry G321, but also the infinite class of Isogalilesn
ransrormations (634, b, ¢ d, €/ cofncide witlh the conventiona!
Galiler transformations 13, b ¢, &) and the same holds for the
refared physical /laws:

The above properties illustrate the uitimate physical and
mathematical unity of the isogalilean relativities with the conventional
one, exactly as anticipated earlier from the abstract unit of the
underlying methodological tools illustrated in Chapter IL

Such unity, however, will appear in its full light only at the
gravitational level of Chapter V where we shall show that the
axiomatic unity between Galilei’s boosts and their isotopic extensions
is a particular case of a much broader geometric unity within the
context of the Riemannian-isotopic geometry of Sect. ILil.

In particular, in Chapter V we shall show that ke Zransition from
he Galilean, exterior, uniform motion In vacuum to its Isotopic
eriensions within paysical media, does not imply & change in geodesic
wotion, but only the transition from geodesics within conventional
spaces, to geadesics within isospaces (Sect. /1.12)

Despite such mathematical and physical unity, the physical
differences between the Galilei-isotopic relativities and the
conventional one are nontrivial. To begin the illustration of this point,
let us recall that Galilers refstivity establishes the equivalence of alf
fnertigl rrames, as well known.

On the contrary, the Galilei-isotopic relativities establish
equivalence subclasses of noninertial frames, those with respect to
the  center-of-mass frame of the spstem, each class being
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characterized by each relativity (i.e, by each physical medium). The
understanding is that different systems imply different subclasses of
isotopically equivalent frames.

To put it differently, physical events can occur in the Universe
according to a -ultiple infinity of noninertial conditions. The Galilei-
isotopic relati- .-ies essentially indicate that all these noninertial
frames cannot be reduced to one single Lie-isotopic class of
equivalence, but require their classification into subclasses of frames,
isotopically equivalent to the observer’s frame at rest with the interior
problem considered.

But the Galilei-isotopic relativities are coverings of the
conventional one. This means that the conventional inertial aspects
are not lost, but fully included and actually generalized in the broader
Galilei-isotopic setting. This concept can be made more clear via the
use of the Corollary I111.6.1.a under which we have the following

COROLLARY Hf6.1.8 floc cit) The isagalilean reiativities adwit
&lr minite subciass of fnear and locsl generalized refzlivities
on HpTELER) for § = constant > 6, 8 = 1, called Trestricted
Isogalilean relativities;, which are nonlrivially different than the
conventiona! Galllels relatrvily:

In fact, under the assumption of the Corollary, the general Galilei-
isotopic transformations (6.3) assume the particular, manifestly linear
and local form

t=t+ t°b4_2, isotime jranslations, ' (6.11a)
r‘i =t r’ bi‘z, isospace translations (6.11b)
;= ot UV bi~2, isogalilei boosts, ' (6.11c)
r = Rexr = R@ gr, isorotations, {6.11d)
r=Ppxr = -r, isoinversions, (6.11d)
§=38=-5  isdualiy, (6.111)
8 = diag. (b2, by2, bg?), by =cost. >0, {6.11g)
89 = diag. - b2 (0,2 - bgd (6.11h)

The lack of equivalence between the restricted isogalilean
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relativities and the conventional one is soon illusirated by the fact
that the formers characterize Jdeformable bodies while the latter
characterizes rigsd bodies, as pointed out in Sect. IIL.3. For further
comments, see Figure 1H.6.1.

In this chapter we shall consider the fonowmg two different types
of applications of the isogalilean relativities:

) Characterization of a generalized notion of particies which is
studied in the next section;

II) Constructions of systems invariant under the isogalilean
symmetries, also studied in the next section; and

11) Characterization of closed-isolated systems of generalized
particles, studied in Appendix I11.A;

the above studies being a mere rudimentary ground for our intended
operator formulations.

A direct way for the construction of the isogalilean relativities was
submitted in Santilli (1982a), pp. 246-247, and it may be advantageous to
outline it here because instructive.

Consider a system (111.2.3a), for simplicity, in its local, but nonlinear
and nonhamiltonian form,

F=p, p=Fhp,) (6.12)

which violates Galilei’s symmetry in any of the mechanisms indicated in
Sect. 11L.1. As recalled in Sect. .3, a rather natural tendency when
facing these systems is that of transforming them into a form which
recovers the G(3.1) invariance.

Under sufficient topological conditions (locality, analyticity and
regularity in a star-shaped neighborhoods of the local variables), the
Lie-Koening theorem (see, e.g., Santilli (1982a), Hill (1967) and others)
ensures that a transformation

a=({p) = a* = (™ p*) = a*@), {6.13)

capable of reducing system {6.12) to a Hamiltonian form always exists.
In particular, the transformed system can indeed be of the "free” form

i* = pY, p* = 0. (6.14)
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under which the Galilei's symmetry exactly holds, i.e.

w8, %%) 3,,)
G@1) = a* = {e|§ R LS (6.152)
i.* r = p* ', p* * = . (6 15b}
closed. closed. closed.
Forces, Forces Forces
local, SA. local NSA. nonloc. NSA.
Space; Space: Space; )
R TE(r 8.5 R<TElr g R) R TEo(r,G.#)
3=1 § = const>0. G =Grp,.)>0.
Frames: Frames; Frames:
Inertial. Inertial. Noninertial.
Methods: Methods: Methods:
Lie’s Lie-isotopic Lie-isotopic
theory. theory. theory.
Relativity: Relativity: Relativity:
Convent. Restricted General
Galilei’s isogalilean isogalilean
relativity. relativities. relativities.

FIGURE IIL61: A classification of physical systems, with their carrier
spaces, observer's frames (assumed at rest with respect to the center~
of-mass of the system), and related methodology. The first column
depicts the conventional linear-local-inertial~-Hamiltonian setting; the
second column depicts the first nontrivial isotopic generalization, that
of linear-local-inertial-isotopic type; and the third column depicts the
most general possible nonlinear, nonlocal, nonhamiltonian axd
nopmertiaf setting. The first two columns have equivalent inertial
characterizations, because they are both defined on inertial frames.
However, the first column treats rigid bodies, while the second
represents deformable bodies. The third column represents instead
the most general possible conditions of extended-deformable bodies in
regard to both the existing forces and the observer frames.
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But the original systems is nonlinear and nonhamiltonian by
assumption. Transformations (6.13) are, therefore necessarily nonlinear
and noncanonical. As a result, the new frame a* is in noninertial
conditions, and it is not realizable in an actual laboratory. System (6.14),-
therefore, has a purely mathematical meaning, as stressed in Sect. 1.3.

The re-transformation of the conventional Galilean symmetry (6.15)
in the mathematical a*-frame back to the original a-frame of the
experimenter, yields precisely the covering Galilei-isotopic symmetry
G{3.1) according to the rules

wutV (e, X" (¢, a¥) {au) = wyp QW) (8,X,(t, a)) (au), {6.16a)
aa% aaP

W) = wh——-, X% (2% = Xl a), (6.16b)
aa*i aa*¥

and the same evidently holds for the physical laws.

In conclusion, another method for the construction of the covering
relativities (besides the main method offered by the Lie-isotopic
techniques) is the use of the Lie-Koening theorem, when applicable,
for the reduction of nonhamiltonian systems to & Hamiltonian form,
and then their retransformation back to the physical variables of the
experimenter.

It appears recommendable to indicate at this point some of the
implications of the isogalilean relativities in particle physics because
they may provide the reader with a view of the sove/ implications
expected from all covering relativities. It should be stressed that the
following possibilities are merely speculative at this writing and in
need of detailed operator studies currently available only in a
preliminary form. ‘

As illustrated in Appendix IIL.A, one of the most visible implications
of the isogalilean relativities is the characterization of a new class of
bound systems. In fact, as we shall see, the isogalilean invariance
ultimately implies closed nonhamiltonian systems with contact internal
forces.

To put it diffrently, the conventional Galilean symmetry can be
visualized with the familiar Kepler's systéem with a central nucleus
constituted by a body heavier than the remaining ones, and the
peripheral bodies moving in vacuum without collisions.

On the contrary, the isogalilean symmetries can be visualized with
aggregates of bodies in mutual physical contact, whose nucleus, called
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Isonuclevs {Santilli (1988a)), can have an arbitrary (nonnull) mass
bigger, equal or smaller than the peripheral ones.

In the transition to nuclear plvsics, these results imply the familiar
visualization of the Galilean sy: etry with the atomic structure and
the visvalization of the oper. .r isogalilean symmetries with the
nuclegr structure (Santilli {1989}. :n fact, unlike the atomic structure,
nuclei are composed of nucleons in conditions of mutual contact (and
actually of mutual penetration for about 107 units of their volume).
This results precisely in bound states as aggregates of particles under
contact interactions whose centers are not the Keplerian one but our
isonucleui.

Still in turn, this indicates that the historical chain of successive
approximation of the nuclear forces via the additional of a
considerable number of potentials in the Hamiltonian has been halted,
because the nuclear structure appear to have precisely a closed
nonhamiltonian structure as ultimately represented by our isogalilean
symmetries (Santilli {1989)).

Note the expected variation of the nonpotential/nonhamiltonian
terms from nucleus to nucleus, thus implying different isounits for
different nuclei and consequently different isogalilean symmetries.

Some of the most important examples of isogalilean systems are the
two-body and three-body, closed nonselfadjoint systems outlined in
Appendix 111.A. The two-body case implies the simplest conceivable
isotopy of Galilei’s relativity, that characterized by the sca/gr /sotopy
of the canonical tensor

oV = RV = p2 wm', b = const. > 0. (6.17)

Despite this simplicity, the isotopy implies the appearance of
acceleration-dependent forces which, in turn, imply rather profound
modifications of the conventional two-body bound states exhibiting a
sort of “mass renormalizationalready at the classical-nonrelatuivistic
level {(Appendix 11LA).

In turn, the operator formulation of such a generalized bound state
possesses such departures from the conventional quantum mechanical
two-body bound state, to permit a quantitative representation of 2/

the intrinsic characteristics of the w? particle as a “rompressed
positropium; 1.e., as a generalized state of one ordinary electron and
one ordinary positron isotopically bounded one inside the other at
mutval distances smaller than the size of their wavepackets (see the
calcuiations of Sect. 5 in Santilli (1978b), and the recent reviews Santilli
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{1990), (1991e).
Evidently the model offers realistic possibilities of sdenuirying the

7C constituents with ordinary particles rreely produced in the
spontaneous decays, as previously established for the nuclear and
atomic cases.

By comparison, such a model is fundamentally inconsistent within
the context of the conventional two-body, quantum mechanical
systems, as the interested reader is encouraged to verify {see the
various reasons identified in Santilli (1974), 1973b))

For the three-body closed nonselfadjoint system in stable
configurations (i.e., the straight line and triangular configurations of
Appendix I11.A), we have an isotopy more general than the preceding
one of the type

WV = W) {6.18)

See Jannussis, Mijatovic and Veljanoski {1991).

In this case too the physical implications are nontrivial. In fact, the
isogalilean relativities permit a central nucleus with mass much
smaller than that of the peripheral constituents, thus allowing
fundamentakily new structure models of the tritium as well as of
hadrons. {Santilli (1989)).

AS an illustration, such a structure (once implemented with our
covering isorotational symmetry SU{2) for the spin) offers realistic
hopes of achieving a quantitatively consistent representation of
Rutherford’s (1920) historical conception of the neutron as a
‘vompressed hydrogen stom”, that is, as an electron totally
compressed (say, in a supernova explosion) in the center of the proton,
thus acquiring our configuration of isonucleus (see Santilli (1990) and
(1991e} for preliminary operator studies).

Still in turn, if such a model is proved consistent in due time, it
could allow the identification of one of the neutron’s constituents (e.g.,
the d-quark) with Rutherford's electron (although in the modified form
indicated in the next section).

The ultimate possibility is therefore the elimination of the now
vexing and unattained confinement of the hadronic constituents, and
its replacement with the free tunneling of the constituents, as
historically established for atoms and nuclei.

But, to avaid major inconsistencies, these possibilities require a
generalized norion of coustituent, that Is, & gencralized relalivity
valid i the fnterior problem onfy. We reach in this way again the
main line of research of these volumes regarding the dichotomy:
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conventional relativities for the exterior problem and generalized
relativities for the interior dynamics.

A particularly intriguing example of Gisogalilean systems is given
by the three-body systems in Jamnussis” configuration (1981, Eq.s
(111.A.15), with genuine subsidiary constraints, which we regret to be
unable to study at this time for brevity.

We are also unable to study closed nonselfadjoint systems with a
large number of constituents N. In fact, for a sufficiently high value of
N, the systems acquire intriguing statistical aspects {e.g., an internal
irreversibility compatible with the center-of-mass revisibility), with a
number of expected connections with Prigagine’s statistics (1968).

in the final analysis, G(3.1)}-invariant systems with a large number
of constituents constitute our wmomre/aiivistic clased nonfigmiitonian
structure model of Juprter, as pointed out in the introductory words
of Sect. L.1.

Moreover, we have intriguing connections with Mach’s principle
originating in the interior, acceleration-dependent forces (prior any

Riemannian structure), as suggested by Assis (1990) and Graneau (1990).

We cannot close this section without a few comments regarding
the virtual complete restriction of the physical literature of this
century to inertial frames.

On epistemological grounds, we stressed in Sect. [[L.1 that zerziz/
Irames are & philosoplical abstraction, because they do not exist i
our Eartly environment, nor can they be atiained 1 our Flanetary or
Galactic systems. The Galilei-isotopic relativities are therefore
intended to identify the equivalence class of each aciwa/ frame, that
is, of each wanineriial frame

While inertial frames are now part of the history of physics and, as
such, they must be preserved in any future development, one should be
truly aware of the rather serious implications for any restriction of
physical treatments to inertial frames ox/i In fact, such a restriction
implies the necessary linearity (as well as locality and potential
character) of the theory. A restriction of this type implies:

& c/assicalfy;  the implicit acceptance of the perpetual motion in
a physical environment, and

¥ operationslly, the impossibility of resolving fundamental open
problems of contemporary physics.

It should be brought to the attention of the interested researcher
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that, quite likely, the restriction of all physical descriptions to inertial
frames, and therefore to linear, local and potential theories, may well
be responsible for the primary unsolved problems of contemporary
physics, such as:

a} The problematic aspects of the controlled fusion, which may be
due to lack of suitable representation of the highly noninertial
conditions at the instant of initiation of the fusion process); or

b) The impossibility of achieving a full quark confinement until now,
which may be due to our inability to treat the highly noninertial,
acceleration-dependent processes expected in the hadronic
structure; or

c) The problematic aspects in achieving a true grand unification of
all interactions, which may be due precisely to the intrinsically
noninertial character of the strong interactions as compared to the
inertial structure of the electromagnetic interactions;and others.

1.7: NONRELATIVISTIC ISOPARTICLES AND
ISOQUARKS

The most effective way of appraising the possible physical relevance
of the covering isocgalilean relativities is by identifying their
implications in the characterization of the notion of particle.

As well known, the conventional notion of c/assical nonre/ativistic
pariic/e is a representation of the Galilei group G{3.1) =
{Oe(s)eTr°(3))><(Tv°(3)><’l‘t°(1)] on RxT*E(r,8,%) and, as such, it is

characterized by conventional units, the scalar unit 1 for the time field
¢, and the six-dimensional unit matrix I for the phase space.

By recalling that the Galilei symmetry holds only for interactions
which are of local (differential) and potential (selfadjoint) type, the
notion essentially characterizes the historical Galilei’s concept of
“massive pofnt” moving in vacuum under action-at-a-distance
interactions.

In particular, the intrinsic characteristics of the particle (mass,
spin, charge, etc.) are immutable, classically and quantum

76



mechanically, because points are immutable geometrical objects.

This perennial character of the intrinsic characteristics of
particles was challenged in the first half of this - antury, particularly
in nuclear physics. As an example, the total : gnetic moments of
nuciei have remained essentially unresolved, :spite over half a
century of research. One can therefore read in 3latt and Weiskopf
(1952}, p. 31, the possibility that ~

“Lhe fmiripsic mELHElic moment of & nucfeon is different when it
Is in close proximity to another nucleon”

In different terms, the early (but not the contemporary) studies in
nuclear physics admitted the possibility that the value of the magnetic
moments of nucleons changes in the transition from the physical
conditions under which they have been measured until now (long
range electromagnetic interactions only), to the Jifferens physical
conditions when members of a nuclear structure. Similar doubts were
also expressed for the spin (see, e.g., (foc. cit), p. 254).

A conjecture was then submitted by Santilli {{978b) according to
which massive physical particles can experience an alteration of their
intrinsic characteristics, called wmuistion, when experiencing
physical conditions broader than those permitted by the Galilean
symmetry, such as:

a) composite particles with an extended charge distribution
experiencing a deformation of their shape under sufficiently intense
external, potential interactions; or

b} extended charge distributions experiencing a deformation of
their shape due to contact, nonhamiltonian—-nonseifadjoint interactions
(as coinceivable in collisions); or

c) particles totally immersed in an external physical medjum, such
as the core of a star.

_In all these cases, e derormation of the shape of the pariticle
constitutes the nrst physical origin for a necessary mutation of the
lnzrinsic magneric momentl, as well established in classical and atomic
physics. The mutation of all the remaining intrinsic characteristics,
under sufficient physical conditions, can then be inferred from a
number of arguments, e.g., of relativistic character.

However, the primary phyvsical orjgiln of muration was ldentified
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foc. cit) as being due precisely to the (operator version of) the
contact nonlinear, nonlocal and nonbamiftonizn nteractions studied
i this volume, as expected for a proton in the core of a star,or to a
lesser extent, in a nuclear structure. ' '

More generally, it was pointed out in {foc «/it) that & necessary
condition for the mutation of elementary paricles Is the existence of
Interactions whickh violate the Galilel {and Loreniz) symmetry. The
deformation of the charge distribution is the simplest possible
mechanism of breaking conventional space-time symmetries, because
they are well known to be applicable only for rigid bodies.

The contact, nonlinear, nonlocal and nonhamiltonian interactions
under study here characterize the most general possible violation of
the Galilei (and Lorentz) symmetry at all their structural levels, eg.,
inertial, local, canonical, etc. It is hoped that, in this way, the reader
begins to see the implications of the interactions herein considered.

The above results were reached in Santilli (/oc o/t ), Sect. 4.19, via
the addition of a (variationally) nonselfadjoint coupling to the
conventional Dirac’s equation. In fact, these interactions are
notoriously velocity-dependent, as it must be the case for all drag
forces, whether Newtonian or field theoretical. In turn, the addition of
a velocity-dependent coupling to Dirac’s equation implies the
necessary alteration of the conventional gamma matrices. The
mutation, in general, of the intrinsic magnetic momentum, spin and
other characteristics is then a necessary consequence.

According to these results, we can visualize a hierarchy of
different physical conditions, of increasing complexity and
methodlogical needs, such as:

A) The afomic structure, in which no mutation is possible because
of the large mutual distances among the constituents;

B) The unuc/esr structure, in which small mutations are
conceivable because available experimental data on the volumes of
nuclei and of individual nucleons establish that nucleons, when
members of a nuclear structure, are not only in contact, but actually
in conditions of mutual penetration of about 1073 parts of their charge
volume. In turn, such mutual penetrations are expected fto
characterize an additional (small) term in the nuclear force, precisely
of the short range, nonlinear, nonlocal and nonhamiltonian type
studied in these notes;

C) The !md’rom‘c' structure, in which case we expect a
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proportionately higher mutation because, as indicated earlier, the size
of ali hadrons is approximately the same and coincides with the size of
the wavepackets of all known massive particles. The hadronic
ce tituents, to be massive physical particies, are therefore expected
t¢ 2 in conditions of total mutual penetration, resuiting precisely in
th. short range honlocal and nonhamiltonian interactions under
consideration here. Still in turn, these interactions are expected to
require a generalized notion of particie as hadronic constituent;

D) The core or stars, where a proportionately higher mutation is
expected because, in addition to the hadronic conditions of total
mutual penetration, we have their compression; and

E) The gravitationg/ collapse, where we expect the most extreme
possible mutations because we have the most extreme conceivable
physical conditions of particles in the Universe, consisting not only of
total mutual penetration, and their compression, but also the
condensation of an extremely large number of particles in an
extremely small region of space.

The studies on the Lie-isotopic liftings of the Galilei relativity
outlined in the preceding sections were conducted for the purpose of
permitting a quantitative study of the conjecture of mutation of the
intrinsic characteristics of particles suitable for experimental
verifications.

DEFINITION 111,71 Santilli 19884/F A nonrelativistic isoparticle is
an Isorepresentalion of one o the miptely possidle isogalilean
spmmetries G321/ on Isospace K TEnGH)

6(3.1): a = gwj*a = glw) 'f‘za

wi o4 1,°7 (3, %) @)
- (e, M 1, (7.1)

-a = (r,p), '12 = 'Pz"l > 0.
Lguivalently, & nonrelstivistic isoparticle can be derined as the
generalization of the conventiongl notion or particle nduced by
the Isotopic liftings or the units :

L=1eh > ey {7.2a)
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lé’!‘*E(r,S,&k) = 1o =diag 671, 6 € TERGH. (7.2b)

5 = diag. (1,1,1) = G=diag. B4 1, By72,Bg™3) > 0. (7.2¢)

A first central advanceof the notion of isoparticles over that of
conventional particles is the possibility to represent the actual shape
of the particle considered and, consequentially, of all its infinitely
possible deformations, at the primitive classical Galilean level. As a
result, when a particle is realistically represented, it can possess an
infinite number of different intrinsic characteristics depending on the
infinitely possible local conditions, e.g., as per classification A-E
above.

On operator grounds, the ideal conditions of applicability of the
Galilei-isotopic relativities are given by the hadronic structure,
evidently because of the open historical legacy of its nonlocal
character by Fermi (1949), Bogoliubov (1963) and other Founders of
particle physics.

The ideal isoparticles are therefore. expected to be the quarks,
resulting in the following

DEFINITION IHL7.2 (Santilli 19855) Mignani and Santiii (1994 The
“nonrelativistic Isoquarks, hereon denoted with the sypmbols a,
d etc, are ordinary gquarks under short range nonlocal and
nonhamiltonian Interactions due to mutval wave overlappings as
characterizable by the isorepresentations of the Lie-isotopic
symmetries G321 x SUE), where GI21/ represents the space—time
Sstructure, and SU(3) represents the isotopic-uvnitary lrting of
ST (Mignani J954)

The above definition is introduced to finally initiate a quantitative
study of the open historical legacy of the nonlocality of the hadronic
structure, and also in the hope of resolving at least some of the now
vexing problems of contemporary hadron physics.

Needless to say, a long chain of studies is needed for a
quantitative, mathematical, theoretical and experimental appraisal of
the above possibilities. The fundamental step is, and will remain, the
primitive Newtonian setting which is the arena of our direct intuitions.

In this section we shall initiate this proces by presenting a few
classical nonrelativistic examples of isoparticles. As we shall show in
subsequent works, the operator formulation is merely conseguential,
and actually enhances the classical mutations of this vaolume.
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A technical knowledge of the preceding analysis is necessary for a
true understanding of this section.

FREE ISOPARTICLE 1n this case, with reference to syr ms
(I11.2.3a) and their representation (111.2.9), N = 1, all selfadjoini 2ad
nonselfadjoint forces are null, the isometrics 8 and G must evideutly
coincide and be constants,

8= G=diag. (62, b2%, bgd,  bj= constants > 0. (7.3)

Hamilton-isotopic equations (I11.2.9) then describe the free particle

i = b 20H/d P; = Pi/m = Vi, (7.42)

Bi = -b “oH/ar =0 (7.4b)

namely, e Galilei~isotopic equations of motion are jdentical to those
of lhe conventional Galilers refativity

Despite that, the use of the Galilei-isotopic relativities is not
trivial, because it permits the direct representation of:

1) the extended character of the particle;
- 2) the actual shape of the particle considered; and

3) an infinite class of possible deformations of the original shape
(see below);

all the above already at our primitive, classical, nonrelativistic level.
By comparison, if one insists in preserving the conventional Galilei
relativity:

1} the Galilean particle is strictly a massive point, and its extended
-character can be represented only after the rather complex
process of second quantization;

2’) the second quantization does not represent the actual shape of
a particle, say, an oblate spheroidal ellipsoid as per capability 2)
above, but provides only the remnants of the actual shape; and,
last but not least,
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3) possible deformations of extended particles are strictly
excluded, as well known, for numerous reasons, €.g., because
they imply the breaking of the conventional rotational symmetry.

As an illustration, there are reasons to suspect that the charge
gistribution of the proton is not perfectly spherical, but characterized
instead by a deformation of the sphere of the oblate type computed
by Nishioka and Santilli (1991)

§ =diag. (1,1,1) = 3=0G =(diag.(1,1,0.56), (7.5)

(where the third axis is assumed to be that of the intrinsic angular
momentum), which permits an interpretation af the anomalous
magnetic moment of the particle.

Oblate spheroidal ellipseid {7.5) can be directly and exactly
represented by our Galilei-isotopic relativities, already at the
classical nonrelativistic level of this treatment via the value of our
isometric

b2 =1 b2 =1 bg® =06 (7.6)

It is evident that such an actual, direct and immediate
representation of the shape of the proton is impossible within the
context of the conventional Galilei'’s relativity.

We shall indicate in subsequent studies that, in the transition to the
operator version of the theory, the representational capabilities are
enhanced because of the appearance of additional degrees of freedom
besides that offered by the isounit of the enveloping algebra {e.g., that
of the isotopy of the Hilbert space, see Santilli {1980), Myung ef &/
(1982) and Mignani er 2/ (1983)).

The above case illustrates the simplest conceivable (and perhaps
most fundamental) mutation of a Galilean particle. In fact, the original
particie has the perfectly spherical shape expressed by the
underlying metric 8 = diag. (1,4,1), while our Gatilei-isotopic particle
can acquire any one of the infinitely many ellipsoidical deformations
of the original sphere expressed by the isometrics 3.

The case also illustrates a first use of our isoeuclidean spaces
E(r 3 #) for the characterization of shape only without any force.

In particular, it should be indicated here that this is a sort of
limiting case because the notion of isoparticle generally requires
nontrivial interactions. With the terms “free” isoparticle we therefore
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refer to a conventionally free particle which however represented in
an isospace, thus acquiring nongalilean characteristics.

In conclusion, th- mutation of shape under consideration at this
primitive Newtoniar .vel is intrinsically contained in the lifting of the
underlying metric ¢ * 8§, with consequential liftings of fields, metric
spaces, - space-time symmetries, etc. Equivalently, it can be
geometrically expressed by the symplectic isotopy wy = s”z"z = wpxTy

and it is algebraically/group theoretically characterized by the Lie-

isotopy otV = PRV = 10 ] 29V, ]2 — T2~1 > o

o _
INTERACTIONS The simplest generalization of the preceding case
is the extended-deformable particle under conventional, external,
porentiz/ interactions. In this case, again with reference to system

(I11.2.3a) in representation (I11.2.9), N = 1, V # 0, F5A g pNSA = gNSA =0,
and the b-quantities of Eq.s (7.3} can still be assumed to be
independent of the local coordinates in first approximation, although
they can be dependent on the local strength of V, local pressure and
other quantities. The equations of motion are then given by

. =D
i

B =-b,23H/3r; = —@v/ar) i/, (7.70)

.2 - = v
; dH/ap, =p/m=vj (7.7a)

where one should assume that the deformation of shape § = ¥ is
volume preserving

8§ = § detd = det. §. (7.8)

Equations of motion (7.7) also coincide with the conventional
Galilean equations when

r = (rj bizri)% =T= (fisijfj)é , (7.9a)

T,

i = Irjb; (nosum), {(7.91)

namely, when the distance r in our geometrical space E{(r 8% coincides
with the distance T in our physical space E{r.3,R).
Note also the general rule from Eqg.s (7.9} of considerabie value in
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practical applications that #se Jsotopic contraction of & conventional
vector can always be written as a copventional comtraction of &

Lgeneralized vector

Again, the transition from the Galilei to our Galilei-isotopic
relativities is not trivial. In fact, it first allows the direct
representation of the actual shape of the particle, as in the free case.
Iin addition, &#e Isocalifean relativities can represent the
defarmations of the original shape caused by lire external farce.

In fact, starting from an extended particle with the shape
represented by the isometric §, we have to expect from simple
mechanical considerations that the application of the external force

FSA causes a deformation of the shape into the isometric ¥.

Needless to say, one may argue that such deformation could be
small for given conditions. The point is that perfectly rigid bodies do
not exist in the physical reality. The gmoun: of deformations for
given conditions is evidently an open scientific question, but its
ex/stence is out of any scientific doubt.

In conclusion, the rotational and Galilei symmetries characterize a
theory of rigid bodles, as well known. Our isorotations and isogalilean
symmetries characterize instead a ifeorv of deformable bodies
(Figure 111.3.2) without violating the abstract O{3) and G(3.1] symmetries,
but by realizing them instead in their most general possible form. This
completes our consideration for an isoparticle under conventional,
external pofentiz/ forces.

R . /
INTERACT/ONS: The next example is that of an extended-
deformable isoparticle under, this time, wonporentia/ external fields
caused by motion within a physical medium. Note that this class of
interactions is strictly excluded by the conventional Galilei relativity,
but it is rather natural for our covering isogalilean relativities.

In this case, N = 1, the selfadjoint interactions can be assumed to
be null (Vv = 0) for simplicity, but we have nontrivial nonselfadjoint
interactions represented via our Hamilton-isotopic, Lie-isotopic and
symplectic-isotopic methods.

A first simple case in one space-dimension is given by a particle
moving within a resistive medium under a quadratic damping force

mi + yi2 = 0, (7.10)

with the Birkhoffian representation (Santilli (1982a))
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=, 0, . T=diag. (,3), (7.11a)

H= p2/2m =pdp/2m, § = e2Yt/m (7.11b)

which provides a first approximation of systems such as a satellite
penetrating Jupiter’s atmosphere or, along similar conceptual grounds,
a proton moving within the core of a star.

The above case illustrates a second use of our isospaces, namely,
that for the characterization of nonpotential forces of the interior
dynanmics. In fact, the lifting Er8®) = ErS#H), §=1 = 8§ = exp
2yr/m > 0, essentially represents the local, but nonlinear and

nonselfadjoint resistive force FNSA = —yi‘z.

While such resistive forces imply an evident breaking of the
conventional Galilei symmetry, our techniques permit its exact
restoration at the broader isotopic level because the emerging
isometric § is positive-definite.

Additional uses of our isospaces will be indicated later on when
dealing with specific applications,

The interested reader can readily enlarge the above example to
three dimensions, e.g., for motion along the third axis

R° = (p,0), T=diag.3,8), (7.12a)

H = p?/ 2m = p; sij pj / 2m, 8 = diag. (b12, b22, b32) ezvnxr/m

(7.12b)

where nxr represents the direction of motion, with a deformation of
shape, this time, due to contact interactions.

Along similar lines, one can have an isoparticle subject to
selfadjoint (V # 0) and nonselfadjoint (8 = 8(r)) interactions. In this case,
a simple example is given by the quadratically damped oscillator

¥+ F + syi2 + syr2 = 0, m=k=1, {7.13)

with Birkhoffian representation (Santilli (/oc. ¢/t ))
R° = (p,0), T= diag (§,8) =diag. (e¥T,e¥), (7.14a)

= épﬁ + a':r2 = &peyrp + dre’tr. (7.14)
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An illustration of nonlinear, nonlocal and nonhamiltonian internal
forces is provided by the equations of motion

P+ yiZ2[sdo Fr) = 0, m=1, (7.15)
where i and F are referred to the behaviour of the center—of-mass
under a point-like approximation of the particle, and the integral
represents the correction in the trajectory due to the extended shape.

System {7.15) can be represented via Hamilton-isotopic equations in
terms of the following quantities '

R°=(p,0), T =diagiG, G) (7.16a)
H=4p2 = spGp, G= Sexplyrfqdo ¥l (7.16b)

Another example is given by the systems characterized by

R°=(p,0), T=diag. (66, H=3p® =4pCp, (7.17)
and the following isometric
¢ = explyr + k[ ; do 5,1, p, ) (7.15)

where, again, one can see two separate representations, one for the
damping of the center—of-mass, and the corrections in the trajectory
due to the shape of the particle.

Numerous additional examples can be worked out by the interested
reader in any desired combination of seifadjoint and nonseifadjoint
forces, the latter being local-differential or nonlocal-integral., as
desired.

In all the above cases, the isogalilean relativities permit the
explicit construction of the generalized invariance G(3.1) via the
computation of the Lie-isotopic tensor {111.2.7), and its use in the
exponential characterization of G(3.1) as per Sect. IIL5, all in a way
which reconstructs the exact Galilel symmetry in isospaces
#,<T*E(r,G.#), while the conventional symmetry is manifestly broken in
Rp<T*E(r 8.8).

A first understanding is that, to have a full G(3.1)-invariant model,
examples (7.10)-(7.15) have to be interpreted as a two-body system with
relative coordinate r, otherwise one has only the full 6(3)-invariance.

86



- Another understanding, stressed earlier during the course of our
analysis, is that examples (7.10)-{(7.15) represent an elementary or
composite isoparticle within an externz! physical medium. As a result,
the total energy is generally mowc. wserved by assumption. In this
case, the conserved Birkhoffian mer . represents a first integral of
the equations of motion, and not a physical quantity (see the examples
in Santilli (1982a).

The reader should therefore be aware of the fundamental
distinction between the open-nonconservative models here
considered, and the closed nonhamiltonian systems studied in
Appendix IILA.

This completes our examples of Galilei~isotopic symmetries for
orze elementary or composite isoparticle under the most general,
possible external interactions.

The attentive reader has noted that the notion of “isoparticle”
studied in this section is a particular case of the notion of
“genoparticle” of Appendix Il

.8: ISODUAL ISOGALILEAN RELATIVITIES

In this section we study in more detail the new space-time and space-
time symmetries identified by our isotopies, which we have called
sodual space-time , and Isodual isosymmelries , respectively (Sect.s
I1.3 and IIL5).

These novel notions originate from the property that, for a given
isotopic space-time E and isosymmetry G characterized by the isounit
1, our isotopic techniques permit the identification of corresponding
isodual quantities characterized by

1 = -1 (8.1)

The first point we would like to indicate is that these novel notions
are not identifyable in contemporary theoretical physics, because
‘they necessarily require the use of generalized units, and this is the
reason why they have escaped identification until now.

We shall now illustrate the property pointed out earlier that

fnvariance under isoduality 1 = »=-7 appears to be & new umversal
2w of NMature , We would like also to indicate that, contrary to first
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impressions, this latter invariance is independent from inversions r =
r=Mr=Pr=-r.
For this purpose, let us consider a given fsospace-time

R T G.R), ®, = #d, & =R, (8.22
i, = By 2>0, 1= diag. (671,67, & = diag. (B;2 By2 Bg?), (3.2b)
with Zsagalitean symmetry
G@B.1) = GI(S.I) = [6p(3) @ Tyo(3)] * [Tyo(3)  Tel1)] . (8.3)
and related J[sospummerry Lransformatons

r t=>t =¢t+ t°ﬁ4_2, isotime translations (8.4a)

= rjp =1t ﬁi"z, isospace translations {8.4b)

< N> ryp=r ot t°v° ﬁi'z, isoboaosts (8.4c)
ry = ry-= R(8)* r, isorotations (8.4d)
| r=r= Pxr = -r, " isoinversions (8.4e)

Then, the isedua! Isospace-time is given by Kect /L3)
9 xS 69 19), 79, = 8,19, a9 =819, (59
19, = -By %<0, 19 = giag. (697, -6¥h=-1<0, (850)
G9 = diag. (- By2 - Bo?, — Bgd), (8.5¢)
while the Jsodua/ Jifaga/ilea& syuneiry has the structure

693.1) = 61%G1) (6909) @ T9pe(a)] x [T%e(d) x T9pe(t)] (2.6)

and admits related iSodual isosymmelry Lransformations
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t=>t =t —-t°ﬁ4—2, isodual isotime transl. (8.7a)

i'i=> rj = Ij —r°i ﬁi’z, isodual isospace transl.  {8.7b)

Lp2ryp=r - v ﬁi'z, isodual isoboosts (3.7¢)
r; = r; = Rd@)r, isodual isorotations (8.7d)
r=r=phdr =

\ isodual isoinversions (8.7e)

Proposition HI.5.1 essentially establishes that azuzy spstew which Is
nvarignt under ISotransrormations (84 Is a/so mvariant uvnder their
Isodusls (8.7 . To illustrate this important property, consider the
quadratically damped particle {7.10), ie.,

m¥ + yi2 =0 (8.8)
with Hamilton-isotopic representation {7.11), i.e.,
R° = {p,0), T = diag. $,8), H = pdp/2m, (8.9a)
§ = expl2yr/m} (8.9b)
It is then easy to see that the ssodval representation
R°0 = R° = (p,0), TI = diag. 39,89, H9 = pddp/om, (8.10a)
84 = —exp{2yr/m (8.10b)

yields exactly the same equations of motion (3.8). The same situation
occurs for all other cases, as the interested reader can verify.

Note the crucial role of the isogalilean invariance of systrems (8.8)
under isounit (8.9b) for the isodual symmetry to hold. In fact, it is easy
to see that, in case the original isogalilean invariance is not verified,
the same holds for its isodual

The independence of the isodual symmetry from the isoinversions
is also easily see, e.g., by comparing Eq.s (3.4e) and (8.7¢).

As a complementary comment, the system with azzidzmping rorce

m¥ - yi =0 - (8.11)

is physically different then system (8.8), because the energy decreases
in time for the latter (dissipation}, whiie increasses in time for the
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former {nonconservation).®
As a result of this physical difference, system (8.11) admits the
isorepresention

R° = {p,0), T = diag. (§,8), H = p&p/2m, {8.12a)
§ =exp{-2yr/m} (8.12b)
from which one can see that
8’=exp{—2'yr/m};£3d=-exp{2'yr/m} (8.13)

Thus, the transition from dissipative system (8.8) to its antidissipative
image (8.11} is not representable via isoduality. Note that system (8.11)
is also invariant under its own isoduality transformation,

¥ = %9 = -exp{-2yr/m} (8.14)

I.9: CONCLUDING REMARKS

The most salient property of the isotopic techniques in general, and of
the isogalilean relativities in particular, is their capability to unify at
the abstract level conventional, linear, local and Hamiltonian systems
with thir broadest possible nonlinear, nonlocal and nonhamiltonian
generalizations.

In the conclugding remrks of this chapter we would like to illustrate
this property in more details because it is fundamental in
understanding that the axiomatic structure of conventional relativities
is preserved in their entirety under our isotopies, not only at the
Galilean level of this chapter, but also at the relativistic and
gravitational levels of the subsequent chapters.

Consider the simplest possible Galilean system, the free particle in
conventional space-time RxE(r.8R), with cawronical variztional
principle

t
SA = sft 2R°da - HdY) = 0, (9.1a)
i

6 These systems occur when extended particles of sufficient small masses move in
sufficiently turbulent gases, in which case their speed increases in time, as
established by systems of our physical reality, such as baloons in our atmosphere,
etc. '
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R" = (R°u) =0, a= (all) = @ph B=12.,6 (9.1b)
H=p%2m = psp/2m = p; 8jpj/2am, Lj=1 13 (8ic)
which is geometrically based on the familiar carzonics. ane-rorw

® = R°da - Hdt = R, da¥ - Hdt = pydr, - Hdt (9.2)

1
and is manifestly invariant under the Galilei's symmetry G(3.1). Consider
now the isotopic liftings of the above system, the Jsocznonical
representations

to
815L=8_[‘t R°* da - He dt} = 0, {9.3a)
g
R =)= 4,0, a=l)= (9.3)
H=rpm=pbp/om (9.3¢)

generated by the iso—owe forms {Sect. 11.9) 7
$; = f°xda + Hodt =
=R, T M tadd. Joa’ - HT(a a4 . )dt =

Px Tr kilt. 1. P P, ..) ) - HT(t, v, p, p,..) dt. (9.4)

with underlying isocotangent bundie8

ROTECSR: R, = R1, 1, = T,1 = b2 (9.52)
§ = diag. (b2 by2 bs?), (8.5b)
f =81, Y=T1=dag LY (8.5¢)

7 The attenfive reader has noted that we have performed here the transition from
the even-dimensional isosymplectic geometry of one-isoforms R°+da of Sect. I[.9 to a
broader off-dimensiocnal geonietry of one-isoforms R°-da — Hodt inclusive of the time
coniponent, which can be called confiact-isviopic geomelry or SoOCOnLSCt Feomeiry
for short.

& The reader should keep in mind from Sects IL7 and IL9 that isospace (9.5) is that of
the representation of the system via a variational principle (via one-isoforms) which,
as such, Zs pmof the space of its isosymmetries (requiring two-isoforms), and this
explains the reason for the use of the b's in isometrics (9.5b), rather than the Bs of the
isogalilean symmetry of Sect. 6.

91



The invariance of the systems under the isogalilean symmetry G(3.1)
then follows, with the consequential applicability of our isogalilean
relativities.

The most effective way to illustrate the ultimate unity of physical
and mathematical thought between the conventicnal and isogalilean
relativities is by nothing that, by conctruction, the canonical one-
form (9.2) coincides with its isotopes (9.4). In fact, all distinction are
evidently lost at the abstract level between the algorithms R°da — Hdt
and R°~da - Hedt.

The most effective way of illustrating the physical differences
between the conventional and isogalilean relativities is by nothing
that, while Eq.s (9.3} represent the free particle in vacuum, their
isotopes (8.) represent instead extended particles moving within a
physical medium, resulting in nonconservative conditions.

In fact, isorepresentation (9.3) includes as particular case examples
(7.10), 7.13), {7.15) and similar ones, with examples

5 = texp.{2yr/m}: m¥ + yi® = 0, (9.6a)
§ =texp{-2yr/m}: m¥ - yi2 = 0, '(9.6b)
§= t expyr[ 00%m)k T + 'yi'?‘,l‘o. do ¥(r) = 0, {9.6¢)

Note that the only similarity between the free Galilean particle and
its isotopic images is the absence of potential forces. This illustrate
the central methodological aspect of these volumes, the
representation of nonpotential-nonhamiltonian forces and effects?
via the generalization of the trivial unit I = diag. (1,1,1) of contemporary
use into the isounits 1 = 1(t, r, p, P, ...)-

Note also that, while the Galilean system is unique, Eg.s (9.5)
represent an infinite number of geometrically equivalent, but
physically different systems, as shown in Eq.s (3.6). This illustrates the
reason for our continued use of the plural in "isogalilean relativities”,

The free Galilean particle is evidently the simplest conceivable
system. A more general class is given by systems of N particles
invariant under the Galilei's group G{3.1), which can be represented via
the canonical variational principle

9 We here recall the teaching of Hamilton (834) according to which there exist
effects in Nature which are not representable via his function H = T + V, as it is the
case, eg., for the deformation of a given shape, which led to the submission of his
celebrated equations with external terms (Chapter ).
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t
sa=sf PR0a-Hay=o (0.72)
1

R® =Ry = (.0, a=fay)= p) (3.7b)
H o= piom+V = Pia 3ij Pja / 2m + Ve, (9.7¢)
fab = [lrig ~ rip) 8 g ~ 1) 13 (0.79)

p=1,2,.. 6N, a,b =1,2,.,N,,j=1,2,3.

Their isotopic generalizations are given by the isocanonical
representations

- t2
3A = s_rt- R°xda - He dt) = 0, - (9.3a)
1
R =)= (.0) a=G@y)= @p) (9.8b)
H = p&/2m+V = pig §j Pja/2m + Viipy) (9.8¢)
Fap = [rjg - rip) 5 g ~ 1) 1* (0.84)

whose invariance under the isogalilean symmetries G{3.1) is now
familiar, with consequential applicability of the isogalilean relativities.

The most important physical difference between systems {9.5) and
(9.8) is that the former represent one particle in an external medium,
thus resulting in a nonconservative system. On the contrary, Eq.s (9.8)
characterize a new class of c'ompositise systems, called closed
noenhamiltonian, veryfying conventional total conservation laws, while
the internal forces are nonhamiltonian.

In different terms, systems (3.8} represents the “closure” of systems
(9.5) with their environment, including the presence of conventional
potential interactions. The preservation of the ten, conventional,
Galilean, total quantities is ensured by the now familiar preservation
of the generators in the isotopies G(3.1) = G(3.1).

Again, closed selfadjoint systems (9.7) and their closed
nonhamiltonian generalization (9.8) coincide at the abstract, realization
free level by construction.

The reader should keep in mind that isorepresentations (9.8) are
still a particular case of the isotopic techniques. In fact, the R-
functions are the canonical one, R = R° = (p, 0}. The most general
possible isotopic generalizations of canonical systems (9.5) is given by
the Birkhoff-isotopic representation (Sect. 117}
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t

54 = s_ft 2(Rxda - Bodt) = 0, (0.92)
t

RAR =(R°)= (p,0), (9.9b)

where the Birkhoiffian B is restricted to be an isogalilean invariant.
The latter systems are not studied in these volumes because
excessively general, as well as of unknown operator image at this
‘time 10 At any rate, the simpler Hamilton-isotopic systems (9.5) or (9.8)
are amply sufficient for our needs.

Despite that, the most general possible isotopic systems {9.9)
continue to coincide with the canonical ones (9.5} at the abstract level
under the conditions assumed. _

This abstract unity is at the foundations of all subsequent steps of
our analysis, and it is essential to understand later on in Chapter V the
preservation of the isoparallel transport and isogeodesic character in
the transition from Galilean systems (9.1} or (9.7) to their respective
isogalilean generalizations (9.3} or {9.8), of course, when formulated in a
suitable, structural generalization of the Riemannian geometry.

But, by far, the most intriguing aspect of the analysis of this
chapter is that ke isogalileam relativities do not need
experimental verification in our classical environment,
for the evidemt reasom thatr they are constructed from
Zgiven equations of motion, as illustrated in Sect. IL7 and IIL7. As
a resuit, they do provide the form-invariant description of the systems
considered by construction.

The proposal submitted in Chpter VII deal, spec1r1cally, with the
test of the isogalilean relativity in particles physics.

10 This is due to the fact that the isotopic Hamilton-Jacobi equations for systems
(9.8) are given by the forms (111.2.10), ie., .

a

A A A

——+H =0 —_— = i T .. - — =10 (@
* Ja “Sjaia, ?

at arla apiﬂ

which, via the use of the isotopic mapping A > illog ¢, r) 1=1 T4 & =1, yield
the Soschrodingers equations of kadronic meckanics (11.6.24), ie.,

S
i—t,r) = Heglt,t) = HTY (t,0)= E«t,r) =Eft,r), BeR )
a

In turn, this sets the foundations of the operator image of the isogalilean symmetries
and relativities studied in Santilli (1989). In the transition to the more general,
Birkhoff-isotopic systems (9.9), 94 / dp;; # 0, and no consistent operator image is
known at this writing {(because 1t would require the generalization it, r) 2 $it, r, p.
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APPEN.DIX IIlLA: TWO-BODY AND THREE-BODY
CLOSED NONHAMILTONIAN SYSTEMS

As indicated in the main text of this chapter, a main implications of the
isogalilean relativities is the characterization of a new composite
sysrtem, with intriguing possibilities of novel advances in particle
physics. In this appendix we shall study these novel systems in more
details

In tSect. II1.7 we have: reviewed the notion of losed-isolated
systems with potential {selfadjoint) and nonhamiltonian (nonselfadjoint)
internal forces, called closed nonsclfadjornt systems , outlined the
generalized analytic, algebraic and geometrical methods for their
treatment; and identified their invariance under the Galilei-isotopic
symmetries G(3.1).

In Sect. I111.8 we have presented a generalized notion of particle,
called Jsgparticle , characterized by the isogalilean relativities.

In this appendix we shall study the generalization of Kepler's two-
body and three-body systems suggested by these advances. ,

The reader should be aware that the classical notion of closed
nonselfadjoint systems is centered in the existence of an interior
medium which is responsible for the contact nonhamiltonian
interactions. In turn, such a medium is classically created by a large
number of constituents, as in Jupiter’s structure.

In this appendix we shall study closed nonselfadjoint systems in
their smallest possible number of constituents N = 2 and 3, in which
case the interior medium is evidently absent. The internal forces are
then merely expressed by the condition of cemizct interaction among
the constituents, that is, the (extended) constituents must be in
physical contact among each other as a necessary condition to have
two- and three-body closed nonselfadjoint systems.

Whenever such a physical contact is removed, and the
constituents move freely.in space, the systems considered reacquire
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their. Keplerian selfadjoint structure.

It is intriguing to anticipate since now that, in the transition to an
operator treatment, the interior medium exists also for the case of
two— and three-bodies closed nonselfadjoint systems, which therefore
acquire a deeper meaning. In fact, in these cases each constituent is
an extended wavepacket moving wv/A/r the wavepackets of the
remaining constituents resulting in nontrivial isounits of type {11.6.28).

In different terms, at the classical level of this appendix, the
constituents can indeed be in mutual physical contact, but evidently
without mutual penetration. This results in the /zck of underlying
‘medium and, therefore, in special forms of the nonselfadjoint forces. In
the particle case, instead, we do have indeed total mutual penetration
of the wavepackets of the constituents, in which case each constituent
is the medium of the others.

Finally, an equivalent way of defining closed nonselfadjoint
systems is by noting that they are c/osed spstems of /sopartic/es 1n
fact a closed system of conventional particles can only be selfadjoint
and Galilean, while a closed system of isoparticles implies the
existence, by definition, of internal nonselfadjoint forces.

In considering the content of this section, the reader should
therefore keep in mind that the constituents of the generalized
Kepler’s systems are not conventional particles, but generalized
isoparticles.

In conclusion, the analysis of this appendix should be essentially
considered a rudimentary classical and nonrelativistic basis for a
number of possible, future developments, such as the study of closed
nonhamiltonian systems with a large number of constituents; the study
of their operator counterpart; or the study of the systems as bound
states Of isoparticles.

TWO-BODY CLOSED NONSELFADJOINT SYSTEMS. Two-
pbody closed nonselfadjoint systems were first studied in the original
proposal (Santilii (1978b), pp. 622-633), which also identified their stable
configuration. The systems were then studied in details in Santilti
{1982a). The first Birkhoffian representation of the systems was
reached by Jannussis, Mijatovic and Veljanoski (1991).

Consider systems (1[1.2.3). For the case of two particles, motion is
necessarily in a plane, say k = 1, 2 (= X, y), and the systems become

Mit = 0, (A.1a)
mt = FSA 4+ FNSAQ j ¥), {(A.1b)
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where -

M = 1 + HI2, (A.2a)
B
m=— 2, (A.2D)
my + My
myry; + Hot
r=r; -ry, R=~—il-—2—2—~, (A.2c)
my + moy

Conditions (111.2.4) on the NSA forces then become

def

[)

with general solution=

FNSA = gpp 2n) _ . (n)y (A.4)

where g = cost, and r(zn) represents the 2n-th derivative. For n = 1, the
only admissible stable orbit is then the circle, in which case the
nonselfadjoint force assumes form (3.4.11) of Santilii (1978b), i.e.,

FNSA = o3 (A.5)

with equations of motion (3.4.12) (/oc. ¢it ), which we can write

]ﬁ1 F = -k (1‘1 - 1‘2} / !I‘i - r2]3, {A.6a)
fy ¥ = +kiry —ro) /frg - r2|3 , {A.6b)

g _— my, My =b2my, b2=(m—g)/m>{), g<m, (A.6¢)

namely, rt#e closed nonseliadioint generalization of the two-body
Aeplers system essentiglly provides & renormalization of the masses
of the consutuents withiir a purely classical context .

What is remarkable is that this occurs already at the classical
nonrelativistic level of this appendix and prior to any operator
counterpart.
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The reader is warned against the appraisals of the above results
via old notions that are inapplicable to the physical conditions
considered. Specifically, if one keeps thinking at dimensionless points,
the above results are evidently inconsistent because elliptic orbits are
admissible too, as well know.

However, the systems under consideration represent, by central
assumption, extended particles whder mutus! contact literactions,
such as two spheres in mutuval contact (or, operationally, two extended
wavepackets moving one inside the other). It is then evident that two
spheres {or, for that matter, two extended objects of arbitrary shape)
can rotate one with respect to the other under mutual contact only in
a circle (and exactly the same situation is expected for wavepackets,
as shown in Santilli (1978b), (1990)).

Stated differently, one can indeed think at point-like particles for
systems (A.1), with the understanding that such a conception directly
implies the loss of the nonselfadjoint forces, with consequential
recovering of elliptic trajectories (see Fig. I11.A.1 for more details).

Finally, the emergence of an acceleration-dependent force should
not be dismissed lightly, because it appears to have rather intriguing
connections with Mack's Principle, as well as with the Ampere-
Neumann electrodynamics (see in this respect Assis (1890), Graneau
(1990) and quoted works).

We consider now Jaznussis” representation of system {A.1), which
can be written in terms of the Pfaffian

. Lo .
A= I p, Ot Piab?fia ~ [Pigbopig / 2m * K /fe = rj1) a=12 (A7)

which is naturally written in our isoeuclidean spaces E(r.3R).

In conclusion, the two-body nonselfadjoint generalization of the
conventional Kepier's system is characterized by the simplest possible
isotopic lifting of a Lie algebra, that provided by the sca/zr /sotopy of
the canonical Lie tensor

otV s oV = 2 gy, (A.8)
Despite the simplicity of the isotop.y, the physical implications in

particle physics are rather intriguing on a number of counts (see
Figure I11.A.1).

THREE-BODY CLOSED NONSELFADJOINT S¥YSTEMS. Their
existence and consistency was also identified in the original proposal
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by Santilli-(1978b), and then reviewed-in Santilli (1982a). Their first
- detailed study was provided by Jannussis and his collaborators (1991}
(see below).

The motion of the three-body closed nonselfadjoint systems in
their general configuration occurs in three dimension. and the
subsidiary constraints become essential

=4

S

z

FIGURE I[IL.A1l: A symbolic view of the <“Zesr wmode/” for the
representation of closed nonselfadjoint two-body systems introduced
in Santilli (1978b), Sect. 5. The model was suggested because effective
in identifying the stable configurations under contact mutual
interactions, classically and operationally. In fact, gears cah rotate
one around the other only in a circle, as represented by Eg.s (A.4)
Moreover, when an intrinsic angular momentum is added, the gear
mode] provides a visualization of the property that onlp sig/et staies
are stabfe. In fact, gears rotates “in phase” one inside the other in a
singlet coupling, as shown in the figure. For triplet states, instead, we
have an unstable system because the gears should rotate one against
the other, thus creating mutually resistive forces which would push
the gears one away from the other, by therefore rendering null the
nonselfadjoint forces. In the transition to operator settings, the gear
model is equally effective because in this case we have extended s
wavepackets rotating one around the other in conditions of large
mutual penetration. The mutually resistive forces for triplet couplings
then persist, resulting again in the singlet state with circular orbit as
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the only stable state. The model was used in ( foc crt) to study the
structure of thew© particie as a ‘“Tompressed positronidm”™, ie., as a
closed nonselfadjoint system of one electron compressed inside the
positron and rotating one with respect to the other at mutual distances
of the order of 1F (= 102 cm) in a singlet state. It essentially emerged
that such a model is capable of providing a quantitative representation

of &/ the total characteristics of the n° {total energy, meanlife, spin,
charge radius, space and charge parity, etc), thanks to the
~renormalization” of the masses which is implicit in Eq.s (A.6}. On the
contrary, and this should be stressed here, the same model is
inconsistent within the context of the conventional gquantum
mechanics for numerous reasons, such as: the inability to represent
the total energy of the mw@ with very light constituents; the
impossibility of achieving the relatively high meanlife of the particle;
etc. (see (/oo ot ) for details). The studies presented in this volume
are intended as a Newtonian basis for a reconsideration of the above
operator models we hope to present at some future time. Their
primary objective, as one can see, is to attempt the identification of
the hadronic constituents with suitably generalized forms of ordinary
particles which can be freely produced in the spontaneous decays,
along lines historically established for the preceding nuclear and
atomic structures.

The study of these systems requires a step-by-step generalization
of the {rather vast) structure of the conventional three-body Kepler
systems (for an excellent analytic treatment of the latter, see
Hagihara (1970)). Evidently, this task cannot be performed in this
appendix. We shall therefore content ourselves with the identification
of the most stable configurations without subsidiary constants.

The equations of motion in their second-order form in T*E(r,5, %)
can be written

. my M, mymg NSA
mgPy = = " £, -rg} - —3_(I‘1 - rg + F{™%, (Aga)
12 I3
- Moty motg
myty = - ———{r, - rg - —— -y + FA (A90)
r, 3 r. 3
21 23
M, Ma
. 3My 3l
malg = ~ 3 r3 - _1'1) - —g“(l‘:g - Ty *+ l“:,;]"'s“k {(A.9¢)
r Iy
31 32
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where '
rjj = | - rj|, ,j=1,2,3 {A.10)

and the NSA forces are restricted by conditions (I11.2.4) to verify the
identities

SaF"h =0, SapaxF N =0, Dara AFNA=0 (A1)
a=123

A straightforward generalization of the two—body solution of Eq.s
{A.4) with n = 1 to the three-body case, leads to the following
realization of the NSA forces (apparently introduced for the first time
in Santilli (1983a)}

FiMA = ¢(Fy - fg)+dlfy - Fo) (A.12a)
FoNSA = c&-.z - Fg) + dlfg - Fy), (A.12b)
Fg™h = cftg - Fq) + dlEg T, (A.12c)

where, for simplicity, we have ignored higher (even-order) derivatives;
the quantities ¢ and d are assumed to be constants; and we shall put
hereon c = d.

The first stable configuration is that with one particle at rest at
the center of the system with solution

rq{ = const, rp=constants, rz=const. for m; = mg {A.13a)

ry =cnost, ro = 0, rg = cnost. for m, = ms (A.13b)
The system then rotates rigidly around its center-of-mass.

Moreover the centers-of-mass of the three bodies must be on a
straight line. This is the rouse/fadjoint extension of the restricted
three-body proéifem. For further properties, see Fig.111.A.2.

The next stabie configuration is that of the celebrated Zsgrange
trigngle (Hagihara {/foc cit)), which is also described by forces (A.12)
with solution
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r{ =const. =0, rp=const.=0, rg=const= 0. (A.14)

Again, we essentially have contact interactions forcing the three
bodies one against the other. The system then rotates rigidly around
its center-of-mass. On hist_orical grounds, we should recall the

FIGURE I1IL.A.2: The “Zear-model” for a stable configuration of the
three-body, closed, nonselfadjoint systems submitted in Santiili (1983a).
The configuration here depicted is the simplest possibie one
consisting of the three bodies under mutual physical contact, disposed
along a straight line, and rotating around the center—of-mass of the
system, with the peripheral bodies having equal masses (for simplicity
but without loss of generality). The configuration allows the
introduction of a new notion of nucleus, called the Jsonucleds , which
can essentially have an unrestricted (non-null)) mass under contact
nonselfadjoint interactions. By comparison, the conventional nucleus
can occur in Kepler's systems only when its mass is much larger than
the mass of the peripheral constituents. In fact, contact interactions
merely force the peripheral bodies against the central body which, as
such, can have an arbitrare mass, including a mass much smaller than
those of the peripheral bodies. For stability, the motion must
necessarily occur along a straight line for much of the same reasons
of the conventional Kepler's case (Hagihara (1970)). In fact, whenever
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the centers-of-mass of the three particles are no longer along a
straight line, the configuration changes into that of Lagrance’s
Listorical trigngle (see Figure 111.A.3). The conceptual value of the
gear model becomes visible when adding the intrinsic angular
momenta. In fact, the pairing of particles cannot be any longer a
singlet or a triplet, as in the conventional Kepler’s case, but can only
be of singlet type in order to prevent mutual resistive forces and their
consequential instabilities. Moreover, the gear model becomes
particularly valuable in special cases, e.g., when the central body has
4 null intrinsic angular momentum. In this case, the peripheral bodies
must necessarily have non-null intrinsic angular momenta in order to
be able to have a stable rotation around the stationary central body.
Note that the notion of isonucleus persists for closed nonselfadjoint
systems of more than.three particles. The above results are
essentially unchanged when passing to the operator bound state of
three extended wavepackets in conditions of total mutual immersion.
In this case, the configuration of this figure appears to be relevant for
the study of Rutherford’s historical conception of the neutron asa
‘tompressed fvdroger atom™ (Rutherford (1920)) according to which
the peripheral electron is compressed {say, in the core of a star) inside
the proton, all the way down to the center of the hyperdense medjum
in the proton structure (for preliminary operator studies ofthe model
see Santilli (1990)). Note that Autherrords conrigiuration of the electron
ar the cemter of the profon Is permitied by our notfon of Isonuc/eus
for a closed ponselradiont three-bodysysiem, but sirictly prohibited
&y he conventicnal three-body system A central objective of these
studies is to permit a quantitative treatment of Rutherford's historical
hypothesis, evidently following the operator formulation of the theory.
The hope is the possibility of identifying the d-quark with Rutherford’s
electron e (although both in a mutated form d and €, see Sect. 1IL.7)
which, as such, can be freely produced in the spontaneous decays d =
€ + Ve It is hoped that, in this way, the reader begins to see the

reasons for the necessary prior study of the Newtoniah setting.

analytic difficulties Lagrange’s faced in achieving the stable
triangular configuration (A.14). It is then significative to point out that
these difficulties are readily resolved by contact interactions. For
further comments see Fig. I11.A.3.

The above two cases exhaust all possible configurations of three-
body isogalilean systems with stable individual orbits!l. The remaining

11 These systems therefore exhaust all’ possible cases when the constituents are
"isoparticles” as per Definition IIL.7.1, that is, generalized particles which can be
effectively characterized by the Lie-isotopic formulations because with conserved

108



cases are predictably more involved than the corresponding
. conventional cases, and cannot possibly be treated in this note. They

FIGURE 1I1.A.3: The 7Zear mode/”of the three-body, closed, nonselfadjoint
systems in Lzgranges fListorical triangle configuration (Santilli {1988a)). In
this case, the three bodies are forced into mutval contact and rotate rigidly
around the center-of-mass of the system, each orbit being a circle. The
conceptuai value of the gear modei becomes evident in this case, because
it illustrates the fact that 2 mecessaiy condition for stabliity is that alf three
constituents have & nufl InLriasic angvlar momeniun. Intriguingly, the
individual angular momenta are null, but the total angular momentum of  the
system is evidently not null. The configuration of this figure is significant
for the study of heavier hadrons as closed three-body isogalilean bound
states, as we hope to illustrate in subsequent studies.

energy. When the constituents are in general unstable orbits, they are no longer
isoparticles, but “isobiparticles” as per Definition II.E.1, namely, they require the
more general Lie-admissible formulations for the adequate treatment of their
nonconservative conditions. :
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can be best illustrated via Jawnussis™ (193] Birkhoriian representation

Py po? p T mymg momg
B = * + - ' - = Egot

2m 2m r r
2m, 2 3 12 i3 23

{A.15a)

which represents the nonselfadjoint forces of clear resistive
character

Fioh = ylEy —fgh PR = yleg - i) F™A = vl - 1) (A16)

Note the bona-fide isotopic structure {[1.2.5) of Jannussis action
(A.15). This implies that the Lie-isotopic tensor of the theory is no
Ionger a trivial scalar multiple of the canonical one, but a more
complex quantity of the type

O = (W% [1,,"). | (A-17)

Moreover, closedness requires in this case the essential,
irreducible constraint

r{A Ty + TpAlg + IgAry = 0, (A.18)

For additional details in this intriguing case, we refer the interested
reader to Jannussis, Mijatovic and Veljanoski (/oc, ¢/t ).
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CHAPTER IV:
ISOTOPIC GENERALIZATIONS OF
EINSTEIN'S SPECIAL RELATIVITY

IV:1: STATEMENT OF THE PROBLEM

As limpidly expressed in the historical contributions by Lorentz (1904),
Poincaré (1905) Einstein’s (1905), and others (see, e.g., Pauli (1921) and
quoted historical papers), the body of formulations today known as
Linstein’s special refativizy was conceived for the description of

1 particles which can be well approximated as belng massive
poines;

2 while moving in the homogeneous and Isotropicvacuun (empLy
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space/ under Action-at-a-distance, potentis! rorces:

& under lhe condiians thal quanmtuin wechanical and gravita-
onal effects on curved spaces can be fgnored,

Subsequent, rather vast, epistemological, theoretical and
experimental studies proved the special relativity to be exact, in the
above specified conditions, beyond any reasonable scientific doubt.

To avoid major misrepresentations of this work, the reader should
keep in ming that:

I) The exact validity of the special relativity under the historical
conditions of its original conception shall be tacitly implied throughout
the entire course of this volume;

I1) This volume deals with physical conditions fundamentally
different than those of the original conception; and, last but not least

1IT) even when inapplicable,12 the special relativity shall be tacitly
assumed hereon to remain approximately validity.

The above original conception of the special relativity was kept in
the well written papers and treateses in the topic in the first half of
this century. For instance, in Bergmann (1942} one can read the title of
Chapter VI: “Relativistic mechanics of massive points”.

With the passing of time and the growing, well known, successes of
the special relativity, the physical arena of original conception was
progressively abandoned, up to the presentation of contemporary
papers and books in the field according to which the relativity is
assumed as being universal, that is applicable everywhere and at any
time, for whatever physical conditions exist in the Universe.

Yet, authoritative doubts on the exact validity of the special
relativity under physical conditions oi7erent then those of the
original conception have been expressed since the early part of this
century, classically and quantum mechanically.

- As an exampie, in regard to the interior of strongly interacting
particles, Fermi (1949) expressed

12 It is appropriate here to recall that Einstein did not claim Gailei's relativity to be
“violated” at relativistic speeds, but merely "inapplicable” because referred to
physical conditions substantially beyond those of its original conception. This sound
teaching is preserved in these volumes. We shall therefore say that Einstein's special
{or general) relativity is “inapplicable” for, and not “violated” by nonlinear, nonlocal
and nonhamiltonian systems of the interior problem because conceived for
fundamentally different physical conditions.
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“doubls as to whetfer the usual concepts of geometry fold ror
Such small reglon of space.”

The understanding is that doubts in the geometry imply necessary,
consequential doubts in the applicable relativity. _

The open legacy of Fermi and other Founding Fathers of
contemporary physics was based on the ultimate zos/ocg/ nature of
the strong interactions, as expected under conditions of deep mutual
penetrations of the wavepackets of particles. In fact, the nonlocality
of the theory implies a breakdown of the geometrical structure of the
special relativity, let alone its physical laws (e.g., local commutation
rules).

The successes of the quark theory on the hadronic structure {see,
e.g., the reprints of the original contributions edited by Lichtenberg
and Rosen (1980)) then contributed to the general assumption of the
exact validity of the special relativity also in the hadronic structure.
In fact, a central assumption of the theory is that guarks are point-
Jike thus restoring the conditions of the original conceptions of the
special relativity.

Despite that, hadron physics has remained afflicted by a number of
still unresolved conceptual and technical problems, which are so
fundamental to warrant a reinspection of the underlying physical laws.
On technical grounds, the quark theory has been unable to achieve full
consistency because of the lack of zrwve gquark conrinement, le., a
confinement not only with an infinite potential barrier, but also with an
explicitly computed, and identically null probability of tunnel effects of
free quarks.

In fact, explicit calculations done by Chatterjee and Gautam (1986)
as well as others, show that the nonrelativistic probability of the quark
constituting, say, a proton or a neutron to tunnel into free conditions is
non-null, contrary to experimental evidence.

By repeating these calculations, one can see that, whether
relativistically or nonrelativistically, the nonnull probability of tunnel
effects of free quarks is a necessary consequence of the assumed
exact validity of Heisenberg’s uncertainty principle for the interior
problem. In fact, when the quark is on the infinite potential barrier, the
probability that it also exists in the outside of the barrier simply
cannot be rendered null

It is evident that, by assuming the exact validity of the ssze laws
in the fwterior and amnd exterfor of hadrons, the probability of tunnel
effects for free quarks is not expected to be identically null at all
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levels of the theory, including the quantum field theoretical level

On conceptual grounds, the difficulties are perhaps deeper. In fact,
the hadronic constituents can indeed have a painz-iike charge of the
type possessed by the electrons, a5 experimentally supported by
tests conducted by Bloom er 2/ (i1969). However, “point-like
wavepackels™ are only figments of academic imagination and they do
not exist in Nature. .

In the physical reality, the hadronic constituents are “freelike™13
particles possessing a wavelength of the order of the size of all
hadrons (about {F = 10”13 ¢m). This results in necessary conditions of
total mutual overlapping of their wavelengths with consequential
internal nonlocal effects, exactly along the historical legacy by Fermi
(1949), Bogoliubov {1960} and other Founders of particle physics.

But above ‘all, the greatest uneasiness created by quark theories
and their underlying special relativity lies in their reduction of the
entire universe to a strictly /Jwesgr and foca/  theory. In fact, the
complexity of the universe in general, and of strong interactions in
particular, is certainly such to require, sooner or later, nonlinear and
nonlocal formulations. Even assuming that the historical nonlocal
legacy is somewhat by-passed via local approximations, a local theory
of strong interactions should be at least nonlinear!? to avoid an
excessive simplification of Nature.

We can therefore conclude our introductory comments on the
particle profile by saying that the historical open legacy on the
nonlocality of the strong interactions, rather than having been

13 This is evidently due to the asymptotic freedom of the hadronic constituents.
Intriguingly, the operator formulation of the Lorentz-isotopic relativity presented in
this chapter provides a direct interpretation of this setting, trivially, because nonlocal
nonhaniltonian internal effects have no energy by conception, that is, no binding
energy (Santilli (1988a).
14 Qlassically, the noniinearity is uswally referred to the coordinates r and/or
velocities . Quantum mechanically, the nonlinearity is wsually referred in the
contemporary literature to that in the wavefunction ¢ and its conjugate yt. We here
refer to the nonlinearity permitted by Animalu’s fSoanit

r = r(ta r, i'» i:v"‘"’ 4‘15 &]s, aq’t ---'):
that is, poplineariy in £l local coordinates, wavefunctions and therr conpugales, &5
well as their derfvatives of arbitrary order. The reader should be aware that the
experiments on the possible “nonlinearity of quantum mechanics’ conducted until
now (see the recent tests by Bollinger er &/ (1989), Chupp er & (1990), Walsworth
et . (1990) and quoted. preceding tests), which resulted to be all negative, are
inappiicable to the context here considered. In fact, these experiments are all
referred to the Ffosyc structure, while we treat, specifically, the Aadroasc structure.
Also, the “nonlinearity” studied in the experiments is solely referred to the
wavefunction, while we are more interested in the nonlinearity typical of interior
dynamical problems, that on the derivatives of the wavefunction.
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resolved, 'has been left fundamentally open by the current quark
theory, despite its clear successes. In fact, as soon as the extended
character of the wavepackets of quarks is admitted, their mutual
penetration with the inherent nonlinear and nonlocal effects studied in
this volume becomes consequential.

In Definition I[11.7.2 we have introduced the notion of
nonrelativistic Iisogusrk (and weshall extend it to re/siivistic
Isogusrks in Sect. 1V.7) to permit the inclusion of shori-range
nonlocal and nonhamiltonian interactions, without losing the SU(3)
symmetry.

In this chapter we shall therefore study the classical
generalization of Einstein’s special relativity which is applicable under
the most general possible nonlinear, nonlocal and nonhamiltonian
interactions, as preparatory grounds for a subsequent operator stugy
of the historical open legacy on strong interactions.

Classically, the limitations of the special relativity were also well
known in the early part of this century, but then progressively
ignored. In fact, the comtact jnteractions of our Newtonian reality
(e.g., those experienced by a satellite during re-entry in Earth’s
atmosphere} were knwon to be structurally outside the
representational capabilities of the special relativity, e.g., because of

their zero range, or, equivalently, of their evident Zmsizntanecus
- characterts
Moreover, the reader should keep in mind that

15 The reader with a young mind of any age should be warned against dismissing
instantaneous forces in classical mechanics just because not predicted by Einstein's
special relativity, The reality is in fact the opposite, ie., the inability of the special
relativity to predict instantaneous forces is precisely a central reason for its
inapplicability. to interior dynamical problems. In particular, & classically
fmstantaneous force ssero-range force is a classical gapproxination of the short ragge
interactions originating it the overlapping of wavelensths at the particle level On
technical grounds, the special relativity can os/y represent variationally
selfadjoint forces (Helmholtz {1887), Santilli (1978¢)). These are necessarily action-at-
a-distance forces for which the “instantanecus” character is inapplicable, and the
conventional formulation of the special relativity follows. However, there exist in
'Nature also contact nonselfadjoint forces for which the “action-at-a-distance”
character has no physical meaning and which can occur only at the instant of
contact, as established by experimental evidence of our everyday life. These latter
forces are fundamentally outside the representational capabilities of Einstein's
special (and general) relativities and are the subject of study of these volumes. A
pragmatic rule to identify the applicable relativity is the following. If a force admits
a potential energy (self adjointness), then it is strictly Einsteinian. On the contrary, if a
force does not admit a potential energy (nonselfadjointness), then it is outside the
arena of true applicability of Einstein’s special relativity.
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the notion of “Zero-range” Inleractions Is precisely a classical
approximation of the “monlocal™ quanium mechanical effects
expected under conditions of overiapping of lie wavelenglhs of
PARrICES.

Stated differently, the overlapping of wavelengths is an event over
a finite region of space at the particle level, but it becomes an event
over a null region of space at a first classical approximation. In such
a transition, however, the nonhamiltonian character of the event, that
is, its lack of a potential energy, persists. _

There is no need to conduct elaborate experiments to identify the
inapplicability of the special relativity in our classical environment,
but only observe (and admit) physical reality, such as spinning tops
with monotonically decaying angular momentum, charged spheres
experiencing deformations of their shapes, satellites during re-entry
on decaying trajectories, etc. According to the special relativity, none
of these systems are permitted, trivially, because of the necessary
exact rotational invariance under which the angular momentum must
be conserved. We can therefore say that

The Insistence on the exact validity or the special refativity i
the interior dynamical problewm implles the necessary
acceptance of the perperual motion i 2 phvsical environment.

We have to insist that there is no known, fectnics//y established
way to avoid this conclusion, because the inconsistency Theorems 1.3.1
and 1.3.2. prevent the simplistic reduction of the decaying classical
orbits to idealistic, stable, elementary orbits, as well as for the other
reasons indicated in Chapter 1. ,

Also, it was well known in the first part of this century that the
deformabiiity of extended bodies, and the theory of elasticity at
large, are fundamentally outside the technical capabilities of the
special relativity, trivially, because one of its pillars, the rotational
symmetry, is known to be applicable only fpr rigid bodies?®
Regrettably, this sound scientific attitude was progressively
suppressed, up to current literature in the field where the
incompatibility of the theory of elasticity with Einstein’s special

8 This author still remembers his college teacher of special relativity stressing this
point as one of the limitations of the special relativity and, thus, performing a true
scientific function in stimulating the minds of young students. This true teaching
function should be compared with the current “teaching” of the special relativity in
contemporary colleges, as the final and terminal theory applicable under the most
unimaginable conditions of the Bniverse, which causes evident scientific demgges
because it prevents or otherwise discourages creativity in young students.
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relativity .is generally ignored.
Wwe have therefore to conclude that

The insistence on the exact valldity of the special refauvity i
our cfassical envirompment lmplies e necessary Bccepiance
that the objects of our plysical resfity are perrectiy rgid.

Again, we must insist that there is no known, fechunically
established way to avoid this conclusion, that is, we are aware of no
compatibility between the theory of elasticity and the special
relativity which has been published in a refereed Journal

Finally, the analytic structure of the interior dynamical problem of
our physical environment was known to be also ronfocsl, ie., of a
type analytically equivalent to those of the historical legacy on the
strong interactions. In fact, the contact interactions experienced by
a satellite during re-entry are precisely of nonlocal-integral type, i.e.,
of the same. analytic character of the forces expected by hadronic
constituents in conditions of total mutual overlapping of their
wavepackets.

At a deeper analysis, the interactions of our physical reality were
known since the origin of analytic mechanics to be nonlinear, nonlocal
and nonhamiltonian, as studied earlier in this volume. In fact, Lagrange
(1788) and Hamiiton (1834) formulated their analytic equations with
external terms, precisely to represent the contact interactions of
our reality.

In turn these contact interactions imply a breakdown, not onily of
the geometry and topology of the §pecial relativity, but also of its Lie
structure. In fact, the entire conventional Lie’s theory is inapplicable
under the contact interactions of our everyday experience, let alone
that of the Lorentz group. -

We. can therefore conclude our introductory comments on the
classical profile by saying that

The physical reality of our environment establishes the
existence on clear experimental grounds of nonlinear, nonlocal
210 noniasrangIan-nonhamiftonian rorces whick are bevond the
representational capabilities of Einstems special refativity andg,
more precisefly, beyond the physical conditions of Its original
conception. '

Moreover, the classical conditions of inapplicability of the special
relativity are analytically equivalent to the historical open legacy on
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the ultimate nonlocality of the strong interactions.

As indicated in the Preface, this author dedicated his research life
to the study of the limitations and possible generalizations of the
special relativity with respect to: a) the classical profile; b) the
operator formulation; c) the inter-relations between the above two
profiles; d) the nonrelativistic limit; and e) the gravitational extention.

The nonrelativistic studies have been reviewed in the preceding
chapters, including the study of:

A) the inequivalence of the exterior and interior dynamical
problems (Sect. L.2);

B) the impossibility of ~“eliminating” the nonlinear, nonlocal and
nonhamiltonian forces of our physical reality via the reduction of
macroscopic bodies to ideal point-like constituents in stable orbits
{Sect. L3); '

C) the achievement of compatibility between the local-potential,
exterior problem, and the nonlocal-nonhamiltonian interior problem
via the notion of closed nonseltadjoint systems (Sect. 111.2), with the
explicit study of the most stable configurations for the generalized
two-body and three-body cases {Appendix IILA)

D) an outline of the Lie~fSotapic theary (Sect. 11.6%

E) the geometrization of the interior three-dimensional physical
media via the Zscewchidean spaces (Sect. 11.3), and the identification of
a particular geometry, called Jsospumplectic geomerry {Sect. 11.9)
which permits the treatment of nonlocal interactions;

F} the construction of classical, nonlinear, nonlocal and
nonhamiltonian realizations of an infinite family of Jsorotational
Isoeuclideanand isogaliier svmmetries {Sects 111.3, 1114 and 115.5);

G) the construction of the infinite family of isotopic liftings of
Galilei's relativity under the name of Galle/~isotapic refativities (Sect.
111.6);

H) The direct representation by the isogalilean relativities of all

‘infinitely possible (volume preserving) derformations of the original
shape of the particle considered (Sect.s 111.7 and I11.8}; and,
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I} the emergence of a consequential, generalized notion of
extended—deformable particle, called isoparticle (Sect. 111.7) or, more
generally, fsobjparticle (Appendix I1LE).

These and all other foundational aspects of the nonrelativistic
profile of the studies, such as the Biréfoftian mechanics {11.7) ang the
Lie-admissible theory (Sects 1.4, IL5 and Appendix I1.A) shall be
hereon tacitly assumed as known.

In this chapter we shall review ke c/assical relativistic
generalization of the sbove nonrelativistic setting In particular, our
primary objectives are:

a) Construct the infinite family of classical, Lie-isotopic
generalizations of the Lorentz and Poincare symmetries, under the
tentative names of Zorentz-isotopic (or isolorentz) and Poincare-
Isotopic (or Isopoincard symmetries , respectively, for the most
general possible nonlinear, noniocal and nonhamiltonian systems;

g} Construct the elements of the corresponding, expected
generalizations of Einstein’s special relativity for the classica/
interior problem {only), under the tentative name of Loremiz-isolopic
refativities , .or. Isospecial relsrivities , applicable within
inhomogeneous and anisotropic physical media; identify the primary
deviations from the conventional relativity; and propose suitable
c/assical experiments for the verification of the special relativity in
interior dynamical conditions, or its disproof in favor of covering
relativities; .

v} Under the conditions that the isospecial relativities:

v-a) coincide with the conventional relativity at the abstract,
realization-free level, thus achieving an ultimate unity of
conceptual, physical and mathematical thought;

v-b) admit the Galilei-isotopic relativities at the nonrelativistic

level; and

v-c} are locally admitted by suitable isotopies of Einstein’s

gravitation, to be studied in the next chapter.

The number of authors who have conducted relativistic studies
preceding my efforts is so large to prohibit a comprehensive list. An
outline of the primary references known to this author has been
provided in Sect. 1.5. We here limit ourselves to recall that the first
relativistic considerations of Lie—isotapic character were submitted
in Santilli {1982b) on the maximal causal speed under contact zero-
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range interactions; the first construction of the ZLie-isotopic
generalization of the Loremtz symmerry With the structural
foundations of the Loremtz-isotgpic relativities were submitted by
Santilli (1983a) for the nonlinear, nonlocal and nonhamiltonian, matrix
formulation, and therefore of operator character; the classical
formulation of the generalized relativities for nonliner, nonlocal and
nonhamiltonian interactions was reached in Santilli (1988c) which
constitute the basis of this review. Additional studies can be found in
Santili (198ic, 4).

The mathematical foundations of the classical generalized
relativities, the Lie-isotopic theory, first appeared in Santilli (1978a)
and then expanded in Santilli (1982a) for the linear and nonhamiltonian,
but local interactions. Their generalization to classical nonlocal
settings first appeared in Santilli (198%9a, b) and was subsequently
expanded in Santilli (1989¢g, h}.

Additional studies important for this chapter are those by: De
Sabbata and Gasperini (1982), who studied the maximal causal speed in
the interior of hadrons; Aringazin (1989}, who proved the “direct
universality” of the Lorentz-isotopic relativities; Mignani {1990}, who
studied the application of the isotopic redshift law to the problem of
the quasars’ redshift; and Cardone et al. (1991), who provided a
phenomenological study on the application of the Lorentz-isotopic

relativities to the behavicur of the meanlife of unstable hadrons with
~ speeds. .

Additional studies on a true geweralization of the special
relativity were conducted by by Bogoslovski {(1977), (1984)) for the case
of anisotropic space-time, here called ZRBaroslovsiss special
refatrvizy. The study was conducted via the comvemtional Lies
theory , and the anisotropy was referred to space—time itself . [By
comparison, we use the covering Lie-isotopic formulations, while we
study anisotropy &#¢ inhomogenuity referred, specifically, to
physical medial.

A generalization of the Lorentz transformations was achieved by
Edwards (1963) and Streltsov (1990) via the assumption of a time
anisotropy with consequential differentiation between forward and
backward speeds of lights.

Recami and Mignani (1972} proposed a generalized transformation,
called superfuminz/, which maps time-like four-vector into space-
like ones, and which has particularly intriguing algebraic implications
for our studies (Sect. 5). Additional references will be quoted gusring
the course of our analysis.



.2: CLOSED, RELATIVISTIC, NONHAMILTONIAN
SYSTEMS

In Sect. 111.2 we studied monrefativistic, closed, nonselfadiornt Sysiens.
These are systems such as Jupiter which, when seen from the outside,
verify all conventional total conservation laws and space-time
symmetries (exterior dynamical problem). Nevertheless, their interior
trajectories are intrinsically nonlinear, nonlocal and nonhamiltonian
(interior dynamical problem). ’

In this section we shall introduce the notion of refgtivistic, closed,
nonselradjoint systems. Let us begin by introducing the conventional
AMinkowskr space

Mk, ®) 0 x =00 =, x¥, xt=cot, r €ErSH), (2.12)
1= () = Diag. (141, wr=1,234 (2.1b)

x2 = xb q, Y = xlxl+x2x2+x3%3 - te 2, | (2.1¢)

ds? = - gxM Ny dxV =inv (2.16)

where: the X's represent the local coordinates; the velocity of Jght in
vacuum is indicated hereon with the symbol cq; ds? is the invariant
separation; and all contractions are-in the reals &

We now introduce in M a system of N point-like particles denoted
with the index a = 1, 2, ..., N, and suppose that they constitute a
composite system with conventional (local-differential) relativistic
forces K @galx, p) verifying the conditions of variational self-
adjorntness (SA) (Santilli (1978¢)) for the existence of a potential, as
well as the conventional Poincaré symmetry P(3.1).

Then, the composite systems characterized by the special
relativity are given by the class of relativistic, closed selfadjoint
systems on M(x.nR)

dudlt al
moa_ds— = K uSA(x,p), v = dx@sds (2.2a)
d d
—pt =— 3 pt=y, (2.2b)
ds ds a
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d d
— gV 3, A =, (2.2¢)
ds ds

Lv=1234 a=1L12.,N

where PM are the generators of translations of P(3.1) and M are the
generators of the Lorentz subgroup Of3.1).

Note that global stability of systems (2.2) is characterized by the
stability of each individual constituent. In particular, each individual
constituent is rotationally invariant and possesses a conserved
angular momentum.

As a result, systems (2.2) are ideally suited for a relativistic
treatment of exterior dynamical systems such as the planetary or the
atomic systems.

Suppose now that systems (2.2) are generalized to represent N
erlended particles moving within a physical medium, as it is the case,
say, for Jupiter’s structure assumed to be constituted by extended
molecules in a relativistic gaseous state. This implies the additional
presence of contact interactions of each particle with the medium
consisting of all remaining particles, which we can write F uNS A where
NSA represents var/ztiona/ nonselfadigintness , ie., the violation of
the integrability conditions for the existence of a potential (Santilli
{foc. cit)), and have an arbitrary, generally nonlinear and nonlocal
(e.g., integral) dependence on the local variables x, and p, their
derivatives X and p with respect to the independent parameter s, as
~ well as any needed additional quantity, F?H ., = FaHge, &, p, p,..).

Suppose that the latter forces violate, as a central condition, the
Poincaré symmetry via one of the various mechanisms we encountered
in the preceding chapter (e.g., the Jrsolopic, selfadjornt, canonical,
selmicanonical and essentially nonselfadiornt breakings of Sect. A-12,
Santilli (1982a)).

our relgrivistic, closed, nonselfadiornt systems can then be
written

aj
du ap (X )
m —_ = K ,p +
oa ds SA
ap. .. ap 3 ;
+ K NSA(X, P, X, Py} + Io.do' ¥ nsaX %P p.-) (2.3a)
d d
— Pt = — >, P =0, (2.3b)
ds ds
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d d apjy
P | 1 L =
W = >ad =0, (2.3c)
ds ds

Lv=1,234 a=12..,N

where the nonlocal term is a relativistic extension of the
corresponding newtonian term in Eq.s (IIL1.1).

Note that the total conservation laws {2.3b) and (2.3c) are the same
as in the conventional systems [2.2}, but they are no longer necessarily
verified along the individual trajectories and, for this reason, they are
now subsidigry constraints to the equations of motion (2.2a).

The primary similarities between systems (2.2) and (2.3) is that they
show no visible difference when inspected from an outside observer.
In fact, both systems verify the total Lorentzian conservation laws,
and the trajectories of the center—of-mass of both systems verify the
Poincaré symmetry.

Despite that, the physical difference between systems (2.2) and (2.3)
are rather deep. In fact, the trajectories of each individual constituent
is unstable and nonconservative by construction, as ensured by the
forces K&l A the equations of motion are no longer invariant under
the Poincaré symmetry, and the internal dynamics is generally
nonlinear, nonlocal and nonhamiltoniam. Therefore, systems (2.3) imply
the violation of the Poincaré symmetry , and therefore of Einstein’s
special relativity, at all its structural levels:

1) topologically , the nonlocal character of the internal forces
imply the breakdown of the fundamental Zeeman’'s topology of the
special relativity;

2) analvtically , we have the inapplicability of the canonical
theory underlying conventional relativistic formulations; and

3) algebrarcally , we have the inapplicability of the entire,
conventional Lie’s theory for the very construction of the Poincare
symmetry.

Systems (I11.1.1) represent our Newtonian model of Jupiter’'s
structure, while systems {2.3) represent our relativistic extension of
the same structure. For a gravitational treatment, see the subsequent
chapter.
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Systems (111.1.1} also constitute our primitive Newtonian form of a
conceivable structure model of hadrons as closed nonselfadjoint
systems. Systems (2.3) above then constitute their classical relativistic
version.

A classical conceptual guidance for our study is therefore
provided by Jupiter’s structure, while a particle counterpart can be
given by the hadronic structure conceived as generalized bound
states of particles wavelengths in conditions of total mutual immersion,
with consequential internal nonlinear, nonlocal and nonhamiltonian
forces precisely of type (2.3).

It is easy to see that, exactly as it was in the nonrelativistic level,
systems (2.3} admit unconstrained solutions. In fact, given system (2.2a)
verifying conditions (2. 2b) and (2.2c), its implementation to system (2.3)
holds iff

a'l‘l' 3 —]
2P =0 m=1234, (2.4a)
ap - _
ZaPyy Flsa =0 (2.4b)
Za b, A Fy F =0, (2.4c)

where we have absorbed the nonlocal forces in the nonselfadjoint
ones for notational convenience. Eq.s {(2.4) constitute mne
!!Idepe!]dt?ﬂt condjtions. Therefore, for given Poincaré-invariant
forces F* SA, 2 solution in the Poincaré-noninvariant forces F‘“’LNS},l
always exist for N > 1 the case N = 2 being a particular case because
its space motion occurs in a plane (see Appendix IIL.A). The case N = 1
is impossible because a free particle can experience no force,
whether selfadjoint or not.

Of paramount inportance is the need that the exterior behavior of
composite systems (2.3) verifies Einstein's special relativity to such an
extent to provide no indication whatever of its generalized internal

structure. Specifically,

We here impose as fundsmental condition for consistency, that
& composite particle, such 25 & proton in & partic/e accelerator,
wWhen assumed lo possess 2 closed nonselfadiornt internal
Structure, veriies the totality or the Exnsteinian [aws.

The above condition can be realized even in a stricter form with
the more general class of relativistic, closed nonselfadjoint systems

. a
duu
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a
= K uSAb(,P)’+

n
04 ds
aj ap . .
+ F X PP )t do ¥ 5P, p...) (252
nga & P X B ) e p TP ) (252)
d d d auy 9
—ph=—3 p =09, — W_o 5 @Woy, (2.5b)
ds ds ds ds 4
d n
— (P g, P =0, (2.5¢)
d @
— Wl Ww=0, wh=ie haBY job py, (2.50)
ds
. . T8 apL
as =%, X =-1, %X =2,x . (2.5€)

where the reader will recognize as subsidiary constraints: the
conventional, Emsteinian, tolal conservaltion 18aws (2.5a); the Cagsim/ir
invariants of the Poincaré symmetry, Eq.s [2.5.c) and (2.5.d); and e
validity of &ll the preceding conditions on & conventiona! Minkowsks
space, Eq.s (2.5e).

Despite the rather considerable number of subsidiary constramts
systems (2.5} still admit unconstrained solutions in the Poincaré
noninvariant forces. In fact, the total number of subsidiary constraints
is now thirteen, which can be reduced to ten via Eq.s (2.4). A solution
therefore always exist for N > 1.

In this way we have proven the Tollowing

LEMMA [V21 The cemter-of-mass trajectory of relalivistic,
closed nonselradjoint systems (2.5 verifies the Poincaré
symmetry F(3.1] and Frnstein’s special relativity in thelr totality.

To state it differently, no detection whatever of the generalized
interior structure can be detected from the outside of systems (2.5). As
a result,

COROLLARY (K211 The current exterior experimenta/
evidence according to which hadrons veriry the special
‘relauvity exactly, say, when In & paricle accelerator, does hot
constitute evidence thal Uhe hadronic constitvents must
necessarily veriy the same refativity.
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A primary objective of this section is to identify the generalized
symmetries and relativity laws that are directiyv applicable to
systems (2.3) or (2.5), that is, applicable in the frame of the outside
observer without any transformation of the local coordinates.

In this respect it should be mentioned that (see also the
corresponding Newtionian case 111.2) the relativistic formulation of the
Lie-Koening theorem (Hill (1967)) does indeed allow the reduction of
Eq.s (2.3a) to Poincaré-invariant equations {2.2a). However, this occurs
only for local (as well as regular and analytic) systems and, as such,
the reduction is not established for nonlocal systems.

Moreover, even when the reduction of Eq.s (2.3a) to (2.2a) holds, the
transformations are necessarily nonlinear and noncanonical (foc cit
). As such, they violate Einstein’s special relativity because of the
evident lack of preservation of inertial frames.

Finally, the transformed frames have a purely mathematical
meaning (e.g., they imply frames in hyperbolic or transcendental
trajectories).

Because of these reasons, the transformation of Poincaré-
noninvariant systems into Poincaré-invariant forms shall be strictly
prohibited in this volume. Only as7er the generalized symmetries and
physical laws have been identified for systems (2.3) or (2.5) iz z#e
phpsical frame or the observer, then the use of the transformation
theory may have a physical relevance.

IV.3: MINKOWSKI-ISOTOPIC SPACES

A fundamental methodological tool in the construction of the isotopies
of Einstein’s special relativity is the geometrizationr of the
Inhomogenevity and anisolropy of lnlerior physical medrs, which is
done via the Minkowski-isolopic spaces , Or Isomitkowsks spaces of
Sect. I1.3. These isospaces also constitutes the first step in the
quantitative study of relativistic, closed, nonhamiltonian system,
inasmuch as they permit the identification of their internal carrier
space.

Isominkowski spaces were originally introduced in Santilli {1983a)
and then studied in more details in Santilli {1985a), (1983c), (1991, c, d)
under the conditions that the generalized interior spaces:
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a) represent the generally inhomogeneous, anisotropic and
nonlocal character of interior physical media;

b) admit the conventional Minkowski space as a particular case,
and

c) preserve linearity locality of the transformation theory of the
conventional Minkowski space in their isolinear and isolocal version,
respectively, while the underlying transformation theory is
intrinsically nonlinear and nonlocal

it is important to review these results, particularly for the nonlocal
profile. Recall that at the Newtonian level the transition from motion in
vacuum (exterior dynamical problem) to motion within a physical
medium (interior dynamical problem) is represented by an isotopy of
the Euclidean metric, § = B.

Qur first assumption is therefore that the transition from
relativistic motion in empty space to motion within a physical medium,
is represented by an isotopy of the Minkowski metric

T]":(T]uv) = ﬁ = (ﬁp_v) =Tn = {Tp_a) (T’(IIJ)’ (3.1)
which is also called a muiztion in the language of Sect. [1.3. The new
metric 1 is also called the isometric and T is called the isoLopic
efenren!.

The sole conditions requested by the Lie-isotopic theory on the
isometric 7 (or, equivalently, on the isotopic element T) are
nonsinguiarity  (invertibility) and Herwiticity (symmetric and real
valuedness). The important point is that the functional dependence of
the isometric is left completely unrestricted by the isotopies
themselves, with the understanding that specific isosymmetries may
imply specific restrictions.

We shall therefore assume that the interior metric 1) depends, in a
generally nonlinear and nonlocal way, in the coordinates x, the
velocities u = dx/ds, the index of refraction n, the density p, the
temperature T, and any needed additional quantity {such as the
accelerations a = du/ds),

f]IJ.V = f]l.l,v(xﬂ ua T, nv--) (323)

Tu" = Tuv(x, u, 4,1, T, n,..). (3.2b)
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The condition of nonsingularity implies the existence everywhere
in the interior space of the inverse

1 = 1 (3.3)

which is here assumed as the the Zsoumit of the theory (Sect. IL.8).

We remain with the central conditions of achieving isolinearity and
isolocality. This can be done from the results of Sect I1.3 via the
following

DEFINITION [V.3.1 (Santifli (19533} The Minkowski-Isotopic for
fsominkowskyl spaces Ma,p%l are given by the inrinite ramily
of possible Isotopes of the conventional Minkowski space
ManR Fg.s (V.21 with isotopic separation

Mocnf): x=&M = N reBedd), xt = cgt.  (3.42)
x2 = (xP i, T, §=Tn 1=T1, (3.4b)
ds? = (-dxM f,, ax¥ 1 = inv. (3.4¢)

where: the Jocal coordimates X are unchanced as & cenlral
condition or ISotopy, co represenls the speed or [ight i
vacuvw: ds € is the isotapic mnvariant; E(r8.%) represents the
Isoeuclidean spaces or Sect. I3 and the guantity % Is the
Isofield

= {R|N=N1, Nes, 1=T71}, (3.5)

with elements N called isonumbers, verffying the
Isomultiplication law ‘

Nl”‘N2= (NlNz)AI (3.6)
and the ordinary sum Ry + Ny = (Ny + Ny 1.
1
As now familiar, the achievement of isolinearity is centrally
dependent on the lifting of the field, fi=>%. In fact, for a given,
conventionally linear and local transformation x” = Ax in M{xn.%), the

corresponding transformations in M(x;\#%) are given by the moduiar-
Isolopic action

X' = A =ATx, T =fixed, (3.7)
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The above Jsotransiormations are called isolinear (/soloczl/in
M(c,n.8) when A is conventionally linear {local) in M{x,n#), in which
case they are linear (local) at the abstract, realization-free level.
Nevertheless, the transformations are generally nonlinear {nonlocal)
when projected in M{x,n8),

X = ATk, u, a.)x (3.8)

By using Propositions 11.4.1, 11.4.2 and 11.4.3, we therefore have the
following

LEMMA V.31 Under sufficient topological conditions, for any
given nonlinear and/or non/ocsl Lransrormaions

x=>x,.), (3.9
in Minkowski space, there aIwaps exists an Isotopic Lring

Mxn A = M&a#, (3.10a)

fi=Tn det. T#0, T=T, & = &% 1 =T (310p)

under which the. transrormations can be identically written In an
Isofinear and/or Isolocal form

x = xfX.) = A% =ATX = ATK.)xX (3.11)

The reader should keep in mind the above property because the
characterization of hadrons via our Lie-isotopic symmetries implies a
de rfacto nonlinear and noniocal treatment of strong interactions,
although such to recover the linearity and locality of the
electromagnetic interactions at the abstract coordinate-free level

The reader should also keep in mind that the above isolinearity
and isolocality are permitted by our isotopies of the Minkowski spaces,
and, more particularly, by our use of the isofield (3.5). Also, the actual
numbers of the theory are the ordinary numbers N because, from
composition law (3.6), the isomultiplication of any quantity Q by an
isonumber N coincides with the conventional one, i.e.,

N+Q = NQ. (3.12)
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In the following analysis we shall encounter the following
gquantities:

a) Isorousvectars , which are ordinary four-vector although
defined on M{x 1 #) and, therefore, with isocomposition (3.4b);

b) Zsothreevectors , which are also ordinary three-vectors,
although defined on isospace Efr3$.f), where 1) is evidently restricted
to the space component of the isometric i); and

¢} Isoscalas , which are elements of #. However, in all practical
calculations we shall ignore isofields and use ordinary fields, owing to
identities of the type

By E = f]wx”, f=7, X=xl (3.13)

Evidently, there exist infinitely many isotopes of the Minkowski
space because of the infinite possibilities of different interior physical
media. In order to focus our attention on the most important ones, we
introduce the following

DEFINITION [F.32 (Santitli (1985cl The AMinkowski Isotgpic
spaces MR85 are classitied into:

. Sces of (Jass [ denoted M ', when the Isometrics if preserve the
Lopological properties of the Minkowsl metric, Le, When the
Isoropic element T Is positive-derinite,

T>0, (3.19)

and the spaces have null curvature, fe, the Chrisioffel symbaols
af the second £id gre identrcally null,

r‘ﬂl-il’ = 4090 (ﬁuc,v * ﬁav,u. - flp.l.r,t:r) =0, (3.15a)
T = 80y 78x%, wv,po = 1,234 (3.15b)

Spaces or (Jass [, denoted ML when the spaces are stil rist, ie,

veriry conditions (315 abaove, but the Isometrics lj do not
necessarily possess the topological structure of the origina/
Minkowsky melric , fe, the [solopic efement has an arbinraly
Signature
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Sig. T = (*1, £1, +1, £1); (3.16)

Spaces of (Jass Y], denoted M\, when thev are curved, Le, they
violate sowe or alf conditions (315,

=19k .}, 9ayex #0, Py *0. (3.17)

The Lie-isotopic analysis of this chapter will be conducted for
isospaces M!Il pecause they are the most general possible and
therefore inclusive of all others, ie.,

Ml c Ml ¢ Ml {3.18)

Notice that isospaces MUl are considerably broader than
conventional Riemannian spaces, e.g., because they depend on the
velocities and are structurally nonlocal. Similarly, isospaces MHI are
broader than the Finslerian spaces, evidently because of their general
inhomogenuity; etc. Isospaces M'  are the fundamental spaces of our
gravitational analysis, and they will be studied in detail in the next
chapter. ' :

Isospaces M!! will have a primary mathematical function, e.g., fo
the classification of all possible isotopies of the Lorentz group.

it is evident that all physically achievable mutations of the
Minkowski metric are of Class L. In fact, suppose that an extended test
particle originates its motion in the exterior space M with the familiar
topology Sig = (+, +, +, -). Suppose that the particle at a given point in
its trajectory penetrates within a physical medium. Then, no physical
event generated by the interior dynamics can possibly change the
original topology.

Therefore, isotopies of the type Sig. 1) = {+, +, +,-) = Sig. = (+, +, -,
-) belonging to isospaces Ml!, are not physically realizable, resulting in
fundamental condition (3.9) for isospaces ML For these and other
reasons, isospaces M! are the fundamental isospaces for all our
relativistic treatments of interior dynamics.

We now pass to the physical interpretation of the isospaces. For
this purpose, the reader should first keep in mind the relationship
between the original and the isotopic spaces.

PROPOSITION HI.3 1 (Santitli 1953a) Al fnfinitely possible isotopes
Man® 7 =Ty, £ =KL of the conventions! Minkowsky spaces
M #) are locally isomorphic to the latter, M35 » ME,}.%)
when the isotopic efement Is the inverse of the isouhll, f= T"f,
and 7 >0 : '
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Stated differently, our isotopies of the conventiona! Minnkowsks
space preserve the conventionsal axiomatic structure of space-time .
As we shall see in the next chapter, this mathematically simple
property has rather important physical implications, e.g., for the
geometric unification of the special and general relativities.

In fact, the isometrics 1) of the above proposition can indeed
represent a conventiona/ Riemannian metric gx), thus permitting the
representation of Einstein’s gravitation as an isotope of the special
relativity.

As a matter of fact, this occurrence is of considerable conceptual
guidance in the identification of the physical meaning of our
isominkowski spaces because they confirm their geowerlrization of
physical media, a5 & step Inclusive of, but structurally more general
han gravitation .

To state this important point more explicitly, we know today that
the conventional Minkowski space-time MR8 Is modified by the
presence of gravitalion, resufling in the Riemanhian spaces Rix g8y
Along similar concepiual lines, our isotopic theories indicale that the
conventional space M&,p# is also modified by the presence or 2
physical mediv, resulting in a broader space M58 which may or
way hot inclusde gravitation, depending ol the case at hand

In fact, isominkowski spaces can readily achieve objectives a) at
the beginning of this section and, in particular, they can provide a
direct representation of:

a-1) the Jphomogenuity of physical media, e.g., via a dependence
of the isometric on the locally varying density;

a-2} the au/sotragpy of physical media, eg., via a factorization in
the isometric of a preferred direction in the medium itself such as that
caused by intrinsic rotations; and

a-3) the wmomlocality of the interior problem via integral
realizations of the isounit.

As we shall see in more details in Sect. IV.1¢ and Chapter VII, the
above properties generally resuvit in a space-zime anisotropy , eg., by
# bg, which is testable with current technology in a number of way.

To achieve guantitative predictions suitable for experiments, we
shall proceed in stages, by beginning with the study in this section of
isospaces of Class L.
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Under the nonsingularity, Hermiticity and positive-definitness of
the isounits, the isometrics 1} can always be diagonalized, resulting in
the particular realization

Mikn®: x=@GM = exY, rebBrdf), X, = Cgt (3.19a)
fi = Diag. (by2, by2 bg?, - bgd) =T, (3.191)

T = Diag. (b2, by, bs2, by?) > 0, (3.19¢)

bll = bu(x, u,a, |, T,n.)>0 (3.19d)

x2 = x1p;2x1 + x2py2x2 + x303%x3 - thy2cy2t, (3.19¢)

ds2 = —dxlb, 20x -dx2b,2ax2+ dx3bg2ax3- dx*b,2dx4 = inv.
(3.191)

where, for simplicity, we shall hereon ignored the multiplicative term 1
in the latter two equations.

Our problem is now that of identifying the possible physical
meaning of the quantities bu called charzcteristic b-guantities af
the medium considered . First, we have to consider the following two
primary alternatives as in the isoeuclidean case of Sect. IL.3:

A) focs! relativistic description of a trajectory within a physicical
medium, in which case the b’s have the nonlinear and nonlocal
dependence on the needed local variables indicated earlier, and are
called characteristics b-Junctions , or

B) global relativistic description of the effect of a physical
medium, such as the propagation of light through the entire Earth’'s
atmosphere, in which case the b-quantities can be effectively
averaged into constants as in Eq.s (111.3.56) and are called
characteristic b-constants of the medium considered.

The physical interpretation in each of the above cases can be best
done by considering the b-quantities as a natural generalization of the
original, corresponding quantities in M{xn.R).

For. this purpose, consider the following alternative formulation

1

bll = —, B=1,234 (3.20a)
y
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/1y, (3.20b)

1 1 c, 2
¥ =gl —xl v x2 57 4 x3—x3 - t—ot. (3.20c)

n1 ﬂ22 n3 ﬂ42
where rthe n's can be assumed to be functions (costants) for local
(global) descriptions.

Then, by recally that ¢, represents the speed of light in vaccum,
the most narvral meaning of the generalized qUanity ¢ = Cpb =~ Co/Ny
Is the representation of the speed of lght (or, more generally, of any
electromagnetic wavel in the physical medium consigered, under the
evident assumption that it is transparent to electromagnetic waves.

In this case we have the simple geometrical interpretation by =
1/n4, where ny is the local function representing index of refraction,
when interested in the speed of light at one given point in the medium
considered, or it is averaged to a constant, when interested in global
aspects (e.g., the average speed of light when passing through our
entire atmosphere).

However, at the classical level, physical media are generally
opaque to light as well as to all electromagnetic waves although still
. permitting relativistic motions (this is the case, say, for metals which
are opaque to light but not to electrons). In this latter case the term
f]44 == b42 has a purely geometrical meaning, conceptually similar to
the geometrical meaning of the element g 44 of a Riemannian geometry
{see Sect. 1V.10 for more details).

The space elements 8y = by have the same interpretation of the
corresponding elements in the isoeuclidean space Ef{r3#) (see the
remarks at the end of Sect. I1L3), such as the representation of:

I the actus! shape of the object considered;
2] the infinitely possible deformaltions of the original shape; or

I the noniinear, nonfocal and nonphamiftonian interactions or the
nterior dyvnamics.

For these and all other aspects of the space component of the
isometrics, we refer the reader to Chapter IlL

Similarly, in Sect. IIL.7 we have introduced the notion of
nonre/aiivistic isoparticle, as an extended particle under both
potential (selfadjoint) and. nonhamiltonian {nonselfadjoint) interactions
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which can acquire an infinite number of intrinsic characteristics
depending on the local physical conditions, and which are represented
by the infinite number of [sogalifean Symmrelries G(3.1). Another
objective of the isominkowski space is to permit the identification of
the relativistic notion of isoparticle (Sect. 1V.7).

A number of additional meanings of isospaces MYx,#), and of
isometrics © will emerge in specific applications of the theory, eg., in
particle physics, superconductivity, etc. At this point, we would like to
indicate the azpplication of Isominkowskl spaces rfor lhe
geometrization of hadroms, as suggested by phenomenological
studies on the behavior of the mesnhlife of unsiable kadrons With
speed.

As well known, it appeared for decades that such a behavior is at
variance with the Einsteinian behavior precisely in the expectation
that the internal structure is nonlocal (see, e.g., Kim (1978) and quoted
papers).

The first phenomenological predictions of departures from the
special relativity are those by Blockhintsev (1964), Redei (1966), and
others.

Kim (/oc ¢z ) formulated specific predictions of violation at given
energies via the use of quantum field theory and the loss of the
canonical commutation rules caused by nonlocal internal interactions.
He also pointed out the expectation that the (still unresolved) origin of
violation of discrete symmetries may also be the same as that of the
anomalous meanlife, and both due to the internal nonlocality of
hadrons. _ 7

More recently, H.B.Nielsen and L Picek (1983) studied the Higgs
sector of the spontaneous symmetry breaking for the interior of pions
and kaons within the context of unified gauge theories, and suggested
the following modification of the Minkowski metric

i ={1 - as3), (1 - @/3),{1 ~/3),-(t + al}. (3.21)

where the parameter «, called “Zorentz-asymmerry parameter; has
the following value for pions

a = (-8.79+ 1.37) x 1073, (3.22)
and the different Vvalue for kaons
a = (+0.61 + 0.17) x 1673, (3.23)
The above structuré constitutes a clear illustration of our
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isominkowski spaces {(Santilli- (1983a)), for the case of a global
description where the characteristic b—quantities are averaged into
costants, yielding by = b2 = b3 =1-a/3, bg=1+a, with numerical
values (3.22) and (3.23).

It should be stressed that values (3.22) and (3.23) are a mere s7irs¢
approximation for low energres . In fact, the subsequent measures by
Aronson er 2/ (1983) for kaons at energies 30-100 GeV confirmed the
expected zounlpmezr dependence of the meanlife with the speed (as
well as for other quantities). Thus, when averaged to constants via
techniques of type (I11.3.56), the results by Aronson er g/ (foc cit.)
are different than those by Nielsen and Picek (foc. iz ).

We learn in this way that the globalization of the characteristic b-
functions into constants for hadrons should be referred to a specific
energy range, because is not expected to be necessarily valid for
arbitrary energies.

However, the more recent experiments by Grossman ez z/ (1987) in
the range 100-350 GeV have shown no apparent deviation of the
behavior of the meanlife with speed from the Einsteinian predictions.

The issue is predictably far from being settled, as elaborated by
Cardone ez a/ (1992a, b), who have shown that Zshe experimelis by
Grossman et al. floc cit) and those by Aronson er al floc cit) are
endered compatible by our Isominkowskign representations of the
Kkaons.

These experimental aspects will be considered in Chapter VIL In
this section we would like to point out that our isotopic liftings of the
special relativity offer a number of new possikilities for the study of
the problem, in addition to that of compatibilities of the indicated
diverging data.

First, let us recall that our nonselfadjoint models (7V.25 verity all
Eipsternian laws In the exterior center-of-mass befavior, fhcluding
Lhe behavior of the meanlire with energy (Corollary 1V.2.1.1). Thus,
hadronic structures represented via models (IV.25 verity all the
data or the experiment by Grossman et 4/, (1957}

But the interior structure of model (IV.2.5) is generalized. Thus, our
studies indicate the possibility that

All phenomenological and experimental investigarions on Lhe
nonelnsteinian belbavior of the meanfire of vhstable ladroins
With energy reviewed above, may characterize generafized
interior metrics iy In such a way to be compatible with the
exact, exterior, Einsteinian behsvior aslong the notiom or
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closed;: relativistic, nonpamiftonisn systems considered here.

In different terms, the phenomenological and experimental studies
considered above do indeeed achieve a generalized interior structure
of nonselfadjoint type, but they should be complemented with

JUPITER'S STRUCTURE
IN RELATIVISTIC APPROXIMATION

CONVENTIONAL POINCARE™ SYMMETRY
FOR THE EXTERIOR CENTER-OF-MASS BEHAVIOR

GENERALIZED POINCARE" SYMMETRY
FOR THE INTERIOR STRUCTURAL PROBLEM

FIGURE 1V.1: Asrecalled in Fig. 1.t.1, the origin of all contemporary
relativities can be identified with Galilei’s first visual inspection of
the Jovian system back in 1609. Exactly the same situation occurs for
the isogalilean relativities of Chapter I1I, as well as for the isospecial
relativities studied in this chapter, as majestically permitied today by
close-up pictures of Nasa's Planetary Missions. This time, however,
the attention is focused on Jupiter’s structure conceived as a
relativistic gas of extended molecules, each one in motion within the
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medium composed by ail others. This results in the closed, relativistic,
nonhamiltonian systems of Sect. IV.2 which permit compatibility
between conventional relativities of the center-of-mass behavior of
Jupiter in the Solar system, and generalized relativities for Jupiter’s
structure. A primary objective of this chapter is to provide technical
means for a quantitative treatment of the relativiztic effects caused by
such an interior medium, which is mathematically rigorous as well as
effective for practical calculations. This is achieved via the
isominkowski spaces (Definition 1V.3.1) for the characterization of
inhomogeneous and anisotropic interior media and, in parucular bg
the isotopies of the Minkowski metricn = % =Ty, T = diag. (b1 L by
b3 \ b42) > 0, where the isotopic element T or, equivalently, the b-
quantities, have an explicit dependence, in general, on all possible
local variables and quantities. A hierarchy of isometrics then emerges
as conceivable:

1) isometrics 1) with constant b-guantities, evidently intended to
represent the interior medium in first approximation;

2) isometric 1| with b-functions on the coordinates, e.g., to provide a
representation of the change of the density with the distance from the
center;

3) isometrics 1) with b-functions with an explicit dependence in the
velocities, as a first dynamical representation of the drag forces
typical of interior motions;

4} isometric 1 with b-functions with a nonlinear and nonlocal
dependence on all possible variables and quantities, as a
representation of the interior dynamics; and, last but not least,

_ 5} isometrics T with a general nonlinear and nonlocal b-functions,
although averaged over to b-constants.
We are here referring to the fact thatthe description of specific, local
events, such as the trajectory of a space-ship during penetration in
Jupiter's atmosphere, must have an explicit nonlinear and/or nonlocal
dependence on all local quantities, as well known. Isometrics of type
3) and 4} above are then appropriate. However, there may exist other
events, such as the propagation of light within inhomogeneous and
anisotropic (transparent) media, which do not necessarily need a
nonlinear and nonlocal dependence, but which can be well treated via
a suitable global average of the isometrics 3) and 4) into b-constants.
This is exactly the case for the Doppler redshift predicted by our
isospecial relativities for motion of light within physical media (Sect.
1v.9), as apparently verifiable with classical experiments (Chapter Vil)

subsidiary constraints to achieve compatibility with the Einsteinian
center—of-mass behaviour.

The first way to illustrate this possibility is with the studies by

Nielsen and Picek (1983) which result in generalized isometric (3.21). The
violation of Einstein's special relativity under such a metric is evident
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and need no comments. _

Prior to our studies on isotopies, generalized metrics of type {3.21)
have only one possible interpretation, that they imply a necessary
noneinsteinian behavior of the meanlife with speed and other
consequences studies later on in this chapter (loss of the Lorentz
symmetry).

By keeping in mind the open character of the final experimental
resclution whether or not the meanlife of unstable hadrons is
Einsteinian, our isotopies establish that the studies by Blockhintsev
(1964), Redei (1966), Kim (1978), Nielsen and Picek (1983), Aronson e 2/
(1983), and other can characterize interior, generalized isometrics
irrespective of whether the exterior behaviour of the meanlife is
Einsteinian or not.

Moreover, the papers considered illustrate the fact that, wade the
Minkowski space Is unique, it adwits infinitely wmany dirferent
Isotopes In fact, the rsomelrics change in the lransition from from
pions, Eg.s (221}, to kaons, £q.s (3.22). This result can be aiso reached
independently from the behavior of the meanfile. In fact, all hadrons
have approximately the same charge radius R = iF which does not
appreciably increase with mass. This implies that different hadrons
have different densities, resulting in different interior physical media
and, therefoire, differenmt isominkowskian represen-tations.

We can therefore state that

The isometrics or, equivalentiy,tie isounits of hadrons generally
vary from particle to particle (Santilli (1983a)).

In turn, this illustrates the infinite number of different
isogalileanalilean generalizations of the Galilei’'s symmetry of the
preceding chapter, and indicates the expectation of the corresponding
existence of an infinite number of isopoincaré generalizations of the
Poincaré symmetry, as treated in Sect. 1V.6.

Thus, the possible representation of hadrons as closed
nonselfadjoint systems implies (from phenomenological data such as
the increase of density with mass, the different local values of the
spontaneous symmetry breakings in unified gauge theories, and other
data) the apparent existence of different models (IV.2.5) for different
hadrons, with different isounits and, conseguently, different
isosymmetries.

As a final comment, let us recall that in conventional special
special relativities physical systems are characterized by only one
function, the Hamiltonian, while in our isospecial relativities physical
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systems are characterized by the Hamiitonian and the underlying
isounit.

We should then recall that ke special relativity cannot possibly
oredict the numerical valve of z Hamiftonign, bul provides only
general /aws for its cliaracterization . Exacly along the same lines,
the isospecial relativities canmot possibiy predict the numerical
values or the Hamiltoniah and of the isounit, but provide only general
/aws for thelr characterization . This can be seen from a more
general viewpoints according to which #o geomeiry can possibly
predice the numerical vafve or Jts own v, which must therefore be
identified via experiments.

In summary, our isotopic lirtngs j = § = Ty of the conventional
Minkowski wmetiic »n can be rirst interpreted as a rorm of
geometrization of the physical mediz or the interior probiem (Sect
IK1g, whose explicit meaning depends on the characteristics of te
medium at hand, and generally varies rrom case to case. Moreover,
except for nonsingulerity and Hermiticity, the isometrics i have the
most genperal concerivable or otherwise Lrown, nonfinegr, nonfocsa!/
and nonfamiftoniah dependence on 2f possible variables and
quantities, thus achieving the unlfication of alf existing pheno-
menological generalizations I one geomelrical structure Finallp,
owing to thelr arbrirariness, the isomellics );“ mclude a5 particuiar
cases the conventional Ricmannian, fFinsierian, Minkowskian or olher
meLrics,

IV.4: RELATIVISTIC LIE-ISOTOPIC FORMULATIONS

After having identified the internal carrier space of systems {IV.2.3) or
(Iv.2.,5}, our second step is the identification of the mathematical
methods needed for their effective treatment.

These methods are evidently given by the re/gzivistic Lie-isotopic
formulations , hereinafter called ' fsorefalivistic formulalions , in
their algebraic, geometric and analytic branches, first introduced in
Santilli (1988c), which is the basis of this review. For additional studies,
one may consult Santilli (1991c,d).

In the following we shall first outline the relativistic Lie-isotopic
formulations for local systems, and then point out their extension for
nonlocal interactions. We shall also first present the geometric profile
and then the algebraic' and analytic aspects, because geometry
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provides the most direct formulation of the integrability conditions for
the existence of the desired algebraic and analytic structures. A
knowledge of Sect.s I1.6, I11.7 and 11.9 is a necessary pre-requisite for
the content of this section.

The geometrical roundations of isorelartivistic mechanics in
local-ditrerential approximation are provided by the relativistic
generalization of the symplectic geometry on the conventional
cotangent bundle T*M(x,n%®). By using the local coordinates of the
unified form '

a=@l = &p) = &, i=1,2..8 pn=1234 (41

the main structural notions are the re/givistic Prarian one-rora
8y = Rjdal, Rj = Rif), (4.2)
and the refativistic, exact, symplectic two-foru

de, = diR, da) = 2 gal A dal, (4.3)

29
where

Qi = &Ry - Ry, 9 = o/dal, (4.4)

is the nowhere degenerate covariant Birkhorfrs tensor, with
corresponding contact extensions on Rg<T*M{x,nf) not considered
here for brevity (see footnote’ p. 91).).

A relativistic vector-field I' on T*M{x,n,®) is then called a (global)
Birkhortian vector riefd when it verifies the rule

9, Ir=-u8. {4.5)

where B is called the refsfivistic Birkhorfian, in order to differentiate
it from the refativistic Hamiltonran H.

The agnalvtic foundations are characterized by the gewera/
refativistic Praffian princip/e, here expressed with respect to a
generic independent variable s in the semrautonomous form (see
below),

. 2 .
84 = s_rl ds[Rifa) a! - Bls,a,.)] =0, 4=da/ds, (4.6)

where one can recognize in the integrand the Plaffian one-form 4.2)
(while its contact extension would represent the entire integrand).
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Principle {4.6) readily yields the following re/alivistic covariant
Birkhofr's eguations

dal 3 Bls, a,..) X
Qi) — = ———— {4.7)
ds 9 al

with consequential relativistic, Brrkhoirtizn, Hamilton-/acobi
equations

A aA
+ B =0, — = Ry, (4.8)
ds dal

The remaining aspects of the relativistic Birkhoffian mechanics then
follows and must be here necessarily assumed for brevity.

The ajgebraic roundations are characterized by the following
relatvisiic covariant Birkhorr'’s equations

da! ;i  9Bls.a,.)
— = g ————, (4.9)
ds da
where § s
i = —1,i
ol (lszrs| M, (4.10)

is called the re/auvisiic contravariagnt Birkfkolt’s tensor.
The algebraic structure of the theory is then characterized by the
brackets

dA - . 8B
[A] Bl = — o) —, (4.11)
aal 3 a
i {
which are Lie-isoropic brackels in the sense of verifying the axioms
of the Lie-isotopic algebras (Sect. 11.5), i.e.

[A]B)+[B] Al=0, (4.122)
fa;Bl,Cl + [[B; Cl.) Al + [ic, Al;Bl = o, ~ (4.12b)
as guaranteed by the symplectic character of two—form (4.3) (see Sect.

11.9).
The exponentiated form of Eq.s (4.9) is then readily given by
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Uia) (3:B) (8:
S @ERG), (4.13)

and results to be a Zre-isotopic group (Sect. IL6). The relativistic
formulation of the Lie-isotapic theory then follows.

By ignoring for a moment the subsidiary constraints {see also
Appendix 1V.B), the conventional relativistic formulations are
- recovered identically for R = R® = (p, 0), for which Birkhoffian one-
forms {4.2) and two-forms (4.3) recover the conventional, relativistic,
canonhical, one- and two-forms, respectively,

- - i peo =
eilR:R“ - 91 - pi da R" = (P30)1 (414a)

g -1 N . 0 I
Q) . = = , W, .= W)=
])[R =R P oo )IR-—R IR
(4.14Db)
Birkhoff’s equations {4.7) and (4.9} then assume the conventional
relativistic Hamiltonian form in our unified notation {again without the
multipliers)

. dal 8H(s, a, ...)
wll = - A {4.15a)
ds dal
da!  8H(s,a,..)
— = — {4.15b
ds aal

while the Lie-isotopic brackets (4.11) assume the conventional
canonical form

3A 3B
(A% B]IR:R., = a_ai wl} ;;}
A 3B 3B 3A
= —” Tluy apV - . “py apV > (4.18)

The above relativistic formulations are, however, nadeguate for
our needs on a number of counts, and they do not constitute the
desired “isorelativistic” formulations. First, they are based on the
conventional symplectic geometry. As such, Zfe formulations can
indeed represent nonfinéar and nonphamifionian Systems, bul only in
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local approximatzion. This is evidently due to the strictly local
topology of the assumed geometry discussed earlier.

Second, we need formulations which can be readily "hadronized”
into an operator form with wavefunctions independent from the linear
momenta, while action (4.6) is excessively general and would lead to
“wavefunctions” dependent on the linear momenta (see the comments
in footnotel?, p. 94).

Third, we need formulations defined on our isominkowski space
M(,0,%), while the preceding formulations are.on a conventional
space. '

Fourth, we need a classical relativistic geometry which permits the
treatment of nonlocal interactions and, as such, it is the true
geometrical counterpart of the Lie-isotopic algebras.

Finally, we need isorelativistic formulations which contain
explicitly identified isounits directly in the geometric two-forms, the
algebraic brackets and the analytic equations, so as to readily identify
the particular equations of motion considered, by assigning the
Hamiitonian and the isounit.

All  these objectives can be achieved via the re/zivistic
Isosymplectic geometry first introduced in Santilli (1988c).

Consider the isore/zzivistic phase space (cotangent bundie/
T*M ((x.0.8) characterized by the isore/stivistic one-isororis

6°1 = 8p<Ty = R>Ty), dal = R°j(a) dal = Py Ti*yfs. x, p.} 8xY, (4.17a)
R" = {p,, 0) = (pTy, 0) {4.17p)

where all nonlocal, as well as nonlinear and nonhamiltonian
interactions are factorized in the isotopic element Ti.

The Isorelaiivisiic two-isororzms then hold iff all nonlinear,
nonlocal and nonhamiltonian terms are factorizable, this time, in an
isotopic element T multiplied by the the relativistic canonical two-
form along structure (11.9.86), i.e.,

8 R, Tt )

&, = as, =__i___J_L__T‘2. dalt A gal2 =
da 2 b2
aRo. s aTil
PR o iy 2 a.d
=(—il_T1jT2j +R°i_._11_T12j2)aa]1Aaa]2=
dal 1 2 ! dal2
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jqi aR°i1 i i aT
S (=T T3 R°i—~—]1'r‘2 ) da¥1 A dake=
LY da'2 L2 ! al2 2
at! Ty aT 2}
= #lw;; Tl T o+ (R trly - re, —22 7it ) Ga¥t 4 Ga2
2 1 2 1 a2 2 2 o1 It

T o, T,k aalta aal
= m.hkz jzaau\&a%

while being defined on isospace

TMAH = TMEES: & = Ton 1y = T, (4192)
. aT 1] ; 8T12]
= {0l o, T, le + (R —1T'2 - R —d2 7l
12 )2 U gad2 2 L sa iy Ji

where the new metric § must be computed from the old metric 1) via
rules (4.18) (see Sect 11.9_for details), and T, is assumed to be
symmetric TZ] =Tl =Ty J

AS one can see] structure {4.18) allows the preservation of the
local-differential topology of the symplectic geometry characterized
by its canonical two-form w, which can represent all conventional
relativistic, local, differential and potential models of contemporary
physics. The factorized isotopic terms T, can then represent an
infinite class of nonlinear, nonlocal and nonhamiltonian interactions, in
essentially the same way as it occurred at the Newtonian level of the
preceding chapter. :

Analytically, the symplectic-isotopic geometry implies a
restriction of Birkhoffian systems, from the most general possible
Pfaffian principle {4.6) on T*M(x,n,®), to the particular form on

T*M xh8)
2
= 8_[1 [°(a) » da - B(s,a,.) o ds]

2
= 8I1 {pu T80 p..) ax” - B x, p,.) Tyds] = 0. (4.20)

The Isorelativistic, covariant, Hamilton-isotopic equations are
then given by
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d al a B(s, a, ..
(4.21)

ds aal

where the new tensor sz“’i. is given by Eq.s (4.18).
The Jisorelgaiivistic, “contravariant Hamilton-isotopic equations

under the assumption of diagonal isounits 1o = (“12‘]- ) = diag.{ { 2"‘1, ) {
12“1, }}, is evidently given by

dxH aB{s, X, p)
i —_= 'Izuv(s,x,p,,..) —_—
da . , 0B 1 ds ap
— = @K ]2k] ] = 1
ds da dp 9B(s, X, p)
= 1y Visxp,) ———
ds axV
{(4.22)

where one can recoghize the identification af the refativistic Isounit
I of the Lie-Isotapic theory directly in the structure of the analytic

EGUALIONS.
The algebraic structure is then characterized by the brackets

dA ir . aB
[A Bl =— w ]zr](a) —
dal dal
0A oB 0B N dA
=g LYy — - — L —, (4.23)
ax ap, ancht 3p,

whose Lie-isotopic structure is ensured by the symplectic-isotopic
character of two-forms (4.18). The rumdamenta! refativistic isotopic

brackets are the given by
ey A B py ) M)
(lai] al) =@l = ’
Pp.x"1 Ippipd/ \-0p" (3,
(4.29)

and they predictably play a fundamental role in the operator
formulation of isorelativistic theories (Santilli (1989), (1891d)).
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The exponentiated structure of time evolution (4.22) is given by

ik j
a = {0 izxta) (o5P) @) 1} xa. (4.25)

which exhibits more clearly the Lie-isotopic structure of the
underlying group as well as of the transformation. theory {Sect. V.3).

Finally, Eq.s {(4.8) become the refziivistic isotopic Hamilton-/acobi
equalions

9A° aA° « 9A°
— + B = 0, = PaTi s
ds b OLE apht

= 0, (4.26)

namely, zhe isotopic action A° Is independent from the velocities, as
needed for the operator formulation of the theory.

The latter occurrence can be better understood on geometric
grounds. In fact, the one-isoforms in the integrand of principle (4.20)
can be written

PuTiuvdav =py ax¥ = pMax,, (4.27)

because of the general properties of isominkowski spaces M{x.n.5)

pu}{v = ..pp_ﬁuv xu = pp, AI2p'a ﬂav Xy
= ptiyy ¥ = pH e T %X (428a)
(V) = figg) ™. e 7™ = 8" (4.280)

Equations 3A°/ ap™ = 0 then follow from property (4.27), as in the
conventional case, because all the nonlocal as well as velocity
dependent terms of the integrand are embedded in the isometric of the
theory.

Note that properties {(4.28) arise from, and illustrate rather clearly
the local isomorphisms MExn8) » M{xn8).

Again, as it was the case for the nonrelativistic formulations, Zre
relativistic isasymplectic geometry is the true geometrical strucivre
underlying the refativistic Lie-isolopic aigebras . 1n fact, in both
geometry and algebra we can incorporate all nonlocal terms in the
explicitly identified isounit.

Next, we resirsct relativistic, closed Birkhoffian system to be well
defined in T+M,(x.2#), ie., to admit the representation in terms of
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- reduced action (4.20) or, equivalently, in terms of the reduced Lie-
isotopic equations (4.22).

This can be achieved via one of the various methods of Sects IL7
and 11.9 for the construction of the Birkhoffian representation from
given equations of motion.

The reader should be aware in this respect that these methods
generally result in the so-called wnonautonomous relativistic
representations on T*MENR) |

3A = 8/ asRisa, ) &l - Ba,.) = 0, (4.29)

that is, representations with R = R(s, a,.) and B = B(s, a,.}, even when
the original equations are not explicitly dependent on the independent
parameter Ss.

But, he relativistic nonautonoous Birkfolr’s equatlions
characterized by principle (427] do not admit any consistent
algebraic structure, let alone that of the Lie-isotopic algebras
exactly as it happen for the nonrelativistic case of Appendix IL.A.

This implies the first necessary restriction of systems (1V.2.3a) or
(1v.2.5a) of admitting a reduction to the semizuronomous
representations (4.6), that is, those with R = R(a) and B = B(s, a, ...). The
reduction can be readily accomplished via one of the several degrees
of fredom of Birkhoffian mechanics, such as via the relazivistic
Birkforiiah gruge Lransrornalions

3G(s, a,..)
R’i(a) = Rjls,a,) + ———, (4.302)
pal
B(s,a,.} = B(s,a,.) - M, {4.30b)
as

Once representation (4.6) is reached, the secowd necessary
reseriction is that of admitting only systems {1v.2.3a) with reduced
representations {4.20). This can alse be done via gauges {4.28) and other
means. Note that this step identifies the isometric #j of the reduced
Pfaffian one-form. ‘

The third restrictfor is that of admitting only reduced
representations (4.20) with a symplectic-isotopic structure (4.18), by
identifying in this way the isometric g of the reduced Lie-isotopic
brackets {4.23). This third step can also be done via the use of the
degrees of freedom of the theory.

Once the representation of systems (IV.2.3a) is reached via the Lie-
admissible equations (4.22) on T*M{x,g ), we are finally equipped for
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the study of their space-time symmetries.

The following comments appear recommendable. First, we should
note that, while Birkhoffian mechanics Js directly uvniversal ror aff
regular, locai, anslytic and nonkamiftonizn systems (IV.2.32/ (Santillf
19523}l Jts isorelativistic rorm characterized By Fq.s (122 Is not
expected to be directly universal

However, the attentif reader has noted that in the preceding
presentation we have introduced the simplest possible realization of
the Birkhoffian-isotopic and symplectic-isotopic formulations, those of
Hamiltonian—-isotopic character with the factorization of the canonical
form w, while the most general possible formulations is that with the
factorization of the Birkhoffian forms Q (see Sect.s I1.7 and IL.9 for
details).

The latter, more general mechanics is expected to possess a direct
universality for all possible systems (IV.2.5) in their full nonlocal form.
This property is only conjectured here for separate technical
treatment at some future time.

The relativistic Hamilton-isotopic formulations presented in this
section are amply sufficient for our needs. In fact, they are
characterized by a conventional Hamiltonian H which represents all
conventional relativistic models of current use, plus our isounits 12
which can represent all needed nonlinear, noniocal and nonha-
miltonian interactions.

we should also note that the analytic representations of
conventional relativistic theories are degenerate (because the
Lagrangian is homogeneous of second degree in the velocities, see
Dirac (1964) and coustrained {because of invariant constraint (2.1d)).

By comparison, isorelativistic representations {4.22) are regu/ar
{pecause the Lagrangian is not necessarily homogeneous of second
degree in the velocities) but coustrained (because of the subsidiary
constraints {3.4d) &5 we// 25 (2.3b) and (2.3c)).17

AS a result of this situation, our reiativistic, closed, nonhamiltonian
systems generally require only the methods of Zagranges multpliers
{Appendix A) and not necessarily Diracks methods for subsidiary
constraints (Appendix B).

The consequences are rather important for symmetries and
conservation laws. In fact, unlike Dirac's constraints, Lagrange’s
multipliers can be ignored in the study of the symmetries, evidently
because they essentially add regular (nondegenerate) degrees of

17 Explicitly, conventional Lagrangians are of the type L = (-xi*'q ok V¥, while the
isotopic Lagrangians are of the generalized type L= (-xl*nwx"’) = {—xp-np_v(x %,
# e )}-:]E as we shall see in more. details later on.
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freedom in the brackets.

Finally, the reader should be aware that zhe isosyvaplectic
geomelry fas been formuizted in (RIS seclion ror ISORMINKOWSKT spaces
of the most general possible Ciass [/, that is, for generally curved
Isospaces M{x.g A} whose isometrics g are not necessarily positive-
definite. Such a general formulation will be primarily useful in the next
chapter. In this chapter we shall use the formulation on isospaces of
Class I, in which case we shall tacilty imply the additional restriction g
> 0.

IV.5. CONSTRUCTION OF THE LORENTZ-ISOTOPIC
SYMMETRIES

The infinite family of Lorentz-isotopic symmetries , also called
Isolorentz symmerries 0(3.1) on isominkowski spaces, was constructed
for the first time in Santilli (1983a) in their most general possible
abstract form, in particular, as abstract isotopes of the compact
orthogonal symmetry O(4) on a 4-dimensional Euclidean space with
metric § = diag. (1,1,1,1). Their classical realization was presented for
the first time in Santilli (1988c), which is followed in this review.
Additional studies can be found in Santilli (1991c).

The construction of 0{3.1) as isotopes of O(4) is mathematically most
effective, e.g., for the unification of all possible simple six—dimensional
Lie groups of Cartan’s classification (see later on in this section).
However, the approach implies isometrics f} = T8 characterized by the
(nonsingular and Hermitean) isotopic elements T which are not
positive-definite. In turn, this context creates un-necessary problems
in the operator formulation of the theory (whereby the conventional
positive—definite unit of quantum mechanics has to be replaced by an
isounit of unnecessarily undefined topology with evident problematic
aspects, eg., in the measurement theory). :

In this section we shall instead construct the isolorentz
symmetries O(3.1) in such a way that their isounit can be positive-
definite. This requires their necessary construction as isotopes of the
conventional Lorentz symmetry O(3.1).

In particular, we shall first construct the isolorentz symmetries in
the most general possible isominkowski spaces of Class I11I, and then
restrict the analysis to isospaces of Class I. This sets the basis for a
more adequate treatment of further advances, such as gravitation or
operator formulations, as we shall see.
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individual elements g

DEFINITION TV 5.1 (Santilli (19832) (J985ch The abstract Lorentz—
Isotopic for Isolorentz) symmetries are delined on the
Minkowski-isotopic spaces of unspecified physical mnterpre-
Lation

MR = Mg R x = o) = fr, x4, r e EpfrGf), xt=cyt

, 4 4 (5.1a)
x2 = xuéwxv = x1§11x1+ X2850%2 + X3a0%3 + X B4 , (5.1b)
g = Ty = Diag. €, 8,,. 85,2, . {5.1¢)
1} = diag. {1, 1,1, -1), Tg = diag. @11, §22,'§33, _é4_4)a (5.1d)
Epy= guu(x, X0 T . & 0 and reai-valued, (5.1e)

- 7 = -1
f = 8l Ty = T, 7% (5.1.1)

and are given by Lhe ISolransiorinalions
X = Ax = A T,x%..) X, Tp = fixed, {5.2)

under the conditions thar they form s simple six-dimensionil/
Lie-isotapic group O34/ with isotopic 1aws

AwrAw) = AW)AWw) = Alw+w), we &y (5.3a)

AO) = AWPACW =1y = TN, (5.3b)

2

and leave mnvariant isoseparation (5.1

The above transformations are called "abstract” because the

can be either positive or negative, thus

characterizing either compact or noncompact groups. The definition
has been conceived to be effective for the classification of all possible
isotopes O(3.1), as well as because directly applicable to gravitational

models (evidently for a well defined topclogy, €.8., £y > 0, E44 < 0)
The (necessary and sufficient) conditions for isotransformations

{5.2) to leave invariant isoseparation (5.1b) are given by

AtgA= AghAt =571, ’ (5.4)

or, equivalently,
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AtTomA = ATynAl = 1y, {5.5)

To obtain the conditions in a more explicit for::. suppose that the

original Lorentz transformations X’ = AX are realiz¢:} with the familiar
expressions xH = Aua xZ, e.g., as in Schweber (1962). Then, the isotopic

element and isounit can be written

a A —

Tg = (TZ B) = (Tgﬁa), I = GZaB) = GzBa), (5.6a)
1 Bp Yo Y (5.6b)

20 28 o

Lifting (5.2) can be written

! = A 12 B (5.7)

a B

and conditions (5.4} can be written explicitly
< B.p o _+ 8

Ay TB npcﬁ‘ =1 Mg (5.8)

THEOREAM V51 (Santilli floc crirj)- The abstract risoforentz
symmetries on isospaces Mg 5)  leave invariant the

lsoseparations
2 _ p L A V = 2
X ~x’”~guvx' =X gyy¥ X<, {5.9)
ar, more explicitly,
u ~ . . Vv = & -
X gw[X(X',p - P, pL X =X gaB(x,p,...) %P, (5.10)

Wilh nonsingular, Hermitean, surficiently smooth and diggonal

fsometrics

g=Ton, n €MExnF, (5.11)

under the sole condition that the isounits I are the inverse of
the mutation elements To . All the Infinitely possible

Isasymmertries Of3 1) adait the connected semisimple subgroups

$O@B.1): det(dAg) = +1, (5.12}
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a5 well 45 the discrete nyariant subgtolps
$@3.1): Det. (Ag) =1, (5.13)

and possess the rollowing classical reafization In the
isocotangent bundfe T la g s with local coordinates a = Af’j

= PPy =12.,47i=52.,8

1} the same (ordered set of} paramerers of the conventional
symmelry O3l Le, the Eulers angles 8 and Lorentz boosts w

= (wp) = B,w), k=12,.6, (5.14)
2] the same fordered set of} generators of Q31

= U =0 = Uy, Ly (5.15a)

Jpy =Xp Py "Xy P, J = i in, Ly = Jy4. (5.15b)

k=12,..,6, mv=1,234, x=12,3,

& the isocommuration rules of the Lie-isoropic algebra O0/51) of
0i3.1) in terms or brackets (V. 423/

Gi3.1): [JW . Jaﬁ] =g, Jﬂu- gua Jﬂv_ gvﬂ Jovt guBJav, (5.16)

& with local Isocasimir nvarizines

AO) 4 Al) _ 1% @ . v 0B 4
o I, € {JWJ )1y, € (Euuaﬁ I, (6.17)

G the Lie-isotopic group for the cornected component
S0@B.1):  a = A *
def

_ {[H U, o ]2q]) (B Ji) {31)].1} _ Sé(u) % (5.15)

&/ the Invariznt discrete subgroup @$(3.1) characterized by the
Isomversions

$@B.1): Pxx = Px = {r,x9, (5.19a)
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Tx = Tx =, x4, PTx = (-r, x4, (5.19b)

whare P and T are the ordmary mversions, and

& isospmmelries 0B} sdmit as maxiwal compact roras the
o rogonal group In four dimension OfY) as well as all its
wcinitely possible isotopies.

PROOF. Conditions (5.4) are verified iff
2 _ 532 _ ~q 2
[Det (A)]" = [Det1,]" = [Det 71}, (5.20)

Properties (5.12) and (5.13) then follow. The preservation of the
conventional parameters (5.14) and generators {5.15) is a central
feature of the Lie-isotopic theory {Sect. 11.6). Isocommutation rules
{5.16) trivially follow from the use of the Lie-isotopic product (IV.4.23)
for generators (5.15). Isocasimir invariants (5.17) then hold, /oca//y; in
the sense elaborated for the O(3) symmetry in Sect. Iil.3. Lie-isotopic
group structure (5.18) holds as an expansion in the conventional
associative algebra £ of vector-fields. Isoinversions are the same as
those of the original abstract derivation {Santilli {1383a)). Finally, the
maximal compact subgroup O(4) trivially holds for T, = diag. (1,1,1,-1),
E= Tzl’] = diag. (1,1,1,1). Q.E.D.

In the above presentation, we have assumed the reader is familiar
with a number of aspects of the Lie-isotopic theory we cannot
possibly review here, such as: the fact that at the level of the abstract
(matrix) representation the isounits 1 are an intrinsic part of the
ispcasimirs, while in classical realizations only their coefficients
isocommute with all generators; the isotopic generalization of the
Poincaré-Birkhoff-witt Theorem (which ensures the existence and
consistency of group structure (5.18)); the isotopic formulation of the
Baker-campbel/-Hausdarfr Theorem (which ensures that products
(5.18) still belong to 80(3.1)); the general theorem on isosymmetries of
Sect. 11.8 (which ensures the construction of O(3.1) from the sole
knowledge of the original symmetry and of the new metric); etc.

The following comments are now in order:

1} While the Minkowski space M(xn,R®) with trivial unit ! is unique,
there exist infinitely many possible isospaces Milix.g ) with isounits Ty
= 'f‘2 because they represent the infinitely many possible, interior,
inhomogeneous and anisotropic physical media (Sect. 1V.3);

2) While the isolorentz 0(3.1) is unique, there exist infinitely many
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possible isolorentz symmetries Of(3,1) characterized by the infinitely
many possible isounits 12, which all possess the same dimension and
simplicity of 0(3.1);

3) In the same way as the Lorentz invariance cannot identify the
explicit value of a Lagrangian, the invariance under the isolorentz
symmetries cannot identify the isometrics, which must be computed
from the given local physical conditions of the interior medium at
hand;

4) While the Lorentz transformations are unique, there exist an
infinite number of different isolorentz transformations {see below for
examples), characterized by the Lie-isotopic structure (5.18);

5) Each one of the infinitely possible isolorentz transformations
can be computed in an explicit finite form via expansion (5.18), whose
convergence is assured by the assumed topological conditions (and
essentially reduces to that of the conventional expansions), with the
understanding that the explicit computation of the infinite series is not
expected to be necessarily simple;

6) Each of the infinitely many isolorentz transformations can be
computed via the sole knowledge of the old parameters and
generators and of the new metric (or, equivalently, of the new unit

7) The isolorentz transformations are formally isolinear and
isolocal on Mm(x,é,ﬁ), but generally nonlinear and nonlocal in M{x.nR);

8) The lifting of the conventional symmetry 0(3.1) into the isotopes
0{3.1) implies the generalization of the s&rwucture constants of the
conventional formulation of Lie’s theory into the szructure functions
of the Lie-isotopic theory (Sect. 11.6);

9) Except for the needed nonsingularity and Hermiticity
(invertibility, reality and symmetric characters), the isolorentz
symmetries 0(3.1) leave completely unaifected the explicit functional
dependence of the isometrics;

10} The classical realization of the isolorentz symmetries can
indeed admit nonlocal (integral) forms, provided that they are ali
embedded in the isounit 15, as permitted by the underlying isosym-
plectic geometry (Sect. 1V.4);
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12) The isometrics g of isosymmetries O{3.1) can be, as particular
cases, conventionz/ Riemannian metrics. Therefore, Theorem I1V.5.1
provides methods for the explicit construction of the (generally
noniinear) symmetries of conventional gravitational metrics such as
the Schwarzschild’s metric (see next chapter for details).

We now study the conditions for the local isomorphism 0O(3.1) =
0(3.1). Note that, even though isocommutation rules (5.18) appear to
coincide with the conventional commutation rules of O(3.1) (see, e.g., Eq.
(30), p. 41 of Schweber (1962)), they are generally diferent, e.g.,
because the topology of the isometric éiﬂ’ is different than that of the
Minkowski metric 1.

"The following property was proved for the abstract case, and the
same proof trivially holds for the classical realization of this section.

THEOREM V.52 ffoc cit) All abstract [soforemtz Symmetries
Of21) on isospaces Mg %) with invariant separation (5.18) are
Jlocally isomorphiic to the conventions! Lorentz symmetry Of3.1]
under the sole condition that the isometrics £ = T'p Jj possess the
same topological properties of the Minkowski metric 1, eg,
whenever the Isotopic elements T or the Isounits 1 = T_a‘f are
positive=derinite; otherwise, depending on the topofogy of the
isounits, the Loremtz-isoropic Symumelries Of321) are locally
Isomorplhic to any other simple siy-dimensionsgl group of
Cariam’s classification, such as o or 022}

Note that the positive definiteness of the isotopic element Ty holds
in a number of conventional gravitational models. The Lie-isotopic
theory has therefore the remarkable capacity of pointing out the
following property which is here presented in preparation of our
gravitational studies of the next chapter.

COROLLARY [V.521 floc. cit} Einstelns Gravitation or any othier
gravitational theory (not necessarily Riemanhian/ with metric £
=Ty T > 8 adwmits the conventional/ Lorentz symmetry 45 &
general’? isotopic symmetry.

We now pass to the construction of the explicit form of the
ghstract Isoforentz transformations. The general form of the

18 The term “"general” is here referred to the symmetry of a full gravitational line
element, rather than its local/tangent symmetry, and it is distihguished from the term
."global” in its conventional topological sense.
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transformations for the case of the O(3) subgroups has been computed
in Sect. 111.3, and it will be tacitly implied hereon.

We shall therefore restrict our attention only to the zbéstrzct
Isalorentz boosts, also called Jsoboosts, in the (x3, x4)—p1ane with
parameter w and generator Jag Their most general possible form
computed from the Lie-isotopic group (5.18) for isometrics (5.1¢) is
given by {Santilli (/o cit )

X = Awl*x = §.wmx
g

(1 0 0 0 'xl‘

0 1 0 0 x2

"o o CoS 0 Bagt B0y 6 /Bad) Sin W EaitE B x3
33 Ea4 14533 33" 8,,

N n a N é.. 1 - *4 4

0 o / sin (w, z cos W X

@,/8,) sinbw.855* Y (W &35 g44*) 1( '

5.21)

Note that the elements of the isometric are completely
unrestricted in their functional dependence in the above derivation.
We have therefore proved the following

LEMMA TF 5T o cit) The gbstract isolorentz Lransrormations
in the (34)-plane on isominkowski spaces of Class Il £q.5 (51,
are given, in their brozoest possible roru, by

%2 = %2,

x3 = x3 cos (w g, & o) -xte M/g33)* Sin (W 835" 844D,
3 . R . . . R 1

x* =% (g33/g44)5 cos (w g33* g444’) + x% cosiw g33£ £447

(5.22)
WAEre Lhe ISometric elements £ 9 and £ 44 have the most
general possible nonlinear and nonfocal dependence o all
needed variables and quantities

éss = §33(x: }.{a W, Tn ---)a §44 = é44(x! }'{1 is s T, 10, ---)1 (5-23)

subject only to the conditfons of being sufficienty smootl,
nowhere nufl and real valued
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The following particular cases are important.

COROLLIARY V511 (Joc. cit) The abstract JIsolorentz
ransformations a0mil, &s particular cases, the conventional

rotations in four dimensions, trivially, for

By = By = B33 = By = 1L, (6.24)
and the conventional Lorentz transformations (See also below/
for

Biy = Bpp = €33 = ~ 84 = 1, {5.25)

It is evident that the absiract Lorentz-isotopic transformations
also admit an infinite family of isorotations and Lorentz-isotopic
transformations for nontrivial values of the isometric elements.

Note that, according to the above results, fe conventiona/
rotations In four-dimensions are Loreniz-isolopic transrormations in
an jsospace of Class [ with isomelric (524

We now pass to the study of the particular subclass of isolorentz
transformations that are physically relevant for the isotopies of the
special relativity. '

DEFINITION TV.52 (loc cit) The abstract 031 symmetries (or
transrormations) are called “general Lorentz-isotopic (or
Isoforentz) symmetries”™ when they are defined In the wost
reneral possible Isospaces of (fass I of the diagonal form

MpcAd) = Mlgd): x2 = x g, xV
= x1512x1 + x2622x2 + x’31332x3 - x4B42x4, {5.26a)
g =Tyn, mn =diag (1,1,1,-1), {5.26b)
T, = diag. (6,2 6,2 B2 B,3 > 0, {5.26¢)
Bil = Bu(x, LT >0, (5.26d)

1, =Tyt >0 (5.26€)

and they are called restricted” when defined on Isospaces of
Class [ or the constant oiggong! rori
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b = Mif:  x2 = 2, (5.272)
fi = T, 0 = diag. (b,2 by% bg% -b,3), (5.271)

T, = diag. (b2 b2 bs%, 0,8 >0, (5.27c)

hu = consfants >0, (5.274)

Similar definitions hold ror the genera! and special
Isoransrormations on Isospaces ol (lass /1.

The reader should keep in mind the notation here adopted:
whenever using generic elements g we are referring to the
~abstract” Lorentz-isotopic transformations; whenecver using the
elementslﬁ 2 we are referring to the “general” isolorentz
transformations; and, finally, whenever using the elements buz we are
referring to the “special” isotransformations.

Since we now deal with a physically identified space, we can
assume for parameter w its conventional physical meaning given by a
speed v along the third axis, w = v. By recomputing again infinite series
(5.18) for isometric (5.26b), the general Lorentz-isotopic
transformations on M{x & %) can be written

X = Av)xx = §.Vx =
g

10 0 0 - [ x|

0 1 0 0 x2

) 0 0 coshivbghy) —(by/by)sinh(vbzby x3
l 0 0 —(‘63/6 4 sinh (v 53 by cosh{vis by ] l xﬂ

(5.27)
But the functional dependence of the b-quantities is completely
unrestricted in the above derivation. We have therefore proved the
followihg

LEMMA FV.522 (loc. cit) - The geweral Isolorentz
transformations in isospaces M, (ug%) in their broadest
possible rform characlerized by 2 /faca// speed v glong the third
RX75, are given by
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1
LS {5.28a)

>

x? = x2 . {5.28b)
x3 = x3 cosh v 53 154) - x4 _fai sinh (v 63 54), {5.28c)
By 3
x* = -xt g-—- sinh (v b3 by + x* cosh (v by b). {5.284)
4

Note that we have eliminated in the above derivation the isotopic
character of the transformations for simplicity of expressions.
Nevertheless, the mathematically correct form remains that of
isotransformations {5.2).

The proof that isotransformations (5.28) are indeed a particular
case of broader isotransformations (5.22), is an instructive exercise
for the interested reader, because it implies delicate topological
aspects in the transition from compact to noncompact settings.

The local isomorphism between isotransformations (5.28) and the
conventional Lorentz transformations is evident, owing to the
positive-definitness of the b-quantities. In fact, we have the following
property.

THEOREM 153 {loc cit) A fnrinitely possible, genersl
Isolarentz symmelries J(21) on isominkowski spaces of Class /,
£q.s (526, are locally Isomorphic to the conventional Lorentz
symmetry O34

It is then evident that ke genmers! Isolorentz symmelries
constitute isotopic coverings of the Lorentz symmelry, in the sense
that: a) the formers are constructed with methods broader than those
of the latter; b) the formers represent physical conditions broader
than those of the latter; and c} the formers all contain the latter as a
particular case.

The following property has rather intriguing and novel physical
implications for the isotopies of both the conventional and general
relativities.

LEMMA V.53 floc cit} All mmrinitely possible general or special
Isolorentz transrormations In the (3-4/-plane of isominkowski
spaces of (rass [ canr be written i the fora
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xl = xl (5.29a)

X2 = x?, (5.29b)

x% =y - pxh, (5.29¢)

xt = &t - ), (5.29d)
wherel? «
vbg . VKb 2y

B = v/c p=——r , p2=pt=—o (5.30a)

o’ L] 2 L]
cob4 cob 4 €y )
. -4
coshfvbsb) = ¥ = |1 - sﬁ| , {5.30p)
sinh (vbgby) = B Y. {5.30¢)

The above formulation of the isolorentz tranformations is impor-
tant inasmuch as it exhibits rather clearly their abstract identity with
the conventional Lorentz transformations {owing to the identity Bz =
B4). Thus, at the level of realization—free formulations, all distinctions
between isotopic and conventional Lorentz transformations cease to
exist, exactly as desired.

"The most important difference between the general and special
isotransformations is pointed out by the fopilowing

COROLLARY K531 floc cit) Wihile the general Iisclorentz
ransformations are nonlinesr and nonlocal i alf variables, the
special isotranssiorations are near and local in alf variables.

This property will have evidently relevant physical implications in
the liftings of the special relativity, e.g., to preserve the inertial
character of the observers whenever needed.

The following additional property should be recalled here.

19 The author would like to thank E. Ferrari of the Phys. Dept. "G. Marconi” of the
Univ. “La Sapienza” in Rome, Italy, for bringing to his attention the original erroneous
form ¥ = (1 - 39 ~ during a seminar delivered at the Math. Dept. "G. Castelnuovo”
of the same University, thanks to a Kind invitation by Prof. G. Caricato, which is here
acknowlédged with sincere gratitude. In fact, certain physical media imply Bz >1
even for speeds v < ¢, {see Sect. 1V.10), thus implying imaginary values of ¥. This
aspect was resolved during discussions with R. Mignani of the same Phys. Dept. follo-
wing the seminar, and resulted in the expression ¥ = | 1 - §2 | ~+ pased on the paper
Recami-Mignani (972). Prior to these discussions, the general form of the isolorentz
transformations was thought to be (5.28). These discussions essentially implied that
all possible isotransformations (5.28) can be cast in form (5.29), including those with §2
> 1, In turn, this khas important physical implications discussed later owing to the
abstract identity of isotransformations (5.29) with the convenbtional ones.
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COROLLARY TF.532 floc. cit) The general for special) Isoorentz
spmmetries O(21) on isospaces Mxg#/ can reconstruct as
exgct at ihe Isotopic level all conventional breaflngs of the
Lorentz symmelry, under the sole condition hat the vnderiying
generalized melrics g = T, 7 preserve the topology of the
conventional Minkowsks metric 5, Le, Tp.> 0

An example is provided by the deformation of the Minkowski
metric worked out by H. B. Nielsen and 1. Picek {1983) in the interior of
pions and kaons, Eq.s (IV.3.21), where the a-quantity was called the
“Lorentz-asymmetry parameter”. AS one can see, the Lorentz
symmetry is exact for metric (1v.3.31), provided that it is not realized in
terms of the simplest conceivable product (IV.4.16), but in terms of our
lesser trivial isotopic product (IV.4.23), with

To = diag. [(1 - @/8),{1 - a/3),(1 - @/3), {1 + a)] (5.31)

Similar results hold for all possible physically achievable defor-
mations (also called murations) of the Minkowski metric, those of
Class I. Theorem 1V.5.3 can therefore be called a fechmigue for
reconstrucling the exzct Loreniz symmelry when believed lo be
conventionaliy broken.

It should be indicated that, while the Lorentz symmetry remains
exact for all interior generalizations of the isominkowski of Class I,
this is evidently not the case for isaspaces of Class Il and 111
Other isolorentz transformations can be computed for any given
isotopic elements T,. The combination of the isorotations O(3) of Sect.
1.3 and the general or special Lorentz-isotopic transformations of
this section is here left as an exercise for the interested reader.

It is also instructive to show that the abstract, general and special
isotransformations do indeed leave invariant isoseparations (5.1b},
{(5.26a) and (5.27a), respectively. It is finally suggested to the interested
reader to verify that 24/ gemeral isolorentz transtormations in the
(34 plene can be cast in form (529, We can equivalently say that
Lhe geometrizalion of the Interior dvpimical problem characterized
by O3 1) on isospaces Mx25) can be unified in form (5.29)

A few comments elaborating the differences between the
construction of the ((3.1) symmetries of this chapter and the original
derivation of Santilli (1983a) are recommendable to prevent possible
misinterpretations. To begin, the reader should note that the original
derivation used the isounit T = é'i, while in this chapter we used the
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formT="Ty 1,8 =Ty

This is due to the fact that the original derivation followed the
general theorem of isosymmetries of Sect. I1.3, and therefore
constructed the Minkowski-isotopic spaces as isotopes of the
Euclidean space in four-dimension. Consequently, the Lorentz-isotopic
symmetries O(3.1) were constructed as isotope of the orthogonal
symmetry Of4)

ExSR) = Mxgh), o(4) = 6.1), (5.82)
while in this paper we have considered the simpler liftings
MR = MExz#H), 0B.1) = 03.1), (5.33)

Equivalently, in the original derivation of the w#moncompzact
isosymmetries O(3.1) as isotopes of 0{4) (foc cit.) the generators of
0(3.1) are the campact generators of O{4) (see ref.?® of (Joc it ), p.
550), while the generators used in this chapter are wzoncompacr

forms (5.15). '
This illustrates the existence of Isoropies of Isotopies {evidently
in the same dimensions), which we here submit in the symbolic form

E@SR) = Mxn® = MEEH), (5.34a)
0l4 = o381 = 081 {5.34b)

Moreover, the Lie-isotopic brackets of the original derivation
exhibit the explicit presence of the isotopic element T,

[A7 B] = ATB - BTA, (5.35)

while the Lie-isotopic brackets {4.23) of this chapter exhibit the
explicit presence of the isounit 1. This is due to the inversion of role
between T and 1 in the universal enveloping associative algebras, from
their (covariant), in the transition form for their abstract (matrix)
representations, to their classical (contravariant) realization.

The following important property is an evident consequence of the
~direct universality” of Birkhhoffian mechanics mentioned earlier, as
well as of the arbitrariness of the b-functions in Lie-isotopic
structure (5.28). '

COROLLARY [V 533 (loc cit) : The general Isoloreniz
symmetries, and related Isotransformations, are “directly
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wiiversal, i the sense thar they admit a5 pariicuiar cases aff
possible generalizations of the Lorentz symmetry and related
Lransformations characterized by ropology-preserving, lnear
or nopfinear, and focal or nonlacsl generslizations of Lize
- Minkowski metric of type (526a) (universality”) directly in the
rrame of the observer (“direct universality?)

It is best to illstrate the above property with specific examples.
Consider first Bogosiovskis special/ refativity  (Bogoslovski {(1977),
(1984)). It is essentially characterized by a rAfowogeneous but
anisotropic generalization of space-time induced by the lifting of
the Minkowski metric of the Finslerian form

: (v 1P
n=2g=Tyn= — (5.36)

_xunu XY

where v = (v, 1) is 2 null vector along the direction of anisotropy, ve =
vava =0, and r is a scalar parameter. Bogos/OVSETS lransiorms tions
were constructed via the use of the conventional Lies theory, and, in
one of their forms, can be written

xt = xt, (5.37a)
x? = %2, (5.37b)
x3 = 563 - pxh, (5.37¢)
x4 = ¥t - pxd), (5.37d)
where
r/2
B = vicy,, ¥ = "a/(:)--a-/-c—()“)r/2 . (5.38

1+ vy/c,
It is an instructive exercise for the interested reader to prove
that, when the isotopic element T of lifting (5.36) are positive-definite,

) (_vun VJZ r/2
T = T > 0. (5.39)

- }[l-ln!l vxv

Bogoslowski's transformations (5.37) are a particular case of our
general Lorentz-isotopic transformations on M: In the general case
of an isotopic element. T of undefined topology, Bogoslowski’'s
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transformations are a particular case of our isolorentz
transform.ations on ML

Bogoslovski’s special relativity is particularly important for our
analysis. In fact, it is sufficient to re-interpret the theory as
representing fhomogeneous bul anisotropic physical media. As such,
the theory is particularly useful, physically, whenever only anisotropy
is needed. The theory is also useful mathematically, to see how our
Lie-isotopic commutation rules (5.16) can be equivalently rewritten via
the comventionz/ commutation rules, although in a predictably much
more complex form. '

Note that, conventionally, transformations (5.37) require a
combination of Lorentz and scale transformation, while the latter are
absorbed in the structure of the brackets in the Lie-isotopic theory.

Above all, Bogoslovski's special relativity is particularly useful in
hadron physics along anisotropic lines studied by a number of authors
(see, e.g., Preparata (1981)). In fact, the assumption of an internal
anisotropy constitutes the first ground for the achievement of a &rue
guark confinement , that is a confinement not only with an infinite
potential barrier, but also with an identically nuil, and explicitly
computed probability of tunnel effects of free quarks (see the
comments of Sect. IV.1}). The understanding is that the full
differentiation of this type is achieved via an interior geometry of
both anisoptropic £z#¢ inhomogeneous type.

Despite these possibilities, Bogoslovski’s special relativity has been

- substantially ignored, with very few exceptions known to this author.

This is regrettable because, on phenomenological grounds,
Bogoslowski's and Einstein’s special relativities have essentially the
same predictions for all relativistic speeds currently attainable in
particle accelerators, and diverge only when the speeds are
sufficiently close to that of light.

Another particular case is given by the transformations identified
by Edwards (1963) and Strelt'sov (1990) via the invariant

xH 7,y x¥
C oy o2 ¢y
= Xyl 4 w2 ¢ xS :i{“{t:mc02 -{— - — kit (5.40)
ot  Co2

which characterizes the generalized Lorentz transformations
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x1 = x!, (5.41a)

x2 = x2, | (5.41b)

x3 = y{[1 +1{/ey -1eg)v1x® - vxd), (5.41c)

xt = y{[1 + 3 (t/cyy - 1/c02)vx4 - vx3/(c°1c02), (5.41d)
As one can see, the Zoward-Streltsov transformations (5.41) are
clearly based on an auisotropy of trwe, with different speeds of light
in the forward and backward direction, Cyy and Cgy. The conventional

Lorentz transformations are evidently recovered for ¢y = Cgop = C
It is evident that, when

o

3

T44 = C°1C02 - { - ) 4 >0, (5.42)

the Edward-Strelt’'sov transformations are a particular case of our

general isclorentz transformations on Ml Otherwise, the transfor—
mations are a particular case of our general Lorentz-isotopic
transformations on M1,

The study of a virtually endless variety of other particular cases is
left to the curiosity of the interested reader.

The above two particular cases serve also to illustrate the
importance of our distinction between isospaces of Class [, with
positive-definite isotopic elements T, and isospaces of Class II, with
isotopic elements of undefined topology. In fact, our isotopies of the
special relativity {Sect. 1V.9) will be restricted to isospaces of Class L.

The reader should remember this point in the use of Bogoslowski's
anisotropy for interior physical media, because no known physical
event in the transtition from motion in vacuum to motion within
physical media can yield a negative-definite isotopic element T.

Nevertheless, the transition from isospaces of Class [ to those of
Class II is theoretically intriguing and important on a number of
counts, e.g., for a better understanding of the contemporary notion of
tachyons (see Sect. 1V.9), or for the incorporation of all inversions in
the isounit of the theory.

At this point it is important to review the so-called Aecami-
AMignani (1972 superfuminal transformations

x2=xtgx=-x2=-xtyx, (5.43)
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whose isometric g = - 1 is evidently of Class II. The above
transformations are important for our analysis bescause they allow
the mapping of all generalized Lorentz transformations with T > 0, into
. their image for T < 0. Additional applications of Recami-Mignani
transformations will be indicated later on in this section and in Sect.
iv.o

We now close this section with the classification (and unification)
of all possible simple isolorentz groups on MUixgR). To begin, let us
recall from Sect. 11.8 that all possible, simple, compact and noncompact
isogroups can be constructed, in their most general possible form, as
isotopes of the conventional compact group in the same dimension.

In regard to the classification of isogroups 0(3.1), we shall
therefore return to the original derivation of Santiili (1983a} which
assumes the Euclidean space E[x.,5,#) in four-dimension and the
compact orthogonal group O(4) as the fundamental guantities.

Next, we introduce the following isorelativistic extension of the
notion of isodual isogalilean symmetries (Sect. 111.8).

DEFINITION TF8.3 (Santilli foc cit})h Let OfE.1} be an isolorentz
algebra characterized by the diaggonal isometrics £= diag. é,r /
Then, the “Isodual Isolorentz algebra~ O Cf3.1) of O(3.1) is .L‘lle
glgebra characterized by the the Isometric

s s (5.44)

Recall also that rssodus/ Lie-Jsotopic algebras are focally
-Isomorphifc  (Sect. 11.6). Thus, 2/ comventionzl and generalized
£roups and symmenries aduit a1 ISomorplic Isodual image .

Denote now the conventional compact and noncompact orthogonal
groups with the symbols 04(4), 01(3.1), and 0y(2.2), where I = diag. (1,1,1,1)
is the trivial unit of the contemporary formulation of Lie’s theory. From
Definitioon 1V¥.5.1 and Lemma IV.5.1 we learn that these groups admit
the isodual images 0;%(4), 0,9(3.1) and 0;%(2.2). The classification of
Figure 1V.5.1 then follows.

This illustrates Conjecture-111.3.1 for the case of six dimension,
following the unification of all simple Lie groups of three dimensions of
Sect. 1113,

We assume the reader is familiar with the fact that, in conventional
relativistic settings, the Lorentz symmetry is not freely defined in
Minkowski space, but rather on the hypersurface of Dirac’s subsidiary
constraints (1964). Exactly the same situation occurs for the isolorentz
symmetry, aithough in a predictably generalized way (Appendix IV.B).
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We finally recall that the isolorentz symmetries of this section are
a particular case of the broader Loremz-sdmissibfe

Oy : &= diag. (+1, +1+1,+1) 0,49 : & = dlag [1-1-1,1)
0,8.1): & = diag. (+1+1,+1,-1) 0 ‘13 1}: &= diag. (H1-1-1,+1)
0,f22) : = diag. (+1,+1-1,-1) oogzz) g diag. (1 -1+1,41)
0,4) :sig. g =(+,+,+,+) O, @:sigg=(~-")
048.0): sig. &=+, +,+,-) 0,93.1): sig. & = (—, - = %)
043 : sig. & = ¢+, +, -, +) 0331 : sig. & = [ - +.-)
0 8.1): sig. & = (+, =, +, %) 0318.10): sig. § = (4, -)
0,B.1}:slg. g =+ ++) 04d(3 1):sig. g =0~ -
0q22):sig. g =+, + - ) o 22) sig.g=[(- -, ++
022) : sig. & = b+, - +, ) 05%22): sig. = -+, )
O : £ = diag. (€ 41.899. 833, E44)

FIGURE 1¥.5.1. The twenty one most significant isotopes in the
classification of ail possible isocorthogonal group in four dimensions
studied in Santili (1983c). The most general possible isotope is the last
one, denoted with 0(4), with an arbitrary topology of its isometric,
which unifies s/l possible six-dimensional simple Lie groups of
Cartany classification i particular, this Isotope Is the abstract
Lorentz-isotopic group of Theorem fV5 1 In fact, depending on the
local topology of the isometric, G{4) can assume the form of: any one
of the six-dimensional simple Lie groups O(4), 0(3.1} and 0(2.2) (and
others locally isomoprhic to the latters);, any one of their isodual, as
well as any cne of their isotopes. The emerging infinite number of
possible realizations can be first divided into two classes
interconnected by isoduality. Then, among each of these classes, only
three essential isogroups emerge, those isomorphic to O{4} or 0(3.1) or
0(2.2). Finally, note that the above classification essentially identifies
2li possibie signatures that can be reached under isotopy.

symmetries  of Santilli (1981a). The former symmetries are
recomnmendable, e.g., for the characterization of generalized particles
in stable orbits (Sect. IV.7), while the latter symmetries are more
effective for the description of generalized 'particles in
nonconservative conditions (Appendix ILE).
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IV.6: CONSTRUCTION OF THE POINCARE'-ISOTOPIC
SYMMETRIES

We now study the construction of the classical realization of the
Infiomogeneous Lorents Jsatopfc spmmerries, or Poincare~isotopic
spmmetries , called Isopoincaré symmerries for short, and denoted
with the symbol P3.1), first introduced in Santilli (1888c), which is
followed in this section. For additional studies one may consult Santilli
(1991c).
Consider a set of N particles denotes with the index a = 1, 2,..., N, in
isominkowski spaces Mmz(x,ﬁ,ﬂ} = MIx g R) with local separation2?
2

X - &y

TN | WS V_ b
X, )gw(x,v, a, L, T.n,.) (xa X, ). (6.1)

DEFINITION TV.61 (Saptilli (98Scl.The ‘abstract Polncare™
isotopic (isapoincare) symmetries™ P31/ are the largest possible,
ten-dimensional Lie-isctopic group of Iisometries of
Isoseparation (6.1} which are isolinesr and isofocal on
isominkowski spaces M x.g 8} bur nonlinear and nonlocal on
the conventional Minkowski space ME,p#. The TFeneral
Poincaré-isotopic (isopofncaré) symmetries™ are the most
general possible, Isofinear and isolocal Isosymmetries of
isoseparation (6.1) on isominkowski spaces M ‘(xg%. The
restricted Poincaré-isotopic (isopolncare) symmeltries” are the
most general possible, linesr and Jlocal Iisomeltries of
Isoseparation (6.1} on isominkowski spaces M M &5 with
isometric i independent from the local coordinates and all their
derivatives.

As is well known (see, e.g., Schweber (1962)), the conventional
Poincaré group possesses the structure of the semidirect product

P(3.1) = 0(3.1) @ TB.1), (6.2)

where 0(3.1} is the (simple) conventional Lorentz subgroup, and T(3.1) is
the (Abelian) invariant subgroup of translations in Minkowski space.

20 we assume the reader is familiar with the property, from Sect. 1.3, that the

separation in an isospace is an element of the underlying isofield. Thus, on rigorous

mathematical grounds, separation (6.1} should be multiplied by 1 to belong to #, and

the same holds true for separation (IV.5.1b). However, the presence of the isounit is

redundant from a symmetry viewpoint, trivially, because all symmetries leave
invariant their own unit, and it has been omitted for simplicity in notations.

164



The conventional Poincare transformations are given by the well
Known Zinear and local transiormations on M%)

¥ = AX +X°, Ae0B1), x°=x"H) e, (6.3)

A classical realization of the Poincare” symmetry for the case of N
particles with non-null masses is given by the ten {ordered)
parameters

w=(w = 8.ux), k=1,2,..,10, (6.4)
and generators in T*M{x %)

X=Xg =0 PU»” k=1,2,..10, {6.5a)

v’

Jp.v B Ea(xau Pav ™ Xap Payy Pu B 2a pau‘ (6.50)

with Lie algebra P(3.1) characterized by the commutation rules in
terms of brackets (IV.4.16)

Pi3.1): [Juv,JaB] = Mo dpn ~ Ma ey T Mg dap t Mg Yo (6.6a)
[Jpw,p J = Ma Py ™ Tyo P (6.6b)
[PM’PV] 0, Ly, o =1,2 84, . (6.6¢)

with Casimir invariants

c®=1, c®=p%=pup = phy,,p (6.72)

@ _ = v, W = ap oo

¢ = wh Wi Wy, W L= €uapp? P (6.7}
Lie group structure

ij .
w, w”(0.X ).
Pia1): a = {[] el k I W 6 } a, (6.8)
B

and discrete invariant subgoup

03.0): Px =(r,xH, Tx = (r,~x¥, PTx = (r,-x%, (6.9)

The following isotopic liftings then occur.
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THEOREM TV.E61 (Samtilli foc. cit)t The Poincare” symumetry P31}
on the conventional Minkowski space M n % admits an infinite
number of abstract Polncare-isotopic generalizations P
called “isopoincare symmetries’ on the infinite number of
corresponding iSsominkowski spaces » /fﬁ;g",.#fj with diggonal,
nonsingular and Hermitean isometrics £ = T 3, each element
P31} being characterized by an Isounit Fp = T ™. Al
Isosymmetries P31) admit the decomposition o e semidirect
product

Pi3.1) = 0(3.1) o T(3.1), (6.10)

where the subgroups O3 1} are the (simple) isolorentz svbgroups
or the preceding section,

0(B.1): x = Axx = ATyx, ABA=AgAl = gl (ea)

and the groups 7131/} are the (isobelian) invariant subgroups of
Isatransialions t

Ta3.1): x b= 'f‘(x")m:xu =+ xM gt _z(x, X, W, T,.n,.), (6.12a)
p = TE)*pHt =0, (6.12b)

where the B-runctions are geherally noniinear and nonlocal in
&l their areuments to be identified below.

All isotopes PR Y admit the rollowing classical realization ror a
spstem of N particles in the Isocotangent bundle T4 (. 6. 5
with local charts a = (@) = &, o) = (0, pH) i =1 2., SN pt =1,
AN

1 The same ordered set of generators (6.4 of the conventioral
Sspmmetty;

2] The same (ordered set oi) generators (6.5 or the conventional
SYmmELry;

3 the Isocommutation rules in rterms of the Lie-isolopic
brackels (V423

POy + Jogl = Bra Thn ™ B Ypv ™ Bup T Bup Y, (6.130)

T P -2 Py (6.13b)
13y v Bpa I

P = &

166



Dp . Pl =0 npr=1234 (6.13¢)
(As] A " 9B 9B v 9A

AB| = g - g ) (6.139)
axH ap¥ axH ap¥

(B%) = (LMan®™) = @) V= e %) 7L (6139)

ol the local Isocssimir invariants

g =1, = 1,1, (6.14a)
e = p2 = g P, = (PR P )1 :
PR, Py = BRI, (. 141)
A2 _ w2 s _ ap 0

5 The Lie-isotapic group Sstructure rfor the connected part
SOB1H o 7131 on T8 e 54/

irp i .
a = {A,T}*a = “‘ﬂgww fap (alxk”al)n

X9 =
2}
= gy, TV a, {6.15)
& the b-~runctions are explicitly given by
_2 _ —2 [44 _2 -~ o _ . B _2 A -
By “= Bu +a [13ll JP 2+ T x by Pl PB}/S! t o

and
7 the Invariant discrete component is the same as rhat in J31)
ie,

(3.1} : P*xx = (r, x4), T*x = (r, -x4), @ xT)*xx = {r,—x9.
(6.17)

The proof of the above properties is just a reformulation of the

proof of Theorem 1IL4.1 on the fsceuc/idean spmmetries E(3) for the
case of isometrics with signature (+, +, -). As such, it will be left as an
exercise for the interested reader.

Despite the manifest similarities between the conventional

Poincare’ symmetries and all its isotopes, the latter have non-trivial
physical implications, as illustrated by the application of isosymmetries
P(3.1) for the characterization of relativistic, closed, nonhamiltonian
systems (Sect. 1V.7), the consequential, necessary isotopic liftings of
Einstein’s special relativity {Sect. 1V.8), or the characterization of a
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generalized notion of isoparticle (Sect. 1V.7).
The following property is by now evident.

COROLLARY [¥.6.11 (loc. cit/) Al infinitely possible general and
restricted isopoincaré symmetries P31/ on isominkowskl spaces
M g8, are locally isomorphic to the conventional Poincaré
svmmetry P31

It is understood that on isospaces of Class II or III the above
isomorphisms are no longer guaranteed. As an example, the use of the
classification of O(3.1) shows that some of the isotopes P(3.1) on
isospaces of Class I are locally isomorphic to O4)xT(4) or 0(2.2)xT(2.2).
The classification of all possible isotopes P(3.1) on isospaces of Class
111 is left to the interested reader,

It is evident that the general and restricted isopoincaré
symmetries constitute isotopic coverings of the conventional
symmetry in the sense indicated in Sect. 1V.5 for the Lorentz symmetry.

As concluding remarks, note the explicit dependence of the
isometric from the local coordinates X. Also, the composition law of
two isopoincaré transformations {ﬁk , Tgh k = 1, 2, is given by

Finally, note for future use the isotopy of the group of translations

x“un pV x° g pV

T{3.1) = 138.1) = , 6.19
8.1) e|§ p > T@E1) e|§ pv (6.19)

which is at the foundation of our representation of electromagnetic
‘wave propagating within an inhomogeneous and anisotropic physical
medium (Sect. 1V.9).

- Again, as it was the case for the conventional and isotopic Lorentz
symmetries, the isopoincaré symmetries are not freely defined in
isospaces MUkx g #), but rather on the hypersurface of the
constraints.

Finally, the Poincaré-isotopic symmetries of this section are a
particular case of the Poincaré-admissidle symmetries of Santilli
(1981a), the latter being the most general possible symmetries for
extended-deformable particles under the most general Known
nonconservative dynamical conditions.
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IV.7: RELATIVISTIC ISOPARTICLES AND ISO-
QUARKS

The best way to illustrate the physical implications of the isotopic
liftings of the Lorentz and Poincaré symmetries is by identifying their
implications for the characterization of particles. In turn, this will
predictably provide a number of possibilities for experimental
verifications, first, for the identification of the physical conditions
under which the isotopies are applicable and, second, for the test of:
the quantitative predictions of the novel theory in the arena of its
applicability.

As well known, Einstein’s special relativity characterizes particles
as massive polnts But point are perennial and immutable geometric
objects. Thus, z2ccordmg (o contemporary refativistic theories,
elementary pariicles preserve their mirisic characteristics for all
concelvable physical conditions existng in the Universe .

In his limpid writings, Einstein {1905) avoided such a manifestly
excessive assumption, because he identified quite clearly the arena of
applicability of his views. In this volume we therefore assume as exact
Einstein’s views, but not necessarily those of his contemporary
followers. In particular, throughouvt our analysis we shall assume hat
elementary particles preserve therr Intrinsic clharacteristics under
Lhe rolfowing Einstenian colditians:

1) Particles can be well approximated as being massive points;

2) when moving in the homogeneous and isotropic vacuum {empty
space);

3) while experiencing only action-at-a-distance, local-potential
{selfadjoint) forces.

In this volume we are interested in studying particles in
nopainstenizn conditions, i.e., we shall study

i) Particles (and/or their wavepackets) which cannot be approxi-

mated as being point-iike, but require a representation of their
actual extended, and therefore deformable shape;
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2} when moving within generally inhomogeneous and anisotropic
physical media,

3) while experiencing conventional, action-at-a-distance, local-
potential forces, as well as contact, instantaneous (classically
range), nonlinear, nonloca! and nonhamiltonian interactions
with the medium itself.

In Sect. 111.7 we have introduced the notion of romrelztivistic
Iisoparticle as a representation of one of the infinitely possible
isogalilean symmetries G(3.t}. The preceding results of this section
then allow us to introduce the following

DEFINITION V.71 (Santilli (1958c) (1989 (199/d)- A classical
refaLivistic isoparticle is a represemtation of one of the
infinitely possible Isopopincare symmetries In the Jsominkowsks
spaces ML),

PE.1): x = {Aley) , TP *x = (AU , TGP Tox -

irs j :
= Tk % wg o Tor 0,X1) @) ). 5 (7.12)
w=[ux), X-= {le . Pll)’ (7.1b)
Wikgh: & = Ton, R=811,=T, >0, (7.1c)

Fguivalently, a classical relativistic Isoparticle Is e
generalization of the cigssical FEinsteinian particfe
characterized by the Isolopic lifiimg of the trivial unit I or the
conventional Poincare syvmmelry, into one of the Infinitely
possible isounits 19 > 0 of the Isopoincaré svmmetries A3 .

In the nonrelativistic case, the central consequences of the
isotopies G(3.1} = G{3.1) are given by the characterization of particles
with an infinite number of d&Jifferent intrinsic characteristics (e.g.,
infinitely many possible deformed shapes), depending on the local
physical conditions considered. :

The alteration of the intrinsic characteristics of a particle in the
transition, from motion in vacuum {Einsteinian conditions), to motion
within physical media (noneinsteinian conditions), was called muzation
(Santilli {1978b}), and the same terminology has been adopted in this
volume. ,

As an example, we pointed out in Sect. 1I1.7 that a derormation of
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the charge dJistrrbution of a heutron under safﬁ'a‘ew:;p' ntelrse
external fields or collisions, must necessarily produce & muiation of
JIs rmrinsic wagnetic moment, a5 preffminarily measured by Rauch
and Lis collaborators (1951 (1983/ (see Chapter VII for details).

It is evident that, once oze intrinsic characteristics is mutated,
the mutation of all remaining characteristics follows on a number of
independent arguments known since the original proposatl ((foc ciz).
Sect. 4.11), where it was shown that the addition to Dirac’s equations of
a nonselfadjoint coupling implies the necessary mutation of all
intrinsic characteristics.

The relativistic extension of the notion of isoparticles is intended
precisely to provide the technical means for the study of the inter-
relationship among seemingly different mutations.

The existence of an infinite number of possible different
isosymmetries P{3.1) is intended to represent precisely the possible
existence of an infinite number of different intrinsic characteristics
for the same particle, evidently depending on the infinite number of
possible local conditions for the interior problem.

It may be of some value to indicate already in these introductory
words the expected physical relevance of the notion of mutation.

First, the reader should be aware that the notion considered is
inapplicable in the atomic structure, because of its exact Einstieinian
character due to the large mutual distances among the constituents.

~ Second, the notion of mutation begins to acquire possible physical

relevance in nuclear physics because a small nuclear force of short
range, nonlocal and nonhamiltonian type is expected from the
experimentally established mutual penetration of the nucleon
constituents for an average of 1073 parts of their volume.

In fact, the possible mutation of the magnetic moment of nucleons,
when inside a nuclear structure, offers some intriguing possibilities for
attempting a final understanding of the still elusive, total, nuclear
magnetic moments.

Also, the notion of refzivistic isoreulron as per Definition 1V.7.1
appears to be useful for a deper understanding of the nuclear stability
while one of its constituents is unstable. In fact, the isoneutron
appears to have a much longer meanlife than that of the conventional
neutron when a member of a nuclear structure (Sect. [V.9).

More generally, the notion of ssaruc/eor appears to be useful in a
number of other aspects of nuclear physics, with the understanding
that, again, conceivable mutations can at best be small in nuclear
physics.

Within the context of hadron physics, for which the notion was
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conceived, we. expect mutations quantitatively much bigger than
those of the nuclear structure. This is due to the fact that all massive
particles have a wavelength of the order of the size of hadrons, as
well as of the range of the strong interactions themselves.

Then, the hadronic constituents, to be physical particles, are
expected to be in conditions of total mutual immersion within the
hyperdense media in the interior of hadrons (called fZadronic medis)
This activates precisely the nonlinear, nonlocal and nonhamiltonian
forces studied in these volumes, and justifies the introduction of the
following

DEFINITION [TV.7.2 (Santilli (1988ch A “Trefativistic isoguark™ Is 8
representation of ohe of the infinitely possible isosymmetries
P(3.1)=8U(3, where P31} characterizes Lthe space-time
Isosymmetries on Mg R and SU(3) represents the isotopes of
the uniary symmetry SO (Mignani (984 Mignani and Santilli
994,

As we shall see, the above notion of isoquark with its mutated
intrinsic characteristics, offers genuine possibilities of resolving the
now vexing problems of hadron physics, such as

a} attempting a frue guark confinement , i.e., a confinement not
only with an infinite potential barrier, but also with an identically null
probability of tunnel effect for free quarks (see Sect. IV.9 for
preliminary possibilities);

b) the possibile identification of quarks with ordinary massive
particles, although in suitably altered (mutated) conditions;

c) the possibility of achieving under isotopy convergent
perturbative expansions for strong interactions, prior to
renormalization techniques, as preliminarily studied in Santilli (1989)).%

2l The main ideas are so simple to appear trivial. Consider a classical, relativistic
canonical series expressed in terms of brackets (IV.4.16) which is dfrergess . Then,
there exist an infinite number of isotopies 1 = M = T+ under which the same series
expressed in terms of the Lie-isotopic brackets (IV.4.23) becames convergans . as one
can easily prove, e.g., for | I" | < 1. The isotopic regeneration of convergence at the
operator level is equally simple. Consider a perturbative series expressed in terms of
the trivial Lie prouct of cquantum mechanics [A,B] = AB - BA which is divergens, eg.,
because of the high value of the coupling constant. Then, there exist infinitely
possible isotopies 1 3 1 = T-1 under which the same series expressed in term of the
isotopic product of the covering hadronic mechanics, [A Bl = ATB - BTA, becomes
convergent . These aspects are here mentioned to indicate the truly novel
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A quantitative appraisal of these possibilities will predictably
require- a long: chain of studies, beginning with the operator
formulation of the theory, then passing to the construction of the P(3.1)
invariant field equaticns, and finally formulating specific experiments
in particle physics (for preliminary proposals see, Santilli {1990) and
(1991d)). Evidently, in this volume we can provide only the classical,
relativistic and spinless background.

To begin, the necessary conditions for the existence of a mutation
are readily given by the following proposition.

PROPOSITION fV.71 (Santilli (1958c) A mecessary condition for
the mulation of the nirinsic characteristics of pariicles Is that
the local physical conditions mmply & violation of the conven-
tronal Lorenrz symmetry, of nomnknear, or nonfocg! or
nophamiitonian type.

We are now interested in the necessary and sufficient conditions
for a mutations. An inspection of the invariants of the isotopies P(3.1)
= P@.1),

2 = plk v 2= W g v
P<=P nuvP = Ppe=Pp ng , {7.2a)

2 - v 2 - . v - ap
we=wit, w = w wh gy WY Wy euaﬂyd PY,
B (7..2b}
and prior to any study of the isorepresentation theory, yields the
following:

PROPOSITION IV.7.I {loc. cit) A necessary and surficient
condition rfor the mutalion of the imrinsic charazcrerisiics of
elementary particles Is thatr the isometric £ Is a nontrivial
Isotopy of the Minkowski metric j, £ = To iy, T~k Tp> 0

Finally, the reader should not assume that, under mutation, we lose
fundamental space-time symmetries. This leads to the followiong
restriction on the mutations evidently imposed by the local

possibilities of our jsotopic relativities. In fact, the isotopic regeneration of
convergence is structurally equivalent to the isotopic regeneration of exact space-
time symmetries when believed to be conventionally broken. More generally, we can
state that & dfvergent, Poincaré-invariznl, perturbative, classical or quantum
mechanical serfes, can always be turned info a conmvergen! series Via Its
reforulation fnto & fory mvarianm! wpder Poincare-isvtopic syrgretries (Santilli
(989c, d). in different terms, the current divergence of perturbative series for strong
interactions may eventually result to be a manifestation of the current, excessively
simplistic realization of the Poincaré symmetry for the physical context considered.
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isomorphisms P{3.1) ~ P{3.1).

PROPOSITION V.73 (Santilli floc. citjl ANl Inrinitely possible
configurations of & refativistic Isoparticle must coincide witl
the conventional Linstefnian forty of the same particle ar the
gbstract, reafizatlon-free level

In different terms, mutations are not arbitrary, but geometrically
restricted to such a class that conventional and mutated intrinsic
characteristics can be unified at the abstract, realization-free level,
as we shall see in detail later on.

Further advances in the topics of the above propositions require
the study the isorepresentation theory, which we hope to present at
some future time.

We now outline the three methodological tools needed for the
quantitative characterization of a relativistic isoparticle.

LSORELATIVISTIC KINEMAT/CS (Santilli (1988c)). The first
tools are given by the generalization of the conventional relativistic
Kinematic caused by the lifting of the carrier space Ml{xn® =
M z(xf;,?t], hereon considered with the diagonal isometric

& = diag. (512 B2 Bg2, - 6D, By = (5, x.p.) > 0,7.3)

Isorelativistic kinematics is based on the iscinvariant

as? = -axtg ax’ = =ar¥ bl o - atclat = -1, (.4)

c=Cg by, {7.4p)

from which we can write the conditions on the Jserourvelocity W =
axP/ds
w2 =gt éIJ-V uV = -, (7.5)

But
ut = axM/ ds, (7.6)

Thus the compoﬁents of the isofourvelocity are given by
dx*  at

ut = —— = — = Y=Y by {(7.72)
ds ds
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duf¥  ax? axk . _
ds ds dax?

=0 -p) 7 B2 = v/ ilegbsley. (770)

where v is the velocity in Euclidean isospace Eo(r8#) = E(r.G#) of
Sect. 1I1.3.
We now introduce the JsorovrmoeMentumr as the isofourvector in

Mixg.h)
p=(pH = (") = (m vk mg¥d, (7.8)
m = m ¥s {7.80)

The isocasimirs (I1V.6.14) then imply the following fundazmentz/
Isomvariant of the PoICAre-isotopic Symmerries

p2 = pH g, BV = pXp 2 p¥ - pic? pt

—m 222 vk p 2vK - m 242 ct -

2)=—m2t:4=—m2t:

= -m ety - p o oetpd (7.9)

or, equ;valently,
(M gy PV} / mpZct =1, (7.10)

Note that in the above derivation we have ignored the
multiplication of the isotopic square by the isounit because inessential
for practical applications (Sect.s I1.3 and 1L6).

RBELATIVISTIC, CONSTRAINED BIRKEOFFIAN-—ISOTOPIC
MECHA-NICS {/oc. cit ). The next tool needed for the
characterization of a relativistic isoparticle is the applicable analytic
dynamics. A preliminary outline of the mechanics was presented in
Sect. 1V.4 to identify the underlying geometry and algebra, and without
constraints. We shall now reconsider the mechanics in its more
general constrained form.

Recall from Sect. 1V.4 that relativistic Hamilton-isotopic mechanics
is mondegenerate (also called mporsimeulzr), in the sense that it
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admits a unique solution X(x.p) expressmg the velocities in terms of the
coordinates and moments fi.e., det (3%L / axMax") = o).

Nevertheless, the theory is necessarily coustrained in the sense
of requiring as subsidiary constraint the fundamental isoinvariant (7.4),
as well as all needed subsidiary constraints {IV.2.5b)-(IV.2.5d) for total
conservation laws.

As a result of this occurrence, the subsidiary constraints can be
first formulated via Zagranges muftipliers as done in this section
(for a rigorous treatment within the context of the problem of Bolza,
see Bliss (1946)). The theory then requires riracs {964 method for
Subsidiary constrainls  to identify the hypersurface of the definition
of the system and of its isosymmetries, as studied in Appendix IV.B.

Consider first the conventional space ®gxT*M(x.,.%t) with local
coordinates a = (al} = (x xp) = (x*, p!). The most general possible
nopdegenerate, coustrailied, refativistic, Praftian variationa! principle
can be written

; o, '
8A = sflz osRfs.a,.0a + &0, - B are. ) =0 (7ita)
= da/ds = (%, p), % = ox/ds, p = dp/ds, (7.11b)
i=1,2,.,8N, n=12234 x=12,..,n

where the A, are the Lagrange multipliers, the ¢, are the subsidiary
constraints, B is the relihvistic Birkkoffizn, and the R; are the
refLIVIStic Prarrian ruhctions.

The functions Rj and B can be computed from the given equations
of motion via one of the various methods of Santilli (i982a), while the
subsidiary constraints are assumed to be known from the problem at
hand.

These methods generally result in the zowautonomouvs form of
principle {(7.11) with R = R(s, a,.) and B = B(s, a,..). As such, the related
Birkhoff's equations do not admit a consistent algebraic structure
{(Appendix IL.A).

The above principle must therefore be reduced to the equivalent
semigutonomous rorim with R = Ri{a) and B = B(s, a,.). This can be
done via the use of the re/givistic Birkhofrian gause Lransrormations
{1v.4.28), ie,

R ..} =Rfs.2,.) + 8Gls,a) 9 = a/dal, (7.12a)

Bfs,a,..) = Bls, a,..) — 95G(s, a). (7.12b)
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As one can see, the above transformations do redefine the R and B
functions, but leave completely unaffected the multipliers and
subsidiary constraints and, thus, they remain fully applicable in the
constrained version of the theory.

To achieve a P(3.1)-invariant mechanics, we have to consider
essentially the same restrictions introduced in Sect. I1V.4 The first
restriction is that the semfautonomous Pfafrlan principle must be of a
form representable in the lsospace ﬁsxT"‘M (x.g8), i.e., of the type

sh* = 8f 2Ty, dal + 0% ~Blsa\ @,.ITds ] =
-SI ds{p n (x P, ...) Vio kx— Bis, x,p, A, ®,..)] =0, (7.13a)

R°=(p,0, #=TM T(>0, (7.13b)

As second restrlction the isometric 1) must be such to induce an
exact, isosymplectic two-isoform (Iv.4.18), i.e.,

Quz = déoi = = d(RDiTilj da]) =
- r i J
iwir T j {a) da’ A da (7.14)

As one can see, the above structure is unaffected by the
subsidiary constraints. We reach in this way the important conclusion
that the constrained version of relativistic Hamilton-isotopic
mechanics preserves its Lie-isotopic structure in full

Under the above conditions, principle (7.13) implies the following
refaLivisiic, nendegencrale, consiraned, Hamilton-Isotoplc equations

a
dx ”_ e 9B(s, 2, A, ...)
g sps-
. s apaVv

dal i 0Blsax..)
— =gl ) —— = . (7.15a)
ds dal a : )

dp ) B(sa),

— = - gMxp, )

ds av

ddy dB(sax..)
= =0, (7.15b)

ds dix
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") = Eop-1, (7.15¢)

The underlying algebraic brackeis are then given by Eq.s (1V.4.23),
plus additional degrees of freedom for the constraints which can be
ignored for the study of the isosymmetries.

We have reached in this way an analytic formulation of relativistic
Hamilton-isotopic mechanics whose algebraic structure comrcides
with that of the Poincaré-isotopic symmetries of the preceding
section. :

Finally, to achieve a P{3,1)-invariant description, we remain with
the third restriction that the Birkhoffian B is the Hamiitonian H
properly written in Mi{x2#) which, in the general case of N particles,
can be written

H = [p?* Epylsxp) Pl /2y - tchhg - CLOLPIA + VixBD),
xab - [(xau - xPIy éuv (xavl - xb")]i‘ (5.16)
i=1,2..,8N, a=12.N pmv,=1234 Kk =10i2.,n-N,
where Lagrange’s multiplier A, are given by
Ay = My =My ¥, (7.17)
the ¢'s are the subsidiary constraints of systems (IV.2.5), and V is a

conventional potential, only properly written in the isospace. The
Isorelstivistic equations of motiop are then given by

ap

gx dHs,a)..)
— = §Mxp,.) v (7.18a}
ds ) ap?

ap.
dp -élw(x dHis.a\..) (7.18b)
.ds P axaV ’ '
4o AH(s,2A, .. 2

a _Heah) i Pa2 + Y=o, (7.18¢c)
ds A, 2,
ddy aH{sa\,..)

=\ = ¢y =0, (7.180)

ds axk
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~
a=12_..N, nv=1234, k=12..,n

where Eq.s (7.18c) represents isoinvariants (7.14), and Eq.s (7.184)
represent all needed, additional subsidiary constraints {see also next
section).

Again, we have presented here the simpler Hamilton-isotopic
formulation, while leaving the most general possible Birkhoff-isotopic
formulation to the interested reader.

BELATIVISTIC [SOSYHMETRIES AND CONSERVATION
LAWS (Joc cir). The third final tools needed (for the rudimentary
level of this analysis) are the spmmelries and conservation laws for
relalivistic constrained Birkforiian mechanics.

A relativistic extension of Theorem 6.3.3, p. 240 of Santilli (1982a) can
be done, quite simply, by interpreting the integrand of Pfaffian
principle {7.18) as being the Lagrangian

Ls.2,4,),.)= Ri@al + & A, - BEa,\.).  (7.1%2)

X
R = (pTy, 0) p7.19b)

Then, the relativistic constrained Birkhoff's equations (7.15a)
coincide (in their covariant form) with the conventional Lagrange
equations in the above Lagrangian, i.e.

d aL aL r ] dB
— - .=, Tltfalal - —, =0, (7.20)
ds aal dal ir "2 al

with similar equations holding for the subsidiary constraints.

The application of the conventional Noether’s theorem to the
above Lagrangian formulation, plus the use of the Birkhoffian gauges
{7.12), yield the following:

THEORERM V.71 [(Relativistic Birkhofrisn Noethers Theorem,
Sanutilli 4988cy : Ir refarivistic Hamifton-isotopic equations (7,18}
admit a symmetry unhder an n-dimensions! Lie group 8, of
Infinitesimal ransformations

: : . i
al = a1 = a2l 4 w ak(a), a = (x, p), {7.21)

then there exist r quaniities
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i
Q = Ri (@) ak(a,..) +Glsa,), 1=1,2,.,8 k=12.,r (7.22)
which are rirst integrals along a possible path (conserved
quantities)

The attentive reader may have noted that the symmetry S, of
Theorem 1V.7.1 has an undefined Lie structure, that is, it can be either
& conventional Lie or a Lie-isotopic symmetry. In order to narrow the
possibilities to those directly applicable to Eq.s (7.18), we introduce the
following

DEFINITION [¥.7.3 floc. cit) A symmetry S, of refativistc
Hamilton-isotopic equations (715 Is called an “isosymmetry™ and
denoted with the symbol S}, when It adwmits the inrinitesinal
rorm on TWcs5)

i iq. j}
al=al+woo 1, 0:;X ) 7.23
K Zq(] k) (7.23)

where the X5 are the generalors of A‘}, WiLh ISocommutation
rules iy terims of brackets (TV423

k
. = . pt q S =
X7 Xl = (0 X) 0P+ 1y 8g X)) Cij (@) X (7.24)
and the O are the structure runctions.

In essence the above definition assures that the aigebraic
structure of the isosymmetry §r coincides with that of Eq.s {7.18). The
necessary and sufficient conditions for an isosymmetry are then given
by a simple relativistic extension of Theorem 11.8.3

THEOREM [V.7.2 (fnlegrability conditions ror the existence ol an
Isosymmetry (loc. citjl Necessary and sufficient conditions for
inrinitesrimal isotranstormations (723 to be an Isosymmetry of
relativistic Hamilton-isotopic equations (7.18) are thar al/
generators X, of the Isosymmelry Isocommute With the
Hamiltonian {7.18] fe,

~

{Xk cH =0 k=12 ..r {7.25)
But the isopoincaré symmetries have the same algebraic structure

of relativistic Birkhoff’'s equations (7.18) by constructions. We
therefore have from Theorems IV.7.1 and 1V.7.2 the following:
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THEOREAM [V.7.3 foc. cit} A necessary and sufticient condition
for relativistic Hamilton-isotopic eguations (7.18) to be Invarignt
under & general isopoincare symmetry P31} In the sawe
Isospace £ xT"M/xg S, is that Hamiltonian (718 and moare
partzcu/.smjp' Iits potential V, are PR I)-invarignt, In which case
its conventional/ ten generators Xy = {f #%, P H) are auvto-
maliczlly conserved,

As an incidental note we have used here the term “invariant”
because referred to the invariasnce property of the underlying
vector-field, IV ('a’,.) = I'(s’, a’....) When considering the equations of
motion, 4 more appropriate term is that of “covariance”, as in the
conventional case.

Note aiso that, exactly as in the conventional case, Hamiltonian
(7.16)) does not represent the total energy of the particle, but only its
generator of time isoevolution.

Nevertheless, while in conventional treatments the constamnt
Zamao‘:o is usually added to render the numerical value of the
Hamiltonian null, this is not the case in isorelativistic mechanics,
because it would imply adding the swuwciions Zamaocob4(x,p,...) with
consequential alteration of the equations of motion.

We are now sufficiently equipped to study the following illustrative
cases of oune isoparticle in an externz/ medium. The system is
therefore -open by conception and, as such, it requires only the
fundamental constraint (7.4). Throughout the rest of this section we
therefore have a = 1, kx = ), and d:x =,

7 o (A4 (/oc. ¢/t ). In this case
we have a null potential in Hamiltonian (7.16), the isometric has the
constant form

i) = & = diag. (by2, b2, bs? - by?), by = constants >0, {7.26)
and the Hamiltonian is given by
H = pW ﬂm’ pV7an -y (7.27)
resulting in the equations of motion
llh = bu BH/Bp"l = pu/m (no sum) {7.28a)
B, = - -b 2awad = 0, (oo sum) (7.23b)
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. ~ Al —
XM nuv % 1. (7.28¢)

which are manifestly P(3.1)-covariant, nevertheless, they coincide with
the conventional equations for a free particle.

The first possible interpretation of system (7.28) is that along the
main line of research on these volumes, namely, the representation of
an extended particle moving in vacuuw whose caracteristic b-
Junctions have begy averaged into the b—constants,

In particular, the above case is the relativistic extension of the
corresponding nonrelativistic case of Sect. IIL7.

A simple example of the isospace under consideration is that
characterized by the Nielsen-Picek metric (1V.3.21) for which

by=by=bg=b =1-a/3, by =1+g, (7.29a)
@ = -3.79<1079 for pions, @« = + 0.61x10™3 for kaons. {7.29h)

Note that isoparticle (7.128) is free and, as such, it cannot represent
an isoquark.

At the rudimentary level of this example, mutations are expectedly
minimal, and mainly restricted to the behavior of physical quantities
with speed (see Sect. [V.9). As an example, the rest mass m, is an
independent parameter of the theory which, as such, has to be
conventionally assigned and cannot be mutated {at this stage).
Nevertheless, its behavior with speed and the corresponding rest
energy are mutated (Sect. 1V.9). A similar sitvation occurs for other
quantities.

In regard tio the representation of rthe three-dimensional shape
of the particle, recall that the conventional Minkowski space M{xn.8)
can be interpreted as a geometrical space whose space component
E(r,5,8) characterizes a rotationally invariant, rigid and perfect sphere
of unit radius, § = diag. (1,1,1). In the transition to the isominkowski
space M¥x /&), we can therefore represent the actual shape of the
particle considered via the space isotopy :

§=diag. (1,1,1) > 0 = 3§ =diag. (by2,bs% bgd > 0,  (7.30)
which is merely embedded in the larger isorelativistic context of the
full isometric 1.

Moreover, one can have an fSofopy of an isotopy (Sect. 1V.5) of
the type :
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Mxas) = M), (7.31a)

i = diag.(b,2 0,2 bg% -b,2 = iy = diag.b,2 b2 b2, -1 ,2),

(7.31b)
which evidently represents the deformations of the original shape, and
holds, e.g., when the isometric is dependent, say, on an external
pressure T, bll = by, (w. The infinite number of possible P(3.1)
symmetries then represent the infinite number of possible shapes.

it should be noted again, as we did it at the nonrelativistic level of
Sect. 1117, that t#e representation of the actual shape of the parucle
and of alf s mrnitely possible deformations Is permitted by our
formulations aiready at the classical level of this analysis

By comparison, conventional Einstenian theories, first of all, cannot
classically represent any extended character of the particles and,
secondly, they can do it only after the rather laborious second
quantization. Even at that level, one can obtain only some remnants of
the shape via the form factors, and not the actual shape itself (say, an
oblate spheroidal ellispoid, a quite probable shape of the proton, as
well as of all spinning and extended charge distributions), evidently
because such a shape is not rotationally invariant. Finally,
conventional theories in second quantization cannot possibly
represent the deformation of a given shape, evidently because it
would imply a direct viclation of the conventional rotational and
Lorentz symmetries.

Moreover, we should recall that our isorotational group O(3)
restores the exact rotational invariance for all deformed shapes of
type (7.30) or (7.31), of course, at the higher isotopic level.

Note that, in the conventional case of a free relativistic particle in
Minkowski space, the translations are given by

X=X = X + X, P=2P =P (7.32)

and motion is along a straight line.
For the case of isoparticle (7.28), the isotranslations are given by

X > X=X +xb, P =>p. {7.33)
Motion is evidently still in a straight line (from the constancy of the
characterictic b—quam:ities). Nevertheless, the reader should keep in

mind the redefinition of the x°-parameters when needed to be
referred to translation of the center-of-mass of the isoparticle in
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vacuum

X = % = xb. (7.34)

{/oc. cit ). In this case the isometric can also be assumed to be
constant, but the potential V in Hamiltonian (7.16) is not null. The best
case is given by a charged isoparticle in interaction with an external
electromagnetic field with potentials AP(x), see, e.g., Mann {1974). The
Hamiltonian can then be written in T*M¥x,7"#)

H=iph-ea" /0o i, p” - eA?) /2x —ict (7.35)

with equations of motion

_, OH ( e ) 560
Xy = b, c—— = (py - —A,)/m, 7.362
bom a pt W B :
by = b2 " @ A% - —— AC (7.3
Pp= ~by aap  om A P - ), .36b)
. dH 1
¢ =— =- —-"{p-eA/c)2 - itct =0 a=m, (7.36¢)
3 G

which are also manifestly P(3.1)-covariant (and which admit systems
(7.28) when AP = ()

The most significant implication of system (7.36) is the possibility
that the external field produces the mutation of shape of the original
charge distribution. We are referring to the possibility that, starting
with isoparticle (7.28) with given shape (7.30), the addition of a
sufficiently intense, external electromagnetic field produce
deformations (7.29), i.e,

H = pHij,,, pP/2n -ich = W= (p“—eAF/c} PV~ eAVrchan - ety

§ = diag. {bs% b%, bg?) = ¥ = diag. 0% b5 b A (7.37)
which is precisely a classical relativistic extension of the deformation
of an extended charge distribution studied in Sect. I11.7, which is

applied there to a purely classical, but quantitative interpretation of
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Rauch’s experiment on the rotational symmetry of neutrons under
external nuclear fields in Chapter VII.

For this and other aspects, we refer the reader to Chapter VIL The
P(3.1)-invariant, field theoretical, operator interpretation of Rauch's
experiments is presented in Santilli (1991d).

Note that in this example that zhe isoparticle is mutated, but the
efectromaghetic 1feld, belng externgl Is conyventional .

It should be finally noted that system (7.36) remains virtually
unchanged by adding a dependence of the isometric on iocal density,
pressure, temperature, etc., thus providing a class of additional
examples.

LSOPARTICLE UNDER EXTERNAL NONLINEAR, NONLOCAL
AND NONHAMILTONIAN FORCES (Joc. cit.) . As well known,
Einstein’s special relativity can only represent particles under
external local-potential forces. The best way to illustrate the
generalized character of our formulations is by showing that they
permit the representation of the most general possible combination of
linear and nonlinear, local and nonlocal, and potential or
nonhamiltonian forces.

As a simple, local, but nonlinear and nonhamiltonian example,
consider the case in which the conventional potential V is null, the
isometric is given by

. —ikx?
g=e x? € Mx.n®), (7.38)
and the Hamiltonian is that for the "free” isoparticle, i.e.,

H = pt gw(x) pv /72 - scta, (7.39).

Then the equations of motion are given by

¥ = p/n (7.402),
p* = kxM (pp'éa,BpB)mm -4k x* i (7.40b)
& = - Hp%pPIN2 - tct =0, A=, (7.40¢)

which are also manifestly P(3.1)-covariant.
The above example illustrate the nonlinearity of the theory. A

simple example of nonlocal interactions are provided by isotopies
characterized by the surface integral
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N> g = eK-rG doFG, P, 4, T, 1.-) n Kes, (7.41)
which is nothing but a relativistic extension of the nonlocal-integral
forces experienced by extended bodies with surface o moving with a
resistive medium, as familiar in mechanics.

A virtually endless number of generalizations are then
conceivable, via local and nonlocal isometric and with or without
conventional potential forces. Their study is left as an instructive
exercise to the interested reader.

The above nontrivial forms of isoparticles share the following
properties:

1) they provide a classical, relativistic description of interior
trajectories, such as a high speed, extended test particle during
penetraticn in the Jovian atmosphere considered as external, or, along
similar lines, a first, classical representation of a proton moving within
the hyperdense medium in the core of a star;

2) they evidently admit possible mutations of their characteristics;
and, last but not least;

8) they all restore the exact Poincaré symmetry, of course, at our
isotopic level, by therefore coinciding with the conventional
Einsteinian particles at the abstract, realization-free level.

iv.8: CLOSED SYSTEMS OF ISOPARTICLES.

An inspection of the historical successes of the Poincare’ symmetry
and of the special relativity reveals the restriction of their exact
applicability to closed systems of point-like particles with only local~
potential forces, such as the planetary or atomic systems.

In an attempt to enlarge these physical conditions, while
preserving the underlying abstract axioms, in the preceding chapter
we have studied closed-isolated systems of extended particles with
conventional selfadjoint, as well contact nonselfadjoint) internal
forces, which nevertheless verify the ten total conservation laws
imposed as subsidiary constraints.
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Moreover, we have constructed a classical, nonlinear and nonlocal
realization of the isogalilean symmetries G(3.1) and shown that G(3.1)-
invariant, closed, nonhamiltonian systems verify the ten, total,
conventional conservation laws as a result of the isosymmetry, and
without subsidiary constraints.

In this way, the isogalilean symmetries essentially select the
unconstrained subclass of closed nonhamiltonian systems. In fact, the
preservation of the ten total conservation laws is ensured by the
preservation of the conventional generators of the Galilei symmetry,
while the generalized, symplectic-isotopic/Lie-isotopic structure of
G(3.1) ensures the existence of the most general known interna!l forces.

The generalization of these results to a relativistic setting is
straighforward.

First, among the infinite class of systems (I1V.2.5) of N isoparticles,
we restrict our attention to the systems whose Birkhoffian vector—
field T' can be consistently written in the isosympiectic form {1v.7.15} in
isospaces T*MYx.8.%). More explicitly, consider system (IV.2.3a) in the
vector field form

i %8k / pau/m
a=1(@) = I'sa..) apl ,(8.1)

pak \K Bea + K NSA .

where we have absorbed the nonlocal forces in the nonselfadjoint
ones.The above restriction implies the representation

i R PO
Fsa,) = w I2q ajB(s,a,..), {8.2)

Finally, the Birkhoffian B must be restricted, via the use of the
various degrees of freedom of the theory, to represent the
conventional Hamiltonian, only properly written in T*M (g #), i.e, Eq.
(IV.7.16). The latter requirement has a number of consequences, such
as:

1) it implies that all nonselfadjoint forces are represented with the
Lie-isctopic tensor of the theory;

2) the Hamiltonian represents only potential forces; and, last but
not ieast

3} the conventional relativistic setting is recovered identically at
the limit of null nonseifadjoint forces.
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Onée the considered closed nonhamiltonian system admits the Lie-
isotopic form {IY.7.15) and Hamiltonian (IV.7.18), Theorems 1V.7.1, IV.7.2
and 1V.7.3 apply.

The isopoincaré invariance then follows when all isocommutators
{1v.7.25) hold, namely, when H itself is invariant under P(3.1). The
conservation of all the conventiona/ generators (IV.6.5) then follows.

THEOREM TV.81 [Santillf (1988c/t The covariamce under a
general ISopolncare symmetry on M58 characterizes
closed-isolated systems of extended JIsoparticles with
conventional, local action-al-a-distance interactions
represented by the Hamiltonian, plfus contact, nonlinear,
nonfocal and nonrfamiftonian fnieractions represented by the
sounit

In different terms, the generally open, nonconservative,
relativistic, Birkhoffian systems (IV.2.5a) are “closed” by the imposition
of the isopoincaré symmetries P(3.1), exactly as expected from the
corresponding nonrelativistic counterpart of the preceding chapter.

The above resuits can be summarized as follows. The subclass of
P(3.1)-invariant systems (IV.2.3}) are those admitting the foliowing
representation

2 = = P, = &P 0 H AL, (8.32)
P = KB, + K ygs = - p) 8 HPA.-, (8.3b)
b, = BHXpA..VE, = -+ ct kB9 3% + 1) =0, (8.3¢)
H = 2l (pauéw(x, P xzn - 4 et + Vg2, (8.3d)

Xap? = g - xph) g " - %) (3.3¢)

where one should note the /gck of the subsidiary conseraints (T¥.2.34)
and (TV.238) because they are now gutomaltically verified by lie
B3 H}~rnvariance.

In case the more general systems (IV.2.5) are desired, their P(3.1)-
invariant subclass are characterized by the Hamiltonian {1v.7.16) for
the systems considered, i.e.,

H = 2,1 (pailéuvpav)/zxa - acta, ¢ VR + D (8.42)
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3 . .V
C; = Fy{dPé/as), €, = Fz{dwélds), Cg = Fgk%n, X +1), (8.4b)

where one recognizes the three subsidiary constraints (IV.2.5c)~
(1v.2.5¢) multiplied by arbitrary (sufficiently smooth and regular)
functions of the local variables Fp.k= 1,2, 3

The P{3.1)-invariant subclass of closed nonselfadjoint systems
(1v.2.5) are then represented by Eq.s (8.3) plus the additional subsidiary
constraints

;= 8B/oA, = Fy(dP¥/ds) = o, (5.52)
6, = OB, = F,dWe/ds) = 0, (8.5b)
by = 3B/Bhg = F3lkPn, XV + 1) = o, (8.5¢)

where one should note, again, the lack of subsidiary constraints (2.5b)
because ensured by the P(3,1) symmetry.

This completes the treatment of the systems considered with
Lagrange’s multipliers. To study their consistency and identify their
hypersurface of the constraints, one has to use Dirac’s method
{Appendix 1V.B).

As one recalls from Sect. 1V.2, stricter class (8.5) is requested when
ohe wants no remnant whatever of the generalized interior structure
in the conventional exterior setting. In fact, e P2l isosymmetry
ensures the valldity of the ten, roral conventiongl, conservanon Iaws,
while the additional constraints (8.5) ensure that all total quaniities
are defined in the conventional Minkowsks space.

In the derivation of systems {8.3) and (8.4), we assume the reader is
familiar with the techniques underlying analytic equations with
Lagrange’s multipliers, such as the fact that the equations must be
computed first along an arbitrary path which is »oz the solution of
the system, while the multipliyers are originally considered as new
independent variables. The systems are then computed along an actual
path. In particular, the subsidiary constraints hold only along the
actual path. For additional technical details, we refer the interested
reader to Bliss (1946).

Note, for use in the next section, that the center-of-mass of
systems (8.4) strictly verifies all Einstenian laws, e.g., time dilation,
space contraction, etc.

The relativistic generalizations of- the two-body and three-body
closed nonhamiltonian systems of Appendix IILA is left as an
instructive exercise for the interested reader. Note that all examples
of the preceding section for one isoparticle with local coordinate x
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can be reinterpreted as two-particle nonhamiltonian systems where x
represents the relative coordinate.

The system characterized Hamiltonian (3.4) for a sufficiently large
number of constituents N constitutes our re/giivistic model/ of the
strucrure or Jupiter as a closed nonhamiltonian system in an isotopic,
yet fully flat space MKxg®), and prior to our gravitational
consideration on isospace M!!! of the subsequent chapter.

It is another instructive exercise for the interested reader to see
that the model does indeed achieve our objectives, that is, the
representation of the local, internal, mowconservative  structure,
thus eliminating the existence of the perpetual motion in a physical
environment {Sect. 1V.1).

Systems (8.4) for N = 2 and 3 also constitute c/essical re/ativisue,
closed, nonhamiftonian structure models of hadrons as bound states
or Isoguarks conceived precisely as an operator image of Jupiter.

IV.9: ISOTOPIC LIFTINGS OF EINSTEIN'S SPECIAL
RELATIVITY

In the preceding chapters we have first reviewed the impossibility of
reducing the Universe to a finite number of point-like particles with
only local-potential interactions, because of the impossibility of
.reducing the nonlinear, nonlocal and nonconservative systems of our
macroscopic reality to a finite collection of stable elementary orbits.

In this way, we have confirmed the historical distinction by the
Founding Fathers of analytic dynamics between the exrerior and the
Interior dynamical problem {Chapter I).

We have then identified the differentiation between the local and
potential character of the exterior center—of-mass motion of particles
in vacuum, and the generally nonlinear, nonlocal and nonhamiltonian
character of the interior trajectories, such as for a spaceship
penetrating within the Jovian atmosphere or, along conceptually
similar lines, 2 hadronic constituent with extended wavepackets while
moving within the medium composed by the wavepackets of the
remaining constituents.

We have finally achieved the compatibility between the above
exterior and interior dynamics via our nonrelativistic and relativistic,

190



closed nonhamiltonian systems and their isosymmetries, as well as the
abstract geometrical identity of our generalized systems and
symmetries with the conventional ones.

The above results were reached via a necessary isotopy of all
structural features of conventional formulations, such as: fields;
metric spaces, analytic mechanics, Lie’s theory; symplectic geometry;,
symmetries, etc.

A primary result of our analysis is therefore that the fundamental
symmetries of contemporary physics, Galilei, Lorentz and Poincare’
symmetries, are not violated in the transition from the exterior to the
interior dynamics, but preserved in full, because we merely perform
the transition from their simplest conceivable, to their most general
possiblie realizations.

It is evidently necessary to complement these studies with the
identification of the generalized relativities emerging from these
technigues, as well as of their primary consequences.

On mathematical grounds, it is easy to see that ke ssotopic lirings
PRl = PRY imply necessary, corresponding: Isolopies of Eistein’s
special refativity.

The main objective of this section is therefore that of identifying
the nonlinear, nonlocal and nonhamiltonian generalizations of the
basic postulates of the special relativity which are implied by our
isosymmetries 0(3.1) and P(3.1) on isospaces M‘Z(x,é.s'%).

The foundations of the generalized relativities, under the name of
Lorentz-Isoropic refgeivites , or isospecial relativities for short,
were first achieved in Santilli (1983a), and subsequently expanded in
Santilli (1988c), which is followed in this review. Additional studies can
be found in Santilli (1991c).

The analysis of this section can also be considered to be a
relativistic generalization of the isagafifean refativities for the
interior problem of ref. {10]. As a matter of fact, t#e relativities
studied It this section were consiructed in such & way to admit the
isogalilean relativities under conventional nomnrefativistic limits (see
Chapter VI for the contraction of the former into the latter).

Finally, the content of this sectin should be considered as a basis
for the gravitational studies on the interior gravitational problem of
the next chapter. In fact, the Isotopic lifiings or Emnstein’s gravitation
of the next chapter were g/so constructed i such & way to admiy
locally, the isospecial or Isogalilesn refativities.

The problem of the experimental verification of the deviations
from the special relativity predicted by the Lorentz-isotopic
relativities in the interior problem, will be considered in Chapter Vil

Let us begin with the following:

191



DEFINITION 7V 81 (Santilli (1953a), (1988cll The “eneral isotapic
lirings™ of Einsteins specral relativity, herein called geners/
isospecial relalrvities,” are given by the generalizations
characterized by the most geners/ possible, nonlimear, nonlocal
and nonfamiltonian Isopoincaré svmmetries P31/ on isomin-
kowski spaces M W25 (Theorem V.61

08.1) : X = Axx = ATyx, T, >0, (9.1a)

+t " :t - _ ""1
A'TomA = ATynAt =Tpn, 1, =T, (9.1b)

T(3.1): x = x + x° Bz, p,..), (9.1c)

or, equlvalentlv, by the most general possible, nonlinear and
nonfocal realizations of the Isouwits I 2> 0 of the theory. The
restricted isotopic lirtings” of Finstein’s special relgtivity, or
“restricted Isospecial relstivities”; are characterized mstead oy
the most general possible flhear snd local isopoincaré
Lransiormalions om Jsa.spzces A fé,g, 5y with Isometric Indepen—
dent rrowm e flocal varizbies and their derivatives, bur
dependent on other physical characteristics of the medium
considered,

A few comments are here in order. The above definitions have

been conceived to express the construction of the isospecial
relativities with the same spirit of the remaining isotopic formulations,
i.e., in such a way to coincide with the conventional relativity at the
abstract, realization—free level (see later on Theorem IV.9.1).
_ The reader should therefore be aware from the outset that all the
deviations predictaed by the isospecial from the conventional
relativity are directly permitted by Einstein’s basic postulates, only
realized in their most general possible form.

Such an ultimate abstract unity is ensured by the isominkowski
spaces of Class I (Sect. IV.3). In fact, as the reader will recall, all the
isospaces considered. imply the local isomorphisms §(3.1) ~ ©O(3.1).
Moreover, the use of isospaces of Class I eliminates #2& /wition all
gravitational effects due to curvature, thus restrictuing all isotopies
of this section to flat isospaces.

The situation becomes fundamentally different if one allows more
general isospaces. In fact, as we shall study in more details in Chapter
V1, Einstefn’s gravitation Is a form of jsotopy of lhe special relativity.
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The understanding is that our most general possible isotopies of the
special relativity will characterize certain genera/izations of
Einstein’s gravitation in isospaces MM g 8.

In different terms, our isotopies identify the ultimate geometrical
axioms of a given theory and realize them in the most general possible
forms. In this process one recovers conventional theories, but also
identifies an infinite number of possible generalized theories.

Throughout the analysis of this section we shall restrict our
attention, for simplicity but without loss of generality, to general
isospaces of Class I of the diagonalizable form

Lesq) 2 =yl 3
MExgh): x2 =xt guvx

= x! b2xl * x2 by2 X2 + x3bs2x3 - x¥b2x4,

1 1 1 o2
= xl—E x! + x2 ) X%+ x° —2x3 - t—t (9.2a)
bl n2 n3 n4
x={rxH = c ) re Eofr,GH) (0.21)
g=Tan, (9.2¢)
7 = diag. (1,1,1,-1) € Mxn#), (9.29)
T, = diag. (842 652 632,5,2 >0, =81y 1, =Ty, (9.2e)

b,=1/ny =bgls, X, u,a,0,,n,..) >0, @=1,2,3,4, (9.20)
By =By=Bg =1/ny = ¥/ny = 1/ng =b = 1/n,, (9.2g)
c = cghy = co/ny (9.2n)

where: conditions (8.2g) are assumed for the specific purpose of
identifying the relativistic effects of the interior dynamical problem,
and separate them from the effects due to isorotations Of3) studied in
the preceding chapter; conditions (8.1f) are assumed, in addition to the
conditions I":uz > 0, to permit the identification of the b-functions with
physical quantities (see also next section); the quantities ﬁu have the
most general possible nonlinear and nonlocal depedence in all
permitted variables and quantities; the metric g is that of the
isocotangent bundie T*Mlz(x,ﬁ,?ﬁ), i.e., it is such that brackets (1V.4.23)
characterized by the inverse g~1 verify the classical Lie-isotopic
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axioms' (IV.4.12); and Eq. (9.2h) represents the geometrization of the
conventional speed of light in vacuum c,, characterized by our
isotopies.

The analysis for the restricted isotopies will be conducted in the
isospaces of Class I of the particular form

A - S PN .
Mixnf) = M xEH), (9.32)
f = diag. (6,2, b2, bs?, -bs2) = local constant >0,  (9.3b)

= constants > 0, {9.3¢)

b = b01= 1/n,

14

bj=bs=bg=b= 1/n4 = 1/[12 = 1/l‘13, C=Coby= Co/l'l4. (9.3¢)

We assume the reader is familiar with the primary differences
between the "general” and “restricted” isotopies of Definition 1V.9.1
identified in the preceding analysis.

It should be recalled from Sect. IV.6 that the generally nonlinear
characteristic b-functions of a given interior medium can always be
averaged into b-constants. This permits the regaining of the linearity
and locality for the isospecial relativities, although their predictions
remain different than those of Einstein’s special relativity, as it will be
evident in a moment.

We are now equipped to review the most general possible
formulation of the main postulates of the isospecial relativities.

Let us begin by studying the invariant speed under isotopies. For
this purpose we need first the maximal possible causal speed, which, as
in the conventional case, is characterized by the null isovector

as? = drk Bkz ark - dtc 2542 dt =0, (9.4)
o
yielding the following

DEFINITION 7V.9.2 [Santilli (19538 (988c): The maximal, focal,
causal speed of the genersl and restricted Isospecial
- refativities Is the maximal speed of g massive pariicle and/or of
2 signal verifving the principle of cause and efrecis, given
explicitlv by

dr 4 g
1 E e A= (0.5)
Max Max Q o

v
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The first fundamental postulate of the isospecial relativities can
then be formulated as follows.

POSTULATE [ (loc cit) The invariant speeds of the general
and restricted Lisospecial refativities are not given, in general,
by the speed of light, but by the focal maximal, cavsal speed ror
esch given plysical medium,

Consider two identical speeds vy = Vg = € = €y by Then, their
isorelativistic composition yields

2c
Vot = # c, {9.6)
1+ 53
Consider, on the contrary, two maximal causal speeds, vy = vy =
Vitax = c/bg. Then their isorelativistiv sum is given by
2C0b4/63 -
Yroe = T3 % Vmar ©7

thus illustrating the postulate.

Einstein’s special relativity is a trivial particular case of Postulate
I because it implies Vg = € = Co. Nevertheless, it is remarkable to
note that the invariant quantity of the special relativity, strictly
~ speaking, is not cg, but the maximal causal speed. ‘

Another special case is that of Bogoslovski’s special relativity
(1974), {1994) (Sect. 1V.5) which does indeed verify Postulate I, as the
reader can verify.

The plausibility of the above postulate is readily illustrated by the
case of the Cherenmkov lght Since ¢ = Cplly < Cq li7 Walter (and the
speed or lLght varies from transparent medivm ro lransparent
medivny, the speed of light ¢ cannol possibly be an invariant of any
refativity, irrespective of wether conventiongl or LorentzIsolopic.

On the contrary, it is important for consistency that the invariant
speed is given by the local, maximal, causal speed, as correctly
identified by the isospecial relativities.

The most visible departure of the isospecial from the conventional
relativity is given by the following

POSTHLATE If ﬂm::' it ) The maximsal possible, causal
speed under the general and restricted isospecial refativities
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can be smaller, equal or blgger than the speed or fight in

Yacoum c,

by -

VMax = Co 5 =< CO’ (9.8}

depending on the locsl physical conditions of the medium
considered.

The most intriguing application of the above postulate is for the
possible achievement of a zrue quark comfinement, ie. (Sect. IV.7) a
confinement with an infinite potential barrier, as well as an identically
null probability of tunnel effects into free quarks. Evidently, we can
outline here only the main idea, and work out the technical details at
some future time when dealing with the operator formulation of the
tnew relativities.

According to the original conjecture by Santilli (1982b), zhe
maximal caussl speed in the interior of fadrons {eg., the speed ol the
hadronic constituents) Is bigger than €p - I verified, such a
conjecture would evidently permit a “Zrwve isoguark comnrinement”
because of the incoherence of the interior and exterior Hilbert
spaces. By keeping in mind that the maximal causal speed in the
Einsteinian exterior world is c,, an isoquark at speeds Vy,, > C, has
a necessarily null probability of tunneling into a free state with
speed = cq. In fact, in order for an isoquark to tunnel into a free state
it must first decompose into ordinary particles, and this could explain
the impossibility of observing free guarks.

intriguingly, all modifications of the interior Minkowski metric
derived from the phenomenological studies on the behavior of the
meanlife with speed (Sect. 1V.3) appear to confirm that the maximal
causal speed in the interior of hadrons is bigger than Cor

As an example, Nielsen-Picek isometric (1V.3.21) for the interior of
light mesons yields for Eq. (8.5)

i+ a

{9.9)
Max — C 4 _ o

thus characterizing the maximal speed for the interior of kaons
=+ 06107, Ve (10810 0y > ¢ 010)

We can then expect maximal causal speeds bigger than cg for all
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remaining hadrons, evidently owing to the increase of the density with
mass. '

In fact, following the original proposal in Santilli (/oc. ¢/t ), De
Sabbata and Gasperini (1982} computed the maximal possible causal
speed in the interior of hadrons via the use of the conventional gauge
theory, and found in the average

v = 75 ¢y {9.11)
Max

It is evident that, if the contact nonhamiltonian interactions caused
by total mutual overlapping of the wavepackets do indeed permit the
isoquarks of attaining speeds bigger than c,, their true confinement is
expected to be consequential.

In the transition from the hadronic to the nuclear structure we
expect a necessarily different setting, because of the transition from
total mutual immersion of the wavepackets of the constituents, to
mutual penetration of the (average) order of 1073 parts of a nucleon’s
volume. In fact, also according to the conjecture in Santilli (1982b), zke
maxunal causal speed for nuclesr consttuents Is fower than ¢, .

Note that the canjecture implies the impossibility for the nuclear
cconstituents of attaining the speed c, even under the availability of
. infinite energies.

This latter conjecture was formulated on the basis of the fact that
nonrelativistic quantum mechanics provides a suprisingly good
approximation of the nuclear phenomenology, when compared to the
necessity of relativistic formulations for the atomic structure.

The quantitative study of the conjecture herein considered for the
nuciear setting will evidently require the calculation of the
modification of the space-time metric caused by the nuclear matter,
and their averaging to constants per each nucleus, much along the
phenomenological papers on the behavior of the meanlife with speed.

At this point we merely illustrate the possibility via Nielsen-Picek
metric (IV.3.21) for pions under which the maximal causal speed {9.5)
becomes

{9.12)

&~ -3 =
o = -3.8x10 ¥, VMa— 0.8985 ¢, < ¢,

X

In summary, the phenomenological studies on the behavior of the
meanfile with speed of Sect. IV.3 indicate the possibility that the
maXimal causal speed increases with the density of hadrons, that is, it
" increases with the short, range nonlocal, nonhamiltonian interactions,
and are expected to become Newtonian under extreme, limiting
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conditions. In fact, in the core of a star undergoing gravitational
collapse, unlimited speeds are locally and instantaneously permitted
by the isospecial relativities. By the same toKen, it is possible to
assume that the same maximal causal speed decreases with the
density, that is, it decreases with the short range, nonlocal,
nonhamiltonian forces, by therefore assuming values smaller than c,
in the nuclear structure.
In this way, we have proved the following

PROPOSITION IV.8.1 {loc. cit) Amy (topology preserving®s
wodification of the Minkowski metric fmplies & necessary
alteration of the maxmnal causal speed which can be smaller,
equal or bigger than ¢, depending on the conditions at hand,

The reader should be aware that #he guaniity cg Is & universal
consiant ror Finstein’s special relativity, while the quantity Vi, of
the isolorentz relativities is a facal invariarns evidently because it can
be only defined in the neighborhood of a given point, and it varies from
point to point of each given interior medium.

Notice also that the quantity c = cyby is, in general, a geometric
quantity and does not necessarily represent a physical speed,
evidently because the medium considered can be opaque to all
electromagnetic waves, yet permits the motion of particles (see below).

This occurrence can be illustrated via the use, again, of Nielsen-
Picek metric {(1V.3.21). In fact, we have for kaons

c=cghy = Cull + @) > co, € >0, (9.18)

The point is that the above value does not necessarily represent
the speed of light, because in our classical approximation light cannot
propagate inside a hadron (fotons and neutrinos do not exist at this
primitive classical level). Also note that a given value of ¢ > ¢, is not
sufficient, per se, to imply that the actual causal speed can indeed be
bigger than cg, because that speed must be computed via quantity (9.5).

Needless to say, the quantity ¢ = coby can indeed represent the
speed of light in particular transparent media according to our now
familiar notation

by = 1/ng, C= Cu/My, (9.14)

22 By “topology preserving” we mean any sufficiently smooth and nonsingular
modification of the Minkowski metric 7 which preserves its signature (+1, +1, +1, -1).
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where n is the index of refraction.
The above results then imply the following additional property:

PROPOSITION V.92 ({loc. cit) Any (topology preserving/
modification or the fMinkowski melric implies that the mayimal
caussl speed can be smaller, equsf or bigger than the local
value c = Ty b‘, '—‘J/ﬂ,f

In different terms, besides postulate (9.8) we have the following
more general postulate

>
S cs= Coby = €5/ iy (8.15)

The best illustration of the above occurrence is given, again, by
the Cherenkov light for which the speed of light in water is ¢ = cp/n <
Co. but electrons can propagate in the medium considered at the
maximal causal speed Vyux = Cq. 1.B., &lectrons can propagate in
waler at a speed bigger than the focal speed orf fght, exactly along
Postulate [ and FProposstion T¥.9.2

We now pass to the study of the physical origin of Postulates I and
I and Propositions 1V.9.1 and IV.9.2.

Within the context of Einstein’s special relativity, we have motion
of point-like particles in vacuum, and the only admissible forces are
the conventional potential forces. Under these assumptions, it takes an
infinite amount of energy to accelerate a massive particler to the
speed cq, 45 well known.

These conditions are fundamentally inapplicable to the isolorentz
relativities. In fact, we now have motion of extended particles within
a physical medium and, besides the conventional potential forces, we
have the additional contact interactions between the particie
considered and the medium itself. Now, for the latter forces the notion
of potential energy has no physical meaning. As a result, massive
particles can indeed attain speeds higher than ¢, without any need of
infinite energies. ‘

In fact, there are astrophysical data indicating the possibility that
jets of matter are emitted by exploding stars at speeds higher than cg,
These emissions could then be the result precisely of the contact
interactions in the interior physical medium of the star.

As an incidental note, we deo rof believe that certain reported
speeds of quasars exceeding the speed of light in vacuum are
plausible, and we odo #of recommend these cases as possible
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illustrations of Postulate Il. This is due to our basic assumption that
Einsten's special relativity is exactly valid under the conditions
canceived by its originators.

In fact, quasars move in the Universe in empty space, and, thus,
under strictly Einstenian conditions. As a result, we expect that ¢, is
the maximal attainable speed for quasars (see later on for a possible
alternative explanation of quasar redshift which does not imply a
violation of Einstein’s special relativity under Einstenian conditions).
On the contrary, the physical conditions of the expulsion of jets of
matter from exploding stars are of strictly interior dynamical
character and, for this reason, they are recommended as a
conceivable illustration of Postulate [I. The understanding is that the
jets are expected to be still in physical “contact” with the star matter,
and not detacted from it. .

The above two astrophysical cases illustrate the fact that
possible devigtions from Einstein’s special relativity, including cauvsal
speeds bigger than cp, are studied in Lhis volume only under
BOREIRSICINAn condrtions.

We now pass to the classification of Jsofourvectors in our
isominkowski space, which can be presented as follows {see Figure
IV.9.1 for additional information)

I

Isotime—tike, when X2 < G, (9.16a)
Isonull, When x2 = 0, (9.16b)
fsospace-fike, when x2 >0, {9.16c)

Note that Postulate Il is insensitive as to whether the isopoincare’
transformations are linear or not, and centrally depends on the
inhomogenuity between space and time, ie., in the differences

by # By or ng # n, (9.17)

The same situation holds for the mutation of the light cone of Fig._
1v.9.1. In fact, irrespective of whether the b-quantities are linear or
nonlinear (and local or nonlocal) in their variables, we have

v . =
which is precisely the case of water (see next section for more
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details).

The fact that the/soparticles of interior physical media traveling
faster than ¢, are not tachiyons, is made clear by the f ollowing:

L,J

. FIGURE 1V.8.1: A geometrical view of the deformation {mutation) of the
light cone caused by any alteration of the Minkowski metric, as
submitted in Santilli (1983a), and interpreted as occurring for extended
particles (or wavepackets) moving within inhomogeneous and
anisotropic material media, or, equivalently, as due to nonlinear,
nonlocal and nonhamiltonian interactions of the interior dynamical
problem. The central cone TIepresents the hypersurface of
conventionally null four-vectors in Minkowski space M{x.n.8). The
internal cone represents the hypersurface of- an isonull fourvector in
isominkowski space M Lixff) = M(xgA) for maximal causal ‘speeds
smaller than ¢y The external hypersurface is that for a maximal
causal speed bigger than co. Specific examples of physical media
yielding the above two generalized cases are given in the next
section. The reader should be reminded that the conventional mental
attitude toward light cones is inapplicable under the physical
conditions considered. Infact, traditionally, one imagines the light
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)
x

cones as holding in empty space, while the light cones of this figure
must be strictly referredto, say, the interior of a nucleus or of a star.
Also, the conventional light cones are the same everywhere in the
Universe, while the light cones of this figure vary from point to point
in space-time.

DEFINITION [V.9.83 {loc clt) [sotachiyons are partic/es
charscterized by the isolorentz refativities which are expected
lo travel st speeds bigger than the maximal cfzas'a! speed Fyyoe

dr 4

= Cp— (9.19)

v > Vytax = |1
Max
Isotachyons dt Max B

In different terms, it is not sufficient for a particle to travel at

speeds bigger than cy to be a tachyon, because it could be 2 physical
particle in interior dynamical conditions. To truly have a tachyon, one
must have a local speed bigger than the maximal causal speed at the
point considered, whether in the interior or in the exterior problem.

ARE I floc. cit) The dependence of the time
inrervals wWith speeds In the general and restricted isoforentz
refativities follows the isotopic tme-diation

ks k
v bkzv

2p,2 (9.20)

At = JALy = Mg 2=

|1 - B2| S o
wile the dependence of space Intervals with speed follows the
isolopic space conlraction

Al =y ta, = Al1-p2l4 (©.21)

The above postulate appears to be useful for a better

understanding of the stability of a nucleus. Again, we can provide here
only the main idea and work out the operator details at some future
time,

As well known, neutrons have a meanlife of about 15, after which

they decay in the familiar form

n=p+e + TV, (9.22)

But the neutrons are not at rest when members of a nuclear
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structure. Thus, e ceniral Issue of the problem of nuclear stabiity
Is the meanlife of rhe neutrons ar the speeds when they are nuciear
CONSLITUEntS,

According to the current nuclear theories, the neutrons are
assumed to be strictly Einstenian when member of a nuclear structure.
Their meanlife T then behaves with speeds according to the familiar
law

1

T =Y¥Tg =T, {9.23)
o o

w2 A%
(1 - vé/c

But the speeds of nuclear constituents are considerably lower than
Cg (in fact, they are known to be much lower than the speeds of the
atomic constituents). We can therefore conciude that, except for small
relativistic corrections, the mean life of neutrons when members of a
nuclear structure remains of the order of 15.

This creates the problem of interpreting the stability of nuclei
when their neutron constituents have a finite meanlife with decay
{9.21). This problem has been studied via complex processes of neutron
decays and their instantaneous regeneration, evidently to avoid local
excesses of protons which would imply instability.

Now, these neutron regenerative processes are certainly plausible
for neutrons in the Jrterior of nuclei. However, a number of
unresolved questions still persist, because at least a percentage of
decays (9.21) from the neutrons of the nuclear sws7zce should leave
the nuclear structure, thus resulting in proton excesses. This is
contrary to the experimental evidence of our macroscopic world
whereby ordinary matter is stable without any production of particles.
In turn, this leaves the problem of nuclear stability essentially
unresolved to this day. ‘

In the transition to the isospecial relativities the situation is
fundamentally different. To begin, the value 15 for the meanlife of the
isoneutron at rest becomes questionable when the particle is a
nuclear constituent because of field theoretical mutations (Santilli
(1991d)). But even assuming at this rudimentary stage that such a
meanife remains 15, its behavior with speed is now mutated according
to Postulate 11 in the isotopic form

1
F=, : (9.24)
|1 - vBgPv/te, 2b 2t |t
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which may imply the limit value

T = oo, . (9.25)

namely, Lre isospecial relativities 8dmit the possibility that neulrons
become completely stable wheh members of & nuc/ear SLructure, via
elther a mutation of the meanlife at rest; or g mutation of Lhe
behavior of the weanlire with speed, or bolfl.
An interpretation of the stability of the nuclear structure and of
the absence of decays (9.21) from ordinary matter would then follow.
We have reached in this way the following

PROPOSITION V.43 floc. cit} Any ftopology preserving/ mutation
of the Minkowski metric lmplies & necessary alteralion of the
bekavior or the meanlife with speed Whick can be bigger, equal
or smzaller than the Finstelnizh behavior,

>
T=Y¥To = T=YTo {9.26)

depending on the flocal plhysical conditions of lhe inlerior
medium considered.

It is appropriate here to recall that, as proved by Aringazin (1989),
Isotopic time-dilation (424 Is directly vniversz that is, capable of
including all possible time dilation laws (universality), in the frame of
the experimenter (direct universality).

This is essentially due to the arbitrariness of the functional
dependence of the b-quantities. A virtually infinite number of possible,
different, approximate laws can then be obtained from the exact
isodilation law (9.24) via the use of different expansions, different
coefficients and gifferent truncations.

To illustrate this property, consider the case in (1+1}-dimension in
which the B-quantities are only dependence on the velocities (which is
a most significant dependence). This allows the expansion (Aringazin
(foc. i)

B=bv) = 1+xg+ry+hoy2 +agy3 + ... (8.27a)

v =|1-p2| ey, p= vZ/co?, A<, {9.27b)
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By assuming ¢, = 1 for convenience, isotopic law {9.25) can then be
expanded, e.g., in the form

T = Tovll + Ag¥2 + AL YS + 2 aplt gyt L) (9.28)

By using the above expansions, Aringazin (/o c/t') then proved
that the isotopic law (9.24) includes as particular cases:

1) the behavior by Blockhintsev (1962), Redei (1967), and others
T =T, v+ ayA Po = 1052, (9.29)
where a is a fundamental length;
2) the meanlife by Nielsen and Picek (1983), ie.,
T = To¥ll + Ag¥D Ay = 4as3, (9.30)
where ¢ is the “Lorentz-asymmetry parameters” ;

3) the meanlife by Aronson ez 2/. (1983}, i.e.,

N N N

r= voylt + by @ ), @ =E/m N=12 (9.31}

X
where E is the kinetic energy of the particle, m its mass, and the b’s
are certain slopes parameters;

as well as any other possible laws of the class considered.

It should also be mentioned that, in the same paper, Aringazin (1989)
shows that all the remaining variations of the basic parameters of the
K°-K° system {mass difference, CP parameters, etc.) are also particular
cases of directly universal isospecial laws.

Postulate 1II may be relevant for the study of the behaviour of the
meanlifes of unstable hadrons with speed (Sect. 1V.3) and, as such, it is
suitable for direct tests proposed in Chapter VIL

We pass now to the study of the notion of rest energy of an
isoparticle. Consider the fundamental isoinvariant {IV.7.9), i.e.

K
pz = p Bkz pk - p42 = - %2 5045 44, (9.32)
where

p=(p" = mu = fmygycv, my7yo), (9.33)
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DEFINITION fV.9.4 foc. cit) The energy £ or an isoparticle on
Isominkowskispaces MW s 8 is characterized by the rfourth
component of the iso-four-momentun Iccording to the rufe

E = pg, (9.34)

and can be expressed in lerms or the fundamenial 1solmvariant
.32 in the rorm

E2 = m2 ¢+ pkn,2pkK, (9.35)

We then have the following

POSTULATE [V (oc cit) The rest mass m, of an isopartcle
o 817 ISomnkowsAT space M&;gf.#j varies with speed sccording
lo the Isolopic law

m, . vKp, 2yK

A . y _ k

o= mgY = . B = (9.36)
|t - p=| cob, Cq

and the equivalent value of the energy E ror at rest conditions
is giver by

o C° = my c:.o2 b 42(s,x,p41,'r,n,....), (9.37)

The most intriguing .implications of the above postulate is the
possibility of identifying the hadronic constituents with massive,
physical, ordinary particles, of course, in an operator formulation of
the isospecial relativities. _

The best way to illustrate this possibility is via the structure model
of the m° particle as a “compressed positronfve” {Santilli (1978b), Sect.
5, and (1980), i.e., as a relativistic, two-body, closed nonhamiltonian
system of one ordinary electron and one positron in conditions of total
mutual immersion of their wavepackets down to the size of the charge
distribution of the m° (* 1F) The model is here symbolically indicated

Positronium = {e¥,e) = w = {",¢€), (9.382)
MR = MxER), (9.38b)

where €® represents the- alterations of the electrons e® caused by
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short-range, nonlocal effects expected in the interior of the n°.

The use of conventional relativistic {or nonrelativistic) quantum
mechanics does not permit the representation of the total energy of
135 MeV of the m° at rest, when the constituents have only a rest
energy of 0.5 MeV, for technical reasons elaborated in the quoted
literature.

Mathematically, this is due to the fact that, under the conditions
considered, the indicial equation does not admit real solutions, and
only mathematical models with complex total energies becomes
possible.

Physically, the occurrence is clearly expressed by the fact that, in
conventional relativistic quantum mechanics, &irding energies are
necessarilv negative, as it is the case for the hydrogen atom, the
deuteron, etc. The representation of model (9.38) with conventional
quantum mechanics would then call for paosizive binding energies,
owing to the excessive disparity between the total energy of the
bound state and the total rest energy of the constituents).

Equivalently, we can say that the total energy needed for the
electron to have a positive binding energy is so high, that it would
prevent a quantitative interpretation of the relatively long meanlife of
the m° {= 10716 sec).

As shown in Santilli (/oc &/ ) the use of Postulate 1V readily
resolves the above problems. In fact, the isotopy et = ¢t essentially
implies a form of “renormalization” of the rest energy of the electron
when in interior dynamical congitions (enly). In turn, this
“renormalization” implies such an increase of the value of the rest
energy of the constituents to render the indicial equations consistent,
thus permitting the correct representation of the rez/ total energy
of 135 MeV, while mantaining a negative binding energy?®, and
achieving a joint, quantitative interpretation of the meanlife as well as
of z/ remaining characteristics of the particie.

What is rather intriguing is that such a renormalization of the mass
is a direct consequence of the isotopy and appears. already at the
classical nonrelativistic level of Appendix IILA.

But, in the opinion of this author, the best test for the consistency
and physical relevance of the isolorentz relativities is given by their
capability to reach, in due time, a quantitative, operator, relativistic
representation of Rutherford’s {1920) historical conception of the
neutron as a ‘vempressed fLiydrogenr stom”; via the isotopy
symbolically written

23 1n reality, the numerical value of the binding energy of model {9.38), even though
negative, is close to zero, thus being considerably along current views on
"asymptotic freedom". )
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Hydr. Atom = (p”, e} = neutron=0{p",¢), (9.39a)
Min®) S Mlxgh), (9.39h)

studied at the operator level in Santilli (1990) and (1991f)), as well as in
Animalu (1991a).

In addition to having the same problematic aspects of mode] (3.38)
in the representation of the res/ total energy of the neutron, model
(9.39) has a number of additional, rather serious difficulties, such as the
achievement of a Lie-isotopic totsa! spiz + from two constituents
which, in Einstenian conditions have conventional spin &

The latter problem appears to have been solved by Dirac (1971},
(1972), who proposed a generalization of his celebrated equation which
implies the mutation of the original spin & of the electron precisely into
_the value zero, specifically, for the at rest conditions in the center of
the system, as needed for Rutherford’s electron. In particular,
“Dirgc’s generalization of Diracs eguaiion™ has an essential
invariance under the isopoincaré symmetries, as studied in detail in
santilli {1991e}.

it is evident that, if model (9.38) and (9.39) are proven to be
consistent in due time, they may well permit the identification of the
hadronic constituents (isoquarks) with suitably altered forms of
conventional massive particles freely produced in the spontaneous
decays, as established in the preceding nuclear and atomic structures.
In fact, model (9.39) would permit the identification of the isoquark d
with a mutated form € of Rutherford's electron e .

Evidently, at the classical level of this paper we can only provide
qualitative aspects. One way to illustrate Postulate IV in a preliminary
way is via Nielsen-Picek metric (IV.3.21) for which

vl -as32 -4
m=m, 1- —————- (9.40a)
° c02(1 + )2
E = mgcg(1+0), (9.40b)
We therefore have for a particle in the /zzerior of a pion

as -38103 m<m £ < E (9.41)

and for for a particle in the interior of a kaon
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@2 +06<0°S, m > m E > E (9.42)

The reader should be aware that metric (3.21) was computed as 2
first aporoximation ror low epergres. Nevertheless, results (9.41) and
(9.42) above are sufficient to prove the following

PROPOSITION [V.9.4 (Santilli (1983a), (19896} Any (topology
preserving/ modification of the Minkewskl metric implies &
necessary alteration of the behavior u or the rest mass with
energy and of the energy equivalence E of the rest mass, which
can be bigger, egqual or smafler than the corresponding
Einstenian quanutics

Ifl>—
<

AlY

m, E E. (9.43)

depending on the local physical conditions of the mediun
considered,

We now study the redshift under noneinsteinian conditions.

DEFINITION TF 9.5 floc. cit) Ar “Isoplanewave” Is a conventiona/
planewave in Minkowski space M, #) vnder Isolopic Hrtngs to
the isospaces M g5 with constant Isometrics, Le,

i Ku'ﬂuyxv .

. I.LA
W) = Ne 5§00 = fre =

va
RV" Ne® Ne#h (9.44)
where KI5 an isonulf vector, i.é,

. v
' i K =0, K={ o/ wic = 2w (9.45)

Lifting (9.44) is essentially intended to represent the mutation of a
plainwave in the transition from motion in vacuum to motion within an
inhomogeneous and anisotropic medium, evidently assumed to be
transparent to the wave considered.

Note that the lifting is here considered solely for the restricted
case, because we are treating an apparently global effect of given
media.

Suppose now that such an isoplanewave is detected by two
observers § and &, one at rest with respect to the medium, and the
other in motion with respect to it, at a relative speed v along the x5
axis.

As a specific case, the reader may think of ordinary light
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propagating within our atmosphere which, being transparent,
inhomogeneous and anisotropic, is an ideal interior medium for our
isospecial relativities. Observer § can be an ordinary observer on our
ground, and cbserver § can be either moving in the atmosphere or
outside it.

Let @ be the angle between K and x3, and let k', w, and ¢« be the
corresponding quantities for 8.

From the manifest form-invariance of the isoplanewave under the
Lorentz-isotopic transformations,

K¥ Ay g = gt ﬁuv KV, {9.46)

it is then easy to see that

=kl =k = (9.472)
k3 = 43 - kY = [jcos @, p=v/c, (8.47b)
k4 = 30 - %% = wie, B = vbaich, - (9.47¢)

This leads to the following

POSTULATE ¥ (loc cit/) The Dopplers frequency sfirt for
electromagnelic Waves propagating within an infomogencous
and anisotropic physical medium transparent lo It
Usaplanewave/ follows the isolopic 1aws

® = wy(l - B cosa), {9.48a)
. 2 vbg?v "
Y=|1-ﬁ| %a Bz=_"2_-",B=Vb3/Cob4 (948b)
cobtl Co

wiLh Isolopic gberralion iaw

X cosa - B
coseg = ————, (9.49)

1-peosa

The above postulate offers genuine possibilities of resolving the
now vexing problem of astrophysical bodies violating Einsteinian laws
under Einsteinian conditions.

In fact, the redshift of certain far distant quasars has recently
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attained such high values to require the assumption, under the
Einstenian redshit iaw

o =wy{1-pcosa), B=V/c, (8.50)

that {portions of) quasars travel at speeds higher than c,, up to speeds
of the order of 10c, or more. But the quasars travel in empty space.
Thus their center-of-mass trajectory must be strictly Einsteinian.
The assumption of speeds bigger than c, therefore constitvies 2
violation of Exnstenian [aws uinder Emnsteinian conditions.

in the original proposal of Postulate V (Santilli (1988c)) it was
indicated that isoredshift (3.49) can indeed prevent such a manifestly
unplausible violation of Einstein’s special relativity, without
eliminating the current expansion of the Universe.

In fact, light is emitted in the interior of the quasars and
propagates first in the hyperdense, inhomogeneous and anisotropic
atmopsheres surrounding them (estimated to be up to the order of
hundred of thousands of miles and more). After leaving the quasar,
light then propagates over very long distances in the Universe, to
finally reach us.

Now, for specific values of the characteristics b-quantities for the
medium considered, Postu/ate ¥ predicts that lght can be redsiifted
by propagation Within the gquasars’ Inhomaogeneous and ansotroplic
atmospheres.

Moreover, space can be considered empty only in the
neighborhood of our Solar systems. For large intergalactic distances,
the space itself is no longer empty, but it is a physical medium
characterized by particles, dark matter, radiations, etc. 7Z4es,
Postulate V.9 ¥ predicts that lLght can be additionally redshirted
during its propagation over large intergalactic distances because of
conceivable corrections caused by the fack of empiy character of
space The understanding is that, in this second case, we are
referring to predictably small redshifts.

In summary, the redshift from far distant quasars, as measured on
Earth, could be due to the superposition of:

1} a quantitatively nonignorable isotopic redshift (9.48} caused by
propagation in the quasars’ atmospheres;

2) a small isotopic redshift caused by propagation over
intergalactic distances; and
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3) a primary Einsteinian redshift (9.50) caused by the conventional
expansion of the Universe.

The above features evidently permit the indicated possibility of
preserving the expansion of the Universe, by avoiding violations of the
special relativity under Einsteinian conditions.

Mignani {1991) conducted explicit calculations of the above
possibilities, by computing preliminary explicit values for the
characteristic b-quantities, which apparently confirm the above
model. These astrophysical calculations are reviewed in Chapter VII in
conjuction with proposals for the direct experimental test of Postulate
V.

The preceding considerations imply the following

PROPOSITION 1V.8.5 (loc. cit) Any (topolegy-preserving/
modification of the Minkowski melric implies & Recessary
muration @ of the Dopplers redshirt which can be bigger, equal
ar smaker than the Finstenian valve & ”

-

o =0y(l-fcosa) w = oy({l-pcosa), {9.51)

AV

depending on the local conditions of the interfor medivn
considered.

This completes our preliminary study of the isotopic liftings of the
basic postulates of Einstein’s special relativity for the most general
possible nonlinear, nonlocal and nonhamiltonian isotopies.

Additional insights are provided in the next section where we shall
review the results from a geometrical viewpoint. It is understood that
some of the information on the isospecial relativities most crucial for
experimental verifications are expected to result from the operator
treatment of the studies.

It is also evident that the content of this section must be
complemented with the isorotations O(3) of Sect. 111.3, by therefore
adding further possibilities of quantitative treatments of conditions
that are unadmissible within the context of Einstein's special relativity,
such as the purely classical representation of the actual, rotationally
noninvariant shape of the particle considered, the admission of all its
infinitely possible deformations, etc.

We can therefore say that
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The - Isospecial relativities, - If suitably developed and
experimentally coinfirmed, can Iideed provide an Inripite
ramily of coverings of Elnstelns special relatvity, 1 the sense
Lhat:

A/ The Jrsospecial relativities are constructed with
mathematical methods (the Lie-isotopic theory) structurally
more general then those of the conventional relativity (the
conventional Lies theory)

B/ the Isospecial relativities represent phiysical conditions
(motion within inhomogencous and guisoltropic physical medis,
deformation of particles, etc/ which are structurslly more
general than those of the conventonal relfativity (point-like
parifcies, motion In empLy Space, etc. ) and fast bur not least,

OJ The isospecial refstivities can approximale the conventional
refativity as close 85 desired ror i‘ = [ and they all recover by
consiraction the conventional/ re/aaww identically for I, =/,

A visual inspection of Postulates [-V proves the following

important property.

THEOREM TV.9.1 foc. cit) Al the mnfinirely po,s:s'ib/e Lgeneral or
restricred Isospecial relativities on isospaces Mg s coincide
with Einstemn’s special relativity ar the zbstract, realization-
free fevel

It is remarkable that, despite the general nonlinear and nonlocal
dependence of the various physical quantities (invariant speed,
maximal speed, meanlife, rest energy, etc), Postulates I-V formally
coincide with the corresponding Einstenian forms. In turn, this
illustrate the rather unique function of the characteristic b-
quantities representing the interior media, as studied in more detail in
the next section. )

Above all, it is remarkable that e “Breaking or the barrier™ of
the speed of fight in vacuum by causal signals is ultimately peruiited
by the Finsteinian axioms themse/ves only realized in a more general
way. '

This ultimate unity of isotopic and conventional postulates is the
physical counterpart of the mathematical isomorphisms P{3.1) = P(3.1),
and implies the following -
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COROLLIARY #4911 floc. cit}p Locally, that is, ar given values x,
P T ... of the local variables and quanuties, the general
isopoincare” transformations colncide with the conventional
Poincare” transrormations, up to a redefipition of the
parameters,

T o= AW = AWE  OBI)__
B ..

X¥X=x+x6__ =X + %x°, T(s.ni = T{3.1). {9.52h)

KPre.e P

0(3.1), {9.524)

e

This is the relativistic generalization of the corresponding
nonrelativistic property studied in the preceeding chapter, whereby
the nonlinear, nonlocal and nonhamiltonian isogatilean laws for the
motion of an extended particle within a hyperdense medium coincide
with the historical Galilean law for the uniform motion in vacuum, with
similar results for all other Galilean laws.

As éoncluding remarks, et us recall that Einsten’s special
relativity is based on the following:

PRINCIPLE I The homogenuity and isotropy of (empty) space;

PRINCIPLE. 2 The pgeneral mmvarignce of the speed of lght in
Cvacuuny

FRINCIPLE 3 The general mmvarignce of the phiysical laws vider
the proadest possible linear and local group ol isomelries of e
Minkowski space-{ime; ‘

from which all other aspects of the relativity can be derived within
inertial reference frames.

But, as stressed during the course of our analysis, inertial frames
are a philosophical abstraction because they do not exist in our
Earthly environment, nor they can be attained in our Solar or Galactic
systems. Also, extended particles do not generally move in empty
space, but within physical media. The covering principles submitted in
(Santilti (1983a) and (1988c))) as an attempt to represent more general
physical conditions, are:

ISOPRINCIPLE I- The infiomogenuity and anisolropy of physical
mediz, With the undérfying space remaining homogeneous and
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fsotropric;

ISOPRINCIPLE 2. The local J'JJVarJ:mcé or the maximal speed
or causzl signals within plysical media, with the underiying
invariant cavsal speed i vacoum remaining that or Lght; and

[SOPRINCIPLE. 3: The local invariance of physical laws under
the most
general possible nonlinear and nonhlocal groups of Isometries

or rhe Isospace represeniing physical medra, with the conven-

tional linear and local isometries on the Minkowski space belng

RIWAYS aOWitled &5 & pariicu/ar case;

from which all aspects of the general isospecial relativities can be
derived, such as the selection, among the multiple infinity of
noninertial frames of the Universe, of the subclass of equivalent
frames characterlzed by the general nonlinear and nonlocal
isopoincaré symmetries.

Inertial frames are recovered as a particular case via the
reduction of the general to the restricted isosymmetries, that is, (Sect.
Iv.3) via the averaging of the characteristic b-functions of the medium
considered to b-constants.

Finally, we should mention that the Lorentz-isotopic relativities
considered in this section are particular cases of expected, still more
general forentz-adwmissible relativities for the most general possible
open-nonconservative conditions (Santilli {(1981a)).

IV.10: ISORELATIVISTIC GEOMETRIZATION OF
PHYSICAL MEDIA

In this section we shall study a central objective of our isominkowski

spaces Mix g #): provide a geometrization of the inhomogenuity,
anisotropy and nonlocality of interiort physical media. In turn, this
task will assist in identifying the physical meaning of the
characteristics B-gquantities of Interior physical media . The
geometrization here considered was first studied in Santilli_{lQSSc).
Additional studies can be found in Santilli (1891c).

The best way to conduct the study is by classifying all possible
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interior physical media permitted by isominkowski spaces of Class I,
i.e., without gravitational effects, and with positive-definite isounits.
This classification will then emerge as of fundamental character for
the possible tests of the isospecial relativities proposed in Chapter VIL

Let us write the bhasic isoinvariant (iV.3.4b) on M[(x,é,s“i) in form
{9.2a), i.e.,

x* ém, x¥ = —r 5 b {10.1)

where we have again assumed for simplicity that the space
components of the b-quantities are identical and

by = 52—1 =bs 1 =ng =ngls,x p..T. 1) >0, (10.22)

f)4_1 = ny= n4(5, X P, T, n,..) > 0. (10.21)

Under notation (10.1), the fundamental guantities of the isospecial
relativities become

b n
4
¥ = Co—— = ¢ 2. (10.3a)
MaX b3 O n4
Co
C = cCohy , {10..3b)
Ny
n
R 4
p=—28, (10.3¢).
l‘l3 ’

(10.34)

with similar expressions holding for other quantities.
The desired classification of admissible physical media can then be

based on the values of the maximal causal speed and of ¢ with respect
to ¢, ,

nNg Co
CO

4 iy

C (10.4)

Aty
L]
=]
[g)
|
Ally

VMmax =
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In turn, such a classification can be reduced to the values n3/n4 and
n, when compared to one, yielding the following nine different cases

LSORELATIVISTIC GEOMETRIZATION OF FPHYSICAL
MERIASantilli (1983c))

~

TYPE L ng=ny ng=1 BP=B. ¥ =7 VMax=C€o €~ Co

This is evidently the case of the special relativity, which is
contained as a particular case of the Lorentz-isotopic relativity.

TYPEZ2 ng=ng4 Ny>1; B=PB, Y=%; Vyax=Co ¢€<Co

This is the case of propagation of light within homogeneous and
transparent fluids, such as water. A known illustration is that of the
Cherenkov et mentioned in Sect. 1V.9, for which light propagates at
the speed

C=Cy/fg < Cyp (10.5)

smalfer than the speed of light in vacuum c,, where ny is the familiar
index of refraction. Nevertheless, ordinary particles such as the
electrons have been measured to propagate at speeds higher than c.
This results in VMax > c, by therefore providing a rather clear
illustration of Postulate 11, The validity of Postulate 1 is selfevident,
because the assumption of ¢ = c,/h4 as the invariant of the theory

would lead to a series of inconsistencies within the context of the
special relativity itself, let alone its isotopic generalizations.
Postulates IIl, IV and V remain conventional because £ = g, and
therefore y = y for the media considered.

Media of Type 1 imply the first and simplest possible generalization
of the special relativity characterized by the sca/gr isotopy

1
g ¥ = — M, 2 10.6
guv n2 X nuv ( )

We can therefore state that Zfe scez/ar isoiopy of the Minkowski
pvariant can represent the transition from moiion in vacuvn (o
motion Within 8 hopogeneous and Lransparent medru.

A form of anisotropy is however admitted by scalar isotopy (10.6).
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In fact, Bogoslowski {1974) special relativity is precisely a particular
case of isoinvariant {10.6).

-

TYPE 3 ng=ng MNy<1i; B=P  ¥=v¥ Vyax =Co C€>Co

This is the first prediction of the isospecial relativities of a novel
physical medium which is expected to be generally gpague to light
{as well as to all electromagnetic waves), because ¢ > cg, in which
case C acquires a purely geometric meaning, similar to that, say, of the
element g,, of the general relativity. Nevertheless, ordinary massive

particles can indeed propagate up to Vyax = Co

A conceivable canditate for the above media are given by
superconductors. .In fact, conductors are ordinary physical media for
electrons. As a result, the value Vy,y = Co becames plausible as a limit

at superconductivity conditions, while these media are manifestly
opaque to light.

An intriguing study of this case has been conducted by Animalu
{1991b), who has shown the apparent isotopic structure of the Cooper
pairs in superconductivity, thus opening the way to a possible
relevance of our isotopic relativities in superconductivity.

Note that this is the last case of scalar isotopy (10.6) for which g = B
: and ¥ = v. Therefore, Postulates 1 and I are generalized, but
Postulates 111, 1V, and V are not.

Needless to say, numerous additional cases of physical media
corresponding to Type 3 are conceivable, e.g., fluids opaque to light,
ete.

LreE «£: n3<n4’ n4>1; B>Ba '?':'Y; VMax<Co, C<C0.

This is the first case of a nontrivial isotopy other than the scalar form
(10.8). We therefore expect in this case a nontrivial generalization for
all Postulates I-V.

The first possible physical media of (Ciass I) Type 4 are given by
ordinary planetary or astrophysical atmospheres Which are
transparent to light or to some electromagnetic waves. In fact, these
atmospheres are manifestly inhomogeneous (e.g., because of the
variation of the density with the distance from the center) and
anisotropic fe.g., because of the intrinsic angular momentum which
creates a preferred direction in the medium). These conditions ensure
the lack of scalar isotopy (10.6) in favor of a nontrivial isotopy of the
special relativity. The speed of the electromagnetic waves in the
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medium considered is evidently lower than that in vacuum, ¢ < Cg,
because of the local dependence on the density, ie.,

c=Cp/hy Ny =nglx p,T,0,.), (10.7)

although the function ny can be averaged to constants via methods of

type I11.3.56 for the description of global effects, e.g., for the
characterization of the averazgce ifndexr or refraction of our
atmosphere. _

Finally, an extended, massive particle cannot atiain the speed Cg

within the medium considered, even under the availability of infinite
energy, VMax being smaller than c, because of drag effects caused by

the medium itself.

The media under consideration therefore imply a first genuine
isotopy of the special relativity with only locally definable quantities,
which assume generally different values from space-time point to
space-time point. In fact, beginning with the maximal possible
deviations expected at the surface of the astrophysical object
(maximal possible density of the atmosphere), we have continuously
varying conditions (density), all the way up to a smooth recovery of
Einsteinian conditions at the end of the atmosphere {null density). A
nontrivial local realization of all generalized Postulates -V follows.

An intriguing study of this case has been conducted by Mignani
(1292) who has identified a conceivable application of the isotopic
redshift law for light propagating in the hyperdense quasars
atmosphere. For details, we refer to experimental considerations of
Chapter V1L

A second example of physical media of this type is given by
ordinary conductors. In fact, in this case the medium is opague to any
electromagnetic wave, ¢ has a mere geometrical meaning, while Vyy,y
< ¢p because of drag effects caused by the metal medium on the
current electrons. Specifically, by excluding here the limit case of
superconductivity, Zre experiments! test of Postulate If for ordinary
conductors would Imply thal electrons moving cannol alain the
speed ¢, In ordinary conductors even under the avarilability of
infinite energies (infinite potential differences/.

‘A third illustration is given in particle physics by Nielsen-Picek
medium (111.3.21) for case (3.22), i.e, for the interior of pions at low
energy, in which case :

1-3.8%1073
VMax % Co— 20995 ¢, < Cy (10.3a)
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1+1.3%1073
c = ¢y /my = cylt - 381079 = 0.996 ¢, <<, (10.8b)

In this case ¢ has a mere geometrical meaning because, at our
classical approximation, photons and neutrinos are not admitted and
the medium is opaque to light. Also note that, according to Postuiate IV,
ordinary massive particles cannot be accelerate inside a pion up to cg

even under infinite energies.
mn3<n4, n4=1; 3)3., ';!<'Y, VMﬂX<cO’ C =Cq,

This case is geometrically equivalent to Type 4, yet it is refers to

possible media in which electromagnetic waves can locally propagate
at speeds ¢,, Or just ¢ = ¢y acquires a pure geometric value.

TF¥PEGng<ng ny<1; B>B ¥<¥ VMmax <€ C>Cp

Conceivably, this is a c/gssica/ geomeltrization of the medivm It
the interior of nuclef as originally proposed in Santilli (1982a), (1983a),
and elaborated in more details in Santilli (1989). In fact, nuclei are
manifestly inhomogenous and anisotropic, thus justifying the activation
of our isotopies.' Also, according to this interpretation, nuclei are
{classically) opaque to all electromagnetic waves, the understanding is
that photons, neutrinos and other particles are indeed admitted and
they can indeed propagate inside nuclei, but only after suitable
gquantum field theoretical extensions. The quantity c is therefore a
purely geometrical guantity, and its value bigger than c, merely

‘expresses the fact that space is filled up with hyperdense nuclear
matter.

The value Vyax < €p is inferred from the very good approximation
of nonrelativistic quantum mechanics in nuclear physics recalleg in
Sect. 1V.9. It is then argued that, according to Postulate II, nucleons
cannot attain the speed of light in vacuum when members of 2 nuclear
structure, even under the hypothetical availability of infinite energies.

Needless to say, the full technical evaluvation of the above
interpretation and its confrontation with experimental evidence
requires an operator formulation of the isotopic lifting of the special
relativity.

Other classical examples of this type of physical media are also
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conceivable, e.g., astrophysical atmospheres so dense to be completely
opaque to all electraomagnetic waves (to justify the value ¢ > cpl.

Note that the physical media of (Class I), Types 4, 5 and 6 share the
same characteristics § > p and y > y because they both have the
values ng < ng Their difference is characterized by ny > 1 for Type 4,

ny =1 for Type 5 and ny <1 for Type 6. Therefore, they have different
Postulates I and Ii, and the same Postulates 111, IV and V.

TYPEZ:-ng>ng ny>1 B<B, ¥>¥ VMax>Co C<Co

Certain Jmterior astrophysical/ conditions can provide an
illustration of this type of geometrization, e.g., the jets of matter
reported to have been emitted from astrophysical bodies at speeds
bigger than c,. For these conditions we have atmospheres which can

still be trasperent to light, and thus ¢ can represent its local speed;
nevertheless, the medium is subjected to such extreme turbulences to
create contact interactions capable of propagating physical matter at
speeds higher than cq.

A number of other examples of physical media of this type are also
possible, e.g., ion interior gravitational problems, but they will be
investigated at some future time.

This is the first “breaking of the barrier” of speed of light in
vacuum by a causal event we find in this isorelativistic geometrization.

r

TYPES: my>n, ny =1 <P ¥>Y¥ Vpy,u>C C=C,

This case is geometrically equivalent to media of Type 7, with the
sole difference of permitting the value ¢ = Cg,

TYPE 9-ng>ny m<i; B<B  ¥>% Vpax > Co € > Co
An illustration of the above media is provided in particle physics

by Nielsen-Picek metric (iv.3.21) for case (1V.3.23), i.e,, for the interior
of kaons, for which we have

1 1+ 0.6x107

VMax =Cp—— S ¢ £1.0008c,>cy (10.9a)
n, 1- 0.1x1073

c =1.0006 c, > C, {10.9b)
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where ¢ evidently.is a pure geometric quantity.

Note that the transition from the case of pions, Eq.s (10.8), to that of
kaons, Eq.5 (10.9), parallels the corresponding increase of density. We
can therefore expect that 2/ remaining hadrons characlterize media
of (Class [/ Type 9 This creates the possibility that Asadronfc
constituents are massive pliysical parvcles moving at speeds higher
than that of lght i vacoum. In turn, if such a conjecture could be
verified, it would offer a realistic possibility of achieving a true
confinement of quarks, as discussed in Sect. 1V.9.

In the transition from hadrons to the core of stars, we have an
evident increase of density because, in addition to the mutual wave
overlapping of the constituents existing in the interior of hadrons, we
have their compression. 74e core or siars Is therefore expected lo
costitute physical media of (Class [} Tyvpe 9. -

This is the case predicted by our isospecial relativities in which a
physical massive particle, such as a proton, could be locally
accelerated by internal, short range, noniocal forces to speeds higher
than cy without any need of infinite energies, evidently because the

notion of energy has no meaning for contact interactions. The
understanding is that we are referring to local speeds, ie.,
instantaneous speeds at a given point in the interior of the star
considered, and not to globally defined constants such as cg.

It is then evident that higher values of Vy,y > Cq are attained

under higher short range nonlocal interactions, such as those in the
" interior of a star undergoing gravitational collapse.

At the lmit orf our internal comnditions, fe., for & star ar the
theoretical limit of gravitational ceollapse into & singuilarity,our
Isopecial relativities predict the possibility of infinfte causal speeds,
under which ail distinctions between refalivisiic and Newitionian
mechanics cease 1o exist ,

Note that media of Types 7, 8 and 9 have diffrent values of ny

bigger, equal or smaller than one, but are otherwise geometrically
equivalent. As a result, thay have different Postulates I and I, but the
same Postulates {11, IV, and V.

The above isorelativistic classification of physical media into nine
types of Class I will soon result to be of particular physical value in
proposing experimental tests of the isospecial relativities, inamsuch as
it permits the identification of media which are readily available in our
environment (such as our atmospheres which are of Typed), from other
media which are not yet within our direct experimental capabilities
(such as the gravitational ollapse which are of Type 9).
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IV.11: .CONCLUDING REMARKS

As pointed out in Sect. II1.9, the isogalilean relativities need no
experimental verification in our classical interior environment,
because they are constructed from given equations of motion of our
physical reality, by therefore verifying by construction the
phenomena for which they have been built, e.g, deformations of
extended charge distributions, etc.

By comparison, the isospecial relativities studied in this chapter do
need indeed direct experimental verifications, because they predict a
variety of novel phenomena within the physical conditions of their
applicability: relativistic dynamics of extended particles and
electromagnetic waves propagating within inhomogeneous and
anisotropic physical media.

These experimental verifications will be studied in Chapter VIl. In
this section we shall conclude our presentation with a few remarks
regarding the abstract identity of the isospecial relativities with the
conventional one. In turn, this property, and the compatibility of the
isospecial with the isogalilean relativities studied in Chapter Y1, are at
the foundations of the plausibility of said novel predictions.

Consider a conventional relativistic free particle in Minkowski
space M(x,®) represented via the canonical action with subsiadiary
constraint

14
sA =38 Apdx - Hds) =
t ke
sf 2(pu Wax, - Hds) = o, (11.1a)
t
1 i
pe/an —icoh = pyWp, s 2n - b, (111D

H
where A\ represents the subsidiary constraint
W, x’-1=0 (11.2)

The isorelativistic representations of nonlinear, nonlocal and
nonhamiltonian systems have been constructed in such a way to
coincide with systems (11.1) whenever there is no action-at-a-
distance force.

In fact, systems (11.1) admit the infinite number of geometrically
equivalent, but physically different isotopes on isominkowski spaces
MigAR), =Tk =gL1=T1>0
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o . L2 . 12 o
§A= sft (p*dx—Hds)=8_r pTdx - HdS)
t
1 {

-sf %@, B xx.)ox, - RE) = 0, (11.30)

A= p?/mil ~3ch = Py e x % Lp, /2 - 5\c4x, (11.3b)
with isoconstraint24

x* ﬁw(*s, XX%x.)dxY -1 =0 {11.4)

The abstract identity of systems (11.1) and (11.3), as well as of the
corresponding constraints (11.2) and (11.4), are evident. The same
identity persists under the addition of external electromagnetic fieids,
as in Eq.s (IV.7.36), as well as for a system of particles, as in Eq.s {IV.8.3).

Nevertheless, Eq.s (11.1) represents a /sree particle . On the
contrary, systems (11.3) represent &z extended and deformable
parucle moving within an Infionogencous and anisotropic medivir . Aa
an example, one may think at a free proton for system {11.1), and at the
same proton when inside a star undegoling gravitational collapse for
systems (11.3). .

The important aspect for these concluding remarks is that system
{11.1) verifies the conventional Postulates of the special relatvity, while
systems (11.3) verify the generalized Postulates 1-V of the isospecial
relatujvities {Sect. 1V.9).

AS an example, the proton (11.1) travels at a speed smaller or equal
to ¢, On the contrary, the same proton according to system {11.3) can
travel at speed bigger, equal or smaller than c,, depending on the
local physical conditions of the star’s core (density, temperature, etc.).

Exactly the same occurrence holds for the electromaghetic waves
which, when traveling in vacuum obey the Einsteinian laws, including
that of the Doppler’s redshift, but when traveling in physical media
obey the laws of the isospecial relativities, including the isodoppler’s
redshift. At the abstract level, however, their equations of motion
coincide and so do the related laws.

This illustrates a central aspect of the analysis of these volumes,
the fact that &// the predictions of the isospecial
refativities, including the expected capability of physical
massive particles to aitain Jocal, interior speeds higher

24 ynlike the isogalilean case (see footnote? p. 91), there is no need to use a full
isocontact structure in isorelativistic mechanics, p » dx - A @ ds = p Ty dx - A Tg ds,
because it is equivalent to the.isosymplectic form p T dx - H ds with scaled isotopic -
element T' = Ty/Tg.
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than c, , the expectalion thal qUASArS” light Is redshirted
by prapxgxtma in their atmosphere, clc., are afl admitted
by Einstein’s axioms themselves, oaly realized in more
gencral way.

APPENDICES

APPENDIX A: ISODUAL [SOSPECIAL RELATIVITIES

Consider an isominkowski spaces of Class |
Micg®), g=Tn, #=%1, 1=T1>0 neMxyH, A1

which, as now familiar, is the carrier space for our reporesentation of
extended particles and electromagnetic waves propagating within
physical media.

The isotopic techniques permit the identification of a rather
intriguing image of isospaces (A.1), called isodual isominkowsks spaces
{Santilli (1983c))

MO gdad) 59 = 19y 9 = a9, 19 = T1d1l<y (A2
characterized by the /Sorefgirvistic isoduality iaw
19=-1 o T¥=-T (A.3)

Isoduals M9%(x 2% £9) evidently admit the separation

2d _ =d v - _ 5 v A4
X —xuglwx = x”gwx (A.4)

As such, they geometrize and generalize the conventional alternatives
of selecting the Minkowski metric 1) = diag. (1, 1, 1, - 1) or 'r| = diag.
-1,-1, -1, 1).
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The above isoduality -is nevertheless significant because it is a new
operation independent from conventional or isotopic inversions

x = ¥ = PpePex = POOT0Iy = x {A.5)

Also, isoduality requires the necessary use of the isotopic
techniques for its identification, trivially, because it needs the
generalized notion of unity even for the conventional case in which 19
= - [ = diag. -1, -1, -1, -1).

Finally, isoduality is far from merely mapping the conventional or
generalized metric into their opposite, because it implies a change of
the underlying field. In fact, consider the conventional Minkowski
space which can be isomorphically written

Mixn#), 7 = diag. (1,1,1,-1), (A.62)
R =% [=diag (,1,1,1) (A.6b)
Then its Zsodual Minkowsts space is given by
MIxi949), 19 = Ty = diag. (-1, -1, -1, +1), (A.7a)
#9 = 219,19 = diag (-1,-1,-1,-1). (A.7b)
The above structure is evidently based on the Jsoduva/ isorezls 9
which are essentially z#e /mage of the conventional field # of reaf
numbers under rhe assumption of —f a5 “unit”. In turn, this implies the
reversal of the sign of all quantities defined in the original space,
including the absolute values, e.€.,
-v]emen®) = k-y|9 = -|x-yeMmIxitnd (A9
A similar although generalized situation occurs for the full
isospaces M(xg#) and their isoduals M9x g949).
The isoponcaré symmetries and related isotransformations
(Theorem 1V.6.1) on Mlxg %)
P(3.1) = 0(8.1)eT(3.1) : x = x = hAsx + x°672, x°>0, (A.10)

admits the isodual isopoincaré symmetries and velated Jsodval
Isotranstormations
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P931)=09@B.0e1931): x. =2 x = Asx - x62, x°>0, (410

respectively, which are precisely characterized by tlaw (A.3).

By comparing Eq.s (A.9) and (A.10}) we see that a rudimentary image
of isoduality for conventional Poincare” transformations is givebn by
the change of sign of the parameters Xx° = Xx” = - x". The
understanding is that this is insufficient for the full isosymmetries, and
the use of the isodual isounits is necessary for consistency.

Isosymmetries P9(3.1) and related isodual isotransformations
constitute fully acceptable symmetries of relativistic systems within
physical media, and characterize a new class of relativities,
tentatively called Zsodusz/ isospecial relativities.

In fact, exactly as it occurred at the isogalilean level (Sect. 11L8),
the law of Isore/glivistic Isodvality Is & universal symmelty of natiure,
in the sense thal whenever the Isopoincaré symmetry Is verified, so
Is jts Isodus/ . As a particular case for conventional relativistic
formulations, we learn that, mhemver the conventiona! Poincare
spmmetry P2 1) holds, 5o Is its isodual PP(31).

Along similar lines, whenever the isospecial refativities fhold, their
Isodual a/so Bolds too, thus offering 8 Jduality of relauvities ror the
description of relativistic spstems in botl lre lnterior and the

exterior problems
The above occurreneces are not trivial as the conventional
replacement 1 = nd = - 1, because of the underlying duality of the

field, These comments therefore indicate Zhe apparent existence
of two, novel, separate Universes characterized by
exactly the same physical laws whichk are unol
interconnected by space-iime rmversions or anpy olher
conventional mapping, but Instead by our isoduality.

APPENDIX IV.B: ISOTOPIC LIFTINGS OF DIRAC'S
CONSTRAINTS

The isotopic liftings from the conventional to the gerera/
isopoincaré symmetries P(3.1) (Sect. 1V.6) have fundamental implications
for the Lagrangian formalism.

In fact, the Lagrangians L of conventional relativistic theories are
frst-order ,in the sense that they depend on derivatives of the local
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variables up to the first-order, e.g., for for one point-particle without
spin on M%)

L=l %) = - molxbn, 3P ®.1)
TI}EH, on account of the fundamental invariant
ds? = - oy ax’ = -1, (B.2)

these Lagrangians are degenerate (singular/, in the sense that

3L

Detf ) =8, (B.3)

axPaxV

In the transition to the general Poincaré—isotopic symmetries, the
Lagrangians become of Ssecond-order, in the sense that they now
generally depend on the derivatives of the local variables up to and
including the second-order, e.g, for the isotopes of particle B.1)

L= L k,) = - molihg, k%, %M, (B-4)
Then, despite the fundamental isoinvariant (1V.7.4), i.e.

gs? = -ax'g ax¥ = -1, {B.5)
v
the latter Lagrangians are nondegenerale fregulgr/ , in the seﬁse
that, in general,

2.
JL

Det(—ﬁ—) = Q. (B.6)

The above occurrence can be seen in a number of ways, such as:
the arbitrariness of the functionzal dependence of the isometric g; the
appearance of acceleration-dependent forces already in the case of
nonrelativistic, two-body, closed, nonhamiltonian systems {Appendix
111.A); or, more rigorously, the fact that the Lagrangian counterpart of
Birkhoffian mechanics is precisely of second-order nondegenerate
type (see Santilli (1982a), p.39).

By keeping in mind the complexity of second-order Lagrangian
formalism, this illustrates the reason why the Lagrangian approach is
rarely used in Birkhoffian mechanics, the first-order Pfaffian actions
{1v.7.13) being much simpler, as well as analytically, algebraically and
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geometrically preferable.

Despite that, Diracs (1950, (/958 (1964) method rfor suvbsidiary
constrainis remains useful for the study of the consistency of the
central systems of our analysis, the closed nonhamiltonian systems
with subsidiary constraints, as well as for the identification of the
hypersurface of definition of the systems and of their symmetries.

The isotopic liftings of Dirac’s method on isospaces Mix s &) was
studied in Santilli (1989a), and we shall only outline it here for brevity.

Consider a given closed nonhamiltonian system {1V.2.5) represented
in terms of the Birkhoffian variational principle {1V.7.13) with subsidiary
constraints

8_[12 ds[pa”,éwia" + d’x}‘x - H(sXpAJ = 0, (B.7)
where
H = Hy + Ho » Hy (B.8a)
Ho= (Salp® 8,08 /20, ~thy + VK, ) (8.3b)
| He= C, (5. %, P, A, (B.50)

and the Cs are subsidiary constraints of type (IV.2.5c)-(1V.2.5¢) under
study in this appendix. The above quantity H is called the errecuive
Hamiltonian in Dirac’s terminology, and the last equality in Eq. (B.8a)
is Dirac's weak equality.

For the system to be consistent, the C-constraints must be
conserved along an actual path, ie., they must verify the conditions

Ck = [Ck: H| = [Cl(: H = = [Ck: HQ] A [Ck: Ci]’ (B.9)

where the isocommutations rules are given by Eq.s (IV.4.23).
The Dirac’s method now applies under a trivial isotopy. In fact, it is
possible that conditions (B.9) are:
A) strongly verified along an actual path; or
. B) verified via conditions on the multipliers; or
Cj verified via a set of Secondary Coustrammts

Xykp..) =0, v = 12,.m. (B.10)

By conducting the Dirac’s iterative procedure, one remains at the
end with a number of (independent) /irst c/ass constraints
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ilii(x,p,...) #0, 1 = 12,.r B.11)
and a number of {independent} second c/ass coustraints
$plep.) = 0, p=12,.5. (B.12)
Introduce the sxs matrix ¢ with elements
Cow = Wy 0 (B.13]

It is easy to see that it is nonsingular (under the regularity of the
isotopic brackets, as assumed throughout our analysis). Then the
Isotoprc lirtings of Diracs brackets on Mix,8.8) are given by

ACBF = (A5 Bl + A 0,6 o, Bl (B.140)
e = @, )t (B.14b)

and verifies the Lie algebra axioms as in the conventional case.

The replacement of the isotopic brackets (IV.4.23) with the isotopic
Dirac’s brackets (B.14) then implies that we are dealing only with first
class constraints with the new effective Hamiltonian

H = Hy + tblhl)‘ll (B.15)
where the multipliers All have the explicit structure
= Wiy
Ay C [¢v . Hol. (B.18)

thus showing their explixit functional dependence. But the first class
constraints can be added anywhere without altering the equations of
motion. ,

Thus, the total effective Hamiltonian is given by

H = HO + dlu_ku + i B.17)

where the multipliers A; are arbitrary functions, and the new terms
express certain gauge degrees of freedom of the formulation. The rest
of Dirac’s theory then foliows.

It is intrigving to note that (ke commuytators scruslly used in
Diracs treatment of conventional relativistic systems are already or
Isotopic type. In fact, the conventiona/ Dirac’s brackets are Lie-
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isotopic brackets. We therefore have the following important
property.

PROPOSITION [V.B1 [(Santilli (j885cl. Dirac’s refativistic
formulsations with subsidiary constralnts possesses an essential
Birkhoffizn Structure 2no, in particular, are characterized by
the contravariant Birkhorr'’s equations (49, ie,

dal ij 9fsa,.)
— =0 (a)]—, a=@p. ij=12.8, (B.18)
ds da .

where: A Is given by Eg.s (B.17): Birkliofr's tensor Is given for
Hamiftonian relativistic sysiens by
ii s . 0d 8¢ :
N N v S
oV = gl + it 2 v Y %, (8.19)
aab aa>

m‘-'7 - s the canonical Lie tensor (TV. 414 while ror nonfzmiftonian
spstems we kave the fort

o 8 36 :
N LV

oY = gfl + it =P MV Y o) (B.20)
sal 8a’

.
where .(7] s Birkhorrs tensor V. £10

In different terms, with his originality of thought, Dirac showed
that the covering Birkhoffian mechanics is #ecessary for the study
of the cenventiona/ relativistic systems, Eq.s (B.19), thus setting the
foundations for 4 rather natural inclusion of the nonhamiltonian
generalizations, Eq.s (B.20).

As a further comment we note that the Lagrangian for the
restricted isopoincaré symmetries (Sect. 1v.6) is of conventional type,
i.e., it is of sirst-order and, therefore, degenerateas the conventional
Lagrangian {B.1). Conventional methods then apply, although the first~
order Pfaffian approach remains preferable on a number of counts,
e.g., analytically, algebraically and geometrically, as well as from the
viewpoint of the mapping into operator formulations.

The study of the isotopic, first-order, degenerate Lagrangians is
here left to the interested reader for brevity.
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APPENDIX IV.C: THE "NO NO-INTERACTION
THEOREM"

One of the most significant implications of the generalization of
relativistic Hamiltonian mechanics into the Birkhoffian form is the
elimination of the so-called "No Interaction Theorem” (See, e.g., Mann
{1974), or Kracklauer (1976, and quoted papers).

In turn, this implies a property of conventional treatments that
does not appears to have been identified in the existing literature to
our best knowledge, namely, the fact that Dirack rformulation of
conventionsal refativistic sysiems Wil SUbDSIdIgry constraimts alsc
bypasses the No [ntractions Theorem, owing to its essential
Birkhoffian structure (Appendix IV.B).

These aspects were also considered in Santilli (1983c) and are here
briefly reviewed via the geometric approach.

Consider a vector field Y on the space RxT*M{x,n#), where s is the
proper time, M is the conventional Minkowski space, and T*M is the
conventional cotangent bundle. Suppose that T is a FHamiltonian
vector-freld i.e., it verifies the property

wy T = - @H, (c1)

where w, is the exact, canonical, symplectic two-form (Sect, 1V.4)
Then, the “No intreraction theorem” (Krakiauer (Joc ¢/t )) states that
the condition that Y is invariant under the conventional Poincaré
group P(3.1) implies that all acting forces are identically nuil

It is important to review the mechanism underlying the above
occurrence. In essence, the first condition on the Hamiltonian
structure of the vector field implies the following form

PR i an_? ’ (C.2a)
Y = u + K ) + A C.2a
v axaH as

W = amsepat, KB = —gH/ax® = K“‘“SA, (C.2b)

The second condition on the P(3.1)-invariance implies the existence
of local parametrization

s=clydl = 222 = %@ (C.3)
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for given ¢-constants, and the identities

a 0 d 0
—_—= cl = c2 = C3 —_— (C- 4)
as axal ax?2 ax®3

which, when plotted in Eq.s (C.1), imply
k?l - ga2 = k33 = g, {c.5)

namely, all acting forces are nuil.

Consider now the zomfamiftonian vector field T' of Eq.s (IV.8.1) on
isospaces ?RSXT*Mlz(xé,Eﬁ) of Sect. IV.4, and suppose that T is a
Birkliorrian vector-tield , ie., it verifies the generalized property
(1v.4.5)

¢, [T = -dB, (c.6)

where 92 is the exact, symplectic-isotopic two-form (Iv.4.18) on
T*M Y g $).

Then, the imposition of the invariance of T under a Poincare-
isotopic symmetry P(3.1) does indeed imply the local parametrization
{C.3) and identities (C.4), because of the preservation of the parameters
and generators under isotopy.

However, when identities (C.4) are inserted in the Birkhoffian
condition (C.6), they no longer imply the null value of all forces,
trivially, because of the generalized Birkhoffian structure of the
vector field. The above simple generalization of the proof of the "No
Interaction Theorem” of Kraklauer {/oc </t ) then implies the
following:

THEOREM IV.C1 ("No-No-Interaction Theorem=, Santilli (1958cl
Let I be a Birkhorfian vector field on isospace .ﬁ"_s.xr"ﬂf'([;:giﬂ]{
Then, the fnvariance of I” under & POINCAre-ISolopic Syaumetry
PaY allows nomntrivial linear and nonlinesr, local and nonlocsl
as well as selfadjoint and nonselfadjoint meraclions, viless the
exact symplecticisotopic mwo-form on TMxg¥ reduces to
the canonical form, @, = w4

Note that conventional poceri/z/ interactions which are
prohibited in the Hamiltonian relativistic setting, now become
permitted in the Birkhoffian formulation, of course, jointly with much
more general interactions.
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The reader should be warned that the true understanding of
Theorem 1V.C.1 requires a kKnowledge of the Birkhoffian mechanics, e.g.,
its transformation theory and the techniques of representing forces
via the generalized Lie tensor, rather than the Hamiltonian (see also
below). .

Theorem 1V.C.1 can also be proved in a variety of other ways.
Another simple geometric proof is that based on the study of
fgeodesic rrajectorfes (Sect. 11.12). In fact, re/ativistic Hemiftonian
trajectories are equivalent lo geodesic trajectories in our physical
space-time , thus implying the possible elimination of all acting
forces.

When we pass to the study of relativistic trajectories within
physical media, the geometrization characterized by the isometric g
implies that ke trajectories or relativistic Birkhoflizn systems can be
made geodesic i thelr Isospace, but thelr profections i our paysical
Space-time are Jhcn'ﬂsfcz!ZV nongeodecsc.

As a matter of fact, it is easy to prove the following

COROLLARY fV.C 11 The prajection of the trajectory of a F{31)-
Invariant Birkhorian vector-rield I” onr our physical space-time
Is nongeodesic even when alf potentig! interactions are nufl

At a still deeper level of study, we should recall that conventional
relativistic Hamiltonian mechanics considers only one class of
interactions, the. local and potential ones, while at the covering
Birkhoffian level we have the same interactions plus nonlinear,
nonlocal and nonselfadjoint ones. A technical understanding of our “No
No Interactions Thorem” cannot be achieved without a knowledge of
the role and interplay of the above two classes of interactions.

This latter aspect can be best studied via the transformation
theory. Recall that the transformations establishing the equivalence of
a generic relativistic trajectory with the geodesic one are cazonical
ransrormations . in fact, the conventional “No Interaction Theorem”
can be equivalently formulated via the following known property

THEOREM V.2 (see, eg, Mann (974} Within the context of
re/ativistic Hamiftonian mechanics ror Hamiftonians f = T/} +
Vil and under suficient Smootiness and regularity conoitions,
there always exist a canponical lransformalion, rLe &
transtormation preserving the canonical structure

a={p = a = &, p) cn
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rs___ = gl (C.8)

under which the potentia! V of all rorces Is identically nul,

via) = 0. (C.9)

An equivalent formulation does indeed exist under isotopy. In fact,

by using the ansformation theary of Birkhollian mechanics (Santilti
(1982a), Chap. 5), one can easily prove the following property.

THEOREM C3 [Santilli (1933¢) Within the context of relalivistic
Birkhorrian mechanics with Hamiltonizn H = T{@) + V&), and
under surficient swoothness and regularity conditions, there
&iways exists a “canonical” transformation, Le, & transformaiion

preserving Blrkforr’s tensor

a=fp = a = ,p) {C.10a)
A 5
” i a da i
o Al
ol » oY) = 2 oS — = oy, (C.10b)
dal 8a®
under which alf potentizls are identically nufl,
via) = 0 (C.11)

but the interactions represented by the Birkhoffian tensor e
remains unarrected,

Thus, the physically important point is the impossibility of
performing the transition

.
a = o (c.12)

in 2 way compatible with the observer. By recally that the central role
of the generalized Birkhoff's tensor is that of representing nontrivial
interactions, the above occurrence implies the following

LEMMA [F.C1 (8anLilli 19528}k No “canonical” transformation of
Birkholrs equations can remnder identically null all forces

represented by Birkholl'’s tensor.
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At this point too the understanding of the above property and of its
implications for convemtions/ relativistic theories requires a
technical knowlege of Birkhoffian mechanics.

In fact, Birkhoffian mechanics can represent gfl rorces, whetlier
selfadjoint or not, via Birklhofr’s tensor; in which case the Birkhoffian
is merely the generator of time evolution. As a result, our "No No
Interaction Theorem” can be used to admit conventions/ selfadjoint
interactions, provided that they are all represented via Birkhoff's
tensor.

The best way to illustrate this occurrence is via the conventional
electromagnetic interactions in vacuum without any nonselfadjoint
force. In this case Birkhoffian mechanics allows the replacing of the
familiar minimal coupling rule py = Py = py + eAy with the
reprersentation of electromagnetioc lnr.eractlons via the Birkhoff’s
tensor (Santilli (/o ¢iz ), p. 98 and ff)

.. 0 I
Qu = {C.13a)
-1 e(auAv - BvAu)

H= pé/om, (C.13b)

in which case the Birkhoffian is reduced to the “free” term H = p2/2m.

Lemma 1V.C.1 then illustrates the impossibility of eliminating the
electromagentic interactions. Intriguingly, even though the equations
of mation for systems (C.13) coincide with the conventional ones by
construction, relr spmmelry I's no fonger the conventdonal Porncare
spmmertry P31, but its isotope Ff3.1) characterized by Birkhofr's
tensor {132/ 1ts study is here left to the interested reader for
brevity.

To avoid conceivable misrepresentations, let us note that the
conventional “No interaction Theorem” remains fully correct under
the analysis of this Appendix, within the arena of its formulation and
proof. It becomes merely 1napp11cable to the covering relativistic
Birkhoffian mechanics and its Poincaré-isotopic symmetries.

Lemma 1V.C.1 also allows Dirac’s relativistic formulation with
subsidiary constraints to admit nontrivial interactions. In fact, iracs
Jundamental tensor is not canonical , but given by form (B.19) with an
essential, generalized, Birkhoffian structure. Then, (contrary to a
rather popular erroneous belief) the applicable transformation theory
is no longer Hamiltonian but Birkhoffian, and the applicable symmetries
are no longer conventional, but of necessary Lie-isotopic type.

236



The generalized structure of Dirac’s tensor and its preservation
under the transformation theory ensure the lack of geodesic motion of
Dirac’s trajectories in our space-time, with the consequential
inapplicability of the "No Interaction Theorem”.

In closing this appendix we wouild like to mention that the most
effective way of studying the effect of nonselfadjoint forces to the “No
Interaction Theorem” is via the Riemannian-isotopic geometry of Sect.
11.11, and the notion of isogeodesics of Sect. [1.12. We shall therefore
have the opportunity of returning to the subject in the next chapter on
gravitation, by confirming the results at a higher geometric level.
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CHAPTER V:
ISOTOPIC GENERALIZATIONS OF
EINSTEIN'S GRAVITATION

V.1: STATEMENT OF THE PROBLEM

Einstein’s {1916) intuition of the fundamental role of the Aremannian
geometry (Riemann (1868)) for the representation of the gravitational
field, is one of the most brilliant advances in physical knowledge of
this century.

Despite that, Limstein’s general theory of relativity, or Einsteln’s
gravitation for short (see, e.g., Pauli {1921) in the English translation of
1958) remains afflicted by a considerable number of rather fundamental
problematic aspects which are unresolved at this writing.

In this chapter we are primarily interested in the study of

THE INTERIOR GRAVITATIONAL PROBLERM, ie, the gravilationz!

theory that is applicable in the interior of the minimal surrace 8°
encompassing &l matter of lhe body considereo, mcluding s
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possible armosphere (Sect 11}
The complementary problem is then evidently

THE EXTERIOR GRAFITATIONAL FPROBLEM, le, the
gravitational theory that is applicable in the exterior of sald
minimal surrace §°

In Chapter I we established the inequivalence of the interior and
exterior problems, and the irredicibility of the former to the latter.

In Chapter II we outlined the novel mathematical tools for the
quantitative treatement of the interior problem at the nonrelativistic,
relativistic and gravitational levels. '

The generalized relativities for the classical nonrelativistic
interior problem were then studied in Chapter 11, and their relativistic
extension in Chapter IV, with particular reference to the identification
of the space-time symmetries that are applicable to extended-
derormable bodies moving within inhomogeneous and aznisotrapic
physical media. :

These generalized interior relativities are now assumed as foca/ly
valid for the interior gravitational treatment of this chapter, and their
knowledge is assumed hereon.

The lack of exact character of Einstein's gravitation for the
interior problem appears to be beyond reasonable scientific doubts
for numerous independent reasons each one warranting a suitable
generalization of the theory.

To begin, the Riemannian geometry Is focal-differential, as well
known. Such a geometry is evidently ideal for the representation of
the geodesic motion of a point-like test particle in the homogeneous
and isotropic vacuum of the eXterior problem. The same
characteristics, however, are fundamentally at variance with the
uitimate nonlocal nature of the interior problem.

A typical case is that for the core of a star undergoing
gravitational collapse, where the wavepackets of a large number of
constituents are, not only in a state of mutual penetration as expected
in the hadronic structure (Sect. 1.1), but also under exzremely dense
compression. The need for a suitable nonlocal-integral generalization
of the Riemannian geometry for a more adequate representation of
the physical reality of the interior gravitation is beyond reasonable
doubts.

Similarly, the geodesic behavior of a test particle in the
Riemannian space of the exterior gravitational problem is equally
established on sclid grounds. However, visual experimental
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observation, e.g., for a body in free fall toward Earth, equally
" establishes the Jdewizlions from the Riemannian geodesic behavior at
the instant of penetration in our atmosphere. The need to generalize
the notions of parallel transport and geodesic in a form directly
applicable to the interior problem, is therefore also established
beyond reasonable doubts.

At a deeper technical inspection, one can see that these geodesic
deviations are due to contzct rorces (Sect. 1.2) which, for sufficiently
high speeds, are of the type of a power expansion in the velocity up to
the tenth power and more {as routinely done in- contemporary
rocketry). Moreover, such a power series expansion are well known in
engineering to be an approximation of nonlocal-integral forces. Still at
a deeper inspection, the nonrelativistic forces of our interior physical
reality, say, for a satellite during re-entry in Earth’s atmosphere, are
not only nonlinear and nonlocal, but alse nonlagrangian-
nonhamiltonian, as well as nonnewtoman .

The need to generalize the notion of geodesic in such a way to
incorporate arbitrary forces existing in the classical reality, is also
beyond reasonable doubts.

In fact, it is well known that the analytic structure of Einstein’s
gravitation permits the recovering, under the PPN and other limits, of
only a swubc/ass of Newtionian forces, those of local, potential,
variationally selfadjoint type (Helmholtz (1887), Santilli (1978¢)). Assuming
the validity of certain modifications of the PPN limit to estract velocity
dependent forces, the emerging nonselfadjoint forces have a neces-
sarily limited dependence in the velocities, trivially, as required by the
Christoffel’s symbols (Sect. 11.11).

This establishes also beyond reasonable doubts the need to
generalize the geometric structure of Einstein's gravitation into a
form admitting all conceivable forces of the interior trajectories of
the physical reality.

A further reason for the lack of exact character of the theory in
the interior problem is its /foca/ Lorentz character. In fact, such a
character is evidently essential in the exterior problem for the
representation of the stability of the planetary orbits, triviaily, from
the exact local rotational symmetry. However, the insistence of the
exact, local, Lorentz character also for the interior problem implies
excessive approximations of the physical reality of the type of the
perpetual motion within a physical environment (Sect. 1V.1).

This establishes the need to generalize Einstein’s gravitation into a
form locally admitting rotational, Galilei and Lorentz noninvariant

23 we assume the reader is familiar with these terms, as defined in Chapter 1.
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. unstable trajectories for-the interior problem (only).

After all, visual observations of the interior of astrophysical
objects, such as Jupiter (see Fig. V.1.1). establish the existence of
interior vortices with monotonically varying angular momenta which
are simply beyond the representational capability of Einstein's
gravitation.

Numerous additional problematic aspects were studied in the
preceding chapters, such as the homogeneous and isotropic character
of Einstein’s gravitation which is at variance with the evident,
inhomogeneous and anisotropic structure of interior physical medium;
the need to achieve a relativity representing the deformability of the
extended test particles of ocur interior physical reality; and others. All
these problematic aspects are also applicable to the interior
gravitational problem of this chapter, and their knowledge is herein
assumed.

In summary, Einstein’s general theory of telativity cannot be
considered the final theory for the interior gravitational problem
because of numerous insufficiencies of the ultimate structure of the
theory, including:

a) Insufficiencies of the fundamental Riemannian geometry, owing
to its strictly local character when compared to the evidence of the
‘ultimate nonlocality of the structure of gravitation;

b} Insufficiencies of the conventional analytic structure, owing to
its maximal first-order character in the velocities with consequential
established inability to recover the arbitrary forces of the interior
physical reality;

¢j The local Galilei’s or Poincare symmetries, owing to their
consequential inability to represent nonconservative interior
trajectories resulting in excessive approximations of physical reality;

d) The strictly homogeneous and isotropic character of the theory,
which is manifestly unable to represent the established inhomogenuity
and anisotropy of interior physical media;

e) The additional insufficiencies reviewed in the preceding
chapters, which are now locally valid for the analysis of this paper.

The hopes of bypassing these problematic aspecis by reducing a
macroscopic interior trajectory to its elementary constituents, have
been proved to have zo physical valfue , because not realizable on
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technical. grounds 3ue to the “No Reduction Theorems” 1.3.1 and 1.3.2
(Sect. 1.3).

These clear occurrences force the physics community to face its
duty: initiate the scientific process of trial and error in the
construction of a generalization of Einstein’s gravitation which
represent more closety the interior physicai reality.

For this purpose, we have introduced the isotopic generalizations
of the affine geometry (Sect. 1L10} and of the Riemannian geometry
{Sect. I1.11) which are capable of admitting arbitrary, linear and
nonlinear, local and nonlocal, Lagrangiah and nonlagrangian,
Newtonian and nonnewtonian forces, as well as of containing the
conventional affine and Riemannian geometries, respectively, as
particular cases. The consequential generaliZed notions of parallel
transport and geodesic under these arbitrary forces are presented in
Sect. 11.12. :

These covering mathematical tools allowed us to submit in Santilli
(1988d) the isotopic generalizations of Einstein’s general theory of
relativity for the interior problem, called Jsogravitations %% under
the conditions of:

A} Recovering rdentically Eipstein’s gravitgiion for the exterior
problem:=

B/ Being locally Lorentz-isotopic or Porncarré-isotopixc in
character; and

o Admitting ar the nonrefativisic it alf concelvable forces of
Lhe Interior probiem of our plysical reality.

By specific intent, no exzersor experiment to test the proposed
new theory is submitted in this volume because the generalized
interior theory recovers, by construction, conventional gravitational
theories whenever the exterior conditions are recovered.
~In Chapter VIl we shall indeed submit a number of experimental
tests, but they are solely referred to interior physical conditions.

A number of independent contributions in the interior gravitational
problem must be acknowledged from these introductory words. First,
in three pioneering papers, Gasperini (1984a, b, ) submitted a genera-
lization of Einstein’s gravitation that is locally Lorentz-isotopic (see
Appendix V.A} in the sense of Santilli's (1978a) proposal of the Lie-

26 fphe plural stands to denmote an infinite number of possible, different,
isogravitations for each given total gravitational mass, evidently because of the
infinitely possible interior conditions.
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isotopic theory, and the foundations of the Lorentz-isotopic
relativities (Santilli (1983a)).

Gasperini’s notion of a generalized gravitational theory of local
Lorentz-isotopic character, with the consequential, generalized
principle of equivalence, will remain central notions of our study.

However, Gasperini formulated his gravitation in a conventional
Riemannian space, thus being unable to treat nonlocal-integral forces.
In the next section we shall present the generalization of Gasperini's
studies in the Riemannian-isotopic spaces (Sect. 11.11) submitted by
Santilli ({1988d), {1391b}).

Such a generalization is needed on a number of grounds, such as
the need to achieve geometrically unique notions of geodesic and
parallel transport for the interior and exterior problems, the identity
of interior and exterior gravitational theories at the abstract,
coordinate-free level, and others.

Moreover, Gasperini (foc ¢/z ) formulated his gravitation every-
where in space-time, thus resulting in predictable, severe limitations
on the magnitude of the allowed isotopy from available gravitational
experiments, :

In Santilli (1988d) we therefore restricted Gasperini’s studies to the
interior gravitational problem, and the same position will be adopted in
this chapter. This second modification of Gasperini’'s original proposal
is also needed to permit the recovering of Einstein’s exterior
gravitation in its entirety, as well as to eliminate any restriction on the
magnitude of the possible interior isotopies.

In the main text of this chapter we shall solely study the Z/e-
Isotopic general treatment of the imterior gravization as a closed-
Isofated system. The reader should however be aware of Z#&e
broader Lie-admissible approach to gravitationzl, fnterior, open-
nonconservative trajectories , as anticipated in the appendices of
Chapter II. '

In aother pioneering paper, Gasperini (1983) submitted a more
general gravitations, this time, of locally Lorentz-admissible
character in the sense of Santilli (1981a}, and stressed his view that

The ultimate rormulation of gravitation encompassing &4 others
as particular cases, Js expected to be precisely of Lie-
admissible character.

Numerous additional contributions with a direct relevance to the

studies of this chapter have been identified in Sect. L5, including those
by Jannussis (1985), Gonzalez-Diaz (1986), Nishioka ((1983), {1987)), and
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others. .

Regrettably, we are unable to study the more general Lie-
admissible formulation of gravitation to prevent a prohibitive length of
this monograph.

JUPITERYS STRUCTURE
IN GRAVITATIONAL TREATMENT

CONVENTIONAL RIEMANNIAN GEOMETRY
FOR THE CENTER-OF-MASS BEHAVIOUR
OF THE EXTERIOR GRAVITATIONAL PROBLEM

RIEMANNIAN-ISOTOPIC GEOMETRY
FOR THE CLOSED TREATMENT OF
THE INTERIOR GRAVITATIONAL PRC BLEM

RIEMANNIAN-ADMISSIBLE GEOMETRY
FOR THE OPEN TREATMENT OF
THE INTERIOR GRAVITATIONAL PROBLE,

FIGURE V.1.1: We initiated these studies with the remainder (Fig. 1.1.1)
that the birth of contemporary relativities for exterior problems can be
identified with the historical visual inspection of the Jovian system by
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Galileo Galilei back in 1609. The birth of the generalized relativities
for interior problem can be identified with the visual observation, this
time, of Jupiter's structure. A main objective of Chapters Il and 1V
have been the outline of nonrelativistic and relativistic structure
models of Jupiters which recover conventional relativities for the
center-of-mass behavior, while permitting a structurally more
general, nonlinear, nonlocal and nonlagrangian interior dynamics. In
this chapter we shall complete these classical studies by presenting a
gravitational model of Jupiter’s structure which, on one side, is
capable of recovering identically the Einsteinian behavior of Jupiter's
center-af-mass trajectory in the sclar system, while, on the other side,
it admits locally nonconservative interior trajectories (such as
Jupiter’s vortices with continuously varying angular momenta). The
study of this dichotomy via the Riemannian geometry for the exterior
problem and its Riemannian-isotopic generalization for the interior
problem is grossly insufficient from a physical viewpoint on a number
of grounds, such as: both approaches imply total, conventional,
conservation laws; both approaches imply an intrinsicaily reversible
dynamics; etc. These deficiencies can be resolved via the additional
study of the local interior gravitational problem as an open-
nonconservative system in term of the broader Riemannian-admissible
geometry of Appendix I1.C. In fact, the latter geometry is ideally suited
to represent an extended testparticle in unstable interior conditions
while considering the rest of the system as external, because of its
capability of directly representing open-nonconservative conditions,
of being intrinsically irreversible, and structurally compatible with the
Riemannian-isotopic geometry (which is characterized by the
symmetric part attached to the Riemannian-admissible geometry).
According to a rather general view, cyrrent knowledgein gravitation
{based on the Riemannian geometry only) is believed to be exactly
valid under whatever conditions exist in the Universe. On the contrary,
we believe that our current knowledge in gravitation is at its first
infancy, owing to a large number of fundamental unresolved problems,
with the understanding that current views provide a first approximation
of undeniable validity. These comments are introduced here to stess
that, by no means, the isotopic interior generalizations of Einstein’s
exterior gravitation revieweduin this chapter should be considered as
final, for physics is a discipline that will never admit final theories.

We now pass to a few comments on Einstein’s exterior gravitation.

In the intreductory words of our relativistic studies {Sect. 1V.1), we
stressed the exzcr validity of the special relativity in the arena of its

original conception, and its approximate

validity even when

inapplicable because of noneinsteinian conditions.

The situation is somewhate different for the general relativity
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owing to a considerable number of problematic aspects accumutaled

. thoughtout this century, which are fundamentally unresolved at this
writing owing to their lack of proof or disproof by experts in the field
in the technical literature. .

It is evident that due scientific caution requires the resolution of
at least the most important of these problematic aspects prior to any
final jugment on the exact or approximate validity of Einstein’s
exterior gravitation?’.

The literature in the field is 50 vast, to discourage even 4 partial
outiine. An overview, including societal aspects caused by the lack of
resolution of the problematic aspects over a protracted period of time,
has been recently provided by Weiss {1991).

In this section we shall consider only the following three
problematic aspects because they have a direct connection with our
interior studies.

The first is due to Einstein’s historical conception of the exterior
gravitational field in vacuum as reducible to pure geometry without
source. Such a conception is in direct and irreconcilable disagreement
with the charged structure of matter, and Maxwell’s electrodynamics.

In fact, it is well established in elementary particle physics that
mass has a primary electromagnetic origin. This implies the existence

- of an electromagnetic source tensor of the gravitational field which is
of first-order in magnitude even for celestial bodies with null total
charge and null total electromagnetic moments, as studied in detail by
Santilli (1974) {(see Sect. V.3 for a review). .

The second problematic aspect is that raised by Yilmaz's studies
{(1958), (1971), (1977), (1979), (1980}, {19822, b), (1984), (1989), and (1990a, b)), on
the apparent need for a stress—energy tensor in the right-hand-side
of the field equations in vacuum. These studies have remained largely
ignored in the technical literature and, therefore, unresolved.

The third aspect considered in this chapter is that related to the
forgotted Ffrewud identity . As the reader will recall from Sect. 11.11,
Freud (1939) discovered an identity which is independent of the others

27 In the opinion of this author, gravitation is the least rigorous of all branches of
physics, because of numerous nonscientific aspects that have existed over
considerable periods of time (Weiss (1991)). The most unreassuring of them is the
widespread claim on the exactvalidily of Emsteins gravitation wuder wihatever
conditions exist @ the Universe, and for both the exterior sod the mteriorproblens,
without a disproof of the problematic aspects published In the techoical Nteratare.
But Science is a collegial effort which, as such, never achieves final resolutions via
the judgment of only one segment of the community. The ignorance of the
problematic aspects of Einstein's gravitation by such segment does not constitute
their disproof, and only leaves the field in a state of “suspended animation”, without
any possibility of truly scientific resolution one way or the other.
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(such as the comtracted. Bianchi identity reviewed in Sect. 11.11), and
which must be verified by any gravitational theory for consistency,
exactly as it is the case for the other identities.

The Freud identity did not escape Pauli who reviewed and
discussed it in considerable details (see Pauli {1958}, Sect.s 23, 57 and 61,
pp. 70 and 216 in particular). The identity was thereafter ignored by
subsequent bocks in the field, with only one exception given by
Carmeli er &/ (1990), where the Freud identity is mentioned, although
without the identification of its consequences. The identity finally
received a mathematically regorous treatment by Rund (1991), whose
analysis was adopted in our presentation of Seect. II.11.

Despite these advances, the Freud identity raises a number of
physical problems that are still unresolved at this writing. In fact,
Yilmaz {1990b) “rediscovered” the Freud identity by stating that, when
imposed to the field equations, it implies the necessary presence in the
right-hand-side of the equations of two tensors, the stress—energy
tensor proposed by Yilmaz for decades ((1958), (1971), (1977), (1979), (1980},
{1982a, b), (1984), (1989), and (1990a, b)), and a second tensor with all the
characteristics of the electromagnetic source of the gravitational
field, as pointed out by Santilli (1974) and (1988d).

These aspects are of such evident relevance, to require their
critical examination by experts at large.

It should be stressed that our objectives are limited to the interior
gravitational problem, and the latter issues pertaining to the exterior
gravitation are only reviewed in this chapter for the reader’s
convenience without any resolution one way or the other.

A true understanding of this chapter requires the prior knowledge
of z/ the preceding parts of these monographs.

V.2: ISOTOPIC LIFTINGS OF EINSTEIN'S GRAVI-
TATION

In this section we shall assume Einstein’s general theory of
gravitation?® as being correct for the exterior gravitational problem

28 Among a literature in the field is so large to prevent any comprehensive outline
here, this author still prefers Pauli ({1921) in its 1981 English edition) because of its
correct scientific language, as well as its content still broader than sebsequent
reviews (e.g., because of Pauli's treatment of the Freud identity ignored by subsequent
books).
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gravitational problem only,-and study its infinite class of possible
isotopic generalizations for the interior problem under the name of
isogravitations, as proposed by Santilli (1988d), (1991b,c)).

Let us begin by recalling the three basic representation spaces
used in the conventional approach to gravity:

1) The carrier space of Newtopian exterior mechanics, the
Kronecker product of Zuwckidean spaces (Chapter IlI)

S}tXE(r,S,S%) . § = diag. (1,1, 1), (2.1a)
r= (ri), ;2 =rlgr = risi]-rj = r12 + r22 + r32 , (2.1b) |
i=1,2,3 xy,2
over the reals %;
2) The carrier space of relativistic exterior mechanics, the familiar
AMinkowski space (Chapter IV)
MR : 7 = diag. (1,1, 1, -1), | (2.2a)
x=M=rxY) xt-=c
x2 = xtyx =x¥ Ny xV

v = 1,2,3,4 Re#®,

ol T E€ErSH)

X2 + x22 + x32 - x42 =R2, (2.2b)

where c,, represents hereon the speed of fight in vacuum; and

3) The carrier space of Einstein’s exterior gravitation, the
Rlemannian space in the conventional (3.1)-space-time with a
symmetric connection and null torsion (Sect. 11.11)

Rix.g®) : g = et = &) = &,) (2.3a)
x =&Y =, xY, x? = x'g)x = g ¥V =R%,  (23b)
| ag ag 88,1,
pLoo (B Zov TRV g 2.3
v { ol T axﬂ) (2.3c)

0. {2.34)

= P2 - p2
T_;.lpv =T upv |8 Vpp-

As well known, the largest groups of linear and local-differential

Rund (1975).
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isometries of space (2.1) is the Gali/es symmetry Ggl3.1). The largest
group of linear and local isometries of the Minkowski space (2.2) is the
Poincare symmetry Pyf3.1). The largest group of isometries of the
Riemannian space (2.3) is known only locally, i.e., in the neighborhood of
a point and it is given also by P, (3.1).

The first contribution by the Lie-isotopic techniques is therefore
for convemtional/ gravitational theories, and can be formulated as
follows.

THEOREM V.21 (Santilli (19584}t The largest possible nonlinear
bur Jocal-differential group of Isomelries of the conventional
Riemannian spaces (23 with metric g/ are the isopoincare
SPImmeLries f’gﬁ!f/ with isounits 7 = T4, £ = Ty For the case or
Linsteinian theorles of gravity, T > 0 and aff sospmmetries A
(21 are locally Fsomorplre to the comnventional Poincare
spmmerry £y, [ ¥/

PROOF: All possible metrics of Riemannian spaces can be written

gx} = TR, (2.4)

where T is nowhere singular, symmetric and real valued, in which case
Theorem 1V.6.1 holds, characterizing the isopoincaré symmetries Pg(3.1)
with respect to the isounit

1=11 (2.5)

The symmetry transformations are then nonlinear but local, from the
corresponding  functional dependence of the isounit on the
coordinates. For the case of Einstenian theories of gravitation, T is
positive-definite, T > 0, in which case Theorem IV.6.1 implies, and
Pg(s.ﬂ ~ P,(3.1). QE.D.

We assume the reader is familiar with the fact that the above
Theorem (and Theorem 1V.6.1) are not purely mathematical results, but
permit the computation of the symmetry transformations in their
explicit form from the sole knowledge of each given metric gx).

Also, we should recall the conventional nonrelativistic limit

Pﬂ(

3'1)[c0/R=>oc§=> Ggl3.1). (2.6)

Via the use of Appendix IV.A, we can then say that the Poincaré-
isotopic symmetries Pg(& 1) admit a nonrelativistic limit into a. symmetry
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ég{&l) which are also locally isomorphic to the Galilei symmetry Gg(3.1)
whenever § > 0 (as it is the case for Einstenjan gravitational theories),

Py.1) = Gx(3.1) =~ Ggl.3.1). | (2.7)

ko /R=

Finally, we should recall that Pg(3.1) ‘admits the conventional
symmetry Pp(3.1) as a local relativistic symmetry, and Ggl3.1) as a local
nonrelativistic symmetry.

This essentially summarizes the geometrical structure of the local
and global symmetries of Einstein’s exterior gravitation.

Our objective is to construct an infinite class of spwmetry-
preserving isotoples of Einstein’s gravitation for the interior
dynamical problem, and interpret the isotopies, as now familiar, as
representing the transition from motion in vacuum to motion within a
physical medium.

Note that the asixiom-preserving isotopies cannot be introduced
for Einstein's gravitation because of the technical difficulties caused
by Einstein’s tensor discussed in Sect. IL.11, but they will be submitted
in the next section for the "axiomatically completed” Einstein’s theory.

To identify the structure of the isotopies of Einstein's gravitation,
let us review the three basic isospaces of our analysis:

1) The carrier space of the nonrelativistic?? interior mechanics,
the isoeuclidean spaces for nonlinear, nonlocal, nonlagrangian and
nonnewtonian trajectories {Chapter I11)

R <ElrS4) : 3 = B(r,b,F,.) = Ts(r, BE.L)E= (Si].) = (Sji), {2.8a)
r2 =r%r = rl Sij(r,i','f‘, il {2.3b)

= T 1 = —1 = -
®o= Rl 1= T, = 8 1y
2} The carrier space of relativistic interior mechanics, the
Isominkowski spzces of Class 1 for the relativistic description of
nonlinear, nonlocal, nonlagrangian and honlorentzian trajectories
(Chapter 1V)

>0, 1,>0 (2.3¢)

MBS 6 = B %) = Tylekedn = ) = @) ) @)

}c2 = xt i, %, %, .0 x = x nm,(x, %% .)xY = R2, (2.9b)

23 we continue to avoid the term "Newtonian” for the interior dynamical problem,
and use instead the term “nonrelativistic, because of the presence of nonnewtionian
forces discussed in Chapter .
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Py

. i
=41, 1. =T. >0, x,neMxy®), Reh (2.9¢)
noom n
Finally, we introduce
3) The carrier space of our gravitational interior theory, the
Isoriemannian spaces in (3.1)-dimension with a symmetric
isoconnection and a null isotorsion in the geometrical space, but a
non-null torsion in the physical space of the observer (Sect. I1.11)

Rlcg g = glx x..) =Tg(x, X, ..) g0x)

= G = &) = T, g (2.10a)
. ) ) . v
x% = xt g, %,.)0x = x* gw(x, %, .)X = R2 {2.10b)
a8 38 ag
Mgy = 4 b, v (2.10¢)
axH axV axP
FPo_p2P 2P
Tov =My - My =0 {2.109)
P or2P _ 029 ) (2.10e)
Toy = TOT50, - T, IS5, #0

The largest possible nonlinear and nonlocal groups of isometries of
the isoeuclidean space (2.8) are given by the Jsagali/ean symmerries
G.(3.1) of Sect. IIL5. The largest possible nonlinear and nonlocal groups
of isometries of the isominkowski spaces (2.9) are given by the
ijsopoincaré symmetries P_(3.1) of Sect. 1V.6. The same methods then

leads to the following

THEORERM V.22 (foc cit) The largest possible nonlitear and
nonlocal groups of Isometries of the ISoriemannian Spaces
R g %) are the Poincaré-isotopic symmetries Pg (31) ror
isometrics £ = Tg with (nowhere singular and Hermitean/
isounits 7 = T, , which resuft to be locally isomorplic to the
copventional Poincare symmetry P, (31) ror all infinfitely
possible, positive-definite isotopic e/ezgsm:f Tg_

Therefore, the fundamental space-time symmetry of Einstein's
gravitation is not lost in our transition to interior gravitational
problems, but merely realized in the most general known, nonlinear
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and nonlocal; Lie-isotopic form (see Fig. V.2.1 for more details).
In particular, as hown in Sect. VI.3, we have the property in full
analogy with property (2.7}, :

Pas.1) oo /Rsoo G'g3.1), (2.11)

Similarly, the general symmetry Pg(3.1) admits, locally, the
relativistic isosymmetry P (3 1) and the nonrelativistic isosymmetry
Gy 3{3.1). In this way, every ma]or aspect of the conventional theory has
been shown to admit an infinite number of corresponding isotopic
liftings.

More particularly, isotopic spaces (2.8}, (2.9) and (2.10) provide an
infinite number of coverings of the corresponding conventional
spaces (2.1), (2.2} and (2.3), respectively; similarly, isosymmetries Pé(s 1},
Pq(3 1) and Gs,(s 1) provide an infinite number of coverings of the
corresponding conventional symmetries Pg(3.1), P {3.1) and Gg(3.1);
where the term “coverings” are used in a sense indicated earlier.

Let us finally keep in mind the notion of Jfmterior and exterior
problems, as reviewed at the beginning of Sect. V.1

We are now sufficiently equipped to present the Jfw/inite number
of Isotopic [fiftings of FEinstein’s gravilation for the Iaterior
gravitational problem, called. Einstem-Isotopic gravitalions , or
isogravitations for short, which can be introduced via the following
generalized equations on isoriemannian space R(x.g#) in standard
units (Santilli (/oc. oz )

8A = sfd A¥R - M) =

- 4, Ak sV P05 - UV =
8_[ dix A¥{ gV g Ruvpcr 8mg MI-W) 0, {2.12a)
g =Ty ~Tg >0, (2.12b)
= I = diag. (1,1,1.1), (2.12c)
g Er >R
where:

1) Eq. (2.12a) represents the isotopic action on R{xg#%) (Theorem
11.11.5), with R being the isocurvature isoscalar and M the isoscalar of
the conventional matter tensor computed and contracted on Rixg#).
This first condition ensures the achievement of a generalized theory
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of the interior gravitational problem, with particular reference to the
admission of nonlinear, nonlocal, nonlagrangian and nonnewtonian
internal trajectories, as well as a direct representation of the
inhomogenuity and anisotropy of the interior physical media, as
evidently permitted by the isotopic element Tg.

11) Condition {2.12b), is imposed to preserve the topological
structure of the exterior treatment g = T.y, Ty, > 0, also in the interior
problem with g = T.g, Tg > 0, thus allowing the fundamental
preservation of the Poincare” symmetry as the universal symmetry for
local and global, interior and exterior conditions. And

111) Condition (2.12c) implies that the isotopic element Tg acquires
the trivial unit value 1 = diag. (1,1,1,1) everywhere in the exterior
problem, by therefore guaranteeing that the isogravitations recover
the conventional Einstein’s gravitation identically everywhere in the
exterior problem. '

An inspection of the various metrics then implies the following
physical consequence.

LEMMA V.21 [foc cit) fn the transition from the exterfor to !
interior isogravitations (212) there Is the rransition from 2
Jocal-differential dynamics with (variationally) selfadjoint
interactions describing motion In the homogeneolus and
Isotropic vacuum, to & nonfocal/-integral dynamics with
selradjornt and nopselfadjolnt fnteractions describing motion
within generally inhomogeneous And anisotroprc Imnterfor
phvsical media.

In different terms, Einstein’s exterior gravitation represents the
trajectories of dimensionless test particles in vacuum which, as such,
can only have a local-differential geometry with action-at-a-distance
dynanics, as well known.

In the transition to our interior problem, we have instead the
representation of extended (and therefore deformabie) test bodies
moving within resistive media which, as such, demand a nonlocal-
integral geometry and a contact dynamics. _

The direct representation of interior physical media is evidently
ensured by the ispmetrics gx, X, ¥, |, T, n, ..) which can represent
physical notions and events essentially beyond the representational
capabilities of Einstein’s gravitations, such as:
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a} the variation of the density . of the interior medium with the
distance from the center (inhomogenuity};

b) a preferred direction in the interior medium caused, e.g., by the
intrinsic angular momentum of the body (anisotropy);

c) the local variation of the index of refraction n,

d) the local dependence of the speed of light ¢ = cob4(x,f{41:r',,...) on
the physical conditions of the medium considered {when transparent};

e) the maximal local causal speed as the true local invariant of the
theory (recall from Chapter IV that the speed of light cannot be
invariant because it varies from transparent medium to transparent
medium, and can be swafer than the maximal causal speed of a
massive particle, as it happens for the Cerenkov light in water which
travels at speed smaller than that of the electrons;

and numerous additional features typical of interior dynamics studied
in the preceding chapters. '

The representation of all the above local properties is ensured by
the fact that the isometric g can also be interpreted as zie Zsolopy of
an lsolopy, ie.,

m=H=Tm =g =T = Tge. (2.18)

By recalling that the Lie-isotopic liftings of Lie’s symmetries
preserve, by construction, the original generators (and parameters},
the physical implications of the above resuits is expressed by the
following property directly originating from the Lie-isotopic theory
(11.6).

THEORERM V232 loc. cit) All global and local conventional and
iSotopic Poincaré symmetries of isogravitations (212 admit as
generators the same, convehtionsl, total conserved quantities
pit = | M0 g3, . (2.14a)
JWV o= [P0 - xVMPO) g3y {2.14Db)
Note that in conventional presentations of Einstein’s gravitation,

the above total conservation laws are deduced via rather complex
methods, while in our approach the same conservation laws are
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directly derived from the global Poincare symmetry.

Moreover, the comventiona! total conservation laws (2.14) occur
under a generalized interior dynamics. By recalling the central
notions of closed nonselfadjoint systems of Chapters III and IV and
their isosymmetries, we have the following

COROLLARY V231 (loc. cit) [sogravitation (212) characterizes
e gravitational extension of closed-isolated systems Willh
nonselfadioint internal forces, in which the total, conventional
conservation laws are ensured by lhe general isopoincare
SymmeLy.

Again, as it had been the case at the nonrelativistic and relativistic
levels, we are dealing with a subclass of gravitational closed
nonselradjorne systems , those without subsidiary constraints. The
understanding is that the most general class is that defined on the
hypersurface of subsidiary constraints, this time defined in an
isoriemannian manifold.

The extension of model (2.12) with Aong-ride subsidiary
constraints, e.g., to define the total quantities on a conventional
Riemannian manifold (see the corresponding relativistic case (1V.2.5)},
is here left for brevity to the interested reader.

Next, we consider the isotopic form of the principle of equivalence.
For this purpose, recall the isonormal coordinates of Sect. I1.11, under
which we have the reduction of the isometric g(x, %, ¥....) to the tangent
jsometric f(k, ¥,..) of the isominkowski spaces M{x.{.%).

The following formulation is then rather natural (see Appendix V.A
for Gasperini's formulation in a conventional Riemannian space).

ISOTOFPIC PRINCIPLE OF EQUIVALENCE FOR ISOGRAVITATIONS (212)
foc. cit) Gravitarional effects on an isoriemannian space RIxg5) can
be lacally wade to disappear by rransforming the isemelric £ into that
§j of the tangent Isominkowski space cof Class f, or in the
nejghborhood of 21 ISonormal point y° at whics

ribsly) = o. (2.15)

The primary novelty is that, in the conventional case the test
particle becomes locally free, while in our case the test particle
remains under the action of the contact nonpotential interactions in
the neighborhood of the point considered.

The best way to appraise and understand isogravitations (2.12) is
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. by considering a “test particle”. in the gravitational field of a given
" astrophysical object, say, Jupiter.

As shown in Sect. 11.12, the trajectory must be geodesic for both the
exterior and the interior motion. In different terms, in the transition
from the exterior to the interior motion the carrier space is
generalized, but the geodesic character of the trajectory persists. We
evidently have the transition from one geodesic expression in one
space to another geodesic expression in structurally more general
space.

Consider first the local, exterior, Newtonian approximation. Then,
in the neighorhood of a point of the orbit, Galilei’'s historical
transformations hold, say, along the third axis

= rd = r3 + v, {2.16)

and the trajectory is, locally, the geodesic straight line in Euclidean
space E(r8.#).

In the transition to the relativistic setting, we have the local
validity of the equally historical Lorentz boosts

3 = yi3 - pxh, x* = yix? - px9), (2.17a)
B=vic, v=0-8% (2.17b)

and the trajectory remains, locally, a geodesic straight line, this time,
in Minkowski space.

Finally, in the transition to the full exterior gravitational setting in
Riemannian space R{x.g#), the trajectory is no longer a siraight line,
but it is characterized by the familiar geodesic equations (Sect. 11.12)

d2xht " dx? dx®
— +r2" . — = (2.18)

2 po

ds ds ds

as experimentally verified. :
However, when performing the transition to the interior
gravitational problem, that is, when the extended test particle
penetrates within Jupiter’s atmosphere, it is also experimentally
established that the the trajectory is no longer of geodesic type (2.18),
because of the emergence of the new forces studied in these volumes.
The order of magnitude of the violation of laws (2.18) should also be
kept in mind to prevent attempts at approximations of dubious value.
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In fact, for sufficiently high speeds, the resistive forces may
dependent up to the 10-th power of the speed and more, as routinely
done in rocketry (Sect. 1.1.3).

The inability of Einstein's gravitation to represent variationally
nonselfadjoint forces of this type is established beyond any
reasonable doubt, and so is the inability of the conventional theory to
provide a quantitative representation of the devigtions from
geodesic motion (2.18) in the interior problem.

Our isotopic liftings of Galilei’s relativity of Chapter I1I, Einstein's
special relativity of Chapter 1V, and that of Einsteins gravitation of
this chapter appear to be particularly suited for the characterization
of interior dynamics. In fact, in nonrelativistic approximation, the
trajectory remains an isogeodesic line3? in isoeuclidean space

><E(r 8 %), but the linear and local Galilei’s boosts (2.16) are replaced
by the nonlinear and nonlocal isogalilean boosts (111.6.6)

G S S ﬁsz(r,rx-,..). (2.19)

Even though the conventional Galilei's Zrazsformation (2.16) is no
longer a local symmmetry, the isotopic formulation is such to preserve
the exact Galilei's spamelry at the higher isotopic level

The preservation of the local symmetry at the abstract level in the
transition from transformation (2.16) to its coverings (2.18) evidently’
depends on the preservation of the geodesic character of the motion,
of course, when formulated in the appropriate isospace.

In the transition to a relativistic setting of the interior problem, the
trajectory remains an isogeodesic line, this time, on isominkowski
space M(x,7#), and we have the exact validity of the covering
nonlinear and nonlocal isclorentz boosts (1V.5.29), i.e.

3= 963 - gxh,  xt = 3t - pxd, (2.202)
B = v/co, P = vbglx, X, X,) / cobylx, X, ®.), (2.20b)
2 . -

B = vbg?v/cgbZe, ¥ = |t - B *, {2.20c)

which, being a covering of isotransformations {2.19), enjoy the same

30 As indicated in Sect. 1112, fke isogeodesic fmage of # Strajght line Is nol
pecassariy & strajght line even in the absence of external potential fields and ont &
flar space, because it dependends on local conditions (shape of body, density of
exterior medium, etc), as established by experimental evidence and as represented by
variational principle (11.12.19).
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properties of direct universality.

Again, the conventional Lorentz rlransformations are manifestly
violated for the interior conditions considered for the numerous
reasons studied in Chapter IV.

Nevertheless, our isotopic theory restores the exact character of
the Lorentz spmmetry , although in lesser trivial realizations. In turn,
the preservation of the underlying symmetry ensures that of the
geodesic motion in the new space, and viceversa.

Finally, in our full gravitational treatment of the interior problem
on an isoriemannian spaces R(x.g#), the isogeodesics are given by the
solutions of the isodifferential equations (Sect. 11.12)

B )1 e a2
+ X, )T xX,.)— T gk xX, ) ——=0.
ds? p ot ¢ as P ds
{2.21)

The direct universality of our gravitational theory for

representing all possible interior dynamical conditions considered, is
then reduced to a mere selection of the isotopic element T, as we shall
illustrate later on in specific cases.
" The local Poincare-isotopic character has been discussed earlier,
thus activating Gasperini's (1983) isotopies in their entirety, when again
restricted to the interior problem only and formulated in a
conventional Riemannian space (Appendix:V.A).

The generally non-null value of torsicn in the frame of the
experimenter, Eq.s {11.11.81), is evident, thus activating all studies by
Rapoport-Campodonico (1990) and others, also in the interior problem.

The main features of isogravitations (2.12) will be outlined in the
oncluding remarks.

V.3: ISOTOPIC ORIGIN OF GRAVITATION

As indicated in Sect. V.1, Einstein’s gravitation is afflicted by truly
serious problematic aspects of rather numerous and diversified
nature, including:

A} Problems of geometric consistency caused by the forgotted
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Freud identity {I1.11.34);

B) Geometric incompleteness of Einstein’s tensor {Lemma 11.11.2}
caused by the lack of invariance of the contracted Bianchi identity
under isotopies;

C} Apparent incompatibility with Maxwell’s electrbdynamics
predicting a first-order electromagnetic source of the gravitational
field in vacuum (Santilli (1974);

D) Numerous theoretical and experimental problems caused by the
lack of stress—energy tensor {Yilmaz (1958), (1971), (1977}, (1979}, (1980),
{1982), (1989}, (1990a, b)),

E) Inherent structural difficulties preventing basic advancements,
such as the formulation of an unambiguous quantization, or the
achievement of a grand unification of all interactions;

as well as others.

Our analysis would be grossly incomplete without submitting the
most general possible theory of isogravitation which is conceivable
with the knowledge gained in these volumes, in the hope of resolving,
evidently in due time, at least some of the above problematic aspecis.

As we. shall see, the critical examination of Einstein’s gravitation
on rigorous geometric terms creates new possibilities for further
advances that would be otherwise precluded. As an example, it shifts
the attention from the description of the gravitational field, to the
problem of the uitimate physical erigin of the gravitational field
tself.

In turn, the latter profile apparently permits the elimination of the
now vexing problem of ~unification” of the gravitational and
electromagnetic fields, via their “identification”.

Consider an astrophysical body with null total electromagnetic
phenomenology (null total charge, null total electric and magnetic
moments). Then, Einsteins field equations for the exterior problem in a
conventional Riemannian space R{x,g.®) on (3.1)-space-time dimensions
have the familiar form -

GM = RPV — gV R = 0. C(38.1)

representing Einstein’s central geometric conception of the
gravitational field reduced to pure geometry without source.
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According to Santilli (1974), this conception of gravitation is
incompatible with Maxwell’s electrodynamics in the following sense.
Even though the total electromagnetic guant/tres are null, the total

electromagnetic erergy-maomenlin 1ensor T"”"elm resulting from the

contributions of each individual charged constituent of matter is, not
null, and actually so large that it can account for the entire
gravitational mass m of the astrophysical body considered (this is
called the strong assumption, loc. cit).

The following generalization of Eq.s (3.1) was then submitted (Joc
crr.) :

GHV = RW - 4glV R = gn T (3.22)
00

m=[o%T em. (3.20)

r T = 0, . (3.2¢)

where Eq.s (38.2a) represent the nowhere null electromagnetic tensor
originating in the structure of matter (see below), Eq.s (3.2b) represent
the strong assumption, and Eq.s (3.2c) represent a known property of
the electromagnetic energy-momentunt tensor.

One can directly arrive at Eq.s (3.2) by recalling that the physical
origin of the masses of all elementary particles is mostly of
electromagnetic nature. This technically means that most of the mass

tensor MMV must be replaced by a suitable electromagnetic tensor

TV 1. When summing up the contributions from a large number of
massive constituents in the atomic, nuclear and subnuclear structures,
the existence of a first-order electromagnetic tensor in the exterior
of bodies with null total charge is than an incontrovertible
consequence, in evident disagreement with Eqs. (3.1) (see Fig. V.3.1 for
more details).

It should be indicated here that the incompatibility of Eq.s (3.1) with
Maxwell electrodynamics is irreconcilable, in the sense that the tensor

fiald
elm -

theory or assuming that all charges constituting the body are at rest,

as well as at very close mutual distances {see below). Thus, either one

accepts Einstein’s equations (3.1), in which case Maxwell’s theory must
be modified, or one accepts Maxwell’s theory, in which case Einstein’s

can be rendered ignorable only by modifying Maxwell's
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gravitation must be modified.

For the purpose of attempting the identification of the origin of the
gravitational field, it is important to briefly review the main lines of
santilli (foc cit. ). '

The ideal particle image of the gravitational body with null total
charge and dipole moments is the w° particle. The author therefore
computed the total electromagnetic field of the w° via the use of
conventional relativistic techniques, beginning with the Lienard-
wieckert potential in conventional Minkowski space Mix,n.R)

An) = —4 7 -

where m stands for retarded or advanced, the v's are the velocities of
the charges and d is a suitable distance (see below). ’

Under the assumption that the w° is a bound state of two
constituents of point-like charges xq (which is in agreement with
current quark theories on the 7° structure), the total potential outside
the w° due to the interior elementary charges is given by

v:"l N vﬂ. ‘V m
aAl;rn(x) = —q E €n€mCrnm """d"m = —¢q {[C-chl. dq Rul Cindv :-;+Adv ]
e +Rot AV
— [Coret 2P — gy T = Conlin)
4 d—Rt‘t ALY "-—Adv L mnfinm ] (34)

where: the observer is located at a {space-time) point X in the exterior
of the m° the charges are located at the points yp,, with n indicating

the positive or negative charge; the distances of the charges from the
observers are therefore four in total and denoted with D, = X -

Ymns

"
n R [
Aﬂm(*) = ——{f€,€,, ki .

Imu

. (352)
d, m = Dnn C Upy = — — D,,,,, LT
n 4, n) C,,.‘}'CD,, (] € —..._D_.;c__)
(3.5p)
Dy = (Gm | Do H Dmn) = (EmDn ’ Dmn); (3.5C)
D =10; |Dusav|=|Daret| = Dy;
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—1 for positive charge, (3.56)

€ =
" +1 for negative charge;

the C’s are constants verifying the conditions
Ciret + Cipay = 1, (3.6)
Conet + Copgy = 1,

and are usually assumed to take the value i to give equal weight to the
advanced and retarded contributions.

The exterior electromagnetic field of the ©° due to its structural
charges is then given by

FU(5) = T Con oFol0) - 6.7)
c [‘D t}e] T [D a ]ﬂf" 'H" a!’ll"
F;?n X) = J€p€nm = + [Du, va]nm s
4 ( ) 9en d::tu . d:m dfami
where
[Du! DB}MI = ‘-D:mvﬁm — Dzmv‘:tm . (38)
with first expressions
i 3-9
,,F;ﬁ,.”pi(x) =4 < :l < [D‘ v ]mu L] ( a)
) i R Doy * Oy B
q mn.lID()‘) = (f€n€py ‘_dq—"—' [D s U ]mu - d2 [D a ]mn
. n nn
(3.9b)

The total electromagnetic energy-momentum tensor of the m° due
to the charged structure of the constituents is then given by
expressions of the type ’

TS __" ! .
. F= Z %a’fi_ [€2D,D,P -1 (D - 0), {D7, 1%},

nn’
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=8 (g YD, 08 — How + o)D" DR

2z
- ‘(D D ){"ﬂ: uJ] “B'('D_d_ﬁﬂ)—

— g8 (__-—1 rE ?,:m) (2 D, Yo, * b)) — Dy - vu X Dw * "n)]}’

{As, B} = A" B8 | APBe, (3.10)

For the case of the magnetic moments of the constituents, the
potential can be written

af Uy C _i{ }L"BD{;
A (1) = —¢ dm - "T; [d‘l’ 4 ]1—-1-,‘
(3.11)
= quﬂ(x) + ,,A,,,“(x),

where

qu“(x) = —{ _!‘:i'i“_ (3.123.)

D" unD .
) = [t Pe oD a) ” TR ],-, (3.12b)

The total electromagnetic field of the w° due to the intrinsic
magnetic moments of its constituents can then be written

"Fﬂﬁ —_ "[;:{'?p:' "I “l‘;tfu ]_ "JT;ID (3- 13)
where
_ _g(,‘n all 3eh ap il e py .
rﬂma = I ) (I"' D * DY) D, (3.14&)
2c - 2c o 6 6c? a o
ot = = 5 10+ (D = (i ok i (D)) (D — WD) D,

3“':! =~ oo N 80 Ny ¢ ap e gyt
4 2 (uoD8 — oD D, + 5 (uovad — ) D,
__l__ _;_% (p'npDH — 'Ban) v, ‘I,. ?,_;:; ([’I«""HH _ f.l-ﬂ"l-‘") D,- .
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-D 3e(D - a)? -
S — [c(ad4 ) . 3e( —; a) ] (p=2D? — pf*D*) D,

+ 3C(?[4‘ a’) (FL“"DH _ ﬂH"DG) Dn — ‘_;':i (’:iﬂlJDﬂ —_ .-HuDu) Da .

FHO) = WP + ), k=123

~ FIGURE V.3.1: The model of a star with null total charge as a gas of
charged constituents, submitted by Santilli (1974) to illustrate the
inconsistency of Einstein’s reduction of the exterior gravitation to pure
geometry without source. The model also suggests the ultimate origin
of the gravitational field as being primarily of electromagnetic nature
{plus contributions from short range interactions discussed later on in
this section). In few words, even though the total charge is null,
Maxwell's electromagnetism establishes beyond any reasonable doubt
that the charged structure of thebody generates an electromagnetic
tensor which is of first-order in magnitude, and nowhere null in the
exterior gravitational problem, in direct conflict with Einstein’s Eq.s
(3.1). The admission of exterior gravitational sources has a number of '
predictable, rather fundamental implications. In fact, it first shifts the
emphasis from the “description” of the gravitational field, to the study
of the its origin. Secondly, it permits the elimination of the now
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vexing problem of “unification” of the gravitational and
electromagnetic fields via their “identification”. Moreover, it permits
the achievement of an axiomatically correct theory which is
inclusive of the forgotten Freud identity (Sect. 1L.11), as shown later on
in this section. :

The total electromagnetic field of the m° is then given by

aff I m «
.T,_,n = -—4;;- (F:n]‘-fuu -+ ;g ”F::,’Funm). (315}

where the sum over all possible forms is understood, with total
energy-momentum tensor

T:l? = ..II; (F:;‘an" + ﬂgnﬂﬁ-::!?'om). ' (3.15)

Explicit calculations conducted in Santilli (foc cit) then confirm
that the mass of the 7" has a primary origin of of electromagnetic
nature, as expected, with an exterior, first-order, nowhere null source

v
tensor TH elm*

The extension of the model to an astrophysical body is
straighforward and merely done by summing up the total
electromagnetic field (3.15) due to a large number of charged
constituents, thus resulting in a first-order electromagnetic source
which requires modifications (3.2).

Note that Eq.s (6.2a) equally hold without any modification when the
total charge of the body is null. o

Needless to say, the electromagnetic field is indeed the primary,
but not the total source of the m° mass, owing to the presence of the
additional short range interactions, the weak and strong interactions
in the interior of the nuclei and of their constituents.

This leads to the formulation in (Joc ci. ) of the so-called weak
assumption, for which the gravitational mass of a celestial body is
not entirely due to the electromagnetic fields of the particles
constituents,

pv
m = J&XT e (8.17)
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but rather to all interactions in the structure of matter

AR P P g {3.18)

In this case Einstein’s equations (3.1) are replaced by the more
general form

GHY = RMV - 4 g R = sm(t

v
V) (3.19)

A number of experiments were then submitted in (foc cit) to test
the fundamental assumption of all gravitational theories according to
which the electromagnetic field is a source of the gravitational field
(e.g., by using interferometric measures connected to the large
magnets currently available at various laboratories, and other means).

In a2 way independent from the above studies, Yilmaz ((1958), (1971),
{1979}, (1982), (1984), (1987) (1990)) has submitted numerocus arguments over
several decades according to which Einstein’s equations (3.1) are
incomplete (also for the case of the exterior field of a body with null
total electromagnetic quantities), because of the lack of the stress-—

energy rensor g Yilmaz has therefore advocated the

stress
following generalization of Eq.s (3.1)

GtV = pR - 4 glVR = gtV (3.20)

stress

and worked out a new theory of gravitation, here called F¥imzzs
exterior gravitation ,in numerous details,

Some of the most relevant problematic aspects of Eq.s (3.1) pointed
out by Yilmaz (/oc. ¢/t ) are the following:

1} The apparent inability by Einstein's gravitation to recover the
Newtonian gravity (because it apparently recovers the so-called
Hookes mechanics in which the sun has infinite inertia (Yilmaz {1984));

2) Problematic aspects of Einstein’s gravity in recovering the
Newtonian 532” advancement of the perihelion of Mercury {note that
clear proofs apparently exist only for the relat1v15t1c advancement of
43" (Yilmaz (1984), (1989), (1990a));

3) Problematic aspects for Einstein’s gravitation to achieve true
compatibility with the' special relativity, particularly in the
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reconstruction of the reletivistic conservation laws (Yilmaz (1980),
{19824, b), (1989)); and others.

Regrettably, we are not in a position to review these studies for
brevity. We shall limit ourselves to indicate how the stress-energy
tensor arises rather naturally in the interior gravitation via the
isoriemannian geometry.

with Theorem IL1.11.5 we have identified the most general possible
interior field equations with source. We can now reinterpret these
results via the following .

THEOREM V.31 (ISOTOPIC ORIGIN OF GRAVITATION, Sanmtilli
(1988d))- The most general possible isogravitations on isoriemaniian
spaces Rixg ) rfor interior gravitational problems verifying lie

contracted Isobignchi Ildemtity and the isofreud identiy can be
expressed vig the roflowing varigtional principle

8A = sfa‘*:;[ﬁ ~sm(f o+t )] =
elm ST

_ 4, oWV PO s W Yy =
s_r d*xlg" & prg + S"guv(T elm * U Sl.)] 0 (321a)

g = ng, Tg > 0, g € Rixgh), {3.21b)

Tg| =1 = diag. {1,1,1,1). (3.21c)
r>R°

with Fuler-Lagrange equatfons

— & . sV - (Lad [ =
EWY = WV - W - bV - e+ BV s

= RPV - R - em(THY ) + W5 0ind = 0, (3.222)

o = ™ - gVostem oW =0 (3220)
weW =0, (3.22¢)

thus jdentitving the gravitational rield with the electromagnetic
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and shart range mteraclions at the orgir of matler,

MHY =T v (3.23)
matter elm

Isogravitations (3.22) evidently preserve all basic properties of
forms (2.12), including the preservation of the general and local,
interior and exterior, exact isopoincaré symmetries, the geodesic
character of the trajectories, etc.

The most important mathematical advanée_ment of the formers
over the latters is the achievement of a geometrically consistent
theory, which avoids the incompleteness of Einstein’s tensor under
isotopies identified in Sect. IL11.. The most important physical
advancement of isogravitations {3.22) with respect to forms (2.12) is the
possibility of eliminating the vexing problem of ~umirication”™ of the
gravitational and electromagnetic fields, and replacing it with their
"identification” , thus permitting a study of the origin of gravitation.

In particulart, isogravitations (3.22) permits the identification of the
possible origin of Yilmaz's stress-energy tensor with the weak and
strong interactions in the strutture of matter (Santilii (1988d)}.

Note that here is no gquantitative CJdifference belween
Isogravitations (222 and (212 as rar as the mterior probiem is
concerned However, the two isogravitations are structurally
different in the exzersor problem. .

In fact, the formers reduce, by construction, to Einstein’s source-
free conception of exterior gravitation in vacuum

GV = pW - 4gWp =g {3..24a)

MY = TV + TV =, (3.24b)
matter |r > &°

elm srint.

while the latter models reduce to the following generalized equations
WV _ ptV _ 10V o 134 wy
G R igF*R = 81 (T am t S), {3.25a)

T

vV
em ¥ t

MRV (3.25b)

matter |r> & stress®

or to the simpler, yet nontrivially generalzed form
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Fv = v H -
Mt matter |r> 5° 7 e elm ° Ca Stress|r>s°_0a {3.26b)

in case the interior source due to the short range, weak and strong
interactions has no first-order image in the exterior problem or,
equivalently, in case the necessarily nonnull stress-energy tensor of
the interior problem has no nonnull image in the exterior. '

As stressed earlier, these studies are solely devoted to the
Interior gravitational problem. As such, we have merely identified
above the most salient alternatives and pointed out the possible
contributions to the exterior problem from our interior isogeometries.
However, the issue of which of the three exsersor models (3.24), (3.25),
(3.26) is correct will not be addressed. It is hoped that experts in the
field will finally confront these now vexing problematic aspects of the
exterior gravitation and eventually resolve them.

We can now present a few preliminary comments on some
expected implications of isogravitations for black holes and
singularities at large. As well known, these topics have been studied
until now via a conventional, local-differential Riemannian geometry.
The central issue to be addressed is therefore the identification of the
implications for black holes and singularities at large which are
expected from the ncnlocal and non potential interactions of the
interior gravitation at large, and of the collapsing gravitational
problem in particular (see the comments in Sect. V.1). ,

An effective way to study the problem is to identify, first, the new
perspective offered by our isotopic methods for conventional
gravitational singularities, and then pass fo their rnonlocal and
nonpotential, interior generalization.

The central notion recommended for the analysis is the -
representation of a conventional Riemannian space R{xg®) as an
isotope of the Minkowski space M{x.n.%} (Sect. 11.3)

ROcg.®) » MOn.R), (6.27a)

gh) =T M, A =Tn=g #=81 =17 (6.270)
In fact, by recalling that the Minkowski metric v = diag. {1,1,1,-1) has
no singularities, the above representation focuses the attention on the

fact that the singularities of the Riemamnian metric g = 7 are in
actuzlity the simgularities of the isotopic element T and, Uius, the
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zeros of the isounit 1 (Santilli (1988d))
gle) = oo, T = oo, ) =0 (3.28)

We reach in this way the new result that zke fsounits can
directly represent gravitalionzl collapse vig ils possibler zeros .
Stated in different terms, all conventional singularities of Einstein’s
gravitation, such as that of the Schwartzchild metric, can be
equivalently represented via the singularities of the isotopic element

T or, still equivalently, via the zeros of the isounit 1 = 71

But structures (3.27) and (3.28) represent exterior gravitation in
vacuum. To represent more closely the physical reality of interior
gravitation, we therefore perform a further isotopy. We recover
again the result of Sect. 11.3, namely, the most general possible
isoriemannian space R(xg#®) is an isotope of the Minkowski space
Mix,n.%), this time expressed as an isotopy of isotoppy (3.27)

/i gH) = MR, , {3.29a)
gxxx,.)=Taxg,. }n=T &xk.) g = T&x¥,.} TX n, {3.29p)
fxxx) =Ty =g, ki) =171 (3.29¢)

We can therefore say that ke possible singufarities of
Isogravitations witlh Isometrics & = Ty are those of the Jsotoplc

elements T, that Js, the possible zeros of the /sounits ;=74 {Santilli
(foc cit)). .

It is easy to see that zhe conventional singularities of lhe
exlerior graviiation, &g, that or the Schwartzclhild metric g, are not
necessarijy preserved under the additional of internal nonlocal and
nonpotential rorces Stated differently, the singularity g(x) = o is not
necessarily preserved under the isotopy gix) = g(xxX,.} = Txi¥..)
gix).

We can therefore conclude these introductory comments to the
problem of singularities in isogravitations by saying that e
canventional biack holes and singularities of type (3.28/ characierized
By Jocal-differentig/-potential methods and geomelries may well
result fo be only a Hmit geometrical gpprovimalion of “brown holes”
or “near simgrarities” under the addition of internal nonfocal and
nonpotentuial interactions because, in the gl anglysis, mrinities are
not expected Lo exist in our pliysical tniverse
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The resolution of the problem whether or not singularities truly
persist for interior isotopies (3.29) requires a deeper knowledge of the
representation of interior physical media via isotopic elements T. As
such, the study will be conducted at a future time.

Needless to say, the interior gravitational models presented in
this chapter are at their very initiation and so much remains to be
done. Among a considerable number of open aspects the attentive
reader can readily identify, we mention in particular:

A) The need to achieve a dual representation, not only of the
stability of the center-of-mass orbits vz the instability of the interior
trajectories as permitted by isogravitations (2.12) and (3.22)31 but also
of the reversibility of the center-of-mass trajectory vz the intrinsic
irreversibility of the interior dynamics;

B) The need to re—examine with care and scientific objectivity all
currents interior -theories derived from contemporary local-
differential models based on the conventional Riemannian geometry,
whose results may be directly affected by the ultimate nonlocality of
the structure of gravitation, such as “black holes”, the “dig bang”, etc,;

C) Study the new class of singularities offered by all isotopic
theories: the zeros in their isounits identified earlier; and others.

The mature understanding of these novel perspective is that
isotoples canm at best provide relatively small corrections
to the existing theories, and not radicsl revisions, as
illustrated in Chapter VIi, e.g., in regard to the current view on the size
of the Universe, and the guasars’ redshift.

V.4: EXAMPLES OF ISOGRAVITATIONS

In this section we shall present a few examples of the interior
gravitational theory of the preceding sections.

31 The representation of lacally decaying trajectories via isogravitations is so direct
and s:mple to appear trivial. Consider a local, tangent, interior plane with related
isopoincare symmetries and isorotational subsymmetries O(3). Its local isocasimir
invariant can be written {Sect. I11.3}J2 = ] § J = const. Local isometrics of the type §
= exp 7yt then imply the monotonic decrease of the angular momentum of the type 12
= JI = const. x exp ( - ¥ t), as desired.
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It is sufficient for this objective to consider the Zsorsemannian
spaces R(xgR) of Sect. IL11 for the case of a diggonz/ iseropic
efement Tg, or Isounit Ig of the type

ghx k) rinx,.) = Tg(x,kﬁm(X),T(x),n(X),-..) gx), (4.1a)

lg= Tg! = diag. (a,% ny% ng%ngd, (4.10)
ny= n, XX Z )16 nf),.) >0, (4.1c)
g eRkg®), x =M = 6Kxh, x? =, (4.19)

k=123,4 k=123

where c, represents the speed of light #7 vacuum , and R(x.gR) is a
conventional Riemannian space. '

As the reader will recall, the isounits Ig depend on the derivative
of the coordinates X with respect to an independent (invariant)
parameter s of arbitrary order, as well as on the local density p(x) of
the interior medium considered, its temperature T(x}, its possible index
of refraction n{x), and any needed additional quantity..

Parametrization (4.1) is essentially that for our re/f2&ivistic
geometrization of Interior physical media of Sect. 1V.10. In fact, in the
conventional normal coordinates in which the Riemannian metric gx)
recovers the conventional Minkowski metric

g = 7 = diag. (1,1,1,-1), {4.2)

parametrization (4.1] implies the invariant separation on the local
isominkowski spaces of Class |

Mixif): & = &1, 1, = T, (4.3)
with invariant isoseparation
R | . 1
x“ = x), X
= xlnl_le + x2n2—2x2 + X3n3'2x3 - x4n4"2x4, (4.4)

in which case the index of refraction n can be identified with the
characteristic function n,, and the speed of light within the medium
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considered {when transparent) is given by the familiar expression
€ = Cy/hy _ (4.5)

This illustrates the reason for assuming, not only the isounit Tg, but
also the individual functions n, to be paositive definite.

In the above parametrization, the maximal/ cauvsal speed , say,
along the third axis, is given by Postulate 1V.9.11

ng

VMax = cc ’

{4.6)
- ngy .

while for the Lorentz-isotopic transformations (iV.5.20) we have the
expressions, again, for speeds v along the third axis

1‘142 —4
2 = —5 B, ¥=11- 8% " (4.7)
ns

Moreover, in order to separate the relativistic from the Newtonian
contributions, it is recommendable as a first step to assume ny = np =
ng, in which case isoseparation (4.4) can be written

. 1 i
X2 = —2xkxk - —2t cozt, (4.8)
fig g
With the above notation, the content of - this section can be
interpreted as providing a graviiational geomelrization of lnterior
phavsical mediz with particular reference to the classification of
physical media into the following nine classes (Sect. 1V.10)

< <

ng >= ng, ny =>1. {(4.92)
< <

VMax = o c => Coyr (4.9b)

The reader should recall that, unless the medium is transparent,
the gquantity ¢ = cy/ng has a sole geometric meaning without
representing any physical speed, and that media of Type 7 are
precisely those expected in the core of a star undergoing
gravitational collapse.

Before passing to specific examples of isogravitation, the following
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comments appear recommendable to prevent possible misre-
presentations. First, one should observe the physical reality as it
appears, say, in Jupiter's structure, whereby we have local, internal
variations of energy, linear momentum, angular momentum and other
physical quantities w/tbour arfecting the roia! conservation /aw.
These phenomena are mere internal exchanges which are such to
balance each other and result in the global stability of the system.

Moreover, tie total mass of Jupiter Is the conventional expression
from (v.2.14), i.e.

m = Ja3% 700 (4.10)

without any contribution from the lnternal nonpotential exchanges of
energy. In actuality, the nonpotential nature of the internal forces
can be best illustrated precisely with their lack of contribution to the
total energy of the system.

This occurrence has been geometrically represented via the
Poincaré-isotopic symmetry in which the generators remain the
conventional ones (Theorem V.2.3), and it implies that the internal
characteristic quantities n, have no impact or measurable effect
whatever in the exterior geometry.

The above comments are important to prevent possible attempts of
measuring the Jmrerfor behavior of gravitation with exzerior
experiments, say the precession of the perihelion of planets moving at
large distances in vacuum, or the bending of light rays in the exterior
gravitational field of an astrophysical body with isostructure (4.1).

On the contrary, in order to test the swferior gravitation, one
must necessarily conduct fzzerior experiments, such as the measure
of the redshift of light propagating in the Jrrerior of an
inhomogeneous and anisotropic medium,

Further notions which are useful to prevent misrepresentations
are those related to the nature of the internal forces and their
reference frame. To begin, the reader should be aware that Zess
particles ar rest in the interior physical medivm experience 7o
CORLACE RORPOLENLIR! 1orces.

This is the reason why the primary functional dependence of the
drag forces (read, isounit or isotopic element) is in the vefocities,
because for null velocities, the drag forces are notoriously null.

Needless to say, the coordinate dependence must also be
cansidered, but it is generally related to other aspects of the theory,
such as the local behavior of the density p(x) {e.g., its decrease with
the distance from the center), etc.
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In fact, drag forces do depend on the local density and, therefore,
indirectly on the coordinates.

A further reason of misrepresentations is the use of improper or
physically nonrealizable reference frames. 7#e rsundamenial
reference frame In the study of the inlerfor gravitation is the rrame
&t rest with the medium considered, generally assumed at the center
of the astrophysical body. Other frames must be selected with care.

In fact, as stressed in the preceding chapters, /nerisa/ frames are
a philosophical abstraction because they are not realizable in actual
experiments on our Earthly environment, nor do they exist in our
planetary or Galactic systems. While conventional relativities are
conceived strictly for intertial systems, the isotopic relativities are
conceived to identify the equivalence class of real reference frames,
that is, frames which are in maw/pertia/ conditions, such as our
conventional laboratory frames on Earth.

The important point is to acknowledge the physical evidence that
the reference 1rames at rest with the interror or astropliysical bodies
are noninertigl, with no experimentally established exception known
at this writing.

Major misrepresentations are then conceivable, particularly from
an experimental viewpoint, if one attempts to elaborate experimental
data on an abstract ineriial reference frame to test a theory that is
intrinsically noninertial in conception and realization.

Also, the spmmetries of inertial frames are necessarily lnesr and
locai, as well known, On the cantrary, the effects to be measured are
rundamentally nonlinear and nonlocal 1 coordivates, velocities and
other quantities. This is precisely the reason for our efforts in
reaching nonlinear and nonlocal generalizations of the conventional,
linear and local Lorentz transformations.

Thus, if one attempts the setting up of experiments on noninertial
and nonlinear interior gravitational effects, via the conventional
inertial and linear settings of contemporary physics, major
expertimental misrepresentations can evidently result.

In conclusion, an infinite number of reference frames can
evidently be considered for experiments on interior gravitations. The
point is that, prior to claiming the outcome of the tests as
~experimental results”, these frames must be equivalent NOT to inertial
frames, but to the primary frame at rest with the atrophysical body
considered, i.e., must belong to the infinite class of equivalence of the
nonlinear Lorentz-isotopic transformations characteristics of the
medium at hand. . :

Lacking these precautions, the transition from an intrinsically
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noninertial, .nonlinear and nonlocal setting to the familiar inertial,
linear and local contest of contemporary experiments evidently
implies the possibility of alteration of the experimental results.

The above context is rendered more complex by the fact that our
isoropic spaces are geometrical structures rfor g more rigorous
treatment of interfor conditions, but they are nol the physical space-
ime of the expetimenter.

in fact, the notions of isominkowski spaces M(x.)j.#) and
isoriemannian spaces #ix,g#R) have been conceived to reach the
geometric spaces in which the conventional Poincaré symmetry can be
reconstructed as exact. But the physical spaces for actual measures
remain the conventional spaces M(x,n,®) or Rixg R} where the Poincare
symmetry is violated by the effects considered.

AS a result, the calculations obtained on isotopic spaces must be
projected on actual spaces to separate theoretical from actual
effects.

This is exactly the case of torsion which is null in the geometric space
$f(x,g4), but non-null when projected in the physical space ®{x.g.%
(Lemma 11.11.7).

To state this occurrence differently, rhe fnlerior elfects we are
studping are deviations rrom conventional Lorenizian prediciions. If
the experimenter uses QUI' gEOMELrIC ISOSPACES &S physSical spaces,
noe deviation whatever occurs because, in e fatter spaces, e
Lorentz symmetry has been reconsiructed 45 eXact.

It is only by reprojecting the isolinear and isolocal predictions of
our isospaces in conventional spaces that experiments can be
properly formulated and conducted.

Finally, in order toc have a genuine generalization of Elnstems
special and general relativity with internaily verifiable effects, one
must have

ng # ng {(4.11)
In fact, for ng = ng, B = B, Yy =y, the Lorentz-isotopic
transformations coincide with the conventional ones, and ho
meaningful departure has occurred from conventional settings.

The reader should be aware that the value n, = n, implies the
so-called scalzr Isolopies

= TEX,.) gx), (4.12)

where T = n3"2 = n4'2 is a multiplicative scalar function to the
Riemannian metric g. Thus, even though isotopies {4.12) are certainly
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intriguing .and worth studying, our primary interest i this section Is
for Isotopies (41} which are not reducible to the scalar Isotopy (£12/ .

At a deeper inspection, it is possible to show that the non-nuil
value of torsion in the physical space of the experimenter is precisely
related to the non-unit value of the characteristic B ratio, in which
case from Lemma 11.11.7 we have

- f2 P _p2p o2p @ @
TPy = TR0, -FRP = 2P 7Y - TR T, =0 (419)

In this way one can link departures from Einsteinian settings
caused by non-null torsion to our isotopic departure ng = ng.

AS z matter of fact, and as stressed during our analysis, an
empirical check for the nontriviality of the considered interior
gravitational experiment is to verify that it is indeed characterized by
a non-null torsion, again, in the physical space of the experimenter.

As a result of the above preliminary clarifications, we are now ina
position to study a few illustrative examples.

OANSTANT ISOTOP/ES  As indicated earlier, the characteristic n-
functions can be subjected to a suitable average into constants

n, = const, p =1234 (4.14)

[
and provide a first, significant approximation of the interior problem.

In particular, even though the boundary values of the n-functions
are one, their average is not one, thus leading to significant deviations
from Einsteinian conditions.

A first example of constant isotopies is provided by the Nielsen and
Picek metric (IV.3.21) computed for the interior of pions and hadrons at
low energies via the use of the Higgs sector of conventional gauge
theories. For such a metric we have

ng 2 » 1+ 12x107%, n, 2 = 1- 3.8x1073 for pions, (4.152)

ng? » 1 - 021073, n,2 = 1 + 06x107% for kaons.  (415b)
The metric does represent the noneinstenian conditions ng = ny
and it is therefore acceptable for the analysis of this section. In

particular, the characteristic ratio between the space and time parts
are given by

B2 = —=— = 0995 for pions, (4.16)
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and

BZ = - = 1.008 for kaons, (4.17)
n
4

with value expected to increase with the increase of the density for
heavier hadrons (Sect. 1V.9).

Another set of values was obtained by Mignani (199]) via the use of
the isotopic redshift law applied to a number of quasars, under the
preliminary condition that they are at rest with respect to the
associated galaxy.

By averaging Mignani’s values reproduced in Egq.s (1V.9.52), we
obtain the constant average ratio :

- n3
B=—# 38464, . (4.18)

ng

where one should recall that all Mignani's B-values are positive and
bigger than one.

Wwith the use of the above numerical values, one can first inspect
Gasperini‘s (1984b) explicit examples of constant iocal isotopies, such as
the isogeodesic trajectory

4 gk 4 ax* dx¥ axP
(0 -—a)— +—asf—+ 4P —-— =0, (419
s gs2 3 ds ds ds

where @ is given by Eq.s (A.25) and the I'"s are the conventional
connection coefficients; or the approximate {to first order terms)
interior orbit equation

m

u = —[1 + coslp - ¢g - AdS (4.20)
h2
where h and cpo are integration constants, and the Jsoprecession of
the orbit after a full revolution (¢ = 2mw) within the medium is given by

floc. cit.]
6Tm 10L
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Ad}o |¢ =om = {t - «a ';d"—'); {4.21}

or the approximate modification of the Schwartzschild metric (/oc
i) :

2
m 1+20/3 dr
gs? = -1 - 2— at? +
r 1 - 2m/r
+ r2(@e? + sinle da¢). (4.22)

The first physical meaning of the above models is for motion of
extended test particles within an inhomogeneous and anisotropic (ng =
n,) atmosphere of very lght depsity (nh =~ 1), whereby one can see
the deviations from the conventional trajectories, stable orbits and
Schrartzschild line element caused by a small, constant drag.

One can then increase the density of the medium considered, that
is, increase the average value of the n-constants, and see the
proportionately higher deviations caused by drag effects.

In the limit case of extremely high density, as in the core of a
collapsing star, the test particle is not expected to be able to
complete one full orbital revolution within the medium considered in a
finite period of time.

This point serves to stress that the isotopies under consideration
are purely internal and, as such, they cannot be restricted from
conceivable upper bounds originating from external experiments.

As indicated in Appendix A, Gasperini’s isotopies {4.20), {(4.21) and
{4.22) are still partial inasmuch as they are /fecz/ on a conventional
Riemannian space.

A number of examples of the full nonlocal and nonpotential
examples of isogravitations will be presented at some later time.

V.5: CONCLUDING REMARKS

It appears that isotopic techniques do indeed permit the achievement
of the desired objectives: the formulation of a generalized theory for
the imterior gravitational problem which is capable of recovering
identically the correct gravitational theory for the exterior problem,
while being directly compatible with the preceding isospecial and

279



isogalilean relativities (see bext chapter).

Despite that, we have to lament the inability to reach a definite
model because of the unavailability at this writing of the definite
theory for the exrerfor gravitational problem accepted by the
scientific community at large. In turn, this has forced us to submit
different isotopies capable of recovering the corect exterior theory,
whatever that theory will finally be.

Despite these open issues, we can conclude by saying that
isogravitations (2.12) and/or (3.22) are capable of:

1) Identifying, apparently for the rfirst ume, the general
isopoincare symmerry ﬁg/.fj} for the characterization of Lhe
conventional EInstein’s gravitalion, vig the embedding or Ihe
curvature i the isounir of the theory:

2 Directly representing the conventional tolal canservation
jaws (214 via the genmerators of the ISOPOICAre SYMmELry

ﬁgﬂzf/,'-

3} Not being detectalbile rrom the oulside, because of the
conventional exteriar character of the total conservation 1aws,
as lnferent iy alf closed nohseliadjomnt Systens;

4 Recovering Finsteln's gravilation identically in the
exlerior probélem;

& Verirving all exterior experiments verified by Einsienrs
gravitation;

& Ilmplying nonfacal-integral generalizations of
conventional geometries in the rransition from the exterior to
the interior problem, the airine geowelry and the Riemannian
geomelry:

7l Representing the moast general possible finear or
nonfinear. local or nonfocal, Lagrangian o Roniagrangrans,
Newtonian or noanewtonian nterior ajectories;

8 Preserving the syvmmetries and geodesic characte in the
Lransition from the exterior to he mnterior probleq.

9 Predicting a new series of fnterior phenomena wWRICH can
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be subjected to direct experimentzal verificaiion, such &s he
apparent fsotoplic deviations from the Eiustelnian Dopplers
redspift ror lght propagating WIithinl Inkomogencouvs and
anisotropic transparent media {Sect VIL3, and other interior
elfects.

9/ _o_ffén}.zg a rundamentally new approsch to singularides and
black holes viz the zeros of the Isounits with due consideration
for nonlocal internal errects;

11} Orrering truly novel possibilities for unambiguous operator
formulation of gravitation’s and grand-uniication’’:

32 Ag well known, the historical difficulty to achieve an unambiguous quantization
of gravity is that, on one side, Einstein's gravitation has an identically null
Hamiltonian, while, on the other side, quantum mechanics is fundamentally dipendent
on the existence of the Hamiltonian. The isotopies of quantum mechanics (hadronic
mechanics) offer truly novel possibilities for achieving an unambiguous operator
formulation of gravity precisely because they bypasses the need for a Hamiltonian,
and embed the geometry of gravitation in the isounit of the operator theory. In Sect.
11.6, Eqs (1.6.23-26) of Volume I we presented the basic equations of hadronic
mechanics. In footaote!? of p. 94 of this volume we recalled the main idea of the
{naive) mapping of Hamilton-isotopic mechanics into hadromic mechanics, ie., the
mapping of the iscaction A into - i T log 4, r), where i = T1 is the isounit, with
consequential map of the isotopic Hamilton-Jacobi equations into the
isoschrodinger's equation id,$(tx) = H « ${t, 1} = E«i(ty) = E §it, r). Recall now the
fundamental structure of conventional and isotopic, gravitational metrics g§=Tm
where 7 is the conventional Minkowski metric. Then, the Sooperafor rorsndation
of gravitation here considered is given by the embedding of gravitation in the isounit
of hadronic mechanics (Santilli (989d). An intriguing aspect of this approach is that it
has escaped identification uatil now owing to the simplicity of the isotopic theory. In
fact, the formulation suggests that the representation of gravitation is “hidden” in the
todular-associative structure of the conventional eigenvalue equations "H §" via its
modular isotopy “H+§” = “H T &, where T is precisely the gravitational element of
the decomposition g = T 1, of course, in its proper operator form. In different terms,
the operator formulation of gravitation proposed in Santilli (19894} is based on the
condition that it coincides with conventional quantunm mechanics at the abstract,
realization—free level, where all distinctions between “H ¢ and “Hs{" cease to exist.

33 A5 well known, the current unified gauge theories have not been completely
successful in incorporating gravitational and strong interactions. The approach
submitted in Santilli (989d) for an riograpdunification encompassing all known
interactions is via the isotopy of the conventional unified theories of weak and
electromagnetic interactions, that is, via the generalization of their trivial unit into
our isounits. The approach leaves the main results of contemporary theories
essentially unaffected and, in addition, can directly represent operator formulations of
gravitational interactions {see the preceding footnote), as well as the nolocal short
range component of the strong interactions due to wave overlappings. One of the
intriguing possibilities of this “isograndunification” is that of turning conventionally
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12} Permitiing, apparently for the lirst time, & study on the
“origin” of gravitation, by eliminaling the now vexing problem of
unification” of the gravitational and electromagnelic 1elds, and
repiacing it with thefr “Jdendticatioli”.

We would like to close this chapter by praising Albert Einstein,
not only for his historical discoveries, but also for his scientific
caution and honesty. In fact, Einstein’s expressed quite cleariy his
doubts and reservations on his gravitational theory, by comparing the
left-hand-side of his gravitational equations to the left wing of a
 house made of fine marble, and the right-hand-side of his equations
to the right wing of a house made of Aare weood . A reinspection of the
theory permitted by the more general isoriemannian geometry has
confirmed the correctedness of the left-hand-side of the equations
for the exterior problem and the unsettled character of their right-
hand-side.

It is important to note that our isogravitations essentially allow the
reconciliation of the historical legacy of the Founding Fathers of
contemporary physics on the uitimate nonlocal structure of matter
{and the consequential need for a nonlocal interior geometry), with the
established local-differential character of a yet unresolved exterior
gravitation. The important point is that, whatever the final exterior
theory is, it will indeed be the exterior limit of our interior
- isogravitations owing to the "direct universality” of the isoriemannian
geometry. ,

The understanding is that the identification of all the implications
of our nonlocal interior gravitation for the contemporary conception
of the Universe, such as for black holes or gravitational collapse, will
predictably require some time.

divergent perturbative series into convergent ones (see Santilli foc < ) and
footnote?!, p. 172). We should finally indicate that the proposed isograndunification
needs no sources for the gravitational fields (even in interior conditions), because
they are provided by the identification of the gravitational field with the
electromagnetic, weak and strong fields themselves responsible for the structure of
matter, according to Theorem V.3.1.
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APPENDIX V.A: GASPERINI'S ISOTOPIES OF
EINSTEINS GRAVITATION

In three pioneering papers, Gasperini {1984a, b, c) presented the first
Lie-isotopic lifting of Einstein’s gravitatiion with a locally Lorentz-
isotopic structure following Santilli's ((1978a), (1981a), (1982a). {1983a))
submission of the foundations of the Galilei-isotopic and Lorentz-
isotopic relativities. _

In this appendix we shall review Gasperini’s results, not only to
compare them with the results of the main text of this paper, but also
because, being based on the gauge formulation of gravitation (see, e.g.,
Trautman (1972) or Ivanenko (1973)), constitute an important complement
to the treatment presented in the main text.

It should be indicated that Gasperini presented his isotopies of
Einstein's gravitation following preceding works (Gasperini (1983a, b))
on the isotopies of gauge theories (see alse gauge isotopies of Santilli
{1979b)), which will not be reviewed here for brevity.

consider a comventiona/ Riemannian space R(xg%) in (3+1)-
dimension. Let small Greek indeces ., v,.... denote conventional Lorentz
indeces, and small Latin indeces a, b, .. denote anholonomic Lorentz
indeces. Let P, and M, be the conventional generators of the
Poincaré symmetry P(3.1). Then, in the gauvge language of gravity(/ec
cit.) the frame one-form is given by

va = y& dxM, (A.1)

11
and the conpectior one-form can be written
w? = wabu dx¥. (A.2)

The stzndard potential of Einstenn’s gravitation is then given by
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h = nhx, = V3, + u?P My, (A.3a)
nh = { V2, P}, Xy = {Pa Mgph {A.3b)
where the capital Latin indeces run over all values of a, ab, ...
Following Santili's (1983a) construction of the Lorentz-isotopic
symmetry, Gasperini (1984a) introduced the following isotopy of
~potential” (A.3)
i =hAT,BX,
b ay ab ab b
=ya Ty Py + VET,"" Mgy + 07" Typ ™ Py
ab cd :
+ w1 O My (A.4)

which can be written

i = BA X,, (A.5)
where
Bd = {¥2, 32D}, X, = g Mgph (A.62)
¥ = nA T?= Vo2 + oeT ®, \ (A.6b)
@30 = pBr AP = yOT AP + oCdT 48P, (A.6c)

Note the correct preservatidn of the conventional generators of
the Poincaré symmetry under the isotopy, which is a central
requirement of the Lie-isotopy (Santilli (1978a)) , and which is also at
the basis of Theorem V.2.3. :

Now, in the formulation of gravitation under consideration, torsion
is represented by the one-form

RZ = av® + wly A VP, (A.7)
and curvature by the two-form
R2P = gufP + B AP (A.8)

Gasperini (foc. ¢/t ) then showed that, in the particular case of
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constant isotopic elements, the torsion (A.7) and curvature {A.8) admit
the isotopic liftings

RE = 92 + g%y A VP, {A.92)
RAP = 4P + w2 A WP, {A.9p)

For the standard case, one imposes the torsion R2 to be null,
resulting in the standard Einstein’s action for the case without source

1
= ab c d
A= p J €1peg R (W) A V& A VY, {A.10a)

K = 16mG/c %, (A.10b)

which admits the immediate isotopic liftings

1
A = — [ €gp0q R2PW@) A ¥E A V0. (A.11)
4K
Gasperini (/ec. ¢/t ) then considers the particular case of
symmetric constant isotopic elements T in the particular form

c . mab _ - c cd . i€ o
Tap = Te o =0 Tap = MaeT b#nab°Tab = 8,8
. . . (A.12)
where the Minkowski metric is
n = diag. (1,1,1,-1) (A.13)
Then, isoaction (A.11) can be explicitly written
4= — [ o' atgre? -in T% TP - 2R * T ¢
4K v
a v a
+ 2R, F TP T+ Ry OB T T, (A.19)
where
ap _ a ab + wp,ac b
Ry = 27,2 vpPe o 02 wy) ¢
. (A.15)
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is the curvature tensor,
Ruy = Ruey™ (A.16)
is the Ricci tensor,
F =gt = 1% Ty, (A.17)
and the world metric tensor is given by
Buy = VIJ-a va Nap {A.18)

It is easy to see that, starting with a torsionless theory, R2 =, the
isotopic theory has a generally non-null torsion, ie.,

R?=0, = R? = 0. (4.19)

LEMMA VA1 (Gasperimis (19543, b Lemmaj The Lie-isotopic
lrings or Einstein’s gravitation Induce, even in the absence of &
source term, a8 Riemann-Cartan geomelrical structire , wilh the
Isotopic efement acting as a source of torsion.

As an explicit example of the modification of Einstein’s equation
induced by the lifting, Gasperini considers the particular case

b - gsb+ b
T, = 05,° + 1%, . (A.20)

where 4o is the trace of Tab. Then, via some algebra, Gasperini
derived the following modified Einstein’s equations

GoP = RP-18,PR= o7l P -1V Gof) + 072tV F B (A.21)

where

Fof =R/ t,P + t,VR P - upt P R Mo Ve lP + R MR P
v ' {A.22)
which can be solved, e.g., for small isotopic elements (see {/oc i) for
details).
The emerging theory is a gravitational theory with two metrics. In
fact, in addition to the conventional Riemannian metric

gy = Vu® V" Taps (A.23)
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we have the isotopic metric for the tangent space
- K . a
lap =8 ¥ %0, (A.24)

which is different than the conventional Minkowski metric 1. This
allowed Gasperini to introduce the Poincaré-isotopic symmetry P(3.1)
in the tangent space via a restriction which is simply given by T > 0.

LEMMA VA2 (Santilli (198337 0958d) tmder the condition that
the isotopic elements are positive-defipite, the local Polncaré
symmetry Is not lost in the Isotopies of Einsteln’s gravitation, bul
reconstructed a5 exact at the isotopic level,

Needless to say, the reaching of two metrics g and £ is not new,
because inherent in the very structure of Einstein’s gravitation (where
the two metrics are g and 7). Also, generalized metrics were reached
in a number of cases (see, e.g., Papapetrou (1951), Rosen (1980), and
quoted literature). What is new is the reconstruction of the exact
Poincare’ symmetry at the isotopic level of the tangent space.

The above results also allowed the formulation of the following

ISOTOPIC PRINCIPLE OF EQUIVALENCE (Gasperini (198%) -
Gravitational effects om 3 Riemannian space R g can be
made to disappear locally when the melric £ Is transformed 1o
the metric i} of the tangent Poincaré-isolopic space.

The abave principle was generalized in Section V.2 to
isoriemannian spaces.

In the remaining paper (1984b), Gasperini worked-out the following
additional results:

1) The extension of the lifting to the case with a matter source,
with results structurally equivalent to the preceding ones;

2) An explicit example of isotopic gravitation for the particular
case when the tangent metric is the characterized by the low energy
values of Nielsen-Picek (1983} for the interior of pions or kaons, ie.

g = (1 -as3),{1 —as3), 1 - as3),-(1 + a)) {A.25)

where the “Lorentz asymmetry parameter” a has the megai/ve value
for pions :
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@~ —38x 1073, (A.26)

and the pasitsve value for kaons
@ » +0.6%1073, (A.28)

which is particularly significant for this analysis, inasmuch as they
allow a first approximation of the gravitational isotcpies;

3) The detailed derivation of the gravitational equations for
tangent metric (A.25} which are particularly useful and instructive;

4) The deviation of the ~orbital” motion from the conventional one
also for the case of tangent metric {A.25). The primary intent was the
identification of upper limits in the isotopy for our Solar system (see
below for comments);

5} An approximate generalization of the Schwarzschild metric also
for tangent metric (A.25);

and other results.

We are now in a position to identify the most salient differences
between Gasperini’s isotopies of Einstein’s gravitation, and the
isotopies studied in this volume.

I: Gasperini formulsted Hhis Isotopies for the eatire
space-time, while our Isotopies are solely restricted ro
the Interior gravitations! problem. In particular, in his limits
for admissible isotopies at our planetary level Gasperini (1984c)
obtained very small possible values [8] In our treatment, the liftings
are restricted to the interior gravitational problem, while recovering
the conventional theories identically in the exterior problem (Sect. V.2).
AS a result, no upper limit exist for the value of the isotopic elements
in our approach. In fact, the total conserved quantities are the
conventional ones, Eq.s (V.2.14), which are unaffected by the non-
potential interior terms, because the latter represent local, internal,
energy-exchanges which are compatible, by construction, with the
total conserved quantities. As a result, no exresr/or experimental
information can provide numerical limits for our Zzzeriorisotopies.

288



Il: .Gasperini formulsted /s Isotopies on 2
conventional Riemannian Sspace, Wwhile our Isotopies are
formulated in & generzlfized Riemannian space. This implies
that Gasperini’s gravitational equations are based on the conventional
Riemannian geometry, while our equations are based on a structural
generalization of the Riemannian geometry. The latter generalization
was needed for several reascns, including the need to identify the
most general possible theory of gravitation, model (V.3.33), which is
permitted by the current axioms. In different terms, Gasperini
generalized only the tangent space in an isotopic form by preserving
the conventional Einstein’s equations, while we generalize both the
tangent and the Riemannian space in an isotopic manner by reaching
certain isotopic forms of Einstein’s equations.

Il Gasperini trestment remains local-differential,
while our treatment Is rntrinsically nonfocs/-integral. This
is a direct consequence of our generalized isoriemannian geometry
and, more particularly, of its isounits 1= T'i, which permit the most
general possible, nonlinear, nonlocal, nonlagrangian and non-
Newtonian interior trajectories. By comparison, the gauge language of
Gasperini's (/oc. ¢/t.) gravity remains strictly local-differential.

The above comparative comments allow a deeper understanding of
several aspects of our analysis. For instance, the non-null character
of torsion under isotopic liftings is explicitly expressed in Gasperini's
approach via Eq.s {(A.92), while our approach implies a further
generalization into the isoriemannian spaces in which the isotopic
torsion is identically null, Eq.s (11.11.90), although the torsion in the
physical space-time remains non-null, Eq.s (11.11.91).

Gasperini’s studies remain also useful for numerous other aspects,
e.g., the study of the local Lorentz-isotopic space in the interior of
pions and kaons, the understanding of the modification to the
Schwatzschild metric expected from a true representation of the
interior physical media, and other aspects (see also Sect. V.4).
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CHAPTER VI:
MUTUAL COMPATIBILITY OF THE
ISOTOPIC RELATIVITIES

VI.1: STATEMENT OF THE PROBLEM

Important element for appraising the isotopic liftings of Galileis,
Einstein’s special and Einstein’s general relativities studied in these
volumes are given by their individual consistency and experimental
verification, as well as their mutval compatibility.

In fact, the conventional relativities are deeply inter-related and
mutually compatible, as well known, and these properties must
evidently persist for all possible generalized relativities.

These issues will be studied in this chapter by, first, re-inspecting
the mutual compatibility of conventional relativities (Sect. V1.2), and
then passing to the compatibility of their isotopic coverings (Sect.
VL.3).

As we shall see, the isogalilean, isospécial and isogeneral
relativities result to be as deeply inter-related and mutually
compatible as the conventional relativities to such an extent, that any
possible disproofs, to be consistent, must be shown to be compatible
with the physical systems of our environment, such as spinning tops
with decaying spin, trajectories with decaying angular momenta, etc.
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Moreover, the study of compatibility yields a most important
theoretical resuit of these volumes: the unification of all known, linear
and nonlinear, local and nonlocal, Hamiltonian and nonhamiltonian,
relativistic and gravitational, exterior and interior systems via one
single notion, the isopoincaré symmetry.

VI:2: MUTUAL COMPATIBILITY OF CONVENTIONAL
RELATI-VITIES.

The problem under consideration is multi-fold: first we have the
compatibility of the special with the Galilean relativity, then that of the
general with the special relativity, and finally the general mutual
compatibility of all relativities.

As we shall see, our isotopic techniques permit a rather intriguing
unified formulation of these mutual compatibilities via the
conventional Poincaré synmmetry, only realized in an isotopic way
(Santilli (1988c, d))

As well known, the compatibility of the special with the Galilean
relativity cann be based on the property that the nonrelativistic limit
of the Poincaré algebra P(3.1) yields precisely the Galilei algebra G{3.1)
via the so—called /fmowi-Wigner contraction.

This property is well presented in a number of books, e.g..Gilmore
{1974). For the reader’s convenience, let us recall the basic ideas.

Consider our Minkowski spaces Ml(x,n,-%) and write the
fundamental invariant in the form

2
1 R
_rk rk -ttt = -—

(:02 c02

(2.1)

»

then it is easy to see that at the limit

a {2.2)
e=— = 0, 2.2
Co

we have the contraction

M(x,ﬂ)lpo oo = RrEESR) (2.3)
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Namely, the Minkowski space contracts, for the space coordinates,
into the Euclidean space E(r.8#) with separation ré = rt 8r, §=diag.
(1, 1, 1), multiplied the field representing time .

The next step is the recovering of the Galilei's symmetry as a
contraction of the Poincaré one via the Inonii-Wigner contraction
(Gilmore (/oc ¢/z ). Consider basis (1V.6.5) of the Poincaré algebra
P(3.1) and decompaosit it in the form

Redefine it in the vicinity of the “north pole” (0,R) (see Gilmore
{/oc. et} p. 451), and perform the contractions

Jg = Lim':o,;R o0 € Kij Jij = Ekij(ripj - rjpi), (2.5a)

Py = Lim,:o/R=>oo Pr=Py H= LimCO/Rzm Py =Ppy=E, {26b)

Gy = Limc pood, /R ='LimR=)0(xkp4 - x4pk)/R, (2.7¢)
iLj,k = 1,2,3

where we have asumed the new expression for the energy. Then we
have the contraction

P{3.1) CO/R#OO— G(3.1) (2.8)
which is amply sufficient to establish the compatibility between the
special and Galilean relativities.

The compatibility between the general and the special relativity is
generally presented via the original Riemann (1868) formulation of
normal coordinartes (Sect. 11.11) and related tangent planes, in which
the general relativity recovers the special in its entirety {see, eg.,
Pauli {1958), Lovelock and Rund (1975)).

Despite the clear consistency of these results, there is a
considerable methodologiocal discrepancy between the compatibility
of the special and Galilean, with that between the general and the
special relativities.

In fact, the first is centrally dependent on Lie symmetries, while
these symmetry are manifestly absent in the latter, evidently because
the general isometry of a conventional Riemannian manifold is
unknown in the conventional luiterature.

This discrepancy is .resclved by the isotopic techniques via
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Theorem V.2.1, which establishes that the isopoincaré symmetry is the
- general group of isometries of a conventional Riemannian space.

The result is based, first, on the reformulation of the Riemannian
space as an isotope of the Minkowski space

l

Rocg.®) = MR, g=Tg =1, #=81 1=Tg™! (29)
and then the construction of the isopoincaré symmetry P (3 1) with
respect to the isounit T = T, 1

In conclusion, the isotopioc techniques permn; a new unified,
mutual compatibility of Einstein’s general, Einstein’s special and
Galilei's relativities in term of one single, abstract notion, the
isopoincaré symmetry, according to the sequence

Py(3.1) = Py3.1)= Pya.1) Iy =1 = GB1) = P e /R0 (2.10)

Note that, as a consequence of the above chain, the iscpoincaré
symmetry Pg(3.1) unifies all local-differential, Lagrangian-Hamiltonian,
exterior systems.

VI.3: MUTUAL COMPATIBILITY OF ISOTOPIC
RELATIVITIES.

The preceding analysis of mutual compatibility of the conventional
relativities admits a consistent isotopic generalization, thus
establishing the mutual compatibility of the isogalilean, isospecial and
isogeneral relativities. This is not surprising, for the isorelativities
themselves were built to verify such mutual compatibility.

To begin, the conventional theory of coutraction of Lie groups
{see, e.g., Gilmore (1974), Ch. 10} admits a rather simple and consistent
isotopic lifting.

Consider cur Minkowski isotopic spaces Ml(x,g B) and write the
fundamental isoinvariant {1V.3.4) in the form

2
1 R
rKp 2K - 2t = - —, (3.1)
Co2 k €2

then it is easy to see that at the limit
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€e=— = 0, (32)

we have the contraction

Mixz5) = HxE(rGH), (3.3)

[cg/R=>00

Namely, the Minkowski-isotopic spaces contract into the
Euclidean-isotopic spaces Er.G#) for the space coordinates,

ErGH - r2=rte r, {3.4a)
G = diag. (6,2 B2, B39 >0, (3.4)
f = #l,, 1, =diag. (67,67, (3.4c)

multiplied the isotime field

2 =tb2te & = Rl ‘I=f>-2 (3.5)
4 t 't 4 > '

This justifies the statement of Sect. IIL.5 to the effect that the
isounit of time in nonrelativistic Hamilton-isotepic mechanics can be
best seen as a contraction from the relativistic formulations.

Needless to say, the preceding limit parallels the conventional
contraction, Eq.s (V1.2.3).

It is a simple exercise for the interested reader to prove (with the
use of Sect.s II.5 and [1.6} the following generalization of the
contraction theorem of Gilmore (Joc. ¢/ ), p. 449.

THEOREM Vi31 (lsotopic fnini-Wigner contractions, Santilli
Hosscl- Let g be a (finite-dimensional) Lie-Isotopic algebra
defined on an isorield F of real or compilex numbers, and
consider its direct-sum decomposition 4s fsovector space

g =g,0 B ' (3.6)

Let U] be an Isotransrormation on g which becomes singular at
the fimit € = 0 and whiclh is such hat

BLUULS T 29 (3.7a)
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0} x g, = 0. (3.7b)

Then £ can be contracted Wwith respect to 5;0 ko 8 new
Isoajgebra £ HT £, Is & closed subgroup of £, In which case:

£, is 2 subslgebra of both £ and £ :

Z £ becomes an isobelian nvariant subaigebra of £7 and

9 £ is non-semisimple.

The application of the above theorem to the isopoincaré algebra
B(3.1) is straightforward. Consider the basis {11.6.5a) of P(3.1); decompose
it as an isovector space in the form

PBY) =g, & B1 = Ujj+ Pyt Pedpy (3.8)
redefine it in the vicinity of the “north pole” (OR) (see Gilmore (/oc
cit ) p. 451), and perform the contractions (virtually identical to the

conventional ones because the generators do not change under
isotopy, Sect. 11.3)

Jg = Limco Revoo € Kij Jij = Ekij(ripj - rjpi), (3.9a)

Py =Lillc gosoo Px = Pro H=Lim. o py=py=F. (3.90)
=T =1i 4 _ .4

Gy = Lim¢_p—oo JK4/R = leR:ﬁ(xkp x*p, /R,  (3.9¢)

ijk = 1,23

where we have used definition (I1V.8.34), and assumed the new
nonrelativistic expression for the energy.

Then, it is easy to see that the isocommutation rules of P(3.1), Eq.s
(1v.6.6), are contracted to the isocommutation rules of the isogalileian
algebras G(3.1), Eq.s (111.5.19},

P3.1) leg/Ro0 ™ G@3.Y (3.10)

in the same way as the commutation rules of P(3.1) contract into those
of G(3.1). '
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The contraction of Lie-isotopic groups and algebras is, however,
richer than the conventional one. As an example, we have used in the
above considerations the contraction on isospaces of Class [. We leave
it to the interested reader the study of the same contraction, but in
the more general isospaces of Class Ill. Since the abstract 0[4]
isotopes on My g &) unify all simple six-dimensional Lie groups (Sect.
IV.5), we expect the possibility of unifying all possible contractions of
the Lie groups of a given dimension.

Equally recommendable for the interested reader is the study of
the expanrsion of isolopic groups And algebras , which we cannot
possibly consider here for brevity.

The compatibility between the isogeneral and isospecial
relativities is two-fold. First, it is provided by the eXistence of a
consistent isotopies of Riemannian’s normal coordinates {Sect. 11.11). As
a result, our isogravitations admit the isospecial relativities in their
local, internal, tangent isoplanes (which must be so, at any rate, by
construction).

Second, the general isosymmetries of isogravitation on isospaces
Rix.g.#) are given precisely by the most general known realization of
the isopoincaré symmetry Pé(&i), according to Theorem V.2.2. This
allows the consistent isotopic lifting of property (2.10)

Ps3.1) = Pyi8.1) = P5l3.1) ITg - Gl = PhBY) |C(') Revoo (3:11)

The above mutual compatibilities are not a pure mathematical
occurrence, because they carry considerable implications in the
physical application of the isotopic relativities.

Recall that the isogalilean relativities need no experimental
verification because they are constructed from the equations of
motion of the physical reality in our clasical environment. The
compatibility of the isospecial relativities with the isogalilean
therefore implies considerable credibility for the predictions of novel
relativistic effects in interior physical media, to such an extent that
any possible future disproof of the isospecial relativities, for
consistency, must be proved to be with our classical nonrealitivistic
physical reality.

Similarly, the compatibility of our isogravitations with the
isogalilean relativities implies that any possible disprof of the formers,
to be final, must be proved to be compatible with the physical reality
of our interior environment, that is, with continuously decaying spin,
trajectories in our atmospheres with continuously decaying angular
momenta, etc. For further comments, see Figure VL3.1.
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GEOMETRIC UNIFICATION OF ALL EXTERIOR
- AND INTERIOR RELATIVITIES

EXT. GALILEI'S RELATIVITY ON
TANGENT EUCLIDEAN PLANE: /.
Vi
7

GALILEI'S SYMMETRY G8{3.1)

POINCARE' SYMMETRY P.n(3.1)

/
EXT. SPECIAL RELATIVITY ON /
TANGENT MINKOWSKI PLANE: o '
/ .
/

ON RIEMANNIAN SPACES:
ISOPOINCARE' SYMMETRY P

& . —
EXT. GENERAL RELATIVITY /‘ ™
/ .
g{3.1 5

rI3.11

INT. ISOGENERAL RELAT*VITIES
ON ISORIEMANNIAN SPACES:
ISOPOINCARE~ SYMMETRY F§(3.1) I

INT. ISOSPECIAL RELATIVITIES ON
TANGENT ISOMINKOWSKIAN SPACES: ®
ISOPOINCARE~ SYMMETRY F(3.1)

\
INT. ISOGALILEAN RELATIVITIES ON \
TANGENT ISOEUCLIDEAN SPACES;
ISOGALILE! SYMMETRY G;(3.1)

FIGURE VL3.1: A schematic view of the unification of all interior and exterior
relativities proposed in Santilli (1988d), (1991b). It is based on one, ultimate,
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abstract isosymmetry, the Poipcare-isotoplc syummetry, say, PI3.1],
which is realized in isogravitations (V.2.12) or (V.3.26} in a multiple variety of
ways of increasing complexity and methodological needs:

A) As the gxterior, general. differential and nonlinear isosymmetry
Pg(3.1} of the conventional general relativity;

B) As the gxterior, local, differential and linear canventional Poincaré
syminetry Pn(3.1) of the special relativity in the Minkowskian tangent plane;

C) As the gxterior Jocal. differential and linear conventional Galilei's
symmetry Gg3.1) under group contration of the special relativity in the
Euclidean tangent plane;

D) As the interior. global integral and nonlinear iscpoincaré
symmetries P §{3.1) - of the isogeneral relativities;

E) As the jnterior. local, integral and poplinear isopoincaré symmetries
Pn{3.1) of the isospecial relativities for the isominkowskian tangent plane;

F) As the interior. local, intesral and nonlinear isogalilean symmetries
G43.1) under isogroup contraction for the isogalilean relativities in the
tangent isoeuclidean space;

under the condition, automatically verified by positive-definite isotopic
elements T, that all isotopic symmetries are locally isomorphic to the
corresponding conventional ones,

Pya1) = ‘ﬁﬁ(s.ﬂ = Pglat) = P31,

Gls.1) ~ G4f3.1).

The studies reviewed in these volumes therefore allow the reduction of all
possible linear and nonlinear, differential and integral, Lagrangian and
nonlagrangian, exterior and interior, relativistic andgravitational systemws to
one, singie, unique geometric notion: the isopoincare symmetry PI3-1k
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CHAPTER VIi:
EXPERIMENTAL VERIFICATION OF
THE ISOTOPIC RELATIVITIES

VI.1: STATEMENT OF THE PROBLEM

In the Preface we stated that physics is a science with an absolute
standard of values: the experimental verification. It is therefore time
to confront the problem of f#e experiments/ verification of
the Isogalilean, Iisospecial and iIsogemeral refzativities in
the physical conditions of their counception, moltion of
extended and deformable particles or electromagnelic
waves Within inhomogeneous and anisetropic physical
media.

The mental attitude necessary for the study of the issue is
therefore that of abandoning all Einsteinian tests available in the
literature (see, e.g., the historical review in Pauli (1958)), because
conducted in the homogeneous and isotropic vacuum, and therefore
inapplicable to the new relativities.

On the contrary, in order to truly test the new relativities, it is
necessary that the environment has structural geometric differences
with that of conventional relativities, namely, as it is the case for an
inhomogeneous and anisotropic physical medium.

As elaborated in more details in the concluding remarks, the
mental attitude needed -is that of cenducting tests under the
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necessary condition of mpaxinizing the depariures from
the physical conditions of conventions! Einsteinian tests .
If one minimizes them or, worst, keeps the same conditions, no
departure from the Einsteinian laws is expected, and no test of the
new relativities has actually occurred.

As pointed out earlier, the isogalilean relativities are verified by
construction in our c/zssic#/ environment, ahd need no additional
classical test. Nevertheless the implications in par&ic/e physics are
far reaching, and in need of numerous direct tests.

The isospecial relativities, instead, needs a number of independent,
direct tests, in both classical and particle physics, because they
predict numerical variations from all basic postulates of the special
relativity, depending on the physical media considered, according to
Postulates 1-V of Sect. IV.9.

The isogeneral relativities also need direct tests, although those
for the isospecial are local, internal tests on tangent isoplanes of the
isogeneral and, as such, sufficient for this preliminary study.

Since the treatment of these volumes is purely classical, we shall
provide primary attention to classical tests . Particle tests will be
merely mentioned for completeness without a detailed treatment at
this time.

By keeping in mind the verification of the isogalilean relativities by
construction, Z&e primary objective is to identify classical
tests of the Isospecizl refslivities on isominkowskri spaces
that are currenily reasibie .

For this purpose, let us recall the fsominkowsks spaces (1v.9.2), ie.,

sl sl %2 =yl g L
MxgR: x X guv X
= x! b 2xl +x2 B2 x% + x3bg2x3 - x* 2 x4

1 1 1 c02
=X1-3 L x2:—2x2+ X3_:_2x3 - t“:—z‘t, {1.1a)

ny ny ng ny
x=(x¥ = ch TE Eo(rGR) {1.1b)
g=Ton, (1.1¢)
y = diag. (1,111 € M(X,’l},ﬂ), (11d)

Ty = diag. (612,822, 552,62 >0, f=81y Ty =Tp7], (1.1€)
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Ba =1/h, =bgfs, X, u,2,0,7,0,..} >0, €=1,2,3,4, {1.1f)

by =1/f, =bg = 1/hs k=1,2,3 (1.1g)

where the last conditions are imposed to avoid any isogalilean
contribution, and restrict the tests to pure isospecial settings.

The fundamental symmetries to be tested are the Jisoloreniz
sparmelres With isotransformations

xt=xl, x2=5% x% = 5(3-pxh x* = y(x*-bn (19

where
n n
4 ~ 4 1
— B ”f=|1-75—32| : (1.3)
n3 ﬂ3

1

B

The isospecial relativities and related isospaces M'(xg.#) can be
characterized by their primary implications, the values of the
maximal cauvsal speed Vyay and the Jourth component of lke
fsametric (Sect. 1V.9} which are given hy

{1.4a)

VIA
g

VMax = o7~ T %
. < :
C = Cobg = Co/y S Co (1.4b)

The above values are deeply linked to the £Leometrization of
physical mediz provided by the isospaces M Iix g #) which, from
predictions (t.4), implies the existence of the following wxre
Isorefatvistic mediz

P

TYPE1: ng=ng ng=1 B=P, ¥=7¥ Vyuy =Co C=Cq, (1.5a)
TYPE2 ng = ng, ny>1 B=P, ¥=% Vyax =Cp € <Gy {1.5b)
TYPES: ng=ny, ny<1; =B, ¥=Y Vyax =Cp € >Cp (1.5¢)
TYPE4 Ng<ng Ny>1 B>B, ¥<¥ Vyay <€ <€,  (15d)
TYPES: ng<my nmg=1 B>B, ¥<% Vyuy <Co C=Co (1.5€)

TYPEG: ng<ng ng<1; B>p ¥<Y¥; Vyuy <Co C>Cq (L5M)
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TYPET: ng>nyg ng>14 B<B ¥> ¥ Vyax Cor <Co (1.5g)
TYPES: ng>ng ng=1; B<B, ¥>v¥ Vyuu >, €=c, {150}

TYPEO: ng>ny ng<1; B<B, ¥>v% Vyuy >Co €>¢, (150

In essence, the infinite variety of different physical media existing
in the Universe, such as fluids, gases, conductors, superconductors,
nuclei, hadrons, stars, etc,, is reduced by our isominkowski spaces to
nine essential classes which are geometrically significant and, as
such, suitable for tests. '

A central pre-requisite for a true test of the new relativities is
therefore Zo Ffdentify physical mediz inm classification (1.5/
which are most suitable rfor experimeniz/ tests .

We assume the reader is familiar with the main properties of the
isospecial relativities, such as the fact that the basic local invariant is
the maximal causal speed Vy,, and not the speed of light (recall that
the relativistic addition of two speeds of light in water does nor yield
the same speed, but the isorelativistic addition of two Vy,, > ¢ does
yield Vy,. ) the quantity ¢ = Co/ n 4 represents the local speed of light
only for transparent media, otherwise it represents a geometric
quantity, as in general relativity; etc.

The general experimental objective is therefore Iro test the
isospecial relativities rfor each ecssential physical mediz
via the deviations from Einsteinian values predicted by
the isotopic quantities f and y .

Needless to say, we are not in a position to reach any conclusion at
this time, whether in favor or against the isospecial relativities.
Nevertheless, the currently available data are sufficiently
‘encouraging to warrant additional tests.

To facilitate the experimental task, let us briefly review the above
physical media each with a representative example:

Media of 7Type 1 coincide Wilth the conventional!
Minkowski space for the exterior problem in vacoum and,
as such, they will be ignored.

Mediz or Type 2 represent fhomogencous and Isotropic
fluids such as water, in which the isospecial relativities can
represent:

1) the actual speed of light ¢ = Co/Ny < €,, where ny is the index of
refraction34;
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2) the speed of massive particles (such as electrons) which is
bigger than the local speed of light, and can attain maximal values Co
as established by the Cerenkiov light;

3) the correct.invariance of the maximal causal speed (which
cannot be the speed of light according to the special relativity
because of the manifest violation of the relativistic addition of the
speeds, but Vyp,.h

4) the correct isorelativistic addition of speeds;

5) the homogenuity and isotropy of the media via the scalar isotopy
(IV.10.6); and other aspects.

Nevertheless, additional, independent ispections are needed before
claiming that the isospecial relativities are exactly valid in media of
Type 2.

Media or Type 3 represent superconductors , With Vy,, =
Cq describing the speed of the electrons, and ¢ > c, representing a
purely geometrical quantity (the deviation from the geometry of empty
space caused by matter). The isospecial relativities can therefore
provide potentially new possibilities in superconductivity which, as
such, deserve an inspection {(see below for preliminary results).

Mediz of Type # represcnt ordinary aimospheres and,
as such, they are particularly suited for experiments. Since, for these
media, § > § and ¥ < v, the isospecial relativities predict a natural
“'redshift for light propagating within atmospheres which appears to be
measurable with contemporary technology, as we shall see in Sectl.
VI1.4. These media will therefore be of primary relevance for the
experiments proposed in this chapter.

Mediz of Types 5 and & represent the interior of nucler
and, as such, they will be considered in future works, jointly with the
operator formulation of the isotopic relativities.

Mediz of Types 7, & and 9 representl the Interior of
hadrons and of stars . They will be studied in detail in future
works because they need operator formulations for genuine
predictions of the isorelativities. Nevertheless, we shall present in
Sect. 4 certain classical interpretations of experimental data which
appear to confirm that hadrons are precisely media of this type.

It is evident from the above considerations that a virtually endless
variety of experiments can be formulated in most branches of physics,

34 we here continue to use our notation whereby the b and n quantities are functions
while the corresponding averages b and n are constants.
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as expected, because relativities are truly at the foundations of our
contemporary knowledge, with endless implications. In a situation of
this type, we can evidently present in this chapter only a few
‘representative experiments.

To begin, a// historical experimenis on Einstein’s specig!
relztivity can be repeated im physical media of
progressively Increasing geomelrical complexity, e.g.,
first in homogeneous, Isolropic, apnd transparent [fluids
(Type 2} them in inhomogeneous and anisolropic gases
(Type #), etc

The deviations from the Einsteinian predictions are readily
computable with the isospecial relativities. The study of these tests
will therefore be left to the interested experimenter.

In this chapter we shall study a few basically new experiments, as
an indication of the possibilities of isotopic techniques.

The reader should be aware that the most intriguing and promising
experimental results are recently emerging from the operator
formulations of the isotopic relativities in particle and other branches
of physics, which we cannot possibie review here.

We onlj/ mention, as an example, the studies by Animalu {(1991b) on
the application of isotopic theories to superconduclivity; in
particular, via the representation of the Ceopers pa/r as a
generalized bound state of two extended wavepackets in conditions of
total mutual immersion, with short-range nonlocal interactions
precisely of the type studied these volumes. AS one can see in
Animalu’s paper (/foc cit ), there are considerable phenomenological
data supporting the isotopic formulation of superconductivity. The
undestanding is that a number of additional tests are needed before
reaching final conclusions.

Further studies worth a mention are those by Santilli (1992) on the
application of f[sotopic theories (o Bose-Einstein
correfations , e.g., of particles emerging from p-p high energy
reactions. As well known, such correlation is basically unresolved and
can be interpreted in ordinary guantum mechanics only via
semiphenomenological models, without any axiomatic background.

The studies here considered assume that the origin of correlation
is precisely the historical open legacy of the ultimate nonlocality of
the strong interactions due to deep mutual wave overlappings (Sect.
1.1}, with consequential short-range nonlocal interactions which, being
intrinsically nonpotential-nonhamiltonianm, are represented via the
isotopy of quantum mechanics into hadronic mechanics, that is, via the
generalization of the conventional unit & = i, into an operator isounit
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135, The capabilities of the isotopic theory of representing available
experimental data on Bose-Einstein correlations, as compared to the
manifest insufficiencies of conventional theories, has been rather
rewarding (see the phenomenological fits of UA1 data in Santilli (1992)).
These results evidently support other applications where nonlocal
internal effects are expected. i

While considering the experiments outlined in the subsequent
sections, the reader should keep in mind the following fundamental
law:

No mathematical or physical theory can predict the
value of its owrn Uit

More specifically, the isosymplectic, isoaffine and isoriemannian
geometries provide general characteristics to be verified by their own
isounits, but they cannot possibly predict the numerical value of the
characteristic b-quantities in isoseparation {1.1a).

To be even more specific in this point of fundamental experimental
character, the expectation that the isospecial relativities can predict
the numerical values of the characteristics b—quantities, say, for our
atmosphere is equivalent to the expectation that the special relativity
should predict the numerical value of the Hamiltonian for each given

35 For the reader's convenience we briefly touched on hadronic mechanics in Eqs
(11.6.23-26), and footnotesl® 32 of pages 94 and 281, respectively. It may be useful to
outline here the main idea of the JFsofopic representation of Bose-Einstein
correlations . A central point is that fhe notfon af correlation itself is outside the
. axiom of expectalion valwe of qusntum mechanics because, for & state of two
particles | a; , ay >, the expectation value is given by the familiar expression

<ag,aslaq,a5> = <agla;>+<agfag>eR.

For the covering hadronic mechanics, the corresponding axiom of Zoexpectation
valwe is given instead by

<a1,a2r ai.,a2>=<a1,a2l'l‘|ai ﬂ.2>’i=(2i]'<ai"rijlﬂj >)1=
= (K1<a1]'a1>+K2<a2|a2>+K12<a1[T12|a2>)1 Eﬂ., Kse R

where 1 = T1, T = T > 0, is the isounit of the theory. As a consequence, lhe
correlation term Cyp = Kyp< 8y/ Typ/ 82> emerges from the very axioms of the
covering Isotopic theory. The direct and quantitative interperetation of the
experimental data is then reduced to the appropriate selection of the isotopic
clements (Santilli (1992)). The current experiments on Bose-Einstein correlation, such
as the UA1 experiments at CERN, therefore appear to have a truly fundamental
chartacter for all of the studies presented in these volumes because, if treated in a
scientifically constructive environment, can provide experimental evidence for the
existence of nonlocal nonhamiltonian effects in the ultimate structure of matter.
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phenomena and, as such, has no physical value35.

" The isorelativities provide a geometrization of media of Type 4,
that is, of the atmosphere of: Earth, Jupiter, Venus, Sun, as well as
other different atmsopheres existing in the Universe.

Within such a setting, the characteristic b-quantities of each of
them must be computed via experiments because ZZe numericaf
value of n4 s the =mverapge index of refractiorn for tlie
propagation of light through the atmosphere copsidered,
#nd & similar sitvalion happens for lhe space term ng.

It is evident that: these numerical values vary from atmosphere to
atmosphere; they are expected to exist in a large variety of different
numerical values; they cannot possibly be individually predicted by
any theory; and must be measured via experiments.

Vil.2: CLASSICAL TREATMENT OF RAUCH'S
EXPERIMENTS ON THE ROTATIONAL SYMMETRY

We begin our experimental! studies with an application of the
fundamental isosymmetry to particle physics, the isorotations 0(3) of
Sect. I11.3, as the central part of the isogalilean relativities.

Of all the existing experiments in particle physics, those most
.. significant for the isoprotational symmetry in particular, and of the
isogalilean relativities in general, are the Zimlerferomeltric lests
of the rotational symmetry of thermal neuvirons conduclted
by Rauch and his associates (see the review by Rauch (1981),
(1983) and quoted experimental papers).

These experiments have been studied via the operazor
formulation of isotopic theories by Santilli (i981), (1989c), and (1991d)),
Eder (1981) and (1983)), and others. However, it is important to show that
the c/lassical! and nronrelativistic methods presented so far can
already provide an approximate, yet quantitative and physically
meaningful representation of the experimental data.

36 The author would like to express his surprise at the fact that the most common
“objection” to the isospecial relativities is that they camnot predict the numerical
values of the characteristics b-quantities and, as a consequence, they are not
significant because “any number fits the theory”. Comments of this type are
equivalent to comments such as: "Einstein’s gravitation is not relevant because any
gravitational mass fits the theory”, or “Einstein's special relativity is not relevant
because any value of the charge fits the theory”, and, as such, they have no physical
value. -
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In essence, neutrons are not massive points as represented by
Galilei’s (and Einstein’s) relativity, but possess an extended charge
distribution of the order of iF in radius.

Such charge distribution cannot be perfectly rigid, and it is
therefore expected to admit deformations under sufficiently intense
external fields.

When the neutrons are represented with their actual shape
characterized by the isogalilean relativities, e.g., an oblate spheroidal
ellispoid (Fig. 111.3.2), they become the isoparticles of Definition 1.7.1,
and we shall call them Jsomeutrons. All possible deformations of
shape, which are also directly represented by tihe isogalilean
relativities, then become the simplest possible mutztions of the
intrinsic characteristics.

A physical conseguence is that these expected deformations imply
the necessary mutation of the intrinsic magnetic moment of the
particle, with fundamental mathematical, theoretical and experimental
relevance for this analysis (See Fig. Vil.2.1 for more details).

EXPECTED DEFORMABILITY OF HADRONS / MUTA-
TION OF INTRINSIC MAGNETIC MOMENTS

A Magnetic moment A - Magnetic moment u’#

\ j Spin A Spin s
B ————
i eerrewranen
gl ———

F

b it ———
————een

NEUTRON UNDER
ISOLATED INTENSE EXTERNAL

NEUTRON : FIELDS

FIGURE VIL2.1. A schematic view of a fundamental application of the
isogalilean relativity: the direct, quantitative, characterization of the
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deformation of shape of extended charge distributions under
sufficiently intense external fields, and the consequential alteration of
their intrinsic magnegic moments. Consider, as a simple example, a
classical, charged and spinning sphere with a given magnetic
moment Q. Suppose now that the shape of the sphere is deformed as in
the figure. Then, this implies the w»zecessary alteration of the
magnetic moment | into a hew value W depending on the physical
conditions considered (original value p, original size, value of the
angular momentum, intensity of the external forces on the sphere,
etc). This physical occurrence can be easily proved via the use of the
ordinary, classical, Maxwell’s electrodynamics. The same occurrence
evidently persists in guantum mechanics, as proved in atomic and
nuclear physics. In fact, the deformation of shape of an atom or of a
nucleus causes a necessary azlteration of their magnetic moments, as
experimentally established. The same occurrence has been
experimentally tested for elementary particles by Rauch and his
collaborators ((1981), (1983)) for neutrons.under external nuclear fields,
resulting in an apparent measurement of deformation of shape-
alteration of the magnetic moment which is however only preliminary
at this writing. In this section we provide a first, rudimentary, classical
and nonrelativistic description of Rauchs fundamental tests, andin the
final section we propose specific additional experiments for the final
resolution of the issue.

With reference to Figure VI1.2.2, a neutron interferometer is
essentially constituted by a neutron beam which is first subjected to a
‘ coherent splitting . into two branches via a perfect crystal, and then
their recombined. The neutron beam is generally monochromatic,
unpolarized and with high flux. The perfect crystal is generally given
by a 8i crystal with extremely low impurities which allows the
achievement of angles of separation of the two branches sufficiently
wide to permit experiments in one branch or in both.

 In his experiments, Rauch used: a thermal neutron beam with a

cross section of about 2x1.4 mmz; a characteristic wavelength of the
crystal of 1.83 A%, about 1 cm of electromagnetic gap; and a magnetic
field of the intensity of 7496 G which is calibrated to produce two,
complete and exact spin-flips, say, around the third axis {83 = 720°), for

neutrons with their conventional magnetic moment

By = - 191304211 % 0.0000811 2{1/2mpco. (2.1)

The experimenters filied up the electromagnet gap with Mu-metal
sheets for the primary purpose of reducing stray fields. It is this
latter, rather accidental, feature that renders the experiments truly
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fundamental, inasmuch as Rauch’s measures test the rotationals
- ymmetry of the neutrons under external magnetric and nuclear
interactions.

RAUCH'S NEUTRON INTERFEROMETRIC
EXPERIMENTS ON THE ROTATIONAL SYMMERY

- interferometer (220 . SN _} magnet frame
M=t =" coil

-.L---' +8 \\‘ ,’,-.B -—:_.t

FIGURE Vi1.2.2: A schematic view of Rauch’s fundamental experiments
on the rotational symmetry of neutrons via an interferometer, showing
the coherent splitting and recombination of the thermal neutron beam
via a perfect crystal. In essence, Rauch applied to one branch of the
beam a magnetic field originating from an electromagnet in a preset
intensity (see the text) which should have produced two complete and
exact spin flips for a rotation of 720°. An air gap is shown in the figure,
although the experimenters filled up the magnet gap with Mu-metal
sheets to reduce stray fields. This effectively produced a jeint
interaction of the neutron beam with the magnetic field of the
electromagnet as well as with the nuclear fields of the Mu-metal
sheets. Int all the tests, rather than finding the expecteed 720°, Rauch .
found instead a median angle consistently /ower than 720°, with the
last best measures (2.2} not including the 720° in the minimal and
maximal experimental values (2.2b). As well known, contemporary
experiments are generally done on the center-of-mass system (as for
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inelastic scattering experiments) and result to be consistently in favor
of conventional quantum mechanics. This is readily predictable via

the notion of closed nonhamiltonian system (II.2.3} for which no
detection of the generalized internal structure can beachieved via
outside, center-of-mass tests. Actual measures of physical quantities
(e.g., magnetic moments) are solely done via external, fong range
electromagnetic ffefds . Rauch’'s experiments are of fundamental
character inasmuch as they are the firsts to conduct measures under
externzl shore range, nucleariptersctions , namely of a configuration
exactly as needed to test interior dynamical conditions.

The best available measures are given by (Rauch (/foc ciz))

85 = T1587° = 38°, (2.22)

By T = T1967, By = 71207, (2.2b)
it should be immediately indicated that fre gbove weasures de ol
establish rthe violation of the rolziional symmetry because Uie
deviation should be of the order of four to fve tmes the statisticarl
error to achieve a surticlent degree of confidence Thus, tao establish
the value 715.87°, the error should be of the order of + 1°to £0.7°.
Despiote this unsettled nature, the implications of the above
measures are intriguing because:

I/ Messures (22 do not confirm the exact rotational symmetry ror
the neutrons i the open conditions considered, By indicaiing &

concelvable viofztion of sbout 1%

2} None or the median angles measvred by Rauch coincide Wilh
7207 On the contrary, &/ experiments show a median angle
cansistently lower than 7207 an occurrence calied “angle slow-

dowir eftect” (Santilii (981)

3 The measurements of the intensity modulation for measvres (2.2/
do nor confirky Lhe exact rotaiional symmetry because the
moduition curve Is not an eyact co-sinusold, 8s well as for

oliler reasons.

Measures (2.2) are therefore valuable for the following reasons.
First, the sole possible origin for an angle 63 different than the

expected 720° is the alteration of the magnetic moment (2.1), ie., the
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mutation of Fig. VI1.2.1
Bp = By , (2.3)

In turn, such an alteration of the magnetic moment can best occur
under the deformation of shape indicated earlier.

Furthermore, Rauch’s measures have an important mathematical
and theoretical value. As stressed earlier, the =mountr of the
deviation under Rauch’s conditions is scientifically open at this time.
Nevertheless, the deformabifity . of the charge distribution of the
neutron remains out of any scientific doubt and so is its consequential
mutation of the magnetic moment.

It is therefore important to achieve a quantitative representation
of Rauch’s experiments by leaving open the finalization of the
numerical amount of mutation for given conditions to future
experiments.

We therefore pass to a representation of Rauch's experiments via
the isogalilean relativities which, even though only ciassical and
nonrelativist {and therefore necessarily approximated) it is
nevertheless direct and quantitative.

Recall that there are no appreciable “contact interactions”
between the neutron beam and the Mu-metal nuclei. Thus we can
effectively use the case of extended and deformable isoparticles
under external porentra/ forces only (see Sect. 1117}

Suppose that T*E(r,8,#) is the conventional phase space of the
neutron beams. Then, the isogalilean relativity uniquely follows by
assuming the isospace

TECSA: & = ®1, 1, =1,=1 = diag. 65,87, (24a)

§ = diag. (0,2 1,2, bg?, by = constants > 0. (2.4b)

and the representation via the Hamilton-isotopic equations (111.2.9)

_, OH(r,p)

iy = b2 ————, (25a)
aHla) P
1 a
M= 0" ) -

2 3aV - aH(r, p)
P = - b , {2.5b)

al"i
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with Hamiltonian

H=p2/2my+V = pbypy/ 2m, + Vi) (2.62)

r = |epfylh (2.6b)

where V(r} represents the external electromagnet and nuclear fields
(see Eder (1981) and (1983) for their detailed study).

Qur treatment is independent from the explicit form of V{r) and
essentially based on the assumption that the application of the
external field implies a deformation of the shape representable via our
isotopies of the Euclidean space

{8 =diag. (1,1,1), V=0} = {& = diag. (42, b'22, b'32), V>0 },
2.7)

under the evident condition of being volume preserving,
bi2 bo? bg? = b'y2b92l's2, (2.8)
Since we have at best a small deviation, it is reasonable to assume
that the mutation of shape is also small. In first approximation, we have
from data (2.2) that the deviation is of the order of
716°/720° = 0.9944, {2.9)
which can be assumed to be of the order of magnitude of the
oblateness caused by the external nuclear fields (Figure ViL.2.1).
Then, our purely classical nonrelativistic treatment implies that

mutation (2.7) for values {2.9) under condition (2.8), assumes the explicit
form

{8 =diag. (1,1,1),V=0} = {§ = diag. (1.0028, 1.0028, 0.9944), V=0 }.

{2.10)
We then have a consequential mutation of the magnetic moments

of the order of 6 X 1073, ie.,

wp = -1813el/2mpcy = P ~ -1.902 el/2mpco, (2.11)
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which does indeed provide a first, approximate, but quantitative
interpretation of Rauch’s data (2.2).

Intriguingly, we are not only in a position to represent measures
{2.2), but alsc the “angle slow-down effect” (Santilli {1981)), namely the
fact that the median angles measured by the experimenters during the
several years of the conduction of the tests have been consistently
lower than the needed 720°,

In fact, mutated value (2.11) is /ower than the original value (2.1),
thus implying angles of spin-flips necessarily lower than 720° for a
magnetic field of 7946 G.

Moreover, the conventional rotational symmetry is evidently
broken for values (2.2). Nevertheless, ouwr isogalifean refguvities
reconstruct the exact rolational spmmetry for the deformed
neutrons. This is another aspect that we believe needs an
identification, first, at the primitive Newtonian level, and then at the
operator counterpart.

Furthermore, the true symmetry tested by Rauch at the particle
level is the spinorial SU(2) symmetry, rather than the O(3) symmetry.
Nevertheless, we believe that the issue deserves an analysis, first,
within the context of the rotational symmetry O(3), and prior to a study
within the covering SU(2) extension, in order to separate the rotational
from the spinorial contribution.

For this purpose, consider the subgroup of G(3.1) given by our
covering isorotational symmetries O(3) of Sect. 111.3. As now familiar,
the isotopes O(3) provide the form-invariance of all possible
ellipsoidical deformations of the sphere, while being locally isomorphic
to the conventional rotational symmetry O(3). This establishes the
reconstruction of the exact rotational symmetry for deformed charge
distributions (2.10), of course, at our isotopic level

However, the mechanism of such reconstruction deserves a deeper
inspection because important for Rauch’s experiments.

Consider our isorotation around the third axis, i.e.,

0@): r = R = {exp 83 w9 1g¥ (8,J3) (au)) r, (2.12a)

1 = diag. % 1§ ), (2.12h)

where ¥ is that of Eq.s (2.4), which is explicitly given by Eq. {(1i1.3.42), i.e.,

T = Rlg)*r = Sglex)r = (2.13)
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r'y rlcos(eablbz) - Ty ———b sin(B3bbo}
1

b
. 1 .
r 2 - I‘1 b_ Sln(93b1b2) + r2COS(63b1b2) .
2
s I3

The reconstruction of the exact rotational symmetry is then based
on mechanism (11.3.43) originating from the values by and by of Eq. {2.10}

and Rauch's median angle (2.2), i.e.,

B3 = bybpdy ... = 720° (219
| Bg=bsy = 1.0028

namely, our geometric isospace Ef,8,8) reconstructs the angle 65 =

720° needed for the exact symmelry from an actval roiation of &7

= 716° In our physical space Ef8,5)

In conclusion, irrespective of whether Rauch’s measures {2.2) are
confirmed or adjusted by future experiments, in this section we have
shown that the covering isogalilean relativities, at its primitive
classical level, can:

a) directly represent the actual shape of the neutromn;

b) directly represent all possible deformations of said shap'e
caused by sufficiently intense external fields and/or collisions;

c) directly represent the consequential mutation of the intrinsic
magnetic moment of the particle;

d) directly represent the apparent “angle slow-down effect”
because of the decreased value of the magnetic moment, and

e} reconstruct the exact rotational and Galilei symmetries at
the more general isotopic level.

Not surprisingly, the operator and relativistic treatments {see
Santilli (1989c) and (1991d)} confirm in full the above rudimentary,

314



classical and nonrelativistic results.

The reader should keep in mind the societal, let alone physical
impocations. in fact, the large efforts on the controlled fusion have
been conducted until now via the use of the wmagmelic confinement
which, in turn, is based on the assumption that the Galilean-
Einsteinian neutrons and protons preserve their intrinsic magnetic
moment in vacuum under the fusion conditions.

But the large public expenditures done on controlled fusion until
now have not produced the desired results, decade after decade, thus
warranting a reinspection of the ultimate theoretical structure in the
field: the Galilean-Einsteinian notion of particle.

Ir Rsuchs experiments on the rotationzl asymmetry of
meutrons are coafirmed, they would establish that prolons
and neutrons experience a mutation of their Imntrinsic
magnetic momenls &r the time of initiation of the fusion
process which, in turn, would invalidate the engineering
desicn of magpetic confinement, let alome its practical
realization .

VIL.3: ISOTOPIC BEHAVIOR OF THE MEANLIFE OF
UNSTABLE HADRONS WITH SPEED

As reviewed in Sect. IV.3, the nonlocal and nonhamiltonian effects
expected in the Jmterior of hadrons from the historical legacy of
Fermi, Bogolubov and others, are expected to have no manifestation in
the exterior . In particular, the cemter-of-mass of & hadron i a
particle accelerator must strictly obey Einstemn’s speclal relativity,
frrespective of whether lhe particle Is siable or unsiable, 25
experimenially established

Nevertheless, a number of phenomenological studies, including
those by Blockhintsev (1964), Redei (1968), Kim (1878), Nielsen and Picek
(1983) and others, provide serious arguments on ke possibilily
that anm internal inapplicability of Einstein's special
relativity could manifest itsell in the exterior of unstable
hadrons vis & Jdeparture from the Einsteinian behavior .of
the meanlife willr speed

T=qT1,, v=(1-pA7H p=vrsc, (3.2)

315



and produced several guantitative predictions of expected deviations,

As a resuit of these efforts, two experiments were subsequently
performed on the K°-system, one by Aronson ez #/ (1983), and the
second by Grossman er 2/ (1987). The experimental sitvation at this
writing (Fall 199]) is the following):

A) There is mo sigpificant deviation In the behavior of
the K"S meanlife in the low energy range 0 to 30 GeF:

B) Fhere is am anomsious belavior of the meanlife from
25 and 100 Gev (Aronson er 2/ (1883)); and

C) T7ke meanliire orf the K ‘:5. rerurns te behave

conventionally between 100 and 350 Ge¥V (Grossman er &/
{1987)).37

As pointed out in Sect. 1V.4 and V.10, the isominkowski spaces (1.1)
and isospecial relativities appear to be ideally suited for a
representation of the interior of hadrons. In fact, they impiy the
Lsotopic meanlire (Postulate IV of Sect. IV.9)

by?

T=iTe ¥ =l1-=5827h B=vic, 2
b
4

which has been proved to be “directly universal” {Aringazin (1939)), that
is, capabble of recovering all individual generalized meanlives
suggested by the above quoted authors via different power series
expansions, different truncations and differemnt coefficients (see Sect.
1v.3). ,

In particular, isotopic law (3.2} can be used either with
characteristics b-constants or, depending on the desired approach,
with characteristic b—functions, in which tase the most significant
dependence is expected to be that in the velocity or, equivalently, in
the energy.

This isorelativistic representation of unstable hadrons was studied
by Cardone ef #/ in two subsequent papers {1992a) and (1992b) with
rather encouraging results. The first study deals with the isotopic

37 The author has been surprised by several authoritative claims that the behavior of
the meanlife is Einsteinian because it i{s so between 100 to 350 GeV. But then, one
could equally state that the behaviour is noneinstenian because it is so between 35 to
100 GeV. The only true scientific claim which can be stated today is that the final
behaviour of the meanlife is unknown, and must be resolved by future experiments.
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representation of the experimenial data by Aronson e &L (1983) and it
. is summarized in Figures VI1.3.1, Y1L.3.2 and VI1.3.

LINEAR EINSTEINIAN FIT OF THE DATA BY
ARONSON ET AL. ON THE K°g MEALIFE
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FIGURE VIL3.1: The diagram presents a linear fit on the experimental
data by Aronson ef 2/ (/oc </t ) on the behavior of the meanlife
with speed via the Einsteinian law (3.1), done by Cardone ef &/
(1992a).. The fit parameter is a = T,/m the reduced chi-square is %2
= 09. The value found for T, is (09375 * 0.0021) x 107105, whicn is
sensibly different than the value of the same meanlife given by the
Particle Data (0.8922 * 0.0021) x 10 10 5; the confidence level is 0.39
giving a probability of 617 that the: meanlife T ;, at rest is greater than
the true value.It is therefore concluded that a linear fit with the °
Einsteinian law (3.1) is not satisfactory. In particular, a nonlinear
dependence of the meanlife on the speed (or, more precisely, on the
energy E) is needed.
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" FIT OF THE DATA BY ARONSON ET AL. ON THE
MEANLIFE OF THE K% WITH A POWER LAW IN THE
ENERGY

:‘ L] L} 1 I L] ] L] L ] '1 ¥ [] L) I.l [ L] 1 L) I L] L) (] l:
§ 5.25 [~ o
! X ]
'g 5.00 — -
i [ :
g 4w~ =
s :
= N j
3 . 450 — 4
% 5 K
g [ %
g.' 426 }— ._.‘...
3 - b’
E ' | 1 1 1 _l Il '} t ' l 1 L [ Il l F 9 Il [} I [ I 'l 2"

40 00 8o 100
Energy of Kg*. (GeV) , error 4E = 6 GeV

FIGURE YI1.7.2: Logarithmic fit of the experimental data by Aronson ef
&/ (Joc. cit ) on the K°S meznlife via the power law

To .
T =—E (3.3)
my
done by Cardone e &/ (1992a). The parameters are a = T,/m, and n.
in this second case xn2 = (.85, n derived from the data isn = 1.043 *

0.008, and the deviation from linearity is 1.3% at 100 GeV. The fit is still
insufficient.
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ISOTOPIC FIT OF THE DATA BY ARONSON ET AL.
ON THE K9 MEANLIFE
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FIGURE V11.3.3: Logarithmic fit of the experimental data by Aronson eZ
2l (Joc cit.) on the behavior of the K®¢ meanlife between 30 and
100 GeV via the use of isotopic law (3.2), done by Cardone ef &/
{l992a). The fit parameter is

a=b /b, = 05980021 (3.4)
with x 2 = 0..86. Additional fits compatible with the above ratio yield

b 2= 0002800004 b 2 = 100300021 @.5)
The improvement of the fit over the preceding ones is evident. The fit
is however, still an approximation because of the expected energy-
dependence of the characteristic b-quantities, thus requiring the use .
of the full isotopic law (3.2} with functional dependence on the b-
quantities.
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- We now pass to the representation of the data on the K°g meanlife

by joining those from Aronson er 2/ (1983) and by Grossman ez 2/
(1987), as done by Cardone et al. (1992b). The first point regards the
capability of law (3.1) to represent the correct meaznlite of the
particle ar restas given by the Particle data book.

As well known, meanfifes are not measured 3L rest, but 8t various
energies, and then scaled ar rest via the use of the Loremtz
Lransformations . The possible lack of exact character of the Lorentz
transformation then directly implies the possibility that the meanlifes
at rest as current given need inspection.

With reference to the diagram of Fig. Vil.3.4, the use of the

Einsteinian law (3.1) vields the meanlife at rest of the K°S Ty = (0.91444

+ 0.00193) x 10"10 5, with x2 = 1.23. The confidence level is 197 with a
probability of 817 that the actual value of T, is greatere than that

given by the fit.
Moreover, by denoting with O'fTo the error of the fitted vaue and

with Tr, that of the Particle Data , Cardone er £/ {1992b) obtain

of, = 000193, o, = 0.002, (3.72)
o] 0

AT. =11 - Ty = 0.022 = 11.1of.l. , (3.7b)
a

o

namely, zhe efnsteinian law [rails to predict the correct

value of the meanlife of the K9 at rest.

The results for the case of the covering isotopic law are given in
Figure VI1L3.4. .

Note that in the transition from the fit of the data by Aronson er
a/ (Figure V11.3.3) to that for the data by Grossman er &/ (Figure
VI1.3.4) the values of the characteristic b—quantities changes minimally,
Eq.s {3.5) and (3.9).
' An inspection of the data by Cardone ef 2/ (foc o/t ) indicates

that she KO  is & mwedivm of (C7as I} Type 9for which
TYPE® ng>ng ng <L B<B ¥>V¥ Vpmay >Cp € >Cp (33

In turn, this is in agreement with the isotopic interpretation of all
preceding phenomenclogical studies, such as those by Nielsen and
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ISOTOPIC FIT OF THE DATA BY ARONSON ET AL.
~ AND GROSSMAN ET AL. ON THE K9 MEANLIFE

7.0

T L) T l T T T T l Y T T ¥ I T L] T T

LnT(E)

(10~ sec)

li'l'llllllll!lll!!l'll|lll'l

4'0 [ 1 1 1 I H 1 1] A . I L 1 L 1 I i 1 L L
100 200 300 400

Energy of K;* (GeV} . error AE = 5; 3 GeV

Proper time of K,° T(E)

FIGURE VI1.3.4: The fit of the experimental data by Aronson e&f &/
{loc. cit) and by Grossman e #/ (loc. cit) on the K° ¢ meanlife via

isotopic law (3.2), as done by Cardone e #/ (1992b)l. The objective is

to see whether the two data are compatible under a suitable statistical
weight. The parameters are assumed to be bg b, and the difference A
= b42 - h32. The results of the fit are the following:

x2/n=07, A=b 2-bg? = (3326£0002x1077, (39a)
b 42 = 0.009080 £ 0.00004, b 2 = 1.002%0007.  (3b)

The diagram therefore shows the remarkable capability by the
isospecial relativities of achieving full compatibility between the
seemingly contrasting data on the meanlife bebavior with energy.
Morecver, the fits indicate that

Ab 2 = 0007 =700 (3.102)

|by !’
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. 2 _ -
Ab -~ = 0001 = 0500 |ng b {3.100)

which provide additional support for the Lie-isotopic theory in the
range 30-400 GeV, because b, changes very littel with energy, while b 4
varies considerably. This is also predicted by the isospecial
relativities, because b (n 4] geometrizes the medium inside the K °s
while the dependence on the energy is expected to be assumed by the
space part by (or ng. Finally note that zuserical valves {29 are
valid specifically for the K9, and that different
noumerical valves mxre expected for differenr hadrons . As
indicated in Chapter 1V, this is expected from the fact that hadrons
have approximately the same size, thus resulting in different densities
for different hadrons. In turndifferent densities necessarily imply
different values of the characteristic b-quantities. Despite these
differenmces and with the sole known exception of the pions, Z#e
characteristic b-guaptities of xfl hadrons are expected
to belong to the sawe geomelrization of Class I, Type 9
(see text).

Picek (1983} (see Eq.s (10.9)), De Sabbata and Gasperini (1982) (see Eq.s
(9.11) and others, to the effect that & hLadrons begipning from
the kaons on are expected to be constituted by the most
general possible medium predicted by the Isospecial
relalivities, those of Type 9

in conclusion, as anticipated in Sect. VIl.1, the most significant
experimental data provided by the phenomenological studies by
Cardone er af (1992a, b) are the numerical values of the

characteristic b-quantities for the Kos, and the consequential

identification of the type of physical media from classification (VIL1.5).

In fact, a  possible conformation of these data, with the
consequential finalization of the medium indicated, would permit truly
fundamental, novel possibilities, such as: the representation of hadrons
as generalized bound states {(closed nonhamiltonian systems verifying
the isogalilean or the isopoincaré symmetry);, the possible achievement
of a true guark confinement with an identically null probability of
tunnel effect for free particles with fractional charges; the possible
identification of quarks with conventional physical particles whose
characteristics are mutated because of the internal nonlocal and
nonhamiltonian effects; the achievement of an unambiguous isotopic
quantization of gravity; the study of iso-grand-unification; and other
possibilities indicated earlier.
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vil.4: ISODOPPLER REDSHIFT FOR QUASARS AND
PLANETARY ATMOSPHERES

As recalled in Sect. IV.9, Postulate 1V and isodoppler’s law (1V.9.48) were
submitted in Santilli {1988¢c) for the intent of avoiding the violation of
Esteinian laws by quasars’ under Einsteinian conditions (motion in
vacuum at speeds higher than cg).

Recall that quasars are very massive and bright bodies which, as
such, are expected to have an atmosphere as any other similar
astrophysical body; light is emitted in the quasars structure; it
propagates first within the quasars’ inhomogenous and anisotropic
. atmospheres; and then propagates through intergalactic distances to
reach us.

The hypothesis sumbitted in Santilli (/ec ¢/ ) is that the currently
measured quasars’ redshift is first caused by propagation of light
within the quasars’ atmosphere according to the isolZgpic redshirt /aw

e by . b 4
®=79(1-Bcosa), p=—8 ¥=|t-— p[% (1)
by By

and then by propagation of light through intergalactic distances
according to the Linstemiign redshit law

o = n{1-ppcosa), B=v/cy y=(-p2)H (42

due to the speed of the quasars.

The latter one can be decomposed into two contributions, one due
to the expansion of the galaxy associated to the quasar, and the
second to the expulsion of the quasars from the said galaxy (see Fig.
VilL.4.1 for details).

Mignani (1992) conducted explicit calculations along these
proposals by computing for the first time numerical estimates for the
characteristic b—quantities of quasars’ atmospheres.

Mignani essentially assumed, as a (irst approximation, that quasars
are at rest with respect to the associated galaxy, in which case the
difference between their neasured redshift and that of the associated
galaxy is entirely of isotopic origin.

Under this assumption, he identified the following expression for
the ratio b3/b4 , where the b’s are now assumed to be averaged to
canstant b’s,
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by (y+12-1  (@y+12-1
B = = ” b - > A (4_3)
b4 (lIJ’I_ + 1) + 1 (wz + 1) + 1

where w’y represents the measured Einstenian redshift for galaxies
according to law (4.2}, and wy represents the isotopic redshift for
quasars according to law (4.1).

ISOTOPIC ORIGIN OF QUASARS' REDSHIFTS

QUASAR

EARTH

ASSOCIATED GALAXY

Figure VI1.4.1:The Einsteinian interpretation of recent quasars’ redshifts
implies speeds in excess of the speed of light in vacuum, and actually
of the order of 10 g, and more. In particular, these speeds originate in
the expulsion of quasars from their associated galaxies, as computed
via the Einsteinian interpretation of the difference between the
redshift of the quasars and that of the associated galaxies. The
isodoppler law (41) was submitted by Santilli (1988c) to avoid the
violation of Einsteinian laws under Einsteinian conditions (motion in
vacuum at speeds in excess of ¢ ). The main argument is essentially
the following. Quasars are extrmely massive and bright objects. As
such, they are expected to possess an atmosphere as any'other similar
astrophysical body. But all atmospheres are inhomogeneous and
anisotropic, as well known and, as such, at variance with the
geometrical structure at the foundations of the Einsteinian Doppler's
Jaw. The amount of deviation from the Einsteinian law {4.2) in the
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conditons considered is evidently debatable at this time. But tke
Iack of exact applicability of [Iaw (42} within

inhomogenecous and apysolropic medrs should be out of

sclfentific dowbis. The subnitted hypothesis assumed that the

quasars” Jight experiences & redshirt during the
propagation within svch astmospheres  and prior to
reaching empty spi&ce . This would decrease the relative speed
between quasars and associated galaxies down to such values to avoid
the violation of Einsteinian laws under Einsteinian conditions. The
above use of the isodoppler’s law was submitted as a small correction
to the expectedly primary Einsteinian redshift due to the expansion of
the Universe. Studies subsequent to Santilli ({988c) have shown, see
later on Eq.s (4.9) and (4.10), that the isodoppler contribution can be
numerically higher than that of the basic expansion of the galaxies,
thus rendering unsettled a number of aspects of current cosmology
(e.g., the distance of the quasars). The original proposal in Santilli

(1988c) also suggested sz additional IFsolopic correction due
lo propagation of light inm intergalactic dJdistances . In
essence, space can be considered “empty” for distances of the order of
our Solar system. At intergalactic distances, space becomes a medivm
filled up with radiation, particles, dark matter, etc. This renders
conceivable a further isotopic interpretation of the redshiftof both
quasars and galaxies. This latter possibility shall not be considered
here for brevity, but it is hoped that experts in the field will consider it
because, if experimentally confirmed, can evidently imply corrections
on our current views on the distance of the galaxies themselves and
the dimension of the known Universe.

From known astrophysical data, Mignani (/oc ¢/z ) then computed the
following numerical values

GAL. 'y QUASAR B o
- NGC 0.018 UB1 3191 0.91
B3SOl 20.25 1.46
NGC 470 0.009 68 87.98 1.88
68D 67.21 1.53
NGC 1873 '| 0.004 BSO1 198.94 1.94 {4.4)
' BSO2 109.98 0.60
RSO 176.73 1.49
NGC 3842 0.020 Qs 1451 0.34
Q802 29.75 0.95
: Q803 41.85 220
NGC 4319 0.0056 MARK205 12.14 0.07
NGC 3067 0.0049 - 3C232 32.17 0.53
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In summary, according to the above model, the Einsteinian
expansion of the Universe is unchanged, because it is that of the
Galaxies, but the violation of Einstein’s special relativity by speeds
higher than cg in vacuum is eliminated.

Needless to say, values (4.4) are only preliminary and in need of
additional studies because of the possibility that the gquasars are
indeed expelled by the galaxies but at Einstenian speeds.

However, these latter possibilities can at best imply small
corrections of the characteristic B-values and, as such, they have no
" major impact on the analysis of this section.

Despite these unsettled aspects, values (4.4) are significant
because they constitute the first numerical values for the
characteristic B-quantity of interior physical media reached in.the
literature. As such, they have particular referral value, e.g., for the
experiments proposed below in this section.

As an incidental note, the isotopic interpretation of the quasars
redshift is not unique, and other attempts have been made to avoid
noneinsteinian quasars’ speeds (see, e.g., Arp ez 2/ (1990) and quoted
papers). These latter attempts, however, have to retort to rather
unusual quantum mechanical and other assumptions {such as quantum
mechanical polarization of the vacuum and the like). By comparison,
our hypothesis is based on macroscopic physical characteristics (the
inhomogenuity and anisotropy of the quasars’ atmospheres), and
provides a more direct, quantitative and plausible interpretation, as
the reader is encouraged to verify.

Also, the “direct universality” of isodoppler’s law (41) (Aringazin
(1989)) should be kept in mind because it implies, as particular cases via
different expansicns, all existing or otherwise possible alterations of
the Einsteinian laws based on, or equivalent to a topology peserving
alteration of the Minkowski metric.

An inspection of Mignani's (1992) results points out that Z#e
fundamental meaninge or values (4.4 Is the identification of
the quasars’ atmospheres as physical media of (Class 1,

Type 4,
Type 4 Ng<hy ny>1; B>B, ¥ <Y Vyuy <Co €<Cp (45)
In fact, all Mignani’s values are positive, bigger than one, and imply a

shift toward the red, thus characterizing media (4.5).
These results are not trivial because the isotopic geometrization
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of physical media is so broad, that there was no # pliori reason to
expect a necessary “redshift”, because a “blueshift” was eguaily
expectable.

As an example, the media of Type § jdentiried In the preceding
section a5 those existing i the interior of hadrons do imply & shirt
toward the bfue as the reader is encouraged to verify.

A further meaning of Mignani’s values is that of permitting
numerical predictions for the direct tests of the isotopic 18w
{41] in planetary atmospleres, as submitted in Santilli (988c).

The proposals essentially consist in measuring the possible
redshift of light within the inhomogeneous and anisotropic
asmospheres of the planets of our solar system, and are based on the
approximate proportion

> >

< wQuasars <M Quasars

(4.6)

R

M

wAtmowhere. Planet

where: < tI;QuasarS> is the expected average part of of the quasars
redshift entirely of isotopic character {that is, due to their
atmospheres); GJAmosphere is the expected isoredshift in planetary
atmospheres; < Mgyasar > is the average mass of the quasars; and
Mpianet IS the mass of the planet considered.

Needless to say, proportion {4.6) is merely intended to give an
order -of maghitude of the expected redshift, while its exact
counterpart can be reached only after a number of future
refinements.

Mignani's values (4.4) now render proportion (4.6) suitable for
explicit computation. In fact the average of Mignanis values is readily
computed giving the value

<|B|> = 7278, (4.7)
with corresponding gverdge redshirt or the quasars

<|@s|> = 1.15, (4.8)
while the average redshift of the associated galaxies is

> = 0.01. (4.9)

<|w’1

The isodoppler's redshift law, under the indicated limit
assumption, therefore iniplies the following agverage value of the
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redshirt. expected from the inhomogenuvity and amisotropy of the
quasars’ atmosplieres

> = <|dy > = 1.14. (4.10)

< Boyasars > - <| 'y

From astrophysical information we can assume that the quasars’
atmospheres are of the order of 109 densier than the atmosphere of
the desired planet, say, Jupiter. If, in first approximation, the isotopic
deviation from the conventional redshift is assumed to be proportional
to the density of the atmosphere {and in fact it is absent for null
densities), we have the following expected numerical/ value of the
characteristic B-ratio of Jupiter'’s aumosphieres

<B = <B3 /By pyrier > T3X10° 4 (4.11)

.Il.lpit,er>
with Jsotopic redshirt expected from he Inhomogenuity and
anisotropy of Jupiter’s atmosphere '

<| @ |> » 1.14x 1077, (4.12)

]

l.Iupiter
which is fully within current experimental capabilities. The
understanding is that its possible final value must be identified by
experiments {(which would then yield the possible final value of ratio
(4.11)). '

Similar orders of magnitude are obtained by using the
atmospheres of other planets, e.g., that of our Earth, or of the Sun.

If the quasars are not at rest with respect to the associated
galaxies but expelled from them at speeds compatible with the special
reiativity, the corrections to values (4.4) can at best be small, thus
leaving value (4.12) still within current experimental capabilities.

VIil.5: PROPOSED EXPERIMENTS

Not only physics is a science with an absolute standard of value, the
experimental verification, but experiments themeselves have their
own standard of value, with priority for the test of fundamental laws,
because of their evident scientific and societal implications, over the
test of lesser basic aspects.
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in these volumes we have studied the apparent inapplicability of
the Lorentz symmetry and related special relativity for the classical
description of relativistic dynamics within inhomogeneous and
anisotropic physical media in favor of covering isotopic formulations,
and presented preliminary tests which, even though inconclusive, are
encouraging. This is a clearly fundamental, open aspect of
contemporary physics which, as such, deserves an experimental
resolution one way or the other.

The tests here recommended must: A} be classical; B} imply a
sufficient departure from the geometry of the special relativity to
warrant the tests; and C) be feasible with current technology.

The best experiments along these lines appear to be those
proposed in Santilli (1983¢c) on the test of Postulate IV (Sect. 1V.9) and
related isodoppler’s redshift (4.1) within inhomogeneous and
anisotropic atmospheres which, as indicated in the preceding section,
verify all conditions A, B and C above.

More specifically, the test submitted are the following:

EXPERIMENT I- Measure im our laboratories the possible
Isoredskirt or light from & qUasar fherore andl after going
through the atmosphere of & member of our solar system,
such as Jupiter or Lhe Sun . .

The main idea is to consider’ first a light which is known to be
redshifted, namely, which is known to be moving at a finite speed v
away from us, according to the Einsteinian law

w=vyao, y=(1-p2)7% p=v/c, a=0, (5.1)

and then see whether such a light experiences an additional redshift
when propagating within an inhomogeneous and anisotropic
atmosphere according to the isotopic law

.. b L |

W=y, ¥ = ]1—-——!52| 5 B=v/cy @=0, (52

b2

The experiment is readily feasible via the use of exactly the

same apparata used for the measure of the quasars redshift, and

requires the measure of light just before and then through Jupiter’s

atmosphere to minimize the decrease of the distance from the center

of the planet. In turn, this renders ignorable gravitational corrections
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to the expected isoredshift.
The predictions of the isospecial relativities reviewed in the
preceding sections are of the order of

Ay= @ -o 2114x107° (5.3)

and, therefore, fully within current experimental capabilities.

If successful, these measures will first produce the actual value
of the characteristic ratio B = bg/b, of Jupiter’s atmosphere according
to the simple espression

by [1+6y+8,)2%]F
B = = {5.4)
by 8

But the average speed of light through Jupiter’s atmosphere is
given by

c=coby = ¢/ 0y {5.5)

where ny is the average index of refraction. As such, the numerical
value of bg = Ny -1 can be reached via a number of estimates, e.g., via
comparative values on Earth’ s atmosphere adjusted for the different
Jovian conditions of density, etc. The knowledge of ratio {5.4) will then
permit the identification of the characteristics b quantity of the
Jovian atmosphere, by reaching in this way values for both bg = 14 1
and by = n, !

EXPERIMENT [I: Measure in a& sateilite the possible
Isoredshirt of light from a GQUASAr (berfore and} arter going
Lhrough the entire EFarth’s armosphere.

If successful, Experiment i will produce the numerical value of
the characteristics bg and by quantities, specifically, for Jupiter.
Experiment !I is suggested so as to achieve the numerical value of the
same characteristic quantities, this time, for our atmosphere {which
are evidently expected to be different than the Jovian ones due to
different physical characteristics of density, size, etc.).

In turn, such a knowledge is essential for a variety of other
studies of the interior dynamics of our Earthly environment.
EXPERIMENT [Il: measure in our [aboratories lhe possible
isoredshift of sunm I;gﬂt in the transition from the zenit to
the equator
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The main idea is essentially to see whether the natural redshift
of light we have all visually observed at sunset has an {(expectedly
small) component due to the inhomogenuity and anisotropy of our
atmosphere.

The theoretical implications of this third experiment are
however deeper, and complementary to the preceding ones. In fact,
the experiment can be conceived in such conditions to minimize the
relative speed v between the Sun and Earth. As a result, if successful,
the experiment can provide inférmation on the functional dependence
of the characteristic b-guantities.

Specifically, for the Einsteinian case the value v = 0 implies that
Yy = 1 and o = ® resulting in no redshift. In the transition to
isominkowskian geometries, the situation is not that simple, because
the bg-quantity has a primary dependence on speed (see Sect. VIL3, in
particular, the diagram of Figure VIL.3.2). Isodoppler's law (5.2)
therefore reads explicitly

>

0y

-

=w

1——T—|'i, a=0, (5.2)
Co by €

where b 4 is assumed to be constant as in Fig. Vil.3.4

As a result, there is a possibility that an isodoppler redshift
occurs also for sources at rest with respect to each other, and the
issue evidently calls for a separate experimental study.

To state it in different terms, the experimental test of the
isodoppler redshift predicted by the isospecial relativities is multifold.
First there is the problem whether a distant light which is already
redshifted admits an additional redshift when passing through an
atmosphere (Experiments I and II). Then there is the different problem
whether a nonredshifted light can experience a redshift when passing
through an inhomogeneous and anisotropic medium, which is a
significance of Experiment IIL

Note that Experiments 1 and Il can be successful even under
negative results for experiment 1II. Note also that the characteristic
b-quantities of our atmosphere can be measured via Experiment II
and not IIL

Needless to say, Experiments I, II and il are intended to be
merely representative of a virtually endless variety of classical
experiments which can be conceived via the repetition of the
historical tests of the special relativity within physical media of
progressive geometric complexity (Sect. VIL1), and other means.
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_ Since the isospecial relativities have a c/zssica/ applicability,
this author insists in their experimental resolution at the clzssica/
level, and in a way independent from any possible, separate test in
particle and/or nuclear physics. This is not merely due to
epistemological aspects, but also to technical reasons reiated to the
appearance of additional degrees of freedom in the operator
formulation of the isospecial relativities, in addition to the isounit 1 (or
isotopic element T).3% ,

Nevertheless there are particle experiments which are
semiclassical and therefore suitable for additional classical tests. This
is typically the case for the data elaboration of experiments on the
behaviour of the meanlife with speed, as outlined in Sect. VIL3. This
leads us to suggest the following

EXPERIMENT [IV: Achieve final experimentzl resofution of
the behaviour of lhe meanlife of unstable hadrons Wilh
speed, not only for lhe Ko particle, but also for other
unsiable hadrons.

In essence, as stressed in Sect. VIL.3, both data by Aronscin &f
2/ (1983) showing deviations for 30 - 100 GeV, and by Grossman ef 2/
(1987) showing verification of the Einsteinian law between 100 to 350
GeV, are preliminary and in need of final resolution, one way or the
other.

3 The interested experimenter should be aware of these aspects to avoid possible
erroneous elaborations of experimental data. In egsence, the isospecial relativities
are characterized, at the classical level, by only one degree of freedom, the isotopic
element T of the universdal enveloping associative algebra { with basic
isoassociative product A*B = ATB, which also characterizes the underlying isofield #

=21, 1 =T In the transition to operator formulations, isospecial relativities are
characterized by two independent degrees of freedom: the isotopic, Hermitean and
positive-definite operator T of the enveloping isoassociative operator algebra E,
which also characterizes the isofields of reals % = R} and of complex numbers C = Ci,
plus a second, independent isotopic operator G = Gt > 0 characterizing the underlying
sotilbert space R with fSoimner prodact which, in its most general possible form,
can be written < ¢l ¢ > = <¢| 6|4 >1eC. The evident result is that possible
experimental data in particle physics on isosotpic relativities do not necessarily
characterize the operator counterpart of the classical element T because of the
general presence of the additional isotopic element G. It is true that in practical
applications one usually assumes T = G (in which case the generalized operation of
Fokermiticiey , Bt = TG Ht 61T coincides with the conventional Hermiticity, Ht =
Hi, and all conventional observables remain observables under isotopies). The point
nevertheless persists that the possible differences between T aund G must be
investigated with care before claming final experimental conciusions. For more
details, the interested reader may consult Santilli 1989).
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Owing to the evidently basic character of the issue for all of
theoretical physics, it .is therefore essential to finalize the
experimental data, by either confirming or denying the current
experimental status.

The experiments should also be conducted for particles other
than the Kos, because of zhe indirect rature of the measure of lime
for such & particle owing to Its neptral character , as compared to
other decays, e.g. that of charged pions, in which the behavior of the
meanlife with speed can be reached in a more direct way with less
theoretical elaborations of the data.3?

The experimenter is however warned, that, fo zchieve
gccepiance of the results by the physics community 3f
large, the theoreticel assumptions in the dats elaboration
must be clearly such npol! lo suppress aany possible
deviztion

We are here referring to the unfortunate theoretical assumption
by Grossman e 2/ (1987) of a frame in which the CP violation is null,
because it is nowaday well know that the origin of CP violation in the
KC-system may be exactly that triggering the anomalous behaviour of
the meanlife, as discussed in detail by Kim (1978} and others.

In different terms, the verification of the Einsteinian behaviour
of the meanlife of the data by Grossman ef 2/ may be due precisely
to the theoretical assumption in the data elaboration of the frame with
null CP violation {as well as other theoretical assumptions). As a
resultm a re-elaboration of exactly the same data by Grossman ef &/
in different frames ensuring a nontrivial violation of CP-symmetry may
produce well anomalous data similar to those by Aronsen ez 4/

Finally, the experimenter should keep in mind that & possible,
future experimental verification of the Einsteinian
behaviour orf the meanlire ror the entire range of valves
from 30 to 00 Gey has no Jhp!icxtlbﬂ whatever on Lthe
validity or invalidity of the Isospecial relativities .

In fact, as stressed in Sect. IV.3, isespecial relativities have been
conceived and constructed for the Jaler/or orf hadrons , and not
for their exterfor behavior in a particle accelerator. As a matter
of fact, Zhe erxterior, center—of-mass behavior af closed,
nonbhamiltonian and Jisopoincare invariant Spstems
verifies, in thelr most general form, the rtotslity of lhe

39 rRe messure of the Dekavior of the meanlife of the mwor with
speed is stropgly discoorsged as & first step, #a8d recommended osly
arter the, or joiatly with tke basic tests om wastable “Zadrons”. This
is due to the realistic possibility that the muon is indeed an elementary particle, only
in an excited state, in which case no internal nonlocal effects are conceivable, and
no deviation from the Einsteinian meanlife is possible.
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Einsteinizn laws by coastruction, including the behavior
of the meanlire (see Sect. 1V.2).

In fact, the verification is such that the admission of the
noneinsteinian behavior of the meanlife requires theoretical
justifications via the removal of one or more subsidiary constraint.

The behavior of the meanlife of unstable hadrons is one of those
intriguing special cases to deserve serious experimental studies.

" All the above tests are specifically referred to the boosts
component of the isolorentz symmetries. Our presentation would be
grossly deficient without an experimental proposal for the ultimate,
fundamental isosymmetry from which all others can be derived: the
isorotational symmetry O(3) (Sect.s 1113 and VIL.2). This leads us to the
following final proposal:

EXPERIMENT V: WRepecal Rauch’s experiments onr the
apparent rotstional asymmetry of netrons (Rauvch (1981},
(1983)) via: 1) & better accuracy: 2/ with multiple spin rlips:
and 3} with nuclear interactions in the electromarpel £ap
arl rncressed mass

The last experimental run by Rauch and his associates dates
back to 1978. In the meantime, the technology and accuracy of neutron
interferometers have improved considerably. The repetition of the
experiments with the reduction of the error to about 20%Z of current
values would evidently resolve the issue, and this clarifies Condition 1.

Also, as recalled in Sect. VI1.2, Rauch’s tests were done for only two
spin-flips, while neutron interferometry can today achieve up to fifty
spin-flips and more. The repetition of the tests with multple spin-flips
is important because the effects is eminently nonlinear, and therefore
expected to have a nonlinear increase with the number of spin-flips,
and this clarifies Condition 2. '

Finally, the deviation is expected to be due, in a generally
nonlinear fashion, to the intense fields in the vicinity of Mu-metal
nuclei (Santilli {1981), Eder (1983)). The use of heavier nuclei is then
recommendable to maximize (rather then minimize) the deviations.

Moreaover, in each of the preceding runs, the experimenter should
a) Measure the basic angle of spin-flip and related error;

b) Verify or disprove that the median angle is always lower
than the amount expected (“angle slow-down effect”); and
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c} verify that the behaviors of the intensity and
polarization modulations are indeed sinusoidal and with
the appropriate phase (because angles a and b could be
conventional, yet a rotational asymmetry may emerge from
data c).

In the final analysis, the experimenter should Keep in mind the
central concept at the foundation of ail isotopic relativities:

the direct represenistion of the actual size and
shape of the considered charge distribution, as well
2s of all Its 7infinitely possible deformations, Wilh
consequential, necessary alteration of rthe intrinsic
magnelic momeni.

In a scientific setting of this nature, the amoun? of deformation
for given external conditions is unknown at this writing, and can only
be resolved via experimental measures. But the existence of the
deformation is beyond any scientific doubt, thus directly activating
the isotopic rotational symmetries with consequential isotopic

relativities.
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APPENDIX VIILA: NECESSARY CONDITIONS FOR
TRUE TESTS OF QUANTUM MECHANICS

it is appropriate to close this chapter by recalling that, wrih the sole
exception of RRuch’s measures, &l experiments conducted unlil now
for the rest or gquamtuln mechanics have provide no deviation
whatever. This includes the negative resulls of lhe experiments
testing a possible nonfinearity of guantum mechanics (see Zeilinger
er a/ (1983), Ellis er #/ (1984), Ignatev er 2/ (1987} and quoted
experimental papers).

These results are generally assumed as “evidence” on the lack of
need of isotopic symmetries and”i‘el_ativities in particle physics. It is
therefore important to indicate the reasons why Ife Jfaller lests
are fundamentally rinsufficient Lo test hadronic
mechanics, lhat Is, to lest possible nponlinesr and
nonlfocal erfrects ip the imterior of fhadroms on a number of
independent counts,

The mean reasons is that the latter experiments are conceived to
approach the conditions of applicability of quantum mechanics as
close as possible, thus resulting in predictable lack of deviations.
Another reason is that, most of the tests considered are of atomic type
{e.g., searching for a possible nonlinearity in the atomic structure) and,
as such, strictly inapplicable to the interior of strong interactions.
Also, the latter experiments search for a very special type of
nonlinearity, that in the wavefunction § , while our studies indicate
that the most important nonlinearity is that in the derivatives of the
wavefunctions 9§ (because all drag effects are dependent on the

velociitiy)4°-, and other reasons.

40 The interested reader may inspect the basic equations of motion of badronic
mechanics, Eq.s (11.6.23) and ([1.6.24), with related emphasis on the “direct universality”
for the most general conceivable linear and nonlonear, local and nonlocal equations
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The experimental guidelines provided by these volumes are that
the possible experimenial detection of deviations from
quantum mechkanics demands the maximization of the
departures of the physical conditions of the cxperiments
from those of the originsl comception of the theory.

To begin, none of the experiments conducted until now (with the
sole exception of Rauch’s experiments, see below) focus the attention
on the true, ultimate limitations of (relativistic and nonrelativistic)
quantum mechanics, the representation of particles as being point-
like.

We reach in this way the following:

CONDITION FILA.1: A first condition lo truly test
possible deviations from gquantum mechanics, Is that
the tests musi be rfupdamerntally dependent om Lie
limitations of the theory caused by ils point-like
approximation of particles, and be essentially
depedent on physical conditions in which Lhe
exiended and therefore deformable characier of the
charged distributions apd/or wavepackels of the
particles Is expected lo produce measurable elfects.

-The limitations of quantum mechanics caused by its point-like
approximation of particles are so evident, that the studies of its
generalizations to represent particles in their actual, finite, and
deformable, character {e.g., via hadronic mechanics) have physical
value even prior to, and independently from the experimental
resolution of the issue,

Despite these manifest limitations, the experimental detection of
possible deviations from gquantum mechanics has continued to be
elusive, again, because of the lack of identification of the appropriate
physical conditions under which deviations are admissible.

The most visible case is that of experiments on inelastic
scatterings of hadrons. These are particles which possess a fully
established, extended characier. Nevertheless, all tests conducted

- until now have shown no appreciable deviationl.

in all variables.
# There are few exceptions we can only indicate here without treatment, such as

the difference in the cross section for inelastic scatterings of polarized hadrons,
depending on whether the particles have spon parrallel or antiparallel. These
differences could be evidently due to the extended character of the particles which,
when colliding, render singlet and triplet states inequivalent, as discussed in
Appendix LA with the “gear-model”. This is a typical topic currently under study
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The point is that ail such experiments have been conducted in
their center—-of-mass frame, or in equivalent frames. Extended-
deformable hadrons in their center-of-mass are precisely the closed
nonbamiltonian (nonselfagdjoint) systems studied in these volumes. We
have stressed throughout this analysis that these generalized systems,
when seen from the outside in their closed conditions, show no
deviation from the conventional atomic setting.

The very idea of the isotopic relativities is that of expressing the
complete identity of a closed nonhamiltonian with 2 closed
Hamiltonian system when studied from the outside.

Thus, the studies of this volume establish that experiments
conducted in the center-of-mass sysiems, and/or in any of their
equivalent frames, are substantially insensitive to the internal
structure of the systems. In the final analysis, nonlinear, nonlocal and
nonhamiltonian forces are strictly internal effects without potential
energy , and without measurable effect in the outside center-of-mass
system {with the sole possible exclusion of the meanlife behavior, see
Sect. VIL.4).. ‘

We reach in this way the following:

CONDITION VIILA2- A second condition to truoly test
possible devigiions from quanium mechanics Is that
messures are copducted under lhe maximization of
mopconservative conditions duwe to external intera-
ctions.

To understand this point, the reader should always recall that
conventional quantum mechanics provides a form-invariant
description of stable systems via the stability of each individual orbit,
as requested by its fundamental rotational symmetry. If the
experimenter maximizes the compliance with these conditions of
stability, it is evident that no deviation is possible. On the contrary, if
the experimenter maximizes the departures from stable orbits,
measurable deviations are conceivable, and actusally expected on a
number of counts.

One way to illustrate the above occurrence, is by considering the
current experimental beliefs on the validity of the uwe-reversa/
Symmerry i Strong lieractions '

As well known the experiments in the field have been
systematically conducted in the center-of-mas frame or in equivalent
frames. Now, a study of the issue reveals that there is no real need to

with the operator formulation of the isotopic relativities within the context of
hadronic mechanics.
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conduct experiments to test the exact T-symmetry in the center-of-
mass conditions. In fact, by observing Jupiter (see Fig. 1.1.1 and the
appendices of Chapter 1), one can easily see that its center-of-mass
trajectory in the solar system is strictly time-reversal invariant.
Nevertheles, its internal structure is irreconcilably irreversible.

Thus, the scientifically correct statement is that tke 7-reversal
svmmerry Is exactly valid for strong Mnteractions in thefr cemter-
of-mass system . Scientific caution requires the statement that
the validity or mvalidity or the T-reversal symmetry for strong
interactions In their opem momceanservative conditions, ef.,
for one hadronic constitvent while consrdering the remaining
constiuents a5 externgl, is fundamentally unresolved &¢ Lihis writing,
theretically and experimentally

We reach in this way our

CONDITIONS FILA.3- A third and rival condition Lo
ruly test possible deviations [from quaniuy
mechanics Iis that rhe physical conditions FVFiiA.f and
Vil A2 should be elaborated with a rtheory strictly
independent from the law ro be lested.

The T-reversal symmetry is again a good example to illustrate this
latter occurrence. Suppose that experimenters do indeed finally pass,
from center—of-mass measures, to bong fide open conditions under
strong interactions. However, if the data from these latter conditions
are elaborated via conventional quantum mechanics with a Hermitean
Hamiltonian, the tests acquires a scientifically misleading character
because the theory assumed in the data elaboration {unitary time
evolution) does verify the theorem of detailed balancing in its entirety.
An exact T-symmetry under open conditions is therefore expected to
result from the theoretical assumption, and we have no true
"experimental results”,

In order to conduct true experiments on the T-symmetry that will
resist the test of time, the experimenters first need physical
conditions as open—nonconservative as possible (Condition VILA.2), e.g.,
a beam of hadrons interacting with an exrerwal/ fixed, sufficiently
heavy target., with a measurable /foss of eznergy or of other physical
quantities of the beam in favor of the external target (with the
undersdtanding that the total quantities, includive those of the
external target are evidentlhy conserved%?), In addition, the

42 Eder (1981) interpreted Rauch's data (981 and 1983) on the rotational asymmetry of
neutrons as a form of spir flectualion . The evident understanding is that the Mu-
netal nuclei experience a complementary fluctuation in such a way that the total
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experimenters should elaborate these nonconservative conditions
with a nonunitary theory.

If these open-nonconservative conditions are truly represented,
e.g., with & nonunitary time evolution, then there is no need to conduct
tests to establish the dewiszion from the T-symmetry on qualitative
grounds, and the test are needed only to establish its quantitative
amount for given conditions, because wonunilary lime evolutions
violate the theorem of detailed balancing (see Santilli (1983b, c)).

- This is the dichotomy of exact verification of conventional
guantum mechanical laws for the center-of-mass treatment of
strongly interacting systems, in a way fully compatible with possible
deviations for interior conditions. After all, internal nonconservative
trajectories imply internal exchanges of energy with no impact in the
conservation of the total energy for an isolated composite system, and
a similar situation occu..rs for all other physical quantities.

It is hoped in this way the experimenter can begin to see a new
horizon of basically new experiments, which we plan to study in future
works after reviewing the operator formulation of the isotopic
relativities. ,

The above comments also illustrate the reasons why, in
disagreement with all other tests, Rauch’s experiments do indeed
reach preliminary deviations from, the prediction of quantum
mechanics.

In fact, Rauch’s experiments:

1: are cemrally dependent on the extended and rherefore
derformable character of neutrons, by therefore vermving
Copdition VLA 1

2 conduct measures under open conditions (thermal neutron
beams Interacting with the external Mu-metal target) by
therefore verntving Condition VILAZ: and, /45t bur not fe4sy,

& the measures of the angle of spin-rip is basical independent
from the theory lto be [ested, the rotational/ SymmeLry, by
thererfore veriiyving Condition VA3

We therefore close these volumes suggesting scientific caution
prior to claiming lack of deviation from the predictions of quantum
mechanics via tests that are fundamentally based on physical

angular momentum of the neutron beam and of the external Mu-netal sheets is
exactly conserved and fully conventional according to quantum mechanics.
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conditions and theoretical elaborations of data that are strictly
quantum ‘mechanical.

This occurrence has been illustrated with the fact that there is no
need to conduct experiments on the T-symmetry to see the existence
of its violation by nonconservative conditions when truly represented
by nonunitary time evolutions.

Similarly, there is no need to conduct experiments for the
existence the deformability of neutrons under sufficiently intense
external fields, with the consequential alteration of its intrinsic
magnetic moment.

A number of additiona experimental insights for the interior
particle problem are provised by Animalu’s (1991b) studies on
superconductivity, via the representation of the Cooper pairs with
internal nonlocal . effects which are structurally outside the
capabilities of quantum mechanics.

But, above all, the most significant experiments are those directly
testing the foundations of the studies of these volumes:

the legacy of Fermi, Bogoliubov, amd olhers on the
ultimate Jrmiternal monlocality of (the strong
Interactions due lo deep mutusl overlappings of the
wavepackets of hadrons or of lheir constituents.

The test based on the Bose-Einstein correlation are particularly

significant for this purpose. In fact, as pointed out in f ootnote??, p. 305,
the very notion of correlation is outside the quantum mechanical
axiom of expectation values, while it is fully predicted by the covering
isotopic mechanics and relativities (Santilli (1992).
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