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£Yinvariant n-point functions of scalar field theories satisfying the Wightman axioms are considered
in the framework of the recently proposed inhomogeneous U(3,1)-invariant extension which is
Weierstrass analytic in both the real and imaginary parts of complex four-vectors. The algebraic variety
over which the extension is analytic is investigated, and it is shown that there is a shift in the
appearance of singular points from # >6, as for the customary complex analytic extension, to n > i0.
The extended analyticity domain is investigated too, and it is proved that it contains all the spacelike
points of the analyticity domeain of the physical »-point function. A procedure to reach physical
timelike separation, as well as any separation, is introeduced, and it is shown that the above type of
Weierstrass analyticity is sufficient to determine the physical n-point function at any separation from its
value at spacelike separation. The above results are applied to the generalized Haag theorem in order
to see whether its validity can be extended to more than the first four vacuum expectation values for
the considered type of field theories.

1. INTRODUCTION of a scalayr field theory satisfying the Wightman
axioms was investigated from a new analyticity
In 2 recent paper® the extension to complex four - approach, namely, Weierstrass analyticity in both
vectors z,=§&, —~in, of L tinvariant n-point func- the real and imaginary parts £, andn,.
tions A theorem was proved which essentially states

that under certain restrictions all possible ana -
Iytic extensions of w, (£;, ..., £,-,) to complex
=(0py(x,)+ + + by (%, Y O, four-vectors z, = £, —in, are characterized as
follows:
Ey=xy, ~ X34y, kB=1,2,...,n-1 (1.1) (1) There exists an extension (Bargmann-Hall-

Tf”'/:'t(xh' .. :xn)=wn(‘§1:-- B ‘En-"l)
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Wightman theorem?®), ©%) (£, 75+ - + 5 Ems M),
m=n-1 which is analytic in the domain

D =(E, | 02 g+, EV,

E=1,2,...,m; n=0,1,23)
(1.2)
and {complex} analytic in the variety

MW=(U;|0,; =2;2,; ,§=1,2,...,m) (1.3)

over which the orthogonal scalar products z;z;
vary for all the 2’s in the fube

l(:yln)=(zk |zk=gk"’ink; ‘EJ‘: ,Wree_@%l§ k:]"z) e :m)-
(1.4)

Furthermore, the extension possesses a single-
valued continuation to the extended tube

P %2: UA® 70 A(‘)ELJ,(C) (1.5}

and is invariant under the proper complex orthog-
onal Lorentz group L, (C}.

(2) There exists a new extension, u_f(,f)(ﬁl,m;

.7 EmyTim), Which is analytie in an open and
connected subset S& of the region®

Qzari:(gk » e |Ek2<0) nk2<0; k:l,g,. b ;m)
(1.6)
and {real) analytic in the variety
M&"z=(vijlvij=%(ziz}‘+zfzj); i,j=1,2,...,m),

{1.7)

over which the Hermitian scalar products
3(z:2% +zfz;) vary for all the z’s in the domain

I?,.)= (2, izk= B —iny; ‘Emmeﬁiz%; k=1,2,...,m).

{1.8)

Furthermore, the new extension possesses a
single-valued continuation to the extended domain

T84 8 ABEUE,1), (1.9}

and is invariant under the unitary U(3,1) group.
In a2 more recent paper,® some examples of
g'u(z") analytic extensions were constructed with
corresponding analyticity domains 7% as an ex-
plicit check on the validity of the theorem.
In the same paper we introduced an algebraic
procedure for constructing the analyficity domain

[T

of the physical n-point function without any re-
cursion to the extended tube 7 %) by disproving a
rather popular belief that this domain cannot be
constructed without the knowledge of the wl ex-
tension. This ultimately proved the independent
existence of the two nonequivalent extensions w,‘}’
and w® in the framework of the assumed type of
Weilerstrass analyticity.

As is well known, the extension w_vf,” possesses,
among others, the following properties®:

AW: The matrices (U;;) of the variety (1.3} have
rank ¥ $4. This property has relevant physical
implications, since it ultimately implies a restric-
tion on the first four vacuum expectation values for
the validity of the generalized Haag theorem.

BW : The identity [ can be continuously connect-
ed to the total inversion I;, on account of the
connectivity properties of the invariance group
L,{C). This property is of central importance in
the derivation of the TCP theorem.

¢W: The L, (C) invariance group preserves rank
and order (as complex manifold) of the Lorentz
group, a property which has some relevance in the
expansion of the scattering amplitude.

The corresponding properties of the extension
w® are as follows?®:

T A®: The matrices (V;,) of the variety (1.7) have
rank ¥ < 8.

B®: The identity component / can be continuous-
ly connected not only to the total inversion I, , but
also to the space inversion [, and the time inver-
sion I, on account of the connectivity properties
of the U(3, 1) invariance group.

C®: The U(3,1) invariance group possesses
order and rank larger than those of the Lorentz
group and the full invariance group; the inhomo-
geneous IU(3, 1) group presents the interesting
feature of admitting the SU(3) group as a little
group.

Even though the above-listed properties of the
new extension are rather striking as compared to
the corresponding properties of extension 11)5,‘3,
cbviously they do not cast a shadow on the exten-
sion of the Bargmann-Hall-Wightman theorem,
which retains all its power centered on ifs unique-~
ness once the framework of complex analyticity is
assumed.

Nevertheless, in our opinicn, the above prop-
erties are sufficiently interesting to motivate
further studies on the new extension.

It is the purpose of the present paper to investi-
gate some aspects of the new extension m_vff) -which
are essential for an evaluation of the possible
physical applications of properties A®), B®), and
C® listed above.

In Sec. IT we study the dimensgionality, together
with the singular and exceptional points of the
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algebraic variety M2

In Sec. III we investigate the real points® of the
extended domain 7'%in order to see whether they
have equivalent properties and effectiveness as the
Jost points® of extension w®,

In Sec. IV we attack the‘problem of how to reach
real timelike points {which are outside both analy-
ticity domains 72 and 7/2)) in order to see whether
relations between spacelike and timelike separa-
tions can be obtained in the framework of the z_u(,";)
extension.

In Sec. V we investigate whether the knowledge
of the extension w¥ in a (real) neighborhood of a
physical spacelike point uniquely determines the
n-point function w, at all physical points. Finally,
we apply our results to the generalized Haag the-
orem.

il. THE ALGEBRAIC VARIETY H(@)

As is well known, ? the n-point functions W,
(£1,+.., &), m=n-1 are {real) analytic in the
variety

Mm=(sij|84j=EiEj; i,j=1,2,...’m), (2'1)

over which the scalar products &; &, vary for all
the £'s in an open and connected subset 5,, of the
domain for zll spacelike £:

D =(E|62<0; k=1,2, ... m). (2.2)
Thus, there exist functions &, (5,,,...,5,), With

51;EMy, such that
we £y, E)=0 (50, -0, Som) - (2.3)

M, is an algebraic variety in the m(m+1)
scalar products £; £, and is an open subset of the
set of all real symmetric matrices with rank
¥ <4 with dimensions

gém (m+1Yform=1,2,3,4
dim (M,,) =
?4m—6 for m>4.

(2.4)

For points of M, withm <4 {n <5) where the rank
is not maximum, namely for exceptional peints, °
M,, is locally an open set in a 4 m (m+ 1)-dimen-
sional space, and the Weierstrass definition of
real analyticity applies.

For points of M,, with m =5 (n= 6) where =4,
M, is locally an open set in a (4 —6}-dimensional
Fuclidean space, and the standard definition of
real analyticity also applies.

Points of M, withm =5 and ¥ <4 are singular
points and their neighborhoods are no longer lo-
cally Euclidean. In this case analyticity simply
refers to boundedness and continuity.

The variety M & deﬁned by (1.7) is also an alge-
braic variety in the z m(m+1) sealar products

Vig =& &; +m41; and is also an open subset of the
set of all mxm real symmetric matrices. How-
ever, the rank of the mairices (V;;) is <8 (Ref. 1)
while the rank of the matrices (S;;)is <4.

The above difference in the rank has implications
for the dimensionality of the variety M ? as well
for the locaticn of exceptional and si;guiar points.

As is well known, a real symmetric mxm matrix
of rank 7 can be brought, via a similarity trans-
formation, into a form in which only the first »
rows do not vanish:

[_Vn """ ) Vin Vip e e e Vim
V22 Pt VZm Véa e * Vém
= Vi Vi
0 20 0
0
o me J . .
(2.5)

Thus, the extension k% (V,, FEE Y omam)
—wu{&l,nl, ev o By Ty in the % m (m+1) elements
Vi; is actually defined on a variety which in gen-
eral has dimension less than 3 m(m+1) if m>8 and
the rank is maximal.

To find the actual dimension we must subtract
from % m(m+1) the number of elements V;, which
are zero after the similarity transformation.
Clearly, such a number is 3 [(m-7}(m~-7 +1)].

For M, we have, putting r=4,

dim (M,)=% [m{m+1}] —[{m -4} {(m -3)]

=dm - 6; (2.6)
similarly for M® we have, putting » =8,
dim (M2 =4[mlm+1)] —[(m - 8)(m - 7))
= 8m — 28. (2.7)
We thus see that the extension £® (Vy,, ..., V)

is defined on a variety ¥® whose dimension for
m> 8 cannot exceed 8m ~ 28 if the rank is maxi-
mum.

As analytic counterpart of the algebraic rule
(2.7) we have the following lemma.
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Lemma 2. 1. If a function f% (2, ..., 2m52f,. - .,
25y=w® (E;,my;- - - Emy ) i analytic in the ex-
tended domain 7' 2 and invariant under the U(3,1)

group, then the following equations hold in v &

QIL] af(z)
Zj: (zl'li 32? :u Bz*”) 0 3 (28)
D af® |
Z ( 211 az*v _zf"’az*.‘”) :0’ (2"9)
Il ¥
af(z) af(z))
& =m =0 .
ZJ_: (z“‘ 8z 2L 9z# ’ (2.10)

with p,v=0,1,2,3.

Indeed, consider a one-parameter subgroup of
T(3.1) characterized by the transformation Aa).
Differeniiating the identity

W@z, ..., AMa)z,; 2iATa),. .., 250" @)
=fﬁ) B, 2my 25 .00, 25)
(2.11)

with respect to a we get

E{ BI%) g[A (@)z 1"

T a[A(a)z,]* aa

P ezt ),
a[sz {2)]* 2a )
{2.12)
At a=0 we have
B[A(a)z,-]” e
ol Ak R = - 2.13
da a=0 7 ZJU? ( )
and
a[ZJ:FA—P(a)}” N P
— a:o—zJUH . (2.14)

where H" ig the infinitesimal generator of the
Ala) transformation.

Consider the one-parameter subgroup for which
all elements of the matrix (H"Y) are zero except

for a pair " and ' such that g*"= -g*%* = const,

HM=H", Then relation (2,12) becomes

(2) g Fle) 8 Fi@) afF@
8f S , o5 [ )-~0,

o m o m
Z(zjv azf T Ei e T TRy owr Bz Jﬂaz*u
k) 2
5

(2.15)

which can be written

0, /2 +0,,72=0, (2.18)
with
3 ]
Oyf}Z(zfvﬁf"sz@)' (2.17)

For p=v, Eq. (2.16) reduces to (2.8). For p#v
recall that a function f " ) which is invariant under
U(3, 1) and analytic in 72 is also a function of the
scalar productst V,, = Mz,z% +2¥2,}, i

_J_C(HZ)(Z_[’ e }zm, ;15‘ ¥ z:}ﬁd_’u(ﬁ)(gl’ T’].; A ; ‘Em! ﬂm)

=£z{n2)(Vn, R ] me) ‘

(2.18)
But then

(2}
{2)_ O th ¥ avls =0
Ou L m 5V, Ej Zav oz Zin g 8z ’

(2.19)
and relation {2.8} for p+ v follows from (2.16),

Consider now the function w{?') Differentiating
the identity
A, Aadng; .. - ; Ala)é,, Ala)n,)
=0 EEL MG o5 ey )
(2.20)

with respect to g, where A{a) is a transformation
of L'<0(3, 1), and following & similar procedure
as above, we get

;e aw® el Bw‘z’)
Zi: luaﬁf = v BEE T T o’ =My ok =

(2.21)

In view of the structure of {2.18), this equation
can be satisfied if and only if

5 (5, 25 - g, 2 ),
: i
— \"'F 8E; 8¢;

and similarly for the other terms in the #’s in

(2.22)

(2.21),
Using the substitution
a 1/8 3

and by means of Eq. {2.8), relation (2.22).can be
written

B, k( 2 + B} k,f =0 (2.24)
with



|~1

& o
Byy =2, (ngf—u—zfuw)- (2.25)
J

On zccount of the siructure of (2.18), Egs. {2.9)
and (2.10) easily follow from (2.24).

Equations (2.8}, (2.9), and (2.10) represent a set
of at most 28 independent equations for 8» vari-
ables, the z; and z*. Consequently the dimension-
ality of M 2 for m>8 and ¥ =8 is Bm — 28 as de-
rived from the algebraic rule (2.7).7

This essentially means that for »n> 8 and when
the rank is maximum there are at least 8m - 28
functionally independent Hermitian scalar products
which can be formed out of the 8 variables z;,
and 27%,.

Furthermeore, in this case the tangent space of
any point of M {?’ is locally Euclidean and has also
dimension 8m — 28.

If for m> 8 the rank is not maximum, then the
tangent space has dimension 5[m{m +1)] and it is
no longer locally Euclidean. Indeed, in a way
equivalent to the case for M, (see Ref. 2), the
tangent space at any point of 4 {?) is determined
by a set of linear eguations in the differentials
AV,, whose coefficients are 88 minors of (V,,).
If all those 28 determinanis vanish, then the set
of equations is satisfied by any choice of dV,.

For m <8, Mff) is clearly an open set in a {real)
i[m(m +1)] dimensional Euclidean space. Indeed,
since there are no points for m <8 which are sin~
gular in the sense of algebraic geometry, the {an-
gent space is always locally Euclidean and has
dimension i[mlm +1}].

By identifying the dimension of the variety with
the dimension of its tangent space, we can sum-
marize the above resulis with the following prop-
osition.

Proposition 2. 1. The dimension of the algebraic
variety M () is z[mim + 1)] for m < 8; 8m - 28 at
nonsingular points for s> 8; and $[m(m +1)] at
singular points for m> 8.

The dimensions of the algebraic varieties M,
and M {2, thus, coincide for m=1,2,3, 4 and in
both cases no singular point occurs. For m
=45, 6, 7, B the dimension of M,, is 4m — 6, while
that of M2 is [m(m +1)] and singular points can
occur only for M . For m> 8 and maximum rank,
the dimension of M, is 4m —6 and that of M3 is
8n -~ 28. Finally, for m> 8 the dimensions of M,
and M (2 again coincide at singular points.

An interesting {open and connected) subset of
M is the variety

@ =V, V,eMP; rank(P)) s4;
i,i=1,2,...,m).
(2.26)
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Clearly, M) behaves like M, for what concerns
both the dimensionalily and the location of excep-
tional and singular poinis.

1ll. REAL POINTS IN THE EXTENDED DOMAIN 72

In Ref. 4 the existence of physical (real) space-
like points in the extended domain 7/¢*! was in-
dicated, and the cases of two- and ﬁqreewpoint
functions were explicitly discussed.

We shall now investigate this problem in a more
general framework by proving first the {ollowing
lemma.

Lemma 3.1. The algebraic variety A7, is a sub-
set of the variety i (2%

Consider the variety i7 (3 as defined in (2.26).
Any element ¥, ;€4 ‘3 can be written as a scalar
product of real four-vectors a; such that

a PR

Vi =88+
=00y ,j=1,2,...,m. {3.1)

indeed, any real symmetric m X m matrix (?A’i,-)
of rank v < 4 and index 1 can be written, through
a gimilarity transformation, in the form

- GO '

(V) =F(0 D)FT, (3.2)
where G =(g,,) and F is a nonsingular matrix. Re-
lation (3.1) is then proved by simply putting

0= (Fyy, Figyo v o s Fip3 0,0,...,0),

i=1,2,...,m (3.3)

where 0,0,,..,0 consists of 4 - » zeros.

All four-vectors «; must be spacelike by con-
struction. This implies that S, is a subset of
the set of all four-vectors @; or, equivalently,

M, ca2cm. (3.4)

Indeed, consider a spacelike physical point
(£, ..., En)=S,. Then there always exists a point
(8,5 - -« 3Emy In)ESEE such that

Sii= 8

= f’ii

=£E @ . (3.5)
Choose, for instance, the point

Ei=ak;, 7i;=04&,

with a and b real constants satisfying the resirie-
tions ’

i=1,2,...,m (3.6)

O<a<l, O<b<l, a*+d"=1. (3.7
Then Eq. (3.5) follows. Furthermore, the point
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(,, %15 -+ +} £my fin) a5 defined by (3.6) is a point of
S if conditions (3.7) are satisfied, since in this
case V,; is within the analyticity domain of exten-
sion 30_(?,’ by construction.

Finally, if the variety M‘2) constructed accord-
ing to {3.5), (3.8), and (3.7} does not span the
entire variety M, then it constitutes a subdomain
of analytieity. In this case one can perform an
apalytic continuation through a chain of overlap-
ping polycircles until relation (3.4) is satisfied.

The major implication of Lemma 3.1 can be ex-
pressed in terms of the following theorem.

Theovem 3.1. The extended domain 7/ con-
taing all the points of the analyticity domain S, of
the physical n~-point function.

Consider real four-vectors &, i=1,2,...,m
according to relation (3.5). They cannot belong to
I(,ﬁ) since 1, =—Ffmlz,} #0 by construction for any
zkez‘,i’-

Real four-vectors £;, however, do belong to the
extended doinain 7/(2). Indeed a point (2, ..., Z,)
&7'® defined by means of (3.6) and (3.7) can be
written

a=cosw, b=sine, Z,=e'YE, . {3.8)

But then there always exists a U(3, 1) transforma-
tion, such as the one-parameter transformation
Ala)=¢'" 1 for which

AZp=tp, k=1,2,...,m. (3.9)

This is essentially a mapping from 2,272 to
points £f=AZ,= LT (2 and consequently shows
the existence of real spacelike four-vectors in the
extended domain 7/ 2.

The fact that all physical spacelike points of 5,
belong to the extended domain 77 (2) then follows
from Lemma 3.1. Since for all physical points
(51: N gm)esm there are pOintS (gia ﬁl; ceed Em, ﬁm)
8% for which relations (3.5), (3.6), and (3.7)
hold, then, corresponding to all physical points
£,ES,, there are points 5,7 and transforma-
tions ASU(3, 1) for which relation (3.9} holds.

On account of the topology® of M2 and its in-
variance properties, it is not difficult to see that
each real point of 7/{2 possesses a neighborhood
of real points all in 7 (3.

Note that, in view of Lemma 3.1, the variety

Tmz(gi'fjlgiEJEMm; £hp=0; 4,4, k=1, 2,...,m},
{3.10)

namely the so-called equal-time manifold, is also
contained in M2,

It is interesting to remark that 7,,NM (2) lies in
the singular subset of M‘? only for m =9, while
7,.NM,, lies in the singular subset of M, for m = 5.

From Theorem 3.1 and Proposition 2.1 it follows

| -

that all the physical points M, form>9 lie ina
singular subset ofi/f‘ﬁ). This is not necessarily
the case for the subvariety M. In this connec-
tion, the following domains can be introduced:
3% = (B, Al B, D SER; rank (B8, +Aif)<4;

i 5, k=1,2,...,m},

(3.11)

= (éhigfzz Ek“‘ zﬁks Ek9ﬁk€§gfn}5 k 211 2: e ,T}’l},

(3.12)

j’{ma}zué_(mj(zm)s A(Z)EU(a"i) s (3‘13)

and they all constitute analyticity subdomains for
the -_L_u_(i) extension.

Since no point of M'2 where the rank is > 5 can
be a physical point, we have as a consequence that
no point of S, is contained in 7/ & - #{2,

We can thus complement Theorem 3.1 with the
following corollary.

Covollary 3.1. All points of S, are contzined in

700,

Let us recall that the diagonal elements V;; of
M'® must be negative,” i.e.,

2¥=£fenf<0, i=1,2,...,m. (3.14)

This implies that only real spacelike, lightlike, or
null four-vectors can be boundary points of 7'¢,
while real timelike four-vectors are outside the
analyticity domain j:'(:;) and consequently they can-
not be approached in the framework of the @(f) ex-
tension.

Leaving the investigation of this problem to Seec.
1V, let us now remark that the real parts Ef of
points z ,;ej_"(,ﬁ) are arbitrary four-vectors and,
consequently, they can be timelike. Indeed, start-
ing from a point z,= &, — i T\, where both &,
and 7, are spacelike, there always exists a U(3, 1)
transformation A for which &]=Re{Az,) =Re{z]) is
a timelike vector, even though restriction (3.14)
is preserved.* -

A relevant question is whether the real parts £,
of points £, 2 can also be arbitrary timelike
vectors.

The answer is in the affirmative, as can be seen
from the following argument. Consider an arbi-
trary timelike point El, ..., En. A corresponding
point £, = £, — i’ (2) can be constructed by put-
ting

ﬁiﬁj:(a’f‘-,’—l)gig;: i,i=1,2,...,m (3.15)

where o,; are free parameters suitably chosen to

ensure that 2, is within the analyticity domain.
Since

Vii=a 88, {3.16)
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this implies that all diagonal terms a,, must be
negative.

To show that the matrix (¥ ;) can have rank
r <4, consider the matrix (£,£;). Multiplying the
first row aund the §irst column by Ve,, and the
second row and the second column by va,,, we do
not change the rank of the resultant matrix. Put-
ting (without summation)

at_j;(aﬁm”)lh ’ (3.17}

the rank of the (17'1.,.} matrix so constructed re-
mains identical to the rank of (£,£,}.

IV. THE TIMELIKE PHYSICAL POINTS

On acecount of the results of Sec, III, we can
state that given an n-point functionw , in a neigh-
borhood of a point (£,,...,£,)ES,, we can reach
any other point of §,, through an analytical continua-
tion in % by means of a chain of overlapping
polycircles, Similarly, we can approach any light-
like or null separation.

The same procedure, however, is not applicable
in the framework of the »'¥ extension to reach

timelike physical points “since they are outside
Tf(:l).
" We introduce now what we shall term an “aux-
iliary function” and show that via that function we
can also approach in a unique manner any (real)
timelike separation.
Consider the extension h'F (Vi1 ..., Vpn of a phys-
ical n-point function w, (£,, ..., £,) and affix to
each of the elements Vy; =&, +nm,EMZ an imag-
inary part —ie,;, where the ¢;; are infinitesimal
parameters independent of the £; and 7; vectors.
We call the function B2(Vy, —i€5, . s Vi — 1€ mm)
so constructed the “auxiliary n-point function.”
Clearly the function £%? is equivalent to a first
type extension, i.e., ‘

E?)(Vu — i€y res Vim— 2€ ) =ﬂ(nn(U11: RO/

(4.1)

Indeed at nonsingular points there always exist
points (£1,m5. - - ; B ) ESS, for arbitrary
(‘El"nls LA | Em’ i m)ES(a) Such that

Wolkys e s bmdy  ExESm E<0;
Bo(Siis v o Smmds  Sis =E:EEM
AR
B Vagseees Vids Vi =3l(2:28
EB(Vy ~ i€+ e s Vo= E€ s

= 2) .
Him E(n (V].l—'?'Ell"" H me"'
Terss s> 0

+2?€Ej)]e_jgg)x Zp= ‘Ek -%ET'(,?.); ~k2 =(REEn)2> 0;

2453
Ly +7?£7]j=£;£;“?7;7?;: (4.2)
€;; =2(Em) +Emi), (4.3)

e.g., for infinitesimal n{EV, and spacelike £.°

This ensures us that 2% is analytic in the
(V,, —ie;;} complex space within a narrow strip
along the V;, axis with the nonnegative part of the
V;; axis constifuting a cut.

Let us now stress the differences between the
auxiliary function £ and the extension 2%

The separations £} in (" do not generally coin-
cide with the separahons £, in . Indeed, for in-
finitesimal ni{&V,, the £ vectors are totally space-
like, while the corresponding £, in (4.2) are arbi-
trary four-vectors. This allows the identification
of the physical separation with the &, vectors of
2 rather than with the £ vectors of the A\ func-
tion.

Furthermore, the invariance group of the auwxil-
iary function is the U(3, 1) group, while the in-
variance group of the £ function is the L,(C)
group. On account of the independence of the imag-
inary parts £,; from the real parts V,,, the actual
functional dependence of the £ function is on the
vectors z,& 7', and the set of transformations in
7/ leaving the auxiliary function invariant is the
U(3,1) group. On the contrary, the actual depen-
dence of the #" function is on the vectors zf{ =&}
—-in; e;-“z’ f,‘,}, and the set of transformations in 77, )
leaving K" invariant is the L (C) group.

We are now in a position to approach a physical
timelike point preserving the (3, 1) invariance and
related broader connectivity properties. Indeed,
starting from a point of §,, we can identify such a
point with a real point of T’m. A U(3, 1) transfor-
mation or an analytic continuation will bring us
into a new point of 7% whose real part can be
any timelike point. We then introduce the auxil-
jary function and consider the limit when the imag-
inary part of such a new point of 7/ goes to zero
by moving inside the analyticity strip of the auxii-
iary function, This procedure will bring us infin-
itesimally close to a physical timelike point en
account of the infinitesimal character of the ¢'s
according to the following chain of transitions:

o)y Vi =hl@zf ezte)=S,eM?, z=fer'

(4.4)

Vi —ie EMY, €= 0;
iEmm) =E£r2)(él-‘§1 ""iEu: .

--,ﬁmgm—iEmm), eijzo-
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When taking the limit n/,...
of the analyticity domain 7' is crossed without
affecting either the uniqueness or the absoclute
convergence of the power-series expansion of the
function, since for any value of i, the auwxiliary
function iafz" remains within its analyticity domain,

As a side consider ation, let us remark that the
introduction of the suxiliary function ensures the
convergence of the mass integration with respect
to arbitrary tempered weight functions in the inte-
gral representation of the n-point function, as well
as the convergence of the Laplace transform for
any separation.

V. CONCLUSIONS

In Sec. II we investigated the variety M (%) over
which the w(z’ function is (real) anaiytm and we
stressed its differences with the variety M, for
the physical z-point function w,. We found a shift
in the appearance of the exceptional points from
m=n—-1<4inM,tom<8in M (P, and a corre-
sponding shift in the appearance of singular points
from m >5 in M, to m =9 in a7 (2).

Since M, behaves like the variety M of the
wit functmn for what concerns the location of ex-
ceptmnai and singular points as well as for the
dimensionality, the above result implies that for
5<m <8, singular points can occur for the alge-
braic variety of the w(! function, while they do
not occur for the algebraic variety of the w@
functions.®

The physical implications of the above result ean
be expressed by the foilowing theorem.

Theorem 5.1. For n=1,2,...,9, the physical
n-point function w {,, ..., £,) of a scalar!® field
theory satisfying the Wightman axioms possesses
removable singularities at all points of the variety
M, where the rank is less than maximum.

In Sec. Il we proved that the variety M. is fully
contained in ) {2, and we showed that the extended
analyticity domain 7'{*’ of the w{?’ extension con-
tains all the points ‘of the analyt1c1ty domain S, of
the physical n-point function.!

Consequently, the physical n-point function w,
at any point of M, can be identified with the w‘z’
extension at the same point of M =M ().

The proof of Theorem 5.1 then rehes on a known
theorem on removable singularities'® which essen-
tially states that if a function is analytic in a neigh-
borhood of a point, except possibly an exceptional
set of points, then the function is analytic in a
complete neighborhood of that point.

s = 0, the boundary

In the framework of the w{!’ extension it is pos-
sible to state the analylicity of w, at exceptional
points of M, only for n=1,2,3,4,5.2

Consider, for instance, the case n=5 (m=4) and
an exceptmna,l point EEM Then dim(E)< dim(pd,)
=10. To see that w, has a removable singularity
at £, we must conswler a complete neighborhood
of £, namely we must increase the dimension of
the variety by considering a neighborhood ¥ of
dimension 10 with the exception of a set of points
where the dimensgion is <10. In this case the wiH
and w{*’ extensions produce identical results since
£ 1s an exceptional point for both i () and 3 (2.

Consider now the case n=6 (in = 5) and a point
S€M, where the rank is less than maximum. Then
dlm(8)< dim(M;)=14. In this case § is a singular
point of 47" and the use of the wi extension does
not allow the singularity at $ to be removable. In
view of Theorem 5.1, this essentially implies that,
since M (') preserves as complex manifold the
d1mens1on of My, a neighborhood of dimension 14
of the point S is not sufficient o remove the sin-
gularity at 5. The point S, however, is an ex-
ceptional point of M {*) and dim(M {2)=15. A com-
plete neighborhood of dimension 15 of S is then
sufficient to remove the singularity at S.

The cases =T, 8 9 then follow on similar
ground.

As is well known from the frameworlk of the

" funetion, the physical n-point functions

wolky, ..., £,) for n=1,2 3,4 are uniquely deter-
mined at any separatmn from their values at equal-
time separations.?

An interesting question is whether through the
use of the w{? function we can increase the number
of physwal n-point functions which are uniquely
determined from their value at equal times.

In this connection we can state the following
theorem,

Theovem 5.2. Forn=1,2,..., 8 the physical n-
point function w,(£,,..., £ ) of a scalar field theo-
ry satisfying the Wightman axioms ig uniquely de-
termined at any spacelike separation from its val-
ues at equal-time separation.

Consider the equal-time manifold T, defined by
(3.8) and the n-point function (£ E, . . BB )
r=m+1=1,2,..., 8ina (real) neighborhood of an
equal-time pomt (.g £,)ET,. Then, inview of
Theorem 5.1, 4, in analytic in a complete neigh-
borhood N () of the considered point.

Perform the transmon to the hfz’ extension by
adding to each element £, :E;ET,, scalars nM; of
infinitesimal value. This can be done by choosing
apoint (£,,m;;...; £, 1,)=5 2 for which the vectors
s -« -5 M, have infinitesimal length or finite values
of their component but infinitesimal values of all
their scalar products.
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The new function 2,{V,,, - .-, ¥un) 50 constructed

with

v, =t{(ezFrzrz))]

o~

=8¢ +mmy,

z; = Ei—iniezjn(g), Li=1,2, ..., m

aiso admits an absolutely convergent power-series
expansion since the point (V,;) is in the neighbor-
hood of (1; gj)

Recall that the complete neighborhood NeM &
of (£;£,) contains an exceptional set E at which
det(V,;)=0 as well as a regular set R at which
det(V,;)=0, but not =0.

ConSLder a set of vectors 7, such that (V;;)ER.
Then the customary analytical continuation by
means of a chain of overlapping polycircles can be
performed starting from a neighborhood N’ of
(V;;) with N'N N #0. This will allow us to reach
tn a unigue manner an arbitrary spacelike separa-
tion and the proof of Theorem 5.2 is completed.'®

Both Theorems 5.1 and 5.2 remain within the
analyticity domain of the w'?’ function without any
recursion to points outside of 7’{* such as phys-
ical timelike separations. Nevertheless, Theorem
5.2 is sufficient to determine uniquely the physical
n-point function at any separation from their val-
ues at equal-times. This can be done, for in-
stance, by uging the well-known property in the
framework of the w'}’ extension for which the phys-
ical n-point functions are uniquely determined at
any separation from their values at spacelike
separation.?

Leaving aside at the moment the problem of
reaching timelike separations in the framework oi
the w(®) extension, we can state a two-step pro-
cedure according to which the first transition from
equal-time separation to any spacelike separation
arises from the w® extension, while the transi-
tion from spacel_i?ce separation to arbitrary sepa-
ration arises from the w%’ extension.

The application of the above results to the gen-
eralized Haag theorem is straightforward. Al-
though the topic demands further investigations,
we can state that there is relevant evidence ac-
cording to which the validity of the generalized
Haag theorem? can be extended up to the first
eight vacuum expectation values of scalar field
theories satisfying the Wightman axioms.

Until now we essentially used the property ac-
cording to which from the knowledge of the w®’
function in 7’% we can reach or approach any
physical separation with the exception of real
timelike separations, since those points are out-

side of 7',

Tn Sec. IV we introduced the so-called “auxiliary
function” which guarantees the crossing of the
boundary of 7/ to reach timelike points, pre-
serving the absolutely convergent power series
expansion, the unigueness of the transition, the
existence of an integral representation of the #-
point function with arbitrary tempered weight-
functions, and, most important, the validity of
the U(3, 1) invariance during the limit procedure.
We shall now restrict our attention to the sub-
variety M {PEM 2 of rank r < 4 defined by (2.26)
with corresponding subdomain 7'{#'e7/(2 given in
(3.11).

Theovem 5.3. The knowledge of the w‘z) funciion
in a real neighborhood of a real point of T’(Z)
uniquely determines w'? everywhere in T’(a)
hence it uniquely determines the aumhary func-
tion and the physical »-point function at any sep-
ration.

In Sec. III we showed that each real point P of
I’E,;'” possesses a neighborhood N of real points all
in T’Ef) or equivalently, according to Corollary
3.1, all in 7'{¥. Clearly, all points of N have
rank ¥ <4. —Consequently, the analytic continu-
ation by mieans of a chain of overlappying poly-
cireles will allow us to reachall points of 7'{ with
rank 7 <4, namely 7%, and the first pa.rt of the
theorem follows.

The variety M (2) gyer which the function is now
defined has the same dimension of M {}’ and con-
sequently forms a real environment for the auxil-
iary function in M (’. The uniqueness of the aux-
iliary function then follows from the knowledge of
the (2 function in M ¥, The physical z-point
function at any spacelike, lightlike, or null sep-
aration arises from the w'? function and at any
timelike separation arises from the auxiliary
function.

The implications of Theorem 5.3 are rather
deep. The broader assumption of Welerstrass
analyticity in the real and imaginary parts of com-
plex four-vectors, instead of the more restrictive
assumption of complex analyticity,'* allows the
determination of the physical z-point functions at
any separation from their knowledge at all space-
like separations.'®

Furthermore, Theorem 5.3 now allows a direct
link between Theorem 5.2 and the generalized
Haag theorem. Indeed, forn=1,2,...,8
(m=1,2,...,7) starting from an equal-time sep-
aration, Theorem 5.2 will allow the iransition to an
arbitrary real point of 7 ®. Then Theorem 5.3
will determine the physwal n-point function at any
separation, from which the application to the gen-
eralized Haag theorem directly follows.

Finally, Theorem 5.3 introduces a different
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prospective for the possible physical applications
of other properties of the w ‘?) extension which
have not been investigated in the present paper,
such as the broader connectivity properiies and
the larger rank of the invariance group.
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SNote that il (m + 1)) =4m — 6 for m =3, 4.

"Note that i{m(m +1)=8m — 28 for m =7, 8,

8At nonsingular points for m =9, relation (4.2) con-
tains 8m - 28 conditions for the 8m variables &, Ny,
Similarly at any point for m<9, relaiion (4.2} contains
ibm (m +1)] conditions for 8m variables and 8m
>4lm(m +1)]. Relation (4.3) then follows, for instance,
by assuming that the 7, V, are infinitesimal four-
vectors, or by using the arbitrariness of the &;;.

%To visualize the above shift in relation io the dimen~
sion of the carrier space, one can think of M, as an
algebraic variety defined in terms of scalar products
£; £, of vectors £; in a Minkowslki space Ey ;. Then for
m larger than the dimension of the carrier space {m >4},
points at which the rank is less than maximum are
singular. The sitnation is similar for the variety M(ﬂ?
which is defined in terms of scalar products 2;z; of
vectors z; in a complex Minkowski space Eg . Then
points of M with m >4 at which the rank is less than
maximum are also singular. The situation is different
for M, since it can be.defined in terms of the linear
combination of scalar products £;£;+ n;7; of vectors
£; and 7; defined in two independent (real) Minkowski
spaces EY)| and E{";. Then the carrier space is the
eight-dimensional Kronecker product B3, x E{P; and
singular points can occur only for m > 8.

1The case of the parity-violating #-point function of
a scalar field theory was investigated in Ref. 1. The

analytic properties of the w 5{2) extension are the same

as for the parity-conserving function, with the difference
that the invariance group is the unimodular SU(3, 1)
group, The cases of vectorial and tensorial field
theories follow the same pattern since the SU(3, 1)

group contains all representations of nonspinorial type
(Ref, 1), Finally, the transition to distributions was
also investigated in Ref. 1. The @' extension for
spinorial field theories, however, has nol been investi-
gated at the moment.

Unhis result should be compared with the corresponding
properties of Jost points of the u/) extension.

125 Bochner and W. F. Martin, Several Complex
Variables, edited by M. Morse and A. W. Tucker
{Princeton Univ. Press, Princeton, N. 4., 1948}, p. 173.
This theorem on removable singularities applies fo
functions of both real and complex variables.

3 The case n =9 {m =8) is excluded from Theorem 5.2
because of lack of uniqueness in the transition from Ty
to M% Indeed in the transition from a point (§; £)e Ty
to 2 point (£;£; +7;m 3¢ MY, the transition of the rank is
from ¥ =3 up to a maximum of r=7. This essentially
means that starting from an {equal-time) exceptional
point of M, we can only construct through the intro-
duction of the infinitesimal #; n; terms a neighborhood
of that point entirely consisting of exceptional points.
Consequently we cannot reach a regular point since the
transition to rank +=8 is now impossible, and the
analytic continuation from T to M(ff] would not be wique.
Note that this lack of unigueness is not in contradiction
with Theorem 5.1 which holds for #» =9 (m =8) too.

4y ot us recall that such definition of Weierstrass
analyticity implies complex analyticity as a parficular
case. See Appendix B of Ref. 1.

15Note that the starting point of Theorem 5.3 i3 an
arbitrary point of SmEE’,ﬁ), namely a point {xy,..., %}
for which &, =%, — %1€ Sy (B=1, 2,..., m) is spacelike.
This is already a generalization from the use of a
“totally” spacelike point, namely a point (xy,..., x,) for
which all differences x; —x; are spacelike.



