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By using a characterization of the concept of analytic representation and a. varia-
tional approach to self-adjointness introduced in a preceding paper, we prove a theorem,
according to which a necessary and sufficient condition for a class €2, regular, tensorial,
quasi-linear system of field equations to admit an ordered direct analytic representation
in terms of the Lagrange equations in a region R of its variables is that the system is
seff-adjoint in R. We point out as a first corollary that if the ordering requirement is
removed from the definition of analytic representation, then the condition of seff-
adjointness of the field equations is only sufficient for the existence of a Lagrangian
density. We then provide as a second corollary a methodology for the computation of
the Lagrangian density for the representation of self-adjoint quasi-linear tensorial
field equations. This methodology is also particularized for ordinary semilinear systems
of tensorial field equations through a third corollary. The above resuits are interpreted
from the viewpoint of interactions. We first recover, through a fourth corolary, the
conventional structure of the total Lagrangian density Fro, = 5 2 Py, for
the semilinear form of the field equations, and then introduce through a fifth corollary a
seneralized structure of the type Lrop = Ty o L E e + L n for the representa-
tions of the field equations in the quasi-linear form. Therefore, our analysis seems (o
indicate that a general form of representing interacting fields is characterized by (2-+-1)-
interaction terms in the Lagrangian: » multiplicative terms and one additive term to the
Lagrangian for the free fields.

1. INTRODUCTION

In a preceding paper [1], we have studied class %2, regular, Lorentz-covariant,
tensorial field equations in (a) the nonfinear form:
F”L X s (}Saa qsa;ﬂt » (’5“;&6) =0,
ay , 4 = 1,2,...,”, (x:ﬁ=03 1527 3:
[ R— 5?5“ [— '824)0 .
d) 0w T 3x°‘ ? d) aff — axa axg 2 (]1)
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410 RUGGERO MARIA SANTILLE
(b) the quasi-linear form:

Aﬁzu._!(xnc + 950',’ ‘ibu;cx) (f)ug;uv _i” Bn]_(xu H qSu; ?Sa;a.) = 0:

Ay, g, &= 1,2,.... 4 o, g v =10, 1,2,3; (1.2)
{c) the semilinear form:

G baswr — Pasedas $ 7 Gl s ) =0,

1
{(g™) = 1 . i = Tdas {1.3)

—1

al,ar‘.,a:l,?.,...,n, p,v,u:0,1,2,3;

and we have identified the necessary and sufficient conditions for the above forms
to be self-adjoint [1, Theorems 6.1, 6.2, 6.3], namely, to be such that their systems
of equations of variation coincide with the adjoint systems for all admissible
variations.

Such necessary and sufficient conditions result in being certain systems of
quasi-linear overdetermined [2] systeins of partial differential equations, which we
have termed conditions o, self-adjointness, and which are given

(a) for the nonlinear form, by

F‘Il”‘:: == Fa._,:;z; == Fn;r:; ’ (1421)
] e Fagts = 2, F o e+ (1.45)
\Fm:rlg e Fﬂ;ﬂl = %du.( ﬂ,_ut:g_ - 'u.g;‘-r:,_ » (! 40)

ay , ds = 1, 2,0 1y ,u.,v=0,1,2,3;

Folan = (BF 4, /29" ..)> (14d)
F"x_:‘-ﬁ'"g = (aFﬂJa‘}bnE;u)v ’ (143)
Faojag = (aFalja(ﬁ“ﬂ), (1.45)

d, = 0, + $¥.(8/047) + $,o(8]04% ) + ¢ 0p(2]0an)3 (1.4g)
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(p) for the quasi-linear forn, by

i
i oy o ¥ oM g
A(rla‘.,, = Au-.ul - ‘A"’_"E 3 U .321)

Au o3 NJ‘_ Au L TR— Au :?Ci , {l5b)

gty Gy Aty Oy @qtly Uy
B P B e 15
Ea— ST
ulu‘l’agl thy (Lalty @y Uy ’ { | C)
| S S
e T "y agyy ARV
Bu.l‘u,_,. N B(r.l ay T 2{31- “JT ‘}I) y v(alla(ﬁ (!)I ytta 3 {15(1)

1o~

Bular — Bogay = M T b5 (2] 0" MW By oy, B, o (1.5¢)

fy , Qo g, By = 1,2,..., 01, s =0,1,2,3%
. AL s 2" Ay
TR TRRT: S 162 TR T I - B n1de
A‘H“z iy 7 a(ﬁaﬂ;m ’ A"t“‘: g 0y aqSud:Baqsua:“ ® (1 5f)
. ) . B,
i Byia, = o, (1.58)

qy ty T a(ﬁaﬂ; E
H

where the horizontal bar denotes symmetrization of the indicated indices, €.2.,

Auv‘a FI ,,1...Au.(x'u 16
R H d
4@, Oy - Auzlu.2 [ @y g’ ( - ‘rl)
o i B o= [TV - S oy e -
A “1“'.1’ u:; my Aa.lu2 Gy T qua; y Gy ? (] 6b)
T

(c) for the semilinear form, by

PZ;«E + Pj(:nul = 0, (1 JTa)
P::,a.;us + P;r::,ul:u.g R P#za;ul =0, {1 7b)
auP‘r:]_az = Un; e Uu;ul » (l 70)

dy s g = 1, 2,000 1y p.::O,],2, 3;

R A {1.7d)

Ouy'an 7 (802" (1.7¢)
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In {1] we studied the conventional Lagrange equations for classical field theories

o.% 9.4
Fol$) = g T A
BL e, EF ey o
- agbal:u 3¢a,_,:u ‘?5 e 7 dgﬁ“L G‘Fs dJ ‘ Gd’ui axh (',:5;5“1 (]'83)
= WL L) B LB L = L =0,
. o7 ) o o.,!?
P = G e Lo >
L=, L= 2 L = ok etc., {1.8Db)

ar, ay = 1,2,..., 1, wor=2=0,1,2,3

in a Lagrangian density & = L(x,, ¢% ¢%,) and proved that, for class ¥ and
regular Lagrangians, they are always self-adjoint [1, Theorem 7.1].

Since the Lagrange operator {d,6/2¢%, — 8/8¢°} is self-adjoint in the convention-
al sense used in the theory of linear operators [3], [I]'s analysis essentially provides
a variational approach to self-adjoininess.

Under the assumed continuity and regularity conditions, the Lagrange equataons
can then be written in terms of the symbolic notation

L, (PNER (1.9)

Equations (1.1), (1.2}, and (1.3) are termed self-adjoint when a!l the corresponding
conditions of self-adjointness, (1.4), (1.3), and (1.7), are satisfied. Then we shall
symbolically write

Er(rl]g.; = 0,
[A% ) % 4 B, JE0R = 0, (1.10)
v . w ot ol
Igu ?Sa.l'up - pﬂ]_(lgqs T T Ual}ﬂ? 0,

where we have reduced the continuity assumptions of Eq. (1.3) because conditions
pgl% s Oq € @2 are, in this case, redundant.

Equations (1.1), (1.2), and (1.3) are termed non-self-adjoint when at least one of
the corresponding conditions of self-adjointness (1.4}, (1.5), and (1.7) is violated.
We shall symbolically write, in this case,

{FrrlirNdy;f = Oa
(450 %, + B J%R = 0, (1.11)

: : @t
[glqua[ wr T P::lug?sa“ n UalINSA = 0.
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In [2] we introduced a definition of analytic representation of a class %7, regular,
covariant, tensorial system of field equations £, (c,&) == in terms of the Lagrange
equations %, {¢) = 0, which occurs when there exists a class 2 regular n X n
matrix (/) with elements B2 = by "%y, ¢°, ¢¢,) such that

[Z,($)En " J{ha;’ﬂ[ﬂg(«ﬁ)f'f'- PR =0, @, a=1,20 (112)

The above definition was then specialized into erdered direct analytic representa-
tions

111(¢) (69- : [Fm.((rb)]%z'R = 0: y = l: 27-"5 n, (513)
and ordered indirect analytic representations

Lo BER" = (oS F (DI
(1.14)
hulag 7 8«11“2: y , Uy = 1, 2y

A variational analysis of the above analytic representations, when they existed,
was also conducted in [1] with the result that the concept of ordering ensured the
identity not only of the Lagrange equations with the field equations but also of the
corresponding equations of variation and related adjoint systems, e.g., for case
{1.13)

Lagrange equations P (qf)) =F, 95) field equations;

Jacobi equations £, (n) = M () equations of variation;

adjoint system of Qa,(ﬁ) == Mal(w;) adjoint system of the

the Jacobi equations equations of variation.
{1.15)

"T'o avoid possible misinterpretation, let us also recall from [I]’s analysis that any
quasi-linear system can always be transformed into an equivalent system for which
the symmetry properties

Ag o, = A, (1.16)
are verified. Indeed, if this is not the case, we can always write, from the symmetry
properties ¢%,, = %, ,

A by b By = ARl + Alny) 6™ 4 WAL, — ARL) 6% + Ba

1

= '[(Anlu.. :)Il‘rjr.n) 950) ap 'Jf" Ba,_ - O: (1‘17)
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in which case symmetries (1.16) hold for the last form of Egs. (1.17), i.e., for the
redefined terms Ay = (442, + Al o) ’

In the present paper we shall tacitly assume that all considered quasi-linear
systems satisfy symmetry properties (1.16). This implies in particular that the
conditions of self-adjointness (1.5) will be referred to systems obeying such proper-
ties.

The above symmetrization procedure also applies to the Lagrange equations.
Indeed, if one uses symmetry properties (1.16) for the Lagrange equations in the
third form of Eqgs. {1.8), the relations

X A 4
O, 39{,(:2:? - Sdor, 596“2‘,; ’
wev=0,1,2,3 ay sty =1,2,..8 (1.18)

might result. The point which we would like to recall from [1] is that within the
context of our analysis, which is ultimately based on an arbitrary structure of the
Lagrangian density, properties (1.18) are not implied by the continuity assumption
% & %, and they are in general erroneous.

Again, symmetry properties (1.16) must be applied to the Lagrange equations in
their symmetrized form, i.e., the last form of Egs. (1.8), in which case they trivially
hold for the terms :

(1.19)

prr FiX7e 4
apey T3 ( ageri, ddie, + oo, adar, )’
irrespective of any continuity condition of the Lagrangian.

Tn the present paper we shall tacitly assume that the Lagrange equations are
written in the above indicated symmetrized form and that the conditions of sell-
adjointness ([.5) are always referred to and identically verified for class %* and
regular Lagrange equations in this symmetrized form.

The objectives of this paper are to identify the necessary and sufficient conditions
for a given class %%, regular, Lorentz covariant, tensorial, quasi-linear system of
field equations to admit an ordered direct analytic representation in terms of the
Lagrange equations; to provide a method for the construction of a Lagrangian
density, when it exists, from given field equations; and to explore the “structure”
of the Lagrangian capable of representing tensorial fields with arbitrary forms of
coupling.

The case of ordered indirect analytic representations is treated in subsequent
paper 1II. We plan to study the same problems for other type of field equations
(e.g., spinorial or degenerate) as well as to explore some initial significance of the
underlying methodology in Field Theory at a later time,
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2. A THEOREM ON THE EXISTENCE OF A LAGRANGIAN DENSITY FOR ORDERED DIRECT
ANALYTIC REPRESENTATIONS

Let us recall that quasi-linear systems (1.2) and the Lagrange equations (1.8) in
the Lagrangian densities £'(x. , $7, ¢%,) are defined in a region R of the variables
Xy %, and ¢, (@ =1, 2,1 a=0123), where the dependence of these
equations in the terms ¢%,, is ignored due to their linearity. Here the term “region”
means an open and connected point set of the values of the indicated variables.

The condition that field equations (1.2) are of (at least) class €* can thus be
reduced to the condition that the terms A712 and B, possess continuous partial
derivatives with respect to all of their variables (x., $¢, ¢%,) in the considered
region R.

1t should be indicated that within this context the variables ¢¢ are not necessarily
the solutions of system (1.2). As a matter of fact, our approach to the problem of
identifying the necessary and sufficient conditions for the existence of a Lagrangian
does not demand the knowledge of the solutions of the field equations. This aspect
is essential in view of the generally nonlinear nature of the considered field equa-
tions. .

A region R of the variables (xq , %, $%,) is here termed a domain when it is
perfect, internally connected, and each of its points is a point of accumulation of
interior points. Then, if R is a region, R = RU 2R (where 2R is the boundary
of R) is a domain.

In principle, a domain of definition of Egs. (1.2) and (1.8) can be arbitrarily
selected and, since it is closed, it may consist of the entire set of possible values of the
variables x,, ¢% and ¢%,, thus including the points at infinity. This domain is,
however, redundant for the problem under consideration. Besides, the behavior of
the conditions of self-adjointness at infinity is quite delicate to handle.

This raises the question, which is an effective region of definition of field equa-
tions (1.2) for the problem of the existence of their Lagrangian representation.

The answer to this question is provided in the Appendices, particularly Ap-
pendix B. A region R of the variables (x, , ¢°, ¢%,) is termed a star-shaped region
and denoted with R* when it contains, jointly with a given open and connected
set of points (x, , %, $=y), all poinis (x,, 7% 7¢%) for 0 < 7 < 1. Notice that
we assume no restriction on the behavior of the Minkowski coordinates x, , for
reasons which will appear self-gvident later on. Notice also that all star-shaped
regions contain the (local) origin ¢ =0, ¢%, =0, a=12...,n a0~ 0,1,2,3
Again, if R* is a star-shaped region, R¥ == R* U 8R* is a domain.

Our analysis of the problem of the existence of a Lagrangian will be conducted
on a star-shaped rather than a conventional region. The reason is that such
regions R* are needed for the formulation of the Converse of the Poincaré Lemma
and its generalization given in Appendix B, which, as is well known, constitute
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effective tools for the study, in general, of all integrability conditions. In view of
their redundancy (as well as the delicate nature of their technical implications) we
shall tacitly assume that all considered star-shaped domains do not contain points
at infinity.

Our minimal region of definition of Eqgs. (1.2) for the problem of the existence
of their Lagrangian representation will then be a star-shaped domain B* of the
variables (x, , ¢% #%,}) whose boundary 8R* consists of the unit “circle” around
the origin of the variables ¢¢ and ¢, , together with an arbitrary {(but bounded)
region in the Minkowski coordinates. Under this assumption the distinction
between the regions R and R* becomes purely formal.

Our analysis of the integrability conditions for the existence of a Lagrangian will
be conducted within the framework of the ordinary calculus of differential forms
in the local coordinates ¢ and its extension to the case of local coordinates %,
which are outlined, for the reader’s convenience, in Appendix A and B,

This raises the question, of which is an effective form of the conditions of self-
adjointness (1.5) within the framework of differentiable manifolds with local
coordinates ¢% and ¢%, . .

This question is explored in Appendix C, resulting in the set of integrability
conditions

Fiaataty g V10 () (2.1a)

by by vy vy @),

8“1“2“3"1“2”3A vEVai by 0, (2} b)

bybgbav vawy oy,

Sftiftatatlyntiatigity g vivairaivg 0 (2 EC)
. - k) N
by Baliabyv vy, Taga, g, ay

SulﬂgﬂsB B O’ (2]d)

b Oa by ey u.g-a3
Bnl:ﬁil:a "'" Brn_.:ﬁl:(';3 = Z(A‘!"lll(‘l‘a:ﬂg - Aﬁz:ja:al), (2}8)

Bygees g =1, 2,..., 1,

Hoq seeey My s .tL, v = 09 1: 2‘) 33
where A3t and B, are characterized by the given system of field equations (1.2)

and

ST ... 8% M ... §m
bi bn "y Va

S ey
Byl vy,

(2.2)
8:1' - 8;: 8#::; e 8’:,1:'

Let us state, using Appendix C, that Eqs. (2.1) are implied by the conditions of
self-adjointness (1.5) in the sense that when all conditions (1.5) hold in a given
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star-shaped region R* of the variables (x, ; ¢% ¢%,) then all Egs. (2.1) are iden-
tically verified in R*. In essence, Eqs. (2.1) are a suitably selected linear combina-
tion of Egs. (1.5).

In the following, we shall freely use either conditions (1.5) or (2.1), depending on
the case at hand.

We are now equipped to formuiate and prove

TueoreM 2.1 [4]. Necessary and sufficient condition for a Lorentz covariant,
tensorial, quasi-linear system of field equations

AR B %) 7% + Bt 6% 67 = 0,
a, g, = 1,2, 1, By e, g = 0,1,2, 3, {2.3)

which is defined, of (at least) class €* and is regular in a star-shaped region R* of
the variables (x, , $% $%,), to admit an ordered direct analytic representation in
terms of the Lagrange equations in R¥
8L 8 .
d = Aueg,, - B, =0 (24)
12

a aqS“L‘u - 395% a3, 21

is that the system of field equations is self-adjoint in every bounded domain in the
interior of R¥.

Proof. Since the system of field equations is of (at least) class @* and is regular
in R*, a necessary condition for the existence of analytic representation (2.4) is
that the Lagrangian & be of (at least) class %* and be regular in R*. Then,
Theorem 7.1 of [1] applies and the Lagrange equations are self-adjoint in R*. The
condition of self-adjointness of the system of field equations is then necessary for
the existence of the ordered identification (2.4) in view of the self-adjointness of
their 1hs.

To prove sufficiency, we shall show that under the conditions of self-adjointness
of the system of field equations in R* a Lagrangian always exists.

From the condition of regularity it follows that a general structure of the
Lagrangian density is given by

L(xy, $% b5
= K(xﬂ- ? ¢a’ ¢m:ﬂ) _!’- Dll”(xﬂ 3 {ﬁa) (ﬁa;ﬂ. —E— C('Yl-‘. £l (#G)J (2'5)
where the “kinetic” density X is nonlinear in the derivative terms and all the

densities K, D,*, and C are of (at least) class €* in the star-shaped region of their
respective variables.
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By substituting form (2.5) in identifications (2.4) and from the quasi-linear
structure of the Lagrange equations (1.8) we first reach the two sets of identities,

X(K.Z:Jr:; R K;ua:ul) = M2 (2.6a)

pA [ aty °
[T I Ui o H
(Dul T Dag al) ﬁb ' [ + (Dzrlu —C ul)

= Bul '!1_ K;u.l - K;::l:u - (‘K:xl:aq) 4’('2:;1. . (2-6b)

al,a2=1,2,...,f1, ”!Fl:”’ﬂxoaia 2, 3,-

which must individually hold for a Lagrangian to exist, where we are again using,
for convenience, the derivative notation of type (1.8b).

Equations (2.6a) constitute an independent system of conditions for the existence
of the K density.

The assumption that such equations are solved first, allows us to consider all
terms in the X density of Egs. (2.6b) as known. For this reason they are written in
the rhs jointly with the assigned B terms.

By writing Eqgs. (2.6b) in the a; and 4, indices, by differentiating with respect to
¢e=i, and ¢, , Tespectively, and by subtracting we reach the equations (see
Appendix C for more details)

Dy, — D = MBS — Buju) + (Kouju, — K i ua):
a,u=12,..n w=01273 2.7
which constitute, for a given X, an independent set of conditions for the existence of
the .7 densities.
By assuming that such D densities exist and are computed, we now substitute
Egs. (2.7) in (2.6b) by reaching in this way the equations
C;u.! = -D::I;u . B(11 - K;al + K;#l:u + []<;ﬁg:d-1 + 3(Bﬂ:‘ﬁ5: - Brri;ﬁ})] (nbﬂg:,u 3
a4y, b= 1, 2,0, p=01,2,73, {2.8)

which constitute, for given K and Df, an independent set of conditions for the
existence of the C density.
The combined set of conditions (2.6a), (2.7), and (2.8), i.e.,

YR o Ke) = AL (2.92)
D‘t‘:lzug - Dﬁr_:;ﬂl = '%(Bn,_:tll‘-l e Brrg:::.l) + ([<;(r1;(‘-:2 - I<;4f:!::‘:,)e (2'9b)

C:{tl = D:‘I:u - Bul . Jr(;al ”IT" K:#l;ﬂ -+ [K:::E:ul "{— '%(Bal::fg a Bn.;::l ] ¢_ﬂ2:u - {EQC)

ay, i =1, 2,1, o iy 5 o =0,1,2,3
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constitutes a generally overdetermined system of partial differential equations in
the (4n -+ 2) unknown densities K, D}, and C which characterize a Lagrangian
according to Egs. (2.5).

Our proof of sufficiency will consist in showing that the conditions of self-
adjointness (1.5) or (2.1) are the integrability conditions of Egs. (2.9).

1. Integrability Conditions of Egs. (2.9a)

{ntroduce the quantities
Ty = K (2.10)
and consider the system of first-order partial differential equations

Tlu;ug o Az;ﬁf = (21])

- (ll a:._

with underlying (2, 2) form (see Appendix A)

TD — (T — A dg™, A dg"E, (2.12)

But, from the Converse of the Generalized Poincaré Lemma (see Appendix B),
the conditions of self-adjointness (2.1b) are the integrability conditions of Egs.
(2.12). Thus, under the assumptions of the theorem, a solution of Egs. (2.11)
exists. However, this solution is not necessarily consistent with Egs. (2.9a), due to
the lack of symmetrization. This demands that, together with Egs. (2.11), the
equations '

THkr o gup () (2.13)

f!l (12 uluz

hold with underlying (2, 2) form

T;(2.ﬂ) — (Tf:ﬁf — AP d(#lfg;”} A £i¢az:;.12 ) (2.14)

thytly

The consistency condition of Eqs. (2.11) and (2.13) reads

(An;ug:ug - Aﬁiﬁ;‘;:) dqbal:ul A ([gbu‘!:‘

8, 1y

A a‘((;g(?:liu's == 0' (2.15)

Ly

Conditions of self-adjointness (2.1a) and (2.1¢) then guarantee the validity of
Eqs. (2.15).
It follows that a solution of the equations
YR 7 S e e {2.16}

CF! (12 ll.1€12 h “2“1
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exists and is given, from Eq. (B.30), by
1
i =2 ( fo dr T (™)) $7, (2.17)
The second step is to consider Eqgs. (2.10), i.e.,

Ko o= k2 [ de it )] g =0, (218)

[H]

The related integrability conditions are

bybyy v T @y by vy ooy

1
8([1[‘@_1(1”27“)’1: 2o D dr TﬁulagulugA vlvg(‘r(f)u; )
o u

by Usbyvyvawy” "oyt oy

+ U: dr TzaalngrzﬂuluguuA vy val U3(7¢a:,z)] 96.!7_-,:“3 — 0: (2.19)

and they identically hold in view of Eqs. (2.1a) and (2.1b).
Therefore, under the assumptions of the theorem, a solution of Eqs. (2.16) exists
and is given by

1 1
K, 8% 60 = 26, [ dr' [¢75,, [ de oo, ¢, 4] /g7,

° ’ (2.20)
where the square bracket indicates that the function of derivative terms resulting
after integration with respect to = must be computed along +'¢®, prior to the
integration with respect to '

This completes the first part of our proof and shows that the conditions of self-
adjointness (2.1a), (2.1b), and (2.1¢) are the integrability conditions of Eqs. (2.9a) [6].

2. Integrability Conditions of Egs. (2.9b) and (2.9c)
We consider now Egs. (2.9b) and (2.9¢), which we write
Dzl:ﬂ‘: - Dt‘:g:ﬂl - Zglug == 0, (22121)
Ciyy — Wo, =0, (2.21b)

with a self-explanatory definition of the terms Z ., and W, . The underlying

differential froms are the collection of (i, 2), p = 0, 1, 2, 3 and 1 forms, respectively
(see Appendix A),

ZW® =z, AT A dg® (2.222)

(B a
W W, dé™, (222
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with integrability conditions

§aattagra I 0’ (223&)

bbby T iy ay
nyly [
Sy, b, = 0, (2.23b)

respectively.

By using the explicit form of the Z% ,, and W, terms from the rhs of Eqs. (2.9b)
and (2.9¢), respectively, conditions (2.23) can be written (see Appendix C for more
details)

tydafy [
BblbabsBul My dy 0,

(2.24)
_%(8“1“2“38 :02:1(:3) qsbn:u = 0’

bbby

and they identically hold in view of Egs. (2.1d).
Therefore, under the conditions of self-adjointness the solutions of Egs. (2.21)
exist and are given by

D (6% = 4 [ dr 7Zhalors 79, |
01 (2.25)
C(xa H ‘?Sa) - (#ﬂg j‘o d’r Wﬂl xa 3 T(,{)a).

This completes the second part of our proof and shows that the conditions of
self-adjointness (2.1d) are the integrability conditions of Egs. (2.9b) and (2.9¢).

3. Consistency of Egs. (2.9)

To complete our proof, we must first show that, for consistency, the rhs of
Egs. (2.9b) and (2.9¢0) is independent of derivative terms.

By differentiating Eqs. (2.9b) and (2.9¢c) with respect to doi, we reach the
respective conditions

(Ba vy — Bages o) — Al nia, — Awgey o) = 05
(2.26)
[(Ba, by ey — Bagaga) — AL Ly — Alegng a)] 0 = Oy

which clearly hold in view of Egs. (2.1e).

This proves that conditions of self-adjointness (2.1e) guarantee the independence of
the rhs of Egs. (2.9a) and (2.9b) from the derivative terms.

Our proof will be completed by showing, for consistency, that Eqgs. (2.9) are
compatible among themselves.
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Since Eqs. (2.9a) must be solved first, the problem of compatibility of Egs. (2.9)
can be reduced to the proof that Egs. (2.9b) and (2.9¢), under identifications (2.92),
are compatible among themselves.

Let us rewrite these equations in the form

Df:l:“".! - D:’:g;ﬂl = Z.:l""}, s (227&)

D::I:u - C:al = W,al 3 (2-27b)
where W', == Dy’ — W,

After partial differentiation with respect to x* and $% respectively, we can write

oy e [l H L
D(11 o T Z(zlaﬁ’u + -D(IE ¢y ir 2

(2.28)
D;;u;a.} = W’u,:u.g + C:ai;uﬁ .
Thus, the necessary conditions for the consistency of Eqs. (2.27) are
Z::zﬂg:u = W,rzl:ua "' W’af_.:u, B (229}

where we have used Egs. {2.27b).

To prove that conditions (2.29) are also sufficient for the consistency of
Egs. (2.27), consider such equations for fixed values of the indices a, = a and |
a, = a5® (# @,%). Then the existence theorems for linear partial differential equa-
tions [8] apply (in view of the continuity properties of the Z§ , and W', functions)
and a solution Dglu s Do and C exists.

We now substitute such solutions into Eqgs. (2.27) in the form

" R o N Ry L
Dﬂg ltln — Dﬂlu (l:;' Z[fl_u (lg 3

(2.30)

Dyl = Wi+ C.
Such eguations are compatible provided that
szlo;ug;u. - Z:t;"ag;u == W’ﬂg:ulu + C:Ug:ﬂlﬂ . (2'3])

But the above conditions reduce to Eqs. (2.29) after use of Egs. (2.27b),

Thus, Eqs. (2.29) are the necessary and sufficient conditions for the consistency
of Eqgs. (2.27).

We must now inspect Egs. (2.29) by using the explicit form of the Z and W',
terms. From the rhs of Egs. (2.9b) and (2.9¢) (and by recalling that W", = Dyl —
W), Egs. (2.27) become

H 4 g N
B(l1'll3 - Ba.?"ul - 'é(an'rai - Brr:: g/ 1

+ E('Bag;ﬁa - B":l::‘:tl):(f‘l + (Baﬂ::‘:l - ‘Bﬂlzzﬂ :m._\,l ‘is“:’:u =0, (232)
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which, by using conditions of self-adjointness (1.5d), can be written

Jouap, i ) 9, =0, (233)
and they identically hold in view of conditions (2.1d).

This completes the third part of our proof and shows that Egs. (2.1d) are not
only the integrability conditions for Egs. (2.9b) and (2.9¢), but also the necessary and
sufficient conditions for their consistency.

Thus, when the conditions of self-adjointness (1.5} or (2.1) hold, Egs. (2.9)
always admit solutions K, Dg*, and C and a Lagrangian (2.5) always exists. Q.E.D.

A few comments are now in order. Theorem 2.1 and its proof clearly indicate
the effectiveness of our variational approach to self-adjointness for the problem
of the existence of a Lagrangian density in classical Field Theory. Let us recall
from Appendix C that all conditions of self-adjointness (1.5) enter into the con-
struction of the integrability conditions (2.1). Therefore, without redundancy, ail
conditions of self-adjointness enter into the proof of the theorem.

This latter remark must be kept in mind for practical applications. Indeed, if
the assigned system of field equations violates only one of the conditions of seif-
adjointness, then, according to our terminology, it is non-self-adjoint and a
Lagrangian for the ordered direct identification (2.4) does not exist.

In this case, however, one can seek for an ordered “indirect” analytic repre-
sentation. This aspect will be investigated in subsequent paper I11.

The significance of the concept of “ordering” in the statement and proof of the
theorem demands some elaboration.

Let us remark that the conditions of self-adjointness for the case of ordinary
differential equations were rather generally considered to be both necessary and
sufficient for the existence of a Lagrangian for a “direct analytic representation”
without any reference as far as the ordering is concerned [5].

“This author, however, identified [5] (apparently for the first time) a counter-
example to the above position concerning the necessity of the conditions of self-
adjointness.

This counterexample essentially consists of the identification of the variational
properties of the Morse—Feshbach method [9] for representing certain nor-
conservative systems. Explicitly, the system of second-order ordinary differential

equations (see [1, Appendix C} for more details)
G ) 3 R [V R NI

= (Calag‘fz) + (bﬂlﬂgq.ﬂg) + (a(rlngqng) = 0 (2.34)
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is non-self-adjoint because it violates the conditions of seif-adjointness
{-‘(11(('_:! W" C{Jgul = 05
bu;a: + b(’gﬂ'l = 2(“7“‘1‘) Couys (2.35)
Uuiay — Quguy, ™ 'é'(d/d‘t)(baia.l - bn.lal)

in the &, ,, terms. Nevertheless, a Lagrangian for their analytic representation
exists and is given by [9]

L = mgyge + 3(q1gs — §:192) — kg - (2.36)

The solution of the above rather puzzling situation [5] is easily found by
noting that the Lagrange equations in the Lagrangian (2.36) do not reproduce
Egs. (2.34), but rather the same system in the inverted order, i.e.,

c_l oL 8L
dt 94y 8qy | .. (0 I)(n’ujl + b4y - !cql)
d_ oL dL 1 0/\ngs — bdy -+ kg,
dt 84, dgy

=G Q)+ @G D
= (C’a;ﬂng) + (b,a]_aa‘jai,) + (allr-lﬂggﬂz) = 0. (237)

A simple inspection then indicates that the equations of motion in the inverted
order (2.37) satisfy all Egs. (2.35), and thus, are self-adjoint. Incidentally, this
also confirms the self-adjointness of the Lagrange equations in the Lagrangian
(2.36). )

To summarize, for the case of the equations of motion under consideration, the
permutation of the order in which these equations are assigned changes the system
from non-self-adjoint to self-adjoint or vice versa.

Tn the transition to Field Theory the above framework remains conceptually
unchanged. Indeed, by performing the transition

mritq — @, mHg, — @,

(2.38)
b — 2mied, (x), k — m(my? — e*4,64),

the Morse-Feshbach Lagrangian (2.36) becomes thal of the complex scalar field in
interaction with an (external) electromagnetic field

L— & = ¢ o — m*pp -+ 24 A"Gp
— ie(Pup — Ppi.) A%, (2.39)
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with underlying field equations

(1] b g — 242, 4% g — 2Jed® g, = 0,
! v (2.40)
(T 4 nitg? — €A%, A% & -+ 2ieAos, = 0.

Again, system (2.40) in the ordering (% = o, ¢ = &) is non-self-adjoint (see
[1, Appendix C]. However, if the same system is written in the reverse ordering
produced by a permutation of the indices, then it is self-adjoint. And indeed, as
the reader can verify with a simple inspection and as is the case in general for all
Lagrangians with gauge invariant terms of the type $p, the Lagrange equations
in Lagrangian (2.39) produce the field equation (2.41) in their inverted ordering,
i.e., in their self-adjoint form.

The above remarks illustrate the breakdown of the necessity of the condition
of self-adjointness when.the ordering of the field equations is ignored. Theorem 2.1
restores the necessity of the conditions of self-adjointness through a properly
selected definition of the analytic representations they are referred to, namely, that
of an “ordered direct analytic representation” with underlying structure (i.15).

This state of affairs can be summarized with

Cororrary 2.1A. {f the ordering criterion is relaxed in Theorem 2.1 the
condition of self-adjoininess of the field equations is only sufficient for the existence
of an analytic representation.

Notice that the methodology which underlies the formulation and proofl of
Theorem 2.1 is purely variational in nature. In this respect the following remarks
are in order. \

Let us recall from [1] that the concept of self-adjointness for systems of ordinary
differential equations originated within the framework of the so-called Inwerse
Problem of the Calculus of Variations. In our extension of this framework to Field
Theory the extremal aspect of the problem has been ignored.

Basically, the single-integral path functionals

2

A@) = [ dr Lt 4, ) 2.41)

ty

consitute well-defined variational problems, provided that the Legendre (in
essence, our condition of regularity) as well as other conditions are verified. Then,
the inverse problem is well defined too. Intensive investigations were conducted
in this respect but, regrettably, only up to the first part of this century {1, 5].

In the transition to Lorentz-covariant Field Theories, the above framework is
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considerably altered because the extremal problem for Ayperbolic multiple integral
path functions

A) = [ e ., g, 4 (242)

is generally vacuous despite the use of boundary conditions [10].

This is, in ultimate analysis, a consequence of the Lorentz covariance of the
theory, which imposes the hyperbolic nature of the problem; this hyperbolic nature
implies, in view of the indefinite nature of the underlying metric, the impossibility
of satisfying the Legendre condition despite the verification of the regularity
condition; and this, in turn, implies the lack, in general, of either 2 maximum or a
minimum for the functional (2.42).

Incidentally, this might be a reason for the lack of investigation, to the best
knowledge of this author, on the inverse problem of hyperbolic mulktiple integral
_ path functionals,

Of course, the above difficulties are absent for a Field Theory on a Euclidean
space. Indeed, in this case the definite nature of the underlying metric does imply
the possibility of satisfying the Legendre condition. Then, the convenlional
extremal problem as well as its inverse are well defined.

The point which we would like to stress here is that the extremal aspect of the
problem is immaterial for the methodology to identify a Lagrangian. Therefore,
for the case of Lorentz-covariant Field Theories, even though the extremala spect is
problematic, the question of the existence of a Lagrangian is well defined. This is in
line with our presentation and proof of Theorem 2.1, where we have ignored the
extremal aspect and used only the variational techniques for the identification of
* the conditions of self-adjointness.

To indicate the variational nature of our treatment, let us remark that the con-
ventional techniques nowadays used in Field Theory such as Hamilton’s Principle,
Noether Theorem, etc., are, from the viewpoint of the Calculus of Variations, only
first-order techniques. This is due to the fact that they arise within the context of
the first-order variations of the action functional.

Another point which we would like to stress is that, to the best knowledge of
this author, such first-order techniques are insufficient to provide the necessary
methodology for the existence of a Lagrangian. And indeed, our proof of Theorem
2.1 demands the use of both first- and second-order variational techniques.

More specifically, with reference to the explicit structure (1.15) of an analylic
representation, the first line arises within the framework of first-order techniques.
This is, in essence, the derivation of the Lagrange equations and related identifica-
tions (2.4) from Hamilton’s Principle. The other lines of structure {1.15) can be
derived only within the framework of second-order variations which, in the Cal-
culus of Variations, are related to the so-calied “accessory extremal problem.”
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Therefore, our analysis is ultimately variational in nature because the concept
of self-adjointness demands the use of first- and second-order variations.

Alternatively, and by also referring to structure (1.15), we can say that, together
with the use of the Lagrange equations, our treatment demands the use of the
related Jacobi equations which, again, are of second-order variational nature.

it should be noted, incidentaily, that the joint use of Lagrange and the related
Jacobi equations might also be of some significance for other aspects of Field
Theory, particularly in relation to nonlinear theories. Indeed, when the solutions
of the Lagrange equations cannot be computed, the sofutions of the related Jacobi
equations can always be computed (under the necessary continuity and regularity
requirements) because they are always linear irrespective of the linearity or non-
linearity of the Lagrange equations.

Our analysis and the above remarks seem to indicate that, despite a rather
general belief to the contrary, the methodology of the Calculus of Variations at
large might have a rather profound impact in Theoretical Physics which goes con-
siderably beyond the framework of Hamilton’s Principle and its applications
(e.g., the Noether Theorem).

As a final point, we would like to stress that our proof of Theorem 2.1 is the
simplest that this author has been able to formulate and, as such, it makes the most
economical use possible of the methodology of the calculus of variations. What we
want to recall here is that such methodology is rather vast indeed, and it inciudes
tools such as [10-11] the Weierstrass’ function, the formulation in terms of Hilbert's
invariant integral, Weyl’s theory, Charthéodory theory, etc., and topics of geo-
metrical nature [12]. It is not inconceivable that several variational methods may
have direct significance for the problem of the existence of the Lagrangian as well
as for other aspects of Field Theories (e.g., the study of nonlinear theories, or, more
generally, the study of arbitrary forms of Lorentz-covariant couplings). These
profiles are here Jeft to the imagination of the individual reader. For an analysis of
some alternative methods for the inverse problem of single integral path functionals
see [5].

3. A METHOD FOR THE CONSTRUCTION OF A LAGRANGIAN DENSITY AND AN
ANALYSIS OF ITs STRUCTURE

Qur proof of Theorem 2.1 provides not only the system of partial differential
equations (2.9) for the construction of a Lagrangian density, when it exists, but
also its solution.

This result, in essence, originates from the use of the caleulus of differential
forms in general, and the Converse of the Poincaré Lemma in particular.
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And indeed it is a matter of a simple restatement of the proof of Theorem 2.1 to
reach

COROLLARY 2.1B. A Lagrangian density for the ordered direct analytic represen-
tation of Lorentz-covariant, tensorial, quasi-linear systems of field equations

Azizi(xu ¥ qS(L: [;Sﬂ:u) (}r)"u:ulu‘-_. + Bn]_("\-u. E] (,b”: qsu:u) = 0,
a,ay, s = 1,2, 0 e fiy s fo = 0, 1,2, 3, (3.1)

which are of (at least) class €%, are regular, and are self-adjoint in a star-shaped
region R* of points (x, , % ¢ ), is given by

Pl 5 ) = Koy ¢ V) + Dilra s 9 ¢%5 + Cl $, (3.2)

where the (4n + 2) densities K, Dt , and C are a solution of the linear, generally
overdetermined system of partial differeniial equations

WK IR = AR, A8 (3.32)
D, — D, = MB T — B T (K30 = KT
= Z31, (x5 ) _ (3.3b)
C, =Dy, — By — Ky~ Ko, o+ K+ B oy — B, ") ¢,
= WX ) {3.3¢)

a, ey , dy = L2,.,m M,}H;ngo, 1,2,3.
given by

K= 2, [ e [0 [ dr oA 8 8] (0

) u

1
Do == gt | dr eZik, (3, T, (3.4)
1 0

hyty

C = ¢ jl dr Wo (% » 769
0

A few comments are now in order prior to illustrating the above corollary with
some examples. First of all let us remark that, under the assumed continuity and
regularity conditions, there is no need to verify the consistency of system (3.3)
when the assigned system of field equations is self-adjoint in R*. And indeed, the
proof of sufficiency of Theorem 2.1 is precisely centered on the property that the
conditions of self-adjointness are the integrability conditions of Egs. (3.3).
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Therefore, for practical applications, one must verify the continuity, regularity,
and self-adjointness requirements of the assigned system of fleld equations in a
star-shaped region R*. When such requirements are verified, a solution of
Egs. (3.3) exists.

Notice that no knowledge of the soluntions of the field equations is required for
the construction of the Lagrangian according to the method of Corollary 2.1B.

To avoid possible misinterpretation, let us indicate that Egs. {3.3) must be
solved in the assigned order, namely, one must first solve Eqgs. {3.3a); the knowledge
of the “kinetic” density K as well as of the assigned terms B, then allows the
solution of Eqs. (3.3b) in the D, densities; and, finally, the knowledge of the K and
D,* densities allows the solution of Egs. (3.3) in the C density.

Notice also that the integrals of solutions (3.4) are insensitive to the dependence
of the integrands other than those indicated. For instance, the Al terms of
integrals (3.1a) depend, in general, on the x, and $* variables as well as the deriva-
tive terms ¢%, . Nevertheless, the inclusion of the = variable is done as indicated, in
the derivative terms only. Furthermore, as indicated in the proof of Theorem 2.1,
the bracket of Eq.(3.42) indicates that the function of ¢*, resulting from the
integration with respect to 7 must be computed along ='¢¢, prior to the integration
with respect to +'. '

The reader should keep in mind, as indicated in Appendix C, that if K is a
particular solution of Egs. (3.3a), its general solution is precisely given by the
structure (3.2) of the Lagrangian. This point can also be derived from the “degrees
of freedom’™ of primitive forms of type (B. 12).

The reader should also keep in mind that the solutions (3.4} are local in nature,
as it is the case, in general, for all applications of the Converse of the Poincaré
Lemma [7].

We now come to a crucial as well as delicate point of our method for computing
a Lagrangian. This is constituted by the fact that the solutions (3.4) apply iff their
integrals are well defined. In turn, this point is intimately finked to the require-
ment that the field equations are well defined in a star-shaped rather than an
ordinary region.

Before commenting on this point, for the sake of clarity let us note, from the
Appendices and from Section 2, that on practical grounds, one can ignore the
distinction between ordinary and star-shaped regions and work on the “minimal
domain® Ry, whose boundary is constituted by unit circles around the origin in
the “plane™ of local coordinates (¢¢, $%,.). A requirement of Theorem 2 and of
Corollary 2.1B is then that the field equations are well defined at least in such
domain Ryip . Alternatively and on more pragmatic grounds, one can simply verify
that the field equations are well defined for all values 0 < ¢* < | and 0 < ¢%,
< @ = 1,2, mp=0,1,2, 3). If this is the case, then integrals (3.4) are well
defined, too.



430 RUGGERO MARJA SANTILLI

Now, the above requirements can clearly be violated in practical applications.
This is the case when the field equations incorporate terms such as log ¢, cosec ¢, ete.

But, within the context of solutions {3.4), the variables ¢ and ¢*, are local in
nature. This allows the redefinition of these variables aiming at the removal of the
divergences in Ryyp . For cosec ¢ a trivial redefinition is ¢ == ¢ - const, in
which case one can use Egs. (3.3) and solutions (3.4) in the redefined rather than
the original fields.

In conclusion, and as we shall illustrate later on, solutions (3.4) generaily hold,
up to redefinition of the focal variables, for Field Theories in Minkowski space.

Despite that, the reader should be alerted that counterexamples are conceivable.
Furthermore, the extension of the method of Corollary 2.1B to Field Theories in
a Riemannian or pseudo-Riemannian manifold demands considerable care,
particularly when the local coordinates are the elements g* of the metric tensor
and their covariant derivatives.

It should be indicated that, to the best knowledge of this author, the case when
integrals of type (3.4) fail to exist is not yet known within the context of the calculus
of differential forms.

We shall therefore not enter into this aspect at this time and content ourselves
with the obtained solutions (3.4).

Another point which the reader should keep in mind is that Eqs. (3.4) ultimately
constitute only one method of solving Egs. (3.3), and other methods are con-
ceivable. Therefore, if solutions (3.4) fail to hold, this does not prohibit the possi-
bility of solving Eqgs. (3.3) with methods other than that of the Converse of the
Poincaré Lemma and its generalization as presented in Appendix B.

To clarify this point, let us first note that the system of differential equations (3.3)
for the characterization of a Lagrangian exists irrespective of the type of region of
definition of the field equations. This is the spirit of their derivation in the first
part of the proof of Theorem 2.1. Therefore, if solutions (3.4) do not exist, this
does not necessarily imply that system (3.3) is also not defined in a non-star-shaped
region (e.g., 0 < &%, ¢, << 1, or 1 < o2, 42 ).

On similar grounds, the conditions of self-adjointness, as derived in {11, do not
necessarily need a star-shaped region to be well defined.

The possibility referred to above is thus constituted by the case when the integrals
of solutions (3.4) do not exist, but system (3.3) and the conditions of self-adjointness
are well defined in a non-star-shaped region. It is under such circumstances that
other methods of integrating Eqs. (3.3) are conceivable.

Stated in somewhat different terms, if counterexamples to the universality of
solutions (3.4) up to redefinition of the local variables for all (tensorial) Field
Theories in Minkowski space do exist, they do ner necessarily imply the breakdown
of system (3.3) and of self-adjointness in some ordinary region of the variables and,
therefore, a Lagrangian may still exist.- '
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In any case, this point demands specific supplementary investigation. It is for this
reason that we have formulated Theorem 2.1 and Corollary 2.1B, as a precautionary
measure, on a star-shaped rather fhan an ordinary region.

The case of nonlinear systems of field equations (1.1) is excluded by Theorem 2.1
in line with the fact that the most general system of field equations which can be
represented with the Lagrange equations is, {rom their structure (1.8), of the
quasi-linear type (1.2}, We shall therefore ignore from now on thé nonlinear
form (1.1).

The semilinear form (1.3) of the field equations is, on the contrary, significant.
This is due to the fact, already stressed in {1] that the great majority of tensorial
field equations considered until now are of the semilinear form

D(ﬁal - _fal(-xu ] ¢a! ‘;b(“u) == (), (35)

However, the necessary and sufficient conditions for Egs. (3.5) to be self-adjoint
are that they are linear in the derivative terms ¢%,, , i.e., they are of form (1.3), and
all conditions of self-adjointness (1.7) are satisfied {I, Theorem 6.3]. Therefore,
we shall now restrict our analysis to semilinear systems of the reduced form {1.3).

The problem of the existence of an ordered direct analytic representation for
systems (1.3) is clearly a particular case of Theorem 2.1 with

A‘;i‘;z = Sﬂlug ® g“l“&) (3'6::1)
—Bnl = _Pz;ﬂa(xu 3 ¢G) sb"?‘:ul - 0'(—'\:“ B} ‘5641)' (36[’))
It is, however, an instructive exercise for the interested reader to again prove

Theorem 2.1 for identifications (3.6). This proof is considerably simpler, because
Egs. (3.3a) reduce, in this case, to

?Z(K‘::ﬁf + K‘:iz:) — S’h% ® guzuz_ (.3_7)

From Eq. (3.4a) we then recover the well-known kinetic term
— 1 1
K = 2¢a1i,‘1 J dr’ {Sbag;uz f dr 8,4, & gﬂ]ﬂ.g] (")
0 0
1 1
= qu“*'u!J; dr’ [q{,ﬂ;'ﬂfo dr 'r] (' $%.)
1
— 2qs(ll:ul J dT_r 7}7"?5"1:“"
(3]

= 'E’J?Sal:ul?sal:ul' {3.8)
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Then the conditions of self-adjointness ([.7a) and (1.7b) coincide with the integra-
bility and consistency conditions of Egs. (3.3b) and (3.3c) (parts 2 and 3 of the
proof of Theorem 2.1}.

For the reader’s convenience, the following corollary summarizes the method-
ology to compute a Lagrangian in this simpler case.

CorovLary 2.1C. A Lugrangian density for the ordered direct analytic represen-
tation of Lorentz-covariant, tensorial, semilinear systems of field equations

gulnaqsrq:ulug “ Pﬁiag(xu. s %) (ibﬂg;u[ — U\ X %) =0,
@iy, te=1,2,.., 1, Mo by s e =0, 1,2, 3, (3.9

which are of (at least) class BT and self-adjoint in a star-shaped region R* of points
(x,, ¢°) is given by

L(xu 5 0% V) = 1pTLd™ + Dilxa, %) ¢™ o+ Clx,, 69, (3.10)

where the (4n - 1) densities Dt and C are a solution of the linear, gencrally over-
defermined system of partial differential equations

Dzl;ag - ‘D::;r.'l = ‘“",0:);1(,_l ,
(3.11)
C.ﬂl - D:‘:i.u‘_. _ Uu,_ ]
given by .
It . ! g i
Dy = ¢ [ dr gt (o, 24,
(3.12)

+1
C = ¢ Jo dr D45, 4 o, Jx, , 74",

Notice that now the minimal continuity conditions are that the terms pfi, and
0y, are of class %™ rather than of class %2 as in Corollary 2.1B. This is due to the
fact that the conditions of self-adjointness (1.7) imply only first-order partial
derivatives. Also, the condition of regularity has been dropped because Egs. (3.9)
are always everywhere regular.

Again we must stress the point that while system (3.11) and conditions of self-
adjointness (1.7) apply irrespective of the type of region of definition of system
(3.9), the solutions (3.12) apply only when the related integrals exist.” Counter-
examples when the integrals of Eqgs. (3.12) do not exist might be conceivable, but
in this case other methods of integration of Egs. (3.11} are equally conceivable.



A LAGRANGIAN IN FIELD THEORY. Il 433

Let us also recall from [1] that the conditions of self-adjointness (1.7a) and
(1.70) imply that the g2, term has the curl of structure

!l'l(i::

—P:_la2 = F:;i;rrz - F::;:al * (3I3)‘
where the 47 terms Iy are, in general, functions of (x, , 9.
Under structure (3.13), i.e., for the system

E b iy T T 8 = T, 69,16, — 0, (x,, 4% = 0, (3.14)

the conditions of self-adjointness (1.7) reduce only to Eq. (1.7c); the densities D"
coincide with I' ., i.e., the solutions (3.12a) read {see Appendix B)

L
Dy == [ dr (@) Ty = I, (3.15)
L ] 1

and the Lagrangian (3.10) takes the form
"‘(f(xu. 3 qga! ‘?Su;u == E.qsmugéa:u + Fau(x:t E ?Sb) ?Ba:u + C(xrt H ¢h): (3'16)

where the density C is given by

C= ¢ [ dr [T, + o,]Cx,, 7", 317

&)

As a final remark, let us stress that the Lagrangian computed with the above
method, when it exists, is not unique. This is for several reasons, including the
“degrees of freedom™ of type (B.12) of the primitive forms of the Converse of the
Poincare Lemma and of its generalization.

It is for this reason that throughout our analysis we have always referred to the
existence of @ Lagrangian rather than the Lagrangian.

The study of the “degrees of freedom™ of a Lagrangian for a given system
satisfying the requirements of Theorem 2.1 is contemplated as a subsequent step.

A few examples are now in order. First, let us consider the simple case of the real
scalar free field

(O + m®) @ = g™, .+ mp = 0. (3.18)

As we know from [l], this system is self-adjoint. By inspection we then see that
all requirements of Theorem 2.1, or Corollary 2.1C, are satisfied. Equation {3.11)
reduces to

Ciy, = —nep. (3.19)
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The solution (3.12b) becomes
+1

C == -—(pJ dr Pt = ime?,
o
and the familiar Lagrangian
F == '?E(‘P‘;;‘}”m o mztpz)

is then recovered from Eq. (3.10).
The extension to the case of self-coupled fields

O + mPp -+ Ap® =
is trivial. Indeed, Eqgs. (3.20) become
1
Ce= —p f dr [m*(rp) + Alre)?]
0
= — lmigt — Pl
" with the familiar Lagrangian
= Yo, — dmie® — JAph,
For the Sine-Gordon equations
Clp + sing =0,
which is also self-adjoint, we have
1 -
C= —g f dr sin v == [cos Tpliz)
Ll
= cos ¢ — |,
and the known Lagrangian

& = dgpigi, + [cosp — 1]

(X

is thus recovered.

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

In more than one dimension one of the most significant cases is that of the gauge
invariant theories. Consider, in this respect, Eqgs. (2.40) in the seif-adjoint form

(O guluu)(‘P:ulug) I (O 2[9,4"')(‘?:“) + ({()',ﬂ2 —_(;:;A:-Ai;A‘,A“)

g 0 —2ied O\,

Py

= (g™, )+ (B,) =0

(3.28)
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For the kinetic term we then have, from Eq. (3.4a),
) rt i : H2) = ! H
K =4, -j',, dr [q) Jn ar 7] (rgp™t)
= Pl (3.29)
Equations (3.3b) become

i ?

DY, = died" = Z

(3.30)
D= —Zied" =7k,
R PP
with solutions, from Eq. (3.4b),
1
Dt =@ f T Z0 dr = iedd,
o (3.31)
Dy = —p | Zodr = —ied.
Equations (3.3¢) now read
o -8 1 (B2 @' — (B Pu
== ’) 5 SO iy s
(C"?,) (qu_J) 2 ((B(ﬁ’w) . — (B @ )
40 (—m? = A, ANy _ ((—mt A AN G (W,
= ((~;712 e, 4¥) 0)(.;)) = ((—m2 R, A (p) = (W) (332)

Notice the lack of dependence of the rhs of the above expression from derivative
terms in accordance with part 3 of Theorem 2.1.
The solution (3.4¢) then becomes

1 1
C== g J;) dr W (v¢) + ¢ J dr PV,F('rqo}
0
= (—m? -+ 245 A,) o {(3.33)

The densities (3.29), (3.31), and (3.33) then reproduce the known Lagrangian
(2.39) through structure (3.2).

An element emerging from our analysis which is significant for the problem of
the coupling of tensorial fields is that the structure of the field equations for gauge
invariant theories is not of the semilinear form (3.5) but rather of the more generaf
quasi-linear form (3.1) with the terms Ap's incorporating a permutation of the

y

T atin indices. This point will be further elaborated later on.
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Another significant example in more than one dimension is given by the (self-
adjoint) chiral equations

: aGm-’la(l(pa) (Pug; Aaii

Ga,_u._:((P ) g“luﬂ@mz:uwg T @(p“u u P
1 aGﬂua ((Pa) o] | Ggisk 5R(§0) o a3 1 )
— 5 g e bl = A, T B =0

Guras = Gugay (3.34)

Then, solution (3.4a) becomes
rl 1
K= ZGmagtpﬂl-u J(] dr [t?:!'ﬁg.u J-o T ’i"] (Tlrﬁag.u)

= 10" .Gl @™ (3.35)
Equations (3.3b} yieid
Dz1:ﬂz - D::'z;ﬂl =0, (3.36)

with a particular solution D,* = 0. Equations (3.3c) are trivial. One then recovers
from the kinetic term (3.35) the familiar chiral Lagrangian

P = 1™ G o @) @™ 4+ Rp"). (3.37)

Let us stress again that the field equations in this case too are of the quasi-linear
form (3.1), and not of the semilinear form {3.5). '

This completes the illustration of cur method of computing a Lagrangian. The
interested reader can work out other examples with similar procedures.

We must now reinspect the above results from the viewpoint of interactions.

The problem in which we are interested at this time is the following: What is a
general form of modification of the Lagrangian density for free tensorial fields
capable of representing the same fields in interaction when expressed in a class €%,
regular, Lorentz-covariant, tensorial, and self-adjoint, but otherwise arbitrary
quasi-finear form? Or, alternatively, which is a general form of coupling tensorial
fields in a way compatible with Theorem 2.17

In this paper we have established the necessary methodology to answer this
question, at least on formal grounds.

An analysis of the Newtonian counterpart of this problem is conducted in {5]. A
few remarks within this framework are useful to illustrate certain points.

First, let us review the conventional approach to the problem. Consider, for
simplicity, an unconstrained Newtonian system of particles of unit masses with
generalized coordinates ¢y ,..., gn (7 = 3N) representing a collection of conven-

tional (e.g., Cartesian) coordinates. Let . L, = T« 3(4,)? be the Lagrangian
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of this system in the absence of external forces. Then we can say that this system of
particles is in interaction when the Lagrangian contains the free term 31 « Loree
and a nontrivial additive interaction term Lyt 1€,

Leotds §) = Y Liee(d) + Lonl> 9 (3.38)
1

It should be indicated that the term Ly is nontrivial when the Lagrange equations
in Ty o L and those in Lot ave not equivalent. This ensures the existence of 2
modification of the actual path due to the acting forces and eliminates possible
equivalence (i.e., gauge) transformations of T , L&, induced by Lt -

In more conventional notation one writes S L =T = Kinetic Energy and
Ly = U = potential energy.

The extension of the above well-known concept to Field Theory is straightfor-
ward and equally well known. Tts derivation within the context of Theorem 2.1
reads

CoROLLARY 2.1D. A total Lagrangian density for the ordered direct analytic

representation of orentz-covariant, tensorial, semilinear systems of couipled field
equations

(01 + m(@)) bay = L@ — I (% ] 6% + AaldD (3.39)

which are of (at least) class @1 and are self-adjoint in a star-shaped region R* of
points ¢* is given by

‘gTot(‘?Sl""v (bﬂ’ q{)“u EERELY ‘?Smu)
=V FEP P T LB B P P70, (340D
L

where
PO = U apa — 1@ ¢ ba); (3.41a)
By = T(d") ¢ (. (3.41b)

there is no summation with respect 1o the a index (only) in Egs. (3.39) and (3.41 a),
and the density 8 is given by

+ 1
g = ¢ [ dr (D0 A+ Adlrd): (3.42)
1]
Again, whenever the Lagrange equations in T L and Py are not

equivalent, the term By Of the conventional structure (3.40) represents a bona fide
interaction or coupling of the considered fields.
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.One of the implications of our analysis is that the conventional structure (3.40)
of the total Lagrangian density is not exhaustive and more general structures are
conceivable.

It is at his point that an inspection of the Newtonian framework, which is
ultintately the arena of most of our intuitions, may be effective.

Consider again an unconstrained Newtonian system of n free particles of unit
masses in the coordinates ¢, ,..., ¢, . The equations of motions are, trivially,

o= 0, a==1,2,.., 01 (3.43)

A general form of coupling the above system is constituted by the superposition
of at least three different types of couplings, i.e., (I) coordinate couplings, (II)
velocity couplings, (II1) acceleration coupiings.

To stress the physical significance of the use of these couplings it is sufficient to
note that if some of them are ignored, the considered equations of motion may only
be an approximation of the physical reality. .

An example is needed to clarify this point. Consider, as a first step, only finear
couplings. Then the type I couplings applied to Eqs. (3.43) produce the familiar
form of coupled oscillators, i.e.,

G, + Cayafa. = 0, Caya, = CONST, dy , Gy == 1, 2, 1 (3.44)

This conservative system is, however, insufficient to represent an actual system in
our environment, due to the inevitable presence of dissipative forces. One then
introduces type If couplings, obtaining in this way the familiar form of the gystem
of coupled and damped oscillators

Ga, + bﬂlﬂgq‘.ﬂg + Coetfa, = 0, bﬂ]_ﬂ--_} == const. (3.45)

This implementation, however, is still insufficient because, as is well known in the
theory of coupled oscillators, type 11 couplings also occur. One then obtains the
familiar form of the linear equations of motion for coupled oscillators

aﬂlazqﬂa + {)alﬂagag T Cayagtie, = 0,

Gy, = COMSL, det{a,,,,) == 0. (3.46)

Notice that the ““acceleration couplings™ occur because the off-diagonal as well
as the diagonal terms of the matrix (g, .,) are generally nonnull.

Equations (3.46) still constitute an approximation of the physical reality due to
the linear nature of the considered couplings as well as the constancy of the ele-
ments dq q, » ba a > and Cau, - And indeed, Egs. (3.46), as is well known, are custo-
marily V‘Ilid on]y for the case of small oscillations.
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The removal of the linearity of couplings I and i1 and of the constancy of the
coefficients then brings Eqs. (3.46) into the fundamental form of Newton’s equations
of motion

Aagalts 45 ) o, + Bo(t, 4, §) = 0, ‘ {(3.47)

where external forces, which are essential to preserve the motion for the desired
period of time, can now be included in the B terms.

Even though they are somewhat hidden, the three indicated classes of couplings
are still present in the general structure (3.47). And indeed, the coordinate and
velocity couplings are represented by the ¢ and ¢ dependence, respectively, of the
Ada, and B terms, while the acceleration couplings are represented by the nonnull
values of the off-diagonal elements of the matrix (4, . ). The central difference
with Eqs. (3.46) is that for the general form (3.47) the coordinates and velocity
couplings are not necessarily linear. However, the acceleration couplings are atways
linear in the accelerations in order to preserve the Newtonian structure of the
equations of motion. For an elaboration of this point see [5].

The point which we would like to stress is that, irrespective of our interpretation
and classification of the forms of couplings, when an accurate description of the
physical reality is needed, structuies of type (3.44) and (3.45) must be abandoned
and the fundamental form (3.47) of the equations of motions must be adopted.

At this point one can argue that, under the condition of regularity, i.e.,

det(4q,q,) 5= 0, {(3.48)
Eqs. (3.4) can always be reduced to the semilinear form
o — Jult: 4, ) =0, : (3.49)
where the implicit functions f, are trivially given by
Jo= —AuBy, (dg) = (Aua)™" (3.50)

Thus, the acceleration couplings are not essential to represent the motion.

It is precisely in this respect that our analysis of the necessary and sufficient
conditions for the existence of a Lagrangian becomes crucial.

And indeed, the statement that class % regular systems (3.47) can always be
reduced to form (3.49) is true from the Theorem on Tmplicit Functions. Similarly,
the statement that Egs. (3.49) without acceleration couplings can equivalently
represent the motion is equally true.

However, within the framework of a Lagrangian representation of the equations
of motion the situation is considerably different. Indeed, Newton’s equations of
motion in the form (3.49} are non-self-adjoint (unless trivial forms of couplings
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are considered) and therefore a Lagrangian for their ordered direct analytic
representation does not, in general, exist. )

This leaves, as one possibility, the study of the equivalence transformations
of Eqgs. (3.49) which preserve continuity, regularity, and linearity in the acceleration
and which induce a self-adjoint structure, i.e., transformations of the type [5]

(hagedts @ Dldiay — FolSsRVE" = O, (3.51)

If one equivalence transformation of this type exists, then a Lagrangian exists.

The point which we want to stress is that the ultimate effect of the “integrating
factors” Haa, of Egs. (3.51) is that of reproducing equations of motion of type
(3.47) with acceleration couplings.

In conclusion, while the acceleration couplings are usually not essential to
represent the motion under arbitrary Newtonian forces within the context of the
theory of ordinary differential equations, they are vital within the context of their
Lagrangian representation. And indeed, if they are ignored within this latter
context, the net effect is a considerable simplification of the form of couplings. In
turn, this ultimately reduces the type of admissible forces to those derivable from
an additive potential function.

From the viewpoint of the structure of the Lagrangian capable of representing
interacting Newtonian systems, the elimination of acceleration couplings inevitably
implies the use of the conventional structure (3.38). The point here is, again, that
the Lagrange equations in Lagrangian (3.38) are indeed of type (3.49). However,
only a special subclass of Egs. (3.49) admits a direct Lagrangian representation
and when it does, it often constitutes only an approximation of the physicai
reality.

These remarks suggest the problem initially posed, namely, which is a general
form of modification of the Lagrangian for the free motion capable of representing
interacting systems with arbitrary forms of coupling, or, equivalently, with arbitrary
Newtonian forces.

A systematic analysis of the Newtonian counterpart of this problem is conducted
in [5]. In essence, when a Newtonian system is interacting according to a combina-~
tion of couplings I, II, and III, the total Lagrangian contains (# -+ 1) interacting
terms, » multiplicative terms, and one additive term to the Lagrangian for the [ree
motion according to the structure |

1S9 g, ) =Y., LS i, @ @) Livee(d) + Lantadts 4> 9)- (3.52)
1

Alternatively, whenever some of the acting forces are not derivable from a
potential function, the motion can be represented with multiplicative as well as
additive interaction terms to the kinetic energy according to structure (3.52).
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Again, the {(n - 1) interaction terms are nontrivial when the Lagrange equations
in >, LW and L§5" are not equivalent.
As a trivial example in one dimension, the system with damping

G+ bg=1=0 b = const (3.53

does not admit a direct analytic representation, and a Lagrangian of type (3.38)
does not exist because the force is not derivable from a potential. And indeed,
Eq. (3.53) is non-seif-adjoint.

However, a Lagrangian representation for the equivalent system

(g + bg) =0 (3.54)

exists and is given by the generalized structure (3.52), i.e,,

L%g? = LI-I'at.iLFree ’ (3.55)
Leree = 6% Linty = ett.

Indeed, the equation of motion in the equivalent form (3.54) is self-adjoint.

More generally, the conventional Lagrangian structure (3.38) induces equations
of motion of type (3.49) while the generalize structure (3.52) induces the general
form (3.47) of Newton’s equations of motion.

In ultimate analysis the presence of the multiplicative interaction term in
structure (3.52) is intimately linked to the presence of the acceleration couplings of
Eqs. (3.47). It is precisely this feature which allows the Lagrangian representation
of forces which are not necessarily derivable from a potential.

In relation to the corresponding problem in Field Theory we shall here limit
ourselves to only a few remarks. We want also to stress that such remarks must be
considered of a conjectural nature. This is due to the apparaently limited knowledge
we have at this time of the physical significance of more general forms of couplings
as well as of the technical implications of the problem of their quantization.

On formal grounds, all the remarks made above within a Newtonian context
directly extend to (classical) Field Theories.

The conventional structure (3.40) of the total Lagrangian density Is, in ultimate
analysis, a direct consequence of the restriction of the field equations to a semilinear
self-adjoint form. This is equivalent to the assumption that the acting forces of all
admissible couplings must be derivable from an (additive) interaction term.

If, however, this restriction is lifted, the total Lagrangian density with the
conventional structure {3.40) fails to be acceptable. This point can be seen in
several ways. First of all, one can easily see that structure (3.40) cannot represent
the field equations in their general form, i.e., the quasi-linear form (3.1) which is,
ultimately, the field theoretical version of the general Newtonian form (3.47).
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Alternatively, if one reduces the quasi-linear form to a semilinedr one by using the
Implicit Function Theorem, then this new form is non-self-adjoint (unless the
couplings are, again, trivial) and, as such, @ Lagrangian for their ordered direct
analytic representation does not exist.

In this case one must seek for an indirect representation of the type

———

X% 5 1R
[C{u 84){11'.“ - ad)aI]SA

- o H aqig H 17, ¢, 3
= {hal“_(xc& » (}Sma 950 c:z)[gf 1:1_,?5“2 was fa NSi}SAR =0, (356)

These representations will be studied in paper 111.

Again, the net effect of the “integrating factors” f,,* 18 that of restoring the quasi-
linear form (3.1), i.e., of restoring the “ycceleration couplings.”

The above situations can also be seen directly from the conditions of seif-
adjointness. Tndeed, the conditions of self-adjointness for the semilinear form
(3.39) admit 2 nonlinearity in the field ¢, but they prohibit a nonlinearity in their
derivatives ¢%, , by thus restricting the forms of coupling. On the contrary, the
conditions of self-adjointness of the quasi-linear form (3.1) do allow & nonlinearity
in both the field components and their derivatives as gtressed in [11

Thus, the quasi-linear form (3.1) of the field equations allows any class 6* and
regular combination of (F) generally nonlinear couplings in the field compenents

a (1) generally nonlinear couplings in the feld wyelocities” ¢%, » (11 linear
couplings in the field “acceleration” ¢%u, -

"This is precisely equivalent, on conceptual grounds, to the corresponding New-
tonian framework.

On physical grounds, however, & problematic aspect appears. It is weil known
that the class of Newtonian forces is, in general, nonconservaiive and that only
one of their subclasses is derivable from a potential. Therefore, the physical
significance of the inclusion of nonconservative forces in a Lagrangian representa-
tion, at a Newtonian level, is self-gvident.

The corresponding situation within the field theoretical framework is, however,
different. Indeed, the physical significance of the field theoretical interactions whose
Newtonian limits are nonconservative, to the best knowledge of this author, is
not known at this time and even the necessary methodology to study their implica-
tions (e.g., for symmetries and conservation laws} is not fully explored.

In this respect it has been surprising and gratifying to this author to see that
the ultimate nature of the interactions in gauge invariant theories is precisely of this
more general type. This is clearly exhibited by the analysis of Section 2, where the
Newtonian limit of the gauge equations (2.40) is given by Eqgs. {2.34). It is easy Lo
identify in this system the combination of two {orces, 1.€.,
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(1) a conservative force ¥C = (kq, , kq,) with corresponding linear, type I

coupling and (1) a nonconservative force BNC = (b¢; , —bgy) with corresponding
linear, type 11 coupling.

It is at this point rather tempting to say that, perhaps, the success of the gauge
theories in the unification of the electromagnetic and weak interaction is also due
to these more general forms of admissible couplings.

1t is equally tempting to say that the failure until now of the unified gauge
theories to incorporate strong interactions might be due to the need for further
generalizations of the forms of couplings.

Notice in this respect that, despite the generalized form of couplings, the “acce-
leration couplings” are still absent in the gauge theories. This is transparently
exhibited by the equations of motion in the self-adjoint form (3.28) and it is due
to the fact that the diagonal element of the (A5 matrix of Egs. (3.28) are null.
Nevertheless, as stressed earlier such equations are of a simple but true guasi-
linear type (3.1). And indeed, the corresponding semilinear form (2.40) is non-
seif-adjoint.

[t then follows that the physical significance of coupling types [ and Il in Field
Theory within the context of the quasi-linear form of the field equations might be
acceptable on the grounds of the structure of the gauge invariant theories and the
success of their applications.

The last question which remains is, what is the physical significance of the
inclusion in Field Theory of the third form of couplings, namely, that of the “acce-
leration couplings.” The answer to this question is provided by the chiral type of
feld theories. Indeed, the field equations of type (3.34) do represent “acceleration”’
(as well as nonlinear “yelocity” and “‘coordinate”) couplings unless the matrix
(Gayag) 18 trivial, i.e., it is the identity or a permutation as in the gauge theories.

And indeed, the chiral Lagrangian (3.37) exhibits interaction terms which are
“multiplicative” as well as “additive” to the free term. This is precisely along the
lines of the generalized structure (3.52) of the total Lagrangian for an arbitrary
Newtonian system.

With an open mind to the above remarks, we are now equipped to derive a
generalized form of the Lagrangian in (classical} Field Theory within the context
of Theorem 2.1

CoROLLARY 2.1E. A general structure of the total Lagrangian density for an
ordered analytic representation of Lorentz-covariant, tensorial, quasi-finear system
of coupled field equations

At::‘:ai(xll 3 96'1’ ¢“:il) (!)ﬂgzuuzg + Bnl(xu- ] <ﬁﬂ-, (}S”:u = 07 a]. = ]: 27-"9 1, (357)

a

which are of (at least) class 3 regular, and self-adjoint in a star-shaped
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region R* of poinis (x,, o, ) Us characterized by (n -~ 1) interaction ferms:
n multiplicative and one additive term {o the Lagrangian density for the free Jields,
according to the structure

AN CON LY AN
n
(@) r. [ : {a) : . by 5
= Za :Z)lgt.l(‘\m ] 4’ » ¢b oc) gF‘;ee(‘}'Su, ¢a41) _{_ "%nt,][(—\’m L] (f)bv (){)E '\)a (338)
1
where the terms £, , L. 1 , and Fpe,n admit the decompositions

PO = Wby b — m(@) pad)s
PO = Ky, §% ) + DIV, 67 6 Cx,, ¢, 13.59)
‘%Bt,!l = K]i(xu: 3 ‘;"5!)! ¢!);m) + D”‘E:l(x“ s (isb) (;b“l:u "]r"" Cli('\ﬂa 3 (#)b)’

and they can be expressed in terms of the solutions of Egs. (3.3) by means of the
identifications

" n
K = Zu {fKI(a)qgam(ﬁ“;u . za KI({I}IHE(G) éugbu
1

1

k3 n
—E— Za.h %Dl(u)‘!:(#b:uqsnmcf)“:a Jr- Ea %!'Cl(u)gbu;aqsm«x + K[l >
1 3

{3.60}
Dt = — 3, 3m*(b) $"h DM + Duti
1
C=— 73, @) $*¢.C1" + Cu.
i

It should be indicated that the generalized structure (3.58) is different than the
chiral structure (3.37). The relationship between these two structures demands the
study of the equivalent forms of writing structure (3.58). This problem will be
investigated in a subsequent paper. Within this context we shall also show the
property indicated in [1], namely, that the generalized structure (3.58) can also
represent, in an equivalent way, semilinear systems, OF, alternatively, that the

systems which admit the conventional structure (3.40) of the total Lagrangian can ’

equivalently be represented, under certain circumstances, with the generalized
structure (3.58). This should reinforce the representational capabilities of structure
(3.58).

A point which we would like here to stress is that the structure of the total
Lagrangian (3.58), when it holds, is not necessarily unique, and other forms are
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conceivable. Essentially, structure (3.38) is one practical way of representing
interacting systems with arbitrary forms of couplings as specified above.
As a purely formal example, consider the single, regular, tensorial field equation

Flg) = [G2g g — mig® -+ Gop”) + 2G1] ™0 P
+ [I + 3Gi(@Hgi, — mip -+ Gyp')] Lo
4 G —mPp + 2G9®) Ciy + e — 2Gap° =0, (3.61)

The above equation is non-self-adjoint because it violates condition {1.5d). How-
ever, if we multiply the equation by the factor term exp(Gip™@’,), the new equation
becomes self~adjoint. Our Theorem 2.1 can now be applied to this equivalent
system. Corollary 2.1B and 2.1E then give the Lagrangian density of the generalized
type (3.58), 1.2,

Fror = v%nt.xgsree + Zintar s

Prree = ’Ei(?’:u‘}”:u — f112<p2),

o (3.62)
“'%'ﬂt.l = CKP(GI‘P‘M(P,;&)’
B = 3Gapt exp(Giplup™).
Notice that the equation is covariant and such that
lim Flg)=(O+ mHe=>0 (3.63)
Gy, Gymr0

Notice also that the reduction of Eq. (3.61) to the conventional form (3.9) is not
trivial due to the presence of the terms with the factor @*@¥e:,, . This aspect,
which was pointed out in [1], seems to indicate that the quasi-linear form of the
field equations, unlike the Newtonian case, is a bona fide generalization of the
semilinear form.

At this time we shall leave open for the interested reader the formulation of
other examples.

It must be stressed, as indicated earlier, that the generalized structure (3.58) of
the total Lagrangian density is derived on entirely formal grounds and presented
on a purely conjectural basis.

This is due to the fact that the actual use in quantum field theory of this gene-
ralized structure with nontrivial multiplicative interaction terms demands the
inspection of a rather large variety of methodological aspects, such as, the problem
of the symmetrization, the problem of the equivalence of the (quantum-mechanical)
Lagrange and Hamiltonian formulations, the problem of renormalization, the
behavior of the Feynman diagrams, etc. Besides, all these problems, to the best
knowledge of this author, have been only partially expiored or not explored at all
at this time.
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It js, however, significant to note that, within the framework of Newtonian
Mechanics, the structure of a Lagrangian capable of representing systems with
arbitrary Newtonian forces must necessarily be of the generalized type (3.52) (or of
some equivalent type). The analysis of this paper indicates that, within the frame-
work of classical field theory, generalized structures of the Lagrangian density are
also admissible. This seems to suggest that, despite the several technical problems
which are still open, a generalized structure of the Lagrangian could be significant
for quantum field theories, too.

APPENDIX A: FELeMents OF THE (CALCULUS OF DiFFERENTIAL FORMS ON
MINKOWSKI SPACE

Our Theorem 2.1 on the necessary and sufficient conditions for the existence
of a Lagrangian density for quasi-linear systems of tensoria} fields is ultimately
based on the property that the conditions of self-adjointness (1.5) are the integra-
bility conditions for the overdetermined system of partial differential equation (3.3)
in the unknown Lagrangian 2. _

As is well known, one of the most effective frameworks for studying the inte-
grability conditions is the calcutus of differential forms in general, and the Converse
of the Poincaré Lemma in particular [7].

An inspection of Egs. (3.3) indicates the presence of partial derivatives with
respect to a set of n fields $xy), (@ = 1,2, 0,0 = 0, 1,2, 3), as well as their
derivatives on the Minkowski coordinates ¢, = 8¢%@x* (a =1, 2puiy By =
0,1,2,3).

The handling of this system within the framework of the calculus of differential
forms demands the interpretation of both the fields $* and their derivatives ¢*, as
focal coordinates of an #n-dimensional and a 4n-dimensional differentiable manifold
m, and m,, respectively.

The methodology for the Converse of the Poincaré Lemma for the manifold
m,, with local coordinates ¢ is fully established [7]. However, its extension to the
manifold m,, with local coordinates $%, is nontrivial due to the appearance of the
additional Minkowski index p and, to the best knowledge of this author, has not
been worked out until now.

In this Appendix we shall first review, for the reader’s convenience, some basic
aspects of the calculus of ordinary differential forms in the local coordinates ¢2,
according to the presentation by Lovelock and Rund {71, and then explore their
generalization to the case of local coordinates ¢%,, . For notational convenience we
shall ignore the nature of the terms ¢, and simply write

bl = %, = (8¢/0x"). (A1)
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Let m,, be a differentiable manifold with local coordinates ¢¢ (@ = I, 2,...,m). A
generic tensor on m, with r-contravariant and s-covariant indices will be written
P

Dl'"‘;: and termed a tensor of type (r, 5).
The (0, 0)- tensor (i.e., scalar)

AW = 4, dn (A.2)

induced by the contraction of an infinitesimal displacement dd* of type (1, 0) and
a (0, 1) tensor 4, is termed a Pfaffian or 1-form.
The addition of 1 forms is done with the conventional rule, e.g.,

AW B = (4, + B dge. (A3)

The multiplication of 1 forms, however, demands a new concept, termed exterior
product and often denoted with the symbol 4, which preserves the distributive law
of ordinary multiplication but obeys the anticommutativity rather than the com-
mutativity law, according to the scheme

AR A BV = (4D dg®) & (B dg) = A.By dg" A dg’
= —WA(!-BT) (J¢b A d(ﬁu == -‘}(AH-BF) o BbA(z) C/Sba A f{q’)b. (A.4)

The structure emerging from the above product is termed a 2 form. Repeated use
of the exterior product then induces the so-called p forms, which, in general, are
scalars characterized by a (0, p) tensor 4, ..., contracted with the antisymmetric
( p, 0) tensor dg™ A -+ A dp's, e, :

AP = A, . dd A - A dPr (A.5)
1 d

The ordinary partial derivatives 8/8¢ are now generalized into the so-called
exterior derivatives which, for the case of p forms A'™) are often written dA and
characterize a scalar ( p - 1) form according to the rule

[€])] aA“i"'”"n ] i
dA™ = T dd® n dd™ A - A dPn. (A.6)
Similarly, the exterior derivative d(d4“") of the (p + 1y form dA'™ is the
(p + 2) form
ddA™y = Py dg® A dd® A dp™ A -+ A d" (A7)
' O Dp* - '
As we shall see better later on, the methodology which underlies the integrability
conditions is based on the necessary and sufficient conditions for cerain p forms
and their exterior derivatives to be identically null. This objective is achieved by
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introducing the so-called genera[ized Kronecker delia, which is a tensor of type
(p,p) defined by the {p ¥ p) determinant

5

LY
b1 Sb“

(A.8)

arerlly e
=l
anz 81;:
For p = l one recovers the ordinary Kronecker delta e However, for p = 2 one
has the generalized form

ages . REL§YE — iy Rl A
usee = 8383 Buiie (A.9)

and similarly for p = 3, 4,..., n. For p =17 the generalized § is identically null
because at least some of the indices must in this case coincide.
Tt is useful here 10 recall the “normalization property” M

|
8“,1---:1.,, — n. ,
L (I‘l. — P)l

{A.10)
where summation of repeated indices is understood, and the “realization’” in te1ms
of the contravariant and covariant Levi-Civita tensor (7

Sul---rzp e eal--va.‘.. A.].}
bl"'bp byl ( )

A central property of the tensor 85{,‘1:’; is that it is antisymmetric under the
exchange of any two of either the contravariant oOf the covariant indices. This
renders it an effective tool to represent ¢he structure of the p forms and their
exterior derivatives.

Tndeed the following propetty identically holds:
d™ A A dg' = (1/ph 8';,1}';’] dp’t A ot A de". (A12)

As a result, the p form (A.5), its first exterior derivative {A.0), and its second
exterior derivative {A.T) can be written, respectively,

AP = (UpD) BT g, A8 N0 dg’. (A.132)
1y 0y ;
AP = I S g JgP A e A g (A.13b)
—_— _ 1 82A(, w el
d(dAUJ)) o ( 1)7’( e g§or T Wase 1tm dCﬁb‘ A A dql,'hu-:_-

_ PAapean
(E DL (p ¥ Dt e arrz O"re (A.130)
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1t then foltows that the necessary and sufficient condition for a p form A or its
exterior derivative dA4‘™ to be identically null is that the corresponding conditions

8”1""‘“44. o 0’ (A]4a)

Ty ey’

By (ed o[04 = O (A.14b)

Fi e

By yens Dppz = 15 Zpeis 12

individually hold. It also follows that the second order exterior derivative d(dA"™)
i.e., Eq.(A.13c),is always identically null provided that the (0, p) tensor A, .--a, is of
at least class %? in the local coordinates ¢¢. This is due to the symmetry of the two
partial derivatives in ¢+ and ¢»+= of Eq. (A.13c).

Conditions (A.14) will play a crucial role in our analysis. It should be indicated
¢that those conditions are the generalization to an order p of the known property
that the necessary and sufficient condition for a (0, 2) tensor A, ., 1O pOSSEss an
identically null contraction with the total antisymmetric tensot dd™ a deee is that
it is totally symmetric, i.e., the 2 form

‘4(2) = Atnﬂg (quﬂl A dqbug = {’:(-A(rw;: - Aﬂ-:l’ll) d‘l‘bul A dqb"'l

= :}B‘;ﬂ‘ﬁf{ulan dgPt A dgp" = Y, (Aog, — Ayl d™  dg™  (A.15)

<8y
is identically null iff
dorid, o o= Ay, A, =0 (A.16)

boby s gty gy

This property can be alternatively seen from the linear independence of the terms
dd A dee for ay < dg . .

We shall now explore the generalization of the above framework to the case of
local coordinates $,% = db%/Ix".

Consider a 4n-dimensional differentiable manifold m1,, with local coordinates
bt {a = 1,2, 1, pb = 0,1,2,3). A generic tensor in Mya will now POSSEsS /'y
contravariant indices @y ...y &) and s, covariant indices by ;... by, 5 88 well as 1y
contravariant indices py ...ty and s, covariant indices vy ;... ¥, - Such a tensor
will be written Tﬁiﬁ;’:t‘:’z and termed a tensor of type (11, 123 51, 52). The above
distinction is indicated by the fact that the metric tensors for raising and lowering
the Latin and Greek indices do not in general coincide. For instance, if one con-
siders the case of a scalar field o(x) and its complex conjugated H(x) then n == 2,
B = B, and = g = 5o, while =g = gud” and B
P = Lad™; namely, the metric tensor for the Latin indices is, in this case, the
Kronecker delta 8, , while that for the Greek indices is the Mindowski metric g**.
1t should, however, be indicated that the case when the metric tensors for both the
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Latin and Greek indices coincide is not excluded. This is the case for the electro-
magnetic field ¢ = 4*(x) and its derivatives ¢* = A*, or for any vector fleld
on a Minkowski space. '

Finally, it should be stressed that our analysis is restricted to field theories on a
Minkowski space and other types of field theories, e.g., those on a pseudo-Riman-
nian manifold, are left open for the interested reader.

Within the framework of 4n-dimensional manifolds my, with local coordinates
$.2, the first possibility of constructing a scalar, i.e., a {0, 0, 0, 0) tensor is through
the contraction of a (0, 1; 1, 0) tensor 4, with the (1,0; 0, 1) displacement dd¢,“.
We reach in this way the generalized (1, 1) form

ATV = 4 dd," (A.1T)

The equivalent case of type A,“d¢,* will hereafter be ignored. The addition of two
(1, 1) forms can agains be performed with the ordinary rule. The exterior product
of two generalized (1, 1) forms, however, now demands the identification of the
interplay between the Latin and Greek indices in the product deg n dez . This
interplay can be seen from the expression

AT A BUY (g dpi) A (B2 dL)
= AN dG A d
= YA+ ACB) A4~ A (A.18)
= YABE — A2BY) dbi n de):

£L2

e L ML L 4¥1 R az LE)
= JABI — ARBL) Ayt A df

1oy

e A ABLRMe __ 4BapHl _ pEL RV By Y g o
= J(ARBL — ARBL — BB+ AUBL) dg) A dd

ity

or, alternatively, by the self-explanatory properties

where the last expression holds in view of the even number of involved permutations.
Structure (A.18) or (A.19) suggests the use of the following extension of the
generalized Kronecker delta for the (2 + 2)-dimensional case

s s
Gortamm . gmsgs ® (A.20)

fi}b., vyvs 0B, e v,
T - b thy Bl RN
8:;18:;2 SFlSI,g

with “normalization’ 8358k = 2121 = 4.
S L)
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Expression (A.18) can then be written
A(Ll) A B(l.l) — J;:Srl;:(;iuuﬁm VlBl'o d¢bl A (ftf)b (A.Z])

and interpreted as a generalized (2, 2) form.
The extension to arbitrary { p, p) forms

Al A”‘ o d¢::l A A dh {A.22)
»

is then immediate. Indeed, we can first introduce the tensor

801 GJ, .U]_ #:.,2 = 8((1“‘“'3,1 ® 8!11"‘”1,2
b "y bl“'brnl e

— €

tye ey, _ugeeviay,
preety Sy € Mg 7y (A.23)

with ““normalization™

St Doy (n1)? (A.24)
WUEMT e (n— p)t (n — pg)! -

Then the ( p, p) form (A.22) can be writien

AP = _(p1|)2 Sy AN g A e i, (A.25)

The necessary and sufficient condition for such a { g, p) form to be identically
null is that the following conditions on the (0, p; p, 0) tensor

3ﬂ1 i uﬁA u "v = {)
SbpugtereyTa e ’
by by =1, 2, 1, My aeeey o = 0,1, 2,3 {A.26a)

be identically verified.
The generalization of the exterior derivative (A.6) can now be written as the
(p+Lp+ 1 form

dAL:

{27} =
dA = 3?5

” dgb” A dq&“l A dT

»

. 1 @y Uppgiy et it 814“1. b LS
= TR DI e g G A A Al (A260)

Vpt1

Notice the disappearance of the factor {— 1), which is due to the fact that the
permutation of dej with dé is now always even.
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The necessary and sufficient condition for derivative (A.26) to be identically
null is that

‘ Vi... Py
C)A(I-l...ﬂ-m

8"1...(f1,+iul. Sl el

bt vyttt Yy a =
1 VT YL 845%3“{
bl yerny b?H’l = 1, 2,..., H, g geens |U:,,-,.+1 - 0, 1, 2, 3 (A.ZT)

be identically verified.
The second exterior derivative A(dAy can now be written

Jhqne i
2Aa) e

{n,o)y
AAAT) = g ogt

dy A dey, A dit nom A dpir

le

A e
[(P -+ 1)']2 [(P + 2)‘}2 Sbl"'bp+-:"1""'1v+2
B2AGL

3(#”’1’1-2 d 5{)“;&4—:‘_

Uiy Vpgl

X dgt A A dgplr {A.28)

p
Hyp

where the disappearance of the factor (—1)? (—1)7H = —1 should be pointed out.

The first nontrivial implication of the extension of the calculus of differential
forms under consideration is due to the fact that, unlike the ordinary case ol form
(A.13c), the second-order exterior derivative d(Am) of a (p, p) form Ao is not
:dentically null despite the continuity assumption A;i::.';’;(qbu" € GY(Rgu). This is

due to the fact that this continuity assumption implies that

] V]_...l’a, 9, Vl...V.n
AL PARE A29)
Sdtoiz Bt Ogpiein Dehtpta 7 ’
¢"11+'.= qg”m-l (}S”;«H 4)”1:4-'.:
but, in general,
~a Vl"‘"ﬂ 2 ”‘1"‘”:[)
a Aa,_...a,, » d A“v"“n (A 10)
Dehrie D1 7 A Do .
¢”n+:: ¢"p+l ?Svﬂw d’"ﬁﬂ

Therefore, the necessary and sufficient condition for a second-order exterior
derivative d(d4™?) to be identically null is that the conditions

LY B
P Aalla
AR PR R B o] 1 bl

T S
DA R N T BT
Vatz Yol

mO’

bl yerey b:!H—‘Z = i., 2,..., n,

U e frope = 0, 1, 2,3 (A.31)



A LAGRANGIAN IN FIELD THEORY. II 453

identically hold. 1t is an instructive exercise for the interested reader to verify
explicitly for the cases p = 1 and p = 2 that Eqgs. (A.31) are not identities (as for
the ordinary case) but conditions on the tensor A o .

As we shall see in Appendix B, the above findings have nontrivial implications
for the Poincaré Lemma and its Converse.

Another extension of the ordinary case which we shall need is characterized
by (@, p) forms of the type

B = BE () A A e ndg, p=0.1,2.3 (A3D)

Such forms can be considered as a collection of ordinary forms (A.5) for ==
0,1,2,3 and, as a result, the underlying methodology is trivially equivalent to
that of the ordinary case.

One could also conceive a further generalization to a manifold my,., with local
coordinates ¢,% and ¢ (g, b=1,2,..,n p= 0,1,2,3). This generalization,
however, is not needed for the proof of Theorem 2.1 and, as such, it will be left
open for the interested reader.

APPENDIX B. Tute PoiNncarg LEmMA, ITs CONVERSE,
AND THEIR GENERALIZATIONS

Let m, be an n-dimensional differentiable manifold with local coordinates
¢t (a = 1,2,..,n). By following Lovelock and Rund [7] again, we recall that a
generic p form on i,

AN = Ay (B ™ A e 1 dBY (8.1)

is termed exact when there exists a (p — 1) form Bir-1 whose exterior derivative
coincides with 4™, ie.,

__1yp~1 a8, ...
a9 = apo) = S0 sy Do g e d (B)

1

Form (B.1) is termed closed when its exterior derivative is identically null, i.e.,

w . (=1 certpyy OAnyeay it
R R it el A

By seees Opag = 1, 250, 00 (B.3)
The conventional Poincaré Lemma simply states the property pointed out in

Appendix A, according to which the second-order exterior derivative of a p form
with class %* (0, p) tensors is identically null; ie., '
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POINCARE LEMMA. Epery p form A,Il...%dq‘.»“l A - A dgte on an n-dimensiona!
dszerentiable manifold My, with local coordinates &% (@ == 1, 250 1) which is exact
and whose (0, p) tensor Anl...%(qb"') is of at least olass G in a region R,, of poinis ¢,
is closed I Mg - .

Alternatively, we can write
JAP = d{dB") = Q. (B.4)
The extension 0 & collection of p forms of the (i, p) type {see Appendix A), L.e.,
e = A () AT AR g, p=01L23 (B.5)

is then immediate. Indeed, we trivially have that, when the agssumptions of the
Poincaré Lemma are valid for each element of the collection A¥-?), g == 0,1,2,3,
then the collection 18 closed.

What 15 particularly significant for the problem of the integrability conditions
is the converse of the Poincaré Lemma rather than the lemma per se.

By also following Lovelock and Rund [7], let us review the conventional case ofa
manifold 71, with local coordinates ¢* A region Rp* 01 Ma is termed star-shaped
when, together with a given Open and connected set of points ¢, all points e =
Tt 0 £ T < 1, are also contained in R,*. Notice that this region contains the
(local) origin ¢* = 0.

We now assume that all considered p forms (B.1) are defined and of at least class
“lona star-shaped region R,*, and introduce the operations

pA® =3, (—17 Uj e 2 U8 6

1

% dp™ A A At A dgT n A ddr

_ 1 L p—k a aqr Op hU1 by i
a WUU dr 7 M a7 )] st et Tt “ ’(B 6a)

d(DA(iJ)) = ir (__l)r—l U: dr 7" aAal“a’:;L(Tq{)a) 1 oo

% d¢b d(#ul A A d¢ar—l A dti)ﬂf'ﬂ At A d¢“1>

+p U: dr T”—lAal...ap(ch)“)] d® a e A dd™, ' (B.6b)
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» sl 13
DA 5= = 3, (=1 || dr D799 ) g
L 0

ag?
K dpt A A A e A d A d A e A d™
1 a
+ [ iff‘_—a?&,@iﬁ)—] 8 AT A e A dd. (B.6¢)
[

Then, for any p form which is defined and of at least class %t in R* the following
jdentity holds:

o) (» vod
d(DA™Y = D(dA™) = U v o A yya (TN AP A o
9
= Aoy, dg™ A e A dp™, (B.7)
namely,
A = dDAP) - D(dA™). (B.8)

Suppose now that the 4'» form is closed i.e., d4 » = . Then identity (B.8)
reduces to

AW = d(DAW), . {B.9)
This established the existence of a { p — 1) form
Bir-D = DA, (B.10)

which we shall term the “primitive form™ of 4 and which is explicitly given by
Egs. (B.6a) whenever A is closed. This proves the

CONVERSE OF THE POINCARE LEMMA.  Every p form Ay ... (¢%) dg® A === A deps
on an n-dimensional differentiable manifold m, with local coordinates " {(a = 1,
2,..., 1) which is closed, defined, and of at least class € in a star-shaped region R,*
of points % is exact on R,¥.

On a comparative basis with respect to the Poincaré Lemma, notice the
appearance of a new condition, namely, that the p form must be defined on u
star-shaped region. This restricts the validity of the above Converse of the Poincaré
Lemma to only those tensors 4, ... for which the integrals of Eqs. (B.6) are weli
defined.

The integrability condition for the existence of the (p — 1) form (B.10) is that
(whenever A is defined and of at least class € in R,*) the form 4 is closed, i.e.,
that condition (B.3) holds, or, alternatively, that all the conditions

S it DAy ap
byrbipyy 395“Jr+1

= 0, by gy bz = 1,2, 1 (B.11)

are everywhere identically verified in R, *.
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It should be stressed that the ( p — 1) form (B.10), when it exists, is not unique.
And indeed the substitution

B@-1) —» B»-1 o= Bir-Y P el (B.12)

leaves rules (B.9) unchanged. This property is significant for the problem of the
structure of the Lagrangian density.

The extension of the Converse of the Poincaré Lemma io a collection of p forms
of type (B.5) is immediate. Indeed, when the conditions of the converse hold for all
elements of the collection A®?, p =0, 1, 2, 3, then the collection is exact. Notice
that in this case the integrability conditions (B.11) are replaced by

o %__ — 0. byoban= b2 b= 01,23 (B
‘We must now study the generalization of the above methodology t0 the case of
differentiable manifolds 7y, with local coordinates do(a=1,2 s A= 0,1, 3.
ndeed, as we shall see in the proof of Theorem 2.1, this generalization is essential
to study the integrability conditions of the “kinetic term” of the Lagrangian
which, as is well known, depend on the derivative terms ¢,% = $[8x".
Consider in this respect the ( p, p) form (see Appendix A)

A A‘;i:::(‘ﬁi) “"ﬁﬁi A A dq&ifp (B.14)

We shall again term this form exact when there exists a {p — 1) form whose
exterior derivative coincides with A7), 1.e.,
aB;l"'v"‘l‘

oo

— 1 ety -y
A(n,m) = dB(m—l.'n 1)} (p'!)z Zi;:,vilj:,), 34); 1 d‘ﬁzi A A (](}5[11’; (B.13)
v

Similarly, the (p, p) form (B.14) will be again termed closed when its exterior
derivative is identically mull, ie.,

1 Ppossip

o4
@ye e App1tin  Epsl ayeertia b Dprs o
[(p+ DIF Bbx"'b,,:iv;"vz; BepirtL d(’ﬁ“t h a fqu“n:t 0. (B.16)

Yy

dA(ﬂ’-ﬁ‘J) =

However, as pointed out in Appendix A, the second-order exterior derivative
of the ( p, p) forms is not necessarily null and, thus, the Conventional Poincaré
Lemma breaks down for the above defined differentiable manifold 714, -

And indeed we can state that every exact ( p, p) form (A.5) o1 Man whose (0, p;
p, 0) tensor A:;:::’;’; (¢,%) is of at least class @1 in a region Ry, of points ¢ is not
necessarily closed in Ran -
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We can, however, classify the exact { p, p) forms (B.14) as strictly exact and
weakly exact depending on whether the B?~1-7-1 form of Eq. (B.15) does or does
not possess an identically null second-order exterior derivative, ie.,

1 CTRRRLES LI R Sy S §

[(P + DIP (f)l)g 8bi-""’:J-i—l"l"""7'+1

A2 V1 Ve
Uz-Bui...a” : 4]

d(dBTY) =

L TTeet (21 bppr A Ve
X ad)a,ﬂq aqgﬂp dqsu,. A A dq"up“ <—t # 0, (817)
¥l T
namely,
sor-apsansip OBRIED =0,
by b vt Ve 3¢“p+1 @qsap = 7= 0’
VoL ¥n

Byvenbper = 1, 2 s Yy vpin = 0, 1,2, 3. (B.18)

We are now equipped to formulate the

GENERALIZED POINCARE LEMMA.  Every (p, p) form Ag'.o7($.%) d A -+ n deffir
on a 4n-dimensional differentiable manifold my, with local coordinates ¢.°
(@ =1, 2,0 =0,1,2,3), which is strictly exact and of at least class € in a

region Ry, of points ¢,%, is closed in Ry, .
Alternatively, we can write, undef the equality sign of relation (B.18),
dA® P = J(dB»-1.7-1) = (. (B.19)

We now explore the converse of the above generalized lemma.

Consider in this respect the (p, p) form (B.14). A region R,, on my, will be
termed star-shaped and denoted with R, when it contains, jointly with the set of
points ¢,%, all points ¢* =7¢.2% 0L r < L

We now restrict all considered ( p, p) forms to be defined and of (at least) class
%* in R}, and introduce the operation

» 1
(p.m) __ =1 guyeeris, o
D4 =Y, [ fe dr A ()]
& @ . e r Uy
X g dl A oA dﬁf’u,_: A d(’b“r:i A A d - (B.20)
Notice on a comparative basis with respect to the ordinary case, i.e., operation

(B.6a), the lack of the factor (—1)™* in the above expression. This is due to the
fact that, unlike the ordinary case, the displacements qu,‘j: and dcﬁﬂ; can be per-
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muted without changing the sign of the form. As a result, operation (B.20) can be
expressed in a form equivalent to that of the second term of Eq. (B.6a), i.e.,

i

DATT = Ul dr 77714 ”1"'"”(Tfi5a)] Farptar ey
[(P + 1)‘}2 0 "ty s byrerbyuystemy
¥ qujll Az A e A dgﬁi:;:. (B.21)

The above remark is significant because at the limit when the Greek indices are
ignored the primitive tensors of corresponding forms in m, and m,, can be made
to coincide up to numerical factors.

Another property which is shared by operations (B.6a) and (B.20) is that when
the given form A is null, so is DA™ This can be easily seen from Eq. (B.21),
which is null iff

Sy A e =0,
by b= 1, 2y By ey iy = 0, 1,2, 3 (B.22)

As we saw in Section 2, this is precisely the case for the equation in the “kinetic
term’” of the Lagrangian density.

We now compute the exterior derivative of operation (B.20) yielding, from
definition (A.26), the expression

6(}5“1:4—1

b1

» L P Ly ety @
d(DAPy =Y, [ J dr 77 M‘ﬁ_}

1 o )

X G'SZ:'; d‘ﬁﬁll AT A ds‘bﬂ:‘l A dPirt A A deplrit

fyil Hpgl

1
s [ jﬂ dr TmA‘;‘l...‘;:('rgbjD] dit n - A i

v w.
1 10--Vp [
= -—-L [J. dr PPN ek e a‘A‘ﬂi"'ﬂ.-(T(bu) ]
(p I);"‘ 0 by byt e aqs‘f'nﬂ
HFpd1
by ba o . Upsa
X R dE A A dep,r

1
[ e prraziznrD) dg e n ddne (82D
0 1 n 1 »

where we have used the properties

»
] e} el Mg P TR @) iy
_?;_r a’qS“2 A d’qS“l A At A At A e A dq’)ufp =p d(fn”l A A c."q’)“’p ,
(B.24a)

8 ppagy g DA (rl)  E(rdp) )
WAGI_..,,,,(TM— 5t g (B.24b)
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We now consider the D operation on a (p +- 1, p 4- 1) form, ie.,
P+

DB(m—i-l.m—l) = Z [J dr T’JB:::::“""']("'QS:]:)]

Gpp,

b ‘ﬁ, di? Ao A d‘#ar—i A dgirit A e nd Tyl

a1

— Zj::_,_ U; dr 71’85::::"”"‘(795:3]

Tpe1

(;15“' dqsrh A e A d‘#’i:: A dqf,";:i; A A cf(ﬁ]‘FTl

P+l
+U;&Tw$ﬁﬁ&ﬂﬂ¢myM%AmAdﬁ? (B.25)
By assuming B(PL.7tH = 40P e,
149 e o2,
Bt ww—af(gij , (B.26)

Hpi1

we finally reach the expression
(!(DA(”'F)) - D(dA(ﬁ,m))

¥ W,
1 1V g
e ".% [f dr FPSEL T TpEL e o4 ﬂ ( (ﬁu) ]
dg by B ¥ g aqS“pﬂ
Vs

X (;5: ciq’:fj' A e A deplre

Hapg1

-+ SJ; dr [p'r” IA”‘ “”(TQﬁD + T —m*““"-——"“"é 3 ( ¢ n""l]

{ Bz fpr

Hpg1
X dq’)ﬁi At A a’qS:l;; {B.27)

We now assume that the form A™™ is closed in R}, , ie., dA®® =0, or,
explicitly,
Vi ¥y
aAul -qF

R TS [
L S e o !
ol
By ey Bpgy =1, 2,..., 17, B e Mppy = 0, 1,2, 3, (B.28)

Then expression (B.27) reduces to
cwW%—”h—”ﬂ%wﬂmeAMﬁ

= AT g A e dl (B.29)
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As a result, under the above assumptions there exists a primitive form

Bir-1.p- ~U = DAP.» {830)
such that
Alomt = gRir=1.9-1) (B.31)

and, thus, the form A4%# is exact.

We have therefore proved the

CONVERSE OF THE GENERALIZED POINCARE LEMMA. Every (p, p) form A7
(b.) dpir A -+ A dyiz on a dn-dimensional differentiable manifold my, with [ocal
coordmates gbu {a = I, 2, =0, 1, 2,3} which is closed, defined, and of at
least class € in a star -éhaped region RY, of points $,% is exact on Ry, .

Let us stress for the sake of clarity that the conditions for the existence of form
(B.30) are:

(1) The 4 forms are defined on a star-shaped region R, . In particular,
the integral appearing in Eq. (B.20) must be well defined.

i Er

(2) The A" forms, or more specifically, their coefficients A, b " must be

of at least class %' on RY,,

(3) The 4 forms must satisfy the closure condition, namely, the integra-
bility conditions (B.28) must be everywhere identically satisfied in R}, .

A comparison between the Generalized Poincaré Lemma and its Converse is
significant. The former demands that the forms be strictly exact to be closed, while
for the latter, when the forms are closed, they are exact irrespective of whether they
are strictly or weakly exact.

The Converse of the Poincaré Lemma and its generalization, as indicated
earlier, will be crucial for the proof of Theorem 2.1. In essence, this methodology
provides the necessary and sufficient conditions for the existence of primitive
forms. In practical applications these conditions are the integrability conditions for
generally overdetermined systems of partial differential equations. And indeed, as
we saw in Sections 2 and 3, this is exactly the case for the problem of the existence
of a Lagrangian density in Field Theory.

There is, however, another aspect which is significant for pmcttcal applications.
The methodology of this Appendix provides not only the integrability conditions,
but also an explicit solution of the underlying system of partial differential
equations.

Indeed, given a p form (B.1) satisfying the integrability conditions (B.11), the
rule {B.10) provides a solution for the primitive (p — 1) form. Similarly, given a
(p, p) form (B.14) satisfying the integrability conditions (B.28), the rule (B.31)
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provides a solution for the primitive (p —1,p — 1) form. The reader should keep
in mind that such solutions are, of course, of a local nature.

As we shall see, this methodology is significant for the problem of identifying
a Lagrangian density, when it exists, from a given system of field equations.

APPENDIX C: Tre CONDITIONS OF SELF-ADJOINTNESS WITHIN THE FRAMEWORK
OF THE CALCULUS OF DIFFERENTIAL Forms N Minkowsky Seace

In this Appendix we shall reformulate the conditions of self-adjointness for
quasi-linear systems, i.e., Egs. (1.5), in a form which is more suitable for the proof
of Theorem 2,1, namely, a form which more directly expresses their significance as
the integrability conditions for the existence of a Lagrangian density.

An ordered direct analytic representation of quasi-linear systems

a“g) a"(f o ysia )ty o —
":/rl! _aﬂga_l':l_ - -_Ham?’STl - A(llazqs Hytey Ml“ 'B(-ll - O’ al - L 2’"', n (C.])

demands the validity of the separate identities

QUi [ Ttal e Lyt g ;
(J % a:!) ¢ Myt T (A(ziua) (ﬁ RT (C.zd)
(0?;::1:“2) 9502:“ F "(f:ﬁz:ﬂ - g;ﬂz == qu 3 (C2b)
Y . 5.7 : 8.9
L7 L e U o
j“ T fxm 4 wy = an“I » B aqsa;u 2 etc. (CZC)

Let K(x,, ¢%, &%) be a particular solution of Egs. (C.2a). Then conditions of
self-adjointness (1.5a) imply that identifications (C.2a) can be written

IC G KT Ko e sy — Ariee - (C.3)
This is an indication that the (1, 1) form
AGD = g g de: (C.4)

is identically null. Indeed, from conditions (1.52) we have (see also Appendix A)

8‘11‘1':#11*2A Ve —  fHase A‘;z:l — A:“;"" -+ Atgugl — 0’
1% 171 2 by

byl vy uy )i, byb,

bioby=1,2cn  py, =012 3 (C.5)
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We consider now the exterior derivative of the (1, I) form (C.4), Le.,

(L1 __ iy 2 :
dA™Y = AN Y dut n dbi2 A s

a1 (12 Ay iy g
. 1y Qaligliiinlia 4 V1 ¥ ¥ b by | By .
= (1/36) Spgzsistodit e de A d: - d (C.6a)
R g v L
A = ZRWEL A (C.6b)

Conditions of self-adjointness (1.5a) and (1.5b) imply that the above exterior
derivative is also identically null, i.e.,

AR B A
1 2 3 i Ya

Yy

Fytatgtiyizity 4 VIV VS e 29 o (] L] 2 g vrhai e
Sblbab“"L"zvuA“L“E ay 8“1 Sba 8!’:1 @ 8"1 8"2 8”:; A“l“::,”:z =0,
&3 §¥a S0 Srs f4s §Hs

by by Thy ST T

bi 2 bﬂ H b!} = 1’ 2:"') n, 1 s fh2 s g == Os 17 2: 3. (c'7)
The next step is to consider the exterior derivative of dA%, Le., .

AP == A i n e A A
1

Gythy dy ¢y

1 Qyree(iqidy=* a4 V1¥piV3i W - i,
= TR Do b et 00 4 dur n o dgy o (C)
which, as stressed in Appendix A and B, is not necessarily nuil.
As the reader can verify with tedious but straightforward calculations, the
conditions of self-adjointness (1.5a), (1.5b), and (1.5¢) imply that exterior derivative
(C.7) is also identically null, i.e.,

8“1""’4“;“'“4A viveiveita o )
=M,
bysseByuge T G @y Oy

by by =1, 2500010, g peees fa = 05 1, 2, 3. (C.9)

Within the context of the calculus of differential forms on Minkowski space we

shall consider Eas. (C.5), (C.7), and (C.9), rather than Edgs. (1.5a), (1.5b), and
(1.5¢c), as the conditions of self-adjointness on the terms A -

Let K be a particular solution of Egs. (C.3). Then the general solution, from a
property of type {B.12), can be written

Ly, b ) = K(xus % ") - Dol $% %y -+ Clxs ¢, (C.10)

where the densities Dg! and C are, at this point, unknown.
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By substituting into Egs. (C.2b) we have
(Dzl:a.g — D::g;(i'l) ?Saw:u. + (D;‘;:u - C:(LI)
= By, A Koy — K — (K5, ¢, (C.11)

where we have written all terms involving the density X in the rhs because they are
assumed, at this point, to be known from the solution of Egs. (C.3).

By writing Eqs. (C.11) in the @, and ay indices, by differentiating with respect to
¢, and ¢, respectively, and by adding and subtracting we reach the expressions

) 32% A (C.124)

.B siby e B HI3} —_ 2 au” + ¢ﬂ;|:,

{ll a:! ﬂe u]_
£} oo 1 H HA P o [
Dul as ~ Da: 0y =% E(Bal wy T Bﬂg "1) + (K (tlltlg - K’ug u{) 96 )'u
)
- Zulr@ L] (CIZb)

where we have used identifications (C.3).

Equations (C.12a) coincide with conditions of self-adjointness (I .5d). Equations
(C.12b) constitute, in addition to Egs. (C.3), a second independent set of conditions
for the existence of Lagrangian (C.9). It should be indicated that Egs. (C.12b) can
also be more directly reached by differentiating Eqs. (C.11) with respect to ¢, and
by using conditions (1.5d). Notice that system (C.12b) in the unknowns D, is, in
general, overdetermined,

We consider now the (g, 2) form (see Appendix A)

Z(u.z) o Z::lﬂ'-t_: ([¢f=1 A (,'95":_ (C]3)

The closure condition (see Appendix B) reads

LW = 2 Bt < g A dgh p dgs, (C.14)

1
?f bbby~ a, ay
and it holds identically iff

OteniZaa's =0 by, by, by = 1,2, (C.15)

CLAARC N

But the term z;laﬂ is totally antisymmetric in the indices a, and a, . Therefore,
Eqgs. (C.15) reduce to

Z;‘lbﬂ:bs + Zz‘abx;bz + Z?‘:eba:h =0,
buybe,by=1,2m p=0,1,2 3 (C.16)
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By substituting the value of zj , f{rom Egs. (C.12b) we reach the conditions on
the B terms

12[(»8(:2:, - (I,d (i'o) fty + (Bna a a,_ u:,) o + (Bal [ aq u,_) (13} 0 (C]7)

(where we have used the continuity properties of the K density) which must be
identically satisfied for the (u, 2) form (C.13) to be closed. Notice that the above
conditions can be equivalently written
8‘;1‘;“33)3& ;an'a1 = {. {C.18)
Consider in this respect the conditions of self-adjointness (1.5e) for the pairs
of indices (ay , as), (@y , as), and (g, , @;). By differentiating with respect to gb“l;ul .
¢, , and ¢, , respectively, and by adding up, we reach the expression
a)ta H — 1 H 3 0y il voin "
Sbt(!j izBal g :3 - § g, + Sba v 3960’ Sblb b:Bal @y 4y (C19)
Now, the above equations can be written, from the antisymmetry in the (v, )
indices, '

Snluw"B

bbby ala “3

s
3|+ 8% 84;“
1 H B N
6 av + ‘f’ " 6(#)“; [(’Bﬂ:'_'!fg’(f:; - Ba ”1 (fg (Bn«IL ua (h - —Brr:,'rzl'a._,

F¥
+ (Bun 1y ”1 - Ban [ 58 u; (Bul Tn a:, - Bﬂl‘ﬂg iy

i (Brta 111 u - Bul 03 uq (Ba:, ma u,_ " -Bn.;ll:s;ﬁl } ‘ (CZO)

But, after the proper use of conditions (1.5d), we obtain

¢
ytlally H o a o - a B i
ablbah-:Bu a, my == 2 Saﬁ + 6% aqsua [A”1“ o Aﬂath gy -+ Aﬂf'.:ﬂ:s [
JYa: I uio o B .
- Aala,. an - Aﬂnﬂl G‘l Aﬂ-g‘tfl..i ﬂ.l] - O] (C'zi)

where the term within brackets on the rhs is null from conditions (1.5b). Thus, the
closure (C.18), under the condition of self-adjointness, identically holds.

We now substitute Eqs. (C.12b) into (C.11) by obtaining in this way the equations
in the € density

Kin'

fy i

C:al - -DrL:l;u - B-’:!1 - ]<;u,_

+ [K;::fz;ﬂl + 'é(Bﬂ;ﬂz . B”a;xj ] qbﬂ-_w_:u > (C22)

where the solutions D,.* of Egs. (C.12b) are at this point assumed to be known.
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This allows us to define the ordinary 1 form
CW == 3, e, (C.23)
whose closure conditions simply read
BZiZE‘C sy = C "1 o= Oy, =0, by, by =1,2,..,n. (C.24)
By using Egs. (C.22) and (C.12b) the above conditions become
3’5"5" ey = (Buyuy — Bule) b 2B, — Buh )

':— "}(Bu.]:(rg:za - Brt;;:a;::l - Buﬂ:ul;zﬂ ""‘:L" Brzd:rzl an) ()6“5 (CQ'S)

and, from conditions (1.5e), can be written

“’1“ By baby Ty @y “:1

Bulmc = 11;_(8"1“ “ap ) ¢bﬂ (626)

and thus, it identically holds from Eqgs. (C.18).
Notice that the closure conditions for Eqgs. (C.12b) and (C.22) are equivalent.
Finally, for consistency, the rhs of Eqs. (C.12b) and (C.22) must be independent
of the derivative terms. By differentiating these equations with respect to ¢, we
reach the respective conditions

(‘Bal gy '-'.l - tzn (r, u ;) + Z(A i rr:,:rll A‘r‘:lc:‘-,;(zi) = 05 {C 27)
[(Bﬂl:'(j;:s - a:, no ﬂ:]_) + Z(Aﬂnﬂn;ﬂ'l Azl::g;ua)} 95":’:;. = 0:

which are clearly equivalent and which must hold in view of the conditions of self-
adjointness (!.5).
Consider in this respect identity (C.21), i.e.,

HUREY HIRS v T I N
B"‘l ug'uu "ET" Buﬂ a) aa T Ba., .:13 “'1 - Bu2 ay g T Brra e 8y T Bal rr;, ay 0. {C28)

Then, by using the relations originating from conditions (1.5d),

8
3 "q&u

wa v LU 5w “ow
X (Arzlu.g ay T An.am. f.!l) -+ Z(A(l-l(12 wy Aa:.,a;; u.j):

e HIaray LH
Bal (ta‘ﬂ‘;, - Baa Gl’ﬂn I a + 95

i (C.29)
'B"E:::l:‘liil = B";ﬁa;:a -§- - z ﬂ + q{)” & 8¢az

¥k e J v 1 uov woe
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and by permuting the indices we can write

€y (ladl, H 2 — v HE LV @l
B ﬂBcrl o g = 3(Ba3 ay ta Bal 'c?a ug) -+ 2 8:: -+ ‘]S & —E&FS

bbby
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@yt o tata 0 agitg @y 1 oty
1He 3 g¥a 01 gtz thy offL 93

= 3B h, — Baybie) T 2o sy — Al )]

d
@l [T LR @ v oiu
+ 2 au: + ‘# « 896“ [ T g + @1a (i3 + tytia dy

[ LRI — [
3@y Gy fatts 2y Ualts @y,

== 3[(-8“3”;1::{2 - Btll;i:u:;g) + 2( ‘;152."3 - ﬁf.z;n:fh)] = 0’ (CBO)

where we have used conditions (1.5a), (1.5b), and (C.21). Thus, consistency
conditions (C.27) identically hold under the assumption of self-adjointness.
We reach in this way the following set of independent integrability conditions for
the existence of a Lagrangian:
Stlaftamaits g Vive 05

bylavyvy 0 0y

§erdatatbials 4 viveity - ()
[N v, *
1Dalyyy v vy Ty Oy

Sﬂxf'uﬂaaauluzﬂaﬂdA LSRE TR T Qe 0: (C31)

D Uabyby vy v vy TRy Gy Oy

Sutztag ;o .= Q)
by ByBy ety ay oy .

HIS HER mop wows —
’BGI‘EE ay T Bﬂg'(ll [ + 2(A oty 2y | ety ﬂo) - Oa

which identically hold whenever all conditions of self-adjointness (1.5) are satisfied.
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