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Abstract. We first outline the nonlinear-nonlocal-noncanonical ,axiom-preserving
isotopies of: fields, metric and Hilbert spaces, transformation theory, Lie’s theory
and quantum mechanics. We then apply these novel techniques to the construction
of the isotopies of the Poincaré symmetry P{3.1)=50(3.1)xT(3.1} as well as of
its spinorial covering P{3.1)=SL{2.C}xT(3.1). We finally point out a mumber of
preliminary, yet intriguing applications and experimental verifications in nuclear
physics, particle physics, superconductivity and other fields.

1. Statement of the problem

As is well known, the fundamental symmetries of contemporary theoretical physics, the
Lorentz symmetry [1] O(3.1), the Poincaré symmetry [2] P(3.1) = SO(3.1} x T(3.1)
and the spinorial covering [3] P(3.1) = SL(2.C) x T(3.1), are linear, local and cano-
nical.

According to impressive experimental evidence, these symmetries have resulted
to be esactly verified under well known physical conditions which can be identified,
classically and guantum mechanically, with those of the ezierior dynamical problem,
i.e., point-like particles moving in the homogeneous and isotropic vacuum under action-
at-a-distance interactions. In fact, the point-like character of the particles ensures
the exact validity of the underlying local-differential geometry, while their potential
character ensures the exact applicability of Lie’s theory in canonical realization.

The physical conditions studied in this paper are those of the more general inte-
rior dynamical problem, which consists of extended, and therefore deformable particles
while moving within inhomogeneous and anisotropic physical media, thus resulting in
the most general known systems which are: nonlinear, in the coordinates z and in
their derivatives z,&,... as well as in the wavefunctions ¥ and in their derivatives
Oy, 08¢, . .. ; nonlocal, in the sense of having a generally integral dependence on all
of the preceding quantities; and noncanenicel, i.e., violating the integrability condi-
tions for the existence of a Lagrangian or a Hamiltonian, the conditions of variaiionael
selfadjointness [4].

The distinction between exterior and interior problems was identified by the
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founders of analytic mechanics, such as Lagrange, Hamilton and Jacobi (see, e.g., [4],
and kept up to the early part of this century (one may inspect the care with which
Schwartzschild {5] presented his metrics in two separate papers, one for the exterior
and one for the interior problem), although the distinction was abandoned in more
recent times.

In this paper we shall return to the teaching of the founders of analytic mechanics,
because recent studies have proved the impossibility of reducing interior systems to the
exterior form. This is due to the so-called No-reduction theorems [4], which essentially
state that an interior system such as a satellite during re-entry with monotonically
decaying angular momentum, simply cannot be decomposed into a finite collection of
elementary constituents each of which has conserved angular momentum. Vice versa,
the latter cannot possibly reproduce the former.

It is evident that the linear-local-canonical Poincaré symmetry is inapplicable
(and not ‘violated’) for nonlinear-nonlocal-noncanonical interior systems on a number
of independent counts of topologic, geometric, algebraic and analytic nature. The ob-
Jective of this paper is therefore to identify the generalization of the Poineard symmetry
P(3.1) and of its spinorial form P(3.1) verifying the following conditions:

(A) The generalized transformations are structurally nonlineal, nonlocal and
noncanonical so as to be directly applicable to the invariance of the systems considered.

(B) The generalized symmetry is locally isomorphic to the conventional sym-
metry, so as to preserve the structural axioms of contemporary physics.

(C) The generalized symmetry admits the conventional Poincaré symmetry as a
particular case, so that the former can qualify as a mathematical and physical covering
of the latter.

We should therefore indicate from the outset that, by no means, we want to
‘abandon’ the structural axioms of the Poincaré symmetry, because our objective is
merely that of realizing them in their most general possible form.

We should also indicate that this presentation is merely preliminary and still far
from the needed mathematical and physical maturity, because the studies are just at
the beginning and so much remains to be done, mathematically and physically.

We would like finally indicate that the line of inquiry of this paper is definitely
not new, having been initiated by numerous physicists, most notably, by Blochintsev
(see, e.g., [6]) and his group at the JINR in Dubna, Russia. More recently, another
line of inquiry has been initiated via the so-called g-deformations and quantum groups
by numerous authors (see, e.g., {7]). We apologize for our inability to review other
generalizations for brevity.

A mnovelty of our studies rests in the presentation of the structural axioms of the
Poincaré symmetry, thus permitting a number of developments, such as a causal des-
cription of nonlocal interactions. In fact, the Poincaré axiomatic structure is generally
lost in the g¢-deformations and other approaches. However, as shown by Lopez [8], the
g-deformations are particular cases of the techniques used in this paper. Thus, maost
(but not all) of the existing studies on the g-deformation of the Poincard symmetry
can be reformulated in our axiom-preserving form.

2. Isotopies and isodualities of contemporary mathematical structures

The methods which permit the achievement of the objectives identified in the preceding
section were introduced by this author [9] back in 1978 {when at the Department of
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Mathematics of Harvard University with support from the US Department of Energy),
under the name of isolopies, from the Greek ‘lFOO0" TOTOO’ , Tneaning ‘same
configuration’ and interpreted as ‘axiom-preserving’.

The fundamental isotopy from which the entire content of this paper can be de-
rived, is the lifting of the n-dimensional unit [ = diag.(1,1,...,1) of Lie’s theory into
an n-dimensional matrix J whose elements have the most general known dependence
indicated in section 1,

I =diag.(1,1,...,1} —
P=It2,5,89,91, 09,001, 009,004t .. )
under the condition (necessary for an isotopy) of preserving the original axioms of I,
i.e., nonsingularity, Hermiticity and positive-definiteness.
The isotopies of the unit demand, for consistency, a corresponding, compatible

lifting of all associative products AB among generic quantities A, B, into the iso-
product

2.1)

AB = A +B=ATB T —fixed and inv.
TA=Al=A - I+sA=AxT=4A
whose isotopic character is ensured by the preservation of associativity, A(BC) =
(AB)C — Ax (B *C) = (A% B)*C. Under the above conditions, [ is called the
tsounit and T the isotopic elemeni.

One should recall the necessily, e.g., in number theory, of changing the multipli-
cation whenever the unit is changed and vice versa. Note also that in ¢-deformations
of associative algebras, AB — ¢AB , the multiplication is changed, but the conven-
tional unit of Lie’s theory is preserved. The reformulation of these ¢-deformations
in terms of the isotopies, gAB = A% B, I = ¢~!, permits their generalization and
axiomatization into the most general possible integro-differential operator 7' (which,
for this reason is sometimes denoted Q) [8].

The isotopies of the unit I = [ and of the product AB = A % B are mathe-
matically and physically nontrivial, inasmuch as they imply the necessary lifting of all
mathematical structures of contemporary physics into an isotopic form admitting of
I as the left and right unit (see, e.g., [10-15, 18-41]. For brevity, we can here only
touch the most salient aspects.

To begin our outline, the conventional fields F(a,+,x)} of real numbers R,
complex number €', and quaternions @ with elements a, conventional sum + and
product a x b:= ab, must be lifted into the so-called isofields

Fla,+,%) — F(&,+,*) d=al

a*b=alb=(ab)l I[=T7"1
with elements & called isonumbers, conventional sum + and isoproduct (2.2), under
the condition (aga.in necessary for an isotopy) of preserving the original axioms of F.
All operatlons in F must then be generalized for F. We then have, e.g., isosquares
a® = axa = ATa = a®F , isoquotient &/b = (a/b)] | isosquare roots al/z = al/?] | ete.
Note that a* A =aA (see the recent studies [10] for details).

One can begin to understand the inapplicability of conventional mathematical

thinking for isotopic formulations by noting that statements such as ‘“two multiplied
by two equals four’ are generally incorrect under isotopies. In fact, for [ = 3, “two

multiplied by two equals twelve’, with the understanding that the very notion of integer
number is lost in favour of an integro-differential generalization, e.g.,

(2.2)

(2.3)
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3 =2exp {N/d:c 1,b’f(:c)d)(:c)}.

Liftings /= I, AB=> A+ B and F = F then require the isotopies of carrier
spaces, evidently because they centrally depend on the field in which they are defined.
For example, a real metric/pseudo-metric space S(z,g, R) must be subjected to the
liftings into the so-called isospaces (first introduced in [11] as the foundations of the
isolorentz symmetry)

S(ﬂ;’,g,R) = S(lf,ﬁ,R) §=Tg (24)
I=11 2 = (elgr)f € R )
under the condition, again, of preserving the original axioms of S{z, ¢, R), with similar
isotopies for complex spaces. In particular, the basis of ¢ meiric {or, more generally,
vector) space is preserved under isotopies, thus including the preservation of the basis
of a Lie algebra. This results in nonlinear (in z,%,...), nonlocal and noncanonical
generalizations of the Euclidean, symplectic and Riemannian geometries called iso-
geometries [12, 13], with intriguing novel possibilities.

Another understanding of the inapplicability of conventional mathematical think-
ing for isotopic formulation can be reached by noting that all familiar notions (such
as that of angles) are inapplicable in isospaces, trivially, because they are spaces with
the most general known curvature, that depending also on the velocities and accele-
rations, thus implying the loss of straight intersecting lines. A novel aspect of the
isogeometries is that they are isotopic, that is, they preserve the original geometric
axioms, thus permitting the recovering of the original notions, although in a genera-
lized form (12, 13].

These features have permitted the identification of a new branch of functional
analysis called functional isoanalysis [14] which begins with a classification of the
isounits into five, topologically different classes with corresponding classification of s,
isospaces, etc herein adopted. In this paper we shall mainly use class I (for isounits
which are smooth, bounded, nowhere singular, Hermitean and positive-definite), and
class II (the same except that the isounits are negative-definite), with only marginal
comments on the remaining classes for brevity.

The next necessary lifting is that of the conventional linear transformationsin 5,
into the so-called isotransformations in § [9]

' =Uw)r weF — o = U(w) xz = U(w)T2

. 2.
T = fixed W e F ( 5)

which are isolinear in § , i.e., verify the conventional axioms of linearity merely expres-
sed in the appropriate isotopic form

Us(asrd+a’sr)y=asx@sr)+a'«U*r) #,n ek (2.6a)
Y )T AV 2.6b)
Usx(U'sr)=(UsUY*r (

However, the same transforms are highly nonlinear when projected in the original

space §,l.e., ' = fi(w)T:n = /i(w)T(a:, &, 2,1, 1,1)T, ...)z . Note that nonlinear trans-

formations can always be cast into an identical isolinear form. We learn in this way

that isetopic methods ean turn notoriously difficull nonlinear problems into identical
more manageable tsolinear forms.
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A similar occurrence holds for locality, because isotransforms 2’ = U() %z are
isolocal, i.e., verify the condition of locality in §, but the same transforms are gene-
rally nonlocal-integral when projected in the criginal space 5. Yet a similar oceurrence
holds for canonicity. In fact, the theories herein considered are called isocanonical in
the sense that they are derivable from conventional variational principles formulated
in &, although the same theories are not derivable from a first-order variational prin-
ciple in 5. The objectives of this paper (section 1) can now be formulated by saying
that we shall seek isolinear, isolocal and isocanonical realizations of the Lorentz and
Poincaré symmetries.

The preceding liftings demand a corresponding compatible lifting of all branches
of Lie’s theory [16, 17]). In fact, the universal enveloping associative algebra £(g) of a
Lie algebra g [17] with generic preduct AB , must be lifted into the isotopes £(g) with
isounit [ =T-! and isoproduct (2.2), first introduced in [9] jointly with the isotopy
of the Poincare-Birkhoff-Witt theorem. These studies permitted the identification of
the infinite-dimensional isebasis of € in terms of the original (ordered) basis X of g
and the isoezponentiation (see {18] for nonassociative envelopes)

€: I XixX; (i5))

2.7a
XivX; Xy (127%k),...4,5k=1,2,...,n (2.72)

eATRX  F oy ({+X)/ N+ (1 X)*((d*X)/24---
3
— {8iXTw}f=f{einX}- (27b)

One can therefore see that all notions based on the conventional exponentiation need
a suitable isotopic generalization. For instance, the Dirac é-function must be lifted
into the expression called isoDirac funciion [15, 19, 20]

+oo +co
§(z) = (1/2r) j dyTeg™ = (1/27) f dy 7y (2.8)
-0 -0
the conventional Fourier transform must be lifted into the 1so Fourier transform [15, 20]

+0o0
f=z)= (]/2w)j dkg(k)*eéikz
e (2.9)
g(k) = (1/27) f dz f(=z) * ef_ikx

with consequential loss of the notion of Gaussian into the form (here re-expressed in
terms of the conventional exponentiation for clarity) [15, 20}

Plo) = Ne== 7127 (k)= N'e ' Te/2, (2.10)

The nontriviality of functional iscanalysis can then be easily seen by noting that
the above isoGaussians imply the following predictable generalization of Heisenberg’s
uncertainties: AzAk ~ a”le = 1 — a~'7~1/2T-1/2 = | evidently for particles in
interior conditions (see also next section). The need for the isotopies of all remaining
special functions transforms and distribution follows.
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The preceding liftings evidently require that of Lie algebra [16, 17] ¢ = [£(g)]™
with familiar Lie theorems, e.g., [Xi, Xjle = XoX; — X; X = C,-ijk , into the Lie-

isotopic algebras § = [€(g)]™ # g first submitted in [9] with the Lie-isotopic theo-
rems, e.g.,

g [X,-,Xj}é:X,v*Xj —*Xj*X;:X{TXj —XJ'TX,‘

= Ci*(t, 2,2, 5,9, 91, .. )+ X (2.11)
where the Cs are called structure functions, and are restricted by the Lie-isotopic
third theorem [9]. Note the presentation of the Lie algebra axioms by the isotopic
product [4B];.

The preceding isotopies then yield the (connected} Lie-isotopic transformation
groups [9]

DO =1 U@@)+0(@)=0)s0)= 0+

U() % U(—d) = T (2.12a)

é . :c' = ff E

0(11)) = Hef_itﬁk*Xk — I"{H eiwkTXk} - {H EiX"Tw"} f (212b)
% k .

{1} # {ef %7} = % 120

Kz=X1+Xo+ [Xl,Xz]g-l- (X1 +X2)",[X1,X2]g]g/12+ e

where one should note the appearance of the isotopic element T directly in the iso-
exponent, thus ensuring the desired nonlinear, nonlocal and noncanonical character.
The above isogroups are turned into isesymmetries via the following

Theorem [21]. Let G be an N-dimensional Lie group of isometries of an
m-dimensional, metric or pseudo-metric, and real or complex space S(z, g, F) over a

field F(= R or C),
G: z' = Alw)z
(' -~ y) algAt —y) = - v)lo(z —v) (2.13)
Afga = Agal = 4.

Then, the infinitely possible isotopes & of G of class III characterized by the same
generators and parameters of G and new isounits [ (isotopic elements T'), leave
invariant the isocomposition on the isospaces S(z,§,F), §=Tg, | =T"1,

G: 2= fi(w) * T
(@ =)+ Alghd (@' —v) = (e — )iz — ) (2.14)

This yields the ‘direct universality’ of the Lie-isotopic symrmetries, i.e., their
capability of providing the invariance of all infinitely possible deformations § = Tg
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of the original metric g (universality), directly in the frame of the experimenter
(direct universality). Note also the simplicity of the explicit construction of the desired
isosymmetries via rule (2.12b) where w and X are those of G and T is derived from
the deformed metric § =Ty .

It is easy to prove that G =~ G for all class isotopies (f > 0). This property
identifies one of the primary applications of isosymmetries, the reconstruction of exact
symmetries when believed to be conventional broken. In fact, we have: the reconstrue-
tion of the exact rotational symmetry at the isotopic level O(3) & O(3) for all ellip-
soidical deformations of the sphere [21]; the reconstruction of the exact Lorentz and
Poincaré symmetries at the isotopic level P(3.1) = P(3.1) for all signature preserving
(T"> 0) deformations of the Minkowski metric §) = T [11]; the reconstruction of the
exact isospin symmetry at the isotopic level SU(2) =~ SU(2) under weak and ELM
interactions; while other cases are under study (e.g., the possible reconstruction of the
ezact parity for weak interactions at the isotopic level).

Despite the isomorphism & = G, Lie and Lie-isotopic symmetries are inequivalent
on numerous counts, such as:

1)y G is customarily linear-local-canonical, while G is nonlinear-nonlocal-
noncanonical;

(2) the mathematical structures underlying G and G (fields, spaces, etc) are
structurally different;

(3) G can be derived from G via nonunitary transformations under which

vt =i#1  U@MB-BAU = #TR — B'TA
r=wuh-t=7t w-=-vavt pm=uvsUl

Visible differences also emerge in the isorepresentation theory [22, 23], e.g., be-
cause weights, Cartan tensors, etc acquire a nonlinear-nonlocal-noncanonical depen-
dence on the base manifold. The irreducible isorepresentations of Lie-isotopic alge-
bras § have been preliminarily classified into [22]: (1) regular isorepresentations,
when the structure constants of g and § coincide, in which case the eigenvalues of g
and g differ by suitable multiplicative functions on the base manifolds; (2) irregular
tsorepresentations, when the original structure constant of g are turned into structure
functions, in which case at least one of the eigenvalues of § and ¢ is not related by
a multiplicative factor; and (3) standard isorepresentations, when both the structure
constants and eigenvalues § coincide with those of g, even though T is a nontrivial
i1sotopic element.

In closing this section we should also recall that isotopies introduce rather natu-
rally the antihomomorphic conjugation called isoduality first identified in [21] I

(2.15)

4= _f AxB — Ax¥ B = ~Ax B, with consequential isoduality of all the
preceding structures. In fact, isoreals R are mapped into the isodual isoreals [10]
RA(A4,+,+%), Ad=nldf = —h, +? = xT9x = —«, with rather intriguing properties,
such as negative-definite norm |n | =-la|<0, A # 0. The isocomplex C(é, +,#)

a,re mapped into the isodual isocomplez fields Cd(c *,d) with conjugation & -
= —if. S1m11arly, 1sospaces Sz, §,R) are mapped into the isodual isospaces

[12 18] 8%(=, 3%, R%) : ¢ = —§, which evolve backward in time, have negative-definite
physical quantities such as energy, etc. Yet the isodual separation z2¢ coincides with
the isoseparation z?, 224 = (2*§92)fd = = (z*§z)] , thus permitting an intriguing

novel interpretation of antiparticles from their known origin in the negative-energy
solutions of conventional relativistic equations [24].
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Similarly, Lie-isotopic algebras § and groups G admit the isodual algebras §°
and groups [12,13] G¢ on $%(=z, 3, R%) over F'% in which the generators, the para-
meters and the isotopic element change sign

g X% XY = —XATIXY - X4TXY,
= G4k (¢, o, 2, 5,9, 9. yTIX9, (2.162)
G o =UYD)T

ﬁd('lb) - H Bédid;ﬁdgdxdk — {HeikaﬂJk} fd (2.16}))

k k

thus leading to a new universal invariance law under sodality [13). Similar isodualities
occur for the isoDirac function, the isoFourier transform, etc. See monograph [25] for
a detailed study.

3. Isotopies and isodualities of guantum mechanics

The isotopic methods were proposed by this author for the specific purpose of con-
structing the isotopies of quantum mechanics (QM), originally submitted under the
name of hadronic mechanics (HM) [26] also called isofopic completion of quanium
mechanics [27).

The original proposal was studied by numerous authors in the ensuing years. A
detailed presentation of the state of the art in the construction of this new discipline
is available in monographs [28], with the understanding that these too are at the
beginning and so much remains to be done. Here, we can evidently touch only some
of the most essential aspects.

The objective is to construct a covering discipline capable of quantitative stu-
dies suttable for experimental verifications of the old legacy that particle interactions
have a nonlinear-nonlocal-noncanonical component due to mutual overlapping of their
wavepackets-wavelengths—charge distributions. Along conditions (4), (B), (C) of sec-
tion 1, the covering discipline is constructed in such a way as to permit a direct
representation of interior conditions in a way preserving the abstract axioms of QM
for exterior conditions, as well as admitting the latter as a particular case.

By recalling that Lie’s theory in operator realization characterizes the structure of
QM, one can easily see that the Lie-isotopic theory in operator realization characterizes
the structure of HM. In fact, the essential structural elements of HM can already be
seen in the preceding section, e.g., in the isoDirac delta (2.8) because the original
singularity at £ = 0 can be spread over the region of space occupied by the particle.
In turn, we should expect the capability of HM to remove the divergencies of QM for
suitable values of the isotopic element | T [« 1 [15, 28].

In order to achieve an operator realization of the Lie-isotopic theory, the funda-
mental isotopy of HM is that of the underlying space, the Hilbert space H with inner
product < ¢ | ¢ >€ C, into the so-called isoHilbert space H with isoinner product
and isonormalization first introduced in [19]

H: <Pld>=<¢|T|éd>Iel

e . . . (3.1)
<y >=1 for < |+]¥>=1).
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Note that the isoinner product remains inner for isotopies of class I (i.e., H is still
Hilbert) because of the positive-definiteness of T'. For future needs to understand
the isotopic realization of ‘hidden variables’, note that % and H coincide at the
abstract level and that, for T' independent of the integration variables (or a constant),
<Pl >=<Y|¢>TI=<y|¢>. i

An important implication of the isotopy % — H is that operators X on the
enveloping algebra £ over F(= R,C) which are Hermitean in H, remain Her-
mitean in H when reinterpreted on the isoenvelope £ over £ [29, 30]. This yields
the important property that relativistic QM observebles remain observable for HM,
thus including the observability of all conventional quantities, such as energy, linear
momentum, angular momentum, spin parity, etc.

The liftings of the Hilbert space require corresponding isotopies of all conventional
operations [15, 29, 30]. We here mention the isounttary fransformations

o0t =it et=1 (3.2)

which can turn conventionally nonunitary transformations (2.15) indo a form ariomats-
cally equivalent to the untiary ones; the isoeigenvalue equations

Hx|d>=HT|dp>=Ex|9 EecR. (3.3)
The isodeterminant of a matrix A (see [28-30] for additional properties)
DetA = [Det(AT) I e R or C. (3.4)

We are now equipped to outline the basic axiomatic structure of HM [15, 28] on

isoEuclidean spaces E(r, 5, R), § = Té , for isounits of class I without gravitational
content (i.e., for 81/0r =0):

Fundamental assumptions. (A)integro-differential generalization h = [ = 71 of
Planck’s unit i = 1; (B)reconstruction of the entire QM formalism to admit [ as the
correct left and right unit; and (C) representation of all local-potential forces with the
Hamiltonian H = K+V and all nonlocal-nonpotentia) interactions with the isounit [
(or isotopic element T'), as per the preceding isotopic methods and following physical
axioms: :

Isoaziom I. The states are elements of a isoHilbert space H interpreted as (left or
right) isomodule with isoeigenvalue equations and isonormalization

Hx | >= HT |d>=Ex|d> <Pp>=F=17"1. (3.5)
Isoaziom II. Measurable quantities are represented by isocornmuting isoHermitean
operators on ‘H whose eigenvalues are conventional real numbers,
Hlzgl  Held>=Ex|d>=E|d>
E€R E€eR

Isoaziom III. The fundamental dynamical operators, coordinates ¥ and mormenta
Pk, are characterized by isoeigenvalue equations and isocommutation rules {in mo-
mentum representation)

pk*|1ﬁ>: —ifkiv.'|’l;6>
rkop*]1,£>“-—“ﬁk*|1ﬁ>—:—rk|1ﬁ> feR reR

(3.6)

(3.7a)
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fa®, a"]t: = afTa” — a*Ta* = iwh*[,"
a=(pr) (fa”) = dia,g.(T—l,T_l).

where w#¥ is the 6 x 6 canonical-Lie tensor.

(8.7b)

Isoaziom IV. The time evolution of states is characterized by isounitary transforma-
tions with the (isoHermitean) Hamiltonian as generator

| 9(t) >= U(t,t0)% | $(to) >= {egiﬂ(to-ﬂ} x| h(to) >= HTH) [ (1) > . (3.8)

while the time evolution of operators is characterized by an equivalent, one-
dimensicnal, Lie-isotopic group of isounitary transformations with the same Hamilto-
nian as generators, expressible in the finite form

2 7t iH (- ~i(to—t)H
A(t) = U*A(to) * UT - {eélH(‘t tu)} *A(tg) * {eé i(to~1) } (3.9)
with infinitesimal version provided by the isoHeisenberg equations

;44 =[A, H]; = ATH — HTA (3.10)

where d/dt = [;d/dt is the isotopic derivative and J; is the isounit of time [10, 30].

Isvaziom V. The values expected in measurements of observables are given by the
isoexpectation values

as=S¥lHAeld > <4|TAT|9> o (3.11)
<yP|*iy> <¢|T|¢>

which reduce under isonormalization < 4 | # | >=1to <AS =< 1 | *A*9 >€ R.

The ¢soduel HM for antiparticles can be constructed via the techniques of section 2.
In particular, isodualily results to be a geometric reformulation of charge conjugation
[15, 24, 28].

The above isoaxioms imply the following properties of the isounits [10, 30]: (1) I
is isoidempotent of arbitrary (finite) degree, I* = [*[s--+I =T, (2) the isoquotient
of I by itselfis I, I/f = F; (3) the isosquare root of [ is I, It = =741
isocommutes with all operators [A 1]!:' = A-A=0; () T isleft mva.nant by

isounitary transformations, 7 + [ U = =0t =1, : (6) T is conserved in time,
idf/dt = (1, H]E = 0; and (7) all infinitely possible isounits I admit as isoeigenvalues
the ordinary number 1, I35 =< ¢ | TT-1T | 4§ >/ < ¥ | T} ¥ >=1. The following
primary consequences then hold:

(A) Quantum and hadronic mechanics coincide, by construction, at the absiract,
realization-free level. In fact, at the abstract level, all distinctions cease to exist bet-
ween F and F, E(r8 R) and E(r,6,R), € and £, H and H etc. A subtle
implication is that criticisms on the above axiomatization may eventually result to be
criticisins on the axiomatic structure of quantum mechanics itself.

(B) Hadronic mechanics is form-invariant under its own transformation theory,
the tsounitary transformations. This can be seen from the fact that isocommutators

are invariant under isounitary transformations, U * [4, Bl ot = (4, B'lg, or the
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invariance of eigenvalues and isoexpectation values under isounitary transformations,
etc. This form-invariance should be compared with the general lack of invariance of
g-deformations under their time evolution [8).

(C) Hedronic mechanics provides a fully < causal> treatment of < nonlocal>
tnteractions. This property originates from the embedding of all nonlocal interactions
in the isounit of the theory. Causality then follows from the iscexpectation values
of all admissible nonlocal isounits </5> = 1. Causality can also be proved in a
number of other ways, e.g., from the fact that HM implies an axiom-preserving isotopy
of the conventional causal treatment [9]. The above causal description of nonlocal
interactions in a way embedded in the basic axioms of the theory should be compared
with the loss of causality for conventional treatments of nonlocal interactions.

(D) The property <I5 =1 implies the reconstruction of Planck’s constant h = 1
at the level of measurements. In different terms, the integro-differential generalization
of Planck’s constant (1.1) which is at the foundation of HM holds only within its
mathematical structure, but the conventional value A = 1 is reconstructed in the
measurement theory.

(E) Currently available experimental measures cannot distinguish between quan-
tum and hadronic mechanics, that is, they cannot identify whether the inieractions are
local or nonlocal. In fact, the differentiation can be best tested experimentally via the
verification of the novel predictions of HM, that is, predictions beyond the descriptive
capacities of QM.

(F) Hadronic mechanics permits an aziomatization of discrete-iime theories vig
their embedding in the isounit I, which therefore result 1o be ‘hidden’ in, and compa-
tible with the conventional azioms of QM. In fact, isounits of Kadeisvili’s class V [14]
have precisely a discrete structure. Yet their isoeigenvalues remains the same as those
of class I, <13 = 1. This implies in particular that the isogeometries admit discrete-
time realizations based on the same axioms of conventional continuous geometries.

(G) Total physical quantities of isolated systems are conserved under isotopies.
This is due, first, to the preservation of Hermiticity / observability under isotopies, and
then to the invariance of the basis of a vector space under isotopies up to renorma-
lization factors [7-9]. In particular, the generators of conventional and Lie-isotopic
symmetries coincide. This implies that currently available centre-of-mass measures
on totel quantities of interacting and / or bound states, by no means, can ascertain
whether the internal forces are of gquantum or hadronic type, i.e., of local-canonical
or nonlocal-noncanonical.

4. Isotopies and isodualities of the Lorentz and Poincaré symmetries

Consider the Minkowski space M{z,n, R) with local coordinates = = {x,:c‘*},
z* = eot, cg = speed of light in vacuum, metric 5 = diag.(1, 1, 1, —1), separation
z? = z#nu, ¢ and invariant measure ds? = —dzfy,,da? . Its group of linear-local-
canonical isometries is the ten-dimensional Poincaré group P(3.1) = O(3.1} x T(3.1)
characterized by the (ordered sets of) parameters w = {#,v,a} (Euler’s angles 0y,
speed parameter vr and translation parameters « ), and generators, say, for a system
of particles with with non-null masses m,, X = {Xi} = {M,.} = 3 (%appPar —
ZavPap)y Pu= 3 aPou: 4, ¥=1,2,3,4, a=1,2,..., N, in their known adjoin
(fundamental)} representation [3].
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Three realizations of the ten-dimensional isotopic covering P(3.1) of P(3.1) have
been constructed via the Lie-isotopic theory, the classical [13], operator [30] and
abstract [11] ones. We now present the construction of the abstract realization of
}5(3.1) via the following five steps, and then the operator one, while that of the
isospinorial covering will be presented in section 8.

Step 1 is the identification of the fundamental isotopic element T (which can
be interpreted as 4 x 4 matrix generalization of g-number-deformations [7]) via its
fundamental implication, the deformation of the Minkowski metric 7 into the most
general known metric 7 = T’ which is nonlinear, nonlocal-integral, and noncanonical
in all variables, wavefunctions and their derivatives, as well as density u of the interior
medium considered, its local temperature 7, the local index of refraction =, and any
other needed physical quantity

i=T(s,z,&,%,%,00, 88, ...)9 (4.1)
here assumed to be of Kadeisvili class III [14] (smooth, bounded, nowhere singular
and Hermitean, but not necessarily positive or negative-definite). Under the assumed
conditions, the T-matrix can always (but not necessarily) be diagonalized in the form

T = diag. (911, g22, ga3, 944) = T DetT # 0. (4.2)
The isosym.rnetry P(3.1) is then constructed with respect to the isounit [ =71,

Step 2 is the lifting of the conventional field R(n, +, ><) of real numbers n mto
the isofield R(n +, %) of isoreal numbers # = nf, I =71
Step 3 is the lifting of space M(x,7, R) on the field R into the isoMinkowski
space M(z,#, R) on the isofield R with isoseparation [6]
(z—9)? = [(=* — v* ) (s, 2, 8,5, 9,089,009, .. )(=" —y")| [ € R, (4.3)
Step 4 identifies the basic isotransformations leaving invariant (4.3)
o' = Aw)xz  Alak = AsAl = 157

Deth [Det(AT)| =41 o' =2+ 4 (4.4)

where the quantity A will be identified shortly. The connected component Pe(3.1) =
50(3.1) x T(3.1) is characterized by DetA = 4] with structure [11, 13, 30]

0(3.1): A(w)raz={J] ¥}z
- {eriXkka} " (4.5a)

T(3.1) : {eéip”“} *T = {eipﬁ“} z
P {4.5b)
{e¢™}rr=0
where wg and Xy are conventional {3j and T is given by (4.2). The isocommutation
rules of P°(3.1) are given by [loc cit]
[Muv:Mcxﬁ] =i (ﬁvaMﬁp - ﬁ,uo:Mﬁu - ﬁU.BM&‘u + T},uﬁMav) (4-63)
[M.Lw :Pcr} = 1 (ﬁy.cvpu - ﬁvaPp) [.P#:Pu] = 0 (46b)

where the product is the isocommutator [A]B] = ATB — BT'A . The isoCasimirs are
then given by
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CO=f W=p>=PxP=Pi*"P,

P . . 4.7
CO =W2 =W, W, Wy = €pap, I = PP (4.7
The general isoPoincaré transformations are given by [loc cit]
o' =A*z isoLorentz transforms (4.8a)
' =z + A(s,x,2,%,...) isotranslations {4.8b)
g’ = f 4z = (~z,2%) . . 48
2 = Fe ks = (2, ~z) isoinversions (4.8¢c)
A= ﬂp{yw +a%{guu’ Po] /1!
+a%a® (g Pal 1 Pp) /20 } (4.84)

with the general isoLorentz transformations given by the isorotations (see [21] for
brevity) and the isoboosts first constructed in [11]

gl =z! 2? =gl {(4.9a)

£® = 23 cosh [v(gg3g44)1/2]

-~ x4g44(933g44)"1/ % sinh [U(933944)1‘! 2]

= ¥(z® — Bz*) (4.9b)

2" = —2%g35(g33g4e) "} % sinh [9(933944)1" 2]
+ z* cosh [‘u(g33g‘;4)1/2] = %(z? - fz®) (4.9¢)
B = v*gixv® [eogaaco  F=|1-F%|7Y2. (4.9d)

The classification of all possible isosymmetries (3.1) is then straightforward,
as done in the original proposal [11]. In fact, in the above formulation without a
define signature in the metric (class III), the abstract isoLorentz symmetry O(3.1)
unifies all possible simple, six-dimensional Lie and Lie-isotopic algebras, i.e.: (1) all
six-dimensional simple algebras of Cartan’s classification O(4), 0(3.1) and O(2.2)
(over a field of characteristic zero); (2} all their isoduals 04(4), 0(3.1} and 0%(2.2);
and {3) all infinitely possible isotopes for each of the preceding algebras. Similarly,
the abstract isoPoincaré algebra P(3.1) unifies all possible ten-dimensional inhomo-
geneous algebras, isoalgebras and their isoduals.

The above structure, even though mathematically significant, is excessively broad
for physical applications. From here on we shall restrict our analysis to the isosym-
metries of class I with realization

f) = T’? = dlag (612) 6221 b32) _b42)

= diag.(n1 7%, ny7 % na7% —ng %) by, mu >0 (4.10)

where the bs are called characteristic functions of the medium considered. The use of
the quantity 7¢ = —7T then characterizes the isodual symmetry. The general func-
tional dependence is needed for the study of a particle of an electromagnetic wave at
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a given interior point of an inhomogeneous and anisotropic medium. When global-
exterior conditions are studied (e.g., for the average speed of light throughout an inho-
mogenecus and anisotropic atmosphere), the characterisiic functions can be effectively
averaged into constants b°, = const = Aver. (by), as is the case for most applications
considered in this paper. In this case isotransforms (4.8) and (4.9) are called restricted
isoPoincaré and isoLoveniz transformations, respectively. Their primary implication
is the regaining of locality and linearity, thus preserving inertial systems as in the
conventional case, although the transformations remain noncanonical in M(x,%, R).

It is easy to prove the local isomorphism P(3.1) ~ P(3.1) for all T > 0. This
confirms a fundamental objective of section 1, the inapplicability of the Lorentz trans-
formations, but the exact character of the Poincaré symmelry. The ‘direct universality’
of the isoPoincaré symmetry should be noted, i.e., its applicability for all infinitely pos-
sible isoseparations (4.3) {universality), directly in the z-frame of the experimenter
(direct universality).

Despite their apparent simplicity, 1sotransformatlons (4.9) are highly nonlinear—
nonlocal-noncanonical owing to the unrestricted functional dependence of the
guu-quantities. The simplicity of the final invariance should also be noted. In fact,
the invariance of all infinitely possible isoseparations (3.3) is merely given by plotting
the given g,, elements in equations (3.9).

The operator relativistic isokinematics on M(z,7, R) [15, 30] is characterized by
the linear momentum here presented for simplicity for the case 8b,/0z” = 0 or for
b° ,-constants

p= (") = (M) = (moFée*, mo¥é)

m = me¥ €= cpby (4.11)
with isoeigenvalue form (isoaxiom III of HM)
Y B _2 R
Pu * ‘g[) = ] I#y@'gﬁ = —1 b,u ‘{b —1 E¢ (412)

where the last identity is evidently due to the expressions z, = fiupz” = b,2z# . The
fundamental isoinvariant is then given by from (4.7)

P >= #puxp | P>
= (bk2pr % pr — Ppaxpa)r [P >= (-mo’c!) [P > . (4.13)
The fundamental relalivistic isocommautation rules are then given by
[Pap::cav]* I ",E >= -1 Nup* ‘ 'l‘a >
[Zap zaw]* [ ¥ >= [pay ] * | ¥ >= 0

namely, the isoeigenvalues do not exhibit b-terms, by coinciding with the corres-
ponding conventional eigenvalues [15, 28, 30].

The operator isoPoincaré algebra P(3.1) can then be computed and it is given
by {15, 30}

(4.14)

[J#V:Jﬂﬁ] * I Tb >= i(ﬂuat]ﬁp = T},uar],ﬂy
- nvﬂJor_u. -+ ﬂyﬁjav)* ! P> (4.15a)

{J#Vv ]*|¢>“1(U#QPV_77HQP#)*I¢>

[T P+ | >=0 (4.15b)
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namely, the structure constants of P(3.1) formally coincide with those of the con-
ventional algebra, thus confirming not only the local isomorphisms P(3.1) = P(3.1),
but also the identity at the abstract level of the conventional and isotopic symmetries
and related relativities. The rest of the isoalgebras and isogroups can then be con-
structed via the preceding analysis for the matrix case. The isospinorial realization of
the isoPoincaré symmetry is presented in section 8.

The first application of the isoPoincaré symmetry can be found in conventional,
classical, exferior gravitation. To begin, the isoPoincaré symmetry P(3.1) provides
the universal invariance of general relgtivity. In fact, the invariance of any gravita-
tional (e.g., Schwartzschild’s) line element is merely given by plotting the g,, elements
in (4.9).

Another application is a geometric unification of the Minkowskian and Rieman-
nian spaces. This result is achieved via the decomposition of the Riemannian metric
g(x) = T(z)n, and the chain

R(z,g, R) ~ R(z, g, R) = M(2, 7, R) ~ M(2,n, R) (4.16)

where all isospaces are characterized by the gravitational isounit [ = [T(2)]”'. Note
that all Riemannian metrics admit the decomposition g = T'p with T > 0 (trivially,
from their locally Minkowskian character).

The above geometric unification of Minkowskian and Riemannian spaces has been
used by Lopez [31] to identify three geometric arguments supporting Logunov’s [33]
relativistic formulation of gravitation with a nowhere null source.

Further applications in gravitation under study are [15]: a novel treatment of
singularities as singularities of the isounits [ = [I'(z)]”'; a novel operator form of
gravitation given by its embedding in the unit of relativistic quantumn theories; a novel
‘iso-grand-unification’; and others, Applications of nongravitational character will be
indicated below.

But perhaps the most remarkable aspect is the capability of the isoPoincaré sym-
metry to unify in one single abstract isosymmetry P(3.1) of class I linear and non-
linear, local and nonlocal, Hamiltonian and nonhamiltonian, relativistic and gravita-

tional, as well as exterior and interior systems, at classical, operator and statistical
levels [13, 2§)].

5. Isotopies and isodualities of the special relativity

We shall now ignore gravitational profiles, and consider isotopic theories specifically
built for interior relativistic problems of particles with 8b,/0z, = 0 or
b = Aver.(vy) =const. >0, a=1,2,3,4.

The isotopies of the Poincaré symmetry P(3.1) — }5(3.1) imply corresponding,
necessary liftings of the special relativity into a form called isospecial relativity, origi-
nally submitted in [11] and then studied in detail in {13, 15, 28, 30]. The objective
is a form-invariant description of extended-deformable particles and electromagnetic
waves propagating within inhomogeneous and anisotropic physical media represented
by isospaces M (z,#, R). The special relativity is admitted as a particular case in
vacuum for which I =1.

The isospecial relativity is based on the isoPoincaré invariance on isospaces
M(z,#,R) of class 1, with consequential isotopies of all basic postulates of the spe-
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cial relativity. Those important for this paper are the following ones presented for
by = by = ba # by, with # and ¥ given by (4.9d):

Isopostulate 1. The maximal, causal, invariant speed is given by

Vmax =] dr/dt {max= cobs /b3 . (5.1)
Isopostulate II. The addition of speeds u and v is given by the isotopic law
= (u+ v)/(1 + upbi oy /eo?bs?) . (5.2)
Isopostulate III. Time intervals and lengths follow the isodilation-isocontraction
laws
F=%n AL =4%AL. (5.3)

Isopostulate IV. Frequencies follow the isodoppler law [for aberration a= 90]

3
Il

wy . (5.4)

Isopostulate V. The energy equivalence of mass follows the isoequivalence principle

E =me® = mep?bs® = meg? fng? {5.5)

The above generalized postulates are implicit in the preceding formulations, e.g.,
in isoinvariant (4.3), or in isoLorentz transformations (4.9); they recover identically
the conventional postulates in vacuum for which b, = 1; and they coincide with
the conventional postulate at the abstract realization-free level, where we lose all
distinctions between [ and I, z? and 2, §% and 82, # and 7, & and w, E
and E, etc. Thus, criticism of the above 1sotop:c postulates may resuit to be criticism
on Finstein’s postulates themselves,

A most visible departure from the conventional theories is the abandonment of
the speed of light as the invariant speed in favour of quantity (5.1) which is intrinsic of
the isoMinkowski geometry and represents the maximal causal speed as characterized
by an effect following a cause due to particles, fields or other means. Note that in
vacuum Vmax = ¢¢ by therefore recovering as a particular case the speed of light as
the maximal causal speed.

The best way to verify isopostulate I is in the simplest possible medium, the
homogeneous and isotropic water, where the speed of light is no longer ¢g, but rather
the familiar value ¢ = ¢p/n° < ¢p, where n° is the index of refraction. The insistence
in keeping the speed of light as the invariant speed in water leads to a number of
inconsistencies, such as: the violation of both the conventional and isotopic laws of
addition of speeds, none of which yields the speed of light as the sums of two light
speeds u = v = ¢ = co/n® for causal speed ¢ ; electrons can propagate in water
at speeds bigger than the assumed invariant speed, as experimentally established by
the Cherenkov light; and others. These inconsistencies are resolved by the isospecial
relativity with isoinvariant given by the simple scalar isotopy z? = 5°22? [11, 13, 30].

Even greater inconsistencies emerge if one insists in keeping the speed of light as
the invariant speed for all media more complex than water, e.g., inhomogeneous and
anisctropic atmospheres. To our best knowledge, a resolution of these inconsistencies
requires the separation of the invariant speed from the speed of light, and the use of
their identity only for the particular case in vacuum.
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Since isopostulates I-V are quantitatively different than the conventional ones,
they are suttable for experimental verifications. Intriguingly, all available experimental
evidence appears to confirm the above isopostulates, not only for simple media such
as water or atmospheres, but also for the more complex media, such as the hyperdense
media inside hadrons (see section 9).

In summary, the isotopies identify four physically different but axiomatically
equivalent formulations of the special relativity: (1) the conventional special relati-
vity based on the P(3.1) form-invariant description on M(z,7, R) of point-like par-
ticles in vacuum; (2) the isodual special relativily based on the P4(3.1)-invariance on
Mé(z,n%, RY) for the point-like description of antiparticles in vacuurm; (3) the isospe-
cial relativity with P(3.1) form-isoinvariant description on M(z,#, R) of extended-
deformable particles in interior conditions; and (4) the isodual isospecial relativity
with isodual P4(3.1)-invariance on M%(z, ), R%) for the description of extended-
deformable antiparticles in interior conditions.

6. IsoMinkowskian geometrization of physical media

As is well known, the Minkowski space M (x,%, R) provides a geometrization of the
homogeneous and isotropic vacuum. A fundamental aspect of the isospecial relati-
vity is that the isoMinkowski space M (z,7, R) provides a geometrization of interior,
classical and operator, physical media, e.g., the geometrization of our inhomogeneous
and anisotropic atmospheres, or of the medium in the interior of nuclei, hadrons and
stars,

An intuitive understanding can be reached by noting that the characteristic func-
tions b, = 1/n, essentially extend the local index of refraction 1/n4 to all space-time
components. Equivalently, by recalling that physical media are generally opaque to
light, the isotopy M(z,n, R) — M(z,%, R) essentially extends to all physical media
the geometric structure of light in vacuum.

This geometrization has permitted the classification of physical media into nine
significant types [30], p 103, i.e., first, into the three primary classes ¥ =4, ¥ < ¥
and ¥ > v from (4.9d) and then on the three subclasses for each of them 8° = b°,,
b° > b°4 and b° < b°4, b° = Aver. (b°).

This classification is of primary phenomenological relevance as researchers in the
field know, because it implies automatic redefinition of the intrinsic characteristics of
particles and electromagnetic waves, called isorenormalizations. They can be antici-
pated from the deviations of the isoCasimirs (4.7) from the conventional expressions,
or from the differences between conventional and isorepresentations (see next sec-
tion), and are finalized by isopostulates -V, such as the isorenormalization of the rest
energy (5.5) for a particle in interior conditions (only). The identification of the type
of isoMinkowskian geometry characterized by a given medium is therefore a basic
problem for practical applications.

In regard to electromagnetic waves, the isospecial relativity predicts no change
in frequency (i.e., no loss of energy) for light propagating in media of type 1, 2, 3
with 4 = v, such as water (as experimentally established), plus two predictions from
isopostulate IV suggested for tests [13, 28, 30]: an isoDoppler redshifl for ¥ < (i.e.,
a loss of energy) for light propagating within media of type 4 such as inhomogeneous
and anisotropic atmospheres of low density; and an isoDoppler blueshift for ¥ > v for
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light propagating in hyperdense media of type 9, such as those in the Bose—Einstein
correlation fireball, and others. '

In regard to particles, the iscrenormalization of the intrinsic characteristics per-
mits quantitative representations otherwise impossible, such as attractive interactions
for the Cooper pair (e, e” ) in superconductivity (section 9), and imply the novel
prediction of the apparent origin of cold fusion at the level of elementary particles, as
an extension of that of the Cooper pair.

Note the necessity of the isotopies for the above results. Note also that the
isoMinkowskian geometry is isoflat since it is the isotopy of a flat geometry (not so for
the isotopies of Riemann [12, 13]). This implies the capability to reconstruct conven-
tional and hyperbolic angles, even though the space has the most general possible cur-
vature 7 = #(z,%,Z, ...) . For instance, if #;_, is a conventional angle in 1-2 space,
the corresponding isoangle is given by 61— = bybsfy..o , and if v— is the ‘hyperbolic
angle’ in 3—4 space, the corresponding hyperbolic isoangle s 7_» = babsv;_s. Thus
the isoMinkowskian geometry predicts the functional dependence of the isoLorentz
transforms (4.9) in a way independent from, but in full agreement with the Lie-isotopic
theory. For numerous other properties we refer to {13, 28]. A technical knowledge of
the isoMinkowskian geometry and its isospecial functions is therefore essential for
practical applications.

7. Isotopies and isodualities of SU(2) with applications to spin and isospin

The best way to begin an outline of the applications of the isoLorentz and isoPoincaré
symmetries is via their most important component, the isospinorial SU(2) subalge-
bras studied in {15, 21, 22]. In fact, we have the following adjoint isorepresentation
along the classification of section 2:

(1) regular isoPauli matrices

&1 :A-UZ( 0 911) &5 ___A_uz( 0 —igu)

g2z 0 +igoz 0 (7.12)
53 = A-H? (9‘82 “2“)

'lj =Fdiag-(.t.h1,§262) A =DetQ =g11922 > 0 (7.1b)

[7:, 0_,-]5- = 12¢;;15%
Gax | b>= 2AY2 )b s b>=3A 0 (7.1c)

(2) irregular isoPauli mairices
et D)en = (8 7)o
by = (922 0 ) _ Al (7.2a)
0 —gn

i&l':&gf]g = 2iég’ [62, &3']5 = 2iAa,’ (7.2b)

[65,61); = 2A5Y

Gas |b>=2Ab> s |b>=A(A+2)[b> (7.2¢)
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(8) stendard isoPauli matrices

) 0 A ) 0 —iA
=LA 2=t o

. A_..l 0 (7.3&)
o3 = ( 0 —-,\)
T = diag. (A, 271) A£0
A = Det Q =1 [a'";, 5‘"j]g — if:‘jk&”k (731))
s b>=]b 7 |b>=3]b>. (7.3¢)

As one can see isoPauli matrices (7.1) preserve the original structure constants,
but exhibit new eigenvalues illustrating the isorenormalization of spin mentioned in
section 6. Matrices (7.2) show different isorenormalizations because of the appearance
of the structure functions in the isocommutation rules. Finally, matrices (7.3) preserve
the original structure constants and eigenvalues of Pauli’s matrices, yet they exhibit
the presence of a ‘hidden’ parameter (actually a nonlinear-nonlocal function) X in
the very structure of the spin % .

Isorepresentations with mutated values of spin are used for particles in inte-
rior conditions under sufficiently intense nonlinear-nonlocal-noncanonical interactions
(e.g., a neutron in the core of a neutron star). Particles under less extreme conditions
do preserve their conventional spin, in which case isorepresentation (7.3) is applicable.

We now indicate some of the applications of the above isorepresentations. In
regard to the spin, a clear application of the isotopes SU(2) is the proof that Bell’s
inegquality holds, specifically, for conventional quanium mechanics and it is inapplicable
under isotopies. The proof is transparent for the regular and irregular isoPauli matrices
{because of the different eigenvalues). What is intriguing is that Bell’s inequality is
also inapplicable under the standard isoPauli matrices (7.3) (see [27] for details.)

Another QM property which is inapplicable under isotopies is von Newmann’s
theorem on the lack of existence of ‘hidden variables’ because based the uniqueness of
the spectrum of eigenvalues of a Hermitean operator, which is lacking in HM owing to
the infinite possibilities of the isotopic element T for each Hermitean operator. This
has permitted the isotopic realization of the ‘hidden variables’ expressed precisely by
the isotopic element T, i.e., the isoeigenvalue expressions H* | Y >= HT | § >=
Ep | ¥ >, or its dragcnal elements. In fact, standard isoPauli matrices (7.3) are an
explicit realization of ‘hidden variables’ [15, 27].

These inapplicabilities are important because they permit the {otherwise prohi-
bited) isetopic completion of QM, which has resulted to be considerably along the cele-
brated Einstein-Podolsky-Rosen argument. In fact, one can select a classical isospace
such as to permit the identity between the classical and the operator, isotopic versions
of Bell’s inequality {27]. Similarly the isouncertainties of a particle in the interior of a
star collapsing all the way into a gravitational singularity (with [ — oo ) recover the
classical determinism because, from the isoGaussian (2.10), we have

lim;_  AzAk=lim;_ <[5
=limp.o <9 |TT'T|$>=0. (7.4)

We now illustrate the use of the SU (2) symmetry for the reconstruction of the
exact isospin symmelry under weak and ELM inferactions. The mechanism of the
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reconstruction is so siraple to appear trivial {22]. Consider the isonormalized isostates

of (7.3)
. A2 .
| hp >= ( 0 ) | %n >= ()\Plz)

<’§£k|T|"§Bk>=1 k=p,n

where T = diag.(A,A7}). We now select such isospace to admit the same masses
for the proton and the neutron. This is readily permitted by the ‘hidden variable’ X
when selected in such a way that muA~! = m, A, ie, A? = m,/m, = 0.99862. The
mass operater is then defined by

(7.5)

- 1 . 1 .
M= {EA(mp + mn)f + EAul(mP - mn)US} I

- (mPé‘_l m?,)\) , (1.7)

and manifestly represents equal masses 7 = mpA~! = m, X in isospace.
The recovering of conventional masses in our physical space is readily achieved
via the isoeigenvalue expression on an arbitrary isostate

M*|«/3>:MEQ|¢>EM;J)>=(”5? n?n)|1,/$> (7.8)
or, equivalently, via the isoexpectation values < TZ’p | T™MT | 1,51, >= my,
< ¥ | T:MT | Yn >= my . Similarly, the charge operator can be defined by
@ = fe(] + 63) with charges on isospace @, = eA™! and @, = 0. However,
the charges in our physical space are the conventional ones, < 12'? | TQT | 1,3;, >=e,
< Pa | TQT | hn >= 0. See [22] for more details.

The isodual isospin then characterizes the antiparticle § and 7.

8. Isotopies and isodualities of Dirac’s equation

We are now sufficiently equipped to review the application of the isoPoincaré symmetry
to the isotopies of Dirac’s equation, called the isoDirac equation [15, 28, 33, 34]. The
objective is to generalize the structure of the interactions admitted by the conventional
Dirac’s equation into their most general possible nonlinear-nonlocal-nonHamiltonian
form.

The isolinearization of 2nd order invariant (4.7) can be done by introducing the
12-dimensional isospace

{Morb.(a:’ﬁ}ﬁ) % Svintr.(:z)} % {Md,orb.(x,gd’ Rd) % S‘vd,intr.(g)}

for the characterization of the orbital and intrinsic angular momentum for particles
and antiparticles, respectively. The following expression in sel-explanatory notation
(see [33, 34] for details) then characterizes the isogamma matrices ¥

(ﬁgypy *orb. oy + ﬁ%Z) *orb. 115($)
= (ﬁyv;,h‘ *tot. P+ ‘lﬁ’t) *tot. (ﬁaﬂ,—h‘ *Lot.pﬂ - I‘fh.) *tot. 1;(3’:') (813)

{:fﬂ :"?y}tOt' — ”)\"#TtOt"}"y + '?yTtOt"?“ = zﬁpu j"OI‘b. (8'1}))
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'?',u - ;mforb. (8 1c)
{'?y :'?u }mtr. — ;]-,#Tuntr.;?y + ;?V:rntr.;'r“ = Qﬁ#y. .

The above formulation is verified by Dirac’s [37] generalization of his equation [33),
but is excessively general for our needs here. We shall therefore assume the simpler
realization

forb. = f o -1 qorb. —

PR = T=dig.(1,1) {539} = 2w ]

ck _ 2kF 0 ) 4 _ 47 IJ 0

7_“(—% 0) 7”11)1(0 fda> (8.2b)

I, = diag.(1,1) ¢, =-I,
where the - and o-matrices are the conventional ones, and 8b,/8z" = 0. One can
see the emergence of the isodual isospaces $9(2) characterized by I¢ = —diag. (1,1)
beginning with the conventional Dirac’s equation, which then persist under isotopies
to 5%9(2). The isogeometries permit the identification of the origin of the negative-
energy solutions precisely in this negative-definite unit. Isoduality then characterizes
antiparticles as in ordinary charge conjugation [24]. The desired isoDirac equation on
M(z,%, B) can then be written

(Fu * p¥ + i) * (2) = ("9, Tpy + )T = 0 (8.3)

= mi. )
'The extension to include electromagnetic potentials is trivial and will be ignored.
Experts in isotopies however know that such an addition is not necessary to represent
ELM interactions, because they can be equivalently represented with the Lie-isotopic
tensor (see vol II of [9]}, that is, with the characteristic b-functions [13, 28]. Con-
trary to its seemingly ‘free’ appearance, equation (8.3) represents a spinor under the
most general known combination of linear and nonlinear, local and nonlocal, as well as
potential and nonpotential interactions. Constant b°-quantities then represent their
average. Note finally the lack of unitary equivalence of the Dirac and isoDirac equa-
tions, e.g., because of the lack of existence of a unitary transformation under which
U Ut =7, p=1,2,3,4.

The orbital and intrinsic angular momenta of particles with lowest admissible

hadronic weight characterize the irregular isorepresentations

0(3) : br = €ki;TiDj {ﬁ,:ﬁj] = e,‘jkbk‘zfik (8.4a)

(8.2a)

£ P=(by by 4+ by %y 4 b3~ 2,2}y

N - . 8.4b

Lax=b7 b1 (8.40)
. . 1 . .

SU(Z) : S}; = 56,5,‘5"},‘ * ﬁ‘j [S, :SJ] - e,-,-kb;csz (8.4(:}

8% ke = (1/4)(b12b2% + b 2bs% + b, 2)) (5.44)

83 *'l,b = %blbz’d)
which confirm the existence of nontrivial isorenormalizations.
It is easy to see the existence of the standard isorepresentations which pre-
serve conventional eigenvalues of spin. In fact, the isoDirac equation characterizes
the following standard realization of the isospinorial Poincaré symmetry P(3.1) =
SL(2.8) x T(3.1) over the isofield C with generators and isocommutators
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Jup = {S"ij, ft’u}

2 1. . 1 . R (8.5a)
Lea= i+ he = 3 {bebaviva}I L'=L
9 = by b3 8
S"u'za — b1_lb3“1§23 5'131 = bl-lbg_ls'sl (85b)
v  dapl* [ ¢ >= Hwadsy — Muadpy

- Tfu,BJa,u + Uyﬁjav)* | P > (85(:)
IJ#U:PQ]*I¢>=i("7ﬂapu_77uaPu)*|'§b> (85d)
[JuiP)* [ >=0 ’

which have conventional structure constants, thus coinciding with rules (5.15). The
standard isospinorial and isodual isoPoincaré group can then be constructed via the
rules of section 2.
A simple isotopy of the corresponding conventional derivation, yields the magnetic
and eleciric isodipole moments (assumed for simplicity along the third axis)
fi = b—s,u m=—m (8.6)
by bs

first derived in [26], equations (4.20.16), p 803, and then isotopically reformulated in
[15, 33, 34].

9. Experimental verifications

In the preceding sections we have outlined a number of applications of isotopic
methods, such as the use of the isoPoincaré symmetry for the invariance of exterior
gravitation, or the reconstruction of the exact isospin symmetry in isospace under weak
and ELM interactions. In this final section we present a number of phenomenological
applications and experimental verifications which, even though evidently preliminary,
are nevertheless encouraging and sufficient to warrant additional studies.

1. A first verification is the use of the isoDirac equation for a quantitative represen-
tation of Rauch’s interferometric measures on the 4w-spinorial symmetry of neutrons
(see review [38] and references quoted therein), which do not yield the predicted angle
of two spin flips, 720° , but the values § = 715.87° 4 3.8° . Even though the deviation
is smaller than the error, thus requiring experimental finalization, the measures are
significant because the neutron beam of the experiment passes near the intense elec-
tric, magnetic and nuclear fields of Mu-metal nuclei placed in the electromagnet gap
to reduce stray fields.

The expected physical origin of the measures is therefore a deformation of the
charge distribution of the neuirons with consequential necessary {for Maxwell’s elec-
trodynamics)} alteration of their intrinsic magnetic moments, under the preservation
of the conventional spin % . These conditions are ideal for the isoDirac equation with
expressions

= diag. (8°172,0°72, 0% %)

i
1,2!' = R(ﬂ) % ‘Ju _— eif’nlb"z’hﬁ'?fia/?,‘; (91)
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where the first characterizes the nonspherical charge distribution of the neutron, and
the second expresses the covering isospinorial transformation. The use of: (a) the
general rule for the isorotational symmetry 63 = b°16°28515,=7160 = 720° [13, 21];
(b) the value b°4 from the geometrization of the p—5 fireball in the Bose—Einstein cor-
relation [30, 35]; and (c) the proportionality in first approximation fi/p = 716°/720°
where pu(ji} is mutated (conventional) magnetic moment of the neutron, yield the nu-
merical values of the characteristic constants of the isoDirac equation, as an average
of the characteristic functions for the neutron in Rauch’s experiment

By =% 2 1.0028 0o~ 1.644 B3 = 1.653. (9.2)
The mutated magnetic moments (along the third axis) is given by
b= ,ubo;g/bnq =—1902 < 7] (93)

which is smaller than the conventional value thus confirming the ‘angle-slow-down’
occurred in all Rauch’s measures (see [33] for more details). Note that data (9.2)
characterize the neutron as an isoMinkowskian medium of type 9; a property verified
by all phenomenological data known to date (see below).

2. Another application of the isoDirac equations for a quantitative representation
of the totel magnetic momenis for few-body nuclear structures, a problem which has
essentially remained unsolved for over half a century. It is essentially based on the
isotopy of the conventional QM treatment, that is, on the direct representation of
nucleons as extended nonspherical charge distributions which experience deformations
under nuclear conditions, thus implying consequential alterations of their intrinsic
magnetic moments. In turn, these deviations appear to be the reason for the inability
of QM to reach a numerical representation of the total nuclear magnetic moments,
despite relativistic and other corrections.

The isoDirac equation permits a direct representation of the actual nonspherical
shape of nucleons, predicts their (generally small) deformation when members of a
nuclear structure with consequential mutation of their intrinsic magnetic moments,
and yields the following HM model of tolal nuclear magnelic moments

ot ™M = Z (ﬁ'k(L)Lka + !:Uc(s)SkS)
%

(9.4)
55 = 0.6058°%3: ™ 621 = 0.605 4304 -

where we have the conventional values gp(“) = 5.585, g.(*) = —3.816, gp(L) =1,
gt = 0, 8°4 = 1.653 as for the neutron and b°; must be determined from the
experimental data. By assuming L = 0 for the ground state, by ignoring the contri-
butions from L = 2 because they are very small, by recalling that L =1 is unallowed
by parity, and assuming that protons and neutrons experience the same deformation,

we have the following numerical represeniation of the tolal magnetic moment of the
deutron

pp™ = 0.6058°3(gp + 9n) = up TP = 0.857 %3 =1.611.  (9.5)

which simply shows that nucleons become oblate in the deutron with their semiaxis
b°3~2. The representations of the magnetic moment of tritium, helium and other
nuclei are studied in [36].

3. The isoMinkowskian geometrization of the interior of hadrons is confirmed by
the phenomenological calculations [39] of deviations from the Minkowskian geometry
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inside pions and kaons conducted via standard gauge models in the Higgs sector, with
deformed metric 4 = diag. ({1 — o/3}, (1 — «/3), (1 — «/3), —(1 — «)) precisely of the
isoMinkowskian type and values

PIONS 7% : 5% 2 =0°2 =02 = 14+12x107% 1°2=1-3.79x 10~  (9.62)

KAONS K% : 502 =0°% = 0°%2 = 1~-2x 107 $°42=1+6.1x107%  (9.6b)

Pions % are then isoMinkowskian media of type 4, while the heavier kaons K% are

of type 9 [30]. All hadrons heavier than K* are expected to be isoMinkowskian media
of type 8.

4. The isoMinkowskian geometrization of hadrons was confirmed by independent
phenomenological plots [40] on the behaviour of the meanlife of the K°g (which,
according to current experiments, is anomalous from 30 to 100 GeV and conventional
from 100 to 350 GeV) yielding the following characteristic #°-values of the K°g

5°12 = b°,% = b°3% ~ 0.909080 % 0.0004
b°4% ~ 1.002 £ 0.007

A2 =000  AB°,% =0.001 (9.7b)

(9.7a)

which are of the same order of magnitude as values (9.6b). Measures (9.7a) therefore
support the hypothesis that the interior of kaons is an isoMinkowskian medium of
type 9. Measures (9.7b) confinmn the prediction of the isospecial relativity in the range
30-400 GeV that the §°4 quantity, being an average of internal density and nonlocal
affects, is constant for the particle considered (although varying from hadron to hadron
with the density), while the dependence in the velocities rests with the bg-quantities.

5. An important verification of the isoMinkowskian geometrization of hadrons
and related isospecial relativity has been recently achieved via theoretical [30] and
experimental [35] studies on the Bose-Einstein correlation. These results are important
because they confirm, not only the fundamental isoMinkowskian laws, but also the
numerical values of the b°s.

In essence, studies conducted via the full use of nonlinear—nonlocal-
nonHamiltonian isoMinkowskian geometrization of the p-F fireball result in the two-
point boson isocorrelation function on M(z, %, R) [30], equation (10.8), p 122,

- K2 2440 2
— o - —-q12fk
Cy=1+ 3 Zﬂn##(e te)
7 = diag. (b°12,8%%,8°5%, —b°47)
where ¢, is the momentum transfer and K = %12 + 6°3%2 4 b°3? is normalized to 3,
under the sole approximation, also assumed in conventional treatments, that the lon-
gitudinal and fourth components of the momentum transfer are very small.

Phenomenclogical studies conducted in [35] via the UATI data at CERN confirm
model (9.9) in its entirety, and identify the numerical values

b°y = 0.267 = 0.064 by = 0.437 £ 0.035
b3 = 1.661 b°5 = 1.653 + 0.015.

Theses measures have the following implications: (a) they confirm the nonlocal-
nonHamiltonian origin of the correlation, which is at the foundation of these stu-
dies; {b) they confirm the isoMinkowskian geometrization of type 9 (B < 8, 7 > 7,
Aver. (b°:) < b°4 )} for the p—P fireball which is directly applicable to the nuclear cases

(9.9)

(9.10)
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studied earlier; (c) they provide a numerical confirmation of rest energy isorenormaliza-
tion (isoaxiom V); (d) they confirm the capability of the isotopies of directly represent-
ing nonspherical shapes and all their deformations; () they prove the reconstruction
of the exact Poincaré symmetry under nonlocal-nonHamiltonian interactions.

6. The isoMinkowskian geometry has also been verified by recent studies in [41]
on the quantitative, isotopic representation of an attractive interaction between the
Cooper pair (e”e™ ) in superconductivity, with numerous phenomenological plots.
This is achieved via the lifting of the conventional Coulomb Hamiltonian for the
(e~e” ) system and the simple isotopic element T = exp {th dx’w,/;i(a:’)é(a:’)}
representing the wave-overlapping of the two electrons. By comparison, one should
recall the known difficulties in achieving efiractive interactions for the pairing of two
electrons of the same charge under the ezaci validity of QM axioms.

7. By far the most speculative, thus intriguing prediction of HM is the existence
of the cold fusion of protons and electrons into neutrons (plus neutrinos). The first
direct experimental verification of this prediction was done by don Borghi et al [42].
The experiments essentially consist in forming a gas of protons and electrons inside
a metallic chamber (called klystron) via the electrolytic separation of the hydrogen.
Since the protons and electrons are charged, they cannot escape the metallic chamber.
Nevertheless, numerous transformations of nuclei occurred for matter put in the out-
side of said chamber. The measures can then be sclely interpreted, in the absence of
any other neutron source, by the cold fusion of the protons and electrons into neutrons
which, being neutral, can escape the chamber and cause the measured transmutations.

Physics is a science with an absolute standard of value: the experiments. Experi-
ments themselves have their own standard of value, the more fundamental the law to
be tested, the more relevant the experiment. In particular, experiments such as don
Borghi’s tests of the cold fusion n = (§*,6 )ym , can only be dismissed via other
experiments, and simply cannot be credibly dismissed via theoretical considerations
or personal views.

We therefore suggest the repetition of experiments [41], the measure of the
apparent isotopic component of the redshift of sunlight at sunset predicted by the
isoMinkowskian geometry [13] and other tests [28] proposed for the verification or dis-
missal of what appears to be the fundarmental profile: the isoMinkowskian geometriza-
tion of physical media.
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