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In a preceding paper at Foundations of Physics Letters,)! we have submitted the ap-
parently first, axicmnatically consistent inclusion of gravitation in unified gauge theories
of electroweank interactions under the name of isofopic grend unification. The result
was submitted via an apparent resolution of the structural incompatibilities between
electroweak and gravitational interactions due to: (1) curvature, because the former
are defined on a flat spacetime, while the latter are instead defined on a curved space-
time; (2) antimatier, because the former characterize antimatter via negative-energy
solutions, while the latter use instead positive-definite energy-momentum tensors; and
(3) basic spacetime symmeiries, because the former satisfy the fundamental Poincaré
symmetry, which is instead absent for the latter. The main purpose of this paper is to
present the methods underlying the isotopic grand unification. We begin with a study
of the new mathematics, called isomathematics, and of the related new geometry, called
isominkowskian geometry, which permit an apparent resolution of the first incompati-
bility due to curvature. We then pass to a study of the second novel mathematics, called
isodual isomathematics, and related geometry, called isodual isominkowskian geometry,
which permit an apparent resolution of the second incompatibility due to antimatter.
We then pass to a study of the novel realizations of the conventional Poincaré symme-
try, known as Poincaré-Santilli isosymmetry and its isodual, which provide a universal
symmetry of gravitation for matter and antimatter, respectively, and permit an appar-
ent resolution of the third incompatibility due to spacetime symmetries. This paper
has been made possible by the preceding: memoir®® recently appeared in Rendiconti
Circolo Matematico Palermo, which achieves sufficient maturity in the new mathemat-
ics; memoir®? recently appeared in Foundations of Physics, which achieves sufficient
maturity in the physical realizations of the new mathematics; and memoir8¢ recently ap-
peared in Mathematical Methods in Applied Sciences, which achieves sufficient maturity
in the formulation of the generalized symmetries. Regrettably, in addition to the study
of the methods, we cannot study the novel applications and verifications to prevent a
prohibitive length. Nevertheless, the reader should be aware that the isominkowskian
geometry and its isodual already possess a number of novel applications and experi-
mental verifications in classical physics, particle physics, nuclear physics, astrophysics,
gravitation, superconductivity, chemistry, antimatter, and biology, which are indicated
in the text with related references without a review. .

*E-mail: ibr@gte.net; http://homel.gte.net/ibr/
PACS 04.60+n, 03.65.-w, 11.10.2;
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1. Introduction

1.1. Statement of Purpose

In a preceding paper at Foundations of Physics Letters,'! we have submitted the
apparently first, axiomatically consistent inclusion of gravitation in unified gauge
theories of electroweak interactions under the name, for certain technical reasons
identified shortly, of isotopic grand unification.

The result was submitted via an apparent resolution of the structural incom-
patibilities between electroweak and gravitational interactions due to curvature,
antimatter and spacetime symmetries.

The main purpese of this paper is to present the new methods underlying the
isotopic grand unification. A number of novel applications and experimental veri-
fications of the new methods, even though little known in the physics community,
are already available in particle physics, nuclear physics, astrophysics, gravitation,
superconductivity, chemistry, antimatter and biology. To avoid a prohibitive length,
the latter applications and verifications are merely mentioned with related refer-
ences, but without any treatment.

1.2. Foundations of the isominkowskian geometry for matter

As it is well known, the special relativity' constitutes one of the most majestic sci-
entific achievements of this century for mathematical beauty, axiomatic consistency
and experimental verifications.

By comparison, despite equally historical advances, the physical validity of the
general relativity” has been the subject of considerable debates throughout this
century which have remained lingering to this day.

For this reason, in preceding papers,® we have proposed a geometric unification
of the special and general relativities via the arioms of the special, rather than of
the general, resulting in a formulation we have called 1sospecial relativity® which is
based on the following main lines.

Let M = M(z,n, R} be the conventional (3 +- 1)-dimensional Minkowsli space
with local coordinates z = {z#} = {r, cot}, 1 = 1,2,3,4, where ¢ is the speed of
light in vacuum with familiar metric = diag(1, 1, 1, —1) and unit I = diag(1,1,1,1)
over the reals B = R(n,+, x). Let R = R(z,g,R) be a conventional 3+ 1)-
dimensional Riemannian space with the same local chart, nowhere singular, real-
valued and symmetric metric g = g(z) and unit I.

The main idea of the isominkowskian representation of gravity, submitted by
the author at the VII Marcel Grossmann meeting on general Relativity,®® is that
the component of g(z) truly representing curvature is the 4 x 4-dimensional matrix
T(z) in the Minkowskian factorization

9(z) = T(z) x 7, BNCRY

where one should keep in mind that T'(x) is necessarily positive-definite (from the
local Minkowskian character of R). If the Riemannian space is reconstructed with
respect to a new unit which is the inverse of T'(z),
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fz) = (=), (1)
then it verifies the axioms of the Minkowski space, despite the functional dependence
of the metric, as first proved in Ref. 4a. The emerging new space was then called
the isominkowskian space, namely, a structure belonging to the field of the so-called
axiom-preserving isotopies® (see also Refs. 6-11).

The reader should be aware that the consistent treatment of the above gravi-
tation requires a new mathematics, called isomathematics® and outlined in Sec. 2,
which essentially consists in the reconstruction of conventional numbers, spaces,
algebras, etc. with respect to the generalized unit 7.

Any appraisal of this paper via conventional mathematics is afflicted by a num-
ber of inconsistencies which often remain undetected by nonexperts. Similasly,
attempts to appraise the studies herein presented with other approaches existing
in the literature (such as the use of quaternions, spinors, Vierbein frames., Clifford
algebras, etc.} have hidden inconsistencies which generally remain undetected by
nonexperts (e.g., the generalized field used in this study is fully commutative and,
therefore, has no connection with quaternions; no spinor of any type is used in
the analysis; Vierbein frames are strictly formulated on conventional spaces and
fields, ete.

An effective way to identify the difference between this studies and preceding
ones is by looking at the fundemental numbers on which the theory is built, the
former are built on generalized numbers, while the latter are built on conventional
numbers.

Needless to say, we are not suggesting here the preference of one versus another
approach because true science is based on polyedricity of approaches, each one
generally having only a grain of truth. As a matter of fact, the connections between
our isotopic formulation of gravity and other studies is intriguing. We only regret
to be forced to defer their study to subsequent papers to avoid excessive length of
this study.

As it is well known, general relativity incorporates the special as a particular
case as well as in the local tangent spaces and, in this sense, it provides a unification
of gravitational and relativistic phenomena.

The isominkowskian reformulation of gravity permits a novel geometric unifi-
cation of the general and special relativities which are now differentiated via the
basic unit of the theory, rather than the geometry. In fact, for value {1.2) we
have the general relativity with all possible conventional Riemannian metrics g{z),
while for the value f = diag(1,1,1,1) we have the special relativity. The prop-
erty here important is that the absiract geometric azioms remain unchanged in the
reduction I — I.

In short, the main geometric objective of this paper is the reformulation of
the Riemannian geometry into a Minkowskien form while preserving all conven-
tional metrics g{z) unchanged with consequential preservation of the conventional
Einstein’s field equations and related experimental verifications. This seemingly
contradictory approach is permitted by the fact that the referral of the metric
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9(z) = T(z) x n to the unit [ = 1 /T(z) which is the inverse of the “gravitational
term” ff‘(m) eliminates the conventional notion of curvature in favor of a covering
notion of isocurvature studied in Sec. 2.

In this paper we present, apparently for the first time, the foundations of the
isominkowskian geometry underlying the isotopic grand unification, which are ap-
parently expressed, as a symbiosis of the Minkowskian and Riemannian geometries,
thus including aspects pertaining to the preservation of the Minkowskian axioms,
plus the machinery of the Riemannian geometry, such as covariant derivative, con-
nection, etc. In preceding works®® we had studied the Minkowskian profile of the
new geometry and, separately, the isotopies of the Riemannian geometry,

1.3. Foundations of the Poinceré—Saniilli isosymmelry for matter

Recall that the special relativity has a universal spacetime symmetry, the fun-
damental Poincaré symmetry P(3.1), while no corresponding symmeiry exists for
conventional gravitational theories (where we have only “covariance” ).

One of the primary purposes for constructing the novel isominkowskian geom-
etry and underlying isomathematics has been the resolution of the above disparity
and the achievement of a universal symmetry (rather than covariance) of all pos-
sible Riemannian line elements, first studied by this author in details in Refs. 4
under the name of isopoincaré symmetry 15(3.1) and today called Poincaré-Santilli
wsosymmetry (see, e.g., Refs. 6b—6e and paper quoted therein, as well as the recent
memoir by Kadeisvili®).

The isosymmetry P(3.1) is essentially the reconstruction of the conventional
symmetry in such a form to admit the generalized unit [ (x} at all levels, including
enveloping algebras, Lie algebras, Lie groups, transformations and representation
theories, ete. Since I > 0 as noted earlier, P(3.1) results to be isomorphic to P(3.1)
ab initio. Equivalently, we can say that P (3.1) is not a “new symmetry”, but only a
“new realization” of the abstract Poincaré axioms, evidently of nonlinear character.

A primary task of the isominkowskian formulation of gravity is to establish that
the fundamental spacetime symumetry of the special relativity does indeed remain
exact for gravitation, when the nonlinearity is realized in a proper isotopic way.

The difference between the isotopic treatment of nonlinear symmetries and the
nonlinear approaches of affine transformations®®>%6® ghould be kept in mind. In
fact, the latter are bona-fide nonlinear theories, while the former reconstruct Kn-
earity on isospaces aver isofields and exhibit a nonlinear structure only in their
projection back to conventional spaces over conventional fields.

The achievement of a universal symmetry of gravitation is perhaps the most
compelling individual motivation for the novel isominkowskian geometry. In fact,
on one side, no symmetry of gravitational line elements can be generally constructed
in the conventional Riemannian geometry, as well known. On the other side, the
reduction of gravitation to a primitive symimetry, not only permits the unification
of gravitation and electroweak interactions, but also implies a number of rather
intriguing novel implications and predictions.
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1.4. Applications, verifications and predictions of the
isominkowskian geometry

As indicated earlier, the most important application of the isominkowskian geome-
try of this paper is that for the achievement of a consistent inclusion of gravitation
in unified gauge theories of electroweak interactions. The reader should however be
aware of the existence of numerous, additional applications and verifications.

Firstly, it has been recently proved that*® the Riemannian geometry, as well
as all geometries with a nonnull curvature, do not possess invariant units of space
and time, thus having evident problematic aspects in their applications to actual
measurements. The regaining of the Minkowskian axioms assures the resolution of
this problematic aspect because its unit I is notoriously invariant, and the same
holds for its generalization I (see Ref. 4h for details).

Secondly, the unification of the special and general relativities permits the res-
olution of a number of historical controversies in gravitation,> such as the contro-
versy on whether or not the total conservation laws of general relativity are indeed
compatible with those of the special relativity, or the controversy on the lack of a
meaningful relafivistic (rather than Euclidean) limit of gravitation. The geometric
unification here considered resolves these controversies in the affirmative way. For
instance, the mere visual inspection that the generators of the Poincard symmetry
and its isotopic image coincide, establishes the compatibility of the total conserva-
tion laws in the two relativities (because the generators of spacetime symmetries are
the total conserved quantities). Similarly, the simple limit 7(z) -+ I establishes a
meaningful relativistic limit of gravitation. A number of other controversies appear
to be also resolvable by the isotopic unification, although they evidently require
specific studies.

Thirdly, despite attempts throughout this century, the problem of the quantum
version of gravity is far from being solved because of rather serious physical short-
comings due to the nonunitary structure of the theory, such as:*® lack of conservation
of the basic units of space and time under the time evolution of the theory with
consequential lack of unambiguous applications to experiments; lack of conservation
in time of the original Hermiticity, with consequential lack of physically admissible
observables; lack of uniqueness and invariance of the numerical predictions; and
other problems.

Another important reason for the original proposal of the isotopic unification of
the general with the special relativity was that of permitting a basically novel op-
erator form of gravity which verifies the abstract axioms of conventional relativistic
quantum mechanics and which could therefore resolve the above problematic aspects
by conception. Intriguingly, the point of view conveyed by these studies® is that
a consistent operator theory of gravity may well have always ezisted. It did creep
in unnoticed because embedded where nobody looked for: in the unit of relativistic
quantum mechanics.

Fourthly, it has been known throughout this century (beginning with E. Car-
tan) that the Riemannian geometry has clear limitations for interior gravitational



o

R TR

356 R. M. Sontilli

problems in general and gravitational collapse in particular. In fact, a collapsing
star is not made up of ideal points, but rather of extended and hyperdense hadrons
in conditions of total mutual penetration and compression in large numbers into
a small region of space. It is evident that these physical conditions are arbitrarily
nonlinear, not only in coordinates, but also in velocities and wavefunctions, as well
as arbitrarily nonlocal and not derivable from a first-order Lagrangian (veriationally
nonselfadjoint>), thus being dramatically beyond the representational capabilities
of the Riemannian geometry.

The unification here considered resolves this additional Lmitation. In fact,
studies®® have indicated that, under the isominkowskian reformulation, the metric
must remain well behaved, real valued and symmetric, but its functional dependence
becomes unrestricted, i.e,

oz, &,...) =T(2,4,...) xn, [=1/T(az,.), (1.3)

thus permitting a more adequate and direct geometric treatment of interior
gravitational problems. This permits the otherwise impossible applicability of Ein-
stein’s exterior axioms to interior gravitational problems with a number of devel-
opments currently under study, e.g., a reinspection of the theorems on singularities
via the inclusion of nonlinear, nonlocal and nonlagrangian effects. In fact, gravita-
tional singularities now become the zeros of the generalized umits J (z,%,...) =08
Note that the latter occurrence too is precluded for the conventional formulation
of gravity.

Fifth, the ultimate pillar of the special relativity is the “direct geometrization”
(i.e., geometrization via the metric) of the speed of light in vacuum cp, which is
then turned into a universal invariant by the Poincaré symmetry. Both the special
and general relativities in their current formulation are unable to provide a direct
representation of the local variation of the speed of electromagnetic waves in interigr
physical problems. In fact, it is known since Lorentz!2* times (see also Pauli’s [le]
quotation of this study by Lorentz) that the speed of electromagnetic waves in our
atmosphere is smaller than that in vacuum, ¢ = co/n < ¢g. Moreover, photons
traveling in certain guides with speeds bigger than the speed in vacuum, ¢ = ¢o/n >
€o, have been apparently measured;*?®2¢ recent astrophysical measurements'2d-12f
have indicated the apparent existence of Jets of matter expelled by astrophysical
bodies at speed higher than ¢p; and solutions of ordinary relativistic equations with
arbitrary speeds have been recently identified!2s (see also Recami’s’®® reviews of
experimental evidence on superluminal speeds).

As a result, a fundamental insufficiency of contemporary relativities is their in-
ability to provide a direct geometrization of arbitrary local speeds of electromagnetic
waves. This inability has implied consequential physical shortcomings, e.g., the use
of the speed of light in vacuum cg in the exterior of gravitational horizons (which
are known to be filled up with hyperdense chromosphere, thus having local speeds
¢ = cp/n different than cp), or in the huge chromospheres of quasars (thus hiding
the possible treadshift due to their decrease), and others.
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Another important objective for which the isotopies of the Minkowskian geom-
etry, the Poincaré symmetry and the special relativity were proposed? has been
the achievement of a direct geometrization and universal symmnetry for speeds of
electromagnetic waves of arbitrary local values, irrespective of whether smaller, equal
or bigger than cp. As we shall see {Sec. 2), this objective is readily achieved by as-
suming a diagonal realization of I with I;4 = 1/n% which yields in the 4-4 line
element of the metric with the term ¢? = c3/n2, where nyq is the ordinary index of
refraction. Thus, the isominkowskian geometry, the isopoincaré symmetry and the
isospecial relativity do indeed provide the desired direct geometrization and univer-
sal invariance of arbitrary local speeds ¢ = ¢p/ny of electromagnetic waves.

It should be mentioned that the now old theory of refractive index is insufficient
for a deeper understanding of the local variation of the speed of electromagnetic
waves on numerous grounds. First of all, the theory reduces the event to photons
scattering among molecules, thus lacking a geometric representation of the general
inhomogeneity and anisotropy of the medium in which the waves propagates. The
latter characteristics are directly representable with the isominkowskian geometry,
that is, representable via the metric itself, and predict a new contribution to the
Doppler shift suitable for experimental verifications®€ (see also Sec. 2.14). Moreover,
the inability of the conventional theory of refractive index of representing speeds of
electromagnetic waves bigger than that in vacuum is beyond scientific doubt, thus
establishing the need for new approaches.

As we shall see, the isospecial relativity* can be defined as a theory providing
a unified representation of relativistic and gravitational, exterior and interior and
classical or operator dynamical problems of matter under the universal isopoincaré
symmetry, in such a way to coincide at the abstract level with the special relativity.
This implies in particular that the maximal causal speed on isospaces over isofields
remains the value ¢y, while locally varying speeds ¢ = ¢g/n4 emerge in the projection
into our conventional spacetime. For this reason, the isospecial relativity has been
indicated (see, e.g., Refs. 8 and 9) has turning the special relativity into a form
which is *directly universal,” i.e., applicable for all exterior and interior systems
considered (universality) directly in the frame of the observer (direct universality).
Note also that the isospecial relativity is the only known theory which renders the
axioms of the conventional special relativity compatible with speed of light bigger
than that in vacuum, other approaches evidently implying their violations

Besides the above applications of direct relevance for this memoir, the reader
should be aware that the isominkowskian geometry, the Poincaré—Santilli isosymme-
try and the isospecial relativity, already have a number of experimental verifications,
such as:

(1) An exact isominkowskian fit® of the experimental data on the behavior of mean-
life of the K° particle with energies from 30 to 400 GeV, where the Minkowskian
anomaly is predieted from expected internal nontocal effects under a conven-
tional behavior of the center-of-mass;
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(2} An exact isominkowskian fit°® of the experimental data on the Bose-Einstein
correlation for the two-point-isocorrelation function®® deriving the correlation
from the nonlocality of the p — § fireball from first axiomatic principles with-
out ad hoc “semiphenomenological approximations” with unknown parameters,
and by reconstructing the exact Poincaré symmetry in isospace under nonlocal
interactions; -

(3) An exact confinement of quarks on isominkowskian spaces? (i.e., a confinement
with an identically null probability of tunnel effects) even in the absence of a
potential barrier, which is quite simply permitted by the isotopies due to the
incoherence of the internal and external Hilbert spaces, under conventional uni-
tary symmetries, conventional quanturm numbers and conventional experimental
data on mass spectra;

(4) An exact representation on isominkowskian space of the synthesis of the neutron
as occurring in stars at their formation, from protons and electrons only,*® which
has been unable to represent the totality of the characteristics of the neutron;

(5) The apparently first exact representation of total nuclear magnetic moments?®
under conventional quantum axioms and physical laws, representing the 1% of
experimental data which has been missed in nuclear physics throughout this
century despite all possible relativistic corrections;

(6) An exact reconstruction of the SU(2) isospin symmetry®® with equal masses for
protons and neutrons in isominkowskian space and physical masses in conven-
tional spaces;

(7) An exact representation of the large difference in cosmologica) redshifts between
quasars and their associated galaxies when physically connected according to
spectroscopic evidence;*

(8) An exact isominkowskian representation of the internal quasars redshift and
blueshift; s

(9) The achievement: of the apparently first attractive force between the two identical
electrons of the Cooper pair in superconductivity in excellent agreement with
experimental data;%

(10} The apparently first achievement of explicitly altractive forces between the neu-
tral atoms of molecular bonds in chemistry® capable of representing the known
2% of experimental data which has been missing by quantum chemistry through
this century;

(11} The apparently first capability of representing the main characteristics of bi-
ological structures, such as their irreversibility, time-rate-of-variations of sizes
and shapes, etc.;¥ and others.

To achieve a technical understanding of the novel isominkowskian geometry,
the reader is suggested to verify the extreme difficulties, if not the impossibility of
achieving the same results with a theory based on conventional numbers.

Some of the novel predictions of the isotopic grand unification and underlying
isominkowskian geometry are the following:
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(a) The prediction that the speed of electromagnetic waves is a local quantity which
can be arbitrarily smaller or bigger than the speed in vacuum depending on local
conditions;*s

(b) The prediction that the inhomogeneity and anisotropy of the media in which
light propagates has a new measurable contribution to the Doppler’s red- or
blue-shift;*&

(¢) The prediction of a new isocosmology which is characterized for the first time
by a universal symmetry, the Poincaré-Santilli isosymmetry, without the need
for the “missing mass”, a direct geometrization of the anisotropy and inhomo-
geneity in the propagation of light in the universe and other features; &

(d) The prediction of a new geometric propulsion called isolocomotion®® in which
motion occurs via the reduction of distances due to very large local amounts of
energy without any Newtonian propulsion;

() A new notion of spacetime in which the novelty rests in its basic units, thus
implying local notions of space and time different than those of comventional
relativities.

An understanding of this paper requires the knowledge that all the above ap-
plications, experimental verifications and predictions are dependent on the central
feature of the new geometry, the generalization of the basic unit, from the trivial
values +1 or I = diag(1, 1,1, 1) of the current literature to positive-definite 4 x4 ma-
trices whose elements have an unrestricted nonlinear integro-differential dependence
on local quantities.

Another important property for the understanding of this paper is that the
isominkowskian geometry has been proved to be “directly universal®,* i.e., capable of
representing all infinitely possible alterations of the Minkowski metric {(universality),
directly in the fixed z-frame of the observer (direct universality). As such, the new
geometry applies even when not desired.

Moreover, the isominkowskian representation of Minkowskian ancmalies is the
only one capable of preserving the abstract Binsteinian axioms and related speecial
relativity. In fact, the use of other methods based on conventional mathematics, such
as the so-called g-deformations, imply the lack of isomorphism between the deformed
and Minkowskian spaces, with consequential violation of the special relativity.

An understanding of this paper therefore requires an understanding of the ne-
cessity of the new isomathematics for the invariant preservation of the Einsteinian
axioms under novel non-Einsteinian conditions.

1.5. Foundations of the isodual isominkowskian geometry
Jor antimaiter

Al the preceding studies are restricted to the sole treatment of mafter. In fact,
their use for the representation of antimatter is known to be afflicted by a num-
ber of problematic aspects. The first is the structural incompatibility between
gravitation and electrieoweak interactions, the former representing antimaftter with
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positive-definite energy-momentum tensors, while the latter representing antimatter
via negative-energy solutions of fields equations.

In essence, antimatter is nowadays solely represented at the classical level via a
change of the sign of the charge. This is grossly insufficient to represent physical
reality because antimatter is known to be an anticutomorphic image of matte, as
it is the case for charge conjugation in operator theories. Moreover, the operator
image of the above classical representation is not the appropriate charge conjugate
state, evidently because the conventionsl treatment has only one channel of quan-
tization. It then follows that the conventional classical treatment of antimatter is
incompatible with its operator counterpart. This yields an intrinsic structural in-
consistency in the current representation of antimatter which is independent from
that with electroweak interactions.

At any rate, antimatter was (discovered, and it is still identified nowadays, in
the negative-energy solutions of relativistic equations, currently treated at the level
of second quantization. It is evident that, for consistency, antimatter should be
treated at the classical level too with negative-energy representations.

In the search for the resolution of the above shortcomings, this author submitted
in Ref. 4b, and then studied in Refs. 13, a novel map which is as antiautomorphic as
charge conjugation but which, unlike the latter, is applicable at all levels of study
beginning with Newton’s equations, and then persists at the subsequent analytic
and quantum levels.

The new map, called isoduality for certain technical reasons, is given by the
conjugation of all possible quantities Q(z,&,...) characterizing matter (and their
operations) into their enti-Hermitean form [loc. cit.]

Qz,3,...) = Yz, 4,...)° = ~Q(z, 2,...)! (1.4)

under which the generalized gravitational unit of the isominkowski space becomes
negative-definite

I(z) = 1/T(@) = I(z)? = ~I(z)t = —F(z) = ~1/T(q). (1.5)

Since the norm of numbers with a negative unit is negative-definite, all quantities
of matier change sign under isoduality, including the charge, as well as energy-
momentum tensor and all other characteristics. In this way we regain equivalence in
the use of negative-energy for antimatter at each of the classical and quantum levels.

Isoduality also applies to quantization, yielding a novel isodual quantization,3c
under which map (1.4) results to be equivalent to charge conjugation. !

Isoduality also resolves Dirac’s historical problem of the unphysical behavior of
negative energies and time, which lead to the formulation of the “hole theory”. In
fact, particles with negative energy and time referred to negative units behave in
exactly the same physical way as particles with positive energy end time referred to
positive units (see Refs. 13 for details).

The reader should be aware that the isodual theories see their ultimate ori-
gin in the structure of the conventional Dirac equations. In fact, isodual units
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I¢ = —diag(1,1) and isodual Pauli’s matrices o%, = —oly = —o}, are essential for
the very definition of Dirac’s gamma matrices. This implies a novel interpretation
of the convention Dirac equation, which permits the treatment of antiparticles in
first quantization, as expected in a theory beginning at the Newtonian level.

Second quantization is done in the isodual theory of antimatter for exactly the
same reasons holding for particles. In this level, the theory results to be charac-
terized by advanced solutions which are now reinterpreted as belonging to isodual
spaces over isodual fields.

The use of generalized and negative-definite units has requested the construction
of another new mathematics known under the name of isodual isomathematics.
This includes still new numbers, new spaces, new algebras, new geometries, etc.,
which are the antiautomorphic image of the corresponding isotopic quantities under
isoduality.

The reader should also be aware that isodualities apply also to conventional
mathematics, yielding a particular case of the isodual isomathematics called isodual
mathematics. Even though quite simple, as we shall see, the latter is mathemati-
cally nontrivial because it focuses the attention on the fact that our current entire
mathematical knowledge, is restricted to the simplest possible unit +1, and, as such,
it is not applicable to a consistent classical treatment of antimatter.

The reader should be aware that the appraisal of the novel theory of antimatter
via the conventional mathematics also leads to a number of inconsistencies which of-
ten remain undetected by nonexperts. For instance, the use of conventional negative
numbers has no mathematical or physical meaning for isodual theories, evidently
becanuse their unit is the trivial number +1. The only applicable numbers are in-
stead those for which the unit is, first, generalized, and, then, negative-definite, as
studied in Sec. 3.

Another important objective of this paper is therefore that of outlining the novel
isodual isomathematics and presenting, apparently for the first time, the founda-
tions of the isodual isominkowskian geometry for the gravitational treatment of
antimatter.

1.6. Foundations of the isodual Poincaré-Santilli isosymmetry

Yet another fundamental tool for the axiomatically consistent inclusion of gravita-
tion in unified gauge theories is the isodual Poincaré-Santilli isosymmetry Pd(3.1),
first introduced in Ref. 4d and in various other works (see monographs® and
Kadeisvili’s® recent study), which is essentially given by the isodual image of the
isosymmetry P(3.1), that is, its reconstruction with respect to negative-definite
isounits (1.5) at all levels, including enveloping algebras, Lie algebras, Lie groups,
transformation and representation theories, etc. -

Yet another important notion we shall study in this paper is that of isoself-
duality,* which is the novel invariance under isoduality,

Qltz, &...) » Q¥ v, ) = -Q' = Q(z,4,.. ), (1.6)
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as it is the case for the imaginary quantity i{ == i? = —it = i and for the Dirac
gamma matrices 7y, — fy,ud = —’y#T = Yo

The main structures permitting the axiomatically consistent inclusion of gravita-
tion in unified gauge theories are therefore given by the isoselfdual isomin-
kowsldan spaces

Mzor = {Mosb X Sspin} X {M%0re x* 8%pin} = S0, (1.7)
characterized by the following isoselfdual total isounit
Frot = {For % fspm} X {I%m x* Ispin} = Izt s (1.8)
under the universal, isoselfdual Poincaré-Santilli isosymmetry
Sror = P(3.1) x PH3.1) = S%ret (1.9)

where P(3.1) is the spinorial covering of the Poincaré symmetry P(3.1), P(3.1) its
isotopic covering and P4(3.1) its isodual.

The reader should be aware that, contrary to popular belief, the correct sym-
metry of the conventional Dirac equation is not P(3.1), but P(3.1) x P43.1). In
fact, Dirac’s gammas are isoselfdual and, as such, they cannot possibly admit the
symmetry P(3.1) which is not isoselfdual, while the novel invariance under isodual-
ity is indeed verified by the broader symmetry P(3.1) x P¥(3.1). In turn, this true
invariance of Dirac’s equation is the ultimate origin for the full equivalence in the
treatment of particles and antiparticles in first quantization.

1.7. Applications, verifications and predictions of the isodual
isominkowskian geomelry

The primary application of the isodual isominkowskian geometry of this paper is
the achievement of axiomatic consistency for the inclusion of gravitation in unified
gauge theories for the specific case of antimatter.

The above application requires, by conception, that the theory of antimatter
must begin at the purely classical level, and then admits consistent operator im-
age, thus characterizing antiparticles via negative energy and time. The isodual
isominkowskian geometry provides the only known axiomatically consistent repre-
sentation of antimatter verifying these classical and operator requirements. How-
ever, isodual theories also have numerous other applications we cannot review here
for brevity.&

The available experimental verification of the isodual theory of antimatter is
simply overwhelming at both classical and operator levels. In fact, the theory
recovers all available experimental data on antimatter ot both the clessical. and op-
erator levels*® which, as well known, consist at this writing of all known intéractions
less gravitation.

The predictions of the isodual theory of antimatter are far reaching. They solely
deal with gravitational interactions and can be summarized as follows:
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(1) The prediction that the antihydrogen atom and antimatter at large, emit a new
photon, called by the author isodual photon'® which is indistinguishable from
the ordinary photon for all interactions except gravitation;

{2) The prediction that stable antiparticles, such as the isodual photon, the isodual
electron (positron) and the isodual proton (antiproton) experience antigrav-
ity in the field of matter (defined as the reversal of the sign of the curvature
tensor),'® in a way which avoid known objections (e.g., because the positronium
is predicted to experience attraction in both fields of matter and antimatter);

(3) The prediction of a mathematical spacetime machine,'® ie. the capability to
perform a closed loop in the forward light cone, in full agreement with causality,
e.g., because known objections against motion backward in time are inapplicable
when dealing with a negative unit of time.

(4) The prediction of a novel isoselfdual cosmology which, in addition to the lack
of need of the “missing mass” indicated earlier, has null total characteristics of
mass, energy, angular momentum, time, etc.

(5} The prediction (from quantitative representations of bifurcations) that biologi-
cal structures such as sea shells have an internal jsoselfdual geometry dramati-
cally more complex than that perceived by our premitive sensory perception;¥
and other predictions.

The understanding of this paper requires a technical knowledge that all ap-
plications, verifications and predictions of the isodual isominkowski geometry are
centrally dependent, again, on the assumed generalized unit which, this time, is
negative-definite, thus resulting in a novel geometry.

2. Isominkowskian Geometry for the Representation of Matter

2.1. Introduction

The basic notion of this paper, that of isotopies, is rather old. As Bruck® recalls,
the notion can be traced back to the early stages of set theory where two Latin
squares were said to be isotopically related when they can be made to coincide via
permutations. Since Latin square can be interpreted as the multiplication table of
quasigroups, the isotopies propagated to quasigroups, then to algebras and more
recently to most of mathematics. As an llustration, the isotopies of Jordan algebras
were studied by McCrimmon.5®

In this paper, we shall use the isotopies of the unit, fields, spaces, differen-
tial calculus, functional analysis, algebras, geometries and analytic mechanics in-
troduced by Santilli.>*5" In their latest formulation,®® isotopies are maps’ (also
called liftings) of any given linear, local, canonical or unitary structure into its most
general possible nonlinear, nonlocal, noncanonicel or nonunitary extensions which
are nevertheless capable of reconstructing linearity, locality, canonicity or unitarity
in certain generalized spaces and fields colled isospaces and isofields, respectively
(see below). As such, isotopic liftings are arioms-preserving by conception and
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construction, namely, the isotopic structures must be locally isomorphic to the
original structures as a necessary condition for an isotopy.

Independent studies on isotopies can be found in Refs. 6-10. A comprehensive
literature on isotopies up to 1984 can be found in Tomber’s bibliography® while
subsequent references can be found in the recent monograph by Lohmus, Paal and
Sorgsepp.5°

It should be stressed that the “isotopies” are ineguivalent to the various forms of
“deformations” of the current literature (see, e.g., Ref. 14 and papers quoted therein)
for several reasons, such as:*® the former are defined via generalized units, while
the latter use conventional units; the former are axiom-preserving while the latter
are not; the former are defined over generalized spaces and fields while the latter
use conventional spaces and fields; ete. To avoid confusion, readers are discouraged
from using the term “deformations” (of a given structure into a nonisomorphic form)
when referring to the “isotopies” (of the same structures into axiom-preserving
isomorphic forms).

We shall hereon assume the convention, rather familiar in the literature on
isotopies, that all quantities with a “hat” are computed in isospaces over isofields,
and the corresponding quantities without a “hat” are computed on conventional
spaces over conventional fields.

A viewpoint we would like to convey in this paper is that there cannot be really
novel physical advances without really novel mathematics, and there cannot be
really novel mathematics without new numbers. The primary research efforts by
this author has therefore been the search for new numbers from which everything
else uniquely follows via mere compatibility arguments.

2.2. Isotopies of the unit

The fundamental isotopies are those of the wnit®®58 i.e., the liftings of the n-
dimensional unit I = diag(1,1,1,...) of conventional vector or metric spaces into
real-valued and symmetric n X n matrices I= (f BLY = It whose elements f*, have
an unrestricted functional dependence in the coordinates z, velocities v = dx/dt,
accelerations a = dv/fdt, local density p, local temperature =, and any needed other
characteristics of the problem considered, first introduced by Santilli®® back in 1978,

I—>f=(f”v)=f($1vaaa“a7':"‘)=ft' (21)

The above liftings were classified by Kadeisvili®® into: Class I (generalized
units that are nondegenerate, Hermitean and positive-definite, characterizing the
isotopies properly speaking); Class II (the same as Class I although Iis negative-
definite, characterizing the so-called isodualities); Class III (the union of Class I
and IT); Class IV (Class III plus the zeros of the generalized unit, i= 0}; and Class
V (Class IV plus unrestricted generalized units, e.g., realized via discontinuous
functions, distributions, lattices, etc.).
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All isotopic structures identified below also admit the same classification. Unless
otherwise stated, in this section we shall study isotopies of Classes I while the
isodualities will be studied in Sec. 3. The isotopies of Classes II, IV and V are
vastly unexplored at this writing.

2.3. Isofields

The first significant application of the isotopies of the unit is that for the liftings of
conventional numbers and fields. Let F = F(a,+, x) be a field (hereon assumed to
have characteristic zero) with elements a, b, . . ., sum a+b, conventional (associative)
multiplication hereon denoted ab = a x b, additive unit 0, multiplicative unit 1, and
familiar properties a+0=0+a=4g,ax1=1%xa =aq,Ya € F, etc. We have
in particular the field R(n,+, x) of real numbers n, the fleld C(c, +, %) of complex
numbers ¢, and the field Q{q,+, X} of quaternions gq.

Definition 2.1:% An %sofield” F' = F(a,+, X) is a ring with elements & = a x I,
called “isonumbers”, where a € F, and I is a Class I quantity generally outside
F, equipped with two operations (4, X), the “isosum” ath = (a +b) x I, with
conventional additive unit 0 =0, and the “isomultiplication™°

axb=axTxb, (2.2)

Ixa=axi=a,vacF, (2.3)

in which case (only), I is called the “isounit” and T is called the “isotopic element”
Under these assumptions F' is a field, i.e., it satisfies all properties of F in their
isotopic form:

(1) The set I is closed under i isosum, atbhe R, va, be F.

(2) The isosum is commutative, 4-+b = b + &, va, bel,

(3) The isosum is associative, & + (b+&) = (a+b)+é, va,b,é, € F,

(4) There is an element 0 = 0, the “additive isounit”, such that 440 = 044 =
Vi e F,

(5) For each element & € F\, there is an element —& € F, called the “opposite of
@*, which is such that a+(=a) = 0;

(6) The set F is closed under isomultiplication, axhe I, va, be F,

(7) The 1somult1phcat1on is generally nomsocommutwe, axbh =+ b§<& but “isoasso-
ciative”, ax (bx8) = (axb)x&, Va, bée B,

(8) The gquantity I in the factorization & = a x [ is the “multiplicative isounit” of
F as per Egs. (2.3)

(9) For each element & € F, there is an element a1 e P, called the “isoinverse”,
which is such that ax(d“‘f) = (a‘f)xa =]

(10) The set F is closed under joint isomultiplication and isosum,

9,

ax(b+e) e F, (a+bxéeF, vabéelk (2.4)
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(11) All elements &,b,& € F verify the right and left “isodistributive laws”
ax(b+8) = axbtaxe,  (atb)ké = axeibua. (2.5)

When there exists a least positive isointeger § such that the equation pxa =10
admits solution for all elements & & F, then F is said to have “isocharacteristic
p”. Otherwise, F' is said to have “isocharacteristic zero”.

Unless otherwise stated, all isofields considered hereon shall be of Class I and
have isocharacteristic zero. Since the additive unit is not changed under isotopies,
0 = 0, the sum will be often denoted for simplicity with the conventional symbol,
+ = +, while the differentiation of the multiplication x into X stands to denote a
nontrivial change of the multiplicative unit  — [ 1.

The isofields important for this section is the isofield Rin,+, x) of isoreal num-
bers 72 on which the isominkowskian geometry will be constructed. We also mention
for completeness the isofield & (&, X) of isocomplex isonumbers & and the isofield
Q(a, +, X) of isoquaternions § (see Ref. 5f for the isooctonions) which will not be
considered in this study. Since all infinitely possible isofields ¥ preserves by con-
struction all axioms of F, we have the following:

Lemma 2.1:% Class I isofields a1, X) are locally isomorphic to conventional
fields F(a,+, %), i.e., the bifting F - F is isotopic.

All conventional operations dependent on the multiplication on F are gener-
alized on F' in a stmple yet unigue way, yielding isopowers, isosquare roots, iso-
quotients, efc.

(M)

=axé=(axa)xI, @ =abxi?, alm=(jm)x], et (2.6)
It is then easy to see that isounit verifies all aziomatic properties of the conventional
unit, e.g.,

P=Ixfx...xi=1, HB=i, =}, e (2.7)

Despite their simplicity, the liftings ' — F have significant implications in
number theory itself. For instance, real numbers which are conventionally prime
{under the tacit assumption of the unit 1 are not necessarily prime with respect
to a different unit™). This illustrates that most of the properties and theorems of
the contemporary number theory are dependent on the assumed unit and, as such,
admit simple, yet intriguing and significant isotopies (for more details, see Vol. II
of Refs. 4¢, Appendix 2B).

The isonorm must be an isonumber and is therefore defined by5f

la] =la| x I, (2.8)

where [a] is the conventional norm. It is therefore easy to see that the isonorm (of
isofields of Class I) is positive-definite.

SR T e
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The central notion of this paper from which all results can be uniquely and
unambiguously derived is therefore given by new numbers with arbitrary positive-
definite units. Yet more general numbers will be indicated at the end in section.

2.4. Isominkowskian spaces

The second significant application of the isotopies is the lifting of the conventional,
vector, metric or psendometric spaces, first presented by Santilli** in 1983 (see
monographs?® for detailed treatments). In this subsection we review the main
aspects of the isotopies of the Minkowski space called isominkowskian spaces (loc.
cit.). The isominkowskian geometry is the geometry of the isominkowskian spaces
as outlined in this section. A knowledge of the preceding isotopies of the Euclidean
space and geometry*® is recommendable.

Let M = M(z,7n, R) be a conventional Minkowski space! with coordinates z =
{z#} = {r,cot}, u = 1,2,3,4, where ¢ the speed of light in vacuum, basic unit
I = diag(+1,+1,+1,+1) and metric = diag(+1,+1,+1,~1) over a field R =
R{n,+, x) of real numbers n = n x I equipped with the conventional sum + and
product x, additive unit 0 and multiplicative unit I. Let v = &, a = ¢, p represent
the local density and 7 the local temperature of the medium considered.

Definition 2.2:% The “sominkowski spaces” M(#,#,R) of Class I are (3 + 1)-
dimensional pseudometric spaces defined over an isoreal isofield fi(ﬁ,%, X) with a
common, 4 x A-dimensional, real-valued and symmetric isounit I = (I*)) = I*
of the same class, equipped with “isometrics” possessing an unrestricted functional
dependence

~

G ="(z,v,a,4,T,...) x I =[T(z,v,a,t,7,-..) X 7] xi=0Gt,

. s . (2.9}
T=T"1=1">0,
local chart in contravariant and covariant forms
&= ::‘:“w-*a:"xf, By = Fy X &Y =T,% % xm”xf,
{##} ={ } e ™ T 7 N (2.10)
zH,x, € M;

and “isoseparation” among two points &,9 € M
(& —9)% = (@ - )X G k(& ~ §¥)

= [(2* — ¢*) X fiuw % (2" — ") x ]

= [(z* — ') x Tuu(z,...) x (z' — ")
+ (@2 — %) x Ta(z, ...) % (2° — ¢7)
+ (9;3 _ ys) x Ts3(z,...) % (ma _ y3)
(" —9") % Tufe,.) x "~y < 1, (2.112)

T = diag(Tis, Toos Taa, Fas), Toup >0, zmyeMIgM. (2.11b)
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Note that all scalars on M must be Lifted into isescalars to have meaning for
M, i.e., they must have the structure of the isonumbers # = 1, x . This condition
requires the redefinition z — # = 2 x I, T = G = fluw % I, 2# x Tuw X ¥ —
{z# X 1 x 27) x I, ete.

Note however the redundancy in ‘practice for using the forms # = z x I and
G = # x I because of the identity £° = 3#XGXE¥ = (2# x f), x zv) x I. For
simplicity we shall often use the conventional coordinates and the isometric will
be referred to fj = 7' x n. The understanding is that the full isotopic formulations
are needed for mathematical consistency. '

A fundamental property of the infinite family of generalized spaces (2.11) is that
the lifting of the basic unit 7 — I while the metric is lifted of the inverse amount,
n—fH=Txn I= 71, implies the preservation of all original axioms, and we
have the following:

Lemma 2.2:** The isominkowski spaces M (&,9,R) over the isofields R(#, -, X)
with a common positive-definite isounit I preserve all original azrioms of the
Minkowski space M(z,n, R) over the reals R(n,+, X).

The nontriviality of the lifting is that the Minkowskion arioms are preserved
under an arbitrary functional dependence of the melric i = iz,v,a,p,7,...) for
which the sole x-dependence of the Riemannian metric 9{z) is a particular case.
As a matter of fact, the isominkowski spaces admit for metrics all infinitely pos-
sible metrics with the Minkowskian signature (+,+,+, — ), including Riemannian,
Finslerian, nonsedarguesian, and any other possible metric.

The above occurrence begins the illustration of the “direct universality” of the
isominkowskian spaces®® indicated in Sec. 1. Note also that a]] possible “deforma-
tions™ of the Minkowski metric!4 are particular cases of the isometric. However,
the former are still referred to the old unit T , thus losing the isomorphic between
deformed and Minkowski space, while the isotopies preserve the original axioms by
construction.

In the following we shall assume the convention that repeated indices between
isocoordinates are in isominkowski space, while the contraction between the indices
of the isounit and isotopic element is an ordinary sum. Thus, we have

#2 =

2

XEy = By RS =3 RGoap %3P = 3,XG%F 23,
= (2% x Tuf X 158 X 2°) x I = (24 x Pox 0 xag)x I, (2.12a)
G = (Cu) U™, 7P = |() [P, (2.12b)

A most fundamental physical characteristic of the isominkowski spaces is that
alters the units of space and time. Recall that the wnit I — diag({1,1,1},1) of the
Minkowski space represents in a dimensionless form the units of the three Cartesian
axes, e.g., (+lcm, +1lcm, +lcm) and of time, e.g., +1 sec. Recall also that the
Cartesian spaceunits are equal for all azes. Consider now the isominkowski space.
Since I is positive-definite, it can always be diagonalized into the form
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I = diag(ni?,ns?,ns?, ns?) = 1/ 7T, I, =n,"?, n, >0. (2.13)

This means that, not only the original units are now lifted info arbitrary positive
values, but the units of different space azes generally have different values. Jointly,
the component of the metric are lifted by the inwverse amounts n,"2. This im-
plies the preservation on M over R of the original numerical values on M over R,
including the crucial preservation of the maximal causal speed ¢y, as we shall see.

Note also the necessary condition that the isospace and isofield have the same
isounit I. This condition is absent in the conventiona) Minkowski space where the
unit of the space is the unit matriz I = diag(1,1,1, 1), while that of the underlying
field is the number I = +1. Nevertheless, the latter can be trivially reformulated
with the common unit matrix I, by achieving in this way the form admitted as a
particular case by the covering isospaces

Mz, R): s={z"xI}, 2®=(@"xn,xz*)xIcR (2.14)

The structure of both the Minkowskian and isominkowskian invariants is there-
fore given by
Basic Invariant = (Length)? x (Unit)?. (2.15)

which illustrates more clearly the preservation of the or1g1na1 Minkowskian axioms
under the dual lifting n = =T xnand I - [ = 1/7T.

A significant difference between the conventional space M and its isotopes M is
that the former admits only one formulation, the conventional one, while the latter
admits two formulations: that on isospace itself (i.e. expressed with respect to the
isounit ) and its projection in the original space M (expressed with respect to the
conventional unit I). The latter can also be formulated via modified coordinates

i =ak/n,, (2.16)
under which we have the identity
= 2 x ¥ =t x 2t fna? + 2% x 2% /ny? 4 23 x 2% /n3? — z* x 2% /n,?

=4

= x4+ P x2 43«37 4

x 7t =%, (2.17)
which are useful for practical calculations. In fact, any physical value #* = g+ [y
in our spacetime is projected into the value z in isospace, and vice-versa.

Note that the projection of M(%,#, R into M (z,7, R) is not a conformal map,
but an inverse isotopic map because it implies the transition from the generalized
unit and fields to conventional units and fields.

The above dual interpretation of M is at the foundation of the seemingly. con-
tradictory unification of the Minkowskian and Riemannian geometries. In fact, the
former holds for the interpretation of the isometric # 7j on isospace over isofields, while
the latter holds in its projection into our spacetime which recovers conventional
Riemannian settings.
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The axiomatic motivation for constructing the isominkowskian spaces is that any
modification of the Minkowski metric necessarily requires the use of noncanonical
transforms x — z/(z),

- Ba'e Sx'8
Noerr ™* Type = B_m# Tag 3‘7"7 ?é T s (2.18)

and this includes the case of the transition from the Minkowskian metric 1 to the
Riemannian metric g(z). In turn, all noncanonical theories, thus inchiding the
Riemannian geometry, do not possess invariant units of space and time,% thus
having evident problematic aspects in physical applications, e.g., because it is not
possible to conduct an unambiguous measurement of length with a stationary meter
varying in time. A primary axiomatic function of the isotopies of the Minkowsld
space is that of preserving any {well behaved) generalized metric while restoring the
invariance of the basic units, as shown in Appendix B of Ref, 4h.

Stated in different terms, a primary axiomatic difference between the special and
general relativities is that the time evolution of the former is a canonical transform,
thus implying the majestic mathematical and physical consistency recalled in Sec. 1,
while the time evolution of the latter is a noncanonical transform, thus implying
a numnber of unresolved problematic aspects which have been Hngering throughout
this century. The reformulation of the latter in terms of the axioms of the former is
the sole possibility known to this author for achieving axiomatic consistency under
a nontrivial functional dependence of the metric.

In summary, the isominkowskian spaces have a twofold application in this paper.
First, they are used for a reinterpretation of the Riemannian metrics g(z) for the
particular case 4} = fj(x) = g(z) characterizing esterior gravitational problems in
vecuum. Second, they are used for the characterization of interior gravitaiional
problems with isometrics of unrestricted functional dependence i = i(z,v,a,...)
while preserving the original Minkowskian axioms.

Since the explicit functional dependence is inessential under isotopies, our studies
will be generally referred to the interior gravitational problem. Unless otherwise
stated, only diagonal realizations of the isounits will be used hereon for simplicity.
An example of nondiagonal isounits inherent in a structure proposed by Dirac is
indicated in Sec. 2.14. More general liftings of the Minkowski space of the so-called
genotopic and multivalued-hyperstructural type will be indicated in Sec. 2.15.

2.5. Direct geometrization of arbitrary speeds of light

As recalled in Sec. 1, the speed of light ¢ is not a “universal constant” because
its value depends on the local physical conditions. In: fact, the speed of light is
the constant value ¢y only in vecuum. However, within physical media of low
density, such as planetary atmospheres or astrophysical chromospheres, the speed
of electromagnetic waves assumes the valye ¢ = ¢o/n < ¢y, as known since Lorentz
times; %21® values ¢ = ¢y /n > ¢ have been apparently measures both on laboratory




Isominkowskian Geometry for the Gravitational Treatment of Matter ... 371 ,

tests™®12¢ and in astrophysics;124:12¢:1%f and solutions of ordinary wave equations
with arbitrary speeds have now been identified'?8 (see Ref. 12h for a review).

It is important to see from these introductory lines that the isominkowskian
geometry, the isopoincaré symmetry and the isospecial relativity provide a direct
geometrization of arbitrary speeds of light ¢ = ¢pfn, i.e., a geometrization wa the
isometric, when projected in our spacetime (referred to conventional units), while the
mazimal causal speed in isospace over isofields (when referred to isounits) remains
that in vacuum cq.

In fact, the isoseparation for isounit (2.13) becomes

3 = (o' x 2 /ny® + 27 x 2?fnp? + 12 x 2 fna? —t x tx a?/na?) x I, (2.19)

thus characterizing directly (that is, via the metric itself) local speeds ¢ = ¢o? /ng?
where 1 = ny is evidently the local index of refraction. It should be stressed that the
value ¢ = ¢g/n4 occurs in our spacetime, that is, with respect to conventional units.

In isospace, the situation is different because, jointly with the lifting of the speed
of light, we have the lifting of the corresponding unit by the inverse amount,

C% — (22 = 002/')‘?,42, Tau=1— f44 = 7142 . (2.20)

From invariance (2.15), the mazimal causal speed in isominkowskian space remains
that in vacuum co. This fundamental property will be proved again in the next
subsection.

Note that, besides excluding the singular value ng = 0, the isotopies leave com-
pletely unrestricted the numerical value of ny which can therefore be bigger, equal
or smaller than 1. It then follows that the value ¢ = cg/n4 can be smaller, equal or
bigger than cp. As a result, the isospecial relativity is naturally set to represent all
experimentally measured local speeds of electromagnetic waves.

It is imnportant to see that the above results are intrinsic in Einstein’s axioms of
special relativity and, as such, they do not characterize a “new theory”, but merely a
“new realization” of the existing theory. This occurrence can be seen by noting that
wsotnvaeriants for scelor isounits coincide with the conventional invariant. In fact,
for I = n? we have the following new invariance law of the conventional Minkowski
space first introduced in Refs. 3 and 4h

g° = (2" X x 2 x I =(g' xz* +2? x o? + 2% x 2% —t* x tt x ?) x [
= [* X (072 X fu)z¥ x (n? x I) = (2* x Aua”) x I
= (z' x 2} /n® + 2% x 22/ + 2% x 22/n? — #* x t* x co?/m*yx I. (2.21)
As one can see, and contrary to a rather popular belief, the capability to rep-
resent arbitrary speed of light ¢ = cg/n is intrinsic in the very structure of the

basic invariant of the special relativity, and actually constilutes a new mvariance
law called “isoselfscalarity”

Isi=n2xI, nod=n"2xn, (2.22)
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first introduced in Refs. 3 and 4h, under which the general symmetry of z2, the
Poincaré symmetry P(3.1), becomes eleven-dimensional (Appendix E).

‘The only difference between Egs. (2.21) and (2.19) is that the latter occur in ho-
mogeneous and isotropic media, while the former occur in generally inhomogeneous
and anisotropic media. ‘

The reason why the novel invariance law (2.21) has remained undetected
throughout this century is that if required the prior discovery of new numbers with
arbitrary units.

Note that the isominkowskian geometry provides o spacetime symmeltrization of
the indez of refraction, evidently expressed by the presence of the space counterparts
ng of ng, first introduced in Ref. 4a. The unavoidability of the space terms ng
should also be kept in mind because, starting from the sole presence of ny in the
invariant, conventional Lorentz transforms would automatically produce the space
counterparts.

All expressions considered until now in this section are local, i.e., they hold for
one specific interior point, e.g., for the study of the speed of light at one point of a
given chromosphere. When interior systems are considered from the outside, they
must be studied as a whole. In this case, all interior effects should be averaged to
constants, and we shall write

I = diag(n3?,n5?%,n32,n32), n®, = const > 0. (2.23)

This is typically the case for all exterior experimental measures of interior char-
acteristics. As an example, the measure from the outside of a light beam passing
through a chromosphere can be best done via the use of the average index of re-
fraction n°4 and related average speed ¢ = co/n°4, and the same occurs for other
quantities. Whenever referring to exterior experimental verifications, we shall there-
fore tacitly assume realization (2.23).

We should also indicate that, when the medium is no longer transparent to elec-
tromagnetic waves, the quantities n, (n°,) are called the characteristic functions
(constants) of the medium considered, provide a geometrization of the medium dtself,
much similar, although different, than the geometrization provided by the Rieman-
nian metric. In particular, ns provides a geometrization of the local density with
hasic value nq = 1 assumed as the density of the vacuum.

Note also that realizations (2.13) and (2.23) hold for the most general possible
case that the interior medium is inhomogeneous and anisotropic. The inhomogeneity
is represented via a dependence of the isounit in the locally varying density. The
anisotropy is generally due to a preferred direction of the interior physical medium,
e.g., due to spin, with the clear understanding that the underlying space remains
fully homogeneous and isotropic as per our current knowledge.

Also, the anisotropy is of two types. First, there is a space anisotropy character-
ized, e.g., by different values of the nx’s or by the factorization in the ny’s of the spin
direction. Second, the anisotropy can be in spacetime, i.e., n1 =nz =nz =N, # 14.
When the isotropy holds in space and time, we shall write n; = ns =ng =n4 = n.




R R e i e

Isominkowskian Geometry for the Gravitational Treatment of Matier ... 373

For example, under the assumption of perfect spheridicity, our atmosphere is a
medium of former type, while water is a medium of the latter type.

The analysis of this section has ben conducted for the case without gravitational
field. The inclusion of the latter will be studied in Sec. 2.7.

2.6. Light isocone

A serious insufficiency in the use of the conventional Minkowskian and Riemannian
geometries for the characterization of electromagnetic waves propagating within
physical media is the general loss of the light cone. In fact, a locally varying speed
of light, as it occurs in a planetary atmospheres or astrophysical chromospheres
with variable densities, implies the necessary loss of the “cone” in favor of a more
general surface in spacetime whose directrix is no longer a straight line.

The above loss is not a mere mathematical curiosity, because it carries rather
deep physical implications of numerical character. As an example, gravitational
horizons are today studied via the conventional light cone and the use of the speed
of light in vacuum cp. But the immediate exterior of the horizon of a collapsing star
is not “empty”, being composed instead by huge inhomogeneous and anisotropic
chromospheres in which the the speed of light is not that in vacuum. Numerical
results based on the conventionsal light cone are then questionable.

The costumery attitude of reducing the propagation of light within physical me-
dia to photons in second quantization scattering among molecules, while certainly
acceptable as a crude first approximation, cannot possibly be a final scientific de-
scription for numerous reasomns, such as:

(1) The reduction has no scientific credibility when dealing with the propagation
within physical media of electromagnetic waves, say, of one meter in wavelength,
which requires first a classical representation for any operator description in first
or second quantization to make sense;

(2) The reduction may have scientific value only following the achievement of a
consistent operator description of gravity, not only in first, but actually in
second quantization; and

(3) The reduction to photons propagating in empty space eliminates the very phys-
ical characteristics to be represented, the inhomogeneity and anisotropy of the
medium considered, which do have indeed measurable physical implications ab-
sent for the homogeneous and isotropic space.

In reality, physical evidence establishes that matter alters the geometry of the
vacuunm. The isotopies have been constructed to represent this alteration, first,
because they are directly universal, thus always applicable, and second, because
they geometrize physical media by preserving the abstract axioms of the vacuum.

One of the important applications of the isominkowskian geometry of Class I
with diagonal isounit is the identification of a generalization of the light cone which
permits more realistic calculations whenever the speed of light is no longer ¢g. The
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latter was introduced for the first time by this author in Vol. I, Sec. 5.3B, of Ref. 4g
under the name of solight cone, although it will be called hereon light isocone.

In line with all other isotopies, the light isocone reproduces the exact cone in
isospace to such an extend that even the maximal causal speed in isospace is the
conventional speed in vacuum co. However, the projection of the isolight cone in
our spacetime yields the deformed cone we observe under a locally varying speed c.

The understanding of the isolight cone requires the knowledge that the lifting
from the Minkowskian to the isominkowskian spaces permits the preservation of all
conventional notions of a flat geometry, such as straight lines, intersecting straight
lines, perpendicular or parallel straight lines, etc. This implies in particular the
preservation of the conventional trigonometric and hyperbolic functions although
in a predictable generalized form.

Note by comparison that, in the transition from the Minkowskian to the Rie-
mannian geometry, there is the loss of all the above conventional notions. This is
further lustration that the isominkowskian representation of gravity is isoflat, that
is, flat in isospace.

The isotopies of conventional notions of straight and intersecting lines is part of
the isoeuclidean geometry (Vol. I of Ref. 4g). To render this paper minimally selfsuf-
ficient, we consider the compact isoeuclidean subspace E = E(#,8, R) of M(&,%, R)

E=EF6,R) : F={r* x I}, §="T x6, 6§ =diag(1,1,1), -

I = diag(ni?,na?, n3?) . (224

An isoline on E over R is the conventional topological notion although referred

to isopoints with values 7 = r X i on an isofield R. An isostraight line in the
isoeuclidean (£, §)-plane has the form

axs+bxg+é=0  EHeckE  &béek, (2.25)
although, from rules (2.16), its projection into E over R is given, in general, by
the curve

[@ x y/na(r,...) +bxy/na(r,...} +¢] X I=o. (2.26)
Intersecting isostraight lines then permit a unique and consistent definition of isoan-
gles & which is impossible in the Riemannian treatment of gravity {(see Appendix A).
As indicated earlier, and as confirmed by the isorepresentation theory of the iso-
topic SU(2) symmetry,’* conventional numerical values of angles are preserved
under isotopies, i.e., isotopies map parailel (perpendicular) straight lines into isopar-
allel (isoperpendicular) isostraight isolines.
The projections of the isoangles ¢3 on the (#,9) plane and the angle 6 with
respect to the Z-axis into E over R assume the forms

b=oxly, G=0x1Ip. " (2.27a)

f¢=l/n1xn2, T¢=n1xn2, fgzl/ng, T9=n3. (2.27b)

The isotrigonometric functions are given by?%&Sk

A—

g
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isosind = ne X siné&, isocos® = my X cosé&, (2.28a)
. e D - 3. =2 . 2. —_2 . o 3
jensin® @& + isocosd = ny° X isocos a4 Ty T X 1805IR O
—cos?a+sinfa=1, (2.28b)

where we have ignored the factorization by the isounit for simplicity. The isospher-
seal coordinates can be written [loc. cit.]

z =7 X 1 X sin(8/ng) cos(d/n1 X n2) (2.29a)
y =1 X ng x sin(6/n3) sin(¢/n1 x n2), (2.29b)
z=r X ng x cos(f/n3), (2.29¢)

and they result to be the isocoordinates of the perfect sphere in isospace, called
isosphere [loc. cit.],

R =iRkG =X+ EXE=a X o/m® 4y x y/na® +2 X z/ns® = B®.  (2.30)

In fact, jointly with the lifting of the semiaxes of the conventional sphere 1z =
41 — 1; = ng?, we have the lifting of the corresponding units by the inverse
amounts 1 = +1 — T = ny~2%, thus preserving the original perfect sphericity.
Note also that structure (2.30) unifies in isospace E over R all possible spheroidal
ellipsoids in E over R.

The perfect sphericity of the isosphere is the geometrical counterpart of the local
isomorphism between the isotopic rotational symmetry 0(3) and the conventional
symmetry O(3) first studied in Refs. 4b (see also Appendix E). In fact, the iso-
geodesic of 0(3) are indeed perfect circles, although in isospaces over isofields. But
0(3) = O(3). This disproves a rather popular belief that the rotational symmetry
is “broken” for ellipsoidical deformations of the sphere.

We also have the isopythagorean theorem for an isoright isotriangle with isosides
A and B and isohypothenuse D%

P DD = At + BT = AXA+ BXBER, (2.31)
which is trivial on F over B. However, its projection on E over R is not trivial,

because it implies the following property among a “triangle” whose sides are curves
with only two intersections.

D? =[Ax Afn*(t, 7,7, ... )+ B % B/ng%(t,r,%,.. )} % I, (2.32)

In the noncompact (,)-plane of M{&,#, R) we can introduce the isohyperbolic
functions and related property &k

isocosh@ = ny X coshe/n1 X n2), isosinhé& = ng X sinh{a/ny X n2), (2.33a)
isocosh?é — isosinh®& =1, ~ (2.33b)

For additional properties, we refer for brevity the interested reader to Refs. 4g and
5h. Note that the elaboration of the isominkowskian geometry requires not only the
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isotopies of trigonometric and hyperbolic functions, but also of all other conventional
and special functions and transforms floc. cit.) without any exception known to
this author. In fact, the use of ally conventional quantity in the isominkowskian
geometry (e.g., the conventional Fourier transform) leads to a host of inconsistencies
which generally remain undetected by nonexperts in the field.

We are now minimally equipped to study the perfect light cone in isospace
M(%,49, R) called light isocone.*® Consider first for simplicity the (1+1)-dimensional
isominkowskian plane M (&, 4, R) with isocoordinates £ = (2,8} x I, in which the
light isocone can be written

22 = (2 z/na® — £ x 4 x co’/no?) x F =0, i= diag(ns,n4),  (2.34)

which clearly represents g duly symmetrized deformation of the light cone due to the
locally varying speed ¢ = Co/na(z, p,w,...), where n4 is the locally varying index of
refraction, i the density of the medium, w the frequency considered, etc.

Deformation (2.34) appears only in the projection of the isominkowskian de-
scription in the original Minkowski space, because at the level of the isospace itself
we do have a perfect cone. The proof is trivial for the light isocone in water. In
fact, isoinvariant (2.34) for infinitesimal values Az and At in this case reads

Az Ty

ST = .35
At TL4CO 0, (23)

because ng = 14 in water due to its isotropic character.

It is easy to prove that the above result also holds for arbitrary media, that Is,
for a locally varying speed of light within irhomogeneous and anisotropic media. In
this case expression (2.34) for infinitesimal Az and At becomes

Az npg
Kg—-;;cu?éco, (2.36)

because now ny % ng. The emergence of a perfect cone in isospace is then proved
via the isotrigonometry. By calling 4 the interior isoangle of the cone with the

" t-axis, we have

Az:Dxisosinﬁ:Dxngxsinﬁ,

At = D x isocost = D x T4 X COST, (2.37a)
Az . ng . N3
Az = isotangy = n—4tangu = 0 (2.37b)

where D is the isohypothenuse. It then follows that tang 4 = ¢y. The extension to

three space dimension is straightforward (thanks to the notion of isocirele) and we
have the following

Lemma 2.3.% The characteristic angles of the light cone and isocone coincide,
ie., the mazimal causal speed of the isospecial relativity on isospace over isofields
remains the speed of light in vacuunt cg.

T e
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The above occurrence is the strongest evidence we have identified so far on
the preservation under isotopies of Einstein’s axioms of the special relativity, The
occurrence has also the deeper meaning of constituting the geometric counterpart of
the local isomorphism between the isolorentz symmetry f/(3.1) and the conventional
symmetry £(3.1) first introduced in Ref. 4a (see Appendix E).

The latter isomorphism disproves the additional, equally popular belief that
the Lorentz symmetry is “broken” under a signature-preserving deformasion of the
Minkowski metric. In fact, one of the objectives of the original proposal®® was
precisely that of showing the preservation of the ezact character of the Lorentz
symmetry under all infinitely possible liftings # — § == T'(z,v,q,...) x %, evidently
when treated in a mathematically adequate way.

2.7. Isocontinuity and isomanifolds

To proceed in our study, we now need the notion of Kadeisvili’s isocontinuity on
an isospace.®* It results to be easily reducible to that of conventional continuity for
Class I isotopies because the isomodulus of a function is reducible to the conventional
modulus multiplied by the isounit.
Let f (:c) be a conventional scalar function on M over R. An isofunction f@
on M over R must be an isoscalar. We can therefore assume the realization f(2) =
F(z) x I. The isomodulus of f (£) is then given by

~

@) =) = I. (2.38)

Definition 2.3.8* An infinite sequence of isofunctions of Class I, fi, fa,... is said
to be “strongly isoconvergent” to the isofunction f of the same class, when
Jm [ fe - f| =0, (2.39)
while the “isocauchy condition” can be ezpressed by
fm—fal<é=0x1, (2.40)

where § is real and m and n are gresier than o suitably chosen N(§).

‘The isotopies of other notions of continuity, limits, series, etc. can then be easily
constructed (see Vol. I of Ref. 4g).

Note that functions which are conventionally continuous are also isocontinuous.
Similarly, a series which is strongly convergent is also strongly isoconvergent. How-
ever, a series which is strongly isoconvergent is not necessarily strongly convergent.
As a result, a series which is conventionally divergent can be turned into a conver-
gent form under a suiteble isotopy. This mathematically trivial property has rather
important applications, e.g., for the reconstruction of convergent perturbative se-
ties when conventionally divergent, e.g., as it is the case for strong interactions (see
Vol. I, Sec. 6.5 and Vol. I1, Ch. 11 of Ref. 4g).
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Similarly, the reader may be interested in knowing that, given a function which
is not square-integrable in a given interval, there always exists an isotopy which
turns the function into a square-integrable form [loc. cit.]. The novelty is due to
the fact that the underlying mechanism 25 not that of a weight function, but that
of altering the underlying field.

The notions of N-dimensional #somanifolds, isovector and isotensor fields and
isotopology were first studied by Tsagas and Sourlas® and Santilli.®® The main lines
can be summarized as follows. All isounits of Class I can always be diagonalized
into the form

I =diag(m?,n92,...,n.7), ng(z,...}#0, k=1,2,...,N, {2.41)

Consider then n isoresl isofields By, (-, X) each characterized by the isounit f} =
ny,? with (ordered) Cartesian product

BV =Ry xRy x - x Ry. (2.42)

Since By ~ R, it is evident that R® ~ R", where R™ is the Cartesian product
of n conventional fields R(n,+, x). But the total umit of R” is expression (2.41).
Therefore, one can introduce an #soeuclidean topology on R™ via the simple isotopy
of the conventional topology on R”,

#={0,R" K}, (2.43)
where K; represents the subset of R™ defined by
Ky ={P=(8;,082,...,0n) /it < &1,89,...,8, < i, R, u,ar € R}, (2.44)

As one can see, the above topology coincides everywhere with the conventional
Euclidean topology T of R™ ezcept at the tsounit I.In particular, 7 is everywhere
local-differential, except at I which can incorporate integral terms. The above struc-
ture is called the Santilli-Sourlas- Tsagas isoeuclidean topology or integro-differential
topology.®¢

The isotopology of the isominkowskian geometry can be studies via the isotopies,
e.g., of the Zeeman topology for M, but it has not been studied to date. We shall
therefore content ourselves with the use of the Santilli-Sourlas-Tsagas isoeuclidean
topology. For a study of isovector and isotensor fields on isomanifolds we refer the
interested reader to.8?

2.8. Isodifferential calculus

As conventionally presented, the ordinary differential calculus does not appear to
be dependent on the assumed unit. This is not the case because the differential
calculus too has resulted to be essentially dependent from the assumed unit and,
more specifically, it must have for axiomatic consistency the same unit of the space
in which it acts.

-
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Following their original proposal back in 1978,5% the isotopies escaped the
achievement of an invariant formulation for tw

o decades precisely because elab-
orated with the conventional differential calculus, a problem resolved only recently
in memoir®® via the Lifting of the differential caleulus itself,

Definition 2.4.58 Let A (z,7, f%) be an isominkowskian space of Class I with isounit
I= (f",,(sc,u,a,...)) whose elements I*, are nowhere null, real-valued and suffi-

ciently smooth functions of local variables. The first-order isodifferentials” of Cluss

I of the contravariant and covariant coordinates £* gnd 2y, on M are given by

di* = 1% (z,.. ) x dz”, dz, =T,"(z,..) x dt, . (2.45)

Let §(2) be o sufficiently smooth isofunction on a closed domain .D(:?:k) of con-

travarient coordinates £* on M. Then the “soderivative” at a point G ¢ D(@") is
given by

Flor 1 Jamy _ fran
e = tm J@ 38— f)
dar v dgr
(2.46)
The “isoderivative” of a smooth wsofunction f(2) of the covariant variable ,, af the
point §, € D(%,,) is given by

(g = S e, o 24 (@ e +ds) - f
ff(ap)=6%“’—)|,ﬁm.ﬁ e I8, L v ds) - fla)
I

| e = . (247
8%, 180 33,0, dz, (247)

with any isomultiplication. The above properties render the isodifferential caleulug
ax_iom—preserving, thus being an isotopy.

Note that, as it was the case for speed of light in vacuum, diagonal isotopies
of & given derivative preserve the original value when, computed in isospace over
isofields. This is due to the fact that the derivative is lifted according to the rule
Oy =8," x 8, — c‘i, = T,,* x 8,; but the related unit is lifted by the inverse amount
8, — fn, = (T}~ thus preserving the original value.

The above property is important to understand later on the preservation of the
numerical value of Einstein’s field equations under isotopies.

The tsodifferentials of an isofunction of contravariant coordinates * on M are
defined by:

~ oA

- 8F . .. . 56 i )
df(m)crmtrav. = %Xdﬁ“ zTF > af; x I'uﬁ x dmg

Hlal
3 e af
= Eﬁf; X dif =T f x npggé% x dif (2.48)

where the last term 77,7 originates from the fact that the

contraction on the y-index
Is in isominkowskian space. Similarly,

we have the second-order isoderivatives
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i) _ %)

Bzrdzv  Hzvdie
namely, the isodifferential calculus preserves the commutativity of the second-order
derivatives, as necessary for an isotopy.

We should note that the above property holds in isospace over isofields (i.e., when
each isoderivative is computed with respect to the isounit), because the same com-
mutativity is generally lost in the projection into conventional Spaces Over conven-
tional fields (when the isoderivative is computed with respect to conventional units).

The following properties are important for subsequent calculations

(2.49)

82% 1628 = 6%, B2o[Btp = 8,7, B24)05F = T8, 85% /B3, = 1%5. (250
JE s s 2

The isolaplacian on M is given by
A =8,%8" = Gopdod® (2.51)
and results to be different than the corresponding expression on a Riemannian
space R(z,g, R) with metric g(z) = #, A = g7/28,91/29°B 8, even though the
isominkowskian metric f)(x,v,a,...) is more general than the Riemanmion met-
ric g(z).
For completeness we mention the (indefinite) isointegration defined as the inverse

of the isodifferential, e.g.,
/cf.%mf’f’fdmrfdm=x, (2.52)

namely, f = T. Definite isointegrals are formulated accordingly. Due to its
simplicity we shall tacitly assume the isctopies of integration hereon.

The above basic notions are sufficient for the limited needs of this paper. The
isotopies of additional properties and theorems of the differential calculus are left for
study by the interested reader. The class of isodifferentiable isofunctions of order
m will be indicated &™.

An important property of the above calculus is that the isodifferentials and
isoderivatives preserve the basic isounit 1. Mathematically, this condition is nec-
essary to prevent that a set of isofunctions f(&), §(%),..., on E(2,5, R) over the
isofield R(h, +, X) with isounit I is mapped via isoderivatives into a set of isofunc-
tions f{(&), §1(%),. .., defined over a different isofield because of the alteration of
the isounit. Physically, the condition is also necessary because an invariant unit is
a pre-requisite for physically meaningful measurements. The lack of conservation
of the unit therefore implies the lack of consistent physical applications.

As an example, the following alternative definition of the isodifferentia] |

it = d(I*,5*) = [(8,175)aP + [#4ldeP = We yda? | (2.53)

would imply the alteration of the isounit, / — W #* I , thus being mathematically
and physically unacceptable.

—— i s
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i Nevertheless, when using isoderivatives of independent variables, say, isoderiva-
tives on coordinates and time, the above rule does not apply and we have

5Eékf(£s £) = é{[ékf(fa 5")] = ég[Tg(t,:L', - ‘)aif(tam)] . (2.54)

Additional properties of the isodifferential calculus will be identified during the
course of our analyzes.

Note that the ordinary differential calculus is local-differential on M. The isod-
ifferential calculus is instead local-differential on M but, when projected on M, it
becomes integro-differential because it incorporates integral terms in the isounit.

Note finally the difference between the isodifferential calculus and other forms,
such as Cartan’s exterior calculus as established by the underlying unit. In fact,
the unit and related functional analysis are generalized in the former while they are
conventional in the latter.

2.9. Isominkowskian representation of gravity
As now familiar, the central assumption of this study is the Minkowskian factoriza-
tion of the Riemannian metric and its identification with the isominkowskian metric,
g(z} = Tor(z) x 1 =(z), Iyr(z) = [Tgr(m)]_l ) (2.55)
which is valid for the exterior gravitational problem in vacuum. As a resul, all eon-
ventional Riemannian metrics, e.g., Schwarzschild’s, Kerr-Newmann, Krasner and
any other metric'® are preserved identically in their isominkowskian reformulation.
As an illustration, under the usual assumption of space isotropy, the Sch-
warzschild metric®®% in isocartesian coordinates is represented by the gravita-
tional isounit
Igr = diag(my?, mo?, my?, m,?)
=diag{(1 -2 x M/r)"", (1 -2 x M/r)™!,
X (1—2x M/r)"L (1 —-2x M/}, ie., (2.56a)
ma? = mg? = mg? = m,2
=1-2xM/r, mg=(1-2M/r)"T. (2.56b)
The following property, here presented for the first time, is important for our study.

Proposition 2.1. The isominkowskian representation of gravity reduces Rieman-
nign line elements into a Minkowskian form on isospace over isofields.

As an illustration, by using isospherical coordinates (Sec 2.6), and by assuming
that the radial coordinates r, t are covariant for which df = T x dF and df = Tt x dt,
Schwarzschild’s metric can be written on M over R

= df? + 7 ><(cft§é + isosin2é x chfaz) di? 5 X&2, (2.57a)
if = T, x df, df

=lixdl, Tr=(1-2x M/r)™, Ty =1—2x M/r, (2.57b)



376 R. M. Santilli

isotopies of trigonometric and hyperbolic functions, but also of all other conventional
and special functions and transforms [loc. cit.] without any exception known to
this author. In fact, the use of any conventional quantity in the isominkowskian
geometry (e.g., the conventional Fourier transform) leads to a host of inconsistencies
which generally remain undetected by nonexperts in the field.

We are now minimally equipped to study the perfect light cone in isospace
M (2,5, R) called light isocone.*s Consider first for simplicity the {1+ 1)-dimensional
isominkowskian plane M (Z,9, é) with isocoordinates $ = (z,8) x I, in which the
light isocone can be written

% = (2 z/ng® — t* x t* x co’/nat) x =0, I= diag(ng,n4),  (2.34)

which clearly represents o duly symmetrized deformation of the light cone due to the
locally varying speed ¢ = ¢, /nalz, pyw, . ..), where 74 is the locally varying index of
refraction, . the density of the medium, w the frequency considered, ete.

Deformation (2.34) appears only in the projection of the Isominkowskian de-
scription in the original Minkowski space, because at the level of the Isospace itself
we do have a perfect cone. The proof is trivial for the light isocone in water. In
fact, isoinvariant (2.34) for infinitesimal values Az and At in this case reads

AZ Tia .
AL p =0 (2.35)

because n3 = n4 in water due to its isotropic character.,

It is easy to prove that the above result also holds for arbitrary media, that is,
for a locally varying speed of light within inhomogeneous and anisotropic media. In
this case expression (2.34) for infinitesimal Az and At becomes

Az Tz
E-aco?écoy (2-36)

because now ng 7 n4. The emergence of g perfect cone in isospace is then proved
via the isotrigonometry. By calling % the interior isoangle of the cone with the
t-axis, we have

Az = D X isosind = D X ng X sind,

At = D x isocost = D x ny x cosd, (2.37a)
A
A_: = isotangd = Z—jtangﬁ = 2 o, (2.37Db)

where D is the isohypothenuse. It then follows that tang 4 = ¢g. The extension to
three space dimension is straightforward {thanks to the notion of isocircle) and we
have the following

Lemma 2.3.% The characteristic angles of the light cone and isocone coincide,
ie., the marimal causal speed of the isospecial relativity on isospace over isofields
remains the speed of light in vacuum co-
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namely, the Schwarzschild metric is reduced to an identical Minkowskian Jorm
merely formulated on isospaces over isofields. This result should evidently be exz-
pected as a necessary condition for consistency in an isominkowskian formulation
of gravity. The result also begins to illustrate the importance of the isodifferential
caleulus for this study. In fact, all gravitational terms are embedded in the isod-
ifferentials, thus ensuring the emergence of a conventional Minkowskian-type line
element for the representation of gravitation.

The above isominkowskian representation is confirmed by the fact that the
isopoincaré symmetry }3(3.1) is indeed the symmetry of all possible exterior gravi-
tational metrics, including the Schwarzschild’s one.

By following sitilar rules, the reader can easily re-write in isominkowskian space
all other needed Riemannian metrics. 15

The difference between isominkowskian formulation (2.57) and other formula-
tions, such as those via tetrads (see, e.g., Ref, 16c} should be kept in mind. In fact,
the Minkowskian axioms hold only in the tangent space for the latter, while they
hold in the space itself for the former. In fact, the isominkowsldan formulation of
the Schwarzschild metric is precisely that of writing it in an identical Minkowskian
form, as illustrated by Eq. (2.57a). .

We should also note that the isominkowskian formulation of the Schwarzschild
metric implies, in its general form, the lifting of angles into isoangles with non-
trivial related isounits as in Egs. (2.27b) with the related n-values replaced by the
m-expressions (2.39b). However, one should remember that the numericol values of
angles are preserved under isotopies. This assures the Preservation of the Rieman-
nian metrics under their isotopies reformulation.

We should also note that the assumption of contravariant variahles 7,t for which
df = Iy x df and df = I x df would merely imply an tnterchange between the isounit
and the isotopic element in realization (2.57).

The primary motivations for rewriting Riemannian line elements in an identical
isominkowskian form occur in the inclusion of gravitation in unified gauge theories
of electroweak interactions.l! In fact, Proposition 2.1 offers new possibilities for
removing the first structural incompatibility between electroweak and conventional
gravitational interactions, the use of a flat spacetime in the former and a curved
one in the latter with rather serious problems of compatibility particularly at the
operator level,

The second structura] incompatibility is that due to the characterization of
antimatter by the electroweak interaction via negative-energy solutions for the elec-
troweak interactions and positive-definite energy-momentum tensors for Riemann.
The isodual representation of antimatter at all levels offers new possibilities for
removing this second incompatibility.

The third structural incompatibility is that on fundamental symmetries, the va-
lidity of the Poincaré symmetry for the electroweak interactions and its absence for

the Riemannian treatment of gravity, which is removed by the isopoincaré symmetry
(Appendix E).
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The isominkowskian reformulation of gravity has no sole mathematical character

because it implies rather deep physical consequences. In fact, from a mere inspection
of Egs. (2.57), we have the following,

Proposition 2.2. The isominkowskian, geornetry implies that gravity elters the
units of space and time.

In turn, the above broperty has a number of consequences, such as the so-called
geometric propulsion (Vol. 1 of Refs. 4g), according to which locomotion occurs
without any application of a force and by altering instead the local geometry, In
fact, the fundamental invariant is [Length]? x [Unit]2. As a result, any change of
the unit implies a corresponding inverse change in lengths.

Proposition 2.2 also implies that time is 4 local quantity, namely, observers in
different gravitational fields have different flows of time.

A visual inspection of Egs. (2.57} also establishes the following:

Proposition 2.3. In covariant coordinates, gravitationg] singularities (horizons)
are the zeros of the space isoungt I, = @ (space tsotopic element Tp=0 ).

We encounter in this way the first case of the isominkowskian geometry of the
Kadeisvili Class TV (with singular isounit or isotopic elements). This offers basically
novel possibilities for the study of gravitational collapse, as indicated better below.
Note that for a gravitational singularity covariant isocoordinates are null, # = ¢ x
I, = 0, while the covariant isotime is divergent, ¢ = ¢ x I = 00, the inverse case
occurring for contravariant spacetime coordinates,

As now familiar, the isotopies leave unrestricted the functional dependence of
the isometric 7 (provided that it is sufficiently smooth, nowhere singular, real values,
and symmetric). We therefore study the isominkowskian geometry for an arbitrary
functional dependence of the isometric

A= ﬁ(m,v,a,,u,f,...) =ff‘(z,v,a,p,r,...) X7, f:f(x,v,a,,u,r,...) =71
(2.58)

which represents interior gravitational problems with internal effects arbitrarily non-
linear in the velocities, as well as nonlocal-integral and not derivable from o Jirst-
order Lagrangian (variationally nonselfadjoint interactions [5e]).
Under the latter assumptions, the isounits can always be written in the form
f = jg'r‘ X diag[nlz(ma Yy -)1 7?.22(33, vy .),TI.32(.'E, v,.. ')a TL42($,1), L. )]

x Bz, v,. . Jy >0, (2.59)

where: fgr is the isounit of the exterior gravitational problem (2.56); the n’s are the
characteristic functions of the interior medium; and the common factor F(z,v,.. 3

Equivalently, the isominkowskian metric for interior gravitational problems can
be assumed to have the form

n= T(m,'u, a...)xy T= diag(n;"z,nz"'z,ng‘z,n{z) x F x Tgr, (2.60)
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where Tg, Is that of the exterior problem, Egs. (2.56).

All exterior gravitational metricsl® then admit a lifting into the interior form
(2.60). An intriguing aspect is that, in so doing, the isominkowskian line element,
e.g., Eq. (2.57), remains formally unchanged because all non-Minkowskian terms,
whether gravitational or not, are embedded in the isodifferentials,

As an example, the interior tsoschwarzschild metrie under space Isotropy ny =
T2 = i3 = Nz can be written

d8? = di® + P22 (d§ + isosindd x d3?) — dPsay?
={d#?/(1 = 2 x M/r) x ng® + 72 x [d6% + sin? ¢ x d¢?] x F,

—{(1-2xM/r) x df* x co® /s> x F, . (2.61a)
df =T, x df,  df=1T, x di, (2.61b)

L =FE/Q-2xM/r)xn?,  T=F x (I1-2xM/r)/ngd, (261c)

As one can see, the isotopies of Schwarzschild imply the direct geometrization of
locally varying speeds of light ¢ = co/na(z, 2, 7,...). Note that the F-factors are
eliminated in any observation from the outside which requires the averaging of
internal effects to the characteristic constants n°; and n°4 (Sec. 2.5).

It is evident that Propositions 2.1, 2.2 and 2.3 remain fully valid in interior
conditions. This implies that gravitational singularities are the zeros of the space
isounit for interior, rather than exterior, problems. In turn, the above occurrence
requires a reinspection of the entire theory of gravitational collapse to account
for internal nonlinear, nonlocal and nonpotential effects, which will be conducted
elsewhere.

In different terms, the use of exterior metrics for intrinsically interior problems,
such as gravitational collapse, should only be considered as a first approximation
of physical reality of such complexity to be at the vert limit of our mathematical
and physical knowledge.

Note the full validity of the light isocone for interior gravitational problems,
thus permitting more realistic studies of the area outside gravitational horizons, as
indicated earlier.

It should be finally indicated that the Poincaré-Santilli isosymmetry of Ap-
pendix E remains the universal symmetry for interior and exterior, relativistic or
gravitational and classical or operators realizations.

2.10. Isoricci lemma, isocovariant isoderivative,
isoconnection, isocurvature

In the preceding subsections we have presented the Minkowskian aspects of the
isominkowskian geometry. We are now sufficiently equipped to present, apparently
for the first time, the novel part of the isominkowslkian geometry, its Riemannian
character.
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Our study is strictly in local coordinates representing the fized inertial frame of
the observer without any unnecessary use of the transformation theory or abstract
treatment in order not to violate a central requirement of the special relativity, the
inertial character of the observers.

For the conventional geometry we assume all topological properties of Love-
lock and Rund'% of which we preserve the symbols for clarity in the comparison
of the results. For the isotopic geometry we assume Kadeisvili’s3 isocontinuity
and Tsagas-Sourlas® isomanifolds and related topology. Our presentation is made,
specifically, for the (3 + 1)-dimensional isominkowskian spacetime, with the under-
standing that the extension to arbitrary dimensions and signatures is elementary.
The study is restricted to the isotopies of Class I (with positive-definite isounits)
which are solely applied to the study of matter.

Let M = M {%,49, fi) be an isominkowskian spoce of Definition 2.2 with
local isocoordinates £ = {##} = {z* x I}) and isometric e, v,a,p,7,...) =
T(z,v,a, M7y on) X 17(z), where T = (’f'#" } is a nowhere singular, real valued
and symmetric matrix of Class I with (' elements and 5 = diag(1,1,1,-1) is
the conventional Minkowski metric. The isospace A is defined over the isoreals
B = R(n, 1, X) with common isounit [ = (#,) = T=1. We then have the isotopic
invariant X

£2={m"‘xﬁﬁp(ﬁ,",&,p,r,...)xx"] xfeh, (2.62)
with infinitesimal version

di? = d2, %de" = (da” x fi,, x da*) x F € 2. (2.63)
The dsonormal coordinates # occur when the isometric % is reduced to the
Minkowski metric 5. As such, they preserve the conventional principle of equiv-
alence [16). In different terms, the tangent space is the conventional Minkowski
space M(z,n, R).
By using the isodifferential calculus, we now introduce the tsodifferential of a
contravariant isovector field on M over R
A% = (8,%°)%ds# = 1,0 x (8, X°)3 ", x die
= (0uXP) x dit* = (9P XP) X 7y x d° (2.64)
where the last expression is introduce to recall that the contractions are in isospace.
The preceding expression then shows that isodifferentials of isovector fields coincide
at the abstract level with conventional differentials for all Class I isotopies.
The isocovariant differential can be defined by
DXP = dXP 4+ TP xXo%ds (2.65)
with corresponding isocovariant derivative
Xii =8, XP 4 D P 5 X5 (2.66)

where the isochristoffel’s symbols are given by
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f‘g.,(z:,v,a,u, Tyeod) =

B )

X (érxﬁﬁ'r + é'yficzﬁ - 5ﬁﬁaw) x [ = f’rﬁu; (2.67a)
faﬂw = ﬁﬁpfam = f"wﬁa: 7 = [(ﬁw)_l]ﬂp- (2.67b)
Note the unrestricted functional dependence of the connection. Note also the ab-
stract identity of the conventional and Class I isotopic connections. Note finally
that local numerical values of the conventional and isotopic connections coincide
when computed in their respective spaces. This is due to the fact that in Egs. (2.67)
71 = g(x) for exterior problems, while the value of derivatives 8,, and isoderivatives
8, coincide when computed in their respective spaces (Sec. 2.8).

Note however that, when pro jected In the conventional spacetime, the conven-
tional and isotopic connections are different even in the exterior problem in which
=g (:B),

. 1. . . . . .
Topy = 5 X (To* x B.g6y + T3P X Opfiap — T x OoGary) X I # LPagy x I, (2.68)
The extension to covariant isovector fields and covariant or contravariant isotensor
fields is consequential.

The isotopy of the proof of Ref. 15a, pages. 80 to 81, yields to the following:

Lemma 2.3 (Isoricci Lemma): Under the assumed conditions, the isocovariant
derivatives of all isometrics on isominkowski spaces are identically null,

Togiy =0 &,f,7=1,2,3,4. (2.69)

The novelty of the isominkowskian geometry is then illustrated by the fact that
the Ricci property persists under an arbitrary dependence of the metric, as well as
under Minkowskian, rather then Riemannien azioms.

The isotorsion on M is defined by

'i"'a'B'y = I‘cxﬁ’y - P'rﬂa ) (2‘70)
and coincides again with the conventional torsion at the abstract level, although the
two torsions have significant differences in their explicit forms when both projected

in our spacetime.
We now introduce: the isocurvature tensor

RoPs = 8510, — 8,0,5 + 1,7, xLofy — 1,8 %P5, (2.71)

the isoricei tensor

R.uv = A.uﬁuﬁ; (2.72)
the isocurvature isoscalar
R=1"x R.g; (2.73)
the isoeinstein tensor )
G = Ruv — 3 ¥ Nuwx By Ny =i, x I (2.74)

and the isotopic isoscalar
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6 = N8 XX s XTop — Tpap kP 05)
= Fpag X0 25 5 (NS X F778 _ fyos XN, (2.75)
the latter one being new for the isominkowskian geometry {see below).

2.11. The five identities of the isominkowskian geometry

Tedious but simple calculations then yield the following five basic identities of the
isominkowskian geometry:

Identity 1: Antisymmetry of the last two indices of the isocurvature tensor
RoPs = —RuPs.,; (2.76)
Identity 2: Symmetry of the first two indices of the isocurvature tensor
Ropys = Rpons; (2.77)

Identity 3: Vanishing of the totally antisymmetric part of the isocurvature
tensor

Befos+ ByPoa+ RiP o = 0, (2.78)
Identity 4: Isobianchi identity
23 p 8o oA _ .
e silp T o s + Ry 1, = 0 (2.79)

Identity 5: Isofreud identity

- . i . . N .
R%g — ‘;'XJ"‘ﬁxR'_ FRX0%pXO=Ucs 4 5,00, (2.80)

1
P ; (2.81a)

1. . .
V¥ = Sl (6% o5 — 6251,25)

+ {8 — 0% )T s + D, — T ) (2.81b)

Note that the conventional Riemannian geometry is generally thought to possess
only four identities.'® In fact, the above Jifth identity is generally unknown in the
contemporary technical literature in the field.

The latter identity was introduced by Freud'™ in 1939, treated in detail by
Pauli'® and then generally forgotten for a half a century, apparently, because of a
conflict between the lack of source of Einstein’s field equations in vacuum,

1
G% = R%; — §6agR =0, (2.82)

and the source in vacuum suggested by the Freud identity,
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Reg — %50‘33 - -21-5%(—) =U%+ 6,V (2.83)
here written in a conventional space.

Following a suggestion by the author, Rund!™ studied again the identity and
proved that the Freud identity is a bona fide tdentity for all Riemannian spaces
irrespective of dimension and signature, thus confirming the general need of a source
also in vacuum (see below). In this paper we have presented, apparently for the first
time, the isotopies of the Freud identity, that is, its formulation in isominkowskian
spaces as characterized by the isodifferential calculus.

Note that all conventional and isotopic identities coincide at the abstract level

2.12. Isoparallel transport and isogeodesics

An isovector field XP on M = NM(z,#, R) is said to be transported by isoparallel
displacement from a point /(%) on a curve C on M to a neighboring point T (E--dE)
on & if

DXP =dX* + T P % X%ds" = 0. (2.84)
or in integrated form
~ T o A
N - AXP dze . .
X'B(T?U) - X‘B(m) = f = —— Xds. (2.85)
m O0F% ds

where one should note the isotopic character of the integration. The isotopy of the
conventional case'®® then yield the following:

Lemma 2.4: Necessary and sufficient condition Jor the existence of an isoparallel
transport along a curve C on a (3 + 1)-dimensional isominkowski space is that all
the following equations are identically verified along C

RoPysxX*=0, p,9,6=1,2,3,4. (2.86)

Note, again, the abstract identity of the conventional and isotopic parallel trans-
port. However, it is easy to see that the projection of the isoparallel transport in
ordinary spacetime is structurally different than the conventional paralel transport.
In particular, if the latter is represented by an arrow, one would note a twisting ac-
tion as occurring in the reality of motion within physical media, which is evidently
absent in the exterior case.

Along similar lines, we say that a smooth path £, on M with isotangent 6, =
dfo/ds is an isogeodesic when it is solution of the isodifferential equations

diP .. dR% . da
— = —+T KX — =, . 2.87
Ds  ds P s (2.87)

It is easy to prove the following:

Lemma 2.5: The isogeodesics of an isominkowskian space M are the curves vers-
fying the isovariational principle
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Sf[Nqﬁ(:a,@,a,p, Tye. ) XdE*Xd2P/2 (2.88)

where again isointegration is understood.,
Finally, we point out the property which is inherent in the notion of isotopies

if a circle is originally a geodesic, its image under isotopy in isospace remains the
perfect circle, the isocircle (Sec. 2.6), even though its projection in the original space
is an ellipse. The same Ppreservation in isospace oceurs for all other curves,

The differences between a geodesic and an isogeodesic therefore emerge only
when projecting the latter in the space of the former.

An empirical but conceptually effective rule is that interior physical media “dis-
appear” under their isogeometrization, in the sense that actual trajectories under
resistive forces due to physical media (which are not geodesics of a Minkowski space)
are turned into isogeodesics in isospace with the shape of the geodesics in the ab-
sence of resistive forces.

The simplest possible example is given by the isominkowskian representation of a
straight stick partially immersed in water. In conventional representations the stick
penetrating in water with an angle o appears as bended at the point of immersion
in water with and angle y = a4 8 In Isominkowskian representation the stick
remains straight also in its immersion because the isoangle 4 = y x f,, recovers the
original angle « for I, = a/(a + B).

2.13. Gravitational field equations in isominkowskion geometry

The isotopy of the proof of the Theorem of Ref. 15a, Page 321, leads to the following
property:

Theorem 2.1: Under the assumed regularity and continuity conditions, the most
general possible isolagrange equations (Appendiz A ) BeB — of Class I along an
actual isopath Py on q (3 + 1)-dimensional isominkowskian space for the charac-
terization of the exterior or interior gravitational problems of matter satisfying the
properties: (1) Symmetry condition, EoP — Ebe (2) Contracted isobignchi iden-
tity, Eaﬁ?ﬁ =0; and (3) The isofreud wdentity; are given by
B0 = asvis (oo~ Lageosi %%N‘*ﬁ%é) +BRE _ fhgges _ g

. {2.89)
where: N3 = (det 7)1/2 xI;é=a xf, ﬁ‘ =4 xf, 21 = % xf, efe.; a and 8 are
constants; and 58 g & source tensor. For o = 1 and B =0 the sagravitation FReld .
equations can be written

N “ 1 Py N N PN
RoF % X7 x R— 3 X% x O = k(P _ poby _ USs+3,V¢5,  (2.90)

where £ s ¢ source isotensor, 798 {5 o stress-energy isotensor and k is ¢ constant.
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Note the appearance in Eqgs. (2.90) of the isotopic isoscalar © in the Lh.s and of
source terms in the r.h.s., both originating from the isofreud identity.

The simplest possible formulation for the exterior gravitational problem in vac-
uvum is given by the isoeinstein field equations

~ ” 1 ~
G"‘ﬁzR"‘ﬁ—Exﬁ"‘ﬁxR=0. (2.91)

As expected, the above equations are numerically identical to the conventional
equations when computed in isospace over isofield for the reasons indicated earlier,
thus preserving the related experimental verifications.

However, when projected in conventional spacetime, certain differences appear
due to the isotopic elements which multiply conventional derivatives. In particular,
the isotensor f‘a'e,,, is of zerc-order in the same terms; the isocurvature isotensor
R?aﬁ,,,g is of first-order in the same terms; the isotensor R.uv is of first-order and
the isoscalar R is of zero-order in the same terms. When written projected in our
spacetime, Egs. (2.91) then contains new terms which are of first-order in T.uu-
But the latter are very close to 1. The compatibility of Egs. {2.91) with current
experimental data of Egs. (2.82) then follows also in our spacetime.

The isofield equations in their general form (2.90) are however new, and their
solutions will be studied elsewhere.

An in depth investigation of field Eqs. (2.90) has been Tecently conducted by
Vacaru {8d] with the inclusion of spin, which results in the confirmation of
Eqs. (2.90) plus an additional condition on spin-density. Even though Vacaru’s
studies have been formulated on tsoriemannian rather than isominkowskian spaces
as formulated in Ref. 5g, the results can be easily reinterpreted as belonging to the
latter isospaces via the mere redefinition of the isounit,

2.14. Ecperimental verifications and predictions of the
isominkowskian geometry

As indicated in Sec. 1.4, the isominkowskian geometry has already received a num-
ber of preliminary, yet significant experimental verifications, when applicable, in
classical physics, particle physics, nuclear physics, astrophysics, superconductivity
and other fields, as outlined in Ref. 4h (see also Ref. 9)

‘The best predictions of the isominkowskian geometry suitable for experimental
verifications are those characterized by the isotopies of Einstein’s azioms of the
special relativity studied in details in Refs. 4g and 9. As only one illustrative ex-
ample, we have the tsodoppler’s law for light bropagating within atmospheres or
chromospheres (here written for 90° aberration)

@ =wo X [1— (v?/ms?)/ (eo? /my2)]1/2 (2.92)

which has been verified via a numerical representation of the large difference in
cosmological redshift between certain quasars and their associated galaxies when
physically connected according to gamma spectroscopic evidence,
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The physical interpretation is so simple to appear trivial, and merely consists of
the representation of two contributions, the first due to the decrease of the speed of
light cg — ¢ = co/ns < co within the huge quasars chromospheres, and the second
to a geometric representation of their inhomogenity and anisotropy.

Note that the new speed ¢ = ¢p/ny alone cannot be plotted in the conven-
tional Doppler’s shift law because of a host of inconsistencies, e.g., with respect
to axiomatic and invariance laws. The isominkowskian formulation with the duly
symumetrized spacetime characteristic functions n, and 74, then uniquely and un-
ambiguously follows.

The above oceurrence permit an exact-numerical representation of the large
difference in cosmological redshift between quasars and associated galaxies when
Physically connected according to which light exits the quasars chromospheres gl-
ready isoredshifted becouse of the decrease of the speed in the interior of the quasars
chromospheres as well as the nhomogeneity and anisotropy of the medium.

Note that the cosmological redshift of the galaxy is here assumed as of purely
Minkowskian nature and, as such, it remains unchanged, even though the latter too
can be at least in part of isotopic character, ie., part of the cosmological redshift
of light originating from galaxies could be due to the decrease of the speed of light
in their interior.

Note that the reduction of light propagating within the chromospheres to pho-
tons in second quantization scattering among molecules, would eliminate altogether
the effect here predicted and verified. In fact, it would reduce motion to empty
space for which n, =n4 = 1, thus eliminating the isoredshift altogether.

The above studies are further confirmed by the capability of the isominkowskian
geometry to provide an exact-numerical representation of the internal quasar red-
and blue-shifi% which, to our best knowledge, is the sole representation existing
at this writing, Its origin is due to the dependence of the index of refraction g
on the frequency w of light, ngy = ny(w,...}, thus confirming again the need for a
locally varying speed of light and consequential isominkowskian geometrization of
physical media.

For various other exact-numerical verifications we refer the interested reader to
the outline of Sec. 1.4 and to Refs. 4h and 9,
We close this section with & fow comments and predictions.
First, we should point out that the transition from the Riemannion to the
isominkowskian description of gravity implies the transition from the “description”
of gravitation, to the study of its “origin”. In fact, isofield Eqgs. (2.90) are submit-
ted as equations representing the origin of the gravitational field at the level of the
particles constituting the body considered.
More specifically, Eags. (2.90) are permit the elimination of the vexing “unifica-
tion” of the gravitational and electromagnetic fields, and the assumption of their
“identification” at the particle level in view of the primarily electromagnetic nature
of the mass of all elementary particles constituting any given body.3&

i
:
§
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In fact, it was shown in Ref. 3e that, even though the total charge is null, in
the exterior of a particle such as the 7° there is a nowhere null first-order electro-
magnetic field which accounts for the virtual entirety of the mass of the particle,
according to the rule

Mo Grav,BExt. . fdv'rooelm 7 Mo, (2.93)

with corrections due to short range (s.r.) weak and strong interactions for the
interior problem

Mﬂ_olner.,lnt. — fd’b'(‘!‘oo . 1.0051_ ) =M, (294)

In this way the gravitational field is entirely reduced to the field originating mass
itself without any presence of any mass term in the field equations.

Note that the above theory in the origin of the gravitational field provides a
quantitative representation of the difference between inertial (interior) and grav-
itational {exterior) mass; it implies the assumption of a nowhere null frst-order
source in vacuum even for bodies with null total charge and magnetic moments, as
requested by the Freud identity; and it predicts a complete equivalence between
gravitational and electromagnetic phenomenology, including the prediction of anti-
gravity for elementary antiparticles (such as a position) in the field of matter, a
prediction which is fully confirmed by the novel isodual theory of antimatter.i3

It should be noted that the above conclusions are so strong that they possible
experimental disproof would require the reconstruction of the contemporary theory
of elementary particles into such a form which does not permit masses to have a
primary electromagnetic origin.

We should also note that the isotopic scalar is written in the Lh. 8., rather than
in the r.h.s. of field Egs. (2.90) because Einstein’s tensor @, = R%g ~ 26%5R does
not preserve the Ricei Lemma under isotopies, while such preservation occurs for
the tensor S, = R%g — 30%sR — 38%50 (see Vol. I, Ref. 4g, Ch. 5 for details).

Some of the most intriguing predictions of the isominkowskian geometry which
need future experimental verifications are those dealing with the characterization
of a new notion of spacetime, where the novelty rests in the basic units. As an
llustration, the fact that we can wisually observe an astrophysical body (i.e., we can
observe it via the light it emits) does not necessarily means that particular body
evolves with our own time £, because it could evolve in a substantially different time
. As indicated earlier, the isominkowskian geometry predicts that time is 2 local
quantity depending on the local gravitational field, Egs. (2.57), while any difference
in the flow of time is lost in the interconnecting light.

The above occurrence is expressed via the notion of isotime £ = ¢ x I; where
I = I is the time isounit. On our Earth we have the value Af = Atx I, I, = 1 sec,
while in other astrophysical bodies we may have Af = At x I,. The invariance law

Al=Atx L =At x I, = (2.95)
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then implies the possibility that other astrophysical bodies have a basically different
flow of time (A#' At), yet be compatible with our Sensory perception as well ag
with the abstract axioms of the special relativity.

Note that we are referring here to a new varigtion of time, which is different
than the conventional time dilation with speed,*® which is predicted for stationary
observers with different gravitational fields and which requires new specific tests.

A similar occurrence evidently holds for space. In fact, lengths are now charac.
terized by dsolengths [, = I x |  and their invariance implies the paossibility of our
measuring a given length Ay for a given astrophysical body, while the length actu-
ally admitted in their own frame can have a basically different value AL’ such that

AL=ALxfp=AL'x ;. (2.96)

Note that we are referring here to a new variation of length which is different
than the familiar length contraction with speed™® which is also predicted for stq-
tionary observers with different gravitational fields, and which also requires specific
experimental verifications.

Note from Eqs. (2.57) that the isovariations of time and length with the gravita-
tional field are inverse to each others, much along what happens for the conventional
variations with speed,

Since under isotopies the Cartesian coordinates assume different values for differ-
ent axes, invariant (2.96) also implies the possible fallacy of our perception of shapes.
Asan example, a cube is mapped under isotopies into an arbitrary geometric figure
while preserving again the compatibility with our Sensory perception.

The above predictions are illustrated in Vol. I of Ref, 4g, with the notion of
is0boz, which is a geometric figure appearing as a cube of g given side I to an
outside Minkowskian observer at time ¢, while the same figure has an arbitrary size
and shape and it is at an arbitrarily preceding or subsequent time #’ for an nternal
isominkowskian observer.

In addition to the prediction of times, lengths and shapes different than those
perceived by us, the isominkowskian geometry also predicts spacetime dimensions
different than (3-+1). The case was first studied by P. A. M. Dirac in two of his last
Ppapers [18] on a generalization of his own celebrated equation which hag resulted to
have an essential isotopic structure evidently unknown to Dirac himself (see Ch. 10
Vol. 11, Ref. 4g).

In fact, “Dirac’s generalization of Dirac’s gamma matrices” was proposed ac-
cording to the isotopic structurel®

aﬂxf‘xay+aﬁxf‘xau=2xif'xnm,, (2.97)
the only difference with Dirac’s formulation being his use of the symbol 3 for the

isotopic element 7. In his instinctive brilliance, Dirac selected for the 7" matrix the
p(positive-definite yet) off-diagonal form
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0 010
R 0 001
T=1_, 00 0 (2.98a)
0 ~1 0 0
detT =1, f=71, (2.98b)

(which therefore qualifies 7° as a fully acceptable, positive-definite isotopic element
of Class I).

The isominkowskian geometry characterized by isotopic element (2.98) is in-
triguing indeed. Its most salient property is that the isometric is nondegenerate,
Det; = Det(T" x ) = —1, but the isoinvariant s degenerate,

0 01 0 z!
-3 e ,,_‘1334 0 0 0 -1 932
e N o o 25
0 -1 0 o0/ \a*

=z'z® — 2% — 23l _ 2152 = —22%z* (2.99)

namely, the dimension of our spacetime is contracted under Dirac’s isotopy from
four to two dimensions.

In turn, the above contraction has truly remarkable implications, such as the
lifting of the spin s = % to spin s == 0, as originally derived by Dirac himself [19],
confirmed by isotopic methods [4g] and used for a quantitative representation of
the synthesis of the neutron occurring in stars in their formation, from protons and
electrons oniy. e

It is instructive for the interested reader to see that the same dimensional con-
traction occurs for all other possible realizations, such as for 5 = (+1,-1,-1, —1)
and related ordering of the components z = {z*,z!,2%,23}. Asa result, the di-
mensional contraction (1,2,3,4) — (2,4) is intrinsic in Dirac’s realization of the
isominkowskian geometry, and so are its rather peculiar properties, such as the con-
traction of the three space dimensions (1,2,3) down to a one-dimensional line along
the y-axis.

All in all we achieved our objectives in this section if we succeeded in convey-
ing the expectation that the universe can be dramatically more complex of what
perceived by our limited senses. An important function of the isotopies is that of
rendering these complexities compatible with our sensory perception. In fact, for
conventional methods, changes in length or in dimension are indeed perceived by
owr senses, while they are rendered fully compatible with our senses by the axiom-
preserving isotopies.

2.15. Genominkowskian and hyperminkowskian geometries

Physics is a discipline that will never admit “final theories”. No matter how valid
any given theory appears to be, its structural generalization for broader conditions
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The most visible limitation of the isominkowskian geometry is that of being
structurally reversal {for time independent isounits), while Physical reality, partic.
warly that of interior problems, is structurally irreversible,

In view of this occurrence, the “axiom~preserving” isotopies were originally sub.
mitted in Ref 5¢ ag Particular cases of the broader genotopies which (from their
Greek meaning) are “aadom—inducing”, hamely, they generally violate the original
axioms in favor of covering axioms.

sy

SR G
e

by the relaxation of the symmetric character of the isounit, while preserving their
real-valued and nonsingular characters. This implies two different genounits with
two corresponding ordered genoproducts to the left and o the right

<f(t,m,v,a,,u,7‘,...) = (Ty-1, f>(t,a:,v,a,u,7',...) = (7)1,
<I=7 <j= ()t (2.100s)
<&<<3=<ax<‘f‘x<3, & > b =5 x P> x §> (2.100b)
<f<<&=<&<<f£<&, I>>a>=a>>f>-_——a>, (2.100c)

ods then have to be Teconstructed in a two-fold way, including fields, spaces, ge-
ometries, etc.58

The basic analytic equations5® are those originally proposed by Hamilton, with
external terms, which represent irreversibility via nonpotential effects. The alge-
braic structure of the theory is that of Lie-admissible type Ma-14f14g emerging
geometry is that of the forward and backward genominkowskian spaces such as

M>(:E>,ﬁ>,R>) : 2 =a x>, 7 =T>xp, (2.101a)
I = g2 s N> s v = (@2 X 7,0 x 2)%I> ¢ p> (2.101b)

The physically important aspect is that the genominkowskion geometry is stryc-
turally irreversible, Le., it is irreversible even for a reversible Lagrangian or Hamilto-
nian. As a result, it allows an ariomatization, of trreversibility, for which the spaces

require the geno- rather than the iso-minkowskian geometry.

The main idea is that all known action—at—a—distance, botential interactions are
reversible, while irreversibility is a “contact” effect, i.e., it occurs in interior systems
with nonpotential internal effects. As g result, irreversibility should be represented
with enything except a Lagrangian or o Haomiltonian, The line of investigation
identified above is to represent irreversibility with the geometry itself, as we shall
study in more details in future works.

SRR
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Intriguingly, both the forward and backward genominkowski spaces result to
satisfy the abstract Minkowskian axioms because their underlying mechanism is
the same as that of the isotopies, i.e., the Minkowski metric is lifted in the amount

.= %> =T x n while the unit is lifted in the inverse amount I — 1> — (T>)-1,

thus preserving the original axioms.

We therefore reach the remarkable conclusion that, when treated with the appro-
priate genomathematics [5g], the abstract Minkowskian azioms admit nonsymmetric
metrics, 71 # (7”)* (in Ref. 5g we had reached the corresponding property for the
Riemannian axioms). As a matter of fact, this is the property at the foundation of
our axiomatization of irreversibility.

By no means the forward and backward genominkowskian geometries are a “f-
nal theory”. In fact, their further structural generalizations were identified with
their own proposal®® under the name of forwerd and backward hyperminkowskian
geometries. They are characterized by the assumption of the genounits as ordered
sets with corresponding ordered hyperproduct to the right and to the left

(I} = {<0,5 b, L,..} = {~T}1,
{(PYy={2,i3,12,..} = {T>} (<[} = {I"}*, (2.102a)
{<T} = {<T1}< T21< TS: . } 3

{7} = {07, 5377,.. 3, (2.102b)
{“aH{<H<8} = {<a} x {<T} x {<8},
{@”H>HP} = {2} x {T>} x {5}, (2.102¢)
{“IH<H<a} = {<aM{<}<f) = {<a},
(PH>He = (@ H>HPY = (%) (2.102d)

This implies a further hyperstructural lifting of the forward and backward
genominkowskian geometry which is irreversible as well as multivalued.

Intriguingly, each of the latter formulation is admitted by the abstract Min-
kowskian axioms, thus illustrating again the possible complexity of the universe in
a form compatible with our sensory perception.

3. Isodual Isominkowskian Geometry for the Representation
of Antimatter

3.1. Introduction

As recalled in Sec. 1, one of the most fundamental structural differences between
the electroweak and gravitational interactions is the representation of antimatter
via negative-energy solutions for the former and positive-definite energy-momentum
tensor for the latter.

The resolution here under study is based on a completely novel theory of anti-
matter which is characterized at all levels, including Newtonian mechanics,




ki U SRR e s TR e, e
Wﬁéﬁmm&%mm&@mwmwm s

Isominkowskian Geometry for the Gravitational Treatment of Matter ... 397

Q- Q4= _qt. (3.1)

When systematically applied to all treatments of matter, the above map yields an
anti-isomorphic image of the Tepresentation of matter, which is applicable beginning

The fundamental notion of the emerging new theory of antimatter is, again,
that of new numbers, this time numbers with negative-unit, which see their origin
in the structure of Dirac’s gamma matrices and from which the entire theory can
be uniquely and unambiguously derived.

In this section we cannot possibly review the new isodual theory of antimat-
ter. We shall therefore limit ourselves to the outline of the essential notions and
their application, apparently for the first time, to the formulation of the isodual
tsominkowskian geomelry in its full version, that inclusive of its isodual Rieman-

Coulomb, Lorentz and other classical laws for Particle-antiparticles and antiparticle-
antiparticles,132,13d,4h

At the operator level the available experimental data are of electroweak charac-
ter and they too are represented identically [11,13¢]. In essence, in the conventiona]
theory (see, e.g. Ref. 16d), antiparticles are represented via charge conjugation, the
solutions are of both advenced and retarded character, while the advanced ones are
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We should finally mention that the isodual re-interpretation of the Dirac equa-
tion (see Ref. 4g, Vol. II, Ch. 10) is independent from other approaches, such as
that permitted by Clifford algebras.l6e Again, the main difference is in the basic
numbers and fields. In fact, the former use new numbers with negative unit —1,
while the latter use conventional numbers with positive unit +1. Moreover, the for-
mer is conceived fo provide a characterization of antiparticles at the level of first
quantization, while the latter are more aligned with conventional theories in second
quantization [16d].

We regret to be unable to point out for brevity that the characterization of the
Dirac equation via Clifford algebras admits a simple yet intriguing and significant
reinterpretation via isoduality and a further lifting under isotopies to incorporate
gravitation in the generalized unit,.

3.2. Isodual isounits, z'sonu:mbers, and isofields

Let F' = 13"(&, +, X} be an isofield of isoreal mumbers R{n, +, ), isocomplex numbers
C(&,+, %) or isoquaternionic numbers (4, ¥, %) with the familiar additive isounit
0 = 0, multiplicative isounit J , elements & = a x [, ¢ = n,¢,gq, isosum dy-Fas,
10 = 644 = &, and isomultiplication 4;Xéds = é; x T° x da = (a1 % ag) x I,
F=1-1a%f =I%a=a,va, a,a, € P
The isodual isofields, first introduced in Ref, 4b and then studied in details
in Ref. 5f, are the image £ = Fd(ad, 34, >A<d) of (&, %, X) characterized by the
isodual map of the isounit
Iwid=_fi=_F (3.2)

which implies: isodual isonumbers
&dzﬁ,fxfdm—-a?xf=—&T, (3.3)

where T is the identity for real numbers nt = n, complex conjugation ¢f = &
for complex numbers ¢, and Hermitean conjugation g! for quaternions q'; isodual
1505Um

. dnd, T
81782 = — (a1 18,7, (3.4)
and isodual isomultiplication

d d

8195 %% = 1% x ¢ x a8 = — (4,7 %as1),; (3.5)

under which {4 = 9= is the correct left and right unit of £
Prlat = et =gt vad e fd, (3.6)
in which case (only) /¢ is called isodual isounit and T¢ the tsodual isotopic element.

We have in this way the isodual isoreal field Ré(nd, -!A-d, fcd) with isedual iso-
real numbers

ﬁ,d:—»-ﬁfs—nxf, nER, ﬁre-é) ﬁdERd; (3'7)

the isodual isocomplex field C4(&?, 12, §<d) with isodual isocompler numbers
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é‘d-‘—‘—-éxj:-—(nl—E'an)Xf‘——(—nl-F'ixng)Xf,

71,09 € R, c=m+ixn eC, cdeCd;

and the isodyql soquaternionic field which is not used in thig Paper for brevity.

Under the abovye assulnptions, Fd(ad ¢ %d) verifies all the axioms of a field
[4b,5f], although £ onq Fare a,nti-isomorphic, as desired. Thig establishes that the
field of numbers can be equally defined either with resbect to the generalized unit
I>00r with respect to jtg negative image — [ « The key point is the preservation
of the axiomatic character of the latter via the isoduality of the isoproduct. In other
words, the set of isodual Isonumbers 44 with unit —f anq isotopic product does not
constitute a field becayse f %69 £ 59,

It is also evident that gj] operations of wonumbers tmplying multiplication must
be subjected for consistency to isoduality. This implies the isoduqal isosquare root

a4 = (ot} x A

(3.9)

[
=
o
a .
o
&,
&
B,
]
My
2
[~
Sh
=3,
8
R

S T By

] = Jat| x Fo _ ~laxa )2 f g (3.11)
where |...| denotes the conventiona] norm. . For isodual isores] numbers 79 we
therefore have .

e = | x F < 0, (3.12)

and for isodua] complex numberg a4 we have

-z xf:—céifzxf=—n2+n21/2x.f. 3.13
1 2

isodual norm, etc.

Lemma 3.1, All quantities which are Positive-definite when referred ¢ fields and
sofields (such as mass, energy, engular momentum, density, temperature, time,
ete.) becarne negative-definite when, Teferred to isodyq] fields and isoflelds,
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The main novelty is that the conventional treatment of negative-definite energy
and time was (and still is) referred to the conventional contemporary unit 41, which
leads to a number of contradictions in the physical behavior of antiparticles whose
solution forces the transition to second quantization.

By comparison, the negative-definite physical quantities of isodual methods are
referred to a negative-definite unit I¢ < 0. This implies a mathematical and physi-
cal equivalence between positive-definite quantities referred to positive-definite units,
characterizing matter, and negative-definite quantities referred to negative-definite
units, characterizing antimatter. These foundations then permit a novel charac-
terization of antimatter beginning at the Newtonian level (Appendix C) and then
persisting at all subsequent levels,

Definition 3.1. A quantity is called isoselfdual when it is invariant under isoduality
(3.1).

The above notion is particularly important for this paper because it introduces
a new invariance, the inveriance under isoduality. Its most important application
is the following one from which the new invariance itself was originally derived.

Lemma 3.2.'% Dirac’s gamma matrices are isoselfdual,
g

T = Nt = =L =y, (3.14)

Note that the preceding invariance is based on the property that the imaginary
number ¢ and its isotopic image 1 =i x I are isoselfdual,
=it xi=—ixf=—~(—i)x[=3. (3.15)
This property also permits to understand better the isoduality of isocomplex num-
bers which can be written explicitly*

&% = (A Fix ) = A3 A = (cmy i xma x [) = —c x I (3.16)

Lemma 3.2 has fundamental relevance for an axiomatically consistent inclusion

of gravitation in unified gauge theories," as well as for a deeper understanding of

the conventional Dirac’s equation. In fact, it establishes that, contrary to popular

belief, the conventional Poincaré symmetry “cannot” be the invariance of the Dirac
equation, trivially, because it is not isoselfdual.

In turn, this occurrence has permitted the identification of the twenty-
dimensional invariance of Dirac equation, the product P(3.1) x P4(3.1), which is
isoselfdual and, as such, valid for the characterization of the isoselfdual Dirac’s
equation.

At a still deeper study, the full symmetry of the conventional Dirac’ equa-
tion has resulted to admit a 22 dimensional symmetry given by the structure
P(3.1) x P4(3.1) plus the isoselfscalar symmetry (2.22) and its isodual. The latter
has permitted the inclusion of gravitation in the unit of the theory, thus render-
ing gravitational axiomatically compatible with electroweak interactions, while the
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former has permitted an axiomatically consistent treatment of antimatter for both
electroweak and gravitational interactions.

3.3. Isodual isofunctional isoanalysis

All conventional and special isofunctions and isotransforms of the isominkowskian
geometry, as well as isofunctional isoanalysis at large, must be subjected to iso-
duality for consistent applications, without any exception known to this author.
This results in a simple, yet unique and significant isodual isofunctional isoanalysis,
whose study was initiated by Kadeisvili.5®

We here mention the isodual tsotrigonometric isofunctions

isosin?0? = —[sin(—@)] x I, isocos?d? = [~ cos(—)] x I, (3.17)
with related basic property
isocos?244 } Yisosindgd — fd o _j x } , (3.18)
the isodual isohyperbolic isofunctions
isosinh*? = [ sinh(—b)] x [, isocosh®d? — [~ cosh(—w)] x f, (3.19)
with related basic property
isocosh®p? 2 fsosinh 2yl — 14 = _1 x f, (3.20)
the isodual isologarithm
isolog?a? = [— log(—4)] x 1, (3.21)

etc. Interested readers can then construct the isodual image of special isofunctions,
isotransforms, isodistributions, etc.48
3.4. Isodual isodifferential calculus

The isodual isodifferential caleulus, first introduced in Ref. 5g, is characterized by
the isodual isodifferentials

d'2H = [4 x dibd = b = da*,  digt = _ st = Iy, (3.22)
with corresponding isedual isoderivatives
DG < _pfJosk, B4F4)4bReE = 8755, (3.23)
and other isodual properties.

Note that conventional differentials and isodifferentials are isoselfdual but
derivatives and isoderivatives are not,

3.5. Isodual isominkowskian geometry

The dsodual isominkowsk: space, first introduced in Refs. 4b (see Ref. 4g for the

latest formulation), is the isodual image of the isominkowski spaces M (Z,9, 1?)
characterized by
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Mt = B3 i, BY) a9 = {84) = (gt} x |
= {r%ce® x*td)x ], 4% = i (3.24)

The isodual isominkowskian geometry is the geometry of isodual isospaces M? over
R%, 1t is also characterized by a simple isoduality of the isominkowskian geometry
of the preceding section.

The physically and mathematically most salient property of the latter geometry
is that it is characterized by negatiwe units of space, time, etc. In fact, we have the
isodual space isocoordinates #* = r x ¢ and the isodual isotime % — ¢ x jd which, as
one can see, are referred to negative units. Thus, a conventionally positive time ¢ > 0
implies motion in time opposite that the characteristic time of the isominkowskian
geometry, the natural time being —t which, when referred to j¢ — —f , yields a
forward flow.

It should be also noted that wsoduality 4s independent from spacetime inversions
r=gXxr=—rt¢=rxt=—t In fact, the inversions occur within the original
space and keep the unit fixed, while isodualities imply a map to a different space,
they keep the coordinates unchanged and change instead the sign of the unit. As
such, isodualities are more general maps than the inversions,

These are the conceptual roots for the prediction by the isodual theory of a new
photon, the isodual photon of Ref. 13c. When applied to the photon, charge conjuga-
tion and, more generally, PCT theorem, do not yield a new photon, as well known.
This is not the case under isoduality because all physical characteristics change.
As a result, the isodual photon is indistinguishable under all interactions from the
ordinary photons except for graviton. In fact, the isodual photon is predicted to
experience antigravity in the field of matter, thus offering, apparently for the first
time, a possibility for the future study whether far away galaxies and quasars are
made up of matter or of antimatter.

At the level of second quantization the isodual representation of antimatter
becomes truly simple and essentially consists in a reinterpretation of the advanced
solutions with respect to isodual spaces and fields. In turn, this tmplies no numerical
deviation of the isodual theories from existing electroweak interactions, because the
advanced solutions are generally discarded as “unphysical”.

An important property of isoduality is expressed by the following:

Lemma 3.3.'% The intervals of conventional and isotopic Minkowskian spaces are
invariant under the joint isodual maps f¢ — jd gng B~ 74,
22 = (2" X fl x ) x [ = [2# x (~fluw) x 2¥] x (=1). (3.25)

As aresult, all physical laws applying in conventional Minkowskian geomeiry for
the characterization of matter also apply to its isodual image for the characterization
of antimatter.

Note that, strictly speaking, the intervals are not isoselfdual because

£ = BN, Ri# o 382 — gud yd N, xdghd — gd2d _ _ 22 (3.26)
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Among the Minkowskion characteristics of the geometry we here mention the
tsodual light {socone

«dﬁd: (Q:#d Xﬁg},ud Xxl’d) dezozo‘

i (3.27)

As one can see, the above isocone formally coincides with the light isocone,
although the two cones belong to different spaces. The isodual light cone is used
in these studies as the cone of light emitted by antimatter n empty space {exterior
problem,), and its isotopic extension is used for the corresponding interior problem. %

To outline the Riemannian characteristics of the isodual isominkowskian geome-
try, we consider an isodual isovector isofield X 4(2) on M* which is explicitly given
by X4(2?) = _xt (—a* x I) x I. The isodual exterior wsodifferential of X<¢(24) is
given by

DA grd(zdy diX#Y(39)10pd 5 fad  dqazea | DXi(—gt) (3.28)

where the I'%’s are the components of the isodyql wsoconnection. The isodual 80c0-
variant isoderivative is then given by
~ . A oa ady Yl Ad apd o 5 ad o . - .
K@y, = 89%rd(3) Jdgagra g fa_p o X3y = —XH(=2"), . (3.29)

The interested reader can then easily derive the isoduality of the remaining
notions of the new geometry. It is an instructive exercise for the interested reader
to prove of the following isodualities:

Basic isounit
Metric

N L
ﬁ“‘*ﬁd=—7?,

isoconnection coefficients
Isocurvature isotensor
Isoricei isotensor

Vapy 5, = Lapy,
{Eo:ﬁ*_fd ‘“'i Rdaﬁfyé ? _Raﬁ'yé 3

Ry - R, =R

s
Isoricei isoscalar R Ri=< R ) (3.30)
Isofreud isoscalar 6 6d= —é,
Isoeinstein isotensor éuv — é’ﬁ, = «—@,,W )
Electromagnetic potentials A, = Aﬁ =—4,,
L Electromagnetic field Fow = Fy = —F,,
g Elm energy-mom. tensor Ty T4, = T,

We then have the following fundamenta] property for our characterization of
antimatter.

o5 g
gRSaiR R

Theorem 3.1. Under the assumed regularity and continuity conditions, the most
general possible isodual 1solagrange equations (App. C) EeBd of Class II along
an actual isodual isopath Py? on o (3+1)-dimensional isodual isominkowskian space
Jor the characterization of exterior or interior gravitational problems of antimatier
satisfying the properties: (1) Symmeiry condition, Eofd — Epag (2) Contracted

isodual isobianchi identity, E‘“‘ﬁdm a = 0; and (3) The isodual isofreud identity; are
given by

S e

i

!

R R
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Bafd _ od od ayid od | £ d"dldd"" 4 d"d"dld d frafd _d Ad
Befd — 52 x4 N34 R‘”ﬂ—i xN“ﬁxR—ExN x*Q

1 gaspesdztfid yd GoB _ g (3.31)
a7 -~ ~ ~ A~ d ~
where: N3¢ = —(detf)/?x I; 4% = ax 14, g2 =pgx 14 1" = 1 xI?, etc.; & and 8
are constants; and 5P is a source tensor. For o =1 and 8 =0 the isogravitation
field eguations can be writlen

pobd w_% « 74 5 frd 4 % x 7704 x & _ f(Fefd 4 jedy _ fregd 4 gd Prend g

(3.32)
where t°F is o source isodual isotensor, #%7 is an isodual stress-emergy isotensor
and & is a constant.

As one can see, the gravitational field equations merely change sign under isodu-
alities. However, one should keep in mind that the field equations and their isodual
are referred to different isospaces.

In summary, the isominkowskian geometry of the preceding section provides a
novel representation of gravitation for matter which verifies the abstract axioms
of the Minkowskian, rather than Riemannian geometry, thus rendering gravitation
structurally compatible with the electroweak interactions thus resolving the struc-
tural incompatibility due to curvature (Sec. 1). The application of the isodual
representation of antimatter of this section to both electroweak and gravitational
interactions then offers new possibilities for the resolution of the second structural
incompatibility due to antimatter.
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