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Abstract

In this paper we study: new numbers called isonumbers and genonumbers of
dimension 1, 2, 4, 8 characlerized by certain axiom-preserving liftings of the
multiplication for normed algebras with multiplicative identity; the isodual
isonumbers and isodual genonumbers of the same dimension, characterized by a
certain antiautomorphic conjugation; the pseudoisonumbers, pseudogenonumbers
and their isoduals characterized by the Turther lifting of the addition with loss of
the distributive law; and submit the conjecture of “hidden numbers” of dirnension
3.5, 6, 7 which appear 1o be permilted by the pseudoisolopic and pseudogenotopic
techniques, and present an explicit example of dimension 3. We show that the
theory of isenumbers is at Lhe Toundation of the Lie-isotopic theory, which is a
nonlinear-nonlocal-noncanonical, axiom~preserving lifting of of the
convertional Lie theory, while the theory of genonumbers is at the foundation of
the yet more general Lie-admissible heory. As such, the theories of isonumbers
and genonumbers submitted in this paper emerge at the foundation of the
ongoing studies of nonlocal interactions in various hranches of physics, including
nuclear, particle ang statistical physics, superconductivity and other fields.
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1: STATEMENT OF THE PROBLEM

As well known, the theory of numbers received momentous advances in
the past century, thanks to the contributions of famed scholars such as Gauss fl
Abel [2], Hamitton (3], Cayley [4], Galois |5] and others {see review [} in the early
part of this century, and ref.s [7~8] for conternporary presentations).

Additional important advances in number theory were made during this
century, including the axiomatic formulation, the theory of algebraic numbers,
etc. {see, e.g., ref.s [10} and contributions quoted therein).

The "numbers” significant Tor this paper are the real numbers, complex
numbers, quaternions and octonions . The topic is therefore the classification
of all normed algebras wilh identity over the reals sccording to the studies, eg.,
by Hurwitz [11), Albert [12] and (N.) Jacobson [13) (see also reviews (7,8]) which can
be expressed via the following

THEOREM 1.} (see, e.g, ref. [8L p. 122: All possible normed algebras with
multiplicative unit over the field of real numbers are given by algebras of
dimension 1 (real number), 2 (complex numbers), 4 (quaternions) and 8
loctonions),

During an talk at the conference Differential Geomelric Methods In
Mathematical Physics held in Clausthal, Germany, in 1950¢, this author
submitted new numbers based on 4 certain axiom-preserving generalization of
the multiplication, today known as isotopic numbers or [senumbers for short.
The generalization is induced by the so-called isotopies of the conventional
multiplication, with consequential generalization of the multiplicative unit, where
the term "isolopy” was sugegested from the Greek “100¢ TOROQ, ie., “same
topology” [14,13L The author subsequently submitted a new conjugation, under
the name of isoduality [18-20] which yields an additional class of numbers,
today known as isodual isonumbers.

These studies were motivated by specific physical needs outlined in this
paper and were essentially restricted to the isotopies and isodualities of real and
complex numbers. As such, the studies were conducted in the physical literature
and do not appear to have propagated as yet to mathematical circles.

In 1his paper we present a systematic study of the isotopies and
isoduatities of normed algebras with multiplicative unit of dimensions 1, 2, 4 and
8, including a realization of isoguaternions and iscoctonions and their isoduals
in terms of the isolopies and isodualitles of Pauli’s matrices here presented
apparently Tor the first time.

! Thanks lo a kind invitation by Prof. H.~D. Doebner which is here gratefully
acknowledged.
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We then study a generalization of the isonumbers, here called
pseudoisonunmber, and of their isoduals which are characlerized by a certain
lifting of the operation of addition, with loss this time of the distributive law.

We also submit a conjecture on the existence of “hidden numbers” of
dimension 3, 5, 6, 7 as hidden in the operations of conventional numbers, and
present an explicit illustration of dimension 3.

Finally, we introduce, apparently for the first time, an additional new class
of numbers called genonumbers which are characterized by an axiom—
preserving ordering of the isotopies. We then identify the pseudogencnumbers
and their isoduals.

The mathematical nontriviality of these new numbers is indicated by the
lack of unitary equivalence of isotopic and genotopic theories to conventional
ones, the fack of applicability of cenventional trigonometry and related Gauss
plane in favor of covering notions, and other aspects.

The physical nontriviality stems from the fact that the novel theory of
jsonumbers introduced in this paper is at the Toundations of the Lie—isotapic
theory, which is a certain axlom-preserving isotopy of the conventional
formulation of Lie theory for the study of nonlinear, nonlocal and
nonhamiltonian systems. The more general theory of genonumbers results to be
at the foundation of the still more general Lie-admissible theory, which {5 an
axiom~inducing genotopy (from the Greek YEVOG T0R0G) of Lies theory [14,15].
As such, the new theory of numbers studied in this paper is at the Toundation of
the current studies of nonlinear-nonlocal-nonhamiltonian systems in nuclear,
particle and statistical physics, superconductivity and other fields.

In the main text of this paper we shall study isonumbers,
pseudoisonumbers, “hidden numbers” and their isoduals. Genonumbers,
pseudogencnumbers and their isoduals are studied in the appendix. A few
introductory sections are presented to render the presentation self-sufficient.

The author would be grateful 1o any colleague who cares 1o bring to his
attention contributions in the specialized mathematical literature in number
theory which are directly or indirectly connected o topic of this paper.

2: PHYSICAL ORIGIN OF ISONUMBERS

The submission of isonumbers was made by this author for the specific
physical need of a quantitative representation of the transition from:

a) the exterfor dynamical problem, le., particles moving in the
homogeneous and isotropic vacuum (empty space), with consequential local-
differential and potential-canonical equations of motion, to

bl the interior dynamical problem, Le., extended and therefore deformable
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particles while moving within an inhomogeneous and anisotropic physical
mediym, with consequential equations of motion of the most general known
nonlinear, nonlocal-integral and nonpotential-noncanonical type.

Theorelical studies [14~27] (see also the independent reviews (2831]) have
shown that the above transition can be effectively represenied via the isotopy of
the conventional multiplication of numbers a, b {or functions or operators), from
its simplest possible associative form axb of current use, inlo the isotepic
multiplicationor isomuitiplication for short, introduced in ref. [14]

a%p :=axTxh, (2.1)

hereon denoted % = xTx, where T is a fixed and invertible quantity for all possible
elements 3, b called isotopic efement.

The conventional {right and left) muBRiplicative unit I of current
mathernatical and physical theories, 1xa = ax1 = a, is then lifted into the form

T%a = a%l = a, 1:=T7!, (2.2)

called the multiplicative isounit .

Under the condition that 1 preserves all the axioms of [ {boundedness,
smoothness, nowhere degeneracy, Hermiticity and positive—definiteness) the
lifting 1 —~ 1 is an isotopy , that is, the conventional unit | and the isounit 1 (as
well as the conventional product axb and its isotopic form a%b) coincide at the
abstract level by conception.

The isonumbers can be first introduced as the generalization of
conventional numbers when characterized by isoproduct (2.1} with respect to the
generalized isounit 1.

The consequences shown in ref.s [14-28] are that, for evident mathematical
consistency, the isotopies of ordinary numbers imply compatible liftings of ail
mathematical structures used in physics [29,30]

{sonumbers -+ isoflelds — — isospaces — isotransformations —
— isoalgebras — isogroups —* isosymmetries =
— isorepresentations — isogeometries, etc.

The isotopic generalizations of classical [24,25] and quantum [26,27] Hamittonian
mechanics (with interconnecting isotopic quantization) are then consequential
with the resulting capabilily to represent nonlinear, nonlocal and noncanonical
systems,

In fact, the isounit 1 is generally assumed to be outside the original field,
with the most general possible, axiom-preserving, integro—differential
dependence on local coordinates x and their derivatives with respect to an
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endent variable t of arbitrary order %, &, ..., wavefunctions g{t,x), ¢i(t,x} and
derivatives also of arbitrary order &, ddt, ... as well as any needed
ional quantity to represent the physical media of the interior problem, such
nsity y, temperature T, index of refraction n, etc. N

1=t x, &% 4 480t w0, o). 2.3

Conventional, local-potential systems are represented by only one quantity,
‘amiitonian H over the ordinary field R of real numbers, which implies the

assumption of the trivial quantity [ as basic unit. The more general
wcal-nonpotentlal systems are represented by the two independent quantities,
ime Hamiltonian H and generalized unit {2.3}

Stated in a nutshell, the isounit 1 can be interpreted as providing a
letrization of the nonlinear, nonlocal and noncanonical, as well as
nogeneous and anisotropic characters of physical media, in such a way 1o
t the conventional geometrization of the homogeneous and isotropic vacuum
rarticular case.

A mathematical presentation of the above ideas can be Tound in memoirs
} (see also the independent review [31D.

This author briefly inspected the lifting of the addition in ref. [21]

+ =+ %= +R +, K =K (2.4)
consequential redefinition of the conventional additive unit
0—+0 = -K. {2.5)

However, unlike the isotopy of the multiplication * — %, the lifting of the
jon +— % implies the general loss of the right and Teft distributive laws (see
4). Thus, only the lifting of the multiptication continues to be used for
ical applications at this time. The understanding is lhat the lifting of the
ion is indeed mathematically intriguing and it will be studied in this paper
at light.

3: PHYSICAL ORIGIN OF ISODUAL NUMBERS
AND ISODUAL ISONUMBERS

The isoduat sonumbers were Introduced in ref.s [18-20] via the following
1gation of multiplication (2.1}
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akb —» aslp:i=axTdxp=—-axTxp=-akbh, ™ =-7, &I

under the name of isoduality . The isounit 1 is then no longer the {left and right)
unit of the theory and must be Lifted into the form

jepd, = ax014 = 2, 14:=-1, (3.2

called isodual isounit .

The isodual isonumbers where Tirst conceived as characterized by isodual
mulliplication {3.1) with respect to the the multiplicative isodual isounit 14

Note that the notion of isoduality first applies to conventtonal numbers. In
fact, the expressions

Tfs m_h 'ld= ]d:=—i‘ {33)

characterize isodual numbers consisting of  isodual reals, isodual complex,
isodual qualernions and isodual oclonions . The isodual isonumbers then occurs
Tor ;he most general possible isodual isornultiplication (3.1} and isodual isounit 14

One can now see Lhe necessity of lifting the product x = % for the very
conception of isodual numbers and isodual isonumbers. The restriction of the
studies in number theory to the conventional multiplication * may therefore be
a reason why isodual numbers have escaped delection until recently.

The isodual numbers and isodual isonumbers also emerged from quite
specific physical needs according to the Tollowing general overview [21,22,25,27}

1) conventional numbers are arn! wlll remain fundamental for the
characterization of ordinary particles in vacuum (exterior dynamical probiem of
particies

2} isonumnbers are useful for the characterization of ordinary particles
when moving within physical media (interfor dynamical problem of particles %

3) isodual numbers are useful for the characterizalion of ordinary
antiparticles in vacuum (exterior dynamical probiem of antiparticles }; and

4) isodual isonumbers are useful for the characterization of antiparticles
roving within physical media {inferior dynamical problem for antiparticles )2

The treatment of antiparticles with isodual numbers emerged from a
reinterpretation of the customary characterization of antiparticles via negative-
energy solutions of Dirac’s equations, As well known, such solutions behave in an
unphysical way when conventionally interpreted, that is, interpreted with respect
to the same numbers and unit 1 of particles, thus forcing physicists into various
hypothetical assumption, such as postulating infinite seas of undetectable
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particles which have left the characterization of antiparticles still resolved to this
day.

On the contrary, the same negative energy solutions behaved in a fully
physical way when reinterpreted as belonging to the Tield of isodual numbers, ie.,
when reinterpreted as being defined with respect to the isodual multiplication xd
=x{~]) % and iseduat unit 19 = ~1. In particular, this reinterpretation implies no
need of hypothesizing seas of undetectable particles.

The treatment of antiparticles with isodual numbers has rather intriguing
geomelrical implications. In fact, it permits the mathematical prediction of a
hitherto unknown universe, called jsodual unfverse , which 1s inmerconnected to
our universe via isoduality, and identified by the isotopies of the Riemannian
geomelry and their isoduals 2530311

In this paper we shall conduct a systematic study of the theory of
isonumbers and their isoduals because they have a mathematical significance per
se, irrespective of any possible physical application.

In closing these introductory words, the reader not familiar with isotopies
should be alerted against the use of conventional mathematical thinking under
isotopies because leading to {often undetected) inconsistencies. As an example,
traditional statements of the type “two multiplied by two equals Tour” are, al best,
mathematically incomplete because lacking the joint identification of the related
unit, and they are inapplicable under isotopies. In fact, if we assume for
multiplicative wnit 1= 371, “two multiplied two equa) twelve™.

Additional, often undetected inconsistencies occur in the preservation
under isotopies of conventional operations on veclor spaces and their completion,
e.g. into Hilbert spaces, which have motivated the recent identification of a new
branch of functional analysis under the name of 1 unctional ispanalysis 1321,

As an example, the notion of exponentiation has no mathematical meaning
under sotopy, evidently because of the lack of conventional multiplication
needed for its definition as a power series expanston [14,i5% the notion of
wnitarily is also inapplicable because, again, referred to conventional products
and units [11,13}; ete.

For these isotopic operations we refer the interested reader to ref.s {26,27].
Here we limit ourselves to recalling for later use that the notion of determinant
of a matrix A is also inapplicable under isotopies because it does not preserve
the basic axioms. We have instead the isodeterminani [15,21,26,27)

DetA := [DetplaxTx1, (34)
where Det A represents the conventional determinant compuled in the selected

{ordinary) Tield F, which does preserve the axioms of Det A at the isotopic level
because
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Det(AXB) = (Det A)X{D&tB), Dat(Al} = metay!. (38
The corresponding isodual isodeterminant is given by

patd A = [Det (AxT9)Ix1¢ (3.6)
F
Similar isotopic liftings occur for trace, Hermiticity, unitarity and all other
operations [27).

4: ISOFIELDS, PSEUDOISOFIELDS AND
THEIR ISODUALS

To render this paper minimally self-sufficient as well as {or notational
convenience, it appears recommendable to outline the essential background
notions needed for the analysis.

Let us begin with the foliowing definition of isofields [29],

DEFINITION 4.1: Let F=¥Fa, +, %) be a “field", here defined as a ring with
elements a, b, ¢, ..., which is commutative and associative under the operation
of conventional addition + and (generally nonassociative but) alternative under
the operation of conventional multiplication xwith corresponding additive unit
0 and multiplicative unit I. Then, the "isofields” F = F(i, +, %) are given by
elements 3, B, &, ..... characterized by one—lo-one and invertible maps a = & of
the original elements a € F equipped with two operations (+, X), the
conventional addition + of F and a new multiplication * called
“isomultiplication”, with corresponding conventional additive unit 0 and a
generalized multiplicative unit 1, called “multiplicative isounit’, which are such
to verify ali axioms of the original field F, ie.:

1) Axioms of addition:

LA) The set F is closed under addition,

a+hHhefF ¥3b e F, {5.1)
1.B) The addition is commulative for all elements 3, be F
a+h =06+ 3, (4.2}
1.C) The addition is associative for alld, B, &, € F,

a+(b+c)={a+b) +&; 4.3
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1.D) There is an element 0, the“additive unit”, such that for alf elements
efF

a+0=0+32c=a3a; (4.4)

1.E) For each element 3 ¢ F, there is an element - 4 € F, called the
“opposite of a7, which is such that

a+(-a)=190 {4.5)

2) Axioms of isomultiplication:
24) The set ¥ is closed under isomultiplication,

i%h e F, Vv &bhefF, {4.6)
2B} The muitiplication is generally non-isocommutive, ie,
a % b= b%a, but “soalternative”, Le, it verifies the following left and right
isoalternative faws for all elements 3, B, e F

a%x(bxp) = (3%b)i%hH,; (A%4)%b = GR@EXB) 4.n

2.C) There exists & quantity 1, the “muitiplicative isounit’, which is such
that, for all elementsa e F,

axl =1%a = 3, {4.8)

2D) For each element a € F, there is an element 3l e F, called the
“fsoinverse’, which is such that

axtah) = @ %a = 1. (49)

3] Properties of joint addition and isomultiplication:
3.A) The sel ¥ is closed under joint isomuitiplication and addition,

ax{b+e) e F, (a+bh)%¢c e FL,vabetef (4.10}
3B) Allelements a, B, ¢ € F verify the right and left “isodistributive laws”

a%{h +&)=3a%b + 4%, {(a+ D)RE =A% + bRE, (4.11)
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When there exists a least positive integer p such that the equation
pka =10, {4.12)

admits solution for all elements a € F, then F is said lo have “isocharacleristic
P~ Otherwise, F is said to have “isocharacteristic zero”.
The elements a of isofields Fia+, %) are called “isonumbers”,

The reader is aware that there are various definitions of “fields” in the
mathematical literature [7-10}, w:-h stronger or weaker conditions depending on
the case al hand. Often, “Tields” Fla, +, =} are assumed to be associative under the
multiplication (see, eg., ref. (8] p. 101)

ax{bxc)={axblxc VvabeceF, (4.13)
while in Definition 4.1 we have assumed “Tields” to be alternative, i.e.,
ax(bxb)={axb)b, {axalxb=ax{axb), Ya,beF, (414)

which s an evident generalization of associativity because every associative ring
Is also alternative, but an alternative ring is not necessarily associative {see ref. [8]
for details).

Therefore, the “isofiekls” as per Definilion 4.1 are not, in general
ispassociative, i.e., they gencrally violate the iscassociative law of the
muftiplication

axipx) = (axphlxke vabecekf, {4.15)

and verify instead the weaker isoalternative laws (4.7).

The above assumptions are suggested by our need to reach a definition of
"number” which is unified with the results of Theorem 1.1, and includes: the real
numbers Rin+x), complex numbers Cle,+x), quaternions Qlq.+.x) and octonions
Olo,+x). The corresponding “isofields” given by isoreal numbers R(f,+5),
isocomplex numbers Cl&+X), iscquaternions QWQ,+% and isooctonions Q5 +3),
the latter being isoalternative but not ispassociative.

The realizations of the isonumbers, isomultiplicalion and related isounits
used in this paper are those reviewed earlier, i.e,

Gmaxl, ¥=xTx, 1=T. w1

where x s evidently the original mulliplication in F, and 1 preserves all

—2% .

properties of | (smoothness, boundedness, nondegeneracy, Hermitlcity, and
positive-definiteness).

Note that the lifting x — % = xTx is an isotopy in he sense that it preserves
the axioms verified by the original multiplication x, i.e, il x is associative, % is
isoassociative, if % is alternative % is isoallernative, etc. {see ref. [29], Sect. 5 for
details).

Thus, "fields” and “isofields” as per Definition 4.1 coincide at the abstracl
level by conception, as a necessary condition to have an isotopy. In fact, all
distinctions between the multiplications * and % (as well as between the unit |
and the isounit 1) cease 1o exist at the abstract level.

The liflings a = &, and % ~ % can be used jointly or individually, The
following properties are then important for our analysis.

PROPOSITION 4.1: Necessary and sufficient condition for the lifting (where the
multiplication is lifted but the elements are not}

Fla, %) — PMa+%, %=xTx 1=T! (.17

to be an isotopy (that is, for F to verify all axioms of the original field F} Is that
T is a non-nuil element of the original field F.

{n fact, the laws of addition are unchanged, while the multiplication and
distributive laws can be readily verified to hold. The closure of the original set

under the addition is evident because that operation s not changed. We then
remain with the closure under the isomultiplication,

akb = axTxb eF, vabef, {4.18)

which does indeed hold when T € F, by therefore establishing the sufficiency of
the condition. Its necessity follows from simple contrary arguments.

PROPOSITION 4.2 The lifting (where both the multiplication and the elements
are lifted)

Fia, #%) = P&+% a=ax], k=xTx 1=T1 .19

constitutes an isofopy even when the multiplicative isounit 1 is not an element
of the original field F.

In fact, one can readily verily the validity of all axioms of a field, and
closure under addition. Closure under multiplication readily holds because
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3%b = {axb)x1=cx1=¢¢efF, Vabcec=axbeF (420

The mathematically simple Proposition 4.2 expresses lhe physically
fundamentai capability of generalizing Planck’s unit h =1 of quantum mechanics
into an integro-differential operator 1 for a quantitative treatment of nonlocal
interactions [26,271

A Tirst application of the isotopies of numbers is the Tollowing. As well
known, the set of purely imaginary numbers § = lin} is not a Tield, evidently
because it is not closed under the multiplication, inxim = -nm € §. However, the
set of real numbers 5(R,+,%), fi = ni with the purely imaginary isounit 1 =1 is
indeed an isofield, that is, it verifies all axioms of a field, including the closure
under the isomultiplication, because T = i‘l, and we have in%im = Inm € 8,

This illustrates the possibility that, when a given set does not constitute a
field, there may exist an isotopy under which it verifies all axioms for a field.

The following property illustrates the reasons for restricting the isotopies
in Definition 5.1 to only those of the multiplication.

PROPOSITION 4.3 The lifting
Fa, +% —~ HMaH%, [4.21a)
a=axl, #=+R+, 0 =-K==~Kx], k=x7Tx 1=T1, (4210
where K is an element of the original field ¥ and T is arbitrary invertible

quantity, is not an isotopy for all nontrivial values of the guantity K = 0,
because it preserves all axioms of Definition 4.1, except the distributive Jaw (4.11)

In Tact, all axioms {4.1)-(4.10) can be readily verified to be preserved under
liftings (5.21). On the contrary, for the right distributive law we have
2%(H38) = axi{p + K+ c)x1 =(axh + axK +axc)x1 =

b FAa%e = (axb + K+ axc)xl, {4.22)

w

= 3

with similar lack of identities for the left isodistributive law. Note that the set £
in lifting {4.21) is closed under Isoaddition for K € F (but not for K & F), and,
separately, under {somultiplication for an arbitrary isounit 1 outside the original
sel F. The same resufts hold for the Jlifting Fla, +, %) = Fla, $, X, =+ K+ Ke F, K
#0.
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. A central property expressed by Proposition 4.3 Is that lifting (5.21) is not an
isotopy because one of the original axioms s not preserved. We shall then use the

term “pseudoisotopy” to denote the preservation of only part of the original
axioms. ’

DEFINITION 4.2 Let W&+ be an isofield as per Definition 4.I. Then, th.e
"pseudoisofields” are given by the images of FIa,+%) under alf possible further
liftings of the addition + - %=+ K +, with additive isounit D = - R = -~ Kx1, K =
0, in which case the elements & are called "pseudoisonumbers”.

After having identified the notions of fieids, isofields and pseudoisofields,
we now study their isofopic conjugation , that is, their images under change of
sign of the isounit

119 =, {4.23)

called isoduality [20~22).

DE‘FINITI%N 4.6?: Let Fa+xX) he a field as per Definition 4.1, Then the “isodual
field” Fa%+x9) is constituted by efements called “isodual numbers’

d

al iz gxd = -y (4.24)

defined with respect to the "isodual multiplication” and related “isodual unit”

xd:=x|dx=—x |d=-—-], {4.23)

1

Le{dﬂg.;.i) be an Isofield as per Definition 4.1. Then, the “Isodual isofield”
99+ %9 j5 given by “isodual isonumbers”

3 s a8x1d = -a0x], {4.26)

whr?re a® is the conventional conjugation of F (e.g., complex conjugation),
defined in terms of the “isodual isomultiplication”

S LRI A L {4.21)
Finally, Jet Fﬁ.;,*}‘ be a pseudoisofield as per Definition 4.2. Then the “fsodual
p.seudo{soﬁe!d” Fpdadsd ) g given by the image of the original Isofield under
Isodualities (4.25) and (4.26), plus the additional Jsoduality
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b > ¥®=-0. (4.28)

d

and its elements 3% are called "isodual psevdoisonumbers™,

A few comments are now in order. All conventional operations with
numbers depending on the multiplication are evidently altered under lifting to
isofields. Let us consider Tirst the isofieids fla, +, %) of Proposition 4.1. Then, the
“square” a% = axa is lifted into the isosquare .‘:12 = a¥Txa, with n-th isopower

a" = axTxaxTxax..xTa {ntimes) {4.29)

Recall that the conventional square roct can be defined as the quantity a! such

that {a')x(@) = a. Then, for the simple case in which T commutes with all elements
a e F, the isosquare root is given by
at = atxi, alxal~adxTxa = a. (4.30)
The isoinverse, from Eq. (4.9}, is given by
al=1a71. 431)
The isoguotient can then be defined by
alb = ¢, ¢xTxh = a, (4.32)
The reader can then compute all other isooperations.
Note thal the isounit 1 is idemipotent of arbitrary (finite) order n as the
original cne
S = 1xTx1xTx_ xTx1 {ntimes) = 1 (433
the isosquare root of the isounit is the isounit itseff,
o=, (4.39)
and the isoquotient of the isounit by itself is the isounit,

171 = 1, (4.33)

thus confirming the isolopic nature of the lifting 1 = 1.
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Fulty equivalent expressions hold for the isofields F3, +, %) of Proposition
5.2, for which we have

32 = 3%3% %3 = a2x1, (4.362)
al = g ), (4.36b)
a7h=¢ =cx], ¢%bh = (cxblx] =4 (4.234c}

Note also that the number | may be an element of the isofield F{a+X),
although it is no longer the unit. Similarly, the number 0 may be an element of
the pseudoisofield Ma,+x), but it is no longer the additive identity.

Kadeisvili [32] provided an important classification of isounits into five
primary classes which is hereon tacitly assumed.. In this paper we shall only
study two out of five classes, namely, Class [ with 1> 0 for isofields and Class !
with 1 < 0 for isodual isofields, for the sole case of isocharacteristic zero. Among
the remaining classes not studied in this paper Tor brevity, Class 1V s particularly
intriguing Inasmuch as it deals with degenerate isotopic elements T — 0 and
corresponding singular isounits 1 — oo which can represent gravitational collapse
into a singularity.

5: ISOSPACES, PSEUDOISOSPACES AND
THEIR ISODUALS

Consider a metric or pseudo metric n-dimensional space Sx.g,R(n,+x)) with
local coordinates x and (Hermitean} metric g = gf over the reals Rin,+x}
Another notion needed for our analysis is given by the jsospaces S0gR(n+5)
over the isoreals R(n,+.%} (see Proposition 4.1}, first introduced in ref. (18] (see also
ref.s119,23,28)),

Sx@Rn, + %), g=Txg &=xT, T=»T7!, 5.0

The isoduals isospaces, Tirst introduced in ref. [20] {see also tef.s [21,23,28) are
then given by

S gdRITE+ 3 ) pl=Tdxg =-Txg M=xTdx =-xTx 19=-1, (52
Again, as it 1s the case for isotopies of fields, isospaces 8(xg,R} coincide, by

construction with the conventional spaces Sir.g,R) at the abstract, realization-free
level, thus verifying the isomorphism SxaR) ~ SixgM). Nevertheless, the former
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have lhe most general known curvature and integral character owing to the
arbitrariness in the isotopic element T. In fact, the isometrics § = T*x have the
most general possible, nonlinear, nonlocal and noncanonical dependence in all

variables, ~

g=gl) = g=Thx %% .Jxgkl gltxzx.}. (5.3

Similarly, isodual isospaces $%xgR%nd+34) are locally isomorphic to the
isodual spaces $9(xg%R3nd+ %), which are conventional spaces although
defined on the isodual real fields R9,

The isospaces most important for physical and mathematical applications
are the fsoeuclidean spaces E(x8.R), isominkowski spaces MixA,R) and
isoriemannian spaces R{x.gR), which are at the foundations of the representation
of nonlinear, nonlocal and noncanonical interior systems in nonrelativistic,
relativistic and gravitational interior problems, respectively (see ref.s [25,29] for
details),

Note that in the above definition the local coordinates x and numbers n
of an isospace 5(x,8.R(n,+%)) are not lifted into the forms X = x x 1, i = n % 1, which
renders them the vector space equivalent of Proposition 4.1. Neediess to say, the
liftings x +%=xx1 and n—+n=
nx1 are indeed possible , implying the additional forms S{xgR(A,+ XN, primarily
used in this paper, and S(x g2+,

Given an isospace 3(x.gR(n, + %}, then a pseudoisospace is given by the
image 3R+ % of the original space characterized by ihe further lifting + —
+=4+ K+ 0—0=- K The isodual psevdoisospace is then defined accordingty.

6: ISOTRANSFORMATIONS

Another notion needed for this paper is the appiicable transformation
theory. Consider an isospace &(x.5./(n,+ ). Conventional tinear, local and canonical
transformations x” = Axx are now afflicled by a host of mathematical
inconsistencies {such as the violation of linearity, transitivity and others}
whenever appHed to Xx.gR(n+X). For this reason this author introduced in ref.
[14] the isotransformations as 1he right isomodular actions on S(x5R{n,+%)

x' = Akx = AxTxx, (6.1
where the isotopic element T 15 fixed for all x € 8, which now do verify all

needed conditions, although expressed in their isotopic Torm. The left
isotransformations are defined by
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st = xtxal=xtxTxal, (6.2}

because T = T! for the considered Class I of isonumbers and isospaces,
The isodual isotransformations are given by

xd = pdzd,d (6.3)

Transformations (6.1) are called isolinear because they coincide with the
conventional linear transformations at the abstract level. Note that all nonlinear
transTormations x' = B{x) can be always cast into an identical isolinear form {29]

= Bxl = A¥%x, T=aAlxpxx\ {6.4)

We can then say that linearily is a true axiomatic structure, but nonlinearity is
not because it can be made to disappear under isotopies.

Transformation (6.1) are also isolocal , in the sense that they coincide with
the conventional local transformations x” = A x x at the abstract level. Again, alt
nonlocal integral transformations x* = Hx) verifying the needed continuity
conditions can always be identically written in an isotopic form [29]

Yeld=aky, T=ATxlxxl {65)

[n this way one can see thal locality is a true axiomatic structure, but nonlocality
is not because it can be made (o disappear at the abstract level under isotopies.

Transformations (6.1) are finally called isocanonical |, in the sense that
they generally violate the conditions to constitute canonical transformations, but
they nevertheless coincide with conventional canonical transformations at the
abstract level, Thus, the canonical structure is 2 true axiomatic structure, but its
absence (violation of lhe integrability condilions for the existence of a
Hamiltonian, the conditions of variational seifadjointness i3] 1s also not a true
axiomatic structure because it can be made to Ji-appear at the abstract level
under isotopies. In fact, in ref. [I15] one can see the conmstruction of the
Birkhoffian generalization of Hamiitonian mechanics Tor the representation of
all possible, sufficiently smooth and regular, local but nonlinear and
nonhamiltonian systems, under the condition that Birkhoffian and Hamiltonian
mechanics coincide at the abstract level.

The pseudoisotransformations are then lsotransformations (4.1} on a
pseudoisospace 3(x,g,Rin,#X). However, while the ariginal transformations (4.1} are
distributive, the latter ones are not,

Ax{x ¥ w) # A%x ¥ ARy, (6.6}



-201 -

in view of Proposition 4.3. The isodual pseudoisotransiormations are then
defined accordingly.

-

7: ISOALGEBRAS, PSEUDOISOALGEBRAS AND
THEIR ISODUALS

A further notion needed for our analysis is the applicable definition of
algebra and of the representation theory. An isovector space U with clements A,
B, C, .. and isomultipiication & over an isofield a,* ) of elements a, b, ¢, and
isomultiplication a ¥ b with multiplicative isounit T = T7! is called an
{associative or nonassociative) isoalgebra [14,29], when it satisfies the left and
right scalar and distributive laws

(a%A) OB = AG{a%B) = a%(AXB},
{A%a)®B = A&(RB%a) = (AOB)Xa,
A@(B+C)=AéB+AéC. B+C) 6A=BOA +COHA (.1

Tor all elements A, B,Ce Aanda, b.ce F.

Note the differentiation between the isomultiplication ASB of the elements
of the algebras, which are, say, matrices, from the isomultiplicalion of the
efements of the isofields a%b, which can be ordinary numbers.

The isoalgebra O fs called an isodivision algebra when the equation A X x
=B atways admit a solution for & = 0,

Recall that a basis e, . k = I, 2 .., m of a conventional algebra U {i.e., cne
verifying the conventional form of the scalar and distributive Jaws) remains
unchanged under isolopies, except for possible renormatization & &k {ref. {20},
Proposition 3.1, p. 181}, Thus a generic element A € U can be written

A= Ek=1....,m ﬁk E; ’ék , ﬁk € F(§.+.9<}. (7.2
The isonorm of ( in the basis considered is then given by
IAE = {Ek=l,....m Ng XN Bxle P, (7.3}

An Isoalgebra U is called isonormed. when the fsonorm verifies the axiom
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TA 6BT = TATX[B] e, TA% Al = [A] %[4AT, (7.4}

/here we have differentiated the product AGR of the elements A and B of the
Igebras from the product [A[% [B1 of the elements of the isofield A fand
Bf.

The Isoalgebra U is said to be jsoassociative when it verifies lhe
soassociative law

AB{BEC) = (ABB)IOC, VA,BCel; (7.5)
t is said 1o be fsoalternative when it verifies the isoalternative laws
A26B = AG(A 6B), AGB? = (AGBIGE, {16

tis said to be Lie~isotopic when the product AGB verifies the Lie algebra axioms
n isotopic form {anticommutativity and Jacobi law) as in the realization [14,20]

ABB = ATB -~ BTA, AT.BT, etc = assoc, 70

nd it is said 1o be Lie~admissible when the antisymmetric product attached to
\éB

[ATB]:= AS6B ~BAA, (7.8)

5 Lie-isotopic as in the realization
AGB = ARB - BSA. (7.9)

The isodual isoalgebras 09 are then those characterized over an isodual
isofield Fd{nd + 54,

Suppose that U is isoassociative and let R, and [, represent the right
and left isomultiplication of the element A ¢ 0. [t is possible to prove that the
map A — R, {4 = L,) constitutes a hormomorphism {antihomomorphism) of 0
into the algebra of all isolinear transformations of U as a vector isospace cailed
right fleft} Isorepresentations (see Lhe forthcoming paper [35] for details).

A dominant aspect of the transition from conventional representations to
the covering isorepresentations, for which the isonumbers were concelved, is the
transition from the conventional linear, local and canonical representations
currently used in physics to their most general possible nonlinear, nonlocal and

noncanonical form.
As well known, the distributive laws are basic axioms for any structure to
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characterize an “algebra” as commondy understeod [7-10l. The image of an
isoalgebra U under the transition an isofield Fa,+%) to a pseudoisofield Fa,3%)
then implies the loss of the basic distributive laws and, for this reason it will be

called pseudoisoalgebra .

8: REALIZATION OF ISOREAL NUMBERS AND
THEIR ISODUALS

8.A: Realization of ordinary real numbers. Recall (see, e.g., ref. [7]) that
conventional real numbers n € Rin,+x) are realized on the one-dimensional real
Euclidean space Efx,6R(n+x)), which essentially represents a straight line with
origin at 0, local coordinales x, metric § = [, additive unit 0 and muitiplicative
unit 1. In fact, the difations

¥=nxx, neRn+x), x, X € Elx8R) , (8.0
characterize an isomorphism of the reals R{n+%) into the commutative one-

dimensional group of ditations G(1).
The trivial basis is

e=1, 8.2
with the familiar norm
[al = {a=xni>0, 8.3
verifying axioms (7.4),
fnxn| = [a]x|n]. (8.4)

This show that real numbers constitute a one—dimensional normed associative
and commutative algebra U{1).

8.B: Realization of isodual real numbers. Isodual real numbers n ¢

RA(n 2 x4) are conventional numbers n, although defined with respect to the
isodual unit 19 = = 1. The isodual conjugation for real numbers can then be
wriiten

n=nxl — n8=nx¥=-qn, (8.5}
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All numerical values therefore change sign under isoduality, One should however
keep in mind that such a sign inversion occurs only when the isodual real
numbers are projected in the field of conventional real numbers.

As an example, the negatsve inleger number -3 referred to the negative unit
= [ is Tully equivalent to the positive integer number +3 referred to the positive
unit +1, and this ilustrates that the change of sign under isoduality occurs only in
the projection of the isodual numbers in the original conventional field.

The representation of R9(nd,+xd) reqmres the use of the one-dimensional,
real isodual Euclidean space Ed(x.sd Rd{n +>x9)), which is also a straight lme this
time with conventional additive unit 0, and iscdual multiplicative unit 19 = -1,
The ispdual dilations are then given by

x = alxdy = nxx (8.6)

They establish an isomorphism between RY (n9x9 ) and the isodual group of
dilations GX1}, ie., the conventional group G{1} reformulated with respect to the
multiplicative unit 19,

Note that E{x8.R) and E%x8%RY are anti-isomorphic and the same
property holds for G(1) and GO(1}. Kote that isodual dilations {8.2) coincide with the
conventional ones {8.1), and this could be a reazson for the lack of detection of
isodual numbers until ref.s [18-20].

The isodual basis 1Is now

=0 87
with isodual norm
[nf :=taxntx 9 = [n]=x19 = -|n]<0 (£.8)
verifying axioms {7.4)
Indxpyd @ = |pd|d xd |gd|d, (8.9)

This shows that isodwal real numbers constitute a cne-dimensional isodual,
associative and commmutative normed algebra U%1) which is anti-isomorphic to
ut).

8.C: Realizatlon of isoreal numbers., We consider now the isoreal
numbers i = nx1 as elements of an isofield of Class I {32}, Ry{n, 5 with
isomultiplication % = %Tx, and multiplicative isounit 1 =Tt 5 ¢ generally outside
the original set R(n,+x), Their representation requires the isoeuclidean spaces of
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Class 1, By {(x8R(0,+%), § = T8, over R((,+%), which are the isotopes of the
conventional one-dimensional Euclidean spaces E{x8R).

One should keep in mind that:

A Ep{x5R) is a simple, yet bona-fide isoriemannian space 130}, because b
=T = & =8l x, % & ..}, where the local dependence is generally nonlinear,
nonlocal and noncanonical in all variables;

B) E; {x5R) is not a Riemannian space because of the intrinsic dependence
of the isometric § on the derivatives %, %, ... as well as the fact that the basic unit
is not the conventional quantity [; and

©) Despite their differences, the conventional Euclidean space E((x,8,R) and
its isotopic covering 9]‘;.()(.8.]'{) are locally isomorphic due to the joint liftings & —»
B=Txsand 1+1=T"

Thus, the one-dimensional isospace £; {8 R) represents a generalization of
the conventlonal straight line, here called an /soline , because of its intrinsically
nonlinear, nonlocal and noncanonicat metric 8(t, %, %, &, ..} with multiplicative
isounit 1 = 1t %, %, &, ...}

Ry(A,FX) can then be realized via the Iscdilations on £; | (x5R)

¥ = nkx =nxx, ’ {8.10}

which formally coincide the original dilations (8.1% as it is the case for the isodual
dilations, 1hus providing a reasen for the lack of detection of the isoreal numbers
until recently.

Isodilations (8.10) characterize an isomorphism of the isoreal numbers with
the one-dimensicnal isogroup of isodilations G(1}, ie., the group G(1) realized with
respect to the isounit 1. The isomorphism E(x8Rin+x}) ~ B (x3R{{+5) then
readily impties G(1) = G{1},

The isobasis is given by

é=1, {&.11)

while the isonorm can be defined by

~

fal := (axn)x1 = |n|xT, (8.12)
namely, by the conventional norm, anly rescaled to the new unit 1, which is the

essence of the transition from real number n to thelr isotopes fi = nx,
in particular, axioms (7.4) trivially hold,

faxal = Taf % [&f, (8.13)
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wilh the same product inside and out because referred to the same elements. One
can see that the isoreal numbers constitute a one~dimensional, isonormed,
isoassociative and isocommutative isoalgebra  0(1) = U{1).

8.D: Realization of isodual isoreal numbers. We consider now the
isodual numbers A% = 119,19 = -7 belonging to an isodual isofield R"d(ﬁd.+.xd}.
In this case we need the one-dimensional, isodual isoeuclidean space of Class II,
E”d(x.a".ﬂd). and the isodual isodilations

x = fdsdyx, {8.14}

which also coincide with the conventional dilations (8.1), by characterizing an
isomorphism of the isedual isoreal numbers with the one-dimensional isodual
isogroup GH(1), Le., the image of G{I} under the Isodual Isounit 19 = -1. the
underiyin§ isomorphism E;%x.89,Rn%,+xd) ~ Ep, (%%, 39.R9(A%+59) then implies
6o ~gda).

The isedual isobasis ts given by

g = 19, (8.15)

with isodual isonorm
18919 = (axn)x19 = -Ja], (8.16)

verifying axioms (7.4),
fadsd it = Jpd P sd pdfe (817

Fhus, the iwodual isoreal numbers are a realization of the vne-dimensional
isodual, sonormed, isoassociative and Isocommutative fsoalgebra 01 ~ pd(1),

The pseudoisoreal numbers fi € R(RF ¥ and their isoduals A9 €
9 (nd39%4 } can be readily constructed from the above lines although, as now
Tamiiiar, they are no longer distributive.

9: REALIZATION OF ISOCOMPLEX NUMBERS
AND THEIR ISODUALS

9.A: Realization of ordinary complex numbers. Recall (see, e.g., ref. {7])
that conventional complex numbers ¢ = np + oy % 1 € Cle,+%), where ng,n €
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Rin+%), and i is the imaginary unit, are represented in a Gauss plane (1} which is
essentially & realization of the {wo-dimensional Euclidean space Eo{x,8.Rin,+ )
with basic separation

~

x2 = xlsx = x§;x = x2+ %t € Rintx 9.0

whose group of isometries, the one-dimensional Lie group 0(2), is the invariance
of the circle, as well known. We then expect complex number Lo be representable
via the fundamental representation of (2} {see below),

The correspondence between complex numbers ¢ = ng + ny ¥ | and the
Gauss plane with points P = (x| , x5} is then made one-to—one by the dilative
rotations

2=l +xx1) =coz=I[p+oxilelx +xxi, 9.2
with multiplication rule
coz = (g, nlolk . x)=
={ngxx| - N X¥xp,MgXxp + MpXxp} . 9.3

which is known to preserve all properties to characterize a field, thus establishing
a one-to-one correspondence between complex numbers and points in the Gauss
ptane. Transformations {3.3) also forms a two-dimensional group G(2) in one to
one correspondence with Cle,+x)

Complex numbers also admil the matrix representation

1Y) nlxi
c = n0x10+nl)£§i = ( )f (9.43)

E‘llxi Ny

1 0 0 f
I@ = ( ) ' il = ( ) t (94b)
0 i i 0

which are the identity and fundamental representation of O{2), respectively, as
expected,
The norm is then given by the famillar expression

le| = |ng # myxi|:=(Detc) = {Exc)} =(n? + n?F. (03
0 1 LLs} 1

and readily verifies axiom {7.4)
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leoc| = |e] x || eR, ¢ ecC. (9.6)

where now we have different products because referred to different elements.
Finally, the identification of the basis in terms of matrices (9.4b}

g = 10, € = El' {9.7)

implies the equally well known result that complex numbers constitute a two—
dimensional, normed, associalive and commutative algebra U(2),

9.B: Realization of Isodual complex numbers. We now consider the
isodual complex numbers

= (el d) = 8=y, d=gx18=-F, TeT), (9.8)

where € is the usual complex conjugation. Thus, given a4 complex number ¢ = ny+
0y * |, its isodual is given by

cd=—F=ngd + ndxT= ~ng-nxTa-ny+n xiecl (8.9)

In this case we need the two-dimensional isodual Euclidean space
2,8(x,59 R%nd + <3)) with basic invariant

XZd = xtﬁdx = Xlsdinj = X;2d+X22d =

= x9x +xp¥xy = ~x2 - x2 e Rind (9.10)
1“ = %

vhose group of isomelries is the one-dimensional isodual Lie group 0(2), ie., the

mage of O{2) under the lifting [ = diag. (1,1} = 1 = diag. (-1, =1) [20l. We then

:):n(cp)ect isodual complex numbers to be characterized by the isorepresentation of
2).

We can then introduce the fsodual Gauss plane as the image of the
:onveniional plane under isodualitly. The correspondence between isodual
:omplex numbers and the isodual Gauss plane with points P ={ x|, %3 } is then
nade one-to~one by the isodual difative rotations

dOdZ-':(‘ﬂg"‘ﬂle}od(xl‘*‘)(le). (9.11}

z = ytxgxi) =¢
with multiplication rules
cdolz = fng,n)ed by, x) =

={“n0><x[ X 1 XXy, " Ng XXy t l'l]xxl). 5.12}
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which can be easily shown to preserve all properties to characlerize a field. Also
isodual transformations {9.12) form an isodual group GY(2 antiisomorphic to
G{2).We therefore see Lhat, as expected, the one—to-one correspondence between

complex numbers and the Gauss plane persists under isoduality.
1sodual complex numbers also admil the matrix representation

—Ng ﬂlxi
Cd 1= ﬂodx lod + nldx fld = ' {9.13a)
nxio g

e o) ( 0 - o1
il = ' i = 9,13
0 (0 -1 SR SR )'

which are the isodual unit and isodual representations of o%(2), respectively.
The isodual norm , from rule {3.6), is now given by

Je9]d = Jong +myxi |9 o %detR(cdx’idJ]*XIod = (Edxd cd ) gl
(9.14)

can be written
[cdid= (exTixid = (ng? + m2ix1gd. (915).
and also verifies axiorns (7.4},

|cdodedjd = |cd|d «d | d|deR], el cded. (3,16}

Finally, the identification of the isodual basis in terms of matrices {9.13b)

(9.17)

implies that isodual complex numbers constitute a two-dimensional, fsodual,
normed, associative and commulative algebra U2) which is anti~isomorphic to
u(2.

9.C: Realization of isocomplex numbers. We consider now the isofield of
isocomplex numbers

C=(Ei®|%=xTx1=TF t=cx),celcrx], {9.18)

with generic element & = fig + fij * 1. in this case we need the two-dimensional
isoeuclidean space of Class L, By p(x8R(0,+%). Their realization most used in the
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physical literature is thal with a diagonalized and positive-definite Isotopic
element and isounit

T = diag. (b2, 0%) , 1 = diag. (072,8;2), by>0, k=12  (2.19)
with basic isoseparation
x2= (xPBx)x1 =y Bx;) = (x; P x; + xb2 by} %1 € RiA+Y), (0.20)

whose group of isometries is the Lie-isotopic group O{2) ~ O{2) [20], i.e., the group
O(2) constructed with respect to the multiplicative Isounit 1 = diag. {b; ™% by 3,
which provides the invariance of all possible elfipses with semiaxes a = h]'z. b=
b2 as the infinitely possible deformation of the circle (9.1). We then expect that
g(oziomplex numbers are characterizable via the fundamental isorepresentation of

We now introduce the isogauss plane  which is the set of points P = (%), xp)
on E; 5 8R{E+%) for the characterization of isocomplex numbers & = { fiy , ) ).

The correspondence between the isocomplex numbers C(E,+,%) and the
isogauss plane can be made one-lo-one by the isodilalive isorotations

z = (x+xx%i)" =2dz _ (8.20)
with isomultiplication rule
thz={fg, RIS (x ,x3) =
= ([{ngxxg)xT= At x{nyxxy)x 1), [{ngx s )x1+(nyxx 1x11),
A = Det T = by?xb?, (9.22)
where the appearance of the A! Tactor wilt be justified shortly, and confirmed
later on in this section for the case of {soquaternions and isooctonions.

Isocomplex numbers also admil the following two-by-two matrix
representation

2 hox § ngx by ixnyxb2xa™

= ' ks ¥, =

C=ngxlg * my . 9. .-t - | (9.23a)
ixn xbyx A ng X by

DIRC 0 1xb)2
=1y = Ao =4t ‘ (9.231)
0 b ixby% g
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A =DetT = b2 b2, (9.23)

which verify rule (9.22) and characterize Lhe isounit and the fundamental (adjoint}
representation of ({2) respectively (see ref. [23,38] and the following article [40] in
this Journal on the Tundamental isorepresentation of the isotopic sii(2) algebras,
as well as the application to isoquaternions provided below),

Then, the set 8@+%) of matrices (9.23a) is closed under addition and
Isomultiplication, each element possesses the isoinverse

ol = wlxq {9.24)

where &~} is the ordinary inverse. Thus, 3(&+5) Is an Isofield and the local
isomorphism 3¢, +3%) ~ CE+5 lollows.

it is easy to see that the isogauss plane possesses all axioms to characterize
an isofield. In particular, isotransformations (9.22} form a two-dimensional
isodilation isogroup G(2) = G{2). As expected, the one-to-one correspondence
between complex numbers and Gauss plane is preserved under isotopy.

The implications are however nontrivial, as ilfustrated by a number of
properties, such as the lack of existence of a unitary transformations ¢’ = vecel,
UoUt = Utell = I = diag. (1, 1), mapping representations (9.4} into their isotopic
form {9.23). The urklerstanding that a transformation does indeed exisl, but it is
isounitary & = 0660, 08 Ot =0f60 = 1.

Another way to see the nontriviality of the isotopy is by noting that the
convenlional trigonometry is inapplicable {o the isogawss plane. In fact,
conventional functions such as cos a, sin a, eic. which are well defined in the
Gauss plane, have no mathematical meaning in our Isogauss plane because it Is
isocurved, A study of the generalization of trigonometric functions needed for
the isogauss ptane shall be presented elsewhere [27).

The reader should be aware that, by no means, realization (9.23) is unique,
owing to the Intriguing “degrees of freedom” of the isotopic formulations which
are ot studted here for brevity {see, ref.s [15,20,21D..

The isonorm  is defined, from Eq.s (3.4) by

fer = iDetR(éxT)I*x10=(n02+ Aﬂ]z)h"m. (9.25)
and readity verifies axiom (7.4),

1e6el =fel %[ &l eh &eel (9.26)
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Finally, the isobasis

&=, =1, 9.20

show that isocomplex numbers constitute a two-dimensional, isonormed,
isoassociative and isocommutative Soailgebras over the isoreals 0(2) ~ U(2). '

9.D: Representation of isodual Isocompiex numbers, We consider now
the isodual isocomplex numbers

d_rady,dypad o = 3
Cd= @)l =g Woax1dx 7= 18 = 7970 oo gein ),

(9.28)
with generic element 88 =78+ 7,99 = - fi. +
4 ent C-=n" +ny° xj ng + Ny X i, In this case we need the

two-dimensional isodual isoeuclidean space of Class 11, £}; ,%x,8% R%nd +5%) with
realization ' s

s [
TO= diag. (-0, -b%) , 1% = diag. (b2, -by2), b, >0, k=1, 2

and basic isedual isoseparation )
X2d=()\'t8dx)x]d={Xi8dij):j)x‘ld“
= {“ x] b|2 Xi - ?(2 b22 bz ) % 1d € Rd (ﬁd,+.xd }, (930)

whose group of isomelries is Lhe isodual soorthogonal group 09(2) ~ 0% [20]
The isodual ispgauss plane 15 then the set of = (x -
odua, points P = (%;, x5} on
Eelxzdff.‘a‘;.ﬂd(ndﬁ-.*d)) for the characterization of isoccomplex numbers & 7
‘no vy
The correspondence between the isodual isocomplex numbers £9(20 +x3)
and the isodual isogauss plane can be made one~to-gne by the isodual isodiative

Isorotations
zo={x txpxiy = ¢ty 5.31)
with multiplication rule
Eédz=(ﬁ0,ﬁ;)éd(xl,x2)= (9.32)
= C=mpxxg)x T+ abx (npxxy )2 11, [ ng % x,) %1 +{nyp*x)x1]]
It is easy to see that the isodual isogauss plane preserves all axioms to

f:haracterize an isodual isofield. Also, isodual isotransformations {9.32) forms an
isodual isogroup GY2) ~ G%(2). As expected, the one-to-one correspondence
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between complex numbers and Gauss plane is also preserved under isodual
isotopy.

Isodual isocomplex numbers also admit the following two—by-two matrix
[epresenlation

, (6.33)

-mgxby 2 penp by x A
&8 = ﬁodx'}ﬂd + nldx'id =

anlezzxA_* —no"bz_z
- 25 A
b2 0 0 -ixbhExA

Moyl = = 1 9.330)
0 -by? Sixb?xaT o

which satisfies isomultipiication rule {9.32), which characterize the isodual isounit

and fundamental representation of 08(2), respectively.
Ther, the set 59 {¢4,+8) of matrices (9.33a) Is closed under addition and
isomultiplication, each element possesses Lhe isodual isoinverse

&l o (pdylxd (9.34)

Thus 598 +x} is an isofield. The local isomorphism $9@€9,+%%) ~ ¢4l +xd) is
then consequential.
The isedual jsonorm  is defined, Trom Eq.s (3.6}, by
[0 = et (@x TPt =(ng? +axn2Px1¢, (0.3
and readily verifies axioms (7.4),
Jedadgdfd o fadpd <t gdid epd gd39 9. (9.96)
Finally, the isodual isobasis

éld = 10d, Ezd = '\lld. (937)
shows that fsodual isocomplex numbers constitute a two-dimensional, isodual,
isonormed, isoassociative and isocommutative isoalgebras over the isodual

isoreals isoreals 0%(2) ~ ud(2),

The extension of Lhe above results to the pseudoisocomplex numbers
CleF3, 3=+ Kx 1, 0=~ Kx1 and their isoguals ¢4 (29,3958 ) is straighforward.
Note that in this case a generic pseudoisocomplex number is given by

é = Tl'o 3 l'll x§ = n’O + n’l x’i. n’0= no + K, n'l = ﬂl + K, (938)
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thus showing an intrinsic rescaling of both the real and imaginary parts.

10: REALIZATION OF ISOQUATERNIONS AND
THEIR ISODUALS

10.A: Realization of quaternions. Among their various realizations (see
ref. [39]), we consider now the conventional form of quaternions q € Qlq,+») Isee
also ref,s [7,8)) with realization in the complex Hermitean Euclidean plane
E4{z,8,C) with separation

EQ(Z,S.C): ZTZ = El Sij Zj = E[ Zp + —iz ZZ St =8, “0[}

whose basic {unimodular) invariant is SU{2). We therefore expect quaternions to be
characterizable via the fundamental (adjoint) representation of SU(2), ie., by
Pauli’s matrices, as reviewed below.

Quaternions can be realized via pairs of complex numbers, q = (e, ook A
Hermitean difative rotation on EZ(LS,C). i.e. one leaving invariant zlz, is given by

Zy = Cloz Teon, Iy = "52021 + 61022. (10.2}

where the dilation is represented by the value €,0¢| + Gocy # 1. Again,
transformations (10.2) form a group G(4), this time associative but non-
commutative, which is in one-to-one correspondence with quaternions,

Rule {10.2) characterizes the following matrix representation of quaternions
Qlg,+¥) over Lhe Tield of complex numbers Cle,+x}

| <2
q = {,_ ) (10.3)
<2 |

which is also one~to-one. By assuming
€= ng+ngxi, Cp=my+ng*i, {10.4)

matrix (10.3} admits the representation
g = ngXly + nyxi; + pgxiy + ngxis, (10.5)

where the I's are {he celebrated two-dimensional Pauli’s matrices plus the two-
dimensional identity,



-305-

/1 0 (0 t 0 ] C ] (108
1, = i = i = g = 106
° 1)'11 i 0)’ 2 Kl OJ'S ~i)'

with fundamental properties
in¥im = ~€umilx » m¥mM, nm=1L23, {10.7)

where €, is the conventional totally antisymmetric tensor of rank three. The
algebra A of Pauli's matrices is closed under commutators, and characterize the
fundamental representation of the Lie algebra sul2)

Cipedm) = Ig®ig = 1% -2 €nmk i » (10.8)
with Casimir invariants 1, and i2 = zk=1.2,3 ix2,
gl = [#,,1=0, k=123, (10.9)
and eigenvalues on a two-dimensional basis ¢ with normalization ¢t x ¢ =1
The123 120 = Dpaogly X g X @ = -3 4, (10.10)
By noting that
qt =1n5lg - nyip = Nzl - ngig, {10.11}
the norm of g can be written
lq} = (qtq} = (Tk=o123 mER, {10.12)
and also satisfies axioms (7.4),
laoql =lql=jq] €R, aq €Q. (10,13}

The basis
e =Ip, ge =i, k=123, (10.14)

then establishes that quaternions constitute a normed, associative,
noncommutative algebra of dimensions 4 over the reals U4) (7,8

10.B: Realization of the isodual quaternions, We consider now the
isodual quaternions q € Qd(qd+xd} which can be represented via the isodual
complex Hermitean Euctidean space Ep9 (2,59, c%(cd+x%) with separation

—306 -

(5 8%20% 19 = (-Zy2) - Fzp)x1® ¢ RY, (10.15)
{sodual quaternions can be realized via pairs of isodual complex numbers, g4 =
GH .czd) An I.sodual Hermitean difative rotation on Ey 82,58, cO(cd +x0), 1.2, one
[eaving invariant 118 z, is given by

Z'l = cldodzl 'Ezd Od g 1'2 = Czdod Z) + Eided %9, (10.16)

where the dilation is represented by the vatue €%, + 9%, = ~I. Again,
transrormattons {10.16) form an associative but noncommutatwe isodual group
G (4) which i5 in one-to-one correspondence with isodual quaternions

Ruie {10.16) characterizes the following matrix representation of isodual
quaternions over the field of isodual complex numbers cdicd +xd)

s [ < (10.17)
qd = ' 1017,
(Czd < }
By assumin
¥ g cd=_ e X cd=—n + Ny ¥ i (10.18)
{ Ng+ngxi, o 1727k :

and by recalling that — @ = ¢, we have the represeniation
qd =nod +n!dled +n2dx[2d+n3x13d =
= Ty +ﬂlx|1 +n2><i2+ Rsxia, {10.19}

where the 's are the Pauli's matrices reviewed above.
The isodual norm is then defined by

[a® = L g = [Det_lg?x1)1% 19 =
* 2gigamP P, (10.20)
with property
fade?q?)d = [q9]9 ¢ |q¢)9 er?, ¢hgdeQ®  G02p
The use of the isodual basis

edp = 1Y, ey =i k=123 (10.22)



-307-

Lthen shows that isodual quaternions constitute an jsoduval four-dimensional,
normed, assocoiative and noncommultative algebra over the isodual reals U‘s{4).
which is antilsomorphic to U{4).

10.C: Realization of isoquaternions. To study the isoguaternions § €
Qlg+%), we need the two-dimensional, complex Hermitean isoeuclidean space of
Class [, £ 5{z5.L} on the isofield ({&,+%) with separation

ZT&Z = 518”2] = i; blzzl ¥ _Z-zbzazz 81’58)0, (10.23)
basic isotopic element and isounit
T = Diag. 1,2, 52), 1 = Diag. b2, b;72), (10.24)

whose (unimogular) invariance group is the Lie-isotopic group S0{2) [21,23,27],
A Hermitean isodilative isorotation on Eq,(z8,0(&+X), Le., one leaving
invariant zibz, is given by

Z'l = &léz‘ +62(522 N 2'2 = "Ezéz, + 61622, “025)

where the dilation is represenied by the value €,8&, + 58, # 1.

The map of isoquaternions into two-by-two matrices on 0&.% %} must now
be characlerized by the fundamental (adjoint) isorepresentations of the Lie—
isotopic algebra su(?) studied in ref.s [21,23.38] (see several alternatives in [38] and
the review in the subsequent article [40] in this Journal) which can be written

bl'2 0 .
1 = b2 ) (10..26)
i % by? b2 ixb? 0
‘1' = A_ ;\13 = A_i I
i1xby? 0 bp_z 0 -ixb?
A= = b2 b7, (10.26¢)

and are called isopauli matrices lloc. cit.l As expected, the T~matrices verify the
isotopic irnage of properties (10.7), i.e.,

W& = -Atem.  AXm, nm=123. (1028

and are therefore closed under isocommutators {as a necessary condition to have
an isotopy), resulting the Lie-isotopic algebra
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Matimd e = ¥y - %, = -2ab e {10.29)

with isocasinir invariants 3, and 12 = zkﬁllzs'ik? = Y=123 0 %k,
o) = (E Y )=0, k=123, (10.30)

and generalized eigenvalues on a two—dimensional basis § with isonormalization

sy =1
Ygrd=t Al Doy o %d = Tpepaol ¥ 3 b = -3xaxd, (1030

Note the complete abstract identity of the isotopic su(2} with the conventional
sul2) algebra [38). Nevertheless, it is easy to prove that Pauli's matrices and their
isotopic covering are not unitarily equivalent, and this establishes the
nontriviality of the isotopies here considered.

Note that the isoinvariance {2) of the isocomplex numbers is a subgroup of
S0(2) characterizable by7;. Note also that there exist isopauli matrices with A = 1
(see [38) and the following review [40]L. _

Isoquaternions can therefore be written in the form {apparently presented
here for the first time)

& =ngly +mhy + mply + 03l =
(ngxbl—2+i*n3><b22*a'!) (an[—nz)xblzxA_i

= . (10.32)
(ixﬂl +n2}><b22>CA"' (nUXD2'2+ixn3>¢b12xA—*)

It is straightforward to show that the set 3{g,+%) of all possible expression
{10.32) preserves the axioms of the original set Slg,+). In fact, the set 8(@+% isa
four-dimensional vector space over the isoreals R(f,+*} which is closed under the
operation of conventional addition and isomultiplication, thus being an isofield.
The isomorphism §d,+5% = Qif+X) then follows,

The fsonorm of the isoquaternions is given by

1§71 = [Detglg=T)FxTy = (gi%g)x], =
=[ng + aln? + np® + ng? )=y (10.33)

which should be compared with expression {10.12) for the ordinary quaternions,
with basic rule

Tgéeal = falrxigter, 44 <q. {10.34)
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The Isobasis
él= “0. ‘ék‘*‘l = Wk‘ k = 1.2,3. (IOSS)

then establishes that fsoquaternions constitute a four-dimensional, isonormed,
isoassociative, non—isocommutative isoalgebras over the isoreals G4) ~ Ul4),

10.D: Realization of isedual isoquaternions, The isodual isoquaternions
can be characterized via the two-dimensicnal iscdual complex Hermitean
isoeuclidean space of Class |l over the isodual isocomplex (field,
£} 2(2896% 9+ 590, with separation

ZTSdZ = E,idzl + Ezs(d Zy =‘E| b]zzl - Ezb;;ng. (10.36)
with basic isodual isotopic glement and isodual isounit
TY = Diag. (-b;2, -b2), 19 = Diag. (b, "2, -by?}, (10.37

whose (unimodular} invariance I5 now that of the isodual Lie-isolopic group
S0%2) 121,2327.  An isodual Hermitean isodilative isorolation on
Ed“'z(z,sd.cd(cd,tid)). ie. one leaving invariant z{8z, is given by

Z'l = édl éd Zy 'Edz éd 23 2‘2 = édz éd Zy + Edi é}d 22, “038)

where the dilation is represented by the vaise €9,69 ¢4, + 968 ¢d, =19,
[soquaternions then admit a realization in terms of the isodval
isorepresentation of S092) which can be written

ad = ﬁod i f]]dx}l(} 3 ﬁzdx’\'zd + ﬁsdxqsd =
=—n0+n;31]+ﬁ2><'32+ﬁ3ﬂ3 =
{-noxb]"2+ixnsxb223<a'*) (ixﬂ[ _1'12)"1)]2"-'.'3_i

= +(10.39)
(ixnp +nydxb2xa™ (—ngxbhy?+ixngxhZxa™

[t is again easy to show that the set $5G9+x3} of ail possible matrices
{10.39) is an isofield. The isomorphism %G %+x9) « 9F9,+.59) then follows,
The isodual isonorm Is now given by

[T = toet, (49x T xS = (3100 ¥ 10 =

-310-

= [ ng2 + Aln? + n+ ng?)itx10 (10.40

and also verified the basic rule

~

fetadrd = 1g8*sd g9t e p?, e . (04D

The isodual isobasis
8= 1%, %, =%, k=123, (10.42

then shows that isodual isoquaternions constitute a four-dimensional, isodual,
isonormed, isoassociative, non-isocommutalive isoalgebra over the isodual
isoreals G%4) ~ U9(4),

We shall leave to the interested reader the study of the isotopies of other
forms of quaternions, the split quaternions, antiguaternions and semiquaternions
[39] as well as the study of pseudoisoquaternions and their isoduals,

11: REALIZATION OF ISOOCTONIONS AND
THEIR ISODUALS

The realizations of octonion, isodual octonions, Isocclonions and isodual
isooctonions foliow very closely the corresponding realizations at the
quaternionic level. In particular, the realizations of the isooctonions and their
isoduals follows very closely the construclion of isoquaternions and their isoduals
from isocomplex numbers and their isoduals.

11.A: Realizaiion of octonlons. Recall (see, e.g., ref.s [7,9.39] and
contributions quoted therein), thal the octonions o € Olo,+*) can be realized via
two quaternions, o = {q; , qp), with composition rules

coo'=(g,qlolq.qz) = (qeq)+ 4100y, T 205+ 7, Ofizg- )
The antiautomorphic conjugation of an octonion is given by e
o=1{q;, ~g). (i1.2)

1t 15 then possible to introduce the norm

lof :=(000) =]q]| + g, (11.3)

which also verified the basic axiom
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jloool=|ofx]oleR o0 €0. {11.4)

We finally recall that the octonions form an eight dimensional normed,
nonassociative and noncommutative, alternative algebra UR) over the field of
reals Rin+x) floc. cit]

11,A¢ Realization of isodual octonions, The isodual octomions are
defined via the isoconjugation

o¥ = (g, %) (1.5

this time, over the isodual reals R¥nY+x3) and are therefore different than the
conventional conjugate octonions 8, Eq.11.2). Their isodual multiplication is

Od Odo'd=(qld.Q2d)Od(q'ld,q'2d) =
= (g¥%%q%-qY0q0, qfefqd+gdotel), {11.8)
the isodual antiautomorphism is the given by
@ =g, -¢9). (117
[t is then possible to introduce the jsodual norm
[o9H2 ;= (0090l )xid = |gdF +[g0d (118}
which also verifies the basic axiomn
jodelodp = [0d]9 =8 |9} gRE, of od e 0f . (1.9
Thus, the isodual octonions form an eight dimensional isodual, normed,
nonassociative, alternative and noncommulative algebra u%8) over the isodual

real numbers RY(nd »xd),

11.C: Realization of the isooctonlons. [sooctonions & € 0(d,+3%) can be
defined as the pair of isoquaternions , & = (§, , G) over the isoreals R(fi,+%) with
multiplication rules

G, 020044, d5) = (

5606'=(q),0206{q,9z) = fnéfl'l+§l@ﬁ'zv‘ﬁ:éﬁ'z+aléﬁz()

1'1.10)
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It is then easy to see that the lifling o = § is an Isotopy, thus preserving
all original axioms of . In fact, we have the antiautomorphic conjugation

. ' 8 =(q;, -G, (L1
and the isonorm
[6F := (068)x1 = 14,1 + [, {1112
with property
[o6&T =181 *TofeR, 806 € O (11.13)
[t is then easy to see that Iscoctonions form an eight dimensional isonormed,
non-isoassociative, non-isocommutative, isoalternative isvalgebra 0(8) ~ U(8)
over the isoreals R(D,+X),

11.D: Realization of the isodual isooctonions. The notion of isoduality
applies also to the isooctonions yielding the isodual isooctonions 8¢ = 4,9, %)
with composition rule

et ed=(g9.8,0)69 (g%, 4,9} =
= (50699, -00%00, el gt g tedgt),  aLg
Then we have the isodual iscantiaytomorphism
o9 = (g9, - g, {tL.15)
the isodual isonorm
foU1d2 .= (596089)x1d = 1§ 0fd « [g,d1d - (1L
which also verifies the basic axiom
[o96d e d|d=1ptfd xd jordidend, o499 eod. (1117

It is then possible to prove that Isodual isooctonions form an eight

dirnensional Isodval, isonormed, non—isoassociative, non-isocommutative, but

isoalternative Isoalgebra 0Y8) = UYS) aver the iscdual tsofteld RS (Y44 ),
The extension of the results to the pseydoiscoctonions and their isoduals is
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ieft Lo interested readers.

12: CLASSIFICATION OF ISCNORMED ISOALGEBRAS
WITH IDENTITY AND THE CONJECTURE OF
NEW “HIDDEN NUMBERS”

Historicalty, the “numbers” studied in this paper are those permitting a
solution of the following problem (see, e.g., ref. [8]

(af a2 e +a?)x{b?+ b2+ v i?) = A2+ A2+ ..+ A2 (1212)
Ay = EF,SCKI'S Xapxbg. {210}

where all the a's, bs and <'s are elements of a field Fla,+) with conventfonal
operations + and *. As well known, the only possible solutions of problem (12.1)
are of dimension |, 2, 4, 8 {Theorem 1.1},

The isotopies and pseudoisotopies of the theory of numbers evidently
creates the problem of the possible existence of “hidden numbers”, that is, new
solutions of dimension different than !, 2, 4, § which are hidden in the operations
x and/or + . This problem essentially asks whether the classification of Theorem
1.1 persists under isolopies, pseudoisotopies and their isodualities, or it is
incomplete.

It is easy 1o see that the reformulation of problem (12.1) under the isotopies
of the multiplication

x - k=xTx, | -+ 1=r171, (12.2)

does ot lead to new solutions. In fact, Problem (12.1) under Hifting {12.2) is
given by

(a2t a2+ a2 (b 2o+ +52) = A2+ a2+ +a2 (23

Ak = XrCkrs ¥ap ¥ by, {12.30)
where now all the a's, bs and c’s belong to an isofield of the type Fla,+), in
which case 1 is an element of the original field F (Proposition 4.1). Problem (12.3)
can be written in corventional operations

laPr g+ .2 x (02 b2+ L+ 1y 2) = T2x (A2 4,2+ . + A2), (12.42)
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A = T3 o Xap X b, {124)

The substitution of of the latler expression into the former, then recovers
Problem (12.1) identically. The reformulation in the isofield F(3+3%) is also
equivalent to the original one. We can therefore summarize the studies of this
paper with the following isotopies and isodualities of Theorem LI

THEQREM 12.1: All possible isonormed isoalgebras with multiplicative isounit
over the isoreals are the isoalgebras of dimension I (isoreals), 2 {isocomplex), 4
fisoguaternions! and 8 (isooctonionsh and the classification persists under
isoduality.

Neverlheless, there exists a third formulation of pseudoisctopic type
(Proposition 4.3 and Definition 4.2) characterized by the Turther lifting of the
addition

+=>3=+R 0-+0=-K,R=Kx], 1125

A more general formulation of Problem (12.1) can be written over the
pseudoisoficld F(&,%%), where the elements &, the sddition # and the multiplication
% are lifted

G325 % 3,2 (523023 .. 30 =423 4,24 342, lized
Ay = Drsburs* e =g o8 b1 = ALY, {1260
and can be rewritten in conventional operations
[(a)2*ag2 ..+ 3.2) 1+ -1 K 11T [0 2+0,%% 45,201 +(n=1) K11 =
= A2+ a2+ L+ A2+ (n- 1)K, {12.72)
Ax = (2rCkpsar bs) 1, {127

where we have the cancellation of the isounit as in preceding cases, but the
appearance of the "hidden” degree of freedom K.

The existence of the "hidden numbers”, that is, of solutions of problem {12.7)
of dimension other than |, 2, 4, 8, is here submitted, apparently for the first time,
as a conjecture under the pseudolseficld 3345, Le, under the loss of the
needed axioms of a field, such as the distributive laws (Proposition 2.3.3),

aithough without technical study at this time.
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We merely limit ourselves to indicate the existence of the Tollowing
example of “hidden numbers” of dimension 3

(125 2 3 32)e(Pr52+72) = 122 3 222 3 302, (12.8)

Note the original combinations for the numbers on the r.hs 2= 2%, 24 = X3 +
%7, 30 = 3x3 + 3<7, although a solution in three dirnension does not exist, L.e.,

(12+2+32)(52+62+72) = 122+ 242+ 30%, (129)
However, the more general problem (12.8) can be written
1012424 3)1+2K1ITHR+ 62+ 72) 1+2K1) =
= (122 + 282+ 302)1 + XK, {12.10)

and reduces to the equation in K

4K2 + 246K~ 80 = 0, {(2A.11)

wilh solution
K = 0.325..... (2 A1)

Thus, a solution exists under the relaxations of a sufficient number of
axioms of the original Tields, in addition to the loss of distributivily. In facl, in
the case considered we start from the set of integers which is a fleld. However,
the emerging solution for K is not an integer. This implies the loss of closure
under the isoaddition (see the comments afler Proposition 4.3) for the case of
integers. However, closure is regained if the field is enlarged to include all real
numbers. The issue whether such solutions of problem (12.9) do indeed form a
pseudoisofield is left to the interested mathematician.

Note that Problems (12.3) and {126} are restricted to dimensions n = 8. This
is due to the fact that algebras of dimensions higher than 8 are no longer
allernative [8], and such a property is expected to persist under isotopies and
pseudoisotopies.

Among endless novel {and intriguing) problems identilied by the isofields
which are still open at this writing, we indicate:

> The novel notion of “number with a singular unit”, Le,, the isofields of
Class IV which are at the foundations of the isotopic studies of gravitational
collapse and are vastly unknown at this writing:

> The study of isofields of fsocharacteristic p # 0, to see whether new
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fields, and therefore new Lie algebras, are permitted by the isotopies;
> The study of the integro~differential topology characlerized by isofields
with local-di!‘fgrenlia[ structure and integral isounits; and others.

AFPENDIX A: GENONUMBERS AND THEIR ISODUALS

In the main text of this paper we have studied the degrees of freedom in
the characterization of numbers originating from the addition and
multiplication. The emerging generalized Tield are at the foundations of the Lie-
isotopic theory £14,15,37). In this appendix we shall indicate the existence of a
third degree of freedom originating in the ordering of the above operations,
which results in 2 further generalization of fields, this time, at the foundation of
the Lie-admissible algebras [14,15,27]

Let Flas+x} be a field of ordinary numbers with generic elements a, b, c, ...,
addition a + b = b + a and multiplication axb. Each of these operations can be
defined with respect to the following:

Ordering of the multiplication: muitiplication of a time b from the left,
ax”b, and multiplication of b time a from the right, a=p, here called
genomultiplications.

Ordering of the addition: addition of a to b from the left, a +7 b, and
addition of b to a from the right, a <+ b, here called gencaddition,

Let us study genomultiplications, The first property to note is that the
ordering of the multiplication is fully compatible with its basic axioms, such as
alternativity (for octonions), associativity (for quaternions} and commutativily
{for complex and real numbers). In fact in the latter case we have

ax’b = hx>a a<xb = b xa. (A1}
However, the identity of the two ordered multiplications is an un-necessary

condition of the current theory of numbers, because the two genomultiplications
can be assumed to be different

ax®"h # a<xp, (A.2)
with realization

a¥*b := aRb, a“xh := aSb, R #§, {4.3)
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where R and § are fixed, sufficiently smooth, bounded and nowhere singular (but
not necessarily Hermitean) elements outside the original Tield, here called
genotopic elements

In the multiplication of two integers, say, lwo and three, we then have the
following cases:

I} The conventional multiplications "two multiplied by three and three
multiplied by two equal six", which hold under the {generally tacit) assumption of
the number one as the unit with consequential conventional multiplication;

2} The isotopic multiplications “two multiplied by three and three
multiplied by two equal twelve” which held for the isotopic element T = 2 and
isounit 1 = 1/4; and

3) The genctopic multiplications “two multiplied by three from the right
and three multiplied by iwo Trom the right equal twelve”, and "two multipbied by
three and three multiplied by two from the left equal eighteen” which hoid for
the isotopic element for the right ordering R = 2 and that for the left ordering S =
3

We can then introduce the following two generatized (left and right} units,
here called genounifs

1> = R, Px*a = a=* 1 =a, (A.4a)
1 =35 Pxa = a$x<] = g, (A.4b)

It is then easy to see thai all axioms and properties of Definition 4.1 are
preserved under Lhe restriction of the multiplication to one of the above two
orderings for all dimensions 1, 2, 4, 8. This yields a new type of fields here called
genofield and denoted with the symbols F2@>, +, #7), <F<a+,°%), or with the
unified symbol <F*(<&>+<%>) where the need 1o select one ordering at the Hime
is understood.

All properties of isofields also extend to genofields, as the reader is

* encouraged to verily. In particular, we have the isodual genofields characlerized
by the antiautomorphic conjugations

R-r=-R 5§ - s§9w«-35 {A3)
denoted <F>9(<a>d + <%>0),

It is evident that isofields are a particular case of genofield when the
genotopic elements coincide
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PR 4, %) = Fa+X. (a8}
[R=5="T

We now show that genoficlds are the correct fields underlying the Lie-
admissible algebras. Let [A,B] = AB - BA be the conventional Lie product among
generic quantities A, B {such as vector fields on a cotangent bundie or operators
on a Hilbert space), where AB is the conventional associative product,

The general realization of the Lie-admissible algebras [14] can be
constrycted via the following R-S-mutation of the above Lie product

(4,B):= ARB - BSA, (A7
and results to be Lie—admissible because the attached antisymmetric product
(A/Bl :=(A,B}-(B,A)=ATB-BTA, T=R-5 (4.8

is Lie-isotopic.

The lifting [A, B] = [A; B was called an isotopy in ref. [14], while the lifting
[A, B] -~ (A, B) was called a genotopy (Sect. 1), and this motivates the
corresponding names of “isofields” and “genofields™

Now, the Lie-isotopic algebras are characterized by one single isotopy of
the enveloping associative algebra and related unit

AMB=AXB - AXB=ATB | -+ 1=771 (A9)

As such, to be consistently Tormuiated, Lie~isotopic algebras must be defined
over an isofield P&E+% with isounit 1= 771,

Note that, strictly speaking, the conventional multiplication x admits no
ordering because 1” = <1 = |, The above orderings exist Tor the isomultiplication
% = xTx because in this case we can have different isounits 1° = <.

it is then evident that the Lie—admissible algebras are generated by two
different isotopies of the original assoclative enveloping algebras with
coreesponding isotopies of the units

AB - ARB:= A¥B, | - 17 =R, {A.10a)
BA — BSA :=B<x4, [+ <1 =87 {4.10D)
and, as such, they must be defined over the genofields <F*(<3”+,<%>) with

isounits <1,
In Eq.s {(A.10) we have presented the right and left isomultiplications and
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related isounits as disjoint, in which case the isounits can indeed be Hermitean
and real-valued, thus admitting of Kadeisvili classification into Classes [, II, 11,
v, ¥,

Nevertheless, the realizations used in physics are those when the forward
and back genounits are inter-related by a conjugation, such as the Hermitean
conjugation

1> = (<. (A.1])

In this case the genofields assume particular physical significance because they
provide an axiomatization of irreversibility (see [27} for details).

The preceding results on the ordering of the multiplication extend to the
ordering of the addition. The understanding is that, as it was the case for the
conventional muliplication, the conventional addition admits no meaningful
ordering because 07 = <0 = 0. The ordering exists for the isoaddition + = + K +
because in this case ¥ # <+ K> » <K. The understanding is that genofield are
closed under distributive law, while this is no Jonger the case under the
genoadditions <57

We reach in this way the broadest possible generalization of the
conventional theory of numbers permitted by the isotopies and genotopies, that
characterized by:

1) pseudogenofieids <F>(<3”,%+> <&>), here defined via the genotopies of
all aspects of conventional fields Fla,+x), including elements a —+ <3~, addition +
~ <% and related unit 0 — <0, and multiplication x = <% and related unit | -»
<1>,

2) isodual pseudogenofieids “F>4(<3>4,<3>%,5>9) nere defined via the
isoduatity of pseudogenofields.

The emerging broadening of the theory of numbers is then considerable
because we now have:

A) Conventional numbers of dimension |, 2, 4, & and their isoduals;

B} Isonumbers of the same dimension and their isoduals;

€) Genonumbers of the same dimensions and their isodual;

D) Pseudoisonumbers of the same dirnension and their isoduals;

E} Pseudogenonumbers of ihe same dimension and their isoduals;

F) "Hidden pseudoisonumbers” of dimension 3, 4, 3, 7 and their isoduals;

G) "Hidden pseudogenonumbers” of dimension 3. 4, 3, 7, and their isoduals;
each of which can be defined over a field of characteristic 0 of p = 0, as well as
in Kadeisvill topologically different classes whenever applicable.
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