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EXCERPTS FROM THE REVIEWS

A. Jannussis (Univ. of Patras, Greece): “Hadronic Mechanics supersedes
all theories to date.”

(opening address of the International Conference on the Frontiers of Physics. Olympia,
Greece, 1993)

H. P. Leipholz (Univ. of Waterloo, Canada): “Santilli’s studies are truly
epoch making.”

J. V. Kadeisvili (Intern. Center of Phys., Kazakhstan): “Santilli’s Lie-
isotopic and Lie-admissible generalizations of the algebraic, geometric and
analytic foundations of Lie's theory are of clear historical proportions.”

A. U. Klimyk (Inst. for Theor. Phys., Ukraine): “The three books on
Hadronic Mechanics are the most authoritative for a study of the Lie-
isotopic and Lie-admissible generalizations of Lie’s theory and their mary
applications.”

D. F. Lopez (Univ. of Campinas, Brasil): “Santilli succeeded, first, in
reaching a structural generalization of the available mathematics as a pre-
requisite for his generalization of current physical theories. These
achievements are unprecedented in the history of physics.”

A. O. E. Animalu (Univ. of Nsukka, Nigeria): “Because of its beauty,
mathematical consistency and range of applicability vastly beyond quantum
mechanics, if we deny the historical character of Hadronic Mechanics we
exit the boundaries of science.”

T. L. Gill (Howard Univ., Washington, D. C.): “The three volumes on
Hadronic Mechanics represent the most important contribution 1o physics in
the last fifty years.”
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dedicated to the memory of
ENRICO FERMI,

because of his inspiring doubts on the exact validity of
quantum mechanics for the nuclear structure.

See, e.g., E. Fermi, Nuclear Physics, Univ. of Chicago Press (1950),
the beginning of Chapter VI, page 111, when referring to the
applicability of quantum mechanics for the treatment of nuclear
forces:

"..... there are some doubts as to whether the usual concepts
of geometry hold for such small region of space.”
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FOREWORD

These three volumes are devoted to a structural generalization of contemporary
theoretical physics known under the name of Hadronic Mechanics (HM). Yolume [
presents a generalization of contemporary mathematical structures, including the
theory of numbers, vector spaces, Lie algebras and groups, contemporary
geometries, functional analysis, etc.

Volume I1 begins with a generalization of classical Lagrangian and Hamiltonian
mechanics and then, after a suitable lifting of conventional quantization procedures,
presents a step—by-step generalization of nonrelativistic and relativistic quantum
mechanics capable of representing the most general known systems, while admitting
of traditional mechanics and systems as particular cases.

Finally, Volume III presents a variety of novel and refreshing physical
applications and experimental verifications in nuclear physics, particle physics,
astrophysics, superconductivity and other unexpected fields such as conchology.

In short, Hadronic Mechanics concerns such a wide class of phenomena, that we
can use for brevity the word Nature.

The Author's main idea consists of a generalization of the fundamental
constants of contemporary physics into variables of the most general possible
form representing their dependence on local physical conditions of the so—called
- interior dynamical problem. Mathematical and theoretical structures are then
reconstructed in such a way to treat consistently these generalized notions.

The motivations for the consideration of these variable "constants” is rather
natural. For instance, the speed of light in a physical medium is variable. Additicnal
considerations then lead to the variable character of other "constants” in interior
conditions, such as in the interior of a star. For instance, the coupling constant of
quantum electrodynamics depends on quantum corrections and changes with the
scale [1]. Contributions of integral character or the possible fractal structure of
space-time then lead to a locally variable Planck’s “constant”.

The transition from contemporary theoretical physics to the covering theories
presented in these volumes can be expressed via a nice concept of M. P. Bronstein
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{1906-1938) on the so-called three-dimensional Space of Physical Theories (SPT)
with axes characterized by Planck’s constant h, the gravitational constant G an the
inverse of the speed of light 1/c (see ref. [3]). Conventional theories are characterized
by the following points in this SPT:

(h, 0, 0) = nonrelativistic quanturn mechanics;

{0, G, 0) = Newtonian mechanics;

(0, 0, 1/c) = special relativity;

(k, 0, 1/c) = relativistic quantum mechanics; and

(0, G, 1/c) = general relativity.

Because of the local dependence of the "constants” on density, temperature,
pressure, etc., Santilli’s covering theories fill up Bronstein's entire space.

Nugzar V, Makhaldiani

Joint Institute for Nuclear Research
Dubna, Russia

October, 1993

1. N. N. BOGOLIUBOY and D. V. SHIRKOY, Introduction to the Theory of Quantized
Fields, Wiley and Sons, New York (1980}

2. N. V. MAKHALDIANI, Number field dynamics and compactification problem in
the theory of fields and strings, JINR Communication No. P2-88-916 (1988)

-3. J. ELLIS, N. E; MAVROMATOS and D. V. NANOPQULOS, Non—critical string
approach to black holes, time and quantum dynamics, in From Superstring to
the Origin of Space~Time, Erice Summer School, 31-st Course, World
Scientific, Singapore (1994)



PREFACE

These volumes are the first books written on a nonlinear, nonlocal and
noncanonical, axiom-preserving generalization of quantum mechanics called
hadronic mechanics, proposed by the author back in 1978 when at Harvard
University under support from the U. S. Department of Energy, and subsequently
studied by a numnber of mathematicians, theoreticians and experimentalists.

The main objective is a systematic and quantitative study of the historical,
open legacy of the noniocality of the strong interactions at large, and of the
structure of hadrons in particular, due to mutual overlapping of the
wavepackets/wavelength/charge-distributions of hadrons,

in such a way as to preserve causality, measurement theory, and other basic
features of quanturmn mechanics.

The scope of this first volume is the study of the mathematical
foundations of the new mechanics. The main working hypothesis is the
generalization of Planck’s constant into an integro-differential operator

h=1 — h=nhl

under the condition of verifying the needed smoothness, boundedness and
regularity properties. The lifting of the unit then requires the following
corresponding generalization of the associative product AB among generic
quantum mechanical quantities A, B
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AB - A¥B = ATB, T=fixed 1= T

in which case1 is the correct right and left generalized unit of the theory, T*A =
Afl = A,

The main idea is that the exchanges of energy are indeed discrete for
particles moving in vacuum under action-at—a—distance interactions, such as for
an electron in an atomic cloud. However, when the same particle is immersed
within a hyperdense medium, such as for an electron in the core of a collapsing
star, we expect integral contributions in the exchanges of energy due to the total
immersion of the wavepacket of the particle within those of the surrounding
particles.

The need for the generalization of the unit, and of the corresponding
associative product, originates from the fact that the nonlocal interactions due to
wave-overlappings, whether in electron pairing in superconductivity, or in deep
inelastic scattering, or in other events, are of “contact” type; that is, of a type
which does not admit a potential energy. Conventional Hamiltonians H=K + V

. can therefore represent the kinetic energy K and all possible action—-at—-a—distance
interactions with potential V. However, the contact interactions due to mutual
wave—penetration, by conception, cannot be represented with the Hamiltonian H
and, in this sense, they are called "nonhamiltonian”. The alternative studied in
these books is then their representation via the generalized unit of the theory for
certain algebraic, geometric and analytic reasons presented in the text.

These preliminary ideas are sufficient to indicate the axiomatic structure
of hadronic mechanics, and its connection with existing generalizations of
quantum mechanics. In fact, in Ch. 7 of this volume we show that hadronic
mechanics is directly universal; that is, capable of representing all possible nonlinear,
nonlocal, nonhamiltonian, continuous or discrete, inhomogenecus and anisotropic
systems (universality), directly in the frame of the experimenter (direct universality).
However, hadronic mechanics is not equivalent to other generalizations treating the
same systems because defined on inequivalent fields, metric and Hilbert spaces.

Consider, the generalizations of quantum mechanics known under the
name of g—deforrnations, e.g., of the type

AB— A*B =qAB, q="fixed=0,

(where q is a number). As we shall see, hadronic mechanics can be interpreted as an
axiomatic reformulation of g-deformations which is invariant under its own time
evolution and holds for arbitrary integro—differential deformations. This is
essentially achieved via the redefinition of the unit
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and consequential reformulation of the entire structure of the theory (numbers,
fields, metric spaces, Lie’s theory, etc.). By keeping in mind the mathematical
consistency of the current treatment of the q-deformations (that at a fixed time
in which the basic unit is not generalized), the above reformulation also resolves
some of the physical problematic aspects emerging under time evolution, such
as lack of the basic unit, inapplicability of the measurement theory, general loss
of Hermiticity of the Hamiltonian, and others.

Similarly, numerous nonlinear generalizations of Schrodinger’s equation
(those with a nonlinearity in the wavefunctions ¢) have been proposed in the
literature. As it is the case for the g-deformations, they are mathematically
correct, but are afflicted by a number of problematic aspects of physical
consistency, such as the general lack of exponentiation of an algebra to the
corresponding group, the inequivalence of the Heisenberg~type and Schrédinger—
type equations (due to the so-called Okubos No Quantization Theorem), and
others. Hadronic mechanics can be interpreted as an axiomatic reformulation of
these studies into a form admitting nonlinearity in the wavefunctions ¢ and
-their derivatives of arbitrary order &, 884, .... This axiomatization also permits a
quantitative identification suitable for tests of the deviations from quantom
mechanical formalisms implied by the nonlinearity itself.

Also, nonlocal generafizations of quantum mechanics for the study of
wave—overlappings can be traced back to the very inception of that discipline.
They were also treated via conventional quantum mechanical methods, thus
. leading to a number of problematic aspects still under study, such as causality.
Hadronic mechanics preserves the abstract axioms of quantum mechanics and
realizes them in a more general way, by therefore ensuring the preservation of
causalily ab initio. Hadronic mechanics is therefore ideally suited for an
axiomatic reformulation of these studies into a causal description admitting all
possible nonlocal-integral generalizations of quantum mechanics.

A number of discrete generalizations of quantum mechanics, such as those
with a discrete structure in time, have been proposed in the literature although
the elaborations continue to be based on conventional units and methods. These
theories too are deeply linked to hadronic mechanics because the discreteness of
time implies the alteration of the basic unit of time, thus requiring generalized
methods for their treatment. Hadronic mechanics can be interpreted as providing
an axiomatization of these generalizations by embedding the discrete structure of
time in the generalized unit T of the theory. Intriguingly, hadronic mechanics
shows that such discrete structure is ultimately compatible with the abstract
axioms of quantum mechanics itself, when properly realized. Finally, discrete
theories emerge as being compatible with conventional experimental data
because {as shown in Vol. II} the appropriate expectation value of a discrete unit
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recovers the conventional unit, <1>=h=1.

Numerous additional generalizations of quantum mechanics exist in the
literature, some of which will be studied in the appendix of Ch. 7, and others in
the subsequent Yolumes II and III. All these theories are independent from
hadronic mechanics, yet exhibit intriguing connections with the latter whose
study is beneficial to both theories.

It is evident that, in a scientific horizon of this type, [ could not provide a
comprehensive review of all existing generalizations without aveiding a
prohibitive length. In these volumes I shall therefore limit myself to a review and
re—elaboration of only some representative generalizations for each of the above
classes. Nevertheless, [ would be grateful to colleagues who care to bring to my
attention (at the address below) studies directly or indirectly related to hadronic
mechanics which I should quote in a possible future edition.

Judging from discussions and correspondence with various colleagues over
the years, the primary difficulty for a first inspection of the field is of
mathematical nature. The nonlinear-nonlocal-noncancnical generalization of
the basic unit of quantum mechanics demands, for various technical reasons, a
suitable generalization of the tofality of the mathematical structure of quantum
mechanics, beginning with a generalization of the contemporary notion of
number, such as h = I, into a structurally more generalized notion called
isonumbers, such as h = tl. In turn, generalized units, products and numbers
“demand a suitable generalization of the notions of field, vector spaces,
transformation theory, enveloping algebras, Lie algebras, Lie groups, symmetries,
symplectic, affine and Riemannian geometries, Lagrange and Hamilton
‘mechanics, etc.

[n short, the studies reported in these volumes indicate that, in the same
way as the full understanding of the structure of atoms required a revision of the
mathematical foundations of classical mechanics, further basic advances in the
structure of hadrons require a similar revision, this time, of the mathematical
foundations of quantum mechanics.

Difficulties in communicating with colleagues therefore emerge whenever
hadronic mechanics is approached (and appraised) via the use of old quantum
mechanical knowledge, without the awareness of numerous ensuing
inconsistencies which generally remain undetected.

The author has therefore no words to recommend that colleagues seriously
interested in inspecting the advances reported herein acquire a technicat
knowledge of the novel mathematical methods prior to any judgment and, above
all, prior to setting up the mind along oid lines. After all, the new mathematical
methods are quite easy to understand, as one can see.

Technically, the topic of these books is in the field of the isotopies and
genotopies  of contermnporary mathematical and physical theories proposed by
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the Author back in 1978, which essentially are nonlinear, nonlocal-integral and
nonpotential-nonhamiltonian liftings of given mathematical or physical
structures capable of preserving the original axioms at the abstract, realization—
free level (isotopies), or induce new covering axioms (genotopies).

As we shall see, the study of the fundamental hypothesis on the integral
generalization of Planck’s unit requires suitable nonlinear-nonlocal-
nonhamiltonian isctopies and genotopies of the totality of mathematical methods
used in quantum mechanics, including Hilbert spaces and all that,

The physical relevance of isctopic and genctopic methods is well
“established and consists in permitting quantitative studies of the transition:

a) from the exterior dynamical problem, characterized by motion of

point-like particles within the homogeneous and isotropic va—
cuurm

b) to the interior dynamical problem, characterized by motion of

extended and therefore deformable particles within inhomo-
geneous and anisotropic physical media, resulting in the most
general known dynamical equations.
In particular, the isotopies preserve the original, abstract, algebraic, geometric
and analytic axioms, thus achieving a unity of physical and mathematical
thought in the treatment of both problems.

" The isotopies are used when interior structural problems are studied as a
whole with conserved conventional total quantities under a generalized interior
structure. The genotopies are instead used to characterize one individual
constituent while considering the rest of the system as external, thus resulting in
the nonconservation of its physical quantities, of course, in a way compatible
with total conservation laws.

The classical isotopies and genotopies are the classical realizations of the
isotopies and genotopies of contemporary algebras, geometries, mechanics,
symmetries and relativities. They have been sufficiently well identified in
preceding monographs (quoted in the text), with a number of applications to
Newtonian, relativistic and gravitational systems of our interior classical reality.

These volumes are the first books on the corresponding operator isotopies
and genotopies, that is, the axiom-preserving isotopies and axiom-inducing
genotopies of quantum mechanics originally proposed under the name of
hadronic generalization of quantum mechanics, or hadronic mechanics for
short, and today also known as isofopic completion of quantum mechanics,
isolocal realism, and similar terms.

The operator isotopies and genotopies are far from being as developed as
the corresponding classical counterparts. Despite that, [ decided to write these
first books for the following reasons:

1) the mathematical consistency of hadronic mechanics is now established,
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thus allowing rigorous quantitative treatments of interior particle problems in a
form suitable for experimental tests;

2) we have today a number of experimental verifications which, even
though evidently preliminary, nevertheless confirm the predictions of the
covering mechanics quite clearly; and

3) hadronic mechanics suggests a number of novel experiments that is,
experiments on internal nonlinear-nonlocal~nonhamiltonian effects simply
heyond the descriptive and predictive capacities of conventional theories, which
deserve a serious consideration by the experimental community owing to their

.seemingly fundamental character.

Above all, a primary reason for writing these books is to point out for
young minds of all ages that hadronic mechanics identifies the apparent existence
of a new technology 1 tentatively called hadronic technology, because emerging
from mechanisms in the structure of individual hadrons, while the current
technologies emerge from mechanisms in the structure of molecules, atoms and
nuclei. The societal implications of these possibilities, e.g., for possible new forms
of energy, new approaches to cold fusion, new computer modeling, new medical -
applications, etc., have warranted this first identification of the state of the art in

" the conceptual, mathematical, theoretical and experimental foundations of
hadronic mechanics.

Ruggero Maria Santilki
Dubna, Russia,

Kiev, Ukraine and

Palm Harbor, U.S.A.
Summer of 1993
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PREFACE TO THE SECOND EDITION

In this second edition I have corrected a number of misprints and errors of the
first edition which were kindly brought to my attention by a number of readers.
Among them, [ have corrected the old App. 6.A on the isotrigonometric functions
because not compatible with the form used in Vol. Il and moved the study to
App. 5.C.

I have also added a number of aspects, such as: an outline of the theory of
isonumbers and its application to the isotopies of cryptograms; a study of
isogeometries with nondiagonal isotopic elements; the curved character of the
Euclidean and Minkowskian geometry; a presentation of the so-called “geometric
propulsion”; the addition of a number of aspects in isofunctional analysis; the
latest updates in the construction of the Lie-admissible theory as a genotopy of
the various branches of Lie's theory; and other topics.

Any additional comment by interested colleagues would be sincerely
appreciated.

Ruggero Maria Santilli
Palm Harbor, FL.
Fall 1995

Permanent address:

The Institute for Basic Research

P. O. Box 1577, Palm Harbor, FL 34682, U.S.A.
E-mai: ibrrms@pinet.aip.org
Fax: 1-813-934 9275
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1: INTRODUCTION

1.1: STATEMENT OF THE PROBLEM

The discipline today known as quantum mechanics (see, e.g., ref. [1] for a
historical account and ref. [2] for a contemporary account) was originally
conceived for the structure of the atoms and the electromagnetic interactions at
large, for which it subsequently emerged as being exact according to an
overwhelming amount of experimental evidence.

Whether in its nonrelativistic, relativistic or field theoretical versions,
quantum mechanics was subsequently applied to the study of the nuclear
structure (see, e.g., ref.s [3,4]), to the strong interactions at large (see, e.g., ref.s [5]),
as well as, more recently, to the unified gauge theories (see, e.g., ref. [6]), with
equally impressive results and experimental verifications (see the recent
experimental review (7).

But physics is a discipline that will never admit final thecries. No matter
how effective and fundamental a theory is, the construction of a more general
theory for a deeper understanding of physical reality is only a matter of time.

Despite its historical achievernents and experimental verifications, quantum
mechanics possesses well identified limitations essentially given by the
characteristics of its original conception, those of the atomic structure, consisting
[1):

> physically, of particies at sufficiently large mutual distances which can
be well approximated as being point-like when moving in the homogeneous and
isotropic vacuum (empty space) under action—-at-a-distance, potential
interactions, and

> mathematically, of a theory which is linear in the sense of depending on
the first power of the wavefunction, local-differential in the sense of being
solely defined on a finite set of isolated points, and potential-Hamiitonian—
unitary in the sense that all interactions are representable with a potential, thus
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admitting a Hamiltonian with consequential unitary time evolution.

There are ample theoretical reasons and experimental evidence indicating
that particles, their wavepackets, and/or their charge distributions can be well
approximated as being point-like, not only for the atomic structure, but also for
all electromagnetic and weak interactions at large, with consequential exactly
valid of quantum mechanics.

However, there also exist theoretical reasons and experimental evidence
according to which a linear, local and potential theory simply cannot describe the
totality of the physical conditions existing in the Universe.

The Tirst open problem is the achievement of 2 generalization of quantum
mechanics for a more appropriate treatment of the strong interactions, with the
understanding that the approximate validity of the conventional theory is
beyond scientific doubts. For instance, an issue still open in the literature, at
times known as the legacy of Fermi! Blochintsev and others{see Efimov’s
monographs on nonlocality [8] and historical references therein), is that strong
interactions have a nonlocal-integral component due t¢ the deep mutual
penetration and overlapping of the wavepackets and/or charge distributions of
the interacting hadrons.

In fact, unlike the electromagnetic and weak interactions, the strong
interactions have a range which is of the same order as the charge radius of all
hadrons {about 1 fm = 10713 cm). A necessary condition to activate the strong
interactions is that hadrons enter into conditions of mutual penetration and
overlapping of their wavepackets/wavelengths/charge distributions, resulting
precisely in the historical legacy indicated earlier (see Fig. 1.1.1 for more details).
It is known that nonlocal interactions are beyond the descriptive capacities of
quantum mechanics on numerous, independent, topologic, geometric, analytic
and other grounds.

Moreover, the above nonlocal interactions are necessarily of “contact” type,
that is, they originate from the actual physical contact among hadrons and, as
such, they are nonpotential, i.c., conceptually, they do not admit any potential of
any kind and, mathematically, they are variationally nonselfadjoint [9], thus
being generally nonhamilfonian. At any rate, “contact interactions” are of “zero
range” by assumption, that is, they simply cannot be mediated by conventional
particle~exchanges. Moreover, the inability of a Hamiltonian to represent all
interactions implies that the time evolution is generally nonunitary {when
expressed in a conventional Hilbert space, not so in suitably generalized spaces as
we shall see in Vol. Il). The insufficiencies of conventional quantum mechanics
then again emerges from numerous, additional, independent topological,
geometric, analytic, and other grounds.

Finally, deeper studies of the conditions of mutual penetration of hadrons
have indicated the emergence of infernal effects which are nonlinear not only
the wavefunctions, but also on their derivatives, as typically the case for all

1 See the Pedication of this first volume
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resistive interactions caused by a physical medium. These interactions simply
cannot be represented with the traditional addition of terms in the Hamiltonian
and require instead a structurally novel mechanics, again, on numerous
independent counts (such as the need to preserve the superposition principle
under arbitrarily nonlinear interactions as necessary for consistent treatments of
bound states).

THE FUNDAMENTAL INTERACTIONS
OF HADRONIC MECHANICS

FIGURE L.1.1: Quantum mechanics was conceived for the study of action—at—a-distance
interactions among particles at large mutual distances which, as such, are representable
by a potential. The interactions are therefore local-differential; that is, representable
with differential equations defined over a finite set of isolated points. Hadronic
mechanics was conceived for the study of the additional nonlocal-integral interactions
due to mutual wave-overlapping as schematically depicted in this figure. We are here
referring to interactions which, by conception, are defined over an entire volume and,
as such, cannot be effectively approximated via their abstraction into a finite number of
isolated points. ‘The same interactions have emerged as not being derivable from a
Hamiltonian as well as nonlinear in the wavefunctions and their derivatives. The name of
“hadronic mechanics” were suggested by this author back in 1978 [20] as a mechanics
primarily built for hadrons under nonlinear, nonlocal and nonpotential interactions
(studied in Vol. II), with the understanding that the discipline is also applicable to other
fields, such as superconductivity, astrophysics, and theoretical biology {see Vol. I1I).

In these three volumes we shall present the mathematical, theoretical and
experimental foundations of the generalization of quantum mechanics proposed
by this author in 1978 under the name of hadronic mechanics [20] and
subsequently developed by mathematicians, theoreticians and experimentalists as
a discipline conceived for the representation of the most general known



interactions which are:

1) nonlinear in the coordinate x and wavefunctions ¢, T as well as
their derivatives of arbitrarily needed order x, %, o5, &b, ...;

2} noniocal-integral in all needed variables;

3) nonpotential-nonhamiltonian-nonunitary, i.e., violating the integrability
conditions for the existence of a potential as well as of a Hamiltonian, the so-
called conditions of variational seifadjointness [9], with consequential generally
nonunitary character;

4) inhomogeneous (e.g., because of a local variation of physical quantities
such as density ., temperature T, index of refraction n, etc.); and

5) anisotropic (e.g., because of the presence of an intrinsic angular
momentum which, as such, creates a preferred direction in the interior physical
medium, with the understanding that the background space is and remains
homogeneous and isotropic). ’

The representation of the above conditions will be primarily studied to
atternpt a deeper understanding of the strong interactions among hadrons from
which the terms “hadronic mechanics” were originally suggested [20]. However,
the same methods emerge as applicable to a variety of other fields outside hadron
physics, including conditions with the exact applicability of quantum mechanics,
such as a deeper understanding of the interactions among Fermicns which are
responsible for Pauli’s exclusion principle which evidently cannot possess a
potential, thus resulting to be precisely of the type under consideration.

Since the above interactions cannot be represented with a Hamiltonian by
central assumption, the fundamental hypothesis studied in these volumes is to
represent them via a suitable, nonlinear, nonlocal and noncanonical generalization
of the fundamental unit of quantum mechanics, Planck’s constant h = 1, into an
integro-differential operator 1 with the indicated most general possible
functional d-'apemilence2

h=1 - ﬁ ) = h’I(t’ X, ).(, Ra i'l’s d’T’ ad‘,s alpTv u; T, I, ) ’ (I-I]-)

verifying certain smoothness, boundedness and regularity conditions identified
later on. _
[t should be noted that there exist several different definitions of
“noniocality” in the current literature, although they are often referred io
individual particles and/or waves and, when interactions are included, they are
generally conceived to be compatible with conventional local-differential

2 The dependence on the accelerations is absent for exterior problems, but it is a
peculiarity of interior problems identified by a number of authors. As we shall see in
Vol.s I and II1, hadronic bound states clearly exhibit acceleration dependent forces which
illustrates in part their novelty. We assume the reader is familiar with the fact that
acceleration—dependent forces are non-Newtonian and, therefore, they are, alone, beyond
the descriptive capacities of quantum mechanics.
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topologies, symmetries and relativities. These definitions are ultimately reducible
to point-particles in a variety of configurations, e.g., with faster than light
interactions.

In these volumes we assume a definition of “nonlocality” which requires, by
conception, an enlargement of the basic topology into a suitable integro—
differential form (see later on Fig. [.1.4.1}, with consequential necessary
enlargement of space-time symmetries and relativities, which can be empirically
defined as particies and/or waves and their interactions defined over a finite
volume which cannot be exactly reduced to a finite set of isolated points.

A simple illustration of the latter type of nonlocality, referred to as of
“nonlocal-integral” type, is the interaction resulting from the overlapping of the
wavepackets, say, of two electrons in singlet ¢o plmg with wavefunctlons LIJT(I‘)
and l(r) characterized by the volume integral } dvis TI')l!J | r} which, as we shall
see in Vol. I11, occurs in the electrons of the Cooper pair in superconductivity and
numerous other cases. It is evident that this type of interactions is not exactly
reducible to interactions among a finite set of isolated points.

The latter “nonlocal-integral” interactions are also of “contact” type, that is,
occurring because of the actual physical contact between the wavepackets for
which the notion of potential and related action—at—-a—distance have no
mathematical or physical meaning {in fact, the interactions are variationally
nonselfadjoint and cannot be consistently represented with a Hamiltonian). The
insufficiency of the Hamiltonian to represent the entire system, then implies that
the time evolution of a system with nonlocal-integral interactions is nonunitary.
Numerous other consequences then follow.

Therefore, the adopted definition of nonlocal-integral interactions is
sufficient, alone, to require a suitable broadening of quantum mechanics
" beginning with a necessary broadening of its foundations.

This first volume is devoted to the mathematical foundations of hadronic
mechanics presented in their simplest possible form accessible to graduate
students in theoretical and experimental physics Their presentation in the
needed mathematical rigor will be left to interested mathematicians.
Theoretical profiles are presented in Vol. II, while applications and experimental
verifications are presented in Vol. I1L.

1.2: LIMITATIONS OF QUANTUM MECHANICS

For the "young minds of all ages” indicated in the Preface, there is no need to
conduct experiments in order to identify the limitations of quantum mechanics,
but simply observe (and, most importantly, admit} physical evidence.

First, let us observe a classical event of the interior problem of the Preface,
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such as a space-ship during re-entry into our atmosphere. The No-Reduction
Theorems [11,12] establish that such a classical system with monotonically
decaying angular momentum cannot be consistently reduced to a finite
collection of ideal elementary particles verifying the quantum mechanical
rotational symmetry, thus being all in stable orbits with conserved angular
momentum (a similar situation holds for the Lorentz symmetry as we shall see
in Yolume [1).

Yiceversa, an ensemble of quantumn mechanical particles each with
conserved angular momentum simply cannot yield, under any rigorous limiting
procedure, a macroscopic object whose center of mass has a continuously
decaying angular momentum.

Since the macroscopic object is a concrete, visual evidence, while the
reduction to elementary constituents is an academic abstraction, we must expect
insufficiencies in the quantum theory and certainly not in the macroscopic
physical reality. In fact, at a deeper analysis the space—ship during re—entry
experiences classical interactions precisely of the nonlinear, nonlocal and
nonhamiltonian type® which are absent in quantum mechanics.

The studies presented in these volumes can therefore be first seen as
identifying a certain generalization of classical mechanics for the representation
of all possible classical systems of our macroscopic reality, which include:

a) the conservative Newtonian systems of point-particles moving in the
homogeneous and isotropic vacuum which are admitted by quantum mechanics
{the exterior dynamical problem of the Preface),

b) all nonconservative Newtonian systems characterized by local-
differential, variationally nonselfadjoint systems with forces depending at most
on the velocities, and

c) all non-Newtonian systems consisting of extended and therefore
deformable objects under nonlocal-integral and/or acceleration dependent
interactions moving within inhomoegeneous and anisotropic physical media.?

After identifying such classical representation, we shall then identify
unique and unambiguous operator maps into hadronic mechanics, so as to
achieve the currently lacking mutual consistency between the classical systems
of our physical reality and their operator counterparts.

3 Missiles in atmosphere have nowadays drag forces depending up to the fenth power
of the speed and more, thus being manifestly nonselfadjoint [9} In addition, they have
forces characterized by integrals over their surface o because their shape directly
affects the trajectory. This provides a primitive classical example of the type of
interactions studied in these volumes, intentionally selected to void any hope of “finding a
Lagrangian or a Hamiltonian” in favor of structurally more general theories {see later on
Fig. L.4.1 for a first explicit example)

4 For historical accounts on the classical distinction between exterior and interior
problems beginning with Lagrange, Hamilton, Jacobi and other founders of analytic
dynamics, the reader may inspect ref.s [9,11].
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Moreover, whether classical or operator, all representations will be studied
under the condition of being "directly universal”, that is, capable of representing
all systems of the class admitted (universality), directly in the frame of the
experimenter without any use of coordinate transformations (direct universality).

It should be indicated that this author already achieved such a “direct
universality” in Newtonian mechanics via the use of the Birkhoffian mechanics
(see ref. [10], in particular, Theorem 4.5.1, p. 54, of “direct universality”). The reader
should be however aware that the Birkhoffian mechanics is not the classical
foundation of hadronic mechanics because, even though nonhamiltonian, the
former discipline is strictly local differential (owing to the use of the
conventional symplectic geometry). A task of this volume is therefore that of
identifying a further generalization of Birkhoffian mechanics which achieved
“direct universality” for a much broader class of systems, including those of
nonlocal-integral type, which results to be the unique and unambiguous classical
image of hadronic mechanics.

The need for the “direct universality” is dictated by a number of rather
insidious physical aspects. [n fact, the Lie-Koening theorem [loc. cit.] does indeed
ensure the possibility of constructing Hamiltonian representations for all systems
that are local-differential, regular and analyticity in a star-shaped region of the
local variables. However, the transformations are noncanonical and nonlinear
because the original systems are nonhamiltonian by assumption. As a result, the
transformed frames are not generally realizable with experiments owing to their
nonlinearity, besides implying the loss of contemporary relativities owing to the
highly noninertial character of the transformed frames.

The above occurrences illustrate the emphasis throughout these volumes of
studying methods which are “universal” {rather than representing only a subclass
of possible systems), and then “direct”, that is, admitting of representations in the
frame of the experimenter prior to any use of the transformation theory.

An inspection of the physical reality at the particle level without a preset
mental attitude to preserve as much as possible current knowledge (which would
not be scientific anyhow) reveals the existence of clear insufficiencies of
quantum mechanics also at the particle level. This is due to the experimentally
established existence of particle systems which simply cannot be derived from
the strict implementation of first quantum mechanical axioms.

The first case that comes to mind is the Cooper pair in superconductivity
(see, e.g. ref.s [13,14]. Clear experimental evidence establishes that ordinary
electrons with negative elementary charge —e can bound to each other in a
singlet state at small distances in high T, superconductivity under the mediation
of cuprate ions. Even though the validity of currently available Bardeen—-Cooper—
Schrieffer model [loc. cit.] is out of question, recent studied reviewed in Vol. III
have shown that the mode! is a linear-local-potential approximation of a
nonlinear-nonlocai-nonpotential; structure.
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In fact, the conditions in electron pairing are analyticaily equivalent to
those of the classical space-ship during re-entry. Experimental evidence
establishes that, in the above pairing, electrons are in conditions of mutual
penetration of their wavepackets, that is, in condition which can only be
quantitatively treated via integral representations (Fig. 1.1.1). Moreover, these
are contact interactions for which the notion of potential has no physical or
mathematical meaning, thus implying their nonhamiltonian character. The
“inapplicability” (and not the "violation”) of quantum mechanics® for
quantitative treatments of electron pairs in superconductivity is then expected.
Similar occurrences can be seen in numerous other cases implying short range
superposition of electrons, including the familiar notion of valence, n which the
undeniable validity of current views certainly do not prevent more accurate
theories.

In reality, the insufficiencies of quantum mechanics are much deeper than
the above because they are of geometric nature much along Fermi's vision.! A
predominant experimental evidence in electron pairing is their anisotropy
[13,14l. The derivation of the event from first axioms therefore requires a theory
which is structurally anisotropic. The insufficiencies of quantum mechanics are
then clear also from a geometric viewpoint owing to the fact that isotropy is a
fundamental pillar of all ifs structures, from the Euclidean and Minkowski
spaces, to the Galilean and Poincaré symmetries. Similar geometric
insufficiencies, studied in details later on, emerge for a quantitative and direct
~representation of the physical medium inside hadrons which is precisely
inhomogeneous and anisotropic.

Thus, the studies presented in these volumes can be seen as efforts to
construct a generalization of quantum mechanics capable of a quantitative
derivation of the attractive interaction of electron pairs in superconductivity
from first axioms. Such a pairing will then be assumed as the origin of new -
models on unstable hadrons based on the synthesis of ligther massive particles,
such as the synthesis of neutrons as occurring in the core of stars which, being
originally made up solely of hydrogen, synthesize the neutrons from the sole use
of protons and electrons. As we shall see in Vol. III, a quantitative treatment of
such syntheses is beyond any realistic capability of quanfum mechanics on
numerous independent counts.

The reader should be aware that issues we are addresses here are not not
marginal esoteric relevance, because they all have practical and technological
implications. For instance, one of the primary reason which have stimulated the
construction of a nonlinear—nonlocal-nonhamiltonian mode! of the Cooper pair is
to reach a theory with specific predictive capacities to increase the temperature

5 Quanturn mechanics was strictly conceived for the exterior particle problem in
vacuum in which has resulted to be exact. Quantum mechanics is therefore “inapplicable”
for fundamentally different physical conditions and the use of the term "violation” would

be scientifically inappropriate.
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for superconductivity. A deeper understanding of the familiar notion of valence
has direct applications in theoretical biology, such as for the prediction of new
drugs. Similarly, the quantitative representation of the synthesis of the neutron
from protons and electrons only implies a new, clean, subnuclear form of energy.
The assumption of quantum mechanics as being of “final character”, therefore
causes serious problems on much needed basic advances in all these issues and
numerous others.

Yet another particle event identifying the Ilimitations of quantum
mechanics is the so—called Bose-Einstein correlation (see, e.g., review [15] and
references quoted therein), e.g., as occurring for the proton—antiproton
annihilation at high energy, in which the particles coalesce into a stale calied a
fireball which then decays in a variety of modes whose final products are
correlated bosons {see Fig. 1.2.1).

In the opinion of this author, the Bose-Einstein correlation has a
particularly fundamental value for the studies here considered inasmuch as it
constitutes the most representative, complex and diversified manifestation of the
strong interactions. As such, it touches the very foundation of the historical
legacy recalled earlier.

Scientific objectivity requires the admission that the Bose-Einstein
correlation is not exactly derivable from the strict implementation of first
quantum mechanical axioms, whether nonrelativistic, relativistic or field
theoretical. Needless to say, there are numerous phenomenological models
providing a sufficient representation of experimental data via apparent quantum
mechanical techniques [15]. The issue is that, at a closer scrutiny, these models do
imply a departure from one or the other of quantumn mechanical axioms.

This is due to a variety of conceptual and technical reasons studied in
-details in Yol. [1I. At this point we merely indicate that the fireball of the p—p
annihilation is composed of two hadrons in conditions of total mutual
penetration. But hadrons are not “ideal empty spheres” with “points” in them.
Instead, hadrons are some of the densest objects measured in the laboratory until
now with well defined and experimentally measured wavepackets—wavelengths-
charge distributions of the order of | fm. The total mutual penetration of these
particles, one inside the other then demands, for scientific objectivity, the
expeclation that the fireball includes the most general conceivable interactions of
nonlinear, nonlocal, nonhamiltonian, inhomogeneous and anisotropic type.

At any rate, there is a rather general consensus that, no correlation exists
for strictly local-differential conditions. The insufficiency of quantum
mechanics is then evident, with the understanding again that its approximate
character remains yndeniable,

Thus, the methods presented in this volume are aimed at constructing a
covering of quantum mechanics capable of a direct representation of the Bose~
Einstein correlalion from nonlinear-nonlocal-noncanonical first axioms. This
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will then provide similar representational capabilities for strong interactions at
large, and the structure of hadrons in particular.

Numerous additional limitations can be identified under the open mind
indicated earlier. The best way to see them is to identify physical condilions as
<different> as possible than those of the original conception of quantum
mechanics . As another example, quantum mechanics was conceived for the
characterization of particles in stable orbits under generally long range
interactions verifying conventional conservation laws. To identify the limitations
of the theory, one should then consider particles under interactions which
<maximize> the instability of the orbit and/or the nonlinear-nonlocai-
nonhamiftonian effects. If we consider instead physical conditions approaching
as much as possible those of the original conception of the theory, no deviation
should be expected, and, in fact, no deviation has been measured until now under
these premises [7].

A further class of phenomena in which the limitations of quantum
mechanics are also clear, is given by effects expected from the inhomogeneity
and anisolropy of physical media in which particles and/or electromagnetic
waves move . Consider an electron when a member of the atomic structure.
Then, the particle moves in the homogeneous and isotropic vacuum, in which
case quantum mechanics is exact.

Consider now the same electron when moving in the medium inside a
collapsing star or, for that matter, the medium inside a hadron, called hadronic
medium [20]. Then, the particle moves within a medium which is manifestly
inhomogeneous and anisotropic.

Theoretical and experimental questions then arise as to whether such
inhomogeneity and anisotropy have any measurable effect in the dynamical
evolution of the particle considered. We are here referring to measurable effects
in the intrinsic characteristics of particles such as their rest energy, the
behaviour of their meanlife with speed, the behaviour of their Doppler
frequencies, etc.

Customarily, these quantities are treated by Minkowskian methods. But
their geometric pillars are the homogeneity and isotropy of space. The
insufficiency of Minkowskian methods for inhomogeneous and anisotropic
physical media must then be admitted in order not to exit the boundaries of
science. The open nature of the problem herein considered then follows.

It is recomnmendable to identify the origin of the limitations of quantum
mechanics in some detail so as to have a guideline during the subsequent analysis.

First, quantum mechanics is strictly local-differential in its topological
structure, which prevents a mathematically consistent treatment of nonlocal
interactions, whether in electron pairing in superconductivity, or in the Bose-
Einstein correlation, or in the strong interactions at large.’

6 The reader should be warned against the (not unusual) simplistic attitude of adding a
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Second, quantum mechanics is structurally of potential-Hamiltonian type;
namely, it can only represent in an established way action—at—distance
interactions described by a potential. On the contrary, as indicated eariier,
nonlocal effects due to mutual penetration of wavepackets are well known to be
of contact type without any potential. As such, contact-nonlocal interactions are
conceptually, topologically and analytically outside the representational
capabilities of quantum mechanics.”

Third, the basic axioms of quantum tnechanics require linearity in the
wavefunction, as in the basic eigenvalue equations H(x, pli(x) = Eg(x) and are
generally violated by nonlinear generalizations, such as the use of Hamiltonians
with a dependence on the wavefunction, Hix, p, $:d(x) = Ed:(x).

In order to understand better these insufficiencies, let us review the
essential structural lines of quantum mechanics [1,2l. The central notion is
‘Planck’s quantum of energy

h = h/2m = 1.054589 x 10734 joule second (L.2.1)

The primary mathematical structure of the theory is given by:

A) The universal, enveloping, associative, operator algebra E with elements
A, B, ... (say, matrices or local-differential operators) and product given by the
familiar multiplication of matrices or operators AB, verifying the familiar
associativity law

(AB)C=A(BC) (1.2.2)
under which Planck’s constant in the form

fh=1= diag. (1, 1,... 1) {1.2.3)

<nonlocal-integral potential> to the Hamiltonian because it can be proved to be
mathematically and physically inconsistent on various grounds. To begin, such an
addition is In violation of the local-differential topology of quantum mechanics and
carries rather serious consequences, such as the inapplicability of Mackey imprimivitivy
theorem [16] with consequential loss of conventional relativities [17]. Additional
inconsistencies will be pointed out shortly.

T As discussed more technically in subsequent sections, the addition of a potential to a
given Hamiltonian implies the underlying tacit assumption of granting potential energy to
the interactions considered. For conventional action—at—-a-distance interactions this is
evidently correct. However, the granting of a potential energy to contact interactions due
to the mutual penetration of wavepackets, has no physical sense, and results in a
dynamical evolution which has no connection with that in the physical reality. As we
shall see later, this is a motivation for representing internal nonlocal effects of strong
interactions with the generalized unit of the theory; that is, with a quantity other than
the Hamiltonian.
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assumes the meaning of the left and right unit of the theory

&: AB-=assoc, [IA=Al=A VA€ {1.2.4)

B) The field F of real numbers R or of complex numbers C.
C) The Hilbert space 3C with states ¢ >, | ¢ >,..., and inner product

3 <Plo> = f dar ¢l o) olt, 1) € G (L.2.5)

The remaining formulations can be derived from the above primitive
structures. As an example, the fundamental Heisenberg’s equation for the time
evolution of a quantity Q in terms of a (Hermitean) Hamiltonian H

iQ=[Q,H]E=QH—HQ, (1.2.6)

is characterized by the antisymmetric brackets [..., '"]E attached to the enveloping
algebra &,
Similarly, Schréidinger’s equation

9
iT]¢>=H|¢>=E|¢>, (L27)
t

is a consequence of the original associativity of the envelope £ which results in
the action H | ¢ > of the operator H on the state | ¢ > as being right, modular and
associative , 1.e., such that

ABC|¢> = A(BC|o>) = (AB)Clg> =(ABC) o> (128

Finally, we recall that the exponentiation of Eq.s (1.2.6) into a finite Lie
group is a power series expansion in the envelope E, namely, it is technically
permitted by the infinite-dimensional basis in £ with familiar expansion

jaX . . . t
el‘g' =I+iaX/I+ ([{aX)iaX)/2 + ..,a €F, X =X €& (129

under which the infinitesimal form (1.2.6) can be exponentiated to the Lie group
of finite time—-evolution

iHt
3

This means that the above group too is fundamentally dependent on the
assumption of the unit h = L '
The ultimate essence of quantum mechanics is embodied in the celebrated

=it (1.2.10)

Qltl = ¢ Q) e|E
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Dirac’s 8—-function
= (2m) lf dze tzr (L2.11)

verifying the familiar properties under sufficient smoothness conditions
—00
s=8r), sr-r)=)  dzsr-28z-1), (12,12

—oq "™

i) = etr-e)far, (1.2.120)
~00
In fact, the 8—-Tunction characterizes the point-like structure of particles and
their inherent local~differential topology.

All other aspects of quantum mechanics, such as linear operations on JC,
Heisenberg’s uncertainty principle, Pauli exclusion principle, transformation
theory, etc., can be constructed via a judicious use of formulations derivable
from or compatible with the above fundamental structures &, R {or C) and 3C.

We are now in a position to identify in more details the following
representative limitations of quantum mechanics.

Limitation 1: Lack of direct representation of extended nonspherical
charge distributions of individual hadrons. The above structural lines show
that the topological, geometrical and algebraic structures underlying quantum
mechanics are strictly focai-differential. As a result, quanfum mechanics
cannot effectively represent the actual charge distributions of hadrons which
are extended as well as nonspherical {e.g, oblate spheroidal).

Admittedly, the extended character of the hadrons can be represented via
‘the so—called second quantization|5,6]. However, such approach provides only the
remnants of the actual shape via the so-called form factors The insufficiency
here considered then becomes evident by nothing that an effective theory must
represent the actual generally nonspherical shape of the charge distributions of
hadrons. In fact, assuming that form factors can represent the shape, considered,
that shape must be perfectly spherical in order not to violate a pillar of the
discipline: the rotational symmetry.

At any rate, the basic unit of the Euclidean space is the trivial umt matrix I
= diag. (1, 1, 1) which, as such, can only geometrize the perfect sphere (or the
homogeneous and isotropic vacuum).

As an example, there are indications that, as it is the case for all spinning
objects in nature, the shape of the charge distribution of a nucleon is not
perfectly spherical, but is instead an oblate spheroidal ellipsoid along, say, the z-
axis with values for the semiaxes for the proton [18]

p2, = b2, =1, b2, = 060, (1.2.13)
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which provides one (not necessarily unique) explanation of the anomalous
magnetic moments of the nucleons based on the shape alone, that is, without any
consideration of any nature on the structure and its constituents. [t seems
evident that quantum mechanics cannot represent a realistic shape of nucleons
of type (1.2.13) whether in first or second quantization. In fact, as we shall study
in detail later on, extended nonspherical shapes are structurally outside the
representational capabilities of a Hamiltonian and require more general theories.
In regard to the Bose-Einstein correlation, there is clear experimental
evidence that the fireball is not perfectly spherical, but a highly prolate
spheroidal ellipsoid oriented along the direction of the original p—p collision (see
Fig. 1.2.1). The above limitation then implies the inability of quantum
mechanics to represent the highly prolate shape of the correlation fireball ,with
evident limitations in the quantitative description of the phenomenon considered.

Limitation 2: Lack of representation of the deformation of extended
charge distributions. Once the need of representing the actual shape of a charge
distribution is understood, one can see that quantum mechanics is intrinsically
unable to represent all possible deformations of given charge distributions,
whether spherical or not, under sufficient external forces or collisions . This is
again prohibited by the underlying rotational symmetry.

The actual and direct representaticn of possible deformations of the charge
distribution of hadrons-is evidently needed for basic advances, e.g., for the
synthesis of the neutron from protons and electrons alone. In quantum
mechanics, all hadrons are points and, consequenily, the problem of their
deformability cannot be even formulated. The admission of the extended
character of hadrons implies their deformability under sufficient conditions,
because perfectly rigid objects, even though admitted in academic abstractions,
do not exist in the physical reality. Thus, the only scientific issue is the amount
of deformation of the charge distribution of a given hadron under given
conditions, but its existence is beyond credible doubts.

A first illustration is given by the inability of quantum mechanics to
provide an exact representation of the total magnetic moments of few-body
nuclei despite tensorial and relativistic corrections, which is still lacking at this
writing despite studies conducted over three-quarter of a century. The origin of
this occurrence is precisely the apparent deformability of nonspherical nucleons
when members of a nuclear structure with consequential alteration of their
intrinsic magnetic moments. Quantum mechanics can ¢only represent nucleons as
undefermable points in first approximation and as perfectly spherical and rigid
spheres in second quantization. The inability to represent total nuclear magnetic
moments {and other nuclear characteristics) is then consequential.

As another example, it is known that the fireball of the Bose—Einstein
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correlation expands immediately after its formation. and alters its shape under
sufficiently intense external fields. The above limitation therefore implies the
inability of quantum mechanics to represent the evolution and deformations of
the fireball (see Fig. 1.2.1).

Equivalently, we can say that quantum mechanics can only represent
fireballs which, besides being perfectly spherical , are also perfectly rigid . The
ensuing limitations of the theory are then evident. In the final analysis, the
rotational symmetry is taught since undergraduate courses in physics to be solely
applicable to rigid bodies .

Limitation 3: Lack of representation of nonlocal-nonpotential
interactions. Above all, a most basic limitation of the theory is the inherent
inability of quantum mechanics to represent nonlocal internal effects expected
in strong interactions at farge, as well as any appreciable overlappings of the
wavepackets of particles (including leptons as in the Cooper pair in
superconductivity).

In regard to the Bose—Einstein correlation, this implies the inability of
quantum mechanics to reach a quantitative representation of the expected very
origin of the correlation, the nonlocal interactions. As recalled earlier,
interactions of particles which can be effectively approximated as being point-
like show no known correlation, while the correlation appears to be due precisely
to the nonlocality of the interactions in the interior of the fireball, as we shall see
in details in Vol. [11. :

The experimental data on the Bose-Einstein correlation therefore have
fundamental significance because, in the final analysis, they can result to be the
first experimental evidence on the historical legacy of the ultimate nonlocal
structure of matter.

Limitation 4: Lack of representation of a number of physical systems
from first principles. To illustrate the case for the Bose-Einstein correlation,
consider a systern of n particles represented with the symbol k = 1, 2, .., n, each
one possessing correlated and uncorrelated components represented with the
symbols a and b, respectively. Let the states be given by |k,a>x[kb> k=1, 2,
o I

According to quantum mechanics the axiomatic characterization of the
correlation probability is that based on the conventional expectation values, and
can be written

| L,a>
T — [ 1,b>

Cy = <la|<lbl...<nal<nb| | ... =
— | n,a>



- 16—

= Dy (<ka|ka>+ <kb|kb>), (L2.14)

The above expression lacks exactly the cross terms <k, a |k b >
representing the correlation. In current “semiphenomenological models”, these
cross terms are introduced via a number of artificial expedients (see review [15).
However, for scientific objectivity we must admit that these models are, strictly
speaking, beyond the capability of the axiom of expectation value, thus
confirming the inability of quantum mechanics to derive the event from first
principles.

This is for instance the case of the one or two “caoticity parameters” [15]
introduced ad hoc "to adjust the fit". [n this case an acceptable representation of
the experimental data is indeed achieved, but one cannot claim that it is
compatible with quantum mechanics. A similar situation occurs for various other
cases, as we shall see during the course of our analysis.

Limitation 5: Loss of basic space-time symmetries under nonlinear,
nonlocal and nonhamiltonian interactions. The historical open legacy of
Fermi, Blochintsev and cthers on the uitimate nonlocality of the strong
interactions has profound epistemological, theoretical and mathematical
implications, because it implies the inapplicability of all conventional space-time
symimetries for a number of independent reasons studied in details in volumes
[9-12], such as:

a) the homogeneous and isotropic character of the basic medium of
conventional relativities, empty space, is replaced by the generally
inhomogeneous and anisotropic character of physical media of interior problems,
whether of classical or operator type;

b) the Lie-Hamiltonian character of the conventional relativities is replaced
with the nonhamiltonian structure of the interactions considered;

c) the local-differential character of the underlying topology (e.g., the
Zeeman topology of the special relativity) si replaced with the nonlocal-integral
nature of the events considered; and others.

To be more specific in this important point, the admission of nonlocal
interactions in physical systems such as the Cooper pair, the synthesis of the
neutron from protons and electrons, the Bose-Einstein correlation, ete. implies
the necessary abandonment of the conventional Poincaré symmetry owing to its
notorious linear, local and canonical structure. _

Yet another objective of the studies presented in these volumes is to show
that, under appropriate generalized methods, the basic space-time symmetries
can indeed be reconstructed as exact under nonlinear, nonlocal and nonpotential
interactions. As a matter of fact, hadronic mechanics can be alternatively
conceived as a mechanics capable of reconstructing as exact space-time and
internal symmetries when believed to be conventionally broken. This includes the
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reconstruction of the exact parity under weak interactions, the isospin symmetry
under in nuclear physics, etc. '

QUANTUM MECHANICAL APPROXIMATION OF THE BOSE-EINSTEIN
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FIGURE 1.2.1: A schematic view of the quantum mechanical approximation of the Bose-
Einstein correlation (Diagram 1.1), and a more realistic description suggested by available
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experimental information (Diagrams 1.2-1.5). In the quanturn mechanical case the original
proton and antiproton are represented as points. The correlation and production of the
emitted bosons B is then reducible to virtual, action—at-a-distance exchanges, resulting
in Limitations 1-5 pointed out in the text. In the physical reality, the proton and
antiproton are extended charge distributions of radius = 1 fm {Diagram 1.2). Under very
high energy, they annihilate in conditions of total mutual penetration and compression of
their wavepackets (Diagram 1.3). This creates the fireball which is a highly prolate
spheroidal ellipsoid oriented toward the original p—p direction (Diagram 1.4). This fireball
rapidly expands and decays into particles whose final product is the set of correlated
bosons B (Diagram 1.5). A satisfactory representation of the Bose-Einstein correlation
must therefore be in a position to provide a quantitative representation of phases 1.2-15,
as well as resolve Limitations 1-5 of the text from basic axioms.

As a matter of fact, we shall see that the identification of broken Lie
symmetries is, in general, an indication precisely of the presence of nonlinear
and/or nonlocal and/or nonpotential effects outside the capabilities of Lie theory.

[n conclusion, the viewpoints studied in these volumes are the following:

I) Quantum mechanics does indeed provide an exact description of the physical
conditions for which it was conceived, that of particles admitting an effective
point-like approximation while moving in the homogeneous and isotropic
vacuum. This includes electromagnetic and weak interactions as well as a large
class of additional conditions, such as the approaching phase of the p-p
constituents of the Bose-Einstein correlation;

1) Quantum mechanics is only approximately valid for particles in condition of
deep mutual overlapping (Fig. 1.1.1) such as the Boson correlation, and

{1I} A more accurate, quantitative description of nonlinear, nonlocal,
nonhamiltonian, inhomogeneous and anisotropic interactions, as expected in the
Cooper pair, the synthesis of the neutron, the Bose-Finstein fireball, the
structure of hadrons, and the strong inferactions at large, requires a structural
generalization of quantum mechanics itseif, perhaps similar to the generalization
of classical mechanics that resulted to be necessary for the final understanding
of the atomic structure [1).

1.3: CONCEPTUAL FOUNDATIONS OF HADRONIC
MECHANICS

In an attempt to resolve the limitations of quantum mechanics, this author
submitted in a memoir [19] & of 1978 the proposal to construct the so—called
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isotopies and genotopies of the conventional Lies theory, under the name of -
Lie-isotopic and Lie—admissible theories , respectively. In the subsequent
memoir [20] of the same year, this author proposed the construction of the
isotopies and genotopies of quantum mechanics under the name of hadronic
mechanics.

The term <isotopy> was suggested from the Greek "160{ Tono{”, meaning
“preserving configuration” and interpreted as “axiom preserving”.

The basic isotopic equations proposed in ref. [20], p. 752 for the time
evolution of a physical quantity Q in terms of a (Hermitean) Hamiltonian H on a
conventional Hilbert space are given by the following generalization of
Heisenberg’s equation (1.2.6)

idg/at = Q) Hl = QTH-HTQ = (L3.1)
= Qﬂt, xv ).(, 5(, d’s lst a‘!}; anTa I-ls Ts n, ")H - HT(ta X! X:‘ j.(l d‘,’ d;T’ ad"! ai'pT! P-v T1 nsu)Q’
where T is a Hermitean operator, with exponentiated form

iHTt -itTH
e

Q) = Qo) e . (1.3.2)

which admit the conventional Heisenberg!s equation as a particular case, because
[ATBl4<; = [A,Bl = AB - BA. (1.3.3}
The following realization of the generalized unit (1.1.1),
1=1"1=1f, (1.3.4)

is then called isounit, and results to be the correct left and right unit of the new
theory, as we shall see in detail in the next chapter. The above formulations were
called “Lie—isotopic” [19] because the brackets[A;Bl = ATB - B T A preserve
the original Lie axioms and, in this sense, the lifting [A , Bl = [A [ B] is an isotopy.

The term <genotopy> was proposed by the author in ref. [19] from the
Greek "yevvouw TOmol” meaning "inducing configuration” and interpreted as
"axiom inducing”, that is, an alteration of the original axioms in favor of covering
axioms admitting of the original one as particular case.

The basic genotopic equations proposed in ref. [20], p. 746 are given by the
following generalization of Eq.s {1.26) and (1.3.1°

8 When at Harvard University under support from the U.S.Department of Energy,
contract numbers ER-78-5-02-4742, AS02-T8ER-4742, and DE-AC02-8-ER10651.

9
The notation T, R, § etc. will result to be useful later on to denote quantities which
are defined on isospaces gver isofields. The symbols T, R, S, H etc. therefore means that
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idQ/dt = (Q;H) = QRH -HS8Q = {1.3.5)
= QRE x, % & &, Of, 8, 8dt, 11, T, 0, JH-H &L %, %, %, &, &f, 8, adt, 1, T, 0.} Q

where the operators R and S are now no longer Hermitean, but interconnected by
the conjugation R = ST, with exponentiated form

i ~tRH
elHSt e R

Qlt) = Qo) , (1.3.6)

which admits first the isotopic equations for R = sl = T and the conventional
equations for

(A’B)p_g-, =[A,Bl= AB - BA. (L37)

The most dominant aspect of the latter formulations is the existence of
two generalized units, called genounits, one for motion forward in time,
denoted with 1>, and the second for motion backward in time, denoted <I which
can be identified with the inverse of two.operators R and 8 of Eq. (1.3.5)

1> =%, <f= gL, (1.3.8)

The above more general theory was called by this author “genotopic”
because the generalized brackets (A,B) = ARB-BS3 A violate this time the
Lie algebra axioms in favor of covering algebras called Lie—admissible algebras
first proposed by Albert [21] back in 1948 at the abstract level.

In fact, the brackets (A, B) characterize an explicit realization of the Lie-
admissible algebras {although in a form more general than Albert’s original
conception we shall study later on), because their attached antisymmetric
algebras are Lie—isotopic

(A,B) - (B,A)=[ABl=ATB-BTA, T=R-8. (139

The Lie-isotopic formulations were then studied by the author in
monographs [9-12], while the more general Lie-admissible formulations were
studied in monographs [22,23].

From the completely unrestricted functional dependence of the generalized
units, it is evident that the above formulations have a clear capability to
represent nonlinear, nonlocal, nonhamiltonian, inhomogeneous and anisotropic
systems. In effect, equations (1.3.1) and (1.3.5) were subsequently proved to be

the quantities are computed on a conventional space over a conventionat field.
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"directly universal” for the systems considered, as we shall see in Ch. 7 of this
volume.

The physical differences of the isotopies and genotopies were also
identified in the original proposal [20] and can be summarized as follows:,

The isotopic formulations characterize closed—isolated systems with conserved
total Hamiltonian H and other total physical quantities under the most general
possible nonlinear, nonlocal and nonhamiltonian internal forces represented by
the operator T because, from the totally antisymmeltric character of the
brackets, we have

idgH/dt = [H;H] = HTH - HTH = 0. (1.3.10)

The genotopic formulations characterize open—nonconservative systems, such
as one particle under conventional interactions represented by the Hamiltonian H
and the most general known nonlinear, nonlocal and nonhamiltonian external
interactions represented by the operators R and S because, from the lack of
anticommutativity of the brackets, we have

idH/dt = (H,H) = H(R-8)H # 0. (1.3.11)

The physical differences between the isotopic and genolopic formulations
can also be effectively seen from.the viewpoint of time-reversal invariance. In
fact, one can see from the Hermiticity of the T operator T that isotopic
formulations are structurally reversible, that is, they are reversible for a time-
reversal invariant Hamiltonian.

On the contrary, it is equally easy to see from the lack of Hermiticity of
the R and S operators that genofopic formulations are structurally irreversible;
that is, they are irreversibie even for all time—reversal invariant Hamiltonians .

The above occurrences suggested the characterization of the genotopic
formulations with the arrow of time, the operator S characterizing motion
forward in time, while the operator R characterizes the motion backward in time.
By looking in retrospective, we can say that ‘

The basic conceptual structure of hadronic mechanics has essentially
remained that of the original proposal [19,20): the integral generalization of
Planck’s unit, Eq. (1.1.1}, of two primary types:

A) a first type of Hermitean-reversible character for motion in both
forward and backward direction in time, which characterizes axiom—-preserving
generalizations of quantum mechanics, and

B) a second type requiring two different generalized units, one for motion
forward in time and another for the motion backward in time, which require a
generalization of the axiomatic structure of quantum mechanics when
formulated in conventional Hilbert spaces over conventional fields (not so when
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THE TWO BRANCHES OF HADRONIC MECHANICS

LIE-ISOTOPIC
FORMULATIONS

LIE-ADMISSIBLE
FORMULATIONS

FIGURE 1.3.1: A schematic view of the main branches of hadronic mechanics, the Lie-
isotopic branch describing closed—isolated systems verifying conventional total
conservation laws under nonlinear-nonlocal-nonhamiltonian internal effects, and the
more general Lie—admissible branch describing the most general possible open-—
nonconservative systems or, more specifically, one component of a Lie~isotopic system
when considering the rest as external. It is generally believed that the conservation of the
total energy, dH/dt = 0, can only ¢ccur under conservative internal forces or, more
technically, for systems called closed variationally seifadjoint [L1], such as planetary or
atomic systems. This belief was disproved in memoir [20] by showing that the total energy
can also be conserved under contact, nonhamiltonian internal forces. In the latter case we
merely have internal exchanges of energy and other physical quantities but aiways such
to balance each—other and result in conserved total quantities. These studies identified a
new class of physical systems called closed variationally nonselfadjoint studied in detail
at the classical level in monograph [12] of 1983, and at the operator level in remoirs [35]
of 1989. A classical example is provided by Jupiter in which one can visually see in
telescopes its global stability in a way compatible with irreversible, unstable interior
processes, such as vortices with continuously varying angular momenta. A particle
example is given by a neutron star, which is also manifestly stable as a whole, yet the
orbits of the individual neutrons in its interior are generally unstable precisely because of
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the interactions studied in these volumes. We can therefore say that:

A) Quantum mechanics Is an operator formulation of closed variationally selfadjoint
systems, ie, Isolated systems with only local-differential-potential internal forces, in
which case one formulation only of Lie type is sufficient for the characterization of
both the system as a whole as well as its individual constituents. Global stability is
achieved in this case via the stability of each constituent; while

B) Hadronic mechanics Is an operator formulation of closed variationally nonselfadjoint
systems, iLe, isolated systemns with local-differential-potential, as well as noniocal-
nonpotential internal effects, in which case two mutually compatible formulations are
generally needed, one for the description of a stable system as a whole (in which case the
isotopic brackets of the time evolution are adopted), and one for the description of the
individual constituents in unstable orbits {in which case the genotopic brackets of the
time evolution are generally more appropriate). Global stability Is achieved in this latter
case under the maximal possible instability of each constituents. We merely have the
highest possible internal exchanges of energy and other physical quantities, but always
such to compensate each other resulting in total conservation laws.

Intermediate cases have also been identified, i.e, systems which are closed-isolated and
variationally nonselfadjoint because of contact internal forces, yet the orbits of all
constituents are stable. This is generally the case of strongly interacting systems with two
or three constituents In this latter case the Lie—isotopic formulations are sufficient for
the representation of both, the system as a whole and each individual constituent. The
Lie-isctopic formulations are therefore expected to be fully sufficient for a relnspection
of quark theories, as we shall see.

Proposal [20] concluded with the illustration of the <novel> capabilities of
hadronic mechanics; that is, capabilities beyond the technical capacities of
quantum mechanics. As an example, in Sect. 5 of ref. {20], it was shown that the
isotopic formulations provide a quantitative representation of the synthesis10 of
an electron and a proton into the w° particle which is prohibited by quantum-
mechanics.

The reader should be aware that a main physical objective for which the
entirety of the classical and operator, Lie—isotopic and Lie-admissible studies
were and continue to be conducted by this authoer, as clearly stated in the original
proposal [20] is the following:

‘To attempt the identification, within the context of a covering of quantum
mechanics, of the hadronic {or quark} constituents with massive, physical,
ordinary particles which are freely produced in spontaneous decays generally
having the lowest mode (tunnel effect of the constituents).

Such a new modei of the hadronic structure is manifestly prohibited by
guantum mechanics, yet it becomes quantitatively possible for the covering
hadronic mechanics precisely because of the novel, internal, nonlinear, nonlocal,

10
The author would like to thank Prof. A. N. Sissakian, Deputy Director of the J. I. N. R,
Dubna, Russia, for the suggestive terms “chemical synthesis™
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nonhamiltonian, inhomogeneous and anisotropic effects. In turmn, the capability of
producing the hadronic constituents free has permitted the first practical
applications of strong interactions known to this author.

i.4: GUIDE TO THE LITERATURE

The above lines of inquiry of 1978 were subsequently subjected to systematic
studies by nurnerous authors, as indicated by the following meetings:

1) Five Workshops on Lie-Admissible Formulations held in Cambridge,

MA, from 1978 to 1983

2} Five Workshops on Hadronic Mechanics held from 1983 to 1989 in

various Countries; '

3) The First International Conference on Nonpotential Interactions and
their Lie-Admissible Treatment held at the Université d'Orleans, France, in 1982
and the First International Workshop on new Frontiers in Physics held at the
Castle Prince Pignatelli in August 1995 (see Proceedings [24] and references
therein).

In a situation of this type, in this introductory section we can only indicate
the most significant steps. Specialized advances will be reviewed and quoted in
the subsequent chaplers. This presentation, however, is and will remain
incomplete in the review and quotation of all contributions in the field to avoid a
prohibitive length. Also, contributions on other lines of inquiry cannot possibly be
quoted (if nothing else, because of their shear number), unless they study a
structural generalization of current theories, such as: the quantum groups (see,
e.g., ref. {25] and quoted papers); the so—called g~deformations (see, e.g., ref. [26]
and quoted paper) which are particular cases of the Lie-admissible formulations
and, thus, particular cases of hadronic mechanics; the studies on nonlocality by
Russian colleagues (see, e.g., monographs [8]); the discrete formulation of space-
time; and other true generalizations.

The most salient advances in the studies of isotopies and genotopies of
quantum mechanics can be summarized as follows. The original proposal [20] of
1978 suggested the formulation of Eg.s (1.3.1)-{1.3.5) on a conventional Hilbert
space, a formulation which subsequently proved to be mathematically correct,
yet not sufficient on physical grounds.

For this reason Myung and Santilli proposed in ref.s [27,28] the first
mathematically rigorous formulation of the isotopies, that over the isotopies 3
of a Hilbert space JC {today called myung-Santilli isohilbert space with inner
product < ¢ | T[¢ >1,T="1"1 > 0 (defined over a generalized field reviewed in the
next Chapter) where the operator T is the same as that in Eq.s (1.3.1).

As we shall see, the liftings 3¢ — X have the fundamental implication of
preserving Hermiticity under isotopies, as a result of which the cbservabie of
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quantum mechanics remain observable in hadronic mechanics.

Subsequent studies [29] by Mignani, Myung and Santilli of 1983 showed that
the preceding formulation [27,28] even though correct, were themselves
insufficiently general because Eq.s (1.3.1) and (1.3.5) can also be consistently
defined on an isotopic Hilbert space X with inner product <4 |G|¢>1,1= L
where T > 0 and G > 0 are two generally different, positive-definite operators
{also over a generalized field). The latter generalized space (today called
Mignani-Myung-Santilli isohilbert spacel is significant whenever the sole degree
of freedom of the isotopic operator T is insufficient or the application at hand
{e.g., reconstruction of the exact parity under weak interactions), although the
preservation of the quantum mechanical observability implies predictable
restrictions on both the T and G operators (as we shall see, the commutativity of
161 with H).

As well known, a system in quantum mechanics is characterized by only
one operator H = K + V. The corresponding system in the “isotopic branch” of
hadronic mechanics is characterized by three independent operators, the
Hamiltonian H, characterizing the potential forces, the isotopic operator T
characterizing the nonpotential forces, and the operator G characterizing
additional degrees of freedom of the underlying Hilbert space, while in the
"genotopic branch” a system is characterized by four operators, H and G as well as
Rand S =Rl

The algebraic part of hadronic mechanics, that of Heisenberg-type based
* on generalized equations {1.3.1) and (1.3.5), had reached sufficient mathematical
maturity by 1983. The additional advances since that time have been in the
technical knowledge of Lie—isotopic algebras, Lie—admissible algebras, isotopic
Hilbert spaces, and their applications.

In 1983 we already had the isotopic generalization of Wigner's theorem on
unitary symmetries (30} and a structural generalization of the Lorentz symmetry
0(3.1) of isotopic type [31] which, emerged to be locally isomorphic to 0(3.1) (for
all T > 0) while producing a generalization of the conventional linear-local-
canonical Lorentz transformations of the desired, most general possible nonlinear,
nonlocal, noncanonical, inhomogeneous and anisotropic type. Other developments
and applications were merely consequential.

The studies on the Scrodinger—type formulations equivalent to the
preceding Heisenherg-type ones resulted to be considerably more laborious, to
such an extent to require a Turther generalization of the already generalized
classical Hamiltonian mechanics, the Birkhoffian mechanics of ref. [10l

To outline these studies, we recall that Myung and Santilli [27] identified the
following isotopic generalization of Schrodinger’s equation on the isotopic Hilbert
space X

3
i—|¥>=HT|¢>, (1.4.1)
ot
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which resulted to be equivalent to Eq.s (1.3.1) under the applicable unitary-
isotopic transformations (except for scalar factors subsequently resulted to be
important for an overall consistency of the theory). it should be mentioned that
Eq.s (1.4.1) had also been independently identified by Mignani [32), although
without Hilbert space treatment.

Animalu and Santilli [33] the identified the following isotopy of the naive
quantization called naive isoquantization

A~ ~illog|ls> —- A- -illog|d> (1.4.2)

under which the Birkhoffian form of the Hamilton-Jacobi equations [10] was
uniquely and unambiguously mapped exactly into the hadronic equation {1.4.1).

However, subsequent studies indicated that Eq. {1.4.1) was not compatible
with the relativistic isotopic formulations [31]. More specifically, the isotopic
generalization of the conventional field equations characterized by the Lorentz—
isotopic symmetry of ref. [31] admitted the following generalization of the plane-
waves

ei(p'T’r—ETtt)’ (143

K, 1) = N
where T is the space- and T; is the time isotopic element, which permitited a
quantitative interpretation of the local variation of the speed of light within
physical media, such as our atmosphere, water, glasses, etc.
Eq. (1.4.1) admitted the simpler “plane-wave”

&(t,r)=Nei(pTr-Et), (1.4.4)
without the generalized element T, in the energy term, thus resulting not to be
compatible with relativistic form (1.4.3).

Also, Eq. (1.4.4) prevented the achievement of a consistent expression for
the isotopic linear momentum operator, which in fact was completely lacking at
that time (mid 1980's). In turn, the lack of such consistent isolopic forms literally
precluded most applications, which had to be conducted at the abstract level {as
done for that reason in ref.s [30,31]).

The resolution of these basic deficiencies required this author to conduct
again a laborious effort at the purely classical level because of the evident need
to reach the isotopic form of the linear momentum operator via isoquantization
of corresponding well defined Hamilton—Jacobi equations, as a covering of
conventional quantum derivations.

As recalled earlier, a step-by-step generalization of Hamiltonian mechanics
of Birkhoffian type has been proposed in memoir [19] of 1978 as a first
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application of the Lie—isotopic theory, and then studied in monograph [10] of 1983.

The difficulties here mentioned are due fo the fact that, while the
Heisenberg-type image of Birkhoff’s equations has been reached since the original
proposal [20] of 1978, the achievement of a Schrodinger-type version of
Birkhoffian mechanics escaped all efforts for a number of technical problems,
including: an excessively general “wave functions” {(t, r, p) with an essential
dependence also in the momenta p; lack of any practically usable expression for
the isotopic linear momentum; the nonlinear and noncanonical, yet strictly local~
differential character of Birkhoffian mechanics as compared to the general
nonlocal character of hadronic mechanics; and others.

These occurrences forced this author to reinspect the classical generalized
theories ab Initio, and to conduct a second, step—by-step generalization of
Hamiltonian mechanics, this time, of the so—called isotopic type reviewed later
on in Volume II which admit the most general possible nonlinear and
noncanonical, as well as nonlocal-integral systems. This novel mechanics, was
presented for the first time in memoirs [34] of 1988 jointly with the
corresponding, compatible isctopies of the symplectic, affine and Riemannian
geometries for interior problems {only). Memoirs [34] were then expanded in
monographs [11,12] for a detailed treatment at the classical level.

The form of the basic {nonrelativistic) equations of hadronic mechanics
used in these volumes were reached by Santilli in memoirs [35] of 1989 and can be
written

~

aQ daQ . _
i——=il,— =[Q Hl=QTH - HTQ, 1= T (L4502
at dt
F:] ]
i—|e> = ily—|¢> = HT|¢ >, (1.4.5b)
ot R at
3
P T|E>=-i— o> =il d—|¢>, 1= 1T (145
x T aka iy axllq:

which include the final expression of the operator linear momentum so vital for
practical applications.

An alternative formulation of Eq.s (1.4.5) is also possible, should be kept in
mind and will be studied at some later time. It is based on the isoderivatives
T(8/0t and To/ox' characterized by the interchange of the isounits with the
isotopic elements, T, — T, and T — T

Relativistic equations were then achieved via isotopies of the conventional
relativistic equations, as we shall see in Vol. II, and they resulted to be fully
compatible with basic nonrelativistic equations (1.4.5).

Classical studies [34] also set the basis for the novel topology of hadronic
mechanics (see Fig. 1.4.1).
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Two Turther aspects deserve a mention for advance guidance in the
following analysis. Theories based on a generalized unit T permit the
identification the novel antiautomorphic map

1 - 10 =-1, (1.4.6)

called by this author isoduality, with corresponding isodual isotopic
formulations which were identified in ref.s [21], and studied in more details in
mernoirs [35].

THE TOPOLOGY OF ISOTOPIC THEORIES

ot
LOCAL COORDINATES / .t PR
FOR THE CENTER-OF-MASS N -,
MOTION .

INTEGRAL CONTRIBUTIONS
FOR THE EXTENDED
CHARACTER

FIGURE 1.4.1. A conceptual view of the new integro-differential topology of hadronic
mechanics. Nonlocal systems are of notoriously difficult treatment because they dermand
the so-called integral topologies which are some of the most complex mathematical
constructions, particularly for physical applications. The solution proposed by this author
to by-pass these difficulties is so simple to appear trivial, yet it is effective for physical
applications, as we shall see. The main ideas are the following: 1} preserve the
conventional local-differential variables x for the description of the trajectory of the
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center-of-mass of the particle in interior conditions; 2) consider alt nonlocal-integral
contributions as corrections to the local-differential description; and 3) embed all
nonlocal terms in the isounit of the theory. By recalling that topologies are insensitive to
the functional dependence of their own unit when positive-definite, one can see that all
classical and operator isotopic theories admit the conventional local-differential
topology everywhere except in the unif. Such an integro-differential topology has
important theoretical implications, such as the achievemnent of a fully causal description
of nonlocal interactions, as well as experimental implications; e.g., the capability to test
the nonlocal contribution as distinct from the conventional local ones.

An illystration is given by the space-ship during re-entry of this figure, whose
shape directly affects the trajectory x(t) of the center of mass, as well known, resulting in
two forces, a variationally selfadjoint (SA) force which is local-differential and derivable
from a potential V(x), and a variationally nonselfadjoint (NSA) force which is generally
nonlinear {in all variables), nonlocal and nonpotential. We therefore have classical
equations of motion of the {ype

mg = FAx) + FNSAL x %%, ), F¥SA = -y % 4f, do (o, .)

where o is the shape of the satellite. In these volumes we shall by—pass the notorious
difficulties in the practical application of integral topologies via the representation of the
local-differential part in terms of the conventional Hamiltonian H = K(x) + V{x} and the
embedding of all nonlocal-NSA forces in the isounit 1 of the theory.Rigorous
mathematical studies on this integro—differential topology have been conducted by
Tsagas and Sourlas {40], and are outlined in App. 6.A.

The studies on isoduality essentially permitted a novel interpretation of
antiparticles based on theories with negative-definite generalized units. In fact,
antiparticles originate from the negative-energy solutions of relativistic
equations, although these solutions behave unphysically when conventionally
interpreted, that is, when the negative energies are interpreted as having the
conventional unit t = [ > 0, thus forcing the conjecture of the “hole theory” with
“infinite seas” of virtual antiparticles and other assumptions.

The important property is that the negative—energy solulions behave in a
fully physical way when referred to negative-definite units, without any need of
conjecturing infinite seas of antiparticles, or passing to second quantization.

The isotopic and isodual formulations then emerged as possessing
intriguing interconnections from the finite transition probabilities existing in
conventional relativistic equations between positive— and negative-energy
solutions.

While the current theory of antiparticles can only be formulated at the
level of second quantization, the isodual representation results to be fully
applicable at the classical level. In fact, the sole antiautomorphic conjugation
available in conventional theories is charge conjugation which evidently requires
a Hilbert space. On the contrary, isoduality is applicable at all possible
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formulations, beginning with at the classical ones, and then persisting at the
operator one in which isoduality and charge conjugation results to be equivalent.

The latter occurrence has far reaching implications. It permitted the
achievement of a representation of antiparticles beginning at the Newtorr’s level
and then passing to the classical Minkowskian and Riemannian formulations, the
latter one permitting the first classical studies on scientific records as to
whether a far away star or galaxy is made up of matter or antimatter.

In these volumes we shall therefore study isotopic formulations with
positive-definite generalized units 1 > 0 for the representation of matter, and
their isodual conjugate fermulations with negative—definite units 19 < 0 for the
representation of antimatfer.

The last aspect deserving an advance mention regards gravitation. As we
shall see, isotopic and isodual formulations, including those of the Riemannian
geometries [11,12,34], permit truly remarkable and diversified advances in
gravitation, including the identification of a hitherto unknown “isodual universe”
for antimatter.

The aspect warranting advance notice regards the historical problem of
quantization of gravity. The isotopies permit the factorization of all Riemannian
metrics into the firm g(x) = Ty {x) m, where 1 is the Minkowski metric and the
embedding of the isotopic part Tgr(x) tfuly representing gravitation in the
generalized unit via the rule [34]

Tgp = [T, gk = Tyl . (L4.7)

This permits a novel quantization of gravitation. As a matter of fact, a quantum
version of gravily has always existed. It did creek in un—noticed because
-embedded in the unit of relativistic quantum mechanics.

Moreover, the studies imply a geomelric unification of gravitation and
relativistic quantum mechanics based on an alternative formulation of
curvature via the generalization of the unit of the conventional Minkowski space
as originally proposed in ref. [311.

We see in this way that the generalized unit has a very special meaning
when singular. In fact, as we shall see, the limit 'Igr(x) — 0 can represent a
gravitational singularity at x.

In addition to the two casesT> 0 and 1 < 0, the third case 1y, = 0 also has
intriguing physical interest and should be kept in mind during the analysis of
these volumes. Two additional significant cases of the isounit will be identified in
the next section.

Among the numerous researchers who have contributed to the
developrnent, application and test of hadronic mechanics at this writing, we
mention '

Animalu, Aringazin, Bartzis, Baskoutas, Borghi, Brodimas, Caldirola,
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Cardone, Dall’Olio, Eder, Fronteau, Gasperini, Gill, Giori, Ioannidou,
Jannussis, Kadeisvili, Kalnay, Kamiya, Karayannis, Kliros, Klimyk,
Kobussen, Lin, Lopez, Mignani, Mijatovic, Myung, Nishioka,
Papadoupoulos, Papaloukas, Papatheou, Rauch, Schuch, Sourlas, Skaltzas,
Streclas, Tsilimigras, Veljanoski, Vlahos, Tellez Arenas, Tsagas, Weiss,
Wolf,

and others we shall identify in these volumes. The understanding is that we are
referring to .mathematical, theoretical or experimental contributions requiring,
specifically, the generalization of the unit, thus excluding quantum groups, q-
deformations and other generalizations.

Independent reviews of the classical studies are available in monographs
(36,37], while comprehensive mathematical presentations of the isotopies of Lie’s
theory are available in monographs [38,39].

1.5: CLASSIFICATION OF HADRONIC MECHANICS

Hadronic mechanics is nowadays a rather diversified discipline with structurally
different mathematical methods in different branches. In a situation of this type,
it is recommendable to assume a classification from the heginning of the studies,
because it can prove to be later on a valuable guide. :

First, the hadronic mechanics is divided .into the two main branches
identified in the preceding section:

A - The Lie-isotopic branch for closed-isolated NSA systems, which is
characterized by Hermitean generalized units T =1f for both motions forward and
backward in time, and

B - The Lie-admissible branch for open-nonconservative NSA systems,
which is characterized by two different generalized units 1> and <1, for motions
forward and backward in time, respectively.

Next, each branch admits a classification depending on the main structural
characteristics of the generalized unit. [n this velume we shall assume the
classification introduced by Kadeisvili [38] for the isotopies of functional analysis,
here called Kadeisvilis classification, which divides the isotopic branch into the
following five classes:

Class I: Isotopic formulations properly speaking, holding when the
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generalized unit T is sufficiently smooth, bounded, nowhere degenerate,
Hermitean and positive—-definite. This is the class of primary interest in these
volumes for the study of particles in interior conditions.

Class II: Isodual isotopic formulations, holding when the generalized
unit has the same characteristics of Class I, except that it is negative-definite.
This i3 the class of primary relevance for the study of antiparticles in interior
conditions.

Class III: Indefinite isotopic formulations, i.e. the union of Classes [ and
[I, with isounits being either positive—definite or negative—definite. This class has
primary mathematical relevance, e.g., for the unified treatment of Class I and IL.

Class IV: Singular isotopic formulations, holding for the union of
Classes | and II plus singular generalized units. As we shall see, this class is
useful for the study of gravitational singularities.

Class V: General isotopic formulations, holding for Class iv plus
generalized units of arbitrary structure, thus including distributions,
discontinuous functions, etc. This last class is useful for the study of
fundamentally novel mathematical notions, such as a discrete group defined over
a continuously varying unit (and viceversa) and, except for isolated remarks, will
not be considered in these volumes for brevity.

Evidently a corresponding distinction into Classes I-V holds feor the Lie-
admissible/genotopic branch of hadronic mechanics with the understanding that
the condition of Hermiticity and positive— or negative—definiteness are referred
only to the Hermitean part of the nonhermitean operators R and S.

A third branch of hadronic mechanics of hyperstructural type is also
conceivable via the transition from ordinary operators to the so—called
hyperoperators, e.g., matrices whose elements are given by a set of conventional
elements [41].

This third branch is based on the so-called hyperstructures [loc. cit.]
which are some of the most complex known mathematical fermulations, in
which the product of two quantities can be a finite or infinite and ordered or
non-ordered sel. The latter branch is mathematically intriguing as a natural
generalization of the isotopic and genotopic branches, and apparently significant
for the representation of systems more complex than the physical ones, such as
those in biology, but it will not be studied in these volumes to avoid a prohibitive
length.

In conclusion, hadronic mechanics is a generalization—covering of quantum
mechanics which possesses ten topologically different isotopic and genotopic
classes, excluding the hyperstructural ones, and this begins to illusirate the rather
vast character of the new discipline from which its “direct universality” follows
(Ch. I-7).

Unless otherwise staled, the mathematical studies of this Volume [
specifically treat the isotopic formulations of Class I (for particles) and II (for
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antiparticles), with comments on the construction of the remaining isotopic
formulations of Class III, IV and V. The genotopic formulations are studied in
appendices and in Ch. L.7.
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2: ISONUMBERS AND THEIR ISODUALS

2.1: STATEMENT OF THE PROBLEM

We indicated in the Preface that the primary difficulty in addressing {and
appraising) hadronic mechanics is the prior knowledge of its novel mathematical
structure, because even the conventional numbers and their operations are
inapplicable. The understanding is that, when inspected, such novel mathematical
structure soon emerges to be simple and intriguing.

The best way to illustrate this aspect is by noting that the traditional
statement “two multiplied by two equals four” is at best mathematically
incomplete, because it lacks the identification of the underlying unit and of the
operation of multiplication, and it is generally inapplicable under isotopies.

In fact, we shall first show in this chapter that, by assuming, say, for
generalized unit1 = 37! two myltiplied by two equals twelve” and then we shall
show that the numbers themselves and their operations acquire, in general, an
integral character as necessary from basic assumption {1.1.1),

The use under isotopies of the conventional mathematical structure of
quantum mechanics therefore leads to a host of generally undetected
inconsistencies.

We shall study in this chapter the generalized numbers needed for hadronic
mechanics, and then study in subsequent chapters the generalized structures built
on them.

As well known, the theory of numbers received momentous advances in
the past century, thanks to the contributions of famed scholars such as Gauss [1],
Abel [2], Hamilton (3], Cayley [4], Galois [5] and others (see review [6] in the early
part of this century, and ref.s [7-9] for contemporary presentations).

Additional important advances in number thecry were made during this
century, including the axiomatic formulaticn, the theory of algebraic numbers,
etc. (see, e.g, ref.s [10] and coniributions quoted therein).

The "“numbers” significant for these volumes are the real numbers,
complex numbers, quaternions and octonions. The topic is therefore the
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classification of ail normed algebras with identity over the reals according to
the studies, e.g., by Hurwitz [11), Albert [12] and {N.} Jacobson [18] (see also reviews
[7,8]). The main properties can be expressed via the following

Theorem 2.1.1 (ref. [8], p. 122): All possible normed algebras with multiplicative
unit 1 over the field of real numbers are given by algebras of dimension 1 (real
number), 2 (complex numbers), 4 (quaternions) and 8 (octonions).

The fundamental notions under study in this chapter are therefore Tields
and normed algebras with unit.

During a talk at the conference Differential Geometric Methods in
Mathematical Physics held in Clausthal, Germany, in 1980'!, this author
submitted an axiom-preserving generalization of numbers, today known as
isotopic numbers or isonumbers for short. The generalizations are induced by
the so-called isotopies of the conventional multiplication of numbers
introduced in ref.s [14,15], with consequent1a1 generalization of the basic
multiplicative unit.

The isonumbers received a formal treatment in ref. [16], and first
applications in ref. [17] for the isotopic lifting of unitary symmetries, in ref. [18]
for the lifting of the Lorentz symmetry, and in ref.s [19.20] for the general
isotopies of Lie symmetries. Subsequent studies were conducted in ref.s [21,22]. A
theorem on the unification of different isonumbers (studied in Sect. 2.7] was
presented in ref. [23]. The presentation of this chapter follows ref. [24] which is
the first comprehensive mathematical study on the theory of isonumbers on
record at this time, with the understanding that the studies are still at the
beginning, and so much remains to be done.

The author also submitted in ref.s [19,20] a new conjugation, under the
name of isoduality which vyields an additional class of numbers, today known
as isodual isonumbers. Recent presentations of isodual isonumbers can be found
in ref.s [22,24].

The isonumbers were motivated by the specific physical need of a
quantitative representation of the transition from the exterior to the interior
dynarnicat problem, as discussed in Chapter 1. The isodual isonumbers were
constructed for a representation of antiparticles (see Yol. II and ref. [29]).

The isonumbers and their isoduals are at the foundations of the Lie—
isotopic formulations but they are inapplicable for more general theories such as
the Lie—admissible formulations.

For this reason the author identified in ref. [24] an additional class of
numbers under the name of genotopic numbers, or genonumbers for short. The

'l Thanks to a kind invitation by Prof. H-D. Doebner which is here gratefully
acknowledged.
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primary difference between isonumbers and genonumbers is that isonumbers
have a unique left and right generalized unit or, equivalently, the multiplication
of the isonumbers applies to both left and right operations.

By comparison, genormrmbers have two different generalized units, one for
the multiplication from the right and a different one for the multiplication from
the left, a<b = b<a, a>h = b>a, a<b # a>b, in which case they indeed result to be
at the foundation of the Lie-admissible formulations.

A third class of generalized numbers is conceivable via the so-called
hyperstructures (32, but they will not be studies for brevity.

To avoid excessive initial complexities, we shall proceed in stages. In this
and in the following chapters we shall solely study the isonumbers, their isoduals
and their Lie—isotopic formulations. The primary objective of this chapter is
therefore the study of the isotopies and isodualities of the notions of numbers,
fields and normed algebras with unit. The isotopies of the theory of numbers [30]
will be indicated in App. [.2.B.

The minimal mathematical knowledge needed for hadronic mechanics is
that of isoreal and isocomplex numbers and their isoduals studied in Sect.s 1.2.5
and [.2.6. The isoquaternions, isooctonions and their isoduals of Sect.s 1.2.7 and
[.2.8 are needed for a more technical knowledge of the topic. The more general
(and complex) theory of genonurnbers and related Lie-admissible formulations as
well as of hypernumbers and related theory will be studied in Ch. L.7.

For a recent independent study of the field, including elements of isotopies,
we suggest the monograph by Lohmus, Paal and Sorgsepp (28], Applications of the
the generalized numbers of this chapter to classical mechanics can be found in
monograph [29]. Applications to cryptology are indicated in App. [.2.C and those to
-particle physics and other Tields in Yolumes II and II1.

The author would like to thank David Ring of Dunedin, FL, for bringing to
his attention the fact that the Egyptians have been the firsts in recorded history
to change the value of their basic unit, called finger, in the transition from the
sides of a right triangle to the hypothenuse.

2.2: ISOUNITS AND THEIR ISODUALS

Studies [14-27] {and references quoted therein) have shown that the transition

A) from the local-canonical exterfor problem in vacuum,

B} to the nonlocal-noncanonical interior problem within physical media,
can he effectively represented via an axiom-—preserving isofopic generalization
of the conventional multiplication of numbers a, b (or functions or operators).

We are here referring to the generalization of the current, simplest possible
multiplication of numbers axb (generally denoted ab), into the isotopic
multiplication, or isornultiplication aXb (later on also denoted a*b) introduced in
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ref. [14], p. 332,
aXb =axTxb=aTh, (2.2.1)

which will be symbolically denoted % = xTx (or * = xTx), where T is an
invertible quantily called isofopic element which is fixed for all possible
elements a, b and generally outside the original set. The lifting x — ¥ is isotopic
because {for nonsingular elements T} it preserves all the original operations
among ordinary numbers as seen in more details in the next section.

The conventional, right and left multiplicative unit 1 of current theories,
Ixa = a%| = a, is then lifted into the form also valid for all possible elements a

T%a = a%1 = a, 1 =11, {(2.2.2)

called the multiplicative isounit, or isounit for short.

Under the condition that T preserves all the axioms of | the lifting 1 =1 is
an isotopy, that is, the conventional unit 1 and the isounit T (as well as the
conventional product axb and its isotopic form aXb) have the same basic axioms
and coincide al the abstract level by conception.

The isonumbers can be first introduced as the generalization of
conventional numbers when characterized by isoproduct (2.2.1} with respect to
the generalized isounit T = 771,

As one can see, the isounits have a completely unrestricted functional
dependence, thus admitting the most general possible integro-differential
structure of type (1.1.1),

T = /I(t’ Xy 5{: k: d’s lea a"pa ad’T! IJ'! T n, )v (223)

A necessary condition for a quantity 1 to be an isounit, i.e,a joint left and
right generalized unit, is that it is Hermitean. Then, isomultiplication (2.2.1) is the
same Tor both right and left operations.

As indicated in Sect. 1.5, in these volumes we shall use Kadeisvilis
classification into:

Class 1: Isounits properly speaking, when they are sufficiently smooth,
bounded, nowhere degenerate, Hermitean and positive—definite; )

Class II:Isodual isounits , when they are as in Class I, except that they are
negative—definite;

Class III:Indefinite isounits, when they are as in Class I except that they
have an indefinite signature with local values which can be either positive—
definite or negative—definite;

Class IV:Singular isounits , when they are null or infinite at at least one
given value of their variables;



- 40~

Class V: General isounits, when they have an unrestricted structure, e.g.,
given by discrete forms, distributions, step functions, etc.

In this chapter we shall study iscunits of Classes I and II with a few
comments on those of Class III. The theory of isonumbers for Classes IV and V is
vastly unexplored at this writing.

We should note that the most important functional dependence of the
isounits is that of integral type. Thus, the isotopies 1 =1 characterize a new
form of integro-differential fopology in which all integral terms are embedded
in the isounit, while the rest of the structure is conventionally local-differential
{see Fig. 1.4.1 and ref. [15]. As an example, in the isotopies of Minkowskian spaces,
this novel structure permits the preservation of conventional topologies (e.g., the
Zeeman topology) everywhere, except for the interior of the isounit itself.

The integral generalization of the unit is the conceptual, mathernatical and
physical foundation of hadronic mechanics, because it permils a quantitative
treatment of the integral generalization of Planck’s constant thl — hl discussed
inCh. I.L

As we shall see better in applications presented in subsequent chapters, the
isounits of hadronic mechanics generally have a matrix representation with
considerable degrees of freedom in their elements. As such, they permitl a
geometrization of inhomogeneous and anisolropic physical media, in such a way
to preserve the axioms of the homogenecus and isotropic vacuum and admit the
latter as a particular case.

The isodual isounits are given by

M= -1, (2.2.4)
and are based on the following antiautomorphic conjugation of multiplication
2.2.1)

akbh - asxdp =at™p =-atTh=-akp, TM=-1 (2.2.5)

under which 19 {but not 1) is the correct left and right generalized unit of the
theory,

19xdy = a%d1d = 4, (2.2.6)

The map characterized by liftings (2.2.4) and (2.2.6) was called by this author
isoduality [20] and this terminology will be kept in these volumes. As we shall
see, these liftings are significant inasmuch as they can be applied to each aspect
of the Lie—isotopic formulations, yielding the isodual Lie—isotopic theory.

The isodual isonumbers were constructed via isodual multiplication (2.2.5)
with respect to the the multiplicative isodual isounit 19,
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Note that the notion of {soduality first applies to conventional numbers. In
fact, the expressions

Mooy, 9= d=-, 2.27)

characterize isodual numbers. This means that the conventional formulations,
such as Lie's theory, Riemannian geometry, etc., admit hitherto unknown images
given by the isodual Lie theory, the isodual Riemannian geometry, etc., which are
constructed in such a way to admit everywhere the isodual unit 9=-1.

One can now see the necessity of lifting the product x - * Tor the very
conception of isodual numbers, isodual iscnumbers, and related formulations.
The restriction of the studies in number theory to the conventional
multiplication % may therefore he a reason why isodual numbers, isodual Lie
formulations, isodual Riemannian geometry, etc. have escaped detection until
recently. ‘

The author also studied the problem whether isomultiplication (2.2.1)
exhausts all isotopies of the conventional product of numbers. The issue is
important because any new isotopy of the associalive product characterizes a
new realization of the theory of isonumbers and, therefore, a new mechanics,
with new Heisenberg—type equations and all that.

Only three isotopies of the multiplication ab were found [15}

A} The scalar isotopy

a%b =acb, T=c=number, {2.2.8)
B) The operator isotopy
akb =aTb, T = operator, (2.2.9)
C) The idempotent isotopy
a%b = WaWbW, W2=W =idempotent, (2.2.10)
and any of their combinations which are the only known modifications of the
original associative product capable of preserving, not only the original
associative law, but also the scalar and distributive laws so as to preserve an

algebra as commonly understood (see later Sect. [.2.4).
Other liftings are evidently possible, such as

aXb =abT, or aXb = Tab. {2.2.11)

However, even though preserving associativity, the latter liftings generally violate
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the right or left scalar and distributive laws and, as such, they do not characterize
an algebra as commonly understood, that without an ordering of the
multiplication to the left or to the right. The latter ordering does indeed exist for
the more general Lie-admissible formulations for which liftings {2.2.11) are
indeed significant.

The problem whether the above liftings exhaust all possible isotopies of the
multiplication is unknown at this writing.

These volumes are based on the fundamental condition that any admitted
generalization of quantum mechanics must possess a well defined unit, because
necessary for measurements and other experimental applications.

Along these lines, isotopies {2.2.8) and (2.2.9) are acceptable, while isotopies
(2.2.10) are not because the product aXb = WaWbW does not admit a consistent,
left and/or right unit for all elements a, b. Similarly, liftings (2.2.11) are acceptable
only for one-sided theories because they admit only one-side units.

2.3: ISOFIELDS, PSEUDOISOFIELDS AND THEIR ISODUALS
Let us introduce the following definition of isofields:

Definition 2,3.1 [24} Let F = Fla,+x) be a “field” as conventionally understood
(see, e.g, ref. [8] p. 101), here referred to a ring with elements a, b, c, ..., which is
commutative with respect to the operation of addition + and associative under
both the addition + and multiplication * with corresponding additive unit 0
and multiplicative unit 1. Then, the infinite family of “isotopic images” of
‘Fla+x), called “isofields” and denoted ¥ = F(3, +, %), are given by elements 3, b,
C, ... characterized by one-to—one and invertible maps a —~ 4 of the original
elements a € F equipped with two operations (+, X), the conventional addition
+ of F and a new multiplication %, called “isomultiplication”, with
corresponding conventional “additive unit”0 and a generalized multiplicative
unit 1, called “multiplicative isounit”, which are such to satisfy all axioms of
the original field F, ie.:

1) Axioms of addition:

1.A) The set ¥ is closed under addition,

a+bekf v ab e F, (2.3.1)
1.B) The addition is commutative for all elementsa, be F
a+b="0+3; (2.3.2)

1.C) The addition is associative for all 3, b, ¢, € F,
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a+(b+c)=1(a +b)+C; (2.3.3)

1.D) There is an element 0, the"additive ynit”, such that for all elements a

el
a+0=0+3=3; (2.3.4)
LE) For each element 3 € F, there is an element — a € F, called the
“opposite of 3", which is such that

a+(-3)=20 (2.3.5)
2) Axioms of isomultiplication:
2A) The set F is closed under isomultiplication,
(2.3.6)

a%b ¢ F, v abekF,

2B) The multiplication is generally non-isocommutive, ie.,
a%b = b%a, but “isoassociative”, i.e., it satisfies the law for all elements 3, b, € &

a%(bxT) = (a%D)I%¢ (237
2.C} There exists a quantity 1, the “multiplicative isounit”, which is such
that, for all elementsa e F,
a%xl =1%a = a, (2.3.8)

2D) For each element a € F, there is an element i e F, called the
"isoinverse”, which is such that
ax@h = 6%z =1 (239

3) Properties 2 of joint addition and isomultiplication:
34) The set ¥ is closed under joint isormultiplication and addition,

a%(b+2) e P, (3 +B)%& € F,VAabeck (2.3.10)

3.B) All elements &, b, ¢ € F verify the right and left “isodistributive laws”

- 1% property (2.3.10) is generally derived from axioms IA and 2A. Nevertheless, we shall
encounter in Sect. 2 (see the comments after Proposition 2.8.3) a case in which Axioms 1A

and 2A are verified, but property (2.3.10) is not.




ak(b+c)=akp+akg (a+blxe=ake+bhke, {2.3.11)

The elements a of isofields ¥(a,+%) are called “isonumbers”When there exists a
Ieast positive integer p such that the equation

p%a =0, (2.3.12)

admits solution for all elements & € F, then F is said to have "isocharacteristic p”.
Otherwise, F is said to have “isocharacteristic zero”,

A few additional properties are needed before we can select the realization
of isonumbers used in these volumnes. First, we should indicate that only isofields
" of isocharacteristic zero will be used throughout the our studies . Nevertheless,
we thought that an exposure of physicists Lo isofields of isocharacteristic p is
warranted because of their potential physical relevance for a number of
applications, ranging from string theory to gravitational collapse, particularly
when inspected from an isotopic viewpoint.

The dorninant mathematical aspect here is the isotopy. In fact, the lifting
Fla,+x) = Ma,+%) preserves all original axioms by construction. The realizations of
the isonumbers must then be selected in such a way to preserve such basic
isotopic character.

[n this respect, we note that the liftings a — &, and x —~ % can be used
jointly or individually. The following property is then important for our analysis.

Proposition 2.3.1 [24}: Necessary and sufficient condition for the lifting (where
the muitiplication is lifted but the elernents are not)

Fla,+, %) ~ Ba+% %=xTx 1=1"! (2.3.13)

to be an isotopy is that the lifting x — %X is a scalar isotopy (228), ie, T is a
non—null element of the original field F.

In fact, the laws of addition are unchanged under lifting (2.3.13), while the
multiplication and distributive laws can be readily verified to hold. The closure
of the original set under the addition is evident because that operation is not
changed. We then remain with the closure under the isomultiplication,

a%h = axTxb=atTb ¢, Vvabel, (2.3.14)

which does indeed hold when T € F, by therefore establishing the sufficiency of
the condition. s necessity follows from simple contrary arguments.
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Proposition 2.3.2 [24]: The lifting (in which both the mulitiplication and the
elements are lifted)

Fa,+x) - BG+% d=axl=al, % =xTx 1=T1 (2315

constitutes an isotopy even when the multiplicative isounit 1 is not an element
of the original field T , e.g, when the lifting X —+ % s an operator isotopy
(2.29).

In fact, one can readily verify for lifting {2.3.15) the validity of all axioms
of a field, and closure under addition. Closure under multiplication readily holds
because

axh = @xNxTx{akl) =(axb)xT =cx1 =¢C ek,
Vabc=axb €F, {(2.3.16)

The above mathematically simple proposition expresses the physically
fundamental capability of generalizing Planck’s unit h = 1 of quantum mechanics
into an integro-differential operator 1 for a quantitative treatment of nonlocal

interactions.

In fact, basic assumption (1.1.1) requires, by conception, an isounit which is
outside the original field. The realization we shall adopt throughout these
volumes is therefore form {2.3.16) with the understanding that more complex
realizations are possible (see later on).

The implications of the above realization are evidently fundamental for
hadronic -mechanics. One implication deserving advance mention is that the
“numbers” used in hadronic mechanics have an integro—differential structure,
e.g., 2 = 2xexplf dvisly). nevertheless, the numbers predicted by the theory for
measurements are ordinary numbers,

In fact, the above realization implies that the iscmultiplication of an
isonumber 3 by any quantity Q coincides with the conventional multiplication

a%Q = aqQ. (2.3.17)

Thus, the isocigenvalues of hadronic mechanics can be made to coincide with
ordinary numbers

H¥|g> = EX|g> = ExIxTx|g> = E|¢g>, E eF, EeF (2318

The numerical predictions of the theory are then ordinary numbers E and not
isonumbers E. As we shall see in Vol. 11, a similar result is obtained via the use of
the isotopic expectation values of the new mechanics.
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It should be noted that the mathematically correct expression in hadronic
mechanics is the form H¥| ¢ > = BY ¢ >. Nevertheless, since Ex{ § > = Ef ¢ >,
ordinary eigenvalues E can be used in practical calculations.!3

Evidently, all conventional operations depending on the multiplication are
altered under lifting to isofields. Let us consider the isofields F(a,+X) of
Proposition 2.3.1 under the condition that the isounit T commutes with all
elements of a. Then, the “square” a®=aa is lifted into the isosquare a“=a%Xa=
a T a, with n—th isopower

al =aTatTa..Ta (ntimes (2.3.19)

Recall that the conventional square root can be defined as the quantity af such
that{a’) (a!) = a. Then, the isosquare root is given by

a =a 1, adxat=adTad = a. (2.3.20)
The isoinverse is given by
al = 12711, a%al =1 (2.321)
The isogquotient can then be defined by
a’bi=@/b=c  cTb=a. (2.3.22

The reader can then compule all other isooperations.
In the transition to the realization of Proposition 2.3.2 we have instead

(2.3.23)

x>
%>
o>
il
()
pau
—

al = a%xa%k a% ..
The reformulation of the remaining operations then follows, as the reader is
encouraged to work out to acquire familiarity with the theory of isonumbers.
Recall that a primary objective of hadronic mechanics is the integro—
differential generalization of Planck’s constant h = | — h =t =1. It is therefore
important to understand that the new unit T preserves all axiomatic properties of
the original unit of quantum mechanics, h = 1. In fact, the isounit 1 is

£3 1t should be noted that the lifting of eigenvalues is far from being trivial. In fact, as
we shall see in more details Vol. 11, if an operator H has the conventional eigenvalue E°,
H|4g >=E|§ >, it admits a different eigenvalue E under isotopy, HX|¢>=HT|§>
=E|§ >, E # E°. Thus, the isotopies of numbers imply an alteration of the eigenvalues
of conventional quantum mechanical operators . This mechanism, called mutation [15),
is at the foundation of the capabilities of hadronic mechanics to represent the synthesis
of unstable hadrons from ligther hadrons and other applications not possible with
conventional eigenvalue equations.
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idempotent of arbitrary (finite) order n as the original unit 1

1M = 1%1%..%1 = 1 (ntimes), (2.3.24)
the isosquare root of the isounit is the isounift itself

T =1, (2.3.25)
the isoquotient of the isounit by itself is the isounit ,
171 =1, (2.3.26)
the isoinverse of the isounit is the isounit itself,
111, (2.3.27)

etc. This confirms the axiom~preserving character of the lifting h=1 — & =1
when realized via the isotopies.

Note that the above properties hold for the most general possible integral
representation of k = 1. Note also that the number 1 is now no longer the
multiplicative unit because 1%a # a and 1%3 # a.

Recall that the set of purely imaginary numbers S = {in), i = ~~1, n real, is
" not a field, evidently because it is not closed under multiplication, ({in) x (im) =
-nm £ $. However, the isotopy F{n,+%) of real numbers n equipped with the
purely imaginary isounit 1 = i, and isoproduct % = xTx, T = il = ~j, does form
indeed an isofield, that is, it verifies all axioms of a field. This illustrates the
possibility offered by the isotopies according to which, given a set S of numbers
which do not form a field, there may exist an isotopic lifting § under which § is
indeed a field.

Note that, according to Hamilton (3] original conception, the quaternions
constitute a field because their multiplication is noncommutative, but
associative. On the contrary, according to Cayley [4] original conception,
octonions are not generally considered o constitute a field because their
multiplication is not associative, but verifies the weaker right and left
alternative laws

{ablb =(ab)b , {aa)b = alab). {2.3.28)

This is the reason for assuming a more general definition of field in ref. [24]
which is based on the above alternative laws and, as such, it includes as "fields”
the octonions. Also, in this way all “fields” coincide with all "normed algebras
with unit” of Sect. 2.1.

In these volumes we shall follow for simplicity the conventional definition
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of fields [8]. Nevertheless, for completeness, we shall consider the isotopy of
octonions with the understanding that, according to Definition 2.3.1, they form a
weaker form of Tields based on the alternative law.

We now pass to the studies of a further new class of numbers, called
isodual isonumbers. Owing to their importance for these studies as well as for
clarity, it is best to present them according to the Tollowing separate definition.

Definition 2.3.2 [24]: Let Fla, +, X) be a conventional field as per Definition 2.3.1.
Then, the "isodual field” Fd{ad, +, x4} s constituted by elements called “Isodual
numbers’

ad =ax19 = -4 (2.3.29)

defined with respect to the “isodual multiplication” and related “isodual unit”
o= xdx=-x, 9=, (2.3.30)

Let Fla, +, %) be an isofield as per Definition 2.3.1. Then, the “isodual isofield”
#9309, +, %9) js given by “isodual isonumbers”

50 = aCx10 = -4°71, (2.3.31)

where a® is the conventional conjugation of F (the identity for real numbers,
the complex conjugation for complex number and the Hermitean conjugation
-for quaternions in matrix representation), defined 'in terms of the “isodual
isormultiplication”

o= xPx=-% 189 =-7, (2.3.32)

Again one can see that the isodual unit 19 js idempotent of arbitrary
degree n, that the isodual square root of 19 is 19 and the isodual quotient of (4 by
itself is 19, with similar occurrences for 19,

The reader has noted our insistence in leaving the conventional sum
unchanged, and lifting only of the multiplication. The underlying reason warrants
a few comments because, as indicated earlier, any generalization of conventional
operations implies a new mechanics. A possible generalization of the operation of
addition would therefore imply a further generalization of hadronic mechanics.

In addition to the lifting (2.2.1) of the muitiplication, this author also
inspected in ref. [21] (see ref. [24] for more technical studies) the following lifting
of the addition

+ = F=+RKR+, R=KxI, {2.3.33)
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with consequential redefinition of the conventional additive unit
0 - 0 = -K. (2.3.33)

However, unlike the isotopy of the multiplication x — ¥, the lifting of the
addition +— % has the following implication:

Proposition 2.3.3 (21,24} The liftings
Fla, %) — Flg % %), (2.3.35a)

d=ax1,% =+R+,0 =-R =—KxL&%=xTx1=1", (2.3.35b)

where K € F and T is invertible, is not an isotopy for all nontrivial values of
the quantity K # 0, because it preserves all axioms of Definition 2.3.1, except
the distributive law (2.3.11).

In fact, all axioms (2.3.1)-(2.3.11) can be easily verified to be preserved under
liftings (2.3.34). On the contrary, for the right distributive law we have '

AaxhFIe)=ax{b+ K+ c)xT =(axb + axK +axclxl #
# axbh Faxec=1(axb + K+ axc)xT, (2.3.36)

with similar lack of identities for the left isodistributive law. Note that the set F
in lifting (2.3.35) is closed under isoaddition for K € F (but not for K ¢ [, and,
separately, under isomultiplication for an arbitrary isounit T outside the original
set F. The same results hold for the lifting Fla, +, %} = Fa, +, %, ¥ =+ K+ Ke F, K
# (.

The implications of Proposition 2.3.3 are such to prevent its use in physics.
A central notion of quanturn mechanics is that of unitary transformations pul =
ulu= I, with the exponential representation in terms of a Hermilean operator X
and parameter w

U=T1+iwX/1l+iwX)iwX)/21+ .. = eiWX {2.3.37)

As we shall see in Chapter L[4, the isotopy of the multiplication implies a fully
consistent isotopic generalization of the above notion which is convergent into a
Tinite form

iwTX
e

O=1+iwX/11+ {iwX)%(iwX)/21+ .. =1 (2.3.38)
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resulting in this way in the Tundamental isotopies of these volumes, those of the
time evolution, Lie's transformation groups or linear operators on a Hilbert
spaces.

The point is that the isotopies of conventional unitary transformations
under the lifting of the addition are divergent,

U=T+iwX/ 1! FiwX)iwX)/21% . - 2 (2.3.39)

thus precluding the achievement of finite forms of the time evolution and other
fundamental physical laws.

A property expressed by Proposition 2.3.3 is that the lifting of the addition
is not an isotopy because one of the original axioms is not preserved. We shall
then use the following notion

Definition 2.3.3 [24} An “isotopy” is any lifting of a given mathematical or
physical structure preserving the original axioms. A “pseudoisotopies” is a lifting
which preserves only part of the original axioms .

As we shall see, the difficulf task is in the identification of which property
is a true axiom of a given conventional formulation and which is not. As a matter
of facts, the isotopies can help precisely in the identification of true axioms and
their separation from other algorithms which do not have a truly essential
character. !4

In App. [.2.C we show that, despite the shortcoming indicated earlier,
pseudoisonumbers do have intriguing applications-in cryptology for an increased
security of the electronic or conventional information.

In this section we have studied the Iifting of the multiplication x - %
and/or of the addition + = % which do not require ordering, that is, the action to
the right is the same as that to the left (see Ch. 2.7 for the introduction of
ordering and a further generalization of isonumbers for the Lie—admissible
formulations). This results in the following two groups of generalized fields and
related numbers:

1) Isofields F(3,+,%), which are characterized by the lifting of the
multiplication x — % while keeping the conventional addition to ensure the
preservation of the distributive law (2.3.11). They can be classified in the same
way as the isounits resulting in: :

14 A5 we shall see in Vol II, the isotopies of the Riemannian geometry show that all
familiar properties are indeed true geometric axioms because preserved under isotopies,
except Einstein’s tensor GHV = Ruv - guvR: which emerges as being “geometrically
incomplete”, that is, lacking a certain term to be invariant under isotopies.
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Isofields properly speaking (Class I,
Isodual isofields (Class II),
Indefinite isofields (Class III),
Singular isofields (Class 1V) and
General isofields (Class V).

The isotopic branch of hadronic mechanics is based on the following four
fundamental types of numbers [24}

1.a) Ordinary numbers: real numbers R(n+X), complex numbers
Cle+%), quaternions Qlg,+%) and octonions Olo,+,x} which will be used for the
characterization of particies in vacuum,

1.b) Isodual numbers: isodual real numbers Rn%+x9), isodual complex
numbers CHc%,+x%), isodual quaternions Q¥q%+x%), and isodual octonions
0%o%+x%) which will be used for the characterization of antiparticles in
vacuum,

1.¢) Isonumbers: isoreal numbers R +%), isocomplex numbers ¢, %),
isoquaternions Qlq,+%) and isooctonions 0{6,+,%) which will be used for the
characterization of parficles within physical media,

1.d) Isodual isonumbers: isodual isoreal numbers RHG+59), isoduval
isocomplex numbers C%e9+%), isodual isoquaternions OXG9+%%), and isodual
isooctonions 09%59+%%) which will be used for the characterization of
antiparticles within physical media.

2) Genofields, which is a generalization of isofield with the selection of an
ordering of the multiplication to the left or to the right studied in Ch. L.7 and
applied Tor the more general Lie—admissible branch of hadronic mechanics.

3) Pseudoisofields and 4) pseudogenofields, which are further
generalizations based on the lifting of the addition which relaxes at least one
axiom of conventional fields, and which do not possess a known significance at
this time in classical or operator physics, but which do have indeed applications
in other fields {see App. 1.2.C).

5) Hypermumbers, which can be constructed via the use of the
hyperstructures [32], but are not studied in these volumes for brevity.

The above classification is sufficient to illustrate the rather broad and
diversified character of the theory of isonumbers, genonumbers, and
hypernumbers as well as the broad character of the mechanics and other
formulations build on them, such as geometries, algebras and mechanics.

Except for marginal comments, in the remaining parts of this chapter we
shall study the generalized numbers at the foundation of the isotopic, time-
reversal invariant branch of hadronic mechanics, which are the isonumbers of
types l.a-1.d above.
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2.4: ISONORMED ISOCALGEBRAS AND THEIR ISODUALS

A further notion needed for the study of explicit realizations of isonumbers is the
applicable definition of algebra. In fact, conventional numbers constitute normed
algebras with unit, as recalled in Sect. L.2.1. It is then important to identify the
corresponding notion under isotopies.

Definition 2.4.1[8,14,24: Let U be a conventional algebra (see, e.g, ref. [8) with
elements A, B, C (say, matrices) and (abstract) product AGB (say, the associative
product AB or some nonassociative form) over a field Fla,+x) with elements a,
b, .. operationsa + b and axb and related units 0 and | satisfying the basic
scalar and distributive laws

(axA)eB = Ao(axB}=ax(AGB), (2.4.1a)
{Axa)oB=A0(Bxa ={A0B)xa, {24.10)
A0(B+C)=A0B +A0C,B+ C) 0A =BoA +CoA. (24.1c}

The algebra U is called a “division algebra” when the equation Axy = B always
admnit a solution iny ¢ F for A = 0. The algebra U is said to admit a unit
when there is a quantity 1 such that

[eA = Aol = A, (24.2)

for all A € U. Finally, the algebra U is "normed” when it admits a norm | A |
satisfying the basic axioms

|[AeB| = |a|x|B|, |nxA|=|n|x|Al, (2.4.3)

The infinitely possible “isotopic images” U of U, called “isoalgebras” for short,
are given by the original elements A, B, C, .. equipped with a new
isomufltiplication AGB over an isofield Fla+X) of elements a, b, ¢, {without
lifting) with operations + and % = xTx, and refated units 0 nd 1 =T under
the condition of preserving the original axioms of U, ie, of verifying the
following left and right “isoscalar and isodistributive laws”

(aX4) 6B = Ad(a%B) = a*(ABB), {(2.4.4a)
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(AXa)bB = Ad(B*a) = (ABB)X%a, {2.4.4D)
AB(B+C)=A86B +ABC, (B+C) A =BBA+CBHA, (24.4c)

for all elements A, B, C€ U and a, b, c € F. The isoalgebra U is called an
“isodivision algebra” when the equations AXy = B always admit a solution y for
A # 0. An isoalgebra U is said to admit an isounitl when

A

16A =481=4, (2.45)

for all A € Q. Finally, the isoalgebra 0 is said to be “isonormed”, when it
admits an isotopic image [A[ of | A| which verifies the axioms

TAGBT = TATX[B] e€f, ToXAl ={nl %] AleF (2.4.6)

The “isodual algebra” ud s the image of U under the isodual field Fi(ad +xd),
while the “isodual isoalgebra” 04 is the image of U under the isodual isofield

£9(ad - 48),

Note the differentiation, in general, between the isomultiplication AGB of
the elements of the isoalgebras say, matrices, from the isomultiplication of the
elements of the .isofields a%b, which can be ordinary numbers. However, one
should keep in mind that, when the elements of 0 and F coincide, the two
multiplications coincide too, & = %, as it is the case:when isonormed algebras are
realized in terms of isonumbers (see subsequent sections).

A significant-property is that the units of the algebra and that of the basic
field are generally different for conventional algebras (e.g, the number [ and the
unit matrix, respectively), while the isounit of the basic isofield and that of the
isoalgebras generally coincide and are given by the same quantityl.

A realization of the isonorm is the following. Let 8, be an “isobasis” of 0
over the isofield Fa,+%) of Proposition 2.3.1, i.e, such that a generic element A € 0
can be written :

A= 2k=l,...,m ng X ¢y, ng eF. (2.4.7)

and &= 2k ex® € = 1. The isonorm of U in the isobasis considered is then
given by

TAT = ( Ek=l,...,m l'lk2 Ex1 = ( Ek=l,...,m ng X T Fx1 e F. (248

The extension of the above notions to isofields F{3,+%) of Proposition 2.3.2 is
trivial and, as such, it will be ignored.
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The isoalgebra U is said to be isoassociative when it satisfies the (scalar
and distributive laws and the) isoasscciative law

AG(BOC) = (ABB)G6C, YABCeU; (2.4.9)
and it is said to be isoalternative when it verifies the isoalternative laws
A26B = AG(AGDR), AGB? = (AGBIGB. (2.4.10)

By recalling that ordinary numbers are associative and that they are alternative
only under the inclusion of the octonions, in this chapter we are primarily
interested in isoassociative isonormed isoalgebras with isounit 1, with the
extension to isoalternative algebras when the inclusion of isooctonions is desired.

As well known, the scalar and distributive laws (2.4.1) are basic axioms for
any structure to characlerize an “algebra’ as commonly understood [7-10]. The
images of an algebra U under the isotopies over isofields here considered are then
true algebras because they preserves axioms (2.4.1) by central assumption.
However, the images of U (and U) under the pseudoisofield Fa,¥ %) of Proposition
2.3.3 (in which the addition is also lifted) implies the loss of the distributive laws
and, for this reasen, they are no longer algebras as commonly understood.. We
shall then call them pseudoisoalgebras {24].

As we shall see, the isotopies of the operations with numbers require, for
mathematical consistency, corresponding compatible isotopies of all other
operations on algebras.

A case deserving advance mention because needed in the subsequent
sections is the notion of determinant of a {conventional) matrix A which is
applicable to an isonormed isoalgebra. The conventional notion is inapplicable
under isotopies and must be replaced by the isodeterminant [16,21]

Isodet A = [Detp{AxT)IxT1, (2.4.11)
where DetpA represents the conventional determinant computed in the
conventional field F.

In fact, Det A violates the basic axioms under isotopies, e.g.,

( Det A) % ( Det B) # Det AB and = Det {A & B), Det ATV = (Det )T ,etc{2.4.12)

However, Det A does preserve the above axioms because
Isodet (A 3 B) = {Isodet A)%(Isodet B), Isodet{A™1) = (Isodet A Y'1(2.4.13)

The corresponding isodual isodeterminant is given by [21,24]
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Isodetd A = [Detd AxT9)]x19 , (2.4.14)

which is now computed in Fd,

An nxn isomatrix A is the ordinary nxn script in which the elements are
isoreal or isocomplex isonumbers a2 = axX}. In this case, all products among
elements are isotopic, a%b = (abll, and we have

[sodet & = (Det A)xT1. {24.15)

with similar expressions for other properties.

2.,5: ISOREAL NUMBERS AND THEIR ISODUALS

By following ref. [24], we shall now study in more details explicit realizations of
the isoreal numbers and their isoduals.

2.5.A: Realization of ordinary real numbers. Let us recall for
completeness and notational convenience (see, e.g., ref. {7]) that conventional real
numbers n € Rin,+x) are realized on the one-dimensional real Euclidean space
E,(x,8R(n,+x)), which essentially represents a straight line with origin at 0, local
coordinates x, metric 8 = 1, additive unit 0 and multiplicative unit 1. In fact,
the dilations

. y=nxXy=ny, neRDh+X, v,y € E[x8R) , (2.5.1)

characterize an isomorphism of the reals R(n,+x) into the commutative one-
dimensional group of dilations G(1).

The trivial basis is e = 1, with norm given by the familiar positive—definite
expression

s, (2.5.2)

In| = (axn)
verifying axioms (2.4.3),
[nxn| = |n|x|n]. (2.5.3)

This shows that real numbers constitute a one~dimensional normed associative
and commutative algebra U(1) [7].
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2.5.B: Realization of isodual real numbers. [sodual real numbers n®
Rd(nd,+,><d) are conventional numbers n, although defined with respect to the
isodual unit 19 = - 1. The isodual conjugation for real numbers can then he
written

n=nxl - nd=nqax%=-qn, {25.5)
Thus, all numerical values change sign under isoduality. One should however
keep in mind that such a sign inversion occurs only when the isodual real
numbers are projected in the field of conventional real numbers.

As a specific example, the negative integer number -3 referred to negative
unit —1 is fully equivalent to the positive integer +3 referred to the positive unit
+1.

The representation of Rd(nd,+,><d) constitutes the first occurrence in our
analysis requiring a generalized notion of space. In fact, the one—-dimensional
Euclidean space is evidently inapplicable because the underlying field is now the
isoduat field R3nd,+xd),

The identification of the generalized space applicable under isotopies was
first done in ref. (18], as reviewed in details in the next chapter. In the simple case
here considered, it is given by the one~dimensional, real, isodual, Euclidean space
g4(xd,59 RYnd,+x%), which is also a straight line, although with conventional
additive unit 0, isodual multiplicative unit 19 = -1, isodual coordinates x4 = —x
and isodual metric 8% = ~ 8 = - 1. The isodual dilations are then given by

y =ndxly= pxy. {2.5.6)

They establish an isomorphism between »Rd(nd,+,><d) and the isodual group of
dilations G%(1), i.e,, the conventional group G{1) reformulated with respect to the
multiplicative unit 19 (see Chapter 1.4 for details).

Note that E;(x5,R) and E;%x8%R% are anti-isomorphic and the same
property holds for G{1) and G3(1). Note also that isodual dilations coincide with the
conventional ones, and this could be a reason for the lack of detection of isodual
numbers until ref.s [19,201.

The isodual basis is

ed=19, 25.7)
and the iscdual norm becomes now negative definite
Infd := (axn)¥x19 = |njx19 = -|n] < 0, (2.5.8)

although preserving the basic axioms (2.4.6),
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[ndxdpyd @ = |pd[d xd |pd|d, {2.5.9)

The above results show -that isodual real numbers constitute a one-
dimensional isodual, associative and commutative normed algebra U%1) which
is anti-isomorphic to U(1) [24]

2.5.C: Realization of isoreal numbers. We consider now the isoreal
numbers 1 = n X 1 as elements of an isofield of Class [, R{fi,+%) with
isomultiplication % =xTx, and multiplicative isounit1 = 171 > 0 generally outside
the original set R(n,+x), as requested for basic assumption (l1.1.1). Their
representation requires the lifting of the original Euclidean space into a form
compatible with the basic isofield Rj{f,+X), which is given by the isoecuciidean
spaces [18] of Class 1, £y ) (x8,R(0,+X)), with metric 8 = T8 over R(fi,+%) (see next
chapter for details).

One should keep in mind that Ej ;(x8R) is a simple, yet bona—fide nonlinear,
nonlocal and noncanonical generalization of the original space, because the
original one dimensional metric 8 = 1 is now lifted into the expression

3 = T x, %%, Pt T, )8 {(2.5.10)

Thus, the one-dimensional isospace Ey ;(x3,R) represents a generalization of
the conventional straight line, here called an isostraight line, because of its
intrinsically nonlinear, nonlocal and noncanonical metric 8(t, x, %, %, ..) with
multiplicative isounit 1 =1, x, %, %, ...), yet it preserves the original axioms of the
straight line as ensured by the isotopies (see Ch. [.5 for more details on this
feature of isogeometries).

Ry, can then be realized via the isodilations on Ej | (x38,R)

y =%y =ny, (25.11)

which, again, coincide with the original dilations, as it is the case for the isodual
dilations, thus providing a reason for the lack of detection of the isoreal numbers
until recently.

Isodilations (2.5.11) characterize an isomorphism of the isoreal numbers
with the one-dimensional group of isodilations G(1), i.e., the group G(1) realized
with respect to the isounit T (see Ch. [.4 for details). The local isomorphism
E(x,3,R{n,+x)) = Ey 1(x,5,R{(h,+*) holds for all positive-definite isounits (see next
chapter) and readily implies G(1) = G{1).

The isobasis is now given by

(2.5.12)

o>
)
s
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while the isonorm can be defined by
fal = (nxn)fx1 = |n| x1, (2.5.13)

namely, by the conventional norm, only rescaled to the new unit T, which is the
essence of the transition from real number n to their isotopes fi = nxI.
In particular, axioms (2.4.6) is satisfied,

fak] = Taf %o, (2.5.14)

with the same product inside and out because referred to the same elements. One
can see that the isoreal numbers constitute a one-dimensional, isonormed,
isoassociative and isccommutative isoalgebra (1) = U(1) [24],

2.5.D: Realization of isodual isoreal numbers, We consider now the
isodual isonumbers of Class II

i =nx1% = -fi e R IR0 +59). (25.15)

In this case we need the one-dimensional isedual isoeuclidean space of Class II,
Eyp 1 %x939,R%), and the isodual isodilations

y =70 x8 y=ny, {2.5.16)

which also coincide with the conventional dilations, by characterizing an
~isomorphism of the is¢dual isoreal numbers with the one-dimensional isodual
group of isodifations G%1), i.e, the image of G{1} under the isodual isounit 1¢ = 1.
The evident underlying isomorphism

ElI,ld(Xd,Sd,RIId(fld,+,xd)) ~ E“'ld(xd,Sd,R”d (ﬁd’+,3‘<d)), (2517)

then implies G%1) ~ G%1). The isodual isobasis is now given by

ed = 14, (2.5.19)
with isodual isonorm

Mfd = mxn)fx1 = -1l <o, (2.5.20)
which is also negative-definite, yel verifying basic axiom (2.4.6),

1a0%d rdpd = [fdd &d pidpd, (25.21)
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Thus, the isodual isoreal numbers are a realization of the one-dimensional
isodual, isonormed, ispassociative and isocommutative isoalgebra 0%(1) ~ U%(1)
[24].

The extension of the above results to the case of pseudoisoreal numbers
and their isoduals is left to the interested reader.

2.6: ISOCOMPLEX NUMBERS AND THEIR ISODUALS

2.6.A: Realization of ordinary complex numbers. Let us recall for
completeness (see, e.g., ref. [7) that conventional complex numbers

¢ = ng+mxi e Cle+x), ng,npeRMn+Hx), (26.1)

where i is the imaginary unit are represented in a Gauss plane [1], which is
essentially a realization of the two-dimensional Euclidean space Es{x,8R(n,+))
with basic separation

x2 = xtsx = x 8ij xl = x2+x%? e R+x). {2.6.2)

Its group of isometries, the one-dimensional orthogonal group 0(2), is the
invariance of the circle (2.6.2), as well known. For this reason, complex number
can be represented via the fundamental representation of 0{2) (see below).

The correspondence between complex numbers ¢ = iy + nyxi and the Gauss
plane with points P ={ x!, x?) is then made one-to-one by the dilative rotations

7 = kKl+x2xi) =coz = (ng+m xi)o(xl+x¥xi), (263
with multiplication rule
coz = (ng,n;)ok!,x®) = (ngxx! - n;x®,nyx® + n;x!), (264
which is known to preserve all properties to characterize a field, thus establishing
a one—to-one correspondence between complex numbers and points in the Gauss
plane. Transformations (2.6.3) form a two-dimensional group of dilations G(2) in

one to one correspondence with Cle+x).
Complex numbers also admit the matrix representation

nO ﬂlxi
c i=mpxly +mxip = {2.6.5a)
ﬂlxi ny
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1 0 0 i
lg = ( ) O ( ) , {2.6.5b)
0 t i 0

which are the identity and fundamental representation of O(2), respectively, as
expected.
The norm is then given by the familiar expression
lc] = |ng + myxi| = (Detcl = (cxc)h = (ng? + n123*>0,
(2.6.6)

which readily verifies axioms (2.4.3)

€R, ¢, ¢ €C, (2.6.7)

lcoc| = |c| x|¢

where now we have different products because referred to different elements.
Finally, the identification of the basis in terms of matrices (2.6.5b)

€ = 10, & = i[, (268)

implies the well known result that complex numbers constitute a two-
dimensional, normed, associative and commutative algebra U(2) [7]

2.6.B: Realization of isodual complex numbers. We now consider the
isodual complex numbers from Definition 2.3.2 [24] :

CO=((d+,xd)|xb=w-x; 8=-;d=Cx19=-C, CTeT), (2,6.9)

where ¢ is the usual complex conjugation. Thus, given a complex number ¢ = ng
+n i, its isodual is given by

cA==<=nyd + nd xT1= -ng-n;xi=-nyg+n;xi e C% (26.10)

In this case we need the two—dimensional isodual! Euclidean space
Ezd(xd,ad,Rd(nd,txd)) with basic invariant

(Xd)Zd = (xd)tadxd = Xisdinj = (de)Zd+(X2d)2d =
= xld Xd xld + xzd xd xzd = _Xl2 —_ X22 c Rd(nd’+,xd) (2.611)

whose group of isometries is the one—dimensional isodual orthogonal group 0%2)
first proposed by this author in ref. [20], i.e., the image of O(2) under the lifting [ =
diag. (1,1) ~ ¢ = diag. (-1, -1} (see Ch. L4 Tor details). We then expect isodual
complex numbers to be characterized by the representation of 6%2).
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diag. {1,1) > 19 = diag. (-1, 1) (see Ch. [.4 for details). We then expect isodual
complex numbers to be characterized by the representation of 0%(2).

We now introduce the isodual Gauss plane [21] as the image of the
conventional plane under iscduality. The correspondence between isodual
complex numbers and the isodual Gauss plane with points P4 = (x'9, x2%) is then
made one—-to-one by the isodual dilative rotations

2% = (—xl+x%i) = dedzd = nod + nldxdid Jod (x4 +x2dx8id ) (26.12)
with muitiplication ryles

cdedzd = (—no,nl)od(xid,xz‘i) =
= (- n0x1+ n; xz,—no X2 + nlxl) , (2.6.13)

which can be easily shown to preserve all properties to characterize a field. Also
isodual transformations (2.6.13) form an isodual group G%2) antiisomorphic to
G(2). We therefore see that, as expected, the one-to—one correspondence between
complex numbers and the Gauss plane persists under isoduality .

Isodual complex numbers also admit the matrix representation

—Ny nlxi
Cd = nodxlod + ﬂldxild = ( ) {2.6.14a)
ﬂ[xi -y

-1 0 0o i
1d = ( ) , 1% = ( ) (2.6.14b)
0 -l i 0

which are the isodual unit and isodual representations of 0%(2), respectively.

Note that in the above representation we have used the property id ="jx14 =
{-i{~1) = i according to which the imaginary unit is isoselfdual, i.e., invariant
under isoduality.

The isodual norm is now given by

|c8]d .= detR(cd x T Fx g8 = (cdxcd ¥ xid, (26.15)
can be written
|Cd|d= (ng)%XIOd - (n02+n12)*x10d, (2.6.16).
and also verifies axioms {2.4.6),
|cdadc 8|8 = |cd]d xd | d|d e RY, ¥ cfect. (2.6.17)

Finally, the identification of the isodual basis in terms of matrices (2.6.14)
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ed =18, &%=19, (2.6.18)

implies that isodual complex numbers constitute a two-dimensional, isodual,
normed, associative and commutative algebra U%2) which is anti-isomorphic to

u(2) [24]

2.6.B: Realization of isocomplex numbers. By following again ref. [24],
we consider now the isofield of isocomplex numbers from Definition 2.3.1

C={@3%|%=xTx1=T"1,8=cx1,celc+X], {2.6.19)

with generic element ¢ = fiy + i *i. In this case we need the two—dlmensmnal
isoeuclidean space of Class I, By o&8R(f,+%), where & = 16 = (3;), 3¢ = x*, % =
8 X! # %y, i, j, k = 1, 2, where the isounit 1 is the same for both the isofield and the
isospace.

The realization most used in the physical literature is that with
diagonalized and positive~definite isotopic element and isounit as discussed in
more details in the next chapter

T = diag. (b2, %) , 1 = diag. (02,03 2), b>0, k=12 (26.20
with basic isoseparation
=(318%)1 = (PE;xI)x1 = (xlb2xd + X2 22)x1 € RA+K), (26.20)

whose group of isometries is the one—dimensional isoorthogonal group O(2) =~ 0(2)
(see Ch. I.4 for details), i.e., the group 0(2) constructed with respect to the
multiplicative isounit 1 = diag. (bl , Do 3, which provxdes the invariance of all
possible ellipses with semniaxes a = b 2, b2 as the infinitely possible
deformation of the circle {20]. We then expect that isocomplex numbers are
characterizable via the fundamental isorepresentation of O(2).

We now study the isogauss plane first introduced by this author in ref.
[21], which is the set of points P = (!, %2) on Bp,&8R@M+%) for the
characterization of isocomplex numbers ¢ = (fig, fi).

The correspondence between the isocomplex numbers C(C,+,%) and the
isogauss plane can be made cne—to—one by the isodilative isorotations

= (xl+%2xi) = ¢o% (2.6.22)
with isornultiplication rule

coz=(ny,n }6(x",%°) =
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={{{ngx")T1-a%"(n x4) xT1,[{ng x*)T+{n; x')xT1]}, {2.6.23a)
A = Det T = b2 by?, (2.6.23b) -

where the appearance of the A* factor will be justified shortly, and confirmed
later on for the case of isoquaternions and isooctonions studied in Appendices
[4.A and [.4.B.

It is easy to see that the isogauss plane preserves all axioms to characterize
an isofield. In particular, isotransformations (2.6.22) form a two-dimensional
isodilation isogroup G(2) ~ G{2). As expected, the one~to—one correspondence
between complex numbers and points in the Gauss plane is preserved under
isotopy.1®

The implications are however nontrivial, as illustrated by a number of
properties, such as the Jack of existence of unitary transformations

c=UocolUoUl=UToU=1=diag. (1, 1), (2.6.24)

mapping the maltrix representation of complex numbers into their isotopic form.
The understanding is that a transformation does indeed exist, but it is of the
more general isotopic type

c=06co0l, 06 0T=0t60=1 (2.6.25)

 Another way to see the nontriviality of the isotopy is by noting that the
conventional trigonometry is inapplicable to the isogauss plane. In fact,
conventional functions such as cos a, sen a, etc. which are well defined in the
Gauss plane, have no mathematical or physical meaning in our isogauss plane, as
discussed in Appendix 1.2.D. The reader should be aware that, by no means,
realization (2.6.23) is unique, owing to the intriguing “degrees of freedom” of the
isotopic formutations studies later on.
[socomplex numbers alse admit the following two—by-two matrix
representation

Doxbluz ixnl xblzxA—%
¢ = ﬁox‘lo ¥ ny x'il = ( ) (26263)
ixl'llxbzzxA_.k Iloxbz_

b2 o0 0 ixb?
1=1, = ( ),'1[= i1 = A‘*( ) (2.6.26b)
0  by? ixb?2 0

1% Note that the notion of point in the isoeuclidean plane can be introduced despite its
nonlocal-integral character thanks to its integro—differential topology (Fig. 1.4.1). In fact,
the isogauss plane is everywhere local-differential except at the isounit.
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A = Det. T = bj¢ by?, - (2.6.26¢)

which satisfy rule (2.6.23) and characterize the isounit and the fundamental
isorepresentation of O(2), respectively (see Ch. 1.4, and subsequent confirmation
via the fundamental isorepresentation of the isotopic SU(2) group for the
isoquaternions and isooctonions).

Then, the set 8(C,%%) of matrices (2.6.26a) is closed under addition and
isormultiplication, while each element possesses the isoinverse

ol = ¢lx1, (2.6.27)

where ¢ 'is the conventional inverse. Thus, 8(¢,+%) is an isofield. The local
isomorphism 8¢, +%) = {{C,+%) is then consequential.
The isonorm is defined, from Eq.s (2.4.7) and (2.4.10} by

[&] = [Detg{e&xMEx1y = (ng + An2Fx1y, (2.6.28)

and satisfies axioms (2.4.6),
feder =TefxTeleR, g eel. (2.6.29)

Finally, the isobasis
e =1, & =1, (2.6.30)

shows that isocomplex numbers constitute a two—dimensional, isonormed,
isoassociative and isocommulative isoalgebras over the isoreals U(2) = U(2), a
result first achieved in ref. [24]

2.6.C: Realization of isodual isocomplex numbers. We consider now the
isodual isocomplex numbers

0= {@b+sd)|ed=-T19, A=xTdxTd=-T7,19=T4 "1 cecClc+x},
{2.6.31)

with generic element
¢d=nd+ndxdid=—fig+i. (2.6.32)

where we have again used the isoselfduality of the imaginary unit, i% = i. In this
case we need the two—dimensional isodual isoeuclidean space of Class II,

EII,zd&dﬁd,ﬁd(ndﬁﬁd)) with realization

= diag. { -b?, -by2) , 1 = diag. (-b;2,-b,2), b >0, k=12,
(2.6.33)
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and basic isodual isoseparation
(20 P9 = [(50)89x0)x19 = x5 ) %19 =
= {_ Xl b12 Xl - x2 b22 XZ) lld € Rd (ﬁd,"',*d ), (2635)

whose group of isometries is the isodual isoorthogonal group 0%2) =~ 0%2) [20].
The isodual isogauss plane (identified for the Tirst time in ref. {21) is then
the set of points P = (314, ¥29) on El,zd(xd,sd,ﬂd(ﬁd,+§<d)) for the characterization of
isodual isocomplex numbers 3% = { -fig, A1, ).
The correspondence between the isodual isocomplex numbers ¢4l +x0)
and the isodual isogauss plane can be made cne—to—one by the isodual isodilative
isorotations

78 = (30 +30xdjiy = gdadyd, (2.6.36)
with multiplication rule
e 8938 =(fiy,n,)6%(xd4,%9) =
={[(-ngx!) 1+a" (n;®)x1L[ngx x2)1+(n; x!)x11}, (26.372)
A = DetT = b2b?, (2.6.37b)

It is easy to see that the iscdual isogauss plane preserves all axioms to
characterize an isodual isofield. Also, isodual isotransformations (2.6.36) form an
isodual isodilation isogroup G%(2) ~ GY2). As expected, the one-to—one
correspondence between complex numbers and Gauss plane is aiso preserved
under isodual isotopy.

[sodual isocomplex numbers also admit the two-by-two matrix
representation

-y bi"‘2 i m b12 A_J‘;

= p8dy8 + ndxdyd = (2.6.38a)
i m b22 A_i- — Ny b2_2
b2 0 0 ib?
1,8 = ( ) 19 = A—%( ) (2.6.38b)
0 -by2 ib? 0

which satisfy isomultiplication rule (2.6.37), and characterize the isodual isounit
and fundamental representation of 09%2), respectively.
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Then, the set 8% ©€%,+58) of matrices (2.6.38) is closed under addition and
isomultiplication, each element possesses the isodual isoinverse

od1d = (edylxgd, (2:6.39)

Thus 399, +x%) is an isofield. The local isomorphism 89429+59) ~ ¢d@Rd +xd) i
then consequential.
The isodual isonorm is defined by

12919 = [Det (29 19)FEx1ed = (ng? + 4P =1y (2.6.40)
and satisfies axioms (2.4.6),
Jedode dd=edtdadpdid cpd gl od cd, (2.6.41)
Finally, the isodual isobasis
8¢ =19, &%=1¢9, (2.6.42)

shows that iscdual isocomplex numbers constifule a two-dimensional, isodual,
isonormed, isoassociative and isocommutative isoalgebras over the isodual
isoreals isoreals 09(2) =~ U%(2) (a result first proved in ref. [24])

In conclusion, the “numbers” used in hadronic mechanics arc characterized
by .the lifting of conventional real numbers n or complex numbers ¢ into the
most general known integro~differential expressions it = nxl and ¢ = cxl,
respectively, with an integral dependence on all possible local quantities and
their derivatives

~

n - 0= 0t xx % g, &b, 8t 1w, 7,0, .., (2.6.43a)
c — &= eLxx %t e et T, ), (26.43D)
as a direct way to represent integro-differential generalizations of Planck’s unit,
Eq. (LL1)
Moreover, the generalizations are nontrivial inasmuch as they are not

unitarily equivalent to the conventional numbers. We finally note that, even
under the condition

A =b?2b? = |, (2.6.44)
realized for

by = byl =4, (2.6.45)
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isocomplex numbers preserve their nontrivially generalized form

ﬂoxk_z ixnlx)\2
¢ = + i ( ) (2.6.46)

ixn xA2 nyxa?

because the “hidden quantity” A # 0 has an unrestricted functional dependence,
Mx, %, %, ..). As we shall see in Vols II and [II, a number of intriguing physical
applications originate precisely from the above “hidden degree of freedom” A.

27: ISOQUATERNIONS AND THEIR ISODUALS

2.7.A: Realization of quaternions. Recall (see, e.g., ref.s [7,8] and quoted
literature) that quaternions q € Qlq,+*) admit a realization in the complex
Hermitean Euclidean plane Exz3,C} with separation

Exz8Ck  ziz = oy = 2!zl + 222, sf=s, (2.7.1)

whose basic (unimodular) invariant is SU{2). Thus, quaternions can be
characterizable via the~fundamental (adjoint) representation of SU[2), i.e., by
Pauli’s matrices, as reviewed below.

Quaternions can be first realized via pairs of complex numbers, q = (¢}, ¢5),
g€ Q and ¢ , ¢y € C with multiplication © (see below). A Hermitean dilative
rotation on E4(z,8C), i.e, one leaving invariant zfz, is given by

Z'1 =C[OZl +C2®Zz, Z’2=_62021 '*‘61022, (2.7.2)

where the dilation is represented by the value ¢|0¢; + GOcy # 1. Again,
transformations {2.7.2) form a group G(4), this time associative but
noncommutative, which is in one-to—one correspondence with quaternions.

Rule (2.7.2) characterizes the following matrix representation of quaternions
Qlg,+) over the field of complex numbers Clc,+x)

C
q - ( T ) (273)
<2 €1

which is also one-to—one. By assuming

Cp=mgtngxi, ¢ = nptngXi, (2.7.4)
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matrix (2.7.3) admits the representation
q =n0><10+n1><i1+n2><i2+n3xi3, (275)

where the i's are the celebrated two-dimensional Pauli’s matrices plus the two—
dimensional identity,

L 0 0 i 0 1 i 0
lg = ( ),il =( ),12 = ( ) is =( ) {2.7.6)
0 1 i 0 -1 0 0 i

with fundamental properties
ty iy = —€ymrXix » n¥m, nm=1,23, (277

where €1 is the conventional totally antisymmetric tensor of rank three. The
algebra A of Pauli’'s matrices is closed under commutators, and characterize
the fundarnental representation of the su{2) Lie algebra

lig,im] = ipXipm — ip*iy = —2%Xe€qme X i, (278
with Casimir invariants 1o and i2= Yy _) 53 i 2,
[y, 4] = [Z,i]=0, k=123, (27.9)
and eigenvalues on a two—dimensional basis ¢ with normalization x5 = 1
Dk=123 52X ¥ = Dpojogi Xig X = —3x . (2.7.10)
By noting that |
qf = ng*ly = myXi; ~ nyxiy; - ngxis, 27.11)
the norm of ¢ can be written
lal = (afq ¥ = (Zy—g 03 m?2 Y, (27.12)
and also satisfies axioms (2.4.3),
laoq| = {a]x|ql €R, q ¢ €Q. (27.13)

The basis
e =lg, &4 = ix, k=123, {27.14)

then establishes that gquaternions constitute a normed, associative,
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noncommutative algébra of dimensions 4 over the reals U{4) [7,8].

2,7.B: Realization of the isodual quaternions. We consider now the
isodual quaternions q% € Q% (q%,+x4 ) [24] which can be represented via the isodual
complex Hermitean Euclidean space

Ex%z%,8%,00cd e (7 6%;210) 18 = (-7l 2! - 222)xi%er?, (27.13)

in which case they can be realized via pairs of isodual complex numbers (Sect.
1.26) q* = (¢, c%d ), qd € QY c¥, , % e ¢4 An isodual Hermitean dilative
rotation on Ezd(z 89.¢%cd+x9), 1e., one leaving invariant 7918929, is given by

710 = cdolgld —glod 20 | 42 = o dod ld 4 gded 2 (97.5g)

where the dilation is represented by the value Eldodcld + Ezdodczd # —1. Again,
transformations (2.7.16) form an associative but noncommutative isodual group
G4), which is in one—to-one correspondence with isodual quaternions
Q%qd,+x9).

Rule {2.7.16) characterizes the following matrix representation of isodual
quaternions over the Tield of isodual complex numbers ct (¢4 +xd)

Cd -Ed
d - ‘ 2
q B (2.7.17)
Czd Cd
By assumin
Y g Cd="n + e ¥i Cd=—n +1n, X1 (2718)
! p T g , 2 172270 o

and by recalling that — ¢8 = ¢, i9 = i, we have the representation
q@ = n8,010% ndxd8+ ndxdif 4 ndxdid =
= _noxlo +nl xll +n2><i2+n3><i3, (2719)

where the i's are the Pauli's matrices reviewed above. We learn in this way that
the Pauli’s matrices change sign under isoduality although their product with
isodual numbers is isoselfdual

By using the resuits of Sect. 24, the isodual norm is then defined by

[qd | d = Detc (qd xTh)]x 19 = (- 21(-’-0,[,2,3 Dkz JEx ld, (2.7.20)
with property

[g%edqd|d = |9 x@ |g@]|% er?, q%q e (272D
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The use of the isodual basis
ed =19, edyy =1 k=123 (2.7.22)

then shows that iscdual quaternions constitute an isodual four—dimensional,
normed, associative and noncommutative algebra over the isodual reals u%a),
which is anti-isomorphic to U4) [24]

2.7.C: Realization of isoquaternions. To study the isoquaternions q €
Q@,+% [24], we need the two-dimensional, complex Hermitean isoeuclidean
space of Class [, B ,&5,0, 2% =X, 3, =§ 2}, 8="T5 = (8;7) on the isofield &, +X)
with (real} separation (see next chapter for more details)

218% = 287 = zln)22! + 2222, Br=s8>0, (2.7.23)
basic isotopic element and isounit
T = Diag. (b;2,h%), 1 =Diag.(b2,by%), by>0, (27.24)

whose {unimodular) invariance group is the Lie-isotopic group S0(2) (see Ch. 1.4
and 11.6). Isoquaternions can therefore be characterized via the fundamental
isorepresentation of the isotopic sti{2) algebra.

A Hermitean isodilative isorotation on Ej 5(z3,0(C,+X) is given by

¥l =862 +8,062, 2= -3,6% + 5 6%, (2.7.25)

where the dilation is represented by the value ¢, & ¢ + S5 6 & # 1.

The map of isoquaternions into two-by-two matrices on {{¢,%%) must now
be characterized by the isorepresentations of the Lie—isotopic algebra SU(2) first
studied in ref.s [21, 25] (see also ref. [27]), which can be expressed in terms of the

hasic isounit
b2 0
1=1 = ( ) (2.7.26)
0 b2

and the fundamental isorepresentation of su(2)

0 ib? 0 b? in? 0
1 b2 0 ‘b2 0 0 - bl

(2.7.27)

As expected, the'i-matrices verify the isotopic image of properties (2.7.7), i.e.,
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1,09, = —A'eyix, n#m, n,m=1223,A=D%by (2.7.28)

and are therefore closed under isocommutators (as a necessary condition to have
an isotopy), resulting the Lie-isotopic si(2) algebra

1,6 g - i 8%y = -2 A ey ik (2.7.29)
with isocasirmnir invariants and generalized eigenvalues equations studied in Ch.
[1.6. For alternative realizations with A = | see Sect. [.4.7.

Note the abstract identity of the isotopic si(2) with the conventional su(2)
algebra. Nevertheless, Pauli's matrices and their isotopic covering are not unitarily
equivalent.

Note also that the isoinvariance 0(2) of the isocomplex nurnbers (Sect. 2.6) is
a subgroup of SU(2) characterizable by i, thus confirms the matrix
isorepresentation of isocomplex numbers.

Isoquaternions can therefore be written in the form (apparently presented
in ref. [24] for the first time)

q =nyly +n7i) + nylip + nglig =

( (ﬂobl_z'i‘A_*iﬂsbzz) A_‘* (—-n2+inl)b12 )
{2.7.30)

A_J"(n2+inl)b22 (Dobz_z“A—J‘rin‘gblz)

[t is straightforward to show that the set 8(g,+%) of all possible expression
(2.7.30) preserves the axioms of the original set Sig,+x). [n fact, the set 8(q,%,%) is a
four-dimensional vector space over the isoreals R(f,+%) which is closed under the
operation of conventional addition and isomultiplication, thus being an isofield.
The isomorphism 8(G,+%) ~ Q(q,+} then follows.

The isonorm of the isoquaternions is given by

Tal =[Detg(q T)1¥1, = (6 G 1, | (2.7.31)
and can be written
147 = Ing2 + a(n® + n2 + ng?)11g | (27.32)

which should be compared with expression {2.7.12) for the ordinary quaternions.
Isonorm (2.7.31) also verifies the basic rule

faegl =T4r*1ater, G4q.6€Q. (2.7.33)

The isobasis
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=1, &+ =Tk, k=123, {2.7.34)

fy1d

then establishes that isoquaternions constitfute a four—dimensional, isonormed,
isoassociative, non-isocommutative isoalgebras over the isoreals 0(4) =~ Ul4) [24].

2,7.D: Realization of isodual isoquaternions, The isodual isoqua-—
ternions q% e Q%q9,+,69) can be characterized via the two-dimensional isodual
complex Hermitean isoeuclidean space of Class Il over the isodual isocomplex
field,

Eduz(l 59,008 +50), 3018920 =71d 50 710 4 2058 ;20 —_ 7l g 2,1 721,252
. (2.7.35)
with basic isodual isotopic element and isodual isounit

T9 = Diag. (b2, -by%), 1¢ = Diag. (-b; 2, -by 2}, (27.36)

whose (unimodular) invariance is now that of the isodual Lie-isotopic group
S0%2) (see Ch. [.4). An isodyal Hermitean isodilative isorotation on
Ed" 29,59, ¢9(cd+54), is given by

0 = o8 o300 g, g3 520 - gd,ad3ld 4 G4 6952 (2737)
‘where the dilation is represented by the value £9,89¢9, + c0,892d, #10.

Isoquatermons then admit a- reallzatlon in terms of the isodual
isorepresentation of si d(2) which can be written

ad = ﬁod + ﬁld ><d«]ld + f‘zd dilzd + ﬁsd xd'~13d -
=-fg+ 0y 1) + My + 0303 =
( (-ngb 2+ At ingby%) A (-np+i n;)b;? )
(2.7.38)

A_%(ﬂz"'iﬂl)bzz (_I'lobz_z-A_*iﬂsblz)

It is again easy to show that the set 8%(G%+x%) of all possible matrices
(2.7.38) is an isofield. The isomorphism 8%G%+x3) ~ Q%G% +%%) then follows.
The isodual isonorm is now given by

Tadrd = [Det ( xd 70) |t x ]Od = C[Td xd d) X]Od =
= [ - HO - A ( nlz + ﬂ22 + n32) ] 10d ’ (2739)
and also verified the basic rule

rgdedgord=14019%¢ 1g97% v, §%§9,6% Q7. (4440
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The isodual isobasis is now given by
el =19, &y ='idk, k=123, (2.7.41)

and proves that isodual isoquaternions constitute a four-dimensional, isodual,
isonorimed, isoassociative, non-isocommultative isoalgebra over the isodual
isoreals (9(4) ~ Ud(4) [24].

In summary, the isotopy of the conventional quaternions permits the
introduction of nontrivial degrees of freedom represented by the diagonal
elements of the isotopic element T = diag. (0,2, by?), owing to their unrestricted
functional dependence byt, X, %, ..) # 0. The “isotopic degrees of freedom” persist
even under condition (2.6.44), (2.6.45) under which the regular isopauli matrices
{2.7.26)

(o i)@) (0 )\2) (i)\"z 0 ) 7.0
'\112 ~ ,,iz = ,33 = y 2.7.42
iAn2o 2729 0 =ir?

called standard isopauli matrices [25-27] (see Ch. L6 for their detailed study).

It should be indicated for completeness that in this section we have studied
the isotopies and isodualities only of the fundamental form of quaternions, For
-additional forms for which no isotopies and iscdualities have heen studied until
now, such as the spit quaternions, antiquaternions and semiguaternions, we refer
the interested reader to monograph [28].

2.8: ISOOCTONIONS AND THEIR ISODUALS

For completeness, we also present realizations of octonions, iscdual octonions,
isooctonions and isodual isooctonions, which follow very closely the construction
of isoquaternions and their isoduals from isocomplex numbers and their isoduals.

2.8.A: Realization of octonions. Recall (see, e.g., ref. [7,8] and contributions
quoted therein), that the octonions o € Olo,+*) can be realized via two
quaternions, 0 =(q , gy ), with composition rules

ocoo=(q.q)e(d).q2) = (q,0q1+010402.~q 042+ {; © da),
(2.8.1)
The antiautomorphic conjugation of an octonion is given by

0= (al s _C]2). (2.8.2)
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It is then possibie to introduce the norm
lo| := (B0} = [q| + [q,l, (2.8.3)
which also verifies the basic axiom
loeo|=]o|x|o]eR, o0 €O0. (2.8.4)
We finally recall that the octonions form an eight dimensional normed,
nonassociative and noncomnmutative, alternative algebra U(8) over the field of

reals Rin,+) [7,8]

2.8.B: Realization of isodual octonions. The isodual octonions are
defined via the isoconjugation

o = (q9,q9) (2.8.5)

this time, over the isodual reals Rd(nd,+,xd), and are therefore different than the
conventional conjugate octonions o, Eq. (.2.8.2). Their isodua! multiplication is

o?edol=(q, gt 0% (¢, qo%) =
(qfelq?-qleog?, qlefql+qlete?), (286
“the isodual antiautomorphism is then given by
o= (g, ~qt). (2.87)
It is then possible to introduce the fsodual norm
lo%[9 = (%0803 x19 = |q4|9 +[q9|q, (2.8.8)
which also verifies the basic axiom
o8 d] = o8|l xd |yd|d gl ododxde od | (2.8.9)
Thus the isodual octonions form an eight dimensional isodual, normed,
nonassociative, alternative and noncornmutative algebra U%8) over the isodual
real numbers R%nd+x9) [24],

2.8.C: Realization of isooctonions. Isooctonions [24] 6 € O5,+,%} can be
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defined as the pair of isoquaternions , 0 = (g, , Gy} over the isoreals R(fi,+%) with
multiplication rules
(&), 82) = (8,887+8,03%,-9, 68>+, 6a3),
(2.8.10)
[t is then easy to see that the lifting o = & is an isotopy, thus preserving
all original axioms of o. In fact, we have the antiautomorphic conjugation

-~ -~ -~

660‘=(q1,q2)

[O})

0 =(7, -0, (2.8.11)
and the isonorm
187 =(600)x1 ={g T + 18,0 (2.8.12)
with property
fodoT=10T%10'leR, 30 € O {2.8.13)

It is then easy to see that isooctonions form an eight dimensional isonormed,
non-isoassociative, non-isocommutative, isoalternative isoalgebra 0(8) =~ U(8)
over the isoreals R(,+%) [24].

2.8.D: Realization of isodual isooctonions. The notion of isoduality
applies also to the isooctonions yielding the isodual isooctonions 8¢ = (§,%, 4,9
with composition rule :

6(1 éda'd=(ﬁld:€lzd)@d(€l'1doa'2d) =
{ ald oL ﬁ,ld - ald ot a,zd , qld ad q,zd + ald a4 qzd ), (2.8.14)
Then we have the isodual iscantiautomorphism
5 = (g, -g9). (2.8.15)
the isodual isonorm
13918, = (g2ada ) x1d = 1§,97% 1,010 (2.8.16)
which also verifies the basic axiom

1096%a 97 = 16979 %8 for 419 erd, 895 c0¢. (2.8.17}

It is then possible to prove thal isodual isooctonions form an eight
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dimensional isodual, isonormed, non-isoassociative, non-isocommultative, but
isoalternative isoalgebra 0%8) ~ U%8) over the isodual isorield ROHG,+x0) [24],

In this section we have studied the isotopies and isodualities of the
conventional notion of octonions. For additional forms of octonions {e.g., the
sederions) and the construction of their representations, we suggest the
consultation of ref. [28] and literature quoted therein.

We close this section by suggesting caution in the use of octonions and
their isotopies as fields because of the loss of associativity and, thus, the loss of
enveloping associative algebras of Lie algebras, in favor of alternative algebras. [n
turn, such a loss, unless properly treated, has fundarnental physical implications
we shall see in Vol. I, such as: the general loss of the equivalence between
Heisenberg’s and Schrédinger’s representations, the general loss of the
exponentiation of an algehra to a corresponding group with consequential loss of
the notion of symmetry, and other serious drawbacks.

Nevertheless, when properly treated, octonions do have intriguing
applications. As an illustration, we here mention the approach studied by Lohmus,
Paal and Sorgsepp [28! via their “octonionization of Dirac's equation” which
resolves all the above problematic aspects, resulting in one of the first {if not the
only) formulation of Dirac’s equations for quarks with fractional charges.

2,9: ISOTOPIC UNIFICATION OF CONVENTIONAL
NUMBERS

One additional property of isonumbers which is important for the subsequent
analysis, is given by their capability to unify different conventional numbers into
one single, abstract notion of isonumber.

This property, called “isotopic unification” (first identified in ref. [23) has
the following three important applications.

Number theory: According to contemporary formulations (see ref.s [T-12]),
real numbers, complex numbers and quaternions are considered to be different
mathematical entities, possessing different properties and structures. This
conception is surpassed by the isonumber theory because, as shown below in this
section, one single entity, the abstract notion of isoreals, can unify all' above
indicated conventional numbers evidently because of the degree of freedom
offered by the isounit, with intriguing mathematical and physical possibilities Tor
novel applications.

Lie’s theory: In the contemporary formulation of Lie’s theory,
nonisomorphic simple Lie groups of Cartan’s classification of the same
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dimension, such as O(3} and 0{2.1), or 0(4), O(3.1} and 0(2.2), etc. are generally
considered to be different entities possessing different structures and properties.
As shown for the first time in ref. [18], this approach too is surpassed by isotopic
theories which offer the possibility of unifying all simple Lie groups of the same
dimensions into one single, abstract Lie—isotopic group. An evident pre-requisite
Tor such unification is precisely the unification of all fields studied in this
section.

‘Quantum mechanics on quaternionic fields: Even though the most
dominant use of fields in contemporary quantum mechanics is restricted to real
and complex Tields, the generalization of quantum mechanics over a quaternionic
field has been recently studied by various authors (see ref.s [7-9] and literature
quoted therein). In these volumes we shall show that this approach too is
superseded by isotopic techniques because quantum mechanics on a quaternionic
field is a particular case of hadronic mechanics on an isoreal field.

The existence of an isotopic unification of all numbers had been
conjectured by the author in various publications throughout the years, but it
was proved only recently by Kadeisvili, Kamiya and Santilli in ref. [21]. The main
result is the following

Theorem 2,7.1 ¢ Let R, C, Q be the fields of real numbers, complex numbers
and quaternions, respectively, RY, 9, Q the isodual fields, R, C, Q the isofields,
and -RY, ¢4, &% the isodual isofields as defined in preceding sections. Then all
these fields.can be constructed with the same methods for the construction of R
from R, under the relaxation of the condition of positive—definiteness of the
isounit, thus achieving a unification of all fields, isofields and their isoduals into
the single, abstract isofield of Ciass 111, hereon denoted #.

Proof: The field of real numbers R is a trivial particular case of # when
the isotopy is the identity, 3‘1;1 = R. The fact that the field of complex numbers
C is a subcase of # can be proved as follows. Introduce the binary (Cayley—
Dickinson) realization [28] of the elements of &, 3 = (a;, ay), where {a; , 0} and (0, ay)
represent the real (Re) and imaginary (Im) parts, respectively, with the Tollowing
isornultiplication

(a]_,az)i(bl,bz) = (alXbl—b2Xa2,31Xb2+b2><a1), (29.1)

where * represents the conventional multiplication, and introduce the additional
multiplication for elements of Im C

(0,a)%,(0,b):=(0,a)%(0,-1) %(0,b). (27.2)

Then, # can be decomposed into the tensorial product of the following two parts
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#, = {(a,0)|aer,1=(1,0)}, (29.3)
ft, = {(0,a}l|aeR,1=(0, 1)]. {2.9.4)
The local isomorphism $#| ~ Re C is trivial. The fact that f, =~ Im C

follows from the expressions 1 =10, 1), T=1"1= (0, -1 ). Thus, the
multiplication in Ry is characterized by

akb = ax(0 DX bx{0, D=ax© D%, -D%bx({, 1. (2.9.5)
Moreover,

(0,1)%b = b%{o, 1) = b, (2.9.6a)

0,a%(0,a7t) = (0, 1), 3 a=0 (2.9.6b)

and this proves that ﬂz =~ Im C. Thus, in the above binary realization and
multiplications (2.9.6a) and (2.7.6b), & coincides with C.

The proof that the Tield of quaternions Q is a subcase of # can be done
via the quaternary realization ® ~C%XC with isormultiplication

(al,az)‘*(bl,bz) = (al bl_ﬁzaz,al Bl+b26.1), (297)

for all a}, ay, b}, be € C and a denoting conventional complex conjugation in C.
Then # can be decomposed into the following parts

) = {(a,00acC), #, = ({0, b)|becC]. {2.9.8)
The product for ft; can be defined as
0,a) % (0,b) =@,a%{0,-1}*{0,b) = 0, ba). (29.9)

By making use of these products we readily obtain that #; =~ C. To identify the
role of #y we note that

axh =ax(ODX%(0,-D*{0, 1) b=1(0,ba) =ablol). (2.9.10)

This implies that, in the above quaternary realization of the elements with
multiplications (2.9.9), R coincides with Q.

The inclusion in  # of all isotopes R, € and Q) readily follows from the
lifting of all trivial unit | into isotopic form T with corresponding lifting of the
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related operations. The inclusion of isodual fields and isodual isofields Tollows
from the the assumption of Class [Il which includes positive-definite, as well as
negative—definite isounits q.e.d.

The Tollowing property is also implicit in the above proof.

Corollary 2.7.1.A (23 If the isofield R issuchthatR={(0,x|x eR1=1(0, 1)
), then R =~ Im C with respect to product (2.7.9) and (2.9.10).

For completeness we point out that the octonions O are locally isomorphic
to the realization # =Q % Q essentially along the lines for ## =C %X C=~ Q.
Consider again the binary realization of the elements, 2 = {a| , a,), although now a,
and a, represent quaternions, and introduce the isomultiplication in #

(al,az);‘(bl,bz) r= (albl‘Ezaz, azﬁl+b2a1), {2.9.11)

where ay, by €Q, k = 1, 2, with the additional multiplication for the elements (0,
a)

(0,2)%(0,b) =[(0,a)=(0,-1)] x(0,Db). (29.12)

Then, as it was the case for quaternions, ® can be decomposed into the tensorial
product of - the following two parts

f = ((a,0)]aeQ1=(1,0)), #;, = ({0,a)]aecqQ,1=(0,1)}.
(29.13

The local isomorphism $; = Q is trivial. To identify the role of $, note that
a%b=af{D%b @ N=[abD%0-DI%bll,D. (2.9.14)
Moreover, also as in the case of quaternions,
(0, 1‘)%25 =6%(0,0) =b, 0a%(0al)=1(0,1, 3a=0 (29.15)
and
[{0,2) %, (0, D) 1%,(0,c) = (0,8) %[{0,D)*,(0,c) = (0,cba).  (29.16)

Thus, in the above considered realization with isomultiplication (2.9.15) and (2.7.16)
# is locally isormorphic to the octonions.
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APPENDIX 2.A: “HIDDEN NUMBERS” OF DIMENSION 3,5,6,7

Historically, the conventional numbers were studied via the solution of the
following problem (see, e.g., ref. [8)

(a2 +af+.. +a2)x(b2+b2+..+b2) = A%+ A2+ .. +A2, (2A.la)
Ay = X oCrs 3 bg - (2.A.1b)

where the a's, b's and c’s are elements of a conventional field Fla,+x) with
familiar operations + and . As well known, the only possible solutions of
problem (2.A.1) studied by Gauss [1], Abel [2], Hamilton [3], Cayley [4], Galois [5],
Albert [12], Jacobson [13] and others are of dimension 1, 2, 4, 8 (Theorem 2.1.1).

The isotopies and pseudoisotopies of the theory of numbers creates the
problem of the possible existence of “hidden numbers”, that is, new solutions of
dimension different than |, 2, 4, 8 which are hidden in the cperations * and/or
+, This problem, studied for the first time in ref. [24], essentially asks whether the
classification of Theorem 2.1.1 persists under isotopies, pseudoisotopies and their
isodualities, or it is incomplete.

It is easy to see that the reformulation of problem (2.A.1) under the
isotopies of the multiplication x = % = xTx,1 - T = T7!, does not lead to
new solutions. [n fact, Problern (2.A.1) under lifting x — X is given by

(a2 +a2+..+a,2)% (b2 +b2+ .. +b.2) = A2+ A2+ . +A2 (2A22)
where the a’s, b's and c’s now belong to an isofield of the type F{a,+%), in which
case 1 is an element of the original field F (Proposition 2.3.1). Problem (2.A.2) can
then be written in conventional operations

(a2 +af+..+a2tx(b2+n2+ . +b2) =T2(A% A2 .+ A2 (2A.3)
Ay = T2 a; by, n=§ (2.A.30)
The substitution of the latter expression into the former, then recovers Problem
{2.A.1) identically for liftings of Class I, II, and IiI. The reformulation in the
isofield F(a,+%) is also equivalent to the original one. We can therefore summarize

the studies of this section with the following generalization of Theorem 2.1.1:

Theorem 2.A.1 [24} All possible isonormed isoalgebras with multiplicative
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isounit of Kadeisvili's Class I over the isoreals are the isoalgebras of dimension 1
(isoreals), 2 (isocomplex), 4 (isoquaternions) and 8 (isooctonions), and the
classification persists under isoduality.

Nevertheless, there exists a third formulation of pseudoisotopic type
{Proposition 2.3.3 and Definition 2.3.3) characterized by the further lifting of the
addition

+>3=+K 0—+0=-K,KR=Kx1 12.44)
under which problem (2.4.2) can be rewritten over the pseudoisofield #a,#%)
(3248237 3.2)% (D23 6,24 .. #6,.2) = A2+ A2+ % A2, (2A5)
&y = Zr,s Cprs * 8 X By =1 Z‘r,s Ckrs ar Dg}T = Ag xT, (2.A.5b)
and can be rewritten in conventional operations
[la% a2+ +ap? )1+ - K11 T [(b)%+ b2+ .42)1 +(n-1) K1] =

= (A2+ AL+ + A2 )T+ (n-1) KT, B = Ayl (2.A.6)
where we have the cancellation of the isotopic elernent as in the preceding cases,
but the preservation of the additive “degree of freedom” K.

The conjecture of the existence of “hidden numbers” was therefore
formulated in ref. [24], specifically, under the pseudoisofield F(a,+X), that is,
under the loss of the distributive law (Proposition 2.3.3).

We here limit ourselves to the following example of "hidden number” of
dimension 3

(123 2 3 32)%(82+02+72) = 122 + 222 & 302, (2.4.7)

Note that the combinations for the elements in the r. h. s. do exist in terms of
elements in the L. h. 5.

12 = 2x6, 24 =2x5+2x7, 30 = 3x3 + 3x7. (2.A4.8)
Problem {2.A.7) can then be writlen
[(P+22+2)1+2KT1]TI(52+62+72) 1+2K1] =

= (122 + 242+ 302)1 + 2K1, (2.A.9)
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which reduces to the following equation in K
4K2 + 246K - 80 = 0, (2.A.10)

with solution
K= 0.325..... (2.4.11)

However, the above solution is not an integer. This implies the loss of closure
under isoaddition (see the comments after Proposition 2.3.3). As a result, starting
with an original set of integers, one must complete them under pseudoisotopies
into the field of all real numbers. The issue left open in ref. [24] is therefore the
problem whether the above solutions do indeed constitute a pseudoisofield.

To understand the example one should recall that the solution considered
does not exist for ordinary numbers {because the dimension n = 3 is prohibited
by Theorem 2.1.1), i.e,

(2+2+2)(F+62+72) # 122 + 242 + 302, (2.A.12)

The reader can then construct explicit examples of “hidden numbers” of
dimension 5, 6, 7. :

Note that Problems (2.A.2) and (2.A.5) are restricted to dimensions n = 8. This
is due to-the fact that algebras of dimensions higher than 8 are no longer
alternative [8], and such a property is expected to persist under isotopies and
pseudoisotopies.

Genonumbers will be studied in Ch. 1.7. It is possible to show that the
results of this appendix essentially persist in the restriction of the multiplication
to be one-sided, and the differentiation of the multiplication into one to the left
and one to the right.

For further generalizations of conventional numbers via ternary operations
and other needs, we suggest ref. [28] and literature quoted therein.

Among endless novel problems identified by the isofields which are still
open at this writing, we suggest the study of the novel notion of "number with a
singular unit”, i.e, the isofields of Class IV which are at the foundations of the
isotopic studies of gravitational collapse and are vastly unknown at this writing;
or the study of isofields of isccharacteristic p # 0, to see whether new ficlds, are
permitted by the isotopies.

APPENDIX 2.B: THEORY OF ISONUMBERS

In the main text of this chapter we have studied the realizations of isonumbers
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and their isoduals as needed for the applications of Vols II and II1. The study of
the properties of isonumber and their isoduals is the subject of a new discipline
called by this author theory of isonumbers [24] which is given by the isotopies
and isodualities of the conventional theory of numbers (see, e.g., [30].

The latter theory is a notoriously vast field and its lifting via isotopies and
isodualities cannot possibly be studied here. We shall therefore content ourselves
with the mere indication that the covering theory of isonumbers exists and it is
nontrivial, Its detailed study must be conducted elsewhere.

Consider the field Fla,+x} of positive integers a, b, ¢, ... = 1, 2, 3, 4, ... An
integer a is said to be composite when there exist two integers b and ¢ other
than | and a such that a = bxc, otherwise the number a is said to be prime. The
numbers b and c are also called factors of a.

Consider now the isofield Fla,+%) of positive integers a, b, c, ... of
Proposition 2.3.1 with isoproduct bXc = bxTxc where T is an element of the
original field F, ie, T = 1, 2, 3, ... and, correspondingly, the isounit isT = 1, 1/2, 1/3,

We then have the isofactorization of an integer a when there exist two
integers b and ¢ such that a = bc, in which case the integers b and ¢ are called
isofactors. An integer a is said to be isoprime when there exist no integers b
and ¢ such that a = b%c. '

Note that the definition of isoprime is stronger than that of prime because
it excludes even the values 1 and a as factors. In fact, for the isofield Fla,+%) we
have in general aXl= axT = a and a7a =1 # 1. As a result, we have the Tollowing
properties:

Proposition 2,B.1: The number | and any positive infeger a = 1, 2, 3, ... are not
isofactors of the number a unless the unit is specifically assumed to have the
value L.

For instance, assume T = 2. Then a1 = 2xa and a 7a = a/2.

Proposition 2.B.2: The integer numbers 2, 4, 6, ... are necessarily composite
under the specific assumption of the number | as the basic unit.

For instance, assume T = 3. Then it is easy to prove that the integer 4 is
isoprime. '

Proposition 2.B.3: The integer numbers 1, 2, 3, 5, 7, 11, ... are necessarily prime
under the specific assumption of the number 1 as unit.

For instance, assume T = 5, then the number 5 is no longer prime because it
admits the factorization 5 = 1X1, while the prime numbers are 1, 2,4, 7, 8, 10, 11, ....
The above results indicate that the notions of factorization and prime are
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not true axioms of the theory of numbers because they are are specifically
dependent on the selected unit and are not invariant under isotopies. This is
sufficient to illustrate the nontriviality of the theory of isonumbers and the
existence of corresponding generalization of the conventional theory [30),

An intriguing antiautormnorphic image of the theory of numbers, which is
absent in the conventional theory, is given by the isodual theory of numbers
which is based on the isodual field FO{ad+x3) with isodual unit 1¢ = -1, and
elements ad = ax19 = —a. The latter theory is significant to illustrate that the
various properties of the conventional theory of numbers are isoseifdual
(invariant under isoduality). In fact, if an integer p is prime with respect to the
basic unit +1, it is evident that the integer pd = ~p is also prime with respect to
the isodual unit -1.

The theory of isonumbers is only the first of a chain of liftings of the
conventional theory of numbers which is permitted by the generalization of the
basic unit. Additional generalizations are given by the theory of genonumbers
and the theory of hypernumbers and their isoduals indicated in Ch. 1.7, as well as
the theories of pseudoisonumbers, pseudogenonumbers and psecudohyper—
numbers and their isoduals.

In conclusion, we can say that, after its identification since biblical times,
the number +1 has remained for thousands of years the true, ultimate foundatton,
not only of all of mathematics, beginning with the theory of numbers, but also all
- of quantitative sciences which are evidently. defined on conventional fields of
numbers. A primary objective of these volumes is to indicate that the removal of
the biblical restriction of the unit to +1 and the assumption of an arbitrary
quantity as unit implies a genuine broadening of all mathematical and
- quantitative sciences into chains of diversified new disciplines with intriguing
and basically novel developments and applications.

APPENDIX 2.C: ISOCRYPTOLOGY AND PSEUDOISOCRYPTOLOGY

One of the first practical applications of the theory of numbers is in the security
of Governmental, banking and industrial information via a discipline known as
cryptology Isee, e.g., [31].

One of the first practical applications of the theory of isonumbers,
genonumbers, hypernumbers and their pseudo-formulations is for the
improvement of said security of information via new disciplines here called
isocryptology, genocryplology, hypercryptology, pseudoisocryptology, etc.

As well known, all conventional cryptograms can be “broken”, that s, it is
possible to identify their “key” in a finite time via a sufficiently powerful
computer. The main idea of the isocryptograms is that the use of the theory of
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isonumbers, rather than that of numbers, can improve considerably the security
of the information evidently because we now have numbers with infinitely
possible units. Thus, the solution of the cryptogram now requires the
identification of its "key” as well as the identification of the selected isounit.

The pseudoisocryptograms offer even better security because of Lhe
availability, this time, of two different and independent infinite possibilities, the
additive and the multiplicative isounilts.

As an illustration, consider the circular arithmetic modulo m on the field
Fla, %) of integers a = 0, 1, 2, .., with additive unit 0 and multiplicative unit 1,
were addition and multiplication are first done ordinarily and then the result is
subtracted by m after discarding all multiples of m {from which we have the
name of “circular arithmetics”, as realized, say, in the measure of time via hours
in which case m = 12, or in the measure of one hour in which m = 60, etc). As an
example, for m = 8 we have

6+ 4 =2 (because = 10 - 8), (2.C.1a)
6+7+4= 1(because = 17 =238 -+ |), (2.C.1b)
2¢2 = 4 (because = (%8 + 4), (2.Cc.1c)
6x4 = 0 (because = 24 = 3><8).l {2.C.1d)

When m is prime the circular arithmetic modulo m is that of the Galois fields.

Consider now the pseudoisofield Fla,+%) of integers a = 0, 1, 2, 3, ... with
isoaddition + = + R +, additive isounit 0 = -R, R = 1, 2, 3, ... € F,
isomultiplication % = xTx, and multiplicative isotopic element T =2, 3, .. € F.

The circular isoarithmetics modulo m defined over Fa, %%} is then given
by the pseudoisoaddition and isomultiplications with the result pseudoisosub-
tracted by m after ignoring all isomultiples of m, i.e., 1Xm, 2m, 3%m, etc.

Consider for instance m = 8 as before, with additive isounit K = 2 and
multiplicative isotopic element T = 3. Then,

6+4=>6(because =6+2+4=12+2+(-8)), {2.C.2a)
6F+7+4=15(because=6+2+7+2+4=21=0%+2-8), (2C2Db)
2%2 = 6 {because = 2¢3x2 = 12=0%8 + 2 - 8, {2.c.2c)
6%4 = () (because = 6x3x4 = 72 = 3%g). (2.c.2d)

The improved security in the transition from conventional circular
arithmetics modulo m to the pseudoisotopic images is then evident. In fact, the
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“key"” to find in the former case is only one number, the number m, while in the
latter case one has to find three independent numbers, m, K and T.

The application of the above results to alphabetic isocryptograms is
straightforward. The English alphabet is composed of 26 letters, and can
therefore represented with the circular isoarithmetics A =0, B=1,C =2, ..
modulo 26 on the pseudoisofield F(a, %%} with a transparent increase of security
‘over conventional cryptograms, such as the Vigenére Cryptogram [31].

Conventional binary codes are circular arithmetics modulo m = 2 with
numbers ¢ and 1 over the conventional field of integers Fla,+x) with additive unit
0 and multiplicative unit 1. They too can be evidently lifted into pseudoisobinary
codes constituted by the circular arithmetics modulo m = 2 with two numbers 0
and 1 defined over the pseudoisofield Fa,#%) and therefore possessing two
infinite degrees of freedom, the additive isounit 0 = + K € F and the
multiplicative isotopic element T € F. The pseudoisotopies are applicable to
current codes, such as the data encryption standard (DES) with an increase in
security such to warrant their study, which evidently has to be conducted
elsewhere.

Further, more compiex cryptograms even more difficult to break are given
by the pseudogenocrypfograms, in which we have the additional, hidden
selection of the ordering of the addition and multiplication to the left and those
to the right whose resulits are generally different among themselves, and the yet
more complex pseudoypercryptograms in which, besides all the above, the result
of each individual operations of addition and multiplications is given by sets of
numbers [32].

APPENDIX 2.D: INAPPLICABILITY OF TRIGONOMETRY

Trigonometry is a basic tool of quanturn mechanics, e.g.,, because trigonometric
functions are fundamental for the characterization of spherical harmoenics and,
thus, for the study of angular momentum in vacuum (e.g., that of electrons in
atomic orbits).

It is important to see that conventional trigonometry is inapplicable in
hadronic mechanics, so as to prevent a host demonstrable, yet generally
undetected inconsistencies and misjudgments.

To state it differently, because of protracted use, noninitiated researchers
often approach the problem of the interior angular momentum (e.g., the angular
momentum of an electron when in the core of a collapsing star) via the use of
conventional trigonometry, related spherical harmonics, and corresponding
conventional local-differential formulations (say, in Euclidean space). In so doing,
however, they completely ignore the effect to be described caused by the
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hyperdense medium in the orbital metion, thus de facto ignoring the presence
of the interior of the star, without any real departure from the original motion of
the atomic electron in empty space.

Let us consider the conventional Gauss plane [I] with x- and y-axis (the
conventional two—dimensional Cartesian plane). Its trigonometric quantities can
be defined via the distance D of a point Py{x , y;) from the origin

D = (Xlz + le)* , {2.D.1)
the related Pythagorean theorem
X2 + y,2 = D2, (2.D.2)

and the cosine of the angle a between two vectors leading from the origin to
two points Py{x;, y() and Py, y5)

X1 Xg ¥ Y1 Y2
Cos a = p SISV 5T } (2D.3)
(Xl + ¥ ) (Xz Ty )

The above elementary and familiar notions are inapplicable under isotopies.
To begin, we have the loss of straight lines in favor of the most general possible
.curvature, that dependent also in velocities and acceleration. Second, the notion
of conventional distance is inapplicable, e.g, because the conventional product “x
y” now has no mathematical or physical meaning under isotopies. Third, the
conventional Pythagorean theorem has no mathematical or geometric sense
- under isotopies. Thus, the very notion of "angle” between two intersecting
“straight lines” in the Gauss plane cannot be preserved for curved lines in our
isogauss plane.

The reconstruction of trigonometry under isotopy shall be studied in Ch. .5
as parte of the study of the isogeometries.
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4: ISOSPACES AND THEIR ISODUALS

3.1: STATEMENT OF THE PROBLEM

The fundamental representation spaces of contemporary physics are the 3-
dimensional Euclidean space E, the (3+!)-dimensional Minkowski space M, the
(3+1)-dimensional Riemannian spaces R, and others well known spaces.

All these spaces are dependent on the field in which they are defined, the
field of rea! numbers R = R{n,+x). The Euclidean space can then be written

E=ErsR):r={(x,x%x3), 8=diag.(,1,1), (3.1.1a)
ré = x 8ij x=xlxl+ x5 + x3x3 € R=Rin+x, (3.1.1.b)

where i, j= 1,2, 3and & is the Euclidean metric, the Minkowski space can be
written

M=MxnR), x=0,x?), x*=ct, m=Diag(L1,1,~1), (3.1.2a)
x2 = xH My x¥ = xxb+ x52 + x38 - x*x? € R+, (3.1.2b)

where u, v = 1, 2, 3, 4, ¢, is the speed of light in vacuum, m is the Minkowski
metric; and the Riemannian spaces can be written

R=RxgR, x =(r,x!), g=gx =g, Det.g=o0, (3.1.32)
x2 = x gw(x) x¥ € Rn+X, {3.1.3b)

where glx) is the Riemannian metric.

By inspecting these structures, and as it already emerged from the study of
isonumbers of the preceding chapter, it is evident that the isotopic generalization
of numbers and related fields implies a corresponding, necessary generalization
of all conventicnal spaces of current use in mathematics and physics.
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At a deeper study, it emerges that, for evident mathematical consistency,
the isotopies of ordinary numbers imply compatible Iliftings of all mathematical
structures used in quantum mechanics. In fact, the isotopic generalization of
conventional spaces implies the necessary, corresponding generalization of the

'EXTERIOR DYNAMICAL PROBLEMS IN VACUUM:
EUCLIDEAN, MINKOWSKIAN AND RIEMANNIAN SPACES

%/\A_’

INTERIOR DYNAMICAL PROBLEMS WITHIN PHYSICAL MEDIA:
ISOEUCLIDEAN, ISOMINKOWSKIAN AND JSORIEMANNIAN SPACES

FIGURE 3.1.1.As well known, the Euclidean {3.1.1), Minkowskian (3.1.2) and Riemannian
spaces (3.1.3) are the Newtonian, relativistic and gravitational representation spaces,
respectively, of the exterior dynamical problems. As such, they provide corresponding
geometrizations of the homogeneity and isotropy of empty space (vacuum). In this
chapter we shall study the isotopies of the above spaces under the names of isocuclidean,
isominkowskian and isoriemannian spaces which were specifically conceived by this
author (1] for the description, this time, of the corresponding interior dynamical
problems. As such, they provide corresponding geometrizations of the inhomogeneity
and anisotropy of physical media. In this figure we illustrate a central objective of
isospaces, a quantitative representation of the deviations from motion of an
electromagnetic wave in empty space caused by motion within a physical medium such
as our atmosphere {which is manifestly inhomogeneous, because of the local variation of
the density, and anisotropic, because of the intrinsic angular momentum of Earth) A
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known deviation is the replacement of the constant speed of light in vacyum ¢, with a
locally varying speed ¢ = c,/n where n is the local index of refraction. An objective of
isospaces is to provide quantitative predictions suitable for experimental tests of
additional deviations from motion in empty space expected from the inhomogeneity and
anisotropy of the medium itself. Primary emphasis is put in achieving, first, a purely
classical description of said inhomogeneity and anisotropy studied in this chapter and in
Ch. L5, with operator descriptions to be considered only thereafter in Vol 1118 Another
important distinction is that between the isospaces themselves, studied in this chapter,
and the isogeornetries defined on them, which are studied in Ch. L.5.

transformations defined on them. In turn, the lifting of the transformations
implies that of algebras, groups, geometries, etc., according to the sequence:

isonumbers — isofields — isospaces ~» isotransformations
— isoalgebras — isogroups — isosymmetries —
— isorepresentations —+ isogeometries, etc.

(3.1.4)

In this chapter we shall study the isctopies of the conventional spaces
proposed for the first time in ref. [1] of 1983, under the name of isotopic spaces
or ispspaces for short, as the foundations of the isotopic generalization of the
Lorentz group O(3.1) and of Einstein’s special relativity for interior dynamical
problems. The isospaces were then applied in ref.s [2,3] for the construction of the
isotopies of the rotational symmetry O(3), as well as for ‘the formulation of a
general theorem on symmetries under isotopies. [sospaces were then used in
monographs [4,5] for comprehensive applications in classical mechanics.

The isodual spaces and isodual isospaces were identified for the first
time by this author in ref.s [2,3] and then applied in classical mechanics in
monographs [4,5]. The first operator applications of isodual isospaces were done
in ref. [6] while the most recent advances can be found in ref. [7). A mathematical
presentations is available in memoirs [8,9].

A first experimental verifications of isospaces can be found in ref. [10]
which computes a modification of the Minkowski metric in in the interior of
picns and kaons via conventional gauge theories in the Higgs sector. Additional
independent experimental verifications can be found in ref.s [11,12] on the

! This is done to void the predictable attitude of attempting the interpretation of
interior conditions via conventional means, such as inelastic scatterings of photons on
atoms which, as such, reduce the interior problem to conventional exterior conditions.
This attitude is precluded in these volumes because it eliminates the central geometric
characteristics to be described, the inhomogeneity and anisotropy of the medium (recall
the “No reduction theorems” of Sect. 1.2). Needless to say, we shall indeed consider second
quantization and related photons, but only after achieving a classical and direct
representation of the inhomogeneity and anisotropy of the medium in which the
dynamical evolytion holds.
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behaviour of the meanlives of unstable hadrons with speed. Numerous additional
applications and experimental verifications wilt be studied in Yol. II.

The “direct universality” of isospaces was first proved by Aringazin in ref.
[13]. Additional studies on isospace were conducted by Lopez [14] in gravitation.
An independent mathematical review of isospaces can be found in monograph
[15].

In this chapter we shall study isospaces at the purely classical level in
Kadeisvili’s classification (Sect.s .15 and [.2.3). The study of pseudoisospaces will
be left to the interested readers. The isogeometries built on isospaces will be
studied in Ch. L5 also at the classical level. Operator formulations of both
isospaces and their isogeometries are studied in Vol. IL.

3.2: ISOSPACES AND THEIR ISODUALS

Let Fla,+x) be a field (Def. 2.3.1) with elements q, B, ..., conventional sum a -+ B,
multiplication a*g = aff and related additive and muitiplicative units 0, and I,
respectively. A finear space V(aF) (see, e.g, ref.s [16-18] for mathematical studies)
is a set of elements a, b, c,... over a field Fla,+x) such to verify the following laws
foralla,b,ceVanda,py €F

atb=b+a a+{b+c)=(a+b)+c (3.2.1)

and
a{pa) =(apla; ala+b)=aa+ab; (a+bla=aa+pa (322

plus, for every a € V, there exists an element -a such that
at(-a)l= a-a =0 (3.2.2)
From the above structural lines we can introduce the following:

Definition 3.2,1 [1,3t Given a linear space V(a,F) over a field Fla,+x), the Class
I “isotopes” V(a,F) of V called "isolinear spaces”, are the same set of elements a,
b, C,... € V although defined over the isofield of Class I #a,+%) (Def. 2.3.1) with
elements a = dl, B = Bl, conventional sum & + B, isomuitiplication a5 = a1B,
additive unit 0, and multiplicative unit 1 = 771, such to preserve ali original
axioms of V, ie,

a%(B%a)=(a%Bl%a a%la+b) =d%a+ akb, (3.2.42)

(3.2.4b}
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forall a,beVand B ¢ F The “isodual isolinear spaces” VHa%t9) are
Class IT images of V(a,F) under the isoduality

T - 19=-1, a — al=-a, (3.2.5)
and, as such, are defined over an isodual isofield a9 +%9) of Class I1.

Note the lifting of the field, but the elements of the vector space remain
unchanged. The interested reader can prove as an exercise a number of properties
of isolinear spaces and their isoduals via a simple isotopy of the corresponding
properties of linear spaces [16]. One which is particularly relevant for these
volumes follows from the invariance of the elements a, b, c, ... under isotopy as
well as under isoduality and can be expressed as follows.

Proposition 3.2.1 [4} The basis of a (finite-dimensional) linear space remains
unchanged under isotopy up to possible renormalization factors.

The above property essentially anticipates the fact that, when studying
later on Lie-isotopic algebras and their isoduals, we shall expect no alteration of
its basis because Lie algebras are, first of all, linear spaces. In turn, this implies
that hadronic mechanics preserves the conventional total conservation laws
because, as well known, the generator of Lie symmetries are conserved quantities.

Linear spaces V are also called vector spaces [16} in which case their
elements a, b, ¢, are called vectors. The isotopes V are then called isovecior
spaces and 99 are called isodual isovector spaces. Their elements a, b, ¢ are
then called isovectors and isodual isovectors , respectively [4], Note the
existence of the simpler isodual vecfor spaces vd with isodual vectors.

Finally, note that the formulation of isospaces via Kadeisvili's Class II]
unifies: vector, isovector, isodual vector and isodual isovector spaces.

A metric space [16] hereon denoted S(x.g,F) is a (universal) set of elements
X, ¥, Z,.. over the fields F = Fla,+*) equipped with a nonsingular, and Hermitean
map (function) g: S x S - F, such that:

glx, y) 20, (3.2.6a)
gx,v)=gly,x) vx,veS gk y)=0iffx=y, (3.2.6b)
glx, yt=glx, 2 +gly,z), Vx vy,z€S. {3.2.6c)

A pseudo-metric space, hereon also denoted by S(x,g,F), occurs when the
first condition (3.2.6a) is relaxed. Finally, recall that only metric or pseudo-metric
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spaces over the reals F = R(n,+%) are used in contemporary physics to
characterize our physical space-time. Spaces over the complex numbers, such as
the complex Hermitean Euclidean spaces E(z,8,C) are used for unitary symmetries,
such as SU(2) or SU(3).

Suppose that the space S(x,gF) is n-dimensional, and introduce the
contravariant components x = (x3, y =(y",i = 1, 2, .., n. Then, the familiar way
of realizing the map glx, y) is that via a (Hermitean) metric g of the form

glxy) = x! 8ij v, Det.g # 0, g = gf. (3.2.7)

The axiom g(x, y) > 0 for metric spaces then implies the condition that g is
positive—definite, g > 0.

A celebrated physical example of metric spaces is the Euclidean space
(3.1.1). Pseudo—metric spaces of primary physical relevance are the Minkowski
space (3.1.2), and the Riemannian spaces (3.1.3).

The simplest possible way of constructing an infinite family of isotopes of
S(x,g,F) is by introducing n-dimensional isounits of Class I

1=, ij=12.n | (3.2.8)
with isotopic elements ’
T =171 = (1)) (329)
Then, we can introduce the notion of the isomap g 8% § — [ with realization
8k, y) = (x! gij vl e F (3.2.10)
where the quantity
§=Tg=(Tkg;) (32.11)

is the isometric [1].
The basis e =g, i=1, 2 .., n, of an n-dimensional space Sx,gF) can be
defined via the rule

gle;, e ) = gjj - (3.2.12)
Then, the isobasis is characterized by
8e 85 = g (3.2.13)
The above isotopic generalizations can be expressed as follows.

Definition 3.2.2 [l: The “isotopic liftings” of Class I of a given, n-dimensional,
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metric or pseudometric space S(xgF) over the field F = Fla,+x), called
“isospaces”, are given by the infinitely possible “isospaces” 3(x,8,F) characterized
by: a) the same dimension n of the original space b) the isotopies of the
original metric g into one of the infinitely possible nonsingular, Hermitean
“isometric” § = Tg with isotopic element T of Class I depending on the local
variables x, their derivatives %, X, ... with respect to an independent variable t,
the local density |, the local temperature T, the local index of refractionn, as
well as any needed additional quantity (such as wavefunctions ¢ and their
derivative for operator formuiations)

g~ g=Tg ' (3.2.14a)

T=1sx% %0 0.0, dtT =0, TH=1>0, (3. 2.14b)
det. §#0, g=gl, (3.2.14¢)

Xk =xk, Ry = B! = Ex! # xy = gx, (3.2.140)

and c) the lifting of the field Fla,+x) into an isotope of Class I Fa,+*) whose
isounit 1 is the inverse of the isotopic element T, ie,

T=11"1, (3.2.15)
with “isocomposition” on F
®R9 = &, Ty = Ex )1 =1&Ty =(x1g;y)1eF. (3.2.16)

The “isodual isospaces” of Class II 8% (93389 ) are given by the image of
8(x.g.,F) under isoduality and are defined by the map

g » g8=1dg 1= -7, (3.2.17a)
1 - 1W=(19)"l=_1, (3.2.17b)
¥ - 38 =-%, (3.2.17¢)

with “isodual isocomposition” in 9
&Iy9 = x, My = (19%, 19 =

= 1610 y) = GI9RYF0 ¢ B9 (32.18)
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"A few comments are now in order. The first and geometrically most
dominant aspect is that, because of the unrestricted functional dependence of the
isotopic element T, the isometrics g = Tg are generally of integral type.

Thus, the.isotopic liftings S(x,gF} = 8(x,g,F) imply a nonlocal-integral
generalization of the original local-differential space. In particular, isospaces
require a suitable integral topology for their rigorous treatment which is vastly
unexplored at this time at the pure mathematical level.

However, all integral terms are embedded, by construction, in the isounits
1. On the other hand, topologies are known to be insensitive to the functional
dependence of their own units, provided that they are positive—definite. This
implies the particular integro—differential topology of hadronic mechanics
whereby conventional topologies hold everywhere except at the unit (see Fig. 1.4.1
for a conceptual basis and Chapter L6 for a treatment).

Moreover, again from the arbitrariness of the functional dependence of the
isotopic element T, one can readily see that the isotopies Six,gF} — S(x,g,F}
imply nonlinear, nonlocal and noncanonical generalizations of the original
spaces, where the nonlinearity is in all variables and their derivatives.

Finally note frem an abstract viewpoint that the distinction in the use of
different fields is meaningful in the conventional metric or pseudo-metric
spaces. However, at the isotopic level such a distinction cease to exists because of
the isotopic unification of all fields and isofields of Theorem 1.2.9.1.

Isospaces can also be distinguished via Kadeisvili's classification depending
on the characteristics of the unit (Sect. 1.5) into:

Isospaces properly speaking (Class I),
isodual isospaces (Class [1}
Indefinite isospaces (Class [11),
Singular isospaces (Class 1V], and
General isospaces (Class V).

In this section we shall solely study isospaces of Classes I, IT and III, with few
comments on isospaces of Class IV.

An important property derived from Proposition 1.3.2.1 is that the basis of
a melric or pseudo-elric space remains unchanged under isotopies (except for
renormalization factors).

As indicated earlier, isospaces are bona-Tide nonlinear, nonlocal and
noncanonical generalizations of the original spaces. Despite the above differences,
we have the following

Theorem 3.2.1 [1}: Isospaces of Class I 8(x,8,Y) .(isodual isospaces of Class II
894,59 09 are iocally isomorphic to the original spaces Six.g,F) (isodual space
s9xd,gdF9).
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The above simple mathematical property has fundamental physical
implications because, since a given space Slx,g,F) and its isotope 8&x.g,F) are locally
isomorphic, so are expected to be the corresponding groups of isometries.

This implies that the isotopies of Class I of space-time symmetries such as
the rotation, Lorentz, Poincare and unitary symmetries will be locally isomorphic
to the original symmetries. Nevertheless, the explicit form of the transformations
will be generally nonlinear, nonlocal and noncanonical, thus achieving the desired
structural generalization of conventional symmetry transformations Lo represent
interior problems, while achieving a geometric unity with the axiomatic structure
of the exterior problem.

Note the necessity for these isomorphisms of the joint liftings

g ~ §=Tg and F = F 1=77L (3.2.19)

In fact, a lifting of the type Six,g,F) = S&gF), g =T g, without the joint 1ifting of
the base field is not an isotopy and the spaces S(x,g,F) and S(x,g,F) are generally
non-isomorphic .

The same mechanism of joint lifting of the metric and of the field
characterizes the isodualities of the Euclidean spaces E(x,8R) ~ E%x%,69R%), the
Minkowski space MxnR) = M¥xdm9RY and the Riemannian spaces R(x.gR) —
7%x9. g9 RY), which are at the foundation of our characterization of antimatter {6].

From property (3.2.18) we have the following

Proposition 3.2.2 [4,5} Compositions (x, y) on a given space S{x,gF) and their
isotopes (X,”y) on isospaces 8(xgF} are isoselfdual, ie, invariant under
isoduality ‘
&9 = (21g; 91 = &9 = (954,599, (3.2.20)

The above simple property has rather important physical implications
studies later on, such as the novel universal invariance of physical laws under
isoduality (established at the classical level in monograph [5] and studied at the
particle level in these volumes), or the causality of motion backward in time
referred to an isodual field {because evidently equivalent to motion forward in
time referred to an ordinary field).

Scalar functions f(x) on isospaces 8(,8,F) are ordinary functions in the new
coordinates X. An scalar isofunction T(x) on 8X.gF) is a function with values on
the isofield, i.e,

TR = 1 e F. (3.2.21)

As it happens Tor isonumbers, conventional elements of a space can be preserved
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(although their operations are lifted), or they can be themselves lifted. As we shall
see, this implies nontrivial consequences in Tunctional analysis, e.g., the existence
of two, rather than one, isotopies of Dirac’s delta function.

[t should be indicated that in Definition 3.2.1 the local coordinates X €
8(x,g,F) are assumed to be ordinary scalars and not isoscalarsithat is, they do not
have the isounit as factors). One can then build an isospace 3(k,g,F) with
isocoordinates -

K=xk1, (3.2.22)

in which case all products have to be isotopic, thus resulting in the same
composition law

¥ = isgxx o= (xgx . (3.2.23)
The interchange between the isotopic element and the isounit

T - 1, (3.2.24)

is called isoreciprocity map [6].
We Tinally note the Tollowing important property:

Proposition 3.2.3 {1} The basic isounits of any given isospace coincide with that
of the underlying isofield.

This properly does not hold for the conventional case in which the unit of the
space is the n—dimensional unit matrix 1 = diag. (1, 1, .., 1) while that of the base
‘field is the number +1. Nevertheless, one should note that the isotopic methods
of the preceding chapter readily permits the reformulation of the conventional
metric or pseudo—metric spaces in which the unit of the space and of the field
coincide and are given by I = diag. (1, 1, ..., 1).

By recalling that the basic unit of hadronic mechanics, Eq. (.11} is outside
conventional Tields, and by recalling Proposition [.2.3.1 and 1.2.3.2, the isospaces of
primary relevance for hadronic mechanics are given by the structures 5(x,8,F) of
Definition 3.2.1 specialized to the cases of isoreal and isocomplex fields F = R, C,
plus their image under isoduality $(%x%§9,R% and under isoreciprocity (xR,

A third class of generalized spaces are conveivable, those based on the
hyperstructures, which are expected to characterize hyperspaces over the
hyperfields indicated in Ch. [.2. These latter spaces are excessively general Tor
the analysis of these volumes and will be ignored for simplicity.
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3.3: ISOTOPIC UNIFICATION OF SPACES AND
ISOSPACES

In Sect. [.2.9 we initiated our presentation of the unifying power of isotopic
techniques, beginning with the unification of all conventional numbers into the
single abstract notion of isoreal numbers R of Class IIL.

We now illustrate this unifying power for spaces and isospaces. We shall
then show in Sect. .37 that this is not a sterile mathematical properties, because
it permits the geometric unification of the special and general relativities which
in turn, is at the foundation of their isotopies studied in Vol. II [5].

The capability of isospaces of unifying all conventicnal spaces was
identified by the author in their original proposal [1l. By using subsequent
advances, the property can he expressed as follows:

Theorem 3.3.1 [loc. citl All possible metric and pseudometric spaces in n—
dimension S(x,g,F} plus all their infinitely possible isotopic images 3(x.8.F), the
isodual spaces S%x%g%F% and the isodual isospaces $9 R4g4FY can be
unified into one, single notion, the abstract n—dimensional isoeuclidean space
&%,8.00 of Class 1] over the abstract isoreals #.

In fact, the assumption of Class I1I implies the relaxation of the positive-

~or negative—-definite character of the isounit. The property then follows from the

fact that all infinitely possible metric g and isometrics g, as well as all their

possible isoduals gd and §d of the same dimension can be unified into the
isotopies of the Euclidean metric 8 = diag. (L, 1, .., 1)

8§ - 8=1T8 T=g orgorgd orgd 33.1)

Thus, from a mathematical viewpoint, there is no need io study the
isotopies of individual spaces, because those of the fundamental Eyclidean space
are sufficient, and inclusive of all others. This is the reason why ref. [1] studies
the isotopies of the (3+1)-dimensional Minkowski space as a particular case of
the isotopies of the 4-dimensional Euclidean space.

Note that the distinctions between spaces over the real or complex numbers
are lost under Theorem 3.3.1 because all fields and isof 1e1ds are particular case of
the abstract isoreals # (Theorem [.29.1).

3.4: ISOEUCLIDEAN SPACES AND THEIR ISODUALS

Isospaces are so fundamental for the study of hadronic mechanics to warrant a
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brief individual study of the most important ones prior to the study of their
geometries. We therefore begin with the following:

Definition 3.4.1 [Ik The liftings of the conventional n-dimensional Euclidean
spaces Elr,8R) over the reals Rin,+,X), Eq.s (3.1.1}, into the “isoeuclidean spaces”
of Class I are given by

Er3R) - EESR), (3.4.1a)
8=l = 8= Tt Tnls (3.4.1b)
det5=1#0,8=8 — det.8=0, & = Bl (3.4.1c)

Rn+x — RA+%), fi=nl, 1=11=3%" (3.4.1d)
jrj -1 =G = G8D1 =
= (SEB1 = 168D = [Hynr 1) HI1 € R, (3.4.1¢)

t= (%) = (1}

2= (= "ai

T, lf'k = Ski‘i'i = Ski I'i e Ty s (3.4.1f)

where the isofield R(D,+X) is of Class I. The “isodual isoeuclidean spaces” of
Class I are given by the isodual image of the preceding ones

EESR) - RIFdsdpd) (3.4.22)
3=Ts > 88 = P95 = -3 T¥=-1 (3.4.2b)
RE+H - RIGG+sD), nd = 419, 19 = -1 (3.4.20)

R=D=(78,1)1 (1929 = (3:Dd= (3dgd 10110 = 2 (3429
ij 1)
F - 1d=-%. (3.4.2¢)

The n-dimensional complex Hermitean Euclidean spaces E(z,8,C) with
separation

28z = doyzl (34.3)
is lifted into the "complex isoeuclidean spaces” of Ciass |
B30 - (£182) 1 = ("z_iSij )1, (3.4.4a)
5=1T8,7=1,1="11>0. (3.4.4b)

where upper bar denotes complex conjugation. The “isodual compiex Hermitean
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isoeuclidean spaces” are instead given by
BE392Y) (29789%) 19 = ( 799 209)9, (3.4.50)
84 = pdg, Md=-1, 19 = -1, (3.4.5h)

We now outline a few mathematical and physical aspects of isoeuclidean
spaces Tor subsequent more detailed treatment. The applications of isoeuclidean
spaces are of three primary types:

A) Geometric applications. Recall that the conventional Euclidean metric
8 = diag. (1, L, 1) is a geometrization of the perfect rigid sphere with unit radius.
From their topological characteristics, isometrics of Class [ can always be
diagonalized. We can therefore always assume the realization of the isotopic
element in the diagonal form

T = diag. (b2, 0%, b ), b =bylt, 1, 1, 1,0 >0,k =1,2,3, (346

where the b's are called characteristics functions of the isospace.

The Tirst geometrical application of isospaces is therefore that of
representing all infinitely possible deformations of the original perfect sphere 8
= diag. (1, L, I) into the ellipsoids with semiaxes

1 = diag. (b2, b2, b3 ?), (3.4.7)

where the functional dependence expresses the physical origin of the
deformations as due to local pressures, densities, temperatures, etc. We therefore
have the following:

Geometric meaning: The isounit permits a direct representation of the actual
nonspherical shape of a given body as well as the representation of all its
infinitely possible deformations.

As we shall see, this capability exists at the pure classical level [5] and then
simply persists under operator formulations prior to any second quantization or
use of form factors. .

The main geometric point addressed here is that extended, generally nonspherical
and deformable shapes are outside the representational capabilities of a Lagrangian or
Hamiltonian. This requires their classical representation with any suitable
quantity except the Lagrangian or the Hamiltonian. The classical representation
of extended, nonspherical and deformable shapes adopted in these volumes is that
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permitted by the generalization of the basic unit of the carrier space. Even
though not unique, the representation is simple, effective and “directly universal”,
that is, capable of representing all possible shapes (universality] directly in the
coordinates of the observer (direct universality).

It should be noted that the above features render applicable the
isoeuclidean spaces also Tor extended particles in vacuum, e.g., when they
experience deformations due te external fields, such as a charged sphere in
vacuum under the influence of an intense electric field. Even though there are no
nonhamiltonian interactions, the generalization of the unit is still effective, as
shown in details in ref. [5], because the physical event of deformation of shape is
conceptually, geometrically and analytically outside the representational
capabilities of the Hamiltonian.

B) Analytic applications. As ut is well known, nonrelativistic exterior
dynamical problems are representable via conventional analytic equations, such
as Lagrange equations, which are defined on the 3-dimensional Euclidean space
E(r,8,R) (plus an additional one dimensional space representing time, see below). In
this case the trajectory in vacuum is solely characterized by one single quantity,
the Lagrangian L =K -V, with kinetic K and potential energy V.

The main objective of the isotopies is the representation of interior
dynamical problems with Torces represented with the conventional potential ¥,
plus contact, nonlinear—nonlocal—nonlagrangian'7 forces due to the medium. In
thig latter case, the system is represented by two independent gquantities, the
Lagrangian L = K - V and the isounit 1. We therefore have the following

Analytic meaning: The isounit permits a direct representation of contact,
nonlinear-nonlocal-nonlagrangian forces for interior physical conditions.

The Lagrangian L must now be properly written in isoeuclidean space
B(r,8,R). This results in expression L{r,v) = K() - V(). v = dr/dt which is defined in
terms of the conventional contravariant coordinates T and velocities v, although
all their operations are now of isotopic character.

In particular, the isokinetic energy is given by

R =3+m¢® = im¥89 = +m il s, (348)

and the isopotential energy is given by the isotopic image of the function V(1)

I By “nonlagrangian” we mean hereon non-first-order Lagrangians, namely, equations
of motion which violate the integrability conditions for their representation via first-
order Lagrangians L = L{t, r, £}. Evidently, higher order Lagrangian may exist, e.g, L = L{t, ,
f, ¥). The point is that, there is no (conventional) Hamiltonian for a Lagrangian of order
higher than the first. The term "noncancnical” is then used as a synonym of “non-first—
order-Lagrangian”,
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(see Ch. 6), e.g., for the case of V(r) depending on the norm x
MW=vE: T = (81}, (34.9)

The isotopies of the analytic equations in which the above isofunctions are
defined with various examples are preliminarily studied in Ch. [.5 and then
studied in detail in Vol. II.

Even though not clairned to be unique, the above isotopic representation is
effective and "directly universal” in classical mechanics, that is, capable of
representing all possible Newtonian and non-Newtonian nonlinear, integro—
differential, nonselfadjoint systems [5], as we shall see in detail in Vol. II. Such
classical effectiveness and “direct universality” will then imply corresponding
properties in operator formulations, as studied in Yol.s Ii and II.

By adding the preceding geometric meaning of the isounit, one can see that
Isospaces provide a direct geometrization of the inhomogeneity and anisotropy
of physical media (Fig. 3.1.1). In fact, the inhomogeneity can be represented in
isospaces, e.g., via a dependence of the isometric 8 on the locally varying density
iL. The anisotropy, eg., due to the presence of an intrinsic angular momentum
along the direction T, is then representable via a factorization of such a preferred
direction in the isometric much along the Finslerian geometry, or via the
differentiations b) # by # bg.

Note that the representation is “direct” because occurring directly in the
- isometric itself; without any need of operator formulations or any use of
artificial or indirect approaches.

Thus, the transition from exterior to interior conditions is done via a
generalization of the basic unit I 1. A condition the reader should keep in mind
to avoid undetected inconsistencies {s-that in most physical applications the
isounits T are constructed in such a way to recover the conventional unit
identically in the exterior problem.

This condition can be realized by assurning that the entire matter of the
medium considered is enclosed in a minimal surface §° with local radius R° and
density |4, in which case

Trap =1 = diag. (L, L, 1), or Limy ol =1 . (3.4.10)

Note that the 3-dimensional Euclidean “space” is one. On the contrary, there
exist infinitely many 3—-dimensional isoeuclidean “spaces”. This is evidently due to
the infinitely possible isometrics & representing the infinitely possible physical
conditions of interior problems.

We finally remark that, when overall notions are needed, that is, the
quantities are referred to the physical medium as a whole, the characteristic b-
Tunctions can be averaged into constants



- 105 -

by = <bgl,r >, k=123 (34.11)

As we shall see, constant isotopic elements T and characteristic b°—quantities will
have numerous applications. The point to keep in mind is that such constancy is
in actuality an average over a rather complex functional dependence.

C) Algebraic applications: Recall that the unit I = diag. (1, 1, 1) of the
Euclidean space is the fundamental unit of the related Lie’s theory, e.g., the unit
of the group of isometries of the Euclidean space, the orthogonal group O(3). The
following properly is then consequential

Algebraic meaning: The isounit constitutes the basic generalized units of the
Lie-isotopic theory(studied in the next chapter).

As we shall see in the next chapter, the isotopies of Lie’s theory for the
achievernent of nonlinear, nonlocal and noncanonical realizations of conventional
space-time and unitary symmetries is based precisely on the isotopies [ — 1.

The following property is a consequence of Theorem 4.2.1.

Corollary 3.2.1A: Isoeuclidean spaces E(r8,R) of Class I (isodual isoeuclidean
spaces of Class I E9G939R%) are ocally isomorphic to the conventional
Euclidean spaces of the same dimension E(r,8R) (isodual Fuclidean spaces of the
same dimension E%(r¢39Rd)) .

We shall say that, from a geometrical viewpoint, Euclidean spaces and their -
isotopes of Class I are equivalent, as ensured by the preservation of the original
axioms, as well as the identity of the two spaces at the abstract level, and we shall
write E{r,3,R} ~ E(T,3,R).

We close this section with the identification of the isoeuclidean spaces used
in nonrelativistic hadronic mechanics, inclusive of a time component.

Definition 3.4.2 [51 The “nonrelativistic isotopic space-time” of hadronic
mechanics of Class I is given by the Cartesian product of two Isoeuclidean
spaces, one representing time and the other representing space with
corresponding isounits ?t and 1, isocomposition
BAR X BESR: ¥ = (1Tt} € B, 1 = T, hi=t (3412
2= (¥1st) eRr, 1= 171, (3.4.11)

and diagonal realization
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Ty = b, by = bgft,r, T, ) > 0, (34. 12a)
T = diag. (b%, by?, b?), b = belt, 1, £, 1, ..} > 0 (3.4.12b)

The “Isodual nonrelativistic isotopic space-time” of hadronic mechanics of Class
Il is then given by

edadpd ) x pdGdsdnd). (19124 = (£ 19,1)19, ¢ RY,, (34.132)
(1924 = (390 19579)10 g, (3.4.130)

19, = (4, 71=-1,, 19 = (145! =-1, (3.4.130)

1, =-b2, pd=-btrim7n ) >0, (3.4.13d)
T =diag. (- b2, - b2, ~bg?), bl=-bylt,r, 1,1 .)>0. (3.4.13¢)

As it is the case for all other quantities, the above definition implies the
existence of four distinguishable nonrelativistic times in hadronic mechanics:

Time, as the usual element -t of the field of real numbers R(t,+x);
Isotime, the element t=t1, € RE+H%) :

Isodual time, the element 9=t 19=-t ¢ RYtI+xd)

Tsodual isotime, the element 1% =119, = -t € RIRI+39)).

The following property is a consequence of the theory of isonumbers of
the preceding chapter.

Proposition 3.4.1: The direction of time (Eddington’s “time arrow”) changes sign
in the transition from our space-time to its isodual .

In fact, under isoduality, we have the map of our time t € R(t, Ry)

t>0 - td=t19=-t <o, (3.4.14)
and the same result occurs under isotopy.

The fundamental aspect here is the change of the unit of time in the
transition from one to another of the about different times, and a simiiar
situation occurs for space. As we shall see in Vols [i and I, this occurrence has
rather fundamental physical implications.

The isotopies of time have been introduced here via the purely
mathematical use of the methods studied until now. Nevertheless, as we shall see
in the next section, the time isotopies emerge rather forcefully from the
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nonrelativistic limit of relativistic isotopic theories.

3.5: ISOMINKOWSKI SPACES AND THEIR ISODUALS

We now study the central carrier spaces of the relativistic hadronic mechanics,
which can be introduced according to the following:

Definition 3.5.1 [1} The isotopic liftings of Class I of the conventional (3+1)-
dimensional Minkowski space M{(xnR) over the reals Rin+x) are given by the
Isotopes called "isormninkowski spaces”

MxnR) — M&,ﬁ,Ri, ' (35.1a)
n=diag(l, I, ,-1} - fj=Tk, % % 7. n.) 7, (3.5.1b)
detn=-170, n=7 — detf{=0, nf=H (35.1¢)

Rin+x) - R@B+X, fi=nl, 1= T, (35.1d)

=k = Y - =G0 = KT =
(T& YT =T TH =0 % %037 1T, (35.1¢)
o= (%) = (H) = 0, =T ¥ 5 = xV mv=1234, 8511
with diagonal realization of the isounit and isoseparation
1=diag (b2 by 2 b33 b42)>0, By =byk % ...)>0, (35.22)
%2 = (xlp2xl + 2022 + 3 b 28 - 21 e R. (3.5.2)

invariant measure

& = (- ditt Ry, 6)1, (35.3)
and characteristic constants
By = <blx% 0>, p=1234 (3.5.4)

derived via a given averaging procedure <..> The "isodual isorminkowski spaces”
of Class Il are given by
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MIGIARARD: 79 = T %, % L T )M = ~ 1, (3.5.5a)
¥=-1 =1l =-1, 9 =-%, (3.5.5b)

(33P0 = &30 = &I, T9xH19 = (1939, §91¢ =19 g9, 1959 -
B A 0 %, %, R 110 = 82 = [ % %) )7 ] (35.5¢)

with diagonal realization of the isodual isounit and isodual isoseparation
1= giag. (b2 -by %~ b3 2 -b2)>0, bd=-pk ..)>0 (356
(39P2%=(-x'p2x! - b2 - ¥3b28 + xipl2¥)19erd.  (356D)

Invariant measure
@24 = (+axtof, axV )10 = as? (35.7)

and characteristic functions averaged into constants
bt = - <yl %) >, L=1234. (3.5.8)

Again, we have four distinguishable types of spaces:

1) the conventional Minkowski space M(x,n,R), used for the representation
of point-particies in vacuuin,

2) the isominkowski spaces M{(x,i,R), used for the representation of
extended, nonspherical and deformable particles within physical media;

3) the isodual Minkowski space MYm%R%), used for the representation of
point—antiparticies in vacuum; and

4} and the isodual isominkowski spaces MHxf9RY), used for the
representation of extended, nonspherical and deformable antiparticles within
physical media.

The conventional Minkowski space is and will remain the fundamental
space for the geometrization of the vacuum (Fig. 3.1.1). The primary function of
isominkowskian spaces is to provide a relativistic geometrization, first, of
classical physical media (see also Fig. 3.1.1) and, then of the interior of hadrons,
upon suitable operator formulation. The primary geometric task is therefore the
representation of the deparfures from the homogeneous and isotropic vacuum
expected, classically, from physical media in general, and the deep superposition
of the wavepackets of the particles, for the case of hadronic matter at large.

In the latter case we recall that all massive particles have an
experimentally established wavepacket/wavelength of the order of 1 fm (10713
cm). But all hadrons have a charge distribution with a radius also of the order of
1 Tm. The region of space in the interior of hadrons are then expected to have a
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nonlinear, nonlocal-integral and noncanonical-nonhamiltonian structure for
which representation the isominkowskian spaces were built {11,

The isominkowskian characterization of. the interior of hadrons has
received numerous direct and indirect experimental verifications which will be
studied in detail in Vol. [II. We here limit ourselves to recall that
phenomenological calculations conducted in ref. [10] via the conventional gauge
theory in the Higgs sector identify the following moedification of the Minkowski
metric in the interior of pions and kaons

T = Diag.[(1-a/3),(1-a/3), (I -a/3), {1l +a)], (3.5.9)
with
a =~ 3.79%1073 for pions and a = +6.1x10™4 for kaons, (3.5.10)

It is evident that modified metric {3.5.9) is a particular case of the general
class (35.5.2b} for b°) = b = b3 =1b°

f] = diag.(b°12, bolz, b°32,“ b°42 ), (35“8)
b2 =1+ 12%x10°%, bZ= 1-379%x10" for pions, (35.11b)

| + 6.1x107* for kaons, (35.11¢)

n

bZ =1 - 2107, b2

Stmilarly, the phenomenological studies of ref.s [11] conducted also for the
kaons yield the numerical values

b2 = b2 =b°%?=b"2 =~ (.909080 £ 0.0004, b°,2=1.002+ 0007, (35.12)

which are remarkably close to value {(3.5.11c} for kaons.

Note the change of value {as well as of sign of the a~parameter) in the
transition from pions to kaons thus confirming the expectation that the
characteristic b>—quantities are different for different physical conditions. In
Tact, the charge radius of hadrons is approximately the same for all particles,
thus implying different densities for different hadrons, which result in
different interior conditions for different particles. We can therefore conclude
by saying that different hadrons necessarily have different values of the
characteristic qi"—constan ts evidently because they have different densities.

This point has been here illustrated to prevent the customary tendency of
looking for universal constants, which is inapplicable under isotopies because
quantities that are constants in quantum mechanics, such as Planck’s constant h,
the speed of light c,, etc,, are replaced with locally varying values.

By no mean, one should therefore search for the "universal values” of the
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characteristic l)u"—constants because such constants provide an average of the
physical characteristics of the medium considered and, as such, vary from
medium to medium.

The primary physical application of the isodual Minkowski space
Md(xd,nd,Rd) is the geometrization of the vacuum for antiparticles, that for
negative—energy solutions of conventional relativistic field equations (such as
Dirac’s equation). In fact, it is easy to see that the isodual energy is negative—
definite

g = pd, = -E. (35.13)

The aspect we have to show later on in Volume Il is that negative-energy
solutions behave in a fully physical way when interpreted via iscdual spaces.

Recall that, by putting x2 = R2 = const., the non-relativistic limit of the
Minkowski space is the familiar structure

Lim g/ = MxnR) = EtR¢)* EGSR). (35.14)

Along the same lines, by assuming &? =RZ= cost., it has been shown in ref. [5], Ch.
Vi, that

Lim gsg <o MEAR) = G )*EEBR), (35.15)

thus recovering the isoeuclidean space of nonrelativistic hadronic mechanics of
Definition [.3.4.2.

Note that, jointly with the “decoupling” of space and time, we have a
- -corresponding "decoupling” of the space and time components of the isolopic
element T and isounit 1. Then, the isorelativistic quantity b4'2 becomes the
nonrelativistic isounit of time.

An important application of isominkowski spaces is provided by the
realization

by =1/n, p=1234. {3.5.16)
under which the isoseparation becomes
1 l 1 co?
%2 = (xl---gx1 + )cz—zx2 + x3—2x3- t—zt)'l. (3.5.17)
nl Ny g ny

As one can see, the quantity ny represents the index of refraction of Iight
propagating within physical media. We reach in this way the following important:

Proposition 3.5.1 [I} The isominkowski space permits a direct representation
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(that is, a representation directly with the basic isometric and related isointerval)
of the locally varying speed of light within physical media,

c=cy/ng<cy =T ) =g /ngdx T, ). (3.5.18)

~ The transition from the conventional metric in vacyum to the isotopic
metric within physical media can then be derived from the local variation of the
speed of light.

In fact, the replacement of ¢, with ¢ = ¢,2/n,? in the fourth component
of the separation implies the introduction of the corresponding space components
nk"z, as requested from the customary space-time symmetrization.
Independently from that, the emergence of the space components nkz would
follow anyhow from the application of the Lorentz transformations to an interval
with the local speed 2 = c02/n42. The understanding is that a more appropriale
symmetry will be the Lorentz-isotopic symmetry because the conventional
symmetry only holds for constant speed of light in vacuum ¢, while the isotopic
symmetry has been built for locally varying speeds ¢ = c,/ny[1l

When the medium is no longer transparent, the quantity ny geometrizes
the density of the medium itself, in a way mathematically similar to (although
physically different than) the geometric meaning of the fourth component gq4 of
the Riemannian metric.

We can say in this way that the isominkowski spaces extend to all possible
physical media, whether transparent or noi, the notion of index of refraction for
transparent media.

The average quantity b’ = 1/n°; provides "global” value, such as the
average value of the index of refraction throughout cur atmosphere.

To begin the illustration of the uses of the isominkowski spaces, consider
first the case of the homogeneous and isotropic water. Then simple
considerations lead to the identities bu = 1/n°, W = 1, 2, 3, 4, with corresponding
lifting of the separation

l

X2 - 32 = —x2. (35.19)
| empty space | water n°42

This establishes that the transition from empty space to homogeneous and
isotropic media such as water Is directly representable via the simplest possible
isotopy called “scalar isotopy”, that with the common factor b42 = l/n42. Such a
representation is not merely formal, because it permits the resolution of a
number of inconsistencies of the special relativity when applied to physical
media.

We are here referring to the basic assumption of the special relativity that
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the speed of light is the maximal causal speed which, when applied to water, is in
contradiction with the experimental evidence according to which electrons in
water can travel faster than the local speed of light (this is the blue Cherenkov
light we see in the poo! of nuclear reactors). If the basic postulate of the maximal
causal speed is relaxed, one differentiates the maximal causal speed from the
speed of light and assumes for maximal causal speed in water the speed of light
in vacuum ¢, then the principe of causality is salvaged, but one encounters
other inconsistencies, such as the violation of the relativistic sum of speeds
because the sum of two light speeds in water does not yield the speed of light in
water, :

Voot = (¢ + ¢)/ {1+ c2/c) = ¢, and = c. (3.5.20)

All the above inconsistencies are resolved by the isominkowskian geometry as we
shall see in details in Vol. {1

IT the medium is inhomogeneous and anisotropic, such as our atmosphere,
we have even greater inconsistencies because, as it is well known, the
homogeneity and isotropy of the vacuum are the geometric pillars of the special
relativity. These inconsistencies too are resolved by our isominkowskian media.

In the final analysis one should remember that the Minkowski space and -
the special relativity were specifically conceived for the propagation of
electromagnetic waves and particles in vacuum where the speed of light is a
universal constant. The selection of the appropriate generalizalion is evidently
open to scientific debates. However, the insistence in their necessary applicability
within physical media, in which the speed of light is a locally varying quantity, is
outside the boundaries of science.

The following property is a corollary of Theorem L3.2.L1:

Corollary 3.2.1A: [sominkowskian spaces of Class I M(x,,R) (isodual
isominkowskian spaces of Class II MORIFERY) are Jocally isomorphic to the
conventional Minkowski space M(xnR) (isodual isominkowski space
Mx3 nd RD).

Despite the profound differences in functional dependence, conventional
and isotopic Minkowski spaces are "geometrically equivalent”. In fact, all the
original geometric axioms of the space are preserved under isotopies as studied in
detail in Ch. [.5.

This implies that certain operations are equivalently done in both spaces.
As an example, one can introduce the confravariant isometric tensor 'ﬁ'l in
MIx, /R, +%) with elements

U, &, d = (| figgle, %, [ THIEY. (35.21)
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Then, the transition from covariant to contravariant indices, and viceversa, is
done as in the conventional case

%, = A ¥, o= %, (3.5.22)

This implies that, by ignoring the multiplicative isounit, the isoseparation can
formally be written in a way identical to the conventional one,
Xy, x

=t x> xR = Rk L)X (8.5.23)

IM IM
In this sense, most of the relativistic isctopic formulations are “hidden” in the
conventional ones. To identify them, one must identify the basic unit and related
multiplication.

Despite this “isoequivalence”, the physical differences between the isotopic
and conventional formulations are considerable and experimentally measurable,
classically and operationally. In fact, isorelativistic theories can directly
represent:

A) the actual, generally nonspherical shape of the considered hadrons, say,
an oblate spheroidal ellipsoid, via the space components of the isometric bkz;

B) all infinitely possible deformation of the above original shape due to
sufficiently intense external fields or collisions, which are easily representable via
a suitable functional dependence of the by—-quantities on the external forces;

C) the density of physical media via the fourth component of the isometric
by

D) the nonlinear, nonlocal and nonhamiltonian dynamics of the interior
particle problems (that is, particles moving inside other particles);

E} the inhomogeneity and anisotropy of matter;

all this in such a way to admit the conventional Minkowskian formulations at the
limit1 — L

The following Corollary of Proposition [.3.3.1 is also important:
Corollary: 3.3.1A: The conventional Minkowski space Mx,n,R) in (3+1) space-
time dimensions is an isotope E{x8R) of the 4-dimensional Euclidean space
E(x,6,R) of Class III characterized by the isotopy of the metric

8 = Diag. (I, , L1} > 8 = 18 = n = diag. (1, 1, 1, -1}, (3.5.24)

under the redefinition of the fields

Rn+¥) - RA+S), 1=1l=qgql=q (3.5.25)
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In fact, the isominkowskian spaces were first derived (1] via the “isotopies
of isolopies”

Efx8R) - Egy &R ~MxnR) - MEQR). (3.5.26)

The reader should remember that the isotopy of the field is a feature
needed Tor mathematical consistency, but it does not affect the practical
numbers of the theory. In fact, as pointed out in the preceding chapter, the
product of an isonumber i by a quantity Q in isominkowski space coincides with
the conventional product

n¥Q = nQ. (3.5.27)

Also, as we shall see in the next chapter, the symmetries of Ez.(x,8R) and those
of Mlx,n.R) coincide because characterized by the same metric § = 1.

This essentially means that, at the isotopic level of Class II1 (but not so in
conventional theories), there is no essential geometrical distinction between the
4-dimensional Euclidean space E{(x,8,R) and the (3+1)-dimensional Minkowski
space Mix,n,R). These notions are important pre-requisite for their isotopic
liftings [11.

We finally close this section with the following important property proved
by Aringazin [15]

Theorem 3.5.1 lloc. cit.l: - Isominkowski spaces of Class I are “directly universal”
for all infinitely possible deformations of the Minkowski mefric preserving the
original signature (+, +, +, -), i.e, they are capable of representing all possible
modifications of the Minkowski space of the class considered, directly in the
frame of the experimenter. A similar occurrence holds for the remaining classes
with different signatures.

The above property follows from the fact that any signature preserving
deformation of the Minkowski metric 1 = 7 can always be expressed in the
isotopic form 7 = Tn, owing to the unrestricted functional dependence of the 4x4
isotopic matrix T.

As we shall review in details in Vol. II, Aringazin [loc. cit.] illustrated the
above property by showing that all generalizations of the Einsteinian expression
for the behaviour of the meanlife with speed existing in particle physics are
particular cases of the single, unified, geometric expression characterized by the
isominkowski space. The difference between one or the other of the existing
expressions is merely due to the assumption of different expansion with different
parameters and different truncations.



- 115~

The above property should be kept in mind because other approaches to
the interior problem are indeed possible, and their study is indeed encouraged.
However, other approaches generally imply the loss of the original Minkowskian
axioms, while the isominkowskian spaces are conceived to preserve such axioms.
This occurrence is illustrated by the so—called deformed Minkowski spaces
Mix,1,R) in which the metric is deformed 7) = T, but the basic unit [ and related
field Ri{n,+x) are left unchanged. The differences between 1 and 7} then imply the
lack of preservation of the basic axioms in the lifting M(x,n,R} — M(X,7{,R).

Under isotopies we have the deformation of the metric n — 1| = T while
jointly lifting the basic unit of the inverse amount I =1 ="T"! and reconstructing
the field with respect to the new unif. All original geometric axioms are then
preserved under the corresponding liftings Mi{x,nR) = M(x,7,R), as we shall see in
Ch. L5

The reason for our preference of the "isominkowskian spaces” over the
"deformed Minkowski spaces” is that the former will allow us in Vol T to
preserve Einstein’s axioms at the abstract level and merely realize them in a
more general way, while for the latter spaces the Einsteinian axioms are lost, thus
creating the problems of first identifying new axioms and then proving them
experimentally.

We close this section by illustrating the rather profound modifications of

' the Minkowski space which are possible under nondiagonal isounit of Class I
Consider for instance the following lifting of the Minkowskian unit

-1 . (3.5.28)

It is easy to see that Det T = 1 and, thus, 1 is of Kadeisvili Class I with isotopic
element

T=-1=1, 72 =12= -1, (3.5.29)

The corresponding lifting of the Minkowskian metric 1 — T = Tn is therefore
isotopic.

However, the latter isotopy implies the following rather profound
structural change of the line element

xunw ¥ = xlxl + x2x2+ x3x3 - xtx? —»

= xMAxY = xI @ - @x? - Bl - xtx2 = 2x2x4, (3.5.30)

as the reader can easily verify.
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We learn in this way that under a regufar{that is, invertible) isotopy, the
line element can be degenerale, in the sense of being contracted from four— to
two—dimensions in which the values of the other two coordinates remain
completely arbitrary. This particular lifting will be called degeneraie isotopy of
Class L.

As we shall see in Yol. II], the above particular type of isotopy appears to
have an important role for the understanding of a fundamental physical process:
the synthesis of the neutron in the core of stars from protons and electrons only.

This completes our preliminary presentation of isominkowski spaces. We
will have ample opportunities of additional studies during the course of our
analysis.

3.6: ISORIEMANNIAN SPACES AND THEIR ISODUALS

The additional spaces of particular relevance for isotopic studies can be presented
via the following:

Definition 3.6.1 [1,5} The liftings of a given n-dimensional Riemannian or
pseudoriemannian space #Rx,gR) over the reals Rin+x) into the infinitely
possible isotopes }x,8,R) of Class I called “isoriemannian spaces” are given by

AxgR — ARIR), (3.6.1a)

g=ghd > § = T % %0, ) gk, (36.10)
Det.g=0, g=g — Det.§#0, g=gl, (36.1c)
Rin+x) — RAEAX), fi=nl, 1 =171 xk > 3% =xK, (36.1d)

(x, y) =[xigij(x)xj]l = &% =&TXT =(Txx1 =
=16 TR =[x g, x, %, )xd 11 eR, (3.6.1¢)
with “invariant isoseparation”
ds® =[-dx+ éw(x, X % a1, (36.2)
The “isodual isoriemannian spaces” of Class II are given by
fIEdgdRd) g9 = 7O %, % b, 0, S gk =-§ (3.6.3a)

A9, 19 = (pdyl =  {36.30)
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x4 = &9, 195919 = (19539, 3919 epd, (3.6.3¢)
with "isodual invariant isoseparation”
&% = (+axt )k %, %, 119, (36.4)
As now familiar, the above definition characterizes four important spaces:

Riemannian spaces #{x,g,R), which will be used for the representation of
the exterior gravitational problem of matter;

Isoriemannian spaces #(x,g,R), which will be used for the representation
of the interior gravitational problem of matter,

Isodual Riemannian spaces Eﬂd(x,gd,Rd), which will be used for the
representation of the exterior gravitational problem of antimatter, and

Isodual isoriemannian spaces #9x3%R%) which will be used for the
representation of the interior gravitational problem of antimatter.

The conventional Riemannian spaces are (and will remain) the basic spaces
for the gravitational geometrization of the vacuum. The primary physical
application of isoriemannian spaces for which they were built in the first place
[4,5], is a more adequate representations of interior gravitational problems with
-nonlinear, noniocal and nonlagrangian effects, such as the study of the interior of
a neutron star and, more specifically, of gravitational collapse.

In fact, the latter systems are composed by a large number of extended
particles/wavepackets/charge distributions, not only in condition of total mutual
penetration, but also of -compression in large numbers into a small region of
space. Under these conditions, the emergence of interior nonlinear, nonlocal and
nonlagrangian interactions is beyond credible doubts, and so is the lack of exact
applicability of the conventional Riemannian spaces and rclated geometries in
favor of structurally more general spaces and geometries.

The ciear understanding, stressed in Ch. L.1, is that the approximate
validity of Riemannian spaces for the above interior conditions remains
ungquestionable.

From the isodual spaces and isospaces the reader can begin to see the
"hidden character” of the isodual Universe made up of antimatter, in the sense
that it does not appears at a first study of the Riemannian spaces and related
geometry. This is due to the fact that Riemannian and isodual Riemannian
spaces share the same separation by construction,

(9P =[ (S RTED = (g3 = %2, (36.5)

As such, the isodual space cannot be identified with Riemannian techniques,
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although it is a mathematically and physically distinct space.

' As one can see, the functional dependence of the elements of the nxn
isotopic matrix T remains unrestricted under isotopies. Thus, isoriemannian
spaces are bona—fide nonlinear (in the velocities) nonlocal-integral and
nonpotential-noniagrangian generalizations of the conventional spaces.

Despite these physical differences, the two spaces are geometrically
equivalent, as expressible via the following particular case of Theorem [.3.2.1:

Corollary 3.2.1B: A given (3+1)-dimensional Riemannian space R{x,gR)} (isodual
space R(x%gIRY) and all its infinitely possible isotopes of Class I H(XER)
(isotopes of Class I1 #9(x39,83,R9)) are locally isomorphic .

We should again recall that this is possible because of joint liftings
g » Tg, [ - 1=11. (36.6)

which ensures that all deviations from the Riemannian spaces (velocity-
dependent, etc.) are embedded in the isounit. In particular, the above mechanism
permits the use of the integro—differential topology indicated earlier, with
considerabie simplifications over the conventional integral topology.

As an example, a conventional integral generalization of the Riemannian
metric g ~ § without the joint lifting of the unit.would require a full integral
geometry, without any local isomorphism, in general, between the old and new
spaces. -

Corollary 3.2.1C implies that some of the operations in isoriermannian spaces
can be conducted in a way geometrically equivalent to the conventional ones, as
it is the case for Minkowski and isominkowski spaces. Nevertheless, as we shall
see in Ch. 1.5, the isoriemannian geometry is structurally different than the
conventional Riemannian geometry, evidently because of the explicit dependence
in the velocities and accelerations.

Note that we have the Euclidean "space” and Minkowski “space” because
their metric is unique, while we have Riemannian “spaces” because we have an
infinite number of different (but geometrically equivalent) metrics g. By the
same token, we now have an infinite number of isoriemannian spaces for each
given Riemannian space. This multiple variety is necessary to represent physical
reality. In Tact, for each given total gravitational mass M, and, thus, for each
given exterior metric g, there exist infinitely different interior conditions
depending on size, density, temperature, etc. Thus, each given exterior total
gravitational mass M admit an infinite number of interior isometrics g for the
representation of all its possible physical realizations.

This point is important to understand that, under no condition, one should
expect isotopic techniques to predict the numerical values of the isotopic element
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T on mere geometric grounds because this would be exactly the same as
requiring Einstein’s gravitation to predict the numerical value of the mass from
pure geometry without physical input.

On the contrary, a beauty and effectiveness of Einstein’s gravitation is that
it applies for all infinitely possible masses M whose explicit value in a given case
must be obtained from experimental measures. By the same token, the physical
effectiveness of isotopic theories is that they apply for all infinitely possible
interior conditions whose characteristics must be identified via experiments.

In the fTinal analysis, one should remember that no theory, whether
conventional or isotopic, can predict the numerical value of its own unit.

It is best to provide some explicit example of isoriemannian metrics which
can later on be of guidance in further studies.

Recall that the Riemannian spaces are locally Minkowskian. This property
is evidently preserved under isotopies, according to which isoriemannian spaces
are locally isominkowskian, as evident from the preservation of the signature (+,
+ 4+ ),

As shown in ref. [7), the above property essentially implies that the isotopic
element T in gravitation is considerably similar to that in isominkowski space.
As indicated earlier, the isocunit of Class [ can be diagonalized into the form

T = diag. (n)% ny?, g2, ng?) =k %, . > 0, (36.7)

An isoriemannian line element with space isotropy, n; = ny n3 = ns, but
space-time anisotropy, ng # ny, is then given by the following isoschwartzschild
line efement [7]

ds? = [ -01-2 M /A lar- 12 d6? - 12 sin? ede? 1/ ng+ (1-2M /1) dt? c,%/ng? (36.8)

As one can see, the first capability of the isoriemannian spaces is therefore the
direct geometrization of the locally varying speed of light within physical media,
¢ ='Cy/ny. By recalling that this feature is not possible in conventional
Riemannian spaces, its physical significance appears in its proper light.

As an example, gravitational horizons are computed via the local use of the
light cones, thus assuming the local speed of light c,. But the region of space in
the exterior of gravitational horizons is not empty, and it is filled up instead of
hyperdense and very large chromospheres in which the speed of light is not ¢,
but rather ¢. The possibility of a more accurate study of gravitational horizon via
the use of the isoriemannian spaces and their local isominkowskian spaces is then
evident.

Moreover, the characteristic n—quantities represent the deformation of the
conventiona! metric expected from nonlinear, nonlocal and nonlagrangian
internal effects. Also, the characteristic n—quantities can be effectively averaged
for all “global” treatments, such as the speed of light throughout our entire
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chromosphere considered above

T = <1> = diag. (n°)2 n°%?, n%?, n°%), nf, =const>0, (368

by setting the foundation for quantitative predictions of interior effects which
are verifiable with contemporary experiments (see Vol. [1I}.

Note that the degenerate isotopies of Class I introduced in the preceding
sections, when applied to the Riemannian spaces, appear to be useful for the
representation of gravitational singularities.

3.7: ISOTOPIC UNIFICATION OF MINKOWSKI AND
RIEMANNIAN SPACES

As indicated in Ch. L1, isotopic techniques also have significant applications for
conventional theories in vacuum. The best way to illustrate this possibility is
by showing the new geometrical and physical insights permitted by the isotopies
.in gravitation. In turn, this can set the foundations for novel advances studied in
Yol. 11, such as an unambiguous operator form of conventional gravitation, a
novel approach to singularities, and others.

Let us begin our study with the following evident property:

Corollary 3.3.1B: The conventional, (3+1)-dimensional Riemannian spaces
" Rlx,gR) are locally isomorphic to the isotope of Class II E(x,8.R} of the 4-
dimensional Euclidean space E(x,8,%) characterized by the lifting of the
Euclidean metric 8 = diag. (1, 1, 1, 1} into the Riemannian metric g

8 = [4X4 - 'T'S = g, (371)
and by the corresponding lifting of the field
Rt~ RO+%, fi=nl, 1=T1=¢gl (372
By recalling Corollary 3.3.14, we lose any distinction at the ahsiract isotopic
level between EuclideanMinkowskian and Riemannian spaces of the same
dimension. The following additional property also holds
Corollary 3.2.1C: The conventional (3+1)-dimensional Riemannian spaces

R(x.gR} is locally isomorphic to the Class I isotopes M(x,n,R} of the Minkowski
space Mixn,R) characterized by the lifting of the metric
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= diag. (1, 1, 1,-1) — Todn = glx), (3.7.3
and of the field

R+ = RO+Y, A=nly,~ R, 1y = [T 1L (37,4
In fact, from their locally Minkowskian character, all possible Riemannian
spaces must verify the isotopic decompesition of the metric

gix}) = T,

grl®m (3.7.5)

where the 4x4 isotopic matrix Tg.{x) is positive definite. The above
isominkowskian reformulation of Riemanman spaces then follows.

A simple example is provided precisely by the Schwarzschild metric in
spherical polar coordinates

= (-2M/ i dr -2 a* -2 sinf 0 dp2 +(1-2M/1) a2, (376)

which exhibits a manifest isotopic structure with respect to the Minkowski space
with characteristic b-functions

= diag. { (1-2M/0)" ML, L, (1-2M/¢1)) (37.7)

The above properties imply that the transition from relativistic to
gravitational formulations is an isotopy [5l. This concept is at the foundations
of the advances in gravitation permitted by the isotopic techniques and studied in
Vol.s Ii and Iil, such as the identification of the universal symmetry for all
possible Riemannian metrics, an unambiguous operator formulation of
gravitation without Hamiltonian, the study of the gravitational field of antimatter
beginning at the classical level, the study on the origin of the gravitational field,
and others.
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4: LIE-SANTILLI ISOTHEORY AND ITS ISODUAL

4.1: STATEMENT OF THE PROBLEM

Lie's theory (see ref.s [31-33] for recent accounts and ref. [4] for historical notes) is
the true structura! foundation of quantum mechanics in view of the celebrated
product

[A.B] = AXB - BxA, 4.1.1)

where AXB = AB is the conventional associative product. In fact, most quantum
mechanical laws, such as the unitary time evolution or Heisenberg's equation, can
be simply “read-off” Lie’s theory via a mere interpretation of its generators as
operators on a Hilbert space.

The isotopic generalization of Lie's theory under the name of Lie-isotopic
‘theory was submitted by the author in memoir [1] of 1978 with basic product

[ABl = AXB - BXA = AxTxB - BxTxA = (4.1.2)
= AT, x, %, % & O, 8, 80, 1, T, m, ) B = BT, x, %, %, o, &, o, 001, 1, T, m, ) A,

because it implies a step-by—step generalization of quantum mechanics with new
dynamical equations, new interactions represented by the isotopic operator T,
new notions of space-time and internal symmetries, etc.. The existence of the
new mechanics was confirmed in memoir [2] of the same year, and proposed for
study under the name of hadronic mechanics.'®

The isotopic content of memoir [1] was then developed in monographs [3,4]
and in papers [5-9]. Additional structural advances in the Lie-isotopic theory were
made in memoir [16-18], in the mathematical papers [19-20] and in monographs

18 1t should be noted that the Lie-isotopic theory was submitted as a particular case of
the yet more general Lie—admissible theory subsequently studied in monographs [11,12]
and in papers [13~15].
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[21,22].

THE STRUCTURE OF LIE’S THEORY

UNIVERSAL ENVELOPING

ASSOCIATIVE ALGEBRAS
LIE LIE REFRES.
ALGEBRAS GROUPS THEORY

FIGURE 4.1.1: Lies theory is today an articulated body of inter-related methods in
algebras, geometries, functional analysis and other fields virtually encompassing all
branches of mathematics [31-33] Its most fundamental structure is the wuniversal
enveloping associative algebra E(L} of a Lie algebra L [31] with conventional associative
product AB among vector—fields 4, B on a cotangent bundle or operators on a Hilbert
space. In fact, the knowledge of ¥ permits the construction of: the Lie algebra L as the
attached antisymmetric algebra & ~ [E(L)] ; the corresponding connected Lie group G via
exponentiations in £(L); the representation theory; etc. In memoir [1] this author submitted
the elements of the Lie-isotopic theory conceived as a step-by-step isotopic
generalization of the above formulation of Lie theory, beginning with the isotopies of
universal enveloping algebras, and then passing to the isotopies of Lies algebras and
groups, the isotopies of the representation theory, etc. The dominant motivation of the
proposal is of purely physical character and consists in: a) achieving methods for the
construction of noniinear-nonlocal-noncanonical symmetries for interior dynamical
probiems; b} in such a way to preserve the abstract axioms of the contemporary linear-
local-canonical symmetries of exterior dvnamical problems, c} so as to achieve a unity
of mathematical and physical thought admitting of both, exterior and interior problems
as different realizations.

Nummerous physical contributions on the Lie-isotopic theory by various
authors have appeared in the literature since 1978. An independent review of
contributions up to 1990 of primarily physical character is available in the
monograph by Aringazin, Jannussis, Lopez, Nishioka and Veljanoski [30].
Applications of the Lie—isotopic theory have also been presented at various
physics meetings (see, e.g., contributions [40-51) of meetings in 1993). An update
and further development of these physical applications to include subsequent
contributions is presented in Vol.s 11 and 111
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By comparison, pure mathematical studies on the Lie-isotopic theory (as
referred to in Fig. 4.1.1) have been conspicuously absent until recently‘g. In fact,
to the author’s best knowledge, the first contribution in a mathematical Journal
mentioning the words “Lie-isotopic algebras” is the review by (the physicists)
Aringazin et al [23] of 1990, some twelve years following their original proposal
[1] in a physics journal. The only additional studies on Lie-isotopic theory
appeared in the mathematical literature prior to the summer of 1993 are memeoirs
[19,201.

This situation is now changing rapidly. In fact, comprehensive
mathematical studies in the Lie-isotopic theory are today available by the
mathematicians Sourlas and Tsagas in monograph [24] and papers [25] Other
comprehensive studies, this time with emphasis on nonassociative algebras, are
presented by the mathematicians Lohmus, Paal and Sorgsepp in monograph (39].
Studies in the structure and isorepresentation of Lie-isotopic algebras have been
conducted by Kadeisvili in papers [26,27] and monograph [29], by the
mathematician Klimyk and this author [52], and by others A mathematical study
on isonumbers and isofields was recently published by Kamiya [53]. Additional
articles by pure mathematicians are in print.

In the above quoted mathematical and physical literature the Lie-isotopic
theory is called the Lie-Santilli isotheory and intended to including the isotopies
of enveloping algebras, Lie algebras, Lie groups and representation theory. The
- more general Lie-admissible theory is called Lie-Santilli genotheory is intended
to including the genotopies of enveloping algebras, Lie algebras, Lie groups, and
representation theory. A third, still more general formulation of hyperstructural
_character {57] is conceivable but will not be treated at this time.

The primary differences among these three layers of generalizations are
‘the following. The isotheory is based on the isotopic product [1] [A,"B] = ATB -
BTA where T is a Hermitean matrix or operator, T = T![1l. The genotheory is
based on the product (A, B) = ATB - BTTA = ARB - B8A, where T is now a
nonhermitean matrix or operator, T = R # 1 = 8[2. The hypertheory is based on
a product of the type AoB = ARB - BSA where R and § are sets.

This chapter is solely devoted to the isotheory while the genotheory are
treated in Ch. L.7. Nevertheless, the reader should be aware that most of the
properties of the isotheory studied in this chapter, specifically, for Hermitean
isotopic elements T, admits generalized formulations when T is nonhermitean.

The difficulties in a first inspection {and appraisal) of the Lie—Santilli
isotheory are, again, of mathematical nature. They are due to the understandable
expectation that the current formulation of Lie's theory {(see, €.g., ref.s [31-33] and
literature quoted therein) encompasses all possible realizations, thus including the
isotopic formulation.

19 This is not the case for mathematical studies on Lie-admissible algebras which, as we
shall see in Ch. L.7, have been quite numerous.
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As it is well known (see, the contemporary Lie theory is constructed with
respect to a conventional unit, e.g., the N-dimensional unit matrix I = diag. (1, 1,
.., 1). The central idea of the Lie—Santilli isotheory [1,2] is the reconstruction of
Lie’s theory with respect to the most general possible isounit 1 with a nonlinear,
nonlocal and noncanonical dependence in all possible local variables and
quantities. The lifting of the unit I — 1 therefore implies a corresponding
compatible lifting of all branches of the conventional Lie theory (Sect. .4.1).

From the very outset one can therefore see the reachness of the Lie-Santilli
isotheory as compared to the conventional Lie theory with Kadeisvili’s
classification [28]

Lie Santilli isotheory (Class I);

Isodual Lie-Santilli isotheory (Class I1);
Indefinite Lie-Santilli isotheory (Class 111}
Singular Lie-Santilli isotheory (Class IV);
General Lie-Santilli isotheory (Class V).

which applies to each of the branches of the generalized theory, thus resulting in
isoenveloping algebras of Classes [-V, Lie—isotopic algebras of Classes [-V, Lie—
isotopic groups of Classes 1-V, isorepresentations of Classes 1-V, etc.?0, each of
which can be of isocharacteristic zero or p (Sect.L. 2.3).

Moreover, the isotopies imply the possibility of introducing fundamentally
novel notions, such as “Lie’s theory on a singular unit’, or formulating the “Lie-
isotopic theory of discrete groups over continpously varying units’, or,
viceversa, studying the “Lie-isotopic theory of continuous groups over discreie
units”, etc.

The above classes of isotopies admits corresponding classes of genotopic
and hyperstructural type, thus illustrating the truly remarkable richness of Lie’s
theory which emerges from the lifting of the unit.

It is important to understand beginning with these introductory words that
the Lie and Lie-isotopic theories are structurally ineguivalent for the following
reasons:

1} The map interconnecting Lie product (4.1.1}) and its Lie-isotopic
generalization (4.1.2) is nonunitary,

vuf =1 =1 (4.1.32)
UILBIUT = U(AB - BA)Uf = ATR - BT A’ = [A7TB], (4.1.3b)
a=vaul,r=uBUl, (4.1.3¢)

20 The reader should keep in mind that, as originally presented in memoir [1}, all these
formulations are still particular cases of the more general Lie-admissible theory (Ch. 7).
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with isotopic element T given precisely by the Hermitean inverse of 1 as needed
for a correct isotopic formulation,

T =(@uly! =11 = 1T, (4.1.4)

2) Lie's theory is linear—local-canonical in its structure, while the Lie-
isotopic theory has a nonlinear-nonlocal-noncanonical structure {when projected
in the original carrier space, see Sect. 4.2) as a necessary condition to be directly
applicable to interior dynamical problems. This implies a generalization under
isotopies of the basic symmetries of contemporary physics, such as rotations,
Lorentz transformations, etc., into the most general possible nonlinear-nonlocal-
noncanonical forms;

3) The isotopies alter conventional weights and, in general, the spectra of
eigenvalues of the conventional Lie theory. Let X be a Hermitean generator of a
Lie algebra with spectrum of eigenvalues $° with respect to a basis | b >. Then,
under isctopies the same generator X admits a different spectrum S, according
to the lifting

X|b> = §|b> = XX|b> = XT|b>=S]6>,8#S; (L5

4) The isotopies map Cartan’s tensor and other structural elements of Lie's
theory into suitable integro—differential forms;

5)The topology of the current formulation of Lies theory is notoriously
local-differential, while that of the covering Lie isolopic theory is -integro—
differential (Fig. I.1.1.4); and other reasons.

This chapter has been specifically written for physicists to outline only
those aspects of the Lie-isotopic theory that are essential for the physical
applications of Yolurnes II and III. Unless otherwise indicated, the presentation is
specifically intended for the Lie~isotopic theory of Class I (that with isounits 1
which are sufficiently smooth, bounded, nowhere degenerate, Hermitean and
positive—definite, see Sect.s 1.1.4 and 1.2.3). An outline of the Lie—isotopic theory
of Class Il (with negative~definite isounits) is also presented because it is
important for ocur subsequent study of antimatter and antiparticles. We shall also
study a few aspects of the Lie—isotopic theory of Class IlI because it unifies
those of Classes I and II. The Lie-isotopic theories of Classes IV (singular
isounits) and V (unrestricted isounits) are vastly unknown at this writing and will
be discussed only briefly.

During the course of our analysis we shall assume that: all Lie algebras are
finite dimensional; all Lie algebras basis and corresponding parameters are
ordered; and all fields have characteristic zero (Def. 1.2.3.1). Mathematically
inclined readers are suggested to consult the above quoted mathematical
literature, e.g., ref.s [24,29,39].
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A clear understanding is that the Lie—isotopic theory is still at its first
infancy, particularly when compared to the current status of Lie’s theory with
vast mathematical and physical contributions by a large number of
mathematicians and physicists for over one century.

A technical knowledge of the conventional Lie theory is an evident pre-
requisite for the understanding of this chapter. A prior reading of Appendix [.4.A
on basic notions of algebras and their isotopies is recommendable to the
noninitiated reader.

We should also mention that the formulation of the Lie-isotopic groups
presented in this chapter is in reality the Lie—isotopic transformation groups.
The formulation of the topological Lie-isotopic groups is considerably more
involved on technical grounds and it is still lacking at this writing. Also lacking
are the discrete Lie-isotopic groups. Additional intriguing and significant open
problems will be identified during the course of our analysis.

We should f ine_illy mention that, on strict pedagogical grounds, the
presentation of the isotopies of Lie's theory of this chapter should have been
postponed to follow those of differential calculus, functional analysis, geometries
and mechanics. We have preferred instead the presentation of the foundations of
the Lie—isotopic theory prior to these other isotopies, not only to follow their
original lines of derivation, but also to illustrate the character of the Lie-isotopic
theory of being of truly fundamental guidance in the identification of the unique
and unambiguous isotopies of all other formulations.

4.2: ISOLINEARITY, ISOLOCALITY AND ISOCANONICITY

The primary limitations of quantum mechanics are that the theory is linear, local
and canonical (Ch. I.1). The primary objectives of hadronic mechanics are the
achievement a covering theory which is structurally nonlinear, nonlocal and
noncanonical =Sect. I.1.1) while admitting conventional formulations as a
particular cases.

The primary reason for selecting the isotopies as the basic mathematical
tools for the construction of hadronic mechanics is that they permit the
reconstruction of linearity, locality and canonicity on isospaces over isofields, in
which case the latterproperties are called isolinearily, isolocality and
isocanonicity.

[n turn, the preservation at the abstract level of the original linearity,
locality and canonicity will prove to be crucial for the achievemnent of physical
consistency under nonlinear, nonlocal and nonhamiltonian interactions.

These main stryctural lines see their maximal emphasis and realizalion in
the Lie—Santilli isotheory which, when formulated in the original, conventional
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spaces and fields is nonlinear, nonlocal and noncanonical, while it is isolinear,
isolocal and isocanonical when formulated on its proper isospaces over isofields.

Let S(x,R) be a conventional, real vector space with local coordinates x over
the reals R{n,+x), and let

xX=AwWx, webF, xI=yx Allw {4.2.1)

be a conventional right, and left, linear, local and canonical transformation on
S(x,R), where t denotes transpose.

The isotopic lifting S(x,R) = 8(,R) studied in the preceding chapter requires
a corresponding necessary isotopy of the transformation theory. In fact, it is
instructive for the interested reader to verify that the application of
transformations (4.2.1) to the isospace S(XR} implies the loss of linearity,
transitivity and other basic properties.

For these and other reasons, the author submitted in the original proposals
[1,2] the isotopy of the transformation theory, called isotransformation theory
[24,29,30], which is characterized by isotransforms

~

X’ = AW)

W

x = AW TR %' = xPxAlwW) = 3T AT, (4.2.2a)

EA
1

T = T =fixed, xe8&R, Wwe RHHY, 1=T7L (4.2.2b)
where the isotopic element T is here assumed to be of Kadeisvili's Class L.

The most dominant aspect in the fransition from transforms (4.2.1) to
isotransforms (4.2.2) is that, while the former are linear, local and canonical, the
latter are noniinear in the coordinates as well as other quantities and their
derivatives of arbitrary order, nonlocai-integral in all needed quantities, and
noncanonical when projected in the original spaces S(x.F). In fact, from the
unrestricted nature of the isotopic element T, the projection of isotransform
(4.2.2) in Slx, R) reads (for & = XX} = xK)

x' = AW T, x, %, % & Of, 8, 89t 10, T, D, ) X (4.2.3)

In turn, the above features are crucial for the desired achievement of nonlinear,
nonlocal and noncanonical formulations of space-time symmetries and related

. mechanics.

We learn in this way a feature which is general Tor all possible isotopic
methods. While conventional theories, including Lie's theory, is unique in the
senge that it admits only the conventional Tormulation over conventional spaces
and fields, all isotopic theories admit two different formulations, the first on
their proper isospaces over isofields and the second given by their projection on
conventional spaces over conventional fields.
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This is precisely the case of the isotransforms for which the first
formulation is given by expression (4.2.2) on 8(,FF) while the second is given by
projection (4.2.3) on S(x,F).

But transforms (4.2.1) and their covering (4.2.2) coincide at the abstract level
where we have no distinction between the modular action “Ax” and its isotopic
form “AXX”, We therefore have the following

Proposition 4.2.1 [22]: Isotransforms (4.2.2) are “isolinear” when formulated on
isospaces 8(x,F) because they verify the conditions of linearity in isospaces,

Ax(a%x + bky) = a%k(A%%) + bX(A%y) (4.2.4a)
vk yeSkF), 3&befa+X, (4.2.4b)
while coinciding with linear transforms at the abstract level.

More directly, we can say that a Lie algebra is linear because it can be
interpreted as a linear vector space over a conventional field. By the same token,
we can that that a Lie—isotopic algebra is isolinear because it can be interpreted
as an isolinear vector space over an isofield {Sect. 1.2.4).

Note that conventional transforms (4.2.1) are characterized by the right
modular associative action Ax of A on x € S(x,R). Isotransforms (4.2.2) are then
characterized by the right isomodular associative action action AXx of A onX €
8(%,R). In fact, the preservation of the associativity is established by the properties

A%BXCx%x = AX(BXCX%) = (AXBXL)X%, etc. (4.2.5)

while the preservation of the modular character under isotopies also helds and it
is discussed in Sect. [4.7.

The situation for locality and canonicity follows the same lines, even tough
their technical treatment requires additional advances studied in subsequent
chapters. |

It is known that Lie’s theory is local because it possesses a local-
differential topology {31-33]. By the same token, we can say that the Lie-isotopic
theory is isolocal because it possesses the Tsagas—Sourias isolocal topology [25]
reviewed in Ch. L.6. At this point it is sufficient for the physical objective of this
presentation to recall the remarks in Sect. [.1.4 and Fig. [.1.4.1 that Lie’s theory
describes a local trajectory intended as the trajectory x(t) of a particle in point-
like approximation under only action-at—-a—distance interactions. The Lie-
isotopic theory also describes the local trajectory x(t), this time, intended as that
of the center—of-mass of an extended, nonspherical and deformable particle, plus
integral corrections due to its motion within a physical medium. In this sense, the
theory is isclocal, that is, everywhere Jocal except at the unit.
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Still a similar situation occurs for the notions of canonicily and
isocanonicity. One of the primary physical characteristics of Lie’s theory is that it
is canonical in the sense, c.g., that the time evelution is characterized by a one-
parameter Lie transformation group which is characterized by the sole
knowledge of the Hamiltonian. This notion is embedded in the primitive principle
of conventional mechanics, the action principle on the cotangent bundie (phase
space) '

8A=ftlt2(pk><drk—H><dt) = 0. (4.2.6)

where X is the conventional product in the base field Rin,+x).
As we shall study in details in Vol. ], isotopic theories are derivable instead
by the isoaction principle

84 = ft]tz(pk%drk - H% dt) =
= ftltzlpix‘lij(t, Lpp.)xdrd - Hxldt,r,p,p.)xdt) =0, (427

where, as we shall see, T is the space isounit and 1, is the time isounit. sotopic
theories are then called isocanonical because the isoaction principle coincides at
the abstract level with the conventional action principle, as one can see by
comparing the first formulation of principle (4.2.7) with principle (4.2.6).

The power of the isotopies is expressed by the fact that, despite the above
abstract identify, the isoaction principle is vastly broader than the conventional
principle, because it is directly universal for all possible nonlinear, integro—
differential, nonhamiltonian systems, as studied in Vol. II.

Moreover, while principle {4.2.6) is strictly of first order, isoprinciple {4.27)
is of arbitrary order when written on isospaces over Isofields. As we shall see in
Vol. [, these manifestly fundamental properties have rather profound physical
implications.

Note again the dual formulation of isotopic theories, the Tirst on isospaces
over isofields (the first formulation of isoprinciple {4.2.7)) and the second given by
its projection on the original space over conventional fields (the second
formulation of isoprinciple (4.2.7).

The notion of isocanonicity is better focused for the Lie—isotopic theory in
the study of the time evolution of physical systems. In classical Hamiltonian
mechanics the time evolytion is characterized by the one-parameter Lie group of
canonical transforms on phase space) with local coordinates a = {aH) = {rX, p,J, . =
2 ..6k=123

a’'={e Ixa, (4.2.8)
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where X is a Hamiltonian vector field (see next chapter). Similarly, the time
evolution in quantum mechanics is equally given by the one-dimensional Lie
group, this time, of unitary transform on a Hilbert space with states | ¢ > (see Ch.
1.6)

(47> ={elet}xI¢>, {4.2.9)
with interconnecting map called naive or symplectic quantization (see Vol. II).

The dominant characteristic in both cases (4.2.8) and (4.2.9) is that the time
evolution is solely characterized by the knowledge of one quantity, the
Hamiltonian H, under the generally tacit assumption that the basic unit is the
trivial quantity I = diag. (1, 1, .., 1.

In the transition to isotopic thecries the situation is different because the
characterization of physical systems now requires the knowledge of fwo
quantities, the Hamiltonian H for the characterization of all action—at—a—distance
interactions and the isounit 1 for the characterization of the contact nonpotential
interactions and the geometry of interior media (Ch. 1.3).

We shall learn in the next section that conventional time evolutions (4.2.8)
and {4.2.9) are lifted under isotopies to the classical form

5= (30 0)%3 = (¢ X ™) xg, 4.2.10
with corresponding operator form
15> =& F¥ Y s)gs = (e PP xgs. (4.2.11)

with unique and unambiguous interconnecting map studied in Vol. II, where &
denotes the new expenentiation under the generalization of the unit studied in the
next section.

The fundamental characteristics which is important for these introductory
comments is thal isotopic theories are isocanonical because the isotopic,
classical and operator time evolutions coincide at the abstract level with their
corresponding conventional counterparts, as one can see by comparing the first
formulation of laws (4.2.10) and (4.2.11) with the corresponding ones (4.2.8) and
(4.2.9). As we shall see in this chapter, the above property extends to all Lie-
Santilli isogroups of Class 1.

Again, the power of the isotopies is expressed by the act that, despite the
above abstract identity, the isotopic time evolution can represent physical
systems vastly more general than the conventional ones, as transparently
exhibited by the second formulation of laws (4.2.10) and {4.2.11).

The following property is important for the understanding of isotopic
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theories:

Proposition 4.2.2 (1,2t All possible nonlinear, nonlocal and noncanonical
transforms on a vector space Six,R)

¥ =Blw,x,.)x, x € SxR, w € Rn+x), (4.2.12)

can always be rewritten in an identical isolinear, isolocal and isocanonical form,
that is, there always exists at least one isotopy of the base field, R(n,+x) —
R(h,+%), and a corresponding isotopy of the space Sx,R} - 8&x,R) under which

X =Blw,x.Jx = AWkx, T= A1B. (4.2.13)

The above property is at the foundation of the “direct universality’ of the
Lie—isotopic theories” , that is, its applicability to all possible nonlinear, nonlocal
and noncanonical systems (universality) in the frame of the experimenter (direct
universality). In order to apply a Lie-Santilli isosymmetry to a nonlinear, nonlocal
and noncanonical system, one has merely to identity one of its possible isolinear,
isolocal and isocanconical identical reformulationin the same system of
(contravariant} local coordinates. The applicability of the methods studied in this -
chapter then follows.

Thus, the first role of isotopic techniques is that of generalizing
conventional linear, local and canonical thecries into lesser trivial nonlinear,
nonlocal and noncanonical forms. The subsequent role is that of (furning
conventionally nonlinear, nonlocal and noncanonical theories into "identical”
Isolinear, isolocal and isocanonical forms, with evident simplification of their
treatment.

We now study the image of the above notions under isoduality.

Definition 4.2.2 [8,9]: The “isodual isotransforms” of Class II are given by the
image of isotransforms (4.2.2) under isoduality, i.e, are defined on the isodual
isospace 8%x9, R9),
=R w03l = - WY R%Y, xed¥xRY, WleRUD D), (4.2142)
xdtr=gdsd gt (gd) = —3dx g1 (g9 (4.2.14b)

where At and AT will be identified Iater on in this chapter.

Isodual isotransforms characterize the isodual Lie isotopic theory which, in
turn, characterizes the isodual symmetries for our treatment of antiparticles.
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4.3: ISOENVELOPES AND THEIR ISODUALS

In this section we study the isotopies of universal enveloping associative algebras
called universal enveloping isoassociative algebras (or isoenvelopes for short)
for the case of Class Il over an isofield of characteristic zero. The use of Class
III permits a unified formulation of the isotopies of Classes [ and II with
consequential unification of the envelopes of simple, compact and noncompact
Lie algebras of the same dimension in Cartan’s classification into one single
isotope.

Isoenvelopes were first identified by this author in the original proposal of
the Lie-isotopic theory [1] and then studied in details in monograph [4]. An
independent study can be found in monograph [24].

All quantities belonging to the conventional Lie theory will be indicated
hereon with conventional symbols for generators, such as A, B, X, etc, when
belonging to conventional linear spaces S{x,F) and for parameters, such as w, 0, v,
etc,, when belonging to conventional fields F = F{a,+x).

All quantities belonging to the Lie-isotopic theory will be denoted with the
symbols for generators A, B, X, etc., when belonging to isolinear spaces, and for
parameters w, B, ¥, etc., when belonging to isofields F(a,+%). In particular, the
symbols &, B, X, etc,, mean the original generators A, B, X, etc., now recompute in
8(x,F(a,+X)), while for the parameters we -have w = wxl, 8 = &<1, ¥ = vxl, etc.
Similarly, we shall write T to denote the isotopic element computed on S(x,F) and
T to denote its image computed on S(,F). For the case of the isounit we shall only
-use the symbol 1 to prevent confusion with the conventional unit I.

To begin, let &€ = £(L} be a universal enveloping associative algebra of an N-
dimensional Lie algebra L (see, e.g., ref. [31] and Fig. 4.3.1) with generic elements A,
B, C...., trivial associative product AXB = AB (say, of matrices) and unit matrix in
N-dimension I = diag. (1, 1, .., 1.

Let the (ordered) basis of L be given by Xy}, k = 1, 2, .., N, over a field
Fla,+%). An (ordered) standard monormnial of dimension n is the product of n-
generators X1><Xj>< ... XX with the ordering i £ j £ ... £ k. The infinite-dimensional
basis of &) is then expressible in terms of monomials and given by the
Poincaré-Birkhoff-Witt theorem [31]

I, Xk X xX; (=), Xp xX; xXg (i2j5kK) ... 4.3.1)

The universal enveloping isoassociative algebra, or isoenvelope) E(L) of the
Lie algebra L [1] (see Fig. 4.3.1 for their definition) coincide with £ as vector
spaces (because the basis of a vector space is unchanged under isotopies). The
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basis of E(L) is therefore constructed with the same generators Xy only computed
on the new isospace S(x,Fa,+X)) and denoted X and now equipped with the
isoproduct AR so as to admit1 = T"! as the correct (right and left) unit

E . AXB = AxTxB = ATRB, 1T fixed, (4323
1%4 = A%1 =4 viet 1=T171 (4.3.2b)

The (ordered)} standard monomials of dimension n of EL) are then mapped into
the (ordered) standard isomonomials of the same dimension XFR& ... 3Ry, i =] =
. =k of EL).

A Tundamental property from which most of the Lie-isotopic theory and
hadronic mechanics can be derived is the following

Theorem 4.3.1- Isotopic generalization of the Poincare’-Birkhoff-Witt
Theorem [1: The cosets of 1 and the standard isomonomials form an infinite—
dimensional basis of the universal enveloping isoassociative algebra L) of a Lie
algebra L of Class IlI

1, Xk Xi S Xj i=3j, Xi % X] % XK i=j=k), ... {4.3.3)

A detailed proof can be found in ref. [4], pp. 154-163, or ref. 24}, pp. 74-93,
-and it is not repeated here for brevity (although its knowledge is assumed for
more advanced freatments).
Algebraically, the above theorem essentially expresses the property that non
singular isotopies of the basic product, ie,

A

AxB: (AXB)XC = AX(BxC} - AXB: (AXBXC = AX(BX(C), (4.3.4)

imply the existence of consistent isotopies of the basis (4.3.2). Note the abstract
unity of the conventicnal and iscenvelopes. In fact, at the level of realization-
free formulation the “hat” can be ignored and bases (4.3.1) and {4.3.3) coincide.
Nevertheless, the isoenvelope &(L) is structurally broader then the conventional
envelope £(L), e.g., because it unifies compact and noncompact structures as
shown below, and this begins to illustrate the nontriviality of the Lie—Santilli
isotheory.

Theorem 4.3.1 and isobasis (4..3.3) have fundamental mathematical and
physical implications. Recall that the conventional exponentiation is defined
precisely via a power series expansions in £
e ™ L WX /1 G WRR K WX0 /2 F e W € Flat) .

(4.3.5)
The above exponentiation is then inapplicable under isotopies because the
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quantity [ is no longer the basic unit of the theory, the conventional product x
has no mathernatical or physical meaning, etc.

In turn, this implies that all guantum mechanical quantities depending on
the conventional exponentiation, such as time evolution, unitary groups, Dirac’s
delta distributions, Fourier transforms, Gaussian, etc. have no mathematical or
physical meaning under isotopies and must be suitably lifted.

[sobasis (4.3.3) then permits the following

Corollary 4.3.1.A [1,4L The “iscexponentiation” of an element X € & via isobasis
(4.3.3) over an isofield Fa,+%) is given by

REED dwX iwkx® iwX

=T+ (wkR/M+{wxR % ({wkR)/2+... =

inTXX} = (e ixxwa]x'l

=]x{e , w e Ma+x). {4.3.6a)

W;(K = (lel)xTxX =wX, XS&F(&,"'QD = X (436b)

Six,Fla,+x)} -

The first, and most fundamental application of the isoexponentiation is the
characterization of classical and operator time evolutions of isotopic theories. In
fact, isoexponentiation {4.3.6) yields precisely the desired realization of the
generalized exponentiation of time evolutions (4.2.10) and (4.2.11), according to the
rules in full compatibility with the isotransformation theory on isospaces over
isofields

3= (25083 = (e XT3 (4.272)
15> =5 14> = (e P s, (42.7h)

The significant of the Lie-isotopic theory as a basic guidance Tor other
generalizations is now evident. In fact, our task in the following analysis of this
and of Vol. Il is that of searching for algebras, geometries and mechanics
compatible with fundamental time evolutions (4.3.7).

The isoexponentiation will also have fundamental relevance in numerous
other aspects of hadronic mechanics, such as a structural generahzatlon of
Dirac’s delta distribution, Fourier transform, Gaussians, etc.

The nontriviality of the isotopies of Lie's theory is clearly expressed by the
appearance of the nonlinear, nonlocal and noncanonical isotopic element T(t, x,
X, ¥, ..} directly in the exponent of isoexponentiations (4.3.6). This is sufficient to
see that the Lie—isotopic space-time and internal symrmetries will be nonlinear,
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nonlocal and noncanonical, as desired for strong interactions.

One should keep in mind the uniqueness of isoexponentiation (4.3.6). It
originates from a crucial requirement of the Poincaré~Birkhoff-Witt theorem,
the existence of a well defined left and right unit [31] which, in turn, implies the
uniqueness of the isobasis (4.3.3). This property can then be compared with the
lack of uniqueness of the exponentiations in other theories. As an example we
shall study in Vol. II, the so—called q-deformations, which do not possess a unique
exponentiation because they do not possess a unit [(42],

By recalling the results of the preceding analysis on isodual isofields and
isodual isospaces (particularly Proposition 1.3.2.1), we can see that the isodual
isoenvelopes £%L9) [89] are characterized by: the isodual basis and the isodual
parameters

~

=R, wi=wld = -4 (4.3.8)

Corollary 43.1B: The “isodual isoexponentiation” is the isodual image of
isoexponentiation (4.3.6) on the isodual isofield F9wd +x9)

édidv@d%dxdz {9 7d xd g9 IXTw

€2 = -(e 1 {4.3.9)

Note that the preservation of the sign in the exponent is only apparent, ie.,
when projected in an isofield, because, when properly written in the isodual
isofield, one can use the expression

-%gdsdgd  yxrw!

e - {e 11 (4.3.10)

Ed

I[sodual isoexponentiations play an important role for the construction of
the isodual isosymmetries for antiparticles.

It is easy to see that Theorem 4.3.1 holds for envelopes of Class III, as
originally formulated [1), thus unifying isoenvelopes & and their isoduals £9. In
fact, Theorem 4.3.1 was conceived to unify with one single Lie algebra basis Xy,
but arbitrary isotopies in the envelope &L), mnonisomorphic compact and
noncompact algebras of the same dimension N.

To clarify this aspect, recall [31] that a conventional envelope &(L) represents
only one algebra (up to local isomorphism),

L ~ [HU]™. (4.3 11)

The study of a nonisomorphic Lie algebra L' then requires the use of a different
basis X', resulting in a different envelope £{L). Thus, in the conventional Lie
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theory nonisomorphic Lie algebras of the same dimension are represented via
different bases and different envelopes.

This scenario is altered under isotopy because the isoenvelopes are now
characterized by two quantities, the basis Xy and the isounit 1. We therefore
have the novel possibility of using the same basis and changing instead the
isounit. In fact, one isoenvelope &(L} of Class III with a fixed N-dimensional
basis Xy and an arbitrary N-dimensional isounit 1 represents a family of
generally nonisomorphic Lie algebras L as the attached antisymmetric algebras

L =~ [HD]™. {4.3.12)

In particular, it was proved in the original proposal [1] that, the isoalgebra L
constructed via rule {(4.5.12} is not in general isomorphic to the original algebra L,
L. # L, unless the isotopic element is positive-definite.

Theorem 4.3.1 therefore offers the possibility of unifying of all simple Lie
algebra in Cartan’s classification of the same dimension. This implies in particular
the reduction of compact and noncompact structures of the same dimension to
only one isotopic structure, and, for each given structure, the reduction of linear
and nonlinear, local and nonlocal, canonical and noncanonical realizations to one
primitive algebraic notion, the isoenvelope E(L} (see Fig. 4.3.1 below for more
details).

The above unification was illustrated in the original proposal [1] with an
example that is still valid today. Consider the conventional Lie algebra so(3) of the
rotational group SO(3} on the Euclidean space E{r,8,R) with unit I = diag. (1, 1, 1).
The adjoint representation of so(3) is given by the familiar expressions

000 00 -l 010
J;=(001 ), J2=(00 0), J3=(-IOO ) (4.3.13)
0-10 10 0 0090

The universal enveloping associative algebra &(sof3)) is then characterized by the
unique infinite-dimensional basis from the conventional Poincare~Birkhoff-Witt
theorem [31]

Lo %95 6=p, Jyd (j=i=k),.. (4.3.14)
and characterizes only one algebra as the attached antisymmetric algebra
[E(s0(d))] ~ s0(3). (4.3.15)
The isotopies &(sol3)) of the envelope Elso(3)) of Class [11 are characterized

by the the lifting of the basic carrier space E(r,8,R} into the isoeuclidean space
E(5,R) with isometric, isotopic element and isounit
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5 = T5, T= diag (g)), 82 833, 1 = diag. (g, L gon Lgas V), (43.16)

where the characteristic quantities gy are real-valued, non-null but arbitrary
functions of the local coordinates gkk(t, 1, T, T, ...) which, as such, can be either
positive or negative. From Theorem 4.3.1, the isoenvelope &(sof3)) is then
characterized by the original generators (4.3.13), although expressed now in ferms
of the isoassociative product Ji>“<Jj = JiTJ; and isounit T with unique infinite~
dimensional basis from Theorem 4.3.1

T, J, T G=D, JTIHTH (j=isk), .. (4.3.17)

[t is now easy to see that the algebra characterized by the attached
antisymmetric part of &(so(3)) is not unique, evidently because it depends on the
explicit values of the characteristic quantities ggy. [t was shown in ref.s [1,9] that
the isoenvelope E{so(3)) unifies: all possible compact and noncompact three-
dimensional Lie algebra of Cartan classification, the algebras so{3) and so(2.1); all
their infinitely possible isotopes si3) and s0(2.1); the compact and noncompact
isodual algebras s0%3) and so%3); as well as all their infinitely possible isodual
isotopes 50%3) and s6%2.1), according to the classification

sol3) for T = diag. (1, 1, 1;
so{2.1) for T = diag. (1, -1, 1}
so(3) for sign. T =, +, +)
[E(s0(3)] : s0(2.1) for sign. T = (+, ~, +) (4.3.18)
s0%3) for T =(-1,-1,-1) ‘
so%2.1) for T = diag. -1, +1, -1}
s0%3) for sign. T=(-, -, )
56%2.1) for sign. T = (=, +, -).

The only improvement we can now provide over the above original
formulation is in notation but not in results. In fact, the basis Ji could today be
rewritten as the isobasis J, which are essentially given by isomatrices, ie., by
matrices (4.13) in which all elements are replaced by isonumbers (that is, the
number 1 by the isounit 1). But in this case all products are isotopic, thus
implying the elimination of the isotopic character of the matrix representation
and the preservation of the preceding results.

The unification of all simple Lie algebras of dimension 6 in Cartan’s
classification was also identified by this author in ref. [7] and it will be studied
later on. The unification of all simple algebras of the same dimension in Cartan’s
classification into one single Lie—Santilli isoalgebra is currently under study by
the mathematicians Gr. Tsagas and D. Sourlas.
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The explicit form of the Lie-isotopic algebras will be studied in the next
sectior; an illustration of the isoexponentiation will be provided in Sect. 4.5; and a
first example of physical applications will be given in Sect. [.4.7. The isotopes and
isoduals of sof3) and sold) will then be studied in detail in Vol. II their applications
int Vol. [II.

Whenever needed for clarity, isoenvelopes will be denoted with the symbol
¥+ identifying the selected isotopic element T.

As concluding remarks, note that the lifting & — ¢ is necessary under the
isotopy of the unit because, in general, TA = Al » A.

UNIVERSAL ISOASSOCIATIVE ENVELOPING ALGEBRAS

(a) (p)

FIGURE 4.3.1: The universal enveloping associative algebra EL) of a Lie algebra L [31] is
the set {€, T) where £ is an associative algebra and 7 is a homomorphism of L into the
antisymmetric algebra £ attached to & such that: if & is another associative algebra and
7' is another homomorphism of L into &~ a unique isomorphism <y between & and § exists
in such a way that the diagram (a) above is commutative. The above definition evidently
expresses the uniqueness of the Lie algebra L {up to local isormorphisms) characterized by
its universal envelopes E{L).

With reference to diagram (b) above, the universal enveloping isoassociative
algebra L) of a Lie algebra L was introduced [1] as the set {{&, 7), i, &, 7} where: (£, T) is a
conventional envelope of L; i is an isotopic mapping L - i L =L » 1; ¢ is an associative
algebra generaily nonisomorphic to & T is a hornomorphism of L into ¥; such that: if & is
another associative algebra and ¥ another homomorphism of L into & ~, there exists a
unique isomorphism ¥ of ¥ into & with T = ¥7, and two unique isotopies € = & and 1¢ =
¥ :

A primary objective of the isotopic definition is the achievement of the lack of
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unigueness of the Lie algebra characterized by the isoenvelope or, equivalently, the
characterization of a family of generally nonisomorphic Lie algebras via the use of only
one basis. The illustration of the above notions for the case of the rotational algebra 30{8)
studied in the text is straighforward and can be expressed via the diagrams {c) and (d)
below

T i
\ 1
T i Y
SO(3) E i g
N | )
SO(@3)

. {c) (d)
where the isotopy is given by I = diag. (1, 1, 1) =1 = diag. (I, -1, 1. The above definition
then provides all infinitely possible isotopes and isodual isotopes.
" The above notion of isoenvelope represents the essential mathematical structure of
-hadronic mechanics, namely, the preservation of the conventional basis, i.e., the set of
observables, and the generalization of the operations on them via an infinite number of
isotopies so as 1o admit a new class of interactions structurally beyond the possibilities of
quantum mechanics.

The isoenvelopes are denoted E{L} and not ¥(D) to stress the preservation of
the original basis of L under isotopies (Proposition [.3.2.1), as well as to emphasize
the existence of an infinite family of isoenvelopes for each original Lie algebra
L

The isotopy & — ¢t is not a conventional map because the local coordinates
x, the infinitesimal generators X and the parameters wy are not changed except
for their redefinition in isospace over isofields. In particular, the map from &U) to
1) is nonunitary as indicated in Sect. [.4.1, and this illustrates their
inequivalence. We therefore have the following

Proposition 4.3.1 [2}: A conventional envelope £ and its isotopic image & are
not unitarily equivalent.

The above algebraic property illustrates the fact that hadronic mechanics
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is not unitarily equivalent to quantum mechanics, which is an evident necessary
condition for novelty. Despite the above lack of unitary equivalence, a given Lie
algebra L and its isotope Lof Class I are indeed isomorphic as we shall see in the
next section. ‘

As now familiar, our main realization of the Lie—isotopic product is
expression (1.4.1.2) where the the product [A,"B] is nonassociative while the
product of the underlying envelope ATB is isoassociative. The preservation of
the associative character of the envelope under isotopies deserves an elaboration
because important for the construction of any generalization of quantum
mechanics, whether of isotopic type or not.

In principle, the lack of associativily of an algebra is not per se a
compelling reason reascn for its exclusion, because there are nonassociative
algebras U such that the attached antisymmetric algebra U™ is Lie. In fact, as we
shall see in Ch. 1.7, this is precisely the definition of Lie—admissible algebras with
product AGB = ARB — BSA which is nonassociative yet the product AB — BoA =
ATB - BTA, T = R+§, is Lie—isotopic. The reason for the exclusion is that the
notion of universal enveloping algebra has been essentially developed for
associative algebras [31-33). Nonassociative enveloping algebras are known only
for very restricted algebras of the so—called flexible Lie-admissible type (see in
this respect ref. [12)). In fact, the ordering of monomials is generally lost under
nonassociative products, resulting in the general impossibility to formulate the
Poincaré-Birkhoff-Witt theorem.

The physical reasons for excluding nonassociative envelopes are however
deeper then the above. They are related to the fact that associative envelopes of
the type herein considered admit a consistent.unit which is at the foundation of
physical applications such as the measurement theory. On the contrary,
- nonassociative envelopes generally do not admit-a unit?!, thus prohibiting the
very formulation of the measurement theory.

Moreover, in Yolume II we shall review "Obuko’% no—go theorem” which
prohibits the use of a nonassociative envelope for a consistent generalization of
quantum mechanics, e.g., because of the loss of equivalence between the
Heisenberg—type and the Schridinger—-type representations.

We reach in this way the following:

Fundamental condition on Lie-Santilli isotheory 4.4.1[2} All studies on the
Lie—Santilli isotheory and hadronic mechanics will be restricted throughout our
analysis o formulations based on an iscassociative character of the enveloping
algebra with a well defined left and right isounit .2

21 Recall that the fundamental unit 1 of the conventional Lie’s theory is the unit of the
associative envelope and not of the Lie algebra. In fact, the product [A, B, per se, admits
no consistent unit because it would require an element E such that [E, Al =[A,El=A, VA
€ L. Exactly the same situation oceurs under isotopies.

As we shall see in Ch. 1.7, this fundamental condition will persist also for the more
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4,4; LIE-SANTILLI ISOALGEBRAS AND THEIR ISODUALS

We are now equipped to introduce the fundamental notion of hadronic
mechanics according to the following

Definition 4.4.1 [1l: A (finite-dimensionall isospace L over an isofield F(@,+J%)
of isoreal numbers R{n,+%}, isocomplex numbers Cc,+X) or isoquaternions
OG,+%) with isotopic element T and isounit 1 = T7! is called a “Lie-Santilli
isoalgebra” over F when there is a composition [A,"B] in L called
*isocommutator, which verifies the following “isolinear and isodifferential
rules”forall 3,beFand A B Cel

[a% A + b%B cl = a%[A;C]l + 6% [B]C) (4.4.1a)
[AxB;Cl = A%X[B/CI +[A C]*B. (4.4.10)
and the "Lie-Santilli isoaxioms’,
[A7B1=-1[B/Al, (4.4.2a)
[A][B;CI] + [BJICTAI + [CT(ATB]] = 0. (4.4.2b)

- Note that-the use of isoreals, isocomplexes and isoquaternions preserves the
associative character of the underlying envelope. The use instead of isooctonions
0, +%) (Sect. 1.2.8) would imply the loss of such an associative character and, for
this reason, isooctonions have been excluded as possible isofields in Definifion
2.3.1 in a way fully parallel to conventional lines in number theory. Nevertheless,
one should keep in mind that the Lohmus-Paal-Sorgsepp octonionization
process(39] resolves the above problematic aspects.

In the original proposal [1] this author proved the existence of consistent
isotopic generalization of the celebrated Lie’s First, Second and Third Theorems.
For brevity, we refer the interested reader to ref. [4] pp. 163-184 or to the ref. [24],
Ch. II. We here quote the Isotopic second and third Theorems because useful in
applications for the speedy construction of one realizations of Lie—isotopic
algebras (see later on for more complex realizations).

Theorem 4.4.1 - Lie-Santilli Second Theorem {1} Let X ={X;), k=12 ., N,
be the (ordered set of) generators in adjoint representations of a Lie algebra L
with commutation rules

general Lie—admissible formulations for which the underlying envelope must remain still
isoassociative, and the units must still exist, although they are differentiated for the right
and left multiplications.
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. X = XXX - X = oK
L: [X, %)= X %X - X *xX= G X, (4.4.3)

where Cijk are the "structure constants”. Then, one realization of the Lie-
isotopic images L of L is characterized by the same generators now computed
in isospaces over isofields X with isocommutation rules

L: [%7%;] = X %%; - {&%; = {x TR - {HxTx =

= Xi T(X, X, ) X_] - X] T(X, X, ) Xi = Cljk(t, X, X, ) % Xk =

= G % .0 R, (4.4.4)
where the Cijk are the “structure functions” in the isofield.

Theorem 4.4.2 - Lie-Santilli Third Theorem l[loc. cit:  The structure
functions Cijk of a Lie-isotopic algebra L verify the conditions

Cljk == Cjk N 7 (445)

and the properly (when comrmuting with the generators %

Cijp * Cpkq + C_]kp * ijq + Ckip *Cmq = Q. (4.4.6)

The Lie—isotopic theorems have fundamental! mathematical and physical
relevance for all isotopic theories (for which reason they were given first
attention in the original proposal [1]). Mathematically they identify the type of
algebra and physically they identify the brackets of the basic time evolution of
the theory.

In fact, the classical time evolution of a quantity Q(t) in the isotopic
theories is given by the left and right, bimodular formulation of one-sided
isotransforms (4.2.10) and 4.3.7),

~ Xt oo X -tTX

Q= (e Ixqox(e e XT?

) (4.4.7)

¢

which, for infinitesimal valued of times, t — dt, vyields the fundamental brackets
of the classical time evolution in terms of a isohamiltonian vector field X [1,4]

b= Qo {e

dQ/dt=[Qdt) - QO]/dt = [Q H]=QTH- HTQ, (4.4.8

23 1f not, more general properties are easily derivable from Jacobi's law.
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which results to be of the Lie-isotopic type precisely according to the Lie-
isotopic Theorems.

At the operator level we have a much similar situation. In fact, the time
evolution of an operator Q(t) in the Heisenberg~type formulations is given again
by the right and left, bimodular extension of the one-sided isotransforms (4.2.11)
and (4.3.7},

~1Xt -itTX

Q= (2 ATX iXTt

1xQo)x{e ") = {e 1Qo (e } (449
which, Tor infinitesimal valued of times, t — dt, yields the fundamental brackets
of the operator time evolution (24

dQ/at=[Qldt) - Ql/dt =[Q, H] = QTH - HTQ, (4.4.10)

which result to be again in full cornpliance with the Lie—isotopic Theorems.

Most of the efforts conducted in the last decades on the Lie-isotopic
formulations, as reported in these volumes, have been devoted to the
identification of algebraic, geometric and analytic formulations which are
compatible with fundamental time evolution laws (4.4.8) and (4.4.10).

We learn in this way that the structure “constants” of Lie’s theory acquire a
dependence on local variables similar to that of the isotopic element T, thus
becoming structure “functions’.

[t is important to illustrate the above theorems with an example. Consider
the generators of the su(2) Lie algebra in their adjoint representation, which are
given by the celebrated Paulis matrices and related commutation rules

( 0 1 ) ( 0 —i) ( l 0) ( |
ag; = , Oy = , gg = 44.11a
! 1 0 2 i 0 3 ¢ -1

[oqg.om] = opxop — O *x0g = 2i€nmy Ok, (4.4.110)

Theorem 4.4.1 states that the same generators oy , when written in isospaces
over isofields, can characterize one realization of the Lie~isotopic st2) algebra
via the lifting of the structure constants into suitable functions.

This property is readily verified by introducing a Class III isotopic element
assumed diagonal for simplicity, and then identifying the structure functions
under which the algebra is closed. By ignoring for notational simplicity the
rewriting of the basis in isospace, we have the following illustration of the Lie-
isotopic Second Theorem

lop om] = opxTxoy ~ oyxTxoy = 2ig*xTxog, (44.12a)
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g 0
T = ( 1 ), Bk ® 0, A = detT = £11 822 {4.4.12D)
0 g»
-1
g 0 gy 0
1= ( ' - ) = A‘l( 2 ) (4.4.12¢)
0 gy 0 gn
. g20/g1) 0
Eijk = Eijk( 2) . (44[2(1)
0 g/8;

Note that the original structure “constants” Cijk are elements of a field
Fla,+,%) and, as such, are ordinary numbers. On the contrary, the structure
*functions” (“,ijk are now elements of the isofield F3,+%) and, as such, are
isonumbers and, thus, matrices. As such, they should be called more properly
structure isofunctions, where the prefix “iso” stands precisely to represent their
matrix character.

Note finally that Theorem 4.4.1 provide only one method for the speedy
construction of an isotope L of a given Lie algebra L. In general, the above
methods is not applicable because Lie and Lie-isotopic algebras are connected by
a nonunitary transform (Sect. 1.4.1), thus implying different generators. In fact,
- another way of constructing Class I isotopes L of a given Lie algebra L is by
generalizing the generators Xy and keeping instead the old structure constants.
This alternative approach will be used in a number of applications because it
evidently ensures the local isomorphism L =~ L ab initio, while lifting
conventional symmetries into the desired nonlinear—nonlccal-noncanonical form.

Theorems 4.4.1 and 4.4.2 were however conceived for specific physical
needs. Recall that the generators of a Lie algebra represent physical quantities,
such as linear momentum, angular momentum, energy, etc. As such, these
quantities cannot be changed under isotopies, thus explaining the preservation of
the original basis. An additional motivation is that, among all possible realizations,
the method of Theorem 4.4.1 results to be most effective in the computation of
the symmetries of nonlinear—nonlocal-noncanonical systems, as we shall see in
Sect. 1.4.6.

[t is easy o prove the following:

Theorem 4.4.3 [2: The isotopies L = L of an N-dimensional Lie algebra L
preserve the original dimensionality.

In fact, the basis ey, k=1,2 ... Nof a vector space and, thus, of a Lie algebra L
is not changed under isotopy, except for renormalization factors denoted €. Let
then the commutation rules of L be given by
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[ €, € ] = Cijk €. (4.4.13)

The isocommutation rules of the isotopes [, are

'~ An

[el- . Ej I = éi T’éj - é_] T éi = Cijk(t, X, X, ) él( . (4.4.14)
One can see again in this way the necessity of lifting the structure “constants”
infe structure “functions”, as correctly predicted by the Lie-isotopic Second
Theorem. A number of examples will be provided during the course of our
analysis.

We now review a few basic notions of Lie—isotopic algebras L which can be
derived via an easy isotopy of the corresponding conventional notions (as
available, e.g., in ref.s [31-33]). Lie-isotopic algebras L are said to be:

a) isoreal (isocomplex) when F =R (F = C);

2) isoabelian when [A;B]= 0,V A,Be [}

3) A subset [ of L is said to be an isosubalgebra of L when

[Lo L]l © Ly (4.4.15)
4} An fsoideal occurs when
[L7L,] € Ly (4.4.16)

5) The isocenter of a Lie-isofopic algebra is the maximal isoideal Ly, which
verifies the property

[L7E,]1 = o (4.4.17)

Definition 4.4.2 [27]: The “general isolinear and isocomplex Lie—isotopic
algebras”, here denoted with GL(n,C), are the vector isospaces of all nxn
complex matrices over C(C,+%), and are evidently closed under isocommutators.
The “isocenter” of GLNG is then given by &4, ¥V & ¢ C. The subset of all
comnplex nxn matrices with null trace is aiso closed under isocommutators, it is
called the “special, isolinear, isocomplex, Lie-isotopic algebra”, and denoted with
Stin,8). The subset of all antisymmetric nxn real matrices X, X! = -X, is also
closed under isocommutators, is called the “isoorthogonal algebra’; and is
denoted with o).

By proceeding along similar lines, one can classify all classical, non-
exceptional, Lie-Santilli isoalgebras into the isotopes of the conventional forms,
denoted with &, , B, €, and Dy, according to the general rules [27]
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Class A, | = Sln,{)
ClassB, = O(n+], &)
ClassC, = SPn, &) and
ClassD, = O2n,{)

plus the isoexceptional algebras here ignored for brevity.

Each one of the above algebras then needs its own classification (evidently
absent in the conventional case), depending on whether 1 is positive-definite
(Class I), negative definite (Class II), indefinite (Class I11), singular (V) and general
{Class V), as well as whether of isocharacteristic zero or p, thus illustrating the
richness of the isotopic theory indicated above.

The notions of homomorphism, automorphism and isomorphism of two
Lie~isotopic algebras Land [ are the conventional ones. Similarly, all properties
of Lie algebras based on the addition, such as the direct and semidirect sums ,
carry over to the isotopic context unchanged (because of the preservation of the
conventional additive unit 0).

By following Kadeisvili {27] we now introduce an isoderivation 3 of a Lie~
isotopic algebra L as an isolinear map of [ into itself satisfying the property

BIATB]) = [DAB] + [A7DB)] VA Bel. {4.4.18)

If two maps D and D, are isoderivations, then %D+ B%D, is also an isoderivation,
* and the isocommutators of D, and D, is also an isoderivation. Thus, the set of all
isoderivations Torms a Lie—isotopic algebra as in the conventional case.

The isolinear map ad(l) of L into itself defined by

Iscad AB) = [A7B], WV 4 BelL, {4.4.19)

is called the isoadjoinf map . It is an isoderivation, as one can prove via the
Jacobi identity (4.4.2b). The set of all ad{A) is therefore an isolinear Lie-isotopic
algebra, called isoadjoint algebra and denoted [.a It also results to be an iscideal
of the algebra of all isoderivations as in the conventional case.

Consider the algebras

to =g, W=zl @=prrpl)y ge, (4.4.20)

which are also isoideals of L. L is then called isosolvable if, for some positive
integer n, LV = .
Consider also the sequence

Lg=L Lp=[Ly L],  “fy=[L;TLletc. (442D

Then Lis said to be isonilpotent if, for some positive integer n, t(n) = 0. One can
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then see that, as in the conventional case, an isonilpotent algebra is also
isosolvable, but the converse is not necessarily true.
Let the isofrace of a matrix be given by the element of the isofield

[sotr A = {TrA)T eF, {4.4.22)
where TrA is the conventional trace. Then
Isotr (A % B} = (Isotr A) % {Isotr B), Isotr (BXAXB 1 )=1lsotr A. (4429

Thus, [solr A preserves the axioms of Tr A, by therefore being a correct isotopy.
Then, the isoscalar product

(ATB) = Isotr[( Isoad &) % {Iscad B)] (4.4.24)

is called the isokilling form as first studied by Kadeisvili [27]. It is easy to see
that ( A 7B ) is symmetric, bilinear, and verifies the property

(Isoad X (1) 72) + (¥ [Isoad X(2) = 0, {4.4.25)

thus being a correct, axiom—preserving isotopy of the conventional Killing form.

Letey ,k = 1,2, .., N, be the basis of L with one-to-one invertible map ey
— & into the basis &y of L Generic elements in L can then be written in terms
of local coordinates x, v, z,

R=x8,B=ylg;, C=2K% = [A7BI=xlyI[; 4] =
= (e (4.4.26)
Thus,

[Isoad A (B)]¥ = [A7BF = Cijk xIxd, (4.4.27)

By following again Kadeisvili [27], we now introduce the isocartan tensor gjjof a
Lie-isotopic algebra L via the definition (A [B)= g x! y) yielding

Gt x % % ) = Cipk TP (4.4.28)

Note that the isoccartan tensor has the general dependence of the isometric
tensor of the preceding chapter, thus confirming the inner consistency among the
various branches of the isotopic theory. In particular, the isocartan tensor is
generally nonlinear, nonlocal and noncanonical in all variables x, %, %, ... .

The isocartan tensor also clarifies another important point of the preceding
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analysis, that the isotopies naturally lead to an arbitrary dependence in the
velocities and accelerations, exactly as needed for realistic models of interior
dynamical problems, and that their restriction to the nonlinear dependence on the
coordinates x only, as needed for the exterior gravitational problem, would be
manifestly un—-necessary.

The isotopies of the structyre theory of Lie algebras then follow, including
the notion of simplicity, semisimplicity, etc. (see the monograph [24]} Here we
limit ourselves to recall the following

Definition 4.4.3 [27]: A Lie-isotopic aigebra L is called “compact” ("noncompact”}
when the isocartan form is positive— (negative-) definite.

Numerous additional, more refined definitions of compactness and
noncompactness are possible via the isotopies of the corresponding conventional
definitions [31-33]. The above definition is however sufficient for our needs.

We now study a few implications of the isotopic lifting of Lie's theory.

Theorem 4.4.4(1]: The isotopes of Class Il L. of a compact (noncompact) Lie
algebra L are not necessarily compact (noncompact).

The identification of the remaining properties which are not preserved
under liftings of Class III is an instructive task for the reader interested in
‘becoming an expert in isotopic theories. For instance, if the original structure is
irreducible, its isotopic image is not necessarily so even for Class I, trivially,
because the isounit itself can be reducible, thus yielding a reducible isotopic
structure.

Definition 4.4.4 [8} Let L be a Lie-isotopic algebra with generators X, and
isounit1 =171 > 0. The “isodual Lie-isotopic aigebras” 19 is the isoalgebra with
isodual generators Xkd = -Ry conventional structure functions over the isodual
isofield FIa%+ %) with “isodual isocommutators”

[R7%00 = -1%%7%91 =-1%,7%] = 6f 8% =- F R (4429

When the original algebra is a Lie algebra L the “isodual Lie algebra” is given by
the structure LY over the isodual field Fd(ad,+,><d) with "isodual commutators”

[Xiixj ]d=Xi dej—ijd Xi=—[Xi,Xj] =-Cijk5(k. {4.4.30)

L and ¥ are then anti-isomorphic, Note that the isoalgebras of Class III
contain all algebras f.and all their isoduals 14 The above remarks therefore show
that the Lie-isotopic theory can be naturally formulated for Class III, as
implicitly done in ref. [1].
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Note the necessity of the isotopies for the very construction of the isodual
of conventional Lie algebras. In fact, they require the nontrivial 1ift of the unit I
— 19 = (1), with consequential necessary generalization of the Lie product AB -
BA into the isotopic form ATB — BTA.

The following properly is mathematically trivial, yet carries important
physical applications.

Theorem 4.4.5 (1,5} Alf infinitely possible, isotopes L of Class I of a (finite-
dimensional) Lie algebra L are locally isomorphic to L, and all infinitely
possible isodual isotopes 8 of Class IT are Iocally isomorphic to L4

The simplest possible proof is via the redefinition of the basis X — X =
Xy1, under which isotopic algebras [ acquire the same structure constants of L,

[X]:K]] g [X'I‘,\X']] = [XI,XJ]’I = Cijkx'k' {4.4.31)

We should however indicate that, even though the above reduction is possible, in
general we have C; K Cijk 1, as it is the case of example (4.4.8), thus rendering
inapplicable the realization X’ = X 1. Also the realization X% = X1 does not yield
the desired nonlinear—nonlocal-nonhamiltonian isosymmetries as we shall see in
Sect. 4.6.

Despite the local isomorphism L = {, the lifting L — L is not mathematically
trivial because these two algebras are not unitarily equivalent. The physical
relevance of the isotopies originates .precisely from their local isomorphism,
because it permits the construction of nonlinear, nonlocal and noncanonical
isotopes of the rotational SO(3), Galilean G(3.1), ‘Lorentz §(3.1), Poincare P(3.1),
S0(3) and other space-time and internal symmetries which are locally iSomorphic
to the original algebras.

Theorem 4.4.5 therefore represents the property which has permitted the
achievemnent of methods for the nonlinear-nonlocal-noncanonical interior
problems by preserving the analytic, algebraic and geometric axioms of the
conventional, linear-local-canonical methods of the exterior problems [4].

For additional technical studies of the Lie—isotopic algebras we refer the
reader to the forthcoming book [24].

We now illustrate the results of this sections with the isotopies and
isodualities of the rotational algebra so(3) with generators in their adjoint form
(4.3.13). For this purpose, the isounit and isotopic element of Class III, Eq. (4.3.16),
can be realized in the form

1 =diag. (£ 2+by4+b3 9, bltrit.) 0, (4.4.322)

8 =T = diag. (b2 £ 17 £ bs?), {4.4.32b)

]
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The Isotopic Second Theorem 4.4.1 then yields
DY =91 - 3Ty = Gt )Ty (4.4.33)
where the Js are the conventional adjoint generators (4.3.13) only rewritten in isospace
and the s are the structure functions.
It is easy to see that all possible isoalgebras (4.4.8) are those of classification
(4.3.18), and are given by [1,9]
1) s0(3) for T =1 = diag. (1, 1, 1) with commutation rules
[JI'JZ] = J3, [J2,J3] = Jl’ [‘}3"111 = J2; (4.4.34)
2) sol2.1) for T = diag. (1, -1, 1) with rules
[31 ::)2] = :)3 P [:]2 :\:]3] = _:]1 N D3 ::]l] = 32; (4435)

3) An infinite family of isotopes s0{3) isomorphic to so(3) for
T= diag. (b/% b,? bs? with rules

Dl :32] = b32 :]3 N [:]2 :33] = blzjl ’ [33 :31] = b22 :]2; (4.4.36)

- 4) An infinite family of isotopes.so(2.1) isomorphic to so(2.1) for
T = diag. (b;% ~b,? bs?) and rules

0170 =123, D70l =-1,23,, 0373 = b2 Yy {4.4.37)
5) The isodual so%3) of s0(3) for T = diag. {-1,-1, -1) and rules
By.3] = 33, 079 = =3y, 03731 = 3y (4.4.38)
6) The isoduat s0%2.1) of so{2.1) for T = diag. (-1, 1, -1) and rules
Q7% = 3, 0701 =3, D373 = -y (4.4.39)

7) The infinite family of isotopes s6H3) ~ so%(3) for
T = diag. (-b,2 -b,%, -bsd and rules

[0, 7%l =—b32:]3, (3573l =“b[2 Jis [:]3 9 = —bzzjg; (4.4.40)

8) The infinite family of isotopes s6%(2.1) ~ 0%(2.1) for
T = diag. (-b by% b and rules
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Dl :32] ="'b32 :]3, [32 ::]3] = blzjl ’ [33 :,‘]l] = _bzz:)z; (444[)

The reader can readily verify the above indicated local isomorphisms via
the redefinition of the basis

:]’l = bl-l bs-l 31 . :]'2 = bl—l bs-l 32 . 3’3 = bl-l bz—l 33 N (4.4.42)

in which case the b-terms in the r.hs. of the commutation rules disappear and
one recovers conventional structure constants of so(3) and so(2.1) under isotopies
(see Ch. [1-6 for details).

It is also significant that exactly the same classification exists for the
isotopies of sof3) in classical mechanics, in which case the isoproduct is given by
an isotopy of the conventional Poisson brackets (see ref. [22] for details). This
latter occurrence is important to understand that the conventional quantization
of the classical rolalional symmetry carries over in its entirety to the isotopic
and isodual coverings (Vol. II).

It is instructive for the interested reader to verify with the above examples
various other notions introduced in this section, such as the isocartan’s tensor, the
isokilling form, etc. We shall have plenty of opportunities to study additional
examples of Lie-isotopic algebras in Vol.s I and IIL

As final comments, we discourage the reader from applying conventional
notions of Lie’s theory to the covering Lie—isotopic theory without their specific
isotopic reformulation. This is due to the lack of general preservation of
structural properties of the original Lie ‘algebras, such as compactness,
irreducibility, etc.

The reader should also be aware of the physical importance of preserving
under isotopies the original generators Xy (i.e., the original basis). In fact, the
generators represent physical quantities, such as total energy, linear momenturn,
angular momentum, etc. which, as such, cannot be changed by isotopies or other
techniques. Similarly, the parameters represent physics measurable quantities
such as angles of rotation, velocities, ete. This also illustrates the preservation
under isotopies of the conventional parameters w € F merely .lifted into the form
w=wlekf.

In Yol. IT we shall identify a classical and an operator realization of the
Lie—Santilli isoalgebras with a simple, yet unique and unambiguous
interconnecting map. Within such a setting, the conventional total conservation
laws of the classical and operator theories can be simply read—off the generators
of the Lie-isotopic symmetries.
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4.5: LIE-SANTILLI ISOGROUPS AND THEIR ISODUALS

As indicated earlier, the isotopies of a topological space are still lacking at this
writing and so are the isotopies of topological Lie groups. Only the isotopies of
Lie's transfortnation groups are available essentially according to the original
proposals [1,2,4].

Definition 4.5.1 [l A “right Lie-Santilli (transformation) isogroup” @, or
“isogroup” for short, on an isospace 8(x,F) over an isofield F(a+%) (of isoreal
numbers R or isocornplex numbers C or isoquaternions () is a group which -
maps each element X ¢ 8(xF) into a new element ¥’ € 8X,F) via the
isotransformations

X =0%%x=0Tx%, T rixed, {(4.5.1)

such that:

1) The map (0, X}~ 0% % of GX3&,F) onto 8X.F) is differentiable;

20 1%0=0%1=0,v0¢Gand

3 0 %(0,%%x)=(0,%0,)%%, VxeS&xMand0,,0,eq.

A “left Lie-Santilli (transformation) isogroup” is defined accordingly .

Right or left Lie—isotopic groups are characterized by the following
isogroup laws first introduced in ref. [1]

ooy = 1, (4.5.2a)
Owl % Ow) = OW)%0w) = Olw+ w), (4.5.2b)
Owx0-%) =1, wekf, (4.5.2¢)

The most important meaning of the isogroups is that of identifying the
group structure of the classical and operator time evolution of isotopic theories.
In fact, it is easy to verify that the isotransforms from {4.2.10), (4.2.11), (4.37), (4.4.8)
and (4.4.10),

, (4.5.3a)

4]

x' = 0f) %
0=8%%t o @R 1o (4.5.3)
do indeed constitute Lie—Santilli isogroups as per Definition (4.5.1).

Note the insufficiency of the conventional Lie groups for the
characterization of structures (4.5.3} on numerous independent grounds, such as:
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Lie (transformation) groups have a linear, local and canonical structure while
structures (3.5.3) are nonlinear, nonlocal and noncanonical; Lie groups are
fundamentally dependent on the form [ = diag. (1, I, ..., 1) of the basic unit, while
structures (4.5.3) have arbitrary integro-differential quantities 1 for basic unit;
ete.

Most opf the studies conducted on isotopies until now have been tfocused
on the achievement of a formulation of functional analysis, geometries and
mechanics compatible with the isotopic structure of groups (4.5.3). In the
following we identify only those rudimentary properties of the isogroups which
are necessary for the physical studies of Yol. II.

The notions of connected or simply connected transformation groups
(see, e.g., ref.s [31-33]} carry over to the Lie—isotopic groups in their entirety. We
consider hereon the connected Lie-isotopic transformation groups (see Sect. 4.6
for the discrete parts).

Evidently, Eq.s {4.5.3) hold for some open neighborhood N of the isoorigin
of L,and which, in this way, characterizes some open neighborhood of the isounit
of G (see in this respect [27,28).

Still another important property permitting the isocomposition of Lie—
isotopic groups is given by the following

Theorem 4.5.1 - Isotopic Baker-Campbell-Hausdorff theorem [1,4} The
conventional group composition laws admil a consistent isolopic lifting,
resulting in the following “isotopic compaosition law”

0,&02={e;'1f<{e Xy gy =e, 8 (4.5.4a)

t E
Xs = Xl +X2 "‘[Xl fX2]/2+ [(Xl _Xz):[xl :X2]]/ 12+ ... {4.5.4b)
By following Kadeisvili [27), we now study the connection between Lie-
Santilli isogroups and isoalgebras. Let L be a (finite-dimensional} Lie-isotopic

algebra with (ordered) basis Xk, k =1, 2, .., N. For a sufficiently small
neighborhood N of the isoorigin of [, a generic element of G can be written

0W) = H*H,szeE Ry (456)

which characterizes some open neighborhood M of the isounit 1 of G.
The map

by (09 =0, %0,%0,7, (45.7)

for a fixed U € G, characlerizes an inner isoautornorphism of G onto itself. The
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corresponding isoautomorphism of the algebra L. can be readily computed by
considering expression {4.5.7) in the neighborhood of the isounit 1, in which case
we have

Uy = 0 %0,%0,71T = 0, + Wi, MR, % 1+02 . (458

By recalling the differentiability property of G, we also have the following
isotopy of the conventional expression in one dimension®*

d d ; :
i —(l/i iwX P iwX - %. 5.
(179) _dwolﬁmﬂ { 1)—dw e, =0 Xer wzo X, (459

Thus, to every inner isoautomorphism of G there corresponds an inner
isoautomorphism of [, which can be expressed in the form [27]

(L) = &l wk. (4.5.10)

The Lie-isotopic group G, of all inner isoautomorphism of G is called the
isoadjoint group. It is possible to prove that the Lie-isotopic algebra of Ga is the
isoadjoint algebra [, of L.

We mentioned before that the direct sum of Lie-isolopic algebras is the
-conventional operation because the addition is not lifted in our studies. The
corresponding operation for groups is the semidirect product which, as such,
demands care in its formulation.

Let-G be a Lie-isotopic group and Ga the group of all its inner
isoautomnorphisms. Let G°, be a subgroup of G,, and let A@) be the image of-§
€ G under G®,. The semidirect isoproduct G % G°, of G and G°, is the Lie-
isotopic group of all ordered pairs (g, A} with group isomultiplication

(g N)% (g, A7) = (g% Ag),A%L). (45.11)
with total isounit given by
ItOt = (1, ‘1]'\ ) s (4.5. 12)

and inverse

(g, ArT=(ag™D, s ). (4.5. 13)

24 Wwe should indicate that the conventional derivative d/dw needs a suitable isotopic
formulation 3/dw presented in Ch. L6. The results, however, will be the same as those of
Eq.s {459).
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As we shall see in Vol. II, the above notions play an important role in the isotopies
of the inhomogeneous space-time symmetries, such as Galilei's and Poincare’s
symmetries.

Let G| and G, be two Lie-isotopic groups with respective isounits 1; and 1, .
The direct isoproduct G;6G, of G| and G, is the Lie-isotopic group of all ordered
pairs g = (g, 82}, 8 € G;, 8> € Gy, with isomultiplication

~

gXg = (§),8)%(8,8%) = (8 %" . 8% 8%), (4.5.14)

total isounit
Tior = (1), 15, (4.5.15)

and inverse
gl = (g7 BN, (45.16)

Definition 4.5.2 (89} Let G be an N-dimensional isotransformation group of
Class I with infinitesimal generators Xy, k = 1, 2, .., N. The “isodual image” e
of G is the N-dimensional isogroup with infinitesimal generators Xdk = —Xx
isodual isounit 19 = -1 and isoduval parameters WY = ~W over the isodual
isoﬁec{d #9394 59y with “isodual isotransformation” in a suitable neighborhood
of 1

dodsd.od ;
. s od] o jogoxewa iIXTw, .
xd’=Ud(wd)><dxd={eEd 12838 = - (e 1% 9,

: (4.5.17)

In particular, the above antiautomorphic conjugation can also be defined for
conventional Lie groups, yielding the “isodual Lie group” a4 which is defined
over the isodual field Fd(ad,+,><d) with generic “isodual transformations”

\ ) ) |
x3 = U3 w9 xd = ey Wk o —[eglxw]xd. (45.18)

In summary, any Lie group admits the following four realizations relevant
for our analysis:

Lie groups G of conventional type;
Lie-Santilli isogroups G;

Isodual Lie groups 6% and
Isodual Lie-Santilli isogroups 9.

Realization G (GY) is useful for the characterization of particles (antiparticles) in
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vacuum within the context of the exterior problem, while realization G 69 is
useful for the characterization of particles (antiparticles) in physical media within
the context of the interior dynamical problem.

It is hoped the reader can see from the above foundations that the entire
conventional Lie's theory does indeed admit a consistent and nontrivial lifting
into the covering Lie—isotopic formulation.

We now illustrate the primary results of this section with the isotopies and
isodualities of the rotational group SO(3). Let SO(3) be the lifting of SO(3) of Class
lII on isoeuclidean space E(r,3,R) with isometric and isounit (4.3.16). Let & €
R(n,*x) be the conventional Euler’s angles and 8, = 6,1 € R((,+%) their isotopes.
Then, a generic isotransformation on E(r,8,R) can be written

= fO)xr = RO, =41, (4.5.19)

We then have the realization of isoexponentials (4.5.6)

A0 = (o7 N5 (725 %2) 2087 %) -

= (ep?1 T O (e 12T 02y (g 3 T % (45.20)

where the J's are the (skew-symmetric) generators {4.3.13) of the adjoint
representation of so(3), the &'s are the conventional Euler’s angles, and T is the
isotopic element (4.3.16) in realization (4.4.28b).

[t is an instructive exercise to verity for structure (4.5.20): the validity of
laws {4.5.2) ensuring its Lie-isotopic group structure; the validity of Theorem 4.5.1
ensuring its finite-dimensional (actually three-dimensional) character; Corollary
4.3.1A ensuring the correct isoexponentiation from the Lie—isotopic algebras to
the corresponding Lie-isotopic groups; rule (4.5.9) on the inverse transition from
isogroups (4.5.20) to the corresponding isoalgebras; and others.

It is finally instructive to. verify the following classification of all possible
isogroups (4.5.20)

SO(3) for T = diag. (1, 1, 1)
SO(2.1) for T = diag. (1, -1, 1}
SO3) for sign. T =+, +, +);
SO3) - SO(2.1} for sign.T = {(+-+) (4.5.21)
S0%3} for T = (-1, -1, - 1);
so%2.1) for T = diag. (-1, +1, -1}
SO%3) for sign. T=1{-, -, =}
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sO%2.1) for sign. T = (-, +, -).

thus illustrating the compalibility of the above classification with the
corresponding one at the isoalgebra level, Eq.s (4.4.30)-(4.4.37), and the original one
at the level of isoenvelope, Eq.s {4.3.18).

We now remain with the need to illustrate the nonlinear, nonleocal and
noncanonical character of the Lie-Santilli isogroups for dimensions bigger than 1
(that of dimension 1 has been illustrated earlier with the isotopuic time
evolutions).

The first and most fundamental example is, again, that of the isorotations
SO(3) with isogroup structure (4.5.20). Assume for isotopic elemnent the diagonal
form of Class III

T = diag. ( 211, 822, 833 }, gkk(t, r,t,t.)=0. (4.5.21)

Then, simple calculations (studied in details in Vol. II, Ch. 6) yield the following
Isorotation around the third isoaxis

cos 0s(g1 1820 ] goolg 11800 sin foglgy g0t 1 0
§ﬂ(G3) = - g“(gl Iggz)—* sin [(‘)3(3“322){t ] cos [93(g11g22)* 1 0)1. (4522
0 0 I

But the elements gy, generally depend on the local variables r {as well as their
derivative. The non linearity of isotransforms (4.5.22) is then transparent. Equally
transparent is their noncanonical character, while their isolocality requires a
knowledge of the underlying isotopology and will not be illustrated at this time.

Note that isorotations {4.5.22) provide a realization of all eight different
isogroups (4.5.21), as the reader si encouraged to verify.

The singular Lie-isotopic groups of Class [V are unexplored. It is hoped that
experts in the field will indeed study them because, as we shall see in Vol. I, they
constitute the symmetries of gravitational singularities. The Lie-isotopic theory
of Class V is equally unexplored at this writing and equally significant, e.g., to
study the deformation of crystal via discrete isogroup with continuously varying
isounits.

4.6: THE FUNDAMENTAL THEOREM ON
ISOSYMMETRIES AND THEIR ISODUALS

In this section we shall apply the isotopic methods for the constiruction of the
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isosymmetries, i.e., the symmetries of the isoseparation in (nowhere degenerate,
Hermitean) isospace 8(%,g,F}

(x—-¥y 2 =l(x- yH gt X, %, %, 4, 4, g, 3, 1. T, 0, ) (x -y V1T (46.1a)
detg=0, =g, (4.6.10)

The objective is the form-invariant characterization of the most general
known interior dynarmical problems which are:

1) nonlinear in the coordinates x (as availéble, e.g., in conventional
gravitation) as well as nonlinear in the velocities x (e.g., to represent
the drag forces of missiles in atmosphere which are nowadays
proportional to the tenth power of the velocity %10 and more), as well
as in the accelerations & (as requested by certain particular interior
dynamical motions studied in Vol II}

2) nonlocal-integral on some or all these variables to represent the
extended character of the particles moving within physical media;

3) noncanonical as a necessary condition for interior dynamics, i.e.,
violation of the conditions of variational selfadjointness for the
existence of a Hamiltonian [3};

4) Inhomogeneous, to represent experimental evidence on interior
physical medium (e.g,, local variation of the density u); and

5) Anisotropic, also to represent experimental evidence on interior
media {e.g., as occurring under an intrinsic angular momentum of
the media themselves).

The above invariance problem was solved by this author in ref.s [6-9] in
1982-1983 via: paper [8] on a general theorem on isosymmetries reviewed below;
paper [9] on the first construction of the isotopies O(3) of the rotational symmetry
0(3); in paper [7] on the construction of the isotopies O(3.1) of the Lorentz
symmetry O(3.1); and paper (6] on the operator formulations of the above results
(isotopies of Wigner's theorem on symmetries). The inclusion of the
isotranslations to reach the isotopies P(3.1) of the Poincaré symmetry P(3.1) was
first done in memoir [16].25 A

These studies essentially permitted the formulation and proof of the
following

22 1t should be noted that papers [8,9] were written prior to paper 16,71 of 1983, but they
ended up to be published in 1985, some two years after the appearance of the latter
because of rather questionable and unreasonable editorial processing by several journals
reported in details in page 26 of ref. [8l
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Theorem 4.6.1 - Fundamental Theorem on isosymmetries [8} Let G be an N-
dimensional Lie symmetry group of an m-dimensional metric or pseudo—metric
space S(x,g)F) over a field Fla+») of characteristic zero,

G: x=Awxx, x7T=x xAflw), {4.6.2a)
(x-yht x Aflw) xg x AW) x (x-y) = (x-yig(x-y) (4.6.2b)
AfxgxA = AXgxAt =g, DetA = 1. (4.6.2c)

Then, the infinitely possible isotopies G of G characterized by the same
generators and parameters of G and new isounits 1 (isotopic elements T) of
Class III automatically leave invariant the isocomposition on the isospaces
Mg M, 8=Tg 1=T,

G: % = AW%% = AWI%R, %T = XI%A(W) = AMW), (4630

(%= 9 % AHW) % & x A% (3-5) = (k-9 A A G -9) = G- & &), (46.3D)
AtgA = AgAT =181, or (4.6.30)
KtgA = AgAt =g, Det(®D = DetX = £1. (4.6.30)

For a detailed proof one may inspect papers [8,9]. The main aspect which is
here important is that the original symmetry G is generally linear-local-
canonical, while the isosymmetries G are generally nonlinear, nonlocal and
noncanonical when projected in the criginal space, owing to the arbitrary
functional dependence of the isometric g = T(t, x, %, %, ..)g, although they are
isolinear, isolocal and isocanonical in their proper isospace {Sect. 1.4.2).

Note that the trivial isotopy Xy — X = Xl is excluded in Theorem 4.6.1,
~ because it does not provide the invariance of the generalized metric. This is due
1o the fact that the isotransformations characterized by the isoexponentiation of
X’k coincide with the conventional ones
{ éiX Wiy = {elx’l'f‘w]x _ {ein

z

X = Ix, (4.6.4)
by losing in this way the crucial appearance of the isotopic element T in the
exponent. This occurrence indicates the needs of using the Lie~isotopic theory in
its entirety, and illustrates once more the reason for the preservation of the
original basis under isotopies.

Note that the explicit construction of the isosymmetry G of any given
separation {4.6.1) is quite simple because it is done via the knowledge of the
original symmetry and of the deformed metric. The invariance of the
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isoseparation is then guaranteed by Theorem 4.6.1.
As an illustration of Theorem 4.6.1, consider the rotational symmetry G =
SO(3) of the separation in Euclidean space Er,5,R)

G=2S0@BT7=m60r RO = nORG =1, Det.k = +1, (4653

r2 = xl 8ij xo==xlxt + 222 + 33 = inv, {4.6.5D)
Consider now the most general possible deformation of the above invariant
of Class III which, as such, can always be diagonalized into the form

2

%= x Byl = =l v Py x® £ Pl -

= = x!p%x! £ %202 £ X302 = inv, (4.6.6a)
8§ = T8 =T = diag.(g);,80,833) =diag. (£ ;% £ b2 £ bs?), (4.6:6b)
by = bylt, 11,7, .0 # 0. {4.6.6c)

Ref. [9] computed via Theorem 4.6.1 the symmetries of all infinitely possible
deformations (4.6.6b). They are given by the isotopes (4.5.20) (see Ch. 11.6 for
details)

G = 803 v = B *, (4.6.7a)

A * RO = DA =1, Det(hT) = +1, (4.6.7D)
a0 = (891701 )5 (2% B2yp (el %8y -

TITOyd2T Oy (3T 0y,

{e (4.6.7¢)

where all quantities are known: the generators J, are in their adjoint
representation (4.3.13), the parameters 0y are the conventional Eulers angles, and
the isotopic element T is that of deformation (4.6.6b).

The isosymmetry transformations can also be computed in the needed
explicit Torm, because the convergence of isoexponentials (4.6.7c) is ensured by
the original convergence plus the conditions for Class III (isotopic elements that
are sufficient smooth, bounded, nowhere degenerate and Hermitean).

As an example, ref. [9] computed the following isorotation (4.5.222) around
the third axis, i.e,

cos (Ogg 11820 1 2ofg11850)" 5in [B5(g) 850" ) 0
Ry = -g11lg; [gzz)—i sin [93(g11g22)* 1 coslo4fg, lgzz)* 1 0)1. (468
0 0 l
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It is instructive to verify that isotransformations (4.6.7a) with realization
{4.6.8) do indeed leave invariant generalized separation (4.6.6a). The following
comments are now in order:

1) The SO(3) isoinvariance of generalized separation (4.6.6a) is ensured
by the original invariance SO{3) of sphere (4.6.5b) Tor all infinitely
possible deformations of the admitted Class I1I (Theorem 4.6.1);

2) The original SO(3) transformations (the ordinary rotations in
Euclidean space) are linear, local and canonical, as well known. On
the contrary, the covering SO(3} transformations (the isorotations
{4.6.8)) are nonlinear, nonlocal and noncanonical , although they
are isolinear, isolocal and isocanonical in the sense of Sect. [.4.2;

3) Owing to the general character of invariant (4.6.6a), Riemannian
generalizations of the criginal Euclidean space are a particular
case of isosymmetry {4.6.8) for gy = gy(r), with the understanding
that isosymmetries (4.6.8) are considerably more general than
Riemann owing to their additional unrestricted dependence in the
velocities, accelerations, etc,;

4) [Isotransformations are already computed in the needed explicit
form and there is no need of additional calculations. As an
example, consider the lifting of the Euclidean metric 8 into a

- Riemannian three-dimensional metric gfr), e.g., the space
component of the Schwarzschild line element. Then the explicit
symmetry of the latter is merely provided by plotting the gy
values in (4.6.8);

5 The classification of all possible isosymmetries (4.6.8) recovers
again classification (4.3.18) at the level of the isoenvelopes,
classification (4.4.30)-{4.4.37) at the level of Lie~isotopic algebras,
and classification {4.5.21) at the level of Lie~isotopic groups,
according to the following invariances:

S0(3) xIxl + 2432 + 338 = inv,

so21:  xix! - x¢x2 + 33 = inv,

s0  x'b?x! + x2by2 R + Bb2 8 = inv,

so:  x'bZxl - b2 + x3b2 ¥ = inw. (469
so%3) —xlx'-x2x? - x8x3 = iny,

sod21): ~x!x! + x22 - 38 x3‘= inv.,

20 Note that for hyperbolic invariants the trigonometric functions of (4.6.8) become
hyperbolic functions, exactly as they should be).
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SOU3: - X'bfx' — x*bytx - X bgtx° = inv.,
sodzn: - x'px! + 2022 - X¥128 = inv,

In surnmary, Theorem 4.6.1 provides the invariance of all infinitely possible
deformations of the Buclidean space under the sole condition that they are
nowhere singular, Hermitean and well behaved. This includes the invariance not
only of all possible ellipsoidical deformations of the sphere, but also of all
possible hyperbolic deformations, thus admitting as particular cases the
conventional rotational and Lorentz symmetries, all their infinitely possible
isotopes, their isoduals and all the infinitely possible isodual isotopes.

As we shall see in Ch. I1.8, one of the first applications of the Lie—isotopic
theory is the construction of the general invariant of conventional exterior
gravitation and the proof that it is locally isomorphic to the conventional
Poincare symmetry of the special relativity.

In Ch. II-8 we shall show that, starting from the familiar invariance of the
separation in Minkowski space

P(3.1): gy xV=iv.,, m eMxnR), (4.6.10)

Theorem 4.6.1 permits the construction of the general invariance for all possible
Riemannian separations

PE.1): XM gl x” = inv, g € RixgR), (4.6.11)

via the decomposition g{x) = T(x) and the construction of the isosymmetries £(3.1)
with respect to the generalized isounit 1 = [Tx)"!. The invariance of the
Riemannian separation (4.6.11) is then ensured by Theorem 4.6.17.

The isotopic unification of the Minkowski and Riemannian spaces of Sect.
3.3 will be carried over, in this way, to the unification of symmetries of the
special and general relativities as a foundation for their isotopies for interior
problems.

In turn, these results permit far reaching and basically novel advances not
possible via conventional methods, such as a new quantum =version of gravity, a
novel formulation of antimatter which begins for the first time at the classical
level, the prediction of antigravity for antiparticles in the field of matter, and
others.

The relevance of Theorem 4.6.1 is further illustrated by the fact that all
isosymmetries of hadronic mechanics studied in Vols II and HI are particular
applications of Theorem 4.6.1.

2! The attentive reader may have noted that isorotations (4.6.8) do already contain the
isosymmetry for {2+1) dimensionat Riemannian metrics.
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The understanding is that signature changing deformations, e.g., (+, +, +) =
(+, -, +), are of sole mathematical character because they cannot be reached in
actual experiments. This is the reason that practical applications of the isotopies
are restricted to Class [ which ensures the preservation of the original signature.

In summary, Theorem 4.6.1 is “directly universal” for all infinitely possible.
deformations g = § = Tg of Class IIf of any given well behaved, symmetric and
real valued metric g. The “direct universality” of hadronic mechanics for the
treatment of nonlinear—-nonlocal~nonhamiltonian systems is then consequential,
as we shall see.

4.7: ISOREPRESENTATION THEORY

Recall that the representation theory of Lie algebras has profound physical
implications because it characterizes the contemporary notion of point-like
particles for the exterior problem in vacuum

A primary objective of the representation theory of the covering Lie-
isotopic algebras is that of characterizing a generalized notion of exfended,
nonspherical and deformable particles for interior problems within physical
media called isoparticles [22]. The more general representation theory of Lie-
admissible algebras characterizes a yet more general notion of particles called
genoparticles [loc. cit.] which are studied in Ch. L7. The corresponding
antiparticles are characterized by the representation of isodual isoalgebras.

In this section we study the rudiments of the iscrepresentations of Lie-
isotopic algebras of Class [ or II over an isofield F{a,+%) of isocharacteristic zero.
The representation theories of isoalgebras of Classes IV and V are unknown at
this writing.

Consider a vector space U with elements a, b, ¢, ... and abstract product
“ab” over a field Fla,+x). We say that U constitutes an algebra when it verifies
the right and left scalar and distributive laws (Definition 1.2.4.1). The algebra U is
said to be associative (nonassociative) when ab is associative (nonassociative).

The right and left multiplications in U (see, e.g., ref. [34]) are given by the
Tollowing linear transformations of U onto itself as a vector space

Ry: @ = ax, or aRy = ay, {4.7.1a)

X a, (4.7.1b)

il

Ly: a = xa, or Lya
for all a, x € U, and verify the following general properties

(aa)Ry =(aalx =alax) or aR; =Ry, (4.7.23)
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aRy4y) = al +y) = aRy + aRy, = alR, *+ Ry,
or Ry + y) = R, + Ry, {4.7.2b)

with evident similar properties for the left multiplications L.
When the algebra is associative, we have the additional properties

alxy) =(ax)y, ie, (4.7.3a)
aRyy = aRyRy, or Ryy = RyR,, {4.7.3n)
(xyla = x{ya), ie. {4.7.3c}
nya = L, Lya, or ny = Ly L.y (4.7.3d)

The above properties imply that the mapping a = Ry fa > Ly is a
homomorphism (antihomomorphism) of A into the associative algebra V(A) of all
linear transformations in A. Thus, they provide a right representation a - Ry or
a left representation a —> Lg, respectively, of A, also called left or right
HomAF(Vp), for p = Right or Left. When both maps a & R; and a — Ly are
considered we have a birepresentation.

If the algebra A contains the identity I, we have a one-to-one (or faithful)
representation because Ry = Ry, implies [Ry = IR, which can hold iff a = b. When
the space V is the algebra A itself, we have the so-called adjoint representation
also called fundamental or regular representation.

In the case of nonassociative algebras, the mapping a = R, is no longer a
homomorphism, and this illustrates the reason for the study of the representation
theory of Lie algebras via that of the underlying universal enveloping associative
algebra, as done in the mathematical literature, e.g., ref. [31] {but generally not in
the physical literature).

Consider now an isoassociative algebra A with elements &, b, ¢, ...over an
isofield Ma,+%) with isounit 1 and isoassociative product a%b. Introduce the right
and left isomultiplications

Ry a3 - 3%k%, or a%Ry = a%x, (4.7.4a)
fg: a - x%3 or ak%ly = k%3, {4.7.4b)

for all & € A. It is then easy to see that properties (4.7.2) and (4.7.3) are lifted into
the forms

a%Rg=Rgsx, Reey) = R+ Ry (4.7.50)
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Ryxy=Rx%Ry, 1XRg=1%Ry — &=, {4.7.5b)

with similar properties for the left isomultiplications.

It is easy to see that the mapping 8 — Ry characterizes a right, faithful,
isorepresentation of A in the isoassociative algebra V(A) of isolinear
transformations on A denoted HomAF(VR), with similar results holding for the
left isorepresentations.

' The nontriviality of the isotopy is made clear by the following

Lemma 4.7.1 [4]: Isorepresentations of ispassociative algebras A over an isofield
Fla,+%) are isolinear and isolocal in ¥V but generally nonlinear and nonlocal
when projected in V.

Thus, the transition from Lie algebras to Lie—isotopic algebras generally
implies the ftransition from linear-local-canonical to nonlinear-nonlocal—-
noncanonical representations, as desired. Recall that the contemporary notion
of point-like particle in vacuum is essentially a manifestation of the linear—
local-canonical character of the theory. The more general isoparticles will then
result to be a manifestation of the covering nonlinear-nonlocal-noncanonical
character of the isorepresentation theory.

A module of an algebra U over a field F, also called U-module [34] is a
linear vector space V over Fla,+%) together with a mapping UxV — V denoted
with the symbol (a, v) =+ av which satisfies the distributive and scalar rules

alv+t) =av+at, @+bv=av+hby (4.7.6a)
afa,v) =(aa v) = {aav), (4.7.6b)

as well as all the axioms of U, foralla,beU, v,teV,and aeF.

The mappings a > Ry, = av and a — Ly, = va show that the space V is a left
and a right U-module. When both left and right actions are considered, the U is a
bimodule.

The notion of one-sided, left or right isomodule of an isoalgebra U over
an isofield F was introduced in ref. [35] and it is given by a straighforward isotopy
of the preceding structure. The more general notion of two-sided, left and right
isobimodule was also introduced in ref. [35] as reviewed in Ch. L.7.

The isormodules are sufficient for the representation theory of Lie-isotopic
algebras, but the more general isobimodules are necessary for the representations
of the more general Lie-admissible algebras. The above structures permit a first
characterization of the notion of particles of hadronic mechanics as follows:

1) Conventional particles, those characterized by linear—local-canonical
representations of Lie symrmetries on a one sided module;
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2) Isoparticles, those characterized by nonlinear-nonlocal-noncanonical
representations of Lie-Santilli isosymmetries on one—sided isomodules;

3) Genoparticles, those characterized by nonlinear-nonlocal-noncanonical
representations of Lie-Santilli genosymmetries on two-sided isobimodules (Ch.
L7).

As we shalt see in Vol. II and I[II, the above characterizations yield notions
of particles for physical conditions of increasing complexities, such as for a
particle when members of an atomic structure (conventional particle), when
member of a hadronic structure (isoparticle) and when in the core of a collapsing
star {genoparticle).

Definition 4.7.1: Let ¥ be the universal enveloping isoassociative algebra of a
Lie-isotopic algebra [, ~ & of Class I. Then, the one-sided, right or left,
“isorepresentations” Hom>gVp), p = right or Left, of &€ on a corresponding,
one-sided isomodule ¥ over an isofield Wa,+*) are characterized by

Ry % 5 = Ry X Ry, (4.7.72)
Ry =1. (4.7.7b)

The “isodual isorepresentations” of 19 on 99 over £9G9+3%0) are the isodual
images of Hombp(¥p) characterized by

R(Ww)y - RUWHE = -R(-w)j. (4.7.8a)
R.=1 - R, =1¢=-1, {4.7.8b)
€ €

Conditions {4.7.7b) and (4.7.8b) ensure the invertibility of the elements, in the
sense that

Rowa1 = Ra%Ryl = R = 1. (4.7.92)
Rs1 = (Ry) T, (4.7.98)

[t should be indicated that isorepresentations (4.7.7) exhaust all isolinear and
isolocal cases, but they are not expected to be unigue. In fact, an additional class
of nonlinear representations emerges in the conventional case [31-33] and a
similar occurrence is expected in the isotopic case.

The matrix form of isorepresentations are also given by a simple isotopy of
conventional matrix forms [31-33] Let &,k = 1, 2, .., N be an isobasis of A
which is isporthonormal ie.,
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where (" ) is the isoscalar product on the isomodule and 8;; is called the
Isokronecker delta. The desired matrix form of the isorepresentation is then
given by

Ry %8 = Dyld) %%y, (47.11a)
ie, :
Note that the matrix for of the product Ry % p is given by

Dij{a%B) = Xpg Dyyfa) Ty DefB) (4.7.12)

From the above properties it is easy to see the following

Lemma 4.7.2: The dimension of the representation of a Lie algebra does not
change under isotopies.

We now study the “degrees of freedom” of isorepresentations. Let 4 — Rgi
be an isorepresentation of an algebra A over Fa,+%) on an isomodule V. Let

8 ¥ - v, {4.7.13)
be a (bounded, sufficiently smooth and regular) isomap of ¥ into ¥’. Then the
isormnap

r: 4 > Ry = §%R, %87, (4.7.14)
characterizes the image of the isorepresentation Ry in ¥ because
Rax p = SRRy XS8Ry %87 = R3%Ry, Ra=1. @715
Recall that a conventional representation R, of an associative algebra A on a
module V and R, on another module V' over Fla,+x) are said to be equivalent
when there is an invertible map S: V = V' such that
R; = SR, S, (4.7.22)
and they are said to be vnitarily equivalent for the particular case

Ry, = SR, 8, ssf=sfs=1 sl=4. (4.7.16)
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Definition 4.7.2: An isorepresentations Ry of an isoassociative algebra A on an
isomodule ¥ and a second isorepresentation R’y on V' over the same isofield
Fla,+%) are said fo be “isoequivalent” when there exist an sufficiently smooth
invertible isomap & ¥ — V' such that for all elemenisa € A

Ry = S%R, %87, 4717
and they are said to be “isounitarily equivalent” for the particular case

Ry = $%R; %81, %% =8%g=1, §=31 (4.7.18)

[t is then easy to prove the following

Lemma 4.7.3 : Let D be a (finite~dimensional) representation of a Lie algebra L
and D the corresponding isorepresentation of the Class I isotope L of I, in
which case L is isomorphic to L, [, ~ L, and the dimensions of D and D are the
same. Then D and D are not equivalent or unitarily equivalent.

As in the conventional case (see, e.g., [33), the notion of isoequivalence of
isorepresentations is reflexive, symmetric and transitive. In fact, every
isorepresentation is isoequivalent to itself; if an isorepresentation Ré is
isoequivalent to R’;, then Ry is isoequivalent to Ry; etc. Thus, the set of all
isorepresentations can be divided into isoequivalence classes.

In the conventional Lie theory only one matrix representation per each
equivalence class is considered [33]. This is due to the fact that the matrices of
two equivalent representations can be made to coincide with a suitable selection
of the basis. In fact, the basis e; for V and €'; = Se; for V' yield the same matrix
representations,

Dlaley = 2iDixe; — Dladey = 2y Dixe; = SO Digej, (4719
Under isotopy we evidently have the corresponding image, in the sense that
we can indeed select the isobasis & on ¥ and &; = 8%¢; on V¥, thus reaching the
sirnilar results
D@) % e = Zr,s Dy Tes & —
> DAK®Y = oo Dy Trs &g = 8% oDy Trs & (47.20)

However, isoequivalent but different isorepresentations play an important role in
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the Lie-isotopic theory, particularly for physical applications, as illustrated below
in this section.

Recall that for a conventional N-dimensional Lie algebra L with generators
X, the structure constants Cijk characterize the adjoint representation of X; with
matrix elements

(xf = -¢f . (47. 21)

The repetition of the conventional proof via the use of the Isotopic Second and
Third Theorem (Sect. 1.4.4) then leads to the following

Lemma 4.7.4: et L be a LIe—J'SOtOpIC algebra with generators X; and structure
funct:ons CIJ t, x % % .J = Cjj K1, Eq.s (1.4.4.7). Then, up to Isoequzvalence the

“isoadjoint isorepresentation’ of L. is characterized by the elements of the
Isomatrix

(4 = - x %%, (4.7. 22)

Additional types of adjoint representations will be identified shortly.
Note the constancy of the elements of the adjoint representation in the
-conventional case,-as compared to an arbitrary functional dependence of the
corresponding elements under isotopy.
Consider an isolinear space 3 equipped with an isoscalar product (X, ¥). As
we shall see in Ch. .6, an operator X of an isoenvelope & is called isohermitean
when

(%509 = (R7%%F). (47. 23)

il

Consider now an isobasis & which is isonormalized with respect to the product
(o) 1€, satisTying Eq.s (4.7.15).

Definition 4.7.3: Let D be an isorepresentation of a Lie—isotopic group G with
respect to basis (4.7.15) on an isolinear space 3. Then the “isohermitean
conjugate” bf ofD is given by

b,j@ = Dy aed. (4.7.24)

where the upper bar denotes complex conjugate. The isorepresentation is called
sounitary” when it coincides with its isohermitean conjugate,

D = pf. (4.7. 25)
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An inspection of the structure of the isorepresentations leads to the
following classification.

Definition 4.7.4 (54} Let Xy, k = 1, 2, ., n, represent a maximal commuting set of
generators of a Lie algebra L {such as J? and Jz for the sol3) algebra) and let
Sk° € Rin,+%) be its spectrum of eigenvalues with respect to a given basis| b >,

Xg [b>=8]b>, (4.7.26)

suchas{L+DandM=L1,L-1,.,-L, L=0, 1,2 .. for sol3) characterizing a
set of representations D of L Let I, X, and | b > be the corresponding
isotopes of Class I, and Jet S (T) € R(1,+%) be the corresponding new spectrum of
cigenvalues,

K X[6> = K T[D> = §DX[6> = ST[D>, (4.7.27)

Then, the isorepresentation Y of [. is said to be:
A) "regular” when the isotopic spectrum Sy (T} is entirely factorizable into the
form

Si(T) = S°% fi{A), nosum, A = detT; (4.7.28)

where f\(A) are smooth functions of A such that fil{ll=1,k =12, ..., m;

B) “irregular” when the above factorization does not exist for at least one
element of the spectrum Si(T); and

C) “standard” when the isotopic and conventional spectra coincide, S; = Sy, k =
L, 2, .., n, but the two representations D and D are not equivalent.

We learn in this way that the spectrum of eigenvalues of a Lie
representation can be preserved under a particular type of isotopy called
standard, but the structure of the representation is generalized. This property is
relevant for physical applications because, as we shall illustrate below and study
in details in Yol. II and III, isotopic techniques permit the preservation of
conventional quantum numbers under new functional degrees of freedom in the
representations.

In turn, the latter permit physical applications which are prehibited in
conventional theories, such as the exact representation of the still unknown total
magnetic moments for few-body nuclei via the representation of the
deformability of the charge distribution of protons and neutrons when members
of a nuclear structure with consequential alteration of their intrinsic magnetic
moments.

One explicit form of the regular and standard isoadjoint isorepresentations
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can be easily constructed from the corresponding representations via a rule here
called Kiimyk’s rule [52] (although the rule does not apply for irregular and other
isorepresentations). Let Dy denote the adjoint representation of a given Lie algebra
L. Then one adjoint representation of the isotope L of L {up to isoequivalence) is
given by

Dk = DKT, ie, Dk = Dk’l . (4730)

In fact, rule (4.7.30) transforms ordinary commutators into the isocommutators
according to

[D;,D;] = D;Dj - D;D; =D; TD; T -~ B, TH; T=
= Cl‘-k Dk = CijkTDkT, (4.7.31)

The removal of the common T factor on the r.h.s. then yields the
isocommutators,

[DI:DJ] = DITDJ - DJTD] =EDi‘Dj]1 = CijkTDk. (4.7.32)

The preservation of the spectrum of eigenvalues $°; of a conventional
adjoint representation Dy under the Klimyk rule is also evident because

Dy lb> = 8%|b> = Da%|b> = 8y (T)X|b> = §|b> (47.32)
and the same holds for the isocasimir invariants, e.g.,
P2lb> = S{b> = 2y D {T)TD (T)T|b> =8|b>, (4.7.33)

thus confirming the “regular” character of the isorepresentation D.
By noting that rule (4.7.31) has an additional “degree of freedom constituted
by a non—null multiplicative constant N, we have the following

Lemma 4.7.5 - Klimyk’s rule [52] : Let D be the adjoint representation of a Lie
algebra L and let L be a Class I isotope of L Then, a regular adjoint
isorepresentation of L. up to isoequivalf_:nce is given by

D=NDT, NefF, N&#N, (4.7.34)

and the standard adjoint isorepresentation occurring for N = 1, under which
the original spectrum of L is preserved
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It should be stressed that rules (4.7.34) are not equivalence transformations,
i.e, there exist no matrix U such that

Dy = Dyl =UDpg UL, (4.7.35)

forallk =1, 2, .., N. Thus, adjoint representations and isorepresentations are not
equivalent. Also, there exists no known rule Tor the construction of the irregular
isorepresentations Trom conventional ones.

it is understood that the above differences between representations and
isorepresentations characterize the desired mathematical differences between
particles and isoparticles.

It is an instructive exercise for the interested reader to work out the
definitions of isoreducibility —and isoirreducibility, isotensor product and
other known aspects of the conventional Lie's theory. For additional
mathematical studies we refer the interested reader to ref. [24).

We now illustrate the results of this section with specific examples.
Consider the adjoint representation of the su(2) Lie algebra on the complex
Euclidean, two-dimensional, space E(z,3,C). It is given by the celebrated Pauli’s
matrices we encountered in the representation of quaternions, Eq.s (2.7.6), and in
the illustration of Theorem 4.4.1,

0o 1 0 - 1 0
o1 =( ] ), Oy = ( ) ), Og =( ), (4736)
1 0 i 0 o -1

which satisfy the associative rules
O, O = 2i€ymg Ok 8y, nm=123, (4.7.37)

where € is the conventional totally antisymmetric tensor of rank three, and
the Lie rules

loq.0m] = oq0m — omon = 21 €k Ok (4.7.38)
with Casimir invariant o = Ek=1,23 okz, maximal commuting set X = {oy, o3
and eigenvalues on a two—-dimensional orthogonal basis | b >

o3|b> = £]b>,  Dyoo302lb> = 3[b>, (4.7.39)

The isotopies of Pauli's matrices were outlined at the 1993 International
Third Wigner Symposium at Oxford University [45] and then studied in detail in
ref. [54). They are reviewed in detail in Ch. 11.6 where we also construct the
irreducible isorepresentations of the Lie-isotopic algebra si{2). In this section it is
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sufficient to indicate that the isotopy here considered begins with the lifting of
E(z,8,R) into the complex isoeuclidean space

EzSR: & = T8 T=diag.( 11> 822 ), T = diag. { gll_l, g22_1 }. (47.40)

The Lie~isotopic group SO(2) is then the invariance of the generalized expression

%TS% = El g“ Z + Ez 829 29, (474[3)
¥ =0%% 0%07 =01%0=1 det@T =1, (4.7420).
0 =219 % _("% %) )0, (47,430

with Lie—isotopic algebra for the isoadjoint isorepresentation
[6460] = 8,165 - 65716, = 2122 .0 T8, (4740

where the s are the structure functions of si(?) as identified below. The
following adjoint isorepresentations of su(2) were then constructed in ref.s [45,54}

A) Regular isopauli matrices, they are given from rule (4.7.35) by
0 g1 0-igy g2 0
5, = A‘*( ) , Gy = A7 ( , b3 = A (4.7.452)
gp 0 tigy O ¢ -y

P=A"tdig (go, g ) =AM T, K = A, A=detQ = g8, >0,  (47.45D)
with the isoassociative rules

6, 18)= 24t iy & +AM5;; (4.7.46)

and, consequential isocommutator rules
[6n:6m] = 6, T6p - 6 T6n = 22 i €qmy Ok » (4.7.47)

Note the identity in this case of the structure functions with the conventional
structure constants of su(2) up to the multiplicative term A thus confirming the
local isomorphism su(2} =~ su(2). The isoeigenvalues are generalized and are given
by

6'3 X l 512 >=z At | Biz >, (4.7.48a)

32%|B2>= By 6 X8 X |b>= 3A|B52i=1,2 (4.7.48b)
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thus confirming the “regular” character of the isotopy here considered (i.e, the
factorizability of the isotopic contribution in the spectrum of eigenvalue). The
isonormalized isobasis is then given by a trivial extension of the conventional
basis, | B> =T b >

It is instructive to verify that isorepresentation (4.7.45a) is indeed derivable
from Klimyk’s rule.

B) Irregular isopauli matrices, they must be constructed via the full use
of the isorepresentation theory resulting in expressions of the type

. 0 1 . 0 -i . g O
0"1 = = 0'1, 0'2 = - = 0‘2 , 0’3 = = ATO‘S, (4.7.49)
1 0 + 0 -g;

with isocornmutation rules

[6)°6,0=2185 [65d3)=2ia8,18,6/1=2i1a85 (4750
which evidently do not alter the local isomorphism S0q(2) ~ SU(2). The new
isoeigenvalue equations are given by

Fa%|bZ>=xA]02> &%[BZ>=a(a+2]b2> 475D

which confirm the “irregular” character under consideration (i.e., lack of
factorizability of the isotopic contributions in all elements of the spectrum). As
one can see, isorepresentations (4.7.52} are far from trivial because they imply the
lifting of the notion of spin ¢ into a local quantity

s=3% — 5= tAltzZ Y, ... (4.7.52)

as expected for a particle in hyperdense interior conditions {(e.g., a proton in the
core of a collapsing star).

It is instructive to verify that isorepresentation (4.5.49) is not derivable
from Klimyk’s rule.

C) Standard isopauli matrices, which occur when K = 1, resulting in the
expressions '

- (0 822 ! ) 5 (0 —iggy | ) A ( g~ 0 ) 153
‘1 = , 07y = ,0'3 = , (4.7.53
bo gyt 0 0 ~gp "

g

possessing  isocomrmutation rules with conventional structure constants,
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(67 6m] = &n T - FmTéy = 2iegm 6%, 475D
and admitting conventional eigenvalues
&3%|b> = £|b, §2%|b> = 3|b>. (4.7.54)

Yet, isorepresentations (4.7.56) exhibit the “hidden variables” gyy in their very
strycture. Also, the above malrices are not unitarily equivalent to the
conventional Pauli’s matrices, thus establishing the “standard” character of the
isorepresentation.

It is instructive to verify that isorepresentations {4.7.53) is indeed derivable
from Klimyk's rule. This illustrates Definition 4.7.4. 4.

We now study the degrees of freedom of the above isorepresentations.
Those of the standard iscrepresentations are trivially expressed by the
arbitrariness of the factor K. The degrees of freedom of the other
isorepresentations are less trivial.

D) Iscequivalent irregular isopauli matrices, which are illustrated

0 g, 0 ~iggp} gl o
Gl = N 6'2 = B 6‘3 = , (4755)
-3 ; -3 -1
g“ 0 1810 0 0 _g22

with isocommutation rules
[61:6'2] =2 i A63, [6'2:6'3] = 216'1, [6’3:61] = 216’2, (4756)
and isoeigenvalues
&y X|b2>=1|02, 82% [6Z>=(1 + 2A)|B2>, 4757
where, as one can see, the eigenvalue of the third component is conventional, but
that of the magnitude is generalized with a nonfactorizable isotopic contribution,
thus cenfirming the "irregular” character of the isorepresentation. Again, the

above isorepresentation is not derivable from Klimyk’s rule.

E) Isoequivalent standard isopauli matrices, which are given by
particularizations of the standard and irregular isorepresentations for the case

A=g180 =1 (4.7.58)

which holds under the identification
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g1 = g | := AF0, {4.7.59)

where A is a real value and nowhere null but arbitrary functions of local
quantities, resulting in expressions of the type

0 A . 0-iX ) g
( Ao )’ %2 7 (i)\—l 0 )’ O3 = ( 0 ), {4.7.60a)
5 0 1 \ 0 -i A -l o
o ( 10 )= ov02= ( “ o ) =0y, 0 = ( ) _A),(z;.?.eon)

() () e () o
& = , & = , 6% = . 47.60c
: At o) 2 ix?t o 8 0

They also satisfy isocommutation rules with conventional structure constants
and possess conventional eigenvalues, yet remain inequivalent to the conventional
Pauli’s matrices as one can verify.

The physical implications of the isotopies of Pauli’s matrices, as well as of -
the isorepresentation theory at large, will be studied in the applications of Vol. III.
In essence, the appearance of the “hidden parameter” {actually the “hidden
function”) A under conventional values of spin 5 = + has a num,ber of novel and
intriguing applications, that is, applications not possible with quantum mechanics,
such as: the reconstruction of the exact isospin symmetry in nuclear physics
under weak and electromagnetic interactions via equal proton and neutron
masses in isospace represented by 7\2; the representation of total magnetic
moments of few-body nuclei via a deformation of that of the individual
nucleons conjectured since the early stages of nuclear physics but not treated via
quantum mechanics; the characterization of a generalized notion of quark called
isoguark which is indistinguishable with conventional quarks (because the
quantum number are the same), yet possessing an exact confinement because of
the incoherence between the interior and exterior Hilbert spaces; and others.

In summary, the above example indicates that the SU(2)-spin symmetry,
admits an isotopic image 80(2) which is isomorphic to the original symmetry,
SU(2} = SU(2), because of the axiom-preserving character of the isotopies. Yet the
isotopic su(2) algebra and its isorepresentations are not unitarily equivalent to the
original ones, and the spectra of eigenvalues are generally altered, thus
illustrating the nontrivialily of the isotopies.

Gy
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APPENDIX 4.A: ELEMENTS OF ABSTRACT ALGEBRAS AND
ISOALGEBRAS

The hadronic generalization of quantum mechanics was born thanks, specifically,
to studies in abstract algebras [1,2l. A few rudimentary notions in that field
appear therefore recommendable as an introduction to the content of this
chapter which are here essentially derived from Sect. 11.5, of ref. [21l These
notions are important to understand later on in Ch. 1.7 and in Vol. II the
emergence, apparently for the first time in physics, of Jordan algebras in the
structure of the Lic-admissible time evolution for open irreversible systems.

Let us recall from Sect. [.2.4 that a (finite-dimensional) linear algebra U,
or algebra for short (see, e.g., ref. [34]) is a linear vector space V over a field
Fla,+x) {(hereon assumed to be of characteristics zero (Sect. 1.2.3)) equipped with a
multiplication ab verifying the following axioms

al{ab) = (aa b = alab) {ab)p = albp) = (aplb (4A.la)
afb+cl=ab+ ac, a+ blc=ac+ bg, {4.A4.1b)

called right and left scalar and distributive laws, respectively, which must hold
for all elements a, b,ce U,and o, € F.

The reader should keep in mind that the above axioms rmust be verified by
all products to characterize an algebra as commonly understood [34]. In
particular, the distributive law is the basic axiom which prevented the lifting of
the operation of addition as shown in Sect. 1.2.3.

Among the existing large number of algebras [34], an understanding of
hadronic mechanics requires a knowledge of the following primary algebras:

1) Associative algebras A, characterized by the additional axiom (besides
laws (4.A.1))

a{bc) =(ablc (4.A.2)
Tor all a, b, ¢ € A, called the associative law. Algebras violating the above law are
called nonassociative. All the following algebras are nonassociative:
2) Lie algebras L which are characterized by the additional axioms
ab+ba = 0, (4.A.32)
a{bc) + b(ca) + c{ab) = 0. (4.A.3D)

A familiar realization of the Lie product is given by
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la, b]A =ab-ba, (4.4.4)

with the classical counterpart being given by the familiar Poisson brackels
among functions A, B in cotangent bundle {phase space) T*E(r,5R)

(AB] oA OB B oA ( |
N i = - . 4.A.5
Polsson ark apy ark Py

3) Commutative Jordan algebras J, characterized by the additional

axioms
ab-ba = 0, {4.4.6a)

a(ba2), (4.A.6D)

(ab)a?

A realization of the special commutative Jordan product is given by
(4.CAT)

(a,b), =ab+ba.

where a b is associative. ‘
The noncommutative Jordan algebras are algebras U which verify Jordan's

axiom (4A.6b) but not (4.A.6a).
Intriguingly, no realization of the commutative Jordan product in classical

mechanics is known at this writing. As an example, the brackets

dA OB 8B  8A
(4.4.8a)

¥

(A,B}= +
ark  apy ok apy

evidently verify axiom (4.A.6a), but violate axiom (4.4.6b).
4) General Lie-admissible algebras U [1,2,38] which are characterized by a

product ab verifying laws {4.A.1), which is such that the attached product [a, blj; =
a b -bais Lie. This implies, besides (4.4.1}, the unique axiom

= (c,b,a)+(b, a,c)+(acb)

{a,b,c)+(b,ca +{cah (4.49)

-where
{a,b,cd=albe) -~ (ablg (4.A.10)

is called the associator .
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Note that Lie algebras are a particular case of the Lie-admissible algebras.
In fact, given an algebra L with product ab = [, bl,, the attached algebra L has
the product

[a,bly = 2[a, bl , (4.A.11)

and, thus, L is Lie-admissible.

Therefore, the classification of the Lie Lie—admissible algebras contains all
possible Lie algebras. Also, Lie algebras enter in the Lie—admissible algebras in a
two—fold way: first, in their classification and, second, as the attached
antisymmetric algebras. Finally, associative algebras are trivially Lie—admissible.

The first realization of general Lie—admissible algebras U in classical
mechanics was identified by the author in memoir [1] and, in its simplest possible
form, it is given by the following product for functions A(r,p) and B(r,p} in
T*E(r,5,R) :

A 0B
U: {(A,B)=— —, {(4.4.12)
ork  apy

namely, fthe general, nonassociative Lie-admissible algebras are at the
foundations of the structure of the conventional Poisson brackels {4.A.5) which
can be written
[A, Blpoisson = [A/Bly =(A,B) — (B, A), (4..13)
The first operator realization of the general Lie—admissible algebras was

also given by the author in the subsequent memoir [2] Sect. 4.14, and can be
written

U: (ably =arb - bsa (4.A.14)
r,s fixedeA, r# s 1,570

where ar, rb, etc, are associative. [n fact, the antisymmetric product attached to

U isa particular form of a Lie algebra (see below)
5) Flexibie Lie-admissible algebras U [1,2,38], which are characterized by

the axioms in addition to (5.1)

{a,ba) = 0 (4.A.153)
(a,bc) + (bca + (c,ab = 0 (4.A.15b)

where condition {(4.C.14a), called the flexibility law [38lis a simple generalization
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of the anticommutative law, as well as a weaker form of associativity. A first
realization of the flexible Lie—admissible preduct was identified by this author
back in 1967 [55]

@by =rab - pba A €F {4.A.16)

where the products Aa, ab, ete. are associative. [t is instructive to verify that the
algebras characterized by the above product is a realization of the
noncommutative Jordan algebras.

As we shall see in App. L.7.A, a certain class of the so-called q—-
deformations [56] are a particular case of product (4.A.16) and, as such, they are
flexible, Lie—admissible and Jordan—-admissible, as well as noncommutative
Jordan algebras.

No classical realization of flexible Lie-admissible algebras has been
identified until now, to our best knowledge. As an example, the brackets on
T*E(r,8:R)

oA
AB=A — — -4 — — {(4.A.17)

are Lie—admissible, but violate the Tlexibility law.

6) General Jordan-admissible algebras U [1,2,38], which are characterized
by a product ab verifying laws (4.C.1), such that the attached symmetric product
{a, bly=a b+ bais Jordan, ie, verifies the axiom

(a2 b, a) + (a, b, a2} + (b, a2, 2} + (3,32, b) = 0. (4.A.18)

Again, associative and Jordan algebras are trivially Jordan— admissible.
Also, Jordan algebras enter in the Jordan—admissible algebras in a two—fold way,
in the classification of the latter, as well as the attached symmetric algebras.

It is important for the operator formulation of the isotopies of Vol. II to
point cut the following important

Proposition 4.A.1[2} The general Lie-admissible product (4.A.14) is, jointly, Lie-
admissible and Jordan-admissible .

But Lie-admissible product (4.A.11) characterizes the brackets of the most
possible general time evolution of hadronic mechanics. The Jordan algebra
therefore enter as the attached form U* of the Lie-admissible algebras U of
hadronic operators.

By compariscn, there is no “Jordan centent” in quantum mechanics,
because the algebra of its time evolution is a Lie algebra L, whose attached
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symmetric part is identically null, L* = 0.

As we shall see in Vol. II, the emergence of a nontrivial “Jordan content”
has far reaching physical implications, such as the capability of constructing a
quark theory with an "exact confinement”, i.e., with a transiticn probability for
free quarks which is explicitly computed and rigorously proved to be identically
null under any possible physical condition.

Intriguingly, this emergence of a “Jordan content” at the operator level has
no known counterpart in classical mechanics. In fact, the classical Lie—admissible
product {4.A.12) is only Lie-admissible and not jointly Jordan-admissible.

7) Flexible Jordan-admissible algebras U [1,2,38), which, in addition to
axioms (4.A.1), are characterized by the axioms

a(ba) = {ab)a {4.A.19a)
a?(ba) + a2(ab) = (a2bla + (a2a)b. (4.A.19b)

The flexible Lie—admissible product (4.A.16) is also a flexible Jordan—
admissible product, but the classical product (4.C.17) is only Lie~admissible, and
not flexible Lie-admissible or Jordan—admissible.

8) Alternative algebras U, which are algebras characterized by the
additional axioms encountered in Sect 2.2,

(a,a,b) =0and {abb =0, Vabcel (4.A.20)

called right and left alternative laws. A realization of alternative algebras is given
by the octonions (Sect. 1.2.8).
9) Power associative algebras U, characterized by the additional law

n

.i..
all gM = gh*m

a , ¥ a € U, n, mintegers (4.A4.21}

which constitutes the axiomatization of an important physical notion. In fact,
algebras currently used used in physics are power associative.

For additional algebras we refer the reader to ref.s [34,38] and quoted
literature.

We now pass to the study of the isotopies of the above notions.

Definition 4.A.1[1} An “isoalgebra”, or simply an “isotope” U of an algebra U
with elements a,bc,... and product ab over a field F, is the same vecior space U
but defined over the isofield ¥, equipped with a new product axb, called
“isofopic product”, which is such to verify all original axioms of U.

Thus, by definition, the isotopic lifting of an algebra does not alter the type
of algebra considered.
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It is important for these studies to review the isotopies of the primary
algebras listed above.

Given an associative algebra A with product ab over a field F, its simplest
possible isotope A, called associative—isotopic or isoassociative algebra [1] is
given by :

Ai: axb=aab, a €F,Tfixedand =0, (4.A4.22)

and called a scalar isofopy. The preservation of the original associativity is
trivial in this case. This is evidently the case of the g-deformations [56].

A second less trivial isotopy is the fundamental one of the Lie-isotopic
theory, and it is characterized by the basic product of this chapter [2]

Ap: a*b=aTh, {4.4.23)

where T is an nonsingular (invertible) and Hermitean elements not necessarily
belonging to the original algebra A,
The third known isotopy of A is given by [2]

Rg: a*b=wawbw, w2=ww = w #0, (4.A.24)

Additional isotopies are given by the combinations of the preceding ones, such as

~

Ay: axb=wawTwbw, w2=ww=w #0 (4.A.253)
Ag: a*b=awawTwbw, aeF, w2=w, aw,T#0 (4.A.25b)

[t is believed that the above isotopies exhaust all possible isotopies of an
associative algebra over a field of characteristic zero, although this property has
not been rigorously proved to this writing.

We now pass to the study of the isotopes L[ of a Lie algebra L with
product ab over a Tield F, which are the same vector space L but equipped with a
Lie—isotopic product [1] acb over the isofield F which verifies the left and right
scalar and distributive laws (4.A.1), and the axioms

aeb+hea = 0, (4.A.26a)
aeo(boec)+ boelcoa) +colaob) = 0 {4.A.26D)
Namely, the abstract axiorns of the Lie algebras remain the same by assumption.

The simplest possible realization of the Lie-isotopic product is that
attached to isotopes 4,
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Ly [a,b]AI=aob - boa=alab - ba)=alsbly, acF,a=0, (4A27)
and it is also called a scalar isotopy. It is generally the first lifting of Lie algebras
one can encounter in the operator formulation of the theory.

The second independent realization of the Lie—isotopic algebras is that

characterized by the isotope Ay which is that of primary use in hadronic
mechanics [1,2]

Ly lblg =aob-boa=aTh-bTa (4.4.28)
The third, independent isolopy is that attached to Az [2]
L3: [a,b}R3=wawbw—wbwaw, w2 =w w0 (4.A.29)
A fourth isotope is that attached to A4, ie.,

=wawTwbw - wbwTwaw, {4.A.30)
w2=w, w,T#0.

A fifth and final (abstract) isotope is that characterized by &g, i.e.
[5: la, b]ﬁs = ala, bl Ay - (4.4.31)

Again, it is believed that the above Tive isolopes exhaust all possible
abstract Lie algebra isotopies {over a field of characteristics zero), although this
propertly has not been proved to date on rigorous grounds.

Note that the Lie algebra attached to the general Lie—admissible product
(4.A.12) are not conventional, but isotopic. In fact, we can write

[a,bly = (a,b)y - (b,a}y =arb-Dbsa-bra+asb-=  (4A32)
= aTh~bTa = a*b - bxg {4.A.32b)
r#s, 71,5T#0 T=r+s5#0.
As a matter of fact, the author first encountered the Lie—isotopic algebras by
studying precisely the Lie content of the more general Lie~admissible algebras [1]

The following property can be easily proved from properties of type (5.30).

Lemma 4.A.1 [1} An abstract Lie-isotopic algebra [ attached to a general,
nonassociative, Lie-admissible algebra U, L. = U™, can always be isomorphically



- 186~

rewritten as the algebra attached to an isoassociative algebra A, L ~ A, and
vice—versa, i.e.

L~U ~ 4", (4.A.33)

The above property has the important consequence that the construction
of the abstract Lie-isotopic theory does not necessarily require a nonassociative
enveloping aigebra because it can always be done via the use of an isoassociative
envelope. In turn, this focuses again the importance of knowing all possible
isotopes of an associative algebra, e.g., from the viewpoint of the representation
theory.

The most general possible, classical, local-differential 28 realization of
Lie-isotopic algebras via functions Ala) and Bfa) in T*E(r,5,%) with local chart

a= @ =@p =6Lp) &= L2,0p=12.,20, (4.A.34)

is provided by the Birkhoffian brackets [1,4] also called generalized Poisson
brackets

[ ] = .= _6 *V(a) ——-—a ( )

A, Blg; A B a . 4.A.35
Birkhoff U T aaV

where (MY, called the Lie-isotopic tensor , is the contravariant form of (the

exact, symplectic, Birkhoff’s tensor

o - (g™ 1, . (4.4.360)
oR (a) aR, (@)
Qy = Bl (4.4.36b)
oat da¥

where the R's are the so—called Birkhoff’s functions. The symplectic character of
the covariant tensor ensures the Lie—isotopic character of brackets (see the
geometric treatment of the next chapter).

Recall that, unlike the conventional, abstract, Lie brackets (4.A.4), the
conventional Poisson brackets {4.A.5) characterize a Lie algebra attached to a
nonassociative Lie-admissible algebra U, Eq.s (4.A.13). It is then evident that the
covering Birkhoff’s brackets (4.A.35) are also attached to a nonassociative Lie—
admissible algebra, althéugh of a more general type (see ref. [4] for brevity).

For other classical Lie—isotopic brackets, such as Diracs generalized
brackets for systems with subsidiary constraints see the locally quoted

2Bhe nonlocal-integral realizations will be presented in the next chapter after studying
the underlying nonlocal-integral geometries.
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references.

Note the lack of identification of the underlying generalized unit in
Birkhoff’s brackets (4.A.35). This is precisely the aspect which has requested the
isotopies of conventional geometries of the next chapter.

Realizations of the abstract isotopes U of the Lie-admissible algebras can be
easily constructed via the above techniques. For instance, an isotope of the
general Lie-admissible product (4.A.14) is given by

U: (a;b) =wawrwbw - wbwswaw, {4.A.37)
w2=w, w,Is®0 r#s.
An isotope of the classical realization (4.A.11) is then given by

dA 9B
0: (A;B) = — s*(a)— , {4.A.38)
daH aa¥

where the tensor SHY, called the Lie-admissible tensor, is restricted by the
conditions of admitting Birkhoff’s tensor as the attached antisymmetric tensor,
ie,

gV - gt = U (4.A.39)

Brackets (4.A.38] constitutes the basic product of the classical Lie—
admissible studies of ref.s [10-14].

Historical notes on the origin of the isotopies are provided in ref. [3]. The
broader genotopies will; be studied in Ch. 1.7.
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5: ISOGEOMETRIES AND THEIR ISODUALS

5.1: INTRODUCTION

5.1.A: Foundational elements. Since the time of his graduate studies in
theoretical physics at the University of Turin, Italy, in the 1960%, this author has
been interested in the geometric representation of dynamical systems within
physical media, such as a space-ship during re—entry in our atmosphere or,
along conceptually similar lines, a neutron in the core of a neutron star.

Subsequent studies conducted at the Department of Mathematics of
Harvard's University in the late 1970', revealed that the conventional Euclidean,
Minkowskian, symplectic, Riemannian and other geometries (see, e.g., ref.s [1-4],
respectively and quoted literature) are not effective for the problem considered,
e.g., because they are not capable of representing the free fall of a leaf in
atmosphere as a geodesic trajectory. Numerous additional insufficiencies also
emerged Tor an effective geometrization of physical media.

The main guiding principle which resulted from these studies is that
physical media alter the geometry of empty space.

As an example, the geodesic representation of the free fall of a leaf in
atmosphere requires a necessary alteration of the Riemannian geometry,
evidently because the latter geometry can only characterize a geodesic in empty
space which is different than that within our atmosphere, while the geodesic
character of the presentation is necessary because the fall is free.

The inclusion of resistive forces does not ensure the preservation of
conventional geometries because in their most general possible form they are
essentially nonselfadjoint, that is, outside the representational capabilities of a
first~order lagrangian in the frame of the experimenter (Ch, I.1). The further
admission of the physical evidence that the frajectory depends on the shape of
the leaf, thus implying nonlocal-integral terms (Sect. I.1.1.1}, establishes the
inapplicability beyond scientific doubts of conventional local-differential
geometries from their topological foundations, let alone their first-order
lagrangian character or geodesic capabilities.

As we shall see during the course of our analysis, this basic geometric
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principle appears to be verified at all levels, including the classical nonrelativistic,
relativistic and gravitational levels, with corresponding operator counterparts at
the particle level.

The above studies brought into focus the historical distinction between
exterior dynamical problems in vacuum, and interior dynamical problems
within physical media considered since the Preface of -this volume.
Conventional local-differential geometries can be proved to be exactly valid for
exterior problems, but they result to be only approximately valid for interior
problems.

EXTERIOR AND INTERIOR PROBLEMS

FIGURE 5.1.1: The physical and mathematical inequivalence of exterior and interior
problems can be identified via direct visual observations, e.g., a telescopic view of Jupiter.
In its orbit around the Sun, Jupiter can be well approximated as a massive point along
Galileo's conception, because its size, shape and structure do not affect its trajectory In
the solar system. This implies the exact validity of the Euclidean, Minkowskian and
Riemannian geometries for the corresponding Newtonian, relativistic and gravitational
representations. Visual observation of the Jupiter’s structure reveals an interior scenario
profoundly different then the exterior one, such as the existence of vortices with
continuously varying angular momentaz and, more generally, an aggregate of
constituents which is globally stable, yet each constituent is in a generally unstable orbit
with irreversible internal processes. The lack of exact applicability for Jupiter's structure
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of the geometries so effective for its exterior motion in vacuum is then beyond credible
doubts, and so is the need for the construction of more general geometries for the direct
representation of the interior problem beginning at the purely classical level and prior to
any operator version. It is sufficient to indicate in this respect that the Euclidean,
Minkowskian and Riemannian geometries all admit, locally, the exact rotational
symmetry, with resulting necessary stability of the orbits and conserved angular
momenta. The very reason for the effectiveness of conventional geometries for the
exterior problem (representation of the stability of Jupiter’s orbit in the Solar system)
then become their insufficiencies for an effective representation of interior conditions
(the instabilities of vortices with continuously varying angular momenta). Numerous,
additional, independent, topological, analytic and geometries reasons will be identified
during the course of our analysis.

This is due 1o the physical evidence at the foundations of these volumes
according to which bodies moving in vacuum can be well approximated as
massive points, much along Galileo’s original conception, thus implying the
validity of local-differential geometries, because the size and shape of the bodies
do not affect their trajectories. On the contrary, when moving within physical
media the same bodies require a representation of their extended, generally
nonspherical and deformable shapes, thus requiring suitable generalized
geometries, because sizes and shapes now directly affect the trajectories (see
Figure 5.1.1 for more details).

The originators of contemporary geometries were fully aware of the
distinction .between the exterior and interior problems. As an example,
Schwarzschild wrote two articles in 1916 [9] in which the distinction is stated
beginning from the titles of the papers. In particular, Schwarzschild's first article
is dedicated to the exterior gravitational problem with emphasis on the exact
character of his celebrated solution, while the second (little known) article is
dedicated to the interior gravitational problem with emphasis on the
approximate character of the solution).

The distinction between the exterior and interior problems was kept in the
early well written treatises in gravitations (see, e.g., the titie of Ch. VI of the
treatise by Bergmann [10] - with Einstein’s preface -, or the titles of Sect.s {1.6,
p. 439 and Sect. 11.7, p. 444, of the treatise by Meftier [11].

By no means the insufficiency of the Riemannian geometry for interior
problems are treated in these volumes for the first time, because they are known
in the literature. For instance, the insufficiencies are at times called the (E.)
Cartan legacy, because expressing Cartan’s indication of the inability of the
Riemannian geometry to recover under current limiting procedures all generally
nonconservative Newtenian systems of our physical reality.

As a concrete example, missiles in atmosphere have nowadays reached such
speeds to imply drag forces up Lo expressions of the type F = —y:‘(w, which are
beyond any realistic treatment via the Riemannian geomeiry under any
conceivable limit.
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Unfortunately, with the passing of time the distinction between the exterior
and interior problems was progressively lost, up to the current trend of its
virtually complete elimination in the contemporary literature. This is done via
the (often tacit) reduction of interior problems to ideal collections of
dimensionless elementary particles which, as such, recover the exterior conditions
in vacuum.

The scientific reality is that interior, nonconservative and irreversible
physical events, as majestically shown by the direct observation of Jupiter’s
structure (Fig. [.5.1.1), simply cannot be reduced to an ideal collection of
dimensionless elementary particles in stable orbits, because of the No-reductions
Theorems indicated in Ch. 1.

Also, we do not possess today an unambiguous operator formulation of
gravity which is an evident pre-requisite for the reduction. Thus, interior
gravitational problems must first be represented classically as they actually are
in the physical reality, that is, with nonconservative irreversible interior effects.
Their reduction to particie descriptions can only be studied thereafter, provided
that they are capable of representing visual evidence of the interior problem,
such as Jupiter’s vortices with continuously varying angular momenta.

At the extreme, the insistence on applying conventional geometries for
interior conditions leads to excessive approximations, such as the often tacit
acceptance the ‘perpetual motion” within a physical environmen{, as necessary
from the local rotational invariance of conventional geometries.

The isotopies have been selected to broaden existing geometries over other
possible methods because they permit the achievement of the desired advances
for the interior problem while preserving the original axioms of the exterior
problem. In turn, this permits a rather remarkable unity of geometric and
physical thought in which both, the exterior and interior problems emerge as
different realizations of the same abstract axioms.

Also, the isotopies permit a clear separation between the original local-
differential exterior structure, and the nonlinear-nonlocal interior effects which
is evidently important for experimental verifications. In fact, as we shall see in
Vol. 11, experiments to test the prediction of the new geometries for interior
conditions require a the identification and separation of interior effects from
known exterior ones.

The isotopies are finally preferred over other approaches because they
permit numerous rather intriguing advances studied throughout our analysis
which do not appear to be possible with other approaches, such as the
‘deformations of existing geometries.2

29 The term deformationsof a given geometry with metric m and unit 1 is referred to
any (well behaved) deformation of the metric, m — i = T'm, while keeping the original
unit and, thus, the original field, unchanged. The term isotopies of the same geometry is
instead referred to the deformation of the metric m — it = Tm while jointly deforming

the unit of the inverse amount, I =1 =171, thus requiring a reformulation of the basic
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The analysis of this chapter is organized as follows. In Sections 5.1.B, 5.1.C
and 5.1.0 we present the conceptual foundations of the isogeometries for flat,
symplectic and curved spaces, respectively. In Sect. 5.1.E we present the
conceptual foundations of the isocdual isometries for our classical
representation of antimatier in a way fully parallel to the current representation
of matter. In the subsequent sections of this chapter we study the isotopies of
various conventional geometries. Finally, we outline in App. 5.C the
isotrigonometric and isohyperbolic functions which are important for the
conduction of calculations on isogeometries. Continuity aspects on isomanifolds
are deferred to the next chapters.

The presentation will be as elementary as possible and intended for
-graduate students in theoretical and experimental physics, with primary emphasis
on physical profiles. The achievernent of the needed mathematical rigor is
recommended for study by interested mathematicians in mathematical
journals.

For recent presentations of the Euclidean, Minkowskian, symplectic and
Riemannian geometries we refer the interested reader to monographs [1-4],
respectively, and literature quoted therein. In this chapter we mainly use the
monograph by Lovelock and Rund [4] of which we preserve the notations and
symhol for clarity in the comparison of the results.

The isotopies at the foundations of this chapter were first submitted by
this author in ref.s [3] of 1978 (see also monograph [6] for comprehensive
-treatments and applications in classical mechanics). The isotopies of metric or
pseudo-metric spaces has been reviewed in Ch. 1.3 jointly with the related
original literature. The first isotopies of conventional Euclidean and Minkowskian
geometries were constructed by this author paper [12] of 1983 and of the
Riemannian geometry in memoirs [15,16] of 1988. These isogeometries were then
studied in more details in ref.s [17-23]. The notion of isodual map was first
proposed by this author in papers [13-14] of 1985 and first applied to the
isodualities of the various conventional geometries with corresponding
representation of antimatter in monographs [19,20] of 1991.

The independeﬁ't studies on isogeometries are the following. Aringazin [24]
first proved the “direct universality” of the isominkowskian geometry Tor all
possible deformations of the Minkowski metric. Lopez [25] studied certain
implications of the interior isoriemannian geometry for the exterior problem.
Kadeisvili [26] wrote the first comprehensive review of the isogeometries and
their classification with emphasis on the isoriemannian geometry. Sourlas and
Tsagas published monograph [27] with emphasis on the isosymplectic geometry.
Other independent contributions will be indicated later on.

The reader should be aware that we shall solely consider in this chapter
contributions on isogeometries, that is, geometries centrally dependent on the
generalization of the unit30 It is evident that the literature indirectly related to

field with respect to 1.
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the isogeometries is vast indeed. We are here referring, e.g., to several forms of
noneuclidean geometries [28] and their possible relativistic extensions based on
the conventional unit, which we cannot possibly review here for brevity which
we cannot possibly review for brevity. '

5.1.B: Isotopies of flat geometries. As well known, the Euclidean [1] and
Minkowskian [2] geometries provide a geometrization of the homogeneity and
isotropy of empty space. As such, they are exactly valid for the nonrelativistic
and relativistic exterior problems in vacuum, respectively.

Qur central problem here is the identification of covering geometries
which permit a direct, classical geometrization of the inhomogeneity and

- anisotropy of physical media for nonrelafivistic and relativistic inferior
dynamical problems, first reached in ref. [12].

An important illustration, particularly for applications, is the identification
of the image of the light cone for interior conditions, in which case the speed of
light is locally varying thus implying the loss of the very “cone”.

Even though evidently not unique, the isotopies of flat geometries are
particularly suited to achieve: 1) the desired, direct, interior geometrization; 2) the
representation of the most general possible nonlinear—nonlocal-nonhamiltonian
interior systems; while 3) preserving the original axioms, and therefore admitting
the original geometries as particular cases.

Moreover, the isotopies of the Euclidean and Minkowskian geometries
permit the most general known dependence not only on local coordinates x, but
also on the velocities %, accelerations %, and other variables. Despite that, the
isotopies here considered preserve the original axioms of flatness, thus resulting

-in fundamentally novel geometries in which, for instance, the notions of angles
and trigenometric functions can still be defined, although in a predictable
generalized way.

As we shall see in Vols II and III, the applications and experimental
verifications of these new geometries are considerable, and include nuclear
physics, particle physics, astrophysics, superconductivity and unexpected other
fields, such as conchology.

5.1.C: Isotopies of the symplectic geometry. As well known, the
symplectic geometry provides the geometrization of Lie algebras and, as such, is
strictly local-differential, thus being inapplicable for the geometrization of
nonlocal-integral systems.

Our primary objective in this chapter is therefore the identification of a
covering of the symplectic geometry which is the geometric counterpart of the
Lie-isotopic theory in its most general possible nonlinear-nonlocal-

30 The paucity of contributions in the field is also due to truly unreasonable editorial
obstructions for papers on iscgeometries submitted by various authors to a number of
journals, which have prevented several papers in the field from seeing the light.
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nonhamiltonian formulation.

The technical problem we shall address was indicated in Sect. 1.4, and can
be treated now in more details. In essence, the Lie-isotopic algebras in their
abstract formulation as presented in the preceding chapter showed since the
original formulation [5] their natural capability to admit the most general possible
nonlinear—nonlocal-nonhamiltonian systems owing to the arbitrariness o the
functional dependence of the isotopic element T in the isoproduct

[A'Bl = ATk x, %% .JB - BT, x, %% ..JA. (5.1.1)

The geometry of the first studies [5] was the conventional symplectic
geometry, although realized in its most general possible exact version, with
noncanonical, symplectic, exact two-form on a 2n-dimensional manifold M(x,R)
over the reals R(n,+x) (see App. 5.A for an outline and monograph [6] for a more
detailed treatment)

0 =de=dlRidx'] = Q) dxl Adxl. (5.1.2)
The covariant symplectic tensor

Q 3 Ri, &;=d/ex,i,i=12.,2n. (5.1.3)

= %Ry~ 9

ij
-and corresponding contravariant form
ij = —1yij
Q= (o ™Y, (5.1.4)
are manifestly noncanonical and therefore result to be a direct realization of the
Lie=Santilli Isotopic Theorems {Sect. 1.4.5). In fact, the generalized brackets
A 8A 8B
[ATBl = — 0y —, (5.1.5)
ox! axl
are isotopic, as ensured by the Poincaré Jemma (see Sect.[.5.2 and App. 1.5.4)°!

de=d(de} = 0. (5.1.6)

This permitted a step—by—step generalization of ciassical Hamiltonian
mechanics into a new discipline submitted in ref. [5] under the name of
Birkhoffian mechanics, and subsequently elaborated in monograph [6].

However, brackets (5.1.5) are strictly local-differential, thus preventing a

3l The Lie—isotopic algebras were originally formulated precisely on these grounds, that
is, by showing that the transition from Lie’s theorems to their isotopic coverings implies
the transition from the Poisson to generalized Lie brackets.
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treatment of nonlocal-integral systems. In fact, the theorem of "direct
universality” of Birkhoffian mechanics and of the related conventional
symplectic geometry (ref. [6], p. 54 and ff., and Theorem 5.A.1 of App. [.5.A) was
specifically formulated for all possible nonlinear and nonhamiltonian systems,
under the conditions that they are local-differential and verify the needed
regularity and smoothness conditions.

Comparison of brackets (5.1.1) and (5.1.5) clearly reveals important

structural differences. As well known [4], the symplectic tensor ;; , and,
consequently, the Lie-isotopic tensor QY, can only have a dependence on the
local coordinates, QY(x), while the isotopic element T can have an arbitrary
functional dependence, T(t, x, %, &, ..J.
_ The above disparity between algebras and geometries persisted for a
decade. Its solution required the author to conduct, again, a step-by—step
generalization, this time, of Birkhoffian mechanics into the so—called Birkhoff-
isotopic (or isobirkhoffian) mechanics and of its underlying geometry into the
so-called symplectic-isotopic (isosymplectic) geometry, as a necessary condition
to achieve a complete equivalence between isoalgebras, isogeometries and
isomechanics.

As we shall see, the solution was provided by the full implementation of
the same methods that had originated the Lie-isotopic theory: the systematic
isotopic lifting of the entire structure of the symplectic geometry, including
fields, vector spaces, exterior calculus, and the like.

Note that the isosymplectic geometry is the only geometric counterpart of
the Lie—Santilli isotheory. :

5.1.D: Isotopies of the Riemannian geometry. The need for a broadening
of the Riemannian geometry for a geodesic characterization of free fall within
physical media has been indicated at the beginning of this chapter.

As we shall see , the isotopies of the Riemannian gecmetry, first proposed
by this author in memoir [I16] of 1988 under the name of isoriemannian
geometry, do indeed permit the achievement of the desired objective.
Unexpectedly, the geodesics within physical media represented via isoriemannian
spaces, called isogeodesics, résulted to be idemntical to those in the absence of
physical media, such as a straight line for a free fall. The actual trajectery of an
object (say, a leave), in free fall in atmosphere emerged only in the projection of
the isogeodesic in a conventional Riemannian space.

The achievement of the above covering notion of isogeodesic is evidently at
the foundation of the isotopic relativities studied in Vol. L1.

In addition, the isoriemannian geomelry resulted to be essential for a
number of other aspects of interior gravitational problems.

A central characteristic in the transition from flat to curved geometries is
that the metric acquires a nonlinear dependence on the local coordinates (only),
while preserving the local-differential and (first-order) Lagrangian characters of
the flat geometries. In Tact, when compared to the constant Minkowskian metric



- 199—

7, the Riemannian metric g(x) is a 4x4 matrix whose elements have a nonlinear
dependence on the space-time coordinates x, although the original local-
differential and Lagrangian characters of the Minkowskian geometry are
preserved.

The above characteristics have proved to be exactly valid for exterior
gravitational problems in vacuum, but they are insufficient for interior
gravitational problems.

i For instance, the interior of gravitational collapse, including black holes,
big bang and all that, is not an aggregate of a large but finite number of ideal
isolated points, but is instead composed of extended and hyperdense hadrons in
condition of total mutual penetration as well as of compression in large numbers
into a small region of space. These conditions imply the clear emerge of the most
general known systems which are )

> nonlinear not only in the coordinates x, but also in the velocities x and,
expectedly, in the accelerations %, as well as in the wavefunctions ¢ and their
derivatives ays, ooy

> nonlocal-integral in all needed quantities; and

> nonlagrangian, in the sense of not being solely representable via a first—
order Lagrangian in the coordinates of the experimenter.

In short, the very use of the Riemannian geometry ifself Tor the study of
black holes, big bang and gravitational collapse implies the suppression of
internal effects which are nonlinear and nonlocal in the velocities, wavefunctions
and their derivatives. The insufficient character of the .geometry then implies
predictable insufficiencies in the physical results,

Another geometric problem addressed in this chapter is the identification
of a generalization of the Riemannian geometry which, on one side, allows
metrics with unrestricted functional dependence g = g{x, %, X, ¥, 8, 85, ...} while,
on the other side, preserves the original Riemannian and (3+1)-dimensional
characters.

The first condition is evidently needed for a more realistic representation
of interior gravitational problems, while the latter condition is needed to achieve
a geometry unity in the treatment of both the exterior and interior problems as

~ different realizations of the same abstract geometric structure.

As we shall see, the isotopies also permit the achievement of the latier
objective. As a matter of fact, some of the most intriguing and far reaching
implications of the isotopies occur precisely in gravitation.

As an illustration, readers familiar with conventional treatments may
wonder how can a classical metric depend also on quantum mechanical
guantities such as the wavefunctions.

This occurrence is extraneous to the conventional formulation of the
Riemannian geometry, but it is possible under isotopies. In fact, the
isoriemannian metrics can always be subjected to the isotopic factorization of
the Minkowski metric 1
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glx, %, %, &, 8, 880, ..} = Tx, %, %, ¥, &b, 83, .01, (5.1.7)
The gravitational isounit
T =1 % % &, 8, 88, .} = T°L (5.1.8)

can then be assumed as the basic isounit of operator theories resulting in a
novel operator form of gravitation for both the exterior and interior problem
without any need of the Hamiltonian.

The above isolopic quantization of gravity studied in detail in Vol. II
resolves the historical difficulty in the quantization of Einstein’s gravitation given
by the fact that, on one side, quantum formulations can only occur with a well
defined Hamiltonian, while Einstein’s gravitation (in vacuum) notoriously possess
an identically null Hamiltonian.

Numerous other novel advances in gravitation are also permitted by the
isotopies, as studied in Vols I and I, such as the “identification” (rather than the
“unification”) of gravitation with the electromagnetic field originating the
structure of the elementary constituents of a given body, a theory on the “origin”
{rather than on the “description”) of gravitation, and others.

5.1.E: Isodual geometries and isogeometries for antimatter. Yet
- -gnother objective of our studies discussed earlier in this volume, is the
achievement of a representation of antimatter which is completely equivalent to
the current representation of matter, thus initiating at the purely classical level
and then persisting at the operator level.

This requires the identification of a novel antiautornorphic map which is
applicable to both classical; and quantum formulations. The conventional
charge conjugation is basically insufficient for this task because it is solely
applicable to operator formulations and becomes effective only at the level of
second quantization.

The antiautomorphic map selected by this author for the achievement of
the above objectives is given by isoduality [13,14]

1 - 19=-1, (5.1.9)

with corresponding conjugation of the isoreal numbers into their isoduals {Sect.
[.2.2) and of all remaining aspects. By recalling that the trivial unit [ is a
particular case of the isounit, the isoduality therefore applies to all conventional
and isotopic geometries, whether flat or curved.

The point here important is that the isodualities imply the emergence of
new geometries, submitted by this author in memoir [15] of 1988 under the names
of isodual geometries and isodual isogeornetries, for the characterization of
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antimatter in a way totally parallel to that of matter.

The physical characteristics of our current description of matter are
defined in terms of fields or isofields with a positive-definite norm, and
therefore imply a positive energy with a motion forward in time,

E>0 t>0, E, t € Rin+x). (5.1.10)

The isodual physical characterization of antimatter is defined instead on isodual
fields and isofields which have a negative—definite norm (Ch. 1.2), thus implying
negative energies with motion backward in time,

Ed< 0,tl< 0 |E9P<0[td0 <0, EY tde RI@I+xD).  (5.1.11)

The above occurrences have permitted the identification of an new
universe, called isodual universe, which coexists and is interconnected with our
own universe because of the finite transition probability between the positive—
and negative—energy solutions of conventional field equations.

It should be recalled that the concepts of negative time and negative
energies for antiparticles are rather old, and actually date back to the early stages
of the discovery of antiparticles {Stueckelberg and others). What is new is their
referral; to negative—definite units, with consequential systematic treatment via
a body of formulations specifically conceived for that purpose, such as isodual
numbers, isodual algebras, isodual geometries, etc.

As we shall see in Vol. II, the referral of negative energies and times to
corresponding negative—definite units permit the resolution of the historical
difficulties of the negative—energy solutions of Dirac’s equation.

In the final analysis, positive energies and times referred to positive units
are fully equivalent to negative energies and times referred to negative units.

The above isodual characterization of antimatter permits intriguing
predicticns, such as the existence of antigravity for an elementary antiparticle
in the field of Earth, and other novel features studied in Volumes II and [II which
are becoming known as the “new physics of antimatter”,

5.2: ISOEUCLIDEAN GEOMETRY AND ITS ISODUAL

5.2.A: Introduction. [n this section we shall study: 1) the isotopies of the
conventional Euclidean geometry of Class [ and their isoduals; 2) the new
geometric features which occur when projecting the isctopic realization of the
Euclidean geometry in the conventional Euclidean space; and 3) the novel
geometric advances permitted by the isotopies of Classes I1-V.
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The geometric isotopies here studied were introduced by this author [12]
under the name of isoeuclidean geometry as a particular case of the
isominkowskian geometry of the next section. Subsequent studies have indicated
that they characterize a new geomelry Dbecause they preserve the original
axioms of the fiat Euclidean geometry, but also embody at the same time
curvature and other features belonging to different geometries.

The above main results can be anticipated from these introductory words.
In fact, the isotopies preserve by assumption the original geometric axioms, and
therefore permit the preservation of the conventional features of the Euclidean
geometry, such as the definition of angles, the notion of straight, perpendicular
and parallel lines, etc. At the same time, the isometric possesses the most general
possible functional dependence, & = 8(t, r, t, 1), thus including as particular cases
the Riemannian, Finslerian, Labacevskiian or any other possible noneuciidean
geometry in the same dimension.

The ultimate meaning of the n-dimensional isoeuclidean geometry of Class
I which will emerge from cur studies is that of unifying all possible geometries
with the same dimension and signature. When the restriction of Class [ is
removed, the isoeuclidean geornetry unifies all possible geometries of the same
dimension irrespective of their signature.32

The reader should Tinally recall that, while conventional geometries have a
unique formulation, isogeometries have a dual formulation, the first in isospace
over isofields and the second via the .projection in the original space over
conventional fields.

5.1.B: Basic properties of isoenclidean geometry. Let us begin by

studying first the axiom-—preserving content of the isceuclidean geometry, with

- particular attention to the image under isolopies of Tlatness, while curvature and
other noneuclidean aspects will be considered later on.

By conception and construction, the reader should expect no deviation
from the abstract axioms of the Euclidean geometry under the conditions that
the isounit is positive—definite and the isogeometry is computed in isospace over
Isofields.

However, when the isoeuclidean geometry is projected in the conventional
Euclidean space, new geometric features are expected to occur and the same is
the case when the basic unit can be negative-definite (Class [I), or of indefinite
signature (Class I1I), or singular (Class 1V), or arbitrary, e.g., a step function {Class
V).

As we shall see, the results are the same irrespective of whether one
considers the abstract approach by Euclide and Hilbert or the coordinate
approach by Descartes.

32 This result does not surprise the attentive reader because it is expected as the
geometric counterpart of the unification of all simple, compact and noncompact Lie
algebras of the same dimension with the Lie-Santilli algebra studied in Ch. 1.4.
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Consider. the conventional three—dimensional Euclidean vector space
V(r,o,R(n,+>) with elements r (vectors), their composition rer’ (scalar product) over
the field R of real numbers n equipped with the conventional addition + and
multiplication x and respective additive unit 0 and rultiplicative unit 1.

Our first objective is to reconstruct V(r,0,R) under isotopies, that is, when
defined over an isofield R(n,+,%) of isonumbers © = nx], equipped with the isosum
1 + 0" = (ntn)¥1 with isomultiplication a%f’ = ixT>@y = { n<n’)X1, equipped with the
conventional additive unit O = 0 and a multiplicative isounit 1 = T~! which is a
positive-definite quantity outside the original field R e.g, 1 is an integral).

Let us begin with the study of the isotopies of the line.

Definition 5.2.1: An “isoline” is the image of the ordinary line on the reals under
the Iifting Rin+x) = R(ii, +3).

Coordinates on the isoline can be introduced as in the ordinary case,
although they are now isonumbers, that is, ordinary numbers multiplied by the
isounits,

X =xx1, 52.1)

on the isofield R, and are thus called isocoordinates. One can Tirst set up the
isoorigin § = 0 x 1. Then the isopoint on the isoline are arbitrary, positive or
negative isonumbers X. The isodistance among two isopoints is given by the
isonorm on R (Ch. 1.2)

D =1G-%)T = [{x-x)xTx{x-x)2x1, (522

and, as such, it is an isonumber.

One of the important implications of the isotopies of the straight line is
that, even though the axioms are the same, the values of the distance among two
points is different for lines and isolines with the same points x and x". In fact, D/D
#[and #1.

This seemingly innocuous occurrence has a number of intriguing
mathematical implications and physical applications, such as it permits the
mathematical conception of a new propulsion called geometric propulsion, here
introduced apparently for the first time which, as we shall see better later on, is
essentially based on the motion of a point from one isocoordinates to another via
the alteration of the underlying geometry, rather than the actual displacement
of the point itself.

The study of the remaining properties of an isostraight line is left to the
interested reader. :

Ve now introduce the isotopies of the three—dimensional Euclidean vecior
space Vir,+,0,R(n,+x.9% We introduce in V a system of Cartesian coordinates,
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name a system in which all axes have the same (dimensionless) unit +1 and are
perpendicular to each other.®4 In this way, the Euclidean vector admit the
familiar components along the three axes r = {x, v, z).

We shall continue to use our main notation whereby quantities with the
“hat” are computed in isospace and quantities without are computed in their
projection in the original space. The symbol + = + will be used without a “hat”
under isotopies to recall the fundamental assumption of Ch. 1.2 that the lifting of
the sum implies the divergence of the exponentiation and other undesirable
features.

Definition 5.2.2: The isotopies of Class I of the three—-dimensional Euclidean
vector space Vir,oRn+x), r = [x, y, z}, called the three—dimensional
“isoeuclidean isovector space”, are given by the same original set of
contravariant vectors reformulated as “isovectors”t = 1 = (%, y, z} = {1, yAl,
zX1} on isospaces V(r,+ &R, +%) over the isofield RB+%) with isounit > 0 of
Class | (Sect 1.2.2} equipped with the original sum + and an Jsoproducto oTo,
T=11=1> 0, verifying the following properties for all possible T, 7 € ¥ and 1,
iy, 1" e R:

Dr+7 =7+,

Mr+r)+1 =T+ (7 + 1)

3) the set V includes the element D such thatt + 0 = T,

4) for every elementT there is an element T such thatt + (-T) = 0,

~ Ao

Bt + A')%T = nXT + X7,

enx(r + 1) =n%Xr + X1,

NAXAXT = (A% )%T= n%(n %7,

BT%T = T%1 = T,

9) the isoproduct is an isonumber, ie, 761 = n = nXl eR,
I{AXT)OT = DXTd )

Ire(r+ 1) =187 + 161,

2T6T =0 iff T =9,

1BITéT = TOT” + AT,

4 TOT #TXT.

The “isocuclidean metric space”, or “isoeuclidean space” for short, is the isospace
B(r.+,8,Rin+x) equipped with the “isodistance”

D=(767} =(reTor)?x1 ¢R. (5.2:3)

33 Note the different products in a vector space, the product * € R for numbers and the
product @ € Y for vectors. Such a difference evidently persists under isotopies.

34 Note that noncartesian coordinate systems also exist in the literature in which
different axes have different units, but they are all referred to the same field and related
basic unit. By comparison, the isocartesian coordinates systems have different units for
different axes whose tensorial product is assumed as the basic unit of the underlying
field. As a result, noncartesian and isocartesian coordinate systems are Inequivalent.
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The “isoeuclidean geomeiry” of Class I is the geometry of the isoeuclidean
spaces. Unless explicitly stated, the terms “isocuclidean geometry’ are
specifically referred to the isogeometries of Classes 1.

As one can see, Hamilton’s original conception of “vectors” is merely
reinterpreted as isovectors, that is, vectors belonging to a space in which the
original scalar product is deformed by a given amount, @ —~ & = oTe, where T is
fixed for all possible r, while jointly the basic unit is deformed by an amount
which is the inverse of the deformation of the scalar product, I =1 =T L As we
shall see, this dual lifting permits the preservation of all original axioms. The
basic quantity of the Eucldean geometry which remains invariant under lifting is
therefore the quantity:

Length x Unit = Isolength x [sounit . (5.2.4)

The realization of the isoeuclidean spaces of Class [ primarily studied until
now (fall 1994) is that characterized by diagonal isotopic elements and isounits.
The preof that Definition 5.2.2. permits the preservation of the Euclidean axioms
therefore exists only for the above particular form which is assumed hereon.

We therefore study the three—dimensional isoeuclidean geometry on the
isospace of the same dimension with diagonal.Class I isotopic elements and
isounits, which can be written

BESR: T = {T¥)
8 =8T= Txs = (Tkxsy) =(8;), &= diag.(L,1, 1), (5.2.5b)

[rkx'l}, ?K = Skii‘ixl # kaT, (5.2.5a)

T = M rni1.) = diag. (b2 2052} =T >0,b,>0, 6250

1= 17"!= diag. (5,2, by 2 b3 2), 81 = 10, x5¥i, &, x8K = 5, (5.25d)
i2 =(r'8;rd)x1 =

(xb2x + ybfy + xbz)x1 eRB+4,10,j,k=1,2 3 (525

The most impertant differences between the Eutlidean and isoeuclidean
spaces are the following. The Euclidean space has the single and unique basic unit
I = diag. {1, 1) which is the unit of the SO{3) symmetry, and which essentially
implies the same dimensionless unit +1 for all axes, Iy = +1, k =X, y, z. On the
contrary, the isoeuclidean spaces have the infinite family of generally different
isounits 1 = diag. (b,2, b, 2 which are the isounits of the basic SO{3) symmetry
{see Vol 1), and which implies infinitely many possible, dimensionless units for
each axes which are different among themselves and different than +1, 1y, = bk_z
Mg =1, # 1, #+1
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The above differences have a number of intriguing mathematical
implications studied below and physical applications studied in Vol. II. To begin,
the Euclidean “space” is unique per each dimension, while there exist infinitely
many possible isceuclidean “spaces” per each dimension, although they all admit a
single and unique abstract treatment for the same class.

Recall that the coordinates of an isopoints are isoscalars, ie, X = x¥, ¥ =
yx1, Z = zX1. The isoseparation 12 is therefore the results of two sequential
isooperations, the first is given by the isosquare yielding the isoscalar structure,

'1‘-2=}'>‘<'i~=rkx’[x"[‘xrkx‘1=(rk><rk)><'l, (5.2.6)

while the second operation is the isocontraction on the index k which must be
done via the isometric (because we are now in isospace),

2 = (rexr¥)xt = (rfxdyxrd)x1, (52.7)

thus yielding expression (5.2.5¢)
We mention that the isometric 8 could also be written as an 2x2 isomatrix,
that is, @ 22 matrix whose elements are isoscalars

8y = T x By * 1. (5.2.8)

[n this case however the product of its elements among themselves and with any
other quantity must be isotopic, thus reproducing again the fundamental
isoinvariant (5.2.5¢). For this reason, the isometric elements will be hereon
considered to be ordinary scalars Sij and their product with any quantity Q, Eij X
Q, an ordinary product.

Note that the isoseparation coincides with the conventional separation for
all possible scalar forms of the isounit, In fact, in this case we have

2 = (e xrk)x1 = (riXTXSinrj)X'I = 2xTxT! =12, (529

This simple property illustrates the "hidden” character of geometric isotopies, as
well as provides a reason why they have remained undetected until recently. The
above "hidden” character will persist in Yol. II when studying hadronic
mechanics.

Note also that the possible assumption of the basic invariant Length/Unit,
rather than invariant (5.2.4), would imply a geometry different than the
isogeometry because characterized by the dual lifting § > 8 =1x8 and [ = 1. In
this case the liftings are no ,longer “hidden” because property (5.2.9) no longer
holds.

The isodistance between two points Pk, ¥, Z;) and P,(%, ¥, Z,) of the
isoeuclidean geometry is the isoscalar
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Dy =1 (7 - ) =
=[(X1“X2)2b12+ (YI"YZ)ZDZZ"‘ (21“22)]332]1/2"’]ER., (5.2.9)

where T and T, are the isovectors from the origin to P; and P, respectively.
A primary implication of the notion of isodistance is that of altering the
conventional Euclidean distance among two points according to the following:

Proposition 5.2.1: Let d), be the conventional Euclidean distance between two
points P\{x), y|, z))and Py(x,, y5, 2,), and fetD,, = D\ be the corresponding
isoeuclidean distance among two isopoints P (x|, ¥, Z|) and Py(Xy, ¥p, Z5), % =
xX, ¥e = v, 7 = X1 with the same coordinates xg , Yy, Zx, k = 1, 2, of the
original points. Then

Dip> dyp for detl < I, (5.2.10a}

Dy < dyp for detl >1. (5.2.10b)
The above property has a number of intriguing implications. First, the
same object has different sizes and shapes in the Euclidean and isoeuclidean

geometries, as illystrated in Fig. 5.2.1.

THE ISOBOX

FIGURE 5.2.1. Consider a cube with sides of a given length d which is inspected
from an outside observer in Euclidean space with geometric unit [ = diag. (1, I, 1),
and individual units per each axis Iy = +I, kK = X, y, z Suppose that there is a
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second observer in the 1nterror of the cube belonging to an isoeuclidean space
w1th isounit 1 = diag. (b;2, b,™2 bs 3, and individual isounits per each axis T =
bk k =1z, y,z It is easy to see that the same object can have for the interior: 1)
a volume arbitrarily smaller or bigger than a3 depending on whether det 1 > 1
or < I, respectively (Proposition 5.2.1) ; 2) a shape different than a cube; as well as
3) a shape and volume varying in time. In fact, the same k-side has different
values depending on whether referred to the unit I; =+1 or T = b, "%, resulting in
a volume for the interior observer which is arbitrarily smaller or bigger then that
of the external observer. Also, equal sides for the outside observer are generally
different among themselves when referred to different units for different axes,
1, # 'Iy # 1, # +1, resulting in different shapes. Finally, the length of the sides is
- constant in time for the outside observer, while it may vary in time for the
interior observer because the individual isounits may depend on time, 1 =1,(t, ..).

As a result of the above peculiar characteristics, far away stars which have
a large distance from Earth when represented in Euclidean space, can have a
distance as small or as large as desired when represented in isoeuclidean space.
This notion is illustrated with the following self-evident property.

Definition 5.2.3: The “geometric propuision” is the mathematical displacement
from a point P|(x), v, z) to a point Pylxy, vs, Z,) here assumed to be on the
same straight line from the origin 0 in Euclidean space realized via such an
isotopy of the underlying Euclidean geometry for which the isodistance Dy x1
between 0 and P is such that Dy, is equal to the distance dyy between 0 and
P, (see Fig. 5.2.2 for details), i.e.

DOl =D01 x1 = dozx‘l. 5211
The equation of an isostraight isoline is given by one of the following forms

akx + bkxy +¢xz+d ={ax +by +cz+d)x1 =0, (5212)

X=X -p%a = (x-x;-pa)x1 = 0, (5.2.12c)
V=91 -PX%ay=(y- y;-pay)x1 =0,
Z-7 -pRag=(z- z;-pag)x1=0, (5.2.12q)

where 3, 5,C,d € R, a, b, ¢, d € R, p is an (ordinary) real parameter, and at least one
of the isonumbers 3, b and € is not null. The isoline is called isostraight because
its derivatives are constant.

Notice the importance for the consistency of the isceuclidean geometry
that the isocoordinates are isoscalars, i.e, are elements x = x¥1, y = y¥1, z = 2] of
the isofield R. In fact, the use for isocoordinates of of conventional scalars x, v, z



— 209 —

would prohibit 2 consistent definition of isostraight isoline.
GEOMETRIC PROPULSION
z

<2

Pe

Y Yo

FIGURE 5.2.2: A schematic view of the geometric propuision apparently introduced here
for the first time. It is based on the idea of realizing motion between two points via an
isotopic alteration of the underlying geometry, rather than the conventional
displacement. Consider the Euclidean plane and two points Py and P, on a straight line
from the origin 0 as in the figure. Let dy) and djyy be the conventional distances of the
points P| and Py from the origin

dOl = (Xlz + YZ2+Zi2 )1/2, d02 = (X22 + Y22‘*“222)1/2, doz >D0[. (1)

The geometric propulsion of the point P to Py occurs under the following steps: 1) the
geometry underlying the point Py is lifted isotopically with resulting isodistance (5.2.9); 2)
the isotopy is chosen according to law (5.2.11}, ie,

Dol=(x12 b12+ Y12b22)x1 = dgo x7, 2
with simplest possible solution
b12= X22 / X12, b22 = Y22/ Y[z, b32 = 222 / 212 Det.1> 1 3 (3)

and 3) the geometry is then returned to the original Euclidean form. Under the above
assumptions, the projection of the isopoint (%}, ¥1, Z)) in the Euclidean plane coincides
with PolXs, yo, Zo). The activation and subsequent de-activation of the isotopy then yield
the motion from P| to Ps. It should be stressed that the above geometric propulsion is a
purely mathematical notion, here defined for a point. The possibility of its future
realizations is studied in Vol.s Il and 11! and essentially deal with the identification of
means which can alter the basic units of space (and time). The reader should keep in mind
the most intriguing property of the geometric propulsion, that of being permitted by the
Euclidean axioms themselves, only realized in a way more general than the usual one.
Thus, an outside observer will simply see the motion from the point Py to P, without
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any visible change of the geometry or visible means for the displacement, As we
shall see in the next section, even more intriguing properties emerge when
introducing the geometric propulsion in space-time.

[n isovector notation, the isoline can be represented by

~

Fp — T ¥ 0%a = (rg —rg - nadx1, k=123, (213

where T = %) = &, §, 2, T, is fixed point on the isoline, & = (3, &y, 43} is the
direction of the isoline itself and n is an arbitrary parameter.

It is important to understand that while isoline (5.2.13) is isostraight in
isceuclidean spaces, it is generally curved when projected in the conventional
space. This property can be best inspected via an “old trick” of the isotopies, the
reduction of the isospace E(r,3,R) to a conventional space E(r,5,R) possessing the
same invariant. This is readily possible for the values 1y = ryb, under which

ihx8yxrl = Thx gy xT (5.2.14)

It then follows that the projection of the isostraight isoline (5.2.12a) in a flat
space is given by

axblt,r,.) +bybyt,r,..} + czbgtr,..) +d =0, (5215

which is evidently curved.

We therefore expect the existence of the inverse property, that is, given an
arbitrary well behaved surface (5.2.15) in Euclidean space, there always exists an
isotopy under which said surface is mapped into the isostraight isoline in
isospace.

' An isopoint in V(,+8,R) is a point PR, ¥, 2) with isocoordinates X, ¥, Z.
Consider now two isovectors from the isoorigin 0 to the isopoints P and P,. An
isosegrnent is the portion of an isostraight line between two isopoints.

In other conventional generalizations of the Euclidean metrics & — 8(t, r, T,
t, ..) the notion of angle is generally lost (as it is the case for the Riemannian
geometry) because of the emergence of the curvature. A peculiarity of the
isoeuclidean geometry is that, despite the most general possible functional
dependence of the isometric, a generalized notion of angle can still be introduced.
It is called the isoangle, denoted with the symbol &, and characterized by the
expression ont the isoplane z = 0 for simplicity studied in detail in App. 5.C

R x 101 2x5 + v, b2 v
isocos d = P 3 > PRI (5.2.16)
(Xl bl X1 +y bz Yl) (X2b1 Xy + Y2b2 Yz)

which, as one can see, is an ordinary scalar {rather than an isoscalar} because the
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isounits cancels out in the ratio.

As shown in App. 5.C, and studied in more details in Ch. [1.6 on the
isorepresentation of Lie-Santilli isorotation group O(2), the explicit form of & is
given by d = bbya, where a is the original angle prior to the isotopies.s5 This
imptlies that the angular isotopic element and angular isounits, for the case of
realization (5.2.5), are given respectively by T5 = b;by, 15 = b, 'by 7L

The mechanism of isotopies of angles is therefore that a given angle a is
lifted in the amount @ - @ = Tza, but the unit is lifted by the inverse amount, I
—+1, =1L, thus atlowing the preservation of trigonometric axioms (App. 5.0).

We shall say that two isovectors originating from D to the isopoints P and
P, in the isoplane z = 0 are isoperpendicular when their intersecting isoangle is a
= 9", which can hold iff '

X b12X2 t Yy b22Y2 =40, (5.2.17)

and they are isoparalie] when their intersecting isoangle is null, & =, which can
hold iff

lelz Yo = Y1 bzz)g = 0. (5.2.18)

RECONSTRUCTION OF ANGLES IN THE ISOPLANE

A
X

(A) (B) (C)

FIGURE 5.2.3. Diagram (A} depicts the origin of the notion of angle in the conventional
Euclidean plane from two straight intersecting lines, which can be analyticaily expressed
via the familiar expression

35 Note that the definition of isoangle for nondiagonal isometrics is unknown at this
writing.
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X1 Xg * Y1 ¥2
cosa = T T - {n
(xpxp + ¥y ¥2) *(xa%g + ¥ ¥5)

In the transition to the Isoeuclidean plane, straight lines are generally mapped into curves
when defined on the original plane over the conventicnal field R, as depicted in Diagram
(B), thus implying the general loss of the notion of angle as typical in the transition from
the Euclidean to the Riemannian geometry. The isotopies permit the reconstryction of the
notion of angle, but only in the isoplane over isofields, because in the latter case the
original straight lines are mapped into isostraight isolines as depicted in Diagram (C). In
the latter case, the original angle a is lifted into the expression @ = byboa called
isoangle which is derived from the underiying Lie-Santilli isosymmetry of the
isoplane SO(2) studied in detail in Yol. [I. Expression (1) is tifted into expression (5.2.16)
which evidently does not characterize cosa any more, it is assumed as the definition of
the isocosd, and studied in App. 5.C.

The above two conditions establish the existence of simple yet, unique and
unambiguous isotopic images of the Euclidean axioms of perpendicularity and
. parallelism. It is then easy to prove the following properties.

Theorem 5.2.1. The isofopies map perpendicular lines into isoperpendicular
isolines and parallel lines into isoparallel isolines.

By using these results, it is possible to prove that the isoeuclidean geometry
with diagonal Class [ isounits is expressible via the following main assumptions
(see, e.g., ref. [43], Ch. 2, for a recent study of the conventional Euclidean axioms).

Isoaxiom I: There exists one and only one isostraight isoline from one isopoint
to another isopoint.

Isoaxiom II: An isosegment can be prolonged continuously into an isostraight
{ine from each end.

Isoaxioms IIl: For any given center and isoradius there is one and only one
isosphere.

Isoaxioms IV: All isoright isoangles are equivalent.
Isoaxioms V: For each given isosegment belween lwo isopoints there exist only
two isoparallel lines, one per each isopoint, which are perpendicular io that

isosegment.

The lifting of the additional axioms of the Euclidean geometry [loc. cit.] is
~ left to the interested reader. Additional axiomatic properties are studied in App.
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5.C.

I[sotopies characterized by nondiagonal isotopic elements are vastly
unknown at this writing. We merely indicate that they imply a structural
alteration of the original geometry more profound than that of diagonal isotopic
elements. As an illustration, consider the isoeuclidean space as in Eq.s (5.2.5) but

with isotopic element
1 0 0
T = 0 0 1 , {5.2.19)

0 -1 0

for which det T = L. Thus, T is nondiagonal but still of Class I.
It is easy to see that in this case the basic isoinvariant (5.2.5d) becomes
identically null, i.e.,

P = (rlxdxrd)xT = (xx + yz - zy)x1= (xx)x1, (5220

namely, the isotopy is regular, thys invertible, yet the isospace is degenerate and
reduced from three to one dimension.

We learn in this way that nondiagonal isotopies can reduce the number of
effective dimensions of the original space. This is the case of isoinvariant (5.2.19)
for which the original dimension is three, with coordinates x, vy, z, while the
resulting dimension is one and represented by x, while the coordinates y and z
remain outside the geometry.

One can see in this way additional peculiarities of the "isobox” of Fig. 5.2.1.
In fact, the alteration of volume and shape of the cube and their variation in tirme
for the internal observer should be complemented with the additional possibility
that the number of dimensions themselves are changed in the interior. In fact,
for isounit {5.2.19) the external observer perceives a three-dimensional cube, while
the internal observer perceives it as a one-dimensional segment.

The invertible isotopies which alter the dimensionality of the original space
are here called degenerate Class I isotopies. Rather than being a mere
mathematical curiosity, the latter isotopies have emerge as having intriguing
possibilities of applications studied in Vols II and III, such as a quantitative
representation of the synthesis of neutrons from protons and electrons only as
occurring in the interior of stars, which is possible under a nondiagonal Class [
isotopy of the four—dimensional space~time of the electron down to two-—
dimensions.

Note that no study is available at this writing on the isoaxioms of the
isoeuclidean geometry for nondiagonal isounits of Class I.

5.1.C: Basic properties of the isodual isoeuclidean geometry. The
isoeuclidean geometry studied above is used in these volumes for the
characterization of matter. In order to characterize antimatter, we need an
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antiautomorphic map. This map cannot possibly be charge conjugation because it
is applicable only to operator formulations on Hilbert spaces.

An antiautomorphic map which is indeed applicable to the Euclidean and
isoeuclidean geometries was identified by this author in 1988 [13,14] under the
name of isodualily, and it is given by

1T - 19=-1. (5.2.21)

Definition 5.2.4: The “isodual isoeuclidean spaces” are given by the isoduals of
the original isovectors 19 = - T = (&9, ¥9, 29) = (<%, -9, -3), called “isodual
isovectors”, defined on the isodual isospaces V9G0+68, RURI+5M) over the
isodual isofield ROH%+x9) with isodual isounit 18 = =1 < 0 of Class II (Sect.
1.2.2) equipped with the original sum + and an isodual isoproduct 6% = ed1dpd =
oMo = - oTe, 19 = (197! < 6, verifying the isodual images of properties 1)-14)
of Definition 5.2.2 here omitted for brevity. The “isodual isoeuclidean geometry”
is the geometry of the isodual isoeuclidean spaces of Class II. The “isoeuclidean
geometries of Classes IIl, IV and V" are the geometries of isospaces with isounits
of the corresponding classes. Unless explicitly stated, the terms “isodual
isoeuclidean geometry” are referred to that of Class I1.

The construction of the isodual geometry via map (5.2.21) is straighforward.
the isodual isostraight isoline is the infinite set RYA%+59) with isodual isopoints
given by the elements 1% = n¥19 = -f. The isodual isoeuclidean isospace can be
written for the case of diagonal isodual isounits

BIGOSIRY: T =( Tk x10) = (-7%), 7l = o i =t (5.2.220)
80 = Mx5 = ~8 5 =diag. (1, 1, 1), 88=5%, 19 = 7971 = 7, (5.220h)
T¢ = 19, 1,1, 1,..) = diag: (-b;2 -by2 -bs?) =—T<0, b <, (5.22%)

{420 = ((di 8919 %1% = (-xb % - ybly-zbz)x19 <RI, (5.2220)

Note that the above isospace admits as a particular case the novel isodual
Euclidean space which occurs for 19 = 19 = - [. Note also the two sequential steps
for the characterization of the isodual isoinvariant,

20 = 39 %330k o x1xpdxp x10 = (1 x7%)x19 =
(rixsdij rj)x]d = (—Ti _gijxrj)x'ld’ (5223)
thus reproducing isodual isoinvariant (5.2.22d).

The isodual isodistance between two isodual isopoints P, %% 9, %9, 2,9 and
P,9%,9, 9,9, 2,9 is the negative—definite isodual isoscalar
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DYy =1 (% -9 =

=[(x; = %2 b2+ (y =y P2+ (2, -2, P12 210 =—p, e RS, (5.224)

Proposition 5.2.4: The basic invariants of the Euclidean or isoeuclidean
geometries are “isoselfdual’, i.e., invariant under isodualities, i.e.,

2 = 020 apg 32 = pd2d (5.2.25)

As we shall see, the above mathematically elementary property has
rather important physical implications for the representation of antirnatter.
The isodual isostraight line can be expressed by

‘éd‘*ds‘(d+6d§d§d+ed=(a>(x+b+y+C)X’Id=0. (5.2.26)

where éd, Bd, gdeRrd A given straight line can therefore be also interpreted as
belonging to an isospace as well as to its isodual. As we shall see, this additional
elementary property is evidently extendable to curves and results to have
significant application in theoretical biology. In fact it indicates that, even though
an object is perceived as belonging to our Euclidean geometry, and it appear to
evolve.with our time it-may eventually belong to a structurally more general
geometry with an inverted direction of time [30].

The isodual angle is the angle between two intersecting isodual straight
lines in the isodual Euclidean plane, and it is simply given by o9 = - a. The
isodual isoangle is the angle between two intersecting isodual isostraight isolines,
and can be written

a4 = b¢pflad = -a. (5.2. 27)

We leave for brevity to the interested reader the definition of
isoperpendicular and isoparaliel Isodual isostraight isolines, and the isodualities
- of the remaining properties of the isoeuclidean geomelry.

The characterization of antimatter via the isodual geometry is made
possible by the property of Proposition 5.2.4 and those of the following:

Proposition 5.2.5: The maps from Euclidean Er,8R) to the isodual Euclidean
space EUr988RY and from the isceuclidean BGSR) to the isodual isoeuclidean
space EAGAsARY gre antiautornorphic and imply the change of the sign of all
positive-definite quantities.

The above properties confirm the possibility for isoduality to provide a
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Classical representation of antimatter, as studied in detail in Vol. II. At this
moment we limit ourselves to indicate that the map from matter to antimatter is
indeed antiautomorphic (Proposition 5.2.5), yet it preserves conventional
invariants (Proposition 5.2.4). this ensures that the same physical laws hold for
both matter and antimatter although realized in isodyal forms.

In particular, the charge of a particle changes sign under isoduality. Jointly,
the energy which is positive in Euclidean and isoeuclidean geometries is turned
into negative values for the corresponding isodual geometry, as requested for a
consistent representation of antiparticles, while our the forward time of matter is
reversed under isoduality.

The study of isodual isoeuclidean geometry with nondiagonal isotopic
elements is left to the interested reader.

5.2.D: Operations on isovectors and their iseduals. We consider now
the operations of isovectors in the isoeuclidean geometry with diagonal isounit,
Eq.s (5.2.5). Recall from Ch. [.3 that the basis of a vector space is nol changed
under isotopy {up to possible renormalization factors). Let e, k=1, 2, 3 be the
unit vectors of a three-dimensional Euclidean space E(r,5,R) directed along the x,
Yy, Z axes, and let

ék = ey x7, (5.2.28)

be the corresponding isobasis in E(r8,R). Then, a isovector ¥ can be expressed in
isospace

V= XE[ + Y%z + Zés. , (5.2.29)
This is another way of expressing the fact that the isovector V is isostraight
in E{,3,R), although its projection in E(r,3,R) is curved. As expected, the operations
on vectors are preserved under isotopies. In fact, the familiar scalar product of
two vectors V| = {x), y1,z} and Vs = {x5, y5, 2o}
VioVs = XX + vy y2 + 7129, (5.2.30)
is now lifted into the expression called isoscalar product
Vl & Vz = (Xl b12 X + vy b22 ya + g b3222)xll € R(fl,"‘,*) . {5.2.31)
Note that the isoscalar product preserves the original axioms, ie.,

Vlé‘?z = Vzévl, Vlé(V2 + V3) = V16V2 + V16V3. (5232)

Moreover, the isonorm on E{t,8,R) is expressible in terms of the isoscalar product
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via the rule
197 = (167 x1 e RA+X). (5.2.33)

Thus, the isocosinus of the isoangle formed by two intersecting isovectors
can be written as the isotopy of the conventional case

169,
isocos @ = —_— {5.2.34)
AR
Also, one can introduce the directional isocosinuses of a vector

isocos@ = ¥, /]V71, isocosB = ¥, /1971, isocos ¥ = ¥3/1V[. (5.2.35)

Then, we have again the correct lifting of the corresponding conventional
identity

b2 isocos? @ + by isocos?B + bgPisocosty = 1. (5.2.36)

Similarly the vectorial product V; A V5 is lifted in the expression called
isovectorial product

‘Vs = Vl f\Vz , V3k = Ekij( bi Xj1 )( b] X2j ), i, ],k =123. (5237)
which satisfies the basic axioms of a vector product

Vlf\V2 = VZAVI’ Vl /A\(Vz + V3)= Vif\% + V17\V3‘ {5.2.38)

Other operations on isovectors can be constructed accordingly.

The operations on isodual isovectors ¥9 = - ¥ on isodual spaces (959 R%)
with diagonal isodual isounits are easily derivable via the isodual map. As an
example, the isodual isoscalar product is given by

V[d 6d Vz = ('Xl blz X~ V¥ b22 y2 - Zl b3222)x'ld € Rd, (5239)

and it is manifestly isoselfdual.
Similarly, the isodual isovector product is given by

Vsd = Vld f\d V2 N V3kd = Ekij( bid X“d ) xd ( de ijd ) = VSk‘ (5240)

[t is instructive for the interested reader to verify the preservation of
Lagrange’s identity under isotopies among four isovectors A, B, €, D in E{r,5,R)
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(AAB)S(CAD) =R 6CI*X(BED) - {BECIX(AED). (5.2.41)

Other properties can be easily derived by the interested reader via similar
procedures.

5.2.C: Representation of hadrons as isospheres and of anti-hadrons as
isodual isospheres. We now pass to the study of one of the most fundamental
geometric notions of hadronic mechanics, the representation of hadrons as
isospheres in isoeuclidean spaces with corresponding antiautomorphic image for
anti—hadrons. In this section we shall solety study geometrical aspects and defer
all physical considerations and verifications to Yol.s [T and IIL.

The isosurfaces on the three-dimensional isoeuclidean space (5.2.5) are
given by a straighforward isotopic image of ordinary curves and, as such, are
reducible to algebraic equations in the ccordinates of order higher than the first.

While in ordinary Euclidean space we have a large number of different
surfaces, in the isoeuclidean space we have the dominance of the following
notion:

Definition 5.2.5 [15]: The “isosphere” in the three-dimensional isoeuclidean
space B(r,8,R) with diagonal isounit is the isotopic image of the ordinary sphere
with equation

52 2 32

+ 92+ 32 = g2, (5.2.42)
ie,

[x bt 1,1, 1,.0x + ybhAtL i1,y + 202 61, z]1xT =
= R? = RZx1eR, (5.243)

where R is an ordinary scalar. The isosphere is said to be of Class I, I, IIl, IV or
V depending on the corresponding class of the isounit. The "isodual isosphere” is
the isosphere in the isodual isospace ESE939RY) with equation

+02d _ sd2d ?déd+ 5024 Rd?d, (5.2.44)
ie,

[x9 b, 29, 1, 1, 5, . x@ + yE b2 1 7, ) v + 29028 1 1, 8, L) 281X =
1 7 3
= [-x blz(t, 0 A I B ) b22(t, oty - zbsz(t, Lt ) z]x18 =
= RYA - gdx1d ¢ RY, (5.2.45)

The ordinary sphere, hereon written in the form®¢
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2 =(x2+y2 + 22)x = R2x] eR (5.2.46)

is a trivial particular case of the isosphere of Class I. The “isodual sphere” is the
image of the sphere under duality with equation

928 = -2 - 2 _ 2yxd =R2x 18 (5.2.47)
and it is also a particular case of the isodual isosphere of Class II.

The verification of the perfect spheridicity of the isosphere in isospace is
important. Recall that, by central assumption, the Euclidean space and related
Cartesian coordinates admit the same unit for all three axes, which is
geometrically expressed by the unit [ = diag. (1, L, 1) of the basic SO(3) symmetry,
and we shall write

by =1,=1,=+1, (5.2.48)

Recall that, also by central assumption, the isoeuclidean space and related
isocartesian coordinates admit different units for different axes which can be
expressed via the isounit 1 = diag. (b; 2 b,2 by 2 of the basic isosymmetry SO(3)
{Ch. [1.6), and we shall write

W=t 2 # 1, =by 2%, =bg2 =+1. (5249

Recall finally that the original geometric characteristics are preserved under the
above an isotopy, e.g., a straight line is mapped into an isostraight isoline.

It is then easy to see that the perfect sphere in Euclidean space is mapped
into a surface with perfect spheridicity in isospace. In fact, the semiaxes of the
original sphere Sy =+1,k = x, y, 2, are lifted under isotopy to the values § = bkz,
k = x, y, 2, thus yielding an ellipsoid. Jointly, the unit of each deformed semiaxis
is lifted by the inverse amount, thus restoring the perfect spheridicity in
isospace, with the understanding that the diameter of the original sphere is
changed.

The above occurrence is directly expressed by the basic invariant (5.2.4) of
the isotopic lifting of the Euclidean space realized according to the rules

8 = diag.(1, 1,1} — 8 = diag. (b2 by2 bs?), (5.2.50)

[ =diag.(L L1 - 1= diag(b2by20s72), (5.251)

36 Note that formulation (5.2.46) requires the redefinition of the ordinary field of real
numbers with respect to the unit [ = diag. (1, 1, 1}. Such a reformulation is necessary here
to have the ordinary sphere admitted as a particular case of the isosphere.
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THE ISOSPHERE IN ISOEUCLIDEAN SPACE

FIGURE 5.2.4: A schematic view of the perfect sphere in isospace over isofield introduced
by this author [15} under the name of isosphere Besides the argument presented in
the text, the perfect spheridicity can be best proved via the use of the isospherical
coordinates and isotrigonometric functions of App. 5.C. For the simpler case case
of the isocircle of radius one in the isoplane (x, y) with diagonal isotopic element
we have the isopolar coordinates

x = isocos® = b, lcos®, y = isosin® = by 'sin®, ® =Db;by0, (1)

where € is the original angle of the circle prior to the isotopy. In this case the
equation for the isocircle is reduced to the conventional form

2 =xb2x + yb?y = b2isocos?® + by?isosin?d =
= cos2® + sin?d = |, {2)
which can be schematically represented as follows

Elr8R) E{r,5,R) £r,5R)
yh 4 y A
s AT Var ek
¢
- 3 o
K_/ ) \ ) \/ "

namely, the circle is first deformed intc an ellipsoid in the original space and then
reconstructed as a perfect circle in isospace. Note that the projection of the isocircle in




- 221 -

the original space can also be represented with the coordinates Ty = ryby, K = 1, 2, on
the conventional space E{r,3R} with the self-evident identities

2= xb2x + ybly = XX + §y = 2. (3

Similar results hold for the case of the isosphere via the use of the isospherical
coordinates, as well as for the isodual isosphere, as well as for the isosphere of Class III,
the latter one requiring the use of the isohyperbolic functions of App. 5.C. Applications
of the isosphere of Class IV =with singular isounitee are indicated in Sect. 5.2E.

or, equivalently, by the basic invariant under isotopies:
§xI — &xT = Txsx1 = §xI. (5.2.52)

We can now begin to understand the representation of a hadron as an
isosphere in isospace. Recall that in contemporary particle physics hadrons are
represented as perfectly spherical and perfectly rigid objects, evidently as
necessary conditions not to violate a pillar of quantum mechanics, the rotational
symmetry SO(3).

The representation of a hadron as an isosphere then includes the perfectly
spherical and rigid cases as irivial subcases and permits the additional
representation of all the infinitely possible signature-preserving deformations of
the sphere in such a way to preserve the basic rotational symmetry, as studied in
details in Vol. IL. In different terms, the geometric representation of a hadron as
an isosphere permits a single, unified, rotationally invariant characterization of
all possible actual, nonspherical shapes of a hadrons and all their infinitely
possible deformations due to collisions or external fields.

It is easy to prove the following:

Proposition 5.2.5: The maps from the sphere to the isodual sphere
P=(x2+y2+22)x = R —» 1920 = x2-y2-;2)x(d=p2%4 (5253
and from the isosphere to the isodual isospheres

i2 = (rixdyperd) x 1 =R > 1920 = (19x8d,xrd]) <19 = R29, (5254

are antiautomorphic, thus implying the reversal of the sign of all the original
positive—definite characteristics.

The above property evidently permits the characterization of anti-hadrons
as isodual isospheres. Note that in contemporary particle physics both hadrons
and anti-hadrons are treated with the same geometry and are thus represented
with the same sphere, resulting in the same classical characteristics which is
basically insufTicient for their distinction.
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Proposition 5.2.6: The sphere and the isosphere are isoselfdual
2 =(x2+y2+ 2)x] = (9o 22 2«8, (5.2.55)
i2 = (rfxByxrd) 1 =R = 1920 = (19xpd, ) 10 = R34, (5.256)

The above property is important for the observability of antihadrons in our
space. In fact, it establishes thatl a given sphere cannot be claimed to belong to a
particle or to an antiparticle without additional information, e.g., on charge,
energy, etc. Additional properties of the isosphere will be studied in the next
section and in Yol.s I, and III.

The following mathematical properties of the isosphere are self-evident.

Theeorem 5.2.5 [15]: The isosphere of Class [II unifies all the following quadrics
of the conventional Euclidean space

1) All ordinary sphere

sof3k x!xl + x2+2 + x3x% = R? (5.2.57)
2) All elliptic paraboloids (paraboloids with one sheet)

so1:  xx! - x®x% +x3x% = R? (5.2.58)
3) All prolate or oblate ellipsoids

s0@:  x'p2xl + x2b2 R + x3b28 = R2 (5.2.59)
4) All isotopic deformations of the elliptic paraboloids

so2.1: x'p2x! - ¥2b2x% + x5bs? = R (5.2.60)
5) All isodual sphere

sod(sr -x!x!'-x2x? - x8x3 = -RZ (5.261)

6) All hyperbolic paraboloid

sod2.1:  -x'x!l + x2x@ - x3x% = -R2 (5.2.62)
T) All isodual ellipsoids
s0%3k - x'p2x! - x2b2x® - $®b? ¥ = -R? (5.2.63)

8) Al isoduals deformations of the hyperbolic paraboloid
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so%21: - xlp2x! + 21,22 - 3023 = -R2 (5.264)
The isosphere of Class IV unifies all the preceding surfaces plus

9) All possible cones in Euclidean space, ie,

so1:  xixl - x2x2 + 88 =g, (5.2.65a)
so1: x!p2x! - 022 + x3p28 = 0, (5.2.65b)
so%a.:  -xlx! + x2:® - 333 = g, (5.2.65¢)
s0%2.1: - xp2x! + x2p2R - P28 = 0. (5.2.65d)

The jsosphere of Class V has not been investigated to date, and it is
expected to permit the formulation of new notions of “spheres”, such as spheres
whose radius is a step function or a lattice.

It should be indicated that all physical applications known at this time are
restricted to the isosphere of Class [, which unifies the sphere and all its
ellipsoidical deformations and to the isodual isosphere of Class II, which unifies
the isodual sphere and all its ellipsoidical deformations). This is due to the fact
that there is no known physical event capable of altering, say, ellipsoids into
hyperboloids, or viceversa.

Theorem 5.2.2 essentially states that all quadrics (A)~(D) of Fig. 5.2.5 have
the shape depicted only when expressed in the conventional Euclidean space,
because when properly represented in isoeuclidean space they can all be reduced
to perfect circles.

This intriguing property should not be surprising for the reader now
familiar with isotopic liftings. As it was the case for straight lines, the isotopies
of a sphere must remain a sphere as a necessary condition for the achievement
of the isotopies themselves. The unification of the sphere with all its infinitely
possible ellipsoidical deformations then follows, with evidently broader
unifications for higher classes.

One can now understand why distances which are very large in our
perception of the universe in Euclidean space can become rather small in
isospace. In fact, very large distances, say, in a hyperboloid are turned into
relatively much shorter distances on the isosphere of Class II1.

The reader should finally be aware that the unification of all quadrics into
the isosphere is the geometric foundations of the unification of the compact SO(3)
and non compact SO{2.1) symmetry into the isosymmetry SO(3) submitted by this
author since the original proposat [5].
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ISOTOPIC UNIFICATION OF QUADRICS

p——

7

(ol (D)

ey

FIGURE 5.25: A schematic view of the unification into the isosphere of Class It of prolate
ellipsoid (A), oblate ellipsoid (B), one sheet hyperboloid {C) and two sheets hyperboloid (D),

- plus the related cones and isodual images here omitted for brevity. All these guadrics are
unified into one, single, unique geometric notion in isospace.

5.2.F: Connections with noneuclidean geometries and applications.
Recall that the isotopies lift the conventional Euclidean metric 8 = diag. (1, 1, 1)
into the isometrics & = T8 with a well behaved, but otherwise unrestricted
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functional! dependence on time t, local coordinates r and their derivatives of
arbitrary order, 8 = 8(t, r, 1, ¥, ..). The first noneuclidean property of the
isoeuclidean geometry, apparentiy presented here for the first time, can be
expressed as follows. :

Lemma 5.2.1: Isoeuclidean spaces are curved unless the isometric is
independent on the local coordinates, but dependent on the remaining variabies,
§=8t 11, .)

Proof. A given n—dimensional isoeuclidean space E(r,8,R) admits the non-
null Christoffel symbols (connection)

_ 9y a8y, 9 By
Tl = £8U¢ + - —), (5.2.66)
. arh ark arl
which characterize the quantities
oy aldy i ,
Ry = —1 - + I‘JK rg, - rl rd, (5.2.67}
lh ark arD q gh 1k

representing non—null curvature, which is identically null when the isomelric is
“independent from the local coordinates. q.e.d.

In short, the isoceuclidean geometry provides a symbiotic unification of the
Fuclidean and Riemannian geometries. The curved character of the isoeuclidean
geometry has been computed in the projection of the isospace in the original
space. Nevertheless, as we shall see later on in this chapter, the above curvature
persists even in isospace.

This author must admit that the emergence of curvature on an isospace
which is isoflat was basically unexpected and, for this reason, it was identified
only here for the first time, twelve years following the identification of the
isoeuclidean geometry [12]. As we shall see, the property is, by far, nontrivial,
inasmuch as, when extended to the isotopies of our space-time, it permils a
geometric unification of general and special relativities with ensuing operator
form of gravity with curvature embedded in the unit of relativistic quantum
theories. '

The curved character of the isoeuclidean geometry when projected on
conventional spaces over conventional fields can be studied via the same methods
used for the Riemannian geometry [4]. Its study in isospace will be done in Sect.
5.6.

The advantages of the isoeuclidean representation of gravity can be
indicated from these introductory lines as follows. Note that, in view of the
arbitrariness in the functional dependence of the isometric, we can identify the
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isoeuclidean metric with the space component of (3+1-dimensional Riemannian
metrics,, 8(r) = glt). For the case of Schwarzschild’s exterior solution [9], this
implies the following particular realization

8r) = T)x8 = glr) = (1-M/r) Vdiag. (1, 1, 1), (5269

by reaching in this way the (space component of the) gravitational isotopic
element and isounits

T,

gr = (1-M/r)h T = (1-M/r). (5.2.69)

[t is evident that, at the limit of gravitational collapse all the way to a
singularity, the isounit becomes singular, i.e., gravitational singularities can be
represented via the zeros of the (space) isounit,

r=M = 1=1-Mr-=090. {5.2.70)

This provides a first illustration of physical applications of isogeometries
of Class [V. The above representation also permits a novel conception of stars
undergoing gravitational collapse all the way to a singularily as isospheres of
Class IV, that is, isosphere with singular radius.

Note that isointerpretation (5.2.70) is external, that is, conceived and
realized outside the collapsing stars without any representation of internal
effects. The representation of gravity on isoflat geometries then permits more
realistic interior representations of gravitational collapse with interior nonlinear,
nonlocal and nonlfagrangian effects via the study of the zeros of general isounits,
Tgilr, 1, 1, .0 = 0.

All these possibilities, and other studied in Vol. II, are evidently precluded
to the conventional Riemannian representation evidently because in the latter
case the unit is the trivial constant value I = diag. (1, 1, 1).

A few comments are in order on the comparison of the isoeuclidean
geometry and other noneuclidean geometries (see, e.g., ref.s [28,43] and quoted
literature). As well known, Euclid’s Fifth Axiom lead to a historical controversy
that lasted for two millennia, until solved by Lobacevski in a rather unpredictable
way, via the introduction of a new, non-Euclidean geometry today appropriately
called Lobacevski geometry (see [loc. cit.]).

As it is also well known, Lobacevski geometry is abased on certain liftings
of Euclidean expressions, although defined on the conventional unit. Thus, the
Lobacevski and isoeuclidean geometries are structurally different.

Nevertheless, it is important to understand that the Lobacevski geometry
is a particular case of the projection of the isceuclidean geometry in the
Euclidean plane. To see this point consider the following celebrated
transformations
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X+ a y(1-a2)
X = —, y=—— |a|<l, G271
| + ax 1 + ax

which have the peculiar property of carrying straight lines into straight lines and
circles into circles (see ref. [28] for details) while keeping the unit the same.

Now, the isoeuclidean space E(r,8,R} of class [ in two dimensions can be
equivalently reinterpreted as an ordinary Euclidean plane E(r,3,R} in the new
coordinates :

X=blxyJx, ¥=0blkxy.ly, {(52.72)
under which we have the identity
XX + ¥y = xb?x + yb?y. (5.2.73)

[t is then evident thal Lobacevski transformations (5.2.68) are contained as a
particular case of the much larger class of isotransformations (5.2.72).

The connection between Lobacevski and isoeuclidean geometries can
therefore be expressed by saying that:

A) the Lobacevski geometry identifies "one” particular lifting of the
Euclidean geometry preserving straight lines and circles under the conventional
value of the unit; while

B) the isoeuclidean geometry identifies “an infinite class” of 1iftings of the
Euclidean geometry which preserve straight lines and circles under a joint
fifting of the unit.

Note finally that the Lobacevski geometry itself can be subjected to an
isotopic lifting which has not been studied here for brevity.37

Numerous other noneuclidean geometries exist in the literature (besides the
Minkowskian, symplectic, affine and Riemannian geometries studied later on in
this chapter). One particularly intriguing geometry is the so—called
nondesarguesian geometry studied by Shoeber [29], which has a significant
connection with the studies of these volumes because it is also capable of
representing variationally nonselfadjoint (that is, nonhamiltonian} systems.

This latter geometry too is different from the isoeuclidean one, again,
because it is based on the conventional unit. However, the underlying mapping
between the Euclidean and nondesarguesian geometry is also contained as a
particular case of the infinite transformations (5.2.72) of the isoeuclidean
geometry.

These comments are significant to focus the attention on an additional

87 Note that the fsolobacevkii geometry is no longer contained as a particular case of
the isoeuclidean geometry because the original axioms of the two geometries are
different.
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reason for our selection of the isoeuclidean geometry over other possible choices,
its "direct universality” for incerporating “all” infinitely possible maps of the
Euclidean geometry (including singular maps for Class IV and discrete maps for
Class V).

In surnmary, the isoeuclidean geometry appears to be unique because based
on a unique set of isoaxioms, yet capable of unifying all possible noneuclidean
geometries of the same dimension when projected in the conventional space.

Vol.s IT and I1I contain numerous physical applications of the isoeuclidean
geometry of Classes [ and II. Its primary function is to provide a geomeiry
directly applicable to interior dynamical problems, that is, applicable to the most
general possible nonlinear, nonlocal, and nonhamiltonian systems studied in these
volumes.

This physical objective is achieved via the geometrization of physical
media, that is, via the characterization of the deviations in the geometric
axioms of empty space caused by the presence of a physical medium. The
geometrization is done via the restriction of the isogeometry to be of Class [, in
which case the isometric is restricted to the positive—definite form

§ = ™8 = T = diag. (b2, b2 b5%), >0, (5274

where the b's, called the characteristic functions of the medium considered, have
an unrestricted functional dependence of the type

b = bt 1, 10, ¢ ol o gl Ton, L) >0 k=123 (5275

including a dependence on basic physical characteristics of the medium to be
geometrized, such as local density p, local temperature T, local index of
refraction n, etc.

The above characterization is evidently not unique and can be done via
other methods. However, to be consistent with physical reality, the
geomelrization of physical media should be done with any appropriate method
other than adding a potential to a Lagrangian or a Hamiltonian. The is due to the
intrinsically nonpotential-nonhamiltonian character of the effects to be
represented. This basic condition is so compelling that the possible treatment of
interior effects via a potential would imply trajectories not related to those of the
physical reality. .

The isoeuclidean geometry has been preferred over other possibilities
because it verifies the above nonlagrangian—nenhamiitonian representation of
interior effects, while preserving the same geometric axioms of emply space,
thus permitting the geometric unity in the treatment of both exterior and interior
problems achieved in these volumes.

The mechanism for the representation of interior problems is sc simple to
appear trivial. It is based on the now familiar lifting of the product of the
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conventionat Euclidean geometry.
Consider an extended free particle in empty space, which is evidently
represented via the kinetic energy alone

L=4tmv*v € R, v=dr/dt, (5.2.76)

where r represents the trajectory of the center of mass.

Suppose now that the particle at a given value of time penetrates within a
physical medium, thus experiencing nonpotential forces. The transition from the
exterior to the imterior problem is merely expressed by the transition from the
Euclidean geometry to its isocuclidean covering of Class I.

In turn, the transition is represented by writing the original Lagrangian in
isospace, thus reaching the following isolagrangian

L=4+mv*v e R. (52.77)

The geometric aspect important for this section is that the two Lagrangians L and
[ coincide at the abstract level for all Class I isospaces. Yet the latter is indeed
capable of representing nonpotential-nonhamiltonian forces via the basic isounit
of the theory.

Numerous classical examples are now available (see ref s {6,20). the simplest
one is the particle with linear velocity—damping along the x-axis

x+yx=0 m=1 v >0, (5.2.78)

which is merely represented via the particular realization of the isotopic element
and isounit

T=¢¥t, 1=¢"7L y>90. (5.2.79)

as the reader is encouraged to verify (see ref. [6], p. 101). The isorepresentation can
be enlarged into the form

T = diag. (b2, by% b9 ", (5.2.80)

exhibiting a feature completely absent in Euclidean geometry, a direct
representation of the actual nonspherical shape of the particle considered here
assumed to be an ellipseid with semiaxes bkz and interpreted as the isosphere.
The understanding is that the isoeuclidean geometry can also be realized via
nondiagonal isotopic elements, as requested by the case at hand.

Note that the representation of shape is completely absent in Newton's
equation of motion and it is a sole feature of the isoeuclidean geometry we shall
study and apply in detail in Vol.s II and IIIL In fact, after computing the equation
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of motion, the "shape factor” cancels cut.

But perfectly rigid objects do not exist in the physical reality. The
isoeuclidean geometry then permits a direct representation of all infinitely
possible deformations of the original shape, which can be easily achieved via a
dependence of the characteristics b-quantities in the local pressure, velocity, etc.

Note that T > 0 and T > 0 as verified for all known cases of particles in
interior conditions (while for antiparticles we have T = ~ e <0 resulting in the
same equation of motion).

In summary, the isoeuclidean geomelry has the Tollowing primary
applications in physics: A) geometrization of physical media; B} representation of
the resistive effects on the motion of extended particles; and C} representation of
the actual, extended, nonspherical and deformable shape of particle via the notion
of isospheres.

In Vols Il and !II we study examples and applications of ithese
isogeometries in nuclear physics, particle physics and other fields. One
application in the field of theoretical conchology is particularly significant to
deserve an outling, not only because unexpected and intriguing, but also because
it permits the illustration of the limitations of our geometric perception of
Nature.

A mathernatical representation of the growth of sea shells has been
achieved by Illert [30). The main result established via computer visualization is
that the shape of sea shelis can be certainly represented with our three—
dimensional Euclidean geometry, but their evolution in time is not because sea
shells would generally “crack” if’ their growth occurs via the strict application of
the Euclidean axioms. The issue addressed here is therefore the identification of
the appropriate geometry permitting a consistent representation of their growth.

As well known, sea shells grow by discrete increments AE, thus requiring
discrete methods. Their analytic representation in E{r,8,R) has a “kinetic term” K
= J(AE/AUMAE/AL) and a “potential” term similar to that of the harmonic oscillator,
V = $AExAE. The emerging Lagrangian in E(r,8,R} is therefore of the type

L = $(AE/At)* (AE/AL) + § AE* AE . (5.2.81)

[Mert’s studies [loc. cit.] show that:

1) Euclidean models of type (5.2.81) are insufficient to represent the actual
growth of sea shells, as illustrated by the disparity hetween reality and computer
modelling.

2) The problem of growth of sea shells is analytically similar to
nonconservative interior dynamical problems, evidently because growth is
"nonconservative” by assumption; and

3) The growth of sea shells can be quantitatively represented via
nonetclidean Lagrangians of the type

L = +30) (A/at) = (AE/AD + + XPAE ¥ AE (5.2.82)
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where X¢) is a function, varying from shell to shell, of the characteristic angle ¢
of growth of each shell (see ref. {30] for details). '

ISOEUCLIDEAN EVOLUTION OF SEA SHELLS

FIGURE 5.2.6: The computer visualization of a relatively “simple” sea shel! from ref. [30],
p. 64, the Phanerotinus Spiralis. The computer visualization clearly shows that the shells
would crack during their growth if the Euclidean geometry is strictly implemented.
However, the same cornputer modeling shows that growth is normal in isceuclidean space
with isorepresentation (5.2.44). In the transition to more complex sea shells, e.g., those with
bifurcations, the need for noneuclidean geometries appear more compelling. In fact, a
quantitative interpretation of growth at the bifurcations in Euclidean space would require
a discontinuous inversion of time (see ref. [30], p. 98 and ff.). As we shall see in Vol. II, the
isoeuclidean geometry of Class Il permits instead a direct representation of the
bifurcations without discontinuities [42]

It is then evident from the above results that sea shells do not appear to
evolve in Fuclidean space. In fact, they do admit an exact, quantitative
representation as evolving in isoeuclidean space

£, = §(AE/AD* (AE/AL) + + AESAE, 1 = &9 (5.2.83)

We can therefore say that a quantitative representation of sea shells requires the
necessary alteration of the notion of scalar product while keeping the dimension
unchanged, which is precisely the basic mechanism of isotopies. This illustrates
the staternent made earlier to the effect that the strict imposition of the
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Euclidean axioms, thus including the strict use of the conventional scalar
product V+V, does not allow a representation of the growth of sea shells.

The isogeometries emerge as preferred over other noneuclidean geometries
because, unlike the latter, they preserve the original axioms. As indicated in this
section, a given line or a given shape cannot be told a priori to belong to the
Eyclidean or to the isoeuclidean geometry because this selection requires
additional knowledge, such as the structure of the scalar product.

Sea shells appear to evolve in our Euclidean geometry because of the
peculiar nature of the isogeometries of preserving the geometric axioms of our
space, but they appear to evolve in a more complex gecometry which is
representable via the isotopy of the scalar product V+V — V¥V = V*T%V and the
joint isotopy of the unit 1 =1 = T71. Note that the three-dimensional character of
the geometry remains completely unaffected.

Deeper studies [30] have indicated that in actuality sea shells require the use
of the isoeuclidean geometry of class more general than II. In fact, the
interpretation of their growth at bifurcations clearly shows the need for an
isogeometry capable of mastering the direction of time, thus requiring an
isogeometry of Class 1. Moreover, their structure is discrete, thus suggesting -
isounits of Kadeisvili's Class V which include all other classes as particular cases.

This is per sé intriguing inasmuch as we have indicated the necessary
condition for physical events of restricting the isoeuclidean geometry,
separately, to Class ! for particles and to Class I for antiparticles. It therefore
appears that biological structures belong to a a geometry structurally more
general than that of the physical world.

The application of the isoeuclidean geometry to the growth of sea shells,
even though evidently not unique, is instructive in suggesting an act of scientific
humility: the expression of doubts prior to claiming final achievement of
knowledge via a perception of Nature based on our manifestly limited three
Eustachian tubes.In the final analysis, the complexity of the geometry of
biological entities, such as a DNA molecule, is simply beyond the grasp of human
comprehension at this time.

Our use of the geometries studied in this section is therefore the following:

1) Euclidean geometry, used for the characterization of particles in
vacuum;

2) Isoeuclidean geometry of Class I, used for the characterization of
particles within physical media;

3) isodual Euclidean geometry, used for the characterization of
antiparticles in vacuum; and

4) Isodual Isoeuclidean geometry of Class II, used for the
characterization of antiparticles within physical media.

5) Isogeometry of Class III, used for initial studies of biological
structures;

6) Isoeuclidean geometries of Class IV, wused for gravitational



-233 -

singularities; and
7) Isoeuclidean geometry of Class V, suggested for representation of
biological structures.

5.3: ISOMINKOWSKIAN GEOMETRY AND ITS ISODUAL

5.3.1: Basic properties. The isominkowskian geometry is the geometry of
the isominkowski spaces of Class [ over isoreal fields of the same class (Sect. [.3.5)

M&AR): n=diag (L1 L-D, A=Tx% .07 1=T7 (63l

2= iR, = b0 % %) )V 1T e RS, (5.3.10)
k= G4 = e1,x%),  xf=qt, @& = (-dt A, o), 6310
Ry o= AR, R =M f A = 5, (5.3.1d)

where c,, is the speed of light in vacuum and s is called the isotopic proper time
or isotime for short (t being the ordinary isofopic time), with isounits in the
diagonal realization

T=diag. (b, 2 by 2 b33 by 2)>0, (5.3.2a)
%2 = (xlp2x! + x2b2%2 + ¥ 028 - x¥p 2. (5.3.2b)

or in nondiagonal form studied later on.

The isominkowskian geometry was first introduced by this author in paper
[12] of 1993] and then studied in various publications (see monograph [20] of 1991
and quoted literature).

[t is evident that the space—component of the isominkowskian geometry is
the isoeuclidean geometry in its entirety, and no further comment is needed.
Moreover, from the preceding section, it is evident that the (3+1)-dimensional
isominkowskian geometry of Class I is a particular case of the isoeuclidean
geometry of Class Il in 4—dimension. In fact, this is the way it was originally
derived in [12]. All main geometric lines of the isominkowskian geometry are
therefore the same as those of the preceding section. We shall primarily consider
below kinematical aspects important for the various applications of the new
geometry.

The isominkowski geometry in Class [ diagonal form is characterized by
four functions I::\i which: A) are called relativistic characteristic functions of the
medium considered, B) have a generally nonlinear and nonlocal dependence on
space—time coordinates x, wavefunctions g, z!;T their derivatives of arbitrary
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order, %, %, o, aapT...., as well as on the physical characteristics of the medium
considered, such as the local density |1, the local temperature T, the local index of
refraction n, etc; and C) are assumed to be positive—definite for the Class [
isogeometry

by = buls % % & of, 8y, 80, 1, 7, 0, e ) >0, 1=12234.(533

The above general functional dependence is needed for the local study of
interior dynamical problems; that is, the trajectory of an extended relativistic
particle within a physical medium at one given interior point x.

IT one studies global effects of physical media, such as the average speed of
light throughout the medium, the characteristic functions can be averaged into
the constarts

by = < l:‘_l(s, X% % .)>, (5.3.4)

where < .... > represents an average appropriate for the problem at hand.

As we shall see in Ch. I1.8, the above average provide a quantitative
representation of interior effects, while permitting the recovering of
conventional inertial systems for an outside observer.

A first property to keep in mind is that the Minkowskian and
isominkowskian geometries coincide, by construction, at the abstract,
realization—free level. This is due to the positive—definiteness of the b-quantities
or, equivalently to the preservation under isotopies of the signature (+, +, +, -).

One of the implications for which the isogeometry was suggested in the
first place [12], is the preservation of the axioms of the special relativity in the
transition from the exterior to the interior problem, as studied in detail in Yol.s LI
and III. The subtle consequence is that criticisms on the isominkowskian
geometry may in the final analysis result to be criticisms on Einstein’s axioms
themselves.

The primary physical application of the isominkowskian geometry is the
relativistic geometrization of physical media (see Fig. 5.3.1 for comments),

By no means, is the isominkowskian geometry the only possible one Tor the
geometrization here considered. In fact, the use of other geometries is
conceivable, and their study is encouraged, because one of the beauties of
mathematical and physical inquiries is their polyhedric character. However, other
deformations of the Minkowskian geometry do not preserve the Einsteinian
axioms.

Also, studies on the propagation of classical electromagnelic waves in
physical media via operator approaches in first and second quantizations should
be deferred after the achievement of a classical representation, because
conventional operator treatments generally suppress the very characleristics to
be represented, such as the inhomogeneity and anisotropy of the medium.

In essence, when first exposed to the propagation of light in our



~ 235~

inhomogeneous and anisotropic atmosphere, a natural mental attitude is the
study of the propagation via old methods, e.g., via scattering of photons on the
atoms of our atmosphere.

This is the approach which should be avoided on hoth theoretical and
experimental grounds. Theoretically, the event depicted in Fig. 5.3.1 is purely
classical, thus requiring a purely classical description, rather than the use of
photens in second quantization. After the achievement of a geometric
representation of the inhomogeneity and anisotropy of physical media at the
classical level, studies based on first and second quantization should be
considered.

But the strongest support against the preservation of old knowledge for the
novel physical conditions of Fig. 5.3.1 comes from experimental data. In fact, as
we shall see in Yol. IIl, physical media imply shifts toward both, the red or the
blue depending on their characteristics. Assuming that adequate manipulations
permit the interpretation of shift toward the red via scattering of photons on
atoms, the same theory cannot evidently represent the opposite shift, precisely
because lacking the characteristics to be represented.

A first intuitive understanding of the isominkowskian geometrization of
physical media can be reached by writing the isoseparation in the equivalent
form

x2 = xlblle + x2b22>? + x3b22x3 - ){‘11342:»(4 =

= xIn2xl + 22 + ¥y 2 - x4, 2x)), (5.35)

(where we have ignored the multiplicative factor T for simplicity), namely, by
expressing the characteristic functions in the equivalent form bll = I/n“. Now, the

fourth term, by = 1/ ng4, is already known, and represents the local index of
refraction within a given medium, yielding the local speed of light

Il

C=Cyby=cy/ny=clx, LT, .. (5.3.6)

One can therefore see the above distinction between the characteristic
functions by, and the characteristic constants b°u. In fact, the quantity ny is the
local index of refraction at one given point in space-time (characterizing the
speed of light at one point of our atmosphere in Fig. 5.3.1), while n°y is the
average index of refraction {characterizing the average speed of light throughout
our entire atmosphere). ‘

A first meaning of the isominkowskian geometry is therefore that of
providing a relativistic generalization of the familiar index of refraction ny to
all space-time components ny,.

Proposition 3.3.1: The isominkowskian geometry of class I with diagonal
isounit uniquely follows from: 1) the use of a locally varying speed of light ¢ =
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co/ng 2) the use of Lorentz transforms; and 3/ the condition of preserving the
original, abstract Minkowskian axioms.

Proof. Assume the locally varying speed of light ¢ = ¢,/ny. Then the
conventional Minkowski separation is lifted to the following Lorentz
noninvariant structure

x2= xlxl + x2x2 + 33 - x4n,2x4, (5.3.7)

The use of the conventional Lorentz transforms then yields a structure precisely
of the isorninkowskian type

x2 = xIn2x! + ¥ny 22 + ¥ny 28 - xén, 24, (538
which is now invariant under the Lorentz isotopic symmetry (Vol. II). However,
the underlying space is no longer locaily isomorphic to the Minkowski space
when referred to the conventional unit over a conventional field R. The

isominkowskian space and related geometry then uniquely follow from the
imposition of the preservation of the original abstract axioms. g.e.d.

ISOMINKOWSKIAN GEOMETRIZATION OF PHYSICAL MEDIA

Mlx,n,R) Mix,n.R M{xnR)

FIGURE 5.3.1. A schematic view of a primary physical application of the isominkowskian
geometry: the quantitative treatment in a form suitable for experimental verifications of
the dynamical effects caused by the inhomogeneity and anisotropy of physical media in
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the propagation of electromagnetic waves and particies. Recall that the Minkowskian
geometry is a geometrization of the homogeneity and isotropy of empty space. All
predictions based on the Minkowskian geometry, such as Doppler’s effects, dilation of
time, etc., are therefore crucially dependent on the homogeneity and isotropy of empty
space. Consider now an electromagnetic wave originating from a distant star which
travels, first, in empty space (in which case the Minkowskian representation is exactly
valid}, then travels throughout our atmosphere, and finally returns to travel in empty
space. Now, our atmosphere is manifestly inhomogeneous, and anisotropic, as discussed
earlier in this volume. The physical issue requiring experimental verifications (which is
studied in detail in Vol. III) is whether the inhomogeneity and anisotropy imply
measurable deviations from the conventional Minkowskian predictions. Specifically, the
experimental issue is whether Doppler’s effect, time dilation, etc. have the same numerical
values for events within inhomogeneous and anisotropic media or deviations are
experimentally measurable. As we shall see in Vol. 11l a rather considerable body of
experimental evidence supports the latter expectation, although in a predictable
preliminary way. The mathematical issue considered here is therefore the achievement of
a geometric representation, specifically, of the inhomogeneity and anisotropy of our
atmosphere. The isominkowskian geometry appears to be particularly suited to: A)
provide a direct geometric treatment of physical media, B) in a form suitable for
experimental verifications, while C} preserving the basic Einsteinian axioms at the
abstract level.

Stated in different terms, the isominkowskian geometry emerges under
any deviation from the constancy of the speed of light in vacuum even when
not desired.

At a deeper level, recall that only a small portion of physical media is
transparent fo light. A second meaning of the isominkowskian geometrization is
therefore that of extending the index of refraction to alf physical media,
whether transparent or not to light. In the latter case the quantity by = 1/ny4
acquires a purely geometric meaning similar, say, to the component g44 the
Riemannian metric.

As we shall see in Yol. LI, experimenial evidence indicates quite clearly
that the space characteristic functions by, k = 1, 2, 3, have a velocily and other
dependence, while the fourth characteristic quantity b, generally provides a
geometrization of its density.

The isominkowskian representation of the inhomogeneily and anisotropy
of physical media is now evident. In fact, the former can be represented, eg., via
a dependence of the characteristic functions on the local density, while the latter

can be represented, e.g., via a differentiation of the space-time quantities, by # by
‘ As a first example, a direct representation of water is given by the simplest
possible isotopy, called relativistic scalar isotopy (see Ch. I1.8 for details)

| ‘
x2 = X2, n°, =1 p=1234. (5.39)
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where n° is a known numerical quantity and x2 is evidently the conventional
Minkowskian invariant. In fact, water is a homogeneous and isotropic medium
whose characteristics are then represented by isoinvariant (5.3.8).

A second example is our inhomegeneous and anisolropic atmosphere which
requires the full isoinvariant (5.3.5) for its representations. The numerical values
of the b°—constants will be computed in Vol. {11 from astrophysical data. Needless
to say, the deviations of the b™—quantities from the value 1 are very small for our
atmosphere, yet they produce measurable effects, as we shall see.

Intriguingly, isoinvariant (5.3.8) and related isospecial relativity permit a
direct representation of relativistic kinematics in water, such as: the decrease of
the speed of light according to law (5.3.7); the propagation of electrons faster than
the local speed of light (Cherenkov’s effect); the correct relativistic addition of
speeds in water; and others (see Ch. I1.8).

The extension of the results to inhomogeneous and anisotropic media is
then consequential, and equally consequential are deviations from the
Minkowskian prediction in vacuum.

A main characteristics of the isominkowskian geometry is the alteration
of the basic (dimensionless) units of space and time from the conventional trivial
form [ = diag. (L, 1,1, 1} {the unit of the Lorentz group in its regular representation)
to the expression

1 = diag. (b2 by 3 bg 2 by 2),de, Ty = b2, u=1,234, (53102
Topace = 1s = diag. (b2 072, 5572), My =1y = by 2. (53.100)

[n turn, the alteration of the unit has rather profound geometric implications.
Those related to space have been discussed in the preceding section. Those
including time are illustrated in Fig. 5.3.2 below.

We have considered uyntil now isominkowskian geometries with a
diagonal isotopic elernent. The reader should be aware of the existence of rather
intriguing applications for isoMinkowskian geometry of Class | with nondiagonal
isotopic elements and isounits. One of- the most significant cases was proposed
by Dirac [31] in two of his last {and little known) papers dealing with a
generalization of his own celebrated equation. The ensuing "Dirac’s generalization
of Dirac’s equation” has resulted to possess an essential isotopic structure,
evidently without Dirac’s awan*enessﬁ8 as we shall study in detail in Vol. [

[n this chapter we would like to identify only the rather intriguing
isominkowskian geometry of Dirac’s papers [31] In essence, Dirac studied a
deformation of the MinkowskKi space characterized by the nondiagonal element

38 Dirac's papers [31] are of 1971-1972, while the isotopies were formulated in 1978 [5].
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THE ISOBOX IN SPACE-TIME

il e i

FIGURE 5.3.2: In Fig. 5.2.1 we have indicated how the transition from an observer in
ordinary space to one in isospace alters the dimension and shape of a given object. In this
figure we indicate the implications regarding the behaviour in time. In the outside of the
isobox we have an observer in ordinary space-time with basic units of space Ig = diag. {1,
I, 1) and of unit of time Iy = L. In the inside we have instead an observer in the isotopic
space of Class 1, with basic isounits of spacely = diag. (02 by 2 bs 9 and isounit of
timely = b4_2. Then the two observers have basically different forward time evolutions,
in the same way as it occurs for space. The two observers not only see different shapes
and sizes, but observe the same isobox at different times. When isominkowskian
geometries of class IiI are admitted, this implies isounits of time T, = flx, %, ...), where f is
a well behaved function which can assume positive or negative values. It follows that, if
the outside observer see, e.g., a cube of 10 m side at time t moving forward, the inside
observer not only can see an arbitrary dimension and shape, but also the observation can
occur at any given future time (for 1y > 0) or past time (for §; < 0). One of the most
important notions which we would like to convey with the isobox is that if we see a
given structure, such as a far away star or a near-by sea shell, this does not necessarily
means that that particular structure must necessarily evolve with our time, because in
reality it may belong to an arbitrary present or future time with respect to us. The
inclusion of nondiagonal isounits of Class I implies further departures from the
conventional geometric perception. For instance, an inside observer with isounits (5,3,11)
would lose completely any perception of the behavior in the x— and z-axes and see the
isobox as a segment of arbitrary length in the y-axis at an arbitrary present, future or
past time.
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0010
T = 0001 , {5.3.11)
-1000
0-100
with properties
detT =1 1=T11=Tt, (5.3.12)

where t denotes transposed, which therefore qualify it as a fully acceptable
isotopic element of Class I.

The isogeometry characterized by isotopic element (5.3.9) is intriguing
indeed. [ts most salient property is that the isometric is nondegenerate, det 1) = -
1, but the isoinvariant is degenerate,

—

e 00 10 X
%2 = iy, v = x! x8 8 xd 000-1 X2 =
T -_— e 3
-1000 X
0-100 x?
= xIxd - x2x4 - Syl - xix2 = —2x24, (5.3.13)

namely, the isoseparation is contracted under Dirac’s isotopy from four to two
dimensions. In turn, this contraction has truly remarkable implications, such as
the lifting of the spin s = 4 to spin s = 0, as originally derived by Dirac {31] and as
confirmed by isotopic methods (seee Vol. I1).

It is instructive for the interested reader to see that the same dimensional
contraction occurs for other realizations, such as for n = (+1, -1, -1, —=1) and
related ordering of the components x = {x4, x[, x2, x3). As a result, the dimensional
contraction (1, 2, 3, 4) = {24} is intrinsic in the isogeometry here considered, and
80 are its rather peculiar properties, such as the contraction of the three-
dimensions (1, 2, 3) down to the line along the y=axis.

We shall have ample opportunities in Yol.s [{ and Il to study the above
isogeometry, the related "Dirac’s generalization of Dirac’s equation”, and its novel
physical implications.

The above isominkowskian geometries are used in these volumes for the
characterization of physical media of malter; or a particie moving within such
physical media. In order to characterize antimatter, it is not sufficient just to
change the sign of the charge, because we need an antiautomorphic map of the
geometry itself. As now familiar, that used in these volume is the ¢ of space and
time

1 = diag. (0,2 by 2 by 2 b, A > 19= diag. {-b2 ~by 2 ~bs 2 -by2), (5.3.14a)
1 2 3 4 1 2 3 4

1 = diag. (b2 by 2, b572) = 19 = diag. (b2 -by 2, -b32), (53.14b)
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T=b2 - 19 =-b2 (5.3.14c)

The application of the above map top isospaces (5.3.1) then yields the
isodual isominkowski spaces

MIGEAGRY: A0 = 19x, % %, ) =— @, 19 =(T9)1=-1, (3.15)
%020 = [t ﬁduv("’ % %)V 19 = [~ ﬁduv xV1(-1), (5.3.150)
482 = (4 gy ﬁduv a8 = di2e ROGE+5d) (5.3.15¢)
whose invariant can be written in the diagonal form
5920 = (- x1p2xl - 222 - ¥p 28 + x1 b 2K 10 cRY. (5316)

or in any nondiagonal realization preserving the negative-definite character of
the isodual isounit.

The isodual isominkowskian geometry is the geometry of isospaces (5.3.13).
It will be used for the description of antiparticles in relativistic interior
conditions.

As a particular case for 19 = 19 = diag. (-1, -1, -1, -1) we have the isodual
Minkowskian space

M3(x.n9 R9) 7 = -7, = -1, (5.3.17a)
X920 = [, 11 = [ xitnd, XV 1(-1) (5.3.17b)
ds29 = (+axh T]duv dx’ )19 = ds2 e R4nY, + x9), (5.3.17¢)

which is used for the characterization of antiparticles in vacuum.

Proposition 5.3.2: The Minkowskian and isominkowskian separations are
isoselfdual,

x? = iy, XV 11 = [0 oy X 110 = 2, (5.3.18b)
$2 = [ A % 20XV 1T = (A%, w118 = 22, (5.3.18b)

The above properties may explain the reason why isodual spaces and
isospaces were discovered only recently. It should be however stressed that,
despite properties (5.3.18), spaces (or isospaces) are mathematically and physically
different than their isoduals. In fact, mathematically, they are antiautomnorphic
to each other and, physically, all quantities which are positive-definite for the
former become negative—definite for the latter.

As we shall see in Vol. II, the seemingly elementary identity (5.3.18a)
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permits the formulation of a fully causal motion backward in time. In fact,
motion backward in time, when referred to a negative-definite unit is fully
equivalent te motion Torward in time when referred to a positive—definite unit.
This may illustrate the intriguing and far reaching implications of the
isominkowskian geometry.

3.3.B The isolight cone and its isodual. One of the most significant and
problematic insufficiencies in the use of the conventional Minkowskian geometry
for the characterization of electromagnetic waves propagating within physical
media is the foss of the light cone. In fact, a locally varying speed of light, as it
occurs in a planetary atmospheres or astrophysical chromospheres with variable
density, implies the necessary loss of the "cone” in favor of a more general
surface in space-time in which the directrix is no longer a straight line.

The above loss is not a mere mathematical curiosity, because it carries
rather deep physical implications of numerical character. As an example,
gravitational horizons are today studied via the conventional light cone, as well
known. But the exterior of a collapsing star is not, by far, "empty”, being
comiposed instead by huge chromospheres in which the the speed of light is not
that in vacyum. Numerical results based on the conventional light light cone are
then questionable.

One of the important implications of the isominkowskian geometry of
Class [ with diagonal isounit is the identification of a generalization of the light
cone which permits more realistic calculations whenever the speed of light is no
longer c,,. The latter was introduced for the first time by this author in ref. [20]
under the name of isolight cone.

In line with all other isotopies, the isolight cone reproduces the exact cone
in isospace to such an extend that even the maximal causal speed in isospace is
the conventional speed in vacuum c,. However, the projection of the isolight
cone in our space-time yields the deformed cone we observe under a lecally
varying speed c.

The latter properties were proved for the first time by this guthor in ref.
[22]. Their outline can be best done for clarity in the (z, t)-plane, in which the
isolight cone can be written

32 = (b ¥ - x¥p2x?)x1 = 0,1 = diag.(b52b2), (319

which clearly represents a varying deformation of the light cone due to the
locally varying speed ¢ = cyby = ¢o/nylx, |1, o, ..).where ny is the locally varying
index of refraction, i the density of the medium, o the frequency considered, etc.

The intriguing point is that deformation (5.3.19) appears only in the
projection of the isorminkowskian description in the original Minkowski space,
because at the level of the isospace itself there we do have a perfect cone.

The proof is trivial for the isolight cone in water. In fact, isoinvariant
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' (5.3.18) for infinitesimal values Az and At teads

Az b4
— = ——Cy = Gy, (5.3.20)

At b3

{because b = b, in water due to its isotropic character).

The understanding of the isominkowskian geometry requires the
knowledge that cone (5.3.15) is purely geometric because the speed of light in
water is not ¢, but ¢ = c,/n,. The actual light cone is therefore that characterized
by ¢ and not c,. -

[t is easy to prove that the above results also hold Tor arbitrary media, that
is, for a locally varying speed of light within inhomogeneous and anisotropic
media. In fact the general expression (5.3.20) for infinitesimal Az and At becomnes

AZ b4
— = ——Cy ¥ Cy, (5.3.21)

At by

because now bg # by. The emergence of a perfect cone in isospace then results
from the isotrigonometry of App. 5.C. In fact, by calling Vv the interior isoangle of
the cone with the t—axis, we have

Az = Disosin ¥ =D bg lsin ¥, At = Disocos ¥ = Dby ! cos ¥, (5.3.22a)
AzZ . b4 N b4
— =isotang v = —tangv = —c¢,, (5.3.22b)
At b3 b

where D is the isohypothenuse.
The preservation of the maximal causal ¢, is derivable from the property
(see Vol. 11, Ch. 8, for more details and alternative derivations)

tang v = ¢, . (5.3.23}

This implies that, even in physical media, the isolight cone remains a perfect cone
and its characteristic angle remains characterized by c,.

Proposition 5.3.3: The isolight cone is isoselfdual, ie., invariant under
isoduality,

%2 = (P8 - xtp2x)x1 = (-3 3+ xp2xt)x1¢ = 392 =
(5.3.24)

This mathematically elementary property carries the implication (studied
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in Vol. [I} that electromagnetic waves are isoselfdual and thus identically
emitted by both matter and antimatter. When we see a far away star, quasar or
galaxy, we therefore have no known means at this writing for ascertain whether
it is made of matter or antimatter.

The above resuits are confirmed via the use of the isohyperbolic functions
of App. 5.C. The hyperbolic angle v of the isolight cone is given by

V = vhby, {5.3.225)
resulting in the isohyperbolic functions

~ isosinh ¥ = by "' sinh (v byby), isocosh ¥ = by lcosh{vbgby), (5320

with properties

bg? isocosh? v — b2 isosinh® ¥ = 1. (5.3.26a)
isotangh ¥ = byc, /by, tanghVv = c,. (5.3.26b)

ISOLIGHT CONE

Mxn.R) - MR
t ¢
>
x
(A) (B) (C)

FIGURE 5.3.3. The three light cones of the isominkowskian geometry. Cone (A) is the
conventional one in Minkowski space with ¢, = 1 and a = 45°. “Cone” (B) is the physical
one in our space—time for a locally varying speed of light propagating within a generic
medium. Cone (C} the isolight cone, that is, an isotopy of the original perfect cone. As
such, it is also a perfect cone provided that it is computed in isospace. We learn in this
way that the isolight cone essentially maps the locally varying “cone” {B} into the perfect
cone (C). The axiom-preserving character of the isotopy is so strict to preserve the
original numerical value c,, ie., the original angle a = 45°. An understanding of these
geometric occurrences is essential for the understanding of the isotopies of the special
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relativity studied in Ch. IL.8. In fact, as expected, the isospecial and the special relativities
coincide at the abstract level to such an extent, as to admit the same light cone with the
sarme speed of light ¢, Yet the physical predictions of the two relativities are profoundly
different, as indicated by the inapplicability of the linear—local-canonical Lorentz
transformations in favor of suitable nonlinear-nonlocal-noncanconical coverings, of the
need to abandon the locally varying speed of light as the “universal invariant” for a
geometrically more appropriate notion.

The isominkowskian geometry is studied in more detail in Vol. I after
constructing its isosymmetry, the isotopic Poincaré symmetry. We shall then
study the axiom—preserving lifting of the basic postulates of the special relativity
which is inherent in the geometry, and review Aringazin’s proof of its “direct
universality” for all possible deformations of the Minkowski metric. Experimental
verifications are studied in Vol. [Il. The gravitational content of the geometry is
studied in App. 5.B.

5.3.C: Connections with nonminkewskian geometries. One of the most
intriguing properties of the isominkowskian geometry is that it constitutes a
symbiotic unification of the Minkowskian and Riemannian geometries in (3+1)-
dimensional space-time, which is at the foundations of our isotopic unification
of special and general relativities, as well as of the isotopic quantization of
gravity.

In fact, as it was the case for the isoeuclidean geomelry, it is easy to see
that the isominkowskian space M(x,,R} with isometric #x, %, %, ...) admits non-
null Christoffel symbols and, therefore, non—null curvature. In particular, the
latter quantities coincide with the conventional Riemannian quantities when the
isominkowskian metric coincides with the Riemannian one, T = fix) = glx).

In summary, during our studies we shall use the following four
isogeometries for the unified treatment of relativistic and gravitational aspects in
classical and operator mechanics:

I} Minkowskian geometry, for the description of particles in exterior
relativistic conditions in vacuum;

IT) Isominkowskian geometry, for the description of particles in
interior relativistic conditions within physical media;

ITT) Isodual Minkowskian geometry, for the description of antiparticles
in exterior relativistic conditions in vacuum;

1V) Isodual isominkowski geometry, for the description of antiparticles
in inferior relativistic conditions within physical media.
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5.4: ISOSYMPLECTIC GEOMETRY AND ITS ISODUAL

5.4A: Statement of the problem. In this section we study a generalization of the
symplectic geome’cry39 which is nonlinear (in all possible variables and their
derivatives of arbitrary order), nonlocal-integral (also in all variables and their
derivatives) and nonlagrangian-nonhamiltonian, yet preserving the original
symplectic axioms.

The new geometry was introduced in memoir [15] under the name of
symplectic-isotopic geometry, or isosymplectic geometry for short, and plays
an important role in hadronic mechanics, ¢.g., for the isotopies of symplectic
quantization, for interior gravitational problems, and other problems.

The objectives of the isosymplectic geomelry are multifold. The first is to
provide the geometric counterpart of the Lie—isotopic theory of the preceding
chapter. This calls for the identification of generalized two-Torms with an
integro—differential structure which is the covariant counterpart of the
contravariant Lie-Santilli isobrackets of Ch. [.4. The identification of the
corresponding generalized analytic structures will be presented in Vol. Il
including explicit examples of representations of nonlinear-nonlocal-
noncanonical systems.

Other objectives are the resclution of the limitations and physical
problematic aspects of the Darboux Theorem of the symplectic geometry. In the
local formulation needed for physical applications, Darboux Theorem essentially
states that (see, e.g., [4]) any given well behaved nonhamiltonian vector field on
the 2-dimensional cotangent bundle (phase space} can always be reduced to a
Hamiltonian form via a suitable transformation of the local coordinates a = {r, p}
—+ a’ = {r{r,p), plr,p)l.

The most transparent limitation of the above theorem is that it can be
solely applied for local-differential vector Tields, while the primary arena of
interest of these volumes is that of nonlocal-integral systems. A second
objective of this section is therefore the generalization of the Darboux theorem in
such a way to accommodate integro~differential vector-rields.

Moreover, even when applicable, the Darboux theorem is afflicted by rather
serious problematic aspects of physical character, the clear understanding being
that the theorem is mathernatically impeccable. In fact, the Darboux’s transforms
a={r, p} = a = {rlr,p), plr,p) are transparently noncanonical (as a necessary
condition to map a nonhamiltonian into a Hamiltonian vector field} as well as
nonlinear. '

Therefore, Darboux’s charts therefore map the frame of the observer
actually used in experiments into highly nonlinear images which are not
realizable in a laboratory (e.g., a new coordinate of the type r’ = rexplarp), where a

39 An outline of the basic notions of the conventional symplectic geometry is presented
in App. 5.A. For technical presentations, one may consult ref.s [3,4L A comprehensive
biblicgraphy is contained in ref. (6]
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is a suitable constant, simply cannot be realized in the real physical world).
Moreover, the transformed frames are highly noninertial, as an evident
occurrence caused by nonlinear transforms of inertial systems, thus implying
the loss of Galilei’s, Einstein’s special and Einstein’s general relativity.

In view of the latter, rather serious problematic aspects, one of the
uncompromisable conditions of the studies presented in these volumes is that
the geometric representation of a given nonlinear, nonlocal-integral and
nonhamiltonian vector field must first occur in the frame of the observer (direct
representation). Only when this objective is achieved, the use of the
transformaticn theory may have a physical meaning.

The latter condition calls for an alternative formulation of Darboux’s

- theoremn which achieves “direct universality”, that is, the representation of all
vector fields of the class considered (universality), directly in the frame of the
observer (direct universality). This objective is reached, apparently for the first
time, in Sect. 5.4.F ¢f this second edition.

[n this section we shall merely review the main lines of the new
isosymplectic geometry, and refer the reader to ref.s [15-20,25,26] for more
details. Qur entire treatment will be in a local chart so as to he ready for the
applications of Vol.s I and III. The mathematical coordinate free treatment will
be left to interested m,mathematicians.

All quantities considered are assumed to verify the needed continuity
conditions, e.g., of being of Class ¢, which shall be hereon omitted for brevity.

- Similarly, all neighborhoods of -given points are assumed to be star—shaped, or

have a similar topology also ignored hereon for brevity.

As a final point, we mention that the isotcpies of the symplectic geometry
presented in this section are not unique. In fact, another formulation of the
isosymplectic geometry has already been presented in ref.s [44,45] and will not be
studied here for brevity.

5.4B: Isodifferential calculus and its isodual. Let M(R} be an n-
dimensional manifold over the reals R(n.+x) and let T*M(R} be.its cotangent
bundle. We shall denote with T*M;(R) the manifold M(R) equipped with the
canonical one—form [34]

6: TMR = THTMR), 6 e A;T"M;R). (5.4.1)
The fundamental {canonical) symplectic form is then given by
w = ds, (54.2)
which is nowhere degenerated, exact and closed (see App. 5.A). The manifold

M(R), when equipped with the symplectic two-form ® becomes an {exact)
symplectic manifold T*M4R) in canonical realization. The symplectic geometry



is the geometry of symplectic manifolds as characterized by exterior forms, Lie's
derivative, etc.

The isotopies permit a chain of nonlinear, nonlocal and noncanonical
generalizations of all that, one of isotopic type (Class I), another of isodual
character (Class II), and the others of Classes III, IV and V.

In the original derivations we used the notation by Lovelock and Rund [4]
in order to facilitate the identification of the differences between conventional
and isotopic geometries, and we shall adopt the same approach here. Latin indices
i, i, p, q, etc. will be used for a generic manifold, while Greek indices |, v, etc. will
be used for specific physical applications.

The first visible implication of the isotopies of the symplectic geometry is
that the basic differential calculus becomes inapplicable. This implies that the
very notion of cne-form 6 or two-form w are inapplicable and must be suitably
generalized.

Consider an n—-dimensional isomanifold M(R) (see ref. [26] for a technical
definition) with local chart x over the isoreals R, and letT*M(R) be its
“isocotangent bundle”, that is, the bundle of isoforms as more appropriately
defined below. Introduce one of the infinitely possible, symmetric, nonsingular
and real-valued isounits of Class [ of the same dimension of M(R),

1=1%%.) = nij) -abh - =0y =Tl 643

For mathematical consistency (e.g., to preserve isolinearity, see Sect. [.4.2),
conventional linear transformations on T*M(R), x* = Ax, or x'= A‘j x), must be
generalized on T*M(R) into the isofransformations

X = A*x, or X = Air TrS x5, (5.4.4)

In the conventional case, the differentials dx and dx’ of the two coordinate
systems are related by the familiar expression dx’ = Adx, or dx?! = Aldx], with
consequential known properties, e.g., for coordinates transformations [41,6].

However, the same differentials dx and dx’ are inapplicable in the
isocotangent bundle T*M(R). The author therefore introduced the generalized
notion of isodifferentials dx and dx [15] which hold when interconnected by
the isotopic laws

& = Axdx, or @ = AT &5, (5.4.5)

with the particular realization, say, for the case of the isotransformations x =
x(x)

ax ., &
*dx, or &' =
ax axt

ax = T &S, (5.4.6)
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Note that we have used the symbol * for the isotopic product (in lieu of the
symbol X used earlier) which will be preserved in this section, including for the
characterization of isofield herein denoted R(D,+%).

As we shall see in the next chapter, two possibilities are significant for the
characterization of the isodifferentials, dx = dx or dx = Tdx 40 They are
connected with the corresponding isointegrals Jdx =% € R or Jdx = x € R. In this
chapter we shall assume the former for simplicity and study the latter elsewhere.

Let &{x) be a scalar function on T*M(R). Then its isodifferential is given by

3 o0
dp = —xdx, or A = — T s, (5.4.7)
ox ax?

where the partial derivative is the conventional one.
Similarly, a contravariant isovector—field X = (X" on T*M(R) is an ordinary
vector—field although defined on an isospace. Then its isodifferential is given b

oX axd
aX = —=*dx, or d =
oX axl

'S a5, (5.4.8)

Thus, an isovector—field on T*M(R) transforms according to the isotopic
laws

oX _ aXl
Kb, or  Xx) = —— T b XPl. (5.4.9)
ax '

bg)

Xx =

Note that, while for conventional transformations dx’ = Adx on T*M{x,R} we
have ax/ox = A, and thus we now have for isotransformations
o : T
— = AT+ Al ——= %5 (5.4.10)
ax/ axJ

By using the above results and the usual chain rule for partial
differentiation, one easily gets
oXi & as ax axs  aXT  axl a8 eTi
— =T X+ — —Tir — + — — XL,
%K  axSaxl axkK axl &l xS axl axk xS
(5.4.11
Thus, in addition to the isotopy of the conventional two terms of this

40 This is the alternative formulation of the isodifferential calculus studied in ref.s
{44,451
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expression (see ref. [4], Eq.s (3.5), p. 67), we obtain an additional third term. Note
that the quantity 6)(]/:3)(k is not a mixed tensor of rank {L.1), exactly as it happens
in the conventional case.

From the preceding results one can then compute the isodifferential of a
contravariant isovector-field

o 8Xl
1= — 1. & =
ox
aTi. o2xi ol aXf axl
= ——T‘ XTaxS + — Tl — axS + ———— XT3x5. (54.12)
axS axl axl axS axl xS

A contravariant isotensor X4 of rank two on M(R) is evidently
characterized by the transformation laws
X 3 &l axl
X2 ——*—*)((2) X = — 0, — TS, XPU),  (5.4.13)
ox  ox axr xS

Similar extensions to higher orders, as well as to contravariant isotensors of
rank {0.s) and to generic tensors of rank {r.s) are left as an exercise for the
interested reader.

All preceding expressions (5.4.4)5.4.13) have been written in both, the
abstract form and their realization in local coordinates, to illustrate that the
notion of isotransformations and isodifferentials do constitute isotopies, in the
sense that all distinctions between conventional and isotopic notions cease to
exist at the abstract, realization—Tree level.

For the identification of the isodual isodifferential calculus [15,19] recall
that, under isodualities we have

axd = A9s9axd = AYwqx. (5.4.14)

The rest of the isocalculus can then be easily derived.

To have a guide in the use and meaning of iscduality, the reader should
keep in mind that its primary classical function at this level is the
characterization of the map from positive to negative energies. But energies are
represented by the Hamiltonian H. A good guide for isodualities is therefore the
map

isoduality d
Energy H > 0 => Energy HY = -1 < 0. (54.15)

As it has been the case for all preceding aspects studied so far, we have
four distinguishable formulations:
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A) the conventional differential calculus over the ordinary reals Rin,+x)
with basic transformation law dx’ = Axdx which is and will remain the
Tundamental calculus for the exterior problem of ordinary matter in vacuurn;

B) the isodual differential calculus over the isodual reals R%(n9+x9)
with law dx’ = Axddx = A9dx which is assumed the basic calculus for antimatter
also in vacuum,

C) the isodifferential calculus over the isoreals R(f,+* with law dx =
A*dx which is assumed as the basic calculus for the interior dynamical problem
of matter; and

D) the isedual isodifferential calculus over the isodual isoreals
R34 +49) which is assumed as the basic calculus for the interior problem of
antimatter. .

The reader should keep in mind that all the above formulations can be
unified by the abstract isotopic treatment of Class III, although in these volumes
we shall study the individual formulations for clarity.

5.4C: Isoforms and their isoduals. The isotopies of the symplectic
geometry of Class [ were constructed [15] via the use of the isodifferential
calculus, which permits the introduyction of the following one-isoform

&) = A*dx = AT 0d. (5.4.16)
and the study of the algebraic operations on them. The isocotangent bundle
T*M;(R) is then the bundle of all possible one—isoforms. The sum of two one-
isoforms &} '= A*ix and &;2 = B+dx is the conventional expression

&1+ 2= (a+Brax (5.4.17)

The isoproduct of one-isoform ¢ = A*dx with an isonumber fi € R is the
conventional product,

nxd = nd. (5.4.18)
For the product of two or more one-isoforms & X = ARdx, k= 1, 2, 3, ..we
introduce the isoexterior, or isowedge product denoted with the symbol A,
which verifies the same axioms of the conventional exterior product, that is, the
distributive laws
@! +32R85=6'A 83+ $°R85 G4l
s lAd2+09=01R62+8 1483 G4

and the antisymmetry law
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although it is defined on an isomanifold.
The isoproduct of two one-isoforms &;! = Axdx and ;2 = B«dx is the
two-isoform

s =&, A8,2 = A, TiB. TI axT A
by = &' A®° = AT BT & AQS

=3 (A: T i - i T 2 8yS
=+ T By Tl - 4, T B T ax" A dx

= A BT T - T T &M AdS, (5.4.21)

17]
which characterizes the isocotangent bundle T*M,(x,R). Note the clear deviations
from the conventional exterior calculus {compare with ref. [4], p. 132).

The isoexterior product of three one~isoforms yields the three-isoform
=31 28228 3=

b3 =3 'A®“Ad "=

= A[il A2i2 A313 5128 Ti; T2, T ax¥1 A dxko A 8xK3, (5.4.22)

where [4,6]
i i i i
1 1; 1 1 1
812 . =det 8!23 _o=det{ 8% 82, 82, ),
il s iy, iidols i) i i3
8 h 8 io 8 | 8 in 8 jS
4.2
with a consequential extension to p—isoforms 5423
b = A . . TL T2 »xTP ax!Add2A. AdaxP, 5429
Y iy Ik Ip :

characterizing the correspondin% lsocotangent bundle T*M (R)

Given n one-isoforms &~ = A Kellx, k = I, 2.... n they are said to be
isolinearly dependent when &' A ... A &;" =(. Note that given n one-isoforms
linearly dependent on MI(x,R), they can be isolinearly independent, evidently
because of the functional dependence of the isotopic product.

In an n—dimensional isomanifold M(R) there exist a maximum of n 11near1y
independent one-isoforms as in the conventional case, with isobasis ax . X1,
The isobasis of T*M.(R) are then given by the ordered set dx' A dx), i <} A
similar situation occurs for p-isoforms and related isomanifolds T*Mp(R)

As an incidental note we point out without treatment the Grassmann-
isotopic algebra G, or isograssmann algebra, which is given by the direct sum
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[15]

G = T*M (R). (5.4.25)
2 - 02..,n K

The necessary and sufficient conditions for a two—isoform to be identically

null are '

i;i 1 2 k k
sle Al Jrsxszrlil'r2i

_ 1 2 K k k Ko
. =AYy A% (TL T2 - T1. T2 )= 0
i k1 kp 2 kyt

2 2 1 I 12(l

A similar situation occurs for p—isoforms.

The reader should keep in mind the nontriviality of the above liftings. As
an example, the linear, local and canonical one— and two-Torms are lifted into the
respective structures

dy = A Tij(x, X % LT, m, ) A, (5.4.27a)

$ = AT % % i, T, By T % %, L T, L) AT A XS (5.4.27b)
which are nonlinear (in the local coordinates x as well as their derivatives),
nonlocal-integral (in all variables) and noncanonical when projected in the
original manifold M(R}. What is remarkable is that the above forms are isolinear,
isolocal and isocanonical (Sect. 4.2) on M(R), that is, they coincide with the
corresponding conventicnal forms at the abstract level despite the indicated
differences. Perhaps, this abstract unity is the reason why the isosymplectic
geometry has been discovered only recently.

It is evident that all the above quantities admit a new image under
isoduality. To begin, the basic manifold M(R) is now mapped into the isodual
manifold MO(RY) with the isobasis dx!9, .., dx™ over RY. We therefore have the
isodual onc—forms

o9 = a9xdgxd, (5.4.28)
and the isodual operations in them. We then have th isodual one—isoforms
8 = adax = -9, (5.4.29)
and isodual isooperations on them.
5.4D: Isotopies and isodualities of the Poincare” lemma. The Poincare

lemma (see. e.g., ref.s [3,4,6) has a particular mathematical and physical meaning
inasmuch as it establishes that the symplectic geometry is the geometry



- 954 -

underlying Lies theory. For the case of two—forms on a 2n-dimensional manifold
do = dle;dd Adx]] = dlde)=0, (5.4.30)
the Poincaré lemma provides the integrability conditions for the brackels
characterized by the contravariant tensor ' = (@ 7' |1
oA . OA

[A,B] = o' , {5.4.31)
é)x1 axj

to be Lie. Thus, the rather complex integrability conditions for brackets (5.4.31) to
be Lie (see, e.g., the detailed study in ref. [6]) are reduced to the simple and elegant
geometric property dw = d{dé) = 0.

A central objective of memoir [15] was to show that a similar situation
occurs under isotopy, namely; that the isosymplectic geomelry is the correct
integro—differential geometry underlying the Lie-isotopic algebras. This property
was established by showing that the Poincaré lemma is a true geometric axiom
because it persists under isotopies.

To review this result, let us first study the isodifferential calculus of p—
isoforms. Let &) = Axdx be a one-isoform. The isoexterior derivative d%, of &,
(also called isoexterior differential) is the two—isoform [loc. cit.]

(A11 i)

&, = ad, = Il adiaade = (5432
2 | i Ja
ox 2
o
0Aj, i i aT j L
=(——T, T2, + A — 3 1h jaxliAdxkz =
a2z Nk g 2
i BAj a'ril
i iod i .
=45 12 (— 1L 11 T2 + Ay iy yaxkn A axke
kiko a2 L I axia J2

from which one can see that 3, is no longer the curl of the vector field 4;, , but
the more general isocuri encountered in Sect. 5.2.

The isoexterior derivative of a two—isoform (5.2.32) is given by the three—
isoform

BAj.i . i aTl .
by= Ay = (—% l2T'1j T2, T3, + ———]—11“]-1“'3]- +
axi3 12 B Iy oyl 2 3
i
. aT2, . - ;
+ A T 2 iz, ) adlAa2 nax8 (5.4.39
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ax'a

[t is easy to see that the isoexterior derivative of the isoexterior product of
a p—isoform CDp and a q—isoform éq is given by
A = P _ p PS
af cbp/\éq) (a&p)/\cﬁq + (-1 apma&q). {5.4.34)
A p-isoform &, is then said to be isoexact when there exists a (p-1)-
isoform &, such that &, = d,., and isoclosed when d§, = 0. We are
thus equipped to formulate the following important

Lemma 5.4.1 - Isotopic Poincare” lemma (15,19} The Poincaré Lemma admits
an infinite number of isotopic liftings of Class I, i.e, given an exact p~form <bp
= ddy,- , there exists an infinite number of isolopies

Cb_.l:}é

) &y = dop) = Sp = (&) (5439

pis

for each of which the isoexterior derivative of the isoexact p—isoforms are
identically nuli,

a(ady ) =0 (5.4.36)

The proof is an instructive exercise for the reader interested in acquiring a
knowledge of the isotopic technigques. We merely note that d&l = (, iff

i
. oAi 5 T,
HSJN:zk ) (__-J_Tllj T‘zj e 'J Tio )20 (5437
K2 gyl o2 T g 2

namely, the isoclosure of a one~isoform does not imply that the conventional
curl of the vector A is null, but that the isocurl is null.
Similarly, given a exact two—isoform &, = d$; , the property d$, = 0 holds

iff
i, .
<. alA: . ; aA;  oT! ;
8]1]2]3 (— N Tll Th2 TIS o+ ! Ul T2 . T8, +
Kikokg oxlaaxdy J1 J27 B3 gdy  oylg LI
TV T
R 2_1ls = (5.4.38)

Thus, the abstract axioms dé, = d(dd) = 0, db; = dlde,) = 0, etc,,
admit the conventional linear-local—canonical realization based on an ordinary
manifold, as well as an infinite number of additional, ncenlinear—nonlocal-
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noncanonical realizations for each given original form, via covering isomanifolds.
The latter realizations are geometrically equivalent among themselves, but
physically inequivalent owing to the generally different isotopic elements or
isounits.

The isodualities of the Poincaré lemma can now be easily formulated. We
first have the isodual Poincaré lemma which is characterized by the isodual
calculus, and then the isodual isopoincaré lemma based on the isodual
isodifferential calculus.

5.4E- Isosymplectic geometry and its isodual. Let ys review the interplay
between exact symplectic two-forms and Lie-isotopic algebras. Recall (see ref. [6]
‘for details) that the most general possible, Jocal-differential and conventional
two—form on an even, 2n-dimensional manifold T*M{R) with covariant
geometric tensor Qiiig

o = 40; () dxll A dxlz, (5.4.39)
172

characterizes, in its corresponding contravariant version, the brackets among
functions Alx) and B{x} on T*M,(R)

. 8A 4, @B i v
[A7Bl = —Ql2—ro Q12 = (o . [)12 (5.4.40)
ax' axi2 i)

Now, the integrability conditions for two-form (5.4.39) to be an exact
symplectic two-form are given by lloc. cit]

0 j a0y, i
0 i 23 Ml 2 o (5441)

X i3 axil axiz

Q. + Q. =

which general solution in terms of 2n functions R;(x)

_ oR; oR;
¢, = dIRx)dx'] Q= — - —2 (5.4.42)
12 ke axll

characterizing the Birkhoffian generalization of Hamiltonian mechanics [5,6]. The
above conditions are equivalent to the integrability conditions

ahiz + ol = g, (5.4.43a)
_aqlis . 90l . ealis
ok — 4 giX 7 ik 7 7

(5.4.43b)
axk axk axk

1l
o
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for generalized brackets (5.4.40) to be Lie-isotopic, ie., to verify the Lie algebra
axioms in their most general possible, classical, regular realization on 'I‘*MZ(R)

~

{A 7Bl + [B Al

0, (A Bl;Cl + [B;cl;Al + [C,A)B) = 0. (5.4.44)

Thus, the exact character of the general two-form ¢, = dd| implies its
closure d&, = 0 (Poincaré Lemma), which, in turn, guarantees that the underlying
brackets are Lie-isotopic, with the canonical case heing a trivial particular case
{see the analytic, algebraic, and geometric proofs in ref. [6], Sect. 4.1.5).

Lemma 5.4.1 establishes that the above general but local-differential
interplay between algebra and geomelry persists under the most general possible
nonlocal-integral isotopies. We therefore have the following:

Definition 5.4.1 (15,19} The “general exact isosymplectic manifolds” of Class [
are 2n—-dimensional isomanifolds T*M{x,R) over the isofields R(D,+*) with
isounits 1, equipped with an isoexact and nowhere degenerate two—isoform

(AllT ]) [
b, =3 Q. xx. ) A Adx2 = a8 —‘—T ﬁx LAdx2=
AAj i o'
i i i o
=(+T1j T2, A w~—-———JJ~’1“2])ax-h/\ﬂxlz =
ax 2 i 2 I axl2
. ) 4
i1i dAi i i oT R
_ 5102 (—LT11, 72 +Ai—]—T12 yaxKi A axKe =
Kiky  axl2 URN I axly Iz

(5.4.45)
which is such to admit the factorization

[+ =

k A i i
2, Qiik(x) x T2 1-2(x, % %, .0 axaxe, 'T‘2 > 0, (5.4.46)

where T2 is the isotopic element of the underlying isofield, i.e, it is such that
‘12 = T2 and
BA; dA;
9. = =2 -, (5.4.47)
L2 axll ax 2

is Birkhoff’s tensor {6] ie, the most general possible local, exact symplectic
tensor. The corresponding Lie—Santilli isotheory is then characterized Dy the
brackets

oA oB
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[ATB] = — 1" %% .00 " —, (5.4.48a)
ax'l ax'2
' -L i
=1, ,(Q12)= (|[lek2|“), (5.4.48b)
where 1, = Ty™! is the isounit of the universal enveloping isoassociative

algebra.
The “isocanonical isosymplectic isomanifolds” are the same manifolds as
above, excepl that the fwo-isoform is reducible to the isocanonical form
o k Y ip 4.1
&)22 0 xT, iz(x, %% . a1z Ty >0, (5.4.49)
‘where w is the conventional symplectic tensor. The corresponding Lie-Santilli
isotheory is then characierized by the brackets

BA ki, OB
[A7B] = —_'Izllk( X% % Jo 2 —, (5.4.50a)
ax'l ax'2
-1t _
Ty =Ty (012) =ty i N (5.4.50D)

The “isosymplectic geometry” is the geometry of the general and isocanonical
Isosymplectic manifolds.
The “exact isodual isosymplectic manifolds” are defined by the isodual
exact two-isoforms
a4, =nilk(x)x'fdzki2(s, X% % )@ Adx2, 19, < 0, (45D
which are now defined on the “isodual isocotangent bundle” TNISRY) over the
isodual isofield RYAS+2%) with isodual isounit 19, = (TS 1 = -1, .

Note the complete lack of restriction in the functional dependence of the
isotopic element T, which is at the foundation of the “direct universality” of the
isogeometry for all possible nonlinear, nonlocal and noncanonical systems (the
"direct universality” for the nonlinear and noncanonical but local systemns was
proved in ref. [6].

Note also that factorization (5.4.46) is possible for all two-isoforms (5.4.45).
In the above definition one can either pre-assign an isounit T, and then select the
two-isoforms (5.4.46) verifying the condition 1, = T, |, or pre-assign the two-
isoform (5.4.46) and then select the isounit T, accordingly. In this way, all two—
isoforms whose antisymmetric tensor {1y; is symplectic can always be
interpreted as characterizing an isosymplectic manifold. As a matter of fact, this
is an illustration of the existence of the infinite variety of isotopies R(n,+*) of the
field of real numbers Rin,+x).

The isosymplectic geometry focuses the attention on a subtle aspect which
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is absent in the conventional formulation of the geometry [3,4]: the relationship
between the two-Tforms and the underlying unit. For the conventional
Hamiltonian (or Birkhoffian) case, the underlying unit is the unit of the
enveloping associative algebra of the related Lie algebra. As such it is the 2n—
dimensional ynit

[ = (1) = (I;) = Dieg.(1,1,.., 1) (2ndim). (5.4.52)

which is trivially symmetric. The most general possible symplectic two-form is
then characterized in a local chart by fwo tensors, the totally antisymmetric
symplectic tensor Qij and the totally symmetric one t= diag. (1, 1, .., D=1

Q= do= 0 & X axll A dxl2, (5.4.53)
1 Iz

In the transition to an arbitrary isounit 1, the symplectic tensor Qj is
preserved, but the totally symmetric tensor I = {I') is lifted for mathematical
consistency into the isotopic form Ty = (T} = 1,7 or, equivalently, the totally
symmetric tensor in the factorization (5.4.46) must be interpreted as the isotopic
element of the related enveloping associative algebra.

The geometrical and physical implications of the above isotopies and
isodualities are intriguing, and it is hoped that they will received a much needed
attention by geometers. As an example, it has been assumed until now in
-differential geometry that the only possible degeneracy is that in the symplectic
tensor, e.g.,

DetQlx) = 0. (5.4.54)

in which case one evidently lose the symplectic character of the geometry and
the possibility to characterize a corresponding Lie algebra owing to the
imposstbility to perform the transition to the contravariant tensor Qi

The isotopies imply the existence of a second “hidden” degeneracy, that of
the isotopic element

Det Tolx) = 0. {5.4.55)

which the symplectic tensor is nondegenerate, det Q # 0, which characterizes the
Isosymplectic geometry of Class I'V. This latter form of isogeometry represents
gravitational collapse into a singularity at x and, as such, need suitable study.

Note that the primitive noticn here is that of isonumbers with a singular
unit. The degeneracy of the geometry is only consequential.

The generalized analytic equations characterized by the isosymplectic
geometry will be identified in Vol. I, jointly with explicit examples.
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6.EF: Direct universality of the isosymplectic geometry. [n monograph
(6] this author proved the “direct universality” of the (conventional) symplectic
geometry with an exact, but otherwise general noncancnical-Birkhoffian two
form for the characterization of all possible local-differential, analytic and
regular Newtonian systems (universality) in a star-shaped neighborhood of the
fixed variables of the experimenter (direct universality).

The underlying action resulled to be of the following general Pfaffian
Tirst—order type

t
A=), Patla®vE - BEx 1=
1
to _
= f dt [Py(r, phi® + Qgfr, p) - B, r, p) | {5.4.56)
A={Ag) = (Py, Q) x = &KX (% pP), k = 1,2..2N, a,p= L2..N,
with corresponding Birkhoff's equations
Oy (x) dx¥/dt = 8B, x)/ ax!, {5.4.57)

where B is a function (generally different than the Hamiltonian) called the
Birkhoffian.

Theorem 4.5.1, p. 54, ref. [6] essentially proved that, given a vector field ZX(t,
x) which is local-differential, analytic and regular but otherwise arbitrarily
nonhamiltonian in T*Mx, R), there always exists a star—shaped region of the
variables t, x in which =K is a Birkhoffian vector field, i.e, there always exist a
function Blt, x) and an exact symplectic tensor ij(x) such that all the following
identities are verified (see also App. 5.A for more details),

Q) =kt x) = 9B, X}/ ox!, i = 1,2,.,2N.  (54.58)

Note that the direct universality was achieved in the fixed local chart t, x of the
experimenter, but the canonical form « had to be abandoned in favor of the
BirkhofTian form Q.

The studies on isotopies subsequent to ref. [6] permit a significant revision
and enlargement of the above results. To begin, it is easy to see that the use of
the isotopies permit the restoration of the canonical symplectic form w. In fact,
we have the following

Proposition 5.4.1: Under sufficient continuity and regularity conditions, all

possible Birkhoffian tensors always admit the decomposition into the
antisymmetric canonical tensor and a symmelric tensor,

Qi]'(X) = Wik 'Iki(x), {5.4.59)
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as a result, all possible general isosymplectic two—forms (5.4.46) always admit
their reformulation as isccanonical two—-isoforms (5.4.49) in different isounits,
but in the same local coordinates.

In different terms, the isotopies permit the reformulation of Theorem 5.4.1
of ref. [6] in terms of the canonical symplectic tensor, but a change of the basic
unit of the theory. We also have the following additional properties of self-
evident proof.

Proposition 5.4.2: Under sufficient continuity and regularity conditions, all

possible, general, first-order, Pfaffian actions always admit an identical
reformulation in terms of the “isocanonical action” in the same local

coordinates,
t
A =ft 2Clt[Ak(x) vk - B, ] =
I

1o .
=]y dt [ Pylr, p % + Qafr, ) pP- Bit,r,p) | = (5.4.60a)

) ty R
=ftl dtlpg*t* - Hi,r,pt ]l = t dt[pa'llaﬁ(r,p)i'ﬁ - Hlt,r,p) 1= A

]l = (1111) = [TIQBSGB, ‘Ilaﬂsaﬁ] =
= 4 {Pg/Pg *+ Qub™/ Py i%, Py/Dg + Qub®/ Pq i) Mo sum). (5.4.60b)
In different terms, general, first-order one—forms of the conventional

symplectic geometry can always be identically rewritten as a isocanonical one—
isoforms in the same local variables, but different units.

Proposition 5.4.3: The fundamental analytic equations underlying the
isosymplectic geometry are the “isohamilton equations”[15)

g 12X dxd/ at = 8 HE, x) / oxt, (5.461)

where the isounit’l, is derivable from the expression1| of the one-isoform via
the techniques of Lemma 5.4.1.

The proof of Theorem 5.4.1 of ref. [6] and the preceding propositions then
imply the proof of the following important property here presented apparently
for the Tirst time.

Theorem 5.4.1 (Direct Universality of the Isosymplectic Geometry in
Isocanonical Form): All possible analytic and regular nonlinear, nonlocal-
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integral and nonhamiltonian vector fields =X{t, x) on an isocotangent bundie
T*M(x,R) always admit a star-shaped neighbour of their variables in which they
are “isohamiltoniar’, i.e, there always exist a Hamiltonian H(t, x), and an isotopic
unit 1,(x) for which all the following identity hold

o 'ij(x) =i, x) = aHpt, x) 7 axl. (5.4.62)

Note that nonlocal-integral systems, while prohibited in Theorem 5.4.1 of
ref. [6] as well as for the conventional symplectic geometry at large, are admitted
under isctopies because they are admitted in the isounit.

A simpler formulation of the symplectic georetry via the use of a
different realization of the isodifferential calculus, with a more effective
Theorem of Direct Universality, has been formulated in the recent papers [44,45]
which are not reviewed at this time for brevity.

5.2G. Isodual representation of negative energies. As well known in
particle physics, antiparticles are characterized by negative~energy solutions of
field equations. In this section (which is evidently purely classical), we can only
study the geomnetric characterization of the negative—energies via isodualities.

First, we simply note that a conventional Hamiltonian representing the
kinetic energy over R(n,+x), naturally becomes negative-definite when mapped
into the isodual field R%n%+xd)

H, =1xi 2m >0 = =HRd=rxdr/2rn =-fxt/2m = -~H<0
(5.4.63)
and evidently the same holds for the iscduality of the Lagrangian
Lp=+mixt>0 > W=Lgg=smixdr=-ymexr =-L<0.
(5.4.64)

Jointly, the equation of motion reads
m¢xdid = - my = o (5.4.65)

with a similar result for arbitrary equations of motion (see Ch. IL1}.
More generally, the isodual Legendre transform is given by

L=pxi-H\ = [9=pxty-nd=-pxr+H. (5466

The construction of the isodual isclegendre transform is an instructive exercise
for the interested reader.

All these features of antiparticles in vacuum are directly represented by
the isodual symplectic geometry. In fact, the integrand of the conventional action
is precisely the one—form of the symplectic geometry
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A=Jijauerne = [ Rl xar = ] 1. (5.467)

The property identified earlier of the change of sign of a one—form under
isoduality then constitutes precisely the desired geometrization of the negative—
energy solutions of field equations.

5.5: ISOAFFINE GEOMETRY

5.5A: Isoaffine spaces and their isoduals. As an intermediate step prior to the
isotopies of Riemann, we shall now review the isotopies of the affine geometry
introduced in in memoir {16] under the name of affine-isotopic geometry, or
isoaffine geometry for short, then studied in ref.s [17-21), reviewed in ref. [26]
and studied at the mathematical level in the recent papers [46,47]. This author is
aware of no additional studies in the new geometry at this writing (fall 1995).

- The central technical objective is the achievement of a generalization of
basic notions such as connection, curvature, etc., which is of nonlocal-integral
type, as well as dependent on the velocities and accelerations in a nonlinear and
nonlocal way, while jointly preserving the original axioms of the geometry.

The literature in the conventional affine geometry is predictably vast,
although Scrodinger’s presentation [2] remains valid to this day. In this section we
shall continue to follow the treatise by Lovelock and Rund (4] of which we
preserve the notation unchanged for clarity in the comparison of the results.

Let M(x,R} be an n-dimensional affine space here referred as a
differentiable manifold with local coordinates x = {x), i = 1, 2, ...n, over the reals
R{n,+x). We shall denote: the conventional scalars on M(x,R) with ¢(x);
contravariant and covariant vectors with X3(x) and Xi(x), respectively; and mixed
tensors of rank (r.s) with the notation X8 = X1 ‘1 k. i X). Unless otherwise
stated, all tensors considered on M{x,®) will be assumel $0 Be local-differential
and to verify all needed continuity conditions.

Definition 5.5.1 [16,19}: The infinitely possible isotopic liftings Mix,R} of Class I
of an n-dimensional affine space M(xR) over the reals Rin+X), called “isoaffine
spaces”, are characterized by the same local coordinates x and the same local-
differential tensors X \I'5 of M(xR) but now defined over the isoreals R(D,+»)
for all infinitely possible n—dimensional isounits 1 of Class I. “The “isoaffine
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geometry” of Class I is then the geometry of vectorfields on M&xR). The “isodual
isoaffine spaces” of Class II M%x, RY) are the original spaces M{x,R) defined
over the isodual isoreals RY0%++%). The isodual isoaffine geometry” is then the
geometry of isodual vectorfields on Mx,R9).

Recall in the conventional case that, given two contravariant vectors x| and
Xo on M(x,R), their difference Ax = x;~X, is a contravariant vector iff the
transformation is linear {as well as local) [4]. Similarly, Ax is a contravariant
vector on M(x,R) iff the transformation is isolinear (as well as isolocal).

The first difference between affine and isoaffine spaces can be seen by
noting that coordinate differences which are not contravariant in the
conventional geometry can be turned into a contravariant form via a suitable
selection of the isotopic element.

The left and right modular isotransforms on M(xR) are defined by

o= xtxab = xtTAl X = AxX=ATx (55.1)

where U denotes conventional transpose. The inverse, right—-modular
isotransformations are given by

+X = ATITx, (5.5.2)
- where A7 is the Isoinverse, i.e., it verifies the isotopic rules Aha = axa =1
and T = T, %, ..) = T, %,..).

Note the preservation of the isotopic element for the left and inverse
isotransformations which is ensured by the assumed Hermiticity of the element T
for Classes I and II herein considered, and it is at the very foundations of the Lie-
isotopic theory. Isoaffine spaces M(x,R) are then isomodules for the
isorepresentations of Lie—isotopic algebras, while the isodual spaces MY x, RY) are
correct isodual isomoedules for the isorepresentations of the iscdual algebras.

The fundamental difference between the conventional affine geometry and
its isotopic covering is given by the fact that the former uses the conventional
differential calculus, while the latter is based on the différential calculus.

In turn, as indicated in the preceding section, the latter admits three known
realizations: the first via the use of the conventional differential, dx = dx, and the
generalization of the product Adx — A*dx which is the form studied in this
chapter; the second via the use of the conventional products Adx and the
generalization instead of the isodifferential itself, dx = Tdx, which is studied in
the recent papers [44,45]; and the third via the combination of both preceding
degrees of freedom.

At the level of one-isoforms, the above two realizations of the
isodifferential calculus are identical because | = Axdx = ATdx = Adx. However,
the reader should be aware that at higher levels rather important differences
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emerge. The isotopies presented in this volume are sufficient for a first study of
the program, and we are forced to refer the interested reader to papers [44,45] for
brevity. ,
We finally note that the local coordinates should be everywhere
isocoordinates X = xx1. However, in this case all products should be isotopic, thus
eliminating the isounit in the coordinates. For simplicity we shall therefore use
conventional coordinates x.

5.5B: Isocovariant differentials and their isoduals. Recall that the
conventional differentials dx’ and dx interconnected by the linear and local
transformations dx’ = AXdx cannot be defined under isotopies and must be lifted
into the isodifferentials dx and dx interconnected by the isotopic rules (5.5.5).

- The isodifferential of an scalar ¢(x) on M(x,R) is then given by law (5.5.7);
the isodifferential of a contravariant isovector X = (XYx)} on M(x,R) is given by
rule (5.5.8); the isofransformation Jaws of the contravariant isovector is rule
(5.5.9); and the isotransformations of a contravariant isotensor X of rank two on
N{x,R) is given by Eq.s (5.5.13).

By using these results, the isodifferential of a contravariant isovectorfield
on Mix,R) is given by

e
; ax
aX‘J _ _Tkr axr = (5.5.3)
ax’
ol ox)  aXT ox aTi. _
o xSl T gs e T T Tyt
ax® ax1 ax! xS axl  axS

By using the above quantities, one can introduce the isocovariant {or
isoabsolute) differential [10]

px! = axd + Plx, X, ax), (5.5.4)

under the condition that it preserves the original axioms (see ref. [4], p. 68), i.e,
) DO + Yi) = pX$ + DY, which can hold iff PI is isolinear in XT;
)if)}(j is isolinear in dx%; and
3) DXJ transforms as a contravariant isovector.
By again using Lovelock~Rund’s symbols with a “hat” to denote isotopy, we
can write

i i i h k
oxl = axd+ 10 TX TR@e, 555

where the [s are called the component of an iseaffine connection.
By lifting the conventional procedure, one can readily see that the
necessary and sufficient conditions for the n’ quantities f‘m n to be the
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coefficient of an isoaffine connection are given by

. axt ax4
riom—r8 xt qu—TWZaxz =
mp e axW
&y o omop, a2l .
=—T 05T D X T qﬂxq - ——TEXTS +
axT oxS ax!
o ooX & oTl
+—T ¢ —('I‘staxt - x) - — —XTaxss (55.6)
ox! axs ax! axS

As in the conventional case, the s do not constitute a tensor of rank (1.2).
The extra terms in conditions (5.5.6), therefore, do not affect the consistency of
the isoaffine geometry, but constitute the desired generalization.

The extension of the above notions to the isocontravariant derivatives is
evidently given by

= —_ 5 r
DXy = 8X; - Iy T Xp T, 3P (5.5.7)

As a result, the isocovariant derivative of a scalar coincides with the
. isodifferential, as in the conventional case, i.e, Dp = DXX'Xy) = d¢.

The isoaffine connection is symmetric if Fmsn = Fnsm‘ Also, the
isotopic image of a symmetric connection is symmetric in isospace. However, the
following property can be easily proved (but carries important consequences).

Proposition 5.5.1 [16,19} The isotopic image [y or a symmetric affine
connection I"th is not necessarily symmetry when projected in M(x,R).

The isotopic liftings of all remaining properties of covariant derivatives, as
well as the extension to the isocovariant differential of tensors, will be left for
brevity to the interested reader.

[t is important to verify that the isocovariant {isoabsolute) differential
preserves the basic axioms of the conventional differential because this is a
necessary condition for consistency of the isotopies. In fact, we have the
following axioms which coincide at the abstract level with the conventional ones
(ref. [4], p. 74),

Axiom 1: The isocovariant differential of a constant is identically null; that of a
scalar coincides with the isodifferential; and that of a tensor of rank (r.s) is a
tensor of the sarne rank.

Axiom 2: The isocovariant differential of the sum of two fensors of the same
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rank is the sum of the isoabsolute differentials of the individual tensors. And
Axiom 3: The isocovariant differential of the product of two tensors of the
same rank verifies the conventional chain rule of differentiatiorn.

By following again the conventicnal formulation, and as a natural
generalization of the isocovariant differential, we introduced the isocovariant
derivative of a contravariant vector field XP [loc. cit.]

, aX] i h
]

under which the isocovariant differential can be written
. . k
DX) = X1 T 8 (5.5.9)
8 .

It is an instructive exercise for the interested reader to prove that the
isocovariant derivatives (5.5.9) constitute the components of a {(1.1) isotensor. It is
also easy to verify that the isocovariant derivatives preserve the axioms of the
conventional covariant derivatives (ref. [4], p. 77k

Axiom 1°: The isocovariant derivative of a constant is identically null; that of a
scalar is equal to the conventional partial derivative; and that of an isotensor of
rank (r. s) is an isotensor of rank (r. s+1)

Axiom 2’: The isocovariant derivative of the sum of two tensors of the same
rank is the sum of the isocovariant derivatives of the individual tensors. And
Axiom 3’: The isocovariant derivative of the product of two isotensors of the
sarne rank is that of the usual chain rule of partial derivatives.

[t is easy to see that all the preceding notions admit a consistent and
significant image under isoduality. Intriguingly, the isodifferential of a
vectorfield does not change under isoduality 49X9 = 8X. Similarly, we have the
following isodual isocovariant differentials {see the 2-nd edition of Vol. I, ref. [47D

. . i T i
paxdl = adxdj 4 rdhlk dh X2 T xS = -px, (5.5.10a)

dy. = adx. — 85 pdry 00 3P -
b, = %X, PP T % T pax ij. (5.5.10D)

We therefore have the following important

Proposition 5.5.2 [loc. citl The isoaffine connection changes sign under
isoduality,
fds = -8

*n Sn (5.5.11)
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The preservation of all basic axioms, although in their iscdual form, is then
consequential.

Axioms |, 2, 3and ', 2, 3 imply the most important result of this section,
which can be expressed via the following

Theorem 5.5.1 [16,191 All infinitely possible nonlinear, nonlocal and
noncanonical isoaffine geometries of Class I coincide with the conventional
affine geometry at the abstract, coordinate-free level, while all the infinitely
possible isodual isoaffine geometries of Class Il coincide with the isodual affine
geomelry at the abstract level .

5.5C: Isocurvature, isotorsion and their isoduals. We now pass to the
study of a central notion of the isoaffine geometry, the generalized curvature,
called isocurvature, and generalized torsion, called isotorsion, which are
inherent in the isoaffine geometry prior to any introduction of an isometric (to
be done in the next section).

For this purpose, let us study the lack of commutativity of the isccovariant
derivatives on isoaffine spaces M(x,R) with respect to an arbitrary, not necessarily
symmetric, isoconnection I“hlk. Via a simple isotopy of the corresponding
equations (see ref. [4], pp. 82-83), and by noting that

shoooo o e r2d Pl 2P gad ) (55.12
e = 2% 7 ek @ I T Thk TprA g >

one gets the expression

a2 ol ]
rh |

X o o-x = k 4
fhfkx  fkfh ax¥ ox"
1 m 2T _ 2 1 o os2r vl ws_ 2 b _p2 b v T
a7 a1
02— - 2] —O)x, (55.19
h axk ]kaxh

Definition 5.5.2 [16,19): The “isocurvature” of a vector field X" on an n-
dimensional isoaffine space M(x,R) is given by the isotensor of rank (1.5)

v af} afy]
gi = rh I'k
I'hk axk axlt

i m 21 _ i m T
" T Ty - ST R
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aT, aT!

j 5 .5 i 5 .5
+ [ 1 - rl Ty 6514
rh K : rk !
while the "isotorsion” is given by the isotensor
sl =l -pl. (5.5.15)
hk hk kh’ -

The “isodual isocurvature” and “isodual isoforsion” are the opposite of the
corresponding isotopic quantities,

Expression (5.5.12) can then be written

j _ vl P S | _al msyd
X Ihik X . R, hkTsXS LA X s (5.5.16)

Comparison with the corresponding conventional expression (Eq.s (6.9), p.
83, ref. [4]) is instructive to understand the modification of the curvature as well
as of the torsion caused by the isotopic geomelrization of interfor physical
media. As we shall see, this modification is the desired feature to avoid
excessive approximations of physical reality, such as the admission of the
perpetual motion within a physical environment which is inherent in all
rotationally invariant (torsionless) theories.

- The extension of the results to a (0.2)-rank tensor is tedious but trivial,
yielding the expression

'l .] . . ) )

Similarly, for contravariant isovectors and isotensors one obtains the
expressions

r .
X]Th [k~ ijh - _Kj hk TE X - Tk TP Xj [s> (5.5.18a)

Xatntk = Xprern = Rk WX KT X _%hrkT?%(S)ijs bI;s-

called the isoricci identities.
The following first property is an easy derivation of definition (5.5.14).

Property 1:

The second property requires some algebra, which can be derived via a
simple isotopy of the conventional derivation (ref. [26], pp. 91-92).
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Property 2:
. . C L .
Rk * Bl *Bdn = Finge * Fodap * Aidin*
+ 3] 48 +’?herTS—’f-k51+

It s"hk

. i oTL OTT. o L OTT. s
+%kJrTrs%Ish T I ST L R L -t g (5.5.20)

rh gk 1 rkg! B rl gh k

where, again, the reader should note the isotopies of the conventional terms, plus
two new terms.

Note that, for a symmetric isoconnection, the isotorsion is null and the
above property reduces to the familiar form

R *+ Rl + Kidip = 0. (5.5.21)

The third property identified in ref.s [16,19] also requires some tedious but
simple algebra given by an isotopy of the conventional derivation (ref. [4], pp. 92-
93), which results in

Property 3:

1 | 1 -
(KJ hfp + K] kprh + K] phl’k) Yl

(@ T 541 T spl
_(ShkTr stp+skar st +SkhT stk)
T ); T ; r
*+ Ryng Trip * Kj Kp Trfh + K ph TrJ]k)Yl +

N (Shrk Tr]Tp + 87 o r1h + 8T T Tk )TY i (5.5.22)
called the isobianchi identity , and which can be written in a number of
equivalent forms here left to the interested reader {see an alternative expression
in the next section).

Again, as it was the case for property (5.5.20), the isobianchi identity for the
case of a symmetric isoconnection reduces to

k! K! + R} = 0. (5.5.23)
jhkfp * “jkpfk T “uphlk
The corresponding properties for isodual quantities can be easily derived.
This completes the identification of the primary properties of an isocurvature
tensor prior to the introduction of the isometric.
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5.6: ISORIEMANNIAN GEOMETRY AND ITS ISODUAL

5.6A: Statement of the problem. The isoriemannian geometry of Class V is the
most general possible geometry on a curved manifold possessing:

A) a nonlinear, nonlocal and nonlagrangian structure in the local
coordinates and their derivatives of arbitrary order;

B) "directly universality” for all possible interior gravitational probiems; and

C} admitting the conventional Riemannian geometry and exterior
gravitation as a particular case when the isounits T recovers the conventional unit
I = diag. (1, 1, I, 1) {physically, when motion returns to be in vacuum).

In this section we shall sclely study some of the mathematical properties of
the new geometry for the specific case of Class [, with only basic elements for
the case of Class II. All physical applications are deferred to Ch. I1.8, 9, while
experimental verifications are be studied in Vol. L

THE DICHOTOMY OF EXTERIOR AND INTERIOR GEOMETRIES
IN GRAVITATIONAL PROBLEMS

EXTERIOR GRAVITATIONAL PROBLEM
RIEMANNIAN GEOMETRY

INTERIOR GRAVITATIONAL PROBLEM:
ISORIEMANNIAN GEOMETRY

FIGURE 5.6.1: A schematic view of the dual geometric treatment of gravitation
characterized by: A) the conventional Riemannian geometry on spaces Ri(x,g,R) assumed as
exact for the exterior motion of dimensionless test body in vacuum; B) the covering
isoriemannian geometry on isospaces #{x,g,R) for the interior structural problem; C) under
the general condition that the latter recovers the former identically in vacuum, e.g., for



-2712-

null density , ﬁ(x,é,R)bFo = M{x,gR). As we shall see in Ch. L7, despite the considerable
enlargement of the scientific horizon, the use of the isoriemannian geometry alone is still
insufficient for the interior problem because it is time-reversibie, thus particularly suited
for the “global” treatment of the structure as a whole with conserved total quantities.
The complementary approach of Ch. 1.7 wilt then be the irreversible treatment of one
interior test body, while considering the rest of the system as external.

The new geometry was proposed by this author in memoir [16], developed
in more details in ref. [18,19] and applied to the generalization of Einstein’s
gravitation for the interior problem in ref.s [20,21]. The only additional
contributions on the new geometry on record at this time (fall 1995) are Lopez’'s
[24] application to the exterior problem, Kadeisvili's review [25), and the studies on
isoriemannian manifolds and related topology {see next section) by Tsagas and
Sourlas [46,47). The most recent formulation of the isoriemannian geometry is
that by this author in the recent papers [44,45] via the use of a new form of
isodifferential calculus.

Additional contributions in the field are those by Gasperini [32-34] who was
the first to study the isotopies of Einstein’s gravitation. However, Gasperini
formulated his studies on a conventional Riemannian geometry, while the
primary emphasis of this section is on the generalization of the Riemannian
geometry itself. A review of Gasperini studies is available in monograph [35], and
it is therefore omitted here for brevity.

Also, Gasperini formulated his locally isopoincare studies everywhere in
space-time, thus reaching predictable restrictions from available exterior
experiments. On the contrary, in the studies herein considered, all generalized
geometrical and physical theories are specifically formulated for the interior
problem onlty under Condition C) of recovering identically the conventional
formulations in the exterior problem.

In this way all available experiments in gravitation have no bearing on the
interior isotopic treatment by construction. As we shall see in Vol. II, the test of
the isoriemnannian geometry for the interior problem requires novel experiments,
that is, experiments which cannot be even formulated, let alone quantitatively
treated with the conventional Riemannian geometry.

The central ohjectives of the isoriemannian geometry are the achievement
of an axiom-preserving generalization of the Riemannian geometry with an
isometric g which, besides being sufficiently smooth, bounded, real valued and
symmetric, possesses the most general possible dependence con all needed
quantities

B, % %L, T, 0,0 = 8 X% LT 0.0 =8l det§=0, (56.1)
ji
as a pre-requisite to achieve the desired "direct universality” for the interior

gravitational problem. .
As we shall see, the above objectives are permitted by the isodifferential
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calculus. The latter, however, has at least three known realization, as discussed
in the preceding sections. [t then follows that the isoriemannian geometry has at
least three known realizations, the first based on the conventional differential 8x
= dx and the isotopic product A*dx = ATdx , the second based on the conventional
product Adx and the isotopic lifting of the differential dx = 1dx, and the third
based on the combination of the preceding two degrees of freedom.

In this chapter we shall solely study the first form of the isodifferential
calculus, and defer the interested reader to papers [44,45] for brevity. In fact, the
selected form is amply sufficient for the scope of these monographs.

5.6B: Isoriemannian spaces and their isoduals. To begin, let us perform
the transition from the n-dimensional isoaffine spaces M(x,R) of the preceding
section, to the corresponding isospaces Mx,g,R) equipped with the symmetric
isotensor (5.6.1) on M(x,R), called isometric . )

Similarly, we perform the transition from the isodual isoaffine spaces
MIx,RY) to the corresponding spaces MIx39R%) equipped with the isodual
symmetric isotensor g4 = (Qdi i)

Definition 5.6.1 (16,19 The “isotopic liftings” of Class I #(x,8,R) of a
conventional Riemannian space R{x,g,R) in n—dimension, called “isoriemannian
spaces’, are the isoaffine spaces Mix,R) in the same dimension equipped with an
isometric

g =(gy =gk xpmn.) =Tk xp7n.) gk =g, det§ =0, 562)
L, j= 1,2 .., n where T is the nxn—dimensional isotopic element of the

underlying isofield Ri+#), n=n1l, 1 = T~L, which characterizes a symmetric
isoaffine connection, called “isochrisoffell symbols of the first kind”

B, By _ Bk
axhl axK oxl

Ii‘lhﬂ{ = 'l‘( ) = Flklh (563)

as well as the “isochristoffel symbols of the second kind”

FZ g U f‘lh]k = f’zkih (564)

i_
nk - 8
where the capability for an isometric of raising and lowering the indices is
understood {as in any affine space), and &1 = | (§. S U The “isoriemannian
geomelry” is the geometry of isospaces Rx,g.R).
The "isodual isoriemannian isospaces” are then given by the isodual map of
isospaces Hx,&R)

9, 89R9, 89 =T9g = -5, RI~R1419 = (TI)! = -1, (565)
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with “isodual isochristoffel symbols”

a8 g o8
14l = # :f L h am; =L, 666
ox ox X
d2 i _  p2i
r K Iy K (5.6.6b)

where one should keep in mind that the isodual map must be applied, for
consistency, to all quantities as well as their operations such a quotient.

Int essence, the above definition is centered on the requirement that the
alteration (also called “mutation” [loc. cit] gix) = Tls, x,%, %, 1, T, n,..) gix) = & of
the original Riemannian metric g is characterized by the isotopic element T of
the base field and, thus of the base multiplication. The joint liftings g = g = Tg
and Rin,+x) = RM,+#, fi = nl,1 = T, leave the functional dependence of the
isometric totally unrestricted, thus verifying the fundamental pre-requisite for
“direct universality”.

The above new structures imply that the transformation theory of the
conventional Riemannian space must be lifted into the isotopic form of the
preceding sections. In turn, this ensures that the isoriemannian geometry is
isolinear, isolocal and isolagrangian {Sect. 4.2) on $(x,g,R), although generally
nonlinear, nonlocal and nonlagrangian when projected on #ix,g,R).

On physical grounds, the isotopies R{x,g,R) = Hflx,g,R) imply that we have
performed the transition from the exterior to the interior gravitational problem.
Throughout our analysis the reader should keep in mind that the isolopic
elements T (or isounit 1) assume their conventional unit value 1 = diag. (1, 1, 1, 1)
everywhere in the exterior of the minimal surface S° encompassing all matter of
the interior problem, ie., for null density p, in which case $(xg,R),-o = AixgR).

Note that each given Riemannian geometry can be subjected to an infinite
number of isotopic liftings which are expected to represent the infinite number
of possible, different, interior physical media for each given total gravitational
mass. This is the reason for the use the plural in “isotopies”.

As indicated in Definition 5.6.1, the introduction of a metric on an affine
space implies the capability of raising and lowering the indices. The same
property evidently persists under isotopies. Given a contravariant isovector X! on
R(x,2,R), one can define its covariant form via the familiar rule

Similar conventional rules apply for the lowering of the indices of all other

quantities.
It is easy to see that the inverse g“l is a bona-fide contravariant isotensor
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of rank {2.0). Given a covariant isovector X; on R(x.gR), its contravariant form is
then defined by

Xt = gl X; (5.6.8)

Rules (5.6.7) and (5.6.8) can then be used to raise or lower the indices of an
arbitrary isotensor of rank (r. s).

The first important property of the isoriemann geometry can be derived by
writing from Eg.s (5.6.3)

8y 92y
S I = -pl _pl 569
oK htk © Tk Sy T T nk  lhk
for which,
. =0 S (5.6.10)
' Shitx T O Bk = e

with similar results for the isodual isometrics. We reach in this way the following

Lemma 5.6.1 — Isoricci lemma [16,19]: Al isotopic liftings of Class I and II of
the Riemannian geometry preserve the vanishing character of the covariant
derivative of the isometrics.

In different terms, the familiar property of the Riemannian geometry
gij| k= 0 is a true geometric axiom because it is invariant under all infinitely
possible isotopies. As shown below, this property is not shared by all gravitational
quantities, such as Einstein’s tensor.

The isotransformation law of the isometric g is given by expression of type
(5.4.13). By repeating the conventional procedure (ref. [4), pp. 78-70) under isotopy,
one obtains the following expression for the isochristoffe! symbol of the first

kind R . R
, %k . %m _ %y
Flpg = #(—-+ — = = ) =
d ox axl
2.1 5 T 5 azm
9% ox og ox' ox° ax
=3 P i P
=5 T ™ — + 27 7 (—— — —
Pk Saxd  oax™ T Tl gk
& oxS oM oxf oxS axm or, oxt axS ok ot
v e R TR ey L ey Sy i S
ax™~ ax' ax 9X axh 0x ax! axh % ax’ ax
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with a number of alternative formulations and simplifications, e.g., for diagonal
isotopic elements T, which are left to the interested reader for brevity.

5.6C: Basic identities. [n order to proceed with our review, we need the
following

Definition 5.6.2 lloc. cit.l: Given an n-dimensional isoriemannian space H(x2R)
of Class I, the “isocurvature tensor” is given by

at2 a2 ], -
i - - 2 ) omp2r _ p2 j M 2T
RI = —- - P Ty - 2L T e+
Ih s ox mh r Ik
. aT ;s LOR
ep2! 2 1% - 2] 1, (56.12)
axk Tk 5D
and can be rewritten
d =i %ph _ %Bpx % _%m
hk = - -
! axK ax! ax!! ax! axM ax axX axJ
. - . 3
aip(l L L S r
+ g (Fprh'rsrlh rprkTsr‘zlk) +
I T
. 8T - |
eped 2% - p2) 1 (56.13)
axk Tk gh
the “isoricci tensor” is given by
Ry, = BRI =¢llR (5.6.14)
LS VR A T

the “isoeinstein tensor” is given by
Gl =RJ-1slR; (5.6.15)
i i i
and the “completed isoeinstein tensor” is given by

S e R Y (56.16)

where R is the "isocurvature isoscalar”

R-r, -gr, 56.17)
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and © Is the “isotopic isoscalar”

PSR SN I .p5 i r .28 ,
6=8 8 (M Ty - prthslek) =
110 | S
= M Ts 2o g e - . (5.6.18)

Isodual quantities are defined accordingly.

We are now equipped to review the isotopies of the various properties?! of
the Riemannian geometry [10,12]. From definition (5.4.12) we readily obtain

Property 1: Antisymmetry of the last two indices of the isocurvature
tensor

The specialization of properties (3.22) to the case at hand easily implies the
following

Property 2: Vanishing of the totally antisymmetric part of the
isocurvature tensor

i J I
R.l hk + Rh kl + Rk ]h - 0 + (5-6.20)
or, equivalently,

Rk * ot * R = O (5.6.21)

The use of property (5.6.19) and Lemma 5.6.1 then yields

Property 3: Antisymmetry in the first two indices of the
isocurvature tensor

or, equivalently,
lehk = thlj (5.6.23)

From Definition (5.6.12) and the use of Lemma 5.6.1, after tedious but

41 The reader should be aware that the properties below are different for different
realizations of the isodifferential calculus and of the isoriemannian geometry, as shown in
ref.s [44,45]
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simple calculations, we obtain the following:

Property 3: Isobianchi identity

i i

J j
R = , 5.6.24
where R]thp i tphlk RIKPTh SIhkp 624
) _ ] r 2s _ oI 2 8
‘ Slhkp = [‘zrh(TS|kI“1p Tsrpl“]k) +
1 ; 5
+ r‘zrp(Trs|hrzlsk - TrSlkPQISh) +P2r]k(TrS rp lesh - Tr5|hplp) +
A A T A T -2 T I LS O -2 AT LA
rk 1lh
rh k1fp PI[K rp Difk k1 pif (5.51_2%551:»
aT ¢
Qf11p = ¢ = P p (5.6. 25b)
X

For isotopic liftings independent from the local coordinates (but dependent
on the velocities and other variables, as it is often the case for the characteristic
functions of interior physical media, isodifferential property {5.6.25) assumes the
simpler form

R + R =Q. {5.6.26)

j j j
'hktp * Ripnik Ikp|h

The isobianchi identity can also be equivalently written in the general case

+ R (5.6.27)

. + " =
Rijhx 1 p leph Ik likp|h s1jm<p’
where the 8-term is that defined by Eq.s (5.6.26), with the reduced form for the
isotopies not dependent on the local coordinates (or constant)

lehkTp + lepth + R]jkah = Q. (5.6.28)

"We now consider the isotopic liftings of Freud identity which was
originally identified by Freud [36] in 1939, reviewed in details by Pauli {37, and
then forgotten for a long time by virtuaily all textbooks in gravitation. The
identity was "rediscovered” by Yilmaz [38] who brought it to the attention of this
author. The identity was then subjected to a mathematical study by Rund [39] {in
perhaps his last paper). In memoir [19] published jointly with Rund’s article [39],
this author followed Rund’s treatment, and reached the following property:
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Property 5: The isofrend identity

oK. + gk = , (5.6.20)
i ] "
ox
where ” « | | K
2 — Iy - 2 -—
VR = A AT (85,12 - 8l 120)
1 2k kK slryf25 | alrplk _ akre2l
+(8jgr—81gr)f‘rs+grf‘jr grf‘zjr), (5.6.30a)
UK. = 4 334 B gy - 5. &), (5.6.30b)
] ~1m ] J
. % .
- N p2p s _ +2p 5
G =g (12F T3S, - P8R T 1250), (5.6.30c)
G'kj = Af ij, At = Vg, (5.6.30d)

Rund’s [39] reached the important result that the Freud identity holds for
all symmetric and nonsingular metrics on a (conventional) Riemannian space of
dimension higher than one. The same property evidently persist under isotopies.
Thus, Property 5 is aulomatically satisfied for all symmetric and nonsingular
isometrics on isoriemannian spaces of dimension higher than one. Despite this
inherent compatibility of the identity with the geometry, the Freud identity and
its isotopic image have impertant consequences in gravitation, ¢.g., for the vexing
problem of the source of the gravitational field in vacuum.

In fact, Yilmaz's [38] points out that the conventional Freud identity on a
Riemannian space raises the fundamental question, apparently still open to
debates at this writing, whether a sourceless gravitational theory in vacuum does
or dees not verify all axioms of the Riemannian geometry.

We are now in a position to identify some of the first consequences of the
isoriemannian geometry. First, it is an instructive exercise for the reader
interested in acquiring a technical knowledge of the isotopies of the Riemannian
geometry to prove the following important property:

Lemma 5.6.2 [19}: Einstein’s tensor GI; = RI; - 48'R does not preserve under
isotopies the vanishing value of its covariant divergence (contracted Bianchi
identity)

L=Riy. -48iR(, =
Gyli = Ryj; - +84Ry = 0 (5.6.31)

that is, the isceinsteinian tensor (5.6.15) is such that

kK, _pk. _ &
Gk = RSt — 85 Rp # 0, (5.6.32)
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Therefore, Einstein’s tensor does not possess an axiomatically complete
structure.

This unexpected occurrence has rather deep connections with the Freud
identity, and implications for the identification of the correct theory of exterior
gravitation in vacuum because it raises again the fundamental question, this time
from an independent viewpoint, of the geometric consistency of a sourceless
theory in vacuum.

It is interesting to note that the Freud identity is a true geomelric axiom
of the Riemannian geometry in the sense that it persists under isotopies, while
the contracted Bianchi identify is not, evidently because not preserved by
isotopies.

These occurrences shift the emphasis, from the historically predominant
use of the contracted Bianchi identity, to the geometrically more rigorous Freud
identity with predictable important implications for the entire theory of
gravitation, both external and internal.

The following property can also be proved via tedious but simple
calculations from isodifferential property {(5.6.25).

Lemma 5.6.3 (16,19} The completed isoeinstein tensor does possess an
identically nuil isocovariant isodivergence, ie.,
i . ) i
=(pl - sl p _ 58l =
SJTJ (R] irSJR fale)ri 0. (5.6.33)

called the "completed and contracted isobianchi identity”.

5.6.D: The fundamental theorem for interior isogravitation. As now
familiar, we have initially considered conventional gravitational theories on
Rx,g,R) which have null torsion, and have reached an infinite family of isotopies
all of which also have a null isotorsion on R(x.g,R} because of the axiom-—
preserving character of the isotopies. In fact, the original symmetric connection

hsk has been lifted into an infinite family of isoconnections which are also
symmetric

s, —p2 5 _r25 _ PR S _p2s o

However, the null value of torsion occurs at the level of isospace H{x,g,R)
which is not the physical space of the experimenter, the latter remaining the
conventional space-time in vacuum (see for details ref. [20], Ch. V).

The physical issue whether or not the isotopies of Einstein's gravitation for
interior conditions have the non-null torsion required to avoid perpetual motion
approximations, must therefore be inspected in the physical space and not in the
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geometrical isospace.
This can be done by projecting the isocovariant derivative of an isovector
on f(x,g,R) in the ordinary space Rix,gR) i.e,

axt - axt
I T X =

xt, =

+ 21 xT (5.6.352)
Tk an rk *

ax
p2! _p2i th (5.6.35b)
rk hk'r o

[t is then evident that, starting with a symmetric isoconnection f‘hik on
f(x,g,R), the corresponding connection 'y on RxgR) is no longer necessarily
symmetric, and we have the following

Theorem 5.6.1 (18,19} The isotopic liftings thlk = I"zh‘k of a2 symmetric
connection I_thk on a Riemannian space R(x,gR) into an infinite family of
isotopic connections rzhlk on Isoriemannian spaces R(x,gR) of the same
dimension, imply that the isospace always possesses a null isotorsion, but, when
the isotopies are projected info the original space, a non-nuil torsion generaily
OCCUTS,

The above property was first reached by Gasperini in ref. [32-34] in the
language of conventional differential forms on a conventional Riemannian space.
The geometrization of the property into a symmetric isotorsion was achieved by
the author in ref. [18]. '

Theorem 5.6.1 is physically fundamental inasmuch as it ensures the needed
structural differences for a realistic, quantitative representation of interior
trajectories. We are referring to a representation of the differences in the
trajectory of a test body from motion in vacuum with stable orbit (and thus null
torsion) to motion within a physical medium with an unstable trajectory (and,
therefore, non—ny!ll torsion, but null isotorsion).

Theorem 5.6.1 is also fundamental for our achievement of a geometric unit
between the exterior and interior problem which will be more evident later on in
this section. In fact, the instability of the interior trajectories is achieved via the
same geometric axiom {null torsion) of the exterior problem, although realized in
its most general possible isotopic form.

Finally, Theorem 5.6.1 necessarily requires two different, but compatible
theories: one for the exterior gravitational problem with null forsion, and one
for the inferfor gravitational problem with null isotorsion but non-null torsion .

The most important resuit of the analysis of this section can be expressed
via a repetition under isotopies of ref. [26], p. 313 and the Theorem of p. 321, with
the addition of the isofreud identity plus the completed Einstein’s tensor (5.6.16),
lead to the Tollowing:
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Theorem 5.6.2 -Fundamental theorem for interior gravitation[18,19: In a
(3+1)-dimensional isoriemannian isospace of Class I, f{x,g,R), the most general
possible isolagrangian equations

g9 = o (5.6.36)

verifying the properties:
1) symmetric condition

el = ¢, (5.6.37)
2) the contracted isobianchi identity
il
E = {, {5.6.38)

I

and 3) the isofreud identity

av:kl

ok K 6K , (5.6.39)

axl
are characterized by the isolagrangian principle 4
84 = 8) Lg ,¢ , 8 ,T. .t )dx =
f gij gij,k gij,l(l ij ij
= 5 AHIA(R +6) + 24 +pF + Dldx = 0, (5.6.40)

where A, A, and p are constants, 1 is the isotopic generalization of stress-
energy tensor, T is an isotopic source tensor, R the isotopic curvature scalar -
and 6 the isotopic scalar. For the case A =p = 1, A = 0 and appropriate units,
the isolagrange equations are given by

i .. i i i Ny
g7 = 7 -4gr -5 -40 -1 -, (5.6.41)
and can be written in terms of the completed isoeinstein tensor
- . X i .
S N L L L (5.6.42)

or, equivalently, it terms of the isoeinstein tensor

42 We are now in a position to clarify the meaning of “non-first-order—Lagrangians” in
interior gravitation. As now well known, the Lagrangians emerging under isotopies, when
projected in the original space, are of arbitrary order higher than the first, L= 1{s, x, %, %,
... However, the isolagrange equations remain of the second-order, evidently because
they only depend on the second-order derivative of the isometric with respect to the local
coordinates.
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ai = g0 —ug'n o=t fiosis e 64z

The reformulation of the above theorem in terms of isointegrals (Sect. 6.7)
is an intriguing exercise for the interested reader.

The physical implications of the above theorem will be studied in Vol. II.
Here were merely note the dual revision of conventional equations, one caused
by the isoscalar © and the other by the Freud identify which implies the
identification '

NI Einstein ~ T+ 1, {5.6.44)

As we shall see in Vol. II, this turns the exterior "description” of the gravitational
field in vacuum into an interior theory on the origin of the gravitational field
with numerous, rather intriguing and far reaching implications.

5.6E: Description of antimatter via the isodual isoriemannian
geometry. We close this section with a brief study of the image of the
isoriemannian geometry under isoduality, including the isodual definition of
operations (such as fraction and derivatives) which can be expressed via the
following

Theorem 5.6.3 [20,21]: The interior problem of antimatter verifies Theorem
5.6.2 under isoduality characterized by the following maps:

Basic unit 1 - 1= -1,
Isotopic element T » Ti=-T,
Isometric g=Tg > g%=-¢,
Isoconnection coefficients Pen = 0%%n = - hans
Isocurvature tensor Rigx — Rd“jk = Ry,
Isoricci tensor v > Ry = v
- d
[soricci scalar R - R® = R,
[soeinstein tensor Gy _)d de = -G,
Isotopic scalar 66 =6,
Compl. isoeinstein tensor Suv 8 = ~ Sy
Electromagnetic potentials A, ﬂﬁd% = -4,
Electromagnetic field Y Foop = ~Fu,
Elm energy-mom. tensor Tw T%LW = -Tw.,
Stress—energy tensor tw wa, = =t

The proof of the above properties is simple but instructive. In particular, it
can show the necessity of the use of the isodual spaces to reach negative energies.
In fact, in conventional Minkowski M(x,n,R) and Riemannian spaces R(x,g,R) the
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electromagnetic potentials and Tields do change sign for antiparticles, but the
energy-momentum tensor remains the same. The latter changes sign only when
computed in isodual Minkowski spaces M¥xn®R% and isodual Riemannian
spaces Eﬂd(x,gd,Rd), These basic properties then persist when passing to the
covering isospaces M(x;HR), f(x,&,R) and their isoduals Mx AR , f%x 5% R,
The proof of Theorem 5.6.3 also shows that antimatter represented via the
isedual isoriemannian geometry evolves "backward in time”, as anticipated in
Sect. 5.1, with intriguing epistemological conceptual and geometrical possibilities
for advances, eg., a theoretical conception of antigravity [43] studied in Vol. II.

5.7: ISOTOPIES AND ISODUALITIES OF PARALLEL
TRANSPORT AND GEODESIC MOTION

Recall from Sect. [.5.1 that one of the primary objectives of the isotopies of the
Riermannian geometry is the geodesic representation of the free fall of extended
objects within physical media, such as a leaf in free fall in atmosphere.

A geometrically consistent generalization of the Riemannian geometry and
of Einstein’s gravitation cannot be reached without consistent isotopic coverings
of conventional parallel transport and geodesic motion [4].

These generalized notions were introduced for the first time in memoir [16],
expanded in ref.s [18,19], applied to interior gravitation in ref. [20,21} under the
names of isoparallel transport and Isogeodesic motion and reviewed in [25]. The
most recent formulation is available in papers [44, 45] which is not reviewed here
Tor brevily.

The new notions represent the maximal geometric achievements of the
isotopies. They can be stated in figurative terms by saying that "physical media
disappear under their isogeometrization”. In fact, as we shall see, the trajectories
of the isoparallel transport and the isogecdesics coincide with the original
trajectories in vacuum when represented in isospaces.

Their knowledge is particularly important for hadronic mechanics. Recall
that the sections of the perfect sphere, i.e, the circles, are geodesics of the
rotational symmetry O(3). [sogeodesics are then important to understand that the
sections of the ellispoidically deformed charge distributions of hadrons, the
ellipses, are bona fide geodesics of the isorotational symmetry O(3} in isospace.

Since the times of Galileo Galilei and his experiments at the Pisa tower
(1609), we know that the free fall of a body in Earth’s gravitational field is
geodesic only in the absence of the resistive forces due to our atmosphere. 1t is
therefore well know that the trajectory of a test particle within a physical
medium is not geodesic, owing to the resistive forces. Qur isogeodesic then
permits an ultimate geometric ynity of motion in vacuum and within physical
media which is the true foundation of the isorelativities of Yol. II.
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Moreover, it is also well known since Lagrange’s and Hamilton's times (see
the historical notes of ref. [20)) that the forces between the body and the medium
are of nonpotential type and, thus, of a type outside the representational
capabilities of the conventional, local-differential, Riemannian geometry. A fully
sirnilar situation occurs for parallel transport, thus implying the inapplicability of
the geometry itself for interior conditions.

Isoparallel transport and isogeodesic motions are crucial for a technical
understanding of the isotopic relativities and of their underlying form-invariant
description of physical laws via isosymmetries, because they complete the
abstract geometric unity between interior and exterior problems found at the
preceding levels in vector spaces, algebras, groups, etc.. In fact, parallel transport
and geodesic motion are reached in interior conditions via the same abstract
axioms of the corresponding quantities in vacuum, only realized in their most
general possible way.

To begin, let Rix,g,R} be a conventional n—-dimensional Riemannian space.
Under sufficient smoothness and regularity conditions hereon assumed, a vector
rield X! on R(x,gR)} is said to be parallel along a curve C if it satisfies the
differential equation along C [4]

. . X! i
DX =X'|de5=(-§+r2rsxf)dx5=o, (5.7.1)
ox . )

where I'Zl; is .a symmetric connection. Then, by recalling the notions of
isodifferential of Sect. 5.4, we have the following

Definition 5.7.1 (16,15t An isovector field X' on an n-dimensional
isoriemannian space of Class [ R(x,gR) is said to be transported via “isoparallel
displacement” along a curve C on R{x,gR), iff it verified the isotopic equations
along C

i ; r aXi i r t, s
DX = Xi rp Tt W=l — + P2 T b xIX]T ) ixP = 0(5.7.2)
ax

i
where T 2r is the symmetric isoconnection and T = {T') is the isolopic
element of the underlying isofield R0n,+).

The identity of axioms (5.7.1) and (5.7.2] at the abstract level is evident,
again, becauyse of the loss of all distinction between the right, modular,
associative product, say Xx, and its isotopic generalization X*x = XT{s, %, X, ¥, ...)x.

To understand the physical differences between the above two definitions,
let us consider the independent (invariant) parameter s, such that the isovector
field %x = dx/ds is tangent to C, and let X! = XXs). Consider the curve C at a
point P(1) for s = s; and let X'(1) be the corresponding value of the isovector field
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X! at P(D).
Consider now the transition from P(1} to P(2), ie., from Sl to s; + ds. The
corresponding transported value of the isovector field X‘( ) = Xi(1) + aX! is said

to occur under an isoparallel displacement on R(x,g,R) in accordance with
Definition 5.7.1, iff
¢ 5 i r s
axX! = —Trs ax =-12..T XPT . (5.7.3)
ax’ P q

The iteration of the process up to a finite displacement is equivalent to the
solution of the integro~differential equation
i i 5
— = —T;— =—1“rs’l‘pX Tq—, (5.7.4)
ds &' ds ds

By integrating the above expression in the finite interval (s, s,), one reaches the
following property (expressed in terms of isointegrals of Sect. 6.7)

Lemma 5.7.1 [loc. cit.} The isoparaliel transport of an isovectorfield X!(s) on an
n-dimensional isoriemannian space f{xg.R) of Class I from the point s; to a
point s, ona curve C verifies the isotopic laws

%@ = 2 Tz ) T e 2 ) X T 1) 85, 679
rs

where

axd dxd
= ] Zad = [ 2P Do (5756)
L axp 9 3
The physicat implications are pecinted out by the fact that the
isotransported isovector dees not start at the value X(l) but at the modified
value XX1) characterized by Eq.s (5.7.5), Addltlonal evident modifications are
characterized by the isotopic connection 2 5 and the two isotopic elements T of
the r.h.s. of Eq.s (57.5).

These departures from the conventional case can be better understood in a

flat isospace, via the following evident

Corollary 5.7.1A [Loc. cit.l In a flat isospace, such as the isominkowski space
Mx,0,R) in (3 1)-space~time dimensions, or the isoeuclidean space E(r3R) in 5-
dimension, the conventional notion of parallelisn no longer holds, in favor of
the following flat isoparallelism
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i . 2 . 28Xt dx4 ,
X - %o = f , axt = ]-1 Q)qug & r2l=0 G617

ISOPARALLEL TRANSPORT

FIGURE 5.7.1: A schematic view of the isotopic representation of parallel transport in
isoriemannian space. Consider, say, a rocket under parallel transport in empty space, e.g,
due to free fall toward Earth. When penetrating within physical media, the same object is,
first, twisted depending on its shape, and then moves along an anomalous trajectory. The
isoriemannian geometry permits the geometrization of the latter motion via the
isoparaliel transport. Its understanding requires the knowledge that the anomalous
trajectory depicted in the figure occurs in our space, while in isospace the object
continyes with exactly the same original trajectory.

Consider, as an illustration, a straight line C in conventional Euclidean
space RE(r,3,R), with only two space-components. Then a vector Ril) at s =t is
transported in a parallel way to R(2) at s = t, by keeping unchanged the
characteristic angles with the reference axis, ie.,

' 5 aRK(D aRK(r)
RO - R = | ¢ axl+ a2, (57.8)
1 axl ax2
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Under isotopy, the situation is no longer that trivial. In fact, assume the
simple diagonal isotopy

T = diag. (b2, b,2) > o. (57.9)

Then Eq.s (5.7.5) yield into the form

k
&R (1) aRrK (1)
Rk - R0 = T X b2 ar! + b, 206) ar2
L arl ar (5.7.10)

The irreducibility of the notion of isoparallel transport to the conventional
notion can be illustrated even in the case of null curvature, In fact, consider for
simplicity the isominkowski-space M{x,i,R) with local coordinates x = XM, p = 1,
2, 3, 4, with constant diagonal isotopy

fi = Tn, T = diag. (b2 b2 b2 b2 > 0. (5:7.51)

and introduce the redefinitions %% = buzx“ {no sum), XHx(E) = X&)
Then Eq.s (5.7.5) become

2 aXx) fw
! 1 [ — b 2x = f 12 —a b2 %, (5.7.12)
X X

namely, the isotopy persists even under the simplest possible constant isotopy
(5.7.11), thus confirming the achievement of a novel geometrical notion.

By submitting the conventional treatment {ref. [4], Sect. 3.7) to isotopies, one
can identify the integrability conditions for the existence of isoparallelism
result in the condition

oX' a2,
= - T
axS axt axt
T : :
~2i 8T a%x1 ar2 1
+1"2rs—1t)—Xp= t - l'tTTpo+
ox ax" ax xS

T

rop i
X +1"rs’l‘q

P

1*‘2mqt Tman +

r
oT

b r 2p. m n 5l PP
+f‘2rtTpF‘2mST IO s X (5:7.13)

from which the following property holds.

Lemma 5.7.2 lloc. cit.} Necessary and sufficient conditions for the existence of
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an isoparallel transport of an isovector X! on an n-dimensional isoriemannian
isospace Ax,g,R) are that all the following equations hold
i
1 v§ =
Ry Ts X° =0, (5.7.14)
where Rl'ipq is the isocurvature , Eq.s (5.6.12).

ISOGEODESIC MOTION

EUCLIDEAN, ISOEUCLIDEAN,
MINKOWSKIAN AND y ISOMINKOWSKIAN AND
RIEMANNIAN ISORIEMANNIAN
GEODESIC GEODESIC

FIGURE 5.7.1: The birth of the notion of geodesic mojion can be seen in Galilei’s historical
conception of uniform motion in vacuum, ie., via the celebrated Galilei’s boosts

K = K s vk Pk = Px + MV, W
which can be formulated in terms of the conternporary modular action

Tv)rE = ok + vk T pe = pp + mve . {2
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As well known, Galilei estabiished the above law by ignoring the friction due to the air.
Our studies essentially aim at the achievement of a geodesic characterization of the
motion of free objects within physical media in such a way as to preserve the original
axioms of the free motion in vacuum.

Stated In different terms, the understanding of the content of this chapter can be
reduced to the understanding that the irregular trajectory of this figure describing the
free fall of an objective under the resistive force due to the atmosphere does indeed
verify the same geodesic axioms of Galilel's free fall in the absence of the atmosphere. In
fact, in isoeuclidean space it is a straight isoline (Sect. 5.2), exactly as the trajectory in the
absence of air, and a similar occurrence holds for curved spaces.

The fundamental tool is provided by the isospaces. In fact, we represent the
transition from motion in vacuum to motion within a physical medium via the transition
from conventional Euclidean, Minkowskian or Riemannian space to the corresponding
isceuclidean, isominkowskian and isoriemannian spaces, respectively. By recalling that
the conventional spaces provide a geometrization of the vacuum (empty space), one can
then confirm the isogeometrization of interior physical media of Sect.s 5.2 and 5.3.

This yields the most general possible, nonlinear, nonlocal and noncanonical
generalization of laws (1) in E(r55)

K=k & oy Bk-z(t,r, o) Py=pg + mv° Bk_z(t, Lp -, 3)

and represented via the isotopic group action (see ref. [20] for a detailed classical
treatment and Vol. IT for the operator counterpart)

v ek = X+ 0K BK 2 Ny xpy = p + mvy B2 (4)

where the B's are certain nonlinear-nonlocal functions computable from the knowledge
of the isounit.

The arbitrariness of the isounits, that is, of the B—function then illustrate the
“direct universality” of the isogalilean relativity for the form-invariant description of
interior trajectories. The preservation of the original Galilean axioms can also be seen by
nothing that isoboosts (4} form an isogroup (Sect. 4.5), e.g, the composition of two
successive Galilean boosts

TV T} = TV +v*), {5)

is lifted into the isocomposition of two isoboosts
TV #Tv*) = TV +v™). (6)

The abstract identity of the Galilean and isogalilean relativities then follows from the
manifest abstract identity of group (5) with its isotopic covering {6), that is, isogeodesics
in isospace coincide with the original geodesics in vacuum. The same result can be
directly reached via principle {5.7.17) which shows that, jointly with the deformation bk2
along the k—axis, the unit along the same axis is deformed of the inverse amount bk“Q.

The re-emergence of the isocurvature tensor as part of the integrability
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conditions of isoparallel transport, can then be considered as a confirmation of
the achievement of a novel geometrical notion.

We now pass to the isogeodesics motion . Let s be an invariant parameter
and consider the tangent x! = @x'/ds of the curve C on an n-dimensional
isoriemannian space f(x,g,R). Its absolute isodifferential is given by

A aei ol T p.S
Dxt = ax' + P4 T pX T qaxﬂl (5.7.15)
In accordance with Definition 5.6.3, Dx' remains isoparallel along C iff Dx!
={. We can therefore introduce the following

Definition 5.7.2 [loc. cit.l The “isogeodesics” of an n-dimensional isoriemannian
manifold of Class I, }x.g,R), are the solutions of the differential equations

azxi 2 i - I - dxP - axq
a—sz“ + T S{X' X, X..) T p(X; X, X..) "'&"; - T\Sq(x: X, X.) _ds_ =v. (5716)

It is a simple but instruclive exercise to prove the following

Lemma 5.7.2 [loc. cit.} The isogeodesics of an n-dimensional isoriemannian
space Rx,g,R) are the curves verifying the principle

5 f ds = BI [@ij(x, wedadad11t = o (5.7.17)

We discover in this way a new important role of the iscmetric essentially
similar to the corresponding role of conventional metric in geodesic motion. Also,
the appearance of the isometric in the variational principle characterizing
Isogeodesic motion is a confirmation of the achievement of a novel geometry.

APPENDIX 5.A: ELEMENTS OF THE SYMPLECTIC GEOMETRY

In this appendix we shall outline the rudiments of the conventional symplectic
geometry from ref.s [3,4,6] in its local-differential, canonical as well as
Birkhoffian versions. The presentation will then result to be useful for reader not
familiar with the field, not only for the nonlocal-integral extension of this
chapter, but also for the isotopies of symplectic quantization of Vol. II.

As done in Sect. 5.4, all quantities are assumed to verify the needed
continuity conditions, e.g., of being of Class é°°, and all neighborhoods of given
points are assummed to be star—-shaped, or have a similar topology also ignored
hereon for brevity.

Let M(R) be an n—dimensional manifold over the reals Rin,+x} . A tangent
vector X at a point m € M(R) is a linear function defined in the neighborhood
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of m with values in R satisfying the rules
Xmlaf + Bg) = aXyf) + B X, {5.4.1a)

Xmifg) = flm) X,{g) + glml X, (f), {5.A.1D)

for all f, g € C(M), a, 8, € R.

The tangent space T M at m is the vector space of all tangent vectors
at m. The tangent bundle is the 2n-dimensional space TM = U, T,,M equipped
with a structure (see below). The cotangent bundle T*M is the dual of TM given
by the space of all linear functional on TM also equipped with a structure.

Letx = {xb= X1} be a local chart in the neighborhood of m. Then it can
be shown that the ordered set dx forms a basis of T*M, while 3/6x forms a basis
of TM. An element 6 € T*M and x € TM can the be written in local coordinates

6 = 6fm)dx', X = XXm)a/axl, (5.A.2)

6 is then called the canonical form. The cotangent bundle T*M equipped with 6
is at times denoted T*M(R). The fundamental (canonical) symplectic form s
then given by the two-form

w = ds, (5.A.3)

which is nowhere degenerated, exact and therefore closed; i.e., such that dw = (.
The manifold T*M(R), when equipped with two-form ® becomes an {exact)
symplectic manifold T*M(R)} in canonical realization. The symplectic geometry
is the geometry of symplectic manifolds as characterized by exterior forms, Lie’s
derivative, etc.

Let H be a function on T*M4(R) called the Hamiltonian. A vector—field X
on T*Mu(R) is called a Hamiltonian vector—field when it verifies the condition

XJo = -du. (5.A.4)

The above equation provides a global, coordinate-free characterization of
the conventional Hamilton’s equations {those without external terms) for the case
of aufonomous systems; i.e., systems without an explicit dependent in the
independent variable {time t).

Finally, we recall that the Lie derivative of a vector-field Y with respect
to the vector field X on T*M4{R} can be defined by

LY = [XY] (5.A.5)
X
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where [X, Y] is the canonical commutator. The case of nonautonomous systems
{those with an explicit dependence on time) requires the further extension to the
contact geometry (see, e.g., ref. [3). However, the Lie content is contained in the
symplectic part of the geometry. '

The Birkhoffian generalization of the above canonical geometry is
straightforward, and was worked out in ref.s [56]. Introduce in the same
cotangent bundle T*M|{R) the most general possible one-form 6, called the
Birkhoffian or Pfaffian one—form . The Birkhoffian two-form is then given
by

Q= de, - (5.46)
under the condition that it is nowhere degenerate. {2 is exact by construction and
therefore closed, that is, symplectic. The manifold T*M(R), when equipped with
the two—form Q, becomes an exact, Birkhoffian, symplectic manifold T*MJ{R).

Let B be another function on T*My(R) called the Birkhoffian. Then, a non-
Hamiltonian vector—field X on T*My(R} is called a Birkhoffian vector-field when
it verifies the property

%]a = -aB. (5.A.7)

which provides a global, coordinate—free characterization of Birkhoffs equations
- for autonormous systems.
Similarly, we recall that the Lie-isotopic derivative of a vector-field ¥
with respect to a nonhamiltonian vector field X [5,6] can be written

Le? = R7] (5.4.8)

where the brackets are now Birkhoffian (see below for the explicit form).

The realization of the above global structures in local coordinates is
straightforward. [nterpret the space M(R) as an Euclidean space E(r,5,R) with local
coordinates r = (rj}, i= i, 2, .., n. Then, the cotangent bundle T*M becomes
T*E(r,8,R) with local coordinates (r,p) = (r;, p;) where p = dr/dt represents the
tangent vectors, and we ignore for simplicity of notation the distinction between
contravariant and covariant indices in Euclidean spaces {but not in the cotangent
bundle). The canonical one-form (5.4.2} then admits the local realization

6 = p;dr;. (5.A.9)
The Hamiltonian two—form (5.A.3) admits the realization
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from which one can easily verify that dw = 0. A vector—field can then be written
X = Alrpla/er; + Byrpa/ap, (5.A.a)

which can hold iff Hamilton's equations are verified, ie.,

dr; oH dp; oH
—_— = —, —_— =, {5.4.12)
dt p; at dry

Finally, Lie's derivative (5.A.4) admits the simple realization

ox Y oY  8X
LyY = XYl = - ) (5.4.13)

where one recognizes in the commutator the familiar Poisson brackets.
The realization of the Birkhoffian generalization of the above structures
requires the introduction of the unified notation

a= @ =(p =1{p) L=L2..20, i=L2.,n (5.A.14)

where we preserve the distinction between contravariant and covariant indices.
The canonical one—Torm can then be rewritten

® = R}, da* = p;dr;, R° = (p,0) (5.4.15)
and Hamiltonian two—form (5.A.10) becomes
o =do =i, da' Ada¥ = dp;Adr, (5.A.16)

where w,,, is the covariant, canonical, symplectic tensor (5.A.15), i.e.,

oR’® R’ 0w —Lox
) =(— - —) = ( e (5.A.17)
aalt oa” Inxn Onxn
A vector—Tield can then be written
X = Xu(a) o/ aal. (5.A.18)

The conditions for a Hamiltonian vector—field become
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wyy XH dat = —gH, (5.A.19)
and can hold iff
o oH o
X = Xy— = o — — {5.A4.20)
aat 3a¥ aakt
where
W = (o I, (5.A.21)

namely, iff Hamilton's equations (5.A.12) hold, which in the unified notation can
be written

oH
at = oV —— (5.4.22)
%1d
Finally, Lie's derivative becomes
ax oY
LyY = XY] = — oV — | (5.4.23)
datt a”

The transition to the Birkhoffian realization [6] is now straight-forward
15,6]. In fact, it merely requires the transition from the canonical quantities Ra)
={p, 0) to arbitrary quantities R{a) on T*E,(r,8,R) under which the Birkhoffian one-
form (5.A.5) assumes the realization

6 = Rla) dal, (5.4.24)
while the Birkhoffian two—form (5.A.6) becomes
Q = de =1Q, fa)da Ada". (5.4.25)

where Qy,, is the (covariant) symplectic Birkhoff’s tensor

3 oR,
SR M (5.A.26)

(a)
g oalt aa¥
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A Birkhoffian vector-field X can no longer be decomposed in the simple
form (5.A.11), but can be written
X =x" a/0a, (5.A.27)

The conditions for a vector—field X to be Birkhoffian, Eq.s {5.A.7), then become

o= q, at - -ds, (5.A.28)
and they hold iff
) B
R —=v___ (5.4.29)
daM aa¥ ' aaH
where
vV _ —
O = ([ Qg (5.4.30)

which can hold iff the autonomous Birkhoff’s equations hold, i.e.,
o= g = gy (5.4.31)

Similarly, the Lie-isotopic derivative (5.A.8) assumes the realization

ox oY
Let = R79) = — o) —, (5.A.32)
aat sa¥

For additional aspects, the reader may consult ref. [6], the appendices of Ch. 4.
- Note that an arbitrary vector—field X is not Hamiltonian in a given local
chart. A central result of ref. [6] can be reformulated as follows

Theorem 5.A.1 - Direct universality of the symplectic geometry for local
nonhamiltonian Newtonian systems [6: An arbitrary, local-differential,
nonhamiltonian, analytic and regular vector-field X on a given chart on -
T*M(r,R) always admils in a star-shaped neighborhood of the local variables a
direct representation as a Birkhoffian vector—field, ie, a representation via
Birkhoff's equations directly in the chart considered.

The physical implications are as follows. When considering conservative—
potential systems of the exterior dynamical problem (Ch, 1.1), the vector-fields
are evidently Hamiltonian in the frame of the experimenter. However, when



- 297 -

considering the nonconservative systems of the interior dynamical probiem, the
vector-fields are generally nonhamiltonian in the frame of the experimenter.

Now, under sufficient topological conditions, the Lie-Koening theorem
{see ref. [6] and quoted literature) ensures that a local-differential nonhamiltonian
vector—Tield can always be transformed intc a Hamiitonian form under & suitable
change of coordinates.

However, since the original vector-field is nonhamiltonian by assumption,
the transformations must necessarily be noncanonical and nonlinear, thus
creating evident physical problems, e.g., conventional relativities become
inapplicable because turned into noninertial forrmulations.

This creates the need of the “direct representation” of the physical systems
considered; that is, their representation, first, in the frame of the experimenter, as
per Theorem 5.A.1. Once this basic task is achieved, then the judicious use of the
transformation theory may have some physical vatue.

Intriguingly, the identificaticn of the Lie-Koening transformation a = a’
turning nonhamiltonian systems X(a) into Hamiltonian forms X(a(a)) = X(a?),
implies the Birkhoffian representation of Theorem 5.A.1 in the a-frame of the
observer. In Tact, Birkhoff’s equations (5.A.31) in the a-frame can be characterized
precisely via a noncanonical transformation a’ = a of Hamilton’s equations
(5.A.22) in the a~frame, i.e.,

alla) aaP aB(a)

oY -~ —— = — [a @ - I=0, (5.A.33a)
patt salt PO 5P

Hlafa) = Bla), {5.4.33h)

(see ref. [6], p.130 for details).

As an introduction to the covering isosymplectic geometry (Sect. 5.4), the
above canonical and Birkhoffian forms can be expressed in a2 yet more general
way. Consider again the original cotangent bundle T*M(R), and let

I° = ([, = diag.(l, I, .., V=T "} (5.4.34)

nxn

be its unit. Then, the canonical one form (5.A.2) can be identically written in
terms of the factorization

8=9=0xT : T'™M|° > THT'M,"), (5.A.35)
while the canonical two-form (5.A.3) becomes
0=@ =d°=@@daxT + 8dT° = 0xT° (5.A.36)

This implies that, in the realization T*E{r,8,R) of T*M(R) with local chart a =
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(r, p), we can write

o, =T.0a (5.A.37)

w = b Ya,
Then, its contravariant version is exhibited in the Lie—tensor of the theory,

oV = ol V. (5.A.38)

The ftransition to the isosymplectic geometry in Birkhoff-isotopic
realization is then performed by assumning that the isotopic element and unit are
no longer the trivial unit, but arbitrary integro-differential quantities.

In the latter generalization one central property persists: the transition
from the canonical to the Birkhoffian and Birkhoffian—isotopic formulations
requires noncanonical transformations. This is the geometric—analytic
counterpart of the corresponding algebraic property. In fact, the transition from
the classical (operator) formulation of Lie's theory to its isotopic covering
necessarily requires noncanonical transformations (nonunitary transformations)

the above results imply that quantum mechanics and its covering
hadronic mechanics are inequivalent because not interconnected by a unitary
transformations (see Vol. II for details).

In closing we mention the so—called multisymplectic generalization of the
content of this appendix, as presented in the recent monograph by Sardanashvily
[42] and related jet manifolds which have intriguing possibilities for further
isotopic formulation and application to interior dynamical problems.

.APPENDIX 5.B: GRAVITATION IN ISOMINKOWSKIAN SPACE

[sotopic techniques permit novel approaches to gravitation, i.e., approaches not
permitted by conventional Riermannian methods. One of them is the equivalent
study of gravitation on a isoflat geometry.

This approach is not a mere mathematical curiosity, but resolves a rather
old problematic aspect of current gravitational theories: the absence of weight in
relativistic theories. Consider a test body experiencing a gravitational field at a
space-time point x in a Riemannian space R(x,g,R). As well known [10,11,37],
gravitation is entirely represented by the curvature in current theories, ie., by
the metric g{x) (for null total charge whose gravitational effect is ignorable
anyhow). In passing at the tangent Minkowski space M(x,n,R) at the same point x,
all gravitational effects disappear (equivalence principle), which is contrary to
experimental evidence that a relativistic particle, such as a proton in a particle
acceleration, does indeed verify gravity [21]. Weight is preserved in current
theories in flat spaces, but only in the limit into the Fuclidean space.

In the physical reality, weight is present irrespective of our treatment,
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whether nonrelativistic, relativistic or gravitational. Any consistent treatment of
gravitation must therefore have a well defined Minkowskian counterpart.

The above problematic aspect of current theories is resolved by the
isotopies because of the geometric equivalence befween the Riemannian and
isominkowskian spaces of Sect. .37,

MR ~ Mx,nR), {5.8.1a)

AxgR) = RAxgR)
g) = TIn =% 1 =I[TT!. (5.5.10)

where1 (1) is called the gravitational isounit (gravitational isotopic element).

In fact, all gravitational theories admit the decomposition g = Tn with T >
0 as a necessary condition to be locally Minkowskian. Then T > 0 and the
equivalence chain (5.B.1a) follows.

Current gravitational theories are formulated in a curved space with
metric gx) with respect to the conventional unit 1 = diag. (1, 1, 1, 1). Isotopic
theories permit the treatment of exactly the same metric g{x) = f{x) although
referred to the gravitational isounit 1 in the isominkowskian space Mix,f,R).

Note that curvature is entirely contained in the isotopic element T(x) of
decomposition g{x) = T(x)n. The isominkowskian treatment therefore implies the
study of the curvature via g = Tn at x, while assuming at the same point x an
isounit which is the inverse of the “curvature’, 1(x) = [T{x)]"L This is precisely the
mechanism that renders the treatment of gravitation locally isoflat.

In Sect. 5.8 we have indicated that the isominkowskian geometry preserves
all curved characteristics of the Riemannian geometry. It is an instructive
exercise for the interested reader to reconstruct in Mix,f,R) all properties of the

. Riemannian geometry, including Ricci lemma, Einstein’s tensor, field equations,
.etc. One can therefore see in this way that all the results on #{x,g,R) equally hold
on Mix,i,R).

Besides resolving the problematic aspect of the “disappearance of weight”
at the tangent Minkowski space, isotopic methods permit a novel approach to
gravitational singularities, which now become the singularities of the isounit,

T — 0, 00 = oo, {5.B.2)
or the singularities of the isotopic element,
Tx) = oo, T — 0. (5.0.3)

As an example, the celebrated Schwarzschild’s line element in spherical
polar coordinates admits the isotopic factorization into

T = diag. { (1 - 2M/1T L, 2 12 sin®e, (1 - 2M/1) } . (5.B.4)
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where one should keep in mind our ordering (+, +, +, -). We then have the
following

Proposition 5.B.1 (21 The Schwarzschilds singularity at the horizon r = 2M is
a zero of the isounit, while its singularity at the origin r = 0 is a zero of the
isotopic element.

The reader should be aware that the above novel perspectives on
gravitational collapse are studied merely as a basis for the intended studies, their
treatment via the interior nonlocal isoriemannian geometries. In fact, the
equivalence chain (5.B.1a) can also be formulated at the fully isotopic level of
Class I

R(x,gR) =~ Mix,hR), (5.B.5a)
g =T x%p 70 Jekx = T %0 .J0n {5.B.5D)

As a result, gravitational singularities on the horizon are the zeros of the general
isotopic element of the isoriemannian gecrmetry

Tk, %, %, 1, T, 0, .. = 0, (5.8.6)
while the singularities at the origin ate the zeros of the isounit
M, % % 1L 70, .0 = 0. (5.B.7})

“As a matter of fact, the latter reformulation is done precisely to study the
contributions to singularities expected from nonlinear-nonlocal-nonlagrangian
interior effects.

The broadening of the scientific horizon from Eq.s (5.B.2-5.B.3) to (5.B.6)~
(5.B.7) Jis evident, as we illustrate in more detail in Vol. IT and II1.

APPENDIX 5.C: ISOTOPIC LIFTINGS OF THE PYTHAGOREAN
THEOREM, TRIGONOMETRIC AND
HYPERBOLIC FUNCTIONS

5.C.1: Foreword. We indicated in the preceding chapters that the notion
of angles, the conventional Pythagorean theorem, the trigonometric and
hyperbolic functions and other familiar methods are inapplicable under isotopies
for numerous independent reasons, such as: the ioss of the conventional unit 1 in
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favor of generalized isounits T; the inapplicability of the Euclidean distance; the
generally curved character of the lines which prohibit the preservation of
conventional angles; etc.

[n this appendix we study the rudiments of the liftings of the Pythagorean
theorem, trigonometric and hyperbolic functions which are applicable under
isotopies. These generalizations were studied for the first time in memoir [46] of
1989 under the respective names of Isopythagorean Theorem, isotrigonometric
and isohyperbolic functions, presented in more details in Appendix 6.A, Vol. I,
ref. [47} (the first edition of this monograph); and studied more recently in note
[48]. These generalizations are a necessary pre-requisite for: the isotopies of the
Legendre functions, spherical harmonics, and other special functions; the study of
the isorepresentation theory of the Lie-Santilli isogroup 0{3); the application to a
scattering theory capable of incorporating the conventional action—at—a-distance,
potential potential interactions as well as additional contact, nonpotential effects
due to the extended, nonspherical and deformable character of the colliding
particles; and other applications studied in Vol. IL.

We shall continue to use the symbols X, &, D, etc. to denote quantities
computed in isospace and x, A, D, etc., to denote their projection in the original
space.

5.C.2: Isopythagorean Theorem. Consider a conventional two-
dimensional Euclidean space E = E(r,8,R) with contravariant coordinates r = {r¥) =
{x, y} and metric & = diag. (1, I) over the field R = R{n,+,x} of real numbers n with
conventional sum + and multiplication * and respective additive unit 0 and
multiplicative unit 1. The fundamental notion of this space is the assumption of
the basic unit [ = diag. (I, 1) which implies the assumption of the same basic
{dimensionless) unit +! for both x— and y-axes, resulting in the familiar
Euclidean distance among two points x, y € E

D = [{x;~x){x;=%) + {y; =y ) {y; = v2) "2 € R+ 3. (L)

The quantity p? = DxD, x € R, then represents the celebrated Pythagorean
theorem expressing the hypothenuse D of a right triangle with sides A and B
according to the familiar law D?=2a2+B2

The flat geometry of the plane E(r,8,R) permits the introduction of the
trigonometric notion of “angle a” between two intersecting straight vectors, and
of “cosinus of a” which, for the case when the vectors initiate at the origin 0 € E
and go to two points P(x;, y)) and Pok,, v, is given by

XpXp * ¥1¥2
cosa = ; R (52
(xlxl +Y[Y2)l2(X2X2+Y2Y2)12
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From the above definition one can derive the entire conventional trigonometry.
For instance, by assuming that the points are on a circle of unit radius, D = 1, Tor
P(x;, y|) and Py(1, 0) we have cos a = x,for Pi(x;, y;} and P,( 0, I) we have sin a =
y|» with consequential familiar properties, such as sina + cos?a = 1, elc.

Consider now the two-dimensional isocuclidean space of Class I, E =
E(r8,R) (Sect. 1.3.3) over the isofield R = R(f,+%) of isoreal numbers @i = nxl, where
the isounit T is a positive-definite 2x2-matrix whose elements have a well
behaved but otherwise arbitrary dependence on time t, the local coordinates r and
their derivatives of arbitrary order 1 =1(t, r, 1, #, ...).

The realization of E studied in this appendix is the simplest possible one of
Class I, that with diagonal isounit, of the type

BESR:T = () =(%,§)={*) = {xy), 7x = 84T = rg =1,
(5.C.3a)
§=1r, 1t ..} 6 =diag. (0,2, %), by = blt,r, 1, 1,..)>0, (5C3b)

1 = 17! = diag. (b, 2,b,72), k=12, (5.C.3¢)

The central notion of the isceuclidean plane is the assumption of new
(dimensionless) units, the quantities b, ™ for the X—axis and by 2 for the y—axis.
Thus, not only the unit is now different than +1, but different axes have different
units and, in addition, each of them is a function of the local variables.

Consider now two points P(x;, ¥), Poks, ¥5) € E(F,8,R). Then the

~conventional distance is {uniquely) generalized into the isoeuclidean distance
(Sect. 1.5.2)

D= [(Xl —Xz)blz(xl "‘Xz) + (yl ‘}’z)bzz(yl _Yg)]UZXT eR, (GC4
where one should note the final {ordinary) multiplication by T as a necessary
condition for D) to be an element of the isofield R.

Despite the visible difference between D and D, all conventional notions in
E are preserved under isotopies provided that they are computed in E over R. [n
this way, we have the notions of isolines, isostraight line, isotriangle, isostraight
triangle, etc. studied in Sect. [.5.2. We then have the following:

Theorem 5.C.1 (Isopythagorean theorem) (46-48): The following property
holds in the isocuciidean plane B3R} of Class I, Eq. (5.C.3)

0 =DxD =42+ B2 =A%XA +BXBecR, (CI
with projection in the conventional plane E(r,5R)

P2 = [ab2trt.JA + Botnt, JBIxT, (C6)
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that is, the isosquare of the isohypothenuse of an isoright isotriangle is the sum
of the isosquare of the isosides.

To understand the geometric meaning of the above theorem, we recali that
all isotopic notions have, in general, three different interpretations, the first in
isospace E(T,3,R), the second via the projection in the original space E(r,5,R), and
the third in a conventional Euclidean space E{r,5,R) over the conventional reals
R(n,+x) whose interval coincides with that in isospace. The latter condition is
easily verified by the assumption

X =xbl,x,yn%y.J, ¥=ybtxy%7.), 5.C7)

under which

[(Xl_Xz)blz(Xl-Xz) o+ (yl_Y2)b22(y1—Y2)]1/2 =

= [{(X =X (X - %) + (V- Yo (¥, - 7,0 1V2 (5.C.8)

The properties in isospace follow the general rules of all isotopies, that is,
the preservation of all original properties, including their numerical values. Thus,
straight lines in conventional space are mapped into isostraight isolines in
isospace, i.e, lines which coincide with their tangent when computed in isospace;
perpendicular lines in conventional space are mapped into isoperpendicular
isolines whose angle is indeed 90° when measured in isospace, that is, with
respect to its own isounit (see below), etc.

In this sense, a right triangle in the conventional plane remains so in
Jisoplane, and the cenventional Pythagorean Theorem holds also in isospace.

To understand the remaining geometric meaning we also have to consider
the projection of Theorem 5.C.1 in the original Euclidean plane. Recall from Sect.
[.5.2 that the isotopic lifting of the circle C in E yields the isocircle € in E which
preserves the original geometric character including the value of the radius.

We also recall that isotopic maps are not transitive, in the sense that the
lifting of the circle C on E into the isocircle € on E is axiom-preserving, but the
projection of the isocircle € on the original space E is not, being in Tact an ellipse,
because such a projection does not imply the return to the original unit [ = diag.
(1, 1).

By using the reformulation in conventional space E, it is easy fo see that
lines which are straight in E(r,8,R) become curved in Ex,8R), according to the
rule:
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The projection of the Isopythagerean Theorem in a conventional plane then
results in the map of a right triangle into a geometric figure in which the sides
are curved, with one intersection per pair as in Figure 5.C.1.

ISOPYTHAGOREAN THEOREM

EG5.R) E(r,5,R)

(a) (b)

FIGURE 5.C.1. A schematic view of the Isopythagorean Theorem, first identified in [1],
for an isoright isotriangle as in Diag (a), i.e, a triangle in isceuclidean plane E(T,5,R)
(isotriangle} with a 90° angle measured with respect to its own isounit (isoright angle —
see below for its identification), and its projection in the conventional plane E(r,5,R) given
by the Diag. (b).

A conjecture on the Inverse Isopythagorean Theorem is presented in the
concluding remarks of Sect. L.5.A.5.

= 5.C.3: Isotrigonometric functions. Let us use again the convention
according to which the symbols &, X, y, etc., denote quantities computed in
isospace E@,3,R), the symbols 4, X, ¥, etc.,, denote the corresponding quantities
when computed in the plane E(r,3,R), and the symbols a, x, v, etc., denote the
projection in the conventional space E{r,8,R).

Suppose that the two points Pyx}, ¥)) and PyX,, ¥-) represent isostraight
isovectors initiating from the origin 0 € E(r,3,R). Let us denote with & the
isoangle between these two isovectors to be identified below. Consider their
identical reformulation in the conventional space E(X,3,R), in which case the
angle a persists. We can then introduce the conventional cos @ in £(f,3,R)

. XX+ YV,
C08a = ——————— . (5.C.10)
(xlxl + YIYZ) (X2X2+ Y2Y2)]
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with projection in E{r,5,R)

A X1 b 2xp + y; b2 yy
cosa = 5 T 5 T B.C.11)
(Xl b[ Xl + yl bz Yl) (Xzbl Xy + Yo b2 Yz}

We now assume that the two points Py(x;, ¥|) and Po{k,, ¥,) are on the unit
isocircle

B = (xb2x+ ybly)xl = 1, ie, (5.C.12a)
xb?x + ybly =1, (5.C.12b)

which imply that fory =0, x = bl—l and forx=0,y= bz'l.
By assuming the points P|(x;, ¥,) and Pyfb; "L, 0), we have (for 0 < & < 1/2)

cosa = X] b[ . (513
and for the points P(X), ¥,) and Po{ 0, by"1) we have
sind =y by (5.C.14)

Definition 5.C.1: The “isosinus”, “isocosinus” and other isotrigonometric
functions on the isoeuclidean plane Ei,8,R} are defined by (for 0 < 4 < w/2)

isosind = by 'sind, (5.C.15a)
isocos@ = b, lcosd, (5.C.15b)
) isosin &
Isotang = ——— {5.C.15d)
is0Cos a
isocos a
Isocot 0. = _—, {5.C.15€)
isocos a
isosec a = 1/isocosd, isocoseca = 1/ isosin & . 5.C(15f)

with basic property

isocos?d + isosinéd = b2isocos?d + by 2isosin?d =

A

= cos? i + sina = |, (5.C.16)

and general rules for an isosquare isotriangle with isosides A and B and
isohypothenuse D as in Diag. (a) of Fig. 5.C.1
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A = Disocosy, B = Disosiny, A/ B = isotan ¥, etc. (5.C.17)

‘The isoangles have been identified from the representation theory of
isorotations in a plane (see Vol. [1, Ch. 6), and results to be given by

bl bz a = & . (5C18)

where the factor bby, is fixed for all possible isoangles of a given isoeuclidean
space. This means that the isotopy of the trigonometric angles is given by

a — bbya=a, (5.C.19)
with consequential anguiar isotopic element
Tg = bbby = (Det T)!/2 (5.C.20)
and angular isounit
Tq = b by 2= (Det.1)V2 (5.c21)

where T and 1 are the isotopic element and isounit, respectively, of the
isoeuclidean plane, Eq.s (3).

[soangles @ have a nonlinear and integro—differential dependence on the
local coordinates and their derivatives when projected in the original Euclidean
plane with expression

a=bilt, %y, % ¥ .Jblt,x, ¥y, % V,.)a, (5.C.22)

but they have constant values in isospace because measured with respect to the
angle isounit Ty = bl"l b2'1. We reach in this way the following property:

Proposition 5.C.1 [48]: The isotopies of the plane geometry preserve the
numerical value of the original angles, that is, if the original angle is a = 90° so
is the value of the corresponding isoangle @ is isospace.

In fact, a given isotopic deformation of the angle @ — b }bza occurs under
the joint inverse deformation of the basic unit [ =1 = bl_lbz_ , thus leaving the
original numerical value o unchanged,

With respect to Fig. 5.C.1 we therefore have & = 90° and @ + 8 + ¥ = 180°.
However, after the lifting a = 90° — @ = 90°, the projection of the latter in the
original plane does not yield back the angle ¢ =90°, but an angle a such that a =
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bybya = 90° and similarly we have a +B+y #90° but a+B+y =bybla + B + y) =
180°. It is then easy to see that the isotrigonometric functions are penodzc as in
the conventional case, ie,

isosin{a + 2k m) = isosin &, (5.C.233)

isocos{a + 2kmw) = isocosa, k=1,23.. (5.C.23b)
and preserve the conventional symmetry under the inversion of the angles
isocos -4 = isocos d, isosin-a = - isosin d. (5.C.24)
Similarly, we have the Theorems of Isoaddition [1]
isosin (@ +B) = b;~! (isosin & isocos B + isocos & isosinB ),  (5.C.252)
isocos (& +B)=1b,%( by 2 isocos & isocos B + b, 2 isosin & isosin B) (5.C.25b)
isosin & + isosin® = 2b; ! isosin + (& +B ) isocos + (& ~B). (5.C.25d)
The interested reader can then work out the isotopies of other trigonometric
properties.

We are now equipped to introduce the following

Definition 5.C.2: The “isopolar coordinates” are the polar coordinates of the
unit isocircle in the isoeuclidean plane ET,8,R), and can be written

X = isocosa, y = isosina, (5.C.26)
with projection in the conventional Euclidean plane E(r,8R)

b lcos {b;bya), ¥ = byl isosin{b bya). (5027

x =
and property
%2+ 32 = Xxb2x + ybly =
= b)2isocos? @ + bylisosin®@ = cos?d + sind = 1. (5C28)

The exponential formulation of trigonometric functions also admits a
simple, yet unique and effective isotopic image. It requires the lifting of the
conventional enveloping asscciative algebras £ and their infinite—dimensional
basis with conventional unit I and product x (the Poincaré-Birkhoff-Witt
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Theorem) into the enveloping isoassociative algebras t of Sect. 1.4.3 with isotopic

image of the original infinite basis characterized by the isounit 1 and the isotopic

product % = xTx {the isotopic Poincaré-Birkhof-Witt Theorem).
ISOTRIGONOMETRIC FUNCTIONS ON THE ISOCIRCLE

EAAR) ERAR)

Y

x>

(a) ' (b)

FIGURE 5.2 A schematic view of the isotrigonometric functions on the isocircie {Sect.
15.2), that is, the circle in isospace, Diag. (a), and in its projection in conventional space,
Diag. (b). Isotrigonometry shows that the the geometric structure of the circle is indeed

.axiomatic in the sense that it persists under isotopies. This is illustrated by the
preservation under isotopy of the polar coordinates on the conventional circle (Diag. (a}

Xx=cosa —+ X = isocosd,
y = sina — ¥ = isosind.

However, the projection of the above structure back to the conventional plane implies the
deformation of the circle into the ellipse {Diag. (b)), with deformation of the polar
coordinates

x=cosa — x=0bleoslbbyal,

A

y =sina - y= bzhlsin(bl byal.

The reader is warned not to attempt the computation of isotrigonometric properties in
the conventionai Euclidean plane, This is due to the fact that the k and y isostraight axes
in R are mapped into curves in E, as depicted in Diag. {b). Mathematical consistency of
the isotrigonometry is then achieved only in isospace.

The isotrigonometric functions can then be expressed in term of the
isoexponentiation according to the rule
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[ =T+ (ia)/ 11+ (ia)T{ia)/21+ .. =

iTsa il byla
=lgxe ¢ =(pSxe 0 =

= b, lisocos & + ib;”! isosin &, (5.C.29)

where & denotes isoexponentiation and e conventional exponentiation.
The interested reader can then work out additional properties of the
isotrigonometric functions.

5.C.4: Isohyperbolic functions. The application of the preceding method

to the lifting of the hyperbolic functions is straighforward, leading to the
following:

Definition 5.C.3 [46-48]: The "isohyperbolic functions” on isoeuclidean space
E(r.8R) of Class I are given by

isocosh & = by~' cosh (b bya), (5.C.30a)
isosinh & = by"!sinh (b; bya), (5.C.300)
with basic property
b2 isocosh? & — by? isosinh® & = 1, (5.C.31)

and derivation via the isoexponentiation

2% = "laeT&a ={b, bz)"le(bl bola _

= b, lisocosh @ + by ! isosinh & . (5.€.32)

The interested reader can then work out the remaining properties of the
isohyperbolic functions.

We now show the property that the distinction between trigonometric and
hyperbolic functions is essentially due to the excessive simplicity of the basic
unit customarily used in contemporary mathematics, while such a distinction is
lost under more general units.

In fact, the use of a more general unit under isotopies allows the following
result.

Lemma 5.C.1 [48]: Isotrigonometric and isohyperbolic functions lose any
distinction on isoeuclidean planes B{I3,R) of Class IIf
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Proof. Assume the realization of the isounits 1 and 15 of Class III,
1= diag. (g“_l, gzz_l }, 1& = (g“ o2 )_1/2, {5.c.33)

where the functions gyy = g lt, x, v, X, ¥, ..} are smooth, real-valued and
nowhere null but otherwise arbitrarily positive or negative. Then, the
isoexponential realization of the isotrigonometric functions (29) and of the
isohyperbolic functions (32) are unified into the form

.5 Tsa 1 W2 g
e = 'I&e ¢ = (g“ 322) V2e 811 B22 ) (5.C.34)

where the isotrigonometric functions occur when the product g2, is positive
and the isohyperbolic functions occur when the same product is negative. q.e.d.

Lemma 1 also unifies the conventional trigonometric and hyperbolic
functions, the former occurring for 1 = I = diag. (1, 1) or Dig. (-1, —1) and the latter
for 1= diag. (+1,-1) or Diag. (-1, +1), the second alternatives being the isodual of
the first ones.

5.C.5: Open problems, In this appendix we have studied the rudiments of
the isotopies of the Pythagorean Theorem, trigonometric and hyperbolic
functions for the simplest possible case of Class I in which the isounit is
positive-definite and diagonal, Eq. (3¢). Numerous problems remain open for the
interested reader, among which we indicate the study of the Isopythagorean
Theorem, isotrigonometric and isohyperbolic functions for:

1) Isotopies of Class II, requiring the study of the isostraight lines,
isoangles, isotriangle and.isocircles with negative unit.

2) Isotopies of Class 1lI, requiring the study of isostraight lines, isoangles,
isotriangle and isocircles with units of undefined signature.

3} Isotopies of Class IV, requiring the study of isostraight lines, isoangles,
isotriangie and isocircles with singular units.

4) The isotopies of Class V, requiring the study of isostraight Imes,
isoangles, isofriangle and isocircles with unrestricted — e.g., discontinuous -
units.

All the above studies are referred to diagonal isounits of the type

1=( e ) 5.3
0 822

Additional open problems are given by the study of the [sopythagorean
Theorern, isotrigonometric and isohyperbolic functions of Classes [-V with
nondiagonal isounits of the type
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0 -1
1= ( e ) (5C.36)
€33 0

as well as those with general isounits of the type

~1 -1

g g

1= ( v ) (5..37
£33 822

which are unknown at this writing.
The study of the following conjecture may also be of some interest:

Conjecture 5.C.1 (Inverse Isopythagorean Theorem) [48]: Given a geometric
figure consisting of three smooth but otherwise arbitrary curves in a
conventional Euclidean piane intersecting each other as per Diagram (b) of Fig. I,
there always exists an isotopy of the unit of Class I, 1 = 1, under which said
geometric figure is mapped into the isoright isotriangle in isoeuclidean space for
which the isopythagorean theorem hoids.

IT correct, the above conjecture would establish that the abstract geometric
structure of the historical Pythagorean theorem applies to a class of figures
much broader of what considered until now, and it is in fact universal for all
"triangles” with “curved sides”.

Note that the proof of Conjecture 5.C.1 appears to be possible for the case
of nondiagonal isounits of type (37) because they contain three arbitrary
functions gy (t, X, v, ..) as needed to characterize the three independent curves of
the "triangle”. A more difficult case is whether the isotopic lifting of Diag. (b)
into {(a) of Fig. 1 exists also for a diagonal isounit with two independent
functions gy while we have three independent curves.

The author hopes to have illustrated in this appendix once more that the
removal of the current restriction of our entire mathematical knowledge to the
trivial unit identified since biblical times, and the use of structurally more
general units, implies a rather vast broadening of all of mathematics, beginning
with the most elementary ones such as angles, and then following with all
remaining structures, permitting basically novel applications in a variety of fields
(Vol.s Ii and II1).
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6: FUNCTIONAL ISOANALYSIS AND ITS ISODUAL

6.1: STATEMENT OF THE PROBLEM

The transition from Newtonian to quantum mechanics implies the preservation
of the basic mathematical notions such ash numbers, angles, metric spaces,
special Tunctions, etc., and only the reformulation of observable on a Hilbert
space.

The transition from quantum to hadronic mechanics is much deeper
because it requires a suitable generalization of all basic mathematical notions of
quantum mechanics, beginning with numbers, angles, metric spaces, special
functions, etc., and then passing to a generalization of Hilbert spaces themselves.

The above occurrence can be expressed by the faclt that functional
analysis remained unchanged in the fransition from classical to quantum
mechanics. On the contrary, the fransition from quantum to hadronic
mechanics requires a structural generalization of functional analysis into a new
discipline called "functional isoanalysis’. '

The need for an isotopic lifting of numbers, angles and trigonometric
functions has been indicated earlier in this volume, jointly with that for the
generalization of other ordinary functions, such as exponentiation, hyperbolic
functions, logarithm, etc. The need for a lifting of special functions is then
consequential, as studied in this chapter.

Let us identify here the need for lifting Hilberl spaces theinselves. As
recalled earlier, hadronic mechanics was originally submitted [1] in 1978 as an
isoassociative enveloping algebra Ep (Sect. 4.3)*3 of operators A, B, ... with
isotopic product

tr=A*B:= ATB, 1=T7 (6.1.1)

on a conventional Hilbert space 3 with elements 4 , ¢ , ... with familiar inner

43 por clarity due to the subsequent analysis, in this chapter we shall identify with a
subscript the isotopic element of a given structure, such as in Ep.
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product
1 <ylo> = J Brelen e derx. 6.12

which is indeed a mathematically correct formutation.

However, this original formulation had the physical problematic aspect that
operators of the original envelope £ which are Hermitean on 3¢ did not remain
necessarily Hermitean under lifting & — ET. This is due to the fact that, as we
shall see in this chapter, the condition of Hermiticity of an operator H € &p on 3C
is given by :

gi = v uf 1, (6.1.3)

where HI is the conventional Herrmiticity. Since the operators T and H do not
necessarily commute, we have in general that H# H.

This implied that observable of quantum mechanics, such as the total
energy H, the linear momentum p, etc.,, do not necessarily remain observable
under under isotopies & — E over 3C. 5

This clearly called for an appropriate generalization of the underlying
Hilbert space 3¢ in such a way to preserve observability under isotopies. These
studies were initiated by this author immediately after proposal [1], e.g., in ref. [2]
of 1979. The resolution of the problem received a Tirst rigorous treatment by
Myung-and Santilli in ref. [3] of 1983 via the introduction of the notion of
isotopic Hilbert space 3 or isohilbert space for short, which is essentially the
image of 3C under the lifting of the composition

Ryp: <dlo> = <P|TI§>T = <P[*[$>1 =
= 1) ST nn Dol € SR, (6.14)

where, as one can see, the assumption of the positive—definiteness of the isounit
{Class I) implies the preservation of the inner character of the composition and,
thus, of the Hilbert character of the space Xp.

Isohitbert space (6.1.4) did indeed achieve the desired objective because, as
we shall see better in this chapter, the condition of Hermiticity of an operator H €
& on Xy coincides with the conventional Hermiticity,

H = uf, - (6.1.5)

thus permitting the preservation of Hermiticity under isdtopies.

The importance of this result should be indicated for readers not familiar
with isotopic techniques. A central objective of hadronic mechanics is to
complement conventional quantum mechanical descriptions of interacting
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particles at large mutual distances ( » 1 fm), with additional internal, short range,
nonlinear—nonlocal-nonhamiltonian interactions when in conditions of mutual
penetration of their wavepackets at very short distances ( < 1 fm) (see Fig. I.1.1.1)

This implies that the operators such as the energy H=K + V of the
particle in exterior conditions does not change in the transition to the condition
of total mutual immersion of the particles considered because the additional
interactions have no potential by conception. Still in turn, this implies that a
necessary condition for the physical consistency of the isotopies is the
preservation of the <observability> of the original energy H, ie, the
preservation of its Herniticity.

Thus, ref. [3] identified the fundamental carrier space of (the Lie-isotopic
branch of} hadronic mechanics, the space 3r , which fulfills the fundamental
task of preserving the observability of conventional physical quantities. However,
the lifting 3C — 3Cp implies a structural revision of the conventional Hilbert space
theory into five classes, as we shall sce.

The subsequent studies by Mignani, Myung and Santilli [4] of 1983 indicated
that formulation (6.1.4) is still restrictive because the enveloping isoassociative
algebra (6.1.1) could be consistently formulated also in the different isospace

Kot <ylo> : <F[G]§>T1 = <F|o[d>T =
= 1 S&eloctnr r. )60 € 0, (6.16)

where G is an operator independent of T. The lifting 3 — 3 implics again the
general loss of Hermiticity because, as we shall see in details in this chapter, the
condition of Hermiticity of an operator H € &1 on R is given by

H = glTafgr!, 6.1.7)

which includes as particular case condition {6.1.3).

Subsequent studies indicated that, despite the general loss of the original
Hermiticity, the formulation of hadronic mechanics via isoenvelopes E’I‘ on the
isohilbert space g with T # G is important in certain specific cases in which the
formulation on SET is not sufficient. In fact, the introduction of an isotopic
element G in the Hilbert space different than T represents an additional “hidden
degree of freedom” of the theory.

The motivations are linked to the reconstruction of exact Lie symmetries
at the isotopic level of hadronic mechanics when believed to be broken at the
simpler quantum mechanical level The use of only one isotopic element T for
both the envelope and the Hilbert space is sufficient for the reconstruction of the
exact symmeiry in a number of cases, such as the reconstruction of the exact
rotational symmetry when believed to be broken by ellipsoidical deformations of
the sphere [5-7], the reconstruction of the exact Lorentz symmetry when believed
to be broken by signature—preserving deformations of the Minkowski metric (8],
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the reconstruction of the exact isospin symmetry in nuclear physics with equal
proton and neutron masses in isospace, and others.

However, there exist cases in which one sole degree of freedom is
insufficient, and two different isotopic elements T.and G are needed. This is the
case for the ongoing attempts (see the initial effort [9] studied in more detail in
Vol. II) to reconstruct parity at the isotopic level as an exact symmelry for
“weak” interactions via the embedding of all symmetry breaking terms in the
isotopic elements.

The technical issue is the identification of which isotopic element should
incorporate all symmetry violating terms. Recall from Sect. 1.4.5 that in the
lifting of continuous symimetries we have the appearance of the isotopic element
T in the isoexponentiation. Thus, the embedding of the symmetry breaking
terms in the isotopic element T of the isvenvelope &r and isofields Fp is
generally sufficient for the reconstruction of exact “continuous” symmetries.

The case for discrete transformation is different because they admit no
isoexponentiation, and actually admit the reduction to the corresponding
conventional transformations (Sect. 1.4.7), eg.,

e lr) = wdlr) = ¢ 1), # =7T!. (6.1.8)

The general insuffiency of the isotopic element T is then evident. As a result, the
reconstruction of exact “discrete” symmelries generally requires the embedding
of the symmelry breaking lerms in both the isotopic element T of the
isoenvelopes Ep and of the isofield Fp as well as in the isotopic element G of
the isohilbert space Xg.

In summary, the part of functional isoanalysis dealing with isohilbert
spaces implies a rather -broad -lifting of conventional quantum mechanical
formulations consisting of a double generalization, the first via the same isotopic
element of the envelope and the second based on the differentiation hetween the
isotopy of the envelope and that of the Hilbert space.

We now pass to a few comments on the lifting of the remaining aspects of
functional analysis. Recall that the Tirst step that lead to hadronic mechanics was
the isotopy of the Poincaré-Birkhoff-Witt theorem resulting in a generalized
notion of exponentiation (Sect. 1.4.3).It was then known since the original proposal
[1] that the isotopies of the enveloping operator algebra, £ — &g, imply a
generalization of all familiar structures of quantum mechanics such as Dirac’s 8-
function, the Fourier transforms, Gauss distributions, etc.

A first formulation of the isotopic §—function appeared in ref. [3], while its
systematic study was presented in memoirs [10,11], jointly with the first
formulations of the isotopies of Fourier series and transforms isotopies studied in
this chapter.

The Tull implications of these studies for conventional functional analysis
(see, e.g., ref.s [12-13] and quoted references) was however identified only recently
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by Kadeisvili [14] who understood that the isotopies of fields Flo,+x) — Frld,+¥),
enveloping algebras & — Ep and Hilbert spaces 3 — GCT imply a nontrivial,
nonlinear-nonlocal-noncanonical isotopic generalization of the totalify of
functional analysis, that is, not only of square integral, Banach, Hilbert and other
spaces, but also of conventional special polynomials (such as the Legendre
polynomial), special functions (such as Bessel and Legendre functions),
transforms (such as Fourier and Laplace transform), etc. In fact, the terms
“functional isoanalysis” appeared for the first time in ref. [14].

The mathematical relevance of these isotopies will be evident during the
analysis of this chapter. Their physical relevance can be best illustrated with the
fact that, in the subsequent paper [15), Kadeisvili reinspected the isotopies of the
Fourier transforms of ref. [10] and discovered that they imply a necessary
generalization of Heisenberg’s uncertainties precisely into the form submitted by
this author [16] back in 1981

Ax Ak z +<1>, {(6.1.9)

where 1 is the isounit and < ... > is a certain form of the expectation value to be
studied in Yol. IL.

In fact, Kadeisvili [15] showed that the Fourier isotransform, when applied
to a Gaussian distribution, implies the map (in term of the isoexponentiation of
Sect. 1.4.3)

— 2 — 2 2 12,2 — 2T a2/2
4’()()%% X /2aEeE x“T 2a=>¢(k) ~ e k- a /256& k“Ta (6.1.10)

as a result of which we have the isotopic behaviour

Ax ~ a/T:, Ak~ 1/aT?, ©.1.11)

yielding precisely isouncertainties (6.1.9).

We reach in this way the first illustration of the fact that the isotopies
imply such a generalization of the mathematical struclure of quantum
mechanics for the exterior problemn in vacuurn to result in fundamentally more
general physical laws for the interior problem.

For future need in Ch. 1.7, note the uniqueness of the generalizations
originating from the uniqueness of the exponentiation (Sect. 1.4.3).

In App. 6.A we outline the notions.of isomanifolds and related isotopology
first derived by Tsagas and Sourlas [30] As we shall see, these studies have
identified a new integro—differential topology which is everywhere local-
differential except at the unit.

In App. 6B we point out a different generalization of special functions, the
so—called gq-special functions. The latter generalizations are different than those
needed Tor hadronic mechanics for numerous reasons, such as:
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A} the g-special functions are deformations preserving the original unit
while in hadrenic mechanics, as now familiar, we have deformations under the
joint lifting of the unit;

B} q-deformations are g-number deformations, while hadronic mechanics
requires Q-operator deformations;

C) g—deformations are defined on an ordinary space, while the Q-operator
deformations are defined on an isospace;
and others.

As we shall see in Vol. II, g-special functions are not invariant, because the
g-number becomes Q-operator under the time evolution of the theory. This is
one of the reasons why the use of g-special functions in hadronic mechanics
leads to a host of generally hidden inconsistency. By comparison, our Q-special
functions remain invariant at all times.

We learn in this way that a fundamental condition for the consistent
applicability of isotopic special functions is their invariance under Lie-Santilli
isotransformation groups, whether in classical or operator realizations depending
on the case at hand.

In App. 6.C we reprint a recent article by Aringazin, Kirukhin and Santilli
[31] on the construction of the isolegendre, isojacobi and isobessel Tunctions,
which may serve as a basis for the study of other isospecial functions.

In this chapter we present the rudiments of Tunctional isoanalysis with the
understanding that this discipline too is at its first infancy and so much remains
to be done. In particular, our presentation is intended for graduate students in
physics and all mathematical profiles are left to interested mathematicians.
Additional aspects, such as special isofunctions needed for specific applications,
will be worked cut in Yols II and III.

6.2: ISOHILBERT SPACES AND THEIR ISODUALS

[t is significant for this chapter to recall that functional analysis (see, e.g., ref.s
[12,13]) was born and developed primarily because of specific physical
motivations, rather than abstract mathematical needs.

In fact, the French mathematician J. B. J. Fourier identified his celebrated
series and transforms during his study on heat conduction; Freedholm worked
on integral equations because of specific problems in classical electromagnetism;
von Neumann conducted most of his studies on operator algebras because of
specific physical needs; not to mention the fundamental physical role of Hilbert
studies in quantum mechanics,

[t is intriguing to note that, much along the same lines, the new discipline
of functional iscanalysis , was also born out, specifically, of physical problems,
given this time by the author’s studies of nonlinear, nonlocal and noncanonical
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systems of the interior dynamical problem.

Conventional functional analysis can be seen as the discipline which is and
will remain fundamental for the exterior dynamical problem of particles in
vacuum {see Sect. 1.1), while functional isoanalysis is a covering discipline
specifically conceived for the more general interior dynamical problem of
extended particles moving within physical media.

Despite its rather vast current dimension, contemporary functional analysis
remains based on conventional notions, such as conventional Tields, conventional
vector spaces, conventional operations, etc. It is then inevitable that the isotopic
generalizations of these structural foundations imply the existence of a
consequential, corresponding generalization of the entire theory.

It is also significant to note that functional isoanalysis was born and
completely developed in physical publications until very recently. In fact,
Kadeisvili papers [14,15] are the first papers appeared very recently in a
mathematical Journal, to the author’s best knowledge.

The foundations of functional iscanalysis are those reviewed in the
preceding chapters, and consist of the isotopies of fields, vector spaces,
transformation theory, algebras, groups, geometries, etc. This section is solely
devoted to the isotopies of Hilbert spaces, while additional aspects will be studied
in the following sections.

The first notion of isoanalysis is the isofield Fa,+* with isonumbers a =
al, conventional sum +, isoproduct * = XTx, and isounit 1 = T"L. For simplicity, we

_shall restrict F to have isocharacteristic zero and to represent the isofields of real
- isonumbers R(fi,+*) and of complex isonumbers C(C,+%. More general
formulations of isoanalysis on isoquaternions are left to the interested reader.*4

The second fundamental notion is a generic, finite-dimensional vector
isospace 8(x,C) on the isofield . The abstract identity of &+ and Clc,+X) and
that of 3(x,C) and S{x,C) should be kept in mind to anticipate that functional
isoanalysis coincides with the conventional formulation at the abstract level by
construction (although only for the case of isounits of Class I, see below).

Recall that conventional complex numbers ¢ can be reinterpreted as being
complex iscnumbers under the isotopy of the multiplication. Along similar lines,
a conventional function f(x) on Sx,C) can be reinterpreted as being a function on
8,8). In fact, it is not the value of the function f(x) which identifies the
distinction between S(x,C) and 3(x,0), but rather the operations on it.

Finally, the reader should recall that the isotopies automatically generalize
a linear, local and canonical theory into an axiom—preserving, nonlinear, nonlocal
and noncanonical form because of the arbitrary functional dependence of the
isounit T =", x, %, %, ¥, ¥t, 8, 8, ...).

The first isotopic operation among functions on 8(x,&) is the isoscalar

43 It should be recalled that, on strict mathematical grounds, even the formulation on
isocomplex numbers is inessential owing to the unification of all numbers and
isonumbers in the abstract field of isoreals (Sect. 2.7).
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product (or isoproduct for short) of two functions f|(x} and fy(x), which is
given by

i) = k) = fGl, )L € 8&x0, (6.21}

where the isotopic element G is fixed, and different than T.
The isoinner product of two functions f;{x) and fyx} on 8(x,C) is the
composition with elements in ¢ introduced in ref. [3]%

0:5) = [ aTwonk=/ "aTomp cters, 622

where T denotes ordinary complex conjugation and Clc,+*) is the isofield of
Proposition 2.3.1 {that without the lifting of the numbers in which case the isounit
must necessarily be an element of the original field).

The above foundations then imply the lifting of the conventional quantity
| 7(x}| into the isoabsolute value f(x){ characterized by

11012 = (G601 =( e k)1, 6.2.3)
and given by
M)l = (FGTE 1 = (Tor)ix1. (6.2.4)

where ! is a conventional square root. The isonorm |Tt(x)]] of a function f(x} is
then defined by the element of the isoreals .

N2 = 6701 =1/ "exTetd € Rnrd, (623
and given by
160 1= (1% = (£,,65)% 1 . (6.2.6)

[t should be indicated from the outset that the above definitions are not
unique, owing to the degrees of freedom of the isotopies. In fact, one can
consider the maps

f = T=1f1e8%8, ¢~ ¢ =cle iy, 6.2.7)
in which case we have the map of the isoproduct

f;Gf, - 1 Gh =11GMH1 = 11, (6.2.8)

45 It should be indicated that, as shown in Sect. 6.7, the measure dx is lifted into the
form @x = d(Ix). However, for 1 independent of x, we have Jdx * T {x}folx} = [dx

T 60x o).
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with corresponding definitions for isoabsolute value

1l = (T 11 )71, (6.29)
isoinner product
(171) = 1 eI i) € R, 62.10)
and isonorm
ITe60 1] = @71 = (1,101, 6.2.11)

The transition from the preceding formulation in terms of ordinary
numbers and functions to the latter one was introduced by the author in ref. [10]
for the particular case of T = G under the name of reciprocity transformation
because based on the replacement

T -1, 1171 (6.2.12)

the case T # G being a simple generalization. The formulation on isocomplex
numbers C(&,+*) is that primarily used in physics because it implies that the
isotopic eigenvalues are the conventional ones {see below in this section), although
both formulations emerge rather naturally, e.g., in the lifting of Dirac delta—
function (see Sect. 6.4).

Needless to say, maps (6.2.7) are, by far, nonunique and a number of
-additicnal maps implying nontrivial alterations of the isopreduct are possible.
Nevertheless the above two alternatives are sufficiently to identify the
foundations of isoanalysis.

From these rudimentary notions it is sufficient to see the need 1o use again
Kadeisvili classification:

Primary classification: based on the characteristics of the
isounit (Sect. 1.5%:

Class I: Functional isoanalysis properly speaking,

Class I1: Isodual functional isoanalysis ;

Class III: Indefinite functional isoanalysis ;

Class IV: Singular functional isoanalysis ;

Class V: General functional isoanalysis .

Secondary classification: based on the assumed realization of

isofields and isovector spaces
Subclass A: characterized by Fa,+% and 8(x.F), ie, isofields whose
elements are ordinary numbers and with ordinary functions f(x) on
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B(x,F).
Subclass B: characterized by F(a,+*) and 3xF), i.e, isofields  with
elements elements a =a 1 and with isofunctions T(x}) = f(x) T on 8(x,F).

By no means the above classification is complete. In fact, a further
structural generalization is that suggested by the more general, one-sided, Lie—
admissible formulations of the next chapter. Nevertheless, the above
classification is sufficienl to identify the new discipline and initiate its
systematic study.

A Tirst purpose of the ahove classification is to separate the axiom-
preserving liftings from the more general ones. As an example, an “inner” product
remains inner for Classes I, but not necessarily for Class III.

The mathematician can now see the novel concepts implied by isoanalysis,
such as [10]: negative—definite composition {Class II); Tunctional analysis based on
a singular isounit (Class IV); isohilbert space whose unit is a lattice, or a
distribution (Class V), etc.

Note that the isoinner product is invariant under isoduality,

. 1P =10f a0 B = " ax Ty 1. 62.13)

However, one should recall that positive numbers are negative when referred to -
isodual fields, evidently because their unit is negative—definite. This point is
clarified below when studying the isodual isohilbert spaces.

From now on, unless otherwise stated, we shall study in this section only
the isoanalysis of Class [A, and IB, and their isoduals [[A and IIB. The study of the
remaining classes must be deferred for brevity to the individual researcher.

Let us consider first Class IA. The problem of isocontinuity , that is,
continuity on an isospace, was- first studied by Kadeisvili in ref. [14] via the
isocontinuity of a function f(x} at a point x € 8(x,F}, which occurs when | [f(x) [|
— 0 implies [ fix + €) - fx) = 0.

Note that all conventionally continuous functions are also isocontinuous
for Class 1A, although the viceversa is not necessarily true under relaxed
properties of the isounils. As a matter of fact, functions that are conventionally
discontinuous can be turned into isocomtinuous forms via syitable selection of
the isounit.

The isoschwartz inequality , introduced in ref. [3] for the case T = G, is
given by the simple isotopy of the conventional expression

M)l = Inf*inl, (6.2.14)

and its validity (again, for Class I) can be easily proved.
A function f(x} on 8x,0) is said to be isosquare integrable [14] in the
interval [a, bl when the integral
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f abdx 1|2 = 1 f ab dx Tx) G i), (6.2.15)

exists and is f1mte The set of all isosquare integrable functions in [a, b] will be
denoted with £2)a,bl. One can now begin to see some of the novel applications of
isoanalysis. In fact, a function which is not square integrable in a given interval,
can be turned into an isosquare integrable form via a suitable selection of the
isotopic element with evident computational advantages (see below for an
example).

A sequence T, T,, ..... is said to be strongly isoconvergent to f when

Lim g oo f — 1T = 0 {6.2.16)

with a similar definition holding for series. Again, for Class [A, strong
convergence implies the strong isoconvergence, which is a trivial occurrence.

A nontrivial property is that the opposite is not necessarily true, namely, a
sequence {or, more generally, a series) which is strongly isoconvergent is not
necessarily conventionally convergent . This property has fundamental physical
relevance that motivated this authors and several independent researchers to
study hadronic mechanics,

In fact, as well known, electromagnetic interactions do have a convergent
perturbative theory due to the low value of the coupling constant, which permits
several numerical calculations suitable for experimental tests. On the contrary,
strong interactions do not have such a convergent perturbative theory in their
current formulation within the context of ordinary functional analysis, with
evident consequential limnitations of the theory.

As we studied in detail in Vol. [I, the fundamental physical point here is
that the covering functional isoanalysis offers real possibilities for the
construction of a convergent isoperturbation theory for strong interactions.

The isocauchy condition is the isotopic property verified by every strong
isoconvergence

Ty — a1l < 8 621D

with 8 > 0 real arbitrary and for all m and n greater than a suitably chosen N(8).
It is easy to see that, again for Class [A, when the isoinner product is
isocontinuous, the isonorm is isocontinuous. The extension of the preceding
results to Class IB is evident and will be tacitly implied hereon.
We now present the following notion introduced in ref s [3,4,10]

Definition 6.2.1: An “isohilbert space” g ; of Class I.B and isotopic element
G is an isospace over the isofield C(C,+x) characterized by the following axioms:
A.1: Rp g is an isolinear and isolocal space (Sect. 4.2), ie., for given elements & ,
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$p of Xyp g, complex numbers ¢ , ¢ € € and operator U acting on Rpg
we have

0% (& *dy + Syxdy) = & xOxd; + EyxOriy; (6.2.18)

where the isotopic product is given by * =x T %, and the isounit is 1= T
A2 JCIB,G is equipped with an isoinner product defined for every pair of
elements 11‘1 , ’1’2 € :}CIB,G by

@9 = 1) ax ¥ ok g I W0 e R, (6.2.192)
(&7 o) = Wyl)) e ewm (6.2.19b)
© %y dod=C x (§ ) &) ()¢ ¢ fo )=, %) * & (6.2.190)
(P +070) = (37D + (§,70) (6.2.19¢)
Jy €eXgg, ¢ =clellet¥, G =T,
A.3: The isonorm | | 1) | | is always positive definite, or null for T =0, and
verifies the isoschwartz inequality (6.3.14), thus implying ‘that both isotopic

elements are of Class I (sufficiently smooth, bounded, nowhere degenerate,
Hermitean and positive defirite) ,

T > 0, G>0; (6.2.20)

A4: R Iscountable, ie, there exists a countable set of elements € , &5, ..,
&, approximating every element $eXpg,

= zk=l,..,n Cereg € :}QIB,G ,¢eC, 6.2.21)
with arbitrary accuracy, i.e.,

- 2x=r,.nCx&ll < 5 (6.2.22)

for arbitrary 8 > 0 and sufficiently large n. The elements §, &, etc. of an
ischilbert space are called “isostates”.
A5 Wypgq Is conventionally complete [12,13].

The reason for the formulation of ischilbert spaces for Class IB is now
evident. In fact, for Class IA, we have in general G = G{t, x, %, ¥, §, ..), as a result
of which, in general,
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(crdpy ) = Ty Tl (g T xdy o (dy T xc. (6.223)
As a result, we have the following

Proposition 6.2.1 14} Isohilbert spaces of Class IB are Hilbert, but those of Class
IA are generally not.

However, in most physical applications, we have the single isotopic element
T = G which can be assumed to be independent of x and ¢. In this latter case
isohilbert spaces of Class [A do verify all axiomns of Definition 6.2.1, including the
axioms
(C*L]Jl :1152) = E*(t!!l :lbzﬁ, {4 :C*llig) = (411 sl )*c. (6.2.24)
by therefore being Hilbert.

Definition 6.2.2 [10} Two elements & and {§, of an isohilbert space g
over the isofield C are said lo be “isoorthogonal “when

(§170) = 0; (6.2.25)
an element § is said to be "isonormalized” when
(, §)=1; (6.2.26)

and a basis €, .., &, is said to be “isoorthonormal “ when it verifies the rules

The corresponding expression for spaces of Class IA are given by
() =0 (G7d) =1, (eTe) =& (6.2.28)

Definition 6.2.3 [14} An isobanach space Big of class IB is an isospace over an
isofield C(C,+*) characterized by the following axioms : '
A.l: B is an isolinear space ;

A.2: For every element T € Byg there is an isonorm  |[1'[| with values in R{fi,+»)
verifying the properties

[Te*2T] = TeI+ITT] 11T+ D0l = [T (] + [Tl 6229

|1t ]| is positive-definite, or.null for T =0; and
A.3: B|g is {conventionally) complete as for the isohilbert space.
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Again, one can see that an isobanach space of Class IB is Banach, but
one of Class IA is not necessarily so, unless the isounit is independent from the
local coordinates .

The classification given above for functional isoanalysis evidently applies
also to square integrable, Hilbert, Banach and other spaces, resulting in isospaces
of Class [A, IB, 114, IIB, II1A, IIIB, etc.

To study the isodual image of isohilbert spaces it is best to use Dirac’s
notation via bras and kets. Recall that the elements of a conventional Hilbert
space JC are the states | > with familiar inner product and normalization

<glo> = f el o) € clerd, <@le>=1. (6.2.30)

The dual Hilbert space JC is then the space with dual states < s | equipped with
the same composition (6.2.30) over Clc,+x). As well known, 3¢ and 3¢ are not
independent, but interconnected with the conjugation

<¢| = (Jy> (6.2.31)

[ the above formulation, the isohilbert space 3C is an isolinear space of
isostates | § > {with § generally different from &) equipped with the isoinner
product and isonormalization

<G> =1/ a O T Do) € oorn, (6.2.322)
<Plg>=1. (6.2.32b)

~The isodual isohilbert space 3¢9 can then be defined As the isolinear space with -
isodual isostates < { |® equipped with the same composition (6.3.32a) but now
referred over the isodual isofield C%(¢8 + +9), with calls for an isonormalization
with respect to 19 = -1,

This implies that 3¢ and 19 are interconnected by the conjugation

<GP = -(§> T, (6.2.33)
which is the extension to Hilbert spaces of the isodual conjugation for complex
numbers ¢ -» ¢= -G,

The isodual isoinner product and isodual isonormalization can then be written

<§185% = (<e)|o> =-19[ @l %, Dol e Berr, (6.234)

<§HE>9=19 = -1. (6.2.34b)
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In summnary, the following four spaces will have a primary relevance for
our analysis:

A) Conventional Hilbert spaces 3¢, which are and will remain at the
foundation of particles in exterior conditions,

B) Isodual Hilbert spaces :}Cd, occurring for1d = -1, which are assumed as
the basic spaces to represent antiparticles in exterior conditions;

C) Isohilbert spaces 3 (generally assumed of Class ), which are the basis
of the representation of particles in interior conditions; and

D) Isodual isohilbert spaces ch(generally assumed of Class II), which are
assumed at the basis of antiparticles in interior conditions.

We leave to the interested reader for brevity the study of the isohilbert
spaces of Classes III, IV and V, as well as the isodual square integrable spaces
220, b] and the isodual isobanach spaces RY.

The fundamental character of the isotopy of the unit I =1 is evident from
the preceding structures. Note that the integral realizations of T mentioned above
characterizes the particular type of integral topology of Fig. I.1.4.1. In this sense,
functional isoanalysis constitutes an integral generalization of the conventional
analysis.

Numerous examples of integral isounits will be given in Vol.s Il and IIi.
They essentially represent the overlapping of the wavepackets as a necessary
condition to have an interior dynamical system, in such a way that, when the
overlapping is null, the isounits T recover the conventional unit 1. In this way,
functional isoanalysis recovers the conventional functional analysis identically,
by construction at the limit T — L.

Whenever needed for clarity, isospaces will be denoted with symbols of the
type ,Q(Z)I ATia bl 3 o . BiaT - €tc, identifying the class as well as the selected
isotopic element.

All conventional operations and properties of linear-local operators on
Hilbert and other spaces (such as determinant, trace, Hermiticity, unitarity, etc.)
admit a consistent isotopic generalization studied in the next section.

At this point we indicate that the conventional eigenvalue equation Hjs = E
¢ on 3C is lifted on Ryp into the isoeigenvalues equations [1,2,3]

Hxd = Ex§

Ed, E=E1ellc+¥, E € Cc+X. (6.2.35)

This illustrates the reasons indicated earlier for the preference in physical
calculations of formulations of Class [B. [n fact, the identity Exs = E{y implies
that the "numbers” of the theory are the conventional values E, rather than the
isovalues E = El even when 1 is an operator.

We can now indicate the nontriviality of the isotopies of Hilbert spaces. To
begin, the lifting 3¢ — ;g implies the alteration of the eigenvalues of an
operator, as clearly illustrated by Eq.s (6.2.35). Moreover, Hilbert and isohilbert
spaces are not unitarily equivalent, that is, there exist no (conventionally} unitary
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transformation mapping 3C into 3jz. However, 3 and ;g are indeed
interconnected by a conventionally nonunitary transformation [1]. In fact, the
maps

[g>= [g>=Ulw>, <¢|><¢|=<g|U, vul=1#1, (5.236)
implies the map of the inner product into the isotopic form
<¥lg> = <¢|T|y>, T =(uvulyt =1l (6.2.37)

while, jointly, the unit is mapped into the isounit 1 =1 = T~1 = yuT,

The physical inequivalence of the Hilbert and isohilbert formulations is
then established. Note that the isotopic element T emerging from mapping (6.2.37)
is Hermitean, as it should be for Class IA or IB.

The remarkable properties of the isotopies is that, despite these physwal
and structural differences, Hilbert and isohilbert spaces coincide at the abstract
level. In fact, for the particular case in which T = G = cost. or independent from
the integration variables for Class IB,*® the isoinner product has been
constructed in such a way to coincide with the conventional product,
<PlF>=1<§|T|§>=1T<&|d > = < § | § >. Nevertheless, eigenvalues and
isoeigenvalues remain different even for a constant isounit T 1.

As a result, functional analysis and its isotopic covering also coincide at
the abstract level by construction.

An example of functions which are not square integrable but are isosquare
integrable is given by

fx)=17 v, {6.2.38)

which is known not to be square integrable in the interval [0, 1]. In fact, function
(6.2.38) becomes isoquare integrable in the same interval for the isotopic element
TR =x 176 A significance of the isospaces is therefore given by the fact that if a
functional space does not constitute a conventional £, Hilbert or Banach space,
there may exist an isotopic element T such that the same sets does indeed form
an £ isohilbert or isobanach space.

In any case, functional isoanalysis establishes that statements such as “a
given function f(x} is or is not square integrable” need, for necessary
mathematical consistency, the joint identification of the unit of the underlying
space.

A simple example of a set of functions isoorthonormal on Xy, T is given by

- inT: '
) = @uY2e " 0= g £l (6.2.39)

46Note that for Class 1A,1 is an element of the original field, that is, a constant.
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for x € [-n/T, +m/T] and T independent of x {but dependent on % and other
variables). In Tact, we can write
- —inTx mTx
(1,07 = (/2w f axe " Te N =

.
- wem [ axe e T dz= by (6.2.40)

It also important to have an idea of the physical applications of functional
isoanalysis in general, and of hadronic mechanics in particular. An example is the
representation of unstable hadrens as “synthesis” of other hadrons which implies
the inverse possibility of stimulating their decay artificially, with an apparent
new technology. These possibilities are strictly precluded for the conventional
functional analysis, and require instead the covering isoanalysis Tor their
quantitative treatment.

A number of other important applications of isoanalysis also exist with a
simpler structure which, as such, can be outlined here. We mention in this respect
the possibility indicated earlier of achieving a convergent perturbation theory of
the strong interactions. In fact, we have the following

Theorem 6.2.1 [10: Given a perturbative series which is conventionally
divergent on a Hilbert space 3C, there always exist an isofopy under which the
series becomes isoconvergent on isohilbert space 3 .

" ‘The proof is so simple to be trivial. Consider, e.g., a divergent canonical
expanston of -an operator A(k), k € R(n,+x), on 3 in terms of a Hermitean
Hamiltonian H = Hf for a large value of k

AK) = AQ) + k[A,H /1 + K¥[A,HLH]2+ . ...>®, k > 1,
(6.2.41)
where [A, H] = AH - HA is the Lie product. Theorem 6.2.1 then establishes that
there always exists an isotopy of the unit 1 =1 = T !and a reinterpretation of
A(k) and H on 3 under which the series becomes isoconvergent

AK) = A0 + kIATHIZ 1 + KRIAHLHIZ2+....»K< o, kK » 1 (6.242)

where [AJH] = ATH- HTA is the Lie-isotopic product. In fact, a solution exists
even for a constant isotopic element T when sufficiently smaller than Kk, e.g.,

T = k1, (6.2.43)
with n a sufficiently large positive integer.

Yet another important application of functional isoanalysis in physics
occurs when the conventional Hilbert space 3C and its isotopic image 3jg are
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incoherent, in the sense that the transition probability among states belong to 3¢
and 3C;g is identically null. '

This mathermatically simple property implies the possibility of resolving a
vexing problem of contemporary particle physics, the lack of exact confinement
of guarks beginning at the discrete nonrelativistic level. In fact, as preliminarily
studied in ref. [11], and studied in detail in Vol. IlI, quarks possess an exact
confinement when treated via hadronic mechanics, i.e., when belonging to X;g,
because they have an identically null probability of escaping to the exterior world
represented by the conventional space IC even for collision with infinite energies
or in the absence of a potential barrier. In addition, as we shall see, the isotopy
- :}C[B preserves all axiomatic properties and quantum numbers (for the case
of standard isorepresentations) of SU(3), while permitting convergent isoseries.

Intriguingly, it appears that the lack of exact confinement is essentially due
to the insistence of current quark theories of using conventional, rather than
isotopic, functional analysis.

Further novel applications of isoanalysis {that is, applications which
cannot he formulated with the conventional analysis, let alone treated
quantitatively) are possible via isotopies of the remaining classes. For instance,
the singular isoanalysis of Class IV is given by the isotopic element characterizing
the space component in spherical coordinates {r, 8, ¢} of Schwarzschild’s metric
for the exterior gravitational problem (Sect. 5.4)

T =diag (r / (r ~ 2M), 12, 2 5in 6) . (6.2.44)

The singular character of the isoanalysis at the limit when the astrophysical
bodies collapse into a singularity with T = 0 is evident.

To close this section with a few comments of historical character, let us
recali that the appearance of the isotopic element G in composition (6.2.2) has
considerable connections with the known weight function of the conventional
functional analysis [12,13]. As a matter of fact, the techniques known for the
latter are extendable to the fermer.

The extension of Hilbert spaces 3 to the form 30y with a weight function T
and composition on ordinary fields C

{(f,7fy) = f ab dx ) Th) %) e C, (6.2.51)

is known since the first part of this century in both mathematical and physical
literature [12,13]

The novelty of the isotopies here studied is the intreduction of the isotopic
function G jointly with the lifting of the underlying fields F — F. The
nontriviality of the latter as compared to the former is easily illustrated by the
Tact that the basic unit remains unchanged for the former although it is
generalized Tor the latter, or by the fact that the latter has a generally nonlocal-
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integral topology as compared to the local-differential topology of the former, or
by the fact that the isohilbert spaces X g g coincide with the conventional ones
JC at the abstract level, which is not generally the case for structures (6.2.51). In
turn this is an additional illustration of the remarkable implications of the
isotopies of the unit.

6.3: OPERATIONS ON ISOHILBERT SPACES

A property of functional analysis with fundamental physical implications is the
linearity of the operations on a Hilbert space IC, from which superposition

- principle, causality, measurement theory, and other physical laws follow (see, €.g.,
ref.s[17,18] and literature quoted therein).

A property of functional isoanalysis of equally fundamental physical
character is the capability of representing the most general known nenlinear,
nonlocal and nonharniltonian interactions via an operator theory on isohilbert
spaces which preserves the original axioms of linearity, thus permitting the
achievement of consistent generalizations of conventional physical laws.

To state it differently, the isotopic methods disprove the rather widespread
belief that a nonlinear and nonlocal formulation of the strong interactions
implies the loss of superposition principle, causality, measurement theory, and all
that.

. These physical aspects will be studied in Vol. II. In this section we shall
study the elements of the isooperator theory , i.e. the theory of operators on
isohilbert spaces, .

The understanding of this section requires a knowledge of the preceding
parts, with particular reference to the notions of: isolinear and isolocal
transformations (Sect. 4.2); isomodules (App. 4.A) isoexponentiations (Sect. 4.3)
etc.

Proposition 6.3.1 [10} Lei &1 be an isoassociative enveloping algebra of
operators A, B, C, with isoproduct A*B = ATB and isounit1 = T~ acting on
an isohilbert space Xg  over an isofield Fla+» of isoreal or isocomplex
numbers. Thenty is isolinear and isolocal on I}C]B'G , Le, it verifies the
properties

Ax(d*d + Fxd) = ax(Axd) + pF(Ax9), (6.3.12)

(A*A + B¥B)* = ax(A*Q) + BF(Bx*y), (6.3.1b)

(AxBlxd = A+ (B*g), (6.3.1c)

T¥y =&, V ABclp, beXgg dBekf, (6.3.1d)
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and JQIB,G is a one-sided, left or right isomodule of Ep.

We now study of the isotopies of conventional operations of quantum
mechanics. Let A be an isolinear and isolocal operator on &p over F. Then the n-
th isopower Al of A is given by

AD = AxAx. %A (ntimes) (6.3.2)

In particular, the isoquare of an operator A on Xyg g is A2 = A%A. Thus,

conventional powers, such as that of the linear momentum “p?" = pp, or of the

angular momentum “Jo = JJ, etc. have no mathematical or physical meaning for
hadronic mechanics and their use actually leads to a host of easily demonstrable
(but often undetected) inconsistencies.

The isoinverse A™" of A € & on Ma,+¥) is defined by the conditions

AxA Tl = ATep =1, (6.3.3)
and given by

At =141, (6.3.4)

where A™! is the conventional gquantum mechanical inverse.
By ignoring hereon the isolinearity and isolocality for simplicity, we then
have the following

Definition 6.3.1 (34,10 Let ;g ¢ be an isohilbert space with isoinner product
(6.2.19) over an isofield Fr. Then, the “isohermitean conjugate” AT of an
operator A € &g on 3y is defined by

[(p*AT109) = WlA*y)] (6.35)

Proposition 6.3.2 [4,10: Necessary and sufficient condition for an
operator A € &pon Rypg lo be isohermitean is that 7

Al = glratgr?, (6.3.6)
The following properties can also be readily proved
(G*A + @+B)Jl = @Al + B+pl, (6.3:72)

(A*B) = Bl AT (6.3.7D)

47 Note that the isotopic elements T and G are inverted in ref. [4] as compared to their
use in this presentation, which is the notation now widely adopted in the literature.
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(AT = A, VaBeh ace Bp. (6.3.7¢)

where the upper bar denotes complex conjugation.
An example of isohermitean operator on JCG is given by

A=GHg><y|T! = AT, (6.3.8)

Definition 6.3.2 [34,10 Let Xyp ¢, Frand & be as in Definition 6.3.1. Then,
an operator U € Ep on Xy Is called “isounitary” if it verifies the condition

(PO Oxgs) = (4, (6.3.9)
ie,

O« 0l=0%0=1, o O =07, (6.3.10)

Proposition 6.3.3 [loc. cit) Let U be a isounitary operator and A an
isohermitean operator on Xg. Then, the transformation

A =0*A*0"] 6.3.11)
is isohermitean.

It is an instructive exercise for the interested reader to prove the following
property (see ref. [3] for a detailed treatment)

Proposition 6.2.4-lloc. cit.}: Isounitary operators 0 € & on Ryp g over Frp
always admit the following realization via the isocexponentiation of an
isphermitean operator X = X! e &, W Fp,

Olw) = e IW*X = ¢ IWXoq[gWIX) = [XTw}q 6.3.12)

3 3

As we shall seee in Vol. I, the above property has fundamental character
for the Lie-isotopic theory of Ch. 4 because it permits the realization of
continuous Lie-isotopic transformation groups via isounitary operator on a
isohilbert space with isocomposition rules (Sect. 4.5)

0 = 0@ = 0t-w) = 1, (6.3.13a)
W) * OW) = Ow) * BW) = 0 G +wW), (6.3.13b)

In particular, the time evolution in hadronic mechanics is characterized precisely
by a isounitary transformation admitting of the above isoexponentiation and,
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thus, forming a Lie-isctopic group.
A further important property is given by (see ref. [, p. 1304 for proof)

Proposition 6.3.5 : Any isolinear, isolocal and isohermitean operator A = A} is
bounded.

We now pass to a study of the isotopies of eigenvalues equations.

Definition 6.3.3 [loc. cit.l: Let H be a {not necessarily isohermitean) operator
on an isohilbert space ¥gq.Then a generally isocomplex number T € Cp is
called an “isoeigenvalue” of H if there exist an isostate ¢ € ﬂﬁG such that

H*g = Cx = cib. {6.3.14)

We therefore confirm that the isoeigenvalues ¢ of an operator H on
X g, coincide with the conventional eigenvalues ¢ of the operator H = HT.
Thus, the “numbers” predicted by hadronic mechanics for measurements are
conventional numbers.

The following property is important for the applications of hadronic
mechanics.

Proposition 6.3.6 [3]: A set of isocomplex numbers ¢ = ¢ 1 are the
isoeigenvalues of an operator H €&y on Xy g iff they are the solution of the
so—called “isocharacleristic equation” of H

Det (HT-c) = 0. (6.3.15)

A number of conventional properties of the eigenvalue theory (see, e.g.,
ref.s [17,18) persist under isotopies, thus implying that they are indeed genuine
axioms of quantum mechanics. This is the case for the following important
property (see ref. [3], p. 1310, or ref. [4], p. 1922).

Proposition 6.3.7 [loc. cit.k All isoeigenvalues of isohermitean operators H € &p
on Xjp g are real.

The above property establishes that the reality {observability) of the
eigenvalues of Hermitean operators is a true axiom of guantum mechanics
because it persists under isotopies. Another important property which also
persists under isotopy is expressed by the following

Proposition 6.3.8 [loc. citl The isoeigenvalues of isohermitean operators are
invariant under isounitary transformations.

However, there are a number of properties of quantum mechanics which
are not invariant under isotopy and, as such, they cannot be considered as true
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axioms of the theory. The first is the rather popular belief that Hermitean
operators admit a unique set of eigenvalues which is disproved by the following :

Proposition 6.3.9 (10} A Hermitean operator does not admit a unique set of real
eigenvalues, but admits instead an infinite number of different sets of
eigenvalues, each of which is real, depending on the assumed basic unit.

Let H be conventionally Hermitean and consider for this purpose the
conventional eigenvalues Hg = Eq¥ . Consider now an isotopy of the preceding
equations under which H remains Hermitean (as anticipated in Sect. 6.1, this is
always the case when T = G). Then, we have different isoeigenvalues for the
same operator H, ie, the isotopies imply for the eigenvalues equations the
lifting

H¢ = E, - H*$ = Epd, Ep=E,, (6.3.16)
which is inherent in the basic isotopy of these volumes, Eq.s (1.1.1), i.e.
I - 1. (6.3.17)

But an infinite number of different isotopic elements T are possible. This
proves that a Hermitean operator H can have an infinite number of different sets
of eigenvalues E depending on the selected isounit 1 or isotopic element T.

As we shall see in Vol. 11, expression {6.3.16) permits an explicit realization
and operator generalization of the so-called "hidden variables”. We shall also see
that Bell’s inequality, von Neumann’s theorem and other properties are not
preserved under isotopies and, as such, they are not true axioms of quantum
mechanics. As we shall see, these and other intriguing occurrences permit an
isotopic completion of quanfum mechanics into hadronic mechanics which is
intriguingly close to the historical argument of Einstein, Rosen, Podolsky and
others.

Definition 6.3.4 (34,100 lLet A be an operator on a finite-dimensional
isohilbert space Xyg G, and let T, , Ty, .., &, be ils isocigenvalues. Then the
“isotrace” TTA of A is given by
TFA = € + & + ...t . (6.3.18)
The “isodeterminant”Det A of a matrix A is the isoscalar defined by

Det A = [Det(AT)]T € Cp. (6.3.19)

A further instructive exercise for the interested reader is to prove the
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following properties:

Proposition 6.3.10 [loc. cit]: [solinear and isolocal operators A, B, C € E on a
finite-dimensional isohilbert space verify the following properties

Tr A = (Tr A}, (6.3.20a)

Tr (AxB) = (TTA) * (T1B), (6.3.20b)
Tt B*A«B7]) = TF 4, (6.3.200)
Det (A*B) = (Det A) * (Det B), (6.3.20d)
pet 4 = et AT {6.3.20¢)
Det{ﬁEA] - e Tea, (6.3.20f)

Definition 6.3.5 [3: Let A be an isolinear and isolocal operator on JCIBG Then
the “isospectrum” SpA of A is defined as the set of isocomplex numbers ¢ =c 1
which are such that the quantity (A - ¢) is not invertible in t, and admits the
realization in term of the conventional spectrum SpA of A

SPA = (SpAT)1eCp. (6.3.21)

We now pass to the study of the isotopies of another important notion of
conventional quantum mechanics, that of projection operators.

Definition 6.3.6 [4: Two “isosubspaces” ! |z o and 21  of Ny are said
to be "isoorthogonal” when all their isostates are isoorthogonal (Definition 6.2.2).

For any given subspace X% ¢ of 3p g the isoorthogonal complement X\ o
is the isoorthogonal subset for which we have the direct sum decomposition

Rpe = Xpg T Xpg. {6.3.22)

One can then study the isotopies of similar properties of conventional
quantum mechanics [17,18].

Definition 6.3.7 {4,10k An operator P on 3 is called “isoidempotent” when it
verifies the property

P2 = pxp =P, (6.3.23)

An isoidempotent operator P is an “isoprojection” of Xjg ¢ onto X%pgq
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when it verifies the properties
Py =4y, (6.3.24)
for aHl]J € SQIB,G' with KIJO € JCIB,GO'

The following property is important for the applications of hadronic
mechanics {see ref. [3.4] for its proof).

Proposition 6.3.11: An isolinear and isolocal operator P € & acting on a
finite—dimensional isohilbert space JCIB’G is an isoprojection operator iff it is
isohermitean and isoidempotent. :

The explicit realization of isoprojection operators is given by the following

Proposition 6.3.12 [34,10: Let ®;3° be a closed subspace of a (finite-
dimensional) isohilbert space X;p G and et 4’0 be the isoorthogonal basis of
Ryg O Then, an operator P is an isoprojection operator of Rige onto
3{”10"3 g If it has the explicit realization

= K gk > <k a1, (6.3.25)

Corollary 6.3.12A: Under realization {6.3.25) the isoprojection operator of
XOp,g onto the complement X°\g ; is given by

=1-P. (6.3.26)

This completes the notions of isooperator algebras on isohilbert spaces that
are minimally sufficient for the initiation of physical applications of Vol. II.
Additional, more detailed aspects will be studied when needed. The reader
interested in acquiring a technical knowledge of isciopic methods is however
suggested to work out a systematic study of the isotopies of conventional
operator algebras [17,18],

We consider now the isodual isohilbert spaces of Class II B Tirst studied in
ref. [10]. For this purpose let us recall the isodual image 3cd of the conventional
Hilbert space- 3C, called isodual Hilbert space, which must be defined for
consistency over the isodual field C3(c%+3) and with isodual states given by

o8 = gt d=yl | | (6.3.27)

[ts most salient property is that the isodual norm, i.e, the image under duality of
quantity (6.2.6) is now negative—definite
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1149119 < o. (6.3.28)
The isodual inner product is then given by
38 @ = 19 f o g xd i) = — (g, ). (6.3.29)

As now familiar, this property is important for a study of antiparticles via
isoduality.
The isodual isohilbert spaces are then isospaces defined over g3+ ) =
d or €9 with isodual isostates 3¢ = ¢t19=- &F

Defimtlon 6.3.8 [10} An operator H is said to be “isodual isohérmitean” on
3ed 1B, Wwhen it verifies the condition

HY = Tlgalral, (6.3.30)
The isodual isoprojection operators on 3&‘1”3’6 are then given by

pd = ! YR ks <X . (6.3.31)

By comparing the above definition with Proposition 6.3.3, we have the
following intriguing property of hadronic mechanics in its general formulation
under consideration here with T = G,

Proposition 6.3.13 [1014n operator H which is isohermitean on Xp g is not
- necessarily isohermitean in its isodual 3% [IB,G- 8

In summary we have four primary mathematical structures at the
foundation of the Lie-isotopic branch of hadronic mechanics:

A} Linear operator theory for the representation of particles in exterior
conditions;

B) TIsodual operator theory for the representation of antiparticles in
exterior conditions; '

C) Isolinear operator theory for the representation of particles in
interior conditions; and

D) Isodual isolinear operator theory for the representation of

48 This property, however, is dependent on the assumed notion of duality, that based on
a conventional conjugation. Tt is evident that a more general notion of duality is possible
in such a way to preserve the operation of ischermiticity, but this approach has other
undesirable implications {e.g., for normalizations) and it has not been adopted until now in
the applications of hadronic mechanics.
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antiparticles in interior conditions.

As we shall see in Vols II and III, each of the above parts of functional
isoanalysis will have significant applications.

6.4: ISODELTA FUNCTIONS

As indicated in Sect. 6.1, the isotopies imply a generalization not only of main
structural foundations of functional isoanalysis, as outlined in Sect.s 6.2 and 6.3
but also of all conventional distributions, special functions and transforms.

This is a topic of such a dimension to require a separate volume for its
detailed treatment. In this section we shall merely illustrate these generalizations
for the case of Dirac’s delta function. In the remaining sections we shall then
provide examples of isotopic generalizations of special series and transforms.

As well known (see, eg., ref. {19] and quoted bibliography), the conventional
Dirac delta function is not a function, but a distribution representing a rather
delicate limit procedure in a conventional functional space, such as the Hilbert
space JC, with a mathematically well defined meaning only when it appears
under an integral,

When the singularity is at the point x = 0, the 8-function can be defined in
terms of a well behaved function f(x) on a one-dimensional space S(x,R) over the
reals R by [loc. cit]

f +00 _ f +Co _ )
o X)) Ax = 1(0), e B =1 (6.4.1
This essentiaily means that 8(x) = 0 everywhere except at x = 0 where it is -
singular. Nevertheless, what is mathematically and physically significant is the

behaviour near that point, which permits explicit realizations, such as the
familiar integral form

+00 ix

s =t/2m [ ™ ay. (6.4.2)

[f the singularity is at a point x # 0, then we can write [loc. cit.]

+ca
0 = J__ thdsle-x)ax . (6.4.3
Finally, the 8-function verifies the basic properties
+00

80 = 8-x , sx-x) = [ dzslx-2slz-x). 6.44)

The delta function is evidently inapplicable when dealing with functional
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isospaces, such as the isohilbert spaces 3. [n particular, exponentials of the type
appearing in the integrand of Eq. (6.4.2) are no longer defined in isospaces, and
must be replaced by the isoexponentials.

These occurrences rendered mandatory the studies of the isotopies of the
delta function. Their origin can therefore be traced back to the isotopies by this
author of the Poincaré-Birkhoff-Witt theorem reviewed in Sect. 4.3. The
existence of a consistent isotopic generalization of Dirac’s delta function was
indicated in ref. [1], first studied in detail in ref. [3], subjected to systematic
studies and classification in ref. {10], and finally applied to a number of cases
reviewed in Vols IT and III. Inspection of the recent treatment by Kadeisvili [15]
is also recommended.

In particular, six mathematically and physically distinguishable isotopies of
the Dirac delta function are identified in ref. [10] under the name of isodelta
functions. Their outline is recommendable as an application of functional
isoanalysis, and as a pre-requisite for the isotopies of the Fourier transforms
studied in the subsequent sections,

Consider a one-dimensional isospace of Class I, denoted §;(x,R) with
{conventional) real coordinates x over the isofield of real numbers R{n,+% with
conventional elements n and sum +, but isotopic multiplication ny*n, : = n;Tny ,
where T is the isotopic element and 1 = T™! is the multiplicative isounit of Class I.

Let f(x) be an ordinary function defined on $;,{x,R) which verifies the
conditions of strong isocontinuitly of Sect. 6.2 in all possible subintervals of [—os,
+oa], Recall that the isotopic element T of Class [ is a strongly isocontinucus,
bounded, real valued, and positive-definite function of the coordinate x as well as
its derivatives with respect to an independent variable of arbitrary order and any
other needed quantity, T = T(x, %, %, ...) .

Then, the isodelta function of the first kind, denoted 81, can be defined
in terms of the expression

f +00 .
o TOI*3 ) dx = f(0), (6.4.5)
from which we obtain for f = 1
f +00 L
oo TR LG dx =1 . (6.4.6)

The isotopic image of (6.4.3) is then given by

+

o0
(= [ 1T e syt - xdx . (6.47)
namely, it is not possible any longer to map the dependence on x to the
dependence at X', but rather the dependence on Tx to Tx". This confirms the very
peculiar nonlocality of the topology underlying the isotopies discussed earlier.
In fact, the isotopic element T can have an integral dependence on the
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interval x € la, bl centered at x. In this case the singularity of the Dirac 8 at x
can be spread over the interval [a, b] by the isodelta function for a suitable
selection of T.

In several cases of physical interest, T can be assumed as having an explicit
dependence only on the derivatives T = T(, &, ...}, with consequential identity Tdx
= d(Tx). In this case, the projection of the & l-fUnCthH into the original functional
space S{x,R) implies the equivalence

Bi6x) ~ BT, (6.4.8)

It is easy to see that, under the assumption of T being independent from x
(which is the case for Class I4), the §;~function admits the integral representation

+c0 +-00 ixT
e X ycly,

§,(x) =(1/2m) f o TeEixy dy =(1/27) f 0 {6.4.9)

(where we have used the fundamental Theorem 6.3.1 on isoexponentiation), and
verifies the properties

400
B = 8ix) , Byx-x) = [ dzbx-2xdlz-x). (6410
For the case of an isospace of Class B, Sig(%,R), with isofunctions t(x) = {x)

1, a different isotopic expression emerged in ref. [10], called isodelta function of
. the second kind, and denoted 8, , which is characterized by the property

+00 ) +00
S toespax = [ tsax = 10 = f01, (6.4.12)

In this case the 8,-function must necessarily be an isofunction, i.e., admitting a
structure of the type 8,(x} = 8,x) 1(x, %, %, ..). Then, for T =1, we have

+00 ‘ +00
f e Ox)ax = f e B %, Dax =1 64.13
and the isotopic image of (6.4.3) is given by
+o0
0 = J 10w -xdx. 6.4.14)

One can see that the projection of the 8,-function in the original
functional space S(x,R) implies the equivalence (again for isounits independent of
the integration variable)

8yx) ~ X%, %, ... (6.4.15)

It is easy to see that, under the same assumptions, the Sz—f unction admits
the integral representation [6]
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e ixy 0 ixTz
Solx) =1/ 211f_mJ Te, " dy =1/ 21'1'_[_0(J € d(Tz) (6.4.16)
and verifies the properties
+00
B0 = B4x) , Bfx-xd = [ dz bfx-Drbfz-x). (6410

It is an intriguing exercise for the reader interested in learning the isotopic
techniques to prove that the first and second kind isodelta functions can be
interconnected by the reciprocity transformation T = 1.

To present the isodelta function of the third kind 8, let us recall [10] that
the separation on a generic, n-dimensional isospace 8x,gR), g =Tg,R~R1,1=T"
I {see Sect. 3.2 for details), can be formally wrilten as that of a fictitious
conventional space in the same dimension S(x,gR), according to the simple rule

2

x2=xtgx =¥x =%2,

%= Tx. (6.4.18)
This implies that a number of problems in isospaces can be worked out in this
fictitious conventional space in the X-variables, and the results then re-expressed
in the x—variables.

The 35-function emerged precisely from reduction of this type. It can be
defined via the conditions [10]

J . msmax = "o sdtodt 0 = 10, T = T %, )
(6.4.19)
from which we obtain for f = 1

J ™ syrhoarty = 1 (6.4.20
with realization in terms of the conventional 5-function
83 ~ 8 = 8(T™). (6.4.21)

[t should be stressed that, while the isodelta functions of the first and
second kind are bona-fide isotopies of the conventional expression, this is not the
case for 83 which is merely a pragmatic tool for simplifying calculations, rather
than a mathematically rigorous structure.

The above expressions have been presented for the case of one—dimensional
coordinates x. The extension to three-dimensions is trivial, and given by isotopic
products of the type

&) = 3x)x5,(y) *8,(2). (6.4.22)
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Consider now the isodual isospace 8j;,%x%RY) over the isodual isoreals RY,
with isotopic element T¢ = — T and isounit 19 = - 1. The isodelta functions on
isodual isospaces can then be defined accordingly, by reaching three additional
quantities 89, , 8%, and 8% called isodual isodelta functions. The following
property then holds.

Proposition 6.4.1 (10} The isodual isodelta functions of the first and second
kind change their overall sign under isoduality .

In fact, by recalling that xd = X, yd = -y, i = —i, we have the isodual
isodelta function of the first kind

+00
39168 =(vom [ 1de,
with a similar expression for the second kind. Note that 85 has no isoselfdual
structure, evidently because it is not an isotopic structure.

The properties of the isodelta functions for all the remaining Classes III, IV
and V are vastly unknown at this writing. Additional generalizations of the delta
functions are expected in the one—sided Lie—admissible formulations of the next
chapter.

Note that, while the Dirac delta function is unique, there exist infinitely
possible isodelta functions for each of the above six kinds, evidently because of
the infinitely possible isounits or isotopic elements. The reader may have noted
the intriguing character of the general case of isodelta functions {6.4.5) and (6,4,12)
for T = T(x,..), which are hoped to receive an attention in the literature much
needed for physical advances.

As well known, the locality of quanturm mechanics is precisely expressible
via the Dirac delta function. The nonlocality of the isotopies of quantum
mechanics is then expressed by the isodelta functions. In turn, such nonlocality is
necessary for a quantitative treatment of the extended character of hadrons with
consequential nonlocal components in the strong interactions due to mutual
overlapping of the wavepackets and charge distributions of the particles.

While the Dirac delta is a bona fide distribution, the isodelta functions are
not necessarily so because the original singularity at x can be spread over an
interval of which x is the center. Nevertheless, in specific cases, such as when T =
cost., the isotopic 8-functions are distributions similar to 8(x).

id,.d +600 ;
g e ayl=-vem [ T e Y ay, 6.4.23)

6.5: ISOSERIES

We indicate in Sect. 6.1 that all conventional series of functional analysis admit
significant isotopic generalizations. In this section we shall illustrate this
occurrence via the isotopies of the Fourier series (see, e.g., ref. [20,21]. The
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interested reader can then compute the isotopies of other series.

As well known a sufficiently smooth function f(8) on a conventional one—
dimensional space S{0,R} over the reals R, which is periodic in [0, 27), admits the
representation in term of the Fourier series [loc. ¢it.]

ind
f0) = Yp=cor0dg € : (6.5.1)

where 2r
= (vom [ ) ¢ 0 o) do . 65.2)

If the function is periodic in the interval [0,L], we have instead

i2mnx/L

X} = 2n="00'+00 bﬂ € 6.5.3)

in which case 12-rrnx/L

by = (/L) f ) dx. (6.5.4)

When the underlying functional space is lifted into a functional isospace of
Class A, the above Fourier series are no longer applicable, again, because of the
loss of basic definitions, such as that of exponential. For this reason this author
[10] studied the isotopies of the Fourier series, resulting in a generalization called
isofourier series [10] which can be defined for a function (6} also periodic in [0,
2m] on an isospace of Class [4, S6,R) over the isoreals Ry, (n,+#), via the expression

. e
) = T woroo An & = Dnecosohne 655)

where we have again used the properties of isoexponentiation of Sect. 4.3. Then,
for T independent of 6, by using the isoorthogonality of the isoexponentials, Eq.s
(6.2.34), we have

2m s
= (7em [ 0 (Te, 0y, fe)de. (6.5.6)
If the function is periodic in the interval [0, L], we have instead
i2mnx/L i2rnxT/ L
flx) = En=-00,+00 B* eE e = En=—m,+oo B,e lemnx . 6.5.7)

in which case .
—i2
i2max/L }* (%) dx . (6.5.8)

L

B, = I/L f 0 {T

When one deals with functional isospaces of Class IB, the preceding results
are essentially multiplied by the isounit 1. The extension of the results to the
isodual isospaces of Classes 1A and IIIB is equally simple, and will be implied
hereon.

An important application of the above isoseries occurs in the transition
from Cartesian to polar coordinates in isospaces. This transition is linked to a
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central property of isorelativities, their capability to represent particles with their
actual, generally nonspherical shape, jointly with all their infinitely possible
deformations. In turn, this formulation originates from the isotopies of the
rotational symmetry [19,20] (see also review [21]).

Consider a two—-dimensional Euclidean space

Er8R):r={x,y), 8 = diag. (1, ), r°=xx + yy €R. {6.5.9)
The transition to polar coordinates is provided by the familiar expressions
X=rcos8, y=rsin8, (6.5.10)

A sufficiently smooth function g(x,y) on E(r,8R) can then be represented in the
unit circle r = 1 via the expansion

gly) = LiMyoo Xnm=0,..N anm X" ¥y =
= glcos 6, sin 8) = f8) = 2, 1_goo apm c0s"0 sin™o ©.5.10)

The use of the expressions

" 6 - . .
e! =cos 6 + 1 sin 6, cosO=le +e 16)/2, sing = (ela —e U)y/9
{6.5.12)

then implies the well known Fourier series [20,21]

no

f(6) = > n=—c0.+c0 Ap€ - Co/ 2+ D=1l cpcosnd + d;sinng),

cy=W/mJf _"HT dof®lcosné, n=0,12,..

+r
dy =(l/m [ dofle)sinnd, n=1,2 .. {6.5.13)
-

On physical grounds, the central geometric object is the perfect and rigid
circle, as requested by the fact that the rotational symmetry is a symmetry for
rigid bodies .

Conceptual, mathematical and physical advances are permitted by the
transition to the covering isoeuclidean space of Class IA (Sect. 3.3)

ErdR):r=(xy), 5=Ts=diag (b2, %), 1 =T, (6.5.14)
whose separation

r2 = xb2x + ybly = inv. (65.15)
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represents all possible signature preserving deformations of the circle, i.e, an
infinite family of possible ellipses with semiaxes a = b, 2 and b = by"2 In this
case, the invariance is provided by the isotopic covering O(2) of the rotational
symmetry 02} [6,7] we shall study in detail in Vol. II.

What is important for this section is that the conventional transformations
to polar coordinates, Eq.s (6.5.10), is no longer applicable in isoeuclidean space
(6.5.14) and must be generalized into the isopolar coordinates of App. 6.4 [10]

x=rb; lisocos aT0, y = rby Lisosin a6, (6.5.16)
where isocos a and isosin & are the isotrigonometric functions and A = det T =
2y 2
bi“hy”.
We can therefore study the isotopy of expansion (6.5.11) for the unit case

2= xb2x + ybly =1, (65.17)
in the form

g(X,Y) = leN—)oo ZD,ITFO,...N Anm * Xfl * ym =
= glb, isocos (a? 0), by lisosin (at o) = rlo) =
= Ynm=go0 Anm * {0y lisocos (a* 6)" (by™! isosin (At &)™ . (6.5.18)

A physical significance of isoseries is in the expansion of an intensity in
isospace, i.e., in expressions of the type

L L
1| 2ax = (/) [ TT* 0 dx
-IzwnxT/L}* {szme IZTFmXT/L} _

an/f,

L
= (1/L)f0 dx{ 2B, e
= zn=-00,+oo BB, = En=—-oo,+m | B, I 2 . (6.5.19)

In the simple case here considered, the original intensity is reduced fo the
sum of the individual isocontributions B*By, without interference terms B*B, .

However, a rather complex interference pattern occurs for the case of T
explicitly dependence on the integration variable, or merely when T is a
nondiagonal matrix [10]. This is a representation of the nonlocal character of the
isotopic wave-theory, namely, the representation of wavepackets of particles in
conditions of mutual penetration.

Note that additional generalizations of isosertes are possible for liftings of
the addition, but their would imply the loss of the distributive law (Sect. 2.3).
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Note also that the same function f(0) can be expanded in Fourier series
(6.5.1), when dealing with ordinary functional spaces, as well as in the isoseries
(6.5.18), when dealing with isospaces. The selection of which series holds is
therefore relinquished again to the basic multiplicative unit.

6.6: ISOTRANSFORMS

We also indicated in Sect. 6.1 that conventional transforms of functional analysis
admit nontrivial isotopic generalizations. In this section we shall illustrate this
occurrence via the isolopies of the Fourier and Laplace transforms (see, e.g., ref s
[20,21] for their conventional forms). The reader can then work out any needed
additional isotransform with the same techniques.

Six different isotopies of the Fourier transforms were identified by this
author in ref. [10] in correspondence with the six different types of isodelta
function of Sect. 6.4. They apply for correospondently different mathematical
and physical conditions, and can be presented as follows.

Consider a one-dimensional functional isospace Sy 1{x,R) over the isoreals
R, with the isotopic element T and isounits 1 = T !, and the Fourier isoseries in
the interval [-L, L] for strongly isocontinuous functions f(x) on 8y, p{x.R) with 2L
periodicity

inTX/L

f(X) = (2]_1)—* znz—oo'+00 2n * eE (66!3)

g = ([ 0ee, ™y 66.1b)

As in the conventional case [20,21], set (w/L) x = y and (nmiL} =k, so that
(nm/L) X = Ky, Ak = Ky — ky = (071, and (L) = Ak (2m)™. Then Eq.s (66.1)
become

i) = 0™ Ty coicozc *er ™ Aky. (6.6.22)

= (on} f +mL)t -ikpy
8, (om) gt f(y)*eE dy . {6.6.20)

At the limit L — oo, we have the Fourier isotransforms of the first kind [10]
+00
£,60 = (/om [ e Sk ¥k =

= ) g me ™ ak, (6.6.3a)

—0Q
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inA

(vemJ 77 fl(x)*ez dx =

(o [ oo+°° fde X dx (6.6.30)

g[(k)

[

The reason why the above isotransforms are called of the first kind is that
they are linked to the isodelta function of the same kind, Eq.s (6,4,9), as illustrated
by the following

Theorem 6.6.1 [10l: The isotopic Fourier integral theorem reads

060 = (am [ Cake, s (f " rp0 e 0 -
= ﬁ_wmdx' f,(x) = {(1/2m) fﬂ*m ezi(x-x’)k K =
= -ﬁ"mm dx’ fi{x}*8(x - x) (6.6.4)

In particular, it is easy to prove the following isotopy of the corresponding
conventional property

_L_mm dax | 1y(x)| 2 = J:_mm] dx 11060 T 1,(x) =
=L a2 = [ T akgm e (6.6.5)

The entire theory of Fourier transforms can therefore be subjected to step—by-
step isofopic liftings. Studies along these general lines have been initiated by
Kadeisvili [15] and their continuation is left to the interested reader.

The Fourier isotransforms of the second kind are defined on isospaces
Sig.xR), that is, for isofunctions Tx) = f(x)1, are given by

100 = em [ afi v Xk, (6.6.63)
2ok} = (1/2m) f _mm Tox) * e;kx dx (6.6.6h)
and can be written for isounits independent on the integration variable
T = (/2m f _m+°° gofk) e X dk, (6.6.7a)
80 = (/om [ _O:oo %) ee_ika dx . (6.6.7D)

Note that, again, the isotransforms of first and second kind are interconnected by
the reciprocity transforms T — 1.

The Fourier isotransforms of the third kind are defined on an ordinary
space S(%,C) with local coordinates % = T* x, and can be written [10]
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t00 = (2m | "% g3k KT X alT) | (6.6.8)
—it-r
gglk) = (1/2m) f _mm 5 e, KTX e | {6.6.8b)

The remaining three cases are of isodual character. The isodual
isotransform of the first kind on isospaces Sy 5 7{x,R) are given by [10]

19,60 = (172m [ "% (k8 e 1O ged <
= (am [__ " g0 e KTx gk (6.6.92)
gd k9 = (1/2m) f _oo+w 9 e it axd =
=wem [ Trgoe T o (6.6.9b)

from which we have the following simply but significant

Proposition 6.6.1 [10): The Fourier isotransforms of the first and second kind
are isoselfdual.

The isotransforms of the third kind are not isoselfdual, as it is the case for
the corresponding isodelta function, because they are not genuine isotopies. As a
matter of fact, isoduality turns the structure of 83 into a Laplace isotransform
of the next section.

The reader has noted the simplicity of the isotransforms for isounits
independent from the local coordinates, 1 =71(x, ¥, ...} which will be used in the
great majority of physical applications of Vol.s Il and IIl. However, their general
expression, e.g., for isounits of gravitational type 1 = 1{x, ..), is nontrivial and
substantially unexplored at this writing.

The extension of the above analysis to more than one dimension is trivial
and shall be tacitly implied. The formulation and properties of the Fourier
isofransforms for Classes III, IV and V are also unknown at this writing.

Note that despite their abstract equivalence, isotransforms and
conventional transforms are inequivalent, as directly shown by the appearance
of the isotopic element T in the exponent of the isotransforms or by the fact that
ordinary transforms are linear and local, while the isotransforms are isolinear
and isolocal.

Note that the Fourier transform is unique for a given function f(x). On the
contrary, the same function can be subjected to an infinite variety of Fourier
isotransforms, evidently depending on the infinitely possible isounits. This degree
of freedom is necessary for physical consistency. In fact, empty space {the
vacuum) is unique, and represented by the trivial unit I = diag. (1, I, 1). A unique
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transform is then fully consistent. On the contrary, there exist infinitely possible
physical media due to infinitely possible densities, pressures, temperatures, etc.,
which are represented by the infinitely possible isounits. A corresponding infinite
class of isotransforms is then necessary.

The Fourier isotransforms can evidently be applied to a large variety of
nonlinear, nonlocal and nonhamiltonian problems. Their relevance was elegantly
established by Kadeisvili [15] by proving that the isotopies of the Fourier
fransform imply a necessary generalization of Heisenberg’s uncertainty relations
for particle in vacuum (exterior dynamical problem of Sect. 1.1)

Ax Ak =~ [, (6.6.10)

into the isouncertainties for particles moving within physical media (interior
problem)

Ax Ak =~ <1>, (6.6.11)

first proposed by this author in ref. [16] and then re-examined in ref.s [10,11] (see
Vol. Il for detailed studies).

The proof of conventional uncertainties via Fourier transforms within the
context of functional analysis is well known (see, e.g., ref. [18], p. 47-49), although
it is worth reviewing for comparative purposes. Consider an ordinary Hilbert
" space JC with states {x) depending on a variable x belonging to an ordinary
one—dimensiconal space S(x,C}, which are normalized to one.

Gauss distribution within the above context can be writien

2 2
$x) = ne x*/28 , n=al2glicgq 6.6.13)

‘The conventional Fourier transform of the above expression is given by

0 —j _12 .2
dlk) = (1/27r)’-’f_m+ $lx) e ll(xdx =ne k"a%/2

*

n=an=a2geqg, (6.6.13)

Now, the width of distribution (6.6.13) is of the order of Ax ~ a, while the width
of transform (6.6.14) is of the order of Ak ~ l/a. The conventional Heisenberg’s
uncertainties then follow,

Ax~a, Ak=~1/a, AXAKk = 1. (6.6.14)

We now reinspect the above formulation under isotopies within the context
of functional isoanalysis. Consider an isohilbert space 3, AT With states W(x),
where x is the local coordinates on an isospace S; {x,C) on the isofield Clc,+*)
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with isounit T and isotopic element T which are then independent of x, and
suppose that ¥ is isonormalized (Definition 6.2.2)

(W w) := 'If_m+oodx WX ux) = 1. (6.6.15)

The conventional Gauss distribution cannot any longer be consistently
defined under isotopies, e.g., because of the lack of meaning of the conventional
exponentiation (Sect. 4.3). Its image in Jj, T is instead given by the Gauss
isodistribution [10]

~x2/2a2= -x2T/2a2

Ulx) = N+*e Ne , (6.6.16)

3

where
N = T /257172 174 (6.6.17)

The conventional Fourier transform has no mathematical or physical
meaning in ischilbert spaces, and must be replaced by the Fourier isotransform
of the first kind which yields after simple algebra

- i f —ikx
a0 = (omft [ " wre, K ax =

E
—k2 2 _ _
Ta/2 = aN = TVZ2 (6.6.18)

= Ne

Now, the width of ‘isodistribution (6.6.16) is given by Ax = a/T* , while the

width of its isotransforms (6.6.18) is Ak ~ 1/(aT% , and this establishes
isouncertainties (6.6.11),

Ax~a/T*, Ak ~ 1/@Th, AxAk ~ 1. (6.6.19)

The implications of the above findings are manifestly far reaching. In fact,
they confirm the existence and consistency of a step-by-step isotopic
generalization of quantum mechanics into hadronic mechanics, which has been
conceived and worked out for physical conditions of particles (those of the
interior dynamical problern} fundamentally different than those of conception,
applicability and experimental verification of quantum mechanics (those of the
exterior dynamical problem).

Heisenberg’s uncertainties are mathernatically and physically valid in the
arena of their conception and experimental verification, e.g., for an electron
moving in an atomic orbit in vacuum. The isouncertainties have instead been
conceived for the same electron when moving within hyperdense physical media,
such as the core of a collapsing star. [n this latter case, the isotopy 1 =1 is
expected to provide a quantitative treatment suitable for experimental
verifications of integral corrections to Heisenberg’s uncertainties due to: the
total immersion of the wavepacket of the electron within those of the
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surrounding particles; the inhomogeneity and anisotropy of the medium; and
other physical differences with respect to motion in vacuum (see Vol. II for
details).

Note that isouncertainties (6.6.11) depend on the preservation of the
isogaussian character under Fourier isotransforms. In turn, this is dependent on
the basic isoexponentiation of the Lie-isotopic theory. In fact, starting from the
isoexponential

-a%/2a2 -r2T/24
e =Te ,
¢
we also end up with the isoexponential

_k2 2/2 —k2 2
/2 _qTKTE/2 66.21)

(6.6.20)

€

¢

In turn, the preservation of this isoexponential character is precisely the
mechanism that alters Heisenberg's uncertainties via the isotopy 1 =1.

The isotopic techniques used in this section for the Fourier transforms are

easily extendable to other transforms. We mention as an example, the Laplace

isotransform also stugied, apparently for the first time, in ref. [10]
Mz) = o T *xep” *, 2z = cost. +iy, (6.6.22)

The same techniques are then applicable to the isotopies of Hankel, Mellin,
Hilbert and other transforms [see ref.s [20,21] for their conventional forms)

6.7: ISOFUNCTIONS AND THEIR OPERATIONS

We shall now study the isotopies of a few representative elementary functions
and the primary operations on them.

Definition 6.7.1: Let f(x) be an ordinary function verifying the needed
regularity and continuity conditions on a given closed interval of the real
variable x € R(n,+X). Then the “isotopic image”1(X) of f(x), is a function of the
corresponding closed isointerval of the isoreal number X = x1 € R(f,+* generally
given by the rule

& =11x). 6.7.1)

We have already encountered several elementary isofunctions during our
analysis, such as the isopower
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Tx) = X0 = x*X* ... *X(ntimes) = 1(x"). 6.7.2)

A most fundamental isofunction is the isoexponentiation of Sect. 14.3.
When written in terms of an isonumber X, it also follows rule (6.7.1),

2% g ¥ = 1(eT¥) =1(eTTH) = 1eX, (6.7.3)

where e* is the ordinary exponentiation,
The isologarithm of an isonumber a € F(g,+*) on isobasis & = €] can be then
defined as the quantity lf)gé a such that

Bgd .
e Be? - 3 (6.7.4)

with evident{and unique) solution
log,a = Tlog,a. (6.7.5)

where logea is the ordinary logarithm on basis e of the ordinary number a.

It is easy to see that the above definition of the isologarithm characterizes
a correct isotopy because it preserves all the conventional properties of log a,
such as (we ignore in the following the subscripts & and e for simplicity)

loge =1, g1 = 0, (6.7.5a)
logaxh = 10gd + 1ogh, 1ga’7b = 16ga - 1ogh, {6.7.6b)
log a7l = —Rga, b+oga = Iog ab, etc. {6.7.6¢)

A similar situation occurs for the isotopy of most, but not all functions. In
fact, two exceptions are given by the isotopy of the trigonometric and hyperbolic
functions, which were preliminarily identified in Ch. 1.5, and are studied in more
detail in App. [.5.C.

The isotopies of derivatives and integrals are intriguing because of the
variety of the emerging novel notions. In fact, by again assuming T independent
of x for simplicity, we can introduce the three different isodifferentials d;x =
dx, dsx = d(Tx) = Tdx and d3 = d(Ix) = Tdx. We then have the isoderivatives of the
first, second and third kind

ay d, d dz d
—t% = =1 = 1—1k), —1%) = — 1) 6.7.7)
dox dox dx dax dx

as the reader can derive via more rigorously via isofimits here omitted for
brevity, but studied in detail in ref.s [31,32]. Similarly, we have the three indefinite
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isointegrals of the first, second and third kind J; = [, J, =1f and J3 = T/ which
verify the axioms Jdyx = x, k = 1, 2, 3. Definite isointegrals can be defined
accordingly, e.g,, for ¢ = [a, b] being a closed isointerval of x,

Jp, e = f moax, k=123 (6.7.8)

A virtually endless number of isotopic liftings of conventional treatments
(see, e.g., ref. [22)) can be introduced, but its study is here left to the interested
mathematician.

APPENDIX 6.A: ISOMANIFOLDS AND THEIR ISOTOPOLOGY

The notion of an N-dimensional isornanifold was first studied by Tsagas
and Sourlas [30] In this presentation we use the following simplest possible
realization. Since an NxN-dimensional isounit is positive~definite, it can always
be diagonalized into the form

1 = diag.(b; % by % ..,by 2)>0, bg>0,k=1,2.,N, (6AL

Consider then N isoreal isofields Ry{f,+%) each characterized by the isounit 1y =
b2 with (ordered) Cartesian product

RN = Rl X Rz X.,..X R‘N . (6.A.2)

Since Ry ~ R, it is evident that RN ~ RY, where RN is the Cartesian product of N
conventional fields R(n,+x). But the total unit of RN is expression (6.A.1).
Therefore, one can introduce a topology on RN via the simple isotopy of the
conventional topology on RN,

T ={@, RN B, (6.A.3)
where B; represents the subset of R" defined by
Bi = { p= (:':\11, 212, aey an) 7 fli < ’él’ ?:12, ey lé.n <fﬁi, ﬁi R Tﬁi y 8k € R.] . (6A4)
As one can see, the above topology coincides everywhere with the
conventional topology T of R® except at the isounit 1. In particular, T is
everywhere local-differential, except at T which can incorporate integral terms.
Such a topology shall be referred to as Tsagas—Sourlas isotopclogy or an

integro—differential topology 301

Definition 6.A.1 [loc. cit.]: 4 “topological isospace” HRN) is the isospace RN
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equipped with the isotopology %. A "Cartesian isomanifold” MIRY) is the
topological isospace RN) equipped with a vector structure, an affine structure
and the mapping

T:R" > R", T:3 — fa)=3, v aceR. (6.A.5)

An “isocuclidean isomanifold” M(E(x,8,R)) occurs when the N-dimensional
isospace & is realized as the Cartesian product

Ex8R) ~ Ry xRyx .. xRy, (6.A.6)
and equipped with the isotopology T with isounit (6.A.1).

The extension of the above definition to nondiagonal isounits 1 can be
achieved, e.g,, by assuming that the individual isounits 1, are positive-definite
NxN-dimensional nondiagonal matrices such to yield the assumed total unit T via
the ordered Cartesian product

’I=’I[x,12x X’IN. {6.A.7)

For all additional aspects of isomanifolds and related topological properties
we refer the interested reader to Tsagas and Sourlas [30]. [t should be noted that
their study is referred to M(RN), rather than to M{RN) because of the use of the
conventional topology T (i.e. a topology with the conventional NXN-dimensional
unit I). The extension to M(E) with the isotopology T has been introduced
apparently for the first time in papers [32,33].

APPENDIX 6.B: OTHER GENERALIZATIONS OF FUNCTIONAL
ANALYSIS

A considerable number of generalizations of functional analysis of non-isotopic
type exist in the literature, some of which dating back to the past century. They
are ali independent from the isotopic generalization because derived from
different assumptions. As such, they all have their own value. Regrettably, we
cannot review them here for brevity, and must limit curselves to indicate those
most significant for our studies.

The generalization of functional analysis based on the so-called g -
deformations (see, e.g., ref.s [23) is particularly relevant for hadronic mechanics,
and includes g—number—generalizations of ordinary and special functions, the
operations defined on them, etc.

The differences between the isotopic and q-functional analysis are
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numerous, such as the central dependence of the former is on th lifting of th unit
and the preservation of the conventional unit for the latter, the validity of the
former for arbitrary integro—differential operators T, and that of the latter for
g-numbers, etc. (see App. 1.7.A). Nevertheless, a knowledge of the g-functional
analysis is unquestionably useful for the construction of the isospecial functions,
as we shall see in Yol. IL

Among the great variety of g—number theories, a significant realization was
conceived by Dirac (see the review [24], p. 320 ff.) whose study is also
recornmended here. Unfortunately, the differences between Dirac’s g—numbers
and the others q~numbers are so greal to be misleading.49 For this reason we
shall refer to them via the alternative name of queer numbers suggested by
Dirac himself.

Yet another generalization, this time, of the conventional differential
calculus is the so-called Helmholtz’s calculus (see, ref. [25]. This generalization
too is significant for these volumes because it leads to an inevitable
generalization of conventional relativities although different and independent
from the isotopic one.

Additional special forms of differential calculus exist in the literature,
depending on the needs at hand. We indicate, for instance, the small derivative
calculus developed by Gonzalez—Diaz and Jannussis [26], which is specifically
conceived for small distances and exhibits rather intriguing properties.

By no means the above indications exhaust all existing generalizations of
conventional functional analysis. Additional novel possibilities can be found in
the monograph by Lohmus, Paal and Sorgsepp (28l A further approach is
presented in the monograph by Yougiouklis [29] via the algebraic hyperstructures
{also called multivalued algebras) and the so—called H-structures, in which
associativity, distributivity and commutativity are replaced by their weak forms.
The latter approach also implies the chain of generalized hyperfields,
hyperspaces, hyperalgebras, hypergroups, etc. with intriguing possibilities for
isotopic reformulation and application to interior dynamical problems.

Nevertheless, none of these generalizations require a lifting of the basic
unit, thus illustrating the uniqueness as well as independence of the isoanalysis of
this section.

Also, q—theories are mathematically impeccable, but afflicted by rather
serious problems of physical consistencies studied in Vol. II, such as: 1} lack of
invariance of the unit, with consequential impossibility to apply g-theories to
realistic measurements; 2) lack of conservation in time of Hermiticity, with
consequential lack of observability; 3) lack of form-invariance of the special
functions, with consequential invalidity of numerical results, e.g., originating
from partial wave g—anatysis; and others.

49 Dirac’s g-formulation of quantum mechanics is a truly “quantum” theory, while the
other q—deformations of quantumn mechanics do not admit a “quantum” because they do
not admit the unit (App. 1.7.A).
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1 Introduction

In this paper, we consider the Lie-isotopic generalization of the Legendre,
Jacobi, and Bessel functions.

We describe in detail the group of rotations of three-dimensional isoEu-
clidean space, and the group locally isomorphic to it, STU(2), consisting of
isounttary isounimodular 2 X 2 matrices. Also, we study the group qgu (2)
of quasiunitary matrices and the group M(2) of isometric transformations
of isoEuclidean plane.

These studies are of interest both in mathematical and physical points
of view. We refer the interested reader to monographs 3] for comprehensive
review on the Lie-isotopic formalism and its applications.

The isotopic generalizations of the groups SO(3), SU(2), and M(2) are
of continuing interest in the literature. From physical point of view, our
interest is that the Lie-isotopic generalizations of the Legendre functions as
well as the other special functions, such as Jacobi and Bessel functions, can
- be used in formulating the nonpotential scattering theory [1, 2, 6, 7] when
one considers non-zero isoangular momenta.

The paper is organized as follows.

Sections 2-7 are devoted to representations of the group ST (2) and isoLe-
gendre functions. Namely, in Sec.2, we consider the group ST(2). In Sec.3,
we consider unitary irreducible representations (irreps) of the group SU(2).
In Sec.4, we present matrix elements of the unitary irreps of ST(2), and
isoLegendre functions P!, (). In Sec.5, we present basic properties of the
isoLegendre functions. In Sec.6, we present functional relations satisfied by
the isoLegendre functions. In Sec.7, we present recurrency relations satisfied
by the isoLegendre functions.

Sections 8-14 are devoted to representations of the group QU(2) and
isoJacobi functions.

Sections 15-20 are devoted to representations of the group M(2) and
isoBessel functions.
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2 The group SU (2)

In this Section, we consider representations of the group SU/(2), elements of
which are isounitary isounimodular 2 X 2 matrices, and its relation to the
group SO(3) of rotations of three dimensional isoEuclidean space.

2.1 Parametrizations

Denote ST/(2) the set of isounitary isounimodular 2 X 2 matrices, namely,
of the matrices

ﬁ:f*(? @) (2.1)
¥ b
If 4, € SU(2) and 4, € SU(2) then

('&1 * ﬂz)* = 'ﬂ; * ﬁ; = ‘ﬂ;z_l * ’&1_1 = ('&1 * 1'12)_1 (2-2)

and det(d * i) = 1. Therefore, @, + @, € SU(2). Also, it is easy to show
that ;" € SU(2). We arrive at the conclusion that SU/(2) is a group.
Let & € SU(2). Since

“*:f*(g ?) (2.3)
and R i
'&_1 = f* ( _6.‘? _&ﬁ ) 3 (2‘4)

then@:&and’y=—§. )
Thus, any matrix 4@ € SU(2) has the form

N
=1 (—B a), (2.5)

where I = diag(gy},957), det I = A. Since det@ = 1 then

T

la|Ajal +181A18] = 1, | (2.6)

and vice versa, if 4 is a matrix of the form (2.5) and Eq.(2.6) holds, then
@ e SU(2).
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From the above consideration, it follows that the elements of ST(2)
can be uniquely determined by two complex numbers (&, ﬁ) obeying eq.
(2.6). These complex numbers can be presented by three real parameters,
for example, by |&|, Argd, and Arga. If &+ # 0, one can use another
parametrization, namely Euler angles, ¢, 8, and ¥, which are related to lal,
arg 8, and arg & according to the following relations:

|&] = g53'/% cos[#AY?/2] = isocos[/2],

-

Argé = _¢, Argl = ‘P_-gﬂ, (2.7)
" where ) )
P =AY?  G=0AY2 =AY (2.8)

The values of the Euler angles are not determined by (2.7) uniquely, so that
we must put additionally

0<p<2r, O<b<m, —2r<e<2m (2.9)

From (2.7) it follows that 18] = g527%sin(8AY2/2) and that the matrix
% = 4(¢,6,) has the following form: i

o= 9931 "cosB 20N (A2gT 2 sin ff9eie= 2
iA2911% sin 6219212 ggmU% o5 PRI

) e

From (2.5) and (2.10) we have

91172 cos[p AV = 2|af?A - 1,

exp[iA/ 2 /2] = -—i%, (2.11)
exp iAl/24p/2 = oA exp{—iA}2p/2}
lal

Also, from {2.10) we have the following factorization

[ exp{iAtg) 0 g 0
u((p,ﬂ,@b)—( 0 exp{—iAY%p[2} 61 922

o[ 9 cosb)2 inggn*sind/2 \ ((gn 0
9521/251119/2 iAgff”cosG/Q 0 g2
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x exp{iA} ) [2} 0
0 exp{—1AY24/2}
= #(4,0,0)A%(0,8,0)A4(0,0, ¢). (2.12)
Diagonal matrices
exp[iAl/2p/2] 0
( 0 exp[—iAY%p/2) (2.13)

form a one-parameter subgroup of §U(2). Thus every matrix & € SU(2) kies
in the left and right conjugacy class in respect to ths subgroup containing
the matrix of the form

( g% cos[8AY212]  iAgy? sin[fA? /2] )

2.14
iAg, sin[0A2[2]  giM? cos[0AY2 /2] (2.14)

Note that the matrices represented by (2.14) form a one-parameter subgroup
of SU(2).
2.2 IsoEuler angles for matrix product

Let & = @, A, is a product of two matrices 4,1, € SU(2). Denote the
corresponding isoEuler angles by (¢, 4, ), (¢1, 01, ¥,), and (¢, Bz, 1n). -
To express the isoEuler angles of & via the isoEuler angles of %, and ., we
consider the case when ¢; = 1,2:1 = 1,132 = 0. For this case we have

i = Q1_11"’2 COSé1/2 Z'Agz—glmsin é1/2 g 0
'55952”2 sin 6, /2 91_1” % cost, /2 0 go

o[ g Acoshy/2exp{itn/2}  in?sindy[2exp{idn/2) e 1'5)
iA? sin 8, /2 exp{—ip,/2} 01t A cos By /2exp{—i@af2} |
Using (2.11) we have from (2.15) in sequence
cos[fAY?] = cos[f; AY?]A cos[h, AV g M2

— sin[0; AY?|Asin[f, AV Aggp,? cos[p, A7, (2.16)

sin[6, A2 A gy, ? cos[8,A1/?)

iAY2p) =
explif e} sin{#A1/2]
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(g1 1)~ cos[8; AY/2)A sin[0,AY2) A gt cosfp. AV?]

sin[fA/2]
;i 1/2 1/2
zsm[BEA- A sin[p A ], (2.17)
sin[fA1/2]
1 1/2 2 AY2,, 19
A 1/2 _ g Acos[B, AV [2)A% exp{iA 2, 2}
exp{iA (p +)/2} = cos[0, A1/2/2]
- g5 sin[f, AY2 /2] A sin[8, A2 [2] A exp{— zA”chg/?} (2.18)

g% cos[#A1/2 /2]

It is more convenient to use the following expressions:

-1/2
(&) tan[pAl/?)
I

sin[f, AV2)A sin[1p, A2

T g1t cos[f; AY2}A sin[0, AV/2)A cos[paAL?] + g2 sin[6, A1/2)A cos[f, A7)
(2.19)
ga2\~1/2 1/2
= tan[ypA
(52) " tanlpa™”]

sin[8, AY?]Asin[ip, AY?]

" sin[f AV2]Ag cos[fAV2)A cos[1h A2 + g2 cos[6; AV/2] A sin[f,A1/2)

(2.20)
Due to the results of this particular case can easily turn to the general

case. Indeed, according to (2.12) we have

(1, By, P ) AU B2, B2, )

= A5, 0,0)8(0, ¥, 0)0, 0, %, )i @2, 0, 0)i(0, 8, 0)4(0,0, $).  (2.21)

Note that

(0,0, 1) Ad($2,0,0) = (@2 + $1,0,0). (2.22)

We observe that the result of the product #(p, 8, %)+ pq,0,0) gives the ma-
trix #(@+ @1, é ’t,b) Similarly, the result of the product %(0,0 ¢1)*u((p, g ¢)
gives the matrix u(cp,ﬂ 1,!) + 1,b1 From these observations it follows that
the formulas (2.16)-(2.18) are valid in general case with the replacements

Py — P2+ Y1, @ — G — @1, and ¥ — P — 1.

Namely, in an explicit form

cos[0AY?] = cos[, AY?]A cos[f, A1)
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- ggg—;/z sin{@; A/%)A sin[BgAl”z] cos|(p2 + )AY?, (2.23)
—1f2 /2 1/2
exp{iDp} = %L S‘“[B;if[; Aﬁz‘j‘”wz"\‘ 7
_|_91_11 cos[f; A2 A sin[B,AV?]A cos[(1hs + 1) A7
sin[fA1/?]
igs sin[8 AV A sin[( i, + 1)AY?)
sin[@A1/?)
exp{iAY*(p — 1 + ¥ — 92)/2)
g5 cos[8, A2 /2] A cos[B,AY?/2) A exp{iA* (02 + 91)/2}
- g1 " cos[pA1/2[2]
g5 sin[yhy A2 [2)A sin[f, A2 2} A exp{—iAY? (s + 11 )/2}
- 97772 cos[pA1/2/2] '

+ : (2.24)

(2.25)

2.3 Relation to the group of rotations

Let us define the relation between the groups SU(2) and SO(3).- To this
end, we identify the vector £(£,,%,,25) of three dimensional isoEuclidean
space with the complex 2 matrix of the form
b, = ( B Bt i ) (2.26)
£, — %y —%3
where = zf = 26~!. The set of the matrices of the form (2.26) consists

of isoHermitean matrices § with Trg = 0. Namely, with every matrix & €
SU(2) we relate the transformation T(),

T(2)Ah, = @Ak, * 4. (2.27)

S}nce for the isounitary matrices we have 4* = #~1, the traces of b, and
T(&)Ah, coincide so that the trace of T(#)Ah, is zero. Also, we have

(P(R)AR(E)) = (8AR,A % )" = 8A % b, * BA = @A, * & = T(2)Ah,,
(2.28)

so that the matrix T'(#)Ah, is indeed isoHermitean. On the other hand, for
isoHermitean matrices we have the following representation:

FBeay AT Ga 1 + 1Af Ay, Ay, + 1y -
T()AF z = n o R = _ . =h
( ) ' ( 1 — t1Ag, —Ya ) ( A 13!1 — i —Ays v
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where (i, 92, 3} is a vector in three dimensional isoEuclidean space.

From (2.27) it can be seen that the components of § are linear combi-
nations of the components of & so that 7(4) is a linear transformation of
the three dimensional isoEuclidean space £°. From the local isomorphism
between the groups STU(2) and SO(3) it follows that rotations of £? can be
parametrized by the isoEuler angles (¢, 6, 1,?:) Here, the angle ¢ varies from
0 to 27 since @ and —# correspond to the same rotation.

Due to (2.12) the matrices i(@,0,0) and @(0,0,%) can be presented as

exp{iAl/?
( P{AO v exp{—iglf'?t/z})g‘:’a(ﬂ, (2.30)

where @a({) is the rotation by the angle 7 around the axis O, and @(0,4,0)
has the form

g /? cos[tAY2/2]  iAgssin[tAl?)2)
iA(gz2) T2 in[tAY2[2] g7 cos[tAV? /2]

) =),  (231)

which is the rotation around the axis O%,. From this observation, we have
the following decomposition for arbitrary rotation § of E3:

B ﬁ({b, é: "i’) = g(ﬂb: O,U)Aﬁ(o,é, O)Aﬁ(iﬁ, 070)

gilcosp —g?sing 0 (gu 0 0
= gz_lef:2 sin (;5 9;11/2 COos (‘a 0 0 Goo 0
0 0 0 0 0 g5
AT 0 0o gu 0 O
x| 0  g3%cosé  —g5%sind 0 g O
0 (g22)"?sinv (g11)"Y*cosd 0 0 gs
At Q 0 7
X 0 .‘3’1_11"2 cos Y _g2-21/2 sin . (2.32)

0 (g32)"Y?sin (g11)" Y% cos

3 rIrreps of SU(2)

Recall that with any isounimodular complex 2 x 2 matrix § we associate the
linear transformation,

Wy = e’z + 1A% = A ez +72), (3.1)
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Wy = BAz + 6672 = A*(Bz + §22),

of two dimensional linear complex space. Such a transformation can be
presented by the operator,

T(@)AF(31,%) = f(6D2 + FA%y; BAZ + Asy), (3.2)
acting on the space of functions of two complex variables. Evidently,
T(8:88,) = T(61) + T(3:),

so that T(§) is a representation of the group SL(2,C). Similazly to the
theorem from Ref.[4] we have the following

Proposition 1. Every irreducible isounitary representation (1) of SU(2)
is equivalent to one of the representations T;(n) , where l = 0,1/2,1,.

The prove of the Proposition 1 is analogous to that of given in Ref.[4],
and we do not present it here.

From Proposition 1 it follows that in the space of subgroup SU(2) there
exists the orthogonal normalized basis, fo1,-++, fi, such that the operators
T(u) are represented in this basis by the same matrices as the operators
Ti(#) in the basis {14(z)}, where

w!—k

NEDIEDE

-1<k<l, s=1,...,n

hi(z) = AT (3.3)

We call such a basis isocanonical. It is easy to verify that isocanonical basis’
is determined uniquely up to scalar factor A, with |A| = A~!. More precisely,
isocanonical basis consists of normalized eigenvectors of the operator T(k),

where ,
o [ exp{iAl%[2} 0
h= ( 0 exp{—iAY%[2} |° (34)

4 Matrix elements of the irreps of SU(2) and isoLe-
gendre polynomials

In this Section, we calculate matrix elements of the irreps T;(4) of SU (2),
and express the matrix elements il .(§) through the isoEuler angles (¢, 8
) of the matrix g.
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The representations T}(§) of SL(2,C) are given by

az +vA™?

F(NAR(E) = (B2 + A YT Ap——1— 4.1
where @(&) is polynomial of degree 2/ on #, and § € SL(2,C).
Using the isocanonical basis of Sec. 3 and the formula a;; = (e;3e;), where

{e;} is orthonormalized basis, we write down the matiix element,

(ﬂ(g)él—n;ﬁ!—m)

B (8) = (TH(§)Pn3dhm) = N e E DI (4.2)
where ) Ll pS2
U8 = e (4:3)
~1<n<l, {{-n)=AU-n)(-n+1)..., s=12,...
On the other hand,
T(§)2'" = (az + ATV " A(Bz + 6ATYH, (4.4)
so that (4.2) yields
((aa: +yA-1)""A(Bz + 6A‘1)’+“;:1:"”‘A—1)
fn = A-3/2. (4.5

mn N DI EDIEDIED)

Taking into account that (#'-%,2"™) = 0 at k # m and (8"7,5"™) =
(I - m)!({ + m)!A%*t) | we have finally from (4.5)

(- m)i(l + m)!
(—n)li+n)

fna (§) =

N
A—-m—j A l~m=j af . m}j=ncldn=j
X Z Cl—n Cl+na Jﬁ]‘Y ] ’
ey

= (1= m)I( + m)(I — m)!(I + n)IAZ#o i mymongitn

N A—4s—1 ﬁ“'}" i
* Y T m =+ =i =¥ 7) (33)

j=mJ



- 369 -

= /(I — m)!(I + m)Y(I - n)!( + n)la! "y Rg R

N AYSAUNZAS i
<X T e T ) 49
Pay/S L ! ! !
where M = max(0,n — m), N = min({ — m,! + n). We should to note
that the matrix element (4.6) in fact does not depend on 8 because of
isounimodularity of § implying 8y = af — A™L.
We are in a position to express ', (§) in terms of the isoEuler angles.
Due to (2.32),

Til3(2,8, )] = Ti{(9(,0,0)]AT"[3(0,8,0)]AT{5(0,0,4)], (4.7)

so that finding the general matrix T(§) reduces to finding of the matrices

Ti[a(#,0,0)}, Ti[§(0,6, 0)], and T3[3(0,0,%)].
The matrix (¢, 0, 0) is diagonal,

exndiA3/?
g(r,a,0,0) = ( xp{ZAO (P/2} exp{_i§3/2¢/2} ) . (48)

For this matrix, we have (see, for example, Ref.[4] for the ordinary case)
Ti[3($,0,0)]A3/22" " = exp —iAZnpAYV2 A 23", (4.9)

Hence, the matrix of the operator T3[§(i,0,0)] is diagonal too, with the
. nonzero elements being exp[—iA%?¢], = < n < [. The matrix of the
operator 7;[§(0,0, )] has similar form. X

Let us denote matrix element of the operator 7;[§(0,4,0)] as #_.(6).
Then, according to diagonality of the matrices of the operators Ti[($,0,0)]
and T;[Q(0,0,@b)], we obtain

fran = Tnn (902, 0, 0)]AZ,, (B)AL,,[5(0,0,0) exp{—iA%(mgp + nyh)} AL, ().

(4.10)
It remains to obtain #,(#). The matrix §{0,8,0) has the form
; Meosff2  iAgsPsind)2
3(0,6,0) = g11° COSU/. a2 L 4.11
6(0.6,0) ( iAgilsinf2 gileosbe )0 (T

where 0 < Reff < 7.
In the same manner as in Ref.J4] we then have

8 /4 c—men & 5—3sa2; (I = m)(I = n)}! 1/2 n
Fon(0) = 37T AT El+m;!gl+n;! (%) cotan™ " [§AY2 /2]
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> (t—j)l((gtjgﬁj—n)!-"z—;”“n[f’ﬂ‘”/?]- (4.12)

Parameter & varies within the range 0 < Ref < m so that, in this range,
different values of ¢ correspond to different values of Z = g% cos[BA2].
So, . (6) can be viewed as a function on isocosf. In accordance to this, we

put

j=maz(m,n)

frun () = Prn(giy” cos[9A17]. (413)
Then, (4.10) can be rewritten as |
iL.(8) = exp —iAY?(mp + np)APL . (3). (4.14)

With the use of (4.14), Eq.(4.12) leads to the following definition of the
isoLegendre polynomials:

Pl = j-m-n AB-2et8iH(min)/2 (I — m)li(l — n)! (A—l + 2)(m+n)/2
mn

(I+m)(+n)I\A-1 = 2
: (l-l-j)!izj A~ 3\?
PN = NG = m)G —n)! ( 5 ) : (4.15)

j=maz(mn)

The factor ((A™! 4 2)/(A™ — 3))™+7)2 s twovalued since m and n are
both integer or hali-integer. Single valued definition in (4.15) comes when
taking into account that 0 < Ref < 7 and # maps this range to the plane
% cutted along the real axis, (—oc;—1) and (1;00). In the cutted plane the
factor is single valued.

5 Basic properties of the isoLegendre polynomials

In this Section, we study the basic relations obeyed by the isoLegendre
polynomials.

5.1 Symmetry relations

We will show that P! (%) is invariant under the changing of signs of the
indeces m and n. For this purpose, we use the relation

§(m5(0) = §(H)a(x), (5.1)
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where we have denoted for brevity

(6 = g P cos[tAY2 (2] iAgR?sin[tAl?/2) (5)
TIZ\ it (gm)2sinftAY2f2] g% cos[tnr/2/2) ‘
From (5.1)-(5.2) it follows that
THx YT (8) = THOT (x). (5.3)

Recall that the matrix elements of T}(8) are just P!_(3). Also, it is known
that &%, (7) = 0 at m+n # 0,and ], _, (x) = i**". Replacing the operators
in (5.3) by their matrix elements we obtain

B a(8)= Pl .(2), (5.4)
from which we have
Fro(8) = PL,, (9. (5.5)
According to the explicit representation (4.15), we then also obtain
Pra(2) = Brpu(3). (5.6)

The relations (5.4}, (5.5) and (5.6) are the basic symmetry relations for
the isoLegendre polunomials.

The relations (5.5) and {5.6) means, particularly, that P!_(Z) depends
on m and n through the combinations |m + n} and |m — nf.

Also, it is straightforward to verify that the following relation holds,

Pl (3) = 8(-m=mA Bl (3). (5.7)

5.2 Counter relations

The function P! (2) is defined in complex plane cutted along the lines
(—o0;—1) and (1;00). On the upper and lower neighbours of these lines
F}.,.(2) takes different values. From (4.15) it follows that for # > 1 we have

PL(24i0)=— Aj_n ABL (5 i0). (5.8)
Similarly, for 2 < -1,
Pl (341i0) = 1 AP (3 —1i0). (5.9)

- Am-l-n
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5.3 Relation to classical orthogonal polynomials

In Sec. 4, we have defined the isoLegendre function P! (%), and obtained
one of the representaions of it. Now, we relate P! (%) to some of classical
orthogonal polynomials - isoJacobi, adjoint isoLegendre, and isoLegendre
polynomials.

This relations allows, particularly, to establish properties of the polyno-
mials by the use of the properties of the isoLegendre function.

5.3.1 IsoJacobi polynomials

IsoJacobi polynomials are defined by

15&,,5 sy (“‘A_l)k 1 —a AL/2(q -BAL2
k (Z)-— ok k1 ( —z) ( +z)
d* 2\k aAl/2 B AL 2T A B—k—s
X :EE[(I — 2 (14 2) AV (1 + 2P AYVE]A . (5.10)

Comparing (5.10) with the following representation of the isoLegendre func-

tion,
Y- i (I +m)!
Pmn(z) - 2 \/([ — n)'(l + n)(f — ﬂ)'

{-m
X (L4 2)~ i Ym0y yen(y 4 e Az (517

dzi-m
-we obtain
PEP(2) = 27"\ J(1 = m)(I + m)I(l — m)T + m)!
X (1= z)P=m2(1 = ) Am2 L (s ATHImen (5.12)
where . A A
&+ a+pf  p-a
I=k+ g M= 5 n=a—. (5.13)

From (2.30) we see that & = m — n and B = m + n are integer numbers.
Thus, P! (%) is reduced to isoJacobi polymomials, for which & and § are
integer numbers.
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5.3.2 isoLegendre polynomials
IsoLegendre polynomials are defined by

o A d 2V A —(s40)
PI(Z) = —EIFE‘;}-[(I -2z ) ]A . | (5.14)

This implies that P(2) = B°(3). Comparing (5.14) and (5.11) we obtain
B(2) = Bly(2) (5.15)

5.3.3 Adjoint isoLegendre functions

The adjoint isoLegendre function ™(3), where m > 0 (!,m are integer), is
defined by

> I3 A : m -5 m
By = oo apnia - ayjasernmn, )
that is 2""(l+ )
DM m mj2 H=-m,—ms\Am
PM2) = ————( = 2y PR (5)A™2, (5.17)

Comparing (5.17) with (5.11) leads to the following refation:

Er(e) = i [EER P e, (5.18)

- Let us rewrite (5.18) by taking into account (5.5),

Utm),

'le(é) =" (I )| mD

(2)A*™, m>0. (5.19)

6 Functional relations for isoLegendre functions

In this Section, we derive basic theorems of composition and multiplication
of P!, (%), and the condition of its orthogonality.
6.1 Theorem of composition

Many important properties of P!, (3) are related to the theorem of compo-
sition. To derive the rule, let us use the relation

TH§1A82) = T'(§:) AT (82), (6.1)
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from which it follows that

!

(188 = > F(§)AF (52), (6.2)
k==1

and it can be rewritten as

{r.n (§1A§2) = exp{~iAY (mo + nyp)} P, . (). (6.3)
For . )
frn (61 = PLi(2), §.(G2 = exp{—iA¥?p,} AP (%), (6.4)

where @, é, 1/; are isoEuler a.rlgles of the matrix §;A§;. These angles are
expressed through the angles @, 5, ¢, due to the following formulas:

cos[fAY?] = cos[f, A/?)A cos[8,AY?)

— gl sin[; AY2)A sin[6,AY?] cos[p,AM?), (6.5)
_ sin[8; AV AgM? cos[8, A7)
B sin[fA/?]

. +g1'11 cos[f; AM? A sin[8, AY?]A cos[th,] A

sin[AA/2]
gy "” sinlB20'/°)A sinfips + $:1A1/7]
sin[#AY/2) ’
o573 cos[B, /2] cos[,/2] A exp{ida/2} A exp{P2/2}
g3 cos[/2]
g sin[gh/2]A sinfd, /2]A exp{~ig,/2}
g1 cos[$/2]

where 0 < Refl < T, 0 < Rep < 27, and —27 < Ret@ < 2m.
Inserting equations (6.3) and (6.4) into (6.2), we obtain

exp{iA/?p)

+ (6.6)

exp{i(¢ +9)/2} =

: (6.7)

exp{—iAY (mp + n9)} B, (2)

!
= E EXP{—iﬁaﬁ‘Pz}P:nk(51)13;"(52)‘52‘ (6.8)

k=—1
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(a) Let (3, = 0, then if Re(fy +8,) <7 = 8 =6, + 6, and ¢ = ¢ = 0.
Accordingly, (6.8) takes the form

!
P::mn('él + 22) = E P;lk(él)Aplgn(‘é?) -

Bl 11 cos{(6y + 6;)AM] (6.9)

I
= 57 Bli(gn”? cos[bi A2 AP (977" cos[8,A172)).
k=—1
(b) Let (pg=0,thenifRe((§1+§2) > =>9:2w—él—éz,gb=$:w.
Therefore, )
Pun(f1+ 2) = —A%"

i
3 BLigr P cos(8, AV22)) AP, (9777 cos[BA22)). (6.10)
k==-I

(c) Let @, = m, then if Reb, > Reb,, = b =6, — 6, ¢ =0, 113 =T
Therefore, )
Bl (514 2)
I
= Y (A BB (g3 cos[8; AV A B, (911 cos[8,41/72]). (6.11)
k=—1

(d) In particular, at f; = 6, = 8§, we have

i
Yo (~ATMPL (977 cos[B 1/72))

k=—1
x AP kn(grt" cos[p,AY?2]) = 6™ (6.12)
(e) At ¢ = Z, the formulas (6.5)-(6.7) take the following forms:
cos[fA?) = cos{fh A2 A cos[f,A7), (6.13)
. —1f2 if2 : s 1/2
12 _ Sin[Bi AV A cos[0,AM?] + A sin[6,AN?]
BXP{EA (ID} - Sin[BAllz] ? (6'14)
/2 : 1/2
A1) _ cos{(8; + 6,)A?/2] + iA cos[(8; ~ 6;)A2 /2]
exp{iA™ (¢ + ¢)/2} = cos[B,A1/7] ’

(6.15)
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respectively.
Instead of (6.14) and (6.15), it is more convenient to define

. 142

ggz_zllztan[goAlﬂ] — Sil-l-[{:l_an][ﬂlAllz]A cos[92A1/2], (6.16)

. ,2

—1/2 12 _ sin{{6,A'?]
9 tan[pAT] = cos[f, Al/2)A sin[f,A1/2]" (6.17)

Then
exp{—iA2(mp + np)} AL, (55 cosl0:47])

it E L (95" cos[, AV AP (g7 cos[,A17])).  (6.18)

k=—i

6.1.1 Theorem of composition for isoLegendre polynomials

Consider particular cases of the function B (3), namely, the IsoLegendre
polynomials and adjoint isoLegendre polynomials. The polyromials are de-
fined due to

Pz(f’) = Pgo(":’): Prm =" V 8+ m% P! mU( )A2 " (6-19)

Taking into account the formulas from Sec 6.1 and using (6.19) we get

exp{iAY 2mp} Pl (9177 cos[84])

(t+m)! /(I — k)!
(- k}; 5 (6.20)

X exp{—-z'Aa‘{zm%}f’fnk(gn c:c:s[&?l./_\1"'2])1’,'°(g—l"2 cos[@, A2 ARk

where ¢, 8, o, and 1, 6, are related to each other as in Sec. 6.1.
If we put m = n = 0, we obtain, particularly,

P'(g7! cos[8, AY?])A cos[8,AY?]

— g3} sin([0,AY?] sin([0. A2 ? cos[p, AV Asin[f,AV?]))  (6.21)

= (- 1)2 =+ (Hk;,exp{ ~iAPmep,}
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x B (g17'"” cosl8y A B (gry " coslf, A7) A%,
Due to the symmetry Bl (%) = P!,,(2) and (6.19), the relation (6.21)
can be reduced:
(I + m)!
(I —m)!

Prm(3) = -1 Pr(s)ar, (6.22)

Thus, from (6.21) it follows that the polynomials - P,(3) obey the following
theorem of composition:

P cos[8, AV2])A cos[B,AY2)
—_ 92—21 sin([91A1/2] sin[@zﬁlfz]gl—lln COS[‘PgA”g]A Sin[ngI/?]) (623)

- Bt

X BF (g1, cos[8, AV Bl (g7, cos[8, A7) A2,

6.2 Multiplication rules
Let in the composition rule
exp{~iA**(mgp + n)} P'(g7;'/* cos[0A /7))
= exp{—iA%kp,} Pri (97,77 cos[Bi AV B (971/° cos[B 8] A% (6.24)

If ¢, is a real angle, then this formula can be viewed as a Fourier expansion
of the function

exp{—iAY*(my + np) AP (g7} cos[0AY?)).

Therefore,
I:",'nk(gﬁl/g cos[91Al"z]):ﬁf;‘,in(gﬁl"2 cos[#,A/?))
3 T
= 5= | exp{~ia* (kg — mp — n)} Py (97 ") A A7), (6.25)

-

Putting m = »n = 0 in this formula, we get

A% [ .
o7 / exp{—iAY 2k, } P, (777 cos[0AY/?)d( 0, AM2)

-%
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=/ g :L kg,P; (95777 cos[@ AYH) B (g7 % cosl A 2DAZE. (6.26)

Since P!, (9,* cos[pAY ?]) is an even function in respect to ¢, the above
equality can be rewritten

5 T
S [ Bl (0 cosloAM)g5 Y coslhpn A d(pa A

= BF(g'"? cos[8, AY2]) ¥ (g7 cos[B,A1/2]). (6.27)
If we now let additionally k = 0, we obtin the further reduction

o RO ONDYSIND

= PF(g7!/ cos[8, AM]) BE(g 17 cos[8,A1/7)). (6.28)

Let us rewrite eq. (6.28) in a more convenient form. Assuming 6y, 8., @, to
be real numbers such that 0 < 8, < 7 and 0 < 6, + 8, < 7, we redefine the

variable
cos[AAY?] = cos[ AYZA cos[d,AY?]

~ 957 sin[f; A2 sin[0;AY?] cos[ipa A2 A2, (6.29)

Introduce the notation
Tn(a:) = gfll/ 2 cos[nAg{ll" Farccosi].

This function defines Chebyshev-I polynomial. From the last equation it
follows that
9-11/2 cos[kAalzgo ]
gii(cos BlAm Agri cos[,A?] — cos[§ A2
T 11
923 sin[6; A2 Aga' sin[f, A1/2] -

In turn, from the condition (6.30) it follows

(6.30)

d(‘ag =
9557 ? sin[0AY2]AdH

\/ 92 (cos[gA2] — cos[(B; + 82) AMZ])Ag*(cos[(6; — 82) — cos[AM?]
(6.31)
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Since when varying ¢, from f to x the variable § varies in the range from
|61 + 62| to |6, — 8}, the above made redefinition transfroms the integral to

the form
5 91462
5 [ P coslont)
|814-82]

i cos[Glﬁuz]Agn cos[8,A172) — g7 cos[fA/2]

T g1
go2 sin[0;AY2]Ags) 31n[92A1/2]

93212 sin[BAY2)Ad(BAY?)
a1t (cos[0AY?] — cos[(8; + 8,)AY2])Agi(cos[(8y — 62) AL2] cos[§AL/2])

= PF(gii cos[0, AV AP F (g7 cos[BAV?)). (6.32)

The expression in the denominator has a simple geometrical meaning: it
is equal to the square of the spherical triangle with the sides 6,, 8, and 8,
divided to 4x*.

6.3 Orthogonality relations

In this Section, we apply theorems of orthogonality and completeness of
the system of matrix elements of pairwise nonequivalent irreducible isouni-
tary representations of compact group to the group SAU(2). Since dimen-
sion of the representation 7;(#) of the group SU(2) is 2! + 1, the functions
V21 + 1A# (1) form complete orthogonal normalized system in respect to
invariant measure d on this group. In other words, the functions #! (&)
fulfill the relations

. A
o (B)APEE (R)dE = :
‘/ mn(u) (1"') (2l n 1)61.& mp (6 33)
5U(2)
Inserting expression for the matrix elements
Brun (@50, 9) = exp{—iAY*(mgp + np)} (g5 cos[8AY?])  (6.34)
into (6.33) and using the fact that the measure di on the group STU(2) is
given by

A4 n
di = 7995 sinf0AV*)dpdbdy, (6.35)
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we turn to the following specific cases.
(a)Ifl # kor m # porn#q,then

2r 27 ®

(T cos[B, AV P2k (g11° cosl8; AY?]) g5, sin[0A >
"

-2r 0
X A® exp{iA**(p — m)¢} exp{iA®*(q — n)}wd(0A2)d(pAY)d(HAY?).
(6.36)
(b) Let p = m and ¢ = n, then, at I # k,

[P0 cosln A B (972 os[0, A V)i cosllA%a(0A7) = 0

(6.37)
Analogously, from (6.33) it follows

T R . ) . 9
./ [Prinn(Q'nl/z COS[BlAUz])PHHIIZ 51n[6A1/2]d(9A”") = 2!—-1-1 (6-38)

Further puttmg & = g;!/* cos{fAY/?] we get the orthogonality relations for

[ P @A @) = 0. (6.39)
1

7 Recurrency relations for isoLegendre functions

In this Section, we derive the formulas relating the functions 2! _(3), indeces
of which are differ from each other by one, that is, recurrency relations, which
can be viewed as an infinitesimal form of the theorem of composition. These
relations are then follow from the composition rules at infinitesimal é,.

To obtain the reccurency rules, we diffirentiate the equation below on 6,
and put 92 =0

1oy = m)i( + m)!
B =\ oy

iy gAZ AL
X5y [ delon” cos|——Jexp —
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N gAL/? —fAY? _ OAY? i AL/2
gz sin[———] exp ——)'"" (ig5/? sin[~—— exp -
2 2 2 2
_ galﬂ _'Allz .
x g% cos| 5 | exp : 5 ('9)"n exp iAY . (7.1)

First, we find

d s -
@[me(g = 1172 cos[0AY?])] 5

A (1= m)i({ + m)!
T an \ (- n)I+ n)!

(7.2)

27
X _/ do(l —n)exp —iAY2(n + 1)+ (I +n) exp —iA¥*(n — 1)pexp A¥ *m.
0

It is obvious that the r.h.s. of this equation is zero unless m = n + 1. At
m =mn+4+ 1, from (7.2) we get

d, .. AN i
—LPnt? cos[ = ]Ia—zoz§A3/2\/(l—n)(l+n+1). (7.3)
Similarly, |
d o0y gAL/? i
U0 ol iy = 5A (T4 m) - +1). (1.4)

Now, we are ready to derive the recurrency relations.
Using the factorization

i
Pl cosl(fh + 8)A4]) = 3 Bl (95 cosly A1)

k=-1

AP (9537 cos[B, A7)

obtained in Sec. GS6, putting &, = 0 and replacing g5,/ cos[8,AY?)) by 2,
we obtain the recurrency relation in the form

Vi—22 zz‘mr;—f;(ﬁ’l = -%Aw[\/(z —n)l+n+1) (7.5)

XBh () + I+ )= n+ DB, (2]
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To derive the second recurrency relation, we use the particular case of
the theorem of composition which corresponds to ¢, = Z. Namely, we
differentiate the formula

exp —iAY? (me + np) L, (91777 cos[B, A1) =

!
ST ik B (g7 cos[ A
k=~1

AP k(g cos{B,AY?])
and put 8, = 0. After strightforward computations, we have

in? | m32 4,9 ls,0
b, ' db,

dB (9577 cos[f AV?)) df
- z “_|§g=0 (76)
dé, 9,

x Bri(gi? cos[8 A1)

1 .
AT )=t DB oy (7 cos[fy A7)

VA=) +n+ DB, L (o5 cosl8,A2/2])

It remains to find d@/df, and di/df,. To this end, we differentiate the
equality cos[fA/?) = cos[f AY?]A cos[f,A1/2). Since, at #; = 0, we have
0 =6, ¢=0,and 1) =, = Z, it follows that df/dbs|; _o = 0. Similarly,

o __ o (7.7)
dég f2=0 COS[GIAUZ] )

and N
dy g11v1/2 1
—l|; _g = —(Z=2)"%ctan(d, A2
da;;laz_u (9‘22) [ ! ]

o im—nz] A, ..
1A [ T ] P.(2)

= % {\/(f +a)l—n+ )P _.(5) - \/(l —a)(l+n+ 1)13,',‘“1(2)] )
(7.8)
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From the reccurency relations obtained above it is straightforward to
write down the following recurrency relations:

dp —-m 5 ; : 2
Vi O T Pha(8) = —ib (= n)(I 4 0+ DE} i (2)
(7.9)

and, analogously,

dP —-m . p :
) Bty (i [T DR )
. (7.10)

Due to the symmetry, we have from (7.9) and (7.10)

dP!_(2) mz-mn 5 . , . )
Vie 2 d,-;( ), —P.()= —iAY2 (1~ )+ m o+ DB ()
(7.11)

and

df’,im Z) MmMz—m . . 2 s
VTl B L (6) = i m) = ot DBl an(2)
(7.12)

Adding (7.9) to (7.10), we obtain the recurrency relations for three P’s:

2| S| ) = it [+ m)U = 4 DB a(3)

1~ 22

~ =)t +n+ 1)15:,,,,,“(2)] , (7.13)

VIZFBL (5) = —iA2 [\/(t Fa)l—nt DB _(5)

+ U=t VP ()] (7.14)
Putting m = 0 in (7.9) and (7.10), and using
Pl 7 = i " A2 (l_n) i 3
POn(z) - A (J-]- n)'Pi' ( ) (7‘15)

we obtain, finally, the recurrency rules for the adjoint isoLegendre polyno-
mials,

dPn(3 nZ Al Al s
and Vi1-— 22 :i:f )+A21_22H (£} = —PH(3) (7.16)

dlﬁln(é) 2
1 - 22 —

_”z2 Br(z) = —A¥+ n)(I — n+ DEPTN(E). (1.17)
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8 The group QAU(Q)

In this Section, we consider the group QU(2) consisting of isounimodu-
lar isoquastunitary matrices representations of which lead to isoJacobi and
isoLegendre functions.

8.1 Definitions

The representations of QU (2) are in many ways similar to that of the group
SU(2). However, in contrast to SU(2), the group QU(2) is not compact,
thus having continuous series of isounitary representations.

Similarly to the description of the group SU(2), we describe the group
QU(2) as a set of isounimodular isoquasiunitary 2 X 2 matrices

w=(5%). 6:)

where & and § are given by (2.7), satisfying

(=N

GoASAGE = 3, (82)

where
. A"t 0 o
=L o at ) %7

8._2 Parametrizations

g ) detgo=1, &[> =A""

(8.3)

I‘he maltrices §y above have been defined by the complex numbers & and
3. However, in various aspects it is suitable to define them by the isoEuler
angles. Constraints on the isoFEuler angles following from the requirement

that §o € QU(2) are
1/2

911" cos|

JAexp{-iA**(p + ¥)/2}

= 9/7 cos[dA2 /2] A exp{~iA%* (5 + $)/2) (8.4)

and oAL2
g’ sin[ "~ — A explin¥*(p - ¥)/2}
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—iyz . OA2 _ o
= —9221/2 sin[ 9 1A exP{’Aalz(‘P - v){2}, (8.5)
which we rewrite in the following form:

i9AL? gAL/?
] = cos|

cos| Jexplid®*(p— g+ ¥—§)/2}  (8.6)

and

iaz_\lf?] _ _Sin[z’B_AU?

Jexp{iA (P — p+ - @)/2}.  (8.7)

sin|

The angles ¢ — @+ — v and ¥ — @+ — @ are real. So, if §o = do(@,0,%) €
QU(2) then cos[fAY?/2] is an imaginary number, i.e. # = i is real.

Taking into account the constraints (8.6) and (8.7), we obtain the fol-
lowing ranges for the parameters:

0<p<2r, O0<Ff<oo, —2r<P<2m, (8.8)

In terms of these parameters, the matrix g, is

1/ ia “sgi ¥l \ - . e ia3/2(p—y}
do = v cos[‘m AP IAe ~iA2g7 % sin[ir AY?) e
0= i f(_ﬂ _ ¥; —i 3/2“[)
—zA2922 Sm[;mlﬁ] = .‘»7111"12 005[922:']*&‘3 e

(8.9)
Thus, we see that the group QU(2) is one of the real types of subgroups
of §L(2,C). In the following, we use the parameters (8.8) instead of the
isoEuler angles (3,4, %).

Let us find the transformation laws for these parameters under the mul-
tiplying of two elements of §U/(2). We introduce the notation oy = (0,71, 0)
and §oa = (P2, T2,0) so that go1Age: = (@, 7, 1,/)) Using the formulas (2.16)-
(2.18) we find

cos[iTAY?] == cos[ir, AY2)A coslir,AV2]g H? (8.10)

— sin[in, AY?)A sin[in,AY2]A g cos[p, AV,

gt cos[ity AV?)A cosfir, A exp{iA g, [2)
: cos[iTA/?)]

exp{ial*(p + 9)/2} = A
(8.11)
+g§21 sin[i) AY2)A sin[ir, AY?Jexp{—iAY %, [2})
cos[iT A1/2]
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and
sin[iT) AY?]A cos[iT, A7)

Pk sinfitA*/?)]
N A2 cos[z"rlAl"z]A Sin[irzAllzlAgl—lllz COS[(P2A1/2]
g2-21/ 2 sin[irAl/?]
_igyy sinfir,AY?]A simp A”z]
g7z sin[ir A1/2]

exp{iAt?p} = A=Y

(8.12)

It is easy to check that the element §(,#,%) is an inverse of gg(w -

Gy Fy—m — ).

8.3 Relation to the group SH(3)

Let us define the group SH(3) as the group of isolinear transformation of
three dimensional isoEuclidean space Ej acting transitively on (iso)hyperboloids
and (iso)conics. This transformation is an isohyperbolic one.

The relation between the groups QU {2) and SH(3) is similar to that
between SU(2) and 50(3). Namely, to every point &(%1,85,83) € E3 we
associate the quasiuntary matrix

b, = ( T Batids ) (8.13)
Lo — T3 —I
Then, X X .
Accordingly,
fes YA T Aty Aptiys
T(§o)Ah, = . ) 8.15
(gﬂ) ( Ayz —iy3 Ayl ( )

where £ = gl{ T, y g;ézy: and ﬁ(gla ?32,@3)'-‘:7?,.@3.

9 Irreps of QU(2)

9.1 Description of the irreps

Denote ¥ = (l,€), where { is complex number and & = 0,1/2. With every x
we associate the space Dy of functions ¢(2) of complex variable % = & + i
such that:



— 387 -

(1) ¢(2) is of C™ class on # and § at every point 2 = & + 1§ except for
? =(g,) for any a > 0 the following equation is satisfied:
P(aAz) = a®*AP(3). (9.1)
(3) $(2) is an even (odd) function at & = 0(1/2),
B(=2) = (~A™ Y AR(2). (9.2)

For subsequent purposes, we realize the space Dy on a circle. Namely,
- with every function ¢(2) we associate the function f such that, at ¢ = 0,

flexp{i6AY?}) = g(exp{iBA1/2}) (9.3)
and, at ¢ = 1/2,
flexp{igal/?)) = exp{i0A2} Ag(exp{i6A1/?}). (9.4)

Thus, the space Dy can be represented as the space D of functions on circle.

9.2 Representations T(jo)

- (32)

of the group QU (2) we associate the operator in the space Dy,

To every element

Tl R
D oy

Te(@o)AR(2) = plaz + f2). (9.5)

Clearly, function 'f‘x(ﬁg)A@(é) has the same homogeneity degree as the func-
tion (3(2), and so the operator T%(§o) is an automorphism of the space Dy,.
Also, it is easy to verify that

T (§01) ATy (§r) = T (G012 os)- (9.6)

Action of the operator T,z(ﬁﬁ) can then be strightforwardly derived.
Namely, for ¥ = (1,0) we have

To(§)A f(exp{i0Aa1/%})
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. _ | s A2 4 B
— I/BA exp{iaAIIZ} + &|21A2l+1f ( O’EXP{ZBA }+ﬁ ) , (9.7)

BA exp{i6AL/2} 1 &
and for ¥ = ({,1/2) ) i
T3(9)A f(exp{i6A'/?})
& exp{iA/?} -i-&
BAexp{idAl/2} + &
(9.8)

= |BA exp{if AV} £ 37 AT (BA exp{i0AY?) 4+ &) (

10 Matrix elements of the irreps of QU(2) and iso-
Jacobi functions

10.1 The matrix elements

Let us choose the basis exp{—imfA3/2} in space D, and define the matrix
elemets of Ty,(h), where

o _ [ exp{itAl/?/2) 0
h= ( ’ 0 exp{—itAY/2/2) ) ' (10.1)

In the same manner as for § of QU(2) we can represent

i 1/2 - irall2 - o riT 1tz
h( " )a( g3 cosfi247) —zgzgﬂsm[““é—])

—ipAll ) —1f2 iralf? —1/2 izals?
0 e~tea’™/ —igy  SIN{*5—] g5, cos[2—

ipalf?
e 2
XA —i A1/2 )
0 e~

(10.2)

where ¢, 7, and ¢ are isoEuler angles of go. From (10.4) we define T%,(g,),
namely, ,
-1/2 iral/ ST t"r.ﬁl 2
g1 COS[ 3 ] _3922 SIII[ 2 ] 10.3
( ""Zg —-1f2 S]n[”-A 112 ] g1—11/2 COS[”-A 1/2 ] M ( ' )
Then, straighforward calculations yield [4]

1/2

| exp{i@Al/2})Hnte

" A4+I _ : A1/2 N :
B =S [ dl (g5 corl T | igis?sin] T2
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iTAM?

x (g11""" cos| ] (10.4)

o . : A1/2
—1g221/2 sm[”

Jexp{—iBAY?}) "~ exp{if(m — n)AY¥?}.

Introduce the function B!, (isocosh+) defining

A p2m o AL1f2 e A2
B, (957" coslirA2]) = S— [ db (g5 conf o g sinl 2]
0
. a ;: A1/2
X exp{iAY2 )+ (gr M2 cos[ T2 (10.5)
- A2
—igoy'? sin[” lexp{—i0AY?}Y" exp{if(m ~ n)A¥?},

Comparing (10.4) and (10.5) we have

Bn = Braa (921 cosliTAYY]) 3= (1), (10.6)
where

m=m+e, n'=nt+e 0<7T< 00, (10.7)

! is a complex number, m and n are simultaneously integer or half-integer
numbers. From the expansion (10.4) it follows that

Ti(fo) = Ta(ho) ATl §:) ATy (). (10.8)
So we can write
(@7, 9) = exp{—iAYY(m'p + n'P)}BL, (g1 coslirAY?]),  (10.9)

where m/,n', and 7’ are defined according to (10.7). Since BL..(2) plays
the same role for QU(2) as the function P, (%) for SU(2), we call B! (%)
isoJacobi function of the variable 2 = g;;"/* cos[irAY2].

11 IsoJacobi function B! (3)

Integral representation of the isoJacobi function B!, ,(2) can be readily de-
rived (see [4] for the usual case),

Bl (97 coslirAY?)) =
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A‘H" exp{(l — n+ 1/2)A%¥%t}

/"' \/2Agul’2(cos[i’rA1/2] — cos[itAl/2))

[éf'“A(gﬂl‘m cos[iTA1/2/2]

(11.1)
—2+ig;21/2 Sin[‘:‘:TA”g/Z])zﬂ + ET—nA(gl—fI? COS[?:TAlIz/Q.]
—%_iggy* sin[irA? /2])2“] di,

where
5 exp{rAY2} — g7}/% cos[iTAY?]
+ =

gl sin[iTAl/2]

mY) exp{ztA1/2/2}A\/2Ag_llz(cos[i‘rAUz] — cos{itAl/2])
g52 % sin[iTAV/?) ’

As one can see, the representation (11.1) is simplified when n = m and
also when n = 0.
When n = m we have directly from (11.1)

(11.2)

L A2 g M os[(l—n + 1A1/2 ﬂng’l"2 cos|[(2nA32q)AY?)di
(2= — |
o o 5 5

(11.3)
When n = 0 we have

L AR T expl(1 4 DAY (50 4 5 dE

Bro(i) = 5= [ —CEEIAE AR ST (1)
2m Jor 2A(g1; ¥ (cos[iTAL2] — cos{itA/?]))
Particularly, when in addition m = 0 we have
A3? cos[i(l 4 1/2)t]dt

By(2) = f [ (,2 [2)1] — (11.5)

\/ cos2[TAME] — cos?[HE]

12 IsoJacobi function B,
Let us put m = n = 0 in (10.6). Then
B(d0) = Bho(2). (12.1)

We call B},(2) isoJacobi function with index [ and denote it simply Bi(2),
namely, " ,
Bi(2) = #,(0,7,0,) = Byo(%), (12.2)
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where ¥ = ({,0) and 2 = gl_llﬁ cosfitAl/?], )
The following integral representations for the isoJacobi function B'(%)
can be written:

. AH—I T _ . _ o B . N
By(3) = == / (gn”2 cosfitA/?] — g5 5111[11"A1"2]gnl"’2 cos[ifA?))dd,
0
(12.3)

41 s
g;;/zsin[z'TAllz])’%, (12.4)

=2
/igl_lllz cos[iTA?] - zz;;él

AL/2g5 % sin[s A2 f"" (g cosfi(l + LAY?)dl
o o y/cos[itAL/2])! + cosliT A1

W A
Bi(2) = 271

B;(I’:’) =

(12.5)

From (12.3) it can be seen that when { is integer the isoJacobi function B;(%)
coincides with the isoLegendre polynomial,

Bi(2) = B(2), (12.6)

which has been considered in Secs. 2-7.

12.1 Symmetry relations for B! (3) and Bi(2)

-:- Similarly to the isoLegendre polynomials 13,5,‘” (%), the isoJacobi functions

B! () satisfy the following symmetry relations:
Biun(2) = Blo_a(2) (12.7)

and X i
Bi(2) = By (3). (12.8)

13 Functional relations for B! (3)

Functional relations for isoJacobi functions B! _(3) can be derived in a sim-
ilar fashion as it for isoLegendre functions P, (). Particularly, we have

exp{—iA%*(mep + ny)} B ,(5) = > exp —iA ko, BL (3)ABL (3),
k=—co0

(13.1)
where 2 = g, cos[it A2, 2 = g)/* cos[in AV, 2, = giM/? cos[ir, A2,
and 7, 71, T2, ¢, and ¢ are defined due to egs. (8.10)-(8.12).

So, as a consequence of (13.1) we have the following particular cases.
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(a) Let g =0,then f =7 + 5, ¢ = ¥ = 0, and we have

(9‘11 C°5[1(7'1+T2)A112])— E B (.‘111 CUS[iTIAUz])A (13.2)

k=-—o0
x Bl (971" cos[imaa/?)).
(b) Let ¢ = 7, then # > 5, F = — 3, =0, ¥ = 7, and we have

B (g5 cosli(my — ) AMY) = Y Bl (91,77 cos[im AY)A?  (13.3)

E==—00
x BL (g7 cosfir,A?)).
(c) Particularly, when in addition #; = 7, we have

Z B, k(gll COS[ﬁTlAIMDAszn(Q_IIZCOS[iTZAllz])=B:nn(1) (13.4)

k=—00

= bmn = bn AL

" Theorem of composition for isoLegendre function.
Let us define isolegendre function and adjoint isoLegendre function as
follows

Bi(5)=By(2) (13.5)
and
s TUAmMAY) s B s IN(E! I
Bre) = I Apras), BLo(s) = D AR,
I(t+1) M(l—m+1)
(13.6)
Putting m = » = 0 in (13.1) and using (13.5) and (13.6) we obtain
.. DPU-k+1D) s/a
B T = T AR A ke BE( 2V BE(3,), 13.7
G= R (BHG), ()
where
9% coslitAY?) = g coslin AY?|Agry! cos[it, A2+ (13.8)

g5,! sin[im; AV A% sin[ir, AY?]g7 ! coslig, A2,
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The composition formula for the adjoint isoLegendre function follows
from (13.1) with » = 0, namely, we have

5 I‘(I +m+ 1)A36—|A3/2k<prk

Bi(2) = fitk+D) (21)Bf (%), (13.9)

where

P(I+m+1) =T +m)AUl+m)andl(l+m+1) = f e—l-m A2zlHm=1 g0
"]

(13.10)
Multiplication formula.
Multiplying both sides of the equation (13.1) by exp{iA%2kyp,} we ob-
tain

. - A2 2 3 R
Bro(2)Boe(B2) = o | dipye=ia ommemni) Bl (5 (13.11)

Putting m = n = 0 in (13.11) and using the symmetry relations we get

2
BB () = 5= [ e (13.12)

B:nn (21A22 + 5‘3A§4A25)d§02,

where 2, = g5'/” cos[ity AY?], 3, = g7'? cos[in, AL?), 35 = g% sin[in AV,
2, = gt sin[ir,AY?], and 35 = g7 cos[ip.AY?]. Particularly,
1

A A 2 N N . ) A
Bi(2)Bil2s) = o /0 Bl (313 + 2aA2, A5 )dps. (13.13)

14 Recurrency relations for B!

Recurrency relations for B! can be derived in the same manner as it for
I .- So, we do not represent the calculations here, and write down the final .
results.

Freml) U s B, (4

m — nAz dB,’m(é) _ + n)
224 A Al .
2-1 dz

8Bl 0+ 1A, (). (142)




-394

From (14.1) and (14.2) we have

. dB! (3 - nAs  dB .
VE_IA fgg(")—mzzn_;a d,("‘)-(z—nm B ..(3) (14.3)

and

_ dB! (3 -nAs  dB! (3 . .
VETIA dg(z)+m22"_ 1ZA 'é'g(z)=(z+nm3,’,,,n+l(z). (14.4)

Using the symmetry relations we have

Bla(3)  n-mAz , dB!
JEIAY mn(Z) 2o mAZ () _ (z+m+1)AB,,, aa(2) (14.5)

32 -1 dz
and
GLB,’nﬂ 2) m-nAz dB (3 R .
VvE2 T1A ( )+ — A d,“( )_(l—m+1)AB,’w,+1(z). (14.6)
Also,

= 1) Bria) = (4 B ()= X028 pp (5) (14)

(4mt 1Bl 13 (=(-mt B, o(3) = X2l (5). ()

The differential equation satisfied by isoJacobi function is

_ &?B! (3 dB' 2) mP4n?—2mnA ., . SR
VE T, Q) A BB (5) = i041) B (3)
(14.9)

The differential equation satisfied by adjoint lsoLegendre function is

/_,.__d2Bm dBm ~ 2A2 . )
#-1—0 2(2) 2z éé(z)—:;_ TAB(2) = I(I+1)AB!(2), (14.10)

and the equatjon satisfied by isoLegendre function is

Jz‘_dzg(z) zadi’f"’) 1+ 1)AB(). (14.11)
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15 The group M(2)

In this Section, we consider linear transformations of isoEuclidean plane.

15.1 Definitions

The motion of isoEuclidean plane E? is similar to that of the ordinary Eu-
clidean plane E? so the definition of the group M (2} is similat to that of
M(2).

Choosing local coordinates (#,§) on E?, we write the motion § : (£, ¥) —
(&', %) in th following form:

& = £Ag5;"? cos|aAV?] — §AgE? sin[a A + a, (15.1)
¥ = $Agy " sin[aA?) - §AgT ? coslanV?] + b,

where
- 1 N
& =gl §=g%, (15.2)

so that, in an explicit form,
& = #(g1{"g2) cos|aAY?] - §(gi{*g22) sin[aAY?] + q, (15.3)
' = 3Ag 2 sin[aAY?] - §A(gH%g2) cos[aA?} 4 b.

Here, @, b, and & parametrize the motion § so that every element § € M (2)
can be defined by the three parameters having the following ranges:

—o<a<ow, ~o<i<on, 0<a<2r. (15.4)

Another realization of M(2) comes with the identification of §(a,b,a)
with the matrix
) 91-11/2 cos[o:A”z] _gz-zliz sin[aAl/Q] a
T(§) = | g327sin[aAV?] g cosfart?] b |. (15.5)
0 0 A1

It can be easily verified that
T(@:)8T(5:) = T(§:841),

so that T (§) is a representation of M (2). This representation is an exact
one, i.e. T(§1) # T(§2) if § # §2. Thus, we conclude that the group M(2)
is realized as group of 3 x 3 real matrices (15.6).
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The group M (2) can be realized also as the group of 2 x 2 complex
matrices. Namely, by the identification of §(a,b, ) with the matrix

A exp{iA?a 2
0@ = ( olidtel 2, )) , (15.6)
where
2= a+iAb. (15.7)
It is easy to verify that Q()AQ(d.) = Q(5:Ad) and Q(§) # Q(ds) if
§1 # G-
15.2 Parametrizations

For the parametrization abaove, let us find the composition law. Let §; =
Q(al,bl,al) a11d ﬁg = _&(ag,bz,az). Then

T(5:88.) = (15.8)
.‘11_11/2 cos[d; + @) —9'2_21,2 sin[éy + do] a; + CT::»AQ'ﬂ”2 cos[dy] — bzAgz_zllz sin[&;
g sin[é; + Ga) gl_lm cos[@; + éa] by + azAg2_21/2 sin[d;] + bgAgflllz cos(d,

0 0 AL
so that the law is

@ = ay + a, g, ? cos[oy AV - byAgy? sin[a; AV, (15.9)

b= by + ayAgay ! sinfoy AV + b Agy/? cos[a; AV, (15.10)

& = &1 + &2. ! (15.11)

Denoting ¢ = (a1,b:) and § = (a,,b;) we rewrite the formulas (15.9)-(15.11)
as follows:

3(2,8)88(5,8) = §(2 + 9o, &+ ). (15.12)
From this equation it follows that if § = §(£, &) then
671 = §(—i_4,2m — &). (15.13)

Another useful parametrization can be represented by isoEuler angles.
On the plane, we parametrize the vector £ = (a,b) by isopolar angles ¢ =
rAg{lll % cos[pAl/?] and b= gl sin[@wA/?]. The set of parameters for § is
then (#,%,&), with the rabges

0 <7 < oo,quadl £ ¢ < 2m,quadl < & < 2m. (15.14)
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Decomposition for element of A(2) reads
g(T‘, (P, 6") = .@(U, (Ja'i O)A.é(f’ 0, O)AQ(O: 0,8& - (la)‘ (1515)

Transformations corresponding to (0,0, %) and §(0,0,& — ¢) are rotations
while §(#,0,0) defines a parallel transport along the axis O#. For §, =
§(#,0,é,) and g, = §(#2,0,0), we have from eqs.(15.9)-(15.11)

alAd: = §(F,9,é)

, Where

7 = 7+ 72+ 207, AR Ag? cos|aA /7] (15.16)

and
# = gblz + ybly + 2b2z; 2 = b2, + b2y + 2 bz, (15.17)

it = @2b3Ty + 9ablys + 22632,

1 + F2A exp{iA®2q, A
} k)

& = é;. (15.19)

To find the parameters of the composition §Ag, for §i = §(#1,Ps, &) and

G2 = §(#2, P2, &), one should replace &; by &, + @2 — ¢y, & by p— —@,, and

& by & — é, in (15.16)-(15.19).

From decomposition (15.15) and equation

exp 1A% % = (15.18)

§(0,0,61 + 2 — 1) = §(0,0,; — ¢,)AG(0,0,$5) (15.20)

we get
ﬁlgfl = g(oﬁ 07 (,51)_6(17'71, 0%0’).&(0:0: 6‘1 + ‘152 - ‘ral)ﬁ‘(?:m U: 05 )ﬁ(os 01&2 + (152)A3'
(15.21)

16 Irreps of M(2)

16.1 Description of the irreps

Denote the space of smooth functions f(£) on circle =53z, + b2z, = A~?
by I?. To every element §(a,&) € M(2) we associate the operator T.(§)
acting on f(), o )

TA(§)f(2) = e2@® f(z_,). (16.1)
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Here, ¢ is fixed complex number, #_; is vector to which the vector # is
transformed by rotation on angle —&, and (a,%) = an:clgi{z + aqz29177.
Let us show that T,(§) is the representation of M(2). For § = §(a,é&) and
ga = g(b,ﬁ) we have

Te(§)T§2)f(8) = Tu(gr)e 2D f(@_ge Db« f(3_, 5).  (16.2)
Since (b,&_o) = (bs, £) the following equation is valid:
T(5)AT(32) f(8) = e2CPD f(3_; ). (16.3)

On the other hand, owing to (15.12)

&8z = §(e,&)§(b, B) = §ea + bs, & + ), (16.4)
so that ) ‘ )
T(§188:2)f(8) = eBlettead) fig . 2. (16.5)

Thus, T.(§:1482) = T.(5,AT.§,), i.e. T.(§) is representation of M(2).
Parametrical equations of the circle, z;b%z, + 72022, = AL, have the
form

21 = g7 cos[A?),  zy = ATV 2sin[pAYY, 0<p<2r, (16.6)

so that one can think of functions f(#) € D as functions depending on %,

f(&) = (). (16.7)
The operator can be rewritten as
T()f(9) = exp{cA?gii/* cosl(¢ — ) AV} /(3 - &), (16.8)

where
a = (FAg;"* cospA'?), i Ay, sin[pA YY), § = §(a,&).
By introducing scalar product,
o a AZ 2r ., - R
Gk =5 [ hhh(has, (16.9)

we make the space D to be isoHilbert space £. Then, T(§) is isounitary
in respect to the scalar product (16.9) if and only if ¢ = ¢p is an imaginary
number.
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16.2 Infinitesimal operators
The operator 7,(1(f)), where
ATt 0 AT?

&@=] 0o A1 o )], (16.10)
0 0 A

w; € {1y, transforms function f(qzv) to
Tois () F(4) = exp{cA?tigi/* cos[pA 7]} f(9), (16.11)

so that

4, = d20i(D)
dt

ie. A, acts as a multiplication operator.
Similarly, one can prove that the infinitesimal operator A, corresponding
to the subgroup Q. represented by the matrices

li=o = cAgi;"* cos[pAM/?), (16.12)

ATt 00
w()=] 0 A 0 (16.13)
0 ¢ Al
is given by )
As = C(g11g34%) sin[p A2, (16.14)

Also, for the subgroup 23 consisting of the matrices

91-11/2 cos[tAUz] _g2-21]2 Sin[tA”z] 0

wa(f) = | g3/*sin[tAY?] g %costAV?] 0 ) (16.15)
0 0 At
we have g
Ay = ——. (16.16)
di

16.3 The irreps

The prove of irreducibility of the representation T(§) of the group M (2) can
be given in the same way as it of T(3), and we do not present it here.
Below, we consider two choices of ¢.
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(a) ¢ # 0. We have

T(s(&) f() = f( - &), (16.17)
(b) ¢ = 0. We have
T(9)Af($) = f($ - &), (16.18)

where g = (#&). This representation is reducible since it can be decomposed
into direct sum of the one-dimensional representations

Ton(§) = 27 ne, (16.19)
Note that ’f"c(;j') with ¢ # 0 and To,,(ﬁr), where n is integer number, constitute
all possible irreps of M(2).

17 Matrix elements of the irreps of //(2) and isoBessel
functions
17.1 Matrix elements

" In the space £, we choose the orthonormal basis {exp(iA%/2n1)} consisting
of eigenfunctions of the operator T(w), ¥ € Q5. The matrix elements are
written in this basis as

Cje (a P oan ing A3 e imypadl?
tmn(g)z(TC(g)e va '€ va ) (171)

Taking into account definition (16.9) and eq.(16.8) we get

N exp{ —inaA3/? am o . \
t:':nn. (ﬁ) = P{ 21:1_& } Aa./u d'l,b ecAz"'.'?nUz C“[W—'P)A’”]ez(n—m)ll’A 12-

(17.2)
Let # = @ = 0, i.e. § defines rotation on isoangle &. Due to orthogonality
of the functions exp{—inpA®?}, we have

@ =1 (&)= exp{—inaA*?})6,... (17.3)

Thus, the rotation is represented by a diagonal matrix T.(&), with non-zero
elements being exp{—inaA®/?}, oo < n < 0.
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Let ¢ = & = 0. In this case, § defines transplacement on # along the O#
axis so that (17.2) takes the form

frn(9) = Gn(F) = 5= d¢ exp{CA*#gr,!!” cos[pAM?] + i(n — m)pAY/?}.
0
) ) (17.4)
Replacing 1 by 7/2 — 6, we then have
. A2 2x /o
. (F) = 5o A d6 exp{cA% g5, sin[0AY?] — i(n + m)BAY?},

(17.5)
Let us denote

2 2r
Jn(8) = o=i""™ [ df exp{A’g;; " sin[0A?) — in0A¥?},  (17.6)
0

and refer to J,(%) as isoBessel function.
Using this definition we have from (17.5), in a compact writting,

frn(F) = """ AT, _(—icA). (17.7)

t7,,(§) in a eneral case it is suffice to make the replace-

Now, to obtain £
“ment p—p=17F— 4 in the integral (17.2). Namely, using (17.6) we obtain

ira() = " A exp{—inaA¥? +i(n + m)AY?}J, _n(—icA%). (17.8)
Indeed, from (17.8) it follows that
T.(9) = T(@) (M T - ). (17.9)

Since the matrices 7T +(§) and T, (& — @) are both diagonal, with the non-
zero elements exp{iA%?ny} and exp{—iA%?n(yp — )} respectively, while
£2 o (F) = i" ™A, (—ieA%F) we come to (17.8).

If § is an identity transformation, § = §(0,0,0), then T.(§) is the isounit
matrix. Consequently, we have the following relations:

Jom(0) =6, JO)=A"7, J,(0)=0, (n#0).

17.2 IsoBessel functions with opposite sign indeces

In this section, we find the relation between the isoBessel functions with
opposite sign indeces.
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In the space of functions f(v,z’), introduce the operator  acting according
to

QAf() = f(-9). (17.10)
This operator commutes with operator Tc(g":) = Tc(f); where § = _c}'(f-, 0,0).
Indeed,

TF)AQF($) = Tu(#)f(~D) = exp{eA’#gii* cos[$ AV} f(~4h).

Consequently, B

QT.(F) = T.(F)Q. (17.11)
Operator Q acts by changing the basis element, exp{inaA5/2} to exp{—~inaA¥/?},
so the matrix has the form (4mn), where ¢n _, = A~ and Gm, = 0 for
m + n # 0. Thus, from (17.11) we obtain

£ i (F) = B0 _a (7). (17.12)
Then, taking into account (17.7) we get
M (—1A%F) = i (—iA%eF). (17.13)
Putting in (17.13) m = 0 and 2 = —iA%c#, we finally have
Ju(2) = =AY J_a(5). (17.14)
17.3 Expansion series for IsoBessel functions

Our aim is to derive the expansion series for isoBessel function in #. To
this end, we use integral representation (17.6). Expanding the exponent
exp{tA%%g_,>sin[pA?]} and integrating over all the terms we obtain

Ja3) = 3 auat (g %gh,), (17.15)
k=0
where
. 3k—s 2r 172 )
@ = —— i d exp{—iA**np}(i(g1192 sin[pA2])F. (17.16)

Here, s = 1,2,3,... On the other and, owing to the Euler formula,

*A3/2 . ara
(g7 sinfypar7])t = SRUATY —iasrey g o (17.17)
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_ i (—=1)"A2C-R-mOm eynli(k — 2m) A% 2}
= o .

m=0
Inserting this formula into (17.16), one can observe that a, is non-zero iff
(k — n) is an even number, jie. k—n=2m, m > 0. { k = n + 2m then

~ (-1)A™ _ (=1)A-n-sm-2s
W= 2*mi(k — m)IAk+2s 2nt2mml(n + m)!’ (17.18)
So, we finally have
k -m,.2
f (3 —2s 3_3¢ n —An-mgim
Ja(8) = (g1 65 ™) e/ 3 (17.19)

= 22mml(n + m)!

18 Functional relations for isoBessel function

18.1 Theorem of composition

Theorem of composition for isoBessel function can be derived in the same
manner as it for isoLegendre function P! . One should use the equality
Tc(glA.éZ) = Tc(gl)ATc(g% that is

[+=]

tun(§1882) = 37 Tk (81)A5(3:). (18.1)
k=—o00
Let us put. §; =.§(#1,0,0) and §» = §(7,%2,0). Then the parameters #,
%, and & corresponding to the composition § = §;Ag, can be expressed via
parameters 7, 7, and ¢ as

7= \[# 473+ 2'f'1AszgflllchS[Q%Al/z]a (18.2)
e —p 4 FoAeiser (18.3)
a=0, (18.4)

where 72, #2, and 72 are defined due to (15.17).
Inserting the matrix elements (17.8) into (18.1) and putting m = 0 and
R = iA~! we have after some algebra

emmm’"fn(f) _ z e-‘Aaﬂwjn_k(f.l)Ajk(f-z), (18.5)

k=—oo



where #, 71, 75, ¢, and @, are defined according to (18.2)-(18.3).

The formula (18.4) represents the theorem of composition of isoBessel
functions.

Particularly, at n» = 0 we have from (18.4)

jo(f') — i (;—1)8’-A5lzkmjk(f'1)ﬁsfk(7:2)- (18.6)

k=—o00

Below, we consider some useful particular cases of the theorem.
{(a) At ¢ = 0, we have # = #; + 7, and ¢ = 0, so that

T (F1 4 7,) = i Joi (FAT(F,). (18.7)

k=—oc

(b) At ¢, = m and #; > 75, we have ¢ = 0 and # = #; — #;, so that

fn(ﬁl—ﬁz)z f: (=1 Jpi(71)AT 5 Ji(2). (18.8)

kEz=—o0

(c) For ¢ = /2, we have

1+ 17 =[5 N ke F g £
_(f—l_—,f)’%A%“Jn( i2+43) = Y FFa(f)AYEA(R). (18.9)
1 72 k=—0oo

(d) For # = #; = #, we have

A7l a=0

> (DAL = h0)= 5y n#0

k=—0o0

(18.10)

18.2 Theorem of multiplication

Multiplying both sides of equation (18.5) by exp{—iA%?mp,}/2r and inte-
grating over ¢, in the range (0,27), we ha,ye

AZ

2r
o [ A (s = Fuem(F)In(F2), (181)

where 7, 71, T, @, and @, are defined according to (18.2)-(18.4). Here, we
have used the fact that exp{iA%?n¢p,} are orthogonal so that all the terms
are zero except for those with k = m.

The equation (18.11) represents the theorem of product for isoBessel
functions.



— 405 -

Let us consider specific case of the theorem characterized by #, = #, = R.
From this condition it follows that # = 2RA%ggy;" 2co.s[%l] and ¢ = ¢y, so
that

. . A2 T A _
Fnem(#1)Jm(F2) = o fo A=am2  (2RA%GE cos{ 2])dp.  (18.12)

Replacing the variable in the above integral by #, we note that when ¢,
varies from 0 to 7 the variable  varies from #; + #, to |#1 — #4|, while when
¢ varies from 7 to 27 the variable f varies from |7, — 7] to #, + #,. In
addition,

d _ i\/tlf'fAf'g — (72 =78 — 72)
d@, 2AF ’
where minus and plus signs correspond to 0 < @, > 7 and 7 < @, > 27
: g @
respectively. Thus, we have _
2A2 frx-l-f':» ;A(nqﬁ—m(ﬁgjn(f)?';d,i;

1'1—"'2' €

(18.13)

I (F1)m = ) 18.14
(7'1) (Tg) \/47:%A ('F'2 — ﬁ% — 'FW ( )
where ¢ and @, are related to # according to (18.2)-(18.4).
At m = n = 0 the formula (18.14) takes the most simple form,
ST = PR
2A i Fdf
Jo(#1)Jo(72) = Jjpry o(0) (18.15)

T AFIATE = (72 — 73 — #3)

19 Recurrency relations for J,(2)

As it for isoLegendre functions P,’,ln(é), recurrency relations for isoBessel
functions follow from the composition theorem. Namely, we should first put
72 in this theorem to be infinitesimal.

Let us find derivatives of the isoBessel function on # at the point & = 0.
Differentiating (17.6) we have

. 'A2 2% R R .
ho) =5 fu exp —iAZndhgs,? sinfd]ddb (19.1)

2 2 R R .
=0 [exp —iA%(n — 1)) — exp —iA%(n + 1)4]d.
0
This integral is non-zero only when » = +A™!. Also,
A—

F(0) = J14(0) = -

(19.2)
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Differentiating both sides of { 18.9) on #; and putting 7, = 0 we find
2J1(2) = Jo_1(8) ~ Jnga(8). (19.3)

Here, we used (19.2) and replace 7 by &.
Similarly, from (18.11) we find

2n - . A . - . g
?J,,(:r;) = Juo1(£) + Jnopa(2). (194)
Combining (19.3) and {19.4) we finally obtain

n

Jaor(®) = =AJ(2) + JL(2), (19.5)

T
Jua(8) = ZAT(8) - T1(8) (19.6)
. These formulas can be presented also in the following form:
s n d I
Ju_1(E) = (:f: + E)AJ"('T)’ (19.7)
Furnl) = (3~ 2)A(2) (199)
I\ ®) =N T gg/ ‘

20 Relations between IsoBessel functions and P!, (3)

'20.1 IsoEuclidean plane and sphere

Two-dimensional sphere can be mapped to isoEuclidean plane in a standard
way. Namely, this can be done in taking the limit R — oo for the radius of
the sphere. Accordingly, M (2) can be considered as some limit of 30(3)
More precisely, replacing @, ¥, 8, 81, 6, and @, by @, #/R, &, 71/ R, 7,/ R,
and & in (8.9) defining multiplications in §0(3) we should retain leading
terms in the limit B — oco. Simple calculations show that the result is
exactly the formulas {15.16)-(15.19) defining muitiplications in M(2).

20.2 IsoBessel and isoJacobi functions

The relation between the groups M(2) and §0(3) makes it possible to relate
matrix elements of its irreducible isounitary representations. Thus, isoBessel
functions, as matrix elements of representations 77,(§) of M(2), can be
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derived from P! . which are matrix elements of representations T)(§) of
5$0(3). The limiting procedure is R— o0and!— .

To obtain concrete formulas we note first that P,’,,,, has the integral rep-
resentation,

oty - A [T

2r 9‘ .
[ deten” coslzle”
X X (20.1)
c—1y2 . 8, i P B, .o .
+1922112 5111[5]5_'”2)(922”2 5111[5]‘3"”2 + '.‘:Tnl'r2 COS[E]eﬂwz)e‘mv-

Putting 6 = 7/1 and taking the limit I — oo we find

exp —ip) " (20.2)

) . _ 7 A!(H-l) 2% '-rAsfz
lim P, (67" cosl 7)) = 55— [ (14

2x 21
- A5/2
x(1+ L;— exp ip) exp iAY3(m — n)pd(pAY?).

Note that at m = n = 0 the above relation takes the following simple
form:

fim B (g7, cos[; 8177 = (). (203)
so that Jy(7) appears as the limit from the isoLegendre polynomial.
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7: LIE-ADMISSIBLE THEORY

7.1: STATEMENT OF THE PROBLEM

A central assumption of hadronic mechanics is that one operator alone, the
Lagrangian or the Hamiltonian, is Jinsufficient to represent physical reality,
which needs instead (3N + 1)-quantities, the Lagrangian or Hamiltonian, plus the
3N diagonal elements of the isounit 1.

By no means is the above assumption new, because its origins go back to
Lagrange [1}, Hamilton [2], Jacobi [3] and other founders of analytic dynamics. The
novelty is merely in the realization of the -3N additional quantities via the
elements of the isounit.

: .The equations originally conceived by Lagrange and Hamilton are not
those available in the contemporary mathematical and physical literature, but
equations with external lerms. In fact, the true Lagrange’s equations for a
systemn of N particles in three-dimensional Euclidean space are given by [1]
d alri L, 1)
o poreanl eyl Frqft. 1, 1), (7.1.1a)

L=Ki-vltrt, k=1,238E=xy,2, a=1L2..,N, (7.1.10)

the true Hamilton’s equations are [2]

‘ 8H(t, r, p) aH(t, T, p)
K= p, = et Fiilt, 1, p), {7.1.2a)
Pka arka
H = K{p) + Vit,r,p), (7.1.2b)

and the true Jacobi theorem (3] is also that with external terms.

As one can see, Eq.s (7.1.1) and (7.1.2) require precisely (3N + I)-quantities
Tor the representation of physical reality, a Lagrangian or a Hamiltonian, plus the
3N external forces Fy,.
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By comparison, the analytic equations of the contemporary literature are
the so—called “truncated Lagrange’s and Hamilfons equations” i.e., those without
external terms. As a result of a scientific process still ignored by contemporary
historians, the external terms were progressively removed from the analytic
equations sometime by the end of the past century, to acquire the form almost
universally used nowadays.

The origin of this “truncation” appears to be the birth of Lie’s theory [4] in
.the second part of the past century. In fact, the brackets of the true Hamilton's
equations, not only violate the Lie algebras axioms, but actually violate all
conditions to constitute an algebra, whether Lie or not (see below). The
achievement of a classical realization of Lie algebras therefore required the
elimination of the external terms. The historical successes of the truncated
Hamilton's equations in the description, first, of planetary systems (see, e.g. ref.
[5]) and then of the atomic structure (see, e.g., ref. [6] provided a major drive
toward the current elimination of the external terms.

However, by no means, has this scientific process suppressed the vision of
Lagrange and Hamilton. In fact, the “truncated analytic equations” can directly
represent50 only conservative systems and a restricted class of other systems. By
comparison, the “true analytic equations” are directly universal for all possible
systemns of the physical reality, whether conservative or not. In fact, the
Lagrangian and Hamiltonian represent all conservative forces, while all remaining
forces are directly represented with the external terms.

- The.primary difference is that, while the truncated equations represent
closed-isolated systems with conserved total energy, the true equations
represent instead open-nonconservative systems with the following time rate of
variation of the energy 51

dH/dt = Yy, via Fra # 0, (7.1.3)

due to interactions with systems interpreted as external.

This author conducted his graduate studied at the Universita di Torino,
Italy, where Lagrange did most of his work, thus having the opportunity of
studying Lagrange’s original papers and and comparing them with contemporary
literature. The latter is essentially based on the trend to reduce all physical
systems, whether classical or quantum mechanical, to a Torm representable by
the fruncated analytic equations. By contract, Lagrange and Hamilton were fully
aware that the quantities today called "Lagrangian” and “Hamiltonian” cannot

50 we are nere referring to a representation with a direct physical meaning of all
algorithmns at hand, whereby r represents the actual frame of the observer, H represents
the actual total energy K + ¥, p represents the actual linear momentum mi, ete.

5l We here adopt the definition of nonconservation of ref.s [8,9] in which the energy can
monotonically increase or decrease in time, while dissipation is referred to the case
when the energy solely decreases in time.
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represent the totality of the physical reality, but only a very small part of it and,
for this reason, they introduced the external terms to their equations.

Subsequent rigorous studies on the integrability conditions for the
existence of a Lagrangian or a Hamiltonian, Helmholtz’s conditions of variational
selfadjointness [7,8], proved Lagrange’s and Hamilton’s vision in its entirety. In
fact, the broadest possible class of Newtonian systems (those of the interior
dynamical problem) result in being nonrepresentable with a Lagrangian or a
Hamiltonian in the coordinates of the observer (These are the so-—called
essentially nonselfadjoint systems [8).

We mentioned earlier the contemporary trend of using the Lie-Koening
theorem {see ref. [9] and quoted literature) to turn nonlagrangian-nonhamiltonian
systems into equivalent forms which are representable with the truncated
analytic equations. Yet, Lagrange and Hamilton’s vision remains broader then the
contemporary one in this respect too for the reasons indicated earlier (lack of
.general applicability of the Lie-Koening theorem, e.g., for integral or
discontinuous systems, lack of realization of the transformed frame in the
laboratory, loss of conventional relativities because of the highly noninertial
character of the transformed frame, etc.).

But even ignoring all this, and assuming that some artificial construction
permits the construction of a Lagrangian or a Hamiltonian for the truncated
equations, the physical significance of these quantities is unclear, controversial
and manifestly misleading, particularly in the operator treatment of
nonconservative forces.?2

Because -of the above occurrences, this author spent his research life
studying the true, historical, Lagrange and Hamilton equations with external
termsg, according to the following two main lines;

Isotopies (7] These are the methods outlined in the preceding chapters
possessing a Lie—isofopic structure, which can now be reinspected from a
different viewpoint. [n fact, these methods were conceived to preserve the basic

52 e literature in particle physics is full of models in which the physical structure of
the Harniltonian

H =K+ V = Kin Energy + Pot. Energy. (1)

is generalized into canonical expressions of the type

H = p2/2rn +vln), p-= aePTf apeRr. 2

Yet H is continued to be interpreted as “the total energy” while in reality H is a pure
mathernatical quantity (a first integral). The real total energy E = K + V is nonconserved
because of interactions not properly identified as being external, i.e. [E, H] # 0. The
“physical conclusions” of these models are unsettled at best. This is another illustration of
the paramount importance of solely using “direct representations” {as identified in the
preceding footnote) whenever studying nonpotential forces.
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axioms of the truncated analytic equations, yet requiring (3N+1)}-quantities for the
representation of physical reality and permitting the same direct representation
of the trye analytic equations with external terms.

Genotopies [7]. These are the more general methods outlined in this
chapter with the covering Lie—admissible structure.

A central property represented by Eq.s (7.1.1) and (7.1.2) is that conventional
closed—conservative systerns are a particular case of the more general open—
nonconservative ones. In fact, the conventional conservation law of the energy is
a particular case of the more general laws (7.1.3) on the time-rate-of-variation
of the energy. As a result, we expect the existence of covering methods for the
treatment of open nonconservative systems which admit the conventional Lie
and Lie-isotopic methods as particular cases.

A central problem for a quantitative study of open nonconservatrve
systems is therefore the identification of a covering of both, Lie and Lie-
isotopic theories which permits a direct representation of the time-rate-of-
variation of physical quantities; that is, a representation in which all quantities H,
T, p, TAp, efc., have a direct physical meaning, change their value in time and
admit conservation laws as particular cases.

Recall that the conservation of the energy for Lie and Lie—isotopic
formulations,

dH/dt=[H,Hl = HH-HH=0, (7.1. 3a)

dH/dt = [HHl = HTH-HTH = ¢, {7.1.3b)
are a consequence of the anticommutativity of the products [A, B] and [B, Al
Thus, the above requirements can be expressed by the following conditions,
originally submitted in ref.s [12-14] and then studied in detail in ref.s [7,10,11}

Condition 7.1.1: The brackets, say A®B, of the analytic equations
characterizing interactions under exfernal forces must not be anticommutative,
A©B # - BoA, as a necessary condition to represent the time-rate—of—variation of
the energy and of other physical quantities

idH/dt = HoH = f{t) = 0 (7.1.4)

Condition 7.1.2: The new brackets A@B must recover the isotopic [A, H] or
conventional Lie product [A, H] when all external forces are null

m AoB =[A.Blorla, Bl; (7.1.5)
Ext. Forces=0

Condition 7.1.3: The new brackets AGB must, first, define a consistent
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algebra, and, second, that algebra must be a covering of the Lie and Lie—isotopic
algebras, therefore admitting the latter in their classification.

As originally identified in ref.s [12~-14], and confirmed in the subsequent
studies [7,10,11], the algebras which verify all the above conditions are the Lie-
admissible algebras preliminarily presented in App. 1.4.A.

When joint with studies on the isotopic formulations, this ¢ccurrence
permits the identification of the following chain of covering formulations:

LIE LIE-ISOTOPIC LIE-ADMISSIBLE
FORMULATIONS: FORMULATIONS: FORMULATIONS:
Closed-1solated Closed-isolated Open-nonconserv,
local-diff. nonlocal-integral nonlocal-integral
Hamiltonian nonhamiltonian nonharniltonian
systems systemns _‘ systems

In fact, the Lie-isotopic formulations were introduced in ref. [7] precisely
4s 4 particular form of the more general Lie-admissible structures because the
antisymmetric algebras generally attached to the Lie-admissible ones are not
Lie, but Lie-isotopic.

In this chapter we shall outline the rudiments of the Lie—admissible
formulations with the understanding that they are considerably less developed
than the corresponding Lie-isotopic methods, and so much remains to be done.

The mathematical relevance of the Lie-admissible theory is seif-evident
from their covering character over the conventional Lie and Lie—isotopic theories.
Their physical relevance can be understood only after a knowledge of the
problematic aspects of current formulations of nonconservative systems outlined
in Sect. 7.2 below. The Lie—admissible formulations result to be as rather unique
for a number of applications, including nonconservative systems, q-
deformations, nonlinear and nonlocal theories, and others.

However, the primary mathematical and physical relevance of the Lie-
admissible theory for which it was conceived [7-11] rests in the capability of
providing an axjomatic formulation on the origin of irreversibility.

The scientific scene prior to the advent of hadronic mechanics is well
known. On one side, experimental evidence establishes that macroscopic
structures generally are irreversible at the Newtonian, statistical,
thermodynarnical and other levels. On the other side, only one theory for the
macroscopic world, the reversible quantum mechanics, was then available. All
past efforts in irreversibility have therefore been centered in attempting a
reconciliation of the macroscopic evidence of irreversibility with the only
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available microscopic theory (see, e.g., the recent account [15] and quoted
literature).

The advent of hadronic mechanics has altered this scientific scenario
because of the structural irreversibility of its Lie-admissible branch. In fact,
quantum mechanics emerges as being exact for the exterior particle problem in
vacuum (such as the atomic structure) which is reversible also at the classical
level (such as the planetary structure). Hadronic mechanics then emerges as the
applicable theory for the interior particle problem which is irreversible at the
particle level (such as the structure of a neutron star} and remains irreversible at
its classical counterpart (such as the structure of Jupiter).

ORIGIN OF IRREVERSIBILITY

REVERSIBLE FORMULATIONS

CLASSICAL EXTERIOR PROBLEM: PARTICLE EXTERIOR PROBLEM:
PLANETARY STRUCTURE 1 ATOMICS STRUCTURE
HAMILTONIAN MECHANICS QUANTUM MECHANICS

IRREVERSIBLE FORMULATIONS

Y
CLASSICAL INTERIOR PROBLEM: PARTICLE INTERIOR PROBLEM:
STRUCTURE OF JUPITER —> STRUCTURE OF NEUTRON STARS
BIRKHOFF-ADM. MECHANICS - HADRONIC MECHANICS

FIGURE 7.1.1. A schernatic view of the scenario on irreversibility after the advent of
hadronic mechanics. As well known, exterior dynamnical problems of point particles in
vacuum are reversible at both the classical and particle levels, and so are the
corresponding mechanics, the Hamiltonian and quantum mechanics. Irreversibility
emerges in nature for interior dynamical problems. Once this fundamental distinction
is understood, the scenario in irreversibility is completely altered. One begins
with the need of a covering mechanics at the purely classical level because
Hamiltonian mechanics cannot represent all interior Newtonian systems in the
frame of the experimenter [89]. These studies have resulted in the construction of
a generalization of Hamiltonian mechanics submitted in ref.s {10,11] under the
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name of Birkhoff-admissible mechanics which is structurally irreversible and
therefore directly compatible with irreversibility at the subsequent statistical and
thermodynamical levels. In these volumes we shall study the Lie—admissible
branch of hadronic mechanics as the particle counterpart of the Birkhoff-
admissible mechanics. [rreversibility then emerges as originating at the ultimate
elementary level of interior particle problems, and then merely persists at the
macroscopic level.

At any rate, the current studies on irreversibility cannot resolve the
paradox caused by the No—Reduction Theorerns of Ch. .1, according to which an
irreversible interior system, such as a satellite during re—entry in a monotonically
decaying orbit, simply cannot be decomposed in any consistent way into a
collection of elementary particles all in stable-reversible orbits, while such
paradox is indeed resolved by hadronic mechanics (see Fig. 7.1.1).

The epistemological origins are the limitations of quantum mechanics
(Sect. 1.1.2) caused by its local-differential structure which does not permit an
exact description of the nonlocal-integral conditions of interior problems. The
advent of a structurally irreversible mechanics specifically built for interior
problems evidently alter the scenario.

7.2: PROBLEMATIC ASPECTS OF CONTEMPORARY
FORMULATIONS OF OPEN SYSTEMS .

The best to way initiate the study of the Lie-admissible Tormulations is to see
(and admit) rather serious problematic aspects in the contemporary formulation
of open—nonconservative systems beginning at the purely classical level, which
then persist at different levels.

They can be identified by inspecting the brackets of the time evolution at
the various levels off description, such as in:

Classical mechanics, where nonconservative systems of N particles
(labeled with a = 1, 2, .., N) in Euclidean space with local coordinates xX (k = 1, 2,
3represented via external forces Fy ,, result in the following dynamical evolution
of a quantity Alr,p)

9A
Af = [a,H+
9Dka

A OB B A
[A,H = n - . (7.2.2)
o™ apy or apy

dA/ dt

Fka » (7.2.1)

with
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being the conventional Poisson brackets;
Quantum mechanics, where nonconservative systems are generally
represented by nonhermitean Hamiltonians of the type
H =H,+iV # Hf, (7.2.3)
as rather popular in nuclear physics, resulting in the dynamical equations

idA/dt = AXH = AH - HTA (7.2.4)

Statistical mechanics, where collisions and other effects are expressed
also with external terms, classically and quantum mechanically, resulting in the
following dynarnical evolution of the density matrix p

idp/dt = pxH=1[p,H + C (7.2.5)
with

[p,Hl = pH - Hp (7.26)
being the classical or quantum, canonical brackets.

Note that all the above formulations correctly describe the time-rate-of-
variation of the energy,

idH/dt = HxH = f{t) #0 (7.2.7)

Therefore, the brackets AxXH do indeed describe an open nonconservative
system, by verifying Condition 7.1.1. The admission of the conventional Lie
brackets as a particular case is trivial, and brackets AxH also verify Condition
7.1.2. The central point is that the above formulations violate the crucial
Condition 7.1.3.

Proposition 7.2.1 [7,10,11}: The brackets of conventional formulations of open
nonconservative systems, Eq.s (7.2.1), (7.24) and (7.2.5), do not constitute an
“algebra” as commonly understood in mathematics (see Sect. 2.4 and App. 4.4)
because they verify the right scalar and distributive laws,
ax(AxB) =(axA)xB = Ax(axB), (7.2.82)
{A+B)xC = AxB + Bx(, {7.2.8b)

but violate the left distributive and scalar laws, ie., for any scalar a¥ 0, a € F,
and elements A, B, C, we have
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(AxB)xa # Ax{Bxa) # (Axa)xB, (7.2.9a)
AX(B+C) = AXB + AXxC, {7.2.9b)

In different terms, in the transition from the conventional Lie
formulations characterized by brackets [A, H] to the above classical, quantum or
statistical brackets AxH, we have not only the loss of all Lie algebras, but in
actuality we have the loss of all possible consistent algebraic structures.

Additional mathematical properties are the following.

Proposition 7.2.2 [loc. cit): Eq.s(7.2.1) (7.2.4) and (7.2.5) do not admit a consistent
enveloping algebra.

This can be seen in a number of ways, the most effective one being the
fact that Eq.s (7.2.5) cannot be exponentiated as for conventional Lie equations,
because they do not admit a consistent infinite basis (no Poincare-Birkhoff-Witt
theorem-see Sect. [.4.3).

Proposition 7.2.3 [loc. cit.l Eq.s(7.2.1), (7.24) and (7.2.5) do not admit a consistent
umnit.

This can also be seen in a number of ways, e.g., from the lack of a
consistent envelope needed to define the unit of the theory.

Rather than being mere mathematical curiosities, the physical implications
of the above occurrences are rather serious, and can be summarized as follows
{for a detailed study see ref. [11,16}}

Problematic aspect 7.2.1: Eq.s (7.2.1), (7.2.4) and (7.2.5) do not admit a
consistent measurement theory. The fundamental noticn of all measurements
theories, whether classical, or quantum mechanical or statistical, is the unit with
respect to which the measurements are referred 093, No formulation without a
unit can therefore have a measurement theory usable for contemporary
experiments. Note that one may indeed conduct measures. However, the insidious
aspect is that they have no rigorous relationship to the theory at hand. The lack
of existence of the unit for the equations considered can be established on
numerous independent counts, e.g., from the lack of the envelope itself in which

58 The issue is technically deeper. In fact, a Hilbert space can certainly be defined over
a field which, as such, possesses the unit 1, even for nonconservative systems. The point is
that the enveloping operator algebra of the theory here considered has no unit, which
implies that no operator can be "measured” in a consistent way. To understand the
occurrence one should think at a guantym mechanical measurement in which Planck’s
constant cannot be defined.
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the unit is defined. The physical implications for plasma physics and other fields
are self-evident.

Problematic aspect 7.2.2: The angular momentum, spin, and other
physical quantities characterized by Lie’s theory cannot be consistently defined
under the generalized brackets AxH of the equations considered. As well known,
the angular momentum and spin are centrally dependent on the exact O(3) and
SU(2) theory, respectively. Then, the same quantities are manifestly meaningless,
mathematically and physically, for Eq.s (7.2.1), {7.2.4) and (7.2.5), trivially, because
they have lost not only the entire Lie's theory, but the very notion of algebra. This
is another occurrence which should not be taken lightly. As an example, the use
of the terms “protons and neutrons with spin +” has no mathematical or physical
meaning when referred to Eq.s (7.2.4) in nuclear physics or Eq.s (7.2.5) in plasma
physics.

Problematic aspect 7.2.3: Loss of the conventional notion of particle.
Eq.s (7.2.4) have been generally used in nuclear physics over the past decades to
describe nonconservalive processes of nucleons. However, the gquantum
mechanical notion of protons and neutrons can be rigorously proved to be
inapplicable to these equations and, if applied, to imply a host of inconsistencies.
They are technically due to the loss of all means to characterize the conventional
notion of particle.

Problematic aspect 7.2.4: Loss of the rotational, Lorentz and other
fundamemntal space-time symmetries. This is evidently due to the lack of a
consistent exponentiation and other technical reasons. Stated explicitly, the
open—nonconservative systems generally represented in the contemporary
literature imply the inapplicability of Qalilei’s, Einstein’s spécial and Einstein’s
general relativities.

Problematic aspect 7.2.5: Eq.5 (7.2.1} (7.2.4) and (7.2.5) cannot consistently
represent irreversibility. As well known, Lie’s theories for Hermitean
Hamiltonians verify the Theorem of Detailed Balancing (see, e.g., ref. [I7]) and, as
such, they do consistently represent reversibility from first principles (Fig. 7.1.1).
Such a theorem becomes manifestly inapplicable under nonunitary
transformations as those underlying Eq.s (7.2.4), but no consistent generalization
of the theorem of detailed balancing exists for brackets AxH, tc our best
knowledge. Thus, the equations considered cannot consistently represent
irreversibility (see Vol. II for a Lie-adrnissible, irreversible generalization of the
Theorem of Detailed Balancing [17)).

For additional problernatic aspects the interested reader may consult ref.s

[10,11,16].
It is hoped the reader can see the need for a fundamental structural
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revision In the treatment of open nonconservative systems in their classical,
particle and statistical formulation, because any attempt at reconciling these
systems with old knowledge will inevitably lead to inconsistencies.

7.3: HISTORICAL NOTES

The notion of Lie-admissible algebra was introduced by A. A. Albert in paper
(18] of 1948. A generally nonassociative algebra U with elements a, b, ¢, ... and
(abstract) product ab over a field Fla,+** is called Lie-admissible when the
attached algebra U™, which is the same vector space as U (that is, the elements of
U and U~ coincide} but equipped with the product [a, bl = ab - ba, is Lie.

Since the attached product [a, bly is antisymmetric, the sole condition for a
product ab to be Lie-admissible is that the attached product [a,blyy verifies the
Jacobi identity, ie., the following axiom, called axiom of general Lie-
admissibility , 1s identically verified

fa,b,c)+(b,ca+(cab-(cbha-Mbac-1{ch =0 (7.3.1)

where
{a,b,c) = {ablc - albe) (7.3.2)

is called the associator (see also App. 4.A), and represents the departure of the
algebra from an associative one.

Albert [18] identified only one nontrivial subcase of Lie-admissible algebras
called flexible Lie—admissible algebras and characterized by the axioms

{a,b,a) = 0, (7.3.33)
{a,b,c) + (b,ca) + (c,a b = 0 (7.3.3D)

where condition (7.3.3a), called the flexibility law, is a simple generalization of
the anticornmutative law. No additional study, e.g., of the structure theory, was
conducted by Albert in his original paper [18].

In the subsequent two decades, only two additional brief notes appeared by
mathematicians in Lie-admissible algebras, one in 1957 and one in 1962 {see the
general bibliography [18]), but without any detailed mathematical study.

The Lie—admissible algebras made their first appearance in classical
mechanics in paper [12-14] 1967-68 via their identification in the fundamental
brackets of the time evolution of Hamilton's equations with external terms, when
properly written (see bellow). The algebras were then studied in more details in

94 Assumed throughout this presentation as of characteristic zero.



— 421~

ref.s (7,10,11]

By introducing the unified notation a={a"*) = (ry,, pea) £ = L, 2 .., 6N,
the main result of ref.s [7,13-15] can express via the re-formulation of brackets
AGB of Eq.s (7.1.5)

OA oA oB
Fga = (A Hbi= — gV — (7.34a)
dpKa oatt oa¥

dA/dt = [AH] +

S = @iV 4 g = Ha1> v, MY = giag {0, FA 81/ p)), (7.3.4D)

7= I+ s, (7.3.4¢)

where oM is Lie’s tensor characterizing the Poisson brackets, and 17 is a quantity
1o be identified shortly. It is then easy to verify the existence of: the consistent
exponentiation of Eq.s (7.3.4a) into the finite form

ot SHV (8, H) (8,) Al

Alt) = 0); (7.3.5)

the direct representation of the time-rate—~of-variation of the energy

Ny
Ho=H- otSEey

= VkaFNSAka; (7.3.6)

- and underlying equations of motion in explicit form

oH
Tka = 5 = Pka/ My (7.3.7a)
Pka
oH 8H
Pva =~ * Ska = P, + PO e (7.3.71)
Orka Pka

where SA stands for the conditions of variational selfadjointness and NSA stands
for their violation [7,8).

The verification of the right and left scalar and distributive laws by
brackets (A, B) is evident.59 Equally evident is their Lie-admissibility because
their attached antisymmetric brackets are Lie,

(A,B) - (B,A) = 2[A,B]. (7.3.8)

S5 Note that the addition of a second term in the equation for fy, would imply the loss,
in general, of the physical meaning of the linear momentum py, = My,
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Thus, Lie-admissible equations (7.3.7) resolve all problematic aspects of Eq.s
(7.1.2).

Very few additional papers appeared in the decade following ref.s [12-14]
(see the "genealogical tree” on Lie-admissible algebras, ref. [7], p. 304 and quoted
literature in pp. 414-415). However, following paper [7] of 1978, the study of Lie-
admissible algebras increased considerably, also as a result of a series of
Workshops on Lie-admissible Formulations organized by this author (see the
general bibliography [19]).

The Lie-admissible algebras made their first appearance in operator
mechanics ref. [20], p. 746, of 1978 as the central structural algebras of hadronic
mechanics via the basic dynamical equations

idA/dt = {(A,B} = ARB - BSA, {7.3.92)
RSR+S %0, R* S|, (7.3.9b)

with exponentiated form (ref. [20], Sect. 4.18, p. 779 f1.)

X —itRH
A = e TIHSE pq o TIERH (7.3.10)

and time-rate-cf—variation of the energy operator
idH/dt = (H;H) = HR-9H. (7.3.11)

it is evident that the product (A, B} characterizes a general Lie—admissible
algebra because the attached algebra is Lie-isotopic (rather than Lie)

(AJB) — (BA) = [A/Bl = ATB -~ BTA, T=R+8. (7.3.12)
The algebra characterized by the following brackets
{A,B)=p AB - q BA, {7.3.13)

with p and q non-null scalars {or functions, was introduced by the author [12]
back in 1967°° as a realization of flexible Lie-admissible and Jordan—admissible
algebras (App. L4.A).

Subsequently, the Lie-admissible algebras made their first appearance in
statistical mechanics in paper [21] of 1979 via the master equation for the density
matrix

56 The sole realization of the Lie-admissible product introduced by Atbert [18] is (a, b) =
Aab — (1 - Mba which does not include the so—called g-deformations (App. 1.7.A) as a
particular case, while the latter are indeed a particular case of the Lie—admissible
algebras with product (7.3.13).
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idp/dt =lp,HI+C ={p,H) = pRH - HSp, (7.3.14)

which admits conventional equations of type (7.2.5) as a particular case with the
identifications

pH-Hp+ C=pRH- HSp, R=1, S=1+H gl (7.2.15)

although Eq. (7.3.15) are transparently more general than (7.2.5).

Since that time (1979), Lie-admissible algebras have been submitied to
- considerable, mathematical and physical studies by numerous authors. A
comprehensive bibliography until 1984 can be found in ref. [19]. More recent
accounts can be found in Yol.s II and III.

Monograph [11] presents the Lie-admissible theory in classical realization.
In this chapter we shall outline the foundations of the Lie-admissible theory in
its operator realization. Applications will be studied in the subsequent volumes.

This is a line of study conducted by this author [7,10,11] which is
considerably different than the studies generally listed in bibliography [19]. In
fact, the latier were conducted within the context of abstract nonassociative
algebras, while the former refer, specifically, to a step—by-step generalization of
enveloping algebras, Lie algebras, Lie groups, representation theory, etc. The
understanding is that all studies in Lie—admissibility, whether explicitly or
implicitly oriented for the generalization of Lie’s theory, are relevant for these
volumes because they deal with the mathematical structure of hadronic
mechanics.

The inspection of classical studies [11] is recommended for the reader
interested in acquiring a technical knowledge of the field, because all the basic
concepts of the the Lie-admissible formulations already exist at the classical
level, where they find theirs clearest realization.5’

In summary, we have the following three notion of Lie—admissibility:

1) Albert Lie-admissibility [18] which characterizes a nonassociative
algebra U such that U™ is Lie without any condition that conventional Lie
algebras are contained as particular cases of U. In fact, Albert was primarily
concerned with realizations of Jordan-admissible algebras with guasiassociative
realization (see App. [.4.A for details)

{A,B) = X Ab - {l-A)BA. (7.2.16)

where A is a non—null parameter, which is indeed Lie-admissible (and Jordan-

57 Particularly important is the classical realization of the Lie—admissible symmetries
which provide a structural generalization of Noether’s theorem whereby the Lie—
admissible symmetries characterize the time-rate-of-variation of physical quantities,
thus admitting as a particular case Lie symmetries and conservation laws. Rather oddly,
these covering notions have remained virtually ignored in the physical literature.
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admissible), yet it does not contain any Lie algebra for finite values of \.

2) Lie—Santilli Lie—~Admissibility [18,12] which is Albert’s notion of Lie—
admissibility, plus the condition that Lie algebras are a particular case of U [12],
This latter condition was evidently necessary for physical applications. In fact,
Santilli introduced, apparently for the first time in paper [12] the realization

(A,B)=XAB - uBA, (7.2.17)

which is indeed Lie-admissible (and Jordan—admissible) and admits conventional
Lie algebras for the values of the parameters A =p = L.

3) Albert—Santilli Lie-Isotopic-Admissibility [18,12,20] which is the
preceding notion under the condition that the attached algebras is not Lie, but
Lie-Santilli [20], i.e., the nonassociative algebra U must be such that U™ is Lie-
isotopic and U must contain as particular case conventional Lie algebras, as it is
the case for the product first introduced in memoir [20]

(A,B)= ARB - BSA, (7.2.18)

where R and S are non—null operators. The latter conditicn resulted to be
necessary for physical applications because of insufficiencies of the preceding
definition and it is that used in these volumes.

7.4: GENONUMBERS

The technical understanding of the Lie—admissible formulations requires the
- knowledge that they are based on a generalized theory of numbers heyond that of
isonumbers. ' '
Let Fla,+*) be a conventional field (Sect. 2.3) with multiplication ap : =
a*f. In Ch. 1.2 we have reviewed a generalization of this basic operation into the
isotopic form a3 = aTB. Both products af and a*B are based on the assumption
that they apply irrespective of whether a multiplies 8 from the left, or B
multiplies a from the right. We can therefore introduce the following:

Definition 7.4.1 - Ordering of the multiplication [22}: The multiplication
of two numbers a and B is ordered to the right, and denoted a>f, when o
multiplies B fo the right, while it is ordered to the left, and denoted a<B when B
multiplies a. from the left.

Note that the above ordering is cormpatible with other properties and
axioms of number theory. As an example, if the original field F is commutative, it
remains commutative after the above ordering, that is, if off = Ba, then a>B = f>a
and a<f = B<a. The same occurrence helds for other properties, such as
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associativity while the verification of the left and right distributive laws is
evident. Thus, the entire Definition 2.3.1 can therefore be reformulated under
ordering by characterizing fully acceptable fields.

The point at the foundations of the Lie—admissible theory is that the
multiplications of the same numbers in different orderings are generally
different, a>fB # p<a. In turn, this implies the possibility of introducing fwo
ordered isounits, called genounits, one per each ordering

: I”>a=a>7 = a, {7.4.1a)

Uq: “I<a=a<< = q, {7.4.10)

The above features permit a dual generalization of Definition 2.3.1, one for
ordering to the right, yielding the right genofield

(67 +7), & =al’, (7.4.2)

whose elements @~ are called right genonumbers, and one to the left, yielding
the feft genofield

H<a+<®, <4 =%a, (7.4.3)

whose elements <a are called Jeft genonumbers. The above two different
genofields are often denoted with the unified symbol <F>(<G>+,<+), with the
understanding that the orderings can solely be used individually and not jointly.

The realization of the genoproducts used in these volumes is given by the
following two different isotopic multiplications, one to the right and one to the
left,

a>p:=aRg, (7.4.4a)
a<pB:= aSp, (7.4.4b)
where R # S, with realization of the genounits
= R7} ”>a=a, (7.4.50)
< =gl a<d=a. (7.4.5b)
The entire theory of isonumbers of Ch. 2, including isoreal, isocomplex,
isoquaternions and isooctonions numbers, then admits a generalization into the
theory of genonumbers first introduced in ref. {22].

Note the need Tor a prior isotopy ap —+ aTB in order to construct genotopies
(7.4.4). In fact, no ordering is evidently meaningful for the conventional
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multiplication af = alp.

So far we have presented in this section the right and left
genomultiplications and related isounits as disjoint, in which case the isounits
can indeed be Hermitean and real-valued, thus admitting of Kadeisvili
classification into Classes I, IT, [1L IV, V.

Nevertheless, the realizations used in physics are those when the right and
left genounits are inter-related by a conjugation, such as the Hermitean
conjugation

> = (<), {7.4.6)

In this case Kadeisvili's classification still holds, but must be referred to the
Hermitean parts of the genounits. More specifically, we shall decompose the
genounits into the products

™ =1P, 4 =q1 1=1 pl=q, (7.4.7)

where T is the maximal Hermitean part. We can then classify the theory of
genonumbers into Kadeisvili’s Classes [, II, I1I, IV and V now referred to the
maximal Hermitean part of the genounits.

As it will be soon evident, under the above interconnection, the product
ordered to the right can be interpreted as characterizing motion forward in time,
while that ordered to the left can represent motion backward in time. In

different term, the ordering of Definition 7.4.1 can represent Eddington’s “arrows
of time’, and we have the following:

- Lemma 7.4.1 [22} An axiomatization of irreversibility in number theory is given
by: A) the ordering of the multiplications to the right and to the left,
representing motion forward and backward in time, respectively; B) the
differentiation of these two multiplications; and C) the assumption of an
interconnecting map representing time-reversal.

As we shall see in the rest of this chapter and in Vols II and I1I, the theory
of genonumbers that with intercennecting map is the true foundation of the Lie—
admissible branch of hadronic mechanics,

Note that the simpler theory of isonumbers is a subcase of that of
genonumbers under the simple condition

R=5=gRl (7.4.8)

This illustrates that the origin of the reversibility of the Lie and Lie-isotopic
theories can be seen in their respective theories of numbers and isonumbers and,
more specifically, from the fact that their multiplications to the right and to the
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left are identical, a >B=a <p.

We close this section with a few mathematical comments. Realization (7.4.4)
is evidently not unique. In fact, other realizations of ordered multiplications are
given by

a>p=WaWRWBW, W=w, (7.4.9a)
a<B =ZaZSZBZ, 7% =17, (7.4.9b)

where R # S and W  Z. The latter realizations are not used in physics to our best
knowledge at this writing, because they do not verify the Fundamental Condition
4.4.1 of admitting unique, left and right units.

Conjugation (7.4.8) is used in physics, but in mathematics one can introduce
any other conjugation, such as that characterized by isoduality

" =(Md=-, (7.4.10)

or have no conjugation at all.

Finally, note that the notion of isoduality applies also to genofields, yielding
the isodual genofields <F> 4<3> 4 4 <> 0

In the preceding chapters we have indicated the truly remarkable, novel
mathematical developments permitted by the theory of isonumbers. The yet
breader theory-of genonumbers permit additional mathematical developments
that are simply inconceivable with conventional theories.

As an illustration, the Lie product AB ~BA originates from two envelopes,
one for the multiplication to the right with product BA, and one to the left with
product AB, as we shall see, even though these two multiplications are evidently
identical. Then, the theory of genonumbers permils the reinterpretation of Lie
algebras as commutative Jordan algebras defined on two genofields
interconnected by isoduality, i.e.

AB-BA = AIB+BI194, (7.4.11)
The remark is important to indicate that Jordan legacy (i.e., a possible quantum
mechanical content of Jordan algebras) is still open.

We finally note that the ordering of the multiplication can also be extended
to the addition, although it must necessarily be lifted to be nontrivial. This
further generalization is not used in physics because it violates the distributive
law as studied in Sect. 1.2.3. Nevertheless, the extension is significant to point out
that the most general notion of “numbers” introduced by this author [22], the
theory of genonumbers and their isoduals. It can be expressed by the unified
symbol <F>{<g>, <+><%>), representing: three separate generalizations of the
numbers a —+ & = &~ - <g; characterized by three separate generalizations of
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the operations + =+ % -+ — <% and x - % - %> — <& with three separate
generalizations of the additive units 0 = 0 — 0~ — <0, and multiplicative units 1
—1-17 - <1, plus the image of all these structures under isoduality.

Such genonumbers can be not only of dimension 1 (genoreals) 2
{genocomplex), 4 (genoquaternions) and 8 (genooctonions), but aiso have
dimension 3, 5, 6, 7 (called “hidden numbers” because they hidden in the
operations as for the case of isonumbers (see App. 1.2.A and ref. [22] for brevity).

7.5: GENOSPACES

The entire theory of isospaces of Ch. 1.3 admits a consistent and significant
genotopic covering. Let S(x,g,R) be a conventional metric or pseudo—metric space
and 8{x,g,R) its family of isotopes. Then, the following left and right genospaces
hold

PP L) : & = gR, x> =xx, 1 =R, (7.5.1a)
BXER : <6 = Sg, xL=xGxt, 4 =gl {7.5.10)
= (), (7.5.1c

A most visible difference between genospaces and isospaces is therefore
that the invariant in the former is unique, while in the latter we have two
different invariants, one for the multiplication to the right and one to the left.

When the two multiplications are interconnected by conjugation (7.5.1c),
we have two different genospaces one for motion forward in time, and one for
motion backward in time.

The most significanl genospaces, denoted with a unified notation
<8”(x,<g”,“R™), are given by:

I) genoeuclidean spaces <£7(x,<8”,<R”) and their isoduals;

II) genominkowskian spaces <M~ (x,<7”,<R”) and their isoduals;

III) genoriemannian spaces <®~{(x,“¢”,“R”} and their isoduals,
where 8, 1}, § are the isometric of the corresponding isospaces of Ch. 1.3.

[t should be noted that conventional spaces, such as the Euclidean space
E(r,3,R), admit a nontrivial isodual images E9(r,89RY). However, their genoimages
<E”(r,<6”,“R”) without a joint isotopy are trivial, evidently because <8~ = 8. This
occurrence is similar to that of the preceding section whereby ordinary fields
F(a,+x) admit nontrivial isoduals Fd(ad,XG) without isotopies, but trivial genotopes,
<F” = F, because a>b = b<a for ordinary fields.

The lack of a significant “arrow of time” in the conventional numbers and
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spaces is the axiomatic origin of their reversibility. By comparison, the presence
of a structural “arrow of time” in the theory of genonumbers and genospaces
renders them particularly suited to represent irreversibility.

The use of conventional transformation theory for genospaces also violates
linearity, transitivity and other basic laws. For this reason it must be lifted into
the right and left genotransformations

']

X 0”>x = (PRx, {7.5.2a)

X =x<<0 =x8<0. (7.4.2b)

The above transformations are one-sided isolinear, isolocal and isocanonical as it
occurs for the isotransformations. This illustrates again that the ordering of the
multiplication does indeed preserve all basic axioms. The remaining aspects of
isospaces (Ch. 1.3) and their transformation theory therefore admit a consistent
and intriguing generalization into left and right theories.

7.6: LIE-ADMISSIBLE THEORY

Recall that the conventional unit [ is at the foundation of Lie’s theory, and the
same occurrence holds for the Lie—isotopic theory.

The distinction of the miyltiplication to the right from that to the left with
corresponding different genounits implies an evident generalization of the entire
Lie and Lie-isotopic theories whose study has only been initiated at this writing
[11]. We here indicate the existence of two genoassociative enveloping algebras &
and <¢ with the same elements 4, B, C, ... denoted with the joint symbol <>, buy
different genoproducts and genounits

P . A>B:=ARB, 1 =R, (7.6.1a)
<t:A<B:=ASB, =g, (7.6.1b)

defined over corresponding genofields <F {4~ +,<+>).

It is easy to see that the isotopic Poincare-Birkhoff-Witt theorem (Sect. 4.3)
can be consistently generalized for each direction of the multiplication, yielding
an infinite-dimensional base for each genoassociative envelope.®8

This allows the introduction of the unique, fundamental notions of

58 This is possible because, again, the genoalgebras admit well defined right and left
units. By comparison, g—deformation have no such unit and, therefore, do not admit a
unique basis for their exponentiation (App. L7.A).
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genoexponentiation
0> = ¢, XV - (e XRWyp> (7.6.28)
g=e Vo qretVS¥y, (7.6.2b)

e <
which, in turn, permit the formulation of the Lie-admissible group first

introduced in refg. [7] (see also ref.s (10,11]), which is given by the left and right
genotransformations of a generic quantity Q e <¢~

in}

Qbw) = 07> Q) <<0 = (e, XW ) qod < e

eiXRW iwSX

= | IQofe 1, {7.6.2b)

Its most fundamental feature is of admitting a non-Lie/non—Lie—isotopic
but Lie—admissible algebra in the neighborhood of the genoidenties

aqQ
dw

=X = Q<X - X>qQ, {7.6.3)

thus confirming the existence of a Lie-admissible generalization of Lie's theory at
all various levels {enveloping algebras, Lie algebras, Lie groups, etc.). Structure
(7.6.3) also confirms that the Lh.s. of the product (Q,”X) is characterized by the
backward genoenvelope, while the r.h.s. is characterized by the forward
genoenvelope, as anticipated earlier.

An important point for the correct interpretation and use of the theory is
that the envelopes underilying the Lie—admissible formulations remain
associative, thus verifying Fundamental Condition 1.4.4.1. In different terms,
structure (7.6.3) is a generalization of the corresponding Lie and Lie-isotopic
structures

dQ

i =[QH]=QH - HQ, (7.6.4a)
dw

dQ

i— =[QH]l=QTH -HTQ, (7.6.4b)
dw

where, as now familiar, the brackets[ , ] and [ ; ] are nonassociative, but their
envelopes with respective product QX and QTX are indeed associative.

Exactly the same occurrence holds for the more general Lie-admissible
formulations. In fact, the brackets { , ) are evidently nonassociative, but the
underlying envelopes with products Q>H and H<Q are isoassociative.

In Vol. I we shall study the basic laws of the Lie-admissible representation



—431—

of interior systems. In particular, we shall identify the Lie-admissible
symmetries and show that they characterize time-rate—of-variation of physical
quantities, by providing in this way an operator counterpart of the
corresponding classical notions [11], and by reaching an intriguing covering of the
corresponding notions for Lie and Lie—isotopic theories.

The most important application of the Lie—admissible theory is the
characterization of the most general known notion of particle, called
genopartick, as studied in more details in Vols II and III. At this moment we
simply list the notions of particles used in hadronic mechanics:

Conventional particles, which is characterized by Lie symmetries in a
stable-reversible orbit, such as an electron of an atomic structure;

Isoparticles which is characterized by the Lie~isotopic symmetries also on
stable orbits, such as the constituents of few-body nuclei and hadrons; and

Genoparticles, which is characterized by Lie-admissible symmetries on
the most general known nonconservative, unstable and irreversible orbit, such as
an electron in the core of a star undergoing gravitational collapse

plus all their isoduals.

The best way to understand the conceptual, mathematical and physical
advances permitted by the Lie—admissible theory is by inspecting the underlying
representations called genorepresentations.

In Sect. [.4.7. we have studied the isorepresentation theory which is based
on the notion of module implying only one action, e.g., that to the right. By
comparison genorepresentations of Lie—admissible algebras require a two-sided
isobimodule called genomodule.

Consider an algebra U over a field Fla,+x). Let V¥ be a vector space over
F and introduce the direct sum

S=UeV {7.6.5)

in such a way that S is an algebra verifying the same axioms of U while V is a
two sided ideal of S.

This can be done as follows [23}

1) retain the product of U;

2) introduce a left and a right composition av and va, for all elements a
€ Uand v eV which verify all axioms of U {including the right and
left scalar and distributive laws); and

3 to complete the requirement that V is an idea! of S, assume vt =

tv = 0 for all elements of V.

When all the above properties are verified, V is called a two-sided, leff and
right module, or a birnodule of U, and the algebra S is called a split null
extension of U [loc. cit.].



- 432 -

Bimodules clearly provide a generalized, left and right representation
theory of all algebras, whether associative or nonassociative. It is important to
understand why bimodules are not needed for the representation theory of
conventional Lie algebras (i.e,, for the conventional notion of particle) as well as
of Lie-isotopic algebras (i.e, for the generalized notion of isoparticie), but they
become essential for the covering Lie-admissible algebras (i.e., for the most
general possible notion of genoparticle).

A bimodule V of a Lie algebra L or Lie-bimodule [24] is characterized
by left and right compositions av and va, a € L, v € V, verifying the properties

av=-va, (7.6.5a)
viab) =(va)b - (vb)a, (7.6.5b}
which can be identically expressed via the left and right multiplications
Ly= -Rga (7.6.7a)
Rab=RaRp — Rp Ry, (7.6.70)

The mappings a = Ry and a = L, then provide a left and right
representation, or a birepresentation, of the Lie algebra L over the bimodule V
as a HombelVR,Vy).

However, owing to property (7.6.6a), the left representation is trivially
equivalent to the right representation, Ry = - La-59 This is the reason why only
one~sided representations of Lie algebras are significant in quantum mechanics.

The notions of iscrmodules and isobimodules were introduced for the first
time in ref. [24] of 1979, although they do not appear to have been studied
thereafter in the mathematical or physical literature. In essence, a Lie-
isobimodule is an isovector space ¥ over an isofield Fa,+# with left and right
isocompositions a * v and v * a verifying the distributive and scalar laws, and the
rules

ax*y =—-v=*3a, (7.6.8a)
vx{a*b) = {v¥xa)xb ~ (vbl*a, (7.6.8b)

or, equivalently in terms of isomultiplications
Ry=-1L,, (7.6.92)

Ra*b=Ra*Rb - Rb*Rav {7.6.90)

99 Note again the intriguing possibility of reinterpreting the left representation as an
isodual of the right here left to the interested reader.
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An isobirepresentation of a Lie—isotopic algebra L is then given by

HomLg(VR, 7).
However, the left and right isorepresentations are again equivalent because
of the property Ry = - [*a- Thus, only one-sided isomodules and one-sided

isorepresentations are needed for the Lie-isotopic branch of hadronic
mechanics, and this explains the reason for our silence on them in Ch. [.4.

Note also that the above equivalence between the right and left isomodular
actions is an axiomatic representation of reversibility. This implies that
isoparticles as characterized by one-sided isorepresentations are on stable—
reversible orbits.

The two-sided isorepresentations, or genorepresentations, become
necessary when studying Lie-admissible algebras evidently because of the loss of
the antisymmetric {or symmetric) character of the product. As a result, the
representation theory of the Lie—admissible algebras is much richer than those of
the Lie and Lie-isotopic algebras.

A Lie-admissible bimodule V, or genomodule for short, is a vector
isospace over a genofield <f> equipped with two, inequivalent, right and left
compositions a>v and v<a such that the attached composition aov = a<v — v>a
verifies the axioms

aov =-voa, {7.6.10a)
vo(aeb)=(voaleb-(vibloa. {7.6.10D)

Thus, genomodules are characterized by their attached composition a>b — v<a,
rather then each individual actions a>v and v<a. They can be equivalently
expressed via the right and left isomultiplications

R.a>v_v<a + La>b—b<a = [(%a_LaL(Rb_Lb)]- {7.6.11]

A genorepresentation of a Lie-admissible algebras U over the genofields < is
therefore given by the HomU<F>(<VL, g

Further advances in the Lie-Isotopic—Admissible theory {(Sect. 7.3) were
presented by this author at the International Congress of Mathematicians (ICM)
held in Zurich in August 1994 [53], and can be expressed via the following:

Theorem 7.6.1: The general Lie-admissible product (A, B) = A<B - B>A is
neither antisymmetric nor symmetric when projected in the conventional
vector space of the original Lie algebra over conventional fields V(F),

(A,B) ={ a<B-B>A }v(p] #+(B,A) (7.6.12)

but the same product becomes totally antisymmetric and verify the Lie axioms
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when each ordered product is computed in its own genovecfor space over the
corresponding genofield, <V (<), e,
= -(B,4). (7612

(AB) ={ A<B) )—{B>A}

YF V(E)

Proof. When computed as a genovector space over a genofield, the
genoenvelope & with product A>B as well as the genoenvelope <t with product
A<B are both isormorphic to the conventional envelope £ with product AB

EF) ~ P> o~ <ESR). (76.13)

. Under these conditions, the product {A, B} = A<B - B>A verifies the Lie axioms in
exactly the same measure as the conventional product [A, Bl = AB - BA. q.e.d.

To see this result from a different perspective, recall from Ch. 1.4 that the
isotopy & AB — & : AB = ATB satisfies the local isomorphism & ~ & when T is
positive~definite and  is computed with respect the isofield whose isounit is the
inverse of the deformation, i.e,1=T"L

Exactly the same situation occurs for the product (A, B) = A<B - B>A. In
fact, the genotopy & AB — > A>B = ASB also verifies the isomorphism & ~ &
when the latter is computed with respect to a genofield whose genounits is the
inverse of the deformation, 1> = S™! and exactly the same situation occurs for
the conjugate gencenvelope. The verification of the Lie axioms by the Lie-
Isotopic-Admissible product (4,. B} then follows.

[t is evident that Theorem 7.6.1 confirmns the possible construction of the
Lie-1sotopic—-Admissible theory as a step-by—step genotopy of Lie’s theory
suggested in ref.s [10,11], as we hope to study at some future time.

The physical meaning of the Lie-admissible theory is identified by the
following:

Lemma 7.6.1 [11}: An axiomatization of irreversibility at the algebraic—group
theoretical level is provided by the differentiation of enveloping associative
algebras of Lies theory into two genotopic forms of the Lie-admissible theory
t> and <t and related genorepresentations characterizing motion forward and
backward in time, respectively, with a corresponding interconnecting
conjugation, and related forward and backward genounits 17, <1, for
corresponding right and left actions.

The axiomatic nature of the above characterization is expressed by the fact
that irreversibility is intrinsic in the thecry, ie., it holds also for time-reversible
Hamiltonians, as we shall see better in Vol. [I. By comparison, both Lie and Lie—
isotopic theories are structurally reversible.

The implications of the above axiomatization of irreversibility are far
reaching. In fact, as we shall study in detail in Vol.s Il and III, the lifting of the



— 435 -

Poincaré symmetry into its Lie-admissible covering (first proposed at the
classical level in ref. [11]) characterizes the most complex known notion of
particle with locally varying intrinsic characteristics, as expected to represent the
most complex known physical conditions in Nature, such as for a neutron in the
core of a neutron star.

7.7: GENOGEOMETRIES

As stressed throughout our studies, physical theories in general, and relativities in
particular, are a symbiotic expression of deeply interconnected and mutually
compatible analytic, algebraic and geometric formulations.

In the preceding sections we have presented the analytic and algebraic
structures of the Lie—admissible theory. It is therefore important to show that,
exactly as it occurs for the Lie and Lie-isotopic theories, the Lie-admissible
theory also admits a fully defined geometric counterpart.

This problem was studied in ref.s [7,11] and resulted in the submission of
new geometries, more general than the isogeometries of Ch. 1.5, called
genogeometries, according to the following main lines.

7.7.A: Genoeuclidean and genominkowskian geometries. They are the
geometries of the genospaces “E~(r,<8”,“R”) and <MP(r,<6”,“R”), respectively,
and are essentially given by the isoeuclidean and isominkowskian geometries of
Sect. 1.5.2 and [.5.3, in different realizations for each “arrow of time”.

The most important difference between the iso— and gencgeometries is
therefore that the metric of the former is unique for both directions of time,
while the metric of the latter is differentiated depending on the assumed
direction of time, & # <8 and 7)” = <q\.

However, the base unit is lifted in correspondence to each of these
generalized metrics according to the rules

g=2g =gT, =P =(P)} (7.7.1a)
g = <g=<Tg, [ = < =(<T)L, (7.7.1b)

as a result of which all the peculiar properties of the isogeometries are preserved
for forward and, separately, backward genogeometries.

This implies the existence of two different deformations of the sphere, the
light cone, etc,, for interior dynamical problems, one per each direction of Lime,
each of which is mapped into the perfect sphere and the perfect cone in
genospace.

The extension of the remaining properties of isogeometries into the
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genotopic form is an instructive exercise for the interested reader, and it will be
assumed hereon.

7.7.B: Genosymplectic geometry, Recall that the symplectic geometry is
the geometry underlying Lie’s theory, while the isosymplectic geometry (Sect.
1.5.5) is that underlying the Lie-isotopic theory. In ref.s [7,11] this author showed
that the yet more general Lie—admissible theory also admiis a fully defined
underlying geoinetry, evidently of a generalized nature submitted under the name
of symplectic-admissible geometry, or genogeometry for short.

Recall from App. [.5.A Birkhoff's brackets in T*E(r,8,R) and related exact
symplectic two~form in the now familiar unified notation a = (at) = (r, ph L = 1,
2, ., 2n,

8A B
[AB] = — M) —, (7.7.2a)
dal aa¥
— v
Q = 0, @) dat Ada, (7.7.2b)

where the algebraic—contravariant and geometric—covariant tensors are
interconnected by the familiar rule

= (o (77.3

In the transition to the Birkhoff—isotopic brackets on isospaces T*Eor,3,R)
with isounit 1,, (Sct. 1.5.4)

(A Bl o M) 1, Y ) > (7.7.4)
ABl = — a t, a4 .. —, 7.7.4
aalt a daY

we have the transition to the isosymplectic geometry characterized by the
isoexact two—isoform

O =1 T}La(t, a,4,..) Qg fa) datt A da¥ {7.75)

where, again, the algebraic and geometric tensors are interconnected by the rule
ar v —1
H9e” = [ (TyeP Q)™ P (7.7.6)

The problem of the geometry underlying the Birkhoff—admissible brackets
(7,111
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(AB) = <Hta) * , (7.7.7a)
gakt aaV

S = Qhad <> v, (7.7.7b)

M o= - o', (7.7.7¢)

97y = >4 (7.A.7d)

was resolved via the introduction of a geometry more general than the
symplectic and the isosymplectic ones.

The Tirst point to realize is that the symplectic geometry and related
exterior calculus, whether in their conventional or isotopic formulations, are
intrinsically unable to characterize the Lie-admissible algebras.

This is due to the fact that the calculus of exterior forms is essentially
antisymmetric in the indices, and so remains under isotopies by assumption,
while the Lie—admissible tensors <§”MY are not antisymmetric, and the same
occurs for the covariant counterpart

S pita = (JWrh, = 2<8,) (7.7.8)

In fact, the construction of a conventional exterior two—form with the
above tensor implies the reduction

Sy ddt Al = 10 dat Ade, (7.7.9)

namely, the symplectic geometry automatically eliminates the symmetric
component of the S—tensor, thus characterizing only its Lie content.

The main idea of the symplectic-admissible geometry is that of
generalizing the conventional exterior calculus, say, of two differentials

dat A daV¥ = - da¥ adaM, (7.7.10)

into a more general calculus, called exterior-admissible calculus, or
genoexterior calculus, which is defined over the genofield of real numbers
<R>(<H”,+,%+>) based on a product, say @, which is neither totally symmetric nor
totally antisymmetric, but such that its antisymmetric component is the
conventional exterior one [7,11],

dat o da’ = dab Ada¥ + da¥xda’, (7.7.11a)
dah A da¥ = - ga¥ A daM, (7.7.11b)
da'x da¥ = daV x dal, (7.7.11c)
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The isocotangent bundle is then further generalized into the
genocotangent bundle T*<E”(r,6”,“R”)upon selection of one given ordering in
the multiplication.

This allows the introduction of the exterior-admissible forms or
genoformes, via the sequence

<§5 = <¢7), (7.7.12a)
& = <&, da, (7.7.12b)
<> o <& K v
3 ) &y da 0 da”, (7.7.12¢)

The exact exterior-admissible forms or exacl genoforms, are then given by

a<¢>
% = a7, = da, (77.13a)
datt
8<A”
&2 = %>, = da# o da”, (7.7.13b)
oat

The calculus of exterior—admissible forms can indeed characterize the Lie—
admissible algebras, because it characterizes not only the antisymmetric
component of the Lie-admissible brackets, but also their symmetric part, via the
two—-fTorms

¥y = Fptaddtoda” =

= Q) dat Ada” + 97l a) daM x da”, (7.7.14

Structures (7.7.14) are symplectic~admissible two—-forms because their
antisymmetric component is symplectic, in a way fully parallel to the property
whereby the antisymrmetric part of the Lie—admissible algebras is Lie. Structure
(7.7.14) are also called genosymplectic two—forms, when emphasis is needed on
the loss of the original antisymmetric axiom. The spaces T*<E”(r,6~,<R"), again
selected either for the multiplication to the right or to the left, when equipped
with two-form (7.7.14) are called symplectic-admissible manifolds or
genosymplectic manifolds, and the related geometry is called symplectic-
admissible geometry or genosymplectic geometry.

As incidental comments, note that the dependence on time appears only in
the symmetric part, as needed for consistency in the symplectic component. Also,
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under inversion (7.7.8), we generally have
ap y-1 <> < m>af iyl
(G0 = (@®BrL, () = <7y (7.7.15)

which is a rather intriguing feature of the generalized geometry here considered,
whereby the symplectic content of a contravariant tenser is more general than
the symplectic counterpart of the covariant tensor. (see ref. [11] for details)

The most salient departure from the exterior calculus in its conventicnal or
isotopic formulation is that the Poincare’ Lemina no longer holds for the
genosymplectic geometry, i.e., for exact symplectic-admissible two-forms we
have

<S>2 = d<S>1, (77}.6&)
d<¥, = dd<¥”)) = 0. (7.7.16b)

In actuality, within the contest of the exterior-admissible calculus, the
Poincare’ Lemma is generalized into a rather infriguing geometric structure
which evidently admits the conventional Lemma as a particular case when all
symmetric components are null,

The geometric understanding of the Lie-isotopic algebras requires the
understanding that the validity of the Poincaré Lemma within the context of the
isosymplectic geometry is a necessary condition for the representation of the
conservation of the total energy under nonhamiltonian internal forces, as
studied in the main sections of this volume. .

By the same token, the geometric understanding of the more general Lie—
admissible formulations requires the understanding that the lack of validity of
the Poincaré Lemima within the context of the symplectic-admissible geometry
is a necessary condition for the representation of the nonconservation of the
energy of an interior dynamical system.

7.7.C: Genoriemannian geometry. Despite impressive and historical
advances in gravitation during this century, gravitation is still at its first infancy,
particularly when compared to the problems yet to be addressed, let alone solved.

In Ch. [.5 we identified the need of an integral generalization of the
Riemannian geometry for a more adequate representation of interior
gravitational problems, such as gravitational collapse, “black holes”, “big bang”,
etc., and submitted a generalization of the Riemannian geometry of the desired
integral type called isoriemannian geometry.

The point to be stressed here is that physics is a discipline that will never
admit final theories. No matter how advanced the isoriemannian geometry is over
the Riemannian one, it is not expected to be “the” final geometry. Instead, the
isoriemannian geometry is "one” geometry specifically conceived for one purpose,
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the treatment of closed—isolated interior systems with total conservation laws
under a generalized interior structure.

Another fundamental physical problem in gravitation which has not even
been addressed sc¢ far, let alone solved, is the dichotomy expressed by
experimental evidence in the observation, say, of Jupiter, according to which the
center—of—mass of the celestial body is time-reversal invariant, while its interior
dynamics is manifestly irreversible. It is evident that the conventional
Riemannian geometry is insufficient 1o represent the interior irreversibility in the
needed axiomatic form. A '

It is at this point that the dual Lie-isotopic and Lie—admissible formulations
beceme useful. In fact, as indicated earlier, the Lie-isotopic formulations are
structurally reversible while the Lie—admissible formulations are intrinsically
irreversible. The dual representation of reversible center—of—mass—trajectories
versus irreversible interior dynamics, is then permitted by the complementarity
of the Lie-isotopic and Lie—admissible formulations because of their inter-
relation discussed in this chapter {see also Fig. 7.1.1).

Note the necessity of the Lie-isotopic formulations for this
complementarity. In fact, reversible, conventionally Lie formulations for the
global-exterior description are not compatible with irreversible, l.ie-admissible,
interior descriptions because their attached Lie algebra is not Lie but Lie—isotopic.

[t may therefore be of some value to indicate a conceivable generalization
of the Riemannian geometry, under the name of Riemannian-admissible
geometry or genoriemannian geometry , originally submitted in ref. [11] which
provides an irreversible description of interior gravitation in a way compatible
with and complementary to the reversible description of the isoriemannian
geomelry of Sect. [.5.6. The understanding is that, unlike the isoriernannian
geometry, the genoriemannian extension is vastly unexplored at this writing.

The notion of genospace of Sect. [.7.3 can be specialized to that of
genoaffiine manifolds as the manifolds “M”(x,“R™) which possess the same
dimension, local coordinates and continuity properties of a conventional affine
manifold M(x,R), but are defined over an isofield <R”> with two different isounits
1> and <1 for the modular-isotopic action to the right and to the left,
respectively,

x> = A>x = ATVx, 17 = (TP)7], (7.7.17a)
K= x<A = x<TA, A =&l (7.A.17.1b)
= () (7.7.17.1c)

A "Riemannian-admissible manifold” or genoriemannian manifold can then be
thought as an isoriemannian manifold (Definition 1.5.6.1) with inequivalent
isomodular actions to the right (forward in time) and to the left (backward in



— 441 —

time), here denoted <R>(x,<g> <R™); namely, a manifold characterized by the
"genometrics for motions forward and backward in time”

THE DUAL ISORIEMANNIAN AND GENORIEMANNIAN
REPRESENTATION OF INTERIOR GRAVITATION

RIEMANNIAN
GEOMETRY

RIEMANNIAN-ISOTOPIC RIEMANNIAN-ADMISSIBLE
GEOMETRY GEOMETRY

FIGURE 7.7.1: A schematic view of the geometric treatment of gravitation studied in these
volumes. The Riemannian geometry is local-differential, thus being exact for the exterior
problem of point-like test bodies in vacuum, but only approximate for the interior one.
Moreover, a fundamental condition of the geometry is the symmetric character of the
metric, g = gt, thus implying its reversible character, with consequential inability to
represent the experimental evidence of the interior irreversibility, say, of Jupiter. The
Riemannian-isotopic geometry does solve the first problem, by permitting a direct
representation of internal nonlccal-nonlagrangian effects in a way conform with total
conservation laws. However, the isometric g = Tg of this latter geometry is also
symmetric,T = Tt, thus being also structurally reversible. A necessary condition for the
construction of an interior geometry for the direct representation of irreversibility is the
use of a nonsymmetric metric. The construction of a generalization of the Riemannian
geometry with a nonsymmetric metric via the use of conventional methods {those over a
conventional field) presents simply unsurmontable difficulties for current mathematical
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knowledge, which explains its absence at this writing. However, the same objective can be
achieved via isotopic techniques in such a simple way to appear elementary. The main
idea is based on two different nonsymmetric liftings of the isometric, one for motion
forward in time § = §~ = T and one backward in time § = <Tg, with T~ and <T being
different nonsymmetric real-valued tensors {evidently of the same dimension of g)
interconnected by the conjugation T~ = (¥I'%. The definition of the forward isometric g~
over the genofield R™(”,+*7), and of the backward isometric <¢ over <R(<i+,<¥) for the
conjugation <T = {T>}* or over its isodual for <T = (T>} then removes all technical
difficulties indicated earlier because it implies the deformation § = T”g while jointly
deforming the unit of the amount inverse of the deformation, [ 217 = (7! and the
same occurs for motion backward in time. Recall that deformed spheres, cones etc. are
perfect spheres, cones, etc. at the level of the isogeometry (Ch. 1.5). Along similar lines, the
understanding of the genogeometry requires the knowledge that its nonsymmetric
character appears only when the genogeometry is projected in the conventional
Riemannian space because at the abstract level conventional, isotopic and genotopic
geometries coincide. :

g>

R

where the two motions (multiplications) are interconnected by a suitable
conjugation, e.g.,

TG, X, %, &,...) g(x), (7.7.182)

It

I, X, %, X,...) glx), (7.7.18b)

T = (<7t or (<T)9, (7.7.19)

and equipped with two nonequivalent isoaffine connections, one for the
modular-isotopic action te the right and the other to the left, the Christoffel-
admissible symbols of the first kind

> > >
%7 %' %hk
axh axk axl

Pl = 4 ) = L (7.7.20a)

o<g g g
<Flh1k = 4§ kI + Ih - hk) = <Flklh y (7.7.20n)
axh axk ax1

with corresponding Christoffel-admissible symbols of the second kind
>2 1 _ >ijel 21
P = 0 s % (7.7.21a)

<2 1 _ o] <pl o <2 i
f‘zhk <glJ Pk = < (7.7.21b)
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The capability of a genometric to raise and lower the indices is understood (as
in any affine space), and

gl = |( g>r S LA (7.7.22a)

<gll = [(<g L, (7.7.22b)

The Riemannian-admissible geometry or genoriemannian geometry for short,
is the geometry of genospaces <R>(x,<g>,<R>).

Its explicit construction can be done via the appropriate generalization of
the isoriemannian geometry, with particular reference to the isoconnections
which, besides being different for the right and left modular-isotopic action, can
now be nonsymmetric depending on the assumed characteristics of the
genotopic elements T~ and <T.

- What is important is the mechanism of the lifting, which consists of a
deformation of the original metric while jointly lifting the unit by the inverse of
the deformation, Eq.s (7.7.1). The consistency of the new geometry is then
consequential (see Fig. 7.7.1).

The above results permits the following

Lemma 7.7.1 [11}: An axiomatization of irreversibility in interior gravitation is
provided by ineguivalent deformations of modular actions, metrics and
connections to the right (forward in time) and to the left (backward in time)
under a joint lifting of the unit per each direction of time characterized by the
inverses of the deformations.

As we shall see in Vols I and III, the above geometrization does indeed
permit the representation of open-nonconservative-irreversible interior
trajectories in Jupiter, such as a representaticn of interior vortices with
monotonically varying angular momenta, although in a way compatible with the
reversibility of the closed-isolated systems.

The interconnection of Lemmas 7.5.1, 7.6.1 and 7.7.1 should be kept in mind.

It is hoped that geometers in the field will be intrigued by the Riemannian—
admissible geometry and develop it in the necessary technical details needed for
quantitative studies of irreversible interior gravitation.



7.8: FUNCTIONAL GENOANALYSIS

In Sect. 1.7.2 we have pointed out a number of problernatic aspects of the current
representation of nonconservative systemns, such as their representation via the
addition of a Tictitious “iraginary potential” to the Hamiltonian, H = K + iV. This

- evidently implies a trajectory different from the physical one because the forces
criginating the nonconservation are generally of nonpotential type.

) This approach to open nonconservative systems has yet another
Tfundamental problematic aspects, and it is given, on one side, by the evident lack
of Hermiticity of the Hamiltonian with consequential loss of observability, while,
on the other side, the loss of energy is indeed observed and physically measured.

Hadronic mechanics has been conceived and constructed to resolve these
evident problematic aspects. In fact, the nonpotential forces responsible for the
nonconservation are not represented with a potential but with other means.
Moreover and most importantly, the nonconserved Hamiltonian remains fully
Hermitean and, thus observable, during the nonconservative process.

As we shall see in Vol. 11, these are not mere mathematical curiosities,
because they have direct experimental consequence. As an example, the
achievement of the Hermiticily of the Hamiltonian during its time-rate-of-
variation requires a suitable, corresponding revision of the data elaboration (such
as a structural alteration of the expectation values) resulting in different
numerical predictions and interpretations for the same event, as we shall see.

The preservation of the Hermiticity/observability of a Hamiltonian when
nonconserved is achieved by a Turther generalization of the functional isoanalysis
of the preceding chapter, this time, of genotopic character.

Recall that the Lie-isotopic theory admits a formulation via operators on a
conventional Hilbert space 3¢, as originally proposed in ref. [20]. However, in so
doing the observability is lost even for conservative processes. The observability
can however be preserved il one lifts the Hilbert space via the same isotopic
element T of the enveloping algebra.

A fully similar situaticn occurs for the more general Lie-admissible theory.
In Tact, it can be well defined on both a conventional Hilbert space 3} and its
isotope 3. However, a Hamiltonian is generally nonhermitean in both.

We reach in this way the left and right genohilbert spaces

> (e = T [ ddrin) > o) € B>, (7.8.1a)
@ W = S ddr ot <o) e <R. (7.8.10)
[t is easy to prove that a Hamiltonian which is conventionally Hermitean,

remains Hermitean under the above genotopies, thus being observable, even
though it is nonconserved,
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idH/dt = H(R-S)H # 0. (7.8.2)

A simple example can be instructive here. Consider the free quantum
mechanical particle with Hamiltonian Hy = {fpoz, m = I, which is evidently
Hermitean over 3C. Suppose now that this particle at a given instant of time t,
enters within a resistive medium, thus losing energy to the medium itself.
Assume the simplest possible decay, the linearly damped one

H=e"'H, = ¢ 4p,2. (7.8.3)

As we shall see in Vol. II, the Lie-admissible branch of hadronic mechanics
permits an axiomatic representation of the above system; that is, a formulation
derivable from first principles which is invariant under its own time evolution.

At this point we are merely interested in illustrating the basic dynarical
equations, the underlying genohilbert spaces, and the Hermiticity—observability of
the Hamiltonian.

It is easy 1o see that the desired Lie—admissible representation of system
(7.8.3) is characterized by the realizations of the R-S quantities

R=-+iyH, |, S$=+ityH,}, R =4, (7.8.4)

The Lie—admissible group of the time evolution of a quantity @ is then given by

o = (eE>iH(t°—t)}>Q(to)<(e<E”t_t°H} -
_ eiHOS(to-t)Q(ro)e—i(to—t}RH‘ (7.85)
with infinitesirnal Lie—admissible equation
idQ/dt = Q<Hy-Hy>Q (7.8.6)
which becormnes for the energy
idH,/dt = -iyH,, (7.8.7)

thus verifying law (7.8.4).
The underlying genohilbert spaces are then given by

R (e =17 f aSr i) > o) € B, 1> =i2y 1 H, {7.8.8a)
P W) = A d% o<ol) e <R, 1 =-i2ylH,. (788D

The Hermiticity/observability of the Hamiltonian during the decaying process can
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be easily verified.
Note the formal identities for the case considered

We = <wle) = W, = J ¥ i) o), (7.89)
namely, the compositions of the genchilbert spaces coincide with the
conventional one. The Hermiticity/observability under decay emerges from the
definition of the same composition in an invariant form on a genofield, that is,
the decay is represented by the operations on H, and not by the Hamiltonian. In
turn, this simple example illustrates the truly fundamental character of the
theory of isonumbers and genonumbers for hadronic mechanics. More complex
nonconservative systems will be studied Vol. Il and III along structurally the
same lines.

All isotopic generalizations of trigonometry, Dirac’s 8—function, Fourier
series, Fourier transforms, etc. then admit a significant and intriguing genotopic
extension which is hereon assumed.

7.9: FUNDAMENTAL EQUATIONS OF HADRONIC MECHANICS
AND THEIR DIRECT UNIVERSALITY

We are Tinally in a position to identify the fundamental equations of the two
branches of hadronic mechanics indicated in Sect. 1.5

7.9.A: Lie-isotopic branch of hadronic mechanics, This branch describes
closed-isolated, composite systems with conserved total energy and other
physical quantities and nonlinear-nonlocal-nonpotential internal forces.

The nonrelativistic characterization of systems via this branch requires two
operators, the Hamiltonian H and one isotopic operator T . The mathematical
structure of the branch is characterized by one single isotopic product for both
the right and the left with one single space isounit

1 = 1T = 71, p=1, (79.1)

and it is based on the Tollowing main structures:

A-1) Isofields of isoreal or isocomplex numbers Fa,+*),

A-2) Enveloping isoassociative operator algebras &y,

A-3) Ischilbert spaces Xg, G= Gl>0,G#T,
which characterize the fundamental dynamical equations in the infinitesimal
form
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dQ
it— =1IQ;H = Q*H - H*Q=QTH - HTQ, (7.9.2)
dt

where 1, = Ty! #1 is the time isounit and [Q] H] are the Lie—isolopic brackets,
with finite form

Qo = 0+ QO+ 0 = (e, E1vqoie, M) -
iHTt -
= (M hqoe T, (7.9
yielding a Lie—isotopic group of isounitary transformations on g,

The corresponding, isoequivalent Schrodinger—type representation in
isospaces E(t,R)xEr,3,R) 60 are given by

3
il a—as{t, 0= Hx*Jtr) = HTH 1 (7.9.4a)
t

o
-1l Q"t = Wt 0«1 = Mo TH. (7.9.4b)

and fundamental isocommutation rules

[rlrd] [rifpj] 0 i1
[aH]aV] = ( , )=( ) (7.9.5)
[Pj:I'J] [pi,pj] -il 0

The ahove Lie-isotopic branch is structurally reversible, can be therefore
used for either direction of time, and is divided into Kadeisvili's Classes 1, 11, III,
IV and V depending on the characteristics of the basic isounit 1 (see Vol. II for
details and relativistic extensions).

79.B: Lie-admissible branch of hadronic mechanics, which
characterizes open—-nonconservative systems with nonconserved energy and
other physical quantities under the most general possible nonlinear-nonlocal-
nonpotential external interactions.

Physical systemns are represented nonrelativistically in this branch by three
operators, the Hamiltonian H and the genotopic elements R and S which are
however interconnected by the conjugation Rl = S. This second branch is
characterized by two different space genounits, one for motion forward, and one
for motion backward in time interconnected by Hermitean conjugation

1=R7l, A>B: =ARB, 99=5"1, A<B:=ASB, 1” = (NDT,(796

60 we introduce here and in the following isounits not dependent explicitly in the local
coordinates 10 avoid gravitational considerations at this time.



and it is based on the following main structures:

B-1) Genofields of genoreal or genocomplex numbers <F(<G~,+,<+),

B-2) Enveloping genoassociative operator algebras <¢~,

A-3) Genohilbert spaces <3t~ ,
which characterize the fundamental dynamical equations in the infinitesimal
form

aQ
i<T>t?<—t~>=(QfH) = Q<H-H>Q= QRH - HSQ (7.9.7)

where t” (<t) represents forward (backward) time with corresponding genounits
17¢ (1} and (Q H) are the Lie-admissible brackets, with finite form

Q) = 07> Q0 < <07 = (e, th}>Q(0)<{e<E_itH] -
= (eMRhqore ), 798

yielding a Lie-admissible group of genounitary transformations on <30,
The corresponding genoequivalent Schrédinger—type representation in
genospaces <B7(t,“R>x<£>(r,<6”,R™) is characterized by the equations

9

117 at>{p>(t, = H>4¢2t1) = HRFG, 1) (7.9.92)
3

~ 1 <Y, r)7<’lt= <Yt <H = <Yt r)SH. (7.9.9b)
o<t

with fundamental genocommutation rules

(o) (rfpy)
{aV;av) = ( )= i <gHY (7.9.10)

(pjfrj) (pi,pj)

where <M is the operator image of the corresponding classical Lie-admissible
tensor also originating from the fundamental genocommutation rules.

The Lie-admissible branch is intrinsically irreversible, must be used for
each given direction of time, and is also divided into Kadeisvili's Classes I, II, III,
[V and V referred to the maximal Hermitean part of the genounits <1~ and <1~.

The crucial Lie—isotopic and Lie-admissible equations for the linear
momentum will be presented in Vol. IL

It is evident that the Lie-isotopic branch is a particular case of the Lie-
admissible branch, and this illustrates the reason why hadronic mechanics was
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originally submitted [20] in terms of the fundamental Lie-admissible equations
{7.9.7) and (7.9.8). A detailed study of the derivation, properties and basic axioms of
the above equations is presented in Vol. IL.

7.7.C: Direct Universality of Hadronic Mechanics. We shall now outline
the "direct universality” of hadronic mechanics, that is, its capability to represent
all possible linear and nonlinear, local and nonlocal, Hamiltonian and
nonhamiltonian, continuous or discrete, and other systems (universality), directly
in the frame of the observer (direct universality).

It should be stressed from the ouiset that this does not means that
hadronic mechanics is the only applicable mechanics, because numerous other
approaches are indeed possible for the elaboration of the same system (see the
appendix).

The direct universality however implies the remarkable occurrence that,
while other theories generally treat only one class of systems, hadronic
mechanics can treat them all. The selection of one theory versus another does not
evidently depend on perscnal taste, but rather on the intrinsic consistency of the
theory at hand, as well as the experimental verification.

The identification whether a given theory is a particular case of hadronic
mechanics implies:

1) The identification of possible departures from conventional quantum
mechanical laws which are inherent in the theory constdered;

2) The identification of corresponding generalized physical laws, as well as
the physical conditions for their applicability, as a basis for experimental
resolution; and

3) The availability of rigorous axiomatic methods for the quantitative
treatment of the theory considered in a way demonstrably consistent with the
basic assumption. As we shall see, this basic condition is lacking for a number of
theories which, while possessing a generalized structure, elaborate data with
conventional quantum mechanical assumptions, thus leading to insidious
problematic aspects in their physical interpretation and applications.

[n this final section, it may be recommendable t¢c provide the primary
guidelines for detailed study later on, as expressed by the fcllowing two
theorems.

Theorem 7.9.1 - Direct universality for systems with conserved energy: All
possible linear or nonlinear, local-differential or noniocal-integral, continuous
or discrete operator, nonrelativistic or relativistic, equations representing a
system wilh conserved total energy admit a direct representation via the Lie-
isotopic branch of hadronic mechanics in the frame of the experimenter in one
of the Classes I, IT, IIl,. IV and V.

The above theorem is transparently proved, e.g., by Eq.s (7.9.4) when written
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explicitly

at
idH/dt = 0. {79.11b)

which provide a direct representation of any given operator equations with
conserved total energy. A similar situation occurs at the relativistic level (Vol. L1).

Note that the Lie-isotopic equations permit an infinite number of
different representations of the same system evidently due to the availability of
two operators H and T for the same equation. However, such an infinity is
reduced to only one, up to isoequivalence, when H is restricted to represent the
total energy of the system considered.

Theorem 7.9.2 - Direct universality for systems with nonconserved energy:
All possible linear or nonlinear, local-differential or nonlocal-integral,
continuous or discrete, nonrelativistic or relativistic, operator eguations
representing a system with nonconserved energy admitl a direcl representation
via the Lie—admissible branch of hadronic mechanics in the frame of the
experimenter in one of the Classes I, IT, IIL. IV and V.

Again, the property is transparently exhibited by Eq.s (7.9.9) in their explicit
form

8
1Pt r, p, &, 9f, 0, a1, — & = HRUA, 1, p, 3 O, o, 00, J &, (7.9.12a)
ot

idH/dt = 0. (79.12b)

As an illustration, one, among the infinitely possible reformulation of Eq.s
(7.2.4) in terms of Lie~admissible equations submitted since the original proposal
of the hadronic mechanics [20] is given by

(A, H = ARH - HSA = AH - HfA = AxH, {7.9.133)
R =1, s = H L, {7.9.13b)
We now close this section with the necessary conditions for the existence

of a bona-fide generalized mechanics. When inspecting any generalized theory,
the fundamental issue is whether conventional quantum mechanical laws and



- 451 -

axioms are preserved or generalized. In turn, this issue sets the stage for the
elaboration via conventional or generalized methods, thus resulting in different
numbers predicted by the theories for the same system.

The above issue can be answered via the following:

Basic criterion 7.9.1 - Identification of conventional vs generalized theories:
Any theory whose fundamental commutation rule coincide with or are unitarily
equivalent to the canonical commutation rules

[, ] [ri,pj] 0 il
[aM,a"] = ‘ = , (79.14)
[pi,rl] [pl,pJ] =il 0

is structurally equivalent to quantum mechanics, with corresponding cases
occurring for relativistic and field theoretical theories. A necessary condition for
the existence of a generalization of quantum mechanics is therefore the
presence of generalized fundamental commutation rules which are not unitarily
equivalent to those of quantum mechanics.

As one can see, the situation is clear-cut, without possibilities of using
generalized theories while preserving old physical laws: generalized fundamental
canonical commutation rules demand the use of generalized physical laws and
methods. A good example is given by generalized commutation rules of the type

[r,pl =rp - pr = iflr,p (7.9.15)

where f(r,p} is a function or even a number different than h = 1 (see also App.
[.7.A.). Then the theory is noncanonical and must be reformulated via the re—
definition of the unit and of the commutators themselves into the isotopic form

[pl=rTp-pTr=il=iflp, T=1ILpl} (7.9.16)

which is now axiomatic, that is, derivable from first principles and invariant
under its own time evolution. On the contrary, it is easy to prove that the
“noncanonical” brackets (7.9.15) expressed in terms of the “conventional” Lie
product rp — pr, do not preserve their form, and are in actuality mapped precisely
into the isotopic form (7.9.16), as shown in Eq.s (4.1.3).

This is due to the fact thai the only possible transformations capable of
reducing the noncanonical value f(r, p) to | are nonunitary, even when the
Tunction T reduces to a constant.

Equivalently, we can say that noncanonical brackets (7.9.15) are based on a
generalization of the unit precisely of the fundamental form (1.1.1). The
reconstruction of the entire structure of quantumn mechanics into that of the
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covering hadronic mechanics is then necessary for consistency of the formalism,
as well as for its axiomatic, form—invariant character.

The physically relevant issue here is that the quantum mechanical data
elaboration of the theory based on isocommutation rules (7.9.15) are different
from those based on rule (7.9.16) The formulation of rule (7.9.15) via the
conventional Lie product therefore gives only a misleading impression of having
preserved quantum mechanics.

We should insist in this important point and indicate some of the
problematic aspects of formulation {7.9.15), such as: the belief that conventional
quantum mechanical energy, linear momentum, etc., remain Hermitean and thus
observable under generalized commutation rules (7.9.15} at all times. It is easily
proved that, under the nonunitary time evolution, the enveloping algebra
becomes isotopic, while the Hilbert space remains unchanged, and this implies the
general loss of Hermiticity, as familiar from Ch. L.6.

In short, the “fundamental canonical commutation rules” are truly
“fundamental”. Any structural deviation from them implies a necessary,
consequential and compatible generalization of the structure of quantum
mechanics. This is the case of the large variety of models of type (7.9.15) and
other models.(App. [.7.4).

After having understood (and, most importantly, admitted) the generalized
character of a given theory, the next basic issue is the determination whether the
total energy is conserved or noi, so as to determine which methods to use as per
Theorem 7.9.1 and 7.9.2.

-

Basic criterion 7.9.2 - Conservation of the energy in generalized theories: A
necessary condition for the total energy H of a generalized theory (as per
Criterion 7.9.1) to be conserved is that the generalized fundamental commutation
rules are isounitarily equivalent to the Lie-isotopic rules (7.9.5).

Note that the above condition is necessary but not sufficient. In fact, the
establishing that the total energy is conserved requires the additional conditions
that: 1) H is the generator of the time evolution; 2) the canonical algorithm “p”
represents the physical linear momentum, p = mi; 3) H consists of the sum of
two terms, H = K + V, the physical kinetic energy K and the physical potential
energy V, etc. {for a detailed study of this aspect one may consult ref. [8,9].

Note also the necessary use of isounitary transformation. In fact, the use of
unitary transformations would be futile, inasmuch as fully within conventional
gquantum mechanical settings.

Basic criterion 7.9.3 - Nonconservation of the energy in generalized theories:
A necessary condition for the operator H of a generalized theory (as per
Criterion 7.9.1) to represent the nonconserved energy of the system is that the
generalized fundamental commutation rules are isounitarily equivalent to the
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Lie-admissible rules (7.9.10}

Stated in different terms, the identification of an essential Lie—admissible
structure guarantees the nonconservation of the energy. It is evident that, by no
means does this implies any violation of any basic law of physics. The Lie—
admissible formulations merely identify the external character of the
interactions represented via the R and S operators. The understanding is that
when the nonconservative system is completed with these external inferactions,
one regains the conservation of the total energy in full,

The above outline should be sufficient for the identification, first, whether
a given theory is a generalization of quantum mechanics or not and, second,
whether a generalized theory has a Lie-isotopic or Lie—admissible structure
according to Theorem 7.9.1 or 7.9.2. Once these basic identifications have been
made, then the methods of Vol. I1 are applicable for an axiomatic, form—invariant
characterization of the theory, the identification of their physical laws, and the
correct elaboration of data for experimental verifications.

APPENDIX 7.A: CONNECTION BETWEEN HADRONIC MECHANICS
AND OTHER GENERALIZED THEORIES

As indicated since the Preface of this volume, hadronic mechanics has a direct
connection with aif generalizations of quantum mechanics attempted until now,
with no exception known to this author. This is due to the universality theorems
7.8.1 and 7.9.2 which imply the inclusion of generalizations of nonlinear, nonlacal,
discrete, algebraic, geometric, or any other type.

All existing generalized theories have been conceived and developed in a
way independent from hadronic mechanics. Such independence is here
confirmed as well as supported because of the polyhedric nature of mathernatical
and physical inquiries indicated earlier.

At the same time, another aspect of scientific inquiries is the need to study
inter—relationship among different theories, because of the evident scientific
gains reached in the comparison.

Along the latter lines, the primary contribution expected by the
reformulation of a given generalized theory in terms of hadronic mechanics is of
primary physical character, and deals with the identification of the axiomatic
form invariant under time evolution, the applicable physical laws, and the
applicable formalism for the data elaboration, so as to reach predictions with the
necessary consistency needed for experimental consideration®!

61 The reader should always keep in mind the numerous papers existing in the literature
with noncanonical commutation rules, yet the elaboration of data via conventional
quantum mechanics, whose predictions have no credibility warranting a consideration
for experiments.
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The axiomatic formulation, the applicable basic laws and the metheds for
the data elaboration are studied in Vol. 11, jointly with primary applications such
as to the origin of irreversibility, gauge theories, and the like. In this appendix we
merely illustrate the connection between hadronic mechanics and a few
representative generalized theories.

7.A.1: Hadronic mechanics and g-deformations. Albert’s paper [18] of
1948 studied the generalized product

axb=pab-(l-plba, (7.A.1)

where ab can be assumed for simplicity to be associative and p is an element of
the field, as a realization of the noncommutative Jordan a]gebras,62 which were
of particular interest in the mathematics of the time.

Besides being a realization of noncommutative Jordan algebras, the above
product is Lie—admissible, Jordan—admissible and admits the commutative Jordan
algebras as a particular case for p = ¢, but it does not admit Lie algebras for any
(finite) value of p. For this reason, this author introduced [12] back in 1967 as part
of his graduate studies in physics at the University of Torino, Italy, and
apparently for the first time in both mathematical and physical literature, the
generalized product

(a,b) = pab -qba, (7.A.2)

where p and q are elements of the base field or functions, under the name of
(p.g/-mutations of associative algebras. As one can see, product (7.A.2) is Lie-
admissible, Jordan—admissible, admits both Lie algebras and commutative Jordan
algebras as particular cases for finite values of p and g, and constitutes a
realization of the noncommutative Jordan algebras (see ref. [12] for details).

The above initial studies were then expanded by the author [20] in 1978 into
the Lie—admissible time evolution (7.9.7), ie,

idA/dt = APH - HQA, (7.A.3)

where P and Q are now unrestricted integro—differential operators, and in the
fundamental Lie-admissible commutation rules (7 9.10), ie.,

(rifrj) (rifpj)
(ab7a’) = ( , )= i <gPHv (7.A.4)
(pi et} (py,py)

62 Those are algebras with product axb # bxa verifying Jordan's axiom {axbx(axa) =
(ax(bx{axa)) [18].



— 455 —

Subsequent studies along Albert’s notion of Lie—admissibility have been reported
in this chapter.

Independently from the above, various authors studied in the early 805 a
generglization of canonical commutation rules of the type

(np =rp-gqpr, (7.A.5)
under the name q—deformationGB, and more recently referred in a highly
improper way as quantum group364 {see the recent ref.s [25] and literature
contained therein). As one can see, product (7.A.5) is the particular case (0, g) of
the {p, g/-mutations (7.A.2), but it is not a particular case of product {7.A.1). As
such, product (7.A.5) is also Lie-admissible, Jordan—admissible, admits Lie and
commutative Jordan algebras as particular case, and it is a realization of the
noncommutative Jordan algebras.

The studies in the field have recently multiplied and extended to various
parts of quantum mechanics, including the g-deformation of the Poincaré
algebra (see, e.g., ref.s [26]). 89

The "q-deformations” are an ideal example to illustrate the relationship
between generalized thecries and hadronic mechanics. in fact, their
mathematical consistency is impeccable, their independence from hadronic
mechanics is established, e.g., by comparing g-special functions and isospecial
functions (Ch. 1.6), and their beauty is undeniable as shown by the number of
researchers attracted to the field.

However, the g-deformations are afflicted by a number of problematic
aspects of a physical nature which cannot be ignored. To identify them, let us
recall that the terms "g—deformations” are now refereed to a variety of
generalized theories all generally defined at a fixed value of time, such as:

63 In nis original proposal of 1967 [12], this author had intentionally used a term other
than “deformation” (and suggested the term “mutation” because most of the so-called g-
deformations are not “deformations” as conventionally understood in mathematics.
Nevertheless, the terms “g-deformations” are now widely used, and they will be kept in
this volume to aveoid confusion.

64 The use of the terms "quantum groups” is discouraged, and will not be adopted in
these volumes because excessively misleading. In fact, the terms were historically
referred, first, to a structure forming a conventional Lie group and, second, to the
realization of such group in quantum mechanics. The use of the same terms for the -
deformation is therefore misleading on at least two counts, first, because the g—-
deformations do not yield a group as conventionally understood, and, second, because
their structure is incompatible with the very notion of quantum of energy.

65 It sheould be noted that the first Lie-admissible, P-Q-operator deformation of the
Poincaré symmetry was introduced by the author in ref. [11] via the notion of Lie—
admissible isobimodules or genomodules.
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I)  Deformation of the enveloping associative algebra. Let &L) be the
universal enveloping associative algebra of a Lie algebra L (Sect.
1.4.3) with elements A, B, ... and conventional associative product AB
over a field Fa,+x). This first type is characterized by the following
generalization of the associative product AR

AB = Ax*B =qAB, (7.A.6)

where q is an element of the base field {or a function), without the
joint lifting of the basic field as adopted by isotopic theories (Ch.s
L1, and [.2); ‘

II) Deformation of the Lie product. Let L be a Lie algebra in quantum
mechanical realization on a Hilbert space 3¢ over a field Fla,+x) with
generators A, B, ..and fundamental commutation rules rp — pr =
i (h = 1). This second type of q—deformation is based on the
generalization of the canonical commutators

rp-pr = rp -qpr =iflg.) {7.A.7)

which is evidently of type (7.A.5).
IIT) Deformation of the structure constants. let L be an n—
dimensional Lie algebra with ordered basis X;, envelope E(L) and
commutation rules [X;, X;l = Cijk Xy over a field Fla,+x). This third
type of deformations is based on the preservation of the original
product Xin of &L) and of the original Lie product XiXj - XjX; of L,
while deforming this time the structure constants

Xi Xj - Xj Xi =C= Cijk Xk = Xi X_l - X] Xi = Fjjk(q, ) Xk' {(7.4.8)

where the quantities Fijk are similar to the “structure functions” of
the Lie-isotopic theory {this type includes deformations
characterized by the Hopf algebras and numerous others);

plus additional deformations, such as those characterized by the combination of
deformed commutators (7.A.7) and conventional Heisenberg equations for the
time evolution,ﬁh‘r the deformation of creation-annihilation operators of the

% The reader should be aware that the form "qAB" of the product is correct only for g-
numbers or functions and not for gq-operators, in which case the product must be
written “AgB”, as done throughout this volume. In fact, if AB is an associative algebra, the
product AxB = gAB with q a fixed operator violates the left scalar and distributive laws
and, as such, it does not constitute any algebra of any kind.

67 This latter class evidently requires fwo different envelopes, a generalized one for the

characterization of the generalized commutation rules, and a conventional one for the
characterization of the conventional time evolution. Even though mathematically
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above Types I, 11, III, etc. (see ref.s [25,26] or brevity).

Again, all the above g-deformations have an impeccable mathematical
consistency and un undeniable beauty. However, when considered for physical
applications they require the necessary use of the dynamical time evolution, in
which case a number of problemnatic aspects emerge as recently studied by Lopez
[27], such as:

I} General loss of the Hermiticity/observability of the Hamillonian. As now
Tamiliar from the studies presented in this volumne, deformations of the Types I,
I1, ITI above generally imply a nonunitary time evolution, as necessary from the
lack of canonicity of the commutation rules, and demonstrable, e.g., via
quantization of the corresponding, classical, noncanonical theories. In turn,
nonunitary time evolutions imply the lifting of the envelope into the isotopic
form for all Types I, II, III,

EAB = E: A%B = ATB, A =UAU B=URU , (7.A92
vul=1=1 T=(uuly!, 1="17", (7.4.9b)

Still in turn, this implies the loss of the Hermiticity/observability of the
Hamiltonian and of other physical quantities because g—deformations are defined
on a conventional Hilbert space JC, while the preservation of Hermiticity under
lifting (7.A.4) demands the joint lifting of the base field F = F and of the Hilbert
space 3¢ = R (Sect. 1.6.3).%8

2) General loss of the measurement theory. Most q-deformations are
deformations of the basic associative product AB and/or of Planck’s constant h =,
and/or of the structure constants without a corresponding redefinition of the
unit as done in the isotopic theories. Therefore, g—deformations are theories
without a left and right unit which remains invariant under the time evolution.

correct, this class multiplies, rather than reduces the physical problematic aspects
discussed below.

88 1t should be indicated for clarity that, when nonunitary time evolutions are admitted
also for the Hilbert space, Hermiticity can be preserved. In fact, in this case the
cenventional inner product is lifted into the form

<o|y> = faZrolen) = fdroTTe, ¢=Up,&=Up, T = (UUTT],

which is precisely of the isotopic type. However, the correct preservation of Hermiticity

1

requires the joint lifting of the base field into the isofield with isounit1 = T ', in which

case the correct form of the isoinner product is given by

<otw>=17dr ¢l Ty,

{and coincides with the original product for T independent of the integration variables),
thus implying the entire structure of hadronic mechanics.



— 458 —

This occurrence is transparent in lifting (7.A.6) which deforms the product
AB = AsB = qAB = ATB without jointly deforming the unit as done in the
foundations of hadronic mechanics

1 =1="1!=q". (7.A.10)

The lack of basic unit can aiso be established for deformations of Types II and
IT1, e.g., under time evolution with ensuing nonunitary structure, and unification
of all envelopes into isotopic form (7.A.4). The loss of the unit then implies the
evident loss of the measurement theory, owing to the necessary condition of the
existence of a well defined, left and right unit for the very concept of
measurement.5?

3} General lack of uniqueness of Gaussian distributions and related
physical laws. One of the strengths of quantum mechanics is the uniqueness of
its various formulations (such as the Gaussian) which evidently implies the
known uniqueness of its physical predictions (such as the uniqueness of
Heisenberg's uncertainties, see Sect. [.6.1). This uniqueness can be mathematically
traced to the uniqueness of the basic unit of the theory, Planck’s constant, as well
as to the existence of a right and left unit of the universal enveloping operator
algebra £(L). The general lack of the basic unit then implies that g~deformations
do not possess a consistent formulation of the Poincaré-Birkhoff-Witt theorem
which is applicable at all times. In fact, a necessary condition for the very
formulation of the theorem is the existence and uniqueness of a left and right
unit. '

This means the lack of existence of a unique, infinite-dimensional basis
for the envelopes of q-deformations and, therefore, the lack of existence of a
unique form of exponentiation. In fact, g—deformations are known for their
variety of “exponentiations” .

The above occurrences add to the mathematical beauty of the theory, but
have rather serious physical consequences, such as the Jack of uniqueness of a
Gaussian distribution with consequential lack of uniqueness of the generalized
uncertainties. A similar situation occurs for other physical laws.

4) General loss of special functions under time evolution. As recalled
earlier, q—deformations are formulated at a fixed value of time, and so are their
special functions (Ch. 1.6). But under time evolution the q-number is replaced by
the isotopic operator T. The inapplicability of the q-special functions under time
evolution is then conseguential.

From a mathematical viewpoint, this occurrence may be irrelevant. The

59 we are here intentionally silent, as a test of technical knowledge of isotopic
techniques studied earlier, on the need for an axiomatic, form-invariant theory to unify
the unit of the base field with that of the envelope.
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7,

physical implications are however rather serious, such as the impossibility of
performing a partial wave-analysis and the like.

5) General loss of Einstein’s axioms. As well known (but not fully identified
in the literature), all g-deformations imply a structural departure from ail basic
axioms of the special (and general) i"elativity, as established by the noncanonicity
of the commutation rules, or the nonunitary character of the time evolution, or
the deformation of the structure constants of the Poincare symmetry, etc.

Again, this occurrence can be mathematically intriguing, but it carrier
rather serious physical problems in the compliance with physical reality which
must be addressed prior to any physical application.

Hadronic mechanics offers realistic possibilities of resolving all the above
problematic aspects while leaving the results of q-deformations fundamentally
unaffected, and this illustrates the relationship between hadronic mechanics and
generalized theories,

In fact, hadronic mechanics does not require any change of the assumed
structural lines of q-deformations (such as the expticit form of q, f{g,..) or Fl-jk(q,
...)}, but only their reformulation in the axiomatically correct form which is
invariant under the time evolution of the theory.

The hadronic reformulation of g-deformations is so simple as to appear
trivial. For Type I it merely requires the joint lifting of the associative product
and of the basic unit

AB = AB =AqB I = 1=ql, {7.A.LD)

with consequential reformulation of the theory with respect to isofield, isospaces,
isotransformations, etc.

The reformulation for Type II was first studied by Jannussis and his
collaborators [28] on conventional fields. That on genofields requires the selection
of one “time arrow” and then the interpretation of the function f(g,..} in rules
(7.A.6) as the genounits for that direction. Jointly, the gq—deformation of the
second term in the Lh.s. is not axiomatic and must be lifted into the inverse of
the selected genounit, resulting in the reformulation

r<p-p>r=rRp-pSr="7,
7 =flg,.)/q S=q/flg.), R=1g,..)
rp-qpr=iflg.) = or
r<p-p>r=rRp-pSr="<1-

< =1flg.)/q 8= flg.) R=q/flq,..)
{1.A.12
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The entire theory must then be reformulated on genofields, genospaces,
genotransformations, etc. of the selected direction of time.

The hadronic reformulation of g-deformations of Type III is more
complex owing to their general character. The procedures has however been
studied in detail in this volurne and it is applicable to each case considered. The
end-result is that, to achieve an axiomatic formulation for given deformed
structure constants Fijk( , ), one must identify an isotopic element T{g, ...) such
that the original Lie-deformation is turned into a Lie-isotopic algebra with F jk as
structure functions

X X=X % = Bt e )X = X TX - T = [t q, )X, (T.A13)

The axiomatic reformulation of other g~deformations can be done with one or
the other methods studied in this volume.

The researcher in g-deformations is urged to prove the form—-invariance of
the above isotopic reformulations under the time evolution of the theory.
Equivalently, to understand the relationship between ¢-deformations and
hadronic mechanics, one should study the image of all commutators under
nonunitary time evolutions, e.g.,

rp - qpr=iflg.)  rRp - p{qRir=i1, (7.A.14a)
1=rfg.Juul, R=1L (7.A.14D)

As a result, starting from the (0,q)-number deformation (7.A.6) at a fixed
value of timer, one reaches at arbitrary times the general (P,Q)-deformations, that
is, the Lie—admissible equations at the foundations of hadronic mechanics. This
shows the inevitability of the hadronic reformulation even when not desired.

It is equally instructive for the researcher in g-deformation to see that the
above isotopic reformulations resolve all the problematic aspects indicated
earlier. To begin, hadronic mechanics has been built from the beginning (Sect.
1.1.1) under the condition of possessing a generalized, but well defined left and
right unit 1. As now familiar, this implies a corresponding compatible isotopy of
the base fields and Hilbert space, thus ensuring the Hermiticity/observability of
the Hamiltonian and other operators at all times (Sect. 1.6.3).

The basic assumptions of hadronic mechanics are céntered in fundamental
condition 1.4.4.1 that the enveloping algebra (of both the Lie-isotopic and Lie—
admissible branches) must have a well defined left and right unit. This implies
the existence of a generalized Poincaré~Birkhoff-Witt theorem (Sect. 1.4.3). The
applicability of the measurement theory is proved in Vol. [I by showing that the
correct isoexpectation values of the isounit 1 turns out to be the conventional
Planck value,

<1> = h =1L {7.A.15)
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As a result, the measurement theory of hadronic mechanics is the conventional
one, as necessary for physical consistency and applicability to actual experiments,
evidently because measures are conducted in our classical frame and, as such,
cannot be modified by theoretical deformations introduced in the microworld.

The Lie—isotopic theory is also based on the existence of a unique infinite—
dimensional basis which implies the uniqueness of the exponentiation in hadronic
mechanics with consequential uniqueness of the physical laws defined on them.

The applicability of the isospecial functions at all times is evident from the
studies of Ch. [.6, because they are constructed for an arbitrary
integrodifferential operator T admitting of T~! as the correct unit, rather than
with respect to a q-number without a unit.

Finally, the most important objective of all the isotopic techniques is the
preservation of Einstein’s axioms under T-integral-operator—deformations and
only their realizations in 4 nonlinear-nonlocal-noncanonical form as needed for
interior problems. The important point stressed throughout our analysis is that
both the exterior and interior problems are characterized by a unique set of
algebraic—geometric—dynamical axioms.

This is stressed by the local isomorphism between Minkowski and
isominkowski spaces, or the Poincaré and isopoincare symmetries

MR = NgihR),  PEID ~ Pyal), (7.A.16)

which should be compared the corresponding lack of isomorphisms for
conventional g—deformations

MxnR(} Mq(x,n,R(, P(3.1) = Pq(S.I). {(7.4.17)

As a final note we shouild indicate that, even after reaching a fully
axiomatic formulation of the Lie-admissible type (7.A.12), there is one additional
problematic aspect requiring consideration. It deals with the relationship between
_the R— and S—operators which should be be restricted to verify the conjugation

R =8, (5.A.18)

in which case one has a direct applicability to all possible nonconservative
systems. Physical applications for R # R/, even though evidently possible, are
unknown at this writing, to our best knowledge.

Perhaps the best way to see the relationship between g—deformations and
hadronic mechanics is to inspect Yol. II on the applications to specific physical
problems and Vol. III on the experimental verification. It is at that stage where
the researchers in gq—deformation can see the inevitability of an axiomatic
reformulation in order to reach a form acceptable Tor experimental verifications.
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7.A.2: Hadronic mechanics and nonlinear theories., As well known,
nonlinear generalizations of Schrédingers equations, here referred to those
nonlinear in the wavefunctions (only), have been proposed since the early stages
of quantum mechanics, such as the nonlinear equation proposed by E. Fermi [29]
back in 1927

3 1 -
i—dy =[- — & + Vi) + Vgl idy (7.A.19)
at 2m

Since that time, the generalizations have been studied by a considerable
number of authors and constitute today a new segment of theoretical physics.
These studies are evidently valuable because they focus the attention on one of
the expected limitations of quantum mechanics for interior dynamical problems
(Sect. I.1.2), which is precisely the linearity in the wavefunctions.

The issue addressed by hadronic mechanics in Vol. II is the identification of
methods appropriate for the elaboration of nonlinear equations, that is, methods
verifying all the necessary principles, including the superposition principle and
the conventional measurement theory.

More recently, a method for the study of the above type of nonlinear
equations was proposed by S. Weinberg [30] in 1989 which is essentially
characterized by an enveloping algebra U with product

oA OB
U: AX%B = — — {7.A.20)

Ay oy

“Heisenberg-type” equation for a physical quantity Q

idQ/dt = QXH - H%A, (7.A.21)
and “schrodinger’s type” equation

] 1 8H
i—dy = — Ay + —, (7.A.22)
ot 2m o

where H is certain functional of ¢ and §i, all equations being defined over a
conventional Hilbert space 3C on a conventional field Fla,+x).

Weinberg’s nonlinear theory provides another illustration of the
relationship between hadronic mechanics and generalized theories, this time,
from a viewpoint different than that of the q—deformmations.

In fact, the elegance of the theory and its independence from other
methods are evident. Yet the theory is afflicted by a number of problematic
aspects which are, again, of physical nature, as studied in detail by Jannussis,
Mignani and Santilli [31].
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The most dominant characteristic of Weinberg’s nonlinear theory is that its
envelope U is a general, nonassociative, Lie-admissible algebra (App. L.4.A and
Sect. 1.7.3). In fact, product (7.A.20} is nonassociative because

U: AX(BX)C) # (AXB)XC; (7.A.23)
it is Lie-admissible because the attached antisymmetric product is Lie
Q%H - H*Q =Lie, (7.A.24)

and it is a general Lie-admissible algebra in the sense that it is characterized by
the general law (7.3.1) without verifying simpler versions of the same, such as
that of flexibility.

The immediate consequence is that Weinberg’s nonlinear theory does not
admit a unit (unless reduced to the trivial case of only one dimension). As a
result, the theory suffers of a number of problematic aspects somewhat similar
to those of gq-deformations, such as [31]:

1) lack of existence of the measurement theory evidently because of the
lack of existence of the ynit

2) lack of well defined Casimir invariants, evidently because of the lack of
the center of the envelope;

3} lack o the Poincaré-Birkhoff-Witt theorem for the basis of U7%

4) lack of a consistent exponentiation, because of the lack of the needed
infinite-dimensional basis; !

5) lack of a consistent formulation of space-time symmetries in their finite
{exponentiated) form uniquely derivable from their Lie algebra;

6) lack of the general equivalence between the “Heisenberg-type” and the
“Schrodinger—type” equations;ﬂ‘r2

70 As recalled in Sect. 1.4.3, the largest nonassociative envelope admitting ordered
monomials and a formulation of the Poincaré—Birkhoff-Witt theorem is given by the
flexible Lie-admissible aigebras while extreme technical problems exist in the
formulation of the theorem for general Lie—admissible algebras.

71 Note that, by comparison, exponentiations do exist for q—deformations, although they
are not unique.

72 This is a typical area of study of Vol II. We here mention the origin of the
problematic aspect which is due, on one side, to the nonassociative character of the
envelope of the “Heisenberg-type” equations (ie, the nonassociativity of the product AXB,),
and the associative character of the modular structure of of the “Schrédinger—type”
equations {l.e., the associativity of the action Ay, under which no equivalence is evidently
possible. At the same time, a nonassociative reformulation of the modular action of the
“Schrodinger’s type” equation such as H?qpk to achieve structural equivalence with the
envelope of the the "Heisenberg-type” equation is confronted with large technical
problems, because it would require a nonassociative generalization of Schrédinger's
theory, i.e., one for which
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7) lack of a well defined notion of particles because of the lack of well
defined physical characteristics, such as spin, which evidenlly require a well
defined Lie algebra, with an envelope possessing a well defined cenler, with a
unique exponentiation to a well defined group, etc.

Again, the above occurrences do not prevent the theory from being
mathematically definable. In fact, the occurrences have been called “infrinsic
features” of the theory. The point is that they simply cannot be ignored for
physical applications.

As it was the case for the q—deformations, hadronic mechanics perrmit an
axiomatic reformulation of Weinberg’s nonlinear theory which, while leaving the
physical content completely unchanged, avoids problematic aspects 1)~7) above.

To understand the occurrence one must distinguish between the nonlinear
“equations” represented by the theory, and Weinberg’s nonlinear “theory” per se.
Then, all possible Weinberg'’s nonlinear “equations” are an evident particular case
of the isoschrédinger’s equation of hadronic mechanics owing to its direct
universality (Theorem 7.9.1)

0

i— g = Hlt,r, p) T, 1, p, b, &, &, O, B, ....) P (7.A.25)
ot

As a matter of fact, while Weinberg’s "theory” admits only one particular
class of "equations” nonlinear in the wavefunctions, isoschrdinger’s equations are
much broader because they admit: 1) all possible nonlinear equations in the
wavefunctions; 2) all possible equations nonlinear in the derivative of the
wavefunctions; as well as 3) all possible equations which are nonlocal in the
wavefunctions and their derivatives of arbitrary order.

The resolution of the preblematic aspects in the treatment of the same
“equations” then follows from their isotopic representation (7.A.25).

As an incidental note, one should be aware of the differences in the
intended physical applicability of Weinberg’s nonlinear theory and hadronic
mechanics. In fact, the former has been formulated for what we essentially refer -
to as the exterior dynamical problem in vacuum; while the latter has been
formulated for the interior dynamical problem within physical media.

This point is important to stress that the limitations emerged from
experiments on Weinberg’s theory [33] (essentially dealing with atomic structures),
have no bearing of any nature for hadronic mechanics, evidently because they

AR(BXdy) = (AXB)X gy .

In summary, the mathematical structures of the Heisenberg-type and Schrédinger—type
equations are inequivalent in Weinberg’s nonlinear theory, and the attempts at rendering
them structurally equivalent are confronted with considerable technical problems which,
at any rate, would leave the other problematic aspects completely unaffected. The above
occurrence is rather synthetically expressed by the so—called Okubo’s No-Quantization
Theorem [32] studied in Vol. I1.
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are not applicable, say, to a proton in the core of a collapsing star. In fact, a
primary nonlinearity of interior conditions is expected to be in the derivative of
" the wavefunctions which is absent in Weinberg’s theory.

The different origins of the problematic aspects in g—deformations and in
Weinberg's theory should be identified because instructive. All g—deformations
possess a fully associative algebra, with consequential Tull capability to identily
its correct left and right unit. By comparison, Weinberg’s nonlinear theory is
based on a nonassociative envelope with consequential fmpossibility to define
the right and left unit.

Additional critical inspection of Weinberg’s nonlinear theory can be found
in ref.s [34]. An intriguing reformulation of Weinberg's theory which avoid some
of the problematic aspects of the original formulation has been proposed by
Jordan [35]. The identification of the algebraic origin of these resolutions is yseful
to cast additional light on the issues here considered.

Jordan [loc. cit) introduces the following generalization of envelope (7.A.20)

A 0B
U*: A¥B = — wp —. (7.4.26)
aij awlj

The commutator [A, Bl ., = A*B - B*A is Lie and, therefore U* remains a general
nonassociative Lie—admissible algebra as in Weinberg’s case.

Jordan's reformulation does however allow the treatment of spin and other
conventional quantum mechanical quantities. This is due to the fact that the
space of Tunctions A, B,... is restricted to those with the structure

A= wyag . B = wy by, (7.A.27)

where the terms in the r.h.s. are interpreted as matrix elements. The cornmutator
(A, B]U,. computed in the nonassociative envelope U* is then turned into an
equivalent commutator turned into an associative envelope,

{A’B]U* = akj Wik bj1 - bkj Wik aj] = [A, Bl . (7.A.28)

the correct formulation of the Poincaré-Birkhoff-Witt theorem, space-time
symmetries, exponentiation, Gausstan distribution, etc. is then consequential.

In fact, structure (7.A.28) is a realization of the Lie-isotopic product with an
ispassociative envelope and isotopic element T = (wij) precisely of the type at the
foundation of hadronic mechanics. More specifically, Jordan's transformation of
Weinberg's nonassociative envelope into an equivalent isoassociative form is
precisely a realization of Lemma [.4.A.1.

Jordan’s reformulation itself is not immune of problematic aspects which
are this time similar to those of the q-deformations (lack of joint isotopy of
fields and Hilbert spaces, etc.).

The important information originating from these occurrences is that
(Fundamental Condition 1.4.4.1), according to current knowledge, physically
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meaningful theories should be formulated with respect to an associative
envelope with a well defined left and right unit, as it is the case for quantum
mechanics and its hadronic covering.

There is little doubt that a next generation of theories will likely be based
on nonassociative envelopes, precisely along Weinberg’s lines [30). The
researchers interested in these latter lines should however be aware of the rather
serious technical problems involved, both mathematical (e.g., the Poincaré-
Birkhoff-Witt theorem) and physical (e.g., the equivalence of Heisenberg—type
and Schrodinger-type equations for nonassociative modutli).

7.A.3: Hadronic mechanics and nonlocal theories. Deformations of
quantum mechanics (Sect. 7.A.2) focus the attention on the relevance of
noncanonical theories, while Weinberg’s theory of the preceding section focuses
the attention on the relevance of nonfinear theories. The next logical step along
the lines of these volumes is to focus the attention on nonfocal theories.

We assume the reader is familiar with the variety of notions of nonlocality
existing in the literature. Those particularly relevant for these veolumes are the
studies initiated by Russian physicists, such as Blochintsev [36] which have
subsequently seen the most comprehensive development by Efimov and his
associates (see monographs [37] and quoted literature).

Most significant for these volumes is the original motivation which
stimulated the studies of nonlocal theories: remove the divergencies which are
inherent in the local in the local character of quantum field theories.

Note that studies [36,37] deal with nonlocal formulations of quantum field
theory while the studies of these volumes deal with nonlocal formulations of
quantum mechanics. Despite that, the rather intriguing connections and
possibilities for further advances are already identifiable.

Hadronic mechanics can be conceived as a generalization of quantumn
mechanics which can remove the singularity of Dirac’s delta function ab initio
precisely via a nonlocal formulation (Sect. 1.6.6.4).

The field theoretical extension of the isodirac delta function has been
preliminarily studied by Nishioka [38] and, as we shall see in Yol. II, it does indeed
contains the necessary elements for the possible, future construction of a
nonlocal-isotopic field theory which is also free of singularities ab initio.

Again, all results achieved in ref.s [36,.27) remain unchanged in their
possible isotopic reformulation, which essentially provides mere alternative
methods for their treatment.

One point appears to be certain: the conventional local-differential field
theories have reached and surpassed the limits of their applicability. Irrespective
of which theory will eventually result to be more viable, the need Tor nonlocal-
integral theories is simply beyond credible doubts. We are not referring to ideal
point-like particles moving in vacuum {exterior problem) in which the exact
validity of local Tield theories is incontrovertible, but to extended wavepackets
moving within those of other particles (interior problem).

At any rate, there exist physical systems simply beyond the descriptive
capacities of local field theories, such as the attractive interaction of the same
electrons of the Cooper pair in superconductivity, which can be quantitatively
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interpreted via a suitable nonlocal representation of the overlapping of the
wavepackets of the electrons (Vol. I1I). Similar needs for nonlocal theories exist in
nuclear, particle and statistical physics, theoretical biophysics and other
disciplines.

7.A.4: Hadronic mechanics and and discrete theories, Another field of
research that is currently gaining momentumn is at times known under the name
of discrete theories. This area too is quite vast, by encompassing the use of
discrete groups, lattices, discrete calculus, etc. We here focus the attention on
only one aspect, the discrefe-time theories which is sufficient to illustrate all
other discrete theories.

Discrete time theories can be traced back to Caldirola’s studies [39] of 1956.
More recent studies have been conducted by Wolf [40] and others {see Vol. II).

These studies focus the attention on the possibility that time has a
discrete structure at a sufficiently small scale, a possibility clearly deserving the
proper attention in the mathermnatical, theoretical and experimental communities.

It was shown by Jannussis and his collaborators [(41] that Caldirola’s
equations do have a structure precisely of the Lie-admissible type

t) - plt-1)
ih a - = HRplt) - plt)SH, {7.A.29)
T

where T, called Caldirola’s chronon, is a measure the duration the interaction
among particles. The full applicability of hadronic mechanics along universality
Theorem 1.7.9.2 is then completed by noting that the difference in the Lh.s. is a
realization of the isoderivative with discrete isounits (Sect. 1.6.7).

Thus, discrete time theories constitute an intriguing particular case of
hadronic mechanics of Class V. Note that this interpretation permits an intriguing
connection with g~deformations which does not appear to have been sufficiently
identified in the literature.

By recalling that the basic axioms of quantum mechanics are preserved
under isotopies, and only realizes in a more general way, the above hadronic
reformulation is intriguing indeed because it shows that discrete—time theories
are admitted by the abstract axioms of quantum mechanics itself.

The above unexpected property will be proved in Vol. Il via the the
isoexpectation value of the isounit <1 > = 1, which applies also for discrete
isounits 1. To put it differently, a discrete structure of time emerges as admitted
by the quantum mechanical axioms, evidently in a more general realization, when
dealing with the microcosm. Nevertheless, when the theory is reduced to
numbers suitable for macroscopic experiments via the isoexpectation values,
such discreteness disappears. In fact, the future resolution of the possible discrete
structure of time requires experiments specifically conceived for that purpose,
whose study has been initiated by Wolf [40].

The current formulation of the discrete-time theories is aiso afflicted by
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problematic aspects of physical character due to the fact that, on one side, they
generalize the structure of quantum mechanics while, on the other side, they
preserve conventional quantum mechanical formulations (conventional
expectation values, conventional physical laws and principles, etc.) in the
elaboration of the theories.

In effect, the transition from the continuous time of quantum mechanics
to a time with a discrete structure implies a necessary generalization of the
underlying unit of time, from the trivial unit 1 to a generalized unit of
Kadeisvili's discrete Class V. In turn, this demands, for evident need of
consistency, a step-by-step generalization of the entire quantum mechanics,
including expectation values, physical laws and data elaboration needed for
experiments. :

7.A.5: Hadronic mechanics and other approaches. By no mean the
preceding examples exhaust all possible connections between hadronic mechanics
and ongoing research.

Among a number of additional aspects we shall study in Vol. II, it may be

recommendable to indicate the following ones. Kadyshevsky and his associates
[42] have constructed a generalized quantum field theory with a fundamental
length at small distances which exhibits numerous intriguing connections to q—
deformations, nonlocal field theories, etc. The re—inspection of the above theory
with isotopic methods is significant because it can indicate that a fundamental
length can be reconciled with the very axioms of quantum mechanics, evidently
when realized in a sufficiently general way.
' Another intriguing fopic is the Lie-admissible re—interpretation of
conventional external electromagnetic interactions, such as the studies by
Studenikin, and others [43]. Even though these studies deal with purely quantum
mechanical -settings, their Lie-admissible reinterpretation may be intriguing and
instructive for various reasons. After all, interactions with external fields imply
the nonconservation of the energy or of some other physical quantity of the
particle considered, thus implying the direct applicability of the Lie—admissible
formulations.

Note that the reinterpretation identifies another hitherto unknown
application of the qg—deformations (the treatment of open systems due to external
electromagnetic and other fields), when also treated with Lie-admissible
techniques.

The implications of the reinterpretation are nontrivial. Recall that the
electromagnetic interactions verify the Poincaré symmetry. Their
reinterpretation as open systems and treatment via the Lie—admissible theory
then permits the construction of the equivalent Poincaré-admissible symmetry
{Sect. 1.7.6). Once such genosymmetry has been established in the known grounds
of electromagnetic interactions, its extension to more complex systems is then
expected, such as to the characterization of a neutron in the core of a neutron
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star.

The Bogoliubov method of group variables [44] is yet another field, as
studied, e.g., by Khrustalev and his associates [45], which is particularly intriguing
for hadronic mechanics. As well known, the method essentially consists of using
collective group variables which greatly simplify complicated models in field
theory and gravitation. But the method also has a nonlocal structure, and exhibits
a clear connection with the Lie—isotopic branch of hadronic mechanics.

While the independent studies of Bogoliubov methods are evidently
encouraged, their reinterpretation in terms of hadronic mechanics is also
recommendable because of the predictable additional knowledge one can gain in
the process Tor both approaches. ‘

New hound states of hadrons are recently emerging such as the so—called
di-baryons (see ref.s [46] and quoted literature). Such systems have a particular
importance for hadronic mechanics because one of its primary objective is the
study of the apparent cold fusion of massive particles into heavier particles (see
ref.s {47] and Vol. I11).

The entire field of hidden variables (see, e.g., ref. [48]) has a direct
connection with hadronic mechanics. [n fact, the isoeigenvalue equations

Hxy = HT¢ = B =Ep ¢ (7.4.30)

is an explicit and concrete realization of the theory of hidden variables, which are
actualiy turned into "hidden operators”. This occurrence has rather deep
implications studied in Vol. II, which lead to the reinterpretation of hadronic
mechanics as a completion of quantum mechanics along the celebrated
Einstein-Podolsky-Rosen argument [49].

Additional related studies of particular interest for hadronic mechanics are
the novel studies on hidden symmetries initiated by Smorodinsky and Winternitz
[50] and continued by Sissakian, Pogosyan and their associates [51). These studies
too are particularly significant for hadronic mechanics because they permit the
identification of generalized bound states deeply linked to the hadrenic bound
states. In fact, the isosymmetries of hadronic mechanics are hidden symmetries.

Yet another topic of particular relevance is the variational method fo
regain convergence in perturbative treatments by Sissakian and his collaborators
[52]. In fact, as indicated in Sect. 1.6.2, one of the objectives of the isotopies of
Hilbert spaces {s precisely that of turning conventionally divergent series into
isotopically convergent ones under the mere selection of isotopic elements such
that | T | < 1. The above variational method can therefore be particularly useful
for the isotopic achievement of convergent series.

The interested reader can find along similar lines the connection between
hadrenic mechanics and other topics, such as Berry’s phase, squeezed states, and
others.
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isocomplex numbers, 59ff
isoconvergence, 325, 331
isocosinus, 210
isocovariant derivative, 265
isocovariant differential, 265
isocryptology, 84
isocurvature tensor, 268, 276
isocurvature isoscalar, 276
isodelta functions, 341ff
isodegenerate 2-forms, 259
isoderivative, 354
isodeterminant, 54, 337
isodifferential, 52 .
isodifferential calculus, 247
isodifferential rule, 247
isodistance, 207
isodistributive law, 52
isodual
geometries, 200
isoaffine geornetry, 263
isoccanonical, 133
isochristoffel symbols, 283
isocomplex numbers, 64
isocovariant differ., 267
isocurvature tensor, 283
isodeterminant, 55
isodifferential calculus, 247
isoeinstein tensor, 283
isoenvelope, 134ff
- isoeuclidean geometry, 201
isoeuclidean spaces, 100
isoexponentiation, 137
isoforms, 252
isohilbert space, 320ff
isoinner product, 328
isominkowskian geom.,107, 233

isominkowski spaces, 107
isooctonions, 45
isoquaternions, 721
realization, 69ff
isoreal numbers, 55
isorepresentations, 168ff
isoricci tensor, 283
isoriemannian geoom., 271
isoriemannian spaces, 116, 273
isospaces, 93, 96
isotime, 106
isotopic scalar, 283
isotorsion, 283
isosymplectic geom., 246
Lie groups, 157
Lie-Santilli isogroups, 157
map, 28, 40
Minkowskian geometr, 241
octonicons, 74
quaternions, 69
real rumbers, 56
Riemannian geometry, 27111
Riemannian spaces, | 16ff
stress—energy tensor, 283
time, 106
isodual Lie—-Santilli
theory, 123
isoeigenvalues, 336
isoeinstein tensor, 276
isoenvelopes, 134ff
isoequivalence, 170
isoeuclidean
spaces, 100
geometry, 201
iscexponentiation, 136
isoeuler angles, 363
isofields, 42
general, 50
indefinite, 50
isodual, 50
isoforms, 251ff



isofreud identity, 279
isofourier series, 345{T
isofourier transforms, 350ff
isofunctions, 354ff
isogeodesics, 291
isogroups, 154
isohamiltonian
vector field, 260
isohilbert space, 320
isohyperbolic functions, 306
isoidemnpotent, 338
isoinner product, 328
isointegral, 35417
isoinverse, 46
isojacobi functicns, 372ff
isolegendre functions, 3671T
isolight cone, 242
isoline, 203
isolinearity, 93, 128ff
isolocality, 128ff
isomanifolds, 356
isomminkowski
spaces, 107ff
geometry, 233ff
isonilpotent, 148
isonorm, 52
isonormed algebras, 53
isonumbers, 36ff
isooctonions, 73ff
isoorthogonal algebras, 147
isoorthogonality, 273
isooperations on functions
isodifferentials, 354
isoderivatives, 354
isointegrals, 354
isologarithm, 354
isoexponentiation, 354

isooperations on operators, 333ff

isodeterminant, 283
isohermiticity, 3344
isoidempotent, 337
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isoinverse, 334
isopower, 334
isoprojection, 337
isotrace, 337
isounitarity, 335
isoparallel transport, 2421
isopauli matrices, 175
irregular, 176
isoequivalent, 177
regular, 175
standard, 176
isopolar coordinates, 308
isopythagorean theorem, 300
isoquantization, 26
isoquaternions,671f
isoquotient, 46
isoreal numbers, 57ff
isoricci identity,275
isorepresentations, 16511
irregular, 172
iscadjoint, 172
regular, 172
standard, 172
isoriemannian
spaces, 116, 273
geometry, 271ff
isorotations, 162
isoscalar product, 2167f
isoschwartz inequality, 326
isoseries, 3451f
isosinus, 305
isosquare, 46 -
isosquare root, 46
isoriemannian geometry, 271ff
isosolvable, 148
isospaces, 90ff
isospectrum of eigenv., 338
isosphere, 182, 218ff
isosymmetries, 1597
ispsymplectic
geometry, 246f1
manifolds, 218
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isotopic Baker—Campbell-
Hausdorff theorem, 155
isotopic element, 19, 39
isotopic generalization of
Heisenberg’s equation, 446
unit, 4, 39
Schrodinger’s equation, 446
isotopic Poincaré lemma, 253
isotopic Poincare-Birkhoff-Witt
theorem, 13411
isotopic unification of
numbers, 76ff
simple Lie algebras, 152, 168
spaces, 120
quadrics, 218
isotopology, 28, 356
isotopy, 19, 313
isotrace,149
isotransformations, 3491
isotrigonometry, 304ff
isouncertainties, 319
isounit, 4, 38fT
isounitarity, 335
isovectors, 216ff

Jacobi law, 143

Jordan algebra
commutative, 180
noncominutative, 182

Jordan-admissible algebra
general, 182
flexible, 183

Kadeisvili classification, 29
Klimyk rule, 173

—477-

Lagrange’s equations, 410
Lagrange's identity, 217
Lie’s algebras, 179
Lie derivative, 295
Lie-admissible algebra, 31, 410ff
general, 180
Tlexible, 181
theory, 410
Lie-Koening theorem, 7
Lie-Santilli genotheory, 410fT
Lie-Santilli isoalgebra, 21, 143ff
Lie-Santilli isogroups, 19, 154ff
Lie-Santill
Second Theorem, 143
Third Theorem, 144
Lobacevski geometry, 224ff
local-differential theory, 4

Mackey imprimitivity theorem, 9
Minkowski space, 108

Minkowski metric, 108
multiplicative unit, 42
M2), 395

Negative energies, 262

No Reduction Theorems, 6
noncompact, 150
nonconservative systems, 6
nondesarguesian geometry, 224ff
non—first—-order-Lagrangians, 282
nonhamiltonian interactions, 4
nonlinear interactions, 4
nonlinear theories, 462

nonlocal interactions, 4

nonlocal theories, 466

nonlocal potentials, 11
non—Newtonian forces, 6
nonpotential interactions, 4
nerm, 52
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one-forms, 292

ordering of multiplication, 424ff
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Particles,
conventional, 167, 413
isotopic, 168, 431
genotopic, 168, 431
Planck’s constant, 4
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power-associative algebra, 183
pseudoisotopy, 50

Quaternions, 671f
g-deformations, 358, 454fT
q-special functions, 357
QU(2), 384

Real numbers, 55ff
Riemannian
metric, 116
space, 116
rotation algebra, 138

Sea shells, 231
sedenions, 76

scalar law, 52

squeezed states, 469
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